Application Note

5G NR FR1 NON-STANDALONE UE RF CONFORMANCE TESTING

EN-DC Mode According to 3GPP 38.521-3

Products:

- ► R&S[®]CMX500
- ► R&S®CMW500
- ► R&S[®]CMsquares

Yong Shi | 1SL368 | Version 0e | 06.2021

https://www.rohde-schwarz.com/appnote/1SL368

Contents

1	Overview	.6
2	General Information	.8
2.1	Frequency Range (FR1 vs. FR2)	8
2.2	5G NR Non Standalone EN-DC Mode	8
2.2.1	NR EN-DC Inter-band	
2.2.2	NR EN-DC Intra-band Contiguous	
2.2.3	NR EN-DC Intra-band Non-contiguous	12
2.3	3GPP Test Specifications	
3	Configure 5G NR EN-DC RF Test	12
3.1	Default Conditions	14
3.1.1	Test Environmental Conditions	14
3.1.2	Test Frequency and Test Channel Bandwidth	
3.1.3	Test SCS for NR Cell	
3.2	Reference Measurement Channel (RMC)	
3.2.1	Resource Allocation	
3.2.2	Modulation	
3.2.3	NR Uplink RMC	
3.2.4 3.2.5	NR Downlink RMC	
3.2.6	E-UTRA Uplink RMC E-UTRA Downlink RMC	
3.3	Signal Power Level.	
3.3.1	Uplink Signal Level	
3.3.2	Downlink Default Power Level	
3.4	Downlink PDSCH and PDCCH Configuration	30
3.5	Propagation Condition	
3.6	LTE Anchor Agnostic Approach for EN-DC FR1 Tests	31
4	Preparation of Test	34
4.1	Architecture	34
4.2	Hardware Requirement	34
4.3	Software Requirement	34
4.4	General Operations in CMsquares	34
4.4.1	LTE/NR Cell Setup and EN-DC Mode Activation	
4.4.2	LTE/NR Tx Measurement	
4.4.3	LTE/NR Rx Measurement	40
5	Transmitter Characteristic Tests	40
5.1	Maximum Output Power for Inter-band EN-DC within FR1 (6.2B.1.3)	41

5.1.1	Test Purpose	.41
5.1.2	Test Preparations	
5.1.3	Test Procedure	
5.1.4	Test Requirement and Results	.45
5.2	Maximum Output Power Reduction for Inter-band EN-DC within FR1 (6.2B.2. 46	3)
5.2.1	Test Purpose	.46
5.2.2	Test Preparations	.47
5.2.3	Test Procedure	
5.2.4	Test Requirement and Results	.48
5.3	Minimum Output Power for Inter-band EN-DC within FR1 (6.3B.1.3)	.48
5.3.1	Test Purpose	.49
5.3.2	Test Preparations	
5.3.3	Test Procedure	
5.3.4	Test Requirement and Results	
5.4	Tx ON/OFF Time Mask for Inter-band EN-DC within FR1 (6.3B.3.3)	.51
5.4.1	Test Purpose	.51
5.4.2	Test Preparations	
5.4.3	Test Procedure	
5.4.4	Test Requirement and Results	
5.5	Frequency Error for Inter-band EN-DC within FR1 (6.4B.1.3)	
5.5.1	Test Purpose	
5.5.2	Test Preparations	
5.5.3	Test Procedure	
5.5.4	Test Requirement and Results	
5.6	Error Vector Magnitude for Inter-band EN-DC within FR1 (6.4B.2.3.1)	.58
5.6.1	Test Purpose	
5.6.2	Test Preparations	
5.6.3 5.6.4	Test Procedure Test Requirement and Results	
5.7		
	Carrier Leakage for inter-band EN-DC within FR1 (6.4B.2.3.2)	
5.7.1	Test Purpose	
5.7.2 5.7.3	Test Preparations	
5.7.3	Test Requirement and Results	
5.8	In-band Emissions for Inter-band EN-DC within FR1 (6.4B.2.3.3)	
5.8.1	Test Purpose	
5.8.2	Test Preparations	
5.8.3	Test Procedure	
5.8.4	Test Requirement and Results	

5.9	EVM Equalizer Flatness for Inter-band EN-DC within FR1 (6.4B.2.3.4)	74
5.9.1	Test Purpose	74
5.9.2	Test Preparations	
5.9.3	Test Procedure	
5.9.4	Test Requirement and Results	
5.10	Occupied Bandwidth for Inter-Band EN-DC within FR1 (6.5B.1.3)	79
5.10.1	Test Purpose	
5.10.2	Test Preparations	
5.10.3 5.10.4	Test Procedure	
	Test Requirement and Results	
5.11	Spectrum Emission Mask for Inter-band EN-DC within FR1 (6.5B.2.3.1)	
5.11.1	Test Purpose	
5.11.2 5.11.3	Test Preparations Test Procedure	
5.11.4	Test Requirement and Results	
5.12	Adjacent Channel Leakage Ratio for Inter-band EN-DC within FR1 (6.5B.2.3.	
5.12	86	5)
5.12.1	Test Purpose	86
5.12.2	Test Preparations	86
5.12.3	Test Procedure	
5.12.4	Test Requirement and Results	
6	Receiver Characteristic Tests	. 89
6.1	Reference Sensitivity for Inter-band EN-DC within FR1 (7.3B.2.3)	89
6.1.1	General	89
6.1.2	EN-DC Band Combination without Exception	
6.1.3	EN-DC Band Combination with Exception	92
6.2	Maximum Input Level for Inter-band EN-DC within FR1 (7.4B.3)	96
6.2.1	Test Purpose	
6.2.2	Test Preparations	
6.2.3 6.2.4	Test Procedure	
	Test Requirement and Results	
7	Literature	
8	Appendix	100
А	FR1 Frequencies	101
A.1	NR FR1 Operating Bands	101
A.2	Inter-band EN-DC Configuration within FR1 (two bands)	
A.3	Intra-band EN-DC Contiguous within FR1	
A.4	Intra-band EN-DC Non-contiguous within FR1	
В	Initial Test Conditions	106

Test Frequencies for E-UTRA FDD Operating Band 1	.106
Test Channel Bandwidth for 5G NR FR1	.107
Test Frequency for 5G NR FR1	.108
Test SCS for 5G NR FR1	.109
Initial Bandwidth Part (BWP)	.112
Resource Block Allocation of Reference Measurement Channels (RMC)	.113
E-UTRA RB allocation of Uplink RMC	.113
NR RB Allocation of Uplink RMC	.114
NR RB Allocation of Downlink RMC	.117
	Test Channel Bandwidth for 5G NR FR1 Test Frequency for 5G NR FR1 Test SCS for 5G NR FR1 Initial Bandwidth Part (BWP) Resource Block Allocation of Reference Measurement Channels (RMC) E-UTRA RB allocation of Uplink RMC NR RB Allocation of Uplink RMC

1 Overview

5G New Radio (NR) is a radio access technology (RAT) specified by 3rd Generation Partnership Project (3GPP) in release 15 technical standard which was first published in 2018. It is designed to enhance the spectrum efficiency to meet the diverse needs of wireless communication applications, such as enhanced mobile broadband (eMBB), massive machine type communications (mMTC) and ultra-reliable and low latency communications (URLLC).

Two deployment modes are defined for 5G NR technology

- non-standalone (NSA) mode involving both E-UTRA (access technology used for LTE) and 5G NR RAT
- standalone (SA) mode allows the user equipment (UE) to access 5G core network (5GC) over LTE or 5G NR RAT

All 5G NR air interface related core specifications as well as associated test specifications are included in the 3GPP 38 series specifications. In an UE product lifecycle, UE vendor is obliged to go through the device certification process by passing all the required conformance tests which include RF, protocol, performance tests before official launch of the product. RF conformance testing is of course essential for the market access. The conformity of 3GPP specification has to be ensured even in the early product R&D phase.

This application note aims to guide the R&D reader through the 5G NR Frequency Range 1 (FR1) NSA RF UE conformance test according to 3GPP38.521-3 [1] based on mobile radio tester R&S[®]CMX and associated web user interface R&S[®]CMsquares in interactive operation mode, i.e. manual operation mode, through test configuration examples. After reading this application note, the reader should be able to conduct 3GPP RF conformance tests with proper settings manually and understand measurement results in R&S[®]CMsquares.

The whole application note is structured in the following way:

Chapter 2 gives general information about 5G NR frequency and related 3GPP test specifications

Chapter 3 explains some import parameters used for the conformance testing and how the proper value settings are determined

Chapter 4 shows the system requirements and some basic operations on the test equipment

Chapter 5 describes in great details of transmitter conformance test cases including the parameter settings, test procedure, test requirement and measurement results in R&S®CMsquares

Similar to Chapter 5, receiver conformance test cases are described in Chapter 6

Finally, some important tables from the 3GPP specification for quick reference are quoted in the Appendix

The following abbreviations are used for R&S® products throughout the whole application note:

- ► R&S[®]CMW500 Radio Communication Tester is referred to as CMW
- ► R&S[®]CMX500 Radio Communication Tester is referred to as CMX
- ► R&S[®]CMsquares web based graphical user interface is referred to as CMsquares

In this application note, E-UTRA and LTE are synonymous terms.

The relevant test requirement and measurement result of this application note are based on a device under test (DUT) with EN-DC band combination of NR n78 and E-UTRA Band 1 under normal environmental test condition. Citations of the corresponding 3GPP specifications clauses in this application note are exclusively based on the capability of the used DUT. Other DUT with different UE capability can the applied 3GPP clause deviate.

The application note is written based on the current CMX implementation with composite software (CSW) version 6.60.22 and reflects the status quo of the test coverage. The features are subject to change.

It is assumed that the reader already has a deep understanding of the 5G NR standard as well as the testing aspects. If not, then please refer to the 5G NR eBook [2] for more detailed overview on the fundamentals, procedures, testing aspects of the 5G NR technology.

2 General Information

In this chapter, some general information with respect to different 5G NR FR1 deployment scenarios and 3GPP test specifications are given.

2.1 Frequency Range (FR1 vs. FR2)

3GPP specification [3] has defined 5G NR frequency range (FR) as listed in Table 2-1.

Operating Frequency Range Designation	Corresponding Frequency Range
FR1	410 MHz - 7125 MHz
FR2	24250 MHz – 52600 MHz

Table 2-1 NR frequency range [3]

Different operating frequency impacts the testing methodology. The conformance tests in FR2 (millimeter wave range) can only be performed in Over the Air (OTA) environment. Whereas FR1 conformance tests can still be performed under conventional conducted mode, i.e. with direct RF connection between the DUT and tester.

In this application note, conformance test cases in FR1 are addressed, i.e. in conducted test mode. If more details about the OTA testing are required, please refer to R&S OTA testing white paper [4].

The entire NR FR1 operating band is listed in Annex A.1. The allowance of the operating band is subject to the local authority and the support of UE capability. Some operating bands are defined both in E-URTA and NR. The prefix "n" of the operating band indicates the NR band.

Furthermore, 3GPP defines also the test channel bandwidth (CBW) and the supported test subcarrier spacing (SCS) of each FR1 band which can be referred in Annex B.2 and B.4, respectively.

2.2 5G NR Non Standalone EN-DC Mode

5G NR can be operated with two different modes from high-level network topology perspective, namely, nonstandalone (NSA) and standalone (SA) mode as shown in Fig. 2-1 and Fig. 2-2, respectively.

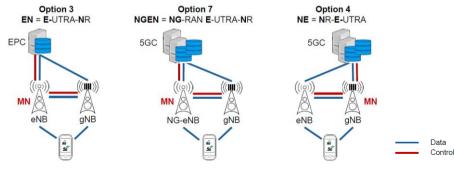
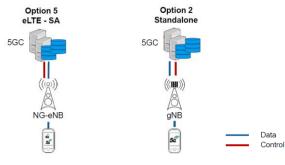
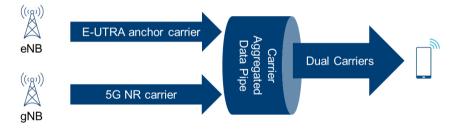


Fig. 2-1 5G NR Non-Standalone (NSA) modes




Fig. 2-2 5G NR Standalone (SA) modes

In SA mode, UE is connected to the 5GC (5G Core) network over LTE or NR RAT. Whereas NSA mode, besides NR RAT, it still relies on the assistance of the E-UTRA to transfer data or controlling information.

If we further break down the deployment scenarios in NSA mode, there are three operation modes defined by 3GPP, i.e. Option 3, 7 and 4 as shown in Fig. 2-1.

Option 3 is the 5G initial approach that allows fast deployment of the 5G service for network operators with minor modification to the existing 4G network. In this deployment option, radio access part consists of both LTE eNodeB (eNB) and 5G gNodeB (gNB). As illustrated in Fig. 2-3, it leverages the eNB and LTE core network (EPC) to anchor 5G NR using the dual connectivity (DC) feature where LTE acts as a master node (MN) or anchor carrier to carry control signaling and both LTE and NR are used for data traffic.

Therefore, option 3 is also called EN-DC mode where EN comes from the first alphabet of both E-UTRA and NR RAT. DC is the abbreviation of dual connectivity.

Fig. 2-3 5G NR EN-DC operation mode (Option 3)

In this application note, the described conformance test cases are all based on NSA EN-DC mode. SA mode, as well as option 7 and 4 deployment in NSA mode are out of the scope here.

In EN-DC mode, three aggregation modes are considered as shown in Fig. 2-4, i.e. inter-band, intra-band contiguous and intra-band non-contiguous. For information completeness purpose, details about the band configuration and bandwidth requirements of each aggregation mode are described in chapter 2.2.1, 2.2.2 and 2.2.3, respectively. However, this application note, we will be focusing only on the EN-DC inter-band mode.

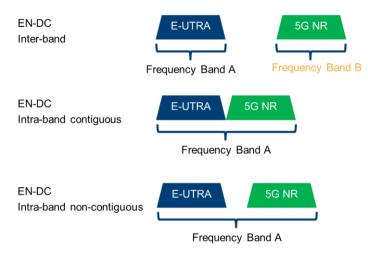


Fig. 2-4 5G NR EN-DC aggregation modes

2.2.1 NR EN-DC Inter-band

Complete definition of EN-DC inter-band combination with 2 up to 6 bands can be found in TS38.521-3 [1] clause 5.5B.4. For quick reference, inter-band EN-DC configuration consisting of only two bands within FR1 can be found in Annex.A.2 as well.

The inter-band EN-DC configuration contains information about the E-UTRA band and NR band combination, and its individual allowed bandwidth class.

EN-DC configuration	Uplink EN-DC configuration	Single UL allowed
DC_1A_n78A DC_1A_n78C	DC_1A_n78A	No
DC_66A_n78A	DC_66A_n78A	No

Table 2-2 Example of an inter-band EN-DC configurations within FR1 (two bands)

As an example shown in Table 2-2, the EN-DC configuration has the following naming convention

DC_<E-UTRA Band><E-UTRA Bandwidth Class>_<NR Band><NR Bandwidth Class>1

Bandwidth class given in the EN-DC configuration defines the bandwidth of the aggregated transmission and maximum number of component carriers that are supported by the UE.

The E-UTRA bandwidth class is specified in TS36.521-1 [5], clause 5.4.2A as shown in Table 2-3 below

CA Bandwidth Class	Aggregated Transmission Bandwidth Configuration	Number of contiguous CC
Α	N _{RB,agg} ≤ 100	1
В	25 < N _{RB,agg} ≤ 100	2
С	100 < N _{RB,agg} ≤ 200	2
D	200 < N _{RB,agg} ≤ 300	3
E	300 < N _{RB,agg} ≤ 400	4
F	400 < N _{RB,agg} ≤ 500	5
1	700 < N _{RB,agg} ≤ 800	8

Table 2-3 E-UTRA CA bandwidth classes and corresponding nominal guard bands (TS36.521-1 [5], clause 5.4.2A)

¹ The italic font indicates that this is a placeholder.

The NR bandwidth class is defined in TS38.521-1 [6], clause 5.3A.5 as also shown in Table 2-4 below

NR CA bandwidth class	Aggregated channel bandwidth	Number of contiguous CC
A	BW _{Channel} ≤ BW _{Channel,max}	1
В	20 MHz \leq BW _{Channel_CA} \leq 100 MHz	2
С	100 MHz < $BW_{Channel_{CA}} \le 2 \times BW_{Channel,max}$	2
D	200 MHz < $BW_{Channel_{CA}} \le 3 \times BW_{Channel,max}$	3
E	$300 \text{ MHz} < BW_{Channel_CA} \le 4 \text{ x } BW_{Channel,max}$	4
G	100 MHz < $BW_{Channel_CA} \le 150$ MHz	3
Н	150 MHz < $BW_{Channel_{CA}} \le 200$ MHz	4
I	200 MHz < $BW_{Channel_CA} \le 250$ MHz	5
J	250 MHz < $BW_{Channel_{CA}} \le 300$ MHz	6
К	$300 \text{ MHz} < \text{BW}_{\text{Channel}_{CA}} \le 350 \text{ MHz}$	7
L	$350 \text{ MHz} < BW_{Channel_{CA}} \le 400 \text{ MHz}$	8
NOTE: BW _{Channel,max} is m	aximum channel bandwidth supported among	g all bands in a release

Table 2-4 NR CA bandwidth classes (TS38.521-1 [6], clause 5.3A.5)

Example:

FR1 EN-DC inter-band configuration DC_1A_n78A reveals the dual connectivity consists of E-UTRA Band1 and NR Band n78. Both RATs support bandwidth class A, meaning both of them consist of one component carrier with maximum 100 MHz channel bandwidth for E-UTRA and maximum allowed channel bandwidth for NR band n78. The maximum allowed channel bandwidth for a NR band is defined in TS38.521-1 [6] clause 5.3.5. In our case, NR band n78 has maximum 100 MHz channel bandwidth.

2.2.2 NR EN-DC Intra-band Contiguous

For intra-band contiguous EN-DC, bandwidth class is specified in TS38.521-3 [1], clause 5.3B as also shown in Table 2-5. As of now, three bandwidth class combinations are specified. They are derived originally from the bandwidth class of E-UTRA and NR given in Table 2-3 and Table 2-4 in chapter 2.2.1.

Bandwidth class	Number of contiguous CC		
	E-UTRA	NR	
AA	1	1	
CA	2	1	
DA	3	1	

Table 2-5 Intra-band contiguous EN-DC bandwidth class (TS38.521-3 [1], clause 5.3B)

FR1 EN-DC Intra-band contiguous band channel configuration defined in 3GPP TS38.101-3 [7] clause 5.5B.2 can be referred in Annex A.3, Table 8-3 of this application note.

The configurations are defined by using naming convention

DC_(n) <E-UTRA/NR Band><E-UTRA Bandwidth Class><NR Bandwidth Class>1

The channel bandwidth combination sets of each defined channel configuration specified originally in TS38.521-3 [1], clause 5.3B.1.2 are listed in Annex A.3, Table 8-4 of this application note.

Example:

DC_(n)41CA denotes Intra-band EN-DC in band 41 containing E-UTRA carriers (As shown in Table 2-3, E-UTRA bandwidth class C: 2 CCs with channel bandwidth between 100 and 200 resource blocks (RBs), i.e. maximum 40 MHz) and NR carrier (As shown in Table 2-4, NR bandwidth class A: 1 CC with maximum channel bandwidth 100 MHz) that results in 140 MHz maximum aggregated bandwidth in total.

2.2.3 NR EN-DC Intra-band Non-contiguous

FR1 EN-DC Intra-band non-contiguous band channel configurations are defined in TS38.101-3 [7] clause 5.5B.3 that can be also referred in Annex A.4, Table 8-5 in this application note.

The bandwidth class definition of E-UTRA and NR can be referred to Table 2-3 and Table 2-4 correspondingly.

The naming convention is as follows:

DC_<E-UTRA Band><E-UTRA Bandwidth Class>_<NR Band><NR Bandwidth Class>1

Interpretation of the channel configuration from the previous chapters can be applied here as well.

Same as EN-DC intra-band contiguous case, each channel configuration has also defined channel bandwidth combination set. This can be found in Annex A.4, Table 8-6 for further reference.

2.3 3GPP Test Specifications

For 5G NR UE RF conformance test, several specifications are released by 3GPP. They are summarized in Table 2-6.

Test Specification	Scope	
TS 38.521 - 1	RF Conformance (Tx & Rx) FR1 conducted tests	
TS 38.521 - 2	RF Conformance (Tx & Rx) FR2 radiated tests	
TS 38.521 - 3	RF Conformance (Tx & Rx) FR1/FR2 interworking (NSA) with radiated tests in FR2	
Table 2-6 Overview of 3G	PP test specifications	

Table 2-6 Overview of 3GPP test specifications

The main focus of this application note is the UE transmitter and receiver conformance testing in EN-DC operation mode (see chapter 2.2) in FR1 frequency band. Therefore, all the FR1 NSA EN-DC conformance test cases defined in TS38.521-3 [1] are our primitive reference. In case the test cases require LTE anchor agnostic approach (details see in chapter 3.6), the corresponding test case reference will then be redirected to TS38.521-1 [6] accordingly.

Besides the test specifications listed in Table 2-6, core specification TS 38.101-3 [7] for EN-DC mode is a reference where the UE minimum requirements are included. In contrast to the core specification, the test specification TS38.521-3 [1]/TS38.521-1 [6] relaxes the test requirement by additional test tolerance (TT) which is then defined in test requirements section of each test case in the specification.

3 Configure 5G NR EN-DC RF Test

Each conformance test case from the test specification has one or more test configuration tables that consist of two parts, namely, default conditions and the test parameters. An example is shown in Table 3-1.

Table 6.2B.1.3.4.1-1:	Test	configuration table
-----------------------	------	---------------------

				Default	Conditions			
Test Env	Test Environment					TL/VH, TH/VI	тили	
as specif	ied in TS 3	38.508-1 [6] clause 4.'	1	INC, IL/VL,		., 10/10	
Test Free	quencies				Low for E-l	JTRA CC1 and	INR CC1,	
as specif	ied in TS 3	38.508-1 [6] clause 4.3	3.1 and	Mid for E-L	JTRA CC1 and	NR CC1,	
TS 36.50					High for E-	UTRA CC1 an	d NR CC1	
		el bandwid			5MHz for E		nd Lowest for NR	CC1
		se 4.3.1 an	d TS 38.50	8-1			and Highest for N	
clause 4.					riigheat ioi	E-01104 001	and highest for h	
	Test SCS for the NR cell as specified in TS 38.521-			Lowest, Hi	nhest			
1 [8] Tab	1 [8] Table 5.3.5-1			· · ·	gnoot			
				arameters				
Test ID	Test	E-	NR BW	Downlin			nk Configuration	
	Freq	UTRA		k		RA Cell	NR C	
		BW		Configur	Modulati	RB	Modulation	RB
				ation	on	allocation	(NOTE 3)	allocation
						(NOTE 1)		(NOTE 2)
1	High	Default	Default	N/A	QPSK	1RB Right	DFT-s-OFDM	Inner_1RB
							PI/2 BPSK	_Right
2	Low	Default	Default		QPSK	1RB Left	DFT-s-OFDM	Inner_1RB
						-	PI/2 BPSK	_Left
3	Default	Default	Default		QPSK	Partial_Allo	DFT-s-OFDM	Inner_Full
cation PI/2 BPSK								
						ed in Table 6.	1-1 in current spec	
NOTE 2:	The spe	cific config	ration of e	ach RB alloc	ation is defir	ied in Table 6. ied in Table 6.		1 [8].

Table 3-1 Example of a test configuration table

The default conditions contain following requirements

- 1. Test environment (TS 38.508-1 [8] clause 4.1) covering normal and extreme high/extreme low conditions with respect to temperature and voltage
- 2. Test frequency and test channel bandwidth (NR in TS 38.508-1 [8] clause 4.3.1 and LTE in TS 36.508 [9] clause 4.3.1), see Chapter 3.1.2
- 3. Test subcarrier spacing (SCS) for NR cell (TS 38.521-1 [6] Table 5.3.5-1), see Chapter 3.1.3

Unless otherwise stated, test channel bandwidth shall be prioritized in the selecting of test points. That means, appropriate SCS shall be selected only after test channel bandwidth is determined.

For sake of simplicity, all the test cases described in this application note do not consider the environmental condition requirements. In other words, all the tests are conducted under normal room temperature and DUT is supplied with nominal voltage.

The test parameters of the test configuration defines the indexed test points. Each test point associated with a test ID contains:

- 1. Test frequency, test channel bandwidth. Unless otherwise explicitly specified, the default conditions need to be applied.
- 2. If specified, EN-DC downlink reference channel configurations, incl. modulation type and resource block (RB) allocations for E-UTRA, NR. See Chapter 3.2.
- 3. EN-DC uplink reference channel configurations, incl. modulation type and resource block (RB) allocations for both E-UTRA and NR. See Chapter 3.2.

There are normally numerous test points (test IDs) defined in the test configuration table of each test case. For conformance testing, all the test points have to be executed if they are applicable. In some cases, one test point may even consist of several test runs which should reflect all the combinations of the specified test conditions. For example, Test ID 1 in Table 3-1 contains 2 test runs (2 default test bandwidths per definition in the default condition part of the table). In Chapter 5 and 6 of this application note, we only choose one test point as an example to show the principle of the test configuration. The chosen example is the basis of the subsequent descriptions and the measurement results of the test case.

Besides test configuration table, other parameters have to be configured prior to starting the measurements as well, such as:

1. Uplink initial power, see Chapter 3.3.1

2. Downlink initial power, see Chapter 3.3.2

As per test specification, no fading and AWGN is added for the propagation condition.

3.1 Default Conditions

The default test conditions described in this chapter apply to both transmitter and receiver tests.

3.1.1 Test Environmental Conditions

All the tests described in the subsequent chapters are assumed to be conducted under normal room temperature. The test environment (extreme high/extreme low temperature and voltage) is out of the scope of this application note.

For getting more detailed information about the test environmental requirements, please refer to TS38.508-1 [8] clause 4.1.

3.1.2 Test Frequency and Test Channel Bandwidth

The low, mid and high test frequency range indicates the location of the carrier center frequency in the low, middle and high edge of the operating band, respectively. Based on the operating band of E-UTRA and NR, specifications given in Table 3-2 can be referred to determine the low, mid and high range of the test frequency. Furthermore, low/mid/high test channel bandwidth as per the requirement of the default conditions in each test case can also be referred in the specification indicated in Table 3-2.

RAT	Duplex Mode	3GPP Specification	Remark
		TS36.508 [9], Chapter 4.3.1.1.x, where placeholder x indicates the E-UTRA band	Specified test channel bandwidth (Low, Mid, High)
	TDD	TS36.508 [9], Chapter 4.3.1.2	Specified test channel bandwidth (Low, Mid, High)
NR	FDD/TDD	TS38.508-1 [8], Chapter 4.3.1.0A- 4.3.1.0C	Specified test channel bandwidth (Low, Mid, High)
		TS38.508-1 [8], Chapter 4.3.1.1.1.x, where placeholder x indicates the NR band	Specified test frequencies (Low, Mid, High)

Table 3-2 Overview of 3GPP specifications for test frequency and test bandwidth for E-UTRA and NR

Example:

Table 3-3 highlights the E-UTRA Band 1 test frequency in mid-range with 20 MHz channel bandwidth defined in TS36.508 [9], clause 4.3.1.1.1 (FDD Band 1)

Test Frequency ID	Bandwidth [MHz]	NUL	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink [MHz]
Low Range	5	18025	1922.5	25	2112.5
	10	18050	1925	50	2115
	15	18075	1927.5	75	2117.5
	20	18100	1930	100	2120
Mid Range	5/10/15/20	18300	1950	300	2140
High Range	5	18575	1977.5	575	2167.5
	10	18550	1975	550	2165
	15	18525	1972.5	525	2162.5
	20	18500	1970	500	2160

Table 3-3 Test frequencies for E-UTRA channel bandwidth for operating band 1 (TS36.508 [9], Table 4.3.1.1.1-1)

Following E-UTRA settings need to be set in CMsquares to reflect the test frequency and channel bandwidth configurations

- 1. Duplex Mode
- 2. Frequency Band Indicator
- 3. Frequency Bandwidth / Downlink Resource Blocks
- 4. Range Choice
- 5. Frequency Bandwidth / Uplink Resource Blocks

Fig. 3-1 shows the configuration fields that correspond to above mentioned parameters

Ger	neral 🚯 LTE LTE Ce	II O		
		OFF		
▼	Frequency and E	land	•	
	Duplex Mode	FDD	1	~
	Frequency Band Indicator	1	2	~
Dow	nlink		4	
	Resource Blocks	100	8	~
	Frequency Bandwidth	20 MHz	<u> </u>	~
	Range Choice	Mid Band	4	~
C	arrier Frequency	2140.0		MHz
	EARFCN	300		
Upli	nk			
	Tx-Rx Separation	Default		~
	Resource Blocks	100	6	~
	Frequency Bandwidth	20 MHz	0	~
	Range Choice	Mid Band		~
C	arrier Frequency	1950.0		MHz
	EARFCN	18300		
Add	litional Spectrum Emission	0		

Fig. 3-1 Configuration of test frequency and bandwidth of E-UTRA in CMsquares

For 5G NR, test channel bandwidth is summarized in Annex B.2.

Example:

As shown in Table 3-4, mid test channel bandwidth for NR band n78 is 50 MHz

NR band / UE Mid Test Channel bandwidth						
NR Band	Mid [MHz]					
n1	15, 20					
n78	50					
n86	203					

Table 3-4 Definition of mid test channel bandwidths in 5G NR FR1 (TS38.508-1 [8], Table 4.3.1-1)

TS38.508-1 [8] clause 4.3.1.1.1 defines the low, mid and high range of the test frequencies for NR bands. The range is also linked to the location of the Point A, accordingly. E.g. the selected mid range test frequency has Point A location in the middle. Refer to the example below to understand the settings in CMsquares.

Example:

Test frequency of NR band n78 with 30 kHz SCS can be found in TS38.508-1 [8], Table 4.3.1.1.1.78-2. See also Annex B.3, Table 8-10.

The configuration of mid range of test frequency is highlighted in Table 3-5 below.

[MHz]	Bandw idth [PRBs]		e	Carrier centre [MHz]	Carrier centre [ARFCN]	point A [MHz]	absolute Frequen cyPoint A [ARFCN]	offsetTo Carrier [Carrier PRBs]	SS block SCS [kHz]	GSCN	absolute Frequen cySSB [ARFCN]	k _{SSB}	Offset Carrier CORE SET#0 [RBs] Note 2	CORE SET#0 Index (Offset [RBs]) Note 1	offsetTo PointA (SIB1) [PRBs] Note 1
100	273	Downlink	Low	3350.01	623334	3300.87	620058	0	30	7711	620352	6	0	2 (2)	4
		&	Mid	3549.99	636666	3464.13	630942	102		7850	633696	18	0	2 (2)	208
		Uplink	High	3750	650000	3519.42	634628	504		7989	647040	4	0	3 (3)	1014
Note 1: Note 2:	controlRe 60 kHz s	RESET#0 Inde esourceSetZe ubcarrier spac meter Offset (ro (pdccł cing for F	n-ConfigSIB1 R2.) in the MIB.	The offsetTo	oPointA IE is	expressed in	n units of r	esource blo	ocks assumir	ng 15 kHz	z subcarriei	spacing for	

Table 3-5 Example of test frequency determination of NR FR1

Following NR settings need to be set in CMsquares to reflect the test frequency and channel bandwidth configurations:

- 1. Frequency Range
- 2. Duplex Mode
- 3. Frequency Band Indicator
- 4. Subcarrier Spacing
- 5. Carrier Bandwidth
- 6. Point A Location

Fig. 3-2 shows the configuration fields that correspond to above mentioned parameters

General de LTE LTE Ce	0 NR Cell 0					
	OFF					
 Frequency and B 	and					
Frequency Range	FR 1 1	~				
Duplex Mode	TDD 2	~				
Frequency Band Indicator	N 78 3	~				
Subcarrier Spacing	30 kHz 4	~				
	Frequenc	y Config				
Downlink-Uplink						
Carrier Bandwidth	100 MHz 5	~				
Offset To Carrier	102	PRB				
Additional Spectrum Emission	0					
Point A						
Location	Mid 6	~				
NR ARFCN	630942					
Frequency	3464.130 MHz					
Initial BWP						
Location and Bandwidth	1099	RIV				
 Coreset and Sear 	ch Space Zero					
Control Resource Zero	2					
Search Space Zero	0					

Fig. 3-2 Configuration of test frequency and bandwidth of NR

By simply setting the Point A location to Mid, other highlighted parameters in Table 3-5 such as carrier center frequency, Point A ARFCN, offset to carrier, K_{ssb} etc. are automatically configured in CMsquares.

3.1.3 Test SCS for NR Cell

The SCS support of each NR operating band with respect to the channel bandwidth can be referred in Annex.B.4, Table 8-11

Example:

NR band n78 operating with 100 MHz channel bandwidth has the lowest SCS 30 kHz, highest SCS 60 kHz.

Setting for SCS in CMsquares can refer to Fig. 3-2.

3.2 Reference Measurement Channel (RMC)

Reference Measurement Channel (RMC) is defined by the 3GPP specification to fix the variable test parameters so that the tests can be conducted in a reliable and repeatable environment. Both E-UTRA and NR have RMC defined in downlink and uplink direction.

Uplink RMC is mainly for transmitter characteristic tests and for the receiver characteristic where the UL signal is relevant. For FR1 EN-DC tests, uplink RMCs as listed in Table 3-6 need to be applied. See Chapter 3.2.3 and 3.2.5 for details.

Unless otherwise stated, references to the specification for downlink RMCs of E-UTRA and NR are listed in Table 3-7. Depending on the different test purpose, appropriate DL RMC needs to be selected. See Chapter 3.2.4 and 3.2.6 for details.

RAT	Duplex Mode	3GPP Specification
E-UTRA	FDD	TS 36.521-1 [5], Annex A, clause A.2.2
	TDD	TS 36.521-1 [5], Annex A, clause A.2.3
NR	FDD	TS 38.521-1 [6] , Annex A, clause A.2.2
	TDD	TS 38.521-1 [6] , Annex A, clause A.2.3

Table 3-6 Overview of 3GPP specifications for E-UTRA and NR uplink reference measurement channel

RAT	Duplex Mode	3GPP Specification
E-UTRA	FDD	TS 36.521-1 [5], Annex A, clause A.3.2, A3.2A
	TDD	TS 36.521-1 [5], Annex A, clause A.3.2, A3.2A
NR	FDD	TS 38.521-1 [6], Annex A, clause A.3.2
	TDD	TS 38.521-1 [6] ,Annex A, clause A.3.3

Table 3-7 Overview of 3GPP specifications for E-UTRA and NR downlink reference measurement channel

3.2.1 Resource Allocation

The downlink and uplink RB allocations for E-UTRA and NR cell in each test case are specified in the test parameters part of the test configuration table. The look-up tables for the specified RB allocation can be found in Annex D.1, Table 8-13 and Annex D.2, Table 8-14 or Table 8-15 for E-UTRA and NR, respectively, where the starting point of the RB allocation and number of the allocated RB are determined.

Example:

Table 3-8 shows an example of test parameters of a test case containing RB allocations

	Test Parameters									
Test	Test	E-	NR BW	Downlin EN-DC Uplink Configuration						
ID	Freg	UTRA		k E-UTRA		RA Cell	N	R Cell		
		BW		Configur ation	Modulati on	RB allocation (NOTE 1)	Modulation (NOTE 3)	RB allocation (NOTE 2)		
1	High	Default	Default	N/A	QPSK	1RB_Right	DFT-s-OFDM PI/2 BPSK	Inner_1RB _Right		

Table 3-8 Example of test parameters with RB allocation

By referring Annex D.1 Table 8-13, if E-UTRA operates with 20 MHz bandwidth, "1RB_Right" reveals 1@99 allocation, i.e. RB start position = 99 and the number of RB = 1.

By referring Annex D.2 Table 8-14, if NR operates with 100 MHz bandwidth, 30 kHz SCS, DFT-s-OFDM (with transform precoding), "Inner_1RB_Right" denotes the RB allocation as 1@271, i.e. RB start position = 271 and the number of RB = 1.

If the test case requires REFSENS RB allocation for NR, then Annex D.2 Table 8-15 has to be applied.

3.2.2 Modulation

In each conformance test case, an RMC defines typically the configuration of the RB allocation and applied modulation type.

As listed in Table 3-9, NR physical channels support different modulation types, i.e. QPSK, 16QAM, 64QAM or 256QAM, including optional $\pi/2$ -BPSK modulation in case transform precoding DFT-s-OFDM in the uplink is enabled.

Direction	NR Physical Channel	Supported Modulation Type
Downlink	PBCH	QPSK
	PDCCH	QPSK
	PDSCH	QPSK, 16QAM, 64QAM or 256QAM
Uplink	PUCCH	CP-OFDM: BPSK (PUCCH format 1), QPSK (PUCCH format 1/2)
		DFT-OFDM: π/2-BPSK (PUCCH format 3/4), QPSK (PUCCH format 3/4)
	PUSCH	CP-OFDM: QPSK, 16QAM, 64QAM or 256QAM
		DFT-s-OFDM: π/2-BPSK, QPSK, 16QAM, 64QAM or 256QAM

Table 3-9 NR supported modulation types

Modulation coding scheme (MCS) defines the number of useful bits transmitted per transport block which in turn determines the transmission data rate. Each one is identified by a unique index in an associated MCS table, a so called MCS index.

MCS index together with MCS table determines the target code rate required by the RMC. These two parameters are configurable in CMsquares.

In our application here, the RMC configuration given by each test case in the test specification is in form of RB allocation and modulation type which has to be mapped to MCS index and MCS table on CMX. The way of mapping is explained in subsequent chapters 3.2.3, 3.2.4, 3.2.5 and 3.2.6.

3.2.3 NR Uplink RMC

First of all, the appropriate NR uplink RMC table from the 3GPP specification (see Table 3-7) needs to be mapped based on the following parameters

- 1. Duplex mode²
- 2. Channel bandwidth
- 3. SCS³
- 4. Uplink OFDM waveform⁴
- 5. Modulation type⁵
- 6. Allocated resource blocks

Example

The definition of a NR uplink RMC with configuration (TDD, CBW 100 MHz, SCS 30 kHz, using DFT-s-OFDM, PUSCH with QPSK modulation, 270 RBs) can be found in TS38.521-1 [6], clause A.2.3.2. The

² FDD or TDD

³ 15, 30 or 60 kHz ⁴ DFT-s-OFDM or CP-OFDM

⁵ Modulation type: $\pi/2$ -BPSK (only for DFT-s-OFDM), QPSK, 16QAM, 64QAM or 256QAM

related RMC configuration table is shown and highlighted in Table 3-10. The yellow marked parameter items need to be configured in CMsquares. The selection of the MCS table is determined by NOTE2 of the corresponding RMC table and depends on the type of the transform pre-coding. An overview of the MCS table associated with the table in TS38.214 [10] and transform pre-coding is given in Table 3-11.

In the example here, according to NOTE2 of the RMC configuration table, MCS index is based on the Table 6.1.4.1-1 defined in TS38.214 [10] and DFT-s-OFDM is used in the uplink transform pre-coding. By referring Table 3-11, 64QAM MCS table should be configured on CMsquares.

Parameter	Channel bandwidth	Subcarrier Spacing	Allocated resource blocks	DFT-s- OFDM Symbols per slot (Note 1)	Modulation	MCS Index (Note 2)	Target Coding Rate	Payload size for slots 8, 9, 18 and 19	Transport block CRC	LDPC Base Graph	Number of code blocks per slot for slots 8, 9, 18 and 19 (Note 3)	Total number of bits per slot for slots 8, 9, 18 and 19	Total modulated symbols per slot for slots 8, 9, 18 and 19
Unit	MHz	kHz						Bits	Bits			Bits	
	5-100	30	1	11	QPSK	2	1/6	48	16	2	1	264	132
	5	30	5	11	QPSK	2	1/6	256	16	2	1	1320	660
	5	30	10	11	QPSK	2	1/6	504	16	2	1	2640	1320
	10	30	12	11	QPSK	2	1/6	608	16	2	1	3168	1584
	10	30	24	11	QPSK	2	1/6	1192	16	2	1	6336	3168
	15	30	18	11	QPSK	2	1/6	928	16	2	1	4752	2376
	15	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	20	30	25	11	QPSK	2	1/6	1256	16	2	1	6600	3300
	20	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	25	30	32	11	QPSK	2	1/6	1608	16	2	1	8448	4224
	25	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	30	30	36	11	QPSK	2	1/6	1800	16	2	1	9504	4752
	30	30	75	11	QPSK	2	1/6	3752	16	2	1	19800	9900
	40	30	50	11	QPSK	2	1/6	2472	16	2	1	13200	6600
	40	30	100	11	QPSK	2	1/6	5000	24	2	2	26400	13200
	50	30	64	11	QPSK	2	1/6	3240	16	2	1	16896	8448
	50	30	128	11	QPSK	2	1/6	6408	24	2	2	33792	16896
	60	30	81	11	QPSK	2	1/6	4040	24	2	2	21384	10692
	60	30	162	11	QPSK	2	1/6	8064	24	2	3	42768	21384
	80	30	108	11	QPSK	2	1/6	5384	24	2	2	28512	14256
	80	30	216	11	QPSK	2	1/6	10752	24	2	3	57024	28512
	90	30	120	11	QPSK	2	1/6	5896	24	2	2	31680	15840
	90	30	243	11	QPSK	2	1/6	12040	24	2	4	64152	32076
	100	30	135	11	QPSK	2	1/6	6664	24	2	2	35640	17820
D	MRS is [TDM'	ed] with PUSC	H data.		QPSK nfiguration Type S 38,214 [12].	2 e-1 with 2 ad	1/6 Iditional DN	13320 1-RS symbo	24 Is, such that th	2 ie DM-RS j	4 positions are	71280 set to symb	35640 ools 2, 7, 11.

Table A.2.3.2-2: Reference Channels for DFT-s-OFDM QPSK for 30kHz SCS

Table 3-10 Example NR uplink RMC with configuration (TDD, CBW 100 MHz, SCS 30 kHz, DFT-s-OFDM, PUSCH with QPSK modulation, 270 RBs allocation)

Table in TS38.214	Type of Uplink Transform Precoding	MCS Table Name in CMsquares				
Table 6.1.4.1-1	DFT-s-OFDM	64 QAM				
Table 5.1.3.1-1	CP-OFDM	64 QAM				
Table 5.1.3.1-2	Not relevant	256 QAM				

 Table 3-11 Mapping of MCS table vs. transform precoding and tables in TS38.214 [10]

To create NR uplink RMC as in the given example, the overall parameters need to be considered in CMsquares are⁶

- 1. Duplex mode (**TDD**)
- 2. SCS (30 kHz)
- 3. Channel bandwidth (**100 MHz**)
- 4. Uplink OFDM waveform (DFT-s-OFDM)⁷

⁶ The values in the bracket are given according to our example. The slot where the resource has to be allocated is defined in the RMC. ⁷ Optional, in our example here, DFT-s-OFDM is enabled.

- 5. MCS table (64QAM)⁸
- 6. MCS index (2)
- 7. RB numbers (270)

The settings in CMsquares are shown in Fig. 3-3.

General 🚯 LTE LTE Ce	ll o 🚺 NR				Ge	neral 🔺 LTE LTE	E E Cell 0	A	NR NR Cell 0									
	OFF							OF	F									
Cell Name	NR Cell 0					•		ep										
Cabling mapped	NR O						Transfor	rm 🔽		DFT-s-OFD	4	,						
Maximum Confid	g						Precodi MCS Tab			0113 010								
 Cell Identity 						Tr	ansform Precod	ler 64 QA	M			~						
▼ Frequency and E	Band						tp-pi2BP											
Frequency Range	FR 1				~		TDD Commo											
Duplex Mode	TDD	1			~	Pat	tern 1 (Type UL											
Frequency Band	N 78				~		Periodic	ity 5 ms	10	Slots)		~						
Indicator							# DL Slo	ots 7										
Subcarrier Spacing	30 kHz	2			~		# UL Slo	ots 2										
Downlink-Uplink		0					# DL Symbo	ols 6				after last						
Carrier Bandwidth		PRB					# DL Symbols 6 DL Slot # UL Symbols 4 before first UL Stot											
Offset To Carrier	0	PRB																
Additional Spectrum Emission	0	PRB					User Defined		ulir	ng								
Point A		PRB					wnlink Scheduli			- 4								
Location	User Define	ser Defined					Slot Assignme	ent		Config	uration							
NR ARFCN	635124	ser Defined 🗸					MAC Paddi	ng 🗸										
Frequency	3526.86			MHz	z	E	Bandwidth Part	ID 0										
Initial BWP						4	Aggregation Lev	vel Level										
Location and Bandwidth	1099			RIV			Search Space	ID 2										
Coreset and Sea	rch Space Zer	o					MCS Tab	ole 64 QA	M			~						
► SSB						Vr	b to Prb Mappi			rloaved		~						
								III NOITI	ne	neaveu		•						
NR Cell 0 > UE Slot Sched	luling														×			
ilot Index	0	0 1 2 3		3		4	5		6	7	7	8	9					
	DL	DL DL DL DL				DL	DL		DL	DL	UL	UL	UL					
						~	~		~		4	× •	× •					
Start RB		0	0		0		0	0		0	•		0	0	_			
‡ RB	-	273	273		273		273	273		273	-	-	270	270				
MCS		4	4		4		4	4		4	-	-	2	2				
DCI Format	-	DCI 11 🗸	DCI 11	~	DCI 11	~	DCI 11 🗸	DCI 11	~	DCI 11 🗸	-	-	DCI 01	V DCI 01	~			
MIMO Scheme	-	siso 🗸	SISO	~	SISO	~	siso 🗸	SISO	~	SISO 🗸	-	-	SISO	✓ SISO	~			
Time Domain Alloc.		- SISO ~ SISO ~ SISO																

Fig. 3-3 Setting of a NR uplink RMC in CMsquares

3.2.4 NR Downlink RMC

First of all, locate the NR downlink RMC in the 3GPP specification (see Table 3-7) based on the following parameters

- 1. Duplex mode⁹
- 2. Channel bandwidth
- 3. SCS¹⁰
- 4. Modulation type¹¹

⁸ MCS table name is determined based on the NOTE2 of the example RMC table (Table 6.1.4.1-1 in TS38.214) and DFT-s-OFDM. As shown in the relationship Table 3-11, 64QAM MCS table should be selected due to

⁹ FDD or TDD

¹⁰ 15, 30 or 60 kHz

¹¹ Modulation type: QPSK, 64QAM or 256QAM

Example

The definition of a NR downlink RMC (TDD, CBW 100 MHz, SCS 30 kHz, PDSCH with QPSK modulation) can be found in TS38.521-1 [6], clause A.3.3.2. It is now highlighted in Table 3-12 below. The marked parameter items need to be then configured in CMsquares. As we can see, the required MCS index and MCS table are specified directly in the RMC table.

Parameter	Unit						Value					
Channel bandwidth	MHz	5	10	15	20	25	30	40	50	60	80	100
Subcarrier spacing configuration $^{\mu}$		1	1	1	1	1	1	1	1	1	1	1
Allocated resource blocks		11	24	38	51	65	78	106	133	162	217	273
Subcarriers per resource block		12	12	12	12	12	12	12	12	12	12	12
Allocated slots per Frame		13	13	13	13	13	13	13	13	13	13	13
MCS Index		4	4	4	4	4	4	4	4	4	4	4
MCS Table for TBS determination							64QAM					
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3	1/3
Maximum number of HARQ transmissions		1	1	1	1	1	1	1	1	1	1	1
Information Bit Payload per Slot												
For Slots 0,1,2 and Slot i, if mod(i, 10) =	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
{7,8,9} for i from {0,,19}	Dita	19/7	10/7	19/5	IN/A	10/7	19/73	10/7	19/75	19/7	10/5	19/75
For Slot i, if mod(i, 10) = {0,1,2,3,4,5,6}	Bits	736	1608	2472	3368	4224	4992	6912	8712	10504	14088	17928
for i from {3,,19}												
Transport block CRC	Bits	16	16	16	16	24	24	24	24	24	24	24
LDPC base graph		2	2	2	2	1	1	1	1	1	1	1
Number of Code Blocks per Slot												
For Slots 0,1,2 and Slot i, if mod(i, 10) = {7,8,9} for i from {0,,19}	CBs	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
For Slot i, if mod(i, 10) = {0,1,2,3,4,5,6} for i from {3,,19}	CBs	1	1	1	1	1	1	1	2	2	2	3
Binary Channel Bits per Slot												
For Slots 0,1,2 and Slot i, if mod(i, 10) =	Bits	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
{7,8,9} for i from {0,,19}	DIIS	N/A	IN/A	IN/A	IN/A	IN/A	IN/A	IN/A	N/A	IN/A	IN/A	IN/A
For Slot i, if mod(i, 10) = {0,1,2,3,4,5,6} for i from {3,,19}	Bits	2376	5184	8208	11016	14040	16848	22896	28728	34992	46872	58968
Max. Throughput averaged over 1 frame	Mbps	0.810	2.1.769	2.719	3.705	4.646	5.491	7.603	9.583	11.554	15.497	19.721
Note 1: Additional parameters are specific	ed in Table A	3.1-1 and	Table A.3.	3.1-1.								
Note 2: If more than one Code Block is pr	esent, an add	ditional CR	C sequenc	e of L = 2	4 Bits is a	tached to	each Code	Block (ot	herwise L	= 0 Bit)		
Note 3: SS/PBCH block is transmitted in	slot #0 of eac	h frame										

Table A.3.3.2-2: Fixed reference channel for receiver requirements	(SCS 30 kHz, TD	D. QPSK 1/3)

Note 3: SS/PBCH block is transmitted in slot #0 of each frame.

Note 4: Slot i is slot index per frame.

Table 3-12 Example NR downlink RMC with configuration (TDD, CBW 100 MHz, SCS 30 kHz, PDSCH with QPSK modulation)

To create NR downlink RMC as in the given example, the overall parameters need to be configured in CMsquares are¹²

- 1. Duplex mode (**TDD**)
- 2. SCS (30 kHz)
- 3. Channel bandwidth (100 MHz)
- 4. MCS table (64QAM)
- 5. MCS index (4)
- 6. RB numbers (273)

The settings in CMsquares are shown in Fig. 3-4

QPSK (for measurements of the receiver characteristic and also apply for the modulated interferer used in test case 7.5, 7.6 and 7.8) 64QAM (for maximum input level test case 7.4, UE does not support PDSCH 256QAM)

²⁵⁶QAM (for maximum input level test case 7.4, UE support PDSCH 256QAM)

¹² The values in the bracket are given according to our example. The slot where the resource has to be allocated is defined in the RMC.

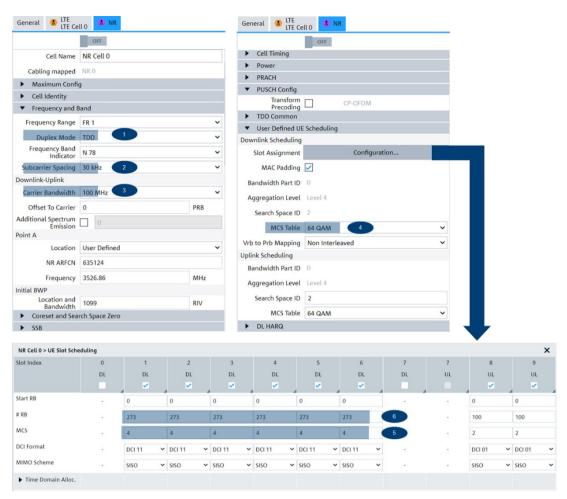


Fig. 3-4 Setting of a NR downlink RMC in CMsquares

3.2.5 E-UTRA Uplink RMC

Find appropriate E-UTRA uplink RMC out of the TS 36.521-1 [5] Annex A.2 at first based on the following parameters

- 1. Duplex mode¹³
- 2. Channel bandwidth¹⁴
- 3. Modulation type¹⁵
- 4. Allocated resource blocks¹⁶

Example

The definition of a E-UTRA uplink RMC (FDD, CBW 20 MHz, PUSCH with QPSK modulation, full 100 RBs) can be found in TS36.521-1 [5] clause A.2.2.1.1 The related RMC configuration is shown and highlighted in Table 3-13.

¹³ FDD or TDD

¹⁴ 1.4, 3, 5, 10, 15 or 20 MHz

¹⁵ QPSK, 16QAM, 64QAM or 256QAM

Table A.2.2.1.1-1: Reference Channels for QPSK with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6
Payload size	Bits	600	1544	2216	5160	4392	4584
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	1728	4320	7200	14400	21600	28800
(Note 1)							
Total symbols per Sub-Frame		864	2160	3600	7200	10800	14400
UE Category		≥1	≥1	≥1	≥1	≥1	≥1
Note 1: If more than one Code Bloc				C sequer	nce of L =	= 24 Bits i	s
attached to each Code Bloc	k (otherwis	e L = 0 Bi	t)				

Table 3-13 Example E-UTRA uplink RMC with configuration (FDD, CBW 20 MHz, PUSCH with QPSK modulation, Full 100RB allocation)

To setup E-UTRA uplink RMC given in the example in CMsquares, following parameters need to be configured

- 1. Duplex mode (**FDD**)
- 2. Channel bandwidth (20 MHz)
- 3. RB numbers (100)
- 4. MCS index (2)

The settings in CMsquares are shown in Fig. 3-5

	OFF			OFF									
	_		DL IQ Data Streams 1										
Physical Cell ID	0												
 Frequency and E 	land		 User Defined UE Sc Subframe 	heduling		_							
Duplex Mode	FDD 1	~	Assignment		Configuration.								
Frequency Band Indicator	1	~	DL MAC Padding 🗸										
Indicator Iownlink			LTE Cell 0 > UE Subframe	s Scheduling									
Resource Blocks	100	~	Downlink Uplink										
Frequency			Transmission Mode TM1: 5	ingle Antenni		~		-					
Bandwidth	20 MHz	~		0	1	2	3	4	5	6	7	8	9
Range Choice	Mid Band	~	SubFrame				Z			~			
Carrier Frequency	2140.0	MHz	PDCCH Format	NCCE4	NCCE4	NCCE4 V	NCCE4 V	NCCE4 ~	NCCE4 V	NCCE4 ~	NCCE4 ~	NCCE4 ~	NCCE4 ~
EARFCN	300		DCI Format	DCI 0	DCI 0	DCI 0	DCI 0 🗸	DCI 0 V	DCI 0 🗸	DCI 0 🗸	DCI 0 🗸	DCI 0 🗸	DCI 0 🗸
Iplink													
Tx-Rx Separation	Default	~	RIV	0	0	0	0	0	0	0	0	0	0
Resource Blocks	100	~	Start RB	0	0	0	0	0	0	0	0	0	0
Frequency Bandwidth		~	Number RB	100	100	100	100	100	100	100	100	100	100
Range Choice	Mid Band	~	▼ Code Word 1										
Carrier Frequency	1950.0	MHz	TB5 Index	2	2 1	2 V	2 *	2 ¥	2 ¥	2 ¥	2 ¥	2 ¥	2 ¥
EARFCN	18300		MCS	2	2	2	2	2	2	2	2	2	2
dditional Spectrum Emission	0		TBS in Bits	4584	4584	4584	4584	4584	4584	4584	4584	4584	4584
			Code Rate	0.16	0.16	0.16		0.16	0.16	0.16	0.16	0.16	0.16

Fig. 3-5 Setting of a E-UTRA uplink RMC in CMsquares

How to actually map RMC definition Table 3-13 to the associated MCS index? This can be determined by one of the two methods described below.

Method 1:

Look-up method in 3 steps

- 1. Identify the payload size of the RMC. In the example shown above, the selected RMC (100 RB allocation) has payload size of 4584 bits.
- 2. By checking transport block size Table 7.1.7.2.1-1 in TS36.213 [11], 100 RBs and 4584 payload size corresponds to TBS index 2
- Look up uplink MCS Table 8.6.1-1 in TS36.213 [11]. It indicates that TBS index 2 is mapped to MCS index 2.

This procedure is illustrated in Fig. 3-6

TS36.521, Table A.2.2.1.1-1 Reference Channels for QPSK with full RB allocation

	Para	meter		Unit			Va	lue]	
Channe	el bandwid	th		MHz	1.4	3	5	10	15	20		
Allocate	ed resourc	e blocks			6	15	25	50	75	100	_	
DFT-OF	FDM Symb	ools per Si	ub-		12	12	12	12	12	12		
Frame										· · · · ·	5	
Modula	tion				QPSK	QPSK	QPSK	QPSK	QPSK	QPSK		QPSK: C
Target (Coding rat	e			1/3	1/3	1/3	1/3	1/5	1/6		Q. 0
Payload	d size			Bits	600	1544	2216	5160	4392	4584	←	
Transpo	ort block C	RC		Bits	24	24	24	24	24	24		
	r of code b (Note 1)	olocks per	Sub-		1	1	1	1	1	1		
	umber of b	its per Su	b-Frame	Bits	1728	4320	7200	14400	21600	28800		
Total sy	mbols per	r Sub-Fran	ne		864	2160	3600	7200	10800	14400		
JE Cat					≥ 1	≥1	≥1	≥1	≥1	≥ 1		
					nt, an add ise L = 0 E	itional CR						
	attache	ed to each	Code Blo	ck (otherw	nt, an add ise L = 0 E 1-1: Tra	itional CR Bit)	C sequer	nce of L =	24 Bits i			
Note 1:	attache	ed to each	Code Blo	ck (otherw	nt, an add ise L = 0 E	itional CR Bit)	C sequer	nce of L =	24 Bits i			
	attache	ed to each	Code Blo	ck (otherw	nt, an add ise L = 0 E 1-1: Tra	itional CR Bit)	C sequer	nce of L =	24 Bits i			
Note 1: I _{TBS}	attache TS36 91 2536	ed to each 5.213, 1 92 2536	Code Blo Fable 7 93 2600	ck (otherw .1.7.2. 94 2600	nt, an add ise L = 0 E 1-1: Tra <i>N</i> _{PR} 95 2664	itional CR bit) INSPORT 96 2664	C sequer block 97 2728	size t 98 2728	24 Bits i able 99 2728	s 100 2792		
Note 1: <i>I</i> _{TES} 0 1	attache TS36 91 2536 3368	ed to each 5.213, 7 92 2536 3368	Code Blo Fable 7 93 2600 3368	ck (otherw .1.7.2. 94 2600 3496	nt, an add ise L = 0 E 1-1: Tra <i>N</i> _{pR} 95 2664 3496	itional CR insport ■ 96 2664 3496	C sequer block 97 2728 3496	98 2728 3624	24 Bits i able 99 2728 3624	s 100 2792 3624		
Note 1: <i>I</i> _{TBS} 0 1 2	attache TS36 91 2536 3368 4136	ed to each 5.213, 7 92 2536 3368 4136	Code Blo Fable 7 93 2600 3368 4136	ck (otherw .1.7.2. 94 2600 3496 4264	nt, an add ise L = 0 E 1-1: Tra <i>N</i> _{pR} 95 2664 3496 4264	ansport ■ 96 2664 3496 4264	C sequer block 97 2728 3496 4392	98 2728 3624 4392	24 Bits i able 99 2728 3624 4392	100 2792 3624 4584		
Note 1: <i>I</i> _{TBS} 0 1 2 3	attache TS36 91 2536 3368 4136 5352	ed to each 5.213, 7 92 2536 3368 4136 5352	Code Blo Fable 7 93 2600 3368 4136 5352	ck (otherw .1.7.2. 94 2600 3496 4264 5544	nt, an add ise L = 0 E 1-1: Tra <u>N_{pR} 95</u> 2664 3496 4264 5544	itional CR Bit) ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	C sequer block 97 2728 3496 4392 5736	98 2728 3624 4392 5736	24 Bits i able 99 2728 3624 4392 5736	100 2792 3624 4584 5736		
Note 1: <i>I</i> _{TBS} 0 1 2 3 4	attache TS36 91 2536 3368 4136 5352 6456	92 2536 3368 4136 5352 6456	Code Blo Fable 7 93 2600 3368 4136 5352 6712	94 2600 3496 4264 5544 6712	int, an add ise $L = 0$ E 1-1: Tra 95 2664 3496 4264 5544 6712	itional CR insport 96 2664 3496 4264 5544 6968	C sequer block 97 2728 3496 4392 5736 6968	98 2728 3624 4392 5736 6968	24 Bits i able 99 2728 3624 4392 5736 6968	100 2792 3624 4584 5736 7224		
Note 1: <i>I</i> _{TBS} 0 1 2 3 4 5	attache TS36 91 2536 3368 4136 5352 6456 7992	92 2536 3368 4136 5352 6456 7992	Code Blo Fable 7 93 2600 3368 4136 5352 6712 8248	94 2600 3496 4264 5544 6712 8248	int, an add ise $L = 0$ E 1-1: Tra 95 2664 3496 4264 5544 6712 8248	itional CR Bit) 96 2664 3496 4264 5544 6968 8504	C sequer block 97 2728 3496 4392 5736 6968 8504	98 2728 3624 4392 5736 6968 8760	24 Bits i able 99 2728 3624 4392 5736 6968 8760	100 2792 3624 4584 5736 7224 8760		
Note 1: <i>I</i> _{TBS} 0 1 2 3 4	attache TS36 91 2536 3368 4136 5352 6456	92 2536 3368 4136 5352 6456	Code Blo Fable 7 93 2600 3368 4136 5352 6712	94 2600 3496 4264 5544 6712	int, an add ise $L = 0$ E 1-1: Tra 95 2664 3496 4264 5544 6712	itional CR insport 96 2664 3496 4264 5544 6968	C sequer block 97 2728 3496 4392 5736 6968	98 2728 3624 4392 5736 6968	24 Bits i able 99 2728 3624 4392 5736 6968	100 2792 3624 4584 5736 7224		

TS36.213, Table 8.6.1-1: Modulation, TBS index and redundancy version table for PUSCH

MCS Index I _{MCS}	Modulation Order Q_m	TBS Index I TBS	Redundancy Version
0	2	0	0
_1	2	1	0
2	2	2 🗲	0
3	2	3	0
4	2	4	0
5	2	5	0
6	2	6	0
7	2	7	0
8	2	8	0
9	2	9	0
10	2	10	0

Fig. 3-6 Example of Determination of the MCS Index to its associated RMC

Method 2:

UE scheduling in CMsquares is implemented in such a way that by giving the MCS index, the expected TBS size and code rate are calculated automatically in conjunction with the applied modulation type. On the other hand, each RMC defined in the specification has an expected target code rate. Our task here is to figure out the appropriate MCS index so that the calculated code rate in the CMsquares matches the expected code rate given by the specification.

By adopting either method described above, the mapping of the MCS index and its correlated TBS index with respect to the number of the UL RB allocation and required modulation type is summarized in Table 3-14.

Modulation		UL RE	Alloca	ation										
		1	4	5	6	8	12	15	16	18	25	50	75	100
		Index												
QPSK	TBS	5	6	5	6	6	6	6	5	6	5	6	3	2
	MCS	5	6	5	6	6	6	6	5	6	5	6	3	2
16QAM	TBS	19	19	19	19	19	19	14	14	14	11	19	14	11
	MCS	20	20	20	20	20	20	15	15	15	12	20	15	12

Table 3-14 MCS index of E-UTRA UL RMC with respect to RB allocation and modulation type

According to Table 3-14, the MCS index 2 needs to be configured in order to create a RMC (FDD, CBW 20MHz, PUSCH with QPSK modulation, Full 100RB allocation as highlighted in Table 3-13).

3.2.6 E-UTRA Downlink RMC

In 5G NR EN-DC mode, E-UTRA servers as an anchor carrier. As listed in Table 3-15, there are few of the E-UTRA downlink RMC tables defined in TS36.521-1 [5]. The selection of the RMC table is based on the following criteria:

- 1. Test purpose
- 2. Duplex mode
- 3. Modulation type

Within an RMC table, a respective RMC configuration is defined according to the applied channel bandwidth configuration (or number of allocated RBs).

Duplex Mode	Test Purpose	RMC Table in TS36.521-1 [5] Annex A.3	Modulation Type	RB Allocation	Target Code Rate
FDD	for clause 7 Receiver characteristic tests, except 7.4 Maximum input level	Tables A.3.2-1	QPSK	Full	1/3
TDD	for clause 7 Receiver characteristic tests, except 7.4 Maximum input level	Tables A.3.2-2	QPSK	Full	1/3
FDD	for 7.4 Maximum input level	Tables A.3.2-3	64QAM	Full	3/4
TDD	for 7.4 Maximum input level	Tables A.3.2-4	64QAM	Full	3/4
FDD	for 7.4 Maximum input level	Tables A.3.2-5	256QAM	Full	4/5
TDD	for 7.4 Maximum input level	Tables A.3.2-6	256QAM	Full	4/5
FDD	for clause 6 transmitter tests	Tables A.3.2A-1	QPSK	Partial	1/3 ¹⁷
TDD	for clause 6 transmitter tests	Tables A.3.2A-2	QPSK	Partial	1/317

Table 3-15 E-UTRA downlink RMC

Example

Referring to Table 3-15, if we test 7.4 maximum input level test in FDD mode with 20 MHz CBW and 64QAM modulation, then the RMC Tables A.3.2-3 should be selected with the highlighted column as RMC configuration as shown in Table 3-16¹⁸

Table A.3.2-3: Fixed Reference Channel for Maximum input level for UE Categories 3-8 (FDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		8	9	9	9	9	9
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	61664
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	6456	12576	28336	45352	61664
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame							
(Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	3	5	8	11
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		n/a	2	3	5	8	11
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	82800
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	8820	16380	38880	59580	80280
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	12547	27294	42046	55498
Note 1: 2 symbols allocated to PDCCH for				nnel BW. 3	symbols a	llocated to	PDCCH
for 5 MHz and 3 MHz. 4 symbols a Note 2: Reference signal, Synchronization Note 3: If more than one Code Block is pre Block (otherwise L = 0 Bit)	signals and	PBCH allo	cated as pe			hed to eac	h Code

Table 3-16 Example E-UTRA downlink RMC with configuration (FDD, CBW 20 MHz) for 7.4 maximum input level test purpose

¹⁷ To ensure constant transport block size in 1.4MHz, the code rate for subframes varies approx. within {1/8-1/3}

¹⁸ Attention: no resource allocation in subframe 5

In E-UTRA downlink, there are three MCS tables defined in the TS36.213 [11] in total, namely table 7.1.7.1-1 for max 64-QAM, table 7.1.7.1-1A for max 256-QAM and table 7.1.7.1-1B for max 1024-QAM. However, for 3GPP RF tests, only max 64-QAM MCS table (coves QPSK, 16QAM and 64QAM modulation type with MCS index from 0 to 28) or max 256-QAM MCS tables (covers 256QAM with MCS index from 20-27) are adopted.

Table 3-17 gives an overview over the MCS index and MCS table selections with respect to the modulation type, DL RB allocation (channel bandwidth) as per E-UTRA DL RMC configuration.

Modulation Type	MCS Table	Index	DL R	B Alloc	ation			
			6	15	25	50	75	100
			Chan	nel Bar	ndwidth	(MHz) ²⁰)	•
			1.4	3	5	10	15	20
QPSK	64QAM	TBS	4	5	5	5	5	5
		MCS	4	5	5	5	5	5
64QAM	64QAM	TBS	21	23	23	24	25	24
		MCS	23	25	25	26	27	26
256QAM	256QAM	TBS	29	31	30	32	32	32
		MCS	23	25	24	26	26	26

Table 3-17 MCS index and MCS table of E-UTRA DL RMC with respect to RB allocation and modulation type

By referring Table 3-16 and Table 3-17, the RMC of the example shall have the following configurations

- 1. Duplex mode (FDD)
- 2. Channel bandwidth (20 MHz)
- 3. # PDCCH Symbols (2 symbols)²⁰
- 4. RB numbers (**100**)
- 5. MCS table (64QAM)
- 6. MCS index (**26**)

The settings in CMsquares are shown in Fig. 3-7

²⁰ The number of PDCCH symbols should be configured as stated in the NOTE1 of the RMC table, i.e. 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz

General deneral	ell 0	NR NR	Cell 0					General CTE Cell 0 NR NR NR NR Cell 0										_		
	OFF											OF	÷F							
Physical Cell ID	0								▼ User	Defir	ed UE	Sched	uling							
 Frequency and 	Band							-E			rame ment			Cor	figuration	n				
Duplex Mode	FDD		1				~			-	Iding	~								
Frequency Band Indicator							~	1	PDCCH Re	gion	-									
Downlink									# PDCC	H Syn	nbols	2 Sym	bols			3		~		
Resource Blocks							~		▼ UE T	imer a	and Co	nstant	s							
Frequency Bandwidth							~				T300	400 m	าร					~		
Range Choice	Mid Bar	nd					~				T301	400 m	ıs					~		
Carrier Frequency	2140.0					٨	٨Hz				T310	2000	ms					~		
EARFCN	300										T311	5000	ms					~		
Uplink									N310 N10 ~											
Tx-Rx Separation	Default						~		N311 N5 ~											
Resource Blocks	100								▼ Fading											
Frequency Bandwidth		0 MHz 2												1	Add Fader					
Range Choice		20 MHz 2 ~ Vid Band ~							AWGN Module											
Carrier Frequency	1950.0					٨	٨Hz			Er	nable	OF	÷F							
LTE Cell 0 > UE Subframe	s Schedulin	g																		
Downlink Uplink					1400 T-1				5											
ransmission Mode TM1:	Single Anter	nna	1		 MCS Tab 2 	ole 6	4 QAM 🗸		4		5		6		7		8		9	
SubFrame	✓		~		~		_		~		5		~		~		_		 Z 	
PDCCH Format	NCCE4	~	NCCE4	~	NCCE4	~	NCCE4	~	NCCE4	~		~	NCCE4	~	NCCE4	~	NCCE4	~	NCCE4	~
DCI Format	DCI 1A	~	DCI 1A	~	DCI 1A	~	DCI 1A	~	DCI 1A	~		~	DCI 1A	~	DCI 1A	~	DCI 1A	~	DCI 1A	~
RIV	0		0		0		0		0				0		0		0		0	
Start RB	0		0		0		0		0				0		0		0		0	
	100		100		100		100		100				100		100		100		100	
Number RB																				
Number RB Code Word 1	1																			
	24	~	24	~	24	~	24	~	24	\sim		~	24	\sim	24	~	24	\sim	24	~
▼ Code Word 1		~	24 26	~	24 26	~	24 26	~	24 26	~		~	24 26	~	24 26	~	24 26	~	24 26	~
 Code Word 1 TBS Index 	24	*	_	~	_	~	_	~	_	~		~		~	_	~		~	_	~

Fig. 3-7 Setting of a E-UTRA downlink RMC in CMsquares

3.3 Signal Power Level

3.3.1 Uplink Signal Level

The uplink signal level for E-UTRA and NR is specified by the 3GPP specification given in Table 3-18.

RAT	Duplex Mode	3GPP Specification			
E-UTRA	FDD/TDD	TS 36.521-1 [5], Annex H			
NR	FDD/TDD	TS 38.521-1 [6], Annex G			
Table 3-18 Overview of 3GPP specifications for uplink signal level					

Following rules are defined there. Uplink signal power level control is usually configured through transmit power control (TPC) commands specified explicitly in each test case and signaled to UE via RRC messages. Otherwise, the uplink signal power setting from the default RRC message defined in TS36.508 [9] (E-UTRA) and TS38.508 [8] (NR) with appropriate TPC has to be adopted to maintain the necessary power level in order to keep the call during the test.

Default E-UTRA uplink signal power level defined in TS36.508 [9], clause 4.6.3 is given in Table 3-19.

IE Value

Nominal PUCCH ²¹	-117 dBm			
Nominal PUSCH 22	-85 dBm			
UE PUCCH ²¹	0			
UE PUSCH 22	0			
Filter Coefficient 22	fc4			
Alpha 22	0.8			
p-Max	Test case dependent			
Table 3-19 Default uplink power level for E-UTRA				

Default NR uplink signal power level defined in TS38.508-1 [8], clause 4.6.3 is given in Table 3-20.

IE	Value
P0-NominalWithGrant ²⁴	-90 dBm
Alpha ²⁴	0.8
P0 ²⁴	0
р-Мах	Test case dependent

Table 3-20 Default uplink power level for NR

So, in this application note, unless otherwise stated in the test case, the default uplink power level configurations from Table 3-19 and Table 3-20 are adopted.

3.3.2 Downlink Default Power Level

Table 3-21 summarizes the 3GPP specification references of downlink default power level for both E-UTRA and NR.

RAT	Duplex Mode	3GPP Specification	Remark			
E-UTRA	FDD/TDD	TS 36.521-1 [5], Annex C.0	Table 3-22 in this application note			
NR	FDD/TDD	TS 38.521-1 [6], Annex C.0	Table 3-23 in this application note			
Table 2.24 Overview of explicit 200D encetion for develoption default never level						

Table 3-21 Overview of applied 3GPP specification for downlink default power level

Unless otherwise specified in the test case, downlink default power level should be applied as given in Table 3-22 and Table 3-23 for E-UTRA and NR, respectively. In both tables, downlink power level is determined by parameter RS EPRE (cell specific reference signal energy per resource element) or channel BW power (maximum cell power). Both parameters are correlated with each other by Eqn. 3-1.

$$RS \ EPRE + 10 * \log_{10}\left(\frac{SCS}{15}\right) = Channel \ BW \ Power - 10 * \log_{10}(Number \ of \ RBs * 12)$$

Eqn. 3-1 Correlation of RS EPRE and Channel BW Power

	Unit	Channel bandwidth						
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Number of RBs		6	15	25	50	75	100	
Channel BW Power	dBm	-66	-62	-60	-57	-55	-54	
RS EPRE	dBm/15kHz	-85	-85	-85	-85	-85	-85	

Note 1: The channel bandwidth powers and RB allocations are informative, based on -85dBm/15kHz RS_EPRE, then scaled according to the number of RBs and rounded to the nearest integer dBm value. Full RE allocation with no boost or deboost is assumed in this calculation, but allocation may vary during setup. Note 2: The power level is specified at each UE Rx antenna.

Table 3-22 Default downlink power level for E-UTRA (TS36.521-1 [5], Table C.0-1)

²¹ Parameters used for the E-UTRA PUCCH power control. Details can be referred to TS36.213 [11], clause 5.1.2.1

²² Parameters used for the E-UTRA PUSCH power control. Details can be referred to TS36.213 [11], clause 5.1.1.1

²⁴ Parameters used for the NR PUSCH power control. Details can be referred to TS38.213 [16], clause 7.1

As given in Table 3-22, RS EPRE is fixed independent of number of allocated RBs. Whereas the channel BW power varies which depends on the allocated RBs (or channel bandwidth). Therefore, it is simpler to configure constant RS EPRE as downlink power level for E-UTRA.

Fig. 3-8 is a snapshot of E-UTRA downlink power level settings in CMsquares

- 1. Frequency Bandwidth
- 2. RS EPRE (-85 dBm/15kHz)

General Central	IIO 🕼 NR	
	OFF	
 Frequency and B 	and	
Duplex Mode	FDD	~
Frequency Band Indicator	1	~
Downlink		
Resource Blocks	100	~
Frequency Bandwidth	20 MHz	~
Range Choice	Mid Band	~
Carrier Frequency	2140.0	MHz
EARFCN	300	
 Power 		
Downlink Level		
RS EPRE	-85.0 2	dBm/15k
Max. Cell Power	-54.2	dBm
Reference Signal Power	-23	dBm
Offset		
PSS	0.0	dB
SSS	0.0	dB
DL RS	0.0	dB
PBCH	0.0	dB
PCFICH	0.0	dB
PDCCH	0.0	dB

Fig. 3-8 Default E-UTRA downlink power level

Default downlink power levels for NR are listed in Table 3-23.

SCS		Unit	Channe	el bandw	idth									
(kHz)			5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60MHz	80 MHz	90 MHz	100 MHz
15	Number of RBs		25	52	79	106	133	160	216	270	N/A	N/A	N/A	N/A
	Channel BW power	dBm	-60	-57	-55	-54	-53	-52	-51	-50	N/A	N/A	N/A	N/A
30	Number of RBs		11	24	38	51	65	78	106	133	162	217	245	273
	Channel BW power	dBm	-61	-57	-55	-54	-53	-52	-51	-50	-49	-48	-47	-47
60	Number of RBs		N/A	11	18	24	31	38	51	65	79	107	121	135
	Channel BW power	dBm	N/A	-58	-56	-54	-53	-52	-51	-50	-49	-48	-47	-47
	RS EPRE	dBm/ 15kHz	-85	-85	-85	-85	-85	-85	-85	-85	-85	-85	-85	-85
	according to assumed. Note 2: T	the numl The powe DL level i	ber of RB er level is	width pow s and rou specified for any c	Inded to	the neare UE Rx a	est intege ntenna.	er dBm va	alue. Full	RE alloc	ation wi	th no boo	ost or del	poost is

85dBm/15kHz.

 Table 3-23 Default downlink power level for NR (TS38.521-1 [6], Table C.0-1)

In contrast to E-UTRA, 5G NR has variable SCS, therefore RS EPRE is not fixed any more. Be noted that the RS EPRE is given in the specification as -85 dBm/15 kHz depending on the SCS of the SSB. If SSB has 30 kHz SCS, then the default RS EPRE has to be converted accordingly, i.e. -82 dBm, same applies to 60 kHz SCS. The mapping between RS EPRE and SCS is listed in Table 3-24.

FR1 SCS	RS EPRE (dBm)
15	-85
30	-82
60	-79

Table 3-24 NR default downlink power level conversion based on SCS

So, there are two equivalent ways for 5G NR to configure the downlink power level, either the SSB EPRE according to Table 3-24 or total cell power that corresponds to the defined channel BW power in Table 3-23. Both parameters are linked with each other. Change of one parameter will cause the adaptation of the other parameter, accordingly.

Fig. 3-9 is the snapshot showing the two alternative ways to configure the downlink power level in CMsquares.

- 1. Subcarrier Spacing
- 2. Carrier Bandwidth
- 3. SSB EPRE or Total Cell Power

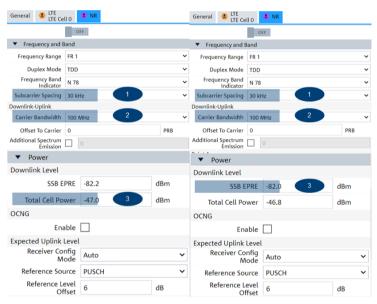


Fig. 3-9 Default NR downlink power level (two alternative ways)

3.4 Downlink PDSCH and PDCCH Configuration

For FR1 EN-DC transmitter tests, PDSCH and PDCCH configuration needs to follow the specification given in Table 3-25.

For ease of use, there is no need for the user to configure additionally on CMX. The default settings of CMX fulfill already the requirements normally.

RAT	Duplex Mode	3GPP Specification	Remark
E-UTRA	FDD	TS 36.521-1 [5], Annex C.2, Table C.2-2	
	TDD	TS 36.521-1 [5], Annex C.2, Table C.2-3	
NR		TS 38.521-1 [6], Annex A.3.1, Table A.3.1-1 TS 38.521-1 [6], Annex A.3.2.1, Table A.3.2.1-1	

	TS 38.521-1 [6] , Annex C.2, Table C.2-2	
TDD	TS 38.521-1 [6] , Annex C.2, clause C.2.3	TDD UL-DL pattern for SCS 15 kHz
	TS 38.521-1 [6] , Annex C.2, clause C.2.4	TDD UL-DL pattern for SCS 30 kHz

Table 3-25 Overview of 3GPP specifications for downlink PDSCH and PDCCH configuration

3.5 **Propagation Condition**

As defined in the 3GPP specification (see Table 3-26), no fading and AWGN are required for the RF conformance tests.

Propagation condition with fading and AWGN is considered by the performance tests which is however not the focus of this application note.

RAT	3GPP Specification	Remark
E-UTRA	TS36.521-1 [5], Annex B.0	No Fading and AWGN
NR	TS38.521-1 [6], Annex B.0	No Fading and AWGN
T 11 0 00 0 1 (00 DD	and the second	•

 Table 3-26 Overview of 3GPP specifications for propagation condition

3.6 LTE Anchor Agnostic Approach for EN-DC FR1 Tests

LTE anchor-agnostic approach is considered as measurements on the NR carrier under conditions where the LTE anchor resources do not interfere with NR operation. The configuration defined in this chapter ensures the establishment of such conditions.

Table 3-27 outlines the EN-DC test cases requiring LTE anchor agnostic approach in this application note. It will be explicitly mentioned in each test case in the subsequent chapter 5 and 6 if LTE anchor agnostic approach is desired.

Test Case Number	Description	Remark
6.2B.2.3	UE Maximum Output power reduction for inter-band EN-DC within FR1	
6.3B.1.3	Minimum output power for inter-band EN-DC within FR1	
6.3B.3.3	Tx ON/OFF time mask for inter-band EN-DC within FR1	
6.4B.1.3	Frequency error for Inter-band EN-DC within FR1	
6.4B.2.3.1	Error Vector Magnitude for inter-band EN-DC within FR1	
6.4B.2.3.2	Carrier Leakage for inter-band EN-DC within FR1	
6.4B.2.3.3	In-band Emissions for inter-band EN-DC within FR1	
6.4B.2.3.4	EVM Equalizer Flatness for inter-band EN-DC within FR1	
6.5B.1.3	Occupied bandwidth for Inter-Band EN-DC within FR1	
6.5B.2.3.1	Spectrum emissions mask for Inter-band EN-DC within FR1	
6.5B.2.3.3	Adjacent Channel Leakage Ratio for inter-band EN-DC within FR1	
7.3B.2.3	Reference sensitivity for Inter-band EN-DC within FR1 (2 CCs)	Apply to EN-DC combination without exception
7.4B.3	Maximum Input Level for Inter-band EN-DC within FR1	
Table 2.07 T	ost casos require LTE apphor agnostic approach	·

Table 3-27 Test cases require LTE anchor agnostic approach

The configuration of the LTE anchor is defined in TS38.521-3 [1] clause 4.6, Table 4.6-1, 4.6-2, 4.6-3, 4.6-4 and 4.6-5.

Following parameters with the values in the bracket need to be set for the LTE cell to meet the LTE anchor agnostic approach requirement.

Test frequency and bandwidth settings

- 1. Duplex Mode (FDD or TDD, UE capability dependent)
- 2. Frequency Band (LTE band under test, UE capability dependent)

- 3. Resource Blocks or Frequency Bandwidth (25 RBs or 5 MHz)
- 4. Range Choice (Mid)

The following power level relevant parameters are taken from TS36.508 [9] clause 4.6.3:

- 5. RS EPRE (-85 dBm)
- 6. Reference Signal Power (18 dBm)
- 7. Nominal PUCCH (-117)
- 8. Nominal PUSCH (-85)
- 9. UE PUCCH (**0**)
- 10. UE PUSCH (0)
- 11. Filter Coefficient (4)
- 12. Alpha (0.8)
- 13. TPC (keep)

Fig. 3-10 shows the initial parameter settings in CMsquares.

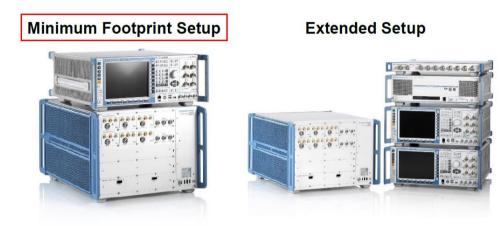
General A LTE LTE Ce	II 0 NR Cell 0		General General		cell O	General	LTE LTE Ce	II 0 NR Oell 0		
	ON			ON				ON		
Maximum Confi	g		Downlink Level							9
 Cell Identity 			RS EPRE	-85.0	5		UE PUCCH	0	dB	
 Frequency and I 	Band		Max. Cell Power	-60.2	dBm		UE PUSCH	0	dB	10
Duplex Mode		~	Reference Signal Power	18	6	Filte	r Coefficient	4		11
Frequency Band Indicator	1 2	~	Offset				Alpha	0.8		12
Downlink			PSS	0.0	dB		p-Max	24	dBm	
Resource Blocks		~	SSS	0.0	dB	Power G	ontrol			
Frequency Bandwidth	5 MHz	~	DL RS	0.0	dB		TPC	Кеер		13
Range Choice	Mid Band 4	`	РВСН	0.0	dB	c	hannel Type	PUSCH		~
Carrier Frequency	2140.0 MHz		PCFICH	0.0	dB		ACH			
EARFCN	300		PDCCH		dB		amble Initial eived Target Power	-90 dBm		~
Uplink			OCNG			Configu	ration Index	12		
Tx-Rx Separation	Default	~	Enable			-	ver Ramping	2 dB		~
Resource Blocks	25	~	Expected Uplink Level				Step	2 08		*
Frequency Bandwidth			Receiver Config Mode	Auto	~		tenna Config er Defined UE	Schoduling		
Bandwidth Range Choice	Mid Band			PUSCH	~		Subframe	Configurat	tion	
Carrier Frequency	1950.0 MHz		Reference Level Offset	6	dB		Assignment IAC Padding			
			Signaled Parameters			PDCCH R		<u> </u>		
EARFCN	18300		Nominal PUCCH	-117	7		CH Symbols	2 Symbols		~
Additional Spectrum Emission	0		Nominal PUSCH	-85	8		Timer and Co			
Cell Timing					°	• 00				

Fig. 3-10 LTE anchor agnostic approach settings in CMsquares

After the EN-DC connection is established, UE can be restricted by configuring 0 RB allocation in both DL and UL direction in LTE part. This can be achieved as shown in Fig. 3-11.

			G	General LIE Cell 0 NR NR Cell 0														
			•	 User Define Subfra Assignm 	d UE Sch	neduling	nfiguration				us	er c	lef	ine	d	UE	E sc	cheduling
Downlink Uplink	1: Single Anter	na		✓ MCS Table	64 QA	M												2
ubFrame				2		3	4		5]	7		8		[• •	Deselect all subframes to disable DL resource alloca
DCCH Format																		
Nownlink Uplink																		
nsmission Mode TM	1: Single Anten	na		×														- 3
ubFrame	0		1	2		3	4		5	6		7	,	8		9		Deselect all subframes to disable UL resource allocate
OCCH Format	NCCE4	✓ NCCE	E4 🚿	NCCE4	~ NCC	E4 ~	NCCE4	∼ NCC	CE4 ~	NCCE4	~	NCCE4	√ N	CCE4	v	VCCE4	~	
CI Format	DCI 0	Y DCI 0	0 `	DCI 0	~ DCI	0 ~	DCI 0	∽ DCI	10 V	DCI 0	~	DCI 0	۷D	CI 0	~	OCI 0	~	
IV	0	0		0	0		0	0		0		0	0		()		
art RB	0	0		0	0		0	0		0		0	0		()		
umber RB	6	6		6	6		6	6		6		6	6		6	5		
Code Word 1																		
TBS Index	5	× 5		< S	× 5	~	5	¥ 5	~	ς	~	5	¥ 5		× 5		~	
MCS	5	5		5	5		5	5		5		c	5					
TBS in Bits	504	504		504	504		504	504		504		504	5			0.4		
		504					304					304				204		
Code Rate	0.31	0.31		0.31	0.31		0.31	0.3	1	0.31		0.31	0.	31	(0.31		
																		4
												Apply	✓ Ap	oply and G	llose	×	Cancel	Apply the changes and close the window

Fig. 3-11 Disable downlink and uplink resource allocation


- 1. Go to "User Defined UE Scheduling" section of LTE configuration, select "Configuration...",
- 2. Disable the resource allocation by deselecting the check boxes of each subframe in downlink
- 3. Disable the resource allocation for all subframes in uplink
- 4. Pressing "Active and Close" button to confirm the changes and exit the window.

4 Preparation of Test

In this chapter, brief information about the CMX setup and basic operations of the CMsquares are given.

4.1 Architecture

For RF parametric tests according to TS38.521-3 [1], CMX minimum footprint setup (one CMW and one CMX) or extended setup can be adopted. In Fig. 4-1, it shows an exemplary extended setup (two CMWs and one CMX). Up to four CMWs can be supported by the extended setup.

Fig. 4-1 CMX Mini Setup vs. Extended Setup

The system cabling of the setup and corresponding hardware requirements can be found in [12] or refer to [13].

In chapter 5 and 6 of this application note, the described test cases are conducted on CMX minimum footprint setup.

4.2 Hardware Requirement

System cabling of the setup and corresponding hardware requirements can be found in [12] or [13].

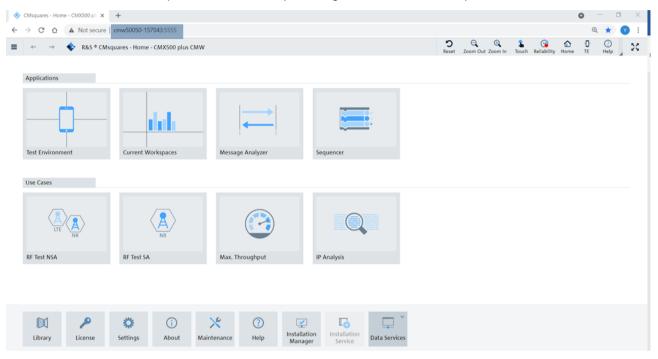
4.3 Software Requirement

CMX software is distributed in a form of composite software (CSW) via R&S installation manager (IM). For more details, refer to installation instruction in [12].

4.4 General Operations in CMsquares

CMsquares is a web based graphic user interface (GUI) of the CMX that allows the user to operate the equipment either remotely from a control PC or locally on the CMX.

Local operation


On CMX locally, simply launch a Web browser, e.g Chrome, and in address field enter "localhost:5555" to access the CMsquares

Remote operation

As prerequisite, CMX is reachable from remote control PC. This can be checked by pinging the IP address of the CMX from remote control PC.

On remote control PC, launch a Web browser, and enter either domain name "cmw50050--serial number of the CMX>:5555", e.g. cmw50050-157043:5555 or <IP address of your CMX>:5555 in the browser's address field. In Fig. 4-2, it shows the access of CMsquares by giving the domain name in the browser.

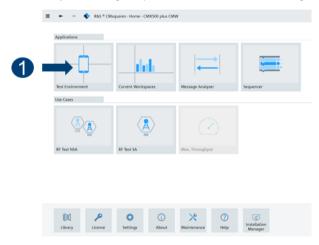
In both local and remote access case, the browser opens the CMsquares main window as shown in Fig. 4-2. Each function area in CMsquares is called a Square, e.g. Test environment square.

Fig. 4-2 CMsquares main window

"Test Environment" square allows the user to setup the cells and perform the measurements.

The GUI layout of the "Test environment" square is presented in Fig. 4-3.

Test Environment de Workspace												_
Pool *	Network square			Cabl	ing and DI	UT square	1.55	➡ Network Config		1943		
Generation Generation	🗸 Live Mode 🖉 Edit	菌 Delete	Cabling DUT St	ate					and LTE	040 040 NR	★ Favorit	
Add EPS Tracking Area	PLMN 0	+		CMW 1				General de LTE LTE Ce	ll O	Cell 0		
Add 5G Tracking Area	EPS TrackingArea 0		NR 0 ULO, NR 0 DLO	RF2 COM	-	LTE O ULO, LTE O C	DLO		ON			Fa
🔺 Add NR Cell	LTE C		NR 0 DL1	RF1 OUT	RF3 OUT	LTE 0 DL1		CA Info	SCG(Second	ary Cell Group) PSCell		•
Predefined Network NR 2x2 LTE 2x2	(MCG) PCell			RF1 COM	-			Cell Name	NR Cell 0			Se
NR 2X2 W LTE 2X2 +	A NR Ce							Cabling mapped				
🔥 NR 4x4 🔥 LTE 4x4 🕂	(SCG) PSCell	Dut						 Maximum Confi 	·			
NR 4x4, 🔥 LTE 2x2 +								UL Modulation Type	16 QAM		~	
NR 4x4 (1) LTE 2x2, +		MM-State Combined r	registered					CSI-RS Antenna Ports	2		~	N
🚯 NR 4x4, 4x4 🕂	Deactivate EN-DC Mode Disconnect	(EPS-IMSI) RRC-State/	Chattur					UL Antenna Ports	1			
🚺 NR 4x4, 🧥 LTE 4x4 🕇		Connected/	OK					 Cell Identity 				5
NR 4x4 LTE 2x2, + 2x2, 4x4	Measurement and Generator square	e DC Mode EN-DC			Servic	es square 📜	20	Physical Cell ID	0			
NR 4x4 (1) 2x2, 4x4 LTE 2x2, 4x4 LTE 2x2, 4x4 LTE 2x2, 4x4 LTE 2x2, 4x4		IMS-State						 Frequency and I 	land			R
4x4 (A) NR 4x4 (A) LTE 2x2, +			Glo	oal Services				Frequency Range	FR 1		~	
▲ NR 4x4 ▲ LTE 4x4, +	BLER Meas			🔲 Data Unit		DNS		Duplex Mode	TDD		~	
NR 4x4, ALTE 2x2, +		•••	•• • Sta	ite: Run	State:	Off	State	Frequency Band Indicator	N 78		~	
LTE 4x4,	Off ►		•				•	Subcarrier Spacing	30 kHz		~	
4x4, 4x4								Downlink-Uplink				
								Carrier Bandwidth	100 MHz		~	


Fig. 4-3 CMsquares test environment square

Further information about how to operate the CMsquares, please refer to CMX user manual [13]

LTE and NR test personalities are included in test environment square of CMsquares. The parameter configurations of each personality are documented in greater details in the CMX signaling application user manual [14].

4.4.1 LTE/NR Cell Setup and EN-DC Mode Activation

For performing the RF conformance tests according to [1], the DUT has to be activated in EN-DC mode. This is done by following steps on CMX as shown in Fig. 4-4.

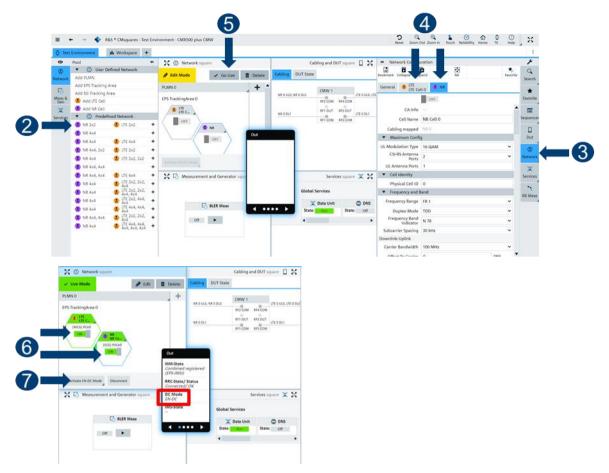


Fig. 4-4 Start CMsquares and activate EN-DC mode

- 1. In CMsquares main window, select "Test Environment" square
- 2. Choose Predefined Network "NR 2x2 LTE 2x2"
- 3. Select "Network"
- 4. Configure both NR and LTE cell (for cell parameter setting details, please see in section "Cell Parameter Settings" of each test case described in Chapter 5 and 6)
- 5. Click "Go Live"
- 6. Turn on the LTE and NR cell. Wait until both LTE and NR cell are ready (status in green), then switch on the DUT with inserted test SIM card from R&S
- After DUT is registered to LTE cell successfully, click on "Activate EN-DC mode". DUT is now expected to enter the EN-DC mode. This can be observed by checking DUT's DC mode in CMsquares which should be now showing 'EN-DC' (see highlighted in Fig. 4-4)

4.4.2 LTE/NR Tx Measurement

As precondition of performing Tx measurement, DUT should be activated in EN-DC mode. Otherwise, follow the procedure in chapter 4.4.1 to activate the EN-DC mode.

To start the measurements in LTE or NR, e.g. Tx measurement, go through following steps on CMX as indicated in Fig. 4-5.

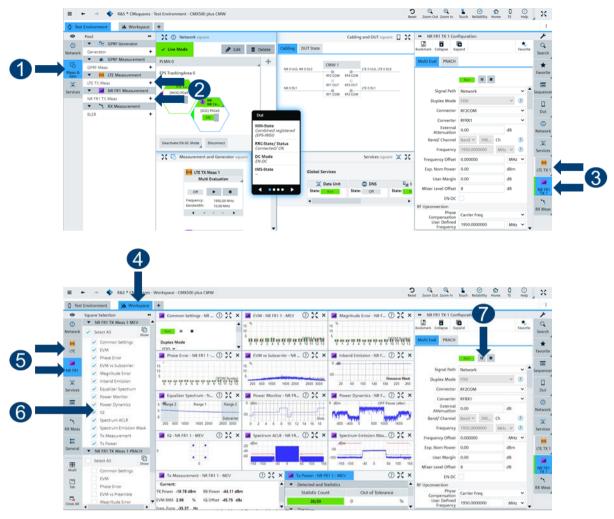
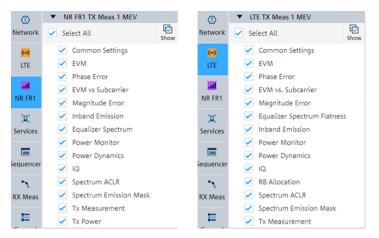



Fig. 4-5 Enable and start LTE and NR multi-evaluation measurements²⁵

- 1. Go to "Meas & Gen" in "Test Environment" square
- 2. Create the LTE and/or NR Measurement instance by clicking on "+" sign
- Go to "LTE", "NR" configuration to config the multi-evaluation measurements²⁵ (for configuration details, please see in section "Multi-Evaluation Measurement Settings" of each test case described in Chapter 5)
- 4. Click on "Workspace"
- 5. Click on "LTE" or "NR" to open the selection list of the measurements (All available LTE and NR Tx measurements are shown in Fig. 4-6)
- 6. Depending on the test case requirement, activate the checkbox to select measurement item in question.
- 7. Press button to start the measurement. The selected measurement results are then presented.

²⁵ R&S multi-evaluation is a measurement method that different transmitter evaluations are based on an identical sampling data set. This results in fast test speed as well as greater test depth.

Fig. 4-6 NR and LTE Tx measurements

If we dive into the CMX multi-evaluation settings for E-UTRA and NR, in principle, following settings shown in Fig. 4-7 need to be configured for NR, unless otherwise stated in the test case. The same concept applies to the settings for E-UTRA, too.

	Multi Eval	PRACH							
			Run		0				
1-	Sig	gnal Path	Network				~		
	Dupl	ex Mode	TDD 🗸 🤇						
2-	🔿 (4	onnector	RF2COM	ĺ.			~		
-	c	onverter	RFRX1				~		
	Att	External enuation	0.00			dB			
		Channel	Band 🛩	Not Avai	lable				
	Fi	equency	3549.990	00000	MHz	~			
	Frequen	cy Offset	0.000000	0		мн	z v		
3	Exp. No	m Power	23.00			dBm			
	Use	r Margin	12.00			dB			
	Mixer Lev	el Offset	8			dB			
		EN-DC							
ig. 4-	7 NR mu	ılti-eva	luatio	n sett	ings				
		C	abling and	DUT squa	are 🔲	20			
Cabling	DUT State								
NR O UL1, N	R 0 DL1	IW 1		L1, LTE 0 DL1					
NR 0 DL2		OUT RF3	P	12					

RF1 COM RF3 COM

Fig. 4-8 Indication of cabling for a CMX mini footprint setup

- Set signal path to "Network" so that the majority of the parameter settings in the measurement 1. configuration are aligned with the settings in the cell configuration.
- The connectors of E-UTRA and NR need to be configured properly according to the connector 2. assignments which is presented graphically in the "Cabling and DUT" square of the CMsquares. As an example shown in Fig. 4-8, the cabling of minimum footprint setup is presented where NR and LTE signal is routed to RF2COM and RF4COM, respectively.
- Expected nominal power has to be configured based on the DUT transmission power that varies 3. from test case depending on the test requirement, e.g. UE maximum output power testcase expects the UE sends the maximum transmission power for power class 3 UE, therefore, in the snapshot given in Fig. 4-7, the expected nominal power is configured as 23 dBm.
- User margin is used to adjust the reference level for the measurement on CMX. 4.

In order to measure the DUT uplink transmission power correctly, proper "expected nominal power" and "user margin" in the measurement settings of NR or LTE are required. These two parameters determine the measurement reference level which is calculated according to Eqn. 4-1

Reference Level = Expected Nominal Power + User Margin

Eqn. 4-1 Measurement reference level on CMX

Too low reference level might lead to the "Input Overdriven" of the power measurement. As a rule of thumb, the reference level can be set as the maximum expected DUT transmission power plus crest factor, e.g. approx. 12 dB for OFDM system.

For time mask related measurement, e.g. ON/OFF mask measurement, in order to measure OFF power more accurately, the recommended reference level should be set to -10 dBm based on the CMX implementation.

4.4.3 LTE/NR Rx Measurement

Same as Tx measurement, the DUT should be in EN-DC mode before the Rx measurement is started.

Fig. 4-9 indicates the procedure how to start the Rx measurement in CMsquares.



Fig. 4-9 Start the Rx measurement

- 1. Click on "Workspace"
- 2. Select "RX Meas" from the side bar
- 3. Select the BLER measurement items
- 4. Press 🕨 button to start the RX measurement. The BLER measurement results are then presented.

5 Transmitter Characteristic Tests

The FR1 EN-DC transmitter characteristic test cases described in this application note are listed in Table 5-1.

Chapter	Test Case Number from 3GPP TS 38.521-3 [1]	Test Case Designation
5.1	6.2B.1.3	UE Maximum Output Power for Inter-Band EN-DC within FR1
5.2	6.2B.2.3	UE Maximum Output power reduction for inter-band EN-DC within FR1
5.3	6.3B.1.3	Minimum output power for inter-band EN-DC within FR1
5.4	6.3B.3.3	Tx ON/OFF time mask for inter-band EN-DC within FR1
5.5	6.4B.1.3	Frequency Error for inter-band EN-DC within FR1
5.6	6.4B.2.3.1	Error Vector Magnitude for inter-band EN-DC within FR1
5.7	6.4B.2.3.2	Carrier Leakage for inter-band EN-DC within FR1
5.8	6.4B.2.3.3	In-band Emissions for inter-band EN-DC within FR1
5.9	6.4B.2.3.4	EVM Equalizer Flatness for inter-band EN-DC within FR1
5.10	6.5B.1.3	Occupied bandwidth for Inter-Band EN-DC within FR1
5.11	6.5B.2.3.1	Spectrum emissions mask for Inter-band EN-DC within FR1
5.12	6.5B.2.3.3	Adjacent Channel Leakage Ratio for inter-band EN-DC within FR1

 Table 5-1 NR FR1 EN-DC transmitter characteristic test cases

Unless otherwise stated, LTE anchor agnostic approach is NOT applied. In case LTE anchor agnostic approach is required, the specification reference is redirected to the SA conformance test specification TS38.521-1 [6] accordingly.

In the subsequent part of this document, the description of each test case has following structure

- ► Test purpose is defined by TS38.521-3 [1] or TS38.521-1 [6] (in LTE anchor agnostics approach case)
- Test preparations consist of three parts
 - Part 1: Example test configuration which is extracted out of the original test configuration table of the test case from TS38.521-3 [1] or TS38.521-1 [6] (in LTE anchor agnostics approach case). The example test configuration that is considered in each test case is highlighted in bold font and the subsequent information are all based on it.
 - Part 2: Cell parameter settings on CMX contains most important parameter settings and their value in CMsquares which reflects the example configuration selected in Part 1.
 - Part 3: Measurement settings explains the necessary settings for multi evaluation measurement in CMsquares.
- ► Test procedure describes the operation procedures
- ► Test requirement and measurement results in CMsquares are interpreted and presented

5.1 Maximum Output Power for Inter-band EN-DC within FR1 (6.2B.1.3)

5.1.1 Test Purpose

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance. An excess maximum output power has the possibility to interfere to other channels or other systems. An insufficient maximum output power decreases the coverage area [1].

Either power class 2 or power class 3 can be supported by 5G NR FR1 UE. The power class 3 is the default power class unless otherwise stated. The power class differs in the maximum transmission power. Test requirement details can be found in Chapter 5.1.4.

5.1.2 Test Preparations

5.1.2.1 Example Test Configuration

Example

Test ID 4

Default C	onditions											
Test Envi as specifi	ronment ed in TS 38	8.508-1 [6] c	lause 4.1		NC, TL/VL, TL/VH, TH/VL, TH/VH							
Test Freq as specifi TS 36.508	ed in TS 38	3.508-1 [6] c	ause 4.3.1:	and	High for E-U	JTRA CC1 and I	NR CC1					
			as specifie S 38.508-1	ed in clause 4.3.1	Highest for E-UTRA CC1 and Highest for NR CC1							
Test SCS Table 5.3.		cell as spe	cified in TS	38.521-1 [8]	Lowest							
Test Para	meters											
Test ID	Test Freq	E-UTRA	NR BW	Downlink	EN-DC Uplink Configuration							
		BW		Configuratio	E-UTRA Cel	I	NR Cell					
				"	Modulation	RB allocation (NOTE 1)	Modulation (NOTE 3)	RB allocation (NOTE 2)				
4	High	Default	Default	N/A	QPSK	1RB_Right	DFT-s-OFDM QPSK	Inner_1RB _Right				
NOTE 1: NOTE 2: NOTE 3:	The speci DFT-s-OF	ific configu DM Pi/2 BF	ration of ea PSK test ap	ach RB allocati	ion is defined JEs which su	d in Table 6.1-1 ipports Pi/2 BP:	in current specifica in TS 38.521-1 [8]. SK in NR FR1	tion.				

Table 5-2 Example of a test configuration out of TS38.521-3 [1] Table 6.2B.1.3.4.1-1

5.1.2.2 Cell Parameter Settings

E-UTRA and NR settings of the test case on CMX with consideration of the example test configuration given in the previous section are summarized in Table 5-3

Parameters	E-UTRA		NR	
	Configuration	Value	Configuration	Value
Frequency Range				FR1
Duplex Mode		FDD		TDD
Band		1		n78
Test Frequency	High	Nul = 18500 Ndl = 500	High	See Table 5-4
Test Channel Bandwidth	Highest	20 MHz	Highest	100 MHz
Test SCS			Lowest	30 kHz
UL RMC Modulation	QPSK	MCS index 5	DFT-s-OFDM QPSK	MCS index 2 MCS table 64QAM
UL RMC RB Allocation	1RB_Right	1@99	Inner_1RB _Right	1@271
Default Downlink Power		-85 dBm/15 kHz (RS EPRE)		-47 dBm (Total Cell Power)
MAC Padding		Enable		Enable
PUSCH Transform Precoding				Enable
Initial BWP				1099
ТРС		Max		Max
p-Max		20		20

Table 5-3 Test parameters settings for maximum output power

CBW [MHz]	carrier Bandw idth [PRBs]	Rang	e	Carrier centre [MHz]	Carrier centre [ARFCN]	point A [MHz]	absolute Frequen cyPointA [ARFCN]	offsetTo Carrier [Carrier PRBs]	SS block SCS [kHz]	GSCN	absolute Frequen cySSB [ARFCN]	k _{SSB}	Offset Carrier CORES ET#0 [RBs] Note 2	CORE SET#0 Index (Offset [RBs]) Note 1	offsetTo PointA (SIB1) [PRBs] Note 1
100	273	Downlink	Low	3350.01	623334	3300.87	620058	0	30	7711	620352	6	0	2 (2)	4
		&	Mid	3549.99	636666	3464.13	630942	102		7850	633696	18	0	2 (2)	208
		Uplink	High	3750	650000	3519.42	634628	504		7989	647040	4	0	3 (3)	1014
Note 1: Note 2:	controlR 60 kHz s The para	RESET#0 Inde esourceSetZe subcarrier space ameter Offset (er $\Delta F_{OffsetCORE}$	ro (pdcch cing for F Carrier C	-ConfigSIB1 R2. ORESET#0) in the MIB. specifies the	The offsetTo	pPointA IE is the lowest su	expressed in bcarrier of th	n units of re	esource blo	ocks assumin	ng 15 kHz	z subcarrie	r spacing fo	

Table 4.3.1.1.1.78-2: Test frequencies for NR operating band n78, SCS 30 kHz and ΔF_{Raster} 30 kHz.

Table 5-4 High-range test frequency configuration of NR n78, CBW 100 MHz and SCS 30 kHz (TS38.508-1 [8], Table 4.3.1.1.1.78-2)

Fig. 5-1 shows the E-UTRA signaling parameter settings for test ID 4

General 🚯 LTE LTE Ce	ILO NR OR NR Cell 0		General General	II 0 NR NR Cell 0	
	ON			ON	
 Frequency and E 	Band		Signaled Parameters		
Duplex Mode	FDD	~	Nominal PUCCH	-117	dBm
Frequency Band	1	~	Nominal PUSCH	-85	dBm
Downlink			UE PUCCH	0	dB
Resource Blocks	100	~	UE PUSCH	0	dB
Frequency Bandwidth	20 MHz	~	Filter Coefficient	4	
Range Choice	High Band	~	Alpha	0.8	
Carrier Frequency	2160.0	MHz	p-Max	20	dBm
EARFCN	500		Power Control		
Jplink			TPC	Max	
Tx-Rx Separation	Default	~	Channel Type	PUSCH	
Resource Blocks	100	~	PRACH		
Frequency	20 MHz	~	 Antenna Config 		
Bandwidth Range Choice	High Band	~	MIMO Scheme	SISO 1x1	•
kange choice	riigir band		Antenna Ports		
Carrier Frequency	1970.0	MHz	# CRS Antenna Ports	1	
EARFCN	18500		Beamforming No. of Antenna Ports	1	
Additional Spectrum Emission	0		DL IQ Data Streams	1 Streams	
▼ Cell Timing			 User Defined UE 	Scheduling	
Timing Offset	0	μs	Subframe Assignment	Config	guration
System Frame Number Offset	0	# Frames	DL MAC Padding	1	
 Power 			PDCCH Region		2
Downlink Level			# PDCCH Symbols	2 Symbols	dull
RS EPRE	-85.0	dBm/15k	▼ UE Timer and Co	onstants	Schduling
Max. Cell Power	-54.2	dBm			논

Uplink Scheduling

ransmission Mode TM1	: Sir	ngle Anter	nna			~															
SubFrame		0		1		2		3		4		5		6		7		8		9	
PDCCH Format		NCCE4	~	NCCE4	~	NCCE4	~	NCCE4	~	NCCE4	~	NCCE4	~	NCCE4	~	NCCE4	~	NCCE4	~	NCCE4	
DCI Format	0	DCI 0	~	DCI 0	~	DCI 0	~	DCI 0	~	DCI 0	*	DCI 0	~	DCI 0							
RIV		0		0		0		0		0		0		0		0		0		0	
Start RB		99		99		99		99		99		99		99		99		99		99	
Number RB		1		1		1		1		1		1		1		1		1		1	
▼ Code Word 1																					
TBS Index		5	~	5	~	5	~	5	~	5	~	5	~	5	~	5	~	5	~	5	
MCS	1	5]	5	1	5		5		5		5		5		5		5		5	
TBS in Bits		72		72		72		72		72		72		72		72		72		72	
Code Rate	1	0.33		0.33		0.33		0.33		0.33		0.33		0.33		0.33		0.33		0.33	

Fig. 5-1 E-UTRA settings on CMX

Fig. 5-2 shows the NR signaling parameter settings for test ID 4.

3

General de LTE LTE Ce	ll 0 NR NR Cel	ιιο		General 🖪 LTE LTE Cel	lo NR NR C	Cell O		General 🚯 LTE LTE Ce	ell O	Cell 0		General 🚯 LTE LTE Ce	ll 0 NR Cell 0
	ON				ON				ON				ON
 Frequency and E 	land			▼ SSB				Power Control				# UL Slots	2
Frequency Range	FR 1		~	kSSB	4			ss-PBCH-BlockPower	0		dBm	# DL Symbols	6 after DL Slo
Duplex Mode	TDD		~	Offset to Point A	1014			p0- NominalWithGrant	 -90 		dBm	# UL Symbols	hafes
Frequency Band Indicator	N 78		~	Subcarrier Spacing	30 kHz Case (:	~	P0-PUSCH-AlphaSet	Alpha 0.8	• ∨ p0	0	 User Defined UE 	
Subcarrier Spacing			~	Periodicity			~	p-Max	20		dBm	Downlink Scheduling	
	Freq	uency Config		Absolute Frequency SS				TPC	Max		~	Slot Assignment	Configuration
Downlink-Uplink				Nr ARFCN				Channel Type	PUSCH		~	MAC Padding	
Carrier Bandwidth	100 MHz		~	Frequency	3705.60		MHz	▼ PRACH				Bandwidth Part ID	٥ ٩
Offset To Carrier	504	PI	RB	▼ Cell Timing				Preamble Received	-92		dBm	Aggregation Level	Level 4
Additional Spectrum	0			Timing Offset	0		μs	Target Power Configuration Index	167			Search Space ID	Х
Emission Point A				System Frame	0		# Frames	Power Ramping	3 dB		~	MCS Table	<u>F</u>
Location	High		~	Number Offset	•		= rrames	 Step PUSCH Config 	5 00		v		
NR ARFCN	634628			Downlink Level				Transform		T-s-OFDM		Vrb to Prb Mapping Uplink Scheduling	Non interleaved
Frequency	3519.420	M	Hz	SSB EPRE	-82.1		dBm	Precoding MCS Table	64 QAM	PP-01DM	v	Bandwidth Part ID	0
Initial BWP				Total Cell Power	-47.0		dBm	Transform Precoder			·	Aggregation Level	
Location and Bandwidth	1099	R	v	OCNG				tp-pi2BPSK					
 Coreset and Sea 	rch Space Zero			Enable				▼ TDD Common	Destroya (Search Space ID	
Control Resource	3			Expected Uplink Level				Pattern 1 (Type UL DL	5 ms (10 Slot	~1	~	MCS Table	64 QAM
Zero Search Space Zero				Receiver Config Mode	Auto		~			5)	•	DL HARQ	
▼ SSB	•			Reference Source	PUSCH		~	# DL Slots					
				Reference Level	6		dB	# UL Slots			after last		
				Offset Power Control				# DL Symbols	6		DL Slot		
								# UL Symbols	4		before firs UL Slot		
Uplink Sch	nedulina							 User Defined UI 	E Scheduling			1	
	ioaaniig												
NR Cell 0 > UE Slot Sc	heduling											×	
Slot Index	0	1		2 3	4	5	6	5 7	7	8	9		
	DL	DL		DL DL	DL	DL	DI	L DL	UL	UL	UL		
Start RB		0	0	0	0	0	0			271	271		
# RB		273	273	273	273	273	273	· ·		1	1		
MCS		4	4	4	4	4	4			2	2		
									-	2			
DCI Format	-	DCI 11	DCI 11	✓ DCI 11	DCI 11	✓ DCI 11	✓ DCI 11	• -	-	DCI 01	✓ DCI 01	~	
MIMO Schome													

Fig. 5-2 NR settings on CMX

MIMO Scheme

5.1.2.3 Multi-Evaluation Measurement Settings

✓ SISO

✓ SISO

✓ SISO

✓ SISO

SISO

E-UTRA and NR multi-evaluation settings in CMsquares are highlighted in Fig. 5-3 (see also 4.4.2).

✓ SISO
 ✓

✓ SISO ~

SISO

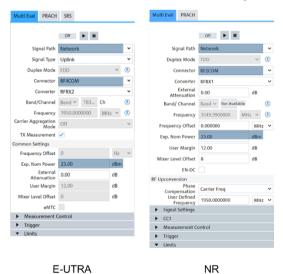


Fig. 5-3 E-UTRA and NR measurement settings

Test Procedure 5.1.3

Configure the LTE and NR cell with configurations (see 5.1.2.2) 1.

- 2. Configure the LTE and NR multi-evaluation measurement (see 5.1.2.3)
- 3. Turn on both LTE and NR cell
- 4. Switch on DUT and wait until DUT is registered on LTE cell
- 5. Activate EN-DC mode
- 6. Select and start the "Tx Measurement"

5.1.4 Test Requirement and Results

The test requirement defined for this test case is given in Table 5-5 with Test Tolerance (TT) specified in Table 5-6.

Table 0 0D 4 0 5 4. Marine			index la serie		(A
Table 6.2B.1.3.5-1: Maximum	output	power for	inter-pand	EN-DC	(two pands)

EN-DC configuration	Power class 3 (dBm)	Tolerance (dB)
DC_1A_n28A	23	+2 +TT/-3-TT
DC_1A_n40A	23	+2 +TT/-3-TT
DC_1A_n51A	23	+2 +TT/-3-TT
DC_1A_n77A	23	+2 +TT/-3-TT
DC_1A_n78A DC_1A_n84A_ULSUP- TDM_n78A DC_1A_n84A_ULSUP- FDM_n78A	23	+2 +TT/-3-TT
DC_1A_n79A	23	+2 +TT/-3-TT

Table 5-5 Test requirement (TS38.521-3 [1] Table 6.2B.1.3.5-1)

Table 6.2B.1.3.5-3: Test Tolerance for UE maximum output power (Overlapping UL transmission)

	TT for overall output power													
				NR										
			B	BW ≤ 20MHz 20 MHz < BW ≤ 40MHz 40MHz < BW ≤ 100MHz										
			f≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz	f≤ 3.0GHz	< f <	4.2GHz < f ≤ 6.0GHz	f≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz			
E-	BW≤	f≤ 3.0GHz	0.7 dB	1.0 dB	1.0 dB	0.7 dB	1.0 dB	1.0 dB	1.0 dB	1.0 dB	1.0 dB			
UTRA	20MHz	3.0GHz < f ≤ 4.2GHz	1.0 dB	1.0 dB	1.0 dB	1.0 dB	1.0 dB	1.0 dB	1.0 dB	1.0 dB	1.0 dB			

Table 5-6 Test Tolerance (TS38.521-3, Table 6.2B.1.3.5-3)

Furthermore, the NOTE3 in TS38.521-3 [1] Table 6.2B.1.3.5-1 defines additional relaxation of the lower tolerance by 1.5 dB as long as the test frequency is confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} where F_{UL_low} and F_{UL_high} are the lowest and highest frequency of the uplink operating band, respectively. In our example, the selected test frequency does not fall in that range, since we test in the mid test frequency range.

Therefore, the total test requirement by taking all the tolerances into account turns to be:

Lower limit of maximum output power = 23-3-1 = 19 dBm

Upper limit of maximum output power = 23+2+1 = 26 dBm

The measurements on the CMX gives following results as shown in Fig. 5-4 (E-UTRA) and Fig. 5-5 (NR).

UE Output power in E-UTRA: 19.62 dBm

👀 Tx Measurement - LTE 1	- MEV						? ::
 Detected and Statistics 							
Statistic Count	Allocation	Modulation	Channel T	Гуре	Out of Tolerance	Vi	iew Filter Throughput
20/20	NoRB: 1 OffsetRB: 99	QPSK	PUSCH		0	% 10	00 %
▼ Power							
	Current	Average	Mi	n	Max		Std Dev
Tx Power [dBm]	19.75	19	.62	19.40	5	19.99	0.09
Peak Power [dBm]	23.34	23	.26	23.14	ļ	23.49	0.05
RB Power [dBm]	19.64	19	.60	19.4	5	19.89	0.07

Fig. 5-4 Tx measurement of E-UTRA

UE Output power in NR: 19.20 dBm

III Tx Measurement - NR FR	1 - MEV				?
 Detected and Statistics 					
Statistic Count	Allocation	Modulation	Channel Type	Out of Tolerance	View Filter Throughput
20/20	NoRB: 1 OffsetRB: 271	QPSK	PUSCH	0 %	100 %
Power					
	Current	Average	Min	Max	Std Dev
Tx Power [dBm]	18.96	19.20	18.90	19.47	0.15
PEAK Power [dBm]	25.41	25.43	25.38	25.56	0.0
RB Power [dBm]	18.91	19.18	18.91	19.48	0.15

Fig. 5-5 Tx measurement of NR

The maximum output power is the summation of the maximum output power of each antenna connector. Since the DUT tested here uses separate antenna for LTE and NR. Therefore, the overall output power should be the sum of both maximum output power of LTE and NR.

UE output power of E-UTRA in mW = $10^{(19.62/10)}$ = 91.62 mW

UE output power of NR in mW = $10^{(19.20/10)}$ =83.18 mW

Overall maximum UE output power in dBm = $10*\log_{10}(91.62+83.18) = 22.4$ dBm which is within the limit (19~26 dBm).

5.2 Maximum Output Power Reduction for Inter-band EN-DC within FR1 (6.2B.2.3)

This test case should apply LTE anchor agnostic approach.

For more details, refer to TS38.521-1 [6], clause 6.2.2.1

5.2.1 Test Purpose

The increase of the modulation order will cause a higher crest factor. Potentially in the max transmission power condition, the amplifier may already operate in the top of the linear area. By increasing the crest factor, the amplifier might enter into non-linear area which could result in higher adjacent cell leakage ratio (ACLR). Therefore, UE is allowed to reduce the maximum output power due to higher order modulations and transmit bandwidth configurations [6].

The conformance requirements of maximum power reduction (MPR) with respect to the UE power class, uplink modulation, allocated resource blocks can be found in [6] clause 6.2.2.3.

5.2.2 Test Preparations

5.2.2.1 Example Test Configuration

Example

Test ID 27

Initial Con	ditions					
Test Environment as specified in TS 38.508-1 [5] subclause 4.1			Normal, TL/VL, TL/VH, TH/VL, TH/VH			
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1			Low range, High range			
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1			Lowest, Highest			
Test SCS	as specifie	d in Table 5.3.5-1	Lowest, Highest			
Test Para	meters for (Channel Bandwidths				
Test ID	Freq	Downlink Configuration	Uplink Configuration			
		N/A for Maximum Power	Modulation (NOTE 2)	RB allocation (NOTE 1)		
27	Default		CP-OFDM 16 QAM	Inner Full		
NOTE 4:	DFT-s-OF UE operat and the IE p UE operat	DM Pi/2 BPSK test applies or ting in TDD mode with Pi/2 B powerBoostPi2BPSK is set to	allocation is defined in Table 6.1-1. nly for UEs which supports half Pi BPSK in FR PSK modulation and UE indicates support for o 1 for bands n40, n41, n77, n78 and n79. mode in bands other than n40, n41, n77, n78 a 1, n77, n78 and n79.	UE capability powerBoosting-		

Table 5-7 Example of a test configuration out of TS38.521-1 [6] Table 6.2.2.4.1-1

5.2.2.2 Cell Parameter Settings

Since this test case requires the LTE anchor agnostic approach, LTE settings can be referred in chapter 3.6.

NR settings on CMX can generally refer to chapter 5.1.2.2 by configuration given in Table 5-8.

Parameters	NR	
	Configuration	Value
Frequency Range		FR1
Duplex Mode		TDD
Band		n78
Test Frequency	High range	See Table 5-4
Test Channel Bandwidth	Highest	100 MHz
Test SCS	Lowest	30 kHz
DL RMC (Modulation)	N/A	e.g. MCS index 4 MCS table 64QAM
DL RMC (RB Allocation)	N/A	e.g. 273@0
UL RMC (Modulation)	CP-OFDM 16QAM	MCS index 10 MCS table 64QAM
UL RM (RB Allocation)	Innen Full	137@68
Downlink Power Level	Total Cell Power	-47 dBm
Uplink Power Control	P0-NominalWithGrant	-90 dBm
	Alpha	0.8
	P0	0
	TPC	Мах
DFT-s-OFDM		Disable
MAC Padding		Enable
Initial BWP		1099

Table 5-8 Test parameters settings for maximum power reduction (MPR)

5.2.2.3 Multi-Evaluation Measurement Settings

NR multi-evaluation settings can generally refer to chapter 5.1.2.3

5.2.3 Test Procedure

- 1. Configure the LTE cell according to LTE anchor agnostic approach, see chapter 3.6
- 2. Configure the NR cell according to the configurations given in Table 5-8
- 3. Configure the NR multi-evaluation measurement
- 4. Turn on both LTE and NR cell
- 5. Switch on DUT and wait until DUT is registered on LTE cell
- 6. Activate EN-DC mode
- 7. Reduce the LTE uplink RB allocation to 0 RB as given in 3.6
- 8. Start the MPR measurement in the NR as given in 4.4.2 (select "Tx Measurement" measurement)

5.2.4 Test Requirement and Results

The MPR test requirement of test ID 27 for a power class 3 DUT operating in NR band n78 with contiguous RB allocation can be found in Table 5-9. By considering the 1dB TT (specified in TS38.521-1 [6] Table 6.2.2.5-5), the DUT should transmit the power in range of 17 ~ 26 dBm where the 2 dB MPR is already included in the calculation of lower limit.

Table 6.2.2.5-3: UE Power Class test requirements (for Bands n48, n77, n78, n79) for Power Class 3 (contiguous allocation)

Test ID	P _{PowerClass} (dBm)	ΔP _{PowerClas} s (dB)	MPR (dB)	ΔT _{C,c} (dB)	P _{CMAX_L,f,c} (dBm)	T(P _{CMAX_L,f,c}) (dB)	T _{L,c} (dB)	Upper limit (dBm)	Lower limit (dBm)
27	23	0	2	0	21.0	2.0	3	25.0 + TT	18.0 - TT
NOTE 1	: PPowerClass	is the maxim	um UE powe	r specified	without tak	ing into account	t the tole	rance.	
NOTE 2	: TT for eac	ch frequency a	and channel b	bandwidth	is specified	in Table 6.2.2.	5-5.		

Table 5-9 Test requirement of MPR (TS38.521-1 [6], Table 6.2.2.5-3)

The measurement result of CMX in Fig. 5-6 shows 19.09 dBm average transmission power that is within the range of the conformance requirement (17~ 26 dBm).

Moreover, test relevant configuration information, such as RB allocation (137 RBs, start position 68), 16QAM modulation, are displayed in the CMsquares too.

	Duplex Mode	Frequency 3750.0000000	MHz		ference level 3.00 dBm	Channel Bandwidth 100.0 MHz 💙	Used SCS 30 kHz ¥	No. of Subframes		slot All 🗸				
Detected and Statistic	cs													
Statistic Count	_	Allocat	ion			Modulation		Channel Type			Out of Tolerance		View Filter Through	nput
20/20	1	NoRB: 137 Offset	RB: 68		Q16		PUS	СН		0		%	100	
Power														
		Curre	nt			Average		Min			Max		Std Dev	
Tx Powe	er [dBm]			19.08			19.09		18.9	1		19.28		
PEAK Powe	er [dBm]			24.92			24.96		24.8	1		25.11		
RB Powe	er [dBm]			-2.28			-2.26		-2.4	4		-2.08		

5.3 Minimum Output Power for Inter-band EN-DC within FR1 (6.3B.1.3)

This test case should apply LTE anchor agnostic approach.

5.3.1 Test Purpose

To verify the UE's ability to transmit with a broadband output power (with full RB allocation) below the value specified in the test requirement when the power is set to a minimum value [6].

5.3.2 Test Preparations

5.3.2.1 Example Test Configuration

Example

Test ID 1

Initial Condit	tions				
Test Environ subclause 4	ment as specified in TS 38.508-1 [5] 1	Normal, TL/VL, TL/VH, TH/VL, TH/VH			
Test Frequer subclause 4	ncies as specified in TS 38.508-1 [5] 3.1	Low range, Mid range, High range			
	I Bandwidths as specified in TS subclause 4.3.1	Lowest, Mid, Highest			
Test SCS as	specified in Table 5.3.5-1	Highest			
Test Parame	ters for Channel Bandwidths				
Test ID	Downlink Configuration	Uplink Configuration			
N/A for minimum output power test case		Modulation	RB allocation (NOTE 1)		
		DFT-s-OFDM QPSK	Outer Full		
NOTE 1: T	he specific configuration of each RB a	llocation is defined in Table 6.1-1.			

Table 5-10 Example of test configuration out of TS38.521-1 [6] Table 6.3.1.4.1-1

5.3.2.2 Cell Parameter Settings

Since this test case requires the LTE anchor agnostic approach, LTE settings can be referred in chapter 3.6.

NR settings on CMX can generally refer to chapter 5.1.2.2 by configuration given in Table 5-11.

Parameters	NR	
	Configuration	Value
Frequency Range		FR1
Duplex Mode		TDD
Band		n78
Test Frequency	High range	See Table 5-4
Test Channel Bandwidth	Highest	100 MHz
Test SCS	Highest	60 kHz
DL RMC (Modulation)	N/A	e.g. MCS index 4 MCS table 64QAM
DL RMC (RB Allocation)	N/A	e.g. 273@0
UL RMC (Modulation)	DFT-s-OFDM QPSK	MCS index 2 MCS table 64QAM
UL RM (RB Allocation)	Outer Full	135@0
Downlink Power Level	SSB ERPE	-82 dBm
Uplink Power Control	P0-NominalWithGrant	-90 dBm
	Alpha	0.8
	P0	0

	TPC	Min
DFT-s-OFDM		Enable
MAC Padding		Enable
Initial BWP		1099

Table 5-11 Test parameter settings for minimum output power

5.3.2.3 Multi-Evaluation Measurement Settings

NR multi-evaluation settings can generally refer to chapter 5.1.2.3.

The expected nominal power setting has to be adjusted here to set -33 dBm as shown in Fig. 5-7.

Multi Eval	PRACH					
		Off	F II			
Sig	nal Path	Network				~
Dupl	ex Mode	TDD			~	
Co	onnector	RF2COM				~
C	onverter	RFRX1				~
Atte	External enuation	0.00			dB	
Band/	Channel	Band \backsim	Not Availa	ble		
Fr	equency	3750.000	00000	MHz	~	
Frequen	cy Offset	0.000000)		MH	z 🗸
Exp. No	m Power	-33.00			dBm	
Use	r Margin	12.00			dB	
Mixer Lev	el Offset	8			dB	
	EN-DC					

Fig. 5-7 NR multi-evaluation configuration for minimum output power test

5.3.3 Test Procedure

- 1. Configure the LTE cell according to LTE anchor agnostic approach, see chapter 3.6
- 2. Configure the NR cell according to the configurations given in Table 5-11
- 3. Configure the NR multi-evaluation measurement
- 4. Turn on both LTE and NR cell
- 5. Switch on DUT and wait until DUT is registered on LTE cell
- 6. Activate EN-DC mode
- 7. Reduce the LTE uplink RB allocation to 0 RB as given in 3.6
- 8. Start the measurement in the NR as given in 4.4.2 (select "Tx Measurement" measurement)

5.3.4 Test Requirement and Results

In Table 5-12, it shows the Test requirement given by TS38.521-1 [6], clause 6.3.1.5

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
5	-40+TT	4.515
10	-40+TT	9.375
15	-40+TT	14.235
20	-40+TT	19.095
25	-39+TT	23.955
30	-38.2+TT	28.815
40	-37+TT	38.895
50	-36+TT	48.615
60	-35.2+TT	58.35
80	-34+TT	78.15
90	-33.5+TT	88.23
100	-33+TT	98.31
NOTE 1: TT for each frequ	ency and channel bandwidth is	specified in Table 6.3.1.5-2

Table 6.3.1.5-1: Minimum output power

Table 5-12 Test requirement of minimum output power (TS38.521-1 [6], Table 6.3.1.5-1)

After looking up TS38.521-1 [6] Table 6.3.1.5-2, we know that the test tolerance (TT) in our case here is 1.3 dB (BW = 100 MHz, f = 3750 MHz). So, minimum output power at 100 MHz CBW should not be greater than -33 dBm + 1.3 dB = -31.7 dBm.

The Tx power measurement in CMsquares shown in Fig. 5-8 indicates the average Tx power of -49.61 dBm which conforms the test requirement (<-31.7 dBm). Therefore, the test is passed.

all	Tx Measurement - NR	FR1 1 - MEV				ж×
•	Detected and Statisti	cs				
	Statistic Count	Allocation	Modulation	Channel Type	Out of Tolerance	View Filter Throug.
	20/20	NoRB: 135 OffsetRB: 0	QPSK	PUSCH	0 %	100
•						►
•	Power					
		Current	Average	Min	Max	Std Dev
	Tx Power [dBm]	-49.72	-49.61	-49.75	-49.48	0.09
	PEAK Power [dBm]	-39.34	-39.17	-40.09	-37.82	0.37
	RB Power [dBm]	-71.08	-70.97	-71.11	-70.83	0.09

Fig. 5-8 Minimum output power measurement result

5.4 Tx ON/OFF Time Mask for Inter-band EN-DC within FR1 (6.3B.3.3)

This test case should apply LTE anchor agnostic approach.

For more details, refer to TS38.521-1 [6], clause 6.3.3.2

5.4.1 Test Purpose

The transmit power time mask for transmit ON/OFF defines the transient period(s) allowed between transmit OFF power and transmit ON power symbols (transmit ON/OFF). Transmit OFF power is considered when the UE is not allowed to transmit on any of its ports.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel [6].

Fig. 5-9 shows the transmit ON/OFF time mask measurement as defined in [6].

Fig. 5-9 General ON/OFF time mask for NR UL transmission in FR1 [6]

5.4.2 Test Preparations

5.4.2.1 Example Test Configuration

Example

Test ID 1

Initial Condition	tions				
Test Enviror subclause 4	nment as specified in TS 38.508-1 [5] .1	Normal, TL/VL, TL/VH, TH/VL,	TH/VH		
Test Frequer subclause 4	ncies as specified in TS 38.508-1 [5] .3.1	Low range, Mid range, High range (NOTE 2)			
	el Bandwidths as specified in TS subclause 4.3.1	Lowest, Mid, Highest			
Test SCS as	specified in Table 5.3.5-1	Lowest, Highest			
Test Parame	eters for Channel Bandwidths				
Test ID	Downlink Configuration	Uplink Configuration			
	N/A for minimum output power	Modulation	RB allocation (NOTE 1)		
1	test case	CP-OFDM QPSK	Outer Full		

NOTE 2: For NR band n28, 30MHz test channel bandwidth is tested with Low range and High range test frequencies. Table 5-13 Example of test configuration out of TS38.521-1 [6] Table 6.3.3.2.4.1-1

5.4.2.2 Cell Parameter Settings

Since this test case requires the LTE anchor agnostic approach, LTE settings can be referred in chapter 3.6.

NR settings in CMsquares can be referred to Fig. 5-10 based on the configurations given in Table 5-14.

According to the test purpose, test ON power just in one slot where the neighbor slots are powered OFF (have no resource allocation). As per [6], UL slot 8 is the only UL slot with resource allocation. The DL slot 1 resource allocation shown in Fig. 5-10 is required during the initial EN-DC connection setup. After the EN-DC mode is activated, the DL slot 1 resource allocation can be deactivated.

Parameters	NR	NR			
	Configuration	Value			
Frequency Range		FR1			
Duplex Mode		TDD			
Band		n78			
Test Frequency	High range	See Table 5-4			
Test Channel Bandwidth	Highest	100 MHz			
Test SCS	Lowest	30 kHz			
DL RMC (Modulation)	N/A	e.g. MCS index 4			

		MCS table 64QAM	
DL RMC (RB Allocation)	N/A	e.g. 273@0	
UL RMC (Modulation)	CP-OFDM QPSK	MCS index 2 MCS table 64QAM	
UL RM (RB Allocation)	Outer Full	273@0	Only allocate slot 8
Downlink Power Level	SSB ERPE	-82 dBm	
Uplink Power Control	ss-PBCH-BlockPower	21 dBm	
	P0-NominalWithGrant	-100 dBm	
	Alpha	0.8	
	P0	0	
	TPC	Кеер	Open loop
DFT-s-OFDM		Disable	
TDD Common	Periodicity	5 ms	
	# DL Slots	6	
	# UL Slots	3	
	# DL Symbols	6	
	# UL Symbols	4	
MAC Padding		Enable	
Initial BWP		1099	

Table 5-14 Test parameter settings for Tx ON/OFF time mask

General de LTE LTE Ce	ll 0 NR Ce	шo		General	LTE LTE Ce	ll 0 NR Cell 0			General de LTE LTE C	ell 0 NR Cell 0		
	ON					ON				ON		
 Frequency and E 	Band		ĺ	▼ Powe	er				 TDD Common 			
Frequency Range	FR 1		~	Downlink	Level				Pattern 1 (Type UL D			
Duplex Mode			~		SSB EPRE	-82.0		dBm	Periodicity	5 ms (10 Slots)		~
Frequency Band	N 78		~	Total	Cell Power	-46.9		dBm	# DL Slots	6		
Indicator				OCNG					# UL Slots	3		
Subcarrier Spacing	30 kHz		~		Enable				# DL Symbols	6		after last DL Slot
		Frequency Config			Jplink Level				# UL Symbols	4		before first UL Slot
Downlink-Uplink				Recei	ver Config Mode	Auto		~	 User Defined U 	E Scheduling		02 301
Carrier Bandwidth	100 MHz		~	Referen	nce Source	PUSCH		~	Downlink Scheduling			
Offset To Carrier	504		PRB	Refer	ence Level Offset	6		dB	Slot Assignment	Co	figuration	
Additional Spectrum Emission	0			Power Con					MAC Padding	>		
Point A				ss-PBCH-B	lockPower	21		dBm	Bandwidth Part ID	0		
Location	High		~		p0- WithGrant	-100		dBm	Aggregation Level	Level 4		~
NR ARFCN	634628					Alpha 0.8	∨ p0	0	Search Space ID		c	
Frequency	3519.420		MHz		p-Max	20		dBm	MCS Table		Configuraiotn	~
Initial BWP												
Location and Bandwidth	1099		RIV			Кеер		~	Vrb to Prb Mapping	Non Interleaved	jē	~
 Coreset and Sea 	rch Space Zero				annel Type	PUSCH		~	Uplink Scheduling Bandwidth Part ID	0	out	
Control Resource Zero	3			PRAC PRAC	:H e Received						Ŭ	
Search Space Zero	0			Tar	get Power	-92		dBm	Aggregation Level		RMC	~
▼ SSB				-	tion Index	167			Search Space ID	2	<u>م</u>	
	4			Powe	r Ramping Step	3 dB		~	MCS Table	64 QAM	_	~
Offset to Point A	1014				H Config				DL HARQ			
			~		Transform Precoding	CP-OI	DM		Configuration Mode	NOT Configured		*
Subcarrier Spacing	30 KHZ Case C		•	- 700	•				DICH			
NR Cell 0 > UE Slot Sch	e dulle e										×	
Slot Index	eduling 0	1	2	3	4	5	6	6	7	8 9	^	
SIGUINGER	DL	DL	DL	DL	DL	DL	DL	UL				
		~								 Image: A second s		
Start RB		0					-		- 0	· ·	-	
# RB		273							- 273			
MCS			-	-				-	- 2/3			
	-	4	-	-	-		-	-	- 2			
DCI Format	-	DCI 11 👻	-	-	-	-	-	-	- DCI 01	¥ .		
MIMO Scheme		SISO 🗸							- SISO	¥ .		
 Time Domain Alloc. 												
Start Symbol		2						-	- 0			
# Symbols		12							- 14			
Channel Mapping		TYPE A 🗸 🗸	-						- TYPE	۰. ×		
Slot Offset (k0 k2)		0							. 3			

Fig. 5-10 NR settings of Tx ON/OFF time mask on CMX

5.4.2.3 Multi-Evaluation Measurement Settings

The ON power and OFF power is measured on CMX in two separate steps. This requires that the NR multievaluation settings for ON power and OFF power measurement are configured separately (see Fig. 5-11).

The setting differs in the "expected nominal power" parameter where 32 dBm and -10 dBm is recommended to be configured for ON power and OFF power measurement, accordingly (see 4.4.2).

During OFF power measurement, the warning message "input overdriven" will appear due to the fact that the ON power level is far above the reference level (-10 dBm) which can actually be ignored. Because the focal measurement is OFF power but not ON power here. In order to avoid the termination of the measurement under this circumstance, "Measure on exception" option has to be activated in this case (see right hand side of Fig. 5-11).

In order to measure on the specified uplink slot, the measurement slot needs to be set to 8 or 18 (30 kHz SCS, with 5 ms transmission periodicity).

NR FR1 TX 1 Con	figuration	×	NR FR1 TX 1 Configuration	×	➡ NR FR1 TX 1 Con		×	NR FR1 TX 1 Configuration	×
Bookmark Collapse Ex	pand	* Favorite	Bookmark Collapse Expand	Favorite	Bookmark Collapse Exp	and .	Favorite	Bookmark Collapse Expand	Favorite
Multi Eval PRACH			Multi Eval PRACH		Multi Eval PRACH			Multi Eval PRACH	
	Off 🕨 🔳		Off 🕨 🔳			Off ►		Off 🕨 🔳	
Signal Path	Network	~ ^	 Measurement Control 	^	Signal Path	Network	~ ^	 Measurement Control 	•
Duplex Mode	TDD	× 🚯	Repetition Continuous	~	Duplex Mode	TDD	× (1)	Repetition Continuous	~
Connector	RF2COM	~	Stop Condition None	~	Connector	RF2COM	~	Stop Condition None	~
Converter		~	Measurement Mode Normal	~	Converter	RFRX1	~	Measurement Mode Normal	~
External Attenuation	0.00	dB	Measure on Exception		External Attenuation	0.00	dB	Measure on Exception	
Band/ Channel	Band n78 Y 0 Not Available	۸	View Filter NRB 273			Band n78 ¥ 0 Not Available		View Filter	
Frequency	3750.0000000 MH	iz 👻 🔕	Channel Type PUSCH	~	Frequency	3750.0000000 MH	z 🖌 🔕	NRB 273	
Frequency Offset	0.000000	MHz 👻	Measurement Subframe		Frequency Offset		MHz Y	Channel Type PUSCH	~
Exp. Nom Power	32.00	dBm	No. of Subframes 10		Exp. Nom Power	-10.00	dBm	Measurement Subframe	
User Margin	0.00	dB	Measure Slot 8 All		User Margin		dB	No. of Subframes 10	
Mixer Level Offset	8	dB			Mixer Level Offset		dB	Measure Slot 8 All	
EN-DC					EN-DC				
RF Upconversion					RF Upconversion				
Phase Compensation	Carrier Freq	~			Phase	Carrier Freg	v		
User Defined Frequency	1950.0000000	MHz 🛩			Compensation User Defined				
,					Frequency	1950.0000000	MHz 👻		
Configuratio	n for ON Power				Configuration	for OFF Power			

Fig. 5-11 NR measurement settings of ON power and OFF power

5.4.3 Test Procedure

- 1. Configure the LTE cell according to LTE anchor agnostic approach, see chapter 3.6
- 2. Configure the NR cell according to the configurations given in Table 5-11
- 3. Turn on both LTE and NR cell
- 4. Switch on DUT and wait until DUT is registered on LTE cell
- 5. Activate EN-DC mode
- 6. Reduce the LTE uplink RB allocation to 0 RB as given in 3.6
- 7. Deactivate the NR downlink RB allocation
- 8. Configure the NR multi-evaluation measurement (configuration for ON power measurement, see 5.4.2.3)
- 9. Start measurement in the NR as given in 4.4.2 (select "Power Dynamics" measurement)
- 10. Configure the NR multi-evaluation measurement (configuration for OFF power measurement, see 5.4.2.3)
- 11. Restart the "Power Dynamics" measurement.

5.4.4 Test Requirement and Results

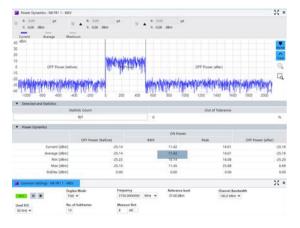
Table 5-15 is the test requirement given by TS38.521-1 [6], clause 6.3.3.2.5

SCS		Channel bandwidth / minimum output power / measurement bandwidth											
	[kHz	5	10	15	20	25	30	40	50	60	80	90	100
	1	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Transmit OFF power			≤ -50+TT dBm										
Transmission OFF		4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
Measurement bandwidth													
Expected Transmission ON	15	-3.6	0.4	1.4	2.7	3.6	4.4	5.7	6.7	N/A	N/A	N/A	N/A
Measured power for CP-	30	-4.2	-0.8	1.2	2.5	3.5	4.3	5.7	6.6	7.5	8.8	9.3	9.8
OFDM													
	60	N/A	-1.2	1.0	2.2	3.3	4.2	5.5	6.5	7.4	8.7	9.2	9.7
ON Power Tolerance			± (9+TT)dB										

Table 6.3.3.2.5-1: General ON/OFF time mask

NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3.3.2.5-2

Table 5-15 Test requirement of general ON/OFF time mask (TS38.521-1 [6], Table 6.3.3.2.5-1)


TS38.521-1 [6] clause 6.3.3.2.5-1 specifies the test tolerance (TT) which in our case is 1.8 dB (BW = 100 MHz, f = 3750 MHz). Therefore, following limit should apply

Transmit OFF power ≤ -50 + TT = -48.2 dBm

Transmit ON power (30 kHz SCS, 100 MHz CBW) = 9.8 dBm ± 10.8 dB (ON power tolerance)

That means, the Transmit ON power should be in the range -1 dBm to 20.6 dBm.

The ON power and OFF power measurements in CMsquares are shown in Fig. 5-12²⁷. From the results, we can read out 11.42 dBm ON power, -66.08 dBm OFF power (before the ON power slot), and -66.06 dBm OFF power (after the ON power slot). All the measured values are in range.

OFF Power (before) -66.08 dBm OFF Power (after) -66.06 dBm

On Power 11.42 dBm

Fig. 5-12 Tx ON/OFF power measurement result

²⁷ The limit violation of OFF power when measuring the ON power can be ignored. Because the reference level (32 dBm) is configured in the NR measurement which effectively increases the noise floor level. This level overwhelms the actual OFF power. When measuring OFF power, the warning "Input overdriven" in CMsquares appears due to the measurement of ON power which is far above the

vinen measuring OFF power, the warning "Input overdriven" in CMsquares appears due to the measurement of ON power which is far above the reference level, e.g. -10 dBm. Therefore, for OFF power measurement, actually this warning message is of no relevance (see also Fehler! Verweisquelle konnte nicht gefunden werden.).

5.5 Frequency Error for Inter-band EN-DC within FR1 (6.4B.1.3)

This test case should apply LTE anchor agnostic approach.

For more details, refer to TS38.521-1 [6], clause 6.4.1

5.5.1 Test Purpose

As defined in [6], this test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the system simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

5.5.2 Test Preparations

5.5.2.1 Example Test Configuration

Example

Test ID 1

Initial Cor	ditions						
Test Envir subclause	onment as specified i	in TS 38.508-1 [5]	Normal, TL/VL, TL/VH, TH/VL, TH/VH Mid range Highest Lowest				
Test Freq	uencies as specified i e 4.3.1	n TS 38.508-1 [5]					
Test Char subclause		pecified in TS 38.508-1 [5]					
Test SCS	as specified in Table	5.3.5-1					
Test Para	meters		·				
	Downlink Configurat	tion	Uplink Configuration				
Test ID	Modulation	RB allocation	Modulation	RB allocation			
1	CP-OFDM QPSK	Full RB (NOTE 1)	DFT-s-OFDM QPSK	REFSENS (NOTE 2)			
NOTE 1: NOTE 2: channel B		•	•	ecified in Table 7.3.2.4.1-2 ration and start RB location for each SCS,			

Table 5-16 Example of a test configuration out of TS38.521-1 [6] Table 6.4.1.4.1-1

5.5.2.2 Cell Parameter Settings

Since this test case requires the LTE anchor agnostic approach, LTE settings can be referred in chapter 3.6.

NR settings on CMX can refer to chapter 5.1.2.2 by configuration given in Table 5-17

Parameters	NR	
	Configuration	Value
Frequency Range		FR1
Duplex Mode		TDD
Band		n78
Test Frequency	Mid	See Table 5-4
Test Channel Bandwidth	Highest	100 MHz
Test SCS	Lowest	30 kHz
DL RMC (Modulation)	CP-OFDM QPSK	MCS index 4

		MCS table 64QAM
DL RMC (RB Allocation)	Full RB	273@0
UL RMC (Modulation)	DFT-s-OFDM QPSK	MCS index 2 MCS table 64QAM
UL RM (RB Allocation)	REFSENS	270@0
Downlink Power Level	SSB ERPE	-82 dBm
Uplink Power Control	P0-NominalWithGrant	-90 dBm
	Alpha	0.8
	P0	0
	TPC	Мах
DFT-s-OFDM		Enable
MAC Padding		Enable
Initial BWP		1099

Table 5-17 Test parameters settings for frequency error test

5.5.2.3 Multi-Evaluation Measurement Settings

NR multi-evaluation settings can refer to chapter 5.1.2.3

5.5.3 Test Procedure

- 1. Configure the LTE cell according to LTE anchor agnostic approach, see chapter 3.6
- 2. Configure the NR cell with configurations given in Table 5-17
- 3. Configure the NR multi-evaluation measurement given in 5.1.2.3
- 4. Turn on both LTE and NR cell
- 5. Switch on DUT and wait until DUT is registered on LTE cell
- 6. Activate EN-DC mode
- 7. Reduce the LTE uplink RB allocation to 0 RB as given in 3.6
- 8. Measure the NR as given in 4.4.2 (select "Tx Measurement" measurement)

5.5.4 Test Requirement and Results

The frequency error Δf must fulfil the test requirement: $|\Delta f| \le (0.1 \text{ PPM} + 15 \text{ Hz})$

PPM stands for Parts per Million, 1 PPM means 1/10⁶ part of nominal frequency. The conversion of PPM into equivalent variation in Hz can be seen in Eqn. 5-1.

Variation in $Hz = f * PPM = f * 10^{-6}$, where f is the center frequency

Eqn. 5-1 PPM in unit Hz

Taking the above definition of PPM and together with the test requirement into account, we can concretize the test requirement for NR n78 operated in Mid band as follows: The uplink center frequency is 3549.99 MHz, the frequency variation of 0.1PPM is about 355 Hz, therefore the total $|\Delta f| \le (0.1 \text{ PPM} + 15 \text{ Hz}) = 370 \text{ Hz}.$

The test result in Fig. 5-13 shows the average frequency error $|\Delta f|$ is 7.93 Hz which is within the test requirement limit 370 Hz.

Tx Measurement - NR FR1 1 - ME	EV								?
Detected and Statistics									
Statistic Count	Allocation		Modulation	Ch	nannel Type	Out of Tolerance		View Filter	Throughput
20/20	NoRB: 270 OffsetRB: 0		QPSK	PUSCH		0	%	100	
Power									
	Current		Average		Min	Max		Std	l Dev
Tx Power [dBr	m]	17.63		17.62	17.45		17.69		
PEAK Power [dBr	m]	25.59		25.56	25.41		25.81		
RB Power [dBr	m]	-6.66		-6.67	-6.84		-6.60		
Tx Measurement	Current		Average		Eut	reme		Std Dev	
	L	h	Average	r h	L	h		I	h
EVM RMS [%]	3.50	3.41	3.48	3.39	3.58			0.07	
EVM Peak [%]	13.34	12.82		13.58				0.70	
EVM DMRS [%]	3.78	3.69		3.51				0.15	
MErr RMS [%]	2.46	2.40		2.39				0.05	
MErr Peak [%]	11.98	11.66		12.05				0.83	
MErr DMRS [%]	2.65	2.58		2.47				0.10	
PhErr RMS [*]	1.42	1.39		1.38				0.03	
PhErr Peak [*]	7.40	7.18		7.29				0.44	
PhErr DMRS [°]	1.55	1.51	1.46	1.43	1.59	1.56		0.07	
IQ Offset [dBc]		-46.84		-46.05		-44.45			
Freq Error [Hz]		-17.61		-7.93		84.57			
Freq Error [ppm]		-0.00		-0.00		0.02			
mple Clock Error [ppm]		-0.00		0.00		0.04			
Timing Error [Ts]		-404.21		-404.07		-404.33			

Fig. 5-13 Test result of frequency error

5.6 Error Vector Magnitude for Inter-band EN-DC within FR1 (6.4B.2.3.1)

This test case should apply LTE anchor agnostic approach.

For more details, refer to TS38.521-1 [6], clause 6.4.2.1

5.6.1 Test Purpose

As defined in [6], the Error Vector Magnitude (EVM) is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM, the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further equalized using the channel estimates subjected to the EVM equalizer spectrum flatness requirement specified in TS38.521-1 [6] clause 6.4.2.4.3. For DFT-s-OFDM waveforms, the EVM result is defined after the front-end FFT and IDFT as the squares root of the ratio of the mean error vector power to the mean reference power expressed as a %. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the squares root of the mean error vector power to the mean reference power expressed as a %. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the squares root of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and the duration of PUCCH/PUSCH channel, or one hop, if frequency hopping is enabled for PUCCH and PUSCH in the time domain. The EVM measurement interval is reduced by any symbols that contains an allowable power transient as defined in TS38.521-1 [6] clause 6.3.3.3.

Note: EVM measurement needs to be conducted on PUSCH, PUCCH and PRACH channels. In this chapter, the measurement on PUSCH is described.

5.6.2 Test Preparations

5.6.2.1 Example Test Configuration

Example

Test Configuration for PUSCH, Test ID 9

ditions					
ronment as specified in TS 38.508-1 [5] e 4.1	Normal				
uencies as specified in TS 38.508-1 [5] e 4.3.1	Mid range				
nel Bandwidths as specified in TS 38.508-1 use 4.3.1	Highest				
as specified in Table 5.3.5-1	All (Lowest SCS is selected in this example)				
meters					
Downlink Configuration	Uplink Configuration				
N/A	Modulation (NOTE 3)	RB allocation (NOTE 1)			
	CP-OFDM QPSK	Inner Full			
	ronment as specified in TS 38.508-1 [5] e 4.1 uencies as specified in TS 38.508-1 [5] e 4.3.1 inel Bandwidths as specified in TS 38.508-1 use 4.3.1 as specified in Table 5.3.5-1 meters Downlink Configuration	conment as specified in TS 38.508-1 [5] Normal uencies as specified in TS 38.508-1 [5] Mid range a 4.3.1 Mid range unel Bandwidths as specified in TS 38.508-1 Highest use 4.3.1 Highest as specified in Table 5.3.5-1 All (Lowest SCS is selection neters) Downlink Configuration Uplink Configuration N/A Modulation (NOTE 3)			

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.

NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1. NOTE 3: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.

Table 5-18 Example of a test configuration out of TS38.521-1 [6] Table 6.4.2.1.4.1-1

5.6.2.2 Cell Parameter Settings

Since this test case requires the LTE anchor agnostic approach, LTE settings can be referred in chapter 3.6.

NR settings on CMX can generally refer to chapter 5.1.2.2 by configuration given in Table 5-19

Parameters	NR	
	Configuration	Value
Frequency Range		FR1
Duplex Mode		TDD
Band		n78
Test Frequency	Mid	See Table 5-4
Test Channel Bandwidth	Highest	100 MHz
Test SCS	Lowest	30 kHz
DL RMC (Modulation)	N/A	e.g. MCS index 4 MCS table 64QAM
DL RMC (RB Allocation)	N/A	e.g. 273@0
UL RMC (Modulation)	CP-OFDM QPSK	MCS index 2 MCS table 64QAM
UL RM (RB Allocation)	Inner Full	137@68
Downlink Power Level	Total Cell Power	-47 dBm
Uplink Power Control	P0-NominalWithGrant	-90 dBm
	Alpha	0.8
	P0	0

TPC ³⁰	Max / Closed Loop
Target Power Total ³¹	-31 dBm
Tolerance ³¹	1 dB
	Disable
	Enable
	1099

Table 5-19 Test parameters settings for Error Vector Magnitude (EVM)

Test case requires UE to send uplink power level in P_{umax} and $P_{min.}$ at test step 1.2 and 1.4 in TS38.521-1 [6], clause 6.4.2.1.4.2, respectively.

TPC is set to MAX when the UE is required to send P_{umax} uplink power.

In case that the UE is required to send nominal uplink power level P_{min} , the specification requires that the UE output power should be measured in the so called uplink power control window which is in the range P_{min} +MU to P_{min} +(MU + Uplink power control window size) dB, where

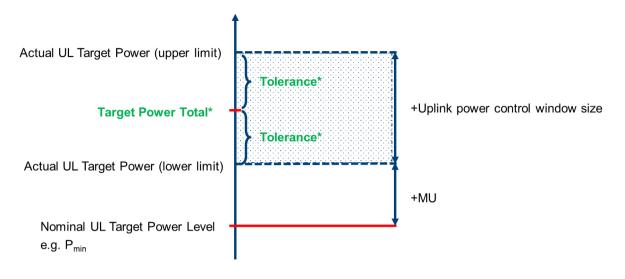
- Pmin is defined in Table 6.3.1.3-1 of TS38.521-1. In our example here, it is -33 dBm for 100 MHz test channel bandwidth
- MU is the test system uplink power measurement uncertainty and is specified in TS38.521-1 [6], Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW. In our example, carrier frequency is 3549.99 MHz, channel BW is 100 MHz and -40dBm ≤ P_{UL} = -33dBm ≤ -25dBm, therefore, MU is ±3.0 % of P_{UL}, i.e. ± 1 dB
- ▶ Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1, Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and 1dB for the Test system relative power measurement uncertainty as specified in TS38.521-1 [6], Table F.1.2-1. Therefore, the total uplink power control window size is 2.7dB. For more details about the uplink power control window, refer to Annex F.4.2.1 in [1].

By considering above values given in the test case, we have the following calculation to determine the expected UL target power range

UL target power (lower limit) = Pmin + MU = (-33 dBm) + 1 dB = -32 dBm

UL target power (upper limit) = P_{min} + MU + uplink power control window size = (-33 dBm) + 1 dB + 2.7 dB = - 29.3 dBm

As long as the measured UL power is in the range between -32 dBm and -29.3 dBm, it is considered that the nominal power level P_{min} is reached. Therefore, no further TPC is needed to be sent to UE to increase or decrease the UL power. Otherwise, if measured UL power is out of range, then UE will be commanded by the proper TPC to adjust the transmit power until the measured UL power is in the range.


This kind of approach is implemented on CMX using closed loop TPC with its associated configurable parameters, i.e. target power total and tolerance. As illustrated in Fig. 5-14, we configure target power total to be half of the uplink power control window size (in dB) above the lower limit of UL target power and set the tolerance to be the half of the uplink power control window size. The ultimate goal here is to create an intended test condition so that the UE transmitted UL power should be no lower than P_{min.}. In this test case, our calculation for these two parameters are as follows,

Tolerance = 1/2 * uplink power control window size = 1/2 * 2.7 dB = 1.4 dB

³⁰ TPC is set according to the test step. If UE is required to transmit P_{UMAX}, TPC should be set to Max. In P_{min} case, due to the requirement in test step 1.4 of TS38.521-1 [6], clause 6.4.2.1.4.2. TPC is set to Closed Loop. For that TPC type, target power level and tolerance in the subsequent parameter settings have to be considered.

³¹ This parameter setting is only configurable in CMSquares and relevant when TPC is set to Closed Loop

Target power total = Nominal target power level (e.g. Pmin) + MU + Tolerence = -33 + 1 + 1.4 = -30.5 dBm

* Target Power Total and Tolerance are the configurable parameters in Cmsquares. Tolerance = 1/2 x uplink power control window size

Fig. 5-14 Calculation of target power total and tolerance

The way of calculating "target power total" and "tolerance" described above applies also to other test cases, e.g. carrier leakage test (see chapter 5.7) and in-band emissions (see chapter 5.8).

Finally, uplink power control settings in CMsquares for Pumax and Pmin can be seen in Fig. 5-15.

	ON					O	N			
Expected Uplink Level					Expected Uplink Level					
Receiver Config Mode	Auto	Auto			Receiver Config Mode	Au	Auto			
Reference Source	PUSCH			~	Reference Source	PU	SCH			
Reference Level Offset	6			dB	Reference Level Offset	6				dB
Power Control					Power Control					
ss-PBCH-BlockPower	0		dBm	ss-PBCH-BlockPower	0	0		dBm		
p0- NominalWithGrant	- 90			dBm	p0- NominalWithGrant	1	-90			dBm
P0-PUSCH-AlphaSet	🗸 Alpha	0.8 ~	p0	0	P0-PUSCH-AlphaSet	~	Alpha	0.8	~ p0	0
p-Max	23.0)		dBm	p-Max	~	23.0			dBm
TPC	Max			~	TPC	Clo	osed Lo	ор		
Channel Type	PUSCH			~	Target Power Total RMS	-31	I			dBm
					Tolerance	1				dB
					Channel Type	DI	SCH			

Fig. 5-15 Uplink power control setting, Pumax (left) and Pmin (right)

The uplink RMC configuration is shown in Fig. 5-16

NR Cell 0 > UE Slot Schee	duling										×
Slot Index	0	1	2	3	4	5	6	7	7	8	9
	DL	DL	DL	DL	DL	DL	DL	DL	UL	UL	UL
				✓							
Start RB	-	0	0	0	0	0	0		-	68	68
# RB	-	273	273	273	273	273	273			137	137
MCS	-	4	4	4	4	4	4] -	-	2	2
DCI Format	-	DCI 11 🗸	-		DCI 01 🗸	DCI 01 🗸					
MIMO Scheme		siso 🗸] -		siso 🗸	SISO 🗸					
▶ Time Domain Alloc.											

Fig. 5-16 Uplink scheduling for EVM testing

5.6.2.3 Multi-Evaluation Measurement Settings

NR multi-evaluation settings can generally refer to chapter 5.1.2.3

The expected nominal power should be adapted in accordance with the P_{umax} and P_{min} case as shown in Fig. 5-17.

Multi Eval PRACH			Multi Eval	PRACH					
	Run II 🔳				Run	н н			
Signal Path	Network	~	Sig	gnal Path	Network				~
Duplex Mode	TDD	~ (1)	Dupl	ex Mode	TDD			~	
Connector	RF2COM	~	C	onnector	RF2COM				~
Converter	RFRX1	~	c	onverter	RFRX1				~
External Attenuation	0.00	dB	Att	External enuation	0.00			dB	
Band/ Channel	Band 🗸 Not Available		Band/	Channel	Band \backsim	Not Availa	able		
Frequency	3549.9900000 MH	Iz 🗸 🔇	Fi	requency	3549.990	00000	MHz	<u> </u>	
Frequency Offset	0.000000	MHz 🖌	Frequen	cy Offset	0.000000)		MH	z 🗸
Exp. Nom Power	23.00	dBm	Exp. No	m Power	-31.00			dBm	
User Margin	12.00	dB	Use	r Margin	12.00			dB	
Mixer Level Offset	8	dB	Mixer Lev	el Offset	8			dB	
EN-DC				EN-DC					

Fig. 5-17 NR multi-evaluation configuration for P_{umax} (left) and P_{min} (right)

5.6.3 Test Procedure

Below described procedure is valid for EVM measurement on PUSCH

- 1. Configure the LTE cell according to LTE anchor agnostic approach, see chapter 3.6
- 2. Configure the NR cell according to the configurations given in Table 5-19, and set maximum uplink output power P_{umax} (set TPC to Max)
- 3. Configure the NR multi-evaluation measurement. Set 23 dBm (Pumax) as expected nominal power.
- 4. Turn on both LTE and NR cell
- 5. Switch on DUT and wait DUT is registered on LTE cell
- 6. Activate EN-DC mode
- 7. Reduce the LTE uplink RB allocation to 0 RB as given in 3.6
- 8. Start the EVM measurement in the NR as given in 4.4.2 (select "EVM" measurement)
- 9. Set minimum uplink output power P_{min} (set target power total/tolerance and TPC Closed Loop)
- 10. Set expected nominal power to Pmin value in the NR Multi-evaluation measurement
- 11. Restart the EVM measurement

5.6.4 Test Requirement and Results

Test requirement for EVM is shown in Table 5-20 according to TS38.521-1 [6], Table 6.4.2.1.5-1

Table 6.4.2.1.5-1: Test requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level							
Pi/2-BPSK	%	30 + TT							
QPSK	%	17.5 + TT							
16 QAM	%	12.5 + TT							
64 QAM	%	8 + TT							
256 QAM	%	3.5 + TT							
Note 1: TT is defined in Table 6.4.2.1.5-2.									

Table 5-20 Test requirement of EVM (TS38.521-1 [6], Table 6.4.2.1.5-1)

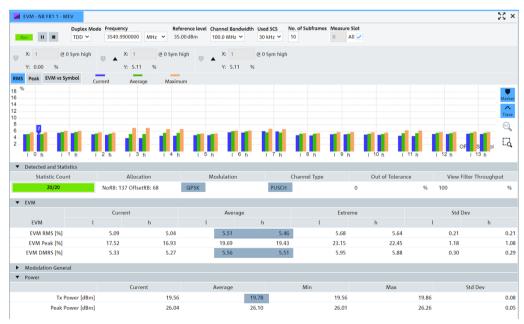
The applied test tolerance TT is defined in TS38.521-1 [6], Table 6.4.2.1.5-2

Table 6.4.2.1.5-2: Test Tolerance arameter Unit Average E

Parameter	Unit	Average EVM Level					
Pi/2-BPSK	%						
QPSK	%		0				
16 QAM	%	0					
64 QAM	%	0					
256 QAM	%	0.3 for 15 dBm < PuL					
	0.8 for -25 dBm < Pu∟≤ 15 dB						
		1.1 for -40dB	m ≤ P	_{∪L} ≤ -25dBm			

Table 5-21 Test tolerance (TS38.521-1 [6], Table 6.4.2.1.5-2)

Therefore, in our example here, the PUSCH EVM as well as EVM_{DMRS} with QPSK modulation shall not exceed 17.5% (TT = 0%).


The EVM measurement results in P_{umax} and P_{min} case are all within the limit of 17.5% (see Fig. 5-18 and Fig. 5-19, respectively).

Also, the measured UE uplink power levels revealed in the measurement results are in the following range.

Pumax case, 19 ~ 26 dBm (requirement of UE maximum output power in Chapter 5.1)

Pmin case, -29.3 ~ -32.0 dBm (based on the description in Chapter 5.6.2.2)

Thus, the measured EVM in both cases are valid.

EVM - NR FR1 1 - MEV											23
Duples	✓ Mode Frequency 3549.99000			annel Bandwidth 00.0 MHz 🗸		No. of Subframes		slot All 🗸			
X: 1 @ 0 Sym hi	• V ▲ -		igh 🦁 🔺		@ 0 Sym high						
Y: 0.00 %	Y: 6	.14 %		Y: 6.14 %							
	Current Av	erage Maximu	im :								
%											Mar
											Tra
الهرالين الألور	al al a						ي الم			ب الدالي	
		3 h i 4 h	I ⁵ h	ı 6 h	1 7 h	 I 8 h	9	1 10 h	11 h	OF	s _{ol} [7
Detected and Statistics											
Statistic Count	Allo	cation	Mo	dulation		Channel Type		Out of Tolera	nce	View Filte	r Throughput
20/20	NoRB: 137 Off	setRB: 68	QPSK		PUSCH			0	%	100	9
EVM											
	Current			Average			Extr	eme		Std Dev	
EVM	t	h	L		h	l		h		l .	h
EVM RMS [%]	6.09	6.05		7.10	7.07		7.46	7.44		0.49	0.
EVM Peak [%]	21.32	20.82		25.05	24.67		30.18	29.66		2.56	2.
EVM DMRS [%]	6.37	6.32		7.21	7.18	5	7.77	7.73		0.53	0.
Modulation General											
Power											
Tower	C.,	rrent	A	verage		Min		Max		St	d Dev
Tx Power [dB		-31.52		-31	.22		-31.55		-31.11		0.

Fig. 5-19 EVM and EVM_{DMRS} measurement result (P_{min} case)

5.7 Carrier Leakage for inter-band EN-DC within FR1 (6.4B.2.3.2)

This test case should apply LTE anchor agnostic approach.

For more details, refer to TS38.521-1 [6], clause 6.4.2.2

5.7.1 Test Purpose

Carrier leakage is a form of interference caused by crosstalk or DC offset of the I/Q signal during the signal direct up-conversion. The measurement of this impairment is referred to as I/Q origin offset. Carrier leakage expresses itself as unmodulated sine wave with the carrier frequency or center frequency of aggregated transmission bandwidth configuration. It is an interference of approximately constant amplitude and independent of the amplitude of the wanted signal.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of carrier leakage [6].

5.7.2 Test Preparations

5.7.2.1 Example Test Configuration

Example

Test ID 1

Initial Conditions	
Test Environment as specified in TS 38.508-1 [5] subclause 4.1	Normal
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1	Low range, Mid range, High range
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1	Mid
Test SCS as specified in Table 5.3.5-1	Lowest

Rohde & Schwarz | Application Note 5G NR FR1 Non-Standalone UE RF Conformance Testing 64

Test Para	meters						
Test ID	Downlink Configuration	Uplink Configuration					
	N/A	Modulation	RB allocation (NOTE 1, 3)				
1		DFT-s-OFDM QPSK	Inner_1RB_Left				
	Test Channel Bandwidths are ch in Table 5.3.5-1.		e 6.1-1. d, which applicable channel bandwidths are nner_1RB_Right for UL RB allocation.				
Table 5-22	Example of a test configuration out	of TS38.521-1 [6] Table 6.4.2.2.4.1-1					

5.7.2.2 Cell Parameter Settings

Since this test case requires the LTE anchor agnostic approach, LTE settings can be referred in chapter 3.6.

NR settings on CMX can generally refer to chapter 5.1.2.2 by configuration given in Table 5-23 and Table 5-25.

Parameters	NR	
	Configuration	Value
Frequency Range		FR1
Duplex Mode		TDD
Band		n78
Test Frequency	Mid Range	See Table 5-24
Test Channel Bandwidth	Mid	50 MHz
Test SCS	Lowest	15 kHz
DL RMC (Modulation)	N/A	e.g. MCS index 4 MCS table 64QAM
DL RMC (RB Allocation)	N/A	e.g. 273@0
UL RMC (Modulation)	DFT-s-OFDM QPSK	MCS index 2 MCS table 64QAM
UL RM (RB Allocation)	Inner_1RB_Left	1@1
Downlink Power Level	Total Cell Power	-50 dBm
Uplink Power Control	P0-NominalWithGrant	-90 dBm
	Alpha	0.8
	P0	0
	TPC	Close Loop
	Target Power Total RMS	See Table 5-25
	Tolerance	See Table 5-25
DFT-s-OFDM		Enable
MAC Padding		Enable
Initial BWP		1924

Table 5-23 Test parameter settings for carrier leakage test

Table 4.3.1.1.1.78-1: Test frequencies for NR operating band n78, SCS 15 kHz and ΔF_{Raster} 15 kHz.

CBW [MHz]	carrier Bandw idth [PRBs]	Rang	e	Carrier centre [MHz]	Carrier centre [ARFCN]	point A [MHz]	absolute Frequen cyPoint A [ARFCN]	offsetTo Carrier [Carrier PRBs]	SS block SCS [kHz]	GSCN	absolute Frequen cySSB [ARFCN]	k _{SSB}	Offset Carrier CORE SET#0 [RBs] Note 2	CORE SET#0 Index (Offset [RBs]) Note 1	offsetTo PointA (SIB1) [PRBs] Note 1
50	270	Downlink	Low	3325.02	621668	3300.72	620048	0	30	7711	620352	4	3	0 (2)	5
		&	Mid	3549.99	636666	3507.33	633822	102		7867	635328	6	1	0 (2)	105
		Uplink	High	3774.99	651666	3659.97	643998	504		8024	650400	6	3	1 (6)	513
Note 1: Note 2:	controlR FR1 and The para	RESET#0 Inde esourceSetZe 60 kHz subca ameter Offset meter ΔForfiset	ero (pdcc arrier spa Carrier C	h-ConfigSIB acing for FR2 CORESET#0	1) in the MIE 2.) specifies th	 The offset e offset fror 	ToPointA IE	is expresse subcarrier o	d in units o	f resource	blocks ass	uming 15	kHz subc	arrier spac	5

In this test case, the test procedure specified by TS38.521-1 [6] clause 6.4.2.2.4.2 requires the UE to send nominal uplink power at 10 dBm, 0 dBm, -30 dBm and P_{min} in different test steps with close loop TPC.

As explained in previous chapter 5.6.2.2, measurement uncertainty (MU) and uplink power control window size need to be considered so that the target power total value and its tolerance can be determined and configured on CMX in the end.

By checking TS38.521-1 [6] Table F.1.2-1, if 3.0GHz < f \leq 4.2GHz and 40MHz < BW \leq 100MHz, MU for carrier leakage is \pm 1.6 dB, test system relative power measurement uncertainty is \pm 1 dB

Uplink power control window size = 1dB (UE power step size) + 0.7 dB (UE power step tolerance) + (Test system relative power measurement uncertainty) = 2.7 dB

CMX parameters "target power total" and "tolerance" are calculated according to chapter 5.6.2.2. The applied values with respect to the required nominal uplink power can be found in Table 5-25.

Nominal Uplink Power (dBm)	Target Power Total (dBm)	Tolerance (dB)
10	13.0	1.3
0	3.0	1.3
-30	-27.1	1.3
-36 ³⁵ (P _{min})	-33.1	1.3

Table 5-25 Target power total and tolerance settings for CMsquares

5.7.2.3 Multi-Evaluation Measurement Settings

NR multi-evaluation settings can refer to chapter 5.1.2.3

The expected nominal power should be set in accordance with the nominal uplink power given in Table 5-25.

5.7.3 Test Procedure

- 1. Configure the LTE with following configurations (LTE anchor agnostic approach, see chapter 3.6)
- 2. Configure the NR cell with configurations given in Table 5-23
- 3. Turn on both LTE and NR cell
- 4. Switch on DUT and wait until DUT is registered on LTE cell
- 5. Activate EN-DC mode
- 6. Reduce the LTE uplink RB allocation to 0 RB as given in 3.6
- Set the close loop TPC in NR and set the "total target power" and "tolerance" value given in Table 5-25 (for nominal uplink power 10dB/ 0dB/ -30dB/ P_{min})
- 8. Configure the NR multi evaluation measurement ("expected nominal power" setting should associate with the nominal uplink power)
- 9. Measure the NR as given in 4.4.2 (select "Tx Measurement" measurement)
- 10. Repeat Step 7 to 9 until all the specified nominal uplink power levels are tested

³² Informative. As long as the range is specified in CMsquares, the associated parameters are automatically set on CMX.

³⁵ According to TS38.521-1 [6] Table 6.3.1.3-1, nominal uplink P_{min} is -36 dBm for CBW 50 MHz

5.7.4 Test Requirement and Results

Test requirement defined by the specification is shown in Table 5-26

	Parameters	Relative limit				
	UE output power	(dBc)				
10 + N	1U to 10 + (MU + Uplink power control	-28 + TT				
	window size) dBm					
0 + MU to	0 0 + (MU + Uplink power control window	-25 + TT				
	size) dBm					
-30 + N	1U to -30 + (MU + Uplink power control	-20 + TT				
	window size) dBm					
Pmin + M	1U to Pmin + (MU + Uplink power control	-10 + TT				
NOTE	window size) dBm	a				
NOTE 1:	The measurement bandwidth is 1 RB and					
	expressed as a ratio of measured power i					
	allocated RB to the measured total power RBs.	in all allocated				
NOTE 2: The applicable frequencies for this limit depend on the						
110122.	parameter <i>txDirectCurrentLocation</i> in <i>Upl</i>					
	IE, and are those that are enclosed either					
	containing the carrier leakage frequency,					
	immediately adjacent to the carrier leakage	e frequency but				
	excluding any allocated RB.					
NOTE 3:	$N_{\scriptscriptstyle RB}$ is the Transmission Bandwidth Con	figuration (see				
	Section 5.3).					
NOTE 4:	,	urement uncertainty				
	and is specified in Table F.1.2-1 for the ca	arrier frequency f				
	and the channel bandwidth BW.					
NOTE 5:	Uplink power control window size = 1dB (UE power step				
	size) + 0.7dB (UE power step tolerance) -					
	relative power measurement uncertai	nty), where, the UE				
	power step tolerance is specified in TS 38	3.101-1 [2], Table				
	6.3.4.3-1 and is 0.7dB for 1dB power step					
	system relative power measurement unce	ertainty is specified				
	in Table F.1.2-1.					
	Test tolerance TT = 0.8 dB.					
NOTE 7:	Pmin is the minimum output power accord	aing to Table				
	6.3.1.3-1.					

Table 6.4.2.2.5-1: Test requirements for Relative Carrier Leakage Power

Table 5-26 Test requirement of carrier leakage (TS38.521-1 [6] Table 6.4.2.2.5-1)

By considering following facts:

- a) $MU = \pm 1.6 dB$
- b) Uplink power control window size = 2.7 dB
- c) TT = 0.8 dB

The test requirements Table 5-26 can be converted into Table 5-27

Nominal Uplink Power (dBm)	Expected Measured UE Output Power (dBm)	Relative Carrier Leakage Power (dBc)
10	11.6 ~ 14.3	< -27.2
0	1.6 ~ 4.3	< -24.2
-30	-28.4 ~ -25.7	< -19.2
P _{min} = -36 @ CBW = 50 MHz	-34.4 ~ -31.7	< -9.2

 Table 5-27 Test requirement of carrier leakage

For the carrier leakage test case, we need to ensure that the measured UE output power is in the range (precondition) and the corresponding relative carrier leakage power does not exceed the limit as given in Table 5-27.

Fig. 5-20 shows that the carrier leakage power measured at 10 dBm UE nominal uplink power. According to Table 5-27, UE should be sending power in the range of 11.6 dBm and 14.3 dBm. The actual measured UE

output power is 12.35 which is in range. Measured IQ offset (i.e. carrier leakage) is -44.08 dBc which is below the limit -27.2 dBc. Therefore, the measured result is considered as valid and pass.

The same check can be also applied in other nominal uplink power cases, i.e. 0, -30 and P_{min}, with the corresponding limit values listed in Table 5-27.

tun 🔲 🔳	Duplex Mode	Frequency 3549.9900000	MHz 🖌	Reference level 27.00 dBm	Channel Bandwidth 100.0 MHz 🗸	Used SCS 30 kHz ¥	No. of Subframes	0 All				
Detected and Stati	stics											
Statistic Count		Allocatio	on	N	lodulation		Channel Type		Out of Tolerance	2	View Filt	er Throughput
20/20	1	IoRB: 1 OffsetRB:	1	QPSK		PUSCH		0		%	100	
Power												
		Curren	t		Average		Min		Max		S	itd Dev
Tx Pov	ver [dBm]		12.2	7	12.3	5		12.22		13.56		(
PEAK Pov	ver [dBm]		18.6	3	18.6	6		18.53		20.06		(
RB Pov	ver [dBm]		12.3	4	12.4	2		12.24		13.61		
Tx Measurement												
		Current			Average		Extreme				Std De	v
	L.		h	1		h	t		h		l I	h
EVM RMS [%]		1.74	1.7	2	2.04	2.04	1	5.34	5.35		0.51	
EVM Peak [%]		4.21	4.2	0	6.18	6.15	5	16.12	16.18		2.15	
EVM DMRS [%]		1.19	1.1	6	1.24	1.23	3	8.83	8.84		0.24	
MErr RMS [%]		1.27	1.2	7	1.53	1.53	1	4.46	4.46		0.42	
MErr Peak [%]		4.18	4.1	6	5.86	5.86	5	15.97	16.00		2.09	
MErr DMRS [%]		0.93	0.9	2	0.95	0.95	5	7.14	7.16		0.22	
PhErr RMS [°]		0.68	0.6	7	0.78	0.78	3	1.72	1.72		0.17	
PhErr Peak [°]		2.18	2.1	8	3.15	3.18	3	8.34	8.34		1.16	
PhErr DMRS [°]		0.42	0.4	0	0.46	0.45	; 	3.02	3.01		0.11	
IQ Offset [dBc]			-43.7	5		-44.08	3		-43.20			
Freq Error [Hz]			-53.6			-16.07			-98.28			4
Freq Error [ppm]			-0.0	2		-0.00)		-0.03			
ple Clock Error			3.1	7		0.23	1		-26.91			
Timing Error [Ts]			-403.4	3		-403.60)		-404.19			

Fig. 5-20 Measurement result of carrier leakage with 10 dBm UE nominal output power

5.8 In-band Emissions for Inter-band EN-DC within FR1 (6.4B.2.3.3)

This test case should apply LTE anchor agnostic approach.

For more details, refer to TS38.521-1 [6], clause 6.4.2.3

The following section describes the in-band emissions (IBE) measurement on PUSCH

5.8.1 Test Purpose

5G NR uses frequency scheduling with a granularity of resource blocks. If the UE is scheduled with less RBs than the maximum RBs, it should be verified that there is no unwanted emission in non-scheduled RB as this would interfere other users in the cell.

According to [6], the in-band emissions (IBE) is a measure of the interference falling into the non-allocated resources blocks.

The IBE is defined as the average emission across 12 sub-carriers and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The IBE is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of IBE.

5.8.2 Test Preparations

5.8.2.1 Example Test Configuration

Example

Test Configuration Table for PUSCH, Test ID 3

nment as specified in TS 38.508-1 [5] 4.1	Normal				
encies as specified in TS 38.508-1 [5] 4.3.1	Mid range				
el Bandwidths as specified in TS 38.508-1 se 4.3.1	Highest				
s specified in Table 5.3.5-1	Lowest				
eters					
Downlink Configuration	Uplink Configuration				
N/A	Modulation	RB allocation (NOTE 1)			
	CP-OFDM QPSK Inner_1RB_Left				
	1.1 Incies as specified in TS 38.508-1 [5] I.3.1 I Bandwidths as specified in TS 38.508-1 Se 4.3.1 Se 5.3.5-1 Table 5.3.5-1 The secified in Table 5.3.5-1	Image: Antiperiod of the system Mid range Image: Antiperiod of the system Lowest Image: Antiperiod of the system Mid range Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system Image: Antiperiod of the system			

NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1.

Table 5-28 Example of a test configuration out of TS38.521-1 [6] Table 6.4.2.3.4.1-1

5.8.2.2 Cell Parameter Settings

Since this test case requires the LTE anchor agnostic approach, LTE settings can be referred in chapter 3.6.

NR settings on CMX can generally refer to chapter 5.1.2.2 by configuration given in Table 5-29 and Table 5-30.

Parameters	NR	
	Configuration	Value
Frequency Range		FR1
Duplex Mode		TDD
Band		n78
Test Frequency	Mid	See Table 5-4
Test Channel Bandwidth	Highest	100 MHz
Test SCS	Lowest	30 kHz
DL RMC (Modulation)	N/A	e.g. MCS index 4 MCS table 64QAM
DL RMC (RB Allocation)	N/A	e.g. 273@0
UL RMC (Modulation)	CP-OFDM QPSK	MCS index 2 MCS table 64QAM
UL RM (RB Allocation)	Inner_1RB_Left	1@1
Downlink Power Level	Total Cell Power	-47 dBm
Uplink Power Control	P0-NominalWithGrant	-90 dBm
	Alpha	0.8
	P0	0
	TPC	Closed Loop
	Target Power Total	See Table 5-30
	Tolerance	See Table 5-30
DFT-s-OFDM		Disable
MAC Padding		Enable

Initial BWP		1099
Table 5-29 Test parameter se		

This test case is tested under 4 different nominal uplink power levels, i.e. 10 dBm, 0 dBm, -30 dBm and P_{min} (i.e. -33 dBm for CBW 100 MHz, refer to TS38.521-1 [6] Table 6.3.1.3-1) with 1 RB allocation.

For each uplink power level, UE output power should be measured within the uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the uplink power level, where

- MU is the test system uplink power measurement uncertainty and is specified in TS38.521-1 [6], Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW. In our example, carrier frequency is 3549.99 MHz, channel BW is 100 MHz, therefore, MU is ±1.6 dB
- ► Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1, Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and ±1dB for the test system relative power measurement uncertainty as specified in TS38.521-1 [6], Table F.1.2-1. Therefore, the uplink power control window size is 2.7dB.

Close loop TPC related parameters "target power total" and "tolerance" on CMX are calculated according to chapter 5.6.2.2. The applied values with respect to the required nominal uplink power can be found in Table 5-30.

Nominal Uplink Power (dBm)	Target Power Total (dBm)	Tolerance (dB)
10	13.0	1.3
0	3.0	1.3
-30	-27.1	1.3
-33 (P _{min})	-30.1	1.3
Toble 5 20 LIE out	put power and telerance for L	n hand amigaian taata

Table 5-30 UE output power and tolerance for In-band emission tests

An example is shown in Fig. 5-21 to indicate the uplink power control settings when 10 dBm nominal uplink power is required by the test case.

General 🕼 LTE LTE Ce	II 0 NR Cell 0	
	ON	
Expected Uplink Level		
Receiver Config Mode	Auto	~
Reference Source	PUSCH	~
Reference Level Offset	6	dB
Power Control		
ss-PBCH-BlockPower	0	dBm
p0- NominalWithGrant	-90	dBm
PO-PUSCH-AlphaSet	✓Alpha 0.8 ✓	p0 0
p-Max	23	dBm
TPC	Closed Loop	~
Target Power Total RMS	13	dBm
Tolerance	1	dB
Channel Type	PUSCH	~

Fig. 5-21 Uplink power control setting (for 10 dBm nominal uplink power)

The uplink RMC configuration is shown in Fig. 5-22.

NR Cell 0 > UE Slot Sch	eduling										×
Slot Index	0	1	2	3	4	5	6	7	7	8	9
	DL	DL	DL	DL	DL	DL	DL	DL	UL	UL	UL
				~	∠						_
Start RB	-	0	0	0	0	0	0	-	-	1	1
# RB	-	273	273	273	273	273	273	-	-	1	1
MCS	-	4	4	4	4	4	4	-	-	2	2
DCI Format	-	DCI 11 🗸	-	-	DCI 01 🗸	DCI 01					
MIMO Scheme	-	SISO 🗸		-	siso 🗸	SISO 🗸					

Time Domain Alloc.

Fig. 5-22 Uplink scheduling for in-band emission testing

5.8.2.3 Multi-Evaluation Measurement Settings

NR multi-evaluation settings can generally refer to chapter 5.1.2.3

The expected nominal power should be set in accordance with the nominal uplink power given in Table 5-30. The corresponding setting can be referred in Fig. 5-23.

Multi Eval PRACH			Multi Eval PRACH			Multi Eval PRACH			Multi Eval PRACH		
	Off 🕨 🔳			Off 🕨 🔳			Off 🕨 🔳			off 🕨 🔳	
Signal Path	Network	~	Signal Path	Network	~	Signal Path	Network	~	Signal Path	Network	~
Duplex Mode	TDD	~ 🔕	Duplex Mode	TDD	~ 🛝	Duplex Mode	TDD	~ 🔕	Duplex Mode	TDD	~ 🔕
Connector	RF2COM	~	Connector	RF2COM	~	Connector	RF2COM	~	Connector	RF2COM	~
Converter	RFRX1	~	Converter	RFRX1	~	Converter	RFRX1	~	Converter	RFRX1	~
External Attenuation	0.00	dB	External Attenuation	0.00	dB	External Attenuation	0.00	dB	External Attenuation	0.00	dB
Band/ Channel	Band ~ Not Available		Band/ Channel	Band 🛩 Not Available		Band/ Channel	Band 🛩 Not Available		Band/ Channel	Band 🛩 Not Available	
Frequency	3506.7900000 MH	iz 🗸 📣	Frequency	3506.7900000 MH	z 🖌 🚺	Frequency	3506.7900000 N	1Hz 🖌 (Frequency	3506.7900000 M	iHz 🗸 📣
Frequency Offset	0.000000	MHz 🛩	Frequency Offset	0.000000	MHz 🛩	Frequency Offset	0.000000	MHz 🛩	Frequency Offset	0.000000	MHz 🗸
Exp. Nom Power	10.00	dBm	Exp. Nom Power	0.00	dBm	Exp. Nom Power	-30.00	dBm	Exp. Nom Power	-33.00	dBm
User Margin	12.00	dB	User Margin	12.00	dB	User Margin	12.00	dB	User Margin	12.00	dB
Mixer Level Offset	8	dB	Mixer Level Offset	8	dB	Mixer Level Offset	8	dB	Mixer Level Offset	8	dB
EN-DC			EN-DC			EN-DC			EN-DC		

Fig. 5-23 NR multi-evaluation configuration for in-band emission

5.8.3 Test Procedure

The described procedure is valid for in-band emission measurement on PUSCH

- 1. Configure the LTE cell according to LTE anchor agnostic approach, see chapter 3.6
- 2. Configure the NR cell according to the configurations given in Table 5-29
- 3. Turn on both LTE and NR cell
- 4. Switch on DUT and wait until DUT is registered on LTE cell
- 5. Activate EN-DC mode
- 6. Reduce the LTE uplink RB allocation to 0 RB as given in 3.6
- Set the close loop TPC in NR and set the "total target power" and "tolerance" value given in Table 5-30 (for nominal uplink power 10dB/ 0dB/ -30dB/ P_{min})
- 8. Configure the NR multi evaluation measurement ("expected nominal power" setting should associate with the nominal uplink power)
- Start the in-band emission measurement (IBE) in the NR (see 4.4.2, select "Inband Emission" measurement)

10. Repeat Step 7 to 9 until all the specified nominal uplink power levels are tested

5.8.4 Test Requirement and Results

Test requirement defined by the specification is shown in Table 5-31 with 0.8 dB TT according to NOTE11 .

Parameter description	Unit		Limit (NOTE 1)	Applicable Frequencies			
General (NOTE 12)	$dB = \frac{1}{2} \frac{1}{2}$						
IQ Image (NOTE 12)	dB	-28 + TT -25 + TT	Image frequencies when output power > 10 dBm Image frequencies when output power ≤ 10 dBm	Image frequencies (NOTES 2, 3)			
Carrier leakage (NOTE 12)	dBc	-28 + TT -25 + TT -20 + TT -10 + TT	Output power > 10 dBm 0 dBm ≤ Output power ≤ 10 dBm -30 dBm ≤ Output power < 0 dBm	Carrier leakage frequency (NOTES 4, 5)			
NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of <i>PRe</i> -30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. <i>PRe</i> is defined in NOTE 10. NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs. NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs. NOTE 5: The applicable frequencies for this limit depend on the parameter <i>txDirectCurrentLocation</i> in <i>UplinkTxDirectCurrent</i> IE, and are those that are enclosed either in the RBs containing the carrier leakage frequency, but							
NOTE 6: L_{CRB} is the Transmission Bandwidth (see Section 5.3). NOTE 7: N_{RB} is the Transmission Bandwidth Configuration (see Section 5.3). NOTE 8: EVM is the limit specified in Table 6.4.2.1.3-1 for the modulation format used in the allocated RBs. NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth.							
NOTE 10: F RE NOTE 11: Te NOTE 12: In	<i>RB</i> is an average 3s, measured in est tolerance TT = case the parame	e of the transmit dBm. = 0.8 dB. eter 3300 or 330	ted power over 10 sub-frames normalized by the ni 1 is reported from UE via <i>txDirectCurrentLocation</i> I and General limit applies for all non-allocated frequ	E, IQ Image and			

Table 5-31 Test requirement (TS38.521-1 [6], Table 6.4.2.3.5-1)

The measurements are performed at allocated frequencies, non-allocated frequencies (general), image frequency of the allocated frequency (IQ image) and the carrier leakage frequency (IQ offset).

A combined relative limit line is applied to evaluate the IBE and plotted in the CMsquares to visualize the measurement results.

The determination of a combined limit line can be summarized in three steps as follows:

Step 1: Determine the limit of "general" on all non-allocated RB

It is calculated based on the formula given in the test requirement Table 5-31. Following three components are calculated

- ► $-25 10 * log_{10}(N_{RB}/L_{CRB})$
- $20 * log_{10}(EVM) 3 5 * (|\Delta RB| 1)/L_{CRB})$

►
$$-57 + 10 * log_{10}(SCS/15) - P_{RB}$$

Where

 N_{RB} is the total number of RBs within the test channel bandwidth

 L_{CRB} is the number of allocated RBs

EVM is the maximum allowed EVM in percent which is defined in Table 6.4.2.1.3-1 of [6]. Its value depends on the used modulation type

 $|\Delta RB|$ is the distance of the RB from the closest allocated RB

SCS is subcarrier spacing

 P_{RB} is the measured mean power of all allocated RBs

The largest value of the above mentioned three components plus 0.8 dB TT is considered as the limit of "general" (non-allocated RB) in dB. Each non-allocated RB has its own "general" limit.

<u>Step 2:</u> Determine the limit of IQ image (on image frequency of the allocated frequency) and IQ offset (on carrier frequency)

The limit is UE transmission power dependent. Its value is given in Table 5-31.

Step 3: Determine the entire combined limit line

Apply the following MAX operation to determine the combined limit line

MAX { P_{RB} – 29.2 dB, power sum of all limit values (General, IQ Image or IQ offset) that apply}

Remarks:

- -29.2 dB is the minimum "general" limit (0.8 TT is added)
- Second term in the max operation is the summation of the limit containing general, IQ image or IQ offset. It means that
 - For non-allocated RBs at image frequencies of allocated RBs, limit of IQ image should be added to general limit
 - For carrier frequency (in the middle of the channel bandwidth), limit of IQ offset should be added to general limit

It sounds complicated to determine the IBE limit line. But good news is that it is really an easy task for CMX user. Basically, only the modulation type needs to be selected. The CMsquares's default settings in IBE limit definition are already specification conformed. As shown in Fig. 5-24, for our example here, QPSK modulation is selected. The whole IBE limit line is then generated automatically by CMX.

odulation Limits												
Modulation												
 IQ Offset 												
IBE						_						
	π/2-8	ith shaping		QPSK		QAM	64	-QAM	256	5-QAM		
Enable	 Image: A set of the set of the		 Image: A start of the start of				 Image: A start of the start of		~		~	
General Min	-29.2	dB	-29.2	dB	-29.2	dB	-29.2	dB	-29.2	dB	-29.2	dB
General EVM	30.0	%	30.0	%	17.5	%	12.5	%	8.0	%	3.5	%
General RB Power	-57.0	dBm	-57.0	dBm	-57.0	dBm	-57.0	dBm	-57.0	dBm	-57.0	dB
IQ Image > 10 dBm	-27.2	dB	-27.2	dB	-27.2	dB	-27.2	dB	-27.2	dB	-27.2	dB
IQ Image <= 10 dBm	-24.2	dB	-24.2	dB	-24.2	dB	-24.2	dB	-24.2	dB	-24.2	dB
IQ Offset @ Output Powe	r			_		_						
	π/2-8	PSK	π/2-BPSK w	ith shaping		QPSK	16-	QAM	64	-QAM	256	-QAM
> 10 dBm	-27.2	dBc	-27.2	dBc	-27.2	dBc	-27.2	dBc	-27.2	dBc	-27.2	dB
> 0 dBm	-24.2	dBc	-24.2	dBc	-24.2	dBc	-24.2	dBc	-24.2	dBc	-24.2	dB
> -30 dBm	-19.2	dBc	-19.2	dBc	-19.2	dBc	-19.2	dBc	-19.2	dBc	-19.2	dB
> -40 dBm	-9.2	dBc	-9.2	dBc	-9.2	dBc	-9.2	dBc	-9.2	dBc	-9.2	dB

Fig. 5-24 Limit of IBE with QPSK modulation

The IBE measurement results with UE nominal target power level @10 dBm is presented in Fig. 5-25. As we can clearly see that the blue measured levels are all beneath the red combined limit line with respect to general, IQ image and carrier leakage (DC carrier leakage due to IQ offset).

Same as explained in 5.7, additional check of the UE transmission power is required to ensure its conformity with the test requirement. We read in Fig. 5-25 that UE transmits at 13.01 dBm which is in the range of 11.6 dBm and 14.3 dBm at 10 dBm nominal target power level (see Table 5-27).

Therefore, the IBE measurement here is valid and pass.

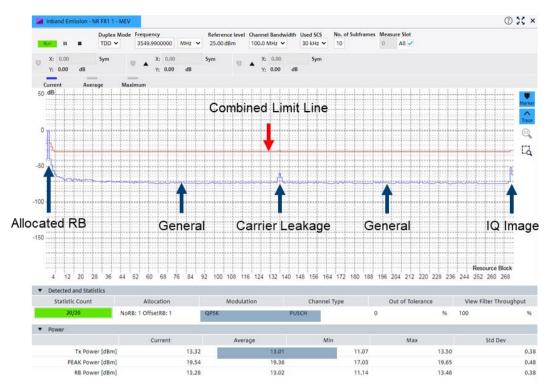


Fig. 5-25 Test result of In-band emission with UE target power level @10 dBm

5.9 EVM Equalizer Flatness for Inter-band EN-DC within FR1 (6.4B.2.3.4)

This test case should apply LTE anchor agnostic approach.

For more details, refer to TS38.521-1 [6], clause 6.4.2.4

5.9.1 Test Purpose

As defined in [6], the zero-forcing equalizer correction applied in the EVM measurement process (as described in TS38.521-1 [6] Annex E) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block, at which the equalizer coefficients are generated by the EVM measurement process. The basic measurement interval is the same as for EVM.

The EVM equalizer spectrum flatness requirement does not limit the correction applied to the signal in the EVM measurement process but for the EVM result to be valid, the equalizer correction that was applied must meet the EVM equalizer spectrum flatness minimum requirements.

5.9.2 Test Preparations

5.9.2.1 Example Test Configuration

Example

Test ID 2

Initial Conditions	
Test Environment as specified in TS 38.508-1 [5] subclause 4.1	Normal, TL/VL, TL/VH, TH/VL, TH/VH

Test Freq subclause	uencies as specified in TS 38.508-1 [5] e 4.3.1	Mid range									
Test Char [5] subcla		Highest									
Test SCS	as specified in Table 5.3.5-1	Lowest									
Test Para	meters										
Test ID	Downlink Configuration	Uplink Configuration									
		Modulation	RB allocation (NOTE 1)								
2	N/A	CP-OFDM QPSK	Outer Full								
NOTE 1: NOTE 2:	The specific configuration of each RB alloc Test Channel Bandwidths are checked sep		le 6.1-1. nd, which applicable channel bandwidths are								

specified in Table 5.3.5-1.

Table 5-32 Example of a test configuration out of TS38.521-1 [6] Table 6.4.2.4.4.1-1

5.9.2.2 Cell Parameter Settings

Since this test case requires the LTE anchor agnostic approach, LTE settings can be referred in chapter 3.6.

NR settings on CMX can generally refer to chapter 5.1.2.2 by configuration given in Table 5-33.

Parameters	NR	
	Configuration	Value
Frequency Range		FR1
Duplex Mode		TDD
Band		n78
Test Frequency	Mid	See Table 5-4
Test Channel Bandwidth	Highest	100 MHz
Test SCS	Lowest	30 kHz
DL RMC (Modulation)	N/A	e.g. MCS index 4 MCS table 64QAM
DL RMC (RB Allocation)	N/A	e.g. 273@0
UL RMC (Modulation)	CP-OFDM QPSK	MCS index 2 MCS table 64QAM
UL RM (RB Allocation)	Outer Full	273@0
Downlink Power Level	Total Cell Power	-47 dBm
Uplink Power Control	P0-NominalWithGrant	-90 dBm
	Alpha	0.8
	P0	0
	TPC	Мах
DFT-s-OFDM		Disable
MAC Padding		Enable
Initial BWP		1099

 Table 5-33 Test parameters settings for EVM equalizer flatness

The power control settings in CMsquares can be referred to Fig. 5-26.

General 🔥 LTE LTE Ce	ll 0 NR NR Cell 0	
	ON	
 Power 		
Downlink Level		
SSB EPRE	-82.2	dBm
Total Cell Power	-47.0	dBm
OCNG		
Enable		
Expected Uplink Level		
Receiver Config Mode	Auto	~
Reference Source	PUSCH	~
Reference Level Offset	6	dB
Power Control		
ss-PBCH-BlockPower	0	dBm
p0- NominalWithGrant	 ✓ -90 	dBm
P0-PUSCH-AlphaSet	✓ Alpha 0.8 🛛 🗸	p 0 0
p-Max	23.0	dBm
TPC	Max	~
	Max	

Fig. 5-26 Power control settings

Fig. 5-27 shows the uplink RMC configuration based on the configuration of Table 5-33.

NR Cell 0 > UE Slot Schee	duling										
Slot Index	0	1	2	3	4	5	6	7	7	8	9
	DL	DL	DL	DL	DL	DL	DL	DL	UL	UL	UL
	-				~						
Start RB	-	0	0	0	0	0	0			0	0
# RB	-	273	273	273	273	273	273		-	273	273
MCS		4	4	4	4	4	4			2	2
DCI Format		DCI 11 🗸			DCI 01 🗸	DCI 01 🗸					
MIMO Scheme	-	SISO 🗸			SISO 🗸	SISO 🗸					
▶ Time Domain Alloc.											

Fig. 5-27 Uplink scheduling for EVM equalizer flatness testing

5.9.2.3 Multi-Evaluation Measurement Settings

NR multi-evaluation settings can generally refer to chapter 5.1.2.3, see also 4.4.2.

5.9.3 Test Procedure

- 1. Configure the LTE cell according to LTE anchor agnostic approach, see chapter 3.6
- 2. Configure the NR cell according to the configurations given in Table 5-33
- 3. Configure the NR multi-evaluation measurement
- 4. Turn on both LTE and NR cell
- 5. Switch on DUT and wait until DUT is registered on LTE cell
- 6. Activate EN-DC mode
- 7. Reduce the LTE uplink RB allocation to 0 RB as given in 3.6
- 8. Start the EVM equalizer flatness measurement in the NR as given in 4.4.2 (select "Equalizer Spectrum" measurement)

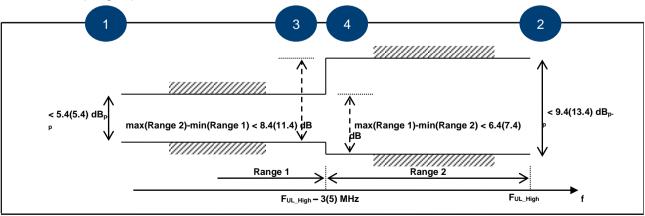
5.9.4 Test Requirement and Results

Test requirements for EVM equalizer flatness under normal condition and extreme condition are shown in Table 5-34 and Table 5-35, respectively. Normal condition and extreme condition differs in the offset of the measured sub-carrier frequency F_{UL_Meas} to the band edge frequency in uplink direction. Offset for normal condition is 3 MHz and for extreme condition is 5 MHz.

In either condition, two frequency ranges, namely, range 1 and range 2 are defined in Table 5-34 and Table 5-35 correspondingly.

Frequency range	Maximum ripple [dB]
F _{UL_Meas} – F _{UL_Low} ≥ 3 MHz and F _{UL_High} – F _{UL_Meas} ≥ 3 MHz	4 + TT (p-p)
(Range 1)	
FUL_Meas – FUL_Low < 3 MHz or FUL_High – FUL_Meas < 3 MHz	8 + TT (p-p)
(Range 2)	
NOTE 1: FUL_Meas refers to the sub-carrier frequency for which	the equalizer coefficient is
evaluated	
NOTE 2: FUL_Low and FUL_High refer to each E-UTRA frequency	band specified in Table
5.5-1	
NOTE 3: Test tolerance TT = 1.4 dB.	

Table 5-34 Test requirement of EVM equalizer flatness under normal condition (TS38.521-1 [6], Table 6.4.2.4.5-1)



Frequency range	Maximum Ripple [dB]
FuL_Meas – FuL_Low ≥ 5 MHz and FuL_High – FuL_Meas ≥ 5 MHz	4 + TT (p-p)
(Range 1)	
FUL_Meas – FUL_Low < 5 MHz or FUL_High – FUL_Meas < 5 MHz	12 + TT (p-p)
(Range 2)	
NOTE 1: FUL_Meas refers to the sub-carrier frequency for which is evaluated	h the equalizer coefficient
NOTE 2: Ful_Low and Ful_High refer to each E-UTRA frequency 5.5-1	y band specified in Table
NOTE 3: Test tolerance TT = 1.4 dB.	

Table 5-35 Test requirement of EVM equalizer flatness under extreme condition (TS38.521-1 [6], Table 6.4.2.4.5-2)

As illustrated in Fig. 5-28, four measurements of each condition have to be conducted which include

- 1. Maximum allowed ripple in range 1
- 2. Maximum allowed ripple in range 2
- 3. Maximum ripple between the upper side of range 2 and lower side of range 1, i.e. Max (range 2) Min (range 1)
- 4. Maximum ripple between the upper side of range 1 and lower side of range 2, i.e. Max (range 1) Min (range 2)

Fig. 5-28 Limits of EVM equalizer flatness⁴⁰ (TS38.521-1 [6] Figure 6.4.2.4.5-1)

EVM equalizer flatness measurements and limits are summarized in Table 5-36 in a tabular format.

Measurements		Maximum Ripple (dB)								
		Normal Condition	Extreme Condition							
1	Range 1	5.4	5.4							
2	Range 2	9.4	13.4							
3	Maximum (Range2) - Minimum (Range 1)	8.4	11.4							
4	Maximum (Range1) - Minimum (Range 2)	6.4	7.4							

Table 5-36 Summary of EVM equalizer flatness measurements and limits

The limits as well as the offset to the band edge can be configured in CMsquares as shown in Fig. 5-29.

Modulation Limits												>
Modulation												
IQ Offset												
▶ IBE												
IQ Offset @ Output Power												
 Spectrum Flatness 												
	π/2-8PSK		π/2-BPSK with shapin	QPSK		16-QAM		64-QAM		256-QAM		
Enable			 Image: A start of the start of		 Image: A set of the set of the				 Image: A start of the start of			
Range 1	5.4	dBpp	7.4	dBpp	5.4	dBpp	5.4	dBpp	5.4	dBpp	5.4	dBpp
Range 2	9.4	dBpp	15.4	dBpp	9.4	dBpp	9.4	dBpp	9.4	dBpp	9.4	dBpp
Max(Range 1) - Min(Range 2)	6.4	dB	0.0	dB	6.4	dB	6.4	dB	6.4	dB	6.4	dB
Max(Range 2) - Min(Range 1)	8.4	dB	0.0	dB	8.4	dB	8.4	dB	8.4	dB	8.4	dB
Band Edge Distance	3.0	MHz	0.0	MHz	3.0	MHz	3.0	MHz	3.0	MHz	3.0	MHz

Fig. 5-29 Limit of EVM equalizer flatness (normal condition)

In our example here, as per NR operating band definition in Annex A.1 or TS38.521-1 [6] Table 5.2-1, NR band n78 has F_{UL_low} 3300 MHz and F_{UL_high} 3800 MHz. Then the range 1 and range 2 determinations are as follows:

Range 1 (normal condition): 3303 MHz = F_{UL_low} + 3 MHz ≤ F_{UL_Meas} ≤ F_{UL_high} - 3 MHz = 3797 MHz

Range 2 (normal condition): F_{UL_Meas} ≤ 3303 MHz or F_{UL_Meas} ≥ 3797 MHz

Range 1 (extreme condition): 3305 MHz = FUL_low + 5 MHz ≤ FUL_Meas ≤ FUL_high - 5 MHz = 3795 MHz

Range 2 (extreme condition): FUL Meas ≤ 3305 MHz or FUL Meas ≥ 3795 MHz

Since mid-range test frequency is chosen in the example configuration, the frequency range is 3499.99-3599.99 MHz in 100 MHz CBW case (see Table 8-10 in Annex B.3), the measured frequencies are all in the range 1. No measurements in range 2 are available. As shown in Fig. 5-30, the range 1 ripple has measurement value 0.55 dB which is within the limit of 5.4 dB for normal condition. So, the test is passed.

⁴⁰ The limits of extreme condition are given in the bracket. The test tolerance is considered.

Equalizer	Spectru																																(?)	ж
	•	Duple TDD	•× Mode		uency 9.9900	000	MHz		Referen 38.00 d			nel Bar .0 MHz	dwidth	Used S 30 kH		No. of Su 10	bframe	0 Measu	re Slot All 🗹															
X: 0.00 Y: 0.00	dB	Sym		•		0.00 0.00	dB		ym	Ø		X: 0.0 Y: 0.0			/m																			
urrent																																		
inem																																		
																	Ran	ge 1																1
																																		- (
									1-1			1-1																						
												1																	1					
100	200	300	400	500	60	0	700	800	900	0 10	00 1	100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000		Subcarrier 3200	
Detected	d and Sta	tistics																																
	Statistic	Count						Alloca	tion					Mo	dulatio	n				Chan	Channel Type Out of Tolerance							View Filter Thr						
	20/20 NoRB: 273 OffsetRB: 0 QP5K								PU	SCH					0					%	100													
Equalize	r Spectu	m Flatne	55																															
								Current						Average						Extreme							Std Dev							
				Ripple	1 [dB	pp]		0.56						0.55						0.91														
				Ripple	2 [dB	pp]								NCAP	NCAP							NCAP												
	M	ax(Rang	e 1)-Mi	n(Rang	ge 2) [(dB]								NCAP							NCAP						N	ICAP						
	M	ax(Rang	ange 1)-Min(Range 2) [dB] NCAF ange 2)-Min(Range 1) [dB] NCAF					VCAP														ICAP						1						

Fig. 5-30 Test result of EVM equalizer flatness (range 1)

If we only change the test frequency to high range and keep the rest of the example configurations, then part of the measured frequencies will fall into the range2, i.e. $F_{UL_Meas} \ge 3797$ MHz in normal condition. The entire measurement results in CMsquares with both measurements in range 1 and range 2 are shown in Fig. 5-31. All four measurements are in the range by comparing the limits given in Table 5-36.

Equalizer Spectrum - NR FR1 1 - MEV					()	(×
Run II TDD V 3750.00			0 All			
Y: 0.00 dB	X: 0.00 Sym V: X: Y: 0.00 dB Y: 0	,		Rang	ie 1 🗕 🗕	→ Range 2
Current JB		Range 1				larker
						Trace
100 200 300 400 500 600 Detected and Statistics	700 800 900 1000 1100 1200	300 1400 1500 1600 1700 1800	1900 2000 2100 2200	2300 2400 2500 2600 2700 2	800 2900 3000 3100 3200	
Statistic Count	Allocation	Modulation C	hannel Type	Out of Tolerance	View Filter Throughput	
20/20 NoRB:	273 OffsetRB: 0 QPSK	PUSCH	0	%	100 %	
Equalizer Spectum Flatness						
	Current	Average		Extreme	Std Dev	
Ripple 1 [dBpp]	1	39	1.39	1.48	0.	03
Ripple 2 [dBpp]	0	21	0.21	0.29	0.	02
Max(Range 1)-Min(Range 2) [dB]	0	.19	0.19	0.30	0.	02
Max(Range 2)-Min(Range 1) [dB]	1	41	1.41	1.51	0.	02

Fig. 5-31 Test result of EVM equalizer flatness (range 1 and range 2)

5.10 Occupied Bandwidth for Inter-Band EN-DC within FR1 (6.5B.1.3)

This test case should apply LTE anchor agnostic approach.

For more details, refer to TS38.521-1 [6], clause 6.5.1

5.10.1 Test Purpose

Occupied bandwidth (OBW) is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel [6]. It is a fundamental spectral emissions measurement which is motivated by operators who have adjacent channels in the same band and want to avoid interference into each other by faulty UEs. Typically, OBW is executed at max power and max bandwidth, limit lines scale with the channel bandwidth.

This test case is to verify that the UE OBW for all transmission bandwidth configurations supported by the UE are less than their specific limits.

5.10.2 Test Preparations

5.10.2.1 Example Test Configuration

Example

Test ID 1

Initial Cor	nditions					
Test Envi subclause	ronment as specified in TS 38.508-1 [5] e 4.1	Normal				
Test Freq subclause	uencies as specified in TS 38.508-1 [5] e 4.3.1	Mid range				
Test Char [5] subcla	•	Highest				
Test SCS	as specified in Table 5.3.5-1	Lowest				
Test Para	meters					
Test ID	Downlink Configuration	Uplink Configuration				
	N/A for occupied bandwidth test case	Modulation	RB allocation (NOTE 1)			
1		CP-OFDM QPSK	Outer_full			
NOTE 1:	The specific configuration of each RB allo	cation is defined in Tabl	e 6.1-1.			

Table 5-37 Example of a test configuration out of TS38.521-1 [6] Table 6.5.1.4.1-1

5.10.2.2 Cell Parameter Settings

Since this test case requires the LTE anchor agnostic approach, LTE settings can be referred in chapter 3.6.

NR settings on CMX can generally refer to chapter 5.1.2.2 and 5.9.2.2

Parameters	NR	
	Configuration	Value
Frequency Range		FR1
Duplex Mode		TDD
Band		n78
Test Frequency	Mid	See Table 5-4
Test Channel Bandwidth	Highest	100 MHz
Test SCS	Lowest	30 kHz
DL RMC (Modulation)	N/A	e.g. MCS index 4 MCS table 64QAM
DL RMC (RB Allocation)	N/A	e.g. 273@0
UL RMC (Modulation)	CP-OFDM QPSK	MCS index 2 MCS table 64QAM
UL RM (RB Allocation)	Outer Full	273@0
Downlink Power Level	Total Cell Power	-47 dBm
Uplink Power Control	P0-NominalWithGrant	-90 dBm
	Alpha	0.8
	P0	0
	TPC	Max
DFT-s-OFDM		Disable
MAC Padding		Enable
Initial BWP		1099

Table 5-38 Test parameters settings for occupied bandwidth

5.10.2.3 Multi-Evaluation Measurement Settings

NR multi-evaluation settings can generally refer to chapter 5.1.2.3, see also 4.4.2.

5.10.3 Test Procedure

The same test procedure described in chapter 5.9.3 can be applied here.

Except in step 8, select "Tx Measurement" for OBW measurement.

5.10.4 Test Requirement and Results

Test requirement for OBW is shown in Table 5-39 according to TS38.521-1 [6], Table 6.5.1.5-1.

99% of the total power should not exceed the OBW given in this table.

Table 6.5.1.5-1: Occupied channel bandwidth

				Occi	upied ch	annel ba	andwidth	n / NR Cl	nannel b	andwidt	:h	
	5	10	15	20	25	30	40	50	60	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Channel												
bandwidth	5	10	15	20	25	30	40	50	60	80	90	100
(MHz)												

Table 5-39 Test requirement of occupied bandwidth (OBW) (TS38.521-1 [6], Table 6.5.1.5-1)

Pre-defined OBW limits in CMsquares are shown in Fig. 5-32.

Spectrum OBW Limits						×
 Bandwidth 						
	5.0 MHz	10.0 MHz	15.0 MHz	20.0 MHz	25.0 MHz	30.0 MHz
OBW Limit [MHz]	5.0	10.0	15.0	20.0	25.0	30.0
	40.0 MHz	50.0 MHz	60.0 MHz	80.0 MHz	90.0 MHz	100.0 MHz
OBW Limit [MHz]	✓ 40.0	✓ 50.0	✓ 60.0	✓ 80.0	90.0	✓ 100.0

Fig. 5-32 Limits of OBW

OBW measurement result on CMX is shown in Fig. 5-33. The measured average OBW is 97.35 MHz which does not exceed 100 MHz OBW in 100 MHz CBW case as defined in the test requirement (in Table 5-39). Therefore, the test is passed.

Measurement - NR FR1 1 - MEV									() ()
Duplex Mode		Reference level Channel 38.00 dBm 100.0	A Bandwidth Used SCS No. of St MHz • 30 kHz • 10	o All					
etected and Statistics									
Statistic Count	Alloca	ation	Modulation		Channel Type	Out of Tolerance		View Filter Thr	oughput
20/20	NoRB: 273 OffsetRB:	0	QPSK	PUSCH		0	%	100	
wer									
	Curr	rent	Average		Min	Max		Std De	v
Tx Power	(dBm)	18.22		18.27	18.03		18.50		
PEAK Power	[dBm]	25.59		25.63	25.45		25.85		
RB Power	[dBm]	-6.12		-6.07	-6.31		-5.85		
Measurement									
	Current		Average		Extr	tme		Std Dev	
	L. L.	h	L. L.	h	L. L.	h		t	h
EVM RMS [%]	4.61	4.55	4.67	4.61	5.20	5.14		0.28	
EVM Peak [%]	22.11	22.52	22.47	22.47	26.13	26.16		1.39	
EVM DMRS [%]	4.51	4.44	4.54	4.47	5.03	4.95		0.24	
MErr RMS [%]	3.27	3.22	3.30	3.26	3.66	3.61		0.19	
MErr Peak [%]	20.74	20.94	19.82	19.61	22.82	22.69		1.07	
MErr DMRS [%]	3.20	3.17	3.21	3.16	3.56	3.49		0.18	
PhErr RMS [*]	1.87	1.84	1.90	1.87	2.12	2.09		0.12	
PhErr Peak [*]	11.17	9.94	10.34	9.88	12.96	11.86		0.68	
PhErr DMRS [*]	1.82	1.79	1.84	1.81	2.04	2.01		0.10	
IQ Offset [dBc]		-47.62		-47.07		-45.63			
Freq Error [Hz]		1.58		1.88		63.60			
Freq Error [ppm]		0.00		0.00		0.02			
ple Clock Error [ppm]		0.00		0.00		0.03			
Timing Error [Ts]		-403.51		-403.51		-403.73			

Fig. 5-33 Test result of occupied bandwidth

5.11 Spectrum Emission Mask for Inter-band EN-DC within FR1 (6.5B.2.3.1)

This test case should apply LTE anchor agnostic approach.

For more details, refer to TS38.521-1 [6], clause 6.5.2.2

5.11.1 Test Purpose

As defined in [6], out-of-band emissions are unwanted emissions immediately outside the nominal channel. They result from the modulation process and from non-linearity in the transmitter, but they do not include spurious emissions.

The adjacent channel leakage ratio (ACLR) and the spectrum emission mask (SEM) are part of the out-ofband emissions test. The two test cases qualify different aspects of the out-of-band performance: The SEM is for checking the performance point by point (RBW), and the ACLR is used to check the integration results (channel bandwidth).

SEM test is motivated by regulators, i.e. guarantee that one transmitter does not affect any other receiver, independent of what technology. SEM corresponds to a mask, that scales with the bandwidth and the limits depend on the offset from the carrier edge. Therefore, the purpose of the SEM test is to verify that the power of any UE emission will not exceed the specified level for the corresponding channel bandwidth.

5.11.2 Test Preparations

5.11.2.1 Example Test Configuration

Example

Test ID 17

Default	t Condition	າຣ				
	nvironmen use 4.1	t as speci	fied in TS	38.508-1 [5]	Normal	
	requencies use 4.3.1	as specif	fied in TS 3	38.508-1 [5]	Low range	
	hannel Bai Iclause 4.3		as specifie	ed in TS 38.508-1	Lowest, Highest	
Test S	CS as spec	cified in Ta	able 5.3.5-	1	Lowest, Highest	
Test Pa	arameters	for Chann	el Bandwi	dths		
Test ID	Freq	ChBw	SCS	Downlink Configuration	Uplink Configuration	
		Default	Default	N/A for Spectrum	Modulation (NOTE 2)	RB allocation (NOTE 1)
17	High			Emission Mask test case	CP-OFDM QPSK	Edge_1RB_Right
NOTE NOTE NOTE and n7	2: DFT-s 3: For Po	-OFDM PI ower Clas	/2 BPSK te s 3 testing	est applies only for I		

Table 5-40 Example of a test configuration out of TS38.521-1 [6] Table 6.5.2.2.4.1-1

5.11.2.2 Cell Parameter Settings

Since this test case requires the LTE anchor agnostic approach, LTE settings can be referred in chapter 3.6. NR settings on CMX can generally refer to chapter 5.1.2.2 by configuration given in Table 5-41.

Parameters	NR	
	Configuration	Value
Frequency Range		FR1
Duplex Mode		TDD
Band		n78
Test Frequency	Low	See Table 5-4
Test Channel Bandwidth	Highest	100 MHz
Test SCS	Lowest	30 kHz
DL RMC (Modulation)	N/A	e.g. MCS index 4 MCS table 64QAM
DL RMC (RB Allocation)	N/A	e.g. 273@0
UL RMC (Modulation)	CP-OFDM QPSK	MCS index 2 MCS table 64QAM
UL RM (RB Allocation)	Edge_1RB_Right	1@272
Downlink Power Level	SSB ERPE	-82 dBm
Uplink Power Control	P0-NominalWithGrant	-90 dBm
	Alpha	0.8
	P0	0
	TPC	Max
DFT-s-OFDM		Disable
MAC Padding		Enable
Initial BWP		1099

Table 5-41 Test parameters settings for spectrum emission mask

5.11.2.3 Multi-Evaluation Measurement Settings

NR multi-evaluation settings can generally refer to chapter 5.1.2.3, see also 4.4.2.

5.11.3 Test Procedure

- 1. Configure the LTE cell according to LTE anchor agnostic approach, see chapter 3.6
- 2. Configure the NR cell according to the configurations given in Table 5-41.
- 3. Configure the NR multi-evaluation measurement.
- 4. Turn on the LTE and NR cell, see chapter 4.4.1
- 5. Switch on DUT and wait until DUT is registered on LTE cell
- 6. Activate EN-DC mode
- 7. Reduce the LTE uplink RB allocation to 0 RB as given in 3.6
- 8. Start the spectrum emission mask measurement in the NR as given in 4.4.2 (select "Spectrum Emission Mask" measurement)

5.11.4 Test Requirement and Results

Test requirement of SEM is shown in Table 5-42 according to TS38.521-1 [6], Table 6.5.2.2.5-1.

				Spectr	um emi	ission I	imit (dl	3m) / C	hannel	bandw	idth		
Δf _{OOB}	5	10	15	20	25	30	40	50	60	80	90	100	Measurement
(MHz)	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	bandwidth
± 0-1	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT						1 % channel bandwidth
± 0-1								-24	-24 +	-24 +	-24 +	-24	30 kHz
								+ TT	TT	TT	TT	+ TT	
± 1-5	-10 + TT	-10 + TT	-10 + TT	-10	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	
± 5-6	-13	+11	+11	+ TT				+11				+11	
	+TT	-13											
± 6-10	-25	+ TT	-13										
	+TT		+ TT	-13									
± 10-15		-25		+ TT	-13 +								
		+TT			TT	-13 +							
± 15-20			-25			TT	-13 +						
+ 20.25			+TT	- 25	{		TT	42					
± 20-25				-25 + TT				-13 + TT					
± 25-30				* 11	-25 +				-13 +				
1 20-00					TT				TT	-13 +			
± 30-35						-25 +	1			TT	40.		
						TT					-13 + TT		
± 35-40												-13	1 MHz
± 40-45							-25 + TT					+TT	1 1011 12
± 45-50								1					
± 50-55								-25	1				
								+ TT					
± 55-60													
± 60-65									-25 + TT				
± 65-80													
± 80-85										-25 +	1		
										TT			
± 85-90											1		
± 90-95											-25 +		
± 95-100											TT		
± 100-105												-25	
												+ TT	
	he first 1Hz.	and las	st meas	uremen	t positi	on with	a 30 kł	Iz filter	is at∆f	OOB eq	uals to	0.015 M	/Hz and 0.985
Note 2: A	t the bo							and las	st meas	uremen	t positi	on with	a 1 MHz filter
				zand -				nnar od	ae of #	a ch ar	nol and	l below	the lower
		sureme the cha		to be p	enorme	vous us	e ine u	pher eq	georti	ie char	merano	1 Delow	the lower
	2			and ch	annel b	andwid	th is sp	ecified	in Tabl	e 6.5.2.	2.5-2.		

Table 6.5.2.2.5-1: General NR spectrum emission mask

Table 5-42 Test requirement (TS38.521-1 [6], Table 6.5.2.2.5-1)

SEM is measured with different resolution bandwidth (RBW), 1% of channel bandwidth or 30 kHz depending on the tested channel bandwidth. The SEM limits scale based on the tested channel bandwidth and the offset from the assigned bandwidth.

By referring to TS38.521-1 [6], Table 6.5.2.2.5-2, the tested carrier frequency is in the range of 3.0GHz < f \leq 4.2GHz, therefore TT = 1.8 dB is applied here.

For 100 MHz CBW, four Δf_{OOB} areas are specified, i.e. ± 0-1, ± 1-5, ± 5-100, ± 100-105 MHz.

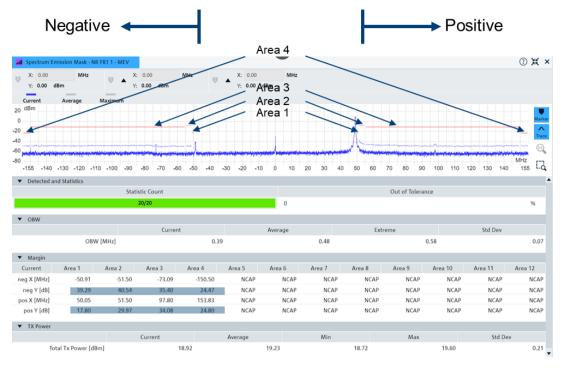
The limit line of four frequency areas together with TT can be defined in CMX as shown in Fig. 5-34, this will be applied for the limit check of the measurement result later on. The given start and stop frequencies refer to the measurement position. Note 1 and Note 2 in the test requirement Table 5-42 are considered here. Not only the limit line is defined, but also RBW, i.e. measurement bandwidth can be specified as per test requirement.

Spectrum	Emission Ma	sk Limits											×
 Addi 	tional Test To	lerance											
F_Carr <=	3GHz	1.5	dB										
3GHz > F_	C <= 4.2GHz	1.8	dB										
4.2GHz > F	_C <= 6GHz	1.8	dB										
			20.010	25.0.111			50 0 100						
	10.0 MHz	15.0 MHz	20.0 MHz	25.0 MHz	30.0 MHz	40.0 MHz	50.0 MHz	60.0 MHz	80.0 MHz	90.0 MHz	100.0 MHz		
 Gene 	ral Limits												
	_	1	Start			Stop	2			Power		RBW	
 	0.0			MHz	0.9			MHz	-24.0		dBm	30kHz	~
 	1.5			MHz	4.5			MHz	-10.0 d		dBm	1MHz	~
 Image: A second s	5.5			MHz	99.5			MHz	-13.0		dBm	1MHz	~
 	100.5			MHz	104.5			MHz	iz -25.0 d		dBm	1MHz	~
	100.5			MHz	104.5			MHz	1Hz -25.0		dBm	1MHz	~
	100.5			MHz	104.5			MHz	-25.0		dBm	1MHz	~
	100.5			MHz	104.5			MHz	-25.0		dBm	1MHz	~
	100.5			MHz	104.5			MHz	-25.0		dBm	1MHz	~
	100.5			MHz	104.5	104.5		MHz	-25.0		dBm	1MHz	~
	100.5			MHz	104.5			MHz	-25.0		dBm	1MHz	~
	100.5			MHz	104.5			MHz	-25.0		dBm	1MHz	~
	100.5			MHz	104.5			MHz	-25.0		dBm	1MHz	~

Fig. 5-34 Limit of spectrum emission mask and test tolerance configuration on CMX

Fig. 5-35 shows the measurement result of SEM. The traced values are all under the limits in both negative and positive areas⁴¹.

More detailed results are presented in tabular view in "Margin" section of SEM (see lower part of the Fig. 5-35). The margin can be expressed as:


 $Margin = minimum[P(f)_{mask} - P(f)_{trace}],$

where $P(f)_{mask}$ is the emission limit (power) at frequency f in dBm, $P(f)_{trace}$ is the measured power at frequency f in dBm

The margin indicates the vertical distance between the spectrum emission mask limit line and a trace. For each emission mask area, the margin represents the "worst" value within the area.

A positive margin indicates that the trace is located under the limit line. Whereas, the negative value indicates the trace exceed the limit line. In our example here, all the values in both negative and positive areas have positive margins. Therefore, the test is passed.

⁴¹ Positive areas are the areas where the measurements are performed above the upper edge of the channel. Negative areas are the areas where the measurements are performed below the lower edge of the channel.

5.12 Adjacent Channel Leakage Ratio for Inter-band EN-DC within FR1 (6.5B.2.3.3)

This test case should apply LTE anchor agnostic approach.

For more details, refer to TS38.521-1 [6], clause 6.5.2.4.1

5.12.1 Test Purpose

Adjacent Channel Leakage Ratio (ACLR) is the ratio of the filtered mean power centered on the assigned NR channel frequency to the filtered mean power centered on an adjacent NR channel frequency at nominal channel spacing. Like SEM test, ACLR is also part of the out-of-band emissions test.

This test is to verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of ACLR [6].

The test case is applicable for both power class 2 and power class 3 UE. In the following description, we refer only power class 3 UE.

5.12.2 Test Preparations

5.12.2.1 Example Test Configuration

Example

Test ID 24

Default Conditions

Test Environment as specified in TS 38.508-1 [5] subclause 4.1

	equencie: use 4.3.1	s as specif	ied in TS 3	8.508-1 [5]	Low range	
	nannel Ba clause 4.3		as specifie	d in TS 38.508-1	Highest	
Test SC	CS as spe	cified in Ta	able 5.3.5-1		Lowest	
Test Pa	rameters	for Chann	el Bandwi	dths		
Test ID	Freq	ChBw	SCS	Downlink Configuration	Uplink Configuration	
		Default	Default	N/A for Adjacent	Modulation (NOTE 2)	RB allocation (NOTE 1)
24	Low			Channel Leakage Ratio test case	CP-OFDM QPSK	Edge_1RB_Left
bands I NOTE 4	2: DFT-9 3: For P ing suppo n40, n41, 1: For P 1, n77, n7	S-OFDM PI ower Class ort for UE c n77, n78 a ower Class	/2 BPSK te s 3 testing apability p nd n79. s 3 testing	st applies only for , UE operating in T owerBoosting-pi2l , UE operating in F	DD mode, or in TDD mo	alf Pi BPSK in FR1.

Table 5-43 Example of a test configuration out of TS38.521-1 [6] Table 6.5.2.4.1.4.1-1

5.12.2.2 Cell Parameter Settings

Parameters	NR	
	Configuration	Value
Frequency Range		FR1
Duplex Mode		TDD
Band		n78
Test Frequency	Low	See Table 5-4
Test Channel Bandwidth	Highest	100 MHz
Test SCS	Lowest	30 kHz
DL RMC (Modulation)	N/A	e.g. MCS index 4 MCS table 64QAM
DL RMC (RB Allocation)	N/A	e.g. 273@0
UL RMC (Modulation)	CP-OFDM QPSK	MCS index 2 MCS table 64QAM
UL RM (RB Allocation)	Edge_1RB_Left	1@0
Downlink Power Level	SSB ERPE	-82 dBm
Uplink Power Control	P0-NominalWithGrant	-90 dBm
	Alpha	0.8
	P0	0
	TPC	Max
DFT-s-OFDM		Disable
MAC Padding		Enable
Initial BWP		1099

Same as described in chapter 5.11.2.2. Apply test parameter settings given by Table 5-44.

5.12.2.3 Multi-Evaluation Measurement Settings

NR multi-evaluation settings can generally refer to chapter 5.1.2.3, see also 4.4.2.

5.12.3 Test Procedure

The same test procedure as described in chapter 5.11.3 can be applied here.

Except in step 8, select "Spectrum ACLR" for ACLR measurement.

5.12.4 Test Requirement and Results

The ACLR is calculated based on the ratio between the power of the allocated NR channel and power of the first NR adjacent channel on both lower and upper side of the assigned NR channel, respectively. Test requirement of ACLR is shown in Table 5-45 and its associated test tolerance is given in Table 5-46. The test requirement needs to be fulfilled in case the absolute adjacent channel power is higher than -50 dBm.

Table 6.5.2.4.1.5-2: NR ACLR requirement

	Power class 1	Power class 2	Power class 3			
NR ACLR		31 - TT dB		30 - TT dB		
	each frequency and cha 4.1.5-3.	innel bandwidth is specifi	ed i	n Table		

Table 5-45 Test requirement of ACLR (TS38.521-1 [6], Table 6.5.2.4.1.5-2)

Table 6.5.2.4.1.5-3: Test Tolerance	(NR ACLR)
	(1111)

	f ≤ 3.0GHz	3	.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 100MHz	0.8 dB		0.8 dB	0.8 dB

Table 5-46 Test Tolerance (TS38.521-1 [6], Table 6.5.2.4.1.5-3)

Based on the above requirements, the limit together with the test tolerance can be configured on CMX as shown in Fig. 5-36.

Spectrum	ACLR Limits												×
▼ Test Tolerance													
Carrier Fre	q <= 4GHz	0.8	dB										
4GHz < Ca	rrier Freq <=	6GHz 0.8	dB										
5.0 MHz	10.0 MHz	15.0 MHz	20.0 MHz	25.0 MHz	30.0 MHz	40.0 MHz	50.0 MHz	60.0 MHz	70.0 MH	2 80.0 MHz	90.0 MHz	100.0 MHz	
\$						Re	l				Abs		
UTRA 1					33.0			dB	✓ -	0.0			dBm
UTRA 2					36.0			dB	 - 	0.0			dBm
NR				 Image: A set of the set of the	30.0			dB		0.0			dBm

Fig. 5-36 Limit of ACLR in CMsquares

The ACLR measurement in CMsquares can be found in Fig. 5-37.

The measured absolute power of both adjacent channels to lower and higher side of the assigned NR channel are higher than -50 dBm, according to the test requirement, the minimum ACLR to each adjacent channel (relative power) is 29.2 dB (0.8 dB TT is included). This is the NR ACLR limit line as depicted in red in Fig. 5-37. The actual measured ACLR is 41.13 dB (lower channel) and 42.13 dB (higher channel) that are higher than the minimum 29.2 dB ACLR. Therefore, the test is pass.

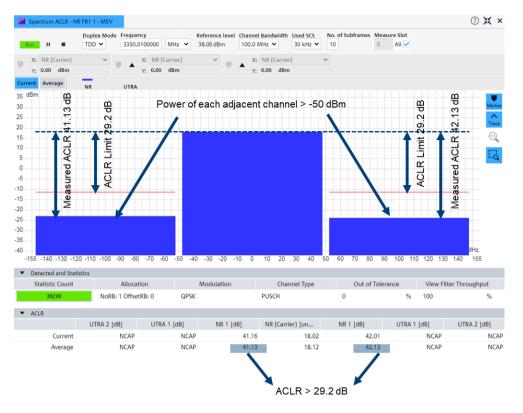


Fig. 5-37 Test result of adjacent channel leakage ratio

6 Receiver Characteristic Tests

The FR1 EN-DC receiver characteristic test cases described in this application note are listed in Table 6-1.

	Test Case Number from 3GPP TS 38.521-3 [1]	Test Case Designation
6.1	7.3B.2.3	Reference sensitivity for Inter-band EN-DC within FR1
6.2	7.4B.3	Maximum Input Level for Inter-band EN-DC within FR1

Table 6-1 NR FR1 EN-DC receiver characteristic test cases

6.1 Reference Sensitivity for Inter-band EN-DC within FR1 (7.3B.2.3)

6.1.1 General

Reference sensitivity test is to verify the ability of UE to receive data with a given average throughput for a specified reference measurement channel, under conditions of low signal level, ideal propagation and no added noise. A UE unable to meet the throughput requirement under these conditions will decrease the effective coverage area [1].

The test case contains two test scenarios, namely, inter-band EN-DC without exception (see 6.1.2) and with exception where maximum sensitivity degradation (MSD) is allowed under certain conditions (see 6.1.3).

6.1.2 EN-DC Band Combination without Exception

For EN-DC combinations with no exception requirements should apply LTE anchor agnostic approach.

For more details, refer to TS38.521-1 [6], clause 7.3.2

6.1.2.1 Test Purpose

See 6.1.1

6.1.2.2 Test Preparations

6.1.2.2.1 Example Test Configuration

Example

Test ID 1

Initial Condit	ions						
Test Environ subclause 4.	ment as specified i 1	n TS 38.508-1 [5]	Normal, TL/VL, TL/VH, TH/VL, TH/VH				
Test Frequen subclause4.3	cies as specified in .1	n TS 38.508-1 [5]	Low range (NOTE 4)				
Test Channel [5] subclause		ecified in TS 38.508-1	Lowest, Mid, Highest (NOTE 4) Lowest UL / Lowest DL, Lowest	UL / Highest DL (NOTE 3)			
Test SCS as	specified in Table 5	5.3.5-1	Lowest				
Test Paramet	ers						
Test ID	Downlink Configura	ation	Uplink Configuration				
	Modulation	RB allocation	Modulation	RB allocation			
1	CP-OFDM QPSK	Full RB (NOTE 1)	DFT-s-OFDM QPSK	REFSENS (NOTE 2)			
NOTE 2: R channel BW a NOTE 3: A NOTE 4: Fo sensitivity re 5 MHz CH BW 5 MHz CH BW 10 MHz CH B	EFSENS refers to 1 and NR band. ccording to asymm or n70, in addition f quirements with th V with DL @ low ran V with DL @ mid ra W with DL @ low ran	Table 7.3.2.4.1-3 which netric channel bandwic to default test configu	dths specified in clause 5.3.6. rations, additional configuration v separation of 295MHz (table 5.	n and start RB location for each SCS, ns shall be used to verify reference			

6.1.2.2.2 Cell Parameter Settings

Since this test case requires the LTE anchor agnostic approach, LTE settings can be referred in chapter 3.6.

NR settings on CMX can generally refer to chapter 5.1.2.2 by configuration given in Table 6-3.

Parameters	NR	
	Configuration	Value
Frequency Range		FR1
Duplex Mode		TDD
Band		n78
Test Frequency	Low	See Table 5-4
Test Channel Bandwidth	Highest	100 MHz
Test SCS	Lowest	30 kHz
DL RMC (Modulation)	CP-OFDM QPSK	MCS index 4, MCS table 64QAM

DL RMC (RB Allocation)	Full RB ⁴²	273@0
UL RMC (Modulation)	DFT-s-OFDM QPSK	MCS index 2, MCS table 64QAM
UL RM (RB Allocation)	REFSENS ⁴³	270@0
Downlink Power Level	SSB ERPE	-85.6 dBm + TT ⁴⁴ (TT =1 dB, 3.0GHz < f ≤ 6.0 GHz)
Uplink Power Control	P0-NominalWithGrant	-90 dBm
	Alpha	0.8
	P0	0
	TPC	Max
DFT-s-OFDM		Enable
MAC Padding		Enable
Initial BWP		1099
OCNG	OCNG	Enable
	PDSCH Power Offset	User Defined 0 dB
	PDSCH Modulation Type	QPSK ⁴⁵
	PDCCH Power Offset	User Defined 0 dB

Table 6-3 Test parameters settings for reference sensitivity without exception

OFDMA Channel Noise Generator (OCNG) should be turned on in the receiver characteristic tests to simulate the existence of other users in the non-allocated RBs.

The downlink power, OCNG and uplink power control settings for reference sensitivity test in CMsquares are shown in Fig. 6-1. With this setting, the OCNG fulfills the requirements specified in Annex A.5.2.1 of [6] for TDD mode.

General	LTE LTE Ce	ell 0 NR Cell 0	
		ON	
▼ Pow	er		
Downlink	Level		
	SSB EPRE	-84.6 dBm	
Total	Cell Power	-49.5 dBm	
OCNG			
	Enable		
PDSCH Po	wer Offset	User Defined 🗸 0 dB	
PDSCH N	Aodulation Type	QPSK	~
PDCCH Po	wer Offset	User Defined 🛩 0 dB	
Expected	Uplink Level	l	
Rece	iver Config Mode	Auto	~
Refere	nce Source	PUSCH	~
Refer	rence Level Offset	6 dB	
Power Cor	ntrol		
ss-PBCH-B	lockPower	0 dBm	
Nominal	-p0 lWithGrant	✓ -90 dBm	
P0-PUSCI	H-AlphaSet	✓Alpha 0.8 ✓ p0 0	
	p-Max	✓ 23 dBm	
	TPC	Max	~
Ch	annel Type	PUSCH	~

Fig. 6-1 Power and OCNG configuration in CMsquares for reference sensitivity test

6.1.2.3 Test Procedure

1. Configure the LTE cell according to LTE anchor agnostic approach, see chapter 3.6

 ⁴² Refer to Annex D.3 or TS38.521-1 [6], Table 7.3.2.4.1-2 for DL RB allocation
 ⁴³ Refer to TS38.521-1 [6], Table 7.3.2.4.1-3 for REFSENS RB allocation
 ⁴⁴ Refer to TS38.521-1 [6], Table 7.3.2.5-3 for TT

⁴⁵ Example configuration adopts QPSK modulation for PDSCH

- 2. Configure the NR cell according to the configurations given in Table 6-3.
- 3. Turn on the LTE and NR cell, see chapter 4.4.1
- 4. Switch on DUT and wait until DUT is registered on LTE cell
- 5. Activate EN-DC mode
- 6. Reduce the LTE uplink RB allocation to 0 RB as given in 3.6
- 7. Start the Rx BLER Measurement as described in 4.4.3

6.1.2.4 Test Requirement and Results

The test requires that the throughput shall be \geq 95% of the maximum throughput of the reference measurement channels at the reference receive power level given in Table 6-4.

	Operating band / SCS / Channel bandwidth / Duplex-mode													
Operating Band	SCS kHz	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	25 MHz (dBm)	30 MHz (dBm)	40 MHz (dBm)	50 MHz (dBm)	60 MHz (dBm)	80 MHz (dBm)	90 MHz (dBm)	100 MHz (dBm)	Duplex Mode
	15		-95.8 +TT	-94.0 +TT	-92.7 +TT			-89.6 +TT	-88.6 +TT					
n781	30		-96.1 +TT	-94.1 +TT	-92.9 +TT			-89.7 +TT	-88.7 +TT	-87.9 +TT	-86.6 +TT	-86.1 +TT	-85.6 +TT	TDD
	60		-96.5 +TT	-94.4 +TT	-93.1 +TT			-89.9 +TT	-88.8 +TT	-88.0 +TT	-86.7 +TT	-86.2 +TT	-85.7 +TT	
NOTE 2: NOTE 3:	The transr ³ indicates	nitter shall I that the re	be set to Pu quirement i	JMAX as defi s modified	ned in subo by -0.5 dB t	clause 6.2 when the	assigned NI	R channel	bandwidth	is confine			510.9 MH:	z.
NOTE 5:	 E 4: The requirement is modified by -0.5 dB when the assigned UE channel bandwidth is confined within 3300 - 3800 MHz. E 5: For these bandwidths, the minimum requirements are restricted to operation when carrier is configured as a downlink carrier part of CA configuration. 													
NOTE 6:	TT for eac	h frequency	/ and chanr	nel bandwid	Ith is specif	fied in Tab	ole 7.3.2.5-3							

Table 7.3.2.5-1: Reference sensitivity QPSK PREFSENS

Table 6-4 Test requirement (TS38.521-1 [6], Table 7.3.2.5-1)

In our example here, under the condition that the reference receive power level is -85.6 + TT (TT = 1 dB) = -84.6 dBm and with the presence of OCNG, DUT achieves 100% throughput as shown in the measurement result (in Fig. 6-2) which is higher than 95%. Therefore, the test is passed.

🔧 BLER - RX Me	as					
Run						
	Over	all	LTE Ce	ell O	NR Ce	ell O
	Relative	Absolute	Relative	Absolute	Relative	Absolute
ACK	100.00 %	13800	0.00 %	0	100.00 %	13800
NACK	0.00 %	0	0.00 %	0	0.00 %	0
DTX	0.00 %	0	0.00 %	0	0.00 %	0
BLER	0.00 %		0.00 %		0.00 %	
Throughput	Relative	MBit/s	Relative	MBit/s	Relative	MBit/s
Average	100.00 %	23.36	NaN %	0.00	100.00 %	23.36
Scheduled		23.36		0.00		23.36

Fig. 6-2 Throughput measurement of reference sensitivity without exceptions

6.1.3 EN-DC Band Combination with Exception

6.1.3.1 Test Purpose

Particular NR FR1 EN-DC inter-band combinations degrade the reference sensitivity. The degradation is usually caused by one of the following reasons

- 1. UL harmonic interference
- 2. receiver harmonic mixing

- 3. cross band isolation
- 4. dual uplink operation

The affected inter-band EN-DC band combinations defined in TS38.521-3 [1] clause 7.3B.2.0.3 are allowed to apply maximum sensitivity degradation (MSD) which means the relaxation of reference sensitivity can be considered here.

When testing inter-band EN-DC combination with exceptions, LTE anchor agnostic approach should NOT be adopted.

6.1.3.2 Test Configuration

TS38.521-3, clause 7.3B.2.3.4.2 specifies the different test configurations tables for individual reference sensitivity exception tests.

Example

2 bands (E-UTRA band2 and NR n78)

This band combination as per definition in TS38.521-3 [1] Table 7.3B.2.0.3.1-1 allows reference sensitivity exceptions due to UL harmonic interference.

Test configurations table for reference sensitivity exceptions due to UL harmonic interference consists of two parts,

- ▶ Initial test conditions TS38.521-3 [1] Table 7.3B.2.3.4.2.1-1 (Table 6-5)
- Individual test configuration for each defined band combination due to UL harmonic interference, e.g. Table 7.3B.2.3.4.2.1-2_5 for EN-DC 2_n78 combination (Table 6-6)

Table 7.3B.2.3.4.2.1-1: Initial test conditions for reference sensitivity exceptions due to UL harmonic interference for EN-DC in NR FR1

	Initial Conditions										
Test Environr	ment as spe	cified in TS 38	3.508-1 [6]	Normal, TL/VL	., TL/VH, TH/	VL, TH/VH					
clause 4.1											
NR Test Fred	uencies as	specified in TS	S 38.508-	Mid range for	E-UTRA and	NR, unless oth	erwise				
1 [6] clause4.	3.1			specified in Ta	able 7.3B.2.3.	4.2.1-2 1 to Ta	able				
E-UTRA Test	Frequencie	es as specified	l in	7.3B.2.3.4.2.1	-2 28	—					
TS 38.508-1					_						
NR Test Cha	nnel Bandw	idths as speci	fied in			otherwise speci					
TS 38.508-1	[6] clause 4	.3.1		Table 7.3B.2.3	3.4.2.1-2 1 to	Table 7.3B.2.3	3.4.2.1-2 28				
E-UTRA Test	Channel B	andwidths as	specified		_		_				
in TS 36.508	[11] clause	4.3.1									
		d in Table 5.3	.5-1	Lowest supported SCS otherwise specified							
	•		Test F	Parameters		•					
D	ownlink Co	onfiguration			Uplink Cor	nfiguration					
E-UTRA	Cell	NR C	ell	E-UTR/	A Cell	NR C	Cell				
Modulation	RB allocation	Modulation	RB allocation	Modulation	RB allocation	Modulation	RB allocation				
QPSK	Full RB	CP-OFDM QPSK	Full RB (NOTE 1)	QPSK Full RB OFDM (NOTE 1)							
NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1- 2 of TS 38.521-1 [8].							e 7.3.2.4.1-				

Table 6-5 Initial test conditions for reference sensitivity level due to UL harmonic interference (TS38.521-3 [1] Table 7.3B.2.3.4.2.1-1)

Table 7.3B.2.3.4.2.1-2_5: Test configurations table for exceptions due to UL harmonic interference for EN-DC 2_n78

	E-U	JTRA Band 2		NR Band n78					
Test ID	Channel BW (MHz)	Fc (UL) (MHz) N∪∟	UL allocation (L _{CRB})	NR F _C (DL) (MHz) N _{DL}	NR CBW (MHz)	UL allocation (L _{CRB})			
1		1855 MHz/ 18650	25@12	3710.01 MHz/ 647334	Lowest	REFSENS (NOTE 2)			
2		1855 MHz/ 18650	50@0	3710.01 MHz/ 647334	Mid Highest	REFSENS (NOTE 2)			
3	10	1865 MHz/ 18750	25@12	3730.02 MHz/ 648668	Lowest	REFSENS (NOTE 2)			
4		1865 MHz/ 18750	50@0	3730.02 MHz/ 648668	Mid Highest	REFSENS (NOTE 2)			
5		1875MHz/ 18850	25@12	3750 MHz/ 650000	Lowest	REFSENS (NOTE 2)			
6		1875 MHz/ 18850	50@0	3750 MHz/ 650000	Mid Highest	REFSENS (NOTE 2)			
	NOTE 1: Test frequencies are selected to fulfil Note 2 and 13 in Table 7.3B.2.0.3.1-1. NOTE 2: REFSENS refers to Table 7.3.2.4.1-3 in TS 38.521-1 [8] which defines uplink RB configuration and start RB location for each SCS, channel BW and NR band.								

Table 6-6 Test conditions for reference sensitivity level due to UL harmonic interference, EN-DC 2_n78 combination (TS38.521-3 [1] Table 7.3B.2.3.4.2.1-2_5)

Let's pick Test ID 6 and test highest CBW (100 MHz) for NR.

By referring both configurations tables (Table 6-5 and Table 6-6), we have the summarized parameter settings as given in Table 6-7.

Parameters	E-UTRA		NR				
	Configuration	Value	Configuration	Value			
Frequency Range				FR1			
Duplex Mode		FDD		TDD			
Band		2		n78			
Test Frequency	User defined	Nul = 18850 Ndl = 850	High	See Table 5-4			
Test Channel Bandwidth		10 MHz	Highest	100 MHz			
Test SCS			Lowest	30 kHz			
DL RMC (Modulation)	QPSK	MCS index 5 MCS table 64QAM	CP-OFDM QPSK	MCS index 4 MCS table 64QAM			
DL RMC (RB Allocation)	Full RB	50@0	Full RB ⁴⁶	273@0			
UL RMC (Modulation)	QPSK	MCS index 6	DFT-s-OFDM QPSK	MCS index 2 MCS table 64QAM			
UL RMC (RB Allocation)		50@0	REFSENS ⁴⁷	270@0			
Downlink Power Level	RS EPRE	-95 dBm/15 kHz ⁴⁸	SSB ERPE	-70.3 dBm ⁴⁹			
Uplink Power Control	TPC	Max	TPC	Мах			
DFT-s-OFDM				Enable			
MAC Padding		Enable		Enable			
Initial BWP				1099			
OCNG	OCNG	Enable	OCNG	Enable			
	PDSCH Power Offset	User Defined 0 dB	PDSCH Power Offset	User Defined 0 dB			

⁴⁹ This value is determined based on the description on page 90

PDSCH	QPSK	PDSCH Modulation	QPSK
Modula	ion Type	Type	
PDCCH Offset	Power User Defined 0	dB PDCCH Power Offset	User Defined 0 dB

Table 6-7 Test parameters settings for reference sensitivity with exception

In reference receiver power level with exceptions case, NR downlink power level is determined as follows:

Reference receiver power level WITH exceptions

= Reference receiver power level WITHOUT exceptions + $MSD + \Delta R_{IB,c} + TT$

Where

Reference receiver power level WITHOUT exceptions can be referred in TS38.521-1 [6], Table 7.3.2.3-1 for the tested NR band.

MSD, see Table 6-8 or TS38.521-3 [1] Table 7.3B.2.0.3.1-1

 $\Delta R_{IB,c}$, is allowed reference sensitivity relaxation due to support for CA or DC operation for serving cell c (see TS38.521-3 [1], Table 7.3B.3.3.1-1)

TT, is test tolerance (see TS38.521-3 [1] Table 7.3B.2.3.5-1a)

So, in our example here, -85.6 dBm for receiver power level without exceptions for n78, 13.8 dB MSD for EN-DC 2_n78 combination as shown in Table 6-8, 0.5 dB $\Delta R_{IB,c}$ for NR, and 1 dB TT. The overall calculation results in

 $-85.6 + MSD + \Delta R_{IB,c} + TT = -85.6 + 13.8 + 0.5 + 1 = -70.3 dBm$

Table 7.3B.2.0.3.1-1: Reference sensitivity exceptions (MSD) due to UL harmonic for EN-DC in NR

FR1

	E-UTRA or NR Band / Channel bandwidth of the affected DL band / MSD												
UL band	DL band	5 MHz (dB)	10 MHz (dB)	15 MHz (dB)	20 MHz (dB)	25 MHz (dB)	30 MHz (dB)	40 MHz (dB)	50 MHz (dB)	60 MHz (dB)	80 MHz (dB)	90 MHz (dB)	100 MHz (dB)
1.2	n77 ^{2, 13}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
1, 3	n77 ³		1.1	0.8	0.3								
0	n78 ^{2, 13}		23.9	22.1	20.9			17.9	16.8	16.0	14.8	14.3	13.8
2	n78³		1.1	0.8	0.3								

Table 6-8 Reference sensitivity exceptions (MSD) due to UL harmonic for EN-DC in NR FR1 (TS38.521-3 [1] Table 7.3B.2.0.3.1-1)

In reference sensitivity with exceptions case, the OCNG needs to be enabled as well.

6.1.3.3 Test Procedures

- 1. Configure the NR and LTE cell with appropriate test configurations given in Table 6-7
- 2. Turn on the LTE and NR cell, see chapter 4.4.1
- 3. Switch on DUT and wait until DUT is registered on LTE cell
- 4. Activate EN-DC mode
- 5. Start the Rx BLER Measurement as described in 4.4.3

6.1.3.4 Test Requirement and Results

The test requires that the throughput shall be \geq 95% of the maximum throughput of the reference measurement channels at the reference receive power level given in TS38.521-3 [1] Table 7.3B.2.3.5-1, Table 7.3B.2.3.5-2, Table 7.3B.2.3.5-3, and Table 7.3B.2.3.5-4 for MSDs due to uplink harmonic, harmonic mixing, cross band isolation and dual uplinks, respectively.

In our example here, test requirement TS38.521-3 [1] Table 7.3B.2.3.5-1 applies. The DUT achieves \geq 95% of the maximum throughput of the reference measurement channels at the reference receive power level at -70.3 dBm and with the presence of OCNG. The throughput measurement in CMsquares (in Fig. 6-3) indicates DUT achieves 97.65% of the maximum throughput which is higher than 95% limit. Therefore, the test is passed.

🔨 BLER - RX M	eas					
•						
Run						
Kutt						
	Ove	rall	LTE C	ell 0	NR C	ell 0
	Relative	Absolute	Relative	Absolute	Relative	Absolute
ACK	98.66 %	68368	100.00 %	29700	97.65 %	38668
NACK	0.73 %	506	0.00 %	0	1.28 %	506
DTX	0.61 %	426	0.00 %	0	1.08 %	426
BLER	1.34 %		0.00 %		2.35 %	
Throughput	Relative	MBit/s	Relative	MBit/s	Relative	MBit/s
Average	97.99 %	26.76	100.00 %	3.95	97.65 %	22.81
Scheduled		27.31		3.95		23.36

Fig. 6-3 Throughput measurement of reference sensitivity with exceptions

6.2 Maximum Input Level for Inter-band EN-DC within FR1 (7.4B.3)

This test case should apply LTE anchor agnostic approach.

For more details, refer to TS38.521-1 [6], clause 7.4

6.2.1 Test Purpose

Maximum input level tests the UE's ability to receive data with a given average throughput for a specified reference measurement channel, under conditions of high signal level, ideal propagation and no added noise.

A UE unable to meet the throughput requirement under these conditions will decrease the coverage area in the vicinity of a gNodeB [6].

6.2.2 Test Preparations

6.2.2.1 Example Test Configuration

Example

Initial Conditions								
Test Environment as spec subclause 4.1	ified in TS 38.508-1 [5]	Normal						
Test Frequencies as spect subclause 4.3.1	ified in TS 38.508-1 [5]	Mid range (NOTE 5)						
Test Channel Bandwidths [5] subclause 4.3.1	as specified in TS 38.508-1	Lowest, Mid, Highest (NO	Lowest, Mid, Highest (NOTE 4)					
Test SCS as specified in T	able 5.3.5-1	Lowest						
Test Parameters for Chan	nel Bandwidths							
Downlink Configuration		Uplink Configuration						
Modulation	RB allocation	Modulation	RB allocation					
CP-OFDM 64 QAM	NOTE 1	DFT-s-OFDM QPSK	NOTE 2					
CP-OFDM 256 QAM	NOTE 1	DFT-s-OFDM QPSK	NOTE 2					

NOTE 1: The specific configuration of downlink RB allocation is defined in Table 7.3.2.4.1-2.
NOTE 2: The specific configuration of uplink RB allocation is defined in Table 7.3.2.4.1-3.
NOTE 3: In a band where UE supports 4Rx, the test shall be performed only with 4Rx antennas ports connected.
NOTE 4: For n70, highest test channel bandwidth shall be Highest UL / Highest DL according to asymmetric channel bandwidths specified in clause 5.3.6.
NOTE 5: For NR band n28, 30MHz test channel bandwidth is tested with High range test frequencies.
Table 6-9 Example of a test configuration out of TS38.521-1 [6] Table 7.4.4.1-1

6.2.2.2 Cell Parameter Settings

Since this test case requires the LTE anchor agnostic approach, LTE settings can be referred in chapter 3.6.

NR settings on CMX can generally refer to chapter 5.1.2.2 by configuration given in Table 6-10.

Parameters	NR					
	Configuration	Value				
Frequency Range		FR1				
Duplex Mode		TDD				
Band		n78				
Test Frequency	Mid	See Table 5-4				
Test Channel Bandwidth	Highest	100 MHz				
Test SCS	Lowest	30 kHz				
DL RMC (Modulation)	CP-OFDM 64QAM	MCS index 24, MCS table 64QAM				
DL RMC (RB Allocation)	Full RB	273@0				
UL RMC (Modulation)	DFT-s-OFDM QPSK	MCS index 2, MCS table 64QAM				
UL RM (RB Allocation)	REFSENS	270@0				
Downlink Power Level	Total Cell Power	-20-TT = -21 dBm (64QAM case) ⁵⁰ , TT: 1 dB (3.0GHz < f ≤6.0GHz)				
Uplink Power Control	P0-NominalWithGrant	-90 dBm				
	Alpha	0.8				
	P0	0				
	TPC	Closed Loop				
	Target Power Total RMS	13.4 dBm ⁵¹				
	Tolerance	1.3 ⁵¹				
DFT-s-OFDM		Enable				
MAC Padding		Enable				
Initial BWP		1099				
OCNG	OCNG	Enable				
	PDSCH Modulation Type	64QAM				
	PDSCH Power Offset	User Defined 0 dB				

 Table 6-10 Test parameters settings for Maximum Input Level

Hereafter are some remarks regarding the downlink and uplink power settings of this test case.

According to TS38.521-1 [6] Table 7.4.5-1, the downlink signal level or maximum input level from DUT's prospect should consider the test tolerance (TT) which is defined in TS38.521-1 [6] Table 7.4.5-3. In our example, when testing carrier frequency between 3.0GHz < f \leq 6.0GHz, 1 dB TT should be applied. The maximum input level should be -20 dBm -1 dB =-21 dBm with test configuration of 100 MHz CBW, 64QAM modulation on PDSCH.

For uplink transmission power level, it has to fulfill the UL transmission requirement given in NOTE 1 of TS38.521-1 [6] Table 7.4.5-1, UL close loop target power is calculated with two steps:

Step 1:

⁵⁰ Refer to TS38.521-1 [6] Table 7.4.5-3 for TT

⁵¹ See the calculation below this table

Calculate the allowed lower bound of UE configured maximum output power $P_{CMAX_L,f,c}$ according to the formula Eqn. 6-1 in TS38.521-1 [6], clause 6.2.4.3

 $P_{CMAX_L,f,c} = MIN \begin{cases} P_{EMAX,c} - \Delta T_{C,c} \\ (P_{PowerClass} - \Delta P_{PowerClass}) - MAX(MAX(MPR_c + \Delta MPR_c, A-MPR_c) + \Delta T_{IB,c} + \Delta T_{C,c} + \Delta T_{RXSRS}, P-MPR_c) \end{cases}$

Where parameters in the formula and their values are given in Table 6-11

Eqn. 6-1 Calculation of $P_{CMAX_{\perp}L,f,c}$ (see TS38.521-1 [6], clause 6.2.4.3)

Parameter Name	Value	Remark
P _{EMAX,c}	23 dBm	value given by the p-Max IE to signal the UE about the maximum UL power allowed in the cell c.
$\Delta T_{C,c}$	0 dB	the condition stated in NOTE 3 of Table 6.2.1-1 in TS38.101-1 does not apply for a serving cell c in our case here. Otherwise, 1.5 dB should be applied.
P _{PowerClass}	23 dBm	maximum UE power specified in TS38.521-1 [6] Table 6.2.1.3-1 without taking the tolerance into account
$\Delta P_{PowerClass}$	0 dB	conditions given in TS38.521-1 [6] clause 6.2.4.3 do not apply
$\Delta T_{IB,c}$	0.3 dB (E-UTRA) 0.8 dB (NR)	additional tolerance for serving cell c as specified in TS 38.101-3 [7]. Table 6.2B.4.2.3.1-1, including EN-DC combination, DC_1_n78
MPR _c	2.5 dB	Maximum output power reduction for serving cell c is defined in TS38.521-1 [6], clause 6.2.2.3 Example, DFT-s-OFDM, 64QAM
A-MPR _c	0	Additional maximum output power reduction for serving cell c is defined in TS38.521-1, clause 6.2.3.3
ΔMPR _c	0	If the relative channel bandwidth is larger than 4% for TDD bands or 3% for FDD bands, the Δ MPR is defined in Table 6.2.2.3-3 of TS38.521-1 [6]
P-MPR _c	0	For UE conducted conformance test. This parameter is irrelevant
ΔT_{RxSRS}	0	It is applied when UE transmits SRS other than first SRS port, otherwise, it is 0.

Table 6-11 Parameters and their values for calculating P_{CMAX_L,f,c}

By inserting the values of Table 6-11 to Eqn. 6-1, we know $P_{CMAX L.f.c}$ is 19.7 dBm.

TS38.521-1 [6] Table 7.4.5-1 NOTE1 specifies initially the UE transmission target power level at

 $P_{CMAX_L,f,c} - 4$ dB, in our case, 15.7 dBm.

Step 2:

Apply the uplink power control window to measure the uplink transmission power, defined as -MU to -(MU + Uplink power control window size) dB, Where

- 1. $MU = \pm 1.0 \text{ dB}$, for 3.0GHz < f ≤ 4.2GHz (refer to Table F.1.3-1 of TS38.521-1)
- Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + 1.0 dB, 40MHz < f ≤ 100MHz (Test system relative power measurement uncertainty). Thus, uplink power control window size = 2.7 dB

Overall uplink power control window is -1 ~ -3.7 dB

So, the target power level confined in the uplink power control window should be ($P_{CMAX_L,f,c}$ - 4 -1) dBm > target power level > ($P_{CMAX_L,f,c}$ - 4 -3.7) dBm, i.e. 14.7 dBm > target power level > 12 dBm

Apply the same calculation principle as illustrated in chapter 5.6.2.2. We will expect the target power total level 13.4 dBm with tolerance of 1.3 dB. The calculated values for these two parameters need to be entered in the CMsquares. It ensures that the UE's transmission power is kept in the range of the uplink control window. Otherwise, TPC command is sent to UE to increase or decrease the uplink transmission power.

Same as reference sensitivity test case in chapter 6.1, OCNG should also be enabled in this test case.

6.2.3 Test Procedure

1. Configure the LTE cell according to LTE anchor agnostic approach, see chapter 3.6

Rohde & Schwarz | Application Note 5G NR FR1 Non-Standalone UE RF Conformance Testing 98

- 2. Configure the NR cell according to the configurations given in Table 6-10.
- 3. Turn on the LTE and NR cell, see chapter 4.4.1
- 4. Switch on DUT and wait until DUT is registered on LTE cell
- 5. Activate EN-DC mode
- 6. Reduce the LTE uplink RB allocation to 0 RB as given in 3.6
- 7. Start the Rx BLER Measurement as described in 4.4.3

6.2.4 Test Requirement and Results

The throughput measurement derived in test procedure shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in DL reference measurement channels in TS38.521-1 [6], Annex A.3

Rx	Units			Channel bandwidth											
Parameter		5 10 15 20 25 30		40	50	60	70	80	90	100					
		MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	
Power in			252	? тт		-24 ² -	-23 ² -	-22 ² -	-21 ² -			-20 ² -TT			
Transmission	dBm		-25 ² -TT			TT	TT	TT	TT	-202-11					
Bandwidth	арш		-27 ³ -TT			-26 ³ -	-25 ³ -	-24 ³ -	-23 ³ -	-22 ³ -TT					
Configuration			-275			TT	TT	TT	TT			-22°-11			
NOTE 1	: The t	ransmit	ter shal	ll be set	to 4dB	below Po	CMAX_L,f,c a	t the min	imum uplii	nk confi	guratio	n specif	ied in T	able	
						l in subcla									
NOTE 2	: Refer	rence m	neasure	ment cl	nannel i	s Annex .	A.3.2.3 oi	r A.3.3.3 i	for 64 QAI	И.					
NOTE 3: Reference measurement channel is Annex A.3.2.4 or A.3.3.4 for 256 QAM.															
NOTE 4	NOTE 4: TT for each frequency is specified in Table 7.4.5-3.														

Table 6-12 Test requirement of Maximum input level (TS38.521-1 [6], Table 7.4.5-1)

The measurement result in Fig. 6-4 shows that the DUT achieves 100% throughput under the test condition of maximum input level (with -21 dBm downlink power level as shown in Table 6-12). The measured throughput is above the lower limit 95%. Therefore, the test is passed.

🔧 BLER - RX Me	eas					
	Over	rall	LTE C	ell 0	NR C	ell 0
	Relative	Absolute	Relative	Absolute	Relative	Absolute
ACK	100.00 %	13800	0.00 %	0	100.00 %	13800
NACK	0.00 %	0	0.00 %	0	0.00 %	0
DTX	0.00 %	0	0.00 %	0	0.00 %	0
BLER	0.00 %		0.00 %		0.00 %	
Throughput	Relative	MBit/s	Relative	MBit/s	Relative	MBit/s
Average	100.00 %	177.09	NaN %	0.00	100.00 %	177.09
Scheduled		177.09		0.00		177.09

Fig. 6-4 Throughput measurement of maximum input level

7 Literature

- 3GPP TS38.521-3 V16.4.0 (2020-06), "User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios (Release 16)".
- [2] Rohde & Schwarz, "5G NR ebook," [Online]. Available: https://www.rohde-schwarz.com/5G-ebook.

- [3] 3GPP TS38.104 V16.4.0 (2020-06), "Base Station (BS) radio transmission and reception (Release 16)".
- [4] Rohde & Schwarz, "White paper: Over-The-Air RF Conformance Measurement On 5G NR Devices," 2021.
- [5] 3GPP TS36.521-1 V16.5.0 (2020-06), "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing".
- [6] 3GPP TS38.521-1 V16.5.0 (2020-09), "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone; (Release 15)".
- [7] 3GPP TS38.101-3 V16.4.0 (2020-06), "User Equipment (UE) radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios (Release 16)".
- [8] 3GPP TS38.508-1 V16.4.0 (2020-06), "5GS; User Equipment (UE) conformance specification; Part 1: Common test environment (Release 16)".
- [9] 3GPP TS36.508 V16.5.0 (2020-06), "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); Common test environments for User Equipment (UE) conformance testing (Release 16)".
- [10] 3GPP TS38.214 V16.2.0 (2020-06), "Technical Specification Group Radio Access Network NR; Physical layer procedures for data (Release 16)".
- [11] 3GPP TS36.213 V16.3.0 (2020-09), "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 16)".
- [12] Rohde & Schwarz, "R&S®CMX500/CMW500 5G NR FR1 Test Setup Quick Setup Instructions".
- [13] Rohde & Schwarz, "R&S®CMX500 Radio Communication Tester User Manual".
- [14] Rohde & Schwarz, "R&S®CMX500 Signaling Applications User Manual".
- [15] Rohde & Schwarz, "Application Note: LTE RF Measurements with the R&S®CMW500 according to 3GPP TS 36.521-1".
- [16] 3GPP TS38.213 V16.2.0 (2020-06), "NR; Physical layer procedures for control (Release 16)".

8 Appendix

In this appendix, some of the conformance test case relevant configuration tables from 3GPP technical specification are listed for quick reference.

Various test configurations of the conformance tests still require the reference to the original 3GPP specifications.

A FR1 Frequencies

A.1 NR FR1 Operating Bands

NR operating band	Uplink (UL) operating band BS receive / UE transmit	Downlink (DL) operating band BS transmit / UE receive F _{DL.low} – F _{DL.high}	Duplex mode
band	F _{UL,low} – F _{UL,high}	FDL,Iow - FDL,high	
n1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD
n2	1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD
n3	1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD
n5	824 MHz – 849 MHz	869 MHz – 894 MHz	FDD
n7	2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD
n8	880 MHz – 915 MHz	925 MHz – 960 MHz	FDD
n12	699 MHz – 716 MHz	729 MHz – 746 MHz	FDD
n14	788 MHz – 798 MHz	758 MHz – 768 MHz	FDD
n18	815 MHz – 830 MHz	860 MHz – 875 MHz	FDD
n20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD
n25	1850 MHz – 1915 MHz	1930 MHz – 1995 MHz	FDD
n26	814 MHz – 849 MHz	859 MHz – 894 MHz	FDD
n28	703 MHz – 748 MHz	758 MHz – 803 MHz	FDD
n29	N/A	717 MHz – 728 MHz	SDL
n30	2305 MHz – 2315 MHz	2350 MHz – 2360 MHz	FDD
n34	2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD
n38	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD
n39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD
n40	2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD
n41	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD
n48	3550 MHz – 3700 MHz	3550 MHz – 3700 MHz	TDD
n50	1432 MHz – 1517 MHz	1432 MHz – 1517 MHz	TDD
n51	1427 MHz – 1432 MHz	1427 MHz – 1432 MHz	TDD
n53	2483.5 MHz – 2495 MHz	2483.5 MHz – 2495 MHz	TDD
n65	1920 MHz – 2010 MHz	2110 MHz – 2200 MHz	FDD
n66	1710 MHz – 1780 MHz	2110 MHz – 2200 MHz	FDD
n70	1695 MHz – 1710 MHz	1995 MHz – 2020 MHz	FDD
n71	663 MHz – 698 MHz	617 MHz – 652 MHz	FDD
n74	1427 MHz – 1470 MHz	1475 MHz – 1518 MHz	FDD
n75	N/A	1432 MHz – 1517 MHz	SDL
n76	N/A	1427 MHz – 1432 MHz	SDL
n77	3300 MHz – 4200 MHz	3300 MHz – 4200 MHz	TDD
n78	3300 MHz – 3800 MHz	3300 MHz – 3800 MHz	TDD
n79	4400 MHz – 5000 MHz	4400 MHz – 5000 MHz	TDD
n80	1710 MHz – 1785 MHz	N/A	SUL
n81	880 MHz – 915 MHz	N/A	SUL
n82	832 MHz – 862 MHz	N/A	SUL
n83	703 MHz – 748 MHz	N/A	SUL
n84	1920 MHz – 1980 MHz	N/A	SUL
n86	1710 MHz – 1780 MHz	N/A	SUL
n89	824 MHz – 849 MHz	N/A	SUL
n90	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD
n91	832 MHz – 862 MHz	1427 MHz – 1432 MHz	FDD2
n92	832 MHz – 862 MHz	1432 MHz – 1517 MHz	FDD2
n93	880 MHz – 915 MHz	1427 MHz – 1432 MHz	FDD2
n94	880 MHz – 915 MHz	1432 MHz – 1517 MHz	FDD2
n95¹	2010 MHz – 2025 MHz	N/A	SUL

NOTE 1: This band is applicable in China only.

NOTE 2: Variable duplex operation does not enable dynamic variable duplex configuration by the network, and is used such that DL and UL frequency ranges are supported independently in any valid frequency range for the band.

Table 8-1 Operating band of FR1 [3]

A.2 Inter-band EN-DC Configuration within FR1 (two bands)

Uplink EN-DC configuration (NOTE 1)	Single UL allowed
DC_1A_n28A	No
DC_1A_n40A	No
DC_1A_n51A	No
DC_1A_n77A	DC_1_n77
DC_1A_n78A	No
DC_1A_n79A	No
DC_2A_n5A	No
DC_2A_n41A DC_2C_n41A	No
DC_2A_n66A	DC_2_n66
DC_2A_n71A	No
DC_2A_n78A	DC_2_n78
DC_3A_n7A	No
DC_3A_n28A	No
DC_3A_n40A	No
DC_3A_n41A DC_3C_n41A	DC_3_n41
DC_3A_n51A	No
DC_3A_n77A	DC_3_n77
DC_3A_n78A	DC_3_n78
DC_3A_n79A	No
DC_5A_n2A	No
DC_5A_n40A	No
DC_5A_n66A	DC_5_n66
DC_5A_n78A	No
DC_7A_n28A	No
DC_7A_n51A	No
DC_7A_n66A	No
DC_7A_n78A	No
DC_7A_n78A	No
DC_7A_n78A	No
DC_8A_n40A	No
DC_8A_n41A	No
DC_8A_n77A	No
20_0/_11///	110
	DC_1A_n28A DC_1A_n40A DC_1A_n51A DC_1A_n77A DC_1A_n78A DC_2A_n5A DC_2A_n6A DC_2A_n6A DC_2A_n6A DC_2A_n71A DC_3A_n7A DC_3A_n41A DC_3A_n7A DC_3A_n7A DC_3A_n7A DC_3A_n7A DC_3A_n7A DC_3A_n7A DC_3A_n6A DC_3A_n7A DC_5A_n6A DC_7A_n7A DC_7A_n7A DC_7A_n7A

DC_8A_n79A7	DC_8A_n79A	No
DC_11A_n77A7	DC_11A_n77A	No
DC_11A_n78A7	DC_11A_n78A	No
DC_11A_n79A7	DC_11A_n79A	No
DC_12A_n5A	DC_12A_n5A	No
DC_12A_n66A	DC_12A_n66A	No
DC_12A_n78A	DC_12A_n78A	DC_12_n78
DC_13A_n66A	DC_13A_n66A	No
DC_18A_n77A7	DC_18A_n77A	No
DC_18A_n78A7	DC_18A_n78A	No
DC_18A_n79A7	DC_18A_n79A	No
DC_19A_n77A7 DC_19A_n77C7	DC_19A_n77A	No
DC_19A_n78A7 DC_19A_n78C7	DC_19A_n78A	No
DC_19A_n79A7 DC_19A_n79C7	DC_19A_n79A	No
DC_20A_n8A	DC_20A_n8A	DC_20_n8
DC_20A_n28A8,10	DC_20A_n28A	No
DC_20A_n51A	DC_20A_n51A	No
DC_20A_n77A7	DC_20A_n77A	No
DC_20A_n78A7	DC_20A_n78A	No
DC_21A_n77A7 DC_21A_n77C7	DC_21A_n77A	No
DC_21A_n78A7 DC_21A_n78C7	DC_21A_n78A	No
DC_21A_n79A7 DC_21A_n79C7	DC_21A_n79A	No
DC_25A_n41A	DC_25A_n41A	No
DC_26A_n41A	DC_26A_n41A	No
DC_26A_n77A7	DC_26A_n77A	No
DC_26A_n78A7	DC_26A_n78A	No
DC_26A_n79A7	DC_26A_n79A	No
DC_28A n51A	DC_28A_n51A	No
DC_28A_n77A7 DC_28A_n77C7	DC_28A_n77A	No
DC_28A_n78A7 DC_28A_n78C7	DC_28A_n78A	No
DC_28A_n79A7 DC_28A_n79C7	DC_28A_n79A	No
DC_30A_n5A	DC_30A_n5A	No
DC_30A_n66A	DC_30A_n66A	No
DC_38A_n78A7	N/A	No
DC_39A_n41A DC_39C_n41A	DC_39A_n41A DC_39C_n41A	No
DC_39A_n78A5, 7	DC_39A_n78A	No
DC_39A_n79A7	DC_39A_n79A	No
DC_40A_n41A	DC_40A_n41A	No
DC_40A_n77A	N/A	No
DC_41A_n77A DC_41C_n77A	DC_41A_n77A	No
DC_41A_n78A DC_41C_n78A	DC_41A_n78A	No
L	1	•

DC_41A_n79A6,7 DC_41C_n79A6,7	DC_41A_n79A	No
DC_42A_n51A	DC_42A_n51A	No
DC_42A_n77A3,4,9 DC_42A_n77C3,4,9 DC_42C_n77A3,4,9 DC_42C_n77C3,4,9 DC_42C_n77C3,4,9 DC_42D_n77A3,4,9 DC_42E_n77A3,4,9	N/A	N/A
DC_42A_n78A3,4,9 DC_42A_n78C3,4,9 DC_42C_n78A3,4,9 DC_42C_n78C3,4,9 DC_42C_n78C3,4,9 DC_42D_n78A3,4,9 DC_42E_n78A3,4,9	N/A	N/A
DC_42A_n79A9 DC_42A_n79C9 DC_42C_n79A9 DC_42C_n79C9 DC_42C_n79C9 DC_42D_n79A9 DC_42E_n79A9	N/A	N/A
DC_46A_n78A2 DC_46C_n78A2 DC_46D_n78A2 DC_46D_n78A2 DC_46E_n78A2	N/A	N/A
DC_48A_n5A	DC_48A_n5A	No
DC_48A_n66A	DC_48A_n66A	No
DC_66A_n2A	DC_66A_n2A	DC_66_n2
DC_66A_n5A	DC_66A_n5A	DC_66_n5
DC_66A_n41A	DC_66A_n41A	No
DC_66A_n71A	DC_66A_n71A	No
DC_66A_n78A	DC_66A_n78A	No

NOTE 1: Uplink EN-DC configurations are the configurations supported by the present release of specifications.

NOTE 2: Restricted to E-UTRA operation when inter-band carrier aggregation is configured. The downlink operating band for Band 46 is paired with the uplink operating band (external E-UTRA band) of the carrier aggregation configuration that is supporting the configured PCeII.

NOTE 3: The minimum requirements apply only when there is non-simultaneous Tx/Rx operation between E-UTRA and NR carriers. This restriction applies also for these carriers when applicable EN-DC configuration is part of a higher order EN-DC configuration.

NOTE 4: The minimum requirements for intra-band contiguous or non-contiguous EN-DC apply. The intraband requirements also apply for these carriers when applicable EN-DC configuration is a subset of a higher order EN-DC configuration.

NOTE 5: The frequency range above 3600 MHz for Band n78 is not used in this combination.

NOTE 6: The frequency range below 2506 MHz for Band 41 is not used in this combination.

NOTE 7: Applicable for UE supporting inter-band EN-DC with mandatory simultaneous Rx/Tx capability.

NOTE 8: The frequency range in band n28 is restricted for this band combination to 703-733 MHz for the UL and 758-788 MHz for the DL.

NOTE 9: The combination is not used alone as fall back mode of other band combinations in which UL in Band 42 is not used.

NOTE 10: The maximum power spectral density imbalance between downlink carriers is within [6] dB. The power spectral density imbalance condition also applies for these carriers when applicable EN-DC configuration is a subset of a higher order EN-DC configuration.

Table 8-2 Inter-band EN-DC configuration within FR1, two bands (TS38.521-3 [1], Table 5.5B.4.1-1)

A.3 Intra-band EN-DC Contiguous within FR1

Following Table 8-3 lists the intra-band EN-DC contiguous within FR1

EN-DC Configuration	Uplink EN-DC configuration (NOTE 1)	Single UL allowed
DC_(n)41AA⁵ DC_(n)41CA⁵ DC_(n)41DA⁵	DC_(n)41AA	Yes ³
DC_(n)41CA⁵	DC_41A_n41A	Yes ³

DC_(n)41DA⁵		
DC_(n)71AA ²	DC_(n)71AA	No ⁴

NOTE 1: Uplink EN-DC configurations are the configurations supported by the present release of specifications.

NOTE 2: Requirements in this specification apply for NR SCS of 15 kHz only.

NOTE 3: Single UL allowed due to potential emission issues, not self-interference.

NOTE 4: For UE(s) supporting dynamic power sharing it is mandatory to do dual simultaneous UL. For UE(s) not supporting dynamic power sharing single UL is allowed.

NOTE 5: The minimum requirements only apply for non-simultaneous Tx/Rx between all carriers.

Table 8-3 Intra-band contiguous EN-DC configurations (TS38.101-3 [1] clause 5.5B.2)

FR1 EN-DC intra-band contiguous configuration and bandwidth combination is listed in Table 8-4

Downlink EN-DC	configurations frequency ag				Maximum aggregated	Bandwidth combination set
configuration		Channel bandwidths for E- UTRA carrier (MHz)	Channel bandwidths for NR carrier (MHz)	Channel bandwidths for E- UTRA carrier (MHz)	bandwidth (MHz)	
DC_(n)41AA	DC_(n)41AA	20	40, 60, 80,100		120	0
			40, 60, 80,100	20		
		20	40, 50, 60, 80,100		120	1
			40, 50, 60, 80,100	20		
DC_(n)41CA	DC_(n)41AA1, DC_41A_n41A2	20+20	40, 60, 80,100		140	0
			40, 60, 80,100	20+20		
		20+20	40, 50, 60, 80,100		140	1
			40, 50, 60, 80,100	20+20		
DC_(n)41DA	DC_(n)41AA1, DC_41A_n41A2	20+20+20	40, 60, 80,100		160	0
			40, 60, 80,100	20+20+20		
		20+20+20	40, 50, 60, 80,100		160	1
			40, 50, 60, 80,100	20+20+20		
DC_(n)71AA	DC_(n)71AA	15	5		20	0
		10	5, 10			
		5	5, 10, 15			
			5	15		
			5, 10	10		
			5, 10, 15	5		

NOTE 3: Void

NOTE 4: The channel bandwidths for E-UTRA or NR carrier should be at least supported in one of the BCS indicated in E-UTRA bandwidth combination sets or NR bandwidth combination sets if reported.

Table 8-4 EN-DC configurations and bandwidth combination sets defined for intra-band contiguous EN-DC (TS38.512-3 [1] clause 5.3B.1.2)

A.4 Intra-band EN-DC Non-contiguous within FR1

FR1 EN-DC Intra-band non-contiguous channel configuration TS38.101-3 [7] clause 5.5B.3 is listed in Table 8-5

EN-DC Configuration	Uplink EN-DC configuration (NOTE 1)	Single UL allowed
DC_3A_n3A	DC_3A_n3A ²	Yes ²
DC_41A_n41A ³ DC_41C_n41A ³ DC_41D_n41A ³	DC_41A_n41A	Yes ⁴
DC_66A_n66A	DC_66A_n66A ⁵	Yes⁵
specifications. NOTE 2: Only single switched UL is NOTE 3: The minimum requirement	ns are the configurations supported by the p supported in Rel.15 s only apply for non-simultaneous Tx/Rx bet potential emission issues, not self-interferen	ween all carriers.

NOTE 5: Only single switched UL is supported.

Table 8-5 Intra-band non-contiguous EN-DC configurations (TS38.503 [7] clause 5.5B.3)

FR1 EN-DC intra-band non-contiguous configuration and bandwidth combination is listed in Table 8-6

Downlink EN-DC	Uplink EN-DC Component carriers in order of configurations frequency			of increasing carrier		Bandwidth combination set
configuration		Channel bandwidths for E- UTRA carrier (MHz)	Channel bandwidths for NR carrier (MHz)	Channel bandwidths for E- UTRA carrier (MHz)	bandwidth (MHz)	
DC_3A_n3A	DC_3A_n3A(1)		5, 10, 15, 20, 25, 30	5, 10, 15, 20	50	0
DC_41A_n41A	DC_41A_n41A	20	40, 60, 80,100		120	0
			40, 60, 80,100	20		
		20	40, 50, 60, 80,100		120	1
			40, 50, 60, 80,100	20		
DC_41C_n41A	DC_41A_n41A	20+20	40, 60, 80,100		140	0
			40, 60, 80,100	20+20		
		20+20	40, 50, 60, 80,100		140	1
			40, 50, 60, 80,100	20+20		
DC_41D_n41A	DC_41A_n41A	20+20+20	40, 60, 80,100		160	0
			40, 60, 80,100	20+20+20		
		20+20+20	40, 50, 60, 80,100		160	1
			40, 50, 60, 80,100	20+20+20		

Table 8-6 EN-DC configurations and bandwidth combination sets defined for intra-band non-contiguous EN-DC (TS38.521-3 [1] clause 5.3B.1.3)

B Initial Test Conditions

B.1 Test Frequencies for E-UTRA FDD Operating Band 1

Test Frequency ID	Bandwidth [MHz]	N _{UL}	Frequency of Uplink [MHz]		Frequency of Downlink [MHz]
Low Range	5	18025	1922.5	25	2112.5
	10	18050	1925	50	2115
	15	18075	1927.5	75	2117.5
	20	18100	1930	100	2120

Mid Range	5/10/15/20	18300	1950	300	2140
High Range	5	18575	1977.5	575	2167.5
	10	18550	1975	550	2165
	15	18525	1972.5	525	2162.5
	20	18500	1970	500	2160

Table 8-7 Test frequencies for E-UTRA FDD Band 1 (TS36.508 [9], Table 4.3.1.1.2-1)

Test frequencies in other FDD E-UTRA bands can be found in TS36.508 [9] clause 4.3.1.1

B.2 Test Channel Bandwidth for 5G NR FR1

NR Band /	NR Band / UE Test Channel Bandwidth					
NR Band	Low	Mid	High			
n1	5	15 ⁶ , 20 ⁷	20 ⁶ , 40 ⁷			
n2	5	15	20			
n3	5	15	30			
n5	5	15	20			
n7	5	15	20			
n8	5	15	20			
n12	5	10	15			
n20	5	15	20			
n25	5	15	20			
n28	5	15	20			
n29	5 ²	10 ²	10 ²			
n34	5	10	15			
n38	5	15	20			
n39	5	20	40			
n40	5	30	80			
n41	10	60	100			
n48	5⁴, 10⁵	20 ⁴ , 40 ⁵	40 ³ , 100 ⁴			
n50	5	20	80			
n51	5	5	5			
n65	5	15	20			
n66	5	20	40			
n70	5	15	15 ¹ /25 ²			
n71	5	10	20			
n74	5	15	20			
n75	5 ²	15 ²	20 ²			
n76	5 ²	5 ²	5 ²			
n77	10	50	100			
n78	10	50	100			
n79	40	60	100			
n80	5 ³	20 ³	30 ¹			

n81	5 ³	15 ³	20 ¹
n82	5 ³	15 ³	20 ¹
n83	5 ³	15 ³	20 ¹
n84	5 ³	15 ³	20 ¹
n86	5 ³	20 ³	40 ¹
	NOTE 1: For UEs with limited UE channel bandwidth capability, if the above defined low channel bandwidth is not supported by the UE, select the closest channel bandwidth in both DL and UL. This shall apply only for Rel.15 UEs Note 2: This UE channel bandwidth is applicable only to downlink. Note 3: This UE channel bandwidth is applicable only to uplink. Note 4: Applicable for use as SCell in CA or SCell in DC configuration. Note 5: Applicable for use as single carrier, PCell in CA or PCell in DC configuration.	or PCell in DC configuration.	NOTE 1: This UE channel bandwidth is applicable only to uplink. NOTE 2: This UE channel bandwidth is applicable only to downlink. NOTE 3: Applicable for use as single carrier, PCell in CA or PCell in DC configuration. NOTE 4: Applicable for use as DL SCell in CA or DL SCell in DC configuration. NOTE 5: For UEs with limited UE channel bandwidth capability, if the above defined high channel bandwidth is not supported by the UE, select the closest channel bandwidth in both DL and UL. This shall apply only for ReI-15 UEs. Note 6: This High test channel bandwidth is applicable to UEs supporting maximum channel bandwidth is applicable to UEs supporting maximum channel bandwidth is applicable to UEs supporting maximum channel bandwidth 40MHz.

Table 8-8 Test channel bandwidth for NR FR1 bands (TS38.508 [8], clause 4.3.1.0A-4.3.1.0D)

B.3 Test Frequency for 5G NR FR1

In TS38.508-1 [8] clause 4.3.1.1.1, FR1 test frequencies are defined for each NR operating band and its' associated SCS.

Each test frequency table is named with following naming convention: Table 4.3.1.1.1.X-Y

Where

X is the NR FR1 operating band number without prefix "n", e.g. X = 78 when FR1 band n78 is under test

Y indicates the SCS (1 = 15 kHz SCS, 2 = 30 kHz SCS, 3 = 60 kHz SCS)

Example:

TS38.508-1 [8] Table 4.3.1.1.1.78-1 defines the test frequencies for n78, 15 kHz SCS (see Table 8-9)

carrier Bandw idth [PRBs]	Rango	e	Carrier centre [MHz]	Carrier centre [ARFCN]	point A [MHz]	absolute Frequen cyPoint A [ARFCN]	offsetTo Carrier [Carrier PRBs]	SS block SCS [kHz]	GSCN	absolute Frequen cySSB [ARFCN]	k _{SSB}	Offset Carrier CORE SET#0 [RBs] Note 2	CORE SET#0 Index (Offset [RBs]) Note 1	offsetTo PointA (SIB1) [PRBs] Note 1
52	Downlink	Low	3305.01	620334	3300.33	620022	0	30	7711	620352	6	1	1 (6)	7
	&	Mid	3549.99	636666	3526.95	635130	102		7881	636672	6	0	1 (6)	108
	Uplink	High	3795	653000	3699.6	646640	504		8051	652992	4	3	0 (2)	509
79	Downlink	Low	3307.5	620500	3300.39	620026	0	30	7711	620352	2	1	1 (6)	7
	&	Mid	3549.99	636666	3524.52	634968	102		7879	636480	0	2	0 (2)	106
	Uplink	High	3792.48	652832	3694.65	646310	504		8048	652704	10	2	1 (6)	512
106	Downlink	Low	3310.02	620668	3300.48	620032	0	30	7711	620352	8	0	1 (6)	6
	&	Mid	3549.99	636666	3522.09	634806	102		7878	636384	6	3	1 (6)	111
	Uplink	High	3789.99	652666	3689.73	645982	504		8044	652320	2	2	0 (2)	508
216	Downlink	Low	3320.01	621334	3300.57	620038	0	30	7711	620352	2	0	1 (6)	6
	&	Mid	3549.99	636666	3512.19	634146	102		7871	635712	6	2	1 (6)	110
	Uplink	High	3780	652000	3669.84	644656	504		8030	650976	8	0	0 (2)	506
270	Downlink	Low	3325.02	621668	3300.72	620048	0	30	7711	620352	4	3	0 (2)	5
	&	Mid	3549.99	636666	3507.33	633822	102		7867	635328	6	1	0 (2)	105
	Uplink	High	3774.99	651666	3659.97	643998	504		8024	650400	6	3	1 (6)	513
controlR FR1 and	esourceSetZe 60 kHz subca	ero (pdcc arrier spa	h-ConfigSIB icing for FR	1) in the MIE 2.	8. The offset	ToPointA IE	is expresse	d in units o	f resource	blocks ass	uming 15	kHz subc	arrier spac	-
	Bandw idth [PRBs] 52 79 106 216 216 270 The COI controlR FR1 and The para	Bandw idth [IPRBs] 52 Downlink & Uplink 79 Downlink & Uplink 106 Downlink & Uplink 216 Downlink & Uplink 216 Downlink & Uplink 216 Downlink & Uplink 210 Downlink & Uplink The CORESET#0 Ind controlResourceSetZe FR1 and 60 kHz subc: The parameter Offset	Bandwidth Low idth IPRBs] 52 Downlink Low 52 Downlink High 0 Uplink High 79 Downlink Low 4 Uplink High 106 Downlink Low 4 Uplink High 216 Downlink Low 4 Uplink High 216 Downlink Low 4 Wid Uplink 107 Downlink Low 4 Mid Uplink 108 Downlink Low 5 Mid Uplink 109 A Mid 100 Downlink Low 5 Mid Uplink High 270 Downlink Low Mid 100 Uplink High The 100 Nid Uplink High 100 Nid Uplink High 100 A Mid <t< td=""><td>Bandw idth [PRBs] centre [MH2] 52 Downlink Low 3305.01 52 Downlink Mid 3549.99 Uplink High 3795 79 Downlink Low 3307.5 8 Mid 3549.99 Uplink High 3792.48 106 Downlink Low 33107.02 8 Mid 3549.99 Uplink High 3789.99 216 Downlink Low 3320.01 8 Mid 3549.99 Uplink High 3789.99 216 Downlink Low 3325.02 8 Mid 3549.99 Uplink High 3780.99 270 Downlink Low 3325.02 8 Mid 3549.99 Uplink High 374.99 The parameter Offset Carrier (pdc-h-ConfigSIB 57.2 FR1 and 60 kHz subcarrier spacing for FR2 The parameter Offset Carrier CORESET#0<</td><td>Bandw idth [PRBs] centre [MHz] centre [ARFCN] 52 Downlink & Low 3305.01 620334 52 Downlink Mid 3549.99 636666 Uplink High 3795 653000 79 Downlink Low 3307.5 620500 8 Mid 3549.99 636666 Uplink High 3792.48 652832 106 Downlink Low 3310.02 620666 Uplink High 3789.99 636666 Uplink High 3789.99 636666 Uplink Low 3320.01 621334 8 Mid 3549.99 636666 Uplink Low 3325.02 621668 270 Downlink Low 3325.02 621668 8 Mid 3549.99 636666 Uplink High 374.99 636666 Uplink High 3774.99 636666 <td< td=""><td>Bandw idth [PRBs] centre [MHz] centre [ARFCN] [MHz] [MHz] 52 Downlink & Low 3305.01 620334 3300.33 52 Downlink & Mid 3549.99 636666 3526.95 Uplink High 3795 653000 3699.6 79 Downlink Low 3307.5 620500 3300.33 106 Downlink Low 3379.248 652832 3694.65 106 Downlink Low 3310.02 620666 3522.19 Uplink High 3789.99 652666 3689.73 216 Downlink Low 3320.01 621334 3300.57 & Mid 3549.99 636666 3512.19 Uplink High 378.99 652606 3689.73 270 Downlink Low 3325.02 621668 3300.72 & Mid 3549.99 636666 3507.33 Uplink High 374.99</td></td<></td></t<> <td>Bandw idth [PRBs] centre [MHz] centre [MHz] [MHz] Frequen cyPoint A [ARFCN] 52 Downlink & Low 3305.01 620334 3300.33 620022 52 Downlink & Mid 3549.99 636666 3526.95 635130 Uplink High 3795 653000 3699.6 646640 79 Downlink Low 3307.5 620500 3300.39 620026 & Mid 3549.99 636666 3524.52 634968 Uplink High 3792.48 652832 3694.65 646310 106 Downlink Low 3310.02 620666 3520.99 634806 Uplink High 3780.99 652666 3689.73 645982 216 Downlink Low 3320.01 621334 3300.57 620038 & Mid 3549.99 636666 3507.33 633822 216 Downlink Low 3320.01 621334 33</td> <td>Bandw idth [PRBs] centre [MHz] centre [ARFCN] fMHz] Frequen cyPoint A [ARFCN] Carrier (Carrier PRBs] 52 Downlink & Mid Low 3305.01 620334 3300.33 620022 0 52 Downlink & Uplink High 3795 653000 3699.6 646640 504 79 Downlink Uplink Low 3307.5 620500 3300.39 620022 0 4 Mid 3549.99 636666 3524.52 634968 102 0 Uplink High 3792.48 652832 3694.65 646310 504 106 Downlink Low 3310.02 620668 3300.48 620032 0 4 Mid 3780.99 652666 3522.09 634946 102 Uplink High 3780.99 6526666 3512.19 634146 102 Uplink High 3780.99 636666 3507.33 633822 102 Uplink High</td> <td>Bandw idth (PRBs) Example centre [MHz] centre (ARFCN] [MHz] Frequen (PRBs) Carrier (Carrier PRBs) block SCS (kHz] 52 Downlink & Low 3305.01 620334 3300.33 620022 0 30 52 Downlink & Mid 3549.99 636666 3526.95 635130 102 30 79 Downlink Uplink Low 3307.5 620500 3300.39 620026 0 30 6 Mid 3549.99 636666 3524.52 634968 102 30 106 Downlink Low 3310.02 620668 3300.48 620032 0 30 106 Downlink Low 3320.01 621344 3300.57 620308 0 30 216 Downlink Low 3320.01 621666 3512.19 634146 102 216 Downlink Low 3325.02 621668 3300.72 620048 0 30 <</td> <td>Bandw idth (PRBs) centre (MHz) centre (ARFCN) [MHz] Frequen cyPoint Carrier (Carrier PRBs) block SCS 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 79 Downlink Low 3307.5 620500 3300.39 620026 0 30 7711 8 Mid 3549.99 636666 3524.52 634968 102 7879 Uplink High 3792.48 652832 3694.65 646310 504 8048 106 Downlink Low 3310.02 620668 3320.90 634969 634806 102 7878 4 Mid 3549.99 636666 3522.19 634146 102 7878 Uplink High 3789.99 652666 3689.73 645982 504 8030 <tr< td=""><td>Bandw idth [PRBs] Eartre L Centre [MHz] Centre [ARFCN] [MHz] Frequen cyPoint Carrier [Carrier A [ARFCN] block SCS [RHz] Frequen cySSB [RFCN] 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 620352 52 Downlink Low 3307.5 653000 3699.6 646640 504 8051 652992 79 Downlink Low 3307.5 620500 3300.39 620026 0 30 7711 620352 79 Downlink Low 3307.5 620500 3300.39 620026 0 30 7711 620352 8 Mid 3549.99 636666 5522.09 634906 102 7879 636480 106 Downlink Low 3310.02 622666 3689.73 645982 504 8044 652320 216 Downlink Low 3325.02 621688 350.73 645982 504</td><td>Bandw idth (PRBs) Eartre (IMHz) centre (ARFCN) Centre (ARFCN) IMHz) Frequen cySSB (ARFCN) Carrier (Carrier PRBs) block SCS (RHz) Frequen cySSB (RHz) Frequen cySSB (RHz) 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 620352 6 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 620352 6 100 Mid 3549.99 636666 3524.52 634968 102 7881 636672 6 4 Mid 3549.99 636666 3524.52 634968 102 7879 63480 0 106 Downlink Low 3310.02 620668 3300.48 620032 0 30 7711 620320 2 106 Downlink Low 3320.01 621344 3300.57 620308 0 30 7711 620352 2 216 Dow</td><td>Bandw idth (PRBs) Earthe (PRBs) centre (PRBs) centre (PRBs) Centre (PRBs) Frequen (PRBs) Frequen</td><td>Bandw idth idth (PRBs) Earther (IMHz) Centre (IMHz) Centre (IAFFCN) IMHz) Frequen cyPoint (AFFCN) Carrier (Carrier (Carrier (Carrier) block SC S (IKHz) Frequen cySSB Frequen cySSB Frequen CORE (IAFFCN) SET#0 (Offset (RBs)) 52 Downlink & Mid Low 3305.01 620334 3300.33 620022 0 30 7711 620352 6 1 1 (6) 52 Downlink Widt High 3755 653000 3699.6 646640 504 8051 652922 4 3 0 (2) 79 Downlink & Mid Low 3307.5 620500 3300.38 620022 0 30 7711 620352 2 1 1 (6) 78 Mid 3549.99 636666 3524.52 634968 102 7871 636480 0 2 0 (2) 1 (6) 106 Downlink Low 3310.02 620666 3524.92 634946 102 2 2 0 (2) 106</td></tr<></td>	Bandw idth [PRBs] centre [MH2] 52 Downlink Low 3305.01 52 Downlink Mid 3549.99 Uplink High 3795 79 Downlink Low 3307.5 8 Mid 3549.99 Uplink High 3792.48 106 Downlink Low 33107.02 8 Mid 3549.99 Uplink High 3789.99 216 Downlink Low 3320.01 8 Mid 3549.99 Uplink High 3789.99 216 Downlink Low 3325.02 8 Mid 3549.99 Uplink High 3780.99 270 Downlink Low 3325.02 8 Mid 3549.99 Uplink High 374.99 The parameter Offset Carrier (pdc-h-ConfigSIB 57.2 FR1 and 60 kHz subcarrier spacing for FR2 The parameter Offset Carrier CORESET#0<	Bandw idth [PRBs] centre [MHz] centre [ARFCN] 52 Downlink & Low 3305.01 620334 52 Downlink Mid 3549.99 636666 Uplink High 3795 653000 79 Downlink Low 3307.5 620500 8 Mid 3549.99 636666 Uplink High 3792.48 652832 106 Downlink Low 3310.02 620666 Uplink High 3789.99 636666 Uplink High 3789.99 636666 Uplink Low 3320.01 621334 8 Mid 3549.99 636666 Uplink Low 3325.02 621668 270 Downlink Low 3325.02 621668 8 Mid 3549.99 636666 Uplink High 374.99 636666 Uplink High 3774.99 636666 <td< td=""><td>Bandw idth [PRBs] centre [MHz] centre [ARFCN] [MHz] [MHz] 52 Downlink & Low 3305.01 620334 3300.33 52 Downlink & Mid 3549.99 636666 3526.95 Uplink High 3795 653000 3699.6 79 Downlink Low 3307.5 620500 3300.33 106 Downlink Low 3379.248 652832 3694.65 106 Downlink Low 3310.02 620666 3522.19 Uplink High 3789.99 652666 3689.73 216 Downlink Low 3320.01 621334 3300.57 & Mid 3549.99 636666 3512.19 Uplink High 378.99 652606 3689.73 270 Downlink Low 3325.02 621668 3300.72 & Mid 3549.99 636666 3507.33 Uplink High 374.99</td></td<>	Bandw idth [PRBs] centre [MHz] centre [ARFCN] [MHz] [MHz] 52 Downlink & Low 3305.01 620334 3300.33 52 Downlink & Mid 3549.99 636666 3526.95 Uplink High 3795 653000 3699.6 79 Downlink Low 3307.5 620500 3300.33 106 Downlink Low 3379.248 652832 3694.65 106 Downlink Low 3310.02 620666 3522.19 Uplink High 3789.99 652666 3689.73 216 Downlink Low 3320.01 621334 3300.57 & Mid 3549.99 636666 3512.19 Uplink High 378.99 652606 3689.73 270 Downlink Low 3325.02 621668 3300.72 & Mid 3549.99 636666 3507.33 Uplink High 374.99	Bandw idth [PRBs] centre [MHz] centre [MHz] [MHz] Frequen cyPoint A [ARFCN] 52 Downlink & Low 3305.01 620334 3300.33 620022 52 Downlink & Mid 3549.99 636666 3526.95 635130 Uplink High 3795 653000 3699.6 646640 79 Downlink Low 3307.5 620500 3300.39 620026 & Mid 3549.99 636666 3524.52 634968 Uplink High 3792.48 652832 3694.65 646310 106 Downlink Low 3310.02 620666 3520.99 634806 Uplink High 3780.99 652666 3689.73 645982 216 Downlink Low 3320.01 621334 3300.57 620038 & Mid 3549.99 636666 3507.33 633822 216 Downlink Low 3320.01 621334 33	Bandw idth [PRBs] centre [MHz] centre [ARFCN] fMHz] Frequen cyPoint A [ARFCN] Carrier (Carrier PRBs] 52 Downlink & Mid Low 3305.01 620334 3300.33 620022 0 52 Downlink & Uplink High 3795 653000 3699.6 646640 504 79 Downlink Uplink Low 3307.5 620500 3300.39 620022 0 4 Mid 3549.99 636666 3524.52 634968 102 0 Uplink High 3792.48 652832 3694.65 646310 504 106 Downlink Low 3310.02 620668 3300.48 620032 0 4 Mid 3780.99 652666 3522.09 634946 102 Uplink High 3780.99 6526666 3512.19 634146 102 Uplink High 3780.99 636666 3507.33 633822 102 Uplink High	Bandw idth (PRBs) Example centre [MHz] centre (ARFCN] [MHz] Frequen (PRBs) Carrier (Carrier PRBs) block SCS (kHz] 52 Downlink & Low 3305.01 620334 3300.33 620022 0 30 52 Downlink & Mid 3549.99 636666 3526.95 635130 102 30 79 Downlink Uplink Low 3307.5 620500 3300.39 620026 0 30 6 Mid 3549.99 636666 3524.52 634968 102 30 106 Downlink Low 3310.02 620668 3300.48 620032 0 30 106 Downlink Low 3320.01 621344 3300.57 620308 0 30 216 Downlink Low 3320.01 621666 3512.19 634146 102 216 Downlink Low 3325.02 621668 3300.72 620048 0 30 <	Bandw idth (PRBs) centre (MHz) centre (ARFCN) [MHz] Frequen cyPoint Carrier (Carrier PRBs) block SCS 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 79 Downlink Low 3307.5 620500 3300.39 620026 0 30 7711 8 Mid 3549.99 636666 3524.52 634968 102 7879 Uplink High 3792.48 652832 3694.65 646310 504 8048 106 Downlink Low 3310.02 620668 3320.90 634969 634806 102 7878 4 Mid 3549.99 636666 3522.19 634146 102 7878 Uplink High 3789.99 652666 3689.73 645982 504 8030 <tr< td=""><td>Bandw idth [PRBs] Eartre L Centre [MHz] Centre [ARFCN] [MHz] Frequen cyPoint Carrier [Carrier A [ARFCN] block SCS [RHz] Frequen cySSB [RFCN] 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 620352 52 Downlink Low 3307.5 653000 3699.6 646640 504 8051 652992 79 Downlink Low 3307.5 620500 3300.39 620026 0 30 7711 620352 79 Downlink Low 3307.5 620500 3300.39 620026 0 30 7711 620352 8 Mid 3549.99 636666 5522.09 634906 102 7879 636480 106 Downlink Low 3310.02 622666 3689.73 645982 504 8044 652320 216 Downlink Low 3325.02 621688 350.73 645982 504</td><td>Bandw idth (PRBs) Eartre (IMHz) centre (ARFCN) Centre (ARFCN) IMHz) Frequen cySSB (ARFCN) Carrier (Carrier PRBs) block SCS (RHz) Frequen cySSB (RHz) Frequen cySSB (RHz) 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 620352 6 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 620352 6 100 Mid 3549.99 636666 3524.52 634968 102 7881 636672 6 4 Mid 3549.99 636666 3524.52 634968 102 7879 63480 0 106 Downlink Low 3310.02 620668 3300.48 620032 0 30 7711 620320 2 106 Downlink Low 3320.01 621344 3300.57 620308 0 30 7711 620352 2 216 Dow</td><td>Bandw idth (PRBs) Earthe (PRBs) centre (PRBs) centre (PRBs) Centre (PRBs) Frequen (PRBs) Frequen</td><td>Bandw idth idth (PRBs) Earther (IMHz) Centre (IMHz) Centre (IAFFCN) IMHz) Frequen cyPoint (AFFCN) Carrier (Carrier (Carrier (Carrier) block SC S (IKHz) Frequen cySSB Frequen cySSB Frequen CORE (IAFFCN) SET#0 (Offset (RBs)) 52 Downlink & Mid Low 3305.01 620334 3300.33 620022 0 30 7711 620352 6 1 1 (6) 52 Downlink Widt High 3755 653000 3699.6 646640 504 8051 652922 4 3 0 (2) 79 Downlink & Mid Low 3307.5 620500 3300.38 620022 0 30 7711 620352 2 1 1 (6) 78 Mid 3549.99 636666 3524.52 634968 102 7871 636480 0 2 0 (2) 1 (6) 106 Downlink Low 3310.02 620666 3524.92 634946 102 2 2 0 (2) 106</td></tr<>	Bandw idth [PRBs] Eartre L Centre [MHz] Centre [ARFCN] [MHz] Frequen cyPoint Carrier [Carrier A [ARFCN] block SCS [RHz] Frequen cySSB [RFCN] 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 620352 52 Downlink Low 3307.5 653000 3699.6 646640 504 8051 652992 79 Downlink Low 3307.5 620500 3300.39 620026 0 30 7711 620352 79 Downlink Low 3307.5 620500 3300.39 620026 0 30 7711 620352 8 Mid 3549.99 636666 5522.09 634906 102 7879 636480 106 Downlink Low 3310.02 622666 3689.73 645982 504 8044 652320 216 Downlink Low 3325.02 621688 350.73 645982 504	Bandw idth (PRBs) Eartre (IMHz) centre (ARFCN) Centre (ARFCN) IMHz) Frequen cySSB (ARFCN) Carrier (Carrier PRBs) block SCS (RHz) Frequen cySSB (RHz) Frequen cySSB (RHz) 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 620352 6 52 Downlink Low 3305.01 620334 3300.33 620022 0 30 7711 620352 6 100 Mid 3549.99 636666 3524.52 634968 102 7881 636672 6 4 Mid 3549.99 636666 3524.52 634968 102 7879 63480 0 106 Downlink Low 3310.02 620668 3300.48 620032 0 30 7711 620320 2 106 Downlink Low 3320.01 621344 3300.57 620308 0 30 7711 620352 2 216 Dow	Bandw idth (PRBs) Earthe (PRBs) centre (PRBs) centre (PRBs) Centre (PRBs) Frequen (PRBs) Frequen	Bandw idth idth (PRBs) Earther (IMHz) Centre (IMHz) Centre (IAFFCN) IMHz) Frequen cyPoint (AFFCN) Carrier (Carrier (Carrier (Carrier) block SC S (IKHz) Frequen cySSB Frequen cySSB Frequen CORE (IAFFCN) SET#0 (Offset (RBs)) 52 Downlink & Mid Low 3305.01 620334 3300.33 620022 0 30 7711 620352 6 1 1 (6) 52 Downlink Widt High 3755 653000 3699.6 646640 504 8051 652922 4 3 0 (2) 79 Downlink & Mid Low 3307.5 620500 3300.38 620022 0 30 7711 620352 2 1 1 (6) 78 Mid 3549.99 636666 3524.52 634968 102 7871 636480 0 2 0 (2) 1 (6) 106 Downlink Low 3310.02 620666 3524.92 634946 102 2 2 0 (2) 106

Table 8-9 Test frequencies of 5G NR FR1 band n78, 15 kHz SCS (TS38.508-1 [8], Table 4.3.1.1.1.78-1)

TS38.508-1 [8] Table 4.3.1.1.1.78-2 defines the test frequencies for n78, 30 kHz SCS (see Table 8-10)

CBW [MHz]	carrier Bandw idth [PRBs]	Rang	e	Carrier centre [MHz]	Carrier centre [ARFCN]	point A [MHz]	absolute Frequen cyPoint A [ARFCN]	offsetTo Carrier [Carrier PRBs]	SS block SCS [kHz]	GSCN	absolute Frequen cySSB [ARFCN]	k _{SSB}	Offset Carrier CORE SET#0 [RBs] Note 2	CORE SET#0 Index (Offset [RBs]) Note 1	offsetTo PointA (SIB1) [PRBs] Note 1
10	24	Downlink	Low	3305.01	620334	3300.69	620046	0	30	7711	620352	18	0	2 (2)	4
		&	Mid	3549.99	636666	3508.95	633930	102		7881	636672	6	0	2 (2)	208
		Uplink	High	3795	653000	3609.24	640616	504		8051	652992	16	0	1 (1)	1010
15	38	Downlink	Low	3307.5	620500	3300.66	620044	0	30	7711	620352	20	0	2 (2)	4
		&	Mid	3549.99	636666	3506.43	633762	102		7879	636480	6	0	1 (1)	206
		Uplink	High	3792.48	652832	3604.2	640280	504		8048	652704	16	0	3 (3)	1014
20	51	Downlink	Low	3310.02	620668	3300.84	620056	0	30	7711	620352	8	0	2 (2)	4
		&	Mid	3549.99	636666	3504.09	633606	102		7878	636384	18	0	3 (3)	210
		Uplink	High	3789.99	652666	3599.37	639958	504		8044	652320	2	0	1(1)	1010
40	106	Downlink	Low	3320.01	621334	3300.93	620062	0	30	7711	620352	2	0	2 (2)	4
		&	Mid	3549.99	636666	3494.19	632946	102		7871	635712	6	0	3 (3)	210
		Uplink	High	3780	652000	3579.48	638632	504		8030	650976	8	0	0 (0)	1008
50	133	Downlink	Low	3325.02	621668	3301.08	620072	0	30	7711	620352	16	0	1(1)	2
		&	Mid	3549.99	636666	3489.33	632622	102		7867	635328	18	0	0 (0)	204
		Uplink	High	3774.99	651666	3569.61	637974	504		8024	650400	18	0	3 (3)	1014
60	162	Downlink	Low	3330	622000	3300.84	620056	0	30	7711	620352	8	0	2 (2)	4
		&	Mid	3549.99	636666	3484.11	632274	102		7864	635040	6	0	3 (3)	210
		Uplink	High	3769.98	651332	3559.38	637292	504		8016	649632	4	0	0 (0)	1008
80	217	Downlink	Low	3340.02	622668	3300.96	620064	0	30	7711	620352	0	0	2 (2)	4
		&	Mid	3549.99	636666	3474.21	631614	102		7857	634368	18	0	2 (2)	208
		Uplink	High	3759.99	650666	3539.49	635966	504		8003	648384	10	0	3 (3)	1014
90	245	Downlink	Low	3345	623000	3300.9	620060	0	30	7711	620352	4	0	2 (2)	4
		&	Mid	3549.99	636666	3469.17	631278	102		7853	633984	18	0	0 (0)	204
		Uplink	High	3754.98	650332	3529.44	635296	504		7996	647712	8	0	3 (3)	1014
100	273	Downlink	Low	3350.01	623334	3300.87	620058	0	30	7711	620352	6	0	2 (2)	4
		&	Mid	3549.99	636666	3464.13	630942	102		7850	633696	18	0	2 (2)	208
		Uplink	High	3750	650000	3519.42	634628	504		7989	647040	4	0	3 (3)	1014
Note 1: Note 2:	controlR 60 kHz s The para	RESET#0 Inde esourceSetZe ubcarrier space umeter Offset (er ΔFoffsetCore:	ro (pdcch cing for F Carrier C	I-ConfigSIB1 R2. ORESET#0) in the MIB. specifies the	The offsetTo	oPointA IE is the lowest su	expressed in bcarrier of the	n units of re	esource blo	ocks assumir	ng 15 kH:	z subcarrie	r spacing fo	

Table 8-10 Test frequencies of 5G NR FR1 band n78, 30 kHz SCS (TS38.508-1 [8], Table 4.3.1.1.1.78-2)

B.4 Test SCS for 5G NR FR1

In default condition table of each conformance test case, test SCS requirement is defined. The supported SCS of each FR1 operating band is specified in TS38.521-1 [6], Table 5.3.5-1 as shown below in Table 8-11.

	NR b	and /	SCS /	UE CI	hanne	l banc	lwidth						
NR Band	SCS kHz				20 ² MHz			-	 60 MHz	70 MHz	80 MHz	90 ⁶ MHz	100 MHz
n1	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								

	60		Yes	Yes	Yes								
n2	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n3	15	Yes	Yes	Yes	Yes	Yes	Yes						
113		res											
	30		Yes	Yes	Yes	Yes	Yes						
	60		Yes	Yes	Yes	Yes	Yes						
n5	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60												
n7	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n8	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60		1	Ĩ	İ		1					İ	İ
n12	15	Yes	Yes	Yes									
	30		Yes	Yes	1								
	60												
n20	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60												
n25	15	Yes	Yes	Yes	Yes								
	30	100	Yes	Yes	Yes		-						
	60		Yes	Yes	Yes								
n28	15	Yes	Yes	Yes	Yes ⁹								
1120	30	res	Yes	Yes	Yes ⁹								
			Tes	res	res								
	60												
n29	15	Yes	Yes										
	30		Yes										
	60												
n34	15	Yes	Yes	Yes									
	30		Yes	Yes									
	60		Yes	Yes									
n38	15	Yes	Yes	Yes	Yes								
	30		Yes	Yes	Yes								
	60		Yes	Yes	Yes								
n39	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes			İ		
	30	1	Yes	Yes	Yes	Yes	Yes	Yes				1	1
	60		Yes	Yes	Yes	Yes	Yes	Yes					
n40	15	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes				
	30		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
	60		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
n41	15		Yes	Yes	Yes		Yes	Yes	Yes				
	30		Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes ⁶	Yes
	60			Yes				Yes	Yes	Yes	Yes	Yes ⁶	Yes
m 40		Vc-7	Yes		Yes		Yes			165	165	165	165
n48	15	Yes ⁷	Yes	Yes	Yes			Yes	Yes ⁸				

	30		Yes	Yes	Yes			Yes	Yes ⁸	Yes ⁸		Yes ⁸	Yes ^{8,10}	Yes ⁸
	60		Yes	Yes	Yes			Yes	Yes ⁸	Yes ⁸			Yes ^{8,10}	
n50	15	Yes	Yes	Yes	Yes			Yes	Yes					
	30		Yes	Yes	Yes			Yes	Yes	Yes		Yes ³		
	60		Yes	Yes	Yes			Yes	Yes	Yes		Yes ³		
n51	15	Yes												
	30													
	60													
n65	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
n66	15	Yes	Yes	Yes	Yes			Yes						
	30		Yes	Yes	Yes			Yes						
	60		Yes	Yes	Yes			Yes						
n70	15	Yes	Yes	Yes	Yes ³	Yes ³								
	30		Yes	Yes	Yes ³	Yes ³								
	60		Yes	Yes	Yes ³	Yes ³	1	1						
n71	15	Yes	Yes	Yes	Yes		1	1						
	30		Yes	Yes	Yes									
	60													
n74	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
n75	15	Yes	Yes	Yes	Yes									
	30		Yes	Yes	Yes									
	60		Yes	Yes	Yes									
n76	15	Yes												
	30													
	60													
n77	15		Yes	Yes	Yes			Yes	Yes					
	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes ^{10,11}	Yes	Yes ^{6,10}	Yes
	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes ^{10,11}	Yes	Yes ^{6,10}	Yes
n78	15		Yes	Yes	Yes			Yes	Yes					
	30		Yes	Yes	Yes			Yes	Yes	Yes	Yes ^{10,11}		Yes ⁶	Yes
	60		Yes	Yes	Yes			Yes	Yes	Yes	Yes ^{10,11}	Yes	Yes ⁶	Yes
n79	15							Yes	Yes					
	30			<u> </u>				Yes	Yes	Yes		Yes		Yes
	60			<u> </u>				Yes	Yes	Yes		Yes		Yes
n80	15	Yes	Yes	Yes	Yes	Yes	Yes							
	30	<u> </u>	Yes	Yes	Yes	Yes	Yes							
	60		Yes	Yes	Yes	Yes	Yes							
n81	15	Yes	Yes	Yes	Yes									
	30	1	Yes	Yes	Yes									
	60						<u> </u>							
n82	15	Yes	Yes	Yes	Yes		<u> </u>							
	30		Yes	Yes	Yes		<u> </u>							
	60													

30	Yes	Yes	Yes	Yes									
30		Yes	Yes	Yes									
60													
184 15	Yes	Yes	Yes	Yes									
30		Yes	Yes	Yes									
60		Yes	Yes	Yes									
186 15	Yes	Yes	Yes	Yes			Yes						
30		Yes	Yes	Yes			Yes						
60		Yes	Yes	Yes			Yes						
195 15	Yes	Yes	Yes										
30		Yes	Yes										
60		Yes	Yes										
6 a SC ba NC 6 a tha by NC NC NC	DTE 4: and 7 tha CS per cl ndwidth. DTE 5: and 7 tha at value the UE DTE 6: DTE 7: iven carriv DTE 8: iven carriv	at refer hannel For to at refer is not s in both This For the For the For the	to this bands est cor to this suppor UL ar UE ch his bar onfigur his bar	s table width, H figurat table ted by nd DL. annel b ndwidth ed as a ndwidth	for tes Highes tion tal and lis the UI pandw n, the r an SC n, the r	at SCS at SCS bles fr at and E in U idth is minimu ell par minimu	5, the L refers om the list the L and/ option um req t of DC um req	owest to hig trans test \$ or DL, all in F juirem C or C/ juirem	SCS i phest s mitter SCS as select (15. ents ai A confi ents ai	upported and rece s Mid or the clos re restric guration re restric	lowes d SCS eiver to any of sest So cted to a. cted to	ests in S her char ther value CS supp operation	orted annel Section ue; if corted

C Initial Bandwidth Part (BWP)

The specification TS38.508-1 [8], clause 4.3.1.0D (see Table 8-12 below) defines the initial BWP for FR1 and locationandbandwidth with respect to the channel bandwidth and its applied SCS.

BW [MHz]	SCS [kHz]	L_RBs (MAX NRB)	locationAndBandwidth (Note 1)
5	15	25	6600
5	30	11	2750
5	60	N/A	N/A
10	15	52	14025
10	30	24	6325
10	60	11	2750
15	15	79	21450
15	30	38	10175
15	60	18	4675
20	15	106	28875
20	30	51	13750
20	60	24	6325
25	15	133	36300
25	30	65	17600
25	60	31	8250

30	15	160	32174
30	30	78	21175
30	60	38	10175
40	15	216	16774
40	30	106	28875
40	60	51	13750
50	15	270	1924
50	30	133	36300
50	60	65	17600
60	15	N/A	N/A
60	30	162	31624
60	60	79	21450
70	15	N/A	N/A
70	30	189	24199
70	60	93	25300
80	15	N/A	N/A
80	30	217	16499
80	60	107	29150
90	15	N/A	N/A
90	30	245	8799
90	60	121	33000
100	15	N/A	N/A
100	30	273	1099
100	60	135	36850
Note 1: as the RIV RB_{start}	value in ac	cordance to TS	Bandwidth parameter is calculated 38.214 [21] with $N_{\rm BWP}^{size}$ = 275, each bandwidth and subcarrier
spacing.			
	locationAnd	Bandwidth in BW	/P for FR1

The parameter locationandbandwidth defines the BWP allocation in frequency domain and occupied bandwidth. It is given in resource indication value (RIV) format which is calculated by taking the staring RB position and allocated number of RBs into account. For example, RIV = 1099 is calculated when RBstart = 0 L_{RB} = 275 is considered. Please refer to TS38.213 [16] and TS38.214 [10] for detailed information about RIV calculation.

D Resource Block Allocation of Reference Measurement Channels (RMC)

D.1 E-UTRA RB allocation of Uplink RMC

Channel Bandwidth	RB alloca	ation	Γ	1
	Full_Allocation	Partial_Allocation	1RB_Left	1RB_Right
1.4MHz	6@0	5@0	1@0	1@5

Table 8-13 shows the RB allocation of uplink RMC for E-UTRA

3MHz	15@0	4@0	1@0	1@14
5MHz	25@0	8@0	1@0	1@24
10MHz	50@0	12@0	1@0	1@49
15MHz	75@0	16@0	1@0	1@74
20MHz	100@0	18@0	1@0	1@99
NOTE: Partial_Alloca MPRsingle,E-UTRA for Q 6.2.2.4.1-1.				

Table 8-13 E-UTRA common uplink configuration (TS38.521-3 [1], Table 6.1-1)

D.2 NR RB Allocation of Uplink RMC

Table 8-14 shows the RB allocation of uplink RMC for 5G NR

Channel Bandwidth	SCS(kHz)	OFDM	RB alloc	ation						
			Edge_Full_Left	Edge_Full_Right	Edge_1RB_Left	Edge_1RB_Right	Outer_Full	Inner_Full	Inner_1RB_Left	Inner_1RB_Right
5MHz	15	DFT-s	2@0	2@23	1@0	1@24	25@0	12@6	1@1	1@23
		CP	2@0	2@23	1@0	1@24	25@0	13@6	1@1	1@23
	30	DFT-s	2@0	2@9	1@0	1@10	10@0	5@21	1@1	1@9
		CP	2@0	2@9	1@0	1@10	11@0	5@21	1@1	1@9
	60	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		СР	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
10MHz	15	DFT-s	2@0	2@50	1@0	1@51	50@0	25@12	1@1	1@50
		CP	2@0	2@50	1@0	1@51	52@0	26@13	1@1	1@50
	30	DFT-s	2@0	2@22	1@0	1@23	24@0	12@6	1@1	1@22
		CP	2@0	2@22	1@0	1@23	24@0	12@6	1@1	1@22
	60	DFT-s	2@0	2@9	1@0	1@10	10@0	5@21	1@1	1@9
		CP	2@0	2@9	1@0	1@10	11@0	5@21	1@1	1@9
15MHz	15	DFT-s	2@0	2@77	1@0	1@78	75@0	36@18	1@1	1@77
		CP	2@0	2@77	1@0	1@78	79@0	39@191	1@1	1@77
	30	DFT-s	2@0	2@36	1@0	1@37	36@0	18@9	1@1	1@36
		CP	2@0	2@36	1@0	1@37	38@0	19@9	1@1	1@36
	60	DFT-s	2@0	2@16	1@0	1@17	18@0	9@4	1@1	1@16
		CP	2@0	2@16	1@0	1@17	18@0	9@4	1@1	1@16
20MHz	15	DFT-s	2@0	2@104	1@0	1@105	100@0	50@25	1@1	1@104
		CP	2@0	2@104	1@0	1@105	106@0	53@26	1@1	1@104
	30	DFT-s	2@0	2@49	1@0	1@50	50@0	25@12	1@1	1@49
		CP	2@0	2@49	1@0	1@50	51@0	25@121	1@1	1@49
	60	DFT-s	2@0	2@22	1@0	1@23	24@0	12@6	1@1	1@22
		CP	2@0	2@22	1@0	1@23	24@0	12@6	1@1	1@22
25MHz	15	DFT-s	2@0	2@131	1@0	1@132	128@0	64@32	1@1	1@131
		CP	2@0	2@131	1@0	1@132	133@0	67@33	1@1	1@131
	30	DFT-s	2@0	2@63	1@0	1@64	64@0	32@16	1@1	1@63
		СР	2@0	2@63	1@0	1@64	65@0	33@16	1@1	1@63
	60	DFT-s	2@0	2@29	1@0	1@30	30@0	15@71	1@1	1@29
		СР	2@0	2@29	1@0	1@30	31@0	15@71	1@1	1@29
30MHz	15	DFT-s	2@0	2@158	1@0	1@159	160@0	80@40	1@1	1@158
		СР	2@0	2@158	1@0	1@159	160@0	80@40	1@1	1@158
	30	DFT-s	2@0	2@76	1@0	1@77	75@0	36@18	1@1	1@76

		CP	2@0	2@76	1@0	1@77	78@0	39@19	1@1	1@76
	60	DFT-s	2@0	2@36	1@0	1@37	36@0	18@9	1@1	1@36
		CP	2@0	2@36	1@0	1@37	38@0	19@9	1@1	1@36
0MHz	15	DFT-s	2@0	2@214	1@0	1@215	216@0	108@54	1@1	1@214
		CP	2@0	2@214	1@0	1@215	216@0	108@54	1@1	1@214
	30	DFT-s	2@0	2@104	1@0	1@105	100@0	50@25	1@1	1@104
		CP	2@0	2@104	1@0	1@105	106@0	53@26	1@1	1@104
	60	DFT-s	2@0	2@49	1@0	1@50	50@0	25@12	1@1	1@49
		CP	2@0	2@49	1@0	1@50	51@0	25@121	1@1	1@49
50MHz	15	DFT-s	2@0	2@268	1@0	1@269	270@0	135@67	1@1	1@268
		CP	2@0	2@268	1@0	1@269	270@0	135@67	1@1	1@268
	30	DFT-s	2@0	2@131	1@0	1@132	128@0	64@32	1@1	1@131
		CP	2@0	2@131	1@0	1@132	133@0	67@33	1@1	1@131
	60	DFT-s	2@0	2@63	1@0	1@64	64@0	32@16	1@1	1@63
		CP	2@0	2@63	1@0	1@64	65@0	33@16	1@1	1@63
60MHz	15	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		CP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	30	DFT-s	2@0	2@160	1@0	1@161	162@0	81@40	1@1	1@160
		CP	2@0	2@160	1@0	1@161	162@0	81@40	1@1	1@160
	60	DFT-s	2@0	2@77	1@0	1@78	75@0	36@18	1@1	1@77
		CP	2@0	2@77	1@0	1@78	79@0	39@191	1@1	1@77
30MHz	15	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		CP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	30	DFT-s	2@0	2@215	1@0	1@216	216@0	108@54	1@1	1@215
		CP	2@0	2@215	1@0	1@216	217@0	109@54	1@1	1@215
	60	DFT-s	2@0	2@105	1@0	1@106	100@0	50@25	1@1	1@105
		CP	2@0	2@105	1@0	1@106	107@0	53@261	1@1	1@105
90MHz	15	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		CP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	30	DFT-s	2@0	2@243	1@0	1@244	240@0	120@60	1@1	1@243
		CP	2@0	2@243	1@0	1@244	245@0	123@61	1@1	1@243
	60	DFT-s	2@0	2@119	1@0	1@120	120@0	60@30	1@1	1@119
		CP	2@0	2@119	1@0	1@120	121@0	61@30	1@1	1@119
100MHz	15	DFT-s	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		CP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	30	DFT-s	2@0	2@271	1@0	1@272	270@0	135@67	1@1	1@271
		CP	2@0	2@271	1@0	1@272	273@0	137@68	1@1	1@271
	60	DFT-s	2@0	2@133	1@0	1@134	135@0	64@32	1@1	1@133
		CP	2@0	2@133	1@0	1@134	135@0	67@331	1@1	1@133

Table 8-14 NR Common Uplink Configuration (TS38.521-1 [6], Table 6.1-1)

If REFSENS RB allocation is required, e.g. reference sensitivity test case, then RB resource allocation should follow the scheme in TS38.521-1 [6], Table 7.3.2.4.1-3. Table 8-15 lists the subset of the original table.

Operating Band	SCS kHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Duplex Mode
n1	15	128@51	128@321	128@881	128@1421					FDD
	30	64@11	64@141	64@421	64@691					
	60	30@11	30@81	30@211	30@351					
n2	15									FDD
	30									

	60							
n3	15	50@831	50@1101					FDD
	30	24@411	24@541					
	60	10@211	10@281					
n5	15							FDD
	30							
	60							
n7	15							FDD
	30							
	60							
n8	15							FDD
	30							
	60							
n12	15							FDD
	30							
	60							
n20	15							FDD
	30							
	60							
า25	15							FDD
	30							
	60							
n26	15							FDD
	30							
n28	15		25@1351					FDD
	30		10@681					
	60							
n 30	15							FDD
	30							
	60							
n34	15							TDD
	30							
	60							
n38	15							TDD
	30							
	60							
n 39	15	128@0	160@0	216@0				TDD
	30	64@0	75@0	100@0				
	60	30@0	36@0	50@0				
n40	15	128@0	160@0	216@0	270@0			TDD
	30	64@0	75@0	100@0	128@0	162@0	216@0	
	60	30@0	36@0	50@0	64@0	75@0	100@0	

n41	15		160@0	216@0	270@0					TDD
	30		75@0	100@0	128@0	162@0	216@0	243@0	270@0	
	60		36@0	50@0	64@0	75@0	100@0	120@0	135@0	
n48	15			216@0						TDD
	30			100@0						_
	60			50@0						
n50	15			216@0	270@0					TDD
	30			100@0	128@0	162@0	NOTE 3			
	60			50@0	64@0	75@0	NOTE 3			_
n51	15									TDD
	30									_
	60									
n65	15									FDD
	30									
	60									
n66	15	128@51	160@0	216@0						FDD
	30	64@11	75@31	100@61						
	60	30@11	36@21	50@11						
n70	15	NOTE 3								FDD
	30	NOTE 3								
	60	NOTE 3								
n71	15									FDD
	30									
	60									_
n74	15									FDD
	30									
	60									
n77	15			216@0	270@0					TDD
	30			100@0	128@0	162@0	216@0	243@0	270@0	
	60			50@0	64@0	75@0	100@0	120@0	135@0	
n78	15			216@0	270@0					TDD
	30			100@0	128@0	162@0	216@0	243@0	270@0	1
	60			50@0	64@0	75@0	100@0	120@0	135@0	1
n79	15			216@0	270@0					TDD
	30			100@0	128@0	162@0	216@0		270@0	1
	60			50@0	64@0	75@0	100@0		135@0	1

Table 8-15 FR1 Uplink RB Configuration for REFSENS (Subset of TS38.521-1 [6], Table 7.3.2.4.1-3)

D.3 NR RB Allocation of Downlink RMC

Channel Bandwidth	SCS(kHz)		Outer RB allocation / Normal RB allocation		
5MHz	15	25	25@0		

	30	11	11@0
	60	N/A	N/A
10MHz	15	52	52@0
	30	24	24@0
	60	11	11@0
15MHz	15	79	79@0
	30	38	38@0
	60	18	18@0
20MHz	15	106	106@0
	30	51	51@0
	60	24	24@0
25MHz	15	133	133@0
	30	65	65@0
	60	31	31@0
30MHz	15	160	160@0
	30	78	78@0
	60	38	38@0
40MHz	15	216	216@0
	30	106	106@0
	60	51	51@0
50MHz	15	270	270@0
	30	133	133@0
	60	65	65@0
60MHz	15	N/A	N/A
	30	162	162@0
	60	79	79@0
80MHz	15	N/A	N/A
	30	217	217@0
	60	107	107@0
90MHz	15	N/A	N/A
	30	245	245@0
	60	121	121@0
100MHz	15	N/A	N/A
	30	273	273@0
	60	135	135@0

band, the applicable channel bandwidths are specified in Table 5.3.5-1. Table 8-16 NR FR1 Downlink RB Allocation (TS38.521-1 [6], Table 7.3.2.4.1-2)

Rohde & Schwarz

The Rohde & Schwarz electronics group offers innovative solutions in the following business fields: test and measurement, broadcast and media, secure communications, cybersecurity, monitoring and network testing. Founded more than 80 years ago, the independent company which is headquartered in Munich, Germany, has an extensive sales and service network with locations in more than 70 countries.

www.rohde-schwarz.com

Rohde & Schwarz training

www.training.rohde-schwarz.com

Rohde & Schwarz customer support

www.rohde-schwarz.com/support

R&S[®] is a registered trademark of Rohde & Schwarz GmbH & Co. KG Trade names are trademarks of the owners. 1SL368 | Version 0e | 06.2021

Application Note | 5G NR FR1 Non-Standalone UE RF Conformance Testing

Data without tolerance limits is not binding | Subject to change © 2021 Rohde & Schwarz GmbH & Co. KG | 81671 Munich, Germany www.rohde-schwarz.com