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ABSTRACT Neocallimastigomycetes are unique examples of strictly anaerobic eukar-
yotes. This study investigates how these anaerobic fungi bypass reactions involved in syn-
thesis of pyridine nucleotide cofactors and coenzyme A that, in canonical fungal path-
ways, require molecular oxygen. Analysis of Neocallimastigomycetes proteomes identified
a candidate L-aspartate-decarboxylase (AdcA) and L-aspartate oxidase (NadB) and quinoli-
nate synthase (NadA), constituting putative oxygen-independent bypasses for coenzyme
A synthesis and pyridine nucleotide cofactor synthesis. The corresponding gene sequences
indicated acquisition by ancient horizontal gene transfer (HGT) events involving bacterial
donors. To test whether these enzymes suffice to bypass corresponding oxygen-requiring
reactions, they were introduced into fms1D and bna2D Saccharomyces cerevisiae strains.
Expression of nadA and nadB from Piromyces finnis and adcA from Neocallimastix califor-
niae conferred cofactor prototrophy under aerobic and anaerobic conditions. This study
simulates how HGT can drive eukaryotic adaptation to anaerobiosis and provides a basis
for elimination of auxotrophic requirements in anaerobic industrial applications of yeasts
and fungi.

IMPORTANCE NAD (NAD1) and coenzyme A (CoA) are central metabolic cofactors
whose canonical biosynthesis pathways in fungi require oxygen. Anaerobic gut fungi
of the Neocallimastigomycota phylum are unique eukaryotic organisms that adapted
to anoxic environments. Analysis of Neocallimastigomycota genomes revealed that
these fungi might have developed oxygen-independent biosynthetic pathways for
NAD1 and CoA biosynthesis, likely acquired through horizontal gene transfer (HGT)
from prokaryotic donors. We confirmed functionality of these putative pathways
under anaerobic conditions by heterologous expression in the yeast Saccharomyces
cerevisiae. This approach, combined with sequence comparison, offers experimental
insight on whether HGT events were required and/or sufficient for acquiring new
traits. Moreover, our results demonstrate an engineering strategy for enabling S. cer-
evisiae to grow anaerobically in the absence of the precursor molecules pantothe-
nate and nicotinate, thereby contributing to alleviate oxygen requirements and to
move closer to prototrophic anaerobic growth of this industrially relevant yeast.

KEYWORDS Neocallimastigomycetes, Saccharomyces cerevisiae, anaerobes,
biotechnology, fungi, nicotinic acid, oxygen requirement, pantothenate, vitamin
biosynthesis

Neocallimastigomycetes are obligately anaerobic fungi with specialized metabolic
adaptations that allow them to play a key role in the degradation of recalcitrant

plant biomass in herbivore guts (1). Despite complicated cultivation techniques and lack
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of genetic modification tools (2), several evolutionary adaptations of these eukaryotes to
an anaerobic lifestyle have been inferred from biochemical studies (3–5). Sequence anal-
ysis implicated extensive horizontal gene transfer (HGT) as a key mechanism in these
adaptations (6–8). For example, instead of sterols, which occur in membranes of virtually
all other eukaryotes (9) and whose biosynthesis involves multiple oxygen-dependent
reactions (10), Neocallimastigomycetes contain tetrahymanol (3, 6). This sterol surrogate
(11) can be formed from squalene by a squalene:tetrahymanol cyclase (STC), whose
structural gene in Neocallimastigomycetes showed evidence of acquisition by HGT from
prokaryotes (6, 12). Expression of an STC gene was recently shown to enable sterol-inde-
pendent anaerobic growth of the model eukaryote Saccharomyces cerevisiae (13).

Further exploration of oxygen-independent bypasses in Neocallimastigomycetes
for intracellular reactions that in other eukaryotes require oxygen is relevant for a fun-
damental understanding of the requirements for anaerobic growth of eukaryotes. In
addition, it may contribute to the elimination of nutritional requirements in industrial
anaerobic applications of yeasts and fungi.

Most fungi are capable of de novo synthesis of pyridine nucleotide cofactors (NAD1

and NADP1) and coenzyme A (CoA) when grown aerobically. As exemplified by the facul-
tatively anaerobic yeast S. cerevisiae (14), canonical fungal pathways for synthesis of these
cofactors are oxygen dependent. In S. cerevisiae, biosynthesis of CoA involves formation of
b-alanine by the oxygen-requiring polyamine oxidase Fms1 (15). This intermediate is then
condensed with pantoate to yield the CoA precursor pantothenate (16, 17) (Fig. 1, left).
Similarly, the yeast kynurenine pathway for de novo synthesis of NAD1 involves three oxy-
gen-dependent reactions, catalyzed by indoleamine 2,3-dioxygenase (Bna2; EC 1.13.11.52),
kynurenine 3-monooxygenase (Bna4; EC 1.14.13.9), and 3-hydroxyanthranilic-acid dioxyge-
nase (Bna1; EC 1.13.11.6) (14) (Fig. 1, right). The Neocallimastigomycetae Neocallimastix
patriciarum has been shown to grow in synthetic media lacking precursors for pyridine nu-
cleotide and CoA synthesis (18). This observation indicates that at least some anaerobic
fungi harbor oxygen-independent pathways for synthesizing these essential cofactors.
Genomes of Neocallimastigomycetes lack clear homologs of genes encoding the oxygen-

FIG 1 CoA and NAD1 biosynthetic pathways in S. cerevisiae and oxygen-independent alternatives.
CoA synthesis includes the condensation of pantoate and b-alanine. (Left) In S. cerevisiae, b-alanine is
formed from spermine in two steps using the oxygen-dependent polyamine oxidase Fms1. Other
organisms, including Archaea, Bacteria, and insects, can bypass this oxygen requirement by
synthesizing b-alanine from aspartate using L-aspartate decarboxylase (AdcA/PanD). (Right) NAD1 is
synthesized via the kynurenine pathway in 9 reactions starting from tryptophan, 3 of which require
oxygen. Other organisms that include plants and bacteria are able to bypass this oxygen requirement
by synthesizing quinolinate from aspartate using L-aspartate oxidase and quinolinate synthase (NadB
and NadA, respectively).
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requiring enzymes of the kynurenine pathway. Instead, their genomes were reported to
harbor genes encoding an L-aspartate oxidase (NadB) and quinolinate synthase (NadA),
two enzymes active in the bacterial pathway for NAD1 synthesis (6) (Fig. 1, right). Since
bacterial and plant aspartate oxidases can, in addition to oxygen, also use fumarate as
electron acceptor (19, 20), it is conceivable that NadA and NadB may allow for oxygen-in-
dependent NAD1 synthesis in anaerobic fungi. No hypothesis has yet been forwarded on
how these fungi may bypass the oxygen requirement for the canonical fungal CoA biosyn-
thesis route.

The goals of this study were to identify the pathway responsible for oxygen-inde-
pendent synthesis of CoA in Neocallimastigomycetes and to investigate a possible role
of NadA and NadB in oxygen-independent synthesis of pyridine nucleotide cofactors.
A candidate L-aspartate decarboxylase (Adc)-encoding gene was identified by genome
analysis of Neocallimastigomycetes, and its phylogeny was investigated. Candidate
Neocallimastigomycetes genes for L-aspartate oxidase and quinolinate synthase, previ-
ously reported to have been acquired by HGT (6), as well as the candidate Adc gene,
were then functionally analyzed by expression in S. cerevisiae strains devoid of essential
steps in the native cofactor synthesis pathways. As controls, previously characterized
genes involved in oxygen-independent NAD1 biosynthesis by Arabidopsis thaliana (21)
and a previously characterized Adc-encoding gene from the red flour beetle Tribolium
castaneum (TcPAND) (22) were also expressed in the same S. cerevisiae strains. The
results demonstrate how heterologous expression studies in yeast can provide insight
into evolutionary adaptations to anaerobic growth and selective advantages conferred
by proposed HGT events in Neocallimastigomycetes. In addition, they identify meta-
bolic engineering strategies for eliminating oxygen requirements for cofactor biosyn-
thesis in anaerobic industrial applications of S. cerevisiae.

RESULTS
Identification of a candidate oxygen-independent L-aspartate decarboxylase

involved in CoA synthesis in anaerobic fungi. Decarboxylation of L-aspartate to b-al-
anine by L-aspartate decarboxylase (Adc), an enzyme that occurs in many species
across all domains of life (23), enables an oxygen-independent alternative for the ca-
nonical fungal pathway for CoA synthesis (Fig. 1). To explore its occurrence in anaero-
bic fungi, a set of 51 amino acid sequences of Adc homologs listed by Tomita et al. (23)
were used as queries against all proteins from 5 Neocallimastigomycetes species de-
posited in the TrEMBL section of the UniProt database. This search yielded 16
Neocallimastigomycetes hits (E value, 1026) (see Table S1 in the supplemental mate-
rial), six of which originated from Neocallimastix californiae. Only one of these hits,
A0A1Y1ZL74, did not reveal annotation errors upon transcriptome sequencing (RNA-
seq) read mapping, showed the highest read coverage (see Fig. S1), and was selected
as the best Neocallimastigomycetes Adc candidate.

The amino acid sequence A0A1Y1ZL74 (here referred to as NcAdcA) was used for a sec-
ond round of homology search to obtain a broad set of Adc-like sequences, with a similar
sequence representation of taxa across the three domains of life (104 sequences from
Bacteria, 101 from Eukarya, and 120 from Archaea) (see Data Set S1). The complete set of
NcAdcA homologs (together with the set defined by Tomita et al. [23] and their
Neocallimastigomycetes homologs) (see Data Set S2) was subjected to multiple-sequence
alignment. A subsequent phylogenetic tree (Fig. 2; Data Set S3) showed that NcAdc sequen-
ces are closely related to those of chytrid fungi (e.g., A0A1S8W5A4 from Batrachochytrium
salamandrivorans) and anaerobic bacteria (e.g., B8I983 from Clostridium cellulolyticum, cur-
rently known as Ruminiclostridium cellulolyticum [24]; we used the former name for consis-
tency with UniProt identifiers). These Neocallimastigomycetes, chytrid, and bacterial Adc
homologs were more closely related to each other than to characterized eukaryotic Adc
and bacterial PanD sequences. Furthermore, HMMER E values obtained from using NcAdcA
as the query against the bacterial database were more significant than when using the eu-
karyotic or archaeal databases (see Fig. S2; Data Set S1). These results suggest that a
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bacterial ancestor donated an Adc-encoding sequence to a common ancestor of chytrids
and Neocallimastigomycetes.

To further investigate the potential bacterium-to-chytrid HGT event, a refined
ortholog search and phylogenetic analysis were performed. Full proteomes of all spe-
cies showing an NcAdcA homolog, in addition to predicted proteomes from six chy-
trids used in a previous phylogenomic analysis (8), were retrieved and used to obtain
all possible co-ortholog groups. From a total number of 103 NcAdcA orthologs
obtained, 85 were bacterial, 5 were archaeal, and 13 were eukaryotic (Table 1; Data Set
S2). Eukaryotic NcAdcA orthologs were only found in fungi, and 12 of 13 were found in
species from the Chytridiomycota phylum. The latter included five of the six chytrids
analyzed in the phylogenomic study by Wang et al. (8) and all Neocallimastigomycetes
considered in this study. Further phylogenetic analysis of the 103 NcAdcA orthologs
indicated a common origin for bacterial and chytrid NcAdcA (Fig. 3; Data Set S4). The
closest bacterial relatives to NcAdcA were found in the facultative anaerobe and water-
borne bacterium Aeromonas hydrophila subsp. hydrophila ATCC 7966T (25) and the
ruminal anaerobe C. cellulolyticum strain H10 (24, 26). Additional close bacterial rela-
tives were also strict anaerobes, such as the syntrophic bacterium Syntrophus aciditro-
phicus (27) and members of the Desulfobacteraceae family (28).

The Adc bacterium-to-chytrid HGT event was further confirmed by using Abaccus,
an automated phylogeny-aware and topology-based algorithm (29). Abaccus uses the

FIG 2 Unrooted maximum likelihood phylogenetic tree of aspartate decarboxylase and glutamate decarboxylase homologs. Sequences of proteins with
demonstrated enzyme activity are marked with white triangles (L-aspartate decarboxylases) or black triangles (glutamate decarboxylases). Interactive
visualizations with all sequence identifiers, branch distances, and bootstrap values can be accessed at https://itol.embl.de/tree/838448017961605604402
and https://itol.embl.de/tree/8384480476641615985323.
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topology of a given tree to determine taxonomic level “jumps” (J) and “losses” (L)
between a seed sequence (NcAdcA) and every other node in the tree. The tree of
NcAdcA orthologs resulted in a J of 4 and L of 3, meaning that the node comprising
NcAdcA “jumps” 4 taxonomic levels, which could only be explained by complete losses
in 3 of these taxonomic levels. These J and L values obtained for the tree of NcAdcA
orthologs are higher than Abaccus’ default HGT cutoff values (J$ 2 and L$ 3) and are
independent of the evolutionary model used to infer the tree (PROTGTR [30], JTT [31],
and LG [32]).

Comparison of bacterial PanDs (Q0TLK2 from Escherichia coli and P9WIL2 from
Mycobacterium tuberculosis) against Adcs from other bacteria (B8I983 from C. cellulolyti-
cum) and eukaryotes (including A7U8C7 from Tribolium castaneum) showed only little
sequence homology between NcAdcs, known bacterial PanDs, and eukaryotic Adcs
(Data Set S5). The only conserved region encompassed the full length of PanDs (126 to
139 amino acids), which represents less than 60% of the full length of other Adc
sequences (e.g., NcAdcA is 625 amino acids long). These sequence comparisons, to-
gether with the intron-exon structures verified with RNA-seq data (Fig. S1), show that
NcadcA has acquired eukaryotic features while retaining homology to its bacterial
ancestor, as is typical for prokaryotic genes acquired by fungal genomes (33).

Neocallimastigomycetes PfnadB, PfnadA, and NcadcA genes support aerobic
pyridine nucleotide and CoA synthesis in yeast. Neocallimastigomycetes were previ-
ously reported to have acquired an L-aspartate oxidase (nadB) and a quinolinate syn-
thase (nadA) gene by HGT (6). Hence, UniProt entries A0A1Y1V2P1 and A0A1Y1VAT1
from Piromyces finnis were functionally reassigned as NadA and NadB candidates, and
the corresponding genes were tentatively named PfnadB and PfnadA. These sequen-
ces, together with NcadcA, were codon optimized and tested to bypass the corre-
sponding oxygen-requiring reactions in S. cerevisiae.

The BNA2 and FMS1 genes of S. cerevisiae were deleted by Cas9-mediated genome
editing. The inability of strain IMK877 (bna2D) to synthesize quinolinic acid and of
strain IMX2292 (fms1D) to synthesize b-alanine was evident from their inability to
grow on glucose synthetic medium lacking nicotinic acid (SMDDnic) and pantothenate
(SMDDpan), respectively (Table 2). Strain IMK877 was used for heterologous comple-
mentation studies with codon-optimized expression cassettes for PfnadB and PfnadA,
while an expression cassette for N. californiae NcadcA (A0A1Y1ZL74) was introduced
into strain IMX2292. Congenic strains expressing previously characterized NADB and
NADA genes from Arabidopsis thaliana (AtNadB and AtNadA; Q94AY1 and Q9FGS4,
respectively) (21), and a previously characterized gene from Tribolium castaneum
encoding an aspartate decarboxylase (TcPanD; A7U8C7) (22) were tested in parallel.

Aerobic growth of the engineered S. cerevisiae strains was characterized in shake-
flask cultures on SMD or on either SMDDnic or SMDDpan (Table 2). In contrast to the

TABLE 1 Summary of NcAdc homology search results across domains of life

Taxonomic rank No. of species analyzed No. of homologs No. of orthologs
Eukarya 749 101 13
Fungi 404 48 13
Dikarya 372 36 1
Ascomycota 280 36 1
Basidiomycota 92 0 0

Fungi incertae sedis 32 12 12
Blastocladiomycota 0 0 0
Chytridiomycota 11 12 12
Cryptomycota 1 0 0
Microsporidia 7 0 0
Mucoromycota 11 0 0
Zoopagomycota 2 0 0

Bacteria 1,807 101 85
Archaea 765 104 5

Fungal NAD1 and Coenzyme A Oxygen-Independent Pathways ®
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reference strain IMK877 (bna2D), S. cerevisiae IMX2301 (bna2D PfnadB PfnadA) grew in
SMDDnic, indicating complementation of the bna2D-induced nicotinate auxotrophy
by PfnadB and PfnadA. However, the specific growth rate of the engineered strain in
these aerobic cultures was approximately 3-fold lower than that of the reference strain
IMX585 (BNA2) (Table 2). Strain IMX2302 (bna2D AtNADB AtNADA) did not grow in
SMDDnic, suggesting that the plant NadB and/or NadA proteins were either not func-
tionally expressed or not able to complement the nicotinate auxotrophy in these aero-
bic yeast cultures.

Strain IMX2300 (fms1D NcadcA) grew in SMDDpan, indicating complementation of
the pantothenate auxotrophy. However, this strain reproducibly showed a lag phase of
approximately 48 h upon its first transfer from SMD to SMDDpan and grew exponentially
thereafter at a rate of 0.346 0.01 h21. To explore whether the lag phase of strain
IMX2300 reflected selection of a spontaneous mutant, it was subjected to three sequen-
tial transfers in SMDDpan. A single-colony isolate, IMX2300-1, from the adapted popula-
tion showed a specific growth rate of 0.346 0.01 h21 in both SMD and SMDDpan
(Table 2). Whole-genome sequencing of IMX2300-1 did not reveal any mutations in cod-
ing DNA sequences that were considered physiologically relevant in this context com-
pared to the nonadapted strain IMX2300 (BioProject accession number PRJNA634013).
This observation indicated that the lag phase of strain IMX2300 most likely reflected a
physiological adaptation or culture heterogeneity rather than a mutational event (34).

The specific growth rate of S. cerevisiae IMX2305 (fms1D TcPAND) on SMDDpan did not
significantly differ from that of the reference strain IMX585 on SMD, and it was almost 4-fold
higher than the specific growth rate of the reference strain on SMDDpan. These results are
consistent with a previous study on functional expression of TcPAND in S. cerevisiae (35).

Expression of Neocallimastigomycetes PfnadB, PfnadA, and NcadcA suffices to
enable anaerobic pyridine nucleotide and CoA synthesis in yeast. To investigate
whether expression of heterologous PfnadB and PfnadA and that of NcadcA were

FIG 3 Mid-rooted maximum likelihood phylogenetic tree of aspartate decarboxylase orthologs. Number of sequences in collapsed clades are indicated in
parentheses. A summary of the search from which these sequences were obtained is presented in Table 1. An interactive visualization with all sequence
identifiers, branch support, distances, and bootstrap values can be accessed at https://itol.embl.de/tree/8384480267191615280152.
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sufficient to enable anaerobic growth in the absence of nicotinate and pantothenate,
respectively, growth of the engineered S. cerevisiae strains on SMD, SMDDnic, and/or
SMDDpan was monitored in an anaerobic chamber (Fig. 4).

Growth experiments on SMDDnic or SMDDpan were preceded by a cultivation cycle
on the same medium, supplemented with 50 g liter21 instead of 20 g liter21 of glucose to
ensure complete depletion of any surplus cellular contents of pyridine nucleotides, CoA, or
relevant intermediates. Indeed, upon a subsequent transfer to SMDDnic or SMDDpan, the
reference strain IMX585 (BNA2 FMS1), expressing the native oxygen-dependent pathways
for nicotinate and b-alanine synthesis, showed no growth (Fig. 4A, B, and C).

Both engineered strains IMX2301 (bna2D PfnadB PfnadA) and IMX2302 (bna2D
AtNADB AtNADA) grew anaerobically on SMDDnic. This provided a marked contrast
with the aerobic growth studies on this medium, in which strain IMX2302 did not
grow. Strains IMX2305 (fms1D TcPAND) and the aerobically preadapted IMX2300-1
(fms1D NcadcA) both grew on SMDDpan under anaerobic conditions (Fig. 4D, E, and F).

Characterization of engineered yeast strains in anaerobic batch bioreactors.
The anaerobic chamber experiments did not allow quantitative analysis of growth and
product formation. Therefore, growth of the S. cerevisiae strains expressing the
Neocallimastigomycetes genes, IMX2301 (bna2D PfnadB PfnadA) and IMX2300-1 (fms1D
NcadcA), was studied in anaerobic bioreactor batch cultures on SMDDnic or SMDDpan
and compared to growth of S. cerevisiae IMX585 (BNA2 FMS1) on the same media.

The reference strain IMX585, which typically grows fast and exponentially in anaero-
bic bioreactors when using complete SMD (36), exhibited extremely slow, linear
growth on SMDDnic and SMDDpan (Fig. 5). Similar growth kinetics in “anaerobic” bio-
reactor cultures of S. cerevisiae on synthetic medium lacking the anaerobic growth fac-
tors Tween 80 and ergosterol were previously attributed to slow leakage of oxygen
into laboratory bioreactors (37–39).

In contrast to the reference strain IMX585, the engineered strains IMX2301 and
IMX2300-1 exhibited exponential anaerobic growth on SMDDnic and SMDDpan,
respectively (Fig. 5; Table 3). The specific growth rate of strain IMX2301 (bna2D PfnadB
PfnadA) on SMDDnic was not significantly different from that of the reference strain on
complete SMD (36), indicating full complementation of the anaerobic nicotinate auxo-
trophy of S. cerevisiae. The specific growth rate of strain IMX2300-1 (fms1D NcadcA) on
SMDDpan was only 20% lower than this benchmark (Table 3). Biomass and ethanol
yields of strain IMX2301 grown in anaerobic batch cultures on SMDDnic and strain
IMX2300-1 grown on SMDDpan were not significantly different from those of the refer-
ence strain IMX585 grown on complete SMD (P value. 0.05) (Table 3).

DISCUSSION

This study shows how oxygen-independent pantothenate and nicotinate prototro-
phy can be conferred to the facultatively anaerobic yeast S. cerevisiae by heterologous
expression of NcadcA, PfnadB, and PfnadA genes from Neocallimastigomycetes as well
as corresponding orthologs from other species (TcPAND, AtNADB, and AtNADA). These

TABLE 2 Aerobic characterization of engineered strains

Strain

Growth rate (h21)a

SMD SMDDnic SMDDpan
IMX585 (FMS1 BNA2) 0.406 0.01 0.406 0.02 0.116 0.01
IMX2292 (fms1D) 0.396 0.01 ,0.01
IMX2305 (fms1D TcPAND) 0.396 0.01 0.396 0.01
IMX2300-1 (fms1D NcadcA) 0.346 0.01 0.346 0.01
IMK877 (bna2D) 0.406 0.01 ,0.01
IMX2301 (bna2D PfnadB PfnadA) 0.376 0.01 0.146 0.01
IMX2302 (bna2D AtNADB AtNADA) 0.406 0.01 ,0.01
aSpecific growth rates of S. cerevisiae strains grown in SMD, SMDDnic, and SMDDpan media. The values are
averages and mean deviations of data from at least two independent cultures of each strain.
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results also provide insights into how acquisition of these genes by HGT conferred
selective advantage to Neocallimastigomycetes’ ancestors under anaerobic conditions.

Results from phylogenetic analysis of Adc sequences (Fig. 2) were consistent with
an earlier report on multiple evolutionary origins and variable evolutionary rates of
pyridoxal-59-phosphate-dependent enzymes, including Adc and glutamate decarboxyl-
ases (40, 41). A separate clade of Neocallimastigomycetes sequences shows homology
with characterized glutamate decarboxylases (e.g., Q04792 from S. cerevisiae and
K4HXK6 from Lactobacillus brevis) (Fig. 2). These results further support acquisition of
an Adc-encoding DNA sequence by HGT rather than by neofunctionalization of a gluta-
mate decarboxylase gene.

The characterized NcAdcA (A0A1Y1ZL74) yielded the highest homology with orthol-
ogous sequences from chytrid fungi and anaerobic bacteria. This observation is in
agreement with previous research showing that HGT events played a major role in
shaping the genomes of Neocallimastigomycetes (4, 6, 7), with Firmicutes and
Proteobacteria as prominent sequence donors (6). Specifically, closer bacterial ortho-
logs to NcAdcA were found in genome sequences of A. hydrophila (Proteobacteria) and
C. cellulolyticum (Firmicutes). These bacterial species are anaerobic, and considering
their ecological niches (waterborne and decayed grass/ruminal fluid, respectively [24,
26]), the results agree with current hypotheses of these types of bacteria donating
genes to anaerobic gut fungi and subsequently driving a mammalian transition to her-
bivory (6, 8). Since NcAdcA orthologs were found in 5 of the 6 chytrids analyzed, the
Adc HGT transfer event appears to have preceded the 66 (610) million years ago
(MYA) estimate for divergence of Neocallimastigomycetes from other chytrids (8),
although this estimate may be contended by more recent phylogenomic analyses for
the whole fungal kingdom (42).

NcAdcA orthology and phylogenetic analyses revealed Phialocephala subalpina as
the only other nonchytrid non-Neocallimastigomycetes eukaryote to have a separate
Adc-like protein. This fungus is a root endophyte and was previously proposed have
obtained multiple genes by HGT from bacterial donors (43). However, A0A1L7WVG4

FIG 4 Anaerobic growth of S. cerevisiae strains dependent or independent on supplementation of nicotinic acid (NA) or
pantothenic acid (PA) in SMD medium containing Tween 80 and ergosterol. Strains IMX585 (A), IMX2301 (bna2D PfnadB PfnadA)
(B), and IMX2302 (bna2D AtNADB AtNADA) (C) transferred to medium with 2% glucose with (~) or without (n) nicotinate after a
carry-over phase in SMDDnic containing 4% glucose (l in gray box). Strains IMX585 (D), IMX2300-1 (fms1D NcadcA) (E), and
IMX2305 (fms1D TcPAND) (F) transferred to medium with (4) or without (h) pantothenate after a carry-over phase in SMDDpan
containing 4% glucose (* in gray box). Anaerobic conditions in the chamber were maintained using a palladium catalyst and a
5% hydrogen concentration. Error bars represent the mean deviations from independent cultures (n= 2).
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(PAC_06602), here identified as an Adc ortholog, was not among the 21 genes of P.
subalpina listed as likely acquired by HGT from nonfungal species. Since the phyloge-
netic placement of the putative P. subalpina Adc was close to bacterial as well as arch-
aeal sequences, further studies are needed to reveal its evolutionary history.

Whereas an alternative to the kynurenine pathway for NAD1 synthesis was previously
inferred from genome sequence analysis, the pathway by which Neocallimastigomycetes
synthesize coenzyme A had not previously been explored. Six pathways for synthesis of
the essential CoA precursor b-alanine are known: (A) decarboxylation of L-aspartate (44),
(B) transamination of malonate semialdehyde with L-glutamate as amino donor (45) or L-al-
anine (46), (C) reduction of uracil followed by hydrolysis of the resulting dihydrouracil (47),
(D) oxidative cleavage of spermine to 3-aminopropanal followed by oxidation of the alde-
hyde group (16), (E) 2,3-aminomutase of alanine (48), and (F) addition of ammonia to acryl-
oyl-CoA, followed by hydrolysis of the resulting CoA thioester (48). Of these pathways, all
but option D, in principle, can occur in the absence of oxygen. Yeasts and other filamen-
tous fungi typically form b-alanine from spermine (pathway D), but in some species, the
use of pathway C was also reported (49).

FIG 5 Anaerobic batch cultivation of IMX585 in SMDDnic (A) and SMDDpan (B), IMX2301 in SMDDnic (C), and IMX2300-1 in
SMDDpan (D). All strains were pregrown in the corresponding medium lacking one vitamin prior to inoculation in the bioreactor to
avoid carry-over effects. Values for glucose (l), ethanol (*), glycerol (n), acetate (h), and biomass (~) are shown over time. Error
bars represent the mean deviations from independent cultures (n= 2).

TABLE 3Maximum specific growth rate (mmax) and yields of glycerol, biomass, and ethanol on glucose in anaerobic bioreactor batch cultures
of S. cerevisiae strains IMX585, IMX2301, and IMX2300-1a

Strain Medium mmax (h21)

Yield (g g21)

Y glycerol/glucose Y biomass/glucose Y ethanol/glucose
IMX585b (FMS1 BNA2) SMD 0.326 0.00 0.1056 0.000 0.0946 0.004 0.3726 0.001
IMX2301 (bna2D PfnadB PfnadA) SMDDnic 0.316 0.01 0.1036 0.003 0.0906 0.002 0.3726 0.002
IMX2300-1 (fms1D NcadcA) SMDDpan 0.256 0.00 0.1046 0.000 0.0816 0.001 0.3646 0.003
aCultures were grown on SMD, SMDDnic, or SMDDpan with 20 g liter21 glucose as the carbon source (pH 5). Growth rates and yields were calculated from the exponential
growth phase. The ethanol yield was corrected for evaporation. Values represent averages and mean deviations of data from independent cultures (n=2). Carbon recovery
in all fermentations was between 95% and 100%.

bData from reference 36.
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While the aspartate decarboxylation route (A) has not previously been demonstrated
in wild-type fungi, functional expression of bacterial and T. castaneum TcPanD was used
in metabolic engineering of S. cerevisiae to boost supply of b-alanine as a precursor for
3-hydroxypropionate production (22, 35). Wild-type S. cerevisiae strains cannot grow in
anaerobic environments unless supplemented with pantothenate. Expression of either
NcadcA or TcPAND in an fms1D S. cerevisiae strain, which lacks the native oxygen-de-
pendent pantothenate biosynthesis pathway, enabled growth in pantothenate-free me-
dium under aerobic and anaerobic conditions. Although the different specific growth
rates of S. cerevisiae strains expressing NcadcA or TcPAND indicate that changing expres-
sion levels and/or origin of ADC-encoding genes may be required to achieve optimal
growth, these results provide a proof of principle for a simple metabolic engineering
strategy to eliminate oxygen requirements for pantothenate synthesis.

Genomic analyses previously suggested that genomes of Neocallimastigomycetes
encode a putative L-aspartate oxidase (NadB) and quinolinate synthase (NadA) as alterna-
tives to the canonical kynurenine pathway found in other fungi (6). Additionally,
Neocallimastigomycetes appear to have acquired both nadB and nadA through HGT (6).
Until now, functionality of these Neocallimastigomycetes proteins in an oxygen-independ-
ent pathway for synthesis of quinolinate from L-aspartate had not been demonstrated.

Our results demonstrate that expression of nadB and nadA homologs, either from
the Neocallimastigomycetes P. finnis or from the plant A. thaliana (21), suffice to allow
anaerobic synthesis of NAD1 of S. cerevisiae. Due to the involvement of the Bna2 and
Bna4 oxygenases in NAD1 synthesis by S. cerevisiae, nicotinate is an essential growth
factor for this yeast under anaerobic conditions (14, 50, 51). A similar strategy was
recently successfully applied to enable oxygen-independent synthesis of pyridine nu-
cleotides in the bacterium Pseudomonas putida (52). The present study represents the
first demonstration of a metabolic engineering strategy to eliminate oxygen require-
ments for NAD1 synthesis in a yeast.

Functional expression of heterologous NadA quinolinate synthases in S. cerevisiae
was observed despite the fact that these enzymes are [4Fe-4S] iron-sulfur cluster pro-
teins (53, 54), which are notoriously difficult to functionally express in the yeast cytosol
(55–58). However, earlier studies on functional expression of the [4Fe-4S] activating
protein of bacterial pyruvate-formate lyase (59, 60) demonstrated that low-levels of
expression can occur without modification of the yeast machinery for cytosolic assem-
bly of [Fe-S] clusters. The inability of AtNadB and AtNadA to support NAD1 synthesis in
aerobic cultures may be due to oxygen sensitivity of the [4Fe-4S] cluster in the AtNadA
quinolinate synthase domain (61). In contrast to PfNadA, AtNadA carries an N-terminal
SufE domain which, in other organisms, has been demonstrated to allow this oxygen-
sensitive enzyme to remain active under aerobic conditions by reconstituting its [Fe-S]
cluster (61).

This work contributes to the understanding of how Neocallimastigomycetes
adapted to their anaerobic lifestyle by acquiring genes that enable oxygen-independ-
ent synthesis of central metabolic cofactors. Experiments with engineered S. cerevisiae
strains showed that contribution of the heterologous genes to in vivo oxygen-inde-
pendent cofactor synthesis did not require additional mutations in the host genome.
These results indicate how acquisition of functional genes by HGT, even if their expres-
sion was initially suboptimal, could have conferred an immediate advantage to ances-
tors of anaerobic fungi living in cofactor-limited anoxic environments. A similar
approach was recently applied to study the physiological impact on S. cerevisiae of
expressing a heterologous gene encoding squalene-tetrahymanol cyclase, which in
Neocallimastigomycetes, produces the sterol surrogate tetrahymanol (13). Functional
analysis by heterologous expression in S. cerevisiae circumvents the current lack of
tools for genetic modification of Neocallimastigomycetes (2) and can complement bio-
chemical studies (3–5) and genome sequence analyses (6, 7).

Pantothenate and nicotinate, together with the other compounds belonging to the
B-group of water-soluble vitamins, are standard ingredients of chemically defined
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media for aerobic and anaerobic cultivation of yeasts (62). S. cerevisiae strains have
been shown to contain the genetic information required for de novo synthesis of these
vitamins and can even be experimentally evolved for complete prototrophy for individ-
ual vitamins by prolonged cultivation in single-vitamin-depleted media (63, 64). In
large-scale processes, addition of nutritional supplements increases costs, reduces
shelf-life of media, and increases the risk of contamination during their storage (62).
Therefore, metabolic engineering strategies for enabling oxygen-independent synthe-
sis of NAD1 and pantothenate are of particular interest for the development robust
yeast strains with minimal nutritional requirements that can be applied in anaerobic
biofuel production (62). Further studies of the unique evolutionary adaptations of
Neocallimastigomycetes may well provide additional inspiration for engineering robust
fungal cell factories that operate under anaerobic conditions.

MATERIALS ANDMETHODS
Homology and phylogenetic analyses. A set of 51 amino acid sequences previously used to dis-

criminate between L-aspartate decarboxylases (Adc) and glutamate decarboxylases (23) was reused to
identify candidate Neocallimastigomycetes Adc sequences. These sequences were used as queries
against a database containing all 58,109 Neocallimastigomycetes proteins deposited in UniProt trembl
(Release 2019_02), which represented 5 species (Neocallimastix californiae, Anaeromyces robustus,
Piromyces sp. E2, Piromyces finnis, and Pecoramyces ruminantium), and extracted according to the NCBI
taxonomic identifier (taxid) 451455. Sequence homology was analyzed using BLASTP 2.6.01 (65) with
1026 as the E value cutoff, resulting in 16 Neocallimastigomycetes sequences as shared hits from all 51
queries (see Table S1 in the supplemental material). Four of these sequences showing homology to
experimentally characterized Adc proteins originated from N. californiae and were checked for RNA-seq
read coverage and splicing junction support, revealing A0A1Y1ZL74 as the best candidate (Fig. S1). For
this purpose, Illumina libraries were obtained from the Sequence Read Archive using accession
SRR7140690 (66) which were then mapped using STAR 2.6.1a_08-27 (67) against genome assembly GCA
_002104975. Alignments were processed using SAMtools 1.3.1 (68) and visualized using Artemis (69).

A0A1Y1ZL74, also referred to as NcAdcA, was used for a second round of homology search using
HMMER 3.2 (70) against 3 different databases built from UniProt release 2019_02 to include all RefSeq
sequences from Bacteria (taxid 2), Eukarya (taxid 2759), and Archaea (taxid 2157; TrEMBL and Swiss-Prot
categories were also included in this case). Selection for hits with more than 60% alignment length over
the query sequence and an E value of ,1026 resulted in a total of 325 sequences (103 from Bacteria, 101
from Eukaryota, and 121 from Archaea) (Data Set S1).

The set of 325 A0A1Y1ZL74 homologous sequences, together with those from Tomita et al. (23), and
the 16 Neocallimastigomycetes sequences from that described above were used for further phyloge-
netic analyses. A total of 387 sequences (Data Set S2) were aligned with MAFFT v7.402 (71) in “einsi”
mode, and alignments were trimmed with trimAl v1.2 (72) in “gappyout” mode and then used to build a
maximum likelihood phylogenetic tree with RAxML-NG 0.8.1 (72) using default parameters, with the
exception of the use of the PROTGTR1FO model and 100 bootstrap replicates. The resulting phyloge-
netic tree drawn with iTOL (73) is shown in Fig. 2, and corresponding sequences and the unannotated
tree are provided in Data Sets S2 and S3.

Proteomes from species showing an Adc homolog were extracted into individual fasta files and used
for (co)orthology search with ProteinOrtho6 (74). A0A1Y1ZL74 ortholog groups were then extracted and
subjected to alignment, trimming, and phylogenetic analysis as described above. The resulting phyloge-
netic tree is shown in Fig. 3, and corresponding sequences and the unannotated tree are provided in
Data Sets S2 and S4.

Abaccus v1.1 (29) (https://github.com/Gabaldonlab/Abaccus) was used to search the tree presented
in Fig. 3 (Data Set S4) for evidence of HGT. For this purpose, the taxonomy table provided as default was
supplemented with definitions for the additional chytrids considered in this study.

Multiple-sequence alignment was also performed with Clustal omega 1.2.4 (75) to compare selected
amino acid sequences showing candidate and experimentally characterized Adcs against bacterial
PanDs. These sequences and alignments are shown in Data Set S5.

Strains, media, and maintenance. S. cerevisiae strains used and constructed in this study (Table 4)
were derived from the CEN.PK lineage (76). Yeast cultures were routinely propagated in YP (10 g liter21

Bacto yeast extract [Becton, Dickinson and Co., Sparks, MD], 20 g liter21 Bacto peptone [Becton,
Dickinson and Co.]) or synthetic medium (SM) (77). YP and SM were autoclaved at 121°C for 20min. SM
was then supplemented with 1ml liter21 of filter-sterilized vitamin solution (0.05 g liter21 D-(1)-biotin,
1.0 g liter21 D-calcium pantothenate, 1.0 g liter21 nicotinic acid, 25 g liter21 myo-inositol, 1.0 g liter21 thi-
amine hydrochloride, 1.0 g liter21 pyridoxol hydrochloride, 0.20 g liter21 4-aminobenzoic acid). Where
indicated, nicotinic acid or pantothenic acid was omitted from the vitamin solution, yielding SM without
nicotinic acid (SMDnic) and SM without pantothenic acid (SMDpan), respectively. A concentrated glu-
cose solution was autoclaved separately for 15min at 110°C and added to SM and YP to a concentration
of 20 g liter21 or 50 g liter21, yielding SMD and YPD, respectively. SMD with urea or acetamide instead of
ammonium sulfate (SMD-urea and SMD-Ac, respectively) was prepared as described previously (78, 79).
For anaerobic growth experiments, sterile media were supplemented with Tween 80 (polyethylene
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glycol sorbate monooleate; Merck, Darmstadt, Germany) and ergosterol ($95% pure; Sigma-Aldrich, St.
Louis, MO) as described previously (39). Yeast strains were grown in 500-ml shake flasks containing
100ml medium or in 100-ml shake flasks containing 20ml medium. Shake-flask cultures were incubated
at 30°C and shaken at 200 rpm in an Innova Incubator (Brunswick Scientific, Edison, NJ). Solid media
were prepared by adding 15 g liter21 Bacto agar (Becton, Dickinson and Co.) and, when indicated,
200mg liter21 G418 (Thermo Scientific, Waltham, MA). After genotyping, engineered strains were
restreaked twice to select single clones. Removal of the guide RNA (gRNA)-carrying plasmid was con-
ducted as previously described (80). Stock cultures were prepared by adding glycerol to a final concen-
tration of 33% (vol/vol), frozen, and stored at 280°C.

Molecular biology techniques. DNA was PCR amplified with Phusion Hot Start II high-fidelity poly-
merase (Thermo Scientific) and desalted or PAGE-purified oligonucleotide primers (Sigma-Aldrich)
according to the manufacturers’ instructions. DreamTaq polymerase (Thermo Scientific) was used for
diagnostic PCR. Oligonucleotide primers used in this study are listed in Table 5. PCR products were sepa-
rated by gel electrophoresis using 1% (wt/vol) agarose gel (Thermo Scientific) in Tris-acetate-EDTA (TAE)
buffer (Thermo Scientific) at 100 V for 25min and purified with either GenElute PCR clean-up kit (Sigma-
Aldrich) or with Zymoclean gel DNA recovery kit (Zymo Research, Irvine, CA). Plasmids were purified
from E. coli using a Sigma GenElute plasmid kit (Sigma-Aldrich). Yeast genomic DNA was isolated with
the SDS-lithium acetate (LiAc) protocol (81). Yeast strains were transformed with the lithium acetate
method (82). Four to eight single colonies were restreaked three consecutive times on selective media,
and diagnostic PCRs were performed to verify their genotypes. Escherichia coli XL1-Blue was used for
chemical transformation (83). Plasmids were then isolated and verified by either restriction analysis or
by diagnostic PCR. Lysogeny broth (LB; 10 g liter21 Bacto tryptone, 5 g liter21, Bacto yeast extract with 5
g liter21 NaCl) was used to propagate E. coli XL1-Blue. LB medium was supplemented with 100mg liter21

ampicillin for selection of transformants. The overnight-grown bacterial cultures were stocked by adding
sterile glycerol at a final concentration of 33% (vol/vol), after which samples were frozen and stored at
280°C.

Plasmid construction. Plasmids used and cloned in this study are shown in Table 6. Plasmids carry-
ing two copies of the same gRNA were cloned by Gibson assembly (80, 84). In brief, an oligonucleotide
carrying the gene-specific 20-bp target sequence and a homology flank to the plasmid backbone was
used to amplify the fragment carrying the 2-mm origin of replication sequence by using pROS13 as the
template. The backbone linear fragment was amplified using primer 6005 and pROS11 as the template
(85). The two fragments were then gel purified and assembled in vitro using the NEBuilder HiFi DNA as-
sembly master mix (New England BioLabs, Ipswich, MA) according to the manufacturer’s instructions.
Transformants were selected on LB plates supplemented with 100mg liter21 ampicillin or 50mg liter21

kanamycin. Primer 11861 was used to amplify the 2-mm fragment containing two identical gRNA
sequences for targeting BNA2. The PCR product was then cloned in a pROS11 backbone yielding plasmid
pUDR315.

The coding sequences for AtNADA, AtNADB, PfnadA, PfnadB, and NcadcA were codon optimized for
expression in S. cerevisiae and ordered as synthetic DNA through GeneArt (Thermo Fisher Scientific). The
plasmids carrying the expression cassettes for TcPAND, AtNADA, AtNADB, PfnadA, and PfnadB were
cloned by Golden Gate assembly using the Yeast Toolkit (YTK) DNA parts (86). These plasmids were
cloned using the pYTK096 integrative backbone that carries long homology arms to the URA3 locus and
a URA3 expression cassette allowing for selection on SM lacking uracil. The TcPAND coding sequence
was amplified using the primer pair 11877/11878 and pCfB-361 as the template. Then, the linear TcPAND
gene and plasmids pUD1096, pUD1097, pUD652, and pUD653 carrying the coding sequences for
AtNADA, AtNADB, PfnadA, and PfnadB, respectively, were combined together with YTK-compatible part
plasmids in BsaI (New England BioLabs) Golden Gate reactions to yield plasmids pUDI168, pUDI245,
pUDE931, pUDI243, and pUDI244, respectively.

The plasmid carrying the expression cassette for NcadcA was cloned by Gibson assembly. The pTDH3
promoter, the NcadcA coding sequence, the tENO2 terminator, and the pYTK0096 backbone were ampli-
fied by PCR using primer pairs 16721/16722, 16723/16724, 16725/16726, and 16727/16728, respectively,

TABLE 4 S. cerevisiae strains used in this study

Name Relevant genotypea Parental strain Reference
CEN.PK113-7D MATa URA3 76
CEN.PK113-5D MATa ura3-52 76
IMX585 MATa can1D::Spycas9-natNT2 URA3 CEN.PK113-7D 80
IMX581 MATa ura3-52 can1D::Spycas9-natNT2 CEN.PK113-5D 80
IMX2292 MATa can1D::Spycas9-natNT2 URA3 fms1D IMX585 63
IMK877 MATa can1D::Spycas9-natNT2 URA3 bna2D IMX585 This study
IMX2301 MATa can1D::Spycas9-natNT2 URA3 bna2D sga1::pTDH3-PfnadA-tENO1 pCCW12-PfnadB-tENO2 IMK877 This study
IMX2302 MATa can1D::Spycas9-natNT2 URA3 bna2D sga1::pTDH3-AtNADA-tENO1 pCCW12-AtNADB-tENO2 IMK877 This study
IMX2293 MATa ura3-52 can1D::Spycas9-natNT2 fms1D IMX581 This study
IMX2300 MATa ura3-52::pTDH3-NcadcA-tENO2 URA3 can1D::Spycas9-natNT2 fms1D IMX2293 This study
IMX2300-1 MATa ura3-52::pTDH3-NcadcA-tENO2 URA3 can1D::Spycas9-natNT2 fms1D Colony isolate 1 IMX2300 This study
IMX2305 MATa ura3-52::pRPL12b-TcPAND-tTDH1 URA3 can1D::Spycas9-natNT2 fms1D IMX2293 This study
aSpy, Streptococcus pyogenes; Pf, Piromyces finnis; Nc, Neocallimastix californiae; At, Arabidopsis thaliana; Tc, Tribolium castaneum.
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using pYTK009, pUD1095, pYTK055, and pYTK096 as the template, respectively. Each PCR product was
then gel purified and combined in equimolar amounts in a Gibson reaction that yielded pUDI242.

Strain construction. S. cerevisiae strains were transformed using the LiAc–single-stranded DNA
(ssDNA)–polyethylene glycol (PEG) and CRISPR/Cas9 method (80, 82, 87). For deletion of the BNA2 gene,
IMX585 (can1D::Spycas9-natNT2) was transformed with 500 ng of the BNA2-targeting gRNA plasmid
pUDR315 together with 500 ng of the annealed primer pair 11862/11863 as the repair double-stranded
DNA (dsDNA) oligonucleotide, yielding strain IMK877. The resulting strain was then used for the integra-
tion of the two heterologous NADB-A pathways. Expression cassettes for AtNADA, AtNADB, PfnadA, and
PfnadB were amplified from plasmids pUDI245, pUDE931, pUDI243, and pUDI244, respectively, using
primer pairs 13123/13124, 13125/10710, 13123/13124, and 13125/10710, respectively. Then, 500 ng of
each pair of gel purified repair cassettes was cotransformed in IMK877 together with 500 ng of the
SGA1-targeting gRNA plasmid, yielding IMX2302 (sga1::AtNADA AtNADB) and IMX2301 (sga1::PfnadA
PfnadB).

For deletion of the FMS1 gene, IMX581 (can1D::Spycas9-natNT2 ura3-52) was transformed with
500 ng of the FMS1-targeting gRNA plasmid pUDR652 together with 500 ng of the annealed primer pair
13527/13528 as the repair dsDNA oligonucleotide, resulting in IMX2293. Then, 500 ng each of plasmids
pUDI168 and pUDI242 carrying the expression cassettes for TcPAND and NcadcA, respectively, were
digested with NotI (Thermo Fisher) and separately transformed in IMX2293, yielding IMX2305 and
IMX2300, respectively. Selection of IMX2305 and IMX2300 was performed on an SMD agar plate, since
the integration of each Adc-encoding cassette also restored the URA3 phenotype. In contrast, selection
of IMK877 was conducted on SMD-Ac agar plates, while selection of IMX2302, IMX2301, and IMX2293
was conducted on YPD-G418 agar plates. Strains IMK877, IMX2300, IMX2302, and IMX2301 were stocked
in SMD, while IMX2305 and IMX2293 were stocked in SMDDpan and YPD, respectively.

Aerobic growth studies in shake flasks. For the determination of the specific growth rate of the
engineered strains under aerobic conditions, a frozen aliquot was thawed and used to inoculate a 20-ml
wake-up culture that was then used to inoculate a preculture in a 100-ml flask. The exponentially grow-
ing preculture was then used to inoculate a third flask to an initial optical density at 600 nm (OD660) of
0.2. The flasks were then incubated, and growth was monitored using a 7200 Jenway Spectrometer
(Jenway, Stone, United Kingdom). Specific growth rates were calculated from at least five time points in
the exponential growth phase of each culture. Wake-up and precultures of IMX2301 and IMX2302 were
grown in SMDDnic. Wake-up and precultures of IMX2300 and IMX2305 were grown in SMDDpan, while
wake-up and precultures of IMK877 and IMX2292 were grown in SMD.

TABLE 5 Oligonucleotide primers used in this study

Primer no. Primer sequence Product(s)a

6005 GATCATTTATCTTTCACTGCGGAGAAG gRNA pROS plasmid backbone
amplification

11861 TGCGCATGTTTCGGCGTTCGAAACTTCTCCGCAGTGAAAGATAAATGATCCAGAAGAGCATATTCC
ATTTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAG

2-mm fragment for BNA2 gRNA
plasmid

11862 GTCAACGCCGATATGAACAACACTTCCATAACCGGACCACAAGTACTACATAGAACAAAACATTAT
ACATTTTATTAACGCCCCCCCTTTTTTTTTTTTGTTTGATGCAGAAGCCTCGCA

BNA2 KO repair oligonucleotide fwd

11863 TGCGAGGCTTCTGCATCAAACAAAAAAAAAAAAGGGGGGGCGTTAATAAAATGTATAATGTTTTGT
TCTATGTAGTACTTGTGGTCCGGTTATGGAAGTGTTGTTCATATCGGCGTTGAC

BNA2 KO repair oligonucleotide rev

11877 GCATCGTCTCATCGGTCTCATGCATCGTCTCATCGGTCTCAT YTKflank_TcPanD_fwd
11878 ATGCCGTCTCAGGTCTCAGGATTCACAAATCGGAACCCAAT YTKflank_TcPanD_rev
16721 CAATTCGTCGCAATACAACGCAGTTCGAGTTTATCATTATCAATACTGC pTDH3 amplification_fwd
16722 ATGGTTTCTTTGTCGACCATTTTGTTTGTTTATGTGTGTTTATTCGA pTDH3 amplification_rev
16723 AACACACATAAACAAACAAAATGGTCGACAAAGAAACCATTAA NcPanD amplification_fwd
16724 AATTCTTAGTTAAAAGCACTTTACTTGATCAGCTTGTGGTTCA NcPanD amplification_rev
16725 ACCACAAGCTGATCAAGTAAAGTGCTTTTAACTAAGAATTATTAGTCTTTTCTG tENO2 amplification_fwd
16726 CTGACGAGCAGATTTCCAGCATTTTTCAAACTGCAAATTCAAGAA tENO2 amplification_rev
16727 GAATTTGCAGTTTGAAAAATGCTGGAAATCTGCTCGTCAG pYTK096 amplification_fwd
16728 ATAATGATAAACTCGAACTGCGTTGTATTGCGACGAATTG pYTK096 amplification_rev
13527 AACAAGAAGTGAGTTAATAAAGGCAAAAACAGTGGTCGTGTGAGAAGTAGAATTTCACCTAGACG

TGGAATCTATTTTTTCGAAATTACTTACACTTTTGACGGCTAGAAAAG
FMS1 KO repair oligonucleotide fwd

13528 CTTTTCTAGCCGTCAAAAGTGTAAGTAATTTCGAAAAAATAGATTCCACGTCTAGGTGAAATTCTAC
TTCTCACACGACCACTGTTTTTGCCTTTATTAACTCACTTCTTGTT

FMS1 KO repair oligonucleotide rev

13123 TTTACAATATAGTGATAATCGTGGACTAGAGCAAGATTTCAAATAAGTAACAGCAGCAAACAGTTC
GAGTTTATCATTATCAATACTG

NadA repair fragment fwd

13124 ATAGCATAGGTGCAAGGCTCTCGCCGCTTGTCGAGCTATTGGCATGGATGTGCTCCCTAAATACAT
GGGTGACCAAAAGAGC

NadA repair fragment rev

13125 TTAGGGAGCACATCCATGCCAATAGCTCGACAAGCGGCGAGAGCCTTGCACCTATGCTATCACCCA
TGAACCACACGG

NadB repair fragment fwd

10710 TATATTTGATGTAAATATCTAGGAAATACACTTGTGTATACTTCTCGCTTTTCTTTTATTATTTTTCAAA
CTGCAAATTCAAGAAAAAGCCAC

NadB repair fragment rev

afwd, forward; rev, reverse.
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Anaerobic growth studies in shake flasks. Anaerobic shake-flask based experiments were per-
formed in a Lab Bactron 300 anaerobic workstation (Sheldon Manufacturing Inc., Cornelius, OR) contain-
ing an atmosphere of 85% N2, 10% CO2, and 5% H2. Flat-bottom shake flasks of 50 ml were filled with
40ml SMD-urea medium containing 50 g liter21 glucose as the carbon source to ensure depletion of the
vitamin/growth factor of interest and 20 g liter21 glucose for the first transfer. Media were supple-
mented with vitamins, with and without pantothenic acid or nicotinic acid as indicated, and in all cases,
supplemented with Tween 80 and ergosterol. Sterile medium was placed inside the anaerobic chamber
24 h prior to inoculation for removal of oxygen. Traces of oxygen were continuously removed with a reg-
ularly regenerated Pd catalyst for H2-dependent oxygen removal placed inside the anaerobic chamber.
Aerobic overnight shake-flask cultures on SMD-urea were used to inoculate the anaerobic shake flask
without pantothenic acid or without nicotinic acid at an initial OD600 of 0.2. Cultures were cultivated at
30°C with continuous stirring at 240 rpm on an IKA KS 260 Basic orbital shaker platform (Dijkstra
Verenigde BV, Lelystad, the Netherlands). Periodic optical density measurements at a wavelength of
600 nm using an Ultrospec 10 cell density meter (Biochrom, Cambridge, United Kingdom) inside the an-
aerobic environment were used to follow the growth over time. After growth had ceased and the OD600

no longer increased, the cultures were transferred to SMD-urea with 20 g liter21 glucose at an OD600 of
0.2 (39).

Anaerobic bioreactor cultivation. Anaerobic bioreactor batch cultivation was performed in 2-liter
laboratory bioreactors (Applikon, Schiedam, the Netherlands) with a working volume of 1.2 liters.
Bioreactors were tested for gas leakage by applying 30 kPa overpressure while completely submerging
them in water before autoclaving. Anaerobic conditions were maintained by continuous sparging of the
bioreactor cultures with 500ml N2 min21 (#0.5 ppm O2, HiQ nitrogen 6.0; Linde Gas Benelux, Schiedam,
the Netherlands). Oxygen diffusion was minimized by using Fluran tubing (14 Barrer O2, F-5500-A; Saint-
Gobain, Courbevoie, France) and Viton O-rings (Eriks, Alkmaar, the Netherlands). Bioreactor cultures
were grown on either SMDDpan or SMDDnic with ammonium sulfate as the nitrogen source. pH was
controlled at 5 using 2 M KOH. The autoclaved mineral salts solution was supplemented with 0.2 g lit-
er21 sterile antifoam emulsion C (Sigma-Aldrich). Bioreactors were continuously stirred at 800 rpm, and
temperature was controlled at 30°C. Evaporation of water and volatile metabolites was minimized by
cooling the outlet gas of bioreactors to 4°C in a condenser. The outlet gas was then dried with a
PermaPure PD-50T-12MPP dryer (Permapure, Lakewood, NJ) prior to analysis. CO2 concentrations in the

TABLE 6 Plasmids used in this study

Name Characteristicsa Reference or source
pROS10 2-mm bla ori URA3 gRNA-CAN1.Y gRNA-ADE2.Y 80
pROS11 2-mm bla ori amdSYM gRNA-CAN1.Y gRNA-ADE2.Y 80
pROS13 2-mm bla ori kanMX gRNA-CAN1.Y gRNA-ADE2.Y 80
pUDR119 2-mm bla ori amdSYM gRNA-SGA1 gRNA-SGA1 93
pYTK009 pTDH3 cat ColE1 86
pYTK010 pCCW12 cat ColE1 86
pYTK017 pRPL18B cat ColE1 86
pYTK051 tENO1 cat ColE1 86
pYTK055 tENO2 cat ColE1 86
pYTK056 tTDH1 cat ColE1 86
pYTK096 ConLS9 gfp ConRE9URA3 ntpII ColE1 59URA3 86
pGGKd017 ConLS9 gfp ConRE9 URA3 2mm bla ColE1 94
pCfB-361 2-mm bla ori pTEF1-TcPANDb-tCYC1 HIS3 35
pUDR652 bla 2-mm amdSYM gRNA-FMS1 gRNA-FMS1 63
pUD652 bla PfnadAb GeneArt, this study
pUD653 bla PfnadBb GeneArt, this study
pUD1095 bla NcadcAb GeneArt, this study
pUD1096 bla AtNADAb GeneArt, this study
pUD1097 nptII AtNADBb GeneArt, this study
pUDR315 bla 2-mm amdSYM gRNA-BNA2 gRNA-BNA2 This study
pUDI168c pRPL18B-TcPANDb-tTDH1 URA3 ntpII ColE1 59URA3 This study
pUDI242 pTDH3-NcadcAb-tENO2 URA3 ntpII ColE1 59URA3 This study
pUDI243d pTDH3-PfNADAb-tENO1 URA3 ntpII ColE1 59URA3 This study
pUDI244e pCCW12-PfnadBb-tENO2 URA3 ntpII ColE1 59URA3 This study
pUDI245f pTDH3-AtNADAb-tENO1 URA3 ntpII ColE1 59URA3 This study
pUDE931g pCCW12-AtNADBb-tENO2 URA3 2-mm bla ColE1 This study
aPf, Piromyces finnis; Nc, Neocallimastix californiae; At, Arabidopsis thaliana; Tc, Tribolium castaneum.
bCodon optimized for expression in S. cerevisiae.
cResult of the Golden gate assembly of plasmids pYTK017, TcPAND PCR, pYTK056, and pYTK096.
dResult of the Golden gate assembly of plasmids pYTK009, pUD652, pYTK051, and pYTK096.
eResult of the Golden gate assembly of plasmids pYTK010, pUD653, pYTK055, and pYTK096.
fResult of the Golden gate assembly of plasmids pYTK009, pUD1096, pYTK051, and pYTK096.
gResult of the Golden gate assembly of plasmids pYTK010, pUD1097, pYTK055, and pGGKd017.
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outlet gas were measured with an NGA 2000 Rosemount gas analyzer (Emerson, St. Louis, MO). The gas
analyzer was calibrated with reference gas containing 3.03% CO2 and N6-grade N2 (Linde Gas Benelux).

Frozen glycerol stock cultures were used to inoculate aerobic 100-ml shake-flask cultures on either
SMDDpan or SMDDnic. Once the cultures reached and OD660 of .5, a second 100-ml aerobic shake-flask
preculture on the same medium was inoculated. When this second preculture reached the exponential
growth phase, biomass was harvested by centrifugation at 3,000 � g for 5min and washed with sterile
demineralized water. The resulting cell suspension was used to inoculate anaerobic bioreactors at an
OD660 of 0.2.

Analytical methods. Biomass dry weight measurements of the bioreactor batch experiments were
performed using preweighed nitrocellulose filters (0.45mm; Gelman Laboratory, Ann Arbor, MI). Ten-
milliliter culture samples were filtrated, and then the filters were washed with demineralized water prior
to drying in a microwave oven (20min at 360 W) and weight measurement. Metabolite concentrations
in culture supernatants were analyzed by high-performance liquid chromatography (HPLC). In brief, cul-
ture supernatants were loaded on an Agilent 1260 HPLC system (Agilent Technologies, Santa Clara, CA)
fitted with a Bio-Rad HPX 87H column (Bio-Rad, Hercules, CA). The flow rate was set at 0.6ml min21, and
0.5 g liter21 H2SO4 was used as the eluent. An Agilent refractive-index detector and an Agilent 1260 vari-
able wavelength detector (VWD) were used to detect culture metabolites (88). An evaporation constant
of 0.008 divided by the volume in liters was used to correct HPLC measurements of ethanol in the cul-
ture supernatants, taking into account changes in volume caused by sampling (89). Statistical analysis
on product yields was performed by means of an unpaired two-tailed Welch’s t test.

Whole-genome sequencing and analysis. Genomic DNA of strains IMX2300 and IMX2300-1 was
isolated with a Blood & Cell Culture DNA kit with 100/G Genomics-tips (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. The MiSeq reagent kit v3 (Illumina, San Diego, CA) was
used to obtain 300-bp reads for paired-end sequencing. Genomic DNA was sheared to an average of
550-bp fragments using an M220 ultrasonicator (Covaris, Woburn, MA). Libraries were prepared by using
a TruSeq DNA PCR-free library preparation kit (Illumina) according to the manufacturer’s instructions.
The samples were quantified by quantitative PCR (qPCR) on a Rotor-Gene Q PCR cycler (Qiagen) using
the Collibri library quantification kit (Invitrogen, Carlsbad, CA). Finally, the library was sequenced using
an Illumina MiSeq sequencer (Illumina), resulting in a minimum 50-fold read coverage. Sequenced reads
were mapped using BWA 0.7.15-r1142-dirty (90) against the CEN.PK113-7D genome (91) containing an
extra contig with the relevant integration cassette. Alignments were processed using SAMtools 1.3.1
(68), and sequence variants were called using Pilon 1.18 (92), processed with ReduceVCF 12 (https://
github.com/AbeelLab/genometools/blob/master/scala/abeel/genometools/reducevcf/ReduceVCF.scala)
and annotated using VCFannotator (http://vcfannotator.sourceforge.net/) against GenBank accession
GCA_002571405.2 (62).

Data availability. DNA sequencing data of the Saccharomyces cerevisiae strains IMX2300 and
IMX2300-1 were deposited at NCBI (https://www.ncbi.nlm.nih.gov/) under BioProject accession number
PRJNA634013. All measurement data and calculations used to prepare Fig. 4 and 5 and Tables 2 and 3 of
the manuscript are available at the 4TU.Centre for research data repository (https://researchdata.4tu.nl/)
at https://doi.org/10.4121/uuid:c3d2326d-9ddb-469a-b889-d05a09be7d97.
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DATA SET S1, XLSX file, 0.1 MB.
DATA SET S2, TXT file, 0.2 MB.
DATA SET S3, TXT file, 0.1 MB.
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