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SUMMARY

The increasing size of today’s ships is a major concern for navigation in confined
waters. In order to ensure safe manoeuvres, port authorities prescribe, among oth-
ers, a minimum under-keel clearance that must be maintained by the ships during
navigation. However, the seabed of ports situated at the estuaries or along rivers is
often covered by mud as a result of sedimentation. Hence, while the position of a
solid bottom is clearly defined and can be easily detected by sonar techniques, the
presence of deposited sediments makes the definition of "bottom" and "depth" less
clear. This also poses some questions on the optimal dredging strategy to adopt to
minimise maintenance costs while ensuring the required safety.

For practical reasons, port authorities define the (nautical) bottom as the level
where the mud reaches either a critical density or a critical yield stress (i.e. the
shear stress below which the fluid behaves as a solid-like material). However, an
optimal choice that minimises dredging activities while preserving the required
safety shall also take into account the behaviour of ships. As the understanding of
the link between mud rheology and ships’ controllability and manoeuvrability with
muddy seabeds is rather limited, this research project was started. With the rapidly
increasing power of today’s computers, Computational Fluid Dynamics (CFD) has
become a viable option to study this problem.

The CFD code selected for this research is a multi-phase viscous-flow solver de-
veloped, verified and validated exclusively for maritime applications. As such, it was
originally developed for Newtonian fluids only. Since mud exhibits a non-Newtonian
rheology, the ‘step zero’ of this research was to implement the Herschel-Bulkley
model, which allows to numerically simulate two important flow features of mud,
i.e. its shear-thinning and viscoplastic behaviour. Other rheological characteristics,
such as thixotropy, were not considered in this study as they are deemed of minor
importance at this stage.

The next step was concerned with ensuring that the modification of the flow solver
to account for the non-Newtonian rheology of mud was correct. This was done by
using the Method of Manufactured Solutions (MMS), which allows to rigorously verify
the code against user-defined exact solutions. The verification exercises showed that
the code performs as intended for both single- and two-phase flows of Herschel–
Bulkley fluids. The illustrated procedure can be readily adapted to verify the correct
implementation of other rheological models that may be implemented in the future.

xi



xii SUMMARY

In this case, it is recommended to examine, in addition to the grid convergence of
velocity and pressure, also the grid convergence of the apparent viscosity as the latter
is particularly sensitive to coding mistakes related to the implementation of the new
rheological model.

While code verification ensured that the Herschel–Bulkley model was correctly
implemented, obtaining fully-converged solutions for realistic non-Newtonian prob-
lems may still be difficult. The non-Newtonian solver has thus been tested on the
laminar flow of Herschel-Bulkley fluids around a sphere, as the latter is the simplest
three-dimensional flow exhibiting features that are typical of the flow around ships,
such as boundary layer development and flow separation. Although obtaining a
fully-converged solutions was indeed challenging, it was possible to replicate data
from the literature with good accuracy. This provided confidence to employ the CFD
code to simulate ships sailing through fluid mud.

The verification of the CFD code was followed by validation of the mathematical
model. The problem of a ship sailing through fluid mud was simplified into a simpler
one, i.e. a plate moving through homogeneous mud as to mimic a portion of the
hull penetrating the mud layer. The objective was to investigate the accuracy of
the (regularised) Bingham model (which is a special case of Herschel-Bulkley) to
predict the frictional forces on a plate moving through mud. The comparison between
experimental and numerical data showed that the ideal Bingham model well captures
the relative increase in the resistance due to the increase in the mud concentration
but, at low speed, it tends to over-predict the resistance. On the other hand, choosing
a lower regularisation parameters seem more favourable, both from the numerical
and physical perspective. In fact, this research showed that better predictions at low
speed were achieved by using lower regularisation parameters that were determined
from the first points in the mud flow curves. It should be noted, however, that the
thixotropy of mud and possible deflections of the plate during the experiments may
prevent drawing definitive conclusions.

Finally, one question arising when simulating a ship sailing through a non-
Newtonian fluid is how accurate are standard Reynolds-Averaged Navier-Stokes
(RANS) models, which are developed for Newtonian fluids, when applied to non-
Newtonian flows. In the last step of this dissertation, the accuracy of three RANS
models was assessed against published Direct Numerical Simulations (DNS) data for
pipe flows. From this study it was concluded that, among the three tested Newtonian
RANS models, the SST model produced the best predictions and it is reasonably
accurate for weakly non-Newtonian fluids and for high Reynolds numbers. In ad-
dition, a new RANS model, labelled SST-HB, has been developed. The new model
showed good agreement with DNS of pipe flows in the mean velocity, average viscos-
ity, mean shear stress budget and friction factors. However, the new RANS model was
calibrated and tested for pipe flows only, a relatively simple internal-flow problem.



SUMMARY xiii

Hence, the applicability of the new model to complex external flows, such as the flow
around a ship, still requires further investigations. Furthermore, RANS simulations
with some realistic mud conditions predicted laminar flow in the mud layer. In this
case, the use of the standard SST model is recommended.

The developed and tested CFD code, together with other insights provided by
this research, can be used in the future to both numerically investigate the effect of
mud on ships and to obtain the hydrodynamic coefficients for manoeuvring models.
These models could then be used in real- and fast-time simulators for research and
commercial purposes, but also for pilots training.
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INTRODUCTION

The increasing size of today’s ships is a major concern for navigation in confined wa-
ters. In order to ensure safe manoeuvres, port authorities prescribe, among others, a
minimum under-keel clearance that must be maintained by the ships during navi-
gation. However, the seabed of ports situated at the estuaries or along rivers is often
covered by mud as a result of sedimentation. For practical reasons, port authorities
define the (nautical) bottom as the level where the mud reaches either a critical density
or a critical yield stress. But an optimal choice that minimises dredging costs while
preserving the required safety shall also take into account the behaviour of ships. The
need for a better understanding of the link between mud rheology and the hydrody-
namic behaviour of ships is the reason that motivated this dissertation.
This chapter gives an overview of past theoretical, experimental and numerical re-
search on the behaviour of ships when sailing in shallow waters with muddy seabeds.
With the rapidly increasing power of today’s computers, Computational Fluid Dynam-
ics (CFD) has become a viable option to investigate the ship-mud interaction. The
focus of this research is on the verification of the CFD code and on the validation of
the mathematical model for simplified problems related to navigation with muddy
bottoms. This research is divided in four tasks, which are outlined at the end of this
chapter.

1
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1.1. BACKGROUND
About 80% of the tonnes of goods traded between the European Union and the
rest of the world is transported by ships [57]. Shipping is in fact the main mode of
transportation for global trade because of the low cost of transport per unit of cargo.
The raising demands for goods due to economic growth, combined with the fact that
costs of transport drop even further with larger ships, led to a progressive increase
in the sizes of ships over the past decades. As an example, the capacity of container
ships, which currently account for the transport of about 90% of the non-bulk cargo
worldwide, went from about 1000 TEU in the 1970s to nearly 28000 TEU in 2022.

But the cross-section of ports and waterways did not grow at the same pace. As a
result, ships often navigate in very shallow waters, or very close to lateral boundaries.
Moreover, as traffic has also increased over the years, ships may have to navigate
close to each other. The vicinity of ships to solid boundaries means that possible
contacts that can impair the integrity of the hull are more likely to occur. Furthermore,
ships are usually designed and optimised for navigation in deep waters, where they
spend most of their time. Therefore, when ships navigate in confined waters, they
often operates in off-design conditions, meaning that their manoeuvring capacity
is reduced and tug assistance is often required. In order to ensure safe navigation
in shallow waters, port authorities prescribe, among others, a minimum under-keel
clearance (UKC) that a ship must keep during navigation in the harbour. This implies
that either deep-draught vessels cannot enter the harbour or the fairways need to be
deepened.

To make things worse, some of the largest European ports are situated on estuaries
(e.g. in Rotterdam, Antwerp) and along rivers (e.g. Hamburg). As these rivers typically
widen in proximity of the harbours, the sediments transported by the stream lose
their kinetic energy and eventually settle on the seabed. This results in the formation
of mud layers, which further reduce the navigable depth (Fig. 1.1).

Thus, even if the solid bottom is low enough to allow safe access to large vessels,
the presence of deposited sediments requires regular and costly dredging operations
to maintain a minimum UKC. But how to define the UKC in case of a muddy seabed?
In fact, while the position of a solid bottom is clearly defined and can be easily
detected by sonar techniques, the presence of mud makes the definition of "bottom"
and "depth" less clear. This also poses some questions about the optimal dredging
strategy to adopt to minimise maintenance costs while ensuring the required safety.

As proposed by PIANC [109], a compromise between costs and safety can be better
identified by introducing a new definition of "bottom" and "depth", which would be
referred to as “nautical bottom” and “nautical depth”. PIANC [109] defines the nautical
bottom as “the level where physical characteristics of the bottom reach a critical
limit beyond which contact with a ship’s keel causes either damage or unacceptable
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Figure 1.1: A container ship moving above (left) and through (right) a mud layer (snapshots from
do]www.youtube.com/watch?v=LSbQhUJMBJw).

effects on controllability and manoeuvrability”. The nautical depth is then simply
the distance between the nautical bottom and the still water level. The definition of
nautical bottom, however, still leaves room for interpretations as neither the physical
characteristics nor the unacceptable effects are clearly defined.

For practical reasons, port authorities define the nautical bottom as the level
where the mud reaches either a critical density or a critical yield stress (i.e. the shear
stress below which the fluid behaves as a solid-like material), as shown in Table 1.1.
These values usually correspond approximately to a depth where the mud undergoes
a ‘rheological transition’, in which the density and strength of the mud increase
rapidly over a short distance. Below such depth, the mud resembles more and more
a solid bottom.

Table 1.1: Examples of nautical bottom criteria around the world (McAnally et al. [108]).

Country Port Criterion Value

The Netherlands Rotterdam Density 1200 kg/m3

Belgium Zeebrugge Density 1200 kg/m3

France Nantes-Saint-Nazaire Density 1200 kg/m3

United Kingdom Avonmouth Density 1200 kg/m3

China Yangtze Density 1250 kg/m3

Surinam Paramaribo Density 1230 kg/m3

Thailand Bangkok Density 1200 kg/m3

Germany Emden Yield stress 100 Pa

But how do muddy seabeds affect ship navigation? An optimal implementation of
the nautical bottom concept would indeed require, according to its definition, a good

www.youtube.com/watch?v=LSbQhUJMBJw
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understanding of the effects of muddy bottoms on the ship’s behaviour in order to
identify what are the “unacceptable effects on controllability and manoeuvrability".
The only documented case in which the ships’ behaviour was taken into account in
the definition of the nautical bottom is the port of Zeebrugge, where the nautical
bottom is still density-based but the conditions for safe navigation with such criterion
were assessed by means of real-time manoeuvring simulations (Vantorre et al. [170]).
These conditions are however case-specific, thus they cannot be generalised to other
ports.

The need for a better understanding of the influence of the mud rheology on the
hydrodynamic behaviour of ships is the reason that motivated this dissertation. As
we shall see in the next section, most of the previous studies have been experimental,
whereas this work will tackle the problem using numerical simulations.

1.2. SHIP BEHAVIOUR WITH MUDDY BOTTOMS

1.2.1. SHALLOW WATER EFFECTS

Before describing what is known about the effect of mud on ships, it is useful to first
briefly outline the effects of shallow waters with solid bottoms.

When a ship sails in a channel with limited depth, the water between the keel and
the bottom of the channel moves faster than in deep waters. This is to maintain a
constant mass flow rate at each cross-section of the channel, in fulfilment of the law
of mass conservation. According to the Bernoulli’s principle, the increase in the flow
velocity induces a pressure drop (Fig. 1.2), which makes the ship to sink and trim
(squat). Evidently, this increases the risk of contact between the hull and the bottom
of the channel. The increasing flow speed also leads to an increase in the viscous and
wave-making resistance. These effects are further magnified with narrower channels.

In terms of controllability, the restricted water depth tends, at least for full ship
forms, to reduce the capacity to manoeuvre. For example, the turning ability of
the ship is observed to decrease with reduced depth, which is reflected by larger
and larger turning circles (Fig. 1.3). The yaw-checking ability in a standard zig-zag
manoeuvre is also observed to increase for typical cargo ships, leading to more stable
but slower manoeuvres.

1.2.2. EFFECTS OF MUDDY BOTTOMS

Previous research has shown that the shallow water effects tend to be enhanced by
the presence of mud layers. In general, the force distribution acting on the hull is
altered because of two main effects.

The first effect occurs when sailing with negative UKC relative to the mud-water
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low pressurelow pressure

Figure 1.2: increase in flow speed (overspeed) and consequent pressure drop caused by the flow
restriction under the ship.

Figure 1.3: Effect of under-keel clearance on the turning circle, where Dw is the water depth and T is the
ship’s draught (picture from Eda et al. [53]).
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Figure 1.4: Mud undulation generated by a passing ship.

interface and it is due to the contact with a highly viscous fluid like mud. This leads
to an increase in the shear stress (friction) in the portion of the hull in contact with
mud.

The second effect, on the other hand, can occur with both negative and positive
UKC, and stems from the generation of an undulation at the mud-water interface
(Fig. 1.4). This occurs even when the Froude number, Fr , is sufficiently low to cause
hardly any disturbance of the free surface (air-water interface). When ships sail
at speeds close to a critical value associated with the celerity of the fastest internal
waves, the mud undulation can cause a significant change in the pressure distribution
around the hull and therefore in the manoeuvring and propulsion characteristics.

THEORETICAL RESEARCH

The mud undulation has the same nature of the internal wave occurring at the
interface between fluids of different salinity or temperature. The sudden increase
in the resistance due to internal waves was firstly reported in 1893 by Nansen [123],
after he had observed a sudden drop in the ship’s speed during navigation in the
Arctic ocean. Subsequently, in 1904, Ekman [54, 177] studied this phenomenon
experimentally and named it “dead-water effect".

Zilman and Miloh [187] used a linearised theory based on potential flow to cal-
culate the (internal) wave-making resistance of a parabolic strut and of a body of
revolution moving through inviscid water above a thin Newtonian mud layer. A sharp
peak was observed in the wave-making resistance when the object’s speed matched
a critical speed associated with the fastest internal waves, i.e when the densimetric
Froude number was close to 1 (Fig. 1.5).

Interestingly, the peak of resistance significantly decreases with increasing mud
viscosity (Fig. 1.5, left), most likely as a result of wave damping. However, at low
speeds (subcritical range), the resistance seems larger with high viscosity. This can
be explained by the fact that when the mud is more viscous, it is more resistant to
deformation. As a result, the interface behaves more like a solid bottom, which leads
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to a net reduction in the channel depth and an increase in shallow water effects.
The theoretical calculations of Doctors [42] support this explanation but further
investigations are needed.

Figure 1.5: Mud-induced wave resistance coefficient on a parabolic strut (adapted from Zilman and Miloh
[187]). The peak in the resistance occurs when the strut’s speed is close to the critical speed of the internal

wave generated at the mud-water interface.

EXPERIMENTAL RESEARCH

The most substantial research on the ship-mud interaction has been experimental.
The first reported model-scale experiments were conducted at the Netherlands Ship
Model Basin (currently MARIN) in 1976 by Sellmeijer and Van Oortmerssen [145],
who used a layer of chlorinated paraffin to mimic the presence of mud. The effect of
the (simulated) mud on a model-scaled tanker was observed to be stronger when the
ship’s speed was close to the maximum (critical) speed of the internal wave (between
2 and 4 knots), whereas smaller effects were observed at higher speeds. This agrees
with the theoretical research on the dead-water effect. In general, higher RPMs were
required with a muddy bottom in order to maintain the same speed achieved without
mud (see Fig. 1.6), even when no contact between the hull and the mud occurred.

Analogous observations were made by Vantorre and Coen [171] and Delefortrie
et al. [38] at Flanders Hydraulics Research (Belgium), although the interface defor-
mation and the change in the ship behaviour were attributed to an hydraulic jump
rather than to an internal wave [169]. The internal wave was also observed at SO-
GREAH (France) (Brossard et al. [21]), where experiments have been conducted on a
model-scaled tanker and using fluid mud with different concentrations and density
gradients.

The influence of muddy bottoms on the manoeuvring and propulsion behaviour
has also been investigated by means of full-scale trials, carried out in the harbour
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Figure 1.6: RPM versus speed with UKC= 0.2T relative to the solid bottom, where T is the draught of the
ship (picture adapted from [145]).

of Rotterdam (Netherlands, see Van Bochove and Nederlof [19]), Delfzijl (Nether-
lands, see Verwilligen et al. [175] and Barth et al. [10]) and Zeebrugge (Belgium, see
Craenenbroeck et al. [34]).

Although it is not possible to generalise the previous experimental results for all
ship geometries, speeds, channel/basin dimensions and mud characteristics, some
recurring observations can be listed:

• The speed-RPM curve is approximately linear when navigating above solid
bottoms. With muddy bottoms, on the other hand, higher RPMs are required
to sail at the same speed as without mud. This can be due to both a reduction
of the propulsive efficiency and an increase in the resistance.

• The ship’s resistance tends to increase in presence of mud both because of
the contact with a highly viscous fluid (in case of negative UKC) and because
of the wave-making type of resistance associated with the energy required to
generate the internal wave.

• In general, sinkage and trim tend to be smaller with mud than with a hard
bottom, mainly because of buoyancy effects. However, at high speed and with
negative UKC, the sinkage was observed to be larger than with solid bottoms.
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• The undulation at the mud-water interface tends to obstruct the flow to the
propeller, thus decreasing the propulsive efficiency.

• The internal wave amplitude is larger with thicker mud layer and lower density.

• The ship tends to be more sluggish as the UKC relative to the mud-water
interface decreases. The presence of the mud layer is felt the most when the
UKC is close to zero. With a further small decrease in the UKC (which becomes
negative) the influence of the mud tends to reduce. This may be ascribed
to near-field (or proximity) effects, i.e. to the stronger pressure disturbance
caused by the hull when the latter is closer to the mud-water interface.

NUMERICAL RESEARCH

The number of numerical studies on the effects of muddy bottoms on ships is rather
limited, but it appears to be increasing in recent years. The earliest published Com-
putational Fluid Dynamic (CFD) study that can be found in the literature is dated
2015 and it was carried out by Gao et al. [62], who used Ansys-Fluent 12.0 to simulate
the flow around the Wigley hull. The rheology of mud was mathematically described
by the Herschel-Bulkley model (see also Section 2.4.1), with a yield stress of approx-
imately 7 Pa. Another CFD study was later published in 2020 by Kaidi et al. [78],
who investigated the effect muddy bottoms on the resistance, sinkage and trim of a
model-scaled container vessel using Ansys-Fluent 13.0. In their study, the mud layer
was modelled as a Newtonian fluid, as little difference in the results was observed
when a non-Newtonian model was used.

Neglecting the non-Newtonian rheology of mud was taken even further by Sano
and Kunitake [143], who used a potential flow solver to compute the wave-making
resistance of KLVCC2 moving above an inviscid mud layer. Their computed (internal)
wave-making resistance is given in Fig. 1.7, which shows a large peak when the Froude
number reaches a critical value. This critical Froude number was mathematically
derived by Yeung and Nguyen [186] and it is a function of the density and thickness
of both the water and mud layers. Interestingly, the speed corresponding to the
critical Froude number in Fig. 1.7 is very close to the critical speed of the internal
wave reported by Sellmeijer and Van Oortmerssen [145] and Zilman and Miloh [187],
despite their different definitions.

In summary, it appears clear from previous research that the presence of an
internal wave at the mud-water interface can significantly alter the forces distribution
around the hull. Previous research suggests that even when the free-surface (air-
water) waves can be neglected one should keep track of the ship’s speed in relation
to the critical (maximum) speed of the internal waves. The importance of this lies
in the fact that varying a certain parameter can have opposite effects depending on
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Figure 1.7: Wave-making resistance versus the Froude number, Fr =U /
√

g L, of KVLCC2; h1 and h2 are
the upper (water) and lower (mud) layer thicknesses, respectively, whereas d is the ship’s draught. (picture

adapted from [143])

whether the ship is moving faster (supercritical) or slower (subcritical) than such
critical speed. As an example, with reference to the work of Sano and Kunitake [143],
let’s assume that a ship is sailing at the critical Froude number for a thin mud layer,
i.e. Fr ≈ 0.04 (Fig. 1.7, left). When the mud layer thickness, h2, is increased (Fig. 1.7,
right), the critical Froude number increases to about 0.06. Consequently, the ship
would be now sailing in the subcritical range, thus with a much lower resistance.
However, if the ship was initially sailing in the supercritical range, say at Fr ≈ 0.07,
an increase in the mud layer thickness would have brought the ship closer to the
critical range, therefore increasing the resistance. In other words, the same event (i.e.
increasing the mud layer thickness) led to opposite results depending on whether
the ships was initially sailing in the subcritical or supercritical range.

1.2.3. KNOWLEDGE GAP AND LIMITATIONS OF PREVIOUS RESEARCH

The influence of muddy bottoms on ships has been studied theoretically, experi-
mentally and numerically. Theoretical studies have helped, among other things, to
identify some important parameters that influence the ship’s resistance, such as the
densimetric Froude number. However, the applicability of these theoretical studies
is very limited because of the significant physical and geometrical simplifications.
More realistic problems were addressed using CFD, but the current literature is still
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too limited to draw definitive conclusions about the influence of muddy seabeds on
the hydrodynamic behaviour of ships.

The most insightful results come from model-scale experiments. However, results
are difficult to generalise because of the large number of parameters involved such
as UKC, mud layer thickness, mud properties, geometry and speed of the ship, and
fairway cross-section. Furthermore, it is still not clear how and if these results can be
reliably extrapolated to full scale. The main obstacle is the complex non-Newtonian
rheology of mud, which precludes a straightforward application of standard extrapo-
lation techniques typically used in ship model basins.

Issues related to scale effects and the mud rheology can be avoided by performing
full-scale trials, which are certainly a useful way to qualitatively confirm or dismiss
model-scale observations and to train pilots in realistic conditions. However, quan-
titative results are difficult to obtain as the trial conditions (e.g. ship’s speed, wind,
waves, currents, mud properties, etc.) are difficult to control and monitor. Other
issues are related to the large costs involved, the accuracy of the measurements and
the logistics (e.g., finding a large, muddy and low-traffic area to perform the ma-
noeuvres). Furthermore, validation of the CFD model against full-scale trials would
require to model the rudder and the propeller, with a substantial increase in the
complexity and costs of the CFD simulations.

A question arising from the literature is how much the non-Newtonian properties
of mud (e.g. yield stress) influence the ship’s hydrodynamic behaviour. In fact, most
model-scale experiments were carried out using mud-simulating materials which
were more viscous than water but still with Newtonian-like properties. In the CFD
studies, the effects of the non- Newtonian rheology of mud on the ship’s resistance
were either not discussed (Gao et al. [62]) or simply neglected (Sano and Kunitake
[143] and Kaidi et al. [78]). It is indeed possible that, at least in some cases, the
non-Newtonian properties of mud are of minor importance for navigation, but this
has yet to be demonstrated.

1.3. AIM AND SCOPE OF THIS DISSERTATION
With the rapidly increasing power of today’s computers, CFD has become a promising
tool to study the the behaviour of ships sailing in muddy areas. The CFD code
considered in this dissertation is REFRESCO (described in Section 2.5), a multi-
phase viscous-flow solver developed for maritime applications. As such, it has been
originally developed for Newtonian fluids only.

This research project was initiated with the aim to implement, verify and val-
idate non-Newtonian models in REFRESCO in order capture the non-Newtonian
behaviour of fluid mud. The developed CFD model could then be used not only to
numerically investigate the ship-mud interaction, but also to perform virtual cap-
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Figure 1.8: Schematic representation of the scope of this dissertation, within the context of ship
navigation with muddy bottoms.

tive model tests to obtain the hydrodynamic coefficients for manoeuvring models
(e.g. Toxopeus [165] and Hajivand and Mousavizadegan [70]). These manoeuvring
models could then be used in real- and fast-time simulators to reproduce manoeu-
vres of ships both for research and commercial purposes, but also for pilots training
(e.g. Delefortrie et al. [39]). The scope of this research is schematically illustrated in
Fig. 1.8.
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1.4. RESEARCH METHODOLOGY
The focus of this research is on the verification of the CFD code and on the validation
of the mathematical model for simplified problems that can be related to navigation
with muddy seabeds, with a specific emphasis on the non-Newtonian character of
mud. The research methodology is thus divided into the following steps:

• Code verification of the newly implemented non-Newtonian solver.

• Application of the non-Newtonian solver to a benchmark problem.

• Validation of the numerical model for a plate moving through homogeneous
mud.

• Assessment of standard Reynolds-Averaged Navier-Stokes (RANS) models
when applied to specific non-Newtonian flows.

The first step is concerned with ensuring that the modification of REFRESCO to
account for the non-Newtonian rheology of mud is correct. This is done by using the
Method of Manufactured Solutions (MMS), which allows to rigorously verify the code
against user-defined exact solutions.

A major aspect of the final CFD application is the calculation of the forces acting
on the hull. In the second step, the code is applied to a typical three-dimensional
benchmark flow for Newtonian and non-Newtonian fluids: the flow around a sphere.
For non-Newtonian flows, the viscosity can vary by several orders of magnitude
within the fluid domain, making the equations more difficult to solve. In this research
step, it was checked whether literature data can be reproduced with good accuracy
by the non-Newtonian solver of REFRESCO.

Another important challenge of CFD modelling for ‘sailing-through-mud ap-
plications’ is the lack of validation data. As full-scale trials are impractical for this
purpose, the only alternative is model testing. However, a logistical and crucially
difficult problem is to find ship model basins that allow to carry out experiments with
fluids other than water, let alone mud or other highly viscous (and often toxic) mud-
simulating materials. Thus, a simplified problem that can be studied experimentally
with a smaller setup is considered. In this third step, an experimental and numerical
study on the resistance of a thin plate moving through homogeneous mud in laminar
regime is carried out.

Finally, one question would arise when simulating a ship sailing through a non-
Newtonian fluid. How accurate are standard RANS models, which are developed
for Newtonian fluids, when applied to wall-bounded non-Newtonian flows? In the
last step of this dissertation, the accuracy of three RANS models are assessed against
published DNS data for pipe flows and a new turbulence model is proposed.
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1.5. THESIS OUTLINE
Chapter 2 describes the flow solver used in this work, the basic equations and the
implemented rheological models. The code verification of non-Newtonian solver
is discussed in Chapter 3, both for single- and two-phase flow simulations. The
code is then applied in Chapter 4 to solve laminar non-Newtonian flows around a
sphere, where issues related to the iterative convergence are discussed and results
are compared with available literature data. Chapter 5 presents a validation exercise
for a plate moving through fluid mud collected from the Port of Rotterdam area
(Netherlands). The performance of the turbulence models are assessed in Chapter 6,
where the modification of an existing model is also proposed. Finally, the conclusions
and recommendations of this research are summarised in Chapter 7.
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MATHEMATICAL MODEL AND

NUMERICAL METHODS

...in which the governing equations, the flow solver and the implemented rheological
models to simulate fluid mud are introduced. The flow is assumed to be isothermal,
incompressible and turbulent. It is further assumed that water and mud are immis-
cible. Two of the rheological characteristics of mud (shear-thinning and yield stress
behaviour) are modelled using the regularised Herschel-Bulkley model.

15
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2.1. PROBLEM FORMULATION

This research study is carried out having in mind a target situation to be simulated
with CFD in which a displacement hull is sailing (not necessarily straight) above a
flat solid bottom covered by a mud layer.

The flow is assumed to be isothermal, incompressible and turbulent (at least the
water part). Another assumption made in this dissertation is that the disturbance of
the air-water free surface can be neglected, which is especially true for deep-draught
vessels navigating at low speeds in ports and waterways. Hence, the ship is assumed
to be moving only through water and mud, as illustrated in Fig. 2.1.

water

water

mud

mud

Figure 2.1: Example of a typical scenario simulated with CFD. The free-surface waves are neglected, while
mud and water are assumed to be immiscible.

Furthermore, it is assumed that the high viscosity of mud combined with the sta-
bilising effect of gravity reduces the turbulent mixing that may occur at the interface
between mud and water. In other words, the two fluids are assumed to be immiscible.
Previous model-scale experiments with natural mud (see Vantorre [169]) have shown
that the interface between mud and water remains quite sharp during the passage
of the ship. Mixing of mud and water was only observed at the higher speeds and,
in any case, it occurred behind the stern of the ship so that the flow field around
the hull was not affected. It is noticed, however, that if the propeller is included
in the CFD simulation (e.g. using an actuator disk), the propeller-induced mixing
may be strong enough to require more advanced modelling strategies in order to be
accurately captured. In any case, as long as the mixing is mostly contained around
the mud-water interface and astern of the ship, its effect on the force predictions for
a large cargo ship can be reasonably neglected at this stage.
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2.2. BASELINE GOVERNING EQUATIONS
The isothermal, multi-phase, turbulent and incompressible flow is modelled using
the Reynolds-averaged Navier-Stokes (RANS) equations:

∇·u = 0, (2.1)

∂(ρu)

∂t
+ ∇· (ρu u) =∇· [(µ+µt )(∇u +∇uT )

]−∇p +ρg , (2.2)

where u(x , t ) ≡ (ux ,uy ,uz ) is the velocity vector in Cartesian coordinates as a function
of the time t and of the position vector x ; p is the pressure and g = (0,0, g ) the
acceleration of gravity vector. The first element inside the brackets on the RHS of
Eq. (2.2) is the deviatoric stress tensor, which reads:

τ= 2µS (2.3)

where S ≡ Si j = 1
2 (∇u +∇uT ) is the deformation rate tensor and µ is the molecular

viscosity of the fluid. The eddy (or turbulent) viscosity, µt , accounts for the net
turbulent diffusion of the mean momentum, in accordance with the Bousinnesq’s
hypothesis. The expression of µt will depend upon the turbulence model being used.
The turbulence models considered in this work (and also typically used for maritime
applications) are given in Appendices B.1 to B.3. Note that in the context of the RANS
approach, all the field quantities such as velocity and pressure must be intended
as Reynolds-averaged quantities (see also Section 6.2). More details about RANS
modelling are given in dedicated textbooks (e.g. Wilcox [179] and Pope [135]).

The flow of two immiscible fluids is modelled in REFRESCO using the Volume-
of-Fluid (VoF) method introduced by Hirt and Nichols [72], which considers a single
continuum fluid having density ρ and viscosity µ defined as

ρ = ρ1(1− c)+ρ2c , µ=µ1(1− c)+µ2c , (2.4)

where c is the volume fraction that equals 0 and 1 in the fluid region occupied by
fluid 1 (water) and 2 (mud), respectively. The interface is then assumed to be the
locus of points where c = 0.5. The problem is closed by solving, in addition to the
already-mentioned equations, the transport equation for c,

Dc

Dt
≡ ∂c

∂t
+u ·∇c = 0, (2.5)

which stems from the assumption that the volume fraction of a fluid element is
constant and it is transported with the flow.

In the water region, we have that µ = µ1, where µ1 is simply a constant corre-
sponding to the molecular viscosity of water. In the mud region, on the other hand,
c = 1 and so µ = µ2. In this case, the viscosity µ2 is in general not a constant but
rather a function of the fluid deformation, as we shall see in the next section.
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2.3. MUD RHEOLOGY
In this section, a brief and general overview of the mud rheology is given. More details
can be found in dedicated textbooks such as Coussot [33] and Mehta [110].

Mud is in general a cohesive material composed of water, clay, silt, sand and
organic matter. At one particular location, layers of different concentrations can be
found in the water column, as shown in Fig. 2.2. Nevertheless, in a first approxima-
tion, the mud is numerically modelled as one homogeneous layer. Hence, the mud
layer shown in Fig. 2.1 can be seen as the top part, made of fluid mud and partly of the
pre-consolidated sediments. The lower layer, made of consolidated sediment, could
either be included in the homogeneous mud layer or assumed to be rigid enough to
be modelled as a solid bottom.

Figure 2.2: Mud at different consolidation states in a sample collector (picture adapted from Shakeel et al.
[146]).

In any case, the main question is how to numerically describe the rheology of the
homogenoeus (top) fluid mud layer. Generally speaking, mud displays a complex
non-Newtonian rheology, with four main rheological characteristics:

1) Shear-thinning (pseudoplasticity): this effect is associated with the tendency
of the flow to rearrange the microstructure of the mud in order to facilitate the
shearing. As a result, the viscosity tends to decrease with increasing applied
shear. The opposite behaviour is called shear-thickening (see Fig. 2.3).
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2) Yield stress (viscoplasticity): mud starts to flow only when the shear stress level
exceeds a threshold called yield stress, which is associated with the minimum
force required to break the network formed by the particle bonds. Although
the existence of an actual yield stress has been the subject of debates (Barnes
and Walters [9]), its concept is still useful for modelling purposes. The yield
stress is also used, in some cases, as nautical bottom criterion, as was shown
in Table 1.1. Note that yield-stress fluids can be seen as particular case of
shear-thinning materials, because once the structure is broken (yield stress is
exceeded) the viscosity tends to decrease with increasing shear rate.

3) Thixotropy: this characteristic is associated with the fact that the rupture
and recovery of the network responsible for the yield stress does not occur
instantaneously. This means that, given a steady imposed shear, the viscosity
will change over time until an equilibrium is reached. Hence, the relationship
between deformation and applied forces is not unique but it rather depends
on the shear history (see Fig. 2.3).

4) Viscoelasticity: this is the ability of the microstructure to store deformation
energy. For applied stresses below the yield stress, the particle bonds are able
to elastically deform and recover their original configuration once the applied
forced is removed.

shear rate (1/s)

sh
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ss
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P
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Shear-thinning

Shear-thickening
Newtonian

Yield stress

Thixotropic

Viscoplastic

Figure 2.3: Example of flow curves for different rheological behaviours.
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2.4. SELECTION OF THE RHEOLOGICAL MODEL

A number of options are available to mathematically describe the rheology of mud.
In principle, it would be possible to elaborate a model that is advanced enough to
take into account all the above mentioned rheological characteristics. The obvious
advantage of using such advanced model is that a thorough description of the mud
rheology would be achieved. Hence, in principle, more accurate numerical predic-
tions would be achieved. However, at the present stage, there are a number of reasons
to prefer simpler models.

First, such complex model would be computationally expensive because vis-
coelasticity and thixotropy would require to solve additional transport equations,
which would be coupled to the already mentioned continuity, momentum, volume-
fraction and turbulence equations. Second, the non-linearity of the problem would
increase significantly, making more difficult the convergence of the iterative solver.
Third, even assuming that this hypothetical model works perfectly, i.e. it gives the
perfect representation of the flowing behaviour of mud, the parameters of the model
would still rely on measurement data, which are inevitably affected by errors. Fourth,
even with no measurement errors, the numerical solution would still be affected
by other approximations. For example, in reality mud is not actually homogeneous
because its properties can vary both vertically and horizontally. In other words, such
a complex model would not be in line with the level of approximation adopted for
the other physical aspects of the problem. Fifth, a complete description of the mud
rheology may require more than 10 parameters. However, on a more practical level, a
feasible implementation of the nautical bottom approach shall require to monitor
no more than two or three mud properties, such as, for example, density, (Bingham)
yield-stress and dynamic viscosity. Thus, the results obtained with such an advanced
model should eventually be reduced and associated to a simpler model containing
only a few parameters.

On the other side of the complexity spectrum shown in Fig. 2.4, mud could be
assumed to be an inviscid fluid, as done by Sano and Kunitake [143]. While this could
still be a reasonable assumption to study the wave-making resistance due to the mud
undulation, it is a too crude approximation to study the manoeuvring behaviour of
ships, where viscous effects cannot be entirely neglected. This would be especially
true when sailing through mud, as the increase in friction due to contact with mud
is not negligible. Modelling mud as a viscous Newtonian fluid, on the other hand,
would certainly be an improvement with respect to the inviscid assumption, however
it is not clear which value for the constant viscosity should be used.

A further step beyond the Newtonian model is to model mud as an inelastic,
non-thixotropic (time-independent), yield-stress (viscoplastic) material, which is
the choice adopted in this dissertation. In fact, even though the mud rheology can
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Figure 2.4: Examples of different levels of modelling complexity for the mud rheology.

vary significantly depending on the composition, a rheological characteristic that
is typically observed in mud samples across different locations around the world is
the yield stress. At the current state of knowledge, investigating the effect of yield
stress on the ships’ behaviour would be already an important step towards a better
understanding of the link between mud rheology and the hydrodynamic forces
acting on ships. Other effects such as thixotropy could be investigated, when deemed
important, at a later stage.

2.4.1. THE HERSCHEL-BULKLEY MODEL

Inelastic and time-independent fluids are also classified as Generalised Newtonian
Fluids (GNF), for which the stress tensor can be expressed as

τ= 2µ(γ̇)S , (2.6)

where µ(γ̇) is the so-called apparent viscosity. For GN fluids, the apparent viscosity
is uniquely determined by the local shear rate γ̇ = 2

√
Si j Si j /2, hence there is no

dependency on the shear history.

Several options are available to model the yield-stress behaviour; the simplest
is the Bingham model [16]. In this work, however, a more generalised version of the
Bingham model is adopted. Such generalised model was proposed by Herschel and
Bulkley [71], and it has already been used in the past to describe the rheology of mud
(Coussot and Piau [32], Wurpts [185], and Gao et al. [62]).
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The expression of the apparent viscosity for the Herschel-Bulkley model reads:{
µ= τ0+K γ̇n

γ̇ , τ0 ≤ τ ,

µ=∞ , τ< τ0 ,
(2.7)

where τ0 (Pa) is the yield stress; τ=√
τi jτi j /2 (Pa) is the second invariant of τ; n is a

non-dimensional flow index, which determines the degree of shear-thinning (n < 1)
or shear-thickening (n > 1) behaviour; K (Pa sn) is the consistency parameter, which
has dimensions of a viscosity when n = 1. The infinite viscosity means that the fluid
does not deform (S = 0) when the stress level is below the yield stress. The Herschel–
Bulkley model reduces to the Bingham model when n = 1, to the power-law model
when τ0 = 0, and to the Newtonian model (µ= K ) when both n = 1 and τ0 = 0. For an
overview and classification of different rheological models, the reader is referred to
specialised textbooks (e.g. Irgens [76] and Chhabra and Richardson [30]).

2.4.2. REGULARISATION
The issue associated with the infinite viscosity in Eq. (2.7) is typical of viscoplas-
tic models and it can be avoided using regularisation methods (see e.g. Saramito
and Wachs [144] and Mitsoulis and Tsamopoulos [120]). These methods consist in
approximating the non-differentiable constitutive equation with a smoother and
differentiable equation that is valid in the whole domain, regardless of the level of
shear stress. Over the years, several regularisation methods have been proposed. In
REFRESCO, the Bingham model has been modified using the popular Papanastasiou
regularisation [130]:

µ(γ̇) = τ0(1−e−mγ̇)+K γ̇

γ̇
, (2.8)

where m (s) is the regularisation parameter that is sometimes expressed in a non-
dimensional form as

M = mU

L
, (2.9)

where U and L are the characteristic velocity and length of a particular problem.
For Herschel–Bulkley fluids, the Papanastasiou regularisation would still produce
an infinite viscosity for γ̇→ 0 when n < 1. This is avoided using the modification
proposed by Souza Mendes and Dutra [156]:

µ(γ̇) = τ0 +K γ̇n

γ̇
(1−e−mγ̇) . (2.10)

In the limit of m →∞, both regularised models tend to the ideal (non-regularised)
models. The effect of the regularisation on the Bingham flow curve is illustrated in
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Fig. 2.5 as an example. Note that thanks to the regularisation parameter, the imple-
mentation of Herschel-Bulkley model in an existing CFD solver becomes relatively
straightforward, although at the cost of introducing a new and somewhat arbitrary
parameter.

Figure 2.5: Shear stress versus shear rate for the Newtonian, power-law, Bingham and Herschel-Bulkley
model. The dashed lines show the effect of the regularisation on the Bingham model. The axes are in

linear scales.

2.5. FLOW SOLVER
As already mentioned in Chapter 1, the CFD code used for the present work is RE-
FRESCO (Vaz et al. [172]), a viscous-flow code currently being developed and verified
for maritime purposes by MARIN in collaboration with several non-profit organi-
sations around the world. The code solves multi-phase (unsteady) incompressible
flows using momentum, continuity and volume-fraction transport equations. A
number of other features such as deforming grids and cavitation models are also
included, however they are not considered in this dissertation.

The equations are discretised in strong-conservation form with the finite-volume
method for unstructured meshes with cell-centred co-located variables. Spurious
pressure oscillations arising from the co-located arrangement are prevented using the
pressure-weighted interpolation method (Miller and Schmidt [118]). Mass conserva-
tion is ensured with a pressure-correction equation based on the SIMPLE algorithm
(Klaij and Vuik [86]). Details about the above mentioned numerical techniques can be
found in a number of textbooks (see for instance Ferziger et al. [59]), hence they are
not further discussed. Other numerical settings that may vary from one simulation
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to another will be progressively reported in the rest of this dissertation.



3
CODE VERIFICATION OF THE

NON-NEWTONIAN FLUID SOLVER

...in which the non-Newtonian solver of REFRESCO is verified for simulations of
Herschel–Bulkley flows to ensure that the code is free of mistakes and numerical algo-
rithm deficiencies. The code verification is performed using the method of manufac-
tured solutions (MMS) and it comprehends three exercises: (Case 1) steady single-phase
flow; (Case 2) unsteady two-phase flow with a smooth and continuous interface; (Case
3) unsteady two-phase flow with a free surface.

The work in this chapter is based on the published article “Lovato, S., Toxopeus, S. L., Settels, J. W., Keetels,
G. H. and Vaz, G. (2021). Code verification of non-Newtonian fluid solvers for single-and two-phase
laminar flows. Journal of Verification, Validation and Uncertainty Quantification, 6(2)" [101].
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3.1. INTRODUCTION
It is important that the implementation of new features is followed by code verifica-
tion (Roache [140] and Oberkampf and Roy [127]) to ensure that the code is free of
mistakes and numerical algorithm deficiencies. The most rigorous code verification
exercise is the order-of-accuracy test, which consists of demonstrating that the rate
of convergence of the discretisation error tends to the theoretical/expected order of
accuracy with grid/time step refinement.

A typical way to verify a code is to numerical solve a simple problem for which
the analytical solution is known. However, analytical solutions for non-Newtonian
fluid flows are rather scarce, thus performing code verification tends to be more
challenging than for Newtonian flows. When analytical solutions exist, such as
Poiseuille/channel flow of Herschel-Bulkley fluids (see e.g. Wu et al. [184] and
Grasinger et al. [68]), they are often rather simple and thus they exercise only few
terms of the governing equations, giving more chances to coding mistakes to go
undetected.

Furthermore, non-Newtonian models are sometimes modified by regularisation
methods, as in the present work (Section 2.4.2), making analytical solutions (that
are valid for non-regularised models) inadequate for code verification purposes. A
possibility to perform code verification for regularised models is to generate a very
accurate numerical solution of the governing equations using a very large number of
grid points, typically for a simple problem. Then, this ‘quasi-exact’ solution can be
used as reference for the estimation of the discretisation errors. Such procedure has
been applied, for instance, in Lovato et al. [100] for 2D Poiseuille flows of Herschel-
Bulkley fluids.

A more rigorous alternative is offered by the method of manufactured solutions
(MMS) [139, 127]. The method consists of adding source terms to the right-hand side
of the governing equations in such a way that a previously chosen (manufactured)
solution is the exact solution of the modified equations. Examples of code verification
of Newtonian fluid solvers based on MMS can be found in Turgeon and Pelletier
[167], Knupp [88], Eça et al. [52], Veluri et al. [173], Blais and Bertrand [18], Choudhary
et al. [31], and Eça et al. [51] and in the references therein. On the other hand, in the
context of non-Newtonian fluids, formal code verification studies based on MMS
have started to appear only recently in the literature (Venkatesan and Ganesan [174],
Kim and Reddy [83], Carrozza et al. [27], and Kim and Park [82]).

This chapter illustrates a code verification study based on MMS on three test
cases of increasing complexity using the Herschel–Bulkley model: (Case 1) steady
single-phase flow (Section 3.5); (Case 2) unsteady two-phase flow with a smooth
and continuous interface (Section 3.6); (Case 3) unsteady two-phase flow with a free
surface (Section 3.7).
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Note that although only the verification with Herschel–Bulkley is discussed in
this chapter, the code has been verified also for power-law and Bingham.

3.2. GOVERNING EQUATIONS
The governing equations considered for the verification of single-phase flows are:

∇·u = 0, (3.1)

∂(ρu)

∂t
+ ∇· (ρu u) =∇·τ−∇p +ρg . (3.2)

For the two-phase flow cases, the density ρ and viscosity µ becomes

ρ = ρ1(1− c)+ρ2c , µ=µ1(1− c)+µ2c , (3.3)

where c is the volume fraction, which is equal to 0 and 1 in the fluid region occupied
by fluid 1 and 2, respectively. Note that, if fluid 1 is an Herschel–Bulkley fluid, the
viscosity µ1 is not simply a constant but rather a function of the shear rate by virtue
of Eqs. (2.8) and (2.10). The problem is closed by solving, in addition to the continuity
and the momentum equations, the transport equation for c,

∂c

∂t
+u ·∇c = 0. (3.4)

3.3. VERIFICATION PROCEDURE

3.3.1. THE METHOD OF MANUFACTURED SOLUTIONS
The MMS is a powerful tool to generate analytical solutions for code verification
purposes. A complete description of the MMS can be found, for example, in Roache
[139] and Oberkampf and Roy [127]. In brief, an arbitrary (manufactured) solution
is chosen and substituted in the governing equations; the remaining terms are then
considered as source terms. In other words, the manufactured solution is the solution
of a new set of equations that differs from the original one by additional source terms.
Such source terms can be obtained with the aid of computer algebra systems. For
the present study, the expressions of the source terms were obtained with the free
software Maxima [107]. The scripts used to generate the source terms are reported in
[101].

3.3.2. DISCRETISATION ERROR AND ORDER OF ACCURACY
It is generally accepted to divide numerical errors into three components: the round-
off error, the iterative error and the discretisation error 1. Code verification requires

1For periodic flows, there is also the contribution of statistical errors (Eça et al. [50]), which are out of the
scope of this article.
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the evaluation of the discretisation error, therefore the other two components must
be reduced to negligible levels.

Round-off errors are due to the finite precision of computers and, for the calcu-
lations in this article, they can be safely neglected using double-precision number
format. On the other hand, iterative errors arise from the use of iterative methods
to solve the non-linear system of equations. Their contribution can be neglected
by reducing the residuals to machine accuracy, although for practical applications
less strict criteria are often sufficient. For the present work, we ensured that the
convergence tolerances adopted for the residuals were sufficiently strict to avoid
contamination of discretisation errors by iterative errors. This was done by system-
atically reducing the convergence tolerance until numerical errors were no longer
influenced by the choice of the convergence tolerance 2. Therefore, in the remainder,
it can be safely assumed that the contributions of iterative and round-off errors are
both negligible compared to the contribution of the discretisation error.

Discretisation errors stem from discretisation of space and time derivatives in the
governing equations. The standard approach is to assume that the discretisation error
e(φ) of any local or functional quantity φ follows a truncated power-series behaviour
(Roache [138] and Eça et al. [51]). Thus, for steady calculations, the discretisation
reads:

e(φi ) =φi −φexact = e0 +α
( hi

h1

)p
, (3.5)

where φexact is the exact solution of the mathematical model, φi is the computed
solution on a grid having cell size hi (i = 1 corresponds to the finest grid), α is a
constant, e0 is the extrapolated error for cell size zero (hi = 0) and p is the observed
order of grid convergence. The three constants e0, α and p can be determined
knowing the error on at least three grids. In this paper, the three selected grids cover
a refinement ratio of about 2.

In Eq. (3.5) it is implicitly assumed that the grid refinement is constant for the
whole grid, allowing the use of one parameter (cell size in this case) as representative
of the grid resolution. In other words, the grids are assumed to be geometrically
similar. The consequences of using unsimilar grids in code verification are discussed
in Eça et al. [51].

For unsteady calculations, the error is a function of both the grid size hi and the
time step τi =∆ti ,

e(φi ) =φi −φexact = e0 +αx

( hi

h1

)px +αt

( τi

τ1

)pt
, (3.6)

where τ1 is the smallest time step. By writing the grid refinement as a function of the

2We also made sure that residuals did not stagnate.
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time step or vice versa, ( hi

h1

)
=

( τi

τ1

) pt
px or

( τi

τ1

)
=

( hi

h1

) px
pt , (3.7)

the form of Eq. (3.5) is retrieved:

e(φi ) =φi −φexact = e0 +α
(λi

λ1

)p
, (3.8)

where
λi

λ1
= hi

h1
=

( τi

τ1

) pt
px , (3.9)

and e0,α and p have the same meaning as in Eq. (3.5). In this work, Eqs. (3.5) and (3.8)
are used to estimate e0, α and p for steady and unsteady simulations, respectively.
The use of Eq. (3.6) is discussed in Eça et al. [50].

While errors are evaluated at every grid cell, the convergence properties of φ will
be evaluated based on the L1, L2 and L∞ error norms:

Lq [e(φ)] =
(

1

Ncel l s

Ncells∑
i

|φi −φexact |q
) 1

q

with q = 1,2 , (3.10)

L∞[e(φ)] = max|φi −φexact | for 1 < i < Ncells , (3.11)

with Ncel l s being the total number of grid cells.
The goal of code verification is to demonstrate the correctness of the code by

showing that e0 = 0 and that the observed rate of convergence p matches the theo-
retical order of accuracy. However, some remarks should be made:

- Correct application of Eqs. (3.5) and (3.8) requires sufficiently fine grids/time
steps to have the numerical solution in the asymptotic range, i.e. in the range
of space/time discretisation such that the observed order p is nearly constant.

- e0 includes the contribution of high order terms that were neglected in Eqs. (3.5)
and (3.8). Thus, at best, we can expect e0 to decrease with refinement (if the
code is correct) but, in any case, it cannot drop below round-off and iterative
errors (Eça et al. [51]).

- The theoretical order for velocity and pressure is unknown due to the non-
linearity of the system (Wesseling [176]), therefore it is common practice to
replace the theoretical order with the expected order of the discretisation
techniques adopted. For the present solver, we expect second-order accuracy
for velocity, pressure and volume fraction, unless stated otherwise.
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- In code verification one usually examines the grid/time convergence of only
dependent variables. The dependent variables for the present work are velocity,
pressure and volume fraction. However, as the implementation of GNF models
is done by modifying the viscosity, which is a derived quantity and not a depen-
dent variable, it is intuitive that the examination of the grid/time convergence
properties of the viscosity also plays an important role for code verification of
non-Newtonian fluid solvers. Unfortunately, neither the theoretical nor the
expected order of accuracy of viscosity is known, thus the correctness of the
viscosity will be verified by ensuring that discretisation (e(φ)) and extrapolated
(e0) errors decrease with grid/time step refinement.

3.4. NUMERICAL SETTINGS

The convective flux in the momentum equation is linearised with the Picard’s method
and it is discretised with the Total Variation Diminishing (TVD) Harmonic scheme
(Leer [93]). Other information about REFRESCO are given in Section 2.5. After each
SIMPLE (outer) iteration, the computed velocity is used to evaluate first the shear
rate γ̇ and then the apparent viscosity µ(γ̇), by virtue of Eq. (2.10). The viscosity is
then updated in the momentum equation for the next SIMPLE iteration. For the
unsteady two-phase flow simulations in this chapter, time integration is performed
implicitly with the second-order backward scheme (BDF2). At each implicit time
step, the linearised system for velocity and pressure is solved using the SIMPLE
algorithm. After each outer iteration, the calculated velocity is then used to solve the
volume-fraction equation and to calculate the apparent viscosity.

It is anticipated that for Case 3 (Section 3.7), where the chosen manufactured
solution has a sharp (discontinuous) interface between the fluids, the convective flux
of the volume-fraction equation is discretised with an interface-capturing scheme
(Klaij et al. [85]), a blend of compressive and high-resolution interpolation schemes.
This scheme prevents both the smearing of the interface due to the numerical diffu-
sion and the appearance of spurious oscillations of the volume fraction. However, for
Case 2 (Section 3.6), where the interface between the fluids is not sharp, the interface-
capturing scheme is not suitable. In fact, in this case the interface-capturing scheme
would tend to sharpen the interface, causing large numerical errors in the volume
fraction. For this reason, the convective flux of the volume-fraction equation for Case
2 is discretised with the TVD Harmonic scheme.
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3.5. CASE 1: STEADY SINGLE-PHASE FLOW

3.5.1. TEST CASE SET-UP
The first code verification exercise assesses the correctness of the implementation of
the Herschel–Bulkley model for laminar single-phase flows using the manufactured
solution from Salari and Knupp [142], Knupp [88], and Eça et al. [51]:

ux (x, y) = sin(x2 + y2)+ε ,

uy (x, y) = cos(x2 + y2)+ε , (3.12)

p(x, y) = sin(x2 + y2)+ε ,

where ε= 0.001 is a small constant added to avoid symmetry in the solution. Note that
the manufactured solution is not divergence-free, therefore the term −2/3(∇·u)δi j

must be included in the stress tensor, with δi j being the Kronecker delta. With
this manufactured solution, pressure is expected to be first-order accurate at the
boundaries for the reasons explained in Eça et al. [51].

In order to obtain asymptotic grid convergence without excessive grid resolution,
large viscosity gradients should be avoided. This is achieved (a) by selecting low
values for both the yield stress and the regularisation parameter (thus limiting the
maximum viscosity) and (b) by moving the computational domain away from the
axes origin. The latter stems from the fact that γ̇(0,0) = 0 and so the viscosity variation
is steeper around the origin. This results in a relatively small variation of the viscosity
within the domain (Fig. 3.1), especially when compared with realistic flow conditions
in which the viscosity in low-deformation regions can be thousands times larger than
the viscosity in high-deformation regions (e.g. in boundary-layer flows). We recall
however that code verification is purely a mathematical exercise, therefore physical
realism is not required (Roache [139]).

On the other hand, a convenient choice of the fluid density should ensure a
dominant contribution of the viscous term in the momentum equations. By doing
so, there are more chances that anomalies in the viscous term will be detected from
the convergence properties of velocity and pressure. With the current choice of
fluid properties, convective and pressure terms in the momentum equations have
about the same order of magnitude, whereas the diffusive term is about one order of
magnitude larger (Fig. 3.2).

The domain is discretised with 21 two-dimensional uniform Cartesian grids, the
finest grid having 640×640 cells. Dirichlet conditions based on the manufactured
velocity are applied to all boundaries together with Neumann conditions for pressure.
Since no pressure boundaries are used, a reference pressure is imposed in one point
using the exact pressure. Furthermore, pressure and viscosity are both linearly
extrapolated to the boundaries using the gradient from the previous outer iteration.
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Figure 3.1: Exact viscosity µ(x, y) [Pa s] of the regularised Herschel–Bulkley model for Case 1.

Figure 3.2: Magnitude of convection, pressure and diffusion terms [N m−3] corresponding to the
manufactured solution of Case 1.
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The parameters used for the calculations are given in Table A.3 in the appendix.

3.5.2. RESULTS AND DISCUSSION

The L2 and L∞ error norms and the observed order of convergence p are reported in
Table 3.1 as function of grid refinement. All quantities appear to be in the asymptotic
range for about hi /h1 < 4, where p is nearly constant. Velocity matches the expected
second-order both for the L2 and the L∞ error norms, whereas the pressure coef-
ficient, Cp = p/(0.5ρU 2

r e f ), exhibits first-order accuracy in the L∞ error norm. The

largest errors were found near the boundaries, with the maximum error on the top
left corner. This confirms that pressure is first-order accurate at the boundaries, as
expected. As a result of the first-order behaviour at the boundaries and second-order
on interior cells, the L2 error norm of Cp converges with p ≈ 1.9. It is also remarkable
that the grid convergence properties of velocity and pressure with the Herschel–
Bulkley model are very similar to those of the verification exercise in Eça et al. [51]
with the same manufactured solution and Newtonian fluids.

Table 3.1: L2 and L∞ error norms and observed order of convergence p for velocity, pressure coefficient
and viscosity for Case 1.

hi /h1 L2[e(u)] p L2[e(Cp )] p L2[e(µ)] p L∞[e(u)] p L∞[e(Cp )] p L∞[e(µ)] p

16.00 1.23E-05 2.00 5.27E-04 1.86 8.06E-05 1.77 1.03E-04 1.99 4.71E-02 0.70 7.16E-03 0.98
13.33 8.55E-06 2.00 3.78E-04 1.78 5.76E-05 1.79 7.20E-05 1.99 3.99E-02 0.78 5.97E-03 0.98
11.23 6.06E-06 2.00 2.78E-04 1.81 4.19E-05 1.81 5.12E-05 1.99 3.39E-02 0.81 5.03E-03 0.98
9.28 4.14E-06 2.00 1.96E-04 1.88 2.93E-05 1.82 3.50E-05 1.98 2.84E-02 0.81 4.16E-03 0.99
8.00 3.08E-06 2.00 1.49E-04 1.77 2.23E-05 1.83 2.61E-05 1.98 2.47E-02 0.88 3.59E-03 0.99
6.53 2.05E-06 2.00 1.03E-04 1.77 1.52E-05 1.84 1.74E-05 1.98 2.03E-02 0.90 2.93E-03 0.99
5.47 1.44E-06 2.00 7.40E-05 1.83 1.09E-05 1.85 1.22E-05 1.99 1.71E-02 0.90 2.46E-03 0.99
4.60 1.02E-06 2.00 5.38E-05 1.83 7.88E-06 1.86 8.71E-06 1.99 1.45E-02 0.92 2.07E-03 0.99
4.00 7.69E-07 2.00 4.15E-05 1.84 6.04E-06 1.87 6.59E-06 1.99 1.27E-02 0.93 1.80E-03 0.99
3.23 5.02E-07 2.00 2.79E-05 1.84 4.03E-06 1.87 4.32E-06 1.98 1.03E-02 0.94 1.45E-03 1.00
2.71 3.54E-07 2.00 2.01E-05 1.84 2.89E-06 1.88 3.05E-06 1.98 8.66E-03 0.95 1.22E-03 1.00
2.28 2.49E-07 2.00 1.45E-05 1.85 2.07E-06 1.88 2.15E-06 1.98 7.29E-03 0.96 1.03E-03 1.00
2.00 1.92E-07 2.00 1.14E-05 1.85 1.62E-06 1.89 1.66E-06 1.98 6.42E-03 0.96 9.01E-04 1.00
1.61 1.24E-07 2.00 7.54E-06 1.86 1.07E-06 1.89 1.08E-06 1.98 5.17E-03 0.97 7.24E-04 1.00
1.35 8.80E-08 2.00 5.45E-06 1.86 7.68E-07 1.90 7.64E-07 1.99 4.36E-03 0.97 6.10E-04 1.00
1.14 6.21E-08 2.00 3.92E-06 1.87 5.51E-07 1.90 5.40E-07 1.99 3.67E-03 0.98 5.12E-04 1.00
1.00 4.81E-08 2.00 3.08E-06 1.87 4.31E-07 1.90 4.18E-07 1.99 3.23E-03 0.98 4.51E-04 1.00

The grid convergence properties of µ are very similar to Cp , with a rate of conver-
gence about 1.9 for the L2 norm and with first-order for the L∞ norm. The maximum
error was found on the top boundary, where also the maximum error of the tangential
velocity derivative is located. It was observed that velocity derivatives converged with
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first-order accuracy at the boundaries 3. Thus, it appears that the first-order accuracy
of velocity derivatives leads to first-order accuracy of the viscosity, as a result of their
dependency (Eq. (2.10)).
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Figure 3.3: Extrapolated error for cell size zero e0 for the L2 and L∞ error norms as function of grid
refinement for Case 1.

The examination of the extrapolated error for cell size zero e0 is convenient when
p does not match the theoretical (expected) order of grid convergence or when the
asymptotic order of convergence is hard to determine (Eça et al. [51]). For the present
exercise, this is the case of viscosity and pressure. Nonetheless, e0 decreases upon
grid refinement for all quantities and for both norms (Fig. 3.3), providing convincing
evidence about the correctness of the code.

Larger values of the yield stress and regularisation parameter were also tested, and
results were virtually identical to those reported in Table 3.1, except for marginally
larger discretisation errors for all quantities. Larger errors are in fact expected for
larger yield stress and regularisation parameters because of the increased viscosity
gradient (Syrakos et al. [159]). We mention, however, that increasing the regularisa-
tion parameter to very large values, as normally required by practical applications,
is neither necessary nor convenient for code verification. In fact, using large reg-
ularisation parameters will likely cause stagnation of residuals4 and consequent
contamination of numerical errors by iterative errors. Moreover, even when residuals
converge, asymptotic grid convergence may be difficult to achieve. In any case, it is
shown in Appendix A.1 that, with the adopted choice of yield stress and regularisation
parameter, this exercise is very sensitive to coding mistakes in the rheological model.

In conclusion, for all quantities, the observed orders matched the expected or-

3This is because the velocity derivatives are computed with the Gauss’s theorem, which is a second-order
method but it reduces to first order at the boundary, even on Cartesian grids (Syrakos et al. [162]).

4Stagnation of residuals for large regularisation parameters is a known issue for SIMPLE-type solvers
(Syrakos et al. [159]). The robustness of the code will be addressed in Chapter 4 on a benchmark problems.
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ders, and the extrapolated errors e0 tend to zero upon grid/time step refinement.
Furthermore, the grid convergence properties of velocity and pressure are analogous
to the verification with Newtonian fluids in Eça et al. [51]. The code can thus be
considered verified for laminar single-phase flow of Herschel–Bulkley fluids.

3.6. CASE 2: UNSTEADY TWO-PHASE FLOW WITH A CON-
TINUOUS INTERFACE

3.6.1. TEST CASE SET-UP

This exercise verifies that laminar flows of Herschel–Bulkley fluids are correctly solved
also for two-phase flows. The manufactured solution is taken from Klaij et al. [85]
and it represents a sinusoidal wave moving at speed c on deep water from potential
flow theory (Larsson and Raven [91]):

ux (x, z, t ) = g

c
A exp

( g z

c2

)
cos

( g x

c2 − g t

c

)
, (3.13)

uz (x, z, t ) = g

c
A exp

( g z

c2

)
sin

( g x

c2 − g t

c

)
, (3.14)

p(x, z, t ) = ρg
(
ζ(x, z, t )− z)

)
, (3.15)

c(x, z, t ) = 1

2
(1+erf(b(z −ζ(x, z, t )))) , (3.16)

where ζ is the wave elevation,

ζ(x, z, t ) = A exp
( g z

c2

)
cos

( g x

c2 − g t

c

)
. (3.17)

The pressure is assumed to be zero at the free surface, i.e. at z = ζ. We recall that the
above solution describes the circular motion of fluid particles for z ≤ ζ. However, for
code verification purposes, the above solution is applied also for z > ζ.

The parameter b in the error function erf in Eq. (3.16) determines how steeply
the volume fraction (and fluid properties) varies around z = ζ. The error function
assumes values from 0 to 1 over a distance of about 2/b. Thus, if 2/b is less than
the cell size, the volume fraction is discontinuous at the discrete level. Verification
with a discontinuous solution is more challenging because the asymptotic grid/time
convergence is extremely hard to achieve, thus we postpone it to Section 3.7. For the
present test case we considered b = 12, which produces a smooth and continuous
variation of the volume fraction from one fluid to the other (Fig. 3.4). Note that
the viscosity of fluid 1 (right plot in Fig. 3.4) varies in space not only because of the
volume fraction but also because fluid 1 is non-Newtonian.
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Figure 3.4: Exact volume fraction (left) and viscosity [Pa s] (right) for Case 2 at t = 0 with steepening
parameter b = 12. The black isoline corresponds to c = 0.5.

Considering a smooth interface increases the chances of achieving asymptotic
grid/time convergence with reasonable grid/time resolution. The drawback is that
special treatments for discontinuities may not be fully exercised by the verification.
Therefore, a successful outcome from this exercise can be seen as a necessary but
not sufficient condition to ensure that the code works correctly for free-surface
calculations with Herschel–Bulkley fluids. On the other hand, this test case well
represents those applications where the interface between two liquids (e.g. between
water and mud suspensions) is not as sharp as a gas-liquid interface. For such
applications, one might sometimes avoid the use of interface-capturing schemes,
thus allowing smearing of the interface by diffusion (molecular, turbulent and/or
numerical). In light of the above considerations, liquid-like properties are assigned
to both fluids to justify the use of a smooth interface between the fluids.

The computational domain is a square with sides of 1.0 m, discretised with 21 two-
dimensional uniform Cartesian grids, the finest grid having 640×640 cells. Dirichlet
boundary conditions based on the manufactured velocity and volume fraction are
applied to all boundaries together with Neumann conditions for pressure. As for
Case 1, pressure and viscosity are both linearly extrapolated to the boundaries using
their gradients from the previous outer iteration.

Calculations are initialised with the manufactured solution and are carried out
for one wave period T . The time steps are chosen such that the CFL numbers are less
than 1/6 to ensure that the BDF2 scheme is TVD (Duraisamy et al. [43] and Klaij et al.
[85]), and the time step for the finest grid is τ1 = T /4800. Time steps are refined using
the same ratio as the grid refinement, i.e. hi /h1 = τi /τ1 = λi /λ1. The parameters
used for the computations are summarised in Table A.3 in the appendix.
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3.6.2. RESULTS AND DISCUSSION

The order of convergence p and the L1 and L2 error norms are given in Table 3.2. It
is immediately evident that errors in the velocity, pressure coefficient and volume
fraction converge asymptotically with the expected second-order accuracy. The first
goal of code verification is thus fulfilled for the dependent variables. The conver-
gence of the viscosity does not appear asymptotic, with rates of convergence ranging
between 1 and 2. The largest viscosity errors were found on the side and bottom
boundaries, where also the largest errors of velocity derivatives are located. This
suggests that local grid refinement at the boundaries is needed to reduce such errors
and to achieve asymptotic convergence for the viscosity without a significant increase
in the computational costs. However, local refinement, which requires the use of
unstructured/non-uniform grids, is out of the scope of this chapter and it should
be investigated in future studies. Another option may be to improve the discretisa-
tion of the gradients at the boundaries, but for solvers that use unstructured-grid
assumptions this option is not straightforward and therefore outside of the scope
of the present study. At least, the present exercise proves its usefulness by demon-
strating the expected convergence behaviour for the dependent variables, while also
detecting inconsistencies in the solution that went unnoticed in Case 1.

In any case, the extrapolated error e0 for cell size/time step zero clearly decreases
upon grid/time step refinement for all quantities (Fig. 3.5). This, combined with the
second-order accuracy of the dependent variables and with the results of Case 1,
provides compelling evidence that the code performs correctly also for two-phase
laminar flows of Herschel–Bulkley fluids with a smooth interface.
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Figure 3.5: Extrapolated error for grid size/time step zero e0 for the L1 and L2 error norms as a function of
the refinement factor for Case 2.
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3.7. CASE 3: UNSTEADY TWO-PHASE FLOW WITH A FREE

SURFACE

3.7.1. TEST CASE SET-UP
In the previous test case we have shown that by considering a smooth interface
between the fluids rigorous code verification is possible also for two-phase flows.
However, for applications in which the top fluid is a gas, one usually wants to keep
the interface as sharp as possible to accurately capture the free surface. It can be
the case, for example, of mud slurries in an open channel or dip-coating processes
(Filali et al. [60]). But it is also the case of ship sailing with muddy seabeds, where the
mud-water interface is assumed to be sharp (see also Section 2.1).

In this case study we test the code on free-surface calculations by increasing
the steepening parameter in the manufactured volume fraction (Eq. (3.16)) from
12 to 1200. Now the volume fraction varies between 0 and 1 over a distance about
the cell size of our finest grid, hence the volume fraction is discontinuous at the
discrete level, as shown in Fig. 3.6. Moreover, the convective fluxes of the volume-
fraction equation are now discretised with an interface-capturing scheme, as was
anticipated in Section 3.4. The grids and all the other parameters are the same as
Case 2, except for fluid 2, which now has the density and viscosity of air (see Table A.3
in Appendix A.2).

Figure 3.6: Exact volume fraction (left) and viscosity [Pa s] (right) for Case 3 at t = 0 with steepening
parameter b = 1200. The black isoline corresponds to c = 0.5.

3.7.2. RESULTS AND DISCUSSION
The oscillatory convergence due to the presence of a discontinuity (free surface) is
clearly noticeable from the convergence of the L1 and L2 error norms in Fig. 3.7, with
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discretisation errors that sometimes increase upon grid/time step refinement. For
this reason we have estimated α, e0 and p in the least-square sense by fitting Eq. (3.8)
to the data on the 10 finest grids. The observed order of accuracy is thus indicated in
Fig. 3.7 with pl s .
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Figure 3.7: L1 error norms as function of the refinement factor. pl s is obtained from the best weighted
least-square fitting of Eq. (3.8) to data on the 10 finest grids.

A close look at the velocity errors in Fig. 3.8 reveals the presence of the well-
known ‘spurious velocities’ (Klaij et al. [85]) for free-surface calculations with the VoF
model. These are caused by the density-weighted interpolation scheme for pressure
(Miller and Schmidt [118]), which assumes that the free surface coincides with the
cell boundaries. When the free surface is not aligned with the cells boundaries,
an imbalance occurs in the discretisation of the pressure gradient, which acts as a
source/sink of momentum. Since ρu is conserved across the free surface, errors
in the velocity are amplified in the low-density fluid (Fig. 3.8). For this reason they
are often called ‘spurious air velocities’. This explains the oscillatory convergence
of pressure and velocity, and it is reassuring that, overall, there is a clear decreasing
trend as the grid/time step is refined.

We remark that artefacts in the velocity have nothing to do with the use of non-
Newtonian fluids. However, when non-Newtonian fluids are used, additional arte-
facts are generated. In fact, spurious velocities cause large errors in the shear rate γ̇,
as shown in the top panel of Fig. 3.9. In turn, such large errors in the shear rate pro-
duce ‘spurious viscosities’ in the non-Newtonian fluid near the free surface (bottom
panel in Fig. 3.9), hence explaining the oscillatory convergence of the viscosity.

On the other hand, the convergence of the volume fraction is monotonic and
exhibits a rate of convergence pl s for the L1 error norm close to 1.0, whereas for the
L2 error norm pl s is roughly halved. These results agree with the verification of the
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Figure 3.8: Velocity errors on the grid with 1602 cells. The black isoline corresponds to c = 0.5.

Figure 3.9: Contour plots of the shear rate γ̇ [s−1] (top panel) and the viscosity µ(γ̇) [Pa s] (bottom panel)
for different refinement levels at computational time t = T . The artefacts caused by spurious velocities are

clearly visible near the free surface on the grid with 1602 cells.
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stand-alone volume-fraction equation with a discontinuous initial solution in Klaij
et al. [85].

A common practice in code verification is to assume e0 = 0 in Eqs. (3.5) and (3.8)
(see e.g. Salari and Knupp [142], Veluri et al. [173], Blais and Bertrand [18], and Klaij
et al. [85]). The implications of making such assumption are discussed in detail in Eça
et al. [51]. The main advantage is that the observed order can be simply determined
from data on grid doublets as

p∗[e(φi )] = log
(
e(φi−1)/e(φi )

)
log(2)

, (3.18)

where, in this case, the selected grids cover a refinement ratio of 2.
For the present exercise we assumed e0 = 0 for two reasons. First, solving a non-

linear system of three equations to determine e0, α and p was not possible because
of the oscillatory grid/time convergence caused by the above-mentioned spurious
velocities. Second, the present results can be more easily compared with the work of
Klaij et al. [85], where the order of convergence was also determined assuming e0 = 0.
With this in mind, the discretisation error and order of convergence p∗ are reported
in Table 3.3.

The convergence of the L1 error of pressure and volume fraction is similar to Klaij
et al. [85]: pressure errors converge with order oscillating between 1 and 2, whereas
the volume fraction is well-behaved and its order of convergence reaches 1.4. On
the other hand, our velocity errors appear to be reaching second-order accuracy, in
contrast with the order close to 2/3 in Klaij et al. [85]. Such difference is due to the
different boundary conditions applied on the bottom boundary. In Klaij et al. [85] a
Dirichlet condition for pressure was imposed on the bottom using the exact pressure
at t = 0, whereas in the present work we imposed a Dirichlet condition for velocity
using the exact velocity at each time step. This, combined with the slightly finer grids
of the present work, produced a better convergence of the velocity error compared to
(Klaij et al. [85]).

To summarise, while results of this code verification exercise are less conclusive
than Case 2, errors of all quantities have a clear decreasing trend upon grid/time
step refinement, and the order p∗ compares favourably with an earlier verification
exercise performed with only Newtonian fluids (Klaij et al. [85]). We have also shown
that the oscillatory convergence is due to the presence of spurious velocities, a known
issue for many free-surface calculations performed using the VOF method and the
density-weighted interpolation scheme.

Finally, the exercise revealed that spurious velocities produce artefacts in the
viscosity of the non-Newtonian fluid, but it was just shown that such artefacts tend
to disappear with grid/time step refinement. For practical applications where high
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grid resolution around the free surface is too expensive, spurious viscosities in the
non-Newtonian fluid might be even visible to the naked eye. Fortunately, spurious
velocities mainly occur in low density fluids, which are typically Newtonian, thus
the viscosity of the non-Newtonian fluid is only moderately affected. Furthermore,
the impact of these spurious viscosities on the flow field depends on how large the
viscous forces are in comparison with other forces, and this varies from application
to application.

3.8. CONCLUSIONS
In this chapter, code verification of REFRESCO for laminar Herschel–Bulkley flows
has been performed and discussed through three exercises with increasing com-
plexity: steady single-phase flow (Case 1), unsteady two-phase flow with a smooth
interface (Case 2) and with a free surface (Case 3).

For Case 1 and 2, the two goals of code verification are achieved: the observed
order of convergence matches the expected order and the extrapolated error to
cell size/time step zero tends to zero with grid/time step refinement. Therefore,
the code performs as intended for both single- and two-phase laminar flows of
Herschel–Bulkley fluids. Code verification in Case 3 is less conclusive due to the
lack of asymptotic grid/time convergence. Nevertheless, this test case can be used
as an extension of Case 2 to check that, in presence of a free surface, errors of all
quantities have at least an overall decreasing trend with grid/time step refinement.
Furthermore, the exercise revealed that the well-known ‘spurious velocities’ typical
of free-surface calculations with the VoF model induce ‘spurious viscosities’ in the
non-Newtonian fluid. We have however demonstrated that these artefacts disappear
with grid/time step refinement.

Additionally, it is shown in Appendix A.1 that examining the convergence proper-
ties of the viscosity is a valuable tool for detecting coding mistakes in the rheological
model, especially for Case 2 and Case 3, where viscous effects have little influence on
the convergence properties of the dependent variables.

The procedure shown in this chapter can be applied to any GNF model. For
instance, if another GNF model is implemented, code verification can be performed
using the same manufactured solutions but adapting the scripts used to generate the
source terms. The scripts used for work in this chapter are reported in [101].



4
SOLUTION OF A 3D BENCHMARK

PROBLEM FOR NON-NEWTONIAN

FLUIDS: THE FLOW AROUND A

SPHERE

...in which the accuracy and robustness of the solution approach is tested, as a stepping
stone towards more practical applications, on a classic benchmark problem in non-
Newtonian fluid mechanics: the laminar flow around a sphere. The aim is to test
the performance of the non-Newtonian solver before applying it to the more complex
scenarios. Flow simulations are carried out at low Reynolds numbers in order to
compare our results with numerical data from the literature. Results agree well with
literature both qualitatively and quantitatively. When combined with the previous
code verification exercises, these results suggest that the non-Newtonian solver works
as intended. The reported numerical data could also be used as reference for future
testing.

The work in this chapter is based on the published article “Lovato, S., Toxopeus, S., Settels, J. and Keetels,
G. (2022). Application of a maritime CFD code to a benchmark problem for non-Newtonian fluids: the
flow around a sphere. International Shipbuilding Progress, 1-25" [102].
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4.1. INTRODUCTION

The code verification in Chapter 3 ensured that the Herschel–Bulkley model was
correctly implemented. However, even if the code is correct, fully-converged solu-
tions for realistic non-Newtonian problems may still be difficult to obtain. In fact,
REFRESCO is optimised and verified exclusively for maritime applications, which
are typically concerned with Newtonian fluids such as air and water. The code also
presents features that are common in general commercial CFD codes, such as the
finite-volume method (FVM) and SIMPLE-type solution algorithms. While these
features are standard for maritime applications, they are less common to simulate
non-Newtonian flows. The latter are characterised by a shear-dependent viscosity
that makes the equations stiffer and thus more difficult to solve.

4.1.1. RESEARCH QUESTION AND AIM OF THE CHAPTER

Can the newly developed non-Newtonian solver of REFRESCO reproduce numerical
data from the literature?

In this chapter, the question is answered for 3D simulations of laminar flows
of power-law, Bingham and Herschel–Bulkley fluids around a sphere, which is a
classic problem in non-Newtonian fluid mechanics. This problem has been also been
extensively studied in the past decades, both experimentally (e.g. [168, 4, 89, 8, 20, 7,
163, 5]) and numerically (e.g. [37, 15, 166, 67, 17, 14, 119, 41, 126, 125, 63]), because
of its interest for industrial processes such as sediment transport, sedimentation and
fluidisation (the reader is also referred to the book of Chhabra [29] for an exhaustive
survey on the topic).

Furthermore, while it is probably the simplest three-dimensional flow, it also
exhibits features that are typical of the flow around ships, such as boundary layer
development and flow separation. Hence, the availability of literature data and
its flow features make the flow around a sphere a useful benchmark problem to
test the non-Newtonian solver of ReFRESCO as a stepping stone towards practical
applications.

4.2. PROBLEM FORMULATION AND GOVERNING EQUATIONS

The problem of a sphere d moving in an infinite medium is modelled as a sphere
fixed at the centre of a cylindrical tube with a uniform inflow U (Fig. 4.1). The tube
has both diameter and length equal to D . The origin of the Cartesian reference frame
is placed at the sphere centre with the z-axis aligned with flow direction.

The laminar, steady, isothermal and single-phase flow of an incompressible fluid
around the sphere is governed by the following continuity and momentum equations
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(in Cartesian coordinates):

∇·u = 0, ρu ·∇u =∇·τ−∇p , (4.1)

where τ is the deviatoric stress tensor already defined in Eq. (2.6). For Bingham
fluids, the apparent viscosity is calculated using Eq. (2.8), whereas Eq. (2.10) is used
for Herschel–Bulkley fluids.

Figure 4.1: Schematic representation of the problem.

4.3. NON-DIMENSIONAL NUMBERS AND TEST CASES
The Herschel–Bulkley flow around a sphere is characterised by two non-dimensional
numbers: the generalised Reynolds number

Re = ρU 2

K (U /d)n

(
∼ inertia

viscous stress

)
, (4.2)

and the Bingham number

Bn = τ0

K (U /d)n

(
∼ yield stress

viscous stress

)
. (4.3)

For power-law and Newtonian fluids the Bingham number is zero, whereas when
n = 1 the Reynolds number reduces to the canonical Re = ρUd/K .
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The non-dimensional friction, pressure and drag coefficients are calculated re-
spectively as

CD f =
(F f )z

1/8ρπd 2U 2 , CDp = (Fp )z

1/8ρπd 2U 2 , CD =CD f +CDp , (4.4)

Fp =−
∫

S
p n dS , F f =

∫
S
τ ·n dS , (4.5)

where S is the sphere surface having n as its outward normal vector, (Fp )z and (F f )z

are the z-component of the pressure and frictional force vectors, respectively.
Throughout the chapter, the regularisation parameter m will be expressed in the

following non-dimensional form

M = mU

d
. (4.6)

Numerical simulations are performed for all the combinations of n = 1, 0.8 and 0.6,
Bn = 10 and 100 and Re = 10 and 100. This choice is made to maximise the number
of considered cases for which there is published CFD data in the literature while also
running a feasible number of simulations.

Additional simulations are performed for creep flow (Re < 1) of Bingham fluids for
two reasons. First, under the latter flow regime, obtaining a fully converged solution
with a SIMPLE-type solver can be challenging (if not impossible in some cases)
because of the very low shear rate and consequently very large viscosity. Second,
literature data for Bingham creep flow are in excellent agreement with each other,
contrary to data for Re = 10 and 100. These two reasons make the Bingham creep
flow an interesting case to test the accuracy and robustness of the solution approach,
even though it may be far from the typical flow conditions encountered in maritime
applications.

For Bingham creep flow, however, the drag coefficient as defined in Eq. (4.4)
becomes extremely large. The reason is that inertia is virtually zero for creep flows,
hence 1/2ρU 2 is no longer a suitable factor to non-dimensionalise the forces. Since
viscous effects are dominant, a better alternative could be to use KU /d . Nonetheless,
we have adopted the more common practice of using the Stokes coefficient (Beris
et al. [15]), defined as

CS = CD

(24/Re)
. (4.7)

The Stokes coefficient is thus a measure of how large is the drag force compared to
the exact drag coefficient for Newtonian creep flow, the latter being equal to 24/Re
according to the Stokes’ law [158].
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4.4. NUMERICAL METHODS AND SETUP

4.4.1. FLOW SOLVER
The CFD settings are the same as for the single-phase flow case in Chapter 3, except
for the convective term in the momentum equation, which is now discretised with a
central difference scheme instead of the TVD Harmonic scheme.

4.4.2. BOUNDARY CONDITIONS
The boundary conditions are set as follows. A uniform inflow uz =U is imposed at
the inlet (z = −D/2), whereas outflow conditions (∂uz /∂z = 0) are imposed at the
outlet boundary (z = D/2). The no-slip/no-permeability conditions (u = 0) are set at
the sphere surface together with the free-slip conditions (un = 0, ∂uz /∂n = 0) on the
outer cylindrical tube. For the pressure field, Neumann conditions (∂p/∂n = 0) are
applied to all the boundaries, thus a pressure reference is imposed in one point at
the inlet boundary.

4.4.3. DOMAIN SIZE
In order to mimic a sphere settling in an infinite domain, the outer cylindrical tube
diameter must be sufficiently large compared to the sphere diameter. The influence
of the tube-to-sphere diameter ratio, D/d , was assessed by computing the drag
coefficients on four grids having size D = 25d , 50d , 100d and 200d respectively, with
the grid 50d having the second finest refinement shown in Table 4.1 (Section 4.4.4)
and the regularisation parameters in Table 4.3 (Section 4.4.5).

The uncertainty in the solution due to the finite domain size has been estimated
with the method of Eça and Hoekstra [46] by replacing the grid size with the tube
diameter D. Since this method was designed to estimate the discretisation uncer-
tainties, we have checked the validity of this procedure by performing additional
calculations for Newtonian creep flow, whose exact solution for the unbounded do-
main is CS = 1 by virtue of Eq. (4.7). With the adopted procedure the extrapolated
CS for d/D = 0 was found to be 0.99995 (Fig. 4.2, left), thus the procedure is deemed
reliable for the present calculations. Note that the 4% uncertainty shown in Fig. 4.2 is
irrelevant in this work as the Newtonian creep flow will not be considered further.

The uncertainties were then estimated for all the test cases, and the two largest
values obtained with D = 50d were 0.12% and 0.09%, which corresponded to the
Newtonian and power-law cases (Bn = 0) for Re = 10, respectively (Fig. 4.2, right).
This is not surprising since the strongest disturbance to the flow field occurs for such
test cases (see also Fig. 4.7 in Section 4.5.1). For Bn > 0, the domain size uncertainties
were found to be less than 0.005%. Therefore all subsequent calculations were
performed with D = 50d . In conclusion, the maximum domain-size uncertainty for
Newtonian and power-law fluid is about 0.1%, whereas for all the other test cases the
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influence of the domain size can be safely neglected.

Figure 4.2: Convergence of the Stokes/drag coefficients with D1/Di (Di = 200d ,100d ,50d ,25d) for
Newtonian creep flow (Re = 0.01) (left) and Newtonian and power-law flows (Bn = 0) at Re = 10 (right).

The percentages indicate the domain uncertainty for the case with D1 = 50d .

4.4.4. DOMAIN DISCRETISATION
The domain was discretised with two series of three-dimensional multi-block struc-
tured grids, with the layout as sketched in Fig. 4.3. Four geometrically similar grids
were generated for each series in order to estimate the discretisation uncertainties.
The number of grid cells and the size of the first cells away from the sphere surface are
reported in Table 4.1. One series was generated for Re = 0.01 (creep flow) of Bingham
fluids and the other for the higher Reynolds numbers (Re = 10 and 100). Note that
the series used for creep flow calculations has higher resolution in order to better
capture the steep velocity gradient near the sphere walls occurring for large Bn.

The discretisation uncertainties on the force coefficients are given in Table 4.2 and
they were estimated with the method of Eça and Hoekstra [46]. All the calculations
were carried out using the regularisation parameters discussed in the following
section. Except for the two cases with Bn = 100 and n = 0.6, all the uncertainties are
below 1%. The larger uncertainties observed in CD f for Bn = 100 and n = 0.6 can be
explained by the decrease in the apparent viscosity at the sphere surface (high-shear
region) when n is decreased. In fact, the already steep velocity profile at the sphere
walls for Bn = 100 (see also Fig. 4.10 in Section 4.5.1) becomes even steeper when
the viscosity is reduced, which would thus require a finer grid to be more accurately
captured.

4.4.5. REGULARISATION METHODS
The use of regularisation methods produces regularisation errors, which are de-
fined as the difference between the solution obtained with the regularised and non-
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5d

Figure 4.3: Illustration of the coarsest grid of Series 1.

Table 4.1: Grid size ratio, number of cells Ni and thickness hw of the first cell away from the sphere
surface.

Series 1
Re = 10 and 100

Series 2
Re = 0.01

i 3
√

N1/Ni Ni hw /d 3
√

N1/Ni Ni hw /d

4 2.59 129 064 0.00800 2.60 156 808 0.00200
3 1.90 324 070 0.00571 1.91 397 072 0.00143
2 1.38 857 600 0.00408 1.38 1 054 208 0.00102
1 1.00 2 238 368 0.00292 1.00 2 761 088 0.00073

Table 4.2: Discretisation uncertainties in percentage of the corresponding drag component for the
pressure, frictional and total drag on the finest grid.

Bn = 0 Bn = 10 Bn = 100 Re = 0.01

Re n UCDp UCD f
UCD UCDp UCD f

UCD UCDp UCD f
UCD Bn UCDp UCD f

UCD

10 1 0.03 0.12 0.09 0.88 0.17 0.25 0.40 0.38 0.36 2.299 0.61 0.25 0.36
10 0.8 0.02 0.11 0.08 0.34 0.10 0.57 0.34 0.94 0.38 8.047 0.56 0.39 0.43
10 0.6 0.02 0.09 0.05 0.31 0.18 0.26 0.33 3.34 0.76 59.59 0.28 0.21 0.20

100 1 0.10 0.05 0.07 0.28 0.10 0.17 0.32 0.30 0.30 340.7 0.49 0.12 0.42
100 0.8 0.18 0.11 0.15 0.33 0.09 0.24 0.30 0.88 0.39 497.5 0.24 0.15 0.22
100 0.6 0.38 0.23 0.31 0.19 0.17 0.25 0.66 3.26 0.69 544.6 0.24 0.21 0.23
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regularised rheological models. Large regularisation parameters are needed to min-
imise these errors, but this may lead to very slow or even stagnating convergence of
the residuals in the iterative solver, as as will be shown in Section 4.4.6.

For practical applications, however, low regularisation parameters may be accept-
able since the rheology of many real fluids is better captured by regularised models
(e.g. Dzuy and Boger [45] and Ellwood et al. [56]). On the other hand, for the purpose
of comparison with literature data it is important to minimise these errors, also to
avoid possible cancellation of regularisation and discretisation errors that can cause
a spurious agreement with literature data. Figure 4.4 shows an example in which CS

on an a very coarse grid with M = 20 is nearly identical to the CS on a fine grid with
M = 200. Despite the latter case is numerically more accurate, both CS are very close
to literature data (cf. also with Table 4.7) as a result of errors cancellation.

Figure 4.4: Grid convergence of the Stokes coefficient for Bn = 197.5 using M = 20 and 200. The difference
δ is between CS on an a very coarse grid with M = 20 and on a fine grid with M = 200.

The choice of the proper regularisation parameter is found to be problem-
dependent. With regard to the laminar flow around a sphere, previous numerical
studies used very different values, both dimensional and non-dimensional. For in-
stance, Blackery and Mitsoulis [17] used m = 200 s, whereas Beaulne and Mitsoulis
[14] suggest to keep the product M Bn equal to 103. On the other hand, Gavrilov et al.
[63] and Nirmalkar et al. [126, 125] have used M = 103 and m = 106 s, respectively.

For the current work, the regularisation parameter for each test case has been
gradually increased until the regularisation uncertainty became less than 1%. The
remaining question, however, is how to estimate the regularisation uncertainty.
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Frigaard and Nouar [61] showed that, for typical Bingham shear flows, the Papanas-
tasiou regularisation errors tend to zero with first order as 1/M → 0. As a first ap-
proximation, it is thus reasonable to estimate the regularisation uncertainty with the
same method used for the discretisation uncertainty, with the grid spacing replaced
by 1/M (Fig. 4.5). The final selected values of M that ensured a regularisation uncer-
tainty below 1% are reported in Table 4.3. We found that the maximum and average
regularisation uncertainties in percentage of the drag coefficient are 0.77% and 0.2%,
respectively.

Finally, we remark that the values reported in Table 4.3 may still be too low to
accurately capture the so-called yielded surface, i.e. the locus of points where τ= τ0

(see e.g. [25, 96]). This aspect is however beyond the scope of this work, hence it is
no further discussed.

Figure 4.5: Convergence of the Stokes coefficient with M1/Mi (Mi = 200,100,50,20) for Re = 0.01 with
Bn = 59.59 (left) and Bn = 544.6 (right). The percentages indicate the regularisation uncertainty relative to

CS obtained with M1 = 200.

Table 4.3: Selected non-dimensional regularisation parameter M = mU /d for each test case.

Re = 10 Re = 100 Creep flow, Re < 1

Bn 10 100 10 100 2.299 8.047 59.59 197.5 340.7 544.6

n = 1 500 200 1000 200 2000 2000 200 200 200 200
n = 0.8 500 200 1000 200 - - - - - -
n = 0.6 500 200 500 200 - - - - - -
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4.4.6. ITERATIVE CONVERGENCE AND VISCOSITY INTERPOLATION SCHEME
As mentioned in the previous section, iterative convergence can become difficult
when using large regularisation parameters. This issue seems rather common when
using SIMPLE-like algorithms (see e.g. Syrakos et al. [160, 159]). In this work, we
found that the rate of convergence of the residuals is significantly influenced by the
choice of the interpolation scheme for the viscosity.

Within the finite-volume method, the diffusive term in Eq. (4.1) requires the
evaluation of the apparent viscosity, µ, at the cell faces. Since in REFRESCO the
computational node coincides with the cells’ centroid, the face value must be ob-
tained by interpolation. Assuming for simplicity that a cell face e is halfway between
two Cartesian grid cells P and E , the simplest second-order interpolation scheme to
calculate µe reads

µe = µP (γ̇P )+µE (γ̇E )

2
. (4.8)

Another simple alternative is to first evaluate γ̇e from linear interpolation of γ̇P and
γ̇E and then to calculate the viscosity at the face e, i.e.

γ̇e = γ̇P + γ̇E

2
, µe =µ(γ̇e ) . (4.9)

The two schemes have the same computational cost, thus, in principle, there is
no reason to prefer one scheme to the other. Furthermore, when we performed a
code verification exercise (not shown here) similar to that in Lovato et al. [101], the
two schemes exhibited the same accuracy and rate of convergence of the residuals.
However, on the present problem, the first scheme (Eq. (4.8)) turned out to be more
robust as it was possible to obtain a fully converged solution using relatively large
regularisation parameters1 up to M = 200, as shown in Fig. 4.6.

With the second scheme (Eq. (4.9)), on the other hand, the residuals were stag-
nating already with M = 50. Therefore, an interpolation scheme that uses the cell
centre values of the apparent viscosity was eventually adopted in REFRESCO.

For this work and with the setup described above, the iterative convergence
criterion was set to L∞ < 10−8 and the iterative uncertainties were estimated with the
method of Eça and Hoekstra [47]. For all the test cases we found that the iterative
uncertainties were virtually zero (< 0.0005%).

4.4.7. TOTAL NUMERICAL UNCERTAINTY
The final numerical uncertainty in the computed drag coefficient was calculated
assuming that all the uncertainty components are dependent on each other, i.e.

Unum =Udom +Udi scr +Ur eg +Ui ter , (4.10)

1Sufficiently large, at least, to keep the regularisation uncertainty below 1%.
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Figure 4.6: Effect of the two viscosity interpolation schemes on the iterative convergence of the pressure
residuals. Test case: Re = 0.01, Bn = 59.59. Black line corresponds to Equation (4.8), whereas the blue

dashed line to Eq. (4.9).

where Udom , Udi s , Ur eg and Ui t are the uncertainties produced by the finite do-
main size, the domain discretisation, the regularisation parameter and the iterative
method, respectively. The total numerical uncertainties are reported in Table 4.4 and,
for all the test cases, they do not exceed 1%.

Table 4.4: Total numerical uncertainties, Unum , in percentage of the computed drag coefficient.

Bn = 0 Bn = 10 Bn = 100 Re = 0.01

Re n UCD UCD UCD Bn UCD

10 1 0.21 0.63 0.55 2.299 0.55
10 0.8 0.16 0.85 0.50 8.047 0.53
10 0.6 0.10 0.45 0.83 59.59 0.44

100 1 0.19 0.94 0.55 340.7 0.52
100 0.8 0.24 0.85 0.56 497.5 0.30
100 0.6 0.38 1.02 0.80 544.6 0.29

4.5. RESULTS AND DISCUSSION

4.5.1. FLOW FIELD
Some features of the computed flow field are now discussed. More detailed descrip-
tions have been already discussed by other authors [15, 126, 125, 63], thus they will
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not be completely repeated here. The contours of the velocity, shear rate and viscosity
for Re = 10 and 100 are shown in Figs. 4.7 to 4.9, respectively. Note that flow field for
Bingham creep flow (Re = 0.01) is not shown as it is very similar to the the case with
Re = 10 and Bn = 100.

For Newtonian and power-law fluids (Bn = 0), the flow is attached to the sphere
for Re = 10, whereas at Re = 100 the flow is separated and exhibits the characteristic
toroidal eddy behind the sphere (Fig. 4.7, top). The effect of decreasing n is less
evident. When n < 1, the apparent viscosity becomes lower than the Newtonian
viscosity, K , in the region where γ̇ > 1 (i.e. the region within the black isoline in
Fig. 4.8, top). This leads to a thinner boundary layer for n < 1 compared to Newtonian
fluids. Another effect of reducing n is the smaller wake eddy. The latter observation
agrees qualitatively with the results of Dhole et al. [41] for power-law fluids.

For yield stress fluids (Bn > 0), the viscosity increases significantly, especially
in the undisturbed flow region away from the sphere (Fig. 4.9, middle and bottom
panels). The large viscosity damps advection, leading to the disappearance of the
toroidal eddy behind the sphere. The fore-aft symmetry typical of creep flow is thus
restored. For Bn = 100, the flow appears symmetrical with respect to the equatorial
plane (z = 0), both for Re = 10 and 100 (Fig. 4.7, bottom).

When Bn > 0, the fluid far upstream is undeformed with very high viscosity, i.e. it
behaves as a solid-like material (τ< τ0). The fluid is then deformed as it encounters
the sphere and the viscosity is reduced (τ > τ0). The black isoline in the middle
and bottom plots of Fig. 4.8 identifies the computed yielded surface, i.e. the locus
of points where τ = τ0. This surface shrinks with increasing Bn and decreasing
n, whereas it grows with higher Re. These observations are in line with those of
Nirmalkar et al. [125]. Furthermore, small unyielded regions are observed near the
stagnation points. These regions are usually referred to as ‘polar caps’ [15, 17].

As Bn increases, the solid-like region (uniform undisturbed flow) tends to expand
towards the sphere, thus ‘squeezing’ the fluid close to the sphere. As a result, the
fluid has to increase its velocity in order to keep the flow rate constant along the tube
cross-sections. Another way to see this is that the streamlines become denser near
the sphere.

Furthermore, for yield stress fluids, the velocity in the equatorial plane exhibits a
local maximum, which leads to a local viscosity maximum2 (Fig. 4.9), as also observed
by Nirmalkar et al. [126] and Gavrilov et al. [63]. Such steep variation of viscosity over
a relative short distance was a major cause for the difficult iterative convergence. We
found in fact that the largest residuals were always near this local viscosity maximum.

For ideal (i.e. non-regularised) Bingham and Herschel–Bulkley fluids, the fluid
region far from the sphere would have an infinite viscosity and zero shear rate. The

2Note that, in three dimensions, this local maximum is actually a circle around the sphere
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Figure 4.7: Velocity contour and streamlines. The flow is from bottom to top.
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Figure 4.8: Contour plot of the shear rate γ̇. The black isoline corresponds to γ̇= 1 s−1 for Bn = 0, whereas
it corresponds to τ= τ0 for Bn = 10,100.
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Figure 4.9: Contour plot of µ(γ̇)/K , which is equal to 1 for Newtonian fluids.
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effect of the regularisation is evident in Figs. 4.8 and 4.9: the shear rate is very low
(but not zero) and the viscosity is very large (but not infinite).

Finally, the velocity profiles for Bingham fluids at Re = 100 are plotted in Fig. 4.10
and compared with the available literature data of Gavrilov et al. [63] and Nirmalkar
et al. [126]. The above mentioned disappearance of the recirculation region with
increasing Bn is clearly visible in Fig. 4.10 (b). Overall, our results agree fairly well
with literature data, especially with those of Gavrilov et al. Some visible discrepancies
are observed in Fig. 4.10 (a) for Bn = 100, which probably stem from the different
settings (e.g. grids, regularisation parameters, domain size, etc.) used in this work
and in the work of Nirmalkar et al. [126].
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Figure 4.10: Axial velocity profiles for Bingham fluids (n = 1) at Re = 100; (a) along y on the plane z = 0; (b)
along the centreline (x = y = 0) near the rear stagnation point.

In conclusion, the flow field is qualitatively in line with previous studies from the
literature, and it quantitatively agrees with the results of Gavrilov et al. and Nirmalkar
et al.

4.5.2. DRAG COEFFICIENTS AND COMPARISON WITH LITERATURE
The drag coefficient is often the only quantity of interest in many engineering ap-
plications. It is therefore a meaningful quantity to assess whether REFRESCO can
reproduce the results from the literature.

The drag coefficients and its components are reported in Table 4.5. The ratio
CDp /CD f is observed to increase with the non-Newtonian character of the fluid
(i.e. with higher Bn or lower n). This observation is consistent with the previous
numerical studies of Dhole et al. [41], Nirmalkar et al. [126], and Gavrilov et al. [63].
Furthermore, CD decreases with n, which is due to the shear-thinning effect the
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reduces the viscosity in the high-shear region near the sphere. A direct comparison
of CD with the literature data is given in Tables 4.6 and 4.7.

Note that performing a rigorous validation is not possible because the numerical
uncertainties for the literature data are not known. Nevertheless, we have applied
the validation procedure proposed by ASME [6] by replacing experimental data
with numerical data from the literature. According to the procedure, the modelling
error, δmodel , is estimated by comparing two quantities: the (expanded) validation
uncertainty,

Uval =
√

U 2
num +U 2

l i t +U 2
i nput , (4.11)

and the comparison error,
E = S −D , (4.12)

where S is our numerical solution value and D is the literature data. Ui nput is the
uncertainty due to the input parameters, which is zero for the present work. Unum

is the uncertainty in our numerical data, and it is reported in Table 4.4. Ul i t is the
uncertainty in the literature data. Since this is unknown, it was assumed Ul i t = 1%.

E and Uval define an interval within which δmodel falls, i.e.

E −Uval ≤ δmodel ≤ E +Uval . (4.13)

It is however remarked that, since the comparison is made with numerical data
instead of experiments, the modelling errors are expected to be zero. A successful
validation with literature data must thus yield |E | ≤ Uval . The comparison errors
and the validation uncertainties are plotted in Fig. 4.11, from which the following
observations are made:

• For power-law fluids (Bn = 0), the maximum |E | with Dhole et al. [41] and
Tripathi et al. [166] is about 7%, which is well outside the uncertainty range.
We found that the difference with respect to Dhole et al. lies in the pressure
component, where |E | reaches about 20% relative to our data. The reasons for
such difference are however not known. It is possible that the uncertainty in the
literature data is actually greater than 1%, therefore assuming Ul i t = 1% might
have led to an underestimation of the validation uncertainty. Nevertheless,
the agreement with the more recent results of Gavrilov et al. [63] is better, with
comparison errors that are either within or very close to Uval .

• For Bingham and Herschel–Bulkley fluids (Bn > 0) at Re = 10 and 100, the
larger discrepancies are found with respect to the data of Gavrilov et al., with
|E | > Uval for all cases. On the other hand, the agreement with Nirmalkar
et al. [126, 125] is excellent, with differences that are well within the validation
uncertainties.
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Table 4.5: Pressure, frictional and total drag coefficients for Re = 10 and 100.

Bn = 0 Bn = 10 Bn = 100 Re < 1

Re n CDp CD f
CD CDp CD f

CD CDp CD f
CD Bn CSp CS f

CS

10 1 1.528 2.781 4.308 25.10 18.30 43.39 223.1 97.62 320.8 2.299 3.071 3.325 6.395
10 0.8 1.641 2.537 4.178 25.00 15.22 40.22 222.9 86.25 309.2 8.047 8.599 6.668 15.27
10 0.6 1.799 2.222 4.021 24.86 12.45 37.31 222.6 77.99 300.6 59.59 55.93 26.85 82.78

100 1 0.512 0.577 1.089 2.789 1.915 4.704 22.41 9.775 32.18 340.7 181.9 71.71 253.6
100 0.8 0.494 0.446 0.940 2.764 1.570 4.334 22.39 8.632 31.02 497.5 312.7 115.3 428.0
100 0.6 0.471 0.320 0.790 2.722 1.261 3.983 22.36 7.802 30.16 544.6 499.0 175.5 674.5

Table 4.6: Drag coefficient, CD , from the present calculations and the literature. All the literature data is
from numerical simulations and not from the correlations proposed in the respective articles.

Re = 10 Re = 100

Data from n = 1 n = 0.8 n = 0.6 n = 1 n = 0.8 n = 0.6

Bn = 0 present work 4.308 4.178 4.021 1.089 0.940 0.790
Dhole [41] 4.281 4.086 3.769 1.062 0.921 0.759
Tripathi [166] 4.31 4.17 3.76 1.02 0.920 0.780
Gavrilov [63] 4.334 4.167 3.969 1.095 0.941 0.787

Bn = 10 present work 43.39 40.22 37.31 4.704 4.334 3.983
Gavrilov [63] 42.15 38.90 35.91 4.587 4.217 3.880
Nirmalkar [126, 125] 43.63 40.40 37.43 4.743 4.363 4.015

Bn = 100 present work 320.8 309.2 300.6 32.18 31.02 30.16
Gavrilov [63] 307.9 295.4 284.7 30.95 29.69 28.61

Table 4.7: Stokes coefficients, CS , for Bingham creep flow from the present calculations and the literature.

Re = 0.01

Data from Bn = 2.299 8.047 59.59 197.5 340.7 544.6

present work 6.395 15.27 82.78 253.6 428.0 674.5
Beris [15] 6.39 15.24 82.77 252.2 426.9 669.7
Liu [96] 6.38 15.21 82.67 253.6 426.0 671.9
Nirmalkar [126] - 15.25 82.83 - 427.5 673.5
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Figure 4.11: Comparison error (± validation uncertainty) for the drag coefficient in percentage of our data
for Re = 10 and 100 (top) and for Re = 0.01 (bottom).
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• The best agreement with literature data is achieved for Bingham creep flow
(Re = 0.01), with all the comparison errors being within the validation uncer-
tainties.

• Our results tend to be on the overpredicting side, i.e. E leans towards the right
side of Fig. 4.11. We observed that CD tends to decrease with grid refinement
and to increase with higher regularisation parameters. It is thus possible that
the other authors have used finer grids and/or lower regularisation parameters.
Another possible reason for a systematic increase in the sphere drag may be
expected from the effect of the tube-to-sphere diameter ratio [29]. However, it
was found in Section 4.4.3 that the uncertainty in CD due to the finite domain
size was between 0.05% and 0.12% for power-law fluids and below 0.001% for
the other non-Newtonian cases. Thus, the reasons for the over-predicting trend
remain unclear.

4.6. CONCLUSIONS
The non-Newtonian solver of REFRESCO has been tested on the laminar non-
Newtonian flow around a sphere as a stepping stone towards more practical maritime
applications.

Some difficulties were encountered when using large regularisation parameters,
which led to stagnating residuals and thus large iterative errors. A determining factor
turned out to be the choice of the viscosity interpolation scheme. Although obtaining
a fully converged solutions remained challenging, the improved iterative convergence
provided a significant reduction of the iterative and regularisation errors. This allowed
a more compelling comparison with literature.

The flow field around the sphere exhibited the expected behaviour for the consid-
ered test cases and it is both qualitatively and quantitatively consistent with previous
numerical studies. The maximum difference in drag coefficient between the calcu-
lated values and the values from the literature reached 7% (i.e. outside the validation
uncertainty range) for power-law fluids, whereas it was insignificant for Bingham
creep flow. Overall, the agreement with previous studies is good, with discrepancies
that are, in most cases, close or within the validation uncertainties.

Combining the evidence from the code verification exercises in the previous
chapter and the results of this work, it is concluded that the power-law, Bingham and
Herschel–Bulkley models are implemented correctly and that the code is capable
of reproducing literature data with good accuracy despite the high non-linearity
introduced by the non-Newtonian viscosity. This provides confidence to employ
REFRESCO for more complex applications such as a ship sailing through fluid mud.



5
VALIDATION OF THE RESISTANCE

OF A PLATE MOVING THROUGH

MUD: CFD MODELLING AND

TOWING TANK EXPERIMENTS

...in which the accuracy of the Bingham model is investigated for numerical predictions
of the resistance on a plate moving through fluid mud in laminar regime. The aim
is to provide some information about the accuracy of the Bingham model for the
prediction of the viscous resistance of a ship sailing through fluid mud. This chapter
presents a comparison of experimental and numerical data on the resistance of a plate
moving through fluid mud from the Europoort area (Netherlands). Results suggest that
the regularised Bingham model can be a reasonable compromise between simplicity
and accuracy, although attention must be paid to the choice of the regularisation
parameter.

The work in this chapter is based on the published article “Lovato, S., Kirichek, A., Toxopeus, S. L., Settels,
J. W. and Keetels, G. H. (2022). Validation of the resistance of a plate moving through mud: CFD modelling
and towing tank experiments. Ocean Engineering, 258, 111632” [99].
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5.1. INTRODUCTION

The verification of the code performed in the previous chapters is now followed by the
validation of the CFD model. This chapter focuses on the validation of the rheological
model. As was already anticipated in Section 2.4, one of the open questions for CFD
simulations of mud flows is which constitutive equation adequately describes the
complex non-Newtonian flow behaviour of mud. Clearly, this will depend on the
application.

The more complex models are typically utilised in rheological studies as their
objective is to reproduce the rheology of mud as precisely as possible. Coussot and
Piau [32] showed that mud suspensions can be well described by the Herschel–
Bulkley model, which has also been used to characterise the mud from the Port
of Emden (Germany) [185] and it is recommended by PIANC [109]. Wright and
Krone [183] used a more complex model that is parametrised with the solid content.
Continuing with higher level of complexity, Toorman [164] proposed a five-parameter
thixotropic model that is an extension of the Moore [122] and Worrall-Tuliani [182]
models. Van Kessel and Blom [81] used the Toorman model for a comparison of
the rheological properties of artificial and natural mud from the Port of Rotterdam
(Netherlands). Recently, Shakeel et al. [149] proposed a two-step yielding model
containing six fitting parameters that was based on the rheological analysis of mud
from the Port of Hamburg (Germany) [146, 147].

Such complex rheological models may be unnecessary for large-scale processes,
where in fact simpler models have found their own field of applicability. For example,
the wave-induced motions of muddy beds have been studied assimilating the mud to
a Bingham fluid (Mei and Liu [112], Liu and Mei [97], Ko-Fei and Mei [58], and Chan
and Liu [28]) or a Newtonian fluid (Jiang and Mehta [77] and Winterwerp et al. [181]).
As a counterexample, however, Knoch and Malcherek [87] used a modified version
of the Worrall-Tuliani model for numerical simulations of stratified mud flows in
coastal and estuarine environments.

Simple rheological models seem preferred also to study the effect of muddy
seabeds on marine vessels. The Newtonian model was used by Zilman and Miloh
[187] whereas Sano and Kunitake [143] even assumed inviscid mud. These strong
simplifications could be justified by the fact that viscosity plays a minor role in gravity
waves. Recently, Gao et al. [62] and Kaidi et al. [78] have performed CFD simulations
to study the influence of muddy seabeds on ships. The former modelled the mud
as an Herschel–Bulkley fluid, whereas the latter used the Newtonian model as they
observed little difference in the computed resistance when the Bingham model was
used.
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5.1.1. RESEARCH QUESTION AND AIM OF THE CHAPTER
To summarise, a broad range of rheological models for mud were used in previous
studies. For ‘sailing-through mud applications’, it is hypothesised that the Bingham
model is a good starting point to study the effect of yield stress on the frictional
resistance. This chapter tests this hypothesis on a simplified problem: a thin plate
moving through mud in laminar regime. In the context of ships sailing through mud,
the plate can be locally regarded as a part of the flat bottom of a typical ship hull,
although the displacement effects due to the hull form are not accounted.

An analysis and comparison of experimental and numerical data is presented.
The experiments consist of towing a plate in a towing tank filled with mud from
the Europoort area (Rotterdam, Netherlands) and diluted with sea water from the
same location. Three mud conditions are considered, all with density below or
equal to 1200 kg/m3, in line with the nautical bottom criterion applied in several
harbours across the world [109, 84]. The Bingham yield stress of the considered mud
conditions ranges between 10 and 23 Pa. Finally, CFD results have been compared
with predictions from simple analytical formulas.

5.2. EXPERIMENTAL DATA

5.2.1. FACILITY AND SETUP
The experimental data were obtained in the ‘Water and Soil Flume’ at Deltares
(Netherlands) [40]. In the remainder, the flume will be referred to as ‘towing tank’ as
the latter better describes how it was used in this work.

The towing tank is 30 m long and 2.4 m wide. The experiments consisted in towing
a smooth plywood plate through the mud in the tank. The plate was attached to
a carriage through a load cell (Fig. 5.1), which enabled force measurements in the
towing direction. The nominal towing speed of the carriage was varied between
0.25 and 1.0 m/s and, for each speed, the tests were repeated eight times in order
to estimate the random scatter of the mean force. The plywood plate has a chord
of 0.8 m and it is 0.012 m thick. For the tests with the most dense mud (Mud_23
in Table 5.2) the plate was submerged by 0.96 m, whereas for all other cases it was
1.0 m. The plate has been reinforced with vertical and horizontal wooden beams to
increase its stiffness and to reduce possible bending. The main information about
the experimental setup is summarised in Table 5.1.

To make an analogy with a ship, the aforementioned dimensions correspond
to h/T = 2, where h and T are the mud depth and the ship’s draught, respectively.
This depth-to-draught ratio is considered to be shallow enough to influence the
forces acting on a sailing ship. However, the relative width of the plate is an order of
magnitude lower than expected for typical ships, which practically eliminates the
blockage and the subsequent shallow water effects.
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Table 5.1: Main information about the experiments.

Plate Towing tank

Chord, L (m) 0.8 Length (m) 30.0
Thickness, t (m) 0.012 Width (m) 2.4
Draught, T (m) 0.96, 1.0 Mud level, h (m) 1.96, 2.0
Speed, V (m/s) 0.27, 0.52, 0.77, 1.02
Fr =V /

√
g L 0.10, 0.19, 0.27, 0.36

Fr h =V /
√

g h 0.06, 0.12, 0.17, 0.23
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5.2.2. MUD PREPARATION

The mud was collected from the Calandkanaal (Europoort, Netherlands) and trans-
ported to the towing tank. In order to perform the validation for different mud
conditions, the mud was diluted with sea water (having the same salinity as the
natural system) to obtain three densities that correspond to target yield stress values
of approximately 10, 20 and 30 Pa.

To ensure homogeneous mud, the latter was stirred using a rotating mixer (Fig. 5.2),
which has been towed three times back-and-forth prior the start of the experiments
with each mud. After the homogenisation, samples of mud were collected twice (be-
fore the start of the experiments and after about six hours) at three specific locations
along the towing tank. Thus, six samples for each mud were analysed to obtain the
density and the rheology properties.

Figure 5.2: The rotating mixer used to homogenise the mud. The right panel shows the mixer in action.

5.2.3. MUD DENSITY AND RHEOLOGY

The bulk densities of the mud samples were determined by a portable density meter
(Anton Paar, DMA 35). The mud rheology was analysed using the HAAKE MARS I
rheometer with a concentric cylinder geometry (CC25) having a gap width of 1 mm.
A Peltier controller system was utilised to maintain the temperature at 20 ◦C during
each experiment, which was the average temperature in the towing tank.

The flow curves of the mud samples were obtained in controlled shear rate mode
with the following protocol: (i) shear rate ramp-up from 0 to 300 s−1 in 180 s, (ii)
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constant shear rate of 300 s−1 for 60 s, and (iii) shear rate ramp-down from 300 to
0 s−1 in 180 s. This protocol is proven to be quite fast and repeatable to obtain the
yield stress of remoulded samples [149]. Then, the ramp-down1 flow curves between
200 and 300 s−1 were used for the least-squares fitting of the Bingham model (Fig. 5.3).

For simple shear flow, the Bingham model reads

τ= τB +µB γ̇ , (5.1)

where τ (Pa) is the shear stress, γ̇ (s−1) is the shear rate, τB (Pa) is the Bingham
yield stress and µB (Pas) is the Bingham (or plastic) viscosity. The mean density and
the mean Bingham parameters (over the six samples) of each mud are reported in
Table 5.2, together with the standard uncertainties that will be used for the estimation
of the input parameter uncertainties in the numerical simulations.

0 50 100 150 200 250 300
˙γ [1/s]

0

5

10

15

20

25
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35

τ
[P

a]

Mud 23

Mud 17

Mud 10

experimental fl ow curve

Bingham model

Figure 5.3: Ramp-down flow curves and Bingham fits for one of the six samples of each mud.

1The ramp-down curves were used because, after the mixing, the mud is assumed to be in a remoulded
state.
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Table 5.2: Mean values (± standard uncertainty) of density and Bingham parameters for the three mud
dilutions. The mean values are calculated over the six samples of each mud.

Mud case ρ (kg/m3) τB (Pa) µB (Pa s)

Mud_10 1171±0.08% 9.96±0.46% 0.0172±0.67%
Mud_17 1190±0.03% 17.3±0.99% 0.0249±0.63%
Mud_23 1200±0.05% 23.0±1.76% 0.0344±2.56%

5.2.4. ANALYSIS OF EXPERIMENTAL DATA

CALIBRATION UNCERTAINTY

The experimental uncertainties were estimated following the procedure in the ISO-
GUM [75]. The first source of experimental uncertainty originates from the cali-
bration of the load cell, Ucal . The calibration is needed to find the coefficients that
ensure the correct conversion of the measured signal from Volt to Newton. This was
done by attaching a thread to the plate, and then pulling it in the flow direction with a
dynamometer that was previously calibrated using weights. The force was increased
from 4 to 24 N by constant increments of 2 N, and the calibration coefficients were
obtained from linear curve fitting. Thereafter, the load cell was tested again using the
found coefficients, and the maximum observed discrepancy against the dynamome-
ter was about 3.5%. One possible explanation for such rather large discrepancy is
that the load cell, which is capable of measuring up to 1000 N, is working in a low
range of forces. In fact, the discrepancies between the load cell and the dynamometer
were lower when the applied forces were larger. Another reason can be attributed
to the non-perfect rigidity of the system composed by the load cell and the plate.
Eventually, it was decided to adopt Ucal = 4% as a ‘Type B’ uncertainty.

REPEATED TESTS UNCERTAINTY

The uncertainty in the mean force due to the repeated tests can be estimated by
statistical methods (‘Type A’ uncertainty). For a given mud concentration and a given
speed, tests were repeated eight times. In order to determine the time window in
which the force signal is stationary (see Fig. 5.4), the Transient Scanning Technique
(TST) of Brouwer et al. [22] was applied using an open source code [95]. Some force
signals had to be discarded because it was not possible to find any time window
in which the signal appeared to be statistically steady. This means that the actual
number of repetitions may be eventually equal or less than eight.

After having established the time interval in which the force signal is stationary,
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Figure 5.4: Instance of one of the force signals obtained at 0.27 m/s with Mud_10. Only the steady part
highlighted in the plot was used in Eq. (5.2).

the time-average force Ri
t .a. was obtained from each i-th signal as

Ri
t .a. =

1

n

n∑
j=1

f j , (5.2)

where n is the number of sampling data points in the stationary time interval and f j

is the j-th sampling force.
The final measured force is the mean of the time-average forces, i.e.

RT ≡ Rmean = 1

N

N∑
i=1

Ri
t .a. , (5.3)

where N ≤ 8 is the number of repetitions. Then, the (unbiased) standard deviation of
the repeated tests reads

s =
√√√√ 1

N −1

N∑
i=1

(Rmean −Ri
t .a.)

2 , (5.4)

whereas the standard uncertainty is

u = s�
N

. (5.5)
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Finally, the expanded uncertainty of the repeated tests is

Ur ep = k u , (5.6)

where k is the coverage factor. Assuming that the mean force follows the Student’s t-
distribution, k = 2.306 ensures a 95% confidence level with eight repetitions (degrees
of freedom). For the cases where some signals had to be discarded, larger coverage
factors were used.

OTHER UNCERTAINTIES

Other uncertainties such as those due to manufacture tolerances and precision of the
measuring devices were assumed to be negligible compared to the calibration and
repeated tests uncertainties, therefore they were not considered. Another important
source of uncertainty originates from the experimental setup. A way to account
for this is to repeat the tests after having disassembled and reassembled the plate,
the load cell and the steel beam to which the load cell is attached. In this way, the
possible variability in the setup, such as that due to small misalignments of the plate
with the carriage direction, would be included in the uncertainties of the repeated
tests. However, this was not done as the time required would have been incompatible
with the time window available to complete the experiments. As will be shown in
Section 5.4.5, even small rotations of the plate can visibly increase the resistance,
thus the experimental uncertainties might have been somewhat underestimated.

TOTAL EXPERIMENTAL UNCERTAINTY AND MEAN FORCES

Finally, the experimental uncertainties Uexp relative to the mean resistance of the
plate were obtained as RMS of Ucal and Ur ep , and are reported in Table 5.3 together
with the mean experimental resistance RT . As expected, the total resistance increases
with speed and it is larger for the higher mud concentrations.

It is also worth noticing that RT ̸= 0 as V → 0, contrary to what would be expected
in Newtonian fluids such as air and water. This is because of the mud yield stress,
which approximately increases the resistance by τB S, where S = 2L T , with L and
T being the plate chord and draught, respectively. In fact, a good estimate of the
Bingham yield stress can be obtained by extrapolation to V = 0 of RT /S with a second-
order polynomial (Fig. 5.5). These estimates are within 3% of the Bingham yield stress
for the three muds. This is a first indication that, for this application, the rheology of
mud is reasonably well captured by the Bingham model.

5.3. CFD SETUP
The experimental data reported in the previous section have been compared with
the predictions obtained with REFRESCO. This section presents the governing equa-
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Table 5.3: Mean experimental resistance and relative percentage uncertainty.

V (m/s) RT (N) Uexp RT (N) Uexp RT (N) Uexp

Mud_10 Mud_17 Mud_23
0.27 18.0 5.4 30.0 5.3 39.2 4.7
0.52 20.4 4.2 34.2 4.3 44.7 6.2
0.77 23.8 4.2 38.9 4.0 49.0 4.6
1.02 28.3 5.0 45.1 4.6 55.2 4.5
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Figure 5.5: Extrapolation to V = 0 of the experimental resistance (divided by the side surface of the plate)
using a second-order polynomial. The Bingham yield stresses are plotted with their standard

uncertainties.
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tions, the computational domain and the boundary conditions. Finally, the numerical
and input parameters uncertainties are discussed.

5.3.1. GOVERNING EQUATIONS
An important decision that will have significant impact on the computing costs is
whether the free surface must be modelled or not.

In a first crude approximation, the plate can be regarded as a marine vessel and
the resistance can be divided into a viscous component and a wave component. The
latter can be reasonably considered to be a function of only the Froude number,
Fr = V /

√
g L, where V is the speed, g is acceleration of gravity and L is the plate

length. The maximum Fr for the plate is 0.36, a value that is typical of fishing vessels.
For these type of vessels the wave resistance is roughly 60% of the total resistance
(Larsson and Raven [91]). However, it is possible to identify at least two reasons to
neglect the wave resistance for the case of a plate moving in mud.

First, with the given dimensions, the plate has a wetted surface that is roughly ten
times that of a fishing vessel, thus the viscous resistance component is also roughly
ten times larger. This already reduces the wave resistance from 60% to about 15% of
the total resistance. Second, even neglecting the yield stress, the least viscous mud
(Mud_10) has a viscosity that is about twenty times that of water. Since in laminar
regime the drag on a flat plate scales with

p
µB , the viscous resistance in mud is at

least four times larger than in water. This brings the wave resistance for the highest
speed down to only a few percent of the total resistance, meaning that the effect of
the free surface could be neglected.

To further validate this assumption, preliminary calculations were performed
including the free surface, which was modelled using the VOF method (see Chapter 2).
Simulations were run in unsteady mode and the time integration was performed
implicitly with a first-order backwards Euler scheme. The convective flux of the
volume-fraction equation was discretised with an interface-capturing scheme [85]
and the grid was refined around the initial mud level. Figure 5.6 shows that double-
body (without free surface) and free-surface calculations produce virtually the same
pressure resistance. In terms of the total resistance, the average and maximum
difference in percentage of the double-body results are 0.3% and 0.9%, respectively.

In light of the above considerations, the contribution of the wave resistance can
be neglected, thus double-body calculations are performed unless stated otherwise.

The equations being solved are the incompressible continuity and momentum
equations (in Cartesian coordinates):

∇·u = 0,
∂ρu

∂t
+∇· (ρu u) =∇·τ−∇p . (5.7)

The flow behaviour of mud has been described by the regularised Bingham constitu-
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Figure 5.6: Pressure resistance computed with and without the free surface (M = 12000, see Section 5.3.4).

tive equation (see also Section 2.4.2), for which the deviatoric stress tensor reads

τi j = 2
[τB (1−e−mγ̇)

γ̇
+µB

]
Si j . (5.8)

For this problem, the non-dimensional regularisation parameter is expressed as M =
mτB /µB , which represents the ratio of maximum-to-minimum viscosity attainable
by the fluid (analogous to M ′ defined in Section 4.3). The uncertainties originating
from the use of the regularisation are discussed in Section 5.3.4.

5.3.2. FORCE CALCULATIONS
One of the advantages of numerical methods over the experiments is the possibility
to distinguish between the frictional and the pressure resistance. These components
are calculated respectively as:

RF =
(∫

Sw

τ ·nd s

)

x
, RP =

(∫

Sw

−p ·n
)

x
d s , (5.9)

where Sw is the total wetted surface of the plate, n is the unit normal vector of
the plate pointing outwards and the subscript x indicates the x-component (flow
direction). The total plate resistance, RT , is simply the arithmetic summation of RP

and RF .
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5.3.3. COMPUTATIONAL SETTINGS, DOMAIN AND BOUNDARY CONDI-
TIONS

The numerical settings are the same as described in Section 3.4 for steady calcula-
tions.

Although experiments at the higher speed may have been affected by small de-
flections of the plate, calculations will be initially performed with a plate perfectly
aligned with the flow direction. The effect of possible rotations will be investigated in
Section 5.4.5. Due to symmetry considerations, only the starboard side of the domain
containing the plate was modelled. The computational domain has been discretised
with H-type grids (Fig. 5.7). In order to reproduce the experimental setup, two series
of grids were generated: one where the plate is immersed in the mud up to 1.0 meter
(used for Mud_10 and Mud_17), and another where the plate is immersed up to 0.96
meter (used for Mud_23). For both series, the finest grid is made of about 1.77 million
cells and the size of the first cell away from the plate surface is 2×10−4, yielding the
maximum y+ between 0.6 and 2.4 among all calculations.

For the boundary conditions, the inflow velocity (towing carriage’s speed) was
applied at the inlet boundary, whereas the no-slip/non-permeability condition was
applied to the plate surface (Fig. 5.7). At the outlet, a Dirichlet condition was imposed
for the pressure while symmetry conditions were applied to the top and symmetry
plane. The side and bottom boundaries were set as impermeable walls moving at the
same velocity of the inflow.

The inlet and outlet boundaries were placed at a distance equal to 2.5 and 5.25
plate lengths, respectively. Calculations performed with twice the distance showed a
maximum difference lower than 0.1% in the plate’s drag, confirming that the domain
is sufficiently long to neglect the influence of the inlet and outlet boundaries.

2.5 L L 5.25 L

x
y

z

inflow velocity 

moving wall

moving wall

pressure outlet

symmetry

symmetry

wall

Figure 5.7: Computational domain (finest grid) and boundary conditions.
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5.3.4. NUMERICAL UNCERTAINTIES
For steady flows, numerical errors are usually divided into three components: round-
off, iterative and discretisation errors. However, the use of the regularisation for the
Bingham model produces additional errors, hereafter labelled as regularisation er-
rors. Present calculations were performed on a double-precision machine, therefore
round-off errors are neglected and not further discussed.

ITERATIVE AND DISCRETISATION UNCERTAINTIES

Iterative errors stem from the use of iterative methods to find the solution of the
discretised equations. For this work, the iterative convergence criterion was set
to L∞ < 10−7. However, this convergence tolerance was actually hardly met; thus,
in practice, iterations were stopped when the maximum number of iterations was
reached. As a result, iterative errors could not be neglected and the uncertainties,
Ui t , were estimated using the method of Eça and Hoekstra [47].

Discretisation errors arise from the use of grids with a finite number of points,
and from the use of finite differences instead of partial derivatives. The discretisation
uncertainties, Ud , were estimated with the method of Eça and Hoekstra [46] using
four geometrically similar grids. Figure 5.8 shows an example of the grid sensitivity of
RT for Mud_23 and V = 0.27 m/s.

The iterative and discretisation uncertainties are reported in Table 5.4 for the
pressure, friction and total resistance. Simulations were carried out using M = 12000
(the sensitivity to M is discussed in the next sub-section). The larger percentage
uncertainties are found in the pressure component, especially at low speed, with
a maximum U P

i t +U P
d of about 16% for Mud_23. For the frictional component, on

the other hand, the uncertainties are much lower and do not exhibit a clear trend.
Overall, U T

i t +U T
d never exceeds 2.4%.

REGULARISATION UNCERTAINTY

As already mentioned in Section 4.4.5, the use of regularisation methods produces
an additional error component, the regularisation error, which is the difference
between the solution obtained with the regularised and the ideal (non-regularised)
model. This error can be minimised by using very large regularisation parameters,
although this often leads to slow or stagnating iterative convergence. Furthermore,
large regularisation parameters produce stronger viscosity gradients and consequent
larger discretisation errors. Because of this interdependency, the final numerical
uncertainty was estimated as

Unum =Ui t +Ud +Ur eg , (5.10)

where Ur eg is the regularisation uncertainty.
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Figure 5.8: Grid sensitivity of RT for Mud_23, V = 0.27 m/s. The grid refinement ratios are hi /h1 = 1, 1.12,
1.45, 2, which correspond to grids having 1.77, 1.26, 0.59, 0.22 millions cells, respectively,.

Table 5.4: Iterative and discretisation uncertainties in percentage of the corresponding resistance
component for the pressure, frictional and total resistance on the finest grid and keeping the

non-dimensional regularisation parameter at M = 12000. The total resistance and its components are in
Newton.

V (m/s) RP U P
i t U P

d RF U F
i t U F

d RT U T
i t U T

d

Mud_10
0.27 2.5 1.4 6.5 17.2 0.0 0.6 19.7 0.1 1.1
0.52 3.6 0.0 2.6 18.0 0.0 1.7 21.6 0.0 0.9
0.77 5.5 0.5 0.7 18.3 0.6 2.7 23.7 0.3 2.0
1.02 8.2 0.1 2.5 18.1 0.7 0.6 26.3 0.1 0.5
Mud_17

0.27 4.1 1.7 7.1 29.6 0.0 0.1 33.7 0.2 0.8
0.52 5.2 0.0 1.6 31.0 0.0 1.2 36.2 0.0 1.3
0.77 7.1 0.0 2.1 31.7 0.0 0.8 38.8 0.0 0.3
1.02 9.7 0.3 0.8 32.2 0.2 2.6 41.9 0.1 1.9
Mud_23

0.27 5.1 3.4 13.0 37.8 0.0 0.2 42.9 0.4 1.8
0.52 6.3 4.3 6.0 39.6 0.0 1.2 45.9 0.3 0.4
0.77 8.1 0.0 5.1 40.8 0.0 0.7 48.9 0.0 0.3
1.02 10.6 0.3 0.1 41.6 1.0 0.4 52.3 0.5 0.3
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It is now convenient to introduce ε= 1/M . In order to estimate Ur eg one needs to
know how the solution varies with ε. Since this is unknown for the present problem,
we have followed the procedure already adopted in Section 4.4.5, i.e. Ur eg was
estimated with the method of Eça and Hoekstra [46] by replacing the grid size with ε,
as shown in Fig. 5.9.
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Figure 5.9: Sensitivity of RT to the inverse of the non-dimensional regularisation parameter ε= 1/M for
Mud_23, V = 0.27 m/s. The refinement ratios are εi /ε1 = 1, 1.5, 2, 3, which correspond to M = 12000, 8000,

6000, 4000, respectively.

The uncertainty estimates are reported in Table 5.5, and they were obtained by
varying M between 4000 and 12000. Clearly, the pressure component is (percentage-
wise) the most sensitive to the regularisation, especially at low speeds, where U P

r eg
ranges between 15% and 17.6%. A possible reason for the strong influence of M on

Table 5.5: Regularisation uncertainties in percentage of the corresponding resistance component for the
pressure, frictional and total resistance on the finest grid and M = 12000.

V (m/s) U P
r eg U F

r eg U T
r eg U P

r eg U F
r eg U T

r eg U P
r eg U F

r eg U T
r eg

Mud_10 Mud_17 Mud_23
0.27 15.0 1.5 3.2 15.8 1.5 3.2 17.6 2.0 3.9
0.52 10.4 1.5 3.0 12.7 1.7 3.2 15.1 2.0 3.8
0.77 6.4 1.3 2.5 9.1 1.5 2.9 10.9 1.8 3.3
1.02 4.2 1.1 2.1 6.3 1.3 2.5 7.7 1.5 2.8

RP is that M affects the viscosity in low shear rate regions, such as near the stagnation
points at the front and rear face of the plate where RP is generated. In these regions,
the pressure increases with M (Fig. 5.10). On the other hand, in the high shear
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rate region at the sides of the plate, where the friction component is generated, the
viscosity is nearly insensitive to M , explaining the lower sensitivity of RF . Fortunately,
the pressure contribution is small and so the uncertainties in RT are within 4%. In
conclusion, M = 12000 was adopted to mimic the ideal Bingham model.

Figure 5.10: Effect of regularisation parameter M on the apparent viscosity (left) and pressure coefficient
(right) at the leading face of the plate for Mud_23 and V = 0.27 m/s. Viscosity is in logarithmic scale. Flow

is from left to right. The cutting plane is at z/T =−0.5.

5.3.5. INPUT PARAMETERS UNCERTAINTY
Numerical simulations require input parameters that are experimentally determined
and that have uncertainties associated with them. The standard input uncertainty,
ui nput , can be calculated using the perturbation method, as

u2
i nput =

∑
i

( ∂R

∂Xi
ui

)2
, (5.11)

where R is the resistance of the plate, Xi is the i-th input parameter, ui is its corre-
sponding standard uncertainty, ∂R/∂Xi is the sensitivity coefficient.

For the present work, the input parameters are the following: plate’s draught
T , carriage’s speed V (flow velocity), mud density ρ, Bingham yield stress τB and
viscosity µB . The standard uncertainties associated with the mud properties were
reported in Table 5.2. For T and V , the standard uncertainty could not be estimated
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with statistical methods, therefore they were both assumed to be 1%. The sensitivity
coefficients could be determined from CFD calculations, however this would lead
to an unfeasible number of simulations. It was thus decided to approximate the
drag force on the plate by modelling CFD data with the analytical formulas that are
discussed in Section 5.5. While there are some discrepancies between these formulas
and CFD data, the agreement is deemed sufficient for the purpose of determining
the sensitivity coefficients.

The derivation of ∂R/∂Xi from analytical formulas becomes then a simple yet
lengthy task, which was thus carried out with the aid of computer algebra systems.
Table 5.6 shows the non-dimensional sensitivity coefficients of each input parameter
for Mud_10 and Mud_23.

Table 5.6: Non-dimensional sensitivity coefficients ∂RT /∂Xi Xi /RT for each input parameter Xi : plate’s
draught T , carriage’s speed V , mud density ρ, Bingham yield stress τB and viscosity µB . Xi is the mean

input parameter that is used in the CFD simulations whereas RT is the total resistance from the analytical
formulas evaluated for Xi .

V (m/s) ρ T V τB µB ρ T V τB µB

Mud_10 Mud_23
0.27 0.04 1.00 0.10 0.94 0.02 0.02 1.00 0.04 0.97 0.01
0.52 0.12 1.00 0.28 0.83 0.05 0.07 1.00 0.17 0.90 0.03
0.77 0.21 1.00 0.49 0.72 0.07 0.12 1.00 0.30 0.83 0.05
1.02 0.30 1.00 0.70 0.61 0.09 0.18 1.00 0.43 0.75 0.07

The largest sensitivity coefficient is for the draught T . As expected, it is exactly
equal to 1 (i.e. linear relation) since both RP and RF are proportional to the plate
surface, which is in turn a linear function of T . For all the other input parameters,
the coefficients are less than 1, which means that the input uncertainty for RT grows
less than linearly with an increase of the standard uncertainty. Note, however, that
the coefficients in Table 5.6 are calculated for those particular test cases, therefore
different values should be expected for other experimental conditions. Furthermore,
the coefficients can be considered accurate as long as the resistance of the plate
can be well approximated by the analytical formulas discussed in Section 5.5. For
example, the linear relation between RT and T is accurate only for small variations of
T and, in any case, as long as the shallow water effects remain negligible.

Assuming a Gaussian error distribution, the final expanded input uncertainties
are Ui nput = 2ui nput (95% confidence) and they are reported in Table 5.7. The largest
Ui nput is found for Mud_23 because the latter has the highest uncertainty in τB (see
also Table 5.2). Furthermore, Ui nput decreases with V , which reflects the behaviour
of ∂RT /∂τB .
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Table 5.7: Input parameter uncertainties in percentage of RT from CFD (M = 12000). The input
parameters are the: speed V , plate draught T , mud density ρ and Bingham parameters τB and µB .

V (m/s) U P
i nput U F

i nput U T
i nput U P

i nput U F
i nput U T

i nput U P
i nput U F

i nput U T
i nput

Mud_10 Mud_17 Mud_23
0.27 2.2 2.1 2.1 2.8 2.7 2.7 4.0 3.8 3.8
0.52 2.3 2.2 2.2 2.7 2.6 2.6 3.5 3.7 3.7
0.77 2.2 2.3 2.3 2.6 2.7 2.6 3.3 3.7 3.5
1.02 2.1 2.5 2.4 2.5 2.8 2.6 3.0 3.7 3.5

5.4. COMPARISON OF EXPERIMENTAL AND CFD DATA

5.4.1. MODELLING ERROR ESTIMATION
According to the validation procedure proposed by ASME [6], the modelling error,
δmodel , can be estimated by comparing two quantities: the (expanded) validation
uncertainty,

Uval =
√

U 2
num +U 2

exp +U 2
i nput , (5.12)

and the comparison error,
E = S −D , (5.13)

where S is the numerical solution value and D is the experimental data. Unum , Uexp

and Ui nput are discussed above.
E and Uval define an interval within which δmodel falls, i.e.

E −Uval ≤ δmodel ≤ E +Uval . (5.14)

When |E | >>Uval , the modelling error can be directly estimated as |δmodel | ≈ |E |.
In all other cases, only the upper and lower bounds of δmodel can be determined. If
more information about the modelling error is required, the validation uncertainty
needs to be reduced.

The estimated δmodel , Uval and E using the Bingham model with large regu-
larisation parameters (M = 12000) are reported in Table 5.8 in percentage of the
experimental value.

At intermediate speeds E is close or within Uval , whereas at the lowest and highest
speed E tends to exceed Uval . In any case, E is never sufficiently larger than Uval

to allow a direct estimate of δmodel . In other words, for all the cases, only the upper
bound of the modelling error could be estimated and, for a few cases, also the sign of
the error could be determined.

The largest upper bounds of the modelling errors are found at the lowest speed
for all three mud conditions, which are also the cases with the largest E . The lowest
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Table 5.8: Comparison error, validation uncertainty and modelling errors in percentage of the
experimental data. In some cases the sign of the modelling errors could be determined and it is reported

between parenthesis.

V (m/s) E Uval |δmodel | ≤ E Uval |δmodel | ≤ E Uval |δmodel | ≤
Mud_10 Mud_17 Mud_23

0.27 9.7 7.6 17.3 (+) 12.3 7.8 20.1 (+) 9.4 9.2 18.5 (+)
0.52 5.6 6.4 12.0 5.8 7.0 12.8 2.6 8.6 11.2
0.77 -0.1 6.8 6.9 -0.2 5.8 6.0 -0.1 6.8 6.9
1.02 -7.1 6.0 13.1 (-) -7.2 6.7 13.9 (-) -5.3 6.6 11.8

upper bound of the modelling errors is found for V = 0.77 m/s because E is very
small for all the three mud concentrations. At this speed, there is an intersection of
the numerical and experimental data (see Fig. 5.11).
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Figure 5.11: Total resistance of the plate moving through mud as a function of the inflow velocity. CFD
error bars include numerical and input parameter uncertainties. CFD data were obtained keeping the

non-dimensional regularisation parameter at M = 12000 (see also Section 5.3.4).

The two main observations from Fig. 5.11 are: i) the variation of resistance due
to the changes of mud rheology is well captured by CFD; ii) the slopes of the ex-
perimental and CFD curves are visibly different. The first observation suggests that
the Bingham model is suitable, at least, to study how RT changes in response to
variations of the mud concentration. About the second observation, CFD tends to
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overpredict RT at low speed and to underpredict it at high speed. This trend suggests
that E will increase in magnitude for speeds outside the range considered in this
work. Some possible causes for this may be the:

- choice of the regularisation parameter

- selected shear rate range for the rheological characterisation of mud

- poor fitting of the Bingham model to the flow curves at low shear rates (see e.g.
Fig. 5.3)

- contamination of experimental data by undesired effects

These possible causes are discussed below.

5.4.2. EFFECT OF THE REGULARISATION PARAMETER
It was just shown that the largest discrepancies between experiments and CFD are
found at the lowest speed for all the three mud conditions. Since lower speeds are
related to lower shear rates, a possible explanation for this may be the poor modelling
of mud at low shear rates. Experimental evidence (e.g. Dzuy and Boger [45] and
Ellwood et al. [56]) suggested that most real fluids do not exhibit an actual yield stress
and that regularised models may better capture the behaviour of non-Newtonian
materials at low shear rates.

In light of this, it is now questioned whether the rheology of mud may be better
described using lower regularisation parameters. A natural choice could be to deter-
mine the regularisation parameter, m, from the rheological data. Among the many
possible choices, three procedures to determine m are considered:

• Mdown : m is chosen such that the regularised curve will intersect the first point
(i.e., lowest γ̇) in the ramp-down flow curve, i.e.

m =− ln
(
1+ µB γ̇

′−τ′
τB

) 1

γ̇′
, (5.15)

where the prime symbol indicates the first point in the (ramp-down) flow
curve. Note that τB and µB do not change as they are determined from the
least-square fitting of the ideal Bingham model (see also Section 5.2.3).

• Mup : m is also obtained from Eq. (5.15) but using the ramp-up curve.

• M f i t : the triplet (m, τB , µB ) is obtained by least-square fitting of

τ= τB (1−e−mγ̇)+µB γ̇ (5.16)

to the ramp-down curve.
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Mdown and Mup ensure that the regularised Bingham model produces the same
apparent viscosity observed in the first point of the ramp-down and ramp-up flow
curves, respectively. An alternative procedure similar to Mdown and Mup would be to
extrapolate the measured apparent viscosity to γ̇= 0 and then use the extrapolated
value to derive the regularisation parameter. The latter procedure would probably be
less susceptible to the noise in the first point of the rheological data.

The Bingham fits obtained using the three procedures above are illustrated in
Fig. 5.12, whereas the non-dimensional regularisation parameters are reported in
Table 5.9. Note that since m is now determined from the mud rheology, the regulari-
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Figure 5.12: Regularised Bingham model using different regularisation parameters: M = 12000, Mdown ,
Mup and M f i t . The flow curves are for Mud_23.

sation uncertainty must be estimated as an input parameter uncertainty,

Ur eg = k ur eg = k
∂R

∂m
um , (5.17)

where R is the resistance. um is the standard uncertainty for six repetitions (num-
ber of mud samples) and k = 2.447 with 95% confidence assuming a Student t-
distribution. The derivative in Eq. (5.17) is unknown, thus it was approximated with
a second-order accurate finite difference,

∂R

∂m
≈ R(m +um/2)−R(m −um/2)

um
, (5.18)
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Figure 5.13: Effect of different regularisation parameters on the CFD predictions of the plate resistance.

where the two terms at the numerator were determined from numerical simulations
for each mud condition and speed. For most of the test cases, we found that the
regularisation uncertainties have been reduced compared to the calculations with
M = 12000. The closest fit to the ramp-down curve is obtained with M f i t , whereas

Table 5.9: Mean values (± standard uncertainty) of the non-dimensional regularisation parameters
obtained from the rheological data.

V[m/s] Mup Mdown M f i t

Mud_10 538±5.7% 687±1.3% 236±1.8%
Mud_17 708±1.8% 658±0.3% 224±1.2%
Mud_23 747±13.3% 556±1.1% 191±1.7%

Mup and Mdown tend to overpredict the shear stress in the low shear rate range
(Fig. 5.12). However, these observations are not reflected by the accuracy in the force
prediction. Figure 5.13 shows in fact that M f i t produces by far the worst agreement
to experimental data, whereas Mup and Mdown produce fairly good predictions at
the lower speeds. In particular, Mup seems to capture very well the trend at low
speeds. At V = 0.27 m/s, the comparison error, E , reduces to 1.1%, 0.9% and 4.9%
for Mud_10, Mud_17 and Mud_23, respectively. Except for Mud_23, Mdown and Mup

produce nearly the same results.
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Figure 5.14: Highlighted in magenta are the cells where γ̇≥ 300 s−1 for Mud_23 near the leading and
bottom edge of the plate. V = 1.02 m/s (left); V = 0.27 m/s (right).

In conclusion, although the fit using M f i t appears closer to the mud flow curves,
it gives by far the worst numerical prediction. On the other hand, determining the
regularisation parameter based on the first points in the flow curves seems to give
good agreement with experimental data at low speed. However, the discrepancies
become larger at the higher speeds.

5.4.3. EFFECT OF THE SHEAR RATE RANGE FOR THE RHEOLOGY CHARAC-
TERISATION

Despite the improvements observed at low speeds when the regularisation parameter
is determined from the mud rheology, the discrepancies at high speed remain large
(even larger than the case with M = 12000). Since higher speeds are related to higher
shear rates, a possible explanation may be sought in the shear rate range considered
for the rheological experiments.

Figure 5.14 highlights the fluid regions where the shear rate is above 300 s−1,
the latter being the maximum shear rate reached in the rheological measurements.
These regions are located near the plate edges, where the fluid experiences strong
accelerations. As expected, the case at the higher speed has larger fluid regions with
γ̇≥ 300 s−1. It is possible that fitting the Bingham model to the flow curve up to 300
s−1 is insufficient to accurately predict the force at high speeds (shear rates).

Since rheological data for γ̇> 300 s−1 are not available, the Bingham parameters
corresponding to flow curves with higher γ̇ have been obtained by extrapolation.
Basically, the Bingham parameters were obtained by varying the maximum shear
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rate2, γ̇max , between 200 and 300 s−1. Then, the Bingham parameters were linearly3

extrapolated up to γ̇max = 400s−1, as illustrated in Fig. 5.15 for τB . It was observed
that τB increases with γ̇max , whereas µB decreases (not shown).
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Figure 5.15: Bingham yield stresses, τB , obtained using different shear rate intervals having γ̇max as
maximum (open circles); linear fitting of τB values for γ̇max ≤ 300 s−1 (dashed lines); extrapolated τB for

γ̇max = 400 s−1 (filled squares).

Numerical simulations were performed for the case Mup as an example, which
was observed to produce good agreement with experiments at low speed but larger
discrepancies at high speed (see Section 5.4.2). Note that the values of Mup are not
the same as in Table 5.9 because the Bingham parameters have changed.

Figure 5.16 shows that increasing γ̇max seems to slightly improve the agreement
with experimental data. This is because higher γ̇max gives higher τB , which shifts up
the CFD data. However, the slopes of the CFD curves are still visibly different from
the experimental ones. This is because the slopes of the CFD curves are related to
µB , but the latter has a rather small influence on the resistance (see also Table 5.6).

In conclusion, while increasing the maximum shear rate in the rheological tests
leads to slightly better agreement with experimental data, it does not explain the
discrepancies at the higher speeds.

5.4.4. EFFECT OF USING A MORE COMPLEX RHEOLOGICAL MODEL
Can the CFD predictions become more accurate by simply improving the fit of the
rheological model to the flow curves? We showed that M f i t gives the closest fit to
the ramp-down curve while producing the worst resistance prediction. This is now
further investigated using the regularised Tscheuschner rheological model [117],

2The interval used for the Bingham fitting is [γ̇max -100s−1,γ̇max ]
3It is implicitly assumed that the ramp-down curve will continue up to γ̇= 400s−1 without major changes.
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Figure 5.16: Effect of the maximum shear rate in the rheology characterisation on the CFD predictions of
the plate resistance.

which can be adjusted to be a virtually perfect fit of the ramp-down flow curves
(Fig. 5.17).

This model was originally developed for chocolate and it provides a somewhat
mixed behaviour of Bingham and Herschel–Bulkley fluids. For simple shear flows,
the model reads

τ= τ0

(
1−e−mγ̇

)
+µ1γ̇+µ2γ̇

n , (5.19)

where µ1 and µ2 determine the slope of Eq. (5.19) at high and low shear rates, re-
spectively. The quintuplet (m, τ0, µ1, µ2, n) was obtained by least squares fitting
of Eq. (5.19) to the ramp-down curve of the six mud samples, and the mean values
(reported in Table 5.10) were fed to the CFD solver.

Table 5.10: Mean values (± standard uncertainty) of the Tscheuschner parameters.

Mud case τ0 (Pa) m (s) µ1 (Pa s) µ2 (Pa sn ) n

Mud_10 3.61 0.433 0.0146 3.97 0.103
Mud_17 8.07 0.372 0.0249 5.48 0.112
Mud_23 12.06 0.322 0.0295 6.34 0.118

In spite of its excellent fit to the flow curves, the Tscheuschner model produces
strong underestimations of the resistance (Fig. 5.18), especially at low speed. At
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Figure 5.17: Comparison of the Bingham and Tscheuschner models for one (ramp-down) flow curve of
Mud_23.

the higher speed, the Tscheuschner model tends to produce the same results as the
Bingham model with Mup . The maximum and minimum comparison errors among
all cases are respectively 13% and 25%. The reasons for the poor predictions of the
Tscheuschner model despite being an excellent fit of the ramp-down flow curves are
not clear. However two possible explanations are given.

First, the protocol used for the rheological experiments may be not accurate
enough at low shear rates. Thus, capturing the ramp-down flow curve down to the
lowest value of γ̇ may give worse numerical predictions simply because of inaccu-
racies in the flow curves. Second, a possible reason can be the thixotropy of mud.
Although the mud was heavily mixed prior the experiments, a partial structural
recovery has certainly occurred during the tests, thus the ramp-down may not be
a very accurate representation of the flow behaviour of mud, in particular at low
speeds/shear rates. On the other hand, the Bingham model, which fits the ramp-
down flow curve only in the higher shear rate range, seems to be somewhat between
the ramp-up and ramp-down curves (see also Fig. 5.12), which may be an acceptable
compromise for high-shear flows.

5.4.5. EFFECT OF NON-ZERO ANGLES OF ATTACK

Another possible explanation for the discrepancies at high speed could be sought in
the experimental data rather than in the rheological model.
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Figure 5.18: Total resistance using the Bingham and Tscheuschner model. The Tscheuschner uncertainty
bars are set to 5% as a reference.

Figure 5.19: Schematic representation of the mechanism responsible for the possible increased rotations
of the plate at the higher speeds.

The alignment of the plate with the flow direction is one of the main challenges
when performing towing experiments. While the increase in resistance due to small
misalignments may be negligible at low speeds, it could become substantial at higher
speeds. In fact, increasing the angle of attack mainly increases the pressure resistance,
which is proportional to V 2. In turn, stronger pressure disturbance can also increase
the wave resistance. Furthermore, for the present experiments, the load cell was
attached to the plate at about 1/3L from the leading edge (Fig. 5.19). But the centre
of pressure for flat plates is approximately at 1/4L from the leading edge, meaning
that an initially small angle of attack could have been amplified at higher speeds. The
magnitude of this amplification depends upon the rigidity of the mechanical system
formed by the plate and the load cell.
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Unfortunately, the angle of attack is not known, thus correcting experimental
data for this effect is not possible. Nevertheless, the effect of the plate rotation can be
modelled numerically to verify whether the trend of the experimental data can be
better captured.

Calculations were thus performed after applying a grid deformation (rotation
around the z-axis). Since the rotation of the plate can increase the wave resistance,
calculations were performed including the free surface, with the same settings as in
Section 5.3.1. Obviously, since the problem is no longer symmetrical, calculations
were performed on the full domain instead of half, as shown in Fig. 5.20.

Figure 5.20: Simulated mud free surface for Mud_10 at V=1.02 (left) and 0.52 m/s (right). Both simulations
are with an angle of attack of 3 degrees and M = 12000. Flow is from left to right.

It is remarked that the uncertainties in the CFD data are no longer known both be-
cause the input uncertainties cannot be simply determined from analytical formulas
(as was done in Section 5.3.5) and because performing a grid/regularisation refine-
ment study for these computations was deemed outside of the scope of the present
study. As reference, the uncertainties from the analogous double-body calculations
with zero angle of attack are shown4.

The effect of an angle of attack of 3 degrees on the resistance is illustrated in
Fig. 5.21 for the cases Mup and M = 12000. Interestingly, the slope of experimental
data with respect to V is now well predicted by CFD. In particular, Mup almost
duplicates the experimental data, whereas the ideal Bingham model (M = 12000)
captures the trend of the experimental data but it visibly over estimates the resistance.

4The actual uncertainties are likely larger than those of the double-body calculations because of the
additional discretisation errors produced by the volume-fraction equation.
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Figure 5.21: Resistance of the plate moving through mud. CFD data are obtained with an angle of attack of
3 degrees and including the effect of the free surface. CFD uncertainties are relative to the analogous

double-body calculations with zero angle of attack.

It is thus inferred that experimental data at the highest speeds are likely con-
taminated by a rotation of the plate. This also suggests that lower regularisation
parameters (e.g. Mup ) produce better prediction than the ideal Bingham model,
which tends to over-estimate the total resistance.

The difference in the predictions between Mup (low regularisation parameter)
and M = 12000 (very high regularisation parameter) is mainly due to the pressure
component. In particular, this appears to be related to the larger viscosity in the
low deformation regions (i.e where the regularisation is activated), as for example at
the rear stagnation point (Fig. 5.22, left panel). For M = 12000, such high viscosity
leads to higher pressure on the right surface (pressure side) and to lower pressure
on the left surface (suction side) compared to Mup (Fig. 5.22, right panel). Similar
observations were also made above when analysing the regularisation uncertainty.

5.4.6. FINAL REMARKS ON THE REGULARISATION PARAMETER AND PRO-
POSED RULE OF THUMB

We recall that the general rule when using regularisation methods is to use the highest
possible regularisation parameter in order to mimic the ideal model as closely as pos-
sible. This approach, however, can lead not only to larger discrepancies with experi-
mental data (see Section 5.4.2) but also to numerical difficulties, such as stagnating
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Figure 5.22: Contour diagram at the rear part of the plate with an angle of attack of 3 degrees. Apparent
viscosity (left); hydrodynamic pressure coefficient (right). The cutting plane is at z/T =−0.5 (T is the

plate’s draught) and the test case is Mud_23, V = 1.02 m/s.

or even diverging residuals in the iterative solver (see, for example, Section 4.4.6).
It was shown that these issues can be mitigated by using lower regularisation

parameters based on the first point in the flow curves. Although this procedure is
purely empirical and no physical explanations were provided, a general rule of thumb
could be devised. In fact, for all the mud conditions considered in this work, the
non-dimensional regularisation parameters obtained from the first point in either
the ramp-up (Mup ) or ramp-down (Mdown) were between 538 and 747. A reasonable
rule of thumb to choose the regularisation parameter is thus M = mτB /µB ≈ 800.
This means that the mud apparent viscosity in low-deformation regions is about
800 times the viscosity of mud in the high shear rate regions (e.g. boundary layers).
Further research is needed to verify the applicability of such an empirical approach
to other test cases.

5.5. COMPARISON OF CFD DATA WITH ANALYTICAL FORMU-
LAS

5.5.1. FRICTIONAL RESISTANCE
The frictional component of the total resistance, RF , originates from the shear stress
acting on the side surfaces of the plate. These surfaces can be approximated as flat
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plates. A friction coefficient for laminar Bingham flows over flat plates was derived
by Chhabra and Richardson [30] using a third degree polynomial approximation for
the velocity profile:

CRF ≡ RF

1/2ρV 2S
= 1.292p

Re
+Bn , (5.20)

where Re = ρV L/µB is the Reynolds number, Bn = τB /(1/2ρV 2) is another definition
of the Bingham number (cf. with Eq. (4.3)) and S is the surface of the flat plate that,
for the present work, is 2L T . Equation (5.20) is identical to its Newtonian counterpart
when Bn = 0. Therefore, we propose a slightly different version that reduces to the
well-known Blasius formula when Bn = 0, i.e.

C ′
RF = 1.328p

Re
+Bn . (5.21)

The comparison of Eq. (5.21) with CFD data is plotted in Fig. 5.23. At the lower
speeds, the agreement is excellent, with an average difference of about 2% relative
to CFD. On the other hand, the agreement seems to deteriorate at higher speeds. In
particular, the numerical predictions appear to decrease with speed, which may be
surprising. However, this can be explained by the presence of a recirculation region
near the leading edge (Fig. 5.24). In this region, the velocity is relatively low, leading
to lower shear rate (and consequently shear stress) at the wall. As expected, we found
that the recirculation region is larger for Mud_10, which is the least viscous mud.

For the case of a ship moving through mud, Eq. (5.21) shows that (for laminar mud
flow) the increase in frictional resistance due to the yield stress is well approximated
by τB Smud , where Smud is the surface area of the hull in contact with mud.

5.5.2. PRESSURE RESISTANCE
The pressure component, RP , originates from the pressure difference acting on the
front and rear faces of the plate. For Newtonian fluids it may be reasonable to simply
use the stagnation pressure applied over the front surface. However, the yield stress
influences the pressure significantly, thus this is a too crude approximation.

A possible alternative would be to use the formula proposed by Nirmalkar et al.
[124] for the pressure resistance coefficient, CRP , based on CFD simulations of the
Bingham laminar flow over a square cylinder:

CRP ≡ RP

1/2ρV 2S f
= 27

Re∗
, (5.22)

where S f = tT is the projected frontal area of the cylinder, Re∗ = Re/(1+Bn∗) is
the modified Reynolds number and Bn∗ = τB L/(µB V ) is the canonical Bingham
number. The conditions of the present work, however, differ from those in Nirmalkar
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Figure 5.23: Comparison of the frictional resistance obtained with Eq. (5.21) and CFD using large
regularisation parameters (M = 12000).

Figure 5.24: Contour diagram of velocity (left) and shear rate (right) near the leading edge for Mud_10
(M = 12000). Lowest speed (top); highest speed (bottom). Shear rate is in logarithmic scale.
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et al. [124]. First, Eq. (5.22) was derived for 0.1 < Re < 40, whereas for our test cases
7500 < Re < 56000. Second, the plate has an aspect ratio of about 66.7 instead of 1. In
order to account for these different conditions, Eq. (5.22) was modified by changing
its numerator and by replacing Re∗ with Rea∗, where a is a fitting parameter. However,
the new formula still showed substantial discrepancies at high Re∗. Eventually, a
good fit was instead obtained using the following cubic relation in logarithmic scale:

log10 (CRP ) = log10 (k1)+k2 log10 Re∗+k3(log10 Re∗)2

+k4(log10 Re∗)3 ,
(5.23)

where k1 = 41.58, k2 =−1.132, k3 = 0.1148 and k4 = 0.0313 are the fitting parameters
obtained by least-square fitting of Eq. (5.23) to the present CFD data (M = 12000) for
CRP . Equation (5.23) corresponds, in linear scale, to

CRP = k1Re
k2+k3 log10 Re∗+k4(log10 Re∗)2

∗ . (5.24)

Figure 5.25 confirms that Eq. (5.24) is an excellent fit of the CFD data, with a maximum
difference of 0.42%. Furthermore, while Eq. (5.22) may still be acceptably accurate for
low Re∗ (low speed, high mud concentration), it is not adequate at higher Re∗, where
even the simple stagnation pressure applied to the front face of the plate (CRP = 1)
appears to be closer to CFD data.

5.5.3. TOTAL RESISTANCE
The total resistance obtained combining Eqs. (5.21) and (5.24) agrees well with CFD
data (see Fig. 5.26), with larger discrepancies at higher speeds stemming from the
frictional component. In conclusion, the analytical formulas provide reasonably
good estimates of RT , with average and maximum difference of 3.6% and 12.4%,
respectively, relative to CFD. Since the trend of the CFD data is reasonably well cap-
tured, Eqs. (5.21) and (5.24) have been used to determine the sensitivity coefficients
for the input parameter uncertainties (see Section 5.3.5).

5.6. CONCLUSIONS, LIMITATIONS AND FINAL REMARKS

5.6.1. CONCLUSIONS
We have investigated the accuracy of the Bingham model for CFD applications con-
cerned with marine vessels sailing through fluid mud. As a simplified case, the
laminar flow over a plate was considered in order to primarily investigate the influ-
ence of the mud properties on the frictional part of the resistance.

The comparison with experimental data showed that the ideal Bingham model
(M = 12000) well captures the relative increase in the resistance due to the increase
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Figure 5.25: Pressure resistance coefficients versus the modified Reynolds number (top) and pressure
resistance versus speed (bottom).
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Figure 5.26: Comparison of the total resistance predicted by analytical formulas and CFD data.

in the mud concentration. On the other hand, at low speed (i.e. low shear), the ideal
Bingham model tends to overpredict the resistance. Better predictions at low speed
were achieved by using lower regularisation parameters (500 < M < 800), determined
from the first points in the mud flow curves.

It was observed that the Tscheuschner model, which is a virtually perfect fit of the
ramp-down flow curves of mud, produced strong underpredictions of the resistance,
especially at low speed. The reasons might be the thixotropy of mud and possible
inaccuracies of the rheological protocol at low shear rates. The main message is
that improving the fit of the ramp-down curve does not necessarily lead to better
numerical predictions of the plate resistance. Possible causes for this may be sought
in the adopted rheometry techniques or in the constitutive equations. In this regard,
it is possible that including thixotropy would improve the numerical predictions.

In addition, it was observed that the computed forces can be fairly well approx-
imated by analytical formulas, especially the friction component. This allowed to
quantify the influence on the resistance of each input parameter.

We found indications that experimental data at high speed have been affected
by unwanted non-zero angles of attack of the plate. When an angle of attack of 3
degrees was included in the CFD calculations, the trend of the experimental data
was very well captured. Therefore, the experimental results need to be interpreted
with due caution. Further work is recommended to provide new experimental data
with higher rigidity and a better alignment of the plate. Nonetheless, the following
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observations were made:

• The ideal Bingham model (M = 12000) tends to overpredict the experimental
data, with an average and maximum comparison error of 13 and 19%, respec-
tively. Nevertheless, the model appears suitable, at least, to investigate how the
resistance changes in response to changes in the mud properties.

• Using lower regularisation parameters (500 < M < 800) produce better pre-
dictions, with comparison errors that are within or close to the validation
uncertainties.

5.6.2. LIMITATIONS
The generalisation of these results is subject to a number of limitations related to the
mud. First, towing tank experiments were conducted on dilutions of the natural mud
collected in the harbour area. However, diluted and natural mud can exhibit different
rheological characteristics (Shakeel et al. [148]). Second, this study was limited to
three mud conditions, thus our findings cannot be extrapolated to all types of mud.
Future studies with other mud conditions would be interesting.

5.6.3. FINAL REMARKS
In this work we have investigated the performance of the Bingham model for pre-
dicting the frictional resistance. However, as mentioned in Chapter 1, ships can
experience a strong increase in the wave-making resistance associated with the mud-
water undulation that can occur even without contact between the hull and mud.
Future investigations might focus on this type of scenarios, keeping in mind that
in such cases the maximum shear rate will be rather small (at least smaller than
for object moving through mud), hence the Herschel–Bulkley model may be more
suitable than Bingham.

Furthermore, the best predictions were achieved using a regularisation parameter
such that the simulated mud exhibits the same apparent viscosity of the real mud
in the first point of the ramp-up flow curve. Note however that the Bingham yield
stress and viscosity were determined from the ramp-down curve, so the simulated
mud contained information of both the ramp-up and ramp-down flow curves. While
this is somewhat inconsistent, it could also be a crude way to mimic thixotropy
using a non-thixotropic model. In fact, the regularisation parameter determines
the flow behaviour at low shear rate, while the Bingham yield stress and viscosity
determine the flow behaviour at higher shear rates. Thus, with the adopted choice of
parameters, the low deformation regions (e.g. near the stagnation points or far from
the plate) will follow more the ramp-up curve. On the surface of the plate, where the
particle bonds are broken by the high shear rate, the fluid elements will obey to the
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ramp-down curve. Indications that experimental data may have been affected by
deflections of the plate prevent, however, from drawing definitive conclusions.

Lastly, as the flow was assumed to be laminar, it can be argued that this study
is only relevant for CFD simulations of ships moving very slowly through mud (e.g.
while docking). However, as will be discussed in Section 6.8, CFD simulations of a
ship sailing through Mud_23 predicted a laminar boundary layer in the mud region.
The work carried out in this chapter appears thus to be relevant also for practical
CFD applications.
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HERSCHEL–BULKLEY FLOWS

...in which three eddy-viscosity models for Newtonian fluids, namely the k-ω SST,
k-

p
kL and Spalart-Allmaras model, have been tested on turbulent pipe flows of

Herschel–Bulkley fluids. Additionally, a new turbulence closure based on the k-ω
SST model for predicting turbulent wall-bounded flows of Herschel–Bulkley fluids is
developed. The model has been calibrated with direct numerical simulations (DNS)
data for fully-developed pipe flow of shear-thinning and viscoplastic fluids. The new
model shows good agreement in the mean velocity, average viscosity, mean shear stress
budget and friction factor. The latter compares well also against correlations from the
literature for a wide range of Reynolds numbers. The main conclusions are that (i) the
new model produces the best prediction; (ii) the standard SST model may be considered
for simulations of weakly shear-thinning/viscoplastic fluids at high Reynolds numbers;
(iii) the k-

p
kL and the Spalart-Allmaras models appear to be unsuitable for turbulent

Herschel-Bulkley flows. Finally, for a realistic example of a ship sailing through mud,
it was observed that all the considered RANS models tend to predict laminar flow in
the mud layer.

The work in this chapter is based on the published article “Lovato, S., Keetels, G. H., Toxopeus, S. L., and
Settels, J. W. (2022). An eddy-viscosity model for turbulent flows of Herschel–Bulkley fluids. Journal of
Non-Newtonian Fluid Mechanics, 301, 104729" [98].
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6.1. INTRODUCTION
When a ship sails through mud (Fig. 6.1), the boundary layer developing in the water
part is certainly turbulent. In the mud layer, on the other hand, the situation is
more uncertain1. In Chapter 5, the validation was carried out in laminar regime, but
there are not yet theories that can reliably predict, for realistic scenarios, whether
the mud flow along the hull is laminar, transitional or turbulent. Available formulas
to determine the flow regime of mud are mainly for open channel (Liu and Mei
[97]) and pipe flows (Wilson and Thomas [180]), and their applicability may strongly
dependent upon the mud composition.

turbulent (?) boundary layer water

fluid mud

Figure 6.1: Illustration of a ship sailing through fluid mud.

If, with a certain stretch of imagination, the mud layer illustrated in Fig. 6.1 is
thought of as an upside-down channel, where the ship bottom corresponds to the
sheared channel bottom, then the criterion in Liu and Mei [97] states that the mud
flow is turbulent if

Ree > 2000−3000. (6.1)

Ree is the effective Reynolds number, which is defined as

1

Ree = 1

Reµ
+ 1

Reτ
≡ µ

4ρUh
+ τ0

8ρU 2 , (6.2)

with h being the thickness of the mud layer and U the average velocity over the
channel depth; µ, τ0 and ρ are the mud plastic viscosity, yield stress and density,
respectively. Imagining a ship slowing sailing at 3 m/s (≈ 6 knots) through a fluid
layer having the same properties as Mud_232 (see Section 5.2.3) and with a thickness
of 5 m, Ree is about 3750, which means that the fluid mud layer will be turbulent
according to Eq. (6.1).

However, rather than the wall of a channel the ship’s bottom could be more
accurately represented by a flat plate. For Newtonian fluids, the boundary layer

1As mentioned in Section 2.1, the turbulent mixing occurring at the water-mud interface is neglected, thus
the turbulent effects considered in this chapter are only those associated to the boundary layer along the
hull.

2In this case we assume that the rheological properties of Mud_23 are the same also in an hypothetical
turbulent regime, although this may not be true [154].
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developing at the plate wall is considered turbulent when the (canonical) Reynolds
number, Re = ρU L/µ, exceeds ∼ 5 ·105. For the water part, the Reynolds number
of a cargo ship that is 320 metres long and that moves very slowly, say at 2 knots, is
already greater than 108, thus the water boundary layers is unquestionably turbulent.
There is however not such criterion for a yield-stress fluid.

Nonetheless, let now consider the flow of a fluid having the rheological properties
as Mud_23 but with zero yield stress. The corresponding Reynolds number for the
same ship and speed would be about 1 ·107. This means that the boundary layer
of a "zero-yield-stress version" of Mud_23 would be turbulent. On the other hand,
it is not known whether the effect of the yield stress would be sufficiently strong
to completely damp the turbulent fluctuations, thus the flow regime of the actual
Mud_23 remains uncertain. The only situation in which the flow regime of mud can
be determined with a higher degree of confidence is when the Reynolds number of
the "zero-yield-stress mud" is below ∼ 5 ·105. In that case, adding the effect of the
yield stress would make the mud more viscous, thus further decreasing the Reynolds
number.3

In spite of the above considerations, in the rest of the chapter it is hypothesised
that the boundary layer in the fluid mud part is turbulent since laminar flows were
already discussed in Chapters 4 and 5.

6.1.1. RESEARCH QUESTIONS AND AIM OF THE CHAPTER
The prohibitive costs of direct numerical simulations (DNS) for predicting turbulent
flows makes turbulence modelling the only feasible alternative for most engineering
applications as it offers an acceptable compromise between cost and accuracy. The
most widespread modelling technique is the so-called Reynolds-averaging, which
makes use of the Reynolds-Average Navier-Stokes (RANS) equations. These models
are therefore usually referred to as RANS models.

For Newtonian fluids, several RANS models are typically available in general-
purpose CFD codes. On the other hand, RANS models for Herschel–Bulkley fluids
have not yet received enough recognition in the CFD community, thus CFD prac-
titioners often apply Newtonian RANS models to non-Newtonian fluids, and this
continued to happen until very recently (e.g., Gao et al. [62], Kaidi et al. [78], Kelly
et al. [80], Busch and Johansen [26], and Mehta et al. [111]). This raises the following
questions:

1) Are the standard RANS models for Newtonian fluids suitable also for Herschel–
Bulkley fluids?

2) Do dedicated RANS models for Herschel–Bulkley fluids exist in the literature?

3This was in fact the case for the plate discussed in Chapter 5, where the flow was assumed to be laminar.
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3) If not, how can we modify existing Newtonian RANS models to account for
non-Newtonian effects?

The two main difficulties concerning the Reynolds-averaged modelling for non-
Newtonian fluids are the shear-dependent viscosity and the appearance of extra
correlations in the governing equations as a result of the fluctuating viscosity. These
correlations are unknown a priori and therefore require a closure.

Significant progress has been made for viscoelastic fluids in the past twenty years
Pinho [133], Cruz and Pinho [35], Cruz et al. [36], Pinho et al. [134, 134], Resende et al.
[137, 136], Iaccarino et al. [74], and Masoudian et al. [106]. However, fewer studies
have dealt with inelastic fluids such as power-law, Bingham and Herschel–Bulkley.

Firsts efforts date back to 1997, when Malin [105, 104] modified the damping
function in the eddy viscosity of the k-ϵ model of Lam and Bremhorst [90]. The
modification accounted for the shear-thinning rheology and results showed fairly
good agreement against experimental data on the friction factor and mean velocity
profile of pipe flows. However, apart from the modified damping function, results
were obtained with a Newtonian RANS model, hence no turbulence closure was used
for the non-Newtonian correlations. A similar approach was adopted by Bartosik [12,
11], who modified the damping function of the k-ϵ model accounting for the yield
stress of Bingham and Herschel–Bulkley fluids. Recently, a significant step forward
has been made by Gavrilov and Rudyak [64], who proposed a turbulence closure for
power-law fluids, using the k-ϵ-v2- f model of Durbin [44].

This chapter aims at developing a RANS model for Herschel–Bulkley fluids that in-
troduces the minimum amount of complexities while capturing the relevant physics
of interest for engineering applications concerned with wall-bounded flows. In this
chapter the turbulent closure of Gavrilov and Rudyak [64] for power-law fluids is
extended to Herschel–Bulkley fluids and is presented in a general form that can be
easily extended to any generalised Newtonian (GN) fluid model. However, instead of
using the k-ϵ-v2- f model, the new model is developed starting from the popular k-ω
SST model of Menter et al. [113]. The latter was developed for Newtonian fluids and
it was proved to be a robust and accurate model for a large number of applications,
including wall-bounded flows with adverse pressure gradient, which makes it suit-
able for turbulent flows of Newtonian fluids around bluff bodies. Being a blending of
the k-ϵ (Launder et al. [92]) and k-ω (Wilcox [178]) models, the SST model inherits
their best features, i.e. the insensitivity to free-stream parameters of the k-ϵ and the
accuracy in the near-wall region of the k-ω without using damping functions.

The results obtained with the new model are compared against recent DNS of
Singh et al. [153, 152, 151] for fully-developed pipe flow and against correlations for
the friction factor, covering a wide range of rheological parameters and Reynolds
numbers.
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In addition, in order to answer question 1), this chapter assesses the accuracy of
three Newtonian RANS models when they are applied to turbulent flows of Herschel–
Bulkley fluids. The selected RANS models are: the k-ω SST (Menter et al. [113]), the
k-

p
kL (Menter et al. [115]) and the Spalart-Allmaras [157] models. These models are

very popular for CFD simulations of turbulent flows in the maritime and aeronautical
sectors.

6.2. GOVERNING EQUATIONS
The incompressible flow is governed by the following continuity and momentum
equations (the hat symbol denotes instantaneous quantities):

∇· û = 0, (6.3)

∂(ρû)

∂t
+ ∇· (ρû û) =∇· τ̂−∇p̂ , (6.4)

where û(x , t ) is the velocity vector, x is the position vector, t is time, p̂ is pressure, ρ
is density, τ̂ is the deviatoric stress tensor that, for GN fluids, reads

τ̂≡ τ̂i j = 2µ̂Ŝ , Ŝ ≡ Ŝi j = 1

2

(
∂ûi

∂x j
+ ∂û j

∂xi

)
, (6.5)

where Ŝi j is the deformation rate tensor and µ̂ is the instantaneous apparent viscosity
which, for Herschel–Bulkley fluids with the Papanastasiou regularisation, reads

µ̂= τ0(1−e−m ˙̂γ)+K ˙̂γn

˙̂γ
, (6.6)

where m is the already mentioned regularisation parameter.

6.2.1. REYNOLDS-AVERAGED EQUATIONS
Following the procedure originally proposed by Osborne Reynolds (1895), a generic
instantaneous flow quantity φ̂ can be expressed as the sum of a mean and a fluctuat-
ing part (Reynolds decomposition),

φ̂(x , t ) =φ(x , t )+φ′(x , t ) . (6.7)

The mean value, φ(x , t ), is here obtained from ensemble-averaging4, hence

φ(x , t ) ≡ φ̂(x , t ) ≡ 1

N
lim

N→∞

N∑
n=1

φ̂n(x , t ) , (6.8)

4Contrary to φ′(x , t), the time dependency of φ(x , t) is relative to the nonturbulent unsteadiness of the
flow.
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with N being the number of repeated observations of φ̂n(x , t). This operation is
known as Reynolds-averaging and it will be indicated with the overbar.

By applying the Reynolds-averaging to Eq. (6.3) and Eq. (6.4), the Reynolds-
averaged continuity and momentum equations for GN fluids are obtained:

∇·u = 0, (6.9)

ρ
∂u

∂t
+ρ∇· (u u) =∇·τ−∇p −ρ∇· (u′ u′)+∇·τnn , (6.10)

where −ρu′ u′ is the (unknown) Reynolds stress tensor and τ ≡ τi j = 2µSi j is the
mean deviatoric stress tensor. As a result of the fluctuating viscosity for non-Newtonian
fluids, an additional term appears on the right-hand side of Eq. (6.10),

τnn ≡ τnn
i j = 2µ′S′

i j . (6.11)

This term, hereafter referred to as non-Newtonian stress tensor, is a priori unknown
and it requires turbulent closure.

6.2.2. TURBULENCE MODELLING
The turbulence model proposed in this article is based on the two-equation k-ω SST
model of Menter et al. [113], which approximates the Reynolds stress tensor using
the Boussinesq hypothesis,

−ρu′
i u′

j =µt Si j − 2

3
ρδi j k (6.12)

where δi j is the Kronecker symbol, k = 1

2
u′

i u′
i is the turbulent kinetic energy (TKE)

and µt is the so-called eddy (or turbulent) viscosity. The eddy viscosity is a function
of k and ω, the latter being the specific dissipation rate of TKE. The variation of k and
ω in the flow is modelled by two respective transport equations.

The transport equation for k can be derived from the transport equations of the
Reynolds stress by summation over the diagonal components (see e.g. Gori and Boghi
[66] for the complete derivation), and it has the following expression:

D(ρk)

Dt
= P +Π+T +D −ρϵ+ξnn +χnn +Dnn . (6.13)

The first four terms on the right-hand side are:

- production: P =−ρu′
i u′

j Si j



6.2. GOVERNING EQUATIONS

6

111

- pressure diffusion: Π=−
∂p ′u′

j

∂x j

- turbulent transport: T =−
∂ρu′

i u′
i u′

j

∂x j

- mean viscous transport: D = ∂

∂x j

(
µ
∂k

∂x j
+µ

∂u′
i u′

j

∂xi

)
- viscous dissipation: ρϵ= 2µS′

i j S′
i j +2µ′S′

i j S′
i j

The above terms are the same that are found in the equation for Newtonian fluids ex-
cept for ϵ, that now contains the non-Newtonian contribution due to the fluctuating
viscosity. The last three terms in Eq. (6.13) are non-Newtonian contributions and,
adopting the terminology of Singh et al. [153], they read:

- mean shear turbulent viscous dissipation:

χnn =−2µ′S′
i j Si j

- mean shear turbulent viscous transport:

ξnn = ∂(2µ′u′
i Si j )

∂x j

- turbulent viscous transport:

Dnn = ∂

∂x j

(
1

2
µ′ ∂u′

i u′
i

∂x j
+µ′

∂u′
i u′

j

∂xi

)
Note that all the non-Newtonian contributions contain the fluctuating viscosity µ′,
therefore they all vanish when the fluid is Newtonian.

The first five terms of Eq. (6.13) are modelled as in the standard k −ω SST model
(which is reported in Appendix B.1), hence:

D(ρk)

Dt
=

P︷︸︸︷
P̃k +

D+Π+T︷ ︸︸ ︷
∇·

[
(µ+σkµt )∇k

]
−ρ

ϵ︷ ︸︸ ︷
β∗kω+ξnn +χnn +Dnn . (6.14)

P̃k = min(µt S2,10β∗ρkω)

where S2 = 2Si j Si j . Eq. (6.14) is thus equal to the equation of the k −ω SST model
except for the shear-dependent viscosity µ and the non-Newtonian contributions on
the right-hand side that need to be modelled.
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The exact transport equation of ω for GN fluids is lengthy and it can be derived
from the exact transport equation of ϵ in Gori and Boghi [66]. Following the approach
of Gavrilov and Rudyak [64], in the present work we consider the same empirical
equation of the k −ω SST model, except for an additional (not yet specified) non-
Newtonian contribution (E nn):

D(ρω)

Dt
= ρα

µt
P̃k +∇·

[
(µ+σωµt )∇ω

]
−βρω2

+2ρ(1−F1)
σω2

ω
∇k ·∇ω+E nn .

(6.15)

In order to solve Eqs. (6.10), (6.14) and (6.15), the unknown non-Newtonian
contributions τnn

i j , ξnn , χnn , Dnn , ϵnn and E nn require turbulent closure. This is the

topic of the next section.

6.3. TURBULENCE CLOSURE FOR THE NON-NEWTONIAN TERMS
The closure is derived along the lines of Gavrilov and Rudyak [64]. The main differ-
ence is that in this work the closure is derived for the k-ω SST model and in a general
form that can be easily extended to any GN model.

6.3.1. AVERAGE VISCOSITY MODEL
The average viscosity model proposed in Gavrilov and Rudyak [64] assumes that the
average viscosity is a function of the mean shear rate, i.e

µ̂( ˙̂γ) ≃µ( ˙̂γ) ≡µ(γ̇) . (6.16)

In turn, the mean shear rate (squared) reads:

γ̇2 = 2Ŝi j Ŝi j = 2Si j Si j +2S′
i j S′

i j , (6.17)

where the second term on the right-hand side can be estimated from the total viscous
dissipation rate of turbulent kinetic energy

ρϵ= 2µS′
i j S′

i j +2µ′S′
i j S′

i j . (6.18)

Gavrilov and Rudyak [64] assumed that since µ′ can be either positive or negative
whereas S′

i j S′
i j is always positive, the second term in Eq. (6.18) will be small on

average and therefore it can be neglected. DNS data of Singh et al. [153] confirm that
such assumption is fairly acceptable when n < 1. On the other hand, for Bingham
fluids (n = 1) this assumption seems incorrect. Nevertheless, for lack of knowledge of
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how to model such term we retain the assumption to be valid also for Bingham fluids.
The main message is that larger modelling errors in the average viscosity should be
expected for Bingham fluids.

In light on the above consideration, the second term of Eq. (6.17) can be approxi-
mated using Eq. (6.18),

2S′
i j S′

i j ≃
ρϵ

µ
= ρβ∗ωk

µ
, (6.19)

and substituting in Eq. (6.17) gives

γ̇2 = 2Si j Si j + ρβ∗ωk

µ
. (6.20)

Note that, in Eq. (6.16), µ is a function of γ̇, which in turn is now a function of µ
because of Eq. (6.20). In mathematical terms, µ= f (µ), where f (µ) is the function
obtained combining Eqs. (6.16) and (6.20). Since the governing equations are solved
using iterative solution methods, the mean viscosity can be simply computed at each
new outer iteration using µ from the previous iteration. However, to avoid possible
numerical instabilities in the iterative solver due to the highly non-linear nature of
µ= f (µ), it is advised to perform a few intermediate iterations (e.g., using a simple
fixed-point algorithm) before proceeding to the next outer iteration.

6.3.2. CLOSURE FOR THE NON-NEWTONIAN STRESS TENSOR
DNS for shear-thinning fluids of Singh et al. [152, 151] showed that µ′/µ does not
exceed 30%. Thus, assuming small viscosity fluctuations, it is reasonable to relate µ′
to the fluctuations of the deformation rate tensor as

µ′ ≈ ∂µ

∂Si j
S′

i j =
∂µ

∂γ̇

∂γ̇

∂Si j
S′

i j =
∂µ

∂γ̇

2Si j

γ̇
S′

i j , (6.21)

whence,

τnn
i j = 2µ′S′

i j = 2
∂µ

∂γ̇

Si j

γ̇
2S′

i j S′
i j , (6.22)

and by virtue of Eq. (6.19),

τnn
i j = 2

∂µ

∂γ̇

Si j

γ̇

ρβ∗ωk

µ
. (6.23)

The expression above can be rearranged in a more convenient form:

τnn
i j = 2µnnSi j , µnn = ∂µ

∂γ̇

ρβ∗ωk

µγ̇
, (6.24)

where µnn can thus be interpreted as a turbulent non-Newtonian viscosity. For shear-
thinning fluids µnn is always negative, thus it acts to reduce the turbulent transport
of momentum.
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6.3.3. CLOSURE FOR THE TURBULENCE TRANSPORT EQUATIONS

The remaining terms that need to be modelled are χnn , Dnn , ξnn and E nn .
The first term is easily modelled by virtue of Eq. (6.21) as

χnn =−2µ′S′
i j Si j =−µnnS2 . (6.25)

For shear-thinning fluids this term is always positive and therefore it acts as a pro-
duction term (see also Appendix B.4), even though it originates from the viscous
term.

The second term, Dnn , can be neglected since it is identical to the mean viscous
transport term D but with the fluctuating viscosity instead of the mean viscosity. The
smallness of this term is also confirmed by DNS of Singh et al. [153, 152].

Following the approach in Gavrilov and Rudyak [64], ξnn is modelled assuming
that in the boundary layer the following approximations hold: |u| ≈ u1, Si j ≈ S12 and

k ≈ u′2
1 /2, where 1 and 2 indicate the stream and cross-stream directions, respectively.

Hence,

ξnn = ∂(2µ′u′
i Si j )

∂x j
≈ ∂

∂x j

(
2
∂µ

∂γ̇

2Skl

γ̇
S′

kl u′
i Si j

)

≈ ∂

∂x2

(
2
∂µ

∂γ̇

2S2
12

γ̇
S′

12u′
1

)
= ∂

∂x2

[
∂µ

∂γ̇

2S2
12

γ̇

(
u′

1

∂u′
1

∂x2
+u′

1

∂u′
2

∂x1

)]

≈ ∂

∂x2

(
∂µ

∂γ̇

2S2
12

γ̇

∂u′
1u′

1/2

∂x2

)
≈ ∂

∂x2

(
∂µ

∂γ̇

2S2
12

γ̇

∂k

∂x2

)
,

(6.26)

and in its general form:

ξnn =∇·
(
∂µ

∂γ̇

S2

γ̇
∇k

)
. (6.27)

For shear-thinning fluids, the quantity that multiplies ∇k is negative, thus acting as a
reduction of the turbulent diffusion of k.

Finally, the last term that needs to be modelled is the non-Newtonian contribution
to the transport equation of ω, E nn . Since the ω-equation is empirical, this term is
simply treated in analogy with the production term of the ω equation for the SST
model, i.e.

E nn = ρα

µt
(ξnn +χnn) , (6.28)

where α is a closure coefficient of the k-ω SST model (see Appendix B.1).
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6.3.4. FINAL MATHEMATICAL MODEL
The complete mathematical model reads:

∇·u = 0, (6.29)

∂(ρu)

∂t
+∇· (ρu u) =∇·

[
2(µ+µt +Cτµ

nn)S
]
−∇(p + 2

3
k) , (6.30)

D(ρk)

Dt
= P̃k +D −ρϵ+ξnn +χnn , (6.31)

D(ρω)

Dt
= ρα

µt
P̃k +∇·

[
(µ+σωµt )∇ω

]
−βρω2

+2ρ(1−F1)
σω2

ω
∇k ·∇ω+E nn .

(6.32)

D ≡∇·
[

(µ+σkµt )∇k

]
, (6.33)

ϵ=β∗ωk , (6.34)

γ̇2 = 2Si j Si j +
ρCβϵ

µ
, (6.35)

µnn = ∂µ

∂γ̇

ρCβϵ

µγ̇
, (6.36)

χnn =−Cχµ
nnS2 , (6.37)

ξnn =Cξ∇·
(
∂µ

∂γ̇

S2

γ̇
∇k

)
, (6.38)

E nn =CE
ρα

µt
(ξnn +χnn) . (6.39)

The original SST model and its closure coefficients are reported in Appendix B.1,
whereas the closure coefficients relative to the new model (Cβ, Cτ, Cχ, Cξ and CE )
are given in Section 6.7.1.

The quantity ∂µ/∂γ̇ depends on the rheological model at hand. For the Herschel–
Bulkley model with the Papanastasiou regularisation it reads:

∂µ

∂γ̇
= (n −1)K γ̇n −τ0(1−e−mγ̇)+mγ̇τ0e−mγ̇

γ̇2 . (6.40)

Finally, for the boundary conditions on perfectly smooth walls, the same con-
ditions of the standard SST model can be applied because all the non-Newtonian
contributions (µnn , χnn , ξnn and E nn) are zero at the wall (for χnn and ξnn , see
Appendix B.4).
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6.4. PIPE FLOW SIMULATIONS: TEST CASES, COMPUTATIONAL

DOMAIN AND BOUNDARY CONDITIONS
The new model, hereafter labelled as ‘SST-HB’, has been calibrated on DNS data of
Singh et al. [153, 152, 151] for fully-developed flows in smooth pipes of power-law
(PL), Bingham (Bn) and Herschel–Bulkley (HB) fluids. Furthermore, as anticipated
in the introduction, the performance of three Newtonian eddy-viscosity models is
investigated. The selected models are the k −ω SST [113], the k-

p
kL [115] and the

Spalart-Allmaras [157] models. These will be hereafter referred to as SST, KSKL and
SA, respectively. Their formulation is reported in Appendices B.1 to B.3.

6.4.1. TEST CASES
The definition of the Reynolds number for Herschel–Bulkley fluids is difficult because
the choice of the viscosity is not univocal. For pipe flows, a standard choice is to use
the wall kinematic viscosity, that for Herschel–Bulkley fluids reads

νw = τw

ρ

(
K

τw −τ0

)1/n

, (6.41)

where τw is the shear stress at the wall. For a pipe having diameter D = 2R, with the
Cartesian axes at centre of the pipe and with the z-axis aligned with the flow, τw is
related to the pressure gradient ∂p/∂z inside the pipe as

τw = R

2

∂p

∂z
. (6.42)

From the wall viscosity, the Reynolds number can be thus defined as

Rew = UbD

νw
, (6.43)

where Ub is the bulk velocity. The problem with this definition is that Rew cannot
be determined a priori because either Ub or νw is unknown before the simulation,
depending on whether the pressure gradient or the flow rate is imposed. It is thus
useful to introduce the friction Reynolds number,

Reτ = uτR/νw , (6.44)

with uτ =
√
τw /ρ being the friction velocity. The latter is also used to define u+ =

u/uτ, k+ = k/u2
τ and the wall unit y+ = (R − r )uτ/νw , with r =

√
x2 + y2.

The wall viscosity was chosen as νw = 1/Reτ and the non-dimensional pressure
gradient (∂p/∂z)R/τw was set equal to 2. From these non-dimensional parameters
the fluid properties for each test case (Table 6.1) can be uniquely determined.
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Table 6.1: Summary of the considered test cases. Calculations were performed for each possible
combination of rheology, Reynolds number and RANS model listed in the table.

Case n τ0/τw (%) Reτ Rew (Nwt) RANS model

Nwt 1.0 0 323 ∼ 10000 New model (SST-HB)
PL08 0.8 0 500 ∼ 17000 k −ω SST-2003 (SST)
PL06 0.6 0 750 ∼ 27000 Spalart-Allmaras (SA)
PL04 0.4 0 1000 ∼ 37000 k −p

kL (KSKL)
Bn5 1.0 5 1250 ∼ 48000
Bn10 1.0 10 1500 ∼ 59000
Bn20 1.0 20 2000 ∼ 82000
Bn30 1.0 30 2500 ∼ 105000
HB10 0.8 10

6.4.2. COMPUTATIONAL DOMAIN AND BOUNDARY CONDITIONS
The full pipe was discretised using four structured grids (Fig. 6.2) covering a refine-
ment ratio of 2, with the finest grid made of about 86000 cells (232 and 212 cells in
the radial and azimuthal direction, respectively). The grid resolution at the pipe wall
was chosen such that y+ ≲ 0.1 for all the considered test cases to ensure low levels of
numerical uncertainty (Eça et al. [49]), as shown in Section 6.6.

Figure 6.2: One quarter of the coarsest and finest grid.

Since the flow is fully developed, only one layer of cells was considered in the flow
direction, and periodic boundary conditions were applied stream-wise. At the pipe
wall (x2 + y2 = R2), the impermeable/no-slip boundary conditions for the velocity
(u = 0) and the Neumann condition for pressure (∂p/∂n = 0) were applied. All the
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turbulence quantities except ω are set to zero at the wall. For ω, the following value is
imposed at the first cell-centre away from the wall,

ω= 6µ

ρβ1d 2 , (6.45)

where d is the distance from the wall and β1 = 3/40. The value ofω at the wall surface
is set to ten times the value given by Eq. (6.45), as in the original SST model of Menter
[114].

6.5. CFD SETUP
The convective fluxes of all transport equations are linearised with the Picard method
and discretised with the Harmonic scheme [93].

6.6. NUMERICAL UNCERTAINTIES
For a meaningful comparison with data from the literature, it is important to ensure
that the numerical errors/uncertainties are sufficiently small.

For statistically steady flows, it is commonly accepted to divide numerical errors
in three categories: discretisation, iterative and round-off errors. Round-off errors
are due to the finite precision of computers and they can be safely neglected for
the present work by using double precision. Iterative errors are due to the use of
iterative methods to find the solution of the discretised equations. These can be
neglected by reducing residuals to machine accuracy, although less strict criteria are
usually sufficient for practical applications. For the present work, calculations were
stopped when the L2 norm of the normalised residuals was below 2×10−10, which
was observed to be sufficient to safely neglect the contribution of iterative errors. We
have thus assumed that the numerical uncertainties are only due to discretisation
errors.

The discretisation uncertainties in the friction factor f = 2τw /(ρU 2
b ) were esti-

mated using the method of Eça and Hoekstra [46] and they are reported in Table 6.2
for the lowest and highest Reynolds numbers considered in this work. Among the
three Newtonian eddy-viscosity models, the SST model has clearly the largest uncer-
tainties, confirming the observations made in Eça et al. [49]. Overall, the discretisa-
tion uncertainties never exceed 1.4%, and they are only slightly affected by the fluid
rheology.

It is anticipated that, for Bingham and Herschel–Bulkley fluids, the Newtonian
RANS models incorrectly predict a plug region (see Sections 6.7.2 and 6.7.4), i.e. a
region with γ̇= 0. This means that the regularisation is activated and the choice of
the regularisation parameter, m, influences the numerical solution. In general, the
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Table 6.2: Numerical uncertainty in the friction factor f for the finest grid in percentage of the simulated
data.

SST-HB SST SA KSKL

Reτ = 323 (y+max = 0.016)
Nwt 0.21 0.21 0.04 0.08
PL04 0.17 0.19 0.02 0.03
Bn20 0.19 0.21 0.03 0.07
HB10 0.28 0.21 0.05 0.11

Reτ = 2500 (y+max = 0.125)
Nwt 1.37 1.37 0.03 0.30
PL04 1.21 1.33 0.07 0.01
Bn20 1.26 1.33 0.02 0.03
HB10 1.28 1.35 0.02 0.07

regularisation parameter must be chosen large enough to avoid large regularisation
errors, but not too large to compromise the convergence of the iterative solver.
For the present calculations, the regularisation parameter was chosen such that
M ≡ τ0m/(ρνw ) ≈ 2000. The sensitivity of the friction factor due to the regularisation
parameter was assessed by varying M from 2000 to 500, and the maximum difference
in the friction factor among all the test cases never exceeded 0.1%. With the new
model, on the other hand, the average shear rate was actually never low enough to
activate the regularisation (thanks to the second term in Eq. (6.35)). Therefore, both
the solution and the iterative convergence were totally unaffected by the choice of
m.5 In summary, it is reasonable to consider the numerical uncertainty to be within
1.4% of the friction factor.

For the mean velocity profiles, only small differences between the solution on the
coarsest and finest grids were observed, and mainly in the viscous sublayer at high
Reynolds numbers (see Fig. 6.3). Thus, in conclusion, the numerical uncertainties
are sufficiently small to allow a meaningful comparison with data from the literature.

6.7. RESULTS AND DISCUSSION

6.7.1. MODEL CALIBRATION
In order to achieve a wide range of applicability for the new model, the closure
coefficients were chosen to provide satisfactory agreement with DNS data of Singh
et al. [153, 152, 151], for a total of 10 test cases. Furthermore, little adjustments in the

5This is true as long as m is sufficiently large; too low values may still influence the solution. Also, for
external flows, the region outside the boundary layer is typically undeformed, so the iterative solver may
still be affected by the use of large regularisation parameters.
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Figure 6.3: Mean velocity profiles on the coarsest and finest grids for Newtonian fluids using the SST
model.

closure coefficients were made to improve the agreement with correlations from the
literature for the friction factor [2, 3] at higher Reynolds numbers. The final selected
closure coefficients are:

- Cβ = 0.667, Cτ = 0.6, Cχ = 0.6, Cξ = 0.4

- CE =CE1FE (n)+CE2(1−FE (n))

- CE1 = 2.5, CE2 = 1.85

- FE (n) = 0.5tanh
[
8(n −0.75)

]+0.5

Among the large number of combinations of closure coefficients that provided
satisfactory agreement with data from the literature, the set with the lower coefficients
was favoured. In this way, the modification of the SST model is minimised, and so is
the impact of the additional terms on the iterative solver.

It was also decided to use a blending function, FE , such that CE yields values from
CE1 to CE2 when the flow index n goes from 1 to 0.4. The reason for this is that CE1

was observed to be optimal as long as 0.8 ≤ n ≤ 1, whereas for n < 0.8 the effect of E nn

on the numerical solution became excessive, especially at high Reynolds numbers.
FE was thus devised to reduce E nn for n < 1. In practice, since E nn > 0 for the tested
rheologies, FE reduces the extra production of ω for low values of the flow index.

It is finally remarked that the blending functions F1 and F2 stemming from the
original SST model (see also Appendix B.1) have not been modified for the new
model. However, these functions contain the molecular viscosity and, since they were
originally designed for Newtonian fluids, they may not always work as intended when
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using non-Newtonian fluids. For pipe flows, these functions are virtually constant
(equal to one) across the pipe section, thus no issues were encountered. On the other
hand, further research is needed to verify this on more complex wall-bounded flows,
for example with adverse pressure gradient and flow separation.

6.7.2. MEAN VELOCITY
The mean velocity profiles for Reτ = 323 are shown in Fig. 6.4. For Newtonian fluids
(Fig. 6.4 top), the SST and SST-HB produce identical results, as expected, and the SA
shows the best agreement with DNS, even in the buffer layer (5 < y+ < 30).

For the non-Newtonian cases, the new model produces the best agreement with
DNS, although some discrepancies are noticeable around y+ = 30. However, such
discrepancies occur also for Newtonian fluids, so they are not strictly related to the
non-Newtonian closure.

The Newtonian RANS models KSKL and SA tend to overpredict the mean velocity,
meaning higher flow rates and lower friction factors, whereas the SST model seems
rather insensitive to the non-Newtonian character of the fluid, which results in
an underprediction of the mean velocity profile. Interestingly, for Bingham and
Herschel–Bulkley fluids, the Newtonian RANS models incorrectly predict flat velocity
profiles near the centreline (especially visible for Bn20 and Bn30), which indicates
the presence of an unyielded region, or ‘plug’. This plug is caused by the very large
viscosity in the core region (see also Section 6.7.3) and it characterised by zero mean
shear rate6. Unyielded plugs are typical of laminar flows of yield-stress fluids in pipes
and channels. For turbulent flows, both DNS (Rudman and Blackburn [141] and
Singh et al. [153]) and experimental data (Peixinho et al. [131] and Güzel et al. [69])
suggest that the solid plug at the core is broken once the flow becomes turbulent.
For viscoplastic fluids with truly time-independent rheology, plugs smaller than the
Kolmogorov scales may still exist where the instantaneous shear rate is zero.

Unfortunately, DNS data for Reτ > 323 are only available for power-law fluids.
Nevertheless, the agreement of the SST-HB model with the DNS appears to slightly
improve for Reτ = 750 (Fig. 6.5), whereas no discernible improvements are observed
for the SST, SA and KSKL models.

6.7.3. AVERAGE VISCOSITY
The average viscosity predicted by the SST-HB model compares well with DNS,
although the agreement seems to deteriorate for yield stress fluids (see Fig. 6.6). In
the core region, the SST-HB clearly outperforms the other models. In particular,
the Newtonian turbulence models predict a very large viscosity near the centreline

6For the present calculations, the mean shear rate is actually close to zero but not exactly zero because of
the use of the regularisation.
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Figure 6.4: Mean velocity profiles for Reτ = 323. DNS data are from Singh et al. [153] and do not include
the case Bn30.
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Figure 6.5: Mean velocity profiles for PL06 at Reτ = 323,500,750. DNS data are from Singh et al. [151].
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of the pipe, as a result of the (nearly) zero mean shear rate. Remarkably, for Bn20
and y+ < 200, the SA model agrees very well with DNS. However, this seems rather a
fortuity since such good agreement is lost for the other test cases.
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Figure 6.6: Average viscosity for Reτ = 323. DNS data are from Singh et al. [153].

While the new model produces the best agreement among the considered eddy-
viscosity models, a clear discrepancy is noticeable for 20 < y+ < 200 for Bn20 and
HB10. This could be explained by looking at the two main assumptions underlying
the average viscosity model.

The first assumption is Eq. (6.16). From the mathematical standpoint, this as-
sumption is exact when the viscosity is either a constant or a linear function of the
instantaneous shear rate ˙̂γ. For power-law fluids, the viscosity is proportional to ˙̂γn−1,
therefore the lower the flow index n the more the assumption becomes weak. In the
limit of n = 0, the viscosity is proportional to ˙̂γ−1, as for Bingham fluids. This means
that for Bingham fluids this assumption is always weaker than for power-law fluids.

The second assumption concerns the mean shear rate γ̇2 = 2Si j Si j +2S′
i j S′

i j . The

last term was approximated using the mean dissipation rate of TKE, assuming that

µ′S′
i j S′

i j ≈ 0. DNS of Singh et al. [153] showed that the latter term is not negligible

for Bingham fluids, especially for 20 < y+ < 200. In light of these considerations, it is
plausible that the average viscosity model performs less well for Bingham fluids and
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Figure 6.7: Average viscosity for PL06 at different Reynolds numbers. DNS data are from Singh et al. [151].

for 20 < y+ < 200.

It is finally remarked that viscosity is especially important near the wall, where
the viscous stresses are dominant. Thus, outside the wall region (y+ > 10), the small
viscosity errors just mentioned above do not influence the mean velocity profile
[154].

Fig. 6.7 shows that, for power-law fluids, the agreement of the SST-HB model with
DNS is qualitatively the same for all Reynolds numbers, suggesting that the average
viscosity model of Gavrilov and Rudyak [64] may be suitable also for calculations at
higher Reynolds numbers.

To summarise, the new SST-HB model well predict the average viscosity for power-
law fluids, also at different Reynolds numbers. For Bingham and Herschel–Bulkley
fluids, the viscosity predicted by the SST-HB model shows some discrepancies with
DNS, but these discrepancies are small and outside the wall region, thus they do not
affect the mean flow. The main benefit of the new model is the significant reduction
of large viscosity errors in the core region. This prevents the formation of unphysical
plugs for yield-stress fluids, with positive effects also on iterative convergence (see
Appendix B.5).



6

126 6. TURBULENCE MODELLING OF WALL-BOUNDED HERSCHEL–BULKLEY FLOWS

1
2

5
10

30
10

0
30

0
−

0.
2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

τ
tot+

,τ
v+
,τ

t+
,τ

nn+

τ
to
t+

=
τ
v
+

+
τ
t+

+
τ
n
n

+
τ
to
t+

τ
t+

τ
v
+

τ
n
n

+

(a
)

N
w

t

S
S

T
-H

B

S
S

T

S
A

K
S

K
L

D
N

S

τ
to
t+

(S
S

T
-H

B
)

E
q
.

(6
.4

8)

1
2

5
10

30
10

0
30

0

(b
)

P
L

06

1
2

5
10

30
10

0
30

0
y

+

−
0.

2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

τ
tot+

,τ
v+
,τ

t+
,τ

nn+

(c
)

B
n

20

1
2

5
10

30
10

0
30

0
y

+

(d
)

H
B

10

F
ig

u
re

6.
8:

M
ea

n
sh

ea
r

st
re

ss
b

u
d

ge
ta

tR
e τ

=
32

3
o

b
ta

in
ed

w
it

h
th

e
fo

u
r

ed
d

y-
vi

sc
o

si
ty

m
o

d
el

s
an

d
fr

o
m

D
N

S
o

fS
in

gh
et

al
.[

15
3,

15
2]

.T
h

e
to

ta
l

m
ea

n
sh

ea
r

st
re

ss
τ

to
t

is
re

la
ti

ve
to

th
e

SS
T-

H
B

m
o

d
el

.



6.7. RESULTS AND DISCUSSION

6

127

6.7.4. MEAN SHEAR STRESS BUDGET
The total mean shear stress written in cylindrical coordinates reads:

τtot
zr =µduz

dr
−u′

r u′
z +µ′S′

zr , (6.46)

where z and r indicate the axial and radial direction, respectively, and the terms on
the right-hand side are the viscous, turbulent and non-Newtonian stresses. For the
SST-HB model, the total mean shear stress is modelled as (subscripts are omitted)

τtot =µduz

dr
+µt

duz

dr
+µnn duz

dr
≡ τv +τt +τnn , (6.47)

whereas for the Newtonian eddy-viscosity models the last component is zero. Inte-
gration in the radial direction of the momentum equation in the axial direction and
using the non-dimensional wall coordinates leads to

τtot+ = 1− y+

Reτ
. (6.48)

This means that the distribution of the mean viscous, turbulent and non-Newtonian
shear stresses can be a function of the fluid rheology, but the total shear stress must
always vary linearly across the pipe diameter. The total mean shear stress and its
components are plotted in Fig. 6.8 for Reτ = 323.

For Newtonian fluids, all models produce a fairly good prediction of τv and τt ,
with some loss of accuracy in the buffer layer (5 < y+ < 30). For non-Newtonian
fluids, the SST, SA and KSKL models poorly predict all the shear stress components.
In particular, for Bingham and Herschel–Bulkley fluids, the viscous stress predicted
by these models has an unexpected local peak (at y+ ≈ 250 for Bn20, see Fig. 6.8 c),
which alters the correct linear distribution of the total stress over the pipe diameter.
The position of this incorrect peak is in proximity of the plug, where the velocity
gradient and the viscosity have a steep variation in a relative short distance, causing
large discretisation errors. These errors could be reduced by locally refining the grid
around the plug, but note that results would still be physically incorrect.

The SST-HB has clearly the best agreement with DNS for all the shear stress
components, and the total stress follows the expected linear behaviour for all test
cases. Furthermore, the non-Newtonian shear stresses, τnn

i j , are very well captured

by the SST-HB model, except in the viscous sublayer. This is because µnn ∝ωk (see
Eq. (6.36)) and the turbulent kinetic energy is set to zero at the wall. In any case, in the
viscous sublayer the total stress is completely dominated by the viscous component,
therefore the effects of this deficiency on the numerical solution are expected to be
small.
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6.7.5. TURBULENT KINETIC ENERGY

All eddy-viscosity models are clearly unable to accurately predict the distribution
of TKE (Fig. 6.9), even for Newtonian fluids7. According to DNS for shear-thinning
and viscoplastic fluids, the peak of k should increase. However, the SST, SA and KSKL
models predict a decrease in k. While the new SST-HB is also unable to capture the
peak of k, it is capable, at least, of maintaining a higher level of turbulent kinetic
energy compared to the other turbulence models. This is possible thanks to the χnn

term in the k-equation, which acts as a production of turbulent kinetic energy (see
Appendix B.4).

The poor prediction of k is an expected limitation of two-equation turbulence
models. In fact, for increasing shear-thinning effects, k increases and µt decreases,
whereas two-equation models imply direct proportionality between µt and k. Never-
theless, the accurate prediction of k is often not of importance for many engineering
applications, which are usually interested in the mean velocity and pressure profiles
and in the friction factor.

Finally, the incorrect plug region already discussed in the previous sections is
visible also in Fig. 6.9 (c) for the SA and KSKL models, showing zero turbulent kinetic
energy for y+ � 250. Despite that the plug was predicted also by the SST model,
the turbulent kinetic energy is however not zero for this model, which is physically
inconsistent.

In summary, the SST-HB always predict a higher level of k among the considered
turbulence models, and its accuracy is unsatisfactory yet comparable with that of the
SST model when the latter is applied to Newtonian fluids.
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Figure 6.9: Turbulent kinetic energy for Reτ = 323. DNS data are from Singh et al. [153].

7This was already observed by Wilcox [179] for the k −ω model. Despite the poor prediction of k (and ε),
Wilcox showed that the velocity profile and the skin friction were well predicted for both external and
internal flows.
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Table 6.3: Friction factor f = 2τw /(ρU 2
b ) from DNS Singh et al. [153, 152, 151] and from eddy-viscosity

models of the present work. The difference ∆ f is relative to DNS.

DNS SST-HB SST SA KSKL
Case f ×103 f ×103 ∆ f (%) f ×103 ∆ f (%) f ×103 ∆ f (%) f ×103 ∆ f (%)

Reτ = 323 Nwt 7.88 8.264 4.9 8.264 4.9 7.819 -0.8 7.203 -8.6
PL08 7.36 7.831 6.5 8.219 11.7 6.786 -7.7 6.291 -14.5
PL06 6.74 7.422 10.2 8.134 20.7 5.734 -14.9 5.227 -22.4
PL04 5.95 6.797 14.3 7.982 34.2 4.971 -16.4 4.710 -20.8
Bn5 7.70 8.120 5.5 8.176 6.2 7.055 -8.3 6.378 -17.1

Bn10 7.36 7.879 7.1 8.092 10.0 6.390 -13.1 5.597 -23.9
Bn20 6.74 7.270 7.9 7.942 17.9 5.499 -18.4 4.694 -30.3
HB10 6.88 7.381 7.3 8.062 17.2 5.789 -15.9 5.089 -26.0

Reτ = 500 Nwt 6.89 7.108 3.2 7.108 3.2 6.889 0.0 6.279 -8.8
PL06 5.86 6.332 8.0 6.981 19.1 4.965 -15.3 4.456 -24.0

Reτ = 750 Nwt 6.15 6.256 1.8 6.256 1.8 6.163 0.3 5.598 -8.9
PL06 5.28 5.553 5.3 6.122 16.0 4.443 -15.8 3.941 -25.3

6.7.6. FRICTION FACTOR
The friction factor, f , is often one or even the only quantity of interest for many engi-
neering applications. It is therefore an important quantity to assess the performance
of the new model.

The comparison of the friction factor, f , with DNS is reported in Table 6.3. The
difference ∆ f reflects the predictions of the mean velocity profiles already observed
in Section 6.7.2: SA and KSKL underpredict f (Ub is larger), vice-versa for SST.

The SST-HB model undoubtedly provides the best prediction for all the test cases,
especially at the higher Reynolds numbers. While the difference of 14.3% for PL04
is considerable, it is still the smallest among all turbulence models. Such difference
could be easily reduced by increasing, for example, the calibration coefficient CE2

(see Section 6.7.1) from 1.85 to 2.0. By doing so, however, the accuracy for power-law
fluids at higher Reτ would deteriorate. It was thus decided to sacrifice some accuracy
at Reτ = 323 in favour of more consistent accuracy for a wide range of Reynolds
numbers.

In order to assess the new model also for Reτ > 750, the friction factor has been
compared against correlations from the literature. For power-law fluids, two correla-
tions were considered. The first (Anbarlooei et al. [2]) reads

f =
(
0.102−0.033n + 0.01

n

)
1

Re
1

2(n+1)
MR

, (6.49)

where ReMR is the Reynolds number defined by Metzner and Reed [116],

ReMR = 8ρU 2−n
b Dn

K (6+2/n)n , (6.50)
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also called Metzner-Reed Reynolds number. Note that, for a particular rheology,
higher ReMR means also higher Reτ, thus the following discussion is valid for both
Reynolds numbers. The second correlation (Anbarlooei et al. [3]) reads

f = 0.079
[ReMR

8
(6+2/n)n

] −1
2(n+1)

. (6.51)

Both correlations are plotted in Fig. 6.10, together with DNS (open symbols) and
RANS data (filled symbols). The maximum difference between DNS and the corre-
lations is about −3.5%, which can be seen as a coarse indication of the correlation’s
uncertainty.

The new model (Fig. 6.10 d) well predicts f for power-law fluids also at high
Reynolds numbers. At Reτ = 2500, the maximum difference relative to the first and
second correlations is -2.7% and -6.1%, respectively. Compared to SST, the benefits
of using the new model are more evident for highly shear-thinning fluids. In fact, the
accuracy of SST may be actually considered acceptable for moderate shear-thinning
fluids, especially at high Reynolds numbers, where non-Newtonian effects become
less important. To some extent, this is also true for the SA model (Fig. 6.10 a), whereas
it is clearly not true for the KSKL model (Fig. 6.10 b), which significantly under
predicts the friction coefficients for all ReMR . Actually, KSKL appears to be rather
inaccurate also for Newtonian fluids. This is surprising as KSKL proved to perform
well for external wall bounded flows of Newtonian fluids (e.g. Eça and Hoekstra [48]
and Pereira et al. [132]). Fig. 6.10 (b) suggests that KSKL may perform better at higher
Reynolds numbers.

For Bingham fluids, two correlations [1, 3] were considered, both having the
following form

f = 0.316

4
p

2

√√√√√
He2

Re4
G

+ 4

ReG
+ He

Re2
G

−C
He

Re2
G

, (6.52)

where ReG = ρUbD/K is the generalised Reynolds number and He = ρτ0D2/K 2, the
latter being the Hedstrom number. The correlation reduces to the Blasius formula
for He = 0, i.e. for zero yield stress.

In the earlier version [1] the coefficient C is equal to 2, whereas the later version
[3] does not include the last term (C = 0). When these correlations were compared
with the DNS data of Singh et al. [153], the maximum difference using C = 2 was
around +10%, whereas with C = 0 the maximum difference was about -10%. We
have thus deliberately opted for the middle way, i.e. C = 1, which has decreased the
maximum difference down to 1.7% (see Table 6.4). This has increased the confidence
in the correlation as being a more reliable representation of DNS data, nonetheless
the comparison must be interpreted with the due caution.
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Table 6.4: Difference ∆ f (%) of the friction factor relative to Eq. (6.52) with C = 1. DNS data are from Singh
et al. [153].

DNS SST-HB SST SA KSKL

Reτ = 323 Nwt 0.5 4.7 4.7 -0.2 -7.1
Bn5 1.7 6.7 7.3 -5.9 -14.0

Bn10 1.0 7.5 10.2 -11.1 -21.2
Bn20 -0.1 7.4 16.8 -17.5 -28.8
Bn30 - 6.16 24.94 -19.48 -28.68

Reτ = 750 Nwt -0.2 1.3 1.3 0.0 -8.0
Bn5 - 2.5 3.4 -6.3 -15.7

Bn10 - 2.5 5.6 -13.9 -25.4
Bn20 - 1.4 10.9 -24.1 -37.5
Bn30 - -0.78 17.45 -29.10 -41.11

Reτ = 1500 Nwt - 1.3 1.3 1.8 -6.4
Bn5 - 2.1 3.0 -4.3 -14.6

Bn10 - 1.8 4.9 -13.4 -25.8
Bn20 - 0.2 9.2 -26.2 -40.9
Bn30 - -2.73 14.64 -32.91 -46.37

Reτ = 2500 Nwt - 2.3 2.3 3.9 -4.2
Bn5 - 2.9 3.8 -1.9 -12.7

Bn10 - 2.5 5.3 -11.9 -25.1
Bn20 - 0.5 9.1 -26.5 -42.0
Bn30 - -2.96 13.78 -34.34 -48.68
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Keeping the above considerations in mind, Table 6.4 shows the comparison of the
present results against Eq. (6.52) with C = 1. The SST model appears to be suitable
for weakly non-Newtonian fluids (τ0/τw = 10%) and for high Reynolds numbers,
whereas the SA and KSKL models seem to perform poorly for Bingham fluids, at any
flow regime.

The new model, on the other hand, seems to well predict f at all Reynolds num-
bers. However, the important finding here is that, for Reτ > 323, the new model
appear to maintain approximately the same level of accuracy, without any marked
change in ∆ f (%). This suggests that the model may be suitable for viscoplastic flows
for a wide range of Reynolds numbers. For a more compelling validation, however,
DNS data for Bingham and Herschel–Bulkley fluids at high Reynolds numbers and
with higher level of yield stress are needed. This is an important issue for future
research.

6.8. FINAL CONSIDERATIONS FOR PRACTICAL APPLICATIONS

6.8.1. YIELD STRESS LIMIT
This chapter focused on pipe flows because it was the only wall-bounded case
for which Herschel–Bulkley DNS data were published in the literature. However,
the same near-wall behaviour for the tested RANS models could be expected in
boundary-layer flows, such as the flow over a flat plate or around a ship. More specif-
ically, the same accuracy can be expected if the yield stress does not exceed 20% of
the wall shear stress, i.e. the limit for which the Newtonian RANS models have been
tested (τ0/τw ≤ 20%) and for which the SST-HB model has been calibrated. Above a
certain limit, say above 30%, the accuracy of the turbulence models is unknown.

But what is the typical ratio τ0/τw for realistic navigational scenarios? In other
terms, what would be the maximum yield stress for which the tested RANS models
behave as shown in this chapter? To answer this question, the wall shear stress, τw ,
needs to be estimated for a ship sailing through mud. Note, however, that the wall
shear stress in this case is not constant like for pipe flows, but rather it varies along
the hull. Thus, the average shear stress over a surface S will be considered instead:

τw ≈ τw = 1

S

∫
S
τw dS = 1

2
ρU 2CF (6.53)

where the overbar represents the average over the surface S, which is the portion
of the hull in contact with mud; CF is the frictional resistance coefficient, which
can be estimated using existing correlations for a flat plate (shallow water and form
effects are neglected for simplicity). Unfortunately, no correlations for turbulent
Herschel–Bulkley flows over a flat plate are available. Nonetheless, it is reasonable to
assume that for limited amount of yield stress the wall shear stress is only moderately
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affected. Thus, in a first approximation, correlations for Newtonian fluids can be
used. Here, the correlation of Katsui [79] is used, which reads:

CF = 0.0066577

(log10(Re)−4.3762)a (6.54)

with
a = 0.042612 log10(Re)+0.56725 (6.55)

As an example, let’s consider a ship having L = 320 m and moving through Mud_10
and Mud_23, which are two of the three fluid mud conditions that were considered
in Chapter 5. The estimated ratios τ0/τw are reported in Table 6.5.

In the considered conditions, the mud yield stress is within 50% of the average
wall shear stress only at rather high speeds (unlikely reachable in confined waters).
Above roughly 40-50%, the assumption that the yield stress is not influencing the
shear stress becomes quite incorrect, so Eq. (6.54) cannot be reliably used to estimate
τw . Nevertheless, even if the ratio cannot be reliably estimated at lower speeds, it can
be safely stated that τ0/τw will keep increasing with decreasing speed. Hence, the
main point here is that for sailing speeds in confined areas (typically below 6-8 knots),
τ0/τw may often be above 20-30%, in which case the accuracy of the considered RANS
models remains unknown due to lack of validation data. Ratios τ0/τw below 20-30%
for typical sailing speeds in the confined waters correspond to yield stresses no larger
than 1-3 Pa.

Table 6.5: Estimated ratio τ0/τw using Eq. (6.54) for a flat plate moving through Mud_10 and Mud_23
assuming turbulent flow and negligible influence of the yield stress. For the rheological properties of

Mud_10 and Mud_23 (see Table 5.2).

U [Kn] U [m/s] Re CF ×1000 ∼ τ0/τw

Mud_10
8.0 4.12 9.0E+07 2.098 48%

10.0 5.14 1.1E+08 2.037 32%
12.0 6.17 1.3E+08 1.989 22%

Mud_23
12.0 6.17 6.9E+07 2.174 46%

6.8.2. EDDY VISCOSITY FOR A SHIP SAILING THROUGH MUD
What would actually happen when performing RANS simulations of a large vessel
sailing through mud? As an example, Fig. 6.11 shows the ratio µt /µ in the mud layer
(Mud_23) when using SST. Clearly, the eddy viscosity near the hull is negligible com-
pared to the apparent viscosity (µt /µ<< 1), hence the SST model actually predicts
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laminar flow. Analogous observations were made with SA, KSKL and SST-HB. Of
course, the results may differ depending on the mud rheology, ship’s size and speed,
and on the regularisation parameter; nonetheless, this example suggests that for
some practical applications the RANS models will tend to predict laminar flow in the
mud layer.

It is remarked that these RANS models are not supposed to correctly capture the
flow transition. Hence, the fact that they predict laminar flows could be spurious,
especially for non-Newtonian fluids. On the other hand, it is realistically plausible
that for τ0/τw well above 20−30% the flow of mud is laminarised due to its high
viscosity. If this should be the case, the Newtonian RANS models are then performing
correctly without any modifications, at least for the example shown in Fig. 6.11 and
for analogous scenarios.

6.9. CONCLUSIONS AND LIMITATIONS

6.9.1. CONCLUSIONS
A new turbulence model for Herschel–Bulkley fluids (and their special cases, i.e.
Bingham and power-law) has been derived by modifying the popular k −ω SST
model. The derivation was carried out along the lines of Gavrilov and Rudyak [64],
who developed a turbulence closure for power-law fluids. The calibration coefficients
were chosen to ensure satisfactory agreement with DNS data and with correlations
for shear-thinning and yield-stress fluids for a wide range of Reynolds numbers.
Furthermore, we have assessed three widely-used RANS models for Newtonian fluids,
namely the SST, the Spalart-Allmaras (SA) and the k-

p
kL (KSKL) models. The main

conclusions of this work are summarised as follows:

• The new model showed good agreement in the mean velocity, average viscos-
ity, mean shear stress budget and friction factors as compared to DNS data.
Furthermore, the new model appears to be always more accurate than the
standard SST model.

• The new model is inadequate for applications that require accurate predictions
of the TKE. Nonetheless, the accuracy of the prediction is comparable to that
of the other selected RANS models when applied to Newtonian flows.

• The friction factor predicted by the new model agrees well with both DNS and
correlations for power-law and Bingham fluids.

• Among the three Newtonian RANS models, the SST proved to be most suitable
for weakly non-Newtonian fluids (n ≥ 0.8 and τ0/τw ≤ 10%) and for high
Reynolds numbers (Reτ > 750). The SST model tends to underpredict the
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Figure 6.11: Ratio of the eddy-viscosity over the apparent viscosity for the SST model in a Bingham mud
layer having the same rheological properties of Mud_23 (see Table 5.2). The ship is a full-scale KVLCC2
tanker [150] sailing at 3 knots with an under-keel clearance of 0.5T and −0.2T (T is the ship’s draught)

with respect to the solid bottom and the mud-water interface, respectively. (a) bow region at the
symmetry plane; (b) midship section of half ship.
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mean velocity and to overpredict the friction factor. Vice-versa for SA and
KSKL, with the latter giving the worst agreement for all test cases.

• For yield-stress fluids, the three Newtonian RANS models incorrectly predict
a plug. This is not only physically incorrect, as proved by previous studies,
but it may also lead to large discretisation errors and difficult iterative con-
vergence. With the new model, on the other hand, no plugs were predicted
and the iterative convergence did not show any difficulty (see Appendix B.5).
This last feature can be particularly appreciated for viscoplastic fluids in com-
plex geometries, where the combination of large yield stresses and the slowly
converging SIMPLE-like algorithms could easily lead to stagnating/diverging
iterative convergence.

• For a ship sailing through mud, τ0/τw may often be above 20-30%, in which
case the accuracy of the considered RANS models is unknown. Ratios τ0/τw

below 20-30% for typical sailing speeds in the confined waters correspond
to yield stress no larger than 1-3 Pa. On the other hand, when τ0/τw is well
above 30%, it is possible that the mud boundary layer is laminar because of
viscous damping. In this case, the Newtonian RANS models seem to perform
correctly without any modifications as they already tend to predict laminar
flow (µt /µ<< 1) in the mud layer.

6.9.2. LIMITATIONS
A number of important limitations need to be considered. First, while only one
new empirical function (FE (n)) was needed in the SST-HB model to produce good
agreement with DNS for pipe flows, further empirical modifications of the original
SST model may still be required for complex applications, such as those with adverse
pressure gradient and flow separation both in external and internal flow configura-
tions. In this regard, the applicability of the new model to complex external flows,
such as the flow around a ship, still requires further investigations.

Second, the current study was limited to Reτ > 323, and the accuracy of the new
model is expected to decrease at lower Reynolds numbers.

Third, DNS data are also affected by numerical errors/uncertainties which, un-
fortunately, could not be found. It was thus implicitly assumed that these errors
were small compared to the modelling errors. In order to overcome this aspect, it is
recommended for future DNS to provide uncertainty estimates.

Fourth, it remains a question whether the new model is suitable for fluids with
high yield stress, both because no validation data is available and because the flow
may become transitional/laminar in the core of the pipe, especially at lower Reynolds
numbers. Further DNS investigations at Reτ > 323 and with higher yield stress levels
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will be of great help to develop and improve turbulence models for Herschel–Bulkley
fluids. It is remarked that the new RANS model was calibrated and tested for pipe
flows only, a relatively simple internal-flow problem. The applicability of the new
model to complex external flows, such as the flow around a ship, still requires further
investigations.

Finally, although RANS simulations of a ship sailing through Mud_23 predicted
laminar flow in the mud layer near the hull, it cannot be conclusively stated that this
is physically correct because the tested RANS models are not supposed to capture the
flow transition of Newtonian fluids, let alone the flow transition for non-Newtonian
fluids. In order to increase the confidence in the force predictions, DNS of the flow
over a flat plate will help to elucidate on the actual flow regime in the mud layer for
typical navigation scenarios.



7
CONCLUSIONS AND

RECOMMENDATIONS

...in which the main conclusions of the four research steps are summarised. Recom-
mendations for future CFD calculations and developments are provided at the end of
the chapter.

7.1. INTRODUCTION

This research project was initiated with the aim to implement, verify and validate
non-Newtonian models in REFRESCO in order to predict the influence of muddy
seabeds on the navigational performance of ships. The goal is to improve the current
understanding of the ship-mud interaction using CFD instead of the more traditional
experimental methods. The benefit for society will be the reduction of operational
and maintenance costs for ports and waterways, while preserving the required safety
for navigation.

ReFRESCO is a CFD code developed for maritime applications and it was orig-
inally designed to simulate only Newtonian fluids. Since mud is a non-Newtonian
fluid, the first step has been the implementation of non-Newtonian models in RE-
FRESCO. A suitable choice of the rheological model depends, among others, on the
required level of accuracy and on the type of mud. In this work, the choice fell on the
Herschel-Bulkley model, which was deemed to be a good starting point to describe
the shear-thinning and viscoplastic behaviour of mud.

139
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7.2. CONCLUSIONS

7.2.1. CODE VERIFICATION OF THE HERSCHEL–BULKLEY SOLVER
It is important that the implementation of new features is followed by code verifica-
tion to ensure that the code is free of mistakes and numerical algorithm deficiencies.
The code verification based on the MMS showed that the code performs as intended
for both single- and two-phase flows of Herschel–Bulkley fluids. The illustrated pro-
cedure can be used to verify the implementation of other rheological model as well.
When verifying the correct implementation of a new rheological model, it is impor-
tant to examine, in addition to the grid convergence of velocity and pressure, also the
grid convergence of the apparent viscosity. In this way there are higher chances of
identifying coding mistakes pertaining to the implementation of the non-Newtonian
model.

7.2.2. TESTING THE HERSCHEL–BULKLEY SOLVER ON A BENCHMARK

PROBLEM
While code verification ensured that the Herschel–Bulkley model was correctly imple-
mented, obtaining fully-converged solutions for realistic non-Newtonian problems
may still be difficult to obtain. This is because, for yield-stress fluids, the viscosity
can vary by several order of magnitude within a short distance, making the equations
stiffer and thus more difficult to solve. Therefore, the non-Newtonian solver of RE-
FRESCO has been tested on the laminar flow of Herschel-Bulkley fluids around a
sphere. The latter is the simplest three-dimensional flow exhibiting features that are
somewhat close to those observed in the flow around ships, such as boundary layer
development and flow separation.

Some difficulties were encountered when using large regularisation parameters,
which led to stagnating residuals and thus large iterative errors. A determining
factor turned out to be the choice of the viscosity interpolation scheme. Although
obtaining a fully-converged solutions remained challenging, the improved iterative
convergence proved to be sufficient to replicate data from the literature with good
accuracy despite the high non-linearity introduced by the non-Newtonian viscosity.
This provided confidence to employ the CFD code on more practical applications.

7.2.3. VALIDATION OF THE BINGHAM MODEL FOR A PLATE MOVING

THROUGH MUD
The comparison between experimental and numerical data for a plate moving
through mud showed that the ideal Bingham model (large regularisation parame-
ters) well captures the relative increase of the resistance due to the increase of mud
concentration. However, at low speed, it tends to overpredict the resistance. If one
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wants to simulate the flow of an ideal Bingham fluid, (non-dimensional) values of
the regularisation parameter above 10000-20000 may be required. For simulations
of fluid mud, on the other hand, lower values seem more favourable, both from the
numerical (better iterative convergence) and physical perspective (real mud, as used
during the experiments, does not exhibit a discontinuity around γ̇= 0).

This research also revealed that the Tscheuschner model, which was a virtually
perfect fit of the ramp-down flow curves of mud, produced strong underpredictions
of the resistance, and in general worse prediction than the Bingham model. From this
it is concluded that using a more advanced model than Bingham may not necessarily
lead to more accurate numerical predictions. Two possible explanations are the
neglected thixotropy of mud and/or possible inaccuracies of the rheological protocol
at low shear rates. This latter case would support the fact that the use of more
advanced rheological models should go hand-by-hand both with more accurate
rheological characterisation of mud and with improvements of other components of
the mathematical model. If this is not possible, advanced rheological models might
perform as good as (or even worse than) simple models like Bingham. This should be
kept in mind before considering the implementation of new rheological models in
the CFD code.

7.2.4. TURBULENCE MODELLING
Although it is not known a priori whether the flow of mud around the ship is tur-
bulent or not (it may depend on the ship’s size, speed and on the mud rheology),
it was questioned whether RANS models developed for Newtonian fluids can be
applied reliably to Herschel-Bulkley flows. This was investigated for turbulent flows
inside circular pipes, for which DNS data are available for power-law, Bingham and
Herschel-Bulkley fluids.

From this study it was concluded that, among the three tested Newtonian RANS
models, the SST model produced the best predictions and it is reasonably accurate
for weakly non-Newtonian fluids and at high Reynolds numbers. Overall, the SST
model tends to underpredict the mean velocity and to overpredict the friction factor.
Vice-versa for the SA and KSKL models, which are not recommended for turbulent
non-Newtonian flows.

A new RANS model, labelled SST-HB, has been developed starting from the SST
model. The newly developed SST-HB showed good agreement with DNS in the mean
velocity, average viscosity, mean shear stress budget and friction factors. The SST-HB
correctly predicted a drag reduction when the yield stress was increased.

It should be noted that the accuracy of the tested RANS models for turbulent
flows with τ0/τw > 20−30% is still uncertain as validation data for such conditions is
not currently available. When tested on some realistic conditions, however, all four
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RANS models predicted laminar flow in the mud layer (µt /µ<< 1). While it is not
possible to assess what would be the actual flow regime in real-life scenarios, it is
possible that turbulence is damped by the high viscosity of mud, thus making the
flow laminar.

Finally, it is remarked that the new RANS model was calibrated and tested for
pipe flows only, a relatively simple internal-flow problem. The applicability of the
new model to complex external flows, such as the flow around a ship, still requires
further investigations.

7.3. RECOMMENDATIONS AND FUTURE DIRECTIONS

7.3.1. BEYOND THE BINGHAM/HERSCHEL-BULKLEY MODEL

GNF MODELS

Investigating the effects of the Bingham yield stress on the ships’ forces is already an
important step towards a better understanding of the ship-mud interaction. However,
it may turn out in the future that the Herschel-Bulkley model is not sufficiently
accurate to describe the rheology of certain types of mud. In this case, possible
GNF models are Tscheuschner [117], Worrall-Tuliani [182] and the two-step yielding
model of Shakeel et al. [149]. The verification procedure would be straightforward
for these models as the same manufactured solutions can be used. One would only
need to find the RHS source terms associated with the new constitutive equation.

THIXOTROPY

In case thixotropy needs to be modelled, a first step could be to modify the Herschel-
Bulkley model by expressing the yield stress as τ0 =λτy , where λ is a scalar between
0 and 1 that indicates the degree of structure in the fluid, whereas τy is the maximum
yield stress corresponding to the fully structured fluid (λ= 1). This type of thixotropic
models belongs to the class of ‘structural kinetics models’, where shear history effects
are taken into account by the structural parameterλ. Thus, at least another additional
transport equation for λ needs to be implemented. For more advanced models of
this type, the one proposed by Houska [73] and Toorman [164] could be considered.

Note that the mud flow curve for these thixotropic models will be bounded by
two curves, one upper curve corresponding to the highest degree of structure (λ= 1),
and one lower curve representing a completely ‘fluidised’ mud (λ= 0). Thus, a first
estimate of the effect of thixotropy could be obtained by performing CFD simulations
with two different non-thixotropic mud conditions that follow the upper and lower
curve, respectively. It is then reasonable to expect that the results obtained with a
thixotropic model would fall in between these two cases. If the difference between
these two cases is sufficiently small, thixotropy effects are expected to be small as
well. Previous CFD simulations of thixotropic Bingham flows around a cylinder at
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a fixed Reynolds number of 45 confirmed such expectation (Syrakos et al. [161]),
although some exceptions have been observed at higher Reynolds numbers and with
low yield stress (Bui and Ho [23]).

The MMS procedure presented in Chapter 3 can also be applied to verify the
implementation of thixotropic models, as done in Kim and Park [82]. Note that, in
this case, a manufactured solution for λ is required. In analogy with the tests on the
flow around the sphere presented in Chapter 4, the flow solver could also be tested
on the thixotropic flow around the cylinder, with the aim of reproducing the CFD
results of Syrakos et al. [161].

Finally, it is remarked that when a ship hull is not in contact with mud (positive
UKC), the maximum shear rate in the mud layer is expected to be rather small, at
least much smaller than when the ship sails through the mud layer. Thus, in this
case, considering the mud layer as a non-thixotropic fully-structured (λ= 1) fluid
that mimic the un-remoulded behaviour may be a reasonable assumption to avoid
the use of thixotropic models.

PROPERTIES GRADIENT AND IN-SITU DATA

An even further step is to include the variation of the mud properties with depth,
thus allowing the simulation of different mud stratifications. It is however reminded
that using more complex models may be rendered ineffective without accurate in-
situ concentration profiles of the mud layer. Therefore, progress in non-intrusive
monitoring techniques (see e.g. Ma et al. [103] and Buisman et al. [24]) to obtain
accurate in-situ data will play a key role not only for monitoring the nautical bottom,
but also to provide realistic initial and boundary conditions to the flow solver.

7.3.2. LAMINAR OR TURBULENT MUD FLOW?
Although RANS simulations of a ship sailing through Mud_23 predicted laminar flow
in the mud layer near the hull (Section 6.8), it cannot be conclusively stated that this
is physically correct because the tested RANS models are not supposed to capture the
flow transition of Newtonian fluids, let alone the flow transition for non-Newtonian
fluids. DNS investigations of the turbulent flow of yield-stress fluids over a flat plate
for τB /τw > 20% would be an important step forward to elucidate on the transition
from laminar to turbulent regime, beside helping to develop new RANS models.
However, as DNS may still be prohibitive in the near future, even for simulating the
flow over flat plate, Large-Eddy Simulations (LES) may be a possible step beyond
RANS simulations as a trade-off between costs and accuracy (e.g. Molla and Paul
[121], Ohta and Miyashita [128], and Basso et al. [13]).

Finally, laminar mud flow implies that, for navigation at low speed with negative
UKC, the frictional resistance due to contact with the mud layer can be estimated
with Eq. (5.21) or, more roughly, as the product of the yield stress and the surface
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area of the hull in contact with mud (Appendix C). Note, however, that as the ship’s
speed increases, the contact area between the hull and the mud layer is expected to
reduce according to previous numerical studies [94, 78]. Therefore, such estimation
may need to be revised at higher speeds, where the effects of the internal wave can
become more important than the mere contact with the mud layer.

7.3.3. CHOICE OF THE REGULARISATION PARAMETER
The adoption of regularisation methods allows a straightforward implementation of
yield-stress models in existing CFD solver without major modifications. One of the
drawbacks of the regularisation approach, however, is that the CFD user is left with
the arbitrary choice of the regularisation parameter, m, which can have a significant
influence on the numerical solution, as it was observed in Chapters 4 and 5. This
is especially true for laminar flows. Therefore, how to choose the regularisation
parameter when simulating mud? Two possible approaches are identified.

IDEAL BINGHAM/HERSCHEL-BULKLEY BEHAVIOUR

One approach is to try to mimic the ideal Herschel-Bulkley model as closely as
possible, hence using the largest possible value for m. A sensitivity analysis should
be performed to ensure that the solution is somewhat m-independent, although
this is not a trivial task. One issue is that the iterative solver may diverge before a
sufficiently large m is reached. The other issue is how to estimate the sensitivity
to m. For example, one could double the regularisation parameter until negligible
differences in the solution is observed. But increasing it by a factor 10 could still lead
to substantial differences, so there is not a clear way to verify that the solution is
m-independent. In absence of rigorous methods, one approach could be to use the
same method used to estimate the discretisation uncertainties, as done in Chapters 4
and 5, thus using 1/m instead of the grid spacing. Our experience showed that
choosing m such that the ratio of maximum-to-minimum viscosity is about 10000-
20000 provides a satisfactory approximation of the ideal Herschel-Bulkley behaviour,
at least for a target application as depicted in Fig. 2.1.

The advantage of this approach is that the investigation will be more general
because, whilst there are infinite possible regularised Bingham/Herschel-Bulkley
models, the ideal Bingham/Herschel-Bulkley model is unique. The drawback would
be that, since the viscosity of mud at zero shear rate is actually not infinite, the
predicted viscous forces will likely be overestimated.

REALISTIC MUD BEHAVIOUR

The other approach consists in choosing values of m that better capture the actual
flow curve of a particular mud condition. This approach may be more suitable
when the investigation concerns specific mud conditions for which the rheological
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characteristics are known. In this case, the regularisation parameter will most likely
be lower than in the first approach, with the advantage that the convergence of the
iterative solver will be less problematic. On the other hand, the determination of
m from the mud flow curves still leaves room for arbitrariness. Three options were
given in Section 5.4.2. If one wants to mimic the behaviour of mud without having
information about its flow curves, then selecting m such that the maximum-to-
minimum viscosity is around 1000 is a reasonable choice according to the findings in
Chapter 5.

Finally, it should be born in mind that the regularisation parameter is not a
physical parameter. Hence, if a more accurate description of the flow behaviour
at low shear rate is needed, other models such as Tscheuschner [117] and Worrall-
Tuliani [182] may be preferable.

7.3.4. FUTURE DIRECTIONS

Although numerical studies on ships navigation with muddy bottoms have been
increasing in the past few years, there is still a long road ahead. In this dissertation,
a bottom-up approach has been followed, where simplified problems have been
studied in order to gain insights that can be used for the practical applications.
This should now be accompanied by a top-down approach, where the CFD solver is
applied to more realistic scenarios to gain insights about what needs to be improved
in the CFD model.

RESISTANCE, MANOEUVRING COEFFICIENTS, SINKAGE AND TRIM

Even with a simple rheological like Herschel-Bulkley, there are now numerous aspects
that are worth investigating at the current state of knowledge. Among them, one of
the most compelling question concerns the link between the rheological properties
of mud and the hydrodynamic forces acting on ships. This is not only interesting
from the theoretical/academic perspective, but it will also provide useful insights
for port authorities concerned with finding a trade-off between safe navigation and
dredging costs.

Particularly interesting is the influence of the mud yield stress. Investigating the
ships’ resistance could be a good starting point before considering the full set of
manoeuvring coefficients. A wide range of speeds should be studied in order to cover
the subcritical, critical and supercritical range with respect to the internal wave. This
is important because opposite trends may be observed depending on the range at
which the ship is moving.

The ships’ trim and sinkage are also important aspects for navigation in confined
waters. However, in this case, the ship should be left free to move, thus either de-
forming or overset grids must be used in the CFD simulations. Note that in this case



7

146 7. CONCLUSIONS AND RECOMMENDATIONS

the air-water free surface cannot be neglected, therefore the computational costs will
increase substantially.

SCALE EFFECTS

Ideally, CFD simulations should be performed with a wall-resolved grid (i.e. without
using wall functions) and at full scale. This is because neither the effect of using
wall functions in the mud layer nor the scaling effects are yet known. However,
the computational power required for these simulations can be onerous, especially
for navigation with non-zero drift angles, where the symmetry of the problem can
no longer be exploited and the full domain must be modelled. Furthermore, the
presence of the mud layer increases the number of parameters to be investigated (e.g.
rheological properties, density ratio, layer thickness, etc.), leading to a potentially
enormous amount of test cases to be simulated.

It is therefore recommended to study which simplification can be applied to save
computational resources. Two very important simplifications are certainly the use of
wall functions and the possibility to carry out the numerical simulations at model
scale. For the latter, two main research questions are identified: at what scale do the
scaling effects become negligible? What are the scaling laws that allow extrapolating
the results to full-scale?

The second question will be more difficult to answer as it shall require good
knowledge of the underlying physics, especially with respect to the effects of the
non-Newtonian rheology on the hydrodynamic forces. The second question will also
be interesting for extrapolating results from ship-model tests to full scale. Probably a
differentiation must be made between situations at high and low speeds, and between
positive and negative UKC. In fact, at low speed with negative UKC, the effect of
the rheological properties are expected to dominate, whereas at higher speeds the
(densimetric) Froude number associated to the mud undulation is expected to be
more influential.

NEWTONIAN MUD

Another possible simplification concerns the rheological model. Whilst it is possible
that more advanced models than Herschel-Bulkley will be required, it is also possible
that the non-Newtonian properties of mud are of minor importance in some naviga-
tion scenarios. For instance, considering a highly viscous Newtonian mud may be
acceptable for the cases where the ship does not directly shear the mud layer, i.e. with
positive UKC. In fact, in this cases, the shear rate in the mud is expected to be rather
low, as it is just caused by the ship-induced undulations. Limited viscosity variations
are thus expected within the flow. But what value should be used for the Newtonian
viscosity? A possible candidate is the maximum apparent viscosity of the Bingham
model. In case of the Papanastasiou regularisation, the maximum viscosity is τ0 · m,
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where τ0 and m are the yield stress and the regularisation parameter, respectively.
While this simplification may be too crude, it could nevertheless be applied to reduce
the number of parameters to investigate. After all, the mud layer has already been
modelled as a Newtonian fluid in the previous CFD study of Kaidi et al. [78], while
also the work Leijs [94] showed a rather limited influence of the mud yield stress on
the ship’s resistance. This aspect needs to be clarified in future studies.

PROPELLER-INDUCED TURBULENT MIXING

So far the focus has been on the hydrodynamic forces acting on the hull. However,
the ships’ controllability and manoeuvrability are the result of the combined action
of the hull forces, the propeller and the rudder. Hence, a complete manoeuvring
model requires also knowledge about the propeller and the rudder action with muddy
bottoms.

An interesting research question to investigate is how the propeller efficiency
changes in presence of a mud layer. It is remarked that accurate CFD predictions of
the propeller characteristics are already quite challenging in case of water, thus the
presence of mud will certainly add extra difficulties. To name one, in case of negative
UKC, part of the mud is expected to be sucked by the propeller. Hence, for such cases,
mud and water can probably no longer be assumed to be immiscible. A possible step
in this direction is to use a mixture model approach (e.g. Goeree et al. [65], Ouda and
Toorman [129], and Elerian et al. [55]), in which water and mud can mix and have a
non-zero relative velocity.

VALIDATION DATA

Finally, no matter how advanced a CFD model can be, obtaining reliable experimental
data that can validate such model will be one of the major challenges for navigation
with muddy bottoms. Experiments with scaled models of ships seem out of reach
as ship model basins are reluctant to work with fluids other than water, although
this may change in the future. For now, this leaves no other option than considering
simplified problems, such as a plate (Chapter 5) or a cylinder [155] moving through
mud. Nonetheless, in absence of anything else, even investigations on simplified
problems can still provide useful insights for CFD developers.

Full-scale trials are even more challenging to conduct, and obtaining accurate
measurements that can be used for validation of CFD simulations is a very difficult.
Nevertheless, full-scale trials could shed some light on what to expect from CFD
simulations. For instance, the RPM-speed curves could be measured when navi-
gating above or through different types of mud layers. This could not only provide
useful insights to pilots on how ships behave, but also confirm or dismiss expected
phenomena such as the sharp increase of resistance associated to internal waves.
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A.1. SENSITIVITY TO CODING MISTAKES IN THE RHEOLOGI-
CAL MODEL

This exercise illustrates the sensitivity of the three test cases discussed in Chapter 3 to
coding errors in the implementation of the apparent viscosity. For this purpose, we
simulated the presence of bugs in the viscosity by inserting the following command
right below the line of code where the apparent viscosity is calculated:

mu(:) = mu(:) * (1.0 + err/100.0)

where err represents the (small) coding error in percentage. This error mimics
the presence of coding mistakes in the apparent viscosity that produce a uniform
viscosity error equal to err.

For Case 1 (Section 3.5), the presence of a coding error is clearly visible from both
the observed order of accuracy p (Table A.1) and the convergence of e0 (Fig. A.1) of
all quantities.

For Case 2 (Section 3.6), the observed order of accuracy of viscosity appears to be
highly sensitive to the small coding error (Table A.2), whereas for velocity, pressure
and volume fraction, p is virtually unaffected. Likewise, the extrapolated error e0

(Fig. A.2) shows an alarming trend for the viscosity, whereas for the other variables e0

appears to be the same as in the exercise without the coding error.
For Case 3 (Section 3.7), the presence of an anomaly in the rheological model

is suggested by the convergence of the viscosity error, which appears to stagnate
instead of decreasing with grid refinement (Fig. A.3). However, as for Case 2, the
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Table A.1: Observed order p for the five finest grids of Case 1 with err = 0.01%

hi /h1 p(L2[e(φ)]) p(L∞[e(φ)])

u Cp µ u Cp µ

2.00 2.01 -0.11 2.32 2.05 0.96 9.21
1.61 2.01 2.02 2.24 2.03 0.97 -0.04
1.35 2.02 -0.13 2.19 2.03 0.97 -0.04
1.14 2.04 -0.10 2.14 2.07 0.97 1.05
1.00 2.08 0.73 2.11 2.11 0.98 1.03
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Figure A.1: Extrapolated error e0 for Case 1 with err = 0.01%

Table A.2: Observed order p for the five finest grids of Case 2 with err = 0.01%

λi /λ1 p(L1[e(φ)]) p(L2[e(φ)])

u Cp c µ u Cp c µ

2.00 2.00 2.02 2.13 5.05 2.04 2.05 2.10 2.82
1.61 2.00 2.02 2.08 5.05 2.04 2.04 2.06 3.45
1.35 2.00 2.02 2.06 9.09 2.03 2.03 2.05 4.10
1.14 2.00 2.01 2.06 9.09 2.03 2.03 2.04 5.37
1.00 2.00 2.01 2.04 9.09 2.03 2.02 2.03 8.65
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Figure A.2: Extrapolated error e0 for Case 2 with err = 0.01%

grid/time convergence properties of the other variables appear to be unaffected by
the coding error.

The insensitivity of the dependent variables to coding mistakes in the viscosity
for Case 2 and Case 3 is due to the fact that the diffusion term in the momentum
equations is much smaller than the other terms. This is simply due to the nature of
the manufactured solution, which represents a gravity wave. Therefore, for Case 2
and Case 3, it is recommended to examine the grid/time convergence properties of
the viscosity for detection of bugs in the rheological model.
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Figure A.3: L1 error norms as function of the refinement factor with err = 1%. Lines are obtained from the
best weighted least-square fitting of Eq. (3.8) to data on the 10 finest grids.
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A.2. PARAMETER VALUES USED FOR THE THREE TEST CASES

Table A.3: Parameters used for the three test cases in Chapter 3.

Parameter Value

Case 1
Computational domain [m] (x, y) ∈ [0,0.6]× [0.1,0.7]
Finest grid 640×640
Density [kg m−3] ρ = 1
Flow index [-] n = 0.8
Consistency parameter [Pa sn ] k = 0.5
Yield stress [Pa] τ0 = 5
Regularisation parameter [s] m = 1
Convergence tolerance for residuals [-] L∞ norm < 2×10−14

Case 2
Computational domain [m] (x, z) ∈ [0,1]× [−0.75,0.25]
Finest grid and time step 640×640, τ1 = T /4800
Wave speed [m s−1] c = 1.25
Wave amplitude [m] A = 0.02
Gravity [m s−2] g = 9.81
Steepening coefficient [m−1] b = 12
Wave length [m] and period [ s] λ= 1, T = 0.8
Molecular viscosity fluid 2 [Pa s] µ2 = 0.001
Consistency parameter fluid 1 [Pa sn ] k = 0.002
Flow index fluid 1 [-] n = 0.8
Yield stress fluid 1 [Pa] τ0 = 0.002
Regularisation parameter fluid 1 [s] m = 4
Density [kg m−3] ρ1 = 1200, ρ2 = 1000
Convergence tolerance for residuals [-] L∞ norm < 10−10

Convection scheme volume-fraction equation TVD Harmonic [93]

Case 3 (other parameters are as Case 2)
Steepening coefficient [m−1] b = 1200
Molecular viscosity fluid 2 [Pa s] µ2 = 2×10−5

Density fluid 2 [kg m−3] ρ2 = 1
Convection scheme volume-fraction equation ReFRICS [85]
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This appendix reports the details of the three turbulence models that were used in
Chapter 6, together with the non-Newtonian contributions in the TKE budget and
the iterative convergence for some of the test cases considered in Chapter 6.

B.1. k −ω SST (2003)
The k −ω SST model of Menter et al. [113] that is used as a baseline for the derivation
of the new SST-HB model (see Sections 6.3.4 and 6.7.1) is reported below.

D(ρk)

Dt
= P̃k +∇·

[
(µ+σkµt )∇k

]
−ρ

ϵ︷ ︸︸ ︷
β∗kω (B.1)

D(ρω)

Dt
= ρα

µt
P̃k +∇·

[
(µ+σωµt∇ω

]
−βρω2 +2ρ(1−F1)

σω2

ω
∇k ·∇ω (B.2)

F1 = tanh

{
min

[
max

( p
k

β∗ωd
,

500ν

d 2ω

)
,

4ρσω2k

C Dkωd 2

]4}
(B.3)

d is the distance to the wall boundary.

C Dkω = max

(
2ρσω2

1

ω
∇k ·∇ω,10−10

)
(B.4)

νt = a1k

max(a1ω,SF2)
, a1 = 0.31 (B.5)
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F2 = tanh

{[
max

(
2
p

k

β∗ωd
,

500ν

d 2ω

)]2}
(B.6)

P̃k = min(µt S2,10β∗ρkω) , β∗ = 0.09 (B.7)

α=α1F1 + (1−F1)α2, β=β1F1 + (1−F1)β2,

σk =σk1F1 + (1−F1)σk2, σω =σω1F1 + (1−F1)σω2,

α1 = 5/9, β1 = 3/40, σk1 = 0.85, σω1 = 0.5,

α2 = 0.44, β2 = 0.0828, σk2 = 1, σω2 = 0.856.

B.2. k-
p

kL (KSKL)
The RANS model of Menter et al. [115] is a two-equation model that solves the
following transport equations:

D(ρk)

Dt
=µt S2 +∇·

[(
µ+ µt

σk

)
∇k

]
− c3/4

µ ρ
k2

Φ
−2µ

k

d 2 , (B.8)

D(ρΦ)

Dt
= Φ

k
µt S2

[
ζ1 −ζ2

(
L

LvK

)2]
+∇·

[
(µ+ µt

σΦ
)∇Φ

]
−ζ3ρk −6µ

Φ

d 2 fΦ , (B.9)

where d is the distance to the wall boundary and

LvK = κ
∣∣∣ U ′

U ′′
∣∣∣ , Φ=

p
kL , U ′ = S =

√
2Si j Si j , U ′′ =

√√√√∑
i

∑
j

∑
k

∂2ui

∂x2
k

∂2ui

∂x2
j

,

fΦ = 1+4.7ξ

1+ξ4 ξ=
p

0.3kk

20µ
, ζ1 = 0.8, ζ2 = 1.47, ζ3 = 0.0288,

σk =σΦ = 2/3, κ= 0.41.

The eddy viscosity reads:

µt = min
(
c1/4
µ ρΦ,

a1k

S

)
, (B.10)

where

a1 = 0.32 fb +0.577(1− fb) , fb = tanh

[( 20c1/4
µ Φ+20ν

κ2Sd 2 +0.01ν

)2]
The following limiters are applied to the length scale LvK :

0.1L < LvK < 1.3κd
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B.3. SPALART-ALLMARAS (SA)
The RANS model proposed by Spalart and Allmaras [157] is a one-equation model in
which the eddy viscosity is a function of an auxiliary quantity ν̃,

µt = ρν̃ fν1 , (B.11)

and ν̃ is obtained by solving the following transport equation:

D(ν̃)

Dt
= cb1S̃ν̃+ 1

σs

{
∇·

[
(ν+ ν̃)∇ν̃

]
+ cb2|∇ν̃|2

}
− cw1 fw

(
ν̃

d

)2

, (B.12)

where d is the distance to the wall boundary. The other quantities are defined below:

ν≡ µ

ρ
, S̃ ≡Ω+ ν̃

κ2d 2 fν2 , Ω=
√

2Ωi jΩi j ,

Ωi j = 1

2

(
∂ui

∂x j
− ∂u j

∂xi

)
, χ≡ ν̃

ν
,

fν1 = χ3

χ3 + c3
v1

, fν2 = 1− χ

1+χ fν1
, cv1 = 7.1,

r ≡ ν̃

S̃κ2d 2
, g = r + cw2(r 6 − r ) , fw = g

(
1+ c6

w3

g 3 + c6
w3

)1/6

,

cw1 = cb1

κ2 + 1+ cb2

σs
, cw2 = 0.3, cw3 = 2,

cb1 = 0.1355, cb2 = 0.622, σs = 2

3
, κ= 0.41.

B.4. NON-NEWTONIAN CONTRIBUTIONS IN THE TKE BUD-
GET

In order to give an indication of the magnitude of the non-Newtonian contributions
χnn and ξnn in the TKE equation, their distribution is plotted in Fig. B.1 together
with the production, dissipation and transport terms (see also Eq. (6.31)). For non-
Newtonian fluids, the difference between production and dissipation is absorbed by
the non-Newtonian contributions, making the transport term D+ nearly insensitive
to the fluid rheology, in line with DNS data (Figs. 10 and 15 in [153]). The sum of
the non-Newtonian contributions is positive and appears to be larger for power-law
fluids.
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Figure B.1: Production (P̃k
+), dissipation (ε+) and transport (D+) of TKE (top) and non-Newtonian

contributions (bottom) (Reτ = 323). The non-dimensional terms were obtained by dividing the
dimensional terms by ρu4

τ/νw .



B.5. ITERATIVE CONVERGENCE 177

B.5. ITERATIVE CONVERGENCE
Fig. B.2 shows the iterative convergence of the residuals (top graph) with the new
SST-HB and the standard SST model for Bn30 (most difficult case for iterative conver-
gence), together with the estimated iterative error for the wall shear stress (bottom
graph). The latter can be estimated since the pressure gradient is imposed and thus
the exact wall shear stress is known. The wall shear stress requires about 7000 itera-
tions to converge with the new model, whereas the standard SST (similarly for the
SA and KSKL model) requires about 30000 SIMPLE iterations. The better iterative
convergence of the new model is simply due to the fact that the viscosity does not
reach very large values in the core of the pipe, contrary to the other selected RANS
models, which show an incorrect asymptote in the viscosity typical of laminar flows
(see also Section 6.7.3).
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In this appendix the frictional resistance due to the contact with Mud_10 and Mud_23
is estimated assuming laminar flow in light of the considerations made in Section 6.8.

C.1. ESTIMATION OF THE FRICTIONAL RESISTANCE FOR LAM-
INAR FLOW

For laminar flows, the correlation for Bingham fluids (Eq. (5.21)) can be used to
estimate the average wall shear stress on the portion of the hull in contact with mud.
In this case, the wall shear stress is almost completely dominated by the yield stress,
which leads in fact to ratios τ0/τw close to 100%, as shown in Table C.1. The total
frictional resistance due to the contact with mud can thus be well approximated
by τ0 · Smud , where Smud is the hull surface area wetted by mud. Indeed, for the
simulation illustrated in Fig. 6.11, the component in the flow direction of the wall
shear stress averaged over the hull surface in contact with mud (cmud < 0.5) is 23.05
Pa, which is virtually identical to the yield stress of Mud_23. This also further confirms
that boundary layer in the mud region predicted by the RANS models is indeed
laminar. Hence, as long as the mud rheology is well described by the Bingham model,
τ0 ·Smud is a good estimate of the frictional resistance due to contact with the mud
layer.

For a quick estimation of Smud , one could approximate it as [(L·B)+2·Tmud ·L]·CB ,
where L, B and CB are the ship’s length, beam and block coefficient, respectively,
whereas Tmud is the draught with respect to the undisturbed mud level. For the
test case shown in Fig. 6.11, this approximation leads to an overestimation of 10%
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Table C.1: Estimated ratio τ0/τw and wall shear rate for a flat plate moving through Mud_10 and Mud_23
at different speeds. The flow regime is assumed to be laminar and the average shear stress is estimated

with the modified Blasius’ formula (Eq. (5.21)). For the rheological properties of Mud_10 and Mud_23 see
Table 5.2.

U [Kn] U [m/s] Re Bn CF ×1000 ∼ τ0/τw ∼ γ̇w [s−1]

Mud_10

1.0 0.51 1.1E+07 6.4E-02 64.67 99% 4
2.0 1.03 2.2E+07 1.6E-02 16.35 98% 10
4.0 2.06 4.5E+07 4.0E-03 4.216 95% 29
6.0 3.09 6.7E+07 1.8E-03 1.947 92% 53
8.0 4.12 9.0E+07 1.0E-03 1.145 88% 81

10.0 5.14 1.1E+08 6.4E-04 0.7682 84% 113
12.0 6.17 1.3E+08 4.5E-04 0.5609 80% 149

Mud_23

1.0 0.51 5.7E+06 1.4E-01 145.4 100% 3
2.0 1.03 1.1E+07 3.6E-02 36.60 99% 7
4.0 2.06 2.3E+07 9.1E-03 9.330 97% 20
6.0 3.09 3.4E+07 4.0E-03 4.250 95% 38
8.0 4.12 4.6E+07 2.3E-03 2.459 92% 58

10.0 5.14 5.7E+07 1.4E-03 1.624 89% 81
12.0 6.17 6.9E+07 1.0E-03 1.166 86% 106
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with respect to the computed Smud , which is generally acceptable when lacking of
more detailed geometrical information about the hull. However, the accuracy of this
approximation is expected to quickly drop at higher speeds as the water will flow
underneath the hull, even with negative UKC, thereby reducing actual surface area in
contact with mud. This sort of ‘water lubrication’ has been observed in the numerical
studies of Leijs [94] (see Fig. 6.16 therein) and of Kaidi et al. [78] (see Fig. 23 therein).

Finally, still under the assumption of laminar flow in the mud layer, Table C.1
shows also the average shear rate on a flat plate having L = 320 m. Interestingly, the
shear rate does not exceed 150 s−1 even with Mud_10 and at 12 knots. This suggests
that, if the flow is laminar, standard protocols to determine the mud flow curves (for
which the maximum shear rate cannot be too large for practical reasons) could be
reliably used for ’sailing-through-mud’ applications.
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