LOAN COPY ONLY

NYSGI-H1-82-003 C3

NEW YORK SEA GRANT INSTITUTE

This manual is part of the Coastal Structures Handbook Series. The series is being prepared for the New York Sea Grant Institute by the Geotechnical Engineering group at Cornell University, coordinated by Fred H. Kulhawy.

COVER DESIGN: DICK GORDON

Communications New York Sea Grant Institute State University of New York and Cornell University 411 State Street Albany, New York 12246

NYSGI-H1-82-003 63

LOAN COPY ONLY

COASTAL STRUCTURES HANDBOOK SERIES BULKHEADS

-

Thomas M. Saczynski

and

Fred H. Kulhawy

School of Civil and Environmental Engineering

Cornell University

Ithaca, New York

1982

•

This research was sponsored by the New York Sea Grant Institute under a grant (NA81AA-D-00027) from the Office of Sea Grant, National Oceanic and Atmospheric Administration (NOAA), US Department of Commerce.

PREFACE

The analysis, design and construction of coastal structures is of great concern to a broad cross-section of the population living near major fresh and salt water bodies. Realizing this concern, the New York Sea Grant Institute instituted a project to develop a manual to assist a variety of user groups in addressing the problems associated with the development of coastal structures and coastal facilities. Although the engineering community will find the manual to be of use, the focus of this manual has been to develop a simplified user's guide which focuses on the analysis, design and construction of coastal structures. The emphasis has been on understanding the structures and their behavior, minimizing higher level mathematics, and presenting design charts and design examples for smaller scale structures, typical of those of importance to a small community and the individual homeowner. Large scale developments should be handled by design professionals with expertise in the field.

This project was initiated in late 1977 by the New York Sea Grant Institute and has been developed by the School of Civil and Environmental Engineering at Cornell University. The project was initiated by Drs. Fred H. Kulhawy and Dwight A. Sangrey. Dr. Sangrey left Cornell before much progress was made, and subsequent work has been supervised by Drs. Fred H. Kulhawy and Philip L.-F. Liu.

Under the auspices of this project, the following reports have been prepared and submitted to New York Sea Grant:

ii

- 1. "Coastal Construction Materials", November 1979, by Walter D. Hubbell and Fred H. Kulhawy
- "Environmental Loads in Coastal Construction", November 1979, by Walter D. Hubbell and Fred H. Kulhawy
- 3. "Analysis, Design and Construction of Pile Foundations in the Coastal Environment", April 1981, by Francis K.-P. Cheung and Fred H. Kulhawy
- 4. "Breakwaters, Jetties and Groins: A Design Guide", March 1982, by Laurie A. Ehrlich and Fred H. Kulhawy
- 5. "Analysis, Design and Construction of Bulkheads in the Coastal Environment", May 1982, by Thomas M. Saczynski and Fred H. Kulhawy

Additional reports to be completed in the near future include:

- a. Boat Ramps
- b. Docks, Piers and Wharves

Further topics to complete the manual should be initiated prior to the end of 1982.

•

ABSTRACT

The extensive employment of bulkheads in the coastal environment represents considerable capital expenditure. In many instances these bulkheads are constructed with little consideration for pertinent soil properties, soil-structure behavior or fabrication procedure. This work is intended to describe the complex behavior of these systems, to provide a rational and simplified design approach and to discuss other pertinent design and construction aspects.

Based upon the evidence disclosed by the literature, a particular design method was selected and a computer program was coded. The Free Earth Support method, as modified by Rowe, was used as the basis for a procedure to design anchored or cantilever.bulkheads in sand or clay. The program was then modified so that parametric studies could be conducted and the results could be incorporated into simplified design charts. The reliability of the chosen design method and resulting design curves were tested by probabilistic methods.

Other design considerations, such as external loading, cost effectiveness, and component design and dimensioning, are elaborated upon. Examples are given which illustrate the use of the Free Earth Support method, as modified by Rowe, and the simplified method developed. Construction procedures and their impact upon wall performance are also discussed.

iv

TABLE OF CONTENTS

-

Chapter		Page
1	INTRODUCTION	1
	<pre>1.1. Statement of the Problem</pre>	2 10 11
2	EVALUATION OF SOIL STRESSES AND THE DEVELOPMENT OF BULKHEAD DESIGN	12
	 2.1. Soil Strength and Horizontal Stresses 2.2. Classical Theories	12 19 23 27 30 37 58 59 63
3	DEVELOPMENT OF A SIMPLIFIED DESIGN APPROACH	66
	 3.1. Computer Program	66 73 79 85 85
4	DESIGN PROCEDURES	106
	 4.1. Defining the Problem	106 108 114 114 117 123 123

TABLE OF CONTENTS (Continued)

Chapter		Page
5	DESIGN OF THE BULKHEAD SYSTEM	140
	 5.1. External Loading	140 149 186 196 198
6	CONSTRUCTION CONSIDERATIONS	200
	6.1. General Construction Procedure6.2. Other Considerations6.3. Summary	200 215 217
7	RELIABILITY AND FACTOR OF SAFETY	224
	 7.1. Assumptions	225 228 237 241
8	SUMMARY AND CONCLUSIONS	246
APPENDIX	A: COMPUTER PROGRAM USER'S GUIDE	249
APPENDIX	B: SOURCE PROGRAM	251
APPENDIX	C: SAMPLE OUTPUT	271
APPENDIX	D: FLOW TABLES FOR DESIGN	279
APPENDIX	E: DESIGN EXAMPLES	285
REFERENCE	2S	323

•

LIST OF TABLES

.

Table		Page
2-1	Pile characteristics	41
2-2	Soil properties	42
2-3	Summary of skin friction data	62
2-4	Soil stress coefficients	64
3-1	Relationship of soil properties (sand)	75
3-2	Relationship between drained strength of clay and unit weights	78
3-3	Modifying coefficients for curve fitting	83
3-4	Bending moment ratios	86
3-5	Summary of curve fitting	87
3-6	Variability in design curves (percent difference)	89
4-1	Normalizing parameters	119
5-1	Effect of 8 inch piles on flexibility	155
5 - 2	Engineering properties of steel sheet piling	164
53	Channels: American Standard	165
5-4a	Allowable stresses for southern pine	166
5-45	Dimensional properties of lumber	168
5-5	Minimum yield point	170
5-6	Specific gravity of wood members	172
5-7	Allowable load in withdrawal	173
5 - 8	Allowable load per bolt in double shear	175
5-9	Summary of allowable loads in common bolts used for splice plates	179

LIST OF TABLES (Continued)

•

٠

•

Table		Page
5-10	Recommended increase in dimensions of hardware	184
5-11	Tie rods	188
5-12	Turnbuckles	189
5-13	Distance requirements for bolted connections	194
7-1	Probability of failure and factor of safety	232
7-2	Reliability of the design curves	236
7-3	Reliability of the simplified method	238
7-4	Probability of failure, anchored walls in clay	240
7-5	t Score required for a probability of failure less than 0.01	245

LIST OF ILLUSTRATIONS

- ··

Figure		Page
1-1	Anchored wall	3
1-2	Typical timber piles	5
1-3	Typical ball and socket	б
1-4	Cantilevered wall	7
1-5	Navy bulkhead	9
2-1	Horizontal and vertical stresses	13
2-2	Horizontal stress coefficients as a function of deflection	15
2-3	Mohr-Coulomb failure critería	17
2-4	Stress distributions	20
2-5	Fixed Earth Support assumptions	21
2-6	Free Earth Support assumptions	24
2-7	Danish rules assumptions	26
2-8	Rupture figures	28
2-9	Kinematics of a rupture figure	29
2-10	Test apparatus	32
2-11	Sand drains to accelerate consolidation	33
2-12	Design assumptions	36
2-13	Stress tests	38
2-14	Apparatus for flexibility tests	40
2-15	Relative wall height and relative tie rod level	44
2-16	Effects of pile flexibility on pile deflections and passive stress	46

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
2-17	Tie rod and bending moment factors, sand	48
2-18	Typical operating and structural curves	50
2-19	Tie rod and bending moment factors, clay	54
2-20	Bending moment factors, cantilevered walls in sand	57
2-21	Results of finite element analysis of discontinuous walls	60
3-1	Input parameters for computer program	68
3-2	D' vs. R _D : sand	91
3-3	P' vs. R _p : sand	92
3-4	M' vs. R _M : sand	93
3-5	D' vs. R _D : clay (undrained)	94
3-6	P' vs. R _p : clay (undrained)	95
3-7	M' vs. R _M : clay (undrained)	96
3-8	D' vs. R _D : clay (undrained)	97
3-9	P' vs. R _p : clay (drained)	98
3-10	M' vs. R _M : clay (drained)	99
3-11	D' vs. R _D : sand	100
3-12	M' vs. R _M : sand	101
3-13	D' vs. R _D : clay (undrained)	102
3-14	M' vs. R _M : clay (undrained)	103
3-15	D' vs. R _D : clay (drained)	104
3-16	M' vs. R _M : clay (drained)	105
4-1	Defining the problem	107
4-2	Stress distributions and resultants	109

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
4-3	Stress distribution for walls in clay	115
4-4	D' vs. R _D : sand	125
4-5	P' vs. R _p : sand	126
4-6	M' vs. R _M : sand	127
4-7	D' vs. R _D : clay (undrained)	128
4-8	P' vs. R _p : clay (undrained)	129
4-9	M' vs. R _M : clay (undrained)	130
4-10	D' vs. R _D : clay (drained)	131
4-11	P' vs. R _p : clay (drained)	132
4-12	M' vs. R _M : clay (drained)	133
4-13	D' vs. R _D : sand	134
4-14	M' vs. R _M : sand	135
4-15	D' vs. R _D : clay (undrained)	136
4-16	M' vs. R _M : clay (undrained)	137
4-17	D' vs. R _D : clay (drained)	138
4-18	M' vs. R _M : clay (drained)	139
5-1	Surcharge loads	142
5-2	Hydrostatic and seepage stresses	145
5-3	Reduction of effective unit weight	145
5-4	Reduction of horizontal stress in clay fills	147
5-5	Navy bulkhead	151
5-6	Dimensions of navy bulkhead	154
5-7	Types of anchorages	158

LIST OF ILLUSTRATIONS (Continued)

•

Figure		Page
5-8	Location of anchorage	159
5-9	Capacity of deadmen	161
5-10	Section modulus of rectangular members	163
5-11	Common bolts as fasteners	177
5-12	Transfer of loads from piles to wales	181
5-13	Typical grademarks	185
5-14	Locating the splice at tie rods	191
5-15	Typical wale and anchor details	195
5-16	Soil stresses acting on the anchorage	197
6-1	Typical construction sequence	201
6-2	Typical piles	204
6-3	Driving sheet piles in panels	206
6-4	Remedial actions	207
6-5	Standard wale details	209
6-6	Alternative anchoring schemes	212
6-7	Alternative anchorages	213
6-8	Typical bulkhead, wale outside	218
6-9	Typical bolting details, timber	219
6-10	Common arrangement of wales and tie rods	220
6-11	Typical wale and tie rod details	221
6-12	Steel bulkhead with timber fenders	222

LIST OF SYMBOLS

English

- ·

A	cross sectional area
Ъ	base dimension
c	cohesion
c'	cohesion, factored
с _р	modifying coefficient, depth
с _Р	modifying coefficient, tie-rod pull
с _щ	modifying coefficient, bending moment
D	penetration depth
ם'	dimensionless penetration depth
d	diameter
E	elastic modulus
FP	actual stress
FS	factor of safety
fb	allowable bending stress
fc	allowable compressive stress, also tie-rod reduction factor
f _{c +}	allowable compressive stress, perpendicular to grain
fp	allowable bearing stress
ft	allowable tensile stress
fv	allowable shear stress
fy	yield stress
G _S	specific gravity

xiii

LIST OF SYMBOLS (Continued)

Н	free standing wall height
н _А	anchor level
н _D	sheet pile length (H+D)
H. HW	high water level
н _w	low water level
ħ	height dimension
I	moment of inertia
К	horizontal stress coefficient
κ _o	at rest stress coefficient
ĸ _a '	active stress coefficient
К _р	passive stress coefficient
L	distance between anchorage and passive stress resultant
LF	load factor
1	length dimension
м	bending moment
М'	dimensionless bending moment
N	1/2 (short dimension of base plate minus hole dimension)
P	tie-rod pull (force per unit length of wall)
P'	dimensionless tie-rod pull
P _f	probability of failure
P _H	horizontal force resultant of surcharge load
P	allowable load in withdrawal (force per unit length)
Q _L	line load (force per unit length)
Q _P	point load (force)
đ	evenly distributed surcharge load (force per unit area)

xiv

LIST OF SYMBOLS (Continued)

R reliability

**	
R_D	loading ratio, depth
R _M	loading ratio, moment
R _P	loading ratio, tie-rod pull
rd	moment reduction factor
rt	moment reduction factor, unyielding anchorages
S	section modulus
s _x	standard deviation, independent variables
s _y	standard deviation, dependent variables
SM	safety margin
T	tie-rod load (force)
t	thickness dimension
۷	shear (force)
Wr	resistance to withdrawal (force)
w	width; also driving width of a pile
x	independent variable
У	dependent variable

Greek Letters

α	relative wall height (H/H_D)
β	relative anchor level (H_A/H_D)
Υi	unit weight of i th soil layer
Δ	deflection
ò	soil-structure interface strength (degrees)
Ð	angle of inclination

LIST OF SYMBOLS (Continued)

 $\begin{aligned} \sigma_{H} & \text{horizontal stress} \\ \sigma_{v} & \text{vertical stress} \\ \tau & \text{constant, } M/H_{D}^{3} \\ \rho & \text{pile flexibility, } EI/H_{D}^{4} \\ \phi & \text{angle of internal friction of soil (degrees)} \\ \psi & \text{flexibility characteristic} \\ \omega & \text{angle of backfill slope} \end{aligned}$

LIST OF CONVERSION FACTORS

- · ·

To Convert From	<u>To</u>	<u>Multiply By</u>
inch	mm	25.4
feet	meter	0.3048
1b	Newton	4.448
lb/in ²	kN/m ²	6.895
lb/in ²	MPa	0.006895
1b/ft ³	kN/m ³	0.1571
lb-ft	N —m	1.356
lb/ft ²	N/m^2	0.0478

•

CHAPTER 1

INTRODUCTION

Waterfront use has always posed a very basic problem: access to waterborne vehicles from the shore. The bulkhead has been extensively employed as the solution to this problem. The casual observer may conclude that the installation of these critical structures is a simple process. In reality, the only simple aspect of bulkheads is their geometry. The actual design, construction and behavior of these soil-structure systems is complex. Simplified approaches have often resulted in either overly conservative design or failure, both to the detriment of the owner. A rational approach is required which incorporates an understanding of bulkhead behavior, a sound computational procedure and good construction practices. The objective of this work is to provide such an approach, emphasizing a simplified design chart format.

• Application of the approach suggested herein is intended for bulkhead sites where shore activity is relatively light, such as private residences and marinas. Sufficient flexibility does exist, however, to permit use over a broad spectrum of loading and soil conditions. Discretion is always incumbent upon the designer, especially where bulkhead heights exceed 15 feet (4.57 m), soil conditions are complex, heavy loads are anticipated or environmental conditions are severe.

1.1. Statement of the Problem

Bulkheads are flexible soil retaining walls which derive their stability from the structural members and the strength of the soil. The soil, as well as providing stability, creates loads upon the system which must be resisted. Figure 1-1 illustrates the configuration of the basic anchored bulkhead.

The principal component of the system is the sheet pile. Horizontal stresses exerted by the soil on the backfill side of the wall tend to move the piles outward. This outward movement is resisted by that portion of the wall embedded in the subgrade. If the penetration of the toe into the subgrade is not sufficient, failure will result whereby the toe "kicks out."

The horizontal stresses acting on the pile cause bending, making the pile function as a beam. Therefore pile design is twofold: the pile must be long enough to resist toe failure and it must be stout enough to resist flexural stresses induced by bending.

The sheet piles are tied together by wales. These members are designed to resist bending and are fastened to the piles by bolts or nails. At various points the wales will require splices which must resist the same loads as the wales.

The resistance to outward movement of the wall may be enhanced by employing a tie-rod and anchorage. Since a portion of the horizontal load is transmitted to the anchorage through the tie-rod, the tie-rod must be suitably designed. The anchorage must also be adequately dimensioned and properly positioned. If the anchorage is too close to the wall, it will be located within the failing soil mass, or failure wedge, and will be of no use.

Figure 1-1. Anchored wall

...

1.1.1. Sheet Piles

Sheet piles are usually made of steel, concrete, or pressure treated wood. Other materials may be used as well, such as aluminum and asbestos.

Wooden sheet piles are generally a foot wide and vary in length and thickness to suit design conditions. An interlocking system, such as tongue-and-groove, is built into the pile as shown in Figure 1-2.

The configuration of steel and concrete sheet piles varies considerably. The choice of the appropriate section is a matter of computing the required engineering properties. Steel and concrete sheet piles also have interlocking devices, such as ball-and-socket connections shown in Figure 1-3 for steel. Concrete sheet pile interlocking is normally tongue-and-groove.

1.1.2. Bulkhead Types

The anchored bulkhead described earlier may be altered to produce another bulkhead type. The most basic variation is to remove the anchorage and tie-rod, creating a cantilevered wall (Figure 1-4). This variation may prove to be economical where relatively low walls are installed. In such cases, the additional penetration depth required to compensate for the lack of anchorage may very well be less costly than the anchorage.

A smooth- or flush-faced bulkhead may be designed by locating the wale on the backfill side of the wall. Although this may enhance boat docking to some extent, it requires more fasteners than the wale on the dredge side of the wall.

Figure 1-2. Typical timber piles (AWPI, 1970, p. 3)

.

.

Figure 1-3. Typical ball and socket (United States Steel, 1975, facing p. 1)

•

Figure 1-4. Cantilevered wall

•

The navy bulkhead is another variation of the anchored wall. These walls incorporate the use of 8 in (203 mm) diameter fender piles located in front of the sheet piles, as shown in Figure 1-5. The presence of the fender pile adds considerable rigidity to the system. This is warranted only for relatively high walls or for locations where there will be large external loads. Otherwise, the presence of the fender piles is not required.

Bulkhead types may also be categorized by construction sequence, i.e., a bulkhead may be a fill type or a dredge type. The sequence for a fill type is: drive the piles, install tie-rod and anchorage, then backfill. The sequence for a dredge type is: drive the piles, install the tie-rod and anchorage, backfill, then dredge in front of the wall to the desired depth. A consequence of construction sequence is the resulting stress distribution. Some advantage may be realized where dredge bulkheads are required as the soil behavior tends to be beneficial.

1.1.3. Soils

One of the most critical aspects of the bulkhead site is the type of soil present. In a very general sense, there are two types of soils that the designer must contend with: cohesionless soils, which can be referred to as sand, and cohesive soils, which can be referred to as clay. The behavior of sands is reasonably predictable and reliable designs may be rendered with minimal complications. Clays, on the other hand, are complex soils. Their strength varies considerably from point to point and their behavior depends upon a wide range of conditions, such as mineralogy, soil structure and stress history.

Figure 1-5. Navy bulkhead (AWPI, 1970, p. 3)

The presence of sand in the majority of bulkhead sites in New York State suggests that the design of most bulkheads may proceed in a straightforward manner. The less fortunate designer who must deal with clay is advised to use a cautious approach when attempting to determine the characteristics of the soil. A more detailed discussion regarding site and soil characterization may be found in textbooks (e.g., Wu, 1976).

1.2. Approach to the Solution

The key element in the design of bulkheads is a sound computational procedure. Such a procedure depends largely upon the adequacy of the mathematical model chosen to represent the behavior of the system. An examination of prior investigations of bulkhead behavior not only reveals weak and strong points of the various models, it also provides valuable insights as to the behavior itself. The valid aspects of the various approaches may then be incorporated, while questionable assumptions and details may be disregarded. A sound design procedure will be the result. This is the objective of the next chapter: to examine previous work, glean the useful facts, and formulate a computational approach.

Unfortunately, existing bulkhead design methods are cumbersome. Obviously, a simplified version of the most valid method is desirable. A simplified design procedure is therefore the major goal of this work. The third chapter explains such a simplified method and the means used to compose it. The fourth chapter explains the recommended design procedures.

Although the pile and tie-rod dimensions are the most difficult parameters to design, there are other considerations. Location and design of the anchorage, design of wales, splices and fasteners, external loadings, environmental factors, and the properties of the structural components are discussed in the fifth chapter. Other topics concerning the construction of bulkheads are contained in the sixth chapter.

The seventh chapter is a qualitative treatment of the reliability of bulkhead design. It explores the probability of failure in penetration depth, tie-rod pull, and moment of a hypothetical anchored wall. The design deals with sand and clay subgrades and lends credence to the statement that clay subgrades pose more difficult problems than sand subgrades.

Examples are provided in the appendices to illustrate each portion . of the design procedure.

1.3. Summary

The problem to be solved by the bulkhead designer is to compute the dimensions of sheet piling so that the toe is driven to an adequate depth and the section is large enough to withstand bending stresses. If the designer opts for an anchorage and tie-rod, these must also be properly designed.

Herein, a procedure is developed in detail for the design of bulkheads.

CHAPTER 2

EVALUATION OF SOIL STRESSES AND THE DEVELOPMENT OF BULKHEAD DESIGN

Prior to the turn of the century, bulkhead design was governed by classical approaches or merely by rules of thumb. As worldwide commerce increased, the demand for port and harbor facilities also increased. To accommodate this demand, sites had to be utilized which required bulkheads with greater dimensions than previously necessary. The larger dimensions invalidated rules of thumb and rendered the classical approaches obsolete because of economics. A state of the art evolved for bulkhead design as a result of the continuing attempt to understand the complex behavior of these structures.

Each investigation and explanation of bulkhead behavior required simplifying assumptions so that the complexities of horizontal soil stress distribution could be dealt with. An examination of the various thoughts on bulkheads serves to determine the adequacy of the underlying assumptions, to highlight valid contributions which should be incorporated into a design scheme, and to give an overall concept of the true nature of bulkheads.

2.1. Soil Strength and Horizontal Stresses

The computation of stresses in fluids is relatively simple. Consider for example a vat of water as in Figure 2-la. The stresses at point A are determined from the height of the water above A, h,

Figure 2-1. Horizontal and vertical stresses

and the unit weight of the water, γ_w . The vertical stress is σ_v . Since the water has no shear strength, the horizontal stress, σ_H is equal to the vertical stress.

Soil stresses are more complicated to determine because the soil does possess shear strength. Therefore, the stresses in a soil mass at point B in Figure 2-lb are given by: $\sigma_v = \gamma_s h$, where γ_s is the unit weight of the soil, and $\sigma_H = K\sigma_v$, where K is a horizontal soil stress coefficient.

To illustrate the concept of horizontal soil stress coefficient, consider an infinitely rigid, infinitely thin wall retaining an adjacent mass of soil of height H, as shown in Figure 2-2a. The magnitude of the coefficient K depends on the amount of deflection, Δ , with respect to the wall height, H. With no wall deflection, the soil is said to be at rest and the coefficient is designated as K_0 . As the wall is deflected away from the soil mass, the stress exerted reduces to a lower equilibrium state, known as the active state. The active stress coefficient is designated as K_a . If the wall is deflected into the soil mass, the stress exerted by the soil increases until the soil reaches an upper equilibrium state, known as the passive state. The passive stress coefficient is denoted by K_p .

Tests performed by Terzaghi (1954) revealed that minimum deflections are required to reach the limiting active and passive states. As suggested by Figure 2-2b, relatively small deflections are needed to reach the full active state and relatively large deflections are needed to reach the full passive state. Also indicated in the figure is that the net change in stresses is much greater for the passive

Figure 2-2. Horizontal stress coefficient as a function of deflection (Terzaghi, 1954, p. 1243)

case than for the active case for the same magnitude of deflection.

The soil stress coefficient depends upon the shear strength of the soil as well as the relative deflection of the wall. Shear strength is defined in terms of the Mohr-Coulomb failure criterion as

$$\tau = c + \sigma \tan \phi \tag{2-1}$$

in which: τ = shear strength, c = soil cohesion, ϕ = the angle of internal friction, and σ = normal stress on the failure plane. Figure 2-3 illustrates this concept, which shows increasing strength with increasing normal stress.

For the purpose of this work, shear strength will be in terms either c or ϕ . Sand, silt and gravel are assumed to possess only frictional strength, so that c = 0. This applies to any combination of these granular soils. Clay soils are more complex, demonstrating different properties for short- and long-term behavior. When a cohesive soil is rapidly loaded to failure, water pressure in the pores is not allowed to drain and the soil exhibits cohesive strength only. If the pore water is allowed to dissipate as the soil is loaded to failure, it will exhibit frictional strength and may be assumed to maintain none of its cohesion. Therefore, the short-term strength of clays is represented by the undrained strength where $\phi = 0$, and the long-term strength is represented by the drained strength where c = 0. The drained and undrained strengths vary over a wide range.

The horizontal stress coefficients for soils with friction, including the drained case for clays, depend upon the angle of internal friction, ϕ , the angle of wall friction (i.e., strength of wall-soil

Figure 2-3. Mohr-Coulomb failure criterion

.

c

interface), δ , and the angle of inclination, ω , of the backfill with respect to the horizontal. The active stress coefficient, K_a , is given by

$$K_{a} = \frac{\cos^{2} \phi}{\left\{1 + \left[\frac{\sin(\phi+\delta) \sin(\phi-\omega)}{\cos\delta \cos\omega}\right]^{1/2}\right\}} 2$$
(2-2)

The passive stress coefficient, K_p , is given by

$$K_{p} = \frac{\cos^{2} \phi}{\left\{1 - \left[\frac{\sin(\phi+\delta) \sin(\phi+\omega)}{\cos \delta \cos \omega}\right]^{1/2}\right\}^{2}}$$
(2-3)

The angle of wall friction is often taken as

$$\delta = \frac{2}{3} \phi \tag{2-4}$$

for wood and steel walls (Rowe, 1952). Further discussion of the wallsoil interface appears later in this section.

The active and passive stresses, P_a and P_p , may be computed using Rankine's formulation for frictionless soils,

$$P_{a} = \gamma_{c}h - 2c \qquad (2-5)$$

$$P_{p} = \gamma_{s} h + 2c \qquad (2-6)$$

when dealing with the undrained strength of clay.

If the length of the previously described hypothetical wall (Figure 2-2) is increased so that it penetrates into the subgrade to a depth, D, the wall deflection will produce an active state on one side and a passive state on the other. If D is sufficiently large, static equilibrium exists as the horizontal forces exerted on the active side are balanced by the horizontal forces on the passive side. A cantilevered bulkhead is thus established as in Figure 2-4a. The depth of penetration required below the dredge level to achieve equilibrium can be decreased by employing a tie-rod and anchoring system near the top of the wall as in Figure 2-4b. An anchored bulkhead is thus established.

With a known or assumed stress distribution, the depth of penetration, tie-rod load, and bending moment in the wall may be computed. By examining the evolution of bulkhead design, scrutiny of the underlying assumptions of each approach is possible. As the evidence produced by each investigation is accumulated and evaluated, it becomes clear which assumptions are valid and which aspects of a procedure are worthy of retention. These are the components of the design procedure which will result in the most representative calculations of depth, tie-rod load and bending moment.

With these concepts in mind, an examination of the evolution of bulkhead design follows.

2.2. Classical Theories

2.2.1. Fixed Earth Support

The Fixed Earth Support method, one of the classical approaches, relies on the premise that the toe of the wall does not move. With this assumption, the wall may be considered as a cantilevered beam above the point of fixity, permitting the assumption of a reaction at the point of fixity, F, as shown in Figure 2-5a. The third assumption is that the passive stress resultant is applied at a depth 0.8D.

BASSIVE STRESS ACTIVE STRESS

Figure 2-4. Stress distributions

-

C EQUIVALENT BEAM

Figure 2-5. Fixed Earth Support assumptions

One way to analyze this case is to assume a depth of penetration, D, and compute the deflections of the wall based upon simple beam theory. If the deflection is not zero at 0.8D, another trial depth is attempted and deflections are recomputed. This process continues until a depth of penetration is achieved where the deflection computed at 0.8D is zero. This is the elastic line approach (Figure 2-5b).

Another approach simplifies the computations by assuming a hinge at the point of contraflexure, C, in Figure 2-5b. This permits the wall to be analyzed as two equivalent beams. The upper portion is treated as a simply supported beam with reactions at the tie-rod level and point of contraflexure, as shown in Figure 2-5c. The resultant forces are summed about the tie-rod level.

The active and passive stress coefficients suggested by Tschebotarioff (1951) are given by:

$$K_a = \tan^2 (45 - \phi/2)$$
 and (2-7)

$$K_{p} = 1/K_{a}$$
(2-8)

Aside from the cumbersome numerical procedures involved, the Fixed Earth Support method has serious shortcomings that stem from the assumptions. Model tests have shown that deflections at the toe always occur (Rowe, 1952), thereby invalidating the premise that the wall may always be treated as a cantilever. Fixed Earth Support assumptions are good only for limited applications where toe deflections are relatively small.

2.3.2. Free Earth Support (FES)

This other classical method assumes that the toe of the wall is free to move, thereby enabling the full passive stress to develop along the pile below the dredge line. At the time of toe failure, the Free Earth Support (FES) stress distribution shown in Figure 2-6 can be computed using Coulomb's definitions for active and passive stresses.

Experiments have shown that the stress distribution for inadequate penetration is accurately described by the FES values (Rowe, 1952). This means that the minimum penetration depth where failure is imminent may be computed. The penetration is then adjusted so that the minimum depth is exceeded and a margin of safety is realized.

For penetration less than the required minimum depth, equilibrium is not achieved and the wall rotates as a rigid body. For penetration exceeding the minimum value, rigid body movement no longer occurs and the stresses are redistributed because of the flexibility of the wall. This redistribution causes the computation of bending moments, based upon FES assumptions, to be overly conservative and thereby uneconomical. In spite of this inaccuracy, it still remains a useful procedure for computing penetration depths, although an alternative procedure for calculating bending moments and tie-rod loads is warranted.

2.3. Danish Rules

In spite of the rational approaches provided by the classical methods, quay walls in Denmark around 1900 were built with the guidance that "dimensions appear to be reasonable" (Tschebotarioff, 1951). Increased commerce at this time led to the demand for higher walls,

Figure 2-6. Free Earth Support assumptions

which in turn necessitated more stringent design procedures. Use of the Coulomb procedure to check timber walls already built showed that the stresses in these walls were three to four times higher than allowable stresses for timber. Since the walls had withstood the test of time with no apparent malfunction, it was surmised that the actual stresses were substantially less than the stresses predicted from the Coulomb method. With this deviation in mind, the Danish engineers Christiani and Nielsen designed the Åalborg Pier in 1906. This was considered a daring undertaking, not only because the pier was underdesigned with respect to Coulomb guidelines, but also because it was made of reinforced concrete and not timber. Although the design has often been criticized for lack of conservatism, the structure has stood for decades (Tschebotarioff, 1951).

One reason for the pier not failing is the presence of piles driven through the backfill into the subgrade. These piles transfer any surcharge load to below the subgrade so that this load does not add to the horizontal soil stresses already acting on the wall. Another more significant reason is a redistribution of stresses because of soil arching. As the wall deflected horizontally, the fill deformed so that an arch of soil formed between the tie-rod and dredge levels. The arch then carried part of the horizontal load imposed by the fill. This arching concept formed the basis for a set of design procedures called the Danish Rules.

The stress diagram for this formulation appears in Figure 2-7. The Free Earth Support stress is reduced by an amount defined by the parabola with amplitude, q, such that: 25

Figure 2-7. Danish Rules assumptions

$$q = \frac{k (4 + 10 h/L)}{5 + 10 h/L} P_{m}$$
(2-9)

and

$$k = \frac{1}{1 + \frac{0.1}{\sin\phi} (\frac{1+n \ Ea}{L\sigma})}$$
(2-10)

in which: h = distance from the tie-rod to the top of backfill, n = the ratio of bending moments at the tie-rod and at the dredge level, E = the elastic modulus of the sheet pile, a = the wall thickness, P_m = an assumed distributed load, and σ = the allowable bending stress of the wall.

The depth of penetration is taken as 3 to 3.5 times the distance H_ and then multiplied by a safety factor.

Although the Danish Rules have produced successful bulkheads, this approach is not recommended as it lacks rigorous analytical or experimental substantiation. However, the rules demonstrated the validity of using reduced stresses acting on the wall.

2.4. Limit Equilibrium Approaches

A method for solving soil stress problems based upon rupture theory was devised by Hansen (1953). The underlying principle of this approach is that a soil mass in a state of failure takes on a specific geometry, i.e., a specific figure of rupture (Figure 2-8). When the figure is established, Kötter's equation is used to compute soil stresses and the kimetatics are computed as shown in Figure 2-9. By varying certain dimensions, critical rupture figures can be determined. The design of the structure can then be completed by using the forces and moments stemming from the critical conditions.

Figure 2-8. Rupture figures (Hansen, 1953, pp. 73-79)

_

Figure 2-9. Kinematics of a rupture figure (Hansen, 1953, p. 104)

÷

Brinch Hansen's approach appears attractive in that it enables the designer to obtain a true concept of the forces involved which tend to produce a particular mode of failure. Use of Kötter's equation in computing the stresses of soils in a plastic state is quite valid and enhances the accuracy of the computations. In spite of these benefits, the procedure is very tedious because many iterations are necessary to arrive at a satisfactory solution and Kötter's equation is very cumbersome.

2.5. Studies by Tschebotarioff

Large-scale model tests of bulkheads were conducted by Tschebotarioff at Princeton (1948) to corroborate or refute earlier concepts of bulkhead behavior. Tests were performed with three objectives in mind: reducing stresses acting on the wall from a fluid clay backfill; determine the effects of consolidation upon the magnitude of stresses exerted on the wall and observe the phenomenon of arching; investigate the distribution of stresses acting upon the wall.

The placement of dredge spoil as backfill is common practice as it greatly reduces the amount of fill required from a borrow area. There is an obvious advantage to this practice, but there are two significant disadvantages. Fluid clay has such a high water content that it behaves as a fluid, i.e., it has very little shear strength and the horizontal stresses are much higher than those from normal backfill. Also, the fluid clay must consolidate prior to any operations on its surface, such as construction of buildings. The studies involving fluid clay backfills are thus noteworthy. An important consideration in these tests is the range of soils used. The angle of internal friction of the sands studied range between 32° and 36°, indicating that the sands were in the loose to medium dense range. The clay used, except for the fluid clay backfill, showed a cohesion of 300 psf (14.4 Pa) and an angle of internal friction of 17°, determined from consolidated-undrained shear tests. A mixture of sand and clay was produced with a resulting angle of internal friction of 32°.

Tests were conducted to determine the means required to minimize the horizontal stresses exerted by a fluid clay backfill. It was found that a sand dike placed at its natural angle of repose, shown as line 6-6 in Figure 2-10, was fully effective in reducing the stresses exerted by the fluid clay fill, i.e., the stresses were the same as if the entire fill was composed of sand. The same results were found when a sand blanket was placed whose width was equal to the wall height, as shown by line 8-8. A sand blanket whose width was 50 percent of the wall height, as shown by line 9-9, was 50 percent effective. A blanket width of 10 percent of the wall height was found to have no effect.

The presence of the sand dike or sand blanket did not enhance the rate of consolidation, but prefabricated cylindrical drains did. Vertical drains were acceptable, but were difficult to place because of construction impediments. Horizontal drains, on the other hand, were conceived as shown in Figure 2-11. It was felt that, although such drains would be expensive, they would be practical and would accelerate consolidation.

Figure 2-10. Test apparatus (Tschebotarioff, 1949, p. 25)

Figure 2-11. Sand drains to accelerate consolidation (Tschebotarioff, 1949, p. 28)

A major assumption of the Danish Rules is that an arch of soil forms between the tie-rod and dredge level which reduces the horizontal stresses acting upon the wall, as suggested by Figure 2-8. Tschebotarioff felt that this arching phenomenon warranted closer scrutiny. He made a distinction between dredge and fill bulkheads based upon his observations of arching.

For an arch of sand to form, a stable "abutment" must first be present. Then, as the wall deflects between the tie-rod and dredge level, an arch forms between these two abutments. For fill bulkheads, this abutment is present at the dredge level, but is lacking at the tie-rod until the fill is raised beyond that level. As the fill is placed, the wall deflects and no arch may form without the second abutment. Dredge bulkheads, on the other hand, allow the formation of an arch when the material in front of the wall is removed. When the two abutments are present, the dredging operation causes wall deflections between the tie-rod and final dredge level, and an arch forms. However, the arch is unstable as additional tie-rod yield causes it to break down.

A recommended design procedure evolved after the third set of tests. The approach suggested was a simplified equivalent beam procedure where a hinge is assumed to be located at the dredge level. For bulkheads in a subgrade of clean sand, the depth of penetration is taken to be 43 percent of the wall height, H, based upon limited test results. The factor of safety against toe failure was said to be at least 2.0. The active stress was computed from:

34

$$P_a = K_{A} \gamma_{S} H, \text{ where}$$
(2-11)

$$K_a = (1 - \frac{a}{f' H}) \ 0.33 \ f''',$$
 (2-12)

in which: a = the height of soil above the tie-rod, f' = 3.5 and f'''
= 0.9, based upon limited test results. Bending moments can be computed from the stress diagram (Figure 2-12). Tie-rod pulls should be
designed for overstressing by dividing computed loads by the expression:

$$(1 - \frac{a}{f' H}) f''$$
 (2-13)

The term f'' = 1.0 for known subgrade materials and should be decreased for uncertainties in the subgrade.

A further observation made with respect to vibrating the backfill was that it increased the bending moments by 60 percent; similar vibration of the soil in front of the bulkhead tended to reduce the bending moments.

The tests at Princeton did not establish any valid relationship between the shear strength of clay and lateral stresses. This lack of correlation was interpreted to signify that once a safe depth of penetration was established, horizontal stresses in clay are a problem of deflection, not of rupture.

Since the range of soils tested was limited to a narrow band, the empirically derived formulas for bulkhead design are valid only for that range. As soils vary beyond the test range, their stress distributions must also vary, especially for clays. A more comprehensive design procedure is needed which encompasses a broader spectrum of soil conditions.

Figure 2-12. Design assumptions (Tschebotarioff, 1951, p. 561)

2.6. Studies by Rowe

Rowe contributed significantly to the understanding of bulkhead behavior (Rowe, 1951, 1952, 1955, 1956, 1957). His work began by observing the performance of scale model bulkheads in cohesionless soils where he focused upon the effects of sheet pile flexibility and soil stiffness. Based upon his findings, he formulated a bulkhead design procedure. He then developed a theoretical and analytical model where bulkhead behavior could be described as a beam on an elastic foundation. Several years later he performed further tests on walls in a cohesive subgrade, coupled these data with his previously developed analytical model, and recommended a procedure for the design of walls in clay. In subsequent work, he compared designs based upon his recommended procedures with Hansen's approach. Rowe's work was extensive well-documented, and it provided an insight that is very helpful in understanding bulkhead behavior.

2.6.1. Anchored Walls in Sand

Rowe felt that variations in the distribution of stress acting upon sheet pile walls resulted from variations in surcharge, tie-rod level, anchor yield, dredge level, pile flexibility and soil stiffness. To determine such effects, he instituted two series of stress tests and one series of flexibility tests (Rowe, 1952).

The stress tests were conducted on a 3 ft-6 in (1.07 m) high model wall, as shown in Figure 2-13a. The sequencing of these tests is shown in Figure 2-13b. Stress measurements were made directly by stress gauges, and bending induced strains were measured by strain

Figure 2-13. Stress tests

gauges. The only soil used in the stress tests was dry sand in a loose state.

The flexibility tests were conducted in the apparatus shown in Figure 2-14. The properties of the different piles used are given in Table 2-1. Different soils were used, each with a different angle of internal friction and dry unit weight. Each soil was tested in the loose state, with relative density equal to 0 percent, and in the dense state, with relative density equal to 100 percent. The soil properties are summarized in Table 2-2.

2.6.1.1. Conclusions Based Upon the Stress Tests

The first series of stress tests demonstrated that the initial stress distribution deviated from Coulomb's FES predictions. As the dredging continued, however, the stress distribution eventually reached the free earth values when toe failure occurred. Prior to failure, stress increases developed above the tie-rod and decreases developed below, i.e., arching occurred. The stress reduction, because of arching, was substantially less than that predicted by the Danish Rules. The first series of tests also showed that a considerable shear force developed at the toe which tended to resist outward movement.

The second series of stress tests incorporated controlled anchor yield while the first series permitted none. The placement of various surcharge loads was another added feature. This series showed that arch instability resulted with anchor yield or additional dredging and that the stress distribution developed was in accordance with Free Earth Support predictions. The amount of yield necessary for the

39

Figure 2-14. Apparatus for flexibility tests (Rowe, 1952, p. 38)

Material		Thickness (mm)		Length (m)	Flexibility log o	Test
Steel	0.330	(8.38)	42	(1.07)	-3.32	Stress Tests
Steel	0.164	(4.19)	36	(0.91)	-3.18	"
			32	(0.81)	-3.38	
			30	(0.76)	-3.49	
			28	(0.71)	-3.61	11
			26	(0.66)	-3.74	IT
Steel	0.109	(2.77)	36	(0.91)	-2.52	Flexibility Tests
			31.5	(0.80)	-2.74	11
			27.5	(0.70)	-2.98	11
			24	(0.61)	-3.22	1t
			21	(0.53)	-3.45	11
Aluminum	0.083	(2.11)	29	(0.74)	-2.07	
			26	(0.66)	-2.26	11
			23	(0.58)	-2.48	11
			20	(0.51)	-2.72	**

Table 2-1. Pile characteristics (Rowe, 1952)

Table 2-2. Soil properties (Rowe, 1952)

		Loose Sta	State: D _r = 0%			Dense Sta	Dense State: D _r = 100%	
	$\frac{\text{Dry Unit Wc.}}{\text{Ib}} \frac{\text{Akl.}}{(\frac{\text{kN}}{3})}$		Angle of Int. Fric. (Degrees)	Void Ratio	$\frac{\text{Dry Unit Wt.}}{\text{1b}} \frac{(\frac{\text{kN}}{3})}{(\frac{\frac{\text{kN}}{3}}{3})}$	$\frac{11 \text{ Wt.}}{\binom{\text{kN}}{3}}$	Angle of Int. Fric. (Degrees)	Void Ratio
Sand	90	(14.1)	30	0.78	100	(15.7)	41	0.53
Dorset Pea Gravel	98	(15.4)	30	0.74	110	(17.3)	37	0.49
Whinstone Chips	82	(12.9)	39	1.06	96	(15.1)	50	0.74
Ashes	40	(6.28)	40	1.76	56	(8.79)	50	0.95

.

complete breakdown of arching was equal to $H_D/1000$. Rowe stated that the amount of yield one could expect in the field is between $H_D/930$ and $H_D/360$. In other words, arching is not a stable state under normal conditions.

The active stresses acting upon the model walls were found to agree closely with Tschebotarioff's predictions. Bending moments, however, were at times found to be as much as twice as high. Rowe surmised that this discrepancy could be resolved by observing the effects of varying the pile flexibility. This was the objective of the flexibility tests.

2.6.1.2. Conclusions Based Upon the Flexibility Tests

Rowe determined that prototype walls must behave in the same manner as the model walls if the conditions of similitude are maintained. The most important aspects of these conditions shown by the tests are two ratios. The first proportionality states that bending moment, M, and pile length, H_D , are related by the constant τ , such that

$$\tau = \frac{M}{H_D^3}$$
(2-14)

The second states that the pile length, elastic modulus of the pile and moment of inertia of the pile are related by the pile flexibility number, ρ , such that:

$$\rho = \frac{H_D^4}{EI}$$
(2-15)

He then concluded that the behavior of prototype and model walls must be similar if their relative wall heights, α (Figure 2-15) are equal,

H₁=3, H₀1=5, H_A1=1
H₂=6, H_{D2}=10, H_{A2}=2
$$x = H_{10}$$
 = H₂
H₁₀ = H₂ = 0.6
 $B = \frac{H_{A1}}{H_{01}}$ = $\frac{H_{A2}}{H_{02}}$ = 0.2

and relative tie-rod levels, β , are equal, where

$$\alpha = \frac{H}{H_{D}}$$
(2-16)

and

$$\beta = \frac{H_A}{H_D}$$
(2-17)

It was determined that pile flexibility had a major effect upon stress distribution and bending moment. As demonstrated in Figure 2-16a, a more flexible pile permits larger deflections, Δ , at the dredge level relative to the deflections at the toe. The larger deflection causes a greater amount of passive stress to be mobilized at that point. Consequently, the passive stress resultants occur closer to the dredge level with more flexible piles, as shown in Figure 2-16b. The influence of pile flexibility in dense subgrades is similar, but with a more pronounced effect as the passive stress resultant was located even closer to the dredge level.

The flexibility tests also indicated that tie-rod loads differ from the Free Earth Support values, depending upon relative tie-rod height, 3, relative wall height, α , and pile flexibility. It was also shown that tie-rod loads could be increased by as much as 50 percent because of differential tie-rod yield and anchor settlement, i.e., adjacent tie-rods may deflect unevenly, thus causing one tie-rod to take more of the load.

2.6.1.3. Design Procedure for Anchored Walls in Sand

As well as providing a sound qualitative description of bulkhead behavior, Rowe's observations and conclusions served as a basis for

Figure 2-16. Effects of pile flexibility on pile deflections and passive stress

.

computing penetration depths, bending moments, and tie-rod loads. Since much of Rowe's observations were reported in terms of deviations from FES values, it is not surprising then to find that his recommended design procedure begins by computing the FES values. These values are modified by employing factors derived from the tests, the factors depending upon relative wall height, relative tie-rod level, pile flexibility and the relative density of the subgrade.

It has been suggested that once a safe penetration depth has been achieved, bulkhead design is a matter of deflection (Rowe, 1952; Tschebotarioff, 1948). Rowe's work clearly established that the stress distribution acting upon the wall at the time of toe failure was accurately described by the FES method. Hence, the FES method can be used to compute a safe penetration when safety factors are applied to the loads. Once the penetration depth is computed, its maximum bending moment and tie-rod loads are computed using the FES stress distribution. The safety factor used for the penetration computation is not used for the moment and tie-rod computations.

The FES bending moment is used to determine the design bending moment by incorporating a reduction factor, r_d , chosen from Figure 2-17a. The reduction factor is read directly from the figure for the appropriate relative wall height, α , and subgrade relative density. The reduction factor is chosen for several values of pile flexibility, α .

For the conditions of similitude to be obeyed, the maximum bending moment is converted to

$$\tau_{\max} = \frac{M_{\max}}{H_{\text{T}}}$$
(2-18)

Figure 2-17. Tie rod and bending moment factors, sand (after Rowe, 1952, p. 45; 1956, p. 308)

where M is the maximum bending moment in inch-pounds. An operating curve is then developed as shown in Figure 2-18 where

$$\tau = \tau \qquad (2-19)$$

and r_d = the reduction factor for that particular value of log ρ . A structural curve is then developed for each value of ρ with

$$\tau_{\rm STR} = \frac{\psi}{(H_{\rm D}\rho^2)^{1/3}}$$
 (2-20)

and

$$\psi = \frac{f_{b}}{(EI)^{2/3}}$$
(2-21)

where ψ = flexibility characteristic, f_b = allowable bending stress, S = section modulus, E = elastic modulus of the pile material, and I = moment of inertia. The intersection of the operating and structural curves gives the solution in terms of t. The design bending moment then may be computed by using Eq. 2-18.

The tie-rod load is more simply computed by multiplying the FES value by the tie-rod load factor, f_c , found in Figure 2-17b. The factor, f_c , is read directly for the appropriate values of α and β .

For dredge type bulkheads with unyielding anchorages, additional reductions in bending moment may be computed by using Figure 2-17c. The reduction factor, r_t , is read for appropriate values of α and 3.

The FES method and Rowe reduction methods are quite lengthy procedures. They are described in greater detail in a later section. Design examples may be found in the Appendices.

Figure 2-18. Typical operating and structural curves (Rowe, 1952, p. 54)

2.6.2. Comments by Terzaghi

Terzaghi reviewed the works of Tschebotarioff and Rowe shortly after Rowe's scale model test results were published (Terzaghi, 1954). He stated that Tschebotarioff was in error to suggest that the Fixed Earth Support method be used for all calculations since the fixity of the pile toe ranged between fully free and fully fixed, depending upon pile flexibility and the relative density of the subgrade material. He agreed with Rowe that soil stresses can be computed based upon Coulomb's formulation, the maximum bending moment can be found using the Free Earth Support method, and a reduction should be applied to the maximum moment, depending upon pile flexibility and subgrade relative density.

In this work Terzaghi also suggested the scope of exploration required for bulkheads. He recommended standard penetration tests and laboratory tests for sands. For clays, he recommended undisturbed sampling for laboratory tests in addition to vane shear tests. The exploration should also be of such an extent that it reveals soft soils beneath the pile tip which could cause excessive settlement and slope failures of submerged soils in front of the bulkhead which could undermine the stability of the toe.

2.6.3. Theoretical Analysis

Rowe performed a theoretical analysis of sheet pile walls by modeling the wall as a beam on an elastic foundation. The differential equation which governs the model behavior is

$$EI \frac{d^4 y}{dx^4} - kv = 0$$
 (2-22)

in which: E = elastic modulus of the beam (pile), I = moment of inertia,y = axis in the direction of beam deflections, v = magnitude of beamdeflections, x = axis of the long dimension of the beam, and k = subgrade modulus in stress units (Rowe, 1955).

For a subgrade modulus that increases linearly with depth, the differential equation must be solved by series. The resulting polynomial for Rowe's solution was of the 30th order, a very cumbersome expression. Nevertheless, he proceeded to compute deflections and bending moments for walls in sand and in clay.

A comparison was made between the results of the theoretical analysis of anchored walls in sand and the observations made on the tests of model walls. The comparison showed very good agreement, except for very stiff walls in dense sand. This apparent discrepancy is not important since, it is pointed out by Rowe, the stiffness of the walls in the anomolous case was beyond the range normally encountered in the field.

The theoretical analysis is too unwieldly to use as a design tool, but the agreement with the experimental evidence of walls in sands suggests that it may be useful in providing information about walls in clay.

2.6.4. Anchored Walls in Clay

Rowe approached the problem of a wall in clay as a beam on an elastic foundation (1957). He stated that the subgrade modulus could be related to its cohesion in terms of Skempton's stability number (1945),

$$S_{t} = \frac{c}{\gamma_{s}h+q} \qquad \sqrt{1 + \frac{c}{c_{w}}} \qquad (2-23)$$

in which: c = cohesion in the subgrade, $c_w = adhesion$ on the wall, h = overburden stress of the fill, and q = surcharge. He also noted that the term $\sqrt{1 + \frac{c}{c_w}}$ could be taken as 1.25 in most cases.

Incorporating Terzaghi's work in determining subgrade moduli (Terzaghi, 1955), Rowe developed a relationship using the subgrade modulus, subgrade compressibility and stability number. The beam on elastic foundation analysis proceeded with variations of pile flexibility and stability number. Theoretical bending moments were compared with FES values and the percent reduction was plotted versus log p.

A series of scale model tests was performed which defined the limits of applicability of the theoretical analysis. The tests also substantiated the accuracy of the analysis. Correlating the theoretical and experimental data, Rowe presented three figures for the amount of reduction allowed as a function of stability number, which are shown in Figure 2-19. The figures represent pile flexibilities which will give three points on an operating curve. The flexibilities represented are: maximum stiffness for log $\rho = -3.1$, minimum stiffness for log ρ = -2.0, and a typical working stiffness for log $\rho = -2.6$.

Operating and structural curves are generated in the same manner as for anchored walls in sand. Once the design flexibility is determined, Figure 2-19b is used to find the required tie-rod load factor, using the stability number of the subgrade and design log ρ of the wall. A detailed procedure is found in a later chapter.

Figure 2-19. Tie-rod and bending moment factors, clay (after Rowe, 1957, p. 642)

Figure 2-19. Continued

.

•

د

2.6.5. Comparison with Limit Equilibrium Approach

Rowe computed bulkhead designs based upon Hansen's limit equilibrium analysis and compared these to the results of the scale model tests in sand (1956). In general, the limit equilibrium and model test results were in close agreement.

In addition to corroborating the moment reduction method, this comparison led to other observations that enhanced bulkhead design. One such observation was that the most economical designs resulted where the relative wall height, α , was approximately 0.73 and the relative tie-rod location, β , was approximately 0.20. The finding that tie-rod loads should be factored within a range between 0.88 and 1.25 was also a consequence of this comparison and is reflected in Figure 2-17b. And, based upon this work, it was clearly shown that with sufficient penetration, bulkhead design becomes a problem of deformation, not ultimate collapse.

2.6.6. Cantilevered Walls in Sand

One of Rowe's earlier works dealt with cantilevered walls in sand (1951). His studies proceeded in a manner similar to the anchored wall studies. A series of tests were conducted that compared the amount of moment reduction from the FES method depending upon relative wall height, α , pile flexibility, o, and relative density of the subgrade. The reduction curves shown in Figure 2-20 resulted from these studies.

Figure 2-20. Bending moment factors, cantilever walls in sand (after Rowe, 1951, p. 319)

2.7. Numerical Methods Analyses

The rapid development of the digital computer enhanced the viability of the finite element method of analysis (FEM) to a great extent. This method has been extremely valuable in describing the complex phenomena of soil-structure interaction. The finite element method has been applied to assess many soil stress problems.

One such application was an analysis of the Port Allen and Old River locks. Clough and Duncan developed an incremental finite element analysis with nonlinear, stress dependent, inelastic soil stress-strain behavior (1969). The analysis was accurate in predicting the behavior of these U-shaped, reinforced concrete structures as was shown by comparisons with the extensive instrumentation which was installed to monitor the locks.

An investigation of the behavior of high anchored bulkheads in Norway was reported by Bjerrum, Clausen and Duncan (1972). The bulkheads were instrumented with strain gauges and inclinometers were installed in the adjacent soil. A finite element analysis of the bulkheads was conducted using a modified version of the Port Allen computer program. Comparison of the FEM results with the instrumentation data and Rowe reduction method showed good agreement.

Finite element analysis has also been a tool for examining the behavior of tie back excavations. Although this behavior is somewhat different from bulkhead behavior in that anchors are employed at multiple levels and are basically unyielding, some observations can be applied to bulkheads on a qualitative basis. In a study by Tsui (1974), discontinuous wall behavior was examined. A soldier pile and lagging wall, or Berlin wall, was first analyzed by FEM as a continuous, planar wall, then as a discontinuous wall. An equivalent planar wall was developed by distributing the stiffness of the soldier piles across the spacing between adjacent piles. The discontinuous wall was modeled by stimulating the ties as spring supports, applying a soil stress of 1 tsf (96.2 N/m²) and varying the soil modulus as 100 tsf (9.61 kN/m²), 200 tsf (19.2 kN/m²), and 400 tsf (38.5 kN/m²). Comparisons of these two models (Figure 2-21) show that deflections in the lagging were 70 percent greater for the planar wall in soft soil, and 27 percent greater in stiffer soil. The Berlin wall behavior is analogous to the behavior of navy bulkheads where the 8 in (0.2 m) fender piles are similar to the soldier piles as they represent great increases in stiffness at discrete points along the wall. The navy bulkhead problem will be addressed later in this work.

2.8. Soil-Structure Interface Strength

The strength of the soil-structure interface is an important aspect of bulkhead behavior, as suggested by the Coulomb formulation for active and passive soil stress coefficients (Eqs. 2-2 and 2-3). The interface strength, δ , was suggested by Rowe to be taken as 2/3 ϕ for steel and timber sheet piles (Rowe, 1952). This recommendation was made without the corroboration of significant test results.

A more recent study has, however, addressed interface strength more comprehensively. Kulhawy and Peterson (1979) conducted tests using concrete blocks with four variations in roughness, three relative

•

Note: 1 ft = 0.305 m; 1 psf = 0.0478 N/m^2

Figure 2-21. Results of finite element analysis of discontinuous walls (Tsui, 1974, p. 3-7-2)

densities for each of two soil types, and three normal stresses. The tests were performed in a direct shear device.

It was pointed out that the causitive aspect of the interaction lay in the relative roughness of the structural face with respect to the roughness of the soil, i.e., large soil particles and small asperities in the wall allow the soil particles to skid across the wall, while small or large particles acting along a wall with high amplitude, small wavelength asperities tend to develop more friction.

The implications of the tests as they concern bulkheads are that: for precast concrete sheet piles, δ can be taken as 0.9ϕ ; for steel and timber sheet piles, other data must be consulted, although the principles of relative roughness hold true.

Peterson et al. (1976), summarized test conditions and results of investigations of skin friction. Of particular interest are the ratios of δ/ϕ for steel and for wood, with the direction of frictional resistance parallel to the grain. These values are summarized in Table 2-3. Also of interest are values of δ that were determined, but without reference to ϕ . These are also shown in Table 2-3.

The significance of the summarized skin friction data is that the value suggested by Rowe, $\delta = 2/3\phi$, is a reasonable value to use; it seems overly conservative in the case of wood sheet piles. However, the sample size of only eight values for wood is too small to be used for application to other design situations. In the case of steel, it can be seen that the mean value for ϕ is 37.2 degrees. This value obviously precludes granular soils in the loose state, which tend to show lower ratios of δ/ϕ (Peterson et al., 1976). Here Rowe's suggestion again appears reasonable.

1976)
ı, et al.,
et
(summarized from Peterson,
(summarized
data
y of skin friction data
skin
of
Summary
Table 2-3.

		Angle of S Friction, Mean St 28.4 25.6 32.8	6/4	l. Dev. Mean Std. Dev.	5.27 0.758 0.129	2.64	3.42 0.865 0.06
		Angle of Interval Friction, ϕ MaterialMeanStd. Dev.Steel37.24.93Steel37.24.93Wood37.24.93	Ingle of Sk Friction,	an Std			
of Interval ction, ϕ 4.93 4.93 4.93	Angle of Interval Friction, ϕ MeanStd. Dev37.24.9337.24.93	Material Steel Steel Wood			28.	25.	32.
	Angle Fri Mean 37.2 37.2	Material Steel Steel Wood	of Interval ction, \$	Std. Dev	4.93		4.93

•

.

The conservatism resulting from using $\delta = 2/3\phi$, in lieu of 0.8, is reflected in Table 2-4. It can be seen that the conservatism results in small increases in the active case, a 17 percent increase in the passive case for loose soils, and a 54 percent increase for dense soils. With the exception of dense soils, the conservatism does not appear to be substantial. In the case of dense soils, penetration depths are already substantially less than those for loose soils. Thus, the conservatism results in only slight increases in depth when compared to depths computed using the less conservative assumption.

2.9. Summary

Tracing the evolution of thought that governs bulkhead design serves two purposes: it provides an understanding of the complex interaction of the soil and the flexible retaining wall, and it presents rationale for choosing the optimum design procedure.

Although conservative, the classical methods provided rational approaches to design. Both methods assumed a linear stress distribution, but made contrary assumptions with respect to fixity at the toe of the pile. Later approaches assumed nonlinear pressure distribution. The Danish Rules allowed for reduced wall stresses because of arching of the soil between the anchor and dredge levels.

Large scale model tests performed by Tschebotarioff revealed that arching was unstable in bulkheads with yielding anchorages and that reductions of wall loads were because of stress distributions that deviated from the classical assumptions. His test results also suggested that high wall stresses from fluid clay backfill could be alleviated by using sand blankets or dikes adjacent to the wall.

Table 2-4. Soil stress coefficients

+

.

-

	¥d	6.70	25.7	
	к	0.270	0.171	
	δ= 0.8¢	24	32	
	К	5.74	16.7	
	K a	0.279	0.179	
	$\delta = 2/3\phi$	20	26.7	
<u></u>	÷	30	40	

The extensive investigations by Rowe covered a broad spectrum of conditions and contributed significantly to the understanding of bulkhead behavior. His tests demonstrated that the stress distribution at the time of toe failure of a wall is accurately described using free earth support assumptions. The Free Earth Support value for depth of penetration therefore specifies the minimum depth for a factor of safety of 1.0. With increasing depths and increasing densities of subgrades, fixity approaches the Fixed Earth Support assumption (Terzaghi, 1955). Once a safe depth of penetration is established, Rowe determined that the deviation of loads from the Free Earth Support method is a function of subgrade strength and wall flexibility. A more applicable model than the simply supported beam was used to describe the soil-structure interaction, i.e., the beam on elastic foundation with a linearly varying subgrade modulus. Rowe compared his model test results to the results of other investigators. He found that Tschebotarioff's suggested method was valid only for the ranges of soil stiffness and pile flexibility that were tested at Princeton. Within this range, there was close agreement. Comments by Terzaghi indicated that he agreed with Rowe's findings. The approach using the theory of plasticity proposed by Hansen also produced designs very similar to those resulting from the Rowe method. Considering the difficulties in manipulating the complex equations and rupture figures of Hansen's method, the Rowe approach offers a very attractive alternative.

Rowe's study of bulkheads was then extended to walls in cohesive subgrades. A method was derived from this investigation whereby

designs could be developed based upon the undrained strength of the soil.

The finite element method provides an accurate means to investigate the complex natures of soil-structure interaction and horizontal soil stresses. A proven FEM routine was used to evaluate a large bulkhead and the results compared favorably with instruments and strain gauges used to monitor the wall. The results also demonstrated good agreement with the Rowe method, thus adding more credence to the Rowe procedure.

An investigation of tied-back walls served to qualitatively model and explain the mechanics of a discontinuous wall. The behavior of the soldier pile and lagging system can be expected to be somewhat similar to the behavior of the 8 inch fender pile and sheet pile system of a navy bulkhead. A discussion of these implications appears later in this work.

65 a

CHAPTER 3

DEVELOPMENT OF A SIMPLIFIED DESIGN APPROACH

The discussion in the preceding chapter illustrated the variety of approaches to bulkhead design and showed that one approach is both reasonable and comprehensive. Therefore the Rowe method, which incorporates the Free Earth Support method, with modifications to bending moment and tie-rod load, is selected as the basis for a simplified design method.

In spite of its obvious merits, the Rowe method is somewhat more involved than the simpler methods. This, coupled with a lack of understanding of bulkhead behavior, will lead engineers who have not benefited from extensive training in soil mechanics to employ less complex methods. The results can range from overdesigned, uneconomical walls to inadequately designed walls. For these reasons, a simplified approach is developed herein where design curves are generated from data utilizing the Rowe method. These curves can then be employed in conjunction with simple manipulations of the pertinent parameters to develop bulkhead designs.

3.1. Computer Program

The development of a design curve requires a substantial number of data points for establishing a clear trend. To produce these data by using the Rowe method and hand calculations would be a formidable task

and require a great deal of time. Use of the digital computer greatly diminishes the time necessary to produce a sufficient amount of data. A computer program was therefore developed that would yield bulkhead designs for cantilevered and anchored walls in sand and clay. The desired output consisted of penetration depths, tie-rod loads, and maximum bending moments for walls made of timber, A328 steel and A690 steel.

It was considered to be necessary that the program have the capability of dealing with any geometry (e.g., standing wall height, water level) and heterogeneous (multi-layered) soils with the assumption that each soil layer is isotropic and homogeneous. These arbitrary parameters define the problem and enter the program as input data. The parameters are (Figure 3-1):

H = standing wall height, $H_A = anchor level height,$ $H_W = low water level height,$ $\gamma_i = appropriate unit weight of ith soil layer,$ $\phi_i = angle of internal friction of ith soil layer,$ $c_i = cohesion of ith soil layer, and$ $t_i = thickness of ith layer.$

Since the Rowe method entails the use of curves, selected data points on the curves must be read in as data. The curves are factors to be applied against bending moments and tie-rod loads for anchored walls in sand (Figure 2-17), anchored walls in clay (Figure 2-19) and cantilevered walls in sand (Figure 2-20).

Figure 3-1. Input parameters for computer program

....

It was noted earlier that once a safe penetration depth is established, the problem becomes one of deflection. From Rowe's studies (1952), it was ascertained that the stress distribution at the time of toe failure is adequately described by Free Earth Support computations. Since this is the penetration depth at failure, a safety factor must be applied. Terzaghi suggested applying such a factor against the soil strength parameter (1954). Since shear strength of cohesionless soil varies with the tangent of the internal angle of friction:

$$\phi_{f} = \tan^{-1} \left(\frac{1}{FS} \tan \phi \right), \qquad (3-1)$$

in which: ϕ_f = factored soil parameter, ϕ = unfactored soil parameter and FS = a safety factor.

It follows that the computer program should factor the soil strength parameter and find the appropriate depth of penetration by the Free Earth Support method. Then, tie-rod load and maximum bending moment can be computed based upon unfactored soil parameters and Free Earth Support pressure distributions. The Free Earth Support procedure is detailed in a later section.

The computer program must then choose the proper factors for bending moment and tie-rod loads. It must, therefore, "enter" the proper curve at the proper place by interpolating. Since it is unlikely that relative densities can be accurately established in the field and reduction curves only provide for "loose" and "dense" sands, the program must correlate relative density with the angle of internal friction. The routine must, therefore, arbitrarily select a friction angle of 30 degrees for loose sand and 40 degrees for dense sand. For

intermediate values the routine must interpolate and, for values outside this range, it must assign the upper or lower bound as appropriate. This argument also holds for the stability number of clays.

Once the proper "graphs" are selected by the program, an operating curve must be generated whereby a reduction factor is chosen for the maximum bending moment depending upon the pile flexibility number, p. A structural curve is developed based upon the material properties of the member in question, its shape factor and flexibility number, p. The intersection of these curves is found and the design bending moment is computed. This process must be accomplished for wood piles, and steel piles fabricated from A328 steel and A690 steel. A similar, but less complicated, process must occur for the tie-rod loads. The Rowe method is demonstrated in detail in a later section.

3.1.1. Subroutines *

The computer program developed for designing bulkheads was entitled "WALL" and consists of a main program and 12 subroutines. A description of the various functions follows.

The main program serves to input and display data, to regulate data sent to subroutines and to make decisions as to which subroutine is to be used.

Subroutine "FACTOR" is first called to apply a safety factor against the strength parameter, compute active and passive stress coefficients, and to keep track of the unfactored strength parameters and associated coefficients. Subroutine "DEPTH" arranges soil layers sequentially by depth. In addition to those already input, it identifies the depths of the water level and dredge level as layers. If this causes duplicity, a logical statement is invoked and the redundancy is eliminated.

Subroutine "PARAM" maintains the proper association between soil layers and their respective soil properties. It also computes the submerged unit weight for soils below the water table.

Subroutine "FORCES" is used to compute horizontal soil stresses, resultant forces and moments based upon Free Earth Support calculations. The main program decides whether to use factored or unfactored soil stress coefficients. Moments are summed about the tie-rod for penetration computations. The main program controls an iterative process where the depth of penetration is increased or decreased until the sum of moments about the tie-rod is equal to zero. When the depth of penetration iterations are completed, the main program directs "FORCES" to compute stresses and forces based upon the design penetration and unfactored soil stress coefficients. Output is generated for the factored and unfactored cases. For verification purposes, the following parameters are displayed for respective layer depths: active and passive soil stress coefficients, unit weight, overburden stress, horizontal stress, resultant force and moment. Penetration depth is also displayed.

Subroutine "TIE" is called to compute moments about the point of application of the passive stress resultant. The moments are based upon resultant forces from unfactored soil parameters. This subroutine is bypassed for cantilevered walls. The tie-rod load is displayed as output.

Subroutine "MOM" locates the point of zero shear, then computes the maximum bending moment. Free Earth Support calculations are now complete and the point of zero shear and maximum bending moment are displayed.

Subroutine "ROWE" computes the bending moments and tie-rod loads used for design. It controls which reduction curves to use, i.e., anchored walls in sand or clay, or cantilevered walls in sand. No reductions are allowed for cantilevered walls in clay. In addition to selecting the proper curves, it serves to: interpolate between graphs, generate operating and structural curves, compute the design moment and tie-rod loads, and select the corresponding sections for wood members, A328 steel members and A690 steel members.

Subroutines "SAND," "CLAY," and "CANT" select the appropriate moment and tie-rod load factors based upon decisions made in the "ROWE" subroutine.

The intersection of operating and structural curves is accomplished by calling subroutine "POI." This subroutine solves for the point of intersection of two straight line segments that are defined by four points, two points from each curve. Linear approximation is adequate for anchored walls in sand because the curvature of the graph is spread over 25 points. A similar argument applies to cantilever walls in sand. For anchored walls in clay, however, only 3 points are given by the Rowe reduction curves, one each for:

 $\log p = -3.1$ (stiff walls) $\log p = -2.6$ (working stress zone), and $\log p = -2.0$ (first yield)

This necessitates generating a curve with sufficient data points based upon a best fit of the 3 given points. A curve fitting algorithm is provided by subroutine "FIT" which performs a linear regression based upon bivariant log-normal distribution. The equation of the line of best fit is displayed along with the correlation coefficient, the original data points, corresponding fitted data points, and the difference between the original and the fitted point. For the purpose of generating an operating curve with sufficient points to use in the "POI" subroutine, the equation of the line of best fit is utilized to produce 24 line segments for selected values of pile flexibility.

A computer source list, sample output and User's Guide may be found in the Appendices.

3.2. Producing Data for Design Curves

Once the program was debugged, it was modified so that variations of input parameters would produce enough data of statistical significance for each case.

3.2.1. Case I: Anchored Walls in Sand

There were six curves generated for this case, each depending upon the relative density of fill with respect to the relative density of the subgrade. The free-standing wall height was varied for each combination of relative densities, the water level was varied for each wall height and the anchor level was varied for each height of water, i.e., H = 510, 15 and 20 ft (1.50, 3.05, 4.57, and 6.10 m), $H_w = 0.6H$, 0.7H and 0.8H, and $H_A = 0.9$ (H-H_w), 0.8 (H-H_w), 0.7 (H-H_w), 0.6 (H-H_w), 0.5 (H-H_w). The combinations of relative densities were: Loose Fill/Loose Subgrade, Loose Fill/Medium Subgrade, Loose Fill/Dense Subgrade, Medium Fill/Medium Subgrade, Medium Fill/Dense Subgrade, and Dense Fill/Dense Subgrade

The fill was considered to consist of one soil type which extended above and below the water level. The only property difference was in the unit weight. Above the water table, moist unit weight was assigned and below the water level, submerged unit weight was assigned. Unit weights were correlated with relative densities, which in turn were correlated to internal angles of friction. Table 3-1 lists these relationships. A total of 360 data points was generated for Case I.

3.2.2. Case II: Anchored Walls in Clay (Undrained)

There were 3 curves generated for Case II, each depending upon the ratio of the moist unit weight of fill times the standing wall height to the cohesion of the subgrade:

$$\frac{c}{\gamma_1 H} = 0.25,$$
 (3-2.a)

$$\frac{c}{\gamma_1 H} = 0.30$$
, and (3-2.b)

$$\frac{c}{\gamma_1 H} = 0.35.$$
 (3-2.c)

ф	Relative Density	^Y moist	^Y sat
30°	Loose	100 pcf (15.7 kN/m ³)	120 pcf (18.8 kN/m ³)
35°	Medium	105 pcf (16.5 kN/m ³)	125 pcf (19.6 kN/m ³)
40°	Dense	110 pcf (17.2 kN/m ³)	130 pcf (20.4 kN/m ³)

-

Table 3-1. Relationship of soil properties (sand)

-

Note: $\gamma_{sub} = \gamma_{sat} - \gamma_{water}$. Use γ_{sub} for the actual analysis.

These relationships produced stability numbers between 0.40 and 0.70. Stability numbers greater than 0.70 produce results with very small depths of penetration and very low bending moments and tie-rod loads; the long-term (drained) condition will prevail under these circumstances. Stability numbers less than 0.40 will produce no data since, using the factored cohesion parameter, the stability number is less than 0.25 and walls cannot stand for any depth of penetration with such low stability numbers.

Sand backfill was assumed to be present from the dredge level to the top of the wall. Also assumed was that the sand backfill was in the loose state as it is generally not compacted with the bulkhead in place. Cohesive material above the dredge level produces low stresses for the undrained case since Rankine distribution prevails (Mana, 1978). In cases where cohesion is present above the dredge level, the drained condition will prevail.

The relationship establishing the density of the subgrade is given by:

$$\gamma_3 = 110 + \frac{c}{200} \frac{1b}{ft^3}$$

$$= 17.2 + \frac{c}{31.3} \frac{kN}{m^3}.$$
(3-3)

The relationship of densities for the fill material is the same as in Case I.

The wall heights, water level heights and anchor level heights were varied as in Case I so that 180 data points were generated.

3.2.3. Case III: Anchored Walls in Clay (Drained)

There were six curves generated for Case III, 3 curves for loose sand fill overlying a clay subgrade and 3 curves for homogeneous material. Relationships between the angle of internal friction and soil unit weight are shown in Table 3-2.

The wall heights, water level heights and anchor level heights were varied as before to give rise to 360 data points.

3.2.4. Cantilevered Walls

Case IV: Cantilevered Walls in Sand

Case V: Cantilevered Walls in Clay (Undrained)

Case VI: Cantilevered Walls in Clay (Drained)

The cases for cantilevered walls proceeded similarly to the anchored cases. The only difference was that, since there was no tierod, there could be no variation for anchor level. Consequently, there were five times fewer sets of data.

For all cohesionless cases, each set of data included the soil properties of each layer (K_a , γ , z), the tie-rod load (P) and the bending moment for A328 steel, A690 steel and wood (M_1 , M_2 , M_3). The depth of penetration was displayed as the depth to the bottom of the third layer (t_3). The anchor level was also included where appropriate.

For the cohesive cases, each data set included the same parameters as listed above, plus the factored and unfactored cohesions and stability numbers.

ф	Ϋ́moist	^Y sat
24°	94 pcf (14.7 kN/m^3)	114 pcf (17.9 kN/m ³)
26°	96 pcf (15.0 kN/m ³)	116 pcf (18.2 kN/m ³)
28°	98 pcf (15.4 kN/m ³)	118 pcf (18.5 kN/m ³)
30°	100 pcf • (15.7 kN/m ³)	120 pcf (18.8 kN/m ³)

Table 3-2. Relationship between drained strength of clay and unit weights

.

Note: $\gamma_{sub} = \gamma_{sat} - \gamma_{water}$. Use γ_{sub} for the actual analysis.

3.3. Manipulating the Data

The sets of data generated represented designs for a wide range of geometric and soil conditions. More than 1100 values now required rendering the data into a meaningful and usable format. The approach was to find the mathematical relationships between the loading conditions and the resulting penetration depths, maximum bending moments and tierod loads. The mathematical functions to be formulated required simplicity, wide ranges of applicability and clearly established correlations.

3.3.1. The Normalized Parameters

Normalized parameters were sought as these would offer the most general format for design curves. Loading parameters were nondimensionalized in terms of the known geometric and soil parameters. Since Free Earth Support calculations are the basis for the Rowe method and involve unit weight times some length cubed, a combination involving the unit weight and thickness cubed of each layer was used as a basis for establishing relationships. Each of the three layers contributes to the loading and resulting design parameters, but the thickness of the third layer is initially unknown as this is the depth of penetration. The ratio, R, was therefore formulated as

$$R = \frac{\gamma_1 t_1^3 + \gamma_2 t_2^3}{\gamma_3 H^3}$$
(3-4)

The numerator represents the loads above the dredge level. The denominator normalizes the term utilizing the unit weight of the subgrade. Since the depth of penetration, D, is unknown, the standing wall height was considered the most pertinent variable with length units.

With R established as an independent variable, nondimensionalized dependent variables were chosen as $\frac{D}{H}$ = dimensionless depth, $\frac{P}{\gamma L^2}$ = dimensionless tie-rod load, and $\frac{M}{\gamma L^3}$ = dimensionless bending moment, where L = some parameter of length units, and γ = one of the 3 unit weights of the problem.

3.3.2. Testing the Relationships

Since plotting the dependent and independent variables by hand was a problem because of the amount of data, a curve-fitting technique was established utilizing linear regression analysis. This approach enables a curve of best fit to be established from a population of ordered pairs. The fit can then be tested from the Pearson productmoment correlation. For an ordered pair (x,y), in which: x = the independent variable and y = the dependent variable, a population of n ordered pairs can be analyzed with a resulting line of best fit. The following Gaussian elimination scheme defines the process:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad (\overline{x} = \text{mean})$$
(3-5)

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \qquad (\overline{y} = \text{mean}) \qquad (3-6)$$

$$S_x^2 = (\frac{1}{n} \sum_{i=1}^{n} x_i^2) - \overline{x}^2, \quad (S_x^2 = variance)$$
 (3-7)

$$S_y^2 = (\frac{1}{n} \sum_{i=1}^n y_i^2) - \overline{y}^2, \quad (S_y^2 = variance)$$
 (3-8)

$$S_x = \sqrt{\frac{S_x^2 n}{n-1}}$$
, (S_x = standard deviation) (3-9)

$$S_{y} = \sqrt{\frac{S_{y}^{2}n}{n-1}}, \qquad (S_{y} = \text{standard deviation}) \qquad (3-10)$$

$$m = \langle \frac{1}{n} \sum_{i=1}^{n} s_{i} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i}y_{i} \rangle \div [\frac{1}{n} (\sum_{i=1}^{n} x_{i})^{2} - \sum_{i=1}^{n} x_{i}^{2}], \qquad (3-11)$$

$$b = \overline{y} - m\overline{x}, \qquad (3-12)$$

$$r = m \frac{s_x}{s_y}$$
(3-13)

in which: m = slope of the line of best fit, b = y-intercept of the line of best fit, and r = the correlation coefficient of the test. The correlation coefficient for a bivariant normal distribution will range from zero, for a distribution of absolutely no relationship, to ± 1.0 , for a distribution whose ordered pairs are all located on the line of best fit.

Some situations required the best fit of a curved line to data. This was implemented using the natural logarithm of the variables, thus creating a bivariant log-normal distribution. The curve of best fit would then be described as:

$$\ln y = m \log x + b$$
, or (3-13)

$$y = e^{b} x^{m} . (3-14)$$

It became apparent that other parameters would need to be incorporated because low correlation coefficients resulted from the initial tests. Since penetration depth, tie-rod load and maximum moment vary with tie-rod height and water level height, it followed that these e

parameters be utilized as modifying factors. Penetration depth is also a modifying factor for tie-rod loads and bending moments.

Situations with cohesion in the subgrades required a somewhat different loading ratio, R, because of a different stress distribution, such that:

$$R = \frac{\gamma_{1}t_{1}^{3} + \gamma_{2}t_{2}^{3}}{(5c - \gamma_{1}t_{1} - \gamma_{2}t_{2})H^{2}} = \frac{\gamma_{1}t_{1}^{3} + \gamma_{2}t_{2}^{3}}{(4cr - \gamma_{1}t_{1} - \gamma_{2}t_{2})H^{2}}$$
(3-15)

Modifying factors are applied in a similar manner as for cohesionless soils with the addition of the dimensionless stability number, S_t.

Testing for the curve of best fit proceeded whereby the combinations of factors for a modifying coefficient, C, were varied until the highest correlation coefficient resulted. For example, for penetration depth for anchored walls in sand

$$R_{\rm p} = C_{\rm p} R \tag{3-15a}$$

$$C_{\rm D} = \left(\frac{H_{\rm W}}{H}\right)^2 \frac{H_{\rm A}}{H - H_{\rm A}},$$
 (3-15b)

Modifying coefficients are similarly formulated for moments and tie-rod loads, and are subscripted as M and and P respectively. Modifying coefficients are summarized in Table 3-3.

When testing for best fit of these parameters, it was found that for the normalizing term, γL , the best fit resulted for:

Case	Depth C _D	Bending Moment ^C M	Tie-rod Pull C _P
I	$\frac{(H_W)^2}{(H)^2} \frac{(H_A)}{(H-H_A)}$	$\frac{(D)}{(H)} \frac{(H_{A})}{(H_{W})}$	$\frac{(D)}{(H)} \frac{(H_A)}{(H_W)}$
II	$\frac{H_{W}}{(H-H_{A}) S_{T}}$	1.00	$\frac{H_{A}}{(D) (S_{T})}$
III	$\frac{(H_W)^2}{(H)^2} \frac{(H_A)}{(H-H_A)}$	$\frac{(D)}{(H)} \frac{(H_A)}{(H_W)}$	$\frac{(D)}{(H)} \frac{(H_A)}{(H_W)}$
IV	. 1.00	$\frac{(H_W)}{(D)}$	n/a
v	1.00	$\frac{(S_T)^3 (H_W)^3}{(H)}$	n/a
VI	1.00	$\frac{(H_W)}{(D)}$	n/a

.

Table 3-3. Modifying coefficients for curve fitting

۰

-

.

 $\gamma = \gamma_1$, for tie-rod pull, and

$$\gamma = \gamma_3$$
, for bending moment, using L = distance from tie-rod
to point of application of passive pressure =
 $(H - H_A + \frac{2}{3} D)$, (3-16)

The trials proceeded with the objective of attaining correlation coefficients of 0.90 or greater. This insured statistical significance of the relationship. Statistical significance does not necessarily imply engineering significance, that is, a correlation coefficient of 0.90 may still have an unacceptable deviation between the fitted value of a data point and the original value. Conversely, a lower correlation coefficient, say 0.75, may have a small deviation. For this reason, the correlation coefficient was used as a primary test value. If the value proved satisfactory, or improved values could not be attained, acceptance was based upon the percent difference between the fitted and original values.

Once the optimum fits were established, the data points and curves of best fit were plotted utilizing a COMPLOT DP plotter. For use as design charts, the curves were replotted without the data points.

It was apparent from examining the data that bending moments for A690 steel and wood members deviated from bending moments for A328 steel members in a consistent but negligible manner. It was therefore deemed appropriate to formulate a ratio of bending moments with those for A328 steel members as the basis. This was done by computer for anchored walls in sand and cantilevered walls in sand. A normal distribution of ratios for each case was rendered and a mean value and standard distribution were computed. The results are summarized in Table 3-4.

3.4. Summary

The curves of best fit are shown in Figures 3-2 through 3-16. The equations of the curves are governed by:

$$\frac{D}{H} = mR_{D} + b \quad (Penetration depth), \quad (3-16)$$

$$\frac{M}{\gamma_3 L^3} = bR_M^m$$
 (Bending moments), and (3-17)

$$\frac{\mathbf{p}}{\mathbf{y}_1 \mathbf{L}^2} = \mathbf{b} \mathbf{R}_{\mathbf{p}}^{\mathbf{m}} \qquad (\text{Tie-rod pull}). \tag{3-18}$$

The modifying coefficients of the curves are listed in Table 3-4, and the curve constants m and b are given in Table 3-5. The variability of the design curves is displayed in Table 3-6 in terms of the mean and standard deviation of percent difference. This parameter, percent difference, reflects the difference between the curve of best fit and the original data point after the ordinates have been dimensionalized, i.e., the parameters penetration depth, bending moment and tie-rod pull.

3.5. Conclusions

The data points in Figures 3-2 through 3-16 follow the specific trends indicated by the curves of best fit. The apparent scatter in some plots may be misleading as they seem to signify a large difference

Table 3-4. Bending moment ratios

•

•

Material Relationship	A690/A328	Wood/A328
Mean	0.90	0.94
Standard Deviation	0.05	0.03

•

fitting
curve
οĘ
Summary
3-5.
'fable

د

r

.

		Depth	th	Bending	Bending Moment	Tie-ro	Tie-rod Pull
Case	Condition	6	م ٩ •	a	P	E	р
		r C C	0 6 7 0	0 315 0	76 U	1 27	517
H	L/L	-0./8/	010.0	CTC '0			
I	I./M	-0.704	0.358	0.400	0.405	1.35	7.44
	1./n	-0.605	0.252	0.441	0.530	1,39	20.1
	W/ W	-0.576	0.366	0.416	0.354	1.35	4.84
	U/M	-0.485	0.252	0.448	0.452	1.41	14.7
	0/0	-0.368	0.247	0.459	0.390	1.41	9.79
11	C/vH = 0.25	-0.681	0.976	3.44	76.3	0.120	0.6//
4	U = 0	-0.253	0,307	1.49	93.7	0.178	0.641
	$C/\nu H = 0.35$	-0.172	0.175	0.960	118.0	0.233	0.473
111	Sand Fill						
+	$\phi = 24$	-0.898	0.919	0.333 .	0.202	1.09	0.330
		-0.854	0.752	0.313	0.218	1.18	0.678
	¢ # 78	-0.840	0.627	0.321	0.251	1.25	1.33
	Homogeneous Clav						
	$\Phi = 24$	-1.17	1.42	0.304	0.224	1.11	0.685
	+	-1.04	1.03	0.313	0.205	1.17	1.02
	φ ≡ 28	-0.865	0.735	0.312	0.261	1.25	1.60
					1	•	-
TV	L/L	-0.492	1.42	-0.0365	0.103	n/a	n/a
•	L/M	-0.407	1.03	-0.0538	0.133	n/a	n/a
	1./1	-0.295	0.753	0.0788	0.149	n/a	n/a
	W/W	-0.299	1.02	-0.0474	0.117	n/a	n/a
	U/M	-0.219	0.739	-0.0678	0.136	n/a	n/a
	0/0	-0.176	0.728	-0.0541	0.122	n/a	n/a

87

r

		Depth	4	Bending Moment	Moment	Tie-rod Pull	d Pull
Case	Condition	=	٩	B	P	E	٩
Λ	C/vH = 0.25	-3.48	2.34	-0.508	0.0223	n/a	n/a
	C/vH = 0.30	-1.32	0.816	-0.271	0.0402	n/a	n/a
	$C/\gamma H = 35$	-0.878	0.484	-0.211	0.0378	n/a	n/a
۲٦	Sand Fill						
	φ = 24	-0.712	2.32	0.0829	0.0603	n/a	n/a
	$\phi = 26$	-0.597	1.93	0.0334	0.0728	n/a	n/a
	$\phi = 28$	-0.541	1.65	-0.0208	0.0911	n/a	n/a
	Homogeneous Clay						
	$\phi = 24$	0.995	2.23	0.0803	0.0787	n/a	n/a
	φ = 26	-0.749	1.89	0.156	0.110	n/a	n/a
	$\phi = 28$	-0.664	1.63	-0.0259	0.964	n/a	n/a

Continued
ŝ
- i -
ςΩ,
Э
-
ą.
Tab
1

-

difference)
(percent
curves
ı design
Variability in
Table 3-6.

		Ď	Depth	Bendin	Bending Moment	Tie-ro	Tie-rod Pull
Case	No. Values	Mean	S. Dev.	Mean	S. Dev.	Mean	S. Dev.
Ţ	360	0,09	3.01	0.55	10.5	0.24	7.03
11	180	0.20	5.46	0.47	9.28	-0.37	6.93
III	360	0.05	2.33	0.51	10.3	0.23	6.68
IV	72	0.01	0,60	0.02	3.14	n/a	n/a
N	36	-0.22	3.09	0.34	9.34	n/a	n/a
ΓΛ	72	0.00	0.72	0.02	1.95	n/a	n/a

e

between the curve and actual design values. The true significance of the variability of the data may be established by investigating the reliability of the design. This examination is conducted in a later chapter and it incorporates data contained in Table 3-6.

The presence of the data points in the figures tends to interfere with use of the curves as design aids. For this reason, the curves are presented in Chapter 4 without the data points. The equations of the curve best fit may be used in lieu of the curves by employing the curve constants listed in Table 3-5.

The design curves reflect the bending moments computed for A328 steel only, but they may still be used for computing moments for A690 steel and wood. As suggested by Table 3-3, the bending moments for A690 steel and wood are slightly less than for A328 steel. It is, therefore, slightly conservative to use values computed for A328 steel for the design of A690 steel or wood members.

Figure 3-2. D' vs. R_D : sand

Figure 3-3. P' vs \mathbb{R}_{p} : sand

.

•

.

ð

97

Figure 3-10. M' vs. R_M: clay (drained)

.

· -

Figure 3-15. D' vs. R_D: clay (drained)

Figure 3-16. M' vs. R_M: clay (drained)

CHAPTER 4

DESIGN PROCEDURES

The following pages outline the steps to be followed for the Free Earth Support, Rowe reduction, and simplified methods. Each of these is described in general terms. Specific examples illustrating the application of these methods in bulkhead design are contained in the Appendices.

4.1. Defining the Problem

Prior to any computations, the designer must take the information produced from the soils investigation and render it into a useful format. A sketch of the bulkhead geometry superimposed on the anticipated final soil profile is extremely helpful. For simplicity, soil layer interfaces should be horizontal planes. For example: the existing ground surface slopes downward as in Figure 4-la. For design purposes, it is more convenient to assume a profile as in Figure 4-lb. A level slope is assumed to exist on the dredge side of the bulkhead.

It should be noted that the water table is identified as a soil layer interface. Although it is essentially the same soil below the water table as above, the moist unit weight is used above and the submerged unit weight below. Soil properties should be labeled for each layer.

106

b. Simplified profile

Figure 4-1. Defining the problem

107

The stress distribution, resultant forces, and centroids should be diagrammed as shown in Figure 4-2. Values should be tabulated in terms of rectangular and triangular stress distributions, resultant forces, centroids, moments about the tie-rod and moments about the point of application of the passive pressure resultant (2/3 D).

Penetration depth, tie-rod load and maximum bending moment computations are facilitated and may commence.

4.2. Anchored Walls in Sand

4.2.1. Free Earth Support Computations

The Free Earth Support method uses statics to find the depth of penetration required for equilibrium, that is, the sum of moments taken about the tie-rod is zero. Using unfactored soil parameters would result in a factor of safety of unity, thus indicating imminent failure. Therefore, factored soil parameters are used to provide an adequate factor of safety against failure. For cohesionless soils,

$$\phi_{f} = \tan^{-1} \left(\frac{1}{SF} \tan \phi \right) \tag{3-1}$$

in which $\phi_{\rm f}$ = factored soil parameter, ϕ = unfactored soil parameter, and SF = a safety factor (commonly a minimum of 1.5). The factored active and passive stress coefficients are then computed in accordance with Equations 2-2 and 2-3. Figure 4-2 shows FES stress distributions and formulation to produce resultant forces, centroids, moment arms, and moments for the triangular and rectangular stress components.

Summing the moments about the tie-rod gives an equation:

$$aD^3 + bD^2 + cD + d = 0$$
 (4-1)

•

in which:
$$a = \frac{1}{3} (K_{a3} - K_{p}') \gamma_{3}, b = \frac{1}{2} (K_{a3} - K_{p}') \gamma_{3} (H-H_{A}) + \frac{1}{2} K_{a2}'$$

 $(q + \gamma_{1}t_{1} + \gamma_{2}t_{2}), c = K_{a2}' (q + \gamma_{1}t_{1} + \gamma_{2}t_{2}) (H-H_{A}), and d = F_{R1}$
 $(\frac{1}{2}t_{1} - H_{A}) + F_{R2} (\frac{1}{2}t_{2} + t_{1} - H_{A}) + F_{T1} (\frac{2}{3}t_{1} - H_{A}) + F_{T2} (\frac{2}{3}t_{2} + t_{1} - H_{A})$
 $- H_{A}). K_{a}' and K_{p}' signify that ϕ_{f} was used.$

A value for D is assumed and a trial-and-error process ensues until a satisfactory value for D is found, i.e., the sum of the moments is close to zero.

Including toe shear in the calculation tends to decrease the minimum penetration somewhat. Toe shear, T_s , is computed from the algebraic sum of the active and passive forces, the weight of pile and the effect of the soil-structure interface strength, such that:

$$T_{s} = (F_{T1} + F_{T2} + F_{T3} + F_{R1} + F_{R2} + F_{R3} - F_{T4}) \tan^{2} (\delta_{f}) + W_{p} H_{D} \tan (\delta_{f})$$
(4-2)

in which: W_p = weight per square foot of pile. The toe shear is then added to the passive stress resultant (F_{T4}) and the iterations begin again. A reduced depth will result.

Once the penetration depth is established, the tie-rod load, P_{FES} (force per unit length of wall), is computed by summing moments about the point of application of the passive stress resultant, such that:

$$P_{FES} L = M_{R1} + M_{R2} + M_{R3} + M_{T1} + M_{T2}$$
, and (4-3a)

$$L = (\frac{2}{3}D + H - H_A)$$
 (4-3b)

This computation entails use of the unfactored soil parameters.

The maximum bending moment is then found by finding the point of zero shear, x, and summing moments about that point. If x is distance below the water table where shear is zero,

$$x = \frac{-b + \sqrt{b^2 - 4ad}}{2a}$$
(4-4)

in which: $a = \frac{1}{2}K_{a2}\gamma_2$, $b = K_{a2}\gamma_1t_1$, and $d = F_{T1} + F_{R1} - P$. The maximum moment (ft-lbs per unit length of wall) is found from:

$$M_{MAX} = P_{FES} (t_1 + x - H_A) - F_{T1} (\frac{1}{3} t_1 + x) - F_{R1} (\frac{1}{2} t_1 + x) - \frac{1}{6} K_{a2} Y_2 x^3 - \frac{1}{3} K_{a2} Y_1 t_1 x^2.$$
(4-5)

Again, unfactored soil parameters are used.

4.2.2. Rowe Reduction

Since the actual tie-rod loads and bending moments differ from those calculated by the Free Earth Support method (Rowe, 1952), the Rowe reduction method is applied. To proceed with this method, the following parameters must be computed:

$$\alpha = \frac{H}{H_{\rm D}} \tag{4-6}$$

$$\beta = \frac{H_A}{H_D}$$
(4-7)

$$\tau_{MAX} = \frac{12 M_{MAX}}{H_D^3}$$
(4-8)

Establishing the tie-rod load is simple when using Figure 2-17b: enter the tie-rod chart at the appropriate value and read off the factor, f_c , for the appropriate value. For unyielding anchorages, the factor r_t is also applied. The resulting tie-rod load

$$P = f_{c} P_{FES}$$
(4-9)

or, where appropriate

$$P = f_{c} r_{t} P_{FES} \tag{4-10}$$

Bending moment reductions are much more complex to figure. A pair of curves must be developed, one representing the loading and soil properties, the other representing flexibility characteristics of the pile. The operating curve is generated by values of

$$\tau = \tau_{MAX} r_d \tag{4-11}$$

Values of r_d are taken from the moment reduction chart in Figure 2-17a for values of log ρ .

The structural curve is generated by values of

$$\tau_{\rm S} = \frac{\psi}{({\rm H}_{\rm D}^{-2})^{2/3}}$$
(4-12)

in which ψ = the flexibility characteristic and

$$\psi = \frac{f_b}{(EI)^{2/3}}$$
 (4-13)

where $f_b =$ the allowable bending stress, S = the section modulus per

unit length of wall, E = the elastic modulus, and I = the moment of inertia per unit length of wall. For rectangular sections, such as timber sheet piles,

$$\psi = \frac{2 f_{\rm b}}{E^{2/3}} \tag{4-14}$$

For a first approximation using Mariner steel sheet piling, ψ can be taken as 0.400 and, for A328 steel, ψ can be taken as 0.260. The intersection of operating and structural curves gives the design value τ , and the bending moment is found by

$$M = \tau H_D^3. \tag{4-15}$$

The section modulus required is

$$S = \frac{M}{f_{b}}$$
 (4-16)

This design section modulus is the minimum section required. The section modulus of the actual section used is then introduced into the computation of the structural curve values. In this case the actual flexibility characteristic of the section, ψ , is used. The design section resulting will most likely be the same as that calculated using the first approximation.

An example of the Free Earth Support method with Rowe reduction is given in the Appendices.

4.3. Cantilevered Walls in Sand

The procedures are similar to those for anchored walls in sand. The difference for depth calculations is that moments are taken about the toe of the wall because there is no tie-rod. Moment reductions proceed in the same manner, except that reduction factors are taken from Figure 2-20.

An example of the design of a cantilevered wall is contained in the Appendices.

4.4. Walls in Clay

The short term behavior of anchored walls in clay is governed by the strength of the subgrade. The stability number, S_t, is the prime indicator of the ability of a wall to stand, where

$$s_{t} = \frac{2 ct}{q + \gamma_{1}t_{1} + \gamma_{2}t_{1}}$$
(4-17)

in which: c = the cohesion of the clay and r can be taken as 1.25.

From the geometry of the problem (Figure 4-3a), equilibrium cannot be achieved when the overburden is greater than 4 cr for any depth of penetration, or when S_t is less than or equal to 0.25. The first step in designing walls in clay is, therefore, to compute the stability number. Design should be abandoned for values of S_t less than or equal to 0.33.

If the stability number is of sufficient magnitude, depth of penetration is computed in the same manner as for walls in sand, except that the soil parameters are unfactored above the dredge level. The cohesion parameter is, however, factored. The ensuing computation is

a. Stress distribution

Figure 4-3. Stress distribution for walls in clay

.

simplified because of the resulting rectangular stress distribution below the dredge level (Figure 4-3b). The summation of moments about the tie-rod becomes

$$a^2D^2 + bD + d = 0$$
 (4-18a)

in which: $a = \frac{1}{2} (4 \text{ cr} - q - \gamma_1 t_1 - \gamma_2 t_2), b = (4 \text{ cr} - q - \gamma_1 t_1 - \gamma_2 t_2) (H - H_A), and <math>d = \frac{1}{2} Ka_1 \cdot \gamma_1 t_1^2 (\frac{2}{3} t_1 - H_A) + \frac{1}{2} Ka_2 \gamma_2 t_2^2 (\frac{2}{3} t_2 + t_1 - H_A) + Ka_2(\gamma_1 t_1 + q) (\frac{1}{2} t_2 + t_1 - H_A).$

The solution for depth becomes a matter of solving the quadratic equation

$$D = \frac{-b + \sqrt{b^2 - 4ad}}{2a}$$
(4-18b)

The computations for tie-rod loads, point of zero shear, and maximum bending moment proceeds as for walls in sand.

4.4.1. Rowe Reduction Method, Anchored Walls in Clay

The procedure for moment reduction for walls in clay differs from that of walls in sand in the development of the operating curve. As seen in Figure 2-20a, a reduction factor, r_d , is given for only three different wall flexibilities:

log $\rho = -3.6$ (stiff walls), log $\rho = -2.6$ (working stress), and log $\rho = -2.0$ (first yield).

Each selection of r_d is based upon the stability number, S_t , and the relative wall height, α .

The structural curve is developed in the same manner as for walls in sand. Tie-rod loads are also computed similarly, with the exception that factors are given in Figure 2-20b.

An example of the design of anchored walls in clay for the undrained (short term) case is contained in the Appendices.

4.4.2. Cantilevered Walls in Clay (Undrained)

As no investigation has been performed on cantilevered walls in clay subgrades, no reductions are allowed for bending moment. Penetration and bending moment calculations proceed by the Free Earth Support method. It can be anticipated that the resulting design will be conservative.

4.4.3. <u>Undrained (Short Term) Condition vs. Drained</u> (Long Term) Condition

Calculations should be made for both drained and undrained conditions. It is conceivable that soft clay subgrades could result in the short term case controlling while stiff clay subgrades would most likely result in the long term case controlling. The stability number may provide some hint, i.e., stability numbers greater than 0.5 indicate that the long term case will probably control.

4.5. Procedure for the Simplified Method

The essence of the simplified method is to utilize non-dimensional loading to find non-dimensional design parameters. The desired design parameter is then computed by multiplying the non-dimensional parameter by a factor. The basic loading ratio, R, is merely the ratio of loading conditions above the dredge line to those below. For cohesionless conditions (walls in sand, walls in clay, drained)

$$R = \frac{\gamma_1 t_1^3 + \gamma_2 t_2^3}{\gamma_3 H^3}$$
(3-4)

and for clay (undrained)

$$R = \frac{\gamma_1 t_1^3 + \gamma_2 t_2^3}{(5c - \gamma_1 t_1 - \gamma_2 t_2) H^2}$$
(3-15)

in which γ_1 = unit weight of the ith layer, t_i = thickness of the ith layer, H = free standing wall height, and c = cohesion of the subgrade.

A modifying coefficient, C, is used in conjunction with the loading factor for the particular design parameter sought, that is

 $R_{\rm D} = R \cdot C_{\rm D} \tag{3-17a}$

$$R_p = R \cdot C_p, \text{ and} \tag{3-17b}$$

$$R_{M} = R \cdot C_{M}$$
(3-17c)

in which D = depth of penetration, P = tie-rod load and M = bending moment. A recap of the constituents of the modifying coefficients is shown in Table 3-4.

The non-dimensional design parameters are dimensionless penetration depth, D', dimensionless tie-rod load, P', and dimensionless moment, M', and are summarized in Table 4-1. L is the distance between tie-rod and point of passive stress application, or

Table	4-1.	Normalizing	parameters

Normalizing Parameter	Sand	Clay
Dimensionless Depth: D'	D H	<u>ਹ</u> ਸ
Dimensionless Tie-Rod Load: P'	$\frac{P}{\gamma_{1}L^{2}}$	P cD
Dimensionless Moment: M'	$\frac{M}{\gamma_2 L^3}$	$\frac{M}{cD^2}$

5

•

.

$$L = \frac{2}{3}D + H - H_{A}$$
, and (4-14)

$$L = \frac{2}{3} D + H$$
 (4-20)

for anchored and cantilevered walls in sand, respectively.

The non-dimensional design parameters are found by entering the appropriate curve (Figures 4-4 through 4-8) at the computed loading factor and reading off the result. An alternative is to use the equation of the curve, inserting the independent variable, the loading factor, and computing the resulting non-dimensional parameter.

Each case is comprised of different site conditions, i.e., different relative densities or cohesions for the fills and subgrades. If the design condition does not coincide with the conditions of the graph (Tables 3-1 and 3-2, Equations 3-2 and 3-3) interpolation, extrapolation, or assuming the most conservative condition are choices left to the designer. For instance, if the site has a subgrade whose angle of internal friction is 32 degrees, and loose fill will be placed, the designer may wish to interpolate between the "loose fill/loose subgrade" and "loose fill/medium subgrade" conditions. Or he may opt for the conservative approach and use "loose fill/loose subgrade."

The sequence for using the simplified method is to first compute the depth of penetration, D, then tie-rod load per unit length of wall, P, and finally, the bending moment, M. The design curves are entered using the appropriate loading factors, R. The non-dimensional design parameters are read from the curve and are multiplifed by the normalizing factors to give the design values sought. An alternative to using the curves is to use the formulation provided. The operations can be performed easily with a hand calculator.

The design curves are contained in Figures 4-4 through 4-18 at the end of this chapter.

4.5.1. Walls in Sand

Each curve on a design chart refers to a particular condition. For walls in sand, the descriptions signify

loose: in which $\phi = 30^{\circ}$, $\gamma_{\text{moist}} = 100 \text{ pcf}$, $\gamma_{\text{sat}} = 120 \text{ pcf}$; medium: in which $\phi = 35^{\circ}$, $\gamma_{\text{moist}} = 105 \text{ pcf}$, $\gamma_{\text{sat}} = 125 \text{ pcf}$; and dense: in which $\phi = 40^{\circ}$, $\gamma_{\text{moist}} = 110 \text{ pcf}$, $\gamma_{\text{sat}} = 130 \text{ pcf}$.

The first term of the description refers to the condition of the fill, and the second refers to the subgrade. Each curve is labelled such that

L/L = loose fill over loose subgrade, L/M = loose fill over medium subgrade, M/M = medium fill over medium subgrade, M/D = medium fill over dense subgrade, and D/D = dense fill over dense subgrade.

Variations in unit weight cause no significant problems in computations as these merely change the value of the loading factor, R. Deviations from the specified angle of internal friction on the other hand must be dealt with by interpolating or by assuming a conservative value. When actually performing the computations, the submerged unit weight should be used. An example of the design for an anchored wall in sand appears in the Appendices.

4.5.2. Walls in Clay (Undrained)

Design curves for walls in clay (undrained) are identified by the condition describing the ratio of overburden stress to cohesion, that is, $c/\gamma H$, in which γ = the unit weight of the fill, taken as 100 pcf (15.7 kN/m³), c = the subgrade cohesion, and H = the free standing wall height.

Granular soil of loose sand is assumed for the fill as cohesion in the fill renders an unconservative stress distribution in the undrained condition. The Rankine active stress distribution,

$$\sigma_{\rm H} = \gamma h - 2c \tag{4-21}$$

results in no loading against the wall, even for modest amounts of cohesion. The drained condition would control in such situations.

To identify the site in terms of the proper design curve, the moist unit weight of the fill, free standing wall height, and cohesion are combined as above. It is likely that interpolation will be required. High values of cohesion generally result in low values of penetration depth, thus a small range of values is presented in the charts.

An example of the design of an anchored wall in clay (undrained) appears in the Appendices.

4.5.3. Walls in Clay (Drained)

The design curves for walls in clay (drained) are identified by the fill component and subgrade strength. The fill component may consist of loose granular fill or it may consist of the same material as the subgrade. The minimum value of subgrade strength is an angle of internal friction of 24 degrees. Lower values may be extrapolated from the curve data, but caution should be used since accuracy decreases as the range of extrapolation increases. Interpolation between curves should prove to be less of a problem.

An example of the design of an anchored wall in clay (drained) appears in the Appendices.

4.6. Conclusions

The use of the simplified curves enables the designer to compute the desired design parameters quickly. Because the Free Earth Support and Rowe methods involve many steps, there is greater potential for error than in using the design curves. In spite of the apparent simplicity, care must be taken to insure that graphs are read correctly and extrapolations do not extend beyond a reasonable range. Unusually high or low results should indicate that an error may have occurred.

4.7. Summary

The design procedure for the Free Earth Support method, Rowe reduction method, and the new simplified method were outlined. The complexity involved in the Free Earth Support and Rowe reduction methods renders those methods tedious and has high potential for error. The simplified method, if properly used, reduces the potential for error and is simple compared to the other methods. The examples found in the Appendices demonstrate the application of Free Earth Support, Rowe reduction, and new methods.

٠

.

Figure 4-4. D^{*} vs. R_{D} : sand

Figure 4-5. P' vs. R_p: sand

Figure 4-6. M' vs. R_M: sand

•

_

Figure 4-10. D' vs. R_D: clay (drained)

Figure 4-13. D' vs R_D : sand

.

Figure 4-14. M'vs. R_M: sand

CHAPTER 5

DESIGN OF THE BULKHEAD SYSTEM

Bulkhead design requires more than determining penetration depth, bending moment, and tie-rod load. External loads must be considered and the structural components must be designed keeping in mind the cost effectiveness of various construction materials. External loads include surcharges imposed upon the backfill, hydrostatic imbalance in the backfill, ice-thrust, mooring loads, and impact loads. The structural components, i.e., sheet piles, tie-rods, wales, splices, and anchorages, must be dimensioned and detailed. The cost effectiveness of the entire system requires consideration of the strength, longevity, availability, and fastening methods of the component materials.

5.1. External Loading

External loads must be accounted for when designing an earth retaining system as these loads will increase the required penetration depth, maximum bending moment, and tie-rod load. The external loads that the designer must contend with are uniformly distributed loads, point loads, line loads, hydrostatic imbalance, ice thrust, mooring pull, and impact loads. Other environmental loads are discussed by Hubbell and Kulhawy (1979).

5.1.1. Uniformly Distributed Loads

Uniformly distributed loads are easily dealt with. The horizontal stress, p_h , resulting from a surcharge, q (force/unit area), is given by

$$p_{h} = K_{a} q \tag{S-1}$$

in which K_a = the active stress coefficient. The resulting stress distribution is rectangular (Figures 2-6 and 4-1). The resultant forces are then incorporated into the equilibrium calculations for penetration depth and tie-rod loads.

When the design charts are used, the surcharge can be converted into an equivalent height of soil, h_{eq} , given by

$$h_{eq} = \frac{q}{\gamma_1}$$
(5-2a)

in which γ_1 = the unit weight of soil comprising the backfill. The equivalent height of soil is merely added to the free standing wall height, H, and the resulting dimension is used throughout the computations. An example is given in the Appendices.

5.1.2. Point and Line Loads

The effects of point and line loads are treated in a semiempirical manner (Terzaghi, 1954). Elastic theory, as expressed in the Boussinesq equation, was modified by experiment and the results given as in Figure 5-1. Knowing the intensity of the surcharge load, the designer uses the formula shown to compute the resultant horizontal force, $P_{\rm H}$. The point of application is then found by choosing the appropriate dimension L for the corresponding value of m in Figure 5-1b and the computations may proceed.

a. Horizontal stress due to line load (Teng, 1962, p. 89)

b. Horizontal stress due to point and line load (Naval Facilities Engineering Command, p. 7-10-10)

Figure 5-1. Surcharge loads

c. Horizontal stress due to point load (Teng, 1962, p. 91)

d. Horizontal stress due to point load (Teng, 1962, p. 91)

When the design charts are used, an equivalent height of soil is employed in a manner similar to the uniformly distributed case. For point and line loads,

$$h_{eq} = \frac{P_{H}}{\gamma_{1} (H-L)}$$
(5-2b)

in which: H = the free standing wall height, and L = the distance from the dredge level to the point of application of P_{H} . The free standing wall height is then adjusted by increasing the dimension by h_{eq} . Design examples are given in the Appendices.

5.1.3. Hydrostatic and Seepage Effects

Fills containing significant amounts of soils of low permeability, such as clay, silt or fine sand, may cause a hydrostatic imbalance. Rapid tidal changes or substantial precipitation will cause saturation of the fill above the water level and, because of the low permeability of the fill, a hydrostatic imbalance results. The proper analysis of this condition calls for the use of a flow net (Figure 5-2a). If the soil is relatively homogeneous, an approximation of the pressure distribution as illustrated in Figure 5-2a (Terzaghi, 1954) may be used. As indicated by the flow net, the passage of water under the toe of the bulkhead has an upward gradient on the dredge side of the wall. The net result of this upward flow of water is a reduction of the effective unit weight of the soil, $\Delta\gamma$. The relationship between the hydrostatic imbalance H_u and reduced unit weight are shown in Figure 5-3 and described by the relationship

Figure 5-2. Hydrostatic and seepage stresses (Terzaghi, 1954, p. 1243)

Figure 5-3. Reduction of effective unit weight (Terzaghi, 1954, p. 1243)

$$\Delta \gamma \text{ (pcf)} = 20 \frac{H_u}{D} . \tag{5-3}$$

The reduced unit weight of the soil is then used for passive stress computations.

5.1.4. Ice Thrust

Ice thrust is a phenomenon which occurs when there is ground water or capillary water above the frost line. Horizontal thrust is the result of volume expansion of ice upon temperature change. Horizontal loads due to ice thrust are often too large to be designed for and should, therefore, be eliminated by employing free draining soils for fill material (Teng, 1962).

In addition to reducing large lateral loads due to cohesive material in the backfill, sand dikes or sand blankets (Figure 5-4) can be incorporated to eliminate the potential for ice thrust and hydrostatic imbalance. A backfill consisting of clean, coarse-grained soil is highly permeable and precludes any significant capillary action in the intergranular voids.

5.1.5. Mooring and Ship Impact

Loads associated with mooring pull can be assumed to be equal to the capacity of the winch used on the boat (Teng, 1962).

Ship impact loads are usually too high to design for. As an alternative, a fendering system should be installed to minimize the amount of impact.

Figure 5-4. Reduction of horizontal stress in clay fills (Teng, 1962, p. 373)

•

.

.

5.1.6. Load Factors

Load factors are employed to provide an adequate safety margin in cases where the extent of variations in the actual loading are unknown. Such a situation occurs when tie-rods are employed.

Tie-rod loads may be higher than the values calculated for a number of reasons. Settlement of the fill, or soft soil in the subgrade, causes the tie-rods to sag. This additional elongation is accompanied by an increase in stress.

Such overstressing could be eliminated by installing the tie-rod within a PVC pipe. As the soil beneath the pipe settles, the pipe moves, but not the tie-rod (Teng, 1962).

Tie-rods may also become overstressed because of improper construction methods, i.e., placing the backfill unevenly, compacting the backfill, surcharging the backfill without first calculating the effect, or overtightening the tie-rod.

Since tie-rods are susceptible to overstressing, the loads on tie-rods should be increased by 1.2 in cases where the designer is reasonably assured of little overstressing, and by 1.4 in cases where the designer is uncertain.

Load factors need not be applied to penetration, sheet pile anchorage, wale, or splice calculations. The safety factor used in penetration calculations (Equation 3-1) accounts for any variation in direct soil stresses acting upon the wall. Although the unfactored soil parameters are used to compute bending moment in sheet piles, the values are still conservative. Additionally, allowable loads in materials are substantially lower than failure loads. Although load factors are not applied to penetration depths, an increase in penetration must be applied to prevent failure from overdredging and scour. In such cases, the designer arbitrarily increases the penetration depth based upon local codes or the amount of scour and overdredging that the designer considers likely to occur.

5.2. Cost Effectiveness

The optimum design is that which is the most economical and performs the desired function for a specified lifetime, i.e., it is the most cost effective system. To attain this, the designer must consider the wall types, anchorage types, materials, and fastening methods available.

The discussion regarding materials is limited to steel and timber, as these comprise the majority of bulkheads. Reinforced concrete has been used for bulkheads. However, its use is often too costly for smaller walls and the complexity of the design procedure places its treatment beyond the scope of this work. Other structural materials, such as aluminum, are also available.

High strength bolts for steel walls, common bolts and nails for wood walls, and turnbuckles for tie-rods are the fasteners which will be discussed.

5.2.1. Wall Types

5.2.1.1. Anchored Wall vs. Cantilevered Wall

It may be advantageous to employ a cantilevered wall system when the standing wall height is small or when some aspect of the site precludes the installation of an anchorage. For example, the cost of utilizing an anchorage, with the required wales, tie-rods and connectors, may be higher than the cost of the increased depth of penetration required for a cantilevered wall; or, a utility line may be located which prevents employment of an anchorage. Use of the simplified design method facilitates the economic comparison between an anchored wall and a cantilevered wall in such cases.

5.2.1.2. Navy Bulkheads

A frequent sight along waterfronts is a structure commonly referred to as a navy bulkhead. It is characterized by wooden sheet pile members employed in conjunction with eight in (203 mm) diameter wooden timber piles (Figure 5-5). This structure gives the appearance of increased resistance to lateral loads when compared to smooth-faced bulkheads. The addition of the eight in (203 mm) piles does provide added strength, but the flexibility of the system is decreased and the interaction between the soil and structure is affected.

A qualitative analogy can be inferred from the discussion in Chapter 2 regarding a soldier pile and lagging system (Tsui, 1974). The soldier pile is very stiff as compared to the lagging and this is roughly analogous to the stiffness of an 8 in (203 mm) pile relative to the stiffness of the sheet piles. As shown by the finite element analysis of the discontinuous walls (Figure 2-21), the displacement of the lagging was two times that of the soldier piles for softer soils, and 1.5 times for stiffer soils. When deflections of an equivalent, continuous planar wall were computed, it was found that the displacement for the lagging was 1.6 times greater for the softer soils and 1.3

Figure 5-5. Navy bulkhead (AWPI, 1970, p. 5)

.

. .

times greater for stiffer soils. One can therefore suggest that similar behavior occurs for the navy bulkheads. In other words, deflections, and therefore bending moments and bending stresses, are substantially greater at the midpoint between two piles than at the piles themselves.

As previously mentioned, the flexibility criteria for bulkhead design is determined by the flexibility number, ρ :

$$\rho = \frac{H_D^4}{EI}$$
(2-15)

in which: H_D = total sheet pile length, E = elastic modulus of the members, and I = moment of inertia per unit length of wall (Rowe, 1952).

A brief investigation of varying member sizes leads to the essence of pile flexibility with respect to navy bulkheads. With total sheet pile length and the elastic modulus held constant, the governing factor determining wall flexibility is the moment of inertia. For rectangular members,

$$I = \frac{1}{12} bt^3$$
 (5-4)

in which: b = member width, and t = thickness. With the addition of an 8 in (203 mm) pile, the moment of inertia is greatly increased and can be determined utilizing the parallel axis theorem:

$$I = I_{1} + A_{1}d_{1}^{2} + I_{2} + A_{2}d_{2}^{2}$$
(5-5a)

in which: I_1 and I_2 = moment of inertia of sections 1 and 2, A_1 and A_2 = cross sectional areas of sections 1 and 2, and d_1 and d_2 = distance from the neutral axis to the centroids of sections 1 and 2. For the navy bulkhead (Figure 5-6):

$$I_1 = \frac{\pi}{4} r^4 = 201 \text{ in}^4 (8.37 \times 10^7 \text{ mm}^4)$$
 (5-5b)

$$I_2 = \frac{1}{12} \ell t_s^3,$$
 (5-5c)

$$A_1 = \pi r^2 = 50.3 \text{ in}^2 (3.24 \times 10^4 \text{ mm}^2),$$
 (5-5d)

$$A_2 = l t_s, \qquad (5-5e)$$

$$d_1 = c - \frac{1}{2} t_s$$
, and (5-5f)

$$d_2 = t_s + t_w + 4 - c (in) = t_s + t_w + 10.2 - c (mm),$$
 (5-5g)

in which l = length of wall under consideration, c = distance to theneutral axis, $t_s = \text{thickness of sheet pile, and } t_w = \text{thickness of the}$ wale. Moments of inertia and planar, equivalent moments of inertia were computed and are given in Table 5-1 for varying combinations of sheet pile thickness, wale thickness and lengths of wall. It is obvious that the presence of the 8 in (203 mm) pile adds considerably to the stiffness of the system, even when a planar equivalent is computed with a distance of 7 ft (213 m) between 8 in (203 mm) piles.

The effect of the increased stiffness, or decreased flexibility, on bulkhead design can be appreciated when selecting sheet pile thickness. The values of critical pile flexibility, o_c , defined as the minimum flexibility to permit moment reductions based upon Free Earth Support computations are

.

Figure 5-6. Dimensions of navy bulkhead

·

(inches)8	(inches) 2	(inches) 9.79	[(in ⁴) 2954	(<u>in⁴/ft)</u> 2954
8	2			2954
0	2			
		9.36	4051	4050
10	ر ۸	9.16	5077	5080
		11.15	3864	3860
10	2			5270
	5			6550
	4			4900
	2			6650
	3			2180
24 8 10	2.			
	3			2830
	4			3400
	2			2870
	3	7.87		3680
	4			4390
12	2	9.70	7310	3660
	3	8.69	8040	4020
	4	8.19	11,020	5510
48 8	2		5809	1450
	3			1180
	4			2070
10	2			1910
	2			2320
	4			2660
	4			2310
	2			2330
	ر			3340
	4			970
	2			1150
	3			
	4			1320
10	2			1280
	3			1490
	4			1690
12	2			1630
	3	4.41	12,060	1720
	4	4.34	15,560	2220
_	2	1.0	_	8
No piles _	3	1.5	_	27
	4	2.0		64
	12 8 10 12 8 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5-1. Effect of 8 inch piles on flexibility

 $\log \rho = -4.00$ for dense sand, and $\log \rho = -3.50$ for loose sand (Rowe, 1952).

These values correspond to pile lengths:

 $H_D = 19.2 \text{ ft} (5.85 \text{ m}) \text{ for dense sand, and}$ $H_D = 25.6 \text{ ft} (7.80 \text{ m}) \text{ for loose sand, for}$ $I = 970 \frac{\text{in}^4}{\text{ft}} (1.33 \frac{\text{m}^4}{\text{m}}),$

the moment of inertia per unit length of an equivalent, planar wall, with

 $t_s = 2$ in (50.8 mm) and $t_s = 8$ in (203 mm).

It can therefore be concluded that moment reduction should not be allowed for navy bulkheads of moderate height. It should also be noted that the planar equivalent should not be used for selecting sheet pile thickness because bending stresses can be considerably higher at the midpoint between 8 in (203 mm) piles than stresses computed for the planar equivalent.

Although the analogy between the soldier pile and lagging wall and the navy bulkhead is incomplete, it does suggest that a conservative approach be used in designing navy bulkheads. The consequence of this conservatism results in thicker sheet pile members and, therefore, higher costs. The convenience of a built-in fendering system may not be warranted because of this increased expense. However, large impact loads caused by large ships or breaking waves may necessitate the added cost of navy bulkheads.

5.2.2. Anchorage Type and Location

The anchorage may be deadmen, braced piles, sheet piles, or the footings of large structures (Figure 5-7). The passive stress developed in front of the anchorage determines the capacity of deadmen and sheet piles. Foundation footings derive their capacity to resist horizontal movement from the passive stress developed and from the friction developed along the bottom of the footing. Determination of pile capacity is beyond the scope of this work. Methods for computing pile capacity are given by Cheung and Kulhawy (1981).

The anchorage must be located so that it is not within the active failure wedge of the wall, which is defined by line segment \overline{ab} in Figure 5-8. Since the anchorage develops passive stresses, the passive wedge of the anchorage must not intersect the active wedge of the wall. Line segment be represents the closest proximity of the wedges. The safe zone for anchorage location is outlined by segments \overline{ed} and \overline{dc} ,

Figure 5-8 represents the anchorage location for a sheet pile length, H_D , of 17.5 ft (5.33 m) and angle of internal friction, ϕ , of 32 degrees, the geometry and soil parameter for example #1. Point "a" marks the pile toe, and point "e" marks the intersection of line segment ae, inclined at an angle equal to ϕ from the horizontal, with the surface of the fill.

The capacity of a continuous deadman or sheet pile anchorage (force per unit length of anchorage), is given by

$$P_{ULT} = P_p - P_a \tag{5-6}$$

Figure 5-7. Types of anchorage (Teng, 1962, p. 374)

- --

Figure 5-8. Location of the anchorage

in which P_p = passive stress resultant and P_a = active stress resultant (Figure 5-9a).

Short deadmen located near the ground surface provide added capacity because of end friction (Figure 5-9b). The capacity of short deadmen is given by (Teng, 1962)

$$T_{ULT} = L(P_p - P_a) + \frac{1}{3} K_o \gamma (\sqrt{K_p} + \sqrt{K_a}) h_L^3 \tan \phi$$
 (5-7)

in which L = the deadmen length, $K_0 =$ the at rest soil stress coefficient and may be taken as 0.40 (Teng, 1962), and $h_L =$ the height of the deadman. For cohesive soils, the relationship is

$$T_{ULT} = L(P_p - P_a) + 2c h_L^2$$
 (5-8)

in which c = the soil cohesion.

5.2.3. Material Strength

Material strength affects the cost of components in two ways, i.e., higher strength materials are generally more expensive, and the strength of the material is a determinant of the component dimensions. Since the unit cost of materials is subject to wide fluctuation, the discussion of material strength will be confined to its influence on component dimensions.

Most of the structural components are flexural members, i.e., they must resist bending stresses. The dimensioning of the member is in terms of the section modulus, S, and is determined by the bending moment, M, and allowable bending stress of the material, f, such that:

Figure 5-9. Capacity of deadmen (Teng, 1962, p. 376)

.

а

$$S = \frac{M}{f_{b}}$$

Since most of the timber components are rectangular, the dimensions may be selected using the relationship

$$S = \frac{1}{6} b h^2$$
, or (5-10a)

$$S = \frac{1}{6} b^2 h$$
 (5-10b)

depending upon the direction of the bending. Equation 5-10a is used for bending about the major axis, and Equation 5-10b is used with respect to the minor axis, as shown in Figure 5-10.

The section moduli for structural steel members can be found in Table 5-2 for sheet pile sections and Table 5-3 for channel sections.

Member dimensions are determined from section moduli which are, in turn, directly proportional to the bending moment, M, and inversely proportional to the allowable bending stress, f_b . Hence, the cost of the member is related to its strength in terms of its allowable stress.

Table 5-4a contains a partial list of allowable stresses for southern pine, the wood type most commonly used in New York. A more exhaustive list may be found in <u>Timber Design and Construction Manual</u> by the Timber Engineering Co. Columns 3 through 7 of Table 5-4a indicate the allowable: Bending stress (f), tensile stress (t), shear stress (H), compressive stress perpendicular to the grain (c_{\perp}) and parallel to the grain (c), and the elastic modulus (E). The shear stress is given by

(5-9)

Figure 5-10. Section modulus of rectangular members

Table 5-2. Engineering properties of steel sheet piling (United States Steel, 1979, facing p. 1)

-

.

USS Steel Sheet Piling		<u> </u>		Oriv-	We	i gibil		Sect		Area	Noment of		
Profile	De	si gnation	District Apiled	ing Dis- tance per Pile	Per Fool	Per Square Fool of Wall	Web Thick- ness	Per Pile	Per Fool of Walt	Per Pile	Per Psie	Per Foot ol Wall	
				in,	Lba.	Lbs.	la,	ι Λ , ¹	la,3	ia."	in,"	16,4	
	<u>5</u> .	PSX 32	H.	1634	44,0	32.0	" % 4	3.3	Z.4	12.94	\$.1	3.7	
4 4	kntertock with Each Other	P\$32*	H.S.	15	40.0	32.0	4	2.4	1.9	11.77	1.6	2.9	
- 5	tater Eac	PS 28	H.S.	15	35.0	28.0	*	2.4	1.9	10.30	3.5	2.8	
·	Other	PSA 28*	н.	16	37.3	28.0	14	3.3	Z.5	10.98	6,0	4.5	
3	Each	PSA23	H.S.	16	30.7	23.0	ч	3.Z	2.4	8.99	5.5	4.1	
· / *· /*·	Interlock with Each Other	POA 27	H.S.	16	36.0	27.0	И	14.3	10.7	10.59	53.0	39.8	
	Interloc	PMA 22	H.S.	19%	36.0	22.0	4	8.8	5,4	10.59	22.4	13.7	
и. и. и.	Interlock with Each Other and with PSA23 or PSA28	PZ38	H.	18	57.0	38.0	%	70.2	45.8	15.77	421.2	280.8	
114. N. N.	Interlock with and with PSJ	PI 32	н.	21	56.0	32.0	*	67.0	38.3	16.47	385.7	220.4	
17 N. N.	Interlocks with Itself and with PSA23 or PSA28	PZ 2)	Н,	18	40.5	27.0	56	45.3	30.2	11.91	275.3	184.2	

•

\sim
37
٦Ľ -
÷.
-36,
36
4
_
.qq
d.
<u></u>
1980
₩.
Ä.
1.6
SC
Ω.
(AISC
Y
-
co.
annels
Ċ۵
q
Ξ.
E E
÷.
\sim
•
<u></u>
5
41
Table
at
Ē
-

							· · · ·	<u> </u>				~ ~ ~
ا ــــــا	Continut Continut	1	5 3 X	333	5369 5369	3975 2110 2112	1.6.9	1.11 1.12 9.16	22.2	52	x 8	980
_ 54	Tersional Censtrant	4	23 24 24 24 24 24 24 24 24 24 24 24 24 24	0.065 112.0 171.0	22.1 999 912.0	828. 817.	0.4% 0.107 0.111	0.161 0.100 0.100	8.241 6.131 0.075	0.109 0.005	280.0 010.0	0.07) 0.041 0.02)
CHANNELS AMERICAN STANDARD Properties for designing	Sheer Context Decision	đ	0.341 1.10 01.1	0.97 0.940 1.03	0. 705 0. 705 0. 105 0. 916 0. 916	0.739 0.421 0.453	0.674 0.756 0.907	0.651 0.695 0.752	0.699 0.643 0.693	0.590 0.647	8-546 8-594	0.500 0.521 0.546
CHANNELS ICAN STAN ties for des		3	867.8 877.8 1970	0.674 0.674 0.634		0.583 0.586 0.601	595.0 195.0	23. 15. 15.	0.510 0.500 0.512	0.43 1.49 1.	0.659 0.658	8.455 8.416 8.410
AMER Proper		4	194-0 294-0 204-0	197.0 097.0 897.0	• 555 • 655 • 616 • 617 • 617	2,5,5 1,9,5,0 1,9,5,0	8.3.3	8.564 1.571 1.581	575 525 525	0.419 0.419	0.450 0.415	9.45 9.45 9.45
	Aulo V.V B	đ	2 M G 7 M G	2 11 12 12 12 12 12 12 12 12 12 12 12 12	8383	L.U L.01 0.962	1.01 0.153 0.153	777.0 207.0 203.0	0. 642 0. 564 0. 492	6.449 6.178	0, 343 0.703	1.20 1.20 1.20
	-	_ 	61.0 9.23 6.13	20 2	3 光山以	2.42 1.93 1.76	8:1 8:1	1.1 1.1 25	1.65 288.0 2692	0.420 0.420	6.432 0.119	6.305 b.247 0.197
	Normal Weight		332	สหลั	ลหสรี	825	6.6 11.5 11.5	14.75 12.25 9.8	17 17 17 17	- Ç	2.5 5.4	
	•	5	238	1 3 4 1 4 2 6 1 4 1 4 1 4 1 4	123 123 123 123 123 123 123 123 123 123	3.40	2.89	2.51	2.2 2.2 2.2	38	5.5 1.5	1.12
	Aris X.X	1	53.8 46.5 42.0	21.0 21.1 21.5	20.2 12.2 13.5	5.E1 9.03	0.11 9.03 11.6	233	383	38	£.5	1.2
		1u.4	600 510	162 141 129	28.2	6.03 6.15 7	41.0 1.3 2.5	2.12	22 22 22 22	1,49	51.5 21.5	2.07 28.1 1.66
_ 54		•	6.2 6.5 6	3.5.4	****	2.2.8	51.8 21.6 20.6	17.1 17.1 17.1	959 959	5. 5. 5	м.~	322
: (DARD signia	111-	1	e. 716 6.520 6.400	8.50 19.00 202.0	55 55 55 55 55 55 55 55 55 55 55 55 55	192.0 192.0	9.9 9.7 9.7	0.210 0.214	318 916	0.125	0.121 0.104	200 200 200 200 200 200 200 200 200 200
CHANNELS AMERICAN SIANDARD Properties for designing	142		0.650 0.650 0.650	19.19 9.19 9.19	3333	E19-0 E19-0		0.000 19.33 19.35 19.55	333	0.120 0.120	¥2.5	5.5 5.5 7
CH AMERICI Propertie	And Party	• <u>•</u>	917 I 929 I 1528 I	3.170 3.047 2.942	3.043 2.986 2.739 2.600	2.45 2.45 2.45	2.521	2.28 2.19	2.0M 2.0M	1.665 1.750	1.721 1514	388 888
	4.5	ś	322 888	8.8 17.8 17.8	8888	888	888	888	323	88	88	888
	Į.	4	1.11	3.5 2.5 2.8 2.8		873 277	1975 1975	283 772	1889 7 7 7 7	2.61	2.13 1.59	1.0
۷	Designation		C 15×50 X 40 X33.9	C 12×18 ×25 ×25.}	C 10×30 ×25 ×15.3	C 9×28 ×15 ×15	C 8×14.75 ×13.75 ×11.5	C 7×14.15 ×12 25 × 3.2	C 6×13 ×10.5 × 8.2	C 5× 3 X 6.7	C 1× 1.25 × 5.4	c JX 6 X 5 X 41

Table 5-4a. Allowable stresses for southern pine (Timber Engineering Co., 1956, p. 483)

,

٠

		Allowable unit stresses, psi								
1	-	2	3	4	5	8	7			
	. 1	0		н	سده	e	£			
Specie: commercia		Graded by	1	a i		•	-			
CO(INDEECO			┥───┤							
Pine, southern							1 760 000			
DS 86 KD	2 in. thick only	SPIB	3,000	165	455	2,250	1,760,000			
DS 72 KD	11		2,500	150	453	1,950	1,760,000			
DS 65 KD	*		2,250	135	455	1,800	1,760,000			
DS 58 KD	74		2,050	120	455	1,650				
No. 1 Dense KD	18		2,050	135	455	1,750	1,760,000			
No. 1 KD	*		1,750	135	390	1,500	1,760,000			
No. 2 Dense KD	13		1,750	120	455	1,300	1,760,000			
No. 2 KD	50		1,500	120	390	1,100	1,760,000			
DS 86	2 in. thick only		2,900	150	455	2,200	1,760,000			
DS 72	17		2,350	135	455	1,800	1,760,000			
DS 65	19		2,050	120	455	1,600	1,760,000			
DS 58	n .	1	1,750	105	455	1,450	t,760,000			
No. 1 Dense	я		1,750	120	455	1,550	1,760,000			
No. 1			1,500	120	390	1,350	1,760,000			
No. 2 Dense			1,400	105	455	1,050	1,760,000			
No. 2	19		1,200	105	390	900	1,760,000			
NO. 2				-						
DS 86	3 in. & 4 in.	SPIB	2,900	150	455	2,200	1,760,000			
DS 72	" thick		2,350	135	455	1,800	1,760,000			
DS 65	19		2,050	120	455	1,600	1,760,000			
DS 58	19		1,750	105	455	1,450	1,760,000			
No. 1 Dense SR	., #		1,750	120	455	1,750	1,760,000			
No. 1 SR	28		1,500	120	390	1,500	1,760,000			
No. 2 Dense SR	18		1,400	105	455	1,050	1,760,000			
No. 2 SR	**		1,200	105	390	900	1,760,000			
NO. 2 3M										
DS 86	5 or more in.		42,400	150	455	1,800	1,760,000			
DS 72	" thick	1	1.2,000	135	455	1,550	1,760,000			
DS 65	10		141,800	120	455	1,400	1,760,000			
DS 58	79		141,600	105	455	1,300	1,760,000			
No. 1 Dense SR	14		101,600	120	455	1,500	1,760,000			
No. 1 SR	> F		141,400	120	390	1,300	1,760,000			
No. 2 Dense SR	**	Ì	#1,400	105	455	1,050	1,760,000			
No. 2 SR	**		141,200	105	390	900	1,760,000			
1803 84 VT	1 in., 11/4 in.	SPIB	2,600	165	390	1,950	1,760,000			
IND 86 KD	and 11/2 in. thick	-	2,200	150	390	1,650	1,760,000			
IND 72 KD	and 172 m. unex		2,000	135	390	1,550	1,760,000			
IND 65 KD	**	1	1,750	120	390	1,400	1,760,000			
IND 58 KD IND 50 KD	29		1,500	120	390	1,100	1,760,000			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1		100	1,900	1,760,000			
IND 86	19	1	2,500	150	390	1,500	1,760,000			
IND 72	*9		2,000	135	390	1,350	1,760,000			
IND 65	19	1	1,750	120	390	1,250	1,760,000			
IND 58	P# -		1,500	105	390	900	1,760,000			
IND 50	78	1	1,200	105	390	000	11,00,000			

$$H = \frac{3V}{2 bh}$$
(5-11)

in which V = the total shear force.

Table 5-4b contains dimensions and properties for lumber.

The allowable bending stress in steel members is a function of its minimum yield point, f_y . For steel sheet piles, ASTM A328, A572, and A690 (United States Steel, 1975),

$$f_{b} = 0.65 f_{y}$$
 (5-12a)

For A36 steel, which is commonly used for channels, tie-rods, and plates, (AISC, 1973),

$$f_b = 0.60 f_y$$
, (5-12b)

the allowable tensile stress, f_t, is evaluated the same as for bending stress, i.e.,

$$f_t = 0.60 f_y$$
, (5-12c)

and the allowable shear stress may be taken as (AISC, 1973)

$$f_v = 0.40 f_y.$$
 (5-12d)

Table 5-5 reflects the minimum yield point for various ASTM steel specifications.

5.2.4. Fasteners

Timber components may be fastened by nails or common bolts. High strength bolts (ASTM A325) are used for steel.

-

Table 5-4b. Dimensional properties of lumber (Timber Engineering Co., 1956, pp. 362-363)

Nominal size	American Standard) dressed size (S4S)	Area of section	Moment	of inertia	Section modulus					
MIT.	in in	sq in.	I ₂₋₂ =	[₂₋₂ =	Se	S				
×	· •×*	A = 54	b#*/12	b3h/12	bh2/6	b*h/6				
			3.10	0.14	· 1.71	0.37				
1 X 4	¹ / ₁ × 3%	2.83	11.59	0.22	4.12	0.57				
1 X 6	²³ / ₃₂ × 5%	4.39	27.47	0.30	7.32	0.76				
1 X 8	21/12 × 71/2	5.86	55.82	0.38	11.75	0.97				
1×10 1×12	$\frac{2}{3}/_{33} \times \frac{9}{2}$ $\frac{3}{3}/_{33} \times \frac{11}{2}$	7.42 8.98	99.02	0.46	17.22	1.17				
	11/4 × 11/4	2.64	0.58	0.58	0.72	0.72				
2 X 2 2 X 4		5.89	6.45	1.30	3.56	1.60				
	1 1 1 1	9.14	24.10	2.01	8.57	2.48				
2 × 6 2 × 8		12.19	57.13	2.68	15.23	3.30				
	1	15.44	116.10	3.40	24.44	4,18				
2 X 10	$1\frac{1}{1} \times 9\frac{1}{2}$ $1\frac{1}{1} \times 11\frac{1}{2}$	18.69	205.95	4.11	35.82	5.06				
2 × 12 2 × 14	1% × 13%	21.94	333.18	4.83	49.36	5.94				
3 X 4	2% × 3%	9.52	10.42	5.46	5.75	4.16				
3 × 6	2% × 5%	14.77	38.93	8.48	13.84	6.46				
3 × 8	234 × 732	19.69	92.29	11.30	24.61	8.61				
3 × 10	254 × 952	24,94	187.55	14.32	39.48	10.91				
3 × 12	214 × 1112	30.19	332.69	17.33	57.86	13.21				
3 × 14	214 × 1314	35.44	538.21	29.35	79.73	15.50				
3 × 16	2% × 151/2	40.69	814.60	23.36	105.11	17.80				
4 X 4	334 × 356	13.14	14.39	14.39	7.94	7.94				
4 × 6	334 × 54	20.39	53.76	22.33	19.12	12.32				
4 × 8	31/2 × 71/2	27.19	127.44	29.77	33.98	16.43				
4 × 10	3% × 91/2	34.44	259.00	37.71	54.53	20.81				
4×12	3% × 11%	41.69	459.43	45.65	79.90	25.19				
4 X 14	33% × 131/2	48.94	743.24	53.59	110.11	29.57				
4 × 16	3% × 15%	56.19	1,124.92	61.53	145.15	33.95				
6 X 6	5%4 × 5%4	30.25	76.26	76.24	27.73	27.7				
6 X 8	5% × 71/2	41.25	193.36	103.98	51.56	37.81				
6 × 10	5% × 9%	52.25	392.96	131.71	82.73	47.90				
6 × 12	5% × 111/2	63.25	697.07	159,44	121.23	57.98				
6×14	5% × 13%	74.25	1,127.67	187.17	167.06	68.00				
6 🗙 16	53% × 151/2	85.25	1,706.78	214,90	220.23	78.1				
6 × 18	5 31 × 1712	96.25	2,456.38	242.63	280.73	88.23				
8 X 8	7½ × 7½	56.25	263.67	263.67	70.31	70.31				
8 × 10	71/2 × 91/2	71.25	535.86	333.98	112.31	89.00				
8 × 12	71/2 × 111/2	86.25	950.55	404.30	165.31	107.81				
8 X 14	71/2 × 131/2	101.25	1,537.73	474.61	227.81	126.50				
8 × 16	71/2 × 151/2	116.25	2,327.42	544.92	300.31	145.31				
8 × 18	71/2 × 171/2	131.25	3,349.61	615.23	382.81	164.00				
8 × 20	71/2 × 191/2	146.25	4,634.30	685.55	475.31	182.81				
10 × 10	914 × 914	90.25	678.76	678.76	142.90	142.90				
10 × 12	914 × 1114	109.25	1,204.03	821.56	209.40	172.98				

_

.

..

Table 5-4b. Continued

,

Nominal size	American Standard dressed size (S4S)	Area of section	Moment	of inertia	Section :	modulus
ia. ♦× k	in. 4 × A	sę in. A = bk	la-a = 843/12	1,, = 6 ² 4/12	S3-2 = \$412/6	5
0 × 14	914 × 1314	128.25	t,947.80	964.55	288.56	203.06
0 🗙 16 -	914 × 1514	147.25	2,948.07	1,107.44	380.40	233.15
0 🗙 18	91/2 × 171/2	166.25	4,242.84	1,250.34	484.90	263.23
0 × 20	91/2 × 191/2	185.25	5,870.11	1,393.23	602.06	293.31
0×24	914 × 2314	223.25	10,274.15	1,679.03	874.40	353.48
2 × 12	111/2 × 11/2	132.25	1,457.51	1,457.51	253.48	253,48
2 X 14	111/2 × 13/2	155.25	2,357.86	1,710.98	349.31	297.56
2×16	111/2 × 15/2	178.25	3,568.71	1,964.46	460,48	341.65
2 🗙 18	111/2 × 17/2	201.25	5,136.07	2,217.94	586.98	385.73
2 X 20	11 1/2 × 19 1/2	224.25	7,105.92	2,471.42	728.81	429.81
2 × 22	111/2 × 21/2	247.25	9,524.28	2,724.90	885.98	473.90
2×24	111/2 × 231/2	270.25	12,437.13	2,978.38	1,058.48	517.98
4 × 14	1314 × 1314	182.25	2,767.92	2,767.92	410.06	410.06
4 🗙 16 -	131/2 × 151/2	209.25	4,189.36	3,177.98	540.56	470.81
4 x 18	131/2 × 171/2	236.25	6,029.30	3,588.05	689.06	531.56
4 X 20	131/2 × 191/2	263.25	8,341.73	3,998.11	855.56	592.31
4 X 24	131/2 × 231/2	317.25	14,600.11	4,818.23	1,242.56	713.81

Table 5-5. Minimum yield point

•

Steel Brand or Grade	f y
A328	38,500 psi (265 MN/m^2)
A592 Gr 50	50,000 psi (344 MN/m ²)
A640	50,000 psi (344 MN/m ²)
A36	36,000 psi (248 MN/m^2)

•

The capacity of a nail as a fastener is determined by its resistance to withdrawal, W_r , which is in turn a function of the effective length of embedment, l_e , allowable load in withdrawal per inch of embedment, p, and specific gravity, G. The effective length of a nail fastening a sheet pile to a wale is the length of embedment in the wale, i.e. the nail length minus the thickness of the sheet pile.

To find the allowable load in withdrawal of a particular nail size, the specific gravity, G_s , of the wood is first found by using Table 5-6, then entering Table 5-7 for the desired nail size and specific gravity. The resistance to withdrawal is given by

$$W_{r} = p\ell_{a} \tag{5-13}$$

The allowable lateral loads on nails should be checked. Nails fastening southern pine and douglas fir are allowed a maximum shear of

$$V = 1650 p^{3/2}$$
 (5-14)

in which V = the allowable shear in pounds and D is the nail diameter in inches (Timber Engineering Co., 1956).

Common bolts may be used in wood splices and their allowable loads may be found in Table 5-8. Allowable loads are for bolts in double shear, i.e., bolts used in 3 member joints, as in splice plates for wales (Figure 5-11a). The controlling factors in Figures 5-10 and 5-11 are the bolt diameter, d, the length of bolt in the main member, b, and the relative size of the splice members and the main member. The Table 5-6. Specific gravity of wood members (Timber Engineering Co., 1956, p. 553)

.

•

Spann of Tood	Specific Gravity (C)	Species of wood	Specific Gravity (G)
Aider, red	.53 .58 .64	Razioery Jenzioek, cetter Remioek, wast coast Hickory Lagent, waster	.43 .44 .50
Beeth Birch, paper. Birch, yawat. Birch, yawat.	.60 .71	Locust. black Locust. hoar Magrock. Magroils. cusumber Magnoils. everyten	.67 .69 .52
Buckeye, Jellow Buckersuit Cedar, Alaska Cedar, Incease	1655	Maple, big issi. Maple, hard (bisek). Maple, and (reg). Maple, and (reg). Maple, set (all ver).	.62 .68 .53
Chias, acrebero white	- 35	Cat, commercial red	.69
Chestorit. Cottoswood, blark. Cottoswood, sastara. Cyprum, Jourberta. Jougha dr. Coast Region	.37 .43 .48 .51	Pine, Norway	.42 .59 .64
Dourins dr. Dougins dr. Coast Regies, deuse Dougins dr. deuse. Elm, Attericad Elm, nock Elm, eloper	.54 .54 .55	Pine, western white Popiar, yellow Reiwpoli Sprues, Logatzaan Sprues, red	. 43 . 42 . 36
Fir, balan, Guta, blast. Guta, blast. Guta, red.	41	Spruee, sitka Sprues. white Sugarbarty Sycamort Takarbat	. 54 . 54 . 58
		Walats, black	. 56 , 42

Table 5-7. Allowable load in withdrawal (Timber Engineering Co., 1956, pp. 558-559)

٠

									_	_			
	2	3	5	522	223	428	282	382	223	228	<u>is</u> i	<u> 285</u>	583 1
ĺ	Ł		0.313	828	857	887	288	233	223	228	222	222 222	<u>228</u>
-	3	•	520	នធន	***	225	822	\$ 8 3	223	\$8r	283	322	838
	8	ž	0.283	ភពភ	222	225	844	4 83	335	381	r83	222	83 8
BPIKE	\$	•	0.203	228	ara	883	887	228	333	228	223	222	85ğ
07 87	8	4)4	0.244	282	3 22	833	38 7	44 2	\$3 7	533	382	223	383
91ZR (8	-	22.0	128	ลสส	***	383	3\$Q	\$\$ 8	333	335	222	295
	74	ž	0.0	222	222	222	823	35 2	\$Q \$	a c3	8 85	352	228
	12	Х	0.193	111	22a	833	583	828	¥\$2	30 3	335	333	372
	2	-	0.19	335	223	នគន	222	872	#\$\$	368	322	323	35Z
	Ļ	1	4	I.									
	8	-	0.253	258	***	853	28 <i>2</i>	299 299	222	528	a z #	222	82 <u>9</u>
	3	2	1.0	283	aaz	888	733	:2\$	\$23	233	382	222	882
	\$	4	0.235	228	282	สสล	77 7	332	358	223	225	828	225
	8	ž	0.207	222	248	222	878	868	=2 2	-95G	233	328	223
NAIL	8	-	0.102	335	228	ពភព	888	538	¥\$\$	353	322	322	3=7
8	16	ž	0.162	222	225	285	ลสล	523	333	855	283	822	288
812 B	13	ž	0.148	222	1233	533	= 88	สสส	858	388	332	\$\$3	525
	2	-	0.148	===	322	223	ភនន	888	858	288	\$62	\$\$3 	325
		316	161.0		222	225	283	222	828	883	353	\$\$¥	323
	•	1	0.113		2=2	222	253	285	888	ន ននិ	= # # #	258	942
	, j	1			<u> </u>				<u> </u>	<u> </u>		[<u> </u>
	When specific revity	wood is		0.31 	11		40. *1	43. 14. 14.	- 19 12 12	69 00 15	52 10 10 10 10 10 10 10 10 10 10 10 10 10	89	83. 69

•

ō.
ĭ,
Ξ.
) <u> </u>
• • ••
ij.
Con
Ξ.
Ξ.
-
٠
~
· .
.1
ഹ
a)
_
<u></u>
70
÷

1	r =	1-	12	1		r	
	\$	15	0.1	333	953	응물줄	223
	1/11	-	0.312	383	EEE	338	E33
	8	•	0.203	322	323	223	332
	3	ž	2	338	111	333	333
BPIKE	\$	-	8	222	244	333	358
0F 81	8	ž	0.244	*22	222	282	333
8128	8	-	0.225	833	533	338	<u> 1 - 2</u>
	=	ž	0.20	222	8 8g	385	283
	=	ž	0.102	283	253	200	885
	2	-	0, 192	5 8 3	523	2 <u>53</u>	883
	4	1	-4				
<u></u>	8	•	0.263	891 1	177 177 177 177 177	352	92 8
	\$	ž	0.244	8 <u>88</u>	939	382	223
	\$	4	0.225	818	283 283	338	855 8
	2	543	0.202	385	82ğ	283	1130
NAIL	8	•	0.192	281	23J	2 <u>0</u> 2	883
5	2	316	0.102	382	222	222	3 <u>8</u> 4
812 K	13	Х	0.148	333	522	225	285
	01	-	0.148	322	282	223	28Ë
		315	0.131	225	2 82	882	~ 22
	•	•	0.113	\$\$\$	223	282	323
	Į,	1	4				
	When speedfor mavity (G) (ase Appendir C) of			61 82 03	44 65 88	47 60 00	76. .76 .80

Table 5-8. Allowable load per bolt in double shear (Timber Engineering Co., 1956, pp. 520-521)

Q OO	c		120	470 520	520	9 9	089	610	100	000	160	620	009	280	200	1,050	830	820 - 820	1,180	1.270	890	1.160	280		1,170		1 570		1.260	031	202	8
REDWOOD	4		1,200	1 1 20	1 030	89	1,780	2,080	081	1,760	2,250		1,200	1.850	020	3.630	1.200	008.1	3,450	4.120	1,200	2.690	3.670		1.870	2,680	999		1.970	2.000	120	2 010
YELLOW	0	330	370	<u>2</u> 2	<u>8</u>	9	23	099	630	ŝ		99	010	9 6 6	3	020	730	000	1.020	1,110	82	020,1	1,130	100	020	001,1	8		1,100	1.280	1012	1,070
134	٩,	680	520	081.T	1 360	980	992	1,470	1,010		1,000	2,100	1,070	1,510	2,190	2,510	1.070	099	5.630	000'6	1.070	2,330	2,850	1.070	1,670	2,120	0.00		1.070	2,420		4.00
PINE. SOUTHERN	0	8	959	200	330	200 200 200	2		180		1,080	1,170	009		230	1,340	1.020	1,210			1,000	1	019	1,020	011	1	2,010	000	1.470	2,060	5.0	
FUOS	٩,	1,010	82		2.070	899	010	2.20	1,260			3,340	1,200	2,660	3,250	3.790	1.290	1980	1.680		2,010	2,860	1,20	1.2400	200	1.620	986	1.280	2,010	3,040	81.9	
PINE, NORWAY	0	330	22	181	8	410	610	93	063	928 928	22	810	010	770	840	020	130		1,020	1,110	020	020.1	1 230	200	1.030	1.270	380	170	8	1,280	0	
NON	4,	150	020	2		1,160	300		000'i	39,1	2,120	2,430	1,050	2,030	2,420	2.770	1,050	1,010	0.8	3,320		2,340		1,050	1,650	38	000	1 050	1,610		080	
TODGEPOLE	~	330	22			23	919		079	35	202	810	999	220	840	920	230	23	020		020	020	1,130	100	83	1 270	1,380	770	8		1.640	
4D001	a.,	680	010			1,050	1.260	1.070	010'1	1.650	1,920	2,190	010	1.870	8	2,510	020	3100	2.030		0.0	2,330	3,330	1,070	1.670	3,110	3,670	1.070	1.070	200	000.0	
E, BERN White), AND, AND, AND, AND,	•	380	120	620		20	089	32	010	2002	990	920	65	870	990	1,050	059	1.050	200		1.050	1.160	1,100	000		1	1,670	808	1.200	299	1,750	
PINE, NORTIJEN (Eantern White), PONDEROSA, SUGAR, AND SUGAR, AND IDAILO WILTE	۹.,	210	020	1 250		200 001 001	1,320	202	080	120	2,020	2,310	89	000	900 100	2,040	88	2,170	202			2,200	064 E	000	200	010	01.10	000	009		3.600	
TIE D	0	750	020	010.1	0.0	1.050	092	8	370	1,630	089.1	220	570	110			850	2,110	2,320	0001	1 950	2, 310	2.700	010	2,520	2,880	3 120	1 260	2.620	0	3,610	
OAK Aud And White	٩.	010	1 450	1.600	8	1.160	2,080	2,380	1,180	2,250	5,700	0.110	1.850	2.470	2007		8.99	2,080	451	1 2(8)	1.870	2,000	98	1,200	2,000	3,670	5,560	1,200	2.600	0.070	6.010	
	Antro	Sq. in. 	2188	1.1210		38	3:	8	1.3125	1, 96.88	2,20,60	2017	200 1 875	22		10.10	2.2656	2,7168	3, 1710	(e)	13) M	89	89	2.25	3, 373	3.0075	5.0625	2.60	222	4.375	5,100	
		5	9 C1	a		-	~ ~	• 0 • • i	- - -	-	0.0			-		-			- 0					0 2 5 F			- 0 					
	9	Inches 15	2		1	(-	X. 1	1	X	-		C.(×.		22	-	×		4 (•				1 X	X	Χ.,			
		Inches	1 14				2			2 14				3				3 3 4							415				5			

175

-

OOD	4	1,270	1.690	1.920	2.000	1.250	1.920	2,100	2,280	230	2.070	2.270	010.2	000	2,150	2,440	200	090	2, 160	2,500 2,850	1	_	·				_		<u>+</u> -		-	19	3,200	1	 	
REDW00D		1.870	8		000.0	1,870	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	9,020	1.870	9.070	1 790	200	1.870	3.070	1.190		5 000 5 000	013		870	2.600		000	-			020.0	<u> </u>	-	1.050	1	6.050 7.480			_
ô. W	9	1.120	8		840	8	22	1.810	2,010	83	820	2.000	3.18	020	1.000	31.6	2.340	39	88	3.280	1	130			101	_	- 01	2,050	<u>-</u> -		2,030	1	2.860	1	3.450	_
POPLAR, YELLOW	٩	1 020 1	2,420	015.5	200	1.070	2.58	200	6,242	1.670		8	5.370	1.670		290	6.450	1,670	310	4.200		22	3,210	4.200	6.780	2.420	200	5.450		200	5.450	- -	6.450	-	5.450	_
 N Sig	0	1.460	010.1		2.680	1,420	020.1	2,080	2.020		2,510	2,880	3,170	0920	2,630	3.040	3,410		200	200	000		5,170	092	1170	000	198	1,830	<u> </u>	i <i>m</i>	2.700	1	000	1	3.600	-
PINE. SOUTHERN		010 4	000		01.0	2.010	000		000	2,010		01.4	8.9	2.010		91.9	0.500	8,010 8,010		91.9			010		1010	2,800	2110	0.500		6.140	000		000	5	500	5
X	•		38	1.650			180	000.1	2.010	1.000	8	000 e	89.180	1,070	8	231.0	2.340	1,050	000	2,280	2.510	990	50	8.3		1,380		33	3.360		5.030			1000	2.810	<u>}</u>
PINE. Norway	 4.		2.380	3,230	1.170		380	3, 230	210	1 050	2,380		300	1 050	2.380	2.20	10	1,050	8.38	1,210	5,340	1.650	1,230	4.210	5,310	2.380	007.0	5,310	6.570	530	3.0	6.670			010	
9LE		 	22	1.55	000		3	1.600	010		00	1.820	2,180	010	8	068	2 3 10	1.050	99	2.280	2,510	040.1		200	2,680	1 380	1,830	2,050	3,360		2,030		2000 0000 0000	-	2.810	
PIOPOSPOLE PINE,	-		1.670	010	180	1 000	2,420	310	8	227	2.130	3,310	1.200		2,120	3.310	4 290	010	2 50	3,210	5.450	1,670	000	200	6,450	•	3,310	5.450	6,780	3.310	1200	6,780	4.200	6,780		0,780
	4	 	1,270	2000	1.920	2000 7000	280	020	83	2,200	2002	2.070	2.270		000	2,150	040		000	2,180	3.850	1 180		2,080	010.6	014	2.080	22	3,820	2,080	2,000		2,580		4 6 200 200 200 200 200 200 200 200 200 20	
PINE NORTHERN (Eastern White), PONDEROSA, SUGAR, AND		$\frac{1}{1}$	1.660	2,250	3.970	4.870	1.570		000	5,020	0.6	000	8		0.6.1	000	8		2 250	80	000	1.570	2.250		000	202,0	000	88	6.260	3,060		6.200	4.000	6,200	4 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.200
		┦		28 28 28 28 28 28 28 28 28 28 28 28 28 2	2 800	190	1.810		20	201		017 6				3.360	250		120	00	0110	000	2,300	3,200	5.210			000			3.670	140	3,040	5,890	3.560	5.770
RED AND WHITE	-		1.870	200	1,070	000	1.870		1.700	0,050	1.870	3.670	1.790	9,050	028	3.670	1.790		000	3.070		-1 4			050		020	4.790	480	3.070	1200	7,480	4.790	7,480	4.700	7,480
	-	2	50. IN 1	52	8125	1875	.75	3	18	1.75	0125	1.875	05	.3125			3	7.875	1.0875	0.5025	7.50	100	38	88	28	8	7, 125	0.50	0.6875	8 75	8	50	11.50	14.375	89	
	-	<u> </u>		1.0		0.7	0.0		2 2 2 2	5.5	10			5.8	-1		0.0		00	-	1- i		10.2	-	C	+	219	20			0.0		-	10.0	0.0	
	•	-	Ξ.	_		3														77				1	1	XI	22	<	2		-	2	-	22		~
			Inches 1		5,4				0				5/0			1	TT			714				88			1	914			10					. 12

.

•

Table 5-8. Continued

a. 3 MEMBER JOINT

Figure 5-11. Common bolts as fasteners

tabulated loads are for members where side members are at least 1/2 the dimension of the main member. Where side members are thinner than 1/2 the main member, then, for the purpose of determining the allowable load, b = 2a. For example, if a wale is 6 in (152 mm), then the b dimension used for Table 5-8 would be 3 in (76.2 mm).

The values in Table 5-8 are represented by P for loads parallel to the grain and by Q for loads perpendicular to the grain. For the purpose of wale splices, the allowable load in shear per bolt, V, can be taken as Q in Table 5-8.

For 2 member joints (Figure 5-11b) of equal thickness, the allowable load is 1/2 the tabulated value for a main member whose thickness is twice that of the actual member. For example, for a 2 in (50.8 mm) member in southern pine, enter Table 5-8 at 4 in (101.6 mm) for the appropriate bolt diameter. The allowable load, Q, for a 1 in (25.4 mm) bolt is 4720 pounds (21.0 kN) and the allowable load in shear per bolt, V, is 2360 pounds (10.5 kN).

For 2 member joints of unequal thickness, the procedure outlined in the previous paragraph is applied with respect to the thinner member.

Where steel plates are used as splice members, the allowable load is increased by 25 percent.

The criteria for allowable loads in common bolts are summarized in Table 5-9.

The allowable loads on high strength bolts (ASTM A325) are 40,000 psi (276 MN/m^2) in tension, f_t, and 15,000 psi (103 MN/m^2) in shear, f_v (AISC, 1973).

Joint Type	Relative Dimensions	Enter Table 5-8, Column b at	Allowable Load, V
3 Member	$a \ge \frac{1}{2}b$	b ⇒ b	P
	$a < \frac{1}{2}b$	b = 2a	P
2 Member	a = b	b = 2a	$\frac{1}{2}$
	a < b	b = 2a	$\frac{1}{2^{\mathbf{P}}}$
	a > b	b = 2b	$\frac{1}{2^{1}}$
Steel Side Plate	n/a	b = b	1.25P

Table 5-9. Summary of allowable loads in common bolts used for splice plates

•

The cost of fasteners is dependent upon their required size and number which are, in turn, determined by their capacity and loads. Another determinant to be considered is the location of the wale, i.e., whether it is located on the fill side or the dredge side of the wall. Locating the wale on the fill side presents a smooth face for the user, whereas locating the wale on the dredge side presents a protrusion which may interfere with mooring. However, with the wale located inside the fill, more fasteners are required as the fill tends to push the sheet piles away from the wale, exerting a prying force (Figure 5-12a). On the other hand, a wale outside the fill bears against the sheet piles, thereby eliminating the consideration of prying forces. The number of nails required per wood pile section, n, is

$$n = \frac{Pw}{W_{\perp}}$$
(5-15)

in which P = the tie-rod pull (force per unit length of wall), w = the width of the pile section, and $W_r =$ the resistance to withdrawal per nail. The number of high strength bolts per steel sheet pile, n, is

$$n = \frac{4Pw}{\pi d^2 f_{+}}$$

in which d = the bolt diameter and f_t = the allowable tensile stress per bolt, taken as 40,000 psi (275 MN/m²) for A325 bolts. The allowable shear stress, f_v , in A325 bolts is 15,000 psi (103 MN/m²).

a. WALE INSIDE PILES

6. WALE OUTSIDE PILES

Figure 5-12. Transfer of loads from piles to wales

Holes are 1/32 in (0.79 mm) larger than the bolt diameter for wood and 1/6 in (1.6 mm) for steel.

5.2.5. Bulkhead Lifetime

The life expectancy of a bulkhead depends upon the components of the system, i.e., if one component fails, the system is no longer viable. Obviously, the lifetimes of components vary from material to material, and the material with the shortest lifetime will control the bulkhead lifetime. The designer must, therefore, insure that the material of each component is the optimum.

The structure must be protected from harmful agents that exist in the environment. Timber must be protected from rot and other biological agents by an appropriate treatment as recommended by the American Wood Preservation Institute (AWPI) and the American Wood Preservative Association (AWPA).

Timber sheet piles usually consist of heartwood instead of sapwood. This may cause the purchaser some consternation as standards established for preservative penetration are for sapwood, not heartwood. Since heartwood is more resistant to preservative penetration, it follows that the preservative penetration of many sheet piles will be less than optimum.

Steel sheet pile and tie-rod life can be prolonged by applying special coatings. Corrosion and decay rates should be determined for a particular environment so that the life of the structure can be estimated. A detailed discussion of materials and the hazards present in certain environments is contained in "Coastal Structure Materials" (Hubbell and Kulhawy, 1979). Tie-rods, turnbuckles, bolts, nuts, washers, and nails receive protection from corrosion by galvanizing. Electro-deposited zinc coatings, in accordance with ASTM B633, or hot-dip coatings, in accordance with ASTM A513, may be specified to increase the life of steel components.

When the cost is favorable, hardware may be comprised of wrought iron.

If no coating or treatment is specified for the hardware, the required dimensions will be reduced by corrosion. If the amount of deterioration is known, the dimensions of the hardware should be increased by this amount to preclude failure. Recommended increases in hardware dimensions are shown in Table 5-10 (Johnson, 1965).

Bulkheads sited in erosion zones should incorporate returns on the flanks of the bulkhead (see Chapter 6, Figure 6-1). These are sections constructed perpendicular to the wall which prevent the washout of backfill around the flanks.

5.2.6. Compliance with Industry Standards

The designer may enhance the quality assurance of the product by making certain that suppliers comply with industry standards, such as ASTM and AWPA specifications. This may be accomplished by inspecting timber products for grademarks (Figure 5-13) and by requesting certificates of compliance from the supplier. Such requests are reasonable and the documents certify that the provisions of the specifications are met.

		Marine E	xposure
Dimension	Exterior Exposure	In and Below	Above Splash
	(Except Marine)	Splash Zone	Zone
Bolt	1/8 in	1/2 in	1/4 in
Diameter	(3.18 mm)	(12.7 mm)	(6.35 mm)
Plate	1/8 in	1/4 in	1/8 in
Thickness	(3.18 mm)	(6.35 mm)	(3.18 mm)

Table 5-10. Recommended increase in dimensions of hardware (summarized from Johnson, 1965)

Note: Washers for marine exposure (in and below splash zone) should be ogee. For other exposures, 1/4 in (6.35 mm) plate types are unsuitable, ogee optional.

•

-

Figure 5-13. Typical grademarks (Timber Engineering Co., 1956, p. 37)

٠

5.3. Design of Components

5.3.1. Sheet Piles

When the maximum moment has been determined (Chapters 2 and 4), the required section modulus is found by employing Equation 5-9. Since the moment is computed in terms of moment per unit length of wall, the section modulus must also be in terms of unit length per wall. For steel sheet piles, Table 5-2 is consulted, as is demonstrated in design examples found in the Appendices.

For rectangular wood piles, the required thickness is found by employing Equation 5-10a, as is also demonstrated in design examples.

No load factors are required for sheet pile calculations. A material factor is already employed in the allowable bending stress, f_b , for steel and wood.

5.3.2. Tie-Rod Diameter

The computation of the tie-rod diameter is quite simple. Once the tie-rod pull, P (force per unit length of wall), is found, the tie-rod tension, T, is found by multiplying the tie-rod load times the spacing between ties (see Section 6.1.5. for further discussion on the tie-rod spacing). A load factor is then applied (Section 5.2.6.) and the diameter found by

$$d = \sqrt{\frac{4T \ LF}{\pi f_{r}}}$$
(5-17)

in which LF = a load factor of 1.2 to 1.4 and f_t = the allowable tension of A36 steel (Equation 5-12c and Table 5-5). At this point the designer

may decide to increase the diameter of the tie-rod for corrosion if no other precautions were taken (Section 5.2.5.).

Tables 5-11 and 5-12 contain data for tie-rods and turnbuckles, respectively.

An example of determining the tie-rod diameter is given in the Appendices.

5.3.3. Wale Design

The bending moment in wales is somewhere between that for a single span, simply supported, and that for three continuous spans, simply supported. The maximum bending moment can therefore be taken as (Teng, 1962)

$$M = \frac{1}{9} P \ell^2 \tag{5-18}$$

in which P = the tie-rod force (per unit length of wall) and l = the distance between tie-rods.

The section modulus is determined from Equation 5-9. Once this is found, Table 5-3 may be used to find the appropriate channel size or, if wood wales are used, Equation 5-10a or Table 5-4b is used to find the proper dimensions. Examples of steel and wood wale designs may be found in the Appendices.

5.3.2.1. Fastening Wood Piles and Wales

Wales located on the fill side of the wall have a tendency to separate from the sheet piles. The prying force exerted on each sheet pile may be taken as the tie-rod load per unit length of wall, P, since

Table 5-11.	Tie rods	(ATSC.	1967.	n.	4-93)
10010 2 720	TTC LOUS	(HTDO)	2007	μ.	4-222

							0	- 5				1 11
		· .									b	
NOUNC	BAR .		UPSET	DNO								
				LENGT	f1.	ADO'L I REQUIR		ADO'L I	NEIGNT ED			N, EXCES
0	GROSS AREA	WT. MER FT.	Olana O	FCAR TUXEN- BIXLE	FOR CLEVIS	FOR TURN- STILE	FOIL CLEVIS	FOR TURN- B'KLE	/OR CLEVIS	THOS.	THD ROOT AREA	AREA OVER GROS
iN	iten	1.8	IN	111	IN	in,	IN	u	us.	INCH	EN#2	AREA
×	.442	1.50	1	495	4	4%	4	C2.	50	3	.551	24.7
7	.607	2.04	1%	476	4	4	3%	.64	_55	7	.693	15.3
1	.785	2.67	1146	5	4	512	492	1.22	1.00	6	1.054	34.3
1%	.994	3.34	11/1	5%	4	5	4	1.41	\$.13	6	1.294	30.2
1%	1.227	4.17	1%	375	4	6%	4%	2.26	1.65	5	1.74	41.8
194	1.445	5.05	114 e	512	4	492	3%	1.89	1.37	5	1.74	17.2
175	1.767	6.01	2	594	4%	512	414	2.75	2.25	41/1	2.30	30.Z
196	2.074	7.0\$	2%	696	5	7%	514	4.26	3.23	471	1.02	45.6
114	2.405	6.16	2%	61/2	1	535	4%	3.75	2.90	41/2	3.02	25.6
176	2,761	9.39	275	646	5%	695	5%	5.08	4.11	4	1.72	34,7
2	1.142	10.66	271	646	5%	5	4	4,45	3.56	4	3.72	18.4
2%	3.547	12.06	21/1	7%	574	612	445	6.28	4.77	4	4.62	30.3
2%	3.976	13.52	2%	7%	5%	4.96	3%	5.35	1.94	4	4.62	16.2
276	4.430	15.06	3	7%	4	5%	491	7.22	5.65	4	5.62	26.9
2%	4.909	16.69	344	3%	6¥1	7%	5%	10.05	E.00	4	6.72	36.9
2%	5.412	18.40	3%	5%	6¥1	5%	4%	8.82	6.90	4	6.72	24.2
276	5.944	20.20	3%	8%	7	612	\$%	10.94	9.26	4	7.92	33.3
274	6.492	22.07	3%	8%	7	5%	414	9.66	8.28	4	7.92	22.0
3	7.069	24.03	3*6		7	61/2	5	13.02	10.01	4	9.21	39.3
3%	7.670	26.06	4		7%	7%	6	15.76	13.04	4	10.61	38.3
3%	8.256	28.21	4	. ,	7%	6	1	14,10	11.75	4	10.61	27.9
3%	8.946	30.42	4%	9%	-	7	-	17.75		4	12,10	35.3
355	9.621	32.71	4%	111	-	6	-	16.36	- 1	4	12.10	25.8
3%	10.327	35.09	4%	10	i	7	-	20.47		4	13.69	32.6
3%	17.045	37.53	436	1012	-	8	- 1	25.03		*	15_38	39.2
370	11.793	46.10	4 %	10%	-	7	!	23.39	-	4	15.38	30.4

.

Table 5-12. Turnbuckles (AISC, 1980, p. 4-143)

	STAN	IDARD TU	RNEUČKI	LES .		WEIGH	TUI					
D D	DIM	NSIONS,	NCHES			LENCT	H, A, INC	TURNBUCKLE SAFE WORKING				
IN		N	c	E	G		9	12	18	24	36	LOAD, KIPS*
*	6	Na	7%	7.	154	.41]					1.2
¥2	6	14	7%	1%	1%	.75	.80	1.00				12
-	6	194	71-Ma	146	1%	1.00	1.38	1.50	2.43		1	3.5
*	6	1%	8%	1914	1275	1.45	T.63	2.13	3.05	4.25		5.2
*•	6	1%e	8%0	1750	174	1.85		2.83	4.20	5.43		7.2
1	6	1%	5%	1%	21/10	2.60		3.20	4.40	6.45	10.0	9.3
1 Ye	6	176	9%	14/50	2%	2.72		4.70	6.10		1	11.6
1%	6	144	9%	1%6	71734	3.58		4.70	7.13	11.30	13.1	15.2
135	6	14%	975	1944	2%	4.50					1	17.4
11/2	6	27	10%	127%	316	5.50		8.00	9.13	16.60	19.4	21.0
175	6	2%	10%	14/50	3%	7.50			1	•		24.5
134	6	272	11	279	33%+	9.50		15.25	16.00	19.50	1	28.3
176	6	2%	111	2%	•	11.50			ĺ	1	1	37.2
2	5	214	1175	2%	•	17.50	-	15.25	ļ	27.50		37.2
2%	6	3%	12%	21%	4%	18.00		15.25	ļ	43.50		48.0
2%	6	346	13%	3	5	23.25		33.60	1	42.38	4	60.0
244	6	4%	14%	314	534	31.50			ļ	54.00	1	75.0
3	6	415	15	3%	61%	19.50				1		96.7
3%	6	5 74	1692	1%	646	60.50	ļ				1	122.2
3%	6	5%	16%	17.	644	60.50			1		1	122.2
3%	6	6	18	4%	8%	95.00				1	1	167.8
4	6	6	78	4%	81/2	95.00			1			167.8
4 %	9	674	22,75	5%	944		152.0	ļ		1		233.8
4%	9	6%	22%	- 3 Y4	9%	[152.0	t	1	1		233.4
4%	9	674	2271	\$%	944		152.0	t i	1	1		233.4
5	9	7%	24	6	to		200.0	ŀ				294.7

each sheet pile is approximately one foot wide. The number of nails, n, required per pile may be found by selecting a nail size, determining its allowable load in withdrawal, W_r, from Tables 5-6 and 5-7 and Equation 5-13, then using the simple relationship

$$n = \frac{P}{W_r}$$
(5-19)

An example may be found in the Appendices.

Wales located on the dredge side of the bulkhead require nails for construction only. Using two nails per sheet pile should be sufficient. The nails should, however, be long enough to have adequate embedment in the wale so as to be capable of transmitting shear, i.e., 2/5 of their length (Timber Engineering Co., 1956) or

$$l_{e} = 2/5 l.$$
 (5-20a)

Since the effective length, l_e , is the length, l, minus the pile thickness, t, the nail length should be

 $\ell = 5/3 t.$ (5-20b)

An example may be found in the Appendices.

5.3.3.2. Splices in Wood Wales

Advantages are gained by locating the splices of outside wales at the tie-rods (Figure 5-14). The bending moments here cause compression of the outside edge of the wale and tension at the inside edge.

a. TIE-200 AND BEARING PLATE AT SPLICE

Figure 5-14. Locating the splice at tie-rods

The tension is resisted by the sheet pile attached to the wale at this location (Figure 5-14b).

A splice requiring a 2- or 3-member joint (Figure 5-11) may be eliminated. In addition to cost savings, elimination of the splice removes the potential for ponding that would occur between the horizontal members of the splices. Ponding hastens the decay of the wood.

An advantage is also gained as the tie-rod hole in the wale occurs in an area which is penetrated with preservative throughout the entire length of the hole.

The bearing plate is designed in a manner similar to the design for bearing of a steel beam on a masonry wall. The plate area is determined from the allowable bearing pressure, f_p , taken as $c \perp$ from Table 5-4. The area, A, is found from

$$A \neq \frac{T}{f_{p}}$$
(5-21)

The thickness of the plate is given by (AISC, 1973)

$$t = \frac{3 F_p N^2}{f_b}$$
(5-22)

in which: F_p = the actual bearing pressure, N = 1/2 the short dimension of the plate minus the hole radius , and f_b = the allowable bending stress of the steel. An example of the bearing plate design for an outside wale may be found in the Appendices. Inside wale splices must be 2- or 3-member joints (Figure 5-11). The average shear force, V, that the bolts must resist may be found from

$$V = \frac{1}{2}T - \frac{1}{4}PL_{b}$$
 (5-23)

in which L_b = the distance between extreme bolts. Equation 5-23 is valid for splices centered over the tie-rod. The splice should also be designed to resist the maximum moment.

Bolts in the splice have minimum requirements for end distance, edge distance, bolt spacing, and distance between rows of bolts. A summary of these requirements appears in Table 5-13. These are for loads acting perpendicular to the grain (Timber Engineering Co., 1956).

The procedure for designing a splice is to select L_b , compute V, select a bolt size in accordance with Section 5.2.4, determine the arrangement of bolts, and determine the final length of the splice member. Examples of 2- and 3-member splice designs may be found in the Appendices.

5.3.3.3. Fasteners and Splices for Steel Wales

Figure 5-15 displays typical details for inside and outside wales used with steel sheet piles. Inside wales are fastened using high strength bolts in conjunction with a fixing plate. The number of bolts is determined by Equation 5-16 and the fixing plate may be dimensioned by approximating it as a simply supported beam with a point load.

The minimum distance from the center of the bolt hole to the edge of the member may be taken as 1.5 times the bolt diameter for rolled or

Distance	Number of Bolt Diameters, n _d
End	$1\frac{1}{2}$
Edge	4
Bolt Spacing	4
Rows of Bolts	$2\frac{1}{2} (for 1/d \le 2)$
	5 for 1/d ≤ 6)
	$(5/8)(1/d) + 1\frac{1}{4}$ (for 2 < 1/d < 6)

Table 5-13. Distance requirements for bolted connections (Timber Engineering Co., 1956).

1/d = bolt length/bolt diameter

~

Figure 5-15. Typical wale and anchor details (U.S. Steel, 1975, p. 39)

gas cut edges. Minimum spacing is three bolt diameters (AISC, 1973). An example of the design of an inside wale may be found in the Appendices.

An outside wale may be fastened by merely employing a plate of sufficient dimensions between the wale and the tie-rod nut. A plate washer will suffice if the separators allow the channels to be close enough to each other.

Splices in wales should be able to transfer the maximum moment in the wales (Equation 5-18). The splice plate may be dimensioned using Equations 5-9, 5-10a, and 5-23. Design of splice plates for steel channel wales may be found in the Appendices.

5.4. Anchorage

Once the anchorage is adequately located with respect to the geometry and soil strength of the site, the type of anchorage must be chosen and dimensioned.

5.4.1. Continuous Deadman

The capacity of a continuous deadman stems from the net resultant of the soil stresses acting, as shown in Figure 5-16. When considering these stresses, the distance to the high water mark should be considered as this represents the lowest capacity of the deadman. The stress coefficients K'_p and K'_a used are factored, thus requiring no additional load factors for the design. An example is given in the Appendices.

Figure 5-16. Soil stresses acting on the anchorage

5.4.2. Short Deadman Near the Surface

The calculation for short deadmen near the surface can be facilitated using the information obtained from the design of a continuous deadman. The net capacity per length of anchorage $(P_p - P_a)$ is already computed in terms of h_L , deadman height. The remaining values are merely substituted into Equation 5.7. The Appendices contain an example of the design of a short deadman.

5.5. Summary

Bulkhead design requires the integrated consideration of loading, cost-effectiveness, and the design of the basic bulkhead components. A detailed examination of these considerations has been presented in this chapter.

The bulkhead may have to withstand loads other than those stemming from the retained soil. These include surcharges placed on the backfill, hydrostatic imbalance, ice thrust, mooring loads and ship impact. The loads imposed on some components should be increased by load factors, depending upon the inherent uncertainties.

Cost-effectiveness is dependent upon such interrelated factors as type and configuration of the wall, material strength of the components, ability to withstand harmful agents of the environment, and fastening methods.

Each structural component must be dimensioned and the type, number, and spacing of fasteners must be determined. As each item is being selected, the designer must keep in mind alternative materials and schemes, costs, and the desired function of the component.

.

CHAPTER 6

CONSTRUCTION CONSIDERATIONS

The construction of bulkheads is less complicated than the design proess. Figures 6-la through 6-lf are a pictorial sequence of a typical navy bulkhead construction operation. In spite of the apparent simplicity, there are factors which must be considered to comply with design criteria and result in optimum performance. This section includes a discussion of these factors.

6.1. General Construction Procedure

6.1.1. Pile Installation

Prior to installing the sheet piles, the bulkhead alignment is determined and guides are placed, such as wales placed on temporary stakes. This is not necessary for navy bulkheads because the fender piles and wales provide the proper horizontal alignment. Vertical alignment may include a slight batter in the direction of the fill side of wall. This is standard practice in areas subject to freezing and tide changes. The overall effect is to diminish pile uplift by ice on a rising tide. A temporary wale may be placed below the upper wale to facilitate construction. This lower wale is not necessary for the permanent structure.

Sheet piles are generally installed by driving, jetting, or a combination of both. Driving is more desirable from a soil mechanics

200

After it is determined where the builthed should be, piles are driven into the bottom with the aid of a meter jet.

a

. –

WALERS (top and bottom) are attached to hold the piles in fine.

Ъ

SHEATHING is lowered into position with the aid of a wetter jet and railed to the WALERS.

С

Gelvenized TTE ROOS are connected to DEADMEN PILES anchoring the system back into the land,

d

An INTERLACE between the DEADMEN FILES completes the basic strength of the buildheed. If recessory, a RETURN into the land prevents scouring bahind the buildheed.

e

SACKFILLING to the desired height concests the TIE RODS and provides for a level property to the weterfront.

f

standpoint as the downward force of the pile tip tends to locally compact the soil, thus increasing its strength. Jetting is more commonly practiced where timber sheet piling is installed. This procedure entails pumping water through a pipe under approximately 100 psi (689 N/m²) pressure and advancing the pipe into the subgrade closely followed by the pile. Jetting is not effective in gravel, silt, or clay and tends to loosen the soil locally, thus decreasing the soil strength. Because jetting facilitates installation and driving enhances soil strength, a combination of these creates the optimum operation where the pile is jetted to within a few feet of the required depth and the remainder is driven.

As piles interlock using tongue-and-groove or ball-and-socket fittings (Figure 6-2), it is recommended that the direction of construction leads with the tongue, or ball. This will eliminate the danger of soil clogging the groove, or socket, and subsequent improper interlock and leaning.

Driving in pairs or in panels (Figure 6-3) eliminates some of the interlock friction occurring between piles. This also facilitates driving as rigidity is increased and leaning is reduced.

Other causes of leaning may include defective guides, pile deformation, improper driving and improper jetting. Remedies include pulling the heads of piles during installation (Figure 6-4a), use of guide piles in conjunction with driving in panels (Figure 6-4b), applying the driving force at an angle (Figure 6-4c), use of piles with chamfers at the foot (Figure 6-4d), and use of specialty fabricated wedge-shaped piles (Figure 6-4e) (Teng, 1962).

203

Figure 6-2. Typical piles (AWPI, p. 3)

,

b. Typical ball and socket (U.S. Steel, 1975, f p. 1)

Figure 6-2. Continued

--

Figure 6-3. Driving sheet piles in panels (Teng, 1962, p. 378)

Figure 6-4. Remedial actions (Teng, 1962, p. 379)

•

.

.

6.1.2. Wales

After the piles are installed, wales are connected by bolting channels to each steel sheet pile section or by nailing timber wales to timber sheet piles (Section 5.4.3.).

Splices are made in wales where required. Locating the splices of wooden wales at the tie-rod eliminates the need for splice plates and reduces the potential for ponding, thereby accruing some economic advantages.

Typical details of wales for steel walls are shown in Figure 6-5.

6.1.3. Anchorage

The anchorage should be installed in parent material a safe distance from the wall (Section 5.3.2.). If the parent material is undesirable, it should be removed and the backfill in front of the anchorage should be compacted.

Alternative anchoring schemes are shown in Figure 6-6 and alternative anchorage schemes are shown in Figure 6-7.

6.1.4. Tie-Rods

Holes are drilled through fender piles (if used), wales, sheet piles and anchorages. One tie-rod segment is passed through the wall, another segment through the anchorage, and the two segments are joined using a turnbuckle. If settlement of the tie-rods is considered a problem, PVC pipe should surround the tie-rod (Section 6.2.6.).

If the tie-rod is not horizontal, the design load should be increased by a load factor

$$LF = \frac{1}{\cos \theta}$$
(6-1)

Figure 6-5. Standard wale details (U.S. Steel, 1976, pp. 71-73)

_

DOUBLE INSIDE CHANNEL WALES-WELDED INTERMEDIATE BEAM OR CHANNEL SEPARATORS

c

DOUBLE INSIDE CHANNEL WALES-AOUTED CHANNEL SEPARATORS

d

Table 6-5. Continued

٠

-

.

DOUBLE INSIDE CHANNEL WALES-BOLTED PIPE SEPARATORS

DOUBLE OUTSIDE CHANNEL WALES--WELDED INTERMEDIATE BEAM OR CHANNEL SEPARATORS

Figure 6-5. Continued

.

.

÷

Figure 6-6. Alternative anchoring schemes (U.S. Steel, 1976, pp. 74-75)

.

۲

...

-

in which θ = the angle between the tie-rod and the horizontal plane.

In corrosive environments the tie-rod should be protected by using galvanized steel and employing protective wraps, bituminous treatment or special painting.

Turnbuckles should be tightened until slack is removed from the tie-rods. Overtightening causes anchor yield and excess stresses in the tie-rod and sheet piling.

6.1.5. Tie-Rod Spacing

Tie-rods in wood bulkheads are frequently spaced at 7.5 ft (2.27 m) intervals. Construction details do not interfere with this spacing or any variation thereof. Steel bulkheads, on the other hand, limit the designer's flexibility in choosing the interval as pile sections differ in driving width (Table 5-2). For example, the section shown in Figure 6-5a is a PDA 27 with a width of 16 in (0.41 m) and tie-rods at every seventh section for an interval of 8 ft (2.44 m); Figure 6-5c shows a P238 pile with an 18 in (0.46 m) width and tie-rods at every seventh section for an interval of 9 ft (2.74 m).

The designer must be aware of these constraints because the tierod tension is a function of the spacing, as well as the computed pull per unit length of wall. An interval used for computations that is different from the interval permitted by the pile section configuration will result either in overdesigned, uneconomic tie-rods and wales, or a design prone to failure from overstressing.

6.1.6. Backfill and Dredging

Free-draining backfill material should be used. If the expense is too great to employ coarse material for the entire fill, a sand drain or sand blanket should be employed (Figure 5-4). If either of these is not feasible, then the additional load of saturated material must be considered, as well as the reduction of the effective depth of penetration because of hydrostatic imbalance (Section 5.2.3.).

The fill should be placed in equal lifts across the entire length of the bulkhead. Piling up the fill in one area results in local overstressing of pile members and tie-rods. The backfill should not be compacted as this increases the stresses beyond the designed values.

Dredging, if required, should be accomplished after backfilling is completed. The net result of this sequence is to provide additional reduction of the bending moment because of arching of soil between the tie-rod and dredge level.

6.1.7. Tightening of Nuts

For timber structures, the proper tightening tension is reached when washers begin to indent the adjacent timber. High strength bolts used for steel sheet piling are tightened in accordance with the Specification for Structural Joints using ASTM A325 or A490 bolts, Manual of Steel Construction (AISC, 1976).

6.2. Other Considerations

6.2.1. Construction Equipment

Bulkheads are often the first structures completed in new developments. This implies that construction activity will take place nearby. If this is anticipated, surcharges from heavy equipment must be accounted for in the design procedure or restrictions must be made as to the allowable proximity of the equipment. A horizontal distance equal to the wall height is recommended as the closest a piece of equipment may be allowed. If the tie-rod and anchorage are shallow, the equipment should not be allowed to pass over these.

6.2.2. Quality Assurance of Materials

To insure that materials are in compliance with design specifications, some measures need to be taken. The most fundamental step is an inspection of the material for obvious defects. If timber is the basic structural material, grademarks (Figure 5-13) should be found on the members which indicate the grade marking service and stress grade. A certificate is also available from the grading agency. Certificates of compliance may be requested from suppliers for assurance that the proper preservation process and amount was used. Certification may also be requested to insure compliance with the proper ASTM designations and any ordered special treatment such as bituminous coating.

6.2.3. Cutting and Notching

Treated timber members should not be cut to size. This practice subjects the cut ends to attack from the elements from which protection was desired. Preservation treatment should be specified as being applied to all surface areas of timber members.

A similar argument applies for notching or countersinking recesses for tie-rods to provide a flush face. In addition to limiting the effectiveness of preservatives, it reduces the net area of the section

216

in terms of its effectiveness to carry a load. An alternative to this practice is to nail a coil of rope around the protruding tie-rod. This will offer the desired protection to the moored vehicles.

If any cutting is done, preservative should be post-applied at the site. This is not as effective as pressure treatment, but it is a vast improvement over leaving the cut unprotected.

6.2.4. Regulations Pertaining to Coastal Use

The use of coastal zones implies that some change in the environment will occur stemming from such use. Permission may be required prior to using coastal lands by the U.S. Army Corps of Engineers, Environmental Protective Agency, county or local governments. In New York State a Coastal Zone Management Program exists under the auspices of the Department of State, although regulatory functions are delegated to localities. At any rate, the structure's impact upon the environment must be assessed and the need to obtain permits must be ascertained. For details, see "Regulatory Processes in Coastal Structure Construction" (Ronan, 1979).

6.2.5. Construction Details

Typical construction details appear in Figures 6-8 through 6-12.

6.3. Summary

Although the construction of bulkheads is relatively straightforward some factors must be taken into account which may affect the desired performance of the system. Certain problems inherent in the installation of sheet piles can be overcome with some suggested techniques. Connection of wales and tie-rods and installation of the anchorage must be

217

Figure 6-8. Typical bulkhead, wale outside (AWPI, p. 4)

Figure 6-9. Typical bolting details, timber (Timber Engineering Co., 1956, pp. 511-513)

._...

.

.

Figure 6-10. Common arrangement of wales and tie-rods (Teng, 1962, p. 372)

.

Figure 6-12. Steel bulkhead with timber fender piles (U.S. Steel, 1976, p. 74)

accomplished with respect to conditions imposed by the design. Benefits may accrue from the optimum sequencing of dredging and undesirable consequences may result in the improper placement of backfill. Surcharges imposed by construction equipment must be accounted for or damage to the system may occur. Measures should be taken to assure that the material purchased complies with the quality specified in the design. Field alterations performed on treated timber reduce the effectiveness of the preservative. Consideration of these factors during construction will enhance the longevity and proper functioning of the bulkhead.

CHAPTER 7

RELIABILITY AND FACTOR OF SAFETY

The chance of a system performing successfully is termed its reliability, R. The complement of reliability is the probability of failure, P_f , which is defined as

$$P_{f} = 1 - R \tag{7-1}$$

Every system has a finite probability of failure that depends upon: the system's ability to sustain loads, i.e., the capacity; the loads placed upon the system, i.e., the demand; and the variability of the capacity and demand.

Capacity-demand models involving penetration depth, tie-rod pull and bending moment for a particular hypothetical situation cannot be used to determine the probability of failure of all bulkhead systems. It can, however, suggest the order of magnitude of reliability to be expected, if realistic values and assumptions are chosen. A portion of this chapter is, therefore, dedicated to such a hypothetical situation where the reliability and factors of safety are explored.

The situation presented here is a bulkhead designed in accordance with Rowe's reduction method. Probabilistic methods are employed to determine the probability of failure of the design and some qualitative conclusions are drawn. Since the simplified design procedure suggested in this work is based on the Rowe method and some variability exists between the Rowe and simplified methods solutions, probabilistic methods are again utilized to investigate reliability.

7.1. Assumptions

Certain assumptions are inherent in the simplified design procedure and the argument presented in this chapter. A discussion of these assumptions should help to establish the validity of this work.

A very basic, yet critical, assumption is that the soil strength and unit weight are established by virtue of sufficient investigation. Some variability in these parameters can be expected and some variability will, consequently, occur in the loadings and the capacity to resist failure.

Variability in loadings caused by faulty construction procedure is not addressed.

As suggested in Chapters 2 and 3, the Free Earth Support and Rowe methods have been established as accurate means of describing bulkhead behavior. They have been corroborated by experiment and by comparison to theoretical and sophisticated analytical techniques. It can then be readily assumed that these methods can be modified to portray adequate capacity-demand models.

Some variability exists in the ultimate strengths of construction materials comprising bulkheads. It is suggested that the average factor of safety of stress graded timber is 2.5 and that 99 percent of all tests will demonstrate a minimum factor of safety of 1.25 (Timber Engineering Co., 1974). If a design value of 2,000 psi (13.8 MN/m^2) is assumed for the flexural strength of timber sheet piles composed of

southern pine, the average ultimate strength can be assumed as 5,000 psi $(34.4. \text{ MN/m}^2)$ and 99 percent of the same material can be assumed to possess an ultimate strength of 2,500 psi (17.2 MN/m^2) . Tie-rods made from grade A36 steel must possess a minimum yield strength of 36,000 psi (248 MN/m^2) . The average yield strength of all A36 steel members is not known, but a conservative value may be assumed to be 40,000 psi (275 MN/m^2) . It may also be assumed, conservatively speaking, that 99 percent of all A36 steel possesses at least the minimum required yield strength, 36,000 psi (248 MN/m^2) .

Conservative assumptions are also made for selecting the appropriate mean value of soil parameters. The variabilities of these parameters reflect data taken from the technical literature. The random values chosen for soil and material parameters are assumed to be normally distributed and to represent infinite populations.

A hypothetical situation may be used to illustrate the factors of safety against penetration failure, tie-rod failure, and bending moment failure, and the associated probabilities of failure. With the factor of safety defined as the ratio of demand, D, to capacity, C, or

$$FS = \frac{C}{D}$$
(7-2)

then a factor of safety of unity or less signifies imminent failure, i.e., when the capacity is equal to the demand. The margin of safety, SM, is the difference of capacity and demand, or

$$SM = C - D \tag{7-3a}$$

Failure will occur when SM \leq 0.

The capacity and demand will vary depending upon many factors, such as material flaws, heterogeneity, etc., and are, therefore, termed variates. The value that occurs most frequently is termed the expected value, or mean, and a measure of the amount that values differ from the mean is termed the standard deviation.

If C and D are normal variates, then \overline{C} and \overline{D} are the means and $S_{\overline{C}}$ and $S_{\overline{D}}$ are the standard deviations. The mean safety margin may be defined as

$$\overline{SM} = \overline{C} - \overline{D}$$
, and (7-3b)

the standard deviation of the safety margin may be defined as

$$s_{SM} = \sqrt{s_{C}^{2} + s_{D}^{2}}$$
 (7-3c)

A standardized value, z, is determined by

$$z = \frac{\overline{SM}}{S_{SM}}$$
(7-4)

From this value can be determined the probability that $\overline{SM} \leq 0$, or the probability of failure. Such a determination is made from probability density functions which may be found in statistical tables.

Capacity and demand for the three modes of failure previously mentioned will be analyzed statistically to find the mean and standard deviation of the safety margin. The standard score will then be determined and converted to the probability of failure.

7.2. Anchored Walls in Sand

7.2.1. Hypothetical Situation

A design will be illustrated for a bulkhead whose geometry is given in Figure 4-1, with the dimensions

H = 10' (3.05 m) $H_{W} = 6' (1.83 m)$ $H_{A} = 2' (0.61 m)$ $t_{1} = 4' (1.22 m), and$ $t_{2} = 6' (1.83 m)$

The material comprising the fill and subgrade is loose sand. The mean values of the design parameters assigned to layer t_1 and t_2 are assumed as:

 $\gamma_1 = 100 \text{ pcf } (15.8 \text{ kN/m}^3)$ $\phi_1 = 30 \text{ degrees}$. $\gamma_2 = 120 - 62.4$ $= 57.6 \text{ pcf } (9.09 \text{ kN/m}^3)$, and $\phi_2 = 30 \text{ degrees}$

The design proceeded by calculating the depth of penetration by the Free Earth Support method and the tie-rod pull and bending moments by the Rowe reduction method. A factored angle of internal friction was used for computing the required depth of penetration, such that

$$\phi_{f} = \tan^{-1} \left(\frac{1}{SF} \tan \phi \right) \tag{3-1}$$

in which SF = an appropriate safety factor, taken as 1.5, ϕ = angle of

internal friction, unfactored, and $\phi_{\rm f}$ = angle of internal friction, factored. The tie-rod diameter is then calculated based on an allowable tensile strength, f = 22,000 psi (151 MN/m²). Finally, the sheet pile member thickness is selected based upon an allowable flexural stress of f = 2,000 psi (13.8 N/m²). The resulting minimum parameters required are a penetration depth, D = 4.8 ft (1.46 m), tie-rod diameter, d = 0.68 in (17.2 mm), and sheet pile thickness, t = 1.81 in (46.0 mm).

Penetration depth stems from the demand found by summing moments about the tie-rod. The demand moment is from active stress applied against the wall. This motivating phenomena is computed as

$$M = \frac{1}{2} K_{a1} \gamma_{1} t_{1}^{2} (\frac{2}{3} t_{1} - H_{A})$$

$$+ \frac{1}{2} K_{a2} \gamma_{2} t_{2}^{2} (\frac{2}{3} t_{2} + t_{1} - H_{A})$$

$$+ \frac{1}{2} K_{a3} \gamma_{3} D^{2} (\frac{2}{3} D + H - H_{A})$$

$$+ K_{a2} \gamma_{1} t_{1} t_{2} (\frac{1}{2} t_{2} + t_{1} - H_{A})$$

$$+ K_{a3} (\gamma_{1} t_{1} + \gamma_{2} t_{2}) D (\frac{1}{2} D + H - H_{A}). \qquad (7-6a)$$

For the geometry of this situation and for $\gamma_2 = \gamma_3$, and $K_{a1} = K_{a2} = K_{a3} = K_a$,

$$M = K_{a} [(318) \gamma_{1} + (517) \gamma_{2}]$$
(7-6b)

The capacity to resist this demand is provided by the moment about the tie-rod produced by the application of passive stress such that

$$R = \frac{1}{2} K_{p} \gamma_{3} D^{2} \left(\frac{2}{3} D + H - H_{A}\right), \text{ or }$$
(7-7a)

$$R = K_{p} \gamma_{3} (121).$$
 (7-7b)

The variability of a parameter, x, can be demonstrated in terms of its coefficient of variation

$$v = \frac{\bar{x}}{s_x} \cdot 100\%$$
 (7-8)

in which \overline{x} = the mean value of the parameter, and $S_{\overline{x}}$ = the standard deviation.

A correlation was found between variance of horizontal stress coefficients and the angle of internal friction (Singh, 1972), such that

$$V_{KA} = 1.15 V_{\phi}$$
, and (7-9a)

$$V_{\rm KP} = 1.10 \ V_{\phi}.$$
 (7-9b)

For example, for an angle of internal friction, $\phi = 30$ degrees, $V_{KA} = 16.1$ percent and $V_{KP} = 15.4$ percent.

The standard deviations associated with stress coefficients $K_A = 0.279$ and $K_p = 5.74$ are $S_{KA} = 0.0449$ and $S_{KP} = 0.884$ respectively.

Other pertinent parameters with variability are void ratio, e (Schultze, 1972), and specific gravity of the soil solids, G_S (Schultze, 1972; Padilla and Vanmarcke, 1974). Appropriate values assigned to these parameters are a mean void ratio of 0.663 with a standard deviation 0.088, and a mean specific gravity of 2.65 with a standard deviation of 0.01.

The relationship existing between the unit weight, void ratio, and specific gravity for saturated soil is

$$\gamma = \frac{(G_s + e)}{(1 + e)} \gamma_w$$
(7-10)

in which γ_w = unit weight of water.

A mechanism relating the variability of n independent parameters x_n to the dependent parameter y is (Hahn and Shapiro, 1967)

$$s_{y}^{2} = \sum_{i=1}^{n} \left(\frac{\partial y}{\partial x_{i}}\right)^{2} \left(s_{xi}\right)^{2}$$
(7-11)

Therefore, for the relationship between unit weight, void ratio and specific gravity

$$\frac{\partial \gamma}{\partial e} = \frac{(1 - G_s)}{(1 + e)^2} \quad \gamma_w = -37.2, \quad \cdot$$

$$\frac{\partial \gamma}{\partial G_s} = \frac{\gamma_w}{1 + e} = 37.5,$$

$$S_{\gamma}^2 = (\frac{\partial \gamma}{\partial e})^2 \quad (S_e)^2 + (\frac{\partial \gamma}{\partial G_s})^2 \quad (S_{GS})^2, \text{ and}$$

$$S_{\gamma} = 3.30 \quad 1b/ft^3 \quad (0.521 \quad kN/m^3).$$

Using Equations 7-7 through 7-11 and the selected values, the means and standard deviations can be computed for the motivating moments, M, the resisting moments, R, and the probability of failure. The results are shown in Table 7-1.

والمتشاد وبيرجي التشاري ويوري والشمو ويهد	Penetration		Tie-Rod Pull		Bending Stress	
Parameter	D (ft-1b)	C (ft-1b)	D (15)	С (1Ъ)	D (psi)	C (psi)
Mean	17,200	40,000	7,100	14,500	1,900	5,000
Standard Deviation	2,830	6,600	1,162	560	311	970
Standard Score	3.17		5.74		3.04	
Probability of Failure	8.00×10^{-4}		5.10 ⁻⁹		1.20×10^{-3}	
Factor of Safety	2.33		2.04		2.63	

Table 7-1. Probability of failure and factor of safety

Note: 1 ft-lb = 1.356 N-m 1 lb = 0.00444 kN 1 psi = 0.00689 MN/m²

•

~

-

Similar approaches can be taken with the tie-rod and bending stress demands. Tie-rod load is given by

$$T = K_a [(200) \gamma_1 + (9417) \gamma_2].$$
 (7-12)

Hence

$$S_{T}^{2} = \left(\frac{\partial T}{\partial \gamma_{1}}\right)^{2} \left(S_{\gamma_{1}}\right)^{2} + \left(\frac{\partial T}{\partial \gamma_{2}}\right)^{2} \left(S_{\gamma_{2}}\right)^{2}$$
$$+ \left(\frac{\partial T}{\partial K_{a}}\right)^{2} \left(S_{K_{a}}\right)^{2}, \text{ and}$$
$$S_{T} = 1162 \text{ lb } (5.16 \text{ kN}).$$

The maximum bending moment for this situation is given by

$$M_{MAX} = 5.88 P - K_{a} [(71.8) \gamma_{1} + (12.6) \gamma_{2})]$$

- $K_{a} [(71.8) \gamma_{1} + (9.74) \gamma_{2}]$ (7-13b)
= $K_{a} [(67.2) \gamma_{1} + (50.8) \gamma_{2}).$ (7-13c)

For a reduction factor in bending of 0.30 and section modulus of 6.55 in^3/ft in this case, the maximum bending stress is

$$\sigma = (0.304) (12) M_{MAX} / (6.55)$$
(7-14a)
= K_a [(47.5) γ_1 + (35.9) γ_2] (7-14b)

2

The standard deviation for bending stress is given by

$$S_{\sigma}^{2} = \left(\frac{\partial \sigma}{\partial \gamma_{1}}\right)^{2} (S_{\gamma_{1}})^{2} + \left(\frac{\partial \sigma}{\partial \gamma_{2}}\right)^{2} (S_{\gamma_{2}})^{2}$$
$$+ \left(\frac{\partial \sigma}{\partial K_{a}}\right)^{2} (S_{K_{a}})^{2}, \text{ and}$$

$$S_{d} = 311 \text{ psi} (2.14 \text{ MN/m}^2).$$

As previously established, the mean flexural strength of wood sheet piles can be taken as 5,000 psi (34.4 MN/m^2) and mean yield strength of A36 steel can be taken as 40,000 psi (275 MN/m^2) so that

$$T_{\text{ULT}} = \frac{\pi}{4} d^2 f_{\text{y}}$$
(7-15)
= $\frac{\pi}{4} (0.68)^2 (40,000)$
= 14,500 lb (64.4 kN).

The standard deviations of the capacities can be found by backcalculation. Assumed cumulative probabilities of 99 percent associated with a minimum yield strength of 36,000 psi (248 MN/m^2) for A36 steel and a minimum flexural strength of 2,000 psi (13.8 MN/m^2) for timber sheet piles result in standard deviations of 560 lb (2.49 kN), for $T_{\rm HLT}$, and 970 psi (6.68 MN/m^2) for σ .

The probability of failure in penetration depth, tie-rod pull and bending stress may now be computed using Equations 7-2 through 7-5. The results are given in Table 7-1.

7.2.2. Reliability of the Design Curves

The preceding hypothetical situation clearly demonstrates high reliability and comfortable factors of safety against failure for a 10 foot (3.05 m) wall in loose sand. One is able to surmise that similar results would occur in analyses of various geometries and soil conditions. The same reliability might be expected from the design curves which comprise the basis for the simplified method as they were derived from the Rowe procedure. The design curves, however, do not coincide exactly with design solutions provided by the Rowe method, since the curves represent mean values of the solutions. The variabilities of the differences between the Rowe solutions and mean values of the design curves are demonstrated in Figures 3-4 through 3-15 and Table 3-5.

The variation of the design curves is expressed in terms of percent difference. This can be converted to the same units that express the variation in the hypothetical situation. Since the design curves are the result of a least squares method of best fit, the mean percent difference between the curve and the data points is very close to zero. The means of the design curves can thus be assumed to be equal to the means of the demand of the hypothetical situation, i.e., the mean percent difference between the curve and the demand of all hypothetical situations is zero. The standard deviations can be dimensionalized by multiplying the standard deviation, expressed as a percent, by the associated mean of the hypothetical situation. For example, a 10 percent standard deviation for tie-rod loads would convert to

 $S_T = (0.10) (7100)$ = 710 lb (3.16 kN).

The reliability of the design curves, expressed in terms of the probability of failure, is shown in Table 7-2.

ويستبيها والمتحدين والمتكر فالمحديدين والم	Penet	ration	Tie-Re	od Pull	Bending	Stress
Parameter	D (ft-1b)	C (ft-lb)	D (1b)	C (1b)	D (psi)	C (psi)
Mean	17,200	40,000	7,270	14,500	2,000	5,000
Standard Deviation	530	4,750	511	560	210	970
Standard Score	4	.77		4.53		3.02
Probability of Failure	~1	0 ⁻⁶	~1	0-22	1.30	$x 10^{-3}$

Table 7-2. Reliability of the design curves (anchored walls in sand)

.

Note: 1 ft-1b = 1.356 N-m 1 lb = 0.00444 kN 1 psi = 0.00689 MN/m²

-

.

,

7.2.3. Reliability of the Simplified Method

The simplified method may be considered as a system consisting of 2 components: the Rowe reduction method and the design curves. The reliability of a system whose components operate in series may be expressed as

$$R_{s} = \prod_{i=1}^{n} R_{i}$$
(7-16)

in which $R_1 =$ the reliability of the ith component and n = the number of components in the system. In terms of probability of failure, the relationship is

$$P_{f} = \prod_{i=1}^{n} 1 - (1 - P_{i})$$
(7-17)

in which P_i = the probability of failure of the ith component (Harr, 1977). The reliability of the simplified method may thus be assessed from the combinatorial probability of failure of its components as shown in Table 7-3.

7.3. Anchored Walls in Clay

7.3.1. Hypothetical Situation (Undrained)

The conditions assumed for anchored walls in sand remains the same with the exception of a cohesive subgrade where c = 250 psi (1.72 MN/m^2), an anchored wall in clay may be designed in accordance with the Rowe reduction method. The design depth of penetration, tie-rod pull, tie-rod diameter, bending stress and pile thickness are

Table 7-3.	Reliability	o£	the	simplified	method	(anchored	walls	in
	sand							

-

Parameter	Probability of Failure
Penetration	8.00×10^{-4}
Tie-Rod Pull	<10 ⁻¹⁰
Bending Stress	2.50×10^{-3}

D = 5.54 feet (1.69 m) P = 6,530 pounds (28.2 kN) d = 0.615 inches (15.6 mm) σ = 1,990 psi (13.7 Pa) and t = 1.92 inches (48.8 mm)

The analysis proceeds as before with additions of another variant, the cohesion parameter, whose coefficient of variation may be taken as $V_c = 18.6$ percent (Lumb, 1972), which gives a standard distribution of $S_c = 46.5$. The resulting capacities, demands, standard scores and probabilities of failure are shown in Table 7-4.

The most striking aspect of the results is the relatively large probability of failure in penetration as compared to what is virtually a very substantial factor of safety. This disparity stems from the large variance of the cohesion parameter.

Coefficients of variation for the cohesion range as high as 50 percent (Harr, 1977). Incorporating this value into the foregoing analysis results in a probability of failure in penetration of $P_f = 0.25$.

7.3.2. <u>Hypothetical Situation: Penetration Computed</u> for Drained Condition

If the long-term case (drained condition) is considered, the design results in a depth of penetration D = 9.2 ft (2.8 m), factor of safety FS = 2.2 and probability of failure $P_f = 0.003$. This is based on the assumption that the variance of the parameters is the same as the variance for cohesionless soils. If this depth of penetration is

	Penet	Penetration		od Load	Bending Stress	
Parameter	D (ft-1b)	C (ft-lb)	D (1b)	C (1b)	D (psi)	C (psi)
Mean	5,230	30,500	6,530	11,500	1,990	5,000
Standard Deviation	920	13,800	1,070	450	320	970
Standard Score	1.	83		4.45	2	. 95
Probability of Failure	3.40	x 10 ⁻²		10 ⁻⁶	1.60	10^{-3}
Factor of Safety	5.	83		1.76	2	2.51

Table 7-4. Probability of failure, anchored walls in clay (undrained)

-

Note: 1 ft-1b = 1.356 N-m 1 1b = 0.00444 kN 1 psi = 0.00689 MN/m²

.

•

used to compute the probability of failure for the short term case, the probability of failure would be almost zero for a coefficient of variation of 18.6 percent on cohesion, and approximately 10^{-6} for a coefficient of variation of 50 percent.

7.4. Summary and Conclusions

The investigation of a hypothetical situation provided a conceptualization of the reliability of anchored bulkheads. By incorporating variations in the pertinent soil and material parameters found in the technical literature, a means was established whereby the probability of failure in penetration, tie-rod pull, and bending stress could be estimated.

A capacity-demand model was formulated for each of the three potential modes of failure for walls in a sand subgrade, in a clay subgrade under undrained conditions, and in a clay subgrade under drained conditions. Penetration failure was seen to be the most probable mode of failure while tie-rod failure was virtually improbable under the assumptions declared. The probability of flexural failure of timber members was less than penetration failure, but not nearly as low as tie-rod failure.

Recalling that the safety margin, variance in capacity and demand, and the probability of failure are related by

 $\overline{SM} = \overline{C} - \overline{D} , \qquad (7-3a)$

$$S_{SM} = \sqrt{S_c^2 - S_D^2}$$
, and (7-3b)

$$P_{f} = \left(\frac{\overline{SM}}{S_{SM}}\right) , \qquad (7-17)$$

the reasons for the general trend appear clear: a high safety margin results in a low probability of failure, while a high variance in either capacity or demand has the opposite effect.

Since the specified engineering properties of steel can be relatively easy to attain with low variance, steel products will show a rather high capacity. Added reliance stems from the fact that, to achieve the minimum yield for each lot manufactured, the metallurgical design process is conservative and an average yield results which is substantially higher than the required minimum. Rigid quality control insures that a very low percentage of the final product has a yield less than the specified minimum.

Since timber cannot be processed and refined to the extent that iron ore can, the final product exhibits more variability in its en-. gineering properties. Designs using timber show high reliability which is derived from the quality assurance provided by stress grading.

Both demand and capacity of the penetration model are functions of the soil parameters and penetration depth. Since high variance in soil parameters pertains to both capacity and demand, a high safety margin is required to achieve an acceptable reliability. Obviously, increasing the safety margin may be accomplished by decreasing the demand or increasing the capacity. The only choices available to obtain either end are to replace the in-situ material with a more suitable one, or to increase the depth of penetration. Additional excavation and backfilling is costly, thus increasing the penetration depth is more attractive. Unfortunately, large increases in depth are necessary to offset high variability, low soil strength, or both.

Harr states that, "For most problems in geotechnical engineering, $P_f \leq 10^{-3}$ " (Harr, 1977). It is not unreasonable therefore, to consider this order of magnitude as a desired standard and to declare as acceptable any probability of failure that is less than 0.01.

The numerical results of the analysis of the hypothetical situation demonstrate the acceptable reliability except for one case. The reliability of tie-rods and flexural member (sheet piles) are acceptable in all cases. Penetration depth, however, is unreliable for clays in the undrained condition, even for the moderate coefficient of variation of 18.6 percent. This realization is important as the apparent factor of safety against failure of 5.83 is very substantial and falsely suggests an adequate design. However, when the wall is redesigned for the drained condition, an acceptable reliability results for both long and short term.

The design curves possess small variability and show high reliability as a result. When considered as a component of a design system which incorporates the Free Earth Support method with Rowe reduction, the design curves lead to reliable designs providing, of course, that there is not excessive variability exhibited by the soil parameters.

The technical literature suggests that the undrained strength of cohesive soils demonstrates high variability. Deterministic designs based upon undrained strength produce an inherent risk of failure. Designs based upon drained strength, however, show good reliability; hence the drained condition can be considered to control the design process.

The reliability of a particular design can be estimated provided that the site was adequately investigated. One important aspect regarding the adequacy of the investigation is the number of data points used to determine the mean soil parameters. Since the investigation entails sampling from a population whose standard distribution is unknown, the desired probability of failure (confidence interval) may be investigated by utilizing a cumulative probability function described by a student distribution (Harr, 1977), where the standard score is given by

$$t = \frac{\overline{SM}}{\overline{S}_{SM}}$$
(7-18)

A table is consulted to ascertain the probability of failure for a particular number of data points.

The t scores for a desired probability of failure less than 0.01 are shown in Table 7-5. It is readily observed that as the number of data points decreases, the t score increases. This indicates that for the desired reliability a greater safety margin, lower variance in soil parameters, or both, is required for fewer data points. The only option left to the designer confronted with scant data is to increase the safety margin. This is very likely to be less cost-effective than an increased scope in site investigation.

It may be concluded that the Free Earth Support, Rowe, and simplified methods are inherently reliable for walls in sand subgrades. To extend this high reliability to walls in cohesive subgrades, an adequate site investigation is required whose scope will be determined by the variability of the data.

No. Data Points	t Score
3	31.821
4	6.965
5	4.451
6	3.747
7	3.365
8	3.143
9	2,998
10	2.896
11	2.821
12	2.764
13	2.718
14	2.681
15	2.650
16	2.624
17	2.602
18	2.583
19	2.567
20	2.552
21	2.539
22	2.528
23	2.518
24	2,508
25	2.500
26	2.492
27	2.485
28	2.479
29	2.473

Table 7-5. t Score required for a probability of failure less than 0.01

CHAPTER 8

SUMMARY AND CONCLUSIONS

Bulkheads must be designed to resist failure from bending and from lack of sufficient penetration below the dredge level. The forces causing failure stem from horizontal stresses exerted upon the wall from the soil on the backfill side. Resistance to bending failure is derived from the properties of the wall, and outward movement of the toe of the wall is resisted by the soil on the dredge side. Required penetration depth may be reduced by employing a tie-rod and anchorage on the fill side, adequately dimensioned and located.

Bulkhead behavior is governed by the complicated interaction of many variables, requiring equally complex procedures to determine the design loads. Overly simplified methods tend to over- or under-design the system. A simplified procedure is needed which addresses the pertinent variables, and this is described herein.

Various approaches have been used to determine the horizontal stress distribution and the resultant forces and moments. Of the seven approaches reviewed in Chapter 2, the Free Earth Support method with Rowe reductions was found to be the most extensively examined and covered the widest range of conditions. In spite of its technical merit, the FES/Rowe procedure is complex. A simplified method was therefore derived from the more complicated one.

A computer program was devised which calculated penetration depth, moment and tie-rod load in accordance with the FES/Rowe method for a wide variety of soil conditions and site geometries. Chapter 3 explains the methodology by which the pertinent parameters were combined and correlated to generate simplified design curves.

A detailed explanation of the FES/Rowe and simplified methods is given in Chapter 4. The expediency of the simplified method is made apparent in that explanation and is substantiated by the procedural flow tables and design examples that appear in the Appendices.

Although the determination of penetration depth and loadings is of prime importance in bulkhead design, there are other items that require careful consideration to complete the design. Chapter 5 provides a discussion of other pertinent factors, i.e., overall system costeffectiveness, external loads, component dimensioning and detailing. Procedural flow tables and examples are provided in the Appendices for the design of components.

Proper construction practices are also required for a properly functioning system. A general construction procedure is discussed in Chapter 6, as well as some other practical considerations concerning construction methods.

A qualitative description of bulkhead reliability was developed by inference in Chapter 7. A capacity-demand model of a typical bulkhead was examined with respect to penetration depth, moment, and tierod load. Both sand and clay subgrades were considered. Soil and material strength parameters and variability were selected from the technical literature and incorporated into the model. The models showed that, because of the high variability of clay strength parameters, walls in clay were less reliable than walls in sand. However, a design based upon the long-term strength of clay results in a reliable design, even when the short-term parameters are considered.

By examining the capacity-demand model using probabilistic methods, several concepts were reinforced, i.e., once an adequate penetration depth is found, the probability of system failure is low; the risk of penetration failure in a clay subgrade is high when considering shortterm strength, but is reduced when the long-term strength is used for design; and as the number of data points used to determine the strength parameters of the soil increases, the probability of system failure decreases.

APPENDIX A

COMPUTER PROGRAM USER'S GUIDE

Title

Bulkhead Design for Anchored or Cantilevered Walls in Sand or Clay Subgrades.

Purpose

The purpose of this computer program is to determine the depth of penetration of bulkhead sheet-piles, determine the tie-rod load per unit length of wall, compute the maximum bending moment, and select the appropriate USS steel sheet pile and timber sheet pile. The design method is Free Earth Support as modified by Rowe.

Input

Cards 1 through 30 comprise moment and tie-rod reduction factors and USS steel sheet pile design data. These data cards are provided with the program.

Control Cards: 2 each. Must be right-justified.

Card 1 1-2	NP	- Number of designs to be run.
Card 2		
1-2	KC	- Type of wall to be designed.
		KC = 0: Anchored wall only.
		KC = 1: Cantilevered wall only.
		KC = 2: Both types will be designed.
3-4	N	- Number of soil layers in the site.
		N must be 2 or greater.

Soil Parameter Cards: 1 card for each soil layer. English units. Not right or left-justified, but a decimal is required.

```
1-10 PHI - Angle of internal friction.

11-20 GAMMA - Total unit weight (1b/ft^3).

21-30 C - Cohesion (\#/ft^2). Must be zero if \phi \neq 0.
```

Site Geometry Cards: 2 cards

Card 1 1-10 11-20		- Angle of backfill slope. - Angle of dredge slope.
Card 2		
1-10	н	- Free standing wall height (ft).
11-20	HW	- Height of water above dredge level (DL). This is the low water level.
21 - 30	HHW	- Height of tie-rod above DL.
31-40	Tl	- Distance from top of wall to 2nd soil layer.
41-50	т2	- Distance from top of wall to 3rd soil layer.
51-60	т3	- Distance from top of wall to 4th soil layer.

Surcharge Cards: 1 card

Card 1	os	- Uniformly distributed load (lb/ft ²).
1-10	Q S	- difformity distributed four (15,100),
11-20	QL	- Line load (lb/ft).
21-30	QP	- Point load (1b).
31-40	Х	- Horizontal distance from wall to load (for
		QL and QP only).

Explanation

Most sites can be approximated using 3 layers: the first layer consisting of moist (not saturated) soil between the top of the wall and the water level; the second layer extending to the DL; and the third layer extending beyond. Input of T3 = 50 ft is a good value since any distance beyond the depth of penetration will be neglected.

The field width for each soil layer is 10 spaces. Each additional soil layer may be input utilizing this width, e.g., T4 would be input using columns 61-70.

Values of zero must be input on soil parameter, site geometry and surcharge cards with a decimal point.

The use of cohesion parameters above the DL will result in unconservative designs. An explanation is contained in Chapter 3. Long term strength parameters should be used instead.

APPENDIX B

•

SOURCE	PROGRAM
7001/01	LICOLUM

FILE: WALL _ FORTRAIL 4 COFNELL WARTER SUBSET CHE LEVEL	. 104
	<u>4410001</u>
C FLEXIBLE RETAINING WALLS	Willetez
OINTNOID #HELTON, GINMA(10), C(11), T(12), FAC(30, 30), BET(5,12)	- VAL 2303
PEAL KAI,KFI	NAL 0004
またえし メスティメネッ うろう	WALCOOC
" BOUBLE "P*ECISION SAD+P1+PP	WAL 7 COB
DINENSION KAI(12) .K71(10) .C1(10) .C2(40)	WAL 3001
OIMENGION KP(11),K4(17)	WALGOOM
DIMENSION Z(10)+GANMAE(10)	-WALGOOS
DI MENSION DEL TACIOS .FTCIGS ,FSCIGS ,CTCIGS ,CSCIGS ,AF 40103	WAL3010
07H2N610N 32412)	HELCOIL
READ(5,39)((FIG(1,J),J=1+21)+1=1+6)	4AL0012
READ(5+36)((FAC([,J)+J#1+15)+1#7+15)	WALO013
PEAO(3,37)((FAC(1,1,4,4),1=1,23)	WALCOIN
PELD(5,3=)((BET(2,J),J=1,6),I=1,3)	WELCOIS
RE10(5,35)((SE*(1,J)+J=1+6)+I=4+6)	VAL CO14
READ(3-37)(52(1)-1=1+8)	VALOCI
00 342 1=1,23	VALOOIS
KT = 21	UALOOIS
IF(I.6I.7) KI%13	VAL 0020
IF(1.67.15) KI=*	WALDG2
DQ 343 J31+KI	WALGO22
FAC(1,J)=FAC(1,J)/1000+	UALCO2
IF(K1.C0.10)FAC(1.J)=FAC(1.J)+10.	W110024
TERKI.FO.33 FACCILUS =FACCILUS = 10+	VAL 002
IF (1.17.14) GO TO 323	VALOC2
383 CONTINUS	WAL JC2
352 CONTINUE	VAL0728
• DQ 391 I=1.÷	VAL 002
07 372 J#1.6	WAL 003
85+(t, u)=35+(t, u)/107.	WAL 023
3 92 CONTINUS	VAL 003
3 CONTINUE	UAL DO 3
0 371 3×1,2	VALCO34
SZ(1)=SZ(1)/11+	WALDD3
371 CONTINUE	WAL003
PP=1.	WALOO3
	VAL DO3
	WALDO3
RAD=18:.7PI	HAL OUT
	VALOGA
C FACE PEDUCTION FACTURE (MCMENT)	WAL DOA
C BETERTOCTION FACTORS (TIE ROD) C SZESECTION HODULII FOP STEEL SHEET PILES	JAL CO4
	HALOS4
C	21L004
101 CONTINUE	WAL COA
	VAL 204
READ(5.1) YP	W41.004
09 1111 [I=1,4P	WAL DOA
READ(S.1)KC.N	WAL 005
491716611XC+2	Us_C005
C PHILEFICTION ANGLE OF SCIL LAYER	
	246.005
	LOOS
C GRAMATERFECTIVE ONL. WITCHLOULAIDE BAR THE FILE DEFILES	WALCOS

TLE: WALL FORTRAN & CORNELL VAVISP SUBSET CAS LEVEN	L.104
DOMESAISLOPE OF GROUND SUPFACE AT DAEDSE LEVEL	.NAL205
	WALOGS
	VALCOT
RE10(5,2) 344591,004503	VALOGE
PEPTT STANJING WALL HEIGHT	WALGOG
- HHREHICH MAYER FEVEL WILE NOD FEVEL (NERDE CENTER)	411006
- BUSHETCHT OF BATER (LDB MATER LEVEL)	VALOOG
HATTE ROPLEVEL (DEPTH FRON TOP OF VALL)	WALGOG WAL <u>OOG</u>
DEDERTH OF TENETRATICN	UALOGE
HORN+ORIGINE PILE LENGTH	WALDOG
THOTSTANCE FROM TOP OF HALL TO BOTTUN OF SOLL LATER OSHEVENLY DISTACHUTED SURCHARGE LOAD	VALOOS
	UALOD6
	NAL COT
X - HORIZINTAL DISTANCE FOOT WALL TO LOAD	WALDT 7
PMz?,	VALCO7 UALOS7
9543(5+2) H.HU.HHU.(T(),I=1+1)	VACUUT
#E12(5.2) 3_491,0P+X	WALLOT
WP (TE(11,25)	44L 59 1
WPITE(11:25)	UAL 007
DC 21 I#1+4 WATTE(11+22)[.T(])+GAMMA(])+PM2(])+C(])	VALOO7
PHT([]]2=H[(])/3AD	WALDER
21 CONTINUÉ	BDOLAN
TTT GETTELLELICA	VALCOS
WEITE(11,24) H.HW.HHW.01,01.00,BOFESA,DOHEGA	BOLAN WALDOR
RONTGLIEDNEGA ARKD	WALDOS
DONEGA =00MESA / 7AD	¥4.50 9
	VALSES
WRITE(11,112)	VALGOR
KCHT : COMPUTES ANCHORED WALLS ONLY	VAL 006
THE REPORT OF THE CANER OF THE REPORT OF THE PARTY OF THE	UALGO?
A KERA : COMPUTED ANCHORED WALLS, THEN COMPUTES CANTILEVERED HA	VALGOS
C KKEC : FACTORED SOIL PARAMETERS	WALGOS
XL=9 : SHCHOPED BULKHEAD	WALCO.
C KLAI : CINTILEVERED BULKHEAD C KHEQ : DEPTH OF PENETRATION ITERATION NOT COMMPLETED	WALCON
C KHEO : DEPTH OF PENETRAFICN INCAATION NOT COMPLETED	WALCON
C KREG : NO COME JON IN ANY COLL LAVERC	UAL209
KK =0	WAL DOS
KL=1	WALG10 WALD10
1F(KC.E0.1) KL=1	WAL010
Kr =C	WALD10
	14L010
72 CONTINUE CALL FACTOR (KC+++C+PHI+PAD+KR+KK+EDHEGA+DELTA+KP+KA+N+KL+KPI+	KA1 .DWALDIG
CONEGA,CI,CZ)	
C	WAL 010
C HORDITTHICE TO WATER LEVEL	UALDIO
	WALOID WALOII
anne a chuir a na ann an ann an ann an ann an ann an a	

LET WALL FORTRAM 4 COMMELL VHILP SUBSET CHS LEVEL 104	•
and the second	441.011
\$UM=0.	446011
	WALCII
CALL 0177467,2,8,43,8,45,82,822,8,403	VAL 211
CALL DETTHET, Z.M. 43, R. KI, KZ, KZ, KZ, PSK. 400, CALL FATAMEN, KA, Z.S., T.KP, KA, DELTA, JAMAA, GAMMAE, C. 13, KI, H, KZ, KZ2,	WAL 011
CKP1.K11.PH1.H.C1.C2.KK1	
TECK9.53.91 60 70 35	WALSII WALSII
CILL BARANEN+KR+Z+ST+T+KR+KR+GELTE+GARMA+GARMA+GARMA+C+C+RB+RETER	WAL 712
CKC1.KA1,041,4.C1.C2.KK3	WALS12
FÖT=ST/+25	W11212
19172(11,57) F01,57	VALC12
IF(FOS.LE.1.) W?ITE(11.56)	WAL 012
TF(FOS.LE.1.) WRITE(11.1000)	W4L012
IF (F07.12.1.) GU TO 1111 5º CONTINUS	VAL C12
· · · · · · · · · · · · · · · · · · ·	441012
KN(1=)	WAL 012
	HAL012
ATTE ENDETTING, KA.KO.C. GAMMAZ.Z.FT.FS.CT.CO.K. 104104104144	VEL013
C KM, 05174. 4914. 75. 31. 00, 5. X. P4. EL. H. KK)	WALCIN
IF(KR, 10.1) 60 70 723	WALCI.
$\frac{1}{2F(Z(4), S(2, 4))} \times \frac{1}{K^{4}} = 1$	WALD13
IF(KM1.53:1) GD_TC 722	WAL 01
IF (MOH. GT. 1.) 2(M)=2(H)-1.0	VAL013
1F (MOH. GT. C.) G1 T0 721	VAL C1.
KMI=L	WALC13
722 CONTINUE IF (MOM.LI.T.) Z(H)=Z(H)+10	WALS13
IF(MOM.LT.9.) GO TO 721	WAL 91.
723 H0=2(")	WALC14
	WAL 01
ID=0	URL014
	WALCI-
ADEH+0	VAL01
	HALOI
KHEL : DEPTH OF PENETRATION ITERATION COMPLETED	VAL D1
	441.01
KM=1	VAL 01
KK=1 CALL FORCES (MA+KA+KP+C+GAMMAE+Z+FT+FS+CT+CS+KR+K1+K2+K22+M+KL+	WAL 01
	HALCI
C KM, CILTA, HOM, CC. GL, GP, GRAFFILL, HILL, HILL, KM, KM, KA, N, KL, KP1, KAI, CALL FACTOR (KC., T.C. PHI, RAD, KR, KK, BOREGA, CELTA, KM, KA, N, KL, KP1, KAI,	OVAL 01
	WALD1
CALL PAPAMCH+KR+Z+ST+T+KP+K4+DLLIA+BAMMA+BA	SALUI SALUI
CKP1+K11+PHI+M+C1+C2+KK)	WALCI
TETTE . 20. 31 60 TO 55	HALCI
CILL FAPANCH, KR, Z, ST, T, KP, KA, DLLI A, GAMMAK, GAMMAK, TUTHUT, LING, ST, T, SK, SK, SK, SK, SK, SK, SK, SK, SK, SK	WAL 01
CKP1,KA1,PHI, ",C1,C2,KK)	UAL 01
59 CONTINUE CALL FORCES (HA, KA, KA, KA, C, GAMMAE, Z, FT, FC, CT, CC, KA, KZ, KZ, KZ, M, KL,	TWALC1
CALL F 74CE3 (HA,K4,K4,K4,C,G,GAFHAE,Z,F),FC,GC,FC,G,F,G,G,FC,G,G,G,G,G,G,G,G,G,G	<u>44161</u>
	<u>4</u> 4_61
<u> </u>	

ILE: WALL FURTRAM_ACORNELL_VM/CP_SUBSET_CMS_LEVEL_1	· · · · · · · · · · · · · · · · · · ·
75 CONTINUE	WAL31
	WALC1
BET12MA/HD	WALD1
VRITE(11+49) 0	VAL 01
64 FORMATETSS, OFFTH OF PENETRATION & *.F10.2.* FT*)	WALC1
H9172412-11743	UAL01
IFTRLICALIS HAASS	WAL 01
IF(KL.ET.I) PULL=d.	NAL 01
IE(KT*E3*T) A=;*	WALC 1
IF(x1.51.1) 50 70 77	WAL 01
CALL TIELA>*+HO+Z+CT+CS+FT+FS+V+N+H++FULL+PH+EL+H+KK+ CHLL -H	U4121 <u>V4101</u>
PULLEY 77 CONTINUE	VALU1
CALL DESNON (Z+CT+CT+FT+FC+H+MOH+H4+V+C+PH+EL+H+KK)	HALU1
NON=461(NO4)	HALDI
CALL POWE (NON , PHILFAC, BET , SZ, PULL , ALPHA, BET A, ET , N. ST , KL , KR , TAO, Z	
CZ2+Z3+H0)	WAL 01
IF (KC.50.2) 60 70 1111	UAL 01
IF(KC.E3.1) 90 °C 1111	WALCI
27 (XL.EQ.1) 60 70 1111	VAL 01
	VALCI
	WAL 01
KM = ?	- VAL01/ - VAL01/
0=H WPTTE(11,1210)	WALCI!
WRITE(11,11)	WALST
50 70 72	VAL01
111 CONTINUE	WAL 01'
57.08	WALCIS
1 FORMAT(212)	WAL 211
2 F07NAT(1710.2)	WALDIS
22 FOFMAT(135,12, 33, 4F15.3)	HALOI
	WALDIY
<u></u>	VALOI
C./.753. Tit 400 # ".T71.F5.2," FT".	MAL020
C/+155+100PCHARGE # +,771,F10-0+ PSF (DISTRIBUTED L^40)+, C/+155+100CHAPGE # ++71+F10-0+ PLF (LINE LOAD)+,	VALC20
C/+T55+FSURCHAPGE = F+T71+F10+0+F PLF (LINE LOAD)*+ 	441020
C/, 755, FILL SLOPE = ', T71, F5.2, 'OEGAEES',	94L020
C/T55, OPEDGE SLOPE = ', T71, F5.2, ' JEGREES')	VAL020
25 FORMAT(125. ISJEL LEYER DEPTHS ARE FROM GROUND SUAFACE WALL HT	WALO 2
C & WIT LEVELS ARE FROM DREDGE LINE .	VAL 320
C/+710+1	_WAL020
Cf)	VALOZO
26 FORMATC/, T31, SCIL LAYER* .T48. "OEFTH", T61. "UNIT WEIGHT + T77, "PHI"	WAL 023
C.T9*.*COHEDION*.	BAL021
C/, T+9, *(FT) *, T32, *(PGF) *, T75, *(DEG) *, T92, *(PSF) *)	HALCZI MALCZI
35 F02MAT(5F3.3)	WAL023
36 FORMAT(13F3+3) 37 FORMAT(3F3+3)	VAL021
	WALDZI
39 FDFMAT(11F3.3) 39 FDFMAT(14F3.3)	VALUZI
57 FORMATCH TA3, SAFETY FACTOR = ++F5+2++ AGAINST STAR # ++F5+2	
C)	VAL 021
SE FORMATITAS. THIL WALL CANNOT STANDED	WAL022

IL <u>E: Mall</u> FORTRAM & CORNELL VM/SP SUBSEI CHS LEVI	EL 10+
110 FORMATE TATA ANGHORED BULKHEADED	44L02
111 FORMATE TS3. CANTILEVERED AULKHEADAD	VAL 02
	WALTZ
	TIVALC2
E120	W11022
SUBFOUTINE FACTOR (KC.R.C.PHI.PAD.KR.KK.BOHEGA.DELTA.KF.KA.M	
C XF1.KA1, DOME GA. C1.C2)	HALG2
	WALG22
SUBPOUTINE TO FACTOR SOIL PAPAHETERS FOR PENETRATION	WAL 022
CALCULATIONS, UNFACTOR FOR MOMENT CALCULATIONS	VAL023
	WAL023
REAL KA1.KP1	WALO23
ACAL XP,KA	WAL023
DIMENSION KA1(10),KF1(10),C1(10),C2(10),PH1(10),PH2(10)	JAL02
DINENSION C(19),PHI(10),DELTA(15),KP(14),KA(10)	14 ALV23
DOUGLE POTCISION RAD, PP, PI	WAL02
00 34 I=1.4	¥41023
IF(C(I).GT.C.) KP22	WALO23 WALO23
IF(KK.£9.7) C2(1)=C(1)	WALO23
IF(KK. 54-0) C:(1)=C(1)/1.5	VAL024
IF(KK.23.0) C(I)=CL(I)	WALG24
IF(KK.23.0) C(1)=Cl(3) IF(KK.20.1) C(1)=C2(1) Na Côntruye	W41024
	UAL024
IF(KR.11.1.4 ND.KK.12.1) 60 TO 3	WAL024
IF(KK.29.1) 30 TO 31	WALD24
IF(KK.23.3) PH2(I)=PHI(I)	WAL 024
941(I)=TAN(PHI(1))/1.5	WAL 024
PH1([]=ATAN(PH1(]))	WALC2
31 CONTINUE	¥4L025
PHI(I)=PH2(I)	WAL02
TF(KK=74-0) PHI(1)=PHI(1)	VALOZO
IF(K7.20.1) PHI(1):PH2(1)	VALO 2
CELTA(I)=2.+PHI(I)/3.	WALC25
IF(PHI(I).EQ.C.) 60 TO 33	VAL025
A=CO2(PHI(I))	WALC25
A=A++2.	WAL025
DELTEDELTA(1)	
A1=(SIN(PHI(I)+OELT))+(SIN(PHI(I)+BOMEGA))	WAL D26
A2=(COS(D2L*)) + (COS(BOMEGA))	WAL026
142=(COStOELT)) - (COStOONEG4))	HAL026
A3#(SIN(PHI(I)+DELT))+(SIN (PHI(I)+BOHEGA)) AA3#(SIN(PHI(I)+DELT))+(SIN (PHI(I)+BOHEGA))	4ALUZO UA1 034
-AASSESINEPHIC.)+UELI))///SIX (PHICI)-USACUA))	WALC26
AS=(1+44)+> 2	VALS26
KA(:)=A/AS	WALO26
A45-52PT(143/112)	WALOZS
A5=(1,+A4)++2	WAL 026
KP([)=4/35	WALD 27
33 CONTINUE	WALG27
IF(PHI(I).10.) KP(I)=1.	WALD27
IF(PHI(1).20.0.) KA(1)=1.	11127
KP1([)=KP([)	JAL027
KA1(I)=KA(I)	WALG27

TCONTINUE	WAL 0276
	WAL 027
TF(KK.EG.3) WP(TE(11.310)	WAL 0278
TECKK.20.1) WRITE(114320)	WALD29
IF (KR. 23.1. AND. KK. 20. 1) WAI TE(11.330)	V41.0291
310 FORMATETSA, PRACTORED SOIL PARAMETERLAI 326 FORMATETSA, UNFACTORED SOIL PARAMETERSA	HALO28
SIC FORMAT (TAP, *(FACTORED COMESION PARAMETR ONLY)*)	VAL020
1000 FOFMATET17:	
C	*)WAL028
	WALGZBO WALGZBO
	WALD28
5088 00 TONE DEPTHE T+2+N+N3+M+K1+K2+K42+H+H0+HD)	VAL025
AND A THE REPORT OF AND AND A THE LEWILS WITH	
SUIL INTERFACE LEVELS	VAL 0292
01 MENGEON 2(14) .7(11)	JAL027
	HALC29
12 st + 2	VAL 027
N3+t1+3	VAL027
T(N1) INO	VAL 029
T(N2)#H	VAL 027
T(N3)3HO	44L036
▲ Z(J)**(J)	UALO 3
0° 41 J=1+73	WALG30
	UAL030
K¥J .	VALG30
00 + 4 Z=J+1.3	WAL030
IF(2(1).32.44(N) GO TO 40	VAL030
K=: #*:4=Z(K)	VAL 030
47 CONTINUE	WAL030
TF (K. 23. J) 60 10 41	941031
TENR+2(K)	UAL031
Z(K)=Z(J)	H4L031
2(J)375MP	WAL031
41 CONTINUE	
ELIMINATE ANY DUPLICATIONS IN IDNET. LAYER INTEFFACES	WA6031
TOCHT. INTIGER VARIABLES ASSOCTO W/ INTEC. & HATCH CYC. TOTCAT	<u></u>
AND PILE TIP (HC.H.HO)	WAL031 WAL031
	WALC32
κ=1	VAL032
00 +2 1=1+93	WAL032
J=T-1 IF(Z(I)=EQ.C.) 60 TO 42	WALC32
(F(1,23,1) 50 FO 43	VAL032
TREFT 1, 20, 70,111, 60, 70, 42	VAL032
THE TELE T. 4. AND. Z(1).NE. HOY GU TO 42	HALUSZ HALOSZ
43 Z(K)=2(C)	- HALSIZ
17 (2(1).23(H4) K1FK	WALT32
IF(2(K).53,4) K2=K IF(2(K).53,4) M=K	HAL033
1 - V 2 V V 2 4 2 4 4 4 4 4 7 V	

-

	≠.J>TP2M A	CONCLL VHIDP QUBSET CHS LEVEL	134
FILE: WALL			
-F(2(K))	23.403 50 73 44	the second s	¥#17331
K=K+1			¥410332
42 CONTINUS			UAL0333
AA CONTINUS			24L0334
RETURN		- · ·	4460335
EN 3			VAL0336
5085.0071	NE PAPAMEN.KP.Z.ST.	.T.KF.KI.OELTA.GAMMA.GAMMAE.C.NS.KI.H	+ KZWAL0337
C .K22 .KP1	.KA1.PH1.P.C1.C2.KM	O	
REAL KA			4410339
PEAL KP:	,KA		WAL0340
DIMENSIO	14 TELOJAZE1CJAKPE10	SARACICS DELTACION GARMACION GAMMAEC	1019859341
C 101101	<u>C1(17),C2(17)</u>		UAL0342 WAL0343
O1HENS10	DY KA1(1/),KP1(10),P	PHI (10)	WAL0344
<u>j=1</u>		and and a second se	VAL0345
ST#0.			VAL0346
Sef	and and an		¥410347
00 5 [=]			VAL0348
<u>53 CONTINUS</u>	19 50 T1 5		UAL 0 349
1519491	LE. T(J) EO TO 52		JAL0350
U#U+1			WAL0351
60 TO 51	<u>.</u>		HALO332
52 CONTINUE			WA1,0353
	NE. 41 60 TO 54		VAL0354
K2=;			VAL0355
K22=K2+1	1		VAL0356
— 54 CONTINUS			44L0357
KP (]) <u>=</u> KP	P(J)	· · · · · · · · · · · · · · · · ·	WAL0359
Ka (1) =Ka			WAL 0360
)=05LTA(J)		WAL0351
KP(])=K			441 4367
KA (]) =K			WALS363
	[]=34M#4(J) 5 000073=01043		WAL 0364
	3.2)C(])=C1(J) 3.1)C(])=C2(J)		WALT 363
			WAL0366
TECTOT	(1) GAMMAE(1)=SAMM	AE(1)-62.4	UAL0367
TE CKR.2	7.23 60 70 5		UAL0368
IF(2(1))	3T.H) 56 TO 51		WAL0369
X=Z(I)-	s		VAL 4370
ST=ST+6		·	HAL0371
	.1) ST1=ST		UAL0372
51 CONTINUE	<u>.</u>		UAE 0 374
5 S=2([)			HAL0375
IF(KR.E	9+1157=0(M)+1+25/57		WAL0376
REIURN			UAL0 377
E110		.C. GAMMAE, Z. FT. FS. CT. CS.KR.K1.K2. X22.	
	KN.OELIS.MCM.OS.GL.	7F+C+X+FH+EL+H+KK)	WAL 0379
-			¥AL0380
C SUBPOUT	INE TO CALCULATE PO	ECSUPES, FORCES, MOMENTS, CENTROIDS	WAL0381
C AND MOM	ENT LAMS FOR SACH S	071 LAYER	#AL0382
č			HAL0363
PEAL K?	.K2. MOM		UAL0384
	QN KA(10), KP(10), AF	H(12)	VALOJAS
		the second se	···

	HALOSA
OTHENSION #*(14) #2(10) (CT(13) (CS(14)) (CLTA(14)	HALO3
DINCHSION Z(10),T(10),GAMMAC10),GAMMAZ(10),C(10)	VALOSE
HD=2(9)	WAL 03
n <u>HO</u> MEG	WALQ3
IF(GL.1.7.1.) GO TO 55	HAL03
E#=X/H	WALOS!
THIEN.LE.C.33 ELACT.67-H	WALD3
IF(EN.GT.1.3.ANO.EM.LE	WALO39 WALO39
1F(5M.07.0.5) EL=(C.+*)+H	WALS3
PMI={3,14}-GL/{2H++2+1.3	WALST
IF(EN.LE.J.+) PH=-(*.35)+QL PMONTPH-(H-H4-EL)	VAL 0.35
	UAL 03
10 12 10 10 10 10 60 70 65	HALD41
	VAL 041 VAL 041
ART PORMATITES, PRESULTANT OF LINE LOAD = "+FLU-Z+"PLF"+/	WAL 041
Calibert PL: 1700 THE DAGET FT FERRE WE WE WE WE THE	VAL04
C.TSS. CONTRIBUTING MOMERIT = ".FIC.2." FT-LB")	VALON
Q=Q+PH+T4N(DELT4(2))	VALDAI
63 CONTINUE If(qP.LT. <u>1</u> .) GO TO 66	VAL 044
ENax/H	UALOA
IF(EM.LE.J.+) EL=(1.57)+H	NAL 041
1F(EM. GT.0.4) EL#(C.45)-H	WALJA:
PH=-(0.45)+0P/H	<u> </u>
IF(2M.LE.J.4) PHS-((.78)+0P/H	WALDS.
	WALD4
XON=NON-PHON [F(KK.53.1) GO 73.56	VALOA:
	JALUA
- ZZA ENDHATETHA, FRENULTANT OF POINT LOAD A "SFIGAZI" "VOUNDATIF"	
CATSSALACTING FAFSA2AFFT FROM OFEDGE LEVELTAF	WALOA' WAL <u>OA</u>
C.T55. CONTRIBUTING MONENT # (+F19-2+ PT-LB)	<u></u>
Q=Q+PH+TAN(OELTA(2))	VALOA
66 CONTINUC	VAL04
S=4. R=1.25	WAL 04
1P7=0.	WAL 04
1P5=QS	WALC4
ST±:.	VALCA VALCA
TF(KH.20.1) W*TTE(11,63)	WAL 04
00 5 I=1,N	HALDA
IF(1,45,42) PB(1)=0.	WAL04
	94104
APT=GAMMA=(1)+(2(1)-5)	WALOA
1×1P5+1F1	¥41,04
	VALO4
IF (KM.E 7. 2. 440. KR.E 3.1. 440. 1. 23. H) 422. CR2-APT	W4L04
IF (KM.EG.G.AND.KE.EG.I.AND. 1.EG.M) 3=A+(Z(K2)-HA) IF (KM.EG.G.AND.KE.EG.I.AND.I.EG.M) 4=4/2-	WALCA
TF (KM.23.0.4ND.K4.27.1.4ND.7.20.M) 0=(-0+50+T(0+2-4.+4+NGH))/(2WAL 04
C11	WALU4
TF(KM_20.0.AND.KR_20_1.AND.1.20.M) 2(M)=2(K2)+0	VALDA

FILES WALL FORTRAM A CONNELL VALOP SUBSET CHS LEVEL 10	
FILE: WALL FORTRAK ACONALL VALCE SUBSET CAS LEVEL IN	
FT(1)1+3+(4P(1)+K4(1))+(APT)+(2(1)+1)	VAL 244
FT(1)=(KP(1)+(FPS+C12)+K4(1)+(1PS+C32))+(2(1)-1)	UAL 0,44
IF(CR2.GE.4) FT(C)=C.	VAL044
IF (T. 12. H. 4ND. C. 2. ST. 4) FT(1) = 1.	UAL 944
[F([.NE.M.A 10.C32.GT.APE) F(1)=0.	UAL044
CT(1)=(Z(I)-3)-2./3-	UAL044
CS(I)=CT(I)-3./4.	WALDAA
A7M{[]==+HA	U <u>11644</u> W11044
IF (KL.2.4.1) AEM(2)=Z(H)-Z(2)	WALC45
CTTSCT(I)+APN(C)	VAL045
IF(KL+50+1) C17±CT(1)/2++4#4(1) CS3=C5(1)+434(1)	HALGAS
f2X=C\$3+f3(2)	WAL 045
PT42CT7+PT(1)	WALC45
NOM=NOH+FTN+FSN	WALC+5
929+(FT(1)+FS(1))+TAN(DELTA(1))	WALDAS
TERNATOLI	WALD45
CHAITE(11,64)Z(1),KP(1),KA(1),GAMMAE(1),CR2,APS,APT,F3(1),FT(1),	HAL045
<u> </u>	WALGAS
AP\$3405-4PT	UALD46
pp 5= pp 4 + 4 + 7	WALG+6
5#2(1) 6 CONTINUE	VAL046
	WAL 046
0±(0+2240) = TAN(0ELTA(4))	WALD46
NG#3#Q#+3+CTT	UAL046
NOH4NOM+9+CIT 63 FOTMAT(T3, 12, 17, 1KP*, T13, 1KA*, T16, 'GAMMA', 723, 720**,	441.046
C T61, FORCEST, TRO, CENTRO DST T99, HONENT ARMS', T118, HOME"TST, /	WALD47
CT31, #RIC* +F42,************************************	WALCA7
64 FOTNAT(1X,F4.1,2FE.2,2F5.0, F7.0,12F10.2)	WALD47
RETURN	HALS47
END	VAL 047
SUBPOUTINE TIETARN.HO.Z.CT.CS.FT.FC.V.H.HA.FULL.PH.EL.H.KK)	UALS47
TIE ROD PULL SUM MUNENTS ABOUT PT. OF PASS. FORCE APPLICATION	WALGA7
	UAL047 UAL047
DIMENSION FICID), FECID), CTCID), CSCID), AFMCID), Z(10)	THALDAT
	WALD48
REAL HOM	WALCAS
H0=Z (M)	
D0 & I=1,5	UAL 648
ARM(I)=HD-Z(I)-CT(M)/2.	HALOA
IF(FT(H).200) APH(I)=H0-Z(I)-CS(H)	HALO48
CTT=CT(1)/2.+ARH(1)	_HAL048
CSF=C5(1)+42H(1)	44L048
	HALDAS
FSM±FS(1)+CSS M0H±M0H+FTH+F€M	VAL049
e continue	140349
1F(PH.E0.1.) 30 TO 65	W4L049
PHOH=PH+(2L+CT(K))	-ALC47
IF(FT(4).53.4.) PM08=P4+(E1+C2(M))	921.049
HOMEMON+PHOM	HAL 949

FILE:	WALL FORTRAM & COPNELL VH/SP SUBSET CHS LEVEL	104
	CONTINUE	UAL 047
	IF(PH_E3.0.) 60,70.66	¥4L749
	PHOMSPH-(5_+CT(2))	441,047
	TECETCH: 29.0.3 PHONEPH+CEL+C14033	U4L049
	MOK=#0*+***	WALDSO
66	CONTINUS	VAL030
	PULLSMON/(HA+CT(M)/2HB)	WALDSO
	IF (FT(4),57 PULLENOM/(HA+GS(N)+AD)	UAL 050
	SATHA	WAL050 WAL050
	V=PULL	WALDSO
	WEITE(11,75) PULL	WAL050
	WRITE(11:10:0)	WALDSO
74	FORMAT(155, TIE ROD PULL # ",F9.0," LB/FT")	¥41,050
	#49NAT(TL:	*)WAL051
I	د الاستروبیدی نوف برویویی مکتر بر بر وی مقترفی و منطقیت محمد نیشن و محمد و موجد و مختر و بروی و مختر می وی در ا این در این م	VAL 751
	RETURN	WALOTI
	SUBPOUTINE DEGNOM(Z.CT.CS.FT.FS.M.HOM.HA.V.C.PH.EL.H.KK)	WAL051
t		¥ÄL051
ž	SUBPOUTINE TO FIND POINT OF ZERG SHEAF AND COMPUT MAXINUM	VAL 051
£	HONENT AT THAT POINT	441051
č		WALOSI
-	DIMENSION Z(10),CT(10),CC(10),FS(10),FT(10),APH(10),C(10)	VAL 051
	PEL K2,K1,104	HALOSI
	40K# .	WALOS2
		VAL052
	S=1.	· WALDSZ
		VAL052
	V#V+FT(1)+F*(1)	HAL052
	IF(PH. 57.0.) 60 TO 57	VAL052
	<u>YFL</u> 2H+ <u>Fl</u> 	VAL 052
	1F(XEL.LT.J.OF.XEL.GT.2(1)) 60 TO ST	VAL 052
	92V+PM 90M=M0H+ <u>PH+(XEL</u> -HA)	VAL052
	CONTINUE	WALD53
¢/	IF(S_LT_HA) 60 TO 41	VAL 053
	IF (G.E.3.2	WAL053
	V=V-F1(1)-F2(1)	UAL053
	Y=Z([)-5	WAL 053
	IF(Y.EQ.S.) V=V+FT(1)+FS(1)	VAL 053
	[F(Y.Ed.).) SO TO 61	WALC53 WALC53
	F1 #F1(])/Y++2	HAL053
	F22F5(1)/Y	
	IF(F2, 50.0 AHD. V. E9.C.) V=V+FT(1)+FS(1)	WAL054
	'[F(F2.20.3AND.V.29.3.) GO TO 81	VAL 054
	1F(F1.57.0AMD.F2.20.C.) GG TO 81	UAL 054
	F3=F2++Z+++F1+V 1F(F3+L7+0+) V=V+F1(1)+F\$(1)	WAL 254
	IF(F3,LT.),) G0 T0 11	WAL 054
	[F(F1.EQ.J.) 8=V/F2	HAL054
	IF(F1.23.0.) GO TO 85	WALOSA
	B=(-F2+S24*(F3))/(2.+F1)	¥41,055
	A=(-#2-5297(#3))/(2.*#1)	VALOS4
	(E(1,97.8) 314	HAL054
âé	CONTINUE	VAL055

ILES WALL FOR TRAN A CORNELL VM/LP SUBSET C	<u>87 LEVEL 194</u>
X=:+0	¥×L05520
YEAR GT. 21*1, 38, 3.LT.(). YEV+FT([]+FC([)	YAL03530
IF (8.67.2(1).94.8.LT.9.) GO TO EL	VAL0 5540
60 TO 33	WAL : 5550
91 S=2(I)	44605560
83_CONTINUE	UAL 0 1570
11=:-1 IF(FT(N). <u>20.7</u> AND.FS(H).27.3.3 X=H4 IF(FT(N).20.0AND.FS(H).20.0.3 B=3.	WALC5567
IF (FT (N) . 10.4 1ND. FS(H) . 27	¥4L35570
1F(FT(4).20.04ND.FS(N).20.0.1 8=0.	JAL 0 5600
H1=4-1 R04=M0H+5+(X-H4)+(F1/3,)+8++3+(F2/2,)+8++2	JAL03510
HO44H04+G+(X-H2)+(F1/3+)+G++G+2-(F2/3+)+G++	VAL 05620
IF(T.57.1) 60 TO 50	WAL0 5637
	UAL05640
4*4(1)=X-2(1) CTT=CT(1)/2+4494(1)	WAL 05630
CSS=CS(1)+ARH(1)	
C351C31.2 4427C2	
FTHECTT+FTCI >	<u></u>
NON-ROM OF THOF SH	UAL05650
67 CONTINUS	VAL 05700 VAL 0571
61 CONTINUE	WAL 0572
SA CONTINUE	WALD1730
40 TTE (11,35) X ,878	WAL 0574
4PTTE(11,1001)	FACE RALUSTO
4#175(11,100) 85 FO-MAT(725, 25A) SHO 3 X = 1, FA. 0, FT 85404 GROUND SU	U41,0576
Chexiana addini	
10 65 FORMATCT19+ *	·)WAL 1578
	WAL2579
PETURN .	WAL2590
SURPOUTINE PORTEMON.PHI.FAC.BET.SZ.PULL.ALPHA.BETA.EI	N.ST.KL.KF. AWALDSEL
	the second se
CAD,21,22,23,40)	WALG583
C SUBTOUTINE TO GENERATE OPERATING AND STRUCTURAL CURVE	S WALDSAA
SUD OUT THE AND	VOCO PILLI WALG <u>386</u>
AND CALCILLA E DESIGN MONENTS, SECTIONS FOR STELL AND	<u> </u>
C TWO CACCOCK & DESTOR CONCURSE CONCURSES	141 0347
C AND TIE ROO LOADS	
C AND TIE ROO LOADS	UAL0387
C AND TIE ROD LOADS C AND TIE ROD LOADS C DOUBLE PRECISION SLOPE, YINT.A(50).8(31).FAD DTHENSION FAC(30,30).88(512).FO(30).T3(30).RP(30)	WAL 0588 UAL 0589 UAL 0580
C AND TIE ROO LOADS C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, YINT, A (SC), B(SC), FAD DTHENSION FAC (30, 30), BET (5, 12), TO (30), TS(30), AP (30) DTHENSION FAC (10), SS(10)	WALDS88 UALD599 UALD590
C AND TIE ROO LOADS C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, YINT, A (SC), B(SC), FAD DTHENSION FAC (30, 30), BET (5, 12), TO (30), TS(30), AP (30) DTHENSION FAC (10), SS(10)	WALDS88 UALD599 UALD590
C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, YINT, A (50), B(51), FAD DIMENSION FAC(30, 30), BET(5, 12), TO(30), TS(30), RP(30) DIMENSION PHI(10), SZ(10) C C	WALDS88 UALD599 UALD590
C AND TIE ROO LOADS C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, YINT, A (SC), B(SC), FAD DTHENSION FAC (30, 30), BET (5, 12), TO (30), TS(30), AP (30) DTHENSION FAC (10), SS(10)	WAL 0588 UAL 0589 UAL 0580
C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, VINT.A(50).8(51).**AD DIMENSION FAC(30.30).8ET(6.12).TO(30).TS(30).RP(30) DIMENSION PHI(10).SZ(10) SIL 40%, MOL.MOZ.MO3.MO C ALLOWABLE STRESS FOR TIE ROO = 25000 PCI C	WALGS88 UALG590 VALG590 WALG591 WALG592 WALC593
C AND TIE ROO LOADS C	WALGS88 UALGS90 WALGS90 WALGS91 WALGS93 WALGS93 VALGS93 WALGS93
C AND TIE ROO LOADS C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, YINT.A(SC).B(SE).*AD DIMENSION FAC(30.30).BET(5.12).TO(30).TS(3C).RP(3C) DIMENSION PHI(10).SZ(10) C SIL 403.401.MO2.MC3.MO C ALLOWABLE STRESS FOR THE ROO * 25000 PET C ALLOWABLE STRESS FOR THE ROO * 25000 PET C SATIE=25000. TMAX=NOM-12./HO-+3	WAL 0383 UAL 0390 UAL 0390 WAL 0391 WAL 0391 WAL 0393 WAL 0393 WAL 0394 WAL 0393 WAL 0394 WAL 0395 WAL 0395 WAL 0394 WAL 0395 WAL 0395 WAL 0395
C AND TIE ROO LOADS C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, YINT,A(SC),B(SC),FAD DIMENSION FAC(30,30,40ET(5,12),TO(30),TS(30),AP(30) OIMENSION PHI(10),SZ(10) REAL 45%, MO1, MO2, MC3, MO C ALLOWABLE STREST FOR TIE ROO = 25000 PCI C ALLOWABLE STREST FOR TIE ROO = 25000 PCI C SATIE=25000. TMAX=MOW-12,/HO-=3 P1=30./RAO	WAL 0383 UAL 0390 UAL 0390 WAL 0391 WAL 0391 WAL 0393
C AND TIE ROO LOAOS C DOUBLE PRECISION SLOPE, VINT.A(50).8(51).**AD DIMENSION FAC(30.30).8ET(6.12).TO(30).TS(30).RP(30) DIMENSION PHI(10).SZ(10) STIL 400.401.M02.M03.M0 C ALLOWABLE STRESS FOR TIE ROO = 25000 PCI C ALLOWABLE STRESS FOR TIE ROO = 25000 PCI C SATIE=25000. TMAXEMON-12./HO==3 P1=30./RAO P2=00./RAO	WALGS88 UALGS90 UALGS90 WALGS91 UALGS93 UALGS93 VALGS93 WALGS95 WALGS95 VALGS95 VALGS95 VALGS95 VALGS95
C AND TIE ROO LOAQS C DOUBLE PRECISION SLOPE, VINT.A(50).8(51).**AD DIMENSION FAC(30.30).8ET(6.12).TO(30).TS(30).AP(30) DIMENSION PHI(10).SZ(10) SEL 403.401.M02.M03.MO C ALLOWAGLE STRESS FOR TIE ROO = 25000 PCI C ALLOWAGLE STRESS FOR TIE ROO = 25000 PCI C SATIE=25000. TMAXEMOM=12./HO==3 P1=30./RAO P2=40./RAO IF(0HI(M).6T.P2) FHI(M)=P2	WALCS88 UAL0529 UAL0591 WAL0591 WAL0591 WAL0593 WAL0594 WAL0595 WAL0596 WAL0596 WAL0560
C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, VINT.A(50).8(51).**AD DIMENSION FAC(30.30).8ET(5.12).TO(30).TS(30).AP(30) DIMENSION PHI(10).SZ(10) G ALLOWABLE STRESS FOR TIE ROO = 25000 PCT C ALLOWABLE STRESS FOR TIE ROO = 25000 PCT C SATTERESSOC. TMAXENOM-12./HO-=3 P1=30./RAO P2=40./RAO IF(0HI(M).\$T.P2) FHI(M)=P2	WALCS88 UALCS90 UALCS91 WALCS91 WALCS92 WALCS93 UALCS93 WALCS93
C AND TIE ROO LOADS C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, YINT,A(SC),B(SC),FAD DIMENSION FAC(30,30,40ET(5,12),TO(30),TS(30),AP(30) DIMENSION PHI(10),SZ(10) TEL 453, MOI, MOZ,MC3,MO C ALLOWABLE SYDEST FOR TIE ROO # 25000 PCI C ALLOWABLE SYDEST FOR TIE ROO # 25000 PCI C SATIE=25000. TMAXENON-12./HO==3 PI=30./RAO P2=40./RAO P2=40./RAO IF(OHI(M).LT.P1) PHI(M)=P2 IF(PHI(M).LT.P1) PHI(M)=P1 IF(SR.E2.5.5.40.KL.TO.C) CALL SENO(FAC.BET,ALPHA.BETA.	HALGS88 HALGS90 HALGS90 HALGS91 HALGS93 HALGS93 HALGS93 HALGS95 HALGS95 HALGS95 HALGS96 HALGS97 HALGS9
C AND TIE ROO LOADS C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, YINT,A(SC),B(SC),FAD DIMENSION FAC(30,30,40ET(5,12),TO(30),TS(30),AP(30) DIMENSION PHI(10),SZ(10) TEL 453, MOI, MOZ,MC3,MO C ALLOWABLE SYDEST FOR TIE ROO # 25000 PCI C ALLOWABLE SYDEST FOR TIE ROO # 25000 PCI C SATIE=25000. TMAXENON-12./HO==3 PI=30./RAO P2=40./RAO P2=40./RAO IF(OHI(M).LT.P1) PHI(M)=P2 IF(PHI(M).LT.P1) PHI(M)=P1 IF(SR.E2.5.5.40.KL.TO.C) CALL SENO(FAC.BET,ALPHA.BETA.	HALGS88 HALGS90 HALGS90 HALGS91 HALGS93 HALGS93 HALGS93 HALGS95 HALGS95 HALGS95 HALGS96 HALGS97 HALGS9
C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, VINT.A(50).B(51).FAD DIMENSION FAC(30.30).BET(5.12).TO(30).TS(30).AP(30) DIMENSION PHI(10).SZ(10) C ALLOWABLE STRESS FOR TIE ROO = 25000 PC1 C ALLOWABLE STRESS FOR TIE ROO = 25000 PC1 C SATIE=25000. TMAXENGUE12./HO-=3 PI=30./PAD P2=00./PAD IF(0HI(M).GT.P2) CHI(M)=P2 IF(PHI(M).GT.P2) CHI(M)=P2 IF(PHI(M).GT.P2) CHI(M)=P2 IF(PHI(M).GT.P2) CHI(M)=P1 IF(R.E2.3.4ND.KL.E0.C) CALL SANO(FAC.BET.ALPHA.BETA. C.M.T0.F1.92.FC) IF(KR.E0.1.AND.KL.E0.C) CALL CLAY(FAC.BET.ALPHA.BETA.	WALGS88 WALGS90 WALGS91 WALGS92 WALGS93
C AND TIE ROO LOADS C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, YINT.A(50).B(51).FAD DIMENSION FAC(30.30).BET(5.12).TO(30).TS(30).AP(30) DIMENSION PHI(10).SZ(10) C SATIE=25000. C ALLOWABLE STRESS FOR TIE ROO = 25000 PCI C SATIE=25000. THAXENGH12./HO3 PIESU./PAD IF(0HI(M).ST.P2) EHI(M)=P2 IF(0HI(M).ST.P2) EHI(M)=P2 IF(0HI(M).ST.P2) EHI(M)=P2 IF(0HI(M).ST.P2) EHI(M)=P2 IF(0HI(M).ST.P2) EHI(M)=P2 IF(0HI(M).ST.P2) EHI(M)=P2 IF(0HI(M).ST.P2) EHI(M)=P2 IF(CHI(M).ST.P2) EHI(M)=P2 IF(CHI	WALGS88 WALGS90 WALGS91 WALGS92 WALGS93
C AND TIE ROO LOADS C AND TIE ROO LOADS C DOUBLE PRECISION SLOPE, YINT.A(SC).8(SE).*AD DIMENSION FAC(30,30).8ET(5,12).TO(30).TS(3C).RP(3C) OIMENSION PHI(10).SZ(10) RESUL 40%.401.M02.MC3.MO C ALLOWABLE STRESS FOR THE ROO = 25000 PCI C ALLOWABLE STRESS FOR THE ROO = 25000 PCI C SATIE=25000. TMAXENON-12./HO-=3 PIESU./RAO P2=40./RAO P2=40./RAO IF(0H1(M).ST.P2) FHI(M)=P2 IF(0H1(M).ST.P2) FHI(M)=P2 IF(0H1(M).ST.P2) FHI(M)=P1 IF(R.E2.5.5.4/J.KL.FO.C) CALL SENO(FAC.BET.ALPHA.BETA. C.M.TO.=1.P2.FC) IF(KR.E2.5.5.4/J.KL.E2.5) CALL CLAY(F2C.BET.ALPHA.BETA.	WALGS88 WALGS90 WALGS91 WALGS92 WALGS93

•

C 02) ULL37. ULL37. TF (KL.25.1) FCF ULL37. ULL37. TF (KL.25.1) IF (KL.25.1) IF (KL.25.1) ULL37. ULL37. TF (KL.25.1) IF (KL.25.1) IF (KL.25.1) ULL37. ULL37. TF (KL.25.1) IF (KL.25.1) IF (KL.25.1) ULL37. ULL37. TF (KL.25.2) IF (KL.25.2) IF (KL.25.2) ULL37. ULL37. TF (KL.25.2) IF (KL.25.2) IF (KL.25.2) UL	LES WALL FORTRAN A CORNELL WHASP SUBSET CHS_LEVEL	
IF (RL, 25,1) F(RT, 25,1) ULL17, 30 UAL (25,1) IF (7), 25,1) F(RT, 25,1) F(RT, 25,1) F(RT, 25,1) UAL (25,1) IF (7), 25,2) Garage (25, 25, 25, 25, 25, 25, 25, 25, 25, 25,	مى يې يې د مېرې د د د مېرې د د د مېرې د	VAL 0 60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ATCOCO.
0 3 F 1121.3	IFERLAGELI FULLEVA	R#F0001
IM=0 V41001 IF (14, 2, 1) 2423230 V44061 IF (14, 2, 1) 23, 2230 V44061 IF (14, 2, 3) 23, 2230 V44061 IF (14, 2, 3) 23, 21, 21, 21, 21 V44061 IF (14, 2, 3) 25, 1, 2, 2, 2 V44061 IF (14, 2, 3) 25, 1, 2, 2, 2 V44061 IF (14, 2, 3) 25, 1, 2, 2, 2 V44061 IF (14, 2, 3) 25, 1, 2, 2, 2 V44061 IF (14, 2, 3) 25, 1, 2, 2, 2 V44061 IF (14, 2, 3) 25, 1, 2, 2, 2 V44061 IF (14, 2, 3) 25, 1, 2, 2, 2 V44061 IF (14, 2, 3) 25, 1, 2, 2, 2 V44061 IF (14, 2, 3) 25, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	IF(RL::::::::::::::::::::::::::::::::::::	
if (11, 12, 12, 12, 12, 12, 12, 12, 12, 12,	1997 7 1 (#479)	
IF (11, 20, 2) 343330 JAL003 IF (11, 20, 2) 343330 JAL003 IF (11, 20, 2) 35, 12, 20, 27 JAL003 IF (11, 20, 2) 12, 12, 20, 20, 27 JAL003 IF (11, 20, 2) 12, 12, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	TEXTNUE 7.13 53=25000.	
IF (TM = 30, 31, 31 = 20, 00. WAL 06. IF (TM, 20, 31, 21, 21, 21, 21, 22, 21, 21, 21, 22, 21, 21	TRITH_TG_2) GAR33501	
If (1N.27.1) 23117 WALGA If (1N.27.2) 257 WALGA If (1N.27.2) 25	TE(IN_IG.3) SA#2040+	
IF(1%:57.2) E3.*17.**7 Wit 54.3 IF(1%:57.2) E3.*17.**7 Wit 54.3 IF(1%:57.2) E1.*17.*** Wit 54.3 IF(1%:57.2) E1.**** Wit 54.3 IF(1%:57.2) WITE(11,2) Wit 54.3 IF(1%:57.2) WITE(11,3) Wit 64.3 IF(1%:57.2) WITE(11,3) Wit 64.3 IF(1%:57.2) WITE(11,3) Wit 64.3 IF(1%:57.2) WITE(11,4) Wite(24.3) IF(1%:57.2) WITE(21,4) Wite(24.3) IF(1%:57.2) Wite(24.3) Wite(24.3) <	"""" [#(IN.29.1) 2#3.+10+++7	
If (IA:CTA.3) E=1.3-124 MAL 261 9 CONTINUE MAL 261 IM=1M-1 MAL 261 IM=1M-1 MAL 261 IM=1M-1 MAL 261 IF (IM:CA:2) WFTE(11,3) MAL 262 IF (IM:CA:2) WFTE(11,5) MAL 262 IF (IM:CA:2) WFTE(11,6) MAL 262 IF (IM:CA:2,1) WFTE(11,6) MAL 262 IF (IM:CA:2,1,4NO.KL:CA:1) GO TO 18 MAL 262 IF (IM:CA:2,1,4NO.KL:CA:1) GO TO 18 MAL 262 DO 72 KAI:KX MAL 253 MAL 254 MAL 254 IF (IM:CA:2,1,4NO.KL:CA:1) RHOP(-1,1,4NO.IM:CO:1) TO(K) = TITT-PHO+-SLOTT MAL 263 IF (IM:CA:2,1,1) RHOP(-2,25-PHO)75 MAL 264 IF (IM:CA:2,1,1) RHOP(-2,25-PHO)75 MAL 264 IF (IM:CA:2,1,1) RHOP(-2,25-C(1,/3) MAL 264 RH 3512P=C1-C357(CO:1)/C2-F1133 WAL 264 RH 10	1 TEXT 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
99 CONFINUE MALGA IMPN-1 MALGA MALGA IP(IN-50.1) WITE(11,2) MALGA IP(IN-50.1) WITE(11,4) MALGA IP(IN-50.1) MITE(11,4) MALGA IP(IN-50.1) MITE(11,4) MALGA IP(IN-50.1) MITE(11,4) MALGA IP(IN-50.1) MITE(11,4) MALGA IP(IN-50.1) MITE(1,4) MALGA IP(IN-50.2) MITE(1,4) MALGA <	T (10,59,3) 5=1,3+12,+++	
INTERNATION MALGAN IF (TN+C0.2) WF (TE(11,3) WALGAN DO 72 Kal+KX WALGAN PHCaK WALGAN IF (KX.C0.1) KM=1 WALGAN VALCAN WALGAN </td <td>55 CONTINUE</td> <td>UAL061</td>	55 CONTINUE	UAL061
TP (TN - 20.3) W TT (11.3) WAL 042 TF (TN - 20.3) W TT (11.3) WAL 042 TF (TN - 20.3) W TT (11.4) WAL 042 TF (TN - 20.3) W TT (11.4) WAL 052 TF (TN - 20.3) W TT (11.4) WAL 052 TF (TN - 20.3) W TT (11.4) WAL 052 TF (TN - 20.3) W TT (11.4) WAL 052 TF (TN - 20.3) W TT (11.4) WAL 052 TF (TN - 20.3) W TT (11.4) WAL 052 TF (TN - 20.3) W TT (11.4) WAL 052 TF (TN - 20.3) W TT (11.4) WAL 052 DO 72 R31 KX WAL 053 PHOCK WAL 053 TF (TN - 20.3) M TO (10.7) 1.4 MO - 13.5 WAL 053 IF (TN - 20.3) M TO (1.4 MO - 13.7) WAL 053 Re (X) = MO WAL 054 RM 010.5 - (20.3) M TO (1.4 MO - 13.7) WAL 054 WAL 02.5 MO WAL 054 RM 10.5 MO - 20 - (1.4 /3.7) WAL 054 PT (11.20.8) M TO (1.4) M TO (1.4) WAL 054 PT (11.20.8) M TO (1.4) WAL 054 TF (11.20.8) M TO (1.4)		MAL 061
IF (IN_22.3.3) URITE(11.93) UAL(02) IF (IN_22.3.2) UP:TE(11.63) UAL(02) IF (KK.22.3) UP:TE(11.63) UAL(02) IF (KK.22.4.1AND.KL.22.1) GO TO 18 UAL(02) IF (KL.27.5) KX=13 UAL(02) DO 72 K=1,KX UAL(02) IF (KL.27.5) KX=26 UAL(02) DO 72 K=1,KX UAL(02) IF (KL.27.5) KX=26 UAL(02) DO 72 K=1,KX UAL(02) IF (KL.27.5) KX=26 UAL(02) PMC=X UAL(02) IF (KL.27.5) HARDSCALE - 23 + FMO) - 73 UAL(02) IF (KX.20.25) MARCALE - 23 + FMO) - 73 UAL(02) PC (X) = PMO UAL(02) UAL(02) PC (X) = PMO UAL(02) UAL(02) PC (X) = PC (X, 20) PC (X) = 70 (X, 20) UAL(02) IF (IN + C0.2) PC (X) = 70 (X - 70 (X - 70)) UAL(02) UAL(02) IF (IN + C0.2) PC (X = C2) + C(2 / 3 + 2) UAL(02) UAL(02) IF (IN + C0.2) PC (X = C2) + C(2 / 3 + 2) UAL(02) UAL(02) IF (IN + C0.2) PC (X = C2) + C(2 / 3 + 2) UAL(02) UAL(02) IF (IN + C0.2) PC (X = C2) + C(2 / 3 + 2) UAL(02) UAL(02)	IP(IN.20.1) UPITE(11)27	WAL 062
IF(IR.20.1) #FIC(I.4) UALDA IF(IR.20.1) #FIC(I.4) UALDA IF(R.20.1) KX=11 UALDA IF(R.20.1) KX=12 UALDA D0 72 K=1.KX UALDA PHC=K UALDA IF(R.20.1) KX=26 UALDA D0 72 K=1.KX UALDA PHC=K UALDA IF(R.20.1) RMD=(1.20.1.AMD.IM.E0.1) TU(K)=TINT-PHO-SLOTT UALDA IF(R.20.1) RMD=(1.20.1) RMD=(1.20.1) RMD=(1	TF(IN_EG.Z) WTTE(LL+2)	<u> </u>
IF(IR.20.1) #FIC(I.4) UALDA IF(IR.20.1) #FIC(I.4) UALDA IF(R.20.1) KX=11 UALDA IF(R.20.1) KX=12 UALDA D0 72 K=1.KX UALDA PHC=K UALDA IF(R.20.1) KX=26 UALDA D0 72 K=1.KX UALDA PHC=K UALDA IF(R.20.1) RMD=(1.20.1.AMD.IM.E0.1) TU(K)=TINT-PHO-SLOTT UALDA IF(R.20.1) RMD=(1.20.1) RMD=(1.20.1) RMD=(1	[F[]N_5]33 WRITE(114)	WAL 162
IF (KF, EG.1. AND, KL.EG.1) ED TO 18 WAL 282 IF (KL.EG.1) KX=26 WAL 262 DO 72 K#1,KX WAL 262 PHC:K WAL 263 IF (KX, EG.1) KX=26 WAL 264 PHC:K WAL 264 IF (KX, EG.1) RMD: (-, 25+RHQ)-, 75 WAL 264 IF (KX, EG.1) RMD: (-, 25+RHQ)-, 75 WAL 264 RMD: (K) = PHQ WAL 264 RMD: (K) = PQ WAL 265 RMD: (K) = PQ WAL 264 RMD: (K) = PQ WAL 265 RMD: (K) = PQ WAL 264 RMD: (K) = PQ WAL 265 RMD: (K) = PQ WAL 264 RMD: (K)	「「「「「「」」」「「」」」「「」」」」「「」」」」「「」」」	¥4L062
IF (KL. 27.1) KX=31 VAL 04 IF (KL. 27.3) KX=26 VAL 04 D0 72 K=1.KX VAL 04 IF (KX.27.1) AMD=(23+AMD)73 VAL 04 Re (X) = #MO VAL 04 AMD 10. + (24.0) VAL 04 M= (M0 = MO = 2) + (1.73+) VAL 04 PC 12(39 VAL 04 IF (IN - 20.2) PS 1= 2.1 - (30(C 0.)/(3250()) IF (IN - 20.2) VAL 04 IF (IN - 20.2) PS 1= 2.1 - (30(C 0.)/(3250()) IF (IN - 20.2) PS 1 = 2.1 - (30(C 0.)/(3250()) IF (IN - 20.2) PS 1 = 2.1 - (30(C 0.)/(3250()) IF (IN - 20.2) PS 1 = 2.1 - (30(C 0.)/(3250()) IF (IN - 20.2) PS 1 = 2.1 - (30(C 0.)/(3250()) IF (IN - 20.2) VAL 05	TEAR 50.1.400.81.59.17 60 TO 18	
Tr (xt, 25.5) Kx = 26 yAL02 DD 72 Kal,KX WaL04 PMC=K UAL05 Tr (xt, 27.1.4M0.TM: 27.1.4M0.TM: 20.1) TO(K) = TIT T PHO-SLOTT UAL05 Tr (xt, 27.1.1) RMTE(25+RMO)75 UAL05 TF (xt, 27.1.1) RMTE(25+RMO)75 UAL05 TF (xt, 27.1.1) RMTE(25+RMO)75 UAL05 Re(x) = PHO Val.26 RH 7=10(RMO) Val.26 MH 7=10(RMO) Val.26 PT 11(TH-0.2) PST = PST - (5000 C 0.7 (38500.1) MAL06 UAL06 Ff (TH-0.2) PST = PST - (5000 C 0.7 (38500.1) Tf (TH-0.2) PST = PST - (5000 C 0.7 (38500.1) Tf (TH-0.2) PST = PST - (5000 C 0.7 (38500.1) Tf (TM-0.2) PST = ST - (2.7 (3.1))	TEAN - CO. 13 XX=11	WAL 162
D0 72 K#1+KK WALDA PMC2K WALDA TF (4R, 1, 1, 1, 1, 20, 1, 1, 20, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 20, 1, 1, 1, 1, 20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	TT/TI	
PMC3K	00 72 K#1 KX	
TF (43. [].1.4N0.FM.C0.1.4M9.44.0.1] TUARDELL MOUNDELL WALDE IF (KX.20.11) RMD=(25.FRMO)75 WALDE RP(X)=0MO WALDE RMD=10(RHO) WALDE WALDE WALDE RMD=10(RHO) WALDE WALDE WALDE RMD=10(RHO) WALDE RMD=10(RHO) WALDE WALDE WALDE PSTS:.JP WALDE IF (IN.SC.2) PSTS2SAVE (2./3.) YALDE WALDE IF (IN.SC.2) PSTS2SAVE (2./3.) YALDE WALDE IF (IN.SC.2) PSTS2SAVE (2./3.) YALDE YALDE IF (IN.SC.2) YALDE IF (IN.SC.2) YALDE IF (IN.SC.2) YALDE IF (IN.SC.2) <td></td> <td></td>		
IF (KX.EG.25) (HC) = (1./3.) UAL(25) IF (KX.EG.25) (HC) = (1./3.) WAL(25) RH/D=10.**(RH0) WAL(25) PCTAC.39 WAL(26) PCTAC.31 PCTAC.32 PCTAC.32 PCTAC.47(F**(2./3.)) IF (1M.EG.33 PCTAC.47(F**(2./3.)) IF (1M.FG.42) PCTAC.47(F**(2./3.)) <td< td=""><td>TE (#9.7.0.1.1ND.711.50.1.AND.14.50.1) TOLKIET.NIVPHOVAL.</td><td></td></td<>	TE (#9.7.0.1.1ND.711.50.1.AND.14.50.1) TOLKIET.NIVPHOVAL.	
IF (XX.20.26) PH3x(-2H3.1)=1.7 WAL26 RP(X)=2HO WAL26 RP(X)=2HO WAL26 PSI=10.**(IHO) WAL26 PSI=2.39 WAL26 IF (IM.20.2) PSI=PSI*(50000.)/(38500.) WAL26 IF (IM.20.2) PSI=PSI*(50000.)/(38500.) WAL26 IF (IM.20.2) PSI=PSI*(50000.)/(38500.) WAL26 IF (IM.20.2) PSI=PSI*(50000.)/(38500.) WAL26 IF (IM.20.2) PSI=S1*(50000.)/(38500.) WAL26 IF (IM.20.2) PSI=S1*(500000.)/(38500.) WAL26 IF (IM.20.2) PSI=S1*(500000.) WAL26 IF (IM.3000000000000000000000000000000000000	16289_F3_111_KAVEX427559477474	VAL 063
RP (K) = #HO Val 26 RH 0=10.**(RHO) Val 26 WR = (HO = MO = 2)**(1./3.) Val 26 P (IV.20.2) PSI=PSI - (SOCCO.)/(3PSC1.) Val 26 IF (IV.20.2) PSI=2.*CA/(E**(2./3.)) Val 26 TC (K) #PSI/MR Val 26 Val 26 TC (K) #PSI/MR Val 26 Val 26 TF (IN.3E, 1.0*.IH.NE.1) GQ TO 7 Val 26 IF (IN.3E, 1.0*.IH.NE.1) GQ TO 7 Val 26 IF (KX.20.25) J=22-1* Val 26 Val 26 IF (KX.20.11) J=TI Val 26 Val 26 IF (KX.20.25.ANO.K.1E.5) TO(K) = TO(J) Val 26 IF (KX.20.25.ANO.K.1E.5) TO(K) = TO(L)	IF(KX.E0.26) 9H3*(H3+.1)-3.7	WAL 343
HR = (H0-PH0+-2)+-(1./3.) UAL06 PS[1::] J9 UAL06 IF (IN.E0.2) PS[=PS[-(50(C0.)/(3PS(1.)) UAL06 IF (IN.E0.2) PS[=S4-SZ(I)/(E+C2./3.)) UAL06 IP (IN.E0.2) PS[=S4-SZ(I)/(E+C1)++(2./3.)) WAL06 TC (K) 2PS[/HR WAL06 TF (IN.NE_1.0*.IM.NE.1) GQ TO 7 WAL06 OO 71 [1=1,KX WAL06 IF (KX.E0.25)/HEJ2-I* WAL06 IF (KX.E0.25)/HEJ2-I* WAL06 IF (KX.E0.11)/JE3-II WAL06 IF (KX.E0.11)/JE3-II WAL06 IF (KX.E0.11)/SE (I) WAL06 IF (KX.E0.11.AH0.K.GT.5) TO(K) #TO(U) WAL06 IF (KX.E0.26.AM0.K.LE.5) TO(K) #TO(U) WAL06 IF (KX.E0.26.AM0.K.LE.5) TO(K) #TO(U) WAL06 IF (KX.E0.211.AH0.K.LE.3) TO(K) #TO(U) WAL06 IF (KX.E0.211.AH0.K.LE.3) TO(K) #TO(U) WAL06 IF (TO(1).LT.TS(1)) TAU#TMAX WAL06 IF (TO(1).LT.TS(1)) TAU#TMAX WAL06 IF (TO(1).LT.TS(1)) TO 18 WAL06 <td></td> <td>WALC63</td>		WALC63
PTI1::.J9 VALUA: IF (IN.EQ.3) PSI=PSI-(30000,)/(30500,) VALUA: IF (IN.EQ.3) PSI=S2.*CA/(E**(2./3.)) VALUA: IF (IN.EQ.3) PSI=S2.*CA/(E**(2./3.)) VALUA: IF (IN.EQ.2) PSI=S2.*SZ(I)/(E*EI)**(2./3.) VALUA: TC(K) #PSI/MR VALUA: TC(K) #PSI/MR VALUA: Y2 CONTINUE VALUA: Y4.00 VALUA: Y4.01 VALUA: Y4.02 VALUA: Y4.03 VALUA: Y4.04 VALUA: Y4.05 VALUA: Y4.06 VALUA: Y4.07 VALUA: Y4.08 VALUA: Y4.09 VALUA: <	RH0=10, ++ (RH0)	WAL 063
IF (IN.EQ.2) #SI2#SI2.*(SO(CC.)/(3#SC.)) UALOG IF (IN.EQ.3) #SI32.*(SA/(E*E1)**(2./3.)) WALDA IF (IN.EQ.2) #SI32.*(SA/(E*E1)**(2./3.)) WALDA IF (IN.EQ.2) #SI32.*(SA/(E*E1)**(2./3.)) WALDA T(IN)##SI/MR WALDA YALDA WALDA T(IN)##SI/MR WALDA YALDA W		VAL 063
IF (IN.EG.3) 25I32.*CA/(E*(2./3./)) WALDA IF (IN.EG.2) PCI=S4*SZ(I)/(E*EI)**(2./3.)) WALDA TC (K) # SI/MR WALDA 72 CONTINUE WALDA IF (IN.NIL.1.0*.IM_NT.1) GQ TO 7 YALDA WALDA 00 71 I=1,KX YALDA WALDA 1F (XX.EG.25) J=22-I* WALDA YALDA WALDA 1F (XX.EG.11) X#J+3 WALDA UALDA WALDA 1F (XX.EG.21) X#J+3 WALDA UALDA WALDA 1F (XX.EG.21) X#J+3 WALDA UALDA WALDA IF (XX.EG.21) X#J+3 WALDA UALDA WALDA IF (XX.EG.21) X#J+3 WALDA UALDA WALDA IF (XX.EG.21) AND.K.LE.S) TO (X) #TO (J) IF (XX.EG.21) AND.K.LE.S) TO (X) #TO (J) YALDA WALDA I		VAL063
72 CONTINUE UALOS IF (IN-NE.1.0*.IM_NE.1) GO TO 7 VALOG 00 71 II=1,KX VALOG IF (XX.EG.25)XEJ+5 VALOG IF (XX.EG.21)XEJ+3 VALOG L=X+1 VALOG IF (XX.EG.2)S AND.K.GT.S) TO(K)=TO(J) VALOG IF (XX.EG.11.AND.K.GT.S) TO(K)=TO(J) VALOG IF (XX.EG.11.AND.K.LE.S) TO(X)=TO(L) VALOG IF (XX.EG.11.AND.K.LE.S) TO(X)=TO(L) VALOG IF (XX.EG.11.AND.K.LE.S) TO(X)=TO(L) VALOG IF (TO(1).LT.TS(1)) TAU=TMAX VALOG IF (TO(1).LT.TS(1)) FC=1.0 VALOG IF (TO(1).LT.TS(1)) TO TO 18 VALOG	$\{ x_{1}, y_{2}, y_{3}, y_{3}$	<u></u>
72 CONTINUE UALOS IF (IN-NE.1.0*.IM_NE.1) GO TO 7 VALOG 00 71 II=1,KX VALOG IF (XX.EG.25)XEJ+5 VALOG IF (XX.EG.21)XEJ+3 VALOG L=X+1 VALOG IF (XX.EG.2)S AND.K.GT.S) TO(K)=TO(J) VALOG IF (XX.EG.11.AND.K.GT.S) TO(K)=TO(J) VALOG IF (XX.EG.11.AND.K.LE.S) TO(X)=TO(L) VALOG IF (XX.EG.11.AND.K.LE.S) TO(X)=TO(L) VALOG IF (XX.EG.11.AND.K.LE.S) TO(X)=TO(L) VALOG IF (TO(1).LT.TS(1)) TAU=TMAX VALOG IF (TO(1).LT.TS(1)) FC=1.0 VALOG IF (TO(1).LT.TS(1)) TO TO 18 VALOG	TH (TH CC. 2) BTT=S4+SZ(1)/(Z+E1)++(Z+/3+)	
72 CONTINUE UALOS IF (IN-NE.1.0*.IM_NE.1) GO TO 7 VALOG 00 71 II=1,KX VALOG IF (XX.EG.25)XEJ+5 VALOG IF (XX.EG.21)XEJ+3 VALOG L=X+1 VALOG IF (XX.EG.2)S AND.K.GT.S) TO(K)=TO(J) VALOG IF (XX.EG.11.AND.K.GT.S) TO(K)=TO(J) VALOG IF (XX.EG.11.AND.K.LE.S) TO(X)=TO(L) VALOG IF (XX.EG.11.AND.K.LE.S) TO(X)=TO(L) VALOG IF (XX.EG.11.AND.K.LE.S) TO(X)=TO(L) VALOG IF (TO(1).LT.TS(1)) TAU=TMAX VALOG IF (TO(1).LT.TS(1)) FC=1.0 VALOG IF (TO(1).LT.TS(1)) TO TO 18 VALOG		
IF (IN.NE.1.0*.IH_NE.1) GQ TO.7 WALOG OO 71 II=1,KX WALOG IF (XX.EG.25)J=22-I* WALOG IF (XX.EG.11)J=9-II WALOG IF (XX.EG.11)K=J+3 WALOG L=X+1 WALOG IF (XX.EG.11)K=J+3 WALOG IF (XX.EG.11.ANO.K.GT.3) TO(K)=TO(J) WALOG IF (XX.EG.11.ANO.K.LE.S) TO(K)=TO(J) WALOG IF (XX.EG.11.ANO.K.LE.3) TO(X)=TO(L) WALOG IF (TO(1).LT.TS(1)) TAU=TMAX WALOG IF (TO(1).LT.TS(1)) TO TO 18 WALOG UF (TO(1).LT.TS(1)) TO TO 18 WALOG UF (TO(1).LT.TS(1)) TO TO 18 WALOG	TO CONTENT	
00 71 11=1,KX W4L06 1F (KX.EG.25)KEJ+5 W4L06 1F (KX.EG.11)XEJ+1 W4L06 1F (KX.EG.11)KEJ+3 W4L06 1F (KX.EG.11)KEJ+3 W4L06 1F (KX.EG.11)KEJ+3 W4L06 1F (KX.EG.11)KEJ+3 W4L06 1F (KX.EG.25)KEJ+3 W4L06 1F (KX.EG.3)TO(K)ETO(J) W4L06 1F (KX.EG.11)KEJ-3)TO(K)ETO(J) W4L06 1F (KX.EG.25)ANO.K.LE.S)TO(K)ETO(J) W4L06 1F (KX.EG.21)ANO.K.LE.S)TO(K)ETO(J) W4L06 1F (KX.EG.21)ANO.K.LE.S)TO(K)ETO(L) W4L06 1F (KX.EG.2)1ANO.K.LE.S)TO(K)ETO(L) W4L06 71 CONTINUE W4L06 1F (TO(1).LT.TS(1))TAUETWAX W4L06 1F (TO(1).LT.TS(1))FC=1.0 W4L06 1F (TO(1).LT.TS(1))TO TO 18 W4L06 0C 73 (TI.KX W4L06	IF(IN.NE.1.0*.IH.NE.1) GQ TO 7	
IF (KX.EG.25) J=22-I* WALOG IF (KX.EG.25) K=J+5 WALOG IF (KX.EG.11) J=9-II WALOG IF (KX.EG.11) J=9-II WALOG IF (KX.EG.11) J=9-II WALOG IF (KX.EG.11) K=J+3 WALOG IF (KX.EG.25.AMO.K.GT.5) YO(K) = TO(J) YALOG WALOG IF (KX.EG.25.AMO.K.GT.5) YO(K) = TO(J) YALOG WALOG IF (KX.EG.25.AMO.K.LT.5) YO(K) = TO(J) YALOG WALOG IF (KX.EG.211.ANO.K.LT.5) YO(K) = TO(J) YALOG WALOG IF (KX.EG.211.ANO.K.LT.5) YO(K) = TO(L) YALOG WALOG IF (TO(1).LT.TS(1)) YAU=TMAX YALOG WALOG IF (TO(1).LT.TS(1)) YO TO 13 WALOG WALOG OC 73 :=1.KX WALOG	00 71 [[=].**	
IF (XX.= 0.25)K=J+5 UAL06 IF (KX.= 0.11)J=9-II UAL06 IF (KX.= 0.11)K=J+3 UAL06 IF (KX.= 0.25.AM0.K.GT.=5) TO(K)=TO(J) UAL06 IF (KX.= 0.25.AM0.K.LT.=5) TO(K)=TO(J) UAL06 IF (KX.= 0.25.AM0.K.LT.=5) TO(K)=TO(L) UAL06 IF (TO(1).LT.TS(1)) TAU=TMAX UAL06 IF (TO(1).LT.TS(1)) TO TO 18 UAL06 OC 73 I=1.KX UAL06 UF (TO(1).LT.TS(1)) TO TO 18 UAL06	IF (XX.E1.25) J=22-I*	WALCO
IF (KX.20.11)J#3-11 UALD6 IF (KX.20.11)K#J+3 UALD6 L=X+1 WALD6 IF (KX.20.25.AND.K.GT.5) TO(K)#TO(J) WALD6 IF (KX.20.25.AND.K.GT.5) TO(K)#TO(J) WALD6 IF (KX.20.11.AND.K.GT.5) TO(K)#TO(L) WALD6 IF (KX.20.11.AND.K.LE.3) TO(K)#TO(L) WALD6 71 CONTINUE WALD6 72 CONTINUE WALD6 IF (TO(1).LT.TS(1)) TAU#TMAX WALD6 IF (TO(1).LT.TS(1)) FC=1.0 WALD6 IF (TO(1).LT.TS(1)) TO 18 WALD6 VALD6 WALD6		
IF (KX.SG.11)K#J+3 UALOG L=K+1 UALOG IF (KX.EG.25.AND.K.GT.5) TO(K) = TO(J) UALOG IF (KX.EO.25.AND.K.GT.5) TO(K) = TO(J) UALOG IF (KX.EO.25.AND.K.LE.5) TO(K) = TO(J) UALOG IF (KX.EO.21.AND.K.LE.5) TO(K) = TO(L) UALOG IF (TO(1).LT.TS(1)) TAU=TWAX UALOG IF (TO(1).LT.TS(1)) TAU=TWAX UALOG IF (TO(1).LT.TS(1)) FC=1.0 UALOG IF (TO(1).LT.TS(1)) TO 18 UALOG UF (TO(1).LT.TS(1)) TO 18 UALOG	IF (KX.20.11) J=9- II	VAL 36
IF (Kx.EC) GG TO 7 YALDG 1F (KX.EC).25.AND.K.GT.S) TO (K) #TO (J) YALDG IF (KX.EC).11.AND.K.GT.S) TO (K) #TO (J) YALDG IF (KX.EC).11.AND.K.LE.S) TO (K) #TO (L) YALDG IF (TO (1).LT.TS (1)) TAU#TMAX YALDG IF (TO (1).LT.TS (1)) FC=1.0 YALDG IF (TO (1).LT.TS (1)) TO 18 YALDG DC 73 I=1.KX YALDG	IF (KX+EG+11)K#J+3	MALOS
IF (KX.E0.25.AND.K.GT.3) TO(K)#TO(J) WALDE IF (KX.E0.11.AND.K.GT.3) TO(K)#TO(L) WALDE IF (KX.E0.11.AND.K.LE.3) TO(K)#TO(L) WALDE TF (KX.E0.11.AND.K.LE.3) TO(K)#TO(L) WALDE 71 CONTINUE WALDE 72 CONTINUE WALDE 1F (TO(1).LT.TS(1)) TAU#TMAX WALDE 1F (TO(1).LT.TS(1)) FC=1.0 WALDE 0C 73 T=1.KX WALDE	1=4+1	SAL 06
IF(KX.20.25.ANO.K.LE.5) TO(K) #TO(L) VALOS IF(KX.20.11.ANO.K.LE.3) TO(K) #TO(L) VALOS 71 CONTINUE VALOS VALOS IF(TO(1).LT.TS(1)) TAU#TMAX VALOS IF(TO(1).LT.TS(1)) TAU#TMAX VALOS IF(TO(1).LT.TS(1)) FC=1.0 VALOS IF(TO(1).LT.TS(1)) FC=1.0 VALOS IF(TO(1).LT.TS(1)) FC=1.0 VALOS VALOS VALOS VALOS		WAL D6
IF(KX.20.25.ANO.K.LE.5) TO(K) #TO(L) VALOS IF(KX.20.11.ANO.K.LE.3) TO(K) #TO(L) VALOS 71 CONTINUE VALOS VALOS IF(TO(1).LT.TS(1)) TAU#TMAX VALOS IF(TO(1).LT.TS(1)) TAU#TMAX VALOS IF(TO(1).LT.TS(1)) FC=1.0 VALOS IF(TO(1).LT.TS(1)) FC=1.0 VALOS IF(TO(1).LT.TS(1)) FC=1.0 VALOS VALOS VALOS VALOS	IF (KX .ED. 23 . ANU. K . 67 . 57 . 59 . 19(K) = TO(J)	WALD6
IF (KX:20:20:20:20:20:20:20:20:20:20:20:20:20:	***** 70.35.180.K.17.51 TULKIZIULLI	WAL 06
71 CONTINUE WAL06 7 CONTINUE WAL06 IF(TO(1).LT.TS(1)) TAU=TMAX WAL06 IF(TO(1).LT.TS(1)) FC=1.0 WAL06 IF(TO(1).LT.TS(1)) FC=1.0 WAL06 IF(TO(1).LT.TS(1)) TO 18 WAL06 DC 73 I=1.KX WAL06	1 (KA-14-23-AND-K-LE-3) TO(K)=TO(L)	ANC D2.
7 CONTINUE IF(TO(1).LT.TS(1)) TAU=TMAX IF(TO(1).LT.TS(1)) FC=1.0 IF(TO(1).LT.TS(1)) FC=1.0 IF(TO(1).LT.TS(1)) FC=1.0 WALDG DC 73 :=1.KX WALCG		
IF(TO(1).LT.TS(1)) TAUETWAX JALOG IF(TO(1).LT.TS(1)) FC=1.0 WALDG IF(TO(1).LT.TS(1)) 70 TO 13 WALCG DC 73 J=1.KX WALCG		
IF(TO(1)+LT.TS(1)) FC=1.0 IF(TO(1)+LT.TS(1)) FC=1.0 WALDG DC 73 J=1.KX WALDG WALDG	TETTILIALTATS(1)) TAUETMAX	
IF (TO(1)+LT.TS(1)) 40 TO 18	TET TOTIL T. TS(1)) FC=1.0	
DC 73 THINKX WALSO	TELEDITILIT. TS(11) 30 TO 18	
	DC 73 1=1.KX	
1F(1.23-KX) TO(K2)=70(KX)		VALOG
	IF(1.23.KX) TO(K1)=TO(KX)	

E: WALL FORTRAN A CORNELL WHICP SUBSET_CHS	LEVEL 104
	VAL966
TRELEDIKAN TERKIDITERKA	¥4L <u>06</u>
<u>x2=11</u>	VALCES
Y1=TO(1)	HALDE
Y2=T0(I1)	WALCO
73=75(1)	VAL 064
	WALDE
	WALS64 WALS6
15/44.50.24_AND_TO(KX)_GT_TS(KX)) APERA	WALGE
F (XX.53.25.A 10. TO (KX). GT. TS (XX)) 60 TO 74	WALD61
CALL POINT+X2+T1+Y2+Y3+Y4+XP+Y01	WALOG
IF(XP+LT+X1+0R+XP+GT+X2) G0 T0 73	HALOS
	WAL 06
60 79 74	WALCE
60 10 74 73 CONTINUE	WALC 6
74 CONTINUE TF(KP.EJ.1) FC=TT+XF++SL	WALDE
YFERB (21,1) PCETIVIPUSC	WALS6
18 CONTINUE IF (KR.EG.1.AND.KL.EG.1) TAUETHAX	HAL 06
10 CONTINUE IF(KR.EQ.1.ANG.KL.EG.1) TAUETMAX IF(KR.EQ.1.ANG.KL.EG.1) GO TO 19 URITE(11.1)(PF(I).TO(I).TO(I).I=1.KX) POPERTIAL	WALOG
[P (XK + L + A A U + A + L + A A U + A + A + A + A + A + A + A + A	WALOG.
WITE (11.11) TAU	MAC06
WP TTE (11,1360)	<u>VALO6</u> WALO6
14 H092T&U+N0#*3	946.06
IF(IN.20.1) HO1=HOM IF(IN.20.2) HO2=HOM	VALOG
IF(IN, 29.2) HO2=MOM	JALO6
IF(IN.19.3) 803=808	SALCS
IF(KL.59.1) PULL=9.	WALOS
IF(IN.20.1) MOI = MOM IF(IN.20.2) MO2=MOM IF(IN.20.3) MO3=MOM IF(IN.20.3) MO3=MOM IF(KL.20.1) PULL=0. ALLOWABLE STRESS = YIELD POINT STRESS X 3.05 IF(IN.20.1) Z=KOM/(SA+6.65) IF(IN.20.2) Z=KOM/(SA+6.65)	HALOS
ALLOWABLE STRESS = FIELD POINT STRESS & STOS	- WALCE
	WALC6
IF(IN.EG.2) ZEMON/(CA+C.65)	VAL06
	WALU6
IF(IN-EG-1) Z1=Z IF(IN-EG-2) Z2=Z IF(IN-EG-3) Z3= Z IF(IN-EG-3) 50 T0 40	WALDS
IF(IN.ED.2) Z2=Z	WALCO
IF(IN.EG.3) 23= 2	WALDE
IF(IN-EQ.3) 50 TO 40	WALD6 WALD7
00 8 I=1.10	WAL97
51 2i+i	
TE(7_GT_SZ(1)) WRITE(11+900)	1010
IF(2+31+32(1)) GO TO 800	VAL 07
1777 CO. 83 CO. TO. 90	JAL 37
IF(2.GT.S2(T1).AND.Z.LT.S2(:)) GO TO 66	WALO7
CONTINUE	- WALOT
SO CONTINUE	
IF(IN+E9-3) I=7 IF(2N+E9-3) SZ(I)=SGRT(2/2-)	VAL07
	VAL07
IF(IN.52.3) IN=2 IF(I.53.1) EI#230.8	WAL 07
IF(1.10.2) E1=220.4	GAL07
IF(1.53.3) 51=194.2	JAL07
IF(I.23.4) II=12444 IF(I.23.4) II=39.8	<u></u>
IF(1.60.5) 21=13.7	96L07

EL HALL FORTOAN A CORNELL VH/SP SUBSET CHS LEVEL 10	
IF(1.13.5) 21=4.1	WAL 37
IF(1.69.7) II=3.7	UALC7
TF(1.53.8) EI= 2.8	WAL97
IF(1,E0,9) EI#32(I)	HALOT
IF(IN.IG.1) BI1#EI	WALGT
TERTNIED.27 SIZESI	WALDT,
IF(IN.E.7.3) SI3=EI	_ UALOT
if (14, 23, 1) (13)	JAL 07
IF(IN.20.2) K2=: IF(IN.50.3) K3=:	WAL 07
IF(I4.24.1) 30 TO 97	U1107
¢ C04,14A2	HAL ST
NOM=NOM /12.	VALS7
	WAL 07
HR: TE(11,10) 21,22,23	_HAL07
WRITE(11,100)	WALS7
DC 101 IN=1+3 IF(IN=E7-1) #RITE(11,=*)	WALS7 WALS7
IF(IN-27-1) *0=N01	VAL 0
TF(TH.20.2) HO= 402	WALC7
TF(IN,E3,3) HO#H03	VAL 01
TF(TN.EG.1) EI=EI1	UAL 01
TF(TN_EG_2) SI=EIZ	VAL 17
[F(IN.Ed.3) EI=EI3	WALOT
IF(IN. 20.1) I=K1	
IF(14.23.2) 1+K2 IF(14.23.3) 1+K3	94101 94101
	UALO
マウィナバーデカ・キュムハウングス美国家美国、新潟などなり本生またらら、 マチャキャックライン アンパープ	WALD
TECTN-IG-1-AND-1-IR-33 BRITCLI1857 36 (1775) 100 0001	WALD
TEXTH TOLLAND, LEDIST MALILLIGT, DAVANTED TO	UAL <u>0</u>
IF (IN- 3-1-A TA TA TATTIL BAD SZ(1), ZI, MC, PULL	VALO
	WALD
THE PERSON FOR 1 AND TARGED AND AND AND AND AND AND AND AND AND AN	MALO.
TEXTN 20.9.4NB.(.F0.1) #BITELLITIA	WALD
	VALD
	WALD
THE FEATURE TO STAND THE GAST AND THE SAME	UAL 0
IF (IR.2 C C AND THE AND A TEFIII.95) SZ(I),EI,HC.FULL	VALO
THE THE ST. 7. AND. (.F.G.S.) WRITELLIY797 . JELLYTELT	WALD WALD
	WALO WALO
THE (IN. ED. 2) HAITE(11, 49) SZ(1), ET. HG, PULL	UAL0
101 CONTINUE	WALD
WPITE(11,100)	VALO
30C CONTINUS	WALC
RETURN 1 FORMAT(TAD, "LOG PHO = ",FIG.3." TO = ",FIG.3." TS = ",FIC.3" 1 FORMAT(TAD, "LOG PHO = ",FIG.3." TO = ",FIG.3." TS = ",FIC.3"	WALO WALO
1 FORMAT(TAD, LOG PHO 2 COPERATING AND STRUCTURAL CURVES') 2 FORMAT(TAD, 14328 STEEL OPERATING AND STRUCTURAL CURVES')	WALU VALO
	VALO
A BABWATITAS, NY DOD GENKER LANG ANN ALTANA ANALA ANA ANA ANA ANA ANA ANA ANA AN	WALC
- Preventing the start SECTION 1	WAL C
4 FORMATCINAL SPECIFIC SECTION 1	UAL C
11 FORMAT(To0, TAU = ",F10.3)	

COMELL WHICE SUBSET CAS LEVEL 10	•
LE: WALL FORTRAN & CONBLL VAVLP SUBALI CAR LEVEL AT	
41 FORMAT(T23. +72 36 +,T36, +A326+ ,T55.F5.1,T65.F5.1,T75.F4.0,	HALOTT
CT9C+F6-33 #2 FORMAT(729+PZ 32 ++T34, *A325* ,755+F5-1+T#5+F5+1+775+F9+6+	WALO77
	UALOTT NALOTT
	VAL077
	VAL 077
85 FOPMAT(128, PMA 22*, T38, *A329* ,T53+F5-1,153,F3-1* /3+F3-0	44L078
56 FORMAT(124, 1954 231, T36, 14328 ,1331 3.111334 3413111130, 141	WAL078
CTR0.F5.0) ET FORMAT(T23, PSX 32', T33, 'A325' . T55, F5.1, T65, F5.1, T73, F5.0,	WALG78
CT90+F4.0) 85 FURNAT (723+PS 28 *,738,**A328* +T55+F5+1+T45+F5+1+T75+F9+0+	VALS78
CT90+F6-33 89 FORMAT(128+ WOOD PILE THICKNESS (IN) + T35+F5-2+T45+F5-1+75+F9	UAL OTS
<u>C</u>	VAL 078
90 POPMATIT25. * SECTION*, T35, *MATERIAL*, T55, *SEC MOD*, T65, **/IMERT*, 90 POPMATIT25. *SECTION*, T35, *MATERIAL*, T55, *SEC MOD*, T65, *(IM-4)*, CT76, *DES/MON*, T33, * TIE-ROD PULL*, /, T55, *(IM-3)*, T65, *(IM-4)*,	VALO79
	VAL ST
91 FORMATCH25, PZ 38 1, T38, FA 572/6907, 153, F3.1, 183, F3.1, 193, 200	VALOT
92 FORMATET29+ P2 12 + T36+ A 572/690++133+P3+14 B34P3+14 + 134P 344	VALOT
53 FOFNAT(T24, 192 27 1, T36, 14 372/890, 1334F34 11030 3211 100	VALOTS VALOTS
CT#* + F6.0) 94 F03HAT(129+ + PDA 274 + T32+71 372/690++155+F3+1+T65+F5+1+175+F #+0+	WALD79
CT97,F6.0) 95 FORMAT4128,F0MA 22*,T38,TA 572/692*,T35,F5.1,T65+F5.1,T75,F9.C,	VALOS
CT97. # 5.6) 96 FORMAT(129. / PSA 21. +732. + 4 572/6901. +755. F5-1. +763. F5.1. +75. F9.4.	WALCS!
CT90+F6.21 97 F04NAT(128, 195% 32"+T38+'A 572/690"+T55+F5+1+T65+F5+1+T75+F4.0,	UAC 08
CT90.F6.0) 9E FORMAT(T28.*PS 13 **T30.*A 572/690*,T55.F5.1,T65.F5.L.T75.F9.0.	UALOSI WALOSI
	VALOS
CT97.4 5407 100 FORMAT(T41.*CALCULATED SECTION MODULI : *,755. CF10.3.* IN-3 (A328)*./.T65.	VAL CO
CF10.3.7 IN-3 (A572/690)*,/,755.	WALCE
CF10.3.* IN-3 (2000)-7 900 FORMATITSO, THE FLATER WALL IS SUITABLE UNDER THESE CONDITIONS*3 1000 FORMATITIO.*	
	VALOS
ENO SUBROUTINE FIT(4,8,SLOPE,YINT,K)	VALOS
PPOGRAN TO FIT DATA POINTS TO A POWER CURVE	WALDS VALOS
ODUBLE PRECISION X, Y, SLOPE, YINT, A(5:2, B(50), C(50), O(50)	WALDS.
N 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VAL08 VAL26
SUMX=0. SUMY=0.	WALCA WALCA
\$U12X=?.	

WALL FOOTRAM A	COBNELL VMY SP SUBSET CHE LEVEL 10	4
· · · · · · · · · · · · · · · · · · ·		WALCI
SUH2T=		UALO
SUMMINE		WALD
PERFORM REGPESSION ANALYSIS ON N	AT. LOG. OF DATE FOINTS	UALO
USE GAUSSIAN ELIMINATION		HALD
	والمتكاف والمان والمناب وبرعاني من المتلك والمكمو المتعني بيري المتعين والمتعاول المتعالم المتعالم المتعالم	HALD
00 2 I#1.M		_WALO
X=DLOG(A(I))		- 4111.0
Y=DLOG(B(I))	a construction of the second	_44.0
	a na manana ang ang ang ang ang ang ang ang an	WALO
		HALD
		uer f
SUN2Y=SUM2Y+T+=2		JAL C
XBAPTSUNX/M		WAL S
YBAR=SUNY /M		VALO
CONTINUE		VAL
VAPX=SUM2X/4-X6AR++2 VARY=SUM2Y/M-Y8AR=+2		Refic
VARYESUM27/M-YBAR== 2 SIGMAX=SOT(VERX=H/(M=1)) SIGMAY=SORT(VARY=H/(M=1))		WALC WALC
ST GHAT=SORT (VARY+H/(H-1))		- VALI
- 51.0世紀末(当日時代・5日時代/第一年日時末でノイトゥマラム。	+ 2/H-SUH2X1	WAL
COARS SLOPE+SIGHAX/SIGHAT		
TINT=TBAR-SLOPE-XBAR		UAL
WRITE(11,3) CORF		
FORMAT(T53. CORRELATION = T.F10. VINT=DEXP(VINT)		WAL WAL
57161		
SLOPE OF LOG-LOG CUEVE = POWER	OF DESIRED FUNCTION	UAL.
GIVES THE COSPER OF DESIRED FUN	IE (7 A I4	VAL.
	<u> </u>	
00 + [=1;N C(])= (YINT)+A(])++(3LOPE)		UAL
C(1)= (YIMT)+A(1)=+(3LUPE) D(1)= (1)-9(1)		NAL NAL
CONTINUE		VAL
	· · · · · · · · · · · · · · · · · · ·	MAE.
uetTE(11+6)(1(T)+8(T)+C(I)+0(1)	- III. (A)	VAL
URITE(11,1050)	THAT OF POWER FUNC	NCEVAL
		WAC .
6 FORMAT(T34 1F10.4,T34,F10.4,T62	2:F10.4:T80:F10.4)	<u></u>
G FORMATCTIC,		TTWAL
C	یک ان _ک ی کا خبریک بر کی میں کر اور اور اور اور اور اور اور اور اور او	WAL
RETURN		- HAL
SUBROUTINE POI(X1+X2+Y1+Y2+Y3+)	14, XP, TP 1	VAL
SUBROUTINE PULSAL ACTILITZATIA		UAL
SUB OUTINE TO FIND POINT OF IN	TERSECTION OF THO LINES	
\$1=(Y2-Y1)/(X2-X1)		VAI
812-51-X1+V1		921
52=(Y4+Y3)/(X2-X1)		VÄ
82=+52 • X1 +Y 3		

•

x==(92-81)/(31+52)	WALO
YP=02+XP+92	WALG
RETURN	44L0 1144 0
ENO	UALO Valo
SUBPOUTINE SANC (FAC.BET.ALPHA. SETA, TMAX, PULL, PHI. 4, TO, PI, P2. PC)	WALG
SUBROUTINE TO INTERPOLATE DATA FROM REDUCTION CURVES FOR SAND	VALO
SORKOUTINE TO INTER-DEATE OFTE FROM REDOUTION CONTENT OF	VAL
DINENSION FAC(30, 30),807(5,12),70(30)	WAL G
DIMENSION PHI(15)	NAL S
SATIE=25010.	HAL0
IF (4LPHA. GT 7) SC TO 2	JAL
IF (ALPHA.GI6) GG TO 3	WALC
IF(ALPHA.GT5) GO TO 3	UALS WALS
2 F=(AL 3H47)/.1	
<u> </u>	WAL
J1#2	YAL C
	WALD
	VAL (
60 TO 7	WALS
	HALC
J1 * 3	WALC
L=5	YALO
L1=6	VAL
60 10 7	ual.(
T CONTINUE	WALC WALC
00 71 x=1,21	WAL (
C=F + (F + C(J + K) + F + C(J + K)) + F + C(J + K)	WALC
D=F+(FAC(L,K)+FAC(L1,K))+FAC(L1,K)	- WALC
R=FH1(X)-P1	WALC
9x2/(P2+P1) R24+(D+C)+C	VAL
TQ(K)=THAX=R	VALS
	WAL(
THE ROD REDUCTIONS (WALLS IN SAND)	WAL C
JK=867A+10.+1.	<u>VAL</u> O VALO
BEJK	WAL (
	HAL
9=8/13.	WALC
(F(K.ST.4) 50 TO 71) (F(K.ST.4) 50 TO 71	WALC
V=F+(4ETtJ,K)+8ET(J1,K))+8ET(J1,K)	<u>HAL(</u>
X1=X+1	HAL:
TF(X.=2.6) K1=6	WALC
W=F+(8ET(J,K1)-8ET(J1,K1))+8ET(J1,K1)	WAL (
FC=(85T1-8)+(W-V)+V	VAL C
1 CONTINUE	VALC VALC
RETURN	WALI
END	
SUBPOUTINE CLAY (FAC.BET.ALPHA.BETA.TNAX.PULL.ST.TO.SLOPE.YINT.	TAL
	UAL(
SUBROUTINE TO INTERPOLATE DATA FROM REDUCTION CURVES FOR CLAY	WAL

	VALO
الا الله برج وال فار نصوب هذاب و الشريب <u>المناسب والتربيب و من البري محمد المن المن من المناسب من المن من من المن من المن المن من المن ال</u>	WAL
DOUBLE PASSISION SLOPE. TINT+1(50)+4(5)	WALD
DIRENSION FAC(30,30) .827(6.12) .70(34)	WAL <u>g</u>
Kar DO 5 Iz4+5	- HALS
DO 5 J=1.6	WALO
	WALG
IF (J.EG.1) J1=1	WAL0
Sajl	14L0
S#\$+3.4	WALS
S1=J	HALO
51+51-6.4 IF(ST.JT.CAND.J.EG.6) 60 TO 1	VALC
IF(31.60').Co.AND-decued/ 00 /0 / Pres th 11 Cr. 25	NAL C
IF(J.20.1) S=.25 IF(ST.LT.S.OR.ST.ET.S1) GO TO 6	WALC
1 KaK+1	<u></u>
IF(K.EG.1) 1(K)=17.	VALC VALC
IF(K.C0.2) A(K)#12.	WALS
IF (K.ED.3) A(K)#6.	VAL
P±ST+S	WAL
	WALS
B(K)=0/0 +(BET(T,J)-BET(T.J1))+6ET(T,J)	VAL
6 CONTINUE 5 CONTINUE	VAL
VRITE(11,330)	HAL
CALL FIT(A, B, SLOPE, YINT, K)	
TISTINT	4AL(
	WAL
IFT11244.577) 60 70 2	WAL
IF(AL PH4. GT 6) 60 70 3	VAL
2 FI(4LPHA7)/.1 JII	WAL!
J1=2	HAL!
L1=3	WAL.
4 07 08	- WAL
3 FREALPHA++51/+1	VAL
<u>2 z j</u>	VAL
	UAL
	WAL .
A CONTINUE	<u> </u>
00 10 1=1.10	VAL
MANIPULATIONS TO ACCOUNT FOP PRONUDHCED CURVATURE OF RDIS	VAL
MANIPULATIONS TO ACCOUNT FOR PRONOUNCED CONTRIBUTE OF NOTA	UAL.
	YAL.
I1≠I+1 S=I+1	VAL
<u>S1:1</u>	UAL.
S=5+0.25	
\$1=\$1+3.25	UAL VAL
IF(I.EQ.1) 5=0.25	VAL
IF(11.23.2) \$1=3.375	VAL
TF(1,67.2) 1=0.375 TF(37.57.2.5.4ND+1.50.6) 60 70 12	VAL
Th Fill Bit 27 2 4 HRG TACHED, AN LA PE	

ET WALL POPTRAN & CORNELL VM/SP SUBSET CHS LET	VEL_104
	WALDS
IF(57,37,31) 60 TO 10	MALOS
12 K=1	WALC
IF(1.4E.J) 50 TO 13	HALOS
Pust-3	HALOS
9=51=5	WAL 05
CT0/2 -/FAC/1 - [1]-FAC/1 - [))+FAC/L +[}	WALCS WALCS
D=P/0 +(FAC(L1,I1)-FAC(L1,I))+FAC(L1,I)	WALCS
<u>∃</u> = # - (C +0) +0	WALIC
	WALLS
K=K+1	WAL10
TO(K)=P+T44X	WALI
IF(K.E2.1) A(K)=17.	WAQ <u>10</u> VAQ10
IF(K.20.2) A(K)=12.	UAL1
IF(K.EQ.3) 1(K)=6.	
B(X)=TO(K)	WALI
13 CONTINUE	WAL1
16 CONTINUE	HALIS
11 CONTINUE	- 44010
WPITE(11,230)	<u></u>
CALL FITLA, B, SLOPE, YINT, K)	WALIS
CO FORMAT(TSO, CURVE-FITTING FOR OILE MEMBERS" 1/1 CE FORMAT(TSO, CURVE-FITTING FOR TIE-ROO",/)	VALI
RETURN	<u>UALII</u>
EYO	WAL10
SUBPOUTINE CANTIFAC, ALPHA, TMAX, TO, FHI, M.PL, P2)	VAL10
SUSPOUTING TO INTERPOLATE DATA FROM REDUCTION CURVES FOR	W4L1
CANTILIVERED WALLS	WALL!
OTMENSION FAC(30,30),8ET(6,12),TO(30)	PALI
DIMENSION PHI(IC)	UAL 1
TF(ALPHA. 67 6) 50 TO 4	VALI VALI
TE (ALPHA. GT 5) GO TO 5	WAL1
IF (ALPHA.GT4) GO TO 6	WALL
_4_F=(ALPNA6)/.1	WAL1
J1:17	¥46.11
L=20	VALI VALI
11=21	WAL1
	VAL 1
5 F=(4LPHE5)/.1	WAL 2
J=1/ J1≠18	WALI
L≠21	WAL1
L1=22	WAL1
GQ TO 7	WAL1
<u> </u>	WALI
	HAL1
7 CONTINUE	

165:	HALLFSFTA	<u>11 A</u>	CCARCLL_1	VM/SP SUB	SET CMS LE	
	33 71 Kal		· ••• •• ••	-		4421040
	0=F+(F10(J,K)+F	10(J1+K))+#40(J1	153			94L104)
		AC(L1,K1)+#40(L1				WAL1044
	R=PH[(4)-91			•		W461049
	9=4/(P2+01)	- Mar			· • •	VALIOS
	#=1+(C+0)+0					44L195)
	TOCKISTMAX-R					V4L105
	SUCKISI MANA					HAL105
_ 1 1	CONTINUE		-			W4L1054
	RETURN					
	ENO					
			<u> </u>			
			-			
						• • • • • • • •
				-		
						_
				•		
						······································
				·		
		•				
						
				-		
						· · · · · · · -
						<u> </u>
						• • •
		·				·
			-			
				···· ··		
				•		
			· · · - •			- <u></u>
				·· 		

APPENDIX C

SAMPLE OUTPUT

Site Geometry and Soil Parameters

The geometric and soil parameters are listed in the output to provide a check. This output should be checked first when debugging.

Factored Soil Parameters

Factored soil parameters are used to compute the following in each soil layer:

Depth of soil layer interface (from top of wall) Active and passive stress coefficients Effective unit weight Triangular stress distribution (overburden and horizontal) Rectangular stress distribution (overburden and horizontal) Resultant force for each stress distribution Centroid for each stress distribution Moment arm for each stress distribution Resultant moment for each stress distribution

Depth of Penetration

The required penetration depth is printed out. If the subgrade cohesion renders an unstable wall, a message reading "THIS WALL CANNOT STAND" will appear and the program will terminate. The stability number of factor of safety against failure in penetration are listed for cohesive subgrades.

Unfactored Soil Parameters

A listing appears of the same parameters output for "Factored Soil Parameters," the difference being that this listing is computed for tie-rods loads and bending moments using unfactored soil parameters.

Tie-Rod Load

The tie-rod load is listed in lb/ft of wall.

Maximum Moment

The maximum bending moment, as computed by the Free Earth Support method is displayed. The location of the maximum moment is also shown (point of zero shear).

Operating and Structural Curves

Ordered pairs of τ and log ρ are shown for A328 steel sections, A570/A690 steel sections, and wood piles. Ordered pairs are first given for typical sections, then the actual design section. Curve-fitting data is given for clay subgrades where there are only three values of pile flexibility given in the Rowe reduction curves. The value of representing the point of intersection of the operating and structural curves is shown.

Design Section Modulus

The results of the Rowe reduction procedure are listed in in^3/ft of wall for A328 steel, A570/A690 steel and timber.

Design Section

The final USS section is listed for A328 steel, A570/A690 steel, as well as the required actual thickness for a timber pile. The tie-rod load is also output.

													MANTHE							NOMENIS																					
		-											 	210 210				• 4 - 0		ARMS	AEC	• د • د		* 17822-				13/5B		ı											
_		_	_				1 LOAD)		101								•				1 N I	.	•	-			-	5289.61-192/6													
CCHESTON		0.003	0.00.0				COLSTAIBUTED LOAD)	CLINE LOADS	POUNDS (FOINT LOAD)												NEC		.							•	0.680				1.271	1.185	5.732	2.014	2.354	2.115	
		32+0+5	32.004				- PSF		. FOUNDS	ICC &	inces			CENT NOT DS				•		CENT NO LOS	TA J	en j		•	6.10 FT		1499. LA/FT	MAKTRUN NORENV		C PUTTER							н .1	= \$1	= 51	יי <u>כ</u>	
		12.	32.	12.40 FT	P.11 FT	11 00.01	200			. SDDFGACCS	. 000 GEARES	HEAD	PAPAPETERS			N			PANANETERS		RFC FFC	.	•	•	1		1499.	TXXN		SECTION							2.55	2-963	2.914	2.953	
 UNLT NEIGHT	000.00	22.490	22.400				48			= 340	۳ ۲	ANCHINE OF BULKNEAD		FARCES		- 326.		1291.			INI	-224.	-492.	7359.	E LATION		PULL -	AFACC		ALLAN AND A								2 O 1	- 61	10 =	
 ¥3				UALL HT	ETM NOT	116 800	SUBCINEGE	SURCHAEGE	SURCHARGE	FILL SLAPE	DREDGE SLOPE	ANCHI	FACTORED SOLL						INFACTORED SOLE	μ.				•	NEPTH OF PENETRATICH		TIE AGO PULL	B.FT RELON GADUND SURFACE +++			0.00			807'I-					-1.000	-1-000	
60 PTN	• • • •	12.004	164.060			:										- 326 -	-181-	- 2517 -			D L C	-224.	-1230.	- 1668	10,00			HELON G		1328 5160		14 1	H 1								
 LAYER			-		-											1 10.	88	366.		DEN STRESS		400.	.00.	366.		-	•			•				0000 US-	194 bol						
 SOLL LA	-	•1	-								i			O VE RBURDEN	 1111	244.	640.	1041.		OVE ANUPOEN	REC	200.	60J.	1680.		:		ZERG SHR a K													
														2CR	•	ġ	÷	÷		200		ė	•	å			*	UN 3Z													
														KA GANNA		-	0.38 60.			445.05 TX		.20 100.	.26 69.	0.24 60.		:															
													1	х Р х						N UN		_	1.00	6.0)		:			1												
														~						•	-	9.6	12.0	11											_						-

						••••																																																	
	210+d	5.913	6-895	A.03P		10.927				1 4 a 31 f	2	23.512	N	32.UP2					0.510		646-3		648.0	116° -		1.242			2.632			1-321	1111			190.9		154.4	9.12	146.41		646 - 1		20.121			CURVES		558°J	****1	1.2.1			1.425	24349
	n.	<u>د</u> ر	ι vi	۰,	a 9	i ji Mi	• 9	n 4	• •	27	•	s	۱۲ من					ы ы	ų.			-	n,	н ••	H UT	•) er		i sa	• •		i e	1 61	,		• 0													43	v.	va.	• س	ŝ	- 51	÷
														3.209	5.037	1.0	 - Culow -	2.831	2.814			2.0.5	2.034	2.431	2.859	2.043							1-141			612	2 9 9 2 A								1.903		BT ON 1		ŧ	434	476	414	9 S 6	414	A 3.8
() 5 6	÷.	н 0	0	0	a		i e	5. C		-	0	0	0	÷		12	Ξ.		10 -	. I . C			# 01	(o	10 =	T0 =	, u ol	, r 2 1	10 -				10		T 0 =	10 F	- H	10 ÷	10 =	= 01		1	10 =	10 =	4	į	œ	3	× 01	10 ×	" ul	±01	10.5	° ol	⊺ U I
	antiz -	-2.400	-2.500	- 2.600	-2.700	-2.400	0.00				- 3* 2.04	000 - t -	- 3.408	- 3. 300	TAU			1.000	1.100			1. Jup	1.400	1.500	1.604	1.709	1.808	-1.900	2-000	2.100	0000	2.100	2.400	2.501	2.640	2.700	2.300	2.900	3.008	3-100	3.200	1.100	1.430	1. 50 0	-		590 115EL 906		1.360	1.100	1.260	1.346	4.490	1	1.000
			RIJO	BHH	PHO PHO	E 03 6H3 2	0714			Ē	9 2 4	0 H H		8440		10 6617		0H.1	КИЙ				0113	R IIO	PHO	RHO	PHO	L46 RH0 z				R 160		0006	RHU	6110	нио	PHO	μų	AND	OHa	E NO	914	6H0			1072765		1 110 BILD =	ςH _a	e NH	ыl.e.	CH0	нHą	- 14 -
																								•							•																								
																		,						:																															

											-																						· · · · · · · · · ·																								
2.622			4.156	4.846	5.650	5 - 5 C 2		7.6FU	6. 95 4			Ν.	14.141		•		22.491	26.223	30.574	15.44			CURVES		A.474	i		1 1.5 * 0	1.069	1.246		1.694				21.6	3.649	4.254	9*960	5.743	6.142	1.96.1		•	444° n t	ACH • 21	14.526	16.956	19.746	23+022	26.641	200.11			,	0+1-1	0.629
15 ±			15 e	ŝ	ų,		• •	,		ι		n					u)			.,	2	i	-1		\$				\$	40	iu	Ts a	e 6.				ŝ	61		ŝ	ιų.	. v		7 (15 a	
2-845			1 - 0 - F	3.165	1.354				4.061				120.2	000.5			6.4.9	1.174	1.434			- 1	AC STRUCTURA	2				2-41	2.831	2.431	2.916	2.858	2.881				3.155	49 4 • • •	3.571	3.741	1.061					1.040	5.99.3	6443	1.174	7.63.	5.536			ENL CURVE	heit	2.33	
10 1 01		÷	= 61	a	ø	e e	•	•	0	e		5	٥	i e	•		¢	c	•		2	 1	APERATING A	ي د د							- 18	10 =	÷ .						TO =											= 01			e e	VD STRUCTU	C (L >	 C	101
	•		- 2.000	•			\$.	Ň,	-2.500	6			å	- 2-940	;,	ŝ,	÷.	-	d,				STEEL	SP.	1.001				1	1, 100		600	1		 Ξ.	Ξ.	si.	ę۰.	- 2. 300	Ň		in	i e	ų,	ų,	Ϋ.	÷.,	÷,	÷,	- 3. 300				A 1146 A	F	1-390	1111
* 048 ·		Û N N	КH.	CHS	BHO			2	e e	0HB		Ì	FIIG	C 11 d		÷.	33	Ø₩.¢	RHO	C HO			A572/690		0H 8				R HO	BHG	PIEO		HHO	C			Ē	E a	PHO	PHO	6 HO	ОНа					21	CH a	RHO	RNU	Q H D			adv upper		1.4.2	- 7
901 901		101	(1 (1)	5rd	1.45		5.		ŝ	1 4.0		901	3	1.04			100	120	1.36	0.1	5				1 4 6		2	2	LuG	-			1.00		3.	<u>,</u>	501	5	521	E u G	100				5	5		95 <u>1</u>	901	Lug	L dG					:: : :	
																																			•																						
						•								•																	•		:																								
																															:		:																					1			

	1.06 1.06	1 1 <th>S = 0.855 S = 0.957 S = 1.555 S = 1.555 S = 1.555 S = 1.555 S = 2.555 S = 2.555 S = 2.555 S = 1.555 S = 1.5555 S = 1.55555 S = 1.55555 S = 1.55555 S = 1.555555 S = 1.555555555555555 S = 1.55555555555555555555555555555555555</th>	S = 0.855 S = 0.957 S = 1.555 S = 1.555 S = 1.555 S = 1.555 S = 2.555 S = 2.555 S = 2.555 S = 1.555 S = 1.5555 S = 1.55555 S = 1.55555 S = 1.55555 S = 1.555555 S = 1.555555555555555 S = 1.55555555555555555555555555555555555	
		Ref	0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.936 0.937 0.936 0.937 0.936 0.936 0.937 0.936 1.936 0.937 0.936 1.937 1.936 1.936 1.937 1.936 1.936 <t< td=""></t<>	
	100 100 <td>Ref 1.500 10 2.500 10 2.501 15 0.501 15 -0.501 15<td>ст. 1.163 с. 1.163 с. 1.556 с. 1.5566 с. 1.55666 с. 1.55666 с. 1.55666 с. 1.556666 с. 1.5566666 с. 1.556666666666666666666666666666666666</td></td>	Ref 1.500 10 2.500 10 2.501 15 0.501 15 -0.501 15 <td>ст. 1.163 с. 1.163 с. 1.556 с. 1.5566 с. 1.55666 с. 1.55666 с. 1.55666 с. 1.556666 с. 1.5566666 с. 1.556666666666666666666666666666666666</td>	ст. 1.163 с. 1.163 с. 1.556 с. 1.5566 с. 1.55666 с. 1.55666 с. 1.55666 с. 1.556666 с. 1.5566666 с. 1.556666666666666666666666666666666666	
		Ref	6 1.560 5 1.560 5 1.560 5 1.560 5 1.560 5 1.560 5 1.560 5 1.550 5 1.550 5 1.555 5 1.555 5 1.555 5 1.555 5 1.555 5 1.555 6 1.555 6 1.555 6 1.555 6 1.555 6 1.555 6 1.555 6 1.555 6 1.555 6 1.555 6 1.555 6 1.555 6 1.555 6 1.555 1.4328 1.555 1.4328 1.555 1.4328 1.155 1.4328 1.155 1.4328 1.155 1.4328 1.155 1.4328 1.155 1.4328 1.155 1.4328 1.155 1.4328 1.155 1.4328 1.155 1.4328 1.155 1.441	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Uo FHO -1.400 TO 2.401 1.401 1.401 1.401 1.401 1.400 1.401 1.401 1.401 1.401 1.401	1.580 5.5 <	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	UG F100 7100 70 700 700 <	6 8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LUG FIND = -1.900 TO = 2.991 TS = 1.000 TO = 2.991 TS = 1.00 FIN = -2.000 TO = 2.991 TS = 1.00 FIN = -2.000 TO = 2.991 TS = 1.00 FIN = -2.000 TO = 2.911 TS = 1.00 FIN = -2.000 TO = 2.911 TS = 1.00 FIN = -2.000 TO = 2.911 TS = 1.00 FIN = -2.000 TO = 2.911 TS = 1.00 FIN = -2.000 TO = 2.911 TS = 1.00 FIN = -2.000 TO = 2.910 TO = 2.911 TS = 1.00 FIN = -2.000 TO = 2.910 TO = 2.910 TO = 2.911 TS = 1.00 FIN = -2.000 TO = 2.910 TO = 2.911 TS = 1.00 FIN = -2.000 TO = 2.910 TO = 2.911 TS = 1.00 FIN = -2.000 TO = 2.910 TO	5 2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccc} 10.6 & 0.0 & = & -1, 300 & 10 & 1, 133 & 2, 300 \\ 10.6 & 0.0 & = & -2, 300 & 10 & 1, 133 & 2, 300 \\ 10.6 & 0.0 & = & -2, 300 & 10 & 1, 133 & 1, 133 & 2, 300 \\ 10.6 & 0.0 & = & -2, 300 & 10 & 1, 133 & 1, 133 & 1, 133 \\ 10.6 & 0.0 & = & -2, 300 & 10 & 1, 133 & 1$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S = 2.555 S = 2.555 S = 3.405 S = 3.405 S = 3.405 S = 3.525 S = 13.555 S = 13.5555 S = 13.55555 S = 13.55555 S = 13.5555555 S = 13.5	
$ \begin{array}{cccccc} 100 & 1 & -2.000 & 10 & 1.100 & 12 & 2.000 \\ 100 & 100 & -2.000 & 10 & 1.100 & 12 & 2.000 \\ 100 & 100 & -2.000 & 10 & 1.100 & 1.1$	105 105 -2.400 10 104 105 2.400 105 105 -2.400 10 104 105 2.400 105 105 -2.400 10 104 105 2.400 105 105 -2.400 10 104 105 2.400 105 105 -2.400 10 104 105 2.400 105 105 -2.400 10 2.400 10 2.400 105 105 -2.400 10 2.400 10 2.400 105 105 -2.400 10 2.400 10 2.400 105 105 -2.400 10 2.400 10 2.400 105 105 -2.400 10 2.400 10 2.400 105 105 -1.400 10 2.400 10 2.400 106 105 -1.400 10 2.400 10 2.400 106 105 -1.400 10 2.400 10 2.400 106 105 -1.400 10 10.410 10.410 106 105 104 1.400 1.400 <t< td=""><td>Lug FH0 -2.400 To 1.65 To 1.66 To 1.76 To 1.76</td><td>6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td></t<>	Lug FH0 -2.400 To 1.65 To 1.66 To 1.76	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
100 100 <td>100 FUID 2.100 10</td> <td>Log FH0 -2.100 10 110 1.15 15<td>S = 2.920 S = 2.920 S = 3.970 S = 5.292 S = 5.292 (4320) (10000) (10000) (1000) (10000) (10000) (1000</td></td>	100 FUID 2.100 10	Log FH0 -2.100 10 110 1.15 15 <td>S = 2.920 S = 2.920 S = 3.970 S = 5.292 S = 5.292 (4320) (10000) (10000) (1000) (10000) (10000) (1000</td>	S = 2.920 S = 2.920 S = 3.970 S = 5.292 S = 5.292 (4320) (10000) (10000) (1000) (10000) (10000) (1000	
100 1	U00 E00 E00 <td>10. RH0 -2.200 10 1.134 15 10.0 RH0 -2.500 10 1.141 15 10.0 RH0 -2.500 10 5.051 15 15 10.0 RH0 -2.500 10 5.051 15 15 10.0 RH0 -1.000 17 5.951 15 15 10.0 RH0 -1.100 10 5.920 15 14 10.0 RH0 -1.100 10 5.920 15 14 10.0 RH0 -1.100 10 10 1.13 13 10.0 RH0 1</td> <td>5 2 3 2 4 0 5 5 2 4 2 5 5 2 9 2 5 2 9 1 1 5 5 5 5 2 9 2 5 2 5 6 1 5 5 5 5 2 9 2 5 2 5 6 1 5 5 5 1 5 5 5 5 2 9 2 1 5 5 5 1 5 5</td>	10. RH0 -2.200 10 1.134 15 10.0 RH0 -2.500 10 1.141 15 10.0 RH0 -2.500 10 5.051 15 15 10.0 RH0 -2.500 10 5.051 15 15 10.0 RH0 -1.000 17 5.951 15 15 10.0 RH0 -1.100 10 5.920 15 14 10.0 RH0 -1.100 10 5.920 15 14 10.0 RH0 -1.100 10 10 1.13 13 10.0 RH0 1	5 2 3 2 4 0 5 5 2 4 2 5 5 2 9 2 5 2 9 1 1 5 5 5 5 2 9 2 5 2 5 6 1 5 5 5 5 2 9 2 5 2 5 6 1 5 5 5 1 5 5 5 5 2 9 2 1 5 5 5 1 5 5	
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	100 100 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>S = 3.910 S = 5.292 S = 5.292 S = 5.292 S = 1.336 S = 1.336 S = 1.555 S = 15.60 10.425 S = 15.60 10.425 S = 15.60 10.425 Met 10 PJL</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S = 3.910 S = 5.292 S = 5.292 S = 5.292 S = 1.336 S = 1.336 S = 1.555 S = 15.60 10.425 S = 15.60 10.425 S = 15.60 10.425 Met 10 PJL	
0.0 0.0 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>Weight of the second for the second</td> <td>6 = 626 6 = 626 6 = 396 6 = 396 6 = 396 6 = 1.396 1.396 1.396 1.396 1.455 1.455 1.456 1.466 1.</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Weight of the second for the second	6 = 626 6 = 626 6 = 396 6 = 396 6 = 396 6 = 1.396 1.396 1.396 1.396 1.455 1.455 1.456 1.466 1.	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S = 6.292 S = 6.292 S = 6.292 S = 6.292 S = 1.555 1.656 1.666 9.972 1.656 1.6666 1.666 1.6666 1.6666 1.6666 1.6666 1.66666 1.6666 1.6666 1.66666	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 = 5.292 5 = 5.292 5 = 1.336 5 = 1.555 5 = 1.6266 1.626 1.626 1.626 1.626 1.626 1.626 1.62666 1.6266 1.6266 1.62666 1.62666 1.62666 1.62666 1.62666 1.62666 1.626666 1.62666 1.626666 1.626666 1.62666666 1.626666666666	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 = 1.235 5 = 1.235 5 = 1.555 5 = 1.555 5 = 15.65 15.65 15.65 15.65 15.65 15.69 14.20 14.2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Uside Fund 2.700 10 = -5.700 10 = -5.700 10 = 5.007 5.007	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S = 1.336 S = 1.555 S = 11.626 S = 13.555 S = 13.555 S = 13.555 15.694 S = 23.694 (A572,690) (A572,	
CALCUATED SECTION MATCHIA SCOT 13 = 5.000 10 = 5.000	We will be and the state for state for state state \$.000 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>S = 8.553 9.972 9.972 9.972 11.626 11.626 11.626 13.626 13.626 13.626 14.126 14.126 14.126 14.126 14.126 14.126 14.126 14.126 14.000 14.11 11.647 14.11 11.647 14.11 11.647 14.11 11.647 14.11 11.647 14.126</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S = 8.553 9.972 9.972 9.972 11.626 11.626 11.626 13.626 13.626 13.626 14.126 14.126 14.126 14.126 14.126 14.126 14.126 14.126 14.000 14.11 11.647 14.11 11.647 14.11 11.647 14.11 11.647 14.11 11.647 14.126	
VOU VOU <td>We will a state of a sta</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>5 = 11.626 5 = 11.626 5 = 11.626 15.604 15.604 15.604 15.604 15.604 14.128 14.128 14.128 14.128 14.128 11.6000 11.60000 11.60000 11.60000 11.60000 11.60000 11.60000 11.600000 11.600000 11.60000000000</td>	We will a state of a sta	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 = 11.626 5 = 11.626 5 = 11.626 15.604 15.604 15.604 15.604 15.604 14.128 14.128 14.128 14.128 14.128 11.6000 11.60000 11.60000 11.60000 11.60000 11.60000 11.60000 11.600000 11.600000 11.60000000000	
Uot Uot <td>UGG NHO = -1.000 FO = 5.939 FE = 13.625 LOG NHO = -1.100 FO = 7.100 FO = 7.939 FE = 13.625 LOG NHO = -1.100 FO = 7.100 FO = 7.931 FE = 13.625 LOG NHO = -1.100 FO = 7.100 FO = 7.101 FE = 13.625 LOG NHO = -1.100 FO = 7.100 FO = 7.101 FE = 2.000 </td> <td>kpin 100 10 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5 5.993 15 5 5.993 15 5 5.993 15 5 5.993 15 5 5.993 15 5 15 5<td>5 = 11.626 5 = 11.626 5 = 13.555 5 = 13.555 16.426 13.281 6 = 23.091 (43.281 (43.281) (43.281</td></td>	UGG NHO = -1.000 FO = 5.939 FE = 13.625 LOG NHO = -1.100 FO = 7.100 FO = 7.939 FE = 13.625 LOG NHO = -1.100 FO = 7.100 FO = 7.931 FE = 13.625 LOG NHO = -1.100 FO = 7.100 FO = 7.101 FE = 13.625 LOG NHO = -1.100 FO = 7.100 FO = 7.101 FE = 2.000 	kpin 100 10 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5.993 15 5 5.993 15 5 5.993 15 5 5.993 15 5 5.993 15 5 5.993 15 5 15 5 <td>5 = 11.626 5 = 11.626 5 = 13.555 5 = 13.555 16.426 13.281 6 = 23.091 (43.281 (43.281) (43.281</td>	5 = 11.626 5 = 11.626 5 = 13.555 5 = 13.555 16.426 13.281 6 = 23.091 (43.281 (43.281) (43.281	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 = 11.626 5 = 13.555 5 = 15.624 5 = 21.484 5 = 21.484 (4.572,690) (4.572,690) (4.572,690) (10.00) (10.00) (10.417)	
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 0.740 110 100 100 100 100 0.740 110 100 100 100 100 0.740 110 100 100 100 0.740 110 100 100 100 0.740 110 100 100 100 0.740 110 100 100 100 0.740 110 100 100 100 0.740 110 100 100 100 0.740 110 100 100 100 0.740 110 100 100 100 0.740 110 100 100 100 0.740 110 100 100 100 0.740 110 <	$ \begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $	100 100 100 5.400 10 5.400 10 5.174 15 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1000000 1000000 1000000	5 = 13.555 5 = 13.555 15.604 5 = 18.426 18.426 18.426 5 = 25.048 43.28 (43.28)	
Lug eng = -1.00 10	List ing = -1:00 1 1 1 1 1 1 1 1 Lug kug = -1:00 1 -1:00 1 -1:00 1 1 1 1 1 1 Lug kug = -1:00 -1:00 1 -1:00 1 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>5 = 15.60 5 = 16.426 5 = 21.484 5 = 21.484 5 = 25.04 4.4326 (4.4326) (4.4326) (4.4326) (4.4326) (4.4326) (4.4517) (1.4677) (1.47777) (1.4777) (1.4777) (1.4777) (1.47777) (1.4777)</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 = 15.60 5 = 16.426 5 = 21.484 5 = 21.484 5 = 25.04 4.4326 (4.4326) (4.4326) (4.4326) (4.4326) (4.4326) (4.4517) (1.4677) (1.47777) (1.4777) (1.4777) (1.4777) (1.47777) (1.4777)	
Lid FHQ = -1.400 Total = -1.400 Total = 1.11 Total = 1.11 Total = 1.11 Lid FHQ = -1.400 Lid FHQ = -1.400 Total = 1.11 Total = 1.11 Total = 1.11 CACCUATED SECTION MAILETA CACCUATED SECTION MAILETA 1.134 Lid FHQ 1.134 Lid FHQ Section MAILETA SECTION MAILETA SECTION MAILETA Lid FHQ Lid FHQ Lid FHQ Section MAILETA SECTION MAILETA SECTION MAILETA Lid FHQ Lid FHC Lid FHC PS 23 Lid FHQ Lid FHC Lid FHC Lid FHC Lid FHC Lid FHC PS 23 Lid FHC Lid FHC Lid FHC Lid FHC Lid FHC Lid FHC PS 23 Lid FHC Lid FHC Lid FHC Lid FHC Lid FHC Lid FHC PS 24 Lid FHC Lid FHC Lid FHC Lid FHC Lid FHC Lid FHC PS 24 Lid FHC Lid FHC Lid FHC Lid FHC Lid FHC Lid FHC PS 24 Lid FHC Lid FHC Lid FHC Lid FHC Lid FHC Lid FHC PS 24 Lid FHC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 = 18-426 5 = 21-484 5 = 21-484 (41528) (4572/690) (4572/690) (4572/690) (4572/690) (4577) (10.61) (1	
Lug 6:00 = -1.000 10 = .1.000 10 = .1.000 10 = .1.000 CACCULATED SECTION MALETAL Street trait 11.000 9,201 15 = .2.000 Street trait 1.00 & 000 10 = .1.000 9,201 15 = .2.000 Street trait 1.00 & 000 10 = .1.000 9,201 15 = .2.000 Street trait 1.00 & 000 10 = .1.000 9,201 10 = .0.000 Street trait 1.00 & 000 1.00 2.2 2.20 10 = .0.000 Street trait 1.00 1.00 2.2 2.2 10 = .0.000 Street trait 1.00 2.2 10 = .0.000 2.2 Street trait 1.00 2.2 2.2 10 = .0.000 Street trait 2.2 2.2 10 = .0.000 2.2 Street trait 2.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lug FH0 = -3.500 10 = 0.535 5 Lug FH0 = -3.500 10 = 0.535 5 Lug FH0 = -3.500 10 = 0.726 14320 Lug FH0 = -3.52 2.2 19631 0.9177 PS 29 1.9 2.2 2.2 19631 PS 29 2.2 2.2 2.2 19631 PS	25.04 2 25.04 41328 (41328) (41328) (41328) (41328) (41328) (41328) (41328) (41328) (41288) (41288) (417) (41877)	
100 600 $= -1.400$ 0 $= 9.206$ 15 $= 2.000$ CALCULATED SECTION MARETA DATE 14.1000 SECTION MARETA SECTION <td colspand"<="" td="" td<=""><td>Lug 400 = -1400 10 = 4.03 10 = 4.03 10 = 4.03 14.1</td><td>$100 \ 6H0 = -3.500$ $100 = 0.3316$ $140 \ 6H0 = -3.500$ $10 = 9.203$ $140 \ 6H0 = -3.500$ $10 = 9.203$ $140 \ 6H0 = -3.500$ $10 = 9.203$ $140 \ 6H0 = -3.500$ $10 \ 2.26$ $140 \ 6H0 = -3.500$ $10 \ 2.26$ $140 \ 6H0 = -3.500$ $10 \ 2.26$ $140 \ 7H0 \ 7H0$ $141 \ 7H0 \ 7H0$ $140 \ 7H0 \ 7H0$ $141 \ 7H0 \ 7H0$ $140 \ 7H0 \ 7H0 \ 7H0 \ 7H0 \ 7H0$ $140 \ 7H0 \ 7H0$</td><td>5 = 25.047 415261 145126901 145126901 145126901 140001 116-800 PJL AFT1 116-800 PJL AFT1 116-800 PJL</td></td>	<td>Lug 400 = -1400 10 = 4.03 10 = 4.03 10 = 4.03 14.1</td> <td>$100 \ 6H0 = -3.500$ $100 = 0.3316$ $140 \ 6H0 = -3.500$ $10 = 9.203$ $140 \ 6H0 = -3.500$ $10 = 9.203$ $140 \ 6H0 = -3.500$ $10 = 9.203$ $140 \ 6H0 = -3.500$ $10 \ 2.26$ $140 \ 6H0 = -3.500$ $10 \ 2.26$ $140 \ 6H0 = -3.500$ $10 \ 2.26$ $140 \ 7H0 \ 7H0$ $141 \ 7H0 \ 7H0$ $140 \ 7H0 \ 7H0$ $141 \ 7H0 \ 7H0$ $140 \ 7H0 \ 7H0 \ 7H0 \ 7H0 \ 7H0$ $140 \ 7H0 \ 7H0$</td> <td>5 = 25.047 415261 145126901 145126901 145126901 140001 116-800 PJL AFT1 116-800 PJL AFT1 116-800 PJL</td>	Lug 400 = -1400 10 = 4.03 10 = 4.03 10 = 4.03 14.1	$100 \ 6H0 = -3.500$ $100 = 0.3316$ $140 \ 6H0 = -3.500$ $10 = 9.203$ $140 \ 6H0 = -3.500$ $10 = 9.203$ $140 \ 6H0 = -3.500$ $10 = 9.203$ $140 \ 6H0 = -3.500$ $10 \ 2.26$ $140 \ 6H0 = -3.500$ $10 \ 2.26$ $140 \ 6H0 = -3.500$ $10 \ 2.26$ $140 \ 7H0 \ 7H0$ $141 \ 7H0 \ 7H0$ $140 \ 7H0 \ 7H0$ $141 \ 7H0 \ 7H0$ $140 \ 7H0 \ 7H0 \ 7H0 \ 7H0 \ 7H0$ $140 \ 7H0 \ 7H0$	5 = 25.047 415261 145126901 145126901 145126901 140001 116-800 PJL AFT1 116-800 PJL AFT1 116-800 PJL
Lug Rug = -3.30 Tot = -3.20 Tot = -3.20 Tot = -3.21 7_{AB} <td< td=""><td>Lug Rug = -3.500 Tot = 9.201 TS = 23.600 7_{11} 1_{12} 1_{12}</td><td>LUG RHO = -J.500 T0 = 9,203 T. = TAU = J.121 J.121 J.121 CALCULATED SECTION MODULT : L.3500 T. = J.121 0, 726 H-3 (10) U. 726 H-3 (10) 0, 726 H-4 (10) U. 726 2.4 1000D 0, 726 H-4 (10) U. 400D 100 2.4 1000D 0, 10 P: 2.9 A 12.0 1.9 2.4 1000D P: 2.9 A 12.0 1.9 2.4 1000D 2.5 P: 2.9 1.9 2.2 2.2 196-1. 2.6 196-1. P: 2.0 P: 2.2 2.2 2.4 196-1. 2.6 196-1. 2.6 196-1. P: 2.0 P: 2.2 2.2 2.2 196-1. 196-1. 196-1. 196-1. 196-1. 196-1. 196-1. 196-1. 196-1. 196-1.</td><td>S. = 25.04 P (4528) (45124690) (45124690) (4000) (1000) (110-400 PUL (111) (12471) (12471)</td></td<>	Lug Rug = -3.500 Tot = 9.201 TS = 23.600 7_{11} 1_{12}	LUG RHO = -J.500 T0 = 9,203 T. = TAU = J.121 J.121 J.121 CALCULATED SECTION MODULT : L.3500 T. = J.121 0, 726 H-3 (10) U. 726 H-3 (10) 0, 726 H-4 (10) U. 726 2.4 1000D 0, 726 H-4 (10) U. 400D 100 2.4 1000D 0, 10 P: 2.9 A 12.0 1.9 2.4 1000D P: 2.9 A 12.0 1.9 2.4 1000D 2.5 P: 2.9 1.9 2.2 2.2 196-1. 2.6 196-1. P: 2.0 P: 2.2 2.2 2.4 196-1. 2.6 196-1. 2.6 196-1. P: 2.0 P: 2.2 2.2 2.2 196-1. 196-1. 196-1. 196-1. 196-1. 196-1. 196-1. 196-1. 196-1. 196-1.	S. = 25.04 P (4528) (45124690) (45124690) (4000) (1000) (110-400 PUL (111) (12471) (12471)	
TAIL 1,121 1,121 1,121 0.756 1.736 17400 1,121 1,121 0.766 0.756 1,136 1,131 1,131 0.766 1.9 2.75 1,131 1,111 0.767 1.9 2.7 2.75 1,111 1.9 2.7 2.7 1,111 1,111 1.9 2.7 2.7 1,111 1,111 1.9 2.7 2.7 1,111 1,111 1.9 2.7 1,111 1,111 1,111 1.9 2.7 1,111 1,111 1,111 1.9 2.7 1,111 1,111 1,111 1.9 2.7 1,111 1,111 1,111 1.1 1.1 1,111 1,111 1,111 1.1 1.1 1,111 1,112 1,113 1.1 1.1 1.1 1,112 1,113 1.1 1.1 1.1 1.1 1,113 1.1 1.1 1.1 1.1 1.1 1.1	FAIL J.23 J.24 J.24 J.23 J.24 J.24 J.23 J.24 J.44	TAIL 1.41 1.1396 1.4328 CALCULATED SECTION MODULT 1.1396 1.4328 9.446 1.4328 1.4328 9.446 1.431 1.4328 9.446 1.431 1.4328 9.446 1.431 1.4328 9.446 1.431 1.4328 9.446 1.431 1.443 9.446 1.432 1.443 9.446 1.443 1.4441 9.446 1.443 1.4441 9.446 1.41 2.4 2.54 9.446 1.41 2.22 2.4 2.54 9.446 1.41 2.22 2.4 2.5494 9.444 1.49 2.4 2.5494 9.444 1.49 2.4 2.5494 9.444 1.49 2.4 2.5494 9.444 1.49 2.4 2.5494 9.444 1.49 2.4 2.5494 9.444 1.49 2.4 2.54 9.444 1.41 2.42 2.44 9.444 1.44 2.44 1.444 9.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 </td <td>(4572) (4572) (4572) (4572) (4000) (4000) (400 P)L</td>	(4572) (4572) (4572) (4572) (4000) (4000) (400 P)L	
CALCULATED SECTION MATURET 0.726 H=3 (132)(90) 0.726 H=3 (132)(90) 0.726 H=3 (132)(90) 0.726 H=3 (132)(90) 0.726 H=3 (132)(90) 0.726 H=3 (132)(90) 0.726 H=3 (132)(90) 0.726 H=3 (144-1) 0.7740 H=1 0.727 H=4 0.740 H=1 0.727 H=4 0.727 H=1 0.727 H=4 0.724 H=1 0.721 H=4 0.724 H=1 <t< th=""><th>CALCULATED SECTION MATURE 1 : 1:390 M-3 (A120) 0.784 H-3 (A120) 0.794 H-3 (A110) 0.794 H-3 (A110)</th><th>CALCULATED SECTION MODULT 1 1.396 IN-3 (1328) 9.**6 IN-3 (1328) 0.726 IN-3 (1328) 9.**6 IN-3 (1328) 0.726 IN-3 (1328) 9.**6 IN-3 (1432) 0.776 IN-3 (14326) 9.**6 IN-3 (1412) 560 MODULT 1 9.**6 IN-3 (1412) 5.** 9.**6 IN-4 IN 1.** 9.**7 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.** 1.** 9.** 1.** 9.** 1.** 9.** 1.** 9.** 1.** 9.** 1.** 9.** 1.** 9.** <td< th=""><th>(4328) (4372/690) (4000) (4000) (401) (16-800 P)L</th></td<></th></t<>	CALCULATED SECTION MATURE 1 : 1:390 M-3 (A120) 0.784 H-3 (A120) 0.794 H-3 (A110)	CALCULATED SECTION MODULT 1 1.396 IN-3 (1328) 9.**6 IN-3 (1328) 0.726 IN-3 (1328) 9.**6 IN-3 (1328) 0.726 IN-3 (1328) 9.**6 IN-3 (1432) 0.776 IN-3 (14326) 9.**6 IN-3 (1412) 560 MODULT 1 9.**6 IN-3 (1412) 5.** 9.**6 IN-4 IN 1.** 9.**7 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.**1 1.** 9.** 1.** 9.** 1.** 9.** 1.** 9.** 1.** 9.** 1.** 9.** 1.** 9.** 1.** 9.** <td< th=""><th>(4328) (4372/690) (4000) (4000) (401) (16-800 P)L</th></td<>	(4328) (4372/690) (4000) (4000) (401) (16-800 P)L	
CARCUARED SECTION NOME: U.232 11-3 (1142) U.000) SECTION NAT. FIN: TECTION NAT. FIN: TECTION NAT. FIN: TECTION NAT. FIN: ECCTION NAT. FIN: TECTION NAT. FIN: FIN:	CALCUARLD SECTION MOULT LI322 H-3 (1431) LI3174 H1 LI2714 H1 FE 23 A123 (13-3) (13-3) (13-3) (13-3) FE 23 A123 (13-3) (13-3) (13-3) (13-3) (13-1) FE 23 A123 (13-3) (13-3) (13-3) (13-3) (13-1) (14-1) FE 23 A123 (13-3) (13-3) (14-3) (14-1) (14-1) (14-1) FE 23 A123 1.9 2.2 1317 1119 (14-1) <t< th=""><th>CALCULATED SECTION MODULI 1.1398 11-3 132769 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,450 11-3 (1000) 9,450 11-3 (1000) 9,450 11-3 (1000) 9,450 11-3 (1000) 9,400 11-4 10 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,1 1,1</th><th>11572690) (11572690) (11000) (11000) (11000) (1100000) (1100000) (1100000) (11000000) (1100000) (1100000) (110000) (110000) (1100</th></t<>	CALCULATED SECTION MODULI 1.1398 11-3 132769 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,446 11-3 (1000) 9,450 11-3 (1000) 9,450 11-3 (1000) 9,450 11-3 (1000) 9,450 11-3 (1000) 9,400 11-4 10 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,2 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,9 2,1 1,1 1,1	11572690) (11572690) (11000) (11000) (11000) (1100000) (1100000) (1100000) (11000000) (1100000) (1100000) (110000) (110000) (1100	
F: Signation Signation <th>Proversion Proversion Proversion<th>9,446 HH-3 (1000) 9,446 HH-3 (1000) 7,000 2,000 2,000 9,446 1,000 2,000 9,446 1,000 2,000 9,446 1,000 2,000 9,200 1,000 2,000 9,200 1,000 2,000 9,200 1,000 2,000 9,200 1,010 2,000 9,200 1,010 2,000 9,000 1,010 2,000 9,000 1,010 2,000 9,000 1,010 2,000 9,000 1,010 2,000 9,000 1,010 2,000 9,000 1,010 1,000 9,000 1,010 2,000 9,000 1,000 1,000 9,000 1,000 2,000 9,000 1,000 2,000 9,000 1,000 2,000 9,000 1,000 2,000 9,000 1,000 2,000 9,000 1,000 1,000</th><th>(1000) 101 11E-800 PJL 8.F1) (18.F1)</th></th>	Proversion Proversion <th>9,446 HH-3 (1000) 9,446 HH-3 (1000) 7,000 2,000 2,000 9,446 1,000 2,000 9,446 1,000 2,000 9,446 1,000 2,000 9,200 1,000 2,000 9,200 1,000 2,000 9,200 1,000 2,000 9,200 1,010 2,000 9,200 1,010 2,000 9,000 1,010 2,000 9,000 1,010 2,000 9,000 1,010 2,000 9,000 1,010 2,000 9,000 1,010 2,000 9,000 1,010 1,000 9,000 1,010 2,000 9,000 1,000 1,000 9,000 1,000 2,000 9,000 1,000 2,000 9,000 1,000 2,000 9,000 1,000 2,000 9,000 1,000 2,000 9,000 1,000 1,000</th> <th>(1000) 101 11E-800 PJL 8.F1) (18.F1)</th>	9,446 HH-3 (1000) 9,446 HH-3 (1000) 7,000 2,000 2,000 9,446 1,000 2,000 9,446 1,000 2,000 9,446 1,000 2,000 9,200 1,000 2,000 9,200 1,000 2,000 9,200 1,000 2,000 9,200 1,010 2,000 9,200 1,010 2,000 9,000 1,010 2,000 9,000 1,010 2,000 9,000 1,010 2,000 9,000 1,010 2,000 9,000 1,010 2,000 9,000 1,010 1,000 9,000 1,010 2,000 9,000 1,000 1,000 9,000 1,000 2,000 9,000 1,000 2,000 9,000 1,000 2,000 9,000 1,000 2,000 9,000 1,000 2,000 9,000 1,000 1,000	(1000) 101 11E-800 PJL 8.F1) (18.F1)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SECTION NATAFIAL SEC FOO N/14FFT DE 7/NON TIE-AOD PULL PS 23 A124 1.9 2.4 2259.9 149.9 PS 29 E 512/6.8 1.9 2.4 2259.9 1419.9 PS 29 E 512/6.8 1.9 2.4 225.9 196.1 PS 20 PUO PUO 2.2 2.2 196.1 1419.9 PS 20 PUO PUO 2.4 2.4 2.4 2.4 PO 10 1.11 2.12 PUO 2.4 2.4 2.4 2.4 PO 10 1.11 2.12 PUO 2.4 2.4 2.4 2.4 PO 10 1.11 2.12 PUO 2.4 2.4 2.4 2.4 PO 10 1.11 2.12 PUO 2.4 2.4 2.4 2.4 PO 10 1.11 2.12 PUO 2.4 2.4 2.4 2.4	CECTION NATURIAL SEC HOD M/14FFT DF-7400 PS 23 A129 S12 (18-3) (14-4) (18-4471) PS 29 A129 S12/630 1.9 2.4 22939. PS 29 F512/630 1.9 2.4 22939. PS 29 F512/630 1.9 2.4 22599. PS 29 F512/630 1.9 2.4 22599. PS 29 F512/630 2.2 19691. PS 29 F111 2.22 2.2 19691. PS 29 F111 2.22 2.2 19691. PS 29 PL F111 2.22 2.2 19691. PS 20 PL F111 2.22 2.2 19691. PS 20 PL F111 2.22 2.2 19691. PS 20 PL F111 2.22 2.5 19691. PS 20 PL F120 F120 2.5 3.5 PL PL PL PL <	A/F1) (L8/F1)	
CCTION MILEIAL SEC MOD MIMET DEFAUN TLE-MOD PULL PS 29 \$ \$22535 \$ \$120 \$ \$143 \$ \$143 \$ \$143 \$ \$144 \$ \$144 PS 29 \$ \$ \$22553 \$ \$ \$12563 \$ \$ \$13 \$ \$193 \$ \$193 \$ \$114 PS 29 \$ \$ \$525633 \$ \$ \$ \$ \$22 \$ \$ \$23 \$ \$ \$ \$134 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	CCTIGN MATA SEC MOD MATA MATA MALE FS 29 532/633 1.9 2.4 1.9 2.4 1.0 FS 29 532/633 1.9 2.4 1.0 1.0 1.0 FS 29 532/633 1.9 2.4 1.0 1.0 1.0 FS 29 532/633 1.9 2.4 1.0 1.0 1.0 FS 29 532/633 1.9 2.2 1.0 1.0 1.0 FS 29 532/633 1.9 2.2 1.0 1.0 1.0 FM 10 2.2 1.0 2.2 1.0 1.0 1.0 FM 10 2.2 2.2 1.0 1.0 2.2 1.0 FM 11 2.2 2.2 1.0 2.2 1.0 1.0 FM 11 2.0 0V 1.0 2.2 1.0 1.0 FM 11 2.0 0V 1.0 2.2 1.0 1.0 FM 11 2.0 1.0 2.2 2.2 1.0 1.0 FM 11 2.0 1.0 2.2 2.2 2.2 2.0 D_10 1.0 2.0 1.0 2.0 1.0 <	ECTION NATERIAL SEC H00 NTHEFT DF ANN P5 29 AJ29 (1N-3) (1N-4) (1N-LAFF1) P5 29 AJ29 1.9 2.4 0.2599. P5 29 AJ29 1.9 2.4 0.2599. P5 29 AJ29 1.9 2.4 0.2599. P5 29 F32/630 1.9 2.4 0.2599. NOOD P1LF TAICKNE 37 (131) 2.42 2.43 108171. P5 29 1.91 2.22 2.4 0.2599. NOOD P1LF TAICKNE 37 (131) 2.42 2.4 108171. P5 29 1.91 2.42 10991. NOOD P1LF TAICKNE 37 (131) 2.42 2.4 108171. NATILEVERD BUNKHEAD 6.4111. 2.42 19991. NATILEVERD BUNKHEAD 6.4111. 2.42 5.4 D.91 1.91 0. 2.00 4.4 D.91 1.91 0. 2.02 3.4 D.91 1.91 1.02 1.02 3.4 D.91 <th>116-800 PJL (18/FT) 1119</th>	116-800 PJL (18/FT) 1119	
PS 23 A124 (1N-1) (1N-1) (1N-1) (1N-1) (1N-1) PS 29 A124 1.9 2.2 2.2 2.2 2.2 2.2 2.2 PS 29 A124 1.9 2.2 2.2 1.9 2.4 2.23 1.19 PS 29 A124 1.9 2.2 2.2 19631. 1.119 1.119 PS 21 0.0 PL FACTORED SOIL FAFAFEER* 1.00105 N.ME.MI AMA MOM APR 200 PUC PC TRI TC 1.1 1.119 1.119 1.119 1.119 1.1111 <th>Figure Clambo Clambo</th> <th>P5 23 A 12A (13-3) (13-3) (14-15) (14-1</th> <th></th>	Figure Clambo	P5 23 A 12A (13-3) (13-3) (14-15) (14-1		
PS 29 6.129 2.4 2.59.3 1119 PR 20 F12/620 2.12 2.11 119 VOOD PLE FNICKBES (14) 2.2 2.2 18177 1419 VOOD PLE FNICKBES (14) 2.2 2.2 18177 1419 VOOD PLE FNICKBES (14) 2.2 2.2 18177 1419 VOOD PLE FNICKBES (14) 2.2 2.2 166-1 141 VE KI GAIMA 2CR 0VE01090EN LEVERD BUKKHEID FALTEFER FILE 1419 CANTIEVERD BUKKHEID FALE FALE FALE FALE 1419 VIE 100 1100 1200 1100 2.5 125 125 D.00 1110 1100 1100 1100 111 260 111 D.00 111 2.0 1000 111 250 111 250 111 D.00 1000 1000 1000 1000 111 250 111 250 111 D.00 1000 1000 1000 1000 1000 250 111 250<	PS 29 A12A 1.9 2.4 22513. M14. V000 PLL FINLENMEST (14) 2.22 2.2 19631. 1419. V000 PLL FINLENMEST (14) 2.22 2.2 19631. 1419. V000 PLL FINLENMEST (14) 2.22 2.2 19631. 1419. V000 PLL FINLENMEST (14) 2.22 2.3 19631. 1419. VR K1 GAIMA 2CM OV equivable (FLES) EACTORID SOLL FARMETER NAMENI AMA M RP K1 GAIMA 2CM 0000 PLL FINLENES FACTORID SOLL FARMETER NAMENI AMA M 0.010 PLL 100. 0. 200. 400. -124. 9.2 5. 25. -55.24. 0.111 DL 0. 200. 400. -124. 21956. 0. 5. <td>P5 24 A124 1.9 2.4 22553 P5 29 E 512/630 1.9 2.4 18177 WODD P1LF FAICKME 37 1.9 2.4 18177 WODD P1LF FAICKME 37 1.9 2.4 19541 WODD P1LF FAICKME 37 1.9 2.2 19541 WODD P1LF FAICKME 37 1.9 2.2 19541 CANTILEVEED BUNKHE4D CANTILEVEED 2.6 19541 WP X1 5AIMA 2.0 OV**1040EN FFLE FAICTORED 501L CANTILEVEED FAICTORED FAICTORED FAICTORED 17 D.4 2.0 0.4 2.6 3.4 D.4 1.10 0. 2.0 3.4 D.4 1.10 0. 2.0 3.4 D.4 1.10 0. 2.0 3.4 D.4 1.1 1.4 4.0 5.4 D.4 1.1 2.0 4.0 5.4 D.4 1.1 2.0 4.0 5.4 D.4 1.1 1.4 4.0 5.4</td> <td></td>	P5 24 A124 1.9 2.4 22553 P5 29 E 512/630 1.9 2.4 18177 WODD P1LF FAICKME 37 1.9 2.4 18177 WODD P1LF FAICKME 37 1.9 2.4 19541 WODD P1LF FAICKME 37 1.9 2.2 19541 WODD P1LF FAICKME 37 1.9 2.2 19541 CANTILEVEED BUNKHE4D CANTILEVEED 2.6 19541 WP X1 5AIMA 2.0 OV**1040EN FFLE FAICTORED 501L CANTILEVEED FAICTORED FAICTORED FAICTORED 17 D.4 2.0 0.4 2.6 3.4 D.4 1.10 0. 2.0 3.4 D.4 1.10 0. 2.0 3.4 D.4 1.10 0. 2.0 3.4 D.4 1.1 1.4 4.0 5.4 D.4 1.1 2.0 4.0 5.4 D.4 1.1 2.0 4.0 5.4 D.4 1.1 1.4 4.0 5.4		
F: 29 152/630 1:9 2.2 1017 1119 WOOD PLLF THIGKNEST (1M) 2.22 2.2 10601 1119 KP K1 SALHA CAMFLEVERCD BUKKHELD CAMFLEVERCD BUKKHELD 1419 KP K1 SALHA COOD PLLF THIGKNEST (1M) 2.22 2.2 10601 KP K1 SALHA CO OVERINATION FACTORED SOLFFICE FILE FILE KP K1 SALHA CO OVERINATION FR FILE FILE FILE 0.0 0.11130 0. 200. APG. FILE FILE <t< td=""><td>F: 2: 1:3176 (14) 1:9 2:2 1:3176 (14) 1:15 WOOD PLLF INIGKNEST (14) 2:22 2:2 1:3176 (14) 1:15 KP XI GAIM COMPTLETVENED BUNKNE4D EARTURE FACTONED SOIL FATAVETER 1:115 KP XI GAIMA CC NUMENIA MAN MAN KP XI GAIMA CC NUMENIA MAN MAN Rec Rec Rec Rec Rec Rec NUMENIA MAN D.00 NULL DDD D.00 Rec Rec Rec Rec NUMENIA MAN D.01 D.1 D.01 <thd.01< th=""> D.01 D.01</thd.01<></td><td>P: 29 E 512/630 1.9 2.5 18171 WOND PILE INICKNEST (131) 2.22 2.2 19691. WOND PILE INICKNEST (131) 2.22 2.2 19691. KP K4 54144 2.2 2.2 19691. KP K4 54144 2.6 04711. 7.1 17.0 0.90 1.01 1.1 2.2 2.2 19691. 0.90 1.01 1.1 2.2 1.0 1.0 0.90 1.01 1.1 2.0 1.1 1.0 1.0 0.10 1.01 0.0 1.01 1.01 1.0 5.1 1.0 5.4 0.10 1.01 1.02 1.02 1.02 3.4 5.4 5.4 0.10 1.01 1.02 1.02 1.02 1.02 3.4 5.4 5.4 0.10 1.01 1.02 1.02 1.02 3.4 5.4 5.4 0.10 1.01 1.02 1.02 1.02 1.02 5.4 5.4 5.4 5.4 0.1</td><td></td></t<>	F: 2: 1:3176 (14) 1:9 2:2 1:3176 (14) 1:15 WOOD PLLF INIGKNEST (14) 2:22 2:2 1:3176 (14) 1:15 KP XI GAIM COMPTLETVENED BUNKNE4D EARTURE FACTONED SOIL FATAVETER 1:115 KP XI GAIMA CC NUMENIA MAN MAN KP XI GAIMA CC NUMENIA MAN MAN Rec Rec Rec Rec Rec Rec NUMENIA MAN D.00 NULL DDD D.00 Rec Rec Rec Rec NUMENIA MAN D.01 D.1 D.01 D.01 <thd.01< th=""> D.01 D.01</thd.01<>	P: 29 E 512/630 1.9 2.5 18171 WOND PILE INICKNEST (131) 2.22 2.2 19691. WOND PILE INICKNEST (131) 2.22 2.2 19691. KP K4 54144 2.2 2.2 19691. KP K4 54144 2.6 04711. 7.1 17.0 0.90 1.01 1.1 2.2 2.2 19691. 0.90 1.01 1.1 2.2 1.0 1.0 0.90 1.01 1.1 2.0 1.1 1.0 1.0 0.10 1.01 0.0 1.01 1.01 1.0 5.1 1.0 5.4 0.10 1.01 1.02 1.02 1.02 3.4 5.4 5.4 0.10 1.01 1.02 1.02 1.02 1.02 3.4 5.4 5.4 0.10 1.01 1.02 1.02 1.02 3.4 5.4 5.4 0.10 1.01 1.02 1.02 1.02 1.02 5.4 5.4 5.4 5.4 0.1		
WOOD FILE THICKNEST (14) 2.22 2.2 19651, 1419. WE KA GAIMA 2CA CAMFILEVERED BUKKHEAD CAMFILEVERED BUKKHEAD CAMFILEVERED BUKKHEAD MONUNENT AMA. WE KA GAIMA 2CA OVERAUPOEN 1FLCS EACTORED SOIL FATAFETAT 1950 1000 WE KA GAIMA 2CA OVERAUPOEN 1FLCS FACTORED SOIL FATAFETAT 1419. 200 OPPO 1011 1020 OVERAUPOEN 1FLCS FACTORED SOIL FATAFETAT 1000 AMA MONUNENT AMA. D.10 D.200 APG. -120. -726. 235. -255. -253. D.11 D.12 D.10.0 APG. -120. -710. -710. -710. -710. D.11 D.12 D.11 21956. 74. 26. 25. -55.284. -1113. M.11 D.10.0 APG. -120. -720. -720. 26. 25. -55.284. -1113. M.12 NUMENTAR APG. THENDER APG. 76. 76. 76. 75. 75.24. 75.24. 75.24. 75.24. 75.24. 75.24. 75.24. 75.24.	WOOD PLLF INIGNEST (14) 2.22 2.2 1961. 1019. KP KA GAUMA CAMFLE-VERED BUK KIE4D CAMFLE-VERED BUK KIE4D 1049. KP KA GAUMA CG DUTO PLLF CAMFLE-VERED BUK KIE4D 1049. KP KA GAUMA CG DUTO PLLF CAMFLE-VERED BUK KIE4D CENTRODO NUMENI ARA KP KA GAUMA CG DUTO PLLF FACTORED SOLE FACTORED	WOND FLE FAICKNEST (14) 2.22 2.2 19641. WOND FLE FAICKNEST (14) 2.22 19641. KP K1 GAUMA 2CA 0 VOULUTO 0000 501L FAFAVETER 191 KP K1 GAUMA 2CA 0 VOULUTO 0000 501L FAFAVETER 191 0.00 0.01 01 RC 16 -120 -120 5.4 0.10 0.01 0.01 160 10.01 -103 0.5 5.4 5.4		
We have the intervention of the interventinterventinterventinterventintervention of the interv	wp x 5 and 20 ptc finterwer (14) 2.22 2.2 2.4 1.4 2.4 2.4 1.4 2.4 2.4 1.4 2.4 2.4 1.4 2.4 2.4 2.4 2.4 2.4 1.4 2.4 1.4 2.4 2.4 1.4	WOOD PILE THICKNESS [134] Z+ZZ Z+Z Z+Z KP KI GAFTLETVERED BULKHELD KP KI GAFTL		
KP KI CANTIL-VERED BUCKNEID KP KI KI KI KI KI CANTIL-VERED BUCKNEID KN KN KN KN CANTIL-VERED FACTOR SOIL FATE CINPOLOS NUMENI CANTIL-VERED FACTOR SOIL FATE CINPOLOS NUMENI CANTIL-VER FATE FATE CINPOLOS NUMENI ANA D-PO NAL RLC TR FACTOR C TR C D-PO NAL RLC TR FACTOR C TR ANA D-PO NAL NAL TR FACTOR C TR C C D-PO NAL NAL NAL TR C TR C C D-PO NAL NAL NAL TR C TR C D-PO NAL NAL NAL TR C TR D-PO NAL NAL TR TR C TR D-PO NAL NAL NAL TR C TR NAL NAL NAL NAL NAL S S	KP KA GAUMA CCM CLEVERD BULKHEAD CANTLEVERD BULKHEAD KP KA GAUMA CC DV OPENATE FACTORED SOIL FAFAFETER NUMENI AMA DP NALL D DV OPENATE FACTORED SOIL FAFAFETER NUMENI AMA M DP NAL RLC TRI CC TRI CC TRI AL DP NAL RLC TRI CC TRI CC TRI AL DP NAL RLC TRI CC TRI CC TRI AL DP NAL RLC TRI CC TRI CC TRI CC TRI AL DP NAL RLC TRI TC TC TRI TC TRI TC TC TC TC TC TC	xp xi 5AHTLEVERED BULKHEID xp xi 4A 5AHTLEVEREER xi xi 4A 4A		
KP K1 GANTLEVERED BULKHELD KP K1 GANTLEVERED BULKHELD KP K1 GANTLEVERED BULKHELD 0-10 DC DVC 41U90EN FECE FACTORED STL FACTORE FACTO	KP K1 GANTLEVERED BULKHELD KP K1 GAUMA CG BULKHELD FACTORED SOIL FAFAPETER MONENI AMA M KP K1 GUT UP UP UP UP UP MONENI AMA MONENI MONENI AMA MONENI AMA MONENI AMA MONENI MONENI AMA MONENI MONENI MONENI MONENI MONENI MONENI MONENI MONENI <td>KP K1 CANTILEYERED BULKHEID KP K1 SOIL FAFAPETER KP K1 SOIL FAFAPETER KP K1 SOIL FAFAPETER 0.90 MILL FACTORED FAFAPETER 0.90 MILL FAFAPETER FAFAPETER 0.90 MILL FAFAPETER FAFAPETER 0.90 MILL FAFAPETER FAFAPETER 0.90 MILL FAFAPETER FAFAPETER</td> <td></td>	KP K1 CANTILEYERED BULKHEID KP K1 SOIL FAFAPETER KP K1 SOIL FAFAPETER KP K1 SOIL FAFAPETER 0.90 MILL FACTORED FAFAPETER 0.90 MILL FAFAPETER FAFAPETER 0.90 MILL FAFAPETER FAFAPETER 0.90 MILL FAFAPETER FAFAPETER 0.90 MILL FAFAPETER FAFAPETER		
KP KI Galia CC FACTOARD Soil, FALMETER FACTOARD Soil, FALMETER MUNCHI ARMS MONUNA 0.0	KP K1 GALIMA ZCA DACE* FACTORED SOIL FACTORED SOIL FACTORED SOIL FACTORE CMMBOIDS MOMENI ARMs M 0.000 ML MC MC MC MC MC ME MA M <	xp x1 5ALHA 2CR OV^04U90EN [FLEES FACTORED 501L FAFAPETER 0.90 % 1 5ALHA 2CR OV^04U90EN [FLEES FACTORED 701L FAFAPETER 0.90 % 1 100 % 200 % 100 161 % 1256 20 0.90 % 100 % 100 % 10000 % 1000 % 10000 % 10000 % 10000 % 1000 % 100000 % 10000		
KP KI Galia Calibre FACTORED SOIL FARETER Control RIC TRI RIC	KP KI GALIMA SOIL FACTORED SOIL FACTORED SOIL FACTORE SOIL FACTORE SOIL FACTORE SOIL FACTORE SOIL FACTORE CENTROLOS MUMENI AMS A 0.90 0.01 0.0 000 0.0	же калыма 208 оченовов светель		
KP KI GAUMA CC DATE CC TRI CC CC CC CC CC CC	kp k1 Gen up of and	xp x1 GAIMA DCR DV ^C = 019 = 0 EN FF & CE FAXEE TRE TEC TRE TEC TRE TEC TEC <td></td>		
Normann	W W	RF R	AURIAL ARMA	
0.10 111 10 20 40 -126 -126 -126 26 25 -9353 -41 1 12 0.10 1.3 30 4 660 400 -126 -126 -126 -126 -126 -126 -111 1 12 0.10 1.3 30 4 56 56 -5126 111 1 12 0.10 1.00 100 106 103 105 5011 44446 6 7 5 -51264 1111 1 12 10	0.00000000000000000000000000000000000	0.001.411.001 0. 200. 400120120. 2. 0.101.51.50. 0. 600. 40010150730. 7.	the TRI AF	
0.10 0.10	0.10 31 31 51 21 18. -35941. 1.12 31 31 31 31 31 51 <td></td> <td>26. 25.</td>		26. 25.	
D. 10 0.10	D. 10 0.10 0.10 0.00		20. 1835341.	
3.12.9.14 61. J. 10.01. J.66414. 2194. 10.01. 2194. 4194. KP KA GAMMA 200. AVENUEDEM 200. EXTENSE 0014.4767.0 601. 141. Active act	3,12 9,12 9,12 9,12 9,12 10,00 10,0	τι ει Λι τοι είλι - 10 μΩ - 10 κ 454 μΣ - 21930s - Πο	a 6.246 111 11	
КР КА 63444 20, ОХСРШИОБН JFFIS 0011 FASMETERS 0. КОН КАН. И АНИ. И АНИ. 0.10 1.20 1.20 1.00 ССПИСОБН JFFIS 0 С ТАТ Р.С. ТАТ БЕС ТАТ А.С. 0.10 1.20 1.20 1.00 200. 4401220200220200220220220200.	КО КА GAMMA 200 NVC MULDEM JERS 016 FACTO 501 FACAMETERS 010 NAM ANN ANN ANN ANN ANN ANN ANN ANN ANN			
KF KA GAMMA AC AVENUEDED AVENUED AVENUEDED	Kr Kn Garma 20 Art 100 Kn			
KP KA <	KP <		CERTRALO MARINE ARME	
0.10 1.0 1.0 1.0 1.0 200 401 -224 -224 -201 - 41 0.10 1.0 4.0 4.0 200 401 -24104 -24104 - 2410 - 42 5.13 1.25 1.1 1011 916 -1150 41597 4 5 2 21 14 -24101 -41 5.13 1.25 1.1 1011 916 -1150 41597 4 5 5 -31604 2407	0.10 1.20 1.10 21			
0.10 1.20 1.74 0. 220 4.424 -424 -424 -221 14 -241014 0.21 1.25 .01 1. 1001. 9021125. 41597. 4. 0. 2. 531604. 2 5.01 1.25 .01 1. 1001. 9361110. 1156. 116. 2. 531604. 2	0.10 1.20 1.7. 0. 220. 441420492. 4. 2. 21. 1424101. 0.7.1 1.2. 4. 6.01. 4021130. 492. 4. 2. 20. 21. 1424101. 2 6.01.1.25.41.1. 10.2. 9]64110. 41597. 4. 10. 2. 531604. 2			
0.000.000 0. 600. 4001130122	0.000.000 40.000 40.000 -11.900 -4920 4000 400 400 400 400 400 400 400 400			
6.11.25 .7. 2. 10.1. 914*16. 116. 41697. '. 10. 2. 3	۰ المعادة العالية المعالية الم			
99*51	01514 05 bit 12	6.13.125 /1. /1. 10914 - 0161 - 1101 /15974 /1 10		
	DICIT CE PERCENTER IL PERCENTER IL PERCENTER		- 1	
		OFELA OF ACTIVE TO ACTIVE TO ACTIVE TO ACTIVE		

a

277

L

	LUG RHO = -2.50 LUG RHO = -2.50 LUG RHO = -3.250 LUG RHO = -3.250 LUG RHO = -3.250 LUG RHO = -1.250 LUG RHO = -1.750 LUG RHO = -1.750 LUG RHO = -2.750 LUG RHO = -2.750 LUG RHO = -2.750 LUG RHO = -3.00 LUG RHO = -1.750 LUG RHO = -1.750 LUG RHO = -1.750 LUG RHO = -1.750 LUG RHO = -2.750 LUG RHO = -2.750 LUG RHO = -3.000 LUG RHO = -1.750 LUG RHO = -1.75	-2. 750 -3. 500 -3. 500 -3. 500 -3. 500 -3. 500 -3. 500 -1. 5000 -1. 50000 -1. 50000 -1. 50000 -1. 5000000 -1. 5000000000000000000000000000000000000		5.112 5.125 5.1511 5.151 5.151 5.151 5.151 5.1111 5.1111 5.1111 5.1111 5.1111 5.1111 5.1111 5.1111 5.1111 5.1111 5.1111 5.1111 5.1111 5.11111 5.11111 5.11111 5.111111 5.11111111		2.170 12.447 12.447 12.447 0.686 0.686 1.483 2.176 2.176 2.176 1.483 1.483 1.483 1.483 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.176 2.177 2.176 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.177 2.176 2.1	
SECTION PD1 21	HATEATAL 4328	SEC N01 ([N-3]) 10.7	N/(MERT 614-41 39+6	N15	DES/MON (1N-LB/FT) 94746.	T[E-R00 PULL (L8/FT) f.	
	A.572/690 Inickness (IN)		1.4		1111-	• • • • • • • • • • • • • • • • • • •	

٠

Step	Action	Reference Section
	Establish soil profile	4.2
7	Determine bulkhead type (fill or dredge, anchored or canti- levered) and geometry, i.e., wall height, anchor level, dredge level, high and low water levels	
m	Determine soil parameters for each soil layer (ϕ , c,Y)	4.2
4	Compute soil stress coefficients using factored soil parameters (ϕ', c') for penetration depth and unfactored (ϕ, c) for tie-rod and moment calculations	2.3.1, Eq. 2-2, 2-3; 4.3
S	Compute stability number for walls in clay	4.5, Eq. 4-17
6	Produce a soil stress diagram to aid in calculations	4.3.1, 4.5

~

•

٠

.

APPENDIX D: FLOW TABLES FOR DESIGN

Step	Action	Reference Section
-1	Compute soil stresses, resultant forces, centroids sum moments about	
	 a. Tie-rod (anchored walls in sand) b. Tie-rod (anchored walls in clay) c. Pile toe (cantilevered walls in sand) d. Pile toe (cnatilevered walls in clay) 	4.3.1 4.5.1 4.4 4.5.3
7	Solve for penetration depth, D, using factored soil parameters for	
	 a. Anchored walls in sand b. Anchored walls in clay c. Cantilevered walls in sand d. Cantilevered walls in clay 	4.3.1 4.5.1 4.4 4.5.3
	Compute tie-rod pull, P (force per unit length of wall) by summing moments about	
	a. 2/3D (anchored walls in sand) b. 1/2D (anchored walls in clay)	4.3.1 4.5.1
4	Find point of zero shear for:	
	a. Anchored walls b. Cantilevered walls	4.3.1, 4.5.1 4.4
2	Compute maximum bending moment at point of zero shear	4.3.1, 4.5.1 4.4

Table D-2. Free Earth Support calculations

•

Step	Action	Reference Section
	Compute M from FES maximum moment	4.3.1, 4.4, 4.5.1
2	Develop an operating curve based upon M max and moment reduction factors for	
	a. Anchored walls in sandb. Anchored walls in clayc. Cantilevered walls in sand	4.3.1 4.5.1 4.4
æ	Develop structural curves based upon the average properties of the sheet pile material under con- sideration	4.3.1, 4.4, 4.5.1, 2.7.1.3, Fig. 2-17a, 2.7.4, Fig. 2-19a, 2.7.6, Fig. 2-20
4	Find T from the intersection of the operating and structural curves	4.3.1, 4.4, 4.5.1, 2.7.1.3, Fig. 2-18
Ś	Determine the member size from 'f	4.3.1, 4.4, 4.5.1
6	Recompute the structural curve based upon the properties of the selected section	4.3.1, 4.4, 4.5.1
7	Repeat steps 4 and 5 to insure that the selected section is adequate	4.3.1, 4.4, 4.5.1
30	Apply tie-rod factors	
	a. Walls in sand	4.3.1, 2.3.7.1, Fig. 2-17h
	b. Walls in clay c. Non-vielding anchorages	2.7,1,2,7,4, Fig. 2-19b 2.7,1.3, Fig. 2-17c

Table D-3. Rowe reduction calculations

Step	Action	Reference Section
1	Compute loading ratio, R	4.6
2	Compute modifying coefficient for depth, C _D	4.6
Ċ	Compute $R_D = R \times C_D$, find dimensionless depth, D' from design charts or equations	4.6
4	Compute $D = D^1 \times H$	4.6
Ś	Compute modifying coefficient for moment and tie-rod pull, c_{M} = c_{p}	4.6
9	Compute $R_M = R \times C_M$, find dimensionless bending moment, M', from charts or equation	4.6
٢	Compute moment $M = M' \gamma_3 L^3$	4.6
30	Compute $R_p = R \times C_p$, find dimensionless tie-rod pull, P ^t	4.6
6	Compute pull, $P = P' \gamma L^2$	4.6

Table D-4. Computations for simplified procedure

•

Step	Action	Reference Section
_ _ 4	Design tie-rod	
	a. Compute tie-rod tension based on pull per unit length of	5.4.2
	wall times 1	5.4.2., 5.2.6
	• 2	5.4.2
		5.4.2, 5.3.2
2	Wale design	
	. Compute hending moment in wale	5.4.3
	b. Dimension the wale	5.4.3
e	Fastening wales to sheet piles	
	$_{ m a.}$ Inside wales, wood: select a nail size and determine the	5.4.3.1
	Force, r (tre-rod purl/unit rength of warry b. Outside wales, wood; use 2 nails/pile. Select nail size	5.4.3.1
	c. Inside wales, steel	5.4.3.3
	[]	5.4.3.3
	required to resist the prying force, P (tie-rod pull/	
		5.4.3.3
		5.4.3.3
	J) COMPULE DENGLING MOMENT IN LIAINS FLACE A) Dimension the fixing plate	5.4.3.3
	itside wal	5.4.3.3
	facilitate construction	

Table D-5. Component design computations

Table D-5. Continued

	Action	אפופופונק אפרודחו
4	Splices for wales	
	a. Outside wales, wood: locate splices at the tie-rod. Design	5.4.3.2
	b. Inside wales, wood: 1) Select sulice plate dimensions (2- or 3-member splice)	7.6.4.0
	ંખન	
	2) Select bolt size and number to resist shear	5.4.3.2
	Determi	
	bolts, and spacing between rows	
	4) Select final length of splice plate	5.4.3.2
	c. Splices for channels	
		5.4.3.2
	the wale	
	2) Select bolts to resist shear (double shear as bolts will	5.4.3.2
	attach 2 plates, one on each channel)	
	- 4-4	5.4.3.2
		5.4.3.2
Ś	Anchorage design	
	a. Determine loads on:	5.4.4
	 Continuous anchorage 	5.4.4.1
	2) Short deadman	5.4.4.2
		5.4.3.2

284

APPENDIX E

```
DESIGN EXAMPLES
```

EXAMPLE #1: GIVEN THE FOLLOWING SITE GEOMETRY AND SOL CONDITIONS, FIND THE PENETRATION CEPTH, BENDING MOMENT AND THE - ROD PULL USING THE FREE EARTH SUPPORT METHOD WITH ROWE REDUCTION: H = 12 t4 = 4' X = 100 Per 3, - 30 (7994-1) Hw & 82 + 122.4 ==F 32 = 32" t2: 8 HA = 2' 831 122.4 p= € 33 - 32" I.) FIND FACTORED AND UNFACTORED SOL PARAMETERS $\hat{Q}_{1}f = Tax^{-1}(\hat{D}_{1} \tan 30^{2}) = 21^{2}$ Qi = 30° (393-1) @2f = 22.6" = @3f Q2 = 32* 817 = 14° 51 = 20° 82 = 21.3 Sr? : 15" : 53f (292-2) Ka z cos 2 0 1+ V SIN (Q+5) SIN Q (EQ 2+3) Ko = 005² b Į, SIN (D+S) SIN D FACTORED : Ka', + 0.408 Ko, • 3.00 Ka'2 = 0.382 = Ka'3 Kaz + 3.32 + Kaz UNFACTORED: Ka, + 0.279 Ko: +5.74 Каз = 0.256 = Каз KP2 = 4.33 = KD3 ¥2 = 122.4 - 62.4 (BOUYANT UNIT WEIGHT) * 40 pef = 83

2) COMPUTE RESULTANT FORCES AND SUM MOMENTS ABOUT
THE ROC (FIG. 4-2, EQ.4-3)

$$\frac{1}{2}$$
 Kx₁⁻¹ ($\frac{1}{3}$ + Hx₁) + $\frac{1}{2}$ Kx₂⁻¹ Y₂ + $\frac{1}{2}$ ($\frac{1}{3}$ + $\frac{1}{2}$ + $\frac{1}{4}$ + $\frac{1}{4}$ ($\frac{1}{3}$ + $\frac{1}{4}$ + $\frac{1}{4}$) + $\frac{1}{4}$ (KP₂⁻¹ + $\frac{1}{4}$) + Kx₂⁻¹ ($\frac{1}{2}$ + $\frac{1}{4}$ + HA) + Kx₃⁻¹ ($\frac{1}{3}$ + $\frac{1}{4}$ + $\frac{1}{4}$) + Kx₃⁻¹ ($\frac{1}{3}$ + $\frac{1}{4}$ + $\frac{1}{4}$) + Kx₃⁻¹ ($\frac{1}{3}$ + $\frac{1}{4}$ + $\frac{1}{4}$) + $\frac{1}{4}$ (KP₂⁻¹ + $\frac{1}{4}$) + $\frac{1}{3}$ ($\frac{1}{2}$ + $\frac{1}{4}$) + $\frac{1}{3}$ ($\frac{1}{2}$ + $\frac{1}{4}$ + $\frac{1}{4}$ ($\frac{1}{4}$ + $\frac{1}{4}$ + $\frac{1}{4}$ + $\frac{1}{4}$ + $\frac{1}{4}$ ($\frac{1}{4}$ + $\frac{1}{4}$ + $\frac{1}{4}$ + $\frac{1}{4}$ ($\frac{1}{4}$ + $\frac{1}{3}$ +

,

```
6) FIND POINT OF ZERO SHEAR
                                                      (EQ. 4-4)
    P = Fri- 2 Kaz Xz x2 - Kaz X, t, x = 0
                                 WHERE a = 2 Ka2 82 = 7.68
     X = -b+Vb2-4ac
                                         b = Kaz 82 2, = 61.4, MD
                                         C . FT-T = 1/2 Ka, 2, = - P
                                           = - 760
     X : 4.72' BELOW THE WATER LINE (t,)
                                                      (EQ. 4-5)
T.) FIND MAXIMUM MOMENT
    Mmax * \mathcal{D}(t_1 - x - Ha) - F_{T_1}(\frac{1}{3}t_1 + x) - \frac{1}{6}ka_2 \delta_2 x^3 - \frac{1}{2}ka_2 \delta_2 t_1 x^2
           * (983)(8.72) - (223)(3.05) - (777) - (2310)
           + 3690 AL */AL
a) compute the-rod LOAD BASED UPON ROWE METHOD:
    A = # = 1 = = 0.11
                                                      (FIG. 2-176)
    fc=1.02
    S & Fe . Pres
    P = (1.02) (983) = 1000 = 14.
     FOR SPACING OF THES AT T'S CENTERS
     T + P + 7.5 = 7,500 #
a.) COMPUTE BENDING MOMENT
    3) T_{Max} = (R) M_{Max} / HO^3 = (12)(3690) / (17.5)^3 = 8.26 (EQ.4-8)
   USING FIG. 2475 FOR VALUES OF HE CINTERPOLATE 0.20 x DISTANCE
   BETWEEN LOOSE SAND AND DENSE SAND @ ~= 0.7. USE OF
   20% FOR INTERPOLATION STEMS FROM CHOOSING & = 30°
   FOR LOOSE SAND, Q = 40° FOR DENSE SAND, AND Q = 32°
   FOR THE SUBGRADE SO THAT :
               \frac{32-30}{40-30} = 20\%
```

(EQ. 4-11) Top = Twee > rd T STR. # (Hop2) 73 (EQ 4-12) $\Psi = \frac{27}{2^{3}3} = \frac{2(2000)}{(1.5 \times 10^{6})^{3}3} = 0.305 \quad (W000)$ 3 0.240 (APPROX. FOR A328 STEEL) = 0.400 (APPROX. FOR A690 STEEL) -275 -2.50 -2.25 -2.00 -1.75 - 3.00 loe 0.43 0.39 0.29 C.27 0.27 0.57 nd. 3.97 3.22 2.81 2.40 2.23 Teo 4.74 | (Hep²)⁻3 122 3.85 36.5 26.2 17.9 8.30 3.71 2.53 1.17 TATE (WOOD) 11.5 5.45 8.0 2,16 1.60 (A328) 3.17 10.0 4.51 4.67 2.26 1.54 (4690) 15.4 7.16 4.85 3.32 (SEE PLOT NEXT PAGE) b) DESIGN SECTION M= T - Ho3 (59.4-15) (39.4-16) 5 - <u>M</u> -≏6 M(in-#) + (=sL) 5(in3/~) MATERIAL \mathbf{T} 12,700 4.35 2.37 2000 WOCO 0.532 A328 2,48 13,300 25,000 11,900 32,000 0.372 A690 2.22 FOR WOOD SECTION: '5+ = bt², =ra+12] +=√= (EG. 5-10a) t = 1.78, USE BXIZ (NOMINAL SIZE) FOR A328 \$ A690 STEEL, THE SMALLEST SECTION, PS28 HAS 5=1,9 m?/ft.>5 reg. (TABLE 5-2)

C.) <u>RECOMPUTE</u> FLEXIBILITY CHARACTERISTICS:

(50.4-13)

MATERIAL	÷(psi)	E(psi)	5 (In3/22.)	I (113/22.)	ψ
A328		30x 10 ⁶	1.9	2.8	0.248
A690		30 x 10 ⁶	1.7	2.8	0.317

d) <u>Recompute</u> (PSTR AND FIND INTERSECTION OF THE OPERATING AND NEW STRUCTURAL CURVES FOR A328 AND 4690 STEEL:

log /2	-2.25	-2.00	1-1.75	-1.30
(H ₀ p ^{2)-^{1/3} 介 57末 (A328) (A690) ?op}	3.03	4.65	1.40 3.16	C.95

e) <u>recomputed</u> values:

MATERIAL	\uparrow	MHAX	Sreq.
4328	2.66	14,300	0.572
A690	2.21	11,800	0.307

THE SECTIONS SELECTED ARE SATISFACTORY. A COST ANALYSIS WILL DETERMINE WHICH MATERIAL IS BEST: WOOD, A328 CR AG90. EXAMPLE 2: USING THE CONDITIONS OF EXAMPLE \$1 ASCERTAIN THE DESIRABILITY OF A CANTILEVERED WALL. 1) COMPUTE DEPTH OF PENETRATION : SUM MOMENTS ABOUT TOE = Kai Xi ti (+ ti + ti + 0) + + Kai Xi ti (+ ti + 0) + Ka'2 X, t, t2 (1/2 t2 + D) + 1/2 Ka'3 (X, t, + X2 t2) D2 + - - (Ka3-Kp) 83 D3=0 321 (9.33 +0)+ 733 (2.67+0) + 1220 (4 - 0) + 168 0² - 29.40³ 0 D= 13.4 2) NEGLECT TOE SHEAR MOMENT ARM SID AND THE RESULTING MOMENT COMPUTED FROM THE SHEAR IS VERY SMALL. 3) FIND MAXIMUM MOMENT: a.) POINT OF ZERO SHEAR IS SOME DISTANCE X BELOW CREDGE LEVEL (USE 'UNFACTORED SOIL PLRAMETERS) FT1 + FT2 - FR2 - Kas (&1+ + 22+2) X - 12 (K2 - Kas) X3 X2 = 0 (224 + 492 + 819) + 225 × - 197 × 2 $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$, where a = 197, b = -225, c = -1335x = 3.42 コ) Mun = FT:(また,+セュ+X)・デTz(まセ2+X)+デマ2(まセ2+X) + $\frac{1}{2}$ Ka3 ($\chi_1 = \chi_2 = \chi_2$) $\chi^2 = \frac{1}{2}$ (Kp - Ka3) $\chi_3 \times \chi^3$ = (224) (12.9) + (192) (6.28) + (819) (7.61) $+\frac{1}{2}(225)(3.41)^{2}-\frac{1}{2}(394)(3.41)^{3}$ = 10916 f+ # 4) COMPUTE BENDING MOMENT (WOOD ONLY) a) Than = Mmax x 12 + H03 = (10920) (12)/(13.4+12)3 * 3.CO

b)
$$\alpha = \frac{H}{H0} = \frac{(12)}{(13.4+12)} = \frac{(12)}{(25.4)} = 0.472$$

c.) GENERATE OPERATING AND STRUCTURAL CURVES.
FROM FIG. 3.4, SELECT VALUES OF NJ FOR THE
CORRESPONDING VALUES OF LOG ρ :
 $f_{0p} = \frac{1}{100p^2}$
FOR WOOD, $\Psi = \frac{2\rho}{E^{3/2}} = \frac{(2)(200)}{(1.5)(10^9)^{5/2}} = 0.305$
 $\overline{109} = \frac{1}{100p^2}$
FOR WOOD, $\Psi = \frac{2\rho}{E^{3/2}} = \frac{(2)(200)}{(1.5)(10^9)^{5/2}} = 0.305$
 $\overline{109} = \frac{1}{100p^2}$
 $\overline{10} = \frac{1}{100p^2}$

USE PMAZZ, WHERE 5: 5.4 M NO RECOMPUTATION IS NEEDED AS THE SECTION MODULUS IS SUBSTANTIALLY GREATER THAN THE MINIMUM REQUIRED.

5) THE CANTILEVERED WALL IS MUCH LESS ECONOMICAL OWING TO THE GREAT INCREASES IN THE REQUIRED SECTION AND OVERALL PILE LENGTH.

3.) COMPUTE RMLP : RM + Ro + R + CH + R + Cp $C_{p} = C_{M} = \left(\frac{D}{H}\right) \left(\frac{H_{A}}{H_{W}}\right) = \left(\frac{5.23}{12}\right) \left(\frac{2}{5}\right) = 0.109$ RM = R + CM = (0.358) (0.109) = 0.039 = Rp 4) FIND M': INTERPOLATE BY ENTERING "L/L' AND "L/M" @ RM = 0.039 CONDITION às $\begin{array}{c}
30 \\
32 \\
32 \\
35
\end{array}
\right]^{2} = \left\{ 5 \\
0.099 \\
0.011
\end{array}
\right]^{2} = \left\{ 5 \\
0.012 \\
0.012 \\
0.012
\end{array}$ L/L CESIRED Uм X= 0.0048 $L = \frac{2}{3} D + H - HA = (\frac{2}{3})(5.23) + 12 - 2$ * 13.5 $M' = M' \sum_{1} L^{3} = (0.103) (40) (13.5)^{3}$ = 15,200 in = # (A328 STEEL) 5) FIND P: ENTER "U/L'AND 'L/M' 3 RP= 0.041 CONDITION L/M X = 0.0231 P = 0.0422 P = p' ¥, L² = (0.0622)(100)(13.5)²= 1130 */ FT.

4) THE PERCENT DIFFERENCE BETWEEN THE RESULTS USING THE DESIGN CHARTS WITH THE RESULTS OF THE HAND CALCULATIONS ARE: PENETRATION DEPTH : -1.3% BENDING MOMENT : 43% THE - ROD PULL : 13.0%

EXAMPLE 4: CONSIDER THE SITE GEOMETRY OF EXAMPLE I AND THE FOLLOWING SOIL CONDITIONS AND COMPUTE THE PENETRATION DEPTH, BENDING MOMENT AND TIE-ROD PULL: ₹, s icopef Q. - 30° $\chi_2 = (120 - 62.4) = 57.6 \, \text{pcf}$ ζ₂ ₂ ΞΟ* X= (110-62.4) = 47.6 pcp Q3 = O C1 3 300 pst I.) <u>Determine</u> stability number and soil parameters: $\frac{Cr}{(X_1 + X_2 + 2)} = \frac{(300)(1.25)}{[(100)(4) - (57.6)(3)]} = 0.435 > .25, 0k$ $a_1 = a_2 = 30^{\circ}$, Ka = 0.279 (UNFACTORED) 2) COMPUTE RESULTANT FORCES AND SUM MOMENTS ABOUT THE ROD: $\frac{1}{2} \operatorname{Ka} X_{1} \pm_{1}^{2} \left(\frac{2}{3} \pm_{1} - H_{A} \right) + \frac{1}{2} \operatorname{Ka} X_{2} \pm_{2}^{2} \left(\frac{2}{3} \pm_{2} + \pm_{1} - H_{A} \right) + \operatorname{Ka} X_{1} \pm_{1} \pm_{2}$ $\left(\frac{1}{2}t_{2}+t_{1}-Ha\right) + \left(4c'r-\delta_{1}t_{1}-\delta_{2}t_{2}\right) D\left(\frac{1}{2}D+H-Ha\right) = 0$ 149+3770+3360 -(139.2)0(120+8)=0 69.6 DI +1114 D - 9280 =0 $D = \frac{-ia + \sqrt{b^2 - 4ac}}{2a}$, where a = 69.6s = 1114 C: 9280 3= 4.02

3.) FIND TIE-ROD _GAD BY SUMMING MOMENTS ABOUT
$$\frac{1}{2}$$
 D:
 $\frac{1}{2}$ Ka $\chi_1 z_1^2 (\frac{1}{3} z_1 + z_2 + \frac{1}{2} D) + \frac{1}{2}$ Ka $\chi_2 z_2^2 (\frac{1}{3} z_2 + \frac{1}{2} D) +$
Ka $\chi_1 z_1 + z_2 (\frac{1}{2} z_2 + \frac{1}{2} D) - D (\frac{1}{2} D + H - HA) = 0$
2750 + 2910 - 6250 - P (13) = 0
 $p = 916 \frac{4}{7}$ H.
4.) FIND THE POINT OF ZERO SHEAR
 $P - FTI - \frac{1}{2}$ Ka $\chi_2 X^2 - Ka \chi_1 z_1 X = 0$
 $916 - 222 - 3.04 x^2 - 112 X = 0$
 $X = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ WHERE $a = 11^2$
 $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ WHERE $a = 11^2$
 $x = 4.67$ $C = -(916 - 223) = -693$
5.) COMPUTE MIMAA :
 $MMAX = P_1(z_1 + X - HA) - FTI(\frac{1}{3} z_1 - X) - \frac{1}{2} aX^3 - \frac{1}{2} aX^2$
 $= (916)(a.65) - (223)(5.98) + (1.34)(4.65)^3 - (56)(4.65)^2$
 $= 3412$ Pz. = z/Fz .
(4) COMPUTE BENDING MOMENT
a.) THAX = (12) MIMAA / HD³ = (12)(3412)/(18)³
 $a = \frac{H}{H0} = \frac{17}{18} = 0.67$
 $B = \frac{HA}{H0} = \frac{7}{18} = 0.11$

b) GENERATE OPERATING AND STRUCTURAL CURVES: Top : TMAX . rd (VALUES OF rd ARE FROM FIG. 3.30) $T_{STR} = \frac{\Psi}{(Hop^2)_{1}^{2}};$ USE 4 = 0.305 (WOOD) Ψ = 0.260 (A328) Ψ = 0.400 (λ690) -3.1 -2.4 -21 م جود 0.76 rd. 0.79 0.71 5.55 5.33 4,98 Top 20.6 9.58 (Ho,=2)\$ 44.5 (JOOW) PITA (WOOD) 13.4 6.28 2.92 (A328) 11.6 5.36 2.49 (A690) 17.8 8.24 3.83 C.) <u>Recomputation</u> of far is not necessary, inspection of the graph suggests that little change in ? Will result. d) M=T.HO3 M(11#/AL) -all (pai) S(117/46. \mathcal{T} MATERIAL 5.12 29,400 2,000 15.0 WOOD **4328** 5.15 | 30,000 25,000 1.19 0.92 32,000 A690 5.05 29,500 7.) SELECT MEMBER SIZE: a) WOOD : $\pm \sqrt{\frac{5}{2}} = \sqrt{\frac{15}{2}} = 2.73$ in ; use 4×12 (Nominal) b.) A328 ; USE P5 28; 5=1.9 > 1.19 C) AG90 ; USE P528; 5×1.9 > 1.19

log A	-3.1} -2.6	-2.0				
fe	1.40 1.25	1.05				
	or spacing	BE INTERPO 3 OF 716" 13) fc P 725				
	0R SPACING T = (7.5	3 OF 746" (3) fc P 723	5 THEN			,
LOAD F	0R SPACING T = (7.5	3 OF 7:6" 13) fc P res I (1n ⁴ /ft.)		fc	PUTE	

•

$$\frac{\text{EXAMPLE 5}{}: \text{ using the conditions given in example 3}, \\ \text{FIND THE PERETRATION DEPTH, BENDING MOMENT AND THE ROD PULL, USING THE DESIGN CHARTS.
1.) COMPUTE RD
$$R = \frac{X_1 t^3 + X_2 t^{\frac{1}{2}}}{(5C + X_1 + X_2 t_2) H^2} = \frac{(100)(4)^3 + (57.6)(8)^3}{(100)(4) - (57.6)(8)!(12)!^2}$$

$$= 0.390$$

$$C_0 = \frac{H_W}{(H - HA)St} = \frac{3}{(12 - 2)(0.435)} = 1.34$$

$$R_0 = R \cdot C_0 = (0.390)(1.34) = 0.717$$
2.) COMPUTE D: ENTER FIGURE 4-7 \Rightarrow RD = C.717 AND READ OFF D' FOR C
 $X_{H} = 0.23$:
D' = 0.488
D = D'H = (0.488)(12) = 5.36'$$
3.) COMPUTE RM (FINDM
 $C_m = 1$
 $R_m = R \cdot C_m = 0.390$
ENTER FIGURE 4-9 @ Rm = 0.390 INC READ OFF M' FOR C
 $X_{H} = 0.25$
 $M' = 2.99 = \frac{M}{C_{L}}$ (C = CO-ESION ; U = D)
 $M = M'CD^2$
 $M = (2.99)(300)(5.36)^2 = 30,800 \text{ in } - \frac{4}{74}$.

```
4) COMPUTE Re 4 FIND P :
    C_{0} = \left(\frac{H_{A}}{0.52}\right)^{3} = \left[\frac{(2)}{(5.26)(0.435)}\right]^{3} = 0.483
    R_{p} = R \cdot c_{p} = (0.390)(0.483) = 0.188
    ENTER FIGURE 4-8 @ Rp = 0.270 AND READ OFF P'FOR:
     ⊊_ = 0.25
    P'= 0.554
    P= P'CD = (0.334)(300)(5.86) = 974 */ft.
5) COMPARING THE RESULTS WITH EXAMPLE 4:
    DEPTH : - 2.7 % DIFFERENCE
     BENDING MOMENT: 27% DIFFERENCE (A328 STEEL)
     TIE - ROD PULL: -21% DIFFERENCE
    THE SIGNIFICANCE OF THE THE ROD LOAD CAN BE EXAMINED
     BY COMPARING THE REQUIRED DIAMETERS.
     DESIGN CHART VALUES:
    T = (974)(7.5) = 7305 *
    Ares = 7305 = 0.332 int
     d = \sqrt{\frac{4A}{2T}} = \left[\frac{(4)(.332)}{2}\right]^{\frac{1}{2}} = 0.65
    HAND CALCULATION :
    7 = 9230 =
    Arma = 4230 = 0.420 in2
    d = [ (4)(0.420) ] 2 = 0.73
```

EXAMPLE G: ATTERBERG UNIT TESTS PERFORMED ON THE CLAY FRACTION OF THE SUBGRADE MATERIAL IN EXAMPLE 5 REVEALED: WATER CONTENT: WE 40% ししょ ララ ね LIQUID UMIT: PLASTIC UMIT : PL+ 34% 1) DETERMINE PLASTICITY INDEX (LIQUIDITY INDEX : PI=LL-PL = 55-34=21 $IL = \frac{\omega - PL}{PI} = \frac{40 - 34}{2!} = 0.29$ 2.) DETERMINE ACTIVITY (60% CLAY): A = PI = 21 = 0.35 THE INDICATORS SUGGEST THAT THIS CLAY SOIL WILL CAUSE NO TROUBLES (LOW ACTIVITY, LOW PLASTICITY AND LOW LIQ-UIDITY INDEX.) SEE WU, 1976 3.) THE DRAINED STRENGTH CAN BE ESTIMATED AS: (WU, 1976) ð= 24° 4) RECALCULATE PENETRATION SEPTH: $R_{2} \frac{\chi_{1} \pm \frac{3}{2} + \chi_{2} \pm \frac{3}{2}}{\chi_{2} + \frac{3}{2}} = \frac{(100)(4)^{3} + (57.6)(3)^{3}}{(47.6)(12)^{3}} = 0.436$ $C_{0} = \left(\frac{Hw}{H}\right)^{2} \left(\frac{HA}{H-HA}\right) = \left(\frac{3}{12}\right)^{2} \left(\frac{2}{10}\right) = 0.0889$ Ro = R·Co = (0.434) (0.0889) = 0.0388 ENTER FIGURE 4.10 @ Ro = 0.0388 AND READ OFF D' FOR "SANDFILL/DHI = 26" ": D' = 0719 D = D' + H = (D,719)(12) = 8.62 + t.

```
5.) RECALCULATE BENDING MOMENT

C_{m} = \left(\frac{D \cdot H_{A}}{H \cdot H_{W}}\right) = \left[\frac{(B \cdot G_{A})(2)}{(12)(6)}\right] = 0.179

R_{m} = R \cdot C_{m} = (0.436)(0.179) = 0.0780

ENTER FIGURE 4-12 @ RM = 0.0780 AND READ OFF M

FOR "SAND FILL/PHI = 26"

M'= 0.100

FOR L= \frac{2}{3} D + H - HA = \left(\frac{2}{3}\right)(8.63) + 10 = 15.75

M = M'X<sub>3</sub>L<sup>3</sup> = (0.098)(47.6)(15.8)<sup>3</sup> = 18,400 in - 10./Pt.

(4) RECALCULATE THE-ROD_PULL:

Co = C_{M} = 0.179

R_{p} = R \cdot C_{p} = RM = 0.078

ENTER FIGURE 4-11 @ Rp = 0.0780 AND READ OFF P FOR

"SANDFILL/PHI = 26"

P = 0.0334

P = p'X_{1}L^{2} = (0.0334)(100)(15.8)^{2} = 834 1b/Ft.
```

EXAMPLE #7: DETERMINE THE DIAMETER OF THE TIE ROD BASED UPON THE LOAD GIVEN IN EXAMPLE #1: 1.) GIVEN: T = 7,500 # 2.) $d = \sqrt{\frac{47 \cdot LF}{\pi A_{L}}}$ (52. 5-17) (SEC. 3.2.4) a) CHOOSE LF = 1.2 b) fr = 3 0.60 fy = (0.60) (36,000) = 21,600 psi (19. 3-12c) (748 5-5) $\frac{(4)(7500)(1.2)}{\pi(21,600)}$ c.) $a = \sqrt{}$ = 0.728 IN. 3) AOD ^{1/}8 IN FOR FRESH WATER (& = 0.853 IN., USE 7/8 IN.) (7-6 3-9) ADD 1/4 IN. FOR SALT WATER (& = 0.978 INL, USE ! IN.) 4) USE A 1/8 HOLE FOR THE TIE-ROD BEAZING PLATE, A 1/32 INCH HOLE FOR THE WALE AND FILE (WOOD WALES) USE A 148 HOLE FOR THE TIE- ROD PASSING THROUGH STEEL SHEET PILES.

EXAMPLE *8: GIVEN THE LOADS IN EXAMPLE *1, DESIGN & WALE FOR STEEL AND WOOD SHEET FILES. 1.) GIVEN: P=1000 */At., L= 7.5 At. 2) DETERMINE MOMENT AND SECTION MODULUS REQUIRED M= + DL2 (EQ. 5-15) $=(\frac{1}{5})(1000)(7.5)^{2}(12)$ = 75,000 IN. - L3. (20.5-9) 5 · # * (75,000)/(22,000) (A34 STEEL) = 3.41 IN 3, USE 2 EA. C4x 5.4 CHANNELS S = 1.93 IN.3/ PER CHANNEL x 2 CHANNELS (738 5-3) = 3.84 IN.3 > 3.41 IN.3 3) $5 = \frac{M}{f'^{5}} = \frac{75000}{2000}$ (SOUTHERN PINE) . = 37.5 IN. 3 4) USE 4×10 MEMBER, S= 34.53 N.3 (TA A 3×10 SECTION HAS ADEGUATE SECTION MODULUE, (728 5-46) HOWEVER A 1732 N. HOLE LEAVES ONLY O.3 IN. OF WOOD BETWEEN BOLT AND EDGE OF WALE.

EXAMPLE *9: DETERMINE THE SIZE AND NUMBER OF NAILS REQUIRED TO FASTEN THE PILES DESIGNED IN SXAMPLE = 1 TO 1.) GIVEN : P= 1000 #/ FL. t= 236 IN. (3×12 NOMINAL) TIMBER MATERIAL IS SOUTHERN PINE 2) FIND G: 6 = 0.59 (TAB 3-6) 3) TRY & 40 PENNY NAIL (402) 2 = 5 M. P = 83 =/M. (748 5-7) Se= 314-2381N. = 2381N. Wr = Ale = (83) (2,375) = 197 #/ NAIL (EQ. 5-13) 4) NUMBER OF NAILS n: P wr (59.5-19) * <u>1000</u> 97 = 5.08, USE & NAILS/ PILE 3) TRY A 402 SPIKE 1= 3 in. p= 97 =/m. Wr = ple * (97)(2.375) = 230 =/spike N = 2 = 1000 = 4.35, USE 5 SPIKES/PILE

306

EXAMPLE #10: DETERMINE THE NAIL SIZE REQUIRED TO FASTEN SHEET PILES TO AN OUTSIDE WALE. 1.) GIVEN: $\pm = 2^{\frac{5}{2}}8$ IN. 2.) $\mathcal{L} = \frac{3}{3} \pm (2.625)$ = (9/3)(2.625) = 4.375 IN. 3.) USE 30 & NAIL ($\mathcal{L} = 4\frac{1}{2}$ IN.) (TAB 3-7)

.

-

EXAMPLE #11 : DESIGN & BEARING PLATE FOR THE TIE- ROD DESIGNED IN EXAMPLE -7 1.) GIVEN : T= 7500 * & + I IN. (1/8 IN. HOLE) 2) DETERMINE AREA REQUIRED $A = \nabla F \rho$ (EQ. 5-2) = (7500)/(455) (743 3-4) = 16.48 IN. -3) SIZE THE PLATE A= $bh - A_{HOLE}$, USE $b = 3^{1/2}$ IN. $h_3(A+A_{HOLE})/b$ A- #22 = (#) (1.125) 2 = 0.99 IN.2 h = (16.48 + 99) / (3.5)= 4.99, USE 31/2 × 5 IN. PLATE 4) DETERMINE FO, N AND & Fp * T/ (Aol - Ahole) = (7500)/[(35)(5)-(0.99)] = 454 751 N= /2 (B-& HOLE) = 1/2 (3.5 - 1.125) = 1.19 $==\sqrt{\frac{3}{2}F_{P}N^{2}}$ (50.5-22) 25 $= \left[\frac{(3)/454}{22,000}^{(1,19)^2}\right]^{\frac{1}{2}}$ = 0.30 USE R 3/3×3.5×3

```
EXAMPLE # 12 : A UNIFORMLY DISTRIBUTED SURCHARGE LOAD
                                                                       OF 200 LB. PER SQ. FT. S TO BE PLACED UPON
                                                                       THE BACKFILL OF THE SITE DESCRIBED IN
                                                                       EXAMPLE #1. DETERMINE THE REQUIRED
                                                                      PENETRATION DEPTH, TIE - ROO LOAD, AND MAXIMUM BENDING MOMENT.
(.) GIVEN: Q = 200 #/AL2
GEOMETRY AND SOIL CONDITIONS GIVEN IN EX. *1
2) THE EFFECT OF THE UNIFORMLY DISTRIBUTED SURCHARGE IS
          A RECTANGULAR STRESS DISTRIBUTION IN EACH SOIL LAYER,
AS SHOWN IN FIG. 4-2. COMPUTE THE RESULTING MOMENTS
ABOUT THE THE REPORT AND AND TO THE MOMENTS COMPUTED
           IN EXAMPLE #1.
         (Ka1 q=,)(12+,-HA)+(Ka2q+t2)(12+2+t,-HA)+(Ka3qD)(12D+
t,+t2-HA)+(19,400+3,360 2-713 D2-58.8 23) + C
           (0) + (3670) + (38.2 D<sup>2</sup> + 764 D) + (10,400 - 3360 D - 713 D<sup>2</sup> -
            58.8 03 = 0
           14,070 + 41200 - 475 D2 - 58.8 D3 = 0
           3= 6.2'
3) SUM MOMENTS ABOUT 3/3 D TO DETERMINE TIE-ROD LOAD
        (ka, q, t_1)(\frac{1}{2}t_1 + t_2 - \frac{2}{3}D) - (\frac{1}{2}ka, \frac{1}{2}, \frac{1}{3})(\frac{1}{3}t_1 + t_2 - \frac{2}{3}D) + \frac{1}{2}ka_2 t_2(\frac{1}{3}t_1 + \frac{1}{3})(\frac{1}{2}t_2 + \frac{2}{3}D) + (\frac{1}{2}ka_2 t_2(\frac{1}{3}t_1 + \frac{1}{3}D)(\frac{1}{3}t_2 + \frac{2}{3}D) + \frac{1}{2}ka_3 D(\frac{1}{3}t_1 + \frac{1}{3}t_2 - \frac{1}{3})(\frac{1}{3}t_2 + \frac{2}{3}D) + \frac{1}{2}ka_3 D(\frac{1}{3}t_1 + \frac{1}{3}t_2 - \frac{1}{3})(\frac{1}{3}t_2 + \frac{2}{3}D) + \frac{1}{2}ka_3 D(\frac{1}{3}t_1 + \frac{1}{3}t_2 - \frac{1}{3})(\frac{1}{3}t_2 + \frac{1}{3}D) + \frac{1}{2}ka_3 D(\frac{1}{3}t_1 + \frac{1}{3}t_2 + \frac{1}{3}D) + \frac{1}{2}ka_3 D(\frac{1}{3}t_1 + \frac{1}{3}t_2 + \frac{1}{3}D)(\frac{1}{3}t_1 + \frac{1}{3}t_2 + \frac{1}{3}D) + \frac{1}{2}ka_3 D(\frac{1}{3}t_1 + \frac{1}{3}t_2 + \frac{1}{3}D)(\frac{1}{3}t_1 + \frac{1}{3}t_2 + \frac{1}{3}D) + \frac{1}{2}ka_3 D(\frac{1}{3}t_1 + \frac{1}{3}t_2 + \frac{1}{3}D)(\frac{1}{3}t_1 + \frac{1}{3}t_2 + \frac{1}{3}D)(\frac{1}{3}t_2 + \frac{1}{3}t_2 + \frac{1}{3}D)(\frac{1}{3}t_2 + \frac{1}{3}t_2 + \frac{1}{3}D)(\frac{1}{3}t_2 + \frac{1}{3}t_2 + \frac{1}{3}t_2
             3150 + 3010 + 9990 + 3340 - 1770 - 14.1 P = 0
             2 = 1310 <sup>#</sup>/ FT.
4) FIND POINT OF ZERO SHEAR, X FT BELOW THE WATER LEVEL (E.):
             P-1/2 Ka, (8, t, + q) t, - 1/2 Kazd2 X2 - Kaz (8, t + q) X = 0
             7.68x2 - 154x - 1175 = 0
                                                                                                                           WHERE a= 7.68
b= 154
            X = \frac{-b + \sqrt{b^2 - 4ac}}{2a}
                                                                                                                                                         C= 1175
              X = 5.90 BELOW t,
```

5.) FIND MAXIMUM MCMENT $M_{MAX} = D(t_1 + x - H_4) - \frac{1}{2} k_{a_1} \frac{1}{2} \frac{1}{4} \frac{1}{4$

EXAMPLE[#]13: USE THE SIMPLIFIED METHOD FROM THE
PRECEDING SITUATION
1.) DETERMINE THE EQUIVALENT HEIGHT OF SOIL FOR Q AND
ADD THIS TO THE FREE STANDING WALL HEIGHT, H':
H = 2 2 2 200 = 2 FT.
H = 12+2 = 14 FT.
2.) FROM EX. # 3,
$$\frac{D}{H} = 0.436 = D'$$

 $\therefore D = DH = (0.436)(14) = 6.1 FT.$
3.) FROM EX. # 3, $M' = \frac{M}{3L^3} = 0.103$
 $L = \frac{2}{3}D + H - HA = (\frac{2}{3})(6.1) + (14) - (2) = 16.1 FT.$
 $M = M'Y_3 L^3 = (a103)(60)(16.1)^3 = 25,800 IN. F/FT.$
4.) FROM EX. # 3, $P' = \frac{P}{3L^2} = 0.0622$
 $P = P'Y_1 L^2 = (0.0622)(100)(16.1)^2 = 1612 #/FT.$

EXAMPLE #14: DETERMINE THE PENETRATION DEPTH, BENDING MCMENT, AND THE-ROO LOAD FOR THE WALL IN THE PREVIOUS EXAMPLE, INSTEAD OF A POINT LOAD, CONSIDER & CONTINUOUS FOUNDATION FOOT-ING TO FT. FROM THE SHEET PILES WITH A LOAD OF 5 KIPS / FT. 1.) GIVEN: Q2 = 5000 #/ FT. X = 10 FT. Geometry and sol conditions remain unchanged 2) $M = \frac{X}{H} = \frac{10}{12} = 0.83$ $P_{H} = \frac{0.64 \, \text{G}}{(M^2 + 1)} = \frac{(0.64)(5,000)}{(0.83)^2 + 1} = 1890 \text{ */FT}.$ (FIG 3-1a) 3) EXTERPOLATE L FROM FIGURE 5-16. FOR M = 0.83, L= 0.43H = 5.14 FT. 4) SUM MOMENTS ABOUT TIE-ROD, AS IN PREVIOUS EXAMPLE : PH (H-L-HA) = (1990)(12-5.16-2) = 9150 (9150) - (19,400) + 33600 - 7130² - 58.80³ = 0 0=6.2 3) SUM MOMENTS ABOUT 2/3 D. PH ACTS @ (L+ 2/30) FROM 2/3 D: PH (L- 430) = (1890) [12+(43)(42)] = 17,960 (17,560) - (3000 - 3340 - 1440) = 14.1 P P = 1800 =/ FT. (4) FIND POINT OF ZERO SHEAR : C= 1/2 Kg, X:t; - 0H-D = 313

310

```
The value of c is positive, which indicates that the shear force diagram changes arruptly (at the point of R) from dositive to negative. This is where the maximum moment will occure.

x = H - L - t_1 = 2.84' below the water level.

7) Find Mmax

Mmax = (1800)(4.84) - (223)(4.17) - (60) - (4:3) = 73:0 FT-*/FT.

8) Compute the tie-rod load

B = \frac{7}{182} = 2.11 x = \frac{12}{182} = 2.66, A_c = 0.95 (Fig. 2-176)

P = \frac{7}{c} Pres = (295) (1800) = 17:0 */FT.

9) Compute Bending moment reductions

T_{max} = (12)(73:0) / (18.2)^3 = 14.6

Generating new T_{ab} values using the same reduction

P = \frac{5.90}{M} = \frac{7}{16} H_0^3 = (5.90)(18.2)^3 = 35,600 m. */FT.
```

EXAMPLE * 15: USE THE SIMPLIFIED METHOD FROM THE
PRECEDING SITUATION.
1.) DETERMINE AN EQUIVALENT HEIGHT OF SOIL FOR PH AND
ADD THIS TO THE FREE STANDING WALL HEIGHT, H:
Hay =
$$\frac{2H}{\xi_1(H-\zeta)} = \frac{1890}{(100)(12-5.16)} = 2.77'$$

H = 12+ 2.76 = 14.8
2) FROM EX. * 3, $\frac{D}{H} = 0.436 = 0'$
 $\therefore D = D'H = (0.436)(14.8) = 6.7'$
3.) FROM EX.* 3, $M' = \frac{M}{\xi_3 L^3} = 0.103$
 $L = \frac{2}{3}D + H - HA = (\frac{2}{3})(4.5) - (14.8) - (2) = 17.13'$
 $M = M' \xi_3 L^3 = (0.103)(60)(17.13)^3 = 31,100$ IN. $\frac{3}{577}$
4.) FROM EX.* 3, $P' = \frac{P}{\xi' L^2} = 0.0622$
 $P = P' \xi_1 L^2 = (0.0622)(100)(17.1)^2 = 1620$ */FT.

_

•

```
EXAMPLE FIG: A 10,000 LS. LOAD IS TO BE LOCATED 3 FT. FROM
THE SHEET PILES OF THE WALL GIVEN IN EX.*1.
DETERMINE THE REQUIRED PENETRATION
DEPTH, THE-ROD LOAD, AND MAXIMUM BEND-
ING MOMENT.
                                                                   (FIG 5-1d)
 1.) GIVEN: Qp = 10,000 *
                x = 15 AL
                GEOMETRY AND SOIL CONDITIONS GIVEN IN EX. #1
 P. = 045 2 = 450 # 2
3) INTERPOLATE L FROM FIG 5-15
     L= 0,54 H = 6.48 Ft.
 4.) SUM MOMENTS ABOUT THE-ROD:
     PH ACTS AT 5,4 FT. FROM DL OR (H-L-HA) = 3.52 FT.
     FROM THE - ROD.
      ACO PH (H-L-H4) TO MOMENTS COMPUTED IN STEP 4, EX. #1:
     (490) (3.52) + 19400 - 33000 - 71302 - 58.803 = 0
      D = 5.5 FT.
 5) SUM MOMENTS ABOUT 330. FH ACTS AT A DISTANCE
(L-330) $ 15.7 FT FROM 330
     ADD PH (1+3/3D) TO MOMENTS COMPUTED IN STEP 5, EX *1:
     (450)(157) - (2900 + 3110 - 6280 + 1140) = 137 2
      P = 1500 #/ FT.
 6.) FIND POINT OF ZERO SHEAR AS IN STEP 6, EX. #1, EXCEPT THAT :
      c = \frac{1}{2} k_a, \frac{1}{2}, \frac{1}{4} + \frac{1}{24} - \frac{1}{2} = -\frac{1}{2}
     X3.7.10 FT. BELOW THE WATER LEVEL (i.e., BELOW t., )
```

7.) FIND THE MAXIMUM MOMENT, AS IN STEP 7, EX. #1 INCLUCING
THE MOMENT CAUSED BY PH (L+t,+X-H)

$$M_{Max} = -(450)(6.48-4+7.10-12) + (1500)(9.10) - (223)(8.43) - (916) - (2580)$$

 $= 5760$ FT. #/FT.
8.) COMPUTE THE THE FROD LOAD, AS IN STEP 8, EX. #1:
 $B = \frac{2}{17.5} = 0.11$, $\propto = \frac{12}{15.5} = 0.69$, fc = 1.0 (FIG 2-17b)
 $P = f_{c}$ Pres = (1.0)(1500) = 1500 #/FT.
9.) COMPUTE BENDING MOMENT REDUCTION AS IN STEP 9, EX. #1:
 $T_{Max} = (12)(5760)/(17.5)^{3} = 12.90$
GENERATE NEW T_{op} VALUES USING THE SAME REDUCTION
FRETORS AS IN EX. #1.
 $T = 3.48$
 $m = T_{c} = 3 = (3.48)(17.5)^{3} = 18,650$ IN L3/FT.

EXAMPLE \$17: USE THE SIMPLIFIED METHOD FOR THE PRECEDING SITUATION. 1.) DETERMINE AN EQUIVALENT HEIGHT OF SOIL FOR PH AND ADD THIS TO THE FREE STANDING WALL HEIGHT, H: Heq = $\frac{P_{H}}{\delta_{1}(H+L)} = \frac{450}{(100)(12-6.48)} = 0.32$ H = 12 + 282 ± 12.82 2.) FROM EX. #3, $\frac{1}{H} = 0.436 = D'$ 3. D = D'H = (0.436) (12.82) = 5.59 = 5.6' 3.) FROM EX. #3, M'= $\frac{M}{31L^3} = 0.103$ L = $\frac{2}{3}D + H - HA = (\frac{3}{3})(5.6) + (12.82) - (2) = 14.5$ M = M' $\frac{3}{3}L^3 = (0.103)(40)(14.4)^3 = 19.800$ IN. # 4.) FROM EX. #3, $P' = \frac{P}{\delta_{1}L^2} = 0.0622$ P = $\frac{P'\delta_{1}}{\delta_{1}L^2} = (0.0422)(100)(14.4)^2 = .330 \#/FT.$ 314

```
EXAMPLE 18: CESIGN A 2 MEMBER SPLICE FOR AN INSIDE WALE HAVING THE DIMENSIONS AND LOADS
                     AS IN EXAMPLE #8.
  1) GIVEN : WALE IS 4 × 10
                    M = 75000n-lb.
  2) SELECT LE, FIND V
        TRY L = 24 in.
       \sqrt{\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{4}}
                                                                         (52, 9-23)
           = \left(\frac{7900}{2}\right) - \left(\frac{1000}{4}\right) \left(\frac{24}{12}\right)
           * 3250 #
  3) USE THE SAME SIZE MEMBER AS THE WALE FOR THE SPLICE PLATE, SELECT & AND & BASED ON 5
        FOR 4×10, b = 3 78,
        9=1620 # For d = 1 in.
                                                                          (726 5-6)
        FOR 2. MEMBER JOINTS OF EQUAL 5, USE 2 Q
        ∴ a= 810 #
   4) NUMBER OF SOLTS REQUIRED 3 EACH END
        N = \frac{3250}{310} = 4.01 .: USE 2 ROWS OF 2 BOLTS
   5.) DETERMINE DISTANCE REQUIREMENTS FOR BOLT
        DIAMETER OF 1 in ( J/d = 3.625/1 = 3.625)
        EDGE = 4 in.
END = 1\frac{1}{2} in.
                                        BOLT EPACING : 4
ROW SPACING : 3.7
                                                                         (TAB 5-10)
  6.) THE DISTANCE REQUIREMENTS FOR EDGE AND ROWS OF BOLTS
EXCEED THE DIMENSION OF THE MEMBER. .. REPEAT STEPS
2 THOUF, USING LB: 21 INCHES. THIS WILL PERMIT OVERALL
LENGTH OF THE SPLICE PLATE OF 24 IN. ALLOWING END
DISTANCES OF 11/2 IN. @ EACH END.
```


EXAMPLE 19: DEEIGN A 3 MEMBER SPLICE USING THE DATA FROM THE PREVIOUS EXAMPLE. I) GIVEN : WALE IS 4x10 m = 7500 IN -LB 2) USE SAME LA AS PREVIOUS EXAMPLE FOR La = 21 IN. , V= 3312 3) SELECT A SPLICE DIMENSIONS : The Section of Each plate must be 1/2 the required. REQUIRED 5: 37.5 IN 3, 25: 18.75 (TAB 5-46) USE 2×10 (5 = 24.44 > 18.75) (FIG. 5-11) a=1.625 TAKE b = 2a = (2)(1.625) = 3.25 USE & = 6 = 3.0 IN TABLE 5-8 4) SELECT & AND Q FOR 5/8 INL BOLT, Q = 1000 . N = 3312 = 3.31 .. USE 2 ROWS OF 2 BOLTS 5.) DETERMINE SPACING FOR 2/2 = 3/5 = 4.8 BOLT SPACING = 2.5 RGW SPACING = (4.25) d = 2.656 EDGE * 25 END . 0.938 6) USE 4 EA. 78 IN. BOTS & EACH END + £. , î 21 17" 1 21

```
EXAMPLE # 20: DETERMINE THE FASTENERS REQUIRED FOR THE
STEEL SHEET PILE WALL IN EXAMPLE # AND
THE WALES IN EXAMPLE #8.
  1.) Given: P528 Section
C 3×5 Wales
P=1000 #/FT.
  2) DETERMINE THE NUMBER OF BOLTS REQUIRED FOR AN
       INSIDE WALE.
                                                                   (748 5-2)
       USE WEIGIN.
SELECT A % IN. BOLT (SMALLEST BOLT)
       m = \frac{4PW}{\pi d^2 f_{\infty}}
         = (4)(1000)(12)
             TT (0.425)2(40,000)
          : 0.102
        USE I BOLT EVERY OTHER SECTION
   3.) DIMENSION THE FIXING PLATE
        using fipe separators 2 'n. Long gives a span
Between channels of 2 in.
        USING LEA. BIN. BOLT EVERY OTHER SECTION EXERTS A TENSILE FORCE IN THE BOLT OF
        F= 2PW = (2)(1000) (15
                    = 2500*
        THE MOMENT IN THE FIXING PLATE IS
        M = \frac{1}{4} P_{L} = (\frac{1}{4})(2500)(2)
                  = 1250 IN. UB.
```

$$\begin{aligned} \exists = \frac{M}{h} \quad \text{AND } 5 = \frac{1}{4} bt^2 \text{ RCR RECTANGULAR SECTIONS} \\ t = \sqrt{\frac{GM}{bf_{h}}} \\ \text{FOR } b = 3 \text{ IN.} \\ t = \sqrt{\frac{(G)(1250)}{(4)(22,000)}} = 0.29, \text{ USE } t = \frac{3}{8} \text{ IN.} \\ \text{EDGE DISTANCE } = 1.25 \text{ d} = (1.25)(\frac{5}{3}) = 0.78 \text{ IN.} \\ \text{REQUIRED MINIMUM DIMENSION IS TWICE THE EOGE DISTANCE PLUS THE BOLT HOLE. THE BOLT HOLE IS $\frac{1}{3}$ IN. LARGER THAN THE BOLT HOLE. THE BOLT HOLE IS $\frac{1}{3}$ IN. LARGER THAN THE BOLT. $\frac{1}{2} = (2)(0.78) + (\frac{5}{3}) + (\frac{1}{3}) = 2.31 \text{ IN. MIN.} \\ \text{USE R } \frac{3}{3} \times 3 \times 3 \end{aligned}$$$

.

```
EXAMPLE $ 21: DESIGN SPLICE PLATES FOR THE WALLS DESIGNED
                  IN EXAMPLE #5.
    1.) GIVEN : M= 75000 1. 13.
                 C4 × 5.4 CHANNELS
    2) THE PLATE WICTH IS UMITED BY THE FLANGE - TO FLANGE
        WIDTH OF THE CHANNELS EDGE DISTANCE AND BOLT HOLE DIAMETER.
                                                            (748 5-3)
         6- d-2te
           = (4.00) - (2)(0.1%)
           * 3.41 *
        FOR A TO IN. BOLT, THE EDGE DISTANCE AND BOLT HOLE REQUIREMENTS GIVE A MINIMUM & OF 2.31 IN. (EX. FIB)
         - LAE 6 = 3%4 IN.
    3) 5 = m = 3.41 M. 3 (FROM EX. * 3)
                                                            (EQ. 5-9)
         5 1/ 462 (BENDING ABOUT STRONG AXIS) (EG 5-106)
        t = GE = 194 IN. FOR 2 PLATES (TOP & BOTTOM CHANNELS)
   4) USE A 12 IN. LONG PLATE, MINIMUM EDGE DISTANCE IS
1.502, OR 0.94 IN. FOR 3/3 IN. BOLTS. USE LA : 10 IN.
        V = \frac{T}{2} - \frac{PL_{b}}{4}
                                                             (EQ 9-23)
          =\left(\frac{2500}{2}\right)-\left(\frac{1000}{4}\right)\left(\frac{10}{12}\right)
          = 3542 #
    5) CAPACITY OF A 38 BOLT IN SINGLE SHEAR IS
         F_{4} = (15 \cos)A = (15 \cos)(\frac{\pi}{2})(\frac{3}{2}8)^{2} = 4600^{4}
        CAPACITY IN DOUBLE SHEAR IS 9200 "> 3542"
       --- USE I BACH $78 IN. BOLT & LIN. FROM THE END.
USE R 1"x3" x12"(2 EACH)
```

EXAMPLE #22: GIVEN THE CONCITIONS OF EXAMPLE *1, DESKIN & CONTINUOUS DEADMAN ANCHORAGE. 1.) GIVEN: $t_1 = 4$ H. $k_1 = 100$ pcf $k_2' = 3.00$ HA = 2 Ft $k_2 = 60$ pcf KA' = 0.4082) SELECT h= Ift. , Kp'-Ka = 2.59 3) LET hu = HA, ANTHOUGH THE THE -ROO IS LOCATED SUGHTLY ABOVE THE WATER UNE. 4) COMPUTE THE RESULTANT FORCES ACTING ON THE ANCHORAGE (FIGURE 5-25) a) NET FORCES : (Kp'-Ka') X, h, h_ - (233)(100)(1) h_ = 259 h_ $\frac{1}{2}(kp'-ka') \chi_1(h_w-h_1)^2 = \frac{1}{2}(259)(100)(2-1)^2 = 129.5$ $(kp'-ka') = (1,36)(1,00)(2-1)(h_{1}-h_{1}) = (2.36)(100)(2-1)(h_{1}-1)$ = 257 h - 257 $\frac{1}{2}(kp'-ka') \lambda_2 (h_1+h_1-h_2)^2 = \frac{1}{2}(2\pi)(60)(h_1-1)^2$ · = 77.7 h2 - 135.4 h2 + 17.7 b) SUM NET FORCES, EQUATE TO THE ROD FULL/UNIT LENGTH . P = 259 h + 129.5 + 259 h - 259 + 77.7 h = 155.4 h = 77.7 1000 = 77.7 h12 + 358.6 h1 - 51.8 C) SOLVE THE GUADRATIC FOR h 77.7 h12 + 358.6 h1 - 1051.8 h = -358.6 + (358.62 - (4)(17.7)(-1051.8) (2)(77.7) : 204, -655 USE POSITIVE ROOT, 1 22,04, 2.00 IS OK. 5) USING THE SAME MATERIAL AS THE WALL REQUIRES NO FIRTHER DESIGN. WALES ON THE ANCHORAGE ARE THE SAME AS FOR THE WALES ON THE WALL. G) ENSURE THAT THE TOE OF THE WALL DOES NOT INTERSECT THE FAILURE WEDGE (FIGURE 5-8).

EXAMPLE # 23: USING THE DATA OF EXAMPLE # 15, DESIGN A SHORT
DEADMAN.
1) GIVEN : (Pp-Pa) = T7.7 h1² + 358.6 h1 - 51.8

$$x_{1}^{100}$$
 K0' = 3.00 b2 = 21²
 x_{2}^{100} K0' = 3.00 b2 = 21²
 x_{2}^{100} K0' = 3.00 b2 = 21²
2 = 60 K0' = 0.408 K0' = 2.4
2) SELECT A LENGTH : L = 4 FT.
3) INCORPORATE THE DATA OF EX # 15 INTO ES. 5-7:
Tut = L (Pp-Pa) + 3 K0 X ($\sqrt{Kp'} + \sqrt{Ka'}$) h1³ TAN 8c
2 VALUES OF X, X OVER THE LENGTH h12 - h12
 x_{2} mar THE LENGTH h12 - h12
 x_{3} mar THE LENGTH h12 - h12
 x_{4} mar THE LENGTH h12 - h12
TEUT = L (Pp-Pa) + 3 K0 ($\sqrt{Kp'} + \sqrt{Ka'}$) TAN $Q_{4}[(X_{1})(h_{12} - h_{1})^{3} + (X_{2})(h_{1} + h_{2} - h_{2})^{3}]$
 $= (4)(T7.7 h1^{2} - 398.6 - 51.3) + (\frac{1}{3})(0.4)(2.37)(0.334)$
 $[(100)(1)^{3} + (40)(h_{1} - 1)^{3}]$
 $= (4)(T7.7 h1^{2} - 398.6 - 51.3) + (\frac{1}{3})(0.4)(2.37)(0.334)$
 $[(100)(1)^{3} + (40)(h_{1} - 1)^{3}]$
 $= 7.03 h_{1}^{3} + (23 h_{1}^{2} + 1436 h_{1} - 2072$
 $0 = 7.23 h_{1}^{3} + (23 h_{1}^{2} + 1436 h_{2} - 2072$
 $0 = 7.23 h_{1}^{3} + (23 h_{1}^{2} + 1436 h_{2} - 2072$
 $0 = 7.23 h_{1}^{3} + (23 h_{1}^{2} + 1436 h_{2} - 2072$
 $0 = 7.23 h_{1}^{3} + (23 h_{1}^{2} + 1436 h_{2} - 7700$
4) SOLVE THE QUBIC BY TRIAL AND ERROR
 $h_{1} = 3.74'$ UGE $3.75'$
5) DETERMINE REDUIREMENTS IF AM S AN. DIAMETER PILE IS USED
 $L = \frac{17}{12} = 0.9$
THCD = 30.0 h12 + 227 h1 - 41.4 + 12.1 = 7.28 (h12 + 1)^{3}
 $0 = 7.23 h_{1}^{3} + 5.16 h1^{2} + 309 h_{1} - 7522$
 $h_{1} = 8.4'$, TOO LARGE, 8 IN. PILES ARE NOT
FEASABLE BY THEMSELVES.

.

REFERENCES

- American Institute of Steel Construction (1963), <u>Manual of Steel Con-</u> struction, 6th ed., New York, NY, p. 4-93.
- American Institute of Steel Construction (1980), <u>Manual of Steel Con</u> struction, 8th ed., Chicago, IL, pp. 1-36, 1-37, 4-143.
- American Wood Preservers Institute (1970), "Bulkheads: Design and Construction, Part II," Technical Guidelines, S3, AWPI, Washington, D.C., 5 p.
- BBS Creosote Lumber Co. Inc., "A Word about Bulkheading," from undated publication, <u>Materials Checklist for Bulkheads and Docks</u>, OM-418-11, Speonk, NY, 4 p.
- Bjerrum, L., Clausen, C. T. F., and Duncan, J. M. (1972), "Earth Pressures on Flexible Structures," <u>Proceedings</u>, 5th European Conference on Soil Mechanics and Foundation Engineering, Madrid, pp. 169-196.
- Cheung, F. K.-P. and Kulhawy, F. H. (1981), <u>Analysis, Design and</u> <u>Construction of Pile Foundations in the Coastal Environment</u>, <u>Report to New York Sea Grant Institute</u>, Albany, NY, 298 p.
- Duncan, J. M., and Clough, G. W. (1971), "Finite Element Analysis of Port Allen Lock," <u>Journal of the Soil Mechanics and Foundation</u> <u>Engineering Division</u>, ASCE, Vol. 97, No. SM8, Aug., pp. 1053-1068.
- Hahn, G. J., and Shapiro, S. S. (1967), <u>Statistical Models in Engineering</u>, John Wiley and Sons, New York, NY, 355 p.
- Hansen, J. B. (1953), <u>Earth Pressure Calculations</u>, The Danish Technical Press, Copenhagen, 271 p.
- Harr, M. E. (1977), <u>Mechanics of Particulate Media</u>, McGraw-Hill Book Co., New York, NY, 543 p.
- Hubbell, W. D. and Kulhawy, F. H. (1979), <u>Coastal Construction Materials</u>, Report to New York Sea Grant Institute, Albany, NY, 111 p.
- Hubbell, W. D. and Kulhawy, F. H. (1979), <u>Environmental Loads for</u> <u>Coastal Structures</u>, Report to New York Sea Grant Institute, Albany, NY, 218 p.

Johnson, S. M. (1965), <u>Deterioration</u>, <u>Maintenance</u>, and <u>Repair of</u> <u>Structures</u>, <u>McGraw-Hill</u> Book Co., New York, NY.

- Kulhawy, F. H. and Peterson, M. S. (1979), "Behavior of Sand-Concrete Interfaces," <u>Proceedings</u>, 6th Pan-American Conference on Soil Mechanics and Foundation Engineering, Vol. 2, Lima, pp. 225-236.
- Lumb, P. (1972), "Precision and Accuracy of Soil Tests," <u>Statistics and</u> <u>Probability in Civil Engineering</u>, Hong Kong University Press, distributed by Oxford University Press, London (as referenced in Harr, 1977).
- Mana, A. I. (1978), "Finite Element Analysis of Deep Excavation Behavior in Soft Clay," dissertation in partial fulfillment of Ph.D. requirements," Stanford University, Stanford, CA, 309 p.
- Peterson, M. S., Kulhawy, F. H., Nucci, L. R. and Wasil, B. A. (1976), "Stress Deformation Behavior of Soil Concrete Interfaces," Contract Report B-49(1) to Niagara Mohawk Power Co., Syracuse, NY, 526 p.
- Ronan, S. A. (1979), <u>Regulatory Processes in Coastal Structure Con-</u> struction, Report to New York Sea Grant Institute, Albany, NY, 41 p.
- Rowe, P. W. (1951), "Cantilevered Sheet Piling in Cohesionless Soil," Engineering, Vol. 172, Sep. 7, London, pp. 316-319.
- Rowe, P. W. (1952), "Anchored Sheet Pile Walls," <u>Proceedings</u>, Institution of Civil Engineers, Vol. 1, Part 1, Jan., London, pp. 27-70.
- Rowe, P. W. (1955), "A Theoretical and Experimental Analysis of Sheet Pile Walls," <u>Proceedings</u>, Institution of Civil Engineers, Vol. 4, Part 1, Jan., London, pp. 32-69.
- Rowe, P. W. (1957), "Sheet Pile Walls in Clay," <u>Proceedings</u>, Institution of Civil Engineers, Vol. 7, Part 1, Jul., London, pp. 629-654.
- Schultze, E. (1972), "Frequency Distributions and Correlations of Soil Properties," <u>Statistics and Probability in Civil Engineering</u>, Hong Kong University Press, distributed by Oxford University Press, London (as referenced in Harr, 1977).
- Singh, A. (1972), "How Reliable is the Factor of Safety in Foundation Engineering?" <u>Statistics and Probability in Civil Engineering</u>, Hong Kong University Press, distributed by Oxford University Press, London (as referenced in Harr, 1977).
- Skempton, A. W. (1945), "Earth Pressures and the Stability of Slopes," <u>The Principals and Applications of Soil Mechanics</u>, Institution of Civil Engineers, London (as referenced in Rowe, 1957).

- Teng, W. C. (1962), <u>Foundation Design</u>, Prentice Hall, Englewood Cliffs, NJ, 466 p.
- Terzaghi, K. (1954), "Anchored Bulkheads," <u>Transactions</u>, ASCE, Vol. 119, pp. 1243-1280.
- Terzaghi, K. (1955), "Evaluation of Subgrade Reactions," <u>Geotechnique</u>, Vol. 5, No. 4, May, pp. 297-326.
- Timber Engineering Co. (1956), <u>Timber Design and Construction Handbook</u>, McGraw-Hill Book Co., New York, NY, 622 p.
- Tschebotarioff, G. P. (1949), "Large Scale Tests with Model Flexible Bulkheads," <u>Final Report to U.S. Bureau of Yards and Docks, U.S.</u> Navy, Princeton, NJ, 272 p.
- Tschebotarioff, G. P. (1951), <u>Soil Mechanics, Foundations and Earth</u> Structures, McGraw-Hill Book Co., New York, NY, 655 p.
- Tsui, Y. (1974), "A Fundamental Study of Tied-Back Wall Behavior," dissertation in partial fulfillment of Ph.D. requirements, Duke University, Durham, NC, 258 p.
- United States Steel (1975), <u>Steel Sheet Piling Design Manual</u>, United States Steel Corp., Pittsburg, PA, 132 p.
- United States Steel (1976), <u>Steel Sheet Piling Handbook</u>, United States Steel Corp., Pittsburg, PA, 102 p.
- U.S. Naval Facilities Engineering Command (1971), <u>Design Manual DM-7</u>, U.S. Government Printing Office, Washington, D.C., 286 p.
- Wu, T. H. (1976), <u>Soil Mechanics</u>, 2nd ed., Allyn and Bacon, Boston, MA, 440 p.