

File: 660.22A S.E.

ADMINISTRATIVE RECORD COVER SHEET

AR File Number <u>84</u>7

660. 22A(7)

File: S.E.

NECLIVEN

1

FINAL

🗓 JUL 31 2006 BY: SRE **TECHNICAL MEMORANDUM REVISED REMEDY SELECTION** FOR **OPERABLE UNIT 2 – AREA 50 LANDFILL**

DEFENSE SUPPLY CENTER RICHMOND RICHMOND, VIRGINIA

Prepared for:

Air Force Center for Environmental Excellence 3300 Sidney Brooks Brooks City-Base, Texas 78235

Prepared by:

MACTEC Engineering and Consulting, Inc. 3200 Town Point Drive Suite 100 Kennesaw, Georgia 30144

> Contract No. F41624-03-D-8606 Task Order 81

> > 28 July 2006 Revision 1

engineering and constructing a better tomorrow

28 July 2006

Project No. 6301-05-0016

Mr. Roy J. Shrove HQ AFCEE/IWA – COR 3300 Sidney Brooks Brooks City-Base, TX 78235-5112

Contract : Contract No. F41624-03-D-8606 - TO 81

Subject:Technical MemorandumRevised Remedy Selection for Operable Unit 2 – Area 50 LandfillDefense Supply Center Richmond (DSCR)

Dear Mr. Shrove:

MACTEC Engineering and Consulting, Inc., (MACTEC) is pleased to submit an electronic copy of the abovereferenced document. The Technical Memorandum includes the OU 2 Human Health Baseline Risk Assessment and was prepared in continued support of the Defense Logistics Agency (DLA) at DSCR.

Additional copies of this document have been issued as shown in the attached distribution list. If you have any questions or need further information, please contact me at (770) 421-3458 or Steve Youngs at (770) 421-3377.

Sincerely,

MACTEC Engineering and Consulting, Inc.

Buchli anni Tammy H. Bu

Senior Civil Engineer

Enclosures

Steven R. Youngs Chief Scientist

DISTRIBUTION LIST

FINAL TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 LANDFILL

DEFENSE SUPPLY CENTER RICHMOND RICHMOND, VIRGINIA

28 July 2006

Mr. Roy Shrove HQ AFCEE/IWA – COR 3300 Sidney Brooks Brooks City-Base, TX 78235-5112 (1 electronic copy) Commonwealth of Virginia Virginia Dept. of Environmental Quality Federal Facilities Project Manager Office of Remediation Programs ATTN: Jim Cutler 629 E. Main Street, P.O. Box 10009 Richmond, VA 23240-0009 (3 copies)

Defense Supply Center Richmond ATTN: DSCR-SD, Building 80 (S. Edlavitch) 8000 Jefferson Davis Highway Richmond, VA 23297-5000 (2 copies and 1 electronic copy)

U.S. Environmental Protection Agency, Reg. 3 ATTN: Jack Potosnak (3HS13) 1650 Arch Street Philadelphia, PA 19103-2029 (4 copies)

Commander Defense Logistics Agency Environment and Safety (DES-E) (ATTN: Lt. Col. Dezell) 8725 John J. Kingman Road, Suite 2639 Fort Belvoir, VA 22060-6221 (1 copy) Mr. John Fellinger TechLaw, Inc. 6 Meghans Way Pennsville, NJ 08070 (1 copy)

Commander U.S. Army Corps of Engineers-Norfolk District ATTN: CENAO-PM-M (Al Opstal) 803 Front Street Norfolk, VA 23510-1096 (1 copy)

DOCUM	TENT RESPONSE T	DOCUMENT RESPONSE TO COMMENT FORM	Date: 06 April 2006 Ric	Defense Supply Center Richmond Richmond, VA	lichmond
To:	Defense Supply C Mr. Steven Edlavit	Defense Supply Center Richmond (DSCR) Mr. Steven Edlavitch, Remedial Project Manager	From: Mr. John Fellinger, TechLaw		
Docume DRAFT OPERAL DEFEN: DATED	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REV OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; DATED DECEMBER 2005	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA DATED DECEMBER 2005	Contract No: F41624-03-D-8606 Delivery Order No.: 81	Response Sta 16 June 2006	Response Status: DSCR Response - 16 June 2006
Type of Action: (Check appropriet	Type of Action: (Check appropriate boxes)	Image: Second state of the second s	Chemistry Chemistry Risk Assessment Geology/Hydrogeology Chher Chher Chiner Chiner Chiner Chiner Chine	nent	
Cart. No.	Page No./ Section No.	ERP Team Member Comment:	MACTEC Response:		ERP Team Member – Review Action & Date
	General	The Tech Memo states in the Executive summary and in Section 4.3 that the previous proposed use of the proposed remediated area (recreational, noted in the 2001 Technical Memorandum) was not appropriate since the proposed remediation area lies within the helicopter glide path. This is also noted as "recent information obtained" in the 2006 Tech Memo. Since the helicopter landing pad (and therefore the associated glide path) has not been relocated (to our knowledge) since 1971, please clarify why this is considered "recently obtained information." In addition, since land use controls (LUCs) are proposed as part of the new proposed alternative, please provide the procedures that will be utilized to ensure the proposed LUCs will be maintenance given this current situation/example of apparent non-communication between operators/users of the facility or stakeholders.	The proposed recreational use of the remediated area was based on information indicating that the helicopter landing pad would not be used in the future. The recently obtained information refers to information that the helicopter landing pad would remain available for use (though infrequently) thereby precluding recreational use of the remediated area.	ea was based on 5 would not be used ars to information ble for use (though the remediated area.	
7	General	Recent correspondence provided by the facility has noted that data obtained prior to 1992 could not be validated in accordance with current protocols (e.g., the OU-11 FS Addendum, dated February 2006). The Tech Memo indicates that data collected between 1984 and 1998 were utilized in the human health baseline risk assessment (HHBRA). Please clarify if any of the data utilized in the HHBRA are subject to the same qualification(s).	Data collected prior to 1992 was used in the HHBRA. Use of data collected by Dames and Moore was required for this OU in order to achieve an effective delineation of soil constituent distributions across the OU.	 A. Use of data s OU in order to istributions across 	

ن ۳۹

÷ '

I

DOCUM	ENT RESPONSE T	DOCUMENT RESPONSE TO COMMENT FORM	Date: 06 April 2006	Defense Supply Center Richmond Richmond, VA	Richmond
To:	Defense Supply G Mr. Steven Edlavit	Defense Supply Center Richmond (DSCR) Mr. Steven Edlavitch, Remedial Project Manager	From: Mr. John Fellinger, TechLaw		
Docume DRAFT OPERAE DEFENS DATED I	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REV OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; DATED DECEMBER 2005	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA DATED DECEMBER 2005	Contract No: F41624-03-D-8606 Delivery Order No.: 81	Response Sta 16 June 2006	Response Status: DSCR Response - 16 June 2006
Type of Action: (Check appropi boxes)	Type of Action: (Check appropriate boxes)	Image: Second state Image: Second st	Chemistry Chemistry Ceology/Hydrogeology Other Other Ceology/Hydrogeology Ceology Ceology Ceology Engineering Ceology	sment	
So it.	Page No <i>J</i> Section No.	ERP Team Member Comment:	MACTEC Response:		ERP Team Member – Review Action & Date
۳	General	The Tech Memo and associated HHBRA note that soil sampling was conducted and analyzed "selectively" for metals, volatile, and semivolatile compounds. The analytes list is not provided for the sampling conducted in the site groundwater. Since one of the remedial action objectives (RAOs) is to prevent or limit migration of contaminants to groundwater, please revise the Tech Memo to specifically list (or reference) the soil and groundwater analyses that were conducted as part of the 1984 to 1998 sampling events. In addition, please specifically indicate when/if perchlorates were included as analytes in soil and groundwater samples collected at the Area 50 Landfill.	A detailed listing of soil analytes is provided in Attachment A of the OU 2 HHBRA. Chemical dasses include VOCs, SVOCs, inorganic compounds, pesticides, PCBs, and petroleum hydrocarbons. A detailed listing of groundwater analytes for OU 6 is provided in Appendix A of the OU 6 HHBRA. The potential risks associated with groundwater constituents will be addressed by OU 6. The potential for soil constituents to leach to groundwater is addressed in the OU 6 HHBRA. For ease of review, Table 1, attached, lists constituents analyzed from 1984 to 1998. Perchlorates have not been included as analytes for soil or groundwater sampling event at OU 6.	schment A of the OU 2 s, inorganic rocarbons. A detailed d in Appendix A of the groundwater ntial for soil in the OU 6 HHBRA. uents analyzed from uents analyzed from or soil or groundwater.	
4	General	Figures 2-1 through 2-14 depict individual contaminant concentrations in the surface and sub-surface soils at OU-2. Please clarify which sampling event(s) were utilized in the generation of these figures. In addition, please identify the maximum historical detection for each constituent of concern.	The data in Figures 2-1 through 2-14 were from sampling events conducted during September and October 1984; May, June, and July 1985; October 1986; October 1988; October, November, and December 1994; and October 1998. The maximum historical detections for each constituent of concern are provided in Table 2, attached. The maximum detected constituent concentrations are also listed on Tables A-2-1 and A-2-2 of the OU 2 HHBRA.	ampling events Aay, June, and July ember, and December detections for each ached. s are also listed on	

a

DOCUN	IENT RESPONSE 1	DOCUMENT RESPONSE TO COMMENT FORM	Date: 06 April 2006 Richmond,	Defense Supply Center Richmond Richmond, VA	
To:	Defense Supply C Mr. Steven Edlavi	Defense Supply Center Richmond (DSCR) Mr. Steven Edlavitch, Remedial Project Manager	From: Mr. John Fellinger, TechLaw		
DRAFT DRAFT OPERA DEFEN	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REV OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; DATED DECEMBER 2005	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA DATED DECEMBER 2005	Contract No: F41624-03-D-8606 Delivery Order No.: 81	Response Status: DSCR Response – 16 June 2006	
Type of Action: (Check approp. boxes)	Type of Action: (Check appropriate boxes)	Δ Draft Document Chemistry Pre-Final Document Geology/H Final Document Safety & H Other D	Chemistry Cleonogy/Hydrogeology Cleonogy/Hydrogeology Cleonogy Cleonogy Cleonogy Cleonogy Engineering Cleonogy		
Cmt. No.	Page No/ Section No.	ERP Team Member Comment:	MACTEC Response:	ERP Team Member - Review Action & Date	
5	General	The Tech Memo does not provide a reference or listing of assumptions utilized in the cost estimates presented in Appendix B. Please revise the Tech Memo to list references and assumptions utilized in the cost estimates provided.	The original source of the cost estimates in the Tech Memo is the OU 2 FFS prepared in May 1999. The cost estimates presented in the Tech Memo were updated and revised using current information obtained from local contractors and RS Means Heavy Construction Cost Data for 2005. Appendix B will be amended to include the cost estimate calculation packages and supporting data.	the OU 2 the Tech otained st Data for ate	
ى ت	RAOS	Section 1.5, RAOs, page 1-6: This section notes that the excavation, removal, and off-installation disposal of landfilled materials is neither feasible (given landfill area), practicable (given costs and unexploded ordnance [UXO] presence), and results in unacceptable levels of short-term risk to human health and the environment. Please provide additional details why the landfill area makes a removal action unfeasible and what the estimated costs are, that	The Area 50 landfill was created in an uncontrolled manner from the late 1950s to the early 1970s. No records were kept of materials placed into the landfill or of the sequence and times of material placement. The heterogeneous nature of materials in the landfill was confirmed by thirty test trenches excavated at the landfill during October and November 1994. Seven trenches encountered shallow unexploded ordnance (UXO) at depths less than four feet and were stopped. Landfill material was encountered below groundwater in 13 of the 23 trenches that were	om the late placed into at. The ed by thirty vember nance fill material s that were	
6 (cont)	RAOs	would make the removal action impractical. Since UXU removal actions are safely completed on a regular basis at other federal facilities located throughout the United States and abroad, at sites containing UXO and munitions of environmental concern (MEC) significantly more dangerous than the 40mm grenades and 90mm recoilless rifle rounds (e.g., munitions containing chemical warfare materials, 8-inch projectiles, etc.), the statement that attempting such an action is impractical cannot be supported at this time. Please remove this statement from	not stopped due to UXO. The initial remedial action objectives (RAOs) for the Area 50 landfill were 1) to prevent human exposure to volatile emissions and fugitive dusts from impacted soils, 2) prevent constituent migration to groundwater, and 3) prevent exposure to ordnance and explosives hazards. Landfill materials have been in contact with groundwater since the early 1970s so that RAO 2 is unfeasible at this time. Constituents have been detected in the groundwater beneath the landfill since the early 1980s and have been detected through January 2006, but at much	landfill fugitive ssives water since stituents ince the out at much	

•

i

Page 3 of 6

847

DOCUMENT RESPONS	DOCUMENT RESPONSE TO COMMENT FORM	Date: 06 April 2006 Richmond, V	Defense Supply Center Richmond Richmond, VA
To: Defense Supp Mr. Steven Ed	Defense Supply Center Richmond (DSCR) Mr. Steven Edlavitch, Remedial Project Manager	From: Mr. John Felinger, TechLaw	
Document Title & Location: DRAFT TECHNICAL MEMORANDUM REV OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; DATED DECEMBER 2005	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA DATED DECEMBER 2005	Contract No: F41624-03-D-8606 Delivery Order No.: 81	Response Status: DSCR Response 16 June 2006
Type of Action: (Check appropriate boxes)	Draft Document Pre-Final Document Final Document Final Document Cuther Other Other	Chemistry Geology/Hydrogeology Safety & Health Engineering	
Cmt. Page No./ No. Section No.	ERP Team Member Comment:	MACTEC Response:	ERP Team Member – Review Action & Date
	the Tech Memo. In addition, this section indicates that constituent migration from material located above the water could be minimized by reducing infiltration. This statement is not supported by data such as vertical cross sectional figure(s) which depict the approximate landfilt materials depth and the high and low seasonal water table levels. Please revise the Tech Memo to include these figures or to provide a reference to a previous report containing these figures.	lower concentrations. Some of the constituent mass has already adsorbed to the matrix of the upper water bearing unit (WBU) so that removal of landfill materials would not by itself achieve RAO 2. The impacted matrix of the upper WBU would have to be removed, which would be impractical due to the logistics of excavating below the water table. The order-of-magnitude cost estimate for removal and off-installation disposal of 54,000 cubic yards of landfill material was approximately \$13,000,000. The estimate was based on a landfill area of approximately 5.5 acres and an average depth of six feet. The estimate included a nominal cost of \$100,000 for dewatering during removal. The cost estimate calculations and supporting data will be added to Appendix B. The bottom of the upper WBU is approximately 20 feet below the bottom of landfill materials identified in soil borings and test trenches. If half of the upper WBU matrix had to be removed to achieve RAO 2, the estimated cost would more than double even without including dewatering and treatment to allow excavation below the water table. At such a cost it would be impractical to remove landfill material and impacted upper WBU matrix to achieve RAO 2. RAOs 1 and 3 would be achieved by the final remedy presented in the Draft Technical Memorandum (soil cover and land use controls). In addition to being feasible and practical, the final remedy is consistent with US Environmental Protection Agency (USEPA) presumptive	tdy so that so that which he water allation allation nately to achieve out the water material sistent ve

.

DOCUM	1ENT RESPONSE T	DOCUMENT RESPONSE TO COMMENT FORM	Date: 06 April 2006	Defense Supply Center Richmond Richmond, VA	Richmond
To:	Defense Supply C Mr. Steven Edlavit	Defense Supply Center Richmond (DSCR) Mr. Steven Edlavitch, Remedial Project Manager	From: Mr. John Fellinger, TechLaw		
Docume DRAFT OPERAL DEFENS DATED	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REV OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND DATED DECEMBER 2005	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA DATED DECEMBER 2005	Contract No: F41624-03-D-8606 Delivery Order No.: 81	Response Sta 16 June 2006	Response Status: DSCR Response - 16 June 2006
Type of Action: (Check approp boxes)	Type of Action: (Check appropriate boxes)	Image: Child Document Child Child Document Final Document Call Other Call	Chemistry Geology/Hydrogeology Safety & Health Engineering	essment	
Cat. No.	Page No./ Section No.	ERP Team Member Comment:	MACTEC Response:		ERP Team Member – Review Action & Date
			remedy of containment for Comprehensive Environmental Reclamation, Compensation, and Liability Act municipal landfills (at <i>www.epa.gov/superfund/resources/presump/clms.htm</i>). The USEPA containment remedy includes preventing direct contact with landfill containment remedy includes preventing surface water runoff and erosion, all of which are included in the final remedy. The potential risks associated with groundwater constituents will be addressed by OU 6 and management of landfill gas is not needed due to the age of the Area 50 landfill and the nature of the wastes placed in it. The initial RAO 2 has been revised from "prevent" to "reduce" constituent migration to groundwater. The soil cover in the final remedy will be sloped to promote drainage of surface water runoff. Vertical cross sections depicting approximate depths of landfill <i>Source Area (Operable Unit 2)</i> (Law Engineering and Environmental Services, Inc., May 1999). Landfill materials are above the water table. A sloped soil cover would reduce surface water ruble, and thereby achieve revised RAO 2.	ironmental Reclamation, ills (at rs: <i>htm</i>). The USEPA contact with landfill surface water runoff and nedy. The potential risks a addressed by OU 6 ue to the age of the Area n ft. to "reduce" over in the final remedy ater runoff. Vertical landfill material and the <i>Third Revised Final</i> andfill Source Area mental Services, Inc., ter table. A sloped soil duce water movement and thereby achieve	

â

DOCUN	DOCUMENT RESPONSE TO COMMENT FORM	O COMMENT FORM	Date: 06 April 2006	Defense Supply Center Richmond Richmond, VA	r Richmond
To:	Defense Supply Ce Mr. Steven Edlavit	Defense Supply Center Richmond (DSCR) Mr. Steven Edlavitch, Remedial Project Manager	From: Mr. John Fellinger, TechLaw		
Docume DRAFT OPERA DEFEN: DATED	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REV OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; DATED DECEMBER 2005	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA DATED DECEMBER 2005	Contract No: F41624-03-D-8606 Delivery Order No.: 81	Response Sta 16 June 2006	Response Status: DSCR Response – 16 June 2006
Type of Action: (Check approprime to the second	Type of Action: (Check appropriate	Image: Second state Image: Second state Image: Second state Image: Second state <td>Chemistry Chemistry Chemistry Chemistry Ceology/Hydrogeology Chher Cafety & Health</td> <td>essment</td> <td></td>	Chemistry Chemistry Chemistry Chemistry Ceology/Hydrogeology Chher Cafety & Health	essment	
Cmt. No.	Page No./ Section No.	ERP Team Member Comment:	MACTEC Response:		ERP Team Member – Review Action & Date
2	НВКА	Appendix A, HHBRA: The references in the HHBRA list the April 2005 EPA risk based concentration (RBC) tables (page A-8-3), but tables A-2-1 and A-2-2 acknowledge the October 2005 RBC tables (most current). Please clarify which RBC table (April 2005 or October 2005) was utilized in the HHBRA. In addition, please note that the April 2006 RBC tables are expected to be published within the next 30 days.	The October 2005 RBC tables were used. The reference was not revised to reflect this. At the time these comments were received, the April 2006 tables have been issued. The table and text references will be revised to reflect the RBC tables used.	reference was not ents were received, the and text references will	
ω	НВКА	Appendix A, HHBRA, Attachment B: The HHBRA provides a statistical comparison of detections to background values. Please provide references to the document(s) where these background values used are located.	The background data are presented in the Supplemental Feasibility Study Investigation Report, Volume 4 of 4, Appendix I, Revision 1, February 2006.	llemental Feasibility andix I, Revision 1,	
8 0	Continued on Next Page	End of Comments			

.

Ś Page 6 of 6

Response to Comments (Attachments)Page 1 of 2May 2, 2006Draft Technical Memorandum Revised Remedy Selection For OU 2 – Area 50 LandfillDefense Supply Center RichmondRichmond, VirginiaDated February 2006

	SOIL
Volatile Organic Compounds	Diesel Fuel
2,4-Dinitrotoluene	Gasoline
Semivolatile Organic Compounds	Jet Fuel
Metals	Kerosene
Hexavalent Chromium	Mineral Oil
Pesticides	Paint Thinner
Total Petroleum Hydrocarbons	Naptha
Polychlorinated Biphenyls	Stoddard Solvent
GROU	NDWÄTER
Volatile Organic Compounds	Carbon Dioxide
2,4-Dinitrotoluene	Ethene & Ethane
Semivolatile Organic Compounds	Methane
Metals	Sulfate
Hexavalent Chromium	Nitrate & Nitrite
Pesticides	Chloride
Freon 112	Acidity
Cyanide	Alkalinity
Total Petroleum Hydrocarbons	Total Organic Carbon
Oil & Grease	Dissolved Organic Carbon

Table 1Constituents Analyzed from 1984 to 1998

Perchlorates were not included as analytes for soil or groundwater samples.

Response to Comments (Attachments)Page 2 of 2May 2, 2006Draft Technical Memorandum Revised Remedy Selection For OU 2 - Area 50 LandfillDefense Supply Center RichmondRichmond, VirginiaDated February 2006

Table 2

Maximum Historical Detections for Each Constituent of Concern

(Taken from sampling events conducted during September and October 1984; May, June, and July 1985; October 1986; October 1988; October, November, and December 1994; and October 1998)

FICURE#	CONSTRUENT	MAXIMUM (mg/kg)
2-1	Arsenic	30
2-2	Benzo(a)anthracene	360
2-3	Banzo(a)pyrene	340
2-4	Benzo(b)fluoranthene	540
2-5	Benzo(k)fluoranthene	540
2-6	Dibenzo(ah)anthracene	72
2-7	Indeno(1,2,3-cd)pyrene	180
2-8	Aroclor 1260	47
2-9	Trichloroethene	53.4
2-10	Benzo(a)anthracene	360
2-11	Benzo(a)pyrene	340
2-12	Benzo(b)fluoranthene	540
2-13	Dibenzo(ah)anthracene	72
2-14	Indeno(1,2,3-cd)pyrene	180

DOCIN	DOCIMENT BESPONSE TO COMMENT CORM			Defense Supply Center Richmond	mond
			Date: 18 April 2006	Richmond, VA	
To:	Defense Supply Ce Mr. Steven Edlavitc	Defense Supply Center Richmond (DSCR) Mr. Steven Edlavitch, Remedial Project Manager	From: Ms. Nancy Rios-Jafolla USEPA		
Docume DRAFT DRAFT DRAFT DEFEN DATED	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVIS OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; R DATED DECEMBER 2005/FEBRUARY 2006	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA DATED DECEMBER 2005/FEBRUARY 2006	Contract No: F41624-03-D-8606 Delivery Order No.: 81	15 June 2006	Response Status: DSCR Response 15 June 2006
Type of	Type of Action:	⊒□ ≩	Chemistry Ceology/Hydrogeology	essment	
(Check a boxes)	(Check appropriate boxes)	C Final Document C Safety C Engine]		
Cmt. No.	Page No./ Section No.	ERP Team Member Comment:	MACTEC Response:		ERP Team Member – Review Action & Date
-	General	The hydrogeologist may want to comment further on the proposed RAO for groundwater at this site.	Comment noted. Groundwater is not part of OU 2 and will be addressed under OU 6.	2 and will be	
2	General	Patricia Flores-Brown should review the particulate emissions and vapor intrusion models (see page A-3-2). Note that it is not clear whether the landfill gas model was previously reviewed by Patricia.	Comment noted. Materials placed in the Area 50 landfill were not putrescible, and therefore, landfill gas was not believed to be of concern. The modeling presented in the 2001 Draft Technical Memorandum confirmed that landfill gas is not an issue at the Area 50 landfill. Additional comments will be addressed, if received.	0 landfill were not elieved to be of concern. iical Memorandum Årea 50 landfill. ed.	
3	General	Note that EPA Region 3 prefers that the upper slope factor for TCE be used in the baseline risk assessment.	As supplemental information in the risk characterization section of the HHBRA, risk associated with TCE has been calculated using the NCEA slope factor range. The overall conclusions remain unchanged.	rization section of the ulated using the NCEA ain unchanged.	
Б С	Continued on Next Page	End of Comments			

.

Ŷ

Page I of I

- -- --

.

DOCUN	MENT RESPONSE 1	DOCUMENT RESPONSE TO COMMENT FORM	Date: 27 April 2006	Defense Supply Center Richmond Richmond, VA	Richmond
To:	Defense Supply C Mr. Steven Edlavit	Defense Supply Center Richmond (DSCR) Mr. Steven Edlavitch, Remedial Project Manager	From: Mr. Bruce Pluta USEPA BTAG		
Docume DRAFT OPERA DEFEN DATED	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVIS OPERABLE UNIT 2 – AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; R DATED DECEMBER 2005/FEBRUARY 2006	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA DATED DECEMBER 2005/FEBRUARY 2006	Contract No: F41624-03-D-8606 Delivery Order No.: 81	Respons	Response Status:
Type of Action:	Type of Action: (Check anomicate	Draft Document Pre-Final Document Enal Document Sofe	Chemistry Clean Risk Assessment Geology/Hydrogeology Other	essment	
boxes)	appropriate		satery & nearm Engineering		
So. Cat.	Page No./ Section No.	ERP Team Member Comment:	MACTEC Response:		ERP Team Member – Review Action & Date
-	Section 1.5	Section 1.5 on page 1-6 lists the remedial action objectives (RAO) for the remedy. The RAOs focus almost entirely on the protection of human health. There is no RAO that discusses the protection of ecological receptors from exposure to surface soil. It is unclear if an ecological risk assessment was completed for surface soil. Section 4.3.2 discusses the protectiveness of Alternative 6A to ecological receptors. This section states that the placement of a soil cap addresses ecological risk. However, the section states that the soil cap will only be 6 inches deep around the edge of the cover. A soil cap of 6 inches around the edge is not sufficient to address the ecological risk as exposure can occur in soil deeper than 6 inches. BTAG recommends that the soil cap be at least 2 feet thick in areas of potential ecological risk to address this pathway of concern.	 An ecological assessment was not completed for OU 2 because this area provides limited ecological habitat. OUs 1, 2 & 3 are in a developed and industrialized area of the installation and have been in industrial use for many years. OU 2 is fenced and completely grass-covered or paved. The grassed area is mowed on a routine basis and this maintenance will continued in the future. Therefore, the introduction of additional ecological species is unlikely to occur. A cap thickness of 6 inches is proposed around the perimeter of the Area 50 landfill. However, it should be noted, that the proposed cap thickness is in addition to the existing soil cap in-place. The Area 50 landfill currently has an 18-inch thick soil cap over the waste material. With the existing cap thickness, the final soil cap will be 2 feet thick at the expressed in this comment. 	or OU 2 because this , 2 & 3 are in a ation and have been in and completely grass- on a routine basis and herefore, the introduction cur. I the perimeter of the nat the proposed cap 1-place. The Area 50 for the waste material. will be 2 feet thick at dress the concerns	

ter Richmond		Response Status:			ERP Team Member Review Action & Date	
Defense Supply Center Richmond Richmond, VA		Les	☐ Risk Assessment □ Other		onse:	Il not be created since e issue here seems to be tallation of the cap system. uration, and many methods ed to reduce the potential for sed to reduce the potential for sea. Further, sediment construction area will consist o be utilized in the petated, clean soil cap nent can be controlled withou i stablization through the us d around the landfill can be ation is established. These esign.
Date: 27 April 2006	From: Mr. Bruce Pluta USEPA BTAG	Contract No: F41624-03-D-8606 Delivery Order No.: 81	jeology	Safety & Health Engineering	MACTEC Response:	It should be noted that additional runoff will not be created since drainage patterns will not be changed. The issue here seems to be related to the construction activities for installation of the cap system. The construction period will be limited in duration, and many methods of erosion and sediment control can be utilized to reduce the potential for sediment transport from the construction area. Further, sediment removed from stormwater runoff from the construction area will consist only of particulates from the clean soil fill to be utilized in the construction of the landfill cap. Note a vegetated, clean soil cap presently exists on the landfill area. Sediment can be controlled without the construction of a temporary pond. Soil stabilization through the use of straw or mulch and silt fencing within and around the landfill can be utilized to reduce or limit runoff until vegetation is established. These details will be addressed in the remedial design.
O COMMENT FORM	Defense Supply Center Richmond (DSCR) Mr. Steven Edlavitch, Remedial Project Manager	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA DATED DECEMBER 2005/FEBRUARY 2006	تع يو	Cher Safety & Her Cherry Cherr	ERP Team Member Comment:	Section 5.1.2 on page 5-1 discusses the soil cover that is proposed for the landfill. The soil cover will be sloped at 3 to 5 percent to promote drainage of surface water runoff. Surface water runoff will be collected in ditches and conveyed from the OU. As stated in the 3-year Creek Monitoring Report, BTAG recommended better stormwater management on the base to prevent ongoing degradation of the stream channel and in-stream habitat. In addition to the soil erosion until the cap is fully vegetated, creating 13 additional acres of runoff will further degrade No-Name Creek. Therefore, BTAG recommends that a stormwater wetland/pond be constructed to collect surface water runoff and any eroded soil from the landfill cover for treatment prior to discharge to the storm sewer system and No-Name Creek.
DOCUMENT RESPONSE TO COMMENT FORM	Defense Supply Ca Mr. Steven Edlavit	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVIS OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; R DATED DECEMBER 2005/FEBRUARY 2006	Type of Action:	(Check appropriate boxes)	t. Page No./ . Section No.	Section 5.1.2
ğ	To:	Doc DEF DAT	Тур	(Check boxes)	S G	N

Ŧ

pocul	MENT RESPONSE T	DOCUMENT RESPONSE TO COMMENT FORM	Date: 27 April 2006	Defense Supply Center Richmond Richmond, VA	nond
To:	Defense Supply C Mr. Steven Edlavit	Defense Supply Center Richmond (DSCR) Mr. Steven Edlavitch, Remedial Project Manager	From: Mr. Bruce Pluta USEPA BTAG		
Docum DRAFT DRAFT DFER DEFEN DATED	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVIS OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; R DATED DECEMBER 2005/FEBRUARY 2006	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA DATED DECEMBER 2005/FEBRUARY 2006	Contract No: F41624-03-D-8606 Delivery Order No.: 81	Response Status:	atus:
Type of	Type of Action:	Draft Document Draft Document Draft Document Geoloov/H	Chemistry Chemistry Chemistry Chemistry Chemistry Ceoloov/Hvdroaeoloov	essment	
(Check boxes)	(Check appropriate boxes)		-		
Cmt. No.	Page No./ Section No.	ERP Team Member Comment:	MACTEC Response:		ERP Team Member - Review Action & Date
ო 	Section 5.2.4	Section 5.2.4 on page 5-3 states that the groundwater monitoring will be performed under OU6. If this contaminated groundwater is discharging to No-Name Creek, monitoring of surface water, sediment, and/or biota	A sampling program for No-Name Creek is currently being developed. Surface water and sediments in No Name Creek can be sampled to further monitor the effectiveness of the completed remedy with this	ently being developed. k can be sampled to ed remedy with this	
		in No-Name Creek should be performed to assess ecological impacts. The type of sampling would be based on the fate and transport properties of the chemicals being released. The 3-year Creek Monitoring Report only	program designed to monitor constituents detected in OU 2 soil and OU 6 groundwater. The modified Alternative 6A will effectively protect the health of ecological receptors by eliminating future exposures.	ted in OU 2 soil and OU I effectively protect the ure exposures.	
		address current and future releases to the creek, and may not address current and future releases to the creek.	OU 2 has been identified as a soil operable unit. Groundwater issues, including the fate and transport properties of groundwater constituents discharging to No Name Creek, if any, will be addressed under OU 6.	. Groundwater issues, oundwater constituents ddressed under OU 6.	
				-	

-

•

Continued on Next Page

End of Comments

Response Status: DSCR Response – 21 June 2006 ERP Team Member – Review Action & Date Defense Supply Center Richmond Richmond, VA altematives in the OU 2 Technical Memorandum did not include removal or hydraulic isolation of landfill materials, because groundwater impacted by the landfill does not pose a current risk to human health or cover. As stated in the OU 2 Technical Memorandum, the groundwater The OU 2 remedial action objectives (RAOs) did not include prevention Prevent human ingestion of, direct contact with, and inhalation of The RAOs will be achieved by the final remedy presented in the OU 2 Technical Memorandum (soil cover and land use controls). The comment advocates consideration of a dewatering alternative for underlying the Area 50 landfill will be addressed in the OU 6 Focused of Area 50 landfill constituent migration to groundwater, and remedial Feasibility Study (FFS). The FFS will incorporate information from a impact groundwater regardless of the effectiveness of the proposed the Area 50 landfill noting that otherwise the landfill will continue to Prevent exposure to ordnance and explosives (OE) hazards reatability study to be conducted during the summer of 2006. fugitive dusts from impacted soils (primarily for workers) C Risk Assessment Reduce constituent migration to groundwater MACTEC Response: Contract No: F41624-03-D-8606 Delivery Order No.: 81 Mr. William McKenty The OU 2 RAOs are to: 16 May 2006 USEPA the environment. Geology/Hydrogeology Safety & Health Engineering From: Date: പ്പ Chemistry on a continuing basis regardless of the effectiveness of the landfill. This would require pumping and effluent could be The landfill will continue to impact groundwater otherwise directed to either to a POTW or a treatment system, such An additional remedial alternative should be considered. evaluation should be made to consider dewatering the Due to the documentation that the fill extends into the as the one associated with the National Guard Area. saturated zone within the footprint of the landfill, an DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR **ERP Team Member Comment:** DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA Defense Supply Center Richmond (DSCR) Mr. Steven Edlavitch, Remedial Project Manager Pre-Final Document Final Document Draft Document DOCUMENT RESPONSE TO COMMENT FORM DATED DECEMBER 2005/FEBRUARY 2006 **OPERABLE UNIT 2 - AREA 50 LANDFILL** proposed cap. Other \boxtimes Document Title & Location: Section No. Page No./ (Check appropriate General Type of Action: boxes) s ä ö

Page 1 of 3

DOCUMENT RESPON:	DOCUMENT RESPONSE TO COMMENT FORM	Date: 16 May 2006 Richmon	Defense Supply Center Richmond Richmond, VA
To: Defense Supp Mr. Steven Ed	Defense Supply Center Richmond (DSCR) Mr. Steven Edlavitch, Remedial Project Manager	From: Mr. William McKenty USEPA	
Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVIS OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; R DATED DECEMBER 2005/FEBRUARY 2006	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA DATED DECEMBER 2005/FEBRUARY 2006	Contract No: F41624-03-D-8606 Delivery Order No.: 81	Response Status: DSCR Response – 21 June 2006
Type of Action: (Check appropriate boxes)	Draft Document Draft Document Pre-Final Document Final Document Other Other Other	Chemistry Geology/Hydrogeology Safety & Health Engineering	
Cmt. Page No./ No. Section No.	ERP Team Member Comment:	MACTEC Response:	ERP Team Member – Review Action & Date
		It was noted in the OU 2 Technical Memorandum that materials disposed in the Area 50 landfill are already in contact with groundwater. The landfill area was originally a vegetated ravine lying roughly north- south through the center of OU 2. Prevention of landfill constituent migration to groundwater could not be achieved by any means other than complete excavation, removal, and off-site disposal of the land filled materials, actions that are neither feasible nor practical.	terials groundwater. ughly north- onstituent eans other cal.
		The estimated dimensions of the landfill are approximately 230 feet by 1,050 feet, an area of 241,500 square feet (approximately 5.5 acres). If the average depth of landfill material in this area is approximately six feet, approximately 1,449,000 cubic feet, or approximately 54,000 cubic yards (CY), of landfil material would have to be removed.	/ 230 feet by 5.5 acres). If imately six 54,000 cubic
		Hydraulic isolation of the landfill would require permanent pumping of groundwater which is neither feasible nor practical. The difficulty of long-term groundwater extraction from the upper water bearing unit (WBU) was demonstrated by the low operational efficiency of the OU 9 groundwater extraction system (1994 to Present).	pumping of ifficulty of aring unit v of the OU 9
		Some of the constituent mass has already adsorbed to the matrix of the upper WBU beneath the landfill so that removal or hydraulic isolation of landfill materials would not by itself eliminate landfill impacts. The impacted matrix of the upper WBU would have to be removed. Excavating to depths of just two to four feet into the upper WBU matrix	e matrix of the ic isolation of ts. The ved. WBU matrix

î

Page 2 of 3

DOCUM	IENT RESPONSE T	DOCUMENT RESPONSE TO COMMENT FORM	Date: 16 May 2006 Ric	Defense Supply Center Richmond Richmond, VA	Richmond
To:	Defense Supply C Mr. Steven Edlavit	Defense Supply Center Richmond (DSCR) Mr. Steven Ediavitch, Remedial Project Manager	From: Mr. William McKenty USEPA		
Docume DRAFT OPERA DEFENS DATED	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVIS OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; R DATED DECEMBER 2005/FEBRUARY 2006	Document Title & Location: DRAFT TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL DEFENSE SUPPLY CENTER RICHMOND; RICHMOND, VIRGINIA DATED DECEMBER 2005/FEBRUARY 2006	Contract No: F41624-03-D-8606 Delivery Order No.: 81	21 June	Response Status: DSCR Response – 21 June 2006
Type of Action: (Check appropi boxes)	Type of Action: (Check appropriate boxes)	Draft Document Pre-Final Document Final Document Other	Chemistry I Risk Assessment Geology/Hydrogeology I Other Safety & Health Engineering	ment	
Cmt. No.	Page No./ Section No.	ERP Team Member Comment:	MACTEC Response:		ERP Team Member - Review Action & Date
			would results in an additional 18,000 to 36,000 CY of removed material. Doing this would be impractical due to the logistics of excavating below the water table.	of removed material. of excavating below	
			Upper WBU plumes beneath the Area 50 landfill and the National Guard Area (NGA) are separate. There have been no lower WBU plumes beneath the landfill. Plumes beneath the NGA extended east of the installation to No Name Creek while plumes resulting from impacts of the landfill have remained on the installation. Hydraulic isolation of landfill materials will do nothing to mitigate off-installation plumes.	d the National Guard er WBU plumes inded east of the ig from impacts of autic isolation of lation plumes.	
			Groundwater impacted by the landfill is: 1) not moving past the installation boundary; 2) not creating potential risks to off-installation residential and recreational receptors; and 3) not discharging to No Name Creek and creating potential risks to ecological receptors. For these reasons the RAOs and remedial alternatives proposed for the Area 50 landfill are appropriate even without removal or hydraulic isolation of landfill materials.	ng past the to off-installation scharging to No al receptors. For proposed for the al or hydraulic	
Cont Cont	Continued on Next Page	End of Comments			

e

Page 3 of 3

28 July 2006 Revision 1

TABLE OF CONTENTS

	CH ITTA		<u>Page</u>
		E SUMMARY	
1.0		RODUCTION	
	1.1	PURPOSE	
	1.2	LOCATION AND GEOLOGY	
	1.3	OPERABLE UNIT HISTORY	1-3
	1.4	OVERVIEW OF OU 2	1-5
	1.5	RAOS	1-6
2.0	SUM	IMARY OF NEW INFORMATION	
	2.1	CSM AND NATURE AND EXTENT OF SOIL CONSTITUENTS	2-1
	2.2	REVISED OU 2 HHBRA	2-2
		2.2.1 Exposure Pathways	2-2
		2.2.2 Risk Characterization 2.2.3 COCs	2-3
	2.3	2.2.3 COCs THREE-YEAR CREEK MONITORING PROGRAM	2-4
	2.4	HHBRA OF THE CREEKS ADJACENT TO DSCR	
	2.5		
	4.5	COMPLETED STORM SEWER REHABILITATION	
		2.5.1 Storm Server Emilig 2.5.2 Manhole Sealing	2-6 2-6
3.0	APP	LICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS	
	3.1	FEDERAL	
	3.2	STATE	
4.0	DES	IGN ANALYSIS SUMMARY	
	4.1	INITIAL REMEDY SELECTION - 1999 FOCUSED FEASIBILITY STUDY	
	4.2	2001 PROPOSED REVISED REMEDY	
		4.2.1 Re-evaluation of Removal Action in the 2001 Proposed Revised Remedy	4- 2
		4.2.2 Re-evaluation of the Clay Cap in the 2001 Proposed Revised Remedy	4-3
	4.3	PROPOSED FINAL REMEDY - MODIFIED ALTERNATIVE 6A	
		 4.3.1 Protectiveness of Modified Alternative 6A – Human Health 4.3.2 Protectiveness of Modified Alternative 6A – Ecological Risk 	4-5
		 4.3.2 Protectiveness of Modified Alternative 6A – Ecological Risk 4.3.3 Comparative Analysis of Remedial Alternatives 	4-5
5.0	FINA	AL REMEDY	
	5.1	FINAL REMEDY COMPONENTS	
		5.1.1 LUCs	
	~ ~	5.1.2 Soil Cover	5-1
	5.2	SOIL COVER DESIGN CONSIDERATIONS	5-2
		5.2.1 Landfill Gas 5.2.2 Stormwater Evaluation	5-2
			3-2

i

847 28 July 2006 Revision 1

TABLE OF CONTENTS (Continued)

				Page
		5.2.3	Erosion and Sediment Control	
		5.2.4	Post-closure Care	
6.0	CON	CLUSIC	ONS AND RECOMMENDATIONS	
	6.1	CONC	CLUSIONS	
	6.2	RECO	OMMENDATIONS	
7.0	REF	ERENCI	ES	

050016.18

ii

LIST OF TABLES

<u>Table</u>

- 2-1 Chemicals of Concern in Surface and Subsurface Soils
- 2-2 Constituents Analyzed from 1984 to 1988
- 2-3 Maximum Historical Detections for Each COC
- 2-4 Risk Summary, Reasonable Maximum Exposure, Current Industrial Workers
- 2-5 Risk Summary, Reasonable Maximum Exposure, Future Industrial Workers
- 2-6 Risk-based Remediation Goals for Surface and Subsurface Soils
- 2-7 Storm Sewers Lined by PVC Fold and Form Method
- 2-8 Storm Sewer Manhole Improvements
- 3-1 Applicable or Relevant and Appropriate Requirements (ARARs) and To-be-considered Criteria (TBCs) for Soils
- 4-1 Comparative Analysis of Retained Remedial Alternatives

LIST OF FIGURES

<u>Figure</u>

- 1-1 Location of the Installation
- 1-2 Defense Supply Center Richmond and Surrounding Area
- 1-3 OU 2 Site Map
- 1-4 Cross Section A-A'
- 1-5 OU 2 Storm Sewer Locations
- 1-6 DSCR Storm Sewers
- 2-1 Arsenic in Surface Soil
- 2-2 Benzo(a)anthracene in Surface Soil
- 2-3 Benzo(a)pyrene in Surface Soil
- 2-4 Benzo(b)fluoranthene in Surface Soil
- 2-5 Benzo(k)fluoranthene in Surface Soil
- 2-6 Dibenzo(a,h)anthracene in Surface Soil
- 2-7 Indeno(1,2,3-cd)pyrene in Surface Soil
- 2-8 Aroclor 1260 in Surface Soil
- 2-9 Trichloroethene in Subsurface Soil
- 2-10 Benzo(a)anthracene in Subsurface Soil
- 2-11 Benzo(a)pyrene in Subsurface Soil

847 22 28 July 2006 Revision 1

LIST OF FIGURES (Continued)

Figure

- 2-12 Benzo(k)fluoranthene in Subsurface Soil
- 2-13 Dibenzo(a,h)anthracene in Subsurface Soil
- 2-14 Indeno(1,2,3-cd)pyrene in Subsurface Soil
- 2-15 Storm Sewer Rehabilitation Locations

LIST OF APPENDICES

Appendix

- A Revised Human Health Baseline Risk Assessment
- B Cost Estimates for Remedial Alternatives

847 23

28 July 2006 Revision 1

Final Technical Memorandum Revised Remedy Selection for Operable Unit 2 – Area 50 Landfill Defense Supply Center Richmond

LIST OF ACRONYMS

ADD	Average Daily Dose
ARAR	Applicable or Relevant and Appropriate Requirement
bgs	Below Ground Surface
COC	Chemical of Concern
COPC	Constituent of Potential Concern
CSM	Conceptual Site Model
DLA	Defense Logistics Agency
DSCR	Defense Supply Center Richmond
FFS	Focused Feasibility Study
HHBRA	Human Health Baseline Risk Assessment
HI	Hazard Index
HQ	Hazard Quotient
Law	Law Engineering and Environmental Services, Inc.
LUC	Land Use Control
LUCIP	Land Use Control Implementation Plan
MACTEC	MACTEC Engineering and Consulting, Inc.
mm	Millimeter
NGA	National Guard Area
NMOC	Non-methane Organic Compound
OE	Ordnance and Explosives
OSA	Open Storage Area
OU	Operable Unit
РАН	Polycyclic Aromatic Hydrocarbon
РСВ	Polychlorinated Biphenyl
PVC	Polyvinyl Chloride
RA	Remedial Action
RAO	Remedial Action Objective
RCRA	Resource Conservation and Recovery Act
RfD	Reference Dose
ROD	Record of Decision

LIST OF ACRONYMS (Continued)

RPO	Remedial Process Optimization
SF	Slope Factor
TBC	To-be-considered Criteria
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
UXO	Unexploded Ordnance
VC	Vinyl Chloride
VDEQ	Virginia Department of Environmental Quality
VOC	Volatile Organic Compound

28 July 2006 Revision 1

EXECUTIVE SUMMARY

MACTEC Engineering and Consulting, Inc., (MACTEC) prepared this Technical Memorandum to supplement the *Third Revised Final Focused Feasibility Study, Area 50 Source Area – Operable Unit 2, Defense Supply Center – Richmond, Richmond, Virginia,* (FFS; Law Engineering and Environmental Services, Inc., [Law] 1999) for the Defense Supply Center Richmond (DSCR). This Technical Memorandum was prepared under Contract No. F41624-03-D-8606, Task Order 81, to the Air Force Center for Environmental Excellence. This report supersedes the *Final Technical Memorandum, Revised Remedy Selection for Operable Unit 2, Area 50 Landfill, Defense Supply Center Richmond, Richmond, Virginia* (2001 Final Technical Memorandum; Law, 2001).

Recent information obtained for Operable Unit (OU) 2 indicates that:

- Future use will remain industrial, not recreational.
- Ground surface will be limited to low-growing vegetation because OU 2 will continue to serve as a helicopter glide path, and the helicopter landing pad will remain available for use. Recreational use, considered in the 2001 Final Technical Memorandum (Law, 2001), assumed that the helicopter landing pad would not be used in the future.
- Storm sewer rehabilitation was recently completed by the U.S. Army Corps of Engineers under the DSCR Compliance Program.

Based upon the new information, review of the previously proposed remedy for OU 2 is warranted. Potential recreational use of OU 2 will no longer be considered. Rehabilitation of the storm sewer lines is no longer needed as a component of the selected remedy.

Groundwater will be addressed as part of OU 6, which underlies soil source areas OU 1 (Open Storage Area), OU 2, and OU 3 (National Guard Area).

The remedial action objectives (RAOs) for OU 2 as identified in the FFS (Law, 1999) are as follows:

- 1. Prevent human ingestion of, direct contact with, and inhalation of volatile emissions and fugitive dusts from impacted soils (primarily for workers).
- 2. Prevent constituent migration to groundwater.
- 3. Prevent exposure to ordnance and explosives (OE) hazards.

This Technical Memorandum provides information to support revising the wording for RAO 2 to "reduce constituent migration to groundwater." Information related to the reasons for recommending the revised wording is provided in the section detailing the RAOs.

The final remedy, modified Alternative 6A, recommended for implementation at OU 2 consists of the following components:

- A soil cover that provides a 3 to 5 percent grade to promote surface runoff and that has a minimum thickness of 6 inches
- Land use controls (LUCs), including "institutional controls and maintenance of existing access restrictions - fencing" (as previously identified in the 2001 Final Technical Memorandum [Law, 2001])

LUCs are included in the Environmental Land Use Control Implementation Plan, Defense Supply Center Richmond, Richmond, Virginia (LUCIP; MACTEC, 2005d). LUCs will be specified in the OU 2 Record of Decision, and an appendix to the LUCIP (MACTEC, 2005d) documenting the required LUCs specific to OU 2 will be prepared. LUCs include:

- Access Restrictions
- Intrusive Activity Restrictions and Signage
- Groundwater Restrictions
- Maintenance and Monitoring
- Property Transfer Restrictions

The following conclusions are supported by this Technical Memorandum:

- A review of trenching and historical water level elevations indicated that some . landfill materials were disposed in the saturated zone and are exposed to groundwater.
- RAOs 1, 2, and 3 can be met with the installation of a landfill soil cover system designed and constructed to promote positive surface drainage and to minimize contact with soils and potential OE hazards.
- LUCs can be implemented as an added protective measure to comply with RAOs 1 . and 3.

As a result, a soil cover of at least 6 inches to promote runoff is an appropriate alternative to the soil cap remedial option initially proposed in the FFS (Law, 1999).

1.0 INTRODUCTION

MACTEC Engineering and Consulting, Inc., (MACTEC) prepared this Technical Memorandum to supplement the *Third Revised Final Focused Feasibility Study, Area 50 Source Area – Operable Unit 2, Defense Supply Center – Richmond, Richmond, Virginia,* (FFS; Law Engineering and Environmental Services, Inc., [Law] 1999) for the Defense Supply Center Richmond (DSCR). This Technical Memorandum was prepared under Contract No. F41624-03-D-8606, Task Order 81, to the Air Force Center for Environmental Excellence. This report supersedes the *Final Technical Memorandum, Revised Remedy Selection for Operable Unit 2, Area 50 Landfill, Defense Supply Center Richmond, Richmond, Virginia* (2001 Final Technical Memorandum; Law, 2001).

The initial remedy selection for Operable Unit (OU) 2 presented in the FFS (Law, 1999) consisted of the following Remedial Actions (RAs):

- Capping the Area 50 landfill with a clay cover
- Storm sewer rehabilitation by slip lining or abandonment and relocation
- Institutional controls
- Source removal of soils saturated with free product

A revised remedy proposed in the 2001 Final Technical Memorandum (Law, 2001) consisted of the following RAs:

- Surface grading to promote drainage
- Storm sewer rehabilitation
- Institutional controls
- Groundwater monitoring requirements
- Maintaining access restrictions (fencing)

The 2001 Final Technical Memorandum (Law, 2001) also proposed a recreational land use.

This technical memorandum summarizes historical information and discusses additional information obtained by MACTEC following preparation of the 2001 Final Technical Memorandum (Law, 2001). The information presented herein provides the basis for a revised remedy and is based on the findings of the following documents, which are described in Section 2.0:

• Draft Human Health Baseline Risk Assessment, Operable Unit 2, Defense Supply Center Richmond, Richmond, Virginia (HHBRA; Appendix A)

- The Conceptual Site Model (CSM) for DSCR (under preparation)
- Human Health Baseline Risk Assessment of the Creeks Adjacent to DSCR, Defense Supply Center Richmond, Richmond, Virginia (Creeks HHBRA; MACTEC, 2005b)
- Results of Three-year Creek Monitoring Program 2001–2004, Defense Supply Center Richmond, Richmond, Virginia (MACTEC, 2005c)

1.1 PURPOSE

The purpose of this Technical Memorandum is to support the revised remedy selection. The remedy considered in the FFS (Law, 1999) included a cover system consisting of a 12-inch clay layer constructed to a permeability of 1×10⁻⁵ centimeters per second. Institutional controls and rehabilitation of the storm sewer were also included in the FFS (Law, 1999) proposed remedy. An alternative remedial strategy considered in the 2001 Final Technical Memorandum (Law, 2001) included a cover design modification to include fill material to promote positive surface drainage and allow recreational use. Institutional controls and storm sewer rehabilitation were also included in the remedy proposed in the 2001 Final Technical Memorandum (Law, 2001). In 2001, Remedial Process Optimization (RPO) was undertaken by the Defense Logistics Agency (DLA) at the installation. As a result of the RPO, DSCR shifted emphasis to other activities rather than implementation of the 2001 Proposed Remedy. These activities included revising the HHBRA Work Plan and the HHBRA (Appendix A). In the first quarter of 2005, stormwater system improvements were implemented at the installation. These improvements satisfy the storm sewer rehabilitation component of the previously proposed remedies. The revised remedy selection herein summarizes information published after the FFS (Law, 1999), including the HHBRA (Appendix A), the CSM, and U.S. Army Corps of Engineers (USACE) stormwater system improvements. An explanation of how the revised remedy meets the remedial action objectives (RAOs) is also provided.

1.2 LOCATION AND GEOLOGY

DSCR is located in Richmond, VA, as depicted in Figure 1-1. OU 2 is in the central region of the installation, between the Open Storage Area (OSA) and National Guard Area (NGA), as shown in Figure 1-2. OU 2 comprises approximately 13 acres. A ravine area, which was approximately 200 by 800 by 10 feet deep, consisted of wet soils, trees, shrubbery, and wild grasses, and was the area used for the Area 50 landfill. The approximate limits of the former Area 50 landfill are depicted in Figure 1-3.

1-2

29

The groundwater that underlies OU 2 is identified as "OU 6". The Area 50 landfill is suspected to be one of the contributing sources to the underlying groundwater.

Cross section A-A' (Figure 1-4) illustrates subsurface geologic conditions. The general stratigraphy is as follows:

- Silty Sand, Sandy Silt, and Silty or Fat Clay. The top of the unit is at the ground surface, and the bottom of the unit is approximately 13 to 26 feet below ground surface (bgs). The thickness of this unit is approximately 13 to 26 feet.
- Poorly Graded Sand with Gravel, Interlayered with Poorly Graded Gravel. The top of the unit is approximately 13 to 26 feet bgs, and the bottom of the unit is approximately 16 to 27 feet bgs. The thickness of this unit is approximately 0 to 7 feet. The unit is absent in the southern portion of cross section A-A'.
- Silty and/or Fat Clay. The top of the unit is approximately 16 to 27 feet bgs, and the bottom of the unit is approximately 26 to 37 feet bgs. The thickness of this unit is approximately 3 to 18 feet. This unit also is beneath the poorly graded sand with gravel unit, where that unit is present.
- Poorly Graded Sand with Gravel and Silty Sand, Poorly Graded Sand with Gravel, and/or Poorly Graded Sand with Gravel Interlayered with Poorly Graded Gravel. The top of this unit is approximately 26 to 37 feet bgs, and the bottom of the unit is approximately 46 to 72 feet bgs. The thickness of this unit is approximately 10 to 28 feet.

Beneath these sediments, from approximately 46 to 72 feet bgs, is saprolite weathered from the underlying granite bedrock. Bedrock was encountered in one boring at 101 feet bgs. The thickness of saprolite in this boring was 33 feet.

1.3 OPERABLE UNIT HISTORY

The Area 50 landfill was used for disposal of chemicals and construction debris from the late 1950s to the early 1970s. While the area was used as a landfill, material was placed in various parts of the original ravine, and previously used areas were regraded and revegetated. By 1975, the entire area had been graded and seeded (*Remedial Investigation – Area 50 Open Storage Area and National Guard Area for Defense General Supply Centers, Richmond, Virginia, Contract No. DACA65-86-C-0131* [Dames & Moore, 1989]).

1-3

An evaluation of aerial photographs taken from 1959 to 1982 indicated that from 1959 to 1969, a vegetated ravine lying roughly north to south dominated OU 2. The photographs indicated the following sequence of activities (U.S. Army Corps of Engineers, Norfolk District, Phase I, Contamination Assessment, Defense General Supply Center, Richmond, Virginia, Contract No. DACA65-84-C-0071 [Dames & Moore, 1984]):

- 1959. In the northeast quadrant, a disposal pile was observed next to an area of standing water. Older disposal areas with some vegetation were apparent along the west-central and southern parts of the ravine.
- 1965. The northern end of the ravine was almost filled, and the disposal pile apparent in the 1959 photograph had been graded to street level and vegetated. The new area of activity appeared to be in the west-central portion.
- 1969. The northern end was grassed and vegetated with large shrubs. The west-central portion appeared to be the area of disposal activity, having expanded to the east and south.
- 1971. A helipad was constructed at the northern end, and a small parking area was constructed in the southeastern corner. The central portion appeared to be the area of disposal activity.
- 1972. The central portion, south of the helipad, appeared to be the area of disposal activity.
- 1973. The entire landfill appeared to be at street level, and the area of disposal activity in the central portion south of the helipad appeared to have been graded.
- 1975. The entire landfill was grassed, and wet areas were apparent in the hummocky area south of the helipad.
- 1982. The landfill appearance was similar to that in 1975, with the area hummocky and grass covered.

OU 2 is now generally level and covered with grass. A transformer storage area that contained polychlorinated biphenyl (PCB) transformers for an 18-month period ending in late 1983 was located in the southwestern corner. A helipad and parking area are now located near the northern boundary and southeastern corner, respectively (Dames & Moore, 1989). The locations of these features are depicted in Figure 1-3.

The materials that may have been disposed of include chemicals used in photographic development processes; organic solvents; pesticides and herbicides; acidic and alkaline chemicals; petroleum, oil, and lubricants; and PCBs (Installation Assessment of Defense General Supply Center, Virginia [U.S. Army

1-4

Toxic and Hazardous Materials Agency, 1981]). Boring logs advanced through OU 2 indicated wood, rubber, cinders, brick, concrete, wires, metal, and glass as deep as approximately 10 feet bgs. Such materials were encountered at most, but not all, boring locations (U.S. Army Corps of Engineers, Norfolk District, Phase II (Final), Contamination Assessment, Defense General Supply Center, Richmond, Virginia, Contract No. DACA65-84-C-0071 [Dames & Moore, 1985]). Thirty test trenches were excavated during October and November 1994 (Final Exploratory Trenching Report, Characterization Report for Area 50 Landfill, Defense Supply Center Richmond, Virginia [Law, 1995]). Trench dimensions averaged 20 by 5 feet, with depths ranging from 2 to 13 feet bgs. Trenches were excavated until:

- The first occurrence of undisturbed soil
- Significant water flowed into the trench
- Unexploded ordnance (UXO) was encountered

Materials encountered in the test trenches included wood, coal ash and slag, crushed asphalt, concrete, automotive parts, scrap metal, and construction and demolition debris. Petroleum-stained soil was encountered in five trenches, free-phase fuel oil was encountered in two trenches, white powder was encountered in two trenches, and photographic chemicals were encountered in one trench. One trench had 55-gallon drums with unknown contents. UXO was encountered in seven trenches and included 40-millimeter (mm) grenades and 90-mm recoilless rifle rounds. Jet-assisted takeoff bottles were encountered in one trench.

Buried storm sewer lines transect OU 2 (Figure 1-5). USACE relined the storm sewer system in this area in January 2005. These storm sewers originate in the OSA and convey stormwater from OUs 1 and 2 to outfall 006A located along the NGA's northeastern boundary (Figure 1-6). This outfall discharges to No Name Creek, which flows south along the eastern NGA boundary. The creek ultimately discharges into the James River approximately 2 miles from the installation (Figure 1-2).

1.4 OVERVIEW OF OU 2

OU 2 is a soil source area associated with the former Area 50 landfill. Groundwater will be addressed as part of OU 6, which underlies soil source areas OU 1 (OSA), OU 2, and OU 3 (NGA).

28 July 2006 Revision 1

An Interim RA for the OU 6 groundwater is underway and is designated as "OU 9". A Record of Decision (ROD) for OU 9 was issued in September 1993. An Explanation of Significant Differences was issued in 1995 to allow treated groundwater to discharge to Falling Creek. The OU 9 system was constructed and started in 1995 to treat groundwater downgradient of OUs 1, 2, and 3. The OU 9 system is scheduled for a one-year shutdown for evaluation of plume stability under non-pumping conditions.

1.5 RAOs

The RAOs for the initial preferred remedy are presented in the FFS (Law, 1999). The RAOs were developed based on the nature and extent of constituents and an OU-specific risk assessment. RAOs were identified as follows:

- 1. Prevent human ingestion of, direct contact with, and inhalation of volatile emissions and fugitive dusts from impacted soils (primarily for workers).
- 2. Prevent constituent migration to groundwater.
- 3. Prevent exposure to ordnance and explosives (OE) hazards.

Further review and investigation determined that portions of the materials placed in the landfill are below the water table. Because disposed materials are already in contact with groundwater, RAO 2 (as worded above) could be achieved only by excavation, removal, and off-installation disposal of the landfilled materials. Attempting such an action would result in an unacceptable level of short-term risk to human health and the environment. Further, removal was eliminated from consideration in the FFS (Law, 1999). Because the general response action of removal was previously screened from consideration, removal is not addressed in this document.

However, constituent migration from material above the water table to the groundwater could be minimized by reducing infiltration. Construction of a cover system to reduce infiltration through the landfill surface and diversion of stormwater runoff away from the landfill surface would reduce constituent migration. This scenario is feasible and practicable. For this reason, the suggested revised wording for RAO 2 is to "reduce constituent migration to groundwater." This wording is carried forward for evaluating compliance of the remedial alternatives with the RAOs:

- 1. Prevent human ingestion of, direct contact with, and inhalation of volatile emissions and fugitive dusts from impacted soils (primarily for workers).
- 2. Reduce constituent migration to groundwater.

3. Prevent exposure to OE hazards.

The initial RAO 2 has been revised from "prevent" to "reduce" constituent migration to groundwater. The soil cover in the final remedy will be sloped to promote drainage of surface water runoff. Vertical cross sections depicting approximate depths of landfill material and the water table are presented in Figure 1-17 of the FFS (Law, 1999). Portions of the landfill materials are above the water table. A sloped soil cover would reduce surface water infiltration, reduce water movement through landfill materials above the water table, and thereby achieve revised RAO 2.

The RAOs for OU 2 focus on the protection of human health. An ecological assessment was not completed for OU 2 because this area provides limited ecological habitat. OU 2 is in a developed and industrialized area of the installation and has been in industrial use for many years. OU 2 is fenced and completely grass-covered or paved. The grassed area is mowed on a routine basis, and this maintenance will continue in the future. Therefore, the introduction of additional ecological species is unlikely to occur.

2.0 SUMMARY OF NEW INFORMATION

Following the RPO performed by Parsons Engineering Science, Inc., in 2000 and 2001, MACTEC (formerly Law) was tasked with:

- Revising the HHBRA to Include a Vapor Exposure Pathway for the Industrial Worker Scenario. Future land use will remain industrial rather than residential as evaluated in the original HHBRA. The Revised HHBRA is provided in Appendix A.
- Preparing a CSM.
- Performing Additional Investigative Work to Undertake the Previous Two Tasks.

The following reports assess potential surface water impacts on human and ecological receptors:

- Results of Three-year Creek Monitoring Program 2001-2004 (MACTEC, 2005c). Impacts on No Name Creek downgradient of OU 2 are evaluated for ecological receptors.
- Creeks HHBRA (MACTEC, 2005b).

The following report provides data from the additional investigative work undertaken to assess previous data gaps:

• Draft Supplemental Feasibility Study Investigation Report, Defense Supply Center Richmond, Richmond, Virginia (MACTEC, 2005e).

2.1 CSM AND NATURE AND EXTENT OF SOIL CONSTITUENTS

In 2003, additional fieldwork was undertaken to prepare a refined CSM for DSCR. The purpose was to obtain additional information to fill data gaps. The most current data available for the soils at OU 2 are incorporated into the following description taken from the refined CSM.

Organic and inorganic constituents, including metals, PCBs, polycyclic aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs), were detected in soil and groundwater samples. Groundwater constituents associated with OU 2 will be addressed with OU 6.

Table 2-1 lists the chemicals of concern (COCs) in the surface and subsurface soils at OU 2. The distribution of COCs is depicted in Figures 2-1 through 2-14. The data in Figures 2-1 through 2-14 were

35

from sampling events conducted during September and October 1984; May, June, and July 1985; October 1986; October 1988; October, November, and December 1994; and October 1998. Constituents analyzed from 1984 to 1998 are listed in Table 2-2. The maximum historical detections for each constituent of concern are provided in Table 2-3.

The maximum detected constituent concentrations are also listed in Tables A-2-1 and A-2-2 of the OU 2 HHBRA. Development of COCs is presented in Section 2.2.

2.2 REVISED OU 2 HHBRA

A revised HHBRA (Appendix A) was prepared to reflect exposure at the installation for the current and future industrial land use. This section summarizes the findings of the revised HHBRA (Appendix A).

The revised HHBRA (Appendix A) evaluated potential soil exposures for current and future outdoor industrial workers, future construction workers, and future indoor industrial workers. Risk associated with soil-to-groundwater leaching and groundwater contact will be addressed in a future revised OU 6 HHBRA.

Soil data collected from 1984 through 1998 were included in the risk assessment dataset. The surface soil dataset includes data collected from 0 to 2 feet in depth. The subsurface soil dataset includes data collected from 0 to 10 feet in depth.

All datasets utilized in the HHBRA were validated in accordance with validation standards at the time that they were collected. Data validation standards have changed since the Dames & Moore data were collected in 1984 to 1989. Use of the Dames & Moore data was required for OU 2 in order to achieve an effective delineation of soil constituent distributions across the OU. The difference in validation standards has been addressed under uncertainties in the HHBRA (Appendix A).

2.2.1 Exposure Pathways

Soil exposure pathways addressed in the revised HHBRA (Appendix A) included incidental ingestion, dermal absorption, and inhalation of fugitive dust and volatile emissions. These pathways were addressed for current and future outdoor industrial workers and future construction workers. Current workers were assumed to be exposed to surface soil only, while future workers were assumed to be exposed to surface soil only.

and subsurface soils. It was assumed that future industrial workers will be exposed to a mix of surface and subsurface soils with no cover material because future activities (construction and grading) will mix these soils. One additional pathway, inhalation of volatile emissions in indoor air, was included to address potential risks for future indoor industrial workers.

2.2.2 Risk Characterization

2.2.2.1 Noncarcinogenic Effects

Noncarcinogenic toxicity was evaluated using reference doses (RfDs). The estimated average daily dose (ADD) developed during the exposure assessment and the RfD for each constituent of potential concern (COPC) were compared to characterize individual hazard quotients (HQs). The summation of HQs, or the cumulative hazard index (HI), for DSCR HHBRAs has been set at 1 (*Draft Revised Human Health Baseline Risk Assessment Work Plan, Defense Supply Center, Richmond, Virginia* [MACTEC, 2005a]).

Noncarcinogenic risk estimates were less than or equal to the DSCR risk goal of 1 for all four receptors:

- HIs for the current outdoor industrial worker were 0.3 (incidental soil ingestion) and 0.03 (dermal contact with soil). Surface soil COPCs had no documented impacts via the inhalation pathway.
- HIs for the future outdoor industrial worker were 0.3 (incidental soil ingestion), 0.2 (dermal contact with soil), 0.003 (inhalation of fugitive dusts), and 0.06 (inhalation of volatile compounds).
- HIs for the future construction worker were 1 (incidental soil ingestion), 0.3 (dermal contact with soil), and 0.06 (inhalation of volatile compounds).
- The HI for the future indoor industrial worker was 0.0001 (inhalation of VOCs from soil in indoor air).

2.2.2.2 Carcinogenic Effects

Carcinogenic toxicity was evaluated using cancer potency slope factors (SFs) or unit risk factors. To evaluate risks from exposure to potential carcinogens, the estimated lifetime ADD is multiplied by the SF to characterize potential carcinogenic effects. The results of the calculated risk estimates were expressed as upper-bound estimates of probability for the potential carcinogenic risk for each exposure point. The carcinogenic risk goal for DSCR HHBRAs has been established at 1×10^{-4} for on-installation receptors

28 July 2006 Revision 1

(MACTEC, 2005a). If the cumulative excess cancer risk for an on-installation receptor exceeds 1×10^{-4} , those carcinogenic COPCs primarily responsible for the exceedance are identified as COCs:

- The total risk values for the current outdoor industrial worker were 9×10⁻⁴ (incidental ingestion of soil), 8×10⁻⁴ (dermal contact with soil), and 5×10⁻⁸ (inhalation of fugitive dusts). The cumulative risk for the current outdoor industrial worker was 2×10⁻³.
- The total risk values for the future outdoor industrial worker were 2×10⁻⁴ (incidental ingestion of soil), 2×10⁻⁴ (dermal contact with soil), 2×10⁻⁸ (inhalation of fugitive dusts), and 5×10⁻⁵ (inhalation of volatile compounds). The cumulative risk for the future outdoor industrial worker was 4×10⁻⁴.
- The total risk values for the future construction worker were 1×10^{-5} (incidental ingestion of soil), 5×10^{-6} (dermal contact with soil), 6×10^{-8} (inhalation of fugitive dusts), and 1×10^{-6} (inhalation of volatile compounds). The cumulative risk for the future construction worker was 2×10^{-5} .
- The total risk value for future indoor industrial workers potentially exposed to soil vapors in indoor air was 3×10^{-8} .

Excess cancer risk estimates for future construction workers and future indoor industrial workers were less than the DSCR risk goal of 1×10^{-4} for on-installation exposures. The estimated risk for the current and future outdoor industrial worker exceeded the DSCR risk goal.

2.2.3 COCs

Based on the results of the revised HHBRA (Appendix A), soil COCs were identified. Constituents with an associated cumulative cancer risk above 10^{-5} were selected as COCs. Tables 2-4 and 2-5, respectively, summarize the risks associated with each soil COC and each soil exposure pathway for the current and future outdoor industrial worker exposure scenarios. Eight constituents were selected as COCs in surface soil: arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, and PCB-1260. Six constituents were selected as COCs in subsurface soil: trichloroethene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. Most soil impact was in the 0- to 1-foot interval. Most of the risk for the current and future outdoor industrial worker was associated with benzo(a)pyrene. The remainder of the excess cancer risk was associated with benzo(a)anthracene, benzo(b)fluoranthene, and dibenzo(a,h)anthracene. Risk-based remediation goals for COCs in surface and subsurface soils are presented in Table 2-6.

2-4

847 37

2.3 THREE-YEAR CREEK MONITORING PROGRAM

Monitoring programs for No Name Creek adjacent to the installation and areas downgradient of OU 2 were conducted from November 2001 to April 2004. The results of the monitoring program were described in *Results of Three-year Creek Monitoring Program 2001-2004 (MACTEC*, 2005c).

The overall purpose of the monitoring program was to evaluate whether conditions at the installation were affecting ecological receptors in the creeks. The abundance of aquatic organisms and changes in environmental conditions over the monitoring period were evaluated. During each monitoring event, co-located surface water, sediment, and benthic macroinvertebrate samples were collected for analysis; selected physical/chemical parameters were measured *in situ*; and creek habitat assessments were performed.

Creek monitoring determined that there were no adverse ecological effects associated with the installation in No Name Creek, and that the benthic community was representative of the available habitat. Constituent concentrations in No Name Creek are not expected to pose an unacceptable risk to potential ecological receptors.

2.4 HHBRA OF THE CREEKS ADJACENT TO DSCR

A conservative HHBRA was performed for chemicals detected in No Name Creek surface water. The results were documented in the Creeks HHBRA (MACTEC, 2005b). The purpose of the HHBRA was to determine whether potential impacts related to historical installation activities detected in creek surface waters posed an unacceptable health hazard. The potential exposure scenario addressed in the HHBRA was based on current conditions for recreational child and adult receptors.

Of the 35 detected chemicals, 10 (aluminum, arsenic, iron, lead, manganese, thallium, vanadium, vinyl chloride [VC], styrene, and chrysene) were selected as COPCs. A risk assessment was conducted for the 10 COPCs for No Name Creek. The results showed that the concentrations of these 10 COPCs were less than an HI of 1 (HI of 0.2). The total excess cancer risk was 1×10^{-5} , which is within the U.S. Environmental Protection Agency (USEPA) acceptable range of 10^{-4} to 10^{-6} . The carcinogenic risk was associated with arsenic and VC, which were infrequently detected in surface water samples. The risk estimates were conservative and potentially overstated the actual risk. A no-further-action recommendation was made because installation-related activities were protective of human health in No

Name Creek. The potential for continuing discharges of impacted groundwater to No Name Creek will be further considered in the OU 6 HHBRA.

2.5 COMPLETED STORM SEWER REHABILITATION

The FFS (Law, 1999) presented alternatives for storm sewer rehabilitation. Storm sewer rehabilitation was included in the recommendation for final alternative selection, and the storm sewer lining (fold and form method) and storm sewer abandonment and relocation were retained as potential methods. The 2001 Final Technical Memorandum (Law, 2001) also included storm sewer rehabilitation as a component of the proposed revised remedy.

2.5.1 Storm Sewer Lining

During the last quarter of 2004 and the first quarter of 2005, USACE undertook storm sewer rehabilitation as part of the DSCR Compliance Program. The utilized method was the fold and form method described in the FFS (Law, 1999) and referenced in the 2001 Final Technical Memorandum (Law, 2001). Figure 2-15 depicts the storm sewer lines rehabilitated in the OU 2 vicinity.

The pipe lining was delivered to the installation as a flexible, folded polyvinyl chloride (PVC) alloy material. The folded material was lowered via a manhole into each pipe section. The material was pulled through the pipe, and the ends were plugged. The material was pressurized, and steam heat was used for in-place curing. Following curing, the ends and service laterals were reopened using a remote-controlled cutting device and video camera. The storm sewer was permanently sealed with a jointless, smooth liner that was formed tightly against the host pipe. Table 2-7 lists the storm sewer lines that were rehabilitated in the OU 2 vicinity using the PVC fold and form method.

2.5.2 Manhole Sealing

The existing brick manholes were sealed to reduce infiltration. A cement/epoxy spray sealer was applied to seal existing cracks in the manhole and form a watertight coating on the interior. At many manholes, new frames and covers and new concrete collars were installed to further reduce infiltration. Table 2-8 lists the manhole improvements.

2-6

39

3.0 APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

DSCR Planning Team discussions regarding the preferred remedy were conducted during 2000. In general, these discussions focused on OU closure regulations. Comments from the Virginia Department of Environmental Quality (VDEQ) in 2000 cited Resource Conservation and Recovery Act (RCRA) regulations. In addition, VDEQ commented that Virginia Solid Waste Management regulations should also serve as applicable or relevant and appropriate requirements (ARARs) for closure. USEPA indicated that a "hybrid" closure is acceptable under the Comprehensive Environmental Response, Compensation, and Liability Act and that RCRA regulations may not be applicable but may be considered relevant and appropriate.

Table 3-1 lists the ARARs and to-be-considered criteria (TBCs) for the OU 2 soils. TBCs are criteria that can be used to help develop risk-based cleanup objectives in the absence of chemical-specific ARARs. Additional discussion of several ARARs is provided below.

3.1 FEDERAL

Based on the Federal Facilities Agreement for DSCR between DLA, USEPA, and the Commonwealth of Virginia, RCRA shall be considered an ARAR. RCRA is a relevant and appropriate requirement. Disposal activities occurred in the 1960s and 1970s, before promulgation of RCRA. Consequently, the intent of the RCRA regulations will be met.

3.2 STATE

The Virginia Solid Waste Management regulations are also relevant and appropriate requirements. Disposal activities occurred in the 1960s and 1970s, before promulgation of the solid waste management regulations. Furthermore, the regulations were intended to apply to municipal solid waste facilities. The intent of the regulations will be met.

In addition to the Virginia Solid Waste Management regulations, the Virginia Hazardous Waste regulations are relevant and appropriate, and the intent of the regulations will be met.

4.0 DESIGN ANALYSIS SUMMARY

This section discusses the initial remedy selection and changes in the preferred remedy presented in the 2001 Final Technical Memorandum (Law, 2001) based on new information.

4.1 INITIAL REMEDY SELECTION – 1999 FOCUSED FEASIBILITY STUDY

The RAOs, alternatives evaluation, and preferred remedy were presented in the FFS (Law, 1999). The RAOs were developed based on the nature and extent of constituents and the risk assessment for a residential scenario. The RAOs were to prevent human ingestion of, direct contact with, and inhalation of fugitive dusts from impacted soils; prevent constituent migration to groundwater; and prevent exposure to OE hazards.

The primary remedial objective in the FFS (Law, 1999) was preventing exposure to impacted soils and OE to protect human health and the environment. An additional goal was the mitigation of potential groundwater impacts or reduction of soil constituents leaching to groundwater. Therefore, remediation focuses on constituents that exceeded acceptable risk levels. Remediation would include UXO technicians at the OU during any intrusive activities and proper disposal of live OE. Areas within OU 2 that exceeded the soil remedial goals for COCs are depicted in Figures 2-1 through 2-14. Additional information related to data used in development of these figures is provided in Sections 2.1 and 2.2.

Alternatives were screened for effectiveness, implementability, and cost. The following alternatives were retained for detailed analysis:

Alternative 1:	No-action alternative
Alternative 2:	Institutional controls
Alternative 6A:	Capping (soil cover) with storm sewer rehabilitation, institutional controls/land use controls (LUCs), and source removal of free product and saturated soils
Alternative 6B:	Capping (clay cover) with storm sewer rehabilitation, institutional controls/LUCs, and source removal of free product and saturated soils

The following storm sewer rehabilitation alternatives were retained for further evaluation as a component of the capping alternatives (6A and 6B):

Alternative 4A:Storm sewer fold and form liningAlternative 4B:Storm sewer slip liningAlternative 5:Storm sewer abandonment and relocation

During the detailed analysis, these alternatives were evaluated further in accordance with the following criteria:

- Overall protection of human health and the environment
- Compliance with ARARs
- Long-term effectiveness and permanence
- Reduction of toxicity, mobility, and volume through treatment
- Short-term effectiveness during construction and implementation
- Implementability (technical and administrative)
- Cost

A comparative analysis was performed for each alternative based on these criteria. Comments received from the Commonwealth of Virginia indicated preference for a clay cap. Alternative 6B was preferred with capping (clay cover), storm sewer rehabilitation, source removal of free product and free-product-saturated soils, implementation of selected institutional controls/LUCs, and long-term groundwater monitoring.

The storm sewers at the Area 50 landfill would be lined or plugged and abandoned in place to prevent infiltration and migration of groundwater. Seepage collars would be installed to mitigate groundwater traveling beneath or around the pipes through gravel or other porous bedding material. The land surface would be regraded to direct runoff to newly installed catch basins. New eastern and western storm sewers would be constructed outside the landfilled area. The estimated cost for the relocated storm sewers would be approximately the same as that for feasible sewer lining technologies. The relocation of the storm sewers was therefore recommended for implementation.

4.2 2001 PROPOSED REVISED REMEDY

As described above, Alternative 6B was selected for implementation based on the FFS (Law, 1999). In 2000, discussions regarding the selected remedy were still ongoing. During the RA planning meeting conducted at DSCR on 9 and 10 August 2000, a revised remedy was proposed and included:

- 1. Institutional controls
- 2. Surface grading to promote drainage (potential fill)
- 3. Monitoring requirements to evaluate constituent migration

- 4. Storm sewer rehabilitation
- 5. Maintenance of access restrictions (fencing)

This revised remedy was presented in the 2001 Final Technical Memorandum (Law, 2001). The most significant changes included re-evaluation of the free product/saturated soil removal action and elimination of the clay cap. The rationale for these changes is discussed below.

4.2.1 Re-evaluation of Removal Action in the 2001 Proposed Revised Remedy

The removal action was re-evaluated because the risk associated with exposure to OE would be significant with any intrusive activity. This risk made any removal action unfavorable.

4.2.2 Re-evaluation of the Clay Cap in the 2001 Proposed Revised Remedy

The clay cap was re-evaluated based on the following rationale:

- The VDEQ representative indicated that a cap might not be necessary if data from the OU 6 groundwater sampling did not indicate that the Area 50 landfill was a continuing source.
- The RAOs would be met if the remedial alternative was changed to include storm sewer rehabilitation, surface grading, and institutional controls/LUCs. Long-term groundwater monitoring would be required to evaluate the RA's effectiveness.
- Surface grading would include placing a soil cover sloped to drain precipitation off the cover and to reduce infiltration to the landfilled area.

4.3 PROPOSED FINAL REMEDY – MODIFIED ALTERNATIVE 6A

This section summarizes the findings on which the modified Alternative 6A recommendation is based.

Based on the results of the revised HHBRA (Appendix A), CSM, and storm sewer rehabilitation efforts completed to date, a modification to Alternative 6A defined in the FFS (Law, 1999) is recommended for implementation. The modified Alternative 6A is defined with the following components:

- A soil cover that provides a 3 to 5 percent grade to promote surface runoff and that has a minimum thickness of 6 inches
- Institutional controls in the form of LUCs, including maintenance of access restrictions (fencing)

The modified Alternative 6A will meet the RAOs in the following ways:

- RAOs 1, 2, and 3 can be met with the application of soil cover over the landfill. The cover will be designed and constructed to promote positive surface drainage and minimize contact with soils and potential OE hazards.
- LUCs can be implemented as an added protective measure to comply with RAOs 1 and 3. LUCs are discussed in Section 5.1.1.

Recent information obtained for OU 2 indicates that:

- Future use will remain industrial, not recreational.
- Ground surface will be limited to low-growing vegetation because OU 2 will continue to serve as a helicopter glide path, and the helicopter landing pad will remain available for use. Recreational use, considered in the 2001 Final Technical Memorandum (Law, 2001), assumed that the helicopter landing pad would not be used in the future.
- Storm sewer rehabilitation was recently completed by USACE under the DSCR Compliance Program.

Groundwater issues underlying OU 2 will be addressed as part of OU 6.

The results of the revised HHBRA (Appendix A) and CSM indicates that:

- OU 2 is not a continuing source of groundwater impacts at concentrations observed in 1986.
- The groundwater COPCs consisted mainly of chlorinated VOCs and metals. Groundwater COPCs did not include PAHs associated with the petroleum products observed in the test pits in 1995.
- There were no unacceptable noncarcinogenic risks that exceeded the DSCR remediation goal of 1 for the current or future outdoor industrial worker, future construction worker, and future indoor industrial worker.
- There were cumulative excess cancer risks that exceeded the DSCR risk goal of 1×10^{-4} for exposure to soils for current and future outdoor industrial workers.
- There were no cumulative excess cancer risks that exceeded the DSCR risk goal of 1×10^{-4} for future construction workers.

A soil cover and LUCs will eliminate the exposure pathway, alleviating the cumulative excess cancer risks to meet DSCR's risk goal.

4.3.1 Protectiveness of Modified Alternative 6A – Human Health

The modified Alternative 6A includes regrading to support positive surface drainage by placement of a clean soil cover over the surface area, and long-term LUCs to protect on-installation workers if intrusive subsurface activities (i.e., construction or maintenance of utilities) should be required. Future use will remain industrial. As a result, a previous concern that the OU might be used for recreational purposes is removed (*Comments on Final Technical Memorandum, Revised Remedy Selection for Operable Unit 2* [USEPA, 2002]). The clean soil layer will be grass covered. OU 2 is in the direct flight path for the heliport; therefore, the surface will remain a grassed field. This soil layer and grass cover will be maintained to prevent direct soil contact or the generation of fugitive dust. Intrusive activities that would penetrate the clean soil layer will be strictly controlled by LUCs. Workers in the area will be required to follow protective health and safety protocols to limit exposures and potential contact with UXO in the landfill. Therefore, the modified Alternative 6A will effectively protect human health.

4.3.2 Protectiveness of Modified Alternative 6A – Ecological Risk

Comments on the previous Final Technical Memorandum (USEPA, 2002) expressed concern that potential risks for ecological receptors were not addressed by surface grading; therefore, a soil cap should be placed on the OU's surface. The modified Alternative 6A addresses this concern through the placement of a clean soil layer that will be at least 6 inches deep around the edge of the cover and may be significantly deeper in the central portion of the OU. However, it should be noted that the minimum 6 inch thickness is being placed over the existing surface, which includes approximately 18 inches of soil currently over the waste material. The top of the soil layer will be seeded with grass. These measures will minimize contact with and erosion of impacted soils.

As discussed previously in Section 1.5, as ecological assessment was not completed for OU 2 because this area provides limited ecological habitat. OU 2 is in a developed and industrialized area of the installation and has been in industrial use for many years. OU 2 is fenced and completely grass-covered or paved. The grassed area is mowed on a routine basis, and this maintenance will continue in the future. Therefore, the introduction of additional ecological species is unlikely to occur.

An additional concern raised by USEPA's Biological Technical Assistance Group on the previous Final Technical Memorandum (USEPA, 2002) was the potential for soil washing into the storm sewers and subsequent discharge of storm sewer sediments to No Name Creek. There was also some concern that

28 July 2006 Revision I

847

46

impacted groundwater in the upper water bearing unit would preferentially flow through cracks in the storm sewers and be transported to No Name Creek. During 2005, the storm sewer system was flushed and lined. Thus, any impacted sediment materials in the storm sewers were removed and additional inflow of groundwater was precluded. After the landfill is regraded and the grass-covered clean soil cover is in place, additional runoff of impacted soils to the storm sewers will not occur. The modified Alternative 6A will effectively protect the health of ecological receptors by eliminating future exposures.

4.3.3 Comparative Analysis of Remedial Alternatives

With the identification of the modified Alternative 6A, the remedial alternatives retained from the FFS (Law, 1999) were re-evaluated. Table 4-1 provides a comparative analysis of the retained remedial alternatives and the modified Alternative 6A in accordance with the following criteria:

- Overall protection of human health and the environment
- Compliance with ARARs
- Long-term effectiveness and permanence
- Reduction of toxicity, mobility, and volume through treatment
- Short-term effectiveness during construction and implementation
- Implementability (technical and administrative)
- Cost
- State acceptance
- Community acceptance

Appendix B provides the cost estimates for each remedial alternative. The original source of the cost estimates is the OU 2 FFS prepared in May 1999. The cost estimates from the OU 2 FFS were updated and revised using current information obtained from local contractors and RS Means Heavy Construction Cost Data for 2005. The original cost estimates from the OU 2 FFS, the revised cost estimates prepared for this Technical Memorandum, and supporting information used to revise the cost estimates are provided in Appendix B.

The results of the comparative analysis indicated that the modified Alternative 6A is equally acceptable to each of the retained Alternatives 6A and 6B from the FFS (Law, 1999) using the criteria identified above. The modified Alternative 6A also has a lower cost than the retained Alternatives 6A and 6B.

4-6

5.0 FINAL REMEDY

The final remedy, modified Alternative 6A, recommended for implementation consists of the following components:

- A soil cover that provides a 3 to 5 percent grade to promote surface runoff and that has a minimum thickness of 6 inches (Sections 5.1.2 and 5.2)
- LUCs including "institutional controls and maintenance of access restrictions fencing" (as previously identified in the 2001 Final Technical Memorandum [Law, 2001])

5.1 FINAL REMEDY COMPONENTS

5.1.1 LUCs

LUCs are any restriction or administrative action, including engineering and institutional controls, that prevent or limit human exposure to constituents by restricting resource (land and/or groundwater) use. Modified Alternative 6A would include LUCs to limit exposure to soil impacted with COCs. The specific requirements of the LUCs would be outlined in the Land Use Control Implementation Plan that would be prepared after approval of the ROD. The LUCs for OU 2 may include:

- Access Restrictions
- Intrusive Activity Restrictions and Signage
- Groundwater Restrictions
- Maintenance and Monitoring
- Property Transfer Restrictions

5.1.2 Soil Cover

A soil layer with a minimum thickness of 6 inches will be placed over the landfill. The soil cover will be sloped at 3 to 5 percent to promote drainage of surface water runoff. Sufficient soil fill will be placed near the center of the landfill to create a high point to promote drainage to the perimeter. Surface water run-on/runoff will be collected in ditches and conveyed from the OU. Because the minimum thickness of the soil cover will be 6 inches around the perimeter of the OU and the cover will be sloped at 3 to 5 percent from the high point near the center of the landfill, the maximum cover thickness near the center of the landfill is anticipated to be approximately 5 to 8 feet.

847 28 July 2006 Revision I 48

Additional soil cover design considerations are discussed below.

5.2 SOIL COVER DESIGN CONSIDERATIONS

5.2.1 Landfill Gas

The potential for landfill gas was addressed in the 2001 Final Technical Memorandum (Law, 2001). Because of the age of the Area 50 landfill and the nature of the wastes placed in it, engineering controls associated with landfill gas management will not be necessary. To confirm that landfill gas will not require engineering controls, the Area 50 landfill was modeled using USEPA's Landfill Air Emissions Estimation Model during preparation of the 2001 Final Technical Memorandum (Law, 2001).

Typically, gas generation is a product of the anaerobic decomposition of organic materials placed in a landfill. The composition of landfill gas is typically 50 percent methane, 40 percent carbon dioxide, and 10 percent other gases including nitrogen. As previously described, the materials identified during the Remedial Investigation phase included construction and demolition debris (concrete, asphalt, bricks, and metal) and metal-reinforced steel bar. Spent OE was encountered along with scrap metal (particularly automotive parts) in the northern portion of the Area 50 landfill. These studies also encountered various small chemical containers that included photographic chemicals (thiourea and glycerin) and cleaning chemicals (disinfectant and ammonia). Minimal amounts of organic material appear to have been placed within the landfill.

The 2001 Final Technical Memorandum (Law, 2001) presented the modeling results, which were used to calculate the methane and non-methane organic compound (NMOC) emission rates from the landfill. Because the model was developed for municipal solid waste, which readily generates higher methane and NMOC than construction/demolition debris landfills, the results represent worst-case conditions. The modeling results indicated that the landfill's methane and NMOC emission rates do not warrant a landfill gas recovery system.

5.2.2 Stormwater Evaluation

As part of the design effort, a stormwater conveyance will be evaluated for a 25-year, 24-hour storm. The proposed design will include run-on controls to prevent flow onto the closed landfill and runoff controls to collect and route stormwater.

5-2

28 July 2006 Revision I

847

49

5.2.3 Erosion and Sediment Control

The Virginia Erosion and Sediment Control Law and Regulations define the standards for an Erosion Control Program. These regulations are found in Code of Virginia §§ 10.1-560 *et seq.* and the Virginia Erosion and Sediment Regulations, Virginia Regulations § 625-02-00, with specific minimum standards in § 1.5. An Erosion and Sediment Control Plan will be developed and implemented to comply with regulatory requirements during construction.

As part of the final surface, a vegetative layer will play an important role in controlling erosion. Permanent seeding will occur across the entire modified surface. In addition, the design calculations will include an evaluation of the long-time average annual soil loss in general accordance with U.S. Department of Agriculture, Natural Resources Conservation Service, Technical Guidance. This evaluation will determine that the projected soil loss from the final slopes over time is within regulatory guidance.

5.2.4 Post-closure Care

Following construction, a Post-closure Care Plan will be developed for long-term OU maintenance. The plan will include a program of regular inspections, maintenance, and monitoring. Examples of components that may be included in the inspections are the final surface, settlement monitoring points, the stormwater drainage system, and the entrance fencing and gates. The groundwater monitoring will be performed under OU 6. Routine maintenance such as erosion repair and mowing will help to evaluate the current condition and maintain the remedy's effectiveness.

28 July 2006 Revision 1

847

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 CONCLUSIONS

The following conclusions are supported by this Technical Memorandum:

- A review of trenching and historical water level elevations at OU 2 indicated that some landfill materials were disposed in the saturated zone and are exposed to groundwater.
- RAOs 1, 2, and 3 can be met with the installation of a landfill soil cover system designed and constructed to promote positive surface drainage and minimize contact with soils and potential OE hazards.
- LUCs can be implemented as an added protective measure to comply with RAOs 1 and 3. LUCs are listed in Section 5.1.1.

The potential risks associated with groundwater constituents will be addressed under OU 6.

6.2 **RECOMMENDATIONS**

To facilitate closure, MACTEC recommends the following actions:

- Revise the draft Proposed Plan to reflect the revised remedy selection.
- Revise the draft ROD to reflect the revised remedy selection.
- Prepare an appendix to the Environmental Land Use Control Implementation Plan, Defense Supply Center Richmond, Richmond, Virginia, (MACTEC, 2005d) to reflect the LUCs required by the ROD.
- Prepare Remedial Design documents for OU 2.

7.0 **REFERENCES**

- Dames & Moore, 1984. U.S. Army Corps of Engineers, Norfolk District, Phase I, Contamination Assessment, Defense General Supply Center, Richmond, Virginia, Contract No. DACA65-84-C-0071. Bethesda, MD. 23 July 1984.
- Dames & Moore, 1985. U.S. Army Corps of Engineers, Norfolk District, Phase II (Final), Contamination Assessment, Defense General Supply Center, Richmond, Virginia, Contract No. DACA65-84-C-0071. Bethesda, MD. 15 November 1985.
- Dames & Moore, 1989. Remedial Investigation Area 50 Open Storage Area and National Guard Area for Defense General Supply Centers, Richmond, Virginia, Contract No. DACA65-86-C-0131. July 1989.
- Law, 1994. Final Remedial Investigation Report Addendum for Area 50, Open Storage Area, National Guard Area for Defense General Supply Center, Richmond, Virginia. June 1994.
- Law, 1995. Final Exploratory Trenching Report, Characterization Report for Area 50 Landfill, Defense Supply Center Richmond, Virginia. May 1995.
- Law, 1996. Final Risk Assessment Work Plan for DSCR, Defense Supply Center Richmond, Virginia. July 1996.
- Law, 1997. Revised Final Background Characterization Study, Defense Supply Center Richmond, Virginia. May 1997.
- Law, 1999. Third Revised Final Focused Feasibility Study, Area 50 Source Area Operable Unit 2, Defense Supply Center – Richmond, Richmond, Virginia. May 1999.
- Law, 2001. Final Technical Memorandum, Revised Remedy Selection for Operable Unit 2, Area 50 Landfill, Defense Supply Center Richmond, Richmond, Virginia. November 2001.

- MACTEC, 2005a. Draft Revised Human Health Baseline Risk Assessment Work Plan, Defense Supply Center, Richmond, Virginia. May 2005.
- MACTEC, 2005b. Human Health Baseline Risk Assessment of the Creeks Adjacent to DSCR, Defense Supply Center Richmond, Richmond, Virginia. July 2005.
- MACTEC, 2005c. Results of Three-year Creek Monitoring Program 2001–2004, Defense Supply Center Richmond, Richmond, Virginia. August 2005.
- MACTEC, 2005d. Environmental Land Use Control Implementation Plan, Defense Supply Center Richmond, Richmond, Virginia. September 2005.
- MACTEC, 2005e. Draft Supplemental Feasibility Study Investigation Report, Defense Supply Center Richmond, Richmond, Virginia. July 2005.
- USATHAMA, 1981. Installation Assessment of Defense General Supply Center, Virginia. Final report for period 26 to 30 January 1981. Prepared for Defense General Supply Center, Richmond, VA, and USATHAMA, Environmental and Safety Division, Aberdeen Proving Ground, MD. Chemical Systems Laboratory, Environmental Technology Division, Installation Restoration Branch, Aberdeen Proving Ground, MD. August 1981.
- USEPA, 1989a. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual, Interim Final. Office of Emergency and Remedial Response. EPA/540/1-89/002. December 1989.
- USEPA, 1989b. CERCLA Compliance with Other Laws Manual: Part II. Clean Air Act and Other Environmental Statutes and State Requirements. EPA/540/G-80/009.
- USEPA, 1991. Risk Assessment Guidance for Superfund, Volume 1 Human Health Evaluation Manual, Part B – Development of Risk-based Preliminary Remediation Goals, Interim Final. Office of Solid Waste and Emergency Response Directive 9285.7-01B. October 1991.
- USEPA, 1992. Guidance for Data Usability in Risk Assessment (Part A) Final. Office of Emergency and Remedial Response. Publication 9285.7-09A. PB 92-963356. April 1992.

53

- USEPA, 1993. Selecting Exposure Routes and Contaminants of Concern by Risk-based Screening. Region III, Hazardous Waste Management Division, Office of Superfund Programs. EPA/903/R-93-001. January 1993.
- USEPA, 2000. Guidance for Data Quality Assessment: Practical Methods for Data Analysis. EPA QA/G-9; QA00 Update, July 2000. EPA/600/R-96-084.
- USEPA, 2002. Comments on Final Technical Memorandum, Revised Remedy Selection for Operable Unit 2. Distributed by Jack Potosnak, Federal Facilities Section, Region 3. 15 February 2002.
- USEPA, 2005. Human Health Risk Assessment, Risk-based Concentration Table, October 2005 Update. Human Health Risk Assessment [US EPA Mid-Atlantic]. http://www.epa.gov/reg3hwmd/risk/human/index.htm. 12 December 2005.

•

,

28 July 2006 Revision I

TABLES

.

.

.

TABLE 2-1

CHEMICALS OF CONCERN IN SURFACE AND SUBSURFACE SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 LANDFILL Defense Supply Center Richmond Richmond, Virginia

Metals	PCBs	PAHs	VOCs
Arsenic	Aroclor-1260	Benzo(a)anthracene	Trichloroethene
		Benzo(a)pyrene	
		Benzo(b)fluoranthene	
		Benzo(k)fluoranthene	
		Chrysene	
		Dibenzo(a,h)anthracene	
		Indeno(1,2,3-cd)pyrene	

PREPARED/DATE:	THB 2/9/06
CHECKED/DATE:	LMS 2/24/06

ī

TABLE 2-2

CONSTITUENTS ANALYZED FROM 1984 TO 1998 TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 LANDFILL Defense Supply Center Richmond Richmond, Virginia

SOIL	
Volatile Organic Compounds	Diesel Fuel
2,4-Dinitrotoluene	Gasoline
Semivolatile Organic Compounds	Jet Fuel
Metals	Kerosene
Hexavalent Chromium	Mineral Oil
Pesticides	Paint Thinner
Total Petroleum Hydrocarbons	Naptha
Polychlorinated Biphenyls	Stoddard Solvent
GROUNDW	VATER
Volatile Organic Compounds	Carbon Dioxide
2,4-Dinitrotoluene	Ethene & Ethane
Semivolatile Organic Compounds	Methane
Metals	Sulfate
Hexavalent Chromium	Nitrate & Nitrite
Pesticides	Chloride
Freon 112	Acidity
Cyanide	Alkalinity
Total Petroleum Hydrocarbons	Total Organic Carbon
Oil & Grease	Dissolved Organic Carbon

Perchlorates were not included as analytes for soil or groundwater samples.

PREPARED/DATE: JLK 5/2/06 CHECKED/DATE: THB 7/20/06

TABLE 2-3

- ---- --- ---

MAXIMUM HISTORICAL DETECTIONS FOR EACH CONSTITUENT OF CONCERN TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 LANDFILL Defense Supply Center Richmond Richmond, Virginia

FIGURE #	CONSTITUENT	MAXIMUM (mg/kg)
2-1	Arsenic	30
2-2	Benzo(a)anthracene	360
2-3	Banzo(a)pyrene	340
2-4	Benzo(b)fluoranthene	540
2-5	Benzo(k)fluoranthene	540
2-6	Dibenzo(ah)anthracene	72
2-7	Indeno(1,2,3-cd)pyrene	180
2-8	Aroclor 1260	47
2-9	Trichloroethene	53.4
2-10	Benzo(a)anthracene	360
2-11	Benzo(a)pyrene	340
2-12	Benzo(b)fluoranthene	540
2-13	Dibenzo(ah)anthracene	72
2-14	Indeno(1,2,3-cd)pyrene	180

(Taken from sampling events conducted during September and October 1984; May, June, and July 1985; October 1986; October 1988; October, November, and December 1994; and October 1998)

PREPARED/DATE:	JLK 5/2/06
CHECKED/DATE:	THB 7/20/06

TABLE 2-4

TECHNICAL MEMORANDUM TEVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL Defense Supply Center Richmond Richmond, Virginia **REASONABLE MAXIMUM EXPOSURE** CURRENT INDUSTRIAL WORKERS RISK SUMMARY

Receptor Population: Industrial Receptor Age: Adult Scenario Timeframe: Current

┢						, , ,					
Exposure Point		Chemical			Carcino	Carcinogenic Risk	Noi	n-Carcinoger	Non-Carcinogenic Hazard Quotient	uotient	
			Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
						Routes Total	Target Organ(s)				Routes Total
Surface Soil Arsenic	Ā	rsenic	1.E-05	1.E-08	2.E-06	1.E-05	Skin, Vascular System	0.1	:	0.01	0.1
Ā	ā	Benzo(a)anthracene	NA	NA	NA	0.E+00	NA	1	ł	:	;
B	ă	епzo(а)рутепе	NA	٩N	NA	0.E+00	NA	:	;	:	ł
Be	<u>B</u>	Benzo(b)fluoranthene	NA	NA	NA	0.E+00	NA	;	;	;	;
Be	Be	nzo(k)fluoranthene	0.E+00	0.E+00	0.E+00	0.E+00	NA	:	1	1	ł
Dit	Dif	enzo(a,h)anthracene	6.E-05	NA NA	5.E-05	1.E-04	NA	;	ł	:	:
In	Ě	Indeno(1,2,3-cd)pyrene	6.E-04	4.E-08	5.E-04	1.E-03	NA	;	;	;	:
<u>Z</u>	P.	PCB-1260	2.E-05	3.E-09	2.E-05	4.E-05	NA	1	ł	ł	1
Ţ	Ŀ	Total	7.E-04	5.E-08	6.E-04	1.E-03		0.1	1	0.01	0.1
Exposure Point Total		otal				1.E-03					0.1
						1.E-03					0.1
				Receptor	Receptor Risk Total	1.E-03			Recepto	Receptor HI Total	0.1
		:	Total	Total Risk Across All Media	s All Media	1.E-03		Total Ha	Total Hazard Across All Media	All Media	0.1
								Total Skin	Total Skin HI Across All Media =	ll Media =	0.1
							Total Vasc	cular System	Total Vascular System HI Across All Media =	ll Media =	0.1

847

58

1 of 1 . . .

PREPARED/DATE: LMS 9/15/05 CHECKED/DATE: MKB 9/15/05

Total Immune System HI Across All Media = Total CNS HI Across All Media =

050016.18

TABLE 2-5

RISK SUMMARY REASONABLE MAXIMUM EXPOSURE FUTURE INDUSTRIAL WORKERS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL Defense Supply Center Richmond Richmond, Virginia

Scenario Timeframe: Future Receptor Population: Industrial Receptor Age: Adult

Medium	Exposure Medium	Exposure	Chemical		Carcino	Carcinogenic Risk		Ň	on-Carcinoge	Non-Carcinogenic Hazard Quotient	uotient	
				Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
	Surface and	Surface and									-	
Soil	Subsurface Soil	Subsurface Soil	Subsurface Soil Benzo(a)anthracene	NA	NA	NA	0.E+00	NA	ł	1	ł	ł
			Benzo(a)pyrene	8.E-07	1.E-10	2.E-07	1.E-06	NA	1	:	:	;
			Benzo(b)fluoranthene	7.E-10	2.E-15	1.E-10	8.E-10	NA	1	ł	:	ł
			Dibenzo(a,h)anthracene	1.E-05	NA	1.E-05	2.E-05	NA	!	ł	ł	ł
			Indeno(1,2,3-cd)pyrene	1.E-04	7.E-09	9.E-05	2.E-04	NA	;	ł	1	;
			Trichloroethene	8.E-07	5.E-05	2.E-07	S.E-05	CNS, Liver, Kidney	0.04	0.06	0.01	0.1
			Total	1.E-04	5.E-05	1.E-04	3 E-04		1	:		t
		Exposure Point Total	otal				3.E-04					
Medium Total	1						3.E-04					;
Receptor Total	<u>al</u>				Receptor	Receptor Risk Total	3.E-04			Recepto	Receptor HI Total	0.1
				Tot	Total Risk Across All Media	i All Media	3.E-04		Total Ha	Total Hazard Across All Media	All Media	0.1

847 59

PREPARED/DATE: LMS 9/15/05 CHECKED/DATE: MKB 9/15/05

Ċ

Total Liver HI Across All Media = Total Kidney HI Across All Media = 1 of 1

TABLE		2-6
Γ)	P
		TA

RISK-BASED REMEDIATION GOALS FOR SURFACE AND SUBSURFACE SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL Defense Supply Center Richmond Richmond, Virginia

	Current Industrial Worker	Esti	mated Risk l	Estimated Risk by Exposure Pathway	thway	Surface Soil HHBRA FPC	Surface Soil Risk- Based Remediation Goal (10-5)
		Ingestion	Inhalation]	Inhalation Dermal Contact	t Totals		
	Arsenic	1.E-05	1.E-08	2.E-06	1.E-05	2.0E+01	1.8.E+01
	Benzo(a)anthracene	6.E-05	NA	5.E-05	1.E-04	2.7E+02	2.3.E+01
	Benzo(a)pyrene	6.E-04	4.E-08	5.E-04	1.E-03	2.5E+02	2.3.E+00
	Benzo(b)fluoranthene	9.E-05	V V	8.E-05	2.E-04	4.0E+02	2.3.E+01
	Benzo(k)fluoranthene	9.E-06	AN	8.E-06	2.E-05	4.0E+02	2.3.E+02
	Dibenzo(a,h)anthracene	1.E-04	AN	1.E-04	2.E-04	5.3E+01	2.3.E+00
	Indeno(1,2,3-cd)pyrene	3.E-05	V V	3.E-05	6.E-05	1.3E+02	2.3.E+01
	PCB-1260	2.E-05	3.E-09	2.E-05	4.E-05	3.4E+01	8.3.E+00
	TOTALS	9.E-04	5.E-08	8.E-04	2.E-03		
		-				Subsurface	Subsurface Soil
	<u>Future Industrial Worker</u>	Esti	mated Risk b	Estimated Risk by Exposure Pathway	thway	Soil HHBRA FDC	Kisk-based Remediation Goal
		Ingestion	Inhalation 1	Ingestion Inhalation Dermal Contact	t Totals		(10-5)
	Benzo(a)anthracene	1.E-05	NA	1.E-05	2.E-05	5.1E+01	2.3.E+01
	Benzo(a)pyrene	1.E-04	7.E-09	9.E-05	2.E-04	4.7E+01	2.3.E+00
	Benzo(b)fluoranthene	3.E-05	NA	2.E-05	5.E-05	1.IE+02	2.3.E+01
	Dibenzo(a,h)anthracene	2.E-05	NA	2.E-05	5.E-05	1.1E+01	2.3.E+00
	Indeno(1,2,3-cd)pyrene	6.E-06	NA	5.E-06	1.E-05	2.5E+01	2.3.E+01
	Trichloroethene	8.E-07	5.E-05	2.E-07	5.E-05	1.2E+01	2.5.E+00
	TOTALS	2.E-04	5.E-05	2.E-04	4.E-04		
Notes:							
EPC HHBRA	Exposure Point Concentrations from the HHBRA Human Health Baseline Risk Assessment					PREPARED/DATE: LMS 12/13/05 CHECKED/DATE: MKB 12/15/05	E: LMS 12/13/05 E: MKB 12/15/05

847

lof 1

60

050016.18

TABLE 2-7

STORM SEWERS LINED BY PVC FOLD AND FORM METHOD TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 LANDFILL Defense Supply Center Richmond Richmond, Virginia

Storm Sewer Line Designation/Location	Beginning Manhole	Ending Manhole	Diameter	Length
East	585	584	12 inch	329 feet
-	584	583	15 inch	332 feet
-	583	668	18 inch	288 feet
_	668	5'×5" box	18 inch	89 feet (test & seal
-	589	588	12 inch	62 feet
Central (formerly denoted as west line)	666	662	15 inch	328 feet
_	662	659	18 inch	333 feet
_	659	5'×5" box	24 inch	Internal spo repair
	563	562	12 inch	Internal spo repair
West (not previously labeled)	542	541	12 inch	244 feet
-	537	532 @ 5'×5' box	24 inch	Internal spo repair

Note:

PVC Polyvinyl Chloride

PREPARED/DATE:	THB 2/8/06
CHECKED/DATE:	PKN 7/20/06

TABLE 2-8

STORM SEWER MANHOLE IMPROVEMENTS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 LANDFILL Defense Supply Center Richmond Richmond, Virginia

MACTEC Manhole Identification	USACE Manhole Identification	Rehabilitation Measures
tuentineation	Identification	Implemented
EAST LINE	585	Water plug and seal 9.7 VLF
		Install new concrete collar
	60 4	Water plug and seal 10.3 VLF
East MH 2	584	Install new frame and cover
		Install new concrete collar
		Water plug and seal 9.1 VLF
East MH 3	583	Install new frame and cover
		Install concrete collar
	668	Raise buried structure
	589	Water plug and seal 5.9 VLF
CENTRAL LINE rmerly denoted as west line)	665	Abandon in place
•	666	Water plug and seal 9.13 VLF
		Water plug and seal 5.0 VLF
	667	Install new concrete collar
		Water plug and seal 10.2 VLF
MH 2	662	Install new frame and cover
		Water plug and seal 7.46 VLF
	663	Install new concrete collar
		Water plug and seal 7.1 VLF
	661	Install new concrete collar
	660	Install new concrete collar
		Install new frame and cover
MH 3	659	Install concrete collar
		Water plug and seal 7.0 VLF
	658	Install new frame and cover
		Install new concrete collar
	564	Water plug and seal 3.9 VLF
	563	Water plug and seal 3.95 VLF
WEST LINE		water plug and sear 5.95 VLF
(not previously labeled)	540	Install new frame and cover
(not previously labeled)	539	Water plug and seal 6.2 MLF
	538	Water plug and seal 6.3 VLF
		Water plug and seal 6.3 VLF
	537	Install new frame and cover

Note:

VLF vertical linear feet

PREPARED/DATE:	THB 2/8/06
CHECKED/DATE:	PKN 7/20/06

										-										84	7	6:	3
ENTS (ARARs) LLS 50 LANDFILL	TBC REQUIREMENTS	None Identified	None Identified		None identified	None identified	Calculated Risk-Based Soil Action Levels in Accordance with 40 CFR Part 300.430(e)(2)(i) of the National Oil and Hazardous Substances Pollution Contingency Plan								None identified		c			Prepared by: THB 12/15/05 Checked by: CED 12/15/05		1 of 1.	
APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMI AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SO TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA Defense Supply Center Richmond Richmond, Virginia	ARARs	None Identified	None Identified		None identified	None identified	RCRA - Closure Requirements (40 CFR 264 Subpart G; VHWMR 9 VAC 20-60-740, et seq.)	VA Stomwater Management Regulations (4 VAC 3-20-10, et seq.)		VA Stormwater Management Act (Code of VA § 10.1-603.1 et. seq.)	VA Erosion and Sediment Control Regulations (Code of VA § 10.1-560, et seq.)	VA Erosion and Sediment Control Regulations (4 VAC 50-30-10, et seq.)	VA Standards of Performance for Visible Emissions and Fugitive Dust/ Emissions [Rule 5-1] (9 VAC 5-50-60, et seq.)	VA Closure and Post Closure Requirements (VHWMR 9 VAC 20-60-800, et seq.)	VA Stomwater Management Regulations (4 VAC 30-20-10, et seq.)	VA Erosion and Sediment Control Regulations (4 VAC 50-30-10, et seq.)	VA Stomwater Management Act (Code of VA § 10.1-603.1 et. seq.)	VA Erosion and Sediment Control Law (Code of VA § 10.1-560, et seq.)	VA Standards of Performance for Visible Emissions and Fugitive Dust/ Emissions [Rule 5-1] (9 VAC 5-50-60, et seq.)				
	TYPE OF ARAR	Chemical-Specific	Location-Specific	Action-Specific	No Action	Institutional Controls	Containment/Capping								Grading							050016.18	
		APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARS) AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 LANDFIL Defense Supply Center Richmond Richmond, Virginia	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARS AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 LANDFIL Defense Supply Center Richmond Richmond, Virginia ARARS None Identified ARAB	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARS AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 LANDFIL Defense Supply Center Richmond Richmond, Virginia ARAR None Identified ARAR	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARS AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 LANDFIL Defense Supply Center Richmond Richmond, Virginia ARAR None Identified ARAR None Identified None Identified None Identifi	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARS, AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 LANDFIL Defense Supply Center Richmond Richmond, Virginia None Identified None Identifi	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARS AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFIL Defense Supply Center Richmond Richmond, Virginia AND FOLD REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFIL Defense Supply Center Richmond Richmond, Virginia None Identified ARAR None Identified None Identified None identified None identified	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia None Identified ARARs Controls None Identified RCRA - Closure Requirements (40 CFR 264 Subpart G, VHWMR 9 VAC 20-60-740, et seq.)	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia None Identified RCRA - Closure Requirements (40 CFR 264 Subpart G, VHWMR 9 VAC 20-60-740, et seq.)	APPLICABLE OR RELEVANT AND APPROPRIATE REQUREMENT AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOHS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia ABD TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOHS TECHNOID ReVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Revision ARARs ARARs ARARs None Identified None Identified None identified Controls None identified Controls None identified Vastion KCRA - Closure Requirements (40 CFR 264 Subpart G; VHWMR 9 VAC 20-60-740, et seq.) VA Stomwater Management Regulations (4 VAC 3-20-10, et seq.) VAC 3-20-10, et seq.)	APPLJCABLE OR RELEVANT AND APPROPRIATE REQUREMENT AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 Defense Supply Center Richmond Richmond, Virginia ARAB None Identified Valoping RCRA - Closure Requirements (40 CFR 264 Subpart G; VHWMR 9 VAC 20-60-740, et seq.) VA Stornwater Management Act (Code of VA G 3-20-10, et seq.) VA Stornwater Management Act (Code of VA § 101-603.1 et. seq.)	APPLICABLE OR RELEVANT AND APPROPRIATE REQUREMENT AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELLECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia ARARs None Identified VCapping RCRA - Closure Requirements (40 CFR 264 Subpart G; VHWMR 9 VAC 20-60-740, et seq.) VA Stormwater Management Act (Code of VA § 10.1-603.1 et. seq.) VA Stormwater Management Act (Code of VA § 10.1-603.1 et. seq.)	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRUTERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 – AREA 50 Defense Supply Center Richmond Richmond, Virginia None Identified ARAIs None Identified ARAIs None Identified None identified None identified None identified None identified None identified Controls None identified None identified None identified Controls None identified None identified None identified None identified None identified Capping RCRA - Closure Requirements (40 CFR 264 Subpart G; VHWMR 9 VAC 20-60-740, et seq.) Va Stornwater Management Regulations (4 VAC 3-20-10, et seq.) VA Stornwater Management Act (Code of VA § 10.1-603.1 et. seq.) VA Erosion and Sediment Control Regulations (4 VAC 50-30-10, et seq.) VA Erosion and Sediment Control Regulations (4 VAC 50-30-10, et seq.)	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRITERIA (TBGs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia AND Toble Remedy SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia ARAR None Identified VCapping RCRA - Closure Requirements (40 CFR 264 Subpart G; VHW/R 9 VAC 20-60-740, et seq.) VA Stomwater Management Act (Code of VA § 10.1-603.1 et seq.) VA Stomwater Management Act (Code of VA § 10.1-603.1 et seq.) VA Erosion and Sediment Control Regulations (4 VAC 3-20-10, et seq.) VA Erosion and Sediment Control Regulations (4 VAC 30-30-10, et seq.) VA Erosion and Sediment Control Regulations (4 VAC 5-50-60, et seq.)	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRITERIA (TBC5) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia None Identified ARARs None identified None identified Controls None identified To State A - Closure Requirements (4 VAC 3-20-10, et seq.) VA Erosion and Sediment Control Regulations (4 VAC 50-30-10, et seq.) VA Erosion and Sediment Control Regulations (4 VAC 50-30-10, et seq.) VA Erosion and Sediment Contr	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia None Identified ARARs None Identified ARARs None identified None identified Capping RCRA - Closure Requirements (40 CFR 264 Subpart G; VHWMR 9 VAC 20-60-740, et seq.) VCapping RCRA - Closure Requirements (40 CFR 264 Subpart G; VHWMR 9 VAC 20-60-740, et seq.) Va Stornwater Management Act (Code of VA § 10.1-603.1 et seq.) VA Stornwater Management Act (Code of VA § 10.1-603.1 et seq.) VA Erosion and Sediment Control Regulations (4 VAC 50-30-10, et seq.) VA Stornwater Management Regulations (4 VAC 50-30-10, et seq.) VA Erosion and Sediment Control Regulations (4 VAC 50-30-10, et seq.) VA Stornwater Management Requiterents (VHWMR 9 VAC 20-60.80, et seq.) <td>APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRITERIA (TBC3) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond RECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia ARARs None Identified Controls RCA - Closure Requirements (4 VAC 3-20-10, et seq.) V.Capping RCA - Cosure Requirement (at VAC 5-30-10, et seq.) VA Erosion and Sed</td> <td>APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia ARAR None Identified VCapping RCRA - Closure Requirements (4 VAC 3-20-10, et seq) VA Stomwater Manage</td> <td>APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia ARARS None Identified None Identified</td> <td>APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRUITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTTON FOR OPERABLE UNIT 2 – AREA 50 Defense Supply Center Nichmond Richmond, Virginia ARARS ARARS None Identified None identified None identified ARARS None identified None identified Controls None identified None identified YA Stomwater Management Regulations (4 VAC 3-20-10, et seq.) VA Stomwater Management Act (Code of V & 10.1-603.1 et seq.) YA Stomwater Management Act (Code of V A 50-30-10, et seq.) VA Ension and Sediment Control Regulations (4 VAC 50-30-10, et seq.) YA</td> <td>APLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARAMS) AND TO BE-CONSIDERED CURTERIAL (TEGS) FOR SOLLS. TECHNICAM RELEVANT AND APPROPRIATE REQUIREMENTS (ARAMS) AND TO BE-CONSIDERED CURTERIAL (TEGS) FOR SOLLS TECHNICAM RELAVED YEAR (CORRESS) FOR SOLLS TECHNICAM RELAVED YEAR (CORRESS) CORRESS (CORRESS) CORRESS) FOR SOLLS TECHNICAM RELAVED YEAR (CORRESS) CORRESS (CORRESS) CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS) CORRESS (CORRESS) CORRESS (CORRESS) CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS (CORRE</td> <td>APPLICABLE OR RELEVANT AND APPROPRIATE REQUREMENT AND TO-BE-CONSIDERED CRITERIA (TBCG) FOR SOILS TECHNICAL MEINORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Rehmond Done Identified None Identified VAC Sologo (4 vAC 30-10, ct seq.) VA Standus of Performance for Visible Emissions and Pugitive Dust Emissio</td> <td>ATD CABLE OR RELEAVANT AND APPROPRIATE REQUIREMENTS (AXAR) AND TO BELEAVANT AND APPROPRIATE REQUIREMENTS (AXAR) AND TO BELEAVANT AND APPROPRIATE NEQUIREMENTS (AXAR) AND TO BELEAVANT APPROPRIATE UNIT 2 - AREA 96 LANDFILL BEREIRE DIREMENT SECTION FOOT CONTROL OF RELEAVANT APPROPRIATE AREA DIREMENT SECTION FOOT CONTROL OF RELEAVANT APPROPRIATE UNIT 2 - AREA 96 LANDFILL DIREMENT SECTION FOOT CONTROL OF RELEAVANT AND APPROPRIATE UNIT 2 - AREA 96 LANDFILL AREA DIREMENT SECTION FOOT CONTROL OF RELEAVANT APPROPRIATE UNIT 2 - AREA 96 LANDFILL AREA DIREMENT SECTION FOOT CONTROL OF RELEAVANT APPROPRIATE TRANSPORTED AFTER AREA DIREMENT SECTION FOOT CONTROL OF RELEAVANT APPROPRIATE TRANSPORTED AFTER AREA DIREMENT APPROPRIATE OF ACTIVATE OF ACTIVA</td>	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRITERIA (TBC3) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond RECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia ARARs None Identified Controls RCA - Closure Requirements (4 VAC 3-20-10, et seq.) V.Capping RCA - Cosure Requirement (at VAC 5-30-10, et seq.) VA Erosion and Sed	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia ARAR None Identified VCapping RCRA - Closure Requirements (4 VAC 3-20-10, et seq) VA Stomwater Manage	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Richmond Richmond, Virginia ARARS None Identified None Identified	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENT AND TO-BE-CONSIDERED CRUITERIA (TBCs) FOR SOILS TECHNICAL MEMORANDUM REVISED REMEDY SELECTTON FOR OPERABLE UNIT 2 – AREA 50 Defense Supply Center Nichmond Richmond, Virginia ARARS ARARS None Identified None identified None identified ARARS None identified None identified Controls None identified None identified YA Stomwater Management Regulations (4 VAC 3-20-10, et seq.) VA Stomwater Management Act (Code of V & 10.1-603.1 et seq.) YA Stomwater Management Act (Code of V A 50-30-10, et seq.) VA Ension and Sediment Control Regulations (4 VAC 50-30-10, et seq.) YA	APLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARAMS) AND TO BE-CONSIDERED CURTERIAL (TEGS) FOR SOLLS. TECHNICAM RELEVANT AND APPROPRIATE REQUIREMENTS (ARAMS) AND TO BE-CONSIDERED CURTERIAL (TEGS) FOR SOLLS TECHNICAM RELAVED YEAR (CORRESS) FOR SOLLS TECHNICAM RELAVED YEAR (CORRESS) CORRESS (CORRESS) CORRESS) FOR SOLLS TECHNICAM RELAVED YEAR (CORRESS) CORRESS (CORRESS) CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS) CORRESS (CORRESS) CORRESS (CORRESS) CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS) CORRESS (CORRESS) CORRESS) CORRESS (CORRE	APPLICABLE OR RELEVANT AND APPROPRIATE REQUREMENT AND TO-BE-CONSIDERED CRITERIA (TBCG) FOR SOILS TECHNICAL MEINORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 Defense Supply Center Rehmond Done Identified None Identified VAC Sologo (4 vAC 30-10, ct seq.) VA Standus of Performance for Visible Emissions and Pugitive Dust Emissio	ATD CABLE OR RELEAVANT AND APPROPRIATE REQUIREMENTS (AXAR) AND TO BELEAVANT AND APPROPRIATE REQUIREMENTS (AXAR) AND TO BELEAVANT AND APPROPRIATE NEQUIREMENTS (AXAR) AND TO BELEAVANT APPROPRIATE UNIT 2 - AREA 96 LANDFILL BEREIRE DIREMENT SECTION FOOT CONTROL OF RELEAVANT APPROPRIATE AREA DIREMENT SECTION FOOT CONTROL OF RELEAVANT APPROPRIATE UNIT 2 - AREA 96 LANDFILL DIREMENT SECTION FOOT CONTROL OF RELEAVANT AND APPROPRIATE UNIT 2 - AREA 96 LANDFILL AREA DIREMENT SECTION FOOT CONTROL OF RELEAVANT APPROPRIATE UNIT 2 - AREA 96 LANDFILL AREA DIREMENT SECTION FOOT CONTROL OF RELEAVANT APPROPRIATE TRANSPORTED AFTER AREA DIREMENT SECTION FOOT CONTROL OF RELEAVANT APPROPRIATE TRANSPORTED AFTER AREA DIREMENT APPROPRIATE OF ACTIVATE OF ACTIVA

.

54

TABLE 4-1

COMPARATIVE ANALYSIS OF RETAINED REMEDIAL ALTERNATIVES TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL Defense Supply Center Richmond Richmond, Virginia

.

.

	Alternatives						Evaluation Unterna			
	· · ·	Overall Protection of Human Health and the Eovironment	Compliance with ARARs	Long-term Effectiveness and Permanence	Reduction in Toxicity, Mobility, and Volume Through Treatment	Short-term Effectiveness	lmolementability	Costs	· State Acceptance	Community Acceptance
;	No Action	Not protective	Not compliant	Not effective	No reduction because no treatment	Because there is no action, Easy to implement be there are no short-term risks to actions except 5-year workers or the community during construction.	Easy to implement because there are no actions except 5-year reviews.	No costs	Does not provide assurance that human health and the environment are protected,	Does not provide assurance that human Does not provide assurance that human health health and the environment are and the environment are protected.
	Institutional Controls	Not protective	Not compliant	Not effective	No reduction because no treatment	Land use controls and deed restrictions in the event of property transfer provide immediate prohibition against contact with onsite soils.	Institutional controls are easy to implement.	\$ 1 50,000	ICs alone may not satisfy state ARAR	ICs alone may not satisfy state ARARs. ICs alone may not satisfy community that this remedial alternative is sufficiently protective of human health and the environment.
6 A .	Soil cover, storm sewer Will be effe rehabilitation, institutional human heah controls, and source removal environmen of free-product and saturated left m place soils	Soil cover, storm sever Will be effective in protection of Compliant with rehabilitation, institutional human health and the ARARs controls, and source removal environment: landfilled materials of free-product and saturated left m place soils	Compliant with ARARs	Effective	No reduction because no treatment	Unacceptable short-term risks Construction of soil c related to onsite construction easy to implement. It and tikelihood of encountering implement. Removal ordnance and explosives implement. Storm se has been completed.	Construction of soil cover is moderately easy to implement. ICs easy to implement. Removal of free-product and saturated soils difficult and hazardous to implement. Storm sever rehabilitation has been completed.	\$ 1,900,000	The combination of technologies provided in this alternative will satisfy state ARARs	The combination of technologies provided in this alternative is expected to satisfy the community that this alternative is sufficiently protective of human health and the environment.
89	Clay cover, storm sewer Will be effer rehabilitation, institutional human healt controls, and source removal environmen of free-product and saturated left in place soils	tian tine	in protection of Complaant with a the ARARs dfilled materials	Effective	No reduction because no treatment	Uhacceptable short-term risks (Construction of clay related to onsite construction teasy to implement. It and likelihood of encountering implement. Removal ordnance and explosives. implement. Storm se has been completed.	Construction of clay cover is moderately teasy to implement. ICs easy to implement. Removal of free-product and saturated soils difficult and hazardous to implement. Storm sewer rehabilitation has been completed.	\$ 2,000,000	The combination of technologies provided in this alternative will satisfy state ARARs	The combination of technologies provided un this alternative is expected to satisfy the community that this alternative is sufficiently protective of human health and the environment.
Modified 6A.	Soil cover, institutional controls	Will be effective in protection of human health and the environment. tandfilled materials left in place	in protection of Compliant with 1 the ARARs dfilled materials	Effective	No reduction because no treatment	Acceptable short-term risks.	Construction of soil cover is moderately easy to implement. ICs easy to implement. Storm sewer rehabilitation has been completed.	\$ 1,500,000	The combination of technologies provided in this alternative will satisfy state ARARs	The combination of technologics provided in this alternative is expected to satisfy the community that this alternative is sufficiently protective of human health and the environment
Notes: ARARs	Amhicable or Relevant and Amronriate Requirements	Appropriate Recutitements								

PREPARED/DATE: THB 2/9/05 CHECKED/DATE: CED 2/9/05

ARARs Applicable or Relevant and Appropriate Requirements ICs Institutional Controls For purposes of comparison of costs, complete excavation and off-site disposal is estimated to be on the order of magnitude of \$13 million.

.

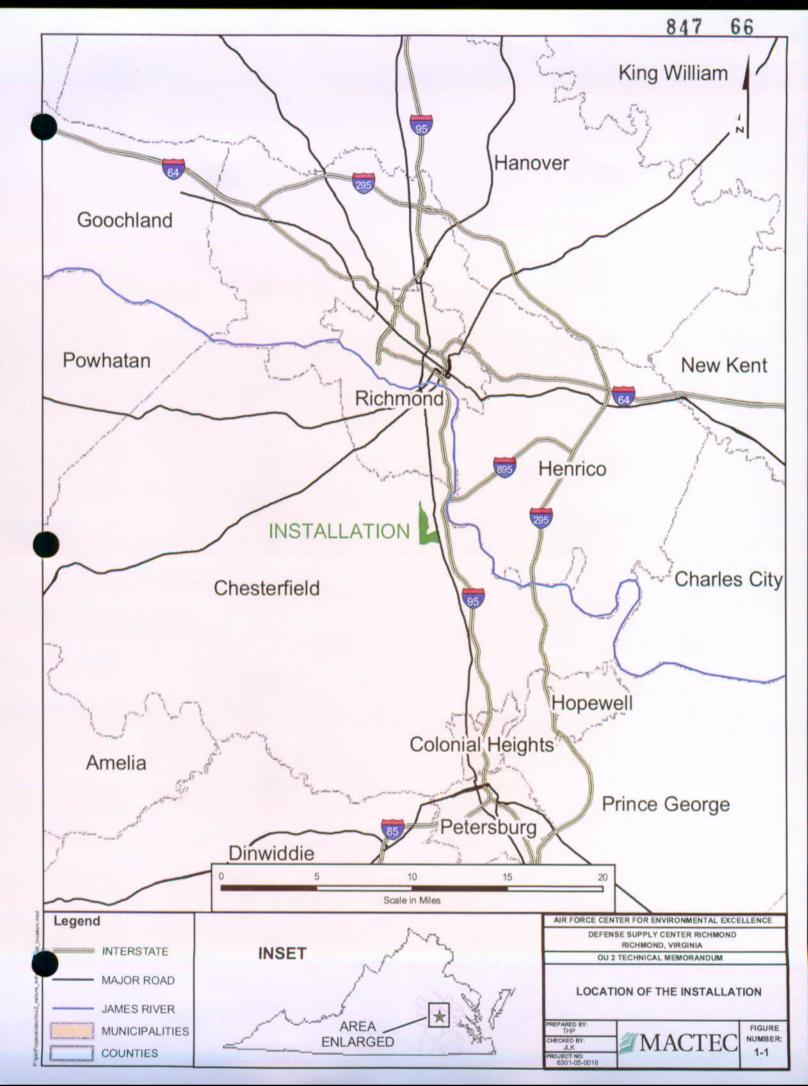
.

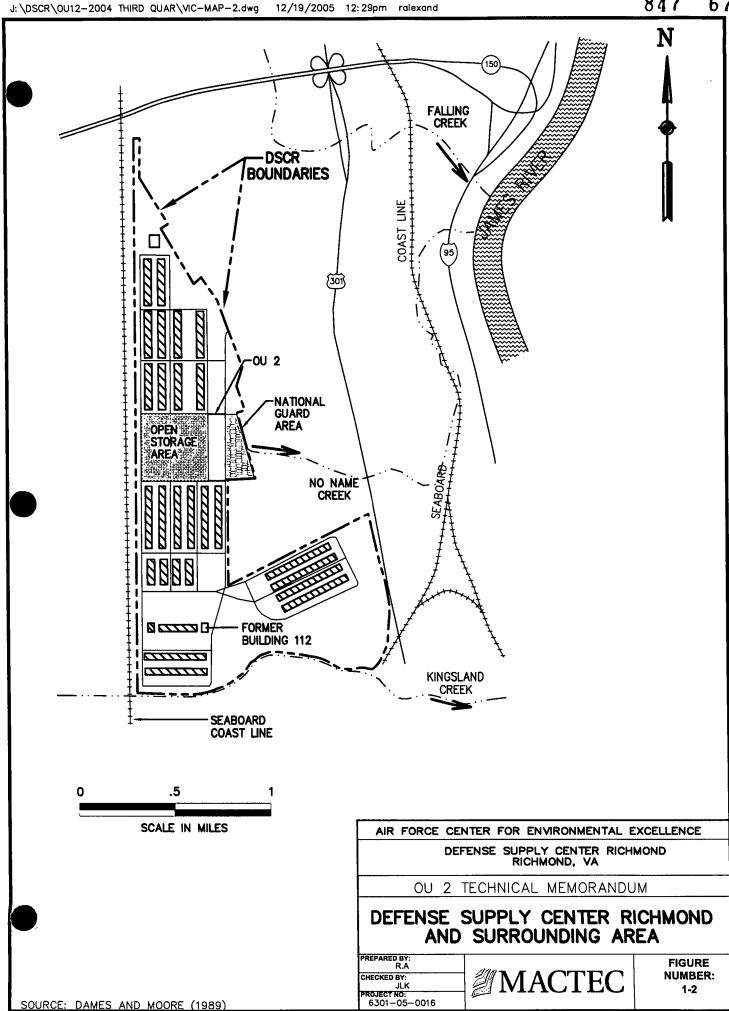
'n

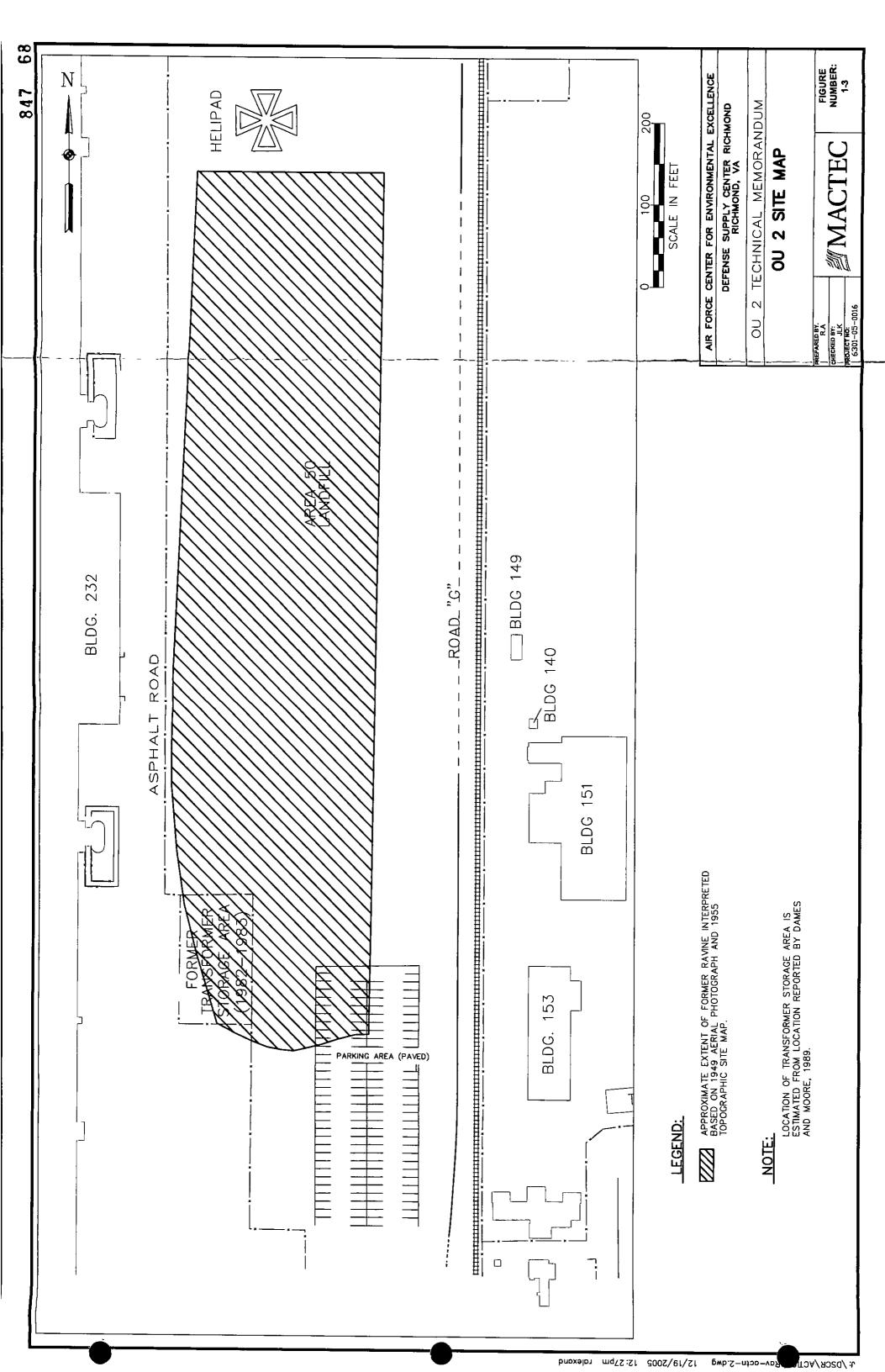
28 July 2006 Revision 1

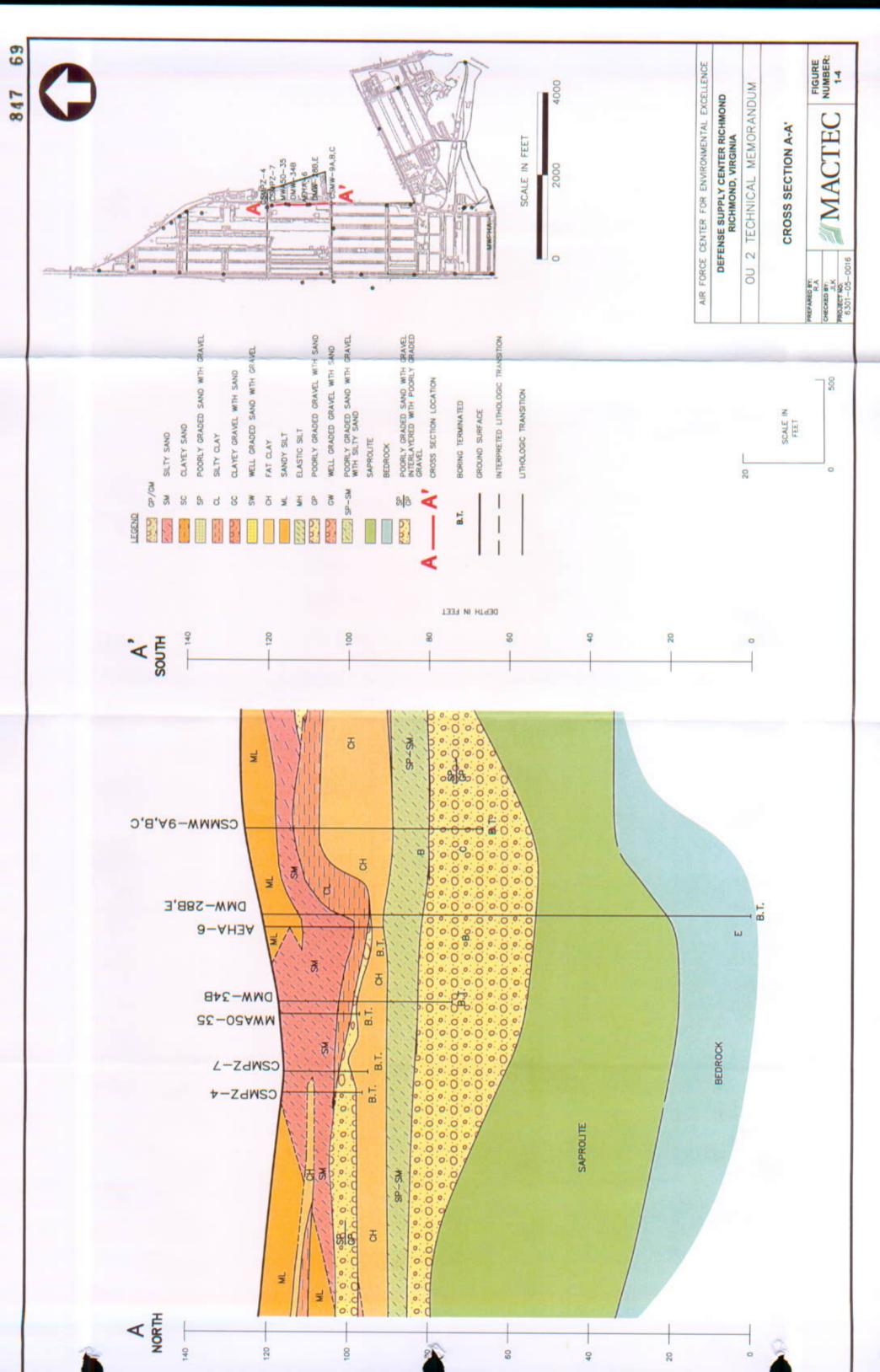
847

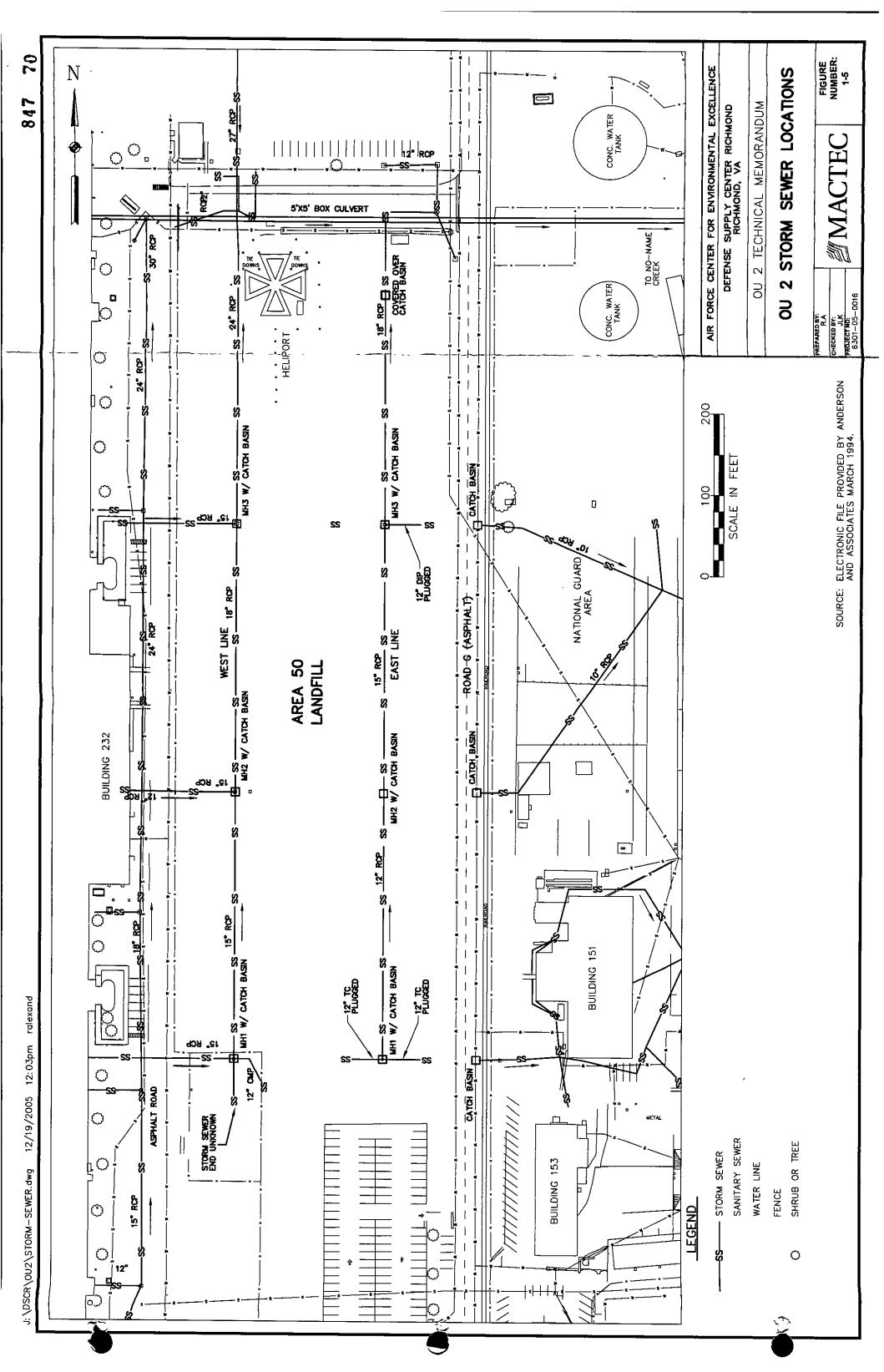
FIGURES

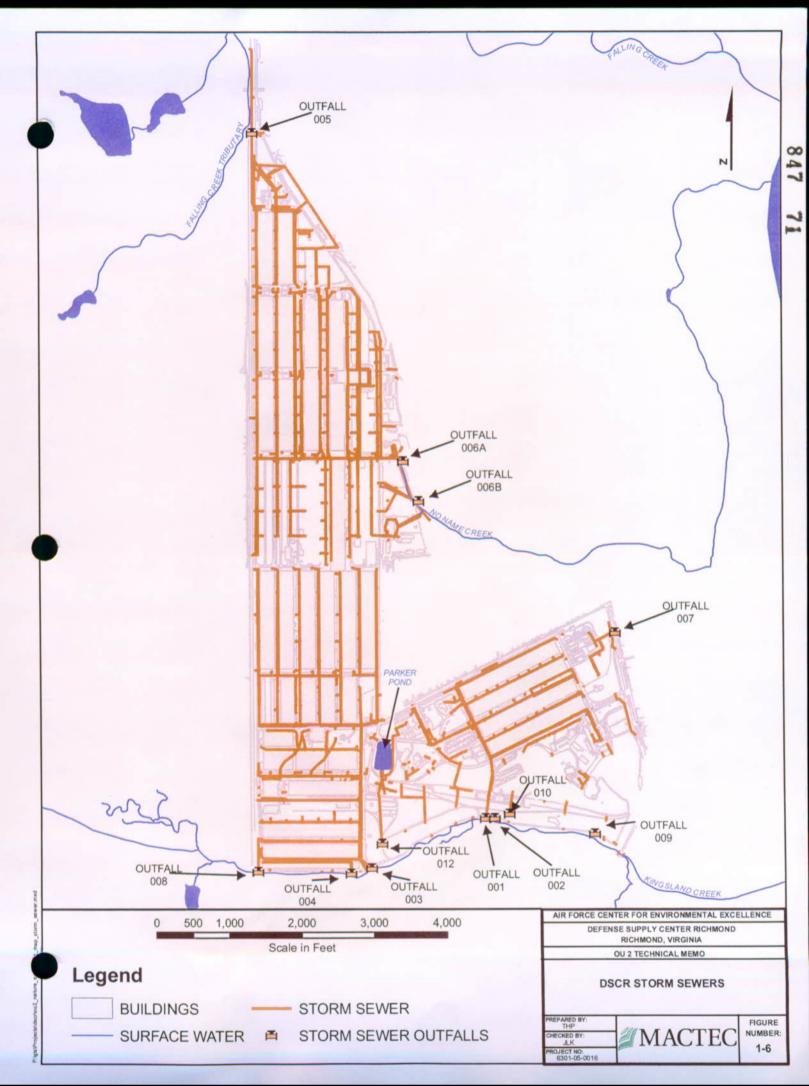


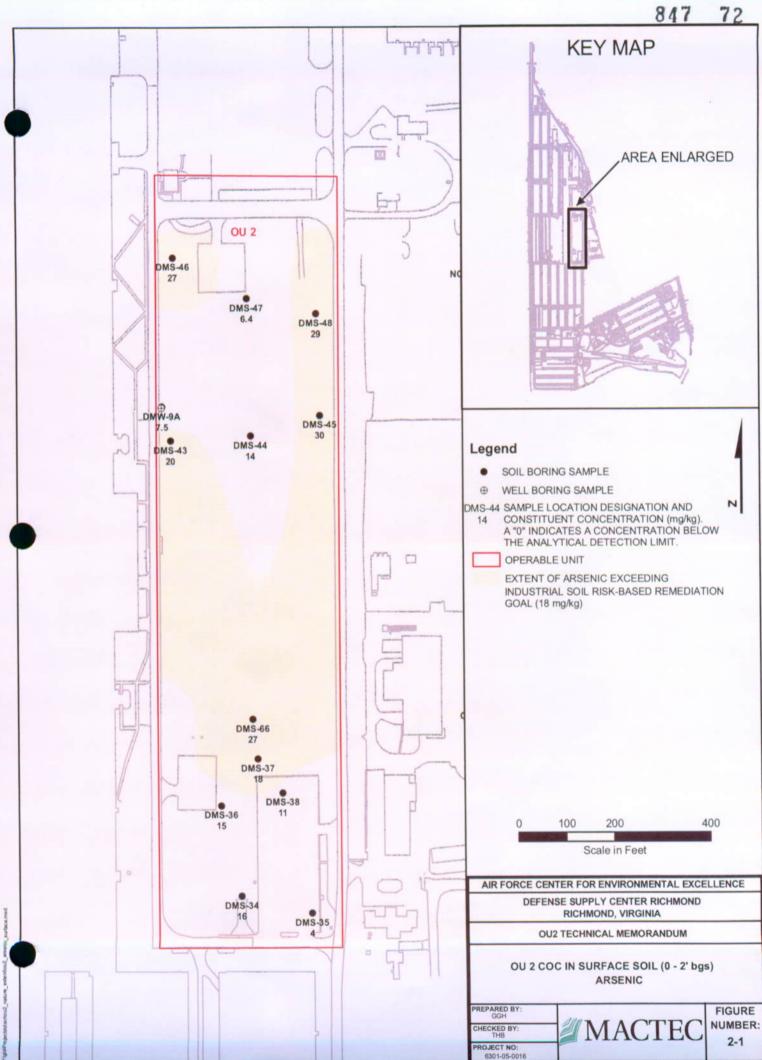


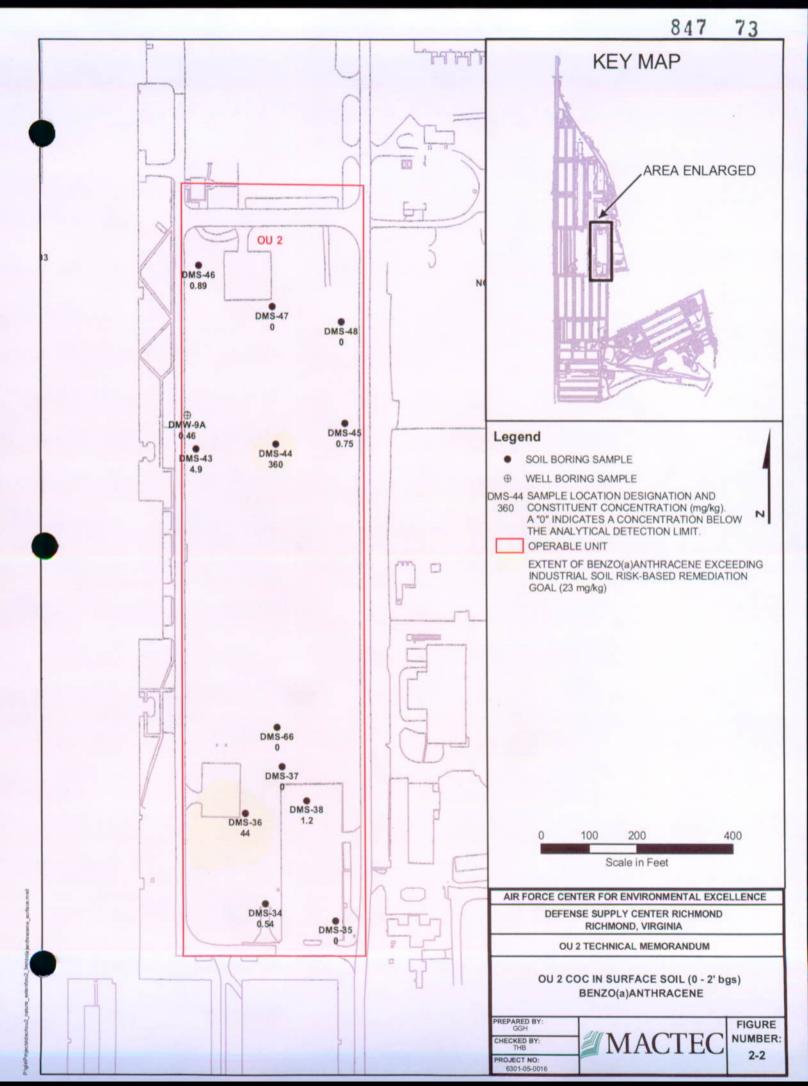


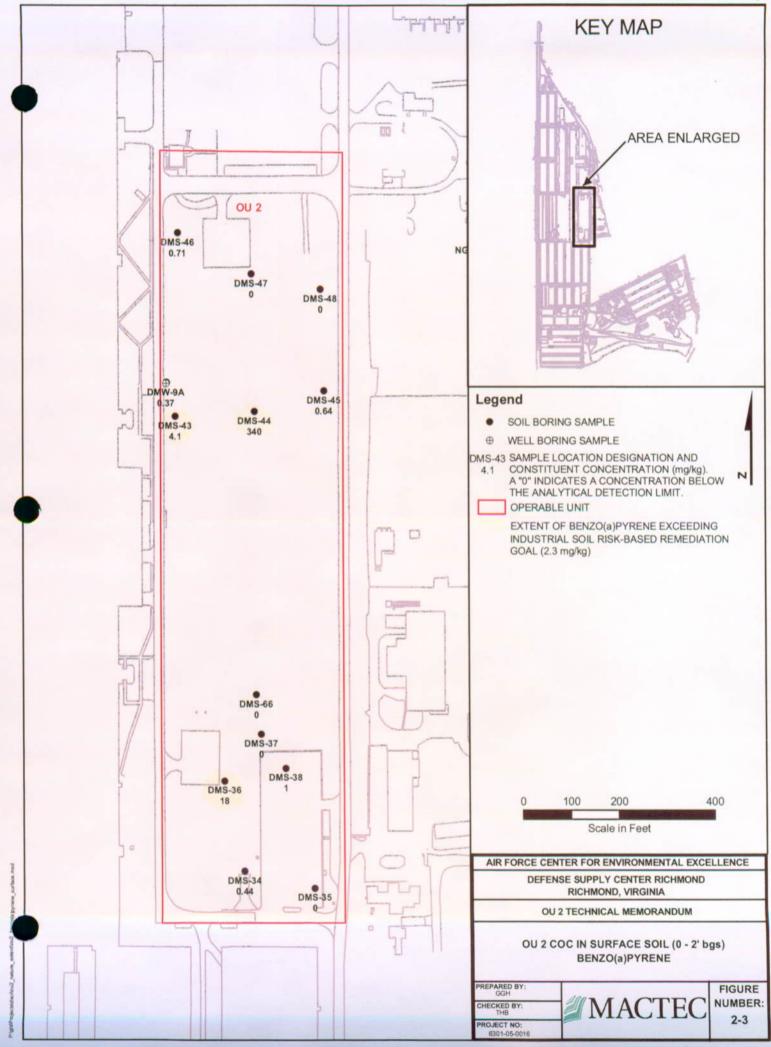


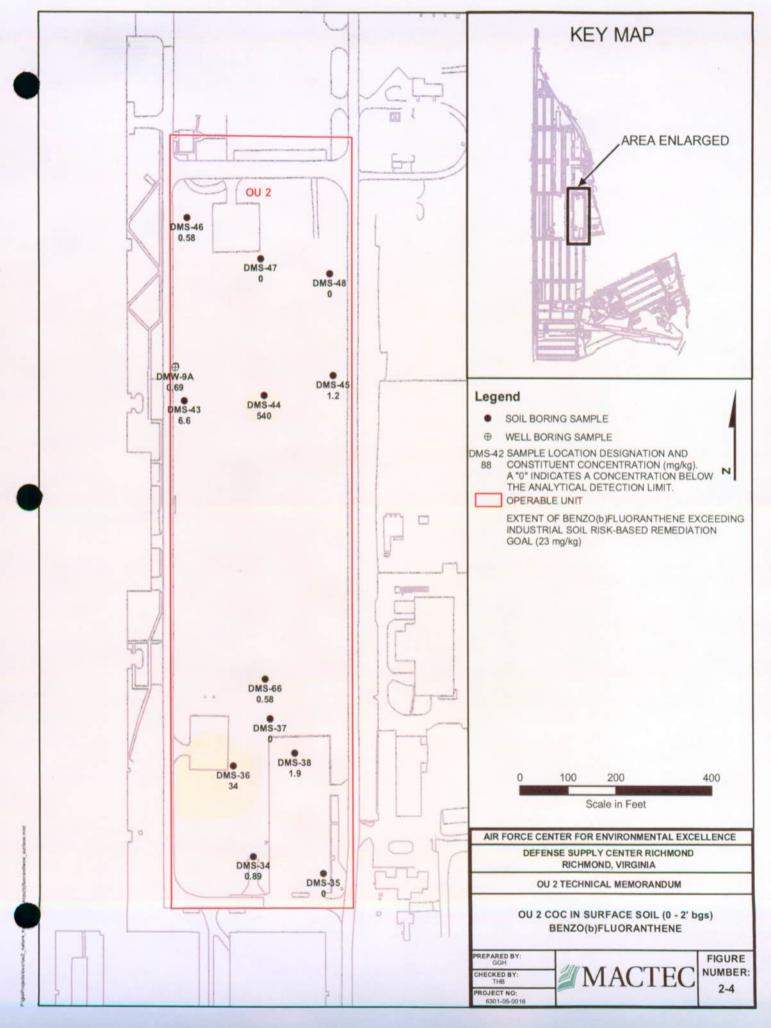


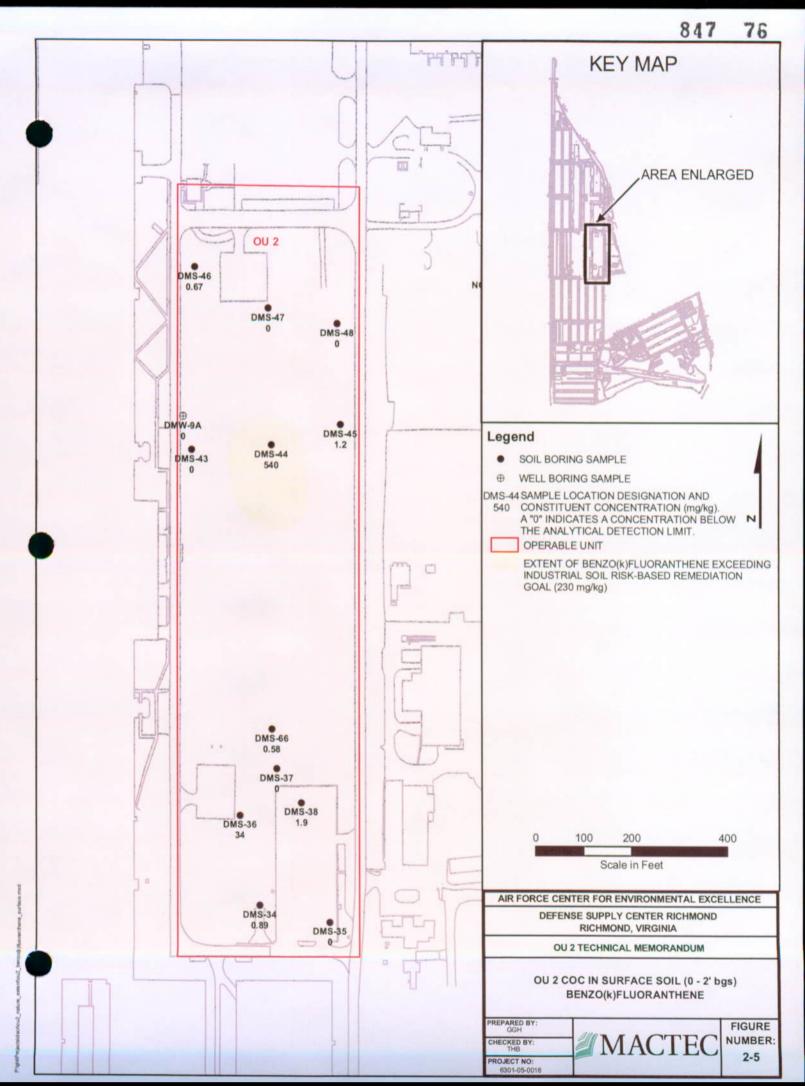




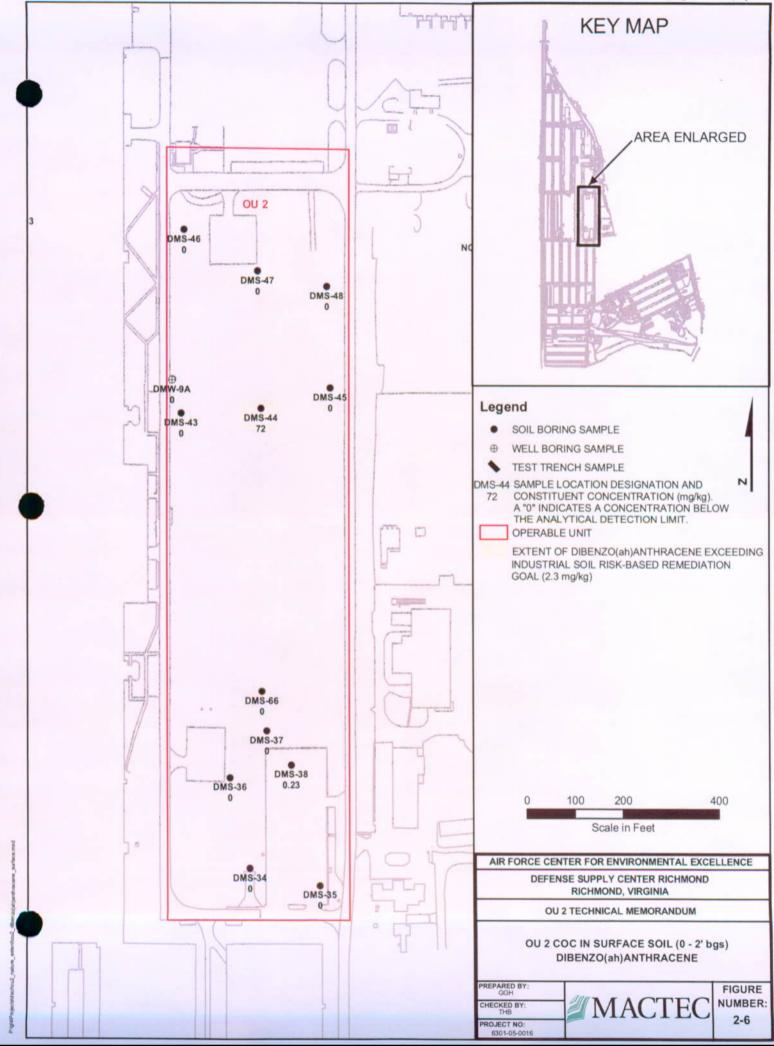


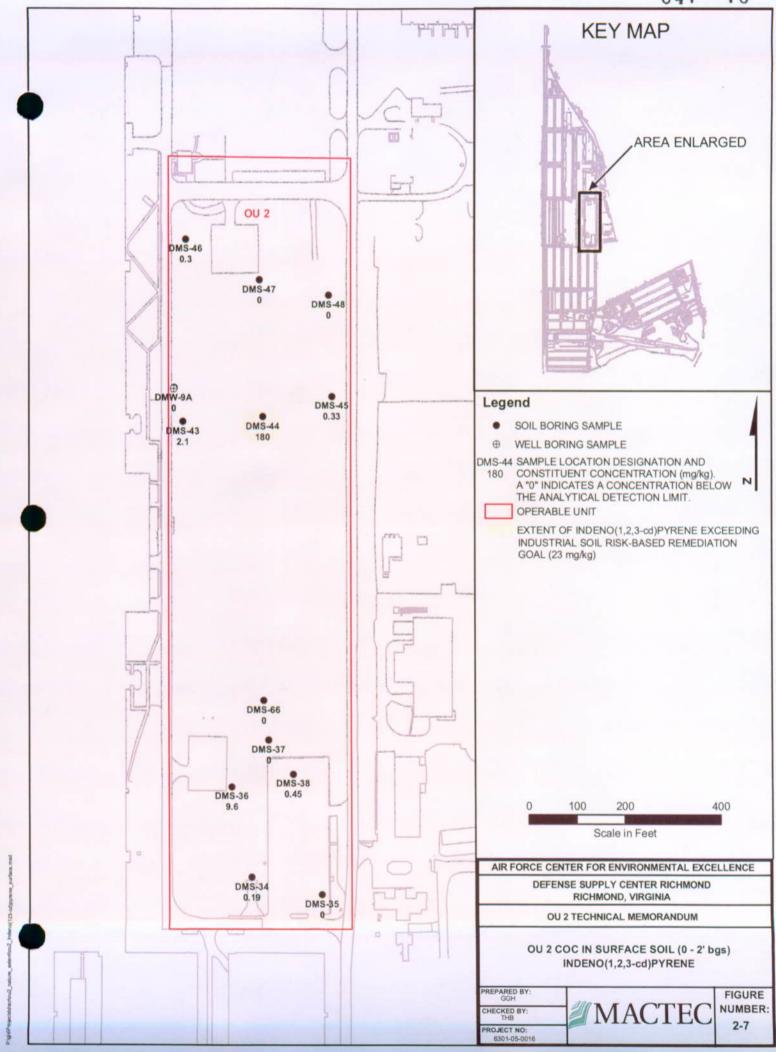


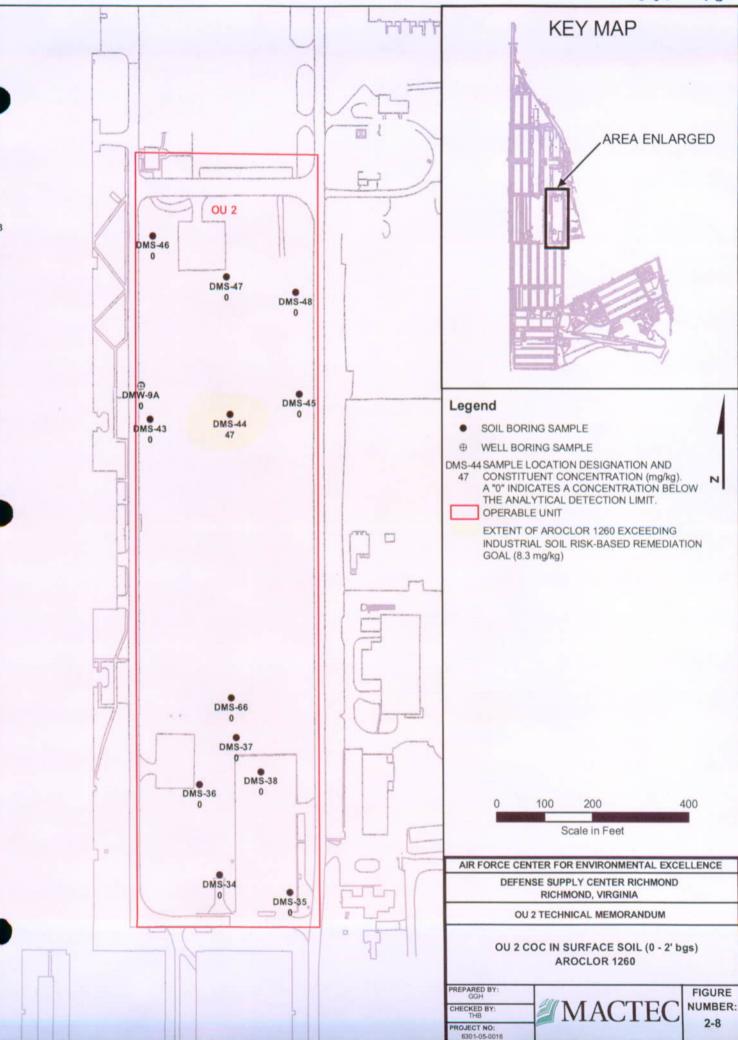


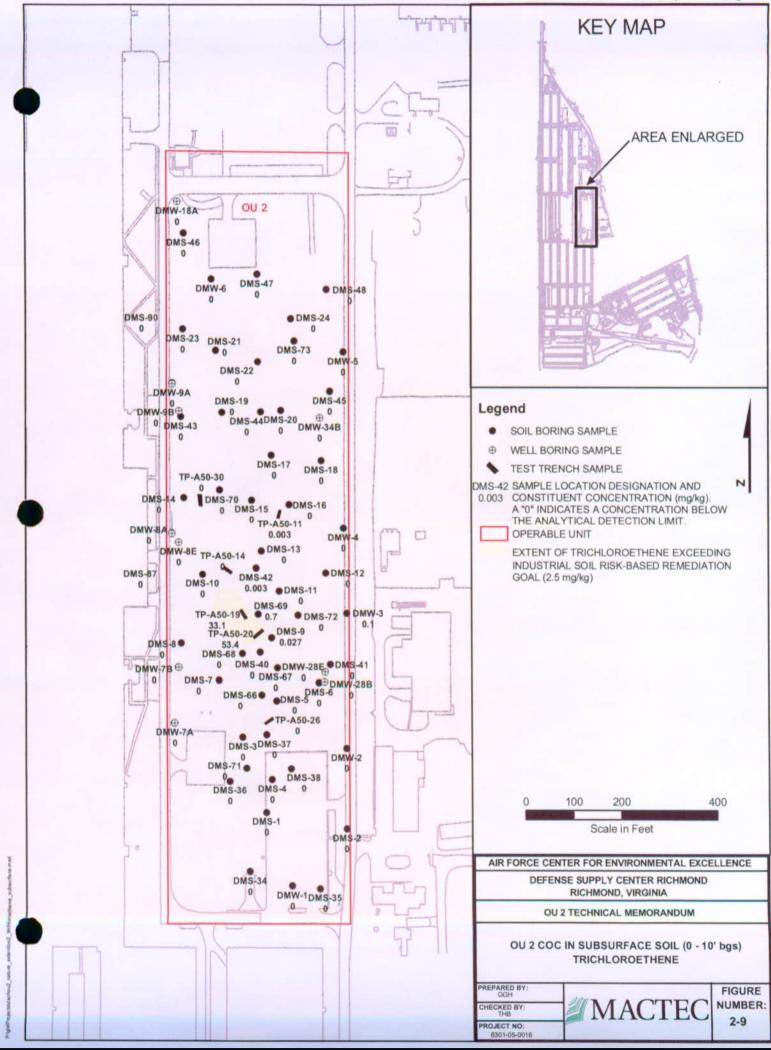


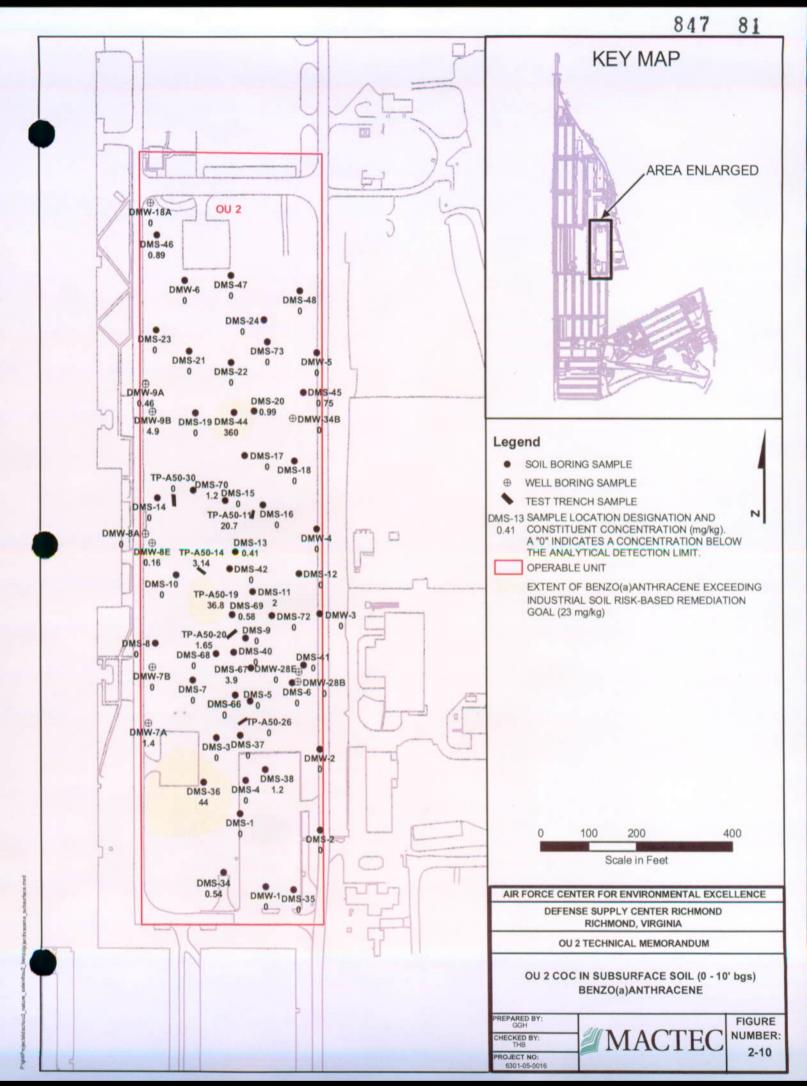


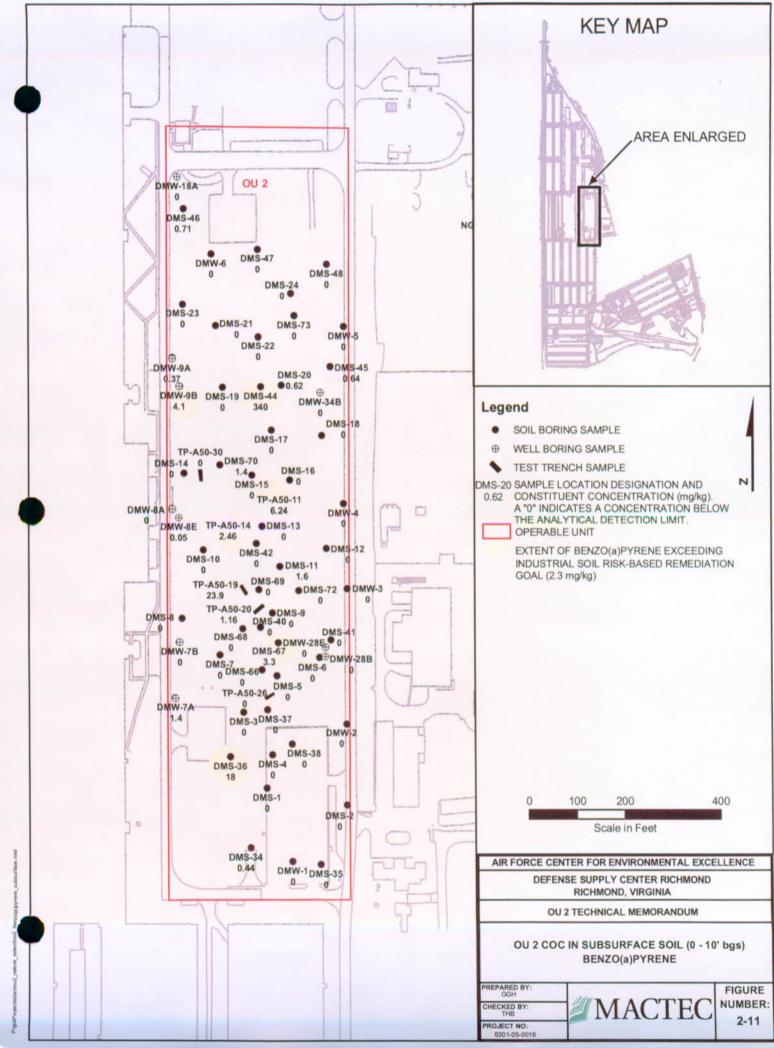


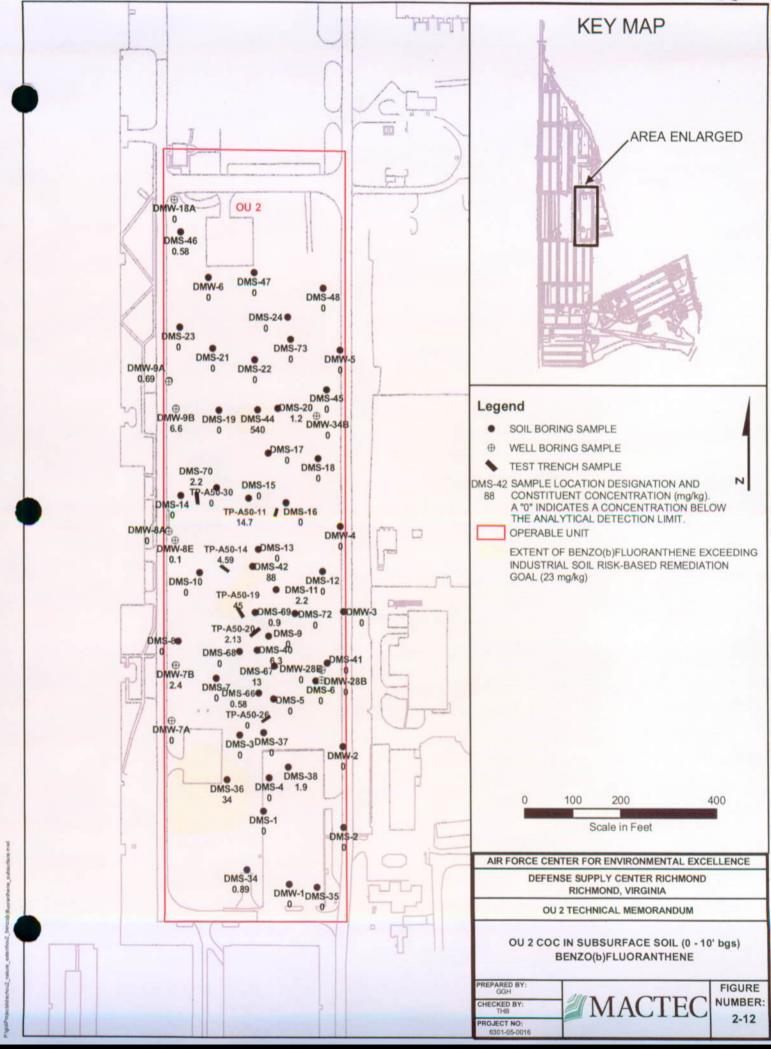


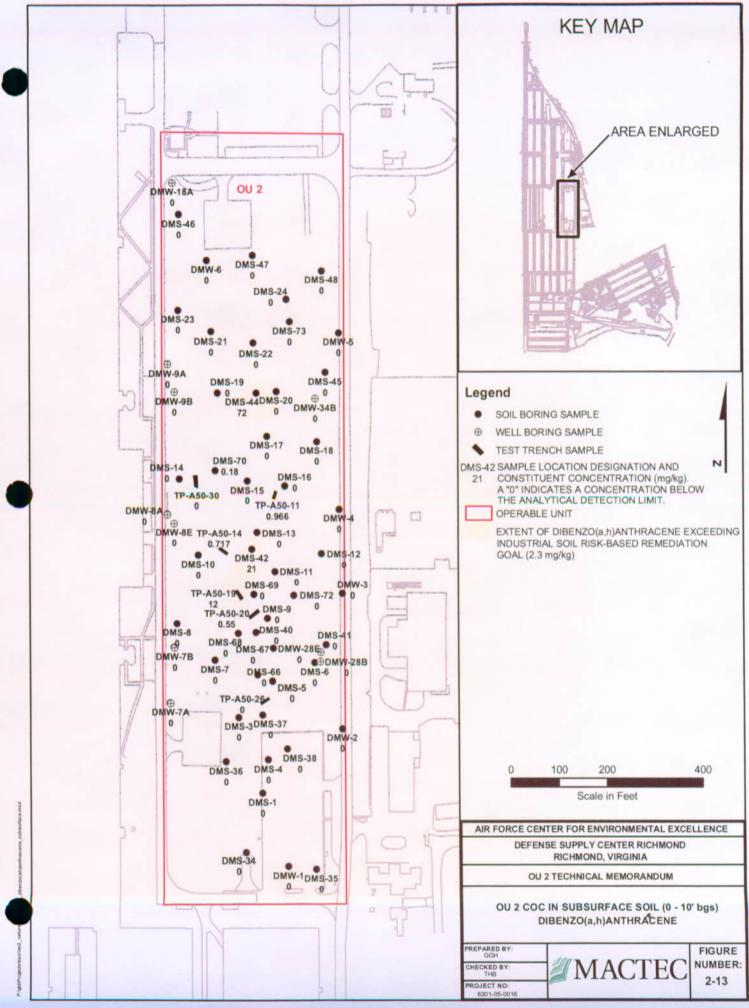


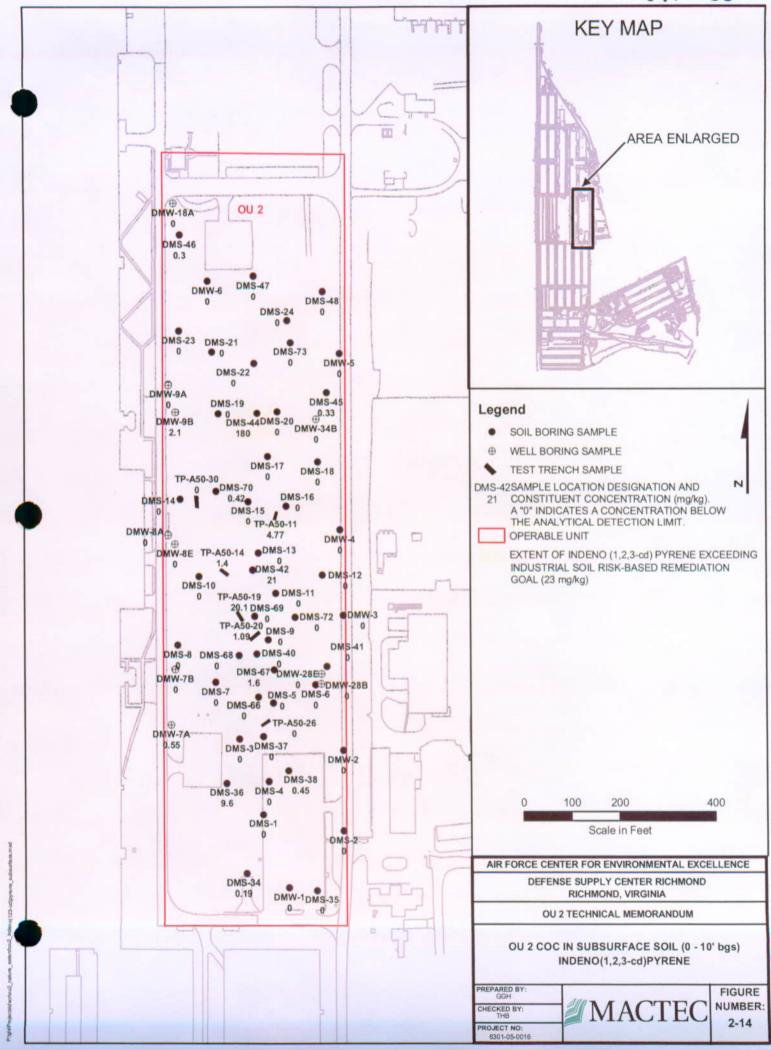


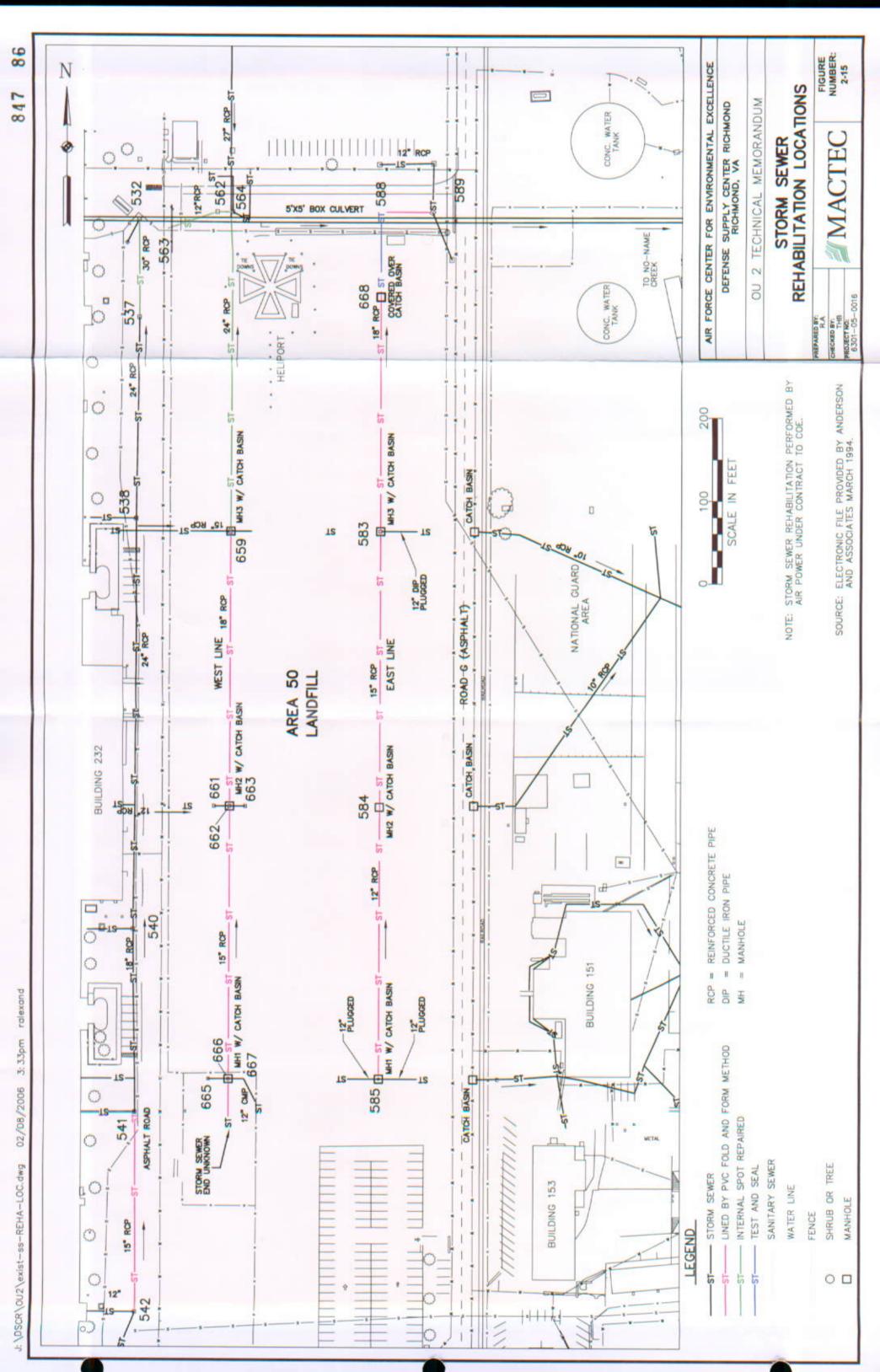



With rojectsd schou2 nature_estentiou2_arodor12









Final Technical Memorandum Revised Remedy Selection for Operable Unit 2 – Area 50 Landfill Defense Supply Center Richmond 28 July 2006 Revision 1

APPENDIX A

REVISED HUMAN HEALTH BASELINE RISK ASSESSMENT

FINAL HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2

DEFENSE SUPPLY CENTER RICHMOND RICHMOND, VIRGINIA

Prepared for:

Air Force Center for Environmental Excellence 3300 Sidney Brooks Brooks City-Base, Texas 78235

Prepared by:

MACTEC Engineering and Consulting, Inc. 3200 Town Point Drive Suite 100 Kennesaw, Georgia 30144

> Contract No. F41624-03-D-8606 Task Order 81

> > 28 July 2006 Revision 1

28 July 2006 Revision 1

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY A-ES-1			
A-1.0			
	A.1.1 PURPOSE AND OBJECTIVES	A-1-1	
	A.1.2 Background Information	A-1-1	
	A.1.2.1 Description	A-1-2	
	A.1.2.2 Local Geology and Hydrogeology	A-1-2	
	A.1.2.3 Nature and Extent of Impacts	A-1-3	
	A.1.3 CERCLA RISK ASSESSMENT PROCESS		
A-2.0			
	A.2.1 DATA COLLECTION	A-2-1	
	A.2.2 RISK ASSESSMENT DATASETs	A-2-1	
	A.2.3 CONCEPTUAL EXPOSURE MODEL	A-2-3	
	A.2.3.1 Complete Exposure Pathways	A-2-3	
	A.2.3.2 Significant Exposure Pathways	A-2-4	
	A.2.4 CONSTITUENTS OF POTENTIAL CONCERN	A-2-5	
	A.2.4.1 Operational History	A-2-5	
	A.2.4.2 Soil Screening Criteria	A-2-6	
	A.2.4.3 Use of Background Data A.2.4.4 Identification of Soil COPCs	A-2-6	
A-3.0	EXPOSURE ASSESSMENT	A-2-1	
12 010	A.3.1 EXPOSURE POINT CONCENTRATIONS		
	A.3.2 INTAKE ASSUMPTIONS	A-3-1	
	A.3.3 AVERAGE DAILY DOSES	A-3-3	
A-4.0			
	A.4.1 NONCARCINOGENIC TOXICITY	A-4-1	
	A.4.2 CARCINOGENIC TOXICITY	A-4-1	
	A.4.3 TOXICITY VIA DERMAL ABSORPTION	A-4-1	
A-5.0	RISK CHARACTERIZATION	A-4-1	
	A.5.1 NONCARCINOGENIC RISK CHARACTERIZATION	A-3-1	
	A.5.2 CARCINOGENIC RISK CHARACTERIZATION	A-5-1	
A-6.0	UNCERTAINTIES ANALYSIS		
11 0.0			
	A.6.1 DATA EVALUATION A.6.2 EXPOSURE ASSESSMENT	A-6-1	
	A.6.3 TOXICITY ASSESSMENT.	A-6-2	
	A.6.4 RISK CHARACTERIZATION	A-0-5	
	A.6.5 uncertainties CONCLUSIONS	A-0-3	
A-7.0	CONCLUSIONS		
A-8.0	PEFEDENCES	A- /-I	
A-0.0	REFERENCES	A-8-1	

LIST OF FIGURES

<u>Figure</u>

- A-1-1 OU 2 Site Location
- A-1-2 OU 2 Soil Sampling Locations
- A-1-3 OU 2 and OU 3 Storm Sewer Drainage
- A-2-1 Conceptual Exposure Model

LIST OF TABLES

<u>Table</u>

- A-2-1 Selection of Constituents of Potential Concern in Surface Soil (0-2 Feet)
- A-2-2 Selection of Constituents of Potential Concern in Surface and Subsurface Soils (0-10 Feet)
- A-2-3 Selection of Exposure Pathways
- A-3-1 Exposure Point Concentrations
- A-3-2 Occupational Assumptions Used in Johnson and Ettinger Model
- A-3-3 Intake Assumptions
- A-4-1 Toxicity Values
- A-5-1 Risk Characterization Summary
- A-7-1 Summary of Chemicals of Concern

LIST OF ATTACHMENTS

Attachment

- 1 Site Datasets
- 2 Statistical Analysis of Site and Background Datasets
- 3 Risk Characterization Tables
- 4 RAGS Part D Table for COCs

847

91

LIST OF ACRONYMS AND ABBREVIATIONS

95UCL	95 Percent Upper Confidence Limit on the Mean
ADD	Average Daily Dose
ADDc	Average Daily Dose for Carcinogen
ADDn	Average Daily Dose for Noncarcinogen
AT	Averaging Time
bgs	Below Ground Surface
CEM	Conceptual Exposure Model
CERCLA	Comprehensive Environmental Response, Conservation, and Liability Act
cm ²	Square Centimeters
cm/s	Centimeters per second
COC	Constituent of Concern
COPC	Constituent of Potential Concern
days/yr	Days per Year
DLA	Defense Logistics Agency
DQOs	Data Quality Objectives
DSCR	Defense Supply Center Richmond
ECR	Excess Cumulative Risk
EPC	Exposure Point Concentration
HHBRA	Human Health Baseline Risk Assessment
HI	Hazard Index
HQ	Hazard Quotient
IA	Intake Assumption
IRIS	Integrated Risk Information System
Johnson and Ettinger Model	Johnson and Ettinger Model for Subsurface Vapor Intrusion into Buildings, Version 3.1
Law	Law Engineering and Environmental Services, Inc.
MACTEC	MACTEC Engineering and Consulting, Inc.
MDC	Maximum Detected Concentration
µg/kg	Micrograms per kilogram
mg/kg	Milligram per kilogram
mg/day	Milligrams per day

28 July 2006 Revision I

LIST OF ACRONYMS AND ABBREVIATIONS (Continued)

mg/kg-d	Milligrams per kilogram per day
mg/m ³	Milligrams per cubic meter
NCEA	National Center for Environmental Assessment
ND	Nondetection
NGA	National Guard Area
OSA	Open Storage Area
OU	Operable Unit
РАН	Polycyclic Aromatic Hydrocarbon
РСВ	Polychlorinated Biphenyl
RAGS-E	Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Part E
RBC	Risk-Based Concentration
RfD	Reference Dose
RI	Remedial Investigation
SF	Slope Factor
SQL	Sample Quantitation Limit
SVOC	Semivolatile Organic Compound
TCE	Trichloroethene
URF	Unit Risk Factor
USEPA	U.S. Environmental Protection Agency
VOC	Volatile Organic Compound
WBU	Water Bearing Unit

28 July 2006 Revision I

EXECUTIVE SUMMARY

A human health baseline risk assessment (HHBRA) was conducted to evaluate the significance of potential exposures to various constituents detected in Operable Unit (OU) 2 surface and subsurface soil for current and future on-site outdoor industrial workers, future on-site construction workers, and future indoor industrial workers exposed to soil vapors in indoor air. A conservative screening assessment was performed to identify the constituents of potential concern (COPCs) in soil. Soil COPCs included aluminum, arsenic, copper, iron, vanadium, trichloroethene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and PCB-1260. Risk associated with soil-to-groundwater leaching and groundwater contact will be addressed in the OU 6 HHBRA.

No unacceptable noncancer hazards were estimated for any of the receptors. Excess cancer risk estimates for future construction workers and future indoor industrial workers were less than the Defense Supply Center Richmond (DSCR) risk goal of 10^{-4} for on-installation exposures. Table A-7-1 and Attachment 4 (Tables 4-1 and 4-2) summarize the risk estimates for the two on-installation receptors that potentially may be exposed to an unacceptable level of excess cancer risk: current and future outdoor industrial workers.

For the current industrial outdoor worker, excess cancer risks of 2×10^{-3} are associated with eight constituents of concern (COCs): arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h) anthracene, indeno(1,2,3-c,d)pyrene, and PCB-1260 (Table A-7-1 and Attachment Table 4-1). One-half of this risk is due to benzo(a)pyrene (1×10^{-3}). Remediation goals for the eight surface soil COCs will be developed in a Focused Feasibility Study.

For the future industrial outdoor worker, excess cancer risks of 3×10^{-4} are associated with five COCs: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-c,d)pyrene (Table A-7-1 and Attachment Table 4-2). Two-thirds of this risk is due to benzo(a)pyrene (2×10^{-4}). Remediation goals for the five surface and subsurface soil COCs will be developed in the Focused Feasibility Study.

Risk associated with surface soil COCs is an order of magnitude greater than risk due to intermixed surface and subsurface soils. Corrective action to address exposure to surface soil would greatly reduce estimated risks for both current and future soil receptors.

28 July 2006 Revision 1

A-1.0 INTRODUCTION

The Air Force Center for Environmental Excellence, on behalf of the Defense Logistics Agency (DLA), contracted MACTEC Engineering and Consulting, Inc., (MACTEC) to prepare a human health baseline risk assessment (HHBRA) for the Defense Supply Center Richmond (DSCR) former Area 50 Landfill, designated as Operable Unit (OU) 2. DSCR, a primary field-level activity of DLA, is located in Chesterfield County, Virginia (Figure A-1-1). The installation is a National Priority List site and is therefore regulated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as amended. A baseline risk assessment was originally conducted for the former Area 50 Landfill in the *Remedial Investigation for Area 50, Open Storage Area, and National Guard Area* (Dames & Moore, 1989) and last revised in the *Third Revised Final Focused Feasibility Study Report for Area 50 Landfill Source Area-Operable Unit 2* (Law, 1999). This report presents an updated HHBRA performed for an industrial land use scenario. Although the previous HHBRA for OU 2 included the evaluation of a residential scenario, DLA and DSCR plan to limit future risk evaluations to an industrial land use scenario based on current and anticipated future land use at the installation.

A.1.1 PURPOSE AND OBJECTIVES

The installation is under the jurisdiction of DLA and is assessed and managed in accordance with CERCLA and Defense Environmental Restoration Program protocols, with lead regulatory review by the United States Environmental Protection Agency (USEPA) Region 3 and the supporting secondary Virginia Department of Environmental Quality. The primary objective is to protect human health and the environment at sites with potential risks from past chemical releases

The purpose of this HHBRA is to determine whether constituents related to activities and detected in soil pose an unacceptable health hazard or risk for potentially exposed on-site industrial workers and construction workers, under "as is" baseline conditions (i.e., without future, active remedial measures). Ecological impacts at OU 2 are not of concern due to the industrial nature of the site and the site access restrictions.

A.1.2 BACKGROUND INFORMATION

The following sections present background information for DSCR and OU 2.

847 28 July 2006 Revision 1 95

A.1.2.1 Description

The installation is located in Chesterfield County, Virginia, approximately 8 miles south of the city of Richmond and 12 miles north of the city of Petersburg. The general layout is shown in Figure A-1-1. Land use in Chesterfield County near the installation is primarily single-family residential, intermixed with retail stores and light industry. DSCR is the major industry in the area. The future land use of the installation is expected to remain industrial.

OU 2 is located in the central region of DSCR between the Open Storage Area (OSA) and the National Guard Area (NGA), as shown in Figure A-1-2. OU 2 comprises approximately 13 acres and formerly contained a low-lying ravine approximately 200 feet by 800 feet by 10 feet deep consisting of wet soils, trees, shrubbery, and wild grasses. OU 2 is also the location of a former landfill that is suspected to be a contributing source of impacted groundwater at OU 6. Buried storm sewer lines for the stormwater drainage system transect OU 2 and provided potential migration pathways until the relining of the system was completed in 2005. These storm sewers originate in the OSA and convey stormwater from OU 1 and OU 2 to an outfall located along the northeastern boundary of the NGA (Figure A-1-3). This outfall discharges the stormwater to No Name Creek, which flows to the south along the eastern boundary of the NGA. The creek ultimately discharges into the James River approximately 2 miles from the installation.

A.1.2.2 Local Geology and Hydrogeology

The United States Geological Survey has divided the unconsolidated soils below OU 2 into five separate formations:

- The surface soils are primarily of fill material, ranging form approximately 0 to 5 feet below ground surface (bgs) in depth.
- The Eastover Formation occurs immediately below the surface soil zone and consists of silty sand, sandy silt, and silty or fat clay. The top of the unit is at the ground surface, and the bottom of the unit is approximately 12 to 25 feet bgs. The thickness of this unit is approximately 12 to 25 feet.
- The Calvert Formation consists of poorly graded sand with gravel, interlayered with poorly graded gravel. The top of the unit is approximately 12 to 25 feet bgs, and the bottom of the unit is approximately 16 to 30 feet bgs. The thickness of this unit is 0 to approximately 10 feet. The unit is present throughout most of Zone 2 (OUs 1, 2, and 3) and is absent in the southeastern portion of the zone.
- The Aquia Formation consists of silty and/or fat clay. The top of the unit is approximately 16 to 30 feet bgs, and the bottom of the unit is approximately 25 to 41 feet bgs. The thickness of this unit is approximately 3 to 27 feet. This unit is present

28 July 2006 Revision 1

throughout Zone 2 and is beneath the poorly graded sand with gravel unit where it is present in Zone 2.

• Alluvial sediments of the Potomac Formation underlie the Calvert and Aquia Formations. This formation consists of poorly graded sand with gravel and silty sand, poorly graded sand with gravel, and/or poorly graded sand with gravel interlayered with poorly graded gravel. The top of the unit is approximately 25 to 41 feet bgs, and the bottom of the unit is approximately 42 to 72 feet bgs. The thickness of this unit is approximately 10 to 37 feet. This unit is present throughout Zone 2.

The fining-upward stratigraphic sequences indicate fluvial or marine environments of deposition for the coastal plain sediments. Beneath the coastal plain sediments, from approximately 42 to 72 feet bgs, is saprolite weathered from the underlying Petersburg Granite bedrock. Bedrock was encountered in three borings at depths of 94 to 106 feet bgs. The thickness of saprolite in these borings was 18 to 40 feet (Law, 1999).

An unconfined water bearing unit (WBU) lies beneath OU 2 in the unconsolidated sediments of the Eastover Formation. The unconfined WBU is referred to as the upper WBU in this report to distinguish it from a confined or semiconfined lower WBU that exists in the Potomac Formation. The upper WBU would be the first unit impacted by surface releases from OU 2.

The average depth to upper WBU groundwater typically ranges from approximately 7 feet in the southern portion of OU 2 to 22 feet in the north. Calculated horizontal hydraulic conductivity values (k) from slug tests performed by Dames & Moore in the high-permeability zone of the upper WBU ranged between 1.52×10^{-3} to 9.12×10^{-3} centimeters per second (cm/s) with an average of 5.56×10^{-3} cm/s. The horizontal velocity was estimated to be 180 feet per year with a hydraulic gradient (I) of 0.0095 and porosity (n) of 0.3 (Dames & Moore, 1989).

A.1.2.3 Nature and Extent of Impacts

The former ravine was reported to have been used as a disposal site for liquid chemicals used in photographic development processes, organic solvents, petroleum oils, and other unidentified chemicals. Investigations conducted at OU 2 have identified that the former ravine area was used for disposal and was the probable primary source of groundwater impacts to the upper WBU at OU 6. The following section summarizes the investigation activities and their results.

28 July 2006 Revision I

Since March 1982, groundwater and soil sampling and analysis programs have been performed at DSCR to evaluate the magnitude and extent of impacts within OU 2 and at downgradient locations.

A geophysical survey conducted in April 1984 as part of the site assessment identified potential areas of impacts within OU 2. Iron sources were also identified during this survey using a magnetometer. From September 1984 to November 1988, 128 soil samples were collected and analyzed from 69 soil borings (Figure A-1-2). The soil samples were selectively analyzed for metals, volatile and semivolatile compounds, and other organic constituents. The complete analytical results are included in the Remedial Investigation (RI) Report (Dames & Moore, 1989).

The following summary is based on a review of the soil analytical data in the RI (Dames & Moore, 1989):

- Semivolatile organic compounds (SVOCs) were the predominant constituent group encountered in the soil samples collected from OU 2. These constituents were detected in soils to a depth of 23.5 feet bgs. SVOCs were detected most frequently and at the highest concentrations in the 0- to 2-foot soil depth interval. Samples from soil borings DMS-36 and DMS-44 showed higher than expected concentrations of total SVOCs at 311 and 5,844 mg/kg, respectively. The vertical extent of these constituents was unexpected in consideration of the reported "clean fill" covering the OU as stated in the RI Report (Dames & Moore, 1989). At the 2- to 6-foot soil interval, the areal extent of SVOCs appeared to decrease significantly, and observed concentrations were generally lower than observed at the 0- to 2-foot interval. In summary, the primary concentration of SVOCs occurs in the upper 6 feet. The most consistent concentration with respect to depth occurs in the vicinity of borings DMS-40 northward to DMS-13, where SVOCs were detected to a depth of 23.5 feet bgs.
- Volatile organic compounds (VOCs) were detected in soil samples from DMS-69, located in the central portion of OU 2 (Figure A-1-2). The highest concentrations were associated with constituents commonly found to be laboratory contaminants (acetone, 2-butanone, methylene chloride, 4-methyl-2-pentanone). Other VOCs detected at low concentrations at this location are considered site-related, including trans-1,2-dichloroethene (0.55 micrograms per kilogram [μ g/kg]), toluene (0.55 μ g/kg), and trichloroethene (0.70 μ g/kg). Generally, no other significant VOC detections occurred from soil borings other than those associated with laboratory and analytical methods.
- Aroclor-1260 was detected in one sample (DMS-44) at 47.0 mg/kg at a depth of 2 feet bgs.
- Concentrations of inorganic constituents varied widely among soil samples collected from OU 2. Inorganics naturally occur in the soils based on background comparisons.

A-1-4

28 July 2006 Revision 1

817

98

In 1994, Law Engineering and Consulting, Inc. (Law) completed exploratory trenching to further investigate five geophysical anomalies identified during the RI and identify potential sources of continuing groundwater impacts. A total of 30 trenches were installed within the five anomalies (Figure A-1-2). The trenching activities identified construction and demolition debris (concrete, asphalt, bricks, and metal, including rebar). A number of spent ordnance and explosives were encountered along with scrap metal, particularly automotive parts, in the northern portion. Various small chemical containers were also encountered; however; no large containers were found. Chemicals discovered included photographic chemicals (thiourea and glycerine) and cleaning chemicals (disinfectant and ammonia). Free-phase petroleum product was observed during the 1994 exploratory trenching in four trenches (TP-A50-17, 19, 21, 24). To further define the areal extent of the observed free product, temporary wells were installed upgradient and downgradient of these trenches. Free-product levels (approximately 0.1 inch in thickness) were detected in the upgradient wells only.

No specific measurements of free product thickness are available from the exploratory trenching; however, several inches of free product in the open trenches were observed and reported. Additionally, visual observation suggested that the physical characteristics of the free product corresponded to that of motor or light lubricating oil. Analytical data for the free product is not available; however, petroleum-impacted soil sampled from one test pit contained toluene, carbon tetrachloride, phenanthrene, and bis(2-ethylhexyl)phthalate (Law, 1995).

SVOCs and VOCs were also detected in several soil samples collected from trenches. These samples consisted primarily of polycyclic aromatic hydrocarbons (PAHs) and trichloroethene (TCE). The trenching activities performed in 1994 were fully documented in the *Final Exploratory Trenching Characterization Report for Area 50 Landfill* (Law, 1995).

To address the constituents identified during the trenching activities performed in 1994, a Draft Action Memorandum, Area 50 Service Area – Operable Unit 2, Interim Removal Action (Law, 1998) was prepared and submitted for regulatory comment in July 1998. As a result of the proposed removal action memorandum, additional field activities were performed during October 1998 to delineate the suspected areas of petroleum hydrocarbon. These activities were performed by HydroGeoLogic, Inc. under contract to the U.S. Army Corp of Engineers Norfolk Division. A full description of these field activities can be found in the Draft Technical Report for the Liquid Petroleum Hydrocarbon Delineation and Removal at Area 50 (HydroGeoLogic, 1998).

A-1-5

847

99

The delineation performed by HydroGeoLogic in 1998 consisted of installing 26 soil testing borings. The constituents identified during the HydroGeoLogic delineation consisted primarily of petroleum hydrocarbons. The results indicated a maximum concentration of diesel fuel at 4,856 mg/kg in boring HGL-SB-05, and a maximum concentration of heavy oil at 12,288 mg/kg in boring HGL-SB-01. Unknown hydrocarbons were detected in samples HGL-SB-20 and HGL-SB-14 at concentrations of 57.6 and 70.1 mg/kg, respectively. The remainder of the compounds consisted of gasoline, jet fuel, kerosene, mineral oil, naphthalene, paint thinner, and Stoddard solvent, which were all below their respective detection limits (HydroGeoLogic, 1998).

A.1.3 CERCLA RISK ASSESSMENT PROCESS

This HHBRA was performed in accordance with USEPA guidance for conducting CERCLA risk assessments (USEPA 1989, 1991, 2003a, 2003b, 2004). This document supplements the Focused Feasibility Study for OU 2. This HHBRA was based on the *Final Revised Human Health Risk Assessment Work Plan* (MACTEC, 2006).

The CERCLA risk assessment protocol includes the following steps:

- Data Evaluation
- Exposure Assessment
- Toxicity Assessment
- Risk Characterization
- Uncertainties Analysis

In the data evaluation, available chemical data are reviewed. The data selected for use comprise the risk assessment dataset. Once this dataset has been established, a Conceptual Exposure Model (CEM) is developed to identify potential exposure pathways. The risk assessment data undergo a conservative screening process to identify constituents of potential concern (COPCs). This process involves comparing the maximum detected concentrations (MDCs) with appropriate screening criteria. COPCs are the focus of the site-specific HHBRA.

In the exposure assessment, COPC concentrations are mathematically combined with "intake assumptions" (IAs) and average daily doses (ADDs) for each COPC, receptor, and pathway. COPC concentrations are determined statistically for each applicable medium. Statistics are used to identify the 95 percent upper confidence limit on the mean (95UCL) detected concentrations. These 95UCLs are then

28 July 2006 Revision 1

compared with the MDCs, and the lesser of the two is selected for subsequent use in the HHBRA per USEPA (1989 and 2002a) guidance.

In the toxicity assessment, toxicity values are obtained from appropriate regulatory sources. These values are necessary to evaluate both noncarcinogenic and carcinogenic health effects from potential exposures to COPCs (via the pathways identified in the CEM). Toxicity values reflect the "dose-response" behavior for each COPC by toxicity type (i.e., carcinogenic or noncarcinogenic [systemic effects]).

In the risk characterization, the ADDs (computed in the exposure assessment) are combined with the dose-response values (identified in the toxicity assessment) to predict the site-specific health effects for each receptor, pathway, and COPC. These individual responses, in the form of noncarcinogenic "hazard quotients" (HQs) or individual cancer risks, are then summed to give the total noncarcinogenic "hazard index" (HI) and cumulative risk. Calculated values are compared to levels considered acceptable by regulatory agencies. If the HI and cumulative risk exceed acceptable levels, the contributing chemicals are identified as constituents of concern (COCs). Should COCs be identified, a subsequent remedial action plan may present target cleanup levels based on risk.

In the uncertainties analysis, the variabilities associated with each step (including computations, methods, and assumptions) are identified and evaluated. The goal of this analysis is to qualify the level of conservatism in the HHBRA results (i.e., estimated levels over- or underestimate actual risk) so that managers may make sound decisions regarding the need for remedial action.

28 July 2006 Revision 1

A-2.0 DATA EVALUATION

Soil and groundwater data were collected during numerous field investigation activities. During the data evaluation, the site data were reviewed, data were selected for use in the HHBRA, and the COPCs were identified.

A.2.1 DATA COLLECTION

Data has been collected since the 1980s to characterize the environmental conditions at OU 2. Environmental media that were sampled include groundwater, surface and subsurface soils, and sediments. These samples were analyzed for most of the common chemical classes, including:

- Metals and inorganic compounds (including hexavalent chromium)
- VOCs
- SVOCs
- Organochlorine pesticides (e.g., dichlorodiphenyltrichloroethane)
- Polychlorinated biphenyls (PCBs)
- Petroleum hydrocarbons (i.e., diesel, gasoline, jet fuel, kerosene, mineral oil, paint thinner, naphtha, and Stoddard solvent)
- 2,4-Dinitrotoluene

Soil samples have been collected using various techniques, including direct push methods and auger drilling, and analyzed according to the sampling and analysis procedures appropriate to the collection period (Law, 1992; MACTEC, 2004). Based on the explosive materials reportedly disposed at this site, perchlorates were not included as analytes for soil or groundwater samples.

A.2.2 RISK ASSESSMENT DATASETS

The initial component of the HHBRA began with the evaluation of historical chemical data to determine which were appropriate for use in the risk assessment (USEPA, 1989). The risk assessment datasets comprised those chemicals detected in at least one sample not excluded by the following data selection rules and conservatively assumed to be present due to historical activities attributable to OU 2. The risk assessment dataset contained the chemicals evaluated during the COPC identification process.

Several data selection rules were applied to the total chemical soil dataset (Attachment 1). The data selection rules, which were developed based on the Data Quality Objectives (DQOs) for the project (Law, 1992; MACTEC 2003), are as follows:

28 July 2006 Revision 1

- Due to the long history of data collection at the installation, the database potentially contained aged analytical results that were not representative of current conditions. According to the *Final Revised Human Health Risk Assessment Work Plan* (MACTEC, 2006), soil data collected prior to 1992 have not been independently validated in accordance with current validation practices and were not to be used; however, due to the low number of samples collected since 1992, soil data used in the RI (1984 through 1988) were also included in the risk assessment dataset.
- Data for essential nutrients that did not have a USEPA Region 3 Risk-Based Concentration (RBC) for comparison (i.e., calcium, potassium, chloride, and sodium) were not included in the risk assessment dataset (USEPA, 1989).
- Organic data qualified as "B" ("result is estimated due to blank contamination") were removed. Organic data that were B-qualified represented analytical results that were less than 5 or 10 times the concentration detected in the associated laboratory and/or field blank, depending on the constituent (USEPA, 1989). All data qualified with "R" ("unusable") were also removed. The determination to flag specific data points was previously made (MACTEC, 2004) in accordance with regional and national USEPA data validation procedures (USEPA, 1992, 1994, 2000, 2001).
- Data for chemicals for which all results were below the sample quantitation limit (SQL) were removed.
- "Technical chlordane" data was combined with alpha- and gamma-chlordane. This was done because technical chlordane and alpha- and gamma-chlordane were analyzed in separate samples. Alpha- and gamma-chlordane data were summed in the same samples before being combined with the technical chlordane data. Screening levels were compared to total chlordane results, and risk was calculated for total chlordane.
- When a duplicate pair of samples was present in the dataset, the duplicate and original results were averaged. If one of the pair had a nondetect result, then the SQL for that sample was halved and added to the other result to obtain an average. The average result was used to calculate the exposure point concentration (EPC).

Data not excluded by one or more of the rules defined above represented the risk assessment dataset. These data are summarized in Tables A-2-1 and A-2-2 and presented in Attachment 1.

As shown in Table A-2-1, 18 metals/inorganics, 6 VOCs, 5 SVOCs, 14 PAHs, 5 pesticides, and 1 PCB comprised the soil risk assessment dataset for surficial soils. For subsurface soils (Table A-2-2), 22 metals/ inorganics, 27 VOCs, 10 SVOCs, 18 PAHS, 5 pesticides, 1 PCB, and total petroleum hydrocarbons comprised the soil risk assessment dataset.

As Table A-2-1 shows, with the exception of acetone and methylene chloride, the risk assessment dataset for surface soil comprised at least 15 analyses for each detected constituent. There were 9 valid analyses for acetone and 7 analyses for methylene chloride. Table A-2-2 shows, with the exception of

28 July 2006 Revision 1

6 constituents, the risk assessment dataset for subsurface soils comprised between 27 and 56 analyses for each detected constituent. Molybdenum was included as an analyte once; 1,1,2 trichloroethene was analyzed 8 times; total 1,2-dichloroethene was analyzed 11 times; carbazole and 2,4-dichlorophenol were analyzed 6 times; and p-isopropyltoluene was analyzed twice. Except for molybdenum and p-isopropyltoluene data were sufficient (four per analyte) to complete statistical analyses.

A.2.3 CONCEPTUAL EXPOSURE MODEL

The CEM was developed considering the risk assessment datasets, the current and anticipated future land use, and site features. The CEM is a tool to identify the exposure pathways for HHBRA evaluation. The CEM is shown in Figure A-2-1 and is discussed below.

An exposure pathway is the mechanism by which receptors may come into contact with COPCs. A pathway has four sequential components, defined by USEPA (1989) as follows:

- A source and mechanism of chemical release (e.g., chemical use at the installation)
- A retention or transport medium
- An exposure route (e.g., ingestion)
- A receptor

For any site, there are three possible types of exposure pathways:

- Incomplete pathways
- Complete but likely insignificant pathways
- Complete and potentially significant pathways

Consistent with USEPA (1989 and 2001a) recommendations, only complete and potentially significant pathways were evaluated in the HIHBRA. The exposure pathways considered in this HHBRA are summarized in Table A-2-3.

A.2.3.1 Complete Exposure Pathways

For an exposure pathway to be considered complete, all four of the previously listed components must be present (USEPA, 1989). As an example, Figure A-2-1 shows that incidental ingestion of stormwater runoff is an incomplete pathway for the outdoor industrial and construction worker receptors because the storm sewers are underground and workers are assumed not to come into contact with stormwater runoff

28 July 2006 Revision 1 104

at OU 2. Although this pathway satisfies the first two components, there is no exposure point, resulting in an incomplete pathway.

A.2.3.2 Significant Exposure Pathways

In addition to the criterion of pathway completeness, the potential significance of a complete pathway is also considered. That is, an exposure pathway may be considered complete, but after consideration it is unlikely to significantly contribute to the overall chemical exposures a receptor may receive. Insignificant pathways may have multiple media transfer steps that tend to dilute and reduce the chemical concentration that ultimately reaches a receptor exposure point. An example of this type of pathway is inhalation by off-installation residential receptors of chemicals bound to suspended, airborne dusts.

Given the above information and the CEM in Figure A-2-1, the following complete and potentially significant pathways were identified for evaluation in the HHBRA for the current and future on-site industrial worker and the future on-site construction worker. While current industrial workers are assumed to have direct-contact with surface soils only, future conditions may allow for mixing of subsurface and surface soils during construction and/or regrading. Therefore, future on-site receptors are assumed to be exposed to both subsurface and surface soils. There are no current on-site construction workers or off-installation residential receptors. The nearest off-installation residents are located to the south and east in Rayon Park, less than 50 feet from OU 2.

On-site Current Outdoor Industrial Worker

- Incidental ingestion of shallow soil via direct contact
- Dermal contact with shallow soil via direct contact
- Inhalation of fugitive dusts derived from shallow soil

On-site Future Outdoor Industrial Worker

- Incidental ingestion of surficial and subsurface soil via direct contact
- Dermal contact with surficial and subsurface soil via direct contact
- Inhalation of fugitive dusts derived from surficial and subsurface soil
- Inhalation of volatile emissions from surficial and subsurface soil

On-site Future Construction Worker

- Incidental ingestion of surficial and subsurface soil via direct contact
- Dermal contact with surficial and subsurface soil via direct contact
- Inhalation of fugitive dusts derived from surficial and subsurface soil

Inhalation of volatile emissions from surficial and subsurface soil

On-site Future Indoor Industrial Worker

• Inhalation of vapors from volatile compounds in the soil due to indoor vapor intrusion

The on-site industrial worker receptor was conservatively assumed to work outdoors for the full workday. Any time spent indoors would reduce direct soil exposures. Two additional pathways were included because volatile COPCs are present in subsurface soil. The additional pathways consider the potential for volatilization from soil to outdoor air and vapor intrusion into an indoor work space. Note that groundwater exposure pathways are not evaluated in OU 2 because the groundwater underlying OU 2 soils will be addressed as part of the OU 6 HHBRA.

A.2.4 CONSTITUENTS OF POTENTIAL CONCERN

COPCs are those constituents that are likely to contribute most significantly to the overall health risk. Conservative screening criteria are applied to the risk assessment dataset, COPCs are identified, and other chemicals eliminated from further evaluation. This process focuses the risk assessment on those chemicals most likely to contribute to an unacceptable risk.

One screening criterion was used to identify soil COPCs: comparison of MDCs with health-based screening values that address direct contact with soils. The potential for future leaching of soil constituents to groundwater is addressed in the OU 6 HHBRA. The dataset was statistically compared with the installation-wide background groundwater dataset, but the comparison was not used as a method of eliminating potential COPCs (Attachment 2).

Before these COPC criteria are further described and implemented, the operational history is presented to provide perspective.

A.2.4.1 Operational History

From the early 1960s to the early 1970s, the area was reported to have been used as a disposal site for outdated or damaged containers of stock chemicals and/or construction debris. The former ravine area was also used for the disposal of bulk liquids and containers containing toxic or reactive chemicals from

28 July 2006 Revision I

photographic development processes, organic solvents, pesticides and herbicides, acid and alkaline chemicals, petroleum oils and lubricants, PCBs, and other unidentified chemicals.

The original land surface has been altered by grading and filling operations. By 1975, the entire former landfill area had been graded to street level, seeded, and re-vegetated. Transformers containing PCBs were stored in the southwestern portion of the OU for approximately 18 months, from 1982 to 1983 (Dames & Moore, 1989). In addition, a parking area is located in the southeastern portion of OU 2.

A.2.4.2 Soil Screening Criteria

Various regulatory agencies have developed health-based screening values. These screening values are allowable soil chemical concentrations mathematically associated with acceptable non-cancer target hazards and cancer target risks. Because of the conservative methods and assumptions used to develop these screening values, they can be used at any generic site to identify COPCs. For OU 2, the industrial soil RBCs provided in the USEPA Region 3 RBC tables (USEPA, 2006) were used as risk-based screening criteria for selecting soil COPCs. RBCs are acceptable soil concentrations that address risks due to direct-contact exposures (i.e., incidental soil ingestion). An evaluation of soil's potential to leach to groundwater will be included in the OU 6 HHBRA.

Because receptors are typically exposed to multiple COPCs, soil RBCs associated with noncarcinogenic toxicity were divided by a factor of 10 to correspond to an HQ of 0.1. No such adjustment is necessary for Region 3 RBCs based on carcinogenic risk because they are based on an excess cancer risk (ECR) of 1×10^{-6} (1 in 1 million).

A.2.4.3 Use of Background Data

The Mann-Whitney test, a variation of the Wilcoxon Rank Sum test, was used to compare data to the installation background data (USEPA, 2002a). This test involves the "null hypothesis" and the determination of single or multiple data populations, based on a desired statistical confidence level; the 95 percentile ($\dot{\alpha} = 0.05$) was used for all Mann-Whitney tests. The output from these tests is included in Attachment 2, and the results are shown in Tables A-2-1 and A-2-2. The results of the background comparison indicated that aluminum, copper, iron, and vanadium site concentrations are consistent with background. These background comparisons helped identify potential risks from installation-related activities, but they were not used as a means to eliminate constituents as COPCs.

28 July 2006 Revision I

A.2.4.4 Identification of Soil COPCs

A total of 11 constituents (3 metals, 7 PAHs, and 1 PCB) were detected at concentrations greater than their respective RBCs for surficial soils. These 11 constituents were identified as direct-contact COPCs in surface soils (Table A-2-1). A total of 16 constituents (5 metals, 3 VOCs, 7 PAHs, and PCB-1260) were detected at concentrations greater than their respective RBCs for subsurface soils, and they were identified as direct-contact COPCs in subsurface soils (Table A-2-2). Chemicals selected as direct-contact soil COPCs include aluminum (subsurface only), arsenic, copper, iron, vanadium (subsurface only), total 1,2-dichloroethene (subsurface only), TCE (subsurface only), vinyl chloride (subsurface only), benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and PCB-1260.

28 July 2006 Revision 1

A-3.0 EXPOSURE ASSESSMENT

The exposure assessment for this HHBRA was conducted in accordance with the *Final Revised Human Health Risk Assessment Work Plan* for DSCR (MACTEC, 2006). ADDs were estimated for each toxicity endpoint (i.e., cancer or noncancer), COPC, pathway, and receptor per exposure unit. An exposure unit is an area in which people might move around while performing activities and, in doing so, might be exposed to substances in environmental media. Sampling results allow risk managers to determine the ADD that an individual could receive over time through exposure to an area.

The ADD for a COPC includes two components: IAs and EPCs for each exposure medium. IAs include parameters such as ingestion rate, body weight, and exposure duration. Both the EPC and the IA components of the ADD may be receptor- and pathway-specific. The EPC is the chemical concentration that a receptor may contact at a specific location (i.e., the "exposure point"). The EPCs developed for the OU 2 HHBRA were based on directly measured data.

ADDs are computed separately for noncarcinogens and carcinogens. The difference between noncarcinogenic ADDs (ADDn) and carcinogenic ADDs (ADDc) is in the averaging time (AT). For noncarcinogens, the AT is equal to the exposure duration for that particular receptor, while the AT for carcinogens is set equal to a human lifetime (70 years or 25,550 days).

A.3.1 EXPOSURE POINT CONCENTRATIONS

The analytical results for the COPCs include both detections and nondetections (NDs) (i.e., the constituent is not detected above the SQL). Where analytical results are reported as ND, the ND concentrations are estimated to be equal to one-half of the sample quantitation limit (USEPA, 2002a). The detected values, along with the one-half SQL values, comprise the statistical datasets. The lesser of the MDC and the 95UCL concentration is used as the EPC for each COPC. The use of the lesser of the MDC and the 95UCL concentration is consistent with the USEPA CERCLA protocol for conducting site-specific, reasonable maximum exposure risk assessments (USEPA, 1989 and 2002d).

ProUCL, Version 3.0, a USEPA statistical package, computes UCLs using a variety of methods and then recommends which method (and value) is "best" based on statistical tests of the dataset. Results of the statistical analysis are presented in Attachment 2. EPCs for each receptor pathway are summarized in Table A-3-1.

28 July 2006 Revision 1

To evaluate the indirect pathways addressed in this HHBRA, two dust models were used to estimate dust chemical EPCs for the industrial worker and the construction worker. These models are discussed in the *Final Revised Human Health Risk Assessment Work Plan* (MACTEC, 2006). Table A-3-1 shows the use of the ambient Particle Emissions Factor in developing EPCs for the dust pathway.

MACTEC used USEPA's Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (USEPA, 2002c) for guidance in evaluating the vapor intrusion pathways. In accordance with this guidance document, the USEPA Johnson and Ettinger Model for Subsurface Vapor Intrusion into Buildings, Version 3.1 (the Johnson and Ettinger Model) was used to calculate an estimated indoor air concentration associated with exposure to VOCs in subsurface soils via the indoor air vapor intrusion pathway (USEPA, 2002c).

The Johnson and Ettinger Model incorporates both convective and diffusive mechanisms for estimating vapor transport from either subsurface soils or groundwater into indoor spaces directly above the source. The model is a one-dimensional analytical solution to vapor transport into indoor spaces, relating the vapor concentration in the building to the vapor concentration at the subsurface soil source area. Model inputs include chemical properties of the constituent, saturated and unsaturated zone soil properties, and structural properties of the building. Site-specific information was used for soil parameters (based on site boring logs). The air exchange rate for commercial/industrial buildings was based on the literature (ASTM, 2002). ASTM recommends an air exchange rate of 0.83 exchange per hour for commercial/industrial buildings. Otherwise, site-specific or model default assumptions (protective of occupational receptors) were assumed. The assumptions used are in shown Table A-3-2.

The point of potential exposure was assumed to be a hypothetical future office building constructed over the former ravine (approximate size: 200 feet by 200 feet). This structure was assumed to be on a slab foundation rather than a basement foundation. The Johnson and Ettinger Model was used to estimate the indoor air concentration ($C_{building}$) in the calculation of ADDs. The long-term on-site receptor for this exposure route was assumed to be an indoor industrial receptor. An exposure duration of 25 years and exposure frequency of 250 days per year were used in the model (USEPA, 1991) for industrial receptors. The Johnson and Ettinger Model results are provided in Attachment 2, and the $C_{building}$ terms are listed in Table A-3-1.

28 July 2006 Revision 1

A.3.2 INTAKE ASSUMPTIONS

IAs are exposure assessment input values that are receptor- or behavior-specific. Examples include the water ingestion rate, inhalation rate, and exposed skin surface area. IAs were obtained from appropriate regulatory guidance or were based on professional judgment. Table A-3-2 shows the IAs used for the outdoor industrial worker, the construction worker, and the indoor industrial worker and presents the basis for selection.

Table A-3-3 shows the IAs for the outdoor industrial worker. Current outdoor industrial workers were assumed to be exposed only to surficial soils while performing their activities. Future outdoor industrial workers were assumed to be exposed to both surface and subsurface soils from the redistribution of soil during construction activity. These workers were assumed to incidentally ingest soil at the rate of 100 mg/day (USEPA, 2002b). The outdoor industrial worker was assumed to have an exposed skin surface area of 3,300 square centimeters (cm²) (USEPA, 2002b, 2004). In accordance with USEPA guidance, industrial worker activities were assumed to occur for 25 years, 225 days per year (days/yr) (USEPA, 2002d).

Table A-3-3 shows the IAs for construction workers who were assumed to be exposed to site soils encountered between 0 and 10 feet bgs during subsurface excavations. In accordance with USEPA guidance, these workers were assumed to incidentally ingest soil at the rate of 330 mg/day (USEPA, 2002b), and the construction worker was assumed to have an exposed skin surface area of 3,300 cm² (USEPA, 2004). Construction was assumed to occur for 0.5 year, and the workers were assumed to be exposed for half of a year's working days (250 days/yr) (site-specific assumption based on professional judgment).

Table A-3-3 also shows the IAs for the indoor industrial workers. These workers were assumed to inhale vapors from VOCs detected in subsurface soils. The workers were assumed to be exposed 250 days/yr over a period of 25 years (USEPA, 1991).

A.3.3 AVERAGE DAILY DOSES

The ADD calculations are provided in Attachment 3. Attachment Table 3-1 lists the dermal absorption factors for soil that were used in the risk characterization. Attachment Tables 3-2 through 3-11 show the results of the ADD computations for both noncarcinogenic and carcinogenic COPCs for on-site receptors.

28 July 2006 Revision I

A-4.0 TOXICITY ASSESSMENT

In the toxicity assessment, values necessary to evaluate both noncarcinogenic and carcinogenic effects associated with the COPCs are identified using USEPA's hierarchy for toxicological information (USEPA, 2003c). USEPA's Integrated Risk Information System (IRIS) is used as the primary source of toxicity data; if data are unavailable on IRIS, values proposed by the National Center for Environmental Assessment (NCEA) are used (USEPA, 2006).

A.4.1 NONCARCINOGENIC TOXICITY

Noncarcinogenic toxicity is evaluated using reference doses (RfDs). RfDs are expressed in milligrams per kilogram per day (mg/kg-d). Inhalation RfDs may be derived from reference concentrations (RfCs), which are expressed in milligrams per cubic meter (mg/m³). Table A-4-1 presents the noncarcinogenic toxicity values used for risk characterization of the soil COPCs.

A.4.2 CARCINOGENIC TOXICITY

Carcinogenic toxicity is evaluated using cancer potency slope factors (SFs) or Unit Risk Factors (URFs). SFs are expressed in mg/kg-d⁻¹ and URFs are expressed in mg/m³⁻¹. Table A-4-1 presents the toxicity values used for carcinogenic risk characterization of the soil COPCs.

A.4.3 TOXICITY VIA DERMAL ABSORPTION

USEPA has not developed toxicity values specifically for the dermal exposure route, and oral toxicity values are used as surrogate values (USEPA, 2004). Exhibit 4-1 from *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final* (RAGS-E; USEPA, 2004) lists the gastrointestinal absorption rates for commonly detected chemicals used in this HHBRA. Only vanadium required adjustment in this HHBRA.

28 July 2006 Revision I

A-5.0 RISK CHARACTERIZATION

Risk characterization quantitatively integrates the results of the exposure and toxicity assessments. Comparisons are made between the estimated ADDn and the RfD for each noncarcinogenic COPC to characterize potential noncarcinogenic effects. The estimated ADDc is multiplied by the SF to characterize potential carcinogenic effects. Cumulative risks for each receptor, for multi-chemical and multi-pathway results, are summarized in the following tables. The risk characterization is key in the remedial decision-making process (USEPA, 1989).

A.5.1 NONCARCINOGENIC RISK CHARACTERIZATION

The following sections present the noncarcinogenic risk characterization for soil COPCs. The cumulative HI for DSCR HHBRAs has been set at 1 (MACTEC, 2006). If the organ-specific HI for a particular receptor exceeds 1, those COPCs and pathways primarily responsible for the exceedance are identified. Those COPCs contributing to unacceptable risk are identified as COCs, which then become the focus of risk management decisions.

Attachment Table 3-1 presents the dermal absorption factors for the soil COPCs. Attachment Tables 3-2 to 3-13 show the results of risk characterization for each receptor for the noncarcinogenic COPCs. Table A-5-1 summarizes these results and presents the total multi-chemical, multi-pathway HIs.

- HIs for the current outdoor industrial worker are 0.3 (incidental soil ingestion) and 0.03 (dermal contact with soil).
- HIs for the future outdoor industrial worker are 0.3 (incidental soil ingestion), 0.2 (dermal contact with soil), 0.003 (inhalation of fugitive dusts), and 0.06 (inhalation of volatile compounds).
- HIs for the future construction worker are 1 (incidental soil ingestion), 0.3 (dermal contact with soil), and 0.06 (inhalation of fugitive dust and volatile compounds).
- The HI for the future indoor industrial worker is 0.0001 (inhalation of VOCs from soil in indoor air).

The HIs for all receptors evaluated in this HHBRA are equivalent to or less than the DSCR remediation goal of 1.

17 113

28 July 2006 Revision 1

A.5.2 CARCINOGENIC RISK CHARACTERIZATION

The carcinogenic risk goal for DSCR HHBRAs has been established at 1×10^{-4} for on-installation receptors (MACTEC, 2006). If the cumulative excess cancer risk for an on-site receptor exceeds 1×10^{-4} , those carcinogenic COPCs primarily responsible for the exceedance are identified as COCs.

Attachment Tables 3-2 through 3-11 present the results of risk characterization for the carcinogenic COPCs. Table A-5-1 summarizes these results and gives the total multi-chemical, multi-pathway risk for the HHBRA.

- The total risk values for the current outdoor industrial worker are 9×10^{-4} (incidental ingestion of soil), 8×10^{-4} (dermal contact with soil), and 5×10^{-8} (inhalation of fugitive dusts). Cumulative risk for the current outdoor industrial worker is 2×10^{-3} .
- The total risk values for the future outdoor industrial worker are 2×10^{-4} (incidental ingestion of soil), 2×10^{-4} (dermal contact with soil), 2×10^{-8} (inhalation of fugitive dusts), and 5×10^{-5} (inhalation of volatile compounds). Cumulative risk for the future outdoor industrial worker is 4×10^{-4} .
- The total risk values for the future construction worker are 1×10⁻⁵ (incidental ingestion of soil), 5×10⁻⁶ (dermal contact with soil), 6×10⁻⁸ (inhalation of fugitive dusts), and 1×10⁻⁶ (inhalation of volatile compounds). Cumulative risk for the future construction worker is 2×10⁻⁵.
- The total risk value for future indoor industrial workers potentially exposed to soil vapors in indoor air is 3×10⁻⁸.

The cumulative risk for current and future outdoor industrial workers exceeds the DSCR risk goal of 1×10^{-4} . The majority of the risk for the current outdoor industrial worker is associated with benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and benzo(a)anthracene. The remainder of the exceedance is associated with arsenic, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene, and PCB-1260. The majority of the risk for the future outdoor industrial worker is associated with benzo(a)pyrene. The remainder of the exceedance is associated with benzo(a)pyrene. The remainder of the exceedance is associated with benzo(a)anthracene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and trichloroethene. The risk associated with surface soil exposures exceeds that for mixed horizon soils (0 to 10 feet), indicating the majority of the estimated risk is associated with soil constituents within the top 2 feet of ground surface.

The risks presented above are based on the mid-point of the TCE cancer slope factors. If risks are recalculated using the NCEA provisional range of slope factors or the California Environmental Protection Agency slope factors for TCE, the results vary only slightly:

Final Human Health Baseline Risk Assessment - Operable Unit 2 Defense Supply Center Richmond

28 July 2006 Revision I

.........

- The risk for the current outdoor industrial worker remains 2×10⁻³.
- The risk for future outdoor industrial workers ranges from 3×10^{-4} to 4×10^{-4} .
- The risk for the future construction worker remains 2×10^{-5} .
- The risk for future indoor workers ranges from 9×10^{-9} to 6×10^{-8} .

The use of the mid-point of the provisional NCEA cancer slope range for TCE has no impact on the outcome of the HHBRA for OU 2.

28 July 2006 Revision 1

. . . .

A-6.0 UNCERTAINTIES ANALYSIS

Uncertainty is inherent in the risk assessment process. Exposure is hypothetical, and the calculations are based largely on assumed conditions. An important part of the risk assessment process is characterizing the main underlying uncertainties. Understanding the uncertainties is important for the interpretation and ultimate use of the risk assessment results because actual risk may be under- or overestimated.

A qualitative uncertainties analysis was performed. Uncertainties for each component of the HHBRA are discussed and evaluated as follows.

A.6.1 DATA EVALUATION

The following uncertainties apply to the data evaluation:

Uncertainty	Resolution
The nature and extent of chemical impacts have been adequately characterized.	The OU has been investigated over a period of several years. Data were collected for multiple purposes and the dataset as a whole adequately characterizes the nature and extent of COPC distributions.
The analytical results that constitute the risk assessment dataset represent validated data that conform to the quality control standards and DQOs for site investigation as established in the project Sampling and Analysis Plan and Quality Assurance Program Plan (MACTEC, 2004) and for use in quantitative risk assessment.	Data collected prior to 1992 were included in the database because very few soil samples have been collected at this OU since the RI was completed. More recent sampling results do not confirm the findings of the RI data. For example, PCB-1260 has only been found in 1 of 50 samples, and this sample was collected in 1986. The RI data were validated to the standards current of that time period and are considered usable for the purposes of risk assessment. Use of older data with uncertain data quality has tended to overestimate risk at this OU.
Chemicals eliminated as COPCs will not significantly contribute to HIs and/or cumulative excess cancer risks.	The screening process used to identify COPCs was conservatively biased so that the likelihood of eliminating a chemical that might be associated with an unacceptable risk is small.

28 July 2006 Revision 1

............

Based on the above analysis, uncertainties associated with the data evaluation process are considered acceptable. The conservative COPC screening process would generally tend to overestimate the risk results.

A.6.2 EXPOSURE ASSESSMENT

The following uncertainties apply to the exposure assessment:

Uncertainty	Resolution
The environmental media, receptors, and exposure pathways identified and quantified in the HHBRA capture the potentially significant exposures and risks under current and future on-site industrial land use scenarios and future on-site construction scenarios.	DLA and DSCR are committed to restricting future land use at OU 2 to industrial uses only; therefore, it is highly unlikely that significant current or future exposure pathways were excluded from the HHBRA. No other pathways or receptors are considered significant. The on-site pathways are hypothetical and tend to overstate potential future risks.
The statistical methods employed generate representative, site-wide EPCs.	USEPA's ProUCL software was used for all on-site soil statistics. This statistical software program was developed specifically for use with environmental data. Overall, the derivation of EPCs is considered conservative and could overestimate actual risk.
The intake assumptions employed are reasonable reflections of the behavior of actual current and future anticipated site receptors.	Most of the intake assumptions used in the HHBRA were obtained from USEPA regulatory guidance, which are conservative and may overestimate actual current and future exposures.
Current soil concentrations accurately represent future soil conditions.	Rather than soil concentrations remaining stable, the detected soil chemicals are subject to natural degradation and attenuation; therefore, site concentrations are expected to decrease with time. Using current and historical concentrations for future exposures will therefore overestimate actual risk.

Based on the above analysis, uncertainties associated with the exposure assessment process are considered conservative, and they would generally overestimate actual risk.

28 July 2006 Revision 1

A.6.3 TOXICITY ASSESSMENT

The following uncertainty applies to the toxicity assessment:

Uncertainty	Resolution
The toxicity values used in the HHBRA accurately reflect the dose-response behavior of the evaluated chemicals.	In general, there is significant uncertainty in the development and use of USEPA's toxicity values. To characterize these uncertainties as conservative or non-conservative is unclear for many chemicals. For example, much of the site risk is associated with large-chain PAHs. The size of these molecules may limit their ability to pass through the stratum corneum. Therefore, risk associated with dermal risk may be overestimated.

Based on the preceding analysis, the uncertainty associated with the toxicity assessment is considered acceptable and represents the best available information.

A.6.4 RISK CHARACTERIZATION

The following uncertainty applies to the risk characterization:

Uncertainty	Resolution
generate an HI result leads to reasonable	For this site, exposure to noncarcinogens is not associated with excess systemic risk for on-site receptors. Therefore, summing the systemic risk to generate a cumulative HI should not overestimate noncarcinogenic effects.

Based on the analysis, the uncertainty associated with the risk characterization represents the best available information.

A.6.5 UNCERTAINTIES CONCLUSIONS

The uncertainties identified and discussed in this section were evaluated, along with their estimated magnitudes and directions (i.e., tendency to under- or overestimate risk). Overall, the conservative uncertainties outweigh the non-conservative uncertainties, and the final risk estimates presented in this HHBRA are likely higher than the actual risk posed by constituents detected at OU 2.

28 July 2006 Revision 1

A-7.0 CONCLUSIONS

A conservative HHBRA was conducted to evaluate the significance of potential exposures to various chemicals detected in surface and subsurface soil for four types of worker receptors: a current on-site outdoor industrial worker, a future on-site outdoor industrial worker, a future on-site construction worker, and a future indoor industrial worker exposed to soil vapors in indoor air. A conservative screening assessment was first performed to identify the COPCs, which included aluminum, arsenic, copper, iron, vanadium, trichloroethene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k) fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-c,d)pyrene and PCB-1260. Non-carcinogenic risk estimates were less than the DSCR risk goal of 1 for all four receptors. Excess cancer risk estimates for future construction workers and future indoor industrial workers were less than the DSCR risk goal of 1×10^{-4} for on-installation exposures.

Table A-7-1 and Attachment 4 (Attachment Tables 4-1 and 4-2) summarize the risk estimates for the two on-installation receptors that potentially may be exposed to an unacceptable level of excess cancer risk: current and future outdoor industrial workers.

For the current industrial outdoor worker, excess cancer risks of 2×10^{-3} are associated with eight COCs: arsenic, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h) anthracene, indeno(1,2,3-c,d)pyrene, and PCB-1260 (Table A-7-1 and Attachment Table 4-1). One-half of this risk is associated with benzo(a)pyrene (1×10^{-3}). Remediation goals for the eight surface soil COCs were developed for the OU 2 Technical Memorandum.

For the future industrial indoor worker, excess cancer risks of 4×10^{-4} are associated with six COCs: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and trichloroethene (Table A-7-1 and Attachment Table 4-2). Two-thirds of this risk is associated with benzo(a)pyrene (2×10^{-4}). Remediation goals for the six surface and subsurface soil COCs were developed for the OU 2 Technical Memorandum.

Risk associated with surface soil COCs is an order of magnitude greater than risk due to intermixed surface and subsurface soils. Corrective action to address exposure to surface soil would greatly reduce estimated risks for both current and future soil receptors.

A-7-1

A-8.0 REFERENCES

- ASTM, 2002. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, E 1739 - 95 (2002).
- Dames & Moore, 1989. Remedial Investigation for Area 50, Open Storage Area, and National Guard Area, Defense General Supply Center, Richmond, Virginia, Contract DACA65-86-0131, July 28, 1989.
- HydroGeoLogic, Inc., 1998. Draft Technical Report for the Liquid Petroleum Hydrocarbon Delineation and Removal at Area 50, Defense Supply Center Richmond, Virginia, Contract DACA87-94-D0016, December 1998.
- Law, 1992. Final Sampling and Analyses Plan For Remedial Investigation & Expanded Site Investigation, Defense General Supply Center, Richmond, Virginia, Contract DACW87-90-D0023, August 1992.
- Law, 1995. Final Exploratory Trenching Report Characterization Report for Area 50 Landfill, Defense Supply Center Richmond, Virginia, Contract DACA87-94-D0016, May 1995.
- Law, 1998. Draft Action Memorandum, Area 50 Service Area Operable Unit 2, Interim Removal Action, Defense Supply Center Richmond, Virginia, Contract DACA87-94-D0016, July 1998.
- Law, 1999. Third Revised Final Focused Feasibility Study Report for Area 50/Open Storage/National Guard Area, Defense General Supply Center, Richmond, Virginia, Contract DACA87--94-D0016, May 1999.
- MACTEC Engineering and Consulting, Inc., 2004. Final General Sampling and Analyses Plan, Defense General Supply Center, Richmond, Virginia, Contract DACW87-02-D-0007.
- MACTEC Engineering and Consulting, Inc., 2006. Final Revised Human Health Risk Assessment Work Plan, Defense Supply Center Richmond, Richmond, Virginia, April 2006.

A-8-1

120

USEPA, 1989. Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A), Interim Final, December 1989.

- USEPA, 1991. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals), Publication No. 9285.7-01B, October 1991.
- USEPA, 1992. Guidance for Data Useability in Risk Assessment (Part A), April 1992.
- USEPA, 1994. USEPA Region III National Functional Guidelines for Organic and Inorganic Data Review, October 1999 and February 1994.

USEPA, 1996. Soil Screening Guidance: Technical Background Document, May 1996.

- USEPA, 2000. Guidance for Data Quality Assessment, Practical Methods for Data Analysis, EPA QA/G-9, QA00 update, July 2000.
- USEPA, 2001. USEPA Contract Laboratory Program National Functional Guidelines for Low Concentration Organic Data Review, EPA 540/R00/006, June 2001.
- USEPA, 2002a. Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites, OSWER 9285.7-41, September 2002.
- USEPA, 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9344.4-24. December 2002.
- USEPA, 2002c. Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway for Groundwater and Soils, EPA 530-F-02-052, November 2002.
- USEPA, 2002d. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites, OSWER 9285.6-10. Office of Emergency and Remedial Response.

A-8-2

- USEPA, 2003a. Technical Background Information: Development of Risk-Based Concentrations. Jennifer Hubbard, Region III: <u>http://www.epa.gov/reg3hwmd/risk/human/info/tech.htm, April 16,</u> 2003.
- USEPA, 2003b. Updated Dermal Exposure Assessment Guidance, Region 3, June 2003.
- USEPA, 2003c. Human Health Toxicity Values in Superfund Risk Assessments, OSWER Directive 9285.7-53, December 2003.
- USEPA, 2004. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final. EPA/540/R/99/005, July 2004.
- USEPA, 2006. Risk-Based Concentration Table. Region 3, April 2006.
- VRP, 2005. Voluntary Remediation Program, Risk Assessment Guidance. Virginia Department of Environmental Quality.

28 July 2006 Revision I

TABLES

-
4
÷
E
Ц
8
-
H

;

÷

SELECTION OF CONSTITUENTS OF POTENTIAL CONCERN IN SURFACE SOILS (0-2 FT) HUMAN HEALTH BASELINE RISK ASSESSMENT

HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

Site Concentrations > Direct Contact Soil COPC? NO NO NO NO NO NO NO Background (d) ? NA Concentration > RBC? Maximum Detected Industrial Soil Risk-Based Concentration (RBC) **e** ΞĐ (g € € € (mg/kg) (c) 1.00E+05 2.00E+04 2.00E+03 5.10E+02 6.10E+04 1.00E+02 3.80E+02 5.30E+00 8.20E+03 2.00E+03 7.20E+00 1.90E+00 2.00E+03 1.00E+02 3.10E+02 4.10E+03 3.10E+04 8.00E+02 2.00E+03 5.10E+02 7.20E+00 3.10E+04 3.90E+00 3.90E+00 3.10E+03 3.10E+03 3.10E+03 3.10E+01 9.20E+04 3.10E+04 3.90E-01 6.10E+03 3.90E+01 3.90E+02 4.10E+03 4.10E+03 3.90E-01 3.90E+00 Maximum Detected Concentration (mg/kg) (a) 1.74E+03 5.00E+00 2.18E+04 1.41E+04 7.20E+01 5.90E-01 6.20E+01 6.29E+02 1.60E-02 2.00E-01 7.00E+02 3.60E+02 3.40E+02 3.97E+04 3.80E+02 1.60E+01 3.00E+01 2.00E+01 8.25E+02 .00E+01 .50E+00 .20E+00 3.80E+01 2.60E-02 I.40E-02 '.20E+01 7.00E+02 8.70E+01 7.00E+02 9.00E+02 1.10E-01 8.40E-02 8.40E+01 5.40E+02 .90E+02 5.40E+02 1.00E+02 I.80E+02 Minimum Detected Concentration (mg/kg) (a) 3.58E+03 4.00E+00 1.90E+00 4.00E+00 2.00E+01 2.50E+00 5.23E+03 8.00E-02 1.70E+00 3.74E-01 1.60E-02 2.00E-01 8.40E-02 1.00E+01 5.00E+00 7.60E-03 1.40E-02 2.00E+01 2.40E+01 3.00E+01 .00E+00 .20E+00 1.00E+00 6.10E-03 1.90E-01 2.50E-01 3.70E-01 5.80E-01 4.70E-01 2.30E-01 5.80E-01 .00E+00 2.10E-01 1.90E-01 5.50E-01 7.00E-01 4.60E-01 5.60E-03 Detection ≥ 5%? Frequency of YES YES YES YES YES Frequency of Detection (b) 100% 100% 100% 33% 7% 7% 100% 87% 87% 87% 100% 100% 100% 7% 7% 7% 7% 7% 7% 7% 7% 27% 53% 53% 53% 53% 13% 13% 53% 13% 53% 47% Number of Analyses (a) 9 15 15 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

1 of 2

÷

Number of Detections (a)	、 いいいいい いいしい はいいい しい いい いい いい いい いい いい いい いい いい いい いい	5 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8
Chemical	Metak/Inorganics Afuminum Arsenic Barium Cadmium Canum Chromium Chromium Copper Iron Lead Mangancsc Mercury Nickel Selenium Silver Thallium Tin	Zinc <u>VOCs</u> Acctone Methylene chloride Tetrachloroethene Toluene Toluene Trichloroethene trans-1,2-Dichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Benzo(a)nyrene Benzo(a)nyrene Benzo(a)h)fuoranthene Benzo(a)h)fuoranthene Teluoranthene Teluoranthene Teluoranthene Piverne Piverne Pyrene

TABLE A-2-1

. . .

•

.

SELECTION OF CONSTITUENTS OF POTENTIAL CONCERN IN SURFACE SOILS (0-2 FT) HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmoud, Virginia

2.00E-01 3.70E-01 5.10E+01 4.60E-01 2.40E+00 1.90E-02 1.20E-01 1.20E-01 1.20E-01 1.50E-01 1.50E-01	7% YES 2.00E-01 2.00E-01 3.10E+04 NO NA 33% YES 2.10E-01 3.70E-01 3.10E+01 2.00E+02 NO NA 7% YES 2.10E-01 3.70E-01 2.00E+02 (e) NO NA 7% YES 5.10E+01 5.10E+01 2.00E+02 (e) NO NA 13% YES 3.10E-01 2.40E+00 3.10E+04 NO NA 9% YES 3.10E-01 2.40E+00 3.10E+04 NO NA 13% YES 1.90E-02 1.90E-02 1.30E+01 NO NA 13% YES 1.10E-02 1.30E+01 8.40E+00 NO NA 13% YES 1.30E-01 1.30E+01 8.40E+00 NO NA 7% YES 1.30E-01 1.30E+01 8.40E+00 NO NA 7% YES 1.30E-01 1.30E+01 NO NO NA <t< th=""><th>Number of Analyses (a)</th><th>Frequency of Detection (b)</th><th>Frequency of Detection 2 5%?</th><th>Minimum Detected Concentration (mg/kg) (a)</th><th>Maximum Detected Concentration (mg/kg) (a)</th><th>Industrial Soil Risk-Based Concentration (RBC) (mg/kg) (c)</th><th>Maximum Detected Concentration > RBC?</th><th>Site Concentrations > Background (d) ?</th><th>Direct Contact Soil COPC?</th></t<>	Number of Analyses (a)	Frequency of Detection (b)	Frequency of Detection 2 5%?	Minimum Detected Concentration (mg/kg) (a)	Maximum Detected Concentration (mg/kg) (a)	Industrial Soil Risk-Based Concentration (RBC) (mg/kg) (c)	Maximum Detected Concentration > RBC?	Site Concentrations > Background (d) ?	Direct Contact Soil COPC?
7% YES 2.00E-01 3.10E+04 NO NA 33% YES 2.10E+01 3.70E-01 3.70E-01 3.10E+04 NO NA 7% YES 5.10E+01 3.70E-01 3.70E-01 3.70E-02 NO NA 7% YES 5.10E+01 3.70E-01 3.70E-01 2.00E+02 NO NA 13% YES 3.10E-01 2.40E+00 3.10E+04 NO NA 9% YES 3.10E-01 2.40E+00 3.10E+04 NO NA 13% YES 1.0E-02 1.30E+04 NO NO NA 13% YES 3.60E-03 1.90E-02 8.40E+00 NO NO NA 13% YES 1.10E-02 1.20E-01 8.40E+00 NO NO NA 7% YES 1.50E-01 1.20E-01 8.40E+00 NO NA 7% YES 1.50E-01 1.20E+01 1.20E+00 NO NA </td <td>7% YES 2.00E-01 2.00E-01 3.10E+04 NO NO NA 7% YES 2.10E-01 3.70E-01 3.10E+01 3.10E+01 NO NA 7% YES 5.10E-01 3.70E-01 2.00E+02 NO NO NA 7% YES 5.10E-01 3.70E-01 2.00E+02 NO NO NA 9% YES 3.10E-01 2.40E+00 3.10E+04 NO NO NA 9% YES 3.00E-03 1.90E-02 3.10E+04 NO NO NA 13% YES 3.00E-03 1.90E-02 8.40E+00 NO NA 277% YES 1.00E-02 1.20E-02 1.20E+01 NO NO NA 13% YES 1.10E-02 1.20E-01 8.40E+00 NO NO NA 7% YES 1.20E-01 1.30E-01 8.20E+00 NO NO NA 7% YES 1.50E-01<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	7% YES 2.00E-01 2.00E-01 3.10E+04 NO NO NA 7% YES 2.10E-01 3.70E-01 3.10E+01 3.10E+01 NO NA 7% YES 5.10E-01 3.70E-01 2.00E+02 NO NO NA 7% YES 5.10E-01 3.70E-01 2.00E+02 NO NO NA 9% YES 3.10E-01 2.40E+00 3.10E+04 NO NO NA 9% YES 3.00E-03 1.90E-02 3.10E+04 NO NO NA 13% YES 3.00E-03 1.90E-02 8.40E+00 NO NA 277% YES 1.00E-02 1.20E-02 1.20E+01 NO NO NA 13% YES 1.10E-02 1.20E-01 8.40E+00 NO NO NA 7% YES 1.20E-01 1.30E-01 8.20E+00 NO NO NA 7% YES 1.50E-01 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
33% YES 2.10E-01 3.70E-01 2.00E+02 (e) NO NA 7% YES 5.10E+01 5.10E+01 5.10E+01 2.00E+02 (e) NO NA 13% YES 5.10E+01 5.10E+01 5.10E+01 2.00E+02 (e) NO NA 9% YES 3.10E-01 2.460E-01 4.10E+03 NO NO NA 9% YES 3.10E-01 2.40E+00 3.10E+04 NO NA 13% YES 1.20E+01 2.10E+01 2.00E+02 (e) NO NA 13% YES 1.30E-03 1.90E-02 1.20E+01 NO NO NA 13% YES 1.00E-02 1.20E-01 8.40E+00 NO NO NA 13% YES 1.20E-01 1.20E-01 8.40E+00 NO NO NA 7% YES 1.20E-01 1.20E-01 8.20E+00 NO NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 NO NA	33% YES 2.10E-01 3.70E-01 2.00E+02 NO NO NA 7% YES 5.10E+01 5.10E+01 5.10E+01 5.10E+01 0.00 NO NA 13% YES 5.10E+01 5.10E+01 5.10E+01 5.10E+03 (e) NO NA 9% YES 3.10E-01 2.40E+00 3.10E+04 NO NO NA 9% YES 3.60E-03 1.90E-02 1.20E+01 NO NO NA 13% YES 3.60E-03 1.90E-02 1.20E+01 NO NO NA 27% YES 1.0E-02 1.20E+01 2.40E+00 NO NO NA 13% YES 1.20E-01 1.20E+01 8.40E+00 NO NO NA 7% YES 1.20E-01 1.20E-01 8.40E+00 NO NO NA 7% YES 1.50E-01 1.20E-01 8.20E+00 NO NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 NO NO	15	7%	YES	2.00E-01	2.00E-01	3.10E+04	N	NA	NO
7% YES 5.10E+01 5.10E+01 5.10E+01 5.10E+01 0 NO NA 13% YES 3.10E-01 4.60E-01 4.60E-01 4.60E-01 NO NA 9% YES 3.10E-01 2.40E+00 3.10E+04 NO NA 9% YES 3.10E-01 2.40E+00 3.10E+04 NO NA 13% YES 3.60E-03 1.90E-02 1.20E+01 NO NA 13% YES 1.10E-02 1.90E-02 1.20E+01 NO NA 13% YES 1.10E-02 1.20E-01 8.40E+00 NO NA 7% YES 1.10E-02 1.20E-01 1.80E-01 NO NA 7% YES 1.50E-01 1.80E-01 NO NO NA 7% YES 1.50E-01 1.30E+00 NO NA 7% YES 1.50E-01 1.80E-01 NO NA 7% YES 1.50E-0	7% YES 5.10E+01 5.10E+01 5.10E+01 5.10E+01 2.00E+02 (e) NO NA 9% YES 3.10E-01 4.66E-01 4.10E+03 NO NA 9% YES 3.10E-01 2.46E+00 3.10E+04 NO NA 13% YES 3.66E-03 1.90E-02 1.20E+01 NO NA 13% YES 3.60E-03 1.90E-02 8.40E+00 NO NA 27% YES 1.10E-02 1.20E+01 8.40E+00 NO NA 13% YES 1.10E-02 1.20E-01 8.40E+00 NO NA 7% YES 1.20E-02 1.30E-01 8.20E+00 NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 NO NA 7% YES 4.70E+01 4.70E+01 NO NO NA	15	33%	YES	2.10E-01	3.70E-01	2.00E+02	NO	NA	NO
13% YES 3.10E-01 4.60E-01 4.10E+03 NO NA 9% YES 4.70E-01 2.40E+00 3.10E+04 NO NA 9% YES 4.70E-01 2.40E+00 3.10E+04 NO NA 13% YES 3.60E-03 1.90E-02 1.20E+01 NO NA 13% YES 2.30E-03 1.90E-02 8.40E+00 NO NA 13% YES 1.10E-02 1.20E-01 8.40E+00 NO NA 7% YES 1.20E-01 1.30E-01 NO NA 7% YES 1.50E-01 1.30E-01 NO NA 7% YES 1.50E-01 1.40E+00 NO NA 7% YES 1.50E-01 1.40E+00 NO NA	13% YES 3.10E-01 4.60E-01 4.10E+03 NO NA 9% YES 4.70E-01 2.40E+00 3.10E+04 NO NA 13% YES 3.60E-03 1.90E-02 1.20E+01 NO NA 13% YES 3.60E-03 1.90E-02 1.20E+01 NO NA 13% YES 1.90E-02 1.20E+01 NO NO NA 27% YES 1.10E-02 1.20E-01 8.40E+00 NO NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 1.50E-01 NO NO NA 7% YES 4.70E+01 1.50E-01 1.40E+00 NO NA	15	7%	YES	5.10E+01	5.10E+01		NO	NA	NO
9% YES 4.70E-01 2.40E+00 3.10E+04 NO NA 13% YES 3.60E-03 1.90E-02 1.20E+01 NO NA 27% YES 3.60E-03 1.90E-02 1.20E+01 NO NA 27% YES 2.30E-03 7.90E-02 8.40E+00 NO NA 3% YES 1.10E-02 1.20E-01 8.40E+00 NO NA 7% YES 1.20E-01 1.80E-01 NO NA NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 1.40E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 1.40E+00 (h) NO NA	9% YES 4.70E-01 2.40E+00 3.10E+04 NO NA 13% YES 3.60E-03 1.90E-02 1.20E+01 NO NA 13% YES 3.60E-03 1.90E-02 8.40E+00 NO NA 13% YES 2.30E-03 7.90E-02 8.40E+00 NO NA 7% YES 1.10E-02 1.20E-01 8.40E+00 NO NA 7% YES 1.10E-02 1.20E-01 8.40E+00 NO NA 7% YES 1.20E-01 1.50E-01 8.40E+00 NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.40E+00 (h) NO NA	15	13%	YES	3.10E-01	4.60E-01		NO	NA	NO
13% YES 3.60E-03 1.90E-02 1.20E+01 NO NA 27% YES 2.30E-03 7.90E-02 8.40E+00 NO NA 27% YES 1.10E-02 1.20E-01 8.40E+00 NO NA 7% YES 1.10E-02 1.20E-01 8.40E+00 NO NA 7% YES 1.20E-01 1.20E-01 8.40E+00 NO NA 7% YES 1.20E-01 1.20E-01 8.20E+00 NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 NO NA 7% YES 4.70E+01 4.70E+01 1.40E+00 NO NA	13% YES 3.60E-03 1.90E-02 1.20E+01 NO NA 27% YES 2.30E-03 7.90E-02 1.20E+01 NO NO NA 27% YES 2.30E-03 7.90E-02 8.40E+00 NO NO NA 8% YES 1.10E-02 1.20E-01 8.40E+00 NO NO NA 7% YES 1.20E-02 1.20E-02 1.20E-01 8.40E+00 NO NO NA 7% YES 1.20E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 4.70E+01 4.70E+01 4.70E+01 NO NA NA	55	%6	YES	4.70E-01	2.40E+00	3.10E+04	NO	NA	ON .
27% YES 2.30E-03 7.90E-02 8.40E+00 NO NO NA 13% YES 1.10E-02 1.20E-01 8.40E+00 NO NO NA 8% YES 1.10E-02 1.20E-01 8.40E+00 NO NO NA 7% YES 1.20E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 1.40E+00 (h) NO NA	27% YES 2.30E-03 7.90E-02 8.40E+00 NO NO NA 13% YES 1.10E-02 1.20E-01 8.40E+00 NO NO NA 8% YES 1.10E-02 1.20E-02 1.20E-01 8.40E+00 NO NO NA 7% YES 1.20E-02 1.20E-02 1.50E-01 8.20E+00 NO NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 4.70E+01 1.50E-01 1.40E+00 NO NA	, 15	13%	STR.	3.60E-03	1.90E-02	1.20E+01	ON	NA	ON
13% YES 3.60E-03 1.90E-02 1.20E+01 NO NA 27% YES 2.30E-03 7.90E-02 8.40E+00 NO NA 27% YES 2.30E-02 1.20E-01 8.40E+00 NO NA 3% YES 1.10E-02 1.20E-01 8.40E+00 NO NA 7% YES 1.20E-02 1.20E-01 8.20E+00 NO NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 NO NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 NO NO NA 7% YES 1.50E-01 1.50E-01 1.40E+00 NO NA 7% YES 1.50E-01 1.40E+00 NO NA	13% YES 3.60E-03 1.90E-02 1.20E+01 NO NA 27% YES 2.30E-03 7.90E-02 8.40E+00 NO NO NA 13% YES 1.10E-02 1.20E-01 8.40E+00 NO NO NA 7% YES 1.10E-02 1.20E-01 8.40E+00 NO NO NA 7% YES 1.20E-01 1.50E-01 8.20E+00 NO NO NA 7% YES 1.50E-01 1.50E-01 1.40E+00 NO NO NA							-		:
13% YES 1.10E-02 1.20E-01 8.40E+00 NO NO NO NO NO NO NO NO NO NA 7% YES 1.20E-01 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 4.70E+01 1.40E+00 , YES NA	13% YES 1.10E-02 1.20E-01 8.40E+00 NO NO NA 7% YES 1.20E-02 1.20E-02 1.20E-01 8.40E+00 NO NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 4.70E+01 1.40E+00 , YES NA	1	20LC	VFS	2 30F-03	7 90E-07	8 40F+00	CN	NA NA	ON
8% YES 1.20E-02 1.20E-02 1.80E-01 NO NA 7% YES 1.50E-01 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 4.70E+01 4.70E+01 1.40E+00 , YES NA	8% YES 1.20E-02 1.20E-02 1.20E-01 NO NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 4.70E+01 4.70E+01 1.40E+00 h YES NA	51	13%	YES	1.10E-02	1.20E-01	8.40E+00	ON	NA	ON N
7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 4.70E+01 4.70E+01 1.40E+00 5 NA	7% YES 1.50E-01 1.50E-01 8.20E+00 (h) NO NA 7% YES 4.70E+01 4.70E+01 1.40E+00 1.40E+00 1.YES NA	13	8%	YES	1.20E-02	1.20E-02	1.80E-01	NON	NA	NO
7% YES 4.70E+01 4.70E+01 1.40E+00 YES NA	7% YES 4.70E+01 4.70E+01 1.40E+00 YES NA	15	7%	YES	1.50E-01	1.50E-01		NO	NA	NO
7% YES 4.70E+01 4.70E+01 1.40E+00 YES NA	7% YES 4.70E+01 4.70E+01 1.40E+00 YES NA							,		
		15	7%	YES	4.70E+01	4.70E+01	1.40E+00	, YES	NA	YES
							۲	-		

.

;

f the Region 3 RBC table. The constituent has been withdrawn from the current version. At conservative value for chromium www.epa.gov/superfund/programs/lead/almfaq.htm, April 2004. pyrene used a surrogate for benzo(ghi)peryiene and phenanthrene; and

2 of 2

PREPARED/DATE: MKB 8/15/05 CHECKED/DATE: LMS 5/9/06

	Chemical	Number of Detections (a)
	SVOCs	
	Benzyl alcohol	F
•	bis(2-Ethylhexyl)phthalate	Ś
	Dibenzofuran	H
	Di-n-octyl phthalate	2
	Phenol	ŝ
	Pestirides	
	4 4'-DDD	6
		4 -
		ŧ ſ
	4,4 - UUI	۰ ۱
	Dicidrin	,
	Fechnical Chlordane	-
	PCBs	
	PCB-1260	1
Notes:		
Bolded cl	Bolded chemicals exceed one or more screening criteria	ng criteria
mg/kg	Milligrams of chemical per kilogram of soil	of soil
RBC	Risk-Based Concentration	
COPC	Constituent of potential concern	
PAHs	Polycyclic aromatic hydrocarbons	
VOCs	Volatile organic compounds	
SVOCs	Semivolatile organic compounds	
PCB	Polychlorinated biphenyls	
, AN	Not applicable	
(a)	See Attachment 1 for site data.	
(q)	(No. Detections/ No. Analyses) x 100.	
(c)	From USEPA (2006).	
(p)	See Attachment 2 for background comparison results.	nparison results.
(e)	RBC value listed was obtained from the April 2005 version of the	he April 2005 version of 1
Ð	Value for chromium VI used as a surrogate since it is the most c	ogate since it is the most
(g)	From Adult Lead Methodology Frequently Asked Questions, w	tently Asked Questions, w
(Ŧ)	Value for mercuric chloride used as a surrogate for mercury; pyr	surrogate for mercury; py
	chlordane used as a surrogate for technical chlordane.	nical chlordane.

_

,

•

.

TABLE A-2-2

•

I

.

·

SELECTION OF CONSTITUENTS OF POTENTIAL CONCERN IN SURFACE AND SUBSURFACE SOILS (0-10 FT) HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia 1

10% YS 33590 J2600 J260	Number of Analyses (a)	Frequency of Detection (b)	Frequency of Detection 25%?	Minimum Detected Concentration (mg/kg) (a)	Maximum Detected Coucentration (mg/kg) (a)	Industrial Soil Risk-Based Concentration (RBC) (mg/kg) (c)	Maximum Detected Concentration > RBC?	Site Concentrations > Background (d) ?	Direct Contact Soil COPC?
ϕ_{11}	45	100%	VFS	2 55E ±03	1 2864.05				
98. YES 2368:0 108:00 208:0 108:00 208:0 108:00 208:0 108:00 208:0 108:00 208:0 108:00 208:0 108:00 208:0 108:00 208:00 108:00 208:00 <	56	4%	N N	6 ODE-D1	7,005-01		YES	0N	YES
8% YES 9.966-00 1.746-	56	86%	YES	2.30E-01	4.10E+01	1.906+00	VFS	NA VFC	NU
296 YES 1.57:01 1.106-00 2006-00 000 000 773 YES 1.067-00 8.006-00 3.006-00 3.006-00 0.00 0.00 773 YES 1.067-00 8.006-00 3.006-00 3.006-00 0.00 0.00 773 YES 1.067-00 2.006-00 3.006-00 3.006-00 0.00 0.00 0.00 773 YES 1.006-00 1.006-00 2.006-00 3.006-00 0.00	47	85%	YES	9.50E+00	1.74E+03	2 00E+04		NA	
378 YES 400501 8006400 1006402 9.00 9.00 778 YES 1006401 1206400 1206401 1206401 1006401 9.00 9.00 778 YES 1006401 1206401 1206401 1206401 1006401 9.00	56	29%	YES	1.57E-01	1.10E+00	2.00E+02	CZ	NA	QN QN
9% TYS 1.460-00 1.250-40 3.166-00 1.250-40 3.166-00 1.250-40 3.166-00 1.260-40 3.166-	55	33%	YES	4.00E-01	8.00E+00	1.00E+02	O N	NA	
7% YUS 3005-01 4006-01 3106-01 6006-01 3106-01 6006-01 3106-01 600 600 600	56	%96	YES	1.40E+00	1.22E+02		CN	NA	QN ON
72% YES 102E-00 200E-01 200E-0	42	5%	YES	3.00E-01	4.00E-01		CN	NA	
77% YCS 100-00 141-04 4,00-00 YCS 100-00 YCS	46	22%	YES	1.02E+00	2.00E+01		ON	NA	
7% NO 1005-00 1005-00 1005-00 1005-00 NO NO 9% YES 2.466-00 3.466-01 3.466-01 3.466-01 0.005-01 0.00 NA 9% YES 2.466-01 3.466-01 3.466-01 3.466-01 3.466-01 0.00 NA 10% YES 2.466-01 3.466-01 3.466-01 3.466-01 3.466-01 0.00 NA 10% YES 2.466-01 3.466-01 3.466-01 3.466-01 3.466-01 0.00 NA 10% YES 1.006-01 3.466-01 3.466-01 3.466-01 3.466-01 0.00 NA 10% YES 1.006-01 1.206+00 1.206+01 NO NA NA 10% YES 1.006-01 1.206+01 3.466-01 3.466-01 3.466-01 NO NA 10% YES 1.006-01 1.206+01 3.406-01 NO NA NA 10% YES	56	77%	YES	1.02E+00	1.41E+04		YES	ON	VFS
9% YIS 112F-03 7.6F-04 3.10F-04 3.10F-04 YIS YIS 1.12F-03 7.65F-04 3.10F-04 YIS YIS 7.0% YIS 3.10F-01 YIS YIS 7.0% YIS 7.0% YIS 3.10F-01 7.0% YIS 3.10F-01 YIS 7.0% YIS 3.10F-01 YIS 7.0% YIS 3.10F-01 YIS 7.0% YIS 3.10F-01 YIS YIS 3.10F-01 YIS YIS YIS 3.10F-01 YIS YIS YIS 3.10F-01 YIS YIS <td>49</td> <td>. 2%</td> <td>NO</td> <td>1.00E+00</td> <td>1.00E+00</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>SI ON</td>	49	. 2%	NO	1.00E+00	1.00E+00	NA	NA	NA	SI ON
9% YIS 2.40E-00 3.80E+02 3.80E+02 0.00E-00 3.80E+03 3.00E-00 3.80E+03 0.00 NA 7% YIS 2.00E-00 3.80E+01 3.00E-01 3.00E-03 0.00 NA 7% YIS 2.00E-00 3.90E-01 3.10E+02 0.00 NA 10% YIS 1.00E-01 3.90E-01 3.10E+02 0.00 NA 17% YIS 1.00E-01 3.90E-01 3.10E+02 0.00 NA 17% YIS 1.00E-01 3.90E-01 3.10E+02 0.00 NA 17% YIS 1.00E-00 3.80E+01 0.10E+01 NO NA 100% YIS 1.00E+00 3.80E+01 0.10E+02 NO NA 100% YIS 1.00E+00 3.80E+01 0.10E+02 NO NA 100% YIS 1.00E+01 1.00E+01 NO NA NA 100% YIS 1.00E+01 3.60E+01 3.	46	98%	YES	1.15E+03	7.65E+04	3.10E+04	YES	UN	VFS
7% YES 3.00E-00 3.34E-01 3.04E-01 3.34E-01 3.04E-01 0.07 0.07 10% YES 2.00E-03 3.94E-01 3.04E-01 3.04E-01 0.07 0.07 10% YES 3.04E-01 3.04E-01 3.04E-01 3.04E-01 3.04E-01 0.07 0.07 17% YES 1.00E-00 3.34E-01 3.04E-01 3.10E-01 0.07 0.07 17% YES 1.00E-00 3.34E-01 3.10E-01 3.10E-01 0.07 0.07 17% YES 1.00E-00 3.34E-01 3.10E-01 3.10E-01 0.07 0.07 100% YES 3.04E-01 3.04E-01 3.04E-01 3.04E-01 0.07 <td< td=""><td>56</td><td>36%</td><td>YES</td><td>2.40E+00</td><td>3.80E+02</td><td></td><td>CN</td><td>NA</td><td>NON I</td></td<>	56	36%	YES	2.40E+00	3.80E+02		CN	NA	NON I
70% YES 2.08-01 5.96-01 5.96-01 5.96-01 5.06 5.06 5.06	46	%86	YES	3.00E+00	3.34E+03		ON	NA	ON N
100% YES 3.96E-01 3.96E-01 3.96E-01 3.96E-01 3.96E-01 3.06E+02 NO NO 17% YES 1.00E-01 1.00E-01 1.00E-01 NO NO <td>56 .</td> <td>20%</td> <td>, YES</td> <td>2.10E-03</td> <td>5.90E-01</td> <td></td> <td>CN</td> <td>NA</td> <td>ON ON</td>	56 .	20%	, YES	2.10E-03	5.90E-01		CN	NA	ON ON
41% YES 100E-01 3.40E-01 3.40E-	I	100%	YES	3.96E-01	3.96E-01		ON CN	NA .	ON .
20% YES 1.00E-01 1.50E+00 5.10E+02 NO NA 4% NG 1.20E+00 1.50E+01 1.50E+01 5.10E+02 NO NA 4% NG 1.20E+00 1.50E+01 1.50E+01 5.10E+02 NO NA 1% YES 4.00E+00 3.80E+01 1.60E+01 3.10E+02 NO NA 10% YES 3.40E+00 3.80E+01 1.60E+02 NO NA	56	41%	YES	1.00E+00	3.40E+01	2.00E+03	ON .	NA	
18% YES 4.50E-01 1.00E+00 1.00E+00 1.00E+00 1.00E+00 NA	56	20%	YES	1.00E-01	1.50E+00	5.10E+02	ON	NA	ON
4% NO 1.20E+01 NA <	55	18%	YES	4.50E-01	1.60E+01	5.10E+02	ON ON	NA	
11% YES 4.00E+00 3.80E+01 6.10E+04 NO NO 100% YES 3.40E+00 3.80E+02 3.80E+02 3.80E+02 NO NO 100% YES 1.00E+02 3.80E+02 3.80E+02 3.10E+04 NO NO 2% YES 1.00E+02 3.45E+00 3.45E+01 3.45E+01 NO NO NO 2% YES 1.00E+01 2.49E+01 2.49E+01 2.49E+01 NO NO NO NO 2% YES 1.80E+01 2.49E+01 2.49E+01 2.49E+01 NO NO NO 2% YES 2.49E+01 2.49E+01 2.49E+01 2.49E+01 NO NO NO 2% YES 2.49E+01 2.49E+01 2.49E+01 2.49E+01 NO NO NO 2% YES 2.49E+01 2.49E+01 2.44E+01 2.44E+01 NO NO NO 2% YES 2.06E+01 2	57	4%	NO	1.20E+00	1.20E+01	NA NA	AN -	NA	ON ON
100% YES 3.40E+00 3.89E+02 1.00E+00 3.89E+02 1.00E+04 YES 3.40E+01 YES 3.40E+01 YES No YES No YES No 3.41E+04 No No YES No No YES No No <td>32</td> <td>41%</td> <td>YES</td> <td>4.00E+00</td> <td>3.80E+01</td> <td>6.10E+04</td> <td>UN N</td> <td>AN AN</td> <td></td>	32	41%	YES	4.00E+00	3.80E+01	6.10E+04	UN N	AN AN	
100% YES 1.00E+00 6.29E+02 3.10E+04 NO 3.43E+00 NA NO 2% NO 3.43E+00 3.43E+00 3.43E+00 3.43E+00 NA NO NA NO 2% YES 2.49E-01 2.49E-01 2.49E-01 2.49E-01 NO NA NO NA	46	100%	YES	3.40E+00	3.89E+02	1.00E+02	, YFS	UN	VEC
2% NO 343E+00 343E+00 NA NA 2% YES 2.49E-01 3.43E+00 3.43E+00 NA NA 2% YES 2.49E-01 2.49E-01 5.00E+01 NA NA 2% YES 1.18E-01 2.49E-01 2.49E-01 NA NA 2% YES 1.18E-01 2.39E-01 NA NA NA 2% NO 3.43E-01 3.43E-01 3.43E-01 NA NA 18% YES 1.92E+00 3.43E-01 3.43E-01 NA NA 18% YES 1.92E+01 3.43E-01 NA NA NA 18% YES 1.92E+00 9.40E+010 3.43E-01 NA NA 18% YES 1.92E+01 3.43E-01 NA NA NA 19% NO NA NA NA NA NA 19% YES 3.30E-03 1.40E+01 1.20E+00 9.00E+	56	100%	YES	1.00E+00	6.29E+02	3.10E+04	NO	NA	NO N
2% NO 3.43E+00 3.43E+00 3.43E+00 NA NA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>)</td>)
13% YES 2.49E-01 5.00E+01 NA NA<	55	2%	ÛN	3 43ETW	2.43E-00		;		
2% NO 2.39E-01 2.39E-01 2.39E-01 0.00 NA NO NA <	~	13%	VFS	2 40F_01	2 40E 01		EN	V N	ON
5% YES 118E-01 180E-01 9.20E+02 NA 2% YES 118E-01 180E-01 9.20E+02 NO NA 2% YES 1.92E+00 9.40E+00 9.20E+02 NO NA 2% YES 1.92E+00 9.40E+00 9.20E+02 NO NA 2% YES 1.92E+00 9.40E+00 9.20E+02 NO NA 2% YES 1.92E+00 9.20E+01 0.00 NA NA 2% YES 2.30E-01 9.20E+01 1.19E+00 NA NA 2% YES 3.30E-01 9.20E+01 1.20E+02 NA NA 2% YES 3.30E-03 1.40E+01 1.20E+02 NA NA 2% NO 7.00E-03 7.00E-03 NA NA NA 2% NO 7.30E-01 9.20E+00 9.20E+04 NO NA 2% NO 7.00E-03 7.00E-03 NA NA NA 2% NO 6.20E+00 9.20E+04 NO NA NA 2% NO 2.44E-01 2.44E-01 NA NA NA 2% NO 1.14E+	50	2%		2 39F_01	2 305 01		Dz	NA	ON
2% NO 3.43E-01 3.43E-01 3.43E-01 NA NO NA NA <td< td=""><td>57</td><td>5%</td><td>YES</td><td>1 185-01</td><td>1 POFINI</td><td>NA 0 705+07</td><td>AN A</td><td>NA</td><td>ON</td></td<>	57	5%	YES	1 185-01	1 POFINI	NA 0 705+07	AN A	NA	ON
18% YES 1.92E+00 9.450.00 9.46E+00 9.20E+02 NA <	58	2%	UN N	3 435-01	3.43E_01	5.20E-TU3		NA	ON
4% NO 2.00E-01 5.50E-01 NA NO NA NO NA NO NA NA <td>П</td> <td>18%</td> <td>YES</td> <td>1 975400</td> <td>0 405400</td> <td></td> <td></td> <td>NA</td> <td>ON</td>	П	18%	YES	1 975400	0 405400			NA	ON
2% NO 1.19E+00 1.19E+00 NA NA NA 5% YES 7.80E-01 9.20E+01 1.9E+00 NA NA NA 5% YES 7.80E-01 9.20E+01 1.20E+02 NA NA NA 19% YES 7.80E-03 1.40E+01 6.10E+04 NO NO NO NO NA <	48	4%	NO	2.00E-01	5 50F_01	2.205702 NA		NA NA	YES (I)
5% YES 7.80E-01 9.20E+01 1.20E+02 NA 19% YES 3.30E-03 1.40E+01 1.20E+04 NO NA 2% NO 7.00E-03 1.40E+01 6.10E+04 NO NA 2% NO 7.00E-03 1.40E+01 6.10E+04 NO NA 2% NO 6.20E+00 6.20E+00 NA NA NA 76% YES 2.60E-03 4.57E+00 9.20E+04 NO NA 76% YES 2.60E-03 4.57E+00 9.20E+04 NO NA 76% YES 2.41E-01 2.41E-01 NA NA 7% NO 4.40E-03 4.40E-03 NA NA 7% YES 5.10E-02 2.26E+01 9.00E+04 NA	57	2%	NO	1.19E+00	1 1954-00	NA	VN VN	NA N	ON ON
19% YES 3.30E-03 1.40E+01 6.10E+04 NO NO 2% NO 7.00E-03 7.00E-03 7.00E-03 7.00E-03 NA NO NA 2% NO 6.20E+00 6.10E+04 NO NA NO 2% NO 6.20E+00 6.20E+00 NA NA NA NA 76% YES 2.60E-03 4.57E+00 9.20E+04 NO NA NA 76% YES 2.60E-03 4.57E+00 9.20E+04 NO NA NA 76% NO 2.41E-01 2.41E-01 NA NA NA 2% NO 4.40E-03 NA NA NA NA 2% NO 1.14E+01 1.14E+01 NA NA NA 7% YES 5.10E-02 2.26E+01 2.06+03 NA NA	57	5%	YES	7.80E-01	9.206+01	1 206402	C N		DN OX
2% N0 7.00E-03 7.00E-03 7.00E-03 0.0 NA NO 2% N0 6.20E+00 6.20E+00 NA NA NA NA 76% YES 2.60E-03 4.57E+00 9.20E+04 NO NA 76% YES 2.60E-03 4.57E+00 9.20E+04 NO NA 76% YES 2.41E-01 2.41E-01 NA NO NA 2% NO 4.40E-03 4.40E-03 NA NA NA 2% NO 1.14E+01 1.14E+01 NA NA NA 7% YES 5.10E-02 2.26E+01 2.06E+03 1.14E+01 NA	47	19%	YES	3.30E-03	1 4054-01	6 10E+04		NA	ON S
2% NO 6.20E+00 6.20E+00 NA	45	2%	NO	7.00E-03	7.00E-03	NA		NA N	ON ON
76% YES 2.60E-03 4.57E+00 9.20E+04 NO NA NO 2.41E-01 2.41E-01 NA	48	2%	NO	6.20E+00	6.20E+00	AN AN			DN SX
2% NO 2.41E-01 2.41E-01 2.41E-01 NA NA <td>29</td> <td>76%</td> <td>YES</td> <td>2.60E-03</td> <td>4.57E+00</td> <td>9 20F+04</td> <td>CN CN</td> <td></td> <td>ON OX</td>	29	76%	YES	2.60E-03	4.57E+00	9 20F+04	CN CN		ON OX
2% NO 4.40E-03 4.40E-03 4.40E-03 NA NA </td <td>55</td> <td>2%</td> <td>NO</td> <td>2.41F-01</td> <td>2415-01</td> <td>NA</td> <td></td> <td>AN A</td> <td>ON .</td>	55	2%	NO	2.41F-01	2415-01	NA		AN A	ON .
2% NO 1.14E+01 1.14E+01 NA	49	2%	ON	4.40E-03	4.40F-03	AN AN		NA	ON ()
7% YES 5.10E-02 2.26E+01 2.06E+02 2.25E+01 2.06E+02 2.25E+01 2.00E+02 1.00 VI	54	2%	NO	1.14E+01	1 14E+01	VN		NA N	ON S
	57	7%	YES	5 10F-02) JKETUI	2006-02	- AN	NA.	0N

1 ~63

1.111.17-

•

Number of Detections (a)		45	- 8 4	40	16	18	54	2	10	43	1	45	54	45	39	1	23	11	10	2	13	46	56			1	-	3	-	2	2	I	3	6	ł	I	22			-	V
Chemical	Metals/Inorganics	Alemieum	Arsenic Arsenic	Barium	Beryllium	Cadmium	Chromium	Chromium (VI)	Cobalt	Copper	Cyanide	Iron	Lead	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Tin	Vanadium	Zinc _	VOCs	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloroethene, total	trans-1,2-Dichloroethene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2-Butanone	2-Hexanone	4-Methyl-2-pentanone	Acetone	Benzene	Carbon Disulfide	Carbon Tetrachloride	Chlorohenzene

•

1

١.

TABLE A-2-2

SELECTION OF CONSTITUENTS OF POTENTIAL CONCERN IN SURFACE AND SUBSURFACE SOILS (0-10 FT) HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond Richmond

L

• 2

- -

			Minimum Detected	Maximum Detected	Industrial Soil Risk-Based			
Number of Analyses (a)	Frequency of Detection (b)	Frequency of Detection ≥ 5%?	Concentration (mg/kg) (a)	Concentration (mg/kg) (a)	Concentration (RBC) (mg/kg) (c)	Maximum Detected Concentration > RBC?	Site Concentrations > Background (d) ?	Direct Contact Soil COPC?
58	3%	ON	1.00E-03	1.40E+01	NA	NA	NA	ON
57	%6	YES	4.75E-03	2.54E+00	1.00E+04	NO	NA	NO
37	59%	YES	4.68E-03	1.80E+00	3.80E+02	ON	NA	NO
2	50%	YES	1.20E-03	1.20E-03	1.00E+03 (h)	NO	NA	ON
57	7%	YES	5.67E-03	2.84E+00	5.30E+00	, ON	NA	NO
57	19%	YES	1.00E-03	6.60E+01	8.20E+03	ON	NA	NO
57	11%	YES	2.97E-03	5.34E+01	7.20E+00	YES	NA	YES
57	2%	NO	3.00E-03	3.00E-03	4.00E+00	NO	NA	YES (i)
Q	50%	YES	1.28E-02	4.60E+00	2.00E+04 (h)	NO	NA	NO
9	50%	YES	5.63E-03	2.35E+00	2.00E+04 (h)	ON -	NA	NO
39	3%	NO	1.60E-02	1.60E-02	NA	NA	NA	ON
53	19%	YES	1.90E-01	9.30E+01	6.10E+03	ON	NA	NO
55	4%	NO	8.27E-02	7.79E-01	NA	NA 1	NA	ON
55	24%	YES	2.50E-01	7.00E+02	3.10E+04	ON	NA	ON
55	33%	YES	4.60E-01	3.60E+02	3.90E+00	YES	NA	YES
55	31%	YES	3.70E-01	3.40E+02	3.90E-01	YES	NA	YES
55	36%	YES	5.80E-01	5.40E+02	3.90E+00	YES	NA	YES
55	25%	YES	5.60E-03	1.90E+02	3.10E+03 (h)	NO	NA	NO
55	25%	YES	5.80E-01	5.40E+02	3.90E+01	YES	NA	YES
6	50%	YES	3.06E-01	7.95E+00	1.40E+02	ON .	NA	NO
55	35%	YES	2.80E-01	4.00E+02	3.90E+02	YES	NA	YES
55	15%	YES	1.80E-01	7.20E+01	3.90E-01	YES	NA	YES
55	38%	YES	1.54E-01	7.00E+02	4.10E+03	ON	NA	NO
55	20%	YES	1.80E-01	8.70E+01	4.10E+03	ON .	NA	NO
55	27%	YES	1.90E-01	1.80E+02	3.90E+00	YES	NA	YES
45	7%	YES	7.08E+00	3.93E+02	4.10E+02	NO	NA	NO
55	13%	YES	7.90E-02	5.32E+01	2.00E+03	ON .	NA	NO
55	38%	YES	1.35E-01	7.00E+02	3.10E+03 (h)	NO	NA	ON
55	36%	YES	1.16E-01	9.00E+02	3.10E+03	ON ,	NA	ON
6	17%	YES	7.46E-01	7.46E-01	3.10E+02	NO	NA	NO
55	4%	NO	1.43E+00	7.40E+00	NA	NA	NA	ON
45	2%	NO	7.84E-01	7.84E-01	NA	NA	NA	ON
46	7%	YES	6.53E-02	3.17E+00	5.10E+02	NON	NA	ON
39	3%	ON	2.00E-01	2.00E-01	NA	₹Z	NA	QN
55	18%	YES	1.20E-02	1.16E+00	2.00E+02	UN	A N	ON ON
47	15%	YES	1.40E-01	5.31E+01	2.00E+02 (e)	CN	NA	ON ON
55	11%	YES	4.95E-01	4.00E+00		CN	NA	ON
55	2%	YES	2 00E-01	4 60F-01			VN	
5	% 0%	VFS	4 70F-01	2 40F+00		ON ON		DN QN
F J		}		NN - 1771-17		2		D.

2 of 3

Chloroform Ethylbenzene Methylenzene Methylenzene Methylenzene Fetrachloroethene Toluene Trichloroethene Vinyl chloride M.p-Xylene Vinyl chloride M.p-Xylene M.p-Xylene M.p-Xylene M.p-Xylene M.p-Xylene M.p-Xylene M.p-Xylene M.p-Xylene M.p-Xylene M.p-Xylene Benzo(s)fluoranthene Benzo(s)fluoranthene Benzo(s)fluoranthene Benzo(s)fluoranthene Chrysene M.p-Methylphenol 2.4-Dichorophenol 2.4-Dichorophenol Benzyl alcohol Benzyl alcohol Dibenzofuran Di-n-butyl phthalate Dibenzofuran		Detections (a)
Ethylbenzene Methylene chloride P-Isopropyltoluene Tetrachloroethene Trichloroethene Vinyl ethloride m.p-Xylene Vinyl ethloride m.p-Xylene vyienes, total M-Xylenes, total M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-M-	Chloroform	2
Methylene chloride p-Isopropyltoluene Tetrachloroethene Toluene Trichloroethene Vinyl chloride m.p-Xylenes, total m.p-Xylenes, total M.p-Xylenes, total M.p-Xylenes, total Acmaphthene Xylenes, total Acmaphthene Acmaphthylene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a,h)authracene Fluoranthene Fluoranthene Fluoranthene Pyrene Dibenzo(1,2,3-cd)pyrene Z-Methylphenol 2,4-Dimethylphenol 2,4-Dimethylphenol Benzyl alcohol Benzyl alcohol Dibenzofuran Di-n-butyl phthalate Dibenzofuran	Ethylbenzene	s.
p-Isopropyltoluene Tetrachloroethene Toluene Trichloroethene Vinyl ethloride m.p-Xylene o-Xylene vylenes, total m.p-Xylene o-Xylenes, total m.p-Xylene o-Xylenes, total M.p.Xylenes, total PAHs Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(s)fluoranthene Benzo(s)fluoranthene Benzo(s)fluoranthene Benzo(s)fluoranthene Benzo(s)fluoranthene Benzo(s)fluoranthene Chrysene Benzo(s)fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Phenanthrene Phenanth	Methylene chloride	22
Tetrachloroethene Toluene Toluene Vinyl ehloride m.p-Xylene o-Xylene o-Xylene co-Xylene co-Xylene m.p-Xylenes, total <u>PAHs</u> Acenaphthene Xylenes, total Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Carbazole Chrysene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Pyrene Dibenzo(a,b)authracene Pyrene Pyrene Pyrene Pyrene Pyrene Dibenzofturan Benzyl alcohol Benzyl alcohol Benzyl alcohol Dibenzofturan Dibenzofturan Dibenzofturan	p-Isopropyltoluene	I
Toluene Trichloroethene Vinyl chloride m.p-Xylene o-Xylene o-Xylene o-Xylene Xylenes, total Xylenes, total Acenaphthene Xylenes, total Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Carbazole Chrystene Benzo(a)pyrene Carbazole Chrystene Benzo(a)pyrene Fluoranthene Fluoranthene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Dibenzofuran Benzyl alcohol Benzyl alcohol Benzyl alcohol Dibenzofuran Dibenzofuran Dibenzofuran Dibenzofuran	Tetrachloroethene	4
Trichloroethene Vinyl chloride m.p-Xylene o-Xylene in P-Xylene o-Xylenes, total PAHs Acenaphthene Xylenes, total Acenaphthene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a,b)authracene Benzo(a)pyrene Carbazole Chrystene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Pyrene Pyrene Pyrene Pyrene Pyrene Dibenzo(a,b)authracene Pyrene Pyrene Dibenzo(1,2,3-cd)pyrene Z,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol Benzyl alcohol Benzyl alcohol Benzyl alcohol Dibenzofuran Di-n-butyl phthalate Dibenzofuran	Toluene	П
Vinyl chloride m.p-Xylene o-Xylene i Xylenes, total Xylenes, total Zenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Acenaphthene Benzo(a)nhorranthene Benzo(b)nhorranthene Benzo(s)nhorranthene Benzo(s)nhorranthene Benzo(s)nhorranthene Benzo(s)nhorranthene Benzo(s)nhorranthene Fluoranthene Fluoranthene Fluoranthene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Dibenzofirran SYOCS 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol Benzyl alcohol Benzyl alcohol Dibenzofirran Dibenzofirran Dibenzofirran Dibenzofirran	Trichloroethene	9
m,p-Xylene o-Xylenes, total Xylenes, total EXPLIN A cenaphthene A cenaphthylene A cenaphthylene A cenaphthylene A cenaphthylene A mthracene Beuzo(a)pyrene Beuzo(a)pyrene Beuzo(a)pyrene Beuzo(a)pyrene Benzo(ghi)perylene Benzo(ghi)perylene Benzo(s,h)authracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Dibenzofinan SYOCs 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol Benzyl alcohol Benzyl alcohol Benzyl alcohol Dibenzofuran Dibenzofuran Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate	Vinyl chloride	1
o-Xylenes, total Xylenes, total EAHs Acenaphthene Acenaphthylene Acenaphthylene Anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(sh)perylene Benzo(sh)perylene Carbazole Chrysene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Phenathrene Pyrene P	m,p-Xylene	ŝ
Xylenes, total <u>PAHs</u> Acenaphthene Acenaphthylene Acenaphthylene Arthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(s,h)authracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Prenathrene Prenathrene Pyre	o-Xylene	3
PAHS A cenaphthene A cenaphthylene A nithracene Anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(k)fluoranthene Benzo(a)pyrene Benzo(a,h)anthracene Benzo(a,h)anthracene Fluoranthene Phenanthrene Pyrene Stenzylalonol Stenzylalonol <td>Xylenes, total</td> <td>-</td>	Xylenes, total	-
Acenaphthene Acenaphthylene Anthracene Benzo(a)aptracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Carbazole Chrystene Benzo(k)fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Dibenzofinan SYOCs 2,4-Dichlorophenol 2,4-D	PAHs	
A cenaphithylene Anthracene Benzo(a) anthracene Benzo(a) prene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(k) fluoranthene Benzo(k) fluoranthene Carbazole Chrysene Chrysene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Dibenzofirran Dibenzofirran Dibenzofirran Dibenzofirran Dibenzofirran	Acenaphthene	10
Anthracene Benzo(a) anthracene Benzo(a) pyrene Benzo(a) pyrene Benzo(k) fluoranthene Benzo(k) fluoranthene Benzo(k) fluoranthene Carbazole Chrysene Chrysene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Phenathrene Pyren	Acenaphthylene	2
Benzo(a)anthraccne Benzo(a)pyrene Benzo(a)pyrene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(k,fluoranthene Carbazole Chrysene Carbazole Chrysene Chrysene Chrysene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Phenanthene Phenanthene Phenanthene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Pyrene Dienzolunal SYOCS 2,4-Dinethylphenol 2,4-Dinethylphenol 2,4-Dinethylphenol 2,4-Dinethylphenol 2,4-Dinethylphenol 2,4-Dinethylphenol 2,4-Dinethylphenol Benzyl alcohol Benzyl alcohol Dibenzofturan Di-n-butyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate	Anthracene	13
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Carbazole Carbazole Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Phenanthrene Phenanthrene Phenanthrene Pyrene SYOCS 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol Benzyl alcohol Benzyl alcohol Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate	Benzo(a)anthracene	18
Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Carbazole Carbazole Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluoranthene Fluoranthene Phenanthrane Phenanthrane Phenanthrane Pyrene Pyrene SYOCS 2,4-Ditchlorophenol 2,4-Ditchlorophenol 2,4-Ditchlorophenol 2,4-Ditchlorophenol Benzyl alcohol Benzyl alcohol Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate	Benzo(a)pyrene	17
Benzo(ghi)perylene Benzo(k)fluoranthene Carbazole Chrysene Dibenzo(a,h)authracene Fluoranthene Fluoranthene Fluoranthene Phenanthrene Naphthalene Naphthalene Naphthalene Phenanthrene Pyrene Pyrene 2.4-Ditchlorophenol 2,4-Ditch		20
Benzo(k)fluoranthene Carbazole Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno((1,2,3-cd)pyrene Naphthalene Naphthalene Naphthalene Pyrene Pyrene Pyrene 2.4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol Benzyl alcohol bis(2-Ethythexyl)phthalate Dibenzofuran Dibenzofuran Di-n-octyl phthalate Di-n-octyl phthalate	Benzo(ghi)perylene	14
Carbazole Chrysene Fluoranthene Fluoranthene Fluoranthene Fluorene Indeno((1,2,3-cd)pyrene 2-Methylinaphthalene Naphthalene Phenanthrene Pyrene Pyrene 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol Benzyl alcohol bis(2-Ethylihenol bis(2-Ethylihenol Dibenzofuran Dibenzofuran Dibenzofuran Di-n-octyl phthalate Di-n-octyl phthalate	Benzo(k)fluoranthene	14
Chrysene Dibenzo(a,h)authracene Fluoranthene Fluoranthene Indeno((1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Pyrene 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol Benzyl alcohol bis(2-Ethylibenol bis(2-Ethylibenol Dibenzofuran Dibenzofuran Dibenzofuran Di-n-octyl phthalate Di-n-octyl phthalate	Carbazole	£
Dibenzo(a,h)authracene Fluoranthene Fluoranthene Indeno((1,2,3-cd)pyrene 2-Methylnahene Naphthalene Naphthalene Phenanthrene Pyrene Pyrene Pyrene 2,4-Dichlorophenol	Chrysene	19
Fluoranthene Fluoranthene Indeno((1,2,3-cd)pyrene 2-Methylinaphthalene Naphthalene Naphthalene Pyrene Pyrene Pyrene Pyrene 2,4-Dichlorophenol 2,4-	Dibenzo(a,h)authracene	∞]
ruouene Indeno((1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Pyrene 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Direntylphenol Benzyl alcohol bis(2-Ethylhenol bis(2-Ethylhenol bis(2-Ethylhenol Dibenzofuran Di-n-octyl phthalate Di-n-octyl phthalate	Fluoranthene	21
 Indernot (1, 1, 2, -co)pyrene 2-Methylnaphthalene Naphthalene Naphthalene Pyrene Pyrene Pyrene Pyrene 2, 4-Dichlorophenol 3, 4-Dichlorophenol 4, 4-Methylphenol 4, 4-Methylphenol 4, 4-Methylphenol 4, 4-Methylphenol 4, 4-Methylphenol<td></td><td>= ;</td>		= ;
 z-menyinapinnatene Napihthalene Phenanthrene Pyrene Pyrene Z,4-Dichlorophenol Z,4-Dimethylphenol Z,4-Dimethylphenol Bernzyl alcohol Bis(2-Ethylhenol 	IDGENO((1,2,3-cd)pyrene	<u></u>
Phenanthrene Pyrene Pyrene <u>SVOCs</u> 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Methylphenol 4-Methylphenol Benzyl alcohol bis(2-Ethylbexyl)phthalate bis(2-Ethylbacyl)phthalate Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate	2-Meulyinapiinaiciic Narbihalana	ጎኮ
Pyrene <u>SVOCs</u> 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Methylphenol 4-Methylphenol Benzyl alcohol bis(2-Ethythexyl)phthalate bis(2-Ethythexyl)phthalate Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate	Phenanthrene	, I <i>C</i>
<u>SVOCs</u> 2,4-Dichlorophenol 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Berzyl alcohol bis(2-Ethylihexyl)phthałate Diberzofuran Diberzofuran Di-n-octyl phthalate Di-n-octyl phthalate	Pyrene	50
2.4-Dichlorophenol 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Benzyl alcohol bis(2-Ethythexyl)phthalate bis(2-Ethythexyl)phthalate Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate		
2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Benzyl alcohol bis(2-Ethylbexyl)phthalate Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate	<u>31005</u> 34 Dickformhanol	-
2,4Dimeunyipnenoi 2-Methyiphenoi Benzyl alcohoi bis(2-Ethythexyl)phthalate Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate		
 z-wearypuenol 4-Methylphenol Benzyl alcohol bis(2-Ethylbexyl)phthalate Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate 	2,4+Dimetryiphenol	7 -
4-Methylphenol Benzyl alcohol bis(2-Ethylbexyl)phthalate Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate		- (
betteyt arcutot bis(2-Ethylbexyl)phthalate Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate	4-Methylphenol Beers I alsochal	، ۲
bis(2-t-thythexyl)phthatate Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate	Benzyl alconol	- :
ouran uyi phihalate zyi phihalate		<u>9</u> r
uyi phutatate xyl phthalate	Dioenzoluran Di - turui -tutulur	- \
	Di n. cotri abibalate	0 0
		'n 4

.

TABLE A-2-2

SELECTION OF CONSTITUENTS OF POTENTIAL CONCERN IN SURFACE AND SUBSURFACE SOILS (0-10 FT) HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

Number of Analyses (a)	Frequency of Detection (b)	Frequency of Detection 2.5%?	Minimum Detected Concentration (mg/kg) (a)	Maximum Detected Concentration (mg/kg) (a)	Industrial Soil Risk-Based Concentration (RBC) (mg/kg) (c)	Maximum Detected Concentration > RBC?	Site Concentrations > Background (d) ?	Direct Contact Soil COPC?
55	15%	YES	2.10E-03	5.26E-01	1.206+01	ON -	٩N	ÛN
55	15%	YES	2.20E-03	7.90E-02	8.40E+00	CN	NA	ON ON
55	7%	YES	1.10E-02	1.20E-01	8.40E+00	UN	NA	CN CN
53	4%	ON	1.30E-03	1.20E-02	NA	NA	NA	ON N
46	2%	NO	1.50E-01	1.50E-01	NA	NA	AN	ON
50	2%	ON	4.70E+01	4.70E+01	1.40E+00	YES	NA	YES ()
26	35%	YES	6.40 <u>E+0</u> 0	4.86E+0 3	NA	AN NA	٩N	NA
26	27%	YES	6.82E+01	1.23E+04	NA	NA	NA	AN
45	24%	YES	1.00E+00	1.55E+02	NA	NA.	NA	NA
26	15%	YES	3.74E+01	7.01E+01	NA	NA	NA	NA

the Region 3 RBC table. The constituent has been withdrawn from the current version. onservative value for chromium.

PREPARED/DATE MKB 9/22/05 CHECKED/DATE LMS 5/9/06

3 of 3

	Chemical	Number of Detections (a)	Number of Analyses (a)	Frequency of Detection (b)	Frequency of Detection ≥ 5%?	Minimum Detected Concentration (mg/kg) (a)	Maximum Detected Concentration (mg/kg) (a)	Industrial Soil Risk-Based Concentration (RBC) (malke) (A)	Maximu
							(-) (9- 4)	(1) (9u 8m)	
	Pesticides	G	22						
		• •	5.5	e%C1	YES	2.10E-03	5.26E-01	1.20E+01	
	4,4-DDE	×c	3	15%	YES	2.20E-03	7.90E-02	8.40E+00	
	4,4'-DDT	4	55	7%	YES	1.10E-02	1.20E-01	8.40E+00	
	Dieldrin	2	53	4%	NO	1.30E-03	1.20E-02	NA	-
	Technical Chlordane	-	46	2%	NO	1.50E-01	1.50E-01	NA	
	PCBs								
	PCB-1260	, I	50	2%	NO	4.70E+01	4.70E+01	1.40E+00	
	Petroleum Hydrocarbons								-
	Diesel Fuel	6	26	35%	YES	6.40E+00	4 R6F+03	NA	
	Heavy Oil	4	26	27%	YES	6.82E+01	1 235404	AN AN	
	Total Petroleum Hydrocarbons	II	45	24%	YES	1.00E+00	1.55E+02	AN AN	-
	Total Unknown Hydrocarbons	4	26	15%	YES	3.74E+01	7.01E+01	NA	-
Bolded ct	Bolded chemicals exceed one or more screening criteria modes Millianes of Anniosity and billianess of soil	g criteria							
mg/kg	Milligrams of chemical per kilogram of soil	of soil							
RBC	Risk-Based Concentration								
COPC	Constituent of notential concern								
PAHs	Polycyclic annatic hydrocarhons								
VOCs	Volatile organic compounds								• •
SVOCs	Semivolatile organic compounds								
PCB	Polychlorinated biphenyls								-
NA	Not applicable								-
(9)	Cas Attochancet 1 for rite date								-
(g)	Ale Principrent 1 for site data.								
(a) (3	(NO. DETECTIONS' NO. ADALYSES) X 100.								
9 (9	See Attachment 2 for background commanison results.	marison results.							-
(e)	RBC value listed was obtained from the April 2005 version of the Region 3 RBC table. The constituent has been withdrawn from the current version.	he April 2005 version of	f the Region 3 RBC (table. The constitute	nt has been withdrawn	from the current version.			
(j)	Value for chromium VI used as a surrogate since it is the most conservative value for chromium.	ogate since it is the most	t conservative value	for chromium.					-
(g)	From Adult Lead Methodology Frequently Asked Questions, www.epa.gov/superfund/programs/lead/almfaq.htm, April 2004.	ently Asked Questions, v	www.epa.gov/superf	fund/programs/lead/z	almfaq.htm, April 2004				
æ	Value for mercuric chloride used as a surrogate for mercury, cumene used as a surrogate for p-isopropyltoluene; total xylene used as a surrogate for m,p- and o-xylene; pyrene used as surrogate for henzo(ghi)perylene and phenanthrene	surrogate for mercury, c	sumene used as a sur	Togate for p-isoprop.	yltoluene; total xylene	used as a surrogate for m,p-	and o-xylene; pyrene used a su	rogate for benzo(ghi)perylene and ph	enanthrene.
Ð	I otal 1,2-dichloroethene and vinyl chloride are infrequently detected, but were selected as COPCs because they are potential break-down products of trichloroethene.	loride are infrequently d	etected, but were sel	ected as COPCs bec	ause they are potential	break-down products of tric	hloroethene.		
Ð	Autiough r CD-1200 was detected at a very low frequency, it is included as a COPC because of its toxicity	a very tow frequency, it i	is included as a UUF	C because of its tox	icity.				

TAL 1-2-3	TION OF EXPOSURE PAT	ALTH RASELINE RISK A
	TION	ALTH:

ATHWAYS K ASSESSMENT HEALTH BASELINE KISK ASSE: OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia SELECTIC HUMAN HEAL

		:						
Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Analysis	of Exposure Pathway
Current	Surface Soil	Soil	Industrial Use	Outdoor Industrial Worker	Adult	Ingestion	Quant	Pathway potentially complete.
				Outdoor Industrial Worker	Adult	Dermal	Quant	Pathway potentially complete.
		Air	Fugitive Dust	Outdoor Industrial Worker	Adult	Inhalation	Quant	Pathway potentially complete.
Future	Surface and Subsurface Soils	Soil	Industrial Use	Outdoor Industrial Worker	Adult	Ingestion	Quant	Pathway potentially complete.
				Outdoor Industrial Worker	Adult	Dermal	Quant	Pathway potentially complete.
		Air	Volatilization	Outdoor Industrial Worker	Adult	Inhalation	Quant	Pathway potentially complete.
		Air	Fugitive Dust	Outdoor Industrial Worker	InbA	Inhalation	Quant	Pathway potentially complete.
Future	Surface and Subsurface Soils	Soil	Industrial Use	Construction Worker	Adult	Ingestion	Quant	Pathway potentially complete.
				Construction Worker	Adult	Dermal	Quant	Pathway potentially complete.
		Air	Volatilization	Construction Worker	Adult	Inhalation	Quant	Pathway potentially complete.
		Air	Fugitive Dust	Construction Worker	Adult	Inhalation	Quant	Pathway potentially complete.
Current/Future	Surface and Subsurface Soils	Air	Vapor Emission	Indoor Industrial Worker	Adult	Inhalation	Quant	Pathway potentially complete.
Current /Future	Groundwater	Groundwater	Tanwater	Indoor Industrial Worker	Adult	Ingestion	None	Facility does not allow and will not allow the use of
			-			J		groundwater as potable water.
				Indoor Industrial Worker	Adult	Dermal	None	Facility does not allow and will not allow the use of
								groundwater as potable water.
				Indoor Industrial Worker	Adult	Inhalation	None	Facility does not allow and will not allow the use of
_								groundwater as potable water.
Future	Groundwater	Groundwater	Incidental Contact	Construction Worker / Outdoor	Adult	Ingestion	None	May come into contact with groundwater during subsurface
			-	Industrial Worker				excavations. Pathway evaluated in HHBRA for OU 6.
				Construction Worker / Outdoor	Adult	Dermal	None	May come into contact with groundwater during subsurface
				Industrial Worker				excavations. Pathway evaluated in HHBRA for OU 6.
			Vapor Emissions in	Construction Worker	Adult	Inhalation	None	May come into contact with groundwater during subsurface
			Trench					excavations. Pathway evaluated in HHBRA for OU 6.
Future	Groundwater	Groundwater	Tapwater	Off-Site Resident	Child/Adult	Ingestion	None	Potential for exposure to hypothetical off-site resident is
								evaluated in the HHBRA for OU 6.
				Off-Site Resident	Child/Adult	Dermal	None	Potential for exposure to hypothetical off-site resident is
	F							evaluated in the HHBRA for OU 6.
		AIL	Water Vapors while	Off-Site Resident	Adult	Inhalation	None	Potential for exposure to hypothetical off-site resident is
			Showering					evaluated in the HHBRA for OU 6.
		Air	Vapor Emissions	Off-Site Resident	Child/Adult Inhalation	Inhalation	None	Potential for exposure to hypothetical off-site resident is

847 128

PREPARED BY: <u>MKB 8/24/05</u> CHECKED BY: <u>LMS 9/23/05</u>

1 of 1

TABLE A-3-1

Ş

HUMAN HEALTH BASELINE RISK ASSESSMENT **EXPOSURE POINT CONCENTRATIONS** OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

.•

Future Indoor Industrial Vapor Concentration Worker, Indoor Air (µg/m3) (h) 1.99E-03 1.87E-03 5.89E-03 (Cbulding) Y Z Z Z Z NA NA NA NA NA NA NA ٧N Future Construction Air Chemical-Dust (mg/m3) (g) (CWdu,c) 1.50E-06 Worker, 1.26E-06 1.66E-06 4.02E-10 6.32E-06 3.37E-06 2.46E-04 3.11E-03 4.96E-03 8.96E-06 6.88E-06 .51E-05 .00E-05 .57E-06 .42E-06 9.00E-07 Construction Worker, Dust (I) (mg/m³) 1.34E-01 1.34E-01 1.34E-01 1.34E-01 Future (CWda) 1.34E-01 1.34E-01 1.34E-01 1.34E-01 1.34E-01 1.34E-01 1.34E-01 1.34E-01 1.34E-01 I.34E-01 I.34E-01 .34E-01 Future Construction Worker, Direct mg/kg) (d) 3.70E+04 Contact (CWdc) 2.32E+04 1.83E+03 9.40E+00 1.12E+01 6.69E+01 1.13E+02 1.24E+01 3.00E-03 5.13E+01 6.72E+00 4.72E+01 7.46E+01 5.65E+01 1.06E+01 2.51E+01 Industrial Worker, Air Future Outdoor **Chemica**-Dust (IWfut,da,c) (mg/m³) (e) 2.72E-05 6.91E-09 9.12E-09 1.71E-05 5.49E-08 8.25E-09 1.35E-06 4.92E-08 2.21E-12 3.77E-08 3.47E-08 8.29E-08 4.15E-08 7.81E-09 L85E-08 4.94E-09 Industrial Worker, Future Outdoor (IWfut,du) (mg/m³) (b) 7.35E-04 '.35E-04 '.35E-04 7.35E-04 7.35E-04 7.35E-04 Dust 7.35E-04 Industrial Worker, Future Outdoor **Direct Contact** (IWfut,dc) (mg/kg) (d) 1.12E+01 1.83E+03 1.24E+01 3.00E-03 2.32E+04 9.40E+00 1.06E+01 2.51E+01 3.70E+04 5.13E+01 5.65E+01 6.69E+01 I.13E+02 6.72E+00 4.72E+01 '.46E+0] Industrial Worker, Air Current Outdoor **Chemical-Dust** (IWcur,du,c) (<u>mg/m³) (c</u>) NA 1.49E-08 7.56E-06 1.55E-05 3.87E-08 9.70E-08 .96E-07 1.83E-07 2.91E-07 2.91E-07 2.52E-08 2.17E-07 NA AN NA NA : . . orker, Dust Outdoor ir,du) (**b**) 222 2 2 2 2 2 2 2 3 Ş

ctor (PEF) of 1.36E+09 m³/kg (USEPA, 1996, Soil Screening Guidance: User's Guide. Publication 9355.4-23). Represents concentration of dust particles in air. nd the recommended upper confidence limit soil chemical concentration derived from surface soil samples (0-2') (Attachment 1).

nd the recommended upper confidence limit soil chemical concentration derived from surface and subsurface soil samples (0-10') (Attachment 1).

istruction work (7.44 x $10^6 \text{ m}^3/\text{kg}$).

129 847

•

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: CMB 8/25/05

l of l

	COPC	Current Ontdoor Industrial Worker, Direct Contact (IWcur,dc) (mg/kg) (a)	Current Outdoor Industrial Worker, Dust (IWcur,du) (mg/m ³)(b)	C Indu
,	<u>Metals/Inorganics</u> Aluminum Arsenic Copper Iron Vanadium	NA 2.03E+01 1.03E+04 2.11E+04 NA	NA 7.35E-04 7.35E-04 7.35E-04 NA	
	<u>VOCs</u> 1,2-Dichloroethene, total Trichloroethene Vinyi chloride	NA NA NA	NA NA NA	
, ,	<u>PAHs</u> Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	2.66E+02 2.49E+02 3.96E+02 3.96E+02 2.95E+02 5.26E+01 1.32E+02	7.35E-04 7.35E-04 7.35E-04 7.35E-04 7.35E-04 7.35E-04	
	PCBs PCB-1260	3.43E+01	7.35E-04	
Notes: mg/kg mg/m ³ mg/m ³ PoPCP PAH PCB NA	Milligrams per kilogram Milligrams per cubic meter Chemical of Potential Concern Volatile Organic Compound Polycyclic Aromatic Hydrocarbon Polychlorinated Biphenyl Not Applicable	, Financial Financial		
	Concentration is the lesser of the ma Derived from the reciprocal of the ar IWcur,dc x IWcur,du x 1E-06 kg/mg. Concentration is the lesser of the max IWfut,dc x IWfut,du x 1x10 ⁻⁶ kg/mg. Reciprocal of installation-specific par CWdc x CWdu x 1 x 10 ⁻⁶ kg/mg. Results from Johnson & Ettinger Moc	f the maximum detected of the ambient Particulat 6 kg/mg. f the maximum detected ⁶ kg/mg. ccific particulate emissio mg. mger Model for Indoor Ai	Concentration is the lesser of the maximum detected concentration and the recommend Derived from the reciprocal of the ambient Particulate Emissions Factor (PEF) of 1.36E IWcur,dc x IWcur,du x 1E-06 kg/mg. Concentration is the lesser of the maximum detected concentration and the recommende IWfut,dc x IWfut,du x 1x10 ⁻⁶ kg/mg. Reciprocal of installation-specific particulate emission factor for construction work (7.4 CWdc x CWdu x 1 x 10 ⁻⁶ kg/mg. Results from Johnson & Ettinger Model for Indoor Air Vapor Intrusion, Attachment 2.	mende 1.36E mende k (7.4 snt 2.

TABLE A-3-2

OCCUPATIONAL ASSUMPTIONS USED IN JOHNSON AND ETTINGER MODEL INDOOR INDUSTRIAL WORKER EXPOSURES HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

Parameter	Value	Justification
Average Soil Temp.	16° C	Average site temperature
Depth Below Grade to Enclosed Space Floor	15 cm	Slab-on-Grade
Depth Below Grade to top of contamination	0 cm	Contamination located at all soil sample depths
Depth Below Grade to bottom of contamination	259 cm	Average depth to water table (8.5ft)
SCS Soil Type	L	Loam – Boring logs indicate a heterogeneous fill mixture of sand, silt, and clay
Soil Dry Bulk Density	1.59 g/cm ³	Loam model default
Soil Total Porosity	0.399 unitless	Loam model default
Soil Water-filled Porosity	$0.148 \text{ cm}^3/\text{cm}^3$	Loam model default
Enclosed Space Floor Thickness	10 cm	Model default
Soil-Building Pressure Differential	40 g/cm-s ²	Model default
Enclosed Space Floor Length	6,096 cm	Length of hypothetical building over former ravine (200 ft)
Enclosed Space Floor Width	6,096 cm	Width of hypothetical building over former ravine (200 ft)
Enclosed Space Height	366 cm	Ceiling Height (12 ft)
Floor-Wall Seam Crack Width	0.1 cm	Model default
Indoor Air Exchange Rate	0.83/hour	Value from the literature for commercial/ industrial (ASTM, 2002)
Averaging Time, Carcinogens	70 years	Model default
Averaging Time, Noncarcinogens	25 years	Model default; Reasonable Maximum Exposure Time for Occupational Scenario (USEPA, 1991)
Exposure Duration	25 years	Model default; Reasonable Maximum Exposure Time for Occupational Scenario (USEPA, 1991)
Exposure Frequency	250 days/year	Default for occupational
Target Risk for Carcinogens	10 ⁻⁴ unitless	Target Risk for industrial/commercial scenario
Target Risk for Noncarcinogens	1 unitless	Target Risk

.

TABLE A-3-3

---- -- ------

INTAKE ASSUMPTIONS HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

	Outdoor Industrial Worker Intake Assumption	Symbol	Units	Value	
	Soil Ingestion Rate	IR	mg/d	100	(a)
	Soil Adherence Factor	SAF	mg/cm ² -d	0.2	(b)
	Exposed Skin Area	SA	cm ²	3300	(b)
	Inhalation Rate	InR	m ³ /d	20	
	Unit Conversion Factor	UCF	kg/mg	1.E-06	(c)
	Exposure Frequency	ÉF		225	
	Exposure Duration	ED	d/yr	225	(a)
	Carcinogenic Averaging Time	ATc	ут d	25550	(a)
	Non-carcinogenic Averaging Time	ATe	d	25550 9125	(a)
	Body Weight	BW	-	9125 70	(e)
	body weight	BW	kg	/0	(a)
	Construction Worker				
	Intake Assumption	Symbol	Units	Value	
	Soil Ingestion Rate	IR	mg/d	330	(a)
	Soil Adherence Factor	SAF	mg/cm ² -d	0.3	(a)
	Exposed Skin Area	SA	cm ²	3300	(a), (b)
	Inhalation Rate	lnR	m ³ /d	20	(c)
	Unit Conversion Factor	UCF	kg/mg	1.E-06	.,
	Exposure Frequency	EF	d/ут	250	(f)
	Exposure Duration	ED	ýr	0.5	(f)
	Carcinogenic Averaging Time	ATc	d	25550	.,
	Non-carcinogenic Averaging Time	АТп	d	182.5	(e)
	Body Weight	BW	kg	70	(a)
	Indoor Industrial Worker				
	Indoor Industrial Worker Intake Assumption	Symbol	Units	Value	
	Inhalation Rate	InR	m ³ /d	20	(c)
	Unit Conversion Factor	UCF	mg/μg	1.E-03	(0)
	Exposure Frequency	EF	d/yr	250	(a)
	Exposure Duration	ED	уг	250	(a) (a)
	Carcinogenic Averaging Time	ATc	d	25550	(a) (a)
	Non-carcinogenic Averaging Time	ATn	d	9125	(a) (e)
	Body Weight	BW	kg	70	(e) (a)
		2.0			(4)
	milligrams per day				
-d	milligrams per centimeter squared per	dav			
u	centimeters squared	uay			
	•				
	cubic meter per day				

cm ²	centimeters squared
m ³ /d	cubic meter per day
kg/mg	kilograms per milligram
d/yr	days per year
yr	year
d	day
kg	kilogram
(a)	Recommendation for indoor, outdoor and construction workers (USEPA, 2002b), Supplemental Guidance
	for Developing Soil Screening Levels for Superfund Sites.
(b)	USEPA (2004), RAGS Part E.
(c)	Based on 20 m ³ /d (USEPA, 2003a)
(d)	Typical workday
(e)	ED x 365 d/yr

(f) Site-specific assumption

· ·

.

•••

_
T
- •

}

HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 TOXICITY VALUES

Source NA IRIS NA NCEA IRIS NA NCEA IRIS IRUS IRUS IRUS IRUS IRUS IRUS IRUS IRIS Weight of Evidence A B-C Z Z Z D Z B Source NA NA NA NA NA SFo Dermal Slope Factor (SFd) (mg/kg-d)⁻¹ NA 1.5E+00 7.3E-01 7.3E+00 7.3E-01 7.3E-02 7.3E-03 7.3E+00 7.3E-01 NA 2.1E-01 7.2E-01 2.0E+00 Y N N N NA Mid-Point IRIS Source NCEA NCEA NCEA NCEA NCEA NA NA NA NA NA NCEA IRIS Oral Slope Factor (SFo) (mg/kg-d)⁻¹ NA 1.5E+00 NA NA NA 7.3E-01 7.3E+00 7.3E-01 7.3E-02 7.3E-03 7.3E-03 7.3E+00 7.3E-01 2.0E+00 NA 2.1E-01 7.2E-01 NA Mid-Point IRIS Source NCEA NCEA NA NA NA NA NA URF NA NA IRIS Slope Factor (SFi) (mg/kg-d)⁻¹ Inhalation NA 2.1E-01 1.5E-02 NA 3.IE+00 NA NA NA NA NA 1.5E+01 NA NA NA 2.0E+00 IRIS Mid-point IRIS Source IRIS IRIS IRIS IRIS IRIS IRUS IRUS IRUS IRUS IRUS IRUS IRUS IRIS Inhalation Unit Risk Factor (URF) (mg/m³⁾⁻¹ NA 4.3E+00 NA 6.0E-02 4.4E-03 ٧N A N N NA Defense Supply Center Richmond Richmond, Virginia Source ູ ຊີ້ ຊີ້ ຊີ້ ຊີ້ ຊີ້ RDo RDo RDo **B Reference Dose** (mg/kg-d) 9.0E-03 3.0E-04 3.0E-03 Dermal (RfDd) 1.0E+00 3.0E-04 4.0E-02 2.6E-05 3.0E-01 NA NA NA NA NA NA NA EPA PPV IRIS HEAST NCEA NCEA HEAST NCEA IRIS Source IRIS Oral Reference Dose (RfDo) (mg/kg-d) 1.0E+00 3.0E-04 4.0E-02 9.0E-03 3.0E-04 3.0E-03 1.0E-03 3.0E-01 NA NA NA NA NA NA NA NA EPA PPV Source NCEA IRIS V V V V Z Z Z Z Ν nce Dose alation /kg-d) Î E-03 ЧА Е-02 Е-02 <u>s s s s</u>

Gb where ABSG is the fraction of contaminant absorbed in the gastrointestinal tract. ABSG for Vanadium is 2.6%. Equation and Values from USEPA (2004). Weight of evidence. A = Human carcinogen; B = Probable human carcinogen; D = Not classifiable as to human carcinogenicity.

847 132

l of l

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: CMB 8/25/05

		Inhalation		Inhalat
		Reference	4	Reference
	i	Concentration	Source	
	Chemical	(mg/m_)		(mg/kg
	<u>Metals/Inorganics:</u>			
	Aluminum	NA	IRIS	1.0E4
	Arsenic	, VN	IRIS	NA
	Copper	NA	IRIS	NA
	Iron	NA '	IRIS	NA .
	Vanadium	NA	IRIS	NA
	VOCs			•
	1,2-Dichloroethene, total	NA	NA	NA
	Trichloroethene	4.0E-02	NCEA	1.1E-0
	Vinyl chloride	1.0E-01	IRIS	2.8E-0
	PAHs:			
	Benzo(a)anthracene	NA	IRIS	NA
	Benzo(a)pyrene	NA	IRIS	NA
	Benzo(b)fluoranthene	NA	IRIS	, NA
	Benzo(k)fluoranthene	NA	IRIS	NA
	Chrysene	NA	IRIS	NA
	Dibenzo(a,h)anthracene	NA	IRIS	NA
	indeno(1,2,3-cd)pyrene	NA	IRIS	NA
	PCB-1260	NA	IRIS	NA
Notes:				
NA	Not applicable/not available			
mg/m ³	Milligrams per cubic meter			
mg/kg-d	Milligrams per kilogram per day	fe		
(mg/m ³) ⁻¹	Per milligram per cubic meter			
(mg/kg-d) ⁻¹		· day	•	
EPA PPV		wed Value		
IRIS	Integrated Risk Information System	stem		
NCEA	National Center for Environmental Assessment	ntal Assessment		
HEAST	Health Effects Assessment Summary Tables	nmary Tables		
(a)	Dermal reference dose is calculated using the equation: RfDo x ABS _{Gb} , v	lated using the equa	tion: RfDo	x ABS _G , V

TABLE A-5-1

,

RISK CHARACTERIZATION SUMMARY HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

•			Excess Cancer	
Current Outdoor	Industrial Worker	Hazard Index	Risk	Referenc
	Soil Ingestion	0.3 -	9.E-04	Table 3-2
	Dermal Soil Contact	0.03	8.E-04	Table 3-3
	Fugitive Dust Inhalation	NA	5.E-08	Table 3-4
	TOTALS	0.4	2.E-03	
			Excess Cançer	
<u>Future Outdoor In</u>	dustrial Worker	Hazard Index	Risk	
	Soil Ingestion	0.3	2.E-04	Table 3-5
	Dermal Soil Contact	0.2	2.E-04	Table 3-6
	Fugitive Dust Inhalation	0.003	2.E-08	Table 3-7
	Inhalation of Volatile Compounds	0.06	5.E-05	Table 3-1
	TOTALS	0.5	4.E-04	
			Excess Cancer	
Future Construction	on Worker	Hazard Index	Risk	
	Soil Ingestion	1	1.E-05	Table 3-8
	Dermal Soil Contact	0.3	5.E-06	Table 3-9
	Fugitive Dust Inhalation	NA	6.E-08	Table 3-10
	Inhalation of Volatile Compounds	0.06	1.E-06	Table 3-13
	TOTALS	1	2.E-05	
			Excess Cancer	
<u>uture Indoor Indu</u>	<u>istrial Worker</u>	Hazard Index	Risk	
	Inhalation of VOCs	0.0001	3.E-08	Table 3-11
	TOTALS	0.0001	3.E-08	

TABLE A-7-1

SUMMARY OF CHEMICALS OF CONCERN HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

Current Industrial Worker

,

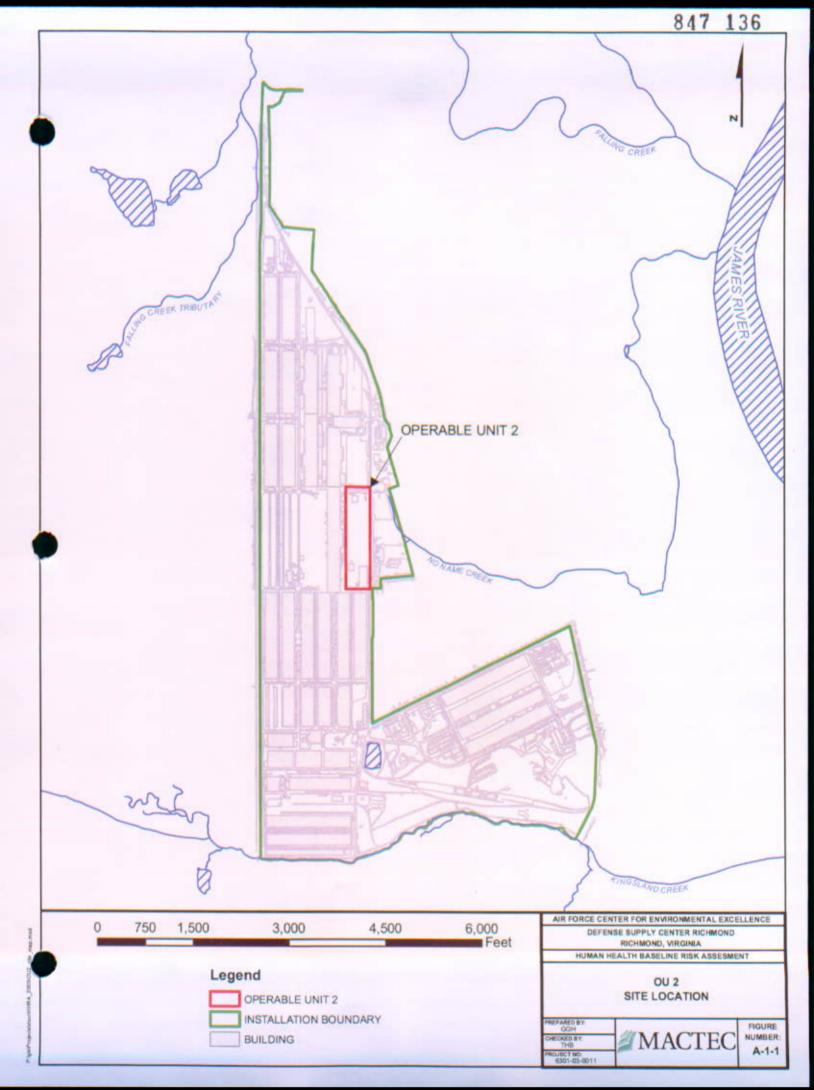
	Ingestion	Inhalation	Dermal Contact	Totals	Reference
Arsenic	1.E-05	1.E-08	2.E-06	1.E-05	Table 4-1
Benzo(a)anthracene	6.E-05	NA	5.E-05	1.E -0 4	Table 4-1
Benzo(a)pyrene	6.E-04	4.E-08	5.E-04	1.E-03	Table 4-1
Benzo(b)fluoranthene	9.E-05	NA	8.E-05	2.E-04	Table 4-1
Benzo(k)fluoranthene	9.E-06	NA	8.E-06	2.E-05	Table 4-1
Dibenzo(a,h)anthracene	1.E-04	NA	1.E-04	2.E-04	Table 4-1
Indeno(1,2,3-cd)pyrene	3.E-05	NA	3.E-05	6.E-05	Table 4-1
PCB- 1260	2.E-05	3.E-09	2.E-05	4.E-05	Table 4-1
TOTALS	9.E-04	5.E-08	8.E-04	2.E-03	

Future Industrial Worker

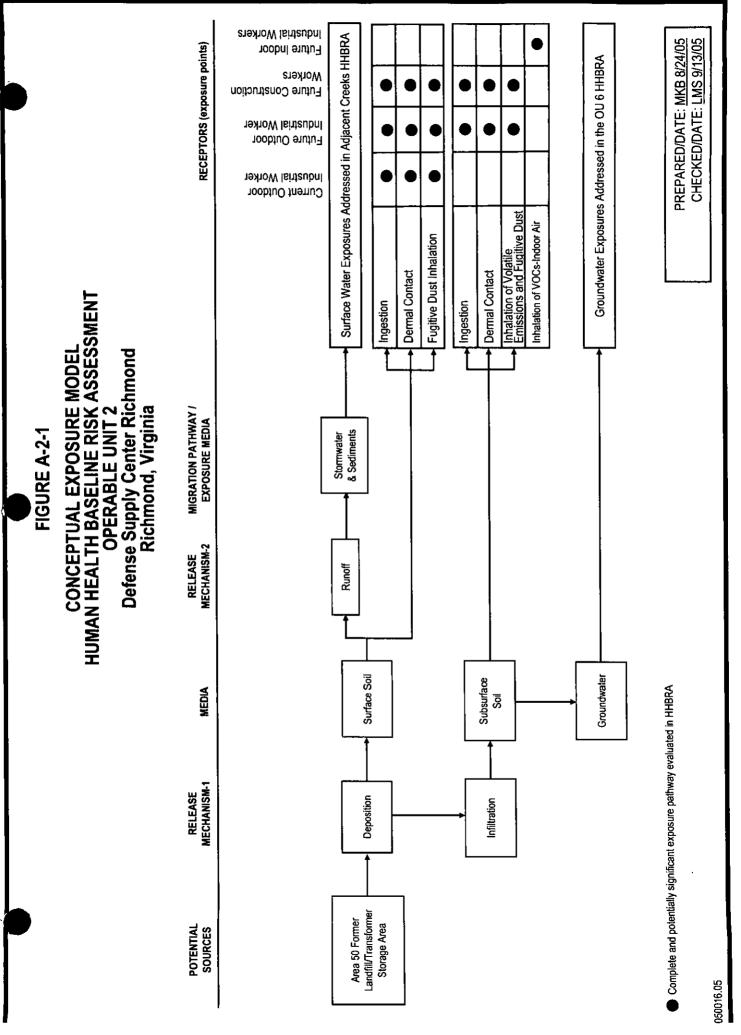
	Ingestion	Inhalation	Dermal Contact	Totals	Reference
Benzo(a)anthracene	1.E-05	NA	1.E-05	2.E-05	Table 4-2
Benzo(a)pyrene	1.E-04	7.E-09	9.E-05	2.E-04	Table 4-2
Benzo(b)fluoranthene	3.E-05	NA	2.E-05	5.E-05	Table 4-2
Dibenzo(a,h)anthracene	2.E-05	NA	2.E-05	5.E-05	Table 4-2
Indeno(1,2,3-cd)pyrene	6.E-06	NA	5.E-06	1.E-05	Table 4-2
Trichloroethene	8.E-07	5.E-05	2.E-07	5.E-05	Table 4-2
TOTALS	2.E-04	5.E-05	2.E-04	4.E-04	

PREPARED/DATE: LMS 9/15/05 CHECKED/DATE: MKB 9/15/05

847 135


____ -


FIGURES



Projectivitativitetita, 2005-ou Para

28 July 2006 Revision I

.

ATTACHMENT 1 SITE DATASETS (AVAILABLE ON CD)

l

28 July 2006 Revision 1

ATTACHMENT 2

STATISTICAL ANALYSIS OF SITE AND BACKGROUND DATASETS

Final Human Health Baseline Risk Assessment - Operable Unit 2 Defense Supply Center Richmond

28 July 2006 Revision I

---- -- ----

ATTACHMENT 2-1 BACKGROUND

POPULATION COMPARISON – BACKGROUND AND SITE DATA OPERABLE UNIT 2

Surface Soils

Mann-Whitney Test and CI: s_Arsenic, b_Arsenic

s_Arseni N = 15 Median = 15.000 b_Arseni N = 18 Median = 1.810 Point estimate for ETA1-ETA2 is 12.270 95.1 Percent CI for ETA1-ETA2 is (6.649,17.721) W = 376.0 Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.0000 The test is significant at 0.0000 (adjusted for ties)

Conclusion: The background and site samples DO NOT come from the same population and site samples tend to be of larger magnitude.

Mann-Whitney Test and CI: s_Copper, b_Copper

```
s_Copper N = 15 Median = 8.0
b_Copper N = 17 Median = 6.4
Point estimate for ETA1-ETA2 is 1.4
95.0 Percent CI for ETA1-ETA2 is (-2.8,6.1)
W = 267.0
Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.2365
The test is significant at 0.2365 (adjusted for ties)
```

Cannot reject at alpha = 0.05

Conclusion: The background and site samples come from the same population.

Mann-Whitney Test and CI: s_Iron, b_Iron

s_Iron N = 15 Median = 15389 b_Iron N = 17 Median = 13100 Point estimate for ETA1-ETA2 is 2598 95.0 Percent CI for ETA1-ETA2 is (-4292,9047) W = 269.0 Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.2139

Cannot reject at alpha = 0.05

Conclusion: The background and site samples come from the same population.

Mann-Whitney Test and Cl: s_Benzo(a)anthracene, b_Benzo(a)anthracene

s_Benzo(N = 15 Median = 0.46 b_Benzo(N = 16 Median = 0.22 Point estimate for ETA1-ETA2 is 0.16 95.4 Percent CI for ETA1-ETA2 is (-0.01,0.70)

847 144

W = 271.0Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.1140 The test is significant at 0.1126 (adjusted for ties)

Cannot reject at alpha = 0.05

Conclusion: The background and site samples come from the same population.

Mann-Whitney Test and CI: s_Benzo(a)pyrene, b_Benzo(a)pyrene

s_Benzo(N = 15 Median = 0.37 b_Benzo(N = 17 Median = 0.25 Point estimate for ETA1-ETA2 is 0.10 95.0 Percent CI for ETA1-ETA2 is (-0.10,0.52) W = 280.0Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.1134 The test is significant at 0.1122 (adjusted for ties)

Cannot reject at alpha = 0.05

Conclusion: The background and site samples come from the same population.

Mann-Whitney Test and CI: s_Benzo(b)fluoranthene, b_Benzo(b)fluoranthene

```
s_Benzo(N = 15 Median = 0.6
b_Benzo(N = 17 Median = 0.3
Point estimate for ETA1-ETA2 is 0.2
95.0 Percent CI for ETA1-ETA2 is (-0.0,0.9)
W = 284.5
Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.0840
The test is significant at 0.0833 (adjusted for ties)
```

Cannot reject at alpha = 0.05

Conclusion: The background and site samples come from the same population.

Mann-Whitney Test and CI: s_Benzo(k)fluoranthene, b_Benzo(k)fluoranthene

s_Benzo(N = 15 Median = 0.2 b_Benzo(N = 17 Median = 0.3 Point estimate for ETA1-ETA2 is 0.1 95.0 Percent CI for ETA1-ETA2 is (-0.1,0.6) W = 262.0 Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.2985 The test is significant at 0.2971 (adjusted for ties)

Cannot reject at alpha = 0.05

050016.19

Conclusion: The background and site samples come from the same population.

Mann-Whitney Test and CI: s_Chrysene, b_Chrysene

s_Chryse N = 15 Median = 0.5 b_Chryse N = 17 Median = 0.3 Point estimate for ETA1-ETA2 is 0.2 95.0 Percent CI for ETA1-ETA2 is (-0.1,0.7) W = 282.0 Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.0996 The test is significant at 0.0984 (adjusted for ties)

Cannot reject at alpha = 0.05

Conclusion: The background and site samples come from the same population.

Mann-Whitney Test and CI: s_Dibenzo(a,h)anthracene, b_Dibenzo(a,h)anthracene

```
s_Dibenz N = 15 Median = 0.17
b_Dibenz N = 17 Median = 0.15
Point estimate for ETA1-ETA2 is 0.03
95.0 Percent CI for ETA1-ETA2 is (-0.02,0.10)
W = 281.5
Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.1029
The test is significant at 0.0951 (adjusted for ties)
```

```
Cannot reject at alpha = 0.05
```

Conclusion: The background and site samples come from the same population.

Mann-Whitney Test and CI: s_Indeno(123-cd)pyrene, b_Indeno(123-cd)pyrene

s_Indeno N = 15 Median = 0.17 b_Indeno N = 17 Median = 0.19 Point estimate for ETA1-ETA2 is 0.07 95.0 Percent CI for ETA1-ETA2 is (-0.01,0.18) W = 270.5 Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.1978 The test is significant at 0.1959 (adjusted for ties)

Cannot reject at alpha = 0.05

Conclusion: The background and site samples come from the same population.

Surface and Subsurface Soils

Mann-Whitney Test and CI: s_Aluminum, b_Aluminum

s_Alumin N = 44 Median = 8571.5b_Alumin N = 35 Median = 8630.0Point estimate for ETA1-ETA2 is -605.095.1 Percent CI for ETA1-ETA2 is (-2792.0,1665.1)W = 1709.5Test of ETA1 = ETA2 vs ETA1 > ETA2 Cannot reject since W is < 1760.0

Conclusion: The background and site samples are from the same population.

Mann-Whitney Test and CI: s_Arsenic, b_Arsenic

s_Arseni N = 55 Median = 4.700 b_Arseni N = 36 Median = 1.069 Point estimate for ETA1-ETA2 is 3.300 95.0 Percent CI for ETA1-ETA2 is (1.838,6.040) W = 3014.0 Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.0000 The test is significant at 0.0000 (adjusted for ties)

Conclusion: The background and site samples DO NOT come from the same population and site samples tend to be of larger magnitude.

Mann-Whitney Test and CI: s_Copper, b_Copper

```
s_Copper N = 55 Median = 4.300
b_Copper N = 35 Median = 8.840
Point estimate for ETA1-ETA2 is -3.500
95.0 Percent CI for ETA1-ETA2 is (-6.038,-1.200)
W = 2139.5
Test of ETA1 = ETA2 vs ETA1 > ETA2
Cannot reject since W is < 2502.5
```

Conclusion: The background and site samples come from the same population.

Mann-Whitney Test and CI: s_Iron, b_Iron

s_Iron N = 45 Median = 14800 b_Iron N = 35 Median = 9560 Point estimate for ETA1-ETA2 is 3116 95.1 Percent CI for ETA1-ETA2 is (-1019,6670) W = 1977.5 Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.0670 The test is significant at 0.0670 (adjusted for ties)

Cannot reject at alpha = 0.05

Conclusion: The background and site samples come from the same population.

Mann-Whitney Test and CI: s_Vanadium, b_Vanadium

847 147

s_Vanadi N = 45 Median = 23.00 b_Vanadi N = 35 Median = 22.20 Point estimate for ETA1-ETA2 is 0.80 95.1 Percent CI for ETA1-ETA2 is (-5.60,7.30) W = 1847.0Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.4080 The test is significant at 0.4080 (adjusted for ties)

Cannot reject at alpha = 0.05

Conclusion: The background and site samples come from the same population.

. .

Final Human Health Baseline Risk Assessment - Operable Unit 2 Defense Supply Center Richmond 28 July 2006 Revision I

847 148

.....

.

ATTACHMENT 2-2 SURFACE SOILS

• • •

-

Arsenic (0-2)

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Arsenic

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	15	Shapiro-Wilk Test Statisitic	0.9282437
Number of Unique Samples	14	Shapiro-Wilk 5% Critical Value	0.881
Minimum	4	Data are normal at 5% significance level	
Maximum	30	-	
Mean	16.326667	95% UCL (Assuming Normal Distribution)	
Median	15	Student's-t UCL	20.253448
Standard Deviation	8.6346864		
Variance	74.55781	Gamma Distribution Test	
Coefficient of Variation	0.5288701	A-D Test Statistic	0.2635849
Skewness	0.3475356	A-D 5% Critical Value	0.7426749
		K-S Test Statistic	0.1491127
Gamma Statistics		K-S 5% Critical Value	0.222981
k hat	3.4096206	Data follow gamma distribution	• •
k star (bias corrected)	2.7721409	at 5% significance level	
Theta hat	4.7884115		
Theta star	5.8895515	95% UCLs (Assuming Gamma Distribution)	
nu hat	102.28862	Approximate Gamma UCL	21.503389
nu star	83.164228	Adjusted Gamma UCL	22.259653
Approx.Chi Square Value (.05)	63.143285		
Adjusted Level of Significance	0.03235	Lognormal Distribution Test	
Adjusted Chi Square Value	60.998013	Shapiro-Wilk Test Statisitic	0.9456321
		Shapiro-Wilk 5% Critical Value	0.881
Log-transformed Statistics		Data are lognormal at 5% significance level	
Minimum of log data	1.3862944	·	
Maximum of log data	3.4011974	95% UCLs (Assuming Lognormal Distribution	n)
Mean of log data	2.6390471	95% H-UCL	24.000358
Standard Deviation of log data	0.6067278	95% Chebyshev (MVUE) UCL	28.403981
Variance of log data	0.3681187	97.5% Chebyshev (MVUE) UCL	33.514201
		99% Chebyshev (MVUE) UCL	43.552239
		95% Non-parametric UCLs	
		CLT UCL	19.993813
		Adj-CLT UCL (Adjusted for skewness)	20.207577
		Mod-t UCL (Adjusted for skewness)	20.286791
		Jackknife UCL	20.253448
		Standard Bootstrap UCL	19.785578
		Bootstrap-t UCL	20.577483
RECOMMENDATION		Hall's Bootstrap UCL	20.11414
Data are normal (0.05)		Percentile Bootstrap UCL	19.826667
		BCA Bootstrap UCL	20.093333
Use Student's-t UCL		95% Chebyshev (Mean, Sd) UCL	26.044686
		97.5% Chebyshev (Mean, Sd) UCL	30.24968
		99% Chebyshev (Mean, Sd) UCL	38.509578

Copper (0-2)

۰.

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Copper

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	15	Shapiro-Wilk Test Statisitic	0.286831
Number of Unique Samples	13	Shapiro-Wilk 5% Critical Value	0.881
Minimum	2.5	Data not normal at 5% significance level	
Maximum	14082	-	
Mean	951.14667	95% UCL (Assuming Normal Distribution	1)
Median	8	Student's-t UCL	2603.1241
Standard Deviation	3632.5695		
Variance	13195561	Gamma Distribution Test	
Coefficient of Variation	3.8191476	A-D Test Statistic	4.1286826
Skewness	3.872879	A-D 5% Critical Value	0.8838549
		K-S Test Statistic	0.4572053
Gamma Statistics		K-S 5% Critical Value	0.2458704
k hat	0.1794179	Data do not follow gamma distribution	
k star (bias corrected)	0.1879788	at 5% significance level	
Theta hat	5301.2922	-	
Theta star	5059.8625	95% UCLs (Assuming Gamma Distribution)	
nu hat	5.3825367	Approximate Gamma UCL	3679.0017
nu star	5.6393627	Adjusted Gamma UCL	4418.0084
Approx.Chi Square Value (.05)	1.4579664	-	
Adjusted Level of Significance	0.03235	Lognormal Distribution Test	
Adjusted Chi Square Value	1.2140903	Shapiro-Wilk Test Statisitic	0.6426407
		Shapiro-Wilk 5% Critical Value	0.881
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	0.9162907		
Maximum of log data	9.5526527	95% UCLs (Assuming Lognormal Distribut	ion)
Mean of log data	2.6866827	95% H-UCL	1641.4459
Standard Deviation of log data	2.0639931	95% Chebyshev (MVUE) UCL	323.83305
Variance of log data	4.2600677	97.5% Chebyshev (MVUE) UCL	425.74284
		99% Chebyshev (MVUE) UCL	625.9249
		95% Non-parametric UCLs	
		CLT UCL	2493.8967
		Adj-CLT UCL (Adjusted for skewness)	3496.0566
		Mod-t UCL (Adjusted for skewness)	2759.4408
		Jackknife UCL	2603.1241
		Standard Bootstrap UCL	2447.2022
		Bootstrap-t UCL	404658.09
RECOMMENDATION		Hall's Bootstrap UCL	296972.21
Data are Non-parametric (0.05)	Percentile Bootstrap UCL	2827.1867
		BCA Bootstrap UCL	3766.5867
Use 99% Chebyshev (Mean, Sd)	UCL	95% Chebyshev (Mean, Sd) UCL	5039.4687
		97.5% Chebyshev (Mean, Sd) UCL	6808.489
		99% Chebyshev (Mean, Sd) UCL	10283.387

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: LMS 9/3/05

.

Iron (0-2)

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Iron

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	15	Shapiro-Wilk Test Statisitic	0.9338116
Number of Unique Samples	· 15	Shapiro-Wilk 5% Critical Value	0.881
Minimum	5	Data are normal at 5% significance level	
Maximum	39693		
Mean	16660.333	95% UCL (Assuming Normal Distribution)	
Median	15389	Student's-t UCL	21079.37
Standard Deviation	9717.1161		
Variance	94422345	Gamma Distribution Test	
Coefficient of Variation	0.5832486	A-D Test Statistic	1.8200011
Skewness	0.8194448	A-D 5% Critical Value	0.7631997
		K-S Test Statistic	0.3121321
Gamma Statistics		K-S 5% Critical Value	0.2279523
k hat	0.9964887	Data do not follow gamma distribution	
k star (bias corrected)	0.8416354	at 5% significance level	
Theta hat	16719.04		
Theta star	19795.192	95% UCLs (Assuming Gamma Distribution)	
nu hat	29.89466	Approximate Gamma UCL	28421.633
nu star	25.249061	Adjusted Gamma UCL	30433.622
Approx.Chi Square Value (.05)	14.800619		
Adjusted Level of Significance	0.03235	Lognormal Distribution Test	
Adjusted Chi Square Value	13.82214	Shapiro-Wilk Test Statisitic	0.4925888
		Shapiro-Wilk 5% Critical Value	0.881
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	1.6094379		
Maximum of log data	10.58893	95% UCLs (Assuming Lognormal Distributio	n) [·]
Mean of log data	9.141297	95% H-UCL	1454305.6
Standard Deviation of log data	2.1381715	95% Chebyshev (MVUE) UCL	237520.23
Variance of log data	4.5717774	97.5% Chebyshev (MVUE) UCL	312928.07
		99% Chebyshev (MVUE) UCL	461052.18
		95% Non-parametric UCLs	
		CLT UCL	20787.187
		Adj-CLT UCL (Adjusted for skewness)	21354.4
		Mod-t UCL (Adjusted for skewness)	21167.843
		Jackknife UCL	21079.37
		-Standard Bootstrap UCL	20700.918
		Bootstrap-t UCL	21757.252
RECOMMENDATION		Hall's Bootstrap UCL	25006.004
Data are normal (0.05)		Percentile Bootstrap UCL	20817.333
		BCA Bootstrap UCL	21163.133
Use Student's-t UCL		95% Chebyshev (Mean, Sd) UCL	27596.587
		97.5% Chebyshev (Mean, Sd) UCL	32328.712
		99% Chebyshev (Mean, Sd) UCL	41624.057

Benzo(a)anthracene (0-2)

.

.

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Benzo(a)anthracene

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	15	Shapiro-Wilk Test Statisitic	0.3374415
Number of Unique Samples	9	Shapiro-Wilk 5% Critical Value	0.881
Minimum	0.165	Data not normal at 5% significance level	
Maximum	360	-	
Mean	27.593	95% UCL (Assuming Normal Distribution	n)
Median	0.46	Student's-t UCL	69.721423
Standard Deviation	92.637116		
Variance	8581.6353	Gamma Distribution Test	
Coefficient of Variation	3.3572687	A-D Test Statistic	2.8917387
Skewness	3.7820734	A-D 5% Critical Value	0.8734295
		K-S Test Statistic	0.3905015
Gamma Statistics		K-S 5% Critical Value	0.2446726
k hat	0.2080517	Data do not follow gamma distribution	
k star (bias corrected)	0.2108858	at 5% significance level	
Theta hat	132.62569		
Theta star	130.84333	95% UCLs (Assuming Gamma Distribution)	
nu hat	6.2415508	Approximate Gamma UCL	96.5304
nu star	6.326574	Adjusted Gamma UCL	114.27384
Approx.Chi Square Value (.05)	1.8084371		
Adjusted Level of Significance	0.03235	Lognormal Distribution Test	
Adjusted Chi Square Value	1.5276388	Shapiro-Wilk Test Statisitic	0.7400495
		Shapiro-Wilk 5% Critical Value	0.881
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	-1.80181		
Maximum of log data	5.886104	95% UCLs (Assuming Lognormal Distribut	tion)
Mean of log data	-0.19785	95% H-UCL	289.51497
Standard Deviation of log data	2.3105767	95% Chebyshev (MVUE) UCL	29.306228
Variance of log data	5.3387647	97.5% Chebyshev (MVUE) UCL	38.777436
		99% Chebyshev (MVUE) UCL	57.38179
		95% Non-parametric UCLs	
		CLT UCL	66.935926
		Adj-CLT UCL (Adjusted for skewness)	91.893601
		Mod-t UCL (Adjusted for skewness)	73.614316
		Jackknife UCL	69.721423
		Standard Bootstrap UCL	64.284751
		Bootstrap-t UCL	2105.9113
RECOMMENDATION		Hall's Bootstrap UCL	1955.1636
Data are Non-parametric (0.0	5)	Percentile Bootstrap UCL	73.235333
		BCA Bootstrap UCL	102.67533
Use 99% Chebyshev (Mean, Sd) UCL	95% Chebyshev (Mean, Sd) UCL	131.85263
		97.5% Chebyshev (Mean, Sd) UCL	176.96586
		99% Chebyshev (Mean, Sd) UCL	265.58206

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: LMS 9/3/05 •••

Benzo(a)pyrene (0-2)

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Benzo(a)pyrene

.

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	15	Shapiro-Wilk Test Statisitic	0.3101951
Number of Unique Samples	9	Shapiro-Wilk 5% Critical Value	0.881
Minimum	0.165	Data not normal at 5% significance level	
Maximum	340	_	
Mean	24.427667	95% UCL (Assuming Normal Distribution	1)
Median	0.37	Student's-t UCL	64.183695
Standard Deviation	87.420405		
Variance	7642.3272	Gamma Distribution Test	
Coefficient of Variation	3.5787456	A-D Test Statistic	3.136115
Skewness	3.8551271	A-D 5% Critical Value	0.8738365
		K-S Test Statistic	0.3941846
Gamma Statistics		K-S 5% Critical Value	0.2447225
k hat	0.2070647	Data do not follow gamma distribution	
k star (bias corrected)	0.2100962	at 5% significance level	
Theta hat	117.9712		
Theta star	116.26897	95% UCLs (Assuming Gamma Distribution)	
nu hat	6.21194	Approximate Gamma UCL	85.725136
nu star	6.3028854	Adjusted Gamma UCL	101.52791
Approx.Chi Square Value (.05)	1.7960284		
Adjusted Level of Significance	0.03235	Lognormal Distribution Test	
Adjusted Chi Square Value	1.5164774	Shapiro-Wilk Test Statisitic	0.7239626
		Shapiro-Wilk 5% Critical Value	0.881
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	-1.80181		
Maximum of log data	5.8289456	95% UCLs (Assuming Lognormal Distribut	
Mean of log data	-0.339092	95% H-UCL	142.67139
Standard Deviation of log data	2.1925465	95% Chebyshev (MVUE) UCL	20.157926
Variance of log data	4.8072601	97.5% Chebyshev (MVUE) UCL	26.596119
		99% Chebyshev (MVUE) UCL	39.242702
		95% Non-parametric UCLs	
		CLT UCL	61.555059
		Adj-CLT UCL (Adjusted for skewness)	85.562212
		Mod-t UCL (Adjusted for skewness)	67.928326
		Jackknife UCL	64.183695
		Standard Bootstrap UCL	59.664536
		Bootstrap-t UCL	2116.6211
RECOMMENDATION		Hall's Bootstrap UCL	1967.0087
Data are Non-parametric (0.0	5)	Percentile Bootstrap UCL	68.756667
		BCA Bootstrap UCL	115.945
Use 99% Chebyshev (Mean, Sd)	UCL	95% Chebyshev (Mean, Sd) UCL	122.81609
		97.5% Chebyshev (Mean, Sd) UCL	165.38883
		99% Chebyshev (Mean, Sd) UCL	249.01475

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: LMS 9/3/05

•

ς,

÷

Benzo(b)fluoranthene (0-2)

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Benzo(b)fluoranthene

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	15	Shapiro-Wilk Test Statisitic	0.3145994
Number of Unique Samples	9	Shapiro-Wilk 5% Critical Value	0.881
Minimum	0.165	Data not normal at 5% significance level	
Maximum	540		
Mean	39.162	95% UCL (Assuming Normal Distribution)	
Median	0.58	Student's-t UCL	102.29386
Standard Deviation	138.82203		
Variance	19271.556	Gamma Distribution Test	
Coefficient of Variation	3.5448146	A-D Test Statistic	2.8057133
Skewness	3.847899	A-D 5% Critical Value	0.8763345
		K-S Test Statistic	0.3711649
Gamma Statistics		K-S 5% Critical Value	0.245029
k hat	0.2010075	Data do not follow gamma distribution	
k star (bias corrected)	0.2052505	at 5% significance level	
Theta hat	194.82854		
Theta star	190.80104	95% UCLs (Assuming Gamma Distribution)	
nu hat	6.0302252	Approximate Gamma UCL	140.16789
nu star	6.1575135	Adjusted Gamma UCL	166.4747
Approx.Chi Square Value (.05)	1.7203694		
Adjusted Level of Significance	0.03235	Lognormal Distribution Test	
Adjusted Chi Square Value	1.4485117	Shapiro-Wilk Test Statisitic	0.784307
		Shapiro-Wilk 5% Critical Value	0.881
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	-1.80181		
Maximum of log data	6.2915691	95% UCLs (Assuming Lognormal Distributio	n)
Mean of log data	0.0094176	95% H-UCL	399.44568
Standard Deviation of log data	2.333725	95% Chebyshev (MVUE) UCL	37.758627
Variance of log data	5.4462725	97.5% Chebyshev (MVUE) UCL	49.987603
		99% Chebyshev (MVUE) UCL	74.009059
		95% Non-parametric UCLs	
		CLT UCL	98.11963
		Adj-CLT UCL (Adjusted for skewness)	136.17108
		Mod-t UCL (Adjusted for skewness)	108.22911
		Jackknife UCL	102.29386
		Standard Bootstrap UCL	98.981459
		Bootstrap-t UCL	3317.893
RECOMMENDATION		Hall's Bootstrap UCL	3053.3615
Data are Non-parametric (0.05	5)	Percentile Bootstrap UCL	110.607
-		BCA Bootstrap UCL	148.894
Use 99% Chebyshev (Mean, Sd)	UCL	95% Chebyshev (Mean, Sd) UCL	195.40104
		97.5% Chebyshev (Mean, Sd) UCL	263.0058
		99% Chebyshev (Mean, Sd) UCL	395.80225

Benzo(k)fluoranthene (0-2)

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Benzo(k)fluoranthene

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	15	Shapiro-Wilk Test Statisitic	0.3111196
Number of Unique Samples	8	Shapiro-Wilk 5% Critical Value	0.881
Minimum	0.165	Data not normal at 5% significance level	
Maximum	540		
Mean	38.704	95% UCL (Assuming Normal Distribution	n)
Median	0.165	Student's-t UCL	101.89328
Standard Deviation	138.94831		
Variance	19306.632	Gamma Distribution Test	
Coefficient of Variation	3.5900245	A-D Test Statistic	3.3166715
Skewness	3.8480057	A-D 5% Critical Value	0.8812605
		K-S Test Statistic	0.4159322
Gamma Statistics		K-S 5% Critical Value	0.2455817
k hat	0.1869337	Data do not follow gamma distribution	
k star (bias corrected)	0.1939914	at 5% significance level	
Theta hat	207.04671		
Theta star	199.51403	95% UCLs (Assuming Gamma Distribution)	
nu hat	5.6080099	Approximate Gamma UCL	145.51125
nu star	5.8197412	Adjusted Gamma UCL	174.03648
Approx.Chi Square Value (.05)	1.5479714		
Adjusted Level of Significance	0.03235	Lognormal Distribution Test	
Adjusted Chi Square Value	1.2942531	Shapiro-Wilk Test Statisitic	0.6922916
		Shapiro-Wilk 5% Critical Value	0.881
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	-1.80181		
Maximum of log data	6.2915691	95% UCLs (Assuming Lognormal Distribut	tion)
Mean of log data	-0.322274	95% H-UCL	311.76753
Standard Deviation of log data	2.3505198	95% Chebyshev (MVUE) UCL	28.024946
Variance of log data	5.5249434	97.5% Chebyshev (MVUE) UCL	37.115231
		99% Chebyshev (MVUE) UCL	54.971335
		95% Non-parametric UCLs	
		CLTUCL	97.71526
		Adj-CLT UCL (Adjusted for skewness)	135.80238
		Mod-t UCL (Adjusted for skewness)	107.83411
Ň		Jackknife UCL	101.89328
		Standard Bootstrap UCL	95.753376
		Bootstrap-t UCL	10577.796
RECOMMENDATION		Hall's Bootstrap UCL	6214.6075
Data are Non-parametric (0.03	5)	Percentile Bootstrap UCL	108.516
		BCA Bootstrap UCL	146.59067
Use 99% Chebyshev (Mean, Sd)	UCL	95% Chebyshev (Mean, Sd) UCL	195.08516
		97.5% Chebyshev (Mean, Sd) UCL	262.75141
		99% Chebyshev (Mean, Sd) UCL	395.66867

-

Chrysene (0-2)

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Chrysene

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	15	Shapiro-Wilk Test Statisitic	0.3323182
Number of Unique Samples	9	Shapiro-Wilk 5% Critical Value	0.881
Minimum	0.165	Data not normal at 5% significance level	
Maximum	400	-	
Mean	30.267	95% UCL (Assuming Normal Distribution)	
Median	0.47	Student's-t UCL	77.060087
Standard Deviation	102.89435		
Variance .	10587.247	Gamma Distribution Test	
Coefficient of Variation	3.3995555	A-D Test Statistic	2.9023704
Skewness	3.7987601	A-D 5% Critical Value	0.8748014
		K-S Test Statistic	0.3934961
Gamma Statistics		K-S 5% Critical Value	0.2448409
k hat	0.204725	Data do not follow gamma distribution	
k star (bias corrected)	0.2082245	at 5% significance level	
Theta hat	147.84221	-	
Theta star	145.35756	95% UCLs (Assuming Gamma Distribution)	
nu hat	6.1417508	Approximate Gamma UCL	107.01845
nu star	6.246734	Adjusted Gamma UCL	126.88263
Approx.Chi Square Value (.05)	1.7667038	-	
Adjusted Level of Significance	0.03235	Lognormal Distribution Test	
Adjusted Chi Square Value	1.4901164	Shapiro-Wilk Test Statisitic	0.743162
		Shapiro-Wilk 5% Critical Value	0.881
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	-1.80181		
Maximum of log data	5.9914645	95% UCLs (Assuming Lognormal Distribution	m)
Mean of log data	-0.171523	95% H-UCL	322.6739
Standard Deviation of log data	2.3271852	95% Chebyshev (MVUE) UCL	31.10041
Variance of log data	5.4157907	97.5% Chebyshev (MVUE) UCL	41.166948
		99% Chebyshev (MVUE) UCL	60.940713
		05% Non normatic LICL	
		95% Non-parametric UCLs CLT UCL	73.966166
		Adj-CLT UCL (Adjusted for skewness)	101.80958
		Mod-t UCL (Adjusted for skewness)	81.403097
~ ~ +		Jackknife UCL	77.060087
		Standard Bootstrap UCL	72.21265
		Bootstrap-t UCL	2606.7779
RECOMMENDATION		Hall's Bootstrap UCL	2356.4368
Data are Non-parametric (0.05	5)	Percentile Bootstrap UCL	80.958
philippi (0.00	,	BCA Bootstrap UCL	115.92833
Use 99% Chebyshev (Mean, Sd)	UCL	95% Chebyshev (Mean, Sd) UCL	146.07077
······································		97.5% Chebyshev (Mean, Sd) UCL	196.17915
		99% Chebyshev (Mean, Sd) UCL	294.60736
			22 1.00720

Dibenzo(a,h)anthracene (0-2)

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Dibenzo(a,h)anthracene

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	15	Shapiro-Wilk Test Statisitic	0.2845364
Number of Unique Samples	3	Shapiro-Wilk 5% Critical Value	0.881
Minimum	0.165	Data not normal at 5% significance level	
Maximum	72	Ũ	
Mean	4.9583333	95% UCL (Assuming Normal Distribution	1)
Median	0.165	Student's-t UCL	13.392705
Standard Deviation	18.546526		
Variance	343.97363	Gamma Distribution Test	
Coefficient of Variation	3.7404758	A-D Test Statistic	5.4990113
Skewness	3.8729779	A-D 5% Critical Value	0.8601526
		K-S Test Statistic	0.5604558
Gamma Statistics		K-S 5% Critical Value	0.2430436
k hat	0.2402459	Data do not follow gamma distribution	
k star (bias corrected)	0.2366412	at 5% significance level	
Theta hat	20.638575		
Theta star	20.952961	95% UCLs (Assuming Gamma Distribution)	
nu hat	7.2073773	Approximate Gamma UCL	15.82346
nu star	7.0992352	Adjusted Gamma UCL	18.487388
Approx.Chi Square Value (.05)	2.2245688		
Adjusted Level of Significance	0.03235	Lognormal Distribution Test	
Adjusted Chi Square Value	1.904021	Shapiro-Wilk Test Statisitic	0.3059292
		Shapiro-Wilk 5% Critical Value	0.881
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	-1.80181		
Maximum of log data	4.2766661	95% UCLs (Assuming Lognormal Distribut	,
Mean of log data	-1.374436	95% H-UCL	4.1098109
Standard Deviation of log data	1.5656686	95% Chebyshev (MVUE) UCL	2.2332106
Variance of log data	2.4513182	97.5% Chebyshev (MVUE) UCL	2.879247
		99% Chebyshev (MVUE) UCL	4.1482603
		95% Non-parametric UCLs	
		CLT UCL	12.835031
		Adj-CLT UCL (Adjusted for skewness)	17.951811
		Mod-t UCL (Adjusted for skewness)	14.19082
		Jackknife UCL	13.392705
		Standard Bootstrap UCL	N/R
		Bootstrap-t UCL	N/R
RECOMMENDATION		Hall's Bootstrap UCL	N/R
Data are Non-parametric (0.0	5)	Percentile Bootstrap UCL	N/R
		BCA Bootstrap UCL	N/R
Use 99% Chebyshev (Mean, Sd) UCL	95% Chebyshev (Mean, Sd) UCL	25.83176
		97.5% Chebyshev (Mean, Sd) UCL	34.863708
		99% Chebyshev (Mean, Sd) UCL	52.605221

847 158

Indeno(1,2,3-cd)pyrene (0-2)

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Indeno(1,2,3-cd)pyrene

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	15	Shapiro-Wilk Test Statisitic	0.3093599
Number of Unique Samples	8	Shapiro-Wilk 5% Critical Value	0.881
Minimum	0.165	Data not normal at 5% significance level	
Maximum	180	-	
Mean	12.952667	95% UCL (Assuming Normal Distribution))
Median	0.165	Student's-t UCL	33.997558
Standard Deviation	46.276075		
Variance	2141.4751	Gamma Distribution Test	
Coefficient of Variation	3.5727064	A-D Test Statistic	3.6543038
Skewness	3.8550417	A-D 5% Critical Value	0.8684696
		K-S Test Statistic	0.425822
Gamma Statistics	•	K-S 5% Critical Value	0.244064
k hat	0.2200785	Data do not follow gamma distribution	
k star (bias corrected)	0.2205073	at 5% significance level	
Theta hat	58.854747		
Theta star	58.740314	95% UCLs (Assuming Gamma Distribution)	
nu hat	6.6023562	Approximate Gamma UCL	43.686198
nu star	6.6152183	Adjusted Gamma UCL	51.446493
Approx.Chi Square Value (.05)	1.9613681		
Adjusted Level of Significance	0.03235	Lognormal Distribution Test	
Adjusted Chi Square Value	1.6655113	Shapiro-Wilk Test Statisitic	0.6191644
		Shapiro-Wilk 5% Critical Value	0.881
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	-1.80181		
Maximum of log data	5.1929569	95% UCLs (Assuming Lognormal Distribution	on)
Mean of log data	-0.732646	95% H-UCL	42.72104
Standard Deviation of log data	2.0111787	95% Chebyshev (MVUE) UCL	9.5829122
Variance of log data	4.0448399	97.5% Chebyshev (MVUE) UCL	12.578385
		99% Chebyshev (MVUE) UCL	18.46241
		95% Non-parametric UCLs	
		CLT UCL	32.606087
		Adj-CLT UCL (Adjusted for skewness)	45.314015
		Mod-t UCL (Adjusted for skewness)	35.979738
		Jackknife UCL	33.997558
		Standard Bootstrap UCL	31.707981
		Bootstrap-t UCL	1195.3754
RECOMMENDATION		Hall's Bootstrap UCL	1163.6855
Data are Non-parametric (0.0)	5)	Percentile Bootstrap UCL	36.811333
		BCA Bootstrap UCL	50.017
Use 99% Chebyshev (Mean, Sd)	UCL	95% Chebyshev (Mean, Sd) UCL	65.034671
		97.5% Chebyshev (Mean, Sd) UCL	87.570596
		99% Chebyshev (Mean, Sd) UCL	131.83806

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: LMS 9/3/05

•

PCB-1260 (0-2)

.

- -

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: PCB-1260

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	15	Shapiro-Wilk Test Statisitic	0.2841696
Number of Unique Samples	2	Shapiro-Wilk 5% Critical Value	0.881
Minimum	0.02	Data not normal at 5% significance level	
Maximum	47	· · · · · · · · · · · · · · · · · · ·	
Mean	3.152	95% UCL (Assuming Normal Distribution)	
Median	0.02	Student's-t UCL	8.668423
Standard Deviation	12.130184		
Variance	147.14136	Gamma Distribution Test	
Coefficient of Variation	3.8484086	A-D Test Statistic	5.5943344
Skewness	3.8729833	A-D 5% Critical Value	0.8882811
		K-S Test Statistic	0.5891927
Gamma Statistics		K-S 5% Critical Value	0.2463627
k hat	0.166596	Data do not follow gamma distribution	
k star (bias corrected)	0.1777212	at 5% significance level	
Theta hat	18.920022		۰. ۲
Theta star	17.73564	95% UCLs (Assuming Gamma Distribution)	
nu hat	4.9978801	Approximate Gamma UCL	12.848272
nu star	5.3316374	Adjusted Gamma UCL	15.543863
Approx.Chi Square Value (.05)	1.3079829		
Adjusted Level of Significance	0.03235	Lognormal Distribution Test	
Adjusted Chi Square Value	1.0811548	Shapiro-Wilk Test Statisitic	0.2841696
		Shapiro-Wilk 5% Critical Value	0.881
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	-3.912023	<i></i>	
Maximum of log data	3.8501476	95% UCLs (Assuming Lognormal Distribution	n)
Mean of log data	-3.394545	95% H-UCL	2.8946555
Standard Deviation of log data	2.0041838	95% Chebyshev (MVUE) UCL	0.6601961
Variance of log data	4.0167528	97.5% Chebyshev (MVUE) UCL	0.8663727
U		99% Chebyshev (MVUE) UCL	1.2713668
		95% Non-parametric UCLs	
		CLT UCL	8.3036816
		Adj-CLT UCL (Adjusted for skewness)	11.650269
		Mod-t UCL (Adjusted for skewness)	9.190423
		Jackknife UCL	8.668423
		Standard Bootstrap UCL	N/R
		Bootstrap-t UCL	N/R
RECOMMENDATION		Hall's Bootstrap UCL	N/A
Data are Non-parametric (0.0)	5)	Percentile Bootstrap UCL	N/R
	- ,	BCA Bootstrap UCL	N/R
Use 99% Chebyshev (Mean, Sd)	UCL	95% Chebyshev (Mean, Sd) UCL	16.804071
	,	97.5% Chebyshev (Mean, Sd) UCL	22.711334
		99% Chebyshev (Mean, Sd) UCL	34.315007
		serve subsyster (moun, ou) o ob	51.515007

Final Human Health Baseline Risk Assessment - Operable Unit 2 Defense Supply Center Richmond 847 160 28 July 2006 Revision 1

.

-- --

ATTACHMENT 2-3 ALL SOILS

Aluminum (0-10)

Data File P:\dscr\RISK\OU 2\Revised Files 9-22-05\OU2_S Variable: Aluminum

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	45	Shapiro-Wilk Test Statisitic	0.348166191
Number of Unique Samples	44	Shapiro-Wilk 5% Critical Value	0.945
Minimum	2550	Data not normal at 5% significance level	
Maximum	128000	Ū.	
Mean	11305.222	95% UCL (Assuming Normal Distribution	1)
Median	8443	Student's-t UCL	15900.4329
Standard Deviation	18346.069		
Variance	336578248	Gamma Distribution Test	
Coefficient of Variation	1.622796	A-D Test Statistic	2.575204364
Skewness	6.1037355	A-D 5% Critical Value	0.766391605
		K-S Test Statistic	0.189778188
Gamma Statistics		K-S 5% Critical Value	0.134015765
k hat	1.6001634	Data do not follow gamma distribution	
k star (bias corrected)	1.5083006	at 5% significance level	
Theta hat	7065.0424	5	
Theta star	7495.3374	95% UCLs (Assuming Gamma Distribution)	
nu hat	144.01471	Approximate Gamma UCL	13973.82064
nu star	135.74706	Adjusted Gamma UCL	14072.65461
Approx.Chi Square Value (.05)	109.82327	5	
Adjusted Level of Significance	0.0446667	Lognormal Distribution Test	
Adjusted Chi Square Value	109.05197	Shapiro-Wilk Test Statisitic	0.909277346
		Shapiro-Wilk 5% Critical Value	0.945
Log-transformed Statistics		Data not lognormal at 5% significance level	012 12
Minimum of log data	7.8438486		
Maximum of log data	11.759786	95% UCLs (Assuming Lognormal Distribut	ion)
Mean of log data	8.989102	95% H-UCL	12574.80688
Standard Deviation of log data	0.6901455	95% Chebyshev (MVUE) UCL	15043.55849
Variance of log data	0.4763008	97.5% Chebyshev (MVUE) UCL	17180.4296
		99% Chebyshev (MVUE) UCL	21377.89912
		95% Non-parametric UCLs	
		CLT UCL	-15803.68388
		Adj-CLT UCL (Adjusted for skewness)	18462.61222
		Mod-t UCL (Adjusted for skewness)	16315.17198
, · ·		Jackknife UCL	15900.4329
		Standard Bootstrap UCL	15664.03427
		Bootstrap-t UCL	26868.11534
RECOMMENDATION		Hall's Bootstrap UCL	33523.66405
Data are Non-parametric (0.05)	Percentile Bootstrap UCL	16708.08889
		BCA Bootstrap UCL	20362.15556
Use 95% Chebyshev (Mean, Sd)	UCL	95% Chebyshev (Mean, Sd) UCL	23226.24634
		97.5% Chebyshev (Mean, Sd) UCL	28384.483
		99% Chebyshev (Mean, Sd) UCL	38516.84008

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: CMS 9/23/05

· · · · · ·

Data File P:\dscr\RISK\OU 2\Revised Files 9-22-05\OU2_S Variable: Arsenic

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	56	Lilliefors Test Statisitic 0.200594342	
Number of Unique Samples	43	Lilliefors 5% Critical Value	0.11839673
Minimum	0.23	Data not normal at 5% significance level	
Maximum	41		
Mean	8.5083929	95% UCL (Assuming Normal Distribut	ion)
Median	4.5	Student's-t UCL	10.5873107
Standard Deviation	9.298795		
Variance	86.467588	Gamma Distribution Test	
Coefficient of Variation	1.0928968	A-D Test Statistic	0.464625872
Skewness	1.5330495	A-D 5% Critical Value	0.791812458
		K-S Test Statistic	0.079392792
Gamma Statistics		K-S 5% Critical Value	0.123624877
k hat	0.7645625	Data follow gamma distribution	
k star (bias corrected)	0.7355086	at 5% significance level	
Theta hat	11.128446	-	
Theta star	11.56804	95% UCLs (Assuming Gamma Distributio	n)
nu hat	85.631001	Approximate Gamma UCL	11.22205658
nu star	82.37696	Adjusted Gamma UCL	11.30492687
Approx.Chi Square Value (.05)	62.45696	•	
Adjusted Level of Significance	0.0457143	Lognormal Distribution Test	
Adjusted Chi Square Value	61.999122	Lilliefors Test Statisitic	0.126992352
		Lilliefors 5% Critical Value	0.11839673
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	-1.469676		
Maximum of log data	3.7135721	95% UCLs (Assuming Lognormal Distri	oution)
Mean of log data	1.3601076	95% H-UCL	21.13938261
Standard Deviation of log data	1.4947796	95% Chebyshev (MVUE) UCL	24.76400755
Variance of log data	2.2343662	97.5% Chebyshev (MVUE) UCL	30.52889519
		99% Chebyshev (MVUE) UCL	41.85290064
		95% Non-parametric UCLs	
		CLTUCL	10.55229414
		Adj-CLT UCL (Adjusted for skewness)	10.8242981
		Mod-t UCL (Adjusted for skewness)	10.62973782
		Jackknife UCL	10.5873107
		Standard Bootstrap UCL	10.56446954
		Bootstrap-t UCL	10.8802551
RECOMMENDATION		Hall's Bootstrap UCL	10.85201187
Data follow gamma distribution (0.05)		Percentile Bootstrap UCL	10.49732143
		BCA Bootstrap UCL	10.85857143
Use Approximate Gamma UCL		95% Chebyshev (Mean, Sd) UCL	13.92477702
		97.5% Chebyshev (Mean, Sd) UCL	16.26845078
		99% Chebyshev (Mean, Sd) UCL	20.87214405

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: CMS 9/23/05

. •

Data File P:\dscr\RISK\OU 2\Revised Files 9-22-05\OU2_S Variable: Copper

.

Raw Statistics	Normal Distribution Test		
Number of Valid Samples	56	Lilliefors Test Statisitic	0.508477798
Number of Unique Samples	35	Lilliefors 5% Critical Value	0.11839673
Minimum	0.5	Data not normal at 5% significance level	
Maximum	14082	Ũ	
Mean	263.74893	95% UCL (Assuming Normal Distribution)	I.
Median	4.3	Student's-t UCL	684.1946191
Standard Deviation	1880.6122		
Variance	3536702.3	Gamma Distribution Test	
Coefficient of Variation	7.1303122	A-D Test Statistic	14.07144834
Skewness	7.4772455	A-D 5% Critical Value	0.921124466
		K-S Test Statistic	0.441311005
Gamma Statistics		K-S 5% Critical Value	0.132492056
k hat	0.1828556	Data do not follow gamma distribution	
k star (bias corrected)	0.1849645	at 5% significance level	
Theta hat	1442.3891	-	
Theta star	1425.9433	95% UCLs (Assuming Gamma Distribution)	
nu hat	20.479828	Approximate Gamma UCL	480.161714
nu star	20.716028	Adjusted Gamma UCL	488.0297981
Approx.Chi Square Value (.05)	11.379146	-	
Adjusted Level of Significance	0.0457143	Lognormal Distribution Test	
Adjusted Chi Square Value	11.195689	Lilliefors Test Statisitic	0.149621719
		Lilliefors 5% Critical Value	0.11839673
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	-0.693147	- +	
Maximum of log data	9.5526527	95% UCLs (Assuming Lognormal Distribution	on)
Mean of log data	1.4942718	95% H-UCL	39.44159114
Standard Deviation of log data	1.7099776	95% Chebyshev (MVUE) UCL	43.40635502
Variance of log data	2.9240234	97.5% Chebyshev (MVUE) UCL 54.354474	
		99% Chebyshev (MVUE) UCL	75.85993495
		95% Non-parametric UCLs	-
		CLT UCL	677.1127807
		Adj-CLT UCL (Adjusted for skewness)	945.4205693
		Mod-t UCL (Adjusted for skewness)	726.045212
		Jackknife UCL	684.1946191
		Standard Bootstrap UCL	676.8607734
		Bootstrap-t UCL	57475.09256
RECOMMENDATION		Hall's Bootstrap UCL	32037.8501
Data are Non-parametric (0.05)		Percentile Bootstrap UCL	766.5119643
-		BCA Bootstrap UCL	1028.02625
Use 97.5% Chebyshev (Mean, Sd)	UCL	95% Chebyshev (Mean, Sd) UCL	1359.172392
		97.5% Chebyshev (Mean, Sd) UCL	1833.163
		99% Chebyshev (Mean, Sd) UCL	2764.225766

.

Iron (0-10)

Data File P:\dscr\RISK\OU 2\Revised Files 9-22-05\OU2_S Variable: Iron

.

Raw Statistics	Normal Distribution Test		
Number of Valid Samples	46		
Number of Unique Samples	44	Shapiro-Wilk 5% Critical Value	0.945
Minimum	5	Data not normal at 5% significance level	
Maximum	76461.		
Mean	16211.87	95% UCL (Assuming Normal Distribution)	
Median	14756.5	Student's-t UCL	19718.27183
Standard Deviation	14160.53		
Variance	200520612	Gamma Distribution Test	
Coefficient of Variation	0.8734668	A-D Test Statistic	1.599140816
Skewness	2.619721	A-D 5% Critical Value	0.77098621
		K-S Test Statistic	0.148794988
Gamma Statistics		K-S 5% Critical Value	0.133314132
k hat	1.3332884	Data do not follow gamma distribution	
k star (bias corrected)	1.2608276	at 5% significance level	
Theta hat	12159.312		
Theta star	12858.118	95% UCLs (Assuming Gamma Distribution)	
nu hat	122.66253	Approximate Gamma UCL	20412.49208
nu star	115.99614	Adjusted Gamma UCL	20566.08675
Approx.Chi Square Value (.05)	92.125657		
Adjusted Level of Significance	0.0447826	Lognormal Distribution Test	
Adjusted Chi Square Value	91.437631	Shapiro-Wilk Test Statisitic	0.655667507
		Shapiro-Wilk 5% Critical Value	0.945
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	1.6094379		
Maximum of log data	11.244536	95% UCLs (Assuming Lognormal Distributi	ion)
Mean of log data	9.2737676	95% H-UCL	49447.70477
Standard Deviation of log data	1.3855109	95% Chebyshev (MVUE) UCL	57395.33119
Variance of log data	1.9196405	97.5% Chebyshev (MVUE) UCL	70648.98005
		99% Chebyshev (MVUE) UCL	96683.20681
		95% Non-parametric UCLs	
		CLT UCL	19646.0875
		Adj-CLT UCL (Adjusted for skewness)	20507.78955
		Mod-t UCL (Adjusted for skewness)	19852.67994
		Jackknife UCL	19718.27183
		Standard Bootstrap UCL	19578.37026
		Bootstrap-t UCL	21629.76502
RECOMMENDATION		Hall's Bootstrap UCL	22462.44162
Data are Non-parametric (0.05)		Percentile Bootstrap UCL	19878.34783
		BCA Bootstrap UCL	20656.34783
Use 99%		95% Chebyshev (Mean, Sd) UCL	25312.62398
		97.5% Chebyshev (Mean, Sd) UCL	29250.52768
		99% Chebyshev (Mean, Sd) UCL	36985.77698

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: CMS 9/23/05

.

.....

Vanadium (0-10)

Data File P:\dscr\RISK\OU 2\Revised Files 9-22-05\OU2_S Variable: Vanadium

Raw Statistics	Normal Distribution Test		
Number of Valid Samples			0.342483335
Number of Unique Samples	33	Shapiro-Wilk 5% Critical Value 0.9	
Minimum	3.4	-	
Maximum	389	_	
Mean	31.25	95% UCL (Assuming Normal Distribut	ion)
Median	22.5	Student's-t UCL	44.98664338
Standard Deviation	55.475139		
Variance	3077.491	Gamma Distribution Test	
Coefficient of Variation	1.7752044	A-D Test Statistic	2.171458628
Skewness	6.2113872	A-D 5% Critical Value	0.771236907
		K-S Test Statistic	0.172194373
Gamma Statistics		K-S 5% Critical Value	0.133351759
k hat	1.3204374	Data do not follow gamma distribution	
k star (bias corrected)	1.2488147	at 5% significance level	
Theta hat	23.6664	-	
Theta star	25.023729	95% UCLs (Assuming Gamma Distributio	n)
nu hat	121.48024	Approximate Gamma UCL	39.39354459
nu star	114.89095	Adjusted Gamma UCL	39.69150673
Approx.Chi Square Value (.05)	91.14037	-	
Adjusted Level of Significance	0.0447826	Lognormal Distribution Test	
Adjusted Chi Square Value	90.456184	Shapiro-Wilk Test Statisitic	0.930978676
		Shapiro-Wilk 5% Critical Value	0.945
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	1.2237754		
Maximum of log data	5.9635793	95% UCLs (Assuming Lognormal Distrit	oution)
Mean of log data	3.0177997	95% H-UCL	37.15765109
Standard Deviation of log data	0.8183599	95% Chebyshev (MVUE) UCL	45.01891746
Variance of log data	0.669713	97.5% Chebyshev (MVUE) UCL	52.2498809
		99% Chebyshev (MVUE) UCL	66.45370839
		95% Non-parametric UCLs	
		CLTUCL	44.70385482
		Adj-CLT UCL (Adjusted for skewness)	52.70790093
		Mod-t UCL (Adjusted for skewness)	46.23511282
		Jackknife UCL	44.98664338
		Standard Bootstrap UCL	44.5477885
		Bootstrap-t UCL	79.31783246
RECOMMENDATION		Hall's Bootstrap UCL	99.16030741
Data are Non-parametric (0.0	5)	Percentile Bootstrap UCL	47.07391304
•		BCA Bootstrap UCL	56.84782609
Use 95% Chebyshev (Mean, Sd) UCL	95% Chebyshev (Mean, Sd) UCL	66.90301652
		97.5% Chebyshev (Mean, Sd) UCL	82.33010525
		99% Chebyshev (Mean, Sd) UCL	112.6336338

•

VC (0-10)

Data File

Variable: Vinyl chloride

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	56	Lilliefors Test Statisitic	0.525263329
Number of Unique Samples	8	Lilliefors 5% Critical Value	0.11839673
Minimum	0.00245	Data not normal at 5% significance level	
Maximum	0.85		
Mean	0.0352781	95% UCL (Assuming Normal Distributi	on)
Median	0.005	Student's-t UCL	0.070650472
Standard Deviation	0.158217		
Variance	0.0250326	Gamma Distribution Test	
Coefficient of Variation	4.484848	A-D Test Statistic	20.76098754
Skewness	5.1419872	A-D 5% Critical Value	0.845059212
		K-S Test Statistic	0.541770957
Gamma Statistics		K-S 5% Critical Value	0.1278498
k hat	0.374997	Data do not follow gamma distribution	
k star (bias corrected)	0.3668126	at 5% significance level	
Theta hat	0.0940758		
Theta star	0.0961748	95% UCLs (Assuming Gamma Distribution	n)
nu hat	41.999665	Approximate Gamma UCL	0.052912661
nu star	41.083016	Adjusted Gamma UCL	0.053490428
Approx.Chi Square Value (.05)	27.39102		0.000 190 120
Adjusted Level of Significance	0.0457143	Lognormal Distribution Test	
Adjusted Chi Square Value	27.095162	Lilliefors Test Statisitic	0.48349951
		Lilliefors 5% Critical Value 0.11839673	
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	-6.011667		
Maximum of log data	-0.162519	95% UCLs (Assuming Lognormal Distrib	ution)
Mean of log data	-5.117678	95% H-UCL	0.013154699
Standard Deviation of log data	0.9845713	95% Chebyshev (MVUE) UCL	0.016083349
Variance of log data	0.9693806	97.5% Chebyshev (MVUE) UCL	0.018886803
		99% Chebyshev (MVUE) UCL	0.024393645
		95% Non-parametric UCLs	0.000004/00
		CLT UCL	0.070054673
		Adj-CLT UCL (Adjusted for skewness)	0.085577707
		Mod-t UCL (Adjusted for skewness)	0.073071752
		Jackknife UCL	0.070650472
		Standard Bootstrap UCL	0.069438223
		Bootstrap-t UCL	4.41033982
RECOMMENDATION	-\	Hall's Bootstrap UCL	3.03856355
Data are Non-parametric (0.05)		Percentile Bootstrap UCL	0.080146875
	1101	BCA Bootstrap UCL	0.095597321
Use 95% Chebyshev (Mean, Sd)	UCL	95% Chebyshev (Mean, Sd) UCL	0.127436756
		97.5% Chebyshev (Mean, Sd) UCL	0.167313869
		99% Chebyshev (Mean, Sd) UCL	0.245644736

TCE (0-10)

.

Data File P:\dscr\RISK\OU 2\Revised Files 9-22-05\OU2_S Variable: TCE

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	57	Lilliefors Test Statisitic 0.51716312	
Number of Unique Samples	13	Lilliefors 5% Critical Value	0.117353567
Minimum	0.00105		
Maximum	53.4		
Mean	1.5351262	95% UCL (Assuming Normal Distribution	n)
Median	0.0025	Student's-t UCL	3.363198865
Standard Deviation	8.2519964		
Variance	68.095444	Gamma Distribution Test	
Coefficient of Variation	5.3754514	A-D Test Statistic	19.694491
Skewness	5.6241802	A-D 5% Critical Value	0.955721814
		K-S Test Statistic	0.537699123
Gamma Statistics		K-S 5% Critical Value	0.133050507
k hat	0.135356	Data do not follow gamma distribution	
k star (bias corrected)	0.1399279	at 5% significance level	
Theta hat	11.3414		
Theta star	10.970839	95% UCLs (Assuming Gamma Distribution)	
nu hat	15.43058	Approximate Gamma UCL	3.08922232
nu star	15.951778	Adjusted Gamma UCL	3.147687842
Approx.Chi Square Value (.05)	7.9269117		
Adjusted Level of Significance	0.0457895	Lognormal Distribution Test	
Adjusted Chi Square Value	7.7796763	Lilliefors Test Statisitic	0.405256121
		Lilliefors 5% Critical Value	0.117353567
Log-transformed Statistics		Data not lognormal at 5% significance level	
Minimum of log data	-6.858965		
Maximum of log data	3.9778107	95% UCLs (Assuming Lognormal Distribut	•
Mean of log data	-5.333678	95% H-UCL	0.092650755
Standard Deviation of log data	2.0080964	95% Chebyshev (MVUE) UCL	0.089584929
Variance of log data	4.0324511	97.5% Chebyshev (MVUE) UCL	0.114124893
		99% Chebyshev (MVUE) UCL	0.162328899
		95% Non-parametric UCLs	
		CLT UCL	3.332957199
		Adj-CLT UCL (Adjusted for skewness)	4.202966332
		Mod-t UCL (Adjusted for skewness)	3.498902708
		Jackknife UCL	3.363198865
		Standard Bootstrap UCL	3.344599825
		Bootstrap-t UCL	137.3619834
RECOMMENDATION		Hall's Bootstrap UCL	165.4317759
Data are Non-parametric (0.05)		Percentile Bootstrap UCL	3.443991579
		BCA Bootstrap UCL	4.570367895
Use 99% Chebyshev (Mean, Sd) UCL		95% Chebyshev (Mean, Sd) UCL	6.299418557
		97.5% Chebyshev (Mean, Sd) UCL	8.360931654
		99% Chebyshev (Mean, Sd) UCL	12.41037494

12DCE (0-10)

Data File

Variable: T 1,2-DCE

Raw Statistics		Normal Distribution Test	
Number of Valid Samples	11	Shapiro-Wilk Test Statisitic	0.460454642
Number of Unique Samples	7	Shapiro-Wilk 5% Critical Value	0.85
Minimum	0.00115	Data not normal at 5% significance level	
Maximum	9.4	č	
Mean	1.0897318	95% UCL (Assuming Normal Distribution	n).
Median	0.0025	Student's-t UCL	2.629657426
Standard Deviation	2.8179118		
Variance	7.9406269	Gamma Distribution Test	
Coefficient of Variation	2.5858764	A-D Test Statistic	1.921121933
Skewness	3.0812686	A-D 5% Critical Value	0.86964352
		K-S Test Statistic	0.447976905
Gamma Statistics		K-S 5% Critical Value	0.283108534
k hat	0.1726339	Data do not follow gamma distribution	· ·
k star (bias corrected)	0.186158	at 5% significance level	
Theta hat	6.3123875		
Theta star	5.8538019	95% UCLs (Assuming Gamma Distribution)	
nu hat	3.7979449	Approximate Gamma UCL	5.876384789
nu star	4.0954751	Adjusted Gamma UCL	7.97099152
Approx.Chi Square Value (.05)	0.7594754		
Adjusted Level of Significance	0.02783	Lognormal Distribution Test	
Adjusted Chi Square Value	0.5599014	Shapiro-Wilk Test Statisitic	0.683691401
		Shapiro-Wilk 5% Critical Value 0.85	
Log-transformed Statistics	Data not lognormal at 5% significance level		
Minimum of log data	-6.767993	993	
Maximum of log data	2.2407097	95% UCLs (Assuming Lognormal Distribut	ion)
Mean of log data	-4.27438	95% H-UCL	23815.4862
Standard Deviation of log data	3.3361733	95% Chebyshev (MVUE) UCL	3.318778808
Variance of log data	11.130052	97.5% Chebyshev (MVUE) UCL	4.460317265
		99% Chebyshev (MVUE) UCL	6.702648518
		95% Non-parametric UCLs	
		CLT UCL	2.487252709
		Adj-CLT UCL (Adjusted for skewness)	3.330674229
		Mod-t UCL (Adjusted for skewness)	2.761214139
		Jackknife UCL	2.629657426
		Standard Bootstrap UCL	2.435028275
		Bootstrap-t UCL	15.92966591
RECOMMENDATION		Hall's Bootstrap UCL	16.74024371
Data are Non-parametric (0.05)		Percentile Bootstrap UCL	2.624127273
		BCA Bootstrap UCL	3.768286364
Use Hall's Bootstrap UCL		95% Chebyshev (Mean, Sd) UCL	4.79319347
		97.5% Chebyshev (Mean, Sd) UCL	6.395684285
Recommended UCL exceeds the maximum observer		99% Chebyshev (Mean, Sd) UCL	9.543467188

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: CMS 9/23/05

050016.19

In case Hall's Bootstrap method yields an erratic, unreasonably large UCL value,

use 99% Chebyshev (Mean, Sd) UCL

Benzo(a)anthracene (0-10)

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Benzo(a)anthracene

0.2310403

0.2305593

42.749327

42.838509 25.414435 25.361527 14.886857 0.0456364 14.670175

Raw Statistics	
Number of Valid Samples	55
Number of Unique Samples	21
Minimum	0.1
Maximum	360
Mean	9.8768182
Median	0.165
Standard Deviation	49.221061
Variance	2422.7129
Coefficient of Variation	4.9834937
Skewness	6.9327581

Gamma Statistics				
k hat				
k star (bias corrected)				
Theta hat				

Theta star
nu hat
nu star
Approx.Chi Square Value (.05)
Adjusted Level of Significance
Adjusted Chi Square Value

-

Log-transformed Statistics	
Minimum of log data	-2.302585
Maximum of log data	5.886104
Mean of log data	-0.823292
Standard Deviation of log data	1.8819608
Variance of log data	3.5417763

RECOMMENDATION Data are Non-parametric (0.05)

Use 97.5% Chebyshev (Mean, Sd) UCL

Normal Distribution Test Lilliefors Test Statisitic Lilliefors 5% Critical Value Data not normal at 5% significance level	0.44936002 0.11946822
95% UCL (Assuming Normal Distribution) Student's-t UCL	20.9842107
Gamma Distribution Test	
A-D Test Statistic	11.2696528
A-D 5% Critical Value	0.89443767
K-S Test Statistic	0.33241909
K-S 5% Critical Value	0.13217898
Data do not follow gamma distribution	
at 5% significance level	
95% UCLs (Assuming Gamma Distribution)	
Approximate Gamma UCL	16.8263315
Adjusted Gamma UCL	17.0748606
	17.0740000
Lognormal Distribution Test	
Lilliefors Test Statisitic	0.33481307
Lilliefors 5% Critical Value	0.11946822
Data not lognormal at 5% significance level	
95% UCLs (Assuming Lognormal Distributio	n)
95% H-UCL	6.07684008
95% Chebyshev (MVUE) UCL	6.1829872
97.5% Chebyshev (MVUE) UCL	7.83038334
99% Chebyshev (MVUE) UCL	11.066374
95% Non-parametric UCLs	
CLT UCL	20.7936567
Adj-CLT UCL (Adjusted for skewness)	27.4230646
Mod-t UCL (Adjusted for skewness)	22.0182644
Jackknife UCL	20.9842107
Standard Bootstrap UCL	20.5703066
-	66.2841242
Hall's Bootstrap UCL	54.7395169
Percentile Bootstrap UCL	22.2762727
BCA Bootstrap UCL	30.7633636
95% Chebyshev (Mean, Sd) UCL	38.8066847
97.5% Chebyshev (Mean, Sd) UCL	51.324661

99% Chebyshev (Mean, Sd) UCL

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: CMS 9/23/05

050016.19

75.9138016

Benzo(a)pyrene (0-10)

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Benzo(a)pyrene

Raw Statistics		Norma
Number of Valid Samples	55	Lilliefors Test S
Number of Unique Samples	20	Lilliefors 5% Cr
Minimum	0.1	Data not normal
Maximum	340	
Mean	8.3339091	95% UCL (
Median	0.165	Student's-t UCL
Standard Deviation	46.122796	
Variance	2127.3124	Gar
Coefficient of Variation	5.5343532	A-D Test Statist
Skewness	7.1522833	A-D 5% Critical
		K-S Test Statisti
Gamma Statistics		K-S 5% Critical
k hat	0.2322749	Data do not folle
k star (bias corrected)	0.2317265	at 5% significan
Theta hat	35.879512	_
Theta star	35.964412	95% UCLs (As
nu hat	25.550236	Approximate Ga
nu star	25.48992	Adjusted Gamm
Approx.Chi Square Value (.05)	14.98538	•
Adjusted Level of Significance	0.0456364	Logno
Adjusted Chi Square Value	14.767914	Lilliefors Test S
		Lilliefors 5% Cr
Log-transformed Statistics		Data not lognorr
Minimum of log data	-2.302585	Ū.
Maximum of log data	5.8289456	95% UCLs (A
Mean of log data	-0.973965	95% H-UCL
Standard Deviation of log data	1.7649725	95% Chebyshev
		-

3.1151278

RECOMMENDATION Data are Non-parametric (0.05)

Variance of log data

Use 97.5% Chebyshev (Mean, Sd) UCL

Normal Distribution Test	
Lilliefors Test Statisitic	0.445661091
Lilliefors 5% Critical Value	0.119468216
Data not normal at 5% significance level	
95% UCL (Assuming Normal Distribution)
Student's-t UCL	18.7421366
Gamma Distribution Test	
A-D Test Statistic	12.13953476
A-D 5% Critical Value	0.893871811
K-S Test Statistic	0.368019012
K-S 5% Critical Value	0.132144531
Data do not follow gamma distribution	
at 5% significance level	
95% UCLs (Assuming Gamma Distribution)	
Approximate Gamma UCL	14.17586234
Adjusted Gamma UCL	14.3846098
Lognormal Distribution Test	
Lilliefors Test Statisitic	0.353207155
Lilliefors 5% Critical Value	0.119468216
Data not lognormal at 5% significance level	
95% UCLs (Assuming Lognormal Distributi	on)
95% H-UCL	3.859991657
95% Chebyshev (MVUE) UCL	4.137879611
97.5% Chebyshev (MVUE) UCL	5.203288544
99% Chebyshev (MVUE) UCL	7.296078088
95% Non-parametric UCLs	
CLT UCL	18.56357719
Adj-CLT UCL (Adjusted for skewness)	24.97239708
Mod-t UCL (Adjusted for skewness)	19.74178299
Jackknife UCL	18.7421366
Standard Bootstrap UCL	18.38516809
Bootstrap-t UCL	104.7444466
Hall's Bootstrap UCL	75.54659092
Percentile Bootstrap UCL	20.41309091
BCA Bootstrap UCL	32.23409091
95% Chebyshev (Mean, Sd) UCL	35.44275861
97.5% Chebyshev (Mean, Sd) UCL	47.17277945
99% Chebyshev (Mean, Sd) UCL	70.21413401

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Benzo(b)fluoranthene

Raw Statistics		Normal Distribution Test			
Number of Valid Samples	55	Lilliefors Test Statisitic	0.431297554		
Number of Unique Samples	22	Lilliefors 5% Critical Value	0.119468216		
Minimum	0.1	Data not normal at 5% significance level			
Maximum	540	C C			
Mean	14.059545	95% UCL (Assuming Normal Distributio	n)		
Median	0.165	Student's-t UCL	30.65858532		
Standard Deviation	73.55663				
Variance	5410.5778	Gamma Distribution Test			
Coefficient of Variation	5.2317929	A-D Test Statistic	10.24386221		
Skewness	7.0404785	A-D 5% Critical Value	0.899399353		
		K-S Test Statistic	0.310700665		
Gamma Statistics		K-S 5% Critical Value 0.1324			
k hat	0.2202152	Data do not follow gamma distribution			
k star (bias corrected)	0.2203247	at 5% significance level			
Theta hat	63.844567	-			
Theta star	63.812845	95% UCLs (Assuming Gamma Distribution)			
nu hat	24.223674	Approximate Gamma UCL	24.29311402		
nu star	24.235716	Adjusted Gamma UCL	24.66186628		
Approx.Chi Square Value (.05)	14.026327	-			
Adjusted Level of Significance	0.0456364	Lognormal Distribution Test			
Adjusted Chi Square Value	13.816601	Lilliefors Test Statisitic	0.316347638		
		Lilliefors 5% Critical Value	0.119468216		
Log-transformed Statistics		Data not lognormal at 5% significance level			
Minimum of log data	-2.302585				
Maximum of log data	6.2915691	95% UCLs (Assuming Lognormal Distribu	tion)		
Mean of log data	-0.648278	95% H-UCL	10.50816217		
Standard Deviation of log data	2.0165749	95% Chebyshev (MVUE) UCL	9.946714116		
Variance of log data	4.0665743	97.5% Chebyshev (MVUE) UCL	12.69020488		
		99% Chebyshev (MVUE) UCL	18.07926125		
		95% Non-parametric UCLs			
		CLTUCL	30.37381881		
		Adj-CLT UCL (Adjusted for skewness)	40.43483214		
		Mod-t UCL (Adjusted for skewness)	32.22790009		
		Jackknife UCL	30.65858532		
		Standard Bootstrap UCL	29.96000719		
		Bootstrap-t UCL	142.5213801		
RECOMMENDATION		Hall's Bootstrap UCL 99.165			
Data are Non-parametric (0.05	5)	Percentile Bootstrap UCL	33.19990909		
		BCA Bootstrap UCL	52.99218182		
Use 99% Chebyshev (Mean, Sd)	UCL	95% Chebyshev (Mean, Sd) UCL	57.29273513		
		97.5% Chebyshev (Mean, Sd) UCL	75.99977084		
		99% Chebyshev (Mean, Sd) UCL	112.7461201		

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: CMS 9/23/05

.

Benzo(k)fluoranthene (0-10)

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Benzo(k)fluoranthene

Raw Statistics		Normal Distribution Test		
Number of Valid Samples	55	Lilliefors Test Statisitic	0.463887336	
Number of Unique Samples	22	Lilliefors 5% Critical Value	0.119468216	
Minimum	0.095	Data not normal at 5% significance level		
Maximum	540			
Mean	12.729182	95% UCL (Assuming Normal Distribution	ı)	
Median	0.165	Student's-t UCL	29.31821501	
Standard Deviation	73.512286			
Variance	5404.0563	Gamma Distribution Test		
Coefficient of Variation	5.7750991	A-D Test Statistic	13.70155302	
Skewness	7.1076112	A-D 5% Critical Value	0.906765558	
		K-S Test Statistic	0.395102053	
Gamma Statistics		K-S 5% Critical Value	0.13292938	
k hat	0.2041441	Data do not follow gamma distribution		
k star (bias corrected)	0.2051302	at 5% significance level		
Theta hat	62.353909			
Theta star	62.054168	95% UCLs (Assuming Gamma Distribution)		
nu hat	22.455849	Approximate Gamma UCL	22.50876382	
nu star	22.564318	Adjusted Gamma UCL	22.86553158	
Approx.Chi Square Value (.05)	12.760599			
Adjusted Level of Significance	0.0456364	Lognormal Distribution Test		
Adjusted Chi Square Value	12.561497	Lilliefors Test Statisitic	0.370146744	
		Lilliefors 5% Critical Value	0.119468216	
Log-transformed Statistics		Data not lognormal at 5% significance level		
Minimum of log data	-2.353878			
Maximum of log data	6.2915691	95% UCLs (Assuming Lognormal Distribut	ion)	
Mean of log data	-1.049475	95% H-UCL	4.026970932	
Standard Deviation of log data	1.8113425	95% Chebyshev (MVUE) UCL	4.233317266	
Variance of log data	3.2809615	97.5% Chebyshev (MVUE) UCL	5.338736153	
		99% Chebyshev (MVUE) UCL	7.510117506	
		95% Non-parametric UCLs		
		CLT UCL	29.03362017	
		Adj-CLT UCL (Adjusted for skewness)	39.18444469	
		Mod-t UCL (Adjusted for skewness)	30.9015385	
		Jackknife UCL	29.31821501	
		Standard Bootstrap UCL	28.66881714	
		Bootstrap-t UCL	198.4906788	
RECOMMENDATION		Hall's Bootstrap UCL	194.4322242	
Data are Non-parametric (0.05)		Percentile Bootstrap UCL	32.06118182	
		BCA Bootstrap UCL	51.89072727	
Use 97.5% Chebyshev (Mean, Sd) UCL	95% Chebyshev (Mean, Sd) UCL	55.93630851	
		97.5% Chebyshev (Mean, Sd) UCL	74.63206675	
		99% Chebyshev (Mean, Sd) UCL	111.3562636	

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Chrysene

Raw Statistics		Normal Distribution Test			
Number of Valid Samples	55	Lilliefors Test Statisitic	0.451321567		
Number of Unique Samples	21	Lilliefors 5% Critical Value	0.119468216		
Minimum	0.1	Data not normal at 5% significance level			
Maximum	400	-			
Mean	10.585273	95% UCL (Assuming Normal Distribution	n)		
Median	0.165	Student's-t UCL	22.89516483		
Standard Deviation	54.549792				
Variance	2975.6798	Gamma Distribution Test			
Coefficient of Variation	5.1533667	A-D Test Statistic	11.63992184		
Skewness	7.0036634	A-D 5% Critical Value	0.89708929		
		K-S Test Statistic	0.342062642		
Gamma Statistics		K-S 5% Critical Value	0.132340381		
k hat	0.2252552	Data do not follow gamma distribution			
k star (bias corrected)	0.2250897	at 5% significance level			
Theta hat	46.992362				
Theta star	47.0269	95% UCLs (Assuming Gamma Distribution)			
nu hat	24.778069	Approximate Gamma UCL	18.16762514		
nu star	24.759872	Adjusted Gamma UCL	18.43986538		
Approx.Chi Square Value (.05)	14.426211				
Adjusted Level of Significance	0.0456364	Lognormal Distribution Test			
Adjusted Chi Square Value	14.213227	Lilliefors Test Statisitic	0.330131277		
		Lilliefors 5% Critical Value	0.119468216		
Log-transformed Statistics		Data not lognormal at 5% significance level			
Minimum of log data	-2.302585				
Maximum of log data	5.9914645	95% UCLs (Assuming Lognormal Distribut	ion)		
Mean of log data	-0.846919	95% H-UCL	5.984280296		
Standard Deviation of log data	1.885055	95% Chebyshev (MVUE) UCL	6.079612045		
Variance of log data	3.5534323	97.5% Chebyshev (MVUE) UCL	7.70084226		
		99% Chebyshev (MVUE) UCL 10.885435			
		95% Non-parametric UCLs			
		CLT UCL	22.68398123		
		Adj-CLT UCL (Adjusted for skewness)	30.10624001		
		Mod-t UCL (Adjusted for skewness)	24.05288721		
		Jackknife UCL	22.89516483		
		Standard Bootstrap UCL	22.80495869		
		Bootstrap-t UCL	86.37715028		
RECOMMENDATION		Hall's Bootstrap UCL	66.77990359		
Data are Non-parametric (0.05)	Percentile Bootstrap UCL	23.93554545		
		BCA Bootstrap UCL	34.47845455		
Use 97.5% Chebyshev (Mean, Sc	I) UCL	95% Chebyshev (Mean, Sd) UCL	42.64712116		
		97.5% Chebyshev (Mean, Sd) UCL	56.52030858		
		99% Chebyshev (Mean, Sd) UCL	83.77149891		

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: CMS 9/23/05

-

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Dibenzo(a,h)anthracene

Raw Statistics		Normal Distribution Test		
Number of Valid Samples	55	Lilliefors Test Statisitic	0.490357186	
Number of Unique Samples	13	Lilliefors 5% Critical Value	0.119468216	
Minimum	0.01	Data not normal at 5% significance level		
Maximum	72			
Mean	2.1072364	95% UCL (Assuming Normal Distribution	n)	
Median	0.165	Student's-t UCL	4.390496169	
Standard Deviation	10.117989			
Variance	102.37369	Gamma Distribution Test		
Coefficient of Variation	4.8015442	A-D Test Statistic	15.85421158	
Skewness	6.4707977	A-D 5% Critical Value	0.860509574	
		K-S Test Statistic	0.493237556	
Gamma Statistics	•	K-S 5% Critical Value	0.130090836	
k hat	0.3097282	Data do not follow gamma distribution		
k star (bias corrected)	0.3049552	at 5% significance level		
Theta hat	6.8035011			
Theta star	6.9099872	95% UCLs (Assuming Gamma Distribution)		
nu hat	34.070105	Approximate Gamma UCL	3.318822473	
nu star	33.545069	Adjusted Gamma UCL	3.360358398	
Approx.Chi Square Value (.05)	21.298937			
Adjusted Level of Significance	0.0456364	Lognormal Distribution Test		
Adjusted Chi Square Value	21.03567	Lilliefors Test Statisitic	0.366214922	
		Lilliefors 5% Critical Value	0.119468216	
Log-transformed Statistics		Data not lognormal at 5% significance level		
Minimum of log data	-4.60517			
Maximum of log data	4.2766661	95% UCLs (Assuming Lognormal Distribut	tion)	
Mean of log data	-1.469413	95% H-UCL	0.921630742	
Standard Deviation of log data	1.3419466	95% Chebyshev (MVUE) UCL	1.10747701	
Variance of log data	1.8008207	97.5% Chebyshev (MVUE) UCL	1.34892481	
		99% Chebyshev (MVUE) UCL	1.823202258	
		95% Non-parametric UCLs		
		CLTUCL	4.351325473	
		Adj-CLT UCL (Adjusted for skewness)	5.62327458	
		Mod-t UCL (Adjusted for skewness)	4.588894525	
		Jackknife UCL	4.390496169	
		Standard Bootstrap UCL	4.310398305	
		Bootstrap-t UCL	13.00472879	
RECOMMENDATION		Hall's Bootstrap UCL	14.05997288	
Data are Non-parametric (0.05))	Percentile Bootstrap UCL	4.711890909	
		BCA Bootstrap UCL	6.505618182	
Use 97.5% Chebyshev (Mean, Sd) UCL	95% Chebyshev (Mean, Sd) UCL	8.05412275	
		97.5% Chebyshev (Mean, Sd) UCL	10.62734524	
		99% Chebyshev (Mean, Sd) UCL	15.68194255	

Indeno(123-cd)pyrene (0-10)

Data File P:\dscr\RISK\OU 2\Working Files\Stats\OU2_Sta Variable: Indeno(1,2,3-cd)pyrene

Raw Statistics		Normal Distribution Test			
Number of Valid Samples	55	Lilliefors Test Statisitic	0.449425164		
Number of Unique Samples	19	Lilliefors 5% Critical Value	0.119468216		
Minimum	0.165	Data not normal at 5% significance level			
Maximum	180				
Mean	4.5739091	95% UCL (Assuming Normal Distribution	(ac		
Median	0.165	Student's-t UCL	10.08629526		
Standard Deviation	24.42747				
Variance	596.70129	Gamma Distribution Test			
Coefficient of Variation	5.3406112	A-D Test Statistic	13.910983		
Skewness	7.1234731	A-D 5% Critical Value	0.874502938		
		K-S Test Statistic	0.409078507		
Gamma Statistics		K-S 5% Critical Value	0.130965538		
k hat	0.2745327	Data do not follow gamma distribution			
k star (bias corrected)	0.2716794	at 5% significance level			
Theta hat	16.660708	C			
Theta star	16.835686	95% UCLs (Assuming Gamma Distribution)		
nu hat	30.198597	Approximate Gamma UCL	7.428719145		
nu star	29.884734	Adjusted Gamma UCL	7.528226702		
Approx.Chi Square Value (.05)	18.400219	5	······································		
Adjusted Level of Significance	0.0456364	Lognormal Distribution Test			
Adjusted Chi Square Value	18.157006	Lilliefors Test Statisitic	0.323579174		
		Lilliefors 5% Critical Value	0.119468216		
Log-transformed Statistics		Data not lognormal at 5% significance level			
Minimum of log data	-1.80181				
Maximum of log data	5.1929569	95% UCLs (Assuming Lognormal Distribution	tion)		
Mean of log data	-1.027973	95% H-UCL	1.852404504		
Standard Deviation of log data	1.4697454	95% Chebyshev (MVUE) UCL	2.175811046		
Variance of log data	2.1601515	97.5% Chebyshev (MVUE) UCL	2.678790892		
		99% Chebyshev (MVUE) UCL	3.666797404		
		95% Non-parametric UCLs			
		CLTUCL	9.991726963		
		Adj-CLT UCL (Adjusted for skewness)	13.37228193		
		Mod-t UCL (Adjusted for skewness)	10.61359352		
		Jackknife UCL	10.08629526		
		Standard Bootstrap UCL	9.987441714		
		Bootstrap-t UCL	45.82336732		
RECOMMENDATION		Hall's Bootstrap UCL	39.01251145		
Data are Non-parametric (0.05)	Percentile Bootstrap UCL	10.93072727		
		BCA Bootstrap UCL	17.01454545		
Use 97.5% Chebyshev (Mean, So	I) UCL	95% Chebyshev (Mean, Sd) UCL	18.93124776		
		97.5% Chebyshev (Mean. Sd) UCL	25.14367967		
		99% Chebyshev (Mean, Sd) UCL	37.3467992		

- :

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: CMS 9/23/05

I

PCB-1260 (0-10)

Data File

Variable: PCB-1260 (0-10)

Raw Statistics		Normal Distribution Test			
Number of Valid Samples	51	Lilliefors Test Statisitic	0.513268825		
Number of Unique Samples	9	Lilliefors 5% Critical Value	0.124064815		
Minimum	0.02	Data not normal at 5% significance level			
Maximum	47	Ū.			
Mean	0.9675392	95% UCL (Assuming Normal Distribution	1)		
Median	0.02	Student's-t UCL	2.510567766		
Standard Deviation	6.5752113				
Variance	43.233404	Gamma Distribution Test			
Coefficient of Variation	6.7958086	A-D Test Statistic	16.52362212		
Skewness	7.139875	A-D 5% Critical Value	0.899093655		
		K-S Test Statistic	0.485059161		
Gamma Statistics		K-S 5% Critical Value	0.137212155		
k hat	0.2189504	Data do not follow gamma distribution			
k star (bias corrected)	0.2191429	at 5% significance level			
Theta hat	4.4189873				
Theta star	4.4151064	95% UCLs (Assuming Gamma Distribution)			
nu hat	22.332945	Approximate Gamma UCL	1.71624755		
nu star	22.352576	Adjusted Gamma UCL	1.745864917		
Approx.Chi Square Value (.05)	12.601325	·			
Adjusted Level of Significance	0.0452941	Lognormal Distribution Test			
Adjusted Chi Square Value	•		0.377682588		
		Lilliefors 5% Critical Value	0.124064815		
Log-transformed Statistics		Data not lognormal at 5% significance level			
Minimum of log data	-3.912023				
Maximum of log data	3.8501476	95% UCLs (Assuming Lognormal Distribut	ion)		
Mean of log data	-3.346617	95% H-UCL	0.126060045		
Standard Deviation of log data	1.2708895	95% Chebyshev (MVUE) UCL	0.151847172		
Variance of log data	1.6151601	97.5% Chebyshev (MVUE) UCL	0.184317782		
u		99% Chebyshev (MVUE) UCL 0.248100009			
		95% Non-parametric UCLs			
		CLT UCL	2.481978564		
		Adj-CLT UCL (Adjusted for skewness)	3.465560543		
		Mod-t UCL (Adjusted for skewness)	2.663986678		
		Jackknife UCL	2.510567766		
		Standard Bootstrap UCL	2.47973655		
		Bootstrap-t UCL	215.244873		
RECOMMENDATION		Hall's Bootstrap UCL	76.7635008		
Data are Non-parametric (0.05)		Percentile Bootstrap UCL	2.804303922		
		BCA Bootstrap UCL	3.751696078		
Use 97.5% Chebyshev (Mean, Sd) UCL	95% Chebyshev (Mean, Sd) UCL	4.980837397		
		97.5% Chebyshev (Mean, Sd) UCL	6.717394726		
		99% Chebyshev (Mean, Sd) UCL	10.12852534		

Final Human Health Baseline Risk Assessment - Operable Unit 2 Defense Supply Center Richmond

28 July 2006 Revision I

847

177

--- -

ATTACHMENT 2-4 SOIL VAPOR MODELING

847 178 FUTURE ON-SITE VAPOR INTRUSION INDUSTRIAL WORKER EXPOSURE - TOTAL 12 DCE

.

.

I

- -

i

.

	cis-1.	cis-1,2-Dichloroethylene	lene				
TER	ENTER	ENTER	FNTFR	ENTER	ENTER		ENTED
	Depth below	Totals mu	Totals must add up to value of L(cell G28)	L(cell G28)	Sol		
	grade to bottom		Thickness	Thickness	stratum A		User-defined
i below	of contamination,	Thickness	of soil	of soil	scs		stratum A
e to top	(enter value of 0	of soil	straturn B,	stratum C,	soil type		soil vapor
imination,	if value is unknown)	stratum A,	(Enter value or 0)	(Enter value or 0) (Enter value or 0)	(used to estimate	OR	permeability,
	ſ	٩	Ē	<u>م</u>	soil vapor		3
((cm)	(cm)	(cm)	(cm)	permeability)		(cm ²)
5	259	15					, ,

•

.

	χ. υ δ		//14/05
	ENTER Stratum C soil organic carbon fraction, foc (unitless)		PREPARED/DATE::MKB %25/05 CHECKED/DATE: LMS 9/14/05
	ENTER Stratum C soil water-filled porosity, θ _w ^c (cm ³ /cm ³)		PREPAREI CHECKEI
	ENTER Stratum C soil total porosity. n ^c (unitless)		
	ENTER Stratum C soil dry butk density, p ₆ ^c (g/cm ³)		
	ENTER Stratum C SCS soil type Lookup Sol		
	ENTER Stratum B soil organic carbon fraction, foc ^B (unitless)		
	ENTER Stratum B soil water-filled porosity, θ _w ⁸ (cm ³ /cm ³)	ENTER Average vapor flow rate into bldg. OR Leave blank to calculate Q _{sol}	
	ENTER Stratum B soil total porosity, n ⁸ (unitless)		
	ENTER Stratum B soil dry bulk density, $ ho^{B}$ (g/cm ³)	ENTER Indoor air exchange ER (1/h) 0.83	
	ENTER Stratum B SCS soil type Lookup Soil Parameters	ENTER Floor-wall seam crack width, w (cm) 0.1 0.1 0.1 Cm) 0.1 1HQ quotient for noncarcinogens, THQ (unitless) (unitless) the risk-based intration.	
15	ENTER Stratum A soil organic carbon fraction, f _∞ ^A (unitless)	0.002 0.002 ENTER ENTER Enclosed Floor-wall space seam crack height, width, h width, h (cm) (fm) (cm) 366 0.1 366 0.1 366 0.1 366 0.1 100 (cm) 100 (cm) 1.0E-04 1 1.0E-04 1 Soil concentration.	
259	ENTER Stratum A soit water-filled porosity, θ_w^A (cm ³ /cm ³)	0.148 ENTER Enclosed space floor width, W _B (cm) (cm) (cm) (cm) (cm) (cm) (cm) (cm)	
2	TER tum A total ssity, dess)	Billing and a second and a seco	

• •

l of 3

_

050016.19

END

đ conc. below)		ENTER f.(cell G28) Thickness of soil stratum C, (Enter value or hc (cm)	ENTER ENTER Stratum B soil dry bulk density, p ⁶ (g/cm ³)	ENTER ENTER Indoor air exchange rate, ER ER (1/h)	
:S" box and initial so	lene	ITER ENTER ENTER Totals must add up to value of L(cell G28) Thickness of soil of soil schess of soil of soil tum A, (Enter value or 0) (Enter valu h _A h _B h _b h _c m) (cm) (cm)	ENTER Stratum B SCS soil type Lookup Soil Parameters	ENTER ENTER Floor-wall seam crack width, v (cm)	ENTER ENTER Target hazard quotient for noncarcinogens, THQ (unitless)
N (enter "X" in ƳE	Chemical cis-1,2-Dichloroethylene	straid of	15 ENTER Stratum A soil organic carbon fraction, foc ^A (unitless)	0.002 ENTER Enclosed space height, H _B (cm)	ENTER ENTER Target nisk for carcinogens, TR (unitless) 1.0E-04
CALCULATE RISK-BASED SOIL CONCENTRATION (enter "X" in "YES" box) YES X OR CALCULATE INCREMENTAL RISKS FROM ACTUAL SOIL CONCENTRATION (enter "X" in "YES" box and initial soil conc. below) YES YES	cis-1	ENTER Depth below grade to bottorn of contamination, (enter value of 0 if value is unknown) L _b (cm)	259 ENTER Stratum A soił water-filled porosity, θ (cm ³ /cm ³)	0.148 ENTER Enclosed space froor W _B (cm)	ENTER Exposure frequency, EF (days/yr) 250
NCENTRATION (en X X OR SFROM ACTUAL SC		ENTER Depth below grade to top of contamination, L _t (cm)	15 ENTER Stratum A soil total porosity, n ^A (unitless)	0.399 ENTER Endosed floor La La (cm)	ENTER ENTER Exposure duration, ED (yrs) 25
SK-BASED SOIL CC YES CREMENTAL RISKS YES	ENTER Initial soil canc., CR (µg/kg) 9.40E+03	ENTER Depth below grade to bottom of enclosed space floor, LF (cm)	15 ENTER Stratum A soil dry bulk density, ه^ (و/cm)	ENTER ENTER Soil-bldg. pressure differential, ΔP (g/cm-s²)	ENTER ENTER Averaging time for noncarcinogens, AT _{MC} (yrs) (yrs)
CALCULATE RIS CALCULATE INC	ENTER Chemical CAS No. (numbers only, no dashes) 156592	ENTER Average soil temperature, 1 _s (°C)	16.6 ENTER Stratum A SCS soil type Lookup Soil Parameters	ENTER Enclosed space floor Lead (cm)	ENTER Averaging time for carcinogens, AT _c (yrs) 70
SL-ADV Version 3.1; 02/04 Reset to Defaults		MORE	MORE	MORE	

CHEMICAL PROPERTIES SHEET

						 _
	Physical	state at	soil	temperature,	(S'L'G)	
		Reference	conc.,	RfC	(mg/m ³)	3.5E-02
	Unit	risk	factor,	URF	(μg/m ³⁾⁻¹	0.0E+00 3.5E-02
Pure	component	water	solubility,	S	(mg/L)	3.55E+01 3.50E+03
· Organic	carbon	partition	coefficient,	ж °	(cm³/g)	3.55E+01
		Critical	temperature,	Т _с	(%)	544.00
	Normal		point,		(°K)	333.65
Enthalpy of	vaporization at	the normal	boiling point,	$\Delta H_{v,b}$	(cal/mol)	7.192
Henry's	law constant	reference	temperature,	Т _R	(°C)	25
Henry's	law constant	at reference	temperature,	I	(atm-m ³ /mol)	4.07E-03
		~				

847 179

050016.19

2 of 3

Diffusivity Diffusivity in air, in water, D_a D_w (cm²/s) (cm²/s) 7.36E-02 1.13E-05

END

Ì

.

.

÷

1

.'

847 180

к 1

INTERMEDIATE CALCULATIONS SHEET

	Convection path Lp	15 Exposure duration > time for source depletion (YES/NO)	Q
Bldg. ventilation rate, Q _{building} (cm ³ /s)	3.14E+06 Diffusion path length,	Time for source depletion, t _D (sec)	2.35E+09
Initial soil concentration used C _R (µg/kg)	1.00E+00 Total overall effective diffusion coefficient, D ^{ef}	4.63E-03 Finite source (sec) (1.88E-03
Floor- wall seam perimeter, X _{arack} (cm)	24,384 [Stratum C c effective diffusion coefficient, D ^{eff} Cm ^{2(c)}	0.00E+00 Finite source β term (unitless)	1.79E+04
Stratum A soil effective vapor kv (cm ²)	1.60E-09 Stratum B effective diffusion Coefficient D ^{eff} Com ² (c)	0.00E+00 Infinite source bldg. conc., Conc., (μg/m ³)	AA
Stratum A soil relative air k ₁₉ (cm ²)	0.854 Stratum A effective diffusion coefficient, D ^{eff} (cm ² e)	4.63E-03 Infinite source indoor attenuation coefficient, α (unittess)	N
Stratum A soit intrinsic permeability, k _i (cm ²)	1.87E-09 Vapor viscosity at ave. soil temperature, ^{µTS}	1.77E-04 Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	5.30E+03
Stratum A effective total fluid saturation, S _{te} (cm ³ /cm ³)	0.257 Henry's law constant at ave. soil temperature, H' _{TS}	1.18E-01 Area of crack, (cm ²)	2.44E+03 Reference conc., RfC (mg/m ³)
Stratum C soil air-filled porosity, θ _a ^c (cm ³ /cm ³)	ERROR Henry's law constant at ave. soil temperature, H _{TS}	2.80E-03 2.80E-03 Crack effective diffusion D ^{oreck} (cm ² /s)	4.63E-03 Unit risk factor, URF (µg/m ³⁾⁻¹
Stratum B soil air-filled porosity, $\theta_a^{\rm B}$ (cm ³ /cm ³)	ERROR Enthalpy of vaporization at ave. soil temperature, ΔΗ _{v,TS}	7,668 Average vapor flow rate into błdg ∵đ _{soil} (cm³/s)	9.69E+00 Final finite source bldg. conc., C ^{building} (μg/m ³)
Stratum A soil air-filled porosity, θ _a ^A (cm ³ /cm ³)	0.251 Crack depth below grade, Z _{drack}	15 Crack radius, (cm)	0.10 Finite source bldg. C ^{building} (µg/m ³)
Source- building separation, L _T (cm)	1 Crack- to-total area ratio, 1	6.50E-05 Source vapor conc., C _{source} (µg/m ³)	6.44E+02 Mass limit bldg. conc., C _{building} (µg/m ³)
Exposure duration, t (sec)	7.88E+08 Area of enclosed space below grade, A _B	3.75E+07	7.10E-02 Finite source indoor attenuation coefficient, <α> (unitless)

3 of 3

1

3.5E-02 ÷

₹

,

(cm³/s)	9.69E+00	Final	finite	source bldg.	conc.,	Cbuilding	(µg/m³)	1.99E-03	
(cm)	0.10	Finite	source	bldg.	conc.,	Cbuilding	(µg/m³)	1.99E-03	
(лд/ш ³)	6.44E+02	Mass	limit	bldg.	conc.,	Cbuilding	(нд/т ³)	AN	
(cm ³ /g)	7.10E-02	Finite source	indoor	attenuation	coefficient,	<¤>	(unitless)	3.08E-06	END

, , ,

FUTURE ON-SITE VAPOR INTRUSION INDUSTRIAL WORKER EXPOSURE - TCE		ENTER User-defined stratum A soil vapor k, (cm ²)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		PREPARED/DATE:MKB 8/25/05 CHECKED/DATE: LMS 9/14/05
		ENTER Soil stratum A SCS soil type (used to estimate soil vapor permeability)	ENTER ENTER Stratum B Stratum B soil total soil water-filled porosity, porosity, n ^B 0 _w ^B (unittess) (cm ³ /cm ³)	Rentate apor Average vapor flow rate into bldg. OR Leave blank to calculate	
	CALCULATE RISK-BASED SOIL CONCENTRATION (enter "X" in "YES" box) YES X OR OR CALCULATE INCREMENTAL RISKS FROM ACTUAL SOIL CONCENTRATION (enter "X" in "YES" box and initial soil conc. below) YES OR CALCULATE INCREMENTAL RISKS FROM ACTUAL SOIL CONCENTRATION (enter "X" in "YES" box and initial soil conc. below) YES OR FINTER ENTER ENTER ENTER TABLE CONCENTRATION (enter "X" in "YES" box and initial soil conc. below) YES OR OR OR TOTO TOTO (enter "X" in "YES" box and initial soil conc. below) YES OR TOTO (enter "X" in "YES" box and initial soil conc. below) TEN CONCENTRATION (enter "X" in "YES" box and initial soil conc. below) TEN CONCENTRATION (enter "X" in "YES" box and initial soil conc. below) TEN CONCENTRATION (enter "X" in "YES" box and initial soil conc. below) TEN CONCENTRATION (enter "X" in "YES" box and initial soil conc. below)	ENTER ENTER ENTER Totals must add up to value of L ₁ (cell G28) Thickness Thickness Thickness of soil of soil stratum B, stratum A, (Enter value or 0) ha h _B ha h _C (cm) (cm)	ENTER ENTER ENTER Stratum A Stratum B Stratum B soll oppenic SCS soli dry carbon fraction, soil type bulk density, foc A Lookup soil pe bulk density, foc Parameters (g/cm ³)		risk for quotient for carcinogens, noncarcinogens, TR THQ (unittess) (unittess) 1.0E-04 1 Used to calculate risk-based soil concentration.
	NTRATION (enter "X" in "YES" box) X OR M ACTUAL SOIL CONCENTRATION (e	ENTER ENTER Depth below grade to bottom Depth below of contamination, grade to top (enter value of 0 of contamination, if value is unknown) L ₁ L _b (cm) (cm) 259	ENTER ENTER Stratum A Stratum A soil total soil water-filled porosity, α n ^A θ _w ^A (unitless) (cm ³ /cm ³)		Exposure Exposure duration, frequency, ED EF (yrs) (days/yr) 25 250
1	CALCULATE RISK-BASED SOIL CONCENTRATION (enter 'X" in "YES "X") YES X OR CALCULATE INCREMENTAL RISKS FROM ACTUAL SOIL CONCENTRATIO YES OR TEN RENTER Initial CALCULATE ENTER Intital CAS No. conc. (numbers only, CR no dashes) (Jug/kg)	ENTER ENTER Depth Depth below grade Average to bottorn D soil of enclosed g temperature, space floor, of c T _S L _F (°C) (cm)	ENTER ENTER Stratum A Stratum A Stratum A Stratum A solitype built day soil type built density, tookup soil p _b ^A Parameters (g(cm ³)		time for noncarcinogens, AT _{NC} (yrs) 25
	SL-ADV Version 3.1; 02/04 Reset to Defaults	MORE ◆ E	MORE		

847 181

•

- --

CHEMICAL PROPERTIES SHEET

	Physical	 state at 	soil	temperature,	(S,L,G)	
		Reference	conc.,		(mg/m ³)	
	Unit	rísk	factor,	URF	(µg/m ³) ⁻¹	
Pure	component	water	solubility,	S	(mg/L)	
Organic	carbon	partition	coefficient,	Х °	(cm³/g)	
		Critical	temperature, (T _c	(^g K)	
•	Normal	boiling	point,	Тв	()	
Enthalpy of	vaporization at	the normal	boiling point,	$\Delta H_{v,b}$	(cal/mol)	
Henry's	law constant	reference	temperature,	Т _R	(°C)	
Henry's	law constant	at reference	temperature,	T	(atm-m ³ /mol)	

4.0E-02

544.20 1.66E+02 1.47E+03 1.1E-04

360.36

7,505

25

1.03E-02

.

,

•

1

847 182

2 of 3

۱ .

Diffusivity in water, D _w (cm ² /s)	9.10E-06	
Diffusivity in air, D _a (cm ² /s)	7.90E-02	END

847 183

INTERMEDIATE CALCULATIONS SHEET

÷

			_		
	_	Convection path length, L _p (cm)	15	Exposure duration > time for source depletion (YES/NO)	Q
Bldg. ventilation rate, Q _{building} (cm ³ /s)	3.14E+06	Diffusion path length, (cm)	Ŧ	Time for source depletion, t _D (sec)	2.49E+09
Initial soil concentration used, C _R (μg/kg)	1.00E+00	Total overall effective diffusion coefficient, D ^{eff} (cm ² /s)	4.97E-03	Finite source v term (sec) ¹	1.90E-03
Floor- wall seam Perimeter, X _{crack} (cm)	24,384	Stratum C effective diffusion coefficient, D ^{eff} (cm ² /s)	0.00E+00	Finite source Fteren (unitless)	1.93E+04
Stratum A soil effective vapor permeability, kv (cm ²)	1.60E-09	Stratum B effective diffusion coefficient, D ^{eff} (cm ² /s)	0.00E+00	Infinite source bldg. C ^{building} (μg/m ³)	AN
Stratum A soil relative air k ₁₉ (cm ²)	0.854	Stratum A effective diffusion coefficient, D ^{eff} (cm ² /s)	4.97E-03	Infinite source indoor attenuation coefficient, α (unitless)	E E E E E E E E E E E E E E E E E E E
Stratum A soil intrinsic permeability, k _i (cm ²)	1.87E-09	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	1.77E-04	Exponent of equivalent foundation Peclet number, exp(Pet) (unitless)	2.95E+03
Stratum A effective total fluid saturation, S _{ie} (cm ³ /cm ³)	0.257	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	2.85E-01	Area of crack, Acrack (cm ²)	2.44E+03 Reference conc., RfC (mg/m ³)
Stratum C soif air-filled porosity, θ _a ^c (cm ³ /cm ³)	ERROR	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	6.79E-03	Crack effective diffusion coefficient, D ^{cd6t} (cm ² /s)	4.97E-03 Unit risk factor, URF (μg/m ³) ⁻¹
Stratum B soit air-filled porosity, θ_a^B (cm ³ /cm ³)	ERROR	Enthalpy of /aporization at ave. soil temperature, ΔH _{v.TS} (cal/mol)	8,475	Average vapor flow rate into błdg., Q _{soi} l (cm ³ /s)	9.69E+00 Final finite source bldg. conc., C ^{building} (μg/m ³)

···· 3 ôf 3 ***·

. ,

.

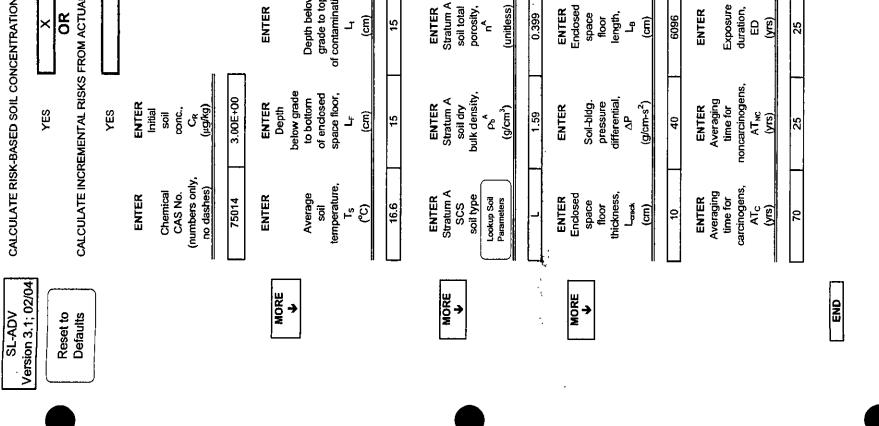
4.0E-02

1.1E-04

Stratum B soit air-filled porosity, θ_a^B (cm ³ /cm ³)	ERROR	Enthalpy of	vaporization at	temperature,	ΔH _{v.TS}	(calimol)	8,475	Average vapor	flow rate	into bldg.,	Q _{soil} (cm ³ /s)	9.69E+00		Final	finite	source bldg.	Chulder,	(гт))	 1.87E-03	
Stratum A soil air-filled porosity, θ _a ^A (cm ³ /cm ³)	0.251	Crack	depth helow	grade,	Z _{crack}	(cm)	15		Crack	radius,	^г r _{arack} (ст)	0.10		Finite	source	bldg.	Chuiking	(тр.)	1.87E-03	
Source- building separation, L _T (cm)	-	Crack-	to-total area	ratio,	۳ (مورانیدی)	(unitess)	6.50E-05	Source	vapor	conc.,	С _{source} (µg/m ³)	6.07E+02		Mass	limit	bldg.	Chuilding	(та/ш ₃)	AN	
Exposure duration, τ (sec)	7.88E+08	Area of enclosed	space	grade,	A ^B	(IID)	3.75E+07	Soil-water	partition	coefficient,	"K _d (cm³/g)	3.32E-01	Finite	source	indoor	attenuation	cuellicient, <α>	(unitless)	3.08E-06	END

:

050016.19


1 1 2

Children Yra YES' tod) Urus Olic Concentration (ear Yra YES' hor and halfs of acro. blan) Urus Olic Concentration (ear Yra YES' hor and halfs of acro. blan) Urus Olic Concentration (ear Yra YES' hor and halfs of acro. blan) Urus Olic Concentration (ear Yra YES' hor and halfs of acro. blan) All and the second of the se	847 184 FUTURE ON-SITE VAPOR INTRUSION INDUSTRIAL WORKER EXPOSURE - VC			ENTER ENTER Enter Enter Stratum C Stratum C soil dry soil total bulk density, posity, ρ ^C n ^C (g/cm ³) (unitess)	PREPAREDIDATE: MKB 8/25/05
N (enter X' In YES' box and initial soil conc. betow) Chemical C	·		ENTER Soil stratum A SCS soil type (used to estimate soil vapor permeability)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ENTER Average vapor flow rate into bidg. OR Leave blank to calculate Qsoi
	box) ATION (enter "X" in "YES" box and initial soil conc. below)	Chemical inyl chloride (chloroethene)	ENTER ENTER Totals must add up to value of 1 Thickness of soil stratum B, stratum A, (Enter value or 0) h _A h _B (cm) (cm)	ENTER ENTER ENTER Stratum A Stratum B Stratum B soil organic SCS soil dry carbon fraction, soil type bulk density, foc ^A Lookup soil (unitless) Parameters (g/cm ³)	0.002 ENTER ENTER ENTER ENTER ENTER ENTER Enclosed Floor-wall Indoor space space seam crack height, width, ha width, rate, mit on (cm) (cm) (cm) (cm)<

·

1

•

050016.19

1 of 3

CHEMICAL PROPERTIES SHEET

				ů,			
	Physical	state at	soil	temperature,	(S,L,G)	-	ŋ
		Reference	conc.,	RfC	(mg/m³)		1.0E-01
	Unit	risk	factor,	URF	(µg/m ³) ⁻¹		8.8E-06
Pure	component	water	solubility,	S	(mg/L)		8.80E+03 8.8E-06 1.0E-0
Organic	carbon	partition	Q	K %	(cm³/g)		1.86E+01
			temperature,	r_{c}	(² K)		432.00
	Normał	boiling	point,	Т _в	(k)		259.25
Enthalpy of	vaporization at	the normal	boiling point,	∆H _{v.b}	(cal/mol)		5,250
Henry's	law constant	reference	temperature,	Т _R	(°C)		25
Henry's	law constant	at reference	temperature,	I	(atm-m³/mol)		2.69E-02
		>	. •				5

847 185

.

Diffusivity in water,	D _w (cm ² /s)	1.23E-05
Diffusivity in air,	D _a (cm ² /s)	1.06E-01

END

ł

050016.19

2 of 3

INTERMEDIATE CALCULATIONS SHEET

4						
		Convection path length, ال	15	Exposure duration > time for source depletion (YES/NO)	YES	
Bldg. ventilation rate, Q _{building} (cm ³ /s)	3.14E+06	Diffusion path length, (cm)	-	Time for source depletion, t _D (sec)	4.58E+08	
Initial soil concentration used, C _R (µg/kg)	1.00E+00	Total overal effective diffusion coefficient, D ^{eff} (cm ² /s)	6.67E-03	Finite source ⊌ term (sec) ⁻¹	1.38E-02	
Floor- wall seam perimeter, X _{crack} (cm)	24,384	Stratum C effective diffusion coefficient, D ^{eff} (cm ² /s)	0.00E+00	Finite source β term (unitless)	2.58E+04	
Stratum A soit effective vapor permeability, kv (cm ²)	1.60E-09	Stratum B effective diffusion coefficient, D ^{eff} (cm ² /s)	0.00E+00	Infinite source bldg. conc., C _{building} (µg/m ³)	ΨN	
Stratum A soil relative air k ₁₉ (cm ²)	0.854	Stratum A effective diffusion coefficient, D ^{ef} (cm ² /s)	6.67E-03	Infinite source indoor attenuation coefficient, α (unitless)	AA	
Stratum A soit intrinsic permeability, k _i (cm ²)	1.87E-09	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	1.77E-04	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	3.86E+02	
Stratum A effective total fluid saturation, ^{Ste} (cm ³ /cm ³)	0.257	Henry's law constant at ave. soil temperature, H' _{rs} (unitless)	8.90E-01	Area of crack, A _{crack} (cm ²)	2.44E+03	Reference conc., RfC (mg/m ³)
Stratum C soil air-filled porosity, θ _a ^c (cm ³ /cm ³)	ERROR	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	2.12E-02	Crack effective diffusion coefficient, D ^{atack} (cm ² /s)	6.67E-03	Unit risk factor, URF (µg/m ³) ⁻¹
Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	ERROR	Enthalpy of vaporization at ave. soil temperature, ΔH _{v.TS} (cal/mol)	4,926	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	9.69E+00	Final finite source bldg. conc., C ^{building} (µg/m ³)

; ?

ł

847 186

.

3 of 3

•

•

1.0E-01

8.8E-06

Stratum B soil air-filled porosity, θ _a ^B (cm ³ /cm ³)	ERROR	Enthalpy of vaporization ave. soil temperature ∆H _{v.rs} (cal/mol)	4,926	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	9.69E+00	Final finite source bldg conc., C _{building} (μg/m ³) 5.89E-03
il A Iled sity,	51	ठ्र स ४ में १ १		ې پې چې د	0	
Stratum A soil air-filled porosity, θ _a ^A (cm ³ /cm ³)	0.251	Crack depth below grade, Z _{crack} (cm)	15	Crack radius, r _{aack}	0.10	Finite source bldg. Conc., (µg/m ³)
Source- building separation, L _T (cm)	-	Crack- to-total area ratio, n funitless)	6.50E-05	Source vapor conc., C _{source}	3.29E+03	Mass limit bldg. conc., C _{butding} (µg/m ³) 5.89E-03
se prov		Oð <u>sr</u>	6.5	% > 8 O ∃	3.2	2 - 1 0 C H
Exposure duration, f (sec)	.88E+08	Area of enclosed space below grade, A _B (cm ²)	3.75E+07	Soil-water partition coefficient, K _d (cm ³ /g)	3.72E-02	Finite source indoor attenuation coefficient, <α> (unitiess) NA NA
G du	7.8	A G G S S	37	Soil pa coef	3.7	

Final Human Health Baseline Risk Assessment - Operable Unit 2 Defense Supply Center Richmond 28 July 2006 Revision I

ATTACHMENT 3 RISK CHARACTERIZATION TABLES

847 188

TABLE 3-1

DERMAL ABSORPTION FACTORS BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Third Revised Final Focused Feasibility Study Report Defense Supply Center Richmond Richmond, Virginia

Chemical	Dermal Absorption Factor
Metals/Inorganics:	
Aluminum	0.01 (b)
Arsenic	0.03 (a)
Copper	0.01 (b)
Iron	0.01 (b)
Vanadium	0.01 (b)
<u>VOCs</u>	
1,2-Dichloroethene	0.03 (b)
Trichloroethene	0.03 (b)
Vinyl chloride	0.03 (b)
<u>PAHs</u>	
Benzo(a)anthracene	0.13 (a)
Benzo(a)pyrene	0.13 (a)
Benzo(b)fluoranthene	0.13 (a)
Benzo(k)fluoranthene	0.13 (a)
Chrysene	0.13 (a)
Dibenzo(a,h)anthracene	0.13 (a)
Indeno(1,2,3-cd)pyrene	0.13 (a)
<u>PCBs</u>	
PCB-1260	0.14 (a)

Notes:

(a) USEPA (2004), RAGS Part E, Exhibit 3-4.

(b) From USEPA (2003b). In the absence of chemical-specific values, general chemical classes were used.

847 189

TABLE 3-2

RISK CHARACTERIZATION SOIL INGESTION - CURRENT INDUSTRIAL WORKER HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond. Richmond, Virginia

Chemical	Average Daily Dose (ADDn) (a) (mg/kg-d)	Oral Reference Dose (RfDo) (b) (mg/kg-d)	Hazard Quotient (c)	Average Daily Dose (ADDc) (a) (mg/kg-d)	Oral Slope Factor (SFo) (b) (mg/kg-d) ⁻¹	Excess Cancer Risk (d)
Metals/Inorganics		(mg/ng u)		(arg/kg-u)	(ing/kg-u)	
Arsenic	1.8E-05	3.0E-04	0.1	6.4E-06	1.5E+00	9.6E-06
Copper	9.1E-03	4.0E-02	0.2	3.2E-03	NA	NA
Iron .	1.9E-02	3.0E-01	0.06	6.6E-03	NA	NA
PAHs						
Benzo(a)anthracene	2.3E-04	NA	NA	8.4E-05	7.3E-01	6.1E-05
Benzo(a)pyrene	2.2E-04	NA	NA	7.8E-05	7.3E+00	5.7E-04
Benzo(b)fluoranthene	3.5E-04	NA	NA	1.2E-04	7.3E-01	9.1E-05
Benzo(k)fluoranthene	3.5E-04	NA	NA	1.2E-04	7.3E-02	9.1E-06
Chrysene	2.6E-04	NA	NA	9.3E-05	7.3E-03	6.8E-07
Dibenzo(a,h)anthracene	4.6E-05	NA	NA	1.7E-05	7.3E+00	1.2E-04
Indeno(1,2,3-cd)pyrene	1.2E-04	NA	NA	4.2E-05	7.3E-01	3.0E-05
PCBs						
PCB-1260	3.0E-05	NA	NA	1.1E-05	2.0E+00	2.2E-05
Total		-	0.3	-	-	9.E-04

Notes:

ADDn Average Daily Dose (non-carcinogenic)

RfDo Reference Dose (oral)

ADDc Average Daily Dose (carcinogenic)

SFo Cancer Slope Factor (oral)

NA Not Applicable

(a) ADDn = (IWdc x UCF x IR x EF x ED)/(BW x ATn); ADDc = (IWdc x UCF x IR x EF x ED)/(BW x ATc); From Table A-3-1 and Table A-3-3.

(b) From Table A-4-1.

(c) ADDn/RfDo.

(d) ADDc x SFo.

RISK CHARACTERIZATION SOIL DERMAL CONTACT - CURRENT INDUSTRIAL WORKER HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

Chemical	Average Daily Dose (ADDn) (a) (mg/kg-d)	Dermal Reference Dose (RfDd) (b) (mg/kg-d)	Hazard Quotient (c)	Average Daily Dose (ADDc) (a) (mg/kg-d)	Dermal Slope Factor (SFd) (b) (mg/kg-d) ⁻¹	Excess Cance Risk (d)
Metals/Inorganics						
Arsenic	3.5E-06	3.0E-04	0.01	1.3E-06	1.5E+00	1.9E-06
Chromium	6.0E-04	4.0E-02	0.01	2.1E-04	NA	NA
lron	1.2E-03	3.0E-01	0.004	4.4E-04	NA	NA
<u>PAHs</u>						
Benzo(a)anthracene	2.0E-04	NA	NA	7.2E-05	7.3E-01	5.2E-05
Benzo(a)pyrene	1.9E-04	NA	NA	6.7E-05	7.3E+00	4.9E-04
Benzo(b)fluoranthene	3.0E-04	NA	NA	1.1E-04	7.3E-01	7.8E-05
Benzo(k)fluoranthene	3.0E-04	NA	NA	1.1E-04	7.3E-02	7.8E-06
Chrysene	2.2E-04	NA	NA	8.0E-05	7.3E-03	5.8E-07
Dibenzo(a,h)anthracene	4.0E-05	NA	NA	1.4E-05	7.3E+00	1.0E-04
Indeno(1,2,3-cd)pyrene	1.0E-04	NA	NA	3.6E-05	7.3E-01	2.6E-05
PCBs						
PCB-1260	2.8E-05	NA	NA	1.0E-05	2.0E+00	2.0E-05
Tota	1	-	0.03	-	-	8.E-04

Notes:

ADDn Average Daily Dose (non-carcinogenic)

RfDd Reference Dose (dermal)

ADDc Average Daily Dose (carcinogenic)

SFd Cancer Slope Factor (dermal)

NA Not Applicable

(a) ADDn = (IWdc x SAF X UCF X SA X DAF X EF x ED)/(BW x ATn);

ADDc = (IWdc x SAF x UCF x SA x DAF x EF x ED)/(BW x ATc); From Tables A-3-1, A-3-3 and 3-1.

(b) From Table A-4-1.

(c) ADDn/RfDd.

(d) ADDc x SFd.

RISK CHARACTERIZATION DUST INHALATION - CURRENT INDUSTRIAL WORKER HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

Chemical	Average Daily Dose (ADDn) (a) (mg/kg-day)	Inhalation Reference Dose (RfDi) (b) (mg/kg-day)	Hazard Quotient (c)	Average Daily Dose (ADDc) (a) (mg/kg-day)	Inhalation Slope Factor (SFi) (b) (mg/kg-day) ⁻¹	Excess Cance Risk (d)
Metals/Inorganics		(Ing/Rg-Gay)		(ing/kg-uay)	(ing/kg-uay)	
Arsenic	2.6E-09	NA	NA	9.4E-10	1.5E+01	1.4E-08
Copper	1.3E-06	NA	NA	4.8E-07	NA	NA
Iron	2.7E-06	NA	NA	9.7E-07	NA	NA
PAHs						
Benzo(a)anthracene	3.4E-08	NA	NA	1.2E-08	NA	NA
Benzo(a)pyrene	3.2E-08	NA	NA	1.2E-08	3.1E+00	3.6E-08
Benzo(b)fluoranthene	5.1E-08	NA	NA	1.8E-08	· NA	NA
Benzo(k)fluoranthene	5.1E-08	NA	NA	1.8E-08	NA	NA
Chrysene	3.8E-08	NA	NA	1.4E-08	NA	NA
Dibenzo(a,h)anthracene	6.8E-09	NA	NA	2.4E-09	NA	NA
Indeno(1,2,3-cd)pyrene	1.7E-08	NA	NA	6.1E-09	NA	NA
PCBs						
PCB-1260	4.4E-09	NA	NA	1.6E-09	2.0E+00	3.2E-09
Tota	1		NA	•		5.E-08

Notes:

ADDn Average Daily Dose (non-carcinogenic)

RfDi Reference Dose (inhalation)

ADDc Average Daily Dose (carcinogenic)

SFi Cancer Slope Factor (inhalation)

NA Not Applicable

(a) ADDn = (IWdu,c x InR x EF x ED)/(BW x ATn); ADDc = (IWdu,c x InR x EF x ED)/(BW x ATc); From Table A-3-1 and Table A-3-3.

(b) From Table A-4-1.

(c) ADDn/RfDi.

(d) ADDc x SFi.

RISK CHARACTERIZATION SOIL INGESTION - FUTURE INDUSTRIAL WORKER HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

Chemical	Average Daily Dose (ADDn) (a) (mg/kg-d)	Oral Reference Dose (RfDo) (b) (mg/kg-d)	Hazard Quotient (c)	Average Daily Dose (ADDc) (a) (mg/kg-d)	Oral Slope Factor (SFo) (b) (mg/kg-day) ⁻¹	Excess Cance Risk (d)
Metals/Inorganics	(mg/kg-u)			(mg/kg-u)	(mg/kg-uay)	
Aluminum	2.0E-02	1.0E+00	0.02	7.3E-03	NA	NA
Arsenic	9.9E-06	3.0E-04	0.02	3.5E-06	1.5E+00	5.3E-06
Copper	1.6E-03	4.0E-02	0.04	5.8E-04	NA	NA
lron	3.3E-02	3.0E-01	0.1	1.2E-02	NA	NA
Vanadium	5.9E-05	1.0E-03	0.06	2.1E-05	NA	NA
VOCs						
1,2-Dichloroethene	8.3E-06	9.0E-03	0.001	3.0E-06	NA	NA
Trichloroethene	1.1E-05	3.0E-04	0.04	3.9E-06	2.1E-01	8.2E-07
Vinyl chloride	2.6E-09	3.0E-03	0.000001	9.4E-10	7.2E-01	6.8E-10
<u>PAHs</u>						
Benzo(a)anthracene	4.5E-05	NA	NA	1.6E-05	7.3E-01	1.2E-05
Benzo(a)pyrene	4.2E-05	NA	NA	1.5E-05	7.3E+00	1.1E-04
Benzo(b)fluoranthene	9.9E-05	NA	NA	3.5E-05	7.3E-01	2.6E-05
Benzo(k)fluoranthene	6.6E-05	NA	NA	2.3E-05	7.3E-02	1.7E-06
Chrysene	5.0E-05	NA	NA	1.8E-05	7.3E-03	1.3E-07
Dibenzo(a,h)anthracene	9.4E-06	NA	NA	3.3E-06	7.3E+00	2.4E-05
Indeno(1,2,3-cd)pyrene	2.2E-05	NA	NA	7.9E-06	7.3E-01	5.8E-06
PCBs				~	v•.	
PCB-1260	5.9E-06	NA	NA	2.1E-06	2.0E+00	4.2E-06
Total			0.3		-	2.E-04

Notes:

ADDn Average Daily Dose (non-carcinogenic)

RfDo Reference Dose (oral)

ADDc Average Daily Dose (carcinogenic)

SFo Cancer Slope Factor (oral)

NA Not Applicable

(a) ADDn = (IWdc x UCF x IR x EF x ED)/(BW x ATn); ADDc = (IWdc x UCF x IR x EF x ED)/(BW x ATc); From Table A-3-1 and Table A-3-3.

(b) From Table A-4-1.

(c) ADDn/RfDo.

(d) ADDc x SFo.

RISK CHARACTERIZATION SOIL DERMAL CONTACT - FUTURE INDUSTRIAL WORKER HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

Chemical	Average Daily Dose (ADDn) (a) (mg/kg-d)	Dermal Reference Dose (RfDd) (b) (mg/kg-d)	Hazard Quotient (c)	Average Daily Dose (ADDc) (a) (mg/kg-d)	Dermal Slope Factor (SFd) (b) (mg/kg-d) ⁻¹	Excess Cance Risk (d)
Metals/Inorganics					(
Aluminum	1.3E-03	1.0E+00	0.001	4.8E-04	NA	NA
Arsenic	2.0E-06	3.0E-04	0.01	7.0E-07	1.5E+00	1.0E-06
Copper	1.1E-04	4.0E-02	0.003	3.8E-05	NA	NA
Iron	2.1E-03	3.0E-01	0.007	7.7E-04	NA	NA
Vanadium	3.9E-06	2.6E-05	0.1	1.4E-06	NA	NA
VOCs						
1,2-Dichloroethene	1.6E-06	9.0E-03	0.0002	5.9E-07	NA	NA
Trichloroethene	2.2E-06	3.0E-04	0.007	7.7E-07	2.1E-01	1.6E-07
Vinyl chloride	5.2E-10	3.0E-03	0.0000002	1.9E-10	7.2E-01	1.3E-10
PAHs						
Benzo(a)anthracene	3.9E-05	NA	NA	1.4E-05	7.3E-01	1.0E-05
Benzo(a)pyrene	3.6E-05	NA	NA	1.3E-05	7.3E+00	9.3E-05
Benzo(b)fluoranthene	8.5E-05	NA	NA	3.0E-05	7.3E-01	2.2E-05
Benzo(k)fluoranthene	5.6E-05	NA	NA	2.0E-05	7.3E-02	1.5E-06
Chrysene	4.3E-05	NA	NA	1.5E-05	7.3E-03	1.1E-07
Dibenzo(a,h)anthracene	8.0E-06	NA	NA	2.9E-06	7.3E+00	2.1E-05
Indeno(1,2,3-cd)pyrene	1.9E-05	NA	NA	6.8E-06	7.3E-01	5.0E-06
<u>PCBs</u>						
PCB-1260	5.5E-06	NA	NA	2.0E-06	2.0E+00	3.9E-06
Total		-	0.2		-	2.E-04

Notes:

ADDn Average Daily Dose (non-carcinogenic)

RfDd Reference Dose (dermal)

ADDc Average Daily Dose (carcinogenic)

SFd Cancer Slope Factor (dermal)

NA Not Applicable

(a) ADDn = (IWdc x SAF X UCF X SA X DAF X EF x ED)/(BW x ATn);

ADDc = (IWdc x SAF x UCF x SA x DAF x EF x ED)/(BW x ATc); From Table A-3-3, Table A-3-1, and Table 3-1.

(b) From Table A-4-1.

(c) ADDn/RfDd.

(d) ADDc x SFd.

RISK CHARACTERIZATION DUST INHALATION - FUTURE INDUSTRIAL WORKER HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

Chemical	Average Daily Dose (ADDn) (a) (mg/kg-day)	Inhalation Reference Dose (RfDi) (b) (mg/kg-day)	Hazard Quotient (c)	Average Daily Dose (ADDc) (a) (mg/kg-day)	Inhalation Slope Factor (SFi) (b) (mg/kg-day) ⁻¹	Excess Cance Risk (d)
Metals/Inorganics	(<u>(8/8///</u>		(
Aluminum	3.0E-06	1.0E-03	0.003	1.1E-06	NA	NA
Arsenic	1.5E-09	NA	NA	5.2E-10	1.5E+01	7.8E-09
Copper	2.4E-07	NA	NA	8.5E-08	NA	NA
Iron	4.8E-06	NA	NA	1.7E-06	NA	NA
Vanadium	8.7E-09	NA	NA	3.1E-09	NA	NA
<u>VOCs</u>						
1,2-Dichloroethene	1.2E-09	NA	NA	4.3E-10	NA	NA
Trichloroethene	1.6E-09	1.1E-02	1.E-07	5.7E-10	2.1E-01	1.2E-10
Vinyl chloride	3.9E-13	2.8E-02	1.E-11	1.4E-13	1.5E-02	2.1E-15
<u>PAHs</u>						
Benzo(a)anthracene	6.6E-09	NA	NA	2.4E-09	NA	NA
Benzo(a)pyrene	6.1E-09	NA	NA	2.2E-09	3.1E+00	6.8E-09
Benzo(b)fluoranthene	1.5E-08	NA	NA	5.2E-09	NA	NA
Benzo(k)fluoranthene	9.7E-09	NA	NA	3.5E-09	NA	NA
Chrysene	7.3E-09	NA	NA	2.6E-09	NA	NA
Dibenzo(a,h)anthracene	1.4E-09	NA	NA	4.9E-10	NA	NA
Indeno(1,2,3-cd)pyrene	3.3E-09	NA	NA	1.2E-09	NA	NA
<u>PCBs</u>						
PCB-1260	8.7E-10	NA	NA	3.1E-10	2.0E+00	6.2E-10
Total			0.003			2.E-08

Notes:

ADDn Average Daily Dose (non-carcinogenic)

RfDi Reference Dose (inhalation)

ADDc Average Daily Dose (carcinogenic)

SFi Cancer Slope Factor (inhalation)

NA Not Applicable

(a) ADDn = (IWdu,c x lnR x EF x ED)/(BW x ATn); ADDc = (IWdu,c x lnR x EF x ED)/(BW x ATc); From Table A-3-1 and Table A-3-3.

(b) From Table A-4-1.

- (c) ADDn/RfDi.
- (d) ADDc x SFi.

PREPARED/DATE: MKB 8/24/05 CHECKED/DATE: CMB 8/25/05

.

RISK CHARACTERIZATION SOIL INGESTION - FUTURE CONSTRUCTION WORKER HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

Chemical	Average Daily Dose (ADDn) (a) (mg/kg-d)	Oral Reference Dose (RfDo) (b) (mg/kg-d)	Hazard Quotient (c)	Average Daily Dose (ADDc) (a) (mg/kg-d)	Oral Slope Factor (SFo) (b) (mg/kg-day) ⁻¹	Excess Cance Risk (d)
Metals/Inorganics						
Aluminum	7.5E-02	1.0E+00	0.07	5.4E-04	NA	NA
Arsenic	3.6E-05	3.0E-04	0.1	2.6E-07	1.5E+00	3.9E-07
Copper	5.9E-03	4.0E-02	0.1	4.2E-05	NA	NA
Iron	1.2E-01	3.0E-01	0.4	8.5E-04	NA	NA
Vanadium	2.2E-04	1.0E-03	0.2	1.5E-06	NA	NA
VOCs						
1,2-Dichloroethene	3.0E-05	9.0E-03	0.003	2.2E-07	NA	NA
Trichloroethene	4.0E-05	3.0E-04	0.1	2.9E-07	2.1E-01	6.0E-08
Vinyl chloride	9.7E-09	3.0E-03	0.000003	6.9E-11	7.2E-01	5.0E-11
PAHs						
Benzo(a)anthracene	1.7E-04	NA	NA	1.2E-06	7.3E-01	8.6E-07
Benzo(a)pyrene	1.5E-04	NA	NA	1.1E-06	7.3E+00	7.9E-06
Benzo(b)fluoranthene	3.6E-04	NA	NA	2.6E-06	7.3E-01	1.9E-06
Benzo(k)fluoranthene	2.4E-04	NA	NA	1.7E-06	7.3E-01	1.9E-00 1.3E-07
Chrysene	1.8E-04	NA	NA	1.3E-06	7.3E-02 7.3E-03	9.5E-07
Dibenzo(a,h)anthracene	3.4E-05	NA	NA	2.5E-07	7.3E+00	
Indeno(1,2,3-cd)pyrene	8.1E-05	NA	NA	5.8E-07	7.3E+00 7.3E-01	1.8E-06 4.2E-07
PCBs						
<u>РСВ</u> РСВ-1260	2.2E-05	NA	N I A	1 65 63		/
1.00-1400	2.2E-VJ	NA	NA	1.5E-07	2.0E+00	3.1E-07
Total		-	1		_	1.E-05

Notes:

ADDn Average Daily Dose (non-carcinogenic) RfDo Reference Dose (oral) HQ Hazard Quotient ADDc Average Daily Dose (carcinogenic) SFo Cancer Slope Factor (oral) NA Not Applicable ADDn = (CWdc x UCF x IR x EF x ED)/(BW x ATn); ADDc = (CWdc x UCF x IR x EF x ED)/(BW x ATc); (a) From Table A-3-1 and Table A-3-3. From Table A-4-1. (b) ADDn/RfDo. (c) (d) ADDc x SFo.

RISK CHARACTERIZATION SOIL DERMAL CONTACT - FUTURE CONSTRUCTION WORKER BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

	Average Daily Dose (ADDn) (a)	Dermal Reference Dose (RfDd) (b)	Hazard Quotient (c)	Average Daily Dose (ADDc) (a)	Dermal Slope Factor (SFd) (b)	Excess Cancer Risl (d)
Chemical	(mg/kg-d)	(mg/kg-d)		(mg/kg-d)	$(mg/kg-d)^{-1}$	·····
Metals/Inorganics						
Aluminum	2.2E-03	1.0E+00	0.002	1.6E-05	NA	NA
Arsenic	3.3E-06	3.0E-04	0.01	2.3E-08	1.5E+00	3.5E-08
Copper	1.8E-04	4.0E-02	0.004	1.3E-06	NA	NA
Iron	3.6E-03	3.0E-01	0.01	2.6E-05	NA	NA
Vanadium	6.5E-06	2.6E-05	0.2	4.6E-08	NA	NA
<u>VOCs</u>						
1,2-Dichloroethene	2.7E-06	9.0E-03	0.0003	2.0E-08	NA	NA
Trichloroethene	3.6E-06	3.0E-04	0.01	2.6E-08	2.1E-01	5.4E-09
Vinyl chloride	8.7E-10	3.0E-03	0.0000003	6.2E-12	7.2E-01	4.5E-12
PAHs						
Benzo(a)anthracene	6.5E-05	NA	NA	4.6E-07	7.3E-01	3.4E-07
Benzo(a)pyrene	5.9E-05	NA	NA	4.2E-07	7.3E+00	3.1E-06
Benzo(b)fluoranthene	1.4E-04	NA	NA	1.0E-06	7.3E-01	7.4E-07
Benzo(k)fluoranthene	9.4E-05	NA	NA	6.7E-07	7.3E-02	4.9E-08
Chrysene	7.1E-05	NA	NA	5.1E-07	7.3E-03	3.7E-09
Dibenzo(a,h)anthracene	1.3E-05	NA	NA	9.6E-08	7.3E+00	7.0E-07
Indeno(1,2,3-cd)pyrene	3.2E-05	NA	NA	2.3E-07	7.3E-01	1.7E-07
PCBs						
PCB-1260	9.1E-06	NA	NA	6.5E-08	2.0E+00	1.3E-07
Total		-	0.3	-	-	5.E-06

Notes:

ADDn Average Daily Dose (non-carcinogenic)

RfDd Reference Dose (dermal)

ADDc Average Daily Dose (carcinogenic)

SFd Cancer Slope Factor (inhalation)

NA Not Applicable

(a) ADDn = (CWdc x SAF X UCF X SA X DAF X EF x ED)/(BW x ATn);

ADDc = (CWdc x SAF x UCF x SA x DAF x EF x ED)/(BW x ATc); From Table A-3-1, Table A-3-3, and Table 3-1.

(b) From Table A-4-1.

- (c) ADDn/RfDd.
- (d) ADDc x SFd.

RISK CHARACTERIZATION DUST INHALATION - FUTURE CONSTRUCTION WORKER HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

the second second

	Average Daily Dose (ADDn) (a)	Inhalation Reference Dose (RfDi) (b)	Hazard Quotient (c)	Average Daily Dose (ADDc) (a)	Inhalation Slope Factor (SFi) (b)	Excess Cancer Risk (d)
 Chemical	(mg/kg-day)	(mg/kg-day)		(mg/kg-day)	(mg/kg-day) ⁻¹	
Metals/Inorganics						
Aluminum	6.1E-04	1.0E-03	0.6	4.4E-06	NA	ŇA
Arsenic	2.9E-07	NA	NA	2.1E-09	1.5E+01	3.2E-08
Copper	4.8E-05	NA	NA	3.4E-07	NA	NA
Iron	9.7E-04	NA	NA	6.9E-06	NA	NA
Vanadium	1.8E-06	NA	NA	1.3E-08	NA	NA
<u>VOCs</u>						
1,2-Dichloroethene	2.5E-07	NA	NA	1.8E-09	NA	NA
Trichloroethene	3.3E-07	1.1E-02	3.E-05	2.3E-09	2.1E-01	4.9E-10
Vinyl chloride	7.9E-11	2.8E-02	3.E-09	5.6E-13	1.5E-02	8.4E-15
<u>PAHs</u>						
Benzo(a)anthracene	1.3E-06	NA	NA	9.6E-09	NA	NA
Benzo(a)pyrene	1.2E-06	NA	NA	8.8E-09	3.1E+00	2.7E-08
Benzo(b)fluoranthene	3.0E-06	NA	NA	2.1E-08	NA	NA
Benzo(k)fluoranthene	2.0E-06	NA	NA	1.4E-08	NA	NA
Chrysene	1.5E-06	NA	NA	1.1E-08	NA	NA
Dibenzo(a,h)anthracene	2.8E-07	NA	NA	2.0E-09	NA	NA
Indeno(1,2,3-cd)pyrene	6.6E-07	NA	NA	4.7E-09	NA	NA
PCBs						
PCB-1260	1.8E-07	NA	NA	1.3E-09	2.0E+00	2.5E-09
Total			0.6			6E-08

Notes:

- ADDn Average Daily Dose (non-carcinogenic)
- RfDi Reference Dose (inhalation)
- ADDc Average Daily Dose (Carcinogenic)
- SFi Cancer Slope Factor (inhalation)
- NA Not Applicable

- (b) From Table A-4-1.
- (c) ADDn/RfDi.
- (d) ADDc x SFi.

⁽a) ADDn = (CWdu,c x lnR x EF x ED)/(BW x ATn); ADDc = (CWdu,c x lnR x EF x ED)/(BW x ATc); From Table A-3-1 and Table A-3-3.

INHALATION OF VOLATILES - FUTURE INDOOR INDUSTRIAL WORKER **HUMAN HEALTH BASELINE RISK ASSESSMENT** Defense Supply Center Richmond Richmond Virginia **RISK CHARACTERIZATION OPERABLE UNIT 2**

~

		Inhalation				
,	Average	Reference	:	:		(
	Daily Dose (ADDn) (a)	Dose (KfDi) (b)	Hazard Quotient (c)	Hazard Average Daily Quotient (c) Dose (ADDc) (a)	Slope Factor (SFi) (b)	Excess Cancer Risk (d)
Chemical (r	mg/kg-day)	(mg/kg-day) (mg/kg-day)		(mg/kg-day) (mg/kg-day) ⁻¹	(mg/kg-day) ⁻¹	
<u>VOCs</u>						
1,2-Dichloroethene	3.9E-07	NA	٧N	1.4E-07	NA	NA
Trichloroethene	3.7E-07	1.1E-02	0.00003	1.3E-07	2.1E-01	3.E-08
Vinyl chloride	1.2E-06	2.8E-02	0.00004	4.1E-07	1.5E-02	6.E-09

Notes:

Average Daily Dose (non-carcinogenic) ADDn

- Average Daily Dose (Carcinogenic) Reference Dose (inhalation) RfDi
 - Cancer Slope Factor (inhalation) ADDc SFi
 - Not Applicable NA
- ADDn = (C_{building} x UCF x InR x EF x ED)/(BW x ATn); ADDc = (C_{building} x UCF x InR x EF x ED)/(BW x ATc); From Table A-3-1 and Table A-3-3. (a)
 - From Table A-4-1. වෙම
 - ADDn/RfDi.
 - ADDc x SFi.

TABLE 3-12	RISK CHARACTERIZATION INHALATION OF VOLATILES - FUTURE OUTDOOR INDUSTRIAL WORKER HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia	Inhalation Average Reference Average Reference Unit Risk Volatilization Daily Dose Concentration Hazard Average Daily Factor (URF) Excess Cancer Factor (ADDn) (b) (RfC) (c) Quotient (d) Dose (ADDc) (b) (c) Risk (e) Chemical (m ³ /kg) (a) (mg/kg-day) (mg/kg-day) (mg/m ³) ⁻¹	NA 5.9E-04 0.06 8.0E-04 0.00001 5.0E-07	Total 0.06 SE-05	tes: Di Average Daily Dose (non-carcinogenic) Di Reference Dose (inhalation) Dic Average Daily Dose (Carcinogenic) Dic Average Daily Dose (Carcinogenic) Not Applicable VRP, 2005. ADDn = (IWfut,de x EF x ED x (1/VF))(ATh); ADDc = ((IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-3. ADDn = (IWfut,de x FF x ED x (1/VF))/ATc); From Table A-3-3. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-3. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-3. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-3. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-3. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-5. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-5. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATc); From Table A-3-5. ADDn = (IWfut,de x EF x ED x (1/VF))/ATC); From Table A-3-5. ADDn = (IWfut,de x EF x ED x (1/VF))/ATC); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATC); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATC); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATC); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATC); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATC); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATC); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATC); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATC); From Table A-3-4. ADDn = (IWfut,de x EF x ED x (1/VF))/ATC); Fr
					Notes: ADDn ADDn ADDc (b) (b) (c) (d) (c) (d) (c)

847 199

•

1 of 1

	13
	E G
	BL
-	TA

INHALATION OF VOLATILES - FUTURE CONSTRUCTION WORKER HUMAN HEALTH BASELINE RISK ASSESSMENT **RISK CHARACTERIZATION OPERABLE UNIT 2** a Guarle Cantas Disk Defer

		Average	Inhalation Reference			Unit Risk	、
	Volatilization Factor	Daily Dose (ADDn) (b)	Concentration (RfC) (c)	Hazard Quotient (d)	Hazard Average Daily Quotient (d) Dose (ADDc) (b)	Factor (URF) (c)	Excess Cancer Risk (e)
Chemical	(m ³ /kg) (a)	(mg/kg-day)	(mg/m ³)		(mg/kg-day)	(mg/m ³) ⁻¹	
VOCs							
1,2-Dichloroethene	3.52E+03	1.8E-03	NA	NA	1.3E-05	NA	NA
Trichloroethene	3.43E+03	2.5E-03	4.0E-02	0.06	1.8E-05	6.0E-02	1.E-06
Vinyl chloride	1.31E+03	1.6E-06	1.0E-01	0.00002	1.1E-08	4.4E-03	5.E-11
Totał			-	0.06		·	1E-06

inugente) verage many

Reference Dose (inhalation) RfDi

Average Daily Dose (Carcinogenic) ADDc

Cancer Slope Factor (inhalation) SFi

Not Applicable NA

VRP, 2005.

ADDn = (IWfut, dc x EF x ED x (1/VF))/(ATn); ADDc = ((IWfut, dc x EF x ED x (1/VF))/ATc);From Table A-3-1 and Table A-3-3. e a

From Table A-4-1. ତ୍ତିତ୍

ADDn/RfDi.

ADDc x SFi.

PREPARED/DATE: LMS 9/23/05 CHECKED/DATE: MKB 9/26/05

1 of 1

050016.19

ATTACHMENT 4 RAGS PART D TABLE FOR COCS

TABLE 4-1

RISK SUMMARY REASONABLE MAXIMUM EXPOSURE HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

:: Current	Receptor Population: Industrial	н
Scenario Timeframe: Current	Population	Receptor Age: Adult
Scenario	Receptor	Receptor

Medium	Exposure Medium	Exposure Point	Chemical		Carcino	Carcinogenic Risk			Non-Carcine	Non-Carcinogenic Hazard Quotient	otient	
				Ingestion	Ingestion Inhalation Dermal	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil	Surface Soil	Surface Soil Arsenic	Arsenic	1.E-05	1.E-08	2.E-06	i.E-05	Skin, Vascular System	0.1	. 1	10.0	0.1
			Benzo(a)anthracene	6.E-05	AN	5.E-05	1.E-04	NA	:	ł	ł	ł
			Benzo(a)pyrene	6.E-04	4.E-08	5.E-04	1.E-03	NA	ł	1	ł	1
			Benzo(b)fluoranthene	9.E-05	٨N	8.E-05	2.E-04	NA	:	I	1	ł
			Benzo(k)fluoranthene	9.E-06	٨N	8.E-06	2.E-05	NA	ł	I	:	١
			Dibenzo(a,h)anthracene	1.E-04	٨N	1.E-04	2.E-04	NA	:	I	I	1
			Indeno(1,2,3-cd)pyrene	3.E-05	٩N	3.E-05	6.E-05	NA	•	ľ	1	;
			PCB-1260	2.E-05	3.E-09	2.E-05	4.E-05	NA	ł	ł	1	1
			Total	9.E-04	5.E-08	8.E-04	2.E-03		0.1	:	10.0	0.1
		Exposure Point Total	Total				2.E-03					0.1
Medium Total							2.E-03					0.1
Receptor Total							2.E-03			Rı	Receptor HI Total	0.1
							7 E A2			Total Uarard	Total Marard Across All Madia	10

847 202

PREPARED/DATE: LMS 9/15/05 CHECKED/DATE: MKB 9/15/05

0.1

Total Skin HI Across All Media = Total Vascular System HI Across All Media = Total Immune System HI Across All Media = Total CNS HI Across All Media = 1 of 1

TABLE 4-2

RISK SUMMARY REASONABLE MAXIMUM EXPOSURE HUMAN HEALTH BASELINE RISK ASSESSMENT OPERABLE UNIT 2 Defense Supply Center Richmond Richmond, Virginia

Future	Industrial	
Scenario Timeframe: Future	Receptor Population: Industrial	Receptor Age: Adult
	μ Ξ ι	Ľ,

r

.

<u> </u>	Exposure Medium	Exposure	Chemical		Carcino	Carcinogenic Risk			Non-Carcine	Non-Carcinogenic Hazard Quotient	otient	
				Ingestion	Ingestion Inhalation Dermal	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Surfa	Surface and	Surface and										
Subsur	face Soil	Subsurface Soil	Subsurface Soil Subsurface Soil Benzo(a)anthracene	1.E-05	NA	1.E-05	2.E-05	NA	ł	1	;	ł
			Benzo(a)pyrene	1.E-04	7.E-09	9.E-05	2.E-04	NA	;	ı	;	;
			Benzo(b)fluoranthene	3.E-05	NA	2.E-05	5.E-05	NA	;	ł	:	ł
			Dibenzo(a,h)anthracene	2.E-05	NA	2 E-05	5.E-05	NA	1	:	ł	;
			Indeno(1,2,3-cd)pyrene	6.E-06	٧z	5.E-06	1.E-05	NA	1	I	1	;
			Trichloroethene	8.E-07	5.E-05	2.E-07	5.E-05	CNS, Liver, Kidney	0.04	0.06	0.01	0.1
			Total	2.E-04	5.E-05	2.E-04	4.E-04		:		-	1
		Exposure Point Total	otal				4 E-04					1
							4.E-04					
							4.E-04			Re	Receptor HI Total	0.1
							4.E-04			Total Hazard /	Total Hazard Across All Media	1.0
											_	

PREPARED/DATE: LMS 9/15/05 CHECKED/DATE: MKB 9/15/05

Total CNS HI Across All Media = Total Liver HI Across All Media = Total Kidney HI Across All Media = . . .

Final Technical Memorandum Revised Remedy Selection for Operable Unit 2 – Area 50 Landfill Defense Supply Center Richmond 28 July 2006 Revision 1

APPENDIX B

COST ESTIMATES FOR REMEDIAL ALTERNATIVES

ALTERNATIVE 2 - INSTITUTIONAL CONTROLS TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL Defense Supply Center Richmond Richmond, Virginia

Category	Unit	Quantity	Cost/Unit \$	Cost S
Capital Costs:				
Health & Safety Plan	LS		\$2,000.00	\$2,000
Legal Services	LS	1	\$15,000 00	\$15,000
Subtotal				\$17,000
Contingency				\$4,250
TOTAL CAPITAL COSTS				\$21,250
Annual O&M Costs:				
Annual Report	LS	1	\$2,500	\$2,500
Report Review/Meetings	LS	1	\$2,500	\$2,500
ODCs	LS	1	\$2,000	\$2,000
Fence Maintenance	LS	1	\$1,000	\$1,000
Legal Services	LS	1	\$1,500	\$1,500
5-Year Review*	LS	1	\$1,000	\$1,000
TOTAL ANNUAL O&M COSTS	••••••	·		\$10,500
* 5-Year Reviews - 4 over 20-year period - (cost annualized).				
PRESENT WORTH OF $O\&M = ANNUAL O\&M x$	<u>(1 + i)ⁿ - 1</u>	=		\$130,853
	$i \ge (1 + i)^n$			
Assume: 20 years of O&M and 5% interest annually.	. ,			
TOTAL CAPITAL COSTS =			S	21,250
TOTAL PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COS	TS =		\$	152,103

ALTERNATIVE 6A - SOIL COVER WITH STORM SEWER REHABILITATION, INSTITUTIONAL CONTROLS, SOURCE REMOVAL TECHNICAL MEMORANDUM **REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL** Defense Supply Center Richmond Richmond, Virginia

Category	Unit	Quantity	Cost/Unit S	Cost S
Direct Costs:				
Mobilization and Demobilization	LS	1	\$10,000.00	\$10,000
Strip and clear grass, light brush, and other deleterious materials	СҮ	3388	\$7.65	\$25,918
Dispose cleared materials off site	CY	3388	\$18,00	\$60,984
Silt Fence - Type C	LF	2,580	\$2 ,10	\$5,418
Fill - borrow and transport	CY	17176	\$12.00	\$206,112
Fill - spread	CY	17,176	\$ 1.59	\$27,310
Fill - compact	CY	17,176	\$2.81	\$48,265
Fill - grade	SY	40656	\$ 0.63	\$25,613
Cover Soil - borrow and transport	CY	10051	\$24.00	\$241,224
Cover Soil + spread	CY	10,051	\$1,59	\$15,981
Cover Soil - grade	SY	40656	\$0.63	\$25,613
Vegetative Cover (seed, lime, fertilizer)	SY	40656	\$0.41	\$16,669
Storm Sewer Rehabilitation - (completed 1st quarter 2005)	LS		\$0.00	\$0
Drop Inlets and Manholes (w/ frames, grates, installed)	Each	2	\$1,600.00	\$3,200
Source Removal/OE Identification & Disposal	LS	1	\$250,000.00	\$250,000
Health & Safety Plan	LS	1	\$2,000.00	\$2,000
	Subtotal			\$964,307
	ingency 25%			\$241,077
TOTAL DIRECT (LOSTS			\$1,205,384

Manifelt Costs.		
Design/Construction Support - Cover	LS	\$90,000
Design/Construction Support - Storm Sewer - (completed)	LS	So
Construction Management	10%	\$120,538
Contractor Overhead	3%	\$36,162
Health & Safety Monitoring	3%	\$36,162
Permitting	5%	\$60,269
	Subtotal	\$343,131
Co	ntingency 25%	\$85,783
TOTAL INDIRECT	COSTS	\$428,913
TOTAL CAPITAL COSTS		\$1,634,297

Annual O&M Costs:				
Annual Report	LS	1	\$2,500	\$2,500
Report Review/Meetings	LS	1	\$2,500	\$2,500
Long-Term Monitoring	LS	1	\$5,000	\$5,000
ODCs	LS	1	\$2,000	\$2,000
Quarterly Inspections	Each	4	\$1,500	\$6,000
Cover and Fence Repair	Each	4	\$300	\$1,200
Mowing	Each	2	\$750	\$1,500
Legal Services	LS	1	\$2,500	\$2,500
5-Year Review*	LS	1	\$1,250	\$1,250
TOTAL ANNUAL O&M COSTS			· · · · · · · · · · · · · · · · · · ·	\$24,450
 5-Year Reviews - 4 over 20-year period - (cost annualized) 				
PRESENT WORTH OF O&M = ANNUAL O&M x	<u>(1+i)" - 1</u>	=		\$304,701
	$i \ge (1+i)^n$			
Assume: 20 years of O&M and 5% interest annually.	· · /			
TOTAL CAPITAL COSTS -			\$	1,634,297
TOTAL PRESENT WORTH = $O \& M$ present worth + $C A P T A I C O S$	- 9T		*	1,034,277

	•	1,634,297
TOTAL PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS =	s	1,938,998

.

ALTERNATIVE 6B - CLAY COVER WITH STORM SEWER REHABILITATION, INSTITUTIONAL CONTROLS, SOURCE REMOVAL TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL Defense Supply Center Richmond Richmond, Virginia

LS CY CY LF CY CY CY CY CY SY SY	1 3388 3388 2,580 13552 13,552 13,552 40656 6776 6,776 40656	\$10,000.00 \$7.65 \$18.00 \$2.10 \$20.00 \$2.40 \$3.50 \$0.95 \$24.00 \$1.59	\$10,000 \$25,918 \$60,984 \$5,418 \$271,040 \$32,525 \$47,432 \$38,623 \$162,624
CY CY LF CY CY SY CY SY	3388 3388 2,580 13552 13,552 13,552 40656 6776 6,776	\$7.65 \$18.00 \$2.10 \$20.00 \$2.40 \$3.50 \$0.95 \$24.00	\$25,918 \$60,984 \$5,418 \$271,040 \$32,52: \$47,432 \$38,623
CY LF CY CY CY CY CY SY	3388 2,580 13552 13,552 13,552 40656 6776 6,776	\$7.65 \$18.00 \$2.10 \$20.00 \$2.40 \$3.50 \$0.95 \$24.00	\$25,918 \$60,984 \$5,418 \$271,040 \$32,52: \$47,432 \$38,623
LF CY CY CY SY CY CY SY	2,580 13552 13,552 13,552 40656 6776 6,776	\$18.00 \$2.10 \$20.00 \$2.40 \$3.50 \$0.95 \$24.00	\$60,98 \$5,411 \$271,040 \$32,52: \$47,432 \$38,622
CY CY CY SY CY CY SY	13552 13,552 13,552 40656 6776 6,776	\$20.00 \$2.40 \$3.50 \$0.95 \$24.00	\$5,411 \$271,04(\$32,52: \$47,432 \$38,622
CY CY CY SY CY CY SY	13552 13,552 13,552 40656 6776 6,776	\$20.00 \$2.40 \$3.50 \$0.95 \$24.00	\$271,040 \$32,52: \$47,432 \$38,62:
CY CY SY CY CY SY	13,552 13,552 40656 6776 6,776	\$2.40 \$3.50 \$0.95 \$24.00	\$32,52: \$47,432 \$38,623
CY SY CY CY SY	13,552 40656 6776 6,776	\$3.50 \$0.95 \$24.00	\$47,432 \$38,622
SY CY CY SY	40656 6776 6,776	\$0.95 \$24.00	\$38,623
CY CY SY	6776 6,776	\$24.00	
CY SY	6,776		\$102,024
SY	,	31.37	£10.77
		60.00	\$10,774
SY I		\$0.63	\$25,613
	40656	\$0.41	\$16,669
LS	1	\$0,00	S
			\$3,200
	-		\$250,000
		· · ·	\$2,000 \$25,000
<u> </u>	-	\$25,000.001	\$987,820
25%			\$246,955
			\$1,234,775
		•••••	
LS			\$90,000
			\$(
			\$123,478
			\$125,470
			\$37,043
570			\$61,739 \$349,303
25%			\$87,326
			\$436,629
			\$1,671,404
LS	1	\$2,500	\$2,500
LS	1		\$2,500
LS	1		\$5,000
	- 1		\$2,000
			\$6,000
			\$1,200
	-	-	\$1,500
			\$2,500
13	ı	\$1,230	\$1,250
			\$24,450
(1 + 0 ⁸ +			AAA 4
	=		\$304,701
i x (1 + i)"			
	LS LS 10% 3% 3% 5% 25% LS	LS 1 LS 1 25% 1 25% 1 LS 1 (1+i) ⁶ -1 =	1.S 1 \$250,000.00 1.S 1 \$2,000.00 1.S 1 \$25,000.00 25%

16

MODIFIED ALTERNATIVE 6A - SOIL COVER WITH INSTITUTIONAL CONTROLS* TECHNICAL MEMORANDUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL Defense Supply Center Richmond Richmond, Virginia

. .

* Storm sewer rehabilitation completed 2005.

.

Category	Unit	Quantity	Cost/Unit \$	Cost S
Direct Costs:				
Mobilization and Demobilization	LS	1	\$10,000.00	\$10,000
Strip and clear grass, light brush, and other deleterious materials	CY	3388	\$7 65	\$25,918
Dispose cleared materials off site	CY	3388	\$18.00	\$60,984
Silt Fence - Type C	LF	2,580	\$2.10	\$5,418
Fill - borrow and transport	CY	17176	\$12.00	\$206,112
Fill - spread	CY	17,176	\$1.59	\$27,310
Fill - compact	CY	17,176	\$2.81	\$48,265
Fill - grade	SY	40656	\$0.63	\$25,613
Cover Soil - borrow and transport	CY	10051	\$24,00	\$241,224
Cover Soil - spread	CY	10,051	\$1.59	\$15,981
Cover Soil - grade	SY	40656	\$0.63	\$25,613
Vegetative Cover (seed, lime, fertilizer)	SY	40656	\$0.41	\$16,669
Drop Inlets and Manholes (w/ frames, grates, installed)	Each	2	\$1,600.00	\$3,200
Health & Safety Plan	LS	1	\$2,000.00	\$2,000
Subtotal				
Contingency	25%			\$178,577
TOTAL DIRECT COSTS				\$892,884

Indirect Costs:		
Design/Construction Support - Cover	LS	\$90,000
Construction Management	10%	\$89,288
Contractor Overhead	3%	\$26,787
Health & Safety Monitoring	3%	\$26,787
Permitting	5%	\$44,644
	Subtotal	\$277,506
	Contingency 25%	\$69,376
TOTAL IN	DIRECT COSTS	\$346,882
TOTAL CAPITAL COSTS		\$1,239,766

Annual O&M Costs;				
Annual Report	LS	1	\$2,500	\$2,500
Report Review/Meetings	LS	1	\$2,500	\$2,500
Long-Term Monitoring	LS	1	\$5,000	\$5,000
ODCs	LS	1	\$2,000	\$2,000
Quarterly Inspections	Each	4	\$1,500	\$6,000
Cover and Fence Repair	Each	4	\$300	\$1,200
Mowing	Each	2	\$750	\$1,500
Legal Services	LS	1	\$2,500	\$2,500
5-Year Review ^e	LS	1	\$1,250	\$1,250
TOTAL ANNUAL O&M COSTS				\$24,450
 5-Year Reviews - 4 over 20-year period - (cost annualized). 				
PRESENT WORTH OF O&M 🗢 ANNUAL O&M 🗴	<u>(1+i)" 1</u>	=		\$304,701
	i x (1 + i) ⁿ			
Assume. 20 years of O&M and 5% interest annually.				

TOTAL CAPITAL COSTS =\$1,239,766TOTAL PRESENT WORTH = 0&M PRESENT WORTH + CAPITAL COSTS =\$1,544,467

DRAFT ORDER OF MAGNITUDE COSTS EXCAVATION AND OFF-SITE DISPOSAL OF LANDFILLED MATERIALS* TECHNICAL MEMORANBUM REVISED REMEDY SELECTION FOR OPERABLE UNIT 2 - AREA 50 LANDFILL Defense supply Center Richmond Richmond, Virginia

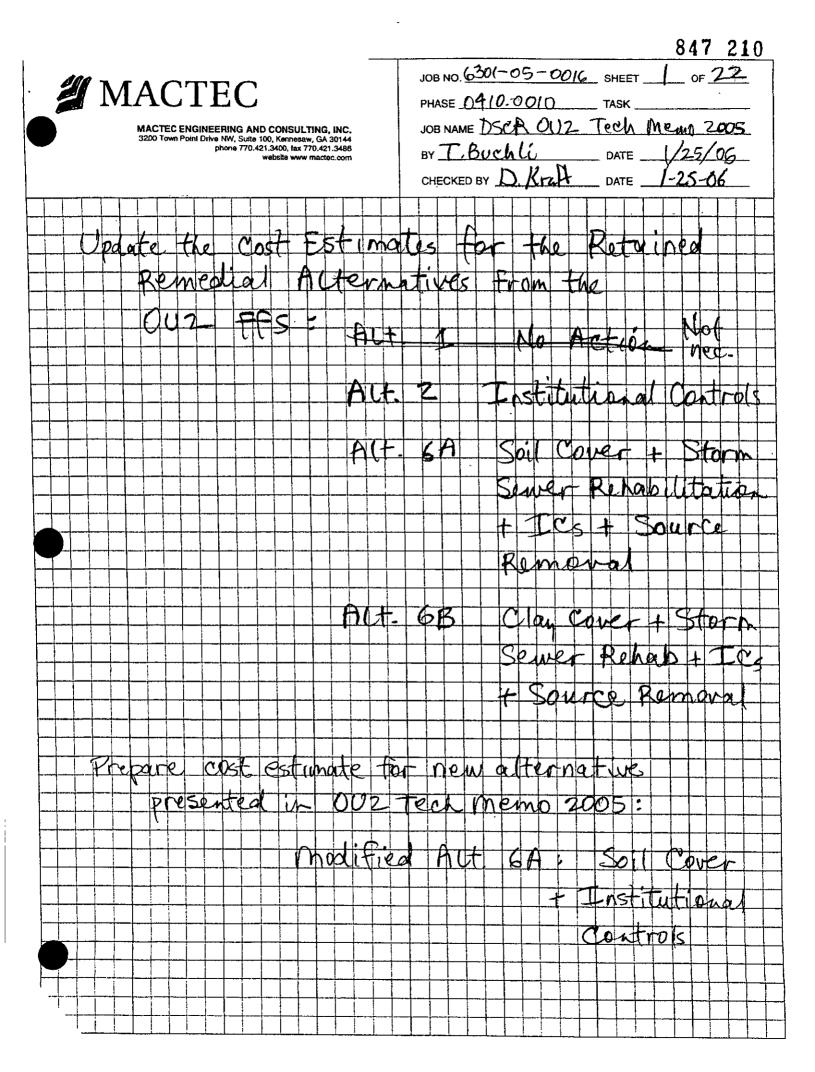
_ ._ . . .

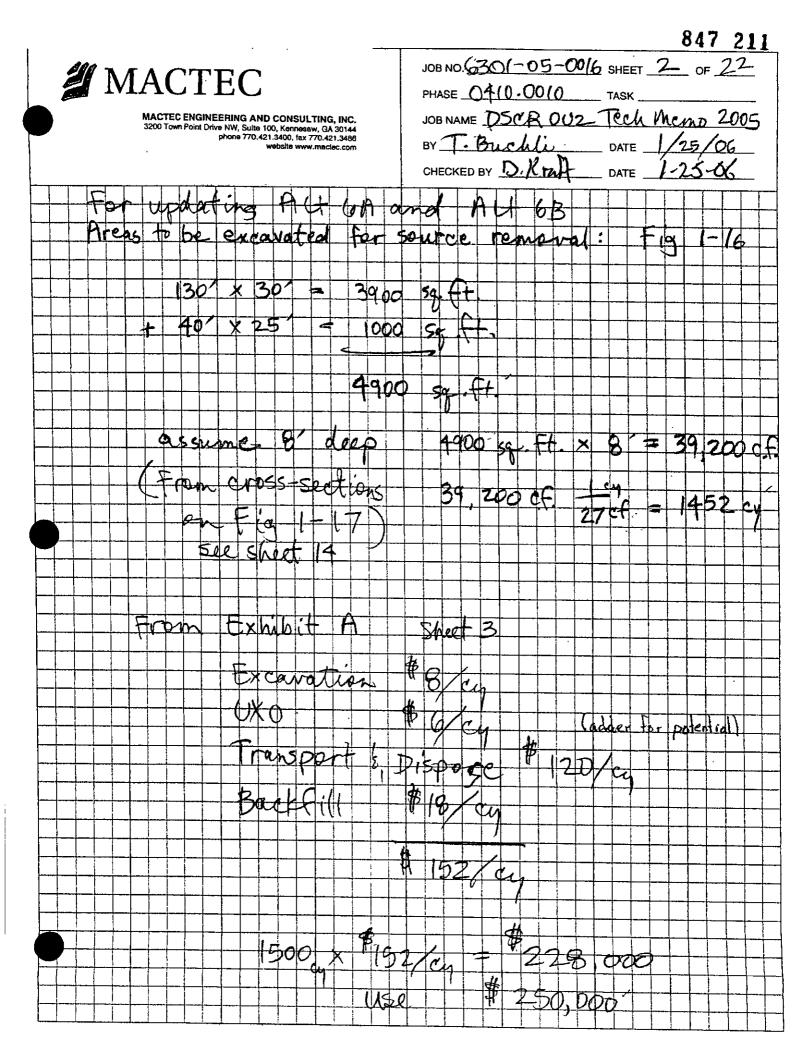
. .

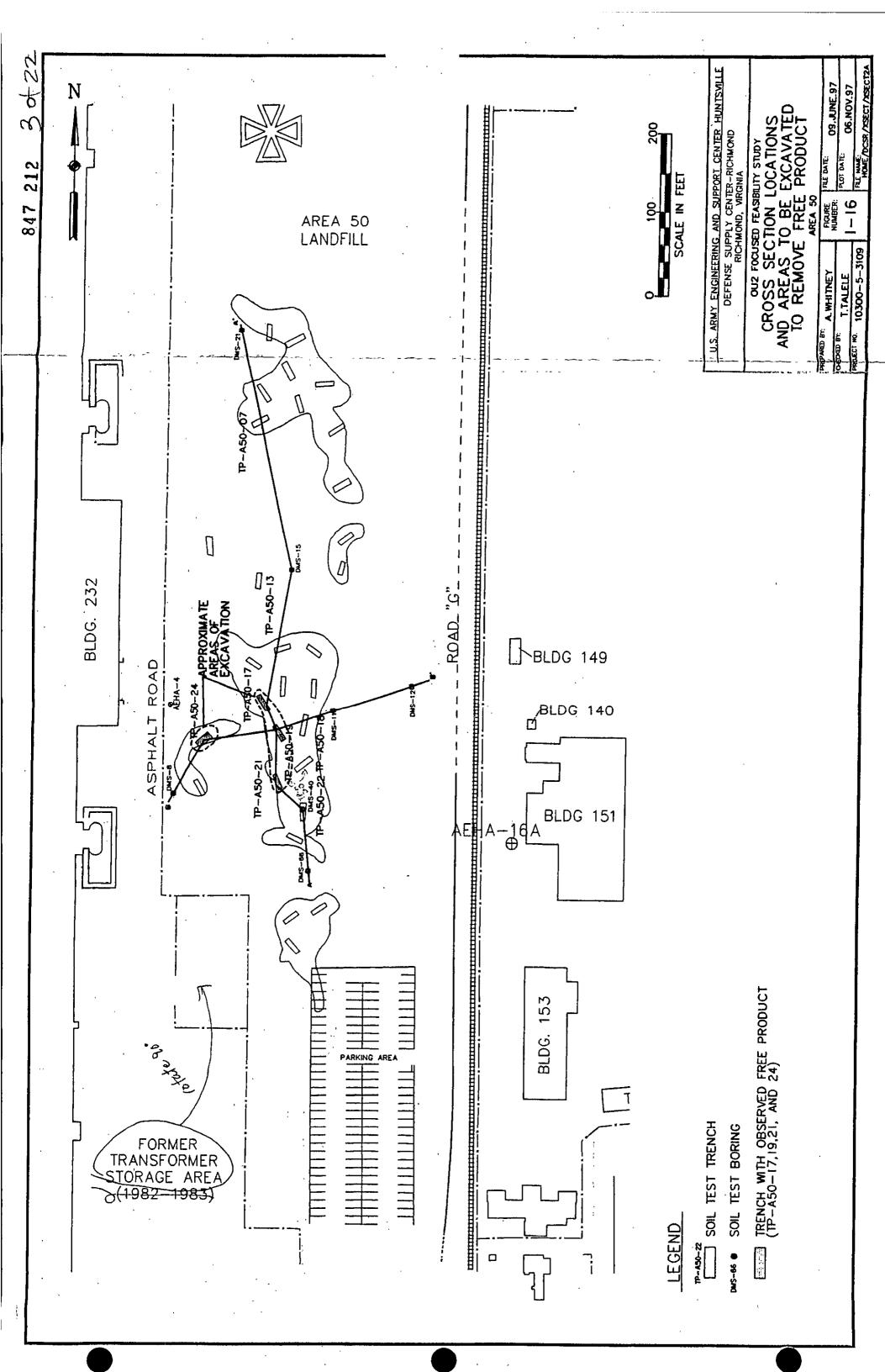
....

Cost Estimate Prepared at client's request. Not considered as an alternative because removal was eliminated during screening in the
Third Revised Final FFS (Law, 1999)

	Estimated		Unit	Subtotal	Total Item
Description	Quantity	Units	Cost	Costs	Cost
Mob, Demob, Clearing & Grubbing, etc.					\$112,32
Mobilization and Demobilization	LS	1	\$20,000.00	\$20,000	
Strip and clear grass, light brush, and deleterious materials	CY	3388	\$7.65	\$25,918	
Dispose cleared materials off site	CY	3388	\$18,00	\$60,984	
Silt Fence - Type C	LF	2,580	\$2,10	\$5,418	
Excavation (assume avg depth 6' over 5.5 acres)			<u> </u>		\$424,000
Unspecified waste	54,000	C.Y.	\$6 00	\$324,000	
Dewatering		L S.	\$100,000.00	\$100,000	
UXO Monitoring, Excavation, Transport & Disposal			╂─────┤		\$300,000
Monitoring (assume 50,000 cy in 20 cy trucks, 25 trucks/day)	100	days	\$2,000.00	\$200,000	
UXO Excavation, transport & disposal	10	event	\$10,000.00	\$100,000	
Transport and Dispose			<u> </u>		\$7,920,000
Unspecified Material	66,000	tons	\$120.00	\$7,920,000	
Backfill (assume clean soil fill)		•	<u>├</u>		\$1,050,000
Load and Transport from Off-Site Source	60,000	C.Y.	\$12.00	\$720,000	
Place Backfill Material	60,000	CY.	\$2,00	\$120,000	
Compact Backfill Material	60,000	С.Ү.	\$3 50	\$210,000	
Demotish Existing Storm Sewer	·				\$45,300
Excavate	2,500	L.F.	\$9.00	\$22,500	• • • •
Transport & Dispose	190	tons	\$120 00	\$22,800	
Seeding and Mutching		· ··· · · · · · ·	<u> </u>		\$20,000
Seeding (hydroseed, mulch and fertilizer)	10.0	Acres	\$2,000	\$20,000	
Health and Safety Plan			<u> </u>		\$5,000
Health and Safety Plan		LS	\$5,000	\$5,000	,


Indirect Costs Design/Construction Support	10%		1000 cco
Construction Management	10%		\$987,662
Contractor Overhead	3%		\$987,662 \$296,299
Health & Safety Monitoring	3%		\$296,299
Permitting	5%		\$493,831
		Total Indirect Costs	\$3,061,752
		Total Capital Costs	\$12,938,372


		Total O&M Costs	\$26,00
Legal Services	LS	\$5,000	
Mowing	LS	\$2,000	
Cover and Fence Repairs	· LS	\$2,000	
Inspections	LS	\$5,000	
ODCs	LS	\$2,000	
Report Review/Meetings	LS	\$5,000	
5 Year Review Report	LS	\$5,000	
O&M Costs (assume 5 yr review)			


Total Project Costs

\$12,964,372

PREPARED/DATE: THB 01/24/06 CHECKED/DATE: DK 01/24/06

847 213 7 ot 22 MACTEC Project Number: 6301-05-0018 January 24, 2008 Himate Hitached For Reference

Order of Magnitude Cost Estimate

Excavation and Off-Site Disposal of Landfilled Materials DSCR OU 2 Technical Memorandum 2005

Cost Estimate Prepared at client's request. Not considered a feasible alternative due to UXO risks.

	-					
Doport-42	Estimated		Unit	Subtotal	Total	
Description Mob, Demob, Clearing & Grubbing, etc.	Quantity	Units	Cost	Costs		
Mobilization and Demobilization				00363	Cost	4
Strip and clear grape links to	LS	1	\$20,000.00	\$20,000	\$112,320	싀
Strip and clear grass, light brush, and deleterious materials	CY	3388	\$7.65			
Dispose cleared materials off site	CY	3388				
Silt Fence - Type C	LF	2,580	\$18.00			J
		<u>~1000</u>	\$2.10	\$5,418	3]
Excavation (assume avg depth 6' over 5.5 acres)			<u> </u>			
Unspecified waste	54,000	<u>cv</u>			\$424,000	il 1 - 54. oor
Dewatering	1	<u> </u>	\$6.00	\$324,000		
		L.S.	\$100,000.00	\$100,000		<u>በት ግየ</u> / /
UXO Monitoring, Excavation, Transport & Disposal						
violitioning (assume 50,000 cv in 20 cv to also as the child					\$300,000	7 ÷ 54,000 = 48/0 7 ÷ 54,000 = #6/0
UXO Excavation, transport & disposal	100	<u>days</u>	\$2,000.00	\$200,000		
	10	event	\$10,000.00	\$100,000		┝━┻╸╕╠╱╶╭
Transport and Dispose					† — — —	1 "6/ 6
Unspecified Material					\$7,920,000	
	66,000	tons	\$120.00	\$7,920,000		4
Backfill (assume clean soll fill)	ļ					h-4
oad and Transport from Off-Site Source					\$1,050,000	1 - 10
Place Backfill Material	60,000	C.Y	\$12.00	\$720,000	141,000,000	1 . 60,000
Compact Backfill Material	60,000	C.Y.	\$2.00	\$120,000		
	60,000	<u>C.Y</u> ,	\$3.50	\$210,000		- <u>- 16/</u>
Demolish Existing Storm Sewer						= \$18/c
xcavate					\$45,300	
ransport & Dispose	2,500	F	\$9.00	\$22,500		
	190	tons	\$120.00	\$22,800		
eeding and Mulching						
eeding (hydroseed, mulch and fertilizer)					\$20,000	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	10.0	Acres	\$2,000	\$20,000	\$20,000	
ealth and Safety Plan				420,000		
lealth and Safety Plan					EE 000	
	1	LS	\$5,000	\$5,000	\$5,000	
		To	tal Direct Cost	0,0001	<u></u>	
ndirect Costs				9	\$9,876,620	
esign/Construction Support						
onstruction Management	10%					
ontractor Overhead	10%				\$987,662	
ealth & Safety Monitoring	3%				\$987,662	
ermitting	3%				\$296,299	
	5%				\$296,299	
		Tota	I Indirect Cost		\$493,831	
				5	\$3,061,752	
		Tote	al Capital Cost	_	.	
R M Control		104	- Sepital Cost	5	\$12,938,372	
&M Costs (assume 5 yr review)						
Year Review Report	LS			_		
eport Review/Meetings	LS			\$5,000	[
DCs	LS			\$5,000		
spections				\$2,000	1	
spections over and Fence Repairs	LS			\$5,000		
spections						

Total Project Costs \$12,964,372

Total O&M Costs

Prepared by: THB 01/24/06 Checked by DK 01/24/06

\$26,000

\$5,000

Prepared By T. H. Buchli

.

Page 1 of 1

ALTERNATIVE 2 - INSTITUTIONAL CONTROLS

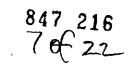
.

•

Category	Unit	Quantity	Cost/Unit	Cost
Capital Costs:				\$
Health & Safety Plan Legal Services Subtota Contingency	v 25%	1	\$2,000.00 \$15,000.00	\$2,00 \$15,00 \$17,00
TOTAL CAPITAL COST	s			\$4,250 \$21,250
Annual O&M Costs: Annual Report Report Review/Meetings ODCs	LS LS LS	1	\$2,500 \$2,500	\$2,500 \$2,500
Fence Maintenance Legal Services 5-Year Review*	LS LS	1 1 1	\$2,000 \$1,000 \$1,500 \$1,000	\$2,000 \$1,000 \$1,500 \$1,000
5-Year Reviews - 4 over 20-year period - (cost annualized).	3			\$10,500
PRESENT WORTH OF O&M = ANNUAL O&M × Assume: 20 years of O&M and 5% interest annually.	<u>(1 + i)ⁿ - 1</u> i x (1 + i) ⁿ	=		\$130,853
TOTAL CAPITAL COSTS = TOTAL PRESENT WORTH = O&M PRESENT WORTH + CAPITAL	. Costs =	·	<u>\$</u>	<u>21,250</u> 152,103

DSCR

DSCR - OU2


847 215 6€2:

Old Cost Estimate Provided for Remedial Alternative Cost Breakdown ALTERNATIVE 2 - INSTITUTIONAL CONTROLS

Category	Unit	Quantity	Cost/Unit	
Capital Costs:			(\$)	Total
LUCIP Preparation				(\$)
Legal Services/LUCIP	L.S.	1	\$ 4,000.00	<u> </u>
	L.S.	1	10000	\$ 4,0
Subtota			\$ 1,000.00	\$ 1,0
Contingency	25	5%		\$ 5,0
TOTAL CAPITAL COSTS				\$ 1,3
				\$ 6,3
Annual O & M Costs:				
Annual Report	LS			
Report Review/Meetings	LS	1	\$ 2,000.00	\$ 2,0
Long Term Monitoring	LS	1 1	\$ 2,000.00	\$ 2,0
Site Maintenance			\$4,000.00	\$ 4,0
TOTAL ANNUAL O&M COSTS	LS	1	\$ 2,000.00	<u>\$</u> 1,00
				\$ 9,00
PRESENT WORTH OF O&M = AN	INUAL O&M	(1 + 1)" =		
		$\frac{(1+i)^n - 1}{i \times (1+i)^n}$	=	\$ 112,20
Reviews				
Five Year Review				
Five Year Review	LS	1 at Year 5	\$5,000	
Five Year Review	LS	1 at Year 10	\$5,000 \$5,000	\$3,90
ive Year Review	LS	1 at Year 15	•	\$3,10
the real Review	LS	1 at Year 20	\$5,000	. \$2,40
			\$5,000	\$1,90
Assume 20 years of operation and 5	% interest ann	ually.)	•	\$ 11,30
OTAL PRESENT WORTH = O&M	PRESENT W			
		CAPITA	L COSTS = \$	129,80

Prepared by: TT/JS	
in opened by. This	Date: 2/12/98
	Date: 5/10/99

V2Vao Current Task: Update Cost Estimate

. . . .

1

ALTERNATIVE 6A - SOIL COVER WITH STORM SEWER REHABILITATION, INSTITUTIONAL CONTROLS, SOURCE REMOVAL

Unit	Quantity	Cost/Unit	Cost
			\$
LS	1 1	\$10,000,001	
CY	1	1	\$10,000
	•	1	\$25,918
1			\$60,984
			\$5,418
ł		• •	\$206,112
1			\$27,310
			\$48,265
			\$25,613
			\$241,224
			\$15,981
		\$0.63	\$25,613
		\$0.41	\$16,669
		\$0.00	\$0
	2	\$1,600.00	\$3,200
	1	\$250,000.00	\$250,000
<u>LS</u>	1	\$2,000.00	\$2,000
			\$964,307
25%			\$241,077
			\$1,205,384
			+1,200,004
LS			
LS			\$90,000
10%		1	\$0
		ł	\$120,538
-		l l	\$36,162
		[\$36,162
		l	\$60,269
25%			\$343,131
2070			\$85,783
			\$428,913
			\$1,634,297
I	1	\$2,500	\$2,500
	1		\$2,500
LS	1		\$5,000
LS	1		II II
Each	4	1	\$2,000
Each	4		\$6,000
			\$1,200
			\$1,500
			\$2,500
		\$1,250	<u>\$1,250</u>
			\$24,450
4 a 10 a			
	=		\$304,701
x (1 + i) ⁿ			
	LS CY CY LF CY CY CY SY CY SY SY LS Each LS LS 10% 3% 3% 5% 25% 25%	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	LS 1 \$10,000.00 CY 3388 \$7.65 CY 3388 \$18.00 LF 2,580 \$2.10 CY 17176 \$12.00 CY 17,176 \$2.81 SY 40656 \$0.63 CY 17,176 \$2.81 SY 40656 \$0.63 CY 10,051 \$1.59 SY 40656 \$0.63 SY 40656 \$0.63 SY 40656 \$0.00 Each 2 \$1,600.00 LS 1 \$2,000.00 LS 1 \$2,000.00 25% 25% 25%

847,217 - 22

Old Cost Estimate Provided For Reference ALTERNATIVE 6A - SOIL COVER WITH STORM SEWER REHABILITATION (completed) INSTITUTIONAL CONTROLS, SOURCE REMOVAL

Category	Unit	Quantity	_	Cost/Unit		Total
Direct Costs:				(\$)		(\$)
Borrow, Transport, and Place(Soll)						
Compaction	cubic yards	17176	\$	8.95	5 \$	153,800
Cover Soil	cubic yards	17176	\$	0.70	1 *	12,100
Re-vegetation	cubic yards	10051	\$	8.95	1 *	90,000
Source Removal/OE Identification	acre	8.4	\$	1,500.00	1 7	12,600
Storm Sewer Beloastion	L.S.	1	\$,118,000.00		118,000
Storm Sewer Relocation (completed) Health & Safety Plan	L.S.	1	\$	212,200.00	+s	-212,200
Mobilization/Startup	L.S.	1	\$	1,500.00		•
	L.S.	1	\$	50,000.00		1,500
Subtotal					\$	50,000
Contingency	259	6			\$	650,200
TOTAL DIRECT COSTS					<u> </u>	162,550
Indirect Costs:						812,800
Design/Construction Support		T				
Design/Construction Support (Sewers)	L.S.		-		\$	80,000
Construction Management	L.S.				\$	31,800
Contractor Overhead	10%				\$	81,300
Health & Safety Monitoring	3%				\$	24,400
Permitting	3%				\$	24,400
Subtotal	5%				\$	40,700
					\$	282,600
Contingency Total Indirect Costs	25%	<u> </u>	_		\$	70,650
TOTAL CAPITAL COSTS			_		\$	353,300
CONE CALINAL COSTS					\$	1,166,100
Annual O & M Costs:	LS	1	\$	2,000.00		
Report Review/Meetings	LS	1	s	2,000.00	\$	2,000
Long Term Monitoring	LS	1	Ψ	\$4,000.00	\$	2,000
	LS	1	\$	2,000.00	\$	4,000
Maintenance of Fence	LS		\$		\$	2,000
Surface Cover Inspection/Maintenance	LS			1,000.00	\$	1,000
Nowing	LS		\$	5,000.00	\$	5,000
nspect and Maintain Sewer	LS		\$	750.00	\$	750
egal Services	LS	4	\$ \$	500.00	\$	500
-Year Review*	LS	1	Ψ	2,000.00	\$	2,000
TOTAL ANNUAL O&M COSTS			\$	910.00	\$	910
(5-Year Reviews total of 4 over 20 year pe	riod, (Cost Ann				\$	20,160
PRESENT WORTH OF O&M = ANNUAL						
		$\frac{(1+i)^{n}-1}{i \times (1+i)^{n}}$		2	\$	251,300
Assume 20 years of operation and 5% inte	reef onnually	i X (1 + i)"				-
	· usi a muany.)					
OTAL CAPITAL COSTS =						
OTAL PRESENT WORTH = O&M PRES	ENT WORTH		•		\$	1,166,100
		CAPITAL CO	STS	= -	\$	1,417,400
	г					-
1/21/		Prepared by:	EFŴ	/	Date	: 11/09/98
1/24/06		Checked by: I	DS		Date	: 3/25/99
		-				
1/24/06 Current Task:	Updarto	Cont	. 1	5,1		1

.

.

lī

9 of 22

- - - -

ALTERNATIVE 6B - CLAY COVER WITH STORM SEWER REHABILITATION, INSTITUTIONAL CONTROLS, SOURCE REMOVAL

.

Category Direct Costs:	Unit	Quantity	Cost/Unit \$	Cost \$
				>
Mobilization-and-Demobilization	LS	1	\$10,000.00	
Strip and clear grass, light brush, and other deleterious materials	CY	3388	\$7.65	\$10,000
Dispose cleared materials off site Silt Fence - Type C	CY	3388	\$18.00	\$25,918
	LF	2,580	\$2.10	\$60,984
Fill - borrow and transport - Clay	CY	13552	\$20.00	\$5,418
Fill - spread - Clay	CY	13,552	\$2.40	\$271,040
Fill - compact - Clay	CY	13,552	\$3.50	\$32,525
Fill - grade - Clay	SY	40656	\$0.95	\$47,432
Cover Soil - borrow and transport	l cy	6776	\$24.00	\$38,623
Cover Soil - spread	CY	6,776	\$1.59	\$162,624
Cover Soil - grade	SY	40656	\$0.63	\$10,774
Grassing (fertilizer, lime & seed)	SY	40656	\$0.83	\$25,613
Storm Sewer Rehabilitation - (completed 1st quarter 2005)	ls	1	\$0.41	\$16,669
Drop injets and Manholes (w/ frames grates installed)	Each	2		\$0
Source Removal/OE Identification & Disposal	LS	1	\$1,600.00	\$3,200
Health & Safety Plan	LS	1	\$250,000.00 \$2,000.00	\$250,000
Legal Services	LS	1	\$2,000.00	\$2,000
Subtot	tal		<u></u>	\$25,000
Contingen	cy 25%			\$987,820
TOTAL DIRECT COST	rs	··		\$246,955
				\$1,234,775
Indirect Costs:				
Design/Construction Support - Cover	LS	·	······	
Design/Construction Support - Storm Sewer - (completed)	LS			\$90,000
Construction Management	10%			\$0
Contractor Overhead	3%	I		\$123,478
Health & Safety Monitoring	3%			\$37,043
Permitting	5%			\$37,043
Subtot		······································		\$61,739
Contingend	cy 25%	·		\$349,303
TOTAL INDIRECT COST	2			\$87,326
003				£400.000
TOTAL CAPITAL COSTS				\$436,629
TOTAL CAPITAL COSTS				\$436,629 \$1,671,404
TOTAL CAPITAL COSTS				
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report				\$1,671,404
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings	LS	1	\$2,500	\$1,671,404
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings Long-Term Monitoring	LS LS	1	\$2,500	\$1,671,404 \$2,500 \$2,500
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings Long-Term Monitoring DDCs	LS LS LS	1	\$2,500 \$5,000	\$1,671,404
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings Long-Term Monitoring DDCs Quarterly Inspections	LS LS LS LS	1 1 1	\$2,500 \$5,000 \$2,000	\$1,671,404 \$2,500 \$2,500
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings Long-Term Monitoring DDCs Quarterly Inspections Cover and Fence Repair	LS LS LS LS Each	1 1 1 4	\$2,500 \$5,000 \$2,000 \$1,500	\$1,671,404 \$2,500 \$2,500 \$5,000
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings Long-Term Monitoring DDCs Quarterly Inspections Cover and Fence Repair Mowing	LS LS LS LS Each Each	1 1 1 4 4	\$2,500 \$5,000 \$2,000 \$1,500 \$300	\$1,671,404 \$2,500 \$2,500 \$5,000 \$2,000
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings Long-Term Monitoring DDCs Quarterly Inspections Cover and Fence Repair Mowing Legal Services	LS LS LS LS Each Each Each Each	1 1 1 4 4 2	\$2,500 \$5,000 \$2,000 \$1,500 \$300 \$750	\$1,671,404 \$2,500 \$2,500 \$5,000 \$2,000 \$6,000
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings Long-Term Monitoring DDCs Quarterly Inspections Cover and Fence Repair Mowing	LS LS LS LS Each Each Each Each LS	1 1 4 4 2 1	\$2,500 \$5,000 \$2,000 \$1,500 \$300 \$750 \$2,500	\$1,671,404 \$2,500 \$5,000 \$2,000 \$2,000 \$6,000 \$1,200
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings Long-Term Monitoring DDCs Quarterly Inspections Cover and Fence Repair Mowing Legal Services L-Year Review* TOTAL ANNUAL ORM COST	LS LS LS LS Each Each Each LS LS	1 1 1 4 4 2	\$2,500 \$5,000 \$2,000 \$1,500 \$300 \$750	\$1,671,404 \$2,500 \$5,000 \$5,000 \$2,000 \$6,000 \$1,200 \$1,500 \$2,500 \$1,250
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings Long-Term Monitoring DDCs Quarterly Inspections Cover and Fence Repair Mowing Legal Services L-Year Review* TOTAL ANNUAL ORM COST	LS LS LS LS Each Each Each LS LS	1 1 4 4 2 1	\$2,500 \$5,000 \$2,000 \$1,500 \$300 \$750 \$2,500	\$1,671,404 \$2,500 \$5,000 \$2,000 \$6,000 \$1,200 \$1,500 \$2,500
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings .ong-Term Monitoring DDCs Quarterly Inspections Cover and Fence Repair Aowing .egal ServicesYear Review* TOTAL ANNUAL O&M COST: 5-Year Reviews - 4 over 20-year period - (cost annualized).	LS LS LS LS Each Each Each LS LS S	1 1 4 4 2 1	\$2,500 \$5,000 \$2,000 \$1,500 \$300 \$750 \$2,500	\$1,671,404 \$2,500 \$5,000 \$5,000 \$2,000 \$6,000 \$1,200 \$1,500 \$2,500 \$1,250
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings Long-Term Monitoring DDCs Quarterly Inspections Cover and Fence Repair Mowing Legal Services L-Year Review* TOTAL ANNUAL ORM COST	$ \begin{array}{c} LS \\ LS \\ LS \\ LS \\ Each \\ Each \\ Each \\ LS \\ LS \\ S \\ \end{array} $	1 1 4 4 2 1	\$2,500 \$5,000 \$2,000 \$1,500 \$300 \$750 \$2,500	\$1,671,404 \$2,500 \$5,000 \$5,000 \$2,000 \$6,000 \$1,200 \$1,200 \$1,500 \$2,500 \$1,250 \$24,450
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings .ong-Term Monitoring DDCs Quarterly Inspections Cover and Fence Repair Aowing .egal ServicesYear Review* TOTAL ANNUAL O&M COST: 5-Year Reviews - 4 over 20-year period - (cost annualized).	LS LS LS LS Each Each Each LS LS S	1 1 4 4 2 1 1	\$2,500 \$5,000 \$2,000 \$1,500 \$300 \$750 \$2,500	\$1,671,404 \$2,500 \$5,000 \$5,000 \$2,000 \$6,000 \$1,200 \$1,500 \$2,500 \$1,250
TOTAL CAPITAL COSTS Annual O&M Costs: Annual Report Report Review/Meetings .ong-Term Monitoring DDCs Quarterly Inspections Cover and Fence Repair Aowing egal Services i-Year Review* TOTAL ANNUAL O&M COST: 5-Year Reviews - 4 over 20-year period - (cost annualized). PRESENT WORTH OF O&M = ANNUAL O&M x	$ \begin{array}{c} LS \\ LS \\ LS \\ LS \\ Each \\ Each \\ Each \\ LS \\ LS \\ S \\ \end{array} $	1 1 4 4 2 1 1	\$2,500 \$5,000 \$2,000 \$1,500 \$300 \$750 \$2,500	\$1,671,404 \$2,500 \$5,000 \$5,000 \$2,000 \$6,000 \$1,200 \$1,200 \$1,500 \$1,250 \$1,250 \$24,450

.

847 219 (0 ef 22 Focused Feasibility Study

-- -- --

Old Cost Estimates Provided For Reference ALTERNATIVE 6B, CLAY COVER WITH STORM SEWER REHABILITATION (completed) INSTITUTIONAL CONTROLS, SOURCE REMOVAL

	Quantity	_	Cost/Unit		Total-
			(\$)	- [··	(\$)
					(9)
cubic yards	17176	5	13.0	Te	
cubic yards	1		- • + •		239,70
cubic yards	· · · -			· •	12,10
acre					90,00
L.S.					12,60
L.S.		1 .	0,118,000.00	\$	118,00
	4	- T			212,20
		1		1 7	1,50
		\$	50,000.00	<u> </u>	50,00
250	<u> </u>			the second s	736,10
207				\$	184,02
				\$	920,200
1.6	<u> </u>	,			
		-		\$	80,000
	1				31,800
					73,700
					22,100
				1	
5%	1				22,100
test	10	\$	250.00		36,900
			200.00		2,500
25%				•	269,100
					67,275
					336,400 1,256,600
				<u> </u>	1,230,600
				·····.	
	1	\$	2,000,00	¢	2.000
	1				2,000
LS	1	•			2,000
LS	1 1	\$			4,000
LS	1				2,000
LS	1	-			1,000
LS	1 1				5,000
					750
		ð Ó		\$	500
		\$ *		\$	2,000
		\$	910.00	\$	910
d. (Cost Ann	uplized)			\$	20,160
			_		
-141 X	<u>(1 + i)" - 1</u>		z	\$	251,300
st annually.)	ī x (1 + ī) ⁿ				-,•
	LS LS LS LS LS LS LS LS LS LS	cubic yards 17176 cubic yards 10051 acre 8.4 L.S. 1 L.S. 1 L.S. 1 25% L.S. 1 25% L.S. 1 25% L.S. 1 25% L.S. 10 25% L.S. 10 25% LS 1 LS	cubic yards 17176 \$ cubic yards 10051 \$ acre 8.4 \$ L.S. 1 \$ 25% 10% \$ 25% 10% \$ 25% 10 \$ LS 1 \$	LS 1 \$ 0.000 LS 1 \$ 1.500.00 L.S. 1 \$ 118,000.00 L.S. 1 \$ 118,000.00 L.S. 1 \$ 118,000.00 L.S. 1 \$ 0242,200.00 L.S. 1 \$ 1.500.00 L.S. 1 \$ 50,000.00 25% 1 \$ 50,000.00 25% 10 \$ 250.00 L.S. 10 \$ 250.00 25% 10 \$ 250.00 LS 1 \$ 2,000.00 LS 1 \$ 5,000.00 LS 1 \$ 5,000.00 LS 1 \$ 5,000.00 LS 1 \$ 5,000.00 <	cubic yards 17176 \$ 0.70 \$ cubic yards 10051 \$ 8.95 \$ acre 8.4 \$ 1,500.00 \$ L.S. 1 \$ 0242,200.00 \$ L.S. 1 \$ 1,500.00 \$ L.S. 1 \$ 0242,200.00 \$ L.S. 1 \$ 50,000.00 \$ L.S. 1 \$ 50,000.00 \$ 25% \$ \$ \$ L.S. 1 \$ 50,000.00 \$ 25% \$ \$ \$ L.S. 1 \$ 250,000 \$ 25% \$ \$ \$ L.S. 10 \$ 250.00 \$ 25% \$ \$ \$ 25% \$ \$ \$ LS 1 \$ 2,000.00 \$ LS 1 \$ 5,000.00 \$

Ī

-

11 of 22

MODIFIED ALTERNATIVE 6A - SOIL COVER WITH INSTITUTIONAL CONTROLS

Category	Unit	Quantity	Cost/Unit	Cost
Direct Costs:			\$	\$
Mobilization and Demobilization	LS	1	£10,000,00	
Strip and clear grass, light brush, and other deleterious materials	CY	3388	\$10,000.00	\$10,000
Dispose cleared materials off site	CY	3388	\$7.65	\$25,918
Silt Fence - Type C	LF	1	\$18.00	\$60,984
Fill - borrow and transport	CY	2,580	\$2.10	\$5,418
Fill - spread	CY	17176	\$12.00	\$206,112
Fill - compact	CY	17,176	\$1.59	\$27,310
Fill - grade	1	17,176	\$2.81	\$48,265
Cover Soil - borrow and transport	SY	40656	\$0.63	\$25,613
Cover Soil - spread	CY	10051	\$24.00	\$241,224
Cover Soil - grade	CY	10,051	\$1.59	\$15,981
Vegetative Cover (seed, lime, fertilizer)	SY	40656	\$0.63	\$25,613
Drop Inlets and Manholes (w/ frames, grates, installed)	SY	40656	\$0.41	\$16,669
Health & Safety Plan	Each	2	\$1,600.00	\$3,200
	LS		\$2,000.00	\$2,000
Subtotal		·		\$714,307
Contingency TOTAL DIRECT COSTS	25%			\$178,577
	<u> </u>			\$892,884
Indirect Costs:				
Design/Construction Support - Cover	· _ ·			······
Construction Management	LS			\$90,000
Contractor Overhead	10%			\$89,288
Health & Safety Monitoring	3%			\$26,787
Permitting	3%			\$26,787
	5%			\$44,644
Subtotal				\$277,506
Contingency	25%			\$69,376
TOTAL INDIRECT COSTS				\$346,882
TOTAL CAPITAL COSTS				\$1,239,766
Annual O&M Costs:				¢1,200,700
Annual Report				
Report Review/Meetings	LS	1	\$2,500	\$2,500
ong-Term Monitoring	LS	1	\$2,500	\$2,500 \$2,500
DDCs	LS	1	\$5,000	
	LS	1	\$2,000	\$5,000
Quarterly inspections	Each	4		\$2,000
Cover and Fence Repair	Each	4	\$1,500	\$6,000
Nowing	Each	2	\$300	\$1,200
egal Services	LS	1	\$750	\$1,500
-Year Review*	LS	1	\$2,500	\$2,500
TOTAL ANNUAL O&M COSTS			\$1,250	\$1,250
5-Year Reviews - 4 over 20-year period - (cost annualized).				\$24,450
PRESENT WORTH OF O&M = ANNUAL O&M x	$(4 \pm 1)^n = 4$			·
		=		\$304,701
ssume: 20 years of O&M and 5% interest annually.	i x (1 + i) ⁿ			
OTAL CAPITAL COSTS =				
OTAL PRESENT WORTH = O&M PRESENT WORTH + CAPITAL				

.

Focused Feasibility Study Focused Feasibility Study Stalternative 6A - SOIL COVER WITH STORM SEVER REPAIR ADDILITATION INSTITUTIONAL CONTROLS, SOURCE REMOVAT

th Costs: (\$) (\$) ww, Transport, and Place(Soil) Cubic yards 17176 \$ 8.95 \$ 153,800 paction Cubic yards 17176 \$ 0.70 \$ 12,100 agetation acre 8.4 \$ 1,500.00 \$ 12,600 agetation acre 8.4 \$ 1,500.00 \$ 12,600 agetation acre 8.4 \$ 1,500.00 \$ 12,600 agetation/startup L.S. 1 \$ 1,500.00 \$ 148,996 acsatety Plan L.S. 1 \$ 1,500.00 \$ 1,500 Subtotal L.S. 1 \$ 50,000 \$ 162,650 Contingency 25% \$ 8 162,550 \$ 8 pn/Construction Support L.S. \$ \$ 8 13,800 actor Overhead 3% \$ \$ 8 13,800	Category	Unit	Quantity		Cost/Unit		Total		
A Costs: (1) Cubic yards 17176 \$ 9.95 \$ 153,600 action Cubic yards 17176 \$ 0.70 \$ 153,600 Soli cubic yards 10051 \$ 0.70 \$ 153,600 getation acre 8,4 \$ 1,500,00 \$ 12,600 Sector Response L.G. 1 \$ -448,600 \$ 12,600 Sector Response L.G. 1 \$ 212,200,60 \$ 212,200 Sector Response L.S. 1 \$ 50,000,00 \$ 15,600 Contingency 25% \$ 650,200 Contingency 25% \$ 650,200 Contingency 25% \$ 162,555 \$ 812,800 \$ 162,555 TOTAL DIRECT COSTS \$ 812,800 \$ 31,800 \$ 162,555 Total DIRECT COSTS \$ 812,800 \$ 40,700 \$ 24,400 \$ 40,700 Contingency 25% \$ 70,650 \$ 22,600 \$ 24,400 \$ 24,400 \$ 40,700 \$ 24,400 \$ 24,400 \$ 24,400 \$ 24,400 \$ 24,400 \$ 24,400 \$ 24,400 \$ 24,400 \$ 24,400 \$ 20,000 \$ 2,000 \$ 2,000 \$ 2,000 <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td>			<u> </u>						
Daction Cubic yards 17176 \$ 0.70 \$ 153,800 r Soil cubic yards 10051 \$ 8.95 \$ 90,000 Septation acre 8.4 \$ 1,500,00 \$ 12,800 Semant Religation L.G. 4 \$ 1,500,00 \$ 242,226 Semant Religation L.S. 1 \$ 1,500,00 \$ 50,000 Subtotal L.S. 1 \$ 1,500,00 \$ 50,000 Contingency 25% \$ 162,550 \$ 182,800 ect Costs: pn/Construction Support L.S. \$ \$ 81,300 actor Overhead 3% \$ \$ 24,400 \$ 40,700 Contingency 25% \$ 70,650 \$ 22,000,00 \$ 22,000,00 \$ 2,000,00 \$ 2,000,00 \$ 2,000,00 \$ 2,000,00 \$ 2,000,00 \$ 2,000				<u>-</u>			(4)		
Jackson cubic yards 17176 \$ 0.70 \$ 12,100 agetation acre 10051 \$ 8.95 \$90,000 acrewed/OE Identification L.S. 4 \$ 1,500,00 \$ 12,800 acrewed/OE Identification L.S. 1 \$ 1,500,00 \$ 148,909,90 \$ 148,909,90 \$ 148,909,90 \$ 12,800 acrewed/OE Identification L.S. 1 \$ 1,500,00 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ 50,000 \$ \$ 50,000 \$ 24,400 \$ \$ 44,400 \$ 40,700 \$ 24,400 \$ 40,700 \$ 24,400 \$	offow, Transport, and Place(Soil)	cubic yards	17176	5	8.95	\$	152 900		
Solit Cubic yards 10051 \$ 8.95 \$ 90,00 acre 8.4 \$ 1,500.00 \$ 12,600.00 \$ 12,600.00 \$ 12,600.00 \$ 12,600.00 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 146,906.80 \$ 162,550 \$ 50,000.00 \$ 50,000.00 \$ 162,550 \$ 162,550 \$ 162,550 \$ 162,550 \$ 81,300 \$ 31,800 \$ 24,400 \$ \$ 31,31,800 \$ 24,400 \$ \$ 31,31,800 \$ 24,400 \$ \$ 31,31,300 \$		cubic yards	17176						
acre 6.4 \$ 1,500.00 \$ 12,500 acre L.6. 4 \$ -446,900.00 \$ -442,200.00 \$ -44,200.00 \$ -44,200.00 \$ -44,000.00 \$ -44,000.00 \$ -44,000.00 \$ -44,400.00 \$ -44,400.00 \$ -44,400.00 \$ -44,400.00 \$ -24,400.00 \$ -24,400.00 \$ -24,400.00 \$ -24,400.00 \$ -24,400.00 \$ -24,400.00 \$ -24,400.00 \$ -24,400.00 \$ -24,400.00 \$ -20,000.00 \$ -222,600.00 \$ -222,400.00 \$ -		cubic yards	10051			[`]			
ArrandovarUse Treminovaruse LS. 1 \$ -148,000.00 3 148,000.00 3 148,000.00 \$ -148,000.00 \$ -148,000.00 \$ -148,000.00 \$ -148,000.00 \$ -148,000.00 \$ -148,000.00 \$ -142,220 \$ -148,000.00 \$ -142,220		acre	8.4			1.	-		
h. B. Safety Plan L.S. 1 \$ 212,200.06 \$ -242,206 ization/Startup L.S. 1 \$ 1,500.00 \$ -1,500 Subtotal \$ 50,000.00 \$ 50,000 \$ 50,000 Contingency 25% \$ 162,550 TOTAL DIRECT COSTS \$ 812,800 pn/Construction Support L.S. \$ 80,000 pn/Construction Support (Sewers) L.S. \$ 812,800 pn/Construction Support (Sewers) L.S. \$ 80,000 full construction Support (Sewers) L.S. \$ 812,800 full construction Management 10% \$ 31,800 actor Overhead 3% \$ 24,400 h & Safety Monitoring 3% \$ 24,400 Contingency 25% \$ 70,650 TOTAL CAPITAL COSTS \$ 353,300 TOTAL CAPITAL COSTS \$ 353,300 al Report LS 1 \$ 2,000,00 \$ 2,000 tt Review/Meetings LS 1 \$ 2,000,00 \$ 2,000 cot or or inspection/Maintenance LS 1 \$ 2,000,00 \$ 2,000 cot cover inspection/Maintenance LS<	ource Komoval/OE Identification	L.6.				L.			
L.S. 1 \$ 1,500.00 \$ 1,500.00 Subtotal \$ 50,000.00 \$ 50,000 Contingency 25% \$ 650,200 TOTAL DIRECT COSTS \$ 812,800 rect Costs: \$ 812,800 pn/Construction Support L.S. \$ 812,800 pn/Construction Support L.S. \$ 80,000 truction Management 10% \$ 31,800 actor Overhead 3% \$ 24,400 Subtotal \$ 70,653 \$ 24,400 Contingency 25% \$ 24,400 Contingency 25% \$ 24,400 Subtotal \$ 40,700 \$ 24,400 Contingency 25% \$ 70,655 Total Indirect Costs \$ 353,300 Total Indirect Costs \$ 353,300 Term Monitoring LS 1 \$ 2,000.00 \$ 2,000 al Report LS 1 \$ 2,000.00 \$ 2,000 Benance of Fence LS 1 \$ 2,000.00 \$ 2,000 Ce Cover Inspection/Maintenance LS 1 \$ 5,000.00 \$ 2,000 Serices 1	torm haver itelecation	L.C.							
ILS. 1 \$ 50,000 \$ 50,000 Subtotal \$ 650,200 \$ 650,200 Contingency 25% \$ 650,200 TOTAL DIRECT COSTS \$ 812,800 ect Costs: \$ 812,800 pn/Construction Support L.S. \$ 812,800 ruction Management 10% \$ 31,800 actor Overhead 3% \$ 24,400 h & Safety Monitoring 3% \$ 24,400 Subtotal 5% \$ 24,400 Contingency 25% \$ 282,600 Contingency 25% \$ 282,600 Contingency 25% \$ 282,600 Contingency 25% \$ 353,300 TOTAL CAPITAL COSTS \$ 353,300 al Report LS 1 \$ 2,000,00 \$ 2,000 tt Review/Meetings LS 1 \$ 2,000,00 \$ 2,000 al Report LS 1 \$ 2,000,00 \$ 2,000 cc cover Inspection/Maintenance LS 1 \$ 2,000 \$ 2,000 and Mainta	leann.& Safety Plan	L.S.	1	ŝ		e	•		
Subtotal 30,000 Contingency 25% \$ 650,200 TOTAL DIRECT COSTS \$ 812,800 pn/Construction Support L.S. \$ 812,800 pn/Construction Support L.S. \$ 80,000 truction Management 10% \$ 31,800 actor Overhead 3% \$ 24,400 Subtotal 5% \$ 24,400 Contingency 25% \$ 24,400 Contingency 25% \$ 24,400 Contingency 25% \$ 24,400 Contingency 25% \$ 20,000 Contingency 25% \$ 70,650 Total Indirect Costs \$ 353,300 TOTAL CAPITAL COSTS \$ 1,166,100 al Report LS 1 \$ 2,000.00 \$ 2,000 treeview/Meetings LS 1 \$ 2,000.00 \$ 2,000 ce Cover Inspection/Maintenance LS 1 \$ 2,000.00 \$ 2,000 ce Cover Inspection/Maintenance LS 1 \$ 5,000.00 \$ 5,000 ce Cover Inspection/		L.S.	1			•			
TOTAL DIRECT COSTS \$ 162,550 act Costs: \$ 812,800 In/Construction Support L.S. \$ 80,000 fun/Construction Support (Sewers) L.S. \$ 31,800 truction Management 10% \$ 34,000 actor Overhead 3% \$ 24,400 Subtotal \$ 24,400 \$ 24,400 Contingency 25% \$ 24,400 Contingency 25% \$ 70,650 Total Indirect Costs \$ 353,300 \$ 22,000.00 \$ 2,000.00 Total Indirect Costs \$ 353,300 \$ 1,166,100 all O & M Costs: 1 \$ 2,000.00 \$ 2,000 all Report LS 1 \$ 2,000.00 \$ 2,000 tree view/Meetings LS 1 \$ 2,000.00 \$ 2,000 all O & M Costs: 1 \$ 2,000.00 \$ 2,000 \$ 2,000 all Report LS 1 \$ 2,000.00 \$ 2,000 ce Cover Inspection/Maintenance LS 1 \$ 2,000.00 \$ 5,000 gene LS <t< td=""><td></td><td></td><td>·····</td><td></td><td></td><td></td><td></td></t<>			·····						
Intract Direct Cods(s) \$ 812,800 ect Costs: Intraction Support L.S. Intraction Support (Sewers) L.S. \$ 30,000 truction Management 10% \$ 31,800 actor Overhead 3% \$ 24,400 h & Safety Monitoring 3% \$ 24,400 Subtotal \$ 40,700 Contingency 25% \$ 22,600 Total Indirect Costs \$ 353,300 TOTAL CAPITAL COSTS \$ 3653,300 al Report LS 1 \$ 2,000.00 \$ 2,000 secover Inspection/Maintenance LS 1 \$ 2,000.00 \$ 2,000 ng LS 1 \$ 2,000.00 \$ 2,000 \$ 2,000 and Maintain Sewer LS 1 \$ 500.00 \$ 5,000 rereview4 LS 1 \$ 2,000.00 \$ 2,000 rereview4 LS 1 <t< td=""><td>Contingency</td><td>25%</td><td></td><td>·</td><td></td><td>· · ·</td><td></td></t<>	Contingency	25%		·		· · ·			
ect Costs:in/Construction SupportL.S.in/Construction Support (Sewers)L.S.truction Management10%actor Overhead3%h & Safety Monitoring3%Subtotal5%Contingency25%Contingency25%Total Indirect Costs5Total Indirect Costs5Total Indirect Costs5Total CAPITAL COSTS\$al ReportLStt Review/MeetingsLStt Review/MeetingsLSLS1standerLSLS1standerLStt Review/MeetingsLSLS1standerLStreview/MeetingsLSLS1standerStreview/MeetingsLSLS1standerStreview*LSLS1standerStt Review*LSLS1standerStreview*LSts1standerStreview*LSts1standerStreview*LSts1standerStanderLSts1standerSts1standerSts1ts2,000.00ts1ts2,000.00ts1	TOTAL DIRECT COSTS								
Implement L.S. \$ 80,000 pruction Management 10% \$ 31,800 actor Overhead 3% \$ 81,300 h & Safety Monitoring 3% \$ 24,400 Subtotal \$ 40,700 Contingency 25% \$ 282,600 Total Indirect Costs \$ 353,300 TOTAL CAPITAL COSTS \$ 353,300 al Report LS 1 \$ 2,000,00 \$ 2,000 tr Review/Meetings LS 1 \$ 2,000,00 \$ 2,000 rerm Monitoring LS 1 \$ 2,000,00 \$ 2,000 al Report LS 1 \$ 2,000,00 \$ 2,000 rerm Monitoring LS 1 \$ 2,000,00 \$ 2,000 al Report LS 1 \$ 2,000,00 \$ 2,000 rerm Monitoring LS 1 \$ 2,000,00 \$ 2,000 cc Cover Inspection/Maintenance LS 1 \$ 5,000,00 \$ 5,000 rerm Monitoring LS 1 \$ 2,000,00 \$ 5,000,00 \$ 5,000 <td>direct O to</td> <td></td> <td></td> <td></td> <td></td> <td>· · ·</td> <td>012,800</td>	direct O to					· · ·	012,800		
In/Construction Support (Sewers) L.S. \$ 80,000 truction Management 10% \$ 31,800 actor Overhead 3% \$ 24,400 h & Safety Monitoring 3% \$ 24,400 Subtotal \$ 40,700 Contingency 25% \$ 282,600 Total Indirect Costs \$ 70,650 TOTAL CAPITAL COSTS \$ 353,300 It Review/Meetings LS 1 \$ 2,000,00 \$ 2,000,00 It Review/Meetings LS 1 \$ 2,000,00 \$ 2,000,00 al Report LS 1 \$ 2,000,00 \$ 2,000,00 rerm Monitoring LS 1 \$ 2,000,00 \$ 2,000,00 al Report LS 1 \$ 2,000,00 \$ 2,000,00 senance of Fence LS 1 \$ 2,000,00 \$ 2,000,00 ce Cover Inspection/Maintenance LS 1 \$ 5,000,00 \$ 5,000 of and Maintain Sewer LS 1 \$ 5,000,00 \$ 5,000 serviews LS 1 \$ 2,000,00 \$ 20,000 serviews LS 1 \$ 2,000,					1	·			
truction ManagementL.S.\$ 31.800actor Overhead3%\$ 81.300h & Safety Monitoring3%\$ 24.400Subtotal5%\$ 24.400Contingency25%\$ 282,600Contingency25%\$ 282,600Total Indirect Costs\$ 353,300TOTAL CAPITAL COSTS\$ 353,300ual O & M Costs:1\$ 2,000.00al ReportLS1\$ 2,000.00t Review/MeetingsLS1\$ 2,000.00LS1\$ 2,000.00\$ 2,000enance of FenceLS1\$ 2,000.00LS1\$ 2,000.00\$ 2,000cc cover Inspection/MaintenanceLS1\$ 2,000.00ngLS1\$ 5,000.00\$ 2,000review*LS1\$ 5,000.00\$ 2,000ngLS1\$ 2,000.00\$ 2,000review*LS1\$ 2,000.00\$ 2,000servicesLS1\$ 2,000.00\$ 2,000ngLS1\$ 2,000.00\$ 2,000review*LS1\$ 5,000.00\$ 5,000servicesLS1\$ 5,000.00\$ 2,000review*LS1\$ 2,000.00\$ 2,000review*LS1\$ 2,000.00\$ 2,000servicesLS1\$ 2,000.00\$ 2,000review*LS1\$ 2,000.00\$ 2,000review*LS1\$ 2,000.00\$ 2,000services<	resign/Construction Support	L.S.							
actor Overhead 3% \$ 81,300 h & Safety Monitoring 3% \$ 24,400 Subtotal \$ 40,700 Contingency 25% \$ 282,600 Total Indirect Costs \$ 353,300 TOTAL CAPITAL COSTS \$ 353,300 TOTAL CAPITAL COSTS \$ 353,300 Term Monitoring LS 1 \$ 2,000.00 \$ 2,000 al Report LS 1 \$ 2,000.00 \$ 2,000 rem Monitoring LS 1 \$ 2,000.00 \$ 2,000 enance of Fence LS 1 \$ 2,000.00 \$ 2,000 cc Cover Inspection/Maintenance LS 1 \$ 2,000.00 \$ 2,000 ng LS 1 \$ 5,000.00 \$ 5,000 \$ 5,000 review* LS 1 \$ 5,000.00 \$ 5,000 \$ 5,000 review* LS 1 \$ 5,000.00 \$ 5,000 \$ 5,000 \$ 5,000 review* LS 1 \$ 5,000.00 \$ 5,000 \$ 5,000 \$ 5,000 review* LS 1 \$ 5,000.00 \$ 5,000 \$	vesign/Construction Support (Sewers)	L.S.							
$h \& Safety Monitoring3 \frac{3}{6}3 \frac{3}{6}$ 24.400$ 24.400SubtotalContingency5 \frac{3}{6}3 \frac{40,700}Contingency25%$ 282,600$ 70,650Total Indirect Costs$ 353,300$ 70,650TOTAL CAPITAL COSTS$ 353,300$ 1,166,100ual O & M Costs:al Reportrt Review/MeetingsLS1$ 2,000.00$ 2,000ContingencyLS1$ 2,000.00$ 2,000cc Cover Inspection/MaintenanceLSLS11$ 5,000.00$ 3,000cc Cover Inspection/MaintenanceLSLS11$ 5,000.00$ 5,000cc Cover Inspection/MaintenanceLSLS11$ 5,000.00$ 5,000ct and Maintain SewerLSLS1LS11$ 2,000.00$ 2,000ct and Maintain SewerLSLS1LS11$ 2,000.00$ 2,000TOTAL ANNUAL O&M COSTSsar Reviews total of 4 over 20 year period. (Cost Annualized))SENT WORTH OF O&M = ANNUAL O&M x (1+i)n - 1ix (1+i)nENT WORTH OF O&M = ANNUAL O&M x (1+i)n - 1ix (1+i)nand 20 years of operation and 5% interest annuality.)L CAPITAL COSTS =L PRESENT WORTH + CAPITAL COSTS =Superior Cost = 0S 1,447,400$	onstruction Management	10%				l .			
h & Safety Monitoring 3% \$ 24,400 Subtotal \$ 40,700 Contingency 25% \$ 282,600 Total Indirect Costs \$ 70,650 TOTAL CAPITAL COSTS \$ 353,300 ual O & M Costs: \$ 353,300 al Report LS 1 \$ 2,000,00 \$ 2,000 trem Monitoring LS 1 \$ 2,000,00 \$ 2,000 enance of Fence LS 1 \$ 2,000,00 \$ 2,000 cc Cover Inspection/Maintenance LS 1 \$ 2,000,00 \$ 2,000 ng LS 1 \$ 5,000,00 \$ 2,000 cc Cover Inspection/Maintenance LS 1 \$ 5,000,00 \$ 5,000 ng LS 1 \$ 5,000,00 \$ 5,000 \$ 5,000 ct and Maintain Sewer LS 1 \$ 5,000,00 \$ 5,000 \$ 5,000 treview* LS 1 \$ 2,000,00 \$ 2,000 \$ 2,000 \$ 2,000 treview* LS 1 \$ 5,000,00 \$ 5,000 \$ 5,000 \$ 5,000 treview* LS 1			1						
titing 5% \$ 24,400 Subtotal \$ 40,700 Contingency 25% \$ 282,600 Total Indirect Costs \$ 353,300 TOTAL CAPITAL COSTS \$ 353,300 train of the end of	leann & Safety Monitoring					F .			
Subtotal Contingency 25% \$ 262,600 Total Indirect Costs \$ 70,650 TOTAL CAPITAL COSTS \$ 353,300 trail O & M Costs: \$ 1,166,100 al Report LS 1 \$ 2,000,00 \$ 2,000 trail Review/Meetings LS 1 \$ 2,000,00 \$ 2,000 trail Review/Meetings LS 1 \$ 2,000,00 \$ 2,000 rerm Monitoring LS 1 \$ 2,000,00 \$ 2,000 enance of Fence LS 1 \$ 2,000,00 \$ 2,000 cc Cover Inspection/Maintenance LS 1 \$ 5,000,00 \$ 2,000 transference LS 1 \$ 5,000,00 \$ 5,000 cc Cover Inspection/Maintenance LS 1 \$ 5,000,00 \$ 5,000 review* LS 1 \$ 5,000,00 \$ 5,000 \$ 5,000 review* LS 1 \$ 2,000,00 \$ 2,000 \$ 2,000 review* LS 1 \$ 2,000,00 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,	ermitting	5%	1						
Total Indirect Costs \$ 70,650 Total Indirect Costs \$ 353,300 TOTAL CAPITAL COSTS \$ 1,166,100 ual O & M Costs: 1 \$ 2,000.00 \$ 2,000 ai Report LS 1 \$ 2,000.00 \$ 2,000 transform LS 1 \$ 1,000.00 \$ 1,000 transform LS 1 \$ 5,000.00 \$ 5,000 transform LS 1 \$ 5,000.00 \$ 5,000 transform LS 1 \$ 5,000.00 \$ 5,000 transform LS 1 \$ 5,000.00 \$ 2,000 transform LS 1 \$ 2,000.00 \$ 2,000			1						
TOTAL CAPITAL COSTS \$ 353,300 TOTAL CAPITAL COSTS \$ 1,166,100 ual O & M Costs: 1 \$ 2,000.00 \$ 2,000 al Report LS 1 \$ 2,000.00 \$ 2,000 tr Review/Meetings LS 1 \$ 2,000.00 \$ 2,000 Term Monitoring LS 1 \$ 2,000.00 \$ 2,000 enance of Fence LS 1 \$ 2,000.00 \$ 2,000 ce Cover Inspection/Maintenance LS 1 \$ 5,000.00 \$ 2,000 ng LS 1 \$ 5,000.00 \$ 5,000 ce Cover Inspection/Maintenance LS 1 \$ 5,000.00 \$ 5,000 ng LS 1 \$ 5,000.00 \$ 5,000 \$ 5,000 ct and Maintain Sewer LS 1 \$ 5,000.00 \$ 5,000 \$ 5,000 Services LS 1 \$ 2,000.00 \$ 2,000 \$ 2,000 transform LS 1 \$ 2,000.00 \$ 2,000 \$ 2,000 ToTAL ANNUAL O&M COSTS 2 \$ 20,000 \$ 2,0160 \$ 20,160 \$ 20,160 \$ 20,160	Contingency	25%				ې م			
Initial Control Control Control \$ 1,166,100 ual O & M Costs: Image: Second control Contecontrol Contecontrol Control Control Control Control C	Total Indirect Costs								
ual O & M Costs: al Report LS 1 \$ 2,000.00 \$ 2,000 Term Monitoring LS 1 \$ 2,000.00 \$ 2,000 Term Monitoring LS 1 \$ 2,000.00 \$ 2,000 al Review/Meetings LS 1 \$ 2,000.00 \$ 2,000 enance of Fence LS 1 \$ 2,000.00 \$ 2,000 cc Cover Inspection/Maintenance LS 1 \$ 1,000.00 \$ 1,000 ng LS 1 \$ 5,000.00 \$ 2,000 cc Cover Inspection/Maintenance LS 1 \$ 5,000.00 \$ 1,000 ng LS 1 \$ 5,000.00 \$ 5,000 cc Cover Inspection/Maintenance LS 1 \$ 5,000.00 \$ 5,000 ng LS 1 \$ 5,000.00 \$ 5,000 \$ 5,000 ct and Maintain Sewer LS 1 \$ 2,000.00 \$ 2,000 Services LS 1 \$ 2,000.00 \$ 2,000 TOTAL ANNUAL O&M COSTS \$ 20,160 \$ 20,160 \$ 20,160 SENT WORTH OF O&M = ANNUAL O&M X (1 + i) ⁿ - 1 </td <td>TOTAL CAPITAL COSTS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	TOTAL CAPITAL COSTS								
al Report LS 1 \$ 2,000.00 \$ 2,000 rt Review/Meetings LS 1 \$ 2,000.00 \$ 2,000 Term Monitoring LS 1 \$ 2,000.00 \$ 2,000 s LS 1 \$ 2,000.00 \$ 2,000 enance of Fence LS 1 \$ 2,000.00 \$ 2,000 ce Cover Inspection/Maintenance LS 1 \$ 1,000.00 \$ 1,000 ng LS 1 \$ 5,000.00 \$ 5,000 ord LS 1 \$ 5,000.00 \$ 5,000 ng LS 1 \$ 5,000.00 \$ 5,000 services LS 1 \$ 500.00 \$ 5,000 services LS 1 \$ 500.00 \$ 5,000 services LS 1 \$ 2,000.00 \$ 2,000 or Review* LS 1 \$ 2,000.00 \$ 2,000 TOTAL ANNUAL O&M COSTS 1 \$ 910.00 \$ 910 \$ 910.00 sear Reviews total of 4 over 20 year period. (Cost Annualized)) \$ 20,160 \$ 20,160 \$ 251,300 me 20 years of operation an				·			1,100,100		
rt Review/Meetings LS 1 \$ 2,000.00 \$ 2,000 Term Monitoring LS 1 \$ 2,000.00 \$ 2,000 enance of Fence LS 1 \$ 2,000.00 \$ 2,000 ce Cover Inspection/Maintenance LS 1 \$ 2,000.00 \$ 2,000 ce Cover Inspection/Maintenance LS 1 \$ 2,000.00 \$ 2,000 ce Cover Inspection/Maintenance LS 1 \$ 5,000.00 \$ 2,000 or and Maintain Sewer LS 1 \$ 5,000.00 \$ 5,000 ct and Maintain Sewer LS 1 \$ 5,000.00 \$ 5,000 services LS 1 \$ 5,000.00 \$ 5,000 transformer LS 1 \$ 5,000.00 \$ 5,000 services LS 1 \$ 5,000.00 \$ 5,000 or Review* LS 1 \$ 2,000.00 \$ 2,000 TOTAL ANNUAL O&M COSTS 1 \$ 910.00 \$ 910.00 \$ 910.00 SENT WORTH OF O&M = ANNUAL O&M x (1+i) ⁿ + 1 = \$ 251,300 \$ 251,300 me 20 years of operation and 5% interest annually.) \$ 1,16				<u> </u>					
If Review/Meetings LS 1 \$ 2,000 \$ 2,000 Term Monitoring LS 1 \$ 2,000.00 \$ 2,000 enance of Fence LS 1 \$ 2,000.00 \$ 2,000 enance of Fence LS 1 \$ 2,000.00 \$ 2,000 ce Cover Inspection/Maintenance LS 1 \$ 1,000.00 \$ 1,000 ng LS 1 \$ 5,000.00 \$ 5,000 \$ 5,000 ct and Maintain Sewer LS 1 \$ 5,000.00 \$ 5,000 ct and Maintain Sewer LS 1 \$ 5,000.00 \$ 5,000 services LS 1 \$ 5,000.00 \$ 5,000 tr Review* LS 1 \$ 2,000.00 \$ 2,000 TOTAL ANNUAL O&M COSTS 1 \$ 20,000.00 \$ 2,000 tr Reviews total of 4 over 20 year period. (Cost Annualized)) \$ 20,160 \$ 20,160 SENT WORTH OF O&M = ANNUAL O&M x (1+i) ⁿ - 1 # \$ 251,300 me 20 years of operation and 5% interest annually.) \$ 1,166,100 \$ 1,166,100 L PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS = \$ 1,447,400 \$ 1,447,400 <		LS	1 1	\$	2 000 00	e			
Image: service	eport Review/Meetings	LS	1						
enance of Fence LS 1 \$ 2,000.00 \$ 2,000 cc Cover Inspection/Maintenance LS 1 \$ 1,000.00 \$ 1,000 ng LS 1 \$ 5,000.00 \$ 5,000 ct and Maintain Sewer LS 1 \$ 5,000.00 \$ 5,000 ct and Maintain Sewer LS 1 \$ 5,000.00 \$ 5,000 ct and Maintain Sewer LS 1 \$ 5,000.00 \$ 5,000 services LS 1 \$ 500.00 \$ 5,000 ar Review* LS 1 \$ 500.00 \$ 500 ar Review* LS 1 \$ 2,000.00 \$ 2,000 ar Review* LS 1 \$ 910.00 \$ 910 cert Reviews total of 4 over 20 year period. (Cost Annualized)) \$ 20,160 \$ 20,160 SENT WORTH OF O&M = ANNUAL O&M x $(1 + i)^n - 1$ = \$ 251,300 ime 20 years of operation and 5% interest annually.) \$ 1,166,100 L PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS = \$ 1,417,400		LS	1	1 T					
LS1\$1,000.00\$1,000cc Cover Inspection/MaintenanceLS1\$5,000.00\$5,000ngLS1\$5,000.00\$5,000ct and Maintain SewerLS1\$750.00\$750ServicesLS1\$500.00\$500ar Review*LS1\$2,000.00\$2,000TOTAL ANNUAL O&M COSTS1\$910.00\$910ear Reviews total of 4 over 20 year period. (Cost Annualized))\$20,160EENT WORTH OF O&M = ANNUAL O&M x $(1+i)^n - 1$ =\$251,300ime 20 years of operation and 5% interest annually.)>\$1,166,100L PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS = $$1,166,100L PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS =\frac{$1,417,400$	DCs	LS	1	s					
LS1\$ 5,000.00\$ 5,000orgLS1\$ 5,000.00\$ 5,000ct and Maintain SewerLS1\$ 750.00\$ 750ServicesLS1\$ 500.00\$ 500ar Review*LS1\$ 2,000.00\$ 2,000TOTAL ANNUAL O&M COSTS1\$ 910.00\$ 910ear Reviews total of 4 over 20 year period. (Cost Annualized))\$ 20,160EENT WORTH OF O&M = ANNUAL O&M x $(1+i)^n - 1$ = \$ 251,300ix (1 + i)^nix (1 + i)^n= \$ 251,300ime 20 years of operation and 5% interest annually.)\$ 1,166,100L CAPITAL COSTS =\$ 1,166,100L PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS =\$ 1,417,400		LS	1			•			
LS1\$ 750.00\$ 750ServicesLS1\$ 750.00\$ 750ServicesLS1\$ 500.00\$ 500In Review*LS1\$ 2,000.00\$ 2,000TOTAL ANNUAL O&M COSTS1\$ 910.00\$ 910Bar Reviews total of 4 over 20 year period. (Cost Annualized))\$ 20,160SENT WORTH OF O&M = ANNUAL O&M x $(1 + i)^n - 1$ = \$ 251,300Imme 20 years of operation and 5% interest annually.)\$ 251,300LL CAPITAL COSTS = $(1 + i)^n - 1$ = \$ 1,166,100L PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS =\$ 1,417,400	unace Cover Inspection/Maintenance	LS	1						
LS1\$ 500.00\$ 500ServicesLS1\$ 500.00\$ 500Ir Review*LS1\$ 2,000.00\$ 2,000TOTAL ANNUAL O&M COSTS1\$ 910.00\$ 910Bar Reviews total of 4 over 20 year period. (Cost Annualized))\$ 20,160SENT WORTH OF O&M = ANNUAL O&M x $(1+i)^n - 1$ = \$ 251,300Image: Service of operation and 5% interest annually.)Image: Service of operation and 5% interest annually.)1,166,100L CAPITAL COSTS =S 1,166,100\$ 1,417,400	/lowing	LS	1	1 .	-				
LS1\$ 2,000.00\$ 2,000TOTAL ANNUAL O&M COSTS1\$ 910.00\$ 910Par Reviews total of 4 over 20 year period. (Cost Annualized))\$ 20,160SENT WORTH OF O&M = ANNUAL O&M x $(1+i)^n - 1$ = \$ 251,300Imme 20 years of operation and 5% interest annually.)Imme 20 years of operation and 5% interest annually.)\$ 1,166,100Imme 20 years of operation and 5% interest annually.)Imme 20 years of operation and 5% interest annually.)\$ 1,166,100Imme 20 years of operation and 5% interest annually.)Imme 20 years of operation and 5% interest annually.)\$ 1,166,100Imme 20 years of operation and 5% interest annually.)Imme 20 years of operation and 5% interest annually.)\$ 1,166,100Imme 20 years of operation and 5% interest annually.)\$ 1,166,100\$ 1,417,400Imme 20 years of operation and 5% interest annually.)\$ 1,417,400Imme 20 years of operation and 5% interest annually.)\$ 1,417,400Imme 20 years of operation and 5% interest annually.)\$ 1,417,400		LS	1	1					
If ReviewLS1\$ 910.00\$ 2,000TOTAL ANNUAL O&M COSTSSear Reviews total of 4 over 20 year period. (Cost Annualized))SENT WORTH OF O&M = ANNUAL O&M x $(1 + i)^n - 1$ i x $(1 + i)^n$ I colspan="2">S 20,160I colspan="2">S 20,160I colspan="2">S 20,160I colspan="2">S 20,160I colspan="2">S 20,160I colspan="2">I colspan="2">S 20,160I colspan="2">I colspan="2">S 20,160I colspan="2">I colspan="2">I colspan="2">I colspan="2"I colspan="2" <td <<="" colspan="2" td=""><td>egal Services</td><td>LS</td><td>1</td><td></td><td></td><td></td><td></td></td>	<td>egal Services</td> <td>LS</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>		egal Services	LS	1				
TOTAL ANNUAL O&M COSTSTOTAL ANNUAL O&M COSTSSTOLO \$ 910.00 \$ 910STOLO \$ 910.00 \$ 910BERT WORTH OF O&M = ANNUAL O&M x $(1 + i)^n - 1$ I (1 + i)^n - 1I (1 + i)^nI (1 + i)^n <td c<="" td=""><td>-Year Review*</td><td>LS</td><td>1</td><td>1 .</td><td></td><td>Ŧ</td><td></td></td>	<td>-Year Review*</td> <td>LS</td> <td>1</td> <td>1 .</td> <td></td> <td>Ŧ</td> <td></td>	-Year Review*	LS	1	1 .		Ŧ		
SENT WORTH OF O&M = ANNUAL O&M x $(1 + i)^n - 1$ = \$ 251,300 ime 20 years of operation and 5% interest annually.) L CAPITAL COSTS = $\frac{1}{12}$ L PRESENT WORTH + CAPITAL COSTS = $\frac{112}{12}$	TOTAL ANNUAL O&M COSTS			_	510.00	÷			
SENT WORTH OF O&M = ANNUAL O&M x $(1+i)^n - 1$ = \$ 251,300 interest annually.) AL CAPITAL COSTS = AL PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS = $\frac{$ 1,166,100}{$ 1.417,400}$	p-rear Reviews total of 4 over 20 year	period. (Cost Annu	alized))		· ·		20,160		
interest annually.) L CAPITAL COSTS = L PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS = $\frac{$ 1,166,100}{$ 1,417,400}$	RESENT WORTH OF O&M = ANNUA	 m.m.n. 	••		=	r	** ***		
IL CAPITAL COSTS = IL PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS = \$ 1,166,100 \$ 1,417,400		•	$i \times (1 + i)^n$	-	-	Ф	251,300		
L CAPITAL COSTS = \$ 1,166,100 L PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS = \$ 1,417,400	ssume 20 years of operation and 5% ir	terest annually.)	· • (+ * 1)						
L PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS = \$ 1,166,100		terebt armaany.)							
L PRESENT WORTH = O&M PRESENT WORTH + CAPITAL COSTS = 1,166,100 \$ 1,416,100 \$ 1,417,400 Prepared by: EFW Date: 11/09/98 Checked by: FDS Date: 3/25/99 Worent Tast : Update Cost Estimate and Remove Sterm Serve w Rehald c	TAL CAPITAL COSTS =								
1,417,400 1/24/06 Prepared by: EFW Date: 11/09/98 Checked by: FDS Date: 3/25/99 UNTENT Tast: Update Cost Estimate and Remove Sterm Serve in Rehald of	IAL PRESENT WORTH = O&M PRI	ESENT WORTH +	CAPITAL)etr		*	1,166,100		
1/24/06 Where the Tast: Update Cost Estimate and Remove Sterm Serve & Rehald -				2012	, -	\$	1,417,400		
Wrent Tast: Update Cost Estimate and Remove Sterm Serve & Rehald	1/22/00	ſ	Prepared by:	FEV	v	<u></u>			
urrent Tast: Update Cost Estimate and Remove Sterm Server Robale :	1 49/06		Checked by	FDe	¥	Dat	e: 11/09/98		
Remove Sterm Server Repair &	N			103		Dat	e: 3/25/99		
Remove Sterm Server Robale &	current Tast: 1	podate C	ost i	Es	timot	- 0	and		
	R	émore	Sterm		and in 1	ىغ ⊳⊾	hale 1		
the second se		ייייי ס		يربي	-w -y	ne	inns z		
Kemoval	+	remova	\mathcal{A}				í		

847 222 13 of 2

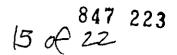
John D. Green Project Superintendent

Pete Alcom × 246

Contacted 1-24-06

KJELLSTROM AND LEE, INC. 1607 OWNBY LANE RICHMOND, VA 23220 804.288.0082 FAX 804.285.4288 -MOBILE 434.466-8148 -Jgreen@kjelistrom-lee.com

804-513-5918 (2)


\$ 12 yd \$ 24 yd \$ 20 yd

non-stonstrux fil top sorl dry

ſ

.

.

-.

.

ALTERNATIVE 6A - SOIL COVER WITH STORM SEWER REHABILITATION, INSTITUTIONAL CONTROLS, SOURCE REMOVAL

.

Category	Unit	Quantity	Cost/Unit	Cost	Cost Source
Direct Costs:	<u>.</u>		<u> </u>	\$	
Mobilization and Demobilization	LS	T	1		
Strip and clear grass, light brush, and other deleterious materials	CY	1	\$10,000.00	\$10,000	Estimated
Dispose cleared materials off site	CY .	3388	\$7.65	\$25,0 18	Means, 02315=432-4440
Silt Fence - Type C		3386	\$18.00	\$60,984	Estimated
Fill - borrow and transport	CY	2,580	\$2.10	\$5,418	Means, 02370-700-1100 + 100%
Fill - spread	CY	17176	\$12.00	\$206,112	Local contractor
Fill - compact	CY	17,176	\$1.59	\$27,310	Means, 02315-520-0010
FIII - grade	SY	17,176	, \$2.81	\$48,265	Means, 02315-110-1600
Cover Soil - borrow and transport	CY	40656	\$0.63	\$25,613	Means, 02310-100-0100
Cover Soll - spread		10051	\$24.00	\$241,224	Local contractor
Cover Soll - grade	CY	10,051	\$1 59	\$15,981	Means, 02315-520-0010
Vegetative Cover (seed, lime, fertilizer)	SY	40656	\$0.63	\$25,613	Means, 02310-100-0100
Storm Sewer Rehabilitation - (completed 1st quarter 2006)	SY	40656	\$0.41	\$16,669	Means, 02920-310-0300
Utop Inlets and Manholes (w/ frames protections)	LS	1	\$0.00	50	
Source Removar/OE Identification & Disnosel	Each	2	\$1,600.00	\$3,200	Means, 02630-400-1110
Health & Safety Plan	LS	1	\$250,000.00	\$250,000	· mcana, 02630-400-1110
Subtotal	LS		\$2,000.00	\$2,000	
Contingency	25%			\$964,307	
TOTAL DIRECT COSTS	25%			\$241,077	
CONCEDIRECT COSTS				\$1,205,384	
ndirect Costs:		_			
Design/Construction Support - Cover					
Design/Construction Support - Storm Sewer - (completed)	LS	!		\$90,000	
Construction Management	LS			\$0	
Contractor Overhead	10%			\$120,538	
realth & Safety Monitoring	3%			\$36,162	
Permitting	3%		ľ	\$36,162	
	5%		1	\$60,269	
Subtotal				\$343,131	
Contingency	25%			\$85,783	
TOTAL INDIRECT COSTS				\$428,913	
TOTAL CAPITAL COSTS				\$1,634,297	
Annual O&M Costs:					
Annual Report					
Report Roview/Meetings	LS	1 1	\$2,500	\$2,500	
ong-Term Monitoring	LS	1	\$2,500	\$2,500	
DDCs	LS	1	\$5,000	\$5,000	
Quarterly Inspections	LS	1	\$2,000	\$2,000	
Cover and Fence Repair	Each	4	\$1,500	\$6,000	
fowing	Each	4	\$300	\$1,200	
egal Services	Each	2	\$750	\$1,500	
-Year Review*	LS	1	\$2,500	\$2,500	
	LS	1	\$1,000	\$1,000	
TOTAL ANNUAL O&M COSTS 5-Year Reviews - 4 over 20-year period - (cost annualized).				\$24,200	
DEECTUT WORK				424,200	
PRESENT WORTH OF D&M = ANNUAL OBM x	(<u>1 + I)ⁿ - 1</u>	=		****	5
	x (1 + 1) ⁿ			\$301,585	2
ssume: 20 years of O&M and 5% interest annually,					
OTAL CAPITAL COSTS =					
OTAL DESCRITING THE ADDRESS OF				4	
OTAL PRESENT WORTH = O&M PRESENT WORTH + CAPITAL CO)STS =		<u>2</u>	1,634,297	

5% 20

TO THE FRESENT WORTH # DAM PRESENT WORTH + CAPITAL COSTS #	\$	1,935,883	

Prepared by D Krafi	1/25/2006
Checked by: T Buchli	1/25/2006

847 224 16 of 22

.

. _

ALTERNATIVE 6B - CLAY COVER WITH STORM SEWER REHABILITATION, INSTITUTIONAL CONTROLS, SOURCE REMOVAL

- -

Category	Unit	Quantity	Cost/Unit	Cost
Direct Costs:		duandry	\$	\$
Mobilization and Demobilization		·····		
Strip and clear grass, light brush, and other deleterious motorials	LS	1 1	\$10,000 00	\$10,00
Dispose cleared materials off site	<u> </u>	3388	.\$7.65	\$25,91
Slit Fence - Type C	CY	3388	\$18.00	\$60,98
Fill - borrow and transport - Clay	LF	2,580	\$2.10	\$5,41
Fill - spread - Clay	CY	13552	\$20.00	\$271,040
Fill - compact - Clay	CY	13,552	\$2 40	\$32,525
Fill - grade - Clay	CY	13,552	\$3.50	\$47,432
Cover Soil - borrow and transport	SY	40656	\$0.95	\$38.62
Cover Soll - spread	CY	6776	\$24.00	\$162,624
Cover Soil - grade	CY CY	6,776	\$1,59	\$10,774
Grassing (fertilizer, lime & seed)	SY	40656	\$0,63	\$25,613
Storm Sewer Rehabilitation - (completed 1st quarter 2005)	SY	40656	\$0.41	\$16,669
Drop Inlets and Manholes (w/ frames, grates, installed)	[is	1 1	\$0.00	\$10,009 \$(
Source Ramoval/OE Identification & Disposal	Each	2	\$1,600.00	-
Health & Safety Plan	LS	1	\$250,000.00	\$3,200
Legal Services] LS	1 1	\$2,000 00	\$250,000
	LS	1	\$25,000.00	\$2,000
Subto				\$25,000 \$987,820
Contingen	cy 25%			\$246,955
TOTAL DIRECT COST	S			\$1,234,775
ndirect Costs:				J1,234,115
DestantConstruction Construction				
Design/Construction Support - Cover	LS	· · · · · · · · · · · · · · · · · · ·		
Design/Construction Support - Storm Sewer - (completed)	LS			\$90,000
Construction Management	10%		1	\$0
Contractor Overhead	3%			\$123,478
feath & Safety Monitoring	3%			\$37,043
Permitting	5%			\$37,043
Subtot			·····	\$61,739
Contingend	y 25%			\$349,303
TOTAL INDIRECT COST	S			\$87,326
TOTAL CAPITAL COSTS				\$436,629
				\$1,671,404
Annual O&M Costs:				
nnual Report				
Report Review/Meetings	LS	1	\$2,500	\$2,500
ong-Term Monitoring	LS	1	\$2,500	\$2,500
DDCs	LS	1	\$5,000	\$5,000
Quarterly Inspections	LS	1	\$2,000	\$2,000
Over and Fence Repair	Each	4	\$1,500	\$6,000
towing	Each	4	\$300	\$1,200
egal Services	Each	2	\$750	\$1,500
-Year Review*	LS	1	\$2,500	\$2,500
TOTAL ANDULAL COM STOR	LS		\$2,500	\$2,500
TOTAL ANNUAL OBM COSTS 5-Year Reviews - 4 over 20-year period - (cost annualized).	5			\$25,700
BREENT WOOTH OF ANNUALZED).				¥
PRESENT WORTH OF O&M = ANNUAL O&M x	<u>(1 + i)* - 1</u>	=		tae+
	$1 \times (1 + 1)^n$	-		\$320,279
ssume: 20 years of O&M and 5% interest annually.				
,				
DTAL CAPITAL COSTS =				
DTAL PRESENT WORTH = O&M PRESENT WORTH + CAPITAL	COSTS -		<u>\$</u>	1,671,404
			\$	1,991,683

Cost Source

_

.

Estimated Means, 02315-432-4440 Estimated Means, 02370-700-1100 + 100% Local contractor Means, 02315-520-0010 + 50% Means, 02315-110-1600 + 25% Means, 02310-100-0100 + 50% Local contractor Means, 02315-520-0010 Means, 02310-100-0100 Means, 02920-310-0300

Means, 02630-400-1110

ب ا

5% 20

۰.

1,991,683

									<u> </u>	17 of	22	
		300 Earthwork									,	
T	023	105 Equipment		DARY	LABOR-		-	2005 BAF	E COSTS		TOTAL	
4					HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCLOSP	
- 1	2000	Crane, truck-mounted, up to 75 ton (incl both mob & demob) Ronseo	1 EQH		2.222	Ea.		80	•	80	20	2
	2100	Crane, truck-mounted, over 75 ton	A-3E	2.50	6.400			203	34	237	350	1
	2300	Over 75 ton	A-3F A-3G	2	8			254	278	532	690	
	2500	For each additional 5 miles haul distance, add	Ar-JU	1.50	10.667	<u> </u>	 	340 10%	405	745	960	∔
	3000	For large pieces of equipment, allow for assembly/knockdown				i.		10%	10%			
	3001	For mob/demob of vibrofloatation equip, see section 02250-900		1 —	1					• • • • • • • • • • • • • • • • • • • •		-
	3100	For mob/demob of micro-tunneling equip, see section 02441-400		{								
	3200	For mob/demob of pile driving equip, see section 02455-650		1								1
	3300	For mob/demob of caisson drilling equip, see 02465-950			ļ							
		310 Grading										
100	r 1	FINISH GRADING										1
	0012 0100	Finish grading area to be paved with grader, small area Large area	BIIL	400	.040	S.Y.		1.23	1.14	2.37	3.14	
	1100	Fine grade for slab on grade, machine	11	2,000	.008 .015			.25 .47	.23	.48	.63	
	1150	Hand grading	₽18	700	.015			.47	.44	.91	1.20	
						•			.03	.59	1.92	
	02:	315 Excavation and Fill										t
110		BACKFILL, GENERAL R02315										ī
	0015	By hand, no compaction, light soil	1 Clab		.571	L.C.Y.		15.25		15.25	23.50	
	0100	Heavy soil		11	.727	*		19.40		19.40	30	1
	0300	Compaction in 6" layers, hand tamp, add to above	¥.	20.60	.388	E.C.Y.		10.35		10.35	16.15	
	0400	Roller compaction operator walking, add Air tamp, add	B-10A B-90	100	.120			3.84	1.23	5.07	7.20	
	0600	Vibrating plate, add	A10	190 60	.211	┨┥		5.70	.93	6.63	9.95	_
	0800	Compaction in 12" layers, hand tamp, add to above	1 Clab		.133			3.56 6.30	.42	3.98	6	
	0900	Roller compaction operator walking, add	B-10A		.080			2.56	.82	6.30 3.38	9.80	. H
	1000	Air tamp, add	8-9	285	.140			3.80	.50	4.30	6.45	1
	1100	Vibrating plate, add	AIE	90	.089	•		2.37	.41	2.78	4.14	
	1300	endiana, end ap to 500 Madi, no compaction		1,200	<u> </u>	L.C.Y.		.32	.77	1.09	1.33	
	1400		B-11B	•	.200	E.C.Y.		6	2.30	8.30	11.70	1
уų.	1700		B-100 B-100		.015	_	ļ	.48	1.89	2.37	2.81	╞
	1900	encopercost roads	B100	[.016 .013	↓ L.C.Y.		.51	2.04	2.55	3.02	
	2000	Air tamped, add	B-11B		.200	E.C.Y.		.43	1.02 2.30	1.45 8.30	1.77	
,	2200	I AND A AND A A A A A A A A A A A A A A A	B100		.017			.55	2.16	2.71	11.70 3.20	
•	2300		B-100		.018	•		.59	2.35	2.94	3.49	•
. 2	2350		B-108	1,060	.011	L.C.Y.		.36	.87	1.23	1.50	
	- 4 P 1	BACKFUL, STRUCTURAL Dozer or F.E. loader										Ī.
74%)	2000 2020	Common earth	B-10L	1,100 975	.011	L.C.Y.		.35	.29	.64	.84	
5	2040	Clay	╋╌┼╴	850	.012 .014			.39	.32	.71	.96	
4 ti	~ <u>}</u> {2400	300' have sand & arment		370	.014			.45 1.04	.37 .85	.82 1.89	1.10	•
7.	2420 2440	Common earth	╋╋	330	.036	┠╼┼╌	<u> </u>	1.16	.05	2.11	2.52	_
- * * ş	300		Ţ∔	290	.041			1.32	1.09	2.41	3.20	
3	302	Land Martin, Sou mani, Sand & Blavel	B 10W	1	.009			.28	.34	.62	.80	
	13040			1,225	.010			.31	.37	.68	.89	
	330	300' have good 8		1,100				.35	.41	.76	.98	
() () () ()	332	Common earth	╉╌┤	465	.026	┞╌╞─		.83	.98	1.81	2.33	
5. J.	334			415	.029 .032		1	.93 1.04	1.09	2.02	2.61	
	400	200 H.P., 50' hauf, sand & gravel	B-108		.032	┢─┼─		.15	1.23	2.27	2.93	
	125.00	Common earth		2,200	1			.13	.37	.52 .59	.63 .73	
6.4		Rea -	• • •	4	<u> </u>	<u>. Т</u> .	J		.76		./3	1

	32 4200 150' haul, s				CREW 6	DAILY	LABOR			2	005 BAR	C.000	18 05	2
	Comme	and a gravel				595	HOURS		MAT.	LA	BOR	C 0031;	· · · ·	_
	Clay	· · · · · · · · · · · · · · · · · · ·		[1 1	595 516	.020	B.C.Y.			.65	EQUIP. 1.55	TOTAL	
N.	4400 300' haul, se	nd & gravel			_	325	.023 .037	-+-1			.74	1.55	1 -	2.20
<u>v</u>	4420 Common 4440 Ota	earth			1 1	310	.039				1.18	2.83	f	.52
SITE	Clav					270	.044	-+-+			1.24	2.97	1	.01
	5020 500 n.P., 50' hau	, sand & gravel			↓ 1	170	.071				1.42	3.41		21 83
Ö	5010 Lommon	earth		B-,	IOM 1,	900	.006	╺╁╺╂			2.26	5.40		56. 56.
CONSTRUCTION	Gay Gay				1,	650	.007				.20	.63		33
ž	5220 150' naul, san	d & gravel			1,(025	.012	┽┼			.23	.72	.9	- 1
ĉ	5240 Common e	earth			_		.013				.37	1.17	1.5	
3	5400 Clay				80		.015	++			.42	1.30	1.72	1
5	5400 300' haul, sand	& gravel			50		.024				48	1.49	1.97	
ž	5440 Common e	arth		-	47	'	026	$\uparrow \uparrow$		_	77	2.39	3.16	
k I	5500 460 H P 50/ hout			╌╂╌┼	410	_	029				82	2.54	3.36	\dagger
	5500 460 H.P., 50' haul, 5510 Common ea	and & gravel		♦ B-10	250		048	 - -			4	2.91	3.85	1
11	Clay	/m					206	LI		.2		4.78	6.32	F
.	5530 150' haut cond				1,68		07			.2		.79	.99	
	Comment	x gravej		╶╂╌┼╴	1,050		11		_	.3		.91	1.14	
	Clav				1,120					.30	1	1.45	1,82	
	5560 300' haul, sand 8	gravel		╶╂╼┼╴	700	0.01	- 1			.34	. (1.36	1.48	
	Common early	h			660	.01	1 1			.55	+	2.18	1.70	_
τŭ	Clav			++-	575	02]	.58	1	2.31	2.73	
- 12	nol , what, sar	d & gravet		14	350	.03			T	.67		2.65	2.89	
$\dot{\mathbf{c}}$	Common eart			8-10V	3,500	.003				1.10	1	4.35	3.32	
	Clay			1	3,035	.004	II (-	.11		.90	5.45	
	100 naul, sand & i	ravel			1,925	.006		+		.13	1	1.03	1.01	
, .	Common earth				2,025	.006				.20	1	.63	1.83	
60					1,750	.007	╊┼╌	 -		.19	1	.55	1.74	
60	n Suu naul, sand & g	ravel			1,100	.011				.22	1.	.79	2.01	
60	Common earth Clay					.012	Π			.35 .37		85	3.20	
	1					.013				43		05	3.42	
452 00	O EXCAVATION, BULK, SCRAPER				550	.022	+]			.70	3.4		3.92	
	LIEV. Schanger 11 o tr	Pravol 1E00.	R02315	╼╼╼┿╍	-+-						5.7	^{'U}	6.40	
015	3000' haul	graver 1500" hauf, 1/4 dozer	-400	B-33F (90	020				╺╼╼┼╸	_	╺-┦╼╼╼╼		
020	5000' haul					020	B.C.Y.			.66	1.62			
0350	Common earth, 1500	haul		1 1		28	+			.74	1.8		2.28	
0400	3000' haut			6		23	-+-+-			.90	2.21		2.57	
0500	5000' haut			53		26				.76	1.86		3.11	
0550	Clay, 1500' haul			44			┽╌┼╴			.86	2.11		2.97	
0600	3000' haul			37	5 .03					.03	2.54		3.57	
1000	5000' haul		- 11-	33	.04		┽╌┼╴			.21	2.98	1	1.19	7
1050	Self propelled scraper, 14 C.Y. I Sand and gravel 15000 h	/4 push dozer, sand		27:	.05	1	\downarrow			.37	3.39		76	
1100	Sand and gravel, 1500' hauf	-		- -		T	<u> </u>		- <u> </u>	65	4.07		.72	5 6
1200	5000' haul						C.Y.		.	19	T	_		
1300	Common earth, 1500' ha			805	.017		\square			19	2.01	the second se	50	2.
1350	3000' haui	UI	╺╼╼┼╂╾┽	645 800	.022			_		1	2.30		86	3.
1400	5000' haul		- 11	700	.017				.5		2.87	3.9		4.2
1500	Clay, 1500' haul			560	.020 .025	┢╷┤			.6		2.31	2.8	ſ	3.4
1550	3000' haul		_	500	.025				.81	-	3.31	3.2		3.8
1600 2000	50001 haul			440	.028	┢┼┤		· · · · · · · · · · · · · · · · · · ·	.91	1	3.70	4.1		4.8
2000	21 C.Y., 1/4 push dozer, sand 3000' have	Pravel 1500	↓	350	.032		1		1.03		4.21	4.6	-f	5.4
	3000' hauf	- 6. uvci, 1000' (Jal)	B-33E		.012	┝┼			1.30	1	5.30	5.24		6.2(
			<u>+</u> ++	910	.015		1		.38		2.22	6.60	· · · · · · · · · · · · · · · · · · ·	7.75
18					_		_L		.50		107			3.02
	Important: Se	the Reference Sect										5.57	L3	<u>.92</u>
		noterence Sect	ion for a	ritical .										

462 9030 9040	for streeting or soldier beams/lagging, see 02250 & 02	260 -	<u> </u>	iew jour	PUT HOUR	s unt -	MAT.	2005 B/	RE COSTS		
	Perspench excavation of strip footings, see div. 02315.6	200 R0231 10 -400	5					ABOR	EQUIP.	TOTAL	
0012	The second of UUTUW, INDEA Cubic yeards		╡┣-								
0020	no loading included, highway haulers	R0231 -400	5				•			╺┽╾╾╴╵	7 of
S 0030 0040	6 C.Y. dump truck, 1/4 mile round trip, 5.0 loads/hr. 1/2 mile round trip, 4.1 loads/hr.		B 3	4A 19	5 .041						•
0040	1 mile round trip, 3.3 loads/hr.		11	16	1	L.C.Y		1.13	1.68	3 2.81	
0100	2 mile round trip, 2.6 loads/hr.		╢┤	130		┠╼┼╌┼╌╸		1.38	2.04	1 6.01	
0150	3 mile round trip, 2.1 loads/hr.			100				.1.70	2.51	4.21	
0200	4 mile round trin 1.8 loads An			80	.100	┝╼┾╼┾╼╼		2.20	3.27		
0310 0320	12 C.Y. dump truck, 1/4 mile round trip 3.7 lands 4		L t	70	.114			2.76	4.08	6.84	†
0100 0150 0200 0310 0320 0330 0400 0450	ve nue round the 12 hads by		B 34	1	.028			3.15	4.67	7.82	
0400	1 mile round trip 2.7, loads/hr		┨╌┼╴	250	.032			.88	1.66	2.43	
0450	2 mile round trip, 2.2 loads/hr.			210	.038			1.05	1.91 2.27	2.79	
0500			┢┼╌	180 170	.044			1.22	2.65	3.32	
0540	4 mile round trip, 1.6 loads/hr.			125	.047			1.30	2.80	3.87	
0550	5 mile round trip, 1 load/hr. 10 mile round trip, 0.60 load/hr.	fi	┡┼╴	78	.064 103	+-+		1.76	3.81	4.10	Ţ
0550 0560 0600 1000 1100 1110 1120 1130 1150	20 mile round trin. 0.4 load for	[]		58	.138			.83	6.10	5.57 8.93	
0600	16.5 C.Y. dump trailer, 1 mile round trip, 2.6 loads/hr.			39	.205	+		.80	8.20	12	11
0700			B-34C	280	.029			.65	12.20	17.85	14 22
	3 mile round trip. 1.8 loads Ar	П		225	.036	┟╴┽╌╌┈		.79	1.45	2.24	22
3 1100 1110	4 mile round trip, 1.6 loads dy			193	.041		1 .	98	1.80	2.78	3.
1120	S mile round trip.] load by		$ \top$	172	.047	┟╌┼╌╌╴		14	2.10	3.24	4,
1130	10 mile round trip, .60 load/hr			and the second se	.074		1.		2.35	3.63	4.
1150	20 mile round trin A load Ar	- 11		_ 1	.100		2.1		3.75	5:79	7.
1200	20 C.Y. dump trailer, 1 mile round trip, 2.5 loads/hr.		¥ +34D		.148		4.0		5.05	7.81	9.7
1220	L mac round on 2 loade/hr	 °	1		025		.6		7.50	11.58	14.4
1240	3 mile round trip, 1.7 loads/hr.		· · · · · · · · · · · · · · · · · · ·		031		.8.		1.28	1.96	2.4
1245	4 mile round trip, 1.5 loads/hr.	- 11			036		1	+	1.89	2.46	3.0
1250	5 mile round trip, 1.1 load/hr. 10 mile round trip, .75 load/hr.		+		241 156		1.13		2.14	2.89	3.60
1255	20 mile round frin 5 load fre	_ 11			73		1.54	1	2.92	3.27	4.0
1300 Ha	wig in medium traffic, add				03	+	2		3.80	5.80	5.55
1400	Heavy traffic, add				C.Y.	1	2.83		5.35	8.18	10.20
1600 Gra 1800 Spr	ding at dump, or embankment if required, by dozer				- -					20%	20%
Tout Spc	tter at fill or cut, if required	B1		00 .00	2 L.C.Y.		20			30%	30%
10 0010 FILL BY	Poppon	10	able		Hr.	<u> </u>	.38		.92	1.30	1.59
0020	BORROW, load, 1 mile haul, spread with dozer for embankments	╼╼╂╼╸					20.50			26.50	41.50
0100 Sele	t fill for shoulders & embankments	B-1	5 1,20	n							
			1,20			6	.69	1	56	. .	
20 0010 FILL, spr	auling over 1 mile, add to above per C.Y., see div 02315-490 ead dumped material, no compaction)	1 - ,			7.9	0 .69	-	56	8.25 10.15	9.35
	Zer, no compaction		+	+	Mile		<u> </u>			.69	11.40
10100 E	y hand	B-108		0 .012	L.C.Y.						.92
0500 Grave 0600	fill, compacted, under floor slabs, 4" deep	1 Clab		667			.38		12	1.30	1 50
0700	o weep	B-37	10,00		S.F.	.16	17.80		1		1.59 27.50
0800	9° deep		8,600		1+	.10		.0	1	.30	.39
	12" deep		7,200	· ·		.24 .39		.0		.41	.51
1100 Auterna	te pricing method, 4" deep		6,000		T T	.55	.19	.0.	_ 1	.59	.74
1200	6° deep 9° deep	╺╂┼┤	120	.400	E.C.Y.	11.80	11.25	.02	.f	.79	.98
1300	12" deep		160 200	.300		11.80	8.45	.90	÷		1.50
1500 For fill u		╶╂╁┤	200 220	.240	-+	11.80	6.75	.0/ .54	-	0.92 2	
	an inchion of continuous footing		54U	.218	*	11.80	6.15	.54		9.09 24 3.44 23	
0020 No shee	ing or dewatering included	++							1 10	3.44 23	·
						T					

- -

Important: See the Reference Section for critical supporting data - Reference Nos., Grews, & City Cost Indexes

,

8	4	7	228	75
-	-	•		

UDYGL

	02	360	Soil Treatment				LABOR-			2005 BA	RE COSTS		TOTAL	-
200	0100		Commercial, minimum		CREW		HOURS		MAT.	LABOR	EOURP.	TOTAL	INCL O&P	
μ	0200		Maximum		1 Slovk	1	.003	SF Fir.	.30	.11		.41	.50	20
	0400	Inco				1,645	.005	. ↓	.45	.17		.62	.30	1
-	0400	IIISEI	cticides for termite control, minimum Maximum			14.20	.563	Gal.	11.60	19.65		31.25	43.50	
					¥	11	.727		19.85	25.50		45.35	. 61.50	
	02	370	Erosion & Sedimentation Co	ntrol										╋
450	0010	RIP-RAP	8. ROCK LINING, Random, broken stone			┢╼┯╼								ľ
i 1	0100	Mac	hine placed for slope protection		B-12G	62	.258	L.C.Y.	25					45(
	0110		3/8 to 1/4 C.Y. pieces, grouted		B-13	80	.700	S.Y.	25 36.50	8.10	8.75	41.85	49.50	
	0200		18" minimum thickness, not grouted		•	53	1.057	J.1.		20	7.70	64.20	79.50	ľ
	0300		nped, 50 lb. average		BIIA	800	.020	Ton	15.55	30.50	11.65	57.70	77	
7	0350		100 lb. average		1	700	.023		17.90	.61	1.15	19.66	22	
į	0370		300 lb. average		\pm	600	.023		25.50	.70	1.31	27.51	30.50	1
うけん	0400		ions, galvanized steel mesh mats or boxes, stone fille	ed 6" deen	▼ B13	200	.027	*	30	.82	1.53	32.35	36	1
R	0500		9" deep	a, o ucep		163	.200	<u>S.Y.</u>	16.90	8.05	3.08	28.03	34.50	
à.	0600	1	12" deep			1 i			26	9.90	3.78	39.68	48	
Ľ.	0700		18" deep		<u> </u>	153	.366		27.50	10.55	4.03	42.08	50.50	
Ĩ	0800		36* deep			102	.549		35	15.80	6.05	56.85	69.50	1
靓	0010	SYNTHE	TIC EROSION CONTROL		<u> </u>	60	.933		59.50	27	10.30	96.80	118	l
NSI-	0020		mesh, 100 SY per roll, 4' wide, stapled		B-80A	2 400								700
	0100	Plas	tic netting, stapled, 2" x 1" mesh, 20 mil		-	2,400	.010	S.Y.	.69	27	.07	1.03	1.26	ſ
蘯	0200	Poly	propylene mesh, stapled, 6.5 oz./S.Y.		B-1	2,500	.010		.63	.26		.89	1.10	1
	0300	Toha	acco netting, or jute mesh #2, stapled			2,500	.010		1.30	.26	i	1.56	1.84	ľ
1	1000		tence, polypropylene, 3' high, ideal conditions	ĺ	*	2,500	.010	•	.07	.26		.33	.49	
	1100	1	Adverse conditions		2 Clab	1,600	.010	LF.	.32	.27		.59	.77	
	1200		e and remove hay bales			950	.017		.32	.45		.77	1.05	
1	1250		bales, staked		A-2	3	8	Ton	52	214	43	309	435	├ ─
ŵ.	ŀ		Suco, Juncu		•	2,500	.010	L.F.	2.08	.26	.05	2.39	2.75	
5. T. S.	0	2390	Shore Protect/Mooring Struc	tures										┡
į.	0 0010) JETTIES	, DOCKS Floating, recreational, prefabricated galvani	rad staal with										
쎹	0020		polyethylene encased polystyrene, no pilings included	arra sieci milii	F-3	220	1.01							340
1	020) Pile	supported, shore constructed, bare, 3" decking	<u> </u>	1.3	330	.121.	S.F.	27	4.19	1.83	33.02	38	
	0250	3	4" decking			130	.308		18.45	10.65	4.64	33.74	42	
	040	D Floa	ting, small boat, prefab, no shore facilities, minimum			120	.333		17.80	11.55	5	34.35	43	
	050	0	Maximum	ľ		250	.160		9.10	5.55	2.41	17.06	21	
	070	0	Per slip, minimum (180 S.F. each)			150	.267	_ +	31	9.20	4.02	44.22	52.50	
	080	-1	Maximum			1	25.157	Ea.	1,950	870	380	3,200	3,925	
8- E -						1.40	28.571		5,800				1.763	

7.9 11.4 850 14.9

305 į

09400

BEST AVAILABLE COPY

TUnneling, Boring & J	ackin	g								
02441 Microtunneling		•	LABOR-			2005 BA	RE COSTS	· · ·	TOTAL	
CO DODI MICROTUNNE INC Not under the second	CREW	OUTPUT	HOURS	UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCLORP	ľ
100 DOIN MCROTURNELING Not including excavation, backfill, shoring, 1020 or dewatering, average 50'/day, shirry method										400
Fight Mail 1965				L.F.					640	
the includence machine manthe			<u> </u>	% Month		<u> </u>			50%	ł
Tring Was operating technician				Day					85,500	
the use demobilization, minimum			·	Job			·		640 42,800	l
A A A A A A A A A A A A A A A A A A A				•					430,000	l

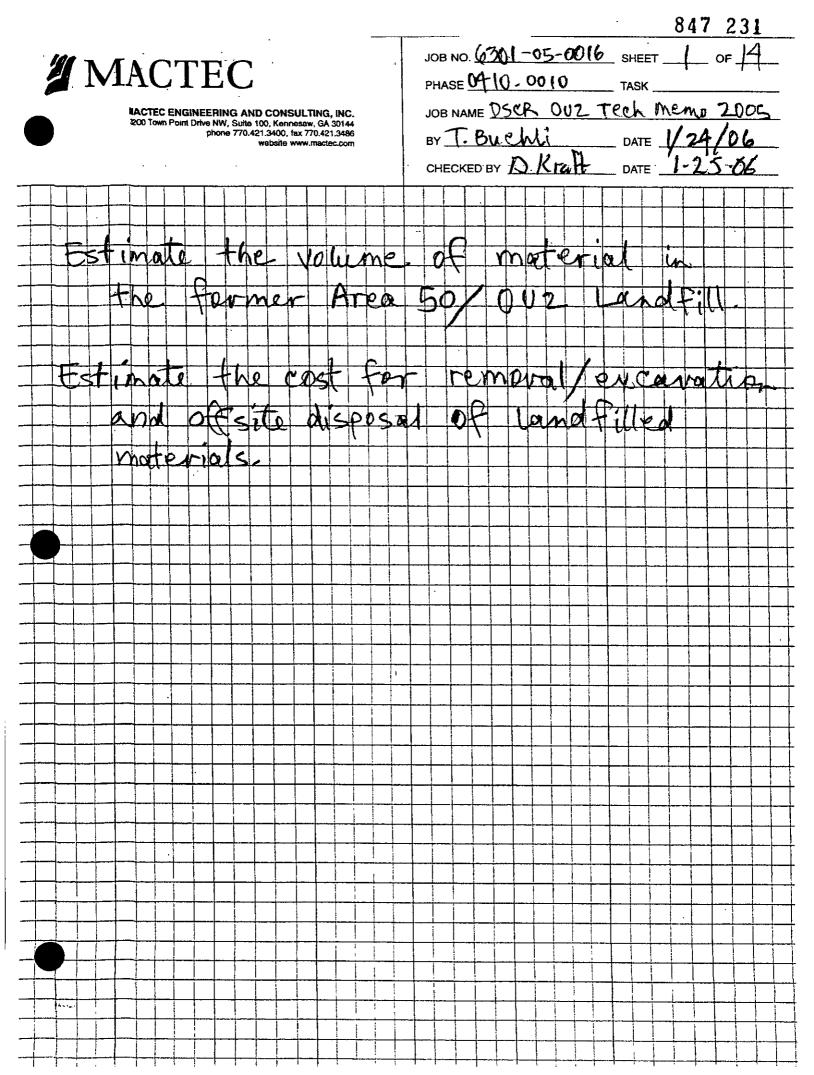
^{tovorage} of these items see Means Heavy Construction Cost Data 2005

	02	630 Storm Drainage		111-7										7 22	21 0
	400 0050	Prist de la constance de la co			- 1		DAILY	LABO	R-	1		2005			
	0100	Brick, 4' inside diameter, 4' deep				CREW		HOUR	s unt	M	TT I	ABOR	RE COSTS		- 4
4.1	0150	6' deep	The second	a series	-	D-1	1	16	Ea.	_	320	495	EQUIP.	TOTAL	
	0200	8' deep	- U =	1	4	+	.70	22.85	7	1		- ,		815	
	0400	For depths over 8', add	1 =	1	- 1		.50	32	++-			710		1,155	
<u>n</u> '	0500	Concrete blocks (radial), 4' I.D., 4' deep			+	+1	4	4	V.L.F.			995		1,560	
	0600	o deep	- <u> </u>	<u> </u>	_1		1.50	10.667	Ea,	2		124		298	
Š.	0700	8' deep		<u>.</u>	-		_1	16	ĒĒ	33	! '	330		585	
Ö	0800	For depths over 8', add				1 T	.70	22.857	┠─╁─┤	41		195		830	
ž	0900	concrete, cast in place, 4' x 4', 8" thick, 4' deep					5.50	2.909	V.L.F.			10	,	1,125	
- H	1000				CI	IAH	2	24	Ea.	44		90.50	_	132	1,523
SITE CONSTRUCTION	1100	8' deep					1.50	32	Ī	650	. I °.	10	12	1,267	
5	1110	For depths over 8', add				T	1	48		_	1,0/	-	16	1,741	-,1505
걸	1120	Precast, 4' I.D., 4' deep	Same Stor	(TP-7-m			8	6	VLF.	920	-,02		24	2,569	- 2,500
2	1130	6' deep	P	h.	B2	2 4	.10 7	7.317	Ea.	107			3	312	3,57
	1140	8' deep			\square		3	10	īΙ	675			58	962	
	1150	For depths over 8', add			Π		_	15	- <u>+</u> -+-	870			79.50	1,264.50	1,175
СОРУ	1150	5' I.D., 4' deep	م و بر ب	<u> </u>	L↓	1		1	L.F.	1,025	470		119	1,614	
	1170	6' deep			B 6			_	Ea,	143		1.50	14.85	216.35	1,975
		8' deep				2		12		720	231		72	1,023	264
>-	1180	For depths over 8', add				1.5	_	2	+-+	970	345		108	1,423	1,225
۵.	1190	o' I.U., 4' deep				1 12			♦ L.F.	1,225	460		144	1,423	1,725
0	1200	6' deep				2			a.	159	57.	50	18	234.50	2,225,5
S	1210	8' deep		_		1.50			Î I	1,175	345		108	1,628	283
	1220	For depths over 8', add				1	24	ſ		1,525	-460		144	2,129	1,950
	1250	Slab tops, precast, 8" thick				8	3			1,875	690	_	216		2,550
	1300	4' diameter manhole				<u> </u>	+	V.L	J.	246	86.5	- 1	27	2,781	3,375
	1400	5' diameter manhole		1	B-6	8	3	1				+	~	359.50	435 %
ļ	1500	6' diameter manhole			-1-+	7.50	3.20	Ea	·	165	86.50		27		
	3800 S	teps, heavyweight cast iron, 7" x 9"			11	7	3.429			325	92		29	278.50	345
		8* x 9*		i	Bric	40	.200		_	405	99	1		446	535 🖉
	3928	12* x 101/2*			11	40	.200			12.20	7.05	<u>├`</u>		535	630
	4000	Standard sizes, galvanized steel			$\uparrow \uparrow$	40	200	╉╌┼╴	-	18.35	7.05			19.25	24
ľ	4100	Aluminum				40	.200			16.40	7.05	<u> </u>		25.40	31 (1
510 Q						40	.200	┠─┼─		15.30	7.05			23.45	29
510 0	010 PIPING	STORM DRAINAGE, CORRUGATED METAL			*		.200	*		18.90	7.05			22.35	27.50
0				-	-+-	+		 	+					25.95	32
		ugated metal pine gahranized on t							1	T			╺╼┾╼╼╼		32
	020	Contraction Codied with naver many on the		1-					 			•			5 4 5 5
	40									T		_			
	60	10" diameter, 16 ga	/	8-1-	4 3	30 +	145								
20		12" diameter, 16 ga	11	11	26	.	185			8.95	4.09	.6	5	12.00	/ ·
21(15* diameter, 16 ga	WP	1+	21		229			0.75	5.20	.8	_	13.69	16.85
212		16" diameter, 16 pa		11	20		240			2.85	6.40	1.0		16.78	20.50
214		24° diameter, 14 ga		† +	19		253	+-+		5.65	6.75	1.08		20.28	25
216		30 diameter, 14 ga	CN	10077			003 (A		20		7.10	1.14		3.48	29
218		36° diameter, 12 ga		813	120	110 10 10	2. 14 PM				50.5 L			8.24	34.50
2200		48" diameter, 12 ga.	_	1 ï	120		67		32,	50	13.45	5.15	110.620		
2220		60" diameter, 10 ga.		╞╁╴	100		•	↓_L	47.	50	13.45	5.15 5.15		.10	61.50
2240		72" diameter 8 ga		B-13B	75				72.	50	16.10	6.15		5.10	78.50
2500		zed, uncoated, 20' lengths			45	.74		\square	93.5		21.50		•	.75 1	11
2520	1	8° diameter, 16 ga.	- 1		40	1.24	4	• [140	_	36	11.95	126		49
2540		10° diameter, 16 ga.		8-14	355	+	_		_			19.90	195.	90 2.	31
2560		12° diameter, 16 ga.	- 1	11		.13		F.	6,9	0	3.80				-
2580		15° diameter, 16 ga.			280	,171			7.6(. (4.82	.61	11.	31 1	4.10
2600		18" diameter, 16 ga.	ł		220	.218		T	8.65		6.15	.77	13,1	9 1	6.65
2620		24 ^e diameter, 14 ga.		+-+	220 205	.218 .234		1	11		6.15	.98	15.7	8 2	
		- voineter is as		1 1	onell							.98	18.1		· .

66

Important: See the Reference Section for critical supporting data - Reference Nos., Grews, & City Cost Indexes

36.50


histi Track

	12	Planting Shrub and Tree Transplanting		- T-									30 <u>~</u> ~		
				G		ly ilab Put hoi		UNIT			ARE COSTS		TOTAL	T	•
010	GROUNI	D COVER Plants, pachysandra, in prepared beds		ΤB		_	_	C	MAT.	LABOR	EQUIP.	TOTAL	INCL OFP		_
00		Vinca minor, 1 yr, bare root						•	25	44		69	95.5	i0 200	i –
500	Ston	e chips, in 50 lb. bags, Georgia marble			52	· · · · ·		Bag	20	54.50	_1	80.	50 114		
700		Onyx gemstone			26			0ag	1	1		3.0		6	
800		Quartz			26			- <u> </u> -	17 6.35	2.53		19.5			
900		Pea gravel, truckload lots			28			ton ⊤			1	8.8	8 10.9	5	ą
029	20	Lawns & Grasses		+					24.50	23.50		48	63.5	0	2
0101	SEEDING	G, GENERAL		+-											CONSTRUCTION
020		nanical seeding, 215 lb./acre	R02920 -500										- 	310	E
100		44 b./M.S.Y.		B6				Acre	510	176	115	801	955	310	
300		grading and seeding incl. lime, fertilizer & seed,		ľ 1	2,50	0 0.00	3	S.Y.	.15	.11	.0			-	- 7
310		with equipment											<u>ب</u> ب ا	+	-2
600		stone hand push spreader, 50 lbs. per M.S.F.		B-1			· •	S.Y	.16	1.35	.22	2 1.7	2 253	-	6
800	Grae	seed hand push spreader, 4.5 lbs. per M.S.F.		10				M.S.F.	3.38		1	4.57			
200	- Hardin	O of air speding for large areas but the second		1	180	.04	4	•	16.65	1.19		4.5		4	SITE
100	inyult	o or air seeding for large areas, incl. seed and fertilizer Vith wood fiber mulch added		B -8	1 8,90	0 .00:	3	S.Y.	.15	.08	.05				Ĵ
300			1	1	8,90	0.00	3		.27	.08	.05				
_	Seed	only, over 100 lbs., field seed, minimum		1	1		1	Lb.	1.10	.00	00	1		1	
400		Maximum	[1			+-	╤╉	3.68	┝───-		1.10			
500	L	awn seed, minimum		1	1		Ì		1.71			3.68		I I	
500		Maxmum		1	1-	+	┾	╆┼	4.47		·	1.71			
B00	Aerial	operations, seeding only, field seed		B-58	50	.480		♥ Vore	4.47 360	10.00		4.47	4.92	1	
900		Lawn seed			50	480				13.85	47.50			1	
100	\$	eed and liquid fertilizer, field seed			50	480			555	13.85	47.50	616.35	685	1	
200		Lawn seed	<u>+</u>	╞╁	50	.480		╅╼╉╴	430	13.85	47.50	491.35	545	1	
			V	1 1	30	1.400		¥	625	13.85	47.50	686.35	765	ŧ .	
	ODDING				+	┿┈╍	╇╴								
020	Soddi	ng, 1" deep, bluegrass sod, on level ground, over 8 MS	F	B-63	22	1 010	1			T				400	
P _		4 M.S.F.			17	1.818	_	.S.F.	217	51	7	275	325		
.00		1000 S.F.			13.50	2.353			243	66	9.05	318,05	380		
500		Sloped ground, over 8 M.S.F.		┝╌╂╸			+-	+	265	83	11.40	359.40	430		
600		4 M.S.F.			6	6.667			217	186	25,50	428.50	555		
700		1000 S.F.			5	8	┣	\vdash	243	224	30.50	497.50	645		
000	B	ant grass sod, on level ground, over 6 M.S.F.			4	10			265	280	38.50	583.50	765		
mo		3 M.S.F.		_	20	2			485	56	7.70	548.70	630		
200 :	-	Sodding 1000 S.F. or less	ļ		18	2.222			540	62	8.55	610.55	700		
500		Sloped ground, over 6 M.S.F.			14	2.857	L		615	80	10.95	705.95	815		
600 (;	٠,	3 M.S.F.	1		15	2.667	\square		485	74.50	10.25	569.75	660		
700		1000 S.F.			13.50	2.963			540	83	11.40	534.40	t i i i i i i i i i i i i i i i i i i i		
	· ^ ,			♦	12	3.333			615	93	12.80	720.80	735		
029					·		'				12.00	120.00	840		
1.365		Exterior Plants	T							╺━━╌━┼╍				وهباكن	
設設	RAVEL K	all nursery items, for 10 to 20 miles, add 50 miles, add ND TREES Evenues		_			L								
114 B	- 30 to	50 miles, add					A					╾╾╴┤	5%	050	
	NRUBS A	30 miles, add ND TREES Evergreen, in prepared beds, B & B Are ovramidal 4.57					•			_	1		10%		
and the	Abory	tae pyramidal, 4'.5'	ĺ									┉┈╌┼		10	
				B-17	30	1.067	Ea.		42.50	30.50	18.10	91.10		310	
				B -1	96	.250	T		10.85	6.85		17.70	113		
				B-17	18	1.778			179	50.50	30	259.50	22.50		
	SHory S		l l	B1	36	.667		-+	22.50	18.25	-~-+-		310		
	Humper	avannah, 8' - 10' H , andorra, 18"-24" Ioni; 15"-18"			9.68	2.479			515	68		40.75	53.50		
340	S Second	no: 10: 24			80	.300			15.60	8.20		583	675		
÷-([642+A111	eeut 13-18e					1	- F		0.20	1	23.80	30		
÷-1[-,	en Aller Aller	Viocket 4.1/2/5/		↓	80 [.300			14.80	8 m l	.				
÷-([Win, 15-18*		¥ 17	<u>80</u> 55	_		+	14.80	8.20		23	29		
÷-1[,	as ake	www.13-18* ***********************************		¥ 3-17 B-1		.582		+-	47	16.60	9.85	23 73.45			
÷-([torit; 15-18- vocket, 4-1/2'-5- e pfitzer, 2'-2-1/2'- tieene; 2-1/2'-3- ack, 2-1/2'-3-			55	_		+			9.85	23	29		

rage of these items see Means Site Work and Landscape Cost Data 2005

85

BEST AVAILABLE COPY

Order of Magnitude Cost Estimate

Excavation and Off-Site Disposal of Landfilled Materials

DSCR OU 2 Technical Memorandum 2005

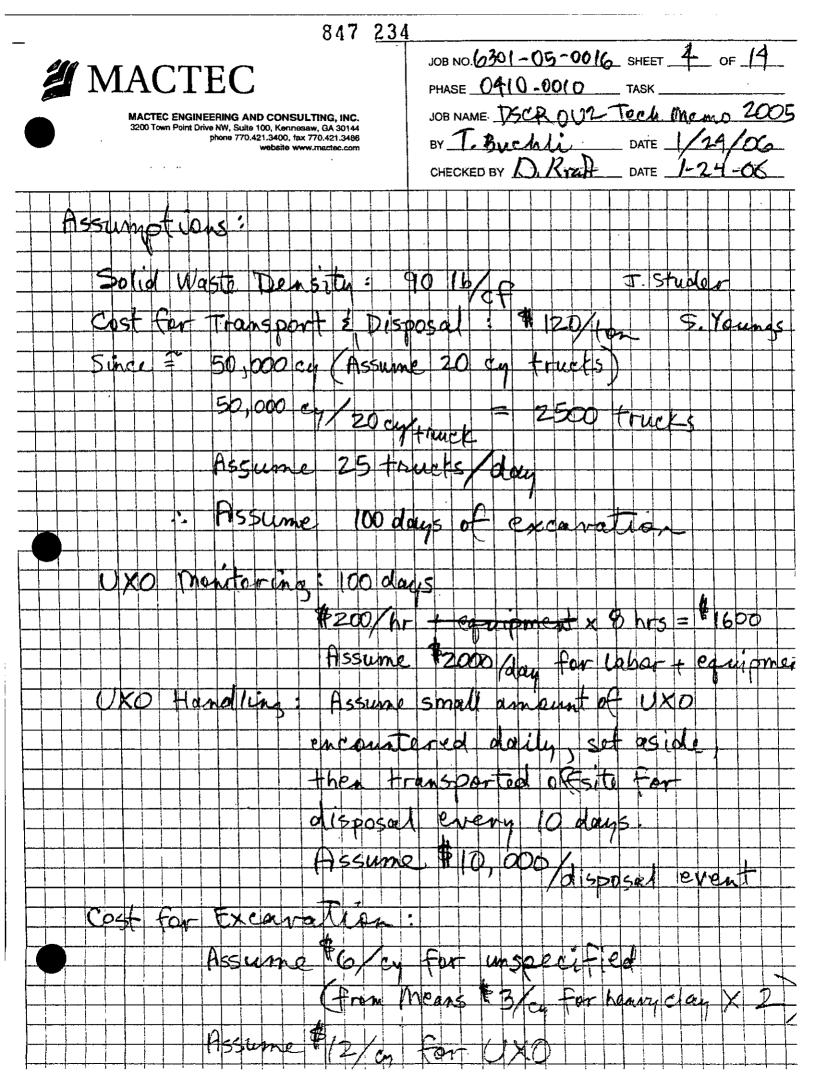
.

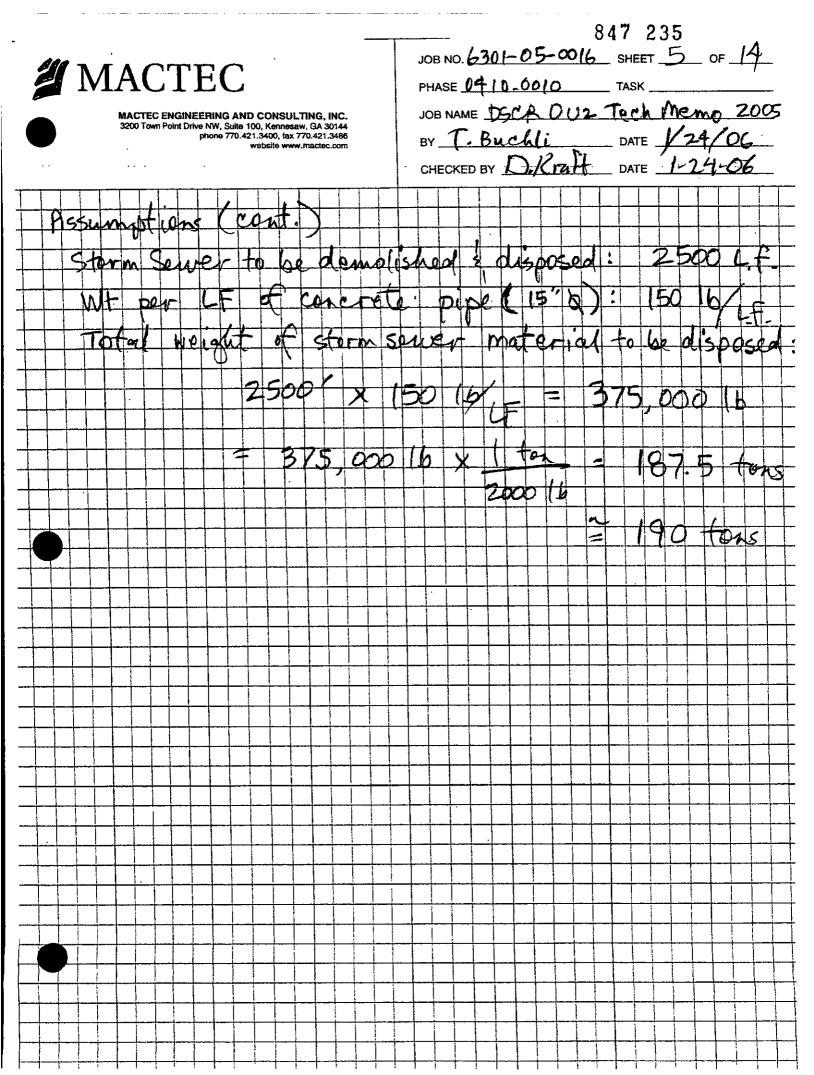
Cost Estimate Prepared at client's request. Not considered a feasible alternative due to UXO risks.

Description	Estimated Quantity	Units	Unit Cost	Subtotal Costs	Total Item Cost	
Aob, Demob, Clearing & Grubbing, etc.					\$112,320	
Acbilization and Demobilization	LS	1	\$20,000.00	\$20,000		
Strip and clear grass, light brush, and deleterious materials	CY	3388	\$7.65	\$25,918		
Dispose cleared materials off site	CY	3388	\$18.00	\$60,984		
Silt Fence - Type C	LF	2,580	\$2.10	\$5,418		
Excavation (assume avg depth 6' over 5.5 acres)					\$424,000	
Unspecified waste	1 L.S. \$100,000.00 \$100,0 ransport & Disposal			\$324,000		
Dewatering	. 1	L.S.	\$100,000.00	\$100,000		
UXO Monitoring, Excavation, Transport & Disposal					\$300,000	
Monitoring (assume 50,000 cy in 20 cy trucks, 25 trucks/da	100	davs	\$2,000.00	\$200,000		
UXO Excavation, transport & disposal				\$100,000		
			1			
Transport and Dispose			1		\$7,920,000	
Unspecified Material	66,000	lons	\$120.00	\$7,920,000	· · · · · · · · · · · · · · · · · · ·	
					<u>¢4 050 00</u>	
Backfill (assume clean soil fill) Load and Transport from Off-Site Source	60.000	<u> </u>	£12.00	#720.000	\$1,050,00	
Place Backfill Material						
Compact Backfill Material					<u> </u>	
	00,000	<u> </u>	\$3.50	\$210,000		
Demolish Existing Storm Sewer					\$45,30	
Excavate	2,500	L.F.		\$22,500		
Transport & Dispose	190	tons	\$120.00	\$22,800		
Seeding and Mulching					\$20,00	
Seeding (hydroseed, mulch and fertilizer)	10.0	Acres	\$2,000	\$20,000		
Health and Safety Pian					\$5,00	
Health and Safety Plan	1	LS	\$5,000	\$5,000		
		Т	otal Direct Co	sts	\$9,876,62	
Indirect Costs						
Design/Construction Support	10%				\$987,66	
Construction Management	10%				\$987,66	
Contractor Overhead	3%				\$296,29	
Health & Safety Monitoring	3%				\$296,29	
Permitting	5%		\$493,83 \$3,061,75			
	Total Indirect Costs					
		т	otal Capital Co	\$12,938,37		
O&M Costs (assume 5 yr review)	·					
5 Year Review Report	LS			\$5,000		
Report Review/Meetings	LS			\$5,000		
ODCs	LS			\$2,000		
Inspections	LS			\$5,000		
Cover and Fence Repairs	LS			\$2,000		
Mowing	LS			\$2,000		
	LS			\$5,000		
Legal Services			Tatal CORP. C	***		
Legal Services			Total O&M Co	sts	\$26,0	

Prepared by THB 01/24/06 Checked by, DK 01/24/06

847 232


MACTEC Project Number 6301



ber: 6301-05-0016 January 24, 2006

---- -

·	847 233
	JOB NO. (0301-05-0016 SHEET 3 OF 14
MACTEC	PHASE 0410.0010 TASK
MACTEC ENGINEERING AND CONSULTING. INC.	JOB NAME DECK OU2 Tech Meno. 2005
3200 Town Point Drive NW, Suite 100, Kennessw, GA 30144 phone 770.421.3400, fax 770.421.3486 website www.mactec.com	BY T. Buchli DATE 1/24/06
•• • • •	CHECKED BY D.KrzH DATE 1-24-06
Estimate the volume of mat	erial deposited in the
Farmer Area, 50 Landfil	. The purpose is to
prepare à rough cost est	imate for complete excavation
hind off-site disposed of	all landfilled materials.
Client requested this info	to show that costs for
removal are propilitive	even if UXO risks did not
RXIST.	
Grent Depth & Extent of	
Given: Depth & Extent o	f waste materials shown on
Fig 1+2 1-16	E 1-17 From QU2 FES.
Find: Volume of waste	
Area : 1050 × 2-30 =	271 500 m From Fig 1-2
Depth: Assumed and dep	th = 6 From Fig 1-17
Volume: 241,500 so. Ft x	6 = 1,449,000 cu ft.
, 149,000	x = 53.667 ey
	2/ df
	= 54 000 cy.
	-57,000 cy.
Assumed Density of Weste:	9016/200
Convert volume to t	245 54,000 cy x 27 cf 9016 1 f

				847 2.	36 (e of 14
•			`. Z		
	CONCRETE PIPE DESIGN MANUAL	GARY CONCRETE PRODUCTS, INC. P. O. BOX 4600 AUGUSTA, GEORGIA 30907	AMERICAN CONCRETE PIPE ASSOCIATION 8320 Old Courthouse Road Vienna, Virginia 22180 \$22.50		
<u><u></u></u>	ماه می از این از می از می از مراجع می از م مراجع می از می		engenight is a finisher en en	wal oʻri qatiyy ta'la	

		<u>.</u>	4	B	I		
	112	103	244	127	L	I	
<u> </u>		121	242	168	1	1	
29 29	N					 I	
21	214	171 -	¥.	412	1		
40	24	217	m	264	N.	205	
* !		155	776	322	7	420	
2/	1,1				414	A76	
ß	2%	295	545	<u>ب</u>			
5	2 74	336	140	451	4 2	700	
		183	4	524	4%	654	
e 5	n i	3 2		202	RU.	811	
42	31/2	070	54	000	5	1101	
	P	683	ຽ	867	24	TINI	
21	A16	REA	51%	1068	. 6¼	1208	
<u></u>	24 +	5	•	2005	63	1473	
09	ŝ	1064	¢		5	1126	
, y	51%	1287	612	1542	4	100/1	
3 8		1517	~	1811	1%	G102	
2/	D			0010	RV.	2410	
78	612	1/A/	<u>.</u>			0000	
B.d	7	2085	æ	2409	NH R	7007	
5 8	714	2395	814	2740	% 6	3020	
21	, 'r		0	1000	766	3355	
36	æ	11/2	n (101	3760	
102	815	3078	246	3480	140	3	
a C t	Ð	3446	10	3865	101	4160	
2	•	and a second second	Tomation of the second	Tenene and Ground Island	t		
		L IO SATIC AREA	anstron and				
		Internal		Well	₽ _	Approximate	
		Diameter		Thickness	liam Meil	Weight pounds	
inches		Feet		Inches	-	per foot	
		510		546	-	3840	
+ + +						4263	
170							
126		1072	-	10%2		0604	
132		11		=		5148	
138		9411.		11%	-	5627	
771		17		12		6126	
		1214		1714		6647	
		2 4 4			•	100	
156		<u>.</u>		2			
162		1314		131/2		46//	
168		14		14		8339	
174	<u>.</u>	1415		141/2	-	8945	
			•••	ň		9572	
		2		2			
These tables ar	e based on	concrete weighin	ig 150 poun	these tables are based on concrete weighing 150 pounds per cubic foot and will vary with heavier or	and will vary	with heavier or	
lighter weight concrete.	oncrete.						
		and attack	h midth	ia manalla ea	and fo	r HF nine	
condition,	since a	greater ucuc	יז אוחווו ז	condition, since a greater utitic within is usually require the very	duireu ro		
For shallov	W COVET	shallow cover, where live load	e load I	requirements control the	control	the acsign,	
Inadino is a	Imost id	entical to the	at for an	heading is almost identical to that for an equivalent size circular pipe with	ize circula	ar pipe with	
TURUING TO P			;				

For shallow cover, where loading is almost identical to

のため、新聞のな影響や

.≌ Vertical Elliptical (VE) Pipe. Vertical elliptical concrete pipe the same invert elevation.

BEST AVAILABLE COPY

7 of 14

الم المال معما الم

CARLEN MARKED

-												
oipe is	or mini- existing for the ater-way n greater llent size ve lateral n loadings ne trench		i i		Weight,	per foot	5	36	8	8	1 20	
al anorete	Horizontal Eliptical (HE) Pipe. Horizontal enpured control mini- installed with the major axis horizontal and is extensively used for mini- mum cover conditions or where vertical clearance is limited by existing mum cover conditions or where vertical clearance is limited by existing structures. It offers the hydraulic advantage of greater capacity for the structures. It offers the hydraulic advantage of greater capacity for the area. Under most other structures of equivalent water-way area. Under most embankment conditions, its wide span results in greater area. Under most embankment conditions, its wide span results in greater earth loadings for the same height of cover than for the equivalent size circular pipe and, at the same time, there is a reduction in effective lateral circular pipe and, at the same time, there is a reduction in effective lateral support due to the smaller vertical dimension of the section. Earth loadings support due to the smaller vertical dimension of the section in the trench are normally greater than for the equivalent circular pipe in the trench	oximate		CLASS 3	Minimum Wall	Thickness, Inches	%		2	741	24 24	2 14
11	tan currur is extensi e and great ts wide spi r than for a reduction n of the set	and Apprete Pipe	ert Pipe. Bell	CLASS 2	Approx.	spunod	1	2 8	5	4 2 88	100	Ga f
	 Horizon Horizon contal and vertical clu vertical clu ther struct ther struct ther struct there is there is there is there is 	5.2 — Dimensions and Ar Weights of Concrete Pipe	wer and Culv	CLA	Minimum	Thickness.	Inclus	* *	*	,	F #	ı
	(HE) Pipe or where is hydraulic an most o inkment cc same heig let vertica han for th	Illustration 5.2 — Dimensions and Approximate Weights of Concrete Pipe	einforced Se		Approx.	weight, pounds	per foot	9.5	27	31	80 20	
ובוב הוהיי	Eiliptical the major conditions of flow this most emba gs for the and, at th to the smal to the smal	lijustralio	Anny	10.14-1401	CLASS 1	Wall	Inches	*		1		*
elliptical concrete Pipe.	Horizontal Morizontal an cover i un cover lu uctures. It me depth ca. Under ca. Under reular pipe reular pipe reular pipe			ASTA		Internal	Diameter, Inches	4	<u>د</u>	• 9	12	ų,
E I	ar cira strum		L			_		4				-

oint.	CLASS 3	Approx.		Der foot	ļ	2	24	36	8	8	120	170	260	360	450	540	620	200		Pipe,	L B	Anaroximate	weight, pounds per foot	011	150		260	330	390	450	
I and Spigot J	₹ S	Minimum	Wall	Thickness,		~	-	1%	*	1 17	176	2 14	2 34	3%	4 %	4 1/2		472		Storm Drain and Sewer Pipe, bint.	WALL		Minimum wer Thickness, inches		2		247		34	342	
rt Pipe. Be	C1 ASS 2	ODDINK.	Weight.	spunod	per foot	13	۶	17	; ;	1 11	8 5	5		120	450			620	8	, Storm Dr Joint.						!					
er and Culve	CI A			Thickness,	Inches	A		; ;			F ;	£ (2	747	. .	4	4 ¼4	4 22	4-14	Concrete Culvert, Sto Bell and Spigot Joint.			Approximate weight, pounds		8	2	, E		0/2	360	
Annuelinforced Sewer and Culvert Pipe. Belt and Spigot Joint.		┫		1)UDiaM	ner foot		n, A	11	27	37	50	80	110	160	ŝ	390	450	520	580	ASTM C 76 - Reinforced Concrete Culvert, Bell and Spigot Jc		WALLA	Minimum Wall Thickness	Inches	7.1	1 %	2	214	242	23	Į,
IN No.	M C 14140	CLASS 1	Minimum	IIRW	Thickness	Incres	*	\$	*	%	-	1 14	41	1%	2%	344	1		2 4	STM C 76-1			╞─								
	ASH			Internal	Diameter.	Inches			σ	• <u>5</u>	5 5	<u>i</u>	2 4	2 2	PC.		; ;	8	20				Interné) Dismetor.	Inches	15	-			24	21	8

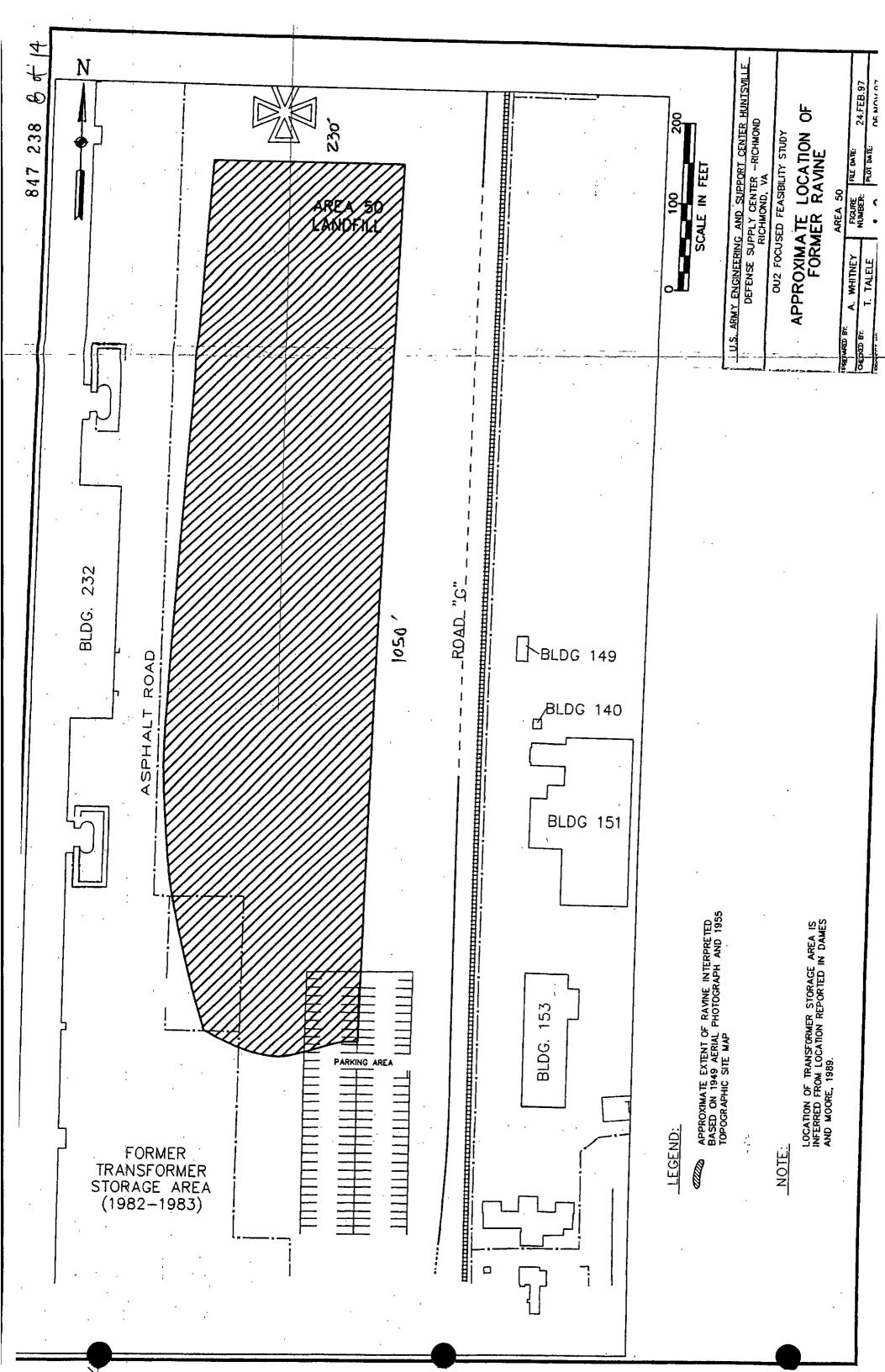
2

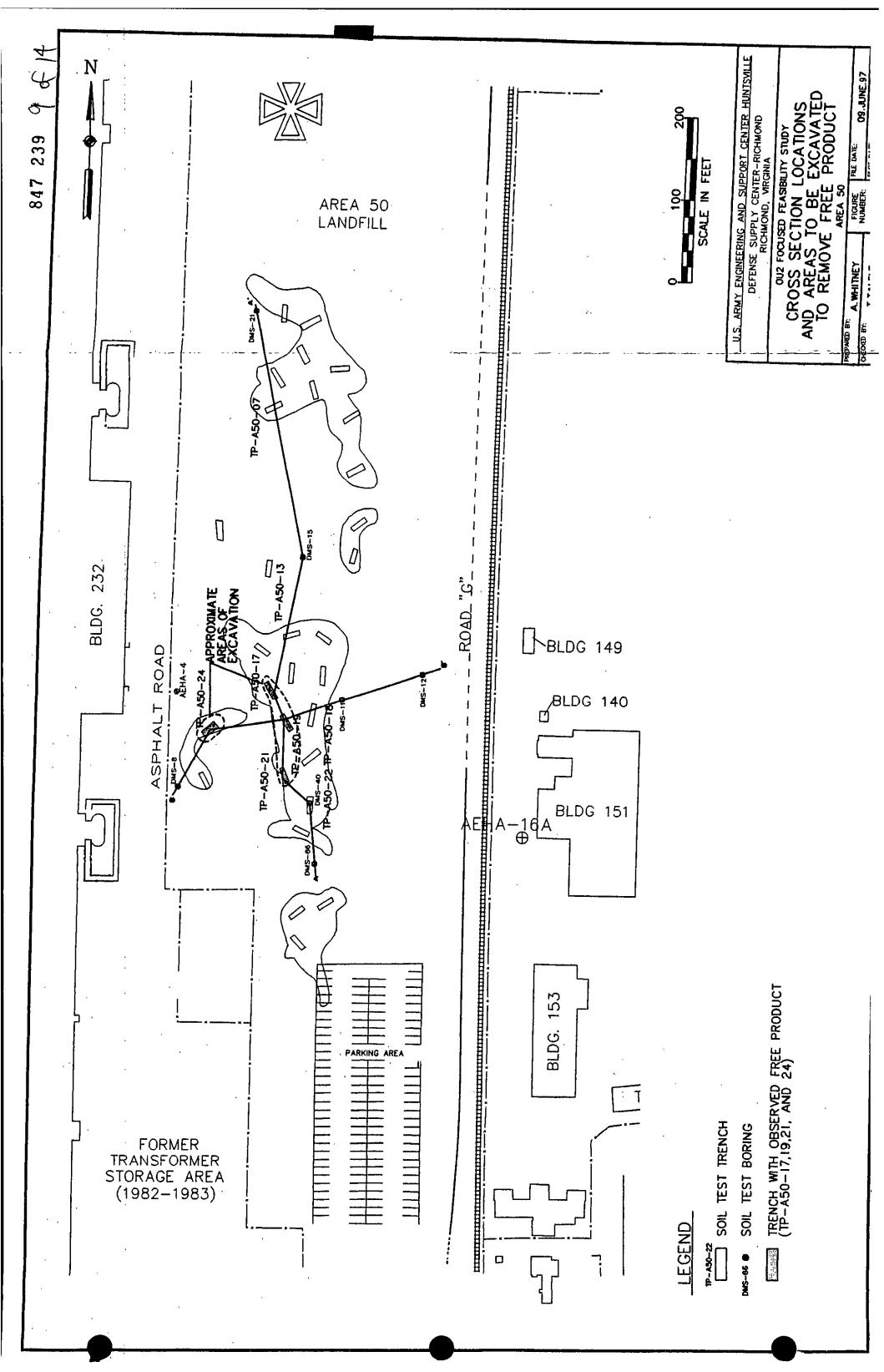
CONCRETE PIPE DESIGN MANUAL

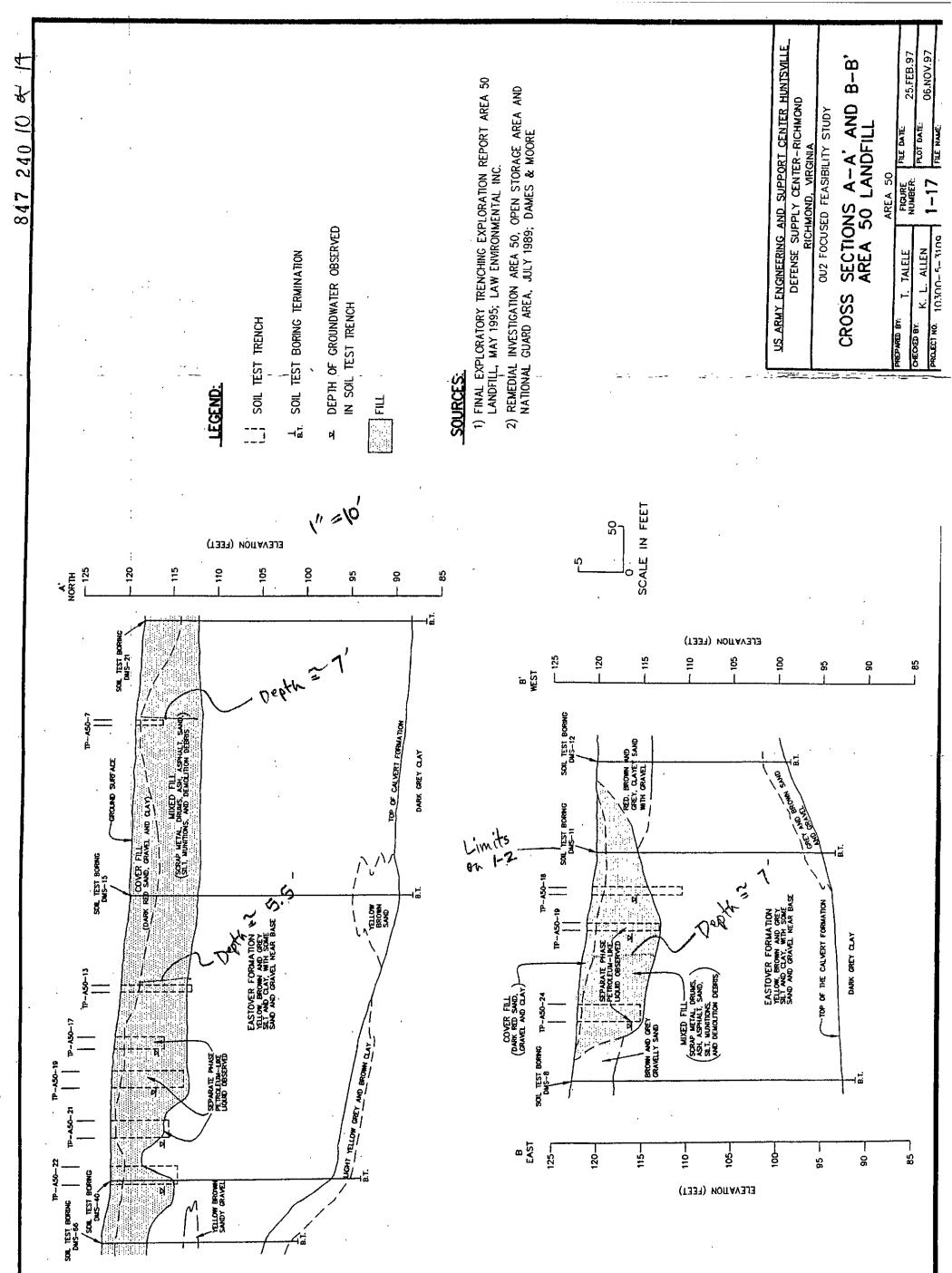
cation. Illustration 5.3 includes the dimensions and approximate weights of

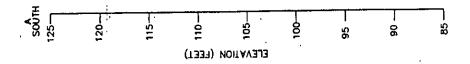
elliptical concrete pipe.

體


9,44


;




WALL C WALL C m wall Approximate imess, Weight pounds inters, per toot

point of structural strength, hydraulic characteristics and type of apply

847 241 11 0 14

-John D. Green Project-Superintendent

refe Alcom

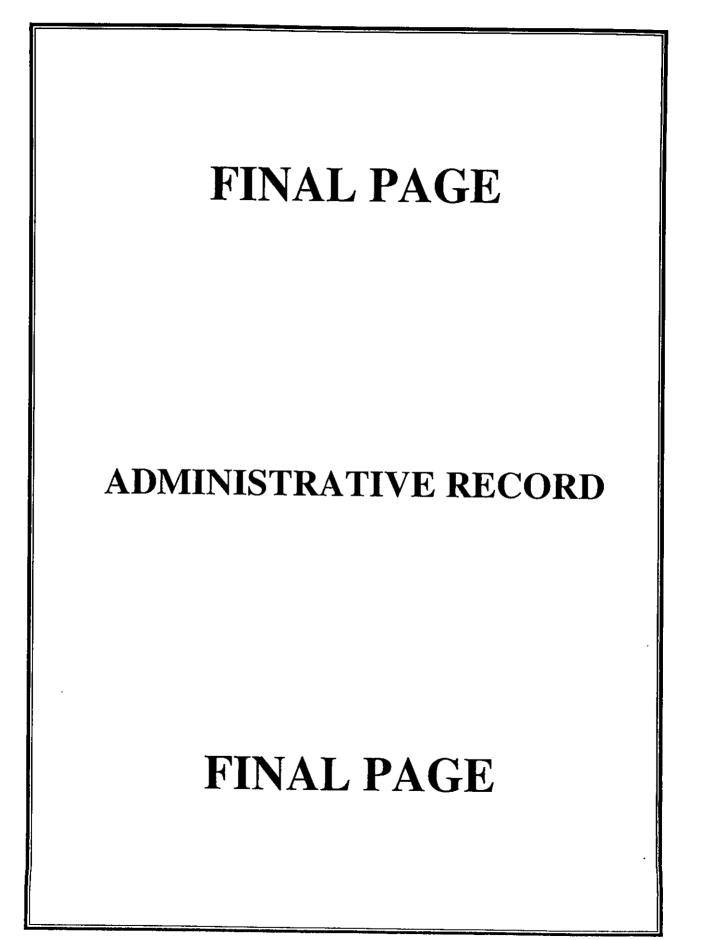
246 X

1-24-06

KJELLSTROM AND LEE, INC. 1607 OWNBY LANE RICHMOND, VA 23220 804.288.0082 FAX 804.285.4288 -MOBILE-434.466-8148 --jgreen@kjelistrom-lee.com

804-513-5918 (九)

· · · :


\$ 12 yd \$ 24 yd \$ 20 yd

non-stonsture fil top sort dry

										847	242	1 - Y
23	00 Earthwork											
222	95 Equipment		1	Y LA				2005 BAR	E COSTS		TOTAL	
			OUTP			UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL O&P	
100	Crane, truck-mounted, up to 75 ton (incl both mob & demob)	1 EQH	1 '	•	.222	Ea.		80	_	80	120	25
	Crane, truck-mounted, over 75 ton	A3E	2.50		.400			203	34	237	350	
00	Crawler-mounted, up to 75 ton	A3F	2		8			254	278	532	690 050	ł
00	Over 75 ton	A-3G	1.5	1 0	0.667			340	405	745	960	
500	For each additional 5 miles haul distance, add		1					10%	10%			
200	For large pieces of equipment, allow for assembly/knockdown		<u> </u>									
001	For mob/demob of vibrofloatation equip, see section 02250-900											
100	For mob/demob of micro-tunneling equip, see section 02441-400											
200	For mob/demob of pile driving equip, see section 02455-650						1					L
300	For mob/demob of caisson drilling equip, see 02465-950	4	+				 					┡
023	10 Grading											
010 F	INISH GRADING											1
012	Finish grading area to be paved with grader, small area	B-111			.040	S.Y.	L	1.23	1.14	2.37	3.14 [,]	
0100	Large area	 ,	2,0		.008			.25	.23	.48	.63	
1100	Fine grade for slab on grade, machine	<u> </u>	1,0		.015			.47	.44	.91	1.20	
1150	Hand grading	8-18	70	00	.034	₩	1	.94	.05	.99	1.52	I
		+	+	+	•							+
023			-				<u> </u>				ļ	h
1	BACKFILL, GENERAL R02315	1 CL	ь I	4	.571	L.C.Y.	1	15.25		15.25	23.50	
0015				1	.727	L.Q. I.		19.40	<u> </u>	19.40		-
0100	Heavy soil Compaction in 6 ^e layers, hand tamp, add to above		_	.60	.388	E.C.Y		10.35		10.35	1	
0300	Roller compaction operator walking, add	B-10		00	.120			3.84		5.07		
0500	Air tamp, add	B-9		90	.211			5.70		6.63	1	
0000	Vibrating plate, add	A1	1	50	.133	┨─┼─		3.56		3.98		4
	Compaction in 12" layers, hand tamp, add to above	1 CL		34	.235			6.30	•	6.30		
0900	Roller compaction operator walking, add	BI		.50	.080		+	2.56		3.3	<u></u>	_
1000	Air tamp, add	В		285	.140			3.80	1		•	
1100		A1		90	.089	╏╁		2.37	1			- 1
1300		B-1		200	.010	LC		.3				
1400		B-1		80	.200	E.C.	_ [6	2.30			
1600	Corropacting backfill, 6" to 12" lifts, vibrating roller	B1		800	.015			.4				- 1
1700	Sheepsfoot roller	B-1	1	750	.016	╏╁		.5				
1900		B-1	- i	900	.013	LC	(.4				
2000	Air tamped, add	81		80	.200	E.C.		6	2.30			_
220		B-1	- 1	700	.017			.5		1		
230 1235	Sheepsfoot roller			650	.018	╈		.5				
1235	Spreading in 8" layers, small dozer	↓ В-1	0B 1	,060	.011	L.C.	Y.	3	6 .87	1.2	3 1.5	0
0.001	BACKFILL, STRUCTURAL Dozer or F.E. loader										•	
100 2	From existing stockpile, no compaction				L	1					1	
200		B-	OL I	,100	.011	LC.	Y.	.3		4		34
20/	0 Common earth			975	.012			3				ю
20 24	Clay			850	.014			1	5.3			
Ĩ	300' haul, sand & gravel			370	.032			1.0				
2.2	a) . Common earth		Ī	330	.036			1.1				1
	Clay			290	.041			1.				
818	105 H.P., 50' haul, sand & gravel	B.	• L	1,350				1	.3			30
641-40			<u></u>	1,225	_	_			31 .3			<u>89</u>
		T		1,100				i	35 .4	1		98
	ily and branch			465	.026					8 1.		33
تىم ئۇر	Common earth	T	T	415	.029				93 1.0	1		61
			↓	370	.03				04 1.2			93
12-2	200 H.P., 50' haut, sand & gravel Common earth	В		2,500						t		.63
	Common earth		1 L	2,200) .00	5 .	LI		17 .	12	.59	.73

	300 Earthwork	s		DAR	LY LAB	OR-			2005 BARE	COSTS		TOTAL
23	15 Excavation and Fill	· · ·	CREW				NET	MAT	LABOR	EQUIP.	TOTAL	NCL OFP
200	Backhoe, hydraulic, crawler mtd., 1 C.Y. cap. = 7		B-12A	600			C.Y.		.83	.93	1.76	2.30
50	1-1/2 C.Y. cap. = 100 C.Y./hr.		B-12B	80	0 .0	20	1		.63	.90	1.53	1.95
260	2 C.Y. cap. = 130 C.Y./hr.	R02315	B-12C	1,04	40 .0	15			.48	.87	1.35	1.70
300	3 C.Y. cap. = 160 C.Y./hr.	-450	-B-12D	1,2	80 .0	13			.39	1,58	1,97	2.34
310	Wheel mounted, 1/2 C.Y. cap. = 30 C.Y./hr.		B-12E	24	0.0	67	1		2.09	1.39	3.48	4.71
360	3/4 C.Y. cap. = 45 C.Y./hr.		B-12F	36). O)44			1.39	1.32	2.71	3.58
500	Clamshell, 1/2 C.Y. cap. = 20 C.Y./hr.	(Frank	B-12G	16	. 0X	00			3.13	3.39	6.52	8.50
550	1 C.Y. cap. = 35 C.Y./hr.	The Martin	B-12H	28	30 .	57			1.79	3.13	4.92	6.15
950	Dragline, 1/2 C.Y. cap. = 30 C.Y./hr.		B-12	24	10 .	067		1	2.09	2.71	4.80	6.15
1000	3/4 C.Y. cap. = 35 C.Y./hr.		•	28	30 .	057			1.79	2.32	4.11	5.30
1050	1-1/2 C.Y. cap. = 65 C.Y./hr.		B-12P	52		031			.96	1.77	2.73	3.41
1200	Front end loader, track mtd., 1-1/2 C.Y. cap. = 7	70 C.Y./hr.	B-10			021			.69	.56	1.25	1.65
1250	2-1/2 C.Y. cap. = 95 C.Y./hr.		B-100	1		016			.51	.73	1.24	1.57
1300	3 C.Y. cap. = 130 C.Y./hr.		B-10F			012			.37	.76	1.13	1.39
1350	5 C.Y. cap. = 160 C.Y./hr.		B-100	- I ·		009			.30	.86	1.16	1.40
1500	Wheel mounted, 3/4 C.Y. cap. = 45 C.Y./hr.		B-10	R 3		033			1.07	.54	1.61	2.21
1550	1-1/2 C.Y. cap. = 80 C.Y./hr.		B-10	s 6		019			.60	.38	.98	1.32
1600	2-1/4 C.Y. cap. = 100 C.Y./hr.		B-10			.015			.48	.38	.86	1.15
1650) 5 C.Y. cap. = 185 C.Y./hr.		B-10		1	.008			.26	.47	.73	.91
1800	Hydraulic excavator, truck mtd, 1/2 C.Y. = 30 C	C.Y./hr.	B-12			.067			2.09	3.49	5.58	7,05
1850	0 48 inch bucket, 1 C.Y. = 45 C.Y./hr.		B-12			.044			1.39	2.70	4.09	5.10
3700	0 Shovel, 1/2 C.Y. capacity = 55 C.Y./hr.		B-12	1		.036			1.14	1.26	2.40	3.13
3750	0 3/4 C.Y. capacity = 85 C.Y./hr.		B-12		[.024		1	.74	1	1.74	2,23
3800			B-12			.017		<u> </u>	.52	.93	1.45	1.82
385	0 1-1/2 C.Y. capacity = 160 C.Y./hr.		B-12		,280	.013			.39	.75	1.14	1.42
390			B-12	<u>7 2</u>	,000	.008			.25	.63		1.07
100										ļ	15%	15%
410			11							ļ	60%	<u> </u>
420		add	11			ľ		1		1	100%	100%
425			11			100				F.60	50%	50% 10.8
. 44(B-1	ZH	160	.100			3.13			
, 44					60	.267	*		6.33	14.00	22.53	23
ີ່	For hauling excavated material, see div. 0231	5-490	*									
	D10 EXCAVATING, BULK, DOZER Open site				100	oot)) []	20
1.1	80 H.P., 50' haul, sand & gravel		B-1	·	460	.026	B.C.	<u>ь</u>	.83	1		
· .	020 Common earth		ł		400	.030		l	1.54			
	040 Clay	·	 	┝──┝	250	.048 .052	┠─┼		1.54			
	200 150' haul, sand & gravel	1463			230 200	.052			1.8	1	1	
	220 Common earth		+	┝┼	125	.060	╂┈┤		3.0			
1			y I		125	.090			3.0	L		
	2400 300' haul, sand & gravel 2420 Common earth			$\left\{ + \right\}$	120	.100			3.8			
	2440 Clay			11	65	.120			5.9			
	3000 105 H.P., 50' haul, sand & gravel		R	10W	700	.105						
1	3020 Common earth		ľ	Ĩ	610	.020			.6	1	4 1.3	
· · L	3040 Clay			┼┦	385	.020	╉─┘		1	1.1		
_	3200 150' haul, sand & gravel				310	.039			1.2			
	3220 Common earth			┼╌┤	270	.044	╉──	├ ├	1.4		1	
	3240 Clav				170	.071			2.2			
	3300 300' haul, sand & gravel			╉	140	.086	╋	<u>├</u>	2.			
	3320 Common earth		1		120	.100	1		3.	1 I I I I I I I I I I I I I I I I I I I		
	3340 Clav			ᅷ	100	.120		<u>├-</u>	3.	1	54 8.	
_	4555		1	▼				1 1	•	1		E Contraction
_	4000 200 H.P., 50' haul, sand & gravel		8	10B	1.400	009			1.	27 .	66 .	93 1
_	4000 200 H.P., 50' haul, sand & gravel 4020 Common earth 4040 Common earth		8	F10B	1,400			├				93 I 06 I

~~~	an a							847 2	<del>44</del>			
22	00   Site Preparation									14 of	14	
	• •		i	DAILY LABOR-				2005 BARE COSTS			TOTAL	
7-4	0 Site Demolition		REW	OUTPUT		UNIT	MAT.	LABOR	EQUIP.	TOTAL	INCL O&P	
00	Cavity wall	5	B-5	2,200	.025	C.F.		.74	.42	1.16	1.61	
200	Brick, solid -510			900	.062			1.82	1.03	2.85	3.94	
300	With block back-up	1.		1,130	.050			1.45	.82	2.27	3.14	
400	Stone, with mortar			900	.062			1.82	1.03	2.85	3.94	
500	Dry set	н	+	1,500	.037	+		1.09	.62	1.71	2.36	
600	Median barrier, precast concrete, remove and store	Ш.	B-3	430	.112	LF.		3.20	4.05	7.25	9.35	
610	Remove and reset		• •	390	.123			3.53	4.47	8	10.30	
900	Pipe removal, sewer/water, no excavation, 12" diameter		B-6	175	.137			3.95	1.23	5.18	7.45	
930	15*18" diameter			150	.160			4.61	1.44	6.05	8.70	
960	21*:24* diameter			120	.200			5.75	1.80	7.55	10.85	
000	27*-36** diameter			90	.267			7.70	2.40	10.10	14.45	
200	Steel, welded connections, 4" diameter		+	160	.150			4.32	1.35	5.67	8.15	
1300			<b>*</b>	80	.300			8.65	2.70	11.35	16.25	
1500 1600	Railroad track removal, ties and track Ballast		B-13 B-14	330 500	.170 .096		ļ	4.89	1.87	6.76	9.55	
3700	Dallast Remove and re-install, ties & track using new bolts & spikes		B-14	500	.096 .960	LF.		2.70	.43	3.13	4.65	
3800		-#	+		.900			27	4.32	31.32	46.50	
4000	Turnouts using new bolts and spikes Sidewalk removal, biturninous, 2-1/2" thick		▼ 8-6	1 325	48 .074	Ea. S.Y.		1,350	216	1,566	2,325	
4050	Brick, set in mortar	-#		185	.074	3. î.		2.13	.66	2.79 4.91	4 7.05	
4100	Concrete, plain, 4"			160	.150			4.32	1.35	4.91 5.67	8.15	
4200	Mesh reinforced	╢	- <u>+</u>	150	.160			4.52	1.33	6.05	8.70	
5000	Slab on grade removal, plain		▼ B-5	45	1.244	C.Y.		36.50	20.50	57	78.50	
5100	Mesh reinforced	-#		33	1.697	0.1.	+	49.50	28		108	
5200	Rod reinforced		1	25	2.240			65.50	20 37	102.50	100	
5500	For congested sites or small quantities, add up to	╶╫	_	<u> </u>			<u> </u>	00.00	57	200%	200%	
5550	For disposal on site, add		B-11A	232	.069			2.12	3.96	6.08	7.60	
5600	To 5 miles, add	╌╢	B-34D		.105			2.90	5.50	8.40	10.45	
		ľ			1	ľ						
0010 <b>t</b>	DEMOLISH, REMOVE PAVEMENT AND CURB	201			1							
5010	Pavement removal, biturninous roads, 3" thick -510		B-38	690	.058	S.Y.		1.74	1.20	2.94	3.98	
5050	4" to 6" thick			420	.095			2.85	1.96	4.81	6.55	
5100	Biturninous driveways			640	.063			1.87	1.29	3.16	4.29	
5200	Concrete to 6" thick, hydraulic hammer, mesh reinforced			255	.157		1	4.70	3.24	7.94	10.75	
5300	Rod reinforced			200	.200	↓		6	4.13	10.13	13.7	
5400	Concrete, 7" to 24" thick, plain			33	1.212	1		36.50	25	61.50	83	
5500	Reinforced		+	24	1.667			50	34.50	84.50	115	
5600	With hand held air equipment, biturninous, to 6" thick		B-39	1,900		S.F.		.71	.07	.78	1.1	
5700	Concrete to 6" thick, no reinforcing		$\square$	1,600				.84	.09		1.4	
5800	Mesh reinforced			1,400		IT		.96	.10	1	1.6	
5900 6000	Rod reinforced			765	.063	1 🗶	<u>_ </u>	1.76	.19		2.9	
6100	Curbs, concrete, plain		B-6	360	.067	LF.		1.92	.60	1	3.6	
6200	Reinforced	-+	┢┷┷	275	.087			2.52	.78		4.7	
6300	Granite Bituminous	ļ		360	.067			1.92	.60	4		
	SELECTIVE DEMOLITION CUROUR	<b>*</b>	┝┻	528	.045	╉╇		1.31	.41	1.72	2.4	
002D		220			0.00	1	1				<b> </b>	
0050	Concrete, elev. slab, light reinforcement, under 6 CF Light reinforcing, over 6 C.F.	<u> </u>	B-9C	65 75	.615	1		16.70	2.18		28.5	
0200	Slab on grade to 6" thick, not reinforced, under 8 S.F.		В9		.533	1		14.45	1.89	1	24.5	
0250				175				12.75	1.67		21.5 10.5	
0255	For over 16 SE see 02220-130-0400		ŀ	1/3	.223			0.20	10.	10.1		
0600	Walls, not remforced under 6 C F	-+	89	60	.667	C.F.		18.05	2.36	20.41	30.5	
- 0650	6-12CF		<b>1</b>	80	.500			13.55	1.77	1		
0655	For over 12 CE cae (12220.) 30.2500		┣—	-+		+	-	15.00		10.02		
1000	Concrete, elevated slab, bar reinformed, under 6.0.5		B-90	45	.889	C.E.		24	3.1	5 27.1	41	
1050	Bar remforced over 6.0 F			50				21.50		1		
1200	Slab on grade to 6" thick, bar reinforced, under 8 S.F.	1	B-9					14.45	1	•		
	· · · · · · · · · · · · · · · · · · ·		1 C C	1			1		,	,	Tet	

