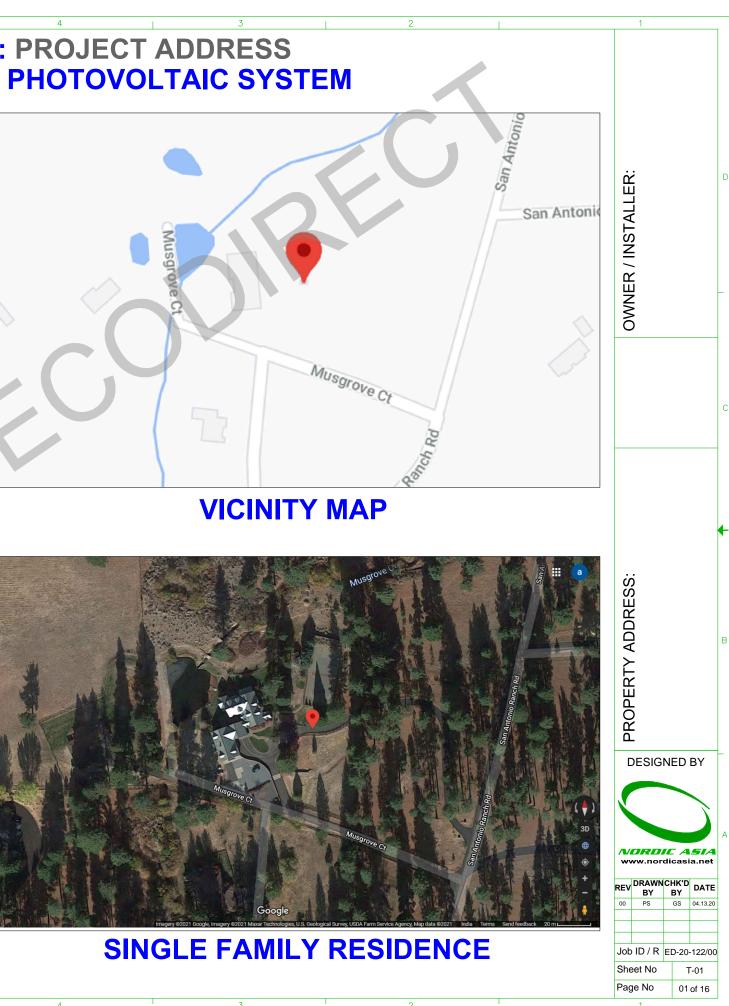
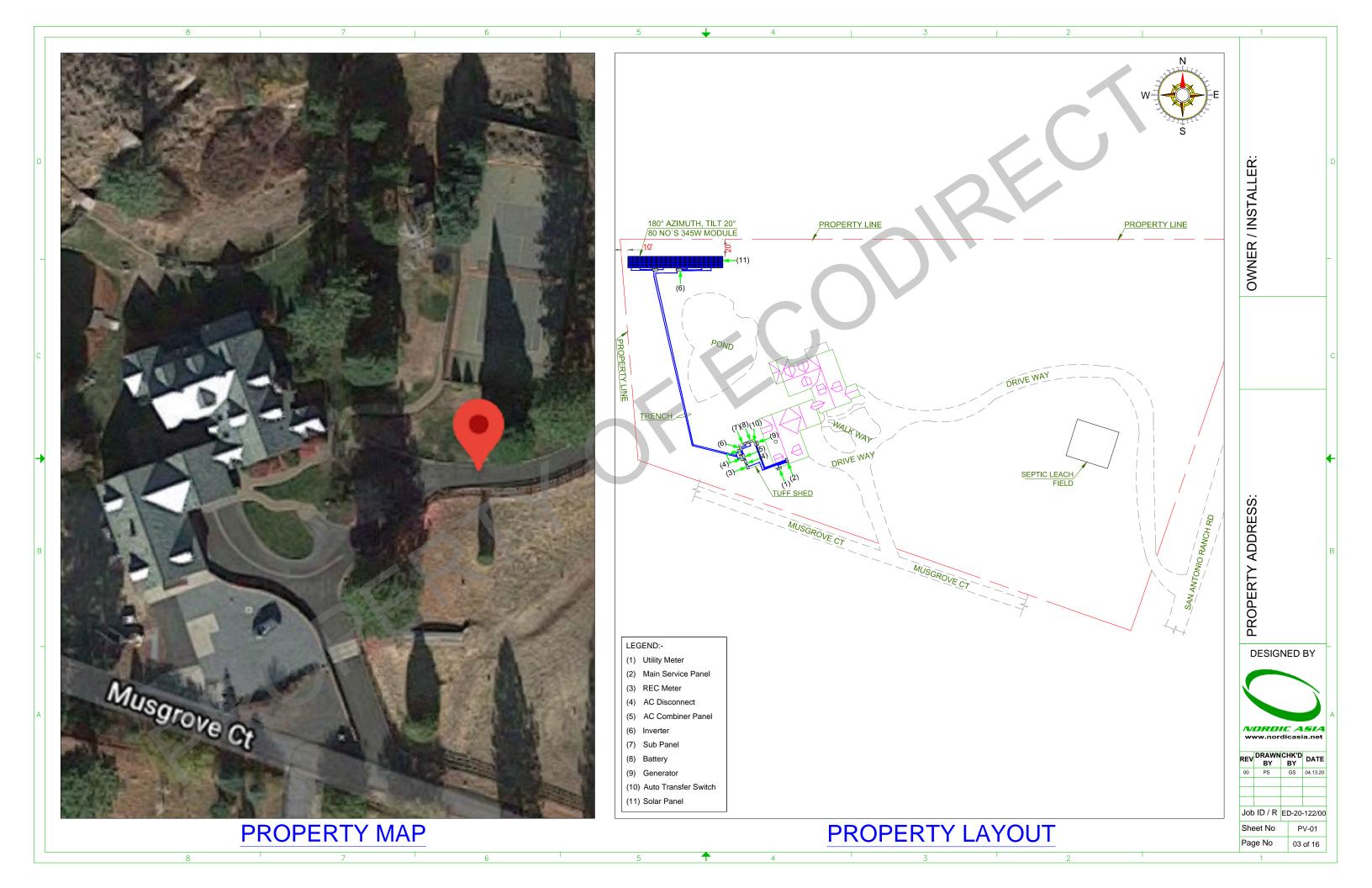

OWNER NAME RESIDENCE : PROJECT ADDRESS 27.6 KW DC GROUND MOUNTED PHOTOVOLTAIC SYSTEM

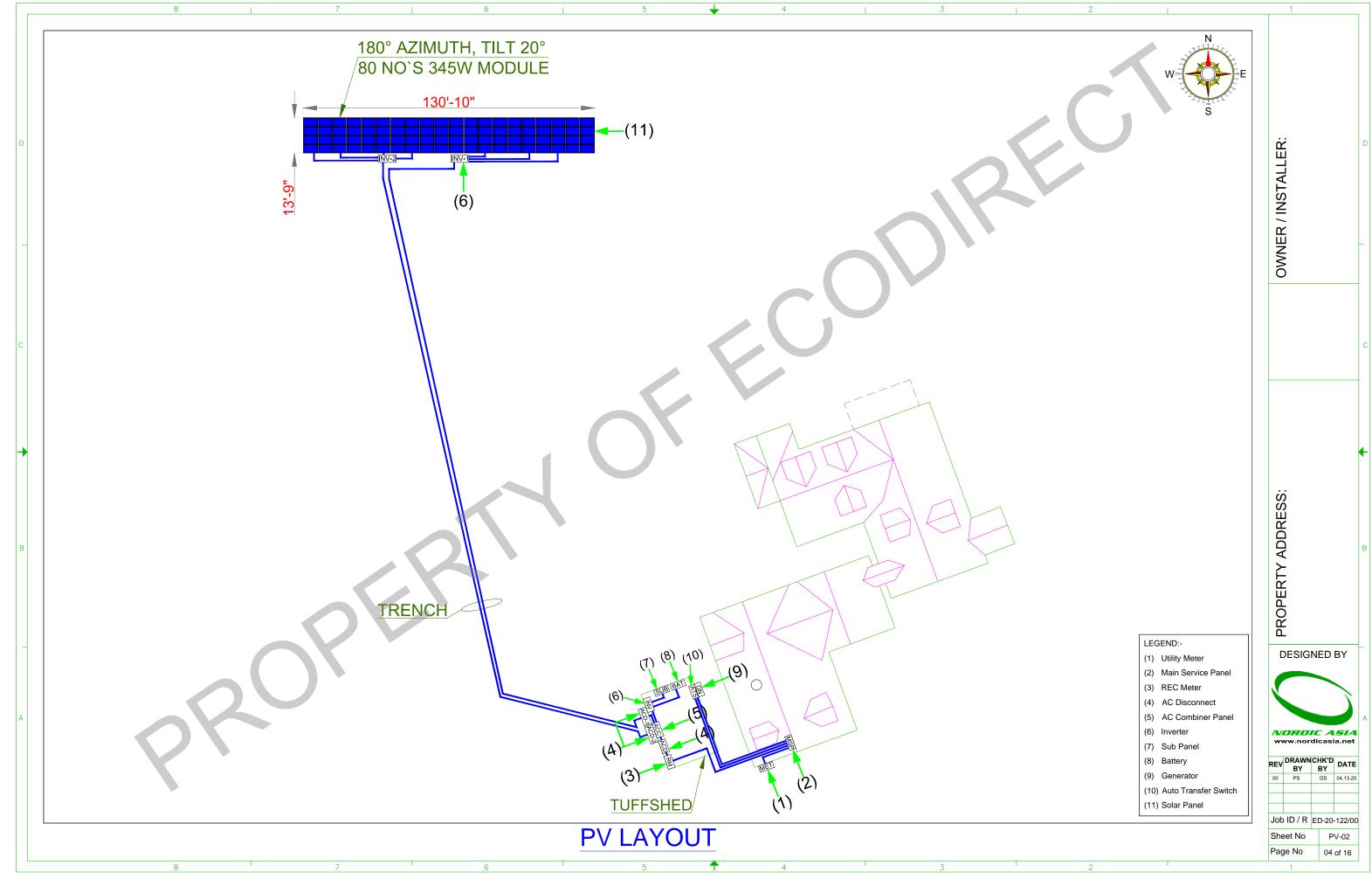

EQUIPMENT SUMMARY :

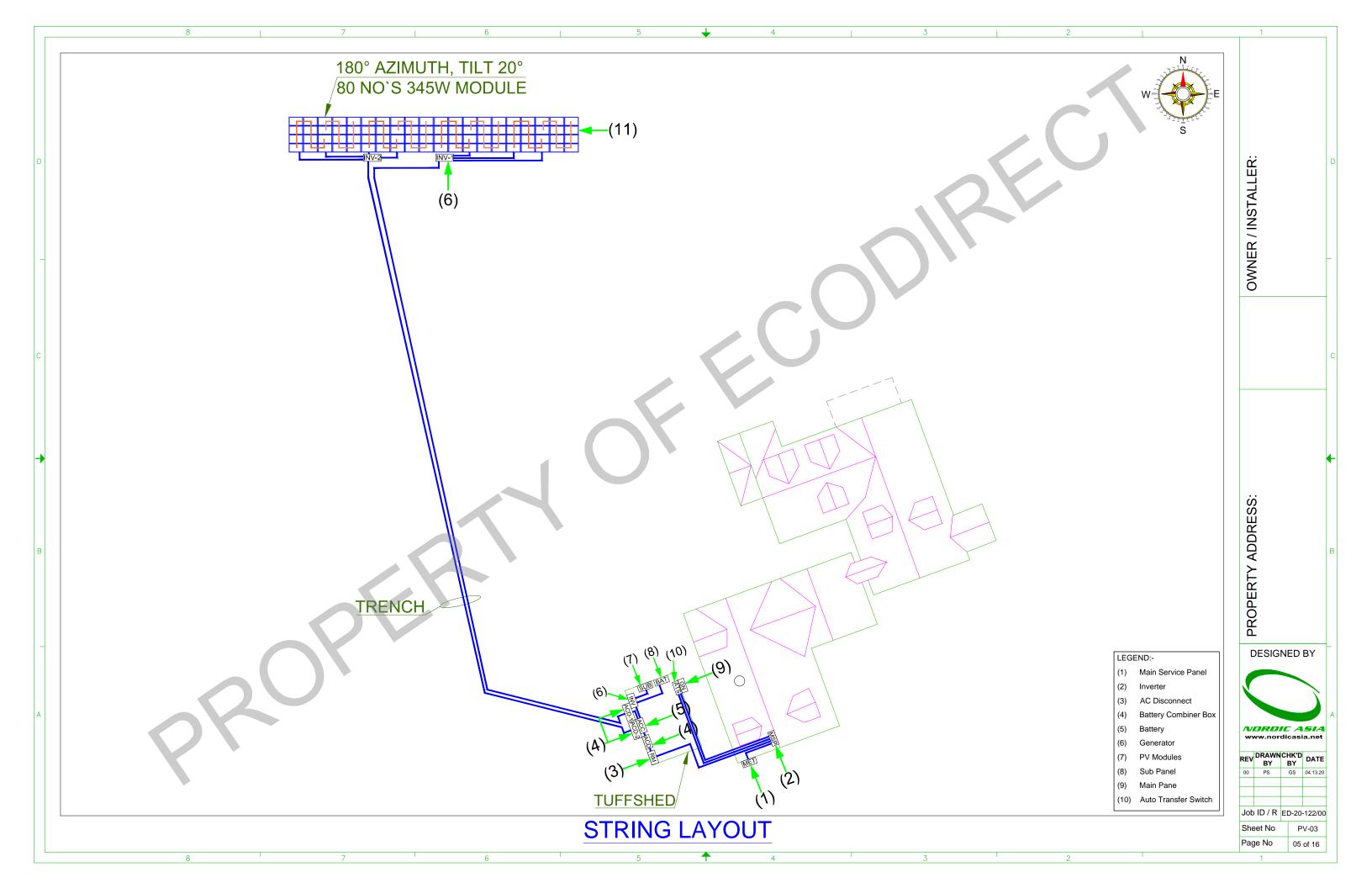
80 NO'S - HANWHA Q.PLUS-L-G4.2-345 345W MODULES 02 NO'S - FRONIUS PRIMO 15.0-1 INVERTERS 01 NO'S - SIGINEER HP15048D INVERTERS

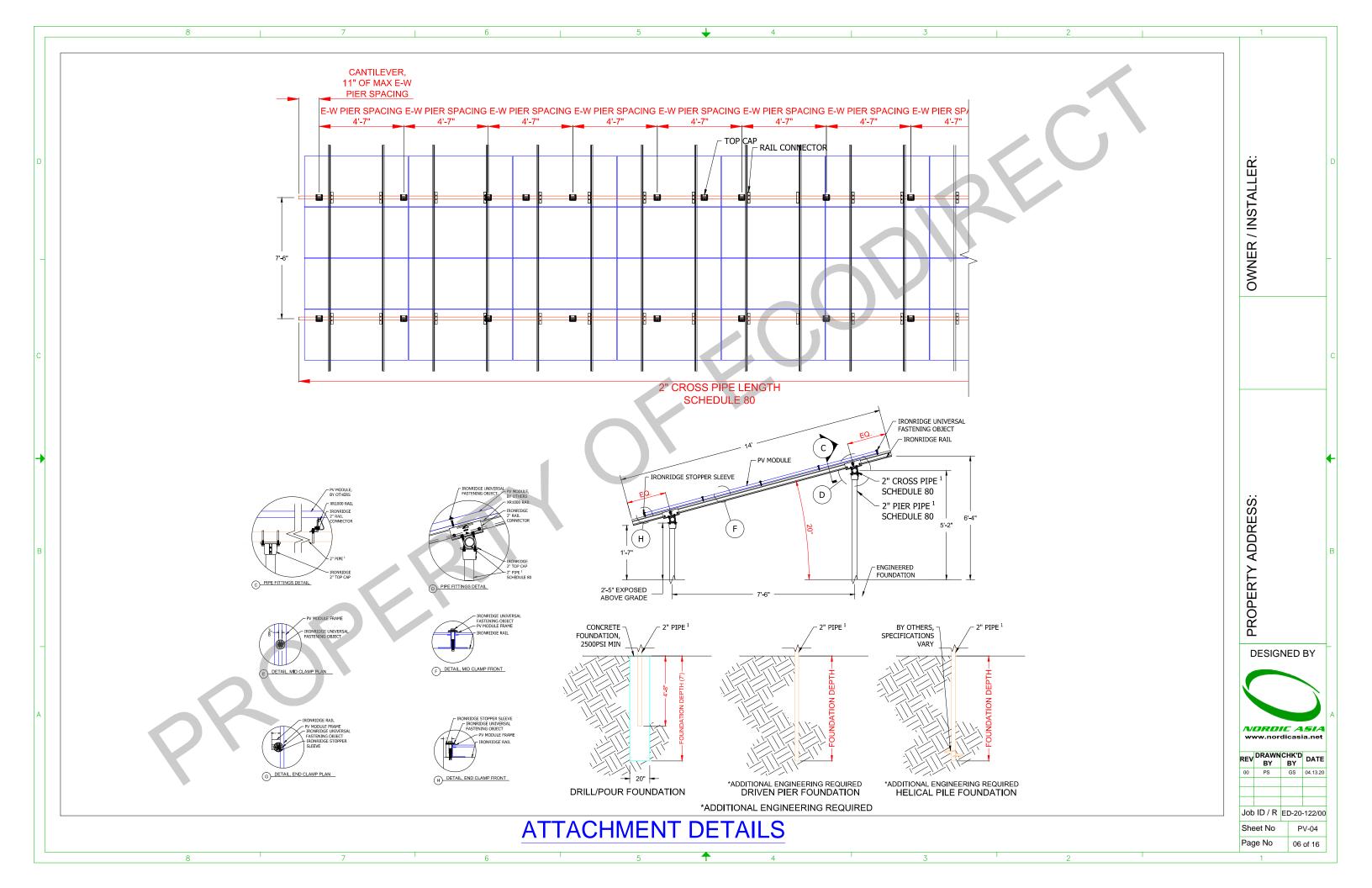
SHEET INDEX :

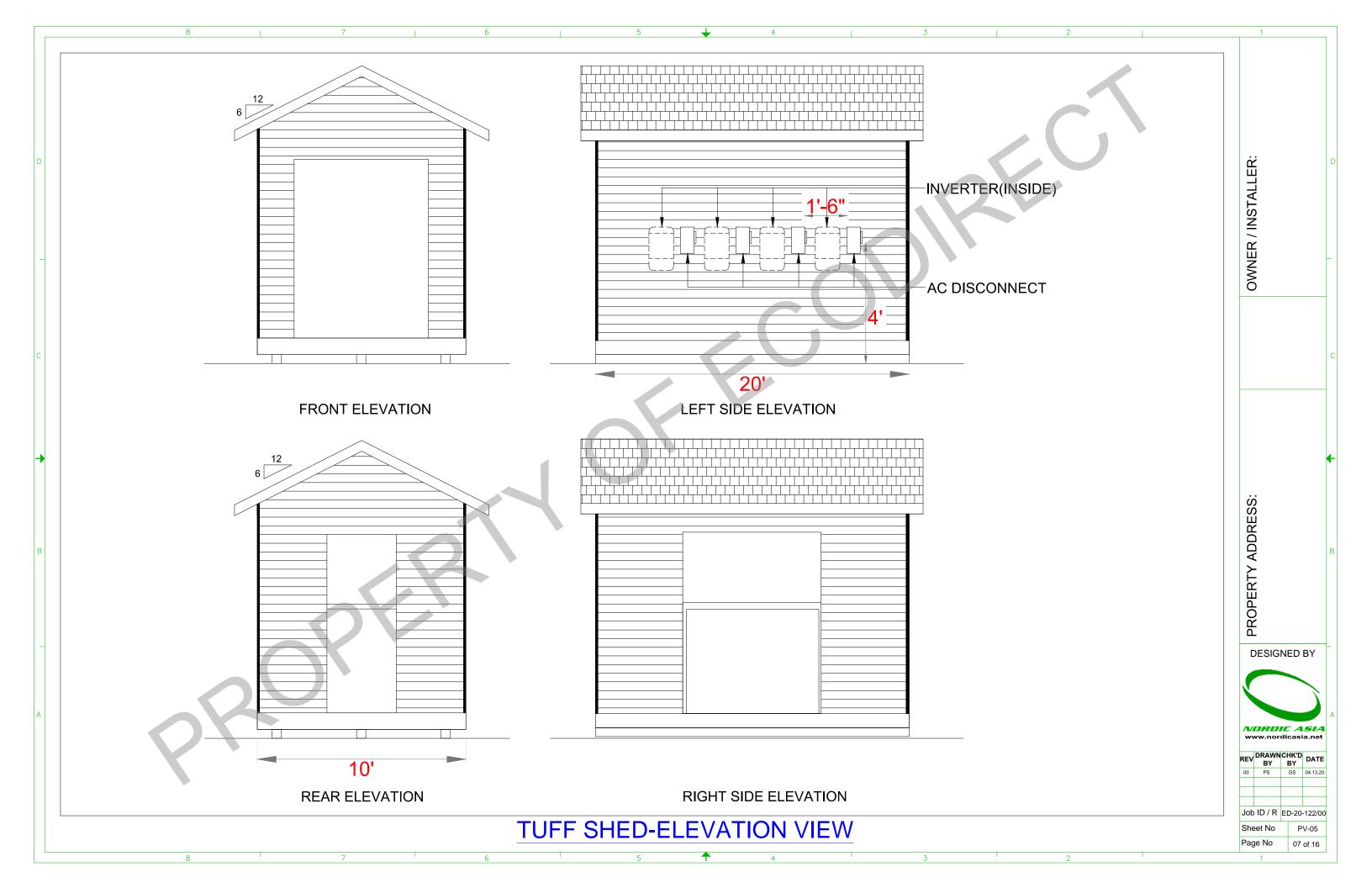
T-01 COVER SHEET G-01 ELECTRICAL CONSTRUCTION GENERAL NOTES **PV-01 PROPERTY MAP & PROPERTY LAYOUT** PV-02 PV LAYOUT **PV-03 STRING LAYOUT PV-04 ATTACHMENT DETAILS PV-05 ELEVATION VIEW PV-06 ELECTRICAL THREE LINE DIAGRAM PV-07 BOQ & SYSTEM DETAILS PV-08 SYSTEM LABELING DETAILS PV-09 MODULE DATA SHEET PV-10 INVERTER DATA SHEET-1 PV-11 INVERTER DATA SHEET-2 PV-12 INVERTER DATA SHEET-3 PV-13 MOUNTING ATTACHMENT DATA SHEET-1 PV-14 MOUNTING ATTACHMENT DATA SHEET-2**

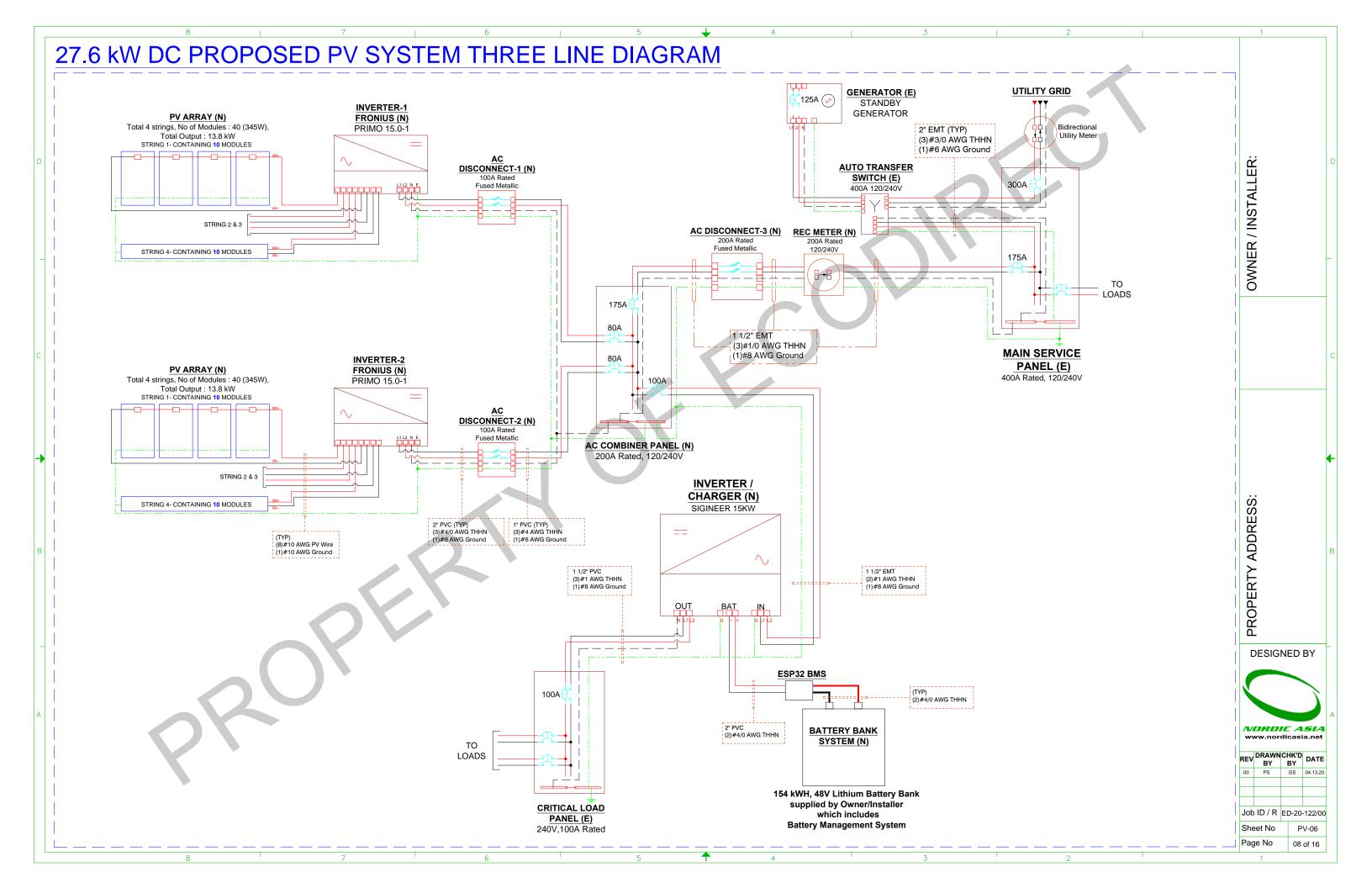


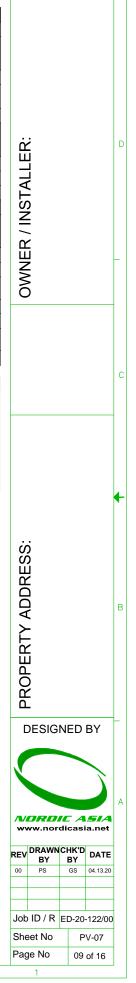

PROPERTY ADDRESS :

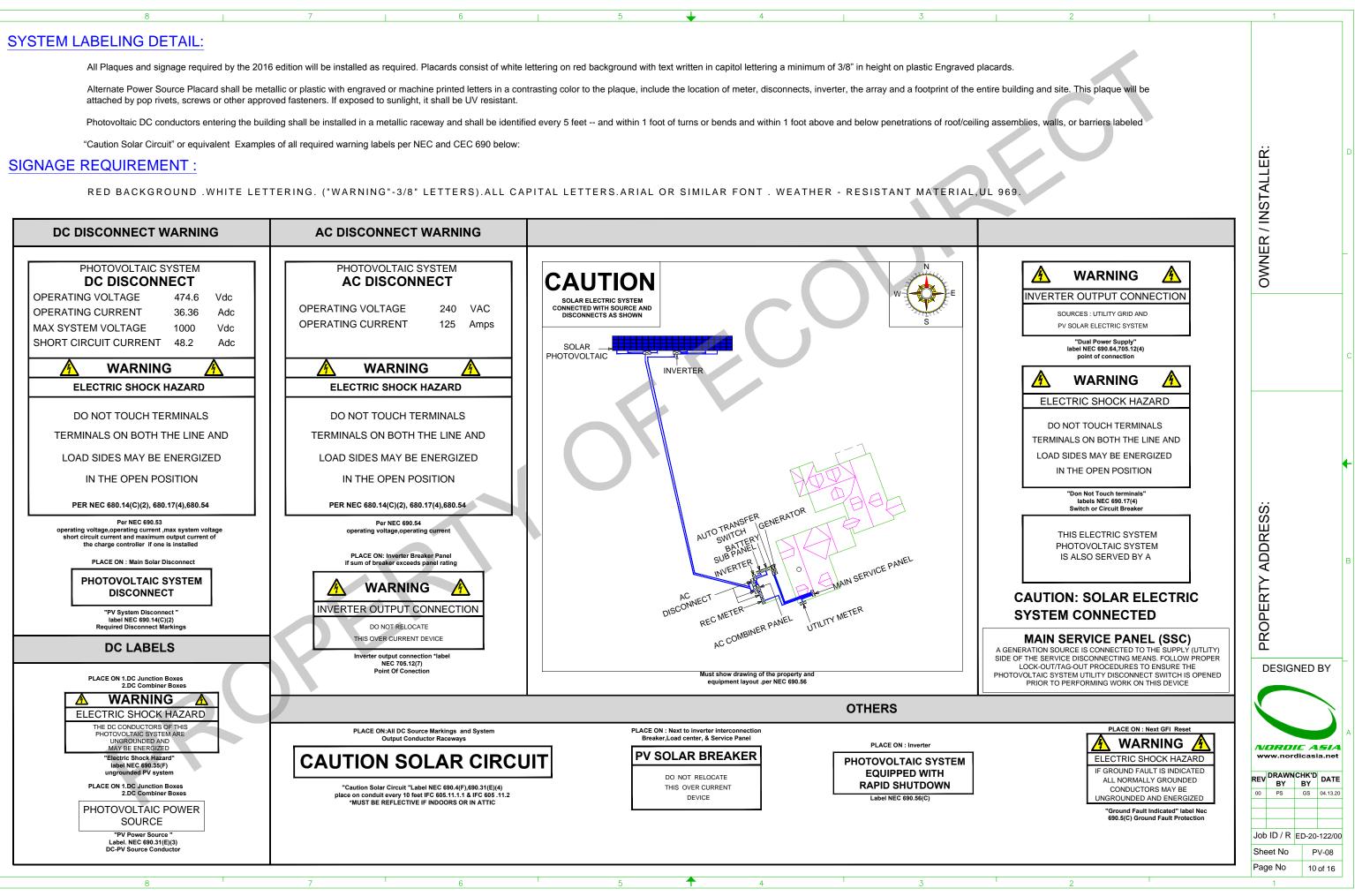

OWNER / INSTALLER :

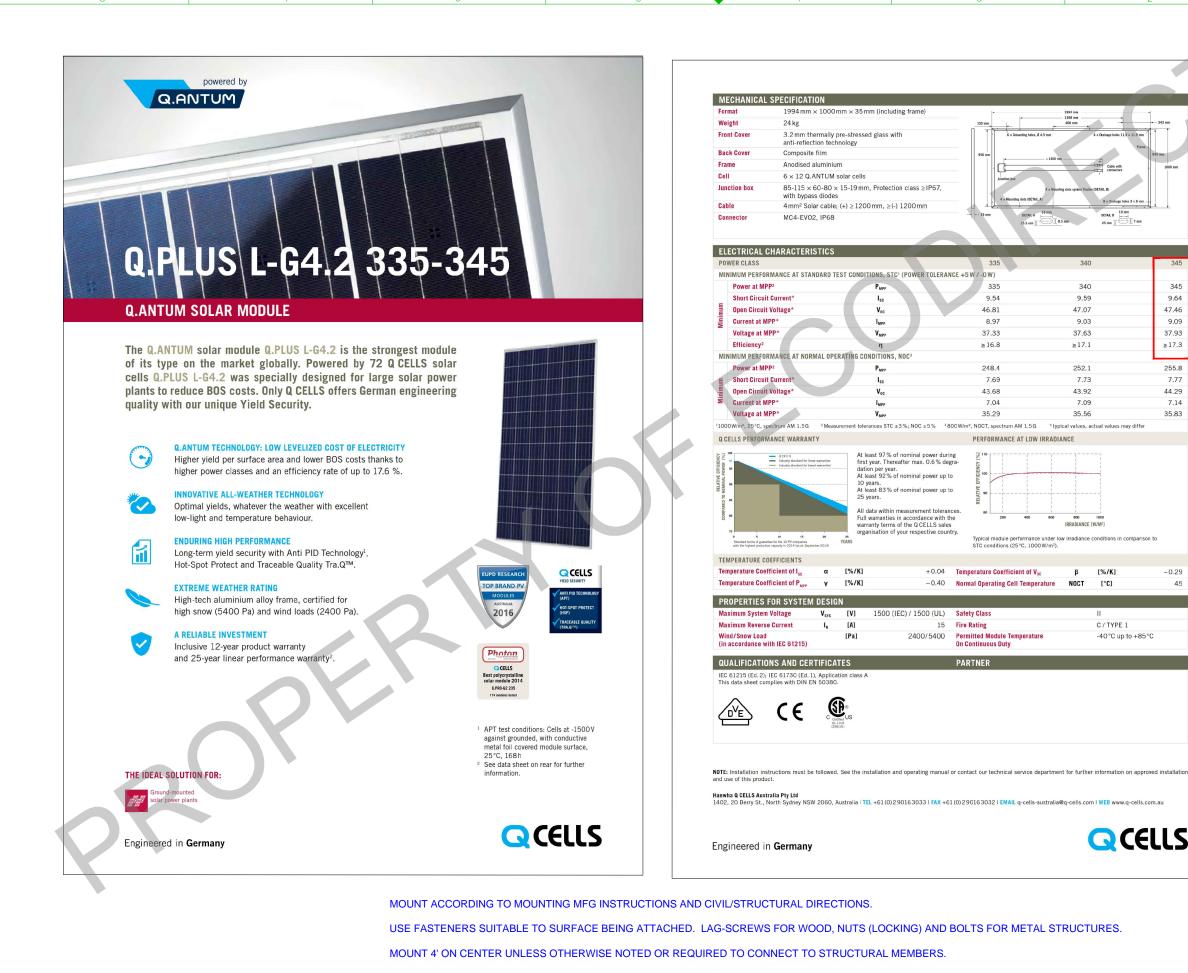

1. ALL WORK SHALL BE IN ACCORDANCE WITH THE LATEST EDITION OF THE NEC (NATIONAL ELECTRIC CODE), NFPA (NATIONAL FIRE PROTECTION	28. PROVIDE SIGNAGE ON ALL ELECTRIC PANELS TO KEEP THE SPACE 36" IN FRONT OF THE PANELS FREE OF OBSTRUCTIONS.
ASSOCIATION), AND ALL APPLICABLE LOCAL, STATE AND FEDERAL CODES, LAWS AND REGULATIONS.	29. PROVIDE WARNING LABEL ON ALL PANELS "WARNING, ELECTRICAL ARC FLASH HAZARD, PERSONAL PROTECTION, EQUIPME
2. ALL WORK SHALL CONFORM TO APPLICABLE STATE AND FEDERAL SAFETY CODES INCLUDING OSHA . NO 'HOT' WORK IS AUTHORIZED. ALL 'HOT WORK SHALL BE APPROVED IN WRITING WITH THE GENERAL CONTRACTOR AND OWNER.	COMPLY CAN RESULT, IN INJURY OR DEATH, REFER TO NFPA 70E."
3. WORK UNDER THIS CONTRACT SHALL INCLUDE, BUT NOT BE LIMITED TO, FURNISHING, INSTALLING AND CONNECTION OF ALL ELECTRICAL EQUIPMENT	30. UPDATE PANEL BOARD DIRECTORY AS CIRCUITS ARE INSTALLED. PREPARE NEW TYPE WRITTEN PANEL SCHEDULES.
AND TESTING OF ALL SYSTEMS AND SUB-SYSTEMS WITHIN THE SCOPE OF THIS CONTRACT. ANY ERRORS, OMISSION, OR UNCERTAINTY SHALL BE BROUGHT TO THE ATTENTION OF THE PRIME CONTRACTOR AND OR OWNER PRIOR TO CONSTRUCTION.	31. ALL EXTERIOR EQUIPMENT SHALL BE IN WEATHERPROOF (NEMA 3R) ENCLOSURES. ALL NEW WIRING SHALL BE IN CON EXPOSURE AND WET LOCATIONS. FIELD APPLIED COATING ARE NOT ACCEPTABLE.
4. COORDINATE ALL WORK WITH ARCHITECTURAL, MECHANICAL AND STRUCTURAL DRAWINGS. INSTALL ALL WORK TO CLEAR NEW AND EXISTING ARCHITECTURAL AND STRUCTURAL MEMBERS. NO ITEM SUCH AS PIPE, DUCT, ETC. SHALL BE IN CONTACT WITH ANY ELECTRICAL EQUIPMENT.	32. DC SOLAR POWER SHALL BE NEGATIVELY GROUNDED.
5. CONTRACTOR SHALL ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THIS	33. ALL MARKING SHALL BE PER CODE REQUIREMENTS.
PROJECT, INCLUDING SAFETY OF ALL PERSONS AND PROPERTY AND SECURITY OF THE WORKSITE. THIS REQUIREMENT SHALL APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS.	34. INVERTERS MUST COMPLY WITH UL 1741 TO PREVENT ISLANDING ON POWER FAILURE. THE INVERTER SHALL PUT NOT POWI GRID IS OFF-LINE.
5. DO NOT SCALE DRAWINGS. LARGER SCALE DRAWINGS HAVE PRECEDENCE OVER SMALL SCALE DRAWINGS. SPECIFICATIONS HAVE PRECEDENCE DVER DRAWINGS. NOTIFY THE PRIME CONTRACTOR IMMEDIATELY AFTER DISCOVERY OF ANY DISCREPANCY BETWEEN DRAWINGS, SPECIFICATIONS OR	35. NOTHING IN THESE PLANS SHALL BE CONSTRUED TO CONTRADICT NEC, UL OR LOCAL CODES.
IELD CONDITIONS.	36. ALL SYSTEM COMPONENTS (MODULES AND INVERTERS ETC) SHALL BE UL LISTED.
7. NOTIFY THE PRIME CONTRACTOR OR OWNER IMMEDIATELY AFTER DISCOVERING ANY HAZARDOUS MATERIAL.	37. MOUNT TO ROOF USING UL APPROVED MOUNTING HARDWARE. FOLLOWING MANUFACTURERS DIRECTIONS. MOUNTING
DRAWINGS ARE DIAGRAMMATIC AND INDICATE GENERAL ARRANGEMENT OF SYSTEMS AND WORK INCLUDED. VERIFY THE EXACT LOCATIONS AND CONDITIONS OF ALL EQUIPMENT REQUIRING ELECTRICAL CONNECTIONS PRIOR TO ANY WORK. LOCATIONS FOR EQUIPMENT SHALL BE TAKEN FROM THE	CENTER UNLESS OTHERWISE NOTED.
THER SHEETS WHERE THEY OCCUR. EXTEND WIRING FROM ALL JUNCTION BOXES, CONTROL PANELS, PUMPS, RECEPTACLES, SWITCHES, ETC. AND MAKE LL FINAL CONNECTIONS TO EQUIPMENT AS REQUIRED.	38. MARK ALL DC CONDUIT "CAUTION: SOLAR ELECTRIC SYSTEM CONNECTED". MARK ALL DISCONNECTS INCLUDING DIS INVERTERS WITH "CAUTION: SOLAR CIRCUIT DISCONNECT". MARK THE MAIN SERVICE WITH "CAUTION: SOLAR ELECTRIC SY DURABLE MARKING WITH 3/8" WHITE LETTERS ON RED BACKGROUND.
THE INTENT OF THESE DRAWINGS IS FOR A COMPLETE ELECTRICAL SYSTEM. ANY ERRORS OR UNCERTAINTY SHALL BE BROUGHT TO THE ATTENTION F THE PRIME CONTRACTOR AND ENGINEER AS SOON AS FOUND.	39. MARK THE NEC REQUIRED CLEAR SPACE ON THE FLOOR IN FRONT OF ALL DEVICES BEING INSTALLED.
0. THE COMPLETE ELECTRICAL INSTALLATION SHALL BE TESTED AS A COMPLETE WORKING SYSTEM.	40. SUPPORT ALL ROOF MOUNTED CONDUIT WITH FOAM 'SLEEPERS' IN UL APPROVED SYSTEM.
1. RESTORE ALL DAMAGES RESULTING FROM WORK AND LEAVE PREMISES IN CLEAN CONDITION WHEN FINISHED WITH WORK.	41.0BTAIN THE BEST INFORMATION ON UNDERGROUND UTILITIES IN AREAS BEING TRENCHED. USE 'DIG ALERT' OR OTHER LODIGGING.
2. ALL TYPES OF SWITCHES, RECEPTACLES, WALL PLATES AND LIGHTING FIXTURES SHALL BE AS APPROVED BY PRIME CONTRACTOR OR OWNER. VERIFY IATERIALS AND COLOR AND LOCATIONS, SUBMIT CATALOG CUTS OR SHOP DRAWINGS FOR ALL MATERIALS AND EQUIPMENT.	42.SOLAR PANELS SHALL NOT BE INSTALLED OVER ANY PLUMBING OR MECHANICAL VENTS, EXHAUSTS OR CHIMNEYS.
3. ALL ITEMS ARE NEW UNLESS NOTED AS EXISTING (E).	43.REMOVAL OF INVERTER, METER OR OTHER EQUIPMENT SHALL NOT DISCONNECT THE BONDING CONNECTION BETWEEN THE
4. REMOVE ALL INDICATED ITEMS. REMOVE ALL EXPOSED CONDUITS. REMOVE WIRES TO NEAREST CONCEALED JUNCTION BOX OR PANEL. ABANDON IN LACE EXISTING UNUSED CONCEALED CONDUITS NOT EXPOSED BY CONSTRUCTION.	CONDUCTOR AND THE PHOTOVOLTAIC SOURCE AND/OR OUTPUT CIRCUIT GROUNDED CONDUCTOR.
5. ALL EQUIPMENT SHALL BE SECURED IN ACCORDANCE WITH GOVERNING SEISMIC REGULATIONS. PROVIDE EXPANSION AND DEFLECTION FITTINGS IN	44.All PV MODULES AND ASSOCIATED EQUIPMENT SHALL BE PROTECTED FROM ANY PHYSICAL DAMAGE, AND ACCESS BY UNQUA
CONDUITS REQUIRED BY CEC (CALIFORNIA ELECTRIC CODE).	45.NO PLASTIC ZIP TIES
6. FIRE STOP ALL PENETRATIONS THROUGH FIRE RATED SURFACES. SEE DETAIL D/E5.	STORM WATER PREVENTION NOTES:
7. PROVIDE GROUND ROD, GROUNDING ELECTRODE AND BONDING FOR ALL SERVICE ENTRANCE EQUIPMENT, BUILDING STRUCTURAL STEEL, COLD ATER PIPE AND TRANSFORMER PER CEC (CALIFORNIA ELECTRIC CODE) 6' MIN. APART.	STORM WATER POLLUTION PREVENTION DEVICES AND PRACTICES SHALL BE INSTALLED AND/OR INSTITUTED AS NECESSARY
8. ALL NEW CIRCUIT BREAKER SHALL BE RATED 10,000 AIC OR HIGHER UNO.	WITH THE CITY WATER QUALITY STANDARDS CONTAINED IN LOCAL REGULATIONS, FEDERAL REGULATIONS AND ANY EROSION OF WITH THIS PROJECT. ALL SUCH DEVICES AND PRACTICES SHALL BE MAINTAINED, INSPECTED AND/OR MONITORED TO ENSURI
9. ALL CONDUITS SHALL BE EMT, INTERMEDIATE METAL CONDUIT, OR RIGID STEEL. MINIMUM SIZE SHALL BE 1/2". ALL CONDUIT, BOXES AND ELECTRICAL	FUNCTION THROUGHOUT THE DURATION OF THE CONSTRUCTION PROJECT.
	COMPLIANCE WITH THE WATER QUALITY STANDARDS AND ANY EROSION CONTROL PLAN ASSOCIATED WITH THIS PROJECT INCL
 DO NOT USE THE WORKING SPACE WITHIN ANY EXIT SIGN OR ASSOCIATED JUNCTION BOX FOR ANY OTHER CIRCUIT. PROVIDE EXPANSION AND DEFLECTION FITTINGS IN CONDUITS CROSSING BUILDING EXPANSION AND SEISMIC JOINTS. SEE DETAIL E/E5. 	TO THE FOLLOWING:
2. PROVIDE JUNCTION AND/OR PULL BOXES WHEN NECESSARY OR REQUIRED BY CEC.	1. ALL POLLUTANTS SHALL BE RETAINED ON SITE UNTIL PROPERLY DISPOSED OF, AND MAY NOT BE TRANSPORTED FROM T SWALES, AREA DRAINS, NATURAL DRAINAGE COURSES OR WIND.
3. ALL CONDUCTORS SHALL BE COPPER, THHN, #12 AWG MINIMUM. UNLESS IN A WET LOCATION IN WHICH CASE THWN SHALL BE USED.	2. STOCKPILES OF CONSTRUCTION-RELATED MATERIALS SHALL BE PROTECTED FROM BEING TRANSPORTED FROM THE SITE
24. INSTALL GREEN INSULATED GROUND WIRE IN ALL CIRCUITS. SIZE PER NEC REQUIREMENTS OR THE SAME AS PHASE CONDUCTORS WHICH EVER IS	WATER FLOW.
ARGER. UNLESS INDICATED OTHERWISE.	3. TRASH AND CONSTRUCTION SOLID WASTES SHALL BE DEPOSITED INTO COVERED RECEPTACLE TO PREVENT CONTAMINA
5. ALL NEW WIRING, CONDUIT, AND JUNCTION BOXES SHALL BE CONCEALED WITHIN NEW WALLS, CEILINGS OR FLOOR SPACES. SURFACE MOUNT ONDUIT ON OLD WALLS AND CEILINGS. RUN ALL SURFACE RACEWAY TIGHT TO STRUCTURE, PARALLEL TO BUILDING LINES.	DISPERSAL BY WIND.
6. PAINT ALL EXPOSED ELECTRICAL CONDUITS AND BOXES, PATCH AND PAINT ALL SCUFF MARKS AND/OR DAMAGE RESULTING FROM CONSTRUCTION. ELECT NEW PAINT COLOR TO MATCH EXISTING PAINT COLOR.	VISIBILITY FROM ADJACENT PROPERTY:
27. NO FOREIGN EQUIPMENT SHALL BE LOCATED WITHIN THE SPACE ABOVE OR BELOW ELECTRIC PANELS	1. THE SOLAR PANELS MAY BE VISIBLE FROM ADJACENT PROPERTIES. PAINT ALL STRUCTURAL ELEMENTS TO MATCH THE

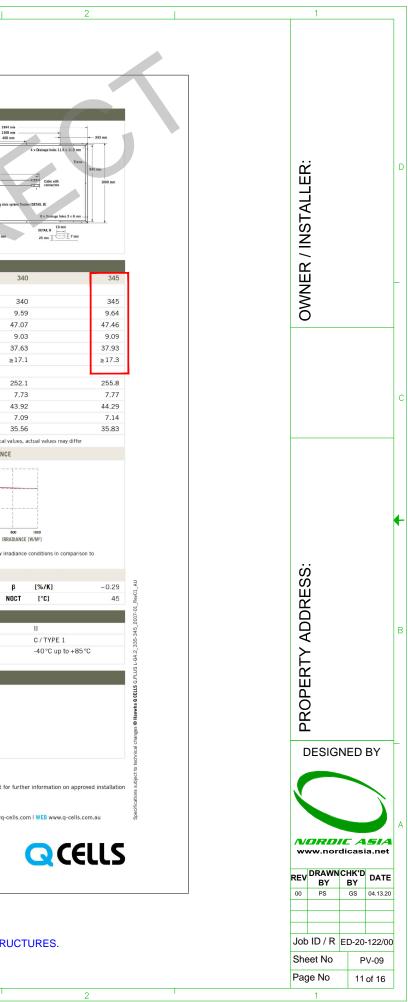

2	1
PANELS FREE OF OBSTRUCTIONS.	
, PERSONAL PROTECTION, EQUIPMENT REQUIRED, FAILURE TO	
VRITTEN PANEL SCHEDULES.	
ALL NEW WIRING SHALL BE IN CONDUIT, SUITABLE FOR SUN	
	TAI
THE INVERTER SHALL PUT NOT POWER ON TO THE GRID IF THE	SNI
DDES.	OWNER / INSTALI
ACTURERS DIRECTIONS. MOUNTING HARDWARE EVERY 4' ON	MO
A ALL DISCONNECTS INCLUDING DISCONNECTS INCLUDED IN ITH "CAUTION: SOLAR ELECTRIC SYSTEM CONNECTED". USE	
G INSTALLED.	с
EM.	
HED. USE 'DIG ALERT' OR OTHER LOCATING SERVICE BEFORE	
EXHAUSTS OR CHIMNEYS.	
ONDING CONNECTION BETWEEN THE GROUNDING ELECTRODE UCTOR.	+
AL DAMAGE, AND ACCESS BY UNQUALIFIED PERSONS.	
	ESS
AND/OR INSTITUTED AS NECESSARY TO ENSURE COMPLIANCE	DA Y
REGULATIONS AND ANY EROSION CONTROL PLAN ASSOCIATED TED AND/OR MONITORED TO ENSURE ADEQUACY AND PROPER	PROPERTY ADDR
SSOCIATED WITH THIS PROJECT INCLUDES, BUT IS NOT LIMITED	PRO
IAY NOT BE TRANSPORTED FROM THE SITE VIA SHEET FLOW,	DESIGNED BY
ING TRANSPORTED FROM THE SITE BY FORCES OF WIND OR	
CEPTACLE TO PREVENT CONTAMINATION OF RAINWATER AND	WORDIC ASIA www.nordicasia.net
	REV BX BY DATE 00 PS GS 04.13.20
JCTURAL ELEMENTS TO MATCH THE EXISTING ROOFING.	Job ID / R ED-20-122/00
	Sheet NoG-01Page No02 of 16
2	1



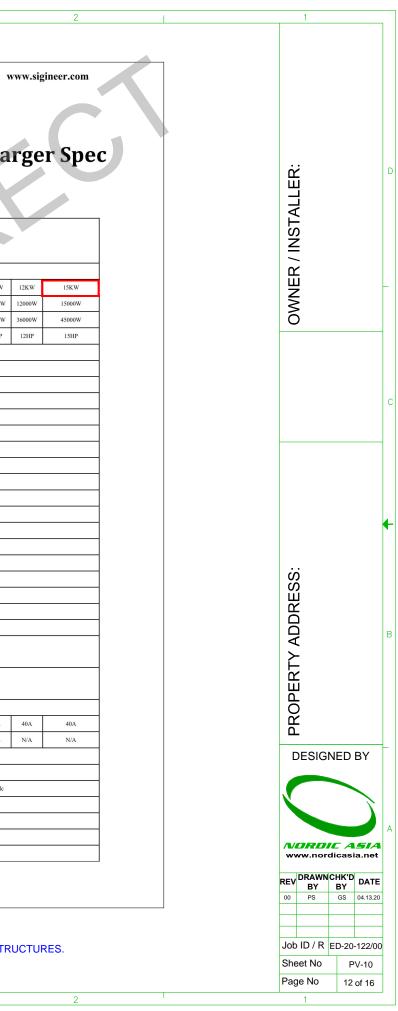







		8				7				6				5		•	4				3				2		
													WIRING AND	CONDUIT SCH	EDULE												
				-	-	-		·	-				DC	SCHEDULE						-				-			
ITEM	DES	CRIPTION	ID	QTY	Voc (V)	Vmpp (V) STC	Impp (A) STC	ISC (A) STC	Max Circuit current (A)	Nominal Power	Minimum Ampacity (A)	Adjusted Ampacity (A)	OCPD rating (A)	Multiple conductor Derate	Temperatu Derate	Ire Max ONE WAY LENGTH (ft)	WIRE SIZE	Wire Ampacity (A)	Derated Ampacity (A)	GROUND	WIRE TYPE	R/1000FT	V LOSS %	TEMP MAX	TOTAL NO OF CONDUCTORS	NO. OF CURRENT CARRYING CONDUCTORS	CON
MODULE HAN	WA Q CELLS			80	47.46	37.93	9.09	9.64	12.05	345	15.1	16.0	20	1.00	1	3.94	#10 AWG	35	35	#6 Bare	PV	1.24	0.02%	52 C	2	2	1
		TER (e.g: PV MODULES RIES FOR ONE STRING	A	4	474.6	379.3	9.09	9.64	12.05	3450	15.1	22.9	20	0.70	1	15	#10 AWG	40	28	#6 Bare	PV	1.24	0.31%	52 C	8	7	
MOD	OULE TO INVER	TER	В	1	474.6	379.3	9.09	9.64	12.05	3450	15.1	22.9	20	0.70	1	15	#10 AWG	40	28	#10 AWG	PV	1.24	0.31%	52 C	8	7	
	DES	CRIPTION	ID	QTY		V no	om (V)			I A/H		Multi	ple conductor	Derate	Temperatu Derate		WIRE SIZE	Wire Ampacity (A)	Derated Ampacity (A)	GROUND	WIRE TYPE	R/1	000FT	TEMP MAX	TOTAL NO OF CONDUCTORS	NO. OF CURRENT CARRYING CONDUCTORS	co
BATT	TERY BANK		С	1		4	48			154			1.0		1	5	#4/0 AWG	260	260	#6 AWG	THHN	0	.06	28 C	2	2	
i INVE	RTER TO BATT	ERY BANK	D	1		4	48			154			1.0		1	20	#4/0 AWG	260	260	#6 AWG	THHN	0	.06	28 C	2	2	2"
								Total No	ominal Power	27600												Total	0.65%				
													AC	SCHEDULE													
ITEM	DES	CRIPTION	ID	QTY	VOLTA	AGE (V)	Max	Circuit Curre	nt (A)	Power	Minimum Ampacity (A)	Adjusted Ampacity (A)	OCPD rating (A)	Multiple conductor Derate	Temperatu Derate		Wire Size	Wire Ampacity (A)	Derated Ampacity (A)	GROUND	WIRE TYPE	R/1000FT	V LOSS %	TEMP MAX	TOTAL NO OF CONDUCTORS	NO. OF CURRENT CARRYING CONDUCTORS	co
INVE	RTER TO AC D	ISCONNECT	E	2	2	40		62.5		15000	78.1	83.1	80	1.00	0.96	500	#4/0 AWG	260	249.6	#6 AWG	THHN	0.06	1.58%	30 C	4	2	2 1/2
AC D	DISCONNECT T	O AC COMBINER PANEL	F	2	2	40		62.5		15000	78.1	83.1	80	1.00	0.96	5	#4 AWG	95	91.2	#8 AWG	THHN	0.31	0.08%	30 C	4	2	1"
	COMBINER PAN MAIN SERVICE F	EL TO AC DISCONNECT PANEL	G	1	2	40		125		-	156.3	166.2	175	1.00	0.96	10	#1/0 AWG	170	163.2	#8 AWG	THHN	0.12	0.13%	30 C	4	2	1 1/2
AC C	COMBINER PAN	EL TO INVERTER	н	1	2	240		80		-	100.0	106.4	100	1.00	0.96	5	#1 AWG	150	144	#8 AWG	THHN	0.04	0.01%	30 C	4	2	1 1/2
		CAL LOAD PANEL	1	1	2	40		80		-	100.0	106.4	100	1.00	0.96	5	#1 AWG	150	144	#8 AWG	THHN	0.15	0.05%	30 C	4	2	1 1/2'
2 MAIN SWIT		EL TO AUTO TRANSFEF	{ J	2	2	240		240		-	300.0	319.1	300	1.00	0.96	5	#3/0 AWG	225	216	#6 AWG	THHN	0.08	0.08%	30 C	4	2	2" E
								Total No	ominal Power	30000												AC DROP	1.93%				
						BILL OF	MATERIAL										System	Configuratio	n			Inv	erter Rating	Specs		Module Rati	ng Specs
REF. DES.	QTY.	MANUFACTUR	RER	MODE	EL NUMBER					DES	CRIPTION					Number of string			8 No's					-		HANWA Q	CELLS
		HANWA Q CELLS		Q.PLUS L-G	G4.2 345	SOLAF	R PANEL				345	W 100	00 V (UL)			5			80 No's		Newsteeller		PRIMO PRIM			Q.PLUS L-C	G4.2 345
SOLAR MODULES	80	NOTES: 1. TYPE-1 L	IL 1703 cla	ass C												Number of Modu Modules Per stri					Nominal Inp		51			nax -	345 W
		FRONIUS PRIMO		PRIMO 15.0)-1	INVER	RTER				15	Kw	NEMA 4X	240 V	AC -		5	_	8 X 10		Max.Short C Output Volta		63.75			mp- 3	37.93 V
INVERTER	2	NOTES: 1. UL1741,	, .	,												Number of Invert	er		3 No			iye	240 62.5		V AC	ip -	9.09 A
			JI WIRE F	. ,	12 to #2; AC O		E RANGE (3)	#12								Nodule Model		Q.P	LUS L-G4.2	345	Imax Inec		78.12		A (@125%)		17.46 V
INVERTER	1	SIGINEER		HP15048D		INVER	RTER				15	Kw	NEMA 3R	240 V	AC Ir	nverter Model		SMA 7	.0-US & HP1	15048D	Inec	0			Enclosure	; -	9.64 A
INVERIER		NOTES: 1. UL1741, I 2. DC INPL					E RANGE (3) ‡	#12							P	V Service Disco	onnect		175 A				1741 / IEEE				
		TBD		TBD			SCONNECT				100, 200	Α				DC Watts STC			27600 W			-					
AC DISCONNECT	2, 1	NOTES: 1. UL1741, I			2 AWG 2 AWG			IS 12 AWG to	2 AWG		1,				N	Max AC output C	Current		125 A		0		stem DC Di	Verona vero vero	1.50		
CRITICAL LOAD PANEL	. 1	TBD		TBD		·			RENCLOSUE	E	100	A 1	Ph	240 V	AC C	Dperating AC Vo	ltage		240 V		Operating			4 X 9.09			
	· ·	TBD		TBD					RENCLOSUR		400		1 Ph		AC				270 1		Operating	•			680 V DC		
MSP	1	NOTES: 1. USED AS		TY/SERVICE		т	ACTS, UL LIS	, .			100										Max.Syste Short Circu	uit Current		4 X 12.0	1000 V DC 5 A DC		
BATTERY	1	LITHIUM BATTERY		TBD		BATTE	,				15/	КШН									La	bel Located	on Inverter	/ DC Discor	nnect		
DATIENT						DATIE	_111				154																

8	7	6	5	+	4	3	



Pure Sine Wave Inverter/Charger User's Manual	www.sigineer.com		Pure Sine Wave Invo	r ter/Charg	u user	5 IVIAI	nuai				ww
Pure Sine Wave Invert	er/Charger		Appendix 1	l : Hig	gh P		ver 1 Shee		erte	er/	Char
User's Manual(up to) 15KW)							-			
	,			Pure Sine	Wave	Invert	ter & Cl	harger S	Spec Sł	neet	
Varcian 5.2 (DN: 50000.2019)	1(0)	Electr	ical Specifications								
Version 5.2 (PN:50000-2018)	108)		Model	1KW 1.5K	W 2KW	/ 3KW	4KW	5KW	6KW	8KW	10KW 1
			Continuous Output Power	1000W 1500	W 2000W	V 3000W	W 4000W	5000W	6000W	8000W	10000W 12
			Surge Rating(20s)	3000W 4500	W 6000W	V 9000W	W 12000W	15000W	18000W	24000W	30000W 3
	Briting Of the		Capable of Starting Electric Motor	1HP 1.5F	P 2HP	3HP	4HP	5HP	6HP	8HP	10HP
			Output Waveform				Pure S		e as input(Byp	ass mode)	
			Nominal Efficiency						%(Peak)		
	1 Least	Output	Line Mode Efficiency						95%		
		tverter	Power Factor Nominal Output Voltage RMS					100	.9-1.0 c / 220-230-24	011	
	in the second	-	Output Voltage Regulation				10		% RMS	io v ac	
			Output Frequency						$z \pm 0.3$ Hz		
Chinese Power Inverter	1		Short Circuit Protection				Yes C		unction (Fault	after (sec)	
ineer Power But Not As We Know It			Typical transfer Time				103, 0		ns(Max)	unter 15cc)	
			THD				Typical		10% under ful	linear load	
			Nominal Input Voltage						24Vdc, *4 for		
Cot The Perfect Investor Char			Minimum Start Voltage						0.0Vdc		
Get The Perfect Inverter Cha	rgers		Low Battery Alarm					10.5Vd	c / 11.0Vdc		
For Your Business		thut	Low Battery Trip					10.0Vd	c / 10.5Vdc		
		DCIF	High Voltage Alarm & Fault					16	.0Vdc		
	Sigincer Power		High DC Input Recovery					15	.5Vdc		
Siginer Power			Low Battery Voltage Recover					13	.0Vdc		
	Annual Annu		Idle Consumption-Search Mode					\leq 25 W when	Power Saver	On	
			Input Voltage Range						VAC / 194~24		
									AC / 164~243		
			Input Frequency Range						50Hz, 57-65±		Hz
			Output Voltage				w		plus for 50Hz	JULIZ	
			Charger Breaker Rating(230Vac)	10A 10A	. 10A	20A	20A	30A	30A	40A	40A
		0	Charger Breaker Rating(120Vac)	10A 20/		_	_	63A	63A	N/A	N/A
Shenzhen Sigineer Power CO.,LTD.		Charge	Max Charge Rate						, depending o		
Email: info@sigineer.com			Over Charge Protection Shutdown						for 24Vdc, *4		
TEL: +86 755 2160 7078			Battery type		Fast V	de					Float Vdc
FAX: +86 755 6165 8278			Gel U.S.A		14.0						13.7
Add: Bld A, Jiali Industrial Zone, Yuanfen Rd, Longhua, Sher	nzhen, 518100, China		A.G.M 1		14.1						13.4
			A.G.M 2		14.6						13.7
Manufacturer Informatio	on in the second se		Sealed Lead Acid		14.4						13.6
1							34				
			AND CIVIL/STRUCTUR								

+

		Pure Sine Wave Inve	rter/Ch	narger	· User'	s Manua	al				www	sigineer.co	om	
		Gel Euro			14.4						13.8			
		Open Lead Acid			14.8						13.3			
		Calcium			15.1						13.6			
		De-sulphation						15.5	for 4hrs					
		Remote Control						Yes.	Optional					
		Input Voltage Waveform					s	Sine wave (Gr	id or Generat	tor)				
		Nominal Voltage			120Vac						230Vac			
		Low Voltage Trip			80V/90V±	4%				184	V/154V±4%			
		Low Voltage re engage			90V/100V±	4%				194	V/164V±4%			
		High Voltage Trip			140V±4%	,				3	253V±4%			
		High Voltage re engage			135V±4%					2	243V±4%			
		Max Input AC Voltage			150VAC					i	270VAC			
	ų	Nominal Input Frequency						50Hz or 60H	z (Auto detec	et)				
	Bypass & Protection	Low Freq Trip					Narrow: 4'	7±0.3Hz for :	50Hz, 57±0.3	Hz for 60Hz				
	ss & P							Vide:40±0.3H						
	Bypa	Low Freq re engage								Hz for 60Hz				
								Vide:45±0.3H	_					
		High Freq Trip						5±0.3Hz for :						
								ide: No up lin						
		High Freq re engage						4±0.3Hz for : ide: No up lin		Hz for 60Hz				
		Output Short circuit protection					WI		breaker	OUHZ				
		Bypass breaker rating(230Vac)	10A	15A	20A	30A	30A	40A	40A	50A	63A 63	A 100A		
		Bypass breaker rating(120Vac)	20A	20A	30A	40A	50A	40A 80A	40A 80A	N/A	N/A N/			
	20	Auto Generator Start	2014	2014	30A	40/4	50A+		ilable	19/24	N/A IV	A 1/A		
	Other Feature	Battery Temp Sensing							ilable					
		Mounting							mount					
	-	Inverter Dimensions(L*W*H)	362*173*	*135mm	51	05*222*180m	im	598*222	*180mm	588	8*415*200mm	706*415*21	3mm	
	pecification	Inverter Weight	11KG	13KG	20KG	24KG	29KG	31KG	33KG	60KG	71KG 761	KG 85KG	1	
	Il Speci	Shipping Dimensions(L*W*H)	475*230*	*205mm	6	70*320*320m	ım	780*320	*320mm	750	0*520*310mm	880*545*41	0mm	
	chanica	Shipping Weight	13KG	15KG	22KG	26KG	32KG	34KG	36KG	72KG	81KG 861	KG 92KG	1	
	Me	Display						Status L	EDs+LCD					
		Standard Warranty						1	Year					
							35							
1														
		INT ACCORDING TO M												

+

MOUNT 4' ON CENTER UNLESS OTHERWISE NOTED OR REQUIRED TO CONNECT TO STRUCTURAL MEMBERS.

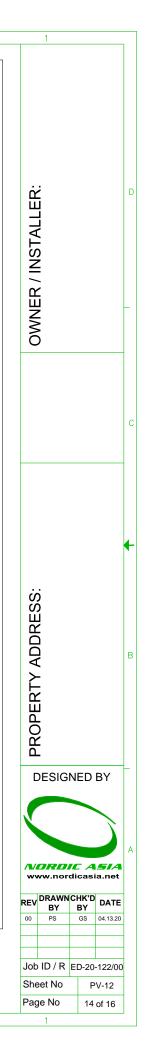
2	TER:
	OWNER / INSTALLER:
	c
	PROPERTY ADDRESS:
	DESIGNED BY
TRUCTURES.	REV DRAWN BY DATE BY DATE 00 PS GS 04.13.20 00 PS GS 04.13.20 Job ID / R ED-20-122/00 Sheet No PV-11 Page No 13 of 16 13 14

The transformerless Fronius Primo is the ideal compact single-phase inverter for residential and small-scale commercial applications with power categories from 3.8 to 8.2 kW. In accordance with ESA rules for residential applications, the Fronius Primo can operate efficiently at a maximum input voltage of 600 V. And for increased efficiency and additional cost savings for commercial applications, the Fronius Primo can operate at the maximum input voltage of 1,000 V. Industryleading features now come standard with the Fronius Primo, including: dual maximum power point tracking, arc fault protection, integrated wireless monitoring and SunSpec Modbus interfaces for seamless monitoring and datalogging via Fronius' online and mobile platform, Fronius Solar.web.

TECHNICAL DATA FRONIUS PRIMO

GENERAL DATA	FROM	NIUS PRIMO 3.8 - 8.2	FRONIUS PRIMO 10.0-15.0						
Dimensions (width x height x depth)	16.9 x 24.7 :	x 8.1 in. / 42.9 x 62.7 x 20.6 cm	20.1 x 28.5 x 8.9 in. / 51.1 x 72.4 x 20.6 cm						
Weight		47.4 lb. / 21.5 kg	82.5 lbs. / 37.4 kg						
Degree of protection		NEN	MA 4X						
Night time consumption		<	1 W						
nverter topology		Transfe	ormerless						
Cooling		Controlled forced venti	ilation, variable speed fan						
Installation		Indoor and outdoor installation							
Ambient operating temperature range	-40	-40 to 131 F / -40 to 55 C -40 to 140 F / -40 to 60 C							
Permitted humidity		0 - 1	100 %						
DC connection terminals		tx DC+1, 2x DC+2 and 4x DC- screw terminals for solid: copper 4x DC+1, 2x DC+2 and 6x DC- screw terminals for copper (solid / stranded / fine stranded / fine stranded) nd aluminium stranded / fine stranded: copper and aluminium stranded / fine stranded) or aluminum (solid / stranded)							
AC connection terminals		Screw terminals 12 - 6 AWG							
Revenue Grade Metering		Optional (ANS)	I C12.1 accuracy)						
Certificates and compliance with standards	isolation monitoring), I ANSI/IEEE C62.41, FC	(for functions: AFCI, RCMU and EEE 1547-2003, IEEE 1547.1-2003, C Part 15 A & B, NEC 2014 Ayricle 690, ptember 2001), UL1699B Issue 2-2013, 2013	UL 1741-2015, UL1998 (for functions: AFCI, RCMU and isolation monitoring), IEEE 1547-2003, IEEE 1547.1-2003, ANSI/IEEE 1547.1-2007, ANSI/IEEE 1547.1-2007, ANSI/IEEE C62.41, FCC Part 15 A & B, NEC Article 690-2014, C22. 2 No. 107.1-01 (September 2001), UL1699B Issue 2 -2013, CSA TIL M-07 Issue 1 -2013						
PROTECTIVE DEVICES		STANDARD WITH	ALL PRIMO MODELS						
AFCI			Yes						
Ground Fault Protection with Isolation Monitor Interrupter		,	Yes						
DC disconnect			Yes						
DC reverse polarity protection		,	Yes						
INTERFACES	AVAILABILITY	AVAILABLE	WITH ALL FRONIUS PRIMO MODELS						
USB (A socket)	Standard	Datalo	gging and inverter update via USB						
2x RS422 (RJ45 socket)	Standard	From	nius Solar Net, interface protocol						
Wi-Fi*/Ethernet/Serial/Datalogger and webserver	Optional	Wireless standard 802.11 b/g/n / Front	ius Solar.web, SunSpec Modbus TCP, JSON / SunSpec Modbus RTU						
6 inputs or 4 digital inputs/outputs	Optional		External relay controls						

ECHNICAL DATA FRONIU	S PRIM	0 3.8-1 TO 8.2-1				
INPUT DATA		PRIMO 3.8-1	PRIMO 5.0-1	PRIMO 6.0-1	PRIMO 7.6-1	PRIMO 8.2-1
Max. permitted PV power (kWp)		5.7 kW	7.5 kW	9.0 kW	11.4 kW	12.3 kW
Max. usable input current (MPPT 1/MPPT	2)	18 A / 18 A	18 A / 18 A			
Total max. DC current				36 A		
Max. admissible input current (MPPT 1/M	PPT 2)			27 A		
Operating voltage range				80 V - 1,000 V		
Max. input voltage				1,000 V		
Nominal input voltage		410 V	420 V	420 V	420 V	420 V
Admissible conductor size DC				AWG 14 - AWG 6		
MPP voltage range		200 - 800 V	240 - 800 V	240 - 800 V	250 - 800 V	270 - 800 V
Number of MPPT				2		
OUTPUT DATA		PRIMO 3.8-1	PRIMO 5.0-1	PRIMO 6.0-1	PRIMO 7.6-1	PRIMO 8.2-1
Max. output power	240 V	3,800 W	5,000 W	6,000 W	7,600 W	8,200 W
	208 V	3,800 W	5,000 W	6,000 W	7,600 W	7,900 W
Max. output fault current / Duration	240 V	584 A Peak / 154 ms	584 A Peak / 154 m			
Max. continuous output current	240 V	15.8 A	20.8 A	25.0 A	31.7 A	34.2 A
	208 V	18.3 A	24.0 A	28.8 A	36.5 A	38.0 A
Recommended OCPD/AC breaker size	240 V	20 A	30 A	35 A	40 A	45 A
	208 V	25 A	30 A	40 A	50 A	50 A
Max. efficiency (Lite version)				97.9 %		
CEC efficiency (Lite version)	240 V	95.5 %	96.5 %	96.5 %	97.0 %	97.0 %
Admissible conductor size AC				AWG 14 - AWG 6		
Grid connection				208 / 240 V		
Frequency				60 Hz		
Total harmonic distortion				< 5.0 %		
Power factor (cos $\phi_{ac,r}$)				0.85 - 1 ind./cap		


TECHNICAL DATA FRONIUS PRIMO 10.0-1 TO 15.0-1

INPUT DATA		PRIMO 10.0-1	PRIMO 11.4-1	PRIMO 12.5-1	PRIMO 15.0-1					
Max. permitted PV power (kWp)		15.00 kW	17.10 kW	18.75 kW	22.50 kW					
Max. usable input current (MPPT 1/MPP	ſ2)		33.0 A	/ 18.0 A						
Total max. DC current			5	Α						
Max. admissible input current (MPPT 1/M	(IPPT 2)		49.5 A	/ 27.0 A						
Operating voltage range			80 V -	1,000 V						
Max. input voltage			1,0	00 V						
Nominal input voltage		655 V	660 V	665 V	680 V					
Admissible conductor size DC		AWG 14 - AWG 6 copper direct, AWG 6 aluminum direct, AWG 4 - AWG 2 copper or aluminum with optional input co								
MPP Voltage Range		220 - 800 V	240 - 800 V	260 - 800 V	320 - 800 V					
Number of MPPT		2								
OUTPUT DATA		PRIMO 10.0-1	PRIMO 11.4-1	PRIMO 12.5-1	PRIMO 15.0-1					
Max. output power	240 V	9,995 W	11,400 W	12,500 W	15,000 W					
	208 V	9,995 W	11,400 W	12,500 W	13,750 W					
Max. output fault current / Duration	240 V	916 A Peak / 6.46 ms	916 A Peak / 6.46 ms	916 A Peak / 6.46 ms	916 A Peak / 6.46 ms					
Max. continuous output current	240 V	41.6 A	47.5 A	52.1 A	62.5 A					
	208 V	48.1 A	54.8 A	60.1 A	66.1 A					
Recommended OCPD/AC breaker size	240 V	60 A	60 A	70 A	80 A					
	208 V	60 A	70 A	80 A	90 A					
Max. efficiency (Lite version)			97.	9 %						
CEC efficiency (Live version)	240 V	96.5 %	96.5 %	96.5 %	97.0 %					
Admissible conductor size AC		AWG 10 - AW	G 2 copper (solid / stranded / fine st	randed) , AWG 6 - AWG 2 copper (sc	lid / stranded)					
Grid connection			208 /	240 V						
Frequency		60 Hz								
Total harmonic distortion		< 2.5 %								
Power factor ($\cos \varphi_{ac,r}$)		0-1 ind./cap.								

Fronius Canada Ltd. / 2875 Argentia Road, Units 3 - 6 / Mississauga, ON L5N 8G6 / www.fronius.ca / 905-288-2100

MOUNT ACCORDING TO MOUNTING MFG INSTRUCTIONS AND CIVIL/STRUCTURAL DIRECTIONS.

USE FASTENERS SUITABLE TO SURFACE BEING ATTACHED. LAG-SCREWS FOR WOOD, NUTS (LOCKING) AND BOLTS FOR METAL STRUCTURES.

Solar Is Not Always Sunny

Over their lifetime, solar panels experience countless extreme weather events. Not just the worst storms in years, but the worst storms in 40 years. High winds capable of ripping panels from a roof, and snowfalls weighing enough to buckle a panel frame.

XR Rails are the structural backbone preventing these results. They resist uplift, protect against buckling and safely and efficiently transfer loads into the building structure. Their superior spanning capability requires fewer roof attachments, reducing the number of roof penetrations and the amount of installation time.

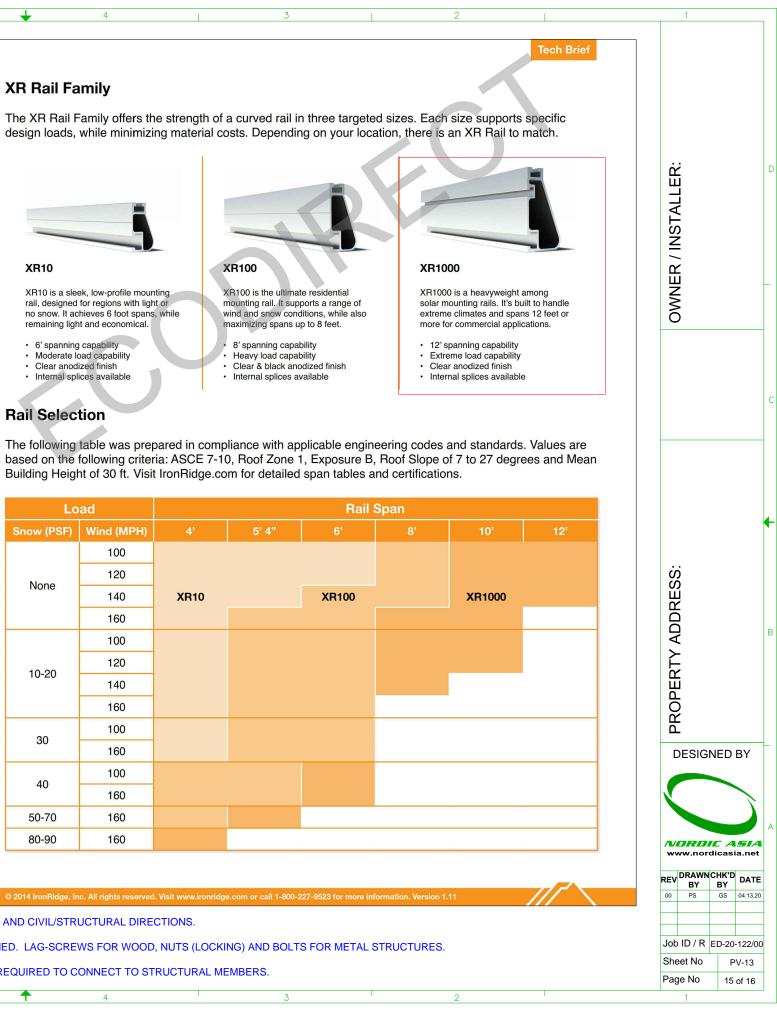
Force-Stabilizing Curve

Sloped roofs generate both vertical and lateral forces on mounting rails which can cause them to bend and twist. The curved shape of XR Rails is specially designed to increase strength in both directions while resisting the twisting. This unique feature ensures greater security during extreme weather and a longer system lifetime

Compatible with Flat & Pitched Roofs

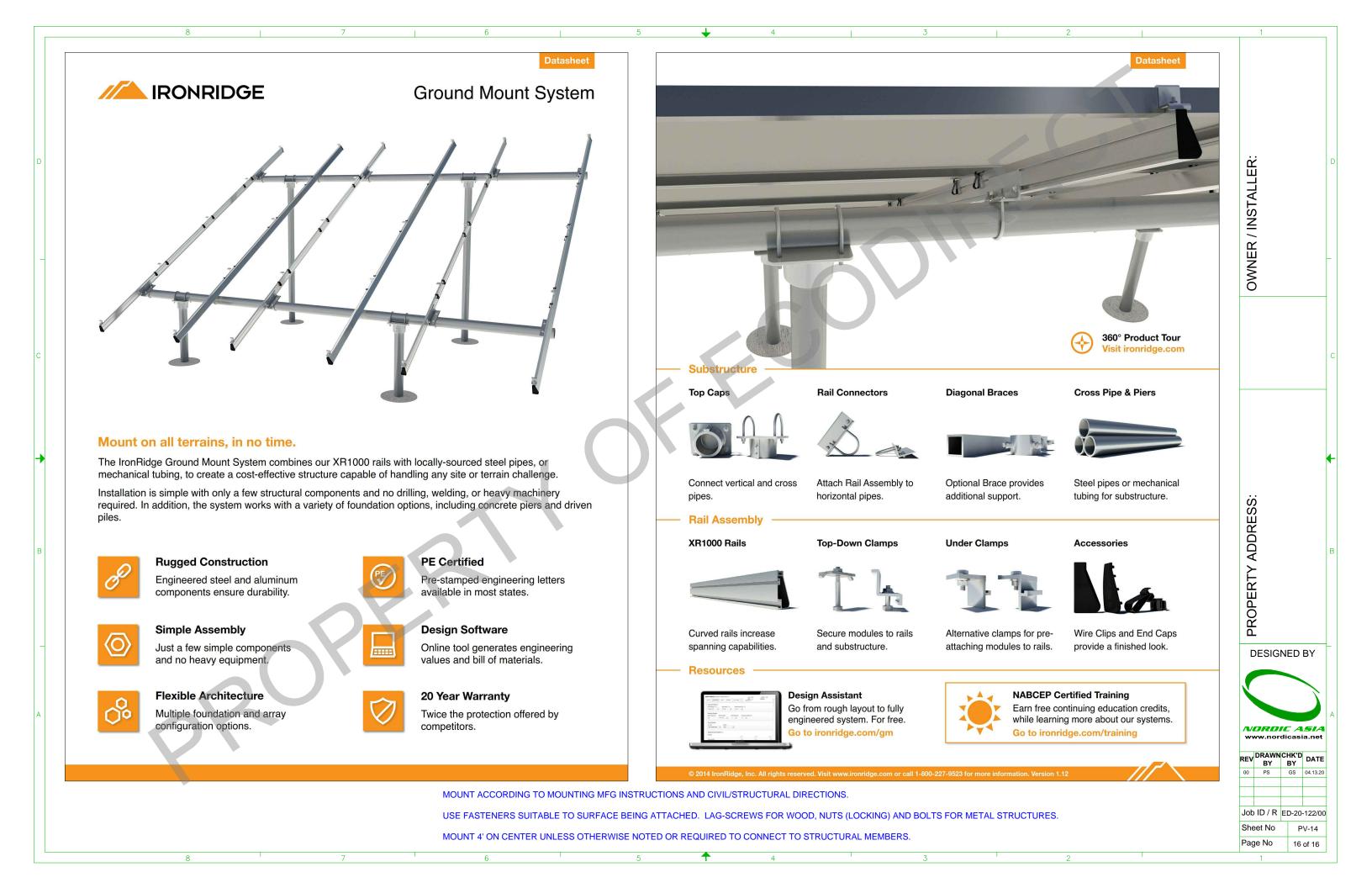
XR Rails are compatible with a range of tilt leg FlashFoot and options for flat other pitched roof roof mounting applications.

ronRidge offers


Corrosion-Resistant Materials

All XR Rails are made of marine-grade aluminum alloy, then protected with an anodized finish. Anodizing prevents surface and structural corrosion, while also providing a more attractive appearance.

Tech Brief


XR Rail Family

Lo	ad			Rail	Sp
Snow (PSF)	Wind (MPH)	4'	5' 4"	6'	
	100				
None	120				
None	140	XR10		XR100	
	160				
	100				
10.00	120				
10-20	140				
	160				
	100				
30	160				
40	100				
40	160				
50-70	160				
80-90	160				

MOUNT ACCORDING TO MOUNTING MFG INSTRUCTIONS AND CIVIL/STRUCTURAL DIRECTIONS.

USE FASTENERS SUITABLE TO SURFACE BEING ATTACHED. LAG-SCREWS FOR WOOD, NUTS (LOCKING) AND BOLTS FOR METAL STRUCTURES.

Out Back FLEXpower Radian

FULLY PRE-ASSEMBLED 4 AND 8KW INVERTER SYSTEMS

Three Reasons to Choose the FLEXpower Radian Integrated System from OutBack Power

1. ENGINEERED FOR FASTER, EASIER INSTALLATION Factory tested, pre-wired and pre-configured system for fast installation

 Includes a fully integrated GS load center for quick and easy connections

 Charge controller, programming and networking components are completely integrated—just install the mounting bracket, hang the system on a wall, make the necessary connections, site specific programming and the system is fully operational

· Optimized system footprint for cleaner installations in half the time

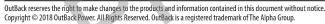
2. DESIGNED FOR FLEXIBILITY

- · 4kW: Ideal for smaller power applications including homes, cabins, remote communication sites and backup power systems
- 8kW: Ideal for medium-sized power requirements including larger homes, light commercial or backup power systems.
- Radian inverter/charger is programmable for seven different operational modes, with generator assist
- Advanced Battery Charging (ABC) programmability accommodates traditional and advanced chemistry batteries
- · 300VDC models provide up to 99% peak efficiency with FLEXmax 100 charge controller

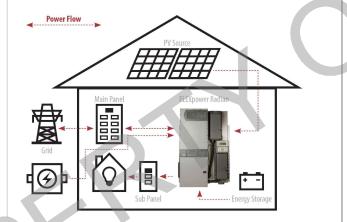
3. BUILT FOR DEPENDABLE, LONG-TERM USE

Extensive quality and reliability testing

- 15 years of experience manufacturing and improving products for fault-intolerant, mission-critical applications
- Monitor, command and control from any internet-connected device with OPTICS RE
- Standard 5 year warranty (extended 10 year warranty available) • Field-upgradable software, field-serviceable modular design and global technical support
- · Components carry all of the necessary ETL certifications



 FLEXpower Integrated System Inverter/Chargers & Charge Controllers


EnergyCell PLC, PL and OPzV Batteries Battery Enclosures and Racking

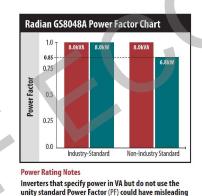
FLEXpower Radian FPR-8048A-300VDC)

OutBack FLEXpower Radian Typical System Integration:

MANAGE THE SYSTEM

OPTICS RE System Monitoring and Control

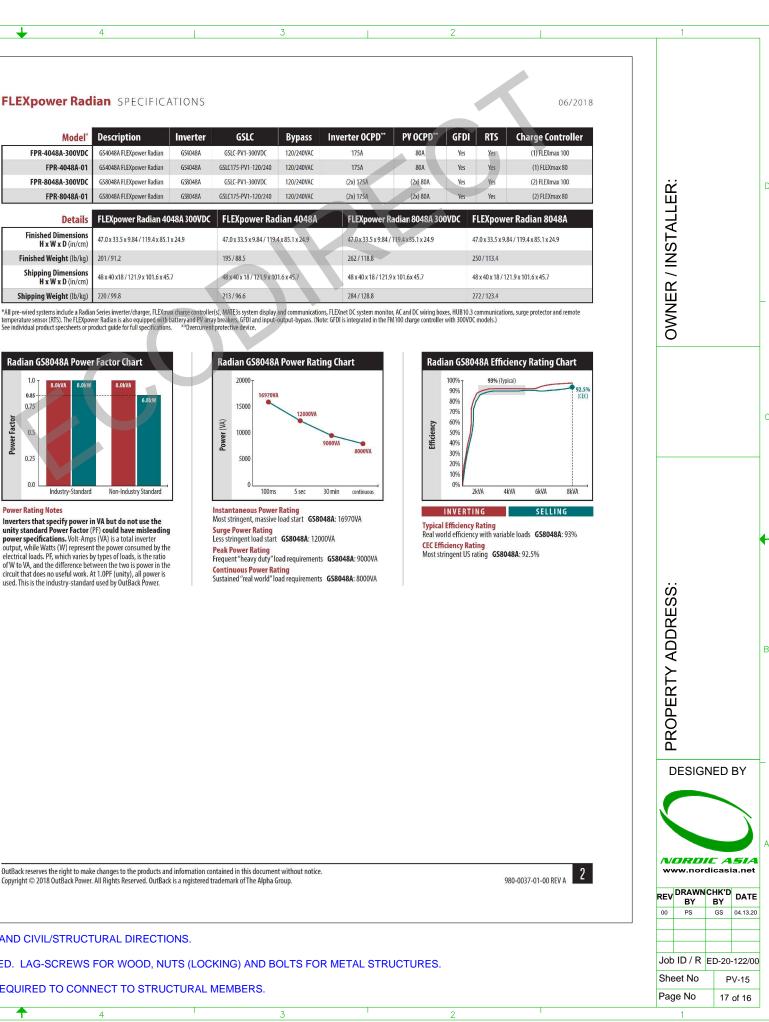
MATE3s System Display and Communications


1

Model^{*} Description Inverter

FLEXpower Radian SPECIFICATIONS

FPR-4048A-300VDC	GS4048A FLEXpower Radian	G54048A	GSLC-PV1-300VDC	120/240VAC	175A
FPR-4048A-01	GS4048A FLEXpower Radian	G54048A	GSLC175-PV1-120/240	120/240VAC	175A
FPR-8048A-300VDC	GS8048A FLEXpower Radian	G\$8048A	GSLC-PV1-300VDC	120/240VAC	(2x) 175A
FPR-8048A-01	GS8048A FLEXpower Radian	G\$8048A	GSLC175-PV1-120/240	120/240VAC	(2x) 175A
Details	FLEXpower Radian 40	48A 300VDC	FLEXpower Rac	lian 4048A	FLEXpower
Finished Dimensions H x W x D (in/cm)	47.0 x 33.5 x 9.84 / 119.4 x 85.1	x 24.9	47.0 x 33.5 x 9.84 / 119.	4 x 85.1 x 24.9	47.0 x 33.5 x 9.8
Finished Weight (lb/kg)	201/91.2		195 / 88.5		262/118.8
Shipping Dimensions H x W x D (in/cm)	48 x 40 x18 / 121.9 x 101.6 x 45	.7	48 x 40 x 18 / 121.9 x 10	1.6 x 45.7	48 x 40 x 18 / 12
Shipping Weight (lb/kg)	220/99.8		213/96.6	284 / 128.8	


ature sensor (RTS). The FLEXpower Radian is also equipped with battery and PV array breakers, GFDI and input-output-bypass. (Note: GFDI is integrated in the FM100 charge controller with 300VDC models.) ee individual product specsheets or product guide for full specifications.

power specifications. Volt-Amps (VA) is a total inverter output, while Watts (W) represent the power consumed by the

electrical loads. PF, which varies by types of loads, is the ratio of W to VA, and the difference between the two is power in the

circuit that does no useful work. At 1.0PF (unity), all power is used. This is the industry-standard used by OutBack Power.

OutBack reserves the right to make changes to the products and information contained in this document without notice. Copyright © 2018 OutBack Power. All Rights Reserved. OutBack is a registered trademark of The Alpha Group

MOUNT ACCORDING TO MOUNTING MFG INSTRUCTIONS AND CIVIL/STRUCTURAL DIRECTIONS.

USE FASTENERS SUITABLE TO SURFACE BEING ATTACHED. LAG-SCREWS FOR WOOD, NUTS (LOCKING) AND BOLTS FOR METAL STRUCTURES.

Radian Series

A-SERIES 60HZ, 120/240V INVERTER/CHARGERS

Three Reasons to Choose the Radian Series Inverter/Charger Series from OutBack Power:

1. ENGINEERED FOR RELIABILITY

- Extensive quality and reliability testing, including Highly Accelerated Life Testing (HALT)
- 15 years of experience manufacturing products for fault-intolerant, mission-critical applications
- Standard 5 year warranty (extended 10 year warranty available) Field upgradeable software

2. DESIGNED FOR FLEXIBILITY

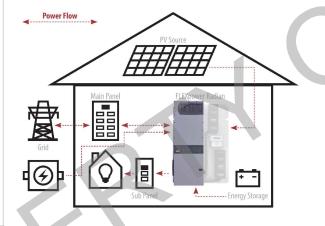
- Modular, stackable: up to nine units can be combined for three-phase operation and ten in parallel, single-phase operation Compliant with California Rule 21 and Hawaii 14H grid
- support requirements Seven different programmable operational modes, with generator assist
- Advanced Battery Charging (ABC) programmability accommodates traditional and advanced chemistry batteries
- GridZero operating mode minimizes grid dependence in areas where incentives are changing and utility sell-back is limited
- 8000 and 4000VA of continuous power with dual AC inputs and peak operating efficiency of 96%
- Off-grid and grid-tied functionality in one unit
- Integrates both grid and generator with dual inputs

3. EASY-TO-INSTALL AND MAINTAIN

- System configures quickly with smart programming wizards • Pre-wired GS load center (GSLC) option allows for quick, easy installation
- Complete balance-of-system components available
- · Field-serviceable modular design and global technical support Monitor, command and control from any internet-connected device with OPTICS RE

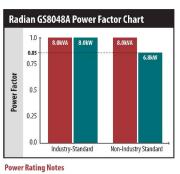
OUTBACK POWER-MASTERS OF THE OFF-GRID. FIRST CHOICE FOR THE NEW GRID.

 FLEXpower Integrated System Inverter/Chargers & Charge Controllers


STORE THE ENERGY EnergyCell RE, GH, NC and OPzV Batteries Battery Enclosures and Racking

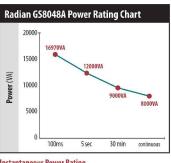
OutBack reserves the right to make changes to the products and information contained in this document without notice. Copyright © 2017 OutBack Power. All Rights Reserved. OutBack is a registered trademark of The Alpha Group

OutBack FLEXpower Radian Typical System Integration (w/ Radian Inverter/Charger):



MATE3 System Display and Communications

1


Radian A-Series SPECIFICATIONS

Models:	GS8048A	GS404
Instantaneous Power (100ms)	16970VA	8500VA
Surge Power (5 sec)	12000VA	6000VA
Peak Power (30 min)	9000VA	4500VA
Continuous Power Rating (@ 25°C)	8000VA	4000VA
Nominal DC Input Voltage	48VDC	48VDC
AC Output Voltage (selectable)	120/240VAC (200-260VAC)	120/240
AC Output Frequency (selectable)	60Hz (50Hz)	60Hz (50
Continuous AC Output Current (@ 25°C)	33.3AAC @ 240VAC	16.7AAC
Idle Power	Invert mode, no load: 34W Search: 10W	Invert n
Typical Efficiency	93%	93%
CEC Weighted Efficiency	92.5%	92.5%
Total Harmonic Distortion	Typical: <2% Maximum: <5%	Typical:
Output Voltage Regulation	±2%	±2%
AC Input Voltage Range (MATE3 Adjustable)	L1-N or L2-N: 85 to 140VAC	L1-N or
AC Input Frequency Range	@ 60Hz: 54 to 66Hz @ 50Hz: 45 to 55Hz	-
Grid-Interactive Voltage Range	L1-N or L2-N: 85 to 140VAC	L1-N or
Grid-Interactive Frequency Range	59.3 to 60.5Hz	59.3 to 6
Maximum AC Input Current	50AAC @ 240VAC	50AAC@
Maximum Utility Interactive Current	30A	15A
Continuous Battery Charge Output	115ADC	57.5ADC
Advanced Battery Charging	Flooded, gel, AGM, lithium-ion and flow chemistry	Flooded,
DC Input Voltage Range	40 to 64VDC	40 to 64\
Accessory Ports	Remote temperature sensor (included), MATE3 and HUB communications	Remote
Warranty	Standard 5 year, extended 10 year available	Standard
Weight (lb/kg)	Unit: 125 / 56.7 Shipping: 140 / 63.5	Unit: 82
Dimensions H x W x L (in/cm)	Unit: 28 x 16 x 8.7 / 71.1 x 40.6 x 22.1 Shipping: 34.5 x 21 x 14.5 / 87.6 x 53.3 x 36.8	Unit: 28
Temperature Range	Rated: -20 to 50°C Maximum: -40 to 60°C	Rated: -
Listings/Certifications	ETL listed to UI. 1741 SA, CE, CSA C2.2.2 No. 107.1, UI. 778 Annex F, IEC 62109-1 ETL, RoHS compliant per directive 2011/65/EU, FCC Class B, IEEE 1574.1, EN61000-6-1, EN61000-6-3, EN61000-3-2, EN61000-3-3	ETL listed directive.
Non-Volatile Memory	Yes	Yes
Field Upgradeable Firmware	Yes	Yes
Chassis Type	Vented	Vented

Inverters that specify power in VA but do not use the unity standard Power Factor (PF) could have misleading power specifications. Volt-Amps (VA) is a total inverter output, while Watts (W) represent the power consumed by the electrical loads. PF, which varies by types of loads, is the ratio of W to VA, and the difference between the two is power in the circuit that does no useful work. At 1.0PF (unity), all power is used. This is the industry-standard used by OutBack Power.

Λ

Instantaneous Power Rating Most stringent, massive load start GS8048A: 16970VA Surge Power Rating Less stringent load start GS8048A: 12000VA Peak Power Rating Frequent "heavy duty" load requirements GS8048A: 9000VA Continuous Power Rating Sustained "real world" load requirements GS8048A: 8000VA

OutBack reserves the right to make changes to the products and information contained in this document without notice. Copyright © 2017 OutBack Power. All Rights Reserved. OutBack is a registered trademark of The Alpha Group

MOUNT ACCORDING TO MOUNTING MFG INSTRUCTIONS AND CIVIL/STRUCTURAL DIRECTIONS.

USE FASTENERS SUITABLE TO SURFACE BEING ATTACHED. LAG-SCREWS FOR WOOD, NUTS (LOCKING) AND BOLTS FOR METAL ST

2	1		
2 08/2017 08/2000 0000000000000000000000000000000	OWNER / INSTALLER:		
or L2-N: 85 to 140VAC	0		
av 1 2. N: 109 to 1321/AC			
to 60.5Hz			
C @ 240VAC			
led, gel, AGM, lithium-ion and flow chemistry 64VDC			
te temperature sensor (included), MATE3 and HUB communications			
lard 5 year, extended 10 year available			
82/37.2 Shipping: 94/42.6			
28 x 16 x 8.7 / 71.1 x 40.6 x 22.1 Shipping : 34.5 x 21 x 14.5 / 87.6 x 53.3 x 36.8			
d: -20 to 50°C Maximum: -40 to 60°C sted to UL 1741 SA, CE, CSA C22.2 No. 107.1, UL 778 Annex F, IEC 62109-1 ETL, RoHS compliant per			
Ne 2011/65/EU, FCC Class B, IEEE 1574.1, EN61000-6-1, EN61000-6-3, EN61000-3-2, EN61000-3-3			
d	ы.		
Radian GS8048A Efficiency Rating Chart	PROPERTY ADDRESS		E
INVERTING SELLING	DESIG	NED B	ΥŢ
Typical Efficiency Rating Real world efficiency with variable loads GS8048A: 93%			
CFC Efficiency Rating			
Most stringent US rating GS8048A: 92.5%			Ϋ́.
	NORD		
2			
	REV DRAWN BY	BY	ATE
	00 PS	GS 04	1.13.20
TRUCTURES.	Job ID / R		
	Sheet No	PV-	16
	Page No	18 of	16
2	1		

MOUNT 4' ON CENTER UNLESS OTHERWISE NOTED OR REQUIRED TO CONNECT TO STRUCTURAL MEMBERS.

DESIGNED BY NORDIC ASIA REV DRAWNCHK'D DATE PS GS 04.13.20 Job ID / R ED-20-122/00 Sheet No PV-17 Page No 19 of 16