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EXECUTIVE SUMMARY

Introduction

Indiana is fortunate to have a relatively dense InCORS

differential correction network that provides high accuracy

GNSS positions for a variety of use cases, such as mobile

mapping, forestry, and agriculture. However, when distance from

the base station increases or satellite occlusions occur due to

structures, vegetation, urban canons, and power lines (see

Figure 1.1), then the spatial accuracy decreases.

The objectives of this project were to identify limitations in the

precision and accuracy of the GNSS/INS-based geo-referencing

for mobile mapping systems; evaluate the current InCORS

network to ensure GNSS accuracy; and develop mitigation

measures for degraded/occluded GNSS areas to provide high

quality mobile mapping.

Findings

Without additional sensors, such as high-quality inertial

navigation sensors and LiDAR sensors, situations such as a steel

overpass, concrete bridge overpass, electromagnetic interference,

and heavy canopy cover can significantly degrade the baseline

GNSS positioning capability of vehicles due to signal attenuation,

noise, and multipath issues. Although inertial navigation sensors

can provide short duration compensation, high quality inertial

navigation systems are often prohibitively expensive. In contrast,

integrating LiDAR data into the mobile mapping environment

allows the vehicle to leverage well-known feature characteristics to

provide compensation (see Figure 4.6). This report details several

of these mathematical techniques and validates them with

traditional surveying techniques (see Figure 4.3).

Implementation

Throughout this study, these techniques were used across

several INDOT mapping projects with degraded GNSS, including

the following.

N Bridge deck thickness mapping (Lin, Liu, et al., 2021).

N Indoor salt pile mapping (Figures 5.5 and Figure D.9).

N Semantic segmentation of bridge components and road

elements (Figure 6.8).

# More results are available at https://youtu.be/5zd-L9fv

Fbs and https://youtu.be/Op3jjxn1Oi0.

Furthermore, the team supported the INDOT surveying

department to fabricate brackets for new antennas as InCORS

nodes were updated and brought back online. Beyond serving

these short-term use cases, the fundamental techniques, such as

those shown in Figures 4.6, 5.5, and D.9, will advance basic

autonomous technology.

https://youtu.be/5zd-L9fvFbs
https://youtu.be/Op3jjxn1Oi0
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1. INTRODUCTION

With the advent of modern sensing technologies,
mapping products have begun to achieve an unprece-
dented precision/accuracy. Considering their diverse use
cases, several factors play a role in what would impact
the quality of the resulting measurements. For light
detection and ranging (LiDAR) and photogrammetry-
based mapping solutions that implement vehicles out-
fitted with laser ranging devices, RGB cameras, and
global navigation satellite system/inertial navigation
system (GNSS/INS) georeferencing units, the quality
of the derived mapping products is governed by the
combined accuracy of the various sensors. While
ranging errors associated with LiDAR systems or the
imaging quality of RGB cameras are sensor-dependent
and are mostly constant, the accuracy of a georeferen-
cing unit depends on a variety of extrinsic factors,
including but not limited to, availability of clear line-of-
path to GNSS satellites and presence of radio inter-
ferences. The quality of GNSS signal, in turn, is
affected by the grade of hardware components used
and, to a great extent, obstructions to signal reception.

This document reports some of the major challenges
of vehicle-based mobile mapping with regards to
GNSS/INS navigation. The background of GNSS and
inertial measurement unit (IMU)-based positioning is
discussed to build a framework for trajectory enhance-
ment as well as improvement of LiDAR mapping
products. The focus is put on using available sensor
data from LiDAR and/or cameras to enhance their
position/orientation quality. Some of the best practices
in light of potential trajectory deterioration are also
recommended. The report is structured as follows.
Chapter 1 introduces land-based mobile mapping
systems utilized in this study along with a description
of various sensors onboard these platforms. Chapter 2
presents the background of GNSS/INS navigation.
Chapter 3 reviews some of the major environmen-
tal factors that impact the accuracy of the GNSS/

INS-derived trajectory upon which the entire mapping
prospective is built (see Figure 1.1), considering key
navigational challenges. Chapters 4 discusses a data
driven error mitigation approach through point cloud
registration. Chapter 5 introduces a system driven error
mitigation approach by means of trajectory enhance-
ment. Finally, in Chapter 6, a novel framework is
developed to utilize the enhanced mapping products
for semantic segmentation of highway elements from
acquired surveys along transportation corridors.
Figure 1.2 shows the structure of this report.

1.1 Mobile Mapping Systems

Conventional surveying to map urban infrastructure
such as bridges and roadways are time-consuming and
require several crews skilled in handling different
measurement tools. Recent developments in the field
of GNSS/INS-based mapping has generated a lot of
interest in leveraging LiDAR technologies that were
once limited to static surveys, into broader mobile
applications (di Stefano et al., 2021; Guan et al., 2016;
Puente, González-Jorge, Martı́nez-Sánchez, et al., 2013;
Toth, 2009). Through a careful hardware/software
implementation, LiDAR and RGB sensor data can be
directly geo-referenced to a global coordinate system,
opening a door to numerous possibilities, including
surveys of road networks. Figure 1.3 shows two vehicle-
based mobile mapping systems that were developed by
our research team with the primary objective of map-
ping urban infrastructure. The Purdue wheel-based
mobile mapping systems—high accuracy and ultra-high
accuracy, hereafter denoted as PWMMS-HA and
PWMMS-UHA, are outfitted with high accuracy
GNSS/INS units that serve to geo-reference an array
of LiDAR and RGB sensors onboard the two plat-
forms. Table A.1 and Table A.2 in Appendix A list
specifications of various sensors onboard the PWMMS-
HA and PWMMS-UHA.

Figure 1.1 Examples of environmental factors that will impact the quality of the GNSS trajectory (from left to right): steel
overpass, concrete bridge overpass, electromagnetic interference, and heavy canopy cover.
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Figure 1.2 Summary of the report.

Figure 1.3 Vehicle-based mobile mapping systems used in the study.
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This study utilized the two platforms in numerous
ground surveys to acquire LiDAR and RGB sensor
data as well as to understand the limitations of GNSS/
INS navigation throughout those missions. First, to
provide some background on GNSS/INS navigation,
the following chapter presents the concept of GNSS/
INS georeferencing and the expectations from using
them in practical land-based surveys.

2. GNSS/INS-DERIVED POSITIONING

In mobile mapping applications, accurate georefer-
encing of collected data is essential to ensure that the
derived products are correctly referenced to a global
coordinate system. In this regard, a GNSS/INS-based
direct georeferencing is a valuable tool for mobile sur-
veys. In principle, GNSS/INS navigation is the locali-
zation of a mapping platform in a global coordinate
system using GNSS receivers assisted by inertial
navigation systems (INS). A GNSS receiver produces
intermittent position information in a global coordinate
system. However, it is not precise in the short-term and
lacks orientation information. The INS consists of one
or more inertial measurement units (IMU) placed ortho-
gonally to each other. These IMU units are capable
of measuring 3D linear acceleration and angular
velocity which when combined across all IMUs can
produce incremental position and orientation updates.

Nevertheless, since such computations involve mathe-
matical integration of raw measurements, the resulting
position/orientation values have errors that drift with
time. When working in tandem, IMU supplements
GNSS receivers whenever there are no position updates
and GNSS keeps IMU drifts at check. Eventually, the
GNSS position updates are coupled with the INS’s
incremental measurements to produce a refined trajec-
tory. This is the fundamental principle of GNSS/INS
navigation. Figure 2.1 shows the basic mechanism of
this process.

2.1 Components of GNSS/INS Navigation

2.1.1 GNSS Receiver-Satellite Infrastructure

The GNSS infrastructure refers to the key elements
of GNSS positioning—from equipment at the end-user
side consisting of an antenna and a receiver, to various
satellite constellations that broadcast coded navigation
data on multiple frequency bands. Figure 2.2 illustrates
all the major components of a GNSS navigation sys-
tem. The satellite constellations were originally estab-
lished by organizations in various countries to fulfill
their military and strategic needs. However, a gradual
civilian access to certain frequency bands allowed
manufacturers to develop multi-constellation capable
receivers, which improved the reliability and wide-scale



Figure 2.1 Working mechanism of GNSS/INS navigation.

Figure 2.2 Principal components of GNSS navigation
(Sickle, 2008).
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adoption of these navigation systems. Table 2.1 lists
widely used satellite constellations supported by mod-
ern GNSS receivers.

All the carrier frequency bands were chosen in the
range of 1,175–1,610 MHz (except for the S-band) to
minimize the impact of ionospheric delay and to sim-
plify antenna design. The L1, E1, and B1 are high
frequency carrier bands in the range of 1,559–1,610
MHz whereas all the rest are between 1,175–1,280 MHz
(except for the S-band which has a frequency of about
2,492 MHz). The various allotment of carrier bands
evolved over time based on bandwidth and speed
requirements. For example, the L5 band was added to
the existing GPS L1 and L2 to improve satellite navi-
gation accuracy and robustness in certain civilian
applications such as aviation.

2.1.2 Inertial Measurement Unit (IMU) and Inertial
Navigation System (INS)

IMU are inertia-based sensors that detect change in
its state when acted upon by external forces. These are
the primary instruments used in INS and mainly

consists of three accelerometers and three gyroscopes.
An accelerometer outputs linear acceleration or velocity
increment, whereas gyroscope outputs angular velocity.
The accelerometer measurements also include gravita-
tional components which are accounted for during
mathematical calculations. Figure 2.3 depicts a 6-degree
of freedom (DOF) IMU illustrating the axes of sensi-
tivity for the linear and rotational measurements.

An INS is a navigation system that uses IMU
measurements to project a changing motion onto a
computational frame of reference. It can also be
implemented in a closed-loop algorithm to limit errors
in position, velocity, and orientation. Nonetheless, an
independently operating INS accumulates error over
time due to sensor bias instability and other indetermi-
nistic error components. There are mainly two types of
INS—gimballed and strapdown systems. The gimballed
INS consists of three gyroscopes and three acceler-
ometers attached to a gimbal system whose three ortho-
gonal axes of rotation define the roll, pitch, and yaw of
the platform on which the INS is mounted. The inde-
pendently rotating gyroscopes cancel their tendency to
twist on vehicle’s rotation and the mechanism allows
the recording of the roll, pitch, and yaw values directly
at the bearing of the gimbals. Separately, the accel-
erometer readings are double integrated by the onboard
computer to continuously output the current position
of the platform. The main drawback of the gimballed
INS is that it requires very high precision machined
parts that are difficult to manufacture. Moreover, they
are historically known to suffer from the problem
of gimbal lock. Figure 2.4 shows a gimballed IMU
developed for the Apollo spacecraft.

The strapdown INS is relatively simple in its con-
struction and is most common nowadays. In its imple-
mentation, accelerometers and gyroscopes are mounted
directly to the body of the platform. Measurements
from the accelerometers are double integrated and
combined with gyroscopes’ instantaneous turning rate
to output platform’s position and velocity. Figure 2.5
shows the working mechanism of the strap-down INS.

In GNSS/INS navigation, INS plays an important
role when dealing with periods of GNSS inactivity. The
high data-rate of the INS output fills in the gap between
successive GNSS updates. On the other hand, accurate
GNSS updates limit error growth of the INS in the



TABLE 2.1
Satellite constellations available for GNSS navigation

Satellite Constellation Year Fully Operational Coverage Carrier Frequencies Country of Origin

GPS

GLONASS

Galileo

BeiDou

QZSS

IRNSS/NavIC

1993

1995

2021

2020

2024

2018

Global

Global

Global

Global

Regional

Regional

L1, L2, L5

L1, L2, L3

E1, E5, E6

B1, B2, B3

L1, L2, L5, L6

L5, S

USA

Russia

European Union

China

Japan

India

Figure 2.3 A 6-DOF IMU with accelerometer/gyroscope
axes.

Figure 2.4 Apollo program IMU on display at Draper Labs
in Cambridge, MA (Wikipedia Contributors, 2022).

Figure 2.5 Working mechanism of a strapdown INS.
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long-term. This way, the two subsystems complement
each other toward a common objective. Table 2.2
enumerates the pros and cons of independent GNSS
and INS systems.

Various grades of IMU exist based on its technology
and intended application. The grades in-turn drive the
cost of IMU units—typically, the cost of an IMU
depends heavily on the quality of gyroscope used in the
enclosure. Moreover, a commercial IMU module
contains more than just the accelerometers and gyro-
scopes. Auxiliary sensors such as magnetometer and
temperature transducers are useful in determining
sensor orientation and in modeling temperature-depen-
dent variations, respectively, and can therefore add to
the total cost of the unit. From gyro technology point
of view, an IMU can be based on one of the following.

N Silicon micro-electro-mechanical systems (MEMS)

N Fiber optic gyro (FOG)-based

N Ring laser gyro (RLG)-based

N Quartz MEMS

The Silicon MEMS IMUs are based on mass
deflection principle and are a popular choice in low-
cost applications as they can be fabricated into mini-
aturized modules. These IMUs, however, have higher
bias instability and less reliable error characteristics
compared to the other three types. The FOG-based
IMUs detect motion by comparing light propagation
times in different coils. The propagation time changes
according to the rotation of the IMU, which is then
encoded into angular rates. These are high-performance
IMUs that are vibration and shock-resistant and have



TABLE 2.2
Pros and cons of GNSS and INS systems

GNSS INS

Pros Highly accurate in long-term

Errors are bounded

Relatively inexpensive

Highly precise in short-term

Very high data rate

Self-contained system or autonomous

Provides both position and orientation

Cons Prone to external obstructions/interferences

Low data rate

No orientation information

Unbounded errors that lead to drifts over time

High-performance IMU can be very expensive

Figure 2.6 Types of IMU: (a) Silicon MEMS, (b) FOG, (c) RLG, (d) Quartz MEMS (EMCORE, 2022; Hexagon/Novatel, 2022;
Honeywell, 2022).
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very good sensor characteristics in terms of bias
instability and other error characteristics. The RLG-
based IMUs are similar to FOG, but instead of fiber
optic coils, RLG uses reflective mirrors in a sealed
enclosure. These IMUs are considered the most
accurate as well as the most expensive among all four
types. Lastly, the quartz MEMS IMUs use vibrating
quartz to sense motion by detecting variation in its
amplitude. These IMUs feature small size, weight, and
power (SWaP) and are highly reliable over a large range
of temperature, making them suitable for space appli-
cations. In several tests, quartz MEMS IMUs have been
shown to outperform RLG IMUs. Figure 2.6 shows
examples of each of the above IMU types.

Similar to gyro-based classification, IMUs may use
one of the following accelerometer technologies, though
they are not limited to these.

N Piezoelectric
N Piezoresistive
N Capacitive

Piezoelectric and piezoresistive accelerometers use
a piezoelectric material, such as quartz, to measure
acceleration as a change in electrical charge and
resistance properties, respectively. Capacitive acceler-
ometers detect changes in the capacitance of a moving
plate with respect to a fixed one. Other less popular
accelerometer types include strain gauge, fiber optic,
and Hall effect accelerometers, to mention a few.

From the overall performance, IMUs can be
classified into the following grades.

N Consumer
N Industrial

N Tactical

N Navigation and military

The consumer-grade units are low-cost MEMS IMU
that are used in day-to-day electronics, like cell phones,
cameras, and gimbals. Industrial-grade IMUs are built
for higher vibration resistance and repeatability over
time and temperature. Tactical grade IMUs have a very
low bias instability which can be from a high-
performance MEMS or FOG-based IMU. The naviga-
tion grade IMUs have extremely low in-run bias
instability, allowing their use in autonomous systems
such as submarines and satellites. RLG IMUs can
achieve navigation-grade performance (Honeywell,
2022). More recently, a similar performance has been
claimed using a MEMS IMU (Zhao et al., 2021).

Table 2.3 shows the classification of various GNSS/
INS components of the PWMMS-HA/UHA systems
discussed in Chapter 1. For land-based mobile mapping
systems, a minimum of tactical-grade IMU capable
of measuring rapid changes in vehicular dynamics is
crucial for consistently precise georeferencing. The
quality requirement pertains to both the position as
well as the orientation of the mapping platform. Having
said so, while IMUs are designed as self-contained
navigation systems, GNSS receivers rely on both
internal and external factors that collectively facilitate
GNSS positioning, as will be discussed in subsequent
sections.

2.2 Working Principle of GNSS Navigation

An easy way to understand GNSS navigation is by
comparing it with trilateration. In trilateration, in order



TABLE 2.3
PWMMS-HA/UHA GNSS/INS component classification

PWMMS-HA PWMMS-UHA

GNSS Constellations Supported

Gyro Technology

Accelerometer Technology

IMU Grade

GPS+GLONASS

+GALILEO+BeiDou

–

–

Tactical

GPS+GLONASS

FOG

MEMS

Tactical

Note: PWMMS-HA IMU technology information is not available.

Figure 2.7 (a) Conventional trilateration using control points (P1-P3) to locate a fixed-point A, and (b) GNSS positioning with
satellites as control points (Sickle, 2008).
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to find the position of a fixed point with respect to a
reference, distances between control stations and the point
of interest are measured and then used to compute that
point’s relative position. Similarly, in the case of GNSS
navigation, distances between a point on Earth and GNSS
satellites orbiting above the Earth’s surface are measured
and the position of that point on the Earth is estimated.
Theoretically, three satellites are sufficient to compute the
3D position of a point. In reality, however, four satellites
are needed to obtain an accurate position estimate where
the fourth satellite enables time-related corrections. None-
theless, more satellites are preferred for higher redundancy
of the measurement data. Figure 2.7 shows the GNSS
positioning technique drawing similarities to the conven-
tional trilateration.

2.2.1 Measurement Observables

When working with GNSS signals for positioning,
usually two types of measurements are encountered—
code-phase and carrier-phase observables. The code-
phase observables consist of pseudorandom code (PRC),
also known as civilian access (C/A) code, modulated onto
the carrier signals. PRCs received from satellites are
correlated with a receiver replica, and the time-offset that
results in the highest correlation is then used to calculate
a pseudorange. This satellite-to-receiver pseudorange can

be used to quickly compute a point position in the 3-
dimensional space. Such solutions are useful in applica-
tions where low-accuracy positioning is sufficient.

The carrier-phase observables are based on the
GNSS carrier signals that have a very high frequency
compared to the bitrate of pseudorandom code (1.5
GHz vs. 1 MHz, respectively). Thus, correlating carrier-
phase observables can provide a more accurate measure
of time-offset. The downside of using carrier-phase
observables is that it requires longer time to produce
position estimates since carrier signals are hard to
correlate compared to pseudo-random codes. Figure
B.1 in Appendix B shows the characteristics of pseudo-
random code and carrier signals, along with time-offset
computation for the former.

2.2.2 Autonomous and Relative (Differential)
Positioning

The way GNSS-positioning works, each satellite
broadcasts a unique PRC and a navigation message
containing satellite’s position almanac along with
coarse positions (ephemeris) of other satellites. They
also include clock offsets and atmospheric corrections.
The GNSS receiver then solves for its 3D position and
receiver’s clock by computing pseudorange between
the receiver and individual satellites. This allows for a



real-time positioning of the receiver, often called
autonomous single-point solution. Mathematically,
the pseudorange (p) between the receiver and a satellite
is given by Equation 2.1.

p~rzc dð Þt{dT zerrors ðEq: 2:1Þ

Where, r is the true range, c is the speed of light, dt is
satellite clock offset, and dT is receiver clock offset.
Note that the accuracy of such position estimates is
low, in the order of several meters, due to various errors
in measurement and clock offsets.

Another positioning method different from single-
point solution is relative or differential positioning.
Unlike autonomous positioning, where a receiver must
rely only on available navigation messages, in differ-
ential positioning, a second receiver is used in conjunc-
tion with the first, where one of them is fixed at a given
position. If the two receiver units have a very short
baseline compared to the satellite-to-receiver distance
of over 19,000 km, both experience similar error due to
atmospheric effects and thus have a high correlation
between their measurements. Using the fact that the
base receiver’s position is fixed and known, the cor-
relation between the two can be used in correcting any
systematic biases or errors present in the rover receiver,
hence improving its position accuracy. Such position
estimates are often accurate to within a decimeter or so.
A pseudorange-based differential processing produces
better position estimates than single-point positioning,
in the range of a decimeter. On the other hand, diffe-
rential processing with carrier-phase observables can
result in higher accuracies, often under a few centi-
meters. Through multi-frequency differential process-
ing with a very short baseline between the receiver
and a base station network, it is even possible to app-
roach sub-centimeter accuracies. Generally, differential

processing is referred to using carrier-phase obser-
vables. A schematic of differential positioning is shown
in Figure 2.8.

In practice, GNSS receivers are designed to first use
code-phase positioning techniques before transitioning
to the use of a more precise carrier-phase measure-
ments. Solving for code-phase makes the problem of
matching carrier wavelengths more feasible. Additional
information about GNSS satellites, such as precise
orbit and clock files obtained from ground tracking
stations facilitate these processes. With newer and faster
processors onboard GNSS receivers, this problem of
signal correlation is becoming more tractable than ever.
Considering various applications, GNSS positioning is
conducted through three popular techniques.

N Precise-Point Positioning (PPP): This is an autonomous

positioning technique that only uses receiver-acquired

measurements containing broadcast ephemeris and clock

corrections. The computed positions exhibit error in

meters, however, in other cases, separate precise ephe-

meris and clock data can be obtained from ground

tracking stations and added during data processing to

reduce the error. Recent developments have led to even

more precise orbit and clock corrections based on long-

term satellite observations. Despite this, PPP is rarely

used in mobile mapping applications and are usually

implemented as a pre-processing check for data integrity.

N Real-Time Kinematic (RTK): It is a real-time positioning

technique that is based on the concept of differential

positioning. The idea is to setup a communication

channel between the rover receiver and nearby base

stations. These base receivers calculate differences in

their actual and observed positions and communicate

those to the rover for an appropriate error correction.

Such corrections often result in centimeter-level position

accuracy. This happens in real-time and no further

processing is needed. This is the main advantage of RTK

Figure 2.8 Differential GNSS positioning using two receivers (Sickle, 2008).
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surveys. The downside is that receiver noise or multipath
issues cannot be handled by this technique.

N Post-Processed Kinematic (PPK): This is the most widely
used positioning technique used in mobile mapping
surveys. It is also based on differential positioning. In
this post-processing technique, error corrections are
obtained from base receivers and applied to improve
the position estimate of the rover receiver. An appro-
priate configuration of base stations is necessary to
achieve an optimum performance. This includes presence
of base stations in all directions around the rover. The
baseline length is also an important factor when correlating
signals perturbed by atmosphere, as discussed earlier. As a
rule of thumb, baseline of up to 30 km are considered
optimal.

2.3 System-Level Factors Influencing the Quality of
GNSS/INS Trajectories

Different applications have different accuracy require-
ments for mapping data. For infrastructure and land
surveys, a differential post-processed GNSS/INS solution
is preferred over autonomous single-point positioning
owing to former’s proven record of consistently produ-
cing high-accuracy position estimates. However, in order
to maintain such a high level of performance throughout
the mission, high-grade GNSS/IMU hardware systems
and an efficient post-processing technique, among several
other variables, are necessary. The following subsections
describe in detail some of the major factors that influence
the quality of GNSS/INS-derived trajectories obtained
from land-based mobile mapping platforms.

2.3.1 Selection of GNSS Hardware Components

Assuming the inertial unit (IMU) used for navigation
has already been selected to be of a project-specific
grade, the succeeding requirement for an effective navi-
gation is then governed by the quality of the GNSS
sensors used, which mainly consist of an antenna and
receiver pair. For a highly accurate differential posi-
tioning, a GNSS antenna must support multiple oper-
ating frequency bands as defined for various navigation
satellite constellations. The shape, size, weight, cost,
and sensitivity of an antenna primarily depend on its
noise rejection and multi-constellation capabilities. For
example, antennas used on unmanned aerial systems
are usually light in weight, and since they are operated
far from any overhead obstacles, do not need a
sophisticated noise dissipation. On the other hand,

antennas mounted on vehicles close to the ground or
those used for geodetic surveying must maximize the
signal-to-noise ratio by rejecting unwanted signals
bouncing back from nearby obstacles (called multipath
effect). Achieving such characteristic requires a larger
antenna enclosure to house separate specialized compo-
nents, thus increasing the size, weight, and cost of the
unit. Figure 2.9 compares GNSS antennas used in some
popular applications.

The multi-frequency, multi-constellation signals
acquired by an antenna are analyzed by the receiver
unit to compute raw pseudorange and doppler values, as
well as a real-time trajectory for coarse positioning. For
the receiver, its data throughput, capacity to handle
multiple constellations, and an ability to integrate with
other sensor types such as cameras/LiDAR for time syn-
chronization purposes are what determine the cost of that
unit. GNSS receiver units used for non-survey applications
have fewer capabilities. For example, low-cost receivers in
consumer electronics do not have the processing power
and bandwidth to store raw GNSS data essential for
differential post-processing. For their intended use, low
accuracy position estimates are sufficient. At the same
time, low-end receivers may not have the ability to time-
tag or log sensor events due to limited computing resour-
ces. Modern high-performance GNSS receivers have a
built-in precision oscillator which when synchronized with
the GNSS clock can produce timing signals accurate to
within a few nanoseconds. Such high precision is critical in
mobile mapping applications to capture the rapidly chang-
ing surrounding dynamics through accurate time-synchro-
nization of GNSS/INS, imagery, and LiDAR data.

2.3.2 Processing Scheme

The GNSS/INS post-processing involves the use of
data filter (such as Kalman filter) to update INS
predictions every time a GNSS solution is available.
For better convergence and high accuracy, a differential
post-processing is conducted in forward and reverse
directions and the solutions are combined. Doing so also
enables the quality control of resulting trajectory.
Depending on the base station availability and satellite
geometry, the forward and reverse solutions may achieve
different results—fixed or float, in different parts of the
mission. Fixed solution refers to successful correlation of
the carrier-phase signals whereas float refers to code-
phase solutions. Any difference in the forward and
reverse solution can be observed on a combined

Figure 2.9 GNSS antenna used in various applications (from left to right): UAV, land-based vehicle, and for geodetic surveying,
respectively. All are from the same manufacturer—Trimble (Trimble, 2022).
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separation plot, that indicates the difference in position
estimates at any moment of the survey (Hexagon/
Novatel, 2022).

In addition to the processing direction, the way a data
filter is used with the GNSS and INS data can also
impact the resulting solution. Usually, two types of
processing modes are implemented—Loosely coupled
(LC) and tightly coupled (TC) processing. In the LC
processing mode, GNSS data is processed first and then a
Kalman filter is initiated for the INS to use the already
processed GNSS updates whenever they are available.
On the other hand, TC processing mode utilizes both
the GNSS and INS raw data in a data fusion strategy
where each measurement is first used to predict and
update the other, and then they are combined. The TC
processing method can produce a highly precise result
and is tolerant to slight inconsistencies in input GNSS
measurements. For this reason, in most applications
including land-based surveys, the TC processing mode is
preferred.

Along with the above processing techniques, several
other parameters also facilitate an efficient GNSS/INS
post-processing—parameters such as satellite/constella-
tion selection, signal-to-noise ratio cutoff, satellite
elevation mask, velocity constraints, and ionospheric
error computation threshold can be methodically tested
to obtain the most suitable combination of settings.

2.3.3 Availability of Continuously Operating Reference
Stations (CORS)

As discussed earlier, mapping surveys typically engage
differential processing with base station receivers to
obtain highly precise position estimates. These base
receivers can be any static GNSS receiver whose position
is fixed and known. In practical applications, having
multiple base receivers improve data redundancy and
coverage area in case missions spanning a large distance.
To facilitate various public projects, departments of
transportation (DOT), such as Indiana’s INDOT,
operate a network of strategically placed reference base
stations. Referred as continuously operating reference
stations (CORS), these base stations can be used in
GNSS-based differential positioning as well as for real-
time kinematic (RTK) surveys. To reintroduce the con-
cept of differential positioning, raw GNSS data acquired
from a mission is compared with the corresponding raw
data from a local network of base stations, and any error
present in the surveyed data is then mathematically
corrected by evaluating the difference between the two
sets. For an accurate error differencing, a well-distributed
network of base stations is crucial. This is particularly
important for missions that cover large ground distances
since longer baselines in any direction may result in a less
accurate error correction. Figure 2.10a shows the CORS

Figure 2.10 (a) CORS network within and around Indiana with their nominal coverage, (b) effective coverage evaluated for two
separate base stations, and (c) a simulation of the effective coverage of base stations to achieve a position accuracy of 1 cm.
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network managed by INDOT and other local agencies
with their nominal coverage over the state of Indiana.
From a usage point of view, nominal coverage maps can
be slightly misleading, since they do not indicate the
actual level of precision expected in various parts of
the region. A simple simulation model developed from
several hour-long GNSS data reveals how the actual
differential positioning performs when a particular level
of precision is desired. In this process, a pair of base
stations were simulated as a base-rover pair and a static
processing of GNSS data was performed. Then, the base-
line length error, i.e., the difference between true and
estimated distances between stations, was computed.
From this error, range for specific error levels were
obtained and a contour connecting all such ranges from
each pair around the base station was plotted.
Figure 2.10b demonstrates the process with two base
stations showing their effective coverage for a position
accuracy of 1 cm. Figure 2.10c shows the same for all
base stations. The figure also indicates all the blind spots
left out by the insufficiency of base stations despite their
nominal larger coverage. With greater utilization of
GNSS-based surveys, it is therefore becoming important
that the strategy of CORS network implementation is
revisited and, if need be, newer base stations are
established to fill gaps in the current structure.

3. ENVIRONMENTAL FACTORS INFLUENCING
GNSS/INS-DERIVED TRAJECTORY ACCURACY

Unlike aerial data acquisitions, land-based mobile
mapping surveys have their peculiar challenges. One of
them is obstructions to GNSS signals reception due to
man-made or natural structures. In addition, GNSS
signals may also be disrupted due to electromagnetic
interferences. The following subsections describe these
challenges in detail.

3.1 Signal Outages Due to Physical Obstructions

Any partial obstruction of the sky prevents a clear
line of path between the antenna and GNSS satellites.
This immediately lowers the reliability of GNSS/INS
positional estimates due to loss of data redundancy
and/or multipath errors. Furthermore, in the event of a
complete signal outage, such as under a plant canopy or
bridge, the position estimation eventually switches to a
complete inertial system-based predictive positioning.
While inertial measurements somewhat compensate for
short-term outages, the accuracy drastically degrades
with time, to the point that it can be no longer relied
upon. Figure 3.1 illustrates the operation of land-based
mapping systems for agricultural and urban environ-
ments. When objects around these platforms, such as
plants and buildings, extend beyond the antenna height,
some or all of the useful GNSS signals are blocked.
Effectively, these two scenarios lead to the same result,

i.e., irrespective of the cause of obstruction, the
resulting trajectory is affected in the same way.

The issue of signal obstruction leading to poor
quality trajectory can be illustrated with real-world
examples. Figure 3.2 shows two mobile mapping
systems—a backpack-based and an unmanned ground
vehicle (UGV)-based platform, which were developed
in-house for a variety of mapping applications (Lin,
Manish, et al., 2021). Both systems have a high
accuracy integrated GNSS/INS unit (NovAtel SPAN-
CPT and SPAN-IGM S1, respectively) for direct
georeferencing. The acquired data is post-processed
through the LC processing technique.

Figure 3.3a demonstrates an example use-case of
these two platforms in an agricultural environment.
Looking at the corresponding plots in Figure 3.3b and
Figure 3.3c that show GNSS satellite availability for
each platform, one can tell that while the backpack
system experienced occasional signal outages, the UGV
system suffered from a frequent loss of signals, notably
for prolonged durations. Figure 3.4 shows the com-
bined separation plots for these two missions.
Evidently, the UGV trajectory has much wider separa-
tion between the forward and reverse trajectories
compared to the backpack. This means resulting
mapping products will have an equivalent amount of
variation (i.e., the UGV trajectory will be inferior to
that from the backpack).

This relatively poor performance of the UGV GNSS
system can be attributed to the shorter height of its
antenna. Such obstructions to the GNSS signals result
in the reduction of trajectory accuracy, more so for any
survey with either backpack or UGV that involves
scanning inside building facilities, where a complete
signal outage is expected.

The vehicle-based mobile mapping systems,
PWMMS-HA and PWMMS-UHA, were utilized to
map highway and its surrounding infrastructure like
bridges and traffic signs. As with the backpack and
UGV systems mentioned above, these two vehicle-
based mapping platforms experienced similar GNSS
signal reception issues within the vicinity of bridges and
road-side canopy. Figure 3.5 shows the outcome of one
such mission with the PWMMS-UHA. As pictured in
Figure 3.5a, canopy cover on both sides of the road is
blocking almost the entire sky view. This blockage
resulted in loss of GNSS signal lock and thus an
increase in position standard deviation, as indicated in
Figure 3.5b and c. As an outcome of this occurrence,
reconstructed point clouds from the LiDAR units
onboard PWMMS-UHA show clear misalignment
among tracks from different drive passes visualized
in Figure 3.5d for different profiles across the road.
Similar to tree canopies, during surveys along road
corridors, nearby traffic such as cargos and trucks may
also inhibit signal reception. Such instances, although
short-lived, cause intermittent loss of GNSS signal and
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Figure 3.1 GNSS data acquisition in agricultural and urban environments. Except for a few differences, both scenarios are
analogous.

Figure 3.2 Backpack and UGV-based mobile mapping platforms.

Figure 3.3 (a) Data acquisition in an agricultural field, (b) satellite availability for backpack system, and (c) satellite availability
for unmanned ground vehicle (UGV).
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Figure 3.4 Combined separation plot for (a) backpack trajectory and (b) UGV trajectory.
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require more time than the actual outage duration to
resume an effective positioning.

3.2 Electromagnetic Interference

Other than physical obstructions, high amplitude
electromagnetic (EM) waves can also disrupt the GNSS
signals reception resulting in a similar reduction in
the post-processed trajectory accuracy as well as the
alignment of derived mapping products. EM interfer-
ences can originate from a variety of electronic devices
working on radio spectrums, such as LiDAR units
and radio transceivers. Additionally, high-tension (high
voltage) power transmission lines can also introduce
EM perturbations (in some rare circumstances, the
GNSS positioning can also be affected by ionospheric
disturbances caused by solar flares). Figure 3.6 visual-
izes an example from PWMMS-UHA where the pre-
sence of EM sources near a data acquisition site
resulted in erroneous georeferencing. Point clouds from
different LiDAR units across different drive runs can
be seen as multiple versions of the same object
separated by almost a decimeter, which are ideally
expected to align within a few centimeters.

Thus, while a meticulous system design is crucial to
reduce any direct exposure of sensors to unwanted
interferences, it is equally important that data acquisi-
tion missions are carefully planned to account for
external interference sources like power sub-stations
and transmission lines.

3.3 Concluding Remarks

All the above-mentioned factors that affect GNSS/
INS-based mapping are equally applicable to every
ground-based mapping system. The analogy of map-
ping under plant canopy and inside building facilities
can be easily extended to vehicles driven under bridges
or on roads along-side tall trees that partially or
completely block clear line of path to GNSS signals.
Furthermore, the effect of electromagnetic interferences
is more applicable to road vehicles since they are
expected to frequently pass by power transmission lines
and distribution substations. Figure 1.1 summarizes
various environmental factors that can impact the
quality of GNSS/INS trajectory.



Figure 3.5 Impact of roadside vegetation on GNSS trajectory and LiDAR-derived point clouds. (a) Area showing canopy cover
on both sides of the road, (b) different views of the post-processed trajectory colored by position inaccuracy, and (c) post-
processed trajectory.

Figure 3.6 EM-induced misalignment in reconstructed point clouds.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2022/22 13



4. PROCESSING STRATEGY AND
COMPARATIVE PERFORMANCE OF
DIFFERENT MOBILE LIDAR SYSTEM GRADES
FOR BRIDGE MONITORING: A CASE STUDY

4.1 Abstract

Collecting precise as-built data is essential for track-
ing construction progress. Three-dimensional models
generated from such data capture the as-is conditions
of the structures, providing valuable information for
monitoring existing infrastructure over time. As-built
data can be acquired using a wide range of remote
sensing technologies, among which mobile LiDAR is
gaining increasing attention due to its ability to collect
high-resolution data over a relatively large area in a
short time. The quality of mobile LiDAR data depends
not only on the grade of onboard LiDAR scanners but
also on the accuracy of direct georeferencing informa-
tion and system calibration. Consequently, millimeter-
level accuracy is difficult to achieve. In this study, the
performance of mapping-grade and surveying-grade
mobile LiDAR systems for bridge monitoring is
evaluated against static laser scanners. Field surveys
were conducted over a concrete bridge where grinding
was required to achieve desired smoothness. A semi-
automated, feature-based fine registration strategy is
proposed to compensate for the impact of georeferen-
cing and system calibration errors on mobile LiDAR
data. Bridge deck thickness is evaluated using surface
segments to minimize the impact of inherent noise in
the point cloud. The results show that the two grades of
mobile LiDAR delivered thickness estimates that are in
agreement with those derived from static laser scanning
in the 1-cm range. The mobile LiDAR data acquisition
took roughly 5 minutes without having a significant
impact on traffic, while the static laser scanning
required more than 3 hours.

4.2 Introduction

Securing bridges with good structural and functional
conditions starts with effective quality assurance and
quality control during construction to ensure that such
infrastructure fully satisfies the design requirements
(Grubb et al., 2015). In addition, frequent and accurate
inspection of the structural and functional conditions of
each bridge is required to ensure traffic safety and
prioritize maintenance (AASHTO, 2011). Traditional
bridge evaluation practices rely on visual inspection and
point-based measurements. Deck thickness is typically
checked during and post-construction to ensure struc-
tural adequacy and conformance. For instance, the
American Association of State Highway and Trans-
portation Officials (AASHTO) requires that the mini-
mum thickness of a concrete deck should not be less
than 7 inches (AASHTO, 2020). To evaluate bridge
deck thickness during construction, measurements are
typically taken from a string line pulled between the
screed rails or a pole stabbed into the plastic concrete—
i.e., freshly poured concrete (Caltrans, 2015). Post-

construction, ultrasonic thickness meters are usually
used. Such approaches are labor-intensive and prone
to human errors, as they require trained personnel to
identify structurally unsound locations. Furthermore,
this spot sampling is not sufficient to capture the thick-
ness values over the entire bridge, which are necessary
to provide as-built documentation that can be used for
long-term asset inventory and management.

Modern remote sensing techniques provide promis-
ing non-contact alternatives for during- and post-
construction bridge evaluation and inspection. Prior
research has established principles and procedures for
using unmanned aerial vehicle (UAV) imagery for
bridge visual inspection and 3D information recon-
struction (Chen et al., 2019; Khaloo et al., 2018; Mor-
genthal et al., 2019; Seo et al., 2018; Spencer et al.,
2019). Moreover, with several protection mechanisms,
UAVs can maneuver at a close proximity to the bridge
and even perform contact inspection tasks (Salaan
et al., 2018; Sanchez-Cuevas et al., 2017, 2019). In
contrast to imaging sensors, light detection and ranging
(LiDAR) provides direct 3D measurements that can be
used for quantitative evaluation. Terrestrial laser
scanners (TLSs) can acquire high-resolution point
clouds with millimeter-level precision, deemed as the
gold standard in construction management and infra-
structure monitoring. However, the time and labor
required for data acquisition and post-processing
increase significantly for a large site. The scanner might
have to be set up within the driving lane to acquire
sufficient point density along the structure, which in
turn would affect traffic flow. Therefore, monitoring
large-sized infrastructure using TLSs might not be
practical and/or scalable. Mobile LiDAR mapping
systems (MLMSs) facilitate efficient field surveys that
can cover large areas with a minimal impact on traffic
flow. For MLMSs, direct georeferencing, i.e., trajectory
information provided by the onboard global navigation
satellite system/inertial navigation system (GNSS/INS)
unit, is typically adopted to reconstruct point clouds
in a common reference/mapping frame. Point cloud
quality therefore depends on the ranging accuracy of
LiDAR units, the grade of the onboard GNSS/INS
unit, and the reliability of the system calibration pro-
cedure. Centimeter-level positional accuracy can be
expected if the quality of derived georeferencing data
from the GNSS/INS unit and system calibration para-
meters are guaranteed. However, intermittent access to
a GNSS signal and issues pertaining to system calibra-
tion cloud results in discrepancy of more than several
centimeters between point clouds from different drive
runs/flight lines. In this case, registration is required to
fine-tune the point cloud alignment.

This paper describes an assessment of alternative
mobile LiDAR systems for bridge monitoring. More
specifically, this study addresses the following research
questions: (1) can we use MLMS data (with centimeter-
level positional accuracy) to derive quantitative mea-
sures of bridge and achieve an accuracy similar to that
from TLS data, and (2) are surveying-grade MLMS
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systems (with millimeter- to centimeter-level accuracy)
better than mapping-grade MLMS systems (with an
accuracy of a few centimeters) in terms of providing
quantitative assessments of bridges? The key contribu-
tions of this study can be summarized as follows.

N A semi-automated feature-based fine registration is
proposed to compensate for the impact of georeferencing
and system calibration errors on mobile LiDAR data.
The developed registration strategy can also be used to
fine-tune the point cloud alignment among different TLS
scans.

N A bridge deck thickness evaluation strategy based on
surface-to-surface distance is proposed to minimize the
impact of inherent noise on the point clouds. The aim is
to achieve an accuracy better than ¡ 1 cm for the
derived thickness measures.

N The performance of different MLMS grades is assessed
against TLS data in terms of the quality of derived
thickness measures, scalability, and impact on traffic
flow.

The remainder of this paper is structured as follows.
Section 4.2 provides an overview of prior research; the
mobile mapping systems, study site, and data collection
procedure are introduced in Section 4.3; the feature-
based registration and bridge deck thickness evaluation
approaches are covered in Section 4.4; the results
together with their analysis are discussed in Section 4.5,
which is followed by a summary of the study conclu-
sions and recommendations for future research in
Section 4.6.

4.3 Related Work

4.3.1 LiDAR for Infrastructure Mapping

LiDAR, known for its ability to directly generate
accurate 3D point clouds with high density, has recently
been receiving an increasing amount of interest by the
construction management and infrastructure monitor-
ing research/professional communities. Acquired point
clouds by TLSs have been used for generating precise
3D models to evaluate the progression of construction
processes (Pučko et al., 2018; Son et al., 2017; Zhang &
Arditi, 2020). The high accuracy of TLS point clouds
also allows for millimeter-level displacement and defor-
mation evaluation post-construction (Cha et al., 2019;
Ham & Lee, 2018; Lee et al., 2019). However, the point
density and accuracy of TLS point clouds drop quickly
as the distance from the sensor increases. To ensure full
coverage of the structure in question, multiple TLS
stations are required. The station locations should be
carefully chosen to minimize occlusions and have
sufficient overlap (i.e., common areas) for the registra-
tion of point clouds from different scans. For a large
site, time, labor, and location requirements for data
acquisition increase significantly, making it unrealistic
to apply such a technique in a scalable manner.

Mobile LiDAR has emerged as a promising alter-
native that can overcome the shortcomings of TLSs.
One or more LiDAR units can be mounted on various

platforms, e.g., UAVs, trucks, tractors, and robots.
Field surveys with mobile LiDAR are efficient and can
cover large areas that are impractical to conduct with
TLSs. These key benefits have stimulated the interest of
the research/professional community to apply mobile
LiDAR for analyzing complex road environments, such
as lane marking detection and road boundary extrac-
tion (Cheng et al., 2020; Lee et al., 2017; Luo et al.,
2019; Wen et al., 2019), as well as mapping railroads
and tunnels (Arastounia, 2015; Karunathilake et al.,
2020; Puente et al., 2016; Sánchez-Rodr´gı uez et al.,
2018). Several studies have validated and reported the
accuracy of mobile LiDAR data for monitoring civil
infrastructure. Puri and Turkan (2020) used a wheel-
based mobile LiDAR system equipped with a Velodyne
HDL-64E LiDAR unit for tracking the construction
progress of a bridge. They pointed out that a noise level
in the range of ¡ 3–4 cm was present in the as-built
data from MLMSs, affecting the performance of
progress tracking. Lin et al. (2019) evaluated the
performance of a wheel based MLMS equipped with
four Velodyne LiDAR units for mapping airfield pave-
ment before and after a resurfacing process. In their
study, the positional accuracy of LiDAR point clouds
was in the ¡ 5 cm range, and a 9-cm increase in
pavement elevation after resurfacing was detected.
Another study verified the absolute accuracy of point
clouds acquired by a commercially available system, the
Lynx Mobile Mapper system from Optech Inc. (Toronto,
ON, Canada) (Puente, González-Jorge, Riveiro, et al.,
2013). Their test site was a university campus, comprised
of both infrastructure and vegetation. Although the
range accuracy of the onboard LiDAR unit in that study
was ¡ 8 mm, the absolute accuracy of the point cloud
was determined to be in the range of ¡ 1 to ¡ 5 cm,
mainly attributed to the trajectory quality. Moreover, in
areas with limited/intermittent access to GNSS signals,
the positional accuracy might deteriorate to the ¡ 0.3-m
range. Inaccuracy of the system calibration parameters
would cause additional deterioration in the derived point
clouds. Overall, millimeter-level positional accuracy is
difficult to achieve even with high-end LiDAR units due
to GNSS reception issues and/or system calibration
artifacts. Data processing and analysis strategies that
reduce the impact of the above factors, as well as inherent
noise in the point cloud, are required to take full
advantage of potential benefits of mobile LiDAR.

4.3.2 Point Cloud Registration

Point cloud registration aims at aligning LiDAR
data from different TLS scans and/or MLMS drive
runs/flight lines to a common reference frame.
Registration approaches can be categorized based on
the used primitives; namely, direct cloud-to-cloud
registration and feature-based registration. The well-
known iterative closest point (ICP) (Besl & McKay,
1992; Yang & Medioni, 1992) and its variants belong
to the cloud-to-cloud registration category. Such algo-
rithms assume that some initial transformation
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parameters exist, and their aim is to refine these
parameters. Besl and McKay (1992) assumed that the
closest points from two point clouds after coarse
registration constitute a conjugate point pair and used
such pairs for the estimation of transformation para-
meters. Yang and Medoini (1992) further considered
surfaces normal during point matching; more specifi-
cally, point-to-point correspondence is established by
normally projecting a point in one scan onto its
adjacent surface in the other scan. Several variants
were introduced to improve the ICP robustness using
local neighborhood characteristics (Gressin et al., 2013;
Sharp et al., 2002). Studies that share similar concepts,
such as the iterative closest projected point (Al-
Durgham et al., 2012), point-to-plane registration
(Grant et al., 2012), and multiscale model-to-model
cloud comparison (Lague et al., 2013) have been
introduced. In addition, some registration algorithms
start by generating a 3D mesh or surface model (e.g.,
triangulated irregular network), and then use cloud-to-
surface or surface-to-surface pairings to estimate the
transformation parameters (Gruen & Akca, 2005;
Habib et al., 2010). However, creating a mesh is a
complex task, especially for point clouds with vertical
discontinuities and/or excessive occlusions. In general,
cloud-to-cloud fine registration using the ICP or its
variants has some disadvantages—(1) it requires large
overlap areas between point clouds; (2) it is sensitive to
point density distribution and noise level within the
point clouds; and (3) it requires solid surfaces with good
variation in orientation/slope/aspect. For TLS and
mobile LiDAR data, a large overlap is not always
guaranteed due to the varying sensor-to-object distance,
occlusions, and constraints imposed by the scanning
environment (e.g., traffic along transportation corri-
dors). In addition, the point density and precision drop
quickly as one moves away from the sensor/trajectory,
and the distribution of the surface orientation variation
within the study site can be unbalanced. These factors
could lead to overweighting when estimating the trans-
formation parameters. In order to meet high accuracy
requirements, user intervention is unavoidable.

Another group of registration algorithms utilize
common features that can be identified in point clouds
captured at different locations. In general, such
algorithms do not require coarse alignment of the point
clouds. The major task in feature-based registration is
the identification of common points/features. This task
can be quickly performed semi-automatically. Special
targets (e.g., highly reflective checkerboard and/or
spherical targets), which can be identified in the point
clouds, were commonly used to increase the level of
automation within the registration process (Akca, 2009;
Bosché, 2012; Franaszek et al., 2009; Liu, 2019).
Among such targets, spherical targets were used more
frequently since they eliminate the need to re-orient the
target to face the scanner during point cloud acquisition
(Franaszek et al., 2009). Target-free registration is
nonetheless the ultimate goal and, therefore, many
studies focused on the automated identification and

matching of features. In urban areas, geometric
primitives such as point, linear, cylindrical, and planar
features can be reliably extracted from point clouds.
Such primitives have been employed to estimate the
transformation parameters between two point clouds
(Al-Durgham et al., 2013, 2014; Al-Durgham & Habib,
2014; Bosché, 2012; Dold & Brenner, 2006; Fangning &
Ayman, 2016; Han, 2010; Han & Jaw, 2013; Huang,
2012; Kim et al., 2018; Stamos & Leordeanu, 2003).
Some studies demonstrated the ability of feature-based
registration in handling point clouds acquired by
different platforms, including airborne LiDAR, mobile
LiDAR, TLSs, and even imagery (Al-Rawabdeh et al.,
2016; Chuang & Jaw, 2017; von Hansen et al., 2008; Li,
Yang, et al., 2019; Stamos & Allen, 2002; Wu et al.,
2014). Habib et al. (2005) registered LiDAR and
photogrammetric data using linear features. Renaudin
et al. (2011) utilized photogrammetric data to help in
feature extraction and the registration of TLS data with
minimal overlap. In addition to geometric primitives,
key points based on local feature descriptors that
encompass local shape geometry were used for registra-
tion (Barnea & Filin, 2008; Bueno et al., 2017; Yang
et al., 2016). Recently, learning-based local feature
descriptors and point cloud registration framework
targeting fully automated feature detection, and match-
ing evolved rapidly (Ao et al., 2021; Bai et al., 2020,
2021; Choy et al., 2019, 2020; Fu et al., 2021; Huang
et al., 2021). While deep-learning-based methods have
shown superior performance on several benchmark
datasets, their generalization ability on unseen real
datasets needs careful evaluation.

Currently, the vast majority of existing registration
tasks are based on pair-wise registration (i.e., the
registration process is sequentially established two
scans at a time) and/or require initial segmentation to
derive the feature parameters, which are used in the
registration process. Pair-wise registration has two
disadvantages—(1) it makes the process time-consum-
ing when dealing with multiple scans and/or drive-runs;
and (2) the sequential registration leads to the
propagation of errors, which increases as we move
away from the reference scan. Furthermore, existing
algorithms commonly utilize feature parameters (e.g.,
line endpoints, direction vector of linear/axis of
cylindrical features, and normal vector of a plane) for
the registration process (Al-Durgham et al., 2013, 2014;
Al-Durgham & Habib, 2014; Al-Rawabdeh et al., 2016;
Chuang & Jaw, 2017; Dold & Brenner, 2006; Fangning
& Ayman, 2016; Franaszek et al., 2009; Habib et al.,
2005; Han, 2010; Han & Jaw, 2013; von Hansen et al.,
2008; Huang, 2012; Kim et al., 2018; Li et al., 2019; Liu,
2019; Stamos & Allen, 2002; Stamos & Leordeanu,
2003; Wendt, 2007; Wu et al., 2014). Direct use of these
parameters would not allow for the sufficient mitiga-
tion of inherent noise and/or point density variations in
the point cloud. In response to these challenges, this
study provides a strategy for the simultaneous registra-
tion of several scans from TLS and MLMS drive runs.
Moreover, the individual points along the registration
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features, rather than their parameters, are used in the
registration process, thus allowing for the mitigation of
noise level/point density variation in the point cloud as
well as the negative impact of the partial coverage of
registration primitives in the different scans.

4.4 Data Acquisition Systems and Field Surveys

In this study, MLMS and TLS datasets were
collected over and underneath a highway bridge that
was suspected to have an inadequate deck thickness.
This section introduces the data acquisition system and
calibration strategy. We also describe the study site and
provide information regarding field surveys.

4.4.1 System Description and Calibration

The MLMS data used in this research were captured
by a mapping-grade system—Purdue Wheel-Based
Mobile Mapping System-High Accuracy (PWMMS-
HA)—and a surveying-grade system—Purdue Wheel-
based Mobile Mapping System-Ultra High Accuracy
(PWMMS-UHA). Figure 4.1a shows the PWMMS-
HA, which is equipped with four LiDAR units (three
Velodyne HDL-32E and one Velodyne VLP-16 High
Resolution), three cameras, and a GNSS/INS unit for
direct georeferencing. The front-left, front-right, rear-
left, and rear-right LiDAR units are hereafter denoted
as HDL-FL, VLP-FR, HDL-RL, and HDL-RR,
respectively. The range accuracy of the Velodyne

Figure 4.1 The wheel-based mobile mapping systems and onboard sensors used in this study: (a) Purdue Wheel-Based Mobile
Mapping System-High Accuracy (PWMMS-HA) and (b) Purdue Wheel-Based Mobile Mapping System-Ultra High Accuracy
(PWMMS-UHA). Both platforms are non-commercial systems designed and integrated by the research group.
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HDL-32E and VLP-16 is ¡ 2 cm and ¡ 3 cm, res-
pectively (Velodyne, n.d.a., n.d.b). The post-processing
positional accuracy of the GNSS/INS unit is ¡ 2 cm
with an attitude accuracy of 0.020u and 0.025u for the
roll/pitch and heading, respectively (Applanix, n.d.).
The PWMMS-UHA, shown in Figure 4.1b, is outfitted
with two 2D profiler LiDAR units—a Riegl VUX-1HA
(hereafter denoted as RI) and a Z+F Profiler 9012
(hereafter denoted as ZF). Two rear-looking cameras and
georeferencing units are also installed on this system. The
range accuracy of the RI and ZF scanners is ¡ 5 mm
and ¡ 3 mm, respectively (Riegl, n.d.). The GNSS/INS
post-processing positional accuracy is ¡ 1–2 cm with an
attitude accuracy of ¡ 0.003u for pitch/roll and ¡ 0.004u
for heading (Hexagon/Novatel, n.d.c).

The rigorous system calibration introduced by Ravi
et al. (2018b) was carried out for both MLMS vehicles
to determine the relative position and orientation
(denoted hereafter as mounting parameters) between
the onboard sensors and IMU body frame, whose
position and orientation are derived through the GNSS/
INS integration process. The expected post-calibration
positional accuracy of the derived point cloud was esti-
mated using the individual sensors’ specifications and
standard deviations of the estimated mounting para-
meters through the LiDAR error propagation calculator
developed by Habib et al. (2006). The calculator suggests
an expected accuracy of about ¡ 4 cm and ¡ 2 cm at a
range of 30 m from the vehicle for the PWMMS-HA and
PWMMS-UHA, respectively.

The TLS point clouds were captured by FARO
Focus 3D X330 and Trimble TX8b laser scanners. The
FARO Focus 3D X330 laser scanner is integrated with
a high-dynamic-range imaging unit. It has a range
systematic error of ¡ 2 mm and a range noise better
than ¡ 0.5 mm for objects 10 m to 25 m away from the
scanner (one sigma). The scanning speed is up to
976,000 points per second with a maximum range of
330 m (Scanner Tech, n.d.). The Trimble TX8b laser
scanner has a range systematic error of ¡ 2 mm and a
range noise better than ¡ 2 mm for objects 2 m to 120 m
away from the scanner (in standard modes at one sigma).
It can scan up to one million points per second with a
maximum range of 120 m (Trimble, n.d.).

4.4.2 Study Site and Field Surveys

Field surveys were conducted over and underneath a
westbound bridge along an interstate highway at the
intersection of the I-74 and US-231 near Crawfordsville
in Indiana, USA (shown in Figure 4.2a). The bridge in
question required post construction grinding to meet
smoothness and ride quality standards. Once grinding
was completed, it was important to perform an as-built
survey to document bridge deck thickness. Figure 4.2
(b and c) displays images acquired by one of the
cameras onboard the PWMMS-HA, showing the
concrete deck and side view of the bridge, respectively.

Table C.1 in Appendix C lists the specifications of
the three datasets collected in this study. The MLMS

drive run configuration and TLS scan locations are
shown in Figure 4.3a. Both MLMS vehicles started
by driving westbound on the I-74 (magenta track in
Figure 4.3a, T1), and then drove southbound and
northbound below the bridge on the US-231 (green—
T2, T4, T6, and T8—and yellow—T3, T5, T7, and T9—
tracks in Figure 4.3a). Just before reaching the bridge
on the I-74, a highway patrol cruiser slowed down the
traffic while driving the PWMMS-UHA and PWMMS-
HA. Tracks T2–T9, which were designed for investigat-
ing the impact of partial GNSS signal outage, were
conducted while stopping the southbound and north-
bound traffic on US-231 for less than 3 minutes. In
total, the data acquisition on the I-74 and US-231 took
about 5 minutes. The average driving speed was 30 km/
h for both MLMS vehicles. Figure C.1 in Appendix C
illustrates the position accuracy charts reported by the
GNSS/INS integration software, providing a glimpse
of the trajectory quality for the two MLMS vehicles.
As can be observed in the figure, the position error
of PWMMS-UHA is smaller compared to that of
PWMMS-HA, owing to the higher-end IMU onboard.
In Figure C.1, the highlighted eight peaks correspond
to the eight tracks below the bridge (T2–T9 in
Figure 4.3a), suggesting suboptimal accuracy for the
below-bridge tracks due to intermittent access to a
GNSS signal. The position error, however, does not
increase over time since (1) the signal was restored when
the vehicles cleared the bridge, (2) the GNSS data were
processed in both forward and backward directions,
and (3) the relatively short GNSS data outage duration
can be handled by the onboard IMU.

To speed up the scanning process, TLS point clouds
underneath and over the bridge were simultaneously
captured by FARO Focus 3D X330 and Trimble TX8b
laser scanners, respectively. Figure 4.3a illustrates the
scan locations with the Trimble stations set up outside
the barrier rail atop of the I-74 bridge embankment to
capture the top surface of the deck—Figure 4.3b. The
FARO stations were located along the US-231 to
capture the bottom surface of the deck—Figure 4.3c.
While the below-bridge FARO scan locations ensured
sufficient coverage of the bottom surface of the deck,
the setup of the Trimble scans was less than optimal as
the overlap region between the east (S5) and west (S4
and S6) scans, which are 55 m apart, happens at the
middle of the bridge. Therefore, one might expect less
than optimal registration of the Trimble scans due to
large separation, lower point density, and shallow scan
angles within the overlap region. In terms of data
collection time, each TLS scan took about 35 minutes
for a total of 3 hours, considering the time for the
scanners to move and set up between the different
locations.

4.5 Methodology for Point Cloud Registration and
Bridge Deck Thickness Evaluation

The proposed workflow (shown in Figure 4.4) is com-
prised of registration, bridge deck thickness evaluation,
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Figure 4.2 Study site: (a) the westbound bridge at the intersection of the I-74 and US-231 near Crawfordsville in Indiana, USA
(aerial photo adapted from Google, n.d.a), (b) image of the bridge captured by PWMMS-HA while driving westbound on the
I-74, and (c) side view of the bridge captured by PWMMS-HA while driving southbound on the US-231.
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and comparative quality assessment. For MLMS tracks,
the point clouds are directly georeferenced in a global
mapping frame, and coarse alignment is thus guaranteed.
Feature-based fine registration is carried out to fine-tune
the alignment between point clouds from different tracks.
For TLSs, the point cloud acquired by each scan is

available in a different local reference frame, which is
defined by the scan location/setup. A coarse registration
is carried out based on manually identified conjugate
points in the respective point clouds, so that the feature
extraction (which will be covered later) for individual
scans can be conducted simultaneously. A successive



Figure 4.3 Data acquisition: (a) drive run configuration for the vehicles (Tracks T1–T9) and TLS scan locations (Scans S1–S6),
(b) image of the Trimble station (Scan S4) atop the I-74 embankment outside the barrier rail, and (c) image of the FARO station
(Scan S1) on the US-231 under the I-74 bridge.
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feature-based fine registration is performed to align the
point clouds from the different scans. One should note
that whether a point cloud is in a local or global reference
frame is not critical for the evaluation of bridge deck
thickness. In this study, a coarse registration between
the TLS and MLMS data is performed only to compare
their thickness estimates. The following subsections
describe the proposed feature-based fine registration,
bridge deck thickness evaluation, and comparative
quality assessment.

4.5.1 Feature-Based Fine Registration

The key advantage of the proposed registration
strategy is the simultaneous alignment of point clouds
from multiple TLS scans or MLMS drive-runs using
planar, linear, and cylindrical features without the setup

of specific targets. Besides point cloud alignment, the
parametric model of registration primitives is derived
and can be used for developing an as-built 3D model as
well as the subsequent monitoring of bridge elements
(i.e., settlement and deformation of bridge support
elements).

4.5.1.1 Semi-automated feature extraction. The
proposed feature extraction strategy is adapted from
the multi-class simultaneous segmentation proposed by
Habib and Lin (2016). First, a seed point is manually
identified in the point cloud from the individual scans/
tracks. If the point clouds are roughly aligned, the same
seed point can be used to extract the feature from all
scans/tracks. Otherwise, the user will need to select the
seed point for each scan/track. Next, a seed region is
established by identifying the neighboring points of the



Figure 4.4 Workflow of the proposed bridge deck thickness evaluation and comparative quality assessment strategy.
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seed point. Dimensionality analysis (Demantké et al.,
2011) is then performed to classify the seed region
as a linear/cylindrical, planar, or rough feature. Only
planar, linear, and cylindrical seed regions are con-
sidered for feature extraction. The parameters of the
best-fitting plane/line/cylinder, which will be discussed
later in this section, are estimated via an iterative model
fitting and outlier removal. More specifically, model
parameters are estimated in an iterative manner while
assigning lower weights to points that are farther from
the fitted surface in the previous iteration. Next,
neighboring points that belong to the current feature
are augmented through region growing. Concretely,
neighboring points whose normal distance are smaller
than a multiplication factor times the root-mean-square
error (RMSE) of the fitted model are added. The
output of the feature extraction includes the segmen-
ted points (an example is shown in Figure 4.5) and
parameters describing the respective feature model—
both are required in the LSA registration and model
parameterization.

More details on parametric model representation of
planar and cylindrical features are provided in Appen-
dix C.1. Subsequently, the conceptual basis for the
proposed least-squares adjustment (LSA) for feature-
based fine registration is provided in Appendix C.2.
Figure 4.6 presents a sample registration result using
the ICP and proposed feature-based registration app-
roach. The point clouds were acquired from two tracks
in opposite driving directions, and thus capture
different sides of the bridge piers. While the ICP incor-
rectly aligned the two sides of the piers, the proposed
approach produced superior results by fitting conjugate
features to a single cylinder model.

4.5.2 Bridge Deck Thickness Evaluation

The proposed bridge deck thickness evaluation
utilizes surface-to-surface distance in order to mitigate
the impact of inherent noise on the post-registration
point cloud. First, point clouds capturing the top and
bottom surfaces of the deck are extracted—one is
selected as the target and another as the source. The
target and source point clouds are then partitioned into
segments with a pre-defined size (30 cm 6 30 cm in this
study). For a given segment, the dimensionality analysis
is carried out to test its planarity, and only planar
segments are included in subsequent evaluation. An
iterative plane fitting is then performed to remove
potential outlier points and estimate the parameters of
the plane (refer to Section 4.1.1 for detailed infor-
mation). A segment is rejected from the thickness
evaluation if (1) the plane-fitting RMSE exceeds a user-
defined threshold (thresRMSE) or (2) the remaining inlier
points after iterative plane fitting fail to reach another
user-defined threshold (thresnpt). The first threshold
(thresRMSE) can be selected according to the expected
noise level in the post-registration point cloud. The
second threshold (thresnpt) can be defined based on the
percentage of remaining points after iterative plane
fitting—e.g., if more than 50% of the original points are
removed by the outlier removal procedure, the segment
is rejected from the thickness evaluation. Next, the
center of a target plane and its projection on the source
plane are determined. The thickness of the deck at that
location is evaluated by the normal distance between
the center of the target plane and the source plane.
Finally, the deck thickness estimates from all the
surface segments are visualized as a heat map.



Figure 4.5 An example of cylindrical features (in green) that have been segmented from a LiDAR point cloud (colored by
intensity).

Figure 4.6 Sample registration results using the iterative closest point (ICP) and proposed approach, showing a cylindrical
feature before and after registration.
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Figure 4.7 illustrates an example, showing the point
clouds from the above- and below-bridge tracks
(Figure 4.7a) as well as the corresponding thickness
map (Figure 4.7b). As evident in Figure 4.7a, the point
cloud from the below-bridge tracks shows some gaps
because of the occlusion caused by the bridge pier caps.

4.5.3 Comparative Quality Assessment

In this study, the derived bridge deck thickness using
MLMS data is compared to that estimated from TLS
point clouds. The comparison is carried out by
evaluating the difference between the thickness estimates
for corresponding surface segments in the MLMS and
TLS data. Therefore, ensuring the alignment between
MLMS and TLS data is a prerequisite. A coarse regis-
tration is conducted to transform the TLS point cloud
into the MLMS mapping frame. Since the proposed
segment-based thickness evaluation is conducted at 30-
cm intervals and the coarse registration accuracy is
better than ¡ 10 cm, a fine registration procedure is not
necessary. Once the point clouds are aligned, the cor-
respondence is established by searching for the closest
surface segment in the MLMS point cloud for each
segment in the TLS point cloud. The difference between

bridge deck thickness estimates for corresponding
surface segments is evaluated and visualized as a heat
map. Moreover, the mean, standard deviation, and
RMSE of the differences are reported as quantitative
measures of the comparative performance of the
different sensing modalities (i.e., TLSs and MLMSs).

4.6 Experimental Results and Discussion

This section starts with reporting the registration
results for the MLMS and TLS datasets. For the
MLMS datasets, the alignment between point clouds
from different tracks before and after registration is
examined to illustrate the quality of the system
calibration and the impact of GNSS outage during
data acquisition. Next, the bridge deck thickness is
evaluated, and a comparative analysis of the derived
metrics is reported.

4.6.1 Point Cloud Registration and Alignment

As described in Section 3.2, one TLS and two
MLMS datasets were collected in this study. The TLS
dataset had six scans, with each having its local
coordinate system. First, a coarse registration using



Figure 4.7 Example of (a) a point cloud capturing the top and bottom surfaces of the bridge deck and (b) a heat map representing
the estimated bridge deck thickness.
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manually identified point pairs in TLS point clouds was
performed. For such registration, one of the FARO
scans, Scan S1 (see Figure 4.3), was selected to define
the common reference frame. In contrast to the TLS
data, point clouds acquired by the MLMSs were
directly georeferenced to a global mapping frame
through the onboard GNSS/INS unit—the UTM
coordinate system with WGS84 as the datum was
chosen as the reference frame in this study. The point
density over the bridge deck from one track is depicted
in Figure 4.8, where the median is 7,700 and 6,800
points per square meter for PWMMS-HA and
PWMMS-UHA, respectively. PWMMS-HA had a
higher and more uniform point density across the
bridge deck as compared to PWMMS-UHA.

Prior to fine registration, the alignment of MLMS
point clouds from different tracks was inspected.
Figure 4.9 depicts a cross-section of the bridge deck
before registration. The top surface of the bridge deck
and inside surface of the barrier rails were captured by
the above-bridge track (T1), while the bottom surface
of the bridge deck and the outside surface of the barrier
rails were scanned by the below-bridge tracks (T2–T9).
To assess the agreement between point clouds acquired
by the four LiDAR units onboard the PWMMS-HA,

we performed plane fitting over a 1 m 6 1 m segment on
the top surface of the bridge deck (see Figure 4.9a). The
plane fitting RMSE was 1.3 cm, indicating that the point
clouds from different LiDAR units in Track T1 were in
good agreement, thus verifying the quality of the system
calibration parameters (i.e., inaccurate system calibration
would result in discrepancies among captured point
clouds by different sensors in the same track). A segment
on the bottom surface of the bridge deck, in contrast,
yielded a plane-fitting RMSE of 3.0 cm. Since this area
was captured by eight tracks (T2–T9), one can deduce
that the alignment among the point clouds from those
tracks was not as good as the alignment between point
clouds captured by the PWMMS-HA LiDAR sensors
within a given track. The lower trajectory quality due to
intermittent access to a GNSS signal below the bridge
was the cause of such systematic discrepancy among the
tracks, as can be seen in Figure 4.9a. A similar analysis
was conducted for the PWMMS-UHA point clouds, as
can be seen in Figure 4.9b. The zoomed-in area on the
top surface of the bridge deck reveals that for a given
track, the precision of point clouds from the two LiDAR
units onboard the PWMMS-UHA was in the range of
few millimeters. However, due to the intermittent access
to a GNSS signal during below-bridge data acquisition,



Figure 4.8 Point density over the bridge deck from one track (track T1) for (a) PWMMS-HA and (b) PWMMS-UHA.

Figure 4.9 Sample cross-sectional profile of the bridge deck showing the point cloud alignment before registration for the
(a) PWMMS-HA and (b) PWMMS-UHA datasets. Both datasets have nine tracks (T1 is above the bridge and T2–T9 are below
the bridge).
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a degradation in the RMSE to the 2.0-cm range can be
seen. The barrier rails along the two sides of the bridge
were used to evaluate the alignment between the above-
bridge and below-bridge tracks. The misalignment was
interactively quantified by evaluating the distance
between two manually selected points on the top of the
barrier rail from the above-bridge and below-bridge point
clouds. As shown in Figure 4.9a,b, a misalignment of

about 7 cm and 2 cm along the vertical direction was
present between the above-bridge and below-bridge point
clouds for the PWMMS-HA and PWMMS-UHA,
respectively. Such misalignment would lead to, no doubt,
an unreliable estimation of bridge deck thickness.

The proposed feature-based fine registration was
then performed for the TLS and MLMS datasets to
refine the alignment between scans/tracks. First, planar/



linear/cylindrical features were semi-automatically
extracted from the point clouds, and the results are
shown in Figure 4.10. In order to reliably solve for the
transformation parameters, features with different ori-
entations were extracted from the point clouds. These
features should be well-distributed over the area of
interest, and the number of points contributing to the
estimation of different transformation parameters was
of similar magnitude to prevent over-weighting in the
LSA model. A total of 46, 30, and 29 features were
extracted from the TLS, PWMMS-HA, and PWMMS-
UHA point clouds, respectively. For the TLS dataset,
the overlap between the above-bridge and below-bridge
scans was adequate, as the Trimble scanner was placed
on the I-74 embankments next to the barrier rails, and
thus was able to capture objects on the US-231 without
much occlusion. For the MLMS datasets, on the other

hand, the overlap between the above- and below-bridge
tracks was limited due to occlusions caused by the
barrier rails. Point clouds acquired by the above-bridge
track barely captured the road surface, signboards,
and other objects on the US-231. Common features
among the above-bridge and below-bridge tracks
include signboards, light poles, and the north side of
the barrier rail on the westbound I-74, as can be seen in
Figure 4.10 (b,c).

Once the features were extracted, the proposed LSA
strategy was carried out to estimate the transformation
and post-registration feature parameters. For the
MLMS datasets, the LSA estimated the transformation
parameters among point clouds acquired by each
sensor from individual tracks (i.e., the registration
was simultaneously conducted for a total of thirty-
six- and eighteen-point clouds for PWMMS-HA and

Figure 4.10 Extracted planar/linear/cylindrical features (in blue/red/green, respectively) for the registration of (a) TLS,
(b) PWMMS-HA, and (c) PWMMS-UHA point clouds.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2022/22 25



PWMMS-UHA, respectively). Track T1 from HDL-
RR and Track T1 from RI were selected as target
tracks for PWMMS-HA and PWMMS-UHA, respec-
tively. For TLSs, Scan S1 was used as the target scan
when registering the six point clouds captured by the
FARO and Trimble scanners. For interested readers,
Figure C.5 in Appendix C shows box and whisker plots
of the transformation parameters for the TLS and
MLMS datasets, where one can observe that the magni-
tude and variance of the parameters for each system
were at the same level. The square root of a posteriori
variance factor after registration (which represents the
noise level in the data as well as the quality of post-
registration alignment) is 0.60 cm, 1.47 cm, and 0.74 cm
for TLSs, PWMMS-HA, and PWMMS-UHA, respec-
tively. The weighted average of the RMSE of normal
distances between the LiDAR points and the best-fitted
plane/line/cylinder before and after registration for
each dataset is listed in Table 4.1. The reduction in
the post-registration RMSE reflects an improvement
in the alignment of the features after registration.
As expected, the post-registration RMSE values for the
different features are in agreement with the square root
of a posteriori variance.

One of the advantages of the proposed alignment
strategy is the production of a parametric model
representation of the registration primitives, which
could be used for bridge monitoring over time (e.g.,
the cylindrical columns supporting the bridge). To
show the comparative performance of TLS and
MLMSs in terms of the similarity of derived post-
registration parametric models for cylindrical features,
Figure 4.11 depicts a top view of the twelve columns
supporting the I-74 bridge together with their axes. As
evident from the figure, the cylindrical columns from
different sensing modalities are well-aligned. For
additional detail, Table C.2 in Appendix C reports
the estimated radii of the twelve columns where the
estimates from different systems are in agreement
within the 1-cm range. Moreover, the relative plani-
metric discrepancies between the TLS and MLMS
datasets were evaluated using the derived horizontal
locations of the cylindrical columns. The results show
that the relative horizontal locations are compatible
within a 1-cm range. Once again, these values agree
with the post-registration estimates of the square root
of a posteriori variance factors reported earlier.

As another verification of the impact of the fine
registration of the MLMS point clouds, a cross-section
of the bridge deck (at the same location shown in
Figure 4.9) that was extracted from the point is
depicted in Figure 4.12, where a significant improve-
ment can be observed. Zoomed-in areas at the barrier
rails show that the above-bridge and below-bridge
tracks/scans are in agreement within a 1-cm range for
all systems. Moreover, zoomed-in areas at the top and
bottom surfaces of the bridge deck verify that the point
clouds from different tracks/scans are in good agree-
ment along the vertical direction. According to the
plane-fitting RMSE shown in Figure 4.12, the precision
of the point cloud from PWMMS-HA is in the ¡ 1.5-
cm range, which is better than the expected value of
¡ 4 cm. Moreover, both PWMMS-UHA and TLS
point clouds achieve millimeter-level precision (i.e., in
the ¡ 0.3-cm and ¡ 0.4-cm range, respectively). In
summary, the results show that the proposed feature-
based fine registration can effectively minimize the
impact of trajectory and system calibration errors, and
thus improve the point cloud quality.

4.6.2 Bridge Deck Thickness Estimation and
Comparative Analysis

Having examined the point cloud alignment, bridge
deck thickness was then evaluated using the proposed
surface segment-based approach. The segment size was
set to 30 cm 6 30 cm. The thresholds thresRMSE and
thresnpt were defined as three times the square root of a
posteriori variance factor after registration and 50% of
it, respectively. The thickness estimates are visualized as
a heat map and shown in Figure C.6 in Appendix C.
The spatial patterns from the three datasets are similar
as they all indicate a smaller thickness value over the
right two lanes towards the west side of the bridge. To
quantify the similarity of thickness estimates using
different modalities, a coarse registration between the
TLS and MLMS datasets was performed to align
the former to the reference frame of the latter. The
registration accuracy was better than ¡ 10 cm, which is
good enough for identifying corresponding surface
segments. The difference between the thickness esti-
mates at each segment were evaluated and visualized
as a heat map, as can be seen in Figure 4.13. The
mean, standard deviation, and RMSE of the thickness

TABLE 4.1
Weighted average of the RMSE of plane, line, and cylinder fittings before and after registration for TLS, PWMMS-HA, and PWMMS-
UHA

TLS PWMMS-HA PWMMS-UHA

Number of Features Planar

Linear

Cylindrical

Total

19

6

21

46

11

5

14

30

10

4

15

29

Weighted Average of RMSE (M) Before

After

0.014

0.004

0.026

0.014

0.029

0.007
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Figure 4.11 The twelve cylindrical columns and their axes derived from TLS (in blue), PWMMS-HA (in red), and PWMMS-
UHA (in green) data.

Figure 4.12 Sample cross-sectional profile showing the post-registration point cloud alignment for the (a) TLS, (b) PWMMS-
HA, and (c) PWMMS-UHA datasets.
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Figure 4.13 Heat map visualization of the difference in bridge deck thickness estimates between (a) TLS and PWMMS-HA,
(b) TLS and PWMMS-UHA, and (c) PWMMS-HA and PWMMS-UHA.

TABLE 4.2
Statistics of the difference between bridge deck thickness estimates from different systems

TLS vs. PWMMS-HA TLS vs. PWMMS-UHA PWMMS-HA vs. PWMMS-UHA

Mean (m)

Std. Dev. (m)

RMSE (m)

0.010

0.018

0.021

0.005

0.025

0.025

20.006

0.012

0.013
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differences are reported in Table 4.2. One should note
that although the PWMMS-HA point cloud is less
accurate, it has a higher point density, which in turn
provides larger redundancy for plane fitting in bridge
deck thickness evaluation. Therefore, the thickness
evaluation accuracy for PWMMS-HA is similar to that
for PWMMS-UHA. The results show that the bridge
deck thickness estimates from different systems are in
agreement within the 1–3-cm range. A closer investiga-
tion of the results in Figure 4.13 and Table 4.2 reveals
that there is a higher level of compatibility in the
thickness estimates from the PWMMS-HA and
PWMMS-UHA systems. When compared to the TLS-
based thickness estimates, one can observe a trend in
the difference (i.e., underestimation/overestimation of
thickness at the west side/east side of the bridge,
respectively). This trend is the result of the Trimble scan
locations leading to less-than-optimal overlap between
the east and west above-bridge scans. Therefore, it is
believed that the variation in the thickness estimate
is in the 1-cm range. In summary, the PWMMS-HA,

although with a centimeter-level accuracy LiDAR unit,
has a similar performance as the PWMMS-UHA. The
derived thickness from the MLMS units is comparable to
that derived using TLS, with the latter being more
sensitive to the scan locations. The results also reveal that
the proposed segment-based thickness evaluation can
handle inherent noise in the point cloud and provide
reliable thickness estimates.

4.7 Conclusions and Recommendations for Future Work

This paper presented an evaluation of the perfor-
mance of mapping-grade and surveying-grade mobile
LiDAR systems for bridge monitoring. The perfor-
mance of these systems was assessed against static laser
scanners. To take full advantage of MLMS-based point
clouds, a semi-automated feature-based fine registra-
tion was proposed to mitigate the negative impact
of georeferencing and system calibration errors. The
proposed procedure can simultaneously estimate the
necessary transformation parameters for the alignment



of all the derived point clouds by various sensors
onboard the MLMS from different tracks. In addition,
the post-alignment parametric model of the registration
primitives (planar, linear, and cylindrical features) is
also estimated. Bridge deck thickness was evaluated
using surface segments while minimizing the impact of
inherent noise in the point clouds. Field surveys were
carried out over a representative bridge that had grind-
ing conducted on it to achieve desired pavement
smoothness and ride quality. The results show that
the proposed feature-based fine registration effectively
mitigated the impact of intermittent accessibility to a
GNSS signal below the bridge. The post-registration
alignment quality for the point clouds captured by the
mapping-grade MLMS, surveying-grade MLMS, and
TLS units is ¡ 1.5 cm, ¡ 0.7 cm, and ¡ 0.6 cm, res-
pectively. Although point clouds from the mapping-
grade system had a higher noise level, the evaluated
bridge deck thickness was compatible to the one
derived from the surveying-grade system in the range
of 1 cm. The thickness estimates from both MLMS
units were compatible with that derived from the TLSs.
The MLMS data acquisition was conducted in 5
minutes, while TLSs took more than 3 hours. The
proposed fine-registration strategy also delivered a
parametric model of bridge elements, which can be
used for monitoring the bridge elements over time.
MLMS-based parametric models are in agreement with
those from the TLSs in the 1-cm range.

Future research will focus on improving the auto-
mation level of feature extraction, as well as deriving
other quantitative measures for the identification of
structural issues. Moreover, larger infrastructure will be
inspected to evaluate the impact of extended outage in
GNSS signal reception on derived MLMS point clouds.
Finally, we will be focusing on automated segmentation
and parametric model representation of different
structural elements of the infrastructure to aid the
periodic monitoring process.

5. LIDAR-AIDED TRAJECTORY
ENHANCEMENT FOR MOBILE MAPPING
SYSTEMS IN GNSS-CHALLENGING URBAN
ENVIRONMENTS

5.1 Abstract

Mobile LiDAR mapping systems (MLMS) carrying
a sensor suite of LiDAR, GNSS, and INS are being
used extensively to obtain high accuracy georeferenced
point clouds. Achieving this objective is contingent on
ensuring the best possible accuracy of the GNSS/INS-
based vehicle trajectory as well as the system calibration
parameters relating the LiDAR to GNSS/INS unit.
This paper focuses on the former while assuming that
the MLMS is accurately calibrated. We propose a fully
automated framework to generate accurate 3D point
clouds using MLMS in GNSS-challenging urban envi-
ronments. Data from different sensors—GNSS, INS,
and LiDAR—onboard MLMS are fused to leverage

their respective information to improve the trajectory
(position and orientation parameters) quality compared
to that obtained from a GNSS/INS. Misalignment
within LiDAR point cloud caused by trajectory quality
deterioration is leveraged in this study to enhance the
trajectory in GNSS-challenging environments. A two-
stage approach is proposed where the first stage utilizes
matched features without loop closure to perform a
preliminary trajectory enhancement followed by a second
stage that incorporates loop closure to mitigate any
trajectory drift accumulating over time. The proposed
approach is experimentally validated using three Back-
pack MLMS datasets acquired under different surround-
ings that result in varying levels of GNSS signal outages.
The results demonstrate that the proposed approach
enhances the trajectory to improve the point cloud
alignment quality from about 2 m to about 4–8 cm.

5.2 Introduction

In recent years, mobile LiDAR mapping systems
(MLMS) have gained wide popularity in their utility for
several mapping applications, including agricultural
field mapping, infrastructure monitoring, heritage site
documentation, and asset management. The study sites
and mapping applications often dictate the type of
MLMS platform—space-borne, manned/unmanned
aerial vehicle, terrestrial wheel-based platform (cars/
trucks/unmanned ground vehicles), or pedestrian back-
pack platform—utilized to attain the intended mapping
goal. All applications require accurate mapping pro-
ducts that can be ascertained based on (1) system
calibration accuracy and (2) GNSS/INS trajectory
accuracy. The former encompasses intrinsic sensor(s)
calibration as well as estimation of mounting para-
meters relating the different onboard sensors. Extensive
prior research has been conducted to propose strategies
that consistently improve the ease, efficiency, and
performance of MLMS calibration (Chan et al., 2013;
Chen et al., 2018; He et al., 2013, 2014; Heinz et al.,
2020; Muhammad & Lacroix, 2010; Ravi et al., 2018a,
2018b; Ravi & Habib, 2020). The research presented in
this paper focuses on the problem of improving the
accuracy of GNSS/INS trajectory. For a well-calibrated
MLMS, the point cloud accuracy is largely affected by
environmental factors during data acquisition that
cause intermittent or extended periods of GNSS signal
outages. Data acquisitions prone to deteriorated
GNSS/INS trajectory quality include, but are not
limited to, in-canopy mapping in forests and agricul-
tural fields, transportation corridor mapping in the
presence of roadside vegetation and overhead bridges,
mapping urban canyons with tall buildings, and indoor
building/corridor mapping under complete obstruction
of GNSS signal (Aguiar et al., 2020; Alsadik & Karam,
2021; Bresson et al., 2017; Manish et al., 2021).

Research conducted in the domain of odometry and
mapping can be classified based on the utilized sensors
(cameras and/or LiDAR), integration with INS, and
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integration with georeferencing information from
GNSS. In the remainder of this section, we will first
provide a quick overview of odometry techniques rely-
ing only on cameras followed by research conducted on
its fusion with INS and/or GNSS. Next, we will review
odometry techniques relying solely on LiDAR sensors
followed by existing literature on integrating it with
INS, GNSS, and/or cameras. The shortcomings of the
existing literature will be used to form the basis of the
motivation for the research proposed in this paper.

Visual odometry (VO) techniques that rely solely on
cameras have been researched for vehicle localization in
recent years. Nistér et al. (2004) proposed a frame-by-
frame matching of sparse point features to yield point
correspondences in different images. The camera
motion was then computed by minimizing the reprojec-
tion error. This approach of extracting and tracking
features over a continuous stream of images was later
used in other works such as MonoSLAM (Davison
et al., 2007) and PTAM (Klein & Murray, 2007) to
conduct real-time localization and mapping. Recently,
ORB-SLAM was developed by Mur-Artal et al. (2015)
to track camera motion and create a map while utilizing
trajectory loop closure information. Visual odometry
has since been extended to integrate information from
INS to propose visual-inertial odometry (VIO) techni-
ques. Loosely coupled fusion of inertial data from
IMU and pose (position and orientation) information
from VO is generally conducted using extended and
unscented Kalman filters (Engel et al., 2012; Li &
Mourikis, 2013; Meier et al., 2011; Weiss et al., 2012).
Recently, tightly coupled integration for VIO has also
been explored wherein the raw data from the camera
and IMU are used to jointly estimate a set of state
variables that define the platform dynamics (Eckenhoff
et al., 2019; He et al., 2018; Jiang et al., 2020). While
VO and VIO techniques can obtain locally accurate
pose estimates, they are prone to accumulating large
drift in long-term navigation. Furthermore, due to the
absence of information from GNSS, the resultant
products are referenced in a local frame instead of a
global frame. In order to reduce the accumulated drift
and to define a global reference frame, GNSS
information is incorporated into VIO techniques.
Loosely coupled integration of GNSS solution with
VIO has been proposed by Mascaro et al. (2018), Chu
et al. (2012), and Chiang et al. (2020) using different
optimization frameworks. Mascaro et al. (2018) pro-
posed a sliding window graph-based optimization
scheme that continuously realigns the VIO pose
estimates with the global reference frame from GNSS
to attain global platform positioning. Chu et al. (2012)
utilized an Extended Kalman Filter (EKF) framework
to integrate monocular camera-based navigation para-
meters with those from INS and translation magnitude
obtained from GNSS. Chiang et al. (2020) utilized an
EKF to perform a loosely coupled integration of
camera-derived trajectory from ORB-SLAM; position,
attitude, and velocity information from INS; and
absolute position from GNSS. Very recently, Cioffi

and Scaramuzza (2020), Liu et al. (2021) and Cao et al.
(2022) have pursued a tightly coupled integration of
GNSS, camera, and INS raw information for localiza-
tion based on visual reprojection errors, IMU pre-
integration errors, and raw GNSS measurement errors.

Apart from cameras, LiDAR is another sensor that
has been researched for odometry and mapping. Zhang
and Singh (2014) proposed a novel two-stage algorithm
for LiDAR odometry and mapping (LOAM) without
the assistance of GNSS and INS, which would later
form the basis for several improvements proposed
under similar framework. Their approach used points
belonging to linear and planar features extracted and
matched from one LiDAR frame to the next. They
reported an average positioning error of 1%–2% of
distance traveled as compared to 11%–16% in case of
trajectory estimated using INS only. They later
proposed a two-stage algorithm for visual-LiDAR
odometry and mapping (V-LOAM) using image
features and LiDAR range measurements, which
resulted in a positioning accuracy of 0.75% of distance
traveled (Zhang & Singh, 2015). Shan and Englot
(2018) developed a two-step computationally light-
weight LiDAR odometry and mapping (LeGO-
LOAM) that leveraged the presence of ground plane
within each LiDAR frame. They reported that with a
lesser computation time, LeGO-LOAM could achieve
an accuracy similar to the LOAM algorithm. Chen
et al. (2020) integrated semantic information within the
standard LOAM algorithm (SLOAM), wherein
LiDAR scan frames were first labeled to train a
semantic segmentation framework and then, the
resultant semantically labeled point cloud was used to
identify relevant features for LiDAR odometry. The
resultant average positioning error was reported as
0.58% of distance traveled. Du et al. (2021) utilized
point-wise semantic labels to improve feature extraction
and corresponding point matching for LiDAR odome-
try (or, S-ALOAM). They employed a deep learning-
based semantic segmentation framework for point-wise
semantic labeling of 3D point cloud. They achieved an
average absolute position error of 0.5–1 m per 100 m
and average rotational drift of about 1.10 degree per
100 m. Ji et al. (2019) proposed a two-stage method for
LOAM incorporated with loop-closure (L-LOAM).
They conducted loop closure using global descriptors to
find matching pairs of LiDAR feature segments. They
achieved an average position error of 1.30 m and an
average rotational drift of 1.20 degree per meter. Zhang
et al. (2020) proposed a two-stage feature extraction
approach for LiDAR odometry and mapping. Linear
and planar features were extracted according to (1)
smoothness criterion in the first stage and (2) surface
normal vector constraint in the second stage. However,
their study did not provide quantitative measures of
the resultant performance of the proposed strategy.
Cong et al. (2020) developed a LiDAR-SLAM
approach for estimating trajectory position and orien-
tation parameters for unmanned ground vehicle (UGV)
mobile mapping system navigating in dynamic scenes.
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They reported trajectory estimation accuracy in the
range of about 2–5 m. The literature reviewed above for
trajectory estimation using only LiDAR suffers from
the following drawbacks: (1) without the incorporation
of loop closure, errors accumulate over time, thus
rendering these approaches unreliable for longer dura-
tions of data acquisition, (2) the L-LOAM approach
that integrates loop closure results in an accuracy of
over 1 m, which is not suitable for high accuracy
applications, (c) manual efforts are required in creating
training data for approaches that rely on deep learning
frameworks for semantic labeling of point clouds, and
(4) in the absence of GNSS, the point clouds are not
georeferenced, thus rendering it impossible to allow
multi-temporal, multi-platform data fusion.

LiDAR-based odometry has been improved by
fusing it with information from cameras, INS, and/or
GNSS. Tang et al. (2015) integrated INS and LiDAR-
SLAM into a single navigation frame with a loosely
coupled EKF to enable stable long-term navigation for
a UGV platform. They attained an average positioning
and mapping accuracy of 8–10 cm. Qian et al. (2017)
integrated GNSS/INS trajectory with LiDAR-SLAM
technique to obtain highly accurate positioning in forest
mapping applications. Their study attained a trajectory
positioning accuracy of 6–13 cm, which was demon-
strated to be about 70%–86% improvement compared to
traditional GNSS/INS integration. Chang et al. (2019)
proposed an integration of GNSS, INS, and LiDAR-
SLAM based on graph optimization. They reported the
relative position error to be 0.26% of distance traveled
during GNSS outage periods of 60 seconds. Chiang et al.
(2019) proposed an integration scheme for GNSS, INS,
and LiDAR grid-based SLAM using an EKF with
motion constraints. Their study reported a positioning
and mapping accuracy of 1.4–2.2 m for underground
mapping with a GNSS signal outage of 320 seconds. The
approaches reviewed above that rely on LiDAR-SLAM
utilize frame-to-frame matching within LiDAR point
clouds for trajectory estimation. When mapping scenes
that are monotonic or dynamic in nature, such frame-to-
frame matching becomes prone to inaccurate matches,
thus resulting in inaccurate trajectory estimation.

Aboutaleb et al. (2020) explored the benefits of
integrating LiDAR with GNSS and INS in order to
bridge GNSS outages in challenging urban environ-
ments. They proposed a 3D reduced inertial sensor
system (3D-RISS) algorithm to integrate LiDAR and
INS information with GNSS using a Kalman filter. For
a test conducted on a total distance of 2 km with simu-
lated GNSS outage of 80 seconds (covering 225 m),
they reported the drift in trajectory position during the
outage to be 3.38 m (1.5% of distance travelled) and the
RMS position error of the entire trajectory was 1.7 m.
In another test for a total distance of 24.4 km with an
outage of about 10 minutes (covering ,2 km), they
reported the trajectory position drift during the outage
to be 40 m (2% of distance traveled) and the RMS
position error for the whole trajectory was 16.28 m.

Kukko et al. (2017) proposed a graph optimization-based
method to correct the post-processed GNSS/INS trajec-
tory for positional drift encountered while collecting
mobile LiDAR data under boreal forest canopy condi-
tions. Tree stem location data was utilized in the process,
which was seen to improve the tree positioning accuracy
from 0.7 m to 6 cm. Li et al. (2020) investigated switching
navigation solutions between indoor and outdoor
environments during data acquisition—GNSS/INS inte-
gration is utilized for outdoors whereas INS/LiDAR
integrated navigation is employed indoors. It was
observed that INS/LiDAR attained an improvement of
50% over the dead reckoning algorithm of INS in indoor
environment. This review of existing literature integrating
GNSS and INS with LiDAR for trajectory estimation,
especially those targeted towards urban environment,
indicates a decimeter to meter-level accuracy with some
approaches resulting in trajectory drift as a function of
the traveled distance.

The study presented in this paper aims to overcome
the listed shortcomings by proposing a fully automated
two-stage GNSS/INS trajectory enhancement strategy to
mitigate the impact of GNSS-challenging urban environ-
ments on the accuracy of mapping products derived from
MLMS. Urban surroundings are usually rich in planar
surfaces, such as building façades, rooftops, beams,
pillars, and ground surfaces. This study proposes a feature
extraction and matching strategy that can leverage existing
planar features in the surroundings to enhance the
trajectory accuracy. In areas that lack in planar features,
such as areas with dome structures, the proposed strategy
divides the curved surface into piecewise planar segments
to perform trajectory enhancement. The major contribu-
tions of the research presented in this paper are as follows.

1. The proposed approach for feature matching and extrac-
tion followed by trajectory enhancement is fully auto-
mated with no requirement for manual intervention at any
stage.

2. The approach incorporates loop closure to eliminate any
drift accumulating over time, thus resulting in accurate
trajectory for longer duration of data acquisition. Apart
from ensuring an accurate trajectory, the major focus of
this paper is to enhance the accuracy of point clouds and
mitigate any misalignment caused by mapping in areas
with GNSS signal outages.

3. A numbered list. Based on extensive experimental testing
spanning varied GNSS-challenging scenarios (signal
outages ranging from 40 to 150 seconds), the proposed
trajectory enhancement framework demonstrates the

ability to produce point clouds with alignment precision
of 4–8 cm, which is better than the accuracy attained by
any state-of-the-art techniques dealing with similar dura-
tions of GNSS signal outages.

5.3 Methodology

The conceptual basis of the approach is that any
inaccuracy in trajectory position and attitude para-
meters would manifest in the point cloud as discrepan-
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cies among conjugate features. We propose a two-stage
approach that is broadly based on preliminary trajec-
tory enhancement without loop closure to reduce short-
term misalignment followed by a final enhancement
with loop closure that eliminates any drift accumulating
over time. In this section, we start by presenting the
automated feature extraction and matching strategy
without/with loop closure followed by the trajectory
enhancement framework that takes matched features
as input and produces enhanced GNSS/INS trajectory
and point clouds.

5.3.1 Automated Planar Feature Extraction and
Matching

In this section, we present an automated approach
for feature extraction and matching that is used for
drift corrections within the trajectory enhancement
optimization model. As mentioned earlier in Section
4.1, since this study focuses on urban environments, we
rely on planar features in the surroundings to achieve
our objective. The main challenge encountered while
extracting and matching adequate features for trajec-
tory enhancement stems from the variable level of
misalignment within derived 3D point clouds. A data
acquisition mission spanning open sky areas with
intermittent dense canopy cover, overhead bridges,
indoor segments, and other similar GNSS-challenging
segments results in variable accuracy of trajectory
parameters and thus, a variable level of misalignment
within derived 3D point clouds. Point cloud misalign-
ment in areas with GNSS signal outages are further

impacted by the trajectory drift accumulating over time
elapsed between revisits of the same location.

The planar feature extraction and matching strategy
proposed in this paper is designed under the hypothesis
that planar segments that are spatially close to each other
and have similar direction of normal vectors represent the
same feature. The spatial and directional proximity
thresholds for planar feature matching are user-defined
based on the level of misalignment expected in the point
cloud because of trajectory inaccuracies. Using constant
spatial/directional proximity thresholds for the entire
point cloud might result in incorrect matches owing to
the variable trajectory quality in different areas—strict
thresholds would result in omitted conjugate feature
matches whereas relaxed thresholds would result in
wrongly matched features in areas with distinct features
that satisfy the similarity criteria. A schematic illustration
of a possible case that might result in incorrectly matched
features is shown in Figure 5.1, where the pairs of yellow,
blue, and gray highlighted planar segments indicate the
incorrect matches. Omitted conjugate feature matches
hinder the ability to enhance the trajectory since the mis-
alignment information is not portrayed in the observa-
tion equations while wrongly matched features result in
incorrect trajectory enhancement results. To overcome
the stated challenges with feature matching, a first round
of feature extraction and matching is conducted without
loop closure to be utilized for preliminary trajectory
enhancement. Next, feature matching with loop closure is
conducted on intermediately enhanced point cloud to
estimate the final trajectory. In the remainder of this
section, we discuss the planar feature extraction stra-

Figure 5.1 Schematic illustration of possible wrong matches in case of large misalignment and similar appearance of planar
surfaces (false matches 1, 2, and 3 show possible wrong matches between planar surfaces).
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tegy followed by matching strategies without/with loop
closure.

5.3.2 Planar Feature Extraction and Matching Without
Loop Closure

The flowchart for planar feature extraction and
matching without loop closure for trajectory enhance-
ment is provided in Figure 5.2a. Planar feature extrac-
tion for trajectory enhancement is designed under the
hypothesis that the trajectory drift and thereby,
misalignment within the point cloud over short inter-
vals of time is not substantial. The point cloud is first
partitioned into short time intervals (say, N-second

intervals) within which there is minimal misalignment
due to limited trajectory drift. Planar features are then
extracted within each point cloud partition. Starting
from randomly generated seed points for the point
cloud partition, a seed region is first established cor-
responding to each seed point by extracting the closest
Nseed points. A principal component analysis (PCA) is
carried out for the seed region to determine whether it is
a planar, linear, or rough region, as proposed by Habib
and Lin (2016). Each planar seed region is then used to
obtain the best-fitting plane and finally, conduct a
region growing to include neighboring points as part of
the planar feature if their normal distance from the
best-fitting plane is less than a threshold.

Figure 5.2 (a) Flowchart for feature extraction and matching without loop closure, (b) planar feature matching flowchart, and
(c) flowchart for feature extraction and matching with loop closure.
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The planar features extracted from point cloud
partitions are then matched to identify conjugate features
without loop closure. High platform dynamics within N-
second durations might result in discrepancy within
each point cloud partition that could result in a planar
surface segmented as two different planar features
during the extraction. So, an intra-partition feature
matching is first conducted to identify conjugate planar
features within each partition, as depicted in Figure 5.2b.
Starting with the most reliable planar feature (based on
the number of points and RMSE of plane fitting)
within a point cloud partition (hereby denoted as
template plane), the remaining planar features within
the same partition (or, candidate planes) are tested for
their spatial and directional proximity to the template.
Spatial proximity of a template and candidate plane is
checked by identifying whether the intersection of the
normal vector of the former with the latter lies within
a distance threshold. The directional proximity is
checked by computing the angle between the normal
vectors of the two planes. This process is repeated for
all the extracted planar features within each partition to
establish intra-partition feature matches. Next, an inter-
partition feature matching is conducted between each
pair of consecutive point cloud partitions. It follows the
same spatial and directional proximity criteria as
discussed previously for intra-partition feature match-
ing with the only difference being that a template plane
is matched with candidate planes that belong to the
point cloud partition that is in succession to that of the
template plane. A sample of feature extraction and
matching results without loop closure is shown in
Figure 5.3 for a narrow straight indoor corridor, which
appears to be irregular in the point cloud due to trajec-
tory drift. The point cloud is colored by the feature ID
assigned after feature matching without loop closure,
wherein it can be seen that planar wall façades and ceiling
surfaces that are distorted from planarity over time due to
drifting trajectory are identified and designated as separate
features to assist in trajectory enhancement. However,
different versions of the same planar surface with sub-
stantial misalignment between location revisits are not
matched in this step. The resultant feature matches
without loop closure are incorporated in the optimization
model for trajectory enhancement to mitigate short-term
trajectory drift. One should note that this approach for
feature matching could also cause an undersegmentation
of undulating/curved surfaces. However, in urban areas,
such occurrences are minimal and furthermore, this issue
can be mitigated through a careful choice of spatial and
directional proximity thresholds. One of the experimental
datasets in this paper will focus on demonstrating the
performance of the algorithm in the presence of undulat-
ing/curved surfaces.

5.3.3 Planar Feature Extraction and Matching with Loop
Closure

Feature extraction and matching with loop closure is
conducted on the point cloud derived after the first

stage of trajectory enhancement. The flowchart for the
proposed approach is shown in Figure 5.2c. Planar
features are first extracted from the partitioned inter-
mediate point cloud using the same approach as
detailed earlier. Next, an intra-partition feature match-
ing is conducted for the extracted planar features
similar to the case without loop closure. Finally, an
inter-partition feature matching is conducted among
all possible point cloud partition pairings unlike the
case without loop closure where the inter-partition
matching was conducted only among consecutive point
clouds partitions. A sample of feature extraction and
matching results with loop closure is shown in
Figure 5.3, where the points are colored by feature
ID. Different versions of the same wall between
location revisits (that were earlier not matched due to
misalignment ranging up to 2.5 m) are now matched as
the same feature.

5.3.4 Trajectory Enhancement Framework

The conceptual basis of the proposed trajectory
enhancement framework is to estimate corrections to
position and orientation parameters using a least
squares adjustment (LSA) model wherein the extracted
and matched planar features are used as input. We start
by introducing the point positioning equation to derive
the mapping frame coordinates for any LiDAR point
using the system mounting and trajectory parameters,
as given in Equation 5.1. For any LiDAR point, I,
captured at time, t, its mapping (m) frame coordinates
are a function of (1) trajectory position and orienta-
tion parameters relating the IMU body frame at the
corresponding time, b(t), and mapping frame—where
the position is denoted by rm and rotation matrixb tð Þ
based on the orientation angles is denoted by Rm ; (2)b tð Þ
LiDAR mounting parameters relating the laser unit (lu)
and body (b) frames—where the lever arm is denoted by

rb
lu and boresight matrix is denoted by Rb

lu; and (3) the

laser unit frame coordinates of the point, denoted by
lu t

rI
ð Þ

. The trajectory enhancement procedure estimates

corrections to position and orientation parameters that
results in refined coordinates of the LiDAR points to
produce well-aligned point clouds based on the given
point positioning equation.
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Figure 5.4 shows the flowchart for the proposed tra-
jectory enhancement procedure. Block 1 in Figure 5.4
deals with the mathematical modeling of trajectory
reference points to be used in the trajectory enhance-
ment optimization model. Block 2 then takes the
trajectory reference points and matched features as
input within the optimization model that minimizes the
discrepancy between conjugate features to produce
an enhanced trajectory leading to well-aligned point
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Figure 5.3 Sample image and real point cloud along a narrow indoor corridor colored by time (total of 120 secs) and feature ID
assigned after conducting feature matching without/with loop closure.
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clouds. Details on trajectory correction modeling and
optimization for trajectory enhancement are explained
in Appendix D.

5.4 Experimental Results

This section presents trajectory enhancement results
obtained for three datasets acquired using a Backpack
MLMS in different GNSS-challenging urban scenarios
as shown in Figure 5.5—(a) underpass data acquisition,
(b) indoor mapping, and (c) indoor mapping of dome
facility using a crane bucket. A custom-built Backpack
MLMS (shown in Figure 5.6) is used in this research,

which comprises a Velodyne VLP-16 Hi-Res LiDAR
and a Sony a7R II 43.6 MP full-frame camera with a
35-mm lens. A Novatel SPAN-CPT GNSS/INS is used
for direct georeferencing of the LiDAR and camera.
The Velodyne VLP-16 Hi-Res LiDAR consists of 16
laser beams with horizontal and vertical fields of view
of 360u and 20u, respectively. It captures 300,000 points
per second and has a range accuracy of ¡3 cm (Velodyne,
n.d.a). In case of no GNSS signal outages, the Novatel
SPAN-CPT GNSS/INS provides a post-processing
accuracy of 2–5 cm for position, 0.025u for roll/pitch
angles, and 0.080u for attitude angle (Novatel, n.d.b).
In this study, the GNSS/INS trajectory post-processing



Figure 5.4 Flowchart for trajectory enhancement model that takes matched planar features from LiDAR as input to produce
enhanced GNSS/INS trajectory.

Figure 5.5 Study sites used for trajectory enhancement: (a) dataset 1: underpass data acquisition, (b) dataset 2: indoor mapping,
and (c) dataset 3: indoor mapping of dome facility using a crane bucket.
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and accuracy report was derived using Inertial Explorer—
a commercial software by Novatel (Hexagon/Novatel,
n.d.a). The expected accuracy of the point cloud was
estimated based on the individual sensor specifications
using the LiDAR Error Propagation Calculator developed
by Habib et al. (2006). The calculator suggests an accuracy
of ¡5 cm at a range of 100 m in the absence of GNSS
signal outages. In order to reconstruct accurate point
clouds from the MLMS, rigorous system calibration is

required to estimate the mounting parameters—lever arm
and boresight angles—relating the onboard LiDAR sensor
with the GNSS/INS unit. In this study, the Backpack
MLMS was calibrated using the approach proposed by
Ravi et al. (2018b).

Table D.1 in Appendix D provides the characteristics
of the three datasets along with the environmental
factors causing trajectory quality deterioration. The
feature extraction and matching thresholds as well as



Figure 5.6 Backpack MLMS used in this study.
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trajectory enhancement parameters used for each
dataset are also provided in Table D.1. The spatial
and directional proximity thresholds for feature match-
ing without loop closure are determined based on an
inspection of the original point clouds whereas those
for feature matching with loop closure are determined
based on the inspection of the point cloud after
preliminary trajectory enhancement. The trajectory
enhancement results presented in this section are
assessed both qualitatively and quantitatively. Narrow
profiles (0.5 m wide) oriented in different directions are
extracted from the point cloud to qualitatively illustrate
the improvement in point cloud alignment after
trajectory enhancement. While all the profiles are
portrayed before and after trajectory enhancement,
one profile within each dataset is used as a sample to
demonstrate the alignment quality at three stages—
before trajectory enhancement, after trajectory enhance-
ment without loop closure, and after trajectory enhance-
ment with loop closure—to illustrate the performance of
the proposed two-stage approach. The improvement in
point cloud alignment quality is quantified by reporting
the statistical measures of normal distances of the
LiDAR points to their corresponding best-fitting planes
before and after trajectory enhancement. Next, the
magnitude of estimated corrections to trajectory para-
meters is visualized for the enhanced high-frequency
trajectory to illustrate the introduced trajectory mod-
ification in different areas to improve point cloud
alignment. Further, a plot of the magnitude of trajec-
tory positional parameters corrections with respect to
the reported standard deviation during post-processing
is also shown to highlight the relationship between
the two. Finally, statistical measures describing the
difference between original and enhanced trajectory
position/attitude parameters are reported to quantify
the modification.

5.4.1 Dataset 1: Underpass Data Acquisition

The entire point cloud colored by height is shown in
Figure 5.7 along with the Backpack trajectory overlaid
in pink. While most of the trajectory is under open sky,
the portion under the bridge has obstructed GNSS
signals, thus resulting in lower quality trajectory. The
profiles used for qualitative assessment of point cloud
alignment before and after trajectory enhancement are
also shown in Figure 5.7. Out of these, Profile 1 is used
to demonstrate the point cloud alignment before
trajectory enhancement and after each stage of
trajectory enhancement (without/with loop closure).
The points for Profile 1 are shown in Figure 5.8 colored
by time of capture. This profile spans a cross-section of
the underpass area with mechanically stabilized earth
(MSE) walls on either side and a pillar in the center.
There is a road surface and curb on either side of the
pillar, as depicted in Figure 5.8. Areas 1, 2, and 3 within
Profile 1 are closely inspected to illustrate the improve-
ment in point cloud alignment through the two stages
of trajectory enhancement. For Areas 1 and 3, the MSE
walls have a large misalignment in the original point
cloud, which is reduced to produce better plane
definitions after trajectory enhancement without loop
closure. Finally, trajectory enhancement with loop
closure produces a well-aligned point cloud for these
walls. Area 2 shows the central pillar, where the
opposite vertical faces of the pillar in the original point
cloud are close within the range of misalignment of
other points captured over the same surface. Further,
the bridge deck appears to be out of level on either side
of the pillar due to trajectory inaccuracy. After
trajectory enhancement without loop closure, the points
belonging to the two vertical faces of the pillar are
better delineated and the level nature of the bridge deck
is better represented than in the original point cloud.



Figure 5.7 Dataset 1: entire point cloud colored by height, overlaid Backpack MLMS trajectory (pink), and profiles (blue boxes)
used for qualitative assessment of trajectory enhancement results.
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After trajectory enhancement with loop closure, the
points along the pillar faces as well as bridge deck are
well-aligned.

The point cloud for Profile 2 (D1-P2 in Figure 5.7) is
depicted in Figure 5.9 to assess the alignment quality
along the walking direction. The side view indicates a
substantial improvement in alignment of the pillars
after trajectory enhancement. The bridge beams on the
top (oblique with respect to the original side view) are
zoomed-in to show the impact of trajectory enhance-
ment on defining the beam structure adequately within
the resultant point cloud. Table 5.1 reports the statis-
tical measures (mean, standard deviation, RMSE, and
maximum) of normal distances of the LiDAR feature
points to their corresponding best-fitting plane before
and after trajectory enhancement. The RMSE of
normal distances after trajectory enhancement shows
that the point cloud attains a final overall accuracy of
5.7 cm.

To investigate the estimated change in trajectory,
Figure 5.10 shows the enhanced trajectory colored
according to the magnitude of 3D corrections to
positional parameters and it is overlaid on the point
cloud colored by height (in shades of green). The figure
indicates that the corrections are minimal (less than
5 cm) for portions of the trajectory under open sky
whereas the magnitude of corrections reach the
maximum value close to the middle of the bridge where
there is restricted GNSS signal reception. Figure 5.11
shows the plot of the norm of post-processing standard
deviations for the trajectory position parameters as
reported by Inertial Explorer (blue) as well as the
magnitude of corrections estimated for the same (red).
The segments corresponding to the data acquisition
while under the bridge are highlighted in the figure,
where the post-processed trajectory accuracy is seen
to deteriorate significantly. It can be seen that, as
expected, the estimated corrections are more in these
segments where the estimated post-processing standard
deviations were higher. The plot also depicts that the
estimated corrections are generally more than the

reported post-processing accuracy of position para-
meters, which indicates that the latter is more optimistic
than the true accuracy of post-processed trajectory. In
other words, there is substantial misalignment within
point clouds in such areas (possibly due to accumulat-
ing trajectory drift from other areas with deteriorated
trajectory accuracy) that warrants corrections to the
trajectory that exceed the estimation accuracy of the
parameters during post-processing. Table 5.2 reports
the statistical measures for the estimated corrections
to the trajectory position and attitude parameters
recorded at 100 Hz frequency along with the change
in velocity after enhancement. The maximum absolute
correction values indicate the modification in the
worst portion of the trajectory for each dataset. These
measures are a direct indication of the modification to
the initial trajectory to attain better point cloud
alignment. The maximum positional correction to the
initial trajectory is 33.4 cm (X direction) and the maxi-
mum attitude correction is 0.81u (roll angle).

5.4.2 Dataset 2: Indoor Mapping

This dataset presents the general scenario of indoor
mapping. For interested readers, its experimental
results can be found in Appendix D.3.

5.4.3 Dataset 3: Indoor Mapping of Dome Facility Using
Crane Bucket

This dataset was acquired for salt dome mapping by
walking outdoor around a dome followed by an indoor
data acquisition with the help of a crane bucket to
capture salt pile within the dome. The entire point
cloud colored by height is shown in Figure 5.12 along
with the Backpack trajectory overlaid in pink. The
trajectory portion inside the facility is prone to
complete GNSS signal obstruction. This dataset is used
as an example to demonstrate the feasibility of the
proposed approach to deal with non-trivial trajectory
dynamics (as in the case of using crane bucket) and



undulating/curved surfaces in the surroundings.
Figure 5.13 shows Profile 1 before and after trajectory
enhancement without/with loop closure. The dome and
salt pile surface indicate improvement in alignment
after the two stages of trajectory enhancements. For
zoomed-in views of different areas within Profile 1 and
Profile 2, respectively before and after trajectory
enhancement, readers are referred to Figures D.9 and

D.10 in Appendix D.4. The figures clearly demonstrate
that the proposed trajectory enhancement strategy can
produce well-aligned point clouds for datasets com-
prised of areas with curved and undulating surfaces
as encountered in this dataset. Table 5.3 reports the
quantitative measures of LiDAR point cloud align-
ment. The RMSE after trajectory enhancement indi-
cates a final overall accuracy of 8.4 cm. The relatively

Figure 5.8 Continued to next page.
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Figure 5.8 Dataset 1: profile 1 (colored by time) illustrating point cloud alignment quality before and after trajectory
enhancement without/with loop closure.
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higher RMS of normal distance for this dataset
compared to the others can be attributed to the curved
and undulating surfaces in this dataset.

The change in trajectory is qualitatively depicted in
Figure 5.14, which depicts substantial modification for
the outdoor as well as indoor portions. This can be
attributed to the following characteristics of the dataset:
(1) curved dome surfaces being treated as piecewise
planar surfaces and (2) inability to separate outer and
inner surfaces of the dome during feature matching.
Figure 5.15 shows a zoomed-in view of dome surface
before and after trajectory enhancement while depicting
the versions captured by the outdoor and indoor
trajectory portions in blue and red, respectively. It
can be seen that the side wall is captured only by the
outdoor portion since the indoor portion captures the
salt pile surface that obstructs the side wall. The figure
clearly demonstrates that the outdoor and indoor dome
surface are aligned after trajectory enhancement due to
the inability to delineate outer (blue) and inner (red)
surfaces, thus supporting the above claim. For inter-

ested readers, Figure D.11 in Appendix D.4 shows the
plot of the norm of post-processing standard deviations
and the magnitude of corrections estimated (red) for the
trajectory position parameters with the indoor trajec-
tory portion highlighted in black. The higher correc-
tions in areas with low standard deviations (outdoor) is
caused by the same reasons stated above. It is worth
noting that similar behavior was observed for attitude
parameters. Furthermore, Table D.4 in Appendix D.4
reports the statistical measures for the estimated
corrections to the high-frequency trajectory position
and attitude parameters along with the velocity cor-
rections. The maximum position and attitude modifica-
tion to the initial trajectory is 51.4 cm (Y direction) and
2.04u (heading angle).

5.5 Conclusions and Recommendations for Future Work

This paper presented a two-stage framework for
GNSS/INS trajectory enhancement with the help of
planar features extracted from point clouds captured by



Figure 5.9 Dataset 1: profile 2 (colored by time) illustrating point cloud alignment quality before and after trajectory
enhancement.

Figure 5.10 Dataset 1: quantitative assessment of estimated position corrections to the trajectory. Enhanced trajectory colored by
magnitude of estimated corrections to 3D position.
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TABLE 5.1
Dataset 1—quantitative
45,454,918 points)

evaluation of point cloud alignment quality before and after trajectory enhancement (based on a total of

Mean (m) STD (m) RMSE (m) Max (m)

Before Trajectory Enhancement

After Trajectory Enhancement

0.071

0.038

0.101

0.046

0.123

0.057

0.384

0.112



Figure 5.11 Dataset 1: post-processing standard deviation and magnitude of estimated corrections for trajectory position
parameters.

TABLE 5.2
Dataset 1—quantitative evaluation of the change in trajectory position (X, Y, Z), attitude (v, j, k), and velocity (v) parameters as a result
of trajectory enhancement

# Adjusted Trajectory

Points X (m) Y (m) Z (m) v (u) j (u) k (u) n (m/s)

106, 158

(100 Hz; ,18 mins)

Mean

STD

RMSE

Max of Absolute

Values

0.007

0.089

0.089

0.334

0.005

0.056

0.057

0.179

0.001

0.037

0.037

0.267

0.001

0.076

0.076

0.496

–0.009

0.117

0.117

0.813

0.170

0.182

0.249

0.474

0.021

0.035

0.040

0.257

TABLE 5.3
Dataset 3—quantitative
51,420,371 points)

evaluation of point cloud alignment quality before and after trajectory enhancement (based on a total of

Mean (m) STD (m) RMSE (m) Max (m)

Before Trajectory Enhancement

After Trajectory Enhancement

0.116

0.055

0.120

0.073

0.165

0.084

0.423

0.251
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LiDAR sensors onboard a Backpack MLMS. The
approach was designed to successively eliminate short-
term and long-term trajectory drifts. Planar features
were extracted and matched without loop closure in the
original point cloud to be used for the first stage of
trajectory enhancement to mitigate short-term drift.
The resultant intermediate enhanced point cloud was
used for feature extraction and matching with loop
closure, which then assisted in conducting the final
stage of trajectory enhancement. The approach was

tested on three datasets with varying duration of GNSS
signal outages. The results demonstrated the feasibility
of the proposed approach to produce an accurate
trajectory and well-aligned point clouds. For the
different datasets, the proposed approach is seen to
produce point clouds with an overall alignment
precision of 4–8 cm irrespective of the nature of the
surroundings being surveyed and initial GNSS/INS
trajectory quality behavior (segments of ,40–150 secs
of GNSS signal outages). The approach eliminates



Figure 5.12 Dataset 3: entire point cloud colored by height,
overlaid Backpack MLMS trajectory (pink), and profiles (blue
boxes) used for qualitative assessment of trajectory enhance-
ment results.

initial inaccuracies within the trajectory position and
orientation parameters ranging up to about 1.30 m and
2.50u respectively.

Future work in this domain will focus on devising an
approach to automatically extract and match linear
and/or cylindrical primitives in the surroundings to
allow trajectory enhancement for complex environ-
ments, such as forests and ravines, which are not
conducive to the use of solely planar features and would
require the need to leverage information from sur-
rounding trees/vegetation, power cables, and so on.
The proposed approach will also be tested for longer
duration of GNSS signal outages. Furthermore,
a tightly coupled integration of LiDAR with GNSS
and INS information will be explored by trying to
utilize the enhanced trajectory parameters estimated
using the proposed approach during GNSS/INS
integration as prior information for producing accurate
trajectory in GNSS-challenging portions of data
acquisition. Finally, while the current implementation
is executed on a CPU with 64 GB RAM, future work
will explore the ability to utilize GPU to speed up the
processing in order to facilitate trajectory enhancement
for data acquisitions resulting in significantly larger
point clouds.

Figure 5.13 Dataset 3: profile 1 (colored by time) illustrating
point cloud alignment quality before and after trajectory
enhancement without/with loop closure.
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Figure 5.14 Dataset 3: quantitative assessment of estimated position corrections to the trajectory: enhanced trajectory colored by
magnitude of estimated corrections to 3D position.

Figure 5.15 Dataset 3: dome surface, side wall, and salt surface before and after trajectory enhancement colored by outdoor
(blue) and indoor (red) trajectory portions.
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6. SEMANTIC SEGMENTATION OF BRIDGE
COMPONENTS AND ROAD ELEMENTS USING
MOBILE LIDAR DATA

6.1 Abstract

Emerging mobile LiDAR mapping systems exhibit
great potential as an alternative for mapping road
environments. Such systems can acquire high-quality,
dense point clouds that capture detailed information
over an area of interest through efficient field surveys.
However, recognizing and semantically segmenting
different components from the point clouds automati-
cally with efficiency and high accuracy remains a
challenge. Towards this end, this study proposes a
deep learning-based semantic segmentation framework

to simultaneously classify bridge components and road
elements using mobile LiDAR point clouds. A cross-
labeling technique leveraging the good geolocation
quality of mobile LiDAR data is developed to reduce
the need of manual annotation. The transferability of
the deep learning-based approach across data acquired
from different systems or capturing varying scenes is
explored. The proposed framework is evaluated using
data from surveying-grade and mapping-grade systems
along an interstate highway with 27 highway bridges.
The results show that the proposed cross-labeling
approach can effectively transfer labels from one
mobile mapping system to another for all classes except
scanning artifacts. The deep learning-based semantic
segmentation framework can handle mobile LiDAR



data efficiently and achieve an overall accuracy of 84%.
Bridge decks and piers can be classified with high
accuracy while abutments are difficult to predict. The
proposed transfer leaning technique can boost the deep
learning model performance when dealing with data
from different systems and scenes.

6.2 Introduction

Precise, periodic, real-world measurements that
capture the as-is conditions of structures lay the
foundation for the maintenance and management of
transportation infrastructure. The ability to efficiently
map miles of highway and road networks is the key for
applications like transportation asset management,
high-definition map generation, and autonomous driv-
ing. Bridges, one of the essential elements in transpor-
tation infrastructure, require frequent and accurate
inspections to ensure structural soundness and prior-
itize maintenance (AASHTO, 2011). Current highway
asset management practices rely primarily on visual
inspection and manual measurements conducted by
trained inspectors, which is time-consuming and expen-
sive. Remote sensing technologies have stimulated
various non-contact approaches for monitoring existing
infrastructure. Unmanned aerial vehicles (UAV) ima-
gery has been utilized to detect structural defects and
reconstruct 3D information for bridges (Chen et al.,
2019; Khaloo et al., 2018; Morgenthal et al., 2019; Seo
et al., 2018; Spencer et al., 2019). Terrestrial laser scan-
ners (TLS) that provide high-resolution point clouds
with millimeter-level precision have been deployed
to track construction progress (Pučko et al., 2018;
Son et al., 2017; Zhang & Arditi, 2020) and monitor
structural health post-construction (Cha et al., 2019;
Ham & Lee, 2018; Lee et al., 2019). Despite being
effective, UAV and TLS surveys are limited to a local
region, thus not scalable for mapping miles of highway
and road networks. Ground mobile LiDAR mapping
systems (MLMS) can capture large areas with efficient
field surveys and therefore are widely adopted for
mapping urban environments (Che et al., 2019; Ma
et al., 2018; Wang et al., 2020). Such systems typically
utilize direct georeferencing, i.e., trajectory information
provided by the onboard global navigation satellite
system/inertial navigation system (GNSS/INS) unit, to
reconstruct LiDAR data in a common mapping frame.
Centimeter-level positional accuracy can be expected if
the quality of trajectory from the GNSS/INS unit and
system calibration parameters are guaranteed. While
MLMS exhibits great potential for mapping transpor-
tation corridors, bottlenecks in automated extraction of
geometric and semantic information from mobile
LiDAR data limit our ability to leverage the detailed
information captured by such systems. As pointed out
by prior research, semantic segmentation of mobile
LiDAR data is extremely challenging due to occlusions,
irregular distribution and high volume of data, and
varying point density (He et al., 2020; Li, Wu, et al.,
2019).

At an early stage, point cloud segmentation aims at
clustering points into subgroups that share similar
characteristics. Such segmentation approaches typically
utilize the spatial proximity and similarity of local
features derived from a neighborhood. Properties like
gradient and surface normal were derived based on
raster digital surface model (DSM) or triangulated
irregular network (TIN) and used for clustering
(Forlani et al., 2006; Vosselman et al., 2004). For
irregular point clouds, dimensionality features (e.g.,
planar, linear, and rough) based on eigenvalue analysis
in a local neighborhood proposed by Demantké et al.
(2011) are commonly used. Points sharing similar
characteristics are grouped together using different
algorithms (Habib & Lin, 2016; Lari & Habib, 2014;
Yang & Dong, 2013). A major drawback of these
approaches is that they do not link the segments to any
contextual information.

Having the ability to cluster points sharing similar
characteristics into segments, researchers then focus on
the extraction of semantic segmentation, i.e., assigning
a semantic class label to each point or cluster in the
point cloud. One trend of this research is to use super-
vised machine learning algorithms. For example, sup-
port vector machine (SVM), random forests, Bayesian
classifier, and AdaBoost are frequently used (Chehata
et al., 2009; Khoshelham & Elberink, 2012; Wang et al.,
2015; Weinmann et al., 2015; Zhang et al., 2013). Des-
pite the good efficiency, these algorithms work on
individual points or clusters and do not consider
neighborhood relationships. To model the interactions
between neighboring points or clusters, graphical models
including Markov networks and conditional random
fields (CRF) are introduced (Guinard & Landrieu, 2017;
Niemeyer et al., 2014; Schmidt et al., 2012; Vosselman
et al., 2017; Zhu et al., 2017). However, using graphical
models to represent the relationship of 3D points is
limited by the low-dimensional feature space. Recently,
researchers have explored deep learning on point
clouds, following the successful convolutional neural
network architectures used for image segmentation
(Wu et al., 2022). The irregular structure and huge
volume of data are the main challenges for applying
neural networks on point clouds. Some studies
proposed imagery and point cloud data fusion to take
advantage of existing network architectures and bench-
mark datasets for 2D images (Boulch et al., 2017;
Zhang et al., 2018). Other attempts like SEGCloud
(Tchapmi et al., 2018) and VoxelNet (Zhou & Tuzel,
2017) convert the point cloud to regular voxels.
However, these approaches suffer from information
loss in the projection or voxelization process, and thus
cannot retain detailed information captured by the
original point clouds. PointNet (Qi, Su, et al., 2017) is a
well-known deep learning architecture that directly
takes irregular 3D point clouds. PointNet++ (Qi, Yi,
et al., 2017) exploited local geometric structures by
hierarchically applying PointNet in small neighbor-
hoods. PointCNN (Li et al., 2018) used an X-trans-
formation to learn spatially local correlation between
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points. To model the relationship between neighboring
points, Wang et al. (2019) proposed EdgeConv that acts
on graphs. In EdgeConv, each point in the point cloud
is represented as a node and it is connected to its neigh-
boring points by a directed graph. Although the above-
mentioned work achieved good segmentation results,
they can only handle a small number of points and are
incapable of considering long-range contextual informa-
tion (i.e., contextual information for distant objects).
Landrieu and Simonovsky (2018) proposed point cloud
semantic segmentation with superpoint graph (SPG).
Their approach partitions point clouds into geometri-
cally homogeneous clusters (hereafter, denoted as
superpoint), constructs superpoint graphs to encode
the neighborhood relationship, and uses graph convolu-
tion networks for contextual segmentation. The strength
of the SPG framework lies in its ability to handle a
large volume of data and model long-range contextual
information while considering local geometric attri-
butes. This approach is tested using point cloud seg-
mentation benchmarks over large outdoor scenes,
Semantic3D (Hackel et al., 2017) and Stanford Large-
Scale 3D Indoor Spaces (S3DIS) (Armeni et al., 2016),
and demonstrates superior performance.

While extensive effort has been devoted to point
cloud semantic segmentation in general outdoor scenes
and road environments, studies that focus on bridge
components are rare in the literature. Existing work for
semantic segmentation of bridge components can be
classified into geometric-based strategies (Lu et al., 2019;
Lu & Brilakis, 2019; Truong-Hong & Lindenbergh, 2021;
Yan & Hajjar, 2021) and learning-based approaches
(Kim et al., 2020; Kim & Kim, 2020; Xia et al., 2022).
Geometric-based strategies require manual background
removal and domain knowledge about the geometric and
topological constraints among the bridge components.
Such approaches are sensitive to noise and occlusions in
the point cloud, and thus not practical for complex real-
world scenes. Learning-based approaches do not require
manual background removal. Instead, they have several
classes for bridge components (e.g., bridge deck, girder,
pier, and abutment) and one class for background. Kim
and Kim (2020) compared PointNet, PointCNN, and
EdgeConv for their ability to classify bridge components
and concluded EdgeConv outperformed the other two
architectures. Xia et al. (2022) proposed a multi-scale
local descriptor based on geometric features of bridges
and developed a machine learning pipeline for classifica-
tion. Although learning-based approaches demonstrated
great potential towards versatile solutions, lack of
training data is a major concern since current publicly
available benchmarks do not provide label information
regarding bridge components.

Insufficient training data is a universal obstacle that
hinders the application of deep learning (Gao et al.,
2022). Deep learning works under the assumption that
the training and testing data have the same feature
space and distribution, and it relies strongly on massive
training data (Pan & Yang, 2010; Tan et al., 2018).
When the distribution changes, the models need to be

trained from scratch using new training data to ensure
the best performance. Collecting and constantly updating
a large amount of annotated data, however, is extremely
expensive and thus impractical for many real-world
applications. For instance, data acquired from different
systems may present varying characteristics owing to the
different noise level and scanning mechanisms of the
LiDAR units begin used. Complexity of scanned scenes,
e.g., different building heights and diverse shapes or sizes
of road-side objects, is another factor that contributes to
the varying characteristics. Consequently, new strategies
that reduce the need and effort for collecting annotated
data would greatly facilitate the application of deep
learning to real-world problems.

Transfer learning aims to leverage knowledge from a
source domain to improve the learning process in a target
domain. It relaxes the assumption that the training data
has the same feature space and distribution as the testing
data (Tan et al., 2018). By applying transfer learning
techniques, a model in the target domain does not need
to be built from scratch, thus significantly reducing the
need for training data in the target domain. A good
summary of past works dealing with transfer learning can
be found in Pan and Yang (2010) and Weiss et al. (2016),
with a focus on machine learning methods. Recent
surveys that discuss knowledge transfer in deep neural
networks can be found in Tan et al. (2018) and Zhuang et
al. (2021). However, existing studies on transfer leaning
mainly focuses on 2D imagery data. Transfer learning in
3D, especially on point clouds, is less explored and more
challenging. Most of the existing research tried to take
advantage of traditional convolution neural networks
and benchmark imagery datasets (Balado et al., 2020;
Imad et al., 2021; Piewak et al., 2019; Zhao, Guo, et al.,
2020). In Imad et al. (2021), the model was pre-trained on
2D object detection image datasets and fine-tuned with
birds-eye-view images created from the point clouds.
Zhao, Guo, et al. (2020) extracted several features from
point clouds, including normalized height, intensity,
surface curvature, and organized them into images.
Balado et al. (2020) and Piewak et al. (2019) projected
3D point clouds to 2D images. The latter also developed
a cross-labeling technique that transfers labels in the
image space to the object space. He et al. (2020) proposed
an extended multiclass TrAdaBoost algorithm that can
handle training data from complementary sources, i.e.,
images and point clouds. They adopted VoxelNet in their
framework to handle 3D point clouds. Zhao, Wang, et al.
(2020) proposed a domain adaption framework to bridge
the gap between synthetic and real LiDAR point clouds.
To the best of the authors’ knowledge, no current study
has explored the transferability of deep neural network
that take irregular point sets as input.

This study aims to investigate (1) the performance of
using mobile LiDAR data and a deep learning-based
approach to classify bridge components as well as road
elements and (2) the transferability of the deep learning-
based approach across data acquired from different
systems or capturing varying scenes. The SPG framework
(Landrieu & Simonovsky, 2018) is adopted for point
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cloud semantic segmentation because it (1) considers the
spatial context at an object level instead of points, (2) has
the ability to learn rich contextual information owing to
the less constrained feature space, and (3) handles large-
scale point clouds without the need for down-sampling
while maintaining acceptable efficiency. Two strategies,
namely, cross-labeling and transfer learning, are developed
to assist the deep learning-based approach in adapting
to the various characteristics of the acquired data. The
former transfers the labels from one mobile mapping
system to another; the latter fine-tunes a model trained on
the source domain using a minimal amount of data from
the target domain. The proposed framework is evaluated
using data acquired by surveying-grade and mapping-
grade MLMS units along an interstate highway.

6.3 Data Acquisition System and Dataset Description

6.3.1 Mobile LiDAR Mapping Systems

The data used in this study was acquired by two
wheel-based mobile mapping systems developed by the
research team—Purdue Wheel-Based Mobile Mapping
System-High Accuracy (PWMMS-HA) and Purdue
Wheel-Based Mobile Mapping System-Ultra High
Accuracy (PWMMS-UHA), as shown in Figure 4.1.
The PWMMS-HA (Figure 4.1a) is outfitted with four
Velodyne LiDAR units (three HDL-32E and one VLP-
16 High Resolution), three cameras, and a GNSS/INS
unit for direct georeferencing. The PWMMS-UHA
(Figure 4.1b) is equipped with two 2D profiler LiDAR
units (a Riegl VUX-1HA and a Z+F Profiler 9012), two
cameras, and a georeferencing unit. Table A.1 and
Table A.2 in Appendix A report the specifications of
the LiDAR (Riegl, n.d.; Velodyne, n.d.a, n.d.b;
Zoller+Fröhlich, n.d.) and georeferencing (Applanix,
n.d.; Hexagon/Novatel, n.d.c) units onboard the two
systems. System calibration was conducted for both
vehicles using an in-situ calibration procedure (Ravi
et al., 2018b). The post-calibration accuracy of the
point cloud from each MLMS at a specific sensor-to-
object distance was estimated using a LiDAR error
propagation calculator (Habib et al., 2006). The results
suggest an expected accuracy of ¡ 2–3 cm and ¡ 1–2
cm at a sensor-to-object distance of 30 m for the
PWMMS-HA and PWMMS-UHA, respectively.

6.3.2 Dataset Description

The field survey was conducted along an interstate
highway, I-65, from West Lafayette, Indiana to Whites-
town, Indiana (shown in Figure 6.1). Both MLMS
vehicles drove southbound and then northbound with
an average speed of 50 mph. LiDAR and imagery data
were acquired simultaneously and directly georefer-
enced by the onboard GNSS/INS unit. A total of four
datasets were created—(1) the PWMMS-UHA bridge,
(2) PWMMS-HA bridge, (3) PWMMS-UHA highway,
and (4) PWMMS-HA highway datasets. For the
PWMMS-UHA and PWMMS-HA bridge datasets, 27

overpassing bridges (Bridges 1 to 27 in Figure 6.1)
along the highway were identified. The bridges together
with their surrounding areas were manually extracted
from the point clouds. The length of the region of
interest for a bridge (dimension along the driving
direction) is in the range of 100 m to 150 m. Figure 6.2
shows a sample point cloud and images from the
MLMS capturing Bridge 2 (with column piers). For the
PWMMS-UHA and PWMMS-HA highway datasets,
the area of interest (I-65 from West Lafayette to
Whitestown) covering approximately 42 miles was tiled
at a regular interval of 120 m along the driving direc-
tion, resulting in a total of 554 tiles. The length of
the tiles was set to 120 m so that the tile size for the
highway and bridge datasets would be compatible.

6.4 Methodology

This section describes the main steps of the proposed
framework of using mobile LiDAR data and deep
learning to classify bridge components as well as road
elements. The main steps include point cloud prepro-
cessing, manual annotation, cross-labeling, deep learn-
ing-based point cloud semantic segmentation, and
transfer learning, as outlined in Figure 6.3.

6.4.1 Point Cloud Preprocessing

Point clouds acquired by ground MLMS typically
have a high point density near the trajectory. The point
density drops drastically as the distance from the trajec-
tory increases. The varying point density could lead
to an unbalanced number of points among different
classes, which harms the performance of the deep
learning network. To mitigate potential issues caused
by varying point density, point clouds are down-sampled

Figure 6.1 Study site showing data collection route and
bridge locations (aerial photo adopted from Google, n.d.b).
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Figure 6.2 Sample data from the mobile mapping system showing the images (from southbound and northbound) and point
cloud (colored by intensity) corresponding to Bridge 2.

Figure 6.3 Framework of the proposed deep learning-based semantic segmentation for bridge components and road elements.
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to keep a minimum point distance of ns cm, where ns

is a user-defined value. Figure 6.4 shows the plani-
metric point density (points per square meter, ppsm)
along with the trajectory of a sample PWMMS-UHA
point cloud before and after down-sampling. The
minimum point spacing for down-sampling is 5 cm.
While substantial variation in point density can be
observed in the original point cloud (Figure 6.4a), the
point density becomes much more homogeneous after
down-sampling. A close view of the point cloud over a
traffic sign before and after down-sampling is shown in
Figure 6.5. While the number of points on the sign
board and poles reduces, the shape of the sign board is
retained.

6.4.2 Point Cloud Annotation

The aim of the semantic segmentation in this study is
to simultaneously classify bridge components and road

elements. We divide a bridge into three main parts (illu-
strated in Figure 6.6)—(1) horizontal components—the
deck, guardrail, and beam/girder, (2) vertical components
on the two ends—the abutment and wing wall, and (3)
vertical supports at the middle—the pier. The following
nine classes are used for bridge and road elements.

N Bridge—deck, guardrail, and beam/girder

N Bridge—abutment and wing wall

N Bridge—pier

N Man-made terrain: roads

N Natural terrain: grass and ditches

N Vegetation: trees and bushes

N Buildings: buildings, retaining walls, noise barriers, etc.

N Remaining hardscape: guardrails, traffic signs, traffic
lights, utility poles, etc.

N Scanning artifacts: artifacts caused by dynamically
moving objects

Point cloud annotation is carried out using the proce-
dure described in Hackel et al. (2017). The user performs



Figure 6.4 Planimetric point density map for (a) the original point cloud and (b) down-sampled point cloud with a minimum
point spacing of 5 cm (Bridge 2 in the PWMMS-UHA bridge dataset).

Figure 6.5 Example of point cloud down-sampling showing (a) the original point cloud and (b) down-sampled point cloud with a
minimum point spacing of 5 cm.

Figure 6.6 Classes for bridge components: deck, guardrail, beam, and girder in blue; abutment and wing wall in cyan; and pier in
red.
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rotation and cropping of the point cloud repeatedly until
all points in the remaining segment belong to the
same class. The open-source software—CloudCompare

(CloudCompare, n.d.)—is used for this procedure.
A sample manual annotation result for Bridge 2 in the
PWMMS-UHA bridge dataset is shown in Figure 6.7.



Figure 6.7 Sample annotated point cloud colored by class (Bridge 2 in the PWMMS-UHA bridge dataset).
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6.4.3 Cross-Labeling

For MLMSs that utilize direct georeferencing,
centimeter-level positional accuracy can be expected if
the quality of trajectory from the GNSS/INS unit and
system calibration parameters are guaranteed. Taking
advantage of the good geolocation quality and low
noise level, manual annotation conducted on a source
dataset can easily be transferred to a target dataset
(i.e., dataset from a different system or date) as long
as the two datasets cover the same area. Starting
with a point in the target dataset, its closest point
in the source dataset is identified. If the distance
between the two points is smaller than a user-defined
threshold, the point in the target dataset is assigned the
same label as the point in the source dataset. Figure 6.8
demonstrates the geolocation quality of data from
the two MLMSs used in this study and shows sample
cross-labeling results. In Figure 6.8b, the manual
annotation is conducted on the source PWMMS-
UHA dataset and transferred to the target PWMMS-
HA dataset. One should note that the coverage of the
cross-labeled data is inherently limited by the coverage
of the source data. More specifically, an area in the
target dataset cannot be cross-labeled if it is not
captured in the source dataset. In addition, the under-
lying assumption of cross-labeling is that the scene
remains unchanged across data acquisitions. In this
study, the source and target datasets were captured
at the same date and thus the highway scenes remain
the same. The scanning artifacts in the two datasets,
on the other hand, show a clear disparity since
the artifacts are mainly caused by moving vehicles
during data acquisition and their characteristics
are subject to the scanning mechanism and noise level
of the LiDAR units. As a result, proper transfer of
labels can be expected for all classes except scanning
artifacts.

6.4.4 Deep Learning-Based Point Cloud Semantic
Segmentation

Point cloud semantic segmentation aims at linking
each point in the point cloud to a class label. The SPG

framework (Landrieu & Simonovsky, 2018) is adopted
in this study for its ability to consider the spatial
context at an object level, learn rich contextual
information, and handle point clouds over large spatial
extents. The SPG framework has four main steps:
geometrically homogeneous partition, superpoint graph
construction, superpoint embedding, and contextual
segmentation (Landrieu & Simonovsky, 2018).

The first step partitions the point cloud into
geometrically simple yet meaningful clusters (hereafter,
denoted as superpoints). For every point in the point
cloud, a local neighborhood is defined based on its
nm nearest neighbors. A principal component analysis
(PCA) is conducted and the following geometric
features are evaluated using the eigenvalues and
eigenvectors: linearity, planarity, scattering, and verti-
cality, as introduced in Guinard and Landrieu (2017).
The optimization model for geometrically homoge-
neous partition is defined based on the geometric
features and the nearest neighbor adjacency graph.
Figure 6.9 shows a sample partition results for Bridge 2
in the PWMMS-UHA bridge dataset. The second step
constructs the adjacency relationship of the superpoints
(more details can be found in Appendix E.1). In this
study, each point is represented by its coordinates,
geometric features, and planimetric distance to the
trajectory (i.e., the 2D distance between the point and
its closest trajectory point). While geometric features
(i.e., linearity, planarity, scattering, and verticality)
characterize properties in a local neighborhood, plani-
metric distance to the trajectory describes the global
position of points with respect to the road. Finally, the
contextual segmentation classifies each superpoint based
on its embedding and its local surroundings within the
SPG. The architecture utilizes graph convolutions,
including gated graph neural networks (Li et al., 2016)
and edge-conditioned convolutions (Simonovsky &
Komodakis, 2017).

Furthermore, for this study, each dataset is divided
into the following: a training and validation set and an
independent testing set. Three-fold cross-validation
(Refaeilzadeh et al., 2016) is adopted for the training
stage, as depicted in Figure 6.10. Here, the goal is to
find the best model and number of epochs. First, the



Figure 6.8 Illustration of the cross-labeling approach: (a) data alignment between datasets acquired by different MLMSs and
(b) manually annotated PWMMS-UHA data and the corresponding cross-labeled PWMMS-HA data (Bridge 2).

Figure 6.9 Sample geometrically homogeneous partition result (Bridge 2 in the PWMMS-UHA bridge dataset): (a) point cloud
colored by height and (b) point cloud randomly colored by partition ID.

Figure 6.10 Schematic diagram for the training (three-fold cross-validation) and testing stage.
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training and validation set is divided into 3 subsets. The
training process is repeated three times. In each trial,
two of the subsets are used for training and the
remaining one is used for validation. The best epoch
(i.e., the epoch that has the lowest validation loss) in

each trial, ki, is recorded, where i denotes the ith trial
(i51, 2, 3). Finally, the best model is trained using the
full training and validation set with k* epochs, where k*
is the average of ki. Using this strategy, all the data in
the training and validation set can contribute to the



training of the best model. The performance of the best
model is evaluated using the independent testing set in
the testing stage.

6.4.5 Transfer Learning

Transfer learning aims to leverage knowledge from a
source domain to improve the learning process in a
target domain by minimizing the amount of training data
required. The conceptual basis of transfer learning is that
a deep neural network can be divided into two parts, the
first part acts as a feature extractor and the features are
versatile and the second part focuses on the given tasks
(e.g., classification and segmentation) (Tan et al., 2018).
Therefore, a model trained on source domain can be fine-
tuned with minimal data from the target domain. The
fine-tuning process adjusts the parameters in the second
part of the model while fixing the parameters in the first
part. In this study, the SPG model consists of PointNet
and graph convolutions. The transfer learning approach
fine-tunes the parameters in the fully connected layers
after max pooling in PointNet and the parameters in the
graph convolutions. An illustration is provided as Figure
E.2 in Appendix E.1.

6.5 Experimental Results

Several experiments were carried out to evaluate
the performance of the deep learning-based semantic
segmentation framework, as well as the proposed cross-
labeling and transfer learning approaches. The PWMMS-
UHA bridge, PWMMS-HA bridge, PWMMS-UHA
highway, and PWMMS-HA highway datasets were
used for the experiments.

In this study, manual annotation was conducted on
the PWMMS-UHA datasets because point clouds from
PWMMS-UHA have a very low noise level. The high
point cloud quality makes it easy for a user to identify
and annotate individual objects, and thus less prone
to human errors. Nevertheless, manual annotation is
a time-consuming process—it typically took one to
several hours for a user to label one bridge/tile, depen-
ding on the complexity of the scene. For the PWMMS-
UHA bridge dataset, all the 27 bridges were manually
annotated. For the PWMMS-UHA highway dataset,
23 out of 554 tiles (Tiles 2, 14, 25, 30, 34, 80, 121, 169,
212, 227, 268, 319, 340, 376, 442, 445, 454, 468, 491,
497, 499, 518, and 544) were selected and manually
annotated. The selected tiles cover a variety of highway
scenes, including different types of guardrails, traffic
signs, utility poles, noise barriers, retaining walls, and
buildings. The manually-annotated PWMMS-UHA
datasets were then used to cross-label their respective
PWMMS-HA datasets. In addition, one bridge
(Bridge 3) and two highway tiles (Tiles 25 and 212)
from the PWMMS-HA datasets were selected and
manually annotated for the cross-labeling performance
assessment (as will be discussed in Section 6.4.1).

Several performance measures are used in this study—
percentage of true positive (TP), false positive (FP), and

false negative (FN), precision (Equation 6.1), recall
(Equation 6.2), F1-score (Equation 6.3), and intersection
of union (IoU) as defined per Equation 6.4, where A is
the cluster of prediction and B is the cluster of ground
truth. The above-mentioned metrics are evaluated for
each class. In addition, the overall accuracy, as given in
Equation 6.5, is evaluated for the entire point cloud.

TP
Precision~

TPzFP
ðEq: 6:1Þ

TP
Recall~ ðEq: 6:2

TPzFN
Þ

Precision|Recall
F1score~2| Eq: 6:3

PrecisionzRecall
ð Þ

A\B
IoU~

j j TP
~ Eq: 6:4j jA|B TPzFPzFN

ð Þ

TP
Overall accuracy~

Number of points
ðEq: 6:5Þ

6.5.1 Cross-Labeling Performance Assessment

In this experiment, the performance of the proposed
cross-labeling approach is evaluated. One bridge
(Bridge 3) and two highway tiles (Tiles 25 and 212)
from the PWMMS-HA datasets were selected and
manually annotated for this experiment. The cross-
labeled results were compared against the manually
annotated ground truth to assess the quality of the
transferred labels.

Figure 6.11 presents the cross-labeled results and
manually annotated reference for Bridge 3, Tile 25, and
Tile 212. The reduced coverage over the ditches and
vegetation in the cross-labeled point clouds is attributed
to the limited spatial coverage of the PWMMS-UHA
data. Another noticeable difference between the cross-
labeled results and manually-annotated reference is the
scanning artifacts, which is expected as explained in
Section 6.3.3. Table 6.1 reports the quantitative perfor-
mance measures. The proposed cross-labeling strategy
achieved a precision higher than 0.97 for all classes
except scanning artifacts. The slightly higher false
negative rates (and thus lower recall) for the natural
terrain and vegetation are mainly related to the
difference in the spatial coverage between the two
systems. The poor performance for scanning artifacts is
not surprising as the two systems conducted the scans at
different times.

6.5.2 Deep Learning-Based Semantic Segmentation:
Baseline Model

In this experiment, the performance of the deep
learning-based semantic segmentation approach to clas-
sify bridge components and road elements is evaluated.
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Figure 6.11 Cross labeled results and manually annotated reference (Bridge 3, Tile 25, and Tile 212 from PWMMS-HA).

TABLE 6.1
Performance measures for the proposed cross-labeling approach

TP FP FN Precision Recall F1-score IoU

Bridge–Deck 0.899 0.000 0.101 1.000 0.899 0.947 0.899

Bridge–Abutment 0.979 0.000 0.021 1.000 0.979 0.989 0.979

Bridge–Pier 0.990 0.009 0.001 0.991 0.999 0.995 0.990

Man-Made Terrain 0.972 0.005 0.023 0.995 0.977 0.986 0.972

Natural Terrain 0.715 0.016 0.269 0.978 0.727 0.834 0.715

Vegetation 0.705 0.018 0.276 0.974 0.719 0.827 0.705

Buildings 0.994 0.005 0.001 0.995 0.999 0.997 0.994

Remaining Hardscape 0.945 0.025 0.031 0.974 0.969 0.972 0.945

Scanning Artifacts 0.050 0.016 0.934 0.752 0.051 0.095 0.050

Overall Accuracy 85% (89% when excluding scanning artifacts)
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The PWMMS-UHA bridge dataset was divided
into the following: a training and validation set
(21 bridges—Bridges 1, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14,
16, 17, 19, 20, 22, 23, 24, 25, 26, 27) and an independent
testing set (six bridges—Bridges 2, 5, 10, 15, 18, 21).
The six bridges selected for the testing set cover
different types of bridges presented in the area of
interest. A baseline model (hereafter, denoted as Model
A) was developed.

N Model A (baseline)

˚ Trained and validated on the PWMMS-UHA bridge
dataset (21 bridges)

The performance of Model A was evaluated using
the independent testing set (6 bridges). Figure 6.12
shows the prediction from Model A for the six bridges.
As evident in the figure, the SPG model was able to
classify the objects as a whole, e.g., all the points



Figure 6.12 Predictions from Model A for the testing set (Bridges 2, 5, 10, 15, 18, 21 from the PWMMS-UHA bridge dataset).

TABLE 6.2
Performance of Model A on the testing set from the PWMMS-UHA bridge dataset

TP FP FN Precision Recall F1-Score IoU

Bridge–Deck 0.896 0.086 0.018 0.912 0.980 0.945 0.914

Bridge–Abutment 0.400 0.407 0.193 0.495 0.674 0.571 0.412

Bridge–Pier 0.819 0.061 0.120 0.931 0.872 0.901 0.804

Man-Made Terrain 0.785 0.213 0.002 0.787 0.997 0.880 0.704

Natural Terrain 0.530 0.035 0.435 0.938 0.549 0.693 0.457

Vegetation 0.897 0.081 0.023 0.918 0.975 0.946 0.888

Buildings 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Remaining Hardscape 0.590 0.122 0.288 0.829 0.672 0.742 0.582

Scanning Artifacts 0.757 0.142 0.101 0.842 0.882 0.862 0.717

Overall Accuracy 84%
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belonging to a signboard would have a single label—
hardscape. Focusing on the bridge components, the
model successfully predicted most of the bridge decks
and piers whereas it had some difficulty distinguishing
abutments from the surrounding natural terrain.
Misclassification commonly happens along the bound-
aries between man-made terrain, natural terrain, and
vegetation. This problem is mainly related to the
geometric partition since the boundaries between these
classes are sometimes ill-defined. For Bridge 18, the
overhead traffic sign was misclassified as bridge com-
ponents. The performance metrics, including the per-
centage of TP, FP, and FN, precision, recall, F1-score,
IoU, together with the overall accuracy, is reported in

Table 6.2. Model A achieved an overall accuracy of
84% on the PWMMS-UHA bridge dataset, which will
serve as a baseline for evaluating transfer learning
performance. The results suggest that bridge decks and
piers can be classified with high accuracy. The
abutment, on the other hand, has low accuracy. The
results are consistent with previous research findings as
reported in Kim and Kim (2020).

6.5.3 Transfer Learning Between Scenes

This experiment/scenario presents an intermediate-
level challenge. For interested readers, the details are
provided in Appendix E.2



6.5.4 Transfer Learning Between Scenes and Systems

The last experiment tackles the most challenging
scenario: transfer learning between different scenes and
systems. In this experiment, the source domain is the
PWMMS-UHA bridge dataset; the target domain is
the PWMMS-HA highway dataset. The PWMMS-HA
highway dataset was divided into the following: a
training and validation set (17 tiles–Tiles 2, 25, 30, 34,
80, 121, 169, 227, 268, 319, 442, 454, 468, 491, 497, 518,
544) and an independent testing set (6 tiles–Tiles 14,
212, 340, 376, 445, 499). The following three models
were developed.

N Model A (baseline)

˚ Trained and validated on the PWMMS-UHA bridge
dataset (21 bridges)

N Model D

˚ Trained and validated the PWMMS-UHA bridge
dataset (21 bridges)

˚ Fine-tuned with the PWMMS-HA highway dataset
(6 tiles–Tiles 25, 80, 442, 454, 468, 497)

N Model E

˚ Trained and validated the PWMMS-HA highway
dataset (17 tiles)

All the models were tested on the testing set from the
PWMMS-HA highway dataset (6 tiles). One should
note that the cross-labeled PWMMS-HA dataset was
used for training and testing in this experiment, i.e., no
manual work was involved for the annotation of the
PWMMS-HA data. Model A (the baseline model)
was trained with the source domain data and thus was
expected to have the lowest accuracy. Model E
was trained with the target domain data and thus was
expected to have the highest accuracy. Figure 6.13
shows the predictions from Models A, D, and E for the
six tiles and the performance metrics are reported in
Table 6.3. As shown in Figure 6.13, Model A tends to
misclassify man-made terrain as natural terrain. One
possible reason is that the PWMMS-HA data has a
higher noise level as compared to the PWMMS-UHA
data, and such difference is particularly noticeable
along the road surface. Other problems include
misclassifying overhead signs as bridge components
(Tile 445) and misclassifying buildings as hardscape,
bridge components, or natural terrain (Tile 499).
According to Table 6.3, the performance of Model A
is significantly lower than the performance of Model E
(the overall accuracy of Model A is 10% lower than
that of Model E). Particularly, the low performance of
Model A on the man-made terrain is the source of such
difference. This result indicates that the model trained
with the PWMMS-UHA bridge dataset does not
generalize well on the PWMMS-HA highway dataset.

Model D, in contrast, achieved slightly better perfor-
mance as compared to Model E (the overall accuracy
of Models D and E is 84% and 82%, respectively).
Based on the IoU, the better performance is mainly
from the natural terrain and vegetation, which could be
attributed to the geometric partitions and large number
of points in the two classes. One should note that
Model D used only 6 training sets from the target
domain while Model E used 17 training sets. This result
suggests that the proposed transfer learning strategy
can effectively boost the performance of a pre-trained
model on a target domain with a small amount of
training data.

6.6 Conclusions and Future Work

Although several factors come into play in GNSS/
INS navigation, mobile LiDAR data can achieve
centimeter-level positional accuracy if the quality of
the resulting trajectory and system calibration para-
meters are accurately established. This study exploited
the good geolocation quality and developed a deep
learning-based framework for semantic segmentation of
bridge components and road elements using mobile
LiDAR data. Cross-labeling and transfer learning
strategies were proposed to aid the network in adapting
to varying characteristics of the acquired data and
easing the pain of manual annotation. Experimental
results showed that the proposed cross-labeling
approach can effectively transfer labels from one
mobile mapping system to another for all classes except
for scanning artifacts. The baseline model trained with
the PWMMS-UHA bridge dataset achieved an overall
accuracy of 84% for classifying bridge components and
road elements. Bridge decks and piers can be classified
with high accuracy while abutments are difficult to
predict. In terms of generalization, the baseline model
had good performance on the PWMMS-UHA high-
way dataset (overall accuracy: 83%) but not on the
PWMMS-HA highway dataset (overall accuracy: 72%).
By fine-tuning the baseline model with six training sets
from the PWMMS-HA highway dataset, its overall
accuracy increased from 72% to 84% and reached the
same level as compared to a model trained on the
PWMMS-HA dataset.

Future research will focus on developing geometri-
cally based quality control strategies to detect, report,
and fix, if possible, misclassifications as well as assess
the quality of segmentation results. Moreover, potential
approaches for automated identification of critical
training samples will be explored. Finally, the frame-
work will be implemented to utilize data from consu-
mer-grade mobile LiDAR systems.
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Figure 6.13 Predictions from Models A, D, and E for the testing set (Tiles 14, 212, 340, 376, 445, 499 from the PWMMS-HA
highway dataset).
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TABLE 6.3
Performance of Models A, D, and E on the testing set from the PWMMS-HA highway dataset

TP

Model A

FP FN Precision Recall F1-score IoU

Bridge–Deck
Bridge–Abutment
Bridge–Pier
Man-Made Terrain
Natural Terrain
Vegetation
Buildings
Remaining Hardscape
Scanning Artifacts

0.000
0.000
0.000
0.368
0.498
0.841
0.000
0.587
0.585

1.000
1.000
0.000
0.069
0.445
0.019
0.000
0.263
0.061

0.000
0.000
0.000
0.562
0.057
0.140
1.000
0.150
0.354

0.000
0.000
0.000
0.841
0.528
0.978
0.000
0.691
0.906

0.000
0.000
0.000
0.396
0.897
0.857
0.000
0.797
0.623

0.000
0.000
0.000
0.538
0.664
0.913
0.000
0.740
0.738

0.000
0.000
0.000
0.366
0.443
0.818
0.000
0.693
0.415

Overall Accuracy 72%

Model D

TP FP FN Precision Recall F1-score IoU

Bridge–Deck
Bridge–Abutment
Bridge–Pier
Man-Made Terrain
Natural Terrain
Vegetation
Buildings
Remaining Hardscape
Scanning Artifacts

0.000
0.000
0.000
0.775
0.612
0.846
0.000
0.506
0.587

1.000
1.000
0.000
0.190
0.121
0.045
0.000
0.445
0.011

0.000
0.000
0.000
0.034
0.266
0.109
1.000
0.049
0.402

0.000
0.000
0.000
0.803
0.835
0.950
0.000
0.532
0.982

0.000
0.000
0.000
0.958
0.697
0.886
0.000
0.911
0.593

0.000
0.000
0.000
0.874
0.760
0.917
0.000
0.672
0.740

0.000
0.000
0.000
0.792
0.590
0.827
0.000
0.676
0.446

Overall Accuracy 84%

Model E

TP FP FN Precision Recall F1-score IoU

Bridge–Deck
Bridge–Abutment
Bridge–Pier
Man-Made Terrain
Natural Terrain
Vegetation
Buildings
Remaining Hardscape
Scanning Artifacts

0.000
0.000
0.000
0.769
0.513
0.819
0.000
0.516
0.568

0.000
0.000
0.000
0.229
0.058
0.113
0.000
0.392
0.089

0.000
0.000
0.000
0.002
0.429
0.069
1.000
0.092
0.344

0.000
0.000
0.000
0.771
0.899
0.879
0.000
0.569
0.865

0.000
0.000
0.000
0.997
0.545
0.923
0.000
0.849
0.623

0.000
0.000
0.000
0.869
0.679
0.900
0.000
0.681
0.724

0.000
0.000
0.000
0.786
0.492
0.799
0.000
0.664
0.400

Overall Accuracy 82%
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7. CONCLUSIONS

Mobile mapping systems carrying a sensor suite of
camera, LiDAR, and GNSS/INS units have emerged as
a prominent tool for collecting high-quality georefer-
enced data in an efficient manner. The quality of the
mapping products is contingent on the grade of the
onboard sensors, the reliability of system calibration,
and the accuracy of GNSS/INS trajectory. This docu-
ment discussed the main components of vehicle-based
mobile mapping with regards to GNSS/INS navigation,
as illustrated in Figure 7.1.

N Chapter 2 presented the background concept of GNSS/
INS navigation and reasoned how GNSS hardware and
data processing techniques impact the overall post-
processed trajectory quality.

N Chapter 3 reviewed some of the major environmental
factors that impact the accuracy of the GNSS/INS-
derived trajectory upon which the entire mapping
prospective is built. Factors such as bridges, tree canopy,

neighboring traffic, and electromagnetic interferences

independently or in combination may pose a serious
challenge to the positioning efficiency of GNSS/INS

systems.

N Considering potential trajectory deterioration, Chapter 4

presented a data-driven error mitigation approach
through point cloud registration. The results showed

that post-registration alignment quality for mobile
LiDAR point clouds is in the range of 1 cm to 2 cm.

N Chapter 5 introduced a system-driven error mitigation
approach by means of trajectory enhancement. The

approach eliminates initial inaccuracies within the
trajectory position and orientation parameters ranging
up to 1.30 m and 2.50u, respectively.

N Finally, once the trajectory-related issues were accounted

for, Chapter 6 developed a novel framework for semantic
segmentation of highway elements using the enhanced
mapping products. The framework can handle large

volume of data acquired through long-corridor road
surveys and achieved an overall accuracy of 84% for

point cloud semantic segmentation.

Figure 7.1 Main components of vehicle-based mobile mapping with regards to GNSS/INS navigation.

58 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2022/22



REFERENCES

AASHTO. (2011). The manual for bridge evaluation (2nd ed.).
American Association of State Highway and Trans-
portation Officials.

AASHTO. (2020). LRFD bridge design specifications (9th ed.).
American Association of State Highway and Trans-
portation Officials.

Aboutaleb, A., El-Wakeel, A. S., Elghamrawy, H., &
Noureldin, A. (2020). LiDAR/RISS/GNSS dynamic inte-
gration for land vehicle robust positioning in challenging
GNSS environments. Remote Sensing, 12(14), 2323. https://
doi.org/10.3390/rs12142323

Aguiar, A. S., dos Santos, F. N., Cunha, J. B., Sobreira, H., &
Sousa, A. J. (2020). Localization and mapping for robots
in agriculture and forestry: A survey. Robotics, 9(4), 97.
https://doi.org/10.3390/robotics9040097

Al-Durgham, K., & Habib, A. (2014). Association-matrix-
based sample consensus approach for automated registra-
tion of terrestrial laser scans using linear features.
Photogrammetric Engineering and Remote Sensing, 80(11),
1029–1039. https://doi.org/10.14358/PERS.80.11.1029

Al-Durgham, K., Habib, A., & Kwak, E. (2013). RANSAC
approach for automated registration of terrestrial laser
scans using linear features. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 2(5W2), 13–18. https://doi.org/10.5194/
isprsannals-II-5-W2-13-2013

Al-Durgham, K., Habib, A., & Mazaheri, M. (2014, March
23–28). Solution frequency-based procedure for automated
registration of terrestrial laser scans using linear features
[Conference Session]. ASPRS 2014 Annual Conference,
Louisville, Kentucky.

Al-Durgham, M., Detchev, I., & Habib, A. (2012, September
3). Analysis of two triangle-based multi-surface registration
algorithms of irregular point clouds. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XXXVIII-5, 61–66. https://
doi.org/10.5194/isprsarchives-xxxviii-5-w12-61-2011

Al-Rawabdeh, A., Al-Gurrani, H., Al-Durgham, K., Detchev,
I., He, F., El-Sheimy, N., & Habib, A. (2016). A robust
registration algorithm for point clouds from UAV images
for change detection. International Archives of the Photo-
grammetry, Remote Sensing and Spatial Information
Sciences, XLI-B1, 765–772. https://doi.org/10.5194/
isprsarchives-XLI-B1-765-2016

Alsadik, B., & Karam, S. (2021, November 18). The
simultaneous localization and mapping (SLAM)-An over-
view. Surveying and Geospatial Engineering Journal, 2(4),
120–131. https://doi.org/10.38094/jastt204117

Ao, S., Hu, Q., Yang, B., Markham, A., & Guo, Y. (2021).
SpinNet: Learning a general surface descriptor for 3D point
cloud registration. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, 11753–11762.

Applanix. (n.d.). POS LV: Designed for integration, built for
performance [POSLV 220 datasheet]. Retrieved April 25,
2020, from https://applanix.com/downloads/products/specs/
POS-LV-Datasheet.pdf

Arastounia, M. (2015). Automated recognition of railroad
infrastructure in rural areas from LIDAR data. Remote
Sensing, 7(11), 14916–14938. https://doi.org/10.3390/rs711
14916

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I.,
Fischer, M., & Savarese, S. (2016). 3D semantic parsing
of large-scale indoor spaces. 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 1534–
1543. IEEE. https://doi.org/10.1109/CVPR.2016.170

Bai, X., Luo, Z., Zhou, L., Chen, H., Li, L., Hu, Z., Fu, H., &
Tai, C.-L. (2021). PointDSC: Robust point cloud registra-
tion using deep spatial consistency. 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 15854–15864. IEEE. https://doi.org/10.1109/
CVPR46437.2021.01560.

Bai, X., Luo, Z., Zhou, L., Fu, H., Quan, L., & Tai, C. L.
(2020). D3Feat: Joint learning of dense detection and
description of 3D local features. Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, 6358–6366. https://doi.org/10.1109/
CVPR42600.2020.00639

Balado, J., Sousa, R., Dı́az-Vilariño, L., & Arias, P. (2020).
Transfer Learning in urban object classification: Online
images to recognize point clouds. Automation in Con-
struction, 111, 103058. https://doi.org/10.1016/j.autcon.
2019.103058

Barnea, S., & Filin, S. (2008). Keypoint based autonomous
registration of terrestrial laser point-clouds. ISPRS Journal
of Photogrammetry and Remote Sensing, 63(1), 19–35.
https://doi.org/10.1016/j.isprsjprs.2007.05.005

Besl, P. J., & McKay, N. D. (1992, April 30). Method for
registration of 3-D shapes. Sensor Fusion IV: Control
Paradigms and Data Structures, 1611(April 1992), 586–606.
https://doi.org/10.1117/12.57955
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APPENDIX A. PURDUE WHEEL-BASED MOBILE MAPPING SYSTEMS 

Table A.1 PWMMS-HA and PWMMS-UHA GNSS/INS specifications 

GNSS/INS Unit 
Platform PWMMS-HA PWMMS-UHA 
Sensor model Applanix POS LV 220 NovAtel ProPak6 

IMU-ISA-100C 
Positional accuracy 2-5 cm 1-2 cm 
Attitude accuracy 0.015° 0.003° 
(pitch/roll) 
Attitude accuracy 0.025° 0.004° 
(heading) 

Table A.2 PWMMS-HA and PWMMS-UHA LiDAR sensor specifications 

LiDAR Unit 
Platform PWMMS-HA PWMMS-UHA 
Sensor model Velodyne Velodyne RIEGL Z+F 

VLP-16 High-Res HDL-32E VUX 1HA Profiler 9012 
No. of channels 16 32 1 1 
Max. range 100 m 100 m 135 m 119 m 
Sensor weight 0.830 kg 1.0 kg 3.5 kg 13.5 kg 
Range accuracy ± 3 cm ± 2 cm ± 5 mm ± 2 mm 
Horizontal FOV 360° 360° 360° 360° 
Vertical FOV +10° to -10° +10° to -30° NA NA 
Pulse repetition ~300,000 pt/s ~695,000 pt/s ~1,000,000 point/s ~1,000,000 point/s 
rate (single return) (single return) 
Horizontal beam 3 mrad 3 mrad 0.5 mrad 0.5 mrad 
divergence 
Vertical beam 1.5 mrad 1.2 mrad 0.5 mrad 0.5 mrad 
divergence 
Horizontal laser 9.0 cm 9.0 cm 1.5 cm 1.5 cm 
footprint @ 30 m 
Vertical laser 4.5 cm 3.6 cm 1.5 cm 1.5 cm 
footprint @ 30 m 
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APPENDIX B. GNSS SIGNAL CHARACTERISTICS 

(a) 

(b) 

(c) 
Figure B.1 GNSS observables measured by a receiver: (a) square-wave 
pseudorandom code, (b) sinewave GNSS carrier signal, and (c) time shift 
between PRC and receiver’s replica (Sickle, 2008). 
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APPENDIX C. BRIDGE DECK THICKNESS ASSESSMENT: DATASET 
DESCRIPTION AND CONCEPTUAL BASIS FOR LEAST SQUARES 
ADJUSTMENT (LSA) 

Table C.1 Specifications of the acquired point clouds by PWMMS-HA, PWMMS-UHA, and 
terrestrial laser scanners (TLSs) above and below the bridge in question 

Sensor 
Number of 

Tracks/Scans 
Number of Points 
per Track/Scan 

Data Acquisition 
Time 

PWMMS-HA HDL-RR 9 ~7 million 5 min 
HDL-RL 9 ~7 million 
HDL-FL 9 ~7 million 
VLP-FR 9 ~2 million 

PWMMS-UHA RI 9 ~15 million 5 min 
ZF 9 ~15 million 

TLS FARO 3 ~167 million 3 h 
Trimble 3 ~199 million 

(a) 

(b) 
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(c) 
Figure C.1 Global navigation satellite system/inertial navigation system (GNSS/INS) position 
accuracy charts for the (a) PWMMS-HA (north and east positions), (b) PWMMS-HA (down 
position), and (c) PWMMS-UHA vehicles. The highlighted eight peaks correspond to the eight 
southbound and northbound tracks (Tracks T2–T9) on the US-231 below the bridge, where 
suboptimal position accuracy can be observed. 

C.1 Parametric Model Representation 

In terms of the parametric model representation, a 3D plane is defined by the normal vector to the 
plane, [𝑤𝑤𝑥𝑥 𝑤𝑤𝑦𝑦 𝑤𝑤𝑧𝑧]𝑇𝑇, and signed normal distance from the origin to the plane (𝑑𝑑) as shown in 
Equation C.1. To establish an independent set of parameters, one of the normal vector components 
is fixed to 1. The fixed component is chosen according to the orientation of the plane, which is 
defined based on the eigenvectors corresponding to the smallest eigenvalue, as illustrated in Figure 
C.2. A cylindrical feature, on the other hand, is defined by a 3D line representing its axis and 
radius (𝑟𝑟). The cylinder axis is represented by a point, [𝑥𝑥0 𝑦𝑦0 𝑧𝑧0]𝑇𝑇, and a direction vector, 
[𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 𝑢𝑢𝑧𝑧]𝑇𝑇 , as can be seen in Equation C.2, where 𝑞𝑞 represents the point location along the 
cylinder axis. Since a line has only four degrees of freedom, one of the coordinate components is 
set to zero, with the respective direction vector component set to 1. The fixed parameters for the 
cylinder axis are chosen according to its orientation, which is defined based on the eigenvectors 
corresponding to the largest eigenvalue, as depicted in Figure C.3. Finally, a linear feature is 
represented the same way as the axis of a cylindrical feature (i.e., four parameters, with two 
representing a point along the line and two defining its direction). 

𝑤𝑤𝑥𝑥𝑥𝑥 + 𝑤𝑤𝑦𝑦𝑦𝑦 + 𝑤𝑤𝑧𝑧𝑧𝑧 
2 

+ 𝑑𝑑 = 0 Equation C.1 
�𝑤𝑤𝑥𝑥2 + 𝑤𝑤𝑦𝑦2 + 𝑤𝑤𝑧𝑧 
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𝑥𝑥 = 𝑞𝑞𝑢𝑢𝑥𝑥 + 𝑥𝑥0 
𝑦𝑦 = 𝑞𝑞𝑢𝑢𝑦𝑦 + 𝑦𝑦0 Equation C.2 
𝑧𝑧 = 𝑞𝑞𝑢𝑢𝑧𝑧 + 𝑧𝑧0 

(a) (b) (c) 
Figure C.2 Different options for representing planar features showing the normal vectors to the 
planes (defined by the eigenvector corresponding to the smallest eigenvalue) that are mainly 
along the (a) Z-axis (i.e., the eigenvector component along the Z-axis is larger than those along 
the X and Y axes), (b) Y-axis (i.e., the eigenvector component along the Y-axis is larger than 
those along the X and Z axes), and (c) X-axis (i.e., the eigenvector component along the X-axis 
is larger than those along the Y and Z axes). 

(a) (b) (c) 
Figure C.3 Different options for representing cylindrical features with directions (defined by the 
eigenvector corresponding to the largest eigenvalue) that are mainly along the (a) Z-axis (i.e., the 
eigenvector component along the Z-axis is larger than those along the X and Y axes); (b) Y-axis 
(i.e., the eigenvector component along the Y-axis is larger than those along the X and Z axes); 
and (c) X-axis (i.e., the eigenvector component along the X-axis is larger than those along the Y 
and Z axes). 

C.2 Least-Squares Adjustment for Feature-Based Fine Registration 

The conceptual basis of the proposed LSA model is that conjugate features would fit a single 
parametric model after registration. The objective function of the LSA model estimates the 
transformation parameters as well as feature parameters in the common reference frame. For 
simultaneous registration between 𝑚𝑚𝑠𝑠 point clouds, one of them is selected to define a common 
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reference frame, (𝑝𝑝𝑝𝑝����⃗ 𝑐𝑐 = [𝑥𝑥𝑐𝑐 𝑦𝑦𝑐𝑐 𝑧𝑧𝑐𝑐]𝑇𝑇), and the rest are considered as sources, (𝑝𝑝𝑝𝑝����⃗ 𝑠𝑠𝑠𝑠 = 
[𝑥𝑥𝑠𝑠𝑠𝑠 𝑦𝑦𝑠𝑠𝑠𝑠 𝑧𝑧𝑠𝑠𝑠𝑠]𝑇𝑇 , 𝑖𝑖 = 1, 2, … , 𝑚𝑚𝑠𝑠 − 1). The 3D similarity model in Equation C.3 is used to 
represent the transformation from the 𝑖𝑖𝑡𝑡ℎ source (𝑠𝑠𝑖𝑖) to the common (𝑝𝑝) reference frames, where 
𝑐𝑐 𝑐𝑐 𝑐𝑐 𝑡𝑡𝑠𝑠𝑠𝑠 , 𝑅𝑅𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑠𝑠𝑠𝑠 denote the translation vector, rotation matrix, and scale factor, respectively: 

𝑝𝑝𝑝𝑝����⃗ 𝑐𝑐 = 𝑡𝑡𝑠𝑠𝑠𝑠𝑐𝑐 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐 𝑅𝑅𝑠𝑠𝑠𝑠𝑐𝑐 𝑝𝑝𝑝𝑝����⃗ 𝑠𝑠𝑠𝑠 Equation C.3 

For planar features, the normal distance vector, [𝑛𝑛𝑑𝑑𝑥𝑥 𝑛𝑛𝑑𝑑𝑦𝑦 𝑛𝑛𝑑𝑑𝑧𝑧]𝑇𝑇, between a transformed point, 
[𝑥𝑥𝑐𝑐 𝑦𝑦𝑐𝑐 𝑧𝑧𝑐𝑐]𝑇𝑇, and the post-registration parametric model, defined by [𝑤𝑤𝑥𝑥 𝑤𝑤𝑦𝑦 𝑤𝑤𝑧𝑧]𝑇𝑇 and 𝑑𝑑, is 
presented in Equation C.4—refer to the illustration in Figure C.4a. For a linear/cylindrical feature, 
the normal distance vector, [𝑛𝑛𝑑𝑑𝑥𝑥 𝑛𝑛𝑑𝑑𝑦𝑦 𝑛𝑛𝑑𝑑𝑧𝑧]𝑇𝑇, between a transformed point, [𝑥𝑥𝑐𝑐 𝑦𝑦𝑐𝑐 𝑧𝑧𝑐𝑐]𝑇𝑇, and 
the post-registration parametric model representing the linear/axis of a cylindrical feature, defined 
by [𝑥𝑥0 𝑦𝑦0 𝑧𝑧0]𝑇𝑇 and [𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 𝑢𝑢𝑧𝑧]𝑇𝑇 , is expressed in Equation C.5. An illustration of the 
linear/cylindrical feature post-registration model fitting is shown in Figure C.4(b and c), 
respectively. For planar and linear features, the LSA aims at minimizing the squared sum of normal 
vector components in Equation C.4 and Equation C.5, respectively, for all the points in the 
different scans/tracks that encompass such features. In these equations, ⊙ denotes the dot product 
of two vectors. For cylindrical features, on the other hand, the LSA aims at minimizing the squared 
sum of normal distances between the points that belong to such features and their surface, as given 
by Equation C.6. 

𝑤𝑤𝑥𝑥 𝑥𝑥𝑐𝑐 𝑤𝑤𝑥𝑥 𝑤𝑤𝑥𝑥 

𝑑𝑑 �𝑤𝑤𝑦𝑦� ��𝑦𝑦𝑐𝑐� ⊙ �𝑤𝑤𝑦𝑦�� �𝑤𝑤𝑦𝑦�𝑛𝑛𝑑𝑑𝑥𝑥 0𝑤𝑤𝑧𝑧 𝑧𝑧𝑐𝑐 𝑤𝑤𝑧𝑧 𝑤𝑤𝑧𝑧 Equation C.4 
�𝑛𝑛𝑑𝑑𝑦𝑦� = − − 2 = �0� 

�𝑤𝑤𝑥𝑥2 + 𝑤𝑤𝑦𝑦2 + 𝑤𝑤𝑧𝑧 𝑤𝑤𝑥𝑥2 + 𝑤𝑤𝑦𝑦2 + 𝑤𝑤𝑧𝑧 𝑛𝑛𝑑𝑑𝑧𝑧 
2 

0 

𝑥𝑥𝑐𝑐 − 𝑥𝑥0 𝑢𝑢𝑥𝑥 𝑢𝑢𝑥𝑥 

��𝑦𝑦𝑐𝑐 − 𝑦𝑦0� ⊙ �𝑢𝑢𝑦𝑦�� �𝑢𝑢𝑦𝑦�𝑛𝑛𝑑𝑑𝑥𝑥 𝑥𝑥𝑐𝑐 − 𝑥𝑥0 0𝑧𝑧𝑐𝑐 − 𝑧𝑧0 𝑢𝑢𝑧𝑧 𝑢𝑢𝑧𝑧 Equation C.5 
�𝑛𝑛𝑑𝑑𝑦𝑦� = �𝑦𝑦𝑐𝑐 − 𝑦𝑦0� − = �0�𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2 + 𝑢𝑢𝑧𝑧2 
𝑛𝑛𝑑𝑑𝑧𝑧 

𝑧𝑧𝑐𝑐 − 𝑧𝑧0 0 

𝑛𝑛𝑑𝑑𝑥𝑥2 + 𝑛𝑛𝑑𝑑𝑦𝑦2 + 𝑛𝑛𝑑𝑑𝑧𝑧2 − 𝑟𝑟2 = 0 Equation C.6 
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(a) (b) (c) 
Figure C.4 Schematic illustration of the normal distance vector components that are minimized 
using the (a) plane-fitting model, (b) 3D line-fitting model, and (c) cylinder-fitting model. 

The linearized mathematical model corresponding to Equations C.4–C.6 can be written as in 
Equation C.7, which is commonly known as the Gauss–Helmert model (Mikhail & Ackermann, 
1983). Here, 𝑦𝑦 is the discrepancy vector arising from the linearization process; 𝑒𝑒 is the vector of 
random noise contaminating the point cloud coordinates in the different scans/tracks, which 
follows a stochastic distribution with a zero mean and a variance–covariance matrix of 𝜎𝜎02𝑃𝑃−1 , 
with 𝜎𝜎02 representing the a priori variance factor and the weight matrix, 𝑃𝑃, depending on the 
specifications of the data acquisition system; and 𝑥𝑥 is the vector of unknown parameters (including 
transformation and feature parameters). The matrices 𝐴𝐴 and 𝐵𝐵 are composed of the partial 
derivatives of the models in Equations C.4–C.6 with respect to the unknown parameters and point 
cloud coordinates, respectively. For a planar or linear feature, the respective 𝐵𝐵 matrix is rank-
deficient, which can be deduced by analyzing the effective contribution of Equations C.4 and C.5 
towards the overall redundancy. Although a point on a planar feature provides three equations, it 
only has a net contribution of one towards the redundancy—corresponding to the minimization of 
normal distance to the plane. For linear features, the three equations have a net contribution of two 
towards the redundancy—corresponding to the minimization of normal distance to the linear 
feature. Lastly, a point on a cylindrical feature provides a net contribution of one towards the 
redundancy. In order to ensure that the resulting normal matrix is full-rank and that the 
transformation and feature parameters can be reliably estimated, it is critical to have features with 
different orientations over the area of interest. The solution vector of the LSA model can be written 
as per Equation C.8, where (𝐵𝐵𝑃𝑃−1𝐵𝐵𝑇𝑇)+ denotes the Moore–Penrose pseudoinverse that has to be 
used to compensate for the rank deficiency of the 𝐵𝐵 matrix. The residuals, �̃�𝑒, are given in Equation 
C.9. The a posteriori variance factor, 𝜎𝜎�0

2 , can be computed using Equation C.10, where 𝑚𝑚 is the 
number of unknown parameters. The variance–covariance matrix of estimated parameters is given 
in Equation C.11. Interested readers can refer to Ravi and Habib (2021) for more details regarding 
LSA with a rank-deficient weight matrix. 

𝑦𝑦 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑒𝑒, 𝑒𝑒~ (0, 𝜎𝜎02𝑃𝑃−1) Equation C.7 

𝑥𝑥� = (𝐴𝐴𝑇𝑇(𝐵𝐵𝑃𝑃−1𝐵𝐵𝑇𝑇)+𝐴𝐴)−1(𝐴𝐴𝑇𝑇(𝐵𝐵𝑃𝑃−1𝐵𝐵𝑇𝑇)+𝑦𝑦) Equation C.8 
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�̃�𝑒 = 𝑦𝑦 − 𝐴𝐴𝑥𝑥� Equation C.9 

�̃�𝑒𝑇𝑇(𝐵𝐵𝑃𝑃−1𝐵𝐵𝑇𝑇)+�̃�𝑒2𝜎𝜎� = 0 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(𝐵𝐵𝑃𝑃−1𝐵𝐵𝑇𝑇) − 𝑚𝑚 
Equation C.10 

Σ = 𝜎𝜎�2 (𝐴𝐴𝑇𝑇(𝐵𝐵𝑃𝑃−1𝐵𝐵𝑇𝑇)+𝐴𝐴)−1 
0 Equation C.11 

(a) 

(b) 

(c) 
Figure C.5 Box and whisker plots of the fine-registration transformation parameters for the (a) 
TLS, (b) PWMMS-HA, and (c) PWMMS-UHA datasets. 
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Table C.2 Estimated post-registration radii of the cylindrical columns supporting the I-74 bridge 
from the TLS, PWMMS-HA, and PWMMS-UHA point clouds 

Number of Points Radius (m) Difference (m) 
ID TLS HA UHA TLS HA UHA TLS vs. HA TLS vs. UHA HA vs. UHA 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 
C9 

C10 
C11 
C12 

24,752 
25,764 
25,840 
25,366 
30,775 
20,143 
20,267 
20,123 
25,985 
26,942 
27,124 
25,314 

155,483 
150,622 
149,090 
149,641 
242,075 
234,633 
233,235 
231,872 
140,673 
136,115 
137,503 
136,477 

86,355 
80,216 
78,308 
78,516 

158,403 
156,096 
152,566 
149,291 
113,636 
108,052 
103,772 
102,548 

0.314 
0.305 
0.306 
0.305 
0.316 
0.305 
0.305 
0.305 
0.315 
0.305 
0.305 
0.305 

0.314 
0.305 
0.304 
0.303 
0.317 
0.306 
0.306 
0.306 
0.310 
0.302 
0.303 
0.303 

0.308 
0.297 
0.294 
0.291 
0.313 
0.302 
0.301 
0.301 
0.297 
0.291 
0.295 
0.298 

0.000 
0.000 

−0.002 
−0.002 
0.001 
0.001 
0.001 
0.001 

−0.005 
−0.003 
−0.002 
−0.002 

−0.006 
−0.008 
−0.012 
−0.014 
−0.003 
−0.004 
−0.004 
−0.004 
−0.018 
−0.014 
−0.010 
−0.007 

−0.006 
−0.008 
−0.010 
−0.012 
−0.003 
−0.004 
−0.005 
−0.005 
−0.012 
−0.011 
−0.008 
−0.006 

Mean −0.001 −0.009 −0.008 
Std. Dev. 0.002 0.005 0.003 

RMSE 0.002 0.010 0.008 

(a) (b) 

(c) 
Figure C.6 Bridge deck thickness estimates shown as a heat map using the (a) TLS, (b) 
PWMMS-HA, and (c) PWMMS-UHA datasets. 
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APPENDIX D. MOBILE MAPPING IN GNSS-CHALLENGING URBAN 
ENVIRONMENT: BACKGROUND OF TRAJECTORY ENHANCEMENT 

D.1 Trajectory Corrections Modeling 

In order to avoid over-parametrization in the LSA model caused by trying to solve for the trajectory 
parameters correction at each laser beam firing timestamp, we deal with a down sampled 
trajectory—denoted henceforth as trajectory reference points—within the LSA model while 
assuming that the MLMS platform has a relatively smooth trajectory with moderate dynamics. The 
trajectory reference points are obtained by down sampling the original high frequency (say, 100– 
200 Hz) trajectory parameters to a user-defined lower frequency (or a down sampling time interval 
Δ𝑡𝑡). Thus, the proposed trajectory enhancement optimization model estimates corrections to the 
trajectory reference points, which are then utilized to model corrections to the trajectory 
parameters at specific timestamps corresponding to laser beam firings. In this study, the trajectory 
position/attitude parameters are denoted as (𝑋𝑋0, 𝑌𝑌0, 𝑍𝑍0, 𝜔𝜔, 𝜙𝜙, 𝜅𝜅), where (𝑋𝑋0, 𝑌𝑌0, 𝑍𝑍0) define the 

𝑚𝑚 𝑚𝑚 vector 𝑟𝑟𝑏𝑏(𝑡𝑡) and (𝜔𝜔, 𝜙𝜙, 𝜅𝜅) define the rotation matrix 𝑅𝑅𝑏𝑏(𝑡𝑡). The corresponding corrections to 
trajectory parameters are denoted as (𝛿𝛿𝑋𝑋0, 𝛿𝛿𝑌𝑌0, 𝛿𝛿𝑍𝑍0, 𝛿𝛿𝜔𝜔, 𝛿𝛿𝜙𝜙, 𝛿𝛿𝜅𝜅). Corrections to each of the six 
trajectory position/attitude parameters are modeled separately as 𝑝𝑝𝑡𝑡ℎ-order polynomial in time, 
where the coefficients of this polynomial are expressed as a function of corrections for the 𝑛𝑛 
neighboring trajectory reference points. The down sampling time interval, polynomial order, and 
number of neighboring trajectory reference points are user-defined based on the nature of platform 
dynamics. Figure D.1 shows neighboring trajectory reference points, where one should note that 
each trajectory point at any timestamp, 𝑡𝑡, has an associated relative timestamp, 𝑡𝑡′, which is 
designated to avoid numerical instability. The relative timestamp is evaluated with respect to the 
first of the set of 𝑛𝑛 neighboring trajectory reference points. 

Figure D.1 Down sampled trajectory reference points (down sampling time interval Δt) used 
′ ′for trajectory enhancement: 𝑡𝑡𝑠𝑠 to 𝑡𝑡𝑠𝑠+𝑛𝑛−1 and 𝑡𝑡𝑠𝑠  to 𝑡𝑡𝑠𝑠+𝑛𝑛−1 denote the absolute and relative 

timestamps of the n neighboring trajectory reference points for a generic timestamp 𝑡𝑡0. 

For 𝑛𝑛 neighboring trajectory reference points, the position/attitude corrections, denoted generically 
as 𝛿𝛿𝛿𝛿(𝑡𝑡𝑠𝑠′), are modeled as 𝑝𝑝𝑡𝑡ℎ-order polynomial in time as given in Equation D.1. Here, to avoid 
possible numerical instabilities, 𝑡𝑡′ denotes the timestamp relative to the first trajectory reference 
point in the 𝑛𝑛-tuplet. 𝐶𝐶𝜃𝜃0 , 𝐶𝐶𝜃𝜃1 , … , 𝐶𝐶𝜃𝜃𝑝𝑝 

denote the coefficients of the correction polynomial for the 
parameter 𝛿𝛿 and are treated as unknowns that are expressed such that the corrections at the 
trajectory reference points satisfy the assumed correction polynomials. Thus, the correction 
polynomial coefficients can be derived using least squares adjustment (LSA) as given in Equation 
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D.2, if 𝑛𝑛 ≥ 𝑝𝑝 + 1. Then, the correction to the position/attitude parameter at any generic relative 
timestamp, 𝑡𝑡0′ , can be derived using Equation D.3 based on its 𝑛𝑛 neighboring trajectory reference 

′ ′points (indexed from 𝑖𝑖 to 𝑖𝑖 + 𝑛𝑛 − 1) with corresponding relative timestamps 𝑡𝑡𝑠𝑠 to 𝑡𝑡𝑠𝑠+𝑛𝑛−1. In 
summary, the corrections to any position/attitude parameter can be modeled as a 𝑝𝑝𝑡𝑡ℎ-order 
polynomial function of its own timestamp and the coefficients of this polynomial are expressed as 
a function of the corrections and timestamps for the 𝑛𝑛 neighboring trajectory reference points. The 
corrections for the trajectory reference points are the unknowns in the trajectory enhancement 
process. One should note that 𝑝𝑝 and 𝑛𝑛 could be selected differently for each of the six trajectory 
position and orientation parameters. 

′ 2 𝑝𝑝 𝛿𝛿𝛿𝛿(𝑡𝑡𝑠𝑠′) ⎡1 𝑡𝑡𝑠𝑠 𝑡𝑡′𝑠𝑠 ⋯ 𝑡𝑡′𝑠𝑠 𝐶𝐶𝜃𝜃0⎤ 
′ ′ 2 𝑝𝑝 𝛿𝛿𝛿𝛿(𝑡𝑡𝑠𝑠+1) ⎢1 𝑡𝑡𝑠𝑠+1 𝑡𝑡′𝑠𝑠+1 ⋯ ⎥ 𝐶𝐶𝜃𝜃1� � = 𝑡𝑡′𝑠𝑠+1 ⎛ ⎞⎢ ⎥ Equation D.1 ⋮ ⎢ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮⎥′ ′ 𝑝𝑝 𝛿𝛿𝛿𝛿(𝑡𝑡𝑠𝑠+𝑛𝑛−1) ⎣�1���������2�����⋯��������⎦ ⎝𝐶𝐶𝜃𝜃𝑝𝑝⎠𝑡𝑡𝑠𝑠+𝑛𝑛−1 𝑡𝑡′𝑠𝑠+𝑛𝑛−1 𝑡𝑡′𝑠𝑠+𝑛𝑛−1 

𝑨𝑨 
𝐶𝐶𝜃𝜃0 𝛿𝛿𝛿𝛿(𝑡𝑡𝑠𝑠′) 

′ 
⎛𝐶𝐶𝜃𝜃1⎞ = (�𝐴𝐴�𝑇𝑇�𝐴𝐴�)−1��𝐴𝐴�𝑇𝑇 � 𝛿𝛿𝛿𝛿(𝑡𝑡𝑠𝑠+1) � Equation D.2 

⋮ ⋮𝑀𝑀 ′ ⎝𝐶𝐶𝜃𝜃𝑝𝑝⎠ 𝛿𝛿𝛿𝛿(𝑡𝑡𝑠𝑠+𝑛𝑛−1) 

𝐶𝐶𝜃𝜃0 

′ 2 𝑝𝑝� 
𝐶𝐶𝜃𝜃1𝛿𝛿𝛿𝛿(𝑡𝑡0) = �1 𝑡𝑡𝑠𝑠 𝑡𝑡′𝑠𝑠 ⋯ 𝑡𝑡′𝑠𝑠 ⎛ ⎞ 
⋮ 

⎝𝐶𝐶𝜃𝜃𝑝𝑝⎠ Equation D.3 
𝛿𝛿𝛿𝛿(𝑡𝑡𝑠𝑠′) 

′ 
′ 2 𝛿𝛿𝛿𝛿(𝑡𝑡𝑠𝑠+1)= �1 𝑡𝑡𝑠𝑠 𝑡𝑡′𝑠𝑠 ⋯ 𝑡𝑡′𝑠𝑠

𝑝𝑝� 𝑀𝑀 � 
⋮ 

� 
′𝛿𝛿𝛿𝛿(𝑡𝑡𝑠𝑠+𝑛𝑛−1) 

D.2 Optimization Model for Trajectory Enhancement 

The proposed optimization model for trajectory enhancement estimates the corrections to the 
trajectory reference points using LSA that minimize the normal distance of LiDAR points to their 
corresponding features. The optimization model for trajectory enhancement is comprised of two 
types of observation equations—(a) equations based on LiDAR feature points and (b) equations 
incorporating prior trajectory information. The first type of observation equations, as given in 
Equation D.4, minimizes the normal distance, nd(𝐼𝐼, 𝑡𝑡, Φ𝑘𝑘 ) , for each LiDAR point, 𝐼𝐼, captured at 
time, 𝑡𝑡, and belonging to the 𝑟𝑟𝑡𝑡ℎ planar feature whose parameters are represented as Φ𝑘𝑘 . Planar 
feature parameters (Φ) constitute the normal vector �𝑤𝑤𝑥𝑥, 𝑤𝑤𝑦𝑦, 𝑤𝑤𝑧𝑧� and distance of the plane from 
the origin (𝑑𝑑). The normal distance of LiDAR point from the corresponding plane is a function of 
the feature parameters, Φ𝑘𝑘 and mapping frame coordinates of point, 𝐼𝐼, which in turn are a function 
of the corrections for 𝑛𝑛 neighboring trajectory reference points with respect to the time of capture, 
𝑡𝑡. Each observation equation is assigned an a-priori variance, denoted by 𝜎𝜎nd 

2 , to incorporate range-
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based adaptive weights to each of the LiDAR observations since points captured close to the 
LiDAR unit are expected to conform to the planar surface more precisely than further points that 
are prone to more noise. Assuming that 𝜎𝜎ref denotes the nominal expected accuracy for the LiDAR 
points up to 𝜌𝜌max distance from the LiDAR unit based on the manufacturer specifications of the 
involved sensors, the adaptive variance is given by Equation D.5, indicating that points with range

2less than 𝜌𝜌max have a constant variance of 𝜎𝜎ref whereas those with larger range have a linearly 
increasing standard deviation, which results in a decreasing weight. A plot of standard deviation 
𝜎𝜎nd with respect to the range of captured point 𝜌𝜌𝑠𝑠 is shown in Figure D.2. While solving for Φ𝑘𝑘 , 
three out of the four parameters used to define a plane are designated to be independent during 
LSA depending on the orientation of the planar surface—𝑤𝑤𝑥𝑥, 𝑤𝑤𝑦𝑦, or 𝑤𝑤𝑧𝑧 is fixed to unity for a 
planar feature whose normal vector is predominantly parallel to 𝑋𝑋-axis, 𝑌𝑌-axis, or 𝑍𝑍-axis, 
respectively. 

2�𝑛𝑛𝑑𝑑(𝐼𝐼, 𝑡𝑡, Φk)�
argmin � Equation D.4 2 
𝛿𝛿𝜃𝜃𝑏𝑏

𝑚𝑚
�𝑡𝑡ref�

,Φ𝑘𝑘 𝜎𝜎𝑛𝑛𝑛𝑛 ∀ LiDAR feature points 
2 max(𝜌𝜌𝑚𝑚𝑚𝑚𝑥𝑥, 𝜌𝜌𝑠𝑠)2 = � × 𝜎𝜎ref� Equation D.5 𝜎𝜎𝑛𝑛𝑛𝑛 𝜌𝜌𝑚𝑚𝑚𝑚𝑥𝑥 

Figure D.2 Range-based adaptive variance for trajectory enhancement: standard deviation 
(𝜎𝜎𝑛𝑛𝑛𝑛) as a function of the range (𝜌𝜌𝑠𝑠) of captured points. 

A second type of observation equations are included within the LSA model to incorporate prior 
information about trajectory parameters. The initial trajectory along with the estimation accuracy 
for the parameters is generated by post-processing GNSS and INS information. These reported 
initial accuracy values are used to assign adequate weights to the estimated corrections to the 
trajectory parameters while conducting trajectory enhancement. This is achieved by including 
observation equations, as given in Equation D.6, to minimize the change in position and orientation 
parameters for a total of 𝑁𝑁𝑡𝑡 trajectory reference points depending on the reported standard 
deviation for each parameter. Additionally, the change in instantaneous linear velocity (𝑣𝑣𝑠𝑠)—as 
computed according to Equation D.7—between two consecutive trajectory reference points is 
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minimized based on the velocity accuracy (𝜎𝜎𝑣𝑣) reported while generating the original post-
processed trajectory. This is expressed in Equation D.8, where 𝑣𝑣𝑠𝑠 denote the and 𝑣𝑣𝑠𝑠corrected 

instantaneous velocity computed using the 𝑖𝑖𝑡𝑡ℎ and (𝑖𝑖 + 1)𝑡𝑡ℎ trajectory reference points before and 
after applying the estimated corrections to the position parameters. One should note that the 
inclusion of a-priori trajectory knowledge (Equation D.6 and Equation D.8) to the LSA model 
ensures that corrections to trajectory reference points are not estimated if there are no LiDAR 
feature points to assist in their estimation. In the proposed approach, the correlations between 
position, attitude, and velocity parameters are ignored due to the absence of its information from 
GNSS/INS post-processing. However, this assumption is not expected to hinder the performance 
of the proposed algorithm, as demonstrated widely by existing loosely coupled integration 
techniques for navigation that have been developed while ignoring any correlations. 

𝑁𝑁𝑡𝑡 2�𝛿𝛿𝛿𝛿𝑏𝑏
𝑚𝑚 

(𝑡𝑡𝑖𝑖)� argmin � Equation D.6 2 
𝛿𝛿𝜃𝜃𝑚𝑚 𝜎𝜎𝜃𝜃𝑖𝑖 𝑏𝑏�𝑡𝑡𝑖𝑖� 𝑠𝑠=1 

𝑚𝑚 𝑚𝑚 
𝑚𝑚 𝑚𝑚 

�𝑟𝑟𝑏𝑏(𝑡𝑡𝑖𝑖+1) − 𝑟𝑟𝑏𝑏(𝑡𝑡𝑖𝑖)� 𝑣𝑣𝑠𝑠�𝑟𝑟𝑏𝑏(𝑡𝑡𝑖𝑖) , Δ𝑡𝑡� = Equation D.7 , 𝑟𝑟𝑏𝑏(𝑡𝑡𝑖𝑖+1) Δ𝑡𝑡 
𝑁𝑁𝑡𝑡−1 

1 𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚 argmin � �𝑟𝑟𝑏𝑏(𝑡𝑡𝑖𝑖), 𝛿𝛿𝑟𝑟𝑏𝑏(𝑡𝑡𝑖𝑖) , 𝛿𝛿𝑟𝑟𝑏𝑏(𝑡𝑡𝑖𝑖+1), Δ𝑡𝑡� 
𝛿𝛿𝛿𝛿𝑚𝑚 ,𝛿𝛿𝛿𝛿𝑚𝑚 𝜎𝜎𝑣𝑣2 �𝑣𝑣𝑠𝑠corrected , 𝑟𝑟𝑏𝑏(𝑡𝑡𝑖𝑖+1) Equation D.8 

𝑏𝑏�𝑡𝑡𝑖𝑖� 𝑏𝑏�𝑡𝑡𝑖𝑖+1� 𝑠𝑠=1 
2𝑚𝑚 𝑚𝑚 − 𝑣𝑣𝑠𝑠�𝑟𝑟𝑏𝑏(𝑡𝑡𝑖𝑖), 𝑟𝑟𝑏𝑏(𝑡𝑡𝑖𝑖+1), Δ𝑡𝑡�� 

With the knowledge of the LSA model, we can determine the total number of unknowns and 
observation equations involved in trajectory enhancement for dataset(s) with 𝑁𝑁𝑡𝑡 as the number of 
trajectory reference points and 𝑛𝑛𝑝𝑝𝑝𝑝 as the number of LiDAR points captured over 𝑁𝑁𝑝𝑝 planar 
surfaces. The unknowns include 6𝑁𝑁𝑡𝑡 trajectory reference point corrections to position and 
orientation parameters and 3𝑁𝑁𝑝𝑝 planar feature parameters. The first set of observation equations 
minimizing the normal distance of LiDAR points from corresponding planar features results in 
one equation per LiDAR point and thus, a total of 𝑛𝑛𝑝𝑝𝑝𝑝 equations. Additionally, incorporating prior 
trajectory information results in a total of 6𝑁𝑁𝑡𝑡 + (𝑁𝑁𝑡𝑡 − 1) observation equations. LSA for 
trajectory enhancement is conducted iteratively till the change in root-mean-square (RMS) of 
normal distances of LiDAR points to corresponding planar features is less than a pre-defined 
threshold. After convergence, a RANSAC-based outlier points removal (Fischler & Bolles, 1981) 
is conducted for each planar feature and a last adjustment iteration is conducted to arrive at the 
final results. One should note that RANSAC-based outlier removal is not conducted before 
convergence since trajectory drifts result in substantial misalignments within the planar features 
that might result in the omission of meaningful feature points as outliers. Furthermore, the feature 
matching process could be repeated after each LSA iteration during trajectory enhancement. 
However, this would be computationally expensive and time-consuming. The two stages of feature 
matching are deemed sufficient to ensure adequate feature matching for accurate trajectory 
enhancement. 
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Table D.1 Data acquisition specifications and parameters used for each procedure employed 
during trajectory enhancement 

Dataset 1 Dataset 2 Dataset 3 

Duration 

18 minutes 8 minutes 12 minutes 

Factors causing GNSS/INS trajectory quality 
deterioration 

• Underpass data 
acquisition 

• Intermittent periods 
(~40 secs) of GNSS 
signal outages 

• Indoor mapping 

• Prolonged periods 
(~140 secs) of 
obstructed GNSS 
signal 

• Indoor mapping of 
dome facility using 
crane bucket 

• Non-trivial 
trajectory dynamics 
compared to 
walking 

• Prolonged periods 
(~150 secs) of 
obstructed GNSS 
signal 

Feature 
matching 
without loop 
closure 

N-second point cloud interval 2 secs 

Spatial proximity threshold 0.30 m 0.30 m 0.20 m 

Directional proximity threshold 10° 5° 2° 

Feature 
matching 
with loop 
closure 

N-second point cloud interval 2 secs 

Spatial proximity threshold 0.30 m 0.80 m 0.30 m 

Directional proximity threshold 10° 5° 2° 

Preliminary 
and final 
trajectory 
enhancement 

Down sampling time interval 
for trajectory reference points 

1 sec 

Order of trajectory parameters 
correction polynomial 

2 

Number of neighboring 
trajectory reference points 

3 

D.3 Dataset 2: Indoor Mapping 

The entire point cloud colored by height is shown in Figure D.3 along with the Backpack trajectory 
overlaid in pink. The dataset was acquired in an indoor facility with beginning and end of the data 
acquisition are under open sky whereas the remaining trajectory is indoor with no GNSS signal 
reception. Profile 1 in Figure D.4 illustrates the point cloud quality before and after the two stages 
of trajectory enhancement. In indoor narrow corridors as the one surveyed in this dataset, the initial 
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misalignment within the point cloud makes them prone to wrong matches depending on the spatial 
proximity threshold used for feature matching. Figure D.4 shows that trajectory enhancement 
without loop closure reduces the misalignment, thus allowing feature matching with loop closure. 
Profile 2 and Profile 3 are depicted in Figure D.5 and Figure D.6, respectively, where zoomed-in 
views of several segments clearly indicate highly accurate point cloud after trajectory 
enhancement. The point cloud alignment quality is quantified in Table D.2, which indicates a final 
overall accuracy of 4.1 cm. 

Figure D.3 Dataset 2: Entire point cloud colored by height, overlaid Backpack MLMS 
trajectory (pink), and profiles (blue boxes) used for qualitative assessment of trajectory 
enhancement results. 

Profile 1: Before trajectory enhancement 
(a) 
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Profile 1: After trajectory enhancement without loop closure 
(b) 

Profile 1: After trajectory enhancement with loop closure 
(c) 

Figure D.4 Dataset 2: Profile 1 (colored by time) illustrating point cloud alignment quality 
before and after trajectory enhancement without/with loop closure. 

Profile 2: Before trajectory enhancement 
(a) 

Profile 2: After trajectory enhancement 
(b) 
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Area 1: Before trajectory Area 2: Before trajectory Area 3: Before trajectory 
enhancement enhancement enhancement 

Figure D.5 Dataset 2: Profile 2 (colored by time) illustrating point cloud alignment quality 
before and after trajectory enhancement. 

Area 1: After trajectory 
enhancement 

(c) 

Area 2: After trajectory 
enhancement 

(d) 

Area 3: After trajectory 
enhancement 

(e) 

Profile 3: Before trajectory enhancement 
(a) 

D-8



 
     

 
    

   

 

  
 

 
 

 
 

 
 

      

      

 
    

  
  

   
      

 
 

   
  

    
   

   
 

 

 

Profile 3: After trajectory enhancement 
(b) 

Figure D.6 Dataset 2: Profile 3 (colored by time) illustrating point cloud alignment quality 
before and after trajectory enhancement. 

Table D.2 Dataset 2: Quantitative evaluation of point cloud alignment quality before and after 
trajectory enhancement (based on a total of 9,432,850 points) 

Mean 
(m) 

STD 
(m) 

RMSE 
(m) 

Max 
(m) 

Before Trajectory Enhancement 0.178 0.275 0.326 0.725 

After Trajectory Enhancement 0.035 0.032 0.041 0.081 

Figure D.7 shows the enhanced trajectory colored according to the magnitude of 3D corrections to 
positional parameters, which indicates large correction magnitudes throughout the indoor 
trajectory with relatively higher corrections while walking through the narrow corridor in E-W 
direction. Figure D.8 shows the plot of the norm of post-processing standard deviations (blue) and 
the magnitude of corrections estimated (red) for the trajectory position parameters, where the four 
shorter peaks in the post-processing standard deviation plot correspond to the indoor N-S trajectory 
portion and the higher peak corresponds to the long duration of indoor mapping of the E-W 
corridor in Figure D.7. The plot indicates that areas with larger standard deviation have higher 
estimated corrections while also depicting that the post-processing accuracies are more 
conservative than that indicated by their impact on the point cloud accuracy. Table D.3 reports the 
statistical measures for the estimated trajectory corrections with the maximum position and attitude 
modification of 1.284 m (𝑋𝑋 direction) and 2.32° (pitch angle), respectively. 

D-9



 
  

 
  

   

 
 
 

Figure D.7 Dataset 2: Quantitative assessment of estimated position corrections to the 
trajectory—enhanced trajectory colored by magnitude of estimated corrections to 3D position. 

Figure D.8 Dataset 2: Post-processing standard deviation and magnitude of estimated 
corrections for trajectory position parameters with respect to time. 
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Table D.3 Dataset 2: Quantitative evaluation of the change in trajectory position (𝑋𝑋, 𝑌𝑌, 𝑍𝑍), 
attitude (𝜔𝜔, 𝜙𝜙, 𝜅𝜅), and velocity (𝑣𝑣) parameters as a result of trajectory enhancement 

# Adjusted 
Trajectory Points 

X 
(m) 

Y 
(m) 

Z 
(m) 

𝝎𝝎 
(°) 

𝝋𝝋 
(°) 

𝜿𝜿 
(°) 

𝒗𝒗 
(m/s) 

45,468 
(~8 mins) 

Mean -0.182 0.119 -0.161 -0.032 -0.024 0.001 0.210 

STD 0.546 0.309 0.345 0.582 0.350 0.518 0.672 

RMSE 0.576 0.331 0.381 0.583 0.351 0.518 0.703 

Max of 
Absolute 
Values 

1.284 0.813 0.632 2.320 2.246 2.258 1.155 

D.4 Dataset 3: Indoor Mapping of Dome Facility using Crane Bucket 

Profile 1: Before trajectory enhancement 
(a) 

Profile 1: After trajectory enhancement 
(b) 
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Area 1: Before trajectory enhancement Area 2: Before trajectory enhancement 

Area 1: After trajectory enhancement Area 2: After trajectory enhancement 
(c) (d) 

Figure D.9 Dataset 3: Profile 1 (colored by time) illustrating point cloud alignment quality 
before and after trajectory enhancement. 

Profile 2: Before trajectory enhancement 
(a) 

Profile 2: After trajectory enhancement 
(b) 
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Area 1: Before trajectory enhancement Area 2: Before trajectory enhancement 

Area 1: After trajectory enhancement Area 2: After trajectory enhancement 
(c) (d) 

Figure D.10 Dataset 3: Profile 2 (colored by time) illustrating point cloud alignment quality 
before and after trajectory enhancement. 
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Figure D.11 Dataset 3: Post-processing standard deviation and magnitude of estimated 
corrections for trajectory position parameters. 

Table D.4 Dataset 3: Quantitative evaluation of the change in trajectory position (𝑋𝑋, 𝑌𝑌, 𝑍𝑍), 
attitude (𝜔𝜔, 𝜙𝜙, 𝜅𝜅), and velocity (𝑣𝑣) parameters as a result of trajectory enhancement 

# Adjusted 
Trajectory Points 

X 
(m) 

Y 
(m) 

Z 
(m) 

𝝎𝝎 
(°) 

𝝋𝝋 
(°) 

𝜿𝜿 
(°) 

𝒗𝒗 
(m/s) 

69,104 
(100 Hz; ~12 
mins) 

Mean 0.007 0.047 -0.014 0.002 0.007 0.228 0.030 

STD 0.094 0.124 0.102 0.257 0.224 0.549 0.053 

RMSE 0.094 0.133 0.103 0.257 0.224 0.595 0.061 

Max of 
Absolute 
Values 

0.370 0.514 0.352 1.681 1.108 2.041 0.582 
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APPENDIX E. BACKGROUND OF ADJACENCY RELATIONSHIP AND 
SUPERPOINT GRAPHS (SPG) 

E.1 Adjacency Relationship and Superpoint Graphs (SPG) 

The adjacency relationship of superpoints is illustrated in Figure E.1a. A Voronoi adjacency graph 
is defined using the entire point cloud. The SPG is a directed graph whose nodes are the superpoints 
and edges represent the adjacency relationship of the superpoints. Each superpoint is a 
geometrically homogeneous partition. Two superpoints SP1 and SP2 are adjacent if there is at least 
one edge in the Voronoi adjacency graph with one end in SP1 and one end in SP2. The last two 
steps, superpoint embedding and contextual segmentation, are the deep learning components (see 
Figure E.1b for an illustration). PointNet is used for superpoint embedding, i.e., to compute a 
descriptor for each superpoint. In PointNet, the input points and features are aligned by a spatial 
transformer network (STN), individually processed by multi-layer perceptron (MLP), and max-
pooled to aggregate the information from all the points. 

(a) 

(b) 
Figure E.1 Schematic diagram of the superpoint graph (SPG) approach: (a) superpoint graph 
construction and (b) superpoint embedding and contextual segmentation. 
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Figure E.2 Schematic diagram of the SPG approach showing the fixed layers for transfer 
learning in blue. 

E.2 Transfer Learning Between Scenes 

Upon verifying the performance of the baseline model, this experiment explores the transferability 
of the deep learning-based semantic segmentation for handling point clouds capturing different 
scenes. In this experiment, the source domain is the PWMMS-UHA bridge dataset; the target 
domain is the PWMMS-UHA highway dataset. The PWMMS-UHA highway dataset was divided 
into the following: a training and validation set (17 tiles—Tiles 2, 25, 30, 34, 80, 121, 169, 227, 
268, 319, 442, 454, 468, 491, 497, 518, 544) and an independent testing set (6 tiles—Tiles 14, 212, 
340, 376, 445, 499). The 6 tiles selected for the testing set contain different road elements. Three 
models were developed. 

• Model A (baseline) 
o Trained and validated on the PWMMS-UHA bridge dataset (21 bridges). 

• Model B 
o Trained and validated on the PWMMS-UHA bridge dataset (21 bridges). 
o Fine-tuned with the PWMMS-UHA highway dataset (6 tiles—Tiles 25, 80, 442, 

454, 468, 497). 
• Model C 

o Trained and validated on the PWMMS-UHA highway dataset (17 tiles). 

The three models were tested on the testing set from the PWMMS-UHA highway dataset (6 tiles). 
Model A (the baseline model) was trained with the source domain data and thus was expected to 
have the lowest accuracy. Model C was trained with the target domain data and thus was expected 
to have the highest accuracy. Figure E.3 shows the predictions from Models A, B, and C for the 
six tiles and the performance metrics are reported in Table E.1. According to Figure E.3, common 
errors include misclassifying roads as natural terrain (Tile 340), misclassifying overhead signs as 
bridge components (Tile 445), and misclassifying buildings as hardscape, bridge components, or 
natural terrain (Tiles 14 and 499). Looking into the metrics reported in Table E.1, the performance 
of Model A is only slightly lower than that of Model C. This result indicates that the model trained 
with the PWMMS-UHA bridge dataset has acceptable performance on the PWMMS-UHA 
highway dataset, which is reasonable since most highway components are present in the bridge 
dataset. As a result, the improvement after applying transfer learning is marginal. Another 
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observation is that all the models have poor ability for identifying buildings, which is most likely 
related to the lack of training samples for this class. 

Figure E.3 Predictions from Models A, B, and C for the testing set (Tiles 14, 212, 340, 376, 
445, 499 from the PWMMS-UHA highway dataset). 
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Table E.1 Performance of Models A, B, and C on the testing set from the PWMMS-

UHA highway dataset 

Model A 

TP FP FN Precision Recall F1-score IoU 

Bridge – Deck 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

Bridge – Abutment 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

Bridge – Pier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Man-made terrain 0.789 0.128 0.083 0.860 0.905 0.882 0.731 

Natural terrain 0.492 0.279 0.230 0.638 0.682 0.659 0.446 

Vegetation 0.836 0.014 0.150 0.983 0.848 0.911 0.811 

Buildings 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

Remaining hardscape 0.481 0.433 0.086 0.526 0.848 0.649 0.559 

Scanning artifacts 0.946 0.023 0.031 0.976 0.968 0.972 0.964 

Overall accuracy 83% 

Model B 

TP FP FN Precision Recall F1-score IoU 

Bridge – Deck 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

Bridge – Abutment 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

Bridge – Pier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Man-made terrain 0.790 0.128 0.082 0.860 0.906 0.882 0.731 

Natural terrain 0.498 0.222 0.279 0.692 0.641 0.665 0.449 

Vegetation 0.873 0.038 0.090 0.959 0.907 0.932 0.851 

Buildings 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

Remaining hardscape 0.454 0.464 0.082 0.494 0.847 0.624 0.521 

Scanning artifacts 0.846 0.028 0.126 0.968 0.870 0.916 0.842 

Overall accuracy 84% 

Model C 

TP FP FN Precision Recall F1-score IoU 

Bridge – Deck 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – Abutment 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Bridge – Pier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Man-made terrain 0.860 0.137 0.003 0.863 0.997 0.925 0.800 

Natural terrain 0.391 0.021 0.588 0.948 0.399 0.562 0.357 

Vegetation 0.827 0.153 0.020 0.844 0.976 0.905 0.807 

Buildings 0.000 0.000 1.000 1.000 0.000 0.000 0.000 

Remaining hardscape 0.487 0.459 0.053 0.515 0.901 0.655 0.551 

Scanning artifacts 0.801 0.016 0.183 0.980 0.814 0.889 0.792 

Overall accuracy 85% 
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