
SYNCHRONIZING PERMUTATION GROUPS                   

AND GRAPH ENDOMORPHISMS 

Artur Schaefer 

 

A Thesis Submitted for the Degree of PhD 
at the 

University of St Andrews 
 

 

  

2016 

Full metadata for this item is available in                                      

St Andrews Research Repository 
at: 

http://research-repository.st-andrews.ac.uk/ 
 

 
 

 

Please use this identifier to cite or link to this item: 
http://hdl.handle.net/10023/9912  

 

 

 

 

This item is protected by original copyright 

 
 

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/9912


Synchronizing Permutation Groups

and Graph Endomorphisms

ARTUR SCHAEFER

THIS THESIS IS SUBMITTED IN PARTIAL FULFILMENT FOR

THE DEGREE OF PHD

AT THE UNIVERSITY OF ST ANDREWS

AUGUST 25, 2016



2







5

Abstract

The current thesis is focused on synchronizing permutation groups and on graph endo-

morphisms. Applying the implicit classification of rank 3 groups, we provide a bound

on synchronizing ranks of rank 3 groups, at first. Then, we determine the singular graph

endomorphisms of the Hamming graph and related graphs, count Latin hypercuboids of

class r, establish their relation to mixed MDS codes, investigate G-decompositions of

(non)-synchronizing semigroups, and analyse the kernel graph construction used in the

theorem of Cameron and Kazanidis which identifies non-synchronizing transformations

with graph endomorphisms [20].

The contribution lies in the following points:

1. A bound on synchronizing ranks of groups of permutation rank 3 is given, and a

complete list of small non-synchronizing groups of permutation rank 3 is provided

(see Chapter 3).

2. The singular endomorphisms of the Hamming graph and some related graphs are

characterised (see Chapter 5).

3. A theorem on the extension of partial Latin hypercuboids is given, Latin hyper-

cuboids for small values are counted, and their correspondence to mixed MDS

codes is unveiled (see Chapter 6).

4. The research on normalizing groups from [3] is extended to semigroups of the

form 〈G, T 〉, and decomposition properties of non-synchronizing semigroups are
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described which are then applied to semigroups induced by combinatorial tiling

problems (see Chapter 7).

5. At last, it is shown that all rank 3 graphs admitting singular endomorphisms are

hulls and it is conjectured that a hull on n vertices has minimal generating set of at

most n generators (see Chapter 8).
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Chapter 1

Introduction

The Motivation

Synchronization has its origins in computer science, in particular, in the theory of deter-

ministic finite automata (DFA). The concept of synchronizing automata has been around

from the earliest days of automata theory in 1956 [12], but in his pioneering paper from

1964 Černý [22] was the first who explicitly mentioned synchronizing automata (Černý

called them directable automata; the term synchronizing did not appear until introduced

by Hennie [42] in 1964).

A synchronizing DFA is an automaton admitting a sequence of transitions (or a word)

which brings the automaton to a particular state no matter where it started. Such a word

is called a reset word; thus, a DFA is synchronizing, if it admits a reset word.

However, synchronizing automata have been reinvented several times over the years.

This is due to the technological advancements and its technical applications of which

robotics is one of the most important ones. For instance, industrial automation, loading,

assembly and packing are common examples [79].

In [1], Ananichev and Volkov provided an illustrative example of a part handling

problem dealing with parts which take the four possible orientations in Figure 1.1. When

lying on a conveyor belt the part may take one of the orientations randomly; however,
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Figure 1.1: 4 possible orientations (cf. [79])

it needs to take a prescribed position, say upwards oriented, prior to assembly. Hence,

there needs to be one spot on the conveyor belt where the parts are being rotated. Due to

costs and simplicity, assume there are two robot arms at this spot applying the following

two operations to the parts. Arm a rotates the part through 90◦ (clockwise), only if it is

left oriented and does nothing else; whereas arm b rotates it through 90◦ (clockwise). The

situation is described by the automaton in Figure 1.2, which turns out to be synchronizing.

In his research, Černý found particular interest in the length of synchronizing words

[22]. He developed a family of synchronizing automata containing a reset word of length

at most (n − 1)2. The previous example belongs to this family and the minimal length

of a reset word is (4 − 1)2 = 9. Moreover, he conjectured that this bound holds for any

synchronizing automaton (the first print version of the conjecture appeared in [23]).

Conjecture 1.1.1. A synchronizing automaton with n states contains a reset word of

length at most (n− 1)2.

The conjecture has been proposed by various authors, and it has been verified for

several partial cases (see [78] for an overview), but it remains unsolved for more than 40

years. Thus, it is arguably one of the most long-standing open conjectures in the history

of automata theory.

The main motivation for the current research comes from this conjecture, and is fur-

ther motivated by the result of Trahtman [78] who verified the conjecture for aperiodic

automata.

Algebraically, a DFA can be regarded as a submonoid of the full transformation

monoid Tn on n symbols. In the previous example the four orientations correspond
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Figure 1.2: The automaton with reset word ab3ab3a (cf. [79])

to the four states on which the transformations a and b act (given by the robot arms).

Hence, S = 〈a, b〉 is the corresponding submonoid. In general, a transformation semi-

group S ≤ Tn is synchronizing if it contains a constant transformation i 7→ x, for a fixed

x ∈ {1, ..., n}.

In this setting, an aperiodic automaton is a transformation semigroup S with a trivial

subgroup G of permutations. Thus, the missing case in the Černý conjecture is where

S is a transformation semigroup of the form S = 〈G, T 〉 with non-trivial permutation

group G and T ⊆ Tn. So, in this thesis we are interested in semigroups of this form.

However, for synchronization purposes it is sufficient to consider semigroups 〈G, t〉, for

a single singular transformation t.

J. Araújo was the first to tackle the case with non-trivial subgroup G of permutations

[5]. He called a permutation group G on n points synchronizing, if the semigroup 〈G, t〉

is synchronizing for any singular transformation t. In this regard, B. Steinberg and J.

Araújo suggested an approach to the Černý conjecture via synchronizing permutation

groups. Though their approach has not yet lead to the proof of this conjecture, it was the

incentive for many far-reaching research questions in group theory and semigroup theory.

Essentially, Steinberg and Araújo suggested a 2-step approach to tackle the conjecture:
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1. Classify all synchronizing permutation groups, and

2. check whether the Černý bound is satisfied for each combination of synchronizing

group and transformation.

Note, some ideas of how to check the second step can be found in [51, 11].

However, even the classification of all synchronizing permutation groups in this sim-

ple looking approach turns out to be very difficult. So, to learn more about synchroniza-

tion, non-synchronizing groups were considered. It was asked where such groups fail to

be synchronizing; in detail, people looked for properties of transformations which fail

to be synchronized, and it turned out that a particular rank of a transformation (size of

its image) and uniformity (each kernel class has the same size) are good choices. So,

the reader will notice that this research includes many discussions regarding ranks and

uniformity of transformations.

A ground-breaking result in synchronization theory was achieved by Cameron and

Kazanidis [20]. They gave an equivalence between transformations which are not syn-

chronized and singular graph endomorphisms. Their theorem states that a permutation

group G does not synchronize a transformation t if and only if there is a non-trivial G-

invariant graph with complete core which admits t as an endomorphism. Having a com-

plete core means that the clique and chromatic number are identical, so this guarantees

the existence of singular endomorphisms (cf. Lemma 2.3.3). Consequently, a permuta-

tion group is synchronizing if and only if there is no non-trivial G-invariant graph with

complete core. This resulted, for instance, in various theorems on ranks not synchro-

nized, and this theorem is applied throughout this research.

Again, according to Araújo and Cameron, the highlights of this approach to the Černý

conjecture are the side-effects on permutation group theory, semigroup theory, graph

theory, combinatorics and other related areas.
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The Current Research and Contributions

The current thesis is focused on synchronizing permutation groups and on graph endo-

morphisms, motivated by the theorem of Cameron and Kazanidis. Although it is not

directly participating in the classification of synchronizing permutation groups, it tack-

les various questions related to it. The problem most related to synchronizing theory is

on ranks not synchronized by groups of permutation rank 3; there we provide a bound

on the ranks synchronized. Then, we determine the singular graph endomorphisms of

the Hamming graph and related graphs, count Latin hypercuboids of class r, establish

their relation to MDS mixed codes, investigate disjoint decompositions of synchroniz-

ing semigroups, and analyse the graph construction used in the theorem of Cameron and

Kazanidis.

This research is divided into 8 chapters, of which Chapter 2 constitutes the mathemat-

ical background on the material covered here. Some parts of Chapter 2 have been moved

to the appendix for a better comprehension. Afterwards, Chapter 3 introduces synchro-

nization theory and proves a bound on non-synchronizing ranks of groups of permutation

rank 3. Moreover, it contains a list of small non-synchronizing permutation groups.

Subsequently, Chapter 4 gives many examples of non-synchronizing groups and anal-

yses the corresponding endomorphism monoids. Also, here we provide a list of primitive

and transitive graphs admitting a complete core and we count their singular endomor-

phisms.

Afterwards, Chapter 5 provides a description of the singular endomorphisms of the

Hamming graph. This chapter is the next main chapter of this thesis. Furthermore, three

other families related to the Hamming graph are discussed, too. Also, the results on the

Hamming graph are generalised to cuboidal Hamming graphs by mentioning so-called

Latin hypercuboids of class r.

Then, in Chapter 6 Latin hypercuboids of class r are considered in detail. First of

all, they are defined and their symmetry, equivalence classes and existence are consid-
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ered. Then, in the context of Latin hypercubes we consider questions like extensions or

completions of partial Latin hypercuboids, and determine their numbers for small values.

In addition, we introduce mixed codes and define mixed MDS codes, and link mixed

MDS codes to Latin hypercuboids of class r. At last, we discuss a construction of non-

synchronizing semigroups from tilings. In particular, we consider the famous problem

of tiling the chequerboard with dominoes. This construction will act as an important

example in the next chapter.

Next, Chapter 7 introduces various notions of normalizing groups. This chapter is first

of all extending the research in [3]. However, building on that the focus rapidly changes

to various disjoint decompositions of non-synchronizing semigroups. The semigroups

coming from tilings admit those decompositions, and many other non-synchronizing

semigroups from Chapter 4, too.

Finally, Chapter 8 analyses the construction of the kernel graph Gr(S) which is in-

troduced in [20]. This chapter considers the construction of this graph in more detail and

discusses minimal generating sets. At the end, we introduce the inverse synchronization

problem, which is complementary to the synchronization problem given in Chapter 3.



19

Chapter 2

Mathematical Background

This introductory chapter covers the mathematical background necessary for this thesis;

that is, the objects of interest and commonly used terms are defined, and notations and

conventions are set. The four major topics covered in this chapter are permutation groups,

transformation semigroups, graph theory and further combinatorial objects and results.

First, permutation groups and transformation semigroups are introduced, and their ac-

tions on the natural numbers are defined. Second, the basic graph theory notation is set

and orthogonal arrays and Latin hypercubes are described.

For a more extended review of group theory and, in particular, of permutation groups

we recommend Cameron [19], and Dixon and Mortimer [31]. An excellent introduction

to the fundamentals of semigroup theory can be found in Howie [45], where Godsil and

Royle [38] contains the basics in graph theory used in this research. Finally, Laywine

and Mullen [58] or Dénes and Keedwell [28] provide an extensive book on Latin squares

and related objects, which also covers orthogonal arrays.
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Permutation Groups

Groups and Actions

A group G is a set with a binary operation · : G × G → G, (g, h) 7→ g · h satisfying

the following axioms: (i) the operation is associative, (ii) G contains a unique identity

element, and (iii) every element has a unique inverse.

Let Ω be a finite set. The symmetric group Sym(Ω) is the group consisting of all

bijective maps on Ω, and its elements are called permutations. The image of an element

v ∈ Ω under a permutation g is denoted by vg. The set Ω is usually set to be n =

{1, ..., n}; so Sn denotes the symmetric group on Ω.

Definition 2.1.1. A permutation group G of degree n is a subgroup of Sn

For technical reasons, we assume throughout this thesis that G has degree at least 3.

Cayley’s theorem states that every group can be represented as a permutation group.

All groups considered in this thesis are permutation groups (if not explicitly mentioned),

and the following example contains a list of popular groups and their various permutation

representations, which can be found throughout this thesis.

Example 2.1.2. 1. The symmetric group Sn consists of all permutations of {1, ..., n}.

2. The alternating group An is the set of all even permutations of {1, ..., n}.

3. The elements of Sn can also be represented as permutations of the 2-sets of {1, ...,m},

where n =
(
m
2

)
.

4. The wreath product Sk o Sm whose elements are permutations of the m-tuples

{1, ..., k}m, where n = km. (This is the primitive product action.)

5. The projective special linear group PSL(d + 1, q) can be represented as permuta-

tions of the points of a d-dimensional projective space over Fq.
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6. The affine general linear group AGL(d, q) can be represented as permutations of

the points of a d-dimensional affine space over Fq.

Now, G acts on the set Ω if there is a homomorphism φ : G → Sym(Ω). The image

of φ is a subgroup of Sym(Ω), and we usually write vg instead of v(gφ), when g acts

on v. Given an action, the set vG = {vg : g ∈ G} is called the orbit of v under G.

Moreover, the group G is transitive on Ω if for any pair v, w ∈ Ω there is a group element

g ∈ G such that vg = w. Equivalently, G is transitive if and only if one of the orbits is

the whole set Ω.

Transitive groups are well-known and constitute a very important part of group theory.

However, if a group is non-transitive, then restricting its action to any of the transitive

subsets provides a transitive action. In other words, the group is transitive on each of the

subsets, and thus, the group can be seen as part of a Cartesian product.

Theorem 2.1.3. Any permutation group G can be embedded into the Cartesian product

of transitive permutation groups, such that G is a subcartesian product; that is, G can be

mapped onto each factor under the natural projection map.

From now it is assumed that G is transitive on Ω. Let B be a non-empty subset of

Ω, then B is called a block (of imprimitivity) if for all g ∈ G the intersection Bg ∩ B is

either empty or B itself. G acts primitively on Ω if the set Ω and the singleton elements

are the only blocks; otherwise, G is imprimitive. Almost all groups in this research are

primitive, and the remaining ones are transitive.

Primitive permutation groups are intensively studied in permutation group theory for

the following reasons. Firstly, as transitive groups are the building blocks of a general

group, primitive groups are the building blocks of transitive groups (by acting on each of

the blocks of imprimitivity). Secondly, the next section presents the reduction theorem of

O’Nan and Scott which subdivides primitive groups into classes. But, before this result

is provided, more definitions are necessary.

One essential characteristics of primitive groups is given by the next result.
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Theorem 2.1.4. Let G act transitively on Ω and Ga be the stabiliser of a point. Then, G

is primitive if and only if Ga is a maximal subgroup.

The permutation rank of a transitive group G is the number of orbits of a point-

stabiliser Ga on the set Ω, where a ∈ Ω (this is independent of the choice of a). Also,

this is equivalent to the number of orbits of G on the tuples Ω × Ω [31, p. 67]. Next,

the actions on k-subsets and k-tuples of Ω are described. A group G is k-homogeneous

(or k-set-transitive) if it is transitive on the k-sets of Ω. Similarly, G is k-transitive if it

is transitive on the set of k-tuples of distinct elements of Ω. In particular, a 2-transitive

group has permutation rank 2, and we obtain the following implications, for |Ω| ≥ 3.

2-transitive⇒ 2-set-transitive⇒ primitive⇒ transitive.

The O’Nan-Scott Reduction Theorem for Primitive Groups

One of the main results on permutation groups is the O’Nan-Scott reduction theorem of

primitive groups. The essence of this theorem is that primitive groups can be subdivided

into finitely many classes according to their structure; however, there are various ways

to choose these classes. For instance, in [65] the authors used five classes to classify the

primitive groups, but following the approach of Cameron [19, Chapter 4] we are using

only four classes.

In this subsection, we will solely provide this result and refer to Appendix A where

the four classes are described in more detail. Also, this is where we define the socle of a

permutation group.

Theorem 2.1.5 (O’Nan-Scott). Let G be a primitive group. Either

1. G is non-basic; or

2. G is basic and G is either of affine or diagonal type, or G is almost simple.

Note, the reduction property occurs in the non-basic case in which G is embeddable

in a wreath productG0 oK, whereG0 is basic and bothG0 andK satisfy some conditions
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which are not relevant here, but which the reader can find in Cameron’s book [19, Thm.

4.7]. Moreover, using the classification of finite simple groups (CFSG) it is possible to

subdivide the almost simple groups further into several subclasses.

Groups of Permutation Rank 3

One application of the reduction theorem and the CFSG is the classification of 2-transitive

and 2-set-transitive groups (cf. [17, Lecture 2]). For instance, it follows that 2-transitive

groups are basic, but cannot be diagonal; a list of 2-transitive groups can be found in [19].

However, another important consequence of this theorem is the classification of

groups of permutation rank 3, which will be relevant to this research. If a primitive

group has permutation rank 3, then the following reduction is possible.

Theorem 2.1.6. If G is a primitive group of permutation rank 3, then either

(A) G is non-basic.

(B) G is non-abelian and almost simple whose unique minimal normal subgroup N

satisfies one of the following

I) N is the alternating group,

II) N is a classical group, or

III) N is an exceptional group of Lie type or a sporadic group.

(C) G is of affine type.

In case (A), G is essentially a subgroup of the wreath product Sn o S2 from Example

2.1.2. Moreover, as already mentioned, primitive groups of permutation rank 3 have been

classified in work by several authors (cf. [35, 13, 50, 63, 64]), and in a subsequent section

it is demonstrated that they admit graphs whose structure will be relevant in the succeed-

ing chapter. In addition, these groups provide this research with important examples, so

we provide an example of a group from each class.
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Example 2.1.7. The following are important examples from each of the three classes.

(A) The wreath product Sn o S2 acting on 2-tuples.

(B) Sn acting on 2-sets.

(C) The 1-dimensional affine groups GL(1, pd).

Semigroups

Basic Definitions

A semigroup S is a set of elements equipped with a binary operation · satisfying the

associativity axiom (x ·y) ·z = x · (y ·z), for all x, y, z ∈ S. If, in addition, S contains an

identity element, then S is a monoid. Semigroups are attracting more and more attention

and this introductory chapter is not able to cover all the interesting properties of these

objects, but instead we refer to other literature for a general inquiry; in particular, [45]

and [56] contain very comprehensive introductory material.

However, the focus in this research is on finite transformation semigroups; that is

semigroups given by maps from n to itself which, unlike permutations, do not need to

be bijective. Hence, there are nn possible transformations on n, all included in the full

transformation monoid Tn. Therefore, the following definition is used.

Definition 2.2.1. A transformation semigroup is a subsemigroup of the full transforma-

tion semigroup Tn.

Again for technical reasons, we assume throughout this thesis that n is at least 3.

Similarly to Cayley’s theorem for permutation groups, any finite semigroup can be

embedded into Tn for some n.

To make this section on semigroups more comprehensive the definitions and semi-

group properties given in the remainder of this section are summarised in Appendix B.

This appendix serves as an additional index.



2.2. Semigroups 25

Given a transformation t, the rank of t is the size of its image im(t). However, the

rank of a semigroup S is something different; it is the size of a minimal generating set

for S. If S contains a subsemigroup G consisting of permutations, then S can be written

as S = 〈G, T 〉, where T is a set of transformations. In this case the relative rank of S

(with respect to G) is the minimal size of a set T such that S = 〈G, T 〉. If the relative

rank of S is 1, then S is 1-generated or simply generated. Furthermore, Sing(S) denotes

the singular (non-bijective) maps in S; whereas E(S) denotes the set of its idempotents.

In this thesis, the following convention holds for writing transformations. A transfor-

mation t mapping 1 to 1, 2 to 1 and 3 to 3, is represented by its dense image, i.e. by the

list t = [1, 1, 3].

A non-empty subset A of S is a left, right or two sided ideal if SA ⊆ A,AS ⊆ A

or SAS ⊆ A. Consequently, every ideal is a subsemigroup, whereas the converse does

not hold. Moreover, S1 denotes the monoid with an additional element, which is an

identity in S. A transformation semigroup is simple if it does not have any proper ideals.

Hence, if S is simple with minimal ideal I , then S = I . Moreover, in the language

of transformation semigroups the minimal ideal is the set of transformations of minimal

rank.

A semigroup S is regular if every element of S is regular, i.e. for all a ∈ S there is an

x ∈ S with a = axa. It is completely regular if every element is in some subgroup of the

semigroup S. The theory of completely regular semigroups reveals that these decompose

into subsemigroups Hi, for some index i ∈ I , where every Hi admits a group structure

[45, Prop. 4.1.1]. Because the minimal ideal of a semigroup is simple, it is completely

regular, too [45, Prop. 4.1.2].

Finally, a semigroup S is decomposable if it can be written as a disjoint union of

subsemigroups.

Definition 2.2.2. A decomposition of a semigroup S is a partition of S into at least two

parts, where each part Si is a subsemigroup. Hence, S is the disjoint union S =
⊎
Si,

where each Si is a semigroup.
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Green’s Relations

One essential structural feature of semigroups is given by Green’s relations. These re-

lations are equivalence relations providing information about left, right and two-sided

ideals of a semigroup, and are always of interest when encountering an unknown semi-

group. In detail, two elements a, b in a finite semigroup S are

• L-related if they generate the same principal left ideal, that is S1a = S1b,

• R-related if they generate the same principal right ideal, that is aS1 = bS1,

• H-related if they are L- and R-related, and

• D-related if they generate the same principal two-sided ideal, that is

S1aS1 = S1bS1.

The equivalence classes of L-, R-, H- or D-related elements are called L-, R-, H- or

D-classes. Of particular interest are the H- and D-relations of regular semigroups, since

several structural results are known (cf. [45, p. 45 ff.]), of which some are presented in

Appendix C.

As already mentioned, calculating Green’s relations is one of the first calculations

which should be applied to every new semigroup. These relations provide not only in-

sights into the ideal structure of a semigroup, but also an overview of the interdependen-

cies among the semigroup elements. A common way to visualise these relations is using

egg box diagrams. These diagrams highlight the most important structural features at a

single glance (see Figure 2.1). We refer to Howie’s book [45, p. 49] for the construction

of eggbox diagrams.

Examples of Semigroups

In this thesis, we differentiate between semigroups which possess transformations of

rank 1 and those which do not. In the latter case, the transformations of minimal rank in
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Figure 2.1: Egg box diagram for T3

this thesis admit a particular kernel structure, i.e. the kernel classes have the same size,

provided the semigroup contains a transitive subgroup of permutations. Transformations

with such kernel structure are called uniform, whereas non-uniform transformations have

kernel classes of distinct sizes.

The simplest examples of semigroups not having a transformation of rank 1 are, pos-

sibly, monogenic semigroups. A monogenic semigroup is a semigroup S with a single

generator a, namely S = 〈a〉. Here a satisfies the equation am = am+r, for some non-

negative integers m and r, where m is the index of a and r its period.

Some monogenic semigroups contain elements of rank 1. In fact, in Tn a fraction 1/n

of the elements (that is nn−1 elements) generate monogenic subsemigroups containing

an element of rank 1. This can be easily observed from Figure 2.2, where the rooted tree

corresponding to the action of t = [1, 1, 2, 2, 3] on the set {1, .., 5} is given. Any transfor-

mation generating a subsemigroup with an element of rank 1 is in 1− 1 correspondence

with a rooted tree, and there are nn−1 rooted trees.

A band is a semigroup whose elements are idempotents. If, in addition, commutativ-
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Figure 2.2: The rooted tree of t = [1, 1, 2, 2, 3].

ity holds, then this semigroup is a semi-lattice. However, left- and right-zero semigroups

are of a different kind. A semigroup is left-zero if all elements a and b satisfy ab = a; on

the other hand, if ba = a is satisfied by all such pairs, then it is a right-zero semigroup.

Graph Theory

Basic Definitions

A graph Γ is a set of vertices V and edges E ⊆ V × V . Starting with the adjacency

relation, this section introduces terms from graph theory needed in this research. Because

in this thesis undirected graphs are considered almost exclusively (and from now we

consider undirected graphs only), v ∼ w means that the vertices v and w are adjacent.

In this case, the vertex w is said to be a neighbour of v, and vice versa. The number of

vertices adjacent to v is the valency of v. In addition, if every vertex has the same valency

k, then Γ is called regular of valency k.

A path in Γ from v to w is a list of vertices v = v1, v2, ..., vd = w such that vi ∼ vi+1,

for i = 1, ..., d− 1. Γ is connected if for any pair of vertices v and w there is a path from

v to w. Building on that we define a cycle to be a path which ends at the point where it

started. A Hamiltonian path, is a path which visits each vertex in Γ exactly once. Hence,

a Hamiltonian cycle is a Hamiltonian path which is a cycle.



2.3. Graph Theory 29

Figure 2.3: Both graphs admit a matching, whereas just the first one admits a perfect
matching.

A matching in a graph is a set of edges without common vertices. Furthermore a

perfect matching is a matching which covers all vertices (cf. Figure 2.3).

Graph Homomorphisms

For more details on the terms covered in the following subsection, we refer to [39, 41]

and [38].

Definition 2.3.1. 1. A graph homomorphism is a map which sends vertices to vertices

such that adjacent vertices become adjacent vertices.

2. An endomorphism of a graph Γ is a homomorphism from this graph to itself.

3. An automorphism of Γ is an endomorphism which is bijective and whose inverse is

an endomorphism, too.

The set of endomorphisms of Γ is a monoid and the set of automorphisms is a group so

End(Γ) stands for the endomorphism monoid and Aut(Γ) for the automorphism group.

Moreover, the set Sing(Γ) denotes the set (or semigroup) of singular endomorphisms,

i.e. Sing(Γ) = End(Γ) \ Aut(Γ).

A graph is symmetric if it has a non-trivial automorphism group Aut(Γ). If, in ad-

dition, Aut(Γ) is transitive or primitive on the vertices V (Γ), then Γ is a transitive or

primitive graph. What is more, a transitive graph is regular so, as all graphs considered

in this thesis are going to be transitive, the graphs will be regular. When introducing a
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distance d(v, w) on a graph given by the length of the shortest path between two ver-

tices v and w, distance-transitive graphs can be defined, too. These are graphs whose

automorphism group is transitive on ordered pairs of vertices at distance i, for all i. The

diameter of Γ is the maximal d(v, w) for distinct pairs of vertices v and w.

Next, colourings and cliques in graphs are defined. A generalised colouring of Γ is (in

the more modern sense) a homomorphism between two graphs Γ and ∆, namely φ : Γ→

∆. A k-colouring is a colouring where ∆ is the complete graph Kk on k vertices. This

leaves room for further generalisations of graph colourings, for instance, other popular

colourings are Kneser-colourings or circular colourings (see [39]). Similarly, a clique of

size k in Γ is a subgraph of Γ which is the complete graph on k vertices; this can also be

regarded as a homomorphism, but this time from Kk to Γ. The chromatic number χ(Γ)

is the smallest k such that there exists a homomorphism from Γ to the complete graph

Kk; a homomorphism which is a χ(Γ)-colouring is usually called a colouring. On the

other hand, the clique number ω(Γ) is the size of the biggest clique in Γ. Moreover, the

co-clique number α(Γ) denotes the clique number of the complementary graph Γ.

The core of a graph Γ is a graph ∆ with the least number of vertices, such that

there exist two homomorphisms, one from Γ to ∆ and another from ∆ to Γ. A simple

characterisation of cores is given by automorphisms, namely, a graph is a core if and only

if its endomorphisms are automorphisms. Cores of graphs are unique up to isomorphism.

Furthermore, the core of Γ is the complete graph if and only if the chromatic number of

Γ is equal to the clique number of Γ.

Example 2.3.2. Examples of cores are the following:

1. odd cycles,

2. the complete graph and the null graph, which is the graph on n vertices without

edges (those two graphs are called trivial graphs in this thesis),

3. the Petersen graph (with 15 vertices and valency 3), Clebsch graph (with 16 vertices

and valency 5), Schläfli graph (with 27 vertices and valency 16), Shrikhande graph
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(with 16 vertices and valency 6) and the three Chang graphs (with 28 vertices and

valency 12) (cf. Thm. 2.3.10). This can be easily checked in GAP [36].

Lemma 2.3.3. Let Γ be a graph whose clique number and chromatic number are r. Then,

Γ admits endomorphisms.

Proof. Because those numbers are identical, there are homomorphisms

φ : Γ→ Kr and ψ : Kr → Γ.

Thus, φ ◦ ψ : Γ→ Γ is an endomorphism.

In [20], the authors considered various classes of graphs coming from various combi-

natorial structures and they realised that the core of most of those graphs admits a certain

structure. In detail, the core is either the graph itself or it is complete; such a graph is

called core-complete. Extending this research, Godsil and Royle [37] narrowed down

the case where the core is complete. They defined the term pseudo-core, which denotes

a graph that is either a core, or whose singular endomorphisms are colourings. This

research deals with pseudo-cores and their endomorphisms.

Groups and Graphs

In this section, the interplay between permutation groups and graphs is introduced. If a

permutation group G acts on Ω, then the action on Ω × Ω induces graphs. To see this,

let O be an orbit under this action, then the graph induced by O is given by V = Ω and

E = O ⊆ Ω× Ω.

Now, let O be a union of orbits of the action of G on Ω×Ω. Then, the corresponding

graph Γ is an orbital graph andO is called an orbital. (Unlike in [19, p. 13],O is allowed

to be a union of orbits, here.) The paired orbital O∗ is the set {(w, v) : (v, w) ∈ O}, and

if O = O∗ we say that O is self-paired. The graph of a self-paired orbital is undirected.

As we consider undirected graphs, an orbital graph is constructed from a union of orbitals
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and their pairs. Note that, we also say G-invariant graphs to orbital graphs.

In this regard, we will need an additional definition. The 2-closure of G is the set of

all permutations of Ω which preserve the G-orbits on Ω× Ω. The group G is 2-closed if

it is equal to its 2-closure.

The above construction confirms that G is a subgroup of the automorphism group

Aut(Γ) of the graph Γ. Moreover, within this setting Higman was able to give another

characterisation of primitive groups (cf. [19, Thm. 1.9]).

Theorem 2.3.4. A transitive group G is primitive if and only if all non-trivial orbital

graphs are connected.

Strongly Regular Graphs

Strongly regular graphs admit even more regularity than regular graphs; a strongly regu-

lar graph Γ with parameters (n, k, λ, µ) is a regular graph on n vertices with valency k

where

1. any two adjacent vertices have exactly λ common neighbours;

2. any two non-adjacent vertices have exactly µ common neighbours.

Many properties of strongly regular graphs are known (cf. [18, 38]); for instance, the

diameter of a strongly regular graph is 2. However, the strong regularity of the comple-

ment graph is one of the most important ones. The parameters of the complement graph

Γ are denoted by (n, l, λ, µ) (sometimes we also write k for l.)

A characterisation of connected strongly regular graphs is given by the eigenvalues of

its adjacency matrix. A connected regular graph is strongly regular if and only if it admits

exactly three eigenvalues k, r and s [38, Lemma 10.2.1]. Indeed, one of the eigenvalues

is the valency k. On the other hand, the graph n.Kr given by the disjoint union of n

complete graphs of size r is the only non-trivial disconnected strongly regular graph, and

n.Kr admits merely two distinct eigenvalues.
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In this research we are mostly concerned with non-trivial strongly regular graphs,

(i.e., graphs which are not n.Kr or its complement for any pair of non-negative integers

n and r). By using properties of the eigenvalues (see [18, Chap. 2]), we obtain the

following result on the parameters of Γ.

Lemma 2.3.5. If Γ is a non-trivial strongly regular graph with parameters (n, k, λ, µ),

then

k − µ ≥ 1

3
min(k, l).

where l = n− k − 1 is the valency of the complement of Γ.

Proof. If Γ admits the parameters n = 4µ+1 and k = 2µ (which means Γ is a conference

graph (cf. [18, pp. 110 & 38 ])), then k − µ = k/2 = l/2, thereby satisfying the

conclusion. Otherwise the three eigenvalues k, r and s of Γ (with r > 0 > s), are all

integers, and in particular r ≥ 1 ([49, p. 360 comment (A)]).

The parameters of a strongly regular graph can be expressed purely in terms of k, r

and s (see [18, p. 39]) and from this it can be deduced that

kr(l + r + 1)

k(r + 1) + lr
=
krs(r + 1)(r − k)

k(k − r)(r + 1)
= −rs,

by substituting

l =
k(k − λ− 1)

µ
=
−k(r + 1)(s+ 1)

k + rs

into the left-hand side. From this, we can conclude that

k − µ = −rs =
k(l + r + 1)

k(1 + 1
r
) + l

≥



l

2 + l
k

≥ 1

3
l, for l ≤ k,

k

2k
l

+ 1
≥ 1

3
k, for k ≤ l,

where the final inequalities arise from dividing by either k or l, and then using the fact

that r ≥ 1.
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Corollary 2.3.6. If Γ is a non-trivial strongly regular graph with parameters (n, k, λ, µ),

then

k − µ ≥ 1

3

√
n− 1.

Proof. Because Γ and its complement are connected graphs of diameter 2, the well-

known Moore bound [18, p45. Ex. 9] implies that n ≤ k2 + 1 and n ≤ l2 + 1. The

hypothesis follows from the previous result.

Over the past, various authors tried to characterise strongly regular graphs by their

parameters, and surprisingly some graphs have been found to be uniquely determined

that way. Because some of these graphs occur several times throughout this thesis, we

give a definition and present their uniqueness results here (see Shrikhande and Chang

[75, 24]).

Definition 2.3.7. 1. The square lattice graph L2(n), n ≥ 3, is the graph whose vertex

set is the set of tuples over n, where two vertices are adjacent if exactly one of the

two coordinates is identical.

2. The triangular graph T (n), n ≥ 5, is the line graph of the complete graph.

3. The cocktail party graph CP (n), n ≥ 2, is the complementary graph of n.K2.

Remark 2.3.8. 1. The square lattice graphL2(n) is equivalently the cartesian product

of Kn with itself (cf. Section 2.3.5) or the Hamming graph H(2, n) (cf. Chapter

5). Its automorphism group is the wreath product Sn o S2 with primitive product

action.

2. The automorphism group of the triangular graph T (n) is the symmetric group Sn

given by its representation on 2-sets.

Theorem 2.3.9. 1. A strongly regular graph with parameters given by

(n2, 2(n− 1), n− 2, 2), for n 6= 4, is isomorphic to the square lattice graph L2(n).
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2. A strongly regular graph with parameters (1
2
n(n−1), 2(n−2), n−2, 4), for n 6= 8,

is isomorphic to the triangular graph T (n).

Shrikhande has proved that for n = 4 there is a distinct graph with the same param-

eters as the square lattice graph; this graph is, nowadays, called the Shrikhande graph.

Similarly, Chang has shown that for n = 8 the three Chang graphs admit the same pa-

rameters as T (8). In addition, various other graphs have been tested to have a unique set

of parameters, too, for instance the Petersen graph, the Clebsch graph and the Schläfli

graph.

The graphs just mentioned turn out to have one thing in common, namely the minimal

eigenvalue. By a classification of Seidel (cf. [18, Thm. 4.14]), these graphs together with

the cocktail party graphs are the only strongly regular graphs with minimal eigenvalue

−2.

Theorem 2.3.10 (Seidel’s Theorem). A strongly regular graph with least eigenvalue −2

is one of the following:

1. the triangular graph T (n), n ≥ 5,

2. the square lattice graph L2(n), n ≥ 3,

3. the cocktail party graph CP (n), n ≥ 2,

4. the Petersen graph,

5. the complement of the Clebsch graph,

6. the complement of the Schläfli graph,

7. the Shrikhande graph,

8. one of the three Chang graphs.
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Rank 3 Graphs

IfG is a permutation group of permutation rank 3, then the action ofG on Ω×Ω generates

two non-trivial orbits O1 and O2. The corresponding graphs are complementary graphs,

and are called rank 3 graphs. This thesis is solely concerned with undirected graphs, and

rank 3 graphs are undirected if, for example, the group G has even size.

Lemma 2.3.11. 1. A rank 3 graph is strongly regular.

2. If G is a group of rank 3 and even size, then there is a rank 3 graph admitting G as

subgroup of its automorphism group.

Note, from the classification of groups of permutation rank 3 we obtain (in theory) all

rank 3 graphs.

Graph Products

The following two types of graph products occur frequently in this thesis.

Definition 2.3.12. Let Γ and ∆ be graphs. Then, we define the following graph products

on the vertex set V = V (Γ)× V (∆):

1. the Cartesian product Γ � ∆, where

E(Γ � ∆) = {((v, x), (w, y)) : either v = w, (x, y) ∈ E(H) or x = y, (v, w) ∈ E(G)},

2. the categorical product Γ×∆, where

E(Γ×∆) = {((v, x), (w, y)) : (v, w) ∈ E(G) and (x, y) ∈ E(H)}.

A small remark on this notation: The symbols � and × originate from the products

K2 �K2 and K2 ×K2. The first graph is a square and the second a cross.
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Further Combinatorics

Orthogonal Arrays and Latin squares

Orthogonal arrays have found much attention in the past, especially, when regarding

codes; but many other applications are known. An extensive introduction to this topic

and its various applications is found in [43].

Although, general orthogonal arrays which are covered in [43] are mentioned rarely,

we still stick to this definition before restricting ourselves to the more special case with

strength 2 and index 1.

Definition 2.4.1. An orthogonal array with n levels, k factors, of strength t and index λ,

i.e. a t− (n, k, λ) orthogonal array, is a k×λnt array (matrix) whose entries come from

a set with n elements such that in every subset of t rows, every t-tuple appears in exactly

λ columns. In particular, OA(k, n) denotes an orthogonal array with t = 2 and λ = 1.

A Latin square is an n × n array with entries from an n-element set, such that every

row and every column contains each entry precisely once. Moreover, two Latin squares

are mutually orthogonal if after superimposition each of the n2 distinct tuples occurs

once. An OA(3, n) orthogonal array represents a Latin square, where the three rows of

the orthogonal array correspond to row number, column number and symbol of the Latin

square (cf. Figure 2.4). So, a Latin square can also be considered as a set of triples. In

general, a set of k − 2 mutually orthogonal Latin squares (MOLS) can be identified with

an orthogonal array OA(k, n), for k ≥ 3.

1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
2 3 1 3 1 2 1 2 3

↔
2 3 1

3 1 2
1 2 3


Figure 2.4: Correspondence of OA(3,3) and a Latin square.
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Latin Hypercubes of Class r

The definition of Latin hypercubes of dimension strictly greater than two is not obvious

at all, because the extension is non-trivial and depends on several choices. The litera-

ture provides different definitions of Latin hypercubes, where each construction has its

advantages and disadvantages. In this research, we follow the approach of Kishen [53]

who introduced Latin hypercubes of class r. This approach was adapted by Ethier [32]

who provided various results on Latin hypercubes of class r, and, for r = 1, it leads to

the Latin hypercubes defined by the two famous experts on Latin squares McKay and

Wanless [67].

Definition 2.4.2. A Latin hypercube of dimension d, order n and class r is a

d-dimensional array with entries from a set of size nr such that in every r-subarray

each entry occurs exactly once. We write LHC(d, n, r) for such cubes (and sometimes

LHC(d, n) instead of LHC(d, n, 1)).

Example 2.4.3. The following is an example of a Latin hypercube of dimension 3, order

3 and class 2. This cuboid has the top layer L1, middle layer L2 and bottom layer L3.

L1 =


1 2 3

4 5 6

7 8 9

 , L2 =


5 6 4

8 9 7

2 3 1

 , L3 =


9 7 8

3 1 2

6 4 5


Two dimensional Latin hypercubes of class 1 are Latin squares; however, in this

research we encounter further types of squares. A repetitive square is an n × n array

whose rows (or columns) are a permutation of the vectors

(1, 1, 1, ..., 1), (2, 2, 2, ..., 2), ..., (n, n, n, ..., n),

each occurring exactly once.
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Example 2.4.4. Two repetitive squares are the following:



1 1 1 1 · · · 1

2 2 2 2 · · · 2

3 3 3 3 · · · 3

...
...

...
... · · · ...

n n n n · · · n


,



1 2 3 4 · · · n

1 2 3 4 · · · n

1 2 3 4 · · · n

...
...

... · · · ...

1 2 3 4 · · · n


.

Now, we move to symmetry breaking of Latin hypercubes. A Latin square is in

reduced form if both its first row and first column are 1, ..., n. It is called semi-reduced if

the first row is 1, ..., n, but not necessarily the first column. By permuting the rows and

columns, every Latin square is similar to a reduced Latin square; however, this cannot

be achieved for to higher classes (cf. Example 2.4.3). There, we need to stick to semi-

reduced versions. That is, a Latin hypercube of class r is semi-reduced if the first r-

subarray is naturally ordered with entries 1, ..., nr. Every Latin hypercube of class r is

similar to a semi-reduced one, and semi-reduced hypercubes simplify the calculations

made in Chapter 6.

Hall’s Marriage Theorem

Hall’s marriage theorem is a very famous result in combinatorics and one of the key

results in the theory of completions and extensions of Latin squares. Similarly, in this

thesis we apply a modified version of this theorem to extensions of Latin hypercubes of

class r (see Chapter 6). But before we get to that let us state Hall’s theorem.

The setting of this theorem is very basic. Let S be a set of finite sets. A transversal

for S is a set T such that each set in S contains a distinct single element of T . (T is

sometimes called a system of distinct representatives.) Then, Hall’s theorem is given as

follows.
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Theorem 2.4.5 (Hall’s Marriage Theorem). The set S admits a transversal t if and only

if for every subset X ⊆ S, we have

|X| ≤ |
⋃
A∈X

A|.

Our modified version of this theorem is given in terms of graphs. For this, we assume

the set S is finite and contains the sets A1, ..., An. Then, define a bipartite graph Γ with

parts X and Y as follows. Let X = S and Y =
n⋃
i=1

Ai. There is an edge between x ∈ X

and y ∈ Y if and only if y ∈ x. A transversal of S corresponds to a matching in Γ which

covers all the vertices in X . However, we set a condition such that a perfect matching is

produced. But before, an auxiliary theorem is needed.

Theorem 2.4.6 (Dirac’s Theorem, Thm. 3 in [30]). A connected graph on n vertices with

minimum valency
n

2
has a Hamiltonian cycle.

Now, we come to the central result.

Theorem 2.4.7 (Modified Hall’s Marriage Theorem). Let Γ be a bipartite graph on 2n

vertices whose parts X and Y have n vertices each. If the minimal valency in Γ is at

least
n

2
, then there exists a perfect matching in Γ .

Proof. Let the vertices inX be setsA1, ..., An and the vertices in Y be elements a1, ..., an,

where an element aj lies in Ai if the two vertices are adjacent. Hence, we are in the

situation of Hall’s theorem. Let L ⊆ X and R ⊆ Y its neighbourhood. As Γ admits

a Hamiltonian cycle by Lemma 2.4.6, its restriction on L and R shows that |L| ≤ |R|.

Thus, Hall’s theorem implies that there is a transversal for A1, ..., An which corresponds

to a perfect matching.
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Chapter 3

Synchronization Theory

This chapter discusses the essentials of synchronization theory, its connection to per-

mutation groups and graph theory, and the newest results on synchronizing ranks. The

first sections lay the foundation for the following chapters regarding synchronizing semi-

groups and synchronizing permutation groups, and introduce the important equivalence

between non-synchronizing transformations and graph endomorphisms. This equiva-

lence provides a key technique in the analysis of synchronizing groups and is used fre-

quently throughout this research.

The contribution in this chapter is given in the last section and provides bounds on

the ranks of non-synchronizing transformations for groups with permutation rank 3. Al-

though, these results have already been published in joint work with Araújo, Bentz,

Cameron and Royle in [9], the bound has been considerably improved by the author.

Synchronizing Semigroups and Permutation Groups

As mentioned in the introduction, the concept of synchronizing permutation groups

emerged from synchronizing transformation semigroups which themselves again orig-

inate in synchronizing automata. So, in this section the notion of synchronizing trans-

formation semigroups and synchronizing permutation groups is established, formally.

Then an equivalent purely group theoretic characterisation of synchronizing permuta-
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tion groups is provided (cf. Neumann [69]), and synchronizing permutation groups are

put into the context of other permutation group properties such as primitivity and 2-

transitivity.

Recall from Sections 2.1.1 and 2.2.1, we assume that the transformation semigroups

and permutation groups we consider act on at least 3 points.

Definition 3.1.1 (Synchronizing Semigroups). A transformation semigroup S ⊆ Tn is

synchronizing if it contains a transformation of rank 1.

The main focus of this thesis lies on semigroups of the form 〈G, t〉, for a permutation

group G and a singular transformation t. Hence, a synchronizing permutation group is

defined as follows.

Definition 3.1.2 (Synchronizing Groups). 1. A permutation group G synchronizes

the transformation t if the semigroup 〈G, t〉 is synchronizing.

2. The group G is synchronizing if G synchronizes every singular transformation t.

Example 3.1.3. Cyclic groupsCp, for a prime p, are synchronizing. This can be observed

directly, but it also follows from Corollary 3.3.8.

This definition provides a simple consequence for supergroups of G.

Lemma 3.1.4. Any group containing a synchronizing subgroup is synchronizing.

The Main Problem in Synchronization Theory Motivated by Araújo’s programme

for tackling the Černý conjecture, the main problem in synchronization theory is the clas-

sification of synchronizing permutation groups. Another significant and related problem

is the classification of tuples (G, t) such that the corresponding semigroup 〈G, t〉 is syn-

chronizing. In this thesis, we will tackle both problems.

However, Neumann has pointed out that the synchronization property for permutation

groups has an equivalent characterisation in purely permutation group theoretical terms,
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namely by using section-regular partitions. Let π be a partition of n = {1, ..., n} and σ

a subset of n. The set σ is a section (or transversal) for π if it contains exactly one point

from each part of π. In this regard, the partition π is called section-regular for the group

G with section σ if the set σg is a section for π, for all permutations g ∈ G. Equivalently,

π is a section-regular partition forGwith section σ if the set σ is a section for the partition

πg, for all g ∈ G. This concept gives rise to the following equivalence.

Theorem 3.1.5. A permutation group G is synchronizing if and only if there is no non-

trivial section-regular partition for G.

Proof. A section-regular partition π with section σ defines an idempotent transformation

t with kernel π and image σ. Then, 〈G, t〉 is not synchronizing. Conversely, if G is not

synchronizing, then there is a transformation t of minimal rank not synchronized by G

whose kernel is a section regular partition with its image as the section.

Corollary 3.1.6. Let S = 〈G, t〉 be a non-synchronizing semigroup and f ∈ S of minimal

rank. Then, the kernel ker(f) is a section regular partition for G with section im(f).

If G is transitive, then the partition π is necessarily uniform.

Lemma 3.1.7 ([69], Thm. 2.1). Let G be transitive and π be a section-regular partition

for G with section σ. Then, π is uniform.

The transformations induced by such a uniform section regular partition have uniform

kernel, and thus they are called uniform transformations. This property is crucial for the

definition of almost synchronizing groups, later. However, next we place the synchroniz-

ing property in line with other permutation group properties.

Lemma 3.1.8. 1. A 2-set-transitive group G is synchronizing.

2. A synchronizing group is primitive.

3. A synchronizing group is basic.
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Proof. Assume G is 2-set-transitive, but not synchronizing; that is, there is a transforma-

tion t of minimal rank r not synchronized by G. However, since G is 2-set-transitive,

there is an element g ∈ G mapping two elements of the image of t to the same kernel

class of t. Consequently, the element tgt has rank < r; a contradiction.

Next assumeG is synchronizing but imprimitive, then any non-trivial partition π fixed

by G provides a section-regular partition for any section σ.

Finally, assumeG is synchronizing and primitive, but not basic. Our goal is to provide

a section-regular partition contradicting the assumption. As G is not basic, Ω can be

identified with the coordinates Γn for some set Γ. One possible partition is the following:

Let π be a partition of Ω according to the element of Γ from the first coordinate. So, in

fact, π is a partition of the hypercube Γn into hypercubes Γn−1 (the cube Γn is sliced into

n slices). Therefore, the diagonal σ = {(x, x, ..., x) : x ∈ S} acts as a section for every

image of π under G. This is a contradiction to Thm. 3.1.5.

In consequence, the following implications are true for permutation groups.

2-transitive ⇒ 2-set-transitive⇒ synchronizing⇒ basic⇒ primitive.

Graphs and Synchronizing Permutation Groups

A major breakthrough in the study of synchronizing permutation groups comes via a

graph theoretical approach [20]. This result was found by Cameron and Kazanidis and

works: If a group does not synchronize a transformation t, then t is a graph endomor-

phism of a certain graph. In more detail, they defined the kernel graph Gr(S) for a

transformation semigroup S on n points. This graph has vertex set {1, ..., n} and two

vertices v and w are adjacent if there is no transformation t ∈ S with vt = wt.

Hence, this section sets up the important relationship between graphs and synchro-

nizing semigroups or permutation groups, respectively. We note that the construction of

Gr(S) is analysed in Chapter 8, in more depth; however, in this section we introduce its
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direct applications to synchronization theory.

Lemma 3.2.1. If Γ = Gr(S), then the following hold.

1. S ≤ End(Γ).

2. Γ has clique number equal to its chromatic number.

3. If S is synchronizing, then Γ is the null graph on n vertices, i.e. a graph with no

edges.

4. If S is a permutation group, then Γ is the complete graph.

Proof. Everything except for 2. is trivial. So, pick an element t in S of minimal rank

r. The image of t is a clique of size r in Γ, since t is minimal. But this means t is a

homomorphism from Γ to the complete graph Kr, which certifies that t is a colouring.

From Chapter 2 it is known that having clique number equal to chromatic number is

equivalent to having a complete core. Moreover, endomorphisms of Gr(S) of minimal

rank play an important role.

Corollary 3.2.2. If Γ = Gr(S) is a non-trivial graph admitting a singular endomorphism

of minimal rank r > 1, then χ(Γ) = ω(Γ) = r, and vice versa.

The key tool in synchronization theory is given by the next result which has a semi-

group and a permutation group version. First, the semigroup version is given.

Theorem 3.2.3. Let S be a transformation semigroup which is not a group. Then the

following are equivalent:

1. S is not synchronizing,

2. S ≤ End(Γ), where Γ is a non-trivial graph which is not a core,

3. S ≤ End(Γ), where Γ is a non-trivial graph whose core is complete.
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Proof. The implication 3. ⇒ 2. is obvious and 2. ⇒ 1. follows from Lemma 3.2.1.

Suppose S is not synchronizing. As before, Γ = Gr(S) is a non-trivial graph whose core

is complete. Above, we have also verified that S ≤ End(Gr(S)).

The following is the permutation group version.

Theorem 3.2.4. A permutation groupG does not synchronize a map f if and only if there

is a non-trivial graph Γ, whose core is complete, such thatG ≤ Aut(Γ) and f ∈ End(Γ).

Corollary 3.2.5. G is non-synchronizing if and only if there is a non-trivial graph Γ with

complete core, such that G ≤ Aut(Γ).

Next, we have a look at the graph Gr(S) for a particular semigroup S. Let Γ be

a graph with endomorphism monoid End(Γ). The hull of Γ is the graph Gr(End(Γ))

and is denoted by Hull(Γ). This graph plays a major role in the proofs of the previous

theorems and in synchronization theory itself; so, Chapter 8 is dedicated to it. However,

we present its basic properties here.

Lemma 3.2.6. Let Γ be a graph and ∆ = Hull(Γ). Then,

1. Γ is a spanning subgraph of ∆,

2. ∆ has clique number equal to chromatic number,

3. Aut(Γ) ≤ Aut(∆),

4. End(Γ) ≤ End(∆).

In particular,

1. the null graph is a hull,

2. the complete graph is a hull, and

3. Hull(Γ) = Hull(Hull(Γ)).
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The hull turns out to be completing Γ or at least adding extra symmetry to Γ, as

Aut(∆) contains Aut(Γ). In particular, the fourth property becomes important, but we

will postpone it until Section 8.1 where we are going to highlight the advantages of graphs

which are hulls.

Synchronizing Permutation Groups

Developing the Main Tools

In this section, the tools for the classification of synchronizing groups are developed. As

mentioned above, Theorem 3.2.4 is currently the key tool in synchronization theory, so

an algorithm for this classification is built around this theorem. But before we reveal it,

we provide further auxiliary results.

The first of these results regards the isomorphism types of graphs.

Lemma 3.3.1. Let Γ1 and Γ2 be two graphs and φ : Γ1 → Γ2 an isomorphism. A map

f : Γ1 → Γ1 is an endomorphism of Γ1 if and only if φ−1fφ is an endomorphism of Γ2.

Corollary 3.3.2. The group Aut(Γ1) is synchronizing if and only if Aut(Γ2) is.

The most simple case is where G has permutation rank 3 and even order. In this case

there are just two complementary non-trivial orbital graphs.

Example 3.3.3. The group Sn, for n ≥ 5, has a primitive action on 2-sets of permuta-

tion rank 3 and the invariant graphs are the triangular graph T (n) and its complement.

Furthermore, Sn is synchronizing if and only if n is odd [20].

In particular, S11 acts on 55 points and the Mathieu group M11 acts on 55 points, both

as permutation rank 3 groups. However, there is only one connected non-trivial strongly

regular graph on 55 points which implies that both graphs have to be isomorphic, and

thus M11 is also synchronizing.

This example exploits how handy the uniqueness of particular graphs can be. But it

also establishes the following.
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Lemma 3.3.4. Let the group G be the 2-closure of the permutation group H . Then, G is

synchronizing if and only if H is synchronizing.

Corollary 3.3.5. Let the groupsG1 andG2 have the same 2-closureG (up to permutation

isomorphism). Then, G1 is synchronizing if and only if G2 is.

The above two “facts” are also true for primitivity and 2-set-transitivity; so the syn-

chronization property is in line with other permutation group properties. In addition, for

vertex-transitive graphs another necessary condition is of major use (cf. [20]).

Lemma 3.3.6. Let Γ be a vertex-transitive graph on n vertices with ω(Γ) = χ(Γ) (i.e., Γ

has a complete core). Then, ω(Γ)α(Γ) = n, where α(Γ) is the co-clique number.

The Algorithm

This algorithm to classify the synchronizing permutation groups can also be found in

[17]. It determines whether a group is synchronizing or not. Let G be a permutation

group.

1. Compute all orbital graphs of G (this is computationally fast);

2. Compute clique number ω and co-clique number α (NP-hard, but very fast in prac-

tice).

3. Compute the chromatic number χ for every orbital graph Γ with ω(Γ) · α(Γ) = n

(very hard, NP-hard).

4. Check if ω = χ.

Then, G is synchronizing if and only if no graph with ω = χ is found .

The first step in the this algorithm is usually very fast, but many graphs may emerge

such that further steps become even more difficult. To decide whether a group is synchro-

nizing, we use the permutation isomorphism classes of groups and graphs and cluster the

groups into clusters with the same 2-closure (up to permutation isomorphism).
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However, the easiest case would be if this decision problem would be solvable by

knowing the degree of the permutation group. Thus, in the next section we will discuss

the role of the degree.

Synchronizing Degrees

Deciding if a group is synchronizing just by examining its degree would simplify the

previous algorithm drastically. Unfortunately, such a result would be too good to be true.

Still, we can not do it for all degrees, but at least for prime degrees and degrees of the

form 2p, for p prime.

Suppose the monoid 〈G, t〉 is non-synchronizing, where G is a transitive permutation

group. Then, it contains an element f ∈ 〈G, t〉 of minimal rank r > 1, and as we have

seen in the previous section the concept of a map of minimal rank is rather fruitful. In

particular, since f induces a uniform section-regular partition, r is a divisor of n. This

provides the following simple observation.

Proposition 3.3.7. Let G be a transitive group of degree n with smallest prime divisor

p1, and let f be a map of rank r.

1. If r < p1, then G synchronizes f .

2. If G is not synchronizing, then we can find a map admitting this by looking at ranks

which are at most n/p1 and divide n.

Proof. 1. By Corollary 3.1.6, a map of minimal rank not synchronized by G needs to

divide n.

2. Again, we search for maps of minimal rank not synchronized byG, where a witness

of minimal rank has rank r ≤ n/p1. By the same corollary such a map needs to

divide n.

Corollary 3.3.8. If G is transitive of prime degree, then G is synchronizing.
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A similar result holds for groups of degree 2p.

Theorem 3.3.9 (Cor. 2.5,[69]). If G is primitive of degree 2p, then G is synchronizing.

Computation: Non-Synchronizing Primitive Groups Of Small Degree

In Appendix E, all 2-closed primitive non-synchronizing groups of degree less than (and

including) 100 and all 2-closed primitive non-synchronizing groups of permutation rank

3 of degree less than 630 are determined.

Using the small primitive permutation groups library in GAP [36], we computed the

representatives of each isomorphism class of 2-closed groups. Then, for each group

we calculated the isomorphism types of all invariant graphs, and for each representative

graph we checked whether it admits singular endomorphisms or not. If at least one G-

invariant graph admits singular endomorphisms, then G is not synchronizing.

Almost Synchronizing Groups

In the previous section, the primitive non-synchronizing permutation groups of small

degree were determined, and as can be seen from Appendix E there are various non-

synchronizing groups.

One class of groups of particular interest is given by the automorphism groups of

pseudo-cores. Godsil and Royle defined a pseudo-core to be a graph which is either

a core or whose singular endomorphisms are colourings. Hence, if there are singular

endomorphisms, then the automorphism group of such a graph Γ would synchronize all

endomorphisms, except for the ones of rank χ(Γ) = ω(Γ). For instance, the square

lattice graph L2(n), for n ≥ 3, and the triangular graph T (n), n ≥ 5, are pseudo-cores

(we justify that in Thm 4.1.1 and Section 4.2.1).

Motivated by pseudo-cores and the fact that many examples of primitive non-synchronizing

groups synchronize all transformations except for uniform ones (the ones which induce

section-regular partitions), it appeared that this might be the only case which distin-



3.4. Almost Synchronizing Groups 51

guishes primitive from synchronizing groups. In detail, it appeared that primitive groups

synchronize all transformations except the ones with uniform kernel. This gave rise to

the definition of almost synchronizing groups.

Definition 3.4.1. A permutation group is almost synchronizing if it synchronizes all

transformations with non-uniform kernel.

Lemma 3.4.2. An almost synchronizing group is primitive.

Proof. Assuming the group G is imprimitive, then the transformation t which collapses

one block of imprimitivity into a single point and is the identity on all other blocks is not

synchronized by G.

From the various examples of almost synchronizing groups, it was believed that all

primitive groups are almost synchronizing (except for possibly finitely many groups).

This was conjectured by Araújo, and is stated as a problem in [7].

Conjecture 3.4.3. The primitive permutation groups are almost synchronizing.

So, from that moment the goal of several researchers was to prove this conjecture;

and thus, in [7] the authors tackled this problem by providing the first families of groups

satisfying it. However, it was believed that if the conjecture would be true, a classification

of the synchronizing groups would be needed to prove it, which would brings us back to

the original task (namely, the main problem of synchronization theory); but eventually,

in [9] the authors provided sporadic counter-examples, as well as infinite families of

counter-examples to this conjecture. This has led to two sub-problems. The first is the

question of a classification of almost synchronizing groups [9, Problem 7.1]. The second

is a relaxed version of the previous conjecture, and Remark 3.5.4 mentions a first result

towards it.

Conjecture 3.4.4. A primitive group of degree n synchronizes every non-uniform trans-

formation of rank greater than n/2.
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Figure 3.1: The butterfly

The smallest counter-example to the first conjecture is the primitive automorphism

group of line graph of the Tutte-Coxeter graph. This group has degree 45 and admits a

non-uniform graph endomorphisms whose image forms a butterfly (cf. Figure 3.1).

At the start of this research, this Conjecture 3.4.3 was still open and the aim of this

thesis was to work towards a verification. The first place to look for a counter-example

is the non-basic primitive groups; such a group is contained in the automorphism group

of the Hamming graph. By that time it was already known that the Hamming graph

admits uniform singular endomorphism of ranks nk, for 1 ≤ k ≤ m − 1, where m is its

dimension; however, Chapter 5 shows that all its singular endomorphisms are uniform.

For the remainder of this section, we summarise the recent results on almost synchro-

nizing groups. The groups considered next result are groups of permutation rank 3.

Theorem 3.4.5 (cf. [7]). 1. If G is a subgroup of PΓL(n, q) containing PSL(n, q),

where n ≥ 5, acting on the lines of the projective space, then G is almost synchro-

nizing.

2. Let G be the semidirect product of the additive groups of Fp2 by the subgroup

of index 2 in the multiplicative group of Fp2 , for p a prime. Then G is almost

synchronizing.

3. Let G be the symplectic group PSp(4, q) or be obtained from it by adjoining field

automorphisms, where q is a power of 2. Then G is almost synchronizing.

4. The symmetric group Sn acting on the two sets is almost synchronizing if n ≥ 5 is

even.
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However, the following result generalises the previous theorem.

Theorem 3.4.6 (see Roberson [72]). All strongly regular graphs are pseudo-cores. Hence,

all groups of permutation rank 3 are almost synchronizing.

The next result is a consequence of the investigation undertaken in Chapter 5.

Theorem 3.4.7. Let G = Sn o Sm (with primitive product action) be the automorphism

group of the Hamming graph. Then, for m = 2 and 3 the group G is almost synchroniz-

ing.

Proof. The group G has permutation rank m + 1; hence, for m = 2 we have permuta-

tion rank 3. This case is covered by Theorem 3.4.6. However, for m = 3 we need to

consider 6 non-trivial graphs. We see in Chapter 5 that all these graphs admit uniform

endomorphisms.

The real problem arises when dealing with bigger values for m as the number of

orbital graphs grows exponentially; however, more on this topic will be explained in

Chapter 5.

Synchronizing Ranks

Primitive Groups and Synchronizing Ranks

In this section, we are concerned with the situation where a group does synchronize some,

but not all transformations; and in particular, with the question, which ranks do the trans-

formations not synchronized have? This problem is the first step towards a further analy-

sis of the difference between synchronizing and non-synchronizing permutation groups,

and one could say between primitive and almost synchronizing groups. The results here

were also used to verify some cases of Araújo’s conjecture on the equivalence of primitive

and almost synchronizing groups.

We start with the definition of synchronizing ranks.
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Figure 3.2: Rystsov’s Theorem

Definition 3.5.1. Let G be a permutation group and r a positive integer. Then, r is a

synchronizing rank if G synchronizes all transformations of rank r; otherwise, r is a

non-synchronizing rank.

The first result on synchronizing ranks was established by Rystsov [73]. He provided

a new characterisation of primitive groups using the means of synchronization, which is

reproduced here.

Theorem 3.5.2 (Rystsov). A transitive group G of degree n is primitive if and only if it

synchronizes every map of rank n− 1.

Proof. If G is imprimitive, then we form the complete multi-partite graph by assigning

an edge to two vertices which are not in the same block of G. The map which collapses

all the points in one of the blocks forms a singular endomorphism of this graph which;

so by theorem 3.2.4, G is not synchronizing.

Conversely, assume G is transitive and t is a map of rank n− 1 not synchronized by

G. Then, there is a graph Γ such that 〈G, t〉 ≤ End(Γ), by Theorem 3.2.4. Suppose

vt = wt, then v and w have the same set of neighbours, since each neighbour set is

mapped bijectively to the neighbour set of vt = wt by t (see Figure 3.2). So, we define

an equivalence relation by the following rule: v ≡ w if v and w have the same set of

neighbours. This, relation is G-invariant and, thus, G is imprimitive.

Inspired by this, the authors of [8] and [9] pushed these bounds for primitive groups

even further. The contribution from the author of this thesis is recorded in [9] and includes
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the bound on synchronizing ranks of groups of permutation rank 3. The most recent

results are as follows.

Theorem 3.5.3. A primitive group G synchronizes

1. every transformation of rank n− 2, n− 3 and n− 4.

2. every transformation of rank 2.

3. every non-uniform transformation of rank 3 or 4.

If, in addition, G has permutation rank 3, then it synchronizes every map of rank bigger

than n− (1 +
√
n− 1/12).

Remark 3.5.4. Note that although the results on the ranks n−2, n−3 and n−4 hold for

general primitive groups, the results on groups of permutation rank 3 are much stronger

due to the additional structure provided by the G-invariant graphs, that is by their strong

regularity. Moreover, this bound is a first result towards Conjecture 3.4.4.

Remark 3.5.5. During the final stages of this research the author learned of the pub-

lication by Roberson [72] containing the result from Theorem 3.4.6. Result makes the

bound from the previous theorem on groups of permutation rank 3 and the next section

obsolete. However, the author decided to include the next section, since it contains the

methods which have possibly some potential.

Groups of Permutation Rank 3

The Results

The result on groups of permutation rank 3 in the previous theorem originally comes

from the research carried out in this thesis. However, due to its theoretical consequences

and its similar methodology it has been published along with the results on ranks n − 3

and n− 4 in [9]. In the meantime, the author of this dissertation was able to improve this

bound, so this section describes the process of obtaining this new bound.
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In this section we provide a bound s(n) such that all primitive groups of permu-

tation rank 3 synchronize every transformation of rank bigger than n − s(n). In the

publication just mentioned, the authors have demonstrated that s(n) can be chosen to be

1 +
√
n− 1/12, by using the combinatorial properties of strongly regular rank 3 graphs.

However, this bound is not optimal; in particular, the constant 1/12 can be improved to

1/9, and for some cases even more, by using the classification of primitive groups of

permutation rank 3.

Recall from Chapter 2 that primitive permutation groups of permutation rank 3 are

classified by Theorem 2.1.6 using the following classes:

(A) G is non-basic,

(B) G is non-abelian and almost simple whose unique minimal normal subgroup N

(which is the socle of G) satisfies one of the following

I) N is the alternating group,

II) N is a classical group,

III) N is an exceptional group of Lie type or sporadic.

(C) G is an affine group.

The main result is as follows.

Theorem 3.5.6. Let Γ be a strongly regular graph on n vertices with primitive automor-

phism group G of permutation rank 3 and f its endomorphism of rank r. Then, there is a

function s(n) such that n− r ≥ s(n). The function s(n) is as follows:

1. If G is of class 1 with n = m2, then m is the only non-synchronizing rank. Hence,

s(n) = n−
√
n.

2. I) If the socle is the alternating group then s(n) = n− (1/2 +
√

1/4 + 2n).

II) a) If the socle is PSL(d, q) acting on the lines of the projective space, then

s(n) = c ·
√
n, where n = (qd+1−1)(qd−1)

q−1 , d ≥ 4 and c = q
√

1
24

.
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b) If the socle is a classical group acting on the points of the correspond-

ing polar space, then s(n) = c ·
√
n, where n = (qr−1)(qr+ε+1)

q−1 , ε ∈

{−1,−1/2, 0, 1/2, 1}, r ≥ 3 and c = 2
9

min{(qr−2+ε + qr−3+ε + · · · +

q1+ε)(1− 1
q
); qr−2+ε}.

c) For the remaining cases (cf. [50, Theorem 1.1 and Theorem 1.2]) take

s(n) = 1 +
√
n− 1/9.

III) a) If the socle is the exceptional group E6(q), then s(n) =
√

128
2457

(n11/16 +

√
n) with n = (q12−1)(q9−1)

(q4−1)(q−1) .

b) If, however, the socle is one of the finitely many remaining groups (cf.

Table 1 and Table 2 of [63]), then set s(n) = 1 +
√
n− 1/9.

3. a) If G is of affine type and belongs to one of the 11 infinite families covered in

Appendix D Table D.1, then s(n) = c ·
√
n, where c can be found in the same

table.

b) If G is of affine type belonging to one of the finitely many remaining cases (cf.

Table 13 and Table 14 of [64]), then set s(n) = 1 +
√
n− 1/9.

For big ranks, the following holds:

Theorem 3.5.7. Let G have permutation rank 3 and let its G-invariant strongly regular

graphs have parameters (n, k, λ, µ) and (n, k, λ, µ). Set α = min{k − µ, k − µ}, then

1. If α ≥ 9, then G synchronizes every map of rank n− 5.

2. If α ≥ 13, then G synchronizes every map of rank n− 6.

Remark 3.5.8. The proof of Theorem 3.5.7 is a consequence of Lemma 3.5.13; however,

a similar result is proved in [9]. There it is documented that any primitive group G

synchronizes every map of a particular kernel type, whenever a similar bound is satisfied.
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The Tools

The approach to find the function s(n) is presented now. Since a graph homomorphism

respects adjacency, we want to know what happens to two non-adjacent vertices and their

neighbours under a non-synchronizing endomorphism.

Let Γ be a rank 3 graph with complete core and automorphism group G. Moreover,

let f be a singular endomorphism of Γ. Then we divide its kernel classes into two parts

where the first part contains all the pre-images of f which are singletons, say their number

is t, and the second part contains all the remaining pre-images, say the number of all the

elements in these pre-images is s (cf. Figure 3.3). Thus, the identity s+ t = n holds and

the rank r of f is bounded by s/2 + t ≥ r. So, combined we obtain s ≤ 2(n− r).

· · ·

· · ·

· · · · · ·

v

w

...
...

...

Figure 3.3: Kernel and image of a transformation

Now, assume the semigroup 〈G, f〉 is contained in End(Γ). Furthermore, let G be

transitive and let k be the valency of Γ. Pick two vertices v and w from the same pre-

image of f , so they are non-adjacent. Moreover, both vertices have at least k − (s − 2)

adjacent vertices which are singletons. Next, let V and W be the neighbours of v and w

that lie in the singletons. Then f maps V ∪W injectively to the neighbours of vf and it

follows |V ∪W | ≤ k. Using the principle of inclusion and exclusion, we obtain
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|V ∩W | = |V |+ |W | − |V ∪W |

≥ k − (s− 2) + k − (s− 2)− k

= k − 2s+ 4

= k − 4(n− r − 1)

Then, by the combinatorial properties of strongly regular graphs, we obtain the fol-

lowing lemma.

Lemma 3.5.9. If Γ is a non-trivial strongly regular graph with parameters (n, k, λ, µ),

and f a singular endomorphism of Γ of rank r, then

n− r ≥ (k − µ+ 4)/4. (3.1)

Proof. With |V ∩W | ≤ µ and rearranging the previous inequality we obtain the proposed

inequality.

The right hand side s̃ = (k − µ + 4)/4 in Lemma 3.5.9 together with the bound in

Corollary 2.3.6 has been used in [9] to find a general function s(n). However here, we

are going to improve the coefficient 1/4 to 1/3 before approaching the other coefficients

provided in Theorem 3.5.6.

Further Modifications

The calculations above can be improved by considering the kernel types in more detail.

Similar generalisations can be found in [9, Thm. 3.15].

Kernel Type [2, 2, ..., 2, 1, 1, ..., 1] Suppose f is a map with this kernel type. Let t

denote the number of singletons in the kernel and s the number of elements in 2 element

kernel classes, so n = s+ t and r = t+ s/2 and hence r = n− s/2.
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Assume v and w are in the same kernel class. Consequently, there is no edge between

v and w. Let s0, s1 and s2 be the number of kernel classes with two elements where

exactly 0, 1 and 2 elements of each class are adjacent to v, and let s′0, s
′
1 and s′2 be defined

similarly for w. Obviously, we obtain the identity s/2 = s0 + s1 + s2 = s′0 + s′1 + s′2 and

derive s/2 ≥ s2 + 1 (respectively s/2 ≥ s′2 + 1).

As in the prelude to Lemma 3.5.9, we will estimate the size of the sets V and W (sets

of singletons adjacent to v and w, respectively) by estimating |V f | and |Wf |. Again,

we make use of the fact that f maps both sets bijectively onto their image. Given the

estimators |V | = k− s1− 2s2, |W | = k− s′1− 2s′2 and |V ∪W | ≤ k− s1− s2− s′1− s′2,

we obtain the following by using s/2 ≥ s2 + 1:

|V ∩W | ≥ k − s1 − 2s2 + k − s′1 − 2s′2 − (k − s1 − s2 − s′1 − s′2)

= k − s2 − s′2

≥ k − s+ 2

= k − 2n+ 2r + 2.

Hence, we deduce the estimator

s̃ =
1

2
(k − µ+ 2). (3.2)

Kernel Type [p1, p2, ..., pσ, 2, 2, ..., 2, 1, 1, ..., 1] Let f be a map of this kernel type and

suppose p1 ≥ p2 ≥ · · · ≥ pσ > 2. This time let t and s be the number of 1 element and

2 element kernel classes, respectively. Then, the two identities n = t + 2s +
σ∑
i=1

pi and

r = t+ s+ σ imply n = r + s− σ +
σ∑
i=1

pi.

Let v and w be in the same class with p1 elements and V andW their neighbourhoods

in the singletons. Moreover, assume s0, s1 and s2 denote the number of classes with two

elements which have precisely 0, 1 and 2 vertices adjacent to v, and let s′0, s
′
1 and s′2

denote the corresponding values for w. Then, s = s0 + s1 + s2 and, thus, s ≥ s2. As



3.5. Synchronizing Ranks 61

usually, we obtain the bounds |V | ≥ k − s1 − 2s2 −
σ∑
i=2

pi, |W | ≥ k − s′1 − 2s′2 −
σ∑
i=2

pi

and |V ∪W | ≤ k − s1 − s2 − s′1 − s′2. These result in

|V ∩W | ≥ k − 2
∑
i=2

pi − s2 − s′2

≥ k − 2
∑
i=2

pi − 2s

= k − n+ r + (p1 −
σ∑
i=2

pi − (s+ σ))

and consequently in the estimator

s̃ = k − µ+ (p1 −
σ∑
i=2

pi − c), p1 ≥ p2 ≥ · · · ≥ pσ > 2, (3.3)

where c = s+ σ = r − t.

Lemma 3.5.10. If f is a map of rank r = n− d, then n− r ≥ 1

3
(k − µ).

Proof. If the kernel type of f consists of singletons and pairs, then use

s(n) = 1
2
(k − µ + 2) from Equation 3.2. In the remaining cases, we use Equation 3.3,

where this estimator for s(n) can be bounded from below by k − µ− 2d. Now, we want

the inequality n− r ≥ s(n) ≥ k−µ−2d to hold; but this implies n− r ≥ 1
3
(k−µ).

Remark 3.5.11. Lemma 3.5.10 improves the coefficient from 1/4 to 1/3, and, hence

improves the result in [9]. However, for graphs with small k − µ the factor 1/3 is nul-

lifying the effect of this tool. If, in addition, the value d is small, then it is better to use

the estimators in Equation 3.2 and 3.3 directly. This is demonstrated in Table 3.1, for

d = 5 and 6. For instance, for the kernel type [2, ...2, 1, ..., 1] the table contains the value

k − µ + 2− d. Note that, it was confirmed in [8] that maps with kernel type [k, 1, ..., 1],

for k > 1 are always synchronized by primitive groups.

Corollary 3.5.12. Let Γ be a non-trivial strongly regular graph on n vertices and let

f ∈ End(Γ) be an endomorphism of rank r. Then, n−r ≥ s(n), where s(n) = 1
9

√
n− 1.
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Kernel type Estimator s̃
rank n− 5

[5, 2, 1, 1, ..., 1] k − µ+ 3
[4, 3, 1, 1, ..., 1] k − µ− 1

[4, 2, 2, 1, 1, ..., 1] k − µ+ 1
[3, 3, 2, 1, 1, ..., 1] k − µ− 3

[3, 2, 2, 2, 1, 1, ..., 1] k − µ− 1
[2, 2, 2, 2, 2, 1, 1, ..., 1] k − µ− 3

rank n− 6
[6, 2, 1, 1, ..., 1] k − µ+ 4
[5, 3, 1, 1, ..., 1] k − µ+ 0

[5, 2, 2, 1, 1, ..., 1] k − µ+ 2
[4, 4, 1, 1, ..., 1] k − µ− 2

[4, 3, 2, 1, 1, ..., 1] k − µ− 2
[4, 2, 2, 2, 1, 1, ..., 1] k − µ+ 0
[3, 3, 3, 1, 1, ..., 1] k − µ− 6

[3, 3, 2, 2, 1, 1, ..., 1] k − µ− 4
[3, 2, 2, 2, 2, 1, 1, ..., 1] k − µ− 2

[2, 2, 2, 2, 2, 2, 1, 1, ..., 1] k − µ− 4

Table 3.1: Applying equation 3.2 and equation 3.3 to big ranks

Proof. This follows from Lemma 3.5.10 and Corollary 2.3.6.

From Table 3.1, we obtain the following consequence.

Lemma 3.5.13. Let Γ be a strongly regular graph with parameters [n, k, λ, µ].

1. If k − µ > 8, then Γ has no singular endomorphism of rank n− 5.

2. If k − µ > 12, then Γ has no singular endomorphism of rank n− 6.

Proof. For rank r = n − d where d = 5 or d = 6, we need to satisfy the inequality

n− r ≥ s̃, which is equivalent to d ≥ s̃. However, because we want to show that there is

no singular endomorphism, we need to consider the negative statement, i.e. d < s̃. The

remainder follows from Table 3.1.

Proof of Theorem 3.5.6

In this proof, Lemma 3.5.10 is applied and bounds are provided for the difference k− µ,

where k and µ are given by the graph parameters arising from each individual class in
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the O’Nan-Scott theorem for groups of permutation rank 3.

Class A: The Primitive Wreath Product Case The graphs in this case are the square

lattice graph and its complement. In [37], it is pointed out that the square lattice graph is a

pseudo-core whose singular endomorphisms have rank
√
n, where n is a square denoting

the number of vertices. Similarly, we see in the next chapter on Hamming graphs that the

same holds for its complement. Hence, this case is solved; so, we set s(n) = n−
√
n.

Class B: The Almost Simple Case This class of rank 3 groups consists of three types

of groups which are distinguished by their unique minimal normal subgroup N (which is

the socle of G). We consider each type separately.

I N is the alternating group,

II N is a classical group,

III N is an exceptional group of Lie type or a sporadic group.

Type I: The results in [13] show that except for 5 cases the only rank 3 graphs which

arise come from the permutation rank 3 action of Sm on 2-sets (see Table 3.2 for the

exeptions). The permutation representation of this action has rank n = 1
2
m(m − 1) and

graphs which arise from the action on 2-sets are the triangular graph and its complement.

(Certainly, the same graphs arise from the permutation rank 3 action of Am on 2-sets.)

However, in [7] it is proved that only the triangular graph admits singular endomorphisms

(if m is even) and that they are colourings. Its parameters are the following (1
2
m(m −

1), 2(m − 2),m − 2, 4) and the rank of the singular endomorphisms is m − 1. Hence,

solving 1
2
m(m− 1) = n for m, we obtain s(n) = 1/2 +

√
1/4 + 2n.

The 5 sporadic cases are the following: S6 acting on 15 points, S8 on 35 points, S9

on 120 points, S9 on 120 points, and S10 on 126 points. Using the computer software

GAP [36] it is straightforward to show that only S6 and S8 are non-synchronizing. The
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m n (Degree of action) comments
m ≥ 5 1

2
m(m− 1) Triangular graphs T (m)

6 15 It turns out that the G-invariant graph
is the Triangular graph T (6)

8 35 -
9 120 no singular endomorphisms
9 120 no singular endomorphisms
10 126 no singular endomorphisms

Table 3.2: Permutation Rank 3 groups with alternating socle.

non-synchronizing rank for S6 is 5 and for S8 it is 7. Hence, both ranks are still covered

by the bound s(n) = 1/2 +
√

1/4 + 2n.

An Excursion to Polynomials

In this excursion, we provide bounds on polynomials given by the finite geometric series.

These are used to bound the difference k − µ for the following classical groups. The

reader will recognise that the identity xn−1
x−1 =

n−1∑
i=0

xi counts subspaces of vector spaces.

For our purpose, we are solely interested in positive values of x; more precisely, in values

of x where x ≥ 1. The crucial point in the following lemma is the next observation, for

x ≥ a ≥ 1: From the inequality xn = x · xn−1 ≥ a · xn−1 it follows that 1
a
xn ≥ xn−1.

This supplies a tool to bound the geometric series.

Lemma 3.5.14.

1. For x ≥ a ≥ 1 we can bound
n∑
i=0

xi ≤ a

a− 1
· xn.

2. For x ≥ a ≥ 1 we can bound
n∑
i=0

x2i ≤ a2

a2 − 1
· xn.

In particular, for a = 2 we obtain the following

3.
n∑
i=0

xi ≤ 2 · xn.

4.
n∑
i=0

x2i ≤ 4

3
· xn.

Proof. The results follow from the identity
n∑
i=0

( 1
a
)i =

1− 1
a

n+1

1− 1
a

.
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End of Excursion

Type II, Projective Spaces: We start with groups having PSL(d + 1, q) as the socle,

for d ≥ 4. Here, we consider the action of PSL(d + 1, q) on the lines of the projective

space. The rank 3 graph has parameters:

n =
(qd+1 − 1)(qd − 1)

(q + 1)(q − 1)2
, k =

q(q + 1)(qd−1 − 1)

q − 1

λ =
qd − 1

q − 1
+ q2 − 2, µ = (q + 1)2.

By Lemma 3.5.14, n can be bounded by n ≤ 8
3
q2d−2, which leads to

k − µ = (q + 1)(qd−1 + · · ·+ q − q − 1) ≥ (q + 1)qd−1 ≥
√

3

8
(q + 1)

√
n and

l − µ = k − λ− 1 ≥ qd ≥
√

3

8
· q ·
√
n.

Thus by Lemma 3.5.10, we can set s(n) to be the minimum of these two:

s(n) =
1

3

√
3

8
q
√
n =

√
1

24
· q ·
√
n.

There are more groups of permutation rank 3 with socle PSL(d, q) listed in Theorem

1.2 of [50]; however, for these finitely many remaining cases we use Corollary 3.5.12

and set s(n) = 1 + 1
9

√
n− 1.

Type II, Polar Spaces: In this case we deal with groups whose socle is a symmetry

group of a polar space. In particular, we consider the permutation rank 3 action on the

points of the corresponding space. From various books on polar spaces and for instance

Cameron’s lecture notes [16], we obtain the parameters of the corresponding strongly

regular graph (n, k, λ, µ):

n = F (r), k = qF (r − 1), l = G(r), λ = q − 1 + q2F (r − 2), µ = F (r − 1)
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with F (r) = (qr−1)(qr+ε+1)
q−1 , G(r) = q2r−1+ε, ε = −1,−1

2
, 0, 1

2
, 1 and r ≥ 3.

By Lemma 3.5.14, n is bounded by n = F (r) ≤ 9
4
q2r−1+ε ≤ 9

4
q2r, leading to a bound

on k:

k ≥ (qr−2+ε + qr−3+ε + · · ·+ q1+ε)︸ ︷︷ ︸
=f(r,ε)

·qr ≥ 2

3
f(r, ε)

√
n.

Hence, we deduce that k− µ = k(1− 1
q
) ≥ 2

3
f(r, ε)

√
n. However, since we also need to

consider the complement graph, we have l−µ = k−λ−1 = qG(r−1)+1 ≥ 2
3
qr−2+ε

√
n.

Then by Lemma 3.5.10, s(n) is bounded by minimum of these two, so we set

s(n) =
2

9
min(f(r, ε)(1− 1

q
), qr−2+ε)

√
n.

Again, for the remaining groups with socle a classical group which are mentioned in

Theorem 1.1 of [50] we use s(n) = 1 + 1
9

√
n− 1.

Type III: The only infinite family of primitive groups of permutation rank 3 with an

exceptional socle belongs to the family E6(q). The graph parameters are given by

n =
(q12 − 1)(q9 − 1)

(q4 − 1)(q − 1)
, k =

q(q8 − 1)(q3 + 1)

q − 1
,

λ =
q2(q2 + 1)(q5 − 1)

q − 1
+ q − 1, µ =

(q4 − 1)(q3 + 1)

q − 1

and can be found in [49]. Applying Lemma 3.5.14, we bound n by

n = (q8 + q4 + 1)(q8 + · · ·+ q + 1) ≤ q8(1 +
1

24
+

1

28
) · 2q8 ≤ 273

128
q16.

Thus, we obtain

k − µ = (q3 + 1)(q8 + q7 + · · ·+ q4 − 1) ≥ (q3 + 1)

√
128

273

√
n,

l − µ = k − λ− 1 ≥ q11 + · · ·+ q8 ≥ (q3 + q2 + q + 1)

√
128

273

√
n.
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and we set

s(n) =
1

3
(q3 + 1)

√
128

273

√
n =

√
128

2457
(n

11
16 +
√
n).

As above, there are finitely many remaining cases which are covered by

s(n) = 1 + 1
9

√
n− 1.

Class C: The Affine Group Case For the affine case we refer to the work of Liebeck

[64] where the primitive groups of permutation rank 3 and affine type are classified and

the subdegrees determined. Here, we focus on the infinite families given in Table 12 of

[64]. In combination with Lemma 2.3.5, we are able to determine a function s(n).

As it turns out, for this class we can set s(n) = c ·
√
n, where the constant c is

provided in Table D.1, for each family individually; for instance, the following verifies

the calculations for two of the 11 families. For the finitely many remaining groups given

in Table 13 and Table 14 of [64] we set s(n) = 1 + 1
9

√
n− 1.

Family (A4): Here: SLa(q) � G0 and a ≥ 2. The degree and subdegrees are

n = q2a, k = (q + 1)(qa − 1) and l = q(qa − 1)(qa−1 − 1). By the same calculations as

above, we obtain:

k = qa+1 + qa − q − 1 ≥ qa+1 + qa(1− 1

2a−1
− 1

2a
) ≥ (q +

1

4
)
√
n,

l = q2a − qq+1 − qa + q ≥ q2a(1− 1

2a−1
− 1

2a
) ≥ 1

4
q2a ≥ 1

4
qa
√
n.

Hence,

s(n) =
1

9
min(

1

4
+ q,

1

4
qa)
√
n.

Family (A11): Here we have Sz(q) � G0. The degree and subdegrees are n = q4,

k = (q2 + 1)(q − 1) and l = q(q2 + 1)(q − 1). Obviously, min(k, l) = k. Moreover, by

Lemma 3.5.14, we bound k by

k = q3 − q2 + q − 1 ≥ q3 − q2 ≥ q3 − 1

2
q3 =

1

2
n

3
4
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for q ≥ 2. Consequently,

s(n) =
k

9
=

1

18
n

3
4 .
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Chapter 4

Examples of Non-Synchronizing

Semigroups from Graph

Endomorphisms

Examples of non-synchronizing semigroups from endomorphism monoids of graphs are,

currently, the most interesting examples of non-synchronizing semigroups in synchro-

nization theory. Therefore, this chapter contains a compilation of highly interesting non-

synchronizing semigroups, namely, endomorphism monoids of graphs. The monoids are

easily determined using basic geometrical and combinatorial arguments, and some of

them will act as examples throughout this thesis.

Of particular interest are the strongly regular graphs with minimum eigenvalue −2

given by Seidel’s classification (Theorem 2.3.10), but further examples contain other

graphs as well. The aim of this chapter is to equip the reader with a basic understanding

of the graphs, the endomorphisms, and the semigroups contained here and to be able to

refer to these objects later.



70
Chapter 4. Examples of Non-Synchronizing Semigroups from Graph

Endomorphisms

The Square Lattice Graph and Its Complement

The square lattice graph and its complement form a very interesting pair of graphs, since

they belong to the rank 3 graphs admitting a non-basic primitive automorphism group of

permutation rank 3. The square lattice graph is usually denoted byL2(n), and Neumaier’s

results [68] show that this graph has minimum eigenvalue −2; thus, it is covered by

Seidel’s classification.

In [20], it is proved that its automorphism group is a non-synchronizing group and

that both graphs admit singular endomorphisms. Furthermore, by Theorem 3.4.6, both

graphs are pseudo-cores.

Nevertheless, in this section we reprove this result by using basic (geometric) ar-

guments (which can be found in [37]). Then, we analyse the endomorphism monoids

regarding the size of the monoid, the semigroup generators and abstract semigroup prop-

erties such as regularity. So, in this section let Γ be either L2(n) or its complement.

The Endomorphisms in End(Γ)

The square lattice graph L2(n) is a strongly regular graph, with minimum eigenvalue

−2. Another feature of this graph is that it is uniquely determined by its parameters

(n2, 2(n− 1), 2, 2), except for n = 4 (cf. Shrikhande [75]).

The clique number and chromatic number of L2(n) are equal to n and the maximal

cliques are given by the rows and columns of the square grid and are regarded as lines.

The same holds for its complement, except that the maximal cliques are given by the sets

{(i, ig) : i = 1, ..., n} for g ∈ Sn.

Theorem 4.1.1. Both the square lattice graph L2(n) and its complement are pseudo-

cores.

Proof. Note that, by the definition of L2(n) we can interpret this graph as an n× n grid
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consisting of rows and columns. Now, suppose φ ∈ End(Γ) \ Aut(Γ). Then, φ maps

maximal cliques to maximal cliques, that is lines to lines (in Z2
n). Assume φ maps the

two distinct lines l1, l2 to a new line l. Without loss of generality we may assume l1 is the

first row and l = l1. There are two cases to consider, namely, l2 is either another row or

a column.

If l2 is another row, then any maximal clique given by a column intersects with l1 and

l2 and, thus, is mapped to l. Consequently, all columns are mapped to l1. On the other

hand, assume l2 is the first column (cf. Figure 4.1). Now, take another maximal clique l3

which is a row. Each point on this new clique is adjacent to one point of l1 (hence l3φ is

either parallel to l or l itself) and it intersects with l2; thus, it is mapped to l. To conclude

this argument, we have shown that if φ is a singular endomorphism, then it maps all the

points to a maximal clique; hence, φ is a colouring.

l1

l3

l2

Figure 4.1: Configuration for L2(n)

Now, we go for the complement of the square lattice graph. Suppose φ maps two

distinct maximal cliques c1 and c2 to a maximal clique c. Since c1 and c2 are distinct,

we may pick two distinct points x1 ∈ c1 and x2 ∈ c2 with x1φ = x2φ. Without loss of

generality we may assume the following:

• c = c1φ and c1 are both the diagonal (i, i), for all i;

• (i, i)φ = (i, i) for all i,

• x1 = (1, 1) and x2 = (1, i), for some i > 1.
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Note that, if a point is adjacent to n − 1 points on the diagonal, then it is one of the

diagonal points itself. Consider the point (j, 1), for any j > 1 (see Figure 4.2). This

point is adjacent to x2 and thus it is mapped to one of the points on the diagonal, by

the previous observation. Repeating this argument proves, that for all i the points in the

same row as (i, i) are mapped to (i, i). All in all, φ either collapses rows or columns

where each row (column) is mapped to a unique point contained in that row (column).

Therefore, by labelling each kernel class of φ with the corresponding point of its image

we obtain a repetitive square (recall Section 2.4.2 for their definition).

(1, 1) (1, i)

(j, 1)

c1 = c

Figure 4.2: Configuration for L2(n)

Next, the size and structure of the endomorphism monoid is determined. But be-

fore we want to mention that in Section 4.5 we consider orthogonal array graphs. Those

graphs are generalisations of the square lattice graph; moreover, their singular endomor-

phisms satisfy the same pattern, namely they are Latin squares. Anyway, the next result

shows this fact by using a straightforward observation.

Corollary 4.1.2. The number of proper endomorphisms of L2(n) is

# maximal cliques ·# Latin squares of order n. (4.1)

Note that L2(n) has 2n distinct maximal cliques.
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Proof. Let φ be a singular endomorphism. From the previous theorem 4.1.1 we know

that two vertices are in the same kernel class if and only if they are in distinct rows and

distinct columns. But this describes a Latin square. The result follows immediately from

this.

The endomorphisms of the complementary graph are counted directly.

Theorem 4.1.3. The singular endomorphisms of L2(n) are repetitive squares and their

number is |Sn o S2| = 2 · (n!)2.

Proof. From the theorem 4.1.1 we know that the singular endomorphisms can be de-

scribed by repetitive squares; here we are concerned with counting. Pick a maximal

clique C = {a1, ..., an}. There are n! choices to do so. Each row and each column con-

tains precisely one element of C. Now, we choose whether we want to collapse the rows

or the columns onto points in C. This gives 2 choices. Without loss of generality we

choose rows. At last, we map the rows to the points in C. There are n choices to pick a

row which will be mapped to a1. Then, n− 1 choices to pick another row which will be

mapped to a2, and so on. All in all, this leads to the claimed number of maps.

The Generators of End(Γ)

Now that we know the number of singular endomorphisms, determining the generators of

the endomorphism monoids is the next problem. We are not going to present a minimal

set of generators for these monoids, but rather a generating set relative to the automor-

phism group, i.e., we determine a generating set T of singular endomorphisms such that

End(Γ) = 〈Aut(Γ), T 〉.

We will start with the lattice square graph L2(n). As the singular endomorphisms

have been characterised as Latin squares of order n, it is easily deduced what the minimal
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generating set T relative to Aut(Γ) is. But before that, a new equivalence of Latin squares

is necessary.

In general, Latin squares are usually subdivided into isotopy classes or into main

classes (cf. [28, 67]). The equivalences corresponding to these equivalence classes are

well-known. However here, an equivalence is needed which lies between these two, in

order to describe the minimal generators properly.

It is common to write Latin squares as triples (xi, yj, Li,j), so we say that two Latin

squares are equivalent if one Latin square is derived from the other by either permuting

the entries of each coordinate or by permuting the first two coordinates. This equivalence

lies between the ones mentioned; thus we call its equivalence classes semi-main classes.

Lemma 4.1.4. A minimal generating set T for L2(n) consists of representatives of the

semi-main classes of Latin squares.

Proof. First, note that Aut(Γ) = Sn oS2 is the automorphism group. Let Γ = L2(n), g ∈

Aut(Γ) and f ∈ End(Γ), where f corresponds to a Latin square, i.e. a set of triples

(recall Section 2.4.1). Then the products gf and fg form Latin squares, too. Therefore,

by acting on the left on a transformation (a Latin square), this group permutes the entries

of the first two coordinates of the Latin square and the first two coordinates themselves.

By acting on the right, it permutes the entry of the third coordinate. Hence, if we are given

representatives of the semi-main classes, we are able to construct every Latin square.

Moreover, the automorphism group acts transitively on the maximal cliques of L2(n)

which correspond to the images.

The following are simple consequences.

Corollary 4.1.5. 1. The singular rank of End(L2(n)) is equal to the number of semi-

main classes of Latin squares of order n.

2. A generating set S for End(L2(n)) consists of representatives of the isotopy classes

of Latin squares of order n.
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In the complementary case, L2(n), it is even easier.

Lemma 4.1.6. The singular rank of End(L2(n)) is 1. The generating transformation t

corresponds to a repetitive square, that is t maps row (or column) i to the element ci, for

i = 1, ..., n with c = {c1, ..., cn} a maximal clique (see Example 4.1.7).

Proof. Since the automorphism group is transitive on the maximal cliques and since it

can switch between rows and columns, all endomorphisms can be constructed from a

single singular endomorphism.

Example 4.1.7. By using the usual enumeration of the vertices of L2(3), namely,

1 2 3

4 5 6

7 8 9

a valid generating transformation would be

t =

1 2 3 4 5 6 7 8 9

1 1 1 5 5 5 9 9 9

 .

The Structure of End(Γ)

We start by determining the famous Green’s relations for both endomorphism monoids.

Lemma 4.1.8. The singular semigroup Sing(L2(n)), for n ≥ 3, is simple and completely

regular. It has 2n L-classes and the number of R-classes is equal to the number of semi-

reduced Latin squares (first row 1, 2, ..., n). Consequently, the number of H-classes is

the product of those two. Moreover, each H-class is isomorphic to the symmetric group

Sn.

Proof. This follows directly from the fact that the singular endomorphisms are Latin

squares. Hence, ker(u) = ker(t) and im(tu) = im(u), for t, u ∈ Sing(L2(n)).
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Lemma 4.1.9. The singular semigroup Sing(L2(n)), n ≥ 3, is simple and completely

regular. It has n! L-classes and 2 R-classes, and each H-class is isomorphic to the

symmetric group Sn.

Now, we turn to further properties of the endomorphism monoids. First, we go for

the square lattice graph Γ = L2(n) and analyse subsemigroups of the form 〈Aut(Γ), t〉.

Lemma 4.1.10. For all t ∈ Sing(Γ), the semigroup Aut(Γ) is maximal in 〈Aut(Γ), t〉.

Proof. Pick u ∈ 〈Aut(Γ), t〉. Then, u has the form u = g1tg2, for g1, g2 ∈ Aut(Γ).

Therefore, 〈Aut(Γ), u〉 = 〈Aut(Γ), t〉.

Corollary 4.1.11. For every subgroup G ≤ Aut(Γ) and every t ∈ Sing(Γ), G is maxi-

mal in 〈G, t〉.

Lemma 4.1.12. 〈Aut(Γ), t〉 \ Aut(Γ) is idempotent generated.

Proof. Let u be in 〈Aut(Γ), t〉. Again, u has the form u = g1tg2, for g1, g2 ∈ Aut(Γ).

Note that taking two endomorphisms x and y the product xy corresponds to the same

Latin square as x (with possibly distinct entries). Now, because Aut(Γ) is acting in the

same way as Sn on any image, we can find two idempotents f1 = g1th1 and f2 = h2tg2,

with h1, h2 ∈ Aut(Γ). Then, u = f1f2.

Remark 4.1.13. The previous result is a simple consequence of Theorem 6.3.4.

Corollary 4.1.14. For all t ∈ Sing(Γ) we have

〈Aut(Γ), t〉 \ Aut(Γ) = 〈tg : g ∈ Aut(Γ)〉.

Proof. This follows from [3, Lemma 2.2] and the preceding lemma.

In [3] the authors called a group G ≤ Sn with the previous property t-normalizing,

and so we take the chance to define this term formally, too. Note that Chapter 7 contains

further results on such groups.



4.2. The Triangular Graph 77

Definition 4.1.15. A group G ≤ Sn which satisfies 〈G, t〉 \G = 〈tg : g ∈ G〉 is called a

t-normalizing group, for t ∈ Tn.

Theorem 4.1.16. Let G ≤ Aut(Γ) and T = {a1, ..., ar} be the minimal generating set

for the singular monoid Sing(Γ) = 〈G, T 〉 \ G. Then, for any subset T ′ = {ai1 , ..., air}

of T we obtain a decomposition

〈G, T ′〉 = S1 ] S2 ] · · · ] Sr,

where Sj = 〈G, aij〉 \G.

Proof. Pick two singular transformations t and u, then their product tgu gives the same

Latin square as t (with possibly distinct entries), for all g ∈ G. Therefore, tgu is in 〈G, t〉.

Hence,

〈G, ti〉 \G ∩ 〈G, tj〉 \G = ∅.

On the other hand, because T ′ is a generating set for 〈G, T ′〉, the Sj cover the equivalence

classes of Latin squares and also the possible images of transformations contained in

T ′.

Remark 4.1.17. In Chapter 7 we investigate such decompositions in more detail. The

previous theorem is in fact an application of Theorem 7.2.20.

Because the singular endomorphisms of L2(n) are repetitive squares and End(L2(n))

is simply generated, the above results hold if we replace L2(n) by its complement L2(n).

The Triangular Graph

The Endomorphisms in End(Γ)

In [7], the authors proved that T (n) has no proper endomorphisms for odd n; whereas,

for even n, all endomorphisms are uniform and have rank n − 1. The first result of this
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section is, therefore, to interpret the structure of the endomorphisms and count them. But

before we get to this, we need to introduce 1-factors and 1-factorisations.

Definition 4.2.1. 1. A factor of a graph Γ is a spanning subgraph of Γ.

2. A factorisation of a graph Γ is a set of factors of Γ such that each edge of Γ lies in

exactly one factor.

3. Two factorisations are isomorphic if there exists an isomorphism of the underlying

graphs that maps the factors in one factorisation onto factors in the other factori-

sation.

Definition 4.2.2. 1. A k-factor is a factor which has valency k.

2. A k-factorisation is a factorisation into k-factors.

Lemma 4.2.3. The graph T (n) has

n! ·# of 1-factorisations of Kn

uniform singular endomorphisms, for even n ≥ 6.

Proof. If φ is a singular endomorphism, then its image is one of the n maximal cliques

of size n − 1. Moreover, since T (n) is the line graph of the complete graph Kn, we

colour the edges of Kn with n − 1 colours. The edges with the same colour correspond

to vertices of T (n), so they are in the same kernel class of φ. At last, we have (n − 1)!

choices to match the kernel classes to the elements of a maximal clique. Thus, we have

n · (n− 1)! · (# of edge-colourings of Kn) distinct singular endomorphisms. Since, each

edge-colouring of Kn is a 1-factorisation, we obtain the result.

It is known that 1-factorisations of Kn, for even n, are in natural bijection to a special

class of Latin squares of order n, namely to reduced, symmetric, unipotent Latin squares

of order n [58, Thm. 7.15]. So we see that counting 1-factorisations is very difficult. For

small K2n these can be found in Figure 4.1.
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n # of 1-factorisations of K2n

1 1
2 1
3 6
4 6240
5 1, 225, 566, 720
6 252, 282, 619, 805, 368, 320

Table 4.1: The number of 1-factorisations of K2n (see sequence A000438 in OEIS [71])

The Generators of End(Γ)

The situation here is similar to the one for the square lattice graph.

Lemma 4.2.4. Let T consist of representatives of isomorphism classes of 1-factorisations.

Then, End(T (n)) = 〈Aut(T (n)), T 〉.

Proof. Recall that the automorphism group of T (n) is the symmetric group Sn given by

its permutation representation on 2-sets. So, because 1-factors are partitions into 2-sets

the automorphism group leads to any 1-factorisation in the same isomorphism class as a

singular transformation t ∈ End(T (n)). Thus, given representatives of all classes, we

obtain all the 1-factorisations.

The Structure of End(Γ)

Again, the analysis of the endomorphism monoid starts with a description of Green’s

relations. But before, we need the following remark.

Remark 4.2.5. The endomorphism monoid of the triangular graph is similar to the one

of the square lattice graph, since 1-factorisations are in 1− 1 correspondence to reduced,

symmetric, unipotent Latin squares [58, Thm. 7.15]. Hence, in fact, this endomorphism

monoid admits the same structure.

The following results are a consequence.
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Lemma 4.2.6. For even n ≥ 6, the semigroup Sing(T (n)) is simple and completely

regular. It has n L-classes and the number of R-classes is equal to the number of 1-

factorisations of Kn, so the number of H-classes is their product. Moreover, each H-

class is isomorphic to the symmetric group Sn−1.

Proof. With the previous remark this proof is essentially the same as for L2(n).

Corollary 4.2.7. 1. For all t ∈ Sing(Γ) the group G ≤ Aut(Γ) is maximal in 〈G, t〉.

2. 〈Aut(Γ), t〉 is idempotent generated, for all t ∈ Sing(Γ).

3. Aut(Γ) is t-normalizing, for all t ∈ Sing(Γ).

4. Sing(Γ) admits a similar decomposition as in Theorem 4.1.16.

Remark 4.2.8. Like for the square lattice graph, more on such decompositions can be

found in Chapter 7. In particular, Theorem 7.2.20 applies to the triangular graph, too.

The Complete Multi-Partite Graph and its

Complement Graph

The Endomorphisms

In this section, the endomorphisms of two important and well-known examples of graphs

are described. The first graph is the union of n copies of the complete graph Kr. This

disconnected graph is simply formed by taking the union of the vertices and edges. We

write

U(n, r) = Kr ]Kr ] · · · ]Kr,

or simply U(n, r) = n.Kr, where U stands for union (cf. Figure 4.3).

The complement of this graph is the complete n-partite graph or Turan graph where

each part contains r vertices; we write T (n, r). (Note that various authors write T (rn, n)

for the Turan graph on r · n vertices with n parts.)
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Figure 4.3: This is the disconnected graph U(3, 3) on 9 vertices.

Remark 4.3.1. Recall from Section 2.3.4, both graphs are the two non-trivial strongly

regular graphs with exactly 2 eigenvalues.

Lemma 4.3.2. The graph U(n, r) has singular endomorphisms of ranks r, 2r, 3r, ...,

(n− 1)r and the number of endomorphisms of rank k · r is given by

(
n

k

)
· S(n, k) · k! · (r!)n,

where S(n, k) is the Stirling number of the 2nd kind (counting the number of partitions

of n elements into k parts).

Proof. The ranks of the endomorphisms are r, 2r, 3r, ..., (n − 1)r, since the complete

graphs form maximal cliques. Now, we count the endomorphisms of rank k · r. Let φ be

such an endomorphism. The image of φ is a union of k graphs Kr. Thus, choose k out of

the n factors. The kernel classes of φ are the parts of a partition of n complete graphs into

k parts. Each kernel class is mapped to one of the k complete graphs in the image of φ,

providing k! choices. Finally, note that each complete graph Kr is mapped to a complete

graph Kr in r! ways.

Unfortunately, it is much harder to describe the complementary graph T (n, r) =

U(n, r), as many more choices arise. One can easily deduce that the rank of a singular

endomorphism could be any number between n and r · n − 1. In the next result we

consider the simple case T (n, 2) and postpone the general case until Lemma 4.3.6.
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Lemma 4.3.3. The number of singular endomorphisms of T (n, 2) is

(2n − 1) · 2n · n!.

Proof. This graph is multi-partite with 2 vertices in each part. Since φ is a singular

endomorphism, φ collapses at least one part to a single vertex. An endomorphism of

rank n + k collapses n − k parts; hence, there are n choose k choices to pick the parts

which are collapsed. Moreover, φ maps a part to a part, providing n! choices. F, since

a part is mapped to a part, there are two choices for the two points to be mapped to. In

total, this gives 2n choices. Finally, summing over all ranks and not counting full ranks,

that is endomorphisms of rank 2n, we obtain the result.

Generators of End(Γ)

The automorphism group of these graphs is the wreath product Sr o Sn with the imprimi-

tive action. This rather large automorphism group covers a lot of symmetry leading to a

very small relative rank. In fact, the relative rank is 1 for both graphs.

Lemma 4.3.4. 1. The monoid End(U(n, r)) has singular rank 1 and its singular gen-

erator is given by t, where t is collapsing two of the components Kr and fixing the

other components pointwise.

2. The monoid End(T (n, r)) has singular rank 1 and its singular generator is given

by t, where t is collapsing two points in one of the parts and fixing all other points.

Example 4.3.5. For U(3, 3) from Figure 4.3 a generating transformation is t1, where

t1 =

1 2 3 4 5 6 7 8 9

1 2 3 1 2 3 7 8 9

 .
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For T (3, 3) a generating transformation is t2, where

t2 =

1 2 3 4 5 6 7 8 9

1 1 3 4 5 6 7 8 9

 .

Given the generator for End(T (n, r)), we can determine the number of singular endo-

morphisms quite effortlessly with the help of a computer. Taking the additional symmetry

into account we get.

Lemma 4.3.6. The number of singular endomorphisms of T (n, r) is

(
r(r−1)n − ((r − 1)!)n

)
· rn · n!.

Proof. This formula follows when taking the symmetry into account which arises for

r > 2. The both factors on the right hand side correspond to the two factors in Lemma

4.3.3. Only the factor
(
r(r−1)n − ((r − 1)!)n

)
is somewhat more complicated. However,

this factor comes from combining the different kernel types. We determine the number of

singular endomorphisms for each possible rank individually and then sum over all ranks.

For each rank there might be several kernel types which can occur and the result follows

from applying binomial identities.

Structure of End(Γ)

As we have seen by determining the endomorphisms of T (n, r) and U(n, r), the en-

domorphisms of T (n, r) are wilder and less structured; whereas the endomorphisms of

U(n, r) are straightforward to describe. For this, Green’s relations in End(U(n, r)) be-

have much better.

So in this section, we determine the number ofD-,H-,L- andR-classes and the struc-

ture of the H-classes in End(U(n, r)). However, we will not be able to do this for

End(T (n, r)) because the difficulties mentioned above, except for the case r = 2 which

will be deferred to the following section.
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As the transformations in U(n, r) have an obvious structure we can deduce.

Lemma 4.3.7. Let Γ be the graph U(n, r), for r, n ≥ 2. Then, End(Γ) is regular.

Proof. Elements in End(Γ) permute the elements within the subgraphs Kr and they

permute and collapse the blocks Kr. Thus, for any a ∈ Sing(Γ) there is an element

g ∈ Aut(Γ) such that ag is an idempotent. Now, by the identity

ag = (ag)2 = agag ⇔ a = aga

the element a is regular.

The following basic result is key in determining the D-classes.

Proposition 4.3.8 (Prop 3.6, [57]). Let S be a subsemigroup of a semigroup T , let Dx be

a regular D-class of S and y a regular element of S.

1. x and y are in the same L-class within T if and only if they are in the same L-class

within S.

2. x and y are in the same R-class within T if and only if they are in the same R-class

within S.

The structure of the endomorphisms leads to a simple way to distinguish D-classes,

but also L and R-classes. It holds the same as for the full transformation monoid Tn.

Lemma 4.3.9. For a, b ∈ End(Γ) it follows.

• a L b⇔ im(a) = im(b).

• a R b⇔ ker(a) = ker(b).

• a D b⇔ rank(a) = rank(b).

Proof. Two elements a and b in Tn are in the same L-class if they have the same image

[57, Lemma 3.1]. Similarly, they are in the same R-class if they have the same kernel.

So the first two statements follow from the previous lemma.
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Next, assume a and b are in the same D-class. Then, there is an element c which is in

the same R-class as b and in the same L-class as a. This implies that rank(a) = rank(b).

On the other hand, if the rank of a and b is the same then we can easily find an element

g ∈ Aut(Γ) such that both a and bg have the same image and b and bg have the same

kernel. But then a and b need to be in the same D-class.

Corollary 4.3.10. End(Γ) has n D-classes D1, ..., Dn, where Dk contains all the ele-

ments of rank k · r.

Next, we count the L,R and H-classes in each D-class.

Lemma 4.3.11. Let Dk the D-class containing exclusively elements of rank k · r, for

1 ≤ k < n. Then, the D-class Dk has

•
(
n
k

)
L-classes,

• (r!)n−kS(n, k) R-classes, where S(n, k) is the Stirling number of 2nd kind,

•
(
n
k

)
(r!)n−kS(n, k) H-classes, each containing k!(r!)k elements, and,

•
(
n
k

)
(r!)n−kkn−k H-classes contain an idempotent and, thus, are groups.

Proof. This follows from simple counting arguments, where for the last part this is also

equal to the number of idempotents of rank k · r.

Proposition 4.3.12. Let Dk be the D-class with elements of rank k · r, for 1 ≤ k < n.

Then, the subsemigroup 〈Dk〉 has the following structure

〈Dk〉 = Dk ]Dk−1 ]Dk−2 ] · · · ]D1.

Proof. This can be immediately seen from the action of Sing(Γ) on the graph.

As D1 is the bottom D-class, this is the minimal ideal of the semigroup and thus it is

simple and completely regular.
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Proposition 4.3.13. Let H be an H-class containing an idempotent in the D-class Dk,

for some k = 1, ..., n. Then H has the structure

H ∼= Sr o Sk,

where the action of Sr o Sk is the imprimitive wreath product action.

Proof. Since kernel and image are determined by the L and R-class, the elements in H

can merely permute the blocks Kr within the image and permute the elements within Kr

itself.

Corollary 4.3.14. The H-classes in D1 are isomorphic to the symmetric group Sr.

A final result considers the regularity of both graphs.

Proposition 4.3.15. The endomorphism monoids of U(n, r) and T (n, r) are regular, for

all n and r.

Proof. It is left to verify that Sing(T (n, r)) is regular. However, this follows from McAl-

ister’s result [66, Thm. 3.10].

The Cocktail Party Graph and the Ladder Graph

The graphs U(n, r) and T (n, r) have other popular names for r = 2; U(n, 2) is also

called the ladder graph LD(n) (or ladder rung graph), whereas T (n, 2) is the cocktail

party graph CP (n). These two graphs appear on various occasions, and in particularly

CP (n) constitutes one of the three families of strongly regular graphs with minimal

eigenvalue −2.

Here, we focus on CP (n) as LD(n) was implicitly covered in the previous section.

Lemma 4.3.16. Let Γ be CP (n) and let End(Γ) be its endomorphism monoid. Then

Lemma 4.3.9 is valid.
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k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
n =1 1 2

2 1 4 4
3 1 6 12 8
4 1 8 24 32 16
5 1 10 40 80 80 32
6 1 12 60 160 240 192 64
7 1 14 84 280 560 672 448
8 1 16 112 448 1120 1792 1792

Table 4.2: #L-classes in Dk of the graph CP (n) for r = 2.

Proof. Because we have r = 2 that is because we consider CP (n), the proof is exactly

the same.

Example 4.3.17. The last point of Lemma 4.3.9 is not true for r > 2, in general. For

instance it is not true for T (3, 3) because the two transformations [1, 1, 1, 4, 5, 6, 7, 8, 9]

and [1, 1, 3, 4, 4, 6, 7, 8, 9] do not lie in the same D-class.

Corollary 4.3.18. Two transformations a and b are in the same D-class of End(Γ) if and

only if they have the same rank.

An additional motivation for considering the endomorphisms of CP (n) is their con-

nection to interesting number sequences. For instance, there is a correspondence between

the number of L-classes in a D-class and the numbers Pn−k which are defined below. Ta-

ble 4.2 lists the number of L-classes in Dk, and for each k the corresponding column

gives a subsequence Pn−k which is interesting by itself. For further reference confer the

OEIS library [70].

Definition 4.3.19. If X1, ..., Xn is a partition of a 2n-set X into 2-blocks, then let Pn−k

denote the number of k-subsets of X containing none of Xi, for i = 1, ..., n.

The relation between the sequence Pn−k and the endomorphisms should be clear from

the definition.

Lemma 4.3.20. Let Dk be the D-class with elements of rank k. Then, Dk has
(

n
2n−k

)
=(

n
k−n

)
R-classes and Pn−k L-classes.
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Endomorphisms of Strongly Regular Graphs with

Minimum Eigenvalue -2

In the previous sections we described the endomorphism monoids of the infinite families

of graphs covered by Seidel’s theorem (Theorem 2.3.10) on the strongly regular graphs

with minimal eigenvalue −2. Moreover, by a straightforward computation we checked

that the remaining 7 graphs from this theorem do not admit singular endomorphisms.

Hence, we obtain the following result.

Corollary 4.4.1. 1. The square lattice graph L2(n), for n ≥ 3, has uniform sin-

gular endomorphisms of rank n and the number of singular endomorphisms is

2n ·# of Latin squares of order n.

2. The triangular graph T (n), for n ≥ 5, has no singular endomorphisms for odd

n. But, for even n the singular endomorphisms are uniform of rank n − 1 and the

number of singular endomorphisms is n! · (# of 1-factorisations of Kn).

3. The cocktail party graph CP (n), for n ≥ 2, has singular endomorphisms of ranks

n, n + 1, n + 2, ..., 2n − 1 and those are the only possible ranks. Moreover, the

number of singular endomorphisms is (2n − 1) · 2n · n!.

4. The remaining 7 graphs have no singular endomorphisms, thus they are cores.

Various Grid Graphs and their Endomorphisms

Orthogonal Array Graphs

In this section, we summarise the newly established connections and results on orthogo-

nal array graphs and their singular endomorphisms.
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Definition 4.5.1. Let OA(k, n) be an orthogonal array. Then, Lk(n) denotes the orthog-

onal array graph whose vertices are the n2 columns, and two vertices are adjacent if the

corresponding columns have a common entry.

Before we move to singular endomorphisms of this graph, we need to define exten-

sions of orthogonal arrays. An orthogonal array OA(k, n) is extendable if we can create

an orthogonal array OA(k + 1, n) by adding an additional row. An extension of an or-

thogonal array is a row (or in a wider sense anything which can be converted into such a

row, for instance a Latin square).

Example 4.5.2. In Figure 2.4 we see an extension of an OA(2, 3) to OA(3, 3) by the

Latin square.

The orthogonal array graph Lk(n) is a strongly regular graph, and its parameters are

(n2, (n − 1)k, n − 2 + (k − 1)(k − 2), k(k − 1)) [38, Thm. 10.4.2]; moreover, for

k = 2 this is the square lattice graph L2(n) (hence its notation). By Theorem 3.4.6 such

a graph is a pseudo-core. (Note that this was first established by Godsil and Royle [37],

for n > (k − 1)2.) Furthermore, because it is known that Lk(n) admits an n-colouring if

and only if the corresponding orthogonal array OA(k, n) is extendable to an orthogonal

array OA(k + 1, n) [38, Thm. 10.4.5], the following theorem holds.

Theorem 4.5.3. The following are equivalent:

1. Lk(n) admits a singular endomorphism φ,

2. φ is a colouring of Lk(n),

3. φ is an extension of OA(k, n).

Proof. We have already mentioned that the second and third point are equivalent. The

first and second point are equivalent by Theorem 3.4.6.
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Counting Endomorphisms

The fact that every singular endomorphism is a colouring simplifies the counting of en-

domorphisms. If singular endomorphisms exist, then their number is the product of the

number of section-regular partitions (which would correspond to kernel and image of

the endomorphisms) and n!. However, the situation is more accessible if OA(k, n) is

extendable to OA(n+ 1, n).

So, let L1, ..., Lk be a set of mutually orthogonal Latin squares of order n which can

be uniquely completed to n− 1 mutually orthogonal Latin squares. Then, the following

result holds.

Lemma 4.5.4. Let Lk(n) be the orthogonal array graph corresponding to the k Latin

squares just mentioned. Then, the number of singular endomorphisms (of rank n) of

Lk(n) is

#of maximal cliques · (n− 1− k) · n!.

Proof. A singular endomorphism (of rank n) has image a clique; hence, we obtain the

first and last factors. The factor n − 1 − k comes from the fact that we have that many

Latin squares missing to make a complete set, and each of these Latin squares provides a

choice on where to map the vertices admitting the same entries.

Corollary 4.5.5. 1. The number of singular endomorphisms of Ln−1(n) is 2(n!)2.

2. The number of singular endomorphism of Ln−2(n) is #of maximal cliques · 3n!.

Grid graphs

Cartesian products of odd cycles form another set of interesting graphs which also admit

a grid-like structure. In particular, we are interested in the case of two factors.

Definition 4.5.6. The square grid graph SG(n) is the Cartesian product of two cycles

Cn, namely, Cn � Cn.
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The square grid graph SG(n) is a subgraph of the square lattice graph (see Figure

4.4) and of the more general orthogonal array graphs Lk(n).

Figure 4.4: The square grid graph SG(n) with n = 5.

Lemma 4.5.7. The square grid graph SG(n), for n odd, admits 8n2 singular transforma-

tions. Its endomorphism monoid has relative rank 1 and its singular generator is given

by the Latin square L, where each row is shifted cyclically.

L =



1 2 3 · · · n

n 1 2 · · · n− 1

n− 1 n 1 · · · n− 2

...
...

... . . . ...

2 3 4 · · · 1


Proof. First, we note that a singular endomorphism does not collapse two vertices in

the same row or column (as for L2(n)). Secondly, if two vertices are collapsed, then

they need to be either on the main diagonal or the anti-diagonal, since otherwise their

neighbours would cause problems. Thirdly, if two vertices are collapsed, then either the

rows or the columns they are contained in are collapsed (like the maximal cliques in

L2(n)). Consequently, we have 2n rows/columns (which correspond to the image of an

endomorphism), 2 kernel types (diagonal or anti-diagonal), and 2n ways to identify a

kernel class with a point in the image.

The automorphism group of this graph is the wreath productD2n oS2 with the product

action, which also explains the number of singular endomorphisms through symmetry.



92
Chapter 4. Examples of Non-Synchronizing Semigroups from Graph

Endomorphisms

This graph unfolds the very interesting situation we are in. On the one hand this graph

is a subgraph of L2(n) and also End(SG(n)) ≤ End(L2(n)). But, on the other hand we

have L2(n) ≤ L3(n), whereas End(L2(n)) ≥ End(L3(n)). Furthermore, the motivation

to introduce this graph comes from the fact that SG(n) is a not a hull, and it will pose the

main example of non-hulls in our investigations in Chapter 8.

Although, we expect similar interesting things to happen with the endomorphisms

for the case where we have more that two odd cycles in the Cartesian product, it is of no

interest for this research.

Computations: Small Primitive Graphs

In this section we briefly describe the results of searching for endomorphisms in small

primitive graphs with complete core, namely those on at most 50 vertices. From this

search, for instance, we can confirm that the linegraph of the Tutte-Coxeter graph is

the smallest example of a primitive graph with complete core admitting a non-uniform

endomorphism, and thus posing a counter-example to Araújo’s conjecture (Conjecture

3.4.3). The results are summarised in Appendix F.

The primitive groups of small degree are easily available in GAP [36]. For example,

PrimitiveGroup(45,1) is PGL(2, 9). For the sizes we are considering (up to 50

vertices), it is fairly simple to determine the chromatic and clique numbers of the graphs

and thus construct all possible graphs whose endomorphism monoids might contain non-

uniform endomorphisms.

The difficult part in this process is not the construction of the graphs, nor the calcu-

lation of their chromatic or clique numbers, but rather the computation of their endomor-

phisms. Apart from some obvious use of symmetry (for example, requiring that a vertex

be fixed), we know no substantially better method than to perform what is essentially

a naive back-track search. This finds an endomorphism by assigning to each vertex in

turn a candidate image, determines the consequences of that choice (in terms of reducing
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the possible choices for the images of other vertices), and then turns to the next vertex,

until either a full endomorphism is found, or there are unmapped vertices for which no

possible choice of image respects the property that edges are mapped to edges.

For this reason we were able to determine all endomorphism monoid for the graphs

with strictly less than 45 vertices; however, the correct sizes of the endomorphism monoids

are still unknown for a few graphs on 45 and 49 vertices.
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Chapter 5

Endomorphisms of Hamming Graphs

and Related Graphs

This chapter analyses and determines singular endomorphisms of graphs coming from

the Hamming association scheme and various related graphs. The graphs arising from

the Hamming scheme are of the following form: Let m ≥ 2, n ≥ 3 and let S be a proper

subset of {1, ...,m}, and consider the graph Γ with vertex set Zmn where two vertices are

adjacent if their Hamming distance is in S. The automorphism group of this graph is the

wreath product Sn o Sm with the primitive product action and permutation rank m + 1 .

However, the graphs related to this construction are graphs over hypercuboids and other

graphs arising from Cartesian and categorical products.

Although in the literature it is common to speak of the unique Hamming graph (or

rather a family of graphs), in this thesis all graphs coming from the Hamming association

scheme are called Hamming graphs and are denoted by H(m,n;S). If S consists of

a single element k, then we write H(m,n; k), and if k = 1 we write simply H(m,n)

(which is the Hamming graph). Note that the complement graph H(m,n;S) is the graph

H(m,n; {1, ...,m} \ S).

The aim of this chapter is to investigate the singular endomorphisms of these graphs

for various sets S. The first two sections establish that, if S is one of {1}, {2, ...,m},
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{1, ...,m − 1} or {m}, then all singular endomorphism are uniform. (Note it is known

that singular endomorphisms exist). Subsequently, we count the endomorphisms. Then

in Section 5.5, we generalise the results on the endomorphisms of the Hamming graph

to H(m,n;S), for S = {1, ..., k} for some k, and to the cuboidal Hamming graph in

Section 5.6.

The Hamming Graph and Its Complement

In some literature, the Hamming graph is the distance-transitive graph which is given by

the Cartesian product of m copies of the complete graph Kn:

Kn � · · ·�Kn.

However, it is usually defined as the graph H(m,n;S), for S = {1}, which is a more

common description, and thus, we write H(m,n). Many results are known about the

Hamming graph and its simple structure has been inspiring mathematicians for a long

time; however, a description of its endomorphisms is missing.

In [37], the usual approach of finding endomorphisms was to determine the maximal

cliques, check whether the necessary condition (ω ·α = n) from Lemma 3.3.6 is satisfied,

and then describe the action of an endomorphism on the cliques. For H(m,n) it is

straightforward to see that the maximal cliques are lines. So in this section, it is shown

that the singular endomorphisms of the Hamming graphH(m,n) are uniform of rank nk,

where 1 ≤ k ≤ m−1, and that its complement graph is a pseudo-core. In a later section,

the singular endomorphisms are described in more detail.

Before moving on, it is necessary to introduce new notation. From school everyone

knows that one can draw a cube by drawing its layers iteratively. That is, a cube is a

collection of two dimensional layers, which are squares. This concept applies to higher

dimensions and is described here.

A hypercube of dimension m is given by the points (x1, x2, ..., xm) ∈ Zmn which can
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be split into layers; in particular, it is possible to divide it into n layers with respect to,

say, the first coordinate x1 by denoting the ith layer by the set

li = {(i, x2, ..., xm) : x2, ..., xm ∈ Zn}.

Each layer is of dimension m − 1 and can be subdivided into layers of dimension

m − 2,m − 3 and so on. A k-layer denotes a k-dimensional layer, that is a coset of

nk points where m−k coordinates are fixed. Thus, a layer system of k-layers (or k-layer

system is the set of all nm−k disjoint k-layers which add up to Zmn .

Example 5.1.1. 1. A square Z2
3 is a collection of 3 rows. Those rows form a 1-layer

system. 
(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (3, 3)

(3, 1) (3, 2) (3, 3)


2. A cube Z3

3 can regarded as the 2-layer system

li = {(x1, x2, i) : x1, x2 ∈ Zn}, for i = 1, 2, 3.

or as the 1-layer system

lij = {(x1, i, j) : x1 ∈ Zn}, for i, j = 1, 2, 3.

In H(m,n), the layer systems play an important role and so does the number of k-

dimensional layers. Let hk(m,n) denote this number. The square lattice graph L2(n)

is the Hamming graph H(2, n); so recall from Section 4.1.1, for this graph the 1-layers

are the maximal cliques and their number is 2n. Also, there are certainly mn layers

of dimension m − 1 in H(m,n). So this number is simply given by considering the

coordinates. To obtain a k-layer, we need to choose k of the m coordinates, and for

each such choice the remaining m− k coordinates which are fixed, but freely chosen. It
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follows:

hk(m,n) =

(
m

k

)
nm−k.

Applying this formula to the number of maximal cliques in H(m,n), which in fact

are 1-layers, reveals that there are h1(m,n) = mnm−1 of them. Also, for (m− 1)-layers

we have hm−1(m,n) = mn.

Endomorphisms of the Hamming Graph

In dimension m = 2 the Hamming graph H(2, n) is the square lattice graph L2(n),

and in Chapter 4 it was pointed out that its singular endomorphisms are Latin squares.

Similarly, in this chapter it is shown that the singular endomorphisms of H(m,n) are

Latin hypercubes.

First, note that in [17] Cameron has already established that H(m,n) admits singular

endomorphisms of ranks nk, for 1 ≤ k ≤ m− 1. Supporting this result, here it is proved

that these are the only ranks which occur. Moreover, the result in this section answers the

question on whether or not the Hamming graph admits any non-uniform endomorphisms.

The answer is - No!

Theorem 5.1.2. A singular endomorphism of H(m,n) is uniform of rank nk, for some

1 ≤ k ≤ m− 1, and its image is a layer of dimension k.

This theorem is a consequence of the following lemma.

Lemma 5.1.3. Let φ be a singular endomorphism of H(m,n), and let l be a k-layer.

Then lφ is a layer of dimension d, where 1 ≤ d ≤ k.

Proof. We will use induction onm and k. LetA(m, k) be the hypothesis. The hypothesis

is satisfied for A(2, 1), A(2, 2) (see L2(n) in Theorem 4.1.1) and A(m, 1) (an endomor-

phism maps maximal cliques to maximal cliques). We assume that the hypothesis holds

for A(m, k) and show it holds for A(m, k + 1).
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l1 l2 l1φ l2φ

c1

c2

φ
c1φ

c2φ

Figure 5.1: Impossible configuration: c1φ is not a clique anymore.

Let l be a (k + 1)-layer. Then, we can split l into parallel k-layers l1, ..., ln. By

induction liφ is a k-layer or a layer of smaller dimension, for all i. Now, if the dimensions

of, say, l1φ and l2φ would differ, then there would be two maximal cliques (lines) c1 and

c2 connecting l1 and l2 such that at least one of c1φ and c2φ would not be a line in the

image of φ (cf. Figure 5.1). A contradiction. Therefore, all liφ have the same dimension,

say d.

Using the same argument, we see that each li is collapsed to d-layer such that the

union of all the d-layers liφ forms a (d+ 1)-layer. Thus, the image lφ is a (d+ 1)-layer.

Note each li is collapsed to liφ uniformly; otherwise, by essentially the same argument

we would be able to find a maximal clique which is not mapped to a maximal clique.

Proof of Thm. 5.1.2. Let φ be a singular endomorphism and let l be the whole m-layer.

By the previous lemma l is a k-layer where 1 ≤ k < m.

Corollary 5.1.4. For any singular endomorphism φ there is a maximal number k, such

that φ maps k-dimensional layers to 1-dimensional layers.

The following should be clear.

Lemma 5.1.5. If a singular endomorphism φ ofH(m,n) collapses a k-dimensional layer

l to a line, then the pre-image lφ−1 is a Latin hypercube.
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The Complement of the Hamming Graph

The complement of H(m,n) is the graph H(m,n;S), where S = {2, ...,m}, and two

vertices are adjacent if their Hamming distance is not 1. Form = 2 this is the complement

of the square lattice graph which has been covered in the previous chapter; so here, we

focus on higher dimensions. Recall from Section 4.1.1 that a maximal clique in H(2, n)

is of the form {(ig, i) : i = 1, ..., n} for a permutation g ∈ Sn, and when considering

these as 1-dimensional Latin rows, then the next result says that the maximal cliques of

H(m,n) form Latin hypercubes.

Theorem 5.1.6. The maximal cliques in H(m,n) are in 1−1 correspondence with Latin

hypercubes of dimension m− 1 and order n (and class 1).

Proof. First, we note that a Latin hypercube is a maximal clique of size nm−1. Hence,

the clique number is nm−1. We use induction on m. The case m = 2 is clear, so let C be

a maximal clique in H(m,n), for m > 2. Pick a layer system li of (m− 1)-dimensional

layers, for i = 1, ..., n. Each layer is a subgraph isomorphic to H(m− 1, n), so it has

clique number nm−2. Moreover, each layer contains exactly nm−2 vertices of C, since

otherwise, if there would be one layer containing at least nm−2 + 1 vertices of C, it

would have a maximal clique of size nm−2 + 1, contradicting the induction hypothesis.

Therefore, the intersection C ∩ li is a maximal clique for H(m− 1, n) and has nm−2

vertices. Intersecting C with all possible layers of dimension m − 1, determines the

coordinates of the vertices of C and it turns out that C is a Latin hypercube of dimension

m− 1.

Theorem 5.1.7. The graph H(m,n) is a pseudo-core, i.e., all singular endomorphisms

have rank nm−1 and are uniform.

Proof. To prove this theorem, we make use of the same method as for m = 2 in Chapter

4. Let c1 and c2 be two distinct maximal cliques which are identified by φ, say, c1φ =
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c2φ = c. Since c1 6= c2, there are vertices a ∈ c1 and b ∈ c2 with aφ = bφ and a 6= b;

thus, a and b are on the same 1-dimensional layer. Let x be a vertex on a 1-dimensional

layer (line) through a which does not contain b. Any vertex not in c1 is non-adjacent

to exactly m vertices of c1 and adjacent to the rest of them; so x is non-adjacent to m

vertices in c1 including the vertex a. Because x is adjacent to b, the vertex xφ is adjacent

to aφ = bφ; therefore, xφ is adjacent to m− 1 vertices of c1φ = c, and thus xφ is in c.

Since x is chosen arbitrarily on the 1-dimensional layer, all the 1-dimensional layers

through a not containing b are mapped to c. Switching the roles of a and b with one of

the new vertices mapped to c and iterating this argument reveals that all the vertices are

mapped to c.

The Categorical Product of Complete Graphs and its Com-

plement

The Categorical Product of Complete Graphs H(m,n;m)

In this section another well-known graph product is considered, namely the categorical

product of complete graphs. In particular, we are concerned with the product of m copies

of the complete graph Kn:

Kn × · · · ×Kn.

Using the notation from above, this graph is H(m,n;m).

Again, we establish that singular endomorphisms are uniform and of rank nk, for

1 ≤ k ≤ m− 1. But before, we need some auxiliary lemmata.

Lemma 5.2.1. For m ≥ 2 and n ≥ 3 the following hold:

1. The clique number and the chromatic number of H(m,n;m) are equal to n.
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2. The maximal cliques are given by

{(ig1, ig2, ..., igm−1, i) : i = 1, .., n}, for g1, ..., gm−1 ∈ Sn.

3. The number of maximal cliques in H(m,n;m) is (n!)m−1.

4. The automorphism group of H(m,n;m) acts transitively on the maximal cliques.

Proof. Note that the diagonal consisting of the vertices (i, ..., i), for 1 ≤ i ≤ n, is a

clique of size n. Also, any layer in a layer system of (m− 1)-layers contains a diagonal

vertex. Thus, a map mapping an (m − 1)-layer to the respective vertex is a singular

endomorphism of rank n. Hence, it is a colouring.

In H(m,n;m) two vertices are adjacent if none of their coordinates are equal. So,

take g1, ..., gm−1 ∈ Sn, then the set

{(ig1, ig2, ..., igm−1, i) : i = 1, .., n}

forms a maximal clique. In fact, every combination of elements of Sn provides a new

clique and all maximal cliques are given this way. Their number is (n!)m−1. The last

result is obvious.

Lemma 5.2.2. Suppose φ is a singular endomorphism of H(m,n;m). Let x1 and x2 be

two distinct vertices with x1φ = x2φ and l the minimal layer containing both vertices.

Then, l is mapped uniformly to x1φ.

Proof. Since Aut(H(m,n;m)) is transitive on the maximal cliques, we may assume that

x1 = (1, ..., 1, 1) and that (k, ..., k)φ = (k, ..., k), for all k = 1, ..., n. We use induction

on the Hamming distance d between x1 and x2.

Suppose d = 1, then we can assume that x2 = (1, ..., 1, 2). The vertices yk =

(k, ..., k, 1) are adjacent to x2 and adjacent to (i, ..., i), for i /∈ {1, k}; therefore, yk is

mapped to (k, ..., k). By the same argument it follows that the vertices (1, ..., 1, i) are

mapped to x1φ, for all 1 ≤ i ≤ n.
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Now, assume d > 1 and that the hypothesis holds for smaller distances. Again, we

may assume that x2 = (1, ..., 1, a1, ..., ad), where none of the ai is 1. We demonstrate that

it is sufficient to set x2 = (1, ..., 1, 2, ..., 2). As above, the vertices yk = (k, ..., k︸ ︷︷ ︸
m−d

, 1, ..., 1)

are adjacent to x2 and, thus, they are mapped to (k, ..., k), for all k 6= 1. Hence, the vertex

x′2 = (1, ..., 1︸ ︷︷ ︸
m−d

, 2, ..., 2) is mapped to x1φ. So, set x2 = x′2.

Next, since the vertex yk, is mapped to (k, ..., k), the vertices (a, ..., a︸ ︷︷ ︸
m−d

, b, ..., b) are

mapped to (a, ..., a), for all a, b ∈ Zn. Similarly, the vertices

(a, ..., a︸ ︷︷ ︸
m−d

, b, ..., b, b, c), (a, ..., a, b, ..., b, c, b), ..., (a, ..., a, c, b, ..., b, b)

and

(a, ..., a, b1, ..., bd︸ ︷︷ ︸
none of them a

)

are mapped to (a, ..., a), for all a, b, c ∈ Zn. By the induction hypothesis, the layers of

dimension≤ d− 1 inside l are mapped to x1φ, but then it follows that all vertices in l are

mapped to x1φ. Uniformity is clear from this process.

Theorem 5.2.3. The singular endomorphisms of H(m,n;m) are uniform of ranks nk,

for 1 ≤ k ≤ m− 1.

Proof. Let φ be a singular endomorphism with x1φ = x2φ, for some distinct vertices

x1 and x2. Thus, pick x1 and x2 with the maximal Hamming distance d among all the

vertices identified by φ. Without loss of generality, x1 = (1, ..., 1), x2 = (1, ..., 1 2, ..., 2︸ ︷︷ ︸
d

)

and (i, ..., i)φ = (i, ..., i), for all 1 ≤ i ≤ n.

By Lemma 5.2.2, the layer l = {(1, ..., 1, a1, ..., ad) : a1, ..., ad ∈ Zn} is mapped

to x1. Also, by the arguments used in Lemma 5.2.2 the layers l + λ(1, ..., 1) which are

given by the set {(1, ..., 1, a1, ..., ad) + λ(1, ..., 1) : a1, ..., ad ∈ Zn} are mapped to the

vertex (λ, ..., λ), for 1 ≤ λ ≤ n. So, pick another layer l̃ = {(x1, ..., xm−d, a1, ..., ad) :

a1, ..., ad ∈ Zn} for some x1, ..., xm−d ∈ Zn. We confirm that there is a vertex x with
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l̃φ = x. In other words, we show that

(x1, ..., xm−d, 1, ..., 1)φ = (x1, ..., xm−d, 2, ..., 2)φ.

Pick two maximal cliques c1 and c2 as follows. Let c1 = {y1, y2, y3, ..., yn} be a

maximal clique, where yi = (j, ..., j), for j ∈ Zn and i ≥ 3, and y1 is an arbitrary

vertex not mapped to (j, ..., j), for any j. It follows, that this determines the vertex

y2. On the other hand, let c2 = {z1, z2, z3, ..., zn} be a maximal clique with z1 = y1 and

z2 = y2+(0, ..., 0︸ ︷︷ ︸
m−d

, 1, ..., 1). Given this, we are able to choose the missing zi such that zi is

mapped to (j, ..., j), where j is determined by yi, for i ≥ 3. By construction, c1 and c2 are

maximal cliques, and since ziφ = yiφ, for i = 1, 3, 4, ..., n, it holds z2φ = y2φ. However,

the distance between y2 and z2 is d and, thus, by Lemma 5.2.2 the layer containing both

vertices is mapped to a single vertex. Using different sets c1 and c2, we can demonstrate

that all choices of l̃ are mapped to vertices.

The Complement Graph H(m,n;m)

Lemma 5.2.4. Let m ≥ 2 and n ≥ 3.

1. The maximal cliques are given by the (m− 1)-dimensional layers.

2. The number of maximal cliques in H(m,n;m) is hm−1(m,n) = mn (cf. Section

5.1).

3. The automorphism group of H(m,n;m) acts transitively on the maximal cliques.

Theorem 5.2.5. The graph H(m,n;m) is a pseudo-core whose endomorphisms are uni-

form.

Proof. Let φ be a singular endomorphism and assume φ maps the two maximal cliques

c1 and c2 to c. Since the automorphism group is transitive on the maximal cliques, we

may assume that c = c1.
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We know that the maximal cliques are (m−1)-dimensional layers, so suppose c1 and

c2 are parallel layers (with respect to the same coordinate). Pick a vertex x not in c1 ∪ c2

and let l be an (m− 1)-dimensional layer through x not parallel to c1. Then,

|c1 ∩ l|+ |c2 ∩ l| = nm−2 + nm−2.

All these 2nm−2 vertices are pairwise adjacent, i.e. they form a clique. Thus, any two

vertices in this clique are not in the same kernel class of φ. Also, they cannot be mapped

to a single (m − 2)-dimensional sublayer l̃ of c, since there are too few vertices in l̃.

Hence, pick m of the vertices which are in no (m− 2)-dimensional layer. The image xφ

has to be adjacent to all of the vertices, but the only vertices which are adjacent to all of

the m vertices are the vertices in c. Therefore, xφ is mapped to c. Because x is arbitrarily

chosen, the whole graph is mapped to the maximal clique c.

On the other hand, suppose c1 and c2 are not parallel. Again, pick x not in either of

the cliques. Then, there is an (m − 1)-dimensional layer l through x intersecting with

both c1 and c2, and

|c1 ∩ l|+ |c2 ∩ l| − |c1 ∩ c2 ∩ l| = nm−2 + nm−2 − nm−3 > nm−2.

Again, these common vertices are pairwise adjacent and thus cannot be mapped to an

(m − 2)-dimensional layer. As in the last case, we can pick m vertices in the image

which are adjacent to xφ and which have c as the unique vertices adjacent to all of the m

vertices. Again, it follows the whole graph is mapped to a single maximal clique c.

Counting Endomorphisms of Hamming Graphs

After proving the uniformity of the singular endomorphism in the previous sections, we

are now going to count them. In detail, we derive formulae for the number of (singular)
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endomorphisms of the graphsH(m,n), H(m,n) andH(m,n;m). Unfortunately, further

research is necessary to find the number of endomorphisms of H(m,n;m).

Since H(m,n) and H(m,n;m) are pseudo-cores, their singular endomorphisms are

colourings, which means that the formulae are straightforward. However, the Hamming

graph H(m,n) has endomorphisms of various ranks, namely, ranks nk, for every 1 ≤

k ≤ m − 1. Recall from Lemma 5.1.5, that the singular endomorphisms are, in fact,

Latin hypercubes; thus, in the next result we provide a formula for the endomorphisms

of rank nk, for each k, which depends on the number of Latin hypercubes.

Theorem 5.3.1. The number of singular endomorphisms of H(m,n) of rank nk, for

1 ≤ k ≤ m− 1, is given by the formula

(
m

k

)
· nm−k · k! ·

 ∑
P partition of {1,...,m}

with k parts

∏
X∈P

# LHC(|X|, n)

 ,

where the product runs over all parts in P ; |X| is the size of the part X ∈ P and

# LHC(d, n) is the number of Latin hypercubes of dimension d of order n (and class 1).

Proof. Let φ be a singular endomorphism. Since the image of φ is a k-dimensional layer

(see Theorem 5.1.2), we have hk(m,n) =
(
m
k

)
nm−k choices for such a layer. We choose

k of the m coordinates, say, x1, ..., xk which will determine the vertices of the image.

Now, φ can be obviously described by a function onto the chosen k coordinates:

φ : (x1, ..., xm) 7→ ((x1, ..., xm)φ1, ..., (x1, ..., xm)φk, ak+1, ..., am),

for some ak+1, ..., am ∈ Zn. We show that each φi corresponds to a Latin hypercube.

Let x be a vertex in the image of φ and e1, ..., em the standard basis of Zmn . Consider

the line l := x + 〈ei〉, for some 1 ≤ i ≤ k. The pre-image lφ−1 is determined by φi; in

addition, it is a Latin hypercube (by Lemma 5.1.5). Therefore, each of the functions φi

are determined by Latin hypercubes.

Next, suppose φ1 is given by a Latin hypercube of dimension d. It follows that
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(x1, ..., xm)φ1 = (xi1 , ..., xid)φ1
Wlog
= (x1, ..., xd)φ1, for ij ∈ {1, ...,m}. We assume

that there is another function, say, φ2 which depends on at least one of the coordinates

x1, ..., xd, say, x1. In other words, assume that φ1 and φ2 depend on a common coor-

dinate. Then, the line x + 〈e1〉 would be mapped to two distinct lines by φ1 and φ2,

respectively. This is a contradiction, as a map cannot do that. Therefore, the m coordi-

nates are partitioned into k parts. At last, each part has to be matched to a function φi,

for i = 1, ..., k; this provides k! choices.

We provide a small example to display how to use this formula.

Example 5.3.2. We count the singular endomorphisms of H(4, 3). At first we need to

partition the set {1, 2, 3, 4} into 1, 2 and 3 parts with respect to the different values for k.

k Partitions

k = 1 {{1, 2, 3, 4}}

k = 2 {{1}, {2, 3, 4}}, {{2}, {1, 3, 4}}, {{3}, {1, 2, 4}}, {{4}, {1, 2, 3}}

{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}

k = 3 {{1}, {2}, {3, 4}}, {{1}, {2, 3}, {4}}, {{1}, {3}, {2, 4}}

{{1, 2}, {3}, {4}}, {{1, 3}, {2}, {4}}, {{1, 4}, {2}, {3}}

The number of Latin hypercubes is given in the next table.

d # LHC(d, 3)

1 3!

2 3! · 2

3 3! · 22

4 3! · 23
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Eventually, we obtain for the different k:

k = 1 : # =

(
4

1

)
· 33 · 1! ·# LHC(4, 3)

= 5184,

k = 2 : # =

(
4

2

)
· 32 · 2! ·

(
4 ·# LHC(1, 3) ·# LHC(3, 3) + 3 ·# LHC(2, 3)2

)
= 108864,

k = 3 : # =

(
4

3

)
· 31 · 3! · 6 ·# LHC(1, 3)2 ·# LHC(2, 3)

= 186624.

Consequently, H(4, 3) admits 5184 + 108864 + 186624 = 300672 singular endomor-

phisms.

Corollary 5.3.3. The singular endomorphisms of H(m,n) correspond to Latin hyper-

cubes of class 1 and dimension less than m. In detail, we can construct a singular en-

domorphism from a Latin hypercube of class 1 and dimension less than 1, and similarly,

we can extract a Latin hypercube of class 1 and dimension less than 1 from a singular

endomorphism.

Next, we turn to the graphs H(m,n) and H(m,n;m). In order to determine the

number of singular endomorphisms, we need to define two combinatorial numbers. First,

by P1(m,n) we denote the number of partitions of the hypercube Zmn into 1-dimensional

layers. (Alternatively, this number is the number of tilings of the m-dimensional cube

with side n with n×1×· · ·×1 tiles (cf. Chapter 6)). We call it the Jenga-number, due to

the famous wooden building block game for children. This description is also equivalent

to the partition of Zmn into non-intersecting maximal cliques of H(m,n). In this regard,

the number P2(m,n) denotes the number of partitions of Zmn into maximal cliques of

H(m,n;m) (in Figure 5.2 a part is given by the entries with the same number).
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1 1 1
2 2 2
3 3 3

1 2 3
3 1 2
2 3 1

(a) (b)

Figure 5.2: A partition of Z2
3 into maximal cliques of (a) H(2, 3) and (b) H(2, 3; 2).

Example 5.3.4. Consider the points of Z3
3. We need 9 of the 1-dimensional layers and we

can arrange them in 21 different ways; therefore, the Jenga-number is 21. On the other

hand, P2 is 40, in this case.

Remark 5.3.5. For the values P1(2, n) and P1(3, n) one can easily deduce formulas. We

deduce:

P1(2, n) = 2 and P1(3, n) = 3(2n − 1).

Note the second sequence also describes the number of moves to solve the Hard Pagoda

puzzle; further comments can be found in OEIS [71]. Other sequences derived from these

numbers are, yet, unknown to the author.

Proposition 5.3.6. The number of singular endomorphisms of H(m,n) is given by

P1(m,n) ·# LHC(m− 1, n) · (nm−1)!.

Proof. Let φ be a singular endomorphism. Then there is a partition of Zmn into 1-

dimensional layers such that each part is collapsed onto a single vertex in the image

of φ. However, the image is a Latin hypercube of dimension m − 1, class 1 and order

n and consists of nm−1 points/vertices. Thus, there are nm−1! choices to match the parts

n =2 3 4 5 6
m =2 2 2 2 2 2

3 9 21 45 93 189
4 272 49,312 25,485,872

Table 5.1: P1(m,n) for small values
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n =2 3 4 5 6
m =2 3 2 24 1,344 1,128,960

3 15 40 10,123,306,543
4 255
5 65,535

Table 5.2: P2(m,n) for small values

of the partitions with the vertices of its image. Conversely, this construction provides a

singular endomorphism.

Proposition 5.3.7. The number of singular endomorphism of H(m,n;m) is given by

P2(m,n) · hm−1(m,n) · (nm−1)!,

with hm−1(m,n) = mn.

Proof. Let φ be a singular endomorphism. Then, its kernel classes form a section-regular

partition. Each part is a maximal coclique which is a maximal clique of H(m,n;m).

Moreover, the image of φ is a maximal layer and there are (nm−1)! choices to match the

parts of the partition with the vertices of the image.

Remark 5.3.8. In fact, the number P2(m,n) is the number of semi-reduced Latin hyper-

cubes of class m − 1 and order n as follows from the definition and Theorem 5.5.4, and

we are counting these Latin hypercubes in Chapter 6.

Synchronization and Graphs in Dimensions 3

This section tackles the synchronization problem for the automorphism group of the

Hamming graphs in dimension 3. In fact, the result of this section leads to Theorem

3.4.7 from Chapter 3. The automorphism group of the general Hamming graph H(m,n)

is the primitive wreath product Sn o Sm with the product action and permutation rank

m + 1. The case m = 2 has already been covered in Chapter 4, where we verified that
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the square lattice graph L2(n) and its complement are pseudo-cores. Because these are

the only (Sn o S2)-invariant graphs, it follows that Sn o S2 is almost-synchronizing. Here,

we cover m = 3.

For dimension m = 3 the automorphism group G = Sn o S3 has permutation rank 4;

therefore, 23 − 2 = 6 graphs need to be checked to confirm that this group is also almost

synchronizing. In the previous sections of this chapter we showed that all singular en-

domorphisms of H(3, n), H(3, n, {2, 3}), H(3, n, {1, 2}) and H(3, n, {3}) are uniform;

thus, it is left to check the graphs H(m,n; 2) and its complement. We check those by

testifying that the clique number of H(m,n; 2) does not divide n; the result will then

follow from Lemma 3.3.6.

Lemma 5.4.1. 1. The clique number of H(3, n; 2) is n.

2. The clique number of H(3, n; 2) is 3(n− 2).

Proof. The first claim is obvious. For the second claim, we show that we can not find

a clique bigger than 3(n − 2). The graph consists of vertices where two vertices share

an edge if their Hamming distance is 1 or 3. There are cliques of size n where all the

vertices have distance 1 and cliques of that size where the vertices have distance 3 from

each other. Are there bigger cliques? If there are bigger cliques then the clique must

contain vertices such that some vertices have distance 1 and other vertices have distance

3. Thus, there must be at least two vertices in a maximal clique c which have distance

1 from each other. Without loss, these are (1, 1, 1) and (2, 1, 1). Also, there must be

a vertex which has distance 3 from both, say, (n, n, n). Which other vertices are in

c? Well, a new vertex has either distance 1 from (1, 1, 1) or distance 3. That means,

either the new vertex is on the line given by the first two vertices of it has distance 3

from all the three vertices above. If it has distance 3, we may assume, by symmetry,

that it is the vertex (n− 1, n− 1, n− 1). Thus, each new vertex has either distance 1

or distance 3 from one of the vertices identified before. It turns out that the biggest

cliques this method produces can be mapped by an automorphism to the following clique
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{(1, 1, 1) , ..., (n− 2, 1, 1) , (n− 1, 2, n− 1) , ..., (n− 1, n− 1, n− 1) ,

(n, n, 2) , ..., (n, n, n− 2) , (n, n, n)} and have size 3(n− 2).

Theorem 5.4.2. The permutation group Sn oS3 with the primitive product action is almost

synchronizing, for any n ≥ 3.

Proof. To show that this group is almost synchronizing, we show that all singular endo-

morphisms of its orbital graphs are uniform. As mentioned above, this group has permu-

tation rank 4 which means that there are only six graphs to check. So this result follows

from Theorems 5.1.2, 5.1.7, 5.2.3, 5.2.5, the previous lemma and Lemma 3.3.6.

Hamming Graphs for other Hamming Distances

Up to now, the set S of distances was one of the following {1}, {2, ...,m}, {m} or

{1, ...,m − 1}. But what about other distances? In this section, we consider the fol-

lowing consecutive set S = {1, ..., k}.

Lemma 5.5.1. For S = {1, ..., k}, the maximal cliques of H(m,n;S) are the layers of

dimension k.

As for H(m,n), singular endomorphisms have image a layer.

Lemma 5.5.2. Let φ be a singular endomorphism of H(m,n, S), for S = {1, ..., k}, and

let l be an s-dimensional layer. Then, lφ is a layer of dimension d, where k ≤ d ≤ s.

Proof. We will use induction on m, s and k. Let A(m, k, s) be the hypothesis. From

the results on the Hamming graph the hypothesis A(m, 1, s) is always satisfied; also,

A(m, s, s) clearly holds for everym and s. So, assume the hypothesis holds forA(m, k, s)

and show it holds forA(m, k, s+1). We argue that this is true by using the same argument

as for H(m,n).

In detail, let l be an (s+ 1)-layer. Then, we can split l into parallel s-layers l1, ..., ln.

By induction liφ is an s-layer or a layer of smaller dimension, for all i. Now, if the
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dimensions of, say, l1φ and l2φ would differ, then there would be two maximal cliques

(lines, planes, ...) c1 and c2 connecting l1 and l2 such that at least one of c1φ and c2φwould

not be a maximal clique (line, plane, ...) in the image of φ; a contradiction. Therefore, all

liφ have the same dimension, say, d.

Using the same argument, we see that the li is collapsed to layers of the same dimen-

sion, and that the layers liφ form a (d + 1)-layer. Thus, the image lφ is a (d + 1)-layer.

Similarly, like in Lemma 5.1.3 we obtain uniformity.

Consequently, we obtain the same results as for H(m,n).

Corollary 5.5.3. For any singular endomorphism φ ofH(m,n, {1, ..., k}) there is a max-

imal number s, such that φ maps s-dimensional layers to k-dimensional layers.

Theorem 5.5.4. Let S = {1, ..., k}. The singular endomorphisms of H(m,n;S) are

uniform and have rank nd with image a d-layer, for some k ≤ d ≤ m− 1,

Proof. This follows easily from the previous results.

Again it is obvious that the pre-images form Latin hypercubes of class k.

Corollary 5.5.5. Let S = {1, ..., k}. The singular endomorphisms of H(m,n;S) of

minimal rank are Latin hypercubes of class k.

Before we turn to the next section, we consider the cliques of the Hamming graph

where S = {k + 1, ...,m}, as their maximal cliques form Latin hypercubes. In this

regard we would like to remind the reader of MDS-codes. Exhaustive literature can be

found this topic, but we refer to [48, p. 71].

In coding theory a q-ary code of length n∗, size M∗, and minimum distance d∗ is a

q-ary (n∗,M∗, d∗) code. This code is a maximum distance separable code (MDS-code)

if it is a q-ary (n, qk, n− k + 1) code, where 1 ≤ k ≤ n.

One big question in the theory of MDS-codes is the classification of MDS-codes

with regards to their parameters, meaning that we want to find all the parameters for
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which MDS-codes exist. This problem has been known for a long time, however a recent

contribution is given by Kokkala et. al [54].

Because the vertices of H(m,n, S) can be regarded as codewords, we obtain MDS-

codes with the following parameters.

Lemma 5.5.6. For S = {k + 1, ...,m}, the maximal cliques of H(m,n, S) of size nm−k

can be identified with n-ary (m,nm−k, k + 1) MDS-codes.

Proof. For S = {k+ 1, ...,m}, two vertices in H(m,n, S) are adjacent if they are not in

the same k-dimensional layer. Thus, if there is an MDS code with those parameters, then

it forms a maximal clique. On the other hand, if we pick a maximal clique c of this size,

then each k-dimensional layer contains a single vertex of c. Given this, the clique has the

properties of an MDS-code.

However, this result can be interpreted as a direct result on Latin hypercubes.

Corollary 5.5.7. The maximal cliques of size nm−k of H(m,n, S) are Latin hypercubes

LHC(m− k, n), where S = {k + 1, ...,m}.

Proof. By the preceding lemma, a maximal clique provides an MDS-code. As the code-

words are of length m, we merely pick m− k + 1 of them and drop the remaining ones.

This gives us a set of codewords of length m − k + 1 where the first m − k coordinates

describe the position coordinates and the last coordinate as the entry coordinate of a Latin

hypercube.

The Hamming Graph over a Hypercuboid

The aim of this section is to generalise the results on the Hamming graphs to Hamming

graphs over hypercuboids. The cuboidal Hamming graphs have vertices given by an

n1 × n2 × · · · × nm array (with possibly distinct ni) where two vertices are adjacent if

their Hamming distance is in a set S. These graphs are denoted by H(n1, n2, ..., nm;S)
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and we assume n1 ≥ n2 ≥ · · · ≥ nm. For convenience we write H(n1, n2, ..., nm) if

S = {1}.

The graph H(n1, ..., nm;S) is a natural generalisation of H(m,n;S). In particular,

for S = {1} this graph is the Cartesian product of distinct complete graphs.

H(n1, ..., nm) = Kn1 �Kn2 � · · ·�Knm , for n1 ≥ n2 ≥ · · · ≥ nm ≥ 2.

It clear that these graphs also admit singular endomorphisms. In particular, if m = 2,

then H(n1, n2) is an n1 × n2 grid which admits Latin rectangles as singular endomor-

phisms. Similarly, in higher dimensions Latin hypercuboids of class 1 represent singular

endomorphisms. So, the goal of this section is to describe the singular endomorphisms

of H(n1, ..., nm).

The Rectangle

Like the square lattice graph, the rectangular lattice graph H(n1, n2) admits only colour-

ings with n1 colours as singular endomorphisms.

Lemma 5.6.1. For n1 > n2 > 1, the singular endomorphisms of Kn1 �Kn2 are of rank

n1, and they correspond to Latin rectangles. Their number is

n2 ·#Latin rectangles.

Proof. Using the same arguments as for Kn �Kn, we deduce that every singular endo-

morphism is a colouring. Note that a bigger clique cannot be mapped to a smaller clique.

Thus, all its singular endomorphisms are colourings with n1 colours.

The General Hypercuboid

To generalise this result to higher dimensions, we need an additional condition on the

parameters, i.e. we need to assume that n1, ..., nm−1 ≥ 3 and nm ≥ 2. Otherwise, if
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4

1 2

3 4

1

3

Figure 5.3: A non-uniform singular endomorphism might map vertices 2 to 4 and fix the
others.

say nm−1 = nm = 2, then this would guarantee non-uniform endomorphisms (simply

collapse the diagonal vertices in the 2× 2 subgraph, cf. Figure 5.3).

Lemma 5.6.2. Let φ be a singular endomorphism of H(n1, ..., nm) and l a k-layer with

one of the sides of size n1. Then, lφ is a d-layer, where 1 ≤ d ≤ k. Also, φ is uniform.

Proof. First, note that a singular endomorphism cannot map bigger cliques to smaller

cliques. We will use induction on m and k. For small values the hypothesis holds:

A(2, 1), A(2, 2) and A(m, 1). We assume that A(m, k) holds and show A(m, k + 1).

Let l be a (k + 1)-subarray ni1 × · · · × nik+1
, with ni1 ≥ · · · ≥ nik+1

and ni1 = n1.

We split l into nk+1 parts l1, ..., lnk+1
each containing a side of length n1. From here the

same argument as for H(m,n) proves the result.

Corollary 5.6.3. 1. A singular endomorphism of H(n1, ..., nm) is uniform of rank

n1 ·
∏
i∈I
ni, where I is a proper subset of {n2, ..., nm}.

2. The singular endomorphisms of rank n1 are Latin hypercuboids of class 1.

Moreover, like for the cubic graphs when taking a set of consecutive distances S =

{1, ..., r} the graphs H(n1, ..., nm;S) admit singular endomorphisms corresponding to

Latin hypercubes of class r, and we will discuss these objects in the next chapter.

Lemma 5.6.4. The singular endomorphisms of H(n1, ..., nm;S), for S = {1, ..., k}, of

minimal rank n1 · · ·nk are Latin hypercuboids of class k.
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Similar Graphs: Graphs from Products

The Cartesian Product of Odd Cycles

In the last section, we considered the cuboidal Hamming graph H(n1, ..., nm) admitting

the common Hamming graph H(m,n) as a special case; these graphs are given by the

Cartesian product of complete graphs. So, in this section we consider other factors in the

Cartesian product, too. In particular, we are interested in the odd cycle C2n+1 as this is

also a core. Although this construction has very few things in common with the previous

construction, regarding clique number and chromatic number, the results turn out to be

quite similar.

Again, we start with the cubic case, that is where all the factors are the same, and then

move to distinct factors. Note we have discussed the case of two factors in Chapter 4; the

graph is called square grid graph SG(n). Recall from the first section of this chapter that

the Hamming graph H(m,n) has clique number and chromatic number equal to n. This

property suffices to guarantee the existence of singular endomorphisms. This is quite

different for the cartesian product of odd cycles. Whatever number of factors we take,

the graph

C2n+1 � · · ·� C2n+1

has clique number 2 and chromatic number strictly greater than 2. Still, there exist singu-

lar endomorphisms for these graphs. To prove this, we make use of the fact that a graph

homomorphism maps odd cycles to odd cycles.

Products with Equal Factors

In Chapter 4, Lemma 4.5.7, it was verified that the graph C2n+1 � C2n+1 admits 8n2

singular endomorphisms, which are Latin squares; hence they are uniform. Now, we

apply the same argument for the Hamming graph to the case with several factors.
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Theorem 5.7.1. Let Γ be the graph given by the Cartesian product of m odd cycles of

equal length; that is

C2n+1 � C2n+1 � · · ·� C2n+1,

for any positive integer n. Then, the singular endomorphisms of Γ have ranks nk, for

1 ≤ k ≤ m− 1, and are uniform.

Proof. Since an endomorphism maps odd cycles to odd cycles, we can simply apply the

same induction as we did for the H(m,n) in Lemma 5.1.3.

This theorem describes the structure of the singular endomorphisms of minimal rank,

too. The singular endomorphisms are Latin squares and Latin hypercubes, as for the

Cartesian product of complete graphs.

Corollary 5.7.2. 1. The singular endomorphisms ofC2n+1�C2n+1 are Latin squares.

2. The singular endomorphisms of C2n+1 � C2n+1 � · · · � C2n+1 of minimal rank

2n+ 1 are Latin hypercubes.

Products with Distinct Factors

As expected, the whole picture changes if we consider products of odd cycles of distinct

sizes. For the n1×n2 grid H(n1, n2), with n1 > n2 > 2, the n1-clique cannot be mapped

to an n2-clique, since edges would be collapsed. However, odd cycles have many fewer

edges, so this problem does not appear to be a problem anymore and, in fact, there are

non-uniform endomorphisms which do so. The following example demonstrates this.

Example 5.7.3. Consider the Cartesian product C5�C7. Then the first row (the 7-cycle)

can be mapped to the first column (the 5-cycle) as demonstrated in Figure 5.4. By using

the numbering in the left matrix we see that the right matrix is a singular endomorphism

which supports this.
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Figure 5.4: Possible configuration for C5 � C7.



1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35





1 2 9 8 15 22 29

8 9 16 15 22 29 1

15 16 23 22 29 1 8

22 23 30 29 1 8 15

29 30 2 1 8 15 22



The Cartesian Product with Mixed Factors

This section briefly considers endomorphisms of Cartesian products given by a mix of

complete graphs and odd cycles. The questions of interest are: do singular endomor-

phisms exist and are they uniform?

Lemma 5.7.4. The graph Kn � Cm, for odd m, has no non-uniform endomorphisms if

n > m.

Proof. Note complete graphs are mapped to complete graphs; thus, a situation where a

bigger factor is collapsed to a smaller one, like for Cn � Cm, cannot appear. The only

choice for Knφ is another complete graph with n vertices. For this reason, we are able

to use the same arguments as for Kn � Kn, and argue that an endomorphism must be

uniform with image a complete graph Kn.

It would be of interest to see if the only if part would hold in the previous theorem.

Now that we have restricted ourselves to the case where the complete graphs have strictly

more vertices than the odd cycles, we can approach the case with an arbitrary number of

factors.
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Theorem 5.7.5. Let Γ be the Cartesian product of complete graphs and odd cycles of the

form

Kn1 � · · ·�Knr � Cm1 � · · ·� Cms ,

where n1 ≥ · · · ≥ nr ≥ m1 = · · · = ms and m1 odd. Then, Γ admits no non-uniform

endomorphisms.

Proof. As above, we leave no choice for an odd cycle to be mapped to a smaller odd

cycle. Hence, this will guarantee that the same situation as for cuboids and for products

of equal cycles holds.

From the example with C5 � C7, it is apparent that distinct odd cycles guarantee the

existence of non-uniform singular endomorphisms, in general.

Graphs from Categorical Products

The vertices in Cartesian products are given by tuples, where tuples are adjacent if they

are as close together as possible. For the categorical products it is the other way round.

Two tuples are adjacent if they are as far apart as possible.

The categorical product of complete graphs does admit singular endomorphisms. But

the situation is different; a huge number of non-uniform ones can be found.

Example 5.7.6. We can easily verify that the following are non-uniform singular endo-

morphisms of Km ×Kn, for m > n ≥ 3. First, we see that by using this numbering the

matrix on the right determines a non-uniform singular endomorphism of K4 ×K3



1 2 3

4 5 6

7 8 9

10 11 12





1 5 9

1 5 9

1 5 9

10 11 12


.

We have mapped the top 3 × 3 square according to a repetitive square and fixed the

remaining 1 × 3 rectangle. It is straightforward to generalise this to Km ×Kn. Simply
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map any n × n subsquare according to an n × n repetitive square and fix the remaining

vertices.

Proposition 5.7.7. Let Γ be the categorical product Km × Kn with m > n. Then Γ is

not a core and it contains non-uniform endomorphisms.

Proof. The non-uniform singular endomorphisms have been constructed in the previous

example.

Corollary 5.7.8. By taking a product with at least two distinct factors, we can always

find non-uniform singular endomorphisms.

Mixing Cartesian and Categorical Products

Here, we merely mention that endomorphisms of graphs given the mix of cartesian with

categorical products were considered in the past. In [9], the authors provided examples

of non-uniform endomorphisms of the graph Γ � Γ, where Γ = Kn ×Kn. Their result

depends on the result of Colbourn & Zhu on r-orthogonal Latin squares [26] and guaran-

tee’s that such endomorphisms exist. However, to extend this existence criterion a similar

result for Latin hypercubes is necessary, and is left for further research.
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Chapter 6

The Combinatorics of Graph

Endomorphisms

In this chapter, we provide further links between synchronization theory and combina-

torics. The results from the previous chapter can obviously be interpreted as combi-

natorial objects; in particular, the graph endomorphisms have been described as Latin

hypercuboids or MDS codes. Hence, this chapter is devoted to the analysis of these

objects.

The reader should keep in mind that the results on Latin hypercuboids are closely

related to the existence of singular graph endomorphisms of the corresponding cuboidal

Hamming graphs H(n1, ..., nm;S), for S = {1, ..., r}. In particular, we will be only con-

cerned with endomorphisms of minimal rank as those correspond to Latin hypercuboids,

by Lemma 5.6.4. It is clear that the Hamming graphH(m,n) has a complete core for any

value ofm and n, and thus it always admits singular endomorphisms. However, from this

section we will see that this is not the case for H(n1, ..., nm;S) in general. By Lemma

5.6.4, singular endomorphisms of H(n1, ..., nm;S) exist if Latin hypercuboids of class r

with the corresponding parameters exist. Therefore, Section 6.1 covers the existence of

Latin hypercuboids of class r and deals with extensions of partial Latin hypercuboids of

class r. Those results have a direct consequence for the existence of singular endomor-
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phisms.

Secondly, by Lemma 3.3.6 the existence of cocliques of H(n1, ..., nm;S) of a partic-

ular size is a necessary condition for the existence of singular endomorphisms; so, we

consider cocliques and confirm that they are mixed MDS codes, as pointed out in Section

6.2. In the first half of that section, we give basic definitions of mixed codes, whereas

in the second half we highlight the equivalences between the maximal cliques (cocliques

respectively), Latin hypercuboids of class r and mixed MDS-codes.

The third section of this chapter contains new examples of non-synchronizing semi-

groups and embeds well-known examples into a different setting. In detail, we present

a construction of transformations and semigroups from sets of tilings of an object, and

verify that these semigroups are non-synchronizing. As already mentioned in Section

5.3, the singular endomorphisms of H(m,n;S) can be regarded as tilings of the finite

hypercube.

Latin Hypercuboids of Class r

This section deals with the existence of graph endomorphisms of H(n1, ..., nm;S), for

S = {1, ..., r}. By Lemma 5.6.4, the singular endomorphisms of minimal rank form

Latin hypercuboids of class r. So, the existence of such hypercuboids is necessary for

the existence of singular endomorphisms.

Latin hypercubes of class r were introduced by Kishen [53]; however, Latin hyper-

cuboids of class r did not appear in the literature, previously. Hence, in the beginning of

this section, the we define Latin hypercuboids of class r and describe their symmetries

and equivalence classes. Then, we tackle common problems concerning their existence,

their numbers, and extensions or completions of partial Latin hypercuboids. Regarding

their existence, we point out the difference between Latin hypercuboids of class 1 and

hypercuboids of class r ≥ 2 by imposing a necessary condition on the parameters. Using

this condition, we compile a table counting small Latin hypercuboids of small parameters
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and small class.

Finally, we discuss extensions of Latin hypercuboids of class r ≥ 2. The most fa-

mous results on extensions of Latin rectangles and Latin squares are Hall’s theorem and

Evans’ theorem [40, 33], and many generalizations have been found on extending Latin

hypercuboids of class 1 [27, 29, 67]. Here, we present an extension result for Latin

hypercuboids of class r > 1 by applying the methods introduced in [29].

Definition and Symmetry

The definition of Latin hypercubes of class r generalises the definition of Latin hyper-

cubes from Section 2.4, and originates from Kishen [53]; but, it can also be found in

Ethier [32].

A d-dimensional Latin hypercube of order n and class r is an n × n × · · · × n

(d times) array based on nr distinct symbols, each repeated nd−r times, such that each

occurs exactly once in each r-subarray. We write LHC(d, n, r) for such cubes.

However, the situation is more complex for Latin hypercuboids of class r. As Latin

rectangles generalise Latin squares, these hypercuboids generalise Latin hypercubes of

class r.

Definition 6.1.1. Let n1 ≥ n2 ≥ · · · ≥ nd ≥ 2 be integers. A Latin hypercuboid of

dimension d, type (n1, ..., nd), class r and order n is an n1 × n2 × · · · × nd array based

on n distinct symbols, such that the symbols in every r-dimensional subarray occur at

most once. If n =
r∏
i=1

ni, then in every r-dimensional subarray with n cells each symbol

occurs exactly once and in any other r-dimensional subarray each symbol occurs at most

once. We write LHC(n1, ..., nd, r) for a Latin hypercuboid of this order.

Remark 6.1.2. 1. Each symbol in LHC(n1, ..., nd, r) appears the same number of

times.

2. If we do not mention the order of a Latin hypercuboid, then it should be obvious

from the context (usually it is
r∏
i=1

ni).
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3. A partial Latin hypercuboid is a Latin hypercuboid in the sense above where not

every cell contains a symbol. In some cases this might mean that its order n is

strictly greater than
r∏
i=1

ni.

Example 6.1.3. The following is an example of a Latin hypercuboid of dimension 3, type

(3, 2, 2) and class 2. This cuboid has the top layer L1 and bottom layer L2.

L1 =

1 2 3

4 5 6

 , L2 =

5 6 4

2 3 1


A partial Latin hypercuboid is, for instance, the following cube M

M1 =

∗ 3

5 6

 , M2 =

6 4

3 1

 ,

with empty cell denoted by ∗.

A Latin cuboid of class r can be identified with a subset of an n1 × · · · × nd × nd+1

array A, where nd+1 = n; thus, symmetries of A can be applied to the set of Latin

hypercuboids.

The direct product Sn1 × · · · × Snd+1
of symmetric groups acts on A via its natural

action. The orbits under this action are the isotopy classes of Latin hypercuboids of this

type. In addition, if we are given a cube instead of a cuboid the symmetric group Sd+1

acts on the coordinates, as well, by (x1, ..., xd+1)φ = (xφ(1), ..., xφ(d+1)), where φ ∈ Sd+1.

However, since the ni need not to be equal, we need to adjust and restrict this action to a

subgroup, say, S̃d+1. The orbits under the action of

(
Sn1 × · · · × Snd+1

)
o S̃d+1,

are the paratopy classes.

However, a weaker symmetry break leading to more equivalence classes is given by
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semi-reduced Latin hypercuboids. As in Chapter 2, a Latin hypercuboid of dimension

d, type (n1, ..., nd), class r and order n =
r∏
i=1

ni is semi-reduced if the n entries in the

first r-subarray are naturally ordered like 1, 2, ..., n. Every Latin hypercuboid of class r

is similar to a semi-reduced one.

Existence of Latin hypercuboids

The fundamental difference between Latin hypercuboids of class 1 and Latin hyper-

cuboids of class r ≥ 2 is that a hypercuboid does not exist for every choice of parameters.

The next example confirms that Latin hypercuboids of class 1 exist for any set of param-

eters (n1, n2, ..., nd), whereas the subsequent lemma indicates that Latin hypercuboids of

class r > 1 do not exist for small parameters.

Example 6.1.4. Let n1 ≥ n2 ≥ · · · ≥ nd be positive integers and let ni be the set

{0, ..., ni − 1} ⊆ Zn1 . A Latin hypercuboid of class 1 is given by the function

n1 × n2 × · · · × nd → Zn1 , (a1, ..., ad) 7→
d∑
i=0

ai.

To check this pick a coordinate i and fix all others, that is all entries are equal except for

position i. Then, the sums are equal if and only if the entries in position i are equal.

Moving from class 1 to class r ≥ 2 the existence is not guaranteed any more (see

Appendix G for small parameters). More on this is given by the following lemma; its

proof is a generalisation of the corresponding result on Latin hypercubes of class r [32,

Lemma 6.1.1].

Lemma 6.1.5. Let LHC(n1, ..., nd, r) be a Latin hypercuboid of class r ≥ 2. Then, its

parameters satisfy
d∑
i=1

ni −
r∏
i=1

ni ≤ d− 1. (6.1)

Proof. Consider the vectors e1, ..., ed with ei = (0, ..., 1, ..., 0) where 1 is at position i

and let li = 〈ei〉 be the corresponding line. Then (0, ..., 0) be the common point of all
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d = 4 d = 5 d = 6
[2, 2, 2, 2] [2, 2, 2, 2, 2] [2, 2, 2, 2, 2, 2]

[3, 2, 2, 2, 2] [3, 2, 2, 2, 2, 2]
[3, 3, 3, 3, 2] [3, 3, 3, 2, 2, 2]
[3, 3, 3, 3, 3] [3, 3, 3, 3, 2, 2]

[3, 3, 3, 3, 3, 2]
[3, 3, 3, 3, 3, 3]
[4, 2, 2, 2, 2, 2]
[4, 3, 3, 3, 3, 2]
[4, 4, 4, 4, 4, 2]
[4, 3, 3, 3, 3, 3]
[4, 4, 4, 4, 3, 3]
[4, 4, 4, 4, 4, 3]
[4, 4, 4, 4, 4, 4]

Table 6.1: Parameters with n1 ≤ 5 and r = 2 not satisfying Inequality 6.1.

the lines, so we assign one symbol to this point. Moreover, since the cuboid is of class

r ≥ 2, any pair of distinct lines li and lj is not allowed to have another common symbol.

In sum, we have (n1 − 1) + (n2 − 1) + · · · + (nd − 1) + 1 distinct symbols assigned

the lines. However, there is a total of n1n2 · · ·nr distinct symbols used for the cuboid.

Hence, 1 +
d∑
i=1

(ni − 1) ≤
r∏
i=1

ni.

Table 6.1 contains all the parameters n1, ..., nd, for n1 ≤ 5 and d ≤ 6, not satisfying

inequality 6.1. This provides a non-existence argument for these parameters.

Corollary 6.1.6. 1. The parameters of LHC(d, n, r) satisfy d ≤ nr−1
n−1 .

2. In particular, for r = 2, then d ≤ n+ 1.

Proof. The first part follows from the previous lemma by setting ni = n, for all i.

Note that the bound for LHC(d, n, r) is not tight, in general. For instance, Ethier has

established that the parameters actually need to satisfy d ≤ (n− 1)r−1 + r (cf. [32, Thm.

6.1.2]), but our simple generalisation is good enough for our counting purposes.
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Constructing Latin Hypercuboids

Construction 1: An Elementary Construction

Next, we turn to two constructions of Latin hypercuboids of class r. The first one is well

known for the cubic case where r = 1 and d = 3 [67, 55] and for some cases where

r = 2 [74]. We demonstrate that this construction can be generalised to higher classes,

too. In particular cases it is even possible to construct Latin hypercuboids. Afterwards,

this construction is demonstrated on an example.

We present our construction in two steps. In the first step we create a Latin hypercube

of class r from a Latin square; then in the second step we construct a Latin hypercube of

dimension d+ 1 and class r from a Latin hypercube of dimension d and class r.

Lemma 6.1.7. For n ≥ 2 and d, r ≥ 1, there always exists a Latin hypercube

LHC(d+ 1, n, r).

Proof. Let L be a d dimensional n×n×· · ·×n array whose entries are the d-tuples over

the set {1, ..., n} and S an n×n Latin square. We construct the Latin hypercube LHC(d+

1, n, r) from a set of d-layers l1, ..., ln. Each row of S corresponds to a permutation φi

in the symmetric group Sn, for i = 1, ..., n. To obtain the ith d-layer in the new Latin

hypercuboid we apply φi to the entries of L via (x1, ..., xd)φi = (x1φi, ..., xdφi). Hence,

the layer li is given by Lφi and it can easily be checked that this construction works.

Corollary 6.1.8. For n ≥ 2 and r ≥ 1, there always exists a Latin hypercube

LHC(r + 1, n, r).

The previous construction is straightforward to extend. Assume S is a Latin hy-

percube LHC(r + 1, n, r). Then S can be regarded as a set of r-layers l1, ..., ln where

the r-layers correspond to permutations φi ∈ SN , where N = nr and i = 1, ..., n. If

L is a Latin hypercube LHC(d, n, r), then Lφi is the ith d-layer of a Latin hypercube
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LHC(d+ 1, n, r) provided the following condition is satisfied:

No (r + 1)-layer in L is constructed by applying the permutations φi to an r-layer.

(6.2)

Note that this condition implicitly identifies the N symbols as r-tuples over {1, ..., n},

and thus the φi correspond to permutations in Sn.

Lemma 6.1.9. Let L be a Latin hypercube LHC(d, n, r) and S a Latin hypercube

LHC(r + 1, n, r). Then, we can embed L into an Latin hypercube LHC(d + 1, n, r),

provided condition 6.2 is satisfied.

Proof. Consider the layers of S as permutations φi ∈ SN , where N = nr and i =

1, ..., r + 1. Then, the ith layer of the new Latin hypercuboid is Lφi (where φ1 is the

identity).

As can be seen from the next example this construction can be modified to create

Latin hypercuboids, too.

Example 6.1.10.

L =

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

 , S1 =

1 2 3

2 3 1

 , S2 =

1 2

2 1


The rows of S1 correspond to the permutations φ1 = 1 and φ2 = (1, 2, 3) and the rows

of S2 give us ψ1 = 1 and ψ2 = (1, 2). Then, applying ψ1 to the first coordinate of each

entry and φ1 to the second gives us the entries of layer 1 and applying ψ2 and φ2 leads to

layer 2. Thus we obtain the Latin cuboid L∗ given by the two layers

L∗,1 =

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

 , L∗,2 =

(2, 2) (2, 3) (2, 1)

(1, 2) (1, 3) (1, 1)

 ,

This cuboid is essentially the same as in Example 6.1.3
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Certainly, before applying this construction we would need to check whether the exis-

tence condition in 6.1 or Ethier’s bound d ≤ (n−1)r−1 +r is satisfied by the parameters.

If so, then repeatedly applying Lemma 6.1.9 leads to a finite chain of embeddings. In

this regard, it would be interesting to know whether or not Ethier’s bound constitutes a

sufficient condition on the existence of Latin hypercubes of class r. In other words, is his

bound strict? Unfortunately, this question is out of the scope of this research.

Construction 2: Extending Quasigroups

The second construction makes use of the notion of quasigroups. A quasigroup is a set Q

with binary operation which admits the Latin square property, i.e., for all a, b ∈ Q there

exist unique elements x, y ∈ Q such that the following equations hold:

ax = b,

ya = b.

Through the Latin square property quasigroups are equivalent to bordered Latin squares

(for more on quasigroups the reader is pointed to [76]).

A natural generalisation gives d-ary quasigroups. Such groups correspond to Latin

hypercubes of dimension d and class 1. A d-ary quasigroup is a map f : Qd → Q such

that the equation f(x1, ..., xd) = xd+1 can be uniquely solved for one of the variables if

the remaining d variables are known. In this sense, a quasigroup from above is a binary

(2-ary) quasigroup. Furthermore, an additional modification allows us to construct Latin

hypercubes of dimension d class r.

Definition 6.1.11. We call a map f : Qd → Qr a d-ary quasigroup of class r if the

equation

f(x1, ..., xd) = (xd+1, ..., xd+r)

can be uniquely solved for any r variables if the remaining d variables are known.
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A d-ary quasigroup of class r can be interpreted as a Latin hypercube of dimension

d and class r by considering the first d coordinates (x1, ..., xd) as positions and the last r

coordinates as the entries.

Obviously, such a map reminds us of linear maps and matrices. Hence, we provide

the following construction. Let Q be a finite field and f a d×r matrix over Q. Moreover,

let e1, ..., ed be the standard basis of the vector space Qd and define a k-dimensional layer

L (a k-layer) to be a subspace spanned by any choice of k of the vectors e1, ..., ed.

Proposition 6.1.12. A d × r matrix f is a d-ary quasigroup of class r (and thus a Latin

hypercube of dimension d and class r) if f is injective on every k-layer.

Example 6.1.13. LetQ be the fieldGF (3) and f be the transpose of the following matrix

1 0 1 1

0 1 1 2

 .

Then, the 2-layer L spanned by e1 and e4 is mapped to Lf (action on the right) which is

the 2-dimensional subspace spanned by the first and fourth row of f .

In a similar way it is possible to construct Latin hypercuboids instead of hypercubes.

For instance, in Example 6.1.4 we can identify the map with the 1× d matrix consisting

of 1’s.

Counting Latin Hypercuboids

Latin squares have been counted for many decades, as have Latin rectangles. Recently,

McKay and Wanless [67] determined the numbers of Latin hypercubes of class 1 for

small dimensions. However, after a thorough research, we were not able to find any

counting of Latin hypercuboids of class r and not even the numbers of 3-dimensional

Latin cuboids of class 1. Thus, in Appendix G we provide the numbers of Latin hyper-

cuboids of dimension d, type (n1, ..., nd) and class r.
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The numbers appearing in Appendix G have been generated using the constraint sat-

isfaction programme MINION developed at the University of St. Andrews. Each number

represents the number of semi-reduced hypercuboids, and we provide the formula for

the whole number of cuboids in a moment. First, using Inequality 6.1, we were able to

eliminate many small parameters indicated by 01). The minus entries indicate the case

r ≥ d, where no hypercuboids can exists. Finally, a question mark indicates that we were

not able to determine this number with the resources given.

As mentioned above, the numbers given count semi-reduced Latin hypercuboids.

When counting Latin hypercubes of dimension d, we are able to reduce the effort dra-

matically by normalising each of the d coordinate axes (cf. McKay and Wanless [67]).

However, it is not that simple for Latin hypercuboids of class 1 and even more difficult for

higher classes; but, we have still applied the most obvious symmetry break by normalis-

ing the first r-subarray, i.e. by counting semi-reduced Latin hypercuboids. The number

of Latin hypercuboids is then given by the following product:

LHC(n1, ..., nd, r) = h(n1,...,nd,r) · c,

where c =

(
r∏
i=1

ni

)
! and h(n1,...,nd,r) is the number presented in the table.

Extensions of Latin Hypercuboids

Evans’ work [33] on extensions of partial Latin squares and their embeddings is one of

the most important results in this field and it was the first of this kind. He demonstrated

that a partial Latin square can be embedded into a Latin square if some conditions on the

type are satisfied. Later, Cruse [27] gave an analogue for partial Latin hypercuboids (of

class 1) saying that every partial Latin hypercuboid can be extended to a Latin hypercube

of some big order n.

Likewise, we conjecture the corresponding result for partial Latin hypercuboids of

class r ≥ 2 and take the first step towards it by presenting extension results for such
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hypercuboids.

Conjecture 6.1.14. A Latin hypercuboid of class r ≥ 2 and type (n1, ..., nd) can be

extended to a Latin hypercube of dimension d, class r, type (n, ..., n) and order nr, for n

sufficiently large.

The Strategy

The method used constructs a way to extend Latin hypercuboids of type (n1, ..., nd) and

class r to Latin hypercuboids of type (n, ..., n, nr+1, ..., nd) and class r. This method was

adopted from Denley and Öhman [29] who applied it to Latin cuboids of dimension 3

and class 1 initially.

We start by describing the methodology before applying it to three scenarios. At each

scenario, we are generalising the results of the previous one which then leads to the final

statements of Theorem 6.1.18 and Theorem 6.1.19.

In the first scenario, we apply this method to hypercuboids of class 2 and dimension

3 where we extend it in one direction, that is extending a partial Latin cuboid of type

(k, l,m) to a Latin cuboid of type (k, l, n). In the next step, we move to the general

d-dimensional case of class 2 extending it in one direction, where after we consider ex-

tensions in two directions. Then, in the final step we generalise these results to partial

Latin hypercuboids of class r and extensions in both r − 1 and r directions, and expose

limitations to applying this method to extensions in k < r − 1 directions.

The Method

As mentioned above, this method is a generalisation of [29] and provides a sufficient

condition on the parameters of a Latin hypercuboid for extensions by using the bipartite

graph version of Hall’s marriage theorem (see Theorem 2.4.7). The following points

explain the various steps of the method:

Let L be a Latin hypercuboid of type (n1, n2, ..., nd) and class r which we would like

to extend to, say, type (n, ..., n, nr+1, ..., nd). (Without loss of generality, we identify the
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positions (or entries) using the coordinates (x1, ..., xd)).

• Pick the r-subarray A with xr+1 = · · · = xd = 1 and divide L into r-subarrays

Air+1,...,id parallel to A (or cosets w.r.t. A), for 1 ≤ ij ≤ nj and j = r + 1, ..., d.

We write A1,...,1 for A.

• To extend each subarray in r directions, we need to fill out additional entries or

complete the subarray (cf. Figure 6.1 or Figure 6.2). We complete each array

using an order, say, A1,1,1,...,1, A2,1,1,...,1 , ..., Anr+1,1,1,...,1, A1,2,1,...,1, A2,2,1,...,1 , ...,

Anr+1,2,1,...,1, ..., Anr+1,nr+2,1,...,1..., Anr+1,nr+2,nr+3,...,nd . Under certain conditions on

the type (n1, ..., nd), it is then possible to complete all subarrays by Hall’s theorem,

and thus to extend the partial Latin hypercuboid to a Latin hypercuboid.

The completion process:

• For Air+1,...,id create a complete bipartite graph Γ, where the first part consists

of vertices given by the empty entries which have to be filled by new symbols.

The second part consists of vertices corresponding to new symbols (from an ini-

tially fixed set of symbols, usually 1, ..., nk) which have not been used before in

Air+1,...,id . So, the two parts have equal size. Two vertices in this graph are adja-

cent if the symbol can be filled into the entry without causing any conflict (that is

edges highlight potential candidates).

• We can complete this subarray by checking that Hall’s theorem for complete bipar-

tite graphs can be applied, that is a perfect matching exists. To do so, we need to

verify that the minimum degree is at leastN/2, where 2N is the number of vertices

of Γ. Usually (not always) we will have

N = nkn1n2 · · ·nr−k − n1n2 · · ·nr.

• Find a lower bound for the minimum degree: A lower bound for the minimum
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degree is given by the degree of a position vertex; it is of the form

(ank − b)− cnr−1 − d,

for constants 1 ≤ k ≤ r and a, b, c (depending on n1, ..., nd) and d a polynomial of

degree less than r − 1 in n. For N = ank − b, we need to satisfy the inequality

ank − b− cnr−1 − d ≥ ank − b
2

. (6.3)

If this inequality is satisfied, then we can apply Hall’s theorem to complete a sub-

array. Moreover, this bound is independent of the choice of the subarray Air+1,...,id .

If, for instance, k = r, then the inequality is clearly satisfied for n big enough.

However, reducing r (the number of directions to extend the hypercuboid) makes it

more difficult to find valid parameters, because the negative factor−cnr−1 remains.

The Scenarios

First, we apply this tool to the three dimensional case and class 2.

Lemma 6.1.15. Let L be a Latin hypercuboid of class 2 and type (k, l,m), with k ≥ l ≥

m and let n be an integer with n ≥ l. If n satisfies the following inequality, then L can

be extended to a Latin hypercuboid of class 2 and type (k, l, n).

n(k − 2(l − 1)) ≥ 2k(l − 1) + (k + 2l)m.

Proof. Identify the entries of L with coordinates (x1, x2, x3). Let Ci be the layers given

k

m n−m

Figure 6.1: Extending Latin hypercuboids in 1 direction
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by the equation x2 = i, for 1 ≤ i ≤ l. We aim to complete the layers C1, ..., Cl in that

order. To do so, define a complete bipartite graph Γi, for i = 1, ..., l, where the first part

consists of vertices corresponding to the symbols in {1, ..., k · n} which have not been

used in the layer Ci. The second part consists of the k(n − m) vertices by which we

would like to extend the layer Ci (see Figure 6.1). Two vertices are adjacent if a symbol

can be filled into the entry without causing a conflict with the situation so far.

To confirm that Hall’s marriage theorem gives a perfect matching it suffices to show

that the minimum degree of Γi is at least 1
2
k(n−m). Pick an entry vertex with coordinates

(a1, a2, a3), then its degree is k(n−m) reduced by some entries given by 2-dimensional

subarrays through this point. We need to take a closer look, here. First consider the plane

given by the equation x3 = a3. Symbols have already been assigned to the entries with

x2 ≤ i− 1, but none of the entries with x2 > i has been assigned any symbol. Hence, we

reduce k(n −m) by k(i − 1). When accounting for the plane with x1 = a1, we remove

n(i− 1) symbols coming from the entries with x2 ≤ i− 1 (complete part), and similarly

we remove the m(l− (i+ 1)) points with x2 > i (incomplete part). Hence, the degree is

at least

k(n−m)− k(i− 1)− n(i− 1)−m(l − (i+ 1)).

Moreover, this argument is independent of the choice of the entry vertex. If we pick a

symbol vertex, we need to consider planes through the already “extended” entries in Ci,

but this time we merely remove the intersections of these planes with the extended Ci.

Thus, we get a bigger lower bound in this case. Consequently, the minimum degree of Γi

is bounded by the term above which can be bounded by k(n−m)−k(l−1)−n(l−1)−ml,

using i ≤ l. Now, the inequality

k(n−m)− k(l − 1)− n(l − 1)−ml ≥ k(n−m)

2

holds by our condition on n. Therefore, we can complete Ci, for all i = 1, ..., l.
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Now, we generalise this result to the general d-dimensional case and extend the Latin

hypercuboid in the first direction.

Lemma 6.1.16. Let L be a Latin hypercuboid of class 2 and type (n1, ..., nd). If n satis-

fies the following inequality, then L can be extended to a type (n, n2, ..., nd) Latin hyper-

cuboid of class 2.

n2(n− n1)−
d∑
j=3

(n+ n1 + n2)(nj − 1)−
∑

3≤j,k≤d
j 6=k

(nj − 1)(nk − 1) ≥ n2(n− n1)

2
.

Proof. We only show how to get the bound on the bipartite graph; the remaining steps are

the same as in the previous proof. First, we find a bound for the degree of a position vertex

x. Since the extension is in one direction, we have at most n2(n − n1) adjacent symbol

vertices. However, we need to remove all points on the planes through this position

vertex, taking the already completed layers into account. Thus we can bound deg(x)

from below by

n2(n−n1)−
d∑
j=3

n2(nj−1)−
d∑
j=3

n(nj−1)−
d∑
j=3

n1(nj−(ij+1))−
∑

3≤j,k≤d
j 6=k

(nj−1)(nk−1).

This value is independent of the choice of x. Moreover, we can ignore the degree of

a symbol vertex, since we will be able to find a bigger bound (similarly to the previous

proof). Again, when applying ij ≤ nj , we obtain another lower bound for deg(x), namely

n2(n− n1)−
d∑
j=3

(n+ n1 + n2)(nj − 1)−
∑

3≤j,k≤d
j 6=k

(nj − 1)(nk − 1).

Next, we extend the class 2 cuboids in 2 directions.
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k

m n−m

n− k

A1

A2 A3

Figure 6.2: Extending Latin hypercuboids of class 2 in 2 directions

Lemma 6.1.17. Let L be a Latin hypercuboid of class 2 and type (n1, ..., nd). If n sat-

isfies the following inequality, then L can be extended to a type (n, n, n3, ..., nd) Latin

hypercuboid of class 2.

n2 − n1n2 −
d∑
j=3

(2n+ n1)(nj − 1)−
∑

3≤j,k≤d
j 6=k

(nj − 1)(nk − 1) ≥ n2 − n1n2

2
.

Proof. We only show how to get the bound on the bipartite graph. Again, find a bound

for the degree of a position vertex x coming from the area A1 in Figure 6.2. Since we

extend in two directions, we have at most n2 − n1n2 adjacent symbol vertices. But, we

need to remove all points on the planes through this position vertex. Taking the already

completed layers into account, we can bound deg(x) from below by

n2−n1n2−
d∑
j=3

n(nj−1)−
d∑
j=3

n(nj−1)−
d∑
j=3

n1(nj − (ij + 1))︸ ︷︷ ︸
(∗)

−
∑

3≤j,k≤d
j 6=k

(nj−1)(nk−1).

Taking x from A2, we need to replace n1 by n2, and if x is from A3, then we would get

a bigger lower bound by dropping the sum (∗). Again, we can ignore the degree of a

symbol vertex, since we will be able to find a bigger bound, too. In sum, we simply need

to adjust the previous result by changing nn2 into n2 and introducing α = max(n1, n2)

(We assumed n1 ≥ n2 anyway.)

Finally, we extend these results to any class r ≥ 2, but we will not provide proofs,
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since the idea of finding the right inequalities should be clear (simply consider all r-

subarrays through a point). First, we give the corresponding result for extensions in r−1

directions.

Theorem 6.1.18. Let L be a Latin hypercuboid of class r and type (n1, ..., nd). If the

corresponding inequality of the same type as Inequality 6.3 is satisfied, then L can be

extended to a type (n, ..., n, nr, nr+1, ..., nd) Latin hypercuboid of class r.

Theorem 6.1.19. Let L be a Latin hypercuboid of class r and type (n1, ..., nd). If n is

big enough, then L can be extended to a type (n, ..., n, nr+1, ..., nd) Latin hypercuboid of

class r.

Remark 6.1.20. This method leaves the option of choosing which directions to extend.

Here, we have mainly picked the first n1, ..., nr, but a different choice might cause modi-

fications changes in the inequalities (of which the use of α = max(n1, n2) might be one).

Moreover, this method is very limited in the sense that we are almost exclusively able to

extend in either in r− 1 or r directions as mentioned previously, so unfortunately we are

still far away from proving the conjecture.

Remark 6.1.21. The results above can be easily modified to account for partial Latin

hypercuboids, that is where some positions might not contain a symbol.

Mixed MDS Codes

This section introduces mixed codes and establishes their connection to Latin hyper-

cuboids and graph endomorphisms. Unlike common codes which are given over a fixed

alphabet these codes are codes over hypercuboids, that is over various alphabets. First,

mixed codes are introduced as error-correcting codes, then the Singleton, Hamming and

Plotkin bounds are generalised, and mixed MDS codes are defined. This section culmi-

nates in the correspondence between mixed MDS codes and Latin hypercuboids of class

r (which is extending the correspondence between MDS codes and Latin hypercubes of
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class r to hypercuboids [32]). There is little known about mixed codes and the reader

might refer to [14] and the references therein.

Definition of Mixed Codes

Definition 6.2.1. 1. An alphabet A is a finite set of symbols. If |A| = n, then it is an

n-ary alphabet. We write n for the alphabet {0, ..., n− 1}.

2. A d-dimensional array n1×n2×· · ·×nd is the Cartesian product n1×n2×· · ·×nd.

Such an array forms a d-dimensional hypercuboid of type (n1, ..., nd) (sometimes

it is useful to assume n1 ≥ n2 ≥ · · · ≥ nd).

3. A cuboidal Hamming space HS is a d-dimensional array and we write HS(n1, ..., nd).

The elements of HS are tuples (x1, x2, ..., xd), for xi ∈ ni and for all i = 1, ..., n.

They are sometimes called words x1x2...xd where d is the length of the word.

4. A mixed code C is a subset of HS(n1, ..., nd). Codewords of length d are elements

of C.

Remark 6.2.2. 1. In this thesis, we assume that each ni is a subset of an abelian group

(Ai,+), though much of this theory is true for more general sets.

2. The Hamming distance d(v, w) between to d-tuples is the number of distinct posi-

tions in v and w. It is a metric on HS, and the weight of a codeword v is defined as

the distance d(v, 0), where 0 is a d-tuple consisting of 0’s (like for error-correcting

codes).

Definition 6.2.3. A code C is

• t-error-detecting if d(x, y) > t, for all x 6= y ∈ C,

• t-error-correcting if there do not exist distinct words x, y ∈ C and z ∈ HS with

d(x, z) ≤ t and d(y, z) ≤ t.
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Definition 6.2.4. We define the set d(C) to be {d(x, y) : x 6= y ∈ C}. The minimum

distance δ(C) is the minimum in d(C).

The next result follows immediately.

Lemma 6.2.5. C is t-error-correcting if and only if δ(C) > 2t.

Definition 6.2.6. We say the code C is an n-ary (d,M, δ)-code if C ⊆ HS(n1, ..., nd)

with n = (n1, ..., nd), |C| = M and minimum distance δ. In this regard, we call C an

n-ary (d,M, δ)-mixed-code.

Let H be the direct product of symmetric groups Sn1 × · · · × Snd and K a subgroup

of Sd which preserves the alphabet size. Then, the semi-direct product H o K acts on

HS(n1, ..., nd), where H acts on the entries and K permutes the coordinates. The group

G = Aut(HS(n1, ..., nd)) is of the form H o K, and we say two codes C and D in

HS(n1, ..., nd) are equivalent if there is an element g ∈ G such that Cg = D.

Lemma 6.2.7. If C is an additive mixed code (that is v +w ∈ C, for all v, w ∈ C), then

δ(C) is the minimum weight of all codewords.

The Main Problem in Coding Theory and Bounds

Let HS(n1, ..., nd) be a cuboidal Hamming space. By An(d, δ) we denote the maximum

M such that there is an n-ary (d,M, δ)-code. Like in common coding theory, the main

problem is to find the value of An(d, δ), for fixed n, d and δ.

Theorem 6.2.8. We have

1. An(d, 1) =
d∏
i=1

ni, and

2. An(d, d) = nd.

Theorem 6.2.9 (Generalised Singleton Bound). For d, δ ≥ 1 we have

An(d, δ) ≤
d−δ+1∏
i=1

nd−i+1 = nδ · · ·nd.
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Proof. Let C be a code with maximal M . If we remove one of the coordinates (punc-

turing), say xi, we obtain an n′-ary (d − 1,M, δ − 1) code. Hence, An(d, δ) = M ≤

An′(d− 1, δ − 1). Iterating this for any choice of δ − 1 coordinates {ni1 , ..., niδ−1
} gives

us

An(d, δ) ≤ An∗(d− δ + 1, 1) =
d−δ+1∏
j=1

nij ,

for the corresponding tuple n∗. The right hand side attains its minimum for nδ · · ·nd.

What is the number of words y ∈ HS(n1, ..., nd) of distance δ from a fixed word x?

Well, we need to pick δ coordinates, and for each coordinate xi one of its possible (ni−1)

entries. Therefore, the number of words having distance δ from x is

s(x, δ) =
∑

ni1 ,...,niδ

(ni1 − 1)(ni2 − 1) · · · (niδ − 1).

This number does not depend on the choice of x.

Definition 6.2.10. Let S(x, t) = {y ∈ HS : d(x, y) ≤ t} be the sphere with radius t

and centre x. Sometimes, we write S(t) = |S(x, t)| for the size of the sphere, since it is

independent of x.

The next lemma is well-known from common coding theory.

Lemma 6.2.11. The sphere S(x, t) contains
t∑
i=1

s(x, i) points. In addition, a code C is

t-error-correcting if and only if for any distinct pair of codewords x, y the spheres S(x, t)

and S(y, t) are disjoint.

Theorem 6.2.12. If C is a t-error-correcting code, then

|C| ≤

d∏
i=1

ni

S(t)
.

Proof. Since the spheres are disjoint, the contained codewords satisfy |C| ·S(t) ≤
d∏
i=1

ni.
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Corollary 6.2.13 (Generalised Hamming Bound). It holds (for n, d, t > 0)

An(d, 2t) ≤

d∏
i=1

ni

S(t)
.

Theorem 6.2.14 (Generalised Plotkin Bound). Let C be an n-ary (d,M, δ)-mixed-code

with rd < δ, where r = 1−
d∑
i=1

(dni)
−1. Then,

M ≤
⌊

δ

δ − rd

⌋
.

Proof. This proof is a generalisation of the proof of the Plotkin bound found in Huffman’s

book [48, p. 58]. Let C be such a code and define S =
∑
x∈C

∑
x∈C

d(x, y). We count S in

two ways. First, because δ ≤ d(x, y), it follows M(M − 1)δ ≤ S. Second, let M be

a matrix whose rows are the codewords in C and ni,a the number of times the character

a ∈ ni appears in column i. As
∑
a∈ni

ni,a = M , for all i = 1, ..., d, we have

S =
d∑
i=1

∑
a∈ni

ni,a(M − ni,a) = dM2 −
d∑
i=1

∑
a∈ni

n2
i,a.

Now, by the Cauchy-Schwarz inequality, we have

(∑
a∈ni

ni,a

)2

≤ ni
∑
a∈ni

n2
i,a. Therefore,

we obtain

S ≤ dM2 −
d∑
i=1

∑
a∈ni

n2
i,a ≤ dM2 −

d∑
i=1

n−1i

∑
a∈ni

ni,a

2

= dM2 −
d∑
i=1

n−1i M2 = M2rd.

By the assumption rd < δ, the hypothesis follows from M(M − 1)δ ≤ S ≤M2rd.

Definition 6.2.15. A mixed maximum distance separable code (mixed MDS code) is a

mixed code attaining the generalised Singelton bound.
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Mixed Codes, Latin Hypercuboids and Graph Endomorphisms

In this section we describe both the connection between endomorphisms and mixed codes

and between Latin hypercuboids and mixed codes. We demonstrate that the necessary

existence condition on endomorphisms given by Lemma 3.3.6 translates into an existence

condition for mixed MDS codes.

Let us start with the cubic versions. Regarding Lemma 3.3.6, the first result reveals

the equivalence between maximal cliques, MDS codes and orthogonal arrays.

Lemma 6.2.16. The following are equivalent.

1. A maximal clique of size nd−r in H(d, n; {r + 1, ..., d}).

2. An n-ary (d, nd−r, r + 1) MDS code.

3. A Latin hypercube of class r; LHC(d− r, n, r).

Proof. Any two vertices in the maximal clique have Hamming distance r + 1; thus, the

clique satisfies the Singleton bound. Moreover, every such code provides a maximal

clique (Lemma 5.5.6). Now, pick an MDS code; we check that we obtain a Latin hyper-

cube of class r from it. Because the Hamming distance between any two codewords is

r + 1, the first d − r coordinates can be considered as positions and the last r coordi-

nates as symbols in a Latin hypercube of class r. Conversely, given a Latin hypercube

LHC(d− r, n, r) we identify the symbols with r-tuples. Thus the Latin hypercube corre-

sponds to a set of d-tuples where any two tuples have Hamming distance r + 1. Hence,

we obtain an MDS code.

Lemma 6.2.16 can be easily extended to hypercuboids.

Theorem 6.2.17. The following are equivalent.

1. A maximal clique of size
d∏

i=r+1

ni in H(n1, ..., nd;S), for S = {r + 1, ..., d}.

2. An (n1, ..., nd)-ary (d,
d∏

i=r+1

ni, r + 1) mixed MDS code.
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3. A Latin hypercuboid LHC(n1, ..., nd, r).

Example 6.2.18. Consider the set M of tuples {(1, 1, 1), (2, 3, 1), (3, 2, 1), (1, 2, 2),

(2, 1, 2), (3, 3, 2)}. This setM forms a mixed MDS code overHS(3, 3, 2) and a maximal

clique in the cuboidal Hamming graph H(3, 3, 2, {2, 3}). On the other hand, this is also

the Latin rectangle 1 3 2

2 1 3

 ,

where we identify the coordinates as (symbol, column, row).

Now, we demonstrate the relations between Latin hypercuboids of dimension d, type

(n1, ..., nd) and class r and mixed MDS codes.

Lemma 6.2.19. We can construct an (
r∏
i=1

ni, n1, ..., nd)-ary (d+ 1,
d∏
i=1

ni, 2) mixed MDS

code from an LHC(n1, ..., nd, r).

Proof. Simply consider the Latin hypercuboids as a subset of an (d + 1)-array whose

entries are the
r∏
i=1

ni distinct symbols in the first coordinate of the mixed code.

Corollary 6.2.20. We can construct an (n1, ..., nr, n1, ..., nd)-ary (d + r,
d∏
i=1

ni, r + 1)

mixed MDS code from an LHC(n1, ..., nd, r).

Proof. Follows from the previous lemma by taking (n1, ..., nr)-ary tuples as entries.

Theorem 6.2.21. An (n1, ..., nr, n1, ..., nd)-ary (d + r,
d∏
i=1

ni, r + 1) mixed MDS code

induces an LHC(n1, ..., nd, r).

Proof. Place the codewords in the n1× · · · × nd array. If two codewords would have the

same last d positions, then their distance would not be r+ 1, since there would be merely

r coordinates left. Thus, the words fill out this array and the first r coordinates can be

regarded as symbols. Now, if two codewords determine the same symbol (both words

have the same first r coordinates), then they need to differ in r + 1 position coordinates.

Hence, they are not in the same r-subarray, and thus, they are satisfying the definition of

a Latin hypercuboid of class r.
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Once again, we obtain the following statement.

Corollary 6.2.22. Assuming the right parameters, Latin hypercuboids are equivalent to

mixed MDS codes.

Tilings and Synchronization

Due to Cameron’s and Kazanidis’ characterisation of non-synchronizing groups (cf. Thm

3.2.4), most examples of non-synchronizing semigroups arise from endomorphism monoids

of graphs. For this reason, the idea behind this section is to provide further examples of

non-synchronizing semigroups arising from different (combinatorial) objects. In partic-

ular, we demonstrate a method to obtain non-synchronizing semigroups from tilings.

An important feature of the method presented here is that not only does it give new

examples of non-synchronizing semigroups, but it sheds new light on old examples as

well. In particular, we can consider the endomorphisms of the Hamming graphs from

the previous chapter as tilings. Due to the simplicity of this method it becomes apparent

that the semigroups arising admit a decomposition into proper subsemigroups. Such

decompositions are discussed in more detail in the next chapter.

Tilings and Semigroups

Definition 6.3.1. 1. Let M be the set {1, ..., n}. A tiling T of M is a partition of M .

A transversal t of T is a subset of M containing exactly one point from each part

in T .

2. Let π be a set of tilings of M . A transversal t is π-compatible if t is a transversal

for all tilings in π, i.e. t ∈
⋂
T∈π
{transversals of T}.

Please note that the motivation for using the name tiling instead of partition comes

simply from the combinatorial objects this section was motivated by, that is tilings of a
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chequerboard or similarly dimer problems, and the reader will see that we cover those

tilings in the following example section.

A tiling or partition and a transversal may determine a transformation and the proof

of Theorem 3.1.5 from Chapter 3 reveals one way of doing that. In the next definition we

use this construction to define a semigroups.

Definition 6.3.2. 1. Let T be a tiling with parts T1, ..., Tr and transversal t = {t1, ..., tr}.

Then, we construct a transformation from T and t by mapping every element in Ti

to the unique element ti ∈ Ti, for all i = 1, ..., n. This transformation is an idem-

potent.

2. Let π be a set of tilings and let τ be a set of π-compatible transversals. Then,

TR(π, τ) denotes the set of all transformations constructed from the tuples (T, t),

where T ∈ π and t ∈ τ . We write TR(π) if τ is the set of all possible π-compatible

transversals.

3. By SG(π, τ) we denote the semigroup generated by TR(π, τ). Again, we write

SG(π), when considering all π-compatible transversals.

Example 6.3.3. Let π consist of the two tilings of a 2 × 4 chequerboard with dominoes

(or rather 1 × 2 tiles) given in Figure 6.3. Moreover, let t1 and t2 be the transversals

{1, 3, 6, 8} and {2, 4, 5, 7}, respectively. Then, TR(π, τ) consists of the four transforma-

tions [1, 6, 3, 8, 1, 6, 3, 8] , [5, 2, 7, 4, 5, 2, 7, 4] , [1, 6, 3, 3, 1, 6, 8, 8] and [5, 2, 4, 4, 5, 2, 7, 7].

In this setting the following is satisfied by the semigroup SG(π, τ).

Theorem 6.3.4. Let M be the set {1, ..., n}, π a set of tilings of M , τ a set of π-

compatible transversals and S = SG(π, τ). Then, the following hold:

1 2 3 4
5 6 7 8

1 2 3 4
5 6 7 8

Figure 6.3: Tilings of a 2× 4 board with dominoes
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1. S is idempotent generated,

2. for all f1, f2 ∈ S we have ker(f1f2) = ker(f1) and im(f1f2) = im(f2),

3. S is simple and non-synchronizing,

4. S is decomposable (as in Definition 2.2.2).

Proof. Clearly, the generators of S are idempotents. The third and fourth point follow

from the second. (Note that by 2 a decomposition can be found by partitioning the R-

or L-classes). So, we need to establish the second point. But this follows, because the

image of f1 is a transversal for the kernel of f2.

Remark 6.3.5. Assume there is an automorphism group G of the set of tilings from

above (a permutation group under which the partitions are invariant). If we can restrict

the kernels or the images, then we can apply the results on G-decompositions to confirm

that S is be strongly G-decomposable (see Section 7.2 ff.).

Definition 6.3.6. 1. Let T1, T2 be two tilings of the same set. We say T2 is a cover

for T1 if each tile in T2 is a disjoint union of tiles in T1. In that case T1 can be

embedded into T2 or T1 is a refinement of T2.

2. T2 is a k-cover for T1 if every tile in T2 is the disjoint union of exactly k tiles of T2,

and T1 is a k-refinement of T2.

3. Let π1 and π2 be two sets of tilings. Then, π2 is a (k-)cover for π1 if all T2 ∈ π2

are (k-)covers for all T1 ∈ π1, and π1 is a k-refinement for π2 (or is embedded into

π2).

Lemma 6.3.7. Let π1 and π2 be two sets of tilings of the same set with transversals τ1

and τ2, respectively. Assume π2 is a cover for π1. Then, the semigroups S1 = S(π1, τ1)

and S2 = S(π2, τ2) satisfy the following:

1. f1f2 = f2, for f1 ∈ S1, f2 ∈ S2,
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2. im(f2f1) is a transversal for π2,

3. S = 〈S1, S2〉 is not synchronizing, and

4. S is idempotent generated and decomposable (see Definition 2.2.2).

Proof. The first part is clear, since π2 is a cover for π1. By the same argument, the image

of f2f1 is a transversal for all of π2. From the first two points it follows that the minimal

rank in S, given by transformations in S2, is bigger than 1. Both S1 and S2 are idempotent

generated, and we can easily find a decomposition using the first two properties.

Remark 6.3.8. The trick in the previous theorem is that the image of the product f2f1 is

a transversal for the kernel of any transformation in S2. That is, f1 is acting on the set of

all π2-compatible transversals.

In [3] and [6], the authors considered permutation groups acting on transversals of

kernels. They introduced the notion of groups admitting the k-universal transversal prop-

erty, which is similar to k-homogeneity as they verified. Thus, we see that the property

from above is similar to the k-universal transversal property of groups. In that regard, the

following definition might be of interest:

A semigroup S1 is S2-compatible if it has this universal transversal property. That

means, it is S2-compatible if im(f2f1) is a transversal for all kernels of transformations

in S2, for f1 ∈ S1 and f2 ∈ S2.

Examples

Tiling Chequerboards

The problem of tiling chequerboards with dominoes has been known for a long time and

I assume that the reader is familiar with it (see [10] for a brief survey on tiling problems).

Essentially, we are given an m×n board which is to be tiled with 1× 2 dominoes (recall

Example 6.3.3 for tilings of an 2 × 4 board). The number of all such possible tilings

is known, and it was found independently by Fisher and Temperley [34] and Kasteleyn
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1 2 3 4
5 6 7 8
9 10 11 12

1 2 3 4
5 6 7 8
9 10 11 12

1 2 3 4
5 6 7 8
9 10 11 12

Figure 6.4: Tilings of a 3× 4 board with 1× 3 tiles.

[52]. Also, it is well known (and easily checked) that the number of tilings of the 2 × n

stripe with 1× 2 dominoes is part of the Fibonacci sequence.

Counting tilings is very hard in general and very few formulae are known known.

Nevertheless, in this subsection we consider tilings of m × n boards with 1 × m tiles.

The number of tilings satisfies a simple recurrence relation and compatible transversals

can be found easily.

Let T (m,n) denote the number of tilings of the m × n board with 1 × m tiles (cf.

Figure 6.4). Then, the following recurrence is satisfied.

Lemma 6.3.9. The following holds:

T (m,n) = T (m,n− 1) + T (m,n−m) for n > m > 1,

and T (m,n) = 1, for n = 1, ...,m− 1, and T (m,m) = 2.

Proof. Assume n > m. There are two choices to cover the (1, 1) coordinate with a tile.

Either vertically, leaving an m × (n − 1) board untiled, or horizontally. In the second

case, we divide the board into two parts, where the left m × m board is tiled with m

horizontal tiles and the right m× (n−m) part is still untiled.

Example 6.3.10. From this recurrence relation we see that T (3, 4) = 3. Those three

tilings are given in Figure 6.4.

The number T (m,n) counts non-toric tilings where a toric tiling of an m × n board

is a partition which allows the tiles to overlap the borders and reappear on the other side,

like a torus. To count all toric tilings, we need to add the proper toric tilings to T (m,n),

but how do we obtain these?
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1 2 3 4
5 6 7 8
9 10 11 12

1 2 3 4
5 6 7 8
9 10 11 12

Figure 6.5: Proper toric tilings of a 3× 4 board with 1× 3 tiles.

1 2 3 4
5 6 7 8
9 10 11 12

1 2 3 4
5 6 7 8
9 10 11 12

Figure 6.6: Two identical tilings. In both cases one of the tiles is the set {2, 6, 10};
however, in the first case this tile is the tuple (2, 10, 6) and in the second case the tuple
(2, 6, 10).

Theorem 6.3.11. Let n > m. The number of toric tilings is

• T (m,n) + (m− 1) (T (m,n−m)− 1) + (mm − 1) if m divides n; and

• T (m,n) + (m− 1)T (m,n−m) otherwise.

Proof. Assume m divides n. First T (m,n) is the number of non-toric tilings. Moreover,

if all tiles lie horizontally, then there are mm toric tilings of which exactly one is non-

toric and thus already included in the number T (m,n). This gives us mm − 1 additional

proper toric tilings. However, if we assume that at least one tile lies vertically, then the

horizontally lying tiles which overlap lie directly one below the other (see Figure 6.5).

There are m− 1 ways in which those tiles overlap. In addition, for each of those choices

we need to tile the remaining m × (n − m) board. This can be done in T (m,n − m)

ways where the one tiling consists of all tiles lying horizontally, but this single occur-

rence has already been counted by the number mm − 1. Therefore, we obtain additional

(m− 1)(T (m,n−m)− 1) proper toric tilings.

On the other hand, if m does not divide n, then there is no tiling where all tiles lie

horizontally; hence, there is at least one vertical tile. Therefore, the overlapping tiles lie

directly one below the other in m− 1 distinct ways. For each of those configurations we

need to tile the remaining m× (n−m) board in T (m,n−m) ways.
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From now, we denote by πT the toric tilings (that is proper toric and non-toric tilings)

of an m×n board with 1×m tiles, and by πNT the non-toric ones. What are the πT - and

πNT -compatible transversals? To answer this, we divide the board into several m × m

blocks A and one m× k block B, where 1 ≤ k < m (cf. Figure 6.7).

A A · · · A B

Figure 6.7: Partition into blocks

We need to find a transversal for each block, individually, and then combine those

to a transversal for the whole board. For an A block a transversal consists of m points,

where any two points are not in the same row or column; there are m! transversals in

total. Whereas, for a B block we need only k points satisfying this condition. Here, there

are m · (m− 1) · · · (m− k+ 1) transversals. By joining the subtransversals we obtain an

πT - and πNT -compatible transversal.

Lemma 6.3.12. The transversals of non-toric tilings are the same as the transversals of

toric tilings.

Lemma 6.3.13. From the construction above we obtain precisely

(m!)qm(m− 1) · · · (m− k + 1)

πT - and πNT -compatible transversals, where n = q ·m+ k with 1 ≤ k < m.

Proof. This follows from the previous discussion.

Example 6.3.14. Let π be the toric tilings of the 2 × 4 board with 1 × 2 tiles; there are

9 of them (see Figure 6.8). Moreover, t1 = {1, 3, 6, 8} and t2 = {2, 4, 5, 7} are two of

the transversals mentioned in the previous lemma. The semigroup S = S(π) is a simple

non-synchronizing semigroup of size 432. Now, construct the kernel graph X = Gr(S)

[20] whose vertices are {1, ..., 8} where two vertices v and w are adjacent if there is no
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f ∈ S with vf = wf . This graph admits a transitive automorphism group G which

is isomorphic to C2 × S4 and generated by the permutations (2, 4)(6, 8), (3, 6)(4, 5) and

(1, 2)(3, 4)(5, 6)(7, 8). Then, we can check that the transformations [1, 6, 3, 3, 1, 6, 8, 8]

and [1, 1, 3, 3, 6, 6, 8, 8] determine a G-decomposition for S.

Remark 6.3.15. The previous example demonstrates the connection between tilings and

synchronization theory. Essentially, by constructing the kernel graph we have found a

non-synchronizing permutation group, i.e. its automorphism group. From this many

questions arise, for instance are there other transformations not included in S which

are not synchronized by Aut(Γ) or are there other permutation groups which do not

synchronize the transformations in S? We will not cover those questions here but come

back to them in Chapter 8.

1 2 3 4
5 6 7 8

1 2 3 4
5 6 7 8

1 2 3 4
5 6 7 8

(1) (2) (3)

1 2 3 4
5 6 7 8

1 2 3 4
5 6 7 8

1 2 3 4
5 6 7 8

(4) (5) (6)

1 2 3 4
5 6 7 8

1 2 3 4
5 6 7 8

1 2 3 4
5 6 7 8

(7) (8) (9)

Figure 6.8: Toric tilings of a 2× 4 board

Tilings in Tilings

Another interesting set of examples comes from tilings within tilings, that is one set of

tilings is the cover for another set of tilings. For instance, in Figure 6.9 we see that

f3 is a refinement of f1 and f2. As we have seen in Theorem 6.3.4, these also give
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non-synchronizing semigroups. However, the major difference is that this construction

provides examples of non-simple semigroups, too.

Example 6.3.16. Let S(τ) = 〈f1, f2〉 and S(π) = 〈f3〉 with the transformations given

by the tilings in Figure 6.9. Then, τ is a cover for π. As we see, the image of f1f3 is a

transversal for both f1 and f2. Hence, f3 maps one transversal (which is a transversal for

both kernels) to another transversal. From Lemma 6.3.7, we see that the semigroup S =

〈f1, f2, f3〉 is non-synchronizing and a decomposition is given by

S = {f3} ] {f1, f1f3} ] {f2, f2f3}.

∗
∗

∗
∗

∗
∗

∗
∗ ∗∗

∗
∗
∗

∗
∗

∗

f1 f2 f3

Figure 6.9: Tilings in tilings

Tiling the Cube

Let Cm,n be a cube with side length n of dimension m. We would like to answer the

following question: How many (non-toric) tilings of Cm,n are there using n × 1 · · · × 1

tiles where any two tiles do not intersect?

In dimension m = 2, this number is always 2, since we arrange the tilings either

horizontally or vertically. This can be observed in Chapter 4 by the endomorphisms of

the complement graph of the square lattice graph L2(n). If m = 3, then this number is

well-known, too; the number of possible tilings is 3(2n − 1) (recall Section 5.3). It can

be found in the integer sequence library [71] and has several interpretations of which one

is the number of moves to solve the Hard Pagoda puzzle. For m ≥ 4, we do not know of

a formula for the number tilings.
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A transversal for all non-toric tilings of Cm,n corresponds to a Latin hypercube of

dimension m− 1 and order n when considering it as a set of m-dimensional coordinates

where the last coordinate denotes the symbol. The endomorphism monoid generated by

those tilings and their transversals is the singular endomorphism monoid of the comple-

ment of the Hamming graph H(m,n). So by Lemma 6.3.7 there is the following result.

Lemma 6.3.17. The singular endomorphism monoid of the complement of H(m,n) is

G-decomposable, for G = Aut(H(m,n)), and idempotent generated.

Remark 6.3.18. The decomposition we obtain is, in fact, a strong G-decomposition as

we will see in Chapter 7)

The endomorphism monoid of H(m,n) and some of its variations have been studied

in Chapter 5. If we set Γ = H(m,n;S), for S = {k, ...,m} with 1 ≤ k ≤ m − 1, then

the singular endomorphisms of minimal rank of Γ (if it contains any) have rank nm−k.

The kernel of such an endomorphism forms a tiling of Cm,n with

n× · · · × n︸ ︷︷ ︸
k

× 1× · · · × 1︸ ︷︷ ︸
m−k

tiles. The number of such tilings is unknown. Also, it is unknown what the kernels

of endomorphisms of higher ranks are, but it would be of major interest to find tilings of

Cm,n which use a mix of those tiles, that is of tiles of the form n× · · · × n︸ ︷︷ ︸
i

× 1× · · · × 1︸ ︷︷ ︸
m−i

,

for all 1 ≤ i ≤ k.
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Chapter 7

Disjoint Decompositions and

Normalizing Groups

In this chapter, we are going to deal with semigroups of the form 〈G, t〉, 〈G, t〉 \ G and

〈tG〉 = 〈tg : g ∈ G〉, where G is a permutation group, t a singular transformation and

tg = g−1tg. Semigroups of the form S = 〈G, t〉 are of major interest in synchronization

theory (cf. Chapter 3), for, if this semigroup contains a constant transformation, then G

is said to synchronize the transformation t; consequently, the whole semigroup S would

then be synchronizing. On the other hand, semigroups of the form 〈tG〉, so called G-

closures, have been of interest when regarding normalizers of S (cf. Levi and McFadden

[60]).

Only recently, Araújo, Mitchell and Schneider [3] classified the groups G for which

the three semigroups 〈G, t〉, 〈G, t〉\G and 〈tG〉 are either regular or idempotent generated

for any choice of t. In subsequent work Araújo et. al. [4] classified all normalizing

groups, that is groups G for which 〈G, t〉 \ G and 〈tG〉 are identical for all singular

transformations t ∈ Tn \ Sn.

By now, much work has been done on semigroups of the form 〈G, t〉 and McAlister’s

work [66] is probably one of the most influential. However, another but similar line of

research is has been concerned with so-called H-pairs. An H-pair is a tuple (G, T ),
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G a permutation group and T a (non-empty) set of singular transformations, such that

〈G, T 〉 \ G = 〈H,T 〉 \ H . Andre et al. [2] considered such pairs where T contains a

single (singular) transformation, and characterised Sn-pairs.

The publications by Araújo et al. and Andre et al. are relating the work on normal-

izing groups to normalizers of semigroups. So, building on that this thesis continues

this research by considering the same set of problems for (potentially) multi-element

sets T . In detail, we are concerned with semigroups of the form 〈G, T 〉, 〈G, T 〉 \ G and

〈TG〉 = 〈tG : t ∈ T 〉, where T is a set of singular transformations rather than a single

element. Because of the nature of these semigroups, we need more distinct definitions of

normalizing groups (see Definition 7.1.6).

This chapter consists of three parts. In this regard, the main results of the first part

tackles the following questions: Are these semigroups regular? Are they idempotent

generated? Which groups are normalizing all sets T and what are the Sn-set-pairs? The

other main result of the first part is Theorem 7.1.20 which points out the equivalence

between Sn-normal pairs and Sn-pairs, where T is a set of elements.

In the second part of this chapter we focus on decompositions of semigroups. Here,

we introduce new kinds of decompositions of semigroups of the form 〈G, T 〉 \ G, the

so-called G-decompositions, and review the newly introduced normalization properties

in the context of those disjoint decompositions. Finally, in the third part of this research

we are providing examples of semigroups admitting such decompositions. One set of

examples is given by endomorphism monoids of graphs, which are very popular among

researchers working on synchronizing permutation groups [7, 9]. The second set of ex-

amples is given by idempotent generated semigroups which form a new family of non-

synchronizing semigroups. These semigroups are generated using tilings and are closely

related to various other problems in combinatorics, for instance graph endomorphisms as

we will show. A semigroup S = 〈G, T 〉 \G induced by tilings satisfies the following.
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1. S is idempotent generated,

2. For all f1, f2 ∈ S we have ker(f1f2) = ker(f1) and im(f1f2) = im(f2),

3. S is non-synchronizing, and

4. S is strongly G-decomposable.

The precise results are given in Theorem 6.3.4 and Lemma 6.3.7.

Normalizing Groups

Initiated by Howie [44] and Levi and McFadden [60], Araújo, Mitchell and Schneider

[3] have shown that the groups G for which 〈G, t〉 \G and 〈tG〉 are idempotent generated

and regular for any singular transformation t ∈ Tn are exactly the alternating groups

An and the symmetric groups Sn, if n ≥ 10 (five other groups occur for smaller n).

In addition, these are the only groups for which both semigroups coincide (again some

sporadic cases) [4].

In this section, we contribute to this line of research and investigate semigroups of the

form 〈G, T 〉 \ G and 〈TG〉 = 〈tG : t ∈ T 〉, for a set T of singular transformations. We

demonstrate that their results are still valid when substituting a single transformation t by

a set T of singular transformations. Also, we show that the normalizer of the semigroup

〈G, T 〉 \G is Sn if and only if 〈G, T 〉 \G = 〈Sn, T 〉 \ Sn.

Normalizers of Semigroups and G-Set-Pairs

In this subsection, we introduce new notation.

Definition 7.1.1. Let T ⊆ Tn \ Sn be a set of transformations and let G,H ≤ Sn be

groups.

1. The normalizer of a semigroup S is given by the set N(S) = {g ∈ Sn : Sg = S},

where Sg = {g−1sg : s ∈ S}.
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2. A pair (G, T ) is called H-normal if the normalizer of 〈G, T 〉 \G is H .

3. (G, T ) is self-normal if (G, T ) is G-normal.

In [61], Levi proposed the problem of classifying all H-normal pairs (G, T ), for a

permutation group H; still, no more than a few results are known up to date, namely,

where H is the symmetric group, the alternating group or a dihedral group [60, 62, 21].

Remark 7.1.2. 1. Note that a semigroup S = 〈G, T 〉 \ G with normalizer N can be

written in each of the following three ways:

S =
⋃
t∈S

〈G, t〉 \G, S =
⋃
t∈S

〈tG〉 or S =
⋃
t∈S

〈tN〉

2. For a 〈1〉-normal pair (G, T ) the group G is trivial.

3. The pair (Sn, T ) is self-normal for any set T .

4. For a self-normal pair (G, T ) we have

G = N(〈G, T 〉) = N(〈G, T 〉 \G).

The inclusions from left to right do always hold; however, the converse is not true, in

general, as can be seen in the following example.

Example 7.1.3. Let G = 〈(1, 2, 3, 4)〉, and let t be a constant map. Then,

N(〈G, t〉) = D8, but N(〈G, t〉 \G) = S4.

Determining G-normal semigroups turns out to be rather difficult, and only a few

cases are known. Moreover, the difference between the two normalizers demonstrated by

this example poses an obstacle.

Next we turn to H-set-pairs.
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Definition 7.1.4. Let G,H and T be as above. The tuple (G, T ) is an H-set-pair if

〈G, T 〉 \G = 〈H,T 〉 \H .

Lemma 7.1.5. Any two H-set-pairs have the same normalizer.

Normalizing Groups

This subsection introduces distinct types of normalization by combining the structure of

H-set-pairs and G-closures. Using this concept, first, the main results on the correspon-

dence between Sn-normal pairs and Sn-set-pairs are derived, and second, the problem for

the second part of this chapter is formulated.

Definition 7.1.6 (The various flavours of normalization). 1. A group G is called

t-normalizing, for a singular transformation t if

〈G, t〉 \G = 〈tG〉.

2. Let (t1, ..., tr) be a tuple of elements in Tn \ Sn. Then, G is (t1, ..., tr)-normalizing

(or G is normalizing this tuple) if G is normalizing each entry, i.e.,

〈G, ti〉 \G = 〈tGi 〉, for all i = 1, ..., r.

3. Let T = {t1, ..., tr} ⊆ Tn \ Sn. Then, G is {t1, ..., tr}-normalizing if

〈G, t1, ..., tr〉 \G = 〈tG1 , ..., tGr 〉.

4. Let ∅ 6= T ⊆ Tn \ Sn. Then, G is strongly T -normalizing if for all T ′ ⊆ T ,

〈G, T ′〉 \G = 〈tG : t ∈ T ′〉.

Clearly, the last property is the strongest of these four, since it implies all the previous
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ones. However, it seems to be rather restrictive, too. So, it is open which combinations

(G, T ) attain such a strong property. Moreover, properties two and three appear to be of

similar strength, and indeed, they are equivalent for strongly T -decomposable groups as

we will see in Theorem 7.3.5.

We start with a discussion of some rather obvious facts.

Lemma 7.1.7. Let t, u ∈ Tn \ Sn and G ≤ Sn. If t and u are G-conjugate (g−1tg = u,

for some g ∈ G), then G is t-normalizing if and only if G is u-normalizing.

Lemma 7.1.8. Let (t1, ..., tr) and (u1, ..., us) be tuples form Tn \ Sn and G be a group.

Suppose each ui is G-conjugate to one of the tj . If G is (t1, ..., tr)-normalizing, then G is

(u1, ..., us)-normalizing. The same holds when using {t1, ..., tr} and {u1, ..., us} instead

of the tuples.

Lemma 7.1.9. The semigroups 〈G, T 〉 \G and 〈TG〉 have the same idempotents. More-

over, if 〈G, T 〉 \G is idempotent generated, then G is T -normalizing.

Proof. This proof is a modification of the proof of Lemma 2.2 in [3]. Let S1 = 〈TG〉

and S2 = 〈G, T 〉 \ G. Then, by E1 and E2 we denote the idempotents of S1 and S2,

respectively. Clearly, S1 ≤ S2, and so we are only required to prove E2 ⊆ E1. Every

element of S2 can be written as g1t1g2t2...gntngn+1 where gi ∈ G and ti ∈ T . So, let u

be an idempotent of S2 of that form. Then

u = t
g−1
1

1 t
(g1g2)−1

2 ...t(g1g2...gn)
−1

n (g1...gn+1).

Now, we see that u = vg where v ∈ S1 and g = g1...gn+1. As G is a finite group, there

is an integer n′ ≥ 1 such that gn′ is the identity. Because u = vg is an idempotent, we
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obtain

vg = (vg)n
′

= v(gvg−1)(g2vg−2)...(gn
′−1vg−n

′+1)gn
′

= v(gvg−1)(g2vg−2)...(gn
′−1vg−n

′+1) ∈ S1

Hence, u is an idempotent of S1 which implies that E2 ⊆ E1.

If S2 is idempotent generated, then S2 = 〈E2〉 ⊆ E1 ⊆ S1. So, equality S1 = S2

follows.

The next lemma holds for supergroups of T -normalizing groups.

Lemma 7.1.10 (Normalizing Supergroups). Let H be a T -normalizing subgroup of G.

If (G, T ) is an H-set-pair, then G is T -normalizing.

Before moving to the main results, we need to clear up the situation for Sn and An.

We start with Sn and, as expected, the symmetric group is normalizing every set T . The

proof is omitted, since it follows directly from the fact that Sn is t-normalizing for all

t ∈ Tn \ Sn [4, Thm. 1.4].

Lemma 7.1.11. The symmetric group Sn is T -normalizing, for any T ⊆ Tn \ Sn. There-

fore, Sn is indeed strongly Tn-normalizing.

Next, it is shown that the alternating group An is T -normalizing for all T , too; how-

ever, this is not as obvious as for the single element case T = {t}. But before we get to

the proof, note that because Sn is strongly Tn-normalizing, for any pair (G, T ),

〈TG〉 ⊆ 〈G, T 〉 \G ⊆ 〈Sn, T 〉 \ Sn = 〈T Sn〉.

When setting G = An, then by showing 〈TAn〉 = 〈T Sn〉, for any set T , it follows that

An is an Sn-pair, and consequently An is T -normalizing, for any T . This is proved in the

next lemma.
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Lemma 7.1.12. For any set of singular transformations T we have 〈TAn〉 = 〈T Sn〉.

Proof. Let x ∈ 〈T Sn〉. Then, x is a product of transformations from T , each conjugated

by an element from Sn. Since 〈tSn〉 = 〈tAn〉, for all t (cf. [3, Lemma 2.1]), this product

is also included in the left hand side.

Corollary 7.1.13. An is strongly Tn-normalizing and An is an Sn-set-pair.

In [4], the groups normalizing all singular transformations have been determined;

hence, the strongly Tn-normalizing groups are known, too.

Corollary 7.1.14. For n ≥ 10, the groups Sn andAn are the only strongly Tn-normalizing

groups.

Proof. From [4, Thm. 1.4] it is known that those two groups are the only ones normaliz-

ing all single element sets T . (In fact, there are 5 sporadic groups for n ≤ 9; however it

is much harder to check those.)

Next, we state two important results given in [60].

Lemma 7.1.15 (Thm. 6 in [60]). 1. An Sn-normal semigroup is generated by its idem-

potents.

2. An Sn-normal semigroup is regular.

At last, we mention further consequences from the results in [3].

Lemma 7.1.16 (Thm. 1.1 in [3]). Assume n ≥ 10 and that one of the following holds:

1. the semigroup 〈G, t〉 \G is idempotent generated for all t ∈ Tn \ Sn;

2. the semigroup 〈tG〉 is idempotent generated for all t ∈ Tn \ Sn.

Then, G = An or Sn.

Lemma 7.1.17 (Thm. 1.2 in [3]). Assume n ≥ 10 and that one of the following holds:

1. the semigroup 〈G, t〉 is regular for all t ∈ Tn \ Sn;
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2. the semigroup 〈G, t〉 \G is regular for all t ∈ Tn \ Sn;

3. the semigroup 〈tG〉 is regular for all t ∈ Tn \ Sn.

Then, G = An or Sn.

Having finished the preparations for the main results we are now going to state the

first two results.

Theorem 7.1.18. If n ≥ 10 andG is a subgroup of Sn, then the following are equivalent:

1. the semigroup 〈G, T 〉 \G is idempotent generated for all T ⊆ Tn \ Sn;

2. the semigroup 〈TG〉 is idempotent generated for all T ⊆ Tn \ Sn;

3. G = An or Sn.

Proof. If 1. or 2. hold, then they hold for single element sets T = {t}, too. Hence,

by Lemma 7.1.16 G = An or Sn. Conversely, we have already seen that (An, T ) is an

Sn-set-pair (Corollary 7.1.13). Therefore, by applying Lemma 7.1.15 we see that the

semigroup 〈Sn, T 〉 \ Sn = 〈An, T 〉 \ An = 〈TAn〉 is idempotent generated.

Theorem 7.1.19. If n ≥ 10 andG is a subgroup of Sn, then the following are equivalent:

1. The semigroup 〈G, T 〉 is regular for all T ⊆ Tn \ Sn.

2. The semigroup 〈G, T 〉 \G is regular for all T ⊆ Tn \ Sn.

3. The semigroup 〈TG〉 is regular for all T ⊆ Tn \ Sn.

4. G = An or Sn.

Proof. If one of the first three statements holds, then it holds for single element sets

T = {t}, too. Hence, by Lemma 7.1.17 G = An or Sn. Conversely, by the same

arguments as in the previous proof we see that those three statements hold for G = An

or Sn.
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Finally, the next result is the main theorem of this part. We note that the case where

T is a single element can be found in [2].

Theorem 7.1.20. A pair (G, T ) is Sn-normal if and only if (G, T ) is an Sn-set-pair.

Proof. Assume (G, T ) is Sn-normal and let S = 〈G, T 〉\G. It is sufficient to confirm that

〈Sn, T 〉 \Sn ⊆ S. In Remark 7.1.2 we have seen that S can be written as S =
⋃
t∈S〈tN〉,

where N is its normalizer. Now, since Sn is T -normalizing for any T ,

S =
⋃
T ′⊆S

〈T ′Sn〉 =
⋃
T ′⊆S

〈Sn, T ′〉 \ Sn.

In addition, the right-hand side contains 〈Sn, T 〉 \ Sn.

Conversely, because Sn is T -normalizing, the tuple (Sn, T ) is Sn-normal, and so is

(G, T ), as H-set-pairs have the same normalizer.

Disjoint Decompositions

The following part of this chapter is dedicated to the investigation of the relationship

between (t1, ..., tr)-normalizing and {t1, ..., tr}-normalizing groups G. In particularly,

this is done for semigroups of the form 〈G, T 〉 admitting a disjoint decomposition.

Decompositions of Semigroups

Tamura [77] was the first one who published major results on decompositions of semi-

groups which he then used to construct new semigroups and to enumerate semigroups

of a given size. One of his goals was to determine all semigroups of size at most 5 (up

to isomorphisms), but unfortunately his method is not applicable to count semigroups of

bigger sizes.

The decompositions he used are homomorphic decompositions, that is a semigroup S

is decomposed into kernel classes of a semigroup homomorphism
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φ : S → T . In addition, most of his work is on decompositions where T is a semi-

lattice, that is commutative and each element is an idempotent.

In this section, decompositions are approached from a more general point of view

(although most of the interesting examples in this chapter (see Section 7.4) come from

homomorphic decompositions where T is a left-zero semigroup). First, we repeat the

definition of decomposable semigroups from Chapter 2 and extend it to strong and ho-

momorphic decompositions. Then, we introduce the more specific G-decompositions.

Definition 7.2.1. 1. A decomposition of a semigroup S is a partition of S into at least

two parts, where each part Si is a subsemigroup. Hence, S =
⊎
Si where each Si

is a semigroup.

2. A strong decomposition of S satisfies the following. Whenever, we take two el-

ements si ∈ Si and sj ∈ Sj , then their product is in Si or Sj . (Note that it is

possible that si1sj ∈ Si, whereas si2sj ∈ Sj , for si1 , si2 ∈ Si and sj ∈ Sj .)

3. A homomorphic decomposition is a decomposition induced by the kernel of a semi-

group homomorphism φ : S → T .

4. A left-zero decomposition of S is a strong decomposition where sisj ∈ Si, for all

si ∈ Si and sj ∈ Sj . A right-zero decomposition is defined respectively.

Remark 7.2.2. A left-zero decomposition is a homomorphic decomposition where T is

a left-zero semigroup.

From now, we assume that S is a transformation semigroup. Before introducing G-

decompositions of semigroups, we need to focus on semigroups of the form 〈G, T 〉 or

〈G, T 〉 \G.

Definition 7.2.3. Let T ⊆ Tn \Sn be a set of singular transformations with |T | ≥ 2, and

let G ≤ Sn be a group.

1. T is G-independent if for all t ∈ T holds t 6∈ 〈G, T \ {t}〉.
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2. G is T -decomposing if for T = {t1, ..., tr} holds

〈G, t1, ..., tr〉 \G =
r⊎
i=1

〈G, ti〉 \G. (disjoint union)

3. G is strongly T -decomposing if, for all T ′ ⊆ T ,

〈G, T ′〉 \G =
⊎
t∈T ′
〈G, t〉 \G.

4. G is weakly T -decomposing if for all T ′ ⊆ T holds

〈G, T ′〉 \G =
⋃
t∈T ′
〈G, t〉 \G. (any union)

5. G is very weakly T -decomposing if for T = {t1, ..., tr} holds

〈G, t1, ..., tr〉 \G =
r⋃
i=1

〈G, ti〉 \G.

Note that the decompositions above are splitting semigroups with relative rank greater

than 1 into semigroups with relative rank equal to 1. These decompositions are directly

derived from the identity S =
⋃
t∈S
〈G, t〉.

Lemma 7.2.4. 1. If G is strongly T -decomposing, then T is G-independent.

2. A minimal generating set T in 〈G, T 〉 is G-independent.

Lemma 7.2.5. Let S = 〈G, T 〉 \G, where G is strongly T -decomposing. Then, S admits

a strong decomposition.

Proof. Let S1 = 〈G, t1〉 \G and S2 = 〈G, t2〉 \G be two subsemigroups of S. Consider

the product t1t2. Because G is strongly T -decomposing we have

〈G, t1, t2〉 \G = 〈G, t1〉 \G ] 〈G, t2〉 \G.
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So, since t1t2 is included in the left hand side, it is contained in either S1 or S2.

Note that if G is T -decomposing, then T does not need to be G-independent and

S = 〈G, T 〉 \G does not need to admit a strong decomposition. Both statements can be

observed from the endomorphism monoid of H(3, 4) (cf. Section 7.4.2).

Lemma 7.2.6. LetG be T -decomposable and let (G, T ) be anH-pair. The following are

equivalent:

(a) H is T -decomposable.

(b) (G, t) is an H-pair, for all t ∈ T .

Proof. The following holds:

〈H, t′〉 \H ⊆ 〈H,T 〉 \H = 〈G, T 〉 \G =
⊎
t∈T

〈G, t〉 \G.

Also, from the assumption it follows that the left hand side is one of the factors from the

right hand side, for t′ ∈ T .

The next rather trivial statement forms the connection to synchronization theory.

Lemma 7.2.7. Let G be a transitive group. If G is T -decomposing, then G is not syn-

chronizing. Moreover, T contains a witness to this, as |T | ≥ 2.

Proof. If the left hand side of 〈G, t1, t2〉 \G = 〈G, t1〉 \G ] 〈G, t2〉 \G contains trans-

formations of rank 1, then those lie in exactly one of the subsemigroups of the right hand

side, because G is transitive. Hence, the other subsemigroup contains a witness that G is

not synchronizing.

Example 7.2.8. The groups Sn andAn are certainly not T -decomposing, for any T . (This

is a direct consequence of the last result.)

Remark 7.2.9. Because T -decomposing groups are non-synchronizing, we are mostly

concerned with (strongly) T -decomposing groups in this chapter, and less concerned
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with the weaker decomposition versions. We are certain that further research will be

necessary to obtain a clearer picture of such decompositions.

Now, we take a closer look at the properties defined above.

Lemma 7.2.10. Let T be a set of singular transformations. If G is T ′-decomposing for

all two element subsets T ′ ⊆ T , then G is strongly T -decomposing.

Proof. Let T̃ ⊆ T . We need to show that

〈G, T̃ 〉 \G =
⊎
t∈T̃

〈G, t〉 \G.

Note that the union on the right hand side is disjoint, because any pair of subsemigroups

is disjoint by assumption.

Let x be an element from the left hand side. We show that this element is in one of

the subsemigroups of the right hand side. We write x as the product g1t1g2t2g3t3...tngn+1

where gi ∈ G and ti ∈ T̃ . First assume n = 2, so x = g1t1g2t2g3. This element is in

the subsemigroup 〈G, t1, t2〉 which is decomposable into the disjoint union 〈G, t1〉 \G]

〈G, t2〉 \G. Therefore, x must lie in only one of those components, say 〈G, t1〉 \G. But

then we would rewrite x as h1t1h2t1h3t1...t1hm+1, for hi ∈ G, that is we have converted

x into a word without t2.

Now, if n > 2, we apply this argument inductively. That is we would next rewrite the

t1 and t3 combination. In the end we obtain see that x is, in fact, a word in 〈G, ti〉 \ G,

for only one i.

Corollary 7.2.11. The groupG is strongly T -decomposing if and only if it is T ′-decomposing,

for all two element subsets T ′ ⊆ T .

A semigroup S = 〈G, T 〉 with strongly T -decomposing group G has several ad-

vantages regarding the generating set T . One advantage is the additive structure of its

decomposition. In detail, whenever one element t is removed from T , then some factor

(and possibly several factors) 〈G, t′〉 \ G need to be removed from the (disjoint) union,
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and vice versa; whereas here, no more than the corresponding factor 〈G, t〉 \ G needs to

be removed. Another advantage is given by the minimality of the generating set, as can

be observed from the subsequent theorem.

Theorem 7.2.12. LetG be strongly T -decomposing. Then, T is a minimal generating set

for 〈G, T 〉.

Proof. Assume there is a minimal generating set T ′, which is smaller than T ; hence,

〈G, T ′〉 \ G = 〈G, T 〉 \ G. Moreover, since |T ′| < |T |, there is one t̃ ∈ T where

〈G, t̃〉 \G does not contain any t′ ∈ T ′ (by the pigeonhole principle). Therefore,

T ′ ⊆
⊎

t∈T,t6=t̃

〈G, t〉 \G = 〈G, T \ {t̃}〉 ( 〈G, T 〉

and, consequently, 〈G, T ′〉 ⊆ 〈G, T \ {t̃}〉 ( 〈G, T 〉. This is a contradiction to the

assumption that T ′ is a generating set.

Finally, we introduce the G-decomposition of a semigroup S.

Definition 7.2.13. Let S be a transformation semigroup and G a permutation group on

n points.

1. A G-decomposition of S is a decomposition of S with the two properties:

a) there is a set T ⊆ Tn \ Sn such that S = 〈G, T 〉 or S = 〈G, T 〉 \G, and

b) G is T -decomposing.

2. A strong/weak/very weak G-decomposition of S is a G-decomposition where G is

strongly/weakly/very weakly T -decomposing.

Remark 7.2.14. AG-decomposition is a decomposition of S, and a strongG-decomposition

is a strong decomposition.

The 〈1〉-decomposable semigroups are given below.
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Lemma 7.2.15. A 〈1〉-decomposable semigroup S is the disjoint union of monogenic

semigroups.

Proof. Let S = 〈t1, ..., tm〉 be 〈1〉-decomposable. Then, S =
m⊎
i=1

〈ti〉.

In the analysis of G-decompositions the following questions arise naturally:

1. If S is a semigroup, which tuples (G, T ) satisfy S = 〈G, T 〉 or S = 〈G, T 〉 \ G

such that G is T -decomposing?

2. If G is a permutation group, for which sets T is G a T -decomposing group?

3. If T is a set of transformations, which G are T -decomposing?

Unfortunately, these questions are beyond the scope of this thesis; but a few examples

regarding question 1. are considered in Section 7.4 anyway. When regarding questions

2. and 3., it is clear that the group G needs to be non-synchronizing; thus, all transfor-

mations not synchronized by G need to be determined, which requires a solution to the

synchronization problem discussed in Chapter 3.

Strong G-Decompositions and Simple Semigroups

It is rather cumbersome to check whether a semigroup S admits one of the decompo-

sitions from above; nevertheless, for simple semigroups this appears to be somewhat

easier. Simple semigroups have one highly convenient property when it comes to the

composition of two transformations, namely, the rank of their product does not change.

This results in a potential partition of the L- or R-classes (cf. Figure 7.1). Indeed, under

some strict conditions, it is possible to guarantee a strong G-decomposition of S, and

surprisingly, it turns out that there are quite a few examples satisfying those conditions

(see Sections 7.4 ff.).

Lemma 7.2.16. Let S = 〈G, t1, ..., tr〉 \ G be a simple semigroup with decomposition

into disjoint factors Si = 〈G, ti〉 \ G. If ker(ti) 6= ker(gtj), for all g ∈ G and all i 6= j,

then the R-classes of S restricted to Si are the R-classes of Si.
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Proof. Pick two elements x, y from the same R-class in S. If x and y are in distinct

Si (and Sj respectively), then they can be written as words x = g1tig2 · · · tigk and

y = h1tjh2 · · · tjhl having the same kernel. Consequently, ker(g1ti) = ker(h1tj); a

contradiction to the assumption.

R-classes of S

S1 S2 S3 · · · Sr

Figure 7.1: Eggbox-diagram: Partition of R-classes into subsemigroups Si

Similarly, L-classes and images can be used instead of R-classes and kernels.

Lemma 7.2.17. Let S = 〈G, t1, ..., tr〉 \ G be a simple semigroup with decomposition

into disjoint factors Si = 〈G, ti〉 \G. Let im(ti) 6= im(tjg), for all g ∈ G and all i 6= j.

Then, the L-classes of S restricted to Si are the L-classes of Si.

Proof. Pick two elements x, y from the same L-class in S. If x and y are in distinct Si (Sj

respectively), then they could be written as words x = g1tig2 · · · tigk and

y = h1tjh2 · · · tjhl having the same image. Consequently, im(tigk) = im(tjhl), because

of simplicity the rank does not change. This is a contradiction to the assumption.

Lemma 7.2.18. Let S = 〈G, t1, ..., tr〉 \G be a simple semigroup and Si = 〈G, ti〉 \G.

If we assume that ker(ti) 6= ker(gtj), for all i 6= j and for all g ∈ G, then the following

are equivalent:

1. tigtj ∈ Si, for all g ∈ G and all i and j;

2. S =
⊎
Si.



174 Chapter 7. Disjoint Decompositions and Normalizing Groups

Proof. Show 1.⇒ 2.: We show that the Si are disjoint. Assume x ∈ Si ∩Sj; then, x can

be written as

x = g1tig2 · · · tigk = h1tjh2tj · · · tjhl

⇒ ker(g1tig2 · · · tigk) = ker(h1tjh2tj · · · tjhl)

( since S is simple )⇔ ker(g1ti) = ker(h1tj).

However, the last equation cannot hold, since our conditions on the kernels hold.

Next, we show that S ⊆
⋃
Si. An element x ∈ S is a finite word in t1, ..., tr and

elements of G. By 1. the leftmost ti dominates and turns all factors tigtj into words in ti

and elements of G; consequently, x is in Si.

Conversely, show 2. ⇒ 1.: Because
⋂
Si is empty, an element of the form tigtj

needs to be in one of the factors, say, Sk. If i 6= k, then there would be an x ∈ Sk with

ker(tigtj) = ker(x). Again, by our condition on the kernel, this is not possible.

Again, switching kernel with image, the corresponding version for images is ob-

tained.

Proposition 7.2.19. Let S = 〈G, t1, ..., tr〉\G be a simple semigroup and Si = 〈G, ti〉\G.

If we assume that im(ti) 6= im(tjg), for all i 6= j and for all g ∈ G, then the following

are equivalent:

1. tigtj ∈ Sj , for all g ∈ G and all i and j;

2. S =
⊎
Si.

Proof. Switch image with kernel and left with right action of g.

These two results immediately suggest that the decompositions obtained are left-zero

(or right-zero) decompositions, which in fact, are strong G-decompositions.
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Theorem 7.2.20. Let S and S1, ..., Sr be as in one of the previous two results, then S

admits a left-zero decomposition (or right-zero respectively). Consequently, the decom-

positions in the previous two results are strong G-decompositions.

Proof. We need to show that the decompositions from the previous results are strong de-

compositions. It is a strong decomposition since any pair ti and tj gives a decomposition

〈G, ti, tj〉 \G = 〈G, ti〉 \G ] 〈G, tj〉 \G, so the result follows from Lemma 7.2.10.

The previous results are describing strong decompositions partitioning either the L-

classes or R-classes of a semigroup (as in Figure 7.1); however, a decomposition mixing

these turns out to be much more complicated if achievable at all. Different things appear

to happen then.

Note that by taking a subgroup H of G we are able to refine the decompositions even

further, as long as no mix of images and kernels occurs (cf. Theorem 4.1.16).

Decompositions and Normalizing Groups

Eventually, in this section the two forms of normalizing groups are considered in context

of the decompositions just introduced. Recall, there are

(t1, ..., tr) -normalizing groups and {t1, ..., tr}-normalizing groups.

But before the first results are going to be presented, decompositions of G-closures

are necessary.

Definition 7.3.1. Let T ⊆ Tn \ Sn be a set of transformations with |T | ≥ 2, and G ≤ Sn

a group.

1. The tuple (G, T ) has the decomposable closure (dc) property if for the set

T = {t1, ..., tr} holds 〈tG1 , ..., tGr 〉 =
r⊎
i=1

〈tGi 〉.
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2. The tuple (G, T ) has the strong dc property if for all subsets T ′ ⊆ T holds

〈tG : t ∈ T ′〉 =
⊎
t∈T ′
〈tG〉.

3. The tuple (G, T ) has the weak dc property if for all subsets T ′ ⊆ T holds

〈tG : t ∈ T ′〉 =
⋃
t∈T ′
〈tG〉.

4. The tuple (G, T ) has the very weak dc property if for T = {t1, ..., tr} holds

〈tG1 , ..., tGr 〉 =
r⋃
i=1

〈tGi 〉.

Like Theorem 7.2.12 on minimal generating sets of strongG-decompositions, the fol-

lowing theorem is the corresponding result for G-closures. The proof is almost identical,

so it is omitted.

Theorem 7.3.2. Let (G, T ) have the strong dc property and S = 〈TG〉, then T is minimal

(among the sets T ′ with S = 〈T ′G〉).

Next, we give the first results connecting the new normalization properties from the

previous sections.

Lemma 7.3.3. Set T = {t1, ..., tr} and let G be (t1, ..., tr)-normalizing.

1. If G is a strongly T -decomposing group, then (G, T ) has the strong dc property

and G is strongly {t1, ..., tr}-normalizing.

2. IfG is a T -decomposing group, then (G, T ) has the dc property andG is {t1, ..., tr}-

normalizing.

Proof. Consider the following inclusion.

〈G, t1, ..., tr〉 \G =
r⊎
i=1

〈G, ti〉 \G =
r⊎
i=1

〈tGi 〉 ⊆ 〈tG1 , ..., tGr 〉.

By assumption, it follows that equality holds everywhere.

From the definition it is clear that a strongly {t1, ..., tr}-normalizing group is also

(t1, ..., tr)-normalizing. So, under the assumption thatG is strongly T -decomposing both
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normalizing properties are equivalent. The next result shows that this equivalence is

preserved, when dropping the “strongly“ prefix.

Lemma 7.3.4. Let T = {t1, ..., tr} and G be T -decomposing. If G is T -normalizing,

then G is (t1, ..., tr)-normalizing.

Proof. First, assume that whenever there is a word in si and sj lying in 〈G, ti〉 \ G, for

si ∈ 〈G, ti〉 \G and sj ∈ 〈G, tj〉 \G, we write it as a word in the elements of 〈G, ti〉 \G.

This is necessary for the following contradiction.

It remains to show that 〈G, ti〉 \ G ⊆ 〈tGi 〉, for all i. Let G be a group with n + 1

elements and assume there is an element x in 〈G, ti〉 \ G, but not in 〈tGi 〉. Since G is

T -normalizing, x is a word in

t1, t
g1
1 , ..., t

gn
1 , t2, t

g1
2 , ..., t

gn
2 , ..., tr, t

g1
r , ..., t

gn
r ,

but not in ti, t
g1
i , ..., t

gn
i alone. Moreover, since 〈G, ti〉 \G and 〈G, tj〉 \G are disjoint, for

i 6= j, the element x is not a word in tj, t
g1
j , ..., t

gn
j alone. Hence, xmust be a combination

of ti and some tj . This is a contradiction to the initial assumption, since 〈G, T 〉 is given

by a disjoint union which means x cannot be such a combination.

From these two results the following consequence is obtained immediately.

Theorem 7.3.5. Let T = {t1, ..., tr}, then the following hold.

1. If G is (strongly) T -decomposing, then G is (t1, ..., tr)-normalizing if and only if G

is (strongly) {t1, ..., tr}-normalizing.

2. If G is (strongly) T -decomposing and T -normalizing, then (G, T ) has the (strong)

dc property.

3. Let (G, T ) have the strong dc property, then the following are equivalent:

a) G is strongly T -decomposing, and
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b) G is (t1, ..., tr)-normalizing and G is {t1, ..., tr}-normalizing.

4. Let T be G-independent. Then, the following a) and b) are equivalent

a) G being strongly T -decomposing is equivalent to (G, T ) having the strong dc

property;

b) G is (t1, ..., tr)-normalizing is equivalent to G is {t1, ..., tr}-normalizing.

Being strongly G-independent is a rather strong and rare property, whence, it is

preferable to lessen the conditions and see which of the previous results hold for weak

G-decompositions.

Lemma 7.3.6. Let T = {t1, ..., tr} and G be weakly T -decomposing. If G is (t1, ..., tr)-

normalizing, then,

1. (G, T ) has the weak dc property and

2. G is strongly {t1, ..., tr}-normalizing.

This also holds when weakening the prefixes.

Proof.

〈G, t1, ..., tr〉 \G =
r⋃
i=1

〈G, ti〉 =
r⋃
i=1

〈tGi 〉 ⊆ 〈tG1 , ..., tGr 〉.

Lemma 7.3.7. Let T = {t1, ..., tr} and let the following hold:

1. (G, T ) has the weak dc property;

2. G is weakly T -decomposing;

3. G is {t1, ..., tr}-normalizing.

Then, G is (t1, ..., tr)-normalizing.
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In summary, in this section we considered the relationship between the new normal-

ization properties for semigroups admitting one of the decomposition properties. It is

still open how the two normalization properties behave for more general semigroups.

The next section is dedicated to examples of semigroups admitting decompositions

and, in particular, strong G-decompositions, as these seem to be rare.

Examples of Decomposable Semigroups

In this final section of this chapter we provide examples of semigroups admitting G-

decompositions. The first set of examples comes from endomorphism monoids of strongly

regular graphs with minimum eigenvalue −2 which have been covered in Chapter 4.

Then, we give an example of a G-decomposition which is not strong. Finally, we discuss

semigroups from tilings and present some computational results.

Endomorphism Monoids of Strongly Regular Graphs with

Minimum Eigenvalue -2

In Section 4.4 the endomorphism monoids of these graphs have been determined; so,

only the square lattice graph and the triangular graph are of concern, since the other

endomorphism monoids are simply generated. Thus, it follows.

Corollary 7.4.1. Let Γ be the square lattice graph L2(n), for any n, or the triangular

graph T (n), for even n. Then, Sing(Γ) admits a strong Aut(Γ)-decomposition.

Proof. This was already established in Theorem 4.1.16 and Corollary 4.2.7.

Note that the singular monoids of these graphs are simple; hence, the results from

Section 7.3 on simple semigroups apply.

What are the minimal G-generating sets for these semigroups? Well, using Theorem

7.2.12 any strongly G-decomposable generating set is a minimal generating set. In the

case of L2(n), we simply need representatives of the semi-main classes.
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A Non-Strong G-decomposition

The square lattice graph is the two dimensional Hamming graph; however, in higher

dimensions the singular endomorphism monoid is not strongly Aut(Γ)-decomposable,

essentially because the singular endomorphism monoid is not simple any more. In this

section, we will demonstrate this statement for the graph H(3, 4) and show how this can

be generalised to H(m,n), for m,n ≥ 3.

First, by using GAP [36], we were able to determine that this graph admits 3,649,536

singular endomorphisms, which allows us to check the semigroup for strong Aut(Γ)-

decompositions. Second, in Chapter 5 it is shown that a singular endomorphism of the

Hamming graph has rank nk, for some k = 1, ...,m− 1, and that it corresponds to Latin

hypercubes of dimension m− k.

So, let S be the singular endomorphisms monoid containing all singular transforma-

tions of Γ, and G = Aut(Γ). Then, S has 2 D-classes, where the first class D1 contains

all transformations of rank 42 and the second D2 all transformations of rank 4. Then,

there are 5 transformations t1, ..., t5 (t1 and t2 of rank 42 and the remaining ones of rank

4) admitting the following decomposition.

S = S1 ] S2 ] S3 ] S4 ] S5,

with S = 〈G, t1, ..., t5〉 \ G and Si = 〈G, ti〉 \ G, for i = 1, ..., 5, where D1 ⊆ S1 ]

S2. However, a minimal generating set for S is given by only three generators, namely

S = 〈G, t1, t2, t3〉 \ G. But, what is more interesting is that there are some elements

x ∈ S1 with xt3 ∈ S1 and other elements y ∈ S1 with yt3 ∈ S4.

We have checked that any G-decomposition of S consists of 5 parts admitting the

same behaviour. Therefore, there cannot be a strong Aut(Γ)-decomposition.

In general, if we consider the endomorphism monoid of the graph H(m,n), for

m ≥ 3, we can easily find a G-decomposable generating set T . Simply pick the trans-

formation t of largest rank in S \ 〈G, T 〉 and add it to T . Keep repeating this until the
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top most D-class is covered; then continue with picking elements until the next D-class

is covered. This procedure results in a G-decomposable generating set T which is not

strongly G-decomposable, in general.

Semigroups from Tilings

We have already seen in Section 6.3 that the simple semigroups constructed from tilings

are decomposable (cf. Theorem 6.3.4). However, these semigroups are usually lacking

a permutation group G in order to be G-decomposable; this can be fixed by constructing

the kernel graph of the semigroup.

Recall, given a semigroup S we can construct the graph Gr(S) as shown in Section

3.2. Since S is not synchronizing, Gr(S) is a non-trivial graph. If Gr(S) admits a non-

trivial automorphism group, we simply apply one of the theorems on simple semigroups

from Section 7.2 to obtain a strong G-decomposition. For instance, in Example 6.3.14,

we covered an example of tilings of an m × n chequerboard. The graph Gr(S) admits

an automorphism group isomorphic to C2 × S4.

Computational Results

Small Primitive Graphs

In [9] the authors searched for endomorphisms in small vertex-primitive graphs with

complete core, namely those on strictly fewer than 45 vertices. Moreover, subsequent

computations extended this list to graphs of up to 50 vertices. Moreover, we were able to

determine the endomorphism monoids for almost all graphs (two graphs on 45 vertices

and one graph on 49 vertices is missing).

Most of the endomorphism monoids on less than 45 vertices have relative rank 1;

moreover, all others admit a strong decomposition (see Table 7.1). That is the monoids

3, 7, 8, 9, 14, 15, 16, 17, 18, 20, 21 and 23 admit a strong G-decomposition.
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A Sporadic Example PSL(2, 17)

Again, the computations in [9] have determined the smallest example of a vertex-primitive

graph admitting non-uniform endomorphisms (a transformation is uniform if all its ker-

nel classes have the same size); it is the line graph of the Tutte-Coxeter graph. This

example is the first of its kind and it comes from considering the line graph of an edge-

primitive cubic graph. These were classified by Weiss [80], who determined that the

complete list is K3,3, the Heawood graph, the Tutte-Coxeter graph and the Biggs-Smith

graph. However, computations show that the first two do not provide such examples and

the endomorphism monoid of the third graph is too small.

Let Γ be the line graph of the Biggs-Smith graph on 153 vertices and G = Aut(Γ)

its automorphism group (which is isomorphic to PSL(2, 17)). Then, there are various

non-simple subsemigroups S ≤ End(Γ) admitting a strong G-decomposition. For in-

stance, on the companion website to this article [25] the reader can find a subsemigroup

S1 ≤ End(Γ) generated by G and three non-uniform transformations of rank 5, and

a subsemigroup S2 ≤ End(Γ) generated by G and two non-uniform transformation of

rank 7. The semigroup S1 contains singular transformations of ranks 3 and 5; whereas

S2 contains singular transformations of ranks 3, 5 and 7.
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# Degree Valency Group Size GAP Nr Monoid Size Comment
1 9 4 72 2 144 relative rank = 1
2 15 8 720 3 5040 relative rank = 1
3 16 6 1152 10 5760 L2(4)
4 16 9 1152 10 2304 relative rank = 1
5 21 4 336 1 1008 relative rank = 1
6 21 16 336 1 242256 relative rank = 1
7 25 8 28800 26 1641600 L2(5)
8 25 12 200 5 8600
9 25 12 200 5 14600

10 25 12 600 13 6000 relative rank = 1
11 25 16 28800 26 57600 relative rank = 1
12 27 6 1296 8 5832 relative rank = 1
13 27 8 1296 8 5832 relative rank = 1
14 27 18 1296 8 130638096 H(3, 3; {1, 2})
15 27 20 1296 8 91447056 H(3, 3; {2, 3})
16 28 6 336 1 172368
17 28 12 40320 8 251637120 T (8)
18 28 15 336 1 8548176
19 28 18 336 1 322896 relative rank = 1
20 28 18 336 1 645456
21 28 21 336 1 1451856
22 35 18 40320 2 36328320 relative rank = 1
23 36 10 1036800 16 9755251200 L2(6)
24 36 25 1036800 16 2073600 relative rank = 1

Table 7.1: Decompositions of endomorphism monoids of small primitive graphs with
complete core.
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Chapter 8

Hulls of Graphs

From the previous chapters it became apparent that the most important tool to study non-

synchronizing groups, non-synchronizing maps and non-synchronizing ranks is the graph

endomorphism approach given by Theorem 3.2.4. This theorem states that a map t not

synchronized by a group G is a graph endomorphism of a G-invariant graph whose core

is complete. So, this theorem translates the study of synchronizing groups into the study

of graph endomorphisms, and many groups were confirmed to be non-synchronizing

that way. Moreover, motivated by this link this theorem reignited the study of graph

endomorphisms [37, 46, 47].

The graph mentioned in the proof of Theorem 3.2.4 is the kernel graph Gr(S) where

S is a semigroup (see Section 3.2). If S is the endomorphism monoid of a graph Γ,

then Gr(S) is called the hull of Γ, denoted by Hull(Γ). In fact, synchronization theory

of permutation groups can be understood as the study of endomorphisms of non-trivial

hulls. Both synchronization and graph endomorphisms are of special interest to many

mathematicians; therefore, the purpose of this chapter is to analyse the construction of

Gr(S), which joins these two areas, and emphasise its unique features.

As the basic properties of Gr(S) and the hull have been introduced in Chapter 3, the

first section is going to build on that. Because the core of Gr(S) is complete the non-

trivial endomorphisms of minimal rank have image a complete graph. That is they are
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induced by k-colourings. Therefore, in the first section we are going to discuss the role of

k-colourings and compare it with other types of colourings. It turns out that k-colourings

are the superior choice of colourings, and that hulls are the superior graphs regarding

endomorphisms. Afterwards, in Section 8.2 examples of well-known and lesser known

graphs are considered and we determine which of them are hulls or non-hulls, respec-

tively. The main result of this section states that all rank 3 graphs admitting singular

endomorphisms are hulls. Then, in Section 8.3 generating sets of the kernel graph Gr(S)

are discussed. We establish that idempotent transformations of minimal rank are suffi-

cient to generate Gr(S). However, finding minimal generating sets turns out be equiv-

alent to solving interesting combinatorial problems. At last, in Section 8.4 the inverse

synchronization problem is introduced and discussed.

The Hull and Colourings

Once again, Theorem 3.2.4 has reignited the study of graph endomorphisms for many

semigroup and graph theorists; however, the theorem actually mentions graphs having

complete cores, what about graphs with other types of cores? Would other colourings

play a role then? Of course, many examples of graphs admitting singular endomorphisms

with non-complete core exist (cf. Lemma 4.5.7), but how do these graphs fit into the

picture? What would happen if other types of colourings occurred, for example Kneser

colourings or circular colourings? The kernel graph and its hull offer answers to these

questions.

Recall, if S is a transformation semigroup on n points, then the kernel graph Gr(S)

is the graph with vertex set {1, ..., n} where two vertices v and w are adjacent if there is

no transformation t ∈ S with vt = wt. If S is the endomorphism monoid of a graph Γ,

then Gr(S) is the hull of Γ.

Suppose a graph Γ admits singular endomorphisms; then a hull Y can be obtained ad-

mitting all the endomorphisms of Γ (as End(Γ) ≤ End(Y )); in addition, Y has complete
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core. So clearly, whenever there is a non-hull graph Γ, a hull admitting the endomor-

phisms of Γ can be found.

This argument can be used in both directions. On the one hand, if the goal is to

analyse End(Y ) of a hull Y through its subsemigroups, then it might be convenient to

look for graphs Γ with Y = Hull(Γ). There might be a chance that End(Γ) is a proper

subsemigroup of End(Y ) (again we refer to the example in Lemma 4.5.7). On the other

hand, there might be purposes where information about End(Y ) is good enough, that

is ignoring any subgraphs might be clever and save some work. For instance, when

determining almost synchronizing groups it suffices to ignore any non-hulls and to focus

on the endomorphisms of hulls (cf. Section 3.4).

Now, what happens if endomorphisms would occur which are induced by other types

of colourings which are not necessarily k-colourings? So, what endomorphisms occur for

graphs not having chromatic number equal to clique number (χ = ω) for k-colourings,

but instead χC = ωC for a circular colouring C, or a Kneser colouring, or other types of

colourings? In other words, what effect do endomorphisms of graphs with non-complete

core have on synchronization? Well, the result is the same as above. Since colourings

of Γ are homomorphisms to a graph C on r vertices, endomorphisms are obtained by

composing homomorphisms as

Γ→ C → Γ

or

Γ→ C → Kr → Γ.

Hence, again it depends on whether we want to ignore substructures or not. So, using

different colourings does not lead to new insights, which means that hulls contain all

information. Consequently, hulls have a superior structure, and for this it is of interest to

know which graphs are hulls and which are not. Thus, the next section is dedicated to

provide examples of hulls and non-hulls.
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Examples of Hulls and Non-Hulls

Rank 3 Graphs

Rank 3 graphs have been introduced in Chapter 2 and various examples have been pro-

vided so far. Anyway, by definition a rank 3 graph Γ is a vertex-transitive graph whose

automorphism groupG has permutation rank 3. That means there are only two non-trivial

G-invariant graphs which are complementary and strongly regular. The following holds

for rank 3 graphs.

Theorem 8.2.1. Every rank 3 graph with singular endomorphisms is a hull.

Proof. Let Γ be the rank 3 graph with automorphism group Aut(Γ), and Γ′ = Hull(Γ).

Note, Aut(Γ) is 2-closed. Since Aut(Γ) is a subgroup of Aut(Γ′), the automorphism

group of Γ′ has either rank 3 or rank 2. If Aut(Γ′) would have rank 2, then Γ′ would be the

null graph or the complete graph, but the complete graph has no singular endomorphisms

and the null graph is not a supergraph of Γ. Hence, Aut(Γ′) has rank 3, and it acts on

Γ by automorphisms. Consequently, Aut(Γ) = Aut(Γ′), as the former one is 2-closed.

This means, Γ′ is either Γ or its complement Γ (unless Γ = Γ). However, Γ′ cannot be Γ,

since Γ is a spanning subgraph of Γ′.

The following example provides three families of rank 3 graph. However, further

examples include line graphs of projective spaces and can be found in [20].

Example 8.2.2. 1. The square lattice graph L2(n) is a hull, for n ≥ 3.

2. The triangular graph T (n) is a hull, for n ≥ 5.

3. The Paley graph P (q) is a hull, where q a prime power congruent to 1 mod 4 and a

square.
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Unions of Complete Graphs and Multi-partite Graphs

This subsection covers unions of complete graphs U(n, r) and their complements the

multi-partite graphs T (n, r) as introduced in Section 4.3. It is shown that these graphs

are hulls.

Unions of Complete Graphs The union of n copies of the complete graph Kr is de-

noted by U(n, r). This graph is disconnected, and its automorphism group is Sr oSn with

the imprimitive wreath product action. Moreover, its endomorphism monoid is simple to

determine; a singular endomorphism maps one copy of Kr to another one.

Now, we consider the case where the n copies are complete graphs of distinct sizes.

So, let X be the graph

Kr1 .Kr2 . · · · .Krs ,

with r1 ≥ r2 ≥ · · · ≥ rs. Then, an endomorphism maps smaller complete graphs to

bigger complete graphs, that is, it maps Kj to Ki, for i, j ∈ {r1, ..., rs} and i > j.

Multi-partite Graphs The multi-partite graph is the complement of the previous graph;

this graph plays a major role in mathematics (see Turan’s theorem and the field of ex-

tremal combinatorics). However, its endomorphism monoid has a much more compli-

cated structure (at least as a semigroup).

Let X be the multi-partite graph

Kr1 .Kr2 . · · · .Krs .

What do the singular endomorphisms look like? Well, a singular endomorphism col-

lapses two vertices if and only if they are in the same part. Although these simply de-

scribed endomorphisms provide a chaotic endomorphism monoid (in terms of semigroup

structure), they are fine enough to construct the kernel graph.

Proposition 8.2.3. The union of complete graphs Kr1 .Kr2 . · · · .Krs and its complement
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the multi-partite graph Kr1 .Kr2 . · · · .Krs are hulls, for any values ri.

Unions of Cores and their Complements

Unions of Cores The previous setting can be generalised by taking unions of a graph

Y where Y is a core. So, let Γ be the graph

Y.Y. · · · .Y,

given by n copies of Y ; we will write Γ = n.Y . Like for U(n, r), the singular endomor-

phism monoid and the hull of Γ can be determined easily. The following two results are

obvious.

Proposition 8.2.4. 1. Let Γ be the graph from above, and t an endomorphism col-

lapsing two of the factors Y and fixing the others pointwise, then

End(Γ) = 〈Aut(Γ), t〉.

2. If, in addition, Y is a vertex-transitive graph of order r, then

Hull(n.Y ) = Hull(n.Kr) = n.Kr.

Proof. Like for n.Kr, the group Aut(Γ) is permuting vertices within each Y and the

factors Y . Since Y is a core, an endomorphism of Γ is mapping some factors Y to other

factors Y . Thus, the first result follows.

For the second part, we need to show that if two vertices come from distinct factors

Y , then there is an endomorphism collapsing these vertices. Clearly, there are endomor-

phisms mapping one factor Y to another. However, since Y is transitive, each vertex of

the first factor Y can be mapped to any vertex of the second factor Y .

Remark 8.2.5. The second part of the previous lemma is not true if Y is non-transitive.
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For instance, let Y be the wheel graph on 6 vertices, that is 5 vertices form a cycle and

the 6th vertex is adjacent to all the others. This graph is not regular; hence, not transitive.

The graph Hull(3.Γ) is a non-regular graph, and thus not equal to 3.K6.

The odd cycle graphs C2n+1 form another well-known family of graphs which are

cores. The following example shows a surprising relation between unions of odd cycles

and unions of complete graphs.

Example 8.2.6. Let Γ = 3.C5 be the graph given by 3 copies of C5. Both graphs Γ and

3.K5 generate the same hull, but End(Γ) has size 27, 000, whereas End(3.K5) has size

46, 656, 000.

The Complementary Graph Next, the complementary graph Γ is considered. Unlike

for the multi-partite graph it turns out that not all graphs Γ admit singular endomor-

phisms. Take a look at the next example.

Example 8.2.7. Let Γ be the graph 3.C5. The complement of the cyclic graph C5 has no

proper endomorphisms and for this reason Γ has no proper endomorphisms.

Proposition 8.2.8. The graph Y is a core if and only if n.Y is a core.

Proof. Assume Y is a core. It is straightforward to construct a singular endomorphism of

n.Y which restricted to Y is a singular endomorphism of Y . Thus, n.Y has no proper en-

domorphisms. Conversely, an endomorphism of Y can be extended to an endomorphism

of n.Y by collapsing vertices in each subgraph Y in the same way.

Cycles, Paths and other Non-Hulls

Lemma 8.2.9. Let Cn be a cycle with n ≥ 5.

1. If n is odd, then the hull of Cn is the complete graph.

2. If n is even, then the hull of Cn is the complete bipartite graph.
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Proof. Odd cycles are cores, thus there are no endomorphisms collapsing edges. Even

cycles can be coloured with 2 colours red and blue, so there are endomorphisms collaps-

ing all vertices with colour red and others collapsing vertices with colour blue. Hence,

edges only appear between vertices with distinct colours.

Note, the even cycle is a transitive non-hull graph with complete core. So, not all

graphs with complete core are hulls.

Lemma 8.2.10. Let Pn be a path with n ≥ 5. Then, the hull of Pn is the complete

bipartite graph with parts of size dn
2
e and bn

2
c.

Proof. The same argument as for the even cycle holds.

Hamming Graphs and related Graphs

The Hamming graph H(m,n) is the graph with vertex set Zmn where two vertices are

adjacent if their Hamming distance is 1. Moreover, in Chapter 5 we introduced the more

general Hamming graphs H(m,n;S), with S ⊆ {1, ...,m}.

Lemma 8.2.11. Let n ≥ 2 and r ≥ 3. Then H(m,n;S) is a hull if S = {1} or S = {n}.

From Section 6.1, we know that if S = {1, ..., k}, for some k > 1, then there might

be no Latin hypercubes of class k. So, H(m,n;S) will not admit any singular endomor-

phisms; hence its hull is the complete graph.

However, the Cartesian product of odd cycles forms a subgraph of H(m,n; {1}), and

the two dimensional case has been considered in Section 4.5. The following example

shows that this graph is not a hull. Similarly, higher dimensional cases are not hulls.

Example 8.2.12. The graph Γ = Cn � Cn, for odd n ≥ 5, admits 8n2 singular endo-

morphisms and its endomorphism monoid has relative rank 1. The singular generator is

a Latin square; hence, it is a submonoid of the endomorphism monoid of H(2, n), that is

End(Γ) ≤ End(H(2, n)), but its hull is H(2, n).
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Orthogonal array graphs Lk(n) are in a sense extensions of the Hamming graph

H(2, n), as they coincide if k = 2.

Lemma 8.2.13. Let Lk(n) be an orthogonal array graph induced by a set of k−2 MOLS.

If this set can be extended to a complete set of n− 1 MOLS, then Lk(n) is a hull.

Proof. Let v and w be two vertices of Lk(n). Then, none of the k − 2 Latin squares

included in the orthogonal array has the same entry in the positions corresponding to

v and w. However, since this set can be extended to a complete set of n − 1 MOLS,

there is one Latin square having the same entry in these positions. Thus, there is an

endomorphism, induced by this Latin square, collapsing v and w.

Corollary 8.2.14. Let Lk(n) be an orthogonal array graph given by the desarguesian

plane construction. Then, this graph is a hull.

Small Primitive Graphs

We checked our list of small primitive graphs with complete core of degree ≤ 45 (from

Table 7.1 or Appendix F) and found the following.

Lemma 8.2.15. All small primitive graphs in Table 7.1 are hulls.

Generating Sets for the Kernel Graph

Basic Results on Generating Sets

When determining the examples from the previous section it was mostly argued that a

graph is a hull, because all its singular endomorphisms are known. However, in this

section we are interested deciding whether a graph is a hull by considering no more

than a few singular endomorphisms, not all of them. That is, we would prefer to have

generating sets for the kernel graph Gr(S), where S is a semigroup. Mostly, there is no
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need to determine all endomorphisms, and the restriction to generating sets simplifies

computations dramatically (cf. Example 8.2.6).

So, the question tackled in this section is: what are generators of the hull of Γ? Or

more precisely, can we find a subset S ⊆ End(Γ) with Hull(Γ) = Gr(S)? The result

is that we can choose a generating set which forms a left-zero semigroup (see Theorem

8.3.4).

Recall, two vertices v and w in Gr(S) are adjacent if there is no transformation f ∈ S

having v and w in the same kernel class. So, in fact, this construction is all about the

kernels and we obtain the following observation, immediately.

Lemma 8.3.1. Let S be a semigroup and f1, ..., fn representatives of itsR-classes. Then,

Gr(S) = Gr({f1, ..., fn}).

This result is one of the most important ones, regarding generating sets for Gr(S) and

Hull(Γ), since it reduces the the number of generators to a generally much smaller set

{f1, ..., fn}. Another interesting result comes from an observation of non-synchronizing

semigroups with non-trivial group of units G. The elements of minimal rank play an

important role, since they have many important properties, and it turns out that these are

sufficient to generate Gr(S). Note, the set of elements of minimal rank form the minimal

ideal I of S.

Lemma 8.3.2. Let S be a (non-synchronizing) semigroup of singular transformations

and I its minimal ideal, then Gr(I) = Gr(S).

Proof. Let f2 = f1t (right action), where f1, f2 ∈ Tn\Sn and t ∈ Tn are transformations,

and let n > rank(f1) > rank(f2). If the transformation f1 collapses the vertices v and

w, then so does f2. Hence, if there is no such transformation f2, then there is no such

transformation f1. Thus, it is enough to check the minimal ideal for adjacency.

Assuming that S has a transitive group of units, the transformations in I need to be

uniform (see Lemma 3.1.7). Hence, in these cases the construction of Gr(S) is based on

sets of uniform partitions.
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Recall, the minimal ideal I is a simple and a completely regular semigroup (see Sec-

tion 2.2). Thus, every H-class of I contains a unique idempotent. This fact provides very

interesting generating sets (at least for semigroup theorists).

Corollary 8.3.3. 1. Let I be the minimal ideal of S and e1, ..., en representatives of

the R-classes of I . Then, Gr(S) = Gr({e1, ..., en}).

2. The set of idempotents of I , namely E(I), generates Gr(S).

3. The set of idempotents of S, namely E(S), generates Gr(S).

Proof. The first result is a combination of the previous two. From this the second follows,

since the H-classes cover the R-classes and, therefore, the idempotents contain a set of

representatives from each R-class. The third result follows from the second.

By combining these results, it is possible to pick transformations in S which generate

a left-zero subsemigroup S ′ which generates the same graph, namely Gr(S) = Gr(S ′).

Theorem 8.3.4. Let S be a transformation semigroup with graph Gr(S). Then, we can

find a left-zero semigroup S ′ such that Gr(S) = Gr(S ′). Moreover, the transformations

of S ′ are of minimal rank in S.

Proof. As we have seen, the idempotents in E(I) generate Gr(S). Pick an L-class l in

the minimal ideal I of S. Then, the idempotents in S ′ = E ∩ l cover each R-class;

hence this subset of idempotents generates Gr(S). However, this set S ′ forms a left-zero

semigroup, as can be checked straightforwardly.

Now, given that the first results on generating sets are established, they are applied

to some abstract examples. In abstract semigroup theory many types of semigroups

are common, for instance “simple semigroups”, “regular semigroups” or even “inverse

semigroups”. Here, the following 4 kinds of semigroups are considered: monogenic

semigroups, bands, semilattices and left-zero semigroups (right-zero semigroups, respec-

tively). If S is a semigroup of one of those types with an arbitrary transformation repre-

sentation, then we want to know the generating set for Gr(S).
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Monogenic Semigroups A monogenic semigroup is the equivalent to a cyclic group in

group theory. Here, the semigroup S is generated by a single transformation a, namely

S = 〈a〉, where am = am+r for minimal non-negative integers m and r. The integer m is

the index and r is the period.

Lemma 8.3.5. Gr(S) = Gr({am}).

Proof. The minimal ideal of S is I = {am, ..., am+r−1}, where I has a unique R-class.

The result follows from Theorem 8.3.4.

Bands A band is a semigroup S where every element is an idempotent; that is, a2 = a,

for all a ∈ S.

Lemma 8.3.6. Let S be a band and I its minimal ideal. Further, let b1, ..., bs be a gener-

ating set for I . Then, Gr(S) = Gr({b1, ..., bs}).

Proof. An element x ∈ I is a word in the generators b1, ..., bs. Thus, if the word starts

with bi, then x and bi need to have the same kernel, as they already have the same rank.

Hence, b1, ..., bs generate Gr(S).

Semilattices A semilattice is a semigroup which is a commutative band. Thus, we have

a2 = a and ab = ba, for all a, b ∈ S.

Lemma 8.3.7. Let S be a band and I its minimal ideal. Further, let b1, ..., bs be a gener-

ating set for I . Then, Gr(S) = Gr({b1}).

Proof. Since S is a band, Gr(S) is generated by b1, ..., bs. By the same argument as in the

proof for bands, an element x has the same kernel as bi, for some i, and commutativity

guarantees that x has the same kernel as all the bi. Therefore, we only need one of them

to generate Gr(S).

Left-zero Semigroups A left-zero semigroup S satisfies the following condition:

ab = a, for all a, b ∈ S. In particular, left-zero semigroups are bands; however, gen-

erating sets for Gr(S) are even easier to determine.
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Lemma 8.3.8. Let S be generated by a1, ..., ar. Then, Gr(S) = Gr({a1, ..., ar}).

Proof. For left-zero semigroups holds 〈a1, ..., ar〉 = {a1, ..., ar}.

The same holds for right-zero semigroups.

Minimal Generating Sets

As observed, the minimal ideal and, in fact, representatives of itsR-classes already gener-

ate Gr(S). This reduces the size of a generating set significantly; however, the question of

a minimal generating set arises. The interest in this question comes from its connections

to graphs. In particular, if given a generating set for Gr(S), we can construct Gr(S), but

also its complement graph, their automorphism group and their endomorphism monoids.

All this information is implicitly included in the generators. Thus, the remainder of this

section is devoted to minimal generating sets.

Unfortunately, this problem is not going to be solved in full generality, here, though

it is simple to find minimal generating sets for the four kinds of semigroups from above.

Instead, minimal generating sets are provided for a choice of the more interesting ex-

amples in Section 8.2. In detail, we cover the multi-partite graph, the ladder graph, the

square lattice graph, the Hamming graph, and some of its variations. We start with the

multi-partite graph, as this case is straightforward.

Lemma 8.3.9. The multi-partite graph has a minimal generating set of size 1.

Next, the ladder graph LD(n) is considered (cf. Section 4.3). Here, we are going to

encounter another famous combinatorial object; the binary Hamming code.

Lemma 8.3.10. Let n be a positive integer and let r be minimal with respect to n ≤ 2r.

Then, any n vectors of Fr2 induce a generating set of size r + 1 for LD(n).

Proof. We use a construction similar to the parity check matrix of the binary Hamming

code. Let M be a matrix whose columns are any n vectors from Fr2. Now, add a row

consisting of 1’s to M . By substituting the 1’s by the tuple 1, 2 and 0’s by the tuple 2, 1,
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the rows of this matrix form transformations of 2n points. We can easily check that these

transformations generate LD(n).

Theorem 8.3.11. The hull of LD(n) has a minimal generating set of size r + 1, where r

is minimal with n ≤ |Fr2|.

Proof. We need to show that the above generating set is minimal. Assume we are given

minimal generating set with k < r + 1 elements. Wlog the images of these k transfor-

mations are the set {1, 2}. However, by the correspondence above (that is we encode the

1’s and 0’s as above) this leads to a k× n matrix whose columns are vectors in Fk2. Wlog

we may assume that the last row consists of 1’s, but then there is a column which appears

twice in the matrix. Thus, there are too many edges between the 4 vertices which are

encoded by these two columns.

It is more difficult to find minimal generating sets for n.Kr, where r > 2 (which is a

hull). However, it is possible to provide some bounds.

Lemma 8.3.12. The graph n.K3 can be generated by at most n generators.

Proof. Consider the n× n matrix M , where M has first row and first column 0’s and the

lower right (n− 1)× (n− 1) submatrix is (J + I), where J is the all 1 matrix and I the

identity matrix. Now encode the 0’s with the triple 1, 2, 3; the 1’s with 2, 3, 1, and the 2’s

with 3, 1, 2. The n rows of the encoded n× 3n matrix generate n.K3.

Lemma 8.3.13. The graph n.Kr can be generated by at most r generators if 2 ≤ n ≤

N(r) + 1 where N(r) is the maximal number of mutually orthogonal Latin squares of

order r.

Proof. Let 2 ≤ n ≤ N(r)+1 and consider the r×nrmatrixM = (A1|A2| · · · |An) where

Ai are r × r matrices defined as follows: A1 has all rows 1, 2, ..., r; whereas, A2, ..., An

are the sets of mutually orthogonal Latin squares. The rows of M form transformations

on nr points which generate n.Kr.
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We continue with the square lattice graph L2(n) and other Hamming graphs.

Theorem 8.3.14. Let Γ be the square lattice graph L2(n), which is a hull. Then, the

following holds for generating sets of the hull.

1. If n is a prime power, then the minimal generating set is given by a complete set of

n− 1 MOLS.

2. If n is not a prime power, then the minimal generating set contains at most n(n−1)

elements.

Proof. First, a complete set of n − 1 MOLS generates Hull(L2(n)). If however, we

would pick any n− 2 transformations or less, then there would be too many edges in the

resulting graph.

However, for non-prime power n, it is unknown whether there are complete sets of

MOLS or not. In these cases, we pick the following transformations to generate the hull.

Identify the vertices with points in Z2
n and pick any Latin square. Fix one of its rows and

permute the remaining n− 1 cyclically using an n− 1 cycle. Applying this permutation

n − 1 times results in n − 1 distinct Latin squares. Doing this for all rows, provides us

with n(n − 1) Latin squares, and thus, n(n − 1) transformations. It is clear that these

generate the hull.

This method can be easily extended to higher dimensional Hamming graphs.

Corollary 8.3.15. Let Γ be the Hamming graph H(m,n), which is a hull. Then, the

following holds for generating sets of the hull.

1. If n is a prime power, then the minimal generating set is given by a complete set of

orthogonal Latin hypercubes.

2. If n is no prime power, then the minimal generating set contains at most

nm−1(n− 1)m−1 elements.
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Similarly, for orthogonal array graphs Lk(n) coming from desarguesian affine planes

the minimal generating set consists of the n−k−1 Latin squares which extend the initial

set of MOLS to a complete set of n− 1 MOLS.

Now, further Hamming graphs are considered.

Lemma 8.3.16. 1. The hull of H(m,n) has a minimal generating set of size m.

2. The hull of H(m,n; {m}) has a minimal generating set of size m, too.

Proof. In the first case, the m transformations corresponding to the m parallel class

along the m coordinate axes. In the second case, pick m transformations each collapsing

(m− 1)-subarrays in one of m possible ways. In both cases there cannot be less than m

transformations, since then we would not obtain the hull.

In the next section, the inverse synchronization problem is introduced. Moreover, it

is conjectured that every hull on n vertices is generated by at most n−1 transformations.

The Inverse Synchronization Problem

In this section, the initial approach of finding maps not synchronized by a given group

is reversed, and changed into the problem of finding groups which do not synchronize

a given set of maps; this problem is the inverse synchronization problem. The idea is

the following. Given any set of maps M , construct the kernel graph Gr(M) to find its

automorphism group G.

M → Gr(M)→ Aut(Gr(M)).

The goal is to obtain an automorphism group not synchronizing the transformations in

M , and to analyse it. However, this approach will not produce a satisfying result, in

general, since there are things which can go wrong when considering a set M instead of

a semigroup 〈M〉. The next example provides a hint as to what can go wrong.
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Example 8.4.1. Consider the two transformations t1, t2 ∈ T4, where t1 = [3, 3, 4, 3] and

t2 = [3, 3, 2, 4]. The semigroup S = 〈t1, t2〉 contains a constant map t = [4, 4, 4, 4],

therefore Gr(S) is the Null graph. However, if M is the set {t1, t2}, then Gr(M) is

non-trivial.

The reason for this discrepancy lies in the kernel structure of these transformations.

Because, t2 is a refinement of the kernel classes of t1, the graph Gr(M) ignores t2, that

is, the kernel graph can be generated from t1 alone. Therefore, semigroups need to be

considered instead of sets. So, let S denote the semigroup generated by the set M ; then,

the previous diagram transforms to

S → Gr(S)→ Aut(Gr(S)).

By Theorem 8.3.4, it can be assumed that S is a left-zero semigroup. But then again,

by the result on left-zero semigroups (Lemma 8.3.8), S can actually be taken to be a set;

however, not just any set as seen from the last example. This means that, in fact, there

are good choices and bad choices for picking a set M , as done initially.

Anyway, first, we consider the inverse synchronization problem for a single transfor-

mation (or respectively S of size 1); here, the dilemma of good and bad choices does not

occur. Then, we discuss larger sets, and take a look at what groups can occur.

Semigroups with one Element

Assume the semigroup S contains a non-trivial singular transformation t and has size 1;

so t is an idempotent. However, how does the kernel graph Gr(S) look like? Well, two

vertices are adjacent if they are not in the same kernel class of t. Hence, the resulting

graph is a multi-partite graph, each part corresponding to a kernel class of t.

These graphs have been covered in the examples section (see Section 8.2) and by

Lemma 8.3.9, and an endomorphism of this graph is collapsing vertices lying in the same

part. The structure of the automorphism group depends on the kernel structure, and it is
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imprimitive, in general; however, if t is uniform, then at least transitivity holds. This pro-

vides the following characterisation of primitivity. So, those groups are straightforward

and the inverse synchronization problem is completely solvable.

Semigroups with more Elements

In this section, the case with at least two generators for Gr(S) is considered. For this, S

needs to be a semigroup generated by at least two generators. So, what groups do not

synchronize S? This question is really hard to solve, since in order to generate Gr(S)

various combinations of kernel classes to need to be considered, in general. Hence, we

are not able to provide an answer to this question, but rather provide a discussion and

examples.

First, it is interesting to note the type of graphs which are generated by this con-

struction. It is obvious that this construction generates graphs which are hulls; so, the

non-synchronizing groups we obtain are automorphism groups of hulls. (What about

non-hulls? We need to leave this question and focus on automorphism groups of hulls.)

So, because solving the inverse synchronization problem is very hard, it is of special

interest to see what automorphism groups actually occur (or rather their permutation

isomorphism types) and which ones are likely to occur. As mentioned earlier, there are

good and bad choices when picking a set M of generators for S. Here, a bad choice

is where Gr(S) provides a group which does synchronize some elements of M , but not

all. A good choice is where a non-trivial group G is obtained such that 〈G,M〉 is not-

synchronizing. It appears that the bigger or the more structure the group G has the better.

So, we focus on the description of size and structure of the groups we obtain, where size

is described quantitatively and structure qualitatively.

So, assuming a good set of transformations is chosen, which provides a nice auto-

morphism group. How good can this group be or, equivalently, how good can the given

choice of generators in M be? Are there choices which lead to hulls admitting a big

(or well structured) non-synchronizing automorphism group, and how many generators
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are needed to generate the corresponding graph? These three questions are going to be

tackled in the subsequent discussion.

Consider the first question: In what follows, choosing the transformations randomly

is a bad choice. The reason for this is found in Cameron’s paper [15] where he shows

that this leads to a synchronizing semigroup most of the time. Hence, Gr(S) is the null

graph and its automorphism group is the whole symmetric group. This is a trivial answer

to the inverse synchronization problem (that is, we obtain Sn). The result of Cameron is

as follows.

Lemma 8.4.2. The probability that two random transformations on n points generate a

synchronizing semigroup is about 1−O(n−2).

Clearly, this suggests that by picking a bigger set of random transformations the prob-

ability that the resulting semigroup is synchronizing increases. But what happens in one

of the rare cases if a non-synchronizing semigroup obtained? How good is a good (ran-

dom) choice of generators? That is, how big or how structured is the group likely to

be? Well, for instance the stabiliser of a point in Sn, that is Sn−1, occurs as an automor-

phism group. This group is the biggest possible non-trivial group which can occur, and a

possible construction for its graph is given in the next example.

Example 8.4.3. Let 2 ≤ k ≤ n− 1 and Γ be a graph on n points given by the complete

graph on k points with n− k extra vertices without edges. This graph has automorphism

Sk (which permutes the n−k vertices in any possible way). Also, this graph is a hull, and

a minimal generating set contains k transformations t1, ..., tk where each transformation

ti maps the n− k points to the point i and fixes the others.

The automorphism groups from the previous example are intransitive, but groups ad-

mitting a nicer structure can be found, as well. One example is the complement of the

Hamming graph H(2, n). From the previous section we know that its minimal generat-

ing set is of size two (Lemma 8.3.16). Moreover, its automorphism group is the primitive

group Sn o S2 with permutation rank 3. This group has a richer structure, but is smaller
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in terms of size (|Sn o S2| = (n!)2 compared to |Sn2 | = (n2)! both on n2 points). An-

other example is the complete multi-partite graph which has a transitive, but imprimitive

automorphism group. Thus, the occurring groups vary fundamentally, and with the right

choice of generators both large groups and groups with a rich structure can be obtained.

This statement is underlined by Table 8.1, where the isomorphism types of all occurring

automorphism groups for very small n is listed. As can be observed, many different

structures occur.

The third question is on the minimal number of generators for these hulls. Above it is

mentioned that the more generators are picked randomly, the greater is the probability to

obtain a synchronizing group, and thus, to obtain the trivial answer. So, if the generators

of S would be picked randomly, the probability of getting a non-synchronizing group

is decreasing each time an additional transformation is picked. Thus, how many trans-

formations do we need to pick at most? Or similarly, what are the sizes of the minimal

generating sets of hulls on n vertices?

From the previous example, it can be observed that every number between 1 and n−1

may occur, but it is unclear for bigger values. Our guess is that n− 1 transformations are

enough to generate any hull on n vertices, and the data in Table 8.2 supports this guess.

This table contains the number of hulls having a minimal generating set of size i, for

i ∈ N, and as we see, the maximal size is n− 1, indeed. We are missing a proof for this

guess, but we conjecture the following.

Conjecture 8.4.4. A graph on n vertices which is a hull can be generated with at most

n− 1 transformations.

To conclude this section, we summarise the previous discussion. It was argued that by

moving from semigroups generated by a single transformation to semigroups with more

generators no satisfactory answer to the inverse synchronization problem was given. The

difficulties lie in the vast number of possible outcomes of graphs Gr(S). For instance,

from Table 8.2 it can be observed that for n = 7 a total of 112 = 15 + 97 different graphs

can be generated from merely two transformations.
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Vertices: n = 3 n = 4
# Graphs 4 # Graphs 11
# Hulls 4 # Hulls 10
Groups Occurrences Groups Occurrences
C2 2 C2 2
S3 2 C2 × C2 2

D8 2
S3 2
S4 2

Vertices: n = 5 n = 6
# Graphs 34 # Graphs 156
# Hulls 27 # Hulls 102
Groups Occurrences Groups Occurrences
C2 5 〈1〉 3
C2 × C2 6 C2 22
D12 6 C2 × C2 21
D8 4 C2 × C2 × C2 4
S3 2 S3 4
S4 2 D8 7
S5 2 D12 17

C2 ×D8 6
S4 2
S3 × S3 2
C2 × S4 8
(S3 × S3) o C2 2
S5 2
S6 2

Vertices: n = 7 n = 7 (continued)
# Graphs 1044
# Hulls 539
Groups Occurrences Groups Occurrences
〈1〉 49 C2 ×D8 20
C2 142 C2 × S4 20
D8 21 C2 × S5 6
S3 21 D8 × S3 8
S4 2 S3 × S3 6
S5 2 S3 × S4 6
S6 2 C2 × C2 × C2 29
S7 2 C2 × C2 × S3 18
D12 47 (S3 × S3) o C2 4
C2 × C2 133

Table 8.1: Distribution of isomorphism types of automorphism groups from small hulls.
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Vertices: n = 4 n = 5
# Graphs 11 # Graphs 34
# Hulls 10 # Hulls 27
Size Occurrences Size Occurrences
1 6 1 7
2 2 2 12
3 1 3 7

4 1
Vertices: n = 6 n = 7
# Graphs 156 # Graphs 1044
# Hulls 102 # Hulls 539
Size Occurrences Size Occurrences
1 11 1 15
2 35 2 97
3 46 3 316
4 9 4 100
5 1 5 10

6 1

Table 8.2: Distribution of sizes of minimal generating sets of small hulls.

Moreover, it was pointed out that the occurring non-synchronizing automorphisms

groups can be both well structured and big. It is also shown that there exist graphs

on n vertices which cannot be constructed with less than i transformations, for any

i = 1, ..., n− 1, which leads to Conjecture 8.4.4.
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Chapter 9

Conclusion

In this thesis, we set out to push the bounds in synchronization theory and its directly

related areas, namely, permutation group theory, graph theory, combinatorics and semi-

group theory.

In Chapter 3 we compiled a complete list of small non-synchronizing groups of per-

mutation rank 3 and examined the non-synchronizing ranks of groups of permutation

rank 3. We developed a tool to find bounds of non-synchronizing ranks of strongly regu-

lar graphs and applied it to construct a bound for the non-synchronizing ranks of groups

of permutation rank 3. However, a more recent result of Roberson [72] provides a full an-

swer to the question of non-synchronizing ranks of strongly regular graphs. Roberson’s

result shows that those graphs are pseudo-cores. Nevertheless, it is still open whether

graphs which are not strongly regular are pseudo-cores; in particular, regular graphs.

Therefore, it remains to find a generalisation of our construction to cover those graphs.

Chapter 4 was dedicated to the investigation of examples of non-synchronizing semi-

groups. Here, we provided a set of examples which have been repeatedly used in chapters

5, 6, 7 and 8. Firstly, we described the endomorphism monoids of strongly regular graphs

with minimum eigenvalue−2, then we introduced grid graphs which are not hulls, though

they admit singular endomorphisms, and finally, we determined all primitive graphs with

complete core admitting singular endomorphisms up to degree 45. It remains to anal-
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yse other endomorphism monoid of primitive graphs, and in particular to compute the

endomorphism monoids for larger graphs.

Then, in Chapter 5 the singular endomorphisms of the Hamming graph H(m,n)

were determined. This graph belongs to the family of vertex-transitive graphs and is

one of the few examples admitting singular endomorphisms of more than a single rank,

i.e. its singular endomorphisms have ranks nk, for k = 1, ...,m − 1. It was shown that

its endomorphisms are uniform and induced by Latin hypercubes. Building on those

results, the subsequent sections described singular graph endomorphisms of the cuboidal

Hamming graph H(n1, ..., nd). However, there are even more graphs induced by the

Hamming association scheme which admit singular endomorphisms. For instance, we

showed that H(m,n;S), for S either {2, ...,m}, {1, ...,m − 1} or {m}, admits singular

endomorphisms and so does H(m,n;S), where S = {1, ..., k}, 1 ≤ k ≤ m− 1. Further

research is necessary to find more instances of S such that H(m,n;S) admits singular

endomorphisms and for the analysis of those endomorphisms.

However, the topic of Chapter 6 was threefold. First, Latin hypercuboids of class r

were defined, their existence, their numbers and their extensions were discussed. Then,

by introducing mixed codes and in particular mixed MDS codes, we provided a corre-

spondence between Latin hypercuboids and mixed MDS codes with certain parameters.

This result is generalizing the well-known correspondence between common MDS codes

and Latin hypercubes. Only a few is known about those hypercuboids and many ques-

tions which have been answered for Latin hypercubes of class 1 are unkown for higher

classes. In particular, potential problems regard extensions and embedding results of

those hypercuboids as well as non-extendability conditions. A problem of major inter-

est might be whether or not Evans’ conjecture can be generalised and solved for those

hypercuboids.

Finally, the last part of Chapter 6 provided a construction of non-sychronizing semi-

groups from tilings. In particular, this construction allowed to interpret the endomor-

phism monoids of the Hamming graphs H(m,n;S) as semigroups constructed from
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tilings and similarly for the square lattice graph L2(n) and the triangular graph T (n) from

Chapter 4. Moreover, this tiling setting provides a set of examples for G-decompositions

which are introduced in Chapter 7. In particular, Theorem 6.3.4 shows why the decom-

positions in Theorem 4.1.16 and Corollary 4.2.7 hold. This new connection provides

further incentive towards the study of tilings from a more algebraic point of view and its

connections to graph endomorphisms.

In Chapter 7 the work on normalizing groups was generalised. Firstly, it was shown

that the results of [3] hold for semigroups of the form 〈G, T 〉, where G is a permutation

group and T a set of singular transformations. Then, it was established that a groups

G which strongly decompose a set T are T -normalizing, if and only if they normalize

each element in T independently. Surprisingly, there are many examples of semigroups

(containing a group of permutations) which admit strong G-decompositions; for instance

from tilings (cf. Chapter 6).

Further research regarding normalizing groups includes the classification of all trans-

formations which are normalized by all permutation groups with a given property ’P’ (say

2-transitive, basic or primitive groups). However, when regarding G-decompositions it is

certain that this thesis contains only the beginning of this research. Similarly, we can ask

for a classification of all transformations which are G-decomposable for all permutation

groups with a given property.

Ultimately, Chapter 8 analysed the construction of the kernel graph Gr(S). Many

hulls and non-hulls were identified and it was shown that all rank 3 graphs which admit

singular endomorphisms are hulls. Moreover, it was proved that without loss of generality

a generating set of Gr(S) can be chosed to be a left-zero semigroup. At last, the inverse

synchronization problem was introduced and discussed. From the arguments used in this

discussion we posed a conjecture which says that a hull on n vertices admits a minimal

generating set with at most n elements.
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Appendix A

The O’Nan-Scott Reduction Theorem

In this appendix, additional information on the famous reduction theorem of O’Nan and

Scott is provided. This theorem is classifying primitive groups according to their struc-

ture, and following Cameron’s approach to this theorem [19] they are subdivided into 4

classes.

In detail, let G be a primitive permutation group. Then, the first class consists of

non-basic groups, where a group is said to be non-basic if it is primitive and preserves

a Cartesian structure or power structure (a structure similar to the structure of an n-

dimensional cube, that is G is acting on n-tuples via the product action), and is basic

otherwise. These groups are embeddable into a wreath product with primitive product

action. For more details see [17, Lecture 2 p. 4] or [19, pp. 102 ff.].

The other three classes are contained in the basic case. However, before continuing

we need to clarify what the socle is. The socle soc(G) of a group G is the product of its

minimal normal subgroups. Luckily, there are not that many for primitive groups, in fact,

there are at most two.

Lemma A.1. A primitive permutation group has at most two minimal normal subgroups.

Moreover, if it has two, then they are isomorphic and non-abelian.

So, either there are two isomorphic minimal normal subgroups, or a unique one.

Moreover, by the result in [31, Thm. 4.3 A] the socle soc(G) is the direct product of
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isomorphic simple groups, so it is of the form soc(G) = T × · · · × T , for a simple group

T .

In the basic case, the reduction theorem classifies primitive groups implicitly by as-

signing the socle of a group to one of the remaining three classes. Therefore, the second

class consists of the affine groups G = {x 7→ xh + v : h ∈ H, v ∈ V }, where G is acting

on a d-dimensional vector space V over the field Fp, for a prime p, and H ≤ GL(V ). In

this case, G is primitive if and only if H is irreducible (it preserves no non-zero proper

subspace of V ); and G is basic if and only if H is primitive (it preserves no non-trivial

direct sum decomposition of V ). Moreover, a primitive group is of affine type if and only

if its socle is an elementary abelian p-group [17, Lecture 2, p. 4] or [31, Thm. 4.7 A and

p. 137].

The third class is given by the diagonal groups; that is, groups where the socle is the

direct product T n of simple groups acting on the diagonal subgroup D = {(t, t, ..., t) :

t ∈ T}.

The fourth class is given by groups whose socle is a simple group. Such groups are

called almost simple groups, however the action of the socle is unclear in this case. This

class includes the groups in the classification of finite simple groups (CFSG).

Finally, we state the O’Nan-Scott reduction theorem.

Theorem A.2 (O’Nan-Scott). Let G be a primitive group. Then

1. G is non-basic;

2. G is basic and G is either of affine or diagonal type, or G is almost simple.
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Appendix B

Semigroups: Definitions and Properties

This part of the appendix contains a list of well known properties of semigroups used

throughout this thesis. It serves as a look up list to provide the reader with a more com-

prehensive overview of the semigroup properties introduced.

A (transformation) semigroup S is ...

... a monoid if S contains an identity.

... a group if S is a monoid where every element has an inverse.

... of rank r if its minimal generating set is of size r.

... 1-generated if it has exactly one singular transformation in a minimal generating set.

... simple if it does not have any proper ideals.

... regular if for all x ∈ S there exists an element y ∈ S such that xyx = x.

... completely regular if every element is contained in a subgroup of S.

... a monogenic semigroup if it has rank 1.

... a band if x2 = x, for all x ∈ S.

... commutative if xy = yx, for all x, y ∈ S.
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... a semilattice if S is commutative and a band.

... left-zero if xy = x, for all x, y ∈ S.

... right-zero if xy = y, for all x, y ∈ S.

Also, remember that the rank of a transformation t ∈ Tn is the size of its image im(t).
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Appendix C

Green’s Relations and Visualisations

Green’s relations are five equivalence relations on a semigroup which provide an impor-

tant tool for a structural description and decomposition of the semigroup. However, they

play no role in group theory since they all coincide with the trivial equivalence. More-

over, in finite semigroup theory two equivalence relations coincide, so there are, in fact,

as little as four distinct ones. The following are the equivalence relations: Two elements

a, b in a finite semigroup S are

• L-related if they generate the same principal left ideal, that is S1a = S1b,

• R-related if they generate the same principal right ideal, that is aS1 = bS1,

• H-related if they are L- and R-related, and

• D-related if they generate the same principal two-sided ideal, that is

S1aS1 = S1bS1.

The equivalence classes of L-, R-, H- or D-related elements are called L-, R-, H- or

D-classes.

In addition, each D-class is a union of L- and R-classes. The intersection of an L-

and R-class is either empty or an H-class. Moreover, two elements a and b are in the

same D-class if and only if the L-class La of a has a non-trivial intersection with the

R-class Rb of b (when switching a and b this remains valid).
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For this, it is convenient to visualise a D-class as an eggbox, that is a grid where

each cell represents an H-class containing semigroup elements, whose rows represent

L-classes, and whose columns represent R-classes (cf. figure 2.1).

Regarding the visualisation by eggbox diagrams the following holds

Proposition C.1 (Prop. 2.3.1 [45]). If a is a regular element of S (that is there is an

x ∈ S with axa = a), then every element in the same D-class is regular.

Proposition C.2 (Prop. 2.3.2 [45]). If there is a D-class containing a regular element,

then every L- and R-class of this D-class contains an idempotent.

As a consequence, each H-class contains at most one idempotent, and so admits

the structure of a group. Therefore, it is common to highlight the H-classes with an

idempotent in an eggbox diagram, and if possible, to determine the corresponding group

structure. Moreover, in a completely regular semigroup every H-class contains an idem-

potent [45, Prop. 4.1.1]. In this case, the semigroup S can be written as a disjoint union

of groups [45, Thm. 4.1.3].
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Appendix D

Rank 3 Groups of Affine Type

In Chapter 3 we calculated the bounds s(n). The table on the next page contains the

information for the affine case. The groups (families) given in this table can be found in

Table 12 in [64] where the affine groups are classified and their subdegrees determined.



218 Appendix D. Rank 3 Groups of Affine Type

Pa
ra

m
et

er
s

Ty
pe

of
G

w
ith

st
ab

ili
se

rG
0

n
=

k
=

co
ns

ta
nt
c

(A
1)

:G
0
<

Γ
L

(1
,p

d
)

pd
p
d
−
1

v
1/

9
(A

2)
:G

0
im

pr
im

iti
ve

p2
m

2(
pm
−

1)
1/

9
(A

3)
:t

en
so

rp
ro

du
ct

q2
m

,m
≥

1
(q

+
1)

(q
m
−

1)
m

in
(1
/4

+
q,
qm
/4

)/
9

(A
4)

:S
L
a
(q

)
�
G

0
q2
a

(q
+

1)
(q
a
−

1)
m

in
(1
/4

+
q,
qa
/4

)/
9

(A
5)

:S
L
2
(q

)
�
G

0
q6

(q
+

1)
(q

3
−

1)
(q

+
5/

8)
/9

(A
6)

:S
U
a
(q

)
�
G

0
an

d
a
≥

2
q2
a
,a

ev
en

(q
a
−

1)
(q
q
−
1

+
1)

m
in

(1
/4

+
qa
−
1
,q
a
/4

)/
9

q2
a
,a

od
d

(q
a

+
1)

(q
q
−
1
−

1)
m

in
(q
a
−
1
/4
,(
qa

+
1)
/2

)/
9

(A
7)

:Ω
ε 2
a
(q

)
�
G

0
an

d
a
≥

2
q2
a
,ε

=
+

(q
a
−

1)
(q
q
−
1

+
1)

m
in

(1
/4

+
qa
−
1
,q
a
/4

)/
9

q2
a
,ε

=
−

(q
a

+
1)

(q
q
−
1
−

1)
m

in
(q
a
−
1
/4
,(
qa

+
1)
/2

)/
9

(A
8)

:S
L
5
(q

)
�
G

0
q1

0
(q

5
−

1)
(q

2
+

1)
(q

2
+

27
/3

2)
/9

(A
9)

:B
3
(q

)
�
G

0
q8

(q
4
−

1)
(q

3
+

1)
(q

3
+

7/
16

)/
9

(A
10

):
D

5
(q

)
�
G

0
q1

6
(q

8
−

1)
(q

3
+

1)
(q

3
+

24
7/

25
6)
/9

(A
11

):
S
z(
q)

�
G

0
q4

(q
2

+
1)

(q
−

1)
q/

18

Ta
bl

e
D

.1
:T

he
co

ns
ta

nt
c

fo
rt

he
in

fin
ite

fa
m

ili
es

of
af

fin
e

gr
ou

ps
(s

ee
Ta

bl
e

12
of

[6
4]

).



219

Appendix E

Non-Synchronizing Groups of Small

Degree

All Primitive Non-Synchronizing Groups of Degree ≤ 100

The following table contains all 2-closed primitive permutation groups of degree less

than 100 which are not synchronizing. As was mentioned in chapter 3, the motivation

to classify all small synchronizing groups is handy for small case considerations. The

data contains the degree of the permutation group, the permutation rank as well as the

structure description provided by GAP [36] and its GAP numbering for the command

PrimitiveGroup(i,j).

For each of these groups, the author was able to find a section-regular partition given

by a graph endomorphism of an invariant graph with complete core. We refer to Ap-

pendix F for more details on the endomorphisms of the corresponding graphs.
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# Degree Permutation Rank Group Name (GAP) GAP Number
1 9 3 32 : D(2 ∗ 4) (9, 2)
2 15 3 S(6) (15, 3)
3 16 3 (S(4)× S(4)) : 2 (16, 10)
4 21 4 PGL(2, 7) (21, 1)
5 25 3 52 : 4×D(2 ∗ 3) (25, 13)
6 25 3 (S(5)× S(5)) : 2 (25, 26)
7 25 4 52 : 8 (25, 6)
8 25 4 52 : D(2 ∗ 4) : 2 (25, 11)
9 25 5 52 : D(2 ∗ 6) (25, 7)
10 25 6 52 : D(2 ∗ 4) (25, 5)
11 25 7 52 : S(3) (25, 2)
12 25 9 52 : 3 (25, 1)
13 27 4 33(S(4)× 2) (27, 8)
14 27 5 33.S(4) (27, 5)
15 28 3 S(8) (28, 8)
16 28 5 PGL(2, 7) (28, 1)
17 35 3 S(8) (35, 2)
18 35 4 S(7) (35, 4)
19 36 3 (S(6)× S(6)) : 2 (36, 16)
20 36 4 PGammaL(2, 9) (36, 5)
21 36 5 PGL(2, 9) (36, 4)
22 40 3 PSp(4, 3) : 2 (40, 4)
23 45 3 PSp(4, 3) : 2 (45, 5)
24 45 3 S(10) (45, 7)
25 45 5 PGammaL(2, 9) (45, 3)
26 45 6 PGL(2, 9) (45, 1)
27 49 3 72 : 3×D(2 ∗ 8) (49, 24)
28 49 3 72 : 3× (Q(8) : 3) (49, 27)
29 49 3 (S(7)× S(7)) : 2 (49, 38)
30 49 4 72 : 3×D(2 ∗ 4) (49, 14)
31 49 4 72 : 3×D(2 ∗ 6) (49, 21)
32 49 5 72 : 12 (49, 8)
33 49 5 72 : 3 : D(2 ∗ 4) (49, 13)
34 49 5 72 : Q(8) : 3 (49, 17)
35 49 6 72 : 3×D(2 ∗ 3) (49, 12)
36 49 7 72 : Q(8) (49, 4)
37 49 7 72 : D(2 ∗ 8) (49, 9)
38 49 8 72 : D(2 ∗ 6) (49, 7)
39 49 10 72 : D(2 ∗ 4) (49, 3)
40 49 12 72 : S(3) (49, 2)
41 49 13 72 : 4 (49, 1)
42 52 4 PSL(3, 3).2 (52, 1)
43 55 6 PGL(2, 11) (55, 3)
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44 56 4 Sym(8) (56, 7)
45 60 4 Alt(5)2.22 (60, 5)
46 60 5 Alt(5) o Sym(2) (60, 4)
47 63 4 PSU(3, 3).2 (63, 2)
48 63 4 PSU(3, 3).2 (63, 4)
49 63 5 PSU(3, 3) (63, 3)
50 64 3 26 : 3.Sym(6) (64, 47)
51 64 3 26 : (S3×GL(3, 2)) (64, 53)
52 64 3 26 : Sym(8) (64, 58)
53 64 3 Sym(8) o Sym(2) (64, 68)
54 64 4 26 : (3× 7 : 3) (64, 13)
55 64 4 26 : (32 : 3) : D8 (64, 27)
56 64 4 26 : (GL(2, 2) o Sym(3)) (64, 39)
57 64 4 26 : Sym(7) (64, 60)
58 64 4 26 : PGL(2, 7) (64, 64)
59 64 5 26 : 7 : 6 (64, 7)
60 64 5 26 : 32 : D12 (64, 17)
61 64 6 26 : 32 : Sym(3) (64, 9)
62 64 8 26 : D18 (64, 3)
63 64 9 26 : D14 (64, 2)
64 66 3 Sym(12) (66, 5)
65 66 4 M11 (66, 2)
66 66 7 PGL(2, 11) (66, 1)
67 81 3 34 : 40 : 4 (81, 68)
68 81 3 34 : (23 : 22) : 32 : D8 (81, 107)
69 81 3 35 : 4.Sym(5) (81, 125)
70 81 3 Sym(9) o Sym(2) (81, 149)
71 81 4 34 : D16 : 4 (81, 38)
72 81 4 34 : 20 : 4 (81, 46)
73 81 4 34 : (2×Q8) : Alt(4) (81, 75)
74 81 4 34 : (GL(1, 3) oD4) : 2 (81, 83)
75 81 4 34 : (23 : Alt(4)) : Sym(3) (81, 103)
76 81 5 34 : (4×D10) (81, 28)
77 81 5 34 : D16 : 4 (81, 42)
78 81 5 34 : (Q8 : 2) : Sym(3) (81, 50)
79 81 5 34 : (GL(1, 3) o Sym(4)) (81, 91)
80 81 5 34 : (2× Sym(5)) (81, 145)
81 81 6 34 : 16 (81, 7)
82 81 6 34 : D16 : 2 (81, 21)
83 81 6 34 : (2×Q8) : 2 (81, 22)
84 81 6 34 : (2× 5 : 4) (81, 26)
85 81 6 34 : (GL(1, 3) oD4) (81, 58)
86 81 6 34 : 23 : Sym(4) (81, 74)
87 81 7 34 : D16 : 2 (81, 17)
88 81 7 34 : 23 : D8 (81, 35)
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89 81 7 34 : Sym(5) (81, 142)
90 81 8 34 : 5 : 4 (81, 12)
91 81 8 34 : 23 : 22 (81, 16)
92 81 9 34 : Q8 : 2 (81, 6)
93 81 9 34 : D20 (81, 9)
94 81 10 34 : D16 (81, 4)
95 81 13 34 : D10 (81, 2)
96 81 17 34 : 5 (81, 1)
97 84 4 Sym(9) (84, 2)
98 85 3 PSp(4, 4).2 (85, 2)
99 91 3 Sym(14) (91, 6)
100 91 8 PGL(2, 13) (91, 2)
101 91 8 PGL(2, 13) (91, 4)
102 91 11 PSL(2, 13) (91, 3)
103 91 12 PSL(2, 13) (91, 1)
104 100 3 Sym(10) o Sym(2) (100, 12)
105 100 6 Sym(5) o Sym(2) (100, 8)

Primitive Non-Synchronizing Groups of Rank 3 and De-

gree ≤ 630

Similar to the previous table, this table contains all 2-closed, primitive, non-synchronizing
groups of permutation rank 3.

# Degree Permutation Rank Group Name (GAP) GAP Number
1 120 3 Sym(16) (120, 21)
2 121 3 112 : (5×Q12) (121, 31)
3 121 3 112 : (5× SD16) (121, 33)
4 121 3 112 : (5×D24) (121, 36)
5 121 3 Sym(11) o Sym(2) (121, 53)
6 130 3 PSL(4, 3).22 (130, 5)
7 135 3 PSO + (8, 2) (135, 3)
8 144 3 Sym(12) o Sym(2) (144, 11)
9 153 3 Sym(18) (153, 4)
10 169 3 132 : (12×D14) (169, 56)
11 169 3 132 : (3× (Q8 : 3) : 4) (169, 59)
12 169 3 Sym(13) o Sym(2) (169, 71)
13 190 3 Sym(20) (190, 4)
14 196 3 Sym(14) o Sym(2) (196, 4)
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15 225 3 Sym(15) o Sym(2) (225, 10)
16 231 3 Sym(22) (231, 4)
17 256 3 Sym(16) o Sym(2) (256, 4)
18 256 3 28 : (3× (Alt(5) o Sym(2))) : 2 (256, 203)
19 256 3 28 : (Sym(3)× Alt(8)) (256, 212)
20 276 3 Sym(24) (276, 6)
21 280 3 PSU(4, 3).D8 (280, 20)
22 289 3 Sym(17) o Sym(2) (289, 4)
23 289 3 172 : 96 : 2 (289, 84)
24 289 3 172 : (18×D16) (289, 88)
25 289 3 172 : 8.Sym(4) : 2 (289, 90)
26 297 3 PΓU(5, 2) (297, 2)
27 324 3 Sym(18) o Sym(2) (324, 4)
28 325 3 Sym(26) (325, 12)
29 361 3 Sym(19) o Sym(2) (361, 4)
30 361 3 ∗1 (361, 72)
31 361 3 ∗2 (361, 80)
32 361 3 ∗3 (361, 83)
33 364 3 PSO(7, 3) (364, 4)
34 378 3 Sym(28) (378, 9)
35 400 3 Sym(20) o Sym(2) (400, 10)
36 435 3 Sym(30) (435, 4)
37 441 3 Sym(21) o Sym(2) (441, 19)
38 484 3 Sym(22) o Sym(2) (484, 8)
39 496 3 Sym(32) (496, 10)
40 529 3 Sym(23) o Sym(2) (529, 5)
41 529 3 ∗4 (529, 50)
42 529 3 ∗5 (529, 51)
43 529 3 ∗6 (529, 53)
44 529 3 ∗7 (529, 58)
45 561 3 Sym(34) (561, 2)
46 576 3 Sym(24) o Sym(2) (576, 5)
47 585 3 PSp(4, 23) : 3 (585, 2)
48 625 3 Sym(25) o Sym(2) (625, 4)
49 625 3 ∗8 (625, 490)
50 625 3 54 : 4.Alt(6).2 (625, 617)
51 625 3 54 : (4 irc 2(1 + 4)).Sp(4, 2) (625, 657)
52 625 3 54 : 2.Alt(5)2.2(2 + 1) (625, 672)

1(((C19× C19) : C9) : C5) : C4
2(((((C19× C19) : C9) : C5) : C2) : C2) : C2
3((((C19× C19) : C9) : Q8) : C3) : C2
4(((C23× C23) : C11) : C3) : Q8
5(((C23× C23) : C11) : Q8) : C3
6(((C23× C23) : C16) : C11) : C2
7((((C23× C23) : C11) : C8) : C3) : C2
8((((C5× C5× C5× C5) : C13) : C8) : C3) : C4
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53 625 3 54 : PSL(2, 25) : SA16 (625, 681)
54 630 3 Sym(36) (630, 2)
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All Primitive Graphs of Degree ≤ 50

with Complete Core

Extending the previous tables, the following table contains all small primitive graphs

with clique number equal to the chromatic number which are admitting singular graph

endomorphisms. Again, the data provided contains the degree of the graph (number

of vertices), its valency, the size of its automorphism group, the GAP number of its

automorphism group (to apply the PrimitiveGroup(i,j) command), the kernel

types of the endomorphisms and the size of the endomorphism monoid.

In addition, the Cartesian product C5�C5 is the unique graph with singular endomor-

phisms, but distinct clique and chromatic number. This graph admits 400 endomorphisms

and is the only other graph on ≤ 48 vertices with non-singular endomorphisms. How-

ever, there are several graphs on 49 vertices with distinct clique and chromatic number

admitting singular endomorphisms. For instance, the group D14 o S2, where D14 is the

dihedral group on 7 points, admits several such graphs. Also, we expect more graphs to

occur for higher degrees.

The endomorphism types in the table are read as follows: the value 19(8) means,

there are 8 · (Degree) endomorphisms having 9 kernel classes each of size 1.
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# Degree Valency Group Size GAP Number Endomorphism Types Monoid Size
1 9 4 72 2 19(8), 33(8) 144
2 15 8 720 3 115 (48), 35 (288) 5040
3 16 6 1152 10 116 (72), 44 (288) 5760
4 16 9 1152 10 116 (72), 44 (72) 2304
5 21 4 3361 1 121 (16), 73 (32) 1008
6 21 16 336 1 121 (16), 37 (11520) 242256
7 25 8 28800 26 127 (1152), 55 (64512) 1641600
8 25 12 200 5 127 (8), 55 (336) 8600
9 25 12 200 5 127 (8), 55 (576) 14600

10 25 12 600 13 127 (24), 55 (216) 6000
11 25 16 28800 26 127 (1152), 55 (1152) 57600
12 27 6 1296 8 127(48), 39 (144), 93 (24) 5832
13 27 8 1296 8 127(48), 39 (144), 93 (24) 5832
14 27 18 1296 8 127(48), 39 (4838400) 130638096
15 27 20 1296 8 127(48), 39 (3386880) 91447056
16 28 6 336 1 128 (12),74 (6144) 172368
17 28 12 40320 8 128 (1440), 47 (8985600) 251637120
18 28 15 336 1 128 (12), 47 (305280) 8548176
19 28 18 336 1 128 (12), 47 (11520) 322896
20 28 18 336 1 128 (12), 47 (23040) 645456
21 28 21 336 1 128 (12), 47 (51840) 1451856
22 35 18 40320 2 135 (1152), 57 (1036800) 36328320
23 36 10 1036800 16 136 (28800), 66 (270950400) 9755251200
24 36 25 1036800 16 136 (28800), 66 (28800) 2073600
25 45 4 1440 3 145 (32), 52+102+151 (1152), 105120

55+102 (576), 153 (576)
26 45 12 51840 5 145 (1152), 95 (37440) 1736640
27 45 16 1440 3 145 (32), 315 (384), 95 (1152) 70560
28 45 16 3628800 7 ∗1 ∗1
29 45 20 1440 3 ??? ???
30 45 24 720 1 145 (16), 59 (806400) 362880720
31 45 32 1440 3 145 (32), 59 (806400) 36289440
32 45 40 1440 3 ??? ???
33 49 12 50803200 38 ∗2 ∗2
34 49 16 392 3 149 (8), 77 (408960) 20039432
35 49 16 196 1 149 (4), 77 (81432000) 3990168196 ??
36 49 18 588 7 149 (12), 77 (10080) 494508
37 49 18 588 7 149 (12), 77 (6163200) 301997388
38 49 18 1764 21 149 (36), 77 (1371600) 67210164
39 49 20 196 3 149 (4), 77 (5760) 282436
40 49 20 392 3 149(8), 77 (83520) 4092872
41 49 20 196 1 149 (4), 77 (2880) 141316
42 49 20 196 1 149 (4), 77 (2880) 141316
43 49 20 196 1 149 (4), 77 (83520) 4092676
44 49 20 392 1 149 (8), 77 (5760) 282632
45 49 20 196 1 149(4), 77 (43200) 2116996
46 49 24 3528 27 149(72), 77(11520) 568008
47 49 24 1176 13 149(24), 77(40320) 1976856
48 49 24 1176 13 149(24), 77(20160) 989016
49 49 24 2352 24 149(48), 77(11520) 566832

1This is the Triangular graph T (10) (see Chapter 4).
2This is the Square lattice graph L2(7) (see Chapter 4).
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50 49 24 588 7 149(12), 77(14400) 706188
51 49 24 588 7 149(12), 77(24480) 1200108
52 49 24 588 7 149(12), 77(10080) 494508
53 49 24 588 7 149(12), 77(20160) 988428
54 49 24 196 1 149(4), 77(2880) 141316
55 49 24 196 1 149(4), 77(2880) 141316
56 49 24 196 1 149(4), 77(2880) 141316
57 49 24 196 1 149(4), 77(2880) 141316
58 49 24 196 1 149(4), 77(2880) 141316
59 49 24 196 1 149(4), 77(2880) 141316
60 49 24 196 1 149(4), 77(2880) 141316
61 49 24 196 1 149(4), 77(2880) 141316
62 49 24 196 1 149(4), 77(2880) 141316
63 49 28 392 3 149(8), 77(43200) 2117192
64 49 28 392 3 149(8), 77(5760) 282632
65 49 28 196 1 149(4), 77(2880) 141316
66 49 28 196 1 149(4), 77(5760) 282436
67 49 28 196 1 149(4), 77(43200) 2116996
68 49 28 196 1 149(4), 77(2880) 141316
69 49 28 196 1 149(4), 77(23040) 1129156
70 49 30 1764 21 149(36), 77(41040) 2012724
71 49 30 588 7 149(12), 77(84960) 4163628
72 49 30 588 7 149(12), 77(20160) 988428
73 49 32 392 3 149(8), 77(66240) 3246152
74 49 32 196 1 149(4), 77(146880) 7197316
75 49 36 50803200 38 149(1036800), 77(1036800) 101606400



228 Appendix F. All Primitive Graphs of Degree ≤ 50 with Complete Core



229

Appendix G

Counting Latin Hypercuboids of Class r

The table below is providing the number of Latin hypercuboids of type (n1, ..., nd) and

class r for small values (see Chapter 6 for a definition and Section 6.3 for more remarks).

The numbers below have been generated using the constraint satisfaction program

MINION developed at the University of St. Andrews. The number given in the table

are numbers of semi-reduced Latin hypercuboids, i.e., the numbers obtained after the ap-

plication of the most obvious symmetry break by normalizing the first r-subarray. That

means, we assigned the numbers 1, ..., n1 · · ·nr to the entries in the first r-subarray lead-

ing to the following number for Latin hypercuboids

LHC(n1, ..., nd, r) = h(n1,...,nd,r) · c, (G.1)

where c =

(
r∏
i=1

ni

)
! and h(n1,...,nd,r) is the number provided in the table.

However, using inequality 6.1, we were able to eliminate many small parameters

which are indicated by 01). The minus entries indicate the case r ≥ d, where no hyper-

cuboids can exists. Finally, a question mark shows that we were not able to determine

this number with the current computing power.
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Class
Dimension Type r = 1 r = 2 r = 3

3 (2,2,2) 1 1 -
3 (3,2,2) 6 4 -
3 (3,3,2) 4 448 -
3 (3,3,3) 4 40 -
3 (4,2,2) 321 81 -
3 (4,3,2) 1,128 190,992 -
3 (4,4,2) 792 3,089,972,673 -
3 (4,3,3) 5,664 1,219,584 -
3 (4,4,3) 2,304 ? -
3 (4,4,4) 2,304 10,123,306,543 -
3 (5,2,2) 33,372 1,936 -
3 (5,3,2) 2,118,624 ? -
3 (5,4,2) 5,360,352 ? -
3 (5,5,2) 2,288,256 ? -
4 (2,2,2,2) 1 01) 1
4 (3,2,2,2) 38 0 11520
4 (3,3,2,2) 12 176 ?
4 (3,3,3,2) 8 104 ?
4 (3,3,3,3) 8 104 ?
4 (4,2,2,2) 119,001 576 ?
4 (4,3,2,2) 526,824 ? ?
4 (4,4,2,2) 203,256 ? ?
4 (4,3,3,2) 4,335,648 ? ?
4 (4,4,3,2) 655,200 ? ?
4 (4,4,4,2) 515,808 ? ?
4 (4,3,3,3) 173,325,408 ? ?
4 (4,4,3,3) 3,998,880 ? ?
4 (4,4,4,3) 1,540,512 ? ?
4 (4,4,4,4) 1,540,512 ? ?
5 (2,2,2,2,2) 1 01) 01)

5 (3,2,2,2,2) 990 01) ?
5 (3,3,2,2,2) 76 0 ?
5 (3,3,3,2,2) 24 0 ?
5 (3,3,3,3,2) 16 01) ?
5 (3,3,3,3,3) 16 01) ?
6 (2,2,2,2,2,2) 1 01) 01)

6 (3,2,2,2,2,2) 395,094 01) 01)

6 (3,3,2,2,2,2) 1,980 0 0
6 (3,3,3,2,2,2) 152 01) ?
6 (3,3,3,3,2,2) 48 01) ?
6 (3,3,3,3,3,2) 32 01) ?
6 (3,3,3,3,3,3) 32 01) ?
7 (2,2,2,2,2,2,2) 1 01) 01)

7 (3,2,2,2,2,2,2) ? 01) 01)

7 (3,3,2,2,2,2,2) 790,188 01) ?
7 (3,3,3,2,2,2,2) 3,960 01) ?
7 (3,3,3,3,2,2,2) 304 01) ?
7 (3,3,3,3,3,2,2) 96 01) ?
7 (3,3,3,3,3,3,2) 64 01) ?
7 (3,3,3,3,3,3,3) 64 01) ?

Table G.1: Counting Latin hypercuboids of Class r
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Nomenclature

Aut(Γ) The automorphism group of the graph Γ.

⊎
A disjoint union.

End(Γ) The endomorphism monoid of the graph Γ.

Γ � ∆ The cartesian product of graphs.

Γ×∆ The categorial product of graphs.

Γ, Γ A graph and its complement.

GL(V ) The general linear group over the vector space V .

Gr(S) The kernel graph for the semigroup S.

Hull(Γ) The hull of the graph Γ.

im(t) The image of the transformation t.

ker(t) The kernel of the transformation t.

〈G, t〉 The semigroup generated by the group G and transformation t.

LHC(d, n, r) A Latin hypercube of dimension d, order n and class r.

Fq The finite field with q elements.

Zn The cyclic group with n elements (additive version).
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n A d-tuple (n1, ..., nd).

n A tuple (n1, ..., nd) for some integer d.

Sing(Γ) The semigroup End(Γ)\Aut(Γ). This is the set of all singular endomorphisms.

SG(π, τ) The semigroup generated by the set of tilings π and the set of transversals τ .

n The set {1, ..., n}.

C A code.

Cr The cyclic graph on r vertices.

CP (n) The cocktail party graph with parameter n.

G A group.

G oH A group theoretic wreath product.

hk(m,n) The number of k-layers in Zmn .

Kr The complete graph on r vertices.

L2(n) The square lattice graph with parameter n.

N(S) The normalizer of the semigroup S.

S A semigroup.

Sn The symmetric group on the set n.

SG(n) The square grid graph with parameter n.

T (n) The triangular graph with parameter n.

T g The set {tg : t ∈ T}.

tg The composition of transformations g−1tg, where g, t ∈ Tn and g is bijective.
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Tn The full transformation monoid on the set n.

x R y x is related to y, where R is the relation.
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Index

G-invariant graph, 32

action, 21

Almost synchronizing, 51

chromatic number, 30

clique, 30

clique number, 30

co-clique number, 30

Cocktail party graph, 34

code

t-error-correcting, 141

t-error-detecting, 141

mixed code, 141

mixed MDS code, 144

colouring

k-colouring, 30

core, 30

cycle, 28

Hamiltonian cycle, 28

decomposable closure, 175

decomposing

T -decomposing, 168

decomposition of a semigroup, 25, 167

G-decomposition, 171

homomorphic decomposition, 167

left-zero decomposition, 167

right-zero decomposition, 167

strong decomposition, 167

diameter of a graph, 30

Extensions of orthogonal arrays, 89

extendible orthogonal array, 89

factor of a graph, 78

k-factor, 78

factorisation of a graph, 78

k-factorisation, 78

isomorphic, 78

Generalised colouring of a graph, 30

graph, 28

connected, 28

core-complete graph, 31

distance-transitive, 30
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hull of a graph, 46

orbital graph, 31

primitive, 29

pseudo-core, 31

rank 3 graph, 36

regular, 28

strongly regular graph, 32

symmetric, 29

transitive, 29

graph homomorphism, 29

graph automorphism, 29

graph endomorphism, 29

Green’s relations, 26

group, 20

2-closure of a group, 32

almost simple groups, 212

basic groups, 211

groups of affine type, 212

groups of diagonal type, 212

non-basic groups, 211

permutation group, 20

synchronizing group, 42

Hamming Bound

Generalised Hamming Bound, 144

Hamming graphs, 95

Hamming space

cuboidal Hamming space, 141

independent

G-independent, 167

k-homogeneous, 22

k-set-transitive, 22

k-transitive, 22

kernel graph, 44

Latin hypercube, 38

reduced Latin hypercube, 39

semi-reduced Latin hypercube, 39

Latin hypercuboid

isotopy classes of Latin hyper-

cuboids, 126

of class r, 125

paratopy classes, 126

partial Latin hypercuboid, 126

Latin square, 37

mutually orthogonal Latin squares,

37

semi-main classes, 74

Latin squares

equivalence classes, 74

layer

k-layer, 97

layer system, 97

matching, 29

perfect matching, 29

MDS code, 113



Index 239

neighbour, 28

normal

H-normal, 160

self-normal, 160

normalizer of a semigroup, 159

normalizing

(t1, ..., tr)-normalizing, 161

T -normalizing, 161

t-normalizing, 161

t-normalizing group, 77

strongly T -normalizing, 161

Null graph, 30

O’Nan-Scott Reduction Theorem, 22

orbit, 21

orbital, 31

orthogonal array, 37

path, 28

Hamiltonian path, 28

permutation, 20

permutation rank, 22

Plotkin Bound

Generalised Plotkin Bound, 144

primitivity, 21

block of imprimitivity, 21

quasigroup, 131

d-ary quasigroup, 131

repetitive square, 38

reset word, 13

section-regular partition, 43

semigroup, 24

1-generated semigroup, 25

band, 27

completely regular, 25

left-zero semigroup, 28

monogenic semigroup, 27

monoid, 24

rank of a semigroup, 25

regular, 25

relative rank of a semigroup, 25

right-zero semigroup, 28

semi-lattice, 28

simple, 25

simply generated semigroup, 25

synchronizing semigroup, 42

transformation semigroup, 24

set-pair

H-set-pair, 161

Shrikhande graph, 35

Singleton Bound

Generalised Singleton Bound, 142

socle of a group, 211

square grid graph, 90

Square lattice graph, 34

symmetric group, 20

Synchronization
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reset word, 13

synchronizing group, 42

synchronizing rank, 54

synchronizing semigroup, 42

the main problem in synchronization

theory, 42

Tiling, 147

π-compatible transversal, 147

cover of a tiling, 149

refinement of a tiling, 149

transformation

rank of transformation, 25

uniform transformation, 27, 43

Transformation semigroup, 24

transitivity, 21

Triangular graph, 34

Trivial graphs, 30

valency, 28
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