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State Estimation and Motion Prediction of Vehicles
and Vulnerable Road Users for Cooperative

Autonomous Driving: A Survey
Prasenjit Ghorai , Azim Eskandarian , Senior Member, IEEE, Young-Keun Kim , and Goodarz Mehr

Abstract— The recent progress in autonomous vehicle research1

and development has led to increasingly widespread testing of2

fully autonomous vehicles on public roads, where complex traffic3

scenarios arise. Along with these vehicles, partially autonomous4

vehicles, manually-driven vehicles, pedestrians, cyclists, and some5

animals can be present on the road, to which autonomous6

vehicles must react. This study focuses on a comprehensive7

survey of the literature on motion prediction and state estimation8

of vehicles and VRUs, which are essential for path planning9

and navigation functionalities of an autonomous vehicle. Motion10

prediction and state estimation methods utilize the vehicle’s own11

sensory perception capabilities and information obtained through12

cooperative perception from V2V and V2X connections. This13

survey summarizes the significant progress that has been made14

in both categories, discusses the most promising results to date15

and outlines critical research challenges that need to be overcome16

to achieve full autonomy, from an ego vehicle’s perspective in17

mixed traffic environments.18

Index Terms— Cooperative autonomous driving, motion pre-19

diction, perception, state estimation, vulnerable road users.20
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CPN Cooperative Perception and Navigation
DL Deep Learning
DSRC Dedicated Short-Range Communication
FoV Field of View
HMM Hidden Markov Model
HOG Histogram of Oriented Gradients
LoS Line of Sight
ML Machine Learning
MLP Multi-layer Perceptron
NHTSA National Highway Traffic Safety

Administration
R-CNN Regions with Convolutional Neural Network
RoI Regions of Interest
SLAM Simultaneous Localization and Mapping
SSD Single Shot Detector
SVM Support Vector Machine
SVM-BF Support Vector Machines-Bayesian Filtering
V2I Vehicle to Infrastructure
V2V Vehicle to Vehicle
V2X Vehicle to Everything
VEC Vehicular Edge Computing
VRUs Vulnerable Road Users
YOLO You Only Look Once 23

I. INTRODUCTION 24

RECENT breakthroughs in deep learning-based computer 25

vision have advanced autonomous driving technology 26

to the next level. The worldwide research and development 27

carried out by academia and vehicle manufacturers has signif- 28

icantly expanded the knowledge base for autonomous driving, 29

reducing the time horizon to deploy fully autonomous vehicles 30

on public roads. This progress, however, has brought forth 31

new problems and challenges arising from the operation of 32

autonomous vehicles in dynamic and heterogeneous traffic sce- 33

narios where manually-driven vehicles and partially-automated 34

vehicles will be on the road along with pedestrians, bicyclists, 35

and other VRUs. 36

A critical challenge facing fully autonomous vehicles is an 37

improper or inaccurate response to the surrounding environ- 38

ment in a driving scenario that may endanger other vehicles 39

or VRUs. This can be because the vehicle has not encountered 40

that specific scenario before, because of detection or classi- 41

fication failure, because of sensor FoV blockage or failure, 42

or because of extreme weather conditions. Take, for example, 43
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TABLE I

A SUMMARY OF ADAS AND AV SURVEY PAPERS

the Tesla on Autopilot’s crash in California [1], where the car’s44

sensors could not recognize a parked fire truck on the side45

of the raod. In another crash involving Tesla and Autopilot in46

Florida [2], the vehicle could not discern a white crossing truck47

against the bright sky background. There are still many other48

instances of circumstances leading up to bad decisions, such49

as the Uber incident [3]. In that case, the vehicle did detect50

an unknown object, a pedestrian walking with a bicycle, from51

a distance. As the vehicle approached the unknown object,52

it first classified that object as a vehicle and later as a bicycle,53

but it was too late by then. While these incidents highlight the54

challenges facing autonomous vehicles and the importance of55

perception failure mitigation, we should not gloss over the56

incredible progress that has been made in autonomous vehicle57

research, nor the benefits of having fully autonomous vehicles58

on the road, given that according to NHTSA, 94% of road59

accidents are caused by human error [4].60

An enormous amount of research work has been carried61

out to introduce and implement ADAS [5] such as CAS, lane-62

keeping [6], ACC [7], and CACC [8], [9] to counteract a signal63

loss, reduce human error and improve vehicle safety. The64

same is true for the methods and algorithms enabling vehicle65

autonomy in areas ranging from perception to motion planning66

and control. Overall, the progress made toward intelligent67

transportation systems over the past several years has be 68

reviewed by researchers in different areas, with important sur- 69

veys listed in Table I each highlighting a core area of research 70

and the advances made in that area; namely, on-road vehicle 71

detection [10], motion prediction and risk assessment [11], 72

vehicle detection techniques for collision avoidance [12], 73

motion planning [13], [14] and control techniques [13], DSRC 74

and cellular solutions for V2X communication for intelligent 75

vehicles [15], localization and mapping [16], [17], environ- 76

ment perception and traffic sign detection [18], perception for 77

behavior-aware planning [19], pedestrian behavior [20] and it’s 78

motion trajectory prediction [21], etc. 79

Most of these works only cover a few aspects of connected 80

autonomous driving, which is reflective of the current approach 81

to autonomy that has focused on building small and disparate 82

intelligences that are closed off to the rest of the world. In the 83

current approach, even if several autonomous vehicles are 84

traveling in the same environment at the same time, they each 85

have to carry expensive sensing, navigation, and processing 86

hardware and still, lacking coordination with other road users, 87

they may get into accidents. A future with a mixed traffic 88

of CAVs and other vehicles on the road requires a paradigm 89

shift in communications and coordination, cooperative sensing, 90

and real-time dynamic planning and controls to be effective 91
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TABLE II

A SUMMARY OF THE DISCUSSED EXTEROCEPTIVE SENSORS USED IN AVS

at improving traffic congestion, road user safety, and over-92

all efficiency. This future can be imagined as a multi-lane93

highway or a city block with a mix of autonomous and94

manually-driven cars which are communication-enabled, each95

having a navigation plan, and a generated trajectory and a96

maneuver of some sort to meet that plan. The autonomous97

ones have situational awareness by virtue of their sensors, and98

this awareness can be shared with the surrounding road users99

within a region or area. This will ultimately improve traffic100

congestion, minimize driver load, increase the effective usage101

of on-road vehicles, and improve fuel efficiency. Observing102

this untapped potential, researchers are moving towards con-103

nected and cooperative intelligent transportation systems by104

merging established and developing technologies from diverse105

areas. Therefore, the prime objective of this comprehensive106

study is to connect all the relevant research areas, summarize107

the existing developments, and highlight the challenges in108

each area so that a bird’s-eye view is available to the new109

researchers in this field.110

This survey begins with a discussion of exteroceptive sensor111

types used in AVs and a comparison of their range, accuracy,112

cost, weather performance, and a discussion of each sensor113

type’s drawbacks. We then review DL-based 2D and 3D114

dynamic object detection methods used in AV research, with115

a focus on the applications and limitations of these methods.116

Next, we discuss and categorize different approaches for117

detection, motion prediction, intent estimation, and behavior118

analysis of other vehicles and pedestrians from a practical119

point of view, along with a summary of existing data sets for120

training, validation, and testing of these methods. We will also121

highlight open challenges in mixed driving traffic scenarios for122

future research. Considering the critical nature of perception123

failure mitigation, in this survey we focus on detection and124

tracking, state and intent estimation, and motion prediction125

of dynamic agents and objects an autonomous ego vehicle126

encounters. In this survey, dynamic agents include pedestrians127

and other vehicles - primarily passenger cars. The recent128

emergence of cooperative perception and navigation plays an129

important role in the development of CAVs, which should130

ultimately help them take appropriate actions in heterogeneous131

traffic scenarios. Therefore, we provide a summary of major 132

developments in cooperative perception and navigation and 133

present an overall analysis of current implementations and 134

their limitations. As CCAD [36] seems a promising approach 135

for the widespread adoption of vehicle autonomy, we think 136

this survey will be beneficial to researchers who are working 137

in or entering this area. 138

The remainder of this paper is organized as follows. 139

Section II highlights major developments of exteroceptive 140

perception sensors used in AVs, sensor fusion, egocentric 141

dynamic object detection methods using DL and machine 142

intelligence, their limitations, and open challenges. Section III 143

summarizes the state-of-the-art classical methods of state 144

estimation and motion prediction of pedestrians and vehicles. 145

Section IV discusses the progress of cooperative perception 146

for autonomous driving and a detailed analysis of existing 147

implementation issues in AVs. Future research directions are 148

discussed in Section V, and finally, Section VI concludes our 149

review of the literature. 150

II. EGO VEHICLE PERCEPTION OF ON-ROAD OBJECTS 151

An AV’s level of intelligence depends on its sensors and the 152

sophistication of the algorithms that interpret information from 153

those sensors. This section first reviews perception sensors 154

commonly used in CAVs, then discusses various object detec- 155

tion methods, and finally highlights the existing challenges of 156

ego-centric object detection. 157

A. Perception Sensors 158

Based on their application, AV sensors can be divided 159

into onboard exteroceptive and proprioceptive or interoceptive 160

sensors. The primary task of exteroceptive sensors is the 161

perception of static and dynamic objects in the surrounding 162

environment and prediction of their motion and behavior. This 163

subsection focuses on exteroceptive perception sensors, par- 164

ticularly camera, lidar, and radar, and discusses their purpose, 165

major advantages and disadvantages, cost-effectiveness, level 166

of uncertainty, and suitability for different weather conditions. 167

A comparative summary of our discussion on these sensors is 168

available in Table II. 169
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1) Camera: cameras are passive sensors in the sense that170

they do not interfere with other systems or sensors by affecting171

the environment. They can distinguish color, which is critical172

to AVs for recognizing traffic lights and signs, lane mark-173

ings, other vehicles, and pedestrians on the road. A recent174

survey [17] has highlighted the state-of-the-art computer vision175

algorithms utilizing monocular, omnidirectional, and event176

cameras, comparing their advantages and limitations. Though177

event and thermal cameras have drawn some interest for ADS,178

they still suffer from problems arising from scene illumination179

and weather conditions. Another survey paper [27] has detailed180

computer vision-based algorithms for object and traffic sign181

detection. Additional details regarding the performance of182

standard, stereo, and thermal cameras are highlighted below.183

a) Standard camera: standard cameras are cost and com-184

putationally efficient but subject to performance degradation185

due to scene illumination and weather conditions. They are186

mainly utilized for vehicle [10], [37], pedestrian [38]–[40],187

lane marking [41]–[43], and traffic sign [18] detection in AVs.188

360◦ or omnidirectional cameras can be used to obtain a189

panoramic view for navigation, localization, and mapping [44].190

It is generally difficult to obtain accurate depth information191

from a single camera, but promising studies to improve192

monocular camera-based depth estimation are ongoing.193

b) Stereo camera: depth information from a scene can194

be measured by a stereo camera system, similar to the human195

eye. Stereo cameras are commonly used for 3D mapping,196

better target classification, and long-range detection with better197

detection capacity than standard vision. Image processing of198

stereo cameras is more computationally demanding, and cam-199

era performance suffers in poor weather or lighting conditions.200

c) Thermal camera: thermal cameras are used as stand-201

alone or with standard color cameras in object detection202

to overcome poor lighting [45], [46]. They are effective at203

pedestrian detection in low light conditions [47] and are useful204

for vehicle detection and tracking at night. Information from a205

thermal camera can be fused with data from other sources such206

as standard color cameras and lidar to get depth information207

in normal weather conditions.208

2) Lidar: lidar is a relatively expensive sensor and utilizes209

IR light to measure its distance to targets, outputting a 3D210

point cloud. Lidars calculate target distance through either211

pulse measurement or phase shift measurement. Phase shift212

measurement is used for small distances and has a higher213

accuracy compared to pulse measurement, which is commonly214

used for long-range distance measurement and hence suitable215

for AVs. Lidar is suitable for the identification and recognition216

of road markings, pedestrians, bicyclists, and cars. A per-217

ception process utilizing lidar is generally divided into three218

steps: segmentation, fragmentation clustering, and tracking.219

The range of lidars is generally below 300 m, but is subject to220

performance degradation especially in extreme weather condi-221

tions such as fog and snow. Overall, lidars are most effective222

for mid-near range and multi-target object detection, though223

they cost more compared to other exteroceptive sensors.224

3) Radar: compared to lidar, radar has a lower cost,225

is lightweight, and is small in size, but also has a lower226

accuracy. In AV applications, it is primarily used to measure227

TABLE III

ONBOARD SENSOR COMBINATIONS FOR SOME AV PLATFORMS [17]

the position and velocity of an object and is more reliable 228

in extreme weather conditions than lidar or camera. As its 229

performance is not affected by scene illumination, radar can 230

also cover some of the shortcomings of camera. Radar is 231

good at detecting vehicle-sized objects, but the detection task 232

becomes challenging if the object is smaller. Moreover, due 233

to its lower resolution precise shape estimation is challenging, 234

though fusing with camera images can increase the precision 235

and accuracy of such an operation. 236

Research groups and vehicle manufacturers worldwide have 237

developed different AV platforms utilizing various sensor com- 238

binations, indicating each platform’s approach to achieving 239

full autonomy. Among them are not only platforms from 240

academia such as Stanford’s Junior [48], CMU’s Boss [49], 241

and RobotCar [50], but also commercial ones like the Tesla 242

Autopilot [51], Uber Car (Ford Fusion) [52], Apollo Auto [53], 243

Bertha [54], and Google’s self-driving car [55]. A summary 244

of various full-size AVs and their sensor combination is 245

provided in Table III. Some of these platforms prioritize vision 246

data while others favor that of lidar, with a few pursuing a 247

balance between these two types of perception sensors. Further 248

study is needed to understand the optimal number, type, and 249

combination of sensors that achieve the best overall perception 250

quality and redundancy while maintaining some level of cost- 251

effectiveness. 252

B. Deep Learning-Based 2D Object Detection 253

Detection, state estimation, and motion prediction of 254

dynamic objects on the road is the most challenging task 255

facing an AV, as the ego vehicle needs to frequently update its 256

path based on the predicted behavior of surrounding objects 257

to prevent any hazardous situations. Computer vision research 258

over the past few decades has enabled the detection and 259

classification of thousands of static and dynamic objects in 260

a scene (image frame) [58], first using traditional detection 261

methods and from 2012 using DL [59]. This can be seen in 262

the road-map of object detection milestones shown in Fig. 1. 263

Detection of static objects has allowed AVs to understand 264

traffic signs and traffic lights and obey basic driving rules. 265
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Fig. 1. Milestones of object detection over the last 20 years [58].

TABLE IV

COMPARISON OF THE ACCURACY OF DL OBJECT DETECTION
ARCHITECTURES ON THE IMAGENET 1K TEST SET [17]

Moreover, the progress in object detection research in more266

recent years has accelerated research focused on the localiza-267

tion of dynamic objects, detection of their pose, and prediction268

of their short-term future trajectories to enable safe path269

planning for AVs. Though these dynamic objects – vehicles,270

pedestrians, bicyclists – can now be easily detected and271

classified, prediction of their future intention is still not an272

easy task. State-of-the-art object detection methods based on273

DL proposed in computer vision literature are highlighted in274

Table IV (ordered by Top 5% error). All these methods use275

CNN in some form. The number of parameters and layers is276

a good indicator of the computational load of the respective277

architecture. The research indicates that an ego vehicle utiliz-278

ing one of those architectures [60]–[66] in its vision pipeline279

can detect and identify an unknown object with an accuracy280

of around 95%. However, real-time implementation of such281

heavy networks with online training is still challenging.282

All state-of-the-art object detection methods used for283

AD are based on DL. They work by first detecting and284

classifying target object(s) and then drawing a bounding box285

around them to position those objects in the scene. These286

methods can be categorized as either two-stage or single-stage287

frameworks [67], with an overview of each category provided288

below.289

1) Two-Stage Framework: the two-stage framework is also290

known as region proposal object detection. In this frame-291

work, general regions of interest are usually targeted in292

the first neural network. In the second stage, they are293

classified by a separate classifier network. A few methods294

belonging to this framework are R-CNN, Fast R-CNN, and295

TABLE V

AP OF COMMON 3D OBJECT DETECTION METHODS ON THE CAR
CLASS OF THE KITTI 3D OBJECT DETECTION TEST SET [17]

Faster R-CNN. A detailed list of such methods and a discus- 296

sion of them is available in [67]. Overall, two-stage object 297

detection methods are more accurate but are also less compu- 298

tationally efficient, requiring more computational power and 299

inference time. 300

2) Single-Stage Framework: compared to the previous cat- 301

egory, methods in this category are generally faster and more 302

computationally efficient, making them suitable for real-time 303

object detection, but have less accuracy. YOLO [64], [68], [69] 304

and SSD [70] are two examples of such methods. 305

C. Deep Learning-Based 3D Object Detection 306

Lidar outputs 3D point clouds indicating the surfaces of 307

a scene. If the data is sparse, it makes object detection 308

and classification challenging. In general, lidar-based object 309

detection methods consist of three steps: segmentation, clus- 310

tering, and tracking [71], typically utilizing machine learning 311

techniques such as SVM. The shape of objects and their 312

motion characteristics [48], [72] can also be utilized to identify 313

VRUs and cars. State-of-the-art 3D object detection methods 314

commonly used in AVs are listed in Table V along with their 315

AP on the car class of the KITTI 3D object detection data 316

set. While Table V shows that these detection methods have 317

greatly increased 3D object detection accuracy, convolution 318

complexity still remains a challenge for real-time usage. 319

D. Pedestrian, Cyclist and Vehicle Detection 320

A critical task of AVs in a real traffic environment is detect- 321

ing and tracking other cars and VRUs, the most important 322

dynamic objects on the road. The performance of current state- 323

of-the-art object detection methods for these object classes 324

can be compared through studies like the one proposed by 325

Lang et al. [74]. They considered various sensing configu- 326

rations as well as object detection methods developed by 327

them or other researchers and calculated the detection and 328

classification mAP for each object class. For their first study, 329

the authors used the KITTI BEV benchmark data set, and 330

the comparative results are shown in Table VI. Their second 331

study used the KITTI 3D detection benchmark data set, and the 332

results are presented in Table VII. The tabulated results of case 333

studies with moderate difficulty indicate that the PointPillars 334

method performs better than almost all other methods and also 335

outperforms them when fusion-based methods are applied to 336

detect cars and cyclists. More research is still needed in this 337
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TABLE VI

COMPARATIVE STUDY OF STATE-OF-THE-ART OBJECT DETECTION
METHODS [74] (RESULTS ON THE KITTI BEV

DETECTION BENCHMARK DATA SET)

TABLE VII

COMPARATIVE STUDY OF STATE-OF-THE-ART OBJECT
DETECTION METHODS [74] (RESULTS ON THE KITTI

3D DETECTION BENCHMARK DATA SET)

area since the mAP of the current methods, especially when338

it comes to pedestrians and cyclists that are more vulnerable339

and frequently disobey traffic laws, is far lower than 90%.340

E. Sensor Fusion-Based Object Detection341

An accurate fusion of data collected from different sensory342

sources would dramatically improve object detection effec-343

tiveness. It allows different sensing modalities to reinforce344

each other’s strengths and cover individual weaknesses. For345

sensor fusion, either all sensing modalities perform detection346

tasks simultaneously and then validate each other’s results,347

or one modality performs the detection while others validate348

the data [84], [85]. In [86], human sensing performance is349

compared to ADS, where one of the key findings is that even350

though human drivers are still better at reasoning overall, the351

perception capabilities of an ADS utilizing sensor fusion can352

exceed that of humans, especially in degraded environmental353

conditions such as low scene lighting [17]. To that end, various354

sensor combinations commonly used for data fusion are briefly355

discussed below.356

1) Radar-Camera Data Fusion [12]: in this fusion process,357

radar is mainly used for estimating RoI or distance, while358

recognition is carried out using cameras [87]–[96]. In two359

studies, guardrails’ locations were determined by radar data, 360

and vehicles were detected using the limited region’s ver- 361

tical symmetry features in image frames [88]. In similar 362

approaches [94], [97], vehicles were detected using symmetry, 363

edge information, and optical flow features of images. Once a 364

vehicle was detected, its distance was calculated using radar- 365

and-camera-fused data. That data was then projected onto a 366

common global occupancy grid, where vehicles were tracked 367

in a global frame of reference using a Kalman filter [89]. 368

2) Lidar-Camera Data Fusion: some approaches have used 369

lidar for reliable object detection while simultaneously using 370

lidar and Camera to perform classification [85], [98], [99]. 371

Others have used a camera for vehicle detection and lidar for 372

ranging [100], [101]. MV3D, AVOD-FPN, and F-PointNet are 373

some of the popular lidar-camera data fusion methods. 374

3) Radar-Lidar Data Fusion: Data from radar and lidar 375

can be fused to improve the performance of state estimation 376

and tracking of dynamic objects [102]. The state is estimated 377

using Bayesian methods, extended Kalman filter, or particle 378

filter, while data from two independent systems are fused for 379

improved detection and tracking. 380

4) Radar-Lidar-Camera Data Fusion: through this fusion 381

process, object detection and classification results from the 382

camera are utilized to improve tracking model selection, data 383

association, and movement classification [103], [104]. 384

F. Challenges of Ego-Centric Object Detection 385

Although dynamic objects such as cars and pedestrians are 386

well-structured and easy to detect, estimation of their dynamics 387

and intent is not a simple task. Therefore, the following 388

challenges have to be addressed to step closer to full autonomy. 389

1) Physical Limitations of Sensors: compared to camera 390

images, a lidar measurement results in better 3D object 391

detection accuracy and FoV. Motion-based object detection 392

using a camera is sensitive to noise and scene lighting. 393

On the contrary, lidar can work in low visibility environ- 394

ments and is not affected by low light conditions. Compared 395

to radar, however, lidar performs less satisfyingly in rainy 396

and snowy climates [37]. More research is still needed to 397

address challenges arising from sensor physical limitations in 398

scenarios with complicated scene lighting or extreme weather 399

conditions. 400

2) Accuracy Issues: pedestrian detection accuracy of 2D 401

object detection methods such as YOLO v3 or RetinaNet 402

on some large-scale data sets such as COCO or ImageNet 403

is usually much higher (around 85-95%) than it is on the 404

KITTI 3D object detection data set (lower than 50%) that is 405

much closer to real-world driving conditions. Because of this, 406

a pedestrian may not be detected in some (from a couple to 407

tens of) frames. 408

3) Reliability and Robustness Issues: despite significant 409

progress in AV research and technology, the reliability and 410

robustness of the perception sensor suite cannot be fully 411

guaranteed. Some sensors may not work as well in low light 412

conditions, while others may be rendered useless by snow or 413

dirt, affecting the AV’s performance despite sensor redundancy 414

and sensor fusion. Because of this, finding answers to the 415

following questions is crucial to making progress on sensor 416
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TABLE VIII

OVERVIEW OF HUMAN MOTION PREDICTION METHODS

reliability: (i) what should be done when a sensor fault occurs?417

(ii) How can the AV recognize defective data from a sensor?418

(iii) How to anticipate sensor failure? (iv) How to determine419

the absolute ground truth during extreme weather conditions?420

4) Time Latency Issues: the total time latency from an421

occurrence in the environment to detection by an AV is422

dependent on the scan rate of sensors and the AV’s com-423

putational speed. Processing image frames from cameras and424

point clouds from lidars require high computational power,425

without which there would be increased latency. In high-426

speed driving scenarios where an AV is going upward of427

100 km/hr, a 1 second latency means traveling a distance428

of at least 36 m, significantly reducing the available braking429

distance in case of an emergency. Therefore, the total time430

latency should be below 100 ms to ensure safety for fully431

autonomous driving. What complicates this is that all recent432

object detection algorithms are DL-based, resulting in a much433

heavier computational load. Therefore, a trade-off has to be434

made between speed and accuracy. Some recent high-speed435

object detection algorithms such as YOLO v3-v5 and Inception436

v3 are gaining popularity but require a high-performance GPU437

for real-time application in ADS. Nevertheless, they have438

shown promising gains in both speed and accuracy. Further439

research is needed to build upon this progress.440

III. STATE ESTIMATION AND MOTION PREDICTION441

A. Pedestrian State Estimation and Motion Prediction442

Accurate estimation of pedestrian state and future motion is443

challenging for AVs on the road, especially in heterogeneous444

traffic environments. So AVs need to analyze a pedestrian’s 445

past motion and present state and predict its future path. 446

This is difficult because although most pedestrians frequently 447

move along sidewalks and intersection crossings, they may 448

behave randomly in some instances and not follow traffic 449

rules, perhaps due to an external stimulus. The reaction to 450

that stimulus may or may not be shared with other traffic 451

agents, and those factors may or may not be observable 452

or controllable by an AV. Hence an AV has to consider a 453

multitude of factors, including a pedestrian’s pose – standing, 454

starting, walking, stopping – facial expressions, and move- 455

ment through space to make an effective prediction of that 456

pedestrian’s future motion and intention. A summary of human 457

motion prediction methods for AVs developed over the past 458

few decades is presented in Table VIII, broadly categorized 459

by modeling approach and contextual cues. These prediction 460

methods are validated using real-time ground-truth data from 461

data sets collected and standardized by various research and 462

development communities. Table IX provides an overview 463

of popular data sets available and used for human motion 464

prediction and research works performed by researchers in 465

this area. 466

Despite the progress [20], [21] made in the development of 467

pedestrian state estimation and motion prediction techniques, 468

their accuracy and reliability are still not fully guaranteed. 469

This can be a problem because AVs need to make anticipatory 470

actions for their short-term path plan based on accurate state 471

estimation and motion prediction of the surrounding pedestri- 472

ans. Furthermore, there is still no model for the prediction of 473

the abnormal behavior of pedestrians walking on the roadside. 474
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TABLE IX

SUMMARY OF EXISTING DATASETS ON HUMAN MOTION TRAJECTORIES

While V2X connectivity has been proposed as a solution,475

its feasibility is still not guaranteed since a pedestrian may476

not always be online throughout a traffic scenario. Some477

of the other difficulties in pedestrian state estimation and478

motion prediction are the following: variation in dimensions479

of the human body, presence of human pictures on street480

advertisements, dense or occluded pedestrian detection, and481

difficulty in real-time robust pedestrian detection.482

B. Vehicular State Estimation and Motion Prediction483

For any AV, other vehicles on the road are generally the484

primary concern at any time. Hence, accurate state estimation,485

tracking, and prediction of other vehicles’ near-future paths486

and understanding their behavior is as important as that of487

pedestrians. This subsection briefly reviews and summarizes488

classical vehicle detection, state estimation, tracking, and489

motion prediction methods.490

Vision-based vehicle detection has reached its maturity491

after decades of research in ML and DL, and the following492

tables (Tables X - XV) provide an overview of that research.493

Classic vision-based vehicle detection methods are presented494

in Table X, and are categorized by their usage of the motion495

or appearance of vehicles through monocular and stereo cam-496

eras. Alongside vehicle detection, state estimation and motion497

tracking are also essential for predicting the future position498

of vehicles on the road so that short and long-term path499

planning and collision avoidance are possible for the ego500

vehicle. Hence, Table XI highlights application-specific on-501

road vehicle tracking methods commonly used for monocular502

and stereo vision setups. Furthermore, Table XII presents the503

methods utilized for task-specific behavior analysis of on-road 504

vehicles. 505

Table XIII provides a summary of the existing benchmark 506

data sets for vehicle detection and trajectory prediction, and 507

interested readers can refer to [10] for a detailed analysis 508

and comprehensive review of vision-based vehicle detection, 509

tracking, behavior analysis, and data sets used for this pur- 510

pose. Alongside detection and tracking, motion prediction 511

and maneuver intention estimation [12] of other vehicles are 512

also equally important for an ego vehicle’s safe trajectory 513

planning and execution. Therefore, an overview of current 514

motion prediction methods and their limitations is presented 515

in Table XIV. Finally, methods used for maneuver intention 516

estimation at road intersections are provided in Table XV. 517

While significant progress has been made in the devel- 518

opment of vehicle detection and motion prediction methods, 519

some challenges remain unsolved. Among them is a reduction 520

in the performance of the current methods in extreme weather 521

conditions. Another challenge is identification of abnormal 522

driving behavior of other vehicles in real time. A final 523

challenge is long-term motion prediction of other vehicles 524

irrespective of traffic signals, where a multi-model tracking 525

method is needed. 526

IV. COOPERATIVE PERCEPTION AND NAVIGATION 527

CPN refers to the practice of sharing perception and naviga- 528

tion information using V2V and V2X communication [340], 529

[341] in a traffic network to better understand the surround- 530

ing environment and increase safety. Receiving perception 531

information from other AVs can help the ego vehicle better 532

understand blind spots or areas blocked by large objects. It can 533
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TABLE X

SUMMARY OF VISION-BASED VEHICLE DETECTION METHODS

TABLE XI

SUMMARY OF VISION-BASED VEHICLE TRACKING METHODS

also be an added layer of safety in case of sensor failure.534

Moreover, sharing trajectory information can help vehicles535

navigate more seamlessly, for example, by negotiating at inter-536

sections or forming highway platoons, or relevant platooning537

tasks [342]–[347].538

The most straightforward approach to CPN is raw539

(or lightly-processed) information sharing, though this can be540

challenging due to bandwidth limitations and heavy commu-541

nication load [348]. Aside from that, both fusing data received542

from a large variety of sensor arrays of other road users and543

processing a large volume of raw data can be computationally544

challenging. Therefore, a more common approach is to share545

processed perception information, for example an occupancy546

grid or a real-time map indicating the location, pose, and547

predicted trajectory of the surrounding objects, vehicles, and 548

VRUs. This section briefly highlights major developments in 549

this area and discusses open challenges facing CPN. Interested 550

readers can visit [27] for a more comprehensive discussion. 551

A. Recent Progress in CPN 552

Working cooperatively benefits all vehicles in a net- 553

work, as it improves every vehicle’s understanding of the 554

surrounding environment. In what follows, we list what 555

vehicles stand to gain from cooperative perception and 556

navigation: 557

1) It extends the LoS and FoV of every vehicle in 558

the network. This, in turn, facilitates detection of traffic 559
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TABLE XII

METHODS FOR ON-ROAD BEHAVIOR ANALYSIS

TABLE XIII

DATASETS FOR VEHICLE DETECTION AND TRAJECTORY PREDICTION

TABLE XIV

SUMMARY OF VEHICLE MOTION PREDICTION METHODS

congestion, avoidance of hidden obstacles and hazardous560

situations [349], safe lane changing/overtaking, and smooth561

path planning [350].562

2) It helps AVs with short-term planning and control, for563

example, in immediate longitudinal control [351].564

3) Speed and heading angle sharing through V2V commu- 565

nication can help with collision avoidance and complement 566

emergency braking systems. 567

4) Cooperative intersection management through trajec- 568

tory sharing can improve the safety of intersection naviga- 569
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TABLE XV

SUMMARY OF MANEUVER INTENTION ESTIMATION
METHODS AT ROAD INTERSECTION

tion [27]. This can lead to significant improvements because,570

for instance, during the ten years from 2005 to 2014, over571

20% of the fatalities on EU roads took place at intersec-572

tions [352] only. Therefore, such cooperative management573

algorithms, along with rule-based heuristic methods [353], and574

optimization-based methods [354], could make a noticeable575

difference in intersection safety.576

B. Challenges Facing CPN577

Despite recent developments and benefits listed above, CPN578

faces many challenges that need to be addressed before it579

can be widely adopted. These challenges include data privacy,580

data authenticity, handling data from malfunctioning sensors,581

development of a general architecture for cooperative data582

fusion, multi-object detection and tracking, and cooperative583

driving. Some of these challenges are further discussed below.584

1) Data Transfer Decision: assuming that V2V communi-585

cation is established between multiple vehicles for CP, each586

vehicle has to decide when and how to transmit or receive587

data:588

a) Transmitter: some questions that need to be addressed589

are the following: what data to send? When and in what situ-590

ation to send that data? How to assess a hazardous situation?591

If a nearby vehicle is in a hazardous situation, how to handle592

it? Among multiple nearby vehicles, how to select a target593

vehicle to send data? How to be aware of all nearby vehicles’594

relative positions in real-time?595

b) Receiver: what data and how to fuse to extend596

FoV? Which received data to fuse for object detection if597

the ego vehicle failed to detect an object? How to select598

one transmitting vehicle among multiple such vehicles to599

receive data from? Or should data be received from all such600

vehicles? Should receiving data be continuous or selective? If601

continuous, how to handle the increased communication and602

processing burden? Overall, there needs to be a general frame-603

work for CP that defines protocols for data transmission and 604

cooperative behavior. This can enable efficient implementation 605

of CP and reduce potential compatibility issues during data 606

transmission. 607

2) Data Reliability and Accuracy Issues: an AV connected 608

to a cooperative network perceives the driving environment 609

through several on-board sensors, among which a few are its 610

own, and the rest are located on other vehicles. Therefore, 611

the sensing accuracy is not only dependent on the sensors 612

of an individual vehicle and their accuracy, but also on the 613

performance of the overall network. 614

3) Data Association Issues: setting aside communication 615

issues, it is still non-trivial to associate the information 616

received from one vehicle with another vehicle’s local under- 617

standing of the same situation [355]. Further research is 618

needed to understand how the ego vehicle should select from 619

among the data it receives and how that data should be fused 620

with the ego vehicle’s own sensory information. 621

4) Computing Issues: fusing perception data, driving deci- 622

sions, and future trajectories requires high computational 623

power. A possible solution may be VEC, through which the 624

computational burden is offloaded to nearby edge computing 625

servers, though further research is needed to investigate the 626

viability of this method. 627

5) Time-Delay and Communication Issues: one area that 628

requires further research is the impact of time delay [356] on 629

the usability of information received through 5G or DSRC 630

V2V and V2X communication. This concerns both informa- 631

tion that travels from a single road user to another one and 632

information that travels through a number of intermediaries 633

to reach a road user. Analysis of the technical literature has 634

shown that the lumped communication delay usually ranges 635

from 200 to 800 ms, while the actuation time delay is typically 636

within 20 to 250 ms [357]. According to [358], a lumped 637

actuation delay is the combined result of pure time delays 638

in (i) the engine response, (ii) the throttle actuator, (iii) the 639

brake actuator, and (iv) low-pass filters used for sensors such 640

as engine manifold pressure sensor, wheel speed sensor, etc. 641

6) Relative Pose and Localization Issues: effective fusion 642

of data from onboard sensors and those obtained through 643

communication requires knowledge of the relative pose and 644

location of the surrounding road users. Determining this can 645

become challenging when a large number of road users are 646

present in a network. 647

V. FUTURE RESEARCH DIRECTIONS 648

Up to this point, this survey has presented an overview 649

of research in various areas that enable the development and 650

deployment of CAVs. While significant progess has been made 651

in these areas, many are still facing challenges that require 652

innovative solutions. These challenges and directions of future 653

research are summarized below. 654

Though an enormous amount of research has been con- 655

ducted on detection, estimation, and tracking techniques using 656

different sensors for cars, trucks, and VRUs, further research 657

on these methods and sensing modalities is needed so that an 658

AV can confidently identify and predict the behavior of all road 659

users. For vision-based object detection, it is usually difficult 660
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to obtain accurate depth information from a single camera,661

but promising studies to improve monocular camera-based662

depth estimation are ongoing. Stereo cameras perform much663

better in this regard, though their performance suffers in poor664

weather or lighting conditions and future works should address665

that, bringing their capabilities closer to the human eye. For666

lidar-based object detection, since sensor cost is a major factor,667

a future research track can be the study of the use of multiple,668

low-cost lidars with less dense point clouds instead of one669

expensive sensor, and how that can affect detection robustness670

and reliability. Further research is also needed to understand671

the optimal number, type, and combination of sensors that672

achieve the best overall perception quality, even in challenging673

weather and lighting conditions, while maintaining some level674

of cost-effectiveness.675

While current research has made great strides in detecting676

and classifying vehicles and VRUs, further research is needed677

to increase object detection accuracy, particularly when it678

comes to smaller objects. More research is also needed to more679

accurately predict the intention of different road users and680

their future trajectories, which should be complemented with681

advances in computational hardware and software pipelines.682

This is especially important since VRUs such as pedestrians683

and cyclists are frequently present in urban traffic environ-684

ments and may disobey traffic rules or behave unpredictably.685

While V2X and V2I connectivity have been proposed as means686

of increasing VRU awareness and enhancing their interaction687

with AVs, more research is needed to demonstrate the feasibil-688

ity of this proposal. Future research should also address current689

challenges in pedestrian state estimation and motion prediction690

such as variations in human body dimensions, presence of691

human pictures on street or vehicular advertisements, and692

dense or occluded pedestrian detection.693

While CPN looks like a promising approach for handling694

a future with a traffic mix of autonomous and manually-695

driven vehicles, it still faces many challenges that need to696

be addressed before it can be widely adopted. Some of these697

challenges are data privacy, data authenticity, data associ-698

ation, handling data from malfunctioning sensors, handling699

time-delay and communication issues, calculation of relative700

pose, and cooperative driving.701

VI. CONCLUSION702

This survey of the literature on state estimation and motion703

prediction of vehicles and VRUs summarized the significant704

progress that has been made in both categories, discussed705

the most promising results to date, and outlined the areas706

where further research is needed. In a review of the perception707

sensors most commonly used in AV research, we described708

the strengths and weaknesses of cameras, lidars, and radars,709

reviewed DL algorithms used for 2D and 3D object detection710

and noted that the most reliable detection results come from711

a fusion of data from different sensor modalities. We also712

outlined the areas that need further research, including sensor713

reliability and performance in extreme weather conditions.714

In the next section, we surveyed the literature on pedestrian715

and vehicle state estimation and motion prediction, cate-716

gorizing existing detection, tracking, behavior analysis, and717

motion prediction algorithms and available benchmarking data 718

sets. We also reviewed the progress made in the area of 719

cooperative perception and navigation, using V2V and V2X 720

communication to share perception and trajectory information 721

for increased safety and traffic efficiency. While much research 722

is still needed in this area to address several challenges such as 723

data accuracy and association as well as time delay issues, this 724

research can ultimately have a great impact on the widespread 725

adoption of CAVs. Finally, possible future research directions 726

have been proposed that can help address current challenges 727

and accelerate the deployment of AVs on the road. 728
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