CERUS X-DRIVE

Installation and Operation Manual
Firmware Version 1.1

CERUS ${ }^{\ominus}$ X-DRIVE INSTALLATION AND OPERATION MANUAL

Firmware Version 1.1
Franklin Electric Co., Inc.

COPYRIGHT INFORMATION

Franklin Electric

Franklin Electric
Technical Publications
9255 Coverdale Road
Fort Wayne, IN 46809

Copyright © 2021, Franklin Electric, Co., Inc. All rights reserved.

The entire contents of this publication are copyrighted under United States law and protected by worldwide copyright laws and treaty provisions. No part of this material may be copied, reproduced, distributed, republished, downloaded, displayed, posted or transmitted in any form by any means, including electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of Franklin Electric. You may download one copy of the publication from www.franklinwater.com onto a single computer for your personal, non-commercial internal use only. This is a single copy, single use license, not a transfer of title, and is subject to the following restrictions: you may not modify the materials, use them for any commercial purpose, display them publicly, or remove any copyright or other proprietary notices from them.

The information in this publication is provided for reference only and is subject to change without notice. While every effort has been made to ensure the accuracy of this manual at the time of release, ongoing product improvements and updates can render copies obsolete. Refer to www.franklinwater.com for the current version.

This publication is provided "as is" without warranties of any kind, either express or implied. To the fullest extent possible pursuant to applicable law, Franklin Electric disclaims all warranties, express or implied, including but not limited to, implied warranties of merchantability, fitness for a particular purpose, and non-infringement of intellectual property rights or other violation of rights. Franklin Electric does not warrant or make any representations regarding the use, validity, accuracy, or reliability of the material in this publication.

Under no circumstances, including but not limited to, negligence, shall Franklin Electric be liable for any direct, indirect, special, incidental, consequential, or other damages, including, but not limited to, loss of data, property damage, or expense arising from, or in any way connected with, installation, operation, use, or maintenance of the product based on the material in this manual.

Trademarks used in this publication:

The trademarks, service marks, and logos used in this publication are registered and unregistered trademarks of Franklin Electric and others. You are not granted, expressly, by implication, estoppel or otherwise, any license or right to use any trademark, service mark, or logo displayed on this site, without the express written permission of Franklin Electric.

FE Logo and Design ${ }^{\circledR}$, MagForce ${ }^{\text {TM }}$, and Cerus ${ }^{\circledR}$ are registered trademarks of Franklin Electric.
NEMA is a trademark of The Association of Electrical Equipment and Medical Imaging Manufacturers.
NEC ${ }^{\circ}$ is a registered trademark of the National Fire Protection Association (NFPA).
UL® is a registered trademark of Underwriters Laboratories.
CSA is a registered mark of the CSA Group, formerly the Canadian Standards Association
Bluetooth is a registered trademark of Bluetooth SIG, Inc.
Modbus is a registered trademark of Schneider Electric USA, Inc.
BACnet is a registered trademark of the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
EtherNet/IPTM and DeviceNet ${ }^{\text {TM }}$ are trademarks licenced by ODVA.

TABLE OF CONTENTS

PRODUCT INFORMATION
 -11

Description 11
Features -11
Models -12
UNPACKING AND INSPECTION -13
Transportation and Storage -13
Unpacking -13
INSTALLATION PLANNING -15
Basic VFD Configuration 16
PHYSICAL INSTALLATION -17
Environmental Requirements -17
Mounting the Drive -18
Mounting Frames A, B, and C 19
Mounting Frames DO, D, and E 19
Mounting Frames F, G, and H 19
Conduit Box Installation 20
Frames DO and D Conduit Box Installation 20
Frame E Conduit Box Installation 21
Frame F Conduit Box Installation 22
Frame G Conduit Box Installation 23
Frame H Conduit Box Installation 24
Drive Dimensions 26
ELECTRICAL INSTALLATION 33
Wiring Guidelines 33
Branch Circuit Protection 34
Fuse and Circuit Breaker Sizing 34
Wire Sizing 36
Motor Cable Lengths for Submersible Pumping Applications 36
Suggested Maximum Motor Cable Lengths for Non-Submersible Applications 37
Power Wiring Connections 39
Power Wiring Diagram 39
Control Circuit Connections -41
Terminal Identification 41
Example Configurations 43
4-20mA Speed Control Signal from an External BMS or PLC: 43
0-10V Speed Control Signal from an External BMS or PLC: 43
4-20mA Transducer with VFD 10 VDC Power: 43
4-20mA Transducer with VFD 24 VDC Power: 43
4-20mA Transducer with External 24 VDC Power: 44
0-10VDC Transducer with VFD 10 VDC Power: 44
0-10VDC Transducer with VFD 24 VDC Power: 44
0-10VDC Transducer with External 24 VDC Power: 44
Temperature Protection or PID Control with PT-100 or PTC Sensor: 45
Speed Control using 0-10 VDC Potentiometer: 45
NPN and PNP Digital Inputs Configuration 46
DRIVE PROGRAMMING 47
Using the Keypad 47
Home Screen Display Options 47
Setting Operating Parameters 48
Enter Required Parameters Before Starting VFD 48
Verify Default Settings 48
Verify Control Terminal Settings 49
Enter or Verify Optional Settings 49
Default Settings Tables 50
Default Settings Table - SET Menu 50
Default Settings Table - VFD Menu 51
Default Settings Table - I/O Menu 52
Default Settings Table - ADV Menu 54
Default Settings Table - PROT Menu 54
Default Settings Table - COMM Menu 56
Default Settings Table - PLC Menu 57
Default Settings Table - Option Menu 58
Default Settings Table - ADV2 Menu 59
Default Settings Table - Motor Menu 60
INSTALLATION TESTING 61
Rotation Check 61
Feedback Checks 61
Performance Checks 61
Sleep Mode Check (Pump Applications) 62
OPERATION 63
Control Options 63
Hand/Auto Controls 63
Forward or Reverse Selection 64
Jog Feature 64
Step Frequencies 65
Shutdown 65
Standard Operation with an Automated Control System 66
Standard Operation with PID Feedback Control 66
Damper Control (HVAC Applications) 67
Fireman's Override 67
Pump Application Features 68
Sleep Mode with Pressure Boost 68
Pipe Fill Feature 68
Lubrication Relay 69
Screen Clean Relay 70
Timers 70
Power On Run Delay 70
Run Delay Timer (For Auto Mode) 70
Minimum Run Timer 70
Backspin Timer 71
Performance Control Features 71
Acceleration/Deceleration Control 71
Monitoring Functions 72
Home Screen Status Displays 72
View Screens 73
Protection Features 75
High Load Detection 75
Underload Protection (Dry Well or Belt Loss) 76
Overpressure 77
No Flow Protection 78
Broken Pipe Protection (for Pump Applications) 78
ADVANCED APPLICATION OPTIONS 79
Operation with Permanent Magnet Motors 79
Setup MagForce Pump Motor 80
Basic Setup 80
Permanent Magnet Specific Parameters 80
Motor Specific Parameters 81
Autotune Characteristic Parameters -81
Tune motor control - DC Alignment -81
Tune motor control - I/F Control -81
Tune motor control - PM Control -81
Setup Non-Franklin Electric PM Motors 81
Basic Setup -81
Permanent Magnet Specific Parameters 82
Motor Specific Parameters 82
Autotune Characteristic Parameters 82
Tune motor control - DC Alignment 82
Tune motor control - I/F Control 82
Tune motor control - PM Control 83
Multi-Motor Configurations 83
Multi-Motor (MMC) Relay Control for Pump Applications 84
COMMUNICATIONS 85
FE Connect for Cerus X-Drive Mobile Application 85
Setup Bluetooth Connection 85
Using the Mobile App 86
Modbus Communication 87
X-Drive Configuration for Modbus 87
Communication Parameters Setup 87
System Parameters Setup 88
ModBus Commands and Data Addresses 89
BACnet Communication 90
X-Drive Configuration for BACnet 90
Communication Parameters Setup 90
System Parameters Setup 90
BACnet Device ID Setup 91
BACnet Objects 91
Commandable Analog Value Objects -91
Status Analog Value Objects (Read Only) -91
Commandable Binary Value Objects 92
Status Binary Value Objects (Read Only) 93
ACCESSORIES 95
Optional Extension Cards 95
Extension Card Installation 97
Setup Optional Ethernet Communication Card 101
MAINTENANCE 103
Troubleshooting 103
Diagnostic Fault Codes 103
Fan Replacement 108
Frame A Heat Sink Fan 108
Frame B Heat Sink Fan 108
Frame B and C Capacitor Fan 109
Frame C Heat Sink Fan 109
Frame D Heat Sink Fan 110
Frame D Capacitor Fan 110
Frame E Heat Sink Fan 111
Frame E Capacitor Fan 111
Frame F Heat Sink Fan 112
Frame F Capacitor Fan 112
Frame G Heat Sink Fan 113
Frame H Heat Sink Fan 114
PARAMETER REFERENCE TABLES 115
Parameter Descriptions > SET Menu 115
Parameter Descriptions > VFD Menu 119
Parameter Descriptions > I/O Menu 122
Parameter Descriptions > ADV Menu 128
Parameter Descriptions > PROTECTION Menu 130
Parameter Descriptions > COMM Menu 132
Parameter Descriptions > PLC Menu 134
Parameter Descriptions > Option Menu 136
Parameter Descriptions > ADV2 Menu 138
Parameter Descriptions > Motor Menu 139
SPECIFICATIONS 141
Common Specifications 141
200~230V Class 1~125HP (0.75~90kW) 142
460 V Class 1-75HP (5.5~55kW) 143
460V Class 100~675HP (75~500kW) 144
575~690V Class 1~150HP (1.5~175kW) 145
575~690V Class 150~700HP (160~522kW) 146
De-Rating Charts 147
Carrier Frequency De-Rating 147
230 V / 460 V Induction Motor with VF or SVC Control 147
230 V / 460 V Permanent Magnet Motor with SVC Control 147
575 V / 690 V Induction Motor with VF or SVC Control 148
Ambient Temperature De-Rating 149
Altitude De-Rating 149
Replacement Components List 150
Applicable Standards 152
GLOSSARY 153
STANDARD LIMITED WARRANTY 155

SAFETY INSTRUCTIONS

Hazard Messages

This manual includes safety precautions and other important information in the following formats:

A DANGER
 Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

AWARNING
 Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

ACAUTION

Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate personal injury.

NOTICE
 Indicates a potentially hazardous situation which, if not avoided could result in damage to equipment or other property.

IMPORTANT: Identifies information that controls correct assembly and operation of the product.

NOTE: Identifies helpful or clarifying information.

This symbol alerts the user to the presence of dangerous voltage inside the product that might cause harm or electrical shock.

IIIThis symbol alerts the user to the presence of hot surfaces that might cause fire or personal injury.

Before Getting Started

This equipment should be installed and serviced by technically qualified personnel who are familiar with the correct selection and use of appropriate tools, equipment, and procedures. Failure to comply with national and local electrical and plumbing codes
and within Franklin Electric recommendations may result in electrical shock or fire hazard, unsatisfactory performance, or equipment failure.

Read and follow instructions carefully to avoid injury and property damage. Do not disassemble or repair unit unless described in this manual.

Failure to follow installation or operation procedures and all applicable codes may result in the following hazards:

AWARNING

High voltages capable of causing severe injury or death by electrical shock are present in this unit.

- To reduce risk of electrical shock, disconnect power before working on or around the system. More than one disconnect switch may be required to de-energize the equipment before servicing.
- Make sure the ground terminal is connected to the motor, control enclosures, metal plumbing, and other metal near the motor or cable using wire no smaller than motor cable wires.

\triangle CAUTION

$\triangle \triangle$Risk of bodily injury, electric shock, or property damage.

- This equipment must not be used by children or persons with reduced physical, sensory or mental abilities, or lacking in experience and expertise, unless supervised or instructed. Children may not use the equipment, nor may they play with the unit or in the immediate vicinity.
- Equipment can start automatically. Lockout-Tagout before servicing equipment.
- This equipment produces high temperatures during normal operation. Use caution when contacting surfaces.
- Operation of this equipment requires detailed installation and operation instructions provided in this manual for use with this product. Read entire manual before starting installation and operation. End User should receive and retain manual for future use.
- Keep safety labels clean and in good condition.

Product Specific Precautions

AWARNING

High voltages capable of causing severe injury or death by electrical shock are present in this unit.

- Do not remove VFD cover for wiring or periodic inspections while power is applied, or the unit is in operation.
- Capacitors inside the drive can still hold lethal voltage even after power has been disconnected. ALWAYS check if DC bus charge LED is off and $D C$ voltage on the terminals $D C(+1)$ and $D C(-)$ is less than 30VDC before working on VFD wiring. The DC bus capacitors may hold high-voltage charge for several minutes after the VFD power is disconnected.
- Perform wiring after VFD has been mounted. Otherwise, electric shock or bodily injury can occur.
- Do not apply power to a damaged VFD or to VFD with missing parts.
- Do not use VFD if power or motor cable is damaged.
- Do not handle the VFD or control devices with wet hands or when standing on a wet or damp surface, or in water.

\triangle CAUTION

A Risk of bodily injury, electric shock, or property damage.

- Install VFD on a non-flammable surface. Do not place flammable materials nearby.
- Disconnect the input power if VFD has been damaged.
- Do not touch VFD after shutting down or disconnecting it. It can remain hot for a few minutes.
- Do not allow lint, paper, wood chips, dust, metallic chips or other foreign material into the drive.
- Some VFD parameters are set as default to automatically start VFD in some applications. Disable these parameters if automatic start is not safe for personnel or equipment.
- If restart after fault reset is selected, the VFD can start automatically after fault reset.
- If required, provide an emergency mechanical brake to prevent any hazardous conditions if VFD fails during operation.

NOTICE

Risk of damage to drive or other equipment.

- Install and wire VFD according to the instructions in this manual.
- Take protective measures against ESD (Electrostatic Discharge) before touching control boards during inspection, installation or repair.
- Do not connect power factor correction capacitors, surge suppressors, or RFI filter to the VFD output.
- Check if input power voltage is within acceptable range before applying power to VFD.
- Set correct motor data from the motor nameplate and overload protection parameters for proper motor overload protection.
- Do not modify VFD internal components and circuits.
- Power factor capacitors and generators may become overheated and damaged due to harmonics distortion created by VFD.
- The use of any disconnecting device (contactor, disconnect etc.) in motor circuit during VFD run can cause damage to VFD power components. Stop VFD before opening the motor circuit with disconnect or contactor.
- Use, if possible, an inverter rated or motor with insulation Class F or higher. For submersible pump motors, use Class B or higher. The VFD generates high frequency output pulses with spikes, which can deteriorate motor winding insulation and eventually damage the motor. The longer distance to the motor the higher amplitude of these voltage spikes will be applied to motor winding. Any cables with paralleled wires will increase the amplitude of these spikes at motor terminals.
- VFD can operate motor at frequencies higher than 50 HZ or 60 Hz . Verify the maximum allowed speed with motor and machinery manufacturers prior to increasing output frequency because it can overheat motor or damage machinery.

PRODUCT INFORMATION

Description

The Cerus X-Drive is a variable frequency drive (VFD) designed to control and protect three phase motors in industrial, municipal, and agricultural sites. The X-Drive family offers an extensive range of amperage and configuration options, making it versatile enough for nearly any constant or variable torque application.

Industry standard application settings are pre-configured for submersible or centrifugal pumps, supply or exhaust fans, cooling towers, vacuum pumps, and constant torque motors. In addition, many input/output and control options are available for application specific features, such as PID speed control, pressure control, temperature or fluid level controls, and scheduling.

Native Modbus and BACnet communication protocols allow integration with many automated control and building management systems. In addition, an optional Bluetooth communication card provides access for programming, operating, and monitoring the drive using the FE Connect for Cerus X-Drive Mobile App. Refer to "Optional Extension Cards" on page 95 .

Features

Configuration

- Compatible with three-phase induction or permanent magnet motors
- Extensive selection of models available. Refer "Models" on page 12.
- Easy setup with built-in application defaults
- Many programmable Input/Output terminal options
- Available NEMA 1, NEMA 3R, UL Type 1, IP21, or 4X enclosure offerings

Application-specific features

- Sleep mode
- Damper control
- Lubrication for hollow-shaft motors
- Pipe fill mode
- Broken pipe protection
- Screen clean
- Multi-motor control

Operation

- Integrated HOA functionality
- Integrated display with keypad control of all functions
- Real-time fault logging with date and time stamps

Protection

- Protection against short circuit, incorrect wiring, surges, underload, overload, drive overheat, undervoltage, over-voltage, phase loss, phase imbalance, output open phase, overpressure, sensor fault, etc.
- The X-Drive allows your motor to gradually ramp up and down, saving equipment from sudden, harsh rushes of current that can shorten its lifespan

Communication

- RS-485 communications (Modbus, BACnet) for remote control or monitoring
- Bluetooth connectivity with optional FE Connect Communication Card

Models

Model Number Codes

		Product Family: Cerus X Drive series Amperage Ratings: 5 to 930 A		Input Voltage $\begin{aligned} & 2 \mathrm{~V}=200 / 230 \mathrm{~V} \\ & 4 \mathrm{~V}=460 \mathrm{~V} \\ & 6 \mathrm{~V}=575 \mathrm{~V} \end{aligned}$

	Frame A	Frame B	Frame C
$\begin{gathered} 200 \mathrm{~V} \\ 1 \\ 230 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { CXD-005A-2V } \\ & \text { CXD-007A-2V } \\ & \text { CXD-010A-2V } \\ & \text { CXD-015A-2V } \\ & \text { CXD-021A-2V } \end{aligned}$	$\begin{aligned} & \text { CXD-031A-2V } \\ & \text { CXD-046A-2V } \\ & \text { CXD-061A-2V } \end{aligned}$	$\begin{aligned} & \text { CXD-075A-2V } \\ & \text { CXD-090A-2V } \\ & \text { CXD-105A-2V } \end{aligned}$
460V	$\begin{aligned} & \text { CXD-003A-4V } \\ & \text { CXD-004A-4V } \\ & \text { CXD-005A-4V } \\ & \text { CXD-008A-4V } \\ & \text { CXD-010A-4V } \\ & \text { CXD-013A-4V } \\ & \text { CXD-018A-4V } \end{aligned}$	$\begin{aligned} & \text { CXD-024A-4V } \\ & \text { CXD-032A-4V } \\ & \text { CXD-038A-4V } \end{aligned}$	$\begin{aligned} & \text { CXD-045A-4V } \\ & \text { CXD-060A-4V } \\ & \text { CXD-073A-4V } \end{aligned}$
575V	$\begin{aligned} & \text { CXD-003A-6V } \\ & \text { CXD-004A-6V } \\ & \text { CXD-006A-6V } \end{aligned}$	$\begin{aligned} & \text { CXD-009A-6V } \\ & \text { CXD-012A-6V } \\ & \text { CXD-018A-6VA } \\ & \text { CXD-024A-6V } \end{aligned}$	$\begin{aligned} & \text { CXD-030A-6V } \\ & \text { CXD-036A-6V } \\ & \text { CXD-045A-6V } \end{aligned}$
	Frame D	Frame E	Frame F
$\begin{gathered} 200 \mathrm{~V} \\ 1 \\ 230 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { CXD-146A-2V } \\ & \text { CXD-180A-2V } \end{aligned}$	$\begin{aligned} & \text { CXD-215A-2V } \\ & \text { CXD-276A-2V } \\ & \text { CXD-322A-2V } \end{aligned}$	
460V	$\begin{aligned} & \text { CXD-091A-4V (DO) } \\ & \text { CXD-110A-4V (DO) } \\ & \text { CXD-150A-4V } \\ & \text { CXD-180A-4V } \end{aligned}$	$\begin{aligned} & \text { CXD-220A-4V } \\ & \text { CXD-260A-4V } \end{aligned}$	$\begin{aligned} & \text { CXD-310A-4V } \\ & \text { CXD-370A-4V } \end{aligned}$
$\begin{gathered} 575 \mathrm{~V} \\ 1 \\ 690 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { CXD-054A-6V } \\ & \text { CXD-067A-6V } \end{aligned}$	$\begin{aligned} & \text { CXD-086A-6V } \\ & \text { CXD-104A-6V } \\ & \text { CXD-125A-6V } \\ & \text { CXD-150A-6V } \end{aligned}$	$\begin{aligned} & \text { CXD-180A-6V (690 V) } \\ & \text { CXD-220A-6V (690 V) } \end{aligned}$
	Frame G	Frame H	Frame H (690)
460V	$\begin{aligned} & \text { CXD-460A-4V } \\ & \text { CXD-530A-4V } \end{aligned}$	$\begin{aligned} & \text { CXD-616A-4V } \\ & \text { CXD-683A-4V } \\ & \text { CXD-770A-4V } \\ & \text { CXD-930A-4V } \end{aligned}$	
$\begin{gathered} 575 \mathrm{~V} \\ \text { I } \\ 690 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { CXD-290A-6V (690 V) } \\ & \text { CXD-350A-6V (690 V) } \end{aligned}$		$\begin{aligned} & \text { CXD-430A-6V } \\ & \text { CXD-465A-6V } \\ & \text { CXD-590A-6V } \\ & \text { CXD-675A-6V } \end{aligned}$

UNPACKING AND INSPECTION

Transportation and Storage

NOTICE

Risk of damage to VFD or other equipment.

- Do not stack VFD boxes higher than standard 48 " cube height when palleting for storage.
- Do not place heavy items on VFD.
- Do not drop VFD or subject it to hard impact.
- Dispose of VFD properly as industrial equipment waste.

The VFD should be stored in the shipping carton or crate before installation, in a controlled environment that meets the following requirements:

Storage Temperature	-25 to $70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.158{ }^{\circ} \mathrm{F}\right)$
Location	Pollution Degree 2 Environment
Relative Humidity	95% Maximum relative humidity (non-condensing)

The performance of capacitors in the drive will degrade if not charged occasionally. It is recommended to charge a stored drive every 2 years to restore the performance of the capacitors.

NOTE: If the VFD is kept in storage for longer than 2 years, when powering the drive, use an adjustable AC power source (ex. AC autotransformer) to charge the drive at 70 to 80% of the rated voltage for 30 minutes (do not run the drive). Then, charge the drive at 100% of rated voltage for an hour (do not run the drive).

Unpacking

\triangle CAUTION

Risk of personal injury or damage to VFD or other equipment.

- Use suitable lifting equipment, in good condition, rated for at least 5 times the weight of the VFD. Refer to "Specifications" on page 141 for the weight of each drive by frame size.

1. Inspect exterior of package for shipping damage. If there is damage, notify the shipping agent and your sales representative.
2. Make sure the part number and product ratings on the identification label are correct for the application.
3. When possible, remove the VFD cover and make sure the product ratings on the nameplate match the package label.
4. The VFD comes in various forms of shipping crates. If applicable, remove the top and side fasteners from the packaging.

5. Some crates are secured with clips. Remove clips with a suitable prying tool.
6. Remove the crate cover, foam packing inserts, owner's manual, and any other items inside the crate.
7. Remove fasteners securing the drive to the pallet.
8. Inspect the VFD for damage.
9. Allow the drive to remain on the pallet until you are ready to install it in the permanent location. Refer to""Mounting the Drive" on page 18.

Lifting

When removing large VFDs from the pallet, use suitable lifting equipment connected to the lifting holes at the top outer edges of the unit.

Use a spreader bar the same width as the drive so the lifting cables are straight up and down.

INSTALLATION PLANNING

NOTICE

Risk of damage to VFD, or malfunction can occur.

- An incorrectly applied or installed VFD can result in system malfunction or reduction in product life as well as component damage. You must read and understand this manual thoroughly before proceeding with installation.

Refer to the following table when planning installation of the Cerus X-Drive VFD.

1	2	3	4	5	6
Plan System Goals	Identify Options	Select Control Methods	Install VFD Hardware	Install Wiring	Program Parameters
Intended Function - Air Handling - Fluid Circulation - Constant Pressure - Pressure Boosting - Irrigation - Dewatering - Carwashes - Conveyors - Crushers - Grinders Hardware Application - Supply Fan - Exhaust Fan - Cooling Tower - Centrifugal Pump - Submersible Pump - Vacuum Pump - Constant Torque	Automation - Damper Control - Sleep mode - Timers - Scheduling Protection - Shutdown - Redundancy - Broken Pipe - Fire Override Maintenance - Screen clean - Lubrication Multi-Motor Control - Equal Run Time - Soft Start - Lead/Lag - Rotation	Hand/Off/Auto - Keypad - Panel Mounted - Remote Transducer (PID) - Temperature - Pressure - Vacuum - Flow Switches - Potentiometer - Float - On/Off - Speed control Communications - BMS/PLC - Modbus - BACnet - Drive-to-drive - Bluetooth	Location - Inside - Outside Climate control - Temperature - Moisture Distance - Wire sizes - Filtering requirements Measurements - Clearance - Drilling	Conduit - Routing - Separation High Voltage - Grounding - Inputs - Outputs Control circuits - Analog inputs - Switched inputs - Voltage inputs - Programmable outputs - Communication	Basic - Application - Motor ratings - Setpoints - Limits I/O setup - Input functions - Output functions - Scaling Option settings - Enable features - Set targets

1. The planned usage of the overall system will determine which options and control methods are appropriate, as well as how the VFD should be installed and programmed. Refer to "Operation" on page 63 for examples of how the system might be used.
2. System options define and automate features that support the intended operation. These features may require specialized control methods and programming. For more details, refer to "Control Options" on page 63, "Standard Operation with an Automated Control System" on page 66, and "Protection Features" on page 75.
3. The X-Drive supports many different methods for automating motor speed control. Refer to "Example Configurations" on page 43 for possible control setups.
4. The overall function of the system directly affects where and how the VFD should be mounted. Refer to "Physical Installation" on page 17 for guidelines.
5. The selected motor application, along with the control method(s), determines how the VFD should be connected. Refer to "Electrical Installation" on page 33 for more information.
6. The VFD can be quickly and easily programmed for most standard operations. Refer to "Setting Operating Parameters" on page 48. Advanced features or options may require additional parameter adjustments to achieve the desired performance. Refer to "Advanced Application Options" on page 79 and "Parameter Reference Tables" on page 115.

Basic VFD Configuration

The following table includes the most commonly used devices in a motor control branch operated by a VFD.
Adequate peripheral devices and correct connections are essential for proper VFD operation.

AC Power Source	Use single- or three-phase power source with voltage within the per- missible range of VFD input power rating.	
ACCB, Fuses, or Franklin Electric	Select circuit breakers or fuses in accordance with NEC and applicable local codes. Manual Motor Starters	Do not use input power contactor for frequent starting and stopping the VFD, otherwise VFD power components can be damaged.

NOTICE

Risk of damage to VFD, or malfunction can occur.

- Do not install a magnetic contactor or motor disconnect in the motor circuit for start/stop or emergency stop purpose. Opening the motor circuit while the VFD is running may cause VFD failure.

PHYSICAL INSTALLATION
 Environmental Requirements

PHYSICAL INSTALLATION

Environmental Requirements

NOTICE

Risk of damage to VFD, or malfunction can occur due to improper handling, installation, or environment.

- Do not mount VFD on equipment with excessive vibration.
- Install in a location where temperature is within the range of product rating.
- Do not mount VFD in direct sunlight or near other heat sources.
- The VFD should be mounted in a Pollution Degree 2 environment. If VFD will be installed in an environment with a high probability of dust, metallic particles, mists, corrosive gas or other contaminants, the VFD must be mounted inside an appropriate electrical enclosure with proper NEMA, UL Type, or IP rating and adequate cooling.
- When two or more VFDs are installed in a ventilated enclosure, the cooling system should provide adequate airflow for all the VFDs. Do not install VFD above another heat source (another VFD, inductive reactors, etc.).

The VFD must be installed and used in a controlled environment that meets the following requirements:

Ambient Temperature	$50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ UL Open Type/IP20 (Top cover must be removed.) $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ in NEMA 1/ UL Type $1 /$ IP20 enclosure.
Location	Pollution Degree 2 Environment.
Altitude	1000 m (3281 ft) above sea level. De-rate current 1% per 100 m (328 ft) from 1000 to 2000 m (3281 6562 ft). Consult Technical Support for installations above 2000 m .
Relative Humidity	95\% Maximum relative humidity (non-condensing)
Vibration	1.0 mm , peak to peak value range from 2 Hz to 13.2 Hz $0.7 \mathrm{G}-1.0 \mathrm{G}$ range from 13.2 Hz to 55 Hz 1.0 G range from 55 Hz to 512 Hz .

The drive electronics are air-cooled. Provide enough clearance for airflow around the VFD. See minimum mounting clearance table below for different VFD frame sizes.

Mount VFD vertically (top up) for proper heat dissipation.

Do not mount VFD in direct sunlight or near other heat sources.

Do not block cooling vents or airflow with any panel components or wires. Prevent debris from adhering to the heat sink.

Frame Size	A	B	C*	D
A, B, \& C	$60 \mathrm{~mm} / 2.4 \mathrm{in}$.	$30 \mathrm{~mm} / 1.2 \mathrm{in}$.	$30 \mathrm{~mm} / 1.2 \mathrm{in}$.	$0 \mathrm{~mm} / 0.0 \mathrm{in}$.
D, E, \& F	$100 \mathrm{~mm} / 3.9 \mathrm{in}$.	$50 \mathrm{~mm} / 2.0 \mathrm{in}$.	$100 \mathrm{~mm} / 3.9 \mathrm{in.total}$	$0 \mathrm{~mm} / 0.0 \mathrm{in}$.
G	$200 \mathrm{~mm} / 7.9 \mathrm{in}$.	$100 \mathrm{~mm} / 3.9 \mathrm{in}$.	$200 \mathrm{~mm} / 7.9 \mathrm{in}$.	$0 \mathrm{~mm} / 0.0 \mathrm{in}$.
H	$350 \mathrm{~mm} / 13.8 \mathrm{in}$.	$0 \mathrm{~mm} / 0.0 \mathrm{in}$.	$0 \mathrm{~mm} / 0.0 \mathrm{in}$.	$200 \mathrm{~mm} / 7.9 \mathrm{in}$.

[^0]
Mounting the Drive

\triangle CAUTION

Risk of bodily injury or damage to drive or other equipment.

- The drive should be mounted on a structure such as a wall or post capable of supporting the weight of the unit. Refer to "Specifications" on page 141 for drive weight.
- Install VFD on a non-combustible surface.
- Ensure suitable mounting hardware is used when installing the drive.
- Do not install the drive on unreinforced drywall.
- Use suitable lifting equipment, in good condition, rated for at least 5 times the weight of the drive.

The mounting location should have nearby access to the electrical supply and access to the motor wiring.
Refer to "Electrical Installation" on page 33.
Use lag screws or bolts appropriate for supporting the weight of the drive.

1. Mount the drive using the mounting holes on the back side of the drive enclosure.
2. Screws at the top must attach to a solid structure such as a stud or brace.
3. All screw hole locations should be used to ensure the drive is securely mounted.

IMPORTANT: Do not drill holes in the drive.
When removing large drives from the pallet, use suitable lifting equipment connected to the lifting holes at the top outer edges of the drive.

1. Use a spreader bar the same width as the drive so the lifting cables are straight up and down.
2. Slowly lift the drive from the pallet.
3. Use lifting equipment to place the drive in the desired installation location.

Mounting Frames A, B, and C

These frames have four corner mounting holes on the drive. Refer to "Drive Dimensions" on page 26 for mounting hole locations and sizes.

1. Have one person hold the drive in location while another installs the lag screws in each corner, ensuring they go into a solid stud or brace. Install the lower left lag screw first.
2. Place a level on top of the drive. When level, install the upper right corner lag screw.
3. Install the remaining two lag screws.

Mounting Frames DO, D, and E

These frames have four corner mounting holes on the drive. The bottom two holes are U-shaped slots, allowing the drive to be lowered onto pre-installed lag screws. Refer to "Drive Dimensions" on page 26 for mounting hole locations and sizes.

1. Install two lag screws for the bottom locations, ensuring they are level and enter a solid stud or brace.
2. Use a lifting device to lower the U-shaped mounting slots onto the bottom lag screws. The conduit box is not shown in this image to better show the bottom mounting slots.
3. Hold the drive tight against the backing board, and install the remaining two lag screws in the top mounting holes.

Mounting Frames F, G, and H

These frames include two keyhole shaped mounting holes at the top, allowing the drive to be set onto pre-installed lag screws. Refer to "Drive Dimensions" on page 26 for mounting hole locations and sizes.

1. Install two lag screws for the top locations, ensuring they are level and enter a solid stud or brace.
2. Use a properly sized lifting device to lower the top keyhole shaped mounting slots onto the lag screws.
3. Hold the drive tight against the backing board, and install the remaining lag screws in the bottom mounting holes, ensuring they enter a solid stud or brace.

Conduit Box Installation

Frames A, B and C do not require an added conduit box.

Frames DO and D Conduit Box Installation

1. Loosen two lower drive cover screws.
2. Press the tabs on each side of the cover.
3. Remove the cover.

4. Remove five screws.

5. Install the conduit box with five screws. Tighten to a torque of $24-26 \mathrm{~kg}-\mathrm{cm} / 20.8-22.6 \mathrm{lb}-\mathrm{in}$. $2.4-2.5 \mathrm{Nm}$.
6. Replace the lower drive cover and rotate to the closed position. Secure with two screws from step 1. Tighten to a torque of $12-15 \mathrm{~kg}-\mathrm{cm} / 10.4-13 \mathrm{lb}-\mathrm{in}$. / 1.2-1.5 Nm.

Frame E Conduit Box Installation

1. Loosen four lower drive cover screws.
2. Remove the cover.

3. Install the conduit box with six screws. Tighten to a torque of $24-26 \mathrm{~kg}-\mathrm{cm} / 20.8-22.6 \mathrm{lb}-\mathrm{in}$. $2.4-2.5 \mathrm{Nm}$.
4. Replace the cover and secure with screws from step 1. Tighten to a torque of $12-15 \mathrm{~kg}-\mathrm{cm} / 10.4-13 \mathrm{lb}-\mathrm{in} . / 1.2-1.5 \mathrm{Nm}$.

Frame F Conduit Box Installation

1. Remove four lower drive cover screws.
2. Remove the cover from the drive.

Remove four screws from the conduit box cover.

3. Align the conduit box flanges behind the flanges of the drive bottom.
4. Secure the conduit box to the drive (flange to flange) with four screws.
Tighten the screws to a torque of
$24-26 \mathrm{~kg}-\mathrm{cm} / 20.8-22.6 \mathrm{lb}-\mathrm{in}$. / 2.4-2.5 Nm.

5. Install the conduit box cover using four screws from step 2.

Tighten to a torque of
$13-16 \mathrm{~kg}-\mathrm{cm} / 20.8-22.6 \mathrm{lb}-\mathrm{in} . / 2.4-2.5 \mathrm{Nm}$.
6. Replace the cover and secure with four screws from step 1. Tighten to a torque of $12-15 \mathrm{~kg}-\mathrm{cm} / 10.4-13 \mathrm{lb}-\mathrm{in} . / 1.2-1.5 \mathrm{Nm}$.

Frame G Conduit Box Installation

1. Loosen seven conduit box cover screws, slide it forward, and remove the cover.
2. Loosen four lower drive cover screws. Remove the cover.

3. Remove the eight screws identified.
4. Align the conduit box with the flanges of the drive. Reinstall the eight screws from step 3.
M5 Screw torque: 24-26 kg-cm / 20.8-22.6 lb-in. / 2.4-2.5 Nm M8 Screw torque: $100-120 \mathrm{~kg}-\mathrm{cm} / 86.7-104.1 \mathrm{lb}-\mathrm{in} . / 9.8-11.8 \mathrm{Nm}$
5. Secure further with eight screws.

M5 Screw torque: $24-26 \mathrm{~kg}-\mathrm{cm} / 20.8-22.6 \mathrm{lb}-\mathrm{in} . / 2.4-2.5 \mathrm{Nm}$ M8 Screw torque: 100-120 kg-cm / 86.7-104.1 lb-in. / 9.8-11.8 Nm

6. Set the conduit box cover on the conduit box and slide it toward the conduit knockouts. Tighten the screws to a torque of $24-26 \mathrm{~kg}-\mathrm{cm} / 20.8-22.6 \mathrm{lb}-\mathrm{in}$. / 2.4-2.5 Nm.
7. Place the cover back on the drive, and tighten the screws to a torque of $12-15 \mathrm{~kg}-\mathrm{cm} / 10.4-13 \mathrm{lb}-\mathrm{in} . / 1.2-1.5 \mathrm{Nm}$.

Frame H Conduit Box Installation

1. Remove all screws holding the covers of the conduit box kit and remove the covers.

2. Remove the screws shown from the bottom of the drive and remove the bracket.

3. Fasten the M 6 screws to two locations. Tighten screws to a torque of $35-45 \mathrm{~kg}-\mathrm{cm} / 30.3-39 \mathrm{lb}$-in. / 3.4-4.4 Nm.

4. Install the conduit box to the drive using the following screws and nuts tightened to a torque of: M6 Screws 1-6: 55-65 kg-cm / 47.7-56.4 lb-in / 5.4-6.4 Nm
M8 Screws 7 - 9 and Nuts $14-17: 100-110 \mathrm{~kg}-\mathrm{cm} / 86.7-95.4 \mathrm{lb}-\mathrm{in} / 9.8-10.8 \mathrm{Nm}$
M10 Nuts 10-13: 250-300 kg-cm / 216.9-260.3 lb-in / 24.5-29.4 Nm

5. Replace the covers and screws removed in Step 1 to the original locations. Tighten to a torque of $35-45 \mathrm{~kg}-\mathrm{cm} / 30.3-39 \mathrm{lb}-\mathrm{in} . / 3.4-4.4 \mathrm{Nm}$.

Drive Dimensions

Frame A

Frame B

Frame C

Frame DO

Frame D

Frame E

Frame F

PHYSICAL INSTALLATION
 Drive Dimensions

Frame H

Frame H (690 V)

1-700 mm (27.6 in)
2-630 mm (24.8 in)
$3-800 \mathrm{~mm}$ (31.5 in)
4-1745 mm (68.7 in)
$5-1715 \mathrm{~mm}$ (67.5 in
6-42.5 mm (1.7 in)
$7-109 \mathrm{~mm}$ (4.3 in)
8-404 mm (15.9 in)
9-51 mm (2 in)
$10-13 \mathrm{~mm}(0.51 \mathrm{in}) /$

- 26.5 mm (1.04 in)
$11-25 \mathrm{~mm}$ (0.98 in)
$12-500 \mathrm{~mm}(19.7 \mathrm{in})$
$13-630 \mathrm{~mm}(24.8 \mathrm{in})$
$14-760 \mathrm{~mm}$ (30 in)
$15-68 \mathrm{~mm}$ (2.7 in)
16-137 mm (5.4 in)
$17-103 \mathrm{~mm}(4.1 \mathrm{in})$
18-204 mm (8 in)
$19-117.5 \mathrm{~mm}$ (4.6 in)
20-34 mm (1.3 in)
$21-22 \mathrm{~mm}$ (0.87 in)

ELECTRICAL INSTALLATION

Wiring Guidelines

NOTICE

Risk of damage to VFD, or malfunction can occur.
Follow all wire routing and grounding instructions carefully. Inductive currents caused by parallel wiring, or close proximity between high voltage and control wiring can cause unexpected behaviors.

- Do not run input power and motor wires in the same conduit.
- Do not run motor wires from multiple VFDs in common conduit.
- Do not run control wiring parallel with high voltage wiring.
- Do not run VFD wiring parallel with building or facility wiring.
- Do not use aluminum wires for VFD connections.
- Do not install power factor correction capacitors, surge suppressors, or RFI filters on the VFD output.
- Do not install a magnetic contactor or disconnect in the motor circuit.
- Do not leave wire fragments, metal shavings or other metal objects inside the VFD.
- Improper splicing or damage to motor cable insulation may expose the conductor(s) to moisture and can produce motor cable failure.
- For retrofit application, check the integrity of power and motor leads. This requires measuring the insulation resistance with a suitable megohm-meter.

1. Mount the drive as close as possible to the service entrance panel. Connect directly to the service entrance, not to a sub-panel.
2. Use a dedicated branch circuit for the drive. Verify that the circuit is equipped with a properly-sized circuit breaker or fuse.
3. Separate input power and motor wiring by at least 8 in. $(20.3 \mathrm{~cm})$.
4. Cross over other branch circuits and facility wiring at a 90° angle. If necessary to run wires in parallel, separate by at least 8 in. (20.3 cm).
5. All control wiring-sensors, switches, transducers, etc.-should be in a separate conduit routed individually, not parallel, from high voltage wiring. In addition, any shielded cables should be properly grounded.
6. Treat Open-Delta power configuration (two-transformer utility bank) as single-phase power and size VFD and power wiring accordingly.
7. Install a line reactor for VFDs in pump systems with dedicated service transformer to protect VFD from transient power surges and provide some degree of harmonics distortion mitigation.

Wiring Guidelines

Branch Circuit Protection

Integral solid-state short circuit protection does not provide branch circuit protection. Branch Circuit Protection must be provided in accordance with the National Electrical Code (NEC) and applicable local codes; or equivalent as determined by Authorities Having Jurisdiction (AHJ). The drive shall be protected by Listed Class J fuses, listed inverse-time circuit breakers, or Franklin Electric Manual Motor Starters.

Short-circuit current rating (SCCR): The drive is suitable for use on a circuit capable of delivering not more than 100,000 symmetrical amperes (rms) when protected by suitable Class J fuses. Rated fuse current shall be maximum 3 times the motor output full-load current (FLA) rating. Rated circuit breaker current shall be maximum 2.5 times the motor output FLA rating when using polyphase AC motors. For all other motors, refer to NEC Sec 430 and the Franklin Electric Aim Manual. When protected by a circuit breaker and placed in a panel, drive SCCR is as follows:

VFD Output Rating	Short Circuit Rating
Up to $50 \mathrm{HP}(0$ to 37.3 kW$)$	5,000 Amperes (rms)
51 to $200 \mathrm{HP}(39$ to 149 kW$)$	10,000 Amperes (rms)
201 to $400 \mathrm{HP}(150$ to 298 kW$)$	18,000 Amperes (rms)
401 to $600 \mathrm{HP}(299$ to 447 kW$)$	20,000 Amperes (rms)
601 to $900 \mathrm{HP}(448$ to 671 kW$)$	42,000 Amperes (rms)

Fuse and Circuit Breaker Sizing

See the table below for maximum current ratings of fuses and circuit breakers per NEC.
NOTE: Follow local or regional regulations for specific requirements.

ELECTRICAL INSTALLATION
Wiring Guidelines

Model		Input Current		Class J Fuse Size	Breaker Size
		Constant Torque	Variable Torque		
$\begin{gathered} 380 \mathrm{~V} \\ \vdots \\ 480 \mathrm{~V} \end{gathered}$	CXD-003A-4V	3.5 A	4.3 A	10 A	10 A
	CXD-004A-4V	4.3 A	6.0 A	10 A	10 A
	CXD-005A-4V	5.9 A	8.1 A	15 A	15 A
	CXD-008A-4V	8.7 A	12.4 A	25 A	25 A
	CXD-010A-4V	14 A	16 A	30 A	30 A
	CXD-013A-4V	15.5 A	20 A	40 A	40 A
	CXD-018A-4V	17 A	22 A	40 A	40A
	CXD-024A-4V	20 A	26 A	50 A	50 A
	CXD-032A-4V	25 A	35 A	60 A	60 A
	CXD-038A-4V	35 A	42 A	75 A	75 A
	CXD-045A-4V	40 A	50 A	100 A	100 A
	CXD-060A-4V	47 A	66 A	125 A	125 A
	CXD-073A-4V	63 A	80 A	150 A	150 A
	CXD-091A-4V	74 A	91 A	175 A	175 A
	CXD-110A-4V	101 A	110 A	250 A	250 A
	CXD-150A-4V	114 A	150 A	300 A	300 A
	CXD-180A-4V	157 A	180 A	300 A	300 A
	CXD-220A-4V	167 A	220 A	400 A	400 A
	CXD-260A-4V	207 A	260 A	500 A	500 A
	CXD-310A-4V	240 A	310 A	600 A	600 A
	CXD-370A-4V	300 A	370 A	600 A	600 A
	CXD-460A-4V	380 A	460 A	800 A	800 A
	CXD-530A-4V	400 A	530 A	1000 A	1000 A
	CXD-616A-4V	494 A	616 A	1200 A	1200 A
	CXD-683A-4V	555 A	683 A	1350 A	1350 A
	CXD-770A-4V	625 A	770 A	1500 A	1500 A
	CXD-930A-4V	866 A	930 A	1600 A	2000 A
$\begin{aligned} & 575 \mathrm{~V} \\ & 600 \mathrm{~V} \end{aligned}$	CXD-003A-6V	3.1 A	3.8 A	7 A	7 A
	CXD-004A-6V	4.5 A	5.4 A	10 A	10 A
	CXD-006A-6V	7.2 A	10.2 A	15 A	15 A
	CXD-009A-6V	12.3 A	14.9 A	25 A	25 A
	CXD-012A-6V	15 A	16.9 A	32 A	32 A
	CXD-018A-6V	18 A	21.3 A	50 A	50 A
	CXD-024A-6V	22.8 A	26.3 A	63 A	63 A
	CXD-030A-6V	29 A	36 A	70 A	70 A
	CXD-036A-6V	36 A	43 A	80 A	80 A
	CXD-045A-6V	43 A	54 A	100 A	100 A
	CXD-054A-6V	54 A	65 A	100 A	100 A
	CXD-067A-6V	65 A	81 A	125 A	125 A
	CXD-086A-6V	66 A	84 A	175 A	175 A
	CXD-104A-6V	84 A	102 A	200 A	200 A
	CXD-125A-6V	102 A	122 A	250 A	250 A
	CXD-150A-6V	122 A	147 A	300 A	300 A

Model		Input Current		Class J Fuse Size	Breaker Size
		Constant Torque	Variable Torque		
$\begin{gathered} 575 \mathrm{~V} \\ \text { ! } \\ 690 \mathrm{~V} \end{gathered}$	CXD-180A-6V	148 A	178 A	350 A	350 A
	CXD-220A-6V	178 A	217 A	400 A	400 A
	CXD-290A-6V	222 A	292 A	450 A	450 A
	CXD-350A-6V	292 A	353 A	500 A	500 A
	CXD-430A-6V	353 A	454 A	700 A	700 A
	CXD-465A-6V	388 A	469 A	800 A	800 A
	CXD-590A-6V	504 A	595 A	1250 A	1250 A
	CXD-675A-6V	681 A	681 A	1400 A	1400 A

Wire Sizing

Size power wire to maintain a voltage drop less than 2\% at VFD or motor terminals.
Frame A: Use only copper conductors rated for at least $75^{\circ} \mathrm{C}$ and 600 V . Use cable with a $90^{\circ} \mathrm{C}$ rating if ambient environment is greater than $50^{\circ} \mathrm{C}$.

Frame B and above: Use only copper conductors rated for at least $75^{\circ} \mathrm{C}$ and 600 V . Use cable with a $90^{\circ} \mathrm{C}$ rating if ambient environment is greater than $40^{\circ} \mathrm{C}\left(30^{\circ} \mathrm{C}\right.$ for models CXD-061A-2V, CXD-105A-2V, CXD-370A-4V, or CXD-930A-4V).

460 and 575 V applications: Install a load (output) reactor to protect motor windings if distance from VFD to a motor is in the range 45-100 feet. Install output dV/dt filter for a range 100-1000 feet (800 feet for submersible pumps) or a sine wave filter for greater distances.

Motor Cable Lengths for Submersible Pumping Applications

Refer to the Franklin Electric AIM Manual for wire gauge and distance information.
NOTE: Output reactors or filters are not required for 200/230V applications.

Suggested Maximum Motor Cable Lengths for Non-Submersible Applications

NOTE: Output reactors or filters are not required for 200/230V applications.

	Model	Without output reactor	With output reactor	With dV/dt Filter
$\begin{aligned} & 380 \mathrm{~V} \\ & 1 \\ & 480 \mathrm{~V} \end{aligned}$	CXD-003A-4V	13.7 m (45 ft)	30.5 m (100 ft)	$305 \mathrm{~m}(1000 \mathrm{ft})$
	CXD-004A-4V			
	CXD-005A-4V			
	CXD-008A-4V			
	CXD-010A-4V			
	CXD-013A-4V			
	CXD-018A-4V			
	CXD-024A-4V			
	CXD-032A-4V			
	CXD-038A-4V			
	CXD-045A-4V			
	CXD-060A-4V			
	CXD-073A-4V			
	CXD-091A-4V			
	CXD-110A-4V			
	CXD-150A-4V			
	CXD-180A-4V			
	CXD-220A-4V			
	CXD-260A-4V			
	CXD-310A-4V			
	CXD-370A-4V			
	CXD-460A-4V			
	CXD-530A-4V			
	CXD-616A-4V			
	CXD-683A-4V			
	CXD-770A-4V			
	CXD-930A-4V			

ELECTRICAL INSTALLATION

Wiring Guidelines

Power Wiring Connections

AWARNING

Contact with hazardous voltage could result in death or serious injury.

- Disconnect and lock out all power before installing or servicing equipment.
- Always check if $D C$ bus charge LED is off and $D C$ voltage on the terminals $D C(+1)$ and $D C(-)$ is less than 3OVDC before working on VFD wiring. The DC bus capacitors may hold high-voltage charge for several minutes after the VFD power is disconnected.
- Connect the motor, the drive, metal plumbing, and all other metal near the motor or cable to the power supply ground terminal using wire no smaller than motor cable wires.
- All wiring must comply with the National Electrical Code and local codes.

NOTICE

Risk of damage to VFD, or malfunction can occur.

- Do not connect input power to VFD output terminals U, V, and W otherwise VFD can be damaged.
- Ensure that the system is properly grounded all the way to the service entrance panel. Improper grounding may result in loss of voltage surge protection and interference filtering.
- Do not connect any wires except dynamic braking resistor to (B 1) and (B2) terminals.
- Do not remove the jumper between terminals (2+) and (1+) except for dynamic braking unit or DC link choke, otherwise the VFD can be damaged.
- When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200 mA or above and not less than 0.1-second operation time to avoid nuisance tripping.

Power Wiring Diagram

1. Branch Protection, Power
2. VFD
3. Motor
4. Ground Terminals
5. Power input terminals
6. Output to Motor terminals
7. Jumper (optional DC reactor, dynamic brake or DC choke unit)
8. Optional brake resistor terminals

Use ring type terminals for the VFD power wiring.
Power line ground and motor ground wires should be connected to designated ground terminals.
Three-phase power, including Open-Delta, must be connected to the $R(L 1), S(L 2)$, and $T(L 3)$ terminals.
Proper phase sequencing is not required.

- For single-phase power, connect L 1 to R and L 2 to S terminals.
- G and H frame VFDs have double-pole power terminals or lugs to accommodate two smaller gauge wires.

Connect three-phase motor wires to the $\mathrm{U}(\mathrm{T} 1), \mathrm{V}(\mathrm{T} 2)$, and $\mathrm{W}(\mathrm{T} 3)$ terminals. When in forward rotation, the motor shaft should turn clockwise when viewed from the motor to the load. If rotation is not correct, reverse any two motor leads.

ELECTRICAL INSTALLATION

Power Wiring Connections
Frame A: Power terminals accept wire sizes up to 8 AWG and should be tightened to a torque of 17.4 in-lbs (1.96 Nm).

Frame B: Power terminals accept wire sizes up to 4 AWG and should be tightened to a torque of 30.4 in-lbs (3.43 Nm).
Frame C: Power terminals accept wire sizes up to $1 / 0$ AWG and should be tightened to a torque of 69.4 inlbs (7.84 Nm).
Frame D0: Power terminals accept wire sizes up to 2/0 AWG and should be tightened to a torque of 69.4 inlbs (7.84 Nm).

Frame D: Power terminals accept wire sizes up to 300 MCM or 4/0 AWG and should be tightened to a torque of 156 in-lbs (18 Nm).
Frame E: Power terminals accept wire sizes up to $4 / 0$ AWG*2 and should be tightened to a torque of 174 inlbs (20 Nm).

Frame F: Power terminals accept wire sizes up to $300 \mathrm{MCM}^{*} 2$ or $4 / 0 \mathrm{AWG}$ *2 and should be tightened to a torque of 156 in-lbs (18 Nm).

Frame G: Terminals R, S \& T accept wire sizes up to $250 \mathrm{MCM}^{*} 4$ and should be tightened to a torque of 156 in-lbs (18 Nm). Terminals U, V, \& T accept wire sizes up to $500 \mathrm{MCM} * 2$ and should be tightened to a torque of 354 in-lbs (40 Nm).

Frame H: Power terminals accept wire sizes up to $350 \mathrm{MCM}^{*} 4$ and should be tightened to a torque of 156 inlbs (18 Nm).

Control Circuit Connections

Terminal Identification

The control board is divided into 5 groups of terminals and connectors, plus a group of micro switches that control individual terminal configurations.

- Always insulate bare control or shield wires with shrink tubing or electrical tape to prevent short circuit.
- The ideal length of stripped wire for control terminals is 5 mm .

1. Analog Inputs/Outputs - These connections are used for transducers, sensors, and control systems such as a BAS, BMS, or PLC. Use shielded cable with shield connected to the ground $\stackrel{\perp}{=}$ terminal. Terminals accept 26~16 AWG ($0.13 \sim 1.3 \mathrm{~mm}^{2}$) wires, and should be tightened to a torque of $1.73 \mathrm{lb}-\mathrm{in}$ (0.19 Nm).

- ACI is a 0-10 VDC or 4-20 mA input, adjustable by micro switcc. Set [IO-00] to match the switch setting. Default $=4-20 \mathrm{~mA}$.
- AVII is a 0-10 VDC or 4-20 mA input, adjustable by micro switch. Set [10-05] to match the switch setting. Default $=0-10 \mathrm{~V}$.
- AVI2 is a 0-10VDC input.

When an input source has been connected, select the appropriate terminal in either Auto Speed Ref [SET-07], Hand Speed Ref [SET-09], or PID F/B Source [SET-18].

- AFM1 \& AFM2 are programmable, multi-function analog outputs. Refer to [I0-59] and [I0-61] for options. Each output can be set by micro switch to $0-10 \mathrm{~V}(\min \operatorname{load} 5 \mathrm{k} \Omega$ at 2 mA$)$ or $0 / 4-20 \mathrm{~mA}$ (max load 500Ω).
- +10V terminal (with common ACM) provides a +10 VDC 50 mA power supply for input devices.
- ACM terminals are the common for analog inputs, outputs and +10 VDC power supply. All ACM terminals are connected internally.
IMPORTANT: DCM and ACM terminals are isolated from each other and from the ground. Do not connect these terminals to earth ground, which can cause electrical noise in control circuits and unstable VFD operation.

2. Digital Inputs \& RS-485 Communication - These connections provide input for a wide selection of switches or programmable controls. Use shielded cable or twisted wires for 24 VDC digital control circuits wiring and separate these wires from the main power and motor wiring and other high voltage circuits. Terminals accept wire sizes from $26 \sim 16$ AWG ($0.2 \sim 1.5 \mathrm{~mm}^{2}$), and should be tightened to a torque of 6.9 lb -in (0.78 Nm).

NOTES:

- Digital inputs are configured for NPN (Sink) mode by default, with a jumper across +24 and COM terminals. Refer to "NPN and PNP Digital Inputs Configuration" on page 46.
- All digital inputs can be re-programmed from Normally Open to Normally Closed.
- Digital inputs are activated by voltage 11 VDC or greater. Maximum input voltage rating is 27 VDC at 3.5 mA .
- MII-MI8 are programmable, multi-function digital inputs that can be used for a variety of switching features with common terminal DCM. Refer to [10-21] through [10-28] for options.
- FWD \& REV are dedicated Forward and Reverse run commands. If any digital input is programmed for FWD or REV, corresponding dedicated FWD or REV input will be disabled automatically.
- SG+, SG-, \& SGND are RS485 communication terminals for PLC, Modbus, or BACnet. Use [PLC-23] to set the com type. Termination resistance is controlled by micro switch. Set the 485 switch to the Down position to connect 120Ω termination resistance for long distance or for an electrically noisy environment.
- +24 terminal provides 24 VDC (with DCM common) 50 mA power for digital control circuits and 150 mA for external transducers.
- COM terminal is a digital inputs common. By default, it is connected by jumper to +24 to configure NPN (Sink) mode.
- DCM is the internal 24 VDC power supply common.
- \quad Earth ground. Use this terminal to connect shield wires.

IMPORTANT: DCM and ACM terminals are isolated from each other and from the ground. Do not connect these terminals to earth ground, which can cause electrical noise in control circuits and unstable VFD operation.
3. Relay Outputs - These are configurable, multi-function, dry contact relays. Refer to [[0-47] through [I0-49] for options. Terminals accept wire sizes from 26~16 AWG ($0.2 \sim 1.5 \mathrm{~mm}^{2}$), and should be tightened to a torque of $4.3 \mathrm{lb}-\mathrm{in}(0.49 \mathrm{Nm})$.

- Relays ratings are 1.25 A at 250 VAC , or 3 A at 30 VDC .
- RA1-RB1-RC1 is a single-pole, double throw relay. RA1-RC1 is N.O. (normally open), and RB1-RC1 is N.C. (normally closed).
- RA2-RC2 and RA3-RC3 are independent single pole, single throw, normally open relays.

4. Safety Off Inputs - These connections provide emergency stop control from an external system. By default, the inputs are closed through jumper wires, allowing the drive to run.
5. RJ-45 Sockets - These connections are communication terminals for PLC, Modbus, or BACnet. Use [PLC-23] to set the Com Type. Then set both Speed Reference and Run Command to RS485. Both RJ-45 sockets are connected internally.

Example Configurations

4-20mA Speed Control Signal from an External BMS or PLC:

- Connect the BMS or PLC output signal to the ACI or AVII terminal. The ACI micro switch should be in the UP position. If using the AVII terminal, the AVI1 micro switch should be Down.
- Connect the BMS Com wire to the ACM terminal (signal ground).
- Any shield wire should be connected to $\stackrel{\perp}{=}$ Earth ground.
- ACI Input Select [10-00] or AVII Input Select [10-05] should be set to the correct signal type.
- Auto Speed Reference [SET-07] should be set to the chosen input.

0-10V Speed Control Signal from an External BMS or PLC:

- Connect the BMS or PLC output signal to the AVII, AVI2, or ACI terminal. The AVII micro switch should be in the UP position. If using the ACI terminal, the ACl micro switch should be DOWN.
- Connect the BMS Com wire to the ACM terminal (signal ground).
- Any shield wire should be connected to \perp Earth ground.
- AVII Input Select [10-05] or ACI Input Select [10-00] should be set to 0-10V.
- Auto Speed Reference [SET-07] should be set to the chosen input.

4-20mA Transducer with VFD 10 VDC Power:

- Connect the transducer positive (Ppower) wire to the VFD +10 V terminal.
- Connect the transducer output (Out) wire to the ACI or AVII terminal. The ACI micro switch should be in the UP position. If using the AVII terminal, the AVII micro switch should be DOWN.
- Any shield wire should be connected to $\xlongequal[=]{\perp}$ Earth ground.
- ACI Input Select [10-00] or AVII Input Select [10-05] should be set to the correct signal type.

- Auto Speed Reference [SET-07] should be set to PID Output, PID Feedback Source [SET-18] should be set to the chosen input, and PID Feedback Units [SET-19] should be set to the appropriate scale (psi, temp, flow, etc.).

4-20mA Transducer with VFD 24 VDC Power:

- Connect the transducer positive (Power) wire to the VFD +24 V terminal.
- Connect the transducer output (Out) wire to the ACI or AVII terminal. The ACI micro switch should be in the UP position. If using the AVII terminal, the AVII micro switch should be DOWN.
- Use a jumper wire to connect the ACM and DCM terminals.
- Any shield wire should be connected to \perp Earth ground.
- ACI Input Select [10-00] or AVII Input Select [10-05] should be set to the correct
 signal type.
- Auto Speed Reference [SET-07] should be set to PID Output, PID Feedback Source [SET-18] should be set to the chosen input, and PID Feedback Units [SET-19] should be set to the appropriate scale (psi, temp, flow, etc.).

ELECTRICAL INSTALLATION

Control Circuit Connections

4-20mA Transducer with External 24 VDC Power:

- Connect the transducer positive (Power) wire to the external source positive [+24V]. Connect the external source negative to the VFD ACM terminal.
- Connect the transducer output (Out) wire to the ACI or AVII terminal. The ACI micro switch should be in the UP position. If using the AVI1 terminal, the AVII micro switch should be DOWN.
- Any shield wire should be connected to \doteq Earth ground.

- ACI Input Select [IO-00] or AVII Input Select [10-05] should be set to the correct signal type.
- Auto Speed Reference [SET-07] should be set to PID Output, PID Feedback Source [SET-18] should be set to the chosen input, and PID Feedback Units [SET-19] should be set to the appropriate scale (psi, temp, flow, etc.).

0-10VDC Transducer with VFD 10 VDC Power:

- Connect the transducer positive (Power) wire to the VFD +10 V terminal.
- Connect the transducer output (Out) wire to the AVII, AVI2, or ACI terminal. The AVII micro switch should be in the UP position. If using the ACI terminal, the ACI micro switch should be DOWN.
- Connect the transducer Com wire to the ACM terminal (signal ground).
- Any shield wire should be connected to \perp Earth ground.
- AVII Input Select [10-05] or ACI Input Select [10-00] should be sset to 0-10V.

- Auto Speed Reference [SET-07] should be set to PID Output, PID Feedback Source [SET-18] should be set to the chosen input, and PID Feedback Units [SET-19] should be set to the appropriate scale (psi, temp, flow, etc.).

0-10VDC Transducer with VFD 24 VDC Power:

- Connect the transducer positive (Power) wire to the VFD +24 V terminal.
- Connect the transducer output (Out) wire to the AVII, AVI2, or ACI terminal. The AVII micro switch should be in the UP position. If using the ACI terminal, the ACI micro switch should be DOWN.
- Connect the transducer Com wire to the ACM terminal (signal ground).
- Use a jumper wire to connect the ACM and DCM terminals.
- Any shield wire should be connected to $\stackrel{\perp}{=}$ Earth ground.

- AVII Input Select [10-05] or ACI Input Select [10-00] should be set to 0-10V.
- Auto Speed Reference [SET-07] should be set to PID Output, PID Feedback Source [SET-18] should be set to the chosen input, and PID Feedback Units [SET-19] should be set to the appropriate scale (psi, temp, flow, etc.).

0-10VDC Transducer with External 24 VDC Power:

- Connect the transducer positive (Power) wire to the external source positive [+24V].
- Connect the transducer Com wire to the external source negative.
- Connect the transducer output (Out) wire to the AVII, AVI2, or ACI terminal. The AVI1 micro switch should be in the UP position. If using the ACI terminal, the ACI micro switch should be DOWN.
- Any shield wire should be connected to \perp Earth ground.

- AVII Input Select [10-05] or ACI Input Select [10-00] should be set to 0-10V.
- Auto Speed Reference [SET-07] should be set to PID Output, PID Feedback Source [SET-18] should be set to the chosen input, and PID Feedback Units [SET-19] should be set to the appropriate scale (psi, temp, flow, etc.).

Temperature Protection or PID Control with PT-100 or PTC Sensor:

- Connect the sensor Positive wire to the AFM2 terminal. Place the AFM2 micro switch in the DOWN position.
- Connect the sensor Negative wire to the ACM terminal.
- Use a jumper wire to connect the AFM2 and AVII terminals. The AVII micro switch should be in the UP position.
- Any shield wire should be connected to $\stackrel{\perp}{=}$ Earth ground.

For specific parameter setups, please call Technical Support.

Speed Control using 0-10 VDC Potentiometer:

- Connect the potentiometer Positive wire to the VFD +10 V terminal.
- Connect the potentiometer Output wire to the AVII, AVI2, or ACI terminal. The AVII micro switch should be in the UP position. If using the ACI terminal, the ACl micro switch should be DoWN.
- Connect the potentiometer Com wire to the ACM terminal (signal ground).
- Any shield wire should be connected to \perp Earth ground.
- AVII Input Select [0-05] or ACI Input Select [10-00] should be set to 0-10V.
- Auto Speed Reference [SET-07] or Hand Speed Reference [SET-09] should be set to the chosen input.

PT-100 or PTC Thermistor Temperature Sensor

NPN and PNP Digital Inputs Configuration

Cerus X-Series drive control can be configured to Sink (NPN) or Source (PNP) modes by providing proper wiring and installing/removing jumper on terminals +24 , COM and DCM.

The picture above shows four possible digital inputs configurations:

1. Sink (NPN) mode with internal 24VDC power source (Default). Install jumper between +24 and COM terminals. Connect dry contact or NPN transistor output from external control device to desired digital input and DCM terminals. When contact is closed or transistor is in conducting state, digital input will be activated by internal power supply.
2. Source (PNP) mode with internal 24VDC power source. Install jumper between DCM and COM terminals. Connect dry contact or PNP transistor output from external control device to desired digital input and +24 terminals. When contact is closed or transistor is in conducting state, digital input will be activated by internal power supply.
3. Sink (NPN) mode with external 24VDC power source. Remove any jumpers between +24 and COM or DCM and CM terminals. Connect positive terminal of external power supply to COM terminal. Connect dry contact or NPN transistor output from external control device to desired digital input and negative terminal of external power supply. When contact is closed or transistor is in conducting state, digital input will be activated by external power supply.
4. Source (PNP) mode with external 24VDC power source. Remove any jumpers between +24 and COM or DCM and CM terminals. Connect negative terminal of external power supply to COM terminal. Connect dry contact or PNP transistor output from external control device to desired digital input and positive terminal of external power supply. When contact is closed or transistor is in conducting state, digital input will be activated by external power supply.

DRIVE PROGRAMMING

Using the Keypad

Home Screen Display Options

1. Operating Status

Run/Stop
Limit by PID 2
Ctrl by PID 2
Stopped by AI
Backspin Timer
Lubrication
Limit by Level
Limit by Temp Stall
2. Command Source

K = Keypad
T = Terminal control
R $=$ RS485
$0=$ Option board

3. Frequency Source

K = Keypad/PID
V 1 = from AV1
V2 = from AV2
$\mathrm{C}=$ from ACl
$\mathrm{R}=\mathrm{RS} 485$
$0=$ Option board
1-15 = Step speed
$\mathrm{J}=\mathrm{Jog}$ frequency

4. User Selectable Display Line 1. Use Arrow and Enter keys to step through selections and to change setpoints.
$\mathrm{H}=$ Output speed when running (Hz).
P = PID Setpoint in application based units (PSI, inWC, etc.) [SET-2l]. This is adjustable using the keypad.
F = Keypad Speed Reference (Hz) when SET-07 or SET-09 is set to Keypad. This is adjustable using the keypad.
5. User Selectable Display Line 2. Other options available through [VFD-48].
6. User Selectable Display Line 3. Use Arrow keys to step through choices. This display corresponds to choices in [SET-57].

Setting Operating Parameters

Enter Required Parameters Before Starting VFD

1. Application [SET-00]: Use the keypad to select the type of application the drive will control. When a selection has been made, application related parameters will be automatically updated to proper defaults. Enter the following parameters to ensure best performance for the specific installation.
NOTE: The BASIC application provides standard VFD control with start/stop command from keypad and speed reference from a remote analog signal. For systems using a transducer or other control sensors, choose the relevant motor type to ensure that correct defaults are set.

Main Menu

Param Groups

 A00:SET01:VFD 02:10

NOTE: When using a MagForce or other permanent magnet motor application, refer to "Operation with Permanent Magnet Motors" on page 79.
2. Input Phase [SET-01]: Verify that the setting matches the type of power supply - 3phase (default).
3. Motor Horsepower [SET-02]: Enter the rated horsepower from the motor nameplate.
4. Motor FLA (SFA) [SET-03]: Enter the FLA (Full Load Amps) rating from the motor nameplate; or, enter SFA (Service Factor Amps) if using a submersible pump motor.
5. Motor RPM [SET-04]: Enter the rated motor RPM from the motor nameplate.
6. Motor Voltage [SET-05]: Enter the rated voltage from the motor nameplate.

Set Menu

SET $00-00$
Application Sel
Input Phase
Motor HP

Verify Default Settings

After the initial parameters have been entered, the following default settings should be checked and adjusted to ensure expected operation. Refer to the "Default Settings Tables" on page 50 for a list of automatically populated settings per application.

1. VFD Max Freq [VFD-00]: The highest frequency (speed) allowable. If running a MagForce pump, this should be set to the calculated electrical frequency corresponding to the target pump RPM. Refer to "Setup MagForce Pump Motor" on page 80.
2. VFD Base Freq [VFD-02]: This should be set to the motor nameplate frequency rating.
3. Auto Speed Ref [SET-07]: Select the source of frequency (speed) setpoint the drive will use when in Auto mode.

- When using one of the analog inputs with an automated BAS, BMS, or PLC system, be sure to configure the terminal for the correct impedance. Refer to "Terminal Identification" on page 41.
- When using feedback from an analog sensor, such as a transducer, select PID Output. When PID mode is selected, additional parameters must be verified for setpoints, inputs, and limits.
- When set to Keypad, the drive will run at the Keypad Speed Reference (F on display).

4. Auto Run Command [SET-08]: Select the source of RUN command when VFD is in Auto Mode-Keypad or external.
5. Hand Speed Ref [SET-09]: Select the source of frequency (speed) setpoint the drive will use when in Hand mode. PID is disabled in Hand mode. Be sure to configure any selected input terminals for the correct impedance.

- When set to Keypad, the drive will run at the Keypad Speed Reference (F on display).

6. Hand Run Command [SET-10]: Select the source of RUN command when VFD is in Hand Mode-Keypad or external.
7. Acceleration Time [SET-11]: Enter a time in seconds for drive to ramp up from stop to maximum frequency. Recommended defaults are 2 seconds for submersible pump motors and 20 seconds for most other applications. Additional acceleration curves can be added for more precise control through selected frequency ranges. Refer to "Acceleration/Deceleration Control" on page 71.
8. Deceleration Time [SET-12]: Enter a time in seconds to slow down from maximum frequency to stop. Recommended defaults are 2 seconds for submersibles and 30 seconds for surface/boost pumps. This setting is only effective when Stop Mode [SET-16] is set to Decelerate. Additional deceleration curves can be added for more precise control through selected frequency ranges. Refer to "Acceleration/Deceleration Control" on page 71.
9. Low Frequency Limit [SET-13]: The lowest frequency (speed in Hz) allowed by the VFD in any mode.
10. High Frequency Limit [SET-14]: Enter the highest frequency (speed in Hz) allowed by the VFD in any mode.
11. PID Mode [SET-17]: Enables or disables PID control, either direct or inverse.
12. PID Feedback Source [SET-18]: Selects an input terminal for PID Feedback source. Be sure to configure the terminal for the correct impedance.
13. PID Feedback Unit [SET-19]: Selects a measurement unit for PID feedback.
14. Feedback Max [SET-20]: Enter the maximum reading of the feedback source. This is used to scale the sensor. For example: if using a 0-200 psi transducer, enter 200.
15. PID Setpoint [SET-21]: Enter the desired value for the drive to maintain in PID mode, running in Auto. This parameter can also be changed through keypad control.
16. PID Low Frequency Limit [SET-22]: PID frequency output will be limited to this value.
17. PID High Frequency Limit [SET-23]: PID frequency output will be limited to this value.
18. Language: Select a desired language for the display. Press the Menu button and then press the Back button. Use the Down keys to display Set Language.
19. Clock: Set current time and date. This setting is used to record real-time data for faults, parameter changes, etc. Press the Menu button and then press the Back button. Use the Down keys to display Set Time.

Verify Control Terminal Settings

For each type of control hardware that has been connected to the system-sensors, switches, BAS, etc., make sure that the matching function parameters have been identified for the input terminals. For more information, refer to "Example Configurations" on page 43 or to "Parameter Descriptions > $1 / 0$ Menu" on page 122.

Enter or Verify Optional Settings

If using any of the optional features available in the system, make sure that all related parameters are set for the desired operation. Refer to the application descriptions in "Operation" on page 63 for information about these features:

- Automation features: Refer to "Standard Operation with an Automated Control System" on page 66.
- Protection features: Refer to "Protection Features" on page 75.
- Communications features: Refer to "Communications" on page 85.
- Multi-Motor applications: Refer to "Multi-Motor (MMC) Relay Control for Pump Applications" on page 84.

For more details on individual parameter settings, refer to "Parameter Reference Tables" on page 115.

Default Settings Table - SET Menu

Parameters in highlighted rows are reset when the application is changed [SET-00].

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	$\begin{aligned} & \text { Vacuum } \\ & \text { Pump } \end{aligned}$	Constant Torque	PM Motor	MagForce
SET-01	Input Phase	3-Phase									
SET-02	Motor HP	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	By VFD Rating	By VFD Rating	By VFD Rating	By VFD Rating	By VFD Rating	By VFD Rating	By VFD Rating
SET-03	Motor FLA (SFA)	By VFD Rating									
SET-04	Motor RPM	1750	1750	1750	1750	1750	3450	1750	1750	3450	3600
SET-05	Motor Voltage	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	By VFD Rating	$\begin{aligned} & \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{gathered} \text { By VFD } \\ \text { Rating } \\ \hline \end{gathered}$
SET-06	Carrier Frequency	2 kHz									
SET-07	Auto Speed Ref	ACl Analog	PID Output	ACI Analog	ACI Analog	PID Output					
SET-08	Auto Run Cmd	Digital Inpt	Keypad								
SET-09	Hand Speed Ref	Keypad									
SET-10	Hand Run Cmd	Keypad									
SET-11	Accel Time	20 Sec	2 Sec	20 Sec	20 Sec	20 Sec	2 Sec				
SET-12	Decel Time	30 Sec	2 Sec	30 Sec	30 Sec	30 Sec	2 Sec				
SET-13	Low Freq Limit	20 Hz	30 Hz	20 Hz	0 Hz	40 Hz	60 Hz				
SET-14	High Freq Limit	60 Hz	115 Hz	115Hz							
SET-15	Load Rotation	FWD Only	FWD \& REV								
SET-16	Stop Mode	Coast	Coast	Coast	Coast	Decel	Coast	Coast	Decel	Coast	Coast
SET-17	PID Mode	Disable	PID Direct	PID Inverse	PID Inverse	PID Direct					
SET-18	PID F/B Source	ACI	ACI	ACI	ACl	ACl	ACI	ACI	ACI	ACI	ACI
SET-19	PID F/B Unit	PSI	inWC	inWC	${ }^{\circ} \mathrm{F}$	PSI	PSI	inWC	PSI	inWC	PSI
SET-20	PID F/B Max	1PSI	1 inWC	1 inWC	$150^{\circ} \mathrm{F}$	100 PSI	100 PSI	407 inWC	100 PSI	1 inWC	100 PSI
SET-21	PID Setpoint	0.5 PSI	0.5 inWC	0.5 inWC	$76^{\circ} \mathrm{F}$	60 PSI	60 PSI	60 PSI	60 PSI	0.5 inWC	60 PSI
SET-22	PID Lo Hz Limit	20 Hz	30 Hz	20 Hz	20 Hz	40 Hz	60 Hz				
SET-23	PID Hi Hz Limit	60 Hz	115Hz	115 Hz							
SET-24	PID P-Gain	1\%	1\%	1\%	1\%	2\%	2\%	1\%	1\%	1\%	2\%
SET-25	PID I-Time	1 Sec	0.5 Sec	1 Sec	0.5 Sec						
SET-26	Sleep Mode	Disabled	Disabled	Disabled	Disabled	Sleep Only	Sleep Only	Disabled	Disabled	Disabled	Sleep Only
SET-27	Sleep Check Time	10 Sec									
SET-28	Sleep Delay Time	6 Sec									
SET-29	Sleep Boost Value	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%	3\%
SET-30	Sleep Boost Timer	10 Sec									
SET-31	Wake-Up Level	0.5 PSI	0.5 inWC	0.5 inWC	$75{ }^{\circ} \mathrm{F}$	55 PSI	55 PSI	55 inWC	55 PSI	0.5 inWC	55 PSI
SET-32	Sleep Bump Timer	5 Sec									
SET-33	Pipe Fill Timer	0 Min	3 Min								
SET-34	Pipe Fill Exit Level	0.4 PSI	0.4 inWC	0.4 inWC	$74^{\circ} \mathrm{F}$	25 PSI	25 PSI	25 inWC	25 PSI	0.4 inWC	25 PSI
SET-35	Pipe Fill Freq	47 Hz	95 Hz	95 Hz							
SET-36	Broken Pipe Level	0 PSI	0 inWC	OinWC	$0^{\circ} \mathrm{F}$	15 PSI	15 PSI	0 inWC	0 PSI	0.4 inWC	15 PSI
SET-37	Broken Pipe Freq	59.5 Hz	114 Hz	114 Hz							
SET-38	Broken Pipe Delay	180 Sec									
SET-39	OverPress Set	Disabled	Disabled	Disabled	Disabled	OP Auto Reset	OP Auto Reset	Disabled	OP Auto Reset	Disabled	OP Auto Reset
SET-40	Overpressure Lvl	1 PSI	1 inWC	1 inWC	$80^{\circ} \mathrm{F}$	80 PSI	80 PSI	80 inWC	80 PSI	1 inWC	80 PSI
SET-41	Underload Select	By Current	By Torque	By Torque							
SET-42	Underload Level	45\%	45\%	45\%	45\%	45\%	70\%	45\%	45\%	45\%	70\%
SET-43	Underload Freq	30 Hz	59 Hz	30 Hz	20 Hz	40 Hz	60 Hz				
SET-44	Underload Delay	2 Sec									
SET-45	ULD Recovery T	0 Min	0 Min	0 Min	0 Min	30 Min	30 Min	0 Min	0 Min	0 Min	30 Min
SET-46	ULD Recovery Cnt	Read Only									
SET-47	High Load Select	By Current	By Torque	By Torque							

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
SET-48	High Load Level	110\%	110\%	110\%	110\%	110\%	110\%	110\%	150\%	110\%	110\%
SET-49	High Load Freq	20 Hz	30 Hz	20 Hz	20 Hz	40 Hz	60 Hz				
SET-50	High Load Delay	2 Sec	5 Sec								
SET-51	HLD Recovery T	0 Min									
SET-52	HLD Recovery Cnt	Read Only									
SET-53	ACC Change Freq	0 Hz	60 Hz								
SET-54	Second ACC	60 Sec	5 Sec								
SET-55	Second DCC	60 Sec	5 Sec								
SET-56	ACC/DCC Hyster	1 Hz									
SET-57	User Display	PID Feedback	PID Feedback	PID Feedback	$\begin{gathered} \text { PID } \\ \text { Feedback } \end{gathered}$	PID Feedback	$\begin{gathered} \text { PID } \\ \text { Feedback } \end{gathered}$	PID Feedback	PID Feedback	$\begin{gathered} \text { PID } \\ \text { Feedback } \end{gathered}$	$\begin{gathered} \text { PID } \\ \text { Feedback } \end{gathered}$
SET-58	PLC Menu	Disable									
SET-59	ADV2 Menu Hide	Disable									
SET-60	HOA Mode Source	Keypad									

Default Settings Table - VFD Menu

Parameters in highlighted rows are reset when the application is changed [SET-00].

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
VFD-00	VFD Max Freq	60 Hz	115Hz	115 Hz							
VFD-01	VFD Start Freq	0.50 Hz									
VFD-02	VFD Base Freq	60 Hz	120 Hz	120 Hz							
VFD-03	V/F Pattern	Linear									
VFD-04	Step Freq-1	0.0 Hz									
VFD-05	Step Freq-2	0.0 Hz									
VFD-06	Step Freq-3	0.0 Hz									
VFD-07	Step Freq-4	0.0 Hz									
VFD-08	Step Freq-5	0.0 Hz									
VFD-09	Step Freq-6	0.0 Hz									
VFD-10	Step Freq-7	0.0 Hz									
VFD-11	Step Freq-8	0.0 Hz									
VFD-12	Step Freq-9	0.0 Hz									
VFD-13	Step Freq-10	0.0 Hz									
VFD-14	Step Freq-11	0.0 Hz									
VFD-15	Step Freq-12	0.0 Hz									
VFD-16	Step Freq-13	0.0 Hz									
VFD-17	Step Freq-14	0.0 Hz									
VFD-18	Step Freq-15	0.0 Hz									
VFD-19	ACC-2 Time	40 Sec	2 Sec	40 Sec	40 Sec	40 Sec	2 Sec				
VFD-20	DEC-2 Time	40 Sec	2 Sec	40 Sec	40 Sec	40 Sec	2 Sec				
VFD-21	ACC-3 Time	60 Sec									
VFD-22	DEC-3 Time	60 Sec									
VFD-23	ACC-4 Time	30 Sec									
VFD-24	DEC-4 Time	40 Sec									
VFD-25	S Start Time 1	0 Sec									
VFD-26	S Start Time 2	0 Sec									
VFD-27	S End Time 1	0 Sec									
VFD-28	S End Time 2	0 Sec									
VFD-29	Skip Freq 1 High	0.0 Hz									
VFD-30	Skip Freq 1 Low	0.0 Hz									
VFD-31	Skip Freq 2 High	0.0 Hz									
VFD-32	Skip Freq 2 Low	0.0 Hz									

Default Settings Table - I/O Menu

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
VFD-33	Skip Freq 3 High	0.0 Hz									
VFD-34	Skip Freq 3 Low	0.0 Hz									
VFD-35	VFD Duty Select	Variable Torque	Constant Torque	Variable Torque	Variable Torque						
VFD-36	Reset Restart	Enable	Disable	Enable	Enable						
VFD-37	DC Brake CurLvl	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
VFD-38	DC Time at Run	0 Sec									
VFD-39	DC Time at Stop	0 Sec									
VFD-40	DC Stop Frea	0.0 Hz									
VFD-41	Dwell T at Acc	0 Sec									
VFD-42	Dwell Hz at Acc	0.0 Hz									
VFD-43	Dwell T at Dec	0 Sec									
VFD-44	Dwell Hz at Dec	0.0 Hz									
VFD-46	ID Code	Read Only									
VFD-47	VFD Rated Amps	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \end{aligned}$	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	By VFD Rating	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \end{aligned}$	By VFD Rating	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	By VFD Rating	By VFD Rating
VFD-48	Display Select	Frequency Command									
VFD-49	Firmware Version	Read Only									
VFD-50	Disp Filter A	0.1 Sec									
VFD-51	Disp Filter KPD	0.15 Sec	0.1 Sec								
VFD-52	FW Date	Read Only									
VFD-53	Jog ACC Time	20 Sec	2 Sec	20 Sec	20 Sec	20 Sec	2 Sec				
VFD-54	Jog DEC Time	30 Sec	2 Sec	30 Sec	30 Sec	30 Sec	2 Sec				
VFD-55	JOG Frequency	6.0 Hz									
VFD-56	Zero-speed Mode	Standby									
VFD-57	Power-on Start	Enable	Disable	Enable	Enable						

Default Settings Table - I/O Menu

Parameters in highlighted rows are reset when the application is changed [SET-00].

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
10-00	ACI Input Sel	4-20mA									
10-01	ACI Loss Trip	Decel Stop									
10-04	ACI Filter T	0.1 Sec	0.15 Sec	0.1 Sec	0.1 Sec						
10-05	AVII Input Sel	0-10V									
10-09	AVII Filter T	0.2 Sec									
10-10	AVI2 Filter T	0.2 Sec									
10-11	PID Filter Time	0.5 Sec									
10-12	PID Delay Time	0 Sec									
10-13	Al Upper Level	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%
10-14	Al Lower Level	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%
10-20	DI Filter	0.005 Sec									
10-21	M11 Define	Speed-L									
10-22	M12 Define	Speed-M									
10-23	M13 Define	Speed-H									
10-24	M14 Define	Fault Reset									
10-25	M15 Define	E-Stop									
10-26	M16 Define	XCEL-L									
10-27	M17 Define	None									
10-28	M18 Define	None									
10-29	F0 Enable	Disable									
10-30	FO Frequency	60 Hz	115 Hz	115 Hz							

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
10-31	FO Fault Retry	10	10	10	10	10	10	10	10	10	10
10-32	FO Retry Delay	60 Sec									
10-33	FO Mode \& Reset	PID Off Auto	$\begin{aligned} & \text { PID On } \\ & \text { Auto } \end{aligned}$	$\begin{aligned} & \text { PID On } \\ & \text { Auto } \end{aligned}$	PID On Auto	PID On Auto	PID On Auto	$\begin{aligned} & \text { PID On } \\ & \text { Auto } \end{aligned}$	PID Off Auto	PID Off Auto	PID On Auto
10-34	FO PID Setpoint	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
10-35	E-Stop Mode	Coast Stop									
10-36	Damper Mode	Disable	Enable	Enable	Disable						
10-37	Damper T-Delay	60 Sec									
10-38	No-Flow Mode	Disable									
10-39	Prime Time	20 Sec									
10-40	No-Flow Freq	20 Hz	30 Hz	20 Hz	20 Hz	40 Hz	60 Hz				
10-41	Lube/S-Clean	Disable									
10-42	S-Clean Timer	60 Min									
10-43	Pre-Lube Timer	30 Sec									
10-44	Run-Lube Timer	0 Sec									
10-45	Post-Lube Timer	0 Sec									
10-46	DI NO/NC	N.O.									
10-47	Relay RA1	Fault									
10-48	Relay RA2	Run									
10-49	Relay RA3	FDT-4									
10-50	CNT Attained 0	0	0	0	0	0	0	0	0	0	0
10-51	CNT Attained 1	0	0	0	0	0	0	0	0	0	0
10-52	FDT-2 Freq	60 Hz									
10-53	FDT-2 Bandwdth	2.0 Hz									
10-54	FDT-3 Freq	60 Hz									
10-55	FDT-3 Bandwdth	2.0 Hz									
10-56	I Hi/Lo Setting	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
10-57	FDT-4/5 Setting	3.0 Hz									
10-58	Relay NO/NC	N.O.									
10-59	AFM1 Out Select	Output Hz									
10-60	AFM1 Gain	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
10-61	AFM2 Out Select	ACI \%	ACI \%	ACI\%	ACI \%	ACI \%	ACI\%	ACI \%	ACI \%	ACI \%	ACI\%
10-62	AFM2 Gain	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
10-63	AFM1 mA Select	4-20mA									
10-64	AFM2 mA Select	4-20mA	4-20mA	4-20mA	4-20mA	4-20mA	4-20mA	$4-20 \mathrm{~mA}$	4-20mA	4-20mA	4-20mA
10-65	AFM1 Filter Time	0.01 Sec									
10-66	AFM2 Filter Time	0.01 Sec									
10-67	M0 by AI Level	AVII	AVI1	AVII	AVI1	AVII	AVII	AVII	AVII	AVI1	AVII
10-68	Fault Out Opt 1	Disable									
10-69	Fault Out Opt 2	Disable									
10-70	Fault Out Opt 3	Disable									
10-71	Fault Out Opt 4	Disable									
10-72	F0 Bypass	Disable									
10-73	FO Bypass Delay	0 Sec									
10-74	D-Inputs Status	Read Only									
10-75	D-Relays Status	Read Only									
10-77	Spare Max Value	1.0	1.0	1.0	150	200	200	200	200	200	200
10-78	Spare AI Select	AVI1	AVI1	AVI1	AVI1	AVII	AVI1	AVII	AVI1	AVI1	AVI1

Default Settings Table - ADV Menu

Parameters in highlighted rows are reset when the application is changed [SET-00].

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
ADV-00	Upper Bound Int	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
ADV-01	PID Out Limit	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
ADV-02	Password Input	0	0	0	0	0	0	0	0	0	0
ADV-03	Parameter Reset	Disable									
ADV-05	Password Lock	Unlocked									
ADV-06	Acc/Dec Type	Linear									
ADV-07	Acc/Dec Format	Unit 0.1 sec									
ADV-08	Energy Saving	Disable									
ADV-09	EnergySave Gain	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
ADV-10	MMC Mode	Disable									
ADV-11	Motor Quantity	1	1	1	1	1	1	1	1	1	1
ADV-12	Aux Mtr Stop Hz	0	0	0	0	0	0	0	0	0	0
ADV-13	Alt Run Time	720 min									
ADV-14	S-Start ON Dly	1 sec									
ADV-15	S-Start Off Dly	1 Sec									
ADV-16	Mtr Switch Tmr	10 Sec									
ADV-17	Mtr Switch Hz	60 Hz	115 Mz	115 Hz							
ADV-18	Lag Start Freq	59.5 Hz	114 Hz	114 Hz							
ADV-19	Lag Start Delay	10 Sec									
ADV-20	Lag Start Level	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
ADV-21	Lead Freq Drop	10 Hz									
ADV-22	MMC Dec Time	2 Sec									
ADV-23	Lag Stop Freq	35 Hz	50 Hz	70 Hz							
ADV-24	Lag Stop Delay	4 Sec									
ADV-25	Lag Stop Level	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%	0.3\%
ADV-26	Lead Freq Bump	0.0 Hz									
ADV-27	MMC Accel Time	2 Sec									
ADV-28	Power on Delay T	10 Sec									
ADV-29	Run Delay Timer	0 Sec									
ADV-30	Backspin Timer	0 Sec									
ADV-34	Min Run Timer	0 Sec									
ADV-55	AVR Select	Enable									

Default Settings Table - PROT Menu

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
PROT-00	Decel Method	Normal									
PROT-01	Preheat Level	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
PROT-02	Preheat Duty	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
PROT-03	LV Level	By VFD rating									
PROT-04	OV Stall level	By VFD rating									
PROT-05	OV Stall Prevent	Standard									
PROT-06	SW Brake V Lvl	By VFD model									
PROT-07	OCA Level	120%	120%	120%	120%	120%	120%	120%	120%	120%	120%
PROT-08	OCN Level	120%	120%	120%	120%	120%	120%	120%	120%	120%	120%
PROT-10	Auto Restarts	3	3	3	3	3	3	3	3	3	3
PROT-11	AutoRetry Delay	120 Sec									
PROT-12	OL-2 Type	Disable									
PROT-13	OL-2 Level	120%	120%	120%	120%	120%	120%	120%	120%	120%	120%
PROT-14	OL-2 Delay	0.1 Sec									

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
PROT-16	ETH Type	Self Cooled									
PROT-17	ETH Delay	60 Sec									
PROT-18	OH Warn	$105^{\circ} \mathrm{C}$									
PROT-19	PTC Select	Alarm and Run									
PROT-20	PTC Level	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%
PROT-21	OPO Trip	Disable									
PROT-22	OPO Delay	0.5 Sec									
PROT-23	OPO Current	1\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%	1\%
PROT-24	OPO Decel	0 Sec									
PROT-25	LvX Auto Reset	Disable									
PROT-26	IPO Check	0.2 Sec									
PROT-27	IPO Ripple	$\begin{aligned} & \text { By VFD } \\ & \text { voltage } \end{aligned}$	By VFD voltage	$\begin{aligned} & \text { By VFD } \\ & \text { voltage } \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { voltage } \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { voltage } \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { voltage } \end{aligned}$	$\begin{aligned} & \text { By VFD } \\ & \text { voltage } \end{aligned}$	By VFD voltage	$\begin{aligned} & \text { By VFD } \\ & \text { voltage } \end{aligned}$	By VFD voltage
PROT-28	IPO Trip	$\begin{aligned} & \text { Alarm and } \\ & \text { Decel } \end{aligned}$	Alarm and Decel	Alarm and Decel	$\begin{aligned} & \text { Alarm and } \\ & \text { Decel } \end{aligned}$	$\begin{aligned} & \text { Alarm and } \\ & \text { Decel } \end{aligned}$	Alarm and Decel	Alarm and Decel	$\begin{aligned} & \text { Alarm and } \\ & \text { Decel } \end{aligned}$	$\begin{aligned} & \text { Alarm and } \\ & \text { Decel } \end{aligned}$	Alarm and Decel
PROT-29	Derating	Carrier by I_T									
PROT-30	PT100 Level 1	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V
PROT-31	PT100 Level2	7 V	7 V	7 V	7 V	7 V	7 V	7 V	7 V	7 V	7 V
PROT-32	PT100 L-1 Freq	0 Hz									
PROT-33	PT100 L-1 Delay	60 Sec									
PROT-34	Ground Fault Lvl	60\%	60\%	60\%	60\%	60\%	60\%	60\%	60\%	60\%	60\%
PROT-35	G-Fault Delay	0.1 Sec									
PROT-36	STO Alarm Type	$\begin{gathered} \text { STO } \\ \text { Latching } \end{gathered}$	$\begin{gathered} \text { STO } \\ \text { Latching } \end{gathered}$	$\begin{gathered} \text { STO } \\ \text { Latching } \end{gathered}$	$\begin{gathered} \text { STO } \\ \text { Latching } \end{gathered}$	$\begin{gathered} \text { STO } \\ \text { Latching } \end{gathered}$	STO Latching	$\begin{gathered} \text { STO } \\ \text { Latching } \end{gathered}$	$\begin{gathered} \text { STO } \\ \text { Latching } \end{gathered}$	$\begin{gathered} \text { STO } \\ \text { Latching } \end{gathered}$	STO Latching
PROT-37	IPF S-Search	Disable									
PROT-38	Max IPF Time	2 Sec									
PROT-39	SS Current Lmt	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
PROT-40	SS After Fault	Disable									
PROT-42	SS Normal Start	Disable									
PROT-43	Spd Search Gain	40\%	40\%	40\%	40\%	40\%	40\%	40\%	40\%	40\%	40\%
PROT-44	IPF Restart Dly	0.5 Sec									
PROT-45	Fan Control	At power up	At power up	$\begin{gathered} \text { At power } \\ \text { up } \end{gathered}$	At power up						
PROT-46	Last Flt Freq	Read Only									
PROT-47	Last Flt IGBTT	Read Only									
PROT-48	Last Flt Cap T	Read Only									
PROT-49	Last Flt MFI	Read Only									
PROT-50	Last Flt MFO	Read Only									
PROT-51	1st Fault	Read Only									
PROT-52	2nd Fault	Read Only									
PROT-53	3rd Fault	Read Only									
PROT-54	4th Fault	Read Only									
PROT-55	5th Fault	Read Only									
PROT-56	6th Fault	Read Only									
PROT-57	ULD Min Torque	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%
PROT-58	HLD Min Torque	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%	10\%

Default Settings Table - COMM Menu

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifuga IPump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
Comm-00	C0M1 Address	1	1	1	1	1	,	,	1	1	1
Comm-01	COM1 Speed	9.6 Kbps									
Comm-02	COM1 Loss	Disable									
Comm-03	COM1 Loss	0 Sec									
Comm-04	C0M1 Protocol	8, N, 1 RTU	8, N, 1RTU	8, N, 1 RTU	8, N, 1RTU	8, N, 1 RTU	8, N, 1 RTU	8, N, 1 RTU			
Comm-05	Response Delay	2 ms									
Comm-06	Main Frequency	60 Hz									
Comm-07	Block Transfer 1	0000h									
Comm-08	Block Transfer 2	0000h									
Comm-09	Block Transfer 3	0000h									
Comm-10	Block Transfer 4	0000h									
Comm-11	Block Transfer 5	0000h									
Comm-12	Block Transfer 6	0000h									
Comm-13	Block Transfer 7	0000h									
Comm-14	Block Transfer 8	0000h									
Comm-15	Block Transfer 9	0000h									
Comm-16	Block Transfer 10	0000h									
Comm-17	Block Transfer 11	0000h									
Comm-18	Block Transfer 12	0000h									
Comm-19	Block Transfer 13	0000h									
Comm-20	Block Transfer 14	0000h									
Comm-21	Block Transfer 15	0000h									
Comm-22	Block Transfer 16	0000h									
Comm-23	Com Decoding	20xx									
Comm-24	BACnet MAC ID	10	10	10	10	10	10	10	10	10	10
Comm-25	BACnet Speed	38.4 Kbps									
Comm-26	Device ID Lo	10	10	10	10	10	10	10	10	10	10
Comm-27	Device ID Hi	0	0	0	0	0	0	0	0	0	0
Comm-28	Max Address	127	127	127	127	127	127	127	127	127	127
Comm-29	Password	0	0	0	0	0	0	0	0	0	0
Comm-30	Com Card ID	No Card									
Comm-31	Comm Card FW	Read Only									
Comm-32	Product code	Read Only									
Comm-33	Error code	Read Only									
Comm-34	D-Net Card Addr	1	1	1	1	1	1	1	1	1	1
Comm-35	D-Net Speed	500 Kbps									
Comm-36	D-Net Type	Standard									
Comm-37	M-bus IP Type	Static IP									
Comm-38	IP Address 1	0	0	0	0	0	0	0	0	0	0
Comm-39	IP Address 2	0	0	0	0	0	0	0	0	0	0
Comm-40	IP Address 3	0	0	0	0	0	0	0	0	0	0
Comm-41	IP Address 4	0	0	0	0	0	0	0	0	0	0
Comm-42	Address Mask 1	0	0	0	0	0	0	0	0	0	0
Comm-43	Address Mask 2	0	0	0	0	0	0	0	0	0	0
Comm-44	Address Mask 3	0	0	0	0	0	0	0	0	0	0
Comm-45	Address Mask 4	0	0	0	0	0	0	0	0	0	0
Comm-46	G-way Address 1	0	0	0	0	0	0	0	0	0	0
Comm-47	G-way Address 2	0	0	0	0	0	0	0	0	0	0
Comm-48	G-way Address 3	0	0	0	0	0	0	0	0	0	0
Comm-49	G-way Addr 4	0	0	0	0	0	0	0	0	0	0
Comm-50	MBus TCP Pass L	0	0	0	0	0	0	0	0	0	0
Comm-51	MBus TCP Pass H	0	0	0	0	0	0	0	0	0	0

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifuga I Pump	Submersible Pump	$\begin{aligned} & \text { Vacuum } \\ & \text { Pump } \end{aligned}$	Constant Torque	PM Motor	MagForce
Comm-52	MBus Card Reset	Disable									
Comm-53	MBus TCP Config	IP Filter									
Comm-54	MBus TCP Status	0	0	0	0	0	0	0	0	0	0
Comm-55	Set Comm Card	0	0	0	0	0	0	0	0	0	0

Default Settings Table - PLC Menu

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
PLC-00	Dl used by PLC	Read Only									
PLC-01	DO used by PLC	Read Only									
PLC-02	Analog by PLC	Read Only									
PLC-03	PLC Buffer 0	0	0	0	0	0	0	0	0	0	0
PLC-04	PLC Buffer 1	0	0	0	0	0	0	0	0	0	0
PLC-05	PLC Buffer 2	0	0	0	0	0	0	0	0	0	0
PLC-06	PLC Buffer 3	0	0	0	0	0	0	0	0	0	0
PLC-07	PLC Buffer 4	0	0	0	0	0	0	0	0	0	0
PLC-08	PLC Buffer 5	0	0	0	0	0	0	0	0	0	0
PLC-09	PLC Buffer 6	0	0	0	0	0	0	0	0	0	0
PLC-10	PLC Buffer 7	0	0	0	0	0	0	0	0	0	0
PLC-11	PLC Buffer 8	0	0	0	0	0	0	0	0	0	0
PLC-12	PLC Buffer 9	0	0	0	0	0	0	0	0	0	0
PLC-13	PLC Buffer 10	0	0	0	0	0	0	0	0	0	0
PLC-14	PLC Buffer 11	0	0	0	0	0	0	0	0	0	0
PLC-15	PLC Buffer 12	0	0	0	0	0	0	0	0	0	0
PLC-16	PLC Buffer 13	0	0	0	0	0	0	0	0	0	0
PLC-17	PLC Buffer 14	0	0	0	0	0	0	0	0	0	0
PLC-18	PLC Buffer 15	0	0	0	0	0	0	0	0	0	0
PLC-19	PLC Buffer 16	0	0	0	0	0	0	0	0	0	0
PLC-20	PLC Buffer 17	0	0	0	0	0	0	0	0	0	0
PLC-21	PLC Buffer 18	0	0	0	0	0	0	0	0	0	0
PLC-22	PLC Buffer 19	0	0	0	0	0	0	0	0	0	0
PLC-23	PLC Com Type	Modbus 485	$\begin{gathered} \text { Modbus } \\ 485 \end{gathered}$	Modbus 485							
PLC-24	PLC force to 0	0	0	0	0	0	0	0	0	0	0
PLC-25	PLC Address	2	2	2	2	2	2	2	2	2	2

Default Settings Table - Option Menu

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
Option-00	M10 Define	None									
Option-01	M11 Define	None									
Option-02	M12 Define	None									
Option-03	M13 Define	None									
Option-04	M14 Define	None									
Option-05	M15 Define	None									
Option-06	Relay exp. RA10	Disable									
Option-07	Relay exp. RA11	Disable									
Option-08	Relay exp. RA12	Disable									
Option-09	Relay exp. RA13	Disable									
Option-10	Relay exp. RA14	Disable									
Option-11	Relay exp. RA15	Disable									
Option-12	Relay exp. RA16	Disable									
Option-13	Relay exp. RA17	Disable									
Option-14	Relay exp. RA18	Disable									
Option-15	Relay exp. RA19	Disable									
Option-16	Relay exp. RA20	Disable									
Option-17	IO Card Type	No Card									

Default Settings Table - ADV2 Menu

Parameters in highlighted rows are reset when the application is changed [SET-00].

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
ADV2-00	PID D-Gain	0 Sec									
ADV2-01	Sleep Ctrl By	$\begin{gathered} \text { PID } \\ \text { Output } \end{gathered}$	PID Output								
ADV2-03	Mtr Brake Delay	0 Sec									
ADV2-04	AFM1 Rev Value	0-10 V									
ADV2-05	AFM2 Rev Value	0-10 V									
ADV2-06	AFM1 DC Lvl	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%
ADV2-07	AFM2 DC LvI	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%
ADV2-08	Analog Curve	3x Als 3Point	3xAls 3Point	3x Als 3Point	3x Als 3Point						
ADV2-09	AVII Low Value	0	0	0	0	0	0	0	0	0	0
ADV2-10	AVII Low \%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
ADV2-11	AVII Mid Value	5	5	5	5	5	5	5	5	5	5
ADV2-12	AVII Mid \%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%
ADV2-13	AVII High Value	10	10	10	10	10	10	10	10	10	10
ADV2-14	AVII High \%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
ADV2-15	ACI Low Value	4	4	4	4	4	4	4	4	4	4
ADV2-16	ACI Low \%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
ADV2-17	ACI Mid Value	12	12	12	12	12	12	12	12	12	12
ADV2-18	ACI Mid \%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%
ADV2-19	ACI High Value	20	20	20	20	20	20	20	20	20	20
ADV2-20	ACI High \%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
ADV2-21	AVI Low Value	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V
ADV2-22	AVI Low \%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
ADV2-23	AVI Mid Value	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V	5 V
ADV2-24	AVI Mid \%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%	50\%
ADV2-25	AVI High Value	10 V									
ADV2-26	AVI High \%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
ADV2-27	dEb Offset V	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \end{aligned}$	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \end{aligned}$	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	By VFD Rating	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { By VFD } \\ & \text { Rating } \\ & \hline \end{aligned}$
ADV2-28	dEb Mode Select	Disable									
ADV2-30	PID Mode Select	Serial									
ADV2-31	PID Unit Format	0.01	0.01	0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1
ADV2-32	PID Ref Source	Keypad									
ADV2-52	LD Set Point	0.5 (unit)	0.5 (unit)	0.5 (unit)	70 (unit)						
ADV2-53	LD Max Freq	48 Hz	96 Hz	96 Hz							

Default Settings Table - Motor Menu

CODE	Display	Basic	Supply Fan	Exhaust Fan	Cooling Tower	Centrifugal Pump	Submersible Pump	Vacuum Pump	Constant Torque	PM Motor	MagForce
Motor-00	Motor A Tuning	None									
Motor-01	Motor Rs Value	By VFD Rating									
Motor-02	Motor Rr Value	0 Ohm	0 Ohm	0 Ohm	00 hm	0 Ohm	00 hm	0 Ohm	0 Ohm	0 Ohm	00 hm
Motor-03	Motor Lm Value	0 mH									
Motor-04	Motor Lx Value	0 mH									
Motor-05	Control Method	VF	Sensorless	Sensorless							
Motor-06	Motor Type	Induction	PM-SPM	PM-IPM							
Motor-07	PM Poles	4	4	4	4	4	4	4	4	4	4
Motor-08	PM Inertia	By Motor Rating									
Motor-09	PM Rs	0 Ohm									
Motor-10	PM Ld	0 mH									
Motor-11	PM Lq	0 mH									
Motor-12	PM PG Angle	0 degree									
Motor-13	PM Ke Coeff	By Motor Data									
Motor-14	Rotor Zeroing	Disabled	1/4FLA Current	1/4 FLA Current							
Motor-15	Torque Filter T	0.5 Sec									
Motor-16	Slip Filter T	0.1 Sec									
Motor-17	Torque Cmp Gain	0	0	0	0	0	0	0	0	20	0
Motor-18	Slip Cmp Gain	0	0	0	0	0	0	0	0	1.0	1.0
Motor-19	Slip Dev Level	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%	0\%
Motor-20	Slip Dev Det T	1 Sec									
Motor-21	Over Slip Trip	Alarm and Run									
Motor-22	Motor Hunt Gain	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Motor-23	Auto restart	60 Sec									
Motor-24	I/F Current	40\%	40\%	40\%	40\%	40\%	40\%	40\%	40\%	80\%	40\%
Motor-25	PM Bandwidth HS	5 Hz	6 Hz	5 Hz							
Motor-26	PMSVC Fltr Gain	1	1	1	1	1	1	1	1	1	1
Motor-27	Freq I/F to PM	20 Hz	30 Hz	30 Hz							
Motor-28	Freq PM to I/F	20 Hz	30 Hz	30 Hz							
Motor-29	I/F fltr time	0.2 Sec									
Motor-30	Angle Det Pulse	1	1	1	1	1	1	1	1	1	1
Motor-31	Zero voltage T	0 Sec									
Motor-32	Injection Freq	500 Hz									
Motor-33	Injection V	15 V									
Motor-34	Run Time Min	Read Only									
Motor-35	Run Time Days	Read Only									
Motor-36	Motor PF	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.86	0.96	0.96
Motor-37	PM Trq Comp I/F	20	20	20	20	20	20	20	20	20	20
Motor-38	PM Tra Comp SVC	0	0	0	0	0	0	0	0	0	0
Motor-39	DC-Tun Curr P	300	300	300	300	300	300	300	300	300	300
Motor-40	DC-Tun Curr I	50	50	50	50	50	50	50	50	50	50

INSTALLATION TESTING

Rotation Check

Start VFD in forward direction and check the motor rotation. If the motor is running backwards, disconnect power to the VFD and reverse any two motor leads to change the motor rotation.

- For submersible pumps or other applications that cannot be checked visually, rotation can be determined by evaluating performance. For example, if the system is not building the expected pressure, or the motor is running at less than 80% FLA or SFA at full speed, or if current does not go down as expected, it may be running backwards.
- Performance comparisons can also be made using the Load Rotation settings available in the drive. Refer to "Forward or Reverse Selection" on page 64.

IMPORTANT: Do not use the Load Rotation setting to correct a motor that is running backwards because of incorrect wiring.

Feedback Checks

Check the motor run current on the VFD display while running at full speed. If it is higher than motor FLA (or SFA), check motor wiring and for any mechanical problems (valves, dampers, etc.) that could create extra load on the motor shaft.

When running in PID mode, check to see that transducer feedback (i.e. pressure) matches any gauges that may be installed. If the target is not accurate, verify that the transducer scaling (Feedback Max) has been set correctly.

Performance Checks

If PID is disabled, run the system and vary speed from VFD Low Frequency Limit to VFD High Frequency Limit. Monitor output current, which should not exceed motor FLA or SFA. Check that equipment produces the proper output (air flow, water flow, etc.) at nominal speed.

If PID is enabled, run the system with constant demand. Then change demand and monitor how system pressure or temperature reaches the setpoint value. If the system responds very slowly, or very quickly with overshooting, PID parameters P-Gain and I-Time should be adjusted.

If multiple acceleration/deceleration curves have been programmed, verify that motor performs as expected.

Sleep Mode Check (Pump Applications)

Sleep Mode Check (Pump Applications)

All default settings related to Sleep mode have been calculated for best system performance for most applications. However, some well conditions may require a slight adjustment.

During system setup it is recommended to test the Sleep feature by closing a main valve to simulate a nodemand condition. The system should be running at normal demand, maintaining pressure setpoint, then flow should be decreased slowly until stopped.

- If the system does not enter Sleep mode, it may be necessary to increase the PID Lo Hz Limit [SET-22] to ensure that system pressure reaches PID Setpoint [SET-21] (plus boost, if enabled).
- If, during normal operation, the system enters Sleep mode, but cycles on and off rapidly as it nears the Setpoint, it may be necessary to slightly lower the PID Lo Hz Limit [SET-22] to prevent Sleep mode problems.

Refer to "Sleep Mode with Pressure Boost" on page 68.

OPERATION

Control Options

Hand/Auto Controls

The drive can be operated in either HAND or AUTO mode as follows:

- HAND mode runs the motor based on Hand Speed Ref [SET-09] (frequency source) and Hand Run Cmd [SET-10] (command source). Defaults for both settings are Keypad, which runs the motor at a fixed speed (Keypad Setpoint) set on the Home Screen. Both settings can be reprogrammed for external control. PID control is disabled in Hand mode.
- AUT0 mode runs the motor based on AUTO Speed Ref [SET-07] (frequency source) and AUTO Run Cmd [SET-08] (command source). The speed reference default is set per application. The run command default is Keypad. Both settings can be reprogrammed as required.

There are several options to consider for operation of the VFD through external HOA controls:
HOA Mode Source [SET-60]: This setting selects whether Hand/Auto control will come from the Keypad, a Digital Input, or Communications. When switching modes with the keypad, the VFD will stop, and will start when the Start key is pressed. When switching modes with a DI or Comm source, the VFD will start based on the presence of a run command.

- Keypad (Default): The VFD Keypad HOA buttons, including Start and Stop, are fully functional.
- Digital Input: Enables HOA control through an external switch wired to two digital inputs [M11 to M18]. These inputs should be set to 26_Hand and 27_Auto through parameters [10-21 to 28]. HOA mode is then determined as follows:

26_HOA Hand	27_HOA Auto	HOA Mode
Open	Open	OFF
Closed	Open	Hand
Open	Closed	Auto
Closed	Closed	OFF

- RS485 Serial: Enables HOA control through Modbus communications.
- Com Card: Enables HOA control through BACNet communications. The combinations of 0×2002 bit 3 and bit 4 are defined as follows:

Bit 3	Bit 4	HOA Mode
0	0	No change
1	0	Hand
0	1	Auto
1	1	OFF

Hand Speed Ref [SET-09]: Source of Speed Reference in Hand mode. When in Hand mode, PID is disabled and the VFD frequency is based on the following inputs:

- Keypad (Default): VFD runs at a fixed frequency set on the Home Screen.
- RS485 Serial: Frequency input through Modbus control.
- AVII Analog: Input from external controller, potentiometer, or other device.
- ACI Analog: Input from external controller, potentiometer, or other device.
- AVI2 Analog: Input from external controller, potentiometer, or other device.
- COM Card: Frequency input through communications protocol.

Hand Run Command [SET-10]: Source of Run Command in Hand mode. VFD starts based on input from:

- Keypad (Default): Run command from Start/Stop buttons.
- Digital Input: Run command from digital input FWD or REV terminal.
- RS485: Run command from RS485 interface. Keypad STOP is disabled.
- Com Card: Run command from communications card.
- Ext HOA in Hand: Run command from digital input [10-21~28] set to HAND.

Auto Speed Ref [SET-07]: Source of Speed Reference in Auto mode. VFD runs at a frequency based on the following inputs:

- Keypad: VFD runs at a fixed frequency set on the Home Screen.
- Up/Down DI: Digital input increases or decreases speed when DI terminals [IO-21~28] set to Up and Down.
- AVII Analog: Input from external controller, potentiometer, or other device.
- ACI Analog: Input from external controller, potentiometer, or other device.
- AVI2 Analog: Input from external controller, potentiometer, or other device.
- RS485 Serial: Frequency input through Modbus control.
- COM Card: Frequency input through communications protocol.
- PID Output: VFD speed reference will be provided by PID control based on the difference between PID Setpoint [SET-21] and transducer feedback values.
IMPORTANT: When PID Mode is selected, additional parameter settings should be verified to ensure correct operation. Refer to "Standard Operation with PID Feedback Control" on page 66 for more information.

Auto Run Command [SET-08]: Source of Run Command in Auto mode. VFD starts based on input from:

- Keypad (Default): Run command from Start/Stop buttons.
- Digital Input: Run command from digital input FWD or REV terminal.
- RS485: Run command from RS485 interface. Keypad STOP is disabled.
- Com Card: Run command from communications card.
- Ext HOA in Auto: Run command from digital input [10-21~28] set to AUTO.

Forward or Reverse Selection

This feature provides the ability to change the direction of rotation of a motor used in an industrial application. The direction can be set using either the keypad FWD/REV button, or by setting the following parameter:

Load Rotation [SET-15]: Setting this parameter to FWD \& REV enables the keypad button. Selection of either FWD Only or REV Only permanently sets the direction and disables the keypad button. This provides protection to prevent a motor from running in a direction that could damage equipment, such as a pump or fan.

IMPORTANT: Do not use the Load Rotation setting to correct a motor that is running backwards because of incorrect wiring.

Jog Feature

The Jog feature provides the ability to activate a motor momentarily. The command can be executed using either the keypad FI button, or switches connected to a digital input.

- When using the keypad, the motor direction depends on the Load Rotation [SET-15] setting. Digital inputs can be set to either forward or reverse.
- The jog command cannot be used when the drive is running.
- When the jog command is active, other run commands are unavailable.

Jog Frequency [VFD-55]: This sets the speed the motor will run when the jog command is active.
Jog ACC Time [VFD-53]: This sets the acceleration time from 0 Hz to [VFD-55].
Jog DEC Time [VFD-55]: This sets the deceleration time from [VFD-55] to 0 Hz .

FWD Jog [I0-21 through 28]: To execute a forward jog command externally, connect a momentary switch to one of the Digital Inputs (MI1-8) and set the corresponding parameter to 21 FWD Jog.
REV Jog [IO-21 through 28]: To execute a reverse jog command externally, connect a momentary switch to one of the Digital Inputs (MI1-8) and set the corresponding parameter to 22 REV Jog.
NOTE: If an external HOA switch is set to OFF, the keypad FI button is disabled.

Step Frequencies

The VFD can be operated in a selection of up to 15 user defined pre-set frequencies (speeds) through a combination of switched digital inputs [10-21~28]. These speeds are defined through parameters [VFD-04 to 18].
When a run command is present, selection of a step frequency overrides any previously active speed reference.

The switching combinations for step frequency selection are as follows:

Input Selection					Parameter
Speed L	Speed M	Speed H	Speed X		
1	0	0	0	[VFD-04]	Speed 1
0	1	0	0	[VFD-05]	Speed 2
1	1	0	0	[VFD-06]	Speed 3
0	0	1	0	[VFD-07]	Speed 4
1	0	1	0	[VFD-08]	Speed 5
0	1	1	0	[VFD-09]	Speed 6
1	1	1	0	[VFD-10]	Speed 7
0	0	0	1	[VFD-11]	Speed 8
1	0	0	1	[VFD-12]	Speed 9
0	1	0	1	[VFD-13	Speed 10
1	1	0	1	[VFD-14]	Speed 11
0	0	1	1	[VFD-15]	Speed 12
1	0	1	1	[VFD-16]	Speed 13
0	1	1	1	[VFD-17	Speed 14
1	1	1	1	[VFD-18]	Speed 15

Shutdown

The Shutdown feature uses a Digital Input signal [M11 through M18] from an external source to stop VFD output in the event of an emergency. The VFD will trip on Shutdown when the DI signal is activated. This function overrides all other functions and VFD cannot be started with any HOA change until stop signal is removed.

Two options are available for restarting:
Latching Mode [10-21 through 28]: The Shutdown signal must be removed and the Shutdown fault must be manually reset; no auto restarts or retries are available. The VFD can then be restarted with a RUN command. To enable this function, connect the external emergency stop signal to one of the Digital Inputs (MII8) and set the corresponding parameter to 36 Shutdown Latched.

Non-Latching Mode [IO-21 through 28]: If a RUN command is present when the Shutdown signal is removed, the VFD will restart based on HOA mode. To enable this function, connect the external emergency stop signal to one of the Digital Inputs (MII-8) and set the corresponding parameter to 35 Shutdown N -Latch.

Only one Digital Input can be set to Shutdown.

Standard Operation with an Automated Control System

In many VFD applications, including ventilation, water supply, or irrigation, motor speed is often determined by an automated system such as a BAS, BMS, or PLC. These systems provide control information to the VFD either through a communications protocol such as Modbus or BACnet, or through direct electrical connection to one of the analog input terminals.

When the drive is in AUTO mode, it runs the motor at a variable frequency based on information from the automation system through the input selected in Auto Speed Ref [SET-07].

Standard Operation with PID Feedback Control

A PID controlled application, such as a fan system or a constant pressure pump system, uses feedback from a transducer to measure system performance against a user defined Setpoint (target) to control motor speed. The VFD can use several types of measurement, including pressure, flow, level, air volume, temperature, speed, etc.

For example:

- In a pumping application, the default measurement unit is PSI. As user demand (flow) causes pressure changes, the drive varies the output frequency (motor speed) to maintain pressure at the target setpoint. When the drive determines a no-demand condition, it enters Sleep mode and stops the motor.
- In a fan application, the default measurement unit is inWC (air pressure).

When the drive is in AUTO mode, it runs the motor at a variable frequency based on a comparison between the PID Setpoint [SET-21] and feedback from the PID transducer, up to the PID Hi Hz Limit [SET-23]. PID operation is disabled in HAND mode.

When basic setup is complete, including motor specifications, verify or set the following parameters for PID operation:

Auto Speed Ref [SET-07]: This should be set to PID Output.
Auto Run Command [SET-08]: Select source of Run Command, either Keypad or external. If using a Digital Input (M1-8) with a switch, set the terminal to FWD (or REV) [10-21~28].
PID Mode [SET-17]: Set to PID Direct for most PID operations (exceptions are noted in the tables).
Feedback Source [SET-18]: Set to the terminal used for transducer connection. Make sure impedance is set correctly.
PID Feedback Units [SET-19]: Set to the appropriate measurement unit for the transducer type.
PID Feedback Max [SET-20]: Set to the maximum rating of the transducer.
PID Setpoint [SET-21]: Set to the desired measurement target.
Sleep Mode [SET-26]: This should be enabled for most pump applications, and Disabled for most HVAC applications.
PID P-Gain [SET-24]: Proportional Gain controls motor speed adjustments based on the proportional difference between the PID setpoint and PID feedback. Higher settings result in faster response. However, if the value is too high, it may cause system oscillation and instability. Used along with PID I-TIme [SET-25] to smooth and balance system response.
PID I Time [SET-25]: Integral Time determines PID response time. Lower values increase system response to the feedback signal, which reduces overshoot, but may cause system oscillation if set too low. Greater values provide slower response, which may cause overshoot of the setpoint and oscillation of output frequency.

Damper Control (HVAC Applications)

The VFD can provide a relay output to open a damper actuator before starting a fan motor. When enabled, the damper relay output is activated when the system receives a RUN command and the motor will start based on the following configurations:

- With Damper Limit Switch: If any Digital Input [10-21 through 28] is set to Damper Limit Sw and the VFD receives a RUN command, the damper relay is activated and when the damper limit switch is closed (damper is fully open and DI is activated), the VFD will start the motor.

If the limit switch is not closed within the Damper Time Delay [10-37], the VFD will trip on Damper Fault. If at any point during run mode damper limit switch is open for more than 2 seconds, the VFD will trip on Damper Fault. VFD will try to restart based on the retry number setting [PROT-41].

- Without Damper Limit Switch. If no Digital Input is configured for a damper limit switch and the VFD receives a RUN command, the damper relay is activated and when Damper Time Delay [I0-37] is complete, the VFD will start the motor. There is no damper fault detection because there is no damper limit switch feedback.

NOTE: If any other delay timer is set and the VFD receives a RUN command, the damper relay will start after the first timer expires.
During run mode the damper relay stays activated. When a STOP command is received, the damper relay will be deactivated only in VFD stop state. If stop mode is set to deceleration, the relay will be deactivated after VFD reaches zero speed $(0.00 \mathrm{~Hz})$.

Set the following parameters to use the Damper Control function:
Damper Mode [10-36]: This setting enables or disables damper mode. When enabled, the damper relay is activated before every start, including auto restarts.
Damper T-Delay [10-37]: This setting provides a run time delay without a damper limit switch; or, provides a Damper Fault delay for systems that include a damper limit switch. The delay should be greater than damper opening time.
Damper Output Terminal [10-47 through 49]: Connect the damper actuator to one of the Relay Outputs (RA1-3), and set the corresponding parameter to 38 Damper Output.
Damper Limit SW Terminal [I0-21 through 28]: If the system includes a damper limit switch, connect the switch to one of the Digital Inputs (MI1-8) and set the corresponding parameter to 34 Damper Limit SW.

Fireman's Override

Fireman's Override provides the ability to force the drive to run in an emergency situation.
In FO mode, if Damper Mode is enabled [10-36], the damper relay output will be activated, but damper time delay [10-37] will be reduced by half before VFD starts. The VFD will not monitor a Damper Switch, if present, and no damper faults will be available. Set the following parameters to use the Fireman's Override function:
FO Input Terminal [I0-21 through 28]: Connect the Fireman's Override switch to one of the Digital Inputs (MI1-8) and set the corresponding parameter to either 32 FO with RUN Cmd or 33 FO w/0 RUN Cmd.
FO Enable [I0-29]: This setting enables Fireman's Override in either Forward or Reverse.
FO Frequency [10-30]: Setpoint for non-PID operation during Fire Override.
FO Fault Retry [I0-31]: Number of fault resets allowed during Fire Override.
FO Retry Delay [10-32: Delay until restart during Fire Override.
FO Mode \& Reset [I0-33]: Sets control method and reset method during Fire Override: PID Off Manual, PID Off Auto, PID On Manual, or PID On Auto.
FO PID S-Point [I0-34]: Setpoint for PID operation during Fire Override.
FO Bypass [10-72]: Enables Bypass for Fire Override.
FO Bypass Delay [I0-73]: Time delay between Fire Override becoming active and enabling relay output.

OPERATION
 Control Options

Pump Application Features

Sleep Mode with Pressure Boost

The Sleep feature monitors pressure and frequency to detect a no-demand condition, at which point it stops the motor. The Sleep Feature also has the option to boost system pressure by a set amount before stopping.

The Sleep feature works only in Auto mode using PID. PID2 operation does not have Sleep function.
The following parameters control Sleep functions:
Sleep Mode [SET-26]: This setting enables or disables sleep mode and the sleep plus boost option. The default value for submersibles and surface/boost applications is Sleep Only. If a pressure boost is desired while the system is at rest, select Sleep + Boost and set a Sleep Boost Value [SET-29].
Sleep Check Time [SET-27]: Time delay (sleep check cycle time) before each Sleep Check procedure. Default $=10 \mathrm{sec}$.
Sleep Delay [SET-28]: Delay before VFD triggers Sleep Mode when all other conditions are met. Default =6 sec.
Sleep Boost Value [SET-29]: Value added to original setpoint to provide pressure boost-0.0 to 10.0% of Feedback Max Value [SET-20]. Default = 3\%.
Sleep-Boost Timer [SET-30]: Timer that limits sleep boost duration if Sleep Boost setpoint is not reached5 to 120 seconds. Default = 10 sec .
Wakeup Level [SET-31]: Sets a wakeup level for VFD to quit Sleep mode and start running-0.0 to [SET-21]. Default = 55 PSI.
Sleep Bump Timer [SET-32]: Sets a duration time for pressure bump to increase system pressure as part of the no-demand calculation. Default $=5 \mathrm{sec}$.
No Flow Mode [10-38]: If a flow switch is installed on one of the Digital Inputs (M11-8) and [IO-38] is set to Sleep, the flow switch becomes an additional condition for sleep mode. If Sleep Delay timer has started and at any time before the timer expires the flow switch opens, the VFD will immediately go to either sleep mode (no Sleep Boost) or to Sleep Boost mode (with S-boost enabled).

All default settings related to Sleep mode have been calculated for best system performance for most applications. However, some well conditions may require a slight adjustment.

During system setup it is recommended to test the Sleep feature by closing a main valve to simulate a nodemand condition. The system should be running at normal demand, maintaining pressure setpoint, then flow should be decreased slowly until stopped.

- If the system does not enter Sleep mode, it may be necessary to increase the PID Lo Hz Limit [SET-22] to ensure that system pressure reaches PID Setpoint [SET-21] (plus boost, if enabled).
- If, during normal operation, the system enters Sleep mode, but cycles on and off rapidly as it nears the Setpoint, it may be necessary to slightly lower the PID Lo Hz Limit [SET-22] to prevent Sleep mode problems.

Pipe Fill Feature

This feature automates the process of building pressure in an empty pipe system at a reduced speed before the VFD switches to PID control. This can reduce water hammer in some systems, and can also help prevent an Underload fault if the drive runs for an extended period at low pressure. The VFD must be running with PID Control in Auto mode for this feature to be active.

Set the following parameters to activate the Pipe Fill Feature:

Pipe Fill Timer [SET-33]: Pipe Fill mode exit timer to switch to PID control.

- Enter a time between 0.1 and 60 minutes to allow the pipe system to fill.
- If set to 0.0, Pipe Fill is disabled.
- When the timer expires, the VFD cancels Pipe Fill mode and switches to PID control, regardless of whether [SET-34] pressure has been reached.

Pipe Fill Exit Level [SET-34]: Pipe Fill mode exit pressure to switch to PID control.

- Enter a pressure setting between 0 and the PID Setpoint [SET-21] (default = 25 psi).
- During Pipe Fill mode, if pressure reaches the set value, VFD switches to PID control.

Pipe Fill Freq [SET-35]: Pipe Fill mode High frequency limit setting.

- Range is between PID Low Freq Limit [SET-22] and PID Hi Hz Limit [SET-23] (default = 47 Hz).
- The Pipe Fill mode frequency should be equal to or greater than [SET-22] +2 Hz to provide enough system pressure at the end of pipe fill mode to switch to PID control.

Upon start, if system pressure is less than [SET-34], VFD will ramp up to Low Freq Limit +2 and start pipe fill mode.

- If system pressure is less than $0.5 \times$ [SET-34], the frequency reference will be increased at a rate of 0.5 Hz per second.
- If system pressure is equal to or greater than $0.5 \times$ [SET-34] but less than $0.6 \times$ [SET-34], the frequency reference will stay at the current value.
- If system pressure is equal to or greater than $0.6 \times$ [SET-34] but less than [SET-34] setting, the frequency reference will be decreased at a 0.5 Hz per second rate. However, the rate will not be decreased below PID Low Hz Limit [SET-22] +2 Hz.
- If at any point system pressure is equal to or greater than [SET-34], VFD will cancel Pipe Fill mode and switch to PID control.

Lubrication Relay

The VFD has the capability to automatically activate a lubrication solenoid for line shaft turbine pumps, or for industrial machines with an external lubrication supply, before starting the motor.

Timers are available to enable lubrication before, during, or after running the motor, in any combination.
To enable the lubrication function, set the following parameters:
Lubrication Output Terminal [I0-47 through 49]: Connect the lubrication actuator to one of the Relay Outputs (RA1-3), and set the corresponding parameter to 41 Lube/S-Clean.
Lube/S-Clean [10-41]: Select the Lubrication option.
Pre-Lube Timer [10-43]: 0 to 6000 seconds. This setting determines relay activation time after a run command is received and before the VFD starts. When the timer expires, the lubrication solenoid will be deactivated and the VFD will start the motor. If a stop command is received, or the VFD trips during Prelubrication, the relay will be deactivated and the timer accumulated value will be reset.
Run-Lube Timer [10-44]: 0 to 6000 seconds. This setting determines relay activation time while the VFD is running.

- When set to a value greater than 0 and less than 6000 , the relay will be activated at VFD start and will deactivate when the timer expires. If the VFD stops while the timer is active, the relay will deactivate and the timer will be reset.
- If the timer is set to the maximum 6000 sec , the relay will be activated during run mode until the VFD stops (no timing). If the VFD stops or trips, the relay will deactivate.
Post-Lube Tmr [I0-45]: 0 to 6000 seconds. This setting determines relay activation time after the VFD comes to a stop (0 Hz).

OPERATION
 Control Options

Screen Clean Relay

When water is pumped from a lake or pond, the suction screen requires periodic cleaning. The VFD can automate this process by providing a relay output to an external solenoid valve that will discharge pressurized water to clean the screen.

This feature works only in run mode in HOA Hand or Auto. If HOA is in OFF, or the VFD stops or trips on a fault, the Clean Screen mode will be deactivated and related timers will be reset.

The VFD provides a one minute (non-adjustable) cleaning pulse at every start. When the cleaning pulse is done, the S-Clean Timer [$[0-42]$ starts. When the timer ends, another cleaning pulse is activated. This cycle continues until the VFD stops.

To enable the Clean Screen function, set the following parameters:
Screen Clean Output Terminal [10-47 through 49]: Connect the lubrication actuator to one of the Relay Outputs (RA1-3), and set the corresponding parameter to 41 Lube/S-Clean.
Lube/S-Clean [10-41]: Select the Screen Clean option.
S-Clean Timer [10-42]: 0 to 600 minutes. Time between cleaning pulses.

Timers

IMPORTANT: If two or more timers are activated with different time settings, the greater value timer will override other timers with a similar function.

Power On Run Delay

This timer provides run delay at VFD power-up with run command present to prevent multiple starts during power surges.

Set the following parameter to activate this feature:
Power On Delay [ADV-28]: Range from 0 to 6000 sec. (Default=10sec). When set to 0 sec, it is disabled.
When set to a value greater than 0 and VFD is powered up in any HOA mode, the timer will start counting and VFD start will be disabled until the timer expires.

Run Delay Timer (For Auto Mode)

This timer provides a delay at every VFD start when a run command is applied. The timer takes effect before every VFD start by run command, auto-restarts, fault reset, sleep wake-up, etc.

NOTE: FO (Fire Override) mode will disable this timer.
Set the following parameter to activate this feature:
Run Delay Timer [ADV-29]: Range from 0 to 6000 sec . (Default=0 sec). When set to 0 sec, it is disabled.
When set to value greater than 0 and VFD receives a start command, wakes up, auto resets, or restarts after a fault reset, the Start Delay timer will start counting. During timer counting, start is disabled and the VFD cannot be started in Hand or Auto mode. Stop command, Sleep mode, or tripping on a fault will reset this timer.

Minimum Run Timer

The Minimum Run timer delays VFD stop when a run command is removed. This timer is useful in vacuum pump, pressure washer and similar applications.

Submersible motors should run for a minimum of one minute to dissipate heat build-up from starting current.

Set the following parameter to activate this feature:

Minimum Run [ADV-34]: Range from 0 to 6000 seconds. When set to 0 sec, it is disabled.
When set to value greater than 0 and VFD is started in Auto mode, Minimum Run timer will start counting. During timer counting, VFD will continue to run even if start command is removed.

Shutdown feature will override this timer.

Backspin Timer

The Backspin timer is designed to protect the VFD from tripping when starting a reverse spinning motor caused by water backflow through a pump (no check valve) right after it was stopped.
Set the following parameter to activate this feature:
Backspin Timer [ADV-30]: Range from 0 to 6000 seconds. When set to 0 sec, it is disabled.
When set to value greater than 0 and VFD stops, Backspin timer will start counting. During backspin time, VFD is disabled and cannot be started in Hand or Auto mode.

Performance Control Features

Acceleration/Deceleration Control

Standard Rates

The VFD accelerates and decelerates a motor at a controlled rate based on the following parameters:
Accel Time [SET-11]: Time in seconds for the drive to accelerate from 0 Hz to maximum frequency. Decel Time [SET-12]: When Stop Mode [SET-16] is set to Decelerate, time in seconds to slow down from maximum frequency to 0 Hz .
The defaults for these parameters are determined by the Application [SET-00] setting, but can be adjusted as required.
IMPORTANT: Setting acceleration or deceleration times that are too short may trigger over-current or overvoltage faults. Use of a suitable brake resistor can help with short deceleration times.

Change by Frequency

Acceleration and deceleration speeds can be modified when the VFD reaches a target frequency. For example: It may be desirable to start a motor quickly, as with a submersible pump, and then slow the response at higher speeds.

The VFD starts at the Standard rate and switches to Second ACC [SET-54] and Second DCC [SET-55] when it reaches ACC Change Frea [SET-53]. When the VFD decreases frequency below [SET-53]-[SET-56] it will switch back to the Standard rates.

ACC Change Freq [SET-53]: Frequency to switch from first acceleration/deceleration rate to second acceleration/
 deceleration rate.
Second ACC [SET-54]: Time in seconds for drive to accelerate from 0 Hz to maximum frequency. This rate takes effect when frequency is above [SET-53]. Default = 60 sec.
Second DEC [SET-55]: When Stop Mode [SET-16] is set to Decelerate, time in seconds to slow down from maximum frequency to 0 Hz . This rate takes effect when frequency is above [SET-53]. Default $=60 \mathrm{sec}$.
ACC/DEC Hyster [SET-56]: Hysteresis added to [SET-53] in changing the deceleration rate. This setting is subtracted from [SET-53] to delay the switch back to the [SET-12] rate. Default $=1.0 \mathrm{~Hz}$.

Monitoring Functions

Home Screen Status Displays

The Home Screen displays default and user-selectable information about the operational status of the VFD. The keypad ESC key returns to the Home Screen from any menu.

1. Operating Status: This field indicates the system actions currently active:

- Run/Stop
- Limit by PID 2
- Ctrl by PID 2
- Stopped by AI
- Backspin Timer
- Lubrication
- Limit by Level
- Limit by Temp
- Stall

2. Command Source: This field identifies the currently configured source for RUN commands:

- K = Keypad
- $R=$ RS485
- $\mathrm{T}=$ Terminal control
- $0=0$ option board

3. Frequency Source: This field identifies the currently configured source for speed (frequency) control:

- K = Keypad/PID
- $\mathrm{V} 1=$ from AV1
- $\mathrm{V} 2=$ from AV2
- $R=$ RS485
- $0=$ Option board
- $C=$ from ACl
- 1-15 = Step speed (DI)
- J = Jog frequency

4. User Selectable Display Line 1: Use Arrow and Enter keys to step through selections and to change setpoints.

- (H) Actual output speed when running (Hz) for both HAND and AUT0 modes.
- (F) Keypad Setpoint (Hz) for HAND mode. This is adjustable using the keypad. In AUTO mode, the running frequency is displayed.
- (P) PID Setpoint in application based units (PSI, inWC, etc.) [SET-21]. This is adjustable using the keypad.

5. User Selectable Display Line 2: Displays Output Current by default. Other user options are available through [VFD-48]:

- 0_Freq Command
- 1_Output Frequency
- 2_Multi-Fn Display
- 3_Output Current

6. User Selectable Display Line 3: Use Arrow keys to step through choices. This display corresponds to choices in [SET-57]. Refer to "Parameter Descriptions > SET Menu" on page 115 for a complete list of options.

View Screens

In addition to the Home Screen status information, nine predefined user information screens are available.
From any menu location, press the keypad $\mathbf{F 2}$ key repeatedly to cycle through the view screens.
View Screen 1: This screen displays the following:

- Freq = The actual output frequency (Hz) at the time
- Ref = The PID target setpoint [SET-21]
- Fbk = The actual feedback level from the transducer.

View Screen 2: This screen displays feedback from the analog inputs as a percentage.

View Screen 3: This screen displays the status of the multi-function (digital) inputs in hex format. Solid boxes indicate that the input is active.

Run	K/K
Freq	60.00 Hz
Ref	60.0 PSI
Fbk	58.7 PSI
Jog	Viewi

Run	K/K
AVII	0.00%
AV/2	00.0%
ACl	58.07%
Jog	View2
Faults	

Run		KIK
	View3	3 Faults

View Screen 5: This screen displays the following:

- Temperature of the IGBTs in ${ }^{\circ} \mathrm{C}$
- Temperature of the capacitors in ${ }^{\circ} \mathrm{C}$.

Run	K/k
IGBT	24.10 C
CapT	23.60 C
Jog	View5

View Screen 6: This screen displays the following:

- The actual output frequency (Hz) at the time
- The actual motor speed (RPM) at the time.

Run	k/k		
Freq	60.00 Hz		
Spd	3600 RPM		
Jog	View6	Faults	
:---			

View Screen 7: This screen displays the following:

- DC-Bus voltage ripple
- DC-Bus voltage
- Output voltage.

Run	K/K
Rple	8.3%
DCB	675.7 V
Vout	460.0 V
Jog	View7

View Screen 8: This screen displays the following:

- Counter value
- Output power
- Ground fault.

View Screen 9: If an FE Connect Bluetooth communication card has been installed, this screen displays the code for connecting with the mobile application.

Protection Features

High Load Detection

High Load Detection (HLD) protects the VFD and equipment against damage from an over-torque condi-
tion. Two options are available:

- HLD by Current: The VFD trips when current is above HLD Level [SET-48] with frequency equal to or greater than HLD Freq [SET-49] for a duration of HLD Delay [SET-50].
- HLD by Torque: The VFD calculates a High Load Torque Limit curve across the full frequency range based on motor parameters, VFD Base Frequency, and HLD settings. The VFD then trips when torque rises above this curve with frequency equal to or greater than HLD Freq [SET-49] for a duration of HLD Delay [SET-50]. This feature is primarily used for centrifugal loads such as centrifugal pumps or fans. It is not recommended for progressive cavity pumps or constant torque loads.

To enable High Load Detection, adjust the following parameters:
HLD Select [SET-47]: Disable, By Current, or By Torque.
HLD Min Torque [PROT-58]: Only if using HLD by Torque, set minimum torque level percentage at 0 Hz . Default $=10 \%$.

HLD Level [SET-48]: For HLD by Current, set as a percentage of motor FLA (SFA) (default = 110\%). For HLD by Torque, set as a percentage of nominal torque at base frequency. If all conditions are met, VFD will trip above this level.
HLD Frequency [SET-49]: Set minimum frequency for HLD by Current or Torque detection.
HLD Delay [SET-50]: Delay range from 0 to 360 seconds. When timer expires, if current or torque is still above limits and frequency is still above [Set-49], VFD will trip based on [Set-47].
HLD Recovery Time [SET-51]: 0 to 720 min (default $=0 \mathrm{~min}$). If timer is set to value greater than 0 minutes, VFD will restart after timer expires. If set to 0 and the VFD trips, manual or remote reset is required (no auto retries).

If the VFD trips the first time on high load, it will restart after the Recovery timer expires. If VFD trips again, the timer value will be doubled. The VFD will continue restart attempts, doubling the timer value until it reaches 720 minutes (12 hours). Then every restart will be in 720 min. HLD Recover Cnt [SET52] displays the countdown before the next restart attempt.

When the VFD finally runs without tripping for 180 sec, the recovery timer will be reset to original setting and at next high load trip VFD will wait for original [Set-51] time value.
If the run command is removed, or HOA is set to OFF, the high load feature is canceled and the [Set-51] timer is reset to its original setting.

Fine Tune Settings for HLD by Torque

1. Verify accuracy of Motor FLA (SFA) [Set-03], Motor Voltage [Set-05], and VFD Base Freq [VFD-02]. These values determine nominal torque.
2. Adjust HLD Frequency [Set-49] to be equal to minimum operational frequency [Set-13] or [Set-22].
3. Run motor at minimum frequency and verify water movement for pump or air movement for fans.

Protection Features

4. While running at the motor at minimum frequency, determine whether VFD trips on HLD:

- If system trips on HLD using default HLD Level [Set-48], increase level by 3\% until system does not trip.
- If system does NOT trip using default HLD Level [Set-48], decrease the level by increments of 3% until system trips, then increase back by 3%.

5. If nuisance tripping occurs, increase HLD Min Torque [Prot-58] by increments of 1%.
6. Adjust HLD Delay [Set-50] to duration acceptable for operation.

Underload Protection (Dry Well or Belt Loss)

Underload Detection (ULD) monitors motor current and frequency to protect against conditions such as a dry well, broken pump, or broken drive belt. Two options are available:

- ULD by Current: The VFD trips when current reading is less than set value and speed is equal or greater than set value, the VFD will trip on ULD.
- ULD by Torque: The VFD calculates an Underload Torque Limit curve across the full frequency range based on motor parameters, VFD Base Frequency, and ULD settings. The VFD then trips when torque falls below this curve with frequency equal to or greater than ULD Freq [SET-43] for a duration of ULD Delay [SET-44]. This feature is primarily used for centrifugal loads such as centrifugal pumps or fans. It is not recommended for progressive cavity pumps or constant torque loads.

To enable Underload Protection, adjust the following parameters:
Prime Time [I0-39]: Some pump applications require time for the pump to self-prime before the load stabilizes. This setting adds a 0 to 6000 second delay before the VFD starts monitoring
 for Underload or No-Flow conditions, which protects against nuisance faults. The delay operates at any VFD start, in both Hand and Auto modes, including Run, Wake, Restart, or Reset commands.
ULD Select [SET-41]: Disable, By Current, or By Torque.
ULD Min Torque [PROT-57]: If using ULD by Torque, set minimum torque level percentage at 0 Hz . Default = 10\%.
ULD Level [SET-42]: For ULD by Current, set as a percentage of motor FLA (SFA) (default = 45\%). For ULD by Torque, set as a percentage of nominal torque at base frequency. If all conditions are met, VFD will trip below this level.
ULD Frequency [SET-43]: Set minimum frequency for ULD by Current or Torque detection.
ULD Delay [SET-44]: Delay range from 1 to 360 seconds (default $=2$ sec). When timer expires, if current is still below [Set-42] or torque is still below ULD Torque Limit curve and frequency is still above [Set-43], VFD will trip based on [Set-41].
ULD Recovery Time [SET-45]: 0 to 720 min (default $=30 \mathrm{~min}$). If timer is set to value greater than 0 min utes, VFD will restart after timer expires. If set to 0 and the VFD trips, manual or remote reset is required (no auto retries).

For dry well protection, Recovery Time should be long enough to allow the well to be filled. If VFD trips the first time on Underload, it will restart after the Recovery timer expires. If VFD trips again, the timer value will be doubled. The VFD will continue restart attempts, doubling the timer value until it reaches 720 minutes (12 hours). Then every restart will be in 720 min. ULD Recover Cnt [SET-46] displays the countdown before the next restart attempt.

When VFD finally runs without tripping for 180 sec, the recovery timer will be reset to original setting and at next underload trip VFD will wait for well fill for original [Set-45] time value.

If the run command is removed, or HOA is set to OFF, the Underload feature is canceled and the [Set45] timer is reset to its original setting.

Fine Tune Settings for ULD by Torque

1. Verify accuracy of Motor FLA (SFA) [Set-03], Motor Voltage [Set-05], and VFD Base Freq [VFD-02]. These values determine nominal torque.
2. Adjust ULD Frequency [Set-43] to be equal to minimum operational frequency [Set-13] or [Set-22].
3. Run motor at minimum frequency and verify water movement for pump or air movement for fans.
4. While running the motor at minimum frequency, determine whether VFD trips on ULD:

- If system trips on HLD using default ULD Level [Set-42], decrease level by 03\% until system does not trip.
- If system does NOT trip using default ULD Level [Set-42], increase the level by increments of 3\% until system trips, then decrease back by 3\%.

5. If nuisance tripping occurs, lower ULD Min Torque [Prot-57] by increments of 1%.
6. Adjust ULD Delay [Set-44] to duration acceptable for operation.
7. Adjust ULD Recovery Time [Set-45] to a duration that fills-up well enough to allow motor to run minimum time before another ULD trip.

Overpressure

The Overpressure feature stops the VFD when PID feedback exceeds a set value in either Hand or Auto.
To enable this feature, adjust the following parameters:
OverPress Set [SET-39]: Disable, OP Trip, or OP Auto Reset.

- When enabled, if PID Feedback exceeds OverPress Level [SET-40], the VFD trips on Overpressure fault.
- If setting is OP Trip, manual or remote reset is required. If Reset Restart [VFD-36] is enabled and a run command is present, the VFD will restart when reset.
- If setting is OP Auto Reset, the VFD will restart when PID feedback falls below Wake-Up Level [SET-31] and a run command is still present.

OverPress Level [SET-40]: Overpressure trigger level in PID feedback units, 0.0 to SET-20 (Unit) PID F/B Max.

No Flow Protection

The VFD can monitor a system flow switch to provide pump protection and more reliable sleep mode operation.
Flow Switch Terminal [10-21 through 28]: Connect the flow switch to one of the Digital Inputs (MI1-8) and set the corresponding parameter to 37 Flow Switch.
No Flow Mode [10-38]: Disabled, Trip, or Sleep. Default = Disabled.
Prime Time [10-39]: Some pump applications require time for the pump to self-prime before the load stabilizes. This setting adds a 0 to 6000 second delay before the VFD starts monitoring for Underload or NoFlow conditions, which protects against nuisance faults. The delay operates at any VFD start, in both Hand and Auto modes, including Run, Wake, Restart, or Reset commands.
No Flow Freq [I0-40]: Range from PID/VFD Freq Low Limit to PID/VFD Freq High Limit. Default= 20.0Hz or 40 Hz based on application.
When [10-38] is set to Trip and the VFD runs at a frequency greater than [10-40] Ionger than [10-39] with the flow switch contact open, the VFD will trip on No Flow Fault. If the switch closes during the delay, the delay timer will be reset and will start again if the flow switch contact opens again.
When [I0-38] is set to Sleep, the flow switch will become an additional condition for sleep mode. When VFD runs with PID control and determines that all sleep mode conditions are met and the flow switch is open during Sleep delay, VFD will go into sleep mode.

Broken Pipe Protection (for Pump Applications)

The VFD has the ability to detect a broken pipe in the system. The VFD must be running with PID Control in Auto mode for this feature to be active.

To enable this feature, adjust the following parameters:
Broken Pipe Level [SET-36]: 0.0 to PID F/B Max [Set-20]. Setting of 0.0 disables the feature. When pressure falls below this level and VFD continues to run above [Set-37], delay timer [SET-38] starts.
Broken Pipe Freq [SET-37]: PID Low Freq [Set-22] to PID High Freq [Set-23] (default = 59.5 Hz).
Broken Pipe Delay [SET-38]: 0.0 to 6000 seconds (default $=180 \mathrm{sec}$). If either of the first two conditions is removed, the timer will reset. If the timer expires with both conditions still active, the VFD will trip on Broken Pipe fault.

Manual or remote reset is required.

ADVANCED APPLICATION OPTIONS
 Operation with Permanent Magnet Motors

ADVANCED APPLICATION OPTIONS

Operation with Permanent Magnet Motors

Permanent magnet (PM) motors are different than induction motors in that PM motors have magnets installed in the rotor. A PM motor is more efficient than an induction motor because the PM motor does not need power to magnetize the rotor. Therefore, a PM motor uses less input power to create the same shaft power.

Internal PM motors (IPM) have the magnets installed in the rotor laminations rather than on the surface of the laminations, which are called surface PM motors (SPM).
The X-Drive controls PM motors using Sensorless Vector Control (SVC). SVC can also be used to control induction motors. SVC is different than scalar (VF) mode in that the drive uses feedback of the 3-phase current to regulate current at startup and adjust frequency of operation for torque compensation.

PM SVC operation has a sequence of three steps:

1. DC Alignment - A DC current and voltage is applied to the motor to align the rotor to the magnetic poles. This alignment requires 3 seconds.
2. I/F Control - A controlled current start of the motor is performed. This technique provides higher starting torque than VF mode.
3. Advance V / F Control - With the motor started,
 frequency compensation stabilizes the current load. Torque compensation adjusts output voltage to correct for torque control.

ADVANCED APPLICATION OPTIONS

Operation with Permanent Magnet Motors

Setup MagForce Pump Motor

Franklin Electric MagForce motors use an internal permanent magnet motor (IPM) design with 4-pole construction and synchronous speed. This means the electrical frequency is the same speed as the shaft speed with no slip in the rotor. Since the motor has 4 poles, the electrical frequency running the motor will need to be twice that of a 2-pole motor for same desired RPM.

MagForce motors are rated to operate up to 3600 RPM in North America or 3000 RPM in the EU, and not to exceed the maximum SFA rating of the motor. To run pumps at their rated speed, use the pump RPM calculation "Poles x RPM / 120 = Electrical Frequency (Hz)" in order to set the VFD Max Frea [VFD-00].

Use the following steps to configure an X-Drive for use with a MagForce:

Basic Setup

Pump RPM	Electrical Frequency
3600	$4 \times 3600 / 120=120 \mathrm{~Hz}$
3450	$4 \times 3450 / 120=115 \mathrm{~Hz}$
3525	$4 \times 3525 / 120=117.5 \mathrm{~Hz}$
3000	$4 \times 3000 / 120=100 \mathrm{~Hz}$
2850	$4 \times 2850 / 120=95 \mathrm{~Hz}$
2938	$4 \times 2938 / 120=98 \mathrm{~Hz}$

IMPORTANT: If the VFD has been used in a previous application, the drive parameters should be completely reset using Parameter Reset [ADV-03], option 4_Reset all Param.

1. Application [SET-00]: Set to option 9_MagForce. This selection assumes the use of a 4-pole, 3-phase PM motor running at 120 Hz and automatically updates all relevant parameters to the proper defaults.
IMPORTANT: The MagForce application should ONLY be used with Franklin Electric MagForce motors.
Do NOT use this selection with other permanent magnet motors.
2. Input Phase [SET-01]: Verify that the setting matches the type of power supply-3-phase (default).
3. Motor Horsepower [SET-02]: Enter the maximum rated horsepower from the motor nameplate.
4. Motor FLA (SFA) [SET-03]: Set to the current rating on the nameplate associated with the power rating of the pump.
5. Motor RPM [SET-04]: Enter the rated motor RPM from the motor nameplate.
6. Motor Voltage [SET-05]: Enter the rated voltage from the motor nameplate.
7. VFD Max Freq [VFD-00]: The highest frequency allowable. This should be set to the calculated electrical frequency corresponding to the target pump RPM in the table
 above.
8. VFD Base Freq [VFD-02]: This should be set to the motor nameplate frequency rating.
9. Carrier Freq [SET-06]: This should be set to 4 kHz for sine filters and 2 kHz for $\mathrm{dV} / \mathrm{dt}$ filters.

Permanent Magnet Specific Parameters

For MagForce applications, the drive automatically sets:

- Control Method [Motor-05]: This should be 2_Sensorless Vector Control.
- Motor Type [Motor-06]: This should be 2_PM-IPM.
- PM Poles [Motor-07]: This should be 4 for a MagForce motor.
- PM Inertia [Motor-08]: This value is automatically calculated.

ADVANCED APPLICATION OPTIONS
 Operation with Permanent Magnet Motors

Motor Specific Parameters

For MagForce applications, the drive automatically sets:

- PM Rs [Motor-09]: Motor stator resistance.
- PM Ld [Motor-10]: Motor inductance d-axis.
- PM Lq [Motor-11]: Motor inductance q-axis.
- PM Ke Coeff [Motor-13]: Motor parameter Ke (Vphase, rms / krpm).

Autotune Characteristic Parameters

For MagForce applications, autotune is not needed. However, if the drive consistently exceeds the motor current specification during DC Alignment and I/F control, then an autotune may be needed. Refer to "Autotune Characteristic Parameters" on page 82.

Tune motor control - DC Alignment

For MagForce applications, no adjustments are needed. However, if there are problems during DC Alignment, refer to "Tune motor control - DC Alignment" on page 82.

Tune motor control - I/F Control

For MagForce applications, no adjustments are needed. However, if there are problems during I/F Control, refer to "Tune motor control -I/F Control" on page 82.

Tune motor control - PM Control

For MagForce applications, no adjustments are needed. However, if there are problems during PM Control, refer to "Tune motor control - PM Control" on page 83.

Setup Non-Franklin Electric PM Motors

The X-Drive can be programmed to operate general purpose permanent magnet motors through the following procedure:

Basic Setup

IMPORTANT: If the VFD has been used in a previous application, the drive parameters should be completely reset using Parameter Reset [ADV-03], option 4_Reset all Param.

1. Application [SET-00]: Set to option 8_PM Motor. This selection assumes the use of a 4-pole, 3-phase PM motor running at 120 Hz and automatically updatesrelevant parameters to the proper defaults.
IMPORTANT: Do NOT use the MagForce selection with non-Franklin Electric permanent magnet motors.
2. Input Phase [SET-01]: Verify that the setting matches the type of power supply-3-phase (default).
3. Motor Horsepower [SET-02]: Enter the maximum rated horsepower from the motor nameplate.
4. Motor FLA (SFA) [SET-03]: Enter the rated motor FLA, found on the motor nameplate.
5. Motor RPM [SET-04]: Enter the rated motor RPM from the motor nameplate.
6. Motor Voltage [SET-05]: Enter the rated voltage from the motor nameplate.
7. VFD Max Freq [VFD-00]: The highest frequency (speed) allowable.
8. VFD Base Freq [VFD-02]: This should be set to the motor nameplate frequency rating.
9. Carrier Freq [SET-06]: This should be set to 4 kHz for sine filters and 2 kHz for dV/dt filters. Carrier frequency should be at least 1.5 times the resonant frequency of the filter.

ADVANCED APPLICATION OPTIONS
 Operation with Permanent Magnet Motors

Permanent Magnet Specific Parameters

Enter motor parameters unique to the installation:

- Control Method [Motor-05]: This should be 2_Sensorless Vector Control.
- Motor Type [Motor-06]: Set to 1_PM-SPM or 2_PM-IPM.
- PM Poles [Motor-07]: Set the number of poles in the motor. (Poles = Base Freq $\times 120 /$ RPM.)
- PM Inertia [Motor-08]: If unknown, use the value calculated by the drive.

Motor Specific Parameters

Input motor characteristic parameters. If any motor characteristic parameters are unknown besides PM PG Angle [Motor-12], then an autotune is required to measure these values.

- PM Rs [Motor-09]: Motor stator resistance. If unknown, leave blank.
- PM Ld [Motor-10]: Motor inductance d-axis. If unknown, leave blank.
- PM Lq [Motor-11]: Motor inductance q-axis. If unknown, leave blank.
- PM PG Angle [Motor-12]: Motor offset angle. If unknown, leave blank.
- PM Ke Coeff [Motor-13]: Motor control coefficient. If unknown, leave blank.

Autotune Characteristic Parameters

1. If a sine filter is connected to output of drive, either disconnect the capacitors or remove sine filter between drive and motor cable so that motor cable is directly connected to the drive. Make sure all power to the drive is disconnected before changing wiring.
2. Set Motor A-Tuning [Motor-00] to 3_SPM No-Rotation or 4_IPM No-Rotation. If a load is on the motor and cannot be removed, then a "no-rotation" option should be selected. Remove load from the motor to then use "Rotating."
a. An autotune "no-rotation" will output high frequency into the motor to calculate the motor impedance values but not the Ke Coeff.
b. An autotune with rotation will do same as "no-rotation" and then turn the rotor of the motor to calculate the Ke Coeff (Vphase, rms / krpm).
3. Start Autotune by initiating a start command.
4. Once Autotune is complete, the drive will populate PM characteristic parameters.
5. If using a sine filter, reconnect filter between drive and motor cable.

Tune motor control - DC Alignment

Related parameters:

- I/F Current [Motor-24]: Percentage of nominal motor current [SET-03] used to regulate output current during DC current during PM DC Alignment.
- DC-Tun Curr P [Motor-39]: Proportional gain value regulating DC current during DC Alignment of PM motor.
- DC-Tun Curr I [Motor-40]: Integral gain regulating DC current during DC Alignment of PM motor.

The DC Alignment process rarely needs adjusting. However, if the motor is not aligning properly, the user may detect unexpected high current loads, or an unusual rumbling sound at low frequency. This might occur when the motor leads are very long (> 3000 ft) or high load prevents motor movement. In this case, start by increasing the I/F Current [Motor-24], and then DC-Tun Curr P [Motor-39] if necessary.

Tune motor control - I/F Control

Related parameters:

- I/F Current [Motor-24]: Percentage of nominal motor current [SET-03] used to regulate AC current during I/F Control.
- Freq I/F to PM [Motor-27]: When increasing frequency, the frequency to switch modes from I/F mode to PMSVC mode.
- Freq PM to I/F [Motor-28]: When decreasing frequency, the frequency to switch modes from PMSVC mode to I/F mode.
- I/F FItr Time [Motor-29]: Low-pass filter time of current being commanded from I/F Current [Motor24].

The drive regulates current level at I/F Current as frequency ramps up to Freq I/F to PM. Once above this frequency, the Advance V/F Control becomes active. Ramping down to Freq PM to I/F switches out of Advance V/F Control to I/F current regulation. The current regulation averages current value base on I/F fitr time.

If the motor load does not rotate up to Freq I/F to PM, the I/F Current needs to increase. If the I/F Current is at maximum without load rotating, reduce I/F current to below 100% and set acceleration rate to a higher value. If more torque is required, increase switching frequency [SET-06].

Tune motor control - PM Control

Related parameters:

- Torque Filter T [Motor-15]: Response time in controlling torque to motor.
- Torque Cmp Gain [Motor-17]: Gain value for output voltage increase to compensate for voltage drop on stator resistance at high motor loads in torque compensation function. For PM motors, max value is 5000. Setting Torque Cmp Gain to 0 will remove I/F control and disable stability.
- PM Bandwidth HS [Motor-25]: Allowable frequency bandwidth around desired frequency in order to adjust operating frequency to prevent vibrations in motor operation.
- PMSVC FItr Gain [Motor-26]: Gain value in adjusting the operating frequency from the desired frequency to prevent vibrations in motor operation.
- PM Trq Comp I/F [Motor-37]: PM Torque Compensation in I/F Mode.
- PM Trq Comp SVC [Motor-38]: PM Torque Compensation in SVC Mode (Advance V/F Control).

IMPORTANT: PM Trq Comp I/F and PM Trq Comp SVC are only operable in MagForce application. PM Motor Application uses Torque Cmp Gain.

The drive outputs nominal voltage based on desired frequency. Frequency compensation (stabilizer) is quickly adjusting the desired frequency to prevent overcurrent or high voltage on DC bus. The torque compensation control is adjusting output voltage to ensure rotor magnetization is at correct level for desired torque with respect to operating frequency. The switching frequency should be increased by at least 1.5 times the resonant frequency of the sine filter.

PM motors can be unstable with no loads at high frequencies. If there is a light or no load, the Torque Cmp Gain will need to be increased until stability is achieved. Increasing the switching frequency helps in providing stability. If a more precise output frequency is desired, lower the PM Bandwidth HS.

Multi-Motor Configurations

Several multi-motor configurations are available:

- Equal Run Time
- Soft Start Mode
- Lead-Lag
- Run Time Alt
- Rotate Lead

Multi-Motor (MMC) Relay Control for Pump Applications

The multi-motor configuration for constant pressure systems provides control for up to 4 pump motors (8 with optional I/O board) in a Lead, Lag configuration.

The VFD controls speed of the Lead pump using its own PID feedback loop and the VFD motor output. If the Lead pump cannot maintain setpoint pressure, the VFD uses relay outputs to trigger Lag pumps through a starter, soft-starter, or another VFD. Relay output function [10-47, -48, or -49 etc.] should be set to 47_MMC Out. The lowest number relay set to MMC will be Lag 1.

This feature does not provide an alternation or Lead pump replacement in case of pump or VFD failure.
To enable Lead, Lag Relay Control, set the following parameters:
MMC Mode [ADV-10]: Set to 3_Lead-Lag.
Lag Start Freq [ADV-18]: When the lead pump runs above this frequency, it sets the first condition for starting a Lag pump. Range is Lag Stop Freq [ADV-23] to PID Hi Hz Limit [SET-23]. Default = 59.5 Hz .
Lag Start Delay [ADV-19]: Sets a delay time to start Lag pump when both frequency and pressure conditions are met. Default = 10 sec .
Lag Start Level [ADV-20]: Sets a percentage below PID F/B Max [SET-20] (pressure) to calculate MMC Below Setpoint as the second condition for starting a Lag pump. Range is 0.1 to 10%. Default $=2 \%$.
MMC Below Setpoint $=[$ SET-21] - $\{[S E T-20] \times[A D V-20] / 100\}$.
Lead Freq Drop [ADV-21]: PID Hi Hz Limit [SET-23] drop value with [ADV-22] at Lag pump start to prevent system overpressure condition. Default $=10 \mathrm{~Hz}$.
MMC Decel Time [ADV-22]: Sets the deceleration time for the [ADV-21] frequency drop. Default $=2 \mathrm{sec}$.
Lag Stop Freq [ADV-23]: When the Lead runs below this frequency, it sets the first condition for stopping Lag pumps. Default $=35 \mathrm{~Hz}$.
Lag Stop Delay [ADV-24]: Sets a delay time to stop Lag pump when both frequency and pressure conditions are met. Default $=4 \mathrm{sec}$.
Lag Stop Level [ADV-25]: Sets a percentage above PID F/B Max [SET-20] (pressure) to calculate MMC At Setpoint as the second condition for stopping a Lag pump. Default $=0.3 \%$.
MMC At Setpoint $=[$ SET-21] $+\{[$ SET-20] x [ADV-25]/100 $\}$.
Lead Freq Bump [ADV-26]: PID Lo HzLimit [SET-22] increase value with [ADV-27] at Lag pump stop to prevent system underpressure condition. Range is 0 to [SET-23]*0.4. Default $=0 \mathrm{~Hz}$.
MMC Accel Time [ADV-27]: Sets the acceleration time for the [ADV-26] frequency bump. Default $=2 \mathrm{sec}$.
Lag Pump Start sequence: If the Lead motor runs at a speed equal or greater than [ADV-18] with system pressure less than MMC Below Setpoint for [ADV-19] delay, the VFD will decrease PID High Freq Limit [SET-23] by [ADV-21] value for [ADV-22] time and then activate relay output to start the first Lag Pump in sequence. After a non-adjustable 1 sec delay, the VFD will change [SET-23] to its original value and check for Lag Start/Stop conditions. If demand is still high, the VFD will repeat Lag Start sequence for additional Lag pumps.

Lag Pump Stop sequence: If the Lead motor runs at a speed equal or less than [ADV-23] with system pressure equal or greater than MMC At Setpoint for [ADV-24] delay, the VFD will increase PID Lo Hz Limit [SET-22] by [ADV-26] value for [ADV-27] time and then it will deactivate relay output to stop the first Lag Pump. After a non-adjustable 1 sec delay, the VFD will change [SET-22] to its original value and check for Lag Start/Stop conditions. If demand is still low, the VFD will repeat Lag Stop sequence for additional Lag pumps. If all Lag pumps are stopped, the VFD will check for Sleep Mode conditions.
If the VFD run command is removed during MMC operation, all Lag pump relays will deactivate in sequence with a 1 sec delay between each relay. The delay will protect from voltage surges in the power line when Lag pumps stop. The VFD will then stop the Lead based on the selected method (Decel or Coast).

If the VFD trips on a fault during MMC operation, the VFD will immediately deactivate all Lag pump relays and it will coast stop.

COMMUNICATIONS

FE Connect for Cerus X-Drive Mobile Application

The FE Connect app for X-Drive is an intuitive way to wirelessly configure and control your VFD. It provides features such as:

- Simple, application-based setup for quick and easy startup
- Informational dashboard for visual monitoring of system performance
- Mobile control mode for easy Hand mode operation
- In-app troubleshooting with fault time and date logging
- Email system logs directly to FE support

In your mobile device's app store, search for FE Connect. Locate and install the X-Drive specific version of the app.

NOTE: To use the app, you must install and configure an accessory X-Drive FE Connect Bluetooth communication card in the VFD. Refer to "Optional Extension Cards" on page 95.

Setup Bluetooth Connection

After installing the X-Drive Connect app on your device, use the following procedure to connect to a X-Drive:

1. From the Home screen, tap Connect New Product.
2. On the New Product Wizard screen, tap either Scan QR Code Sticker or enter the Bluetooth Key.
3. If using the scanning tool, center the QR code on the Bluetooth card in the screen.
4. If using the Bluetooth key, press the F2 button on the drive keypad nine times to display the BT Card Name screen. Enter the key number shown into the app.
5. Enter a Name and Location to identify the drive within the app.

Tap Finish \& Connect to complete the connection.

Using the Mobile App

Use the following procedure to program an X-Drive that has been paired with the app.

1. On the My Products screen, tap the name of the desired drive to connect to the device and enter the Dashboard.
2. Tap the MENU button to for a list of options.
3. Tap Setup to change VFD settings, then tap All Settings to display the complete parameters lists.
4. From here, you will be able to program and verify all drive settings. Refer to "Setting Operating Parameters" on page 48 for more information about settings.

When setup programming is complete, many more features are available within the app for both controlling the drive and fine tuning its performance.

1. Drive Info display
2. Reports Generator screen
3. Dashboard display. Use the Control Mode slider at the bottom to switch control of the drive between the keypad and the mobile app.

Modbus Communication

The VFD can be controlled and monitored through the Modbus RTU protocol over an RS-485 connection. Modbus follows a simple client-server model. Server devices perform data read/write requests, which are issued from a client device such as a Programmable Logic Controller (PLC) or Building Management System (BMS). Assignable addresses for server devices range from an address of 1 to a theoretical maximum of 247.
As a server device, the VFD communicates all data using only 16-bit holding registers. Addressing for the registers is partitioned into blocks that are multiples of 100 to group functionally similar data. If the drive is configured to accept commands via remote communications, it can be commanded to start, stop, run at a specified output frequency, target a setpoint in PID control, and reset faults.
Modbus addresses can be found in the parameter tables throughout this publication.

X-Drive Configuration for Modbus

Use the X-Drive's internal COM1 Port to connect to a Modbus network. COM1 can be accessed either through terminals SG + and SG(1) or through one of the RJ45 connectors (2). RJ45 pins 4 and 5 are connected in parallel with SG+ and SG- and pins 3 and 6 are parallel with SGND and Ground.

The X-Drive can also communicate with a Modbus network through Ethernet, if an accessory Ethernet Communication card is installed in the VFD. Refer to "Optional Extension Cards" on
 page 95.

To enable Modbus communications, set the following parameters:

Communication Parameters Setup

- PLC Menu [SET-58]: Use this setting to enable the PLC menu.
- PLC Com Type [PLC-23]: Set to 0_Modbus 485. This enables Modbus on COM1 with the format RTU 8, $N, 1$. When Modbus is enabled, BACnet communication, and PLC communication are disabled on COM1.
- COM1 Address [COMM-00]: If the AC motor drive is controlled by RS-485 serial communication, the communication address for this drive must be set via this parameter and each AC motor drive's communication address must be different.
- COM1 Speed [COMM-01]: This parameter is for selecting the RS485 communication transmission speed. Set $4.8 \mathrm{~K}, 9.6 \mathrm{~K}, 19.2 \mathrm{~K}, 38.4 \mathrm{~K}, 57.6 \mathrm{~K}$ and 115.2 K . If the value is not one of these 6 types, it will be replaced by 9.6K.
- COM1 Loss [COMM-02]: Sets the action when communication errors occur.
- COM1 Loss Delay [COMM-03]: Setting for communication timeout detection.
- COM1 Protocol [COMM-04]: RS485 Protocol: Data Bits - Parity - Stop Bits - Message Format
- Response Delay [COMM-05]: Duration VFD waits before responding to received communication.
- Main Frequency [COMM-06]: When Auto Speed Ref [SET-07] is set to RS485 Interface, the last frequency command is stored in this parameter. After rebooting from an abnormal turn-off or momentary power loss, the VFD will continue operation with last frequency.

System Parameters Setup

- HOA Mode Source [SET-60]: Set to 2_RS485Serial. This enables Modbus to switch between Hand and Auto modes.
- Auto Speed Ref [SET-07]: Set to 5_RS485Serial. This enables Modbus to control the speed when in Auto mode.
- Auto Run Cmd [SET-08]: Set to 2_RS485 Serial. This enables Modbus to initiate a Run Command in Auto mode.
- Hand Speed Ref [SET-09]: Set to 1_RS485 Serial. This enables Modbus to control the speed when in Hand mode.
- Hand Run Cmd [SET-10]: Set to 2_RS485Serial. This enables Modbus to initiate a Run Command in Hand mode.

ModBus Commands and Data Addresses

ModBus	Display Name	ModBus	Display Name
8192	Run Command	8724	CPU Pin Status for Digital Outputs
8193	Frequency Command	8725	Reserved
8194	Fault Reset	8726	Reserved
8448	Error Code	8727	Reserved
8449	Drive Status	8728	Reserved
8450	Frequency Command Value	8729	Counter Overload Time Percentage
8451	Output Frequency	8730	GFF Percentage
8452	Output Current	8731	DC Bus Ripple
8453	DC-Bus Voltage	8732	PLC Register D1043 Data
8454	Output Voltage	8733	Reserved
8455	Multi-Step Speed	8734	User Page Display
8456	Reserved	8735	Output Value of Output Frequency Coefficient Calculation
8457	Counter Value	8736	Number of Motor Revolutions While Running
8458	Power Factor Angle	8737	Operating Position of the Motor
8459	Torque	8738	VFD Cooling Fan Speed
8460	Motor Speed	8739	Control Mode
8461	Reserved	8740	Carrier Frequency Status
8462	Reserved	8741	Reserved
8463	Output Power	8742	Drive Status
8470	Multi-Function Display	8743	Reserved
8475	Maximum Operating Frequency	8744	Reserved
8479	Decimal Portion of Output Current	8745	Power
8704	Output Current	8746	Reserved
8705	Counter Value	8747	Reserved
8706	Output Frequency	8748	Reserved
8707	DC-Bus Voltage	8749	Reserved
8708	Output Voltage	8750	PID Reference Value
8709	Power Angle	8751	PID Offset Value
8710	Motor Power	8752	PID Output Frequency
8711	Motor Speed	8753	Hardware ID
8712	Torque	9729	Digital Input Status
8713	Reserved	9730	Digital Input Status Continued
8714	PID Feedback Value	9793	Digital Output Status
8715	AVII Input Value Percentage	9825	AVI1 Proportional Value
8716	ACI Input Value Percentage	9826	ACI Proportional Value
8717	AVI2 Input Value Percentage	9827	AVI2 Proportional Value
8718	IGBT Temperature	9835	Expansion Card Al10 Percentage
8719	Ambient Temperature	9836	Expansion Card A111 Percentage
8720	Digital Input Status	9889	AFM1 Output Proportional Value
8721	Digital Output Status	9890	AFM2 Output Proportional Value
8722	Multi-Step Speed Being Executed	9899	Expansion Card A010 Percentage
8723	CPU Pin Status for Digital Inputs	9900	Expansion Card A011 Percentage

BACnet Communication

The VFD can be controlled and monitored through the BACnet MS/TP protocol over an RS-485 connection. The VFD operates as an MS/TP master device, for which the protocol can support addressing for up to 128 master devices in a single MS/TP network.

BACnet conveys control and monitoring data as a collection of BACnet objects. The X-Drive BACnet protocol supports 3 object types: Device, Analog Value (AV), and Binary Value (BV). The Read Property and Write Property services can be used to interface to these objects. If the drive is configured to accept commands via remote communications, it can be commanded to start, stop, run at a specified output frequency, target a setpoint in PID control, and reset faults.

X-Drive Configuration for BACnet

Use the X-Drive's internal COM1 Port to connect to a BACnet network. COM1 can be accessed either through terminals SG+ and SG(1) or through one of the RJ45 connectors (2). RJ45 pins 4 and 5 are connected in parallel with SG+ and SG- and pins 3 and 6 are parallel with SGND and Ground.

To enable BACnet communications, set the following parameters:

Communication Parameters Setup

- PLC Menu [SET-58]: Use this setting to enable the PLC menu.
- PLC Com Type [PLC-23]: Set to 1_BACnet. This enables BACnet on COM1 with the format RTU 8, N, 1. When BACnet is enabled, Modbus communication, and PLC communication are disabled on COM1.
- BACnet MAC ID [COMM-24]: This should be set to BACnet's MS/TP station number-default = 10 . Range = 0 to 127 .
- BACnet Speed [COMM-25]: This should be set to the BACnet communication baud rate - default $=$ 38400. Range $=9600,19200,38400$, or 76800 bps.
- Device ID Lo [COMM-26] and Device ID Hi [COMM-27]: The combination of these two parameters is the Device Object Identifier. COMM-26 is usually set as the unique device number in the trunk. COMM27 is usually set to the trunk or building floor number. Refer to "BACnet Device ID Setup" on page 91.
- Max Address [COMM-28]: This is the maximum number of Master nodes available in the trunk. Communications will be faster if the setting is equal or close to the actual number of Master devices.
- Password [COMM-29]: Enter the BACnet password. If setup is successful, the keypad will display 8888.

System Parameters Setup

- HOA Mode Source [SET-60]: Set to 2_RS485 Serial. This enables BACnet to switch between Hand and Auto modes.
- Auto Speed Ref [SET-07]: Set to 5_RS485 Serial. This enables BACnet to control the speed when in Auto mode.
- Auto Run Cmd [SET-08]: Set to 2_RS485 Serial. This enables BACnet to initiate a Run Command in Auto mode.
- Hand Speed Ref [SET-09]: Set to 1_RS485Serial. This enables BACnet to control the speed when in Hand mode.
- Hand Run Cmd [SET-10]: Set to 2_RS485S Serial. This enables BACnet to initiate a Run Command in Hand mode.

BACnet Device ID Setup

The BACnet Device Object Identifier is the combination of Device ID Lo [COMM-26] and Device ID Hi [COMM-27], representing the lower and upper hexadecimal values respectively.

The Device ID Lo [COMM-26] value is usually a unique device number in the trunk. It must be within a range from 0 to 65535. The Device ID Hi [COMM-27] is usually set to the trunk or building floor number, and must be a value within a range from 0 to 63 .

The calculation of the BACnet Device ID is [COMM-27] * 65536 + [COMM-26]. This value must be within a range from 0 to 4194303.

- If the BACnet Device ID is less than 65536, no calculation is needed; [COM-27] is always 0 and
[COM-26] equals the BACnet Device ID.
For example, if the BACnet ID is 10025, set [COMM-27] to 0 and [COMM-26] to 10025.
- For a BACnet Device ID greater than 65535, calculate the BACnet ID / 65536 to get a value with a remainder. To figure out the remainder value, take BACnet Device ID - (value * 65536). Set [COMM-27] to the calculated value and [COMM-26] to the remainder.

For example, if the BACnet Device ID is 842334 , then 842334 / 65536 equals value 12 with a remainder. The remainder value is calculated out by $842334-(12$ * 65536$)=55802$. Therefore, [COMM-27] should be set to 12 and [COMM-26] should be set to 55802 .

BACnet Objects

Commandable Analog Value Objects

Object Number	R/W	Object Name	Object Description	Unit
AV 000	RW	Reserved	-	-
AV 001	RW	FreqRefValue	Frequency Reference Value	Hz
AV 002 through AV 010	RW	Reserved	-	-
AV 011 through AV 026	RW	Block Transfer	Block transfer mapping 1 to 16	Dependent

Status Analog Value Objects (Read Only)

Object Number	R/W	Object Name	Object Description	Unit
AV 027 through AV 030	R	Reserved	-	-
AV 031	R	Output Frequency	Output Frequency Value	Hz
AV 032 through AV 034	R	Reserved	-	-
AV 035	R	Output Torque	Output Torque	\%
AV 036 through AV 038	R	Reserved	-	-
AV 039	R	Status Word	VFD Status Word from BV 16 through BV 31	-
AV 040	R	Reserved	-	-
AV 041	R	Drive Type Code	Drive Type Code	-
AV 042	R	Warning Code	Warning/Alarm Code	-
AV 043	R	Error Code	Error/Fault Code	-
AV 044	R	Output Current	Output/Motor Current	Amperes
AV 045	R	DC Bus Voltage	DC Bus Voltage	VDC
AV 046	R	Output Voltage	Output Voltage	VAC
AV 047	R	Count Value	Accumulated TRG DI Counter Value	-
AV 048	R	Power Factor	Output Power Factor	-
AV 049	R	Output Power	Output Power	kW
AV 050	R	IGBT Temperature	IGBT Temperature	${ }^{\circ} \mathrm{C}$
AV 051	R	Caps Temperature	DC Bus Capacitors Temperature	${ }^{\circ} \mathrm{C}$
AV 052	R	Carrier Frequency	Actual Carrier Frequency	kHz

Object Number	R/W	Object Name	Object Description	Unit
AV 053	R	PID F/B Value	PID Feedback Value	$\%$
AV 054	R	Overload Rate	Overload Value	$\%$
AV 055	R	GND Fault Level	Ground Fault Trip Level	$\%$
AV 056	R	DC Bus Ripples	DC Bus Ripples Amplitude	Volts
AV 057	R	Fan Speed	VFD Cooling Fan Speed	$\%$
AV 058	R	Motor Speed	Actual Motor Speed	RPM
AV 059	R	kWh	Kilowatts per hour	kWh
AV 060	R	Step Frequency	Step Frequency ID number	-
AV 061	R	AVII Input Value	AVII Analog Input Reading	$\%$
AV 062	R	ACI Input Value	ACI Analog Input Reading	$\%$
AV 063	R	AVI2 Input Value	AVI2 Analog Input Reading	$\%$
AV 064	R	Digital IN Status	Digital Inputs Status [IO-46]	-
AV 065	R	Digital OUT Status	Digital Outputs Status [IO-58]	-
AV 066	R	CPU DI Pin Status	CPU Pins from Digital INs Status	-
AV 067	R	CPU D0 Pin Status	CPU Pins to Digital OUTs Status	-
AV 068	R	PLC D1043 Status	PLC Register D1043 Status	-

Commandable Binary Value Objects

Object Number	R/W	Object Name	Object Description
BV 000	RW	Freq Active CMD	$\begin{aligned} & \text { 0_Frq CMD }=0 \mathrm{~Hz} \\ & \text { 1_Frq CMD }=\text { FreqRefValue } \end{aligned}$
BV 001	RW	FWD/REV CMD	0_Forward 1_Reverse
BV 002	RW	Reserved	-
BV 003	RW	Stop CMD	$\begin{aligned} & \text { 0_None } \\ & \text { 1_Stop (Decelerate to OHz) } \end{aligned}$
BV 004	RW	Hold SPD	0_None 1_Stay at Current Frequency
BV 005	RW	Reserved	-
BV 006	RW	Q-Stop CMD	$\begin{array}{\|l} \text { O_None } \\ \text { 1_Quick Stop } \end{array}$
BV 007	RW	Power Out CMD	0_Power OFF (Coast to Stop) 1_Power ON (Run)
BV 008 through BV 014	RW	Reserved	-
BV 015	RW	Reset	0_None 1_Reset Fault

Status Binary Value Objects (Read Only)

Object Number	R/W	Object Name	Object Description
BV 016	R	At CMD Freq	0_Out Frq ? CMD Frq1_Out Frq = CMD Frq
BV 017	R	Direction	0_Forward 1_Reverse
BV 018	R	Warning	0_None 1_Warning Active
BV 019	R	Error/Fault	0_None 1_Error/Fault Active
BV 020 through BV 021	R	Reserved	-
BV 022	R	Q-Stop Mode	0_None 1_Q-Stop Active
BV 023	R	Power OUT	0_Power OUT Off 1_Power OUT On (Run)
BV 024 through BV 031	R	Reserved	-

BACnet Communication

ACCESSORIES

Optional Extension Cards

AWARNING

4
 Contact with hazardous voltage could result in death or serious injury.

- Disconnect and lock out all power before installing or servicing equipment.
- Use extreme caution and take necessary safety measures if opening the cover at any time while drive is powered.
A selection of accessory extension cards is available to add additional functionality to the X-Drive, including:
10000004840 X-Drive FE Connect Communication Card: This card adds Bluetooth communication to the drive, providing the ability to program, control, and monitor the VFD using the X-Drive FE Connect mobile application. When the card is installed, and the drive is powered on, parameter Com Card ID [Comm-30] should identify 6_FELE BT Card. Refer to "FE Connect for Cerus X-Drive Mobile Application" on page 85 to connect the mobile app to the drive.

CMC-EIP01 Ethernet Communication Card: This card supports Ethernet IP and Modbus TCP protocols. To install the card into the VFD, refer to "Extension Card Installation" on page 97 and "Setup Optional Ethernet Communication Card" on page 101. Refer to "Modbus Communication" on page 87 for additional parameters and configuration information.
Once configured, the LED Indicators on the drive give the status of the network, parameters, and VFD power:

LED	Light Status	Indication	Required Action
NS	Green \& red alternate	Network self-test mode	None
	Solid green	CIP connection established	None
	Blinking green	No CIP connection at power-on	None
	Solid red	IP duplicate / conflict	Check IP Settings
	Blinking red	COMMS loss / Time-out	Check COMMS setting
	OFF	No connection to network	Check network connection
MS	Green \& red alternate	Drive in self-test mode	None
	Solid green	Parameters are set	None
	Blinking green	Parameters are not yet set	Finish setting parameters
	Solid red	VFD hardware failure	Check with FE support
	Blinking red	VFD/COMMS card error	Check parameters setting
	OFF	No power	Check if VFD is powered
Power	ON	Power is normal	None
	OFF	No power	Check if VFD is powerd
Link	ON	Transmit/receive is normal	None
	OFF	No connection to network	Check network connection

Optional Extension Cards

EMC-D42A Extension DC I/O Card: This card adds four Digital Inputs, MI10-M113 with COM common terminal and two polarity insensitive Transistor Outputs with MXM common terminal.

MI10-MII3 inputs functionality is programmable through parameters [OPTION-00 to 03]. Ratings are the same as VFD inputs MII-MI8. The COM terminal should be connected the same way as VFD COM terminal. For default VFD DIs configuration it should be connected to +24 V terminal.

M010-MO11 outputs functionality is programmable through [OPTION-00 to 03]. Ratings are 48 VDC at 50 mA maximum. The MXM terminal should be connected to the common terminal of external power source and M010 and M011 to the load (Example: PL pilot light on the diagram).

EMC-611A Extension AC Input Card: This card adds six Digital Inputs, M110-M115 with AC common terminal (Neutral).
MIIO-MI13 inputs functionality is programmable through parameters [OPTION-00 to 05].
Ratings are $100-130 \mathrm{VAC}, 47-63 \mathrm{~Hz}, 27 \mathrm{k}$ impedance. Response time for ON is 10 ms and for OFF is 20 ms .

EMC-R6AA Extension Relay Card: This card adds six Relay Outputs, R10-R15 with SPST (single-pole singlethrow) form A (N.O.) contacts.

R10-R15 relay functionality is programmable through parameters [OPTION-06 to 16].
Contact ratings for:

- Resistive load 3A at 250 VAC and 5 A at 30VDC
- Inductive load (COS 0.4) 1.2A at 250VAC and 2A at 30VDC

Extension Card Installation

AWARNING

Risk of bodily injury or damage to drive or other equipment. Contact with hazardous voltage could result in death or serious injury.

- Disconnect and lock out all power before installing or servicing equipment.
- Capacitors inside the drive can still hold lethal voltage even after power has been disconnected. ALWAYS check if DC bus charge LED is off and DC voltage on the terminals $D C(+1)$ and $D C(-)$ is less than 30VDC before working on VFD wiring. The DC bus capacitors may hold high-voltage charge for several minutes after the VFD power is disconnected.
- Extension cards cannot be replaced with power applied. Damage to VFD may occur.

Use the following procedure to install an optional extension card:

1. Remove power from the drive and wait until voltage has safely discharged from the $D C$ bus.
2. Remove the digital keypad.
3. Remove the front cover as shown.

Frame A through C

Frame D

Frame E

Frame F

Frame G

Frame H

Optional Extension Cards

4. Locate slot for card installation.
a. RJ45 socket for digital keypad

- For a CMC-EIP01 Ethernet Communication Card, connect the communication cable to this port.
b. Communications card slot
- Bluetooth
- Ethernet
c. Input/Output extension card slot
d. Not currently used

5. Align holes in card over the positioning pins.
6. Press down on the card until retaining clips snap into place.

7. When clips are secure, install retaining screws and tighten to a torque of $6-8 \mathrm{~kg}-\mathrm{cm} / 5.2-7 \mathrm{lb}-\mathrm{in} . / .59-.79 \mathrm{Nm}$.

Once an extension card has been installed, it must be activated to be recognized by the system. The activation procedure differs depending on the type of card. For more information, refer to "Optional Extension Cards" on page 95.

Setup Optional Ethernet Communication Card

Install the card following the instructions in "Extension Card Installation" on page 97.

1. Verify card detection.

- Check Com Card ID [COMM-30] to determine whether a Communications Card has been installed and recognized by the drive. A value of № Com Card indicates that a card has not been detected.
- To activate the card in the drive, set Comm Card [COMM-55] to 2 h (bit 1 on). This will detect the installed card and automatically change [COMM-30] to Ethernet/IP.

2. Download card values to the drive.

- Set MBus Card Reset [COMM-52] to 1_Enable. This populates default values from the card into the appropriate drive parameters. For example:
- IP Address: 192.168.1.5 to [COMM-38 through 41]
- Address Mask: 255.255.255.0 to [COMM-42 through 45]
- Gateway Address: 192.168.1.1 to [COMM-46 through 49]
- When complete, [COMM-52] will automatically return to 0_Disable.

3. Adjust settings as required for the network and upload to card.

- Use [COMM-38 through 49] to set each address segment.
- When complete, set MBus TCP Config [COMM-53] to 2_I-net Par On. This loads the new addresses to the card, enabling communication with the network.

Optional Extension Cards

MAINTENANCE

Troubleshooting

Error Messages: When the drive detects a fault or warning, an error message displays on the screen showing the current problem condition. In some cases the fault can be cleared by pressing the Stop/Reset button.

```
Stop KiK Warning OCA
oc at accel
```

Fault Records: In addition, the drive records up to 30 of the most recent faults. These can be accessed by pressing the F3 key. Use the arrow keys to scroll through the list. For more information about a selected fault, press the Enter key to display details about the occurrence, including date, time, output frequency, output current, and other related data.

NOTE: Fault records can also be located through [PROT-51 to 56], or by pressing Menu/Back/Down/ Fault.

Using the displayed fault title, refer to the following table for troubleshooting details.

Fault Record 1
 AW phase lacked
 oc at accel
 over load

Fault Record

4 W phase lacked
oc at accel
over load

Diagnostic Fault Codes

Fault	Description	Corrective Action
Analog current input loss (ACE)	- ACl loss	- Check the ACl wiring - Check if the ACl signal is less than 4mA
Auto-tuning error (AUE) (AUE 1-4)	- Error during motor auto tuning - No feedback current - Motor phase loss - No load current - Leakage inductance	- Restart tuning - Check motor capacity and parameter settings - Accel/Decel times too short - Check cabling between drive and motor
Braking fault (bF)	- Brake resistor fault	- If the fault code is still displayed on the keypad after pressing "RESET" key, please call technical support.
Broken Pipe (BKPI)	- Low pressure with high frequency	- Check piping for leaks - Verify parameter settings
CAN bus Add Err (CAdE)	- CANopen station address error	- Reset address
CAN bus Index Err (CIdE)	- CANopen index error	- Reset index
CAN bus off (CbFE) (CFrE)	- CANopen bus off error - Check Comm card installation - Check communications settings	
Cc HW error (HdO)	- Check wiring and grounding for possible interference	
CPU Trap 0 error (TRAP)	- CPU instruction error	For CFrE error, reset parameters and station address

Fault	Description	Corrective Action
Damper Fault (DPR)	- Damper limit switch has not closed in time to start fan motor; or, switch has opened for more than 2 seconds while motor is running.	- Check limit switch connections and function - Check damper relay connections and damper function - Verify all damper related parameters
Dec Energy Back (dEb)	- Deceleration energy backup error. When ADV2-28 is not disabled and power is off or momentarily off, VFD will display dEb during accel./decel. stop.	- Check if input power is stable
Derating Error (oL3)	- The VFD detects excessive drive output current.	- Check if the motor is overloaded.
EEPROM read err (cF2)	- Internal memory cannot be read.	- Press "RESET" key - Reset all parameters to default - If error still exists, please call Technical Support..
EEPROM write err (cF1)	- Internal memory cannot be programmed.	- Press "RESET" key - Reset all parameters to default - If error still exists, please call Technical Support.
Emergency stop (EF1)	- Emergency stop	- When a multi-function input terminal (MII to MI6) is set to emergency stop and the contact is closed, the AC motor drive stops output U, V, W and the motor coasts to stop. - Press RESET after condition has been corrected.
External Fault (EF)	- External Fault	- Input EF (N.O.) on external terminal is closed to GND. Output U, V, W will be turned off. - Give RESET command after fault has been cleared.
Ground fault (GFF)	- Output current exceeds [PROT34] for more than [PROT-35] time delay. NOTE: This protection is provided for VFD, not to protect user.	- Check the wiring connections between the VFD and motor for possible short circuits, also to ground. - Check for possible poor insulation at the output. - Verify grounding of communication circuit - Ensure separation of communication circuits and high-voltage wiring - Check whether the IGBT power module is damaged.
Guarding T-out (CGdE)	- CANopen guarding error. When CANopen Node Guarding detects that one of the slaves does not respond.	- Increase guarding time and detection times. - Verify wiring and grounding of communication circuit. - Make sure communication circuit is wired in series. - Use CANopen cable or add terminating resistance.
Heartbeat T-out (CHbE)	- CANopen heartbeat error. When CANopen Heartbeat detects that one of the slaves does not respond.	- Increase heartbeat time - Verify wiring and grounding of communication circuit. - Make sure communication circuit is wired in series. - Use CANopen cable or add terminating resistance.
Heat Sink OH (oH2)	- Capacitance temperature causes heatsink overheating.	- Ensure that the ambient temperature falls within the specified temperature range. - Make sure heat sink is not obstructed. Check if the fan is operating - Check if there is enough ventilation clearance for the drive.
High Load (HLD)	- Current or Torque is above [SET48] HLD Level and [SET-49] HLD Frequency.	- Refer to "High Load Detection" on page 75.
las sensor Err (cd1)	- U-phase output error	- Cycle the power. If error still exists, please call Technical support.
Ibs sensor Err (cd2)	- V-phase output error	- Cycle the power. If error still exists, please call Technical support.
Ics sensor Err (cd3)	- W-phase output error	- Cycle the power. If error still exists, please call Technical support.

Fault	Description	Corrective Action
IGBT over heat (0H1)	- IGBT temperature exceeds protection level	- Ensure that the ambient temperature falls within the specified temperature range. - Make sure that the ventilation holes are not obstructed. - Remove any foreign objects from the heatsinks and check for possible dirty heat sink fans. - Check the fan and clean it. - Provide enough spacing for adequate ventilation.
InrCom Time Out (ictE)	- Internal communication time-out	- Check Comm card installation - Check communications settings - Check wiring and grounding for possible interference
Internal BT (CardiBTc)	- Bluetooth card error	- Check card installation and [Comm-30] Comm Card ID
Lv at accel (LvA)	- DC BUS voltage is less than PROT03 during acceleration	- Check if the input voltage is normal - Check for possible sudden load - Adjust setting of PROT-03
Lv at decel (Lvd)	- DC BUS voltage is less than PROT03 during deceleration	- Check if the input voltage is normal - Check for possible sudden load - Adjust setting of PROT-03
Lv at normal SPD (Lvn)	- DC BUS voltage is less than PROT03 in constant speed	- Check if the input voltage is normal - Check for possible sudden load - Adjust setting of PROT-03
Lv at stop (LvS)	- DC BUS voltage is less than PROT03 at stop	- Check if the input voltage is normal - Check for possible sudden load - Adjust setting of PROT-03
MC Fault (ryF)	- Electromagnet switch error. Electric valve switch error when executing Soft Start. (Frame E and above.)	- Do not disconnect RST when drive is still operating.
Motor overheat (0H3)	- The internal temperature of the VFD exceeds the setting of PROT20 (PTC level) or PROT-31 (PT100 level 2).	- Make sure that the motor is not obstructed. - Ensure that the ambient temperature falls within the specified temperature range. - Change to a higher power motor.
No Flow (NOFL)	- No water flow (pump application)	- Refer to "No Flow Protection" on page 78.
oc at accel (ocA)	- Over current during acceleration. Output current exceeds 2.4 rated current during acceleration.	- Short-circuit at motor output: Check for possible poor insulation at the output. - Acceleration Time too short: Increase the Acceleration Time. - VFD output power is too small for the application.
oc at decel (ocd)	- Over current during decelration. Output current exceeds 2.4 rated current during deceleration.	- Short-circuit at motor output: Check for possible poor insulation at the output. - Acceleration Time too short: Increase the Acceleration Time. - VFD output power is too small for the application.
oc at normal SPD (ocn)	- Over current at normal speed. Output current exceeds 2.4 rated current during constant speed.	- Short-circuit at motor output: Check for possible poor insulation at the output. - Acceleration Time too short: Increase the Acceleration Time. - VFD output power is too small for the application.
oc at stop (ocS)	- Over-current at stop. Hardware failure in current detection	- Please call technical support.
oc HW error (Hdl)	- Over-current detection error	- Reboots the power. If fault code is still displayed on the keypad, please call technical support.
occ HW error (Hd3)	- IGBT short-circuit detection when power is ON	- Reboots the power. If fault code is still displayed on the keypad, please call technical support.
Over load (OL)	- Overload	-

MAINTENANCE
Troubleshooting

Fault	Description	Corrective Action
OL-2 (0L-2)	- Overload	-
ov at accel (ovA)	- DC BUS over-voltage during acceleration (230V: 410VDC; 460V: 820VDC; 575V: 1116VDC; 690V: 1318VDC).	- Check if the input voltage falls within the rated VFD input voltage range. - Check for possible voltage transients. - If DC BUS over-voltage is due to regenerative voltage, increase the acceleration time or add an optional brake resistor.
ov at decel (ovd)	- DC BUS over-voltage during deceleration (230V: 410VDC; 460V: 820VDC; 575V: 1116VDC; 690V: 1318VDC).	- Check if the input voltage falls within the rated VFD input voltage range. - Check for possible voltage transients. - If DC BUS over-voltage is due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
ov at normal SPD (ovn)	- DC BUS over-voltage at constant speed (230V: 410VDC; 460V: 820VDC; 575V: 1116VDC; 690V: 1318VDC).	- Check if the input voltage falls within the rated VFD input voltage range. - Check for possible voltage transients. - If DC BUS over-voltage is due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
ov at stop (ovS)	- Over-voltage at stop	- Check if the input voltage falls within the rated VFD input voltage range. - Check for possible voltage transients.
ov HW error (Hd2)	- Hardware failure in voltage detection	- Reboots the power. If fault code is still displayed on the keypad, please call technical support.
Over slip error (oSL)	- Slip exceeds Motor-19 setting and time exceeds Motor-20 setting.	- Check if motor parameter is correct (please decrease the load if overload - Check the settings of Motor-19 and Motor-20.
Over-torque 1 (ot1)	- Current exceeds detection criteria.	- Check whether the motor is overloaded. - Check whether motor rated current setting (SET-03) is suitable.
Over-torque 2 (ot2)	- Current exceeds detection criteria.	- Check whether the motor is overloaded. - Check whether motor rated current setting (SET-03) is suitable.
Overpressure (OPRS)	- Overpressure	-
Password error (Pcod)	- Password is locked.	- Power off and restart the driver before entering the correct password
PC err address (CE2)	- Illegal data address	- Check if the communication address is correct
PC err command (CE1)	- Communication command is illegal	-
PC err data (CE3)	- Illegal data value	-
PC slave fault (CE4)	- Data is written to read-only address	- Check if the communication address is correct
PC time-out (CE10)	- Modbus transmission time-out	-
Phase lacked (OrP)	- Phase Loss protection	- Check that all 3 input phases are connected without loose contacts. - For models 40 hp and above, please check if the AC input circuit fuse.
PID Fbk error (AFE)	- PID loss (ACI)	- Check the wiring of the PID feedback - Check the PID parameters settings
Rotor Pos Error (RoPd)	- Initial rotor position detection error	-
S1-emergy stop (S1)	- Emergency stop for external safety	-
Short-circuit (occ)	- Short-circuit is detected between upper bridge and lower bridge of the IGBT module	- Please call technical support.
Shutdown (SHDN)	-	-
STO (STO)	- Safe Torque Off function active	-

Fault	Description	Corrective Action
STO Loss 1 (STL1)	- ST01-SCM1 internal Ioop detection error	-
STO Loss 2 (STL2)	- STO2-SCM2 internal loop detection error	-
STO Loss 3 (STL3)	- STO1~SCM1 and STO2~SCM2 internal hardware detect error	-
Thermal relay 1 (EoL1)	- Electronics thermal relay 1 protection	- Check the setting of electronics thermal relay (Prot-17).
Thermal relay 2 (EoL2)	- Electronics thermal relay 2 protection	-
Thermo 1 open (tH10)	- IGBT over-heat protection error	- Please call technical support.
Thermo 2 open (tH2o)	- Capacitance over-heat protection error	- Please call technical support.
U phase lacked (OPHL)	- Output phase loss (Phase U)	-
Under Ampere (uC)	- Low current detection	- Check SET-42, SET-44, SET-41.
Underload (ULD)	- Underload	- Refer to "Underload Protection (Dry Well or Belt Loss)" on page 76.
V phase lacked (OPHL)	- Output phase loss (Phase V)	-
W phase lacked (OPHL)	- Output phase loss (Phase W)	-
Watchdog (WDTT)	-	-
Y-delta connect (ydc)	- Y-connection/ Δ-connection switch error	- Check the wiring of the Y-connection/ \triangle-connection

Fan Replacement

AWARNING

Risk of bodily injury or damage to drive or other equipment. Contact

 with hazardous voltage could result in death or serious injury.- Disconnect and lock out all power before installing or servicing equipment.
- Capacitors inside the drive can still hold lethal voltage even after power has been disconnected.

ALWAYS check if DC bus charge LED is off and DC voltage on the terminals $\mathrm{DC}(+1)$ and $D C(-)$ is less than 3OVDC before working on VFD wiring. The DC bus capacitors may hold high-voltage charge for several minutes after the VFD power is disconnected.

- Fans cannot be replaced with power applied. Damage to VFD may occur.

Frame A Heat Sink Fan

1. Press the tabs on both sides of the fan to release and slide out the fan.
2. Disconnect the power connector before completely removing the fan.

Frame B Heat Sink Fan

1. Press the tabs on both sides of the fan to release and slide out the fan.
2. Disconnect the power connector before completely removing the fan.

Frame B and C Capacitor Fan

1. Disconnect fan power connector.
2. Lift the fan out using a flathead screwdriver.

Frame C Heat Sink Fan

Some Frame C models use one fan and some use two.

1. Before removing fans, remove the cover using a flathead screwdriver.
2. Disconnect fan power connectors.
3. Remove screws and remove fans. When replacing screws, tighten to a torque of 8.67 to 10.4 in . Ibs. (0.98 to 1.18 Nm).
4. When installing new fans, make sure label faces the inside of the drive.

Frame D Heat Sink Fan

1. Remove four screws to release and slide out the fan assembly. When replacing screws, tighten to a torque of 20.8 to 22.1 in . Ibs. (2.35 to 2.5 Nm).
2. Disconnect the power connectors before completely removing the fan.

Frame D Capacitor Fan

1. Remove two screws and press the tabs on both sides to remove the lower cover. When replacing screws, tighten to a torque of 10.4 to 13 in . Ibs. (1.18 to 1.47 Nm).
2. Press the top of the keypad and remove the keypad.
3. Remove two screws and press the tabs on both sides to remove the upper cover. When replacing screws, tighten to a torque of 5.2 to 6.9 in . Ibs. (0.59 to 0.78 Nm).
4. Disconnect fan power connector.
5. Remove one screw and pull out the fan. When replacing the screw, tighten to a torque of 8.9 to 10.4 in. lbs. (1.0 to 1.18 Nm).

Frame E Heat Sink Fan

Frame E models use multiple heat sink fan styles. Be sure to order the correct part when replacing the fan.

1. Remove four screws to release and slide out the fan assembly. When replacing screws, tighten to a torque of 20.8 to 22.1 in . Ibs. (2.35 to 2.5 Nm).
2. Disconnect the power connectors before completely removing the fan.

Frame E Capacitor Fan

1. Remove four screws to release and slide out the fan assembly. When replacing screws, tighten to a torque of 20.8 to 22.1 in . Ibs. (2.35 to 2.5 Nm).
2. Disconnect the power connectors before completely removing the fan.

Frame F Heat Sink Fan

1. Remove four screws to release and slide out the fan assembly. When replacing screws, tighten to a torque of 10.4 to 13 in . lbs. (1.18 to 1.47 Nm).
2. Disconnect the power connectors before completely removing the fan.

Frame F Capacitor Fan

1. Remove four screws and remove the lower cover. When replacing screws, tighten to a torque of 10.4 to 13 in. Ibs. (1.18 to 1.47 Nm).
2. Remove four screws and remove the upper cover. When replacing screws, tighten to a torque of 20.8 to 22.1 in . Ibs. (2.35 to 2.5 Nm).
3. Disconnect fan power connector and remove three screws. When replacing the screw, tighten to a torque of 20.8 to 22.1 in . Ibs. (2.35 to 2.5 Nm).
4. Pull out the fan.

Frame G Heat Sink Fan

1. Remove four screws and remove the lower cover. When replacing screws, tighten to a torque of 10.4 to 13 in. lbs. (1.18 to 1.47 Nm).
2. Remove eight screws from the top cover. When replacing screws, tighten to a torque of 30 to 34.5 in. lbs. (3.4 to 3.9 Nm).
3. Remove two screws from the bottom of the upper front cover. When replacing screws, tighten to a torque of 12 to 14 in . Ibs. (1.37 to 1.57 Nm).
Remove upper front cover.
4. Release clip and disconnect fan power connector.
5. Remove three screws from fan. When replacing the screws, tighten to a torque of 12 to 14 in . Ibs. (1.37 to 1.57 Nm).
6. Remove protective covers and pull out the fan by placing fingers through the lifting holes.

Frame H Heat Sink Fan

1. Remove four screws and remove the lower front cover. When replacing screws, tighten to a torque of 12 to 14 in . Ibs. (1.37 to 1.57 Nm).
2. Remove eight screws and remove the upper front cover. When replacing screws, tighten to a torque of 20.8 to 22.1 in . lbs. (2.35 to 2.5 Nm).
3. Disconnect two fan power connectors.
4. Remove three screws from each fan and pull out the fans. When replacing the screws, tighten to a torque of 20.8 to 22.1 in . lbs. (2.35 to 2.5 Nm).

PARAMETER REFERENCE TABLES

Parameter Descriptions > SET Menu

CODE	$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
SET-00	0000	N	Application Sel	0_Basic 1_Supply Fan 2_Exhaust Fan 3_Cooling Tower 4_Centrifugal Pump 5_Submersible Pump 6_Vacuum Pump 7_Constant Torque Motor 8 PM Motor 9_MagForce	Mechanical application the VFD is running. Must be set when powered up the first time. Selection automatically adjusts many default parameters to common values for the application. Additional adjustments may be required for optimum performance. Refer to the application descriptions in "Standard Operation with an Automated Control System" on page 66 for more information. Important: Whenever the application is changed, many default parameters are changed. Be sure to verify settings to ensure proper operation. Refer to the Default Settings tables in "Default Settings Tables" on page 50.
SET-01	0001	N	Input Phase	0_Three-Phase 1_Single-Phase	The VFD is capable of using a 3-Phase or Single-Phase input power source, but should be derated for Single-Phase input power.
SET-02	0002	N	Motor HP	0.5~655 HP	Default is set based on VFD rating. User should enter the rated motor HP, found on the motor nameplate.
SET-03	0003	N	Motor FLA/SFA	1/10 of max capacity 999.9A	Default is set based on VFD rating. User should enter the rated motor FLA, found on the motor nameplate. If [SET-00] is set to Submersible, enter the SFA rating from the motor nameplate. All internal overload protection features for the VFD and motor are calculated based on the value in this parameter.
SET-04	0004	N	Motor RPM	0-3600 RPM	Rated Motor RPM from motor nameplate when running at nameplate frequency.
SET-05	0005	N	Motor Voltage	$\begin{aligned} & 230 \mathrm{~V}: 0 \text { to } 255 \mathrm{~V} \\ & 460 \mathrm{~V}: 0 \text { to } 510 \mathrm{~V} \\ & 575 \mathrm{~V}: 0 \text { to } 637 \mathrm{~V} \\ & 690 \mathrm{~V}: 0 \text { to } 720 \mathrm{~V} \end{aligned}$	Rated voltage of the motor, found on the motor nameplate. The VFD can produce output voltage equal to or less than input power voltage.
SET-06	0006	Y	Carrier Freq	$\begin{aligned} & 2.0 \text { to } 15.0 \mathrm{kHz} \\ & \text { Varies by VFD rating } \end{aligned}$	VFD switching frequency. Higher frequencies create more precise wave forms, but generate higher heat. Lower frequencies run cooler, but could potentially cause audible noise, which can be eliminated by adjusting this carrier frequency during stop or run mode.
SET-07	0007	N	Auto Speed Ref	O_Keypad 1_Up/Down DI 2_AVII Analog Input 3_ACI Analog Input 4_AVI2 Analog 5_RS485 Serial 6_Com Card 7_PID Output	Source of speed reference when in Auto mode. Keypad input. Digital Input when DI terminal [10-21~28] set to Up and Down. Analog input from BMS, PLC, Potentiometer or other control device. RS-485 Interface Communications card control. PID output. When PID mode is selected, additional parameters must be verified for setpoints, inputs, and limits.
SET-08	0008	N	Auto Run Cmd	0_Keypad 1_Digital Input 2_RS485 Serial 3-Com Card 4_Ext HOA in Auto	Source of Run Command in Auto mode. Keypad: Run command from Start/Stop button. Digital Input: Run command from digital input FWD or REV terminal. Keypad STOP is disabled. RS485 Serial: Run command from RS485 interface. Keypad STOP is disabled. Com Card: Run command from communications card. This does not include CANopen card. Ext HOA in Auto: Run command from digital input [IO-21~28] set to HOA AUTO (when HOA is in Auto position).

CODE	Mod Bus	AR	Display Name	Range	Description
SET-09	0009	N	Hand Speed Ref	0_Keypad 1_RS485 Serial 2_AVII Analog 3_ACI Analog 4_AVI2 Analog 5_Com Card	Source of speed reference when in Hand mode. Keypad input. RS-485 Interface Analog input from BMS, PLC, Potentiometer or other control device. Communications card control. When in Hand mode, PID is disabled.
SET-10	0010	N	Hand Run Cmd	0_Keypad 1_Digital Input 2_RS485 Serial 3-Com Card 4_Ext HOA in Hand	Source of Run Command in Hand mode. Keypad: Run command from Start/Stop button. Digital Input: Run command from digital input FWD or REV terminal. Keypad STOP is disabled. RS485 Serial: Run command from RS485 interface. Keypad STOP is disabled. Com Card: Run command from communications card. This does not include CANopen card. Ext HOA in Hand: Run command from digital input [IO-21~28] set to HOA HAND (when HOA is in Hand position).
SET-11	0011	Y	Accel Time	0 to 600 Sec	Time in seconds for the drive to accelerate from 0 Hz to maximum frequency. Default depends on Application [SET-00] and VFD HP rating.
SET-12	0012	Y	Decel Time	0 to 600 Sec	When Stop Mode is set to Decelerate, time in seconds to slow down from maximum frequency to 0 Hz . Default depends on Application [SET-00] and VFD HP rating.
SET-13	0013	Y	Low Freq Limit	0.0 to SET-14 (Hz)	The lowest frequency (speed) allowable. If speed control falls below setting, motor will continue to run at this limit.
SET-14	0014	N	High Freq Limit	SET-13 to VFD-00 (Hz)	The highest frequency (speed) allowable. If speed control signal goes higher, motor will continue to run at this limit.
SET-15	0015	N	Load Rotation	0_FWD \& REV 1_FWD Only 2_REV Only	Allows the motor to run in the forward and reverse direction. Setting it to a specific direction prevents injury or damage to equipment.
SET-16	0016	N	Stop Mode	0_Decel to stop 1_Coast to stop	Determines how the motor is stopped when a STOP command is initiated. Decel to stop: VFD decelerates frequency to minimum output frequency and then stops. Coast to stop: VFD stops the output instantly and motor free runs until it comes to a complete standstill.
SET-17	0017	N	PID Mode	0_Disable 1_PID Direct 2_PID Inverse	PID control allows the VFD to maintain a process value (pressure, temperature etc.) by varying the output frequency based on the difference between a set point and actual feedback value. Direct: Output decreases as feedback increases. Inverted: Output increases as feedback increases.
SET-18	0018	N	PID F/B Source	$\begin{aligned} & \text { 0_ACl } \\ & \text { 1_AVII } \\ & \text { 2_AVI2 } \end{aligned}$	Selects an analog input terminal for PID Feedback source.
SET-19	0019	N	PID F/B Unit	0_PSI 1_inWC 2-Feet $3^{-}{ }^{\circ} \mathrm{F}$ 4-CFM 5_GPM 6-\% 7_Cust 8_inHg 9_m 10_mBar 11_Bar 12 kPa $13-{ }^{\circ} \mathrm{C}$ 14_LPM 15_CMH	Measurement unit selection for feedback signal.
SET-20	0020	N	PID F/B Max	0.0 to (variable) (Unit)	PID Sensor (Transducer) maximum rating based on transducer range.
SET-21	0021	Y	PID Setpoint	0.0 to SET-20 (Unit)	Set the desired value for PID (pressure, temperature, GPM, etc.).

PARAMETER REFERENCE TABLES Parameter Descriptions > SET Menu

CODE	Mod	AR	Display Name	Range	Description
SET-22	0022	Y	PID Lo Hz Limit	SET-13 to SET-23 (Hz)	Low frequency limit in PID mode. PID Low Frequency is limited by Low Frequency [SET-13] and PID High Frequency [SET-23].
SET-23	0023	N	PID Hi Hz Limit	SET-22 to VFD-00 (Hz)	High frequency limit in PID mode. PID High Frequency is limited by High Frequency [SET-14] and PID Low Frequency [SET-22].
SET-24	0024	Y	PID P-Gain	0 to 100\%	Proportional-Gain determines PID control sensitivity. Greater values provide more sensitivity. However, if set too high, the system may create an output frequency oscillation and instability. Used along with PID I-TIme [SET-25] to smooth and balance system response.
SET-25	0025	Y	PID I-Time	0.0 to 100 Sec	Integral-Time determines PID response time. Lower values increase system response to the feedback signal, which reduces overshoot, but may cause system oscillation if set too low. Greater values provide slower response, which may cause overshoot of the setpoint and oscillation of output frequency.
SET-26	0026	Y	Sleep Mode	0_Disabled 1_Sleep Only 2_Sleep + Boost	Sleep Mode selection for pressure controlled systems, such as pumping applications. Sleep+Boost increases the process control value (pressure) before going to sleep.
SET-27	0027	Y	Sleep Check Time	5 to 120 Sec	Time delay (sleep check cycle time) before each Sleep Check process.
SET-28	0028	Y	Sleep Delay	0 to 3000 sec	Delay before VFD triggers Sleep Mode state when all other conditions are met.
SET-29	0029	Y	Sleep Boost Value	0 to 10\%	Value added to original setpoint to provide a pressure boost before entering sleep.
SET-30	0030	Y	Sleep Boost Timer	5 to 120 Sec	Limits duration of sleep boost operation if Sleep Boost set-point is not reached.
SET-31	0031	Y	Wake-Up Level	0.0 to SET-21	Sets a wakeup level for VFD to quit Sleep mode and start running.
SET-32	0032	Y	Sleep Bump Timer	5 to 120 Sec	Sets a duration time for pressure bump to increase system pressure.
SET-33	0033	Y	Pipe Fill Timer	0.0 to 60 Min	Pipe Fill mode exit timer to switch to PID mode. If set to 0.0 min, pipe fill is disabled.
SET-34	0034	Y	P-Fill Exit Lvl	0.0 to SET-21 (PSI)	Pipe Fill mode exit level to switch to PID mode.
SET-35	0035	Y	Pipe Fill Freq	SET-22 to SET-23	Pipe Fill mode high frequency limit setting.
SET-36	0036	Y	Broken Pipe LvI	0.0 to SET-21 (PSI)	Pressure setting that starts Broken Pipe timer before VFD trips on Broken Pipe fault.
SET-37	0037	Y	Broken Pipe Frq	SET-22 to SET-23	If VFD is running above this speed with pressure below [SET-36], Broken Pipe Delay timer starts.
SET-38	0038	Y	Broken Pipe Dly	0 to 6000 Sec	If Broken Pipe Delay timer runs longer than this setting, VFD trips on Broken Pipe fault.
SET-39	0039	Y	OverPress Set	$\begin{aligned} & \text { 0_Disabled } \\ & \text { 1_OP Trip } \\ & \text { 2-OP Auto Reset } \end{aligned}$	Overpressure set OP Trip: Trip requires manual reset OP Auto Reset: Auto Restart occurs when pressure drops 5\% below PID setpoint.
SET-40	0040	Y	OverPress Level	0.0 to SET-20 (Unit)	Level the process signal (pressure) reaches to cause an overpressure condition.
SET-41	0041	N	ULD Select	0 Disabled 1_By Current 2_By Torque	Underload Detection protects against conditions such as a dry well, broken pump, or broken drive belt. Refer to "Underload Protection (Dry Well or Belt Loss)" on page 76.
SET-42	0042	Y	ULD Level	15 to 115\%	Underload Level set as a percentage of FLA(SFA) or nominal torque. If current or torque is below this level and frequency is above ULD Frequency [SET-43] for longer than ULD Delay [SET-44] timer, VFD will trip on ULD.
SET-43	0043	Y	ULD Frequency	0.0 to SET-22 (Hz)	If motor runs above ULD Frequency, VFD compares operating current or torque with ULD Level [Set-42] to test for ULD condition.
SET-44	0044	Y	ULD Delay	0 to 360 Sec	Underload Delay timer before trip.
SET-45	0045	Y	ULD Recovery T	0 to 720 Min	Underload Recovery TIme. VFD will restart from ULD trip after this time. If it trips again, time will be doubled up to 720 min. If set to 0 , fault must be manually reset.
SET-46	0046	N	ULD Recover Cnt	0 to 720 Min	Decrementing counter of recovery time from an ULD trip before VFD attempts to restart motor (Read Only).

CODE	$\begin{aligned} & \text { Mod } \\ & \text { Bus } \end{aligned}$	AR	Display Name	Range	Description
SET-47	0047	N	HLD Select	0_Disabled 1_By Current 2_By Torque	High Load Detection protects the VFD and motor against damage from an over-torque condition. Refer to "High Load Detection" on page 75.
SET-48	0048	Y	HLD Level	75 to 200\%	High Load Detection level, set as a percentage of FLA(SFA) or nominal torque. If current or torque is above this level and frequency is above HLD Frequency [Set-49] for longer than HLD Delay [Set-50] timer, VFD will trip on HLD.
SET-49	0049	Y	HLD Frequency	0.0 to SET-23 (Hz)	If motor runs above HLD Frequency, VFD compares operating current or torque with HLD Level [Set-48] to test for HLD condition.
SET-50	0050	Y	HLD Delay	0 to 360 Sec	High Load Delay timer before trip.
SET-51	0051	Y	HLD Recovery T	0 to 720 Min	High Load Recovery TIme. VFD will restart from HLD trip after this time. If it immediately trips again, time will be doubled up to 720 min . If set to 0 , fault must be manually reset.
SET-52	0052	Y	HLD Recover Cnt	0 to 720 Min	Decrementing counter of recovery time from a HLD trip before VFD attempts to restart motor (Read Only).
SET-53	0053	Y	ACC Change Frea	(Variable)	Frequency to switch from first accel/decel rate to second accel/decel rate.
SET-54	0054	Y	Second ACC	0 to 600 Sec	Time in seconds for drive to accelerate from 0 Hz to maximum frequency. Second acceleration occurs when frequency is above ACC Change Freq [SET-53]. For example, submersibles have to be accelerated up to 30 hz in 1 second but they can accelerate from 30 hz to 60 hz much slower. So, we would adjust Set-53 to 30 hz and the drive would follow the Set-11 ACC time up to 30 hz and the Set- 54 ACC time above 30 hz .
SET-55	0055	Y	Second DEC	0 to 600 Sec	When Stop Mode is set to Decelerate, time in seconds to slow down from maximum frequency to 0 Hz . Second deceleration occurs when frequency is above ACC Change Freq [SET-53]. VFD returns to main DEC time when frequency is below [Set-53]-[Set-56]
SET-56	0056	Y	ACC/DEC Hyster	0.0 to SET-53 (Hz)	Hysteresis added to ACC Change Freq [SET-53] in changing the deceleration rate. When frequency is decreasing across ACC Change Freq [SET-53], the frequency has to reach ACC Change Freq [SET-53] - ACC/DEC Hyster [SET-56] to use first ACC/DEC [SET-11-12].
SET-57	0057	Y	User Defined		Sets the parameter to display on third line of keypad (display alias).
SET-58	0058	Y	PLC Menu	0 _Disable 1_Enable	Allows access to the PLC group of parameters.
SET-59	0059	Y	ADV2 Menu	$\begin{aligned} & \text { 0_Disable } \\ & \text { 2_Enable } \end{aligned}$	Allows access to the ADV2 group of parameters.
SET-60	0060	Y	HOA Mode Source	0_Keypad 1_Digital Input 2_RS485 Serial 3_Com Card	Sets the input that selects between Hand-Off-Auto.

Parameter Descriptions > VFD Menu

AR = Adjustable while Running.

CODE	$\begin{aligned} & \text { Mod } \\ & \text { Bus } \end{aligned}$	AR	Display Name	Range	Description
VFD-00	0256	N	VFD Max Freq	0 to 599 Hz	The highest frequency (speed) allowable when running a motor in non-PID mode. If speed control signal goes higher, motor will not exceed this limit. If running a MagForce pump, this should be set to the calculated slip frequency corresponding to the target pump RPM. Refer to "Setup MagForce Pump Motor" on page 80.
VFD-01	0257	N	VFD Start Freq	0-10 Hz	Frequency the VFD initially starts to output. When start frequency is higher than the minimum output frequency, VFD output will be from start frequency to the setting frequency.
VFD-02	0258	N	VFD Base Freq	VFD-01 to VFD-00 (Hz)	Set to the motor nameplate frequency rating. VFD provides full output voltage at this frequency.
VFD-03	0259	N	V/F Pattern	0_Linear 1_1.5 Power 2_Squared 3 V/F Curve 1 4_V/F Curve 2 5 V/F Curve 3 6-V/F Curve 4 7_V/F Curve 5 8-V/F Curve 6 9-V/F Curve 7 10_V/F Curve 8 11_V/F Curve 9 12_V/F Curve 10 13_V/F Curve 11 14_V/F Curve 12 15_V/F Curve 13	V/F curve can be selected from 15 kinds of default settings. O_Linear pattern maintains a linear V/Hz ratio for constant torque applications. 2_Squared pattern maintains a squared V / Hz pattern, ideal for fan or pump applications.
VFD-04	0260	Y	Step Freq-1	0.0 to 600 Hz	Command frequency determined by Multi-function Input Terminals. Refer to "Step Frequencies" on page 65.
VFD-05	0261	Y	Step Freq-2	0.0 to 600 Hz	See [VFD-04].
VFD-06	0262	Y	Step Freq-3	0.0 to 600 Hz	See [VFD-04].
VFD-07	0263	Y	Step Freq-4	0.0 to 600 Hz	See [VFD-04].
VFD-08	0264	Y	Step Freq-5	0.0 to 600 Hz	See [VFD-04].
VFD-09	0265	Y	Step Freq-6	0.0 to 600 Hz	See [VFD-04].
VFD-10	0266	Y	Step Freq-7	0.0 to 600 Hz	See [VFD-04].
VFD-11	0267	Y	Step Freq-8	0.0 to 600 Hz	See [VFD-04].
VFD-12	0268	Y	Step Freq-9	0.0 to 600 Hz	See [VFD-04].
VFD-13	0269	Y	Step Freq-10	0.0 to 600 Hz	See [VFD-04].
VFD-14	0270	Y	Step Freq-11	0.0 to 600 Hz	See [VFD-04].
VFD-15	0271	Y	Step Freq-12	0.0 to 600 Hz	See [VFD-04].
VFD-16	0272	Y	Step Freq-13	0.0 to 600 Hz	See [VFD-04].
VFD-17	0273	Y	Step Freq-14	See [VFD-04].	See [VFD-04].
VFD-18	0274	Y	Step Freq-15	0.0 to 600 Hz	See [VFD-04].
VFD-19	0275	Y	ACC-2 Time	0.0 to 600 Sec	Alternate acceleration rate for use with automated Acc/Dec type [ADV-06].
VFD-20	0276	Y	DEC-2 Time	0.0 to 600 Sec	Alternate deceleration rate for use with automated Acc/Dec type [ADV-06].

| CODE | Mod
 Bus | AR | Display Name | Range | \quad Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

PARAMETER REFERENCE TABLES Parameter Descriptions > VFD Menu

CODE	Mod Bus	AR	Display Name	Range	Description
VFD-46	0302	N	ID Code	$41 \mathrm{HP}(0.75 \mathrm{~kW}), 230 \mathrm{~V}$ 5-1 HP (0.75 kW), 460V 6_2 HP (1.5 kW), 230 V 7_2 HP (1.5 kW), 460V 8 _ $3 \mathrm{HP}(2.2 \mathrm{~kW}$), 230 V 9 3HP (2.2 kW), 460V $105 \mathrm{HP}(3.7 \mathrm{~kW}), 230 \mathrm{~V}$ 11 _5 HP (3.7 kW), 460V $12-7.5 \mathrm{HP}(5.5 \mathrm{~kW}), 230 \mathrm{~V}$ 13-7.5 HP (5.5 kW), 460V $14-10 \mathrm{HP}(7.5 \mathrm{~kW}), 230 \mathrm{~V}$ 15_10 HP (7.5 kW), 460V 16 _15 HP (11 kW), 230V 17-15 HP (11 kW), 460V $18-20 \mathrm{HP}(15 \mathrm{~kW}), 230 \mathrm{~V}$ $19-20 \mathrm{HP}(15 \mathrm{~kW}), 460 \mathrm{~V}$ $20-25 \mathrm{HP}(18.5 \mathrm{~kW}), 230 \mathrm{~V}$ 21_25 HP (18.5 kW), 460 V $2230 \mathrm{HP}(22 \mathrm{~kW}), 230 \mathrm{~V}$ 23_30 HP (22 kW), 460V $24-40 \mathrm{HP}(30 \mathrm{~kW}), 230 \mathrm{~V}$ $25-40 \mathrm{HP}(30 \mathrm{~kW}), 460 \mathrm{~V}$ 26 - $50 \mathrm{HP}(37 \mathrm{~kW}), 230 \mathrm{~V}$ 27_50 HP (37 kW), 460V 28 _60 HP (45 kW), 230V $29-60 \mathrm{HP}(45 \mathrm{~kW}), 460 \mathrm{~V}$ $30^{-} 75 \mathrm{HP}(55 \mathrm{~kW}), 230 \mathrm{~V}$ 31_75 HP (55 kW), 230V $32-100 \mathrm{HP}(75 \mathrm{~kW}), 230 \mathrm{~V}$ $33^{-100 ~ H P ~(75 ~ k W), ~ 460 V ~}$ $34-125 \mathrm{HP}(90 \mathrm{~kW}), 230 \mathrm{~V}$ $35-125 \mathrm{HP}(90 \mathrm{~kW}), 460 \mathrm{~V}$ 37 _150 HP (110 kW), 460V $39-175 \mathrm{HP}(132 \mathrm{~kW}), 460 \mathrm{~V}$ 41_215 HP (160 kW), 460V $43 _250 \mathrm{HP}(185 \mathrm{~kW}), 460 \mathrm{~V}$ $45-300 \mathrm{HP}(220 \mathrm{~kW}), 460 \mathrm{~V}$ $47-375 \mathrm{HP}(280 \mathrm{~kW}), 460 \mathrm{~V}$ $51-475 \mathrm{HP}(355 \mathrm{~kW}), 460 \mathrm{~V}$ 53_536 HP (400 kW), 460V 90 _ $4 \mathrm{HP}(3.0 \mathrm{~kW}), 230 \mathrm{~V}$ 91_4 HP (3.0 kW), 460V $93.5 .5 \mathrm{HP}(4.0 \mathrm{~kW}), 460 \mathrm{~V}$ 505_2.0HP (1.5kW), 575V 506 3.0HP (2.2kW), 575 V 507_5.0HP (3.7kW), 575 V 508_7.5HP (5.5kW), 575V 509_10HP (7.5kW), 575V 510_15HP (11kW), 575V 511_20HP (15kW), 575V 612_25HP (18.5kW), 690V 613 _30HP (22 kW), 690 V 614_40HP (30kW), 690V $615-50 \mathrm{HP}$ (37 kW), 690V 616 _60HP (45 kW), 690 V $617-75 \mathrm{HP}$ (55 kW), 690 V 618-100HP (75kW), 690V 619_125HP (90kW), 690V 620_150HP (110kW), 690V 621_175HP (132kW), 690V 622_215HP (160kW), 690V 626_425HP (315kW), 690V $628-536 \mathrm{HP}(400 \mathrm{~kW}), 690 \mathrm{~V}$ $629-600 \mathrm{HP}(450 \mathrm{~kW}), 690 \mathrm{~V}$ $631 _745 \mathrm{HP}$ (560 kW), 690 V 632 840HP (630kW), 690V 686 _265HP (200kW), 690V 687 333HP (250kW), 690 V	Displays the identity code of the VFD (Read Only).

CODE	$\begin{aligned} & \text { Mod } \\ & \text { Bus } \end{aligned}$	AR	Display Name	Range	Description
VFD-47	0303	N	VFD Rated Amps	(Variable)	Current rating of drive with respect to Light Duty and Normal Duty [VFD35] (Read Only).
VFD-48	0304	Y	Display Select	0_Freq Command 1_Output Frequency 2_Multi-Fn Display 3_Output Current	Sets the parameter that appears on second line of display.
VFD-49	0305	N	Firmware Version	(Variable)	VFD software version (Read Only).
VFD-50	0306	Y	Disp Filter A	0.001 to 65.535 Sec	Minimizes the current fluctuation displayed by digital keypad.
VFD-51	0307	Y	Disp Filter KPD	0.001 to 65.535 Sec	Minimizes the display value fluctuation displayed by digital keypad.
VFD-52	0308	N	FW Date	(Variable)	VFD software version date (Read Only).
VFD-53	0309	Y	Jog Accel Time	0.0 to (variable) Sec	Acceleration time in jog operation to increase frequency to jog frequency.
VFD-54	0310	Y	Jog Decel Time	0.0 to (variable) Sec	Deceleration time in jog operation to decrease frequency to OHz .
VFD-55	0311	Y	JOG Frequency	0.0 to 600 Hz	Frequency commanded for jog operation.
VFD-56	0312	N	Zero-speed Mode	0_Standby 1_Hold by DC Brake 2_Min Frequency	When commanded frequency is less than frequency min: Standby: VFD stays at 0Hz. Hold by DC Brake: apply DC Brake by minimium voltage Frequency Min: VFD runs motor at minimium frequency.
VFD-57	0313	Y	Power-on Start	0 Disable 1_Enable	When enabled, the VFD will automatically initiate operation after poweredon with run command.

Parameter Descriptions > I/O Menu

AR = Adjustable while running.

CODE	Mod Bus	AR	Display Name	Range	Description
10-00	0512	N	ACI Input Sel	$\begin{aligned} & 0-0-10 \mathrm{~V} \\ & 1-0-20 \mathrm{~mA} \\ & 2=4-20 \mathrm{~mA} \\ & \text { 3_PTC } \\ & \text { 4_PT100 } \end{aligned}$	Selects the format of the input signal expected at the ACl input terminals based on the type of control device to be connected-transducer, sensor, controller, etc. This setting must correspond with ACl micro switch.
10-01	0513	N	ACI Loss Trip	0_Disable 1_Hold Speed 2_Decel Stop 3_Trip Stop	Selects operation when ACl signal is lost. VFD runs at previous speed (2 sec before signal loss VFD will restart when signal present VFD will stay tripped until reset
10-04	0516	Y	ACI Filter T	0 to 20 Sec	ACI time filter for noisy analog signal.
10-05	0517	N	AVII Input Sel	0_0-10V 1_0-20mA 2_4-20mA 3_PTC 4_PT100	Selects the format of the input signal expected at the ACl input terminals based on the type of control device to be connected-transducer, sensor, controller, etc. This setting must correspond with AVII micro switch.
10-09	0521	Y	AVII Filter T	0 to 20 Sec	AVII time filter for noisy analog signal. The delay time helps buffer interference that could cause error in the signal input. Longer times improve signal confirmation, but the response time is delayed.
10-10	0522	Y	AVI2 Filter T	0 to 20 Sec	AVI2 time filter for noisy analog signal. The delay time helps buffer interference that could cause error in the signal input. Longer times improve signal confirmation, but the response time is delayed.
10-11	0523	Y	PID Filter Time	0.1 to 300 Sec	PID feedback signal time filter for noisy analog signal. The delay time helps buffer interference that could cause error in the signal input. Longer times improve signal confirmation, but the response time is delayed.
10-12	0524	Y	PID Delay Time	0 to 35 Sec	Time delay for frequency command.
10-13	0525	Y	AI Upper Level	-100 to 100\%	High level limit of analog input.
10-14	0526	Y	Al Lower Level	-100 to 100\%	Low level limit of analog input.
10-20	0532	Y	DI Filter	0 to 30 Sec	Response time of digital input terminals MII~MI8. The delay time helps buffer interference that could cause error in the signal input. Longer times improve signal confirmation, but the response time is delayed.

CODE	Mod Bus	AR	Display Name	Range	Description
10-21	0533	Y	M11 Define	0_No Function 1_Speed-L 2_Speed-M 3-Speed-H 4_Speed-X 5-Fault Reset 6_Jog Speed 7_Hold Speed 8-XCEL-L 9-XCEL-M 10_Ext. Trip 12_AVII Analog Spd 13_ACI Analog Spd 14_AVI2 Analog Spd 16_Digital Up 17_Digital Down 18_PID Disable 19_CLR CNT 20_Input CNT (MI6) 21_FWD Jog 22_REV Jog 25_E-Stop 26_HOA HAND 27_HOA AUTO 28_Drive Enabled 29_PLC mode bit 0 30_PLC mode bit 1 32_FO with RUN Cmd 33_FO w/o RUN Cmd 34_Damper Limit Sw 35_Shutdown N-Latch 36_Shutdown Latched 37_Flow Switch 40_Aux Motor-1 OFF 41_Aux Motor-2 OFF 42_Aux Motor-3 OFF 43_Aux Motor-4 OFF 44_Aux Motor-5 OFF 45_Aux Motor-6 OFF 46_Aux Motor-7 OFF 47 All Aux Mtr Off	MI1 Default = Speed-L 1_Multi-step speed command 1. Refer to "Step Frequencies" on page 65. 2_Multi-step speed command 2. Refer to "Step Frequencies" on page 65. 3_Multi-step speed command 3. Refer to "Step Frequencies" on page 65. 4-Multi-step speed command 4. Refer to "Step Frequencies" on page 65. 5_Use to reset fault after cause is corrected 6_Changes speed in jog mode to value set in VFD-55 7_When active, VFD will hold current speed 8_ACC/DEC time will be changed to VFD-19 and VFD-20 9-ACC/DEC time will be changed to VFD-21 and VFD-22 10_Trips VFD by external protective device and requires reset 12_In non-PID mode, changes speed reference to AVII 13-In non-PID mode, changes speed reference to ACI 14-In non-PID mode, changes speed reference to AVI2 16_Increases speed reference when SET-07 is set to (1) 17_Decreases speed reference when SET-07 is set to (1) 18_Disables PID and switches speed reference to keypad 19_Clears pulse counter accumulated value (MI6 only) 20_Pulse counter input (MI6 only) 21-Jog Command Forward 22_Jog Command Reverse 25_VFD stops by Emergency Stop device (requires reset) 26_External HOA Hand position contact 27_External HOA Auto position contact 28-Enables and disables the drive (not a run command) 29_PLC Function Disable 29 and $30=(0)$ or Run 29=(1) 30_PLC Function Disable 29 and 30=(0) or Stop 30=(1) 32_VFD will start in FO Mode by FO DI and Run Command 33 VFD will start in FO Mode by FO DI (No Run Command) 34_When damper is closed, Damper LSW DI is activated 35_Activates Shutdown. When inactive, VFD operates normally 36_Activates Shutdown. Requires reset to operate normally 37_Detects water or air flow by Flow Switch 40_Aux Motor-1 in MMC mode is off sequence 41_Aux Motor-2 in MMC mode is off sequence 42_Aux Motor-3 in MMC mode is off sequence 43_Aux Motor-4 in MMC mode is off sequence 44_Aux Motor-5 in MMC mode is off sequence 45_Aux Motor-6 in MMC mode is off sequence 46_Aux Motor-7 in MMC mode is off sequence 47_All Aux Motors in MMC mode are off sequence
10-22	0534	Y	M12 Define	See [10-21]	M12 Default = Preset Speed-M
10-23	0535	Y	M13 Define	See [10-21]	M13 Default = Preset Speed-H
10-24	0536	Y	M14 Define	See [10-21]	M14 Default = Fault Reset
10-25	0537	Y	M15 Define	See [10-21]	M15 Default = Emergency Stop
10-26	0538	Y	M16 Define	See [10-21]	MI6 Default = XCEL-L (ACC-2/ DEC-2 Time)
10-27	0539	Y	M17 Define	See [10-21]	MI7 Default = HOA Hand
10-28	0540	Y	M18 Define	See [10-21]	MI8 Default = HOA Auto
10-29	0541	N	FO Enable	0 Disable 1_FWD Operation 2_REV Operation	Enables Fireman's Override mode in either forward or reverse.
10-30	0542	Y	FO Frequency	SET-13 to SET-14 (Hz)	Preset frequency for non-PID Fireman's Override mode.
10-31	0543	Y	FO Fault Retry	0 to 10	Number of auto-retries during fault in Fireman's Override mode
10-32	0544	Y	FO Retry Delay	0 to 6000 Sec	Delay of auto-retries during fault in Fireman's Override mode
10-33	0545	N	FOMode \& Reset	0_PID Off Manual 1-PID Off Auto 2PID On Manual 3_PID On Auto	Sets control method and reset method for Fireman's Override mode. For example, (1)-FO mode no-PID and auto return to normal operation.
10-34	0546	Y	FO PID S-Point	0 to 100\%	PID Setpoint in Fireman's Override mode (when 10-33 is 2 or 3)

CODE	$\begin{aligned} & \text { Mod } \\ & \text { Bus } \end{aligned}$	AR	Display Name	Range	Description
10-35	0547	Y	Ext. Trip Mode	0_Coast Stop 1_Decel Stop	Determines how the motor is stopped when an Emergency STOP or External Trip command is initiated. Decel to stop: VFD decelerates frequency to minimum output frequency and then stops. Coast to stop: VFD stops the output instantly and motor free runs until it comes to a complete standstill.
10-36	0548	Y	Damper Mode	0_Disable 1_Enable	Enables damper control feature.
10-37	0549	Y	Damper T-Delay	0 to 6000 Sec	Provides a run time delay without a damper limit switch; or, provides a Damper Fault delay for systems that include a damper limit switch. The delay should be greater than damper opening time.
10-38	0550	Y	No-Flow Mode	$\begin{aligned} & \text { 0_Disable } \\ & \text { 1_Trip } \\ & \text { 2_Sleep } \end{aligned}$	The VFD can monitor a system flow switch to provide pump protection and more reliable sleep mode operation. If any digital input is set to Flow Switch in parameters I/0-21~28 and VFD runs longer than time set in I0-39 at frequency above setting in IO-40 with open Flow Switch, VFD will trip on No Flow fault.
10-39	0551	Y	Prime Time	1 to 6000 Sec	Duration motor runs until No Flow or Underload protection becomes active.
10-40	0552	Y	No-Flow Freq	0.0 to (variable) Hz	0.0 to High Freq Limit [SET-14] for V/F control 0.0 to PID Hi Hz limit [SET-23] for PID control
10-41	0553	Y	Lube/S-Clean	0_Disabled 1_Lubrication 2_Screen Clean	Select Lubrication for machines requiring external lubrication control via solenoid or Screen Clean for actuating a solenoid to clear the suction screen.
10-42	0554	Y	S-Clean Timer	0 to 600 Min	Determines a time period before next 1-minute cleaning pulse.
10-43	0555	Y	Pre-Lube Timer	0 to 6000 Sec	Determines Pre-lubrication time before VFD starts.
10-44	0556	Y	Run-Lube Timer	0 to 6000 Sec	Lube relay will be activated at VFD start (run state) and after timer expires it will be deactivated.
10-45	0557	Y	Post-Lube Timer	0 to 6000 Sec	Lube relay is activated and post-lube timer starts when VFD stops (reaches 0.00 Hz) whether it coasts to stop or decelerates.
10-46	0558	Y	DI NO/NC		Sets the digital inputs numbered in hex format to either N.O. or N.C. configuration. The configuration is in binary format Bit0, Bit1, Bit2, etc. corresponding to FWD, REV, DII, DI2, etc. from the right to the left. Empty box indicates that Relay is N.O. and solid box that it is N.C. Example below shows Hex value=2 and solid box (N.C. contact configuration) for Bit1 DI (Rev). If contact wired to DI Rev is open, DI is activated. When contact is closed, DI will be deactivated.

CODE	Mod Bus	AR	Display Name	Range	Description
10-47	0559	Y	Relay RA1	0_No Function 1_Run 2-FDT-1 3-FDT-2 4_FDT-3 5_FDT-4 6_FDT-5 7_Drive Ready 8_Fault 9_VFD Overheat 11_PID F/B Loss 12_Counter Done 13-Pre-Count Done 14_Alarm 15_FWD CMD 16_REV CMD 17-Analog Trigger 19_Overcurrent 2 22_Fireman 0-ride 23_Bypass 24_Motor-1 Out 25-Motor-2 Out 26-Motor-3 Out 27_Motor-4 Out 28-Motor-5 Out 29_Motor-6 Out 30-Motor-7 Out 38-Damper Output 41_Lube/S Clean 42_ACI Loss 44_Hand Mode 45_Auto Mode 47_MMC Out 49-At High Current 50_At Low Current	RA1 Default = Fault 1_During Run Mode 2 When frequency reference value is achieved 3_On above [10-52] freq and Off below [10-52]-[10-53] frea 4_On above [10-54] freq and Off below [10-54]+[10-55] freq 5_On up to FDT-4/5 freq 6_On above FDT-4/5 freq 7-When drive is powered and ready (no faults) 8-When drive has tripped on any fault 9-When VFD temperature reaches trip level 11_When PID feedback source signal value is abnormal 12_When pulse counter achieves the counter set-value 13-When pulse counter achieves pre-count value 14 - When alarm is triggered by any alarm condition 15_When VFD operates in Forward direction 16_When VFD operates in Reverse direction 17-When analog signal reaches a trigger level 19_When VFD trips on Overcurrent 2 22_When Fireman's Override mode is activated 23- When drive switches from Soft-Start mode to Bypass 24-When Motor-1 is enabled in MMC control 25-When Motor-2 is enabled in MMC control 26-When Motor-3 is enabled in MMC control 27-When Motor-4 is enabled in MMC control 28-When Motor-5 is enabled in MMC control 29-When Motor-6 is enabled in MMC control 30-When Motor-7 is enabled in MMC control 38-When Damper motor output is activated 41_When Lube or Screen Clean solenoid output is activated 42_When ACl analog input signal value is abnormal 44-When VFD control is in Hand mode 45_When VFD control is in Auto mode 47-Aux motor start output in MMC control 49-When current reaches High Current trigger level 50_When current is below Low Current trigger level
10-48	0560	Y	Relay RA2	See [10-47]	RA2 Default = Run
10-49	0561	Y	Relay RA3	See [10-47]	RA3 Default = FDT-4
10-50	0562	Y	CNT Attained 0	0 to 65500	Active increment counter triggered by M16 when I0-26 is set to 20:Input CNT. After completion of counting, the relay output becomes active if $10-$ 47,48 , or 49 is set to 13:PreCount Done. The relay becomes active for 1 msec . The counter then returns to 0 . When the display shows $\subset 5555$, the drive has counted 5,555 times. If display shows c5555*, it means that real counter value is between 55,550 to 55,559.
10-51	0563	Y	CNT Attained 1	0 to 65500	Increment counter triggered by MI6 when IO-26 is set to 20:Input CNT. After completion of counting, the relay output becomes active if $10-47,48$, or 49 is set to 12:Count Done. The relay stays active for same number of counts then becomes inactive. The cycle then repeats.
10-52	0564	Y	FDT-2 Frequency	0.0 to 600 Hz	Once VFD output frequency is within the range of (FDT-2 Frequency - FDT2 Bandwidth) and (FDT-2 Frequency + FDT-2 Bandwidth), then relay output becomes active if $10-47,48$, or 49 is set to 3 :FDT-2.
10-53	0565	Y	FDT-2 Bandwidth	0.0 to 600 Hz	This bandwidth represent half the frequency span in FDT-2 Frequency detection.
10-54	0566	Y	FDT-3 Frequency	0.0 to 600 Hz	Once VFD output frequency is within the range of (FDT-3 Frequency - FDT3 Bandwidth) and (FDT-3 Frequency + FDT-3 Bandwidth), then relay output becomes active if $10-47,48$, or 49 is set to 4 :FDT-3.
10-55	0567	Y	FDT-3 Bandwidth	0.0 to 600 Hz	This bandwidth represent half the frequency span in FDT-3 Frequency detection.

CODE	Mod Bus	AR	Display Name	Range	Description
10-56	0568	Y	I Hi/Lo Setting	0 to 100\%	When any relay is set to (49) At High Current in I0-47~49 and motor current is at or above I0-56 set level (\% of FLA), corresponding relay will be activated. When any relay is set to (50) At Low Current in I0-47~49 and motor current is below I0-56 set level (\% of FLA), corresponding relay will be activated
10-57	0569	Y	FDT-4/5 Setting	0.0 to 60 Hz	Frequency setting for FDT-4 and FDT-5 functions.
10-58	0570	Y	Relay NO/NC		Sets the relay outputs numbered in hex format to either N.O. or N.C. configuration. The configuration is in binary format Bit0, Bit1, Bit2, etc. corresponding to RA1, RA2, etc. from right to left. Empty box indicates that Relay is N.O. and solid box that it is N.C. Example below shows solid box (N.C. contact configuration) for Bit0 DO (RA1). The physical N.O. contact of RA1 relay is always closed (relay is activated) until the selected function in IO$47 \sim 49$ is activated, then contact will be open.
10-59	0571	Y	AFM1 Out Select	O_Output FREQ 1_Output AMP (rms) 2_Output voltage 3_DC Bus voltage 4-Power Factor 5-Power 6 AVII \% 7-ACI \% 8 AVI2 \% 9 Constant Output	Defines functionality of Analog Output 1 (AFM1).
10-60	0572	Y	AFM1 Gain	0 to 500\%	Adjusts the analog voltage level output of AFM1.
10-61	0573	Y	AFM2 Out Select	See [10-59]	Defines functionality of Analog Output 2 (AFM2).
10-62	0574	Y	AFM2 Gain	0 to 500\%	Adjusts the analog voltage level output of AFM2.
10-63	0575	Y	AFM1 mA Select	0_0-20mA output 1_4-20mA output	Selects current range of AFM1 output.
10-64	0576	Y	AFM2 mA Select	0_0-20mA output 1_4-20mA output	Selects current range of AFM2 output.
10-65	0577	Y	AFM1 Filter Time	0 to 20 Sec	Noise filtering of AFM1 output.
10-66	0578	Y	AFM2 Filter Time	0 to 20 Sec	Noise filtering of AFM2 output.
10-67	0579	Y	MO by Al Level	$\begin{aligned} & \text { 0_AVII } \\ & \text { 1_ACI } \\ & \text { 2_AVI2 } \end{aligned}$	When input signal selected is higher than AI Upper Level [IO-13], then MO becomes active. Once input signal decreases below AI Lower Level [IO-14], then MO becomes inactive.

CODE	Mod Bus	AR	Display Name	Range	Description
10-68	0580	Y	Fault Out Opt 1	0.0 to 65535	Select fault codes that activate relay output when fault becomes active. Displays fault code groups in hex format as follows: Bit0 = Current fault Bit4 = PID Feedback fault Bit1 = Voltage fault Bit5 = EXI fault Bit2 $=$ Overload fault Bit6 = Communication fault Bit3 $=$ System fault Relay output [I0-47-49] must be set to (8) Fault.
10-69	0581	Y	Fault Out Opt 2	0.0 to 65535	See [10-68]
10-70	0582	Y	Fault Out Opt 3	0.0 to 65535	See [10-68]
10-71	0583	Y	Fault Out Opt 4	0.0 to 65535	See [10-68]
10-72	0584	Y	FO Bypass	0_Disable Bypass 1_Enable Bypass	Enables Bypass for Fire Override.
10-73	0585	Y	FO Bypass Delay	0 to 6550 Sec	Time delay between Fire Override becoming active and enabling relay output for FO indication.
10-74	0586	N	D-Inputs Status		Displays status of digital inputs numbered in hex format. The input status is in binary format. Empty box indicates that N.O. DI is deactivated and solid box that it is activated. It shows DIs FWD, REV, DI1, DI2... status from the right to the left Bit0=1, Bit1=2, Bit3=4, Bit4=8, Bit5=16, etc. Example below shows hex value=5 and solid boxes (activated) for Bit0 (value=1) DI (FWD) and Bit2 (value=4) DI (DI1). The contacts wired to those inputs should be closed to deactivate input and open to activate it.
10-75	0587	N	D-Relays Status		Displays status of digital outputs (DOs) numbered in hex format. The output status is in binary format. Empty box indicates that output Relay is deactivated and solid box that it is activated. It shows DOs RA1, RA2... status from the right to the left Bit0, Bit1, Bit2, Bit3, etc. Example below shows hex value=1 and solid box (activated) for Bit0 (RA1). The N.O. contact of RA1 relay is closed until selected function is activated.
10-77	0589	N	Spare Max Value	0 to 60000	Range of spare transducer
10-78	0590	N	Spare AI Select	$\begin{aligned} & \text { 0_AVII } \\ & \text { 1_ACI } \\ & \text { 2_AVI2 } \end{aligned}$	Analog input for spare transducer

Parameter Descriptions > ADV Menu

AR = Adjustable while running.

CODE	$\begin{aligned} & \text { Mod } \\ & \hline \end{aligned}$	AR	Display Name	Range	Description
ADV-00	0768	Y	Upper Bound Int	0 to 100\%	Upper limit for the integral gain (I), which limits the output frequency. Upper Limit Freq = VFD Max Freq Main [VFD-00] x Upper Bound Int [ADV00]. Too large integral value will cause a slow response to sudden load changes. This could cause motor stall or machine damage.
ADV-01	0769	Y	PID Out Limit	0 to 110\%	Maximum PID command limit. Percentage of Maximum Output Frequency [VFD-00].
ADV-02	0770	Y	Password Input	0 to 65535	Password protect from modifying parameters.
ADV-03	0771	N	Parameter Reset	0_Disabled 1_Write protect 2 3_Reset KWH 4_Reset all Param 5_Reset M Run T	Select stored data to be reset.
ADV-05	0773	Y	Password Lock	0_Unlocked 1_Locked	When setting password protection for the first time, set password in Password Input [ADV-02] and then Password Lock [ADV-05] becomes 1Locked. To permanently disable password protection, unlock parameters by entering password in Password Input [ADV-02] and then set Password Lock [ADV-05] to 0-Unlocked. If drive is unlocked by a password and password lock is not set to 0-Unlocked, the next reboot of the VFD will lock the VFD again.
ADV-06	0774	Y	Acc/Dec Type	0_Linear Acc/Dec 1_Auto Acc/L-Dec 2_L-Acc/Auto Dec 3_Auto Acc/Dec 4_Lin, Auto Stall	Provides automated acceleration and deceleration with stall prevention. 0 Linear Acc/Dec: Accelerates and decelerates according to the setting of SETT-11-12 and VFD-19~24. 1_Auto Acc/L-Dec: Auto detects the load torque and accelerates for the fastest acceleration time and smoothest start current. Deceleration is linear according to setting of SET-11-12 and VFD-19-24. 2_L-Acc/Auto Dec: Linear acceleration according to setting SET-11~12 and VFD-19~24. Auto detects the load re-generation and stops the motor smoothly with the fastest decel time. 3_Auto Acc /Dec: Auto detects load for smoothest operation for acceleration and deceleration. 4_Lin, Auto Stall: Stall prevention by auto accel./decel being limited by SET-11~12 and VFD-19~24.
ADV-07	0775	N	Acc/Dec Format	$\begin{aligned} & \text { 0_Unit } 0.01 \text { Sec } \\ & \text { 1_Unit } 0.1 \mathrm{Sec} \end{aligned}$	Precision of acceleration and deceleration.
ADV-08	0776	Y	Energy Saving	0 Disable 1_Enable	When the output frequency is constant, the output voltage will auto decrease by the load reduction. The drive will operate with minimum power.
ADV-09	0777	Y	E-Saving Gain	10 to 1000\%	Determines speed of adjusting output voltage in relationship to load reduction. If the motor oscillates or has a quick temperature rise, the value should be increased.
ADV-10	0778	N	MMC Mode	0_Disabled (default) 1_Equal Run Time 2_Soft Start mode 3_Lead-Lag 4_Run Time Alt 5_Rotate Lead	Type of operation for Multi-Motor Control.
ADV-11	0779	N	Motor Quantity	1 (default) to 7	Number of motors in MMC relay control setup. Limit is 3 without $1 / 0$ card. When I/O card is installed, selections $1-7$ are available.
ADV-12	0780	N	Aux Mtr Stop Hz	0 to VFD-00	When output frequency is less than value and remains for duration of ADV15 , motors will be shut down one by one.
ADV-13	0781	N	Alt Run Time	0.0 to 60000 Min	Duration of running a motor before switching to another motor.
ADV-14	0782	N	S-Start ON Dly	0.0 to 3600 Sec	Delay time before switching on motor.
ADV-15	0783	N	S-Start Off Dly	0.0 to 3600 Sec	Delay time before switching off motor.

PARAMETER REFERENCE TABLES
 Parameter Descriptions > ADV Menu

CODE	Mod	AR	Display Name	Range	Description
ADV-16	0784	Y	Mtr Switch Tmr	0.0 to 3600 Sec	When output duration reaches value, the system will start preparing to switch motors.
ADV-17	0785	Y	Mtr Switch Hz	Set-22 to Set 23 (Hz)	When the output frequency reaches value, the system will start preparing to switch motors.
ADV-18	0786	Y	Lag Start Freq	ADV-23 to Set-23	Running above ADV-18 frequency is one of the conditions for starting Lag pump. Lag Start Frequency parameter is used for ADV-10 selection (3) Lead-Lag MMC control. Default= 59.50 Hz .
ADV-19	0787	Y	Lag Start Delay	0.0 to 600 Sec	Sets a delay time to start Lag pump when both frequency and pressure conditions are met.
ADV-20	0788	Y	Lag Start Level	0.1 to 10\%	Sets percentage of [Set-20 PID F/B Max] value to determine [MMC Below Setpoint] level for Lag pump starting. ADV-20 parameter is used for ADV10 selection (3) Lead-Lag MMC control.
ADV-21	0789	Y	Lead Freq Drop	0.0 to SET-23 (Hz)	PID High Frequency Limit drop value with ADV-22 Decel Time at Lag pump start to prevent system overpressure condition. ADV-21 parameter is used for ADV-10 selection (3) Lead-Lag MMC control.
ADV-22	0790	Y	MMC Decel Time	0.0 to 600 Sec	Sets deceleration time for PID High Frequency limit value change from [Set23 PID High Freq Limit] to [Set-23 PID High Freq Limit]-[ADV-21] at Lag pump start. ADV-22 parameter is used for ADV-10 selection (3) Lead-Lag MMC control.
ADV-23	0791	Y	Lag Stop Freq	SET-22 to ADV-18 (Hz)	Running below ADV-23 frequency is one of the conditions for stopping Lag pump. This parameter is used for ADV-10 selection (3) Lead-Lag MMC control.
ADV-24	0792	Y	Lag Stop Delay	0.0 to 600 Sec	Sets delay time to stop Lag pump when both frequency and pressure. ADV24 parameter is used for ADV-10 selection (3) Lead-Lag MMC control.
ADV-25	0793	Y	Lag Stop Level	0.1 to ADV-20 (\%)	Sets percentage value of [Set-20 PID F/B Max] value to determine [MMC At Setpoint] level for Lag pump stopping. ADV-25 parameter is used for ADV10 selection (3) Lead-Lag MMC control.
ADV-26	0794	Y	Lead Freq Bump	0.0 to (SET-23)* 0.4 Hz	PID Low Freq Limit increase value with ADV-27 Accel Time at Lag pump stop to prevent system underpressure condition. ADV-26 parameter is used for ADV-10 selection (3) Lead-Lag MMC control.
ADV-27	0795	Y	MMC Accel Time	0.0 to 600 Sec	Sets acceleration time for PID Low Frequency limit value change from [Set22 PID Low Freq Limit] to [Set-22 PID Low Freq Limit]+[ADV-26] at Lag pump stop.
ADV-28	0796	Y	Power on Delay	0.0 to 6000 Sec	This timer provides run delay at VFD power-up with run command present to prevent multiple starts during power surges.
ADV-29	0797	Y	Run Delay Timer	0.0 to 6000 Sec	This timer provides a delay at every VFD start when run command is applied. Timer starts before every VFD start by run command, autorestarts, fault reset, sleep wake-up, etc. FO (Fire Override) mode will disable this timer.
ADV-30	0798	Y	Backspin Timer	0.0 to 6000 Sec	Duration after stop state that the drive disables output. Protects drive from motor backspinning due to column of water backflowing through pump.
ADV-34	0802	Y	Min Run Timer	0.0 to 6000 Sec	Once drive starts motor, the motor continuously runs for this length of time even though a stop command is present.
ADV-55	0823	Y	AVR Select	0 Enable AVR 1_Disable AVR 2_Disable AVR Dec	Auto Voltage Regulation automatically regulates the drive output voltage to the motor rated voltage.

Parameter Descriptions > PROTECTION Menu

AR = Adjustable while running.

CODE	$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
PROT-00	1024	N	Decel Method	0_Normal 1_Over Fluxing 2_Traction Energy	0_VFD follows SET-12 Deceleration time 1_VFD prevents DC bus Over voltage by over-fluxing the motor at PROT$1 \overline{4}$ voltage. The Decel time can be longer than SET-12 value. 2_VFD prevents DC Bus Over voltage by changing output frequency and voltage. The Decel time can be longer than SET-12 value.
PROT-01	1025	Y	Preheat Level	0 to 100\%	Percentage of nominal current applied to the motor as DC voltage to heat the VFD and motor. Slowly increase the percentage to reach the sufficient preheating temperature.
PROT-02	1026	Y	Preheat Duty	0 to 100\%	Sets output current cycle of preheating, which corresponds to 0-10 seconds. 0\% - no output current 50\% - 5 seconds OFF and 5 seconds ON 100\% - continuous output current
PROT-03	1027	Y	LV Level	(Varies with VFD rating)	Sets the Low Voltage (Lv) level. Recommended setting is motor voltage minus 10%. If incoming power varies too much, the setting may need to be 15% less than motor voltage. If DC bus voltage drops to Lv level, the VFD stops output to the motor with motor free run to stop. If fault occurs during acceleration, deceleration, constant speed, or stop, then fault indication is LvA, Lvd, Lvn, and LvS, respectively. Manual reset is required. To enable auto restart after a momentary power loss, consult PROT-37 and PROT-38 for VFD handling of fault. The hysteresis recovery level is based on VFD frame size and VFD voltage rating.
PROT-04	1028	Y	OV Stall level	(Varies with VFD rating)	Set Over-Voltage Stall Level. If braking unit or braking resistor is connected, set level to 0 to disable.
PROT-05	1029	Y	OV Stall Prevent	0_Standard 1_Advanced	Set Over-Voltage Stall Prevention operation. 0:Standard - Frequency maintains during deceleration. 1:Advanced - Frequency increases during acceleration, deceleration, or constant speed.
PROT-06	1030	Y	SW Brake V Lvl	(Variable)	Sets the DC-bus voltage at which the DC Brake is activated. Defaults are based on VFD Rating.
PROT-07	1031	Y	OCA Level	0 to 130\%	Set Over-Current during Acceleration level. Value is based on VFD's rated current and selection of VFD-35 for Light Duty or Normal Duty.
PROT-08	1032	Y	OCN Level	0 to 130\%	Set Over-Current during Operation level. Value is based on VFD's rated current and selection of VFD-35 for Light Duty or Normal Duty.
PROT-12	1036	Y	OL-2 Type	0_Disable 1_Alarm at Speed 2_Trip at Speed 3-Alarm at Run 4_Trip at Run	Select Overload Detection operation. Setting 1 and 2 protects from Overload once VFD reaches constant speed. Setting 3 and 4 protects from Overload throughout run of the motor.
PROT-13	1037	Y	OL-2 Level	10 to 200\%	Set Overload Detection level with respect to the rated current of the VFD.
PROT-14	1038	Y	OL-2 Delay	0.0 to 60 Sec	Duration output current exceeds the overload detection level causing an Overload condition. The hysteresis for the Overload condition is 5% of detection level.
PROT-16	1040	Y	ETH Type	$\begin{aligned} & \text { 0_Disable } \\ & \text { 1_Self Cooled } \\ & \text { 2_Force Cooled } \end{aligned}$	Set type of motor for Electronic Thermal Relay protection. For 1:SelfCooled, the motor rated current percentage level is 40% at 0 Hz and linear increases to 100% at motor rated frequency.
PROT-17	1041	Y	ETH Delay	30 to 600 Sec	Sets time the output current is higher than 150% before tripping on electronic thermal overload. The overload level with respect to time is based on $I^{2} t$ curve.
PROT-18	1042	Y	OH Warning	0.0 to $110^{\circ} \mathrm{C}$	Set Heat Sink Over-heat warning level. When temperature exceds 110C, the drive stops with an IGBT over-heat fault. Cooling fan is activated when temperature reaches 15 C less than value. The cooling fan deactivates for 35C less than value.

PARAMETER REFERENCE TABLES
 Parameter Descriptions > PROTECTION Menu

CODE	Mod Bus	AR	Display Name	Range	
PROT-19	1043	Y	PTC/PT100 Sel	0_Alarm and Run 1_Alarm and Decel 2_Alarm and Coast 3_Disabled	Set operation when PTC, PT100, or KTY84 exceed level 2.

CODE	Mod Bus	AR	Display Name	Range	Description

Parameter Descriptions > COMM Menu

AR = Adjustable while running.

CODE	Mod Bus	AR	Display Name	Range	Description
Comm-00	1280	Y	COM1 Address	1 to 254	RS485 address of VFD.
Comm-01	1281	Y	COM1 Speed	4.8 to 115.2 Kbps	RS485 baud rate. All devices on RS485 communication must have the same baud rate.
Comm-02	1282	Y	COM1 Loss	0_Alarm and Run 1_Alarm_Decel 2_Alarm_Coast 3_Disable	Select operation when communication is lost.
Comm-03	1283	Y	COM1 Loss Delay	0.0 to 100 Sec	Duration of communication loss before initiating operation.
Comm-04	1284	Y	COM1 Protocol	1_7, N, 2 for ASCII 2_7, E, 1 for ASCII 3_7, 0, 1 for ASCII 4-7, E, 2 for ASCII 5-7, 0, 2 for ASCII 6 8, N, 1 for ASCII 7_8, N, 2 for ASCII 8_8, E, 1 for ASCII 98, 0, 1 for ASCII 10_8, E, 2 for ASCII 11_8, 0, 2 for ASCII 12_8, N, 1 for RTU 13_8, N, 2 for RTU 14_8, E, 1 for RTU 15_8, 0, 1 for RTU 16_8, E, 2 for RTU 17-8, 0, 2 for RTU	RS485 Protocol: Data Bits - Parity - Stop Bits - Message Format
Comm-05	1285	Y	Response Delay	0.0 to 200 ms	Duration VFD waits before responding to received communication.
Comm-06	1286	N	Main Frequency	0.0 to 599 Hz	When Auto Speed Ref [SET-07] is set to RS485 Interface, the last frequency command is stored in this parameter. After rebooting from an abnormal turn-off or momentary power loss, the VFD will continue operation with last frequency.

CODE	Mod	AR	Display Name	Range	Description
Comm-07	1287	Y	Block Transf 1	0000h to FFFFh	Block transfer allows selection of a group of parameters for transfer through communication code 03H.
Comm-08	1288	Y	Block Transf 2	0000h to FFFFh	See [Comm-07]
Comm-09	1289	Y	Block Transf 3	0000h to FFFFh	See [Comm-07]
Comm-10	1290	Y	Block Transf 4	0000h to FFFFh	See [Comm-07]
Comm-11	1291	Y	Block Transf 5	0000h to FFFFh	See [Comm-07]
Comm-12	1292	Y	Block Transf 6	0000h to FFFFh	See [Comm-07]
Comm-13	1293	Y	Block Transf 7	0000h to FFFFh	See [Comm-07]
Comm-14	1294	Y	Block Transf 8	0000h to FFFFh	See [Comm-07]
Comm-15	1295	Y	Block Transf 9	0000h to FFFFh	See [Comm-07]
Comm-16	1296	Y	Block Transf 10	0000h to FFFFh	See [Comm-07]
Comm-17	1297	Y	Block Transf 11	0000h to FFFFh	See [Comm-07]
Comm-18	1298	Y	Block Transf 12	0000h to FFFFh	See [Comm-07]
Comm-19	1299	Y	Block Transf 13	0000h to FFFFh	See [Comm-07]
Comm-20	1300	Y	Block Transf 14	0000h to FFFFh	See [Comm-07]
Comm-21	1301	Y	Block Transf 15	0000h to FFFFh	See [Comm-07]
Comm-22	1302	Y	Block Transf 16	0000h to FFFFh	See [Comm-07]
Comm-23	1303	N	Com Decoding	$\begin{aligned} & 0 \text { _20xx } \\ & \text { 1_60xx } \end{aligned}$	Select address starting range for communication via RS485, CANopen, and Communication Card.
Comm-24	1304	N	BACnet MAC ID	0 to 127	BACnet address of VFD.
Comm-25	1305	N	BACnet Speed	9.6 to 76.8 Kbps	BACnet baud rate.
Comm-26	1306	N	Device ID Lo	0 to 65535	BACnet Device ID L
Comm-27	1307	N	Device ID Hi	0 to 63	BACnet Device ID H
Comm-28	1308	N	Max Address	0 to 127	BACnet max address.
Comm-29	1309	N	Password	0 to 65535	BACnet password.
Comm-30	1310	N	Com Card ID	0 No Com Card 1_DevNet Slave 2-P-bus DP Slave 3-CANopen S/M 4-Mbus-TCP Slave $5^{-} \mathrm{E}$-Net/IP Slave 6_FELE BT Card	Identification of installed communication card.
Comm-31	1311	N	Com Card FW	N/A	Firmware version of communication card.
Comm-32	1312	N	Product code	N/A	Part number of communication card.
Comm-33	1313	N	Error code	N/A	Error status of communication card.
Comm-34	1314	Y	D-Net Card Addr	(Variable)	DeviceNet or Profibus address of VFD.
Comm-35	1315	Y	D-Net Speed	$\begin{aligned} & 0 \quad 125 \mathrm{Kbps} \\ & 1 _250 \mathrm{Kbps} \\ & 2 _500 \mathrm{Kbps} \\ & 3 _1 \mathrm{Mbps} \end{aligned}$	DeviceNet baud rate.
Comm-36	1316	Y	D-Net Type	0 Standard 1_Special	DeviceNet Standard is when D-Net Speed [Comm-35] is set to 125 Kbps , 250 Kbps , and 500 Kbps in standard speeds. DeviceNet Special is for other speeds similar to CANopen.
Comm-37	1317	Y	M-bus IP Type	$\begin{aligned} & \text { 0_Static IP } \\ & \text { 1_DHCP } \end{aligned}$	Set the Modbus TCP IP manually with Static IP or automatically by host control with DHCP.
Comm-38	1318	Y	IP Address 1	0 to 65535	First (most significant) octet of IP address. (0-255) XXX.----------
Comm-39	1319	Y	IP Address 2	0 to 65535	Second octet of IP address. (0-255) ---.XXX.---.--
Comm-40	1320	Y	IP Address 3	0 to 65535	Third octet of IP address. (0-255) ------.XXX.---
Comm-41	1321	Y	IP Address 4	0 to 65535	Fourth (least significant) octet of IP address. (0-255) ----------.XXX

PARAMETER REFERENCE TABLES

Parameter Descriptions > PLC Menu

CODE	Mod Bus	AR	Display Name	Range	Description
Comm-42	1322	Y	Address Mask 1	0 to 65535	First (most significant) octet of Mask address. (0-255) XXX.------.---
Comm-43	1323	Y	Address Mask 2	0 to 65535	Second octet of Mask address. (0-255) ---.XXX.------
Comm-44	1324	Y	Address Mask 3	0 to 65535	Third octet of Mask address. (0-255)
Comm-45	1325	Y	Address Mask 4	0 to 65535	Fourth (least significant) octet of Mask address. (0-255) ---.------.XXX
Comm-46	1326	Y	G-way Address 1	0 to 65535	First (most significant) octet of Gateway address. (0-255) XXX.---.--.---
Comm-47	1327	Y	G-way Address 2	0 to 65535	Second octet of Gateway address. (0-255)
Comm-48	1328	Y	G-way Address 3	0 to 65535	Third octet of Gateway address. (0-255)
Comm-49	1329	Y	G-way Address 4	0 to 65535	Fourth (least significant) octet of Gateway address. (0-255)
Comm-50	1330	Y	MBus TCP Pass L	0 to 99	Communication card password for Modbus TCP (Low word)
Comm-51	1331	Y	MBus TCP Pass H	0 to 99	Communication card password for Modbus TCP (High word)
Comm-52	1332	Y	MBus Card Reset	0_Disable 1_Reset	Sets the communication card to default values for Modbus TCP.
Comm-53	1333	Y	MBus TCP Config	$\begin{aligned} & \text { 0_None } \\ & \text { 1_IP Filter } \\ & \text { 2_I-net Par On } \\ & \text { 3_---- } \\ & \text { 4_Login Pass } \end{aligned}$	Once IP address parameters are set, then set Modbus TCP Config to 1:Internet Parameters to load parameters. Once login password is set, then set Modbus TCP Config to 2:Login Password to load password.
Comm-54	1334	N	MBus TCP Status	N/A	When the communication card is set with a password, this bit is enabled, When the password is cleared, this bit is disabled.
Comm-55	1335	N	Set Comm Card	0 to 65535	Enables an optional Ethernet/IP card, which disables Bluetooth. Set bit 1 to ON to enable the Ethernet card. Set to OFF to disable the card and allow Bluetooth.

Parameter Descriptions > PLC Menu

CODE	Mod Bus	Display Name	Range	
PLC-00	1536	Dl used by PLC	0 to 65535	Status of PLC external input terminal.
PLC-01	1537	DO used by PLC	0 to 65535	Status of PLC external output terminal.
PLC-02	1538	Analog by PLC	0 to 65535	Status of PLC external analog output terminals.
PLC-03	1539	PLC Buffer 0	0 to 65535	Used for PLC or HMl programming.
PLC-04	1540	PLC Buffer 1	0 to 65535	Used for PLC or HMl programming.
PLC-05	1541	PLC Buffer 2	0 to 65535	Used for PLC or HMl programming.
PLC-06	1542	PLC Buffer 3	0 to 65535	Used for PLC or HMl programming.
PLC-07	1543	PLC Buffer 4	0 to 65535	Used for PLC or HMl programming.
PLC-08	1544	PLC Buffer 5	0 to 65535	Used for PLC or HMl programming.
PLC-09	1545	PLC Buffer 6	0 to 65535	Used for PLC or HMl programming.
PLC-10	1546	PLC Buffer 7	0 to 65535	Used for PLC or HMl programming.
PLC-11	1547	PLC Buffer 8	0 to 65535	Used for PLC or HMl programming.
PLC-12	1548	PLC Buffer 9	0 to 65535	Used for PLC or HMl programming.
PLC-13	1549	PLC Buffer 10	0 to 65535	Used for PLC or HMl programming.

PARAMETER REFERENCE TABLES Parameter Descriptions > PLC Menu

CODE	Mod Bus	Display Name	Range	Description
PLC-14	1550	PLC Buffer 11	0 to 65535	Used for PLC or HMI programming.
PLC-15	1551	PLC Buffer 12	0 to 65535	Used for PLC or HMI programming.
PLC-16	1552	PLC Buffer 13	0 to 65535	Used for PLC or HMI programming.
PLC-17	1553	PLC Buffer 14	0 to 65535	Used for PLC or HMI programming.
PLC-18	1554	PLC Buffer 15	0 to 65535	Used for PLC or HMI programming.
PLC-19	1555	PLC Buffer 16	0 to 65535	Used for PLC or HMI programming.
PLC-20	1556	PLC Buffer 17	0 to 65535	Used for PLC or HMI programming.
PLC-21	1557	PLC Buffer 18	0 to 65535	Used for PLC or HMI programming.
PLC-22	1558	PLC Buffer 19	0 to 65535	Used for PLC or HMI programming.
PLC-23	1559	PLC Com Type	-12_PLC Control -10_Internal Master -8_Internal Slave 8 -7-Internal Slave 7 -6-Internal Slave6 -5_Internal Slave 5 -4-Internal Slave 4 -3-Internal Slave 3 -2_Internal Slave 2 -1 Internal Slave 1 --Modbus 485 1_BACnet	Setup PLC controller for single VFD or with multiple VFD's.
PLC-24	1560	PLC force to 0	0 to 65535	Defines reset value of the frequency command before PLC scans time sequence. Bit0 Before PLC scan, set up PLC target frequency=0 Bit1 Before PLC scan, set up PLC target torque=0. Bit2 Before PLC scan, set up the speed limit of torque control mode=0.
PLC-25	1561	PLC Address	1 to 254	Address of PLC with respect to communication link.

Parameter Descriptions > Option Menu

AR = Adjustable while running.

CODE	Mod Bus	AR	Display Name	Range	Description
Option-00	1792	N	M10 Define	0 No Function 1_Speed-L 2_Speed-M 3-Speed-H 4_Speed-X 5-Fault Reset 6-Jog Speed 7-Hold Speed 8-XCEL-L 9-XCEL-M 10_Ext. Trip 12_AVII Analog Spd 13_ACI Analog Spd 14_AVI2 Analog Spe 16_Digital Up 17-Digital Down 18_PID Disable 19_CLR CNT 20 Input CNT (MI6) 21_FWD Jog 22_REV Jog 25_E-Stop 26-HOA HAND 27-HOA AUTO 28-Drive Enabled 29_PLC mode bit 0 30-PLC mode bit 1 32_FO with RUN Cmd 33_FO w/o RUN Cmd 34-Damper Limit Sw 35 Shutdown N-Latch 36^{-}Shutdown Latched 37_Flow Switch 40_Aux Motor-1 OFF 41_Aux Motor-2 OFF 42_Aux Motor-3 OFF 43-Aux Motor-4 OFF 44 Aux Motor-5 OFF 45_Aux Motor-6 OFF 46_Aux Motor-7 OFF 47 All Aux Mtr Off	Defines functionality of input M110 on I/O extension card. _Multi-step speed command 1 2_Multi-step speed command 2 3-Multi-step speed command 3 4_Multi-step speed command 4 5-Use to reset fault after cause is corrected 5_Changes speed in jog mode to value set in VFD-55 -When active, VFD will hold current speed -ACC/DEC time will be changed to VFD-19 and VFD-20 -ACC/DEC time will be changed to VFD-21 and VFD-22 O_Trips VFD by external protective device and requires reset 2-In non-PID mode, changes speed reference to AVII 3^{-}In non-PID mode, changes speed reference to ACI 4-In non-PID mode, changes speed reference to AVI2 16 -Increases speed reference when SET-07 is set to (1) -Decreases speed reference when SET-07 is set to (1) 8-Disables PID and switches speed reference to keypad 9_Clears pulse counter accumulated value (MI6 only) -Pulse counter input (MI6 only) 1-Jog Command Forward 2_Jog Command Reverse 5FD stops by Emergency Stop device (requires reset) 6_External HOA Hand position contact 2-External HOA Auto position contact -Enables and disables the drive (not a run command) 29-PLC Function Disable 29 and $30=(0)$ or Run 29= (1) - PLC Function Disable 29 and $30=(0)$ or Stop $30=(1)$ -VFD will start in FO Mode by FO DI and Run Command -VFD will start in FO Mode by FO DI (No Run Command) 4_When damper is closed, Damper LSW DI is activated Activates Shutdown. When inactive, VFD operates normally 36-Activates Shutdown. Requires reset to operate normally 37-Detects water or air flow by Flow Switch 40^{-}Aux Motor-1 in MMC mode is off sequence 41-Aux Motor-2 in MMC mode is off sequence 42_Aux Motor-3 in MMC mode is off sequence 43-Aux Motor-4 in MMC mode is off sequence 44_Aux Motor-5 in MMC mode is off sequence 45_Aux Motor-6 in MMC mode is off sequence 46-Aux Motor-7 in MMC mode is off sequence 47 All Aux Motors in MMC mode are off sequence
Option-01	1793		M11 Define	See [Option-00]	Defines functionality of input M111 on I/O extension card.
Option-02	1794		M12 Define	See [Option-00]	Defines functionality of input M112 on I/O extension card.
Option-03	1795		M13 Define	See [Option-00]	Defines functionality of input M113 on $1 / 0$ extension card.
Option-04	1796		M14 Define	See [Option-00]	Defines functionality of input M114 on I/O extension card.
Option-05	1797		M15 Define	See [Option-00]	Defines functionality of input M115 on I/0 extension card.

CODE	$\begin{array}{\|l} \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
Option-06	1798		Relay exp. RA100	0_No Function 1_Run 2_FDT-1 3_FDT-2 4_FDT-3 5_FDT-4 6_FDT-5 7_Drive Ready 8_Fault 9-VFD Overheat 11_PID F/B Loss 12_Counter Done 13_Pre-Count Done 14_Alarm 15_FWD CMD 16_REV CMD 17_Analog Trigger 19_Overcurrent 2 22_Fireman 0-ride 23_Bypass 24-Motor-1 Out 25_Motor-2 Out 26_Motor-3 Out 27_Motor-4 Out 28_Motor-5 Out 29_Motor-6 Out 30_Motor-7 Out 38_Damper Output 41_Lube/S Clean 42_ACI Loss 44_Hand Mode 45_Auto Mode 47_MMC Out	RA1 Default = Fault 1_During Run Mode 2_When frequency reference value is achieved 3_On above [10-52] freq and Off below [10-52]-[10-53] freq 4_On above $[10-54]$ freq and Off below [10-54]+[10-55] freq 5_On up to FDT-4/5 freq 6_On above FDT-4/5 frea 7-When drive is powered and ready (no faults) 8_When drive has tripped on any fault 9-When VFD temperature reaches trip level 11_When PID feedback source signal value is abnormal 12.When pulse counter achieves the counter set-value 13_When pulse counter achieves pre-count value 14 -When alarm is triggered by any alarm condition 15-When VFD operates in Forward direction 16_When VFD operates in Reverse direction 17-When analog signal reaches a trigger level 19_When VFD trips on Overcurrent 2 22_When Fireman's Override mode is activated 23-When drive switches from Soft-Start mode to Bypass 24_When Motor-1 is enabled in MMC control 25_When Motor-2 is enabled in MMC control 26_When Motor-3 is enabled in MMC control 27-When Motor-4 is enabled in MMC control 28-When Motor-5 is enabled in MMC control 29-When Motor-6 is enabled in MMC control 30_When Motor-7 is enabled in MMC control 38-When Damper motor output is activated 41_When Lube or Screen Clean solenoid output is activated 42_When ACl analog input signal value is abnormal 44_When VFD control is in Hand mode 45_When VFD control is in Auto mode 47_Aux motor start output in MMC control
Option-07	1799		Relay exp. RA11	See [Option-06]	Defines functionality of output relay RA11 on I/0 extension card.
Option-08	1800		Relay exp. RA12	See [Option-06]	Defines functionality of output relay RA12 on I/O extension card.
Option-09	1801		Relay exp. RA13	See [Option-06]	Defines functionality of output relay RA13 on I/O extension card.
Option-10	1802		Relay exp. RA14	See [Option-06]	Defines functionality of output relay RA14 on I/0 extension card.
Option-11	1803		Relay exp. RA15	See [Option-06]	Defines functionality of output relay RA15 on I/O extension card.
Option-12	1804		Relay exp. RA16	See [Option-06]	Defines functionality of output relay RA16 on I/0 extension card.
Option-13	1805		Relay exp. RA17	See [Option-06]	Defines functionality of output relay RA17 on I/0 extension card.
Option-14	1806		Relay exp. RA18	See [Option-06]	Defines functionality of output relay RA18 on I/0 extension card.
Option-15	1807		Relay exp. RA19	See [Option-06]	Defines functionality of output relay RA19 on I/0 extension card.
Option-16	1808		Relay exp. RA20	See [Option-06]	Defines functionality of output relay RA20 on I/O extension card.
Option-17	1809		10 Card Type	No Definition EMC-BPS01 No Definition No Definition EMC-D611A EMC-D42A EMC-R6AA No Definition	Defines I/O card type.

PARAMETER REFERENCE TABLES

Parameter Descriptions > ADV2 Menu

Parameter Descriptions > ADV2 Menu

AR = Adjustable while running.

CODE	Mod Bus	AR	Display Name	Range	Description
ADV2-00	2048	N	PID D-Gain	0 to 1 sec	Differential gain value for PID operation.
ADV2-01	2049	Y	Sleep Crrl By	$\begin{aligned} & \text { 0_PID Output } \\ & \text { 1_PID F/B } \end{aligned}$	When set to Output, units become Hz . When set to Feedback, units become $\%$.
ADV2-03	2051	Y	Mtr Brake Delay	0.0 to 65 Sec	Delay after start command when the corresponding multi-function output terminal (10: DC Brake) will be OFF.
ADV2-04	2052	Y	AFM1 Rev Value	$\begin{aligned} & 0 _0-10 \mathrm{~V} \\ & 1-0 \mathrm{~V} \\ & 2 _5-0 \mathrm{~V} \end{aligned}$	$0 _0-10 \mathrm{~V}$: AFMI output is $0-10 \mathrm{~V}$ when in REV. 1_OV: AFMl output is $0 V$ when in REV, $0-10 \mathrm{~V}$ in FWD direction. 2_5-0V: AFM1 output is $5-0 \mathrm{~V}$ when in REV, $5-10 \mathrm{~V}$ in FWD direction.
ADV2-05	2053	Y	AFM2 Rev Value	$\begin{aligned} & 0-0-10 \mathrm{~V} \\ & 1-0 \mathrm{~V} \\ & 2.5-0 \mathrm{~V} \end{aligned}$	$0-0-10 \mathrm{~V}$: AFM2 output is $0-10 \mathrm{~V}$ when in REV. 1_OV: AFM2 output is 0 V when in REV, $0-10 \mathrm{~V}$ in FWD direction. 2_5-0V: AFM2output is 5-0V when in REV, $5-10 \mathrm{~V}$ in FWD direction.
ADV2-06	2054	Y	AFM1 DC Lvi	0 to 100\%	Used with Multi-Function Output IO-59 set to 2:Output voltage. Output emits constant voltage 0 to 100% corresponding to $0-10 \mathrm{~V}$.
ADV2-07	2055	Y	AFM2 DC LvI	0 to 100\%	Used with Multi-Function Output I0-61 set to 2:Output voltage. Output emits constant voltage 0 to 100% corresponding to $0-10 \mathrm{~V}$.
ADV2-08	2056	Y	Analog Curve	O_Regular Curve 1_AVII 3-Point 2-ACl 3 -Point 3_AVII+ACI 3 Point 4_AVI2 3 Point 5-AVII+AV12 3 Point 6-ACI+AVI2 3 Point 7_3x Als 3-Point	The analog input signal can be setup for linear curve or 3-point (piecewise) curve corresponding voltage/current input to frequency output. If using AVII, ADV2-09 < ADV2-11 < ADV2-13. If using ACI, ADV2-15 < ADV2-17 < ADV2-19. If using AVI2, ADV2-21 < ADV2-23 < ADV2-25. If analog input is not selected, the analog input uses bias and gain to set the linear curve. The output frequency will become 0% when the analog input value is lower than low point setting.
ADV2-09	2057	Y	AVII Low Value	(Variable)	Lowest analog input value for AVII that corresponds to frequency output of ADV2-10.
ADV2-10	2058	Y	AVIILow \%	-100 to 100\%	Frequency output corresponding to ADV2-09 input.
ADV2-11	2059	Y	AVII Mid Value	(Variable)	Middle analog input value for AVII that corresponds to frequency output of ADV2-12.
ADV2-12	2060	Y	AVII Mid \%	-100 to 100\%	Frequency output corresponding to ADV2-11 input.
ADV2-13	2061	Y	AVII High Value	(Variable)	Highest analog input value for AVII that corresponds to frequency output of ADV2-14.
ADV2-14	2062	Y	AVII High \%	-100 to 100\%	Frequency output corresponding to ADV2-13.
ADV2-15	2063	Y	ACI Low Value	(Variable)	Lowest analog input value for ACI that corresponds to frequency output of ADV2-16.
ADV2-16	2064	Y	ACI Low \%	-100 to 100\%	Frequency output corresponding to ADV2-15 input.
ADV2-17	2065	Y	ACI Mid Value	(Variable)	Middle analog input value for ACI that corresponds to frequency output of ADV2-18.
ADV2-18	2066	Y	ACI Mid \%	-100 to 100\%	Frequency output corresponding to ADV2-17 input.
ADV2-19	2067	Y	ACI High Value	(Variable)	Highest analog input value for ACI that corresponds to frequency output of ADV2-20.
ADV2-20	2068	Y	ACI High \%	-100 to 100\%	Frequency output corresponding to ADV2-19.
ADV2-21	2069	Y	AVI2 Low Value	0 to 10 V	Lowest analog input value for AVI2 that corresponds to frequency output of ADV2-22.
ADV2-22	2070	Y	AVI2 Low \%	-100 to 100\%	Frequency output corresponding to ADV2-21 input.
ADV2-23	2071	Y	AVI2 Mid Value	0 to 10 V	Middle analog input value for AVI2 that corresponds to frequency output of ADV2-24.
ADV2-24	2072	Y	AVI2 Mid \%	-100 to 100\%	Frequency output corresponding to ADV2-23 input.
ADV2-25	2073	Y	AVI2 High Value	0 to 10 V	Highest analog input value for AVI2 that corresponds to frequency output of ADV2-26.
ADV2-26	2074	Y	AVI2 High \%	-100 to 100\%	Frequency output corresponding to ADV2-25.

PARAMETER REFERENCE TABLES
 Parameter Descriptions > Motor Menu

CODE	$\begin{gathered} \text { Mod } \\ \text { Bus } \end{gathered}$	AR	Display Name	Range	Description
ADV2-27	2075	Y	dEb Offset V	0 to 200 V	Decel Energy Backup Error (dEb) Offset Voltage that the DC Bus reduces by to initiate dEb operation. Varies by VFD Rating.
ADV2-28	2076	Y	dEb Mode Select	0_Disable 1_Auto Dec/Stop 2_AutoDec/Restart	Select Decel Energy Backup Error (dEb) operation when DC Bus voltage drops by ADV2-27. This feature is used to detect power loss.
ADV2-30	2078	Y	PID Mode Select	$\begin{aligned} & \text { 0_Serial PID } \\ & \text { 1_Parallel PID } \end{aligned}$	0_Serial: VFD uses conventional PID control structure. 1_Parallel: Proportional, Integral, and Derivative gains are independent.
ADV2-31	2079	N	PID Unit Format	$\begin{aligned} & 0 _1 \\ & 1 _0.1 \\ & 2 _0.01 \end{aligned}$	Select precision of PID operation.
ADV2-32	2080	N	PID Ref Source	0_Keypad 1_AVII Analog 2_ACI Analog 3_AVI2 Analog 4_RS485	Select source of PID setpoint.
ADV2-52	2100	Y	LD Set Point	SET-19 to (variable)	Adjustable setting for Low Demand pressure set-point from 0 to [Set-20 F/B Max]x 0.95. It can be adjusted to lower or higher than HD (Main) pressure set-point value to provide desired pressure and prevent overpressure trip at pump start in Low Demand situation.
ADV2-53	2101	Y	LD Max Freq	SET-23 to SET-22	PID High Frequency Limit setting for Low Demand. Adjust to lower frequency setting to prevent overpressure trips during run but enough to maintain pressure at LD Set-point.

Parameter Descriptions > Motor Menu

$A R=$ Adjustable while running.

CODE	$\begin{array}{\|c\|} \hline \text { Mod } \\ \text { Bus } \end{array}$	AR	Display Name	Range	Description
Motor-00	2304	N	Motor A-Tuning	0_None 1_IM Rotating 2_IM No-Rotation 3_SPM No-Rotation 4_IPM No-Rotation	Performs a motor test to measure the motor characteristics. Select motor type Induction Motor (IM) or Permanent Magnet (PM) motor and if the motor is allowed to rotate during autotune operation.
Motor-01	2305	N	Motor Rs Value	0.0 to 65.535 Ohm	Induction Motor rotor resistance
Motor-02	2306	N	Motor Rr Value	0.0 to 65.535 Ohm	Induction Motor stator resistance
Motor-03	2307	N	Motor Lm Value	0.0 to 6553.5 mH	Induction Motor rotor inductance
Motor-04	2308	N	Motor Lx Value	0.0 to 6553.5 mH	Induction Motor stator inductance
Motor-05	2309	N	Control Method	$\begin{aligned} & 0 _ \text {VF } \\ & 1 _ \\ & 2 \text { __Sensorless } \end{aligned}$	Determines the control method of the motor as either a volts to frequency relationship (Induction Motor) or Sensorless Vector Control (SVC) (Permanent Magnet).
Motor-06	2310	N	Motor Type	0_Induction Motor 1_PM-SPM 2_PM-IPM	Identifies the type of motor being used. PM-SPM: Surface Permanent Magnet Motor PM-IPM: Internal Permanent Magnet Motor
Motor-07	2311	N	PM Poles	0 to 65535	Identifies the number of poles in Permanent Magnet Motor.
Motor-08	2312	N	PM Inertia	0.0 to $6553.5 \mathrm{Kg}^{*} \mathrm{~m}^{\wedge} 2$	Identifies the inertia in Permanent Magnet Motor. This value is automatically calculated.
Motor-09	2313	N	PM Rs	0.0 to 65.535 Ohm	Permanent Magnet Motor stator resistance.
Motor-10	2314	N	PM Ld	0.0 to 655.35 mH	Permanent Magnet Motor inductance d-axis.
Motor-11	2315	N	PMLq	0.0 to 655.35 mH	Permanent Magnet Motor inductance q-axis.
Motor-12	2316	Y	PM PG Angle	0 to 360 degree	Permanent Magnet Motor offset angle.
Motor-13	2317	Y	PM Ke Coeff	0 to 65535	Coefficient for optimal PM motor control
Motor-14	2318	Y	Rotor Zeroing	0 Disabled 1_1/4 FLA Current 2_Hi Freq Inject 3_Pulse Inject	Permanent Magnet Motor rotor initial angle position detection method. Recommendation: "2" for IPM; "3" for SPM. If there is a bad effect, then set as " 1 ".

PARAMETER REFERENCE TABLES

Parameter Descriptions > Motor Menu

| coDE | Mod
 Bus | AR | Display Name | \quad Range | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SPECIFICATIONS

Common Specifications

Cooling Method			Forced air cooling by internal fans
Short Circuit Rating			The drive is suitable for use on a circuit capable of delivering not more than 100,000 symmetrical amperes (rms) when protected by suitable Class J fuses.
Agency Approvals			UL and cUL listed, CE, marked.
$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & \underset{y y}{z} \end{aligned}$	Control Method		Pulse Width Modulation (PWM) with V/F and SVC (Sensorless Vector Control) for IM and PM motors.
	Frequency Setting Resolution		Digital Reference: 0.01 Hz (Below 100 Hz), 0.1 Hz (Over 100 Hz) Analog Reference: [Max. output frequency] $\times 0.03 / 60 \mathrm{~Hz}$ (± 11 bit)
	Frequency Accuracy		Digital: $\pm 0.01 \%$ of Max. Output Frequency. Analog: $\pm 0.1 \%$ of Max. Output Frequency.
	V/F Control Curve		12 preset V/F curves and four-point square curve
	Overload Capacity		Variable Torque: 120% of VFD rated current for 1 minute during every 5 minutes of operation. Constant Torque: 150% of VFD rated current for 1 minute during every 5 minutes of operation and 160% for 3 seconds during every 25 seconds of operation.
	Starting Torque		Up to 150% or higher at 0.5 Hz (Torque Accuracy $\pm 5 \%$).
	Torque Limit (Stall level)		Variable Torque: Max. 130\% torque current; Constant Torque: Max. 160\% torque current
	Operation Method		Keypad / Terminals / RS-485 BACnet or Modbus Communication / Optional Modbus TCP/IP \& Ethernet IP.
	Frequency Setting		Two Analog Inputs 0-10VDC/ 4-20mA and One AI 0-10VDC. Digital input: Keypad or Communication
	$\begin{aligned} & \text { n} \\ & \underline{y} \\ & \underline{I} \end{aligned}$	Start Signal	Forward, Reverse and Jog (some features can start and stop VFD based on analog signal).
		Digital Inputs	8 programmable digital inputs can be set to any selection from long list of functions.
		Multi-Step	Up to 17 Speeds can be set including Jog by Programmable Digital Inputs.
		Accel/Decel Time and Presets	0.00-600.00/0.0-6000.0 seconds. Three ACC/DEC preset values switched by digital inputs or one by frequency. Additional adjustable Accel/Decel S-Curve pattern.
		Emergency Stop	Ext. Trip and Shutdown immediately interrupt VFD output in any control method.
		Jog	Jog Operation with adjustable Jog frequency
		Fault Reset	Resets VFD via keypad, digital input, or communication. Some critical faults must be reset by recycling power.
		Safety Inputs	SCM and STO terminals for safety circuit wiring.
	$\begin{aligned} & \text { n } \\ & \vdots \\ & 0 ㅁ ~ \\ & 0 \end{aligned}$	Three Multi-Function Relays	One relay with Form C: 250VAC 3A/30VDC, 3A (resistive) 1.2A (inductive) contact; Two relays with Form A: 250VAC $1.2 \mathrm{~A} / 30 \mathrm{VDC} 3 \mathrm{~A}$ (resistive) 1.2 A (inductive). Each relay can be programmed to any selection from the functions list.
		Two Analog Outputs	Selections: Output Frequency, Output Current, Output Voltage, Output kW, DC Link Voltage, AVII, ACI, AVI2 AI signal level. Both outputs are 0-10VDC scalable from 10 to 200\%.
	General Operation Functions		DC Braking, Frequency Limit, Jump Frequencies, 2nd ACC/DEC, Auto Restart, Auto-Tuning, PID w/sleep, Flying Start, Speed Search, DC Braking, Slip Compensation, Motor Pre-heat, Temperature Foldback, Damper Control, Fireman's Override, Shutdown, Power-on Delay, Run Delay, Minimum Run Timer, PM Motor and MagForce Control and Auto-Tuning
	Pump Operation Functions		Sleep Mode with Pressure Boost, Pipe Fill, PID, Overpressure, ULD (Underload), HLD (High Load), Broken Pipe, Backspin Timer, MMC, Lubrication, Screen Clean, No-Flow Protection, Pump Prime Time
z은岂을	VFD Fault Trips		Over Voltage, Low Voltage, Over Current, Overload, Short Circuit, Ground Fault, VFD Overheat, Input Phase Loss, Output Phase Open, CPU Communication Error, Signal Loss, Hardware Fault, etc.
	VFD Alarm		Stall Prevention at ACC and DEC, Overload, Thermal Sensor Fault, Capacitors High Temperature, Signal Loss, Overpressure, Underload, High Load, etc.
	Overcurrent		200/208/230/460VAC Variable Torque: At 200\% of VFD rated current 200/208/230/460VAC Constant Torque: At 240\% of VFD rated current Current clamp: Variable Torque: 130-135\%, Constant Torque 170-175\% 575VAC models: At 225% VFD rated current Current clamp: Variable Torque: 128-141\%, Constant Torque: 170-175\%
	Overvoltage		230VAC models: At 410VDC DC bus voltage 460VAC models: At 820VDC DC bus voltage 575VAC models: At 1016VDC DC bus voltage
		It History	Keypad provides 6 fault records. VFD logs 30 faults.
		erating Temperature	NEMA 1: $14^{\circ} \mathrm{F} \sim 104^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}\right)$, Open Type: $14^{\circ} \mathrm{F} \sim 122^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}\right)$
		rage Temperature	$-13^{\circ} \mathrm{F} \sim 158^{\circ} \mathrm{F}\left(-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}\right)$
		bient Humidity	Up to 95\% RH. (Non-Condensing)
	Altit	tude	Normal up to $3,300 \mathrm{ft}(1,000 \mathrm{~m})$. At altitude up to $2,000 \mathrm{~m}$, de-rate by 1% of rated current or lower $0.5^{\circ} \mathrm{C}$ of temperature for every 100 m above $1,000 \mathrm{~m}$. Maximum altitude for Corner Grounded TN system is $2,000 \mathrm{~m}$. For application over $2,000 \mathrm{~m}$, please contact Technical Support.
		ration and Impact	1 mm peak to peak value from 2 Hz to 13.2 Hz ; $0.7 \mathrm{G}-1.0 \mathrm{G}$ from 13.2 Hz to 55 Hz ; 1.0 G from 55 Hz to 512 Hz . Comply with IEC 60068-2-6 and IEC/EN60068-2-27.
		ironmental Conditions	Pollution degree 2. No Corrosive Gas, Combustible Gas, Oil Mist or Dust. IEC60721-3-3/ IEC60364-1/ IEC60664-1.

200~230V Class 1~125HP (0.75~90kW)

$\begin{gathered} \text { Model (CXD-xxx-2V) } \\ \text { UL Type }{ }^{(1)} \end{gathered}$		005A	007A	010A	015A	021A	031A	046A	061A	075A	090A	105A	146A	180A	215A	276A	322A
Frame Size		A					B			C			D		E		
Input Ratings	Voltage	200 (-15\%) to 240 VAC (+10 \%)															
	Frequency	$50 / 60 \mathrm{~Hz}$ (± 5 \%)															
Output Ratings	Max Carrier Freq	2-15kHz													2-9kHz		
	Voltage ${ }^{(2)}$	200~240 VAC ${ }^{(2)}$															
	Frequency	$0.01 \sim 599 \mathrm{~Hz}$													$0.01 \sim 400 \mathrm{~Hz}$		
Efficiency		98\%															
Power Factor		>0.98															
Weight kg (lbs.)		2.6 ± 0.3 (5.8 $\pm 0.7)$					$5.4 \pm 1(1.9 \pm 2.2)$			$9.8 \pm 1.5(21.6 \pm 3.3)$			$\begin{gathered} 38.5 \pm 1.5(84.9 \\ \pm 3.3) \end{gathered}$		64.8 ± 1.5 (142.9 $\pm 3.3)$		
DC Choke		None											Built-in 3\%				
VFD Ratings with 3-Phase Input Power																	
Variable Torque Motor ${ }^{(3)}$ Ratings	Max Amps	5	7.5	10	15	21	31	46	61	75	90	105	146	180	215	276	322
	Capacity [kVA]	2	3	4	6	8.4	12	18	24	30	36	42	58	72	86	110	128
	Max HP @ 200 V Surface Motor	1	1.5	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100
	Max HP @ 208 V Surface Motor	1	1.5	2	3	5	7.5	10	20	25	30	30	50	60	75	100	100
	Max HP @ 230 V Surface Motor	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125
	$\text { Max HP @ } 200 \text { V }$ 4" Submersible	. 75	1.5	2	3	5	7.5	-	-	-	-	-	-	-	-	-	-
	Max HP @ 230 V 4" Submersible	1	1.5	2	3	5	7.5	-	-	-	-	-	-	-	-	-	-
	Max HP @ 200 V 6 " Submersible	-	-	-	-	5	7.5	10	15	20	25	30	40	40	60	-	-
	Max HP @ 230 V 6" Submersible	-	-	-	-	5	7.5	10	20	20	25	30	40	50	60	-	-
Constant Torque Motor ${ }^{(3)}$ Ratings	Max Amps	3	5	8	11	17	25	33	49	65	75	90	120	146	180	216	255
	Capacity [kVA]	1.2	2	3.2	4.4	6.8	10	13	20	26	30	36	48	58	72	86	20
	Max HP @ 200 V	. 5	1	2	3	3	5	10	15	20	20	25	40	50	60	60	75
	Max HP @ 230 V	. 5	1	2	3	5	8	10	15	20	25	30	40	50	60	75	100
VFD Ratings with 1-Phase Input Power																	
Variable Torque Motor Ratings	Max Amps	2.5	3.75	5	7.5	10.5	15.5	23	30.5	37.5	45	52.5	48.1	59.4	70.9	91	106.2
	Max HP @ 200 V Surface Motor	. 5	. 75	1	1	2	3	5	7.5	10	10	15	10	15	20	25	30
	Max HP @ 208 V Surface Motor	. 5	. 75	1	2	2	3	5	7.5	10	10	15	15	20	25	30	30
	Max HP @ 230 V Surface Motor	. 5	. 75	1	2	3	5	7.5	10	10	15	15	10	20	25	30	40
	Max HP @ 200 V 4"Submersible	-	. 5	. 5	1.5	2	3	5	7.5	-	-	-	-	-	-	-	-
	Max HP @ 230 V 4"Submersible	-	. 5	1	1.5	2	3	5	7.5	-	-	-	-	-	-	-	-
	Max HP @ 200 V 6" Submersible	-	-	-	-	-	-	5	7.5	10	10	10	10	15	20	25	30
	Max HP @ 230 V 6" Submersible	-	-	-	-	-	-	5	7.5	10	10	15	15	20	20	25	33
Constant Torque Motor Ratings	Max Amps	2.5	2.5	4	5.5	8.8	12.5	16.5	24.5	32.5	37.5	45	39.6	48.2	59.4	71	84.2
	Max HP @ 200 V	. 5	. 5	. 75	1	2	3	3	5	10	10	10	10	10	15	20	25
	Max HP@ 230 V	. 5	. 5	. 75	1	2	3	5	7.5	10	10	15	10	15	20	25	30

1 UL Open Type VFD with installed UL Type 1 kit.
2 The VFD cannot produce output voltage greater than input voltage.
3 Variable torque (VT) motor rating based on a 120% overload for 1 minute. Constant Torque (CT) motor rating based on 120% overload for 1 minute and 160% overload for 3 seconds.

460V Class 1~75HP (5.5~55kW)

Model (CXD-xxx-4V) UL Type $1^{(1)}$		003A	004A	005A	008A	010A	013A	018A	024A	032A	038A	045A	060A	073A	091A	110A
Frame Size		A							B			C			D0	
Input Ratings	Voltage	380 (-15\%) ~ 480 VAC (+10 \%)														
	Frequency	$50 / 60 \mathrm{~Hz}(\pm 5 \%)$														
Output Ratings	Max Carrier Freq	$2-15 \mathrm{kHz}$										2-10kHz				
	Voltage ${ }^{(2)}$	$3 ¢ 380 \sim 480 \mathrm{VAC}^{(3)}$														
	Frequency	$0.01 \sim 599 \mathrm{~Hz}$														
Efficiency		98\%														
Power Factor		>0.98														
Weight kg (lbs.)		$2.6 \pm 0.3(5.8 \pm 0.7)$							$5.4 \pm 1(11.9 \pm 2.2)$			$9.8 \pm 1.5(21.6 \pm 3.3)$			$27 \pm 1(59.5 \pm 2.2)$	
DC Choke		None													Built-in 3\%	
VFD Ratings with 3-Phase Input Power																
Variable Torque Motor ${ }^{(3)}$ Ratings	Max Amps	3	4.2	5.5	8.5	10.5	13	18	24	32	38	45	60	73	91	110
	Capacity [kVA]	2.4	3.3	4.4	6.8	8.4	10.4	14.3	19	25	30	36	48	58	73	88
	Max HP @ 460 V Surface Motor	1.5	2	3	5	5	7.5	10	15	20	25	30	40	50	60	75
	Max HP @ 460 V 4" Submersible	1	2	3	5	5	5	10	10	15	-	-	-	-	-	-
	Max HP @ 460 V 6 " Submersible	-	-	-	-	5	7.5	10	15	20	20	25	30	40	50	60
	Max HP @ 460 V 8" Submersible	-	-	-	-	-	-	-	-	-	-	-	40	50	60	75
Constant Torque Motor ${ }^{(3)}$ Ratings	Max Amps	1.7	3	4	6	9	10.5	12	18	24	32	38	45	60	73	91
	Capacity [kVA]	2.2	2.4	3.2	4.8	7.2	8.4	10.4	14.3	19	25	30	36	48	58	73
	Max HP@ 460 V	. 75	1.5	2	3	5	5	7.5	10	15	20	25	30	40	50	60
VFD Ratings with 1-Phase Input Power																
Variable Torque Motor Ratings	Max Amps	1.5	2.1	2.75	4.25	5.25	6.5	9	12	16	19	22.5	30	36.5	30	36.3
	Max HP @ 460 V Surface Motor	. 5	1	1	2	3	3	5	7.5	10	10	15	20	25	20	25
	Max HP @ 460 V 4" Submersible	. 5	. 5	1	2	2	3	5	5	7.5	10	10	15	-	-	-
	Max HP @ 460 V 6" Submersible	-	-	-	-	-	-	5	5	7.5	10	10	15	20	15	20
	Max HP @ 460 V 8" Submersible	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Constant Torque Motor Ratings	Max Amps	1.5	1.5	2	3	4.5	5.3	6	9	12	16	19	22.5	30	27	33
	Max HP@ 460 V	. 5	. 5	. 75	1.5	2	3	3	5	7.5	10	10	15	20	20	20

${ }^{1}$ UL Open Type VFD with installed UL Type 1 kit.
2 The VFD cannot produce output voltage greater than input voltage.
${ }^{3}$ Variable torque (VT) motor rating based on a 120% overload for 1 minute. Constant Torque (CT) motor rating based on 120% overload for 1 minute and 160% overload for 3 seconds.

460V Class 100~675HP (75~500kW)

Model (CXD-xxx-4V) UL Type ${ }^{(1)}$		150A	180A	220A	260A	310A	370A	460A	530A	616A	683A	770A	930A
Frame Size		D		E		F		G		H			
Input Ratings	Voltage	380 (-15\%) ~ 480 VAC (+10 \%)											
	Frequency	$50 / 60 \mathrm{~Hz}$ ($\pm 5 \%$)											
Output Ratings	Max Carrier Freq	2-10kHz	2-9kHz										
	Voltage ${ }^{(2)}$	380 ~ $480 \mathrm{VAC}^{(3)}$											
	Frequency	$0.01 \sim 599 \mathrm{~Hz}$											
Efficiency		98 \%											
Power Factor		>0.98											
Weight kg (lbs.)		$38.5 \pm 1.5(84.9 \pm 3.3)$		$64.8 \pm 1.5(142.9 \pm 3.3)$		$86.5 \pm 1.5(190.7 \pm 3.3)$		$134 \pm 4(295.4 \pm 8.9)$		228 (635)			
DC Choke		Built-in 3\%											
VFD Ratings with 3-Phase Input Power													
Variable Torque Motor ${ }^{(3)}$ Ratings	Max Amps	150	180	220	260	310	370	460	530	616	683	770	930
	Capacity [kVA]	120	143	175	207	247	295	367	422	491	544	613	773
	Max HP @ 460 V Surface Motor	100	150	150	200	250	300	350	450	500	550	600	700
	Max HP @ 460 V 4" Submersible	-	-	-	-	-	-	-	-	-	-	-	-
	Max HP @ 460V 6" Submersible	-	-	-	-	-	-	-	-	-	-	-	-
	Max HP @ 460 V 8" Submersible	100	100	150	175	200	-	-	-	-	-	-	-
Constant Torque Motor ${ }^{(3)}$ Ratings	Max Amps	110	150	180	220	260	310	370	460	550	616	683	866
	Capacity [kVA]	88	120	143	175	207	247	295	367	438	491	544	720
	Max HP@460 V	75	100	150	150	200	250	300	350	450	500	550	600
VFD Ratings with 1-Phase Input Power													
Variable Torque Motor Ratings	Max Amps	49.5	59.4	72.6	85.8	102.3	122.1	151.8	174.9	203.28	225.39	254.1	306.9
	Max HP @ 460 V Surface Motor	30	40	50	60	75	75	100	125	150	150	200	250
	Max HP @ 460V 4" Submersible	-	-	-	-	-	-	-	-	-	-	-	-
	Max HP @ 460 V 6" Submersible	30	40	40	50	60	-	-	-	-	-	-	-
	Max HP @ 460 V 8" Submersible	-	-	40	50	60	75	100	125	125	150	175	200
Constant Torque Motor Ratings	Max Amps	40	55	65	80	91	109	130	161	193	216	240	285.7
	Max HP@460 V	30	40	50	60	60	75	100	125	150	150	200	200

${ }^{1}$ UL Open Type VFD with installed UL Type 1 kit.
2 The VFD cannot produce output voltage greater than input voltage.
3 Variable torque (VT) motor rating based on a 120% overload for 1 minute. Constant Torque (CT) motor rating based on 120% overload for 1 minute and 160% overload for 3 seconds.

575~690V Class 1~150HP (1.5~175kW)

Model (CXD-xxx-6V) UL Type $1^{(1)}$		003A	004A	006A	009A	012A	018A	024A	030A	036A	045A	054A	067A	086A	104A	125A	150A
Frame Size		A			B				C			D		E			
Input Ratings	Voltage	525 (-15\%) ~ $600 \mathrm{VAC}(+10 \%)$															
	Frequency	$50 / 60 \mathrm{~Hz}(\pm 5 \%)$															
Output Ratings	Max Carrier Freq	2-15kHz							2-9kHz								
	Voltage ${ }^{(2)}$	$525 \sim 600 \mathrm{VAC}^{(2)}$															
	Frequency	$0.01 \sim 599 \mathrm{~Hz}$															
Efficiency		97\%			98\%				97\%								
Power Factor		>0.98															
Weight kg (lbs.)		3 ± 0.3 (6.6 $\pm 0.7)$			4.8 ± 1 (10.6 $\pm 2.2)$				$10 \pm 1.5(22 \pm 3.3)$			$39 \pm 1.5(86 \pm$		$61 \pm 1.5(134.5 \pm 3.3)$			
DC Choke		None										Built-in 3\%					
VFD Ratings with 3-Phase Input Power																	
Variable Torque Motor ${ }^{(3)}$ Ratings	Max Amps	3	4.3	6.7	9.9	12.1	18.7	24.2	30	36	45	54	67	86	104	125	150
	Capacity [kVA]	3	4.3	6.7	9.9	12.1	18.6	24.1	36	43	54	65	80	103	124	149	179
	Max HP @ 575V Surface Motor	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125	150
	Max HP @ 575 V 4" Submersible	1.5	2	3	5	7.5	10	15	-	-	-	-	-	-	-	-	-
	Max HP @ 575 V 6" Submersible	-	-	-	7.5	7.5	10	20	25	25	30	40	50	60	-	-	-
	Max HP @ 575 V 8" Submersible	-	-	-	-	-	-	-	-	-	-	40	50	75	75	100	100
Constant Torque Motor ${ }^{(3)}$ Ratings	Max Amps	2.5	3.6	5.5	8.2	10	15.5	20	24	30	36	45	54	67	86	104	125
	Capacity [kVA]	2.5	3.6	5.5	8.2	10	15.4	19.9	29	36	43	54	65	80	103	124	149
	Max HP@ 575 V	1.5	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100	125
VFD Ratings with 1-Phase Input Power																	
Variable Torque Motor Ratings	Max Amps	1.5	2.15	3.35	4.95	6.05	9.35	12.1	15	18	22.5	17.82	22.11	28.3	-	-	-
	Max HP @ 575V Surface Motor	. 75	1	2	3	3	7.5	10	10	15	20	15	20	25	-	-	-
	Max HP @ 575 V 4" Submersible	. 5	1	2	3	3	5	7.5	10	10	15	-	-	-	-	-	-
	Max HP @ 575 V 6 " Submersible	-	-	-	-	-	5	7.5	10	10	15	10	15	20	-	-	-
	$\text { Max HP@ } 575 \text { V }$ 8" Submersible	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Constant Torque Motor Ratings	Max Amps	1.25	1.8	2.75	4.1	5	7.7	9.95	10	12	15	18	14.8	17.8	22.1	-	-
	Max HP @ 575 V	. 5	1	2	3	3	5	7.7	7.5	10	10	15	10	15	20	-	-

1 UL Open Type VFD with installed UL Type 1 kit.
2 The VFD cannot produce output voltage greater than input voltage.
3 Variable torque (VT) motor rating based on a 120% overload for 1 minute. Constant Torque (CT) motor rating based on 120% overload for 1 minute and 160% overload for 3 seconds.

575~690V Class 150~700HP (160~522kW)

$\begin{gathered} \text { Model (CXD-xxx-6V) } \\ \text { UL Type }{ }^{(1)} \end{gathered}$		180A	220A	290A	350A	430A	465A	590A	675A
Frame Size		F		G		H			
Input Rat-ings	Voltage	$525(-15 \%) \sim 690 \mathrm{VAC}(+10 \%)$							
	Frequency	$50 / 60 \mathrm{~Hz}(\pm 5 \%)$							
Output Ratings	Max Carrier Freq	2-9kHz							
	Voltage ${ }^{(2)}$	$525 \sim 690 \mathrm{VAC}^{(2)}$							
	Frequency	$0.01 \sim 599 \mathrm{~Hz}$							
Efficiency		97%							
Power Factor		>0.98							
Weight kg (lbs.)		$88 \pm 1.5(194 \pm 3.3)$		$135 \pm 4(297.6 \pm 8.8)$		$243 \pm 5(535.7 \pm 11)$			
DC Choke		Built-in 3\%							
VFD Ratings with 3-Phase Input Power									
Variable Torque Motor ${ }^{(3)}$ Ratings	Max Amps	180	220	290	350	430	465	590	675
	Capacity [kVA]	215	263	347	418	494.5	534.7	678.5	776
	Max HP@ 575V Surface Motor	150	200	300	350	450	450	600	700
	Max HP @ 575 V 8" Submersible	125	175	200	-	-	-	-	-
Constant Torque Motor ${ }^{(3)}$ Ratings	Max Amps	150	180	220	290	350	430	465	590
	Capacity [kVA]	179	215	239	347	402.5	442.7	534.7	776
	Max HP @ 575 V	150	150	200	300	350	450	450	600

1 UL Open Type VFD with installed UL Type 1 kit.
2 The VFD cannot produce output voltage greater than input voltage.
3 Variable torque (VT) motor rating based on a 120% overload for 1 minute. Constant Torque (CT) motor rating based on 120% overload for 1 minute and 160% overload for 3 seconds.

De-Rating Charts

Carrier Frequency De-Rating

230 V / 460 V Induction Motor with VF or SVC Control

230 V / 460 V Permanent Magnet Motor with SVC Control

SPECIFICATIONS

De-Rating Charts

575 V / 690 V Induction Motor with VF or SVC Control

Ambient Temperature De-Rating

Altitude De-Rating

Replacement Components List

X-Drive Replacement Components and Accessories

X-Drive Replacement Components and Accessories					
Description	Part Number	Applicable Models			Quantity Needed
VFD Keypad*	CXD-KPD	All			
Remote Keypad Mounting Bracket	MKC-KPPK	All			1
Heat Sink Cooling Fan	MKC-AFKM	CXD-005A-2V	CXD-003A-4V	CXD-003A-6V	1
		CXD-007A-2V	CXD-004A-4V	CXD-004A-6V	
		CXD-010A-2V	CXD-005A-4V	CXD-006A-6V	
		CXD-015A-2V	CXD-008A-4V		
		CXD-021A-2V	CXD-010A-4V		
			CXD-013A-4V		
			CXD-018A-4V		
	MKC-BFKM1	CXD-031A-2V	CXD-024A-4V	CXD-009A-6V	1
				CXD-012A-6V	
				CXD-018A-6V	
				CXD-024A-6V	
	MKC-BFKM2	CXD-046A-2V	CXD-032A-4V		1
			CXD-038A-4V		
	MKC-BFKM3	CXD-061A-2V			1
	MKC-CFKM		CXD-045A-4V		1
			CXD-060A-4V		
			CXD-073A-4V		
	MKC-CFKM	CXD-075A-2V		CXD-030A-6V	2
		CXD-090A-2V		CXD-036A-6V	
		CXD-105A-2V		CXD-045A-6V	
	MKC-DOFKM		CXD-091A-4V		1
			CXD-110A-4V		
	MKC-DFKM	CXD-146A-2V	CXD-150A-4V	CXD-054A-6V	1
		CXD-180A-2V	CXD-180A-4V	CXD-067A-6V	
	MKC-EFKM3			CXD-086A-6V	1
				CXD-104A-6V	
				CXD-125A-6V	
				CXD-150A-6V	
	MKC-EFKM1	CXD-215A-2V			1
		CXD-276A-2V			
	MKC-EFKM2	CXD-322A-2V	CXD-220A-4V		1
			CXD-260A-4V		
	MKC-FFKM		CXD-310A-4V	CXD-180A-6V	1
			CXD-370A-4V	CXD-220A-6V	
	MKC-GFKM		CXD-460A-4V	CXD-290A-6V	1
			CXD-530A-4V	CXD-350A-6V	
	MKC-HFKM		CXD-616A-4V		2
			CXD-683A-4V		
			CXD-770A-4V		
	MKC-HFKM		CXD-930A-4V		3
	MKC-HFKMI			CXD-430A-6V	2
	MKC-HFKM1			CXD-465A-6V	3
				CXD-590A-6V	
				CXD-675A-6V	

X-Drive Replacement Components and Accessories			
Control Board ${ }^{*}$	5503005502	All	1
I/O Board	5503005701	All	All
FE Connect Communication Card	10000004840	All	1
Ethernet Communication Card	CMC-EIP01	All	1
Extension DC I/O Card	EMC-D42A	All	1
Extension AC Input Card	EMC-611A	All	1
Extension Relay Card	EMC-R6AA	1	

* IMPORTANT: If replacing a keypad or control board for an X-Drive with firmware version 1.0, both the keypad and the control board must be replaced together.

SPECIFICATIONS

Applicable Standards

Applicable Standards

1. UL508C - UL/CUL
2. CE
a. Low Voltage

- EN61800-5-1
b. EMC
- EN61000-3-12
- IEC61000-6-2
- IEC61000-4-2
- IEC61000-4-4
- IEC61000-4-6
- EN61800-3
- IEC61000-6-4
- IEC61000-4-3
- IEC61000-4-5
- IEC61000-4-8

3. C-Tick
4. ROHS

GLOSSARY

$\begin{aligned} & \text { Acronym/ } \\ & \text { Term } \end{aligned}$	Definition	Description
AWG	American Wire Gauge	A standardized measurement of wire diameters important for determining current-carrying capacity.
BAS	Building Automation System	A computer-based control system that controls and monitors a building's mechanical and electrical equipment.
BMS	Building Management System	A computer-based control system that controls and monitors a building's mechanical and electrical equipment.
BPC	Bypass Controller	
EMI	Electromagnetic Interference	See RFI.
FLA	Full Load Amperes	The nameplate amperage rating of the motor when it is running at its designed horsepower and on the motors designed voltage.
GFCl	Ground Fault Circuit Interrupter	A fast-acting circuit breaker designed to shut off electric power in the event of a ground-fault within as little as $1 / 40$ of a second.
GPM	Gallons per Minute	A unit of volumetric flow rate in the United States.
HMI	Human Machine Interface	An interface that permits interaction between a human and a machine, such as a display and keyboard.
HOA	Hand/Off/Auto switching	
IGBT	Insulated Gate Bipolar Transistor	A three-terminal power semiconductor device used as an electronic switch to synthesize complex waveforms with pulsewidth modulation in a variable-frequency drive (VFD).
IP	International Protection rating	Used as protection measures for motors, electrical devices and motors.
LDT	Load Detection Trip	
MCCB	Molded Case Circuit Breaker	An MCCB provides protection by combining a temperature sensitive device with a current sensitive electromagnetic device.
MMS	Manual Motor Starter	An electromechanical protection device used to switch motors ON/OFF manually and to provide fuseless protection against short-circuit, overload and phase failures.
MOL	Motor Overload	
NEC	National Electrical Code	A regionally adoptable standard for the safe installation of electrical wiring and equipment in the United States.
NEMA	National Electrical Manufacturer Association	The largest trade association of electrical equipment manufacturers in the United States. NEMA publishes more than 700 standards for electrical enclosures, motors and magnet wire, $A C$ plugs and receptacles, etc.
PFC	Power Factor Correction	
PID	Proportional Integral Derivative	A control loop feedback mechanism used in applications requiring continuously modulated control.
PLC	Programmable Logic Controller	A digital computer used for automation of typically industrial electromechanical processes.
PMA	Pump and Motor Assembly	
PWM	Pulse Width Modulation	A modulation technique used to control the power supplied to electrical devices, especially for motor speed control.
RFI	Radio Frequency Interference	A disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction.

Applicable Standards

Acronym/ Term	Definition	Description
RMS	Root Mean Square	Refers to the most common mathematical method of defining the effective voltage or current of an AC wave.
RTU	Remote Terminal Unit	A Modbus RS-485 connection following a simple client-server model.
SFA	Service Factor Amperes	The amount of a periodic overload at which a motor can operate without overload or damage.
TDH	Total Dynamic Head	The total equivalent height that a fluid is to be pumped, taking into account friction losses in the pipe.
VAC	Voltage Alternating Current	
VDC	Voltage Direct Current	A type of adjustable-speed drive used in electro-mechanical drive systems to control AC motor speed and torque by varying motor input frequency and voltage.
VFD	Variable Frequency Drive	

STANDARD LIMITED WARRANTY

Except as set forth in an Extended Warranty, for one (1) year from the date of installation, but in no event more than two (2) years from the date of manufacture, Franklin hereby warrants to the purchaser ("Purchaser") of Franklin's products that, for the applicable warranty period, the products purchased will (i) be free from defects in workmanship and material at the time of shipment, (ii) perform consistently with samples previously supplied and (iii) conform to the specifications published or agreed to in writing between the purchaser and Franklin. This limited warranty extends only to products purchased directly from Franklin. If a product is purchased other than from a distributor or directly from Franklin, such product must be installed by a Franklin Certified Installer for this limited warranty to apply. This limited warranty is not assignable or transferable to any subsequent purchaser or user.
a. THIS LIMITED WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, WRITTEN OR ORAL, STATUTORY, EXPRESS, OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. PURCHASER'S SOLE AND EXCLUSIVE REMEDY FOR FRANKLIN'S BREACH OF ITS OBLIGATIONS HEREUNDER, INCLUDING BREACH OF ANY EXPRESS OR IMPLIED WARRANTY OR OTHERWISE, UNLESS PROVIDED ON THE FACE HEREOF OR IN A WRITTEN INSTRUMENT MADE PART OF THIS LIMITED WARRANTY, SHALL BE FOR THE PURCHASE PRICE PAID TO FRANKLIN FOR THE NONCONFORMING OR DEFECTIVE PRODUCT OR FOR THE REPAIR OR REPLACEMENT OF NONCONFORMING OR DEFECTIVE PRODUCT, AT FRANKLIN'S ELECTION. ANY FRANKLIN PRODUCT WHICH FRANKLIN DETERMINES TO BE DEFECTIVE WITHIN THE WARRANTY PERIOD SHALL BE, AT FRANKLIN'S SOLE OPTION, REPAIRED, REPLACED, OR A REFUND OF THE PURCHASE PRICE PAID. Some states do not allow limitations on how long an implied warranty lasts, therefore, the limitations and exclusions relating to the products may not apply.
b. WITHOUT LIMITING THE GENERALITY OF THE EXCLUSIONS OF THIS LIMITED WARRANTY, FRANKLIN SHALL NOT BE LIABLE TO THE PURCHASER OR ANY THIRD PARTY FOR ANY AND ALL (i) INCIDENTAL EXPENSES OR OTHER CHARGES, COSTS, EXPENSES (INCLUDING COSTS OF INSPECTION, TESTING, STORAGE, OR TRANSPORTATION) OR (ii) DAMAGES, INCLUDING CONSEQUENTIAL, SPECIAL DAMAGES, PUNITIVE OR INDIRECT DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS, LOST TIME AND LOST BUSINESS OPPORTUNITIES, REGARDLESS OF WHETHER FRANKLIN IS OR IS SHOWN TO BE AT FAULT, AND REGARDLESS OF WHETHER THERE IS OR THERE IS SHOWN TO HAVE BEEN A DEFECT IN MATERIALS OR WORKMANSHIP, NEGLIGENCE IN MANUFACTURE OR DESIGN, OR A FAILURE TO WARN.
c. Franklin's liability arising out of the sale or delivery of its products, or their use, whether based upon warranty contract, negligence, or otherwise, shall not in any case exceed the cost of repair or replacement of the product and, upon expiration of any applicable warranty period, any and all such liability shall terminate.
d. Without limiting the generality of the exclusions of this limited warranty, Franklin does not warrant the adequacy of any specifications provided directly or indirectly by a purchaser or that Franklin's products will perform in accordance with such specifications. This limited warranty does not apply to any products that have been subject to misuse (including use in a manner inconsistent with the design of the product), abuse, neglect, accident or improper installation or maintenance, or to products that have been altered or repaired by any person or entity other than Franklin or its authorized representatives.
e. Unless otherwise specified in an Extended Warranty authorized by Franklin for a specific product or product line, this limited warranty does not apply to performance caused by abrasive materials, corrosion due to aggressive conditions or improper voltage supply.

For technical assistance, parts, or repair, please contact:

[^0]: * For frames sizes D, E, \& F, install a metal separator between side-by-side drives. Barrier depth must match the VFD depth.

