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a b s t r a c t

In this work, we study the problem of efficiently executing a state-of-the-art time series algorithm class
– SCAMP – on a heterogeneous platform comprised of CPU + High Performance FPGA with integrated
HBM (High Bandwidth Memory). The geometry of the algorithm (a triangular matrix walk) and the
FPGA capabilities pose two challenges. First, several replicated IPs can be instantiated in the FPGA
fabric, so load balance is an issue not only at system-level (CPU+FPGA), but also at device-level (FPGA
IPs). And second, the data that each one of these IPs accesses must be carefully placed among the HBM
banks in order to efficiently exploit the memory bandwidth offered by the banks while optimizing
power consumption.

To tackle the first challenge we propose a novel hierarchical scheduler named Fastfit, to efficiently
balance the workload in the heterogeneous system while ensuring near-optimal throughput. Our
scheduler consists of a two level scheduling engine: (1) the system-level scheduler, which leverages
an analytical model of the FPGA pipeline IPs, to find the near-optimal FPGA chunk size that guarantees
optimal FPGA throughput; and (2) a geometry-aware device-level scheduler, which is responsible for
the effective partitioning of the FPGA chunk into sub-chunks assigned to each FPGA IP. To deal with
the second challenge we propose a methodology based on a model of the HBM bandwidth usage
that allows us to set the minimum number of active banks that ensure the maximum aggregated
memory bandwidth for a given number of IPs. Through exhaustive evaluation we validate the accuracy
of our models, the efficiency of our intra-device partition strategies and the performance and energy
efficiency of our Fastfit heterogeneous scheduler, finding that it outperforms state-of-the-art previous
schedulers by achieving up to 99.4% of ideal performance.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Time series analysis is becoming a major tool on many dif-
erent domains, such as cloud computing monitoring [1], cli-
ate forecasting [2] or earthquake detection [3], among oth-
rs. A very valuable outcome of these kind of analysis is the
iscovery of motifs (similarities) or discords (anomalies). Re-
ently, the matrix profile computation has been proposed to
ccurately and efficiently find motifs and discords [4]. This algo-
ithm consists in cross comparing all subsequences of the time
eries and recording a score in a resulting time series named ‘‘ma-
rix profile’’. A simple inspection of the maximum and minimum
alues of the matrix profile is enough to identify the discords
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and motifs, respectively. To compute the matrix profile, different
classes have been incrementally proposed: STAMP [4], STOMP [5],
SCRIMP [6], and the latest and most efficient one SCAMP [7].
SCRIMP has been implemented for different parallel architec-
tures: (1) distributed-memory computers [8]; (2) Intel Xeon Phi
KNL processors that integrate 3D-stacked high-bandwidth mem-
ory (HBM) [9,10]; or (3) Heterogeneous CPU + GPU architec-
tures [11]. However, the state-of-the-art algorithm to efficiently
compute the matrix profile, SCAMP, has been only implemented
on a Multi-GPU Cluster [7].

In this work, we propose an efficient implementation of SCAMP
on a heterogeneous platform featuring a multicore CPU and a
High Performance FPGA with integrated High Bandwidth Mem-
ory, HBM. This implementation poses some interesting challenges
apart from tuning the SCAMP algorithm to efficiently run on the
FPGA. For instance, several Matrix Profile kernels can be deployed
on the FPGA as replicated IPs (FPGA compute units). In order
to feed the CPU cores and the FPGA IPs with the corresponding
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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hunks of parallel iterations that guarantee optimal throughput
hile ensuring load balance, a hierarchical scheduler is proposed.

t first partitions the work between the CPU cores and FPGA, and
hen it proceeds to partition the FPGA work among the different
Ps. The system-level (inter-device) scheduler, called Fastfit, has
een devised to quickly identify the granularity of the work
hat has to be offloaded to the FPGA in order to achieve both
igh FPGA utilization and CPU+FPGA load balance. The device-
evel (intra-device) scheduler is aware of the geometry of the
CAMP algorithm (a triangular matrix walk) to also distribute
he work evenly among the FPGA IPs. Since the testbed FPGA
eatures 32 HBM banks, we also contribute with a methodology
o set the minimum number of active banks that ensure the
aximum aggregated memory bandwidth while reducing power
onsumption. This methodology is based on a model of the HBM
andwidth usage and sharing of banks among IPs. We exper-
mentally validate our scheduler in terms of performance and
nergy consumption and compare it with previous related and
tate-of-the-art heterogeneous schedulers.
Summarizing, the main contributions of this paper are:

• We present, to the best of our knowledge, the first FPGA
implementation of a Matrix Profile algorithm using High
Level Synthesis, HLS. We tune the SCAMP algorithm class
for FPGA execution, which is the state-of-art algorithm for
efficient time series analysis.
• We contribute with an efficient heterogeneous CPU + FPGA

implementation that reduces the execution time and energy
consumption with respect to the only-CPU approach.
• We propose Fastfit, a hierarchical scheduler: (1) at the outer/

inter-device/system level, it efficiently balances workload
among the FPGA and the CPU cores using a strategy that
calculates a near optimal partitioning of the work for each
device. For it, our scheduler uses an analytical model that
assumes that an FPGA IP is internally implemented as a
pipeline from which it estimates the near-optimal FPGA
chunk size that maximizes the device throughput; and (2)
at inner/intra-device/device level, it computes an even par-
tition of the diagonals of the Matrix Profile so that all FPGA
IPs complete their assignment at the same time.
• We develop a methodology based on a model to optimize

the memory bandwidth usage of HBM Banks in a High Per-
formance FPGA with integrated High Bandwidth Memory.
Our model allows to easily find the minimum number of
active HBM banks that reduce power consumption while
ensure maximum aggregated bandwidth.

The rest of the paper is organized as follows. Section 2 briefly
eviews the related work in the field of time series analysis
nd scheduling strategies for heterogeneous architectures. Next,
n Section 3, we describe the SCAMP algorithm and the opti-
izations that we propose for our heterogeneous CPU+FPGA
latform. Next two sections describe the Fastfit heterogeneous
cheduler and HBM analytical model. The experimental results
re presented in Section 6. The paper wraps up with conclusions
nd future work (Section 7).

. Related work

.1. Time series and matrix profile algorithms

Time series analysis covers many fields, such as cloud com-
uting [1,12], forecasting [2], geology [3], or economics [13]. In
articular, the discovery of similarities (motifs) or critical points
discords) in a time series is relevant for several of the previous
roblems. Motifs and discords can be found via probabilistic
pproaches [14]. However in this research we focus on the matrix
11
rofile [4] alternative because it provides an exact solution that
annot be obtained by probabilistic approaches.
Innovative implementations have been proposed for the ma-

rix profile computation since its first appearance as the STAMP [4]
lgorithm, such as STOMP [5], SCRIMP [6] and SCAMP [7]. STAMP
s supported by an FFT computation of dot products to compute
he matrix profile in O(n2log(n)) complexity. STOMP reduces
he complexity to O(n2), however the matrix profile has to be
omputed sequentially in rows. SCRIMP further optimizes the
lgorithm by exploiting the parallel computation of the diagonals
f the matrix. Both STOMP and SCRIMP have been implemented
or multicore and GPUs. SCRIMP also have a distributed-memory
mplementation aimed at multidimensional time-series [15], and
ome optimizations proposed for the execution on Intel Xeon
hi KNL processors that integrate 3D-stacked high-bandwidth
emory (HBM) [10]. The state-of-the-art algorithm to compute

he matrix profile, SCAMP [7] takes advantage of the Pearson cor-
elation to compare subsequences, instead of euclidean distance.
he use of the Pearson correlation improves both performance in
he computation and accuracy in the results. Consequently, we
hoose SCAMP as the baseline for our heterogeneous CPU+FPGA
mplementation.

.2. Heterogeneous computation of time series

Heterogeneous implementations of time series algorithms are
carce. The research by [16] leverages a heterogeneous platform
ithout taking into account motifs and discords discovery, or
cheduling strategies. Recently, our group has proposed the first
eterogeneous CPU+GPU implementation of SCRIMP with adap-
ive scheduling [11]. One of the novelties of this paper is that we
irst update SCRIMP to SCAMP and also change the heterogeneous
latform now comprised of CPU + High performance FPGA with
ntegrated HBM.

FPGA architectures are gaining momentum in HPC and Data
enters as an energy-efficient alternative to CPUs and GPUs
or different kind of problems like chaotic time series predic-
ions [17], image processing [18], and cloud servers [19]. How-
ver, there is no implementation of any matrix profile algorithm
ailored for FPGAs.

.3. Heterogeneous scheduling using CPU + accelerator

Developing heterogeneous applications that makes the most
ut of CPU+Accelerator platforms is difficult and error prone
ue to low-level considerations: data sharing, synchronization,
oad balancing, scheduling, etc. To make it more approachable,
ew programming models and frameworks such as OmpSs [20],
neAPI [21] or SYCL [22] are being proposed. However, for the
arallel_for paradigm, which is of interest to our application,
hey do not solve the automatic workload partition and schedul-
ng problems. In particular, those approaches do not consider
ny compile time or runtime mechanism to find the most suit-
ble work granularity for each device. To address these issues,
n heterogeneous parallel_for template was proposed in [23].
hat template is based on the Threading Building Blocks library,
BB [24], effectively easing the development of heterogeneous
pplications. In that work, an adaptive scheduler named Logfit
as also presented.
Logfit partitions the iteration space in chunks with a vari-

ble number of iterations. These chunks are processed on the
PU or accelerator on demand. Optimal chunk sizes that max-
mize the device throughputs while ensuring load balance are
ecomputed and adapted at the end of each chunk computa-
ion. Logfit is a robust adaptive scheduler, particularly suited for
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Fig. 1. Electrocardiogram time series T and two subsequences from which we
can compute the distance di,j . The ventricular arrhythmia highlighted in the red
ox is a discord.

rregular codes. The advantages of Logfit over simpler heteroge-
eous schedulers for CPU+FPGA platforms are also investigated
n [25,26]. However, the FPGA architecture is better exploited
y regular algorithms as those devised for Time Series analysis,
nd in these cases, an adaptive scheduler introduces unnecessary
verhead. In this work, we propose the Fastfit scheduler, designed

for regular codes and tailored to make the most out of the FPGA
features by minimizing the scheduling overheads. One important
feature of the testbed platform is the FPGA support for High
Bandwidth Memory (HBM) that is paramount for memory bound
applications, like most of the Time Series algorithms. To the best
of our knowledge, there are no published proposals to model
and optimize the execution of Time Series applications on HBM-
enabled FPGAs, which is another of the original contributions of
this paper.

3. SCAMP description and optimizations

3.1. Time series and matrix profile

A time series is a sequential collection of data taken in time,
as the electrocardiogram one depicted in Fig. 1. Following the
related work’s notation [4], a time series T is a sequence of
real-valued numbers ti : T = t1, t2, . . . , tn, where n is the
length of T . A subsequence Ti,m is the local region (window) of
T with consecutive values starting at position i and of length of
m elements, i.e. Ti,m = ti, ti+1, . . . , ti+m−1.

Our interest is to extract information from T by comparing
each subsequence Ti,m with all other subsequences Tj,m of the
same time series (self-join) or a different one (AB-join) with the
indexes 1 ≤ i, j,≤ n − m + 1. For this purpose, we compute
the distance profile as the vector Di = [di,1, di,2, . . . , di,n−m+1],
where di,j is the z-normalized Euclidean distance between Ti,m
and Tj,m. This distance can be efficiently computed using the
Pearson correlation as we show in Eqs. (23)–(29) in the Appendix.

Note that due to the recursive computation of the covariance,
di,j depends on di−1,j−1.

Fig. 2 represents the distance matrix D = [Di] (1 ≤ i ≤
n − m + 1), which contains all pairwise distances between all
subsequences of T . The matrix D is symmetric (di,j = dj,i), the
values in the diagonal are zero (di,i = 0) and values near the
diagonal are close to zero (di,i±k ∼ 0 for small values of k) since
neighbor subsequences are quite similar. To avoid these trivial
matches an Exclusion Zone, EZ , surrounding the diagonal of D is
enforced. We exploit the symmetry of D by computing only the
upper triangular area of the matrix, excluding the main diagonal
and the diagonals in the Exclusion Zone, EZ . As we will see next,
the computation of this upper triangular region of D traverses the
diagonals in order to preserve the di,j ← di−1,j−1 dependence.

The vector with the distances between each subsequence Ti,m
and its closest match (nearest neighbor),MP = [min(D1),min(D2),
. . . ,min(Dn−m+1)], is known as the matrix profile. Intuitively,
it contains the minimum value of each column of the distance
12
Fig. 2. Distance matrix, D, matrix profile, MP and matrix profile index, I .

atrix, hence the name ‘‘matrix profile’’. Motifs are the smallest
alues in MP whereas the discords are the largest ones. A matrix
rofile index, I is used to record where these motifs/discords are
n T . Formally, I = [I1, I2, . . . , In−m+1] where Ii = j if di,j =
in(Di), so it is computed as Ii = arg min(Di).

.2. SCAMP algorithm and FPGA-oriented optimizations

Algorithm 1 shows the SCAMP sequential implementation of
he matrix profile computation. In lines 1–3 we initialize n (length
f T ), the matrix profile, MP , the matrix profile index, I and the
et of Diagonals that must be traversed. In line 4, dfi, dgi, normi
nd Cov1,j, for EZ < i < n are pre-computed as described
n the Appendix and stored in their corresponding vectors to
void repeating unnecessary computations. The outer loop (line
) traverses the diagonals whereas the inner loop (line 6) pro-
esses each element of the diagonal in O(1). The values Covi,j,
i,j and di,j are not stored, but computed as C , P and d and later
iscarded after they are used to update MP and I in lines 12–
3. These two checks of lines 12–13 are needed because although
e traverse only the upper-triangular submatrix (because di,j ==
j,i), MP i = min(Di) and Ii can be different to MP j = min(Dj) and
j respectively.

For the FPGA and heterogeneous implementation, some rele-
ant optimizations were applied to this algorithm:

• Instead of comparing with di,j looking for the min(Di), we
can just look for the largest Pi,j. That way we save some
floating point operations and a square root. Now, the MP
vector temporary stores Pearson correlations and at the
end of computation motifs can be identified by the largest
values, and discords by the smallest ones. If we really need
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Algorithm 1: The SCAMP algorithm
Input: A time series T, m and EZ
Output: Matrix Profile MP, Matrix Profile Index I

1 n← Length(T )
2 MP ←∞, I ← zeros
3 Diagonals← (EZ + 1 : n−m+ 1)
4 dfi, dgi, normi, Cov1,j ← preCompute(T ,m, EZ)
5 for k in Diagonals do
6 for i← 1 to length(k) do
7 j← i+ k− 1
8 if i == 1 then C ← Cov1,k
9 else C ← C + dfi · dgj + dfj · dgi

10 P ← C · normi · normj

11 d←
√
2 ·m · (1− P)

12 if d < MP i then MP i ← d, Ii ← j
13 if d < MP j then MP j ← d, Ij ← i
14 end
15 end
16 return MP, I

the distance values, a quick traversal of MP applying Eq. (29)
produces the Matrix Profile as we have defined in the pre-
vious section.
• The FPGA architecture excels at regular computations with

the simplest control flow. We can remove the conditional
expression (line 8 in Algorithm 1) using loop peeling, this is,
unwinding the first iteration from the loop. The host (CPU)
can take care of this first iteration and correspondingly
update MP and I . This first iteration consumes less than
0.001% of the total execution time in our experiments. As a
result, we save FPGA resources which translates into more
SCAMP kernels (IPs) fitting into the FPGA fabric.
• Our heterogeneous implementation of SCAMP for

CPU+FPGA platforms splits the Diagonals parallel iteration
space in chunks of diagonals. Each thread (one per CPU core)
and each FPGA IP (or FPGA kernel) can process different
chunks in parallel. Each non-overlapping chunk of diagonals
is identified by the range [begin, end). Each CPU thread
has a private copy of MP and I using TBB’s combinable
class that provides thread-local storage and a user-friendly
reduction method. Each FPGA IP also has a private copy of
MP and I , now using the High Bandwidth Memory banks
available in our FPGA device. The required reduction phase
that results in the final MP and I , consumes less than 0.09%
of the total execution time, according to our experiments.
The implementation details of the reduction operation are
explained in [11], although in that paper we targeted a
CPU+GPU platform and here we can have up to 40 FPGA
IPs instead of a single GPU.

Algorithm 2 shows the pseudocode of the host code, that
asically takes care of the initialization1 (lines 1–4 in Algorithm
) and then it precomputes the first iteration of the i-loop for
ll the diagonals. These computations are run sequentially but
n our experiments the worst case consumes only 0.13% of the
otal execution time. The other 99.87% of the time is consumed in
he heterogeneous_parallel_for call provided by our HBB
library (Heterogeneous Building Blocks) [23] that we describe in
Section 4.

1 Note that in contrast to Algorithm 1, now MP is initialized with −∞
ecause it now stores Pearson correlations instead of distances.
 i

13
Algorithm 2: SCAMP Host
1 n← Length(T )
2 MP ←−∞, I ← zeros
3 Diagonals← (EZ + 1 : n−m+ 1)
4 dfi, dgi, normi, Cov1,j ← preCompute(T ,m, EZ)
5 for k in Diagonals do
6 P ← Cov1,k · norm1 · normk
7 if P > MP1 then MP1 ← P, I1 ← k
8 if P > MPk then MPk ← P, Ik ← 1
9 end

10 heterogeneous_parallel_for(Diagonals, Body)
11 return MP, I

As we describe later, this heterogeneous_parallel_for
function requires a Body object that, among other things, en-
capsulates how to process a chunk of iterations (diagonals in
this case) on the CPU and on the accelerator. Algorithm 3 shows
the FPGA kernel implementation that takes cares of a chunk of
diagonals in the range [begin, end). Each FPGA kernel receives
the initialized variables and writes in private MP and I arrays
executing the i-loop starting at iteration i = 2. Note that we now
compute and store the Pearson correlation instead of the distance.

Algorithm 3: SCAMP FPGA Kernel
Input: MP, I, Cov, df, dg, norm, begin, end
Output: MP and I

1 for k← begin to end− 1 do
2 C ← Cov1,k
3 for i← 2 to length(k) do
4 j← i+ k− 1
5 C ← C + dfi · dgj + dfj · dgi
6 P ← C · normi · normj
7 if P > MP i then MP i ← P, Ii ← j
8 if P > MP j then MP j ← P, Ij ← i
9 end

10 end
11 return MP, I

The FPGA kernel is implemented in OpenCL and compiled into
an FPGA bitstream using the Intel aoc compiler. As recommended
in the FPGA optimization guide [27], we follow a single-task
approach (also known as single work-item), in which the OpenCL
kernel resembles a sequential C implementation. For these type
of kernels the OpenCL NDRange2 is set to (1, 1, 1), so a single
thread is invoked on each FPGA IP. This results in loop pipelining
and overlapping of data transfers and computations between loop
iterations.

However, as we can see in Fig. 3, the inner i-loop that traverses
a diagonal exhibits a loop carried dependence because iterations
i and i′ can RMW (read–modify–write) the same positions in MP
and I . This dependence prevents the pipeline implementation of
the loop and results in a highly inefficient FPGA execution.

However, a closer look at the loop body reveals that such a
potential RMW conflict can be avoided in our implementation.
Fig. 3 shows a simplification of the pipeline execution of the
i-loop, where IL is the Issue Latency (a.k.a. Initiation Interval)
or number of clock cycles between consecutive loop iterations.
We also show CL, Completion Latency that we use in Section 4.2
to model the kernel throughput. The figure also shows the po-
tentially conflicting statements D and E accessing the same MP

2 In the OpenCL standard, the NDRange represents the 3D space of parallel
terations.
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Fig. 3. Potential conflict due to loop-carried dependence in the inner loop and
pipeline execution in the FPGA.

position. Since for a given diagonal k, index j walks through j =
+ k − 1, two iterations i and i′ = i + k − 1 can RMW the same

position of MP: MPj in E and MPi′ in D. In the figure we simplify
the situation assuming that IL = 1 and statements D and E require
a clock cycle, but in general IL can be higher and the statements
may require c cycles.

Therefore, if we can assure that statement E of iteration i
finishes before statement D of i′, then the loop can be safely
pipelined. Without loss of generality, if statement E of iteration
i access MPj in the interval of cycles [t, t + c), statement D of
iteration i′ access the same position in the interval [t + IL · (k −
) − c, t + IL · (k − 1)), but these two intervals do not overlap if
+ c < t + IL · (k− 1)− c. In other words, if c < (IL · (k− 1))/2.
In our algorithm, the first diagonal (the smallest k) is k =

Z + 1, and EZ is 256 as recommended in the literature [6,7]. On
he other hand, the aoc compiler reports IL ≈ 6, so the number
f cycles, c , required to compute statements D and E should be
maller than 768 cycles. This is actually the case considering
hat each of these statements only includes a read operation
rom HBM, a comparison and two writes in HBM memory. If a
maller EZ is advised, we can always offload to the FPGA only the
iagonals that are far enough from the main diagonal.
Therefore, as we know that there are not loop carried de-

endencies in the i-loop, we force the pipelining implementa-
ion with the Pragma("ivdep") directive just before the loop.
dditionally, the FPGA kernels have been compiled with -fp-
elaxed -fpc, that according to the FPGA OpenCL programming
uide [28], result in floating-point optimizations including bal-
nced tree hardware and elimination of intermediary rounding
perations.

. Fastfit: Hierarchical heterogeneous scheduler

.1. Scheduling engine

Our scheduler is based on the Heterogeneous Building Blocks
HBB) library [23]. It is a C++ template library based on TBB,
hich takes advantage of heterogeneous processors and facili-
ates their usage and configuration. HBB aims to make easier the
rogramming for heterogeneous processors by automatically par-
itioning and scheduling the workload among the CPU cores and
penCL capable accelerators. HBB relies on OpenCL as the accel-
rator back-end for the sake of availability, portability, and pro-
rammability features, but the scheduling framework and policies
f HBB could be easily adapted to other programming models or

igh level synthesis tools. Our library (HBB) offers an abstraction

14
Fig. 4. System and device level schedulers used to partition the iteration space.

layer that hides the initialization and management details of TBB
and OpenCL constructs (contexts, command queues, device_ids,
etc.), thus the user can focus on his own application logic in-
stead of dealing with thread management and synchronizations.
The current version offers a heterogeneous_parallel_for()
function template to run on heterogeneous CPU–GPU and CPU-
FPGA systems.

Fig. 4 illustrates how the proposed hierarchical heterogeneous
scheduler works. The system-level scheduler offloads chunks of
iterations to the FPGA as soon as the FPGA becomes idle, and
also assigns CPU chunks to each core in the CPU. The device-level
scheduler takes care of partitioning each FPGA chunk into sub-
chunks to appropriately feed each of the FPGA IPs. The iteration
space includes: (i) chunks of iterations that have already been
assigned to the FPGA (blue); (ii) chunks of iterations already
assigned to the CPUs (orange); and (iii) remaining iterations
(white).

The system-level scheduler is designed as a two-stage pipeline,
Stage 1 and Stage 2, implemented on top of TBB. Thanks to the
pipeline tokens we can easily control when the FPGA or the CPU
cores are idle or busy. We initialize the pipeline object with one
FPGA token and as many CPU tokens as the number of cores
available. The tokens are circulating through the pipeline, being
recycled at Stage 1 entry once they exit Stage 2. Depending on
the arriving token, in Stage 1 the size of a CPU or FPGA chunk
of iterations is computed (as we explain in Section 4.2), and the
chunk is extracted from the set of remaining iterations, r . In the
parallel Stage 2, either the CPU core or the FPGA processes the
previously selected chunk.

We also initialize the TBB scheduler with as many worker
threads as tokens (# of CPU cores plus 1 — the FPGA). That way, if
we have one FPGA and two CPU cores, three worker threads are
able to process three chunks of iterations in parallel. However,
the FPGA can have several IPs (FPGA compute units) and therefore
processing a chunk on the FPGA involves our device-level sched-
uler that evenly distributes the FPGA chunk among the available
IPs (as described in Section 4.3). Note that the worker thread
that processes the FPGA chunk/token, is the one: (i) running the
device-level partitioning; (ii) offloading each sub-chunk to each
IP; and (iii) blocking until all IPs have finished processing the
sub-chunk. The oversubscription of the CPU cores is negligible
because, although the TBB scheduler has one extra thread (one
more than the number of cores), this thread is usually blocked
while the FPGA is working. An alternative that we discarded
consists in having one worker thread per FPGA IP and CPU core,
but this results in too much oversubscription since in our plat-
form we can have 40 IPs and 8 CPU cores, which translates into
48 worker threads. Besides, the FPGA OpenCL driver does not
support concurrent offload requests from more than one worker
thread.
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.2. Fastfit system-level scheduling algorithm

The system-level scheduler works at runtime and is designed
s a two-phase strategy consisting of: the Training Phase, which
inds the near-optimal chunksizes for the FPGA and the CPU
hat optimize the throughput in both devices while ensuring
oad balance; and the Exploitation Phase, which keeps this peak
erformance along the iteration space. Algorithm 4 depicts both
hases.
A key component of the Training Phase is an analytical model

that estimates the FPGA throughput, i.e., elements per ms com-
puted when executing a chunk of parallel iterations. Our model
assumes that an FPGA IP is internally implemented as a pipeline
from which it estimates the near-optimal FPGA chunksize that
maximizes the FPGA throughput. This model results in a good
balance between accuracy and simplicity. The pipeline is char-
acterized by two latencies: issue and completion latencies. The
Issue Latency, IL, is the number of cycles required between issuing
two consecutive independent iterations, which is also know as
the Initiation Interval. On the other hand, the Completion Latency,
CL, is the number of cycles until the result of a parallel iteration
is available. Both latencies are in most cases sufficient to estimate
the execution time of an FPGA kernel: the issue latency represents
the time between dispatching two consecutive iterations of the
kernel loop, while the completion latency depends on the depth
of the pipeline and is the time required to fill it up.

Algorithm 4: Fastfit System-level scheduler

// Training Phase

Input: Frequency (F ), δ, ρ
1 tCm (1), tFm (1)← Eq. (2)
2 tFm (δ)← Eq. (3)
3 CF ← Eq. (9)← Eqs. (4) & (5)
4 CC ← Eq. (12)← Eqs. (10) & (11)
5 return CF , CC

// Exploitation Phase

Input: CF , r, ϕ
6 CF = min(CF , r)
7 CC = CF/ϕ

8 return CF , CC

As we show in Algorithm 4, the Training Phase only requires
o sample the CPU and FPGA throughput running one iteration
a diagonal in our application) on the CPU, and two chunks of
terations on the FPGA and then recording the corresponding
xecution times. In line 1, the first chunk for the FPGA and the
PU is made of 1 iteration each one. In line 2, the second chunk,
nly for the FPGA, contains a representative number of parallel
terations δ (in our study we find that 5% of the iteration space is
nough to characterize the FPGA throughput for our application).
Let us suppose that we know the clock frequency of the FPGA

denoted by F and provided by the aocl compiler in a report file).
hen we offload a chunk of parallel iterations of size CF , to the

PGA, then our model estimates the time to complete them as,

Fe (CF ) = (CF · IL+ DL) ·
1
F

(1)

where DL represents the number of cycles required to traverse the
pipeline after issuing a parallel iteration. The Completion Latency
can be defined as CL = IL+DL. By applying Eq. (1) to the two FPGA
chunks of 1 and δ iterations, respectively, we obtain a system of
two equations and two unknowns:

tF (1) = tF (1) = (IL+ DL) ·
1

(2)
m e F
15
tFm (δ) = tFe (δ) = (δ · IL+ DL) ·
1
F

(3)

As we know F , δ, tFm (1) and tFm (δ) (lines 1 and 2 of Algorithm
4), we can solve IL and DL as,

IL =
tFm (δ)− tFm (1)

δ − 1
· F (4)

DL = tFm (1) · F − IL (5)

From Eq. (1) and the previous expressions, we model the FPGA
stimated throughput, λFe , for a chunk CF of parallel iterations as,

Fe (CF ) =
F

IL+ DL/CF
(6)

Peak performance is attained with full pipelines, in which
the completion latency is hidden. Latency hiding is achieved
by executing a large enough chunk of independent iterations.
Ideally, when the DL is completely hidden (DL/CF → 0), then
the issue latency determines the run time and we attain peak
performance. From Eq. (6) we compute the peak performance or
ideal throughput, that we denote λFpeak as,

λFpeak =
F
IL

(7)

The goal of the Training Phase in our scheduler is to find a
sufficiently large chunk of parallel iterations that guarantees that
the estimated FPGA throughput is above a certain threshold of
the peak performance, ρ ·λFpeak . Typically we seek ρ values in the
range [0.9, 0.99], meaning that we aim to look for chunks that
achieve throughputs that are within 90% and 99% of the peak
performance. From Eqs. (6) and (7), and for a specified ρ, we
know,

F
IL+ DL/CFρ

≥ ρ ·
F
IL

(8)

In other words, the near-optimal chunk size of parallel iter-
ations that guarantee a throughput above a ρ threshold of the
peak, CFρ , is computed as,

CFρ ≥
DL
IL
·

ρ

1− ρ
(9)

This steps can be summarized in Line 3 of Algorithm 4 where,
using the execution times computed in Lines 1–2, Eqs. (4) and
(5) can be solved. These solutions allow to solve Eq. (9) to get the
near-optimal FPGA chunk size, CFρ .

Likewise, we can discover the optimal chunk for each CPU core
from the FPGA chunk computed above, as can be seen in Line 4 of
Algorithm 4. As input we take the execution time of one parallel
iteration in the CPU tCm (1) – already computed – and the number
of elements in the corresponding parallel iteration, NC . This is, in
act, the number of elements in the corresponding single diagonal
f the matrix. Also, we calculate NF that represents the aggregated
umber of elements in all the diagonals of chunk CFρ . From them,
e compute the throughput of the CPU and FPGA for both chunks
s can be seen in Eqs. (10) and (11).

C =
NC

tCm (1)
(10)

λF =
NF

(CFρ · IL+ DL)/F
(11)

With this, the relative speed of the FPGA over the CPU is
ϕ =

λF
λC

. It is advisable that the FPGA and CPU cores take the same
time to compute their corresponding chunks, which results in the
recommended CPU chunk size, CC , which can be approximately
computed as:

CC =
CFρ (12)

ϕ
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Fig. 5. Correction in the chunk size due to the triangular geometry of the
problem.

After the first computation of chunk sizes CF and CC , the sched-
ler transitions to the Exploitation Phase (lines 6–8 in Algorithm
), where we keep processing chunks of iterations on the CPU
ores and FPGA and measuring the actual resulting throughput
o update the relative speed among devices, ϕ. If the number of
emaining iterations, r , is large enough, CF is kept as computed in
he Exploitation Phase but when there are not enough iterations
o feed the FPGA with CF iterations, then the remaining, r , are
ssigned as an FPGA chunk instead (see line 6). CC is recomputed
ach time to adapt to changes in ϕ (see line 7).

.2.1. Fine tuning chunk size for SCAMP
In the previous section we have estimated a near-optimal

PGA chunk size, CFρ , that delivers an FPGA throughput close to
he theoretical maximum. For any problem in which the geom-
try of the chunk is not an issue or the user does not have ad-
itional information about that, the previously computed chunk
ize can be a reasonable solution for the remainder of the applica-
ion execution. However, we are aware that our problem exhibits
triangular geometry as can be seen in Fig. 5, and our goal is,
nce the optimal chunk size has been found in the Training Phase,
o guarantee that each new chunk assigned to the FPGA always
omputes the same workload.
Let us suppose that the first FPGA chunk size found in the

raining Phase, CFρ , traverses diagonals in the range [x0, x1), ac-
ounting all of them to NF elements. In the example of Fig. 5,
he next chunk of iterations, CC , is computed on the CPU. Let us
ssume we transition to the Exploitation Phase and that a new
PGA chunk size, CF , has to be computed. Let us note that, in
rder to keep the desired FPGA throughput, we also have to keep
lmost constant the workload of all the FPGA chunks. So now, the
roblem is computing the next CF given that the first diagonal of
he new chunk is xb, so that the number of total elements in this
hunk is also NF .
The number of iterations/diagonals in CF is CF = xe − xb, for

he new range [xb, xe). Note that the index of the last diagonal
s mpl = n − m + 1 (see Section 3). Fig. 5 shows that xi =
pl − yi + 1 where yi is the number of elements in diagonal

i. Since consecutive diagonals only differ in one element, in the
hunk CFρ the aggregation of the first and last diagonal is sum =
0 + y1 + 1. This sum is equal to the aggregation of the adjacent
nterior diagonals, it is sum = y0 − 1 + y1 + 2, and so on. This
esults in,

F =
CFρ
· (y0 + y1 + 1) (13)
2
16
Now we want to compute CF and xe, knowing NF , xb and that
F = xe−xb = yb−ye, using the same equation for the CF chunk:

NF =
CF
2
· (yb + ye + 1) =

CF
2
· (2 · yb − CF + 1) (14)

hat is a quadratic equation from which we can easily solve CF
nd later xe. That way, during the Exploitation Phase, we ensure
hat the number of elements computed on each FPGA chunk
emain almost equal and that the FPGA yields an almost constant
hroughput as we validate in Section 6.

In our experiments, when activating this fine tuning of the
hunk size in our scheduler we observe a 1% improvement in
he performance w.r.t. the not geometrically aware scheduler (the
efault one).

.3. Fastfit device-level scheduling algorithm

As introduced in Section 3.2, the FPGA can actually include
IP compute units (or IPs) that work in parallel. The goal of
he device-level scheduler is to partition each FPGA chunk of CF
terations among the NIP IPs.

A naive distribution that disregard the geometry of our prob-
em, would be the Block partition that just distributes the matrix
iagonals in equal sub-chunks: chunkIP = CF

NIP
. This is the default

policy in our scheduler. However, as we validate in Section 6, a
better approach to perform the partition, which we call Balanced,
do consider the number of elements in each diagonal.

Starting from Eq. (14), the NF elements of the FPGA chunk CF
have to be partitioned into NIP sub-chunks, CF0, CF1, . . . CFNIP−1,
ach one with approximately NF/NIP elements. Therefore we can
ompute each sub-chunk iteratively by following this expression,

NF

NIP
=

CFi
2
· (2 · ybi − CFi + 1) ∀i ∈ {0 . . .NIP − 1} (15)

rom which each CFi can be computed starting with i = 0 and
b0 = yb, and updating at each step ybi = ybi−1 + CFi. With this
alanced partition strategy each IP gets approximately the same
umber of elements (±1 diagonal). In our experiments this trans-
ates into a negligible unbalance among IPs (less than 10−5%).

. HBM exploitation

In case there are available resources on the FPGA fabric to
nstantiate several replicated FPGA IPs, we must tackle the issue
f carefully placing and distributing among the HBM banks the
ata that each one of these IPs accesses, in order to efficiently
xploit the memory bandwidth offered by the banks. Previous
ersions of the FPGA SDK for OpenCL compiler offered an opti-
ization based on the generation of multiple compute units for
nabling kernel replication through pragma and attribute __at-
ribute__((num_compute_units()). To emulate this feature,
e replicate the kernel in the OpenCL source code NIP times using
macros. This way the compiler implements each replicated

ernel or FPGA IP as an unique pipeline.
One difference of the kernel replication with respect to the

ompute units compiler generation is that there is not a hardware
cheduler unit built in the FPGA. That is the reason why we
mplement the device-level scheduler (see Section 4.3) respon-
ible for the partition of the FPGA chunk and the dispatch of the
orresponding sub-chunks among the different IPs. Another key
ifference of our kernel replication strategy is that it allows us to
ontrol the HBM bank where each IP will access local data. Triv-
ally, one IP can access its local data from one HBM bank. Thus, by
ncreasing the number of replicated IPs, each one accessing data
rom a different HMB bank, we can achieve higher throughput
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hen exploiting the aggregated memory bandwidth of the con-
urrent memory banks. However, increasing the number of active
emory banks rises power consumption and requires additional
PGA resources to orchestrate all the bank’s memory accesses.
n case that one IP does not exhaust the available bank band-
idth, then two (or more) IPs could have allocated their data on
ne HBM bank. This bank sharing solution would optimize the
emory bandwidth usage of each HBM bank, reduce the number
f active HBMs, and decrease power consumption and FPGA
esources, while obtaining the maximum aggregated bandwidth
chievable for a given number of replicated IPs.
In this section we present a methodology that allows us to:

i) select the optimal number of IPs that can access each bank
n order to ensure optimal memory bandwidth usage of a HBM
ank; and also ii) set the minimum number of active banks that
nsure the maximum aggregated memory bandwidth for a given
umber of IPs. This methodology is based on a model of the
BM bandwidth usage that we explain next. Fig. 6 illustrates the
ccuracy of our model and its applicability.

.1. Modeling bandwidth usage for HBM

Let us start by modeling the memory bandwidth usage when
ne IP accesses data from one HBM bank and let us assume that
he number of replicated IPs is given as NIP. The aocl compiler
eports the frequency, FNIP (j = 1) at which this implementation
s synthesized, where j represents the number of IPs per memory
ank (1 in this case). Being W the width (Bytes) of one HBM bank,
hen we can estimate the ideal bandwidth per IP and per bank as,

Wideal(j = 1) = FNIP (j = 1) ·W (16)

Using the FPGA Dynamic Profiler for OpenCL tool [27] we
btain BWm(j = 1), the measured memory bandwidth per IP and

per HBM bank in our implementation. Now, we can define the
memory bandwidth usage per IP and per HBM module, σ , as

=
BWm(j = 1)
BWideal(j = 1)

(17)

Through exhaustive experimentation with different imple-
entations in which we keep NIP fixed but increase the number of

IPs that can access one HBM module (j > 1) while decreasing the
umber of active HMB modules, i (i = NIP/j), we find that factor
represents a good estimation of the memory bus occupancy
hile the bus is not saturated, because the measured memory
andwidth per HBM bank increases linearly with the number of
Ps per bank. Thus, we model or estimate the memory bandwidth
er HBM as,

BW (j ≥ 1) = j · BWm(j = 1)
= j · σ · BWideal(j = 1)

(18)

In case of bus saturation, there is not headroom for one addi-
ional IP accessing data from a HBM module, in other words, the
aximum achievable bandwidth per bank is,

Wmax = (1− σ ) · BWideal(j = 1) (19)

In summary, from Eqs. (18) and (19) we compute the aggre-
gated memory bandwidth for i HMB modules as,

ABW (i, j ≥ 1) = j · σ · BWideal(j = 1) · i
≤ (1− σ ) · BWideal(j = 1) · i

(20)

Fig. 6 represents a case of study when NIP = 24, where the
IPs are distributed among different number of memory banks (i):
from 24 HBM banks (i.e. j = 1) to 2 HBM banks (j = 12). The
xperimental setup is detailed in Section 6.1.
In Fig. 6(a), lines depict the aggregated memory bandwidth

MB/s) for different number of HBM modules. The dashed line
17
is the aggregated memory bandwidth from Eq. (20), while the
solid line is the actual aggregated memory bandwidth measured
for each configuration. The values for i = 24 represent in fact
BWideal(j = 1) (Eq. (16)) and the measured BWmeas(j = 1),
hich our model uses to compute σ (Eq. (17)). As we see, the

model predicts accurately the behavior of the HBM system, being
the deviation below 11%. The figure also shows the applica-
tion throughput (elements/ms), and that the aggregated memory
bandwidth is a good proxy of the performance behavior.

Fig. 6(b) depicts measured power (Watts) – lines – and energy
(Joules) — bars. The main power components (due to the IPs
and the UIB3 bus consumption) demonstrate that decreasing the
number of HBM banks reduce power consumption. Thus, it is
advisable to deploy the minimum number of memory banks that
guarantees optimal memory bandwidth usage. This is our defini-
tion of optimal number of memory banks. As shown in Fig. 6(a),
maximum memory bandwidth is sustained from 24 to 6 banks. In
fact, the energy consumption is the minimum for the same range
of memory banks. Reducing the number of HBM modules below 6
increases the number of IPs per memory bank, which causes the
saturation of each module memory bandwidth. As a consequence,
both the aggregated memory bandwidth (thus, throughput) and
energy consumption degrade.

With this model we compute the optimal number of memory
banks. From Eqs. (18) and (19) we firstly find the optimal number
of IPs per bank, jopt , that is the maximum number of IPs that can
access data from one HBM module without saturating the bus
(ensuring this way optimal memory bandwidth usage),

jopt = max(j, 1) : j ≤
⌊
1− σ

σ

⌋
(21)

Once we have found the optimal number of IPs per HBM bank,
we calculate the optimal number of memory banks that ensure
the maximum aggregated memory bandwidth as,

iopt =
⌈
NIP

iopt

⌉
(22)

In our case of study we find that σ = 0, 167, so jopt = 4 and
iopt = 6. From Fig. 6(a) we corroborate this finding.

Please note that in the experimental section we have follow
this methodology for selecting the optimal number of active HBM
banks and optimal number of IPs per bank for any given number
of IPs.

6. Experimental results

6.1. Setup

The experimental evaluation has been conducted on a
CPU+FPGA platform. The CPU is an Intel Core i7-7820X, 3.60 GHz,
8 cores and 128 GB DDR4 RAM. The FPGA is an Intel Stratix 10
MX with 32 HBM memory banks, 512 MB per bank and 16GB
total. The system runs CentOS 7.2.1511, OpenCL 1.0, FPGA SDK for
OpenCL v.19.3, and GCC 4.8.5. All results (performance, energy,
and profiling metrics) report the median value of 5 runs. The
performance metric is throughput (elements per millisecond) and
energy is reported in Joules. The normalized standard deviation
for throughput (energy) measurements is always below 3% (4%).
Unless otherwise stated, our heterogeneous runs simultaneously
exploit 8 CPU cores and, as motivated in Section 6.2.1, 40 IP/FPGA
compute units. Energy results were obtained using the Proces-
sor Counter Monitor (PCM) library for the CPU part, and the
self-developed Stratix-Monitor library [29] for the FPGA device.

3 Universal Interface Bus that powers the HBM DRAM.
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We consider 4 time series of different sizes: 217 (131072),
18 (262144), 219 (524188) and 220 (1 048576). These time se-
ies are random-walk time series that are commonly used for
enchmarking in time series analysis algorithms [30].
The Fastfit scheduler discussed in Section 4.2 is invoked with
= 0.99 and δ = 0.2%, and it is compared with three pre-

ious schedulers that were initially devised for CPU+GPU plat-
orms [23]:

• Static: it splits the iteration space in two chunks at once:
one for the CPU cores and the other for the accelerator. The
size of these two chunks is user-defined and provided via
the offload_ratio input argument. If offload_ratio =
0 (0%) the CPU process the whole iteration space, and so
does the FPGA if it is equal to 1 (100%). The CPU chunk
is divided in equally sized sub-chunks for each CPU core,
i.e. chunkCore=chunkCPU/NumCores.
• Dynamic: it lazily splits the iteration space dynamically.

Each time the FPGA is idle, it takes a chunk from the itera-
tion space. The size of this chunk is user-provided using the
chunkFPGA input argument. The CPU cores also take chunks
of the iteration space, but now chunkCore=chunkFPGA/ϕ,
where ϕ is the relative speed of the FPGA w.r.t. the CPU
core (i.e. if the FPGA is 2x faster than a CPU core, ϕ = 2,
so chunkCore is half the size of chunkFPGA). A guided
self-scheduling [31] is used when there are not enough
remaining iterations to enforce the previous equations.
• Logfit: it also dynamically splits the iteration space, but the

user does not provide a constant chunkFPGA size. On the
contrary, this chunkFPGA size is now an adaptive variable
that is automatically computed by the scheduler following a
logarithmic fitting strategy that has been proved beneficial
for irregular codes on CPU+GPU systems [23].

.2. FPGA-only evaluation

In this subsection, we evaluate the performance of our sched-
lers when the FPGA is the only device computing the matrix
rofile. Heterogeneous executions are considered in the next
ubsection.

.2.1. Kernel replication exploration
One of the FPGA optimizations described in 3.2 was kernel

eplication [27]. This optimization results in a better utilization
f the FPGA resources, leading to performance gains if there is
nough bandwidth to feed all the replicated kernels or IPs. We
xplore the performance for different number of replicated IPs
pplying the methodology given in Section 5 for selecting the op-
imal number of active HBM banks and optimal number of IPs per
18
Fig. 7. Exploring the number of kernel replications, NIP , for the 220 time-series
nd only-FPGA execution.

Fig. 8. Device-level scheduler exploration for different schedulers and a time
series size of 220 . X-axis represents the FPGA chunk size and the Y -axis the
throughput. The higher the better.

bank for each case. The results for time series input 220 are shown
in Fig. 7. The maximum number of IPs that fit in our FPGA is 42,
but as can be seen in Fig. 7 maximum performance is obtained for
40 IPs. Smaller time series exhibited the same behavior. Unless
explicitly stated, from now on, we fix the number of FPGA IPs to
NIP = 40.

6.2.2. Evaluation of partition strategies at device-level
As explained in Section 4.3, once the system-level scheduler

assigns an FPGA chunk to the FPGA, the device-level scheduler



J.C. Romero, A. Navarro, A. Vilches et al. Future Generation Computer Systems 125 (2021) 10–23

t

i

h
w
t
t
l

s

u
i
v
c
d
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Fig. 10. Logfit and Fastfit evolution of the throughput, FPGA chunk size and total number of elements of the chunks for the 220 time series. X-axis represents the
teration space.
as to partition this chunk among the different IPs. In this section,
e quantitatively validate the throughput improvements due to
he use of our proposed Balanced partition strategy with respect
o a naive Block one that is not aware of the different diagonal
engths.

Fig. 8 shows the impact in the throughput for the different
ystem-level schedulers: Dynamic, Logfit and Fastfit. Although in
this experiment only the FPGA is used (there are no CPU cores
collaborating in the computation), we assess these three system-
level schedulers since they produce different FPGA chunk sizes as
well as a significant number of chunks. In the figure, we plot the
throughput of the FPGA for the Dynamic scheduler when config-
red with FPGA chunk sizes from 26 to 220 (being 220 the whole
teration space in our largest time series). Since Logfit produces
ariable FPGA chunk sizes during the computation, the average
hunk size is shown in Fig. 8, while for the Fastfit scheduler we
epict the FPGA chunk size found in the Training Phase. Note

that since Logfit and Fastfit schedulers compute the FPGA chunk
size depending on the FPGA throughput, using Balanced or Block
partition strategy in the device-level scheduler, may have an
impact on the FPGA chunk sizes found, as well as on performance.

Fig. 8 evidences that the workload unbalance of the Block par-
tition can have a remarkable impact on the throughput, especially
for large FPGA chunk sizes, as we see in the Dynamic scheduler
for chunk sizes larger than 214. On the other hand, when using the
Block strategy, Logfit and Fastfit tend to find smaller FPGA chunk
sizes than using Balanced. This is because the FPGA throughput
measured during the training (in both schedulers) is smaller due
to load unbalance among the IPs which results in sub-optimal
chunk size estimation.

In the three schedulers, using the Balanced partition strategy
always achieves the best performance. In summary, Balanced
results in 97.37% better throughput than Block for the highest
chunk size in the Dynamic scheduler, and 18.66% and 16.45%
improvements in throughput for Logfit and Fastfit, respectively.
This result motivates us to keep using the Balanced partition
strategy in the rest of the evaluation.
19
6.2.3. Validation of Fastfit model
In this subsection, we validate the Fastfit model described in

Section 4.2. This model is devised to predict the FPGA throughput
for any FPGA chunk size. For it, after obtaining F , IL and DL, we
use Eq. (11) to compute the throughput for any chunk size CF .
Fig. 9 shows the estimated throughput (Model) computed for
ρ = 0.99 vs. the actual measured one (Dynamic) for different
FPGA chunk sizes and different number of replicated IPs for the
217 time series. In addition, in the figure we mark with a green
star the throughput for the estimated near-optimal FGPA chunk
size, CFρ , obtained after the Training Phase in a real execution of
Fastfit. It is worth remarking that: (i) the model is accurate, espe-
cially for smaller number of IPs where the device-level scheduler
overhead and potential load unbalance among IPs have a less
noticeable impact on the real throughput; (ii) the execution of
Fastfit end up using an FPGA chunk size that results in an almost
optimal throughput. For instance, the throughput predicted by
the model for the near-optimal chunk size is between 97%–99%
of the actual measured throughput for the selected chunk size.
Similar accuracy was achieved for different input sizes; (iii) the
FPGA chunk sizes found leave room for CPU collaboration and
CPU+FPGA heterogeneous co-execution; and iv) all in all, our
model allows to obtain the desired throughput out of the FPGA
without having to perform the manual exploration required by
Dynamic.

Although it was initially devised for CPU+GPU platforms and
irregular algorithms, Logfit [23] is a related scheduler that can
also save the exploration time that was needed with Dynamic.
Both Logfit and Fastfit avoid the manual exploration of a suitable
chunk size using a two phases scheme: a Training phase and a
Exploitation phase. However Logfit spends more time than Fastfit
in the Training Phase and continuously recompute new FPGA
chunk sizes during the Exploitation phase, which can suppose
additional overhead. In particular, the Training phase of Logfit
requires more time because it samples the throughput obtained
with monotonically increasing chunk sizes until the throughput
stop growing. Using four of the previous samples, it computes the
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Fig. 11. Throughput for Static and different time series. X-axis represents the
ercentage of iterations (as a ratio) offloaded to the FPGA. The higher the better.

ogarithmic function that fit these samples and with this it can
elect the near-optimal accelerator chunk size (see [23] for more
etails). The pipeline architecture of FPGA IPs allows the Fastfit
imple model to be accurate enough with only two throughput
amples and no logarithmic fitting.
In order to better understand the different behavior between

ogfit and Fastfit, Fig. 10 shows the evolution of the throughput
Throughput) and FPGA chunk size using two metrics: num-
er of diagonals per chunk (Chunksize = CF ) and number of
otal elements in the chunk (accumulating all the elements of
ll the diagonals in the chunk, # of Elements/Chunk = NF ).
n Fig. 10(a) we can see a glitch, in the Chunksize and # of
lements/Chunk curves, at the beginning of the iteration space
ere several samples are needed until we can move on to the
xploitation phase. In Fig. 10(b), although it is hardly noticeable,
e only test two different chunks sizes that let us to quickly move
o the next phase.

The Exploitation phase of Logfit is also more complex and
ntroduces more overhead since it keeps adapting the accelerator
hunk size to suits to throughput changes that can be frequent in
rregular codes. However, the Exploitation phase of Fastfit assumes
he code is regular and that the chunk size estimated in the
revious phase is valid for the whole iteration space. As we
an see in Fig. 10(b), Fastfit sustains a more stable throughput
nd an almost constant # of Elements/Chunk that is directly
roportional to the workload per chunk of iterations and higher
han the workload per chunk assigned by Logfit. This explains the
igher average throughput observed in FasFit. Note that in both
chedulers, the chunk size increases to keep the # of Elements
onstant since the diagonals are becoming shorter as we sweep
he iteration space. Also note that the throughput can take a
erformance hit at the end of the iteration space when there are
ot enough iterations to fully utilize the FPGA pipeline.

.3. Evaluation of heterogeneous CPU+FPGA co-executions

In this section, we validate the four system-level heteroge-
eous schedulers, Static, Dynamic, Logfit and Fastfit when using
oth the CPU (8 cores) and the FPGA co-executing simultaneously.
e first focus on the obtained performance and later on the

nergy efficiency.

.3.1. Performance analysis
Remember that Static requires that the user provides an of-

load_ratio stating the percentage of iterations offloaded to

he FPGA. Fig. 11 shows the throughput obtained for offload_

20
Fig. 12. Throughput comparison for all schedulers and 220 input using the
FPGA and 8 CPU cores. The numbers inside the bars indicate the percentage
of Elements (not diagonals) computed on the FPGA (bottom) and CPU (top). The
numbers above the bars are the percentage of performance degradation with
respect to the ideal throughput (CPU only + FPGA only throughput) represented
as an horizontal line.

ratio between 0 (only CPU execution) and 1 (only FPGA execu-
tion) and four time series with different sizes. After this manual
exploration, we found that the smaller time series exhibit max-
imum throughput when 30% of the iteration space is computed
on the FPGA, but for larger time series it is better to offload 40%
of the iteration space to the FPGA and compute the rest on the
CPU. Different time series may require different offload_ratio
values and a more precise search might pay off (in steps of 1%
instead of 10% as in the figure) although more time should be
devoted to the exploration.

As we saw in Fig. 8, Dynamic also requires an offline profiling
n order to find a suitable FPGA chunk size, that for the 220

time series ends up being 213 diagonals. Note that larger chunk
sizes result in similar throughput but makes less likely to achieve
CPU+FPGA work-sharing and load balance. Logfit and Fastfit au-
tomatically find, without user intervention, the suitable sizes for
the FPGA and the CPU cores, at a small training overhead.

In order to compare the performance of all the evaluated
schedulers, Fig. 12 shows a throughput comparison for the best
results obtained with each scheduler and the 220 time series.
The number inside the bars indicates the percentage of Elements
processed on each device (FPGA–CPU), so the CPU-only and FPGA-
only executions show 0-100 and 100-0, respectively. Note that
although in Static we set offload_ratio = 0.4 which dis-
tributes 40% of the iterations (diagonals) to the FPGA and 60% to
the CPU, the FPGA ends up processing 64% of the Distance Matrix
Elements since the first 40% of the diagonals are larger than the
remaining 60%. The upper orange horizontal line indicates the
Ideal throughput, estimated as the aggregation of the CPU-only
throughput and the FPGA-only one. This ideal throughput does
not account for the unbalance and scheduling overheads so it is
an upper bound used to quantitatively estimate the impact of
these overheads.

The best Dynamic execution is obtained for FPGA chunksize
equal to 8192, chunkFPGA = 213 as we saw in Fig. 8. With this
manual configuration it only looses 0.83% of performance w.r.t.
the ideal due to the partitioning overhead, although it requires
the offline exploration to find the best chunkFPGA input argu-
ment. Logfit departs 5.28% of the ideal due to the scheduler over-
head (training and logarithmic re-fitting) that were mentioned
in Section 6.2.3. However Fastfit delivers almost ideal perfor-
mance, automatically finding a very good initial FPGA chunksize
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ummary of performance, energy consumption and energy efficiency. Diff. represents the degradation with respect ideal or best. The optimal implementation for
ach criterion in boldface.

CPU 8 cores FPGA only Static Dynamic Logfit Fastfit

Throughput (Elements/ms) 1 971300 1833240 2864100 3772960 3603670 3 781 880
%Diff. Ideal Throughput (CPU+GPU) −48.19% −51.81% −24.72% −0.83% −5.28% −0.6%
Energy consumption (Joules) 33464.5 11 853.5 18714.69 20799.82 21112.66 20836.12
%Diff Best Energy consumption 182.32% 0.0% 57.88% 75.47% 78.11% 75.78%
Energy efficiency (Elements/J) 16 425539.16 46 372 164.78 29371176.08 26426789.04 26035206.14 26 380749.16
%Diff Best Energy efficiency −64.58% 0.0% −36.66% −43.01% −43.86% −43.11%
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Fig. 13. Energy metrics for all schedulers and 220 time series using the FPGA and
CPU cores. Solid bars represent the Energy efficiency (the higher the better),
hereas patterned bars depict Energy consumption (the lower the better).

f 9,455 diagonals. Subsequent FPGA chunk sizes are updated
ust to maintain a constant workload (number of Elements) as
xplained in Section 4.2.1. This small difference with respect
o Dynamic makes Fastfit delivers a slightly better throughput,
highlighting an almost negligible overhead (0.6%). Similar results
have been obtained for different input sizes. This finding, along
with the advantage of avoiding the manual search of a near-
optimal FPGA chunk size, turn Fastfit into an excellent scheduler
for co-execution of regular algorithms on CPU+FPGA platforms.

6.3.2. Energy analysis
Fig. 13 depicts a breakdown of energy efficiency (in Elements

per Joule) and energy consumption (in Joules) in the same condi-
tions explained in the previous section. FPGA energy is measured
thanks to an in-house library (publicly available [29]) built on top
of the BMC (Board Management Controller) library provided by
the FPGA vendor (BittWare). Energy efficiency has been computed
dividing the number of computed elements by the total number
of Joules consumed.

First, paying attention to the one-device only results at the left
of Fig. 13, it can be observed that the FPGA exhibits the highest
energy efficiency and the lowest energy consumption. The CPU
requires almost 3x more energy to carry out the same computa-
tion. Now, the energy consumed by the heterogeneous schedulers
is roughly proportional to the workload processed by each device
(CPU and FPGA) as pointed out in Fig. 12. For example, Static
offload more work to the FPGA (64% of the elements) and con-
sequently exhibits better energy efficiency than Dynamic, Logfit
and Fastfit. Actually, energy consumption and energy efficiency
in these last three schedulers are similar. Due to Logfit being the
lowest of the last three schedulers, it also consumes more energy
han Dynamic and Fastfit.

Table 1 includes the relevant data already presented in pre-

vious charts. Summarizing, Fastfit is the best scheduler if our

21
goal is to achieve maximum performance. Although Dynamic also
chieves good results, let us recall that in this case the user needs
o explore offline exhaustively all possible chunk sizes to find the
ear optimal, whereas in Fastfit the best chunk size is automat-
cally discovered at runtime. On the other hand, if the target is
nergy consumption, it is better to switch off the computation
n the CPU cores and resort to the FPGA-only execution. Again,
imilar conclusions can be obtained for different input sizes.

. Conclusions

In this work we have proposed a novel hierarchical scheduler
amed Fastfit, to efficiently balance the workload in a heteroge-

neous system while ensuring near-optimal throughput, and we
have used SCAMP – a state-of-the-art time series algorithm class
– to illustrate its applicability. Fastfit is a system-level scheduler
based on an analytical model of the FPGA pipeline IPs that helps
us to find the FPGA chunk size that guarantees near-optimal FPGA
throughput, and from that, the CPU chunk size that ensures load
balance among devices. Besides, Fastfit includes a device-level
scheduler that provides an effective partition of the FPGA chunk
into sub-chunks for each FPGA IP.

Through exhaustive evaluation, we validate the accuracy of
our models and the optimality of Fastfit for getting the near-
optimal FPGA chunk size, finding that our model prediction is
within the 97%–99% of the actual measured best throughput. We
also compare different strategies for performing the device-level
partition of the FPGA chunk among IPs, finding that the Balanced
strategy that is aware of the triangular geometry of the problem
improves the performance of a naive Block one by 16.45%. We
also find that a simple model of the HBM usage bandwidth and
the sharing of banks among IPs allow us to set the minimum
number of active banks that ensure the maximum aggregated
memory bandwidth while reducing power consumption.

We compare our proposed scheduler with previous scheduling
strategies (Static, Dynamic and Logfit) and we demonstrate that
our new scheduler improves all of them in terms of performance.
Moreover, Fastfit is 4.68% better than Logfit, a previous state-of-
he-art adaptive scheduler that finds the near-optimal chunk size
or each device without the need of offline profiling. The reason of
hat improvement is that our new proposal avoids the logarithmic
itting overheads of Logfit. In fact, Fastfit is only 0.6% away from
he ideal heterogeneous execution. However, if our goal is to
inimize energy consumption, offloading all the workload to the
PGA is the best choice.
As future work, we plan to explore the use of fixed-point

rithmetic to further optimize the FPGA implementation. Cur-
ently, our FPGA with HBM banks is not supported by the oneAPI
ramework that uses SYCL instead of OpenCL to implement the
PGA kernel. We will look into the necessary modifications to the
PGA BSP (Board Support Package) and alternatives to enable the
se of SYCL while permitting the exploitation of the HBMmemory
anks.
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Appendix. Computation of Euclidean distance using Pearson
correlation

The z-normalized Euclidean distance, di,j, between
subsequences Ti,m and Tj,m can be efficiently computed using the
following equations:

df1 = 0; dfi =
ti+m−1 − ti−1

2
(23)

dg1 = 0; dgi = (ti+m−1 − µi)+ (ti−1 − µi−1) (24)

Cov1,j =
m−1∑
k=0

(t1+k − µ1)(tj+k − µj) (25)

Covi,j = Covi−1,j−1 + dfi · dgj + dfj · dgi (26)

ormi =
1

∥Ti,m − µi∥
(27)

Pi,j = Covi,j · normi · normj (28)

di,j =
√
2 ·m · (1− Pi,j) (29)

here µi is the mean of Ti,m. Basically, the distance between
ubsequences i and j is computed in Eq. (29) using the Pearson
correlation. In turn, Pearson is obtained in Eq. (28) from the
covariance of the pair of subsequences (Eq. (26)) and the norms
of both subsequences (Eq. (27)). Eq. (26) computes the non-scaled
covariance for the range of indexes 2 ≤ i ≤ n, i < j ≤ n based on
the initialization performed in Eq. (25). Note that indexes i and j
tart at 1, as done in related works [4,7] for the sake of simplifying
otation.
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