61 House on 1 2.2. 2131 71

Field Sampling Plan/Quality Assurance Project Plan

Volume I of III

General Electric Company Pittsfield, Massachusetts

September 2000

Octporate Environmental Programs General Elector Congrany 100 Woograwn Avenue: Pitrstield: MA 01201

September 13, 2000

Bryan Olson EPA Project Coordinator U.S. Environmental Protection Agency EPA New England One Congress Street, Suite 1100 Boston, Massachusetts 02114-2023 J. Lyn Cutler State Project Coordinator Section Chief, Special Projects Bureau of Waste Site Cleanup Department of Environmental Protection 436 Dwight Street Springfield, Massachusetts 01103

Re: GE-Pittsfield/Housatonic River Site (GECD900) and Off-Site Areas (GEACO500) Revised Field Sampling Plan/Quality Assurance Project Plan

Dear Mr. Olson and Ms. Cutler:

Enclosed is a revised version of General Electric's (GE's) *Field Sampling Plan/Quality Assurance Project Plan* (FSP/QAPP). This document incorporates the changes requested by the U.S. Environmental Protection Agency (EPA) and the Massachusetts Department of Environmental Protection (MDEP) in prior comments on the January 2000 FSP/QAPP and in numerous discussions between GE and EPA regarding this document.

This FSP/QAPP is designed to cover sampling and analysis procedures to be followed by GE and its Contractors in conducting investigation activities pursuant to several regulatory schemes, as described in Section 1.1 of the enclosed document. Specifically, it covers sampling and analysis activities to be conducted by and for GE: (1) pursuant to the Consent Decree (CD) for the GE-Pittsfield/Housatonic River Site (which was lodged in U.S. District Court on October 7, 1999); (2) pursuant to the Reissued RCRA Permit for the Rest of River portion of that Site (issued by EPA on July 18, 2000, to be effective upon entry of the CD); (3) prior entry of the CD, at the CD Site pursuant to prior regulatory authorities (i.e., the 1994 RCRA Permit from EPA and the 1990 Administrative Consent Orders [ACOs] issued by MDEP); and (4) at certain properties and areas outside the CD Site, including the off-site properties that are currently regulated by MDEP pursuant to the 1990 ACOs and will be regulated under a new ACO to be executed by GE and MDEP following entry of the CD. As such, this FSP/QAPP is being submitted to both EPA and MDEP for approval.

Please contact me or John Novotny (413-494-3177) if you have any questions regarding this FSP/QAPP.

Sincerely yours,

andrew T. Leffer / My

Andrew T. Silfer, P.E. GE Project Coordinator

Enclosure

Bryan Olson J. Lyn Cutler September 13, 2000 Page 2

cc: Tim Conway, EPA Michael Nalipinski, EPA Dean Tagliaferro, EPA Holly Inglis, EPA K.C. Mitkevicius, USACE Dawn Veilleux, Weston Alan Weinberg, MDEP (w/o enclosure) Robert Bell, MDEP (w/o enclosure) Susan Steenstrup, MDEP Adam Wright, MDEP James Milkey, MA AG (w/o enclosure) Thomas LaRosa, MA EOEA Field Supervisor, U.S. Fish & Wildlife Service, DOI Kenneth Finkelstein, NOAA Charles Fredette, CDEP Mayor Gerald Doyle, City of Pittsfield Jeffrey Bernstein, Bernstein, Cushner & Kimmel Pittsfield Health Department Michael Carroll, GE Andrew Thomas, GE Richard Gates, GE John Novotny, GE William Horne, GE Robert Goldman, BBL Michael Fifield, BBL James Nuss, BBL Stuart Messur, BBL Bruce Eulian, BBL James Bieke, Shea & Gardner Samuel Gutter, Sidley & Austin Maura Hawkins, Berkshire Environmental Consultants John Guzwa, HSI GeoTrans John Ciampa, Spectra Environmental Tara Daniels, Adirondack Environmental Services Mark Wilson, Columbia Analytical Services Christopher Couch, CT&E Environmental Services Albert Vicinie, Severn Trent Laboratories James Daly, Northeast Analytical Tan Vo, Lancaster Laboratories Tod Noltemeyer, EnChem James McNair, The Academy of Natural Sciences of Philadelphia **Public Information Repositories GE Internal Repositories**

Field Sampling Plan/Quality Assurance Project Plan

Volume I of III

General Electric Company Pittsfield, Massachusetts

September 2000

6723 Towpath Road, P.O. Box 66 Syracuse, New York, 13214-0066 (315) 446-9120

Field Sampling Plan/ Quality Assurance Project Plan

for

General Electric Company Pittsfield, Massachusetts

APPROVALS:

Bryan Olson/Project Coordinator (EPA)

Date

Date

9/Blow

Date

9/13/00

Date

J. Lyn Cutler/Project Coordinator (MDEP)

Andrew T. Silfer/Project Coordinator (GE)

Robert K. Goldman/Supervising Contractor (BBL)

9/13/00

Date

Michael Fifield/Overall QA/QC Coordinator (BBL)

Prepared By: Blasland, Bo 6723 Towpa P.O. Box 66

Blasland, Bouck & Lee, Inc. 6723 Towpath Road P.O. Box 66 Syracuse, New York 13214

Sign-Off Page

Prior to conducting field activities, all personnel involved in work activities subject to this Field Sampling Plan (FSP)/Quality Assurance Project Plan (QAPP) must provide verification by signing below, that they have read and understand the relevant requirements as detailed in this document. After signing, copies of this page shall be sent to the appropriate GE Project Manager and the Overall QA/QC Coordinator.

Name (Print)	Signature	Relevant Sections	Date
		<u> </u>	
	<u> </u>		
			<u> </u>
		<u></u>	
		<u></u>	
<u> </u>			

EPA-NE QAPP Compendium Crosswalk

_

......

.....

.....

Project Management and Objectives Elements

Location of Element in COMMENT Submitted Document (Section #, Table #, Figure #, etc.)	vals	ents	ery Page	Not Applicable	Not Applicable	FSP/QAPP Distribution List			Table 2.1			Figure 2	Not Applicable	Not Applicable	See Project-Specific Work Plans	Not Applicable	
Location of Element in Submitted Document (5 #, Table #, Figure #, etc	Cover/Approvals	Table of Contents	Cover and Every Page			FSP/QAPP D	Sign-Off Page	Section 2.2	Figure 2 and Table 2.1	Figure 2	Section 1.2	Table 2.1 and Figure 2					
PRESENT (Y/N)	Y	Υ	Υ	N	z	Y	Υ	γ	Υ	Y	Y	Υ	N	N	Z	Z	,
Required EPA-NE Elements & Required Information (Numbers in parenthesis indicate worksheet #s associated with Elements & Required Information	Title & Approval Page	Table of Contents	Document Control Format	Document Control Numbering System	EPA-NE QAPP Worksheet #2	Distribution List (3)	Project Personnel Sign-off Sheet (4)	Project Organization	Project Organization Chart(s) (5a)	Communication Pathways (5b)	Modifications to Approved QAPP	Personnel Responsibilities & Qualifications Table (6)	Resumes	Special Training Requirements Table (7)	Project Planning/Project Definition	Project Planning Meetings	
Corresponding EPA-NE QAPP Section	1.0	2.1	2.2	2.3	2.4	3.0		4.0	4.1	4.2	4.2.1	4.3		4.4	5.0	5.1	
EPA QA/ R5	AI	A2				A3		A4 î	& A 8						A5		-

9/6/00 F \USERS\PI.H\PLH00\\$8701543.WPD EPA-NE QAPP Compendium Crosswalk

.

Project Management and Objectives Elements

EPA QA/ R5	Corresponding EPA-NE QAPP Section	Required EPA-NE Elements & Required Information (Numbers in parenthesis indicate worksheet #s associated with Elements & Required Information	PRESENT (Y/N)	Location of Element in Submitted Document (Section #, Table #, Figure #, etc.)	COMMENT
	5.2	Problem Definition/Site History & Background (8b)	Υ	Section 1.1	Also see Project-Specific Work Plans
		Site Maps (historical & present)	¥	Figure 1	Also see Project-Specific Work Plans
		EPA-NE DQO Summary Form	NA		Not included in Compendium
A6	6.0	Project Description and Schedule	N		See Project-Specific Work Plans
	6.1	Project Overview	Υ	Section 1.1	Also see Project-Specific Work Plans
		Project Description (9a)	NA	Section 1.1	Not included in Compendium
	-	Contaminants of Concern & Other Target Analytes Table (9b)	Y	Table 2 (General) and Table 3	Also see Project-Specific Work Plans
		Field & Quality Control Sample Summary Table (9c)	Y	Table 4	
		Analytical Services Table (9d)	Y	Table 1 and Figure 2	
		System Designs (e.g., Treatment Systems)	N		See Project-Specific Work Plans
	6.2	Project Schedule Timeline Table (10)	N		See Project-Specific Work Plans
A7	7.0	Project Quality Objectives & Measurements Performance Criteria	Υ	Sections 5, 7.3, and 7.4	Also see Project-Specific Work Plans
	7.1	Project Quality Objectives	Υ	Section 5.2	Also see Project-Specific Work Plans
	7.2	Measurement Performance Criteria Table (11)	Y	Section 5.2 and Table 4	Also see Project-Specific Work Plans
BI	8.0	Sampling Process Design	z		See Project-Specific Work Plans

Crosswalk
Compendium
EPA-NE QAPP

Project Management and Objectives Elements

COMMENT	See Project-Specific Work Plans	See Project-Specific Work Plans	See Project-Specific Work Plans	Also see Project-Specific Work Plans								Requirements presented in Appendix O, but not in tabular form		Requirements presented in Appendix O, but not in tabular form	
Location of Element in Submitted Document (Section #, Table #, Figure #, etc.)				Section 3	Section 3.1	Appendices A through W	Section 3.1 and Table 1	Section 1.2	Section 3.2	Appendix W	Section 3.5 and Appendix O	Appendix O	Section 3.5 and Appendix O	Appendix O	Section 3.2
PRESENT (Y/N)	z	z	Z	γ	Y	¥	Υ	γ	Y	Υ	Υ	Y	Y	¥	Y
Required EPA-NE Elements & Required Information (Numbers in parenthesis indicate worksheet #s associated with Elements & Required Information	Sampling Design Rationale (12a)	Sampling Locations, Sample & Analysis Method/SOP Requirements Table (12b)	Sampling Location Maps	Sampling Procedures & Requirements	Sampling Procedures	Sampling SOPs (as attachments to QAPP)	Project Sampling SOP Reference Table (13)	Sampling SOP Modifications	Cleaning & Decontamination of Equip/Sample Containers	Cleaning & Decontamination SOPs	Field Equipment Calibration	Field Sampling Equipment Calibration Table (14)	Field Equipment Maintenance, Testing & Inspection Requirements	Field Equipment Maintenance, Testing & Inspection Table (15)	Inspection & Acceptance Requirements for Supplies/Samples Containers
Corresponding EPA-NE QAPP Section	8.1			0.6	9.1			9.2	9.3		9.4		9.5		9.6
EPA QA/ R5				B2,	B6, B7,										

9/6/00 F \USERS\PLH\PLH00\58701543 WPD

Crosswalk
Compendium
EPA-NE QAPP

Project Management and Objectives Elements

on COMMENT							Requirements presented in Appendix L,	but not in the form of a flow diagram							Requirements presented in Section 3.5, but not in tabular form	
Location of Element in Submitted Document (Section #, Table #, Figure #, etc.)	Section 3.3	Section 3.3	Section 3.3.1	Section 3.3.1	Sections 3.3 and 3.6	Table 1	Appendix L	Appendix L	Section 3.3 and Appendix L	Appendix L	Appendix L	Section 3.5	Section 3.5	Appendices N through Q	Section 3.5	Section 1.2
PRESENT (Y/N)	Y	γ	γ	γ	Y	Y	Y	Υ	Y	Y	٢	Υ	¥	Y	¥	¥
Required EPA-NE Elements & Required Information (Numbers in parenthesis indicate worksheet #s associated with Elements & Required Information	Sample Handling, Tracking & Custody Requirements	Sample Collection Documentation	Field Notes	Field Documentation Management System	Sample Handling & Tracking System	Sample Container, Volume, & Preservation Table	Sample Handling Flow Diagram (16)	Samples Container Label/Sample Tag	Sample Custody	Chain of Custody Documentation	Sample Handling, Tracking, and Custody SOPs	Field Analytical Method Requirements	Field Analytical Methods & SOPs	Field Analytical Methods & SOPs (as attachments to QAPP)	Field Analytical Methods/SOP Reference Table (17)	Field Analytical Methods/SOP Modifications
Corresponding EPA-NE QAPP Section	10.0	10.1	10.1.1	10.1.2	10.2				10.3			11.0	11.1			11.2
EPA QA/ R5	B3											B4,	B5, B7,	B8		

Crosswalk
Compendium
EPA-NE QAPP

Project Management and Objectives Elements

Kequired LPA-NE Elements & Kequired Information (Numbers in parenthesis indicate worksheet #s associated with Elements & Required Information Field Analytical Instrument Calibration Table (18) Field Analytical Instrument/Equipment Maintenance, Testing & Inspection Requirements Field Analytical Inspection & Acceptance Requirements for Supplies Fixed Lab Analytical Methods & SOP (as attachments to QAPP) Fixed Lab Analytical Methods and SOP Modifications Fixed Lab Analytical Methods and SOP Modifications Fixed Lab Instrument Calibration Fixed Lab Instrument Maintenance, Testing & Fixed Lab Instrument Maintenance, Testing &
Fi Fi Fiel

Crosswalk
Compendium
EPA-NE QAPP

Project Management and Objectives Elements

130Quality Control RequirementsYSection 4.3 and Table 413.1Sampling Quality ControlYSection 4.3 and Table 413.2Frield Sampling Quality ControlYSection 4.313.2.1Frield Streening Confirmatory Analysis Decision TreeNSection 3.4 and Table 413.2.2Frield Streening Confirmatory Analysis Decision TreeNSection 3.4 and Table 413.2.1Frield Streening Confirmatory Analysis Decision TreeNSection 3.4 and Table 413.2.1Frield Streening Confirmatory Analysis Decision TreeNSection 4.3. Table 413.2.2Frield Streening Confirmatory Analysis Decision TreeNSection 4.3. Table 414.0Non-Direct Measurements Criteria & Limitations Table (25)NN15.0Non-Direct Measurements Criteria & Limitations Table (25)NN15.0Project Documentation & Records Table (26)NNSection 5.3 and 615.1Project Documentation & Records Table (26)YSection 5.6.3 and 615.2Field Analysis Data Package DeliverablesYSection 5.6.3 and 615.3Field Analysis Data Package DeliverablesYSection 5.6.3 and 615.4Section S and Frackage DeliverablesYSect	EPA QA/ R5	Corresponding EPA-NE QAPP Section	Required EPA-NE Elements & Required Information (Numbers in parenthesis indicate worksheet #s associated with Elements & Required Information	PRESENT (Y/N)	Location of Element in Submitted Document (Section #, Table #, Figure #, etc.)	COMMENT
13.1Sampling Quality ControlYSection 3.413.2.1Field Sampling QC Table (22a), (22b)YSection 4.313.2.1Field Sampling QC Table (22a), (23b)YSection 4.313.2.1Field Analytical QC (3a), (23b)YSection 3.4 and Table 413.2.1Field Analytical QC (23a), (23b)YSection 3.4 and Table 413.2.1Field Analytical QC (23a), (24b)YSection 3.4 and Table 413.2.1Field Screening/Confirmatory Analysis Decision TreeNN13.2.2Field Analytical QC (24a), (24b)YSection 4.3, Table 414.0Data Acquistion RequirementsNN15.0Non-Direct Measurements Criteria & Limitations Table (25)NSection 4.3, Table 415.0Non-Direct Measurements Criteria & Limitations Table (25)NSections 6 and 715.1Project Documentation & Records Table (26)YSections 6 and 715.1Project Documentation & Records Table (26)YSections 5.6.3 and 615.3Tricel Lab Data Package DeliverablesYSection 6.5.3 and 615.3Trikel Lab Data Package DeliverablesYSection 5.6.3 and 615.4Data Handling and ManagementYSection 7.and Figure 315.6Data Handling and ControlYSection 7.and Figure 3		13.0	Quality Control Requirements	γ	Section 4.3 and Table 4	
Field Sampling QC Table (22a), (22b)YTable 413.2 $Analytical Quality ControlYSection 4.313.2.1Field Analytical QC (23a), (23b)YSection 3.4 and Table 413.2.1Field Screening/Confirmatory Analysis Decision TreeNSection 3.4 and Table 413.2.2Field Fixed Laboratory QC (24a), (24b)YSection 4.3, Table 414.0Non-Direct MeasurementsNSection 4.3, Table 415.0Data Acquisition RequirementsNSection 4.3, Table 415.0Doumentation, Records & Data ManagementYSection 6 and 715.0Doumentation, Records & Data ManagementYSections 6 and 715.0Doumentation, Records & Data ManagementYSections 6 and 715.1Project Documentation & Records Table (26)YSections 6.and 715.2Field Analysis Data Package DeliverablesYSection 6.and 715.3Fixed Lab Data Package DeliverablesYSection 6.and 715.4Data Reporting FormatsYSection 6.and 715.4Data Package DeliverablesYSection 6.and 715.4Data Reporting FormatsYSection 6.and 715.4Data Aradisi and ManagementYSection 6.and 715.5Field Analysis Data Package DeliverablesYSection 6.and 715.4Data Package DeliverablesYSection 6.and 715.5Field Analysis Data Package DeliverablesYSection 6.and 7Section 6YSection 6$		13.1	Sampling Quality Control	Y	Section 3.4	
13.2Analytical Quality ControlYSection 4.313.2.1Field Analytical QC (23a), (23b)YSection 3.4 and Table 413.2.1Field Screening/Confirmatory Analysis Decision TreeNSection 3.4 and Table 413.2.2Field Screening/Confirmatory Analysis Decision TreeNSection 3.4 and Table 413.2.2Field Screening/Confirmatory Analysis Decision TreeNSection 4.3. Table 414.0Data Acquisition RequirementsNSection 4.3. Table 415.0Data Acquisition RequirementsNSection 4.3. Table 415.0Don-Direct Measurements Criteria & Limitations Table (25)NSection 4.3. Table 415.0Don-Direct Measurements Criteria & Limitations Table (25)NSections 6 and 715.0Don-Direct Measurements Criteria & Limitations Table (26)YSections 6 and 715.1Project Documentation. Records Table (26)YSections 6 and 715.1Project Documentation & Records Table (26)YSections 6 and 715.1Project Documentation & Records Table (26)YSections 6 and 715.2Field Analysis Data Package DeliverablesYSections 6 and 715.2Field Analysis Data Package DeliverablesYSection 6 and 715.3Field Lab Data Package DeliverablesYSection 6 and 715.4Data Reporting FormatsYSection 6 and 715.4Section 8 and 8 a			Field Sampling QC Table (22a), (22b)	Υ	Table 4	
13.2.1Field Analytical QC (23a), (23b)YSection 3.4 and Table 413.2.1Field Screening/Confirmatory Analysis Decision Tree (if applicable)NSection 3.4 and Table 413.2.2Field Fixed Laboratory QC (24a), (24b)YSection 4.3, Table 414.0Data Acquisition RequirementsNN13.2.2To Data Acquisition RequirementsNSection 4.3, Table 414.0Data Acquisition RequirementsNN15.2Data Acquisition RequirementsNSection 4.3, Table 415.0Documentation, Records & Data ManagementYSections 6 and 715.0Documentation, Records & Data ManagementYSections 6 and 715.1Project Documentation & Records Table (26)YSections 6 and 715.2Field Analysis Data Package DeliverablesYSections 6 and 715.2Field Analysis Data Package DeliverablesYSections 6 and 715.3Field Analysis Data Package DeliverablesYSections 6 and 715.4Data Reporting FormatsYSection 615.4Data Reporting FormatsYSection 615.5Data Handling and ManagementYSection 615.6Data Handling and ManagementYSection 615.6MManagementYSection 615.6MSection 6YSection 615.6MManagementYSection 615.6MManagementYSection 715.6M		13.2	Analytical Quality Control	Υ	Section 4.3	
Field Screening/Confirmatory Analysis Decision TreeN13.2.2Field Screening/Confirmatory Analysis Decision TreeN13.2.2Field Fixed Laboratory QC (24a), (24b)Y14.0Data Acquisition RequirementsN14.0Data Acquisition RequirementsN15.0Don-Direct Measurements Criteria & Limitations Table (25)N15.0Documentation, Records & Data ManagementY15.0Documentation, Records & Data ManagementY15.0Data Management SOPs (as attachments to QAPP)NA15.1Project Documentation & Records Table (26)Y15.2Field Analysis Data Package DeliverablesY15.3Fixed Lab Data Package DeliverablesY15.4Data Reporting FormatsY15.5Data Handling and ManagementY15.6Data Handling and ControlY15.6Data Tracking and ControlY15.6Data Fracking and ControlY15.6Data Fracking and ControlY		13.2.1	Field Analytical QC (23a), (23b)	Y	Section 3.4 and Table 4	
13.2.2Field Fixed Laboratory QC (24a), (24b)YSection 4.3, Table 414.0Data Acquisition RequirementsNSection 4.3, Table 414.0Data Acquisition RequirementsNN15.0Doumentation, Records & Data ManagementYSections 6 and 715.0Doumentation, Records & Data ManagementYSections 6 and 715.0Data Management SOPs (as attachments to QAPP)NASections 6 and 715.1Project Documentation & Records Table (26)YSections 6 and 715.1Project Documentation & Records Table (26)YSections 6 and 715.1Project Documentation & Records Table (26)YSections 6 and 715.2Field Analysis Data Package DeliverablesYSections 6 and 715.3Fised Lab Data Package DeliverablesYSections 6 and 715.4Section & YSection 615.4Section 615.5Data Handling and ManagementYSection 615.6Data Handling and ControlYSection 715.6Data Tracking and ControlYSection 7			Field Screening/Confirmatory Analysis Decision Tree (if applicable)	z		Not Applicable
14.0Data Acquisition RequirementsN14.0Non-Direct Measurements Criteria & Limitations Table (25)N15.0Non-Direct Measurements Criteria & Limitations Table (25)N15.0Documentation, Records & Data ManagementY15.0Data Management SOPs (as attachments to QAPP)NA15.1Project Documentation & Records Table (26)Y15.1Project Documentation & Records Table (26)Y15.1Project Documentation & Records Table (26)Y15.2Field Analysis Data Package DeliverablesY15.3Fised Lab Data Package DeliverablesY15.4Sections 5.3 and 615.4Trixed Lab Data Package DeliverablesY15.5Data Handling and ManagementY15.6Data Handling and ManagementY15.6Data Tracking and ControlY15.6Data Tracking and ControlY15.6Data Tracking and ControlY		13.2.2		Y	Section 4.3, Table 4	
Non-Direct Measurements Criteria & Limitations Table (25)N15.0Documentation, Records & Data ManagementYSections 6 and 715.1Data Management SOPs (as attachments to QAPP)NASections 6 and 715.1Project Documentation & Records Table (26)YSections 6 and 715.2Field Analysis Data Package DeliverablesYSections 6 and 715.3Fixed Lab Data Package DeliverablesYSections 3.6.3 and 615.4Data Reporting FormatsYSection 615.5Data Handling and ManagementYSection 615.6Data Handling and ControlYSection 7 and Figure 3	B9	14.0	Data Acquisition Requirements	z		See Project-Specific Work Plans
Documentation, Records & Data ManagementYSections 6 and 7Data Management SOPs (as attachments to QAPP)NASections 6 and 7Project Documentation & Records Table (26)YSections 6 and 7Project Documentation & Records Table (26)YSections 6 and 7Field Analysis Data Package DeliverablesYSections 6 and 6Fixed Lab Data Package DeliverablesYSection 6Data Reporting FormatsYSection 6Data Reporting FormatsYSection 6Data Handling and ManagementYSection 7Data Tracking and ControlYSection 7 and Figure 3			Non-Direct Measurements Criteria & Limitations Table (25)	Z		See Project-Specific Work Plans
Data Management SOPs (as attachments to QAP)NA15.1Project Documentation & Records Table (26)Y15.2Field Analysis Data Package DeliverablesY15.3Fixed Lab Data Package DeliverablesY15.3Fixed Lab Data Package DeliverablesY15.4Data Reporting FormatsY15.5Data Handling and ManagementY15.6Data Tracking and ControlY15.6Data Tracking and ControlY		15.0	Documentation, Records & Data Management	Y	Sections 6 and 7	
Project Documentation & Records Table (26)YSections 6 and 7Field Analysis Data Package DeliverablesYSections 3.6.3 and 6Fixed Lab Data Package DeliverablesYSection 6Data Reporting FormatsYSection 6Data Handling and ManagementYSection 7Data Tracking and ControlYSection 7 and Figure 3	>		Data Management SOPs (as attachments to QAPP)	NA		Not included in Compendium
Field Analysis Data Package Deliverables Y Fixed Lab Data Package Deliverables Y Data Reporting Formats Y Data Handling and Management Y Data Tracking and Control Y		15.1	Project Documentation & Records Table (26)	Y	Sections 6 and 7	Requirements presented in Sections 6 and 7, but not in tabular form
Fixed Lab Data Package Deliverables Y Data Reporting Formats Y Data Handling and Management Y Data Tracking and Control Y		15.2	Field Analysis Data Package Deliverables	Υ	Sections 3.6.3 and 6	
Data Reporting Formats Y Data Handling and Management Y Data Tracking and Control Y		15.3	Fixed Lab Data Package Deliverables	Y	Section 6	
Data Handling and Management Y Data Tracking and Control Y		15.4	Data Reporting Formats	Y	Section 6	
Data Tracking and Control Y		15.5	Data Handling and Management	Y	Section 7	
		15.6	Data Tracking and Control	Υ	Section 7 and Figure 3	

9/6/00 F \USERS\PLH\PLH00\\$8701543 WPD

Page 6 of 7

	COMMENT			Requirements presented in Section 8, but not in tabular form	Not included in Compendium	Refer to Section 8.3.1				Requirements presented in Section 8, but not in tabular form	
ents	Location of Element in Submitted Document (Section #, Table #, Figure #, etc.)	Section 8	Section 8	Section 8			Section 8.4	Section 8.4	Section 8	Section 8	
rsight Eleme	PRESENT (Y/N)	λ	А	X	NA	Z	Y	Υ	λ	Y	
Assessment/Oversight Elements	Required EPA-NE Elements & Required Information (Numbers in parenthesis indicate worksheet #s associated with Elements & Required Information	Planned Assessments and Response Actions (27a)	Planned Assessments	Project Assessment Table (27b)	Project Assessment Plan (27c)	Audit Checklists	Assessment Findings & Corrective Action Responses	Additional QAPP Non-Conformances	QA Management Reports	QA Management Reports Table (28)	
	Corresponding EPA-NE QAPP Section	16.0	16.1				16.2	16.3	17.0		
	EPA QA/ R5	CI							C2		

Data Validation and Usability Elements

	Corresponding EPA-NE QAPP Section	Required EPA-NE Elements & Required Information (Numbers in parenthesis indicate worksheet #s associated with Elements & Required Information	PRESENT (Y/N)	Location of Element in Submitted Document (Section #, Table #, Figure #, etc.)	COMMENT
D1 18.0		Verification & Validation Requirements	Y	Section 7.5	
		Validation Criteria Documents	Y	Appendices X through BB	
D2 19.0		Verification & Validation Procedures	Y	Sections 3, 6, and 7 and Figure 3	
		Data Evaluation Process (9a)	VN		Not included in Compendium
		Data Validation Summary Table (29b)	Y	Appendices X through BB	Requirements presented in appendices, but not in tabular form
D3 20.0		Data Usability/Reconciliation w/Project Quality Obj.	Y	Section 7	
		Data Usability Assessment (30)	NA		Not included in Compendium

Page 7 of 7

9/6/00 F \USERS\PLH\PLH00\58701543 WPD

i.

	FSP/QAPP Distribution List				
FSP/QAPP Recipients					
GE Project Team					
Andrew T. Silfer	Project Coordinator/Senior Technical Manager	General Electric			
Michael T. Carroll	Manager, Pittsfield Remediation Programs/ Alternate Project Coordinator	General Electric			
Andrew J. Thomas	Counsel, Remediation Programs	General Electric			
Richard W. Gates	Project Manager General Electric				
John F. Novotny	Project Manager General Electric				
William Horne	Project Manager General Electric				
GE Consultants					
Robert K. Goldman	Supervising Contractor	Blasland, Bouck & Lee, Inc.			
Michael Fifield	Overall QA/QC Coordinator	Blasland, Bouck & Lee, Inc.			
nes R. Bieke Counsel Shea & Gardner		Shea & Gardner			
John Ciampa	Project Manager	Spectra Environmental			
James M. Nuss	Project Manager	Blasland, Bouck & Lee, Inc.			
Stuart D. Messur	Project Manager	Blasland, Bouck & Lee, Inc.			
Derek C. Kaiding	Project Manager	Blasland, Bouck & Lee, Inc.			
Mark O. Gravelding	Project Manager	Blasland, Bouck & Lee, Inc.			
Bruce E. Eulian	Field Services Manager	Blasland, Bouck & Lee, Inc.			
John H. Guswa	Project Manager	HSI GeoTrans			
Maura J. Hawkins	Project Manager	Berkshire Environmental Consultants			
Samuel I. Gutter	Counsel	Sidley & Austin			
Christopher M. Hess	QA/QC Manager	Adirondack Environmental Services			
Janice M. Jaeger	QA/QC Manager	Columbia Analytical Services			
Lydia M. Work	QA/QC Manager	CT & E Environmental Services			
Veronica Bortot	QA/QC Manager	Severn Trent Laboratories			
William A. Kotas	QA/QC Manager	Northeast Analytical			
Kathy Loewen	QA/QC Manager	Lancaster Laboratories			
Greg Graf	QA/QC Manager	EnChem			
Joseph C. Houser	QA/QC Manager	O'Brien & Gere Laboratories			

FSP/QAPP Distribution List				
FSP/QAPP Recipients Title Organiza		Organization		
Agency Recipients				
Bryan Olson	EPA Project Coordinator	USEPA		
Tim Conway	Senior Enforcement Counsel	USEPA		
Michael Nalipinski	Project Manager	USEPA		
Holly Inglis		USEPA		
K.C. Mitkevicius		USACE		
Dawn Veilleux		WESTON		
J. Lyn Cutler	State Project Coordinator	MDEP		
Susan Steenstrup	Project Manager	MDEP		
Adam Wright	Project Manager	MDEP		
Charles Fredette	Connecticut Project Coordinator	Connecticut DEP		
Thomas LaRosa		MA EOEA		
Field Supervisor		U.S. Fish & Wildlife Service		
Kenneth Finkelstein NOAA Project Coordinator		NOAA		
Additional Distribution				
Gerald Doyle	Mayor	City of Pittsfield		
Jeffrey Bernstein	Counsel to Pittsfield Economic Development Authority	Bernstein, Cushner & Kimmel		
Pittsfield Health Department		City of Pittsfield		
Public Information Repositories				

.

The first

Table of Contents

Volume I - Fi	eld Sampling Plan/Quality Assurance Project Plan	
Section 1.	Introduction	1-1
1.1 1.2	General	
Section 2.	Project Organization and Responsibilities	2-1
2.1 2.2 2.3 2.4 2.5 2.6 2.7	General Project Organization General Electric Company Supervising Contractor(s) Overall QA/QC Coordinator Sampling Contractor Analytical Laboratory	2-1 2-1 2-1 2-2 2-2
Section 3.	Field Sampling/Sample Handling Procedures	3-1
3.1 3.2 3.3 3.4 3.5 3.6	General . Sample Containers . Sample and Document Custody . 3.3.1 Field Notebooks . 3.3.2 Field Chain-of-Custody . Field Quality Control Check . 3.4.1 Field Duplicates . 3.4.2 Field Equipment Blanks . 3.4.3 Trip Blanks . Field Parameters . Laboratory Custody . 3.6.1 Laboratory Sample Storage . 3.6.2 Sample Tracking . 3.6.3 Final Files Custody .	3-1 3-2 3-2 3-2 3-3 3-3 3-3 3-3 3-3 3-3 3-3
Section 4.	Analytical Procedures	. 4-1
4.1 4.2 4.3	General Analytical Methods 4.2.1 Soils and Sediments 4.2.2 Water 4.2.3 Biota 4.2.4 LNAPL/DNAPL 4.2.5 Construction and Demolition Waste 4.2.6 Air Monitoring Laboratory Analytical Quality Assurance/Quality Control	. 4-2 . 4-2 . 4-3 . 4-3 . 4-4 . 4-4
Section 5.	Data Quality Objectives and Performance Standards	. 5-1
5.1 5.2	General	

5.3	Performance Standards5.3.1Performance Standards for Soil/Sediment5.3.2Performance Standards for Groundwater5.3.3Performance Standards for Air Quality5.3.4Performance Standards for Other Media	5-2 5-3 5-3
Section 6.	Laboratory Data Reduction and Reporting	6-1
6.1 6.2 6.3	General Laboratory Data 6.2.1 Data Review 6.2.2 Data Package Deliverables Electronic Data Deliverables	6-1 6-1 6-1
Section 7.		
Section 7.	Data Management, Validation, and Usability	7-1
7.1 7.2 7.3 7.4 7.4	General Data Management Laboratory Quality Assurance 7.3.1 Laboratory Blanks 7.3.2 Matrix Spikes/Matrix Spike Duplicates 7.3.3 Laboratory Control Samples 7.3.4 Surrogate Spikes 7.3.5 Calibration Standards Data Quality Indicators and Quality Assurance Objectives 7.4.1 Evaluation of Data Quality Indicators 7.4.2 Qualitative Quality Assurance Objectives 7.4.2.1 Representativeness 7.4.2.2 Comparability 7.4.3 Quantitative Quality Assurance Objectives 7.4.3.1 Completeness 7.4.3.2 Precision 7.4.3.3 Accuracy 7.4.3.4 Sensitivity Data Validation Data Validation Data Usability and Reconcilation with Data Quality Objectives	7-1 7-3 7-3 7-4 7-4 7-5 7-5 7-5 7-5 7-5 7-7 7-7 7-7 7-7 7-7
Section 8.	Performance Audits and Corrective Actions	8-1
8.1 8.2 8.3 8.4 8.5	General Internal Laboratory Audits Independent Laboratory Audits 8.3.1 Laboratory Audit Procedures 8.3.2 Field Systems Audits 8.3.2.1 Field Performance Audits Corrective Actions 8.4.1 Sample Collection/Field Measurements 8.4.2 Laboratory Analyses Preventative Maintenance 8.5.1 Field Instruments and Equipment 8.5.2 Laboratory Instruments and Equipment	8-1 8-2 8-3 8-3 8-4 8-4 8-4 8-5 8-5

References

Tables

Table 1	Analytical Methods, Sample Container, Preservation, and Holding Time Requirements
Table 2	Listing of Appendix IX+3 and TCLP Constituents
Table 3	Typical Reporting Limits, Method Detection Limits (MDLs), and Practical Quantitation Limits (PQLs)
Table 4	Analytical Quality Control Requirements
Table 5	Quality Control Accuracy and Precision Limits
Table 6	Performance Standards in Consent Decree for PCBs in Soils/Sediments at Removal Action Areas Outside River
Table 7	MCP Method 1 Standards for GW-2 and GW-3 Groundwater

Figures

Figure 1	Site Plan
Figure 2	Project Team
Figure 3	Typical Data Assessment Process

Volume II - Standard Operating Procedures for Field Based Activities

Appendices

Appendix A	Soil Sampling Procedures for Analysis of Volatile Organic Compounds (VOCs)			
Appendix B	Soil Sampling Procedures for Analysis of Extractable Petroleum Hydrocarbons (EPH)/Volatile Petroleum Hydrocarbons (VPH)			
Appendix C	Soil Boring Installation and Soil Sampling Procedures			
••	• · ·			
Appendix D	Groundwater Purging and Sampling Procedures for Monitoring Wells			
Appendix E	Surface Water Sampling Procedures			
Appendix F	Sediment Sampling Procedures			
Appendix G	Dense Non-Aqueous Phase Liquid (DNAPL)/Light Non-Aqueous Phase Liquid (LNAPL) Sampling Procedures			
Appendix H	Biota Sampling Procedures			
Appendix I	Soil Gas Sampling Procedures			
Appendix J	Air Monitoring Procedures			
Appendix K	Radioisotope Analysis of Cesium-137 and Beryllium-7 in Sediments			
Appendix L	Handling, Packaging, and Shipping Procedures			
Appendix M	Hazardous Materials Handling Procedures			
Appendix N	Photoionization Detector Field Screening Procedures			
Appendix O	Temperature, Turbidity, Specific Conductivity, pH, Oxidation/Reduction Potential and			
	Dissolved Oxygen Field Measurement Procedures			
Appendix P	In-Situ Hydraulic Conductivity Test Procedures			
Appendix Q	Water Level/Oil Thickness Measurement Procedures			
Appendix R	Passive Oil Recovery Procedures			
Appendix S	Monitoring Well Installation and Development Procedures			
Appendix T	Magnetometer Survey Procedures			
Appendix U	Seismic Refraction Survey Procedures			
Appendix V	Ground Penetrating Radar (GPR) Procedures			
Appendix W	Standard Operating Procedures for Equipment Cleaning			

Volume III - Data Validation Procedures and Laboratory Certifications

Appendix X	Data Validation Procedures for Volatile Organic Compounds (VOCs) and Semi-Volatile
	Organic Compounds (SVOCs)
Appendix Y	Data Validation Procedures for Polychlorinated Biphenyls (PCBs)/Pesticides and
	Herbicides
Appendix Z	Data Validation Procedures for Inorganic Analytes
Appendix AA	Data Validation Procedures for Polychlorinated Dibenzo-p-Dioxins (PCDDs)/
	Polychlorinated Dibenzofurans (PCDFs)
Appendix BB	Data Validation Procedures for Conventional Parameters Analytes
	•

ATTACHMENTS

Attachment A	Laboratory Qualifications for Northeast Analytical Services, Inc.
Attachment B	Laboratory Qualifications for CT&E Environmental Services, Inc.
Attachment C	Laboratory Qualifications for Columbia Analytical Services, Inc.
Attachment D	Laboratory Qualifications for Severn Trent Laboratories, Inc.
Attachment E	Laboratory Qualifications for Adirondack Environmental Services
Attachment F	Laboratory Qualifications for Lancaster Laboratories
Attachment G	Laboratory Qualifications for EnChem, Inc.
Attachment H	Laboratory Qualifications for O'Brien & Gere Laboratories

Attachment H Laboratory Qualifications for O'Brien & Gere Laboratories

1. Introduction

1.1 General

This Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP) contains procedures related to the collection and analysis of soil, sediment, groundwater, surface water, air, and biota samples at the General Electric Company's (GE's) Pittsfield, Massachusetts facility and at other areas at which materials from the GE facility may have come to be located. Specifically, this FSP/QAPP specifies the various procedures that will be followed by GE and its contractors in performing investigation activities pursuant to several regulatory schemes, as described below.

First, in October 1999, GE, the United States Environmental Protection Agency (USEPA), the Massachusetts Department of Environmental Protection (MDEP), and several other government agencies executed a Consent Decree (CD), pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other federal and state laws, to govern (among other things) the performance of response actions and natural resource restoration work in several areas that collectively comprise the GE-Pittsfield/Housatonic River Site (Site). As defined in the CD, that Site encompasses GE's Pittsfield facility, the Housatonic River downstream of GE's facility, and a number of other adjacent and nearby areas. The areas of the Site other than the Housatonic River and its floodplain are depicted on Figure 1. The CD was lodged in the United States District Court for the District of Massachusetts on October 7, 1999, and was subject to a public comment period, which ended on February 23, 2000. On July 20, 2000, the United States filed with the Court responses to the public comments and a motion to enter the CD. The CD will become effective if and when it is formally entered by the Court, although the parties agreed in the CD, as a contractual manner, that certain activities would be carried out at the Site prior to the Court's entry of the CD.

The CD and its accompanying appendices, including a document entitled *Statement of Work for Removal Actions Outside the River* (SOW) (Appendix E to the CD), require GE to submit for USEPA approval a Field Sampling Plan and QAPP to describe the procedures that GE and its contractors will use in conducting sampling and analysis activities at the CD Site and in implementing the CD. The present document presents those plans, which will be part of the Project Operations Plan under the CD and the SOW (see Technical Attachment C to the SOW). The procedures described in this document will also apply to any investigations conducted by GE and its contractors in the reach of the Housatonic River known as the Rest of River (as defined in the CD) pursuant to a revised permit issued to GE by the USEPA on July 18, 2000, under the Resource Conservation and Recovery Act (RCRA), to be effective upon entry of the CD (Reissued RCRA Permit). This Reissued RCRA Permit (when it becomes effective) will replace the RCRA Permit previously issued to GE by USEPA effective January 1994.

In addition, prior to entry of the CD, this FSP/QAPP will (upon USEPA and MDEP approval) govern the procedures to be followed in performing investigations at the CD Site under prior regulatory authorities -- i.e., the January 1994 RCRA permit from USEPA and two Administrative Consent Orders (ACOs) executed by GE and MDEP in 1990 under the Massachusetts Contingency Plan (MCP). Such procedures were previously governed by a Sampling and Analysis Plan/Data Collection and Analysis Quality Assurance Plan (SAP/DCAQAP), which was approved by USEPA and MDEP under those prior authorities and which will be replaced by this FSP/QAPP.

Finally, this FSP/QAPP will establish the procedures to be followed by GE and its contractors in conducting sampling and analysis activities at areas and properties outside the CD Site that are related to the GE Pittsfield facility and are regulated by MDEP and/or USEPA pursuant to other regulatory authorities. These include the off-site fill properties that are currently regulated under one of the 1990 ACOs executed by GE and MDEP pursuant to the MCP and will be regulated under a new ACO (Appendix H to the CD) to be executed by GE and MDEP after the effective date of the CD.

Since this document is intended to cover several program areas subject to independent regulatory authority of the USEPA and MDEP, GE recognizes that each of these Agencies reserves its right in the future to require changes to the procedures/protocols contained herein as they apply to sites under that Agency's jurisdiction (regardless of whether such changes would apply to the other Agency's programs).

1.2 Format of Document

This FSP/QAPP identifies the various procedures, protocols, and methodologies to be employed by GE and its contractors during the performance of environmental investigations associated with the CD Site and the off-site areas described above. The purpose for doing so is to ensure that the various investigations are performed consistently to produce a representative characterization of site conditions and to provide a reliable basis for subsequent evaluations and activities.

Given the number of areas that are subject to investigation and the various site-specific characteristics, specific details of each of the activities involved in conducting an environmental investigation at a given site cannot be provided in a single document. As a result, this FSP/QAPP focuses on the general components of the environmental investigations, including sampling and field procedures for each media, laboratory analytical methods, sample handling and documentation procedures, and quality assurance/quality control (QA/QC) procedures. Details concerning the scope of a particular sampling activity (e.g., specific objectives, type, location, rationale, quantity, frequency, depths, constituents to be analyzed for, etc.) will be identified in the appropriate project-specific work plans, with references provided (as appropriate) to this plan. These specific proposals are referred to herein as the project-specific work plans.

The remainder of this FSP/QAPP summarizes the procedures to be implemented for several components of environmental investigations. The text of this document provides general information on sampling and analytical procedures, data management and assessment, and QA/QC, while topic-specific Standard Operating Procedures (SOPs) are provided in a series of Appendices. These Appendices generally pertain to one or more of the following activities:

- Field Sampling Methods;
- Sample Handling, Packing, and Shipping;
- Analytical Procedures; and
- Field and Laboratory QA/QC and Data Validation.

As required by the CD, the QA/QC, and chain-of-custody (COC) procedures described in this document incorporate the guidelines set forth in the USEPA documents entitled *EPA Requirements for Quality Assurance Project Plans for Environmental Data Operation* (EPA QA/R-5) and *Preparing Perfect Project Plans* (EPA/600/9-88/087). As required by USEPA's April 11, 2000 comments, the content of this FSP/QAPP has been developed to meet the substantive requirements (but not the format) of the *Compendium of Quality Assurance Project Plan Requirements and Guidance* (USEPA-New England, October 1999) (Compendium). At the USEPA's request, this document includes, at the beginning, a crosswalk that cross-references the required elements of the Compendium with the locations within this FSP/QAPP where such elements are addressed. As indicated in that crosswalk, this FSP/QAPP contains the substantive elements required by the Compendium. However, a number of the Compendium's procedural and/or format elements are not applicable to this FSP/QAPP given the many areas and different programs covered by this document, the numerous other documents governing response actions at these sites (e.g., the CD, the SOW, the Reissued RCRA Permit, the MDEP ACOs), and the fact that the specific details concerning investigations at these sites are required to be identified in the project-specific work plans, which will be subject to USEPA and/or MDEP approval. Note that the procedures described in this FSP/QAPP, particularly as they relate to field investigation protocols, are intended to be general guidelines and may be subject to certain modifications if deemed appropriate or necessary based on site-specific considerations, provided that such modifications do not compromise the integrity of the data. In addition, as additional information relevant to this document is received (e.g., updates to analytical methodologies), this FSP/QAPP will be modified. The FSP/QAPP also will be reviewed on an annual basis to identify components that may require revision. Prior to incorporation, any revisions (if required) will be submitted to the USEPA/MDEP for approval. Finally, all sampling and field procedures will be conducted in accordance with the requirements of GE's Health and Safety Plan which is currently subject to revision and will be submitted to the USEPA/MDEP within two months of entry of the CD.

2. Project Organization and Responsibilities

2.1 General

This section identifies the various roles and responsibilities associated with the performance of environmental investigations. In general, all investigations will be conducted by or on behalf of GE, with oversight by the USEPA and/or MDEP (the "Agencies"), as appropriate. In turn, GE may utilize several contractors to perform the various sampling and analysis activities.

2.2 Project Organization

The general management of the technical and administrative aspects of the sampling and analysis activities will be performed by GE. In addition, as required by the CD, all work conducted by GE under the CD will be performed under the overall supervision and direction of a Supervising Contractor(s). To date, Robert Goldman of Blasland Bouck & Lee has been identified as the Supervising Contractor for the CD work, but other Supervising Contractors may be identified and proposed to USEPA for particular aspects of the activities as the work progresses. In addition, an overall QA/QC Coordinator will help the GE Project Managers and the Supervising Contractor(s) to ensure that field and laboratory procedures are implemented in accordance with this FSP/QAPP. Direct management and implementation of the specific tasks will be performed by the selected sampling contractor and environmental laboratory. Table 2.1 provides a list of current Project Managers for both GE and several of the contractors and laboratories that may be utilized for each investigation. Figure 2 presents a project team organizational diagram for the current Project Managers associated with implementation of the procedures presented in this FSP/QAPP. If additional contractors and/or laboratories are to be utilized for a specific project, their appropriate Project Managers will be identified in the project-specific work plans.

The individuals listed on Figure 2 will coordinate/direct other individuals within their organization. General descriptions of the responsibilities of the personnel performing QA/QC-related aspects of the project as well as the responsibilities of other field staff and laboratory personnel are presented below.

2.3 General Electric Company

Pursuant to the CD, GE has identified a Project Coordinator and Alternate Project Coordinator for the work to be performed under the CD. The responsibilities of these project coordinators include the following:

- Overall supervision and direction of all work conducted under the CD, in conjunction with the Supervising Contractor(s); and
- Communications with USEPA and MDEP regarding the CD Work, as required by the CD.

In addition, GE has a specific Project Manager for each particular project. The responsibilities and duties of GE's specific Project Manager include the following:

- Define project objectives;
- Assist in coordination of field activities with sampling contractor and laboratory personnel and work with overall QA/QC Coordinator to make sure personnel are aware of task objectives and protocols established in the FSP/QAPP;
- · Review and analyze task performance with respect to planned requirements and authorizations; and
- Manage the development of work plans and reports prior to their submission to USEPA and/or MDEP.

2.4 Supervising Contractor(s)

For work conducted under the CD, the Supervising Contractor(s) will have the following responsibilities and duties:

- Conduct overall supervision and direction of all work conducted under the CD; and
- Review or supervise the review of all work plans, reports, and other documents to be submitted to USEPA pursuant to the CD and/or the SOW to ensure compliance with applicable requirements of the CD and the SOW, as well as technical soundness.

2.5 Overall QA/QC Coordinator

Responsibilities and duties of the Overall QA/QC Coordinator and his support staff include the following:

- Ensure field/laboratory personnel have reviewed sections of the FSP/QAPP which are pertinent to their activities;
- Coordinate receipt of analytical data from the laboratory and review of laboratory data packages;
- Perform and/or oversee validation of analytical data;
- Coordinate and oversee entry of the analytical data into the pertinent database (in accordance with the procedures described in Section 7.2);
- Perform or coordinate periodic audits of sampling activities;
- Inform GE Project Managers of laboratory or field non-conformance with the FSP/QAPP; and
- Assist in the development/implementation of corrective measures, as necessary.

2.6 Sampling Contractor

Project Manager/Field Manager

Responsibilities and duties may include the following:

- Provide overall management of their sampling activities;
- Provide QA management of aspects of the project within the responsibility and scope of the sampling contractor;
- Develop, establish, and maintain sampling files;
- Review reductions of data to written records;
- Perform final data review of field data reductions and reports on sampling activities;
- Review sample reports and all other documents;
- Instruct staff performing sampling activities;
- Coordinate field and laboratory schedules;
- Review/approve the type of field equipment used and observe that procedures are followed to obtain the data quality objectives;
- Prepare draft field reports, including summary of field activities; and
- Maintain field files of sampling notebooks and any data reduction calculations, and transmit originals to the Project Files.

Field Staff

Responsibilities and duties include the following:

• Comply with provisions of FSP/QAPP;

- Perform field procedures as set forth in the FSP/QAPP and site-specific work plan;
- Perform field analyses and collect samples;
- Calibrate and maintain field equipment;
- Reduce field data to written records;
- Maintain sample custody; and
- Prepare field records and logs.

2.7 Analytical Laboratory

Overall responsibilities and duties include the following:

- Comply with provisions of FSP/QAPP;
- Perform analytical procedures;
- Supply sampling containers and shipping cartons;
- Maintain laboratory custody;
- Inform GE of any protocol deviations;
- Monitor internal workloads and ensure availability of resources;
- Oversee preparation of analytical reports;
- Supervise the internal group which reviews and inspects all laboratory activities related to the project;
- Conduct internal audits of laboratory activities;
- Review analytical reports for QA/QC program compliance;
- Prepare analytical report narrative; and
- Implement any corrective actions after discussions with GE.

Affiliation	Title	Name
Convert Electric Comment	Project Coordinator ¹	Andrew T. Silfer
General Electric Company	Alternate Project Coordinator ¹	Michael T. Carroll
	Project Managers	Richard W. Gates Andrew T. Silfer John F. Novotny William Horne
Blasland, Bouck & Lee	Supervising Contractor ¹	Robert K. Goldman (or other supervising contractor(s) to be named by GE)
	Project Managers	James M. Nuss Stuart D. Messur Derek C. Kaiding Mark O. Gravelding
	Field Services Manager	Bruce E. Eulian
	Overall QA/QC Oversight	Michael Fifield
HSI GeoTrans	Project Manager(s)	John H. Guswa Molly Stark Jonathan R. Bridge
Berkshire Environmental Consultants	Project Manager	Maura J. Hawkins
Adirondack Environmental Services	Project Manager	Tara M. Daniels
	QA/QC Manager	Christopher M. Hess
Columbia Analytical Services ²	Project Manager	Mark P. Wilson
	QA/QC Manager	Janice M. Jaeger
CT&E Environmental Services ²	Project Manager	Christopher T. Couch
	QA/QC Manager	Lydia M. Work
Severn Trent Laboratories ²	Project Manager	Albert F. Vicinie
	QA/QC Manager	Veronica Bortot
Northeast Analytical ²	Project Manager	James D. Daly
	QA/QC Manager	William A. Kotas
O'Brien & Gere Laboratories ²	Project Manager	Thomas A. Alexander
	QA/QC Manager	Joseph C. Houser
Lancaster Laboratories ²	Project Manager	Tan Vo
	QA/QC Manager	Kathy Loewen

Table 2.1

•

Affiliation	Title	Name
EnChem	Project Manager	Tod Noltemeyer
	QA/QC Manager	Greg Graf
The Academy of Natural Sciences of Philadelphia	Project Manager	James N. McNair

Applicable to Consent Decree Activities Only
 GE Corporate Purchase Agreement Laboratory

3. Field Sampling/Sample Handling Procedures

3.1 General

Soil, sediment, groundwater, surface water, air, and/or biota samples will be collected as described in the appropriate project-specific work plans for each investigation. Such work plans will also set forth the data quality objectives (DQOs) for other specific investigations in question (see Section 5.2) to the extent necessary to describe the purpose of the investigation and to identify the type, locations, and quality of data to be collected to meet that purpose. As part of these field investigations, several procedures may be performed, involving one or more of the SOPs listed below. The field sampling SOPs have been developed with the goal of standardizing methodology to the extent practical to ensure that data are collected utilizing consistent and "best practices" methodology. However, it should be recognized that some deviations to the SOPs may occur depending upon site-specific conditions.

Appendix A -	Soil Sampling Procedures for Analysis of Volatile Organic Compounds (VOCs)	
Appendix B -	Soil Sampling Procedures for Analysis of Extractable Petroleum Hydrocarbons (EPH)/Volatile	
	Petroleum Hydrocarbons (VPH)	
Appendix C -	Soil Boring Installation and Soil Sampling Procedures	
Appendix D -	Groundwater Purging and Sampling Procedures for Monitoring Wells	
Appendix E -	Surface Water Sampling Procedures	
Appendix F -	Sediment Sampling Procedures	
Appendix G -	Dense Non-Aqueous Phase Liquid (DNAPL)/Light Non-Aqueous Phase Liquid (LNAPL)	
	Sampling Procedures	
Appendix H -	Biota Sampling Procedures	
Appendix I -	Soil Gas Sampling Procedures	
Appendix J -	Air Monitoring Procedures	
Appendix K	- Radioisotope Analysis of Cesium-137 and Beryllium-7 in Sediments	
Appendix L -	Handling, Packaging, and Shipping Procedures (Including Chain-of-Custody Procedures)	
Appendix M - Hazardous Materials Handling Procedures		
Appendix N -	Photoionization Detector Field Screening Procedures	
Appendix O -	Temperature, Conductivity, pH, and Dissolved Oxygen Field Measurement Procedures	
Appendix P -	In-Situ Hydraulic Conductivity Test Procedures	
Appendix Q -	Water Level/Oil Thickness Measurement Procedures	
Appendix R -	Passive Oil Recovery Procedures	
Appendix S -	Monitoring Well Installation and Development Procedures	
Appendix T -	Magnetometer Survey Procedures	
Appendix U -	Seismic Refraction Survey Procedures	
Appendix V -	Ground Penetrating Radar (GPR) Procedures	
Appendix W -	Standard Operating Procedures for Equipment Cleaning	

The remainder of this section presents a summary of the sample container requirements, sample and document custody procedures, and field-generated QC sample requirements.

3.2 Sample Containers

The samples for each analytical parameter will be collected and preserved in the appropriate sample containers as presented in Table 1. The sample containers provided by the analytical laboratories will be new, pre-cleaned, and certified by the manufacturer. Sample container certifications will be maintained by the analytical laboratories in a

FILUSERS/PLHAPLH00/5900	1543.WPD 9/6/00

manner that will allow each bottle-order to be traced to its respective certification. At a minimum, the sample containers supplied by the laboratory will meet the USEPA's *Specifications and Guidance for Contaminant Free Sample Containers* (EPA 540/R-931051, December 1992).

3.3 Sample and Document Custody

The information presented below is intended to provide specific information regarding the sample and document custody procedures. The objective of field custody is to assure that the samples are not tampered with from the time of collection through time of transport to the analytical laboratory. Field custody documentation consists of both field notebooks and field COC forms as discussed below, while Appendix L provides additional information relevant to this topic.

3.3.1 Field Notebooks

Field notebooks provide the means of recording sample collection activities. As such, entries will be described in as much detail as possible so that individuals returning to the site in question or reviewing the analytical data can reconstruct a particular situation. Field notebooks will be labeled with the project name, site location, and the dates of use. Additional notebooks, as needed, will be labeled with their dates of application from start to finish (e.g., January 1, 2000 to May 5, 2000).

Field notebooks will be stored in a secure location when not in use. Entries into the notebooks will be made in indelible ink and will contain a variety of information. A unique identification number will be assigned to each sample prior to collection. Field duplicate samples, which will receive an entirely separate sample identification number, will be noted under sample description. The equipment used to collect samples will be noted, along with the time of sampling, sample description, depth at which the sample was collected, and volume and number of containers.

3.3.2 Field Chain-of-Custody

The SOP for COC for all samples collected in the field is set forth in Appendix L. (The SOP for COC for samples in the laboratory shall be established by the laboratory handling the sample.) As described in Appendix L, completed COC forms will be required for samples to be analyzed. COC forms will be initiated by the sampling crew in the field and will be completed in indelible ink. The COC forms will contain the sample's unique identification number, sample date and time, sample description, sample type, preservation (if any), and analyses required. The original COC form will accompany the samples to the laboratory. Copies of the COC will be made prior to shipment (or multiple copy forms used) for field documentation. The COC forms will remain with the samples at all times. The samples and signed COC forms will remain in the possession of the sampling crew until the samples are delivered to the express carrier (e.g., Federal Express), hand delivered to the laboratory or their courier, or placed in secure storage.

Sample labels will be completed for each sample using indelible ink. The labels shall include sample information including sample number and location, type of sample, date and time of sampling, sampler's name (or initials), preservation method, and analyses to be performed. The completed sample labels will be affixed to each sample container and covered with clear tape.

Whenever samples are split with another party or government agency, a separate Sample Receipt will be prepared for those samples and marked to indicate with whom the samples are being split. The person relinquishing the

samples to the other party should request the representative's signature acknowledging sample receipt. If the representative is unavailable or refuses to sign, this should be noted in the "Received By" space.

3.4 Field Quality Control (QC) Check

Field duplicates will be included to verify the quality of field measurements and collected samples. Reproducibility of each type of meter reading will be evaluated through replicate analyses of at least one sample per sampling event or at a frequency of 10 percent, which ever is greater. Field accuracy will be maintained through calibration of field meters according to the manufacturer's recommendations.

3.4.1 Field Duplicates

Field duplicates will be collected to check reproducibility or precision of the sampling methods and analytical procedures. Blind field duplicates are defined as two separate samples collected at a single location and labeled with separate identifications so that the laboratory will not be able to identify them as duplicates. Specific sampling procedures are provided in the appropriate appendices. The frequencies with which field duplicates will be analyzed for each parameter and medium are presented in Table 4. The control limits that will be utilized to evaluate field duplicate results are presented in Table 5 for the various sample matrices.

3.4.2 Field Equipment Blanks

An equipment blank will be prepared by filling a sample container with analyte-free water (supplied by the laboratory) which has been passed over a cleaned sampling and/or mixing device. Field equipment blanks will be collected in the vicinity of the sampling activity while they are on-going (i.e., not at the end of sampling activities for the day) to be representative of sampling conditions. The volume of water used for collection of a field equipment blank will be, at a minimum, of sufficient volume for the type of analysis being conducted (e.g., 1 liter for PCBs). At least one equipment blank will be collected per type of sampling equipment per matrix if non-dedicated sampling equipment is utilized. One equipment blank will be collected for every 20 samples. The equipment blank analytical results will be reviewed to evaluate the effectiveness of the cleaning procedures. It can also be utilized to confirm the cleanliness of sample containers. The parameters which will require equipment blanks to be prepared and submitted for analysis, along with their required frequencies, are specified in Table 4.

3.4.3 Trip Blanks

A trip blank will consist of analyte-free water (supplied by the laboratory) filled in containers that remain unopened in the sample coolers throughout the sampling event. The trip blanks will be used to assess potential sample exposure to non-site-related constituents during storage and transport (including cleanliness of sample containers). Trip blanks will only be utilized for water samples to be analyzed for VOCs and will be utilized at the frequency specified in Table 4. Trip blanks will not be included with soil/sediment or biota samples.

3.5 Field Parameters

The measurement of field parameters will be conducted, where specified in the project-specific work plans, following the SOPs presented in Appendices N through Q. Field parameter measurement may include the measurement of monitoring well stabilization parameters (i.e., temperature, conductivity, pH, dissolved oxygen, and turbidity), oxidation-reduction potential testing, in-situ hydraulic conductivity testing, and/or the measurement of water levels and oil layer thickness. At a minimum, the analytical instruments used to conduct field parameter measurements will

be calibrated following the procedures presented in USEPA Region I Draft Calibration of Field Instruments (USEPA, Draft, June 3, 1998), which is included as Attachment O-2 to Appendix O.

3.6 Laboratory Custody

Several procedures will be followed by the laboratory upon sample receipt. The laboratory sample custodian will verify the package seal, open the package, and inspect the contents against the COC. The organization that performed the sampling activity will be contacted in the event of any discrepancies between the sample containers and the COC. The sample custodian will log the samples in and assign each a unique laboratory sample identification number, which will be placed on each sample bottle. A laboratory internal COC is then initiated. The project name and code, sampling location, date sampled, date received, analyses required, storage location, and action for final disposal will be recorded in the laboratory information system. The samples will then be placed in secure storage.

3.6.1 Laboratory Sample Storage

The analysts will sign and date the internal COC when removing samples from storage. Laboratory personnel will be responsible for the care and custody of the sample once it is transferred to them. Once an analysis is complete, the unused portion of the sample will be returned to the sample custodian who will then sign and date the COC. In the event that the entire sample is depleted during analysis, a notation of "sample depleted" or "entire sample used" will be made on the COC.

The unused portion of the sample and sample extracts will be held by the laboratory for a minimum of 30 days after the delivery of the final laboratory data package. Samples and sample extracts will be held in secure storage and maintained in accordance with the sample preservation requirements presented in Table 1 until disposal. The sample disposal date will be noted on the COC by the sample custodian. All COC and associated paperwork will be maintained in a separate file for the project. Laboratories will maintain these files until otherwise directed by GE.

3.6.2 Sample Tracking

Identifying information which describes the sample, procedures performed, and results of the testing will be recorded by the analyst. These notes will be dated and will indicate who performed the analysis, the instrument used, and the instrument conditions.

Various workbooks, bench sheets, instrument logbooks, and instrument printouts will be used to trace the history of samples through the analytical process and to document and relate important aspects of the work, including the associated QCs. All logbooks, bench sheets, instrument logs, and instrument printouts will be properly maintained and will become part of the permanent laboratory records.

3.6.3 Final Files Custody

Each laboratory will establish a file for all pertinent data generated from the analyses performed for the project. This file will include the items specified in Section 6.2.2 (Data Package Deliverables), as well as items such as raw data, chromatograms, and descriptions of sample preparation and will be maintained in a secure location for the duration of the laboratory's involvement in the project. At the conclusion of the laboratory's involvement with the project, the files will be continued to be stored at the laboratory or transferred to GE. These files will be retained for the duration of the project and seven years thereafter. This final evidence file may include the following information:

• Project files;

- Analytical data;
- Field records (including COC forms, photographs, etc.);
- Reports; and
- Other associated information (maps, drawings, articles, etc.).

,

4. Analytical Procedures

4.1 General

The analyses to be performed for the environmental samples will be as specified in the applicable project-specific work plan. Analyses may be for individual constituents, specific groups of constituents, or all compounds listed in Appendix IX of 40 CFR Part 264, plus three additional constituents (benzidine, 2-chloroethylvinylether, and 1,2-diphenyhydrazine), hereafter referred to as Appendix IX+3. In conducting analyses for constituents other than PCBs, the Appendix IX+3 constituent list set forth in Table 2 will generally be utilized, unless otherwise specified in the project-specific work plan and approved by USEPA or MDEP (as applicable). This list of constituents has been selected for such analyses at the CD Site because it is specified in the CD and the SOW, and will be utilized for off-site investigations because it is the protocol that GE has followed for a considerable time as directed by USEPA and MDEP.

The specific analytical protocols to be followed for the various groups of analytes are summarized in Table 1 for soil/sediment samples, LNAPL/DNAPL samples, water samples, biota samples, and toxicity characteristic leaching procedure (TCLP) samples. A complete list of the Appendix IX+3 and TCLP constituents is presented in Table 2. Analytical services will be provided by the laboratories listed in Section 2.1.1 and Table 2-1, unless otherwise specified in the appropriate work plan.

In general, analytical services will employ the USEPA's SW-846 protocols as specified in Table 1. The method detection limits (MDLs) and practical quantitation limits (PQLs) to be used in these investigations will be those determined by the laboratory. For this purpose, the MDLs are determined by the laboratory based on injecting the chemical directly into the instrument without correcting for specific sample weights, percent solids, or dilution, while the PQLs are determined by the laboratory taking into account those factors. Unless otherwise specified in the project-specific work plan, these limits are expected to be equal to or lower than the laboratory-derived MDLs and PQLs listed in Table 3. (That table lists the laboratory-derived MDLs and PQLs for PCBs and other Appendix IX+3 constituents in water, soil/sediment, and biota. The detection limits for analysis of PCBs and particulate matter in air are described in Section 4.2.6 below.)

Table 3 also lists the typical reporting limits that will be used for reporting the analytical results from water, soil/sediment, and biota samples, as well as TCLP analyses, in investigations conducted at the sites covered by this FSP/QAPP, unless otherwise provided in the project-specific work plan. In most cases, these reporting limits are the same as the PQLs. However, in some cases, they are higher than the PQLs, based on the levels that GE's laboratories have in fact been achieving and reporting for investigations at these sites. In all cases, the reporting limits listed in Table 3 are below applicable or likely Performance Standards. For example, the PCB reporting limits are well below the lowest applicable Performance Standards for those compounds (described in Section 5.2), as discussed further in Section 4.2.1; and the reporting limits for other constituents are below the relevant Massachusetts Contingency Plan (MCP) Method 1 standards (which constitute potential Performance Standards for those constituents). In some cases, as noted in Table 3, the laboratories will use other reporting limits due to sample matrix interferences. Where technically feasible, these limits will also be lower than the applicable Performance Standards or relevant MCP Method 1 standards. Additional information is provided in Section 4.2.

The laboratory analytical QA/QC requirements are discussed in Section 4.3 and described in greater detail in Section 7.

4.2 Analytical Methods

4.2.1 Soils and Sediments

Analyses of soil and sediment samples will follow USEPA Method 8081 for organochlorine pesticides and Method 8082 for analysis of PCBs. Unless otherwise provided in the applicable work plan, these PCB analyses will be Aroclor-specific. Results will be reported on a dry-weight basis, with a reporting limit of 0.05 ppm (0.05 mg/kg) as presented in Table 3. The results will be reported for each Aroclor as well as a total value. If congener-specific PCB analyses are proposed or required, the methodology to be used will be presented in the project-specific work plan.

Analyses of soil/sediment samples for specific groups of constituents (e.g., volatile organics, 1,2,4-trichlorobenzene, phenols, metals, and/or cyanide, oil and grease, Cesium-137, and Beryllium-7) or for all Appendix IX+3 constituents will follow the methods listed in Table 1. Results will be reported using the reporting limits presented in Table 3.

Unless otherwise provided in the applicable work plan, volatile organics will be collected following both the low-level and the medium-level methodologies presented in Table 1. The laboratory will initially analyze the low-level sample and hold the medium-level sample for diluted analyses, if required. If the upper calibration range of the instrument is exceeded for any constituent in the low-level analysis, the medium-level (diluted) analysis will be performed for that constituent. Sediment samples with moisture content greater than 20 percent that require analysis for medium-level volatile organics will be corrected for the methanol dilution caused by the water present in the sample. For example, a 10 gram sample with a moisture content of 30 percent contains approximately 3 mL of water and 7 grams of solids. Therefore, the sample results will be corrected for the methanol/water dilution factor and dry-weight by using 13 mLs for the methanol volume and 7 grams for the sample weight.

Analysis of samples for polychlorinated dibenzo-p-dioxins (PCDDs)/polychlorinated dibenzofurans (PCDFs) will be performed using USEPA Method 8280A or Method 8290 as specified in the appropriate work plan. The selection of which method to use will depend on the applicable Performance Standards to be achieved. Specifically, since Method 8280A has higher MDLs, PQLs, and reporting limits (see Table 3), use of that method may fail to detect exceedances of lower-level Performance Standards (e.g., Toxic Equivalent concentrations at and below 5 ppb; see Section 5.2). Hence, Method 8290, with its substantially lower MDLs, PQLs, and reporting limits, will be used for samples collected to assess achievement of those lower-level Performance Standards. Method 8280A will be used for samples collected to assess achievement of higher-level Performance Standards, where it will be adequate to detect exceedances of the standard level. Results will be reported for both total homologues and 2,3,7,8-substituted congeners. Sample results will be reported on a dry-weight basis with reporting limits consistent with those presented in Table 3.

The procedures to be utilized for the analysis of Cesium-137 and Beryllium-7 are provided in Appendix L.

4.2.2 Water

Procedures for analyzing water samples for PCBs (Table 1) are as follows: 1) analyses will follow USEPA Method 8082; 2) both filtered and unfiltered water samples may be analyzed for PCBs; 3) if filtered, a 0.45 micron glass fiber filter (which is the standard size filter used in the industry) will be used; and 4) analyses will be for Aroclor-specific PCBs (unless otherwise specified in the appropriate work plan). The results will be reported for each Aroclor as well as a total value. Reporting limits will be no higher than 0.30 μ g/L for all Aroclors, but will typically achieve

lower limits, with the goal of achieving limits of $0.022 \ \mu g/L$ for surface water and $0.065 \ \mu g/L$ for groundwater. If congener-specific PCB analyses are proposed or required, the methodology to be used will be presented in the project-specific work plan.

If specified, water samples will also be analyzed for specific groups of constituents (e.g., volatile organics, total suspended solids, and/or volatile suspended solids) or Appendix IX+3 constituents. For inorganics, as with PCBs, groundwater and surface water samples may be analyzed in both filtered and unfiltered form. The filtering of groundwater and surface water samples will be performed in the field prior to preservation using a 0.45 micron (industry standard) glass fiber filter. Analyses for non-PCB constituents in water samples will follow the protocols shown in Table 1.

Analysis of samples for PCDD/PCDFs will be performed using USEPA Method 8280A or Method 8290 as specified in the appropriate work plan, depending on the applicable or likely Performance Standards to be achieved. The procedures for this analysis are shown in Table 1. Results will be reported for both total homologues and 2,3,7,8-substituted isomers.

Selected samples may also be analyzed for ammonia, nitrate, nitrite, ortho-phosphate (dissolved), biochemical oxygen demand, chemical oxygen demand, total suspended solids, total dissolved solids, hardness, and total organic carbon (these parameters as a group will be hereafter referred to as conventional parameters) using the USEPA methods listed in Table 1.

4.2.3 Biota

Biota samples collected in Massachusetts will be prepared for analysis by FDA Method 211.13f (or by an MDEPapproved method). For fish, skin-on fillets with the scales removed will be the preferred sample unit. Bullfrog samples will consist of the edible portion of the legs (boneless, skin-off). Extraction will be by Soxhlet extraction (Method 3540), with florisil column cleanup as necessary (Method 3620). All biota will be analyzed for lipid content, thus allowing results to be reported on a total or lipid-normalized basis.

All such collected biota will be analyzed for Aroclor-specific PCBs following the procedures specified in Appendix I or as otherwise specified in the appropriate work plan. Results will be reported on a wet-weight basis with the Aroclor-specific reporting limits specified in Table 3. A total PCB value will also be reported for each sample. If congener-specific analyses are proposed or required for biota collected in Massachusetts, the methodology to be used will be presented in the project-specific work plan.

Analysis of such biota samples for PCDD/PCDFs (if proposed or required) will be performed using USEPA Method 8280A or Method 8290 as specified in the project-specific work plan, depending on the planned use of the data and the need to achieve low reporting limits. Results will be reported for both total homologues and 2,3,7,8-substituted congeners.

Unless otherwise provided in the project-specific work plan, samples of fish and benthic invertebrates collected from the Connecticut portion of the Housatonic River will be prepared and analyzed by the Academy of Natural Sciences of Philadelphia (ANSP), as requested by the Connecticut DEP, using procedures developed by the ANSP and followed by them for several years. These procedures are described in Attachment H-2 to Appendix H. The analytical procedures used by the ANSP include analyses for PCBs on both a total PCB basis and a congener-specific basis, as well as analysis for lipid content. PCB concentrations are reported based on both the total and the congener-specific analyses (wet weight) and on a lipid-normalized basis.

4.2.4 LNAPL/DNAPL

Analysis of LNAPL/DNAPL samples for PCBs or other Appendix IX+3 constituents will follow the methods listed in Table 1. Results will be reported using the lowest achievable detection limits based on laboratory MDLs and the dilution factor required to properly quantitate the sample or resolve sample matrix effects. If applicable, specific gravity measurements will be made using ASTM Method D1298 and viscosity measurements will be made using ASTM Method D445.

Analysis of LNAPL/DNAPL samples for PCDD/PCDFs will be performed using USEPA Method 8280A unless otherwise specified in the project-specific work plan. Results will be reported for both total homologues and 2,3,7,8-substituted congeners.

4.2.5 Construction and Demolition Waste

Excavated soil and other potential debris may require analysis for one or more of the TCLP parameters listed in Table 1 to provide characterization of the material for disposal purposes. TCLP analyses will be conducted using the USEPA Method 1311 for sample preparation and the appropriate USEPA SW-846 analytical methods as specified in Tables 1 and 2. Results will be reported using the lowest achievable detection limits based on laboratory MDLs and will be less than the reporting limits specified in Table 3.

Materials requiring TCLP analysis and the individual TCLP parameter analysis requirements will be discussed in the project-specific work plan.

4.2.6 Air Monitoring

Air monitoring for particulates and/or PCBs may be conducted during removal activities as specified in the projectspecific work plans. Where required, air monitoring will be conducted following the procedures specified in Appendix J. Sampling locations, project performance standards, and DQOs for air monitoring will be presented in the project-specific work plans. The target project detection limit for analysis of air samples for PCBs is 0.0003 μ g/m³. That level will also be the PQL and reporting limit for PCB analyses of air samples. Particulate matter (as PM₁₀) will be monitored using a dataRAM as specified in Appendix J. The dataRAM has a measurement range of 0.001 to 400 mg/m³. Any results between those levels will be reported.

4.3 Laboratory Analytical Quality Assurance/Quality Control

QC requirements for the laboratory analytical procedures, including the specifications for collection of matrix spikes and matrix spike duplicates (MS/MSD), field/equipment blanks, trip blanks, and field duplicate samples, are presented in Table 4. Table 4 also presents the QA/QC requirements for analytical method parameters (i.e., calibration, system performance, etc.) and corrective action procedures for non-compliance with method criteria. QC accuracy and precision limits for recovery from the matrix spikes and surrogate compounds are presented in Table 5. The use of these data quality indicators and requirements in evaluating the quality of the data collected and determining the usability of such data is discussed in Section 7 below.

5. Data Quality Objectives and Performance <u>Standards</u>

5.1 General

This section discusses the Data Quality Objectives (DQOs) for the sampling and analytical data collected under this FSP/QAPP. Given the various different programs and sites to which this FSP/QAPP applies, the specific DQOs for each investigation will be presented in the project-specific work plans. However, a general description of the DQOs and DQO development process and examples of specific DQOs are discussed in Section 5.2. In addition, since the DQOs will generally consist of obtaining the necessary and sufficiently high-quality data to achieve applicable Performance Standards for a given area or response action (as set forth in the CD and the SOW or as determined through USEPA and/or MDEP approval of project-specific work plans), this section also provides, in Section 5.3, a description of such Performance Standards. From a data quality perspective, the qualitative and quantitative QA objectives for the data collected pursuant to this FSP/QAPP are presented in Section 7.4 below.

5.2 Data Quality Objectives

In general, DQOs are statements, in either qualitative or quantitative terms, regarding the appropriate data quality for an investigation. As a general matter, the DQOs for investigations conducted at the sites and areas covered by this FSP/QAPP will include obtaining the necessary data to meet the applicable sampling requirements for the site or area in question (as specified in the CD or SOW or in project-specific work plans approved by the USEPA and/or MDEP) and to achieve the applicable Performance Standards for the response actions for such site or area (discussed in Section 5.3). Further, to ensure that sufficiently high-quality analytical data are obtained to meet that objective, the DQOs for these investigations include obtaining data that meet the technical data quality specifications set forth in this FSP/QAPP, including the MDLs, PQLs, and reporting limits presented in Table 3 and the QA/QC objectives and requirements discussed in Section 7.

In addition, project-specific DQOs will be developed and presented in each of the project-specific work plans to the extent necessary or appropriate to describe the purpose of the investigation and to identify the appropriate type, locations, and quality of data to be collected to meet that purpose. Such DQOs may include, but are not limited to, one or more of the following:

- Determine the potential presence or extent of PCBs for characterization and remediation assessment activities. The data collection approach will typically utilize an off-site conventional laboratory unless otherwise specified in the project-specific work plan;
- Determine the potential presence or extent of other Appendix IX+3 constituents;
- Provide data in support of risk assessment activities, if applicable and appropriate;
- Determine extent of remediation needed to meet Performance Standards or other cleanup goals established for the area in question and any additional sampling to determine material disposition;
- Assess biota to determine potential presence of chemical constituents;

- Provide data to evaluate hydrogeologic flow regime, including groundwater gradients, flow direction, hydraulic conductivity, and groundwater depth;
- Characterize groundwater quality at various monitoring wells for comparison to MCP Method 1 GW-2 and/or GW-3 standards or alternate groundwater Performance Standards;
- Provide geotechnical data as necessary to support remedial designs;
- Evaluate extent of NAPL and potential for migration; and
- Perform air monitoring to evaluate dust control measures implemented during remedial activities.

5.3 Performance Standards

This section discusses the Performance Standards for response actions to be conducted by GE at the sites and areas covered by this FSP/QAPP. In general, the Performance Standards for response actions to be implemented under the CD are set forth in the CD and the SOW and/or will be specified in work plans developed and approved by USEPA under the CD or the SOW. For other sites and areas, the Performance Standards are, and will continue to be, generally specified in project-specific work plans as approved or conditionally approved by MDEP and/or USEPA. The description of Performance Standards in this section of the FSP/QAPP is provided solely for informational purposes. In the case of any inconsistency between the description of the Performance Standards in this section and that in the basic documents (i.e., the CD, the SOW and/or Agency-approved project-specific work plans), the latter shall be controlling.

5.3.1 Performance Standards for Soil/Sediment

For the CD Site, the Performance Standards for PCBs in soils and sediments at the areas designated as Removal Action Areas (RAAs) Outside the River are set forth in the CD and the SOW. These Performance Standards are to be applied based on the spatial averaging of PCB concentrations and are summarized in Table 6. It should be noted that the lowest of these Performance Standards (1 ppm) is 20 times greater than the reporting limit shown in Table 3, which, in turn, is about 3 times greater than the laboratory-derived MDL shown in Table 3.

For non-PCB constituents at such RAAs, the procedural Performance Standards for establishing cleanup standards for soil/sediment are described in Attachment F to the SOW. Those procedures provide for a phased approach to setting substantive cleanup Performance Standards for such constituents, taking into account the extent of response actions to address PCBs. For PCDDs and PCDFs, Attachment F establishes the substantive cleanup Performance Standards, which are to be determined on the basis of total Toxicity Equivalent (TEQ) concentrations, using Toxicity Equivalency Factors (TEFs) published by the World Health Organization. Those standards are: for residential areas, a TEQ concentration of 1 ppb; for recreational areas, TEQ concentrations of 1 ppb in the top foot and 1.5 ppb in the 1- to 3-foot depth interval; and for commercial/industrial areas, TEQ concentrations of 5 ppb in the top foot and 20 ppb in deeper soil. For other non-PCB constituents, the determination of the substantive cleanup Performance Standards will be made through the phased process described in Attachment F to the SOW, which considers USEPA Region 9 Preliminary Remediation Goals, background concentrations, MCP Method 1 soil standards, and (if necessary) site-specific risk-based standards to be developed by GE subject to USEPA approval.

For the Upper ½ Mile Reach of the Housatonic River (as defined in the CD), the Performance Standards for bank soils and sediments are set forth in the USEPA-approved Upper ½ Mile Reach Removal Action Work Plan (August 1999). For the Rest of the River (as defined in the CD), the Performance Standards for soil and sediments will be

set forth in a final modification to the Reissued RCRA Permit and a Rest of River SOW, which will be developed through the process described in Paragraph 22 of the CD.

For properties outside the CD Site, the Performance Standard for PCBs in soil at residential properties is generally a spatial average PCB concentration of 2 ppm. For non-PCB constituents at such properties, and for both PCBs and other constituents at non-residential properties, the applicable Performance Standards for soil/sediment will be determined through the process of GE's submittal and MDEP's approval of project-specific work plans.

5.3.2 Performance Standards for Groundwater

For the CD Site, the Performance Standards for groundwater quality, as well as for non-aqueous-phase liquid (NAPL), are specified in Section 2.7 and Attachment H to the SOW. The NAPL Performance Standards are based on factors other than numerical laboratory analytical results, such as measurements of NAPL presence and thickness. By contrast, the groundwater quality Performance Standards require achievement of specific numerical values, based on the analytical results of groundwater samples from monitoring wells. Those Performance Standards provide initially for use of the Method 1 GW-2 and GW-3 standards specified in the MCP, which are listed in Table 7. However, these Performance Standards allow for the future development of alternative GW-2 and GW-3 groundwater standards, subject to USEPA approval.

For areas outside the CD Site, the Performance Standards for groundwater will be determined through the process of GE's submittal and MDEP's approval of project-specific work plans.

5.3.3 Performance Standards for Air Quality

Performance Standards for PCBs and particulate matter in ambient air will be developed on a project-specific basis for projects (both at the CD Site and at non-CD sites) where air monitoring will be performed during response activities. For particulate matter, as specified in Appendix J, a notification level of a 10-hour average of $120 \,\mu g/m^3$ of PM₁₀ (which represents 80 percent of the 24-hour National Ambient Air Quality Standard of $150 \,\mu g/m^3$ for PM₁₀) will be used unless otherwise provided in the project-specific work plan. For PCBs, the Performance Standards will be specified in the project-specific work plans. For example, the *Upper ½ Mile Reach Removal Action Work Plan* specifies a PCB notification level of 0.05 $\mu g/m^3$ (24-hour average) and an action level of 0.1 $\mu g/m^3$ (24 hour average).

5.3.4 Performance Standards for Other Media

For other media (e.g., surface water, biota) and media analytes, Performance Standards have not been developed. If relevant, such Performance Standards will be developed through the process of project-specific submittals, subject to review and approval by USEPA or MDEP. Tables 3 and 6 of this FSP/QAPP will be revised (as necessary) on an annual basis when additional Performance Standards are developed and approved.

6. Laboratory Data Reduction and Reporting

6.1 General

This section presents the data reduction and reporting requirements for final data packages and electronic data deliverables (EDDs) to be provided by the analytical laboratories for investigations conducted in accordance with this FSP/QAPP.

6.2 Laboratory Data

Where calculations must be used for laboratory data reduction, the calculations will be those specified in the pertinent analytical method, as referenced previously. Whenever possible, analytical data will be transferred directly from the instrument to a computerized data system. Non-computerized raw data will be entered into laboratory notebooks. The data entered will document the factors used to arrive at the reported value. Concentration calculations for chromatographic analyses (i.e., PCBs, volatiles, semi-volatiles) are based on response factors. Quantitation is performed using either internal or external standards. Inorganic analyses are based on regression analysis. Regression analysis is used to fit a curve through the calibration standard data. Concentrations are calculated using the resulting regression equation.

Soil and sediment values will be reported on a dry-weight basis. Unless otherwise specified, all values will be reported uncorrected for blank contamination.

6.2.1 Data Review

Raw laboratory data will be examined by the laboratory to assess compliance with QC guidelines. Surrogate, matrix spike, and laboratory control sample recoveries will be checked. Samples will be checked for possible contamination or interferences. Concentrations will be checked to ensure the systems are not saturated. Dilutions will be performed as necessary. Any deviations from guidelines will call for corrective action. Those deviations which are determined to be caused by factors outside the laboratory's control, such as matrix interference, will be noted with an explanation in the report narrative. Calculations will be checked and the report reviewed for errors and oversights. All reports will be subjected to internal laboratory QC review prior to release.

6.2.2 Data Package Deliverables

A Contract Lab Protocol (CLP) equivalent data package that includes a sample delivery group (SDG) Narrative containing: Laboratory name; SDG number; sample numbers in the SDG; differentiating between initial analyses and re-analyses; and detailed documentation of any QC, sample shipment and/or analytical problems encountered in processing the samples will be prepared by the analytical laboratory. The laboratory must explain the conditions of each re-analysis and include any problems encountered, both technical and administrative.

The complete data package consists of two parts: 1) the sample data summary package; and 2) the sample data package.

The typical sample data summary package shall contain data for one SDG, as follows:

Sample Data Summary Package

SDG Narrative;

- COC Records;
- By analytical method and by sample within each method tabulated target compound/ target analyte results (FORM 1);
- By analytical method surrogate spike analysis results (FORM 2);
- By analytical method matrix spike/matrix spike duplicate results (FORM 3 ORG or FORM 4-IN and FORM 6-IN);
- By analytical method blank summary forms (FORM 4-ORG) and tabulated results (FORM 1-ORG or FORM 3-IN); and
- By analytical method internal standard data (FORM 8).

The Sample Data Package requirements vary by fraction; however, all packages must begin with a copy of the SDG Narrative followed by copies of both the field and internal chains of custody. Following the narrative and chains of custody are the following, in their entirety, by fraction:

Volatile/Semi-Volatile Analysis

- 1. QC Summary
 - Surrogate Recovery Summary (FORM 2);
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Summary (FORM 3);
 - Method Blank Summary (FORM 4);
 - System Performance Evaluation Summary (FORM 5);
 - Internal Standard Summary (FORM 8); and
 - Laboratory control standard (LCS) Recovery Summary.
- 2. Sample Data

Sample data shall be arranged in packets with the analysis data summary sheet (FORM 1) followed by raw data. These sample packets should be placed in order of increasing sample number, considering both letters and numbers in ordering samples. The raw data shall consist of the quantitation reports followed by Reconstructed Total Ion Chromatograms (RIC) for each sample. The RIC should be normalized to the largest non-solvent component and contain the following information:

- Sample ID;
- Date and time of analysis;
- Instrument ID;
- Lab file ID; and
- Positively identified compounds must be labeled with the names of compounds, either directly out from the peak, or in print-out of retention times if retention times are printed over the peak (PCBs only).

For each sample, by each compound identified, copies of raw spectra and copies of background-subtracted mass spectra of target compounds must be included. In cases where the data system report has been edited, or where manual integration or quantitation has been performed, the analyst must identify such edits or manual procedures by initialing and dating the changes made to the report.

3. Standard Data

- Initial Calibration Data in order, by instrument Initial Calibration Summary (FORM 6) and associated standards RICs and quantitation reports (spectra are not required).
- Continuing Calibration Data in order, by instrument Continuing Calibration Summary (FORM 7) and associated standards RICs and quantitation reports (spectra are not required).
- 4. Raw Data
 - Performance Evaluation Summary (FORM 5) in order, by instrument along with the associated standard spectrum, mass listing and RIC.
 - Blank Data, in chronological order
 - Tabulated Results (FORM 1)
 - RIC
 - Quantitation Report
 - Spectra
 - Matrix Spike Data
 - Tabulated Results (FORM 1)
 - RIC
 - Quantitation Report
 - No spectra are required
 - Matrix Spike Duplicate Data
 - Tabulated Results (FORM 1)
 - RIC
 - Quantitation Report
 - No spectra are required
 - Laboratory Control Sample Data
 - Tabulated Results (FORM 1)
 - RIC
 - Instrument Logs Copies of the instrument run logs for all days on which samples and/or standards included in the SDG were analyzed are required.
 - Extraction Logs The Extraction Logs must include: 1) date; 2) sample weights and volumes; 3) sufficient information to unequivocally identify which QC samples correspond to each batch extracted; 4) comments describing any significant sample changes or reactions which occur during preparation; and 5) final volumes.

PCB/Pesticides, Herbicides and VPH/EPH Data

- 1. QC Summary
 - Surrogate Recovery Summary (FORM 2);
 - Matrix Spike/Matrix Spike Duplicate Summary (FORM 3);
 - Method Blank Summary (FORM 4); and
 - Laboratory Control Sample Results.
- 2. Sample Data

Sample data shall be arranged in packets with the sample analysis data sheets (FORM 1), followed by raw data. These sample packets should be placed in order of increasing sample number, considering both letters and numbers in ordering samples.

The raw data shall consist of the quantitation reports followed by Reconstructed Total Ion Chromatograms (RIC) for each sample. The RIC should be normalized to the largest non-solvent component and contain the following information:

- Sample ID;
- Date and time of analysis;
- Instrument ID;
- Lab file ID;
- Gas chromatograph column identification (by stationary phase and internal diameter); and
- Positively identified compounds must be labeled with the names of the compounds, either directly out from the peak, or in a print-out of retention times if retention times are printed over the peak. Raw data for both the primary and confirmation analysis must be included in the data package.
- 3. Standard Data
 - Initial Calibration Summary all columns, all instruments, in chronological order by instrument and column;
 - Continuing Calibration Verification Summary all columns, all instruments, in chronological order by instrument and column;
 - Analytical Sequence Summary all columns, all instruments, in chronological order by instrument and column;
 - Florisil Cartridge Check Summary for all lots of cartridges used to process samples;
 - Gel permeation chromatography (GPC) Calibration Summary for all GPC columns, in chronological order, by calibration date;
 - Initial Calibration Standard Chromatograms and Integration Reports all columns, all instruments, in chronological order by instrument and column;
 - Continuing Calibration Standard Chromatograms and Integration Reports all columns, all instruments in chronological order by instrument and column; and
 - GPC Calibration Data ultraviolet (UV) detector traces must be labeled with GPC column identifier and date of calibration.

4. Raw Data

- Blank Data in chronological order,
 - Tabulated Results (FORM 1)
 - Chromatogram
 - Integration Report
 - Matrix Spike Data
 - Tabulated Results (FORM 1)
 - Chromatogram
 - Integration Report
 - Matrix Spike Duplicate Data
 - Tabulated Results (FORM 1)
 - Chromatogram
 - Integration Report
 - Laboratory Control Sample Data
 - Tabulated Results (FORM 1)
 - Chromatogram
 - Integration Report

• Extraction Logs - The extraction logs must include: 1) date; 2) sample weights and volumes; 3) sufficient information to unequivocally identify which QC samples correspond to each batch extracted; 4) comments describing any significant sample changes or reactions which occur during preparation; 5) final extract volumes; and 6) indication of which, if any, cleanups were performed.

Inorganics Analysis

- 1. QC Summary:
 - Inorganic analyses data sheets (FORM 1);
 - Initial and continuing calibration verification (FORM 2A);
 - Contract Required Detection Limit (CRDL) standards for Atomic Absorption (AA) and Inductively Coupled Plasma (ICP) (FORM 2B);
 - Method Blanks Summary (FORM 3);
 - ICP Interference Check Sample Analysis (FORM 4);
 - Matrix Spike sample recovery (FORM 5);
 - Duplicates (FORM 6);
 - Laboratory Control Samples (FORM 7);
 - Method of Standard Additions Summary (FORM 8);
 - ICP Serial Dilution Analysis (FORM 9);
 - Instrument Detection Limits (FORM 10);
 - ICP Interelement Correction Factors (FORM 11A and FORM 11B);
 - ICP Linear Ranges (FORM 12);
 - Sample Preparation Log (FORM 13); and
 - Analyses Run Log (FORM 14).

2. Sample Data

Sample data shall be arranged in packets with the analysis data summary sheets and QA/QC summary forms preceding the raw data. The raw data should be grouped by analysis type (i.e., ICP, furnace AA, or cold vapor), instrument number, run number, and parameter. For each instrument and parameter, the analytical data should be ordered in a manner that is consistent with the instrument run log. The final sections of the supporting documentation should include the sample and standards preparation logs, the percent solids determination bench sheets (solids only), and instrument run logs.

Conventionals Analysis

- 1. QC Summary:
 - Analyses data sheets (FORM 1);
 - Initial and continuing calibration verification (FORM 2A);
 - Method Blanks Summary (FORM 3);
 - Matrix Spike sample recovery (FORM 5);
 - Duplicates (FORM 6);
 - Laboratory Control Samples (FORM 7);
 - Sample Preparation Log (FORM 13); and
 - Analyses Run Log (FORM 14).

2. Sample Data

Sample data shall be arranged in packets with the analysis data summary sheets and QA/QC summary forms preceding the raw data. The raw data should be grouped by parameter (e.g., cyanide, sulfide, TOC, etc.), instrument number, and run number. For each instrument and parameter, the analytical data should be ordered in a manner that is consistent with the instrument run log. The final sections of the supporting documentation should include the sample and standards preparation logs, the percent solids determination bench sheets (solids only), and instrument run logs.

PCDDs/PCDFs Analyses

1. QC Summary

- Surrogate Recovery Summary (FORM 2);
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Summary (FORM 3);
- Method Blank Summary (FORM 4);
- System Performance Evaluation Summary (FORM 5);
- Internal Standard Summary (FORM 8); and
- Laboratory control standard (LCS) Recovery Summary.
- 2. Sample Data

Sample data shall be arranged in packets with the analysis data summary sheet (FORM 1) followed by raw data. These sample packets should be placed in order of increasing sample number, considering both letters and numbers in ordering samples. The raw data shall consist of the quantitation reports followed by Reconstructed Total Ion Chromatograms (RIC) for each sample. The RIC should be normalized to the largest non-solvent component and contain the following information:

- Sample ID;
- Date and time of analysis;
- Instrument ID;
- Lab file ID; and
- Positively identified compounds must be labeled with the names of compounds, either directly out from the peak, or in print-out of retention times if retention times are printed over the peak (PCBs only).

For each sample, by each compound identified, copies of raw spectra and copies of background-subtracted mass spectra of target compounds must be included. In cases where the data system report has been edited, or where manual integration or quantitation has been performed, the analyst must identify such edits or manual procedures by initialing and dating the changes made to the report.

- 3. Standard Data
 - Initial Calibration Data in order, by instrument Initial Calibration Summary (FORM 6) and associated standards RICs and quantitation reports (spectra are not required).
 - Continuing Calibration Data in order, by instrument Continuing Calibration Summary (FORM 7) and associated standards RICs and quantitation reports (spectra are not required).

- 4. Raw Data
 - Performance Evaluation Summary (FORM 5) in order, by instrument along with the associated standard spectrum, mass listing and RIC.
 - Blank Data, in chronological order
 - Tabulated Results (FORM 1)

- RIC

- Quantitation Report
- Spectra
- Matrix Spike Data
 - Tabulated Results (FORM 1)
 - RIC
 - Quantitation Report
 - No spectra are required
- Matrix Spike Duplicate Data
 - Tabulated Results (FORM 1)
 - RIC
 - Quantitation Report
 - No spectra are required
- Laboratory Control Sample Data
 - Tabulated Results (FORM 1)
 - RIC
- Instrument Logs Copies of the instrument run logs for all days on which samples and/or standards included in the SDG were analyzed are required.
- Extraction Logs The Extraction Logs must include: 1) date; 2) sample weights and volumes; 3) sufficient information to unequivocally identify which QC samples correspond to each batch extracted; 4) comments describing any significant sample changes or reactions which occur during preparation; and 5) final volumes.

6.3 Electronic Data Deliverables

For each sample delivery group (SDG), an electronic data deliverable (EDD) will typically be submitted with the final analytical data package that presents the analytical data in an electronic format that is consistent with the data file structure presented below. The EDDs must only present information for samples and analyses that are complete (i.e., there should be no blank fields for sample results). Additionally, once results have been provided by EDD for a specific sample and parameter, the information for those samples must not be presented on subsequent EDD submissions.

The EDDs must be presented in a Microsoft Excel (Version 5.0) or compatible format that includes the field information presented below as an example. The field sample identifications present in the EDD must match the COC records; no abbreviation or truncation of this information is permitted.

FIELD NAME	REQUIRED	DATA TYPE	MAXIMUM LENGTH	NOTES
SDG No	Yes	Text	50	
Lab Sample ID	Yes	Text	100	Rerun samples should end in RE: Dilutions should end in DL; Matrix Spikes and Duplicates should end in MS, MD, S or D.
Field Sample ID	Yes	Text	100	Use the sample ID from the chain of custody, but do not include depths here. Put the depth information in the appropriate fields.
Date Collected	Yes	Date		mm/dd/yyyy format
Depth Interval - Start	Yes	Number		all depth units in feet
Depth Interval - End	Yes	Number		all depth units in feet
Depth Units	Yes	Text	24	all depth units in feet
Property/Site Name	No	Text	50	As provided on COC form.
Analytical Method	Yes	Text	60	
Dilution	Yes	Number		
CAS No	Yes	Text	30	Leave blank for any analyte without a CAS number (e.g., m,p-Xylene).
Analyte	Yes	Text	200	
Result	Yes	Number		
Conc Units	Yes	Text	20	All units in mg/Kg, mg/L or %
Lab Flags	Yes	Text	12	U, J, E, D, B
Lab QC Flags	Yes	Text	12	for metals: E, *, N and Lab defined qualifiers (X, Y, Z)
Laboratory Comments	No	Text	200	

Electronic Data File Definition

Data should be formatted to the correct significant figures as presented on the corresponding FORM I or laboratory equivalent. Only field sample data, including field QA/QC samples (field duplicates, field blanks, and trip blanks), should be included in the electronic file. Laboratory generated QA/QC samples (including laboratory duplicates, MS/MSD samples, laboratory blanks, or other laboratory generated QA/QC samples) should be <u>excluded</u> from the EDD.

7. Data Management, Validation, and Usability

7.1 General

Analytical project data will be reviewed for compliance with project DQOs by generally following the data assessment process presented on Figure 3. This process involves an initial review of the analytical data to determine analytical method compliance followed by validation of the data as specified in Section 7.5 and Appendices X through BB. After completion of the data review procedures, a data validation summary report will be generated to address any data usability limitations that may have been identified. Any data usability limitations will be addressed and/or incorporated into the project database and any subsequent project-specific documents, as required. As part of the overall data evaluation process, a comparison will be made of proposed sampling locations and depths with actual sampling locations and depths, and any differences will be noted and explained

7.2 Data Management

Data management will be performed through the development of a sample tracking database and an analytical data database. The sample tracking database will be developed using commercially available software (i.e., Microsoft Access or equivalent) following the data file structure presented below.

FIELD NAME	REQUIRED	ДАТА ТУРЕ	MAXIMUM LENGTH	DESCRIPTION
Site Name	Yes	Text	255	As defined in the Consent Decree or under MDEP off-site program.
Sample-ID	Yes	Text	100	As provided on COC form.
Depth Range	No	Text	20	Starting and ending depth intervals in feet separated by a hyphen.
Sample Date	Yes	Date/Time	8	mm/dd/yyyy format
Laboratory Name	Yes	Text	50	As provided on COC form. ²
TAT Time	Yes	Long Integer	10	As provided on COC form.
Analyses	Yes	Text	100	As provided on COC form. ²
Date Expected	Yes	Date/Time	8	mm/dd/yyyy format; Calculated from "TAT Time".
Date Received	No	Date/Time	8	mm/dd/yyyy format; Update upon receipt of fax data.
Box Number	No	Text	50	Update upon receipt of final data packages.
Iron Mountain Box Number	No	Text	50	Update when final data packages are shipped offsite.
Notes	No	Text	255	Document all sampling/analysis anomalies
Project Name 1	Yes	Text	100	As provided on COC form.
Matrix '	Yes	Text	30	As provided on COC form. ²
Project Number ¹	Yes	Text	12	As provided on COC form.

Tracking Database Definition

FIELD NAME	REQUIRED	ДАТА ТҮРЕ	MAXIMUM LENGTH	DESCRIPTION
Tabulated ¹	No	Yes/No	I	Update to "Yes" after data has been tabulated for monthly report.

Notes:

1. Field used only for GE-Pittsfield/Housatonic River Site, as defined in the Consent Decree; not used for Off-Site Properties.

2. Abbreviate information from COC following existing conventions in the database (e.g. Columbia Analytical Services, Inc = CAS).

The sample tracking database will be populated by entering COC information after collection of samples. This information will be obtained by the overall QA/QC Coordinator and/or his designee by facsimile or overnight courier. After entering COC information, the sample tracking database will be used to evaluate laboratory turn-around-time (TAT) performance, verify laboratory invoicing, and evaluate laboratory EDDs for completeness.

The analytical data database will be prepared from the laboratory supplied EDDs using commercially available software (i.e., Microsoft Access or equivalent). Data will initially be incorporated into the database when received and reported to the Agencies in the next monthly report as preliminary. Analytical data will be noted as final in the database after data validation review has been completed. The analytical data database will be developed and maintained by the overall QA/QC Coordinator and/or his designee. This database will be prepared in accordance to the data file structure presented below.

FIELD NAME	REQUIRED	ДАТА ТУРЕ	MAXIMUM LENGTH	DESCRIPTION
Field Sample ID	Yes	Text	100	
Date Collected	Yes	Date/Time	8	mm/dd/yyyy format
Property/Site Name	Yes	Text	50	As defined in the Consent Decree or under MDEP off-site program.
Depth Interval - Start	Yes	Number	4	For samples without a Depth Interval - Start (i.e., water samples, composition samples, etc.) default 0.
Depth Interval - End	Yes	Number	4	For samples without a Depth Interval - Enc (i.e., water samples, composition samples, etc.) default 0.
Depth Units	Yes	Text	24	All depth units in feet.
SDG No	Yes	Text	40	Provided by the laboratory.
Lab Sample ID	Yes	Text	100	Rerun samples should end in RE; Dilutions should end in DL; Matrix Spikes and Duplicates should end in MS, MD, S or D.
Analytical Method	Yes	Text	60	As presented in Table 1.
Dilution	Yes	Number	8	For parameters without a Dilution (i.e., percent solids, pH, etc.) default 1.
Analyte	Yes	Text	200	As presented in Table 2.
CAS No	Yes	Text	30	As presented in Table 2.

Laboratory Data Database Definition

FIELD NAME	REQUIRED	ДАТА ТҮРЕ	MAXIMUM LENGTH	DESCRIPTION
Text Result	Yes	Text	200	Concatenation of Result, Lab Flags, and Lab QC Flags formatted to appropriate significant figures (e.g., ND(4.0), 0.041 J, 10,000 N, etc.).
Result	Yes	Number	8	As presented by the laboratory.
Conc Units	Yes	Text	20	All units in mg/Kg, mg/L or %.
Lab Flags	No	Text	12	U, J, E, D, B
Lab QC Flags	No	Text	12	For metals: E, *, N and Laboratory defined qualifiers (X, Y, Z).
Validation Qualifiers	No	Text	50	See Appendices X through BB.
Laboratory Comments	No	Text	255	
Validation Comments	No	Text	255	See Appendices X through BB.
Laboratory	Yes	Text	50	

7.3 Laboratory Quality Assurance

Laboratory QA samples will include the analysis of matrix spikes and matrix spike duplicates, laboratory blanks, QC samples, surrogates, and calibration standards. The required frequency of analysis for these samples is presented in Table 4. The control limits for the analysis of these samples and the corrective actions required when the control limits are not met are also presented in Table 4. Table 5 presents the matrix spike and surrogate compound recovery limits for the individual laboratory control sample analytes. The types of QA samples are described below.

7.3.1 Laboratory Blanks

Laboratory blanks will be used to measure solvent or reagent quality, glassware cleaning effectiveness, and instrument background. Laboratory blanks will be prepared at a frequency specified in Table 4. Laboratory blanks will be required to meet the criteria specified in Table 4 prior to the initiation of sample analysis. Method blanks exceeding acceptance criteria will be subject to one or more of the corrective actions specified in Table 4 prior to the initiation of sample analysis. The requirements relating to laboratory and other blanks for analysis of ambient air samples are further discussed in Appendix J (Section 10).

Laboratory blank contamination will be evaluated following the procedures presented in Section 7.5 and Appendices X through BB. As a component of the data validation review, detected sample results will be compared to detected laboratory blank results to determine if any sample results exhibit positive bias. Sample result bias, if identified, will be discussed in the data validation summary reports and will be considered when comparing sample results to applicable Performance Standards.

7.3.2 Matrix Spikes/Matrix Spike Duplicates

The frequency of matrix spike (MS) and matrix spike duplicate (MSD) analyses for each medium to be analyzed is outlined in Table 4. Matrix spikes will be analyzed in duplicate for organic analyses. Samples will be spiked according to protocols specified in the analytical method. MS and MSDs for PCBs will be spiked with either Aroclor 1242, 1254, or 1260. Recoveries for MS/MSD samples will be expected to follow the control limits presented in Table 5. Results outside of the specified range will require review and, if determined necessary, the corrective actions specified in Table 4 will be initiated.

MS/MSD samples that do not meet the performance criteria specified in Tables 4 and 5 will be evaluated following the procedures presented in Section 7.5 and Appendices X through BB. Sample results associated with MS/MSD recoveries that are outside of the control limits presented in Table 5 will be noted. If the sample results are associated with an MS/MSD recovery that is less than the lower control limits presented in Table 5, such results will be qualified as estimated and one of the following steps will be undertaken: (a) collecting and analyzing a new sample from the location in question; (b) reanalyzing the existing sample; (c) bias-correcting the result to 100 percent recovery; or (d) if the result would have no significant effect on achievement of the applicable Performance Standard, simply maintaining the qualifier in the database. Sample results associated with an MS/MSD recovery that is greater than the upper control limits presented in Table 5 will not be reanalyzed or bias-corrected and will be used as presented by the laboratory with any appropriate qualifications, as required by the data validation review. The data validation summary report will present the final results as qualified during the data validation review, as well as any bias-corrected results, for comparison to applicable Performance Standards.

7.3.3 Laboratory Control Samples

Analytical methods listed in Table 1 will be utilized for guidance on the use of laboratory control samples. At a minimum, laboratory control samples will be analyzed at the frequency specified in Table 4. The acceptance criteria and the corrective actions to be initiated when the acceptance criteria are exceeded are also specified in Table 4.

Sample results associated with laboratory control sample recoveries that are outside of the control limits presented in Table 5 will be noted. If sample results are associated with a laboratory control sample recovery that is less than the lower control limits presented in Table 5, such results will be qualified as estimated and one of the following steps will be undertaken: (a) collecting and analyzing a new sample from the location in question; (b) reanalyzing the existing sample; (c) bias-correcting the result to 100 percent recovery; or (d) if the result would have no significant effect on achievement of the applicable Performance Standard, simply maintaining the qualifier in the database. Sample results associated with a laboratory control sample recovery that is greater than the upper control limits presented in Table 5 will not be reanalyzed or bias-corrected and will be used as presented by the laboratory with any appropriate qualifications, as required by the data validation review. The data validation summary report will present the final results as qualified during the data validation review, as well as any bias-corrected results, for comparison to applicable Performance Standards.

7.3.4 Surrogate Spikes

Surrogate spike samples are primarily used in gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS) analyses. Surrogates are compounds unlikely to be found in nature that have properties similar to the analytes of interest. Surrogates are added to the individual samples prior to extraction to provide broader insight into the efficiency of an analytical method on a sample-specific basis. If surrogate spike recoveries are outside of specified limits, then the analytical results need to be evaluated thoroughly in conjunction with other control measures. In the absence of other control measures, the integrity of the data cannot be verified. Re-analysis of the sample with additional controls or different analytical methodologies may be necessary. The analytical methods listed in Table 1 will be utilized for guidance on the use of surrogate samples.

Sample results associated with surrogate spike recoveries that are outside of the control limits presented in Table 5 will be noted. If the sample results are associated with a surrogate spike recovery that is less than the lower control limits presented in Table 5, such results will be qualified as estimated and one of the following steps will be undertaken: (a) collecting and analyzing a new sample from the location in question; (b) reanalyzing the existing sample; (c) bias-correcting the result to 100 percent recovery; or (d) if the result would have no significant effect on achievement of the applicable Performance Standard, simply maintaining the qualifier in the database. Sample results associated with a surrogate spike recovery that is greater than the upper control limits presented in Table 5 will not

be reanalyzed or bias-corrected and will be used as presented by the laboratory with any appropriate qualifications, as required by the data validation review. The data validation summary report will present the final results as qualified during the data validation review, as well as any bias-corrected results, for comparison to applicable Performance Standards.

7.3.5 Calibration Standards

Calibration check standards analyzed within a particular analytical series give insight into the instrument's stability. An initial calibration will be run following method-specified guidelines. Continuing calibration check standards will be run throughout the analytical sequence as specified in the method and summarized in Table 4.

Calibration check standards will be evaluated following the procedures presented in Section 7.5 and Appendices X through BB. Calibration check standards will be used to determine if additional data qualification is required, but will not be utilized to determine the bias of the analytical program. Calibration check standard information will be utilized to qualify the associated analytical data, if required, following the data validation review procedures specified in Section 7.5 and Appendices X through BB.

7.4 Data Quality Indicators and Quality Assurance Objectives

Data Quality Indicators (DQIs) will be used to monitor data integrity. DQIs will include analysis of matrix spikes and matrix spike duplicates, laboratory blanks, QC samples, surrogates, and calibration standards. These quality control samples will be utilized during the data validation review described in Section 7.5 to determine data usability and sample result bias. The DQIs, as well as additional QC objectives, are described below.

7.4.1 Evaluation of Data Quality Indicators

Based on the tiered data validation procedures described in Section 7.5, DQIs will be assessed for compliance with the precision, accuracy, completeness and sensitivity requirements presented below, using the QA criteria presented in Tables 4 and 5.

• <u>Precision</u>: Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared to their average value. For investigations conducted in accordance with this FSP/QAPP, precision will be defined as the relative percent difference (RPD) between duplicate sample results. The RPD can be calculated for each pair of duplicate analyses using the equation below:

$$RPD = \underbrace{S - D}_{(S + D)/2} \times 100$$

Where:

S = First sample value (initial or MS value)

D = Second sample value (duplicate or MSD value)

The duplicate samples that will be utilized to evaluate precision include; laboratory duplicates, field duplicates, and matrix spike/matrix spike duplicate (MS/MSD) samples. For each analytical program, the percentage of data qualified for MS/MSD, laboratory duplicate, and field duplicate RPD deviations will be summarized in the appropriate data validation report, as discussed in Appendices X through BB. The precision goal for

analytical programs conducted in accordance with this FSP/QAPP is qualification of less than 25 percent of the data for an individual program due to precision related parameter deviations.

• <u>Accuracy</u>: Accuracy measures the bias in an analytical system, or the degree of agreement of a measurement with a known reference value. For investigations conducted in accordance with this FSP/QAPP, accuracy will be defined as the percent recovery (%R) of QA/QC samples that are spiked with a known concentration of an analyte of interest. The %R of those samples can be calculated using the equation below:

$$\%R = \frac{A - B}{C} \times 100$$

Where:

- A = The analyte concentration determined experimentally from the spiked sample
- B = The background level determined by a separate analysis of the unspiked sample.
- C = The amount of the spike added.

The QA/QC samples used to evaluate analytical accuracy include; instrument calibration, internal standards, ICP serial dilution analysis, laboratory control samples, MS/MSD samples, and surrogate compound recoveries. For each analytical program, the percentage of data qualified for MS/MSD recovery deviations, ICP serial dilution analysis deviations, surrogate recovery deviations, and calibration deviations will be summarized in the appropriate data validation report, as discussed in Appendices X through BB. The accuracy goal for analytical programs conducted in accordance with this FSP/QAPP is qualification of less than 25 percent of the data for an individual program due to accuracy-related parameter deviations.

• <u>Completeness</u>: Completeness is defined as the percentage of measurements made that are judged to be valid or usable to meet the prescribed data quality objectives. The completeness of analytical results will be assessed for compliance with the amount of data required for decision making. The completeness is calculated using the equation below:

Completeness = <u>Valid Data Obtained</u> x 100 Total Data Planned

The completeness goal for analytical programs conducted in accordance with this FSP/QAPP is rejection of less than 10 percent of the data for an individual program due to accuracy-related parameter deviations.

• <u>Sensitivity</u>: The achievement of method detection limits (MDLs) depends on instrument sensitivity and matrix effects. Therefore, it is important to monitor the instrument sensitivity to ensure data quality through constant checks on instrument performance. The method detection limit is defined as the minimum concentration of a substance that can be measured with 99 percent confidence that the concentration is above zero. The MDL is calculated as follows:

 $MDL = s x t_{(n-1, 1-a=0.99)}$

Where:

s

= standard deviation of replicate analyses

 $t_{(n-1, 1-a=0.99)}$ = student's t-value for a one-sided 99% confidence level and a standard deviation estimate with n-1 degrees of freedom

The sensitivity goal for analytical programs conducted in accordance with this FSP/QAPP will be developed based on the target MDLs presented in Table 3 and the project-specific DQOs, and will be presented in the appropriate project-specific reports.

7.4.2 Qualitative Quality Assurance Objectives

7.4.2.1 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter which pertains to the proper design of the sampling program. The representativeness criterion is best satisfied by making certain that sampling locations are selected properly and a sufficient number of samples are collected. This parameter will be addressed in the project-specific work plans by collecting samples at locations specified in such work plans, and by following the procedures for sample collection/analyses that are described in this FSP/QAPP. Additionally, analytical programs will utilize procedures, as specified in Table 1, that are consistent with USEPA-approved analytical methodology. QA/QC parameters that are utilized to aid representativeness of environmental samples are holding time and sample preservation. The holding time and sample preservation requirements presented in Table 1 will be used for projects conducted in accordance with this FSP/QAPP to ensure that the environmental samples submitted to the laboratories remain representative of site conditions.

7.4.2.2 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. This goal will be achieved through the use of the standardized techniques for sample collection and analysis presented in this FSP/QAPP. The USEPA SW-846 analytical methods presented in Table 1 are updated on occasion by the USEPA to benefit from recent technological advancements in analytical chemistry and instrumentation. In most cases, the method upgrades include the incorporation of new technology that improves the sensitivity and stability of the instrumentation or allows the laboratory to increase throughput without hindering accuracy and precision. The overall goal for analytical programs conducted in accordance with this FSP/QAPP is to provide comparable analytical data over time through the use of approved analytical techniques that remain consistent in their general approach and continued use of the basic analytical techniques (i.e., sample extraction/preparation, instrument calibration, QA/QC procedures, etc.). Through this use of consistent base analytical procedures and by requiring that updated procedures meet the QA/QC criteria specified in this FSP/QAPP, the analytical data from past, present, and future sampling events should be comparable to allow for qualitative and quantitative assessment of site conditions.

Upon the request of USEPA and/or MDEP, split samples can be provided for independent analyses. Comparability of analytical data obtained from split samples will vary among laboratories and will have to be assessed on a case-by-case basis.

7.4.3 Quantitative Quality Assurance Objectives

7.4.3.1 Completeness

Completeness is defined as a measure of the amount of valid data obtained from an event or investigation compared to the total data planned. Completeness of laboratory tests is expected to be 90 percent or better for investigations conducted in accordance with this FSP/QAPP. The reasons for any variances from 100 percent completeness will be identified and addressed, as required, in the appropriate data validation report (Section 7.5).

7.4.3.2 Precision

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared to their average value. For investigations conducted in accordance with this FSP/QAPP, precision is defined as the RPD between duplicate sample results. The duplicate samples utilized to evaluate precision include laboratory duplicates, field duplicates, and MS/MSD samples. The goal is to maintain a level of analytical precision consistent with the objectives of the sampling event. To maximize precision, consistent sampling and analytical procedures will be followed as presented in this plan. Control limits for laboratory duplicate, field duplicate, and MS/MSD sample analyses are presented in Tables 4 and 5.

7.4.3.3 Accuracy

Accuracy measures the bias in an analytical system, or the degree of agreement of a measurement with a known reference value. For investigations conducted in accordance with this FSP/QAPP, accuracy is defined as the percent recovery of QA/QC samples that are spiked with a known concentration of an analyte of interest. The QA/QC samples used to evaluate analytical accuracy include instrument calibration, internal standards, ICP serial dilution analysis, laboratory control samples, MS/MSD samples, and surrogate compound recoveries. Control limits for instrument calibration, internal standards, ICP serial dilution analysis, laboratory control samples, are provided in Tables 4 and 5.

7.4.3.4 Sensitivity

The fundamental QA objective with respect to sensitivity of the laboratory analytical data is to achieve the QC acceptance criteria specified in Tables 4 and 5. The sensitivity of analyses is also defined by the method detection limits (MDLs). Unless otherwise specified in the project-specific work plan, the MDLs presented in Table 3 will be utilized to ensure that the laboratory-specific MDLs are sufficient to meet the project-specific DQOs.

7.5 Data Validation

The data produced by the laboratory will be reported to GE and/or the appropriate consultant. The analytical data, including QC data (calibrations, standards, blanks, duplicates) and documentation, will then undergo data validation review by the overall QA/QC Coordinator and/or his designee following the data validation SOPs presented in Appendices X through BB.

All analytical data will be validated to a Tier I level following the procedures presented in the *Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses* (July 1996, revised December 1996) and the *Region I Tiered Organic and Inorganic Data Validation Guidelines* (USEPA guidelines). A Tier I review consists of a completeness evidence audit to ensure that all laboratory data and documentation are present. Additionally, for projects subject to this FSP/QAPP, the Tier I review will be modified and expanded to include a number of elements of Tier II review, including review of the data package case narrative, QA/QC Summary forms, and reporting forms for identification of QA/QC deviations that may require qualification of data. Based on the modified Tier I review, a subset of the data will be identified for additional Tier II review. If QA/QC deviations are identified during the modified Tier I review, those deviations will be addressed in the Tier II review. Otherwise, a minimum of 25 percent of the data will be chosen at random to be subjected to a Tier II review, which will consist of the Tier I completeness evidence audit and review of all data package summary forms for identifications. The Tier II data review will be used to identify and evaluate systematic QA/QC deficiencies that may affect any or all of the sample data presented in a specific data package. The Tier II data validation also includes an evaluation of field duplicate RPD compliance. Additional Tier II review

and Tier III review (recalculation of sample results) may also be performed for a larger portion of the data set (i.e., greater than 25 percent of the data), if required, to fully resolve data usability limitations identified during the modified Tier I data review and/or initial Tier II review for 25 percent of the data chosen at random.

The tiered data validation procedures consisting of modified Tier I review for all data, Tier II review of a minimum of 25 percent of the data, and additional Tier II and Tier III review, as required, will be used to evaluate compliance of each data set with the project-specific data quality objectives. The procedures presented in Appendices X through BB will be used to perform the modified Tier I, Tier II, and Tier III data validation reviews. Following this approach, all data associated with a systematic QA/QC deviation (e.g., low calibration response factors, holding times exceedances, blank contamination, etc.) will be evaluated and qualified, if required, following the procedures presented in Appendices X through BB.

7.6 Data Usability and Reconciliation with Data Quality Objectives

Analytical data will be reviewed by GE and consultant Project Managers for compliance with project DQOs, comparability with historical data sets (if available), representativeness of site conditions, and overall data usability for environmental decisionmaking by following the data assessment process presented on Figure 3. This process involves an initial review of the analytical data to determine analytical method compliance followed by validation of the data as specified in Section 7.5 and Appendices X through BB. After completion of the data review procedures, the data validation summary report will be generated to document any data usability limitations that may have been identified. That report will present and describe the qualification of data, if required, and will characterize the overall data usability in terms of the qualitative and quantitative QA objectives described in Sections 7.4.2 and 7.4.3.

Any data usability limitations will be addressed and/or incorporated into the project database and any subsequent project-specific documents, as required. These documents will include a project-specific report which contains the sampling data and sampling locations presented in summary tables and site maps. The sample locations and depths will be compared to approved project-specific work plans to ensure that all proposed samples were collected; if not, any deviations will be noted.

8. Performance Audits and Corrective Actions

8.1 General

Laboratory and field performance audits will be performed to evaluate and maintain analytical program compliance with the requirements set forth in the FSP/QAPP. Specific corrective action procedures are also required to document and correct QA/QC program deficiencies identified during performance audits. Laboratory audit, field audit, and corrective action procedures are summarized in the following sections.

8.2 Internal Laboratory Audits

A comprehensive QA/QC program will be coordinated by the laboratory. The laboratory will review, approve, and distribute technical and administrative methods and procedures used in project and assay work. These written methods and SOPs, including an updated project file, will be part of the official records.

The internal QC program for the laboratory will consist of two key segments:

- Documented procedures for daily operation of the laboratory; and
- Inspection and review of laboratory procedures by the laboratory Quality Assurance Manager (QAM).

As part of the laboratory inspections, the following items should be reviewed:

- Sample handling;
- Chemical assay procedures and validation;
- Reagent preparation and labeling;
- Analytical controls and standards;
- Instrument calibration and maintenance;
- Results of analyses;
- Data recording and analysis
- Data archiving procedures;
- Preventative maintenance procedures for laboratory instruments;
- Training, documentation, and personal qualifications; and
- Periodic internal inspections by the laboratory shall be documented by written record.

8.3 Independent Laboratory Audits

GE Corporate Environmental Programs (CEP) has developed a Corporate Purchasing Agreement (CPA) program for environmental laboratory services. The laboratory CPA was initiated in 1997. The program consists of quality monitoring of each participating laboratory by performing annual audits and performance evaluation (PE) studies. Laboratories participating in the program and working on Pittsfield/Housatonic projects must successfully complete an independent audit and maintain MDEP certification which includes annual audits and PE sample analysis. Additionally, technical and QA/QC specifications that define requirements for the laboratory analysis and data package deliverables are incorporated into the laboratory's contract agreement. GE has contracted with a third party QA consultant to assist in administering the CPA.

8.3.1 Laboratory Audit Procedures

GE's CPA program for environmental laboratory services includes the performance of annual audits by a third party QA consultant. The third party QA consultant typically employs audit personnel with a minimum of three to five years experience with environmental laboratory operations and data validation following USEPA-approved methodologies.

Laboratory audits are a requirement of the GE CPA program. Laboratories that participate in the GE CPA program are audited on an annual basis. Each on-site audit is conducted by experienced audit personnel and consists of interviewing laboratory personnel and evaluating laboratory analysis, QA/QC, and documentation practices. The laboratory Quality Assurance Plan (QAP) and SOPs are obtained and reviewed prior to conducting each on-site audit.

The following general areas are evaluated during the laboratory audits:

- Organization and Personnel;
- Personnel Training;
- Laboratory Information Management Systems;
- Sample Bottleware Preparation;
- Sample Receipt and Storage;
- Waste Disposal Procedures;
- Sample Preparation (Organic and Inorganic);
- Sample Analysis Instrumentation and Procedures (Organic, Inorganic, and Wet Chemistry Parameters);
- Documentation;
- Data Package Preparation;
- Overall QC Procedures SOPs; and
- Data Handling and Reporting.

Audit personnel use comprehensive checklists that are proprietary to the QA consultant to assist in conducting the audit and to ensure consistency. In addition to the on-site audit, the latest scores from USEPA and/or State agencies' Performance Evaluation (PE) samples are evaluated. Building security (fire and break-in protection) is reviewed. The procedures outlined in the SOPs and the QAP are compared to the laboratory personnel responses provided during the on-site audit and to the documentation reviewed prior to and/or during the audit. Discrepancies among these areas are noted.

After completing the on-site audit, a confidential detailed report of the findings of the audit is prepared. The confidential audit report is owned by the laboratory, but made available to GE as a requirement of the CPA program.

Laboratories that do not participate in the GE CPA program that may be selected to provide analytical services as identified in the project-specific SOW documents will not be audited as part of GE's CPA program. Non-CPA program laboratories chosen for project-specific activities will be audited by their State certifying agency as a requirement of their annual certification program. These laboratories will provide to GE and/or a third party QA consultant, the results and subsequent response to audit findings from their most recent certifying agency audit prior to providing analytical services.

Laboratories participating in the GE CPA program are required to analyze single blind PE samples on an annual basis. The annual PE study is administered and evaluated by a third party QA consultant. The PE samples submitted to the laboratories are generated or obtained by the third party QA consultant. These samples contain chemical constituents that are representative of each major analytical methodology (e.g., PCBs, metals, volatiles, etc.). The results of the PE study are summarized by the third party QA consultant and are provided to the laboratories and/or GE.

8.3.2 Field Systems Audits

A field system audit is an evaluation of components of field QA/QC. The system audit compares scheduled QA/QC activities from this document with actual QA/QC activities completed. System audits will be performed at the frequency specified in the appropriate SOW document to confirm that work is being performed consistent with the specified QA/QC procedures.

8.3.2.1 Field Performance Audits

Field performance will be periodically monitored by the sampling team Field Manager and/or Overall QA/QC Coordinator. Field performance audit summaries will be included in field reports during periods of field activity and will contain an evaluation of field measurements and field meter calibrations to verify that measurements are taken according to established protocols. All field reports and the equipment and trip blank data will be reviewed to identify potential deficiencies in field sampling and cleaning procedures.

The Overall QA/QC Coordinator will ensure that field personnel have read appropriate sections of the FSP/QAPP prior to beginning field activities. Prior to beginning any new sampling activity (i.e., one not previously performed by the sampling contractor), the Overall QA/QC Coordinator or his designee will conduct a field audit at the onset of sampling. Periodic audits will also be made of routine sampling activities to determine field activity compliance with the procedures presented in the SOPs listed below.

Appendix A	- Soil Sampling Procedures for Analysis of Volatile Organic Compounds (VOCs)
Appendix B	- Soil Sampling Procedures for Analysis of Extractable Petroleum Hydrocarbons (EPH)/Volatile
	Petroleum Hydrocarbons (VPH)
Appendix C	- Soil Boring Installation and Soil Sampling Procedures
Appendix D	- Groundwater Purging and Sampling Procedures for Monitoring Wells
Appendix E	- Surface Water Sampling Procedures
Appendix F	- Sediment Sampling Procedures
Appendix G	- Dense Non-Aqueous Phase Liquid (DNAPL)/Light Non-Aqueous Phase Liquid (LNAPL)
	Sampling Procedures
Appendix H	- Biota Sampling Procedures
Appendix I	- Soil Gas Sampling Procedures
Appendix J	- Air Monitoring Procedures
	 Radioisotope Analysis of Cesium-137 and Beryllium-7 in Sediments
Appendix L	- Handling, Packaging, and Shipping Procedures
Appendix M	- Hazardous Materials Handling Procedures
	- Photoionization Detector Field Screening Procedures
Appendix O	- Temperature, Conductivity, pH, and Dissolved Oxygen Field Measurement Procedures
Appendix P	- In-Situ Hydraulic Conductivity Test Procedures
Appendix Q	- Water Level/Oil Thickness Measurement Procedures
Appendix R	- Passive Oil Recovery Procedures
Appendix S	- Monitoring Well Installation and Development Procedures
Appendix T	- Magnetometer Survey Procedures
Appendix U	- Seismic Refraction Survey Procedures
Appendix V	- Ground Penetrating Radar (GPR) Procedures
Appendix W	- Standard Operating Procedures for Equipment Cleaning

8.4 Corrective Actions

Corrective actions are procedures followed to ensure that conditions adverse to quality, such as malfunctions, deficiencies, deviations, and errors, are promptly investigated, documented, evaluated, and corrected. When a significant condition potentially adverse to quality is noted in the field, the cause of the condition will be determined and corrective action will be taken to preclude repeating the same condition. Condition identification and cause, along with the corrective action(s) to be taken, will be communicated to the GE Project Manager. Implementations of corrective action will be verified by the GE Project Manager and/or the Overall QA/QC Coordinator.

Corrective actions may be initiated, at a minimum, under the following conditions:

- Predetermined data acceptance standards are not attained;
- Procedures are performed incorrectly;
- Equipment or instrumentation is not in proper calibration or is not functioning properly;
- Samples and test results are not completely traceable;
- QA/QC requirements have not been met;
- New issues are discovered during system and performance audits; and
- Follow-up audits will confirm the continued implementation of the corrective action.

8.4.1 Sample Collection/Field Measurements

All project personnel will be responsible for identifying technical or QA non-conformance. If a potential problem is identified a decision will be made based on the potential for the situation to impact the quality of the data and the need for corrective action.

The Overall QA/QC Coordinator and Field Manager, in consultation with the GE Project Manager (and, for CD work, the Supervising Contractor), will be responsible for ensuring that corrective action (if necessary) for non-conformance is initiated.

Corrective action for field measurements may include the following:

- Evaluating all reported non-conformance;
- Controlling additional work on non-conforming items;
- Determining disposition or action to be taken;
- Ensuring that non-conformance reports are included in the final site documentation in project files;
- Repeat the measurement to check the error;
- Check for proper adjustments and/or calibration; or
- Replace the defective field equipment, if necessary.

8.4.2 Laboratory Analyses

The need for corrective actions will be evaluated whenever an "out-of-limits" event is noted. The investigative action taken is dependent on the analysis and the event. Laboratory personnel will be alerted that corrective actions may be necessary if:

- QC data are outside acceptable windows for precision and accuracy;
- Blanks contain target analytes above acceptable levels as prescribed in the analytical method;
- Undesirable trends are detected in spike recoveries or RPD between duplicates;
- There are unusual changes in detection limits;

- Deficiencies are detected during internal or external audits or from the results of performance evaluation samples; or
- Inquiries concerning data quality are received.

Corrective action procedures are often handled by the analyst, who reviews the preparation or extraction procedure for possible errors, checks the instrument calibration, spike and calibration mixes, instrument sensitivity, etc. If the problem persists or cannot be identified, the matter should be referred to the laboratory supervisor, manager, and/or QA department for further investigation. Once resolved, full documentation of the corrective action procedure is filed with the QA department. Corrective action may include:

- Reanalyzing the samples, if holding time criteria permits;
- Resampling and analyzing;
- Evaluating and amending sampling procedures;
- · Evaluating and amending analytical procedures; or
- Accepting data and acknowledging the level of uncertainty.

8.5 Preventative Maintenance

8.5.1 Field Instruments and Equipment

Prior to field sampling, each piece of field equipment will be inspected to assure that it is operational. If the equipment is not fully operational it will be serviced prior to use. Meters which require recharging or batteries will be fully charged or have fresh batteries installed. If instrument servicing is required, it is the responsibility of the appropriate task manager to follow the maintenance schedule and arrange for prompt service.

A logbook will be maintained for field equipment. The logbook contains records of operation, maintenance, and calibration.

Field equipment returned from the site will be inspected to confirm that it is in working order. This inspection will be recorded in the logbook. It is the obligation of the last user to record any equipment problems in the logbook. Non-operational field equipment will be either repaired or replaced. Appropriate spare parts will be maintained for field meters. Details regarding field equipment maintenance, operation, and calibration are provided in Appendix P of this plan.

8.5.2 Laboratory Instruments and Equipment

Laboratory instrument and equipment documentation procedures are provided in the laboratory SOPs. Documentation will include details of any observed problem(s), measures taken to correct the problem(s), routine maintenance, and instrument repair (which will include information regarding the repair and the individual who performed the repair).

Preventative maintenance of laboratory equipment generally will follow the guidelines recommended by the manufacturer. A malfunctioning instrument will be repaired immediately by in-house staff or through a service call from the manufacturer.

References

BLASLAND, BOUCK & LEE, INC. engineers & scientists

- APHA, AWWA, WPCF, Standard Methods for the Examination of Water and Waste Water, 19th edition. American Public Health Association (Washington, DC, 1995).
- USEPA, New England, Compendium of Quality Assurance Project Plan Requirements and Guidance, Final, October 1999.
- USEPA, New England, Compendium of Quality Assurance Project Plan Guidance, Draft, September 1998.
- USEPA, Quality Assurance Division, EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations, EPA QA/R-5, July 1998.
- USEPA, Office of Environmental Measurement and Evaluation, Region I, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analysis, July 1996 (Revised December 1996).
- USEPA, Office of Environmental Measurement and Evaluation, Region I, Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, Draft, December 1996.
- USEPA, Office of Research and Development, Guidance for the Preparation of Standard Operating Procedures (SOPs) for Quality-Related Documents, EPA QA/G-6, November 1995.
- USEPA, Office of Research and Development, Guidance for the Data Quality Objectives Process, EPA/G-4, September 1994.
- USEPA, Office of Environmental Measurement and Evaluation, Region I, Tiered Organic and Inorganic Data Validation Guidelines, July 1, 1993, Draft.
- USEPA, Office of Solid Waste and Emergency Response, *Test Methods for Evaluating Solid Waste*, SW-846 3rd ed., rev. 1 (Washington, DC, 1992).
- USEPA, Risk Reduction Engineering Laboratory, Preparing Perfect Project Plans, EPA 600/9-89-087, October 1989.
- USEPA, Office of Environmental Measurement and Evaluation, Region I, Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, June 13, 1988 (Modified February, 1989).
- USEPA, Office of Enforcement and Compliance Monitoring, *NEIC Policies and Procedures*, EPA 330/9-78-001-R, (Washington, DC, 1978, revised 1986).
- USEPA, EMSL-Cincinnati, Method for Chemical Analysis of Waters and Wastes, EPA-600/4-79-020 (Cincinnati, OH, 1983).

Tables

BLASLAND, BOUCK & LEE, INC. engineers & scientists

	Analytical	Extraction	Cleanup	Sample	Sample		
Parameter	Method	Method	Method	Container	Volume	Preservation ²	Maximum Holding Thme ³
AIR SAMPLES							
Particulates as PM10	See Appendix J	•	•		1	•	
PCBs (Aroclor-specific)	USEPA TO-4A (See Appendix J)		USEPA TO-4A	Polyurethane foam (PUF) cartridge	8- to 24-hour composite at 0.20-0.28 m ³ /minute with a minimum total volume of 300 m ³	Cool to 4°C	Extract within 7 days, analyzc within 40 days following extraction
WATER SAMPLES							
Volatile Organics	SW-846 Method 8260B	5030B Purge & Trap	ſ	Glass, Teflon lined, septum sealed screw cap	(2) 40-mL	4 drops concentrated Hydrochloric Acid, Cool to 4°C	14 days
Semi-Volatile Organics	SW-846 Method 8270C	3510C-Sep Funnel or 3520C-Continuous	3640-GPC 3660-Sulfur	Amber glass with Teflon lined cap	(2) 1 liter	Cool to 4°C	Extract within 7 days, analyze within 40 days following extraction
PCBs (Aroclor-specific)	SW-846 Method 8082	3510C-Sep Funnel or 3520C-Continuous	3620-Florisil 3665-Sulfuric Acid 3660-Sulfur	Amber glass with Teflon lined cap	(2) l liter	Cool to 4°C	Extract within 7 days, analyze within 40 days following extraction
Organochlorine Pesticides	SW-846 Method 8081A	3510C-Sep Funnel or 3520C-Continuous	3620-Florisil 3640-GPC 3660-Sulfur	Amber glass with Teflon lined cap	(2) 1 liter	Cool to 4°C	Extract within 7 days, analyze within 40 days following extraction
Organophosphorous Pesticides	SW-846 Method 8141A	3510C-Sep Funnel or 3520C-Continuous	3620-Florisil	Amber glass with Teflon lined cap	(2) 1 liter	Cool to 4°C	Extract within 7 days, analyze within 40 days following extraction
Chlorinated Herbicides	SW-846 Method 8151A	8151A-Sep Funnel or wrist shaker	8151A Potassium Hydroxide	Amber glass with Teflon lined cap	(2) 1 liter	Cool to 4°C	Extract within 7 days, analyze within 40 days following extraction
Dioxins/Furans	SW-846 Method 8290 or 8280A	8290 or 8280A Sep Funnel	Acid/Base Silica Gel Alumina Carbon	Amber glass with Teflon lined cap	(2) l liter	Cool to 4°C	Extract within 30 days, analyze within 45 days following extraction
Metals - except mercury	SW-846 Method 6010B/7000A	3005A or 3015 Acid Digestion	•	plastic	1 liter	adjust to pH <2 with Nitric Acid	6 months
Mercury	SW-846 Method 7470A	7470A Acid Digestion	•	plastic or glass	Analyze from metals bottle	adjust to pH <2 with Nitric Acid	28 days
Volatile Petroleum Hydrocarbons (VPH)	MDEP-VPH-98-1	MDEP-VPH-98-1 Purge & Trap		Glass, Teflon lined, septum sealed screw cap	(2) 40 mL	4 drops Hydrochloric Acid, Cool to 4°C	14 days
Extractable Petroleum Hydrocarbons (EPH)	MDEP-EPH-98-1	MDEP-EPH-98-1 Sep Funnel	MADEP-EPH-98-1 Silica Gel SPE ⁴	Amber glass with Teflon lined cap	(1) 1 liter		Extract within 14 days, analyze within 40 days following extraction
Cyanide	SW-846 Method 9014	9010B-Distillation		plastic or glass	(1) 1 liter	Adjust to pH>12 with NaOH, cool to 4°C	14 days
Sulfide	SW-846 Method 9034	9030B-Distillation		plastic or glass	(1) 1 liter	4 drops 2N Zínc Acetate/100mL sample, adjust	7 days
TSS/VSS	Standard Method 2540			plastic or glass	500 mL	Cool to 4°C	Begin analysis as soon as possible

ANALYTICAL METHODS, SAMPLE CONTAINER, PRESERVATION, AND HOLDING TIME REQUIREMENTS

	NIC	ΑΓΥ ΙΙΛΑΕ ΜΕΤΠΟΙ	DS, SAMFLE CUMIN	ANALY HOAL METHODS, SAMPLE CONTAINER, PRESERVATION, AND HOLDING TIME REQUIREMENTS		AE KEQUIKEMEN IS	
Parameter	Analytical Method	Extraction Method	Cleanup Method	Sample Container ¹	Sample Volume	Preservation ²	Maximum Holding Time ¹
WATER SAMPLES - CONTINUED	JED .						
Turbidity	Standard Method 2130	•	-	Plastic or glass, amber color preferred	100 mL	Light sensitive, store in dark, cool to 4°C	Begin analysis as soon as possible
Ammonia	EPA Method 350.1	,	-	plastic or glass	500 mL	Adjust to pH<2 with H ₂ SO ₄ , cool to 4°C	28 days
Nitrate	EPA Method 353.1 or 300.0	•	8	plastic or glass	100 mL	Adjust to pH<2 with H ₂ SO ₄ , cool to 4°C	48 hours
Nitrite	EPA Method 354.1 or 300.0			plastic or glass	100 mL	Cool to 4°C	48 hours
Total Kjeldahl Nitrogen	EPA Method 351.3	T	•	plastic or glass	1 liter	Adjust to pH<2 with H ₂ SO4, cool to 4°C	28 days
Ortho-phosphate (dissolved)	EPA Method 365.2	T	•	plastic or glass	100 mL	T	48 hours
BOD	EPA Method 405.1	•	Þ	plastic or glass	1 liter	Cool to 4°C	48 hours
COD	EPA Method 410.2	-		plastic or glass	250 mL	Adjust to pH<2 with H ₂ SO ₄ , cool to 4°C	28 days
TSS	EPA Method 160.2	,	ł	plastic or glass	1 liter	Cool to 4°C	7 days
TDS	EPA Method 160.1	•	•	plastic or glass	100 mL	Cool to 4°C	7 days
Hardness	EPA Method 130.2	•	P	plastic or glass	250 mL	Adjust to pH<2 with HNO ₃ , cool to 4°C	180 days
TOC	EPA Method 415.1	,		plastic or glass	100 mL	Adjust to pH<2 with HCL	28 days
SOIL/SEDIMENT SAMPLES							
Volatile Organics - Iow level	SW-846 Method 8260B	5035		Glass, Tefton lined, septum scaled screw cap	40 mL	In-field preservation with 0.2g sodium bisulfate per gram of sample, 5 mL organic free reagent water, cool to 4°C	14 days
				Wide mouth glass jar with Teflon-lined screw cap	125 mL (4 oz.)	Field preservation - Cool to 4°C. Upon receipt, laboratory	
				EnCore TM Sampler, SoilCore TM Sampler, or equivalent	3 (5 gram)	to preserve with 0.2g sodium bisulfate per gram of sample. 5mL organic free reagent water, cool to 4°C	Ship to laboratory within 48-hours, analyze within 14 days
Volatile Organics - medium level	SW-846 Method 8260B	5035	•	Glass, Teflon lincd, septum scaled screw cap	40 mL	1 mL methanol per gram of sample, cool to 4°C	14 days
		_		Wide mouth glass jar with Teflon-lined screw cap	125 mL (4 oz.)	Field preservation - Cool to	
				EnCore TM Sampler, SoilCore TM Sampler, or equivalent	5 gram	4°C. Upon receipt, laboratory to preserve with 1.0mL methanol per gram of sample	Ship to laboratory within 48-hours, analyze within 14 days

RVATION AND HOLDING TIME REOLITISEMENTS ANALYTICAL METHODS, SAMPLE CONTAINER, PRESE

Page 2 of 5

8/24/00

TABLE I

	Analytical	Extraction	Cleanup	Sample	Sample		
Parameter	Method	Method	Method	Container	Volume	Preservation ²	Maximum Holding Time ³
SOIL/SEDIMENT SAMPLES - CONTINUED	CONTINUED						
Semi-Volatile Organics	SW-846 Method 8270C	3550-Sonication or 3540-Soxhlet	3640-GPC 3660-Sulfur	Wide mouth glass jar with Teflon-lined screw cap	125 mL (4 oz.)	Cool to 4°C	Extract within 14 days, analyze within 40 days following extraction
PCBs (Aroclor-specific)	SW-846 Method 8082	3550-Sonication or 3540-Soxhlet	3620-Florisil 3665-Sulfuric Acid 3660-Sulfur	Wide mouth glass jar with Teflon-lined screw cap	125 mL (4 oz.)	Cool to 4°C	Extract within 14 days, analyze within 40 days following extraction
Organochlorine Pesticides	SW-846 Method 8081A	3550-Sonication or 3540-Soxhlet	3620-Florisil 3640-GPC 3660-Sulfur	Wide mouth glass jar with Teflon-lined screw cap	125 mL (4 oz.)	Cool to 4°C	Extract within 14 days, analyze within 40 days following extraction
Organophosphorous Pesticides	SW-846 Method 8141A	3550-Sonication or 3540-Soxhlet	3620-Florisil	Wide mouth glass jar with Teflon-lined screw cap	125 mL (4 oz.)	Cool to 4°C	Extract within 14 days, analyze within 40 days following extraction
Chlorinated Herbicides	SW-846 Method 8151A	8151A Sonication or Shaker	8151A Potassium Hydroxide	Wide mouth glass jar with Teflon-lined screw cap	125 mL (4 oz.)	Cool to 4°C	Extract within 14 days, analyze within 40 days following extraction
Dioxins/Furans	SW-846 Method 8290 or 8280A	8290 or 8280 Soxhlet/Dean Stark	Acid/Base Silica Gel Alumina Carbon	Widemouth amber glass jar with Teflon-lined screw cap	125 ml. (4 oz.)	Cool to 4°C	Extract within 30 days, analyze within 45 days following extraction
Metals - except mercury	SW-846 Method 6010B/7000A	3050B or 3051	•	plastic	500 mL (16 oz.)	Coal to 4°C	6 months
Mercury	SW-846 Method 7471A	SW-846 Method 7471A	•	glass or plastic	Analyze from metals jar	Cool to 4°C	28 days
Volatile Petroleum Hydrocarbons (VPH)	MADEP-VPH-98-1	MADEP-VPH-98-1 Purge & Trap	•	Glass, Teflon lined, septum sealed screw cap	2 (40 mL)	1 mL methanol per gram of soil, cool to 4°C	28 days
				EnCore TM Sampler, SoilCore TM Sampler, or cquivalent	15 gram	Cool to 4°C	Ship to laboratory within 48-hours, analyze within 28 days
Extractable Petroleum Hydrocarbons (EPH)	MADEP-EPH-98-1	MADEP-EP11-98-1 Sonication Soxhlet Soxtec	MADEP-EPH-98-1 Silica Gel SPE ⁴	Widemouth amber glass jar with Teflon-lined screw cap	125 mL (4 oz.)	Cool to 4°C	Extract within 7 days, analyze within 40 days of extraction
Cyanide	SW-846 Method 9014 or 9012	9013-NaOH, 9010B-Distillation, or		plastic or glass	Analyze from metals jar	Cool to 4°C	14 days
Sulfide	SW-846 Method 9034	9030B-Distillation		plastic or glass	500 mL (16 oz.)	Fill surface with 2N Zinc 500 mL (16 oz.) Acetate till moistened, cool to 4°C, store headspace free	l4 days

ANALYTICAL METHODS, SAMPLE CONTAINER, PRESERVATION, AND HOLDING TIME REQUIREMENTS

Parameter	Analytical Method	Extraction Method	Cleansp Methad	Sample Container ¹	Sample Volume	Preservation ²	Maximum Helding Time ³
SOILSEDIMENT SAMPLES - CONTINUED	CONTINUED						
Oil and Grease	SW-846 Method 9071A	9071A-Soxhlet	•	Widemouth glass jar with Teflon liner	125 mL (4 oz.)	Cool to 4°C	28 days
Cesium-137/Beryllium-7	SOP Appendix X	•	,	Widemouth glass jar with Teflon liner	125 mL (4 oz.)	Cool to 4°C	Ϋ́Ν
BIOTA SAMPLES							
PCBs (Aroclor-specific)-MA	SOP Appendix H	3540-Soxhlet	3620-Florisil 3665-Sulfuric Acid 3660-Sulfur	Wrap with aluminum foil and freezer paper	20 grams	Cool to 4°C, store at laboratory at -20°C	6 months
PCBs (Aroclor- and congener- specific) - CT	SOP Appendix H. Attachment H-2						
Dioxins/Furans	SW-846 Method 8290 or 8280A	8290 or 8280A Soxhlet/Dean Stark	Acid/Base Silica Gel Alumina Carbon	Wrap with aluminum foil and freezer paper	50 grams	Cool to 4°C, store at laboratory at -20°C	Cool to 4°C. store at laboratory Extract within 30 days, analyze within 45 days at -20°C
Lipíd Content	SOP Appendix H	•	•	Wrap with aluminum foil and freezer paper	20 grams	Cool to 4°C, store at laboratory at -20°C	6 months
LNAPL/DNAPL SAMPLES							
Volatile Organics	SW-846 Method 8260B	5030B Purge & Trap	•	Widemouth glass jar with Teflon liner	40 mL	Cool to 4°C	14 days
Semi-Volatile Organics	SW-846 Method 8270C	3580A Waste Dilution	I	Widemouth glass jar with Teflon liner	125 mL (4 oz.)	Cool to 4°C	Extract within 14 days, analyze within 40 days following extraction
PCBs (Aroclor-specific)	SW-846 Method 8082	3580A Waste Dilution	3620-Florisil 3665-Sulfuric Acid 3660-Sulfur	Widemouth glass jar with Teflon liner	125 mL (4 oz.)	Cool to 4°C	Extract within 14 days, analyze within 40 days following extraction
Organochlorine Pesticides	SW-846 Method 8081	3580A W∎ste Dilution	3620-Florisil 3640-GPC 3660-Sulfur	Widemouth glass jar with Teflon liner	125 mL (4 oz.)	Cool to 4°C	Extract within 14 days, analyze within 40 days following extraction
Organophosphorous Pesticides	SW-846 Method 8141A	3580A Waste Dilution	3620-Florisil	Widemouth glass jar with Teflon liner	125 mL (4 oz.)	Cool to 4°C	Extract within 14 days, analyze within 40 days following extraction
Chlorinated Herbicides	SW-846 Method 8151A	8151A-Sep Funnel or wrist shaker	8151A Potassium Hydroxide	Widemouth glass jar with Teflon lincr	125 mL (4 oz.)	Cool to 4°C	Extract within 14 days, analyze within 40 days following extraction
Dioxins/Furans	SW-846 Method 8280A	8280A Sep Funnel	Acid/Base Silica Gel Alumina Carbon	Widemouth amber glass jar with Teflon-lined screw cap	125 mL (4 oz.)	Cool to 4°C	Extract within 30 days, analyze within 45 days following extraction
Metals - except mercury	SW-846 Method 6010B/7000A	3050B Acid Digestion	1	plastic	125 mL (4 oz.)	Cool to 4°C	6 months

ANALYTICAL METHODS, SAMPLE CONTAINER, PRESERVATION, AND HOLDING TIME REQUIREMENTS

_
Ē
LAB
-

	Analytical	Extraction	Cleanup	Sample	Sample		
Parameter	Method	Method	Method	Container	Volume	Preservation ²	Maximum Holding Time ³
LUAPL/DNAPL SAMPLES - CONTINUED	NTINUED						
Mercury	SW-846 Method 7471A	7471A Acid Digestion	,	plastic or glass	Analyze from metals jar	Cool to 4°C	28 days
Cyanide	SW-846 Method 9014	9010B-Distillation	,	plastic or glass	Analyze from metals jar	Cool to 4°C	14 days
Sulfide	SW-846 Method 9034	9030B-Distillation		plastic or glass	125 mL (4 oz.)	Cool to 4°C	7 days
TCLP FOR SOIL AND DEBRIS							
Volatile Organics	SW-846 Method 8260B	followed by 5030B Purge & Trap	ı	Wide mouth glass jar with Teflon-lined screw cap	125 mL (4 oz.)	Cool to 4°C	TCLP Method 1311 within 14 days, analyze within 14 days following 1311
Semi-Volatile Organics	SW-846 Method 8270C	TCLP Method 1311 followed by 3510C- Sep Funnel or 3520C- Continuous	3640-GPC 3660-Sulfur	Wide mouth glass jar with Teflon-lined screw cap	125 mL (4 oz.)	Cool to 4°C	TCLP Method 1311 within 14 days. preparative extraction within 7 days following 1311, analyze within 40 days following preparative extraction
Metals - except mercury	SW-846 Method 6010B/7000A	TCLP Method 1311 followed by 3005A or 3015 Acid Digestion	1	plastic	500 mL (16 oz.)	Coal to 4°C	TCLP Method 1311 within 6 months, analyze within 6 months following 1311
Mercury	SW-846 Method 7470A	TCLP Method 1311 followed by 7470A Acid Digestion	ı	glass or plastic	Analyze from metals jar	Cool to 4°C	TCLP Method 1311 within 28 days, analyze within 28 days following 1311

ANALYTICAL METHODS, SAMPLE CONTAINER, PRESERVATION, AND HOLDING TIME REQUIREMENTS

References.

,

USEPA (January, 1996) Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Rev. 3. USEPA TO-4A, Determination of Pesticides and Polychlorinated Biphenyls in Ambient Air Using High Volume Polyurethane Foam (PUF) Sampling Followed by Gass Chromatographic/Multi-Detector Detection (GC/MD), Second Edition, January 1999 APHA, AWWA, WCF (1985). Standard Methods for the Examination of Water and Wastewater, 18th ed. USEPA (1983). Methods for Chemical Analysis of Water and Wastewater, 18th ed. MDEP, Method for the Determination of Volatile Petroleum Hydrocarbons (FPH), January 1998 MDEP, Method for the Determination of Extractable Petroleum Hydrocarbons (FPH), January 1998

Notes:

- ¹ Sample container will be new, precleaned, and certified by manufacturer.
 - ² Whenever possible, pre-preserved bottles will be used.
- ³ Holding time measured from date of collection, unless noted.
 - ⁴ Silica Gel Solid Phase Extraction/Fractionization cartridge

LISTING OF APPENDIX IX + 3 AND TCLP CONSTITUENTS

APPENDIX IX + 3 ANALYTES

SEMIVOLATILE COMPOUNDS BY 8270C

Analyte	CAS No.	Analyte	CAS No.
Acenaphthene	83-32-9	Fluoranthene	206-44-0
Acenaphthylene	208-96-8	Fluorene	206-44-0 86-73-7
Acetophenone	98-86-2	Hexachlorobenzene	
2-Acetylaminofluorene	53-96-3	Hexachlorobutadiene	118-74-1 87-68-3
4-Aminobiphenyl	92-67-1		
Aniline	62-53-3	Hexachlorocyclopentadiene Hexachloroethane	77-47-4
Anthracene	120-12-7		67-72-1
Aramite	140-57-8	Hexachlorophene	70-30-4
Benzidine		Hexachloropropene	1888-71-7
	92-87-5	Indeno(1,2,3-cd)pyrene Isodrin	193-39-5
Benzo(a)anthracene	56-55-3		465-73-6
Benzo(a)pyrene	50-32-8	Isophorone	78-59-1
Benzo(b)fluoranthene	205-99-2	Isosafrole	120-58-1
Benzo(g,h,i)perylene	191-24-2	Methapyrilene	91-80-5
Benzo(k)fluoranthene	207-08-9	Methyl methanesulfonate	66-27-3
Benzyl Alcohol	100-51-6	3-Methylcholanthrene	56-49-5
bis(2-chloro-1-methylethyl)ether	108-60-1	2-Methylnaphthalene	91-57-6
bis(2-chloroethoxy)methane	111-91-1	Naphthalene	91-20-3
bis(2-chloroethyl)ether	111-44-4	1,4-Naphthoquinone	130-15-4
bis(2-ethylhexyl)phthalate	117-81-7	1-Naphthylamine	134-32-7
4-Bromophenyl phenyl ether	101-55-3	2-Naphthylamine	91-59-8
Butyl benzyl phthalate	85-68-7	5-Nitro-o-toluidine	99-55-8
p-Chloro-m-cresol	59-50-7	m-Nitroaniline	99-09-2
p-Chloroaniline	106-47-8	o-Nitroaniline	88-74-4
Chlorobenzilate	510-15-6	p-Nitroaniline	100-01-6
2-Chloronaphthalene	91-58-7	Nitrobenzene	98-95-3
2-Chlorophenol	95-57-8	o-Nitrophenol	88-75-5
4-Chlorophenyl-phenylether	7005-72-3	p-Nitrophenol	100-02-7
Chrysene	218-01-9	4-Nitroquinoline-1-oxide	56-57-5
m-Cresol	108-39-4	N-Nitrosodi-n-butylamine	924-16-3
o-Cresol	95-48-7	N-Nitrosodi-n-propylamine	621-64-7
p-Cresol	106-44-5	N-Nitrosodiethylamine	55-18-5
Di-n-butylphthalate	84-74-2	N-Nitrosodimethylamine	62-75-9
Di-n-octylphthalate	117-84-0	N-Nitrosodiphenylamine	86-30-6
Diallate	2303-16-4	N-Nitrosomethylethylamine	10595-95-6
Dibenz(a,h)anthracene	53-70-3	N-Nitrosomorpholine	59-89-2
Dibenzofuran	132-64-9	N-Nitrosopiperidine	100-75-4
m-Dichlorobenzene	541-73-1	N-Nitrosopyrrolidine	930-55-2
o-Dichlorobenzene	95-50-1	Pentachlorobenzene	608-93-5
p-Dichlorobenzene	106-46-7	Pentachloroethane	76-01-7
3,3'-Dichlorobenzidine	91-94-1	Pentachloronitrobenzene	82-68-8
2,4-Dichlorophenol	120-83-2	Pentachlorophenol	87-86-5
2,6-Dichlorophenol	87-65-0	Phenacetin	62-44-2
Diethyl phthalate	84-66-2	Phenanthrene	85-01-8
O,O-Diethyl-O-2-pyrazinyl phosphorothioate	297-97-2	Phenol	108-95-2
Dimethyl phthalate	131-11-3	p-Phenylenediamine	106-50-3
p-(Dimethylamino)azobenzene	60-11-7	2-Picoline	109-06-8
7,12-Dimethylbenz(a)anthracene	57-97-6	Pronamide	23950-58-5
3,3'-Dimethylbenzidine	119-93-7	Pyrene	129-00-0
a,a-Dimethylphenethylamine	122-09-8	Pyridine	110-86-1
2,4-Dimethylphenol	105-67-9	Safrole	94-59-7
4,6-Dinitro-o-cresol	534-52-1	1,2,4,5-Tetrachlorobenzene	95-94-3
m-Dinitrobenzene	99-65-0	2,3.4,6-Tetrachlorophenol	58-90-2
2,4-Dinitrophenol	51-28-5	o-Toluidine	95-53-4
2,4-Dinitrotoluene	121-14-2	1,2,4-Trichlorobenzene	120-82-1
	1 1 1	1,2,	120-02-1

-

LISTING OF APPENDIX IX + 3 AND TCLP CONSTITUENTS

APPENDIX IX + 3 ANALYTES

SEMIVOLATILE COMPOUNDS BY 8270C (continued)

2,6-Dinitrotoluene	606-20-2	2,4,5-Trichlorophenol	95-95-4
Diphenylamine	122-39-4	2,4,6-Trichlorophenol	88-06-2
1,2-Diphenylhydrazine	122-66-7	o,o,o-Triethyl phosphorothioate	126-68-1
Ethyl Methanesulfonate	62-50-0	sym-Trinitrobenzene	99-35-4

VOLATILE COMPOUNDS BY 8260B

Analyte	CAS No.	Analyte	CAS No.
Acetone	67-64-1	Ethyl Methacrylate	97-63-2
Acetonitrile	75-05-8	Ethylbenzene	100-41-4
Acrolein	107-02-8	2-Hexanone	591-78-6
Acrylonitrile	107-13-1	Isobutyl Alcohol	78-83-1
Allyl Chloride	107-05-1	Methacrylonitrile	126-98-7
Benzene	71-43-2	Methyl Bromide	74-83-9
Bromodichloromethane	75-27-4	Methyl Chloride	74-87-3
Bromoform	75-25-2	Methyl Ethyl Ketone	78-93-3
Carbon Disulfide	75-15-0	Methyl Iodide	74-88-4
Carbon Tetrachloride	56-23-5	Methyl Methacrylate	80-62-6
Chlorobenzene	108-90-7	4-Methyl-2-pentanone	108-10-1
Chloroethane	75-00-3	Methylene Bromide	74-95-3
2-Chloroethylvinylether	110-75-8	Methylene Chloride	75-09-2
Chloroform	67-66-3	Propionitrile	107-12-0
Chloroprene	126-99-8	Styrene	100-42-5
1,2-Dibromo-3-chloropropane	96-12-8	1,1,1,2-Tetrachloroethane	630-20-6
Dibromochloromethane	124-48-1	1,1,2,2-Tetrachloroethane	79-34-5
1,2-Dibromoethane	106-93-4	Tetrachloroethene	127-18-4
trans-1,4-Dichloro-2-butene	110-57-6	Toluene	108-88-3
Dichlorodifluoromethane	75-71-8	1,1,1-Trichloroethane	71-55-6
1,1-Dichloroethane	75-34-3	1,1,2-Trichloroethane	79-00-5
1,2-Dichloroethane	107-06-2	Trichloroethene	79-01-6
1,1-Dichloroethene	75-35-4	Trichlorofluoromethane	75-69-4
trans-1,2-Dichloroethene	156-60-5	1,2,3-Trichloropropane	96-18-4
1,2-Dichloropropane	78-87-5	Vinyl Acetate	108-05-4
cis-1,3-Dichloropropene	10061-01-5	Vinyl Chloride	75-01-4
trans-1,3-Dichloropropene	10061-02-6	Xylene	1330-20-7
1,4-Dioxane	123-91-1		

ORGANOCHLORINE PESTICIDES BY 8081A

Analyte	CAS No.	Analyte	CAS No.
Aldrin	309-00-2	Endosulfan I	959-98-8
Alpha-BHC	319-84-6	Endosulfan II	33213-65-9
Beta-BHC	319-85-7	Endosulfan sulfate	1031-07-8
Delta-BHC	319-86-8	Endrin	72-20-8
Gamma-BHC (Lindane)	58-89-9	Endrin aldehyde	7421-93-4
Chlordane	57-74-9	Endrin ketone	53494-70-5
Alpha-chlordane	5103-71-9	Heptachlor	76-44-8
Gamma-chlordane	5103-74-2	Heptachlor epoxide	1024-57-3
4,4'-DDD	72-54-8	Kepone	143-50-0
4,4'-DDE	72-55-9	Methoxychlor	72-43-5
4,4'-DDT	50-29-3	Toxaphene	8001-35-2
Dieldrin	60-57-1	-	

LISTING OF APPENDIX IX + 3 AND TCLP CONSTITUENTS

APPENDIX IX + 3 ANALYTES

AROCLORS BY 8082

Analyte	CAS No.	Analyte	<u>CAS No.</u>
Arocior-1016	12674-11-2	Aroclor-1248	12672-29-6
Aroclor-1221	11104-28-2	Aroclor-1254	11097-69-1
Aroclor-1232	11141-16-5	Aroclor-1260	11096-82-5
Aroclor-1242	53469-21-9		

HERBICIDES BY 8151A

Analyte	CAS No.	Analyte	CAS No.
2,4-D	94-75-4	2,4,5-T	93-76-5
Dinoseb	88-85-7	2,4,5-TP (Silvex)	93-72-1

ORGANOPHOSPHATE PESTICIDES BY 8141A OR 8270

Analyte	CAS No.	Analyte	CAS No.
Dimethoate	60-51-5	Parathion	56-38-2
Disulfoton	298-04-4	Phorate	298-02-2
Famphur	52-85-7	Sulfotepp	3689-24-5
Methyl Parathion	298-00-0		

INORGANICS BY 6010B/7000A. 9010B. 9030B

Analyte	CAS No.	Analyte	<u>CAS No.</u>
Antimony	7440-36-0	Mercury	7439-97-6
Arsenic	7440-38-2	Nickel	7440-02-0
Barium	7440-39-3	Selenium	7782-49-2
Beryllium	7440-41-7	Silver	7440-22-4
Cadmium	7440-43-9	Sulfide	18496-25-8
Chromium	7440-47-3	Thallium	7440-28-0
Cobalt	7440-48-4	Tin	7440-31-5
Copper	7440-50-8	Vanadium	7440-62-2
Cyanide	57-12-5	Zinc	7440-66-6
Lead	7439-92-1		

DIOXIN/FURANS BY 8280A OR 8290

Analyte	CAS No.	Analyte	CAS No.
1,2,3,4,6,7,8-HpCDD	35822-46-9	HxCDFs (total)	55684-94-1
HpCDDs (total)	37871-00-4	1,2,3,7,8-PeCDD	40321-76-4
1,2,3,4,7,8,9-HpCDF	55673-89-7	PeCDDs (total)	36088-22-9
1,2,3,4,6,7,8-HpCDF	67562-39-4	1,2,3,7,8-PeCDF	57117-41-6
HpCDFs (total)	38998-75-3	2,3,4,7,8-PeCDF	57117-31-4
1,2,3,4,7,8-HxCDD	39227-28-6	PeCDFs (total)	30402-15-4
1,2,3.6,7,8-HxCDD	57653-85-7	2,3,7,8-TCDD	1746-01-6
1,2,3,7,8,9-HxCDD	19408-74-3	TCDDs (total)	41903-57-5
HxCDDs (total)	34465-46-8	2,3,7,8-TCDF	51207-31-9
1,2,3,4,7,8-HxCDF	70648-26-9	TCDFs (total)	55722-27-5
1,2,3,6,7,8-HxCDF	57117-44-9	OCDD	3268-87-9
1,2,3,7,8,9-HxCDF	72918-21-9	OCDF	39001-02-0
2,3,4,6,7,8-HxCDF	60851-34-5		

.

LISTING OF APPENDIX IX + 3 AND TCLP CONSTITUENTS

TCLP ANALYTES

SEMIVOLATILE COMPOUNDS BY 8270C - TCLP

Analyte	CAS No.	Analyte	CAS No.
m-Cresol	108-39-4	Hexachloroethane	67-72-1
o-Cresol	95-48-7	Nitrobenzene	98-95-3
p-Cresol	106-44-5	Pentachlorophenol	87-86-5
2,4-Dinitrotoluene	121-14-2	Pyridine	110-86-1
Hexachlorobenzene	118-74-1	2,4,5-Trichlorophenol	95-95-4
Hexachlorobutadiene	87-68-3	2,4,6-Trichlorophenol	88-06-2

VOLATILE COMPOUNDS BY 8260B - TCLP

Analyte	CAS No.	Analyte	CAS No.
Benzene	71-43-2	1,1-Dichloroethene	75-35-4
Carbon Tetrachloride	56-23-5	Methyl Ethyl Ketone	78-93-3
Chlorobenzene	108-90-7	Tetrachloroethene	127-18-4
Chloroform	67-66-3	Trichloroethene	79-01-6
p-Dichlorobenzene	106-46-7	Vinyl Chloride	75-01-4
1,2-Dichloroethane	107-06-2		

ORGANOCHLORINE PESTICIDES BY 8081A - TCLP

Analyte	CAS No.	Analyte	CAS No.
Gamma-BHC (Lindane)	58-89-9	Heptachlor epoxide	1024-57-3
Chlordane	57-74-9	Methoxychlor	72-43-5
Endrin	72-20-8	Toxaphene	8001-35-2
Heptachlor	76-44-8	-	

HERBICIDES BY 8151A - TCLP

Analyte	CAS No.	Analyte	CAS No.
2,4-D	94-75-4	2,4,5-TP (Silvex)	93-72-1

INORGANICS BY 6010B/7000A. 9010B. 9030B - TCLP

Analyte	CAS No.	Analyte	CAS No.
Arsenic	7440-38-2	Lead	7439-92-1
Barium	7440-39-3	Mercury	7439-97-6
Cadmium	7440-43-9	Selenium	7782-49-2
Chromium	7440-47-3	Silver	7440-22-4

Notes:

- This list summarizes the compounds by fraction which are analyzed in accordance with Appendix IX of 40 CFR Part 264, plus three additional constituents (benzidine, 2-Chloroethylvinylether, and 1,2-diphenylhydrazine), hereafter referred to as Appendix IX+3.
- 2) Laboratories may be subject to instrumentation limitations that will preclude their ability to analyze select compounds from the Appendix IX+3 list. Therefore, individual laboratories may be unable to report results for all constituents presented above.

ŝ	
Ŧ	
1	
m H	
2	

		Water (ug/L)		Soil	Soil/Sediment (ug/Kg) ¹	Kg) ¹		Biota (ug/Kg)		TCLP (me/L) ²
Spike/Surrogate Compound	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporti ng Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³
Volatiles										
Acetone	10	9.7	10	20 / 2000	3.09	20 / 2000	NA	٩N	AN	NA
Acetonitrile	001	2.2	100	100 / 10000	14.90	100 / 10000	NA	NA	NA	NA
Acrolein	100	3.3	100	100 / 10000	24.84	100 / 10000	NA	NA	NA	NA
Acrylonitrile	5.0	2.2	5.0	5.0 / 500	3.10	5.0 / 500	NA	NA	NA	NA
Benzene	5.0	0.1	5.0	5.0 / 500	0.60	5.0 / 500	AN	AN	NA	500
Bromodichloromethane	5.0	0.1	5.0	5.0 / 500	0.44	5.0 / 500	NA	NA	NA	NA
Вготоботт	5.0	0.2	5.0	5.0 / 500	0.45	5.0 / 500	NA	NA	NA	NA
Bromomethane	2.0	0.2	2.0	5.0 / 500	1.95	5.0 / 500	AN	NA	NA	NA
Carbon Disulfide	5.0	0.2	5.0	5.0 / 500	2.20	5.0 / 500	NA	NA	ΝA	NA
Carbon Tetrachloride	5.0	0.1	5.0	5.0 / 500	1.00	5.0 / 500	AN	٩N	AN	500
Chlorobenzene	5.0	0.2	5.0	5.0 / 500	0.62	5.0 / 500	AN	AN	NA	100000
Chloroethane	5.0	0.4	5.0	5.0 / 500	1.48	5.0 / 500	AN	AN	NA	NA
Chloroform	5.0	0.2	5.0	5.0 / 500	1.10	5.0 / 500	NA	NA	NA	9009
Chloromethane	5.0	0.3	5.0	5.0 / 500	1.79	5.0 / 500	NA	NA	NA	NA
cis-1,3-Dichloropropene	5.0	0.1	5.0	5.0 / 500	0.66	5.0 / 500	NA	NA	NA	NA
Dibromochloromethane	5.0	0.2	5.0	5.0 / 500	0.70	5.0 / 500	NA	NA	NA	NA
Dibromomethane	5.0	0.3	5.0	5.0 / 500	0.85	5.0 / 500	٨A	NA	NA	NA
Dichlorodifluoromethane	5.0	0.2	5.0	5.0 / 500	1.66	5.0 / 500	NA	NA	NA	NA
Ethyl Methacrylate	5.0	0.1	5.0	5.0 / 500	1.15	5.0 / 500	NA	NA	NA	NA
Ethylbenzene	5.0	0.1	5.0	5.0 / 500	0.54	5.0 / 500	NA	NA	NA	NA
Iodomethane	5.0	0.1	5.0	5.0 / 500	2.24	5.0 / 500	NA	NA	NA	NA
Isobutanol	100	11	100	100 / 10000	31.19	100 / 10000	AN	NA	NA	AN
Methacrylonitrile	5.0	0.1	5.0	5.0 / 500	0.94	5.0 / 500	NA	NA	NA	NA
Methyl Methacrylate	5.0	0.9	5.0	5.0 / 500	2.26	5.0 / 500	NA	NA	NA	NA
Methylene Chloride	5.0	0.3	5.0	5.0 / 500	1.11	5.0 / 500	NA	NA	NA	NA
Propionitrile	10	5.1	10	10 / 1000	5.39	10 / 1000	NA	NA	NA	NA
Styrene	5.0	0.1	5.0	5.0 / 500	0.72	5.0 / 500	NA	NA	NA	NA
Tetrachioroethene	2.0	0.2	2.0	5.0 / 500	1.18	5.0 / 500	AN	NA	NA	NA
Toluene	5.0	0.2	5.0	5.0 / 500	0.62	5.0 / 500	NA	NA	NA	NA
trans-1,2-Dichloroethene	5.0	0.2	5.0	5.0 / 500	1.29	5.0 / 500	NA	NA	NA	NA
trans-1,3-Dichloropropene	5.0	0.2	5.0	5.0 / 500	0.39	5.0 / 500	NA	NA	NA	NA
trans-1,4-Dichloro-2-butene	5.0	1.1	5.0	5.0 / 500	1.27	5.0 / 500	NA	NA	NA	NA
Trichloroethene	5.0	0.2	5.0	5.0 / 500	0.52	5.0 / 500	NA	NA	NA	500
Trichlorofluoromethane	5.0	0.2	5.0	5.0 / 500	2.20	5.0 / 500	NA	NA	NA	NA
Vinyl Acetate	5.0	0.3	5.0	5.0 / 500	1.04	5.0 / 500	NA	NA	NA	NA
Vinyl Chloride	2.0	0.1	2.0	5.0 / 1000	1.38	5.0 / 1000	NA	NA	NA	200

TYPICAL REPORTING LIMITS, METHOD DETECTION LIMITS (MDLs), AND PRACTICAL QUANTITATION LIMITS (PQLs)

ŝ	
E.	
H	
P	
F	

		Water (ug/L)		Soil	Soil/Sediment (ug/Kg) ¹	Kg) ¹		Biota (ug/Kg)		TCLP (ng/L) ²
. Spike/Surrogate Compound	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit
Volatiles										
Xylenes (total)	5.0	0.2	5.0	5.0 / 500	1.68	5.0 / 500	NA	NA	AN	AN
1, 1, 1, 2-Tetrachloroethane	5.0	0.2	5.0	5.0 / 500	0.66	5.0 / 500	NA	NA	AN	AN
I, I, I-Trichloroethane	5.0	0.2	5.0	5.0 / 500	0.97	5.0 / 500	NA	NA	NA	AN
I, I, 2, 2-Tetrachloroethane	5.0	0.1	5.0	5.0 / 500	0.62	5.0 / 500	AN	NA	NA	AN
1,2-Trichloroethane	5.0	0.1	5.0	5.0 / 500	0.53	5.0 / 500	AN	NA	NA	NA
, I-Dichloroethane	5.0	0.2	5.0	5.0 / 500	0.72	5.0 / 500	NA	NA	NA	AN
, I - Dichloroethene	5.0	0.2	5.0	5.0 / 500	1.35	5.0 / 500	VN	NA	AN	700
,2,3-Trichloropropane	5.0	0.4	5.0	5.0 / 500	1.09	5.0 / 500	AN	NA	NA	AN
,2-Dibromo-3-chloropropane	5.0	0.7	5.0	5.0 / 500	2.38	5.0 / 500	AN	AN	AN	AN
,2-Dibromoethane	1.0	0.1	1.0	5.0 / 500	0.68	5.0 / 500	NA	NA	AN	AN
,2-Dichloroethane	5.0	0.2	5.0	5.0 / 500	1.06	5.0 / 500	NA	NA	NA	500
,2-Dichloropropane	5.0	0.3	5.0	5.0 / 500	0.59	5.0 / 500	NA	AN	NA	AN
l,4-Dioxane	200	85	200	100 / 10000	38.83	100 / 10000	NA	NA	NA	NA
2-Butanone	10	8.5	10		7.02	10 / 1000	NA	NA	NA	200000
2-Chloro-1,3-butadiene	5.0	0.8	5.0	5.0 / 500	2.50	5.0 / 500	NA	NA	NA	NA
2-Chloroethylvinylether	5.0	1.1	5.0	5.0 / 500	1.75	5.0 / 500	NA	NA	NA	NA
2-Hexanone	10	9.7	0		3.45	10 / 1000	٩N	NA	NA	NA
3-Chloropropene	5.0	0.2	5.0	5.0 / 500	0.83	5.0 / 500	NA	NA	NA	NA
4-Methyl-2-pentanone	10	1.5	10	10 / 1000	2.23	10 / 1000	NA	NA	NA	NA
Semivolatiles										
a,a'-Dimethylphenethylamine	10	0.86	10	670	90.75	670	٧N	NA	NA	NA
Acenaphthene	10	0.97	10	330	32.01	330	NA	NA	NA	NA
Acenaphthylene	0	0.85	10	330	28.05	330	NA	NA	NA	NA
Acetophenone	10	3.55	10	330	117.15	330	NA	NA	NA	AN
Aniline	10	0.87	10	330	28.71	330	NA	NA	NA	NA
Anthracene	10	0.92	10	330	30.36	330	NA	NA	NA	NA
Aramite	10	2.93	10	670	96.69	670	NA	NA	NA	NA
Benzidine	20	1.48	20	670	48.84	670	AN	NA	NA	NA
Benzo(a)anthracene	10	0.91	10	330	30.03	330	NA	NA	NA	NA
Benzo(a)pyrene	10	0.63	10	330	20.79	330	NA	NA	NA	NA
Benzo(b)fluoranthene	10	0.74	10	330	24.42	330	NA	NA	NA	AN
Benzo(g,h,i)perylene	10	0.63	10	330	20.79	330	NA	NA	NA	NA
Benzo(k)fluoranthene	10	1.32	10	330	43.56	330	NA	NA	NA	NA
Benzyl Alcohol	20	1.56	20	670	51.48	670	NA	NA	NA	NA
bis(2-Chloroethoxy)methane	10	1.24	10	330	40.92	330	NA	NA	NA	NA
bis(2-Chloroethyl)ether	10	1.36	10	330	44.88	330	٩N	NA	NA	NA

TYPICAL REPORTING LIMITS, METHOD DETECTION LIMITS (MDLs), AND PRACTICAL QUANTITATION LIMITS (PQLs)

~	
1	l
-	l
9	ļ
_<	
F	

		Water (ug/L)		Soil	Soil/Sediment (#g/Kg) ¹	(g) ¹		Biota (eg/Kg)		TCLP (ng/L) ²
Spike/Sarrogate Compound	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³	Laborátory MDL	Laboratory PQL	Reporting Limit ³
Semivolatiles										
bis(2-Chloroisopropyl)ether	10	1.41	10	330	46.53	330	NA	NA	٩N	AN
bis(2-Ethylhexyl)phthalate	6.0	0.36	6.0	330	11.88	330	NA	NA	AN	NA
Butylbenzylphthalate	10	0.6	10	330	19.80	330	NA	NA	AN	AN
Chrysene	10	0.86	10	330	28.38	330	NA	NA	AN	NA
Diallate	10	3.8	10	670	125.40	670	NA	AN	AN	NA
Dibenzo(a,h)anthracene	10	0.93	10	330	30.69	330	NA	NA	NA	NA
Dibenzofuran	10	1.25	10	330	41.25	330	AN	AN	AN	NA
Diethylphthalate	01	0.76	01	330	25.08	330	NA	NA	NA	NA
Dimethylphthalate	10	0.62	10	330	20.46	330	NA	NA	٩N	AN
Di-n-Butylphthalate	10	0.36	10	330	11.88	330	NA	NA	AN	AN
Di-n-Octylphthalate	10	0.62	10	330	20.46	330	NA	NA	NA	AN
Diphenylamine	10	0.68	10	330	22.11	330	٨A	NA	NA	NA
Ethyl Methanesulfonate	10	3.05	10	330	100.65	330	NA	NA	NA	NA
Fluoranthene	10	2.98	10	330	16.83	330	NA	NA	NA	AN
Fluorene	10	101	10	330	33.33	330	NA	NA	NA	NA
Hexachlorobenzene	10	1.36	01	330	44.88	330	٨A	NA	NA	130
Hexachlorobutadiene	10	1.68	10	330	55.44	330	NA	NA	NA	500
Hexachlorocyclopentadiene	10	1.59	10	330	52.47	330	AN	AN	ΑN	AN
Hexachloroethane	10	1.45	10	330	47.85	330	NA	NA	AN	3000
Hexachlorophene	10	1.93	10	670	63.76	670	۷N	AN	AN	NA
Hexachloropropene	10	2.14	10	330	70.62	330	AN	NA	AN	AN
Indeno(1,2,3-cd)pyrene	0	0.95	10	330	31.55	330	AN	NA	NA	NA
sodrin	10	4.14	10	330	136.62	330	NA	NA	NA	NA
sophorone	10	0.85	10	330	28.05	330	NA	NA	NA	AN .
sosafrole	10	1.78	10	670	58.74	670	NA	NA	NA	NA
Methapyrilene	10	3.63	10	670	119.79	670	NA	NA	NA	NA
Methyl Methanesulfonate	0	2.53	10	330	83.49	330	AN	NA	NA	NA
Vaphthalene	0	10.1	10	330	33.33	330	NA	NA	NA	NA
Vitrobenzene	10	2.21	10	330	72.93	330	NA	NA	NA	2000
N-Nitrosodiethylamine	10	2.06	10	330	67.98	330	NA	NA	NA	NA
N-Nitrosodimethylamine	0	1.2	10	330	39.60	330	NA	NA	AN	AN
N-Nitroso-di-n-butylamine	10	2.39	10	670	78.87	670	AN	NA	٩N	NA
N-Nitroso-di-n-propylamine	10	1.07	10	330	35.31	330	NA	NA	NA	NA
N-Nitrosodíphenylamine	10	0.68	10	330	22.44	330	AN	AN	AN	AN
N-Nitrosomethylethylamine	10	2.77	10	670	91.41	670	AN	AN	ΝA	NA
N-Nitrosomorpholine	10	1.38	10	330	45.54	330	ΝA	NA	NA	NA

TYPICAL REPORTING LIMITS, METHOD DETECTION LIMITS (MDLs), AND PRACTICAL QUANTITATION LIMITS (PQLs)

3	
(H)	
1	
щ,	
_<	
E	

		Water (ug/L)		Soil	Soil/Sediment (ug/Kg)	kg) ¹		Biota (ug/Kg)		TCLP (mg/L) ²
Spike/Surrogate Compound	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporti ag Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³
Semivolatiles										
N-Nitrosopiperidine	10	1.66	10	330	54.78	330	NA	NA	AN	NA
N-Nitrosopyrrolidine	10	1.22	01	670	40.26	670	AN	NA	NA	NA
o,o,o-Triethylphosphorothioate	10	2.73	10	330	60:06	330	AN	AN	NA	NA
o-Toluidine	10	2.93	10	330	96.69	330	NA	NA	NA	NA
p-Dimethylaminoazobenzene	10	2.75	10	670	90.75	670	NA	NA	NA	NA
Pentachlorobenzene	10	2.68	10	330	88.44	330	NA	NA	NA	NA
Pentachloroethane	10	2.33	10	330	76.89	330	VN	AN	NA	NA
Pentachloronitrobenzene	10	4.8	10	670	158.40	670	NA	NA	NA	NA
Pentachlorophenol	50	4.38	50	1700	144.54	1700	NA	NA	NA	100000
Phenacetin	10	2.2	01	670	72.60	670	NA	VN	NA	NA
Phenanthrene	10	0.71	10	330	23.43	330	NA	NA	NA	NA
Phenol	10	0.71	10	330	23.43	330	NA	NA	NA	NA
Pronamide	10	3.02	10	330	99.66	330	NA	NA	NA	NA
Pyrene	10	0.52	10	330	17.16	330	NA	NA	NA	NA
Pyridine	10	2.68	10	330	88.60	330	NA	NA	NA	5000
Safrole	10	1.12	10	330	36.96	330	NA	NA	NA	NA
Thionazin	10	1.5	10	330	49.62	330	NA	NA	NA	NA
1,2,4,5-Tetrachlorobenzene	10	3.74	10	330	123.42	330	NA	NA	NA	NA
1,2,4-Trichlorobenzene	10	1.1	10	330	36.30	330	NA	NA	NA	NA
1,2-Dichlorobenzene	10	0.79	10	330	26.07	330	NA	NA	NA	NA
1,2-Diphenylhydrazine	10	0.85	10	330	28.13	330	NA	NA	NA	NA
1,3,5-Trinitrobenzene	10	3.96	10	330	130.68	330	AN	NA	NA	NA
1,3-Dichlorobenzene	10	0.66	10	330	21.78	330	NA	NA	NA	NA
1,3-Dinitrobenzene	10	4.29	10	670	141.57	670	NA	NA	NA	NA
1,4-Dichlorobenzene	10	0.67	10	330	22.11	330	NA	NA	NA	7500
1,4-Naphthoquinone	10	1.24	10	670	40.92	670	NA	NA	NA	NA
1-Naphthylamine	10	1.49	10	670	49.17	670	NA	NA	NA	NA
2,3,4,6-Tetrachlorophenol	10	2.8	10	330	92.40	330	NA	NA	NA	NA
2,4,5-Trichlorophenol	10	0.97	10	330	32.01	330	NA	NA	NA	400000
2,4,6-Trichlorophenol	10	0.81	10	330	26.73	330	NA	NA	NA	2000
2,4-Dichlorophenol	10	0.51	10	330	16.83	330	NA	NA	NA	NA
2,4-Dimethylphenol	10	1.24	10	330	40.92	330	NA	NA	NA	NA
2,4-Dinitrophenol	50	3.38	50	1700	111.54	1700	NA	NA	NA	NA
2,4-Dinitrotoluene	10	0.52	10	330	17.16	330	NA	NA	NA	130
2,6-Dichlorophenol	10	4.29	10	330	141.57	330	NA	NA	NA	NA
2,6-Dinitrotoluene	10	0.84	10	330	27.72	330	NA	NA	NA	NA

TYPICAL REPORTING LIMITS, METHOD DETECTION LIMITS (MDLs), AND PRACTICAL QUANTITATION LIMITS (PQLs)

ŝ	
E	
1	
9	
.<	
-	

Laboratory Laboratory PQL MDL PQL 10 1.04 10 10 2.48 10 10 2.48 10 0.52 0.52 10 0.53 0.52 10 0.63 0.53 10 10 2.51 10 10 2.51 10 10 1.18 10 10 1.18 10 10 1.18 10 10 2.52 10 0.7 2.52 10 10 1.1 10 10 1.1 10 10 1.1 10 10 1.1 10 10 1.13 50 10 1.69 10 10 1.13 50 10 1.69 10 10 1.69 10 10 1.69 10 10			Water (ug/L)		Soil	Soil/Sediment (ug/Kg) ¹	(g) ¹		Biota (ug/Kg)		TCLP (ug/L) ²
Inorene 10 1.04 10 10 alene 10 0.52 10 10 nation 10 0.52 10 10 nation 10 0.52 10 10 nation 10 0.7 2.0 10 nation 10 1.18 10 10 nation 0.07 2.22 10 10 threne 10 0.32 50 50 50 yr 0.03 50 0.94 50 50 50 threne 10 0.93 0.01 50 50 50 50 50 yr 10 0.03 0.03	Spike/Surrogate Compound	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporti ng Lámit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³
Inoretie 10 104 10 10 alene 10 0.52 10 10 alene 10 0.7 2.0 10 nicidine 20 0.7 2.0 10 nicidine 20 0.7 2.0 10 nicidine 10 1.18 10 10 nicidine 10 2.229 10 10 nicidine 10 2.229 10 10 nicidine 10 2.229 10 10 hylphenol 50 2.255 50 10 <	ivolatiles										
altene 10 0.52 10 10 altene 10 2.48 10 10 altene 10 0.63 10 10 altene 10 0.53 10 10 nation 10 0.53 10 10 e 10 0.53 10 10 nation 10 0.53 10 10 nation 10 2.51 10 10 nation 10 2.52 10 10 nation 10 2.22 10 10 ntene 10 2.52 10 10 ntene 10 0.93 10 10 ntene 10 1.1 10 10 10 ntene 10 0.93 0.0 10 10 ntene 10 0.93 0.0 11 10 10 ntene 10	ctylaminofluorene	10	1.04	10	670	32.01	670	NA	AN	AN	NA
10 2.48 10 0 alene 10 0.63 10 10 alene 10 0.53 10 10 10 0.53 10 0.53 10 10 10 0.052 0.084 50 10 10 10 10 1.18 10 10 10 10 10 10 2.51 10<	loronaphthalene	10	0.52	10	330	17.16	330	NA	AN	NA	NA
alene 10 0.63 10 <	ilorophenol	10	2.48	10	330	30.03	330	NA	NA	NA	NA
indext index index index <td>cthylnaphthalene</td> <td>10</td> <td>0.63</td> <td>10</td> <td>330</td> <td>20.79</td> <td>330</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td>	cthylnaphthalene	10	0.63	10	330	20.79	330	NA	NA	NA	NA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ethylphenol	10	0.52	10	330	81.84	330	NA	NA	NA	20000
50 0.84 50 50 10 1 8 10 10 10 1 18 10 10 20 0.7 20 10 10 10 10 2.29 10 10 10 2.22 10 20 10 10 2.22 10 20 10 50 0.94 50 392 10 10 10 3.92 10 10 10 10 1.1 10 10 10 10 1.1 10 10 10 10 1.1 10 10 10 10 1.1 10 10 10 11.3 50 50 50 50 11.3 50 10 10 10 11.3 50 10 10 10 11.3 50 10 10	phthylamine	10	5.31	01	670	175.23	670	AN	NA	NA	NA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	troaniline	50	0.84	50	1700	27.72	1700	NA	NA	NA	NA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	trophenol	01	2.51	10	670	82.83	670	NA	NA	AN	NA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	coline	10	1.18	10	330	38.79	330	NA	٧N	AN	NA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dichlorobenzidine	20	0.7	20	670	23.10	670	NA	NA	NA	NA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dimethylbenzidine	10	2.29	10	330	75.57	330	NA	NA	NA	NA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ethylcholanthrene	10	2.22	10	670	73.26	670	NA	NA	ΥN	NA
50 0.94 50 10	ethylphenol	10	0.83	10	670	372.90	670	NA	NA	NA	200000
50 2.52 50 10 <t< td=""><td>troaniline</td><td>50</td><td>0.94</td><td>50</td><td>1700</td><td>27.39</td><td>1700</td><td>NA</td><td>NA</td><td>NA</td><td>AN</td></t<>	troaniline	50	0.94	50	1700	27.39	1700	NA	NA	NA	AN
10 3.92 10 10 10 1.03 1.0 1.0 10 1.03 1.0 1.0 10 1.0 5.88 1.0 1.0 10 1.0 1.1 1.0 1.0 1.0 10 10 1.53 1.0 1.0 1.0 10 10 1.53 1.0 1.0 1.0 10 10 0.85 1.0 1.0 1.0 50 50 0.91 50 50 1.0 50 50 11.3 50 50 1.0 10 10 1.69 1.0 1.0 1.0 10 10 1.71 1.0 1.0 1.0 1.0 cene 10 3.89 1.0 1.0 1.0 1.0 1.0 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 1.0 1.0	Dinitro-2-methylphenol	50	2.52	50	330	83.16	330	NA	NA	NA	NA
10 1.03 10 10 5.88 10 10 1.1 10 10 1.3 10 10 1.53 10 10 10 1.53 10 10 10 0.85 10 10 10 0.94 10 50 0.91 50 10 50 11.3 50 10 10 10 3.86 10 10 10 1 1 10 10 10 10 1 3.86 10 10 10 10 1 1 10 10 10 cene 10 3.89 10 10 10 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 10 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 10	ninobiphenyl	10	3.92	10	670	129.36	670	NA	NA	NA	NA
10 5.88 10 10 1.1 10 10 1.53 10 10 1.53 10 10 10 0.85 10 10 10 0.85 10 10 10 0.94 10 50 0.91 50 10 10 11.3 50 10 10 11.3 50 10 10 10 1.69 10 10 1 1 10 10 cene 10 1.71 10 10 cene 10 3.89 10 10 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 10 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 10	omophenyl-phenylether	10	1.03	01	330	33.99	330	٨A	NA	NA	NA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	lloro-3-Methylphenol	10	5.88	10	330	194.04	330	NA	NA	NA	NA
10 1.53 10 10 0.85 10 10 0.85 10 10 0.94 10 50 0.91 50 10 0.91 50 50 11.3 50 10 10 3.86 10 10 1 16 10 10 1 69 10 10 1 1 10 10 1 1 10 10 1 3.89 10 10 1 1 10 0.022 to 0.30 ⁴	lloroaniline	10	1.1	10	330	36.30	330	NA	NA	NA	NA
10 0.85 10 10 0.94 10 50 0.91 50 50 11.3 50 50 11.3 50 10 3.86 10 10 1.69 10 10 1.69 10 10 1.71 10 10 1.71 10 10 1.71 10 10 1.71 10 10 1.71 10 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.024 0.022 to 0.30 ⁴	llorobenzilate	10	1.53	10	670	50.49	670	NA	NA	NA	NA
ol 10 094 10 50 50 0.91 50 50 ne-1-oxide 10 3.86 10 50 amine 10 3.86 10 10 amine 10 3.86 10 10 idine 10 1.69 10 10 benz(a)anthracene 10 3.89 10 10 benz(a)arthracene 10 3.89 10 10 r-Specific) 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 10 atriantic 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 10 ⁴	lorophenyl-phenylether	01	0.85	10	330	28.05	330	NA	NA	NA	NA
50 0.91 50 50 ine-1-oxide 10 3.86 10 10 amine 10 3.86 10 10 10 amine 10 1.69 10 10 10 10 idine 10 1.71 10 10 10 10 10 benz(a)anthracene 10 3.89 10 10 10 10 10 r-Specific) 0.022 to 0.30 ⁴	ethylphenol	10	0.94	10	670	31.02	670	NA	NA	NA	200000
50 11.3 50 ine-1-oxide 10 3.86 10 amine 10 1.69 10 adine 10 1.71 10 benz(a)anthracene 10 3.89 10 brez(a)anthracene 10 3.89 10 r-Specific) 0.022 to 0.30 ⁴	troaniline	50	16.0	50	1700	30.03	1700	NA	NA	NA	NA
10 3.86 10 10 10 1.69 10 10 10 1.71 10 10 racene 10 3.89 10 0.022 to 0.30 ⁴	trophenol	50	11.3	50	1700	372.90	1700	NA	NA	NA	NA
10 1.69 10 10 1.71 10 10 1.71 10 racene 10 3.89 10 0.022 to 0.30 ⁴	troquinoline-1-oxide	10	3.86	10	670	301.68	670	NA	NA	NA	NA
10 1.71 10 10 tracene 10 3.89 10 10 0.022 to 0.30 ⁴	enylenediamine	10	1.69	10	670	172.83	670	NA	NA	NA	ΝA
inacene 10 3.89 10 0.022 to 0.30 ⁴ 0.30 ⁴	tro-o-toluidine	10	1.71	10	670	56.43	670	NA	NA	NA	NA
0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴	-Dimethylbenz(a)anthracene	10	3.89	10	670	128.37	670	NA	AN	NA	NA
0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴	is (Aroclor-Specific)										
0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴	clor-1016	0.022 to 0.30 ⁴	0.022 to 0.30 ⁴	0.022 to 0.30 ⁴	50	4.00	33	16	12	50	NA
0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴	dor-1221	0.022 to 0.30 ⁴	0.022 to 0.30 ⁴	0.022 to 0.30 ⁴	50	6.60	33	NS	12	50	NA
	:lor-1232	0.022 to 0.30 ⁴	0.022 to 0.30 ⁴	0.022 to 0.30 ⁴	50	4.80	33	NS	12	50	NA
Aroclor-1242 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴ 0.022 to 0.30 ⁴	clor-1242	0.022 to 0.30 ⁴	0.022 to 0.30 ⁴	0.022 to 0.30 ⁴	50	5.70	33	12	12	50	NA

TYPICAL REPORTING LIMITS, METHOD DETECTION LIMITS (MDLs), AND PRACTICAL QUANTITATION LIMITS (PQLs)

TABLE 3	
H	

Spike/Surrogate Compound		Water (ug/L)		Soil	Soil/Sediment (ug/Kg) ¹	Kg) ¹		Biota (ug/Kg)		TCLP (ng/L) ²
	Reporting Limit ³	Laboratory MDL	Laboratory POL	Reporting Limit ³	Laboratory MDL	Laboratory POL	Reporting Limit ³	Laboratory MDL	Laboratory POL	Reporting Limit ³
Aroclor-1248	0.022 to 0.30 ⁴	0.0	0.022 to 0.30 ⁴	50	5.00	33	NS	12	50	٩N
Aroclor-1254	0.022 to 0.30 ⁴	-	0.022 to 0.30 ⁴	50	4.50	33	27	12	50	NA
Aroclor-1260	0.022 to 0.30 ⁴			50	6.20	33	01	12	50	٩N
Dioxins/Furans by 8280A										
TCDD	0.010	0.00083	0.010	1.0	0.05	1.0	AN	NA	AN	AN
PeCDD	0.025	0.00096	0.025	2.5	0.07	2.5	NA	NA	AN	AN
HxCDD	0.05	0.00321	0.05	2.5	0.20	2.5	AN	NA	AN	AN
HPCDD	0.025	0.00353	0.025	2.5	0.16	2.5	NA	AN	NA	NA
OCDD	0.05	0.00402	0.05	5.0	0.17	5.0	NA	NA	AN	NA
TCDF	0.01	0.00093	0.01	1.0	0.040	1.0	AN	NA	AN	AN
PeCDF	0.025	0.00095	0.025	2.5	0.090	2.5	AN	NA	AN	NA
HxCDF	0.025	0.00353	0.025	2.5	0.22	2.5	NA	NA	NA	AN
HPCDF	0.025	0.00302	0.025	2.5	0.22	2.5	NA	NA	NA	٨A
OCDF	0.10	0.00319	0.10	10	0.15	10	ΝA	NA	٨A	AN
Dioxins/Furans by 8290										
TCDD	0100000	0.0000067	0.000010	0.0010	0.00053	0.0010	NA	NA	NA	NA
PeCDD	0.000050	0.000013	0.000050	0.0050	0.0023	0:0050	ΝA	NA	NA	NA
HxCDD	0.000050	0.000017	0.000050	0.0050	0.0023	0.0050	NA	NA	NA	NA
HpCDD	0.000050	0.000017	0.000050	0.0050	0.0012	0.0050	NA	NA	NA	NA
OCDD	0.00010	0.000040	0.00010	0.010	0.0050	0.010	AN	AN	NA	NA
TCDF	0.000010	0.0000070	0.000010	0.0010	0.00051	0.0010	ΑN	NA	٨A	AN
PeCDF	0.000050	0.000024	0.000050	0.0050	0.0015	0.0050	AN	NA	NA	NA
HxCDF	0.000050	0.000023	0.000050	0.0050	0.0020	0.0050	NA	NA	NA	NA
HpCDF	0.000050	0.000024	0.000050	0.0050	0.0018	0.0050	NA	NA	NA	NA
OCDF	0.00010	0.000038	0.00010	0.010	0.0039	0.010	NA	NA	NA	NA
Metals										
Antimony	60	41	60	6000	450	6000	NA	NA	NA	NA
Arsenic	10	1.6	01	1000	300	1000	NA	NA	NA	5000
Barium	200	0.17	200	20000	30	20000	ΝA	NA	NA	100000
Beryllium	5.0	0.4	1.0	500	60	150	AN	NA	NA	NA
Cadmium	5.0	0.41	5.0	500	150	500	NA	NA	NA	1000
Chromium	10	0.22	10	1000	30	1000	٨A	NA	NA	5000
Cobalt	50	0.82	50	5000	150	5000	NA	NA	NA	NA
Copper	25	S	25	2500	750	2500	AN	NA	NA	NA
Cyanide	10	3.4	10	100	10	100	NA	NA	NA	NA
Lead	3.0	1.3	3.0	750	150	750	NA	NA	NA	5000
Mercury	0.20	0.07	0.20	100	20	001	NA	NA	NA	200

TYPICAL REPORTING LIMITS, METHOD DETECTION LIMITS (MDLs), AND PRACTICAL QUANTITATION LIMITS (PQLs)

ŝ
E.
E
7
È

eSarrogate Re mpound I I Pesticides de			Soil	Soil/Sediment (ug/Kg) ¹	(g) ¹		Biota (ug/Kg)		TCLP (ng/L) ²
m m m m ated Pesticides D HC HC HC HC HC fan I fan I fan I fan I fan I fan I fan I fan I fan I	Laboratory MDL	Laboratory PQL	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³
m m m mated Pesticides BHC BHC HC HC HC HC HC HC HC HC HC HC HC HC H									
m m m mated Pesticides BHC BHC HC HC HC HC HC HC HC HC HC HC HC HC H	2.2	40	4000	300	4000	NA	AN	AN	NA
n um Lated Pesticides E E E E HIC HIC HIC HIC HIC HIC HIC HIC HIC HIC	1.8	5.0	1000	300	750	NA	NA	NA	1000
n um Iated Pesticides E E T T T HIC HIC HIC HIC HIC HIC HIC HIC HIC HIC	4.9	5.0	1000	750	750	NA	NA	NA	5000
m um mated Pesticides D DE DE DE DE Chlordane HC HC HC HC HC HC HC HC HC HC HC HC HC	470	1000	5000	5000	5000	VN	AN	NA	AN
um mated Pesticides DD DE DE DE DE DE DE Chlordane HC HC HC HC HC HC HC HC HC HC HC HC HC	2.6	10	1000	450	1000	NA	NA	NA	NA
um mated Pesticides DD DE DE DE DE DHC HC HC HC HC HC HC HC HC HC HC HC HC H	30	30	10000	4500	10000	NA	NA	NA	NA
nated Pesticides DD DE DE DE DE DHC HC HC HC HC Ifan I Ifan II Ifan sulfate	0.64	50	5000	150	5000	NA	NA	٩N	NA
nated Pesticides DE DE DE DE DE DHC HC HC hHC fan I Ifan I Ifan I Ifan sulfate	2.2	20	2000	300	2000	NA	AN	NA	NA
DD DE DE BHC HC HC HC Ifan I Ifan I Ifan II Ifan sulfate									
DE DT BHC HC HC HC HC Ifan I Ifan I Ifan sulfate aldehyde	0.029	0:030	16	0.88	3.3	AN	NA	٨A	AN
DT BHC BHC chlordane HC HC Ifan I Ifan I Ifan sulfate aldehyde	0.027	0:030	16	0.80	3.3	NA	NA	NA	NA
BHC chlordane HC HC HC Ifan I Ifan II Ifan sulfate aldehyde	0.033	0.030	16	1.00	3.3	NA	NA	AN	VN
BHC chlordane HC HC HC Ifan I Ifan II Ifan sulfate aldehyde	0.012	0.015	8.0	0.36	1.7	NA	NA	NA	AN
chlordane HC HLC Ifan I Ifan II Ifan sulfate aldehyde	0.011	0.015	8.0	0.34	1.7	NA	NA	NA	AN
HC hHC Ifan I Ifan sulfate aldehyde	0.012	0.015	8.0	0.37	1.7	ΝA	NA	NA	30
n Ifan I Ifan II Ifan sulfate aldehyde	0.013	0.015	8.0	0.38	1.7	NA	NA	NA	٨A
n Ifan 1 Ifan 11 Ifan sulfate aldehyde	0.013	0.015	8.0	0.39	1.7	NA	NA	NA	NA
lfan 1 Ifan 11 Ifan sulfate aldehyde	0.027	0.030	16	0.80	3.3	ΝA	NA	NA	NA
lfan II Ifan sulfate aldehyde	0.012	0.015	16	0.36	3.3	٨A	NA	NA	NA
lfan sulfate aldehyde	0.028	0.030	16	0.84	3.3	NA	NA	NA	NA
aldehyde	0.028	0.030	16	0.84	3.3	AN	NA	NA	NA
	0.033	0.030	16	0.99	3.3	NA	NA	NA	20
	0.031	0:030	16	0.93	3.3	NA	NA	NA	AN
Endrin ketone 0.10	0.033	0.030	16	1.00	3.3	NA	NA	NA	NA
Gamma-BHC (Lindane) 0.05	0.010	0.015	8.0	0.30	1.7	٧N	NA	NA	400
Gamma-chlordane 0.05	0.013	0.015	8.0	0.40	1.7	NA	NA	NA	30
Heptachlor 0.05	0.014	0.015	8.0	0.41	1.7	AN	NA	NA	8
Heptachlor epoxide 0.05	0.011	0.015	8.0	0.33	1.7	NA	NA	NA	8
Methoxychlor 0.5	0.184	0.15	80	5.53	17	NA	NA	NA	10000
Technical chlordane 0.5	0.037	0.15	80	1.10	1.7	NA	NA	NA	NA
Toxaphene 1.0	0.047	0.15	160	1.41	160	NA	NA	NA	500

.

TYPICAL REPORTING LIMITS, METHOD DETECTION LIMITS (MDLs), AND PRACTICAL QUANTITATION LIMITS (PQLs)

		Water (ug/L)		Soil	Soil/Sediment (ug/Kg) ¹	Kg) ¹		Biota (ug/Kg)		TCLP (ug/L) ²
Spike/Surrogate Compound	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³	Laboratory MDL	Laboratory PQL	Reporting Limit ³
Chlorinated Herbicides										
2,4-D	10	0.030	0.055	800	20	500	AN	AN	NA	10000
Dinoseb	1.0	0.020	0.055	160	160	160	AN	NA	NA	NA
2,4,5-T	2.0	0.030	0.055	320	30	320	NA	NA	AN	NA
2,4,5-TP	2.0	0.020	0.055	320	80	320	NA	AN	AN	1000
Organophosphate Pesticides										
Dimethoate	50	13.262	50	1700	NA	1700	NA	AN	AN	NA
Disulfoton	10	0.884	10	670	NA	330	NA	NA	NA	NA
Famphur	NS	0.628	1.0	NS	NA	33	NA	NA	٧N	NA
Methyl Parathion	10	1.453	10	670	NA	330	NA	AN	AN	NA
Parathion	10	1.016	10	670	NA	330	NA	NA	AN	NA
Phorate	10	1.272	10	670	NA	330	NA	NA	NA	NA
Sulfotepp	10	0.904	10	670	NA	330	NA	NA	VN	NA
Other										
Ammonia	0.5	0.44	0.5	5	5	5	NA	AN	٧N	NA
Nitrate	0.05	0.001	0.05	0.5	0.5	0.5	NA	NA	VN	NA
Nitrite	0.05	0.001	0.05	0.5	0.5	0.5	NA	NA	NA	NA
Total Kjeldahl Nitrogen	0.5	0.26	0.5	5	5	5	NA	NA	NA	NA
Ortho-phosphate	0.02	0.004	0.02	NS	NA	NA	NA	NA	NA	NA
BOD	2	2	2	NS	NA	NA	NA	NA	NA	NA
COD	10	7.9	10	NS	NA	NA	NA	NA	NA	NA
TOC	-	0.24	-	0.1%	0.04%	0.1%	NA	NA	NA	NA
TSS	5	5	5	NS	NA	NA	NA	NA	NA	NA
TDS	5	2.5	5	NS	NA	NA	NA	NA	NA	NA
Hardness	8	1.8	∞	NS	NA	٩N	NA	NA	NA	NA
Oil and Grease	5	2.8	5	10	10	10	NA	NA	NA	NA
Cesium-137	NS	NA	NA	0.1pCi/g	NA	NA	٧N	NA	VN	NA

TYPICAL REPORTING LIMITS, METHOD DETECTION LIMITS (MDLs), AND PRACTICAL QUANTITATION LIMITS (PQLs)

Notes.

Not specified in the analytical method. Laboratory derived MDLs (adjusted for dilution and percent solids) will be used. NS

NA Not Applicable

¹ Soil/Sediment reporting limits for VOCs are presented for both the low and medium-level analyses.

² TCLP Regulatory Limits - Individual sample reporting limits must be at or below these regulatory limits regardless of dilution level and/or matrix interference. In some cases, due to sample matrix interferences, the laboratories will use other reporting limits. Where technically feasible, these limits will be less than the lowest applicable Performance Standards or relevant MCP Method 1 Standards. m

project-specific criteria as specified in the appropriate work plan. The goal will be to achieve MDLs. PQLs, and reporting limits of 0.022 ug/L for surface Reporting limits, MDLs, and PQLs for PCB water samples will be those determined by the laboratory within the range specified or will be based upon water samples and 0.065 ug/L for groundwater samples. 4

ANALYTICAL QUALITY CONTROL REQUIREMENTS

s Soils/Sediments, Oils, and Biota Waters Soils/Sediments, Oils, and Biota am Waters, Soils/Sediments, Oils, and Biota and Bio									
Advances Redentioner Indicators (OQIs) Caccic Frequency Matrix Field Precision-Overal Field Duplicate 1/20 samples Solis/Sediments, Oils, and Biota Samples Solis/Sediments, Oils, and Biota Varees; Solis/Sediments, Oils, and Biota Accuracy/bias Matrix Spike and Prof. 1/20 samples Warees; Solis/Sediments, Oils, warees Laboratory Accuracy/bias Matrix Spike and Prof. 2010; and Biota Matrix Spike and Diplicate 1/20 samples Warees; Solis/Sediments, Oils, matrix Spike 1/1/20 samples Naters, Solis/Sediments, Oils, matrix Spike Accuracy/bias Duplicate 1/1/20 samples Warees, Solis/Sediments, Oils, matrix Spike Accuracy/bias Initial Calibration Five other Warees, Solis/Sediments, Oils, Five other Accuracy/bias Concentration matrix Five other Warees, Solis/Sediments, Oils, Five other Accuracy/bias Contraction matrix Five other Warees, Solis/Sediments, Oils, Five other Accuracy/bias Contraction matrix Five other Warees, Solis/Sediments, Oils, Five other Accuracy/bias Contraction<	Analysis		Field/Lab	Data Quality	Quality Control			Acceptance	
PCB Field Precision-Overall Field Duplicate 1/20 samples SolisSediments, Oils, and Biona Accuracy/bias Accuracy/bias Matrix Spike 1/20 samples SolisSediments, Oils, and Biona Accuracy/bias Matrix Spike Bink 1/20 samples SolisSediments, Oils, and Biona Accuracy/bias Matrix Spike Bink 1/20 samples Waters, Solis/Sediments, Oils, and Biona Accuracy/bias Initial Calibration Fit/or and Biona Waters, Solis/Sediments, Oils, and Biona Accuracy/bias Initial Calibration Eive-point for Waters, Solis/Sediments, Oils, and Biona Accuracy/bias Initial Calibration Eive-point for Waters, Solis/Sediments, Oils, and Biona Accuracy/bias Initial Calibration Eive-point for Waters, Solis/Sediments, Oils, and Biona Accuracy/bias Calibration Eive-point for Waters, Solis/Sediments, Oils, and Biona Accuracy/bias Calibration Eive-point for Waters, Solis/Sediments, Oils, and Biona Accuracy/bias Contamination Concenteration Interfection Interfection Accuracy/bias	Ţ	Parameter	Requirement	(DQIs)		Frequency	Matrix	Criteria	Corrective Action
Sampling Samples Waters. Soli/Sediments. Olis. and Biona Accuracy/bias Matrix Spike and Matrix Spike and Matrix Spike and Matrix Spike and Piona Per Field Team Waters. Soli/Sediments. Olis. and Biona Accuracy/bias Matrix Spike and Matrix Spike Submission or 1/20 samples Waters. Soli/Sediments. Olis. and Biona Accuracy/bias Initial Calibration Field Team Waters. Soli/Sediments. Olis. and Biona Accuracy/bias Initial Calibration Field Team Waters. Soli/Sediments. Olis. and Biona Accuracy/bias Initial Calibration Field Team Waters. Soli/Sediments. Olis. and Biona Accuracy/bias Initial Calibration Field Team Waters. Soli/Sediments. Olis. and Biona Accuracy/bias Initial Calibration Field Team Matrix. Soli/Sediments. Olis. and Biona Accuracy/bias Initial Calibration Field Team Maters. Soli/Sediments. Olis. and Biona Accuracy/bias Calibration Initial Calibration Initial Calibration Accuracy/bias Calibration Initial Calibration Maters. Soli/Sfediments. Olis. Accuracy/bias Accuracy/bias Initial Calibration Maters. Soli/Sfediments. Olis. Accuracy/bias Maters. Solis/Sediments. Olis. Accuracy/bias Accuracy Remetion Initial Calibration Maters. Solis/Sediments. Olis. Accuracy/bias		PCB	Field					RPD<50% when both detects	NA
Accuracy/bias Equipment Blank 1/20 samples Waters, Solis/Sediment, Oils, and Biota Accuracy/bias Matrix Spike and Duplicate Per Field Team Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Matrix Spike and Duplicate Per Field Team Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Initial Calibration [1016/1260 and Biota Accuracy/bias Initial Calibration [016/1260 and Biota Accuracy/bias Initial Calibration [016/1260 and Biota Accuracy/bias Second Source Oncentration and Biota Accuracy/bias Initial Calibration [016/1260 and Biota Accuracy/bias Second Source Once per five Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Second Source Once per five Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Second Source Once per five Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Second Source Once per five Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Ketention and calibration Maters, Sol	8082		Sampling				Soils/Sediments, Oils, and Biota	are greater than 5 times the PQL	
Accuracy/bias Contamination Equipment Black 1/20 samples Waters, Soils/Sediments, Oils, and Biota Accuracy/bias Matrix Spike and Duplicate Per Field Team Waters, Soils/Sediments, Oils, and Biota Accuracy/bias Duplicate 1/05 samples Waters, Soils/Sediments, Oils, and Biota Accuracy/bias Initial Calibration Five-point for initial Calibration Waters, Soils/Sediments, Oils, and Biota Accuracy/bias Initial Calibration Five-point for and Piota Waters, Soils/Sediments, Oils, and Biota Accuracy/bias Calibration IO16/1260 and Biota Accuracy/bias Calibration and After 5 pt. Accuracy/bias Second Source Once per five- and after 5 pt. Accuracy/bias Calibration and Biota Accuracy/bias Soils/Sediments, Oils, Midpoint Oils/Sediments, Oils, Maters, Soils/Sediments, Oils, Middow Accuracy/bias Maters, Soils/Sediments, Oils, Maters, Soils/Sediments, Oils, Maters, Soils/Sediments, Oils, Maters, Soils/Sediments, Oils, Middow Accuracy/bias <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Waters</td> <td>RPD<30% when both detects are areater than 5 times the POI</td> <td></td>							Waters	RPD<30% when both detects are areater than 5 times the POI	
Accuracy/bias Matrix Spike and Matrix Spike Per Field Team and Biota Accuracy/bias Matrix Spike Submission or Duplicate 2016/1560 and Biota Accuracy/bias Initial Calibration Five-point for 1016/1260 Waters, Soils/Sediments, Oils, and Biota Accuracy/bias Initial Calibration 1016/1260 and Biota Accuracy/bias Second Source Once per five- and Arer, Soils/Sediments, Oils, and Biota Accuracy/bias Second Source Once per five- and Arer, Soils/Sediments, Oils, and Biota Accuracy/bias Second Source Once per five- and Arer, Soils/Sediments, Oils, and Biota Accuracy Retention and Biota Accuracy Retention and Biota Accuracy/bias Second Source Once per five- and Arer, Soils/Sediments, Oils, Maters, Soils/Sediments, Oils, Accuracybias Accuracy Retention Time Each initial Accuracy Maters, Soils/Sediments, Oils, Mindow Dis/Sediments, Oils, Maters, Soils/Sediments, Oils, Maters, Soils/Sediments, Oils, Mindow Accuracy Maters, Soils/Sedim				T	Equipment Blank	1/20 samples	Waters. Soils/Sediments. Oils.		NA NA
Accuracy/bias Matrix Spike and buplicate Per Field Team Waters, Soils/Sediments, Oils, Duplicate Accuracy/bias Initial Calibration Five-point for 106/1260 Waters, Soils/Sediments, Oils, and Biota Accuracy/bias Initial Calibration Five-point for 1016/1260 Waters, Soils/Sediments, Oils, and Biota Accuracy/bias Second Source Once per five- and After 5 pt. Waters, Soils/Sediments, Oils, and Biota Accuracy/bias Second Source Once per five- and After 5 pt. Waters, Soils/Sediments, Oils, and Biota Accuracy/bias Second Source Once per five- and After 5 pt. Waters, Soils/Sediments, Oils, and Biota Accuracy/bias Second Source Once per five- mix Waters, Soils/Sediments, Oils, and Biota Accuracy Retention Tinte Each initial and Biota Accuracy Retention Tinte Each initial Maters, Soils/Sediments, Oils, Sediments, Oils, Maters, Soils/Sediments, Oils, Sediments, Oils, Maters, Soils/Sediments, Oils, Mate						•	and Biota		
Matrix Spike Submission or Duplicate and Biota Duplicate 1/20 samples and Biota Initial Calibration Five-point for Waters, Soils/Sediments, Oils, 1016/1260 and Biota mix. Five other and Biota waters, Soils/Sediments, Oils, 1016/1260 and Biota mix. Five other aroclors at waters, Soils/Sediments, Oils, 1016/1260 and Biota Ketention analyzed before waters, Soils/Sediments, Oils, and Biota Oils, 1016/1260 Ketention calibration and Biota Maters, Soils/Sediments, Oils, waters, Soils/Sediments,			Laboratory	Accuracy/bias	Matrix Spike and	Per Field Team		Per Table 5	1. Evaluate Batch
Duplicate 1/20 samples Initial Calibration Five-point for Waters, Soils/Sediments, Oils, 1016/1260 mix. Five other mix. Five other waters, Soils/Sediments, Oils, and Biota mix. Five other mix. Five other waters, Soils/Sediments, Oils, analyzed before Second Source Once per five- and After 5 pt. Waters, Soils/Sediments, Oils, mix final Retention calibration and Biota Window calibration Io16/1260 mix mix waters, Soils/Sediments, Oils, waters, Soils/Sediments, Oils, second Source Retention mix and Biota Waters, Soils/Sediments, Oils, window and Biota Mindow calibration and Biota Mindow calibration mix Mindow and Biota Maters, Soils/Sediments, Oils, waters, Soils/Sediments, Oils, wa					Matrix Spike	Submission or	and Biota		(Narrate)
Initial Calibration Five-point for Waters, Soils/Sediments, Oils, 1016/1260 nnix. Five other and Biota nnix. Five other and Biota aroclors at mix. Five other aroclors at mix. Five other second Source Once per five Second Source Once per five- Verification calibration Verification 1016/1260 mix Waters, Soils/Sediments, Oils, ward Biota Ketention Time calibration nix Maters, Soils/Sediments, Oils, ward Biota Verification 1016/1260 mix Waters, Soils/Sediments, Oils, window and Biota and Biota Nindow calibration window and Biota Mindow and Biota Mindow and Biota Mindow and Biota Mindow and Biota Netertion 1016/1260 mix Maters, Soils/Sediments, Oils, Verification Verification and Biota Mix Maters, Soils/Sediments, Oils, Verification Mix Maters, Soils/Sediments, Oils, Maters, Soils/Sedim					Duplicate	1/20 samples			
1016/1260 and Biota mix. Five other and Biota aroclors at mix. Five other aroclors at midpoint concentration concentration and after 5 pt. Maters, Soils/Sediments, Oils, Calibration calibration for Verification calibration Retention Time calibration mix Maters, Soils/Sediments, Oils, Verification calibration and after 5 pt. and Biota Verification and Biota initial and Biota Mindow calibration mix Maters, Soils/Sediments, Oils, Verification for all Biota Verification and Biota Maters, Soils/Sediments, Oils, Verification and Biota				Accuracy/bias	Initial Calibration	Five-point for	Waters, Soils/Sediments, Oils,	Lincar mean RSD for 1016/1260	1. Evaluate
mix. Five other aroclors at midpoint concentration and after 5 pt. Second Source Once per five- und after 5 pt. Calibration point initial und after 5 pt. Retention point initial and Biota Window calibration mix Window and calibration and Biota Window and calibration mix Initial Calibration mix Initial Calibration waters, Soils/Sediments, Oils, Verification and Biota waters, Soils/Sediments, Oils, Verification and all brota waters, Soils/Sediments, Oils, Verification						1016/1260	and Biota	mix ≤20% or linear regression ≥0.995	2. Recalibrate when
arcoclors at midpoint arcoclors at midpoint concentration and after 5 br and after 5 pr Waters, Soils/Sediments, Oils, and after 5 pr Second Source Once per five- and after 5 pr Calibration point initial point initial Verification calibration for nix Retention Time Each initial Window calibration Window and alibration verification and Biota Window and calibration Verification Daily before Mix Verification Verification Daily before Waters, Soils/Sediments, Oils, sample analysis Verification Daily before Maters, Soils/Sediments, Oils, sample analysis						mix. Five other			QC criteria is not
midpoint analyzed before Second Source Once per fiftee Verification calibration freetention Time Each initial Window calibration window and Biota and alibration window inix thritial Waters, Soils/Sediments, Oils, Sediments, Oils,						aroclors at			met
concentration analyzed before analyzed before analyzed before analyzed before analyzed before Second Source Once per five- Waters, Soils/Sediments, Oils, Calibration calibration point initial and Biota Verification calibration for 1016/1260 Waters, Soils/Sediments, Oils, Retention Time Each initial Waters, Soils/Sediments, Oils, Window calibration and Biota and calibration and Biota Maters, Soils/Sediments, Oils, Vindow calibration and Calibration Verification Daily before Waters, Soils/Sediments, Oils, Verification Soils/Sediments, Oils, Sediments, Oils,						midpoint			
analyzed before and after 5 pt. Becond Source Once per five- Second Source Once per five- Verification point initial Verification calibration for Neterston point initial Verification l016/1260 Mix Waters, Soils/Sediments, Oils, with dow Retention Time Each initial Mindow and Biota and Biota and Biota Mindow calibration Nindow and Biota Initial Calibration and Biota Mix Maters, Soils/Sediments, Oils, verification Verification and Biota Mindow calibration Initial Calibration mix Verification Daily before Maters, Soils/Sediments, Oils, verification mix						concentration			
and after 5 pt and after 5 pt Second Source Once per five- Waters, Soils/Sediments, Oils, Calibration Calibration point initial and Biota Verification 1016/1260 mix Retention Time Each initial Waters, Soils/Sediments, Oils, mix Retention Time Each initial Waters, Soils/Sediments, Oils, mix Window calibration and Biota And Calibration and Biota Initial Calibration and Biota Initial Calibration Maters, Soils/Sediments, Oils, verification Factor calibration Initial Calibration and calibration Verification Daily before Waters, Soils/Sediments, Oils, soils/Sediments, Oils, soils/Sediments, Oils, soils/Sediments, Oils, soils/Sediments, Oils,						analyzed before			
Second Source Once per five- calibration Waters, Soils/Sediments, Oils, Calibration Verification point initial and Biota Verification 1016/1260 and Biota Retention Time Each initial Waters, Soils/Sediments, Oils, and Biota Window calibration and Biota Window calibration and Biota Initial Waters, Soils/Sediments, Oils, and calibration Maters, Soils/Sediments, Oils, and Calibration Initial Each initial Waters, Soils/Sediments, Oils, and Calibration Verification Daily before Waters, Soils/Sediments, Oils, and Biota Initial Calibration Daily before Waters, Soils/Sediments, Oils, and Biota Verification Samily before Waters, Soils/Sediments, Oils, stand-boint						and after 5 pt.			
Calibration point initial and Biota Verification calibration for and Biota Verification calibration for bit Retention Time Each initial Waters, Soils/Sediments, Oils, calibration Window and calibration and Biota Notas and calibration and Biota Notas Initial Calibration and Calibration Notas Initial Calibration Daily before Naters, Soils/Sediments, Oils, sample analysis and Biota				Accuracy/bias	Second Source	Once per five-		Mix within ±15% of expected value	1. Evaluate
Verification calibration for 1016/1260 Retention Time Each initial Waters, Soils/Sediments, Oils, Waters, Soils/Sediments, Oils, window Waters, Soils/Sediments, Oils, window Waters, Soils/Sediments, Oils, mix Waters, Soils/Sediments, Oils, mix Daily before Waters, Soils/Sediments, Oils, sample analysis Waters, Soils/Sediments, Oils, and Biota					Calibration	point initial			2. Recalibrate when
1016/1260 1016/1260 mix Retention Time Each initial Waters, Soils/Sediments, Oils, Window Calibration and Biota Waters, Soils/Sediments, Oils, Waters, Soils/Sediments, Oils, Maters, Soils/Sediments, Oils, mix Maters, Soils/Sediments, Oils, mix Obias Initial Calibration Maters, Soils/Sediments, Oils, sample analysis Obias Initial Calibration Maters, Soils/Sediments, Oils, sample analysis Maters, Soils/Sediments, Oils, for all Acclors Maters, Soils/Sediments, Oils, sample analysis					Verification	calibration for			QC criteria is not
mix mix Retention Time Each initial Waters, Soils/Sediments, Oils, Vindow Window calibration and Biota Window and calibration and Biota Verification for and Calibration and Biota Initial Calibration Daily before Waters, Soils/Sediments, Oils, Verification Name Name Name Soils/Sediments, Oils, Verification Daily before Name Naters, Soils/Sediments, Oils, Verification Sample and Biota Accolors and Biota At mid-boint and Biota						1016/1260			met
Retention Time Each initial Waters, Soils/Sediments, Oils, Calibration Window calibration and Biota Window and calibration and Biota Verification total Soils/Sediments, Oils, Nerification Naters, Soils/Sediments, Oils, Nerification Initial Calibration Daily before Waters, Soils/Sediments, Oils, Nerification Initial Calibration Daily before Waters, Soils/Sediments, Oils, and Biota Initial Calibration Daily before Waters, Soils/Sediments, Oils, and Biota Initial Calibration Daily before Waters, Soils/Sediments, Oils, and Biota						mix			
Window calibration and calibration and calibration and calibration verification for Initial Calibration 1016/1260 mix mix Verification Daily before Verification sample analysis for and Biota and Biota				Accuracy	Retention Time		Waters, Soils/Sediments, Oils,	±3 STD deviations for each analyte	1. Evaluate
and calibration verification for 1016/1260 mix Tritial Calibration Verification Sample analysis for all Acoclors and Biota at mid-point					Window	calibration	and Biota	retention time in 72-hour period	2. Reanalyze all
verification for 1016/1260 mix Tritial Calibration Daily before Waters, Soils/Sediments, Oils, Verification for all Arcolors and Biota at mid-point at mid-point						and calibration			samples analyzed
1016/1260 mix Initial Calibration Daily before Verification Sample analysis for all Arcolors for all Arcolors						verification for			since the last
mix mix Initial Calibration Daily before Waters, Soily/Sediments, Oils, Verification Verification sample analysis and Biota for all Aroclors at mid-point at mid-point						1016/1260			retention time
Initial Calibration Daily before Waters, Soils/Sediments, Oils, Verification sample analysis and Biota for all Aroclors at mid-point						mix			check
sample analysis and Biota for all Aroclors at mid-point				Accuracy/bias	Initial Calibration		Waters, Soils/Sediments, Oils,	1016/1260 mix within ±15% of	1. Evaluate
for all Aroclors at mid-point					Verification		and Biota	expected value	2. Recalibrate when
at mid-point						for all Aroclors			QC criteria is not
						at mid-point			met

ANALYTICAL QUALITY CONTROL REQUIREMENTS

Analysis Method	Parameter	Field/Lab Requirement	Data Quality Indicators (DQIs)	Quality Control Check	Frequency	Matrix	Acceptance Criteria	Corrective Action
SW-846 8082	PCB	Laboratory (continued)	Accuracy/bias	Calibration Verification	After every 10 samples for	Waters, Soils/Sediments, Oils, and Biota	1016/1260 mix within ±15% of expected value	 Evaluate Clean system
				and	1016/1260 mix			3. Reanalyze
				Pattern	and at end of			calibration
				Recognition	analysis			verification and
				Standards	sequence for			all samples since
					1016/1260 and			the last acceptable
					all detected			calibration
			Т	Cleaning Dlaub	Arociors	-10		vertication
			Accuracy/blas Containination			waters, Sotis/Sediments, Uris,		1. Evaluate
					procedure			
					performed			met
			Accuracy/bias	Surrogate	Every sample	Waters, Soils/Sediments, Oils,	Per Table 5	1. Rerun
						and Biota	-	2. Re-extract as
								necessary
			Т					(Narrate)
			Accuracy/bias Contamination	Method Blank	•	oils/Sediments, Oils,	<\/ HQL	
					-	and Biota		2. Evaluate batch
					whichever more			
					frequent			3. Re-extract as
								necessary
			Precision-Laboratory (bias)		_	Waters, Soils/Sediments, Oils,	Per Table 5	l. Rerun
				Sample (Matrix Spike	or 1/20 samples,	and Biota		2. Evaluate batch (Narrate)
					frequent			D. RC-CKITACI AS
T0-4A	РСВ	Field	Precision-Overall	Field Duplicate	I per sampling event	Air		NA
		Bundunge	1	(co-rocated samples)	Т		or than 5 times the PQL	
			Accuracy/bias Contamination	Trip Blank	l per sampling event	Air	<% PQL	NA
	_	Laboratory	Accuracy/bias	Initial Calibration	for	Air		1. Evaluate
	_				1016/1260		mix <20% or linear regression ≥0.995	2. Recalibrate when
					mix. Five other			QC criteria is not
					aroclors at			met
					mapoint			
					analyzed before			
					and after 5 pt.			

.

U:\plh00\01101543.XLS

Page 2 of 14

8/22/00

ANALYTICAL QUALITY CONTROL REQUIREMENTS

.

1. 44 (8)	:							
Analysis		Field/Lab	Data Quality	Quality Control			Acceptance	
Method	LETINGCICT	Volumence	TEGICETELS (TV/TE)		r requency	MACTIX		Cerrective Action
T0-4A	PCB	Laboratory	Accuracy/bias	Second Source	Once per five-	Air	Mix within ±15% of expected value	
		(continued)		Calibration	point initial			2. Recalibrate when
1				Verification	calibration for			QC criteria is not
				_	1016/1260			met
					mix			
			Accuracy	Retention Time	Each initial	Air	±3 STD deviations for each analyte	1. Evaluate
				Window	calibration			2 Reanaivze ali
					and calibration			
				_	und canton for			sampres analyzed
					verneation for			since the last
					1016/1260			retention time
					mix			check
			Accuracy/bias	Initial Calibration	Daily before	Air	1016/1260 mix within ±15% of	1. Evaluate
				Verification	sample analysis		expected value	Recalibrate when
					for all aroclors			QC criteria is not
					at mid-point			met
			Accuracy/bias	Calibration	After every 10	Air	1016/1260 mix within ±15% of	1. Evaluate
				Verification	samples for		expected value	2. Clean system
				and	1016/1260 mix			
				Dattern	and at and of			
								cartoration
				Kecognition	analysis			ventication and
				Standards	sequence for			all samples since
					1016/1260 and			the last acceptable
					all detected			calibration
					Aroclors			verification
			Accuracy/bias Contamination	Solvent Blank	1/batch or 1/20	Air	10d %>	1. Evaluate
					samples per			2. Clean system
					cleanup			
					nnoedure			
					performed			
			Accuracy/bias	Surrogate	Every sample	Air	Per Table 5	1. Renu
				-				2. Re-extract as
								necessary
								(Narrate)
			Accuracy/bias Contamination	Laboratory Blank	1/batch or 1/20	Air	2 bol</td <td>1. Renu</td>	1. Renu
					samnles whichever			7 Encluste hatch
					more frequent			
								Re-extract as
			Precision-Laboratory (bias)	Laboratory Control	1/hatch or 1/20	Air	Der Tahle S	1 Perin
				Sample (Matrix Snike	samnles whichever			2 Evaluate hatch (Narrate)
				Blank)	more frequent			

ANALYTICAL QUALITY CONTROL REQUIREMENTS

esercy Matrix es Soils/Sediments, Oils and Biota Waters, Soils/Sediments, Oils, eard Biota earn Waters, Soils/Sediments, Oils, and Biota earn Waters, Soils/Sediments, Oils, and Biota and Biota and Biota werpoint Waters, Soils/Sediments, Oils, and Biota werfication Naters, Soils/Sediments, Oils, and Biota es waters, Soils/Sediments, Oils, and Biota erfication Naters, Soils/Sediments, Oils, and Biota waters, Soils/Sediments, Oils, and Biota and Biota waters, Soils/Sediments, Oils, and Biota waters, Soils/Sediments, Oils, and Biota and Biota									
Fieldual Evolution Description Currents Restruction Matrix 1 Openo Standing Field Field Matrix SolidySediments, Olis and Bios 1 Openo Sampling Field Deplicate 1/20 samples SolidySediments, Olis, and Bios 1 Channe Sampling Field Deplicate 1/20 samples Matrix 1 Dependenciate Accuracy/bias Matrix Spike and Field Team Waters. Matrix 1 Laboratory Accuracy/bias Matrix Spike and Field Team Waters. Matrix 1 Laboratory Accuracy/bias Matrix Spike and Field Team Waters. Matrix 1 Accuracy/bias Matrix Spike and Field Team Waters. Matrix SolidySediments, Oli, 1 Accuracy/bias Initial Calibration Field Team Waters. Matrix 1 Accuracy/bias Initial Calibration Matrix Spike Matrix Spike Matrix 1 Accuracy/bias							-		
0 Organo chlomet Samples Field beneticids. Prevision-Overall servicids. Field Duplicate Native Spike 1/20 samples Solu/Sediment. Oils, waters. Periolids. Accuracy/bias Contamination Equipment Rinsate 1/20 samples Maters. Oils. Periolids. Accuracy/bias Contamination Equipment Rinsate 1/20 samples Waters. Solu/Sediments. Oils. Accuracy/bias Matrix Spike Submission or Matrix Spike Submission or Maters. Solu/Sediments. Oils. Accuracy/bias Matrix Spike T/20 samples Matrix Spike Submission or Maters. Solu/Sediments. Oils. Accuracy/bias Matrix Spike T/20 samples Matrix Spike Solu/Sediments. Oils. Accuracy/bias Calibration Fire-point Waters. Soli/Sediments. Oils. Accuracy/bias Second Source Displetion and Biota Accuracy/bias Calibration Matrix Soli/Sediments. Oils. Accuracy/bias Remetion Matrix Soli/Sediments. Oils. Accuracy/bias Second Source Displetion and Biota Accuracy/b	Analysis Method	Parameter	Field/Lab Requirement	Data Quality Indicators (DQIs)	Quality Centrel Check	Frequency	Matrix	Acceptance Criteria	Corrective Action
Persidia. Matrix Splite Variation Pretricids. Accurecy/bias Contamination Equipment Ritistate 1/20 samples Waters Oils. Pretricids. Accurecy/bias Contamination Equipment Ritistate 1/20 samples Waters Oils. Accurecy/bias Matrix Splite 1/20 samples Waters Oils. Matrix Splite Oils. Matrix Splite Oils.	SW-846 8081 A	Organo- chlorine	Field Samuline	Precision-Overall	Field Duplicate	1/20 samples	Soils/Sediments, Oils and Biota	RPD<50% when both detects	NA
Herbolds. Accuracy/his Contamination Equipment Rinsate 1/20 samples Waters, Soils/Sediments, Olis, and Biora Laboratory Accuracy/his Martix, Spike 1/20 samples Waters, Soils/Sediments, Olis, and Biora Laboratory Accuracy/his Martix, Spike 1/20 samples waters, Soils/Sediments, Olis, and Biora Accuracy/his Initial Calibration Erroid Team Waters, Soils/Sediments, Olis, and Biora Accuracy/his Initial Calibration Erroid Team Waters, Soils/Sediments, Olis, and Biora Accuracy/his Second Source Dap/ics Markers, Soils/Sediments, Olis, and Biora Accuracy Kernetion Initial Calibration for analytes Markers, Soils/Sediments, Olis, and Biora Accuracy Retention Initial Calibration for analytes Markers, Soils/Sediments, Olis, and Biora Accuracy Retention Initial Calibration for analytes Markers, Soils/Sediments, Olis, and Biora Accuracy Retention Initial Calibration for analytes Markers, Soils/Sediments, Olis, analytes Accuracy Retention Initial Calibration Markers, Soils/Sediments, Olis, verticestion <	8150B	Pesticides,	0				Waters	RPD<30% when both detects	
Accuracy/bias Matrix Spike and Duplicate Per Field Team waters, solis/Sediments, Oils, and Biota Laboratory Accuracy/bias Matrix Spike and Duplicate Per Field Team Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Initial Calibration Fire-point enlibration Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Initial Calibration Fire-point enlibration Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Second Source Once per fire-point Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Second Source Once per fire-point Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Retention Initial Calibration Preprint Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Retention Initial Calibration Preceptint Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Initial Calibration Daily before Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Initial Calibration Daily before Waters, Solis/Sediments, Oils, and Biota Accuracy/bias Initial Calibration Daily before Waters, Solis/Sediments, Oils, and Biota	8141A	Herbicides,		Т	C	1.00		er than 5 times the PQL	
Accuracy/bias Matrix Spike and Duplicate Per Field Team Waters, Soils/Sediments, Oils, Marix Spike Numers, Soils/Sediments, Oils, Submission or and Biota Accuracy/bias Initial Calibration Five-point calibration Waters, Soils/Sediments, Oils, for all analytes and Biota Accuracy/bias Second Source Once per five-point Waters, Soils/Sediments, Oils, for all analytes Accuracy/bias Second Source Initial calibration for analysis and Biota Accuracy/bias Verification all analytes and Biota Accuracy/bias Initial calibration for Wrindow and Biota oils Accuracy Retention Time Each initial calibration verification and Biota Accuracy/bias Initial Calibration Waters, Soils/Sediments, Oils, Sediments, Oils, Sediments, Oils, Calibration analytes Accuracy/bias Initial Calibration Sample and Biota Accuracy/bias Initial Calibration Waters, Soils/Sediments, Oils, Sediments, Oils, Verification Accuracy/bias Initial Calibration Sample and Biota Accuracy Sample and Biota Biota <td></td> <td>UF resuctes</td> <td></td> <td></td> <td>Equipment Kinsate</td> <td>1/20 samples</td> <td>waters, Sous/Seduments, Unis, and Biota</td> <td></td> <td>AN</td>		UF resuctes			Equipment Kinsate	1/20 samples	waters, Sous/Seduments, Unis, and Biota		AN
Matrix Spike Submission or and Biota Duplicate 1/20 samples and Biota Initial Calibration Five-point calibration Waters, Soils/Sediments, Olls, for rosample Recend Source Once per five-point Waters, Soils/Sediments, Olls, and Biota Second Source Once per five-point Waters, Soils/Sediments, Olls, and Biota Verification all analytes and Biota Verification all analytes and Biota Verification all analytes and Biota Verification and Biota Olis, Sediments, Olis, Verification Verification and Biota and Biota Verification and Biota and Biota Vindow calibration verification and Biota Verification and Biota and Biota Verification sample and Biota Verification and Biota and Biota Calibration and Biota and Biota Verification samples and at and Biota Verification samples and at end Of sequence				Accuracy/bias	Matrix Spike and	Per Field Team	Waters, Soils/Sediments, Oils,	Per Table 5	1. Evaluate batch
Unplicate I/V samples Initial Calibration Five-point calibration Initial Calibration Five-point calibration Recent Source Once per five-point Second Source Once per five-point Verification analytes Retention Time Each initial Window calibration and Mindow calibration and Initial Calibration Waters, Soils/Sediments, Oils, Verification Retention Time Each initial Window calibration and Initial Calibration Daily before Weiffication Bandysis Calibration Daily before Waters, Soils/Sediments, Oils, Verification Maters, Soils/Sediments, Oils, Sediments,					Matrix Spike	Submission or	and Biota		(Narrate)
Initial Calibration Five-point calibration Waters, Soils/Sediments, Oils, for or sample Record Source Once per five-point Waters, Soils/Sediments, Oils, and Biota Second Source Once per five-point Waters, Soils/Sediments, Oils, and Biota Verification initial calibration for and Biota and Biota Verification all analytes and Biota Verification all analytes and Biota Verification all analytes waters, Soils/Sediments, Oils, verification Verification all analytes and Biota Verification Daily before Waters, Soils/Sediments, Oils, verification Verification Daily before Waters, Soils/Sediments, Oils, verification Verification Banalysis and Biota Calibration Daily before Waters, Soils/Sediments, Oils, verification Verification Sample and Biota Calibration After every 10 verification Verification samples and at and Biota Second Column 100% for all Waters, Soils/Sediments, Oils, verification Confirmation positive results and Biota Confirmation positive results and Biota Confirmation positive results and Biota <t< td=""><td></td><td></td><td></td><td></td><td>Uupiicate</td><td>1/20 sampies</td><td></td><td></td><td></td></t<>					Uupiicate	1/20 sampies			
For all analytes and Biola prior to sample analysis Second Source Once per five-point Waters, Soils/Sediments, Oils, and Biota Verification all analytes med Biota Vindow all analytes med Biota Window calibration for all bration verification and Biota Nindow calibration verification and Biota Verification Daily before Waters, Soils/Sediments, Oils, and Biota Initial Calibration Daily before Waters, Soils/Sediments, Oils, sample Verification Baily before Waters, Soils/Sediments, Oils, sample Verification Baily before Waters, Soils/Sediments, Oils, sample Verification Sample and Biota Second Column 100% for all Waters, Soils/Sediments, Oils, sample Second Column 100% for all Waters, Soils/Sediments, Oils, sample Confirmation positive results and Biota Confirmation positive results and Biota				Accuracy/bias	Initial Calibration	Five-point calibration	Waters, Soils/Sediments, Oils,	Linear mean RSD for all analytes <20% [1. Evaluate	1. Evaluate
proof to sample analysis Second Source Once per five-point Second Source Once per five-point Verification initial calibration for Verification and Biota Vindow Each initial Retention Time Each initial Window calibration for And Biota waters, Soils/Sediments, Oils, Waters, Soils/Sediments, Oils, Window Initial Calibration Banalytes Retention Daily before Waters, Soils/Sediments, Oils, Sediments, Oils, Window Calibration Daily before Waters, Soils/Sediments, Oils, Sediments, Oils, Second Column						tor all analytes	and Blota		2. Recalibrate when
Second Source Once per five-point Waters, Soils/Sediments, Oils, and Biota Verification all analytes Verification all analytes Window all analytes Verification and Biota Mindow calibration for all analytes Verification Daily before Window Daily before Window Calibration Paily before Waters, Soils/Sediments, Oils, and Biota Verification Daily before Verification Banlysis Calibration After every 10 Verification Samples and at Verification Samples and at Confirmation Io0% for all Maters, Soils/Sediments, Oils, Second Column Dossitive results and Biota Confirmation After every 10 Verification samples and at Confirmation Io0% for all Waters, Soils/Sediments, Oils, Second Column Dossitive results and Biota Confirmation positive results Addition and Biota						prior to sample analysis			QC criteria is not met
Calibration initial calibration for verification and Biota Verification all analytes and Biota Retention Time Each initial Waters, Soils/Sediments, Oils, and Biota Window calibration and Biota Perification Daily before Waters, Soils/Sediments, Oils, and Biota Initial Calibration Daily before Waters, Soils/Sediments, Oils, analysis Calibration Daily before Waters, Soils/Sediments, Oils, analysis Calibration Sample and Biota Verification After every 10 waters, Soils/Sediments, Oils, sample Verification samples and at and Biota Confirmation Iter every 10 waters, Soils/Sediments, Oils, samples and at Confirmation Returned and Biota Second Column 100% for all Waters, Soils/Sediments, Oils, storabhene and				Accuracy/bias	Second Source	Once per five-point	Waters, Soils/Sediments, Oils,	All analytes within ±15% of expected	1. Evaluate
Verification all analytes Retention Time Each initial Waters, Soils/Sediments, Oils, Window Window calibration and calibration and sample Waters, Soils/Sediments, Oils, and Biota Initial Calibration Daily before Waters, Soils/Sediments, Oils, and Biota Verification Daily before Waters, Soils/Sediments, Oils, and Biota Verification Path every 10 Waters, Soils/Sediments, Oils, and Biota Verification Sample and Biota Second Column 100% for all Waters, Soils/Sediments, Oils, and Biota Confirmation positive results and Biota Confirmation positive results and Biota					Calibration	initial calibration for	and Biota		2. Recalibrate when
Retention Time Each initial Waters, Soils/Sediments, Oils, Window Window calibration and and Biota and Biota Initial Calibration Daily before Waters, Soils/Sediments, Oils, Sediments, Oils, and Biota Verification Daily before Waters, Soils/Sediments, Oils, Sediments, Oils, and Biota Verification After every 10 Waters, Soils/Sediments, Oils, sample Verification After every 10 Nerification Verification samples and at end of sequence Second Column 100% for all Waters, Soils/Sediments, Oils, for all Second Column positive results and Biota Reter Maters, Soils/Sediments, Oils, for all Maters, Soils/Sediments, Oils, for all					Verification	all analytes			QC criteria is not met
Window calibration and calibration and Biota Initial Calibration Daily before Waters, Soils/Sediments, Oils, sample Verification Banalysis and Biota Calibration After every 10 Waters, Soils/Sediments, Oils, analysis Verification After every 10 Verification Verification After every 10 Second Column Second Column 100% for all Waters, Soils/Sediments, Oils, soils/Sediments, Oils, for all Second Column Dositive results and Biota Confirmation positive results and Biota (excluding toxaphene and and Biota					Retention Time	Each initial	Waters, Soils/Sediments, Oils,	±3 STD deviations for each analyte	1. Evaluate
Initial Calibration Calibration Daily before Waters, Soils/Sediments, Oils, Sediments, Oils, sample Verification Daily before Waters, Soils/Sediments, Oils, samples Calibration After every 10 Waters, Soils/Sediments, Oils, samples and at end of sequence Verification Second Column 100% for all Second Column 100% for all Waters, Soils/Sediments, Oils, for all Confirmation positive results and Biota					Window	calibration and	and Biota	retention time in 72-hour period	2. Reanalyze all samples
Initial Calibration Daily before Waters, Soils/Sediments, Oils, sample Verification sample and Biota Calibration After every 10 verification Verification samples and at end of sequence Maters, Soils/Sediments, Oils, analysis Second Column 100% for all Waters, Soils/Sediments, Oils, and Biota Confirmation positive results and Biota Confirmation to contine and Biota						calibration verification			analyzed since the last
Initial Calibration Daily before Waters, Soils/Sediments, Oils, analysis Verification sample and Biota Calibration After every 10 and Biota Verification samples and at end of sequence end of sequence end of sequence and Biota Second Column 100% for all Waters, Soils/Sediments, Oils, toxaphene and									retention time check
Verification sample and Biota Analysis analysis Calibration After every 10 Verification After every 10 Verification samples and at end of sequence end of sequence Second Column 100% for all Vositive results and Biota Confirmation positive results (excluding toxaphene and				Accuracy/bias	Initial Calibration	Daily before	Waters, Soils/Sediments, Oils,	All analytes within ±15% of expected	1. Evaluate
analysis Calibration After every 10 Verification After every 10 Verification samples and at end of sequence end of sequence Second Column 100% for all Confirmation positive results confirmation (excluding to varphene and t					Verification	sample	and Biota	value or average of all analytes	2. Repeat initial
Calibration After every 10 Verification samples and at Verification samples and at end of sequence end of sequence Second Column 100% for all Vonfirmation positive results confirmation (excluding to xaphene and						analysis		within ±15%	calibration
Verification samples and at end of sequence end of sequence Second Column 100% for all Waters, Soils/Sediments, Oils, Confirmation positive results and Biota (excluding toxaphene and					Calibration	After every 10			1. Evaluate
end of sequence end of sequence Second Column 100% for all Waters, Soils/Sediments, Oils, Confirmation positive results and Biota (excluding toxaphene and					Verification	samples and at			2. Clean system
Second Column 100% for all Waters. Soils/Sediments, Oils, Confirmation positive results and Biota (excluding toxaphene and						end of sequence			3. Reanalyze
Second Column 100% for all Waters. Soils/Sediments, Oils, Confirmation positive results and Biota (excluding toxaphene and									calibration
Second Column 100% for all Waters, Soils/Sediments, Oils, Confirmation positive results and Biota (excluding toxaphene and									verification
Second Column 100% for all Waters. Soils/Sediments, Oils, Confirmation positive results and Biota (excluding toxaphene and									and all samples
Second Column 100% for all Waters, Soils/Sediments, Oils, Confirmation positive results and Biota (excluding toxaphene and									since last successful
Second Column 100% for all Waters, Soils/Sediments, Oils, Confirmation positive results and Biota (excluding toxaphene and									calibration
Second Column 100% for all Waters. Soils/Sediments, Oils, Confirmation positive results and Biota (excluding toxaphene and									verification
positive results (excluding toxaphene and					Second Column	100% for all	Waters, Soils/Sediments, Oils,	Same as initial column analyses	 Same as initial
(excluding toxaphene and					Confirmation	positive results	and Biota		column analyses
toxaphene and						(excluding			
						toxaphene and			

U:\plh00\01101543.XLS

Page 4 of 14

ANALYTICAL QUALITY CONTROL REQUIREMENTS

Analysis Method	Parameter	Picia/Lab Requirement	Data Quanty Indicators (DQIs)	Quality Control Check	Frequency	Matrix	Acceptance Criteria	Corrective Action
SW-846	Organo-		Accuracy/bias Contamination	Cleanup Blank	1/batch or 1/20	Waters, Soils/Sediments, Oils,	10d %>	1. Evaluate
8081A	chlorine	(continued)		_	samples per cleanup	and Biota		2. Clean system
8150B	Pesticides,				procedure performed			3. Reanalyze as necessary
8141A	Herbicides,		Accuracy/bias	Surrogate	Every sample	Waters, Soils/Sediments, Oils,	Per Table 5	I. Rerun
	OP Pesticides					and Biota		2. Re-extract as
								necessary (Narrate)
			Accuracy/bias Contamination	Method Blank	1/batch/matrix	Waters, Soils/Sediments, Oils,	T Òd %>	l. Renun
					or 1/20	and Biota		2. Evaluate batch
					samples,	-		(Narrate)
					whichever			3. Re-extract as
					more frequent			necessary
			Precision-Laboratory (bias)	Laboratory Control	1/batch/matrix or 1/20	1/batch/matrix or 1/20 Waters, Soils/Sediments, Oils,	Per Table 5	l. Renun
				: (Matrix Spike	samples, whichever	and Biota		2. Evaluate batch (Narrate)
					more frequent			3. Re-extract as necessary
SW-846	nated	Field	Precision-Overall	Field Duplicate	1/20 samples	Soils/Sediments, Oils and Biota RPD<50% when both detects		NA NA
8290	dibenzo-p-	Sampling					are greater than 5 times the PQL.	
	dioxins/					Waters	RPD<30% when both detects	
	polychlorinated						are greater than 5 times the PQL.	
	dibenzofurans		Accuracy/bias Contamination	Equipment Rinsate	1/20 samples	Waters, Soils/Sediments, Oils,	10di%>	NA
	(i cuui cui) Compoinde	I aboratory	Accuracy/hise	Matrix Snike and	Der Field Team	Waters Scils/Sediments Oils	Der Tohle S	1 Evolution booch
	componing -					maters, poins seminents, Ons,		
					1/20 samples			(Malatc)
			Accuracy	rometer	06	Waters, Soils/Sediments, Oils,	As per SW-8290 Section 7.6.2	1. Evaluate
_						and Biota		2. Retune instrument,
			-					venify
-			Accuracy	raphic	As per SW-8290 1	Waters, Soils/Sediments, Oils,	≥75%	1. Evaluate
				Resolution	Section 8.2.1.2	and Biota		2. Rerun as necessary
			Accuracy/bias	Initial and Continuing	As per SW-8290 1	Waters, Soils/Sediments, Oils,	As per SW-8290 Section 7.7	1. Evaluate
					Section 7.7	and Biota		2. Recalibrate when
								QC criteria is not
								met

J	ŀ
(I)
-	1
a	2
-	1
⊢	

ANALYTICAL QUALITY CONTROL REQUIREMENTS

•

Analynia Method	Parameter	Field/Lab Requirement	Data Quality Indicators (DQIs)	Quality Control Check	Frequency	Matrix	Acceptance Criteria	Corrective Action
SW-846 8290	Polychlorinated dibenzo-p- dioxins/ polychlorinated dibenzofurans	Laboratory (continued)	Accuracy	ldentification/ Retention Times/Ion Ratios/Signal to Noise/ Interferences	As per SW-8290 Section 7.8.4	Waters, Soils/Sediments, Oils, and Biota	As per SW-8290 Section 7.8.4 S/N exceeds 10:1 for all ions lon abundance ratio ±15%	 Evaluate Retun as necessary
	(PCDD/PCDF) Compounds			System Performance Check	As per SW-8290 Section 8.2	Waters, Soils/Sediments, Oils, and Biota	As per SW-8290 Section 8.2	 Evaluate Rerun as necessary
			Accuracy	Quality Control Checks	As per SW-8290 Section 8.3	Waters, Soils/Sediments, Oils, and Biota	As per SW-8290 Section 8.3	1. Evaluate 2. Rerun as necessary
			Accuracy/bias	Internal Standards	As per SW-8290 Section 8.4	Waters, Soils/Sediments, Oils, and Biota	As per SW-8290 Section 8.4 %R= 40% to 135%	1. Evaluate 2. Renin as necessary
			Accuracy/bias	Surrogate	Every sample	Waters, Soils/Sediments, Oils, and Biota	Per Table 5	 Renun Re-extract as
			Accuracy/bias Contamination	Method Blank	1/batch/matrix or 1/20 samples, whichever more frequent	Waters, Soils/Sediments, Oils, and Biota	10d%>	1. Rerun 2. Evaluate batch (Narrate) 3. Re-extract as necessary
			Precision-Laboratory (bias)	Laboratory Control Sample (Matrix Spike Blank)	I/batch/matrix or 1/20 samples, whichever more frequent	Waters, Soils/Sediments, Oils, and Biota	Per Table 5	 Rerun Evaluate batch (Narrate) Re-extract as necessary
SW-846 8280A	Polychłorinated dibenzo-p- dioxins/ molychlorinated	Field Sampling	Precision-Overall	Field Duplicate	1/20 samples	Soils/Sediments, Oils and Biota Waters		Y _N
	dibenzofurans (PCDD/PCDF)		Accuracy/bias Contamination	Equipment Rinsate	1/20 samples	Waters, Soils/Sediments, Oils, and Biota	<td>VA</td>	VA
	Compounds	Laboratory	Accuracy/bias	Matrix Spike and Matrix Spike Duplicate	Per Field Team Submission or 1/20 samples	Waters, Soils/Sediments, Oils, and Biota	Per Table 5	 Evaluate batch (Narrate)
			Accuracy	Mass Spectrometer Tune	As per SW-8280A Section 7.13.1	Waters, Soils/Sediments, Oils, and Biota	As per SW-8280A Section 7.13.1	1. Evaluate 2. Retune instrument, verify
	-		Accuracy	Chromatographic Resolution	As per SW-8280A Section 7.12.2	Waters, Soils/Sediments, Oils, and Biota	275%	 Evaluate Renun as necessary

ANALYTICAL QUALITY CONTROL REQUIREMENTS

Analyzis Method	Parameter	Field/Lab Requirement	Data Quality Indicators (DQIs)	Quality Control Check	Frequency	Matrix	Aeceptance Criteria	Corrective Action
SW-846 8280A	Polychlorinated dibenzo-p- dioxins/	Laboratory (continued)	Accuracy/bias	Initial and Continuing Calibrations/Ion Abundance/Resolution	As per SW-8280A Section 7.13.3	Waters, Soils/Sediments, Oils, and Biota	As per SW-8280A Section 7.13.1	 Evaluate Recalibrate when OC criteria is not met
	(PCDD/PCDF) Compounds		Accuracy		As per SW-8280A Section 7.13.2	Waters, Soils/Sediments, Oils, and Biota	As per SW-8280A Section 7.13.2	 Evaluate Rerun as necessary
				I dentification	As per SW-8280A Section 7.14.5		As per SW-8280A Section 7.14.5	 Evaluate Rerun as necessary
			Accuracy	Quality Control Checks	P04	Waters, Soils/Sediments, Oils, and Biota	As per SW-8280A Section 8 2	 Evaluate Rerun as necessary
			Accuracy/bias	Internal Standards	Every sample	Waters, Soils/Sediments, Oils, and Biota	Recovery in undiluted extract 25% to 150%	 Rerun Re-extract as necessary (Narrate)
				Surrogate	Every sample		Per Table 5	1. Rerun 2. Re-extract as necessary (Narrate)
			Accuracy/bias Contamination	Method Blank	1/batch/matrix or 1/20 samples, whichever more frequent	1/batch/matrix or 1/20 Waters, Soils/Sediments, Oils, samples, whichever and Biota more frequent		 Rerun Evaluate batch (Narrate) Re-extract as necessary
			Accuracy/bias	Laboratory Control Sample (Matrix Spike Blank)	1/batch/matrix or 1/20 samples, whichever more frequent	Waters, Soils/Sediments, Oils, and Bíota	Per Table 5	 Rerun Evaluate batch (Narrate) Re-extract as necessary
SW-846 6010B	Metal Analytes	Field Sampling	Precision-Overall	Field Duplicate		Soils/Sediments, Oils and Biota RPD<50% when both detects are greater than 5 times the PC Waters RPD<30% when both detects are greater than 5 times the PC	17 17	YN
			Accuracy/bias Contamination	Equipment Rinsate	See Subsection 8.1.3	Waters, Soils/Sediments, Oils, and Biota		NA
		Laboratory	Accuracy/bias	Matrix Spike		Waters, Soils/Sediments, Oils, and Biota	Per Table 5	 Evaluate batch Redigest as necessary (Narrate)
			Precision-Laboratory (bias)	Laboratory Duplicate	1/20 samples/matrix	Waters	QL	 Rerun Evaluate batch
						Soils/Sediments, Oils and Biota	RPD<35% when both detects are greater than 5 times the PQL	 Redigest as necessary (Narrate)

ANALYTICAL QUALITY CONTROL REQUIREMENTS

	-		-					
Analysis		Field/Lab	Data Quality	Quality Control			Acceptance	
Method	Parameter	Requirement	Indicators (DQ1s)	Check	Frequency	Matrix	Criteria	Corrective Action
SW-846 6010B	Metal Analytes	Laboratory (continued)	Accuracy/bias	Initial Calibration	Daily prior to sample analysis (min. 1 standard and a blank)	Waters, Soils/Sediments, Oils, and Biota	NA	NA
				Initial Calibration	Dailv after initial		All analytes within ±10% of expected	I. Evaluate
				Verification	calibration		value	2. Recalibrate when
								QC criteria is not met
			Accuracy/bias Contamination	Calibration Blank	After every	Waters, Soils/Sediments, Oils,	No analytes	1. Evaluate
				(ICB/CCB)	calibration/	and Biota	detected ≤1/3	2. Reanalyze calibration
					verification		PQL	blank and previous
			Accuracy/hias	Calibration	After every 10	Watere Soils/Sediments Oils	All analytes within +10% of expected	1 Evaluate
				Verification	samples and at the	and Riota	train and PSD of ranking a	1. Evaluato 2. Resnalvye calibration
				(Instrument Check	end of the analysis		integrations <5%	and all samples since
				Standard)	sequence			last successful
								calibration
			Accuracy	Interference Check	At beginning	Waters, Soils/Sediments, Oils,	Within ±20% of expected value	1. Terminate analysis
				Solution	of analytical	and Biota		
					un			3. Reanalyze ICS and
								affected samples
	_		Accuracy/bias Contamination	Method Blank	1/batch/matrix	Waters, Soils/Sediments, Oils,	<% bQL	1. Rerun
					or 1/20	and Biota		2. Evaluate batch
					samples, whichever			3. Redigest as
					more frequent			necessary (Narrate)
			Accuracy/bias	Laboratory Control		Waters	75% to125%	I. Renun
				Sample (Matrix Spike	or 1/20 samples,			2. Evaluate batch
				Blank)	whichever	Soils/Sediments. Oils, and Biota Within vendor supplied limits	Within vendor supplied limits	3. Redigest as
			=					necessary (Narrate)
SW-846 9010B	Cyanide	r reid Sampling	Precision-Overall	Field Duplicate	1/20 samples	Souls/Sediments, Uils and Biota RPD<50% when both detects are greater than 5 times the PC	RPD<50% when both detects are greater than 5 times the PQL	V V
						Waters	RPD<30% when both detects are greater than 5 times the POL	
			Accuracy/bias Contamination	Equipment Rinsate	1/20 samples	Waters, Soils/Sediments, Oils, and Biota	-√, PQL	NA
		Laboratory	Accuracy/bias	Matrix Spike	Per Field Team	Waters, Soils/Sediments, Oils,	Per Table 5	1. Evaluate batch
					Submission or	and Biota		2. Redigest as
					1/20 samples			necessary (Narrate)

U:\pih00\01101543.XLS

Page 8 of 14

ANALYTICAL QUALITY CONTROL REQUIREMENTS

.

			· · · · · · · · · · · · · · · · · · ·					
Analysis		Field/Lab	Data Quality	Quality Control			Acceptance	
Method	Parameter	Requirement	Indicators (DQIs)	Check	Frequency	Matrix	Criteria	Corrective Action
SW-846	Cyanide	Laboratory	Precision-Laboratory (bias)	Laboratory Duplicate	1/20	Waters	RPD<20% when both detects	1. Renun
9010B		(continued)			samples/matrix		are greater than 5 times the PQL	2. Evaluate batch
						Soils/Sediments, Oils and Biota	RPD<35% when both detects	3. Redigest as
							are greater than 5 times the PQL	necessary (Narrate)
			Accuracy/bias	oint Calibration	Daily prior to sample	Daily prior to sample Waters, Soils/Sediments, Oils,	Correlation coefficient ≥0.995 for	 Evaluate system
				Curve	analysis	and Biota	linear regression	2. Recalibrate when
								QC criteria is not met
				Distilled Standards	Once per multipoint		Cyanide within ±10% of true value	I. Evaluate
					calibration			2. Repeat standards
				Second Source	Once per stock		Cyanide within ±15% of	 Evaluate
				Calibration Verification	standard preparation		expected value	2. Recalibrate initial calib.
			Accuracy/bias Contamination	Method Blank	1/batch/matrix or 1/20	1/batch/matrix or 1/20 Waters, Soils/Sediments, Oils,	-104 %>	l. Renn
					samples, whichever	and Biota		2. Evaluate batch
					more frequent			3. Redigest as necessary
								(Narrate)
			Accuracy/bias	Laboratory Control	1/batch/matrix or 1/20	1/batch/matrix or 1/20 Waters, Soils/Sediments, Oils,	75% to 125%	I. Rerun
				Sample (Matrix Spike	samples, whichever	and Biota		2. Evaluate batch
				Blank)	more frequent			3. Redigest as necessary
								(Narrate)
Misc. EPA	Conventional	Field	Precision-Overall	Field Duplicate	1/20 samples	Soils/Sediments, Oils and Biota RPD<50% when both detects		NA
	Parameters	Sampling					are greater than 5 times the PQL.	
	(as defined in					Waters	RPD<30% when both detects	
	Section 4.2.2						are greater than 5 times the PQL.	
	of the		Accuracy/bias Contamination	Equipment Rinsate	1/20 samples	Waters, Soils/Sediments, Oils,	<1⁄2 PQL	NA
	FSP/QAPP) [*]					and Biota		
		Laboratory	Accuracy/bias	Matrix Spike	Per Field Team	Waters, Soils/Sediments, Oils,	Per Table 5	I. Evaluate batch
					Submission or	and Biota		Re-prep/analyze as
					1/20 samples			necessary (Narrate)
				Calibration Curve	Beginning of		Per SW-846 Correlation coefficient	 Evaluate system
				(where applicable)	Analytical		20.995 for linear regression	2. Recalibrate when
					Sequence			QC criteria is not
-								met

ANALYTICAL QUALITY CONTROL REQUIREMENTS

Analysis		Field/Lab	Data Quality	Quality Control	:		Acceptunce	
Method	Parameter	Requirement	E	Check	Frequency	Matrix	Criteria	Corrective Action
Misc. EPA	Conventional	Laboratory	Accuracy/bias Contamination	Initial Calibration	After Initial	Waters, Soils/Sediments, Oils,	Per SW-846	1. Renun
	Parameters	(continued)		Blank (where	Calibration Curve	and Biota		2. Clean system
				applicable)				3. Reanalyze affected
								samples
	12		Accuracy/bias	Continuing Calibration	Every 2 hrs or	Waters, Soils/Sediments, Oils,	90% to 110%	1. Evaluate System
				(where applicable)	1/10 samples	and Biota	of true value	2. Repeat calibration check
								3. Recalibrate/restandardize
_								when QC criteria is not
								met
-			Precision-Laboratory (bias)	Laboratory Duplicate	1/20	Waters	RPD<20% when both detects	1. Evaluate System
					samples/matrix		are greater than 5 times the PQL	2. Repeat calibration check
						Soils/Sediments, Oils and Biota RPD<35% when both detects	RPD<35% when both detects	3. Recalibrate/restandardize
							are greater than 5 times the PQL	when QC criteria is not
								met
			Accuracy/bias Contamination	Method Blank	1/batch/matrix or 1/20	1/batch/matrix or 1/20 Waters, Soils/Sediments, Oils,	TOd %>	1. Rerun
					samples, whichever	and Biota		
					more frequent			3. Re-prep/analyze as
								necessary (Narrate)
			Accuracy/bias	Laboratory Control	1/batch/matrix or 1/20	1/batch/matrix or 1/20 Waters, Soils/Sediments, Oils,	Per Table 5	1. Rerun
				Sample (Matrix Spike	samples, whichever	and Biota		
				Blank)	more frequent			3. Re-prep/analyze as
SW-846	Mercury	Field	Precision-Overall	Field Duplicate	1/20 samples	Soils/Sediments. Oils and Biota RPD<50% when both detects	RPD<50% when both detects	NA NA
7470A	,	Sampling			•		are greater than 5 times the PQL	
7471A						Waters	RPD<30% when both detects	T
_							are greater than 5 times the PQL	
			Accuracy/bias Contamination	Equipment Rinsate	See Subsection	Waters, Soils/Sediments, Oils,	<10 PQL	NA
					8.1.3	and Biota		
		Laboratory	Accuracy/bias	Matrix Spike	Per Field Team	Waters, Soils/Sediments, Oils,	Per Table 5	1. Evaluate batch
					Submission or	and Biota		2. Redigest as
					1/20 samples			necessary (Narrate)

ANALYTICAL QUALITY CONTROL REQUIREMENTS

Analysis Method	Parameter	Field/Lab Requirement	Data Quality Indicators (DQIs)	Quality Control Check	Frequency	Matrix	Acceptance Criteria	Corrective Action
, ,	Mercury	Laboratory	Precision-Laboratory (bias)	Laboratory Duplicate	1/20	Waters	RPD<20% when both detects	1. Evaluate system
7470A		(continued)		(Replicate)	samples/matrix		are greater than 5 times the PQL	2. Repeat calibration
7471A						Soils/Sediments, Oils and Biota		check
							are greater than 5 times the PQL	3. Recalibrate/
								restandardize when
								QC criteria is not met
			Accuracy/bias	Initial Calibration	Daily prior to	Waters, Soils/Sediments, Oils,	Correlation coefficient ≥0.995 for	I. Evaluate
					analysis	and Biota	linear regression	2. Recalibrate when
								QC criteria is not met
				Second Source	Once per initial		Analyte within ±10% of expected	1. Evaluate
				Calibration Check	daily multipoint		value	2. Recalibrate when
				Standard	calibration			QC criteria is not met
			Accuracy/bias Contamination	Calibration Blank	One per initial	Waters, Soils/Sediments, Oils,	No analyte	I. Evaluate
					daily multipoint	and Biota	detected ≥PQL	2. Reanalyze blank
					calibration			and all samples
								associated with blank
			Accuracy/bias	Calibration	After every 10	Waters, Soils/Sediments, Oils,	Analyte within	I. Evaluate
				Verification	samples and at	and Biota	±20% of	2.Recalibrate and
					end of the analysis		expected value	reanalyze all
					sequence			samples since last
						1		successful calibration
			Accuracy/bias Contamination	Method Blank	1/batch/matrix or 1/20	1/batch/matrix or 1/20 Waters, Soils/Sediments, Oils,	-Vy PQL	1. Rerun
					samples, whichever	and Biota		
					more frequent			3. Redigest as
								necessary (Narrate)
			Accuracy/bias	Laboratory Control	1/batch/matrix or 1/20	1/batch/matrix or 1/20 Waters, Soils/Sediments, Oils,	75% to 125%	1. Renun
				Sample (Matrix Spike	samples, whichever	and Biota		2. Evaluate batch
				Blank)	more frequent			3. Redigest as
								necessary (Narrate)
SW-846 8760B	Volatile Organic Compounds	Field Sampling	Precision-Overall	Field Duplicate	1/20 samples	Soils/Sediments, Oils and Biota		NA
	minduno	0						
						W aters	RPD<30% when both detects are greater than 5 times the PQL	
			Accuracy/bias Contamination	Trip Blank (VOC only)	l per cooler	Waters, Soils/Sediments, Oils, and Biota	<½ PQL [®]	NA
				Equipment Rinsate	1/20 samples		<۲۶ DQL [®]	NA

U:\pih00\01101543.XLS

Page 11 of 14

8/22/00

ANALYTICAL QUALITY CONTROL REQUIREMENTS

Analysis Method	Parameter	Field/Lab Roquirement	Data Quality Indicators (DQIs)	Quality Control Check	Frequency	Matrix	Acceptance Criteria	Corrective Action
SW-846	Volatile Organic	Laboratory	Accuracy/bias	Matrix Spike/Matrix	Per Field Team	Waters, Soils/Sediments, Oils,	Per Table 5	1. Evaluate batch
8260B	Compounds			Spike Duplicate	Submission or 1/20 samples	and Biota		(Narrate)
				Initial Calibration	Five-point		SPCCs average RF≥0.1 or 0.3, as	1. Evaluate
					calibration for			2. Recalibrate when
					all analytes			QC criteria is not
					prior to sample analysis		mean RSD of all analytes <15% with n CCCs %RSD >30%	met
			Accuracy/bias	Second Source	Once per five-point	Waters, Soils/Sediments, Oils,	±25% of expected	1. Evaluate
				Calibration	initial calibration	and Biota		2. Recalibrate when
								QC criteria is not met
			Accuracy	ı Time	Each sample for each	Each sample for each Waters, Soils/Sediments, Oils,	Relative retention time (RRT) of the	1. Evaluate
				Window	analyte	and Biota	within ±0.06 RRT units of	2. Reanalyze all
							the RRT	samples analyzed
								since the last retention
						1		time check
			Accuracy/bias		Daily, before sample	oils/Sediments, Oils,	SPCCs average RF ≥0.30 and	1. Evaluate
				Verification	analysis and every	and Biota	CCCss20% difference	2. Repeat initial
					12 hours of analysis			calibration when
					time			QC criteria is not met
		-	Accuracy/bias	Internal Standards	Every sample	Waters, Soils/Sediments, Oils,	Retention time ±30 seconds from RT	1. Evaluate
						and Biota		2. Inspect for
								malfunctions
_							+100% of initial calib. midpoint	3. Reanalyze samples
							standard	as necessary
			Accuracy		Prior to initial	Waters, Soils/Sediments, Oils,		1. Evaluate
				Performance Check	and calibration	and Biota	SW-846	2. Retune instrument,
					verification BFB			venify
			Accuracy/bias	Surrogate	Every sample	oils/Sediments, Oils,	Per Table 5	l Renn
						and Biota		2. Reanalyze as
								necessary (Narrate)

_	
TABLE 4	
L	

ANALYTICAL QUALITY CONTROL REQUIREMENTS

Analysis Method	Parameter	Field/Lab Requirement	Data Quality Iadicators (DQIs)	Quality Control Check	Prequency	Matrix	Acceptance Criteria	Corrective Action
8 W-846 8260B	Volatile Organic Compounds	Laboratory (continued)	Contamination	Method Blank	I/batch/matrix or 1/20 samples, whichever more frequent and, at a minimum, additional blanks should be run when analytes are detected at >100 times the linear range to evaluate possible system contamination	waters, Soils/Sediments, Oils, and Biota	4704 %>	1. Renun 2. Evaluate batch (Narrate) 3. Reanalyze as necessary
			Accuracy/bias	Laboratory Control Sample (Matrix Spike Blank)	1/batch/matrix or 1/20 samples, whichever more frequent	I/batch/matrix or 1/20 [Waters, Soils/Sediments, Oils, samples, whichever and Biota more frequent	Per Table 5	 Rerun Evaluate batch (Narrate) Reanalyze as necessary
SW-846 8270C	Sernivolatile Organic Compounds	Field Sampling	Precision-Overall	Field Duplicate		Soils/Sediments, Oils and Biota RPD<50% when both detects are greater than 5 times the PC Waters RPD<30% when both detects	TO	
			Accuracy/bias Contamination	Equipment Rinsate	1/20 samples	Waters, Soils/Sediments, Oils, and Biota		NA
		Laboratory	Accuracy/bias	Matrix Spike/Matrix Spike Duplicate	Per Field Team Submission or 1/20 samples	Waters, Soils/Sediments, Oils, and Biota	Per Table 5	 Evaluate batch (Narrate)
				Initial Calibration	Five-point calibration for all analytes prior to sample analysis		SPCCs average RF 20.050, %RSD for 11. Evaluate RFs for CCCs ≤30%, and mean RSD of 2. Recalibrate when all analytes ≤15% with no CCCs RSD QC criteria is not >30%	 Evaluate Recalibrate when QC criteria is not met
			Accuracy	Retention Time Window	Each sample for each analyte	Waters, Soils/Sediments, Oils, and Biota	e retention time (RRT) of the within ±0.06 RRT units of the	 Evaluate Reanalyze all samples analyzed since the last retention time check

,

8/22/00

ANALYTICAL QUALITY CONTROL REQUIREMENTS

Analysis Method	Paraméter	Field/Lab Requirement	Data Quality Indicators (DQIs)	Quality Control Check	Frequency	Matrix	Acceptunce Criteria	Corrective Action
SW-846 8270C	Semivolatile Organic Compounds	Laboratory (continued)	Accuracy/bias	Calibration Verification	Daily, before sample analysis and every 12 hours of analysis time	Waters. Soils/Sediments, Oils, and Biota	SPCCs average RF ≥0.05 and CCCs≤20% difference, all calibration analytes within ±20% of expected value	 Evaluate Repeat initial Relibration when OC criteria is not met
				Internal Standards	Every sample	Ĩ	ion time ±30 seconds from RT midpoint standard in the initial tion EICP area within -50% to 5 of initial calib. midpoint rd	 Evaluate Inspect for malfunctions Reanalyze samples as necessary
		.	Accuracy	Instrument Performance Check	Prior to initial and calibration verification DFTPP	Waters, Soils/Sediments, Oils, and Biota	Refer to SW-846	 Evaluate Retune instrument, verify
		L <u>,</u>	Accuracy/bias	Surrogate	Every sample	Waters, Soils/Sediments, Oils, and Biota	Per Table S	 Rerun Re-extract and reanalyze as necessary (Narrate)^d
			Accuracy/bias Contamination	Method Blank	1/batch/matrix or 1/20 samples, whichever more frequent	Waters, Soils/Sediments, Oils, and Biota	JQ4 ₩>	 Rerun Evaluate batch (Narrate) Reanalyze as necessary
			Accuracy/bias	Laboratory Control Sample (Matrix Spike Blank)	l //batch/matrix or 1/20 samples, whichever more frequent	Waters, Soils/Sediments, Oils, and Biota	Per Table 5	 Rerun Evaluate batch (Narrate) Reanalyze as necessary

- This listed QA requirements may not apply to all conventional parameters. For example, for total solids analysis, matrix spike criteria do not apply.

^b - For target analytes. Blank criteria for common 8260 laboratory contaminants; DCM < 2.5X PQL
 Acetone < 5X PQL
 2-Butanone < 5X PQL

^c - For target analytes. Blank criteria for common 8270 laboratory contaminants (i.e. phthalate esters) = 5X PQL

 $^{\rm d}$. When more than one base/neutral and or more than one acid surrogate fails the criteria in Table 5.

		Wat	ter	Soil/Sedin	ent/Biota	Air	
Fraction	Spike/Surrogate	Percent		Percent		Percent	() (* E
	Compound	Recovery	RPD	Recovery	RPD	Recovery	RPD
Volatiles	1,1-Dichloroethane	61 - 145	14	59 - 172	22	- 1	•
	Trichloroethene	71 - 120	14	62 - 137	24	- 1	-
	Chlorobenzene	75 - 130	13	60 - 133	21	-	-
	Toluene	76 - 125	13	59 - 139	21	-	-
	Benzene	76 - 127	11	66 - 142	21	-	-
	Toluene-d ₈ (Surr)	88 - 110	-	84 - 138	-	-	-
	4-Bromofluorobenzene (Surr)	86 - 115	-	59 - 113	-	- 1	-
	1,2-Dichloroethane-d4 (Surr)	76 - 114	-	70 - 121	-	- 1	-
	Dibromofluoromethane	86 - 118	-	80 - 120	-	- 1	-
Semi-Volatiles	1,2,4-Trichlorobenzene	39 - 98	28	38 - 107	23	-	-
(Base/Neutrals)	Acenaphthene	46 - 118	31	31 - 137	19	- 1	-
	2,4-Dinitrotoluene	24 - 96	38	28 - 89	47	-	-
	Pyrene	26 - 117	31	35 - 142	36	-	-
	N-Nitrous-di-n-propylamine	41 - 116	38	41 - 126	38	-	-
	1,4-Dichlorobenzene	36 - 97	28	28 - 104	27	-	-
	Nitrobenzene-d ₅ (Surr)	35 - 114	-	23 - 120	-	-	-
	2-Fluorobiphenyl (Surr)	43 - 116	-	30 - 115	-	-	-
	p-Terphenyl-d ₁₄ (Surr)	33 - 141	-	18 - 137	-	-	-
	1,2-Dichlorobenzene-d ₄ (Surr)*	16 - 110	•	20 - 130			-
Semi-Volatiles	Pentachlorophenol	9 - 103	50	17 - 109	47	<u>- </u>	-
(Acids)	Phenol	12 - 110	42	26 - 90	35	- 1	-
. ,	2-Chlorophenol	27 - 123	40	25 - 102	50	1 - 1	
	4-Chloro-3-methylphenol	23 - 97	42	26 - 103	33	- 1	-
	4-Nitrophenol	10 - 80	50	11 - 114	50	-	-
	Phenol-d ₅ (Surr)	10 - 110	-	24 - 113	-	-	-
	2-Fluorophenol (Surr)	21 - 110	-	25 - 121	-	1 1	-
	2,4,6-Tribromophenol (Surr)	10 - 123	-	19 - 122	-	- 1	•
	2-Chlorophenol-d ₄ (Surr)*	33 - 110	•	20 - 130	-		-
Chlorinated	g-BHC	56 - 123	15	46 - 127	50	- 1	-
Pesticides	Heptachlor	40 - 131	20	35 - 130	31	- 1	-
	Aldrin	40 - 120	22	34 - 132	43	-	-
	Dieldrin	52 - 126	18	31 - 134	38	-	-
	Endrin	56 - 121	21	42 - 139	45	-	-
	4,4'-DDT	38 - 127	27	23 - 134	50	-	-
	Tetrachloro-m-xylene (Surr)	60 - 150	-	60 - 150	•	-	-
	Decachlorobiphenyl (Surr)	60 - 150	-	60 - 150	-	-	-
PCBs	Aroclor-1242	39 - 150	27	39 - 150	50	-	30
	Aroclor-1254	29 - 131	27	29 - 131	50	-	30
	Aroclor-1260	8 - 127	27	8 - 127	50	-	30
	Tetrachloro-m-xylene (Surr)	60 - 150	-	60 - 150	-	65-125	-
	Decachlorobiphenyl (Surr)	60 - 150	-	60 - 150	-	65-125	-

QUALITY CONTROL ACCURACY AND PRECISION LIMITS

:		Water		Soil/Sedir	nent/Biota	Air	
Fraction	Fraction Spike/Surrogate Compound	Percent Recovery	RPD	Percent Recovery	RPD	Percent Recovery	RPD
Herbicides	2,4-D	50 - 135	50	50 - 135	50	-	-
	2,4,5-TP	50 - 135	50	50 - 135	50	-	-
	2,4,5-T	50 - 135	50	50 - 135	50	-	-
	2,4-DB (Surr) or DCAA (Surr)	20 - 150	-	24 - 154	-	-	-
Organo-	Dimethoate	50 - 135	50	50 - 135	50	-	-
Phosphorous	Disulfoton	50 - 135	50	50 - 135	50	-	-
Pesticides	Methyl Parathion	50 - 135	50	50 - 135	50	- 1	-
	Parathion	50 - 135	50	50 - 135	50	-	-
	Phorate	50 - 135	50	50 - 135	50	-	-
	Sulfotep	50 - 135	50	50 - 135	50	-	•
	Methidathion (Surr)	60 - 120	-	60 - 120	-	-	-
Dioxins/Furans	Dioxins/Furans	50 - 150	•	50 - 150	-	-	-
Inorganics	Inorganics	75 - 125 ²	20 ³	75 - 125 ²	354	-	-

QUALITY CONTROL ACCURACY AND PRECISION LIMITS

Notes:

- ¹ All matrices other than water
- 2 Except where sample concentration exceeds the spike concentration by a factor of four or more.
- ³ For analytes less than 5 times the CRDL, a control limit of \pm CRDL is used.
- ⁴ For analytes less than 5 times the CRDL, a control limit of ± 2 CRDL is used.
- * These limits are for advisory purposes only. They are not to be used to determine if a sample should be reanalyzed.

PERFORMANCE STANDARDS IN CONSENT DECREE FOR PCBs IN SOILS/SEDIMENTS AT REMOVAL ACTION AREAS OUTSIDE RIVER

SPATIAL AVERAGE PCB CONCENTRATIONS (values are presented in dry-weight parts per million, ppm)

	Spatial Averaging Depth Intervals (see note 2)					
Area (see note 1)	0' to 1'	0' to 3'	1' to 3'	1' to 6'	0' to 15'	1' to X'
GE Plant Area (see note 3)						
20s Complex (Area 3)	25			200	100	
30s Complex (Area 2)	25			200	100	
40s Complex (Area 1)	25			200	100	
East Street Area 2 - South (Area 4)						
60s Complex	25			200	100	
Former Gas Plant / Scrap Yard Area	25			200	100	
Potential Future City Recreational Area (see note 4)			15			
200-Foot Wide Industrial Averaging Strip	25			200	100	
200-Foot Riparian Removal Zone (see note 5)	10		15		100	
East Street Area 2 - North (Area 5)	25			200	100	
East Street Area 1 - North (Area 6) (see note 6)	25			200	100	
U.S. Generating Company (Area 8)	25			200	100	
Hill 78 Area - Remainder (excluding Consolidation Areas) (Area 7)	25			200	100	
Unkamet Brook Area (excluding former landfill) (Area 9)						
GE Plastics Area	25			200	100	
OP-1/OP-2 Area	25			200	100	
Area East of Landfill (excluding Inundated Wetlands)	10		15		100	
OP-3 Area (non-GE-owned) (with ERE)	25			200	100	
OP-3 Area (non-GE-owned) (without ERE)	25	25		200	100	
Other Non-GE-Owned Commercial Area (with ERE)	25			200	100	
Other Non-GE-Owned Commercial Area (without ERE)	25	25		200	100	
Recreational Area Near OP-3 (with ERE)	10		15		100	
Recreational Area Near OP-3 (without ERE)	10	10	+-		100	
Floodplain Recreational Areas (with EREs)	10		15		100	
Floodplain Recreational Areas (without EREs)	10	10			100	
East of Landfill - Inundated Wetlands (2 wetland areas)	I					
Unkamet Brook Sediments (3 reaches)	1					
Former Oxbow Areas (Areas 11, 12, 13, 14, 15)						
Residential Properties (see notes 7 and 8)	2					2
Commercial/Industrial Properties (with EREs) (see notes 7 and 9)	25			200	100	
Commercial/Industrial Properties (without EREs) (see notes 7 and 9)	25	25	+	200	100	
Recreational Properties (with EREs) (see notes 7 and 9)	10		15		100	
Recreational Properties (without EREs) (see notes 7 and 9)	10	10			100	
GE-Owned Parking Lots (Lyman and Newell) (see note 5)	10		15		100	
GE-Owned Wooded Area (Newell Street II)	10		15	+-	100	
GE-Owned Riparian Strip (Newell Street I)	10		15		100	

PERFORMANCE STANDARDS FOR REMOVAL ACTION AREAS

SPATIAL AVERAGE PCB CONCENTRATIONS

(values are presented in dry-weight parts per million, ppm)

	Spatial Averaging Depth Intervals (see note 2)					
Area (see note 1)	0' to 1'	0' to 3'	1' to 3'	1' to 6'	0' to 15'	I' to X'
Housatonic River - 1.5-Mile Reach						
Current Residential Properties (see notes 7 and 8)	2					2
Current Recreational Properties (with EREs) (see notes 7 and 9)	10		15		100	
Current Recreational Properties (without EREs) (see notes 7 and 9)	10	10			100	
Current Commerical/Industrial Properties (with EREs) (see notes 7 and 9)	25			200	100	
Current Commerical/Industrial Properties (without EREs) (see notes 7 and 9)	25	25		200	100	
Housatonic River - Downstream of Confluence						
Current Residential Properties (see notes 7, 8, and 10)	2					2
Silver Lake Bank Areas						
Current Residential Properties (banks only) (see notes 8 and 11)	2					2
Current Non-Residential Properties (with EREs) (see note 11)	10		15			
Current Non-Residential Properties (without EREs) (see note 11)	10	10	-			

Notes:

- 1. Figure 1 of this document depicts the general Removal Action Areas (RAAs) at the CD Site (excluding the Housatonic River and its floodplain). Subareas within specific RAAs are depicted in Attachment E to the SOW.
- 2. -- = Intervals where spatial averaging will not be performed.
- 3. The designated averaging areas at the GE Plant Area are subject to the conditions and possible modifications described in Section 2.1 of Attachment E to the SOW.
- 4. For this area, spatial averaging will not be separately performed for depth intervals of 1- to 6-feet or 0- to 15-feet. For such intervals, this area will be included in the former gas plant/scrap yard area.
- 5. In the 200-foot riparian removal zone and the GE-owned Lyman Street and Newell Street parking lots, GE may forgo installation of a vegetative engineered barrier for discrete areas where (based on spatial averaging) PCBs are below 10 ppm in the top foot, 15 ppm at the 1- to 3-foot depth, and 100 ppm in the top 15 feet.
- 6. For the non-GE-owned portion of this area, spatial averaging will be performed for the same depth intervals specified below for commercial/industrial properties (depending on whether an ERE is obtained).
- 7. The specific averaging areas for these properties will be determined as described in Section 2.1 of Attachment E to the SOW.
- 8. At residential properties, spatial averaging will be performed for the 0- to 1-foot and 1- to X-foot depth intervals, where X equals the maximum depth at which PCBs were detected (up to a maximum depth of 15 feet).
- 9. If PCB soil data does not exist to 15 feet, the spatial average PCB calculations for the 0- to 15-foot depth increment shall extend to whatever depth sampling data exist.
- 10. For current residential properties downstream of the confluence, spatial averaging will also be performed for the 0- to 0.5-foot depth interval on the portion of each property that does not constitute an Actual/Potential Lawn, for purposes of applying STM criteria.
- 11. For these properties, spatial averaging will be separately performed for the bank soils at each residential property subject to the Consent Decree and each commercial property and at the remaining recreational averaging area shown on Figure 2-25 of the SOW.
- 12. EREs = Environmental Restrictions and Easements.

Analyte Identification	CAS Number	Method 1 GW-2 Standard (ppm)	Method 1 GW-3 Standard (ppm)
PCBs			<u> </u>
Aroclor-1016	12674-11-2	.	-
Aroclor-1221	11104-28-2	-	
Aroclor-1232	11141-16-5	-	-
Aroclor-1242	53469-21-9	-	-
Aroclor-1248	12672-29-6	-	-
Aroclor-1254	11097-69-1	-	<u> </u>
Aroclor-1260	11096-82-5	-	-
Total PCBs	N/A	-	0.0003
Filtered PCBs	N/A	-	-
Appendix IX+3 Volatiles			
Acetone	67-64-1	50	50
Acetonitrile	75-05-8	-	-
Acrolein	107-02-8	-	-
Acrylonitrile	107-13-1	-	-
Allyl Chloride	107-05-1	-	-
Benzene	71-43-2	2	7
Bromodichloromethane	75-27-4	-	50
Bromoform	75-25-2	0.8	50
Carbon Disulfide	75-15-0	-	-
Carbon Tetrachloride	56-23-5	0.02	50
Chlorobenzene	108-90-7	1	0.5
Chloroethane	75-00-3	-	-
2-Chloroethylvinylether	110-75-8	•	-
Chloroform	67-66-3	0.4	10
Chloroprene	126-99-8	-	•
1,2-Dibromo-3-chloropropane	96-12-8	•	-
Dibromochloromethane	124-48-1	•	50
1,2-Dibromoethane (Ethylene dibromide)	106-93-4	0.003	50
trans-1,4-Dichloro-2-butene	110-57-6	•	-
Dichlorodifluoromethane	75-71-8	•	_
1,1-Dichloroethane	75-34-3	9	50
1,2-Dichloroethane	107-06-2	0.02	50
1,1-Dichloroethene	75-35-4	0.001	50
trans-1,2-Dichloroethene	156-60-5	20	50
1,2-Dichloropropane	78-87-5	0.009	30

MCP METHOD 1 STANDARDS FOR GW-2 AND GW-3 GROUNDWATER

.

Analyte Identification	CAS Number	Method 1 GW-2 Standard (ppm)	Method I GW-3 Standard (ppm)
cis-1,3-Dichloropropene	10061-01-5	-	-
trans-1,3-Dichloropropene	10061-02-6	-	
1,4-Dioxane	123-91-1	*	-
Ethyl Methacrylate	97-63-2	-	-
Ethylbenzene	100-41-4	30	4
2-Hexanone	591-78-6	-	<u> </u>
Isobutyl Alcohol	78-83-1	-	<u> </u>
Methacrylonitrile	126-98-7	-	-
Methyl Bromide (Bromomethane)	74-83-9	0.002	50
Methyl Chloride	74-87-3	-	
Methyl Ethyl Ketone (2-Butanone)	78-93-3	50	50
Methyl Iodide	74-88-4	-	-
Methyl Methacrylate	80-62-6	-	-
4-Methyl-2-pentanone (Methyl isobutyl ketone)	108-10-1	50	50
Methylene Bromide	74-95-3	-	-
Methylene Chloride	75-09-2	50	50
Propionitrile	107-12-0	•	-
Styrene	100-42-5	0.9	50
1,1,1,2-Tetrachloroethane	630-20-6	0.006	50
1,1,2,2-Tetrachloroethane	79-34-5	0.02	20
Tetrachloroethene	127-18-4	3	5
Toluene	108-88-3	6	50
1,1,1-Trichloroethane	71-55-6	4	50
1,1,2-Trichloroethane	79-00-5	20	50
Trichloroethene	79-01-6	0.3	20
Trichlorofluoromethane	75-69-4	•	-
1,2,3-Trichloropropane	96-18-4	-	-
Vinyl Acetate	108-05-4	-	-
Vinyl Chloride	75-01-4	0.002	40
Xylene	1330-20-7	6	50
Appendix IX+3 Semi-volatiles			
Acenaphthene	83-32-9	-	5
Acenaphthylene	208-96-8	-	3
Acetophenone	98-86-2	-	-
2-Acetylaminofluorene	53-96-3	-	-
4-Aminobiphenyl	92-67-1	-	-

MCP METHOD 1 STANDARDS FOR GW-2 AND GW-3 GROUNDWATER

.

Analyte Identification	CAS Number	Method 1 GW-2 Standard (ppm)	Method 1 GW-3 Standard (ppm)
Aniline	62-53-3	-	-
Anthracene	120-12-7	•	3
Aramite	140-57-8	-	•
Benzidine	92-87-5	-	_
Benzo(a)anthracene	56-55-3	•	3
Benzo(a)pyrene	50-32-8	•	3
Benzo(b)fluoranthene	205-99-2	•	3
Benzo(g,h,i)perylene	191-24-2	-	3
Benzo(k)fluoranthene	207-08-9	•	3
Benzyl Alcohol	100-51-6	-	
bis(2-chloro-1-methylethyl)ether	108-60-1	-	_
bis(2-chloroethoxy)methane	111-91-1	•	-
bis(2-chloroethyl)ether	111-44-4	0.1	50
bis(2-ethylhexyl)phthalate	117-81-7	50	0.03
4-Bromophenyl phenyl ether	101-55-3	•	-
Butyl benzyl phthalate	85-68-7	-	-
p-Chloro-m-cresol	59-50-7	-	-
p-Chloroaniline	106-47-8	-	50
Chlorobenzilate	510-15-6	-	-
2-Chloronaphthalene	91-58-7	-	-
2-Chlorophenol	95-57-8	-	40
4-Chlorophenyl-phenylether	7005-72-3	-	-
Chrysene	218-01-9	-	3
3-Methylphenol (m-cresol)	108-39-4	-	-
2-Methylphenol (o-cresol)	95-48-7	-	-
4-Methylphenol (p-cresol)	106-44-5	-	-
Di-n-butylphthalate	84-74-2	-	-
Di-n-octylphthalate	117-84-0	-	-
Diallate	2303-16-4	-	-
Dibenz(a,h)anthracene	53-70-3	-	3
Dibenzofuran	132-64-9	-	-
m-Dichlorobenzene (1-3 DCB)	541-73-1	10	8
o-Dichlorobenzene (1-2 DCB)	95-50-1	10	8
p-Dichlorobenzene (1-4 DCB)	106-46-7	30	8
3,3'-Dichlorobenzidine	91-94-1	-	50
2,4-Dichlorophenol	120-83-2	-	4

Analyte Identification	CAS Number	Method 1 GW-2 Standard (ppm)	Method 1 GW-3 Standard (ppm)
2,6-Dichlorophenol	87-65-0		
Diethyl phthalate	84-66-2	-	0.03
O,O-Diethyl-O-2-pyrazinyl phosphorothioate	297-97-2	-	-
Dimethyl phthalate	131-11-3	<u> </u>	0.03
p-(Dimethylamino)azobenzene	60-11-7	<u> </u>	-
7,12-Dimethylbenz(a)anthracene	57-97-6	-	
3,3'-Dimethylbenzidine	119-93-7	-	-
a,a-Dimethylphenethylamine	122-09-8	-	-
2,4-Dimethylphenol	105-67-9	-	20
4,6-Dinitro-o-cresol	534-52-1	-	-
m-Dinitrobenzene	99-65-0	-	-
2,4-Dinitrophenol	51-28-5	•	2
2,4-Dinitrotoluene	121-14-2	•	2
2,6-Dinitrotoluene	606-20-2	-	-
Diphenylamine	122-39-4	-	-
1,2-Diphenylhydrazine	122-66-7	•	-
Ethyl Methanesulfonate	62-50-0		-
Fluoranthene	206-44-0	-	0.2
Fluorene	86-73-7	-	3
Hexachlorobenzene	118-74-1	<u> </u>	0.04
Hexachlorobutadiene	87-68-3	0.001	0.09
Hexachlorocyclopentadiene	77-47-4	-	-
Hexachloroethane	67-72-1	0.01	5
Hexachlorophene	70-30-4	-	-
Hexachloropropene	1888-71-7	-	-
Indeno(1,2,3-cd)pyrene	193-39-5	-	3
Isodrin	465-73-6	-	-
Isophorone	78-59-1	-	-
Isosafrole	120-58-1	<u> </u> -	-
Methapyrilene	91-80-5	-	-
Methyl methanesulfonate	66-27-3	_	-
3-Methylcholanthrene	56-49-5		-
2-Methylnaphthalene	91-57-6	10	3
Naphthalene	91-20-3	6	6
1,4-Naphthoquinone	130-15-4		-
I-Naphthylamine	134-32-7	-	-

MCP METHOD 1 STANDARDS FOR GW-2 AND GW-3 GROUNDWATER

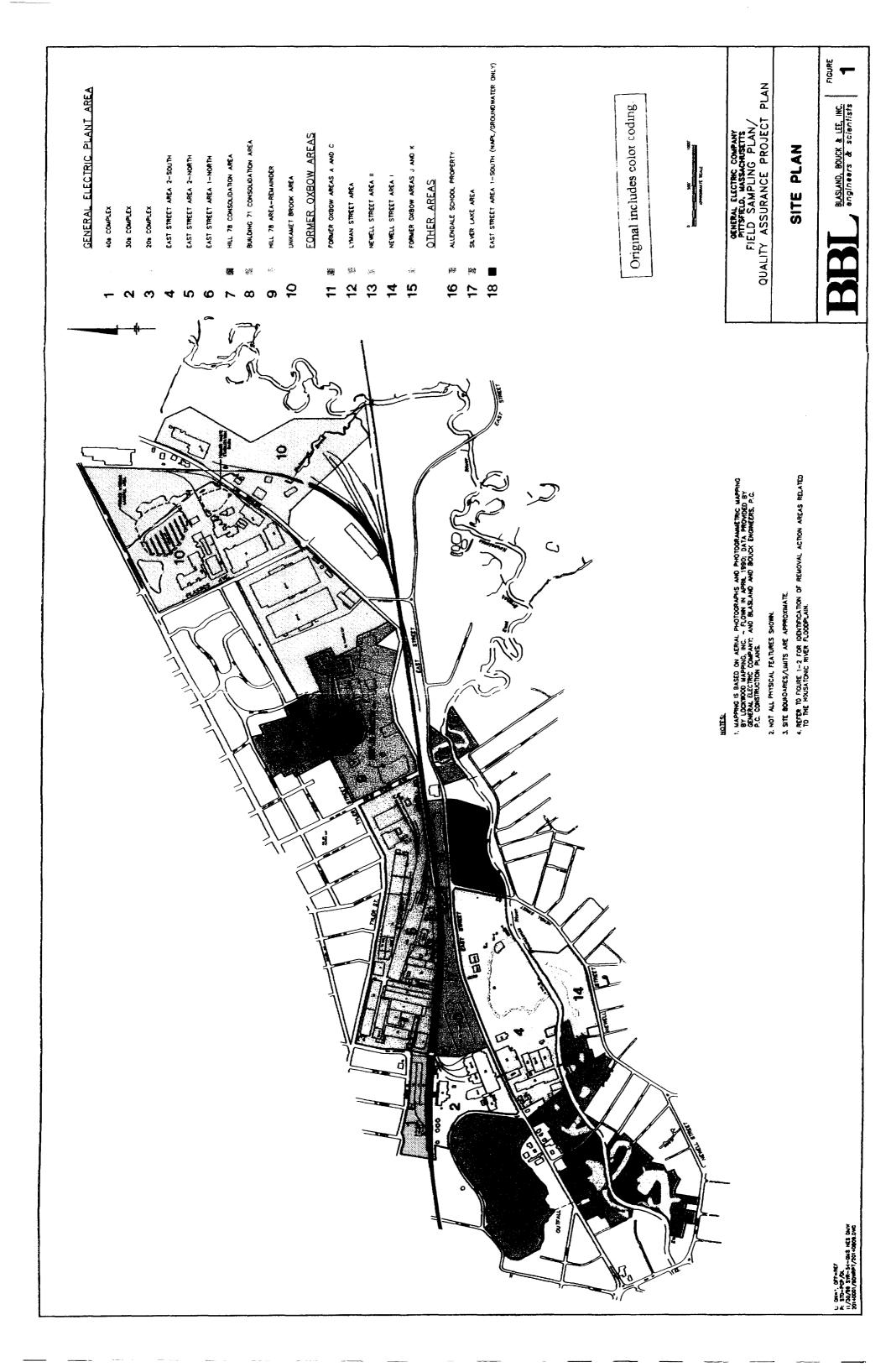
.

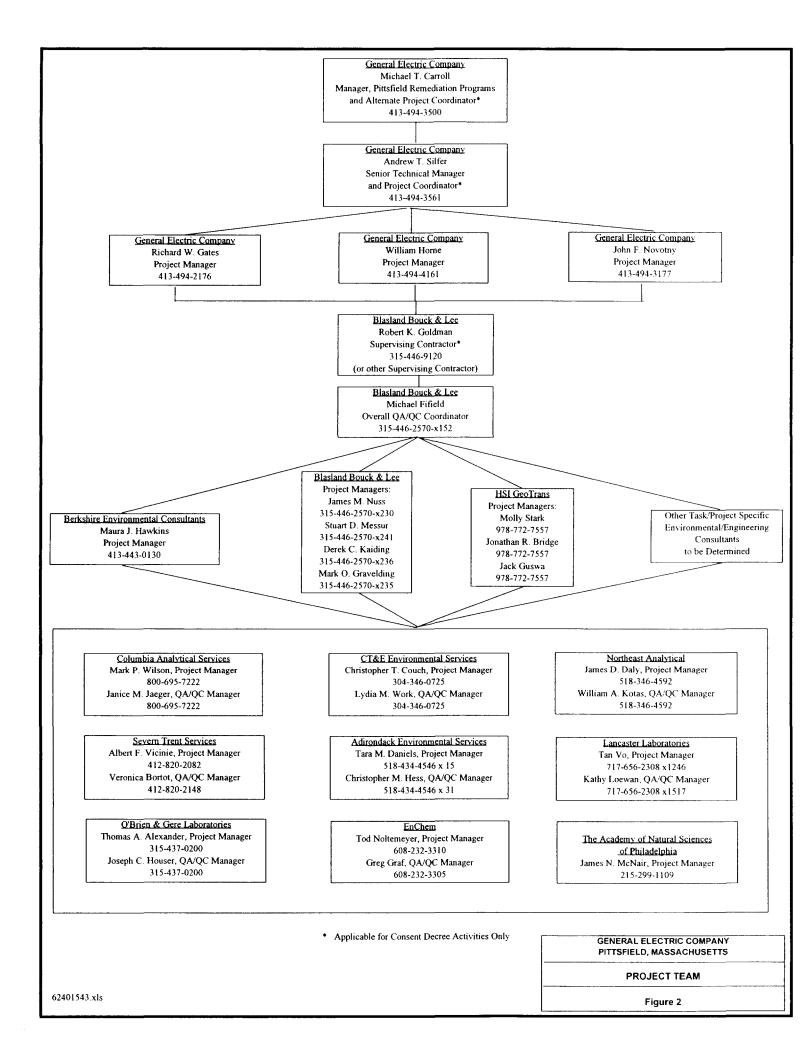
Analyte Identification	CAS Number	Method 1 GW-2 Standard (ppm)	Method I GW-3 Standard (ppm)
2-Naphthylamine	91-59-8	-	-
5-Nitro-o-toluidine	99-55-8	-	•
m-Nitroaniline	99-09-2	•	-
o-Nitroaniline	88-74-4	-	•
p-Nitroaniline	100-01-6	<u> </u>	-
Nitrobenzene	98-95-3	-	-
o-Nitrophenol	88-75-5	<u> </u>	-
p-Nitrophenol	100-02-7	<u> </u>	-
4-Nitroquinoline-1-oxide	56-57-5	-	-
N-Nitrosodi-n-butylamine	924-16-3	<u> </u>	-
N-Nitrosodi-n-propylamine	621-64-7		•
N-Nitrosodiethylamine	55-18-5	•	-
N-Nitrosodimethylamine	62-75-9	•	-
N-Nitrosodiphenylamine	86-30-6		•
N-Nitrosomethylethylamine	10595-95-6	•	-
N-Nitrosomorpholine	59-89-2	-	-
N-Nitrosopiperidine	100-75-4	-	-
N-Nitrosopyrrolidine	930-55-2		-
Pentachlorobenzene	608-93-5	•	-
Pentachloroethane	76-01-7	-	-
Pentachloronitrobenzene	82-68-8	-	-
Pentachlorophenol	87-86-5	-	0.08
Phenacetin	62-44-2		-
Phenanthrene	85-01-8	-	0.05
Phenol	108-95-2	50	30
p-Phenylenediamine	106-50-3	<u> </u>	-
2-Picoline	109-06-8		-
Pronamide	23950-58-5		-
Pyrene	129-00-0	-	3
Pyridine	110-86-1	-	-
Safrole	94-59-7		•
1,2,4,5-Tetrachlorobenzene	95-94-3	-	-
2,3,4,6-Tetrachlorophenol	58-90-2	-	-
o-Toluidine	95-53-4		-
1,2,4-Trichlorobenzene	120-82-1	10	0.5
2,4,5-Trichlorophenol	95-95-4	-	0.1

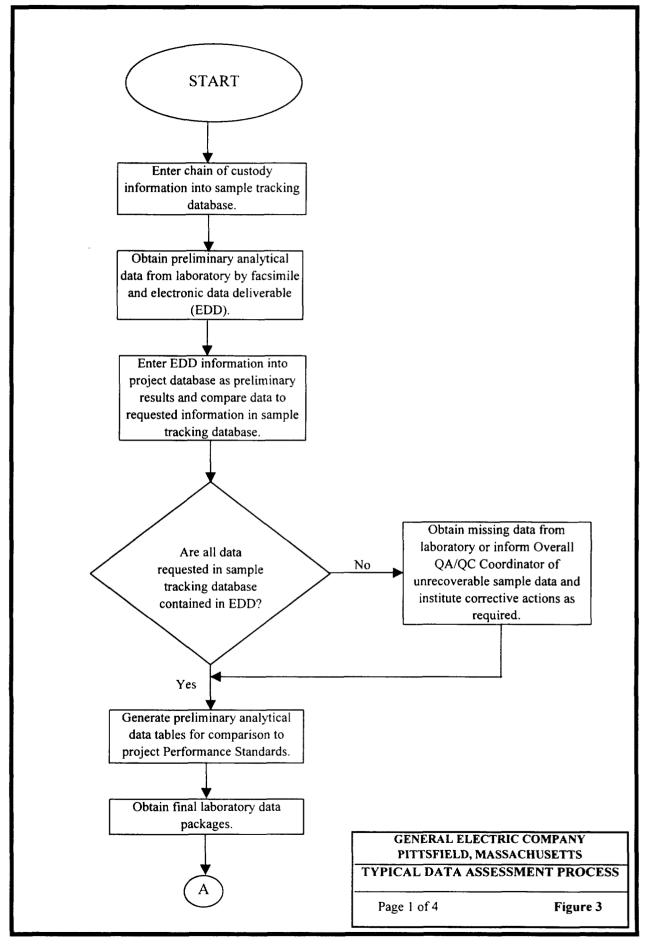
Analyte Identification	CAS Number	Method 1 GW-2 Standard (ppm)	Method 1 GW-3 Standard (ppm)
2,4,6-Trichlorophenol	88-06-2	40	10
o,o,o-Triethyl phosphorothioate	126-68-1	-	-
sym-Trinitrobenzene	99-35-4	•	-
Appendix IX+3 Pesticides/Herbicides			
ORGANOCHLORINE PESTICIDES			
Aldrin	309-00-2	0.0005	0.01
Alpha-BHC	319-84-6	-	-
Beta-BHC	319-85-7	-	
Delta-BHC	319-86-8	-	-
Gamma-BHC (Lindane)	58-89-9		0.0008
Chlordane	57-74-9	-	0.002
Alpha-chlordane	5103-71-9	•	-
Gamma-chlordane	5103-74-2	-	-
4,4'-DDD	72-54-8	-	0.006
4,4'-DDE	72-55-9	-	0.1
4,4'-DDT	50-29-3	-	0.0003
Dieldrin	60-57-1	-	0.0001
Endosulfan	115-29-7	-	0.0001
Endosulfan I	959-98-8	-	-
Endosulfan II	33213-65-9	-	-
Endosulfan sulfate	1031-07-8	-	-
Endrin	72-20-8	-	0.005
Endrin aldehyde	7421-93-4	•	-
Endrin ketone	53494-70-5	-	-
Heptachlor	76-44-8	•	0.001
Heptachlor epoxide	1024-57-3	-	0.002
Kepone	143-50-0		-
Methoxychlor	72-43-5	•	0.002
Toxaphene	8001-35-2		-
ORGANOPHOSPHATE PESTICIDES			
Dimethoate	60-51-5		
Disulfoton	298-04-4		
Famphur	52-85-7	-	-
Methyl Parathion	298-00-0	•	-
Parathion	56-38-2		-
Phorate	298-02-2	-	-

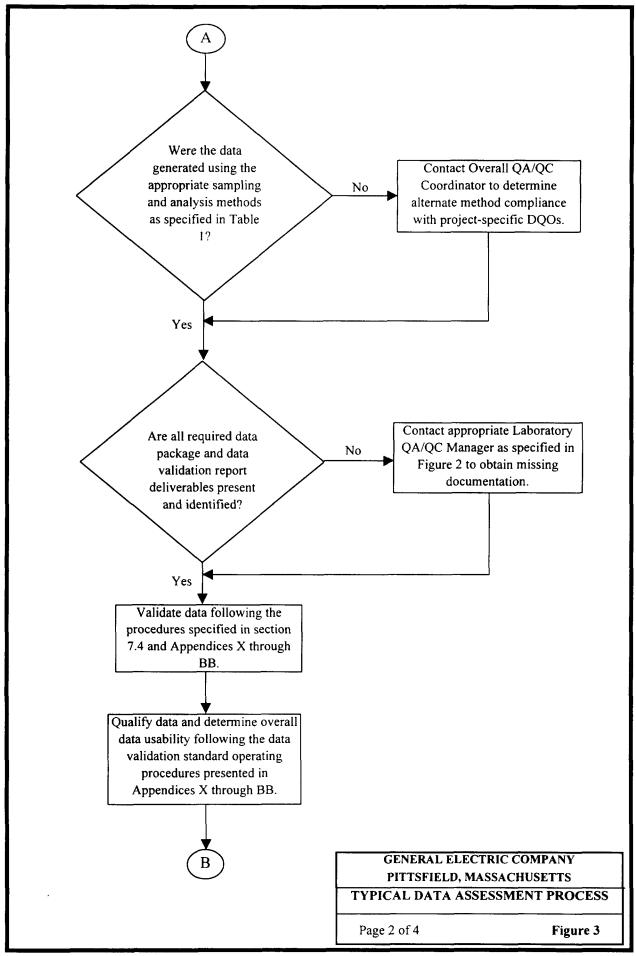
Analyte Identification	CAS Number	Method 1 GW-2 Standard (ppm)	Method 1 GW-3 Standard (ppm)
Sulfotepp	3689-24-5	•	-
HERBICIDES			
2,4-D	94-75-4		•
Dinoseb	88-85-7		-
2,4,5-T	93-76-5	-	-
2,4,5-TP (Silvex)	93-72-1	-	-
Appendix IX+3 Inorganics			
Antimony	7440-36-0	•	0.3
Arsenic	7440-38-2	-	0.4
Barium	7440-39-3		30
Beryllium	7440-41-7	-	0.05
Cadmium	7440-43-9		0.01
Chromium	7440-47-3	•	2
Cobalt	7440-48-4		-
Copper	7440-50-8	-	-
Cyanide	57-12-5		0.01
Lead	7439-92-1		0.03
Mercury	7439-97-6	-	0.001
Nickel	7440-02-0		0.08
Selenium	7782-49-2	••	0.08
Silver	7440-22-4		0.007
Sulfide	18496-25-8		-
Thallium	7440-28-0	•	0.4
Tin	7440-31-5		-
Vanadium	7440-62-2	-	2
Zinc	7440-66-6	-	0.9
Appendix IX+3 PCDDs and PCDFs			•
1,2,3,4,6,7,8-HpCDD	35822-46-9	-	-
HpCDDs (total)	37871-00-4	•	
1,2,3,4,7,8,9-HpCDF	55673-89-7	-	-
1,2,3,4,6,7,8-HpCDF	67562-39-4		
HpCDFs (total)	38998-75-3		<u> </u>
1,2,3,4, 7,8-H xCDD	39227-28-6	-	
1,2,3,6,7,8-HxCDD	57653-85-7		
1,2,3,7,8,9-HxCDD	19408-74-3		-
HxCDDs (total)	34465-46-8	-	-

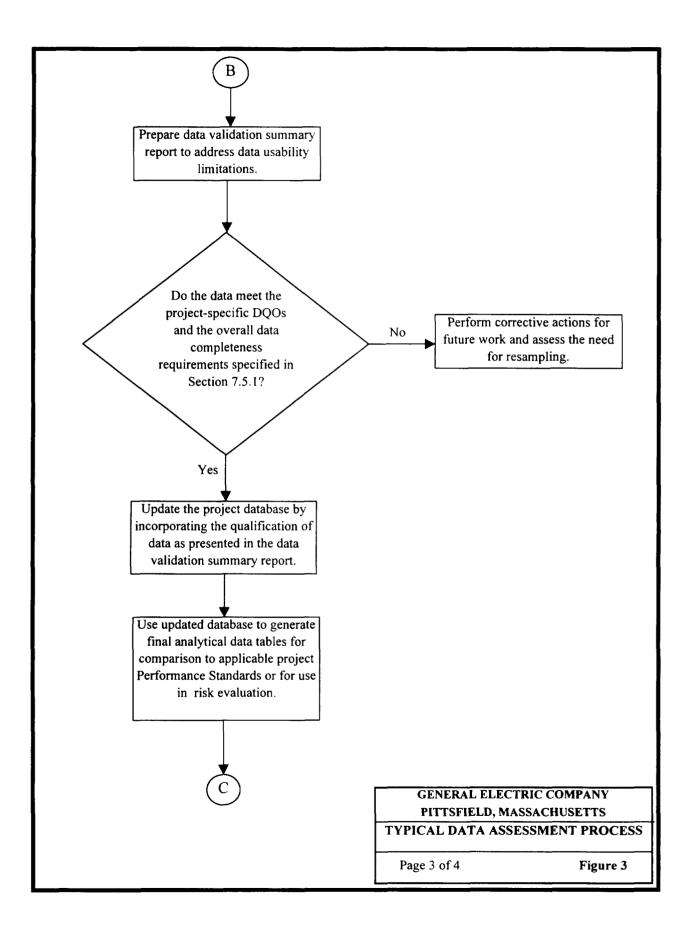
Analyte Identification	CAS Number	Method 1 GW-2 Standard (ppm)	Method 1 GW-3 Standard (ppm)
1,2,3,4,7,8-HxCDF	70648-26-9	-	-
1,2,3,6,7,8-HxCDF	57117-44-9	-	-
1,2,3,7,8,9-HxCDF	72918-21-9	-	-
2,3,4,6,7,8-HxCDF	60851-34-5	-	
HxCDFs (total)	55684-94-1	-	-
1,2,3,7,8-PeCDD	40321-76-4	•	-
PeCDDs (total)	36088-22-9	-	-
1,2,3,7,8-PeCDF	57117-41-6	-	-
2,3,4,7,8-PeCDF	57117-31-4		_
PeCDFs (total)	30402-15-4	•	-
2,3,7,8-TCDD	1746-01-6	-	-
TCDDs (total)	41903-57-5	•	-
2,3,7,8-TCDF	51207-31-9	-	-
TCDFs (total)	55722-27-5	•	-
OCDD	3268-87-9	-	-
OCDF	39001-02-0	-	-
Total TEQs (MDEP TEFs)	N/A	-	1E-07
Total TEQs (EPA TEFs)	N/A	-	-

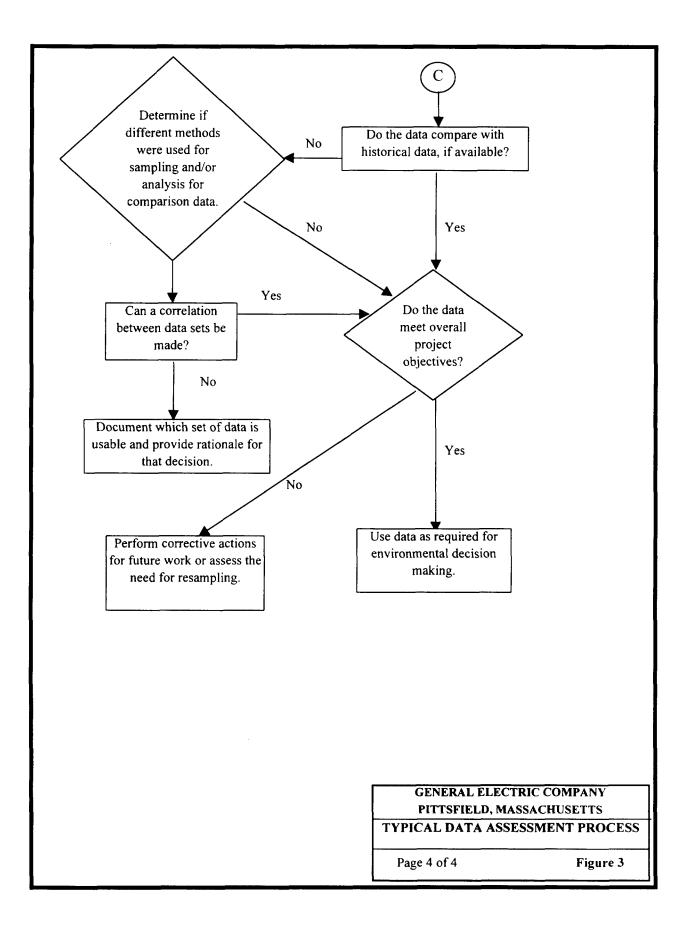

MCP METHOD 1 STANDARDS FOR GW-2 AND GW-3 GROUNDWATER


Notes:


- 1.) All standards compiled from 31 CMR 40.0000- The Massachusetts Contingency Plan, dated May 30, 1997, revised May 15, 1998.
- 2.) A Method 1 Standard is not specified for the compound.
- 3.) N/A: A CAS Number is not available.


Figures


BLASLAND, BOUCK & LEE, INC. engineers & scientists



BLASLAND, BOUCK & LEE, INC.

engineers & scientists