AP Calculus BC Sample Student Responses and Scoring Commentary

Inside:

『 Free Response Question 3
■ Scoring Guideline

- Student Samples

『 Scoring Commentary

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2017 SCORING GUIDELINES

Question 3

(a) $f(-6)=f(-2)+\int_{-2}^{-6} f^{\prime}(x) d x=7-\int_{-6}^{-2} f^{\prime}(x) d x=7-4=3$ $f(5)=f(-2)+\int_{-2}^{5} f^{\prime}(x) d x=7-2 \pi+3=10-2 \pi$
(b) $f^{\prime}(x)>0$ on the intervals $[-6,-2)$ and $(2,5)$.

Therefore, f is increasing on the intervals $[-6,-2]$ and $[2,5]$.
(c) The absolute minimum will occur at a critical point where $f^{\prime}(x)=0$ or at an endpoint.
$f^{\prime}(x)=0 \Rightarrow x=-2, x=2$

x	$f(x)$
-6	3
-2	7
2	$7-2 \pi$
5	$10-2 \pi$

The absolute minimum value is $f(2)=7-2 \pi$.
(d) $f^{\prime \prime}(-5)=\frac{2-0}{-6-(-2)}=-\frac{1}{2}$
$\lim _{x \rightarrow 3^{-}} \frac{f^{\prime}(x)-f^{\prime}(3)}{x-3}=2$ and $\lim _{x \rightarrow 3^{+}} \frac{f^{\prime}(x)-f^{\prime}(3)}{x-3}=-1$
$f^{\prime \prime}(3)$ does not exist because
$\lim _{x \rightarrow 3^{-}} \frac{f^{\prime}(x)-f^{\prime}(3)}{x-3} \neq \lim _{x \rightarrow 3^{+}} \frac{f^{\prime}(x)-f^{\prime}(3)}{x-3}$.

3. The function f is differentiable on the closed interval $[-6,5]$ and satisfies $f(-2)=7$. The graph of f^{\prime}, the derivative of f, consists of a semicircle and three line segments, as shownin the figure above.
(a) Find the values of $f(-6)$ and $f(5)$.

$$
\begin{aligned}
& f(-6)=\left(\int_{-2}^{-6} f^{\prime}(x) d x\right)+f(-2) \\
& f(-6)=3 \\
& f(5)=f(-2)+\int_{-2}^{5} f^{\prime}(x) d x . \\
& f(5)=10-2 \pi
\end{aligned}
$$

(b) On what intervals is f increasing? Justify your answer.

$$
\begin{aligned}
& f \text { is increasing on } x=(-6,-2] \\
& u[2,5] \text {, since } f^{\prime}>0 \text { on } \\
& \text { He interval } x \in[-6,7) \cup(-2,5)
\end{aligned}
$$

$3 A_{2}$
(c) Find the absolute minimum value of f on the closed interval $[-6,5]$. Justify your answer.

The absolute minimum Endpoints of f on $[-6,5]$ is

$$
f(-6)=3
$$

$7-2 \pi$, since

$$
f(s)=10-2 \pi
$$

$f(2)<f(5)$ as $f(6)$ (the endpoints:
critical paints
and $f(z)<f(-2)$ the

$$
f^{\prime}=0
$$

$$
f(-2)=7
$$

otter rival points

$$
f(2)=7-2 \pi
$$ by EUT

(d) For each of $f^{\prime \prime}(-5)$ and $f^{\prime \prime}(3)$, find the value or explain why it does not exist.

$$
\begin{aligned}
& f^{\prime \prime}(-5)=\frac{-1}{2} \\
& f^{\prime \prime}(3)=D N E \text { as the } \\
& \lim _{x \rightarrow 3^{+}} \frac{f^{\prime}(x)-2}{x-3} \neq \lim _{x \rightarrow 3^{-}} \frac{f^{\prime}(x)-2}{x-3}
\end{aligned}
$$

Therefore it is impossible fo take a Jeriative at $x=3$ in f^{\prime}
(b) On what intervals is f increasing? Justify your answer. Since on intervals of $[-6,2)$ and $(2,5)$; $f^{\prime}(x)>0$. then $f(x)$ is increasing on intervals $[-6,2]$ and $[2,5]$
(c) Find the absolute minimum value of f on the closed interval $[-6,5]$. Justify your answer. $f(x)$ has its absolute minimum on either two endpoints and where $f^{\prime}(x)=0$
according to the graph $f^{\prime}(-2)=f^{\prime}(2)=0$

x	$f(x)$
-6	3
-2	7
2	$7-2 \pi$
5	$10-2 \pi$

according to the table, $f(x)$ reaches its absolute minimum value $7-2 \pi$ at $x=2$
(d) For each of $f^{\prime \prime}(-5)$ and $f^{\prime \prime}(3)$, find the value or explain why it does not exist.

$$
f^{H}(-5)=\left.\frac{d}{d x} f^{\prime}(x)\right|_{x=-5}=\frac{2}{-4}=-\frac{1}{2}
$$

Since $\lim _{x \rightarrow 3^{-}} f^{\prime \prime}(x) \neq \lim _{x \rightarrow 3^{+}} f^{\prime \prime}(x)$
\therefore then $f(x)$ is not differentiable at $x=3$
therefore, $f^{\prime \prime}(3)$ does not exist

3. The function f is differentiable on the closed interval $[-6,5]$ and satisfies $f(-2)=7$. The graph of f^{\prime}, the derivative of f, consists of a semicircle and three line segments, as shown in the figure above.
(a) Find the values of $f(-6)$ and $f(5)$.

$$
\begin{aligned}
& f(-6)=\frac{2}{5} \times(2)=\frac{4}{5} \\
& f(5)=0
\end{aligned}
$$

(b) On what intervals is f increasing? Justify your answer.

$$
\begin{aligned}
& \text { From }[-6,-2] \text { and }[2 ; 5], f \text { is increasing because the graph } \\
& \text { of } f^{\prime}(x) \text { is }>0 \text { from }[-6,-2) \text { and }(2,5)
\end{aligned}
$$

(c) Find the absolute minimum value of f on the closed interval $[-6,5]$. Justify your answer.

The absolute minimum value of 0 at $x=2$. because the graph of f^{\prime} changes sign from negative to positive at $x=2$.
(d) For each of $f^{\prime \prime}(-5)$ and $f^{\prime \prime}(3)$, find the value or explain why it does not exist.
$f^{\prime \prime}(3)$ is an inflection point because f^{\prime} increases on [2,3] and decreases on $[2,4]$.
$f^{\prime \prime}(-5)$ does not exist because the graph of f ' from $[-6,-2]$ has a shape $f \frac{2}{5}$.

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2017 SCORING COMMENTARY

Question 3

Overview

In this problem students were given that a function f is differentiable on the interval $[-6,5]$ and satisfies $f(-2)=7$. For $-6 \leq x \leq 5$, the derivative of f is specified by a graph consisting of a semicircle and three line segments. In part (a) students were asked to find values of $f(-6)$ and $f(5)$. For each of these values, students needed to recognize that the net change in f, starting from the given value $f(-2)=7$, can be computed using a definite integral of $f^{\prime}(x)$ with a lower limit of integration -2 and an upper limit the desired argument of f. These integrals can be computed using properties of the definite integral and the geometric connection to areas between the graph of $y=f^{\prime}(x)$ and the x-axis. Thus, students needed to add the initial condition $f(-2)=7$ to the values of the definite integrals for the desired values. [LO 3.2C/EK 3.2C1] In part (b) students were asked for the intervals on which f is increasing, with justification. Since f^{\prime} is given on the interval $[-6,5], f$ is differentiable, and thus also continuous, on that interval. Therefore, f is increasing on closed intervals for which $f^{\prime}(x)>0$ on the interior. Students needed to use the given graph of f^{\prime} to see that $f^{\prime}(x)>0$ on the intervals $[-6,-2)$ and $(2,5)$, so f is increasing on the intervals $[-6,-2]$ and $[2,5]$, connecting their answers to the sign of f^{\prime}. [LO 2.2A/EK 2.2A1-2.2A2, LO 2.2B/EK 2.2B1] In part (c) students were asked for the absolute minimum value of f on the closed interval $[-6,5]$, and to justify their answers. Students needed to use the graph of f^{\prime} to identify critical points of f on the interior of the interval as $x=-2$ and $x=2$. Then they can compute $f(-2)$ and $f(2)$, similarly to the computations in part (a), and compare these to the values of f at the endpoints that were computed in part (a). Students needed to report the smallest of these values, $f(2)=7-2 \pi$ as the answer. Alternatively, students could have observed that the minimum value must occur either at a point interior to the interval at which f^{\prime} transitions from negative to positive, at a left endpoint for which f^{\prime} is positive immediately to the right, or at a right endpoint for which f^{\prime} is negative immediately to the left. This reduces the options to $f(-6)=3$ and $f(2)=7-2 \pi$. [LO 2.2A/EK 2.2A1-2.2A2, LO 2.2B/EK 2.2B1, LO 3.3A/EK 3.3A3] In part (d) students were asked to determine values of $f^{\prime \prime}(-5)$ and $f^{\prime \prime}(3)$, or to explain why the requested value does not exist. Students needed to find the value $f^{\prime \prime}(-5)$ as the slope of the line segment on the graph of f^{\prime} through the point corresponding to $x=-5$. The point on the graph of f^{\prime} corresponding to $x=3$ is the juncture of a line segment of slope 2 on the left with one of slope -1 on the right. Thus, students needed to report that $f^{\prime \prime}(3)$ does not exist, and explain why the given graph of f^{\prime} shows that f^{\prime} is not differentiable at $x=3$. Student explanations could be done by noting that the left-hand and right-hand limits at $x=3$ of the difference quotient $\frac{f^{\prime}(x)-f^{\prime}(3)}{x-3}$ have differing values (2 and -1 , respectively), or by a clear description of the relevant features of the graph of f^{\prime} near $x=3$. [LO 1.1A(b)/EK 1.1A3] This problem incorporates the following Mathematical Practices for AP Calculus (MPACs): reasoning with definitions and theorems, connecting concepts, implementing algebraic/computational processes, connecting multiple representations, building notational fluency, and communicating.

Sample: 3A

Score: 9

The response earned all 9 points: 3 points in part (a), 2 points in part (b), 2 points in part (c), and 2 points in part (d). In part (a) the student uses the initial condition $f(-2)$ with an appropriate definite integral $\int_{-2}^{-6} f^{\prime}(x) d x$ to find $f(-6)=3$. Thus, the student earned the first and second points. The student uses $f(-2)$ again with an

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2017 SCORING COMMENTARY

Question 3 (continued)

appropriate definite integral $\int_{-2}^{5} f^{\prime}(x) d x$ to find $f(5)=10-2 \pi$. The student earned the third point. In part (b) the student states two correct and complete intervals, $[-6,-2]$ and $[2,5]$, where f is increasing. The student justifies the intervals with a discussion of $f^{\prime}>0$ for $[-6,-2)$ and $(2,5)$. The student earned both points. In part (c) the student considers $x=-6,-2,2$, and 5 as potential locations for the absolute minimum value. The student earned the first point for considering $x=2$. The student identifies the absolute minimum value as $7-2 \pi$. The student justifies by evaluating $f(x)$ at the critical values and endpoints. The student earned the second point. In part (d) the student finds $f^{\prime \prime}(-5)=-\frac{1}{2}$ and earned the first point. The student states that $f^{\prime \prime}(3)$ does not exist. The student uses two one-sided limits at $x=3$ to explain why the derivative of $f^{\prime}(x)$ does not exist and earned the second point.

Sample: 3B
 Score: 6

The response earned 6 points: 3 points in part (a), no points in part (b), 2 points in part (c), and 1 point in part (d). In part (a) the student uses the initial condition $f(-2)$ with an appropriate definite integral $\int_{-6}^{-2} f^{\prime}(x) d x$ to find $f(-6)=3$. Thus, the student earned the first and second points. The student uses $f(-2)$ again with an appropriate definite integral $\int_{-2}^{5} f^{\prime}(x) d x$ to find $f(5)=10-2 \pi$. The student earned the third point. In part (b) the student presents two intervals, $[-6,2)$ and $(2,5)$. Because $f^{\prime}(x)<0$ on $(-2,2), f$ is decreasing on $[-2,2]$. The student is not eligible to earn any points because of the presence of an interval containing points where $f^{\prime}(x)<0$. Thus, the student did not earn any points. In part (c) the student investigates where $f^{\prime}(x)=0$ and identifies $f^{\prime}(-2)$ and $f^{\prime}(2)$. The student earned the first point for considering $x=2$. The student identifies the absolute minimum value as $7-2 \pi$. The student justifies by evaluating $f(x)$ at the critical values and endpoints. The student earned the second point. In part (d) the student identifies $f^{\prime \prime}(-5)$ as the derivative of $f^{\prime}(x)$ at $x=-5$ and finds $f^{\prime \prime}(-5)=-\frac{1}{2}$. The student earned the first point. The student states that $f^{\prime \prime}(3)$ does not exist. The student uses two one-sided limits at $x=3$. The student states that " $f(x)$ is not differentiable at $x=3$," which contradicts the given statement in the problem that f is differentiable on the closed interval $[-6,5]$. The student did not earn the second point.

Sample: 3C

Score: 3

The response earned 3 points: no points in part (a), 2 points in part (b), 1 point in part (c), and no points in part (d). In part (a) the student never uses the initial condition, incorrectly evaluates $f(-6)$ as $\frac{4}{5}$, and incorrectly evaluates $f(5)$ as 0 . The student earned no points. In part (b) the student states two correct and complete intervals, $[-6,-2]$ and $[2,5]$, on which f is increasing. The student justifies the intervals with " $f^{\prime}(x)$ is >0 from $[-6,-2)$ and $(2,5)$." The student earned both points. In part (c) the student considers $x=2$ and earned the first point. The student presents an incorrect answer for the absolute minimum value with an incorrect justification. The student does not evaluate $f(x)$ at the critical values and endpoints in order to determine the

AP ${ }^{\circledR}$ CALCULUS AB/CALCULUS BC 2017 SCORING COMMENTARY

Question 3 (continued)

absolute minimum value. The student did not earn the second point. In part (d) the student incorrectly determines that $f^{\prime \prime}(-5)$ has a value of $\frac{2}{5}$ and did not earn the first point. The student states that " $f^{\prime \prime}(3)$ is an inflection point" and does not state that $f^{\prime \prime}(3)$ does not exist. The student did not earn the second point.

