

This manual is part of the Coastal Structures Handbook Series. The series is being prepared for the New York Sea Grant Institute by the Geotechnical Engineering group at Cornell University, coordinated by Fred H. Kulhawy.

COVER DESIGN: DICK GORDON

Communications
New York Sea Grant lnstitute
State University of New York
and Cornell University
411 State Street
Albany, New York 12246

FIRST IMPRESSIONS ARE SELECTED UNPUBLISHED SEA GRANT RESEARCH PAPERS AVAILABLE FOR THE PRICE OF PHOTOCOPYING.

LOAN COPY ONLY;

COASTAL STRUCTURES HANDBOOK SERIES
 BULKHEADS

Thomas M. Saczynski
and
Fred H. Kulhawy

School of Civil and Environmental Engineering
Cornell University
Ithaca, New York

1982

This research was sponsored by the New York Sea Grant Institute under a grant (NA81AA-D-00027) from the Office of Sea Grant, National Oceanic and Atmospheric Administration (NOAA), US Department of Commerce.

The analysis, design and construction of coastal structures is of great concern to a broad cross-section of the population living near major fresh and salt water bodies. Realizing this concern, the New York Sea Grant Institute instituted a profect to develop a manual to assist a variety of user groups in addressing the problems associated with the development of coastal structures and coastal facilities. Although the engineering community will find the manual to be of use, the focus of this manual has been to develop a simplified user's guide which focuses on the analysis, design and construction of coastal structures. The emphasis has been on understanding the structures and their behavior, minimizing higher level mathematics, and presenting design charts and design examples for smaller scale structures, typical of those of importance to a small community and the individual homeowner. Large scale developments should be handled by design professionals with expertise in the field.

This project was initiated in late 1977 by the New York Sea Grant Institute and has been developed by the School of Civil and Environmental Engineering at Corneli University. The project was initiated by Drs. Fred H. Kulhawy and Dwight A. Sangrey. Dr. Sangrey left Cornell before much progress was made, and subsequent work has been supervised by Drs. Fred H. Kuihawy and Philip L.-F. Liu.

Under the auspices of this project, the following reports have been prepared and submitted to New York Sea Grant:

1. "Coastal Construction Materials", November 1979, by Walter D. Hubbell and Fred H. Kulhawy
2. "Environmental Loads in Coastal Construction", November 1979, by Walter D. Hubbell and Fred H. Kulhawy
3. "Analysis, Design and Construction of Pile Foundations in the Coastal Environment", April 1981, by Francis K. -P. Cheung and Fred H. Kulhawy
4. "Breakwaters, Jetties and Groins: A Design Guide", March 1982, by Laurie A. Ehrlich and Fred B. Kulhawy
5. "Analysis, Design and Construction of Bulkheads in the Coastal Environment", May 1982, by Thomas M. Saczynski and Fred H. Kulhawy

Additional reports to be completed in the near future include:
a. Boat Ramps
b. Docks, Plers and Wharves

Further topics to complete the manual should be initiated prior to the end of 1982 .

ABSTRACT

The extensive employment of bulkheads in the coastal environment represents considerable capital expenditure. In many instances these bulkheads are constructed with little consideration for pertinent soil properties, soil-structure behavior or fabrication procedure. This work is intended to describe the complex behavior of these systems, to provide a rational and simplified design approach and to discuss other pertinent design and construction aspects.

Based upon the evidence disclosed by the literature, a particular design method was selected and a computer program was coded. The Free Earth Support method, as modified by Rowe, was used as the basis for a procedure to design anchored or cantilever buikheads in sand or clay. The program was then modified so that parametric studies could be conducted and the results could be incorporated into simplified design charts. The reliability of the chosen design method and resulting design curves were tested by probabilistic mechods.

Other design considerations, such as external loading, cost effectiveness, and component design and dimensioning, are elaborated upon. Examples are given which illustrate the use of the Free Earth Support method, as modified by Rowe, and the simplified method developed. Construction procedures and their impact upon wall performance are also discussed.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
1.1. Statement of the Problem 2
1.2. Approach to the Solution 10
1.3. Sumary 11
2 EVALUATION OF SOIL STRESSES AND THE DEVELOPMENT OF BULXHEAD DESIGN 12
2.1. Soil Strength and Horizontal Stresses 12
2.2. Classical Theories 19
2.3. Danish Rules 23
2.4. Limit Equilibrium Approaches 27
2.5. Studies by Tschebotarioff 30
2.6. Studies by Rowe 37
2.7. Numerical Methods Analyses 58
2.8. Soil-Structure Interface Strength 59
2.9. Summary 63
3 DEVELOPMENT OF A SMPLIFIED DESIGN APPROACH 66
3.1. Computer Program 66
3.2. Producing Data for Design Curves 73
3.3. Manipulating the Data 79
3.4. Summary 85
3.5. Conclusions 85
4 DESIGN PROCEDURES 106
4.1. Defining the Problem 106
4.2. Anchored Walls in Sand 108
4.3. Cantilevered Walls in Sand 114
4.4. Walls in Clay 114
4.5. Procedure for the Simplified Method 117
4.6. Conclusions 123
4.7. Summary 123

TABLE OF CONTENTS (Continued)
Chapter Page
5 DESIGN OF THE BULKHEAD SYSTEM 140
5.1. External Loading 140
5.2. Cost Effectiveness 149
5.3. Desfgn of Components 186
5.4. Anchorage 196
5.5. Summary 198
6 CONSTRUCTION CONSIDERATIONS 200
6.1. General Construction Procedure 200
6.2. Other Considerations 215
6.3. Summary 217
7 RELIABILITY AND FACTOR OF SAFETY 224
7.1. Assumptions 225
7.2. Anchored Walls in Sand 228
7.3. Anchored Walls in Clay 237
7.4. Summary and Conclusions 241
8 SUMMARY AND CONCLUSIONS 246
APPENDIX A: COMPUTER PROGRAM USER'S GUIDE 249
APPENDIX B: SOURCE PROGRAM 251
APPENDIX C: SAMPLE OUTPUT 271
APPENDIX D: FLOW TABLES FOR DESIGN 279
APPENDIX E: DESIGN EXAMPLES 285
REFERENCES 323

LIST OF TABLES

Table Page
2-1 Pile characteristics 41
2-2 Soil properties 42
2-3 Sumary of skin friction data 62
2-4 Soil stress coefficients 64
3-1 Relationship of soil properties (sand) 75
3-2 Relationship between drained strength of clay and unit weights 78
3-3 Modifying coefficients for curve fitting 83
3-4 Bending moment ratios 86
3-5 Summary of curve fitting 87
3-6 Variability in design curves (percent difference) 89
4-1 Normalizing parameters 119
5-1 Effect of 8 inch piles on flexibility 155
5-2 Engineering properties of steel sheet piling 164
5-3 Channels: American Standard 165
5-4a Allowable stresses for southern pine 166
5-4b Dimensional properties of lumber 168
5-5 Minimum yield point 170
5-6 Specific gravity of wood nembers 172
5-7 Allowable load in withdrawal 173
5-8 Allowable load per bolt in double shear 175
5-9 Sumary of allowable loads in common bolts used for splice plates 179

LIST OF TABLES (Continued)

Table Page
5-10 Recomended increase in dimensions of hardware 184
5-11 Tie rods 188
5-12 Turnbuckles 189
5-13 Distance requirements for bolted connections. 194
7-1 Probability of failure and factor of safety 232
7-2 Rellability of the design curves 236
7-3 Reliability of the simplified method 238
7-4 Probability of failure, anchored walls in clay 240
7-5 t Score required for a probability of failure less than 0.01 245

LIST OF ILLUSTRATIONS

Figure Page
1-1 Anchored wall 3
1-2 Typical timber piles 5
$1 \rightarrow 3$ Typical ball and socket 6
1-4 Cantilevered wall 7
1-5 Navy bulkhead 9
2-1 Horizontal and vertical stresses 13
2-2 Horizontal stress coefficients as a function of deflection 15
2-3 Mohr-Coulomb failure criteria 17
$2-4$ Stress distributions 20
2-5 Fixed Earth Support assumptions 21
2-6 Free Earth Support assumptions 24
2-7 Danish rules assumptions 26
2-8 Rupture figures 28
2-9 Kinematics of a rupture figure 29
2-10 Test apparatus 32
2-11 Sand drains to accelerate consolidation 33
2-12 Design assumptions 36
2-13 Stress tests 38
2-14 Apparatus for flexibility tests 40
2-15 Relative wall height and relative tie rod level 44
2-16 Effects of pile flexibility on pile deflections and passive stress 46

LIST OF ILLUSTRATIONS (Continued)

FigurePage
2-17 Tie rod and bending moment factors, sand 48
2-18 Typical operating and structural curves 50
2-19 Tie rod and bending moment factors, clay 54
2-20 Bending moment factors, cantilevered walls in sand 57
2-21 Results of finite element analysis of discontinuous walls 60
3-1 Input parameters for computer program 68
3-2 D^{\prime} vs. R_{D} : sand 91
3-3 P^{\prime} vs. R_{P} : sand 92
3-4 M^{+}vs. R_{M} : sand 93
3-5 D^{\prime} vs. R_{D} : clay (undrained) 94
3-6 P^{\prime} vs. R_{P} : clay (undrained) 95
3-7 M^{\prime} vs. R_{M} : clay (undrained) 96
3-8 $\mathrm{D}^{\text { }}$ vs. R_{D} : clay (undrained) 97
3-9 P^{\dagger} vs. R_{P} : clay (drained) 98
$3-10$ M^{\prime} vs. R_{M} : clay (drained) 99
3-11 D^{\prime} vs. R_{D} : sand 100
3-12 M^{\prime} vs. R_{M} : sand 101
3-13 D^{\prime} vs. R_{D} : clay (undrained) 102
3-14 M^{+}vs. R_{M} : clay (undrained) 103
3-15 D^{\prime} vs. R_{D} : clay (drained) 104
3-16 M^{\prime} vs. R_{M} : clay (drained) 105
4-1 Defining the problem 107
4-2 Stress distributions and resultants 109

LIST OF ILLUSTRATIONS (Continued)

Figure Page
4-3 Stress distribution for walls in clay 115
4-4 D^{\prime} vs. R_{D} : sand 125
4-5 P^{\prime} vs. R_{P} : sand 126
4-6 M^{\prime} vs. R_{M} : sand 127
4-7 D^{\prime} vs. R_{D} : clay (undrained) 128
4-8 P^{\prime} vs. R_{P} : clay (undrained) 129
4-9 M^{*} vs. R_{M} : clay (undrained) 130
4-10 D^{\prime} vs. R_{D} : clay (drained) 131
4-11 P^{\prime} vs. R_{P} : clay (drained) 132
4-12 M^{\prime} vs. R_{M} : clay (drained) 133
4-13 D^{\prime} vs. R_{D} : sand 134
4-14 M^{\top} vs. R_{M} : sand 135
4-15 D^{\prime} vs. R_{D} : clay (undrained) 136
4-16 M^{+}vs. R_{M} : clay (undrained) 137
4-17 D^{\prime} vs. R_{D} : clay (drained) 138
4-18 M^{\prime} vs. R_{M} : clay (drained) 139
S-1 Surcharge loads 142
5-2 Hydrostatic and seepage stresses 145
5-3 Reduction of effective unit weight 145
$5 \sim 4$ Reduction of horizontal stress in clay fills 147
5-5 Navy bulkhead 151
5-6 Dimensions of navy bulkhead 154
5-7 Types of anchorages 158

LIST OF ILLUSTRATIONS (Continued)

Figure Page
5-8 Location of anchorage 159
5-9 Capacity of deadmen 161
5-10 Section modulus of rectangular members 163
5-11 Comon bolts as fasteners 177
5-12 Transfer of loads from piles to wales 181
5-13 Typical grademarks 185
5-14 Locating the splice at tie rods 191
5-15 Typical wale and anchor details 195
5-16 Soil stresses acting on the anchorage 197
6-1 Typical construction sequence 201
6-2 Typical piles 204
6-3 Driving sheet piles in panels 206
6-4 Remedial actions 207
6-5 Standard wale details 209
6-6 Alternative anchoring schemes 212
6-7 Alternative anchorages 213
6-8 Typical bulkhead, wale outside 218
6-9 Typical bolting details, timber 219
6-10 Common arrangement of wales and tie rods 220
6-11 Typical wale and tie rod details 221
6-12 Steel bulkhead with timber fenders 222

English

A	cross sectional area
b	base dimension
c	cohesion
c^{\prime}	cohesion, factored
$\mathrm{C}_{\text {D }}$	modifying coefficient, depth
C_{P}	modifying coefficient, tie-rod puil
$\mathrm{C}_{\text {m }}$	modifying coefficient, bending moment
D	penetration depth
D^{\prime}	dimensionless penetration depth
d	diameter
E	elastic modulus
F_{p}	actual stress
FS	factor of safety
f_{b}	allowable bending stress
f_{c}	allowable compressive stress, also tie-rod reduction factor
$\mathrm{F}_{\mathrm{c}}{ }^{\text {¢ }}$	allowable compressive stress, perpendicular to grain
$f^{\text {p }}$	allowable bearing stress
f_{t}	allowable tensile stress
f_{v}	allowable shear stress
E_{y}	yield stress
G_{S}	specific gravity

LIST OF SYMBOLS (Continued)

H	free standing wall height
H_{A}	anchor level
H_{D}	sheet pile length ($\mathrm{H}+\mathrm{D}$)
${ }_{\text {HW }}$	high water level
H_{W}	low water level
h	height dimension
I	moment of inertia
K	horizontal stress coefficient
K_{0}	at rest stress coefficient
K_{a}	active stress coefficient
K_{p}	passive stress coefficient
L	distance between anchorage and passive stress resultant
LF	load factor
1	length dimension
M	bending moment
M ${ }^{\prime}$	dimensionless bending moment
N	I/2 (short dimension of base plate minus hole dimension)
P	tie-rod pull (force per unit length of wall)
P^{\prime}	dimensionless tie-rod pull
P_{f}	probability of failure
P_{H}	horizontal force resultant of surcharge load
P	allowable load in withdrawal (force per unit length)
Q_{L}	line load (force per unit length)
Q_{P}	point load (force)
q	evenly distributed surcharge load (force per unit area)

```
iIST OF SYMBOLS'(Continued)
```

R	reliability
${ }^{8}$	loading ratio, depth
R_{M}	loading ratio, moment
R_{P}	loading ratio, tie-rod pull
r_{d}	moment reduction factor
${ }_{5}$	moment reduction factor, unyielding anchorages
S	section modulus
S_{x}	standard deviation, independent variables
S_{y}	standard deviation, dependent variables
SM	safery margin
T	tie-rod load (force)
t	thickness dimension
V	shear (force)
W_{5}	resistance to withdrawal (force)
w	width; also driving width of a pile
x	independent variable
y	dependent variable
ek Letters	
α	relative wall height ($\mathrm{H} / \mathrm{H}_{\mathrm{D}}$)
B	relative anchor Level ($\mathrm{H}_{\mathrm{A}} / \mathrm{H}_{\mathrm{D}}$)
${ }^{Y} \mathrm{i}$	unit weight of $i^{\text {th }}$ soil Layer
Δ	deflection
δ	soil-structure interface strength (degrees)
θ	angle of inclination

LIST OF SYMBOLS (Continued)

σ_{H}	horizontal stress
σ_{V}	vertical stress
τ	constant, $M / \mathrm{H}_{\mathrm{D}}^{3}$
ρ	pile flexibility, $\mathrm{EI} / \mathrm{H}_{\mathrm{D}}^{4}$
ϕ	angle of internal friction of soil (degrees)
ψ	flexibility characteristic
ω	angle of backfill slope

To Convert From	To	Multiply By
inch	mma	25.4
feet	meter	0.3048
1 b	Newton	4.448
$\mathrm{lb} / \mathrm{in}^{2}$	$\mathrm{kN} / \mathrm{m}^{2}$	6.895
$1 \mathrm{~b} / \mathrm{in}^{2}$	MPa	0.006895
$1 \mathrm{~b} / \mathrm{ft}^{3}$	$\mathrm{kN} / \mathrm{m}^{3}$	0.1571
lb-ft	$\mathrm{N}-\mathrm{m}$	1.356
$1 \mathrm{~b} / \mathrm{ft}^{2}$	$\mathrm{N} / \mathrm{m}^{2}$	0.0478

CHAPTER I

INTRODUCTION

Weterfront use has always posed a very basic problem: access to waterborne vehicles from the shore. The bulkhead has been extensively employed as the solution to this problem. The casual observer may conclude that the installation of these critical structures is a simple process. In reality, the only simple aspect of bulkheads is their geometry. The actual design, construction and behavior of these soil-structure systems is complex. Simplified approaches have often resulted in either overly conservative design or faflure, both to the detriment of the owner. A rational approach is required which incorporates an understanding of bulkhead behavior, a sound computational procedure and good construction practices. The objective of this work is to provide such an approach, emphasizing a simplified design chart format.

Application of the approach suggested herein is intended for bulkhead sites where shore activity is relatively Light, such as private residences and marinas. Sufficient flexibility does exist, however, to permit use over a broad spectrum of loading and soil conditions. Discretion is always incumbent upon the designer, especially where bulkhead heights exceed 15 feet (4.57 m), soil conditions are complex, heavy loads are anticipated or environmental conditions are severe.

1.1. Statement of the Problem

Bulkheads are flexible soil retaining walls which derive their stability from the structural members and the strength of the soil. The soil, as well as providing stability, creates loads upon the system which must be resisted. Figure 1-1, illustrates the configuration of the basic anchored bulkhead.

The principal component of the system is the sheet pile. Horizontal stresses exerted by the soil on the backfill side of the wall tend to move the piles outward. This outward movement is resisted by that portion of the wall embedded in the subgrade. If the penetration of the toe into the subgrade is not sufficient, fallure will result whereby the toe "kicks out."

The horizontal stresses acting on the pile cause bending, making the pile function as a beam. Therefore pile design is twofold: the pile must be long enough to resist toe failure and it must be stout enough to resist flexural stresses induced by bending.

The sheet piles are tied together by wales. These members are designed to resist bending and are fastened to the piles by bolts or nails. At various points the wales will require splices which must resist the same loads as the wales.

The resistance to outward movement of the wall may be enhanced by employing a tie-rod and anchorage. Since a portion of the horizontal load is transmitted to the anchorage through the tie-rod, the tie-rod must be suitably designed. The anchorage must also be adequately dimensioned and properly positioned. If the anchorage is too close to the wall, it will be located within the failing soil mass, or failure wedge, and will be of no use.

Figure 1-1. Anchored wall

1.1.1. Sheet Piles

Sheet piles are usually made of steel, concrete, or pressure treated wood. Other materials may be used as well, such as aluminum and asbestos.

Wooden sheet piles are generally a foot wide and vary in Iength and thickness to suit design conditions. An interlocking system, such as tongue-and-groove, is built into the pile as shown in Figure 1-2.

The configuration of steel and concrete sheet piles varies considerably. The choice of the appropriate section is a matter of computing the required engineering properties. Steel and concrete sheet piles also have interlocking devices, such as ball-and-socket connections shown in Figure I-3 for steel. Concrete sheet pile incerlocking is normally tongue-and-groove.

1.1.2. Bulkhead Types

The anchored bulkhead described earlier may be altered to procuce another bulkhead type. The most basic variation is to remove the anchorage and tie-rod, creating a cantilevered wall (Figure 1-4). This variation may prove to be economical where relatively low walls are installed. In such cases, the additional penetration depth required to compensate for the lack of anchorage may very well be less costly than the anchorage.

A smooth- or flush-faced bulkhead may be designed by locating the wale on the backfill side of the wall. Although this may enhance boat docking to some extent, it requires more fasteners than the wale on the dredge side of the wall.

Figure 1-3. Typical ball and socket (United States Steel, 1975, facing p. 1)

Figure 1-4. Cantilevered wal1

The navy bulkhead is another variation of the anchored wall. These walls incorporate the use of 8 in (203 mm) diameter fender piles located in front of the sheet piles, as shown in Figure 1-5. The presence of the fender pile adds considerable rigidity to the system. This is warranted only for relatively high walls or for locations where there will be large external loads. Otherwise, the presence of the fender piles is not required.

Bulkhead types may also be categorized by construction sequence, i.e., a bulkhead may be a fill type or a dredge type. The sequence for a fill type is: drive the piles, install tie-rod and anchorage, then backfill. The sequence for a dredge type is: drive the piles, install the tie-rod and anchorage, backfill, then dredge fin front of the wall to the desired depth. A consequence of construction sequence is the resulting stress distribution. Some advantage may be realized where dredge bulkheads are required as the soil behavior tends to be beneficial.
1.1.3. Soils

One of the most critical aspects of the bulkhead site is the type of soil present. In a very general sense, there are two types of soils that the designer must contend with: cohesionless soils, which can be referred to as sand, and cohesive soils, which can be referred to as clay. The behavior of sands is reasonably predictable and reliable designs may be rendered with minimal complications. Clays, on the other hand, are complex soils. Their strength varies considerably from point to point and their behavior depends upon a wide range of conditions, such as mineralogy, soil structure and stress history.

Figure 1-5. Navy bulkhead (AWPI, 1970, P. 3)

The presence of sand in the majority of bulkhead sites in New York State suggests that the design of most bulkheads may proceed in a straightforward manner. The less fortunate designer who must deal with clay is advised to use a cautious approach when attempting to determine the characteristics of the soil. A more detailed discussion regarding site and soil characterization may be found in textbooks (e.g., Wu, 1976).

1.2. Approach to the Solution

The key element in the design of bulkheads is a sound computational procedure. Such a procedure depends largely upon the adequacy of the mathematical model chosen to represent the behavior of the system. An examination of prior investigations of bulkhead behavior nor only reveals weak and strong points of the various models, it also provides valuable insights as to the behavior itself. The valid aspects of the various approaches may then be incorporated, while questionable assumptions and details may be disregarded. A sound design procedure will be the result. This is the objective of the next chapter: to examine previous work, glean the useful facts, and formulate a computational approach.

Unfortunately, existing bulkhead design methods are cumbersome. Obviously, a simplified version of the most valid method is desirable. A simplified design procedure is therefore the major goal of this work. The third chapter explains such a simplified method and the means used to compose it. The fourth chapter explains the recommended design procedures.

Although the pile and tie-rod dimensions are the most difficult parameters to design, there are other considerations. Location and design of the anchorage, design of wales, splices and fasteners, extemal loadings, environmental factors, and the properties of the structural components are discussed in the fifth chapter. Other topics concerning the construction of bulkheads are contained in the sixth chapter.

The seventh chapter is a qualitative treatment of the reliability of bulkhead design. It explores the probability of failure in penetration depth, tie-rod pull, and moment of a hypothetical anchored wall. The design deals with sand and clay subgrades and lends credence to the statement that clay subgrades pose more difficult problems than sand subgrades.

Examples are provided in the appendices to illustrate each portion of the design procedure.
1.3. Summary

The problem to be solved by the bulkhead designer is to compute the dimensions of sheet piling so that the toe is driven to an adequate depth and the section is large enough to withstand bending stresses. If the designer opts for an anchorage and tie-rod, these must also be properly designed.

Herein, a procedure is developed in detail for the design of bulkheads.

CHAPTER 2

EVALUATION OF SOIL STRESSES AND TEE DEVELOPMENT OF BULKHEAD DESIGN

Prior to the turn of the century, bulkhead design was governed by classical approaches or merely by rules of thumb. As worldwide comerce increased, the demand for port and harbor facilities also increased. To accommodate this demand, sites had to be utilized which required bulkheads with greater dimensions than previously necessary. The larger dimensions fnvalidated rules of thumb and rendered the classical approaches obsolete because of economics. A state of the art evolved for bulkhead design as a result of the continuing attempt to understand the complex behavior of these structures.

Each investigation and explanation of bulkhead behavior required simplifying assumptions so that the complexities of horizontal soil stress distribution could be dealt with. An examination of the various thoughts on bulkheads serves to determine the adequacy of the underlying assumptions, to highlight valid contributions which should be incorporated into a design scheme, and to give an overall concept of the true nature of bulkheads.

2.1. Soil Strength and Horizontal Stresses

The computation of stresses in fluids is relatively simple. Consider for example a vat of water as in Figure 2-la. The stresses at point A are determined from the height of the water above A, h,

Figure $2-1$. Horizontal and vertical stresses
and the unit weight of the water, Y_{W}. The vertical stress is σ_{V}. Since the water has no shear strength, the horizontal stress, $\sigma_{\mathbb{P}}$ is equal to the vertical stress.

Soil stresses are more complicated to determine because the soil does possess shear strength. Therefore, the stresses in a soil mass at point B in Figure $2-1 b$ are given by: $\sigma_{v} \neq \gamma_{s} h$, where γ_{s} is the unit weight of the soil, and $\sigma_{H}=K_{V}$, where K is a horizontal soil stress coefficient. .

To illustrate the concept of horizontal soil stress coefficient, consider an infinitely rigid, infinitely thin wall retaining an adjacent mass of soil of height l , as snown in figure 2-2a. The magnitude of the coefficient K depends on the amount of deflection, Δ, with respect to the wall height, H. With no wall deflection, the soil is said to be at rest and the coefficient is designated as K_{0}. As the wall is deflected away from the soil mass, the stress exerted reduces to a lower equilibrium state, known as the active state. The active stress coefficient is designated as K_{a}. If the wall is deflected into the soil mass, the stress exerted by the soil increases until the soil reaches an upper equilibrium state, known as the passive state, The passive stress coefficient is denoted by K_{p}.

Tests performed by Terzaghi (1954) revealed that minimum deflections are required to reach the limiting active and passive states. As suggested by Figure $2-2 b$, relatively swall deflections are needed to reach the full active state and relatively large deflections are needed to reach the full passive state. Also indicared in the figure is that the net change in stresses is much greater for the passive

Figure 2-2. Horizontal stress coefficient as a function of deflection (Terzaghi, 1954, p. 1243)
case than for the active case for the same magnitude of deflection.
The soil stress coefficient depends upon the shear strength of the soil as well as the relative deflection of the wall. Shear strength is defined in terms of the Mohr-Coulomb failure criterion as

$$
\begin{equation*}
\tau=c+\sigma \tan \phi \tag{2-1}
\end{equation*}
$$

in which: $\tau=$ shear strength, $c=$ soil cohesion, $\phi=$ the angle of internal friction, and $\sigma=$ normal stress on the failure plane. Figure 2-3 illustrates this concept, which shows increasing strength with increasing nomal stress.

For the purpose of this work, shear strength will be in terms either c or ϕ. Sand, silt and gravel are assumed to possess only frictional strength, so that $c=0$. This applies to any combination of these granular soils. Clay soils are more complex, demonstrating different properties for short- and long-terll behavior. When a cohesive soil is rapidly loaded to failure, water pressure in the pores is not allowed to drain and the soil exhibits cohesive strength oniy. If the pore water is allowed to dissipate as the soil ts loaded to failure, it will exhibit frictional strength and may be assumed to maintain none of its cohesion. Therefore, the short-term strength of clays is represented by the undrained strength where $\phi=0$, and the long-term strength is represented by the drained strength where $c=0$. The drained and undrained strengths vary over a wide range.

The horizontal stress coefficients for soils with friction, including the drained case for clays, depend upon the angle of internal friction, ϕ, the angle of wall friction (i.e., strengch of wall-soil

Figure 2-3. Mohr-Coulowb failure criterion
interface), δ, and the angle of inclination, s, of the backfill with respect to the horizontal. The active stress coefficient, K_{a}, is given by

$$
\begin{equation*}
\left.K_{a}=\frac{\cos ^{2} \phi}{\left\{I+\left[\frac{\sin (\phi+\delta) \sin (\phi-w)}{\cos \delta \cos \omega}\right]^{1 / 2}\right.}\right\}^{2} \tag{2-2}
\end{equation*}
$$

The passive stress coefficient, K_{p}, is given by

$$
\begin{equation*}
K_{p}=\frac{\cos ^{2} \phi}{\left\{1-\left[\frac{\sin (\phi+\delta) \sin (\phi+\omega)}{\cos \delta \cos \omega}\right]^{I / 2}\right\}^{2}} \tag{2-3}
\end{equation*}
$$

The angle of wall friction is often taken as

$$
\begin{equation*}
\delta=\frac{2}{3} \phi \tag{2-4}
\end{equation*}
$$

for wood and steel walls (Rowe, 1952). Further discussion of the wallsoil interface appears later in this section.

The active and passive stresses, P_{a} and P_{p}, may be computed using Rankine's formulation for frictionless soils,

$$
\begin{align*}
& P_{a}=\gamma_{s} h-2 c \tag{2-5}\\
& P_{p}=\gamma_{s} h+2 c \tag{2-6}
\end{align*}
$$

when dealing with the undrained strength of clay.
If the length of the previously described hypothetical wall (Figure 2-2) is increased so that it penetrates into the subgrade to a depth, D, the wall deflection will produce an active state on one side and a passive state on the other. If D is sufficiently large, static equilibrium exists as the horizontal forces exerted on the active side
are balanced by the horizontal forces on the passive side. A cantilevered bulkhead is thus established as in Figure 2-4a. The depth of penetration requifed below the dredge level to achieve equilibrium can be decreased by employing a tie-rod and anchoring system near the top of the wall as in Eigure 2-4b. An anchored bulkhead is thus established.

With a known or assumed stress distribution, the depth of penetration, tie-rod load, and bendfng moment in the wall may be computed. By examining the evolution of bulkhead design, scrutiny of the underlying assumptions of each approach is possibie. As the evidence produced by each investigation is accumulated and evaluated, it becomes clear which assumptions are valid and which aspects of a procedure are worthy of retention. These are the components of the design procedure which will result in the most representative calculations of depth, tie-rod load and bending moment.

With these concepts in mind, an examination of the evolution of bulkhead design follows.

2.2. Classical Theories

2.2.1. Fixed Earth Support

The Fixed Earth Support method, one of the classical approaches, relies on the premise that the toe of the wall does not move. With this assumption, the wall may be considered as a cantilevered beam above the point of fixity, permitting the assumption of a reaction at the point of fixity, F, as shown in Figure 2-5a. The third assumption is that the passive stress resultant is applied at a depth 0.8D.

b. ANCHORED WALL

Figure 2-4. Stress distributions

Figure 2-5. Fixed Earth Support assumptions

One way to analyze this case is to assume a depth of penetration, D, and compute the deflections of the wall based upon simple beam theory. If the deflection is not zero at 0.8 D , another trial depth is attempted and deflections are recomputed. This process continues until a depth of penetration is achieved where the deflection computed at 0.8 D is zero. This is the elastic line approach (Figure 2-5b).

Another approach simplifies the computations by assuming a hinge at the point of contraflexure, C, in Figure $2-5 b$. This permits the wall to be analyzed as two equivalent beams. The upper portion is treated as a simply supported beam with reactions at the tie-rod level and point of contraflexure, as shown in Figure $2-5 \mathrm{c}$. The resultant forces are summed about the tie-rod level.

The active and passive stress coefficients suggested by Tschebotarioff (1951) are given by:

$$
\begin{align*}
& x_{a}=\tan ^{2}(45-\phi / 2) \text { and } \tag{2-7}\\
& K_{p}=I / K_{a} \tag{2-8}
\end{align*}
$$

Aside from the cumbersome numerical procedures involved, the Fixed Earth Support method has serious shortcomings that stem from the assumptions. Model tests have shown that deflections at the toe always occur (Rowe, 1952), chereby invalidating the premise that the wall may always be treated as a cantilever. Fixed Earth Support assumptions are good only for limited applications where toe deflections are relatively small.

2.3.2. Free Earth Support (FES)

This other classical method assumes that the toe of the wall is free to move, thereby enabling the full passive stress to develop along the pile below the dredge line. At the time of toe failure, the Free Earth Support (FES) stress distribution shown in Figure 2-6 can be computed using Coulomb's definitions for active and passive stresses.

Experiments have shown that the stress distribution for inadequate penetration is accurately described by the FES values (Rowe, 1952). This means that the minimum penetration depth where failure is iminent may be computed. The penetration is then adjusted so that the minimum depth is exceeded and a margin of safety is realized.

For penetration less than the required minimum depth, equilibrium is not achieved and the wall rotates as a rigid body. For penetration exceeding the minimum value, rigid body movement no longer occurs and the stresses are redistributed because of the Elexibility of the wall. This redistribution causes the computation of bending moments, based upon FES assumptions, to be overly conservative and thereby uneconomical. In spite of this inaccuracy, it still remains a useful procedure for computing penetration depths, although an alternative procedure for calculating bending moments and tie-rod loads is warranted.

2.3. Danish RuIes

In spite of the rational approaches provided by the classical methods, quay walls in Denmark around 1900 were built with the guidance that "dimensions appear to be reasonable" (Tschebotarioff, 1951). Increased commerce at this time led to the demand for higher walls,

Figure 2-6. Free Earth Support assumptions
which in turn necessitated more stringent design procedures. Use of the Coulomb procedure to check timber walls already buflt showed that the stresses in these walls were three to four times higher than allowable stresses for timber. Since the walls had withstood the test of time with no apparent malfunction, it was sumised that the actual stresses were substantially less than the stresses predicted from the Coulomb method. With this deviation in mind, the Danish engineers Christiani and Nielsen designed the Aalborg Pier in 1906. This was considered a daring undertaking, not only because the pier was underdesigned with respect to Coulomb guidelines, but also because it was made of reinforced concrete and not timber. Although the design has often been criticized for lack of conservatisw, the structure has stood for decades (Tschebotarioff, 1951).

One reason for the pier not fafling is the presence of piles driven through the backfill into the subgrade. These piles transfer any surcharge load to below the subgrade so that this load does not add to the horizontal soil stresses already acting on the wall. Another more significant reason is a redistribution of stresses because of soil arching. As the wall deflected horizontally, the fill deformed so that an arch of soil formed between the tie-rod and dredge levels. The arch then carried part of the horizontal load imposed by the fill. This arching concept formed the basis for a set of design procedures called the Danish Rules.

The stress diagram for this formulation appears in Figure 2-7. The Free Earth Support stress is reduced by an amount defined by the parabola with amplitude, q, such that:

Figure 2-7. Danish Rules assumptions

$$
\begin{equation*}
q=\frac{k(4+10 h / L)}{5+10 h / L} P_{m} \tag{2-9}
\end{equation*}
$$

and

$$
\begin{equation*}
k=\frac{1}{1+\frac{0 . I}{\sin \phi}\left(\frac{1+\square, E a}{L \sigma}\right)} \tag{2-10}
\end{equation*}
$$

in which: $h=d i s t a n c e$ from the tie-rod to the top backfill, $n=$ the ratio of bending moments at the tie-rod and at the dredge level, $E=$ the elastic modulus of the sheet pile, $a=$ the wall thickness, $P_{\mathrm{m}}=$ an assumed distributed load, and $\sigma=$ the allowable bending stress of the wall.

The depth of penetration is taken as 3 to 3.5 times the distance H_{w} and then multiplied by a safety factor.

Although the Danish Rules have produced successful bulkheads, this approach is not recomended as it lacks rigorous analytical or experimental substantiation. However, the rules demonstrated the validity of using reduced stresses acting on the wall.

2.4. Limit Equilibrium Approaches

A method for solving soil stress problems based upon rupture theory was devised by Hansen (1953). The underlying principle of this approach is that a soil mass in a state of failure takes on a specific geometry, i.e., a specific figure of rupture (Figure 2-8). When the figure is established, Kotter's equation is used to compute soil stresses and the kinetatics are computed as shown in Figure 2-9. By varying certain dimensions, critical rupture figures can be determined. The design of the structure can then be completed by using the forces and moments stemming from the critical conditions.

$$
\left[\begin{array}{r}
\text { ELAETC } \\
\text { BONES }
\end{array}\right.
$$

Figure 2-8. Rupture figures (Hansen, 1953, pp. 73-79)

Figure 2-9. Kinematics of a rupture figure (Hansen, 1953, p. 104)

Brinch Hansen's approach appears attractive in that it enables the designer to obtain a true concept of the forces involved which tend to produce a particular mode of failure. Use of KXtter's equation in computing the stresses of soils in a plastic state is quite valid and enhances the accuracy of the computations. In spite of these benefits, the procedure is very tedious because many iterations are necessary to arrive at a satisfactory solution and K8tter's equation is very cumbersome.

2.5. Studies by Tschebotarioff

Large-scale model tests of bulkheads were conducted by Tschebotarioff at Princeton (1948) to corroborate or refute earlier concepts of buikhead behavior. Tests were performed with three objectives in mind: reducing stresses acting on the wall from a fluid clay backfill; deterimine the effects of consolidation upon the magnitude of stresses exerted on the wall and observe the phenomenon of arching; investigate the distribution of stresses acting upon the wall.

The placement of dredge spoil as backfill is common practice as it greatly reduces the amount of fill required from a borrow area. There is an obvious advantage to this practice, but there are two significant disadvantages. Fluid clay has such a high water content that it behaves as a fluid, i.e., it has very little shear strength and the horizontal stresses are much higher than those from normal backfill. Also, the fluid clay must consolidate prior to any operations on its surface, such as construction of buildings. The studies involving fluid clay backfills are thus noteworthy.

An important consideration in these tests is the range of soils used. The angle of internal Eriction of the sands studied range between 32° and 36°, indicating that the sands were in the loose to medium dense range. The clay used, except for the fluid clay backfill, showed a cohesion of 300 psf (14.4 Pa) and an angle of internal friction of 17°, determined from consolidated-undrained shear tests. A mixture of sand and clay was produced with a resulting angle of internal friction of 32°.

Tests were conducted to determine the means required to minimize the horizontal stresses exerted by a fluid clay backfill. It was found that a sand dike placed at its natural angle of repose, shown as line 6-6 in Figure $2-10$, was fully effective in reducing the stresses exerted by the fluid clay fill, i.e., the stresses were the same as if the entire fill was composed of sand. The same resules were found when a sand blanket was placed whose width was equal to the wall height, as shown by line 8-8. A sand blanket whose width was 50 percent of the wall height, as shown by Iine $9-9$, was 30 percent effective. A blanket width of 10 percent of the wall height was found to have no effect.

The presence of the sand dike or sand blanket did not enhance the rate of consolidation, but prefabricated cylindrical drains did. Vertical drains were acceptable, but were difficult to place because of construction impediments. Horizontal drains, on the other hand, were conceived as shown in Figure $2-11$. It was felt that, although such drains would be expensive, they would be practical and would accelerate consolidation.

Figure 2-10. Test apparatus (Tschebotarioff, 1949, p. 25)

Figure 2-11. Sand drains to accelerate consolidation (Tschebotarioff, 1949, p. 28)

A major assumption of the Danish Rules is that an arch of soil forms between the tie-rod and dredge level which reduces the horizontal stresses acting upon the wall, as suggested by Figure 2-8. Tschebotarioff feit that this arching phenomenon warranted closer scrutiny. He made a distinction between dredge and fill bulkheads based upon his observations of arching.

For an arch of sand to form, a stable "abutment" must first be present. Then, as the wall deflects between the tie-rod and dredge level, an arch forms between these two abutments. For fill bulkheads, this abutment is present at the dredge level, but is lacking at the tie-rod until the fill is raised beyond that level. As the fill is placed, the wall deflects and no arch may form without the second abutment. Dredge bulkheads, on the other hand, allow the formation of an arch when the material in front of the wall is removed. When the two abutments are present, the dredging operation causes wall deflections between the tie-rod and final dredge level, and an arch forms. However, the arch is unstable as addicional tie-rod yield causes it to break down.

A recommended design procedure evolved after the third set of tests. The approach suggested was a simplified equivalent beam procedure where a hinge is assumed to be located at the dredge level. For bulkheads in a subgrade of clean sand, the depth of penetration is taken to be 43 percent of the wall height, H, based upon limited test results. The factor of safery against toe failure was said to be at least 2.0. The active stress was computed from:

$$
\begin{align*}
& P_{a}=K_{a} Y_{s} H, \text { where } \tag{2-11}\\
& K_{a}=\left(1-\frac{a}{f^{\prime} H}\right) 0.33 \mathrm{f}^{\prime \prime \prime}, \tag{2-12}
\end{align*}
$$

in which: $a=$ the height of soil above the tie-rod, f ' $=3.5$ and $f^{\prime \prime \prime}$ $=0.9$, based upon limited test results. Bending moments can be computed from the stress diagram (Figure 2-12). Tie-rod pulls should be designed for overstressing by dividing computed loads by the expression:

$$
\begin{equation*}
\left(1-\frac{a}{f^{\prime} H}\right) f^{\prime \prime} \tag{2-13}
\end{equation*}
$$

The term $f^{\prime \prime}=1.0$ for known subgrade materials and should be decreased for uncertainties in the subgrade.

A further observation made with respect to vibrating the backfill was that it increased the bending moments by 60 percent; similar vibration of the soil in front of the bulkhead tended to reduce the bending moments.

The tests at Princeton did not establish any valid relationship between the shear strength of clay and lateral stresses. This lack of correlation was interpreted to signify that once a safe depth of penetration was established, horizontal stresses in clay are a problem of deflection, not of rupture.

Since the range of soils tested was limited to a narrow band, the empirically derived formulas for bulkhead design are valid only for that range. As soils vary beyond the test range, their stress distributions must also vary, especially for clays. A more comprehensive design procedure is needed which encompasses a broader spectrum of soil conditions.

Figure 2-12. Design assumptions (Tschebotarioff, 1951, p. 561)

2.6. Studies by Rowe

Rowe contributed significantly to the understanding of bulkhead behavior (Rowe, $1951,1952,1955,1956,1957$). His work began by observing the performance of scale model bulkheads in cohesionless soils where he focused upon the effects of sheet pile flexibility and soil stiffness. Based upon his findings, he formulated a bulkhead design procedure. He then developed a theoretical and analytical model where bulkhead behavior could be described as a beam on an elastic foundation. Several years later he performed further tests on walls in a cohesive subgrade, coupled these data with his previousiy developed analytical model, and recommended a procedure for the design of wails in clay. In subsequent work, he compared designs based upon his recomended procedures with Hansen's approach. Rowe's work was extensive well-documented, and it provided an insight that is very helpful in uncerstanding bulkhead behavior.

2.6.1. Anchored Walls in Sand

Rowe felt that variations in the distribution of stress acting upon sheet pile walls resulted from variations in surcharge, tie-rod level, anchor yield, dredge level, pile flexibility and soil stiffness. To determine such effects, he instituted two series of stress tests and one series of flexibility tests (Rowe, 1952).

The stress tests were conducted on a 3 ft- 6 in (1.07 m) high model wall, as shown in Figure 2-13a. The sequencing of these tests is shown in Figure 2-13b. Stress measurements were made directly by stress gauges, and bending induced strains were measured by strain

Figure 2-13. Stress tests
gauges. The only soil used in the stress tests was dry sand in a loose state.

The flexibflity cests were conducted in the apparatus shown in Figure 2-14. The properties of the different piles used are given in Table 2-1. Different soils were used, each with a different angle of internal friction and dry unit weight. Each soil was tested in the loose state, with relative density equal to 0 percent, and in the dense state, with relative density equal to 100 percent. The soil properties are sumarized in Table 2-2.

2.6.1.1. Conclusions Based Upon the Stress Tests

The first series of stress tests demonstrated that the initial stress distribution deviated from Coulomb's FES predictions. As the dredging continued, however, the stress distribution eventually reached the free earch values when toe failure occurred. Prior to failure, stress increases developed above the tie-rod and decreases developed below, i.e., arching occurred. The stress reduction, because of arching, was substantially less than that predicted by the Danish Rules. The first series of tests also showed that a considerable shear force developed at the toe which tended to resist outward movement.

The second series of stress tests incorporated controlled anchor yield while the first series permitted none. The placement of various surcharge loads was another added feature. This series showed that arch instability resulted with anchor yield or additional dredging and that the stress distribution developed was in accordance with Free Earth Support predictions. The amount of yield necessary for the

Figure 2-14. Apparatus for flexibility tests (kowe, 1952, p. 38)

Table 2-1. Pile characteriscics (Rowe, 1952)

Material	Plate Thickness in (min)		$\begin{aligned} & \text { Pile Length } \\ & \text { in (I) } \end{aligned}$		$\begin{gathered} \text { Flexibility } \\ \log 0 \end{gathered}$	Test
Steel	0.330	(8.38)	42	(1.07)	-3.32	Stress Tests
Steel	0.164	(4.19)	36	(0.91)	-3.18	"
			32	(0.81)	-3.38	"
			30	(0.76)	-3.49	"
			28	(0.71)	-3.61	\%
			26	(0.66)	-3.74	"
Steel	0.109	(2.77)	36	(0.91)	-2.52	Flexibility Tests
			31.5	(0.80)	-2.74	"
			27.5	(0.70)	-2.98	"
			24	(0.61)	-3.22	"
			21	(0.53)	-3.45	"
Aluminum	0.083	(2.11)	29	(0.74)	-2.07	"
			26	(0.66)	-2. 26	"
			23	(0.58)	-2.48	1
			20	(0.51)	-2.72	"

Table 2-2. Soil properties (Rowe, 1952)

	Loose State: $\mathrm{D}_{\mathbf{r}}=0 \%$				Dense State: $\mathrm{D}_{\mathrm{r}}=100 \%$			
	$\frac{\text { Dry }}{\frac{1 b}{f t^{3}}}$	$\frac{\text { WL. }}{\left(\frac{\mathrm{kN}}{3}\right)}$	Angle of Int. Fric. (Degrees)	Void Ratio	$\frac{\mathrm{Dry}}{\frac{\mathrm{Db}}{\mathrm{ft}^{3}}}$	$\frac{\mathrm{Wt} .}{\left(\frac{\mathrm{kN}}{3}\right)}$	Angle of Int. Fric. (Degrees)	Void Ratio
Sand	90	(14.1)	30	0.78	100	(15.7)	41	0.53
Dorset Pea Gravel	98	(15.4)	30	0.74	110	(17.3)	37	0.49
Whinstone Chips	82	(12.9)	39	1.06	96	(15.1)	50	0.74
Ashes	40	(6.28)	40	1.76	56	(8.79)	50	0.95

complete breakdown of arching was equal to $H_{D} / 1000$. Rowe stated that the amount of yield one could expect in the field is between $H_{D} / 930$ and $H_{D} / 360$. In other words, arching is not a stable state under normal conditions.

The active stresses acting upon the model walls were found to agree closely with Tschebotarioff's predictions. Bending moments, however, were at times found to be as much as twice as high. Rowe surmised that this discrepancy could be resolved by observing the effects of varying the pile flexibility. This was the objective of the flexibility tests.

2.6.1.2. Conciusions Based Upon the Flexibility Tests

Rowe determined that prototype walls must behave in the same manner as the model walls if the conditions of similitude are maintained. The most important aspects of these conditions shown by the tests are two ratios. The first proportionality states that bending moment, M, and pile length, H_{D}; are related by the constant τ, such that

$$
\begin{equation*}
\tau=\frac{M}{H_{D}^{3}} \tag{2-14}
\end{equation*}
$$

The second states that the pile length, elastic modulus of the pile and moment of inertia of the pile are related by the pile flexibility number, ρ, such that:

$$
\begin{equation*}
\rho=\frac{H_{D}^{4}}{E I} \tag{2-15}
\end{equation*}
$$

He then concluded that the behavior of prototype and model walls must be similar if their relative wall heights, a (Figure 2-15) are equal,

and relative tie-rod levels, B, are equal, where

$$
\begin{equation*}
\alpha=\frac{H}{T_{D}} \tag{2-16}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\frac{\mathrm{H}_{\mathrm{A}}}{\mathrm{H}_{\mathrm{D}}} \tag{2-17}
\end{equation*}
$$

It was determined that pile flexibility had a major effect upon stress distribution and bending moment. As demonstrated in Figure 2-16a, a more flexible pile permits larger deflections, Δ, at the dredge level relative to the deflections at the toe. The larger deflection causes a greater amount of passive stress to be mobilized at that point. Consequently, the passive stress resultants occur closer to the dredge level with more flexible piles, as shown in Figure 2-16b. The influence of pile flexibilfty in dense subgrades is similar, but with a more pronounced effect as the passive stress resultant was located even closer to the dredge level.

The flexibilicy tests also incicated that tie-rod loads differ from the Free Barth Support values, depending upon relative tie-rod height, 3 , relative wall height, α, and pile flexibility. It was also shown that tie-rod loads could be increased by as much as 50 percent because of differential tie-rod yield and anchor settlement, i.e., adjacent tie-rods may deflect unevenly, thus causing one tie-rod to take more of the load.

2.6.1.3. Design Procedure for Anchored Walls in Sand

As well as providing a sound qualitative description of bulkhead behavior, Rowe's observations and conclusions served as a basis for

Figure 2-16. Effects of pile flexibility on pile deflections and passive stress
computing penetration depths, bending moments, and tie-rod loads. Since much of Rowe's observations were reported in terms of deviations from FES values, it is not surprising then to find that his recommended design procedure begins by computing the FES values. These values are modified by employing factors derfved from the tests, the factors depending upon relative wall height, relative tie-rod level, pile flexibility and the relative density of the subgrade.

It has been suggested that once a safe penetration depth has been achieved, bulkhead design is a matter of deflection (Rowe, 1952; Tschebotartoff, 1948). Rowe's work clearly established that the stress distribution acting upon the wall at the time of toe failure was accurately described by the FES method. Hence, the FES method can be used to compute a safe penetration when safety factors are applied to the loads. Once the penetration depth is computed, its maximum bending moment and tie-rod loads are computed using the FES stress distribution. The safety factor used for the penetration computation is not used for the moment and tie-rod computations.

The FES bending moment is used to determine the design bending moment by incorporating a reduction factor, r_{d}, chosen from Figure 2-17a. The reduction factor is read directly from the figure for the appropriate relative wall height, α, and subgrade relative density. The reduction factor is chosen for several values of pile flexibility, 0 . For the oonditions of similitude to be obeyed, the maximum bending moment is converted to

$$
\begin{equation*}
\tau_{\max }=\frac{\mathrm{M}_{\max }}{\mathrm{H}_{\mathrm{D}}} \tag{2-18}
\end{equation*}
$$

a. BENDING MOMENT REDUCTION FACTOR

c.MOMENT FACTORS FOR UNYIELDING ANCHORAGES

Figure 2-17. Tie rod and bending moment factors, sand (after Rowe, 1952, p. 45 ; 1956, p. 308)
where $M_{\text {max }}$ is the maximum bending moment in inch-pounds. An operating curve is then developed as shown in Figure 2-18 where

$$
\begin{equation*}
\tau_{o p}=\tau_{\max } \cdot \Sigma_{d} \tag{2-19}
\end{equation*}
$$

and $r_{d}=$ the reduction factor for that particular value of $\log \rho$. A structural curve is then developed for each value of ρ with

$$
\begin{equation*}
\tau_{S T R}=\frac{\psi}{\left(H_{D} \rho^{2}\right)^{1 / 3}} \tag{2-20}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi=\frac{f_{b}}{(E I)^{2 / 3}} \tag{2-21}
\end{equation*}
$$

where $\psi=$ flexibility characteristic, $f_{b}=$ allowable bending stress, $S=s e c t i o n$ modulus, $E=$ elastic modulus of the pile material, and $I=$ moment of inertia. The intersection of the operating and structural curves gives the solution in terms of t. The design bending moment then may be computed by using Eq. 2-18.

The tie-rod load is more simply computed by multiplying the FES value by the tie-rod load factor, f_{c}, found in Figure $2-17 b$. The factor, f_{c}, is read directly for the appropriate values of α and β.

For dredge type bulkheads with unyielding anchorages, additional reductions in bending moment may be computed by using Figure 2-17c. The reduction factor, r_{t}, is read for appropriate values of x and 3 .

The FES method and Rowe reduction methods are quite lengthy procedures. They are described in greater detail in a later section. Design examples may be found in the Appendices.

Figure 2-18. Typical operating and structural curves (Rowe, 1952, p. 54)

2.6.2. Comments by Terzaghi

Terzaghi reviewed the works of Tschebotarioff and Rowe shortly after Rowe's scale model test results were published (Terzaghi, 1954). He stated that Tschebotarioff was in error to suggest that the Fixed Earth Support method be used for all calculations since the fixity of the pile toe ranged between fully free and fully fixed, depending upon pile flexibility and the relative density of the subgrade material. He agreed with Rowe that soil stresses can be computed based upon Coulomb's formulation, the maximum bending moment can be found using the Free Earth Support method, and a reduction should be applied to the maximum moment, depending upon pile flexibility and subgrade relative density.

In this work Terzaghi also suggested the scope of exploration required for bulkheads. He recommended standard penetration tests and laboratory tests for sands. For clays, he recommended undisturbed sampling for laboratory tests in addition to vane shear tests. The exploration should also be of such an extent that it reveals soft soils beneath the pile tip which could cause excessive settlement and slope failures of submerged soils in front of the bulkhead which could undermine the stability of the toe.

2.6.3. Theoretical Analysis

Rowe performed a theoretical analysis of sheet pile walls by modeling the wall as a beam on an elastic foundation. The differential equation which governs the model behavior is

$$
\begin{equation*}
E I \frac{d^{4} y}{d x^{4}}-k v=0 \tag{2-22}
\end{equation*}
$$

in which: $E=$ elastic modulus of the beam (pile), $I=$ moment of inertia, $y=$ axis in the direction of beam deflections, $v=$ magnitude of beam deflections, $x=$ axis of the long dimension of the beam, and $k=$ subgrade modulus in stress units (Rowe, 1955).

For a subgrade modulus that increases linearly with depth, the differential equation must be solved by series. The resulting polynomial for Rowe's solution was of the 30 th order, a very cumbersome expression. Nevertheless, he proceeded to compute deflections and bending moments for walls in sand and in clay.

A comparison was made between the results of the theoretical analysis of anchored walls in sand and the observations made on the tests of model walls. The comparison showed very good agreement, except for very stiff walls in dense sand. This apparent discrepancy is not important since, it is pointed out by Rowe, the stiffness of the walls -
in the anomolous case was beyond the range normally encountered in the field.

The theoretical analysis is too unwieldly to use as a design tool, but the agreement with the experimental evidence of walls in sands suggests that it may be useful in providing information about walls in clay.

2.6.4. Anchored Walls in Clay

Rowe approached the problem of a wall in clay as a beam on an elastic foundation (1957). He stated that the subgrade modulus could be related to its cohesion in terms of Skempton's stability number (1945),

$$
\begin{equation*}
S_{t}=\frac{c}{\gamma_{s} h+q} \quad \sqrt{1+\frac{c}{c_{w}}} \tag{2-23}
\end{equation*}
$$

in which: $c=$ cohesion in the subgrade, $c_{w}=$ adhesion on the wall, $h=$ overburden stress of the fill , and $\mathrm{q}=$ surcharge. He also noted that the term $\sqrt{1+\frac{c}{c_{W}}}$ could be taken as 1.25 in most cases.

Incorporating Terzaghi's work in determining subgrade moduli (Terzaghi, 1955), Rowe developed a relationship using the subgrade modulus, subgrade compressibility and stability number. The beam on elastic foundation analysis proceeded with variations of pile flexibility and stability number. Theoretical bending moments were compared with FES values and the percent reduction was plotted versus $\log \mathrm{p}$.

A series of scale model tests was performed which defined the Ifmits of applicability of the cheoretical analysis. The tests also substantiated the accuracy of the analysis. Correlating the theoretical and experimental data, Rowe presented three figures for the amount of reduction allowed as a function of stability number, which are shown in Figure 2-19. The figures represent pile flexibilities which will give three points on an operating curve. The flexibilities represented are: maximum stiffness for $\log \rho=-3.1$, minimum stiffness for $\log 0$ $=-2.0$, and a typical working stiffness for $\log \rho=-2.6$.

Operating and structural curves are generated in the same manner as for anchored walls in sand. Once the design flexibility is determined, Figure $2-19 b$ is used to find the required tie-rod load factor, using the stability number of the subgrade and design $\log p$ of the wall. A detailed procedure is found in a later chapter.

Figure 2-19. Tie-rod and bending moment factors, clay (after Rowe,
1957, p, 642)

Figure 2-19. Continued

2.6.5. Comparison with Limit Equilibrium Approach

Rowe computed bulkhead designs based upon Eansen's limit equilibrium analysis and compared these to the results of the scale model tests in sand (1956). In general, the limit equilibrium and model test results were in close agreement.

In addition to corroborating the moment reduction method, this comparison led to other observations that enhanced buikhead design. One such observation was that the most economical designs resulted where the relative wall height, α, was approximately 0.73 and the relative tie-rod location, β, was approximately 0.20 . The finding that tie-rod loads should be factored within a range between 0.88 and 1.25 was also a consequence of this comparison and is reflected in Figure $2-17 \mathrm{~b}$. And, based upon this work, it was clearly shown that with sufficient penetration, bulkhead design becomes a problem of deformation, not ultimate collapse.

2.6.6. Cantilevered Walls in Sand

One of Rowe's earlier works dealt with cantilevered walls in sand (1951). His studies proceeded in a manner similar to the anchored wall studies. A series of tests were conducted that compared the amount of moment reduction from the FES method depending upon relative wall height, α, pile flexibility, c, and relative density of the subgrade. The reduction curves shown in Figure 2-20 resulted from these studies.

Figure 2-20. Bending moment factors, cantilever walls in sand (after Rowe, 1951, p. 319)

2.7. Numerical Methods Analyses

The rapid development of the digital computer enhanced the viability of the finite element method of analysis (FEM) to a great extent. This method has been extremely valuable in describing the complex phenomena of soil-structure interaction. The finite element method has been applied to assess many soil stress problems.

One such application was an analysis of the Port Allen and Old River locks. Clough and Duncan developed an incremental finite element analysis with nonlinear, stress dependent, inelastic soil stress-strain behavior (1969). The analysis was accurate in predicting the behavior of these U-shaped, reinforced concrete structures as was shown by comparisons with the extensive instrumentation which was installed to monitor the locks.

An investigation of the behavior of high anchored bulkheads in Norway was reported by Bjerrum, Clausen and Duncan (1972). The bulkheads were instrumented with strain gauges and inclinometers were installed in the adjacent soil. A finite element analysis of the bulkheads was conducted using a modified version of the Port Allen computer program. Comparison of the FEM results with the instrumentation data and Rowe reduction method showed good agreement.

Finite element analysis has also been a tool for examining the behavior of tie back excavations. Although this behavior is somewhat different from bulkhead behavior in that anchors are employed at multiple levels and are basically unyielding, some observations can be applied to buikheads on a qualitative basis.

In a study by Tsui (1974), discontinuous wall behavior was examined. A soldier pile and lagging wall, or Berlin wall, was first analyzed by FEM as a continuous, planar wall, then as a discontinuous wall. An equivalent planar wall was developed by distributing the stiffness of the soldier piles across the spacing between adjacent piles. The discontinuous wall was modeled by stimulating the ties as spring supports, applying a soil stress of 1 tsf ($96.2 \mathrm{~N} / \mathrm{m}^{2}$) and varying the soil modulus as $100 \mathrm{tsf}\left(9.61 \mathrm{kN} / \mathrm{m}^{2}\right), 200 \mathrm{tsf}\left(19.2 \mathrm{kN} / \mathrm{m}^{2}\right)$, and 400 tsf ($38.5 \mathrm{kN} / \mathrm{m}^{2}$). Comparisons of these two models (Figure 2-21) show that deflections in the lagging were 70 percent greater for the planar wall in soft soil, and 27 percent greater in stiffer soil. The Berlin wall behavior is analogous to the behavior of navy bulkheads where the 8 in (0.2 m) fender piles are similar to the soldier piles as they represent great increases in stiffness at discrete points along the wall. The navy buikhead problem will be addressed later in this work.

2.8. Soi1-Structure Interface Strength

The strength of che soil-structure interface is an important aspect of bulkhead behavior, as suggested by the Coulomb formulation for active and passive soil stress coefficients (Eqs. 2-2 and 2-3). The interface strength, δ, was suggested by Rowe to be taken as $2 / 3 \phi$ for steel and timber sheet piles (Rowe, 1952). This recommendation was made without the corroboration of significant test results.

A more recent study has, however, addressed interface strength more comprehensively. Kulhawy and Peterson (1979) conducted tests using concrete blocks with four variations in roughness, three relative

Note: $1 \mathrm{ft}=0.305 \mathrm{~m} ; 1 \mathrm{psf}=0.0478 \mathrm{~N} / \mathrm{m}^{2}$

Figure 2-21. Results of finite element analysis of discontinuous walls (Tsui, 1974, p. 3-7-2)
densities for each of two soil types, and three notmal stresses. The tests were performed in a direct shear device.

It was pointed out that the causitive aspect of the interaction lay in the relative roughness of the structural face with respect to the roughness of the soil, i.e., large soil particles and small asperities in the wall allow the soil particles to skid across the wall, while small or large particles acting along a wall with high amplitude, small wavelength asperities tend to develop more friction.

The implications of the tests as they concern bulkheads are that: for precast concrete sheet piles, δ can be taken as 0.9ϕ; for steel and timber sheet piles, other data must be consulted, although the principles of relative roughness hold true.

Peterson et al. (1976), sumarized test conditions and results of investigations of skin friction, of particular interest are the ratios of δ / ϕ for steel and for wood, with the direction of frictional resistance parallel to the grain. These values are sumarized in Table $2-3$. Also of interest are values of δ that were determined, but without reference to ϕ. These are also shown in Tabie 2-3.

The significance of the sumarized skin friction data is that the value suggested by Rowe, $\delta=2 / 3 \phi$, is a reasonable value to use; it seems overly conservative in the case of wood sheet piles. However, the sample size of only eight values for wood is too small to be used for application to other design situations. In the case of steel, it can be seen that the mean value for ϕ is 37.2 degrees. This value obviously precludes granular soils in the loose state, which tend to show lower ratios of δ / ϕ (Peterson et al., 1976). Here Rowe's suggestion again appears reasonable.

The conservatism resulting from using $\delta=2 / 3 \phi$, in lieu of 0.8 , is reflected in Table $2-4$. It can be seen that the conservatism resules in small increases in the active case, a 17 percent increase in the passive case for loose soils, and a 54 percent increase for dense soils. With the exception of dense soils, the conservatism does not appear to be substantial. In the case of dense soils, penetration depths are already substantially less than those for loose soils. Thus, the conservatism results in only slight increases in depth when compared to depths computed using the less conservative assumption.

2.9. Summary

Tracing the evolution of thought that govems bulkhead design serves twopurposes: it provides an understanding of the complex interaction of the soil and the flexible retaining wall, and it presents。 rationale for choosing the optimum design procedure.

Although conservative, the classical methods provided rational approaches to design. Both methods assmed a linear stress distribution, but made contrary assumptions with respect to fixity at the toe of the pile. Later approaches assumed nonlinear pressure distribution. The Danish Rules allowed for reduced wall stresses because of arching of the soil between the anchor and dredge levels.

Large scale model tests performed by Tschebotarioff revealed that arching was unstable in bulkheads with yielding anchorages and that reductions of wall loads were because of stress distributions that deviated from the classical assumptions. His test results also suggested that high wall stresses from fluid clay backfill could be alleviated by using sand blankets or dikes adjacent to the wall.
Table 2-4. Soil stress coefficients

	$\delta=2 / 3 \phi$	$\mathrm{~K}_{\mathrm{a}}$	K_{p}	$\delta=0.8 \phi$	$\mathrm{~K}_{\mathrm{a}}$	${ }^{2}{ }_{\mathrm{p}}$
ϕ	20	0.279	5.74	24	0.270	6.70
30	26.7	0.179	16.7	32	0.171	25.7
40						

The extensive investigations by Rowe covered a broad spectrum of conditions and contributed significantly to the understanding of bulkhead behavior. His tests demonstrated that the stress distribution at the time of toe failure of a wall is accurately described using free earth support assumptions. The Eree Earth Support value for depth of penetration therefore specifies the minimum depth for a factor of safety of 1.0 . With increasing depths and increasing densities of subgrades, fixity approaches the Fixed Earth Support assumption (Terzaghi, 1955). Once a safe depth of penetration is'established, Rowe determined that the deviation of loads from the Eree Earth Support method is a function of subgrade strength and wall flexibility. A more applicabie model than the simply supported beam was used to describe the soil-structure interaction, f.e., the beam on elastic foundation with a linearly varying subgrace modulus. Rowe compared his model test results to the results of other investigators. He found that Tschebotarioff's suggested method was valid only for the ranges of soil stiffness and pile flexibility that were tested at Princeton. Within this range, there was close agreement. Comments by Terzaghi indicated that he agreed with Rowe's findings. The approach using the theory of plasticity proposed by Hansen also produced designs very similar to those resulting from the Rowe mechod. Considering the difficulties in manipulating the complex equations and rupture figures of Hansen's method, the Rowe approach offers a very attractive alternative.

Rowe's study of bulkheads was then extended to walls in cohesive subgrades. A method was derived from this investigation whereby
designs could be developed based upon the undrained strength of the soil.

The finite element method provides an accurate means to investigate the complex natures of soil-structure interaction and horizontal soil stresses. A proven FEM routine was used to evaluate a large bulkhead and the results compared favorably with instruments and strain gauges used to monitor the wall. The results also demonstrated good agreement with the Rowe method, thus adding more credence to the Rowe procedure. An investigation of tied-back walls served to qualitatively model and explain the mechanics of a discontinuous wall. The behavior of the soldier pile and lagging system can be expected to be somewhat similar to the behavior of the 8 inch fender pile and sheet pile system of a navy bulkhead. A discussion of these fmplications appears later in this work.

CHAPTER 3

DEVELOPMENT OF A SIMPLIFIED DESIGN APPROACH

The discussion in the preceding chapter illustrated the variety of approaches to builkhead design and showed that one approach is both reasonable and comprehensive. Therefore the kowe method, which incorporates the Free Earth Support method, with modifications to bending moment and tie-rod load, is selected as the basis for a simplified design method.

In spite of its obvious merits, the Rowe method is somewhat more involved than the simpler methods. This, coupled with a lack of understanding of bulkhead behavior, will lead engineers who have not benefited from extensive training in soil mechanics to employ less complex methods. The results can range from overdesigned, uneconomical wails to inadequately designed walls. For these reasons, a simplified approach is developed herein where design curves are generated from data utilizing the Rowe method. These curves can then be employed in conjunction with simple manipulations of the pertinent parameters to develop bulkhead designs.

3.1. Computer Program

The development of a design curve requires a substantial number of data points for establishing a clear trend. To produce these data by using the Rowe method and hand calculations would be a formidable task
and require a great deal of time. Use of the digital computer greatly diminishes the time necessary to produce a sufficient amount of data. A computer program was therefore developed that would yield bulkhead designs for cantilevered and anchored walls in sand and clay. The desired output consisted of penetration depths, tie-rod loads, and maximum bending moments for walls made of timber, A328 steel and A690 steel.

It was considered to be necessary that the program have the capability of dealing with any geometry (e.g., standing wall height, water level) and heterogeneous (multi-layered) solls with the assumption that each soil layer is isotropic and homogeneous. These arbitrary parameters define the problem and enter the program as input data. The parameters are (Figure 3-1):
$H=$ standing wall height,
$H_{A}=$ anchor level height,
$\mathrm{H}_{\mathrm{W}}=$ low water level height,
$Y_{i}=$ appropriate unit weight of ith soil layer,
$\phi_{i}=$ angle of internal friction of ith soil layer,
$c_{i}=$ cohesion of ith soil layer, and
$t_{i}=$ thickness of ith layer.
Since the Rowe method entails the use of curves, selected data points on the curves must be read in as data. The curves are factors to be applied against bending moments and tie-rod loads for anchored walls in sand (Figure 2-17), anchored walls in clay (Figure 2-19) and cantilevered walls in sand (Figure 2-20).

Figure 3-1. Input parameters for computer program

It was noted earlier that once a safe penetration depth is established, the problem becomes one of deflection. From Rowe's studies (1952), it was ascertained that the stress distribution at the time of toe failure is adequately described by Free Earch Support computations. Since this is the penetration depth at failure, a safety factor must be applied. Terzaghi suggested applying such a factor against the soil strength parameter (1954). Since shear strength of cohesionless soil varies with the tangent of the internal angle of friction:

$$
\begin{equation*}
\phi_{f}=\tan ^{-1}\left(\frac{1}{F S} \tan \phi\right), \tag{3-1}
\end{equation*}
$$

in which: $\phi_{f}=$ factored soil parameter, $\phi=$ unfactored soil parameter and $F S=$ a safety factor.

It follows that the computer program should factor the soil strength parameter and find the appropriate depth of penetration by the Free Earth Support method. Then, tie-rod load and maximum bending moment can be computed based upon unfactored soil parameters and Free Earth Support pressure distributions. The Free Earth Support procedure is detailed in a later section.

The computer program must then choose the proper factors for bending moment and tie-rod loads. It must, therefore, "enter" the proper curve at the proper place by interpolating. Since it is unlikely that relative densities can be accurately established in the field and reduction curves only provide for "loose" and "dense" sands, the program aust correlate relative density with the angle of internal friction. The routine must, therefore, arbitrarily select a friction angle of 30 degrees for 100 se sand and 40 degrees for dense sand. For
intermediate values the routine must interpolate and, for values outside this range, it must assign the upper or lower bound as appropriate. This argument also holds for the stability number of clays.

Once the proper "graphs" are selected by the program, an operating curve must be generated whereby a reduction factor is chosen for the maximum bending moment depending upon the pile flexibility number, ρ. A structural curve is developed based upon the material properties of the member in question, its shape factor and flexibility number, 0 . The intersection of these curves is found and the design bending moment is computed. This process must be accomplished for wood piles, and steel piles fabricated from A328 steel and A690 steel. A similar, but less complicated, process must occur for the tie-rod loads. The Rowe method is demonstrated in detail in a later section.

3.1.1. Subroutines *

The computer program developed for destgning bulkheads was entitled "WALL" and consists of a main program and 12 subroutines. A description of the various functions follows.

The main program serves to input and display data, to regulate data sent to subroutines and to make decisions as to which subroutine is to be used.

Subroutine "FACTOR" is first called to apply a safety factor against the strength parameter, compute active and passive stress coefficients, and to keep track of the unfactored strength parameters and associated coefficients.

Subroutine "DEPTH" arranges soil layers sequentially by depth. In addition to those already input, it identifies the depths of the water level and dredge level as layers. If this causes duplicity, a logical statement is invoked and the redundancy is eliminated.

Subroutine "Param" maintains the proper association between soil layers and their respective soil properties. It also computes the submerged unit weight for soils below the water table.

Subroutine "FORCES" is used to compute horizontal sofi stresses, resultant forces and moments based upon Free Earth Support calculations. The main program decides whether to use factored or unfactored soil stress coefficients. Moments are summed about the die-rod for penetration computations. The main program controls an iterative process where the depth of penetration is increased or decreased until the sum of moments about the tie-rod is equal to zero. When the depth of penetration iterations are completed, the main program directs "FORCES" to compute stresses and forces based upon the design penetration and unfactored soil stress coefficients. Output is generated for the factored and unfactored cases. For verification purposes, the following parameters are displayed for respective layer depths: active and passive soil stress coefficients, unit weight, overburden stress, horizontal stress, resultant force and moment. Penetration depth is also displayed.

Subroutine "TIE" is called to compute moments about the point of application of the passive stress resultant. The moments are based upon resultant forces from unfactored soil parameters. This subroutine is bypassed for cantilevered walls. The tie-rod load is displayed as output.

Subroutine "МОМ" locates the point of zero shear, then computes the maximum bending moment. Free Earth Support calculations are now complete and the point of zero shear and maximum bending moment are displayed.

Subroutine "ROWE" computes the bending moments and tie-rod loads used for design. It controls which reduction curves to use, i.e., anchored walls in sand or clay, or cantilevered walls in sand. No reductions are allowed for cantilevered walls in clay. In addition to selecting the proper curves, it serves to: interpolate between graphs, generate operating and structural curves, compute the design moment and tie-rod loads, and select the corresponding sections for wood members, A328 steel members and A690 steel members.

Subroutines "SAND," "CLAY," and "CANT" select the appropriate moment and tie-rod load factors based upon decisions made in the "ROWE" subroutine.

The intersection of operating and structural curves is accomplished by calling subroutine "POI." This subroutine solves for the point of intersection of two straight Ine segments that are defined by four points, two points from each curve. Linear approximation is adequate for anchored walls in sand because the curvature of the graph is spread over 25 points. A similar argument applies to cantilever walls in sand. For anchored walls in clay, however, only 3 points are given by the Rowe reduction curves, one each for:

```
log}p=-3.1 (stiff walls
log}\rho=-2.6 (working stress zone), and
log}\rho=-2.0 (first yfeld
```

This necessitates generating a curve with sufficient data points based upon a best fit of the 3 given points. A curve fitting algorithm is provided by subroutine "FIT" which performs a linear regression based upon bivariant log-normal distribution. The equation of the line of best fit is displayed along with the correlation coefficient, the original data points, corresponding fitted data points, and the difference between the original and the fitted point. For the purpose of generating an operating curve with sufficient points to use in the "POI" subroutine, the equation of the line of best fit is utilized to produce 24 line segments for selected values of pile flexibility.

A computer source list, sample output and User's Guide may be found in the Appendices.

3.2. Producing Data for Design Curves

Once the program was debugged, it was modified so that variations of input parameters would produce enough data of statistioal significance for each case.

3.2.1. Case I: Anchored Walls in Sand

There were six curves generated for this case, each depending upon the relative density of fill with respect to the relative density of the subgrade. The free-standing wall height was varied for each combination of relative densities, the water level was varied for each wall height and the anchor level was varied for each height of water, i.e., $H=5$ 10,15 and $20 \mathrm{ft}(1.50,3.05,4.57$, and 6.10 m$), \mathrm{H}_{\mathrm{w}}=0.6 \mathrm{H}, 0.7 \mathrm{H}$ and 0.8 H , and $\mathrm{H}_{\mathrm{A}}=0.9\left(\mathrm{H}-\mathrm{H}_{\mathrm{w}}\right), 0.8\left(\mathrm{H}-\mathrm{H}_{\mathrm{W}}\right), 0.7\left(\mathrm{H}-\mathrm{H}_{\mathrm{W}}\right), 0.6\left(\mathrm{H}-\mathrm{H}_{\mathrm{W}}\right), 0.5\left(\mathrm{H}-\mathrm{H}_{\mathrm{W}}\right)$. The combinations of relative densities were:

Loose Fill/Loose Subgrade,
Loose Fill/Medium Subgrade,
Loose Fill/Dense Subgrade,
Medium Fill/Medium Subgrade,
Medium Fill/Dense Subgrade, and
Dense Fill/Dense Subgrade

The fill was considered to consist of one soil type which extended above and below the water level. The only property difference was in the unit weight. Above the water table, moist unit weight was assigned and below the water level, submerged unit weight was assigned. Unit weights were correlated with relative densities, which in turn were correlated to internal angles of friction. Table $3-1$ lists these relationships. A cotal of 360 data points was generated for Case I. 3.2.2. Case II: Anchored Walls in Clay (Undrained)

There were 3 curves generated for Case II, each depending upon the ratio of the moist unit weight of fill times the standing wall height to the cohesion of the subgrade:

$$
\begin{align*}
& \frac{c}{\gamma_{1} H}=0.25, \tag{3-2.a}\\
& \frac{c}{\gamma_{1} H}=0.30, \text { and } \tag{3-2,b}\\
& \frac{c}{\gamma_{1} H}=0.35 . \tag{3-2.c}
\end{align*}
$$

Table 3-1. Relationship of soil properties (sand)

ϕ	Relative Density	$\gamma_{\text {moist }}$	$\gamma_{\text {sat }}$
30°	Loose	$\begin{aligned} & 100 \mathrm{pcf} \\ & \left(15.7 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & 120 \mathrm{pef} \\ & \left(18.8 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$
35°	Medium	$\begin{aligned} & 105 \mathrm{pcF} \\ & \left(16.5 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & 125 \mathrm{pcf} \\ & \left(19.6 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$
40°	Dense	$\begin{aligned} & 110 \mathrm{pef} \\ & \left(17.2 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & 130 \mathrm{pcf} \\ & \left(20.4 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$

Note: $\gamma_{\text {sub }}=\gamma_{\text {sat }}-\gamma_{\text {water }}$ Use $\gamma_{\text {sub }}$ for the actual analysis.

These relationships produced stability numbers between 0.40 and 0.70 . Stability numbers greater than 0.70 produce results with very small depths of penetration and very low bending moments and tie-rod loads; the long-term (drained) condition will prevail under these circumstances. Stability numbers less than 0.40 will produce no data since, using the factored cohesion parameter, the scability number is less than 0.25 and walls cannot stand for any depth of penetration with such low stability numbers.

Sand backfill was assumed to be present from the dredge level to the top of the wall. Also assumed was that the sand backfill was in the loose state as it is generally not compacted with the bulkhead in place. Cohesive material above the dredge level produces low stresses for the undrained case since Rankine distribution prevails (Mana, 1978). In cases where cohesion is present above the dredge level, the drained concition will prevail.

The relationship establishing the density of the subgrade is given by:

$$
\begin{align*}
\gamma_{3} & =110+\frac{c}{200} \frac{1 b}{f t^{3}} \tag{3-3}\\
& =17.2+\frac{c}{31.3} \frac{\mathrm{kN}}{\mathrm{~m}^{3}} .
\end{align*}
$$

The relationship of densities for the fill material is the same as in Case I.

The wall heights, water level heights and anchor level heights were varied as in Case I so that 180 data points were generated.

3.2.3. Case III: Anchored Walls in Clay (Drained)

There were six curves generated for Case III, 3 curves for loose sand fill overlying a clay subgrade and 3 curves for homogeneous material. Relationships between the angle of internal friction and soil unit weight are shown in Table 3-2.

The wall heights, water level heights and anchor level heights were varied as before to give rise to 360 data points.

3.2.4. Cantilevered Walls

Case IV: Cantilevered Wails in Sand
Case V: Cantilevered Walls in Clay (Undrained)
Case VI: Cantilevered Walls in Clay (Drained)
The cases for cantilevered walls proceeded similarly to the anchored cases. The only difference was that, since there was no tierod, there could be no variation for anchor level. Consequently, there were five times fewer sets of data.

For all cohesionless cases, each set of data included the soil properties of each layer (K_{a}, γ, z), the rie-rod load (P) and the bending moment for $A 328$ steel, $A 690$ steel and wood (M_{1}, M_{2}, M_{3}). The depth of penetration was displayed as the depth to the bottom of the third layer $\left(t_{3}\right)$. The anchor level was also included where appropriate.

For the cohesive cases, each data set included the same parameters as listed above, plus the factored and unfactored cohesions and stability numbers.

Table 3-2. Relationship between drained strength of clay and unit weights

ϕ	$\gamma_{\text {moist }}$	$\gamma_{\text {sat }}$
24°	$\begin{aligned} & 94 \mathrm{pcf} \\ & \left(14.7 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & 114 \mathrm{pef} \\ & \left(17.9 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$
26°	$\begin{aligned} & 96 \mathrm{pcf} \\ & \left(15.0 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & 116 \mathrm{pcf} \\ & \left(18.2 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$
28°	$\begin{aligned} & 98 \mathrm{pcf} \\ & \left(15.4 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & 118 \mathrm{pef} \\ & \left(18.5 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$
30°	$\begin{aligned} & 100 \mathrm{pcf} \\ & \left(15.7 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{aligned} & 120 \mathrm{pcf} \\ & \left(18.8 \mathrm{kN} / \mathrm{m}^{3}\right) \end{aligned}$

Note: $\gamma_{\text {sub }}=\gamma_{\text {sat }}-\gamma_{\text {water }}$. Use $\gamma_{\text {sub }}$ for the actual analysis.

3.3. Manipulating the Data

The sets of data generated represented designs for a wide range of geometric and soil condftions. More than 1100 values now required rendering the data into a meaningful and usable format. The approach was to find the mathematical relationships between the loading conditions and the resulting penetration depths, maximum bending moments and tierod loads. The mathematical Eunctions to be formulated required simplicity, wide ranges of applicability and clearly established correlations.

3.3.1. The Normalized Parameters

Normalized parameters were sought as these would offer the most general format for design curves. Loading parameters were nondimensionalized in terms of the known geometric and soil parameters. Since Free Earth Support calculations are the basis for the Rowe method and involve unit weight times some length cubed, a combination involving the unit weight and thickness cubed of each layer was used as a basis for establishing relationships. Each of the three layers contributes to the loading and resulting design parameters, but the thickness of the third layer is initially unknown as this is the depth of penetration. The ratio, R, was therefore formulated as

$$
\begin{equation*}
R=\frac{r_{1} t_{1}^{3}+r_{2} t_{2}^{3}}{r_{3} H^{3}} \tag{3-4}
\end{equation*}
$$

The numerator represents the loads above the dredge Leve1. The denominator normalizes the term utilizing the unit weight of the subgrade. Since the depth of penetration, $D, i s$ unknown, the standing wall height was considered the most pertinent variable with length units.

With R established as an independent variable, nondimensionalized dependent variables were chosen as $\frac{D}{H}$ a dimensionless depth, $\frac{P}{\gamma L^{2}}=$ dimensionless tie-rod load, and $\frac{M}{\gamma^{3}}=$ dimensionless bending moment, where $L=$ some parameter of length units, and $Y=$ one of the 3 unit weights of the problem.

3.3.2. Testing the Relationships

Since piotting the dependent and independent variables by hand was a problem because of the amount of data, a curve-fitting technique was established utilizing Iinear regression analysis. This approach enables a curve of best fit to be established from a population of ordered pairs. The fit can then be tested from the Pearson productmoment correlation. For an ordered pair (x, y), in which: $x=$ the independent variable and $y=$ the dependent variable, a population of n ordered pairs can be analyzed with a resulting line of best fit. The Following Gaussian elimination scheme defines the process:

$$
\begin{array}{ll}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, & (\bar{x}=\text { mean }) \\
\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}, & (\bar{y}=\text { mean }) \\
S_{x}^{2}=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}\right)-\bar{x}^{-2}, & \left(S_{x}^{2}=\text { variance }\right) \\
S_{y}^{2}=\left(\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2}\right)-\bar{y}^{2}, & \left(S_{y}^{2}=\text { variance }\right) \\
S_{x}=\sqrt{\frac{S_{x}^{2}}{n-1},} & \left(S_{x}^{n}=\text { standard deviation }\right) \tag{3-9}
\end{array}
$$

$$
\begin{align*}
S_{y} & =\sqrt{\frac{S^{2}}{n}} \quad\left(S_{y}=\text { standard deviation }\right) \tag{3-10}\\
m & =\left(\frac{1}{n} \sum_{i=1}^{n} s_{i} \sum_{i=1}^{n} y_{i}-\sum_{i=1}^{n} x_{i} y_{i}\right) \div\left[\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}-\sum_{i=1}^{n} x_{i}^{2}\right], \tag{3-11}\\
b & =\bar{y}-m \bar{x}, \tag{3-12}\\
r & =m \frac{S_{x}}{S_{y}} \tag{3-13}
\end{align*}
$$

in which: $m=$ slope of the line of best fit, $b=y$-intercept of the line of best fit, and $r=$ the correlation coefficient of the test. The correlation coefficient for a bivariant normal distribution will range from zero, for a distribution of absolutely no relationship, to ± 1.0, for a distribution whose ordered pairs are all located on the line of best fit.

Some situations required the best fit of a curved line to data. This was impiemented using the natural logarithm of the variables, thus creating a bivariant log-normal distribution. The curve of best fit would then be described as:

$$
\begin{align*}
\ln y & =m \log x+b, o r \tag{3-13}\\
y & =e^{b} x^{m} \tag{3-14}
\end{align*}
$$

It became apparent that other parameters would need to be incorporated because low correlation coefficients resulted from the initial tests. Since penetration depth, tie-rod load and maximum moment vary with tie-rod height and water level height, it followed that these
parameters be utilized as modifying factors. Penetration depth is also a modifying factor for tie-rod loads and bending moments.

Situations with cohesion in the subgrades required a somewhat different loading ratio, R, because of a different stress distribution, such that:

$$
\begin{equation*}
R=\frac{\gamma_{1} t_{1}^{3}+\gamma_{2} t_{2}^{3}}{\left(5 c-\gamma_{1} t_{1}-\gamma_{2} t_{2}\right) H^{2}}=\frac{\gamma_{1} t_{1}^{3}+\gamma_{2} t_{2}^{3}}{\left(4 c r-\gamma_{1} t_{1}-\gamma_{2} t_{2}\right) H^{2}} \tag{3-15}
\end{equation*}
$$

Modifying factors are applied in a similar manner as for cohesionless soils with the addition of the dimensionless stability number, S_{t}.

Testing for the curve of best fit proceeded whereby the combinations of factors for a modifying coefficient, C , were varied until the highest correlation coefficient resulted. For example, for penetration depth for anchored walls in sand

* $R_{D}=C_{D} \cdot R$
$C_{D}=\left(\frac{{ }_{W}}{H}\right)^{2} \frac{H_{A}}{H-H_{A}}$,

Modifying coefficients are similarly formulated for moments and tie-rod loads, and are subscripted as M and and P respectively. Modifying coefficients are sumarized in Table 3-3.

When testing for best fit of these parameters, it was found that for the nomalizing term, $Y \mathrm{I}$, the best fit resulted for:

Table 3-3. Modifying coefficients for curve fitting

Case	$\begin{aligned} & \text { Depth } \\ & C_{D} \end{aligned}$	Bending Moment C_{M}	$\begin{aligned} & \text { Tie-rod PuII } \\ & C_{p} \end{aligned}$
I	$\frac{\left(\mathrm{H}_{\mathrm{W}}\right)^{2}}{(\mathrm{H})^{2}} \frac{\left(\mathrm{H}_{\mathrm{A}}\right)}{\left(\mathrm{H}-\mathrm{H}_{\mathrm{A}}\right)}$	$\frac{(\mathrm{D})}{(\mathrm{H})} \frac{\left(\mathrm{H}_{\mathrm{A}}\right)}{\left(\mathrm{H}_{\mathrm{W}}\right)}$	$\frac{(\mathrm{D})}{(\mathrm{H})} \frac{\left(\mathrm{H}_{A}\right)}{\left(\mathrm{H}_{W}\right)}$
II	$\frac{\mathrm{H}_{\mathrm{W}}}{\left(\mathrm{H}-\mathrm{H}_{\mathrm{A}}\right) \mathrm{S}_{\mathrm{T}}}$	1.00	$\frac{\mathrm{H}_{\mathrm{A}}}{(\mathrm{D})\left(\mathrm{S}_{\mathrm{T}}\right)}$
III	$\frac{\left(\mathrm{H}_{\mathrm{W}}\right)^{2}}{(\mathrm{H})^{2}} \frac{\left(\mathrm{H}_{\mathrm{A}}\right)}{\left(\mathrm{H}-\mathrm{H}_{A}\right)}$	$\frac{(\mathrm{D})}{(\mathrm{H})} \frac{\left(\mathrm{H}_{\text {A }}\right)}{\left(\mathrm{H}_{\text {W }}\right)}$	$\frac{(\mathrm{D})}{(\mathrm{H})} \frac{\left(\mathrm{H}_{\mathrm{A}}\right)}{\left(\mathrm{H}_{\mathrm{W}}\right)}$
IV	1.00	$\frac{\left(\mathrm{H}_{\mathrm{W}}\right)}{(\mathrm{D})}$	n/a
V	1.00	$\frac{\left(\mathrm{S}_{\mathrm{T}}\right)^{3}\left(\mathrm{H}_{\mathrm{W}}\right)^{3}}{(\mathrm{H})}$	n/a
VI	1.00	$\frac{\left(\mathrm{H}_{\mathrm{W}}\right)}{(\mathrm{D})}$	n/a

$$
\begin{align*}
\gamma= & \gamma_{1}, \text { for tie-rod pull, and } \\
\gamma= & \gamma_{3}, \text { for bending moment, using } L=\text { distance from tie-rod } \\
& \text { to point of application of passive pressure }= \\
& \left(H-H_{A}+\frac{2}{3} D\right), \tag{3-16}
\end{align*}
$$

The trials proceeded with the objective of attaining correlation coefficients of 0.90 or greater. This insured statistical significance of the relationship. Statistical significance does not necessarily imply engineering significance, that is, a correlation coefficient of 0.90 may still have an unacceptable deviation between the fitted value of a data point and the original value. Conversely, a lower correlation coefficient, say 0.75 , may have a smail deviation. For this reason, the correlation coefficient was used as a primary test value. If the value proved satisfactory, or improved values could not be attained, acceptance was based upon the percent difference between the fitted and original values.

Once the optimum fits were established, the data points and curves of best fit were plotted utilizing a COMPLOT DP plotter. For use as design charts, the curves were replotted without the data points.

It was apparent from examining the data that bending moments for A690 steel and wood members deviated from bending moments for A328 steel members in a consistent but negligible manner. It was therefore deemed appropriate to formulate a ratio of bending moments with those for A328 steel members as the basis. This was done by computer for anchored walls in sand and cantilevered walls in sand. A normal
distribution of ratios for each case was rendered and a mean value and standard distribution were computed. The results are summarized in Table 3-4.
3.4. Summary

The curves of best fit are shown in Figures 3-2 through 3-16. The equations of the curves are governed by:

$$
\begin{align*}
& \frac{D}{H}=m R_{D}+b \quad \text { (Penetration depth), } \tag{3-16}\\
& \frac{M}{\gamma_{3} L^{3}}=b R_{M}^{m} \quad \text { (Bending moments), and } \tag{3-17}\\
& \frac{\mathrm{P}}{\gamma_{1} L^{2}}=b R_{P}^{m} \quad \text { (Tie-rod pull). } \tag{3-18}
\end{align*}
$$

The modifying coefficients of the curves are listed in Table 3-4, and the curve constants m and b are given in Table 3-5. The variability of the design curves is displayed in Table $3-6$ in terms of the mean and standard deviation of percent difference. This parameter, percent difference, reflects the difference between the curve of best fit and the original data point after the ordinates have been dimensionalized, i.e., the parameters penetration depth, bending monent and tierod pull.

3.5. Conclusions

The data points in Figures 3-2 through 3-16 follow the specific trends indicated by the curves of best fit. The apparent scatter in some plots may be misleading as they seem to signify a large difference

Table 3-4. Bending moment ratios

	A690/A328	Wood/A328
Material Relationship	0.90	0.94
Mean	0.05	0.03

Table 3-5. Sumary of curve fitting

Case	Condition	Depth		Bending Moment		Tie-rod Pull	
		m	- b	-	b	m	b
1	L/L	-0.787	0.538	0.315	0.274	1.27	2.17
	L/M	-0.704	0.358	0.400	0.405	1.35	7.44
	L/D	-0.605	0.252	0.441	0.530	1.39	20.1
	M/M	-0.576	0.366	0.416	0.354	1.35	4.84
	M/D	-0.485	0.252	0.448	0.452	1.41	14.7
	D/D	-0.368	0.247	0.459	0.390	1.41	9.79
11	$\mathrm{c} / \mathrm{Y}^{\mathrm{H}}=0.25$	-0.681	0.976	3.44	76.3	0.120	0.677
	$\mathrm{c} / \mathrm{\gamma H}=0.30$	-0.253	0.307	1.49	93.7	0.178	0.641
	$\mathrm{c} / \mathrm{YH}^{\mathrm{H}}=0.35$	-0.172	0.175	0.960	118.0	0.233	0.473
Ill	Sand Fill				0.202	1.09	0.330
	$\phi=24$ $\phi=26$	-0.898 -0.854	0.919 0.752	0.313	0.218	1.18	0.678
	$\phi=28$	-0.840	0.627	0.321	0.251	1.25	1.33
	Homogeneous Clay $\phi=24$	-1. 17	1.42	0.304	0.224	1.11	0.685
	$\phi=26$	-1.04	1.03	0.313	0.205	1.17	1.02
	$\phi=28$	-0.865	0.735	0.312	0.261	1.25	1.60
IV	L/L	-0.492	1.42	-0.0365	0.103	n/a	n/a
	L/M	-0.407	1.03	-0.0538	0.133	n/a	n/a
	I/ /D	-0.295	0.753	-0.0788	0.149	n/a	n/a
	M/M	-0.299	1.02	-0.0474	0.117	n/a	n/a
	M/D	-0.219	0.739	-0.0678	0.136	n/a	n/a
	D/D	-0.176	0.728	-0.0541	0.122	n/a	n/a

Table 3-5. Continued

Case	Condition	Depth		Bending Moment		Tle-rod Pull	
		m	$\underline{\square}$	m	b	$\underline{1 m}$	b
V	$\mathrm{c} / \gamma^{\prime} \mathrm{H}=0.25$	-3.48	2.34	-0. 508	0.0223	n / a	n/a
	$\mathrm{c} / \gamma^{\mathrm{H}}=0.30$	-1.32	0.816	-0.271	0.0402	n/a	n/a
	$\mathrm{c} / \mathrm{\gamma H}^{\mathrm{H}}=35$	-0.878	0.484	-0.211	0.0378	n/a	n/a
V1	Sand Fill						
	$\phi=24$	-0.712	2.32	0.0829	0.0603	n/a	n/a
	$\phi=26$	-0.597	1.93	0.0334	0.0728	n/a	n/a
	$\phi=28$	-0.541	1.65	-0.0208	0.0911	n/a	n/a
	Honogeneous Clay $1=24$	-0.995	2.23	0.0803	0.0787	n/a	n/a
	$\phi=26$	-0.749	1.89	0.156	0.110	n/a	n/a
	$\phi=28$	-0.664	1.63	-0.0259	0.964	n/a	n/a

Table 3-6. Variability in design curves (percent difference)

Case	No. Values	Depth		Bending Moment		Tie-rod Pull	
		Mean	S. Dev.	Mean	S. Dev.	Mean	S. Dev.
1	360	0.09	3.01	0.55	10.5	0.24	7.03
II	180	0.20	5.46	0.47	9.28	-0.37	6.93
111	360	0.05	2.33	0.51	10.3	0.23	6.68
iv	72	0.01	0.60	0.02	3.14	n/a	n/a
v	36	-0.22	3.09	0.34	9.34	n/a	n/a
VI	72	0.00	0.72	0.02	1.95	n/a	n/a

between the curve and actual design values. The crue significance of the variability of the data may be established by investigating the reliability of the design. This examination is conducted in a later chapter and it incorporates data contained in Table 3-6.

The presence of the data points in the figures tends to interfere with use of the curves as design aids. For this reason, the curves are presented in Chapter 4 without the data points. The equations of the curve best fit may be used in lieu of the curves by employing the curve constants listed in Table 3-5.

The design curves reflect the bending moments computed for A328 steel only, but they may still be used for computing moments for A690 steel and wood. As suggested by Table 3-3, the bending moments for A690 steel and wood are slightly less than for A328 steel. It is, therefore, slightiy conservative to use values computed for A328 steel for the design of A690 steel or wood members.

Figure 3-2, D^{\prime} vs. R_{D} : sand

Figure 3-3. P^{\prime} vs R_{P} : sand

Figure 3-5. D' vs. R_{D} : clay (undrained)

Figure 3-7. M' vs. R_{M} : clay (undrained)

Figure 3-8. D^{\prime} vs R_{D} : clay (drained)

Figure 3-9. p^{\prime} vs. R_{p} : clay (drained)

Figure 3-10. M^{\prime} vs. R_{M} : clay (drained)

Pigure 3-11. D^{\prime} vs. R_{D} : sand

Pigure 3-13. D^{\prime} vs. R_{D} : clay (undrained)

Figure 3-14. M^{\prime} vs. R_{M} : clay (undrained)

Figure 3-15. D' vs. R_{D} : clay (drained)

Figure 3-16. M' vs. R_{M} : clay (dratned)

CHAPTER 4

DESIGN PROCEDURES

The following pages outline the steps to be followed for the Free Earth Support, Rowe reduction, and simplified methods. Each of these is described in general terms. Specific examples illustrating the application of these methocs in bulkhead design are contained in the Appendices.

4.1. Defining the Problem

Prior to any computations, the designer must take the information produced from the soils investigation and render it into a useful format. A sketch of the bulkhead geomety superfmposed on the anticipated final soil profile is extremely helpful. For simplicity, soil layer interfaces should be horizontal planes. For example: the existing ground surface slopes downward as in Figure 4-1a. For design purposes, it is more convenient to assume a profile as in Figure 4-1b. A level slope is assumed to exist on the dredge side of the bulkhead. It should be noted that the water table is identified as a soil layer interface. Although it is essentially the same soil below the water table as above, the moist unit weight is used above and the submerged unft weight below. Soil properties should be labeled for each layer.

a. Actual profile

b. Simplified profile

Figure 4-1. Defining the problem

The stress distribution, resultant forces, and centroids shouid be diagrammed as shown in Figure 4-2. Values should be tabulated in terns of rectangular and triangular stress distributions, resultant forces, centroids, moments about the tie-rod and moments about the point of application of the passive pressure resultant ($2 / 3 \mathrm{D}$).

Penetration depth, tie-rod load and maximum bending moment computations are facilitated and may comence.

4.2. Anchored Walls in Sand

4.2.1. Free Earth Support Computations

The Free Earth Support method uses statics to find the depth of penetration required for equilibrium, that is, the sum of moments taken about the tie-rod is zero. Using unfactored soil parameters would result in a factor of safety of unity, thus indicating inminent failure. Therefore, factored soil parameters are used to provide an adequate factor of safety against failure. For cohesionless soils,

$$
\begin{equation*}
\phi_{\mathrm{f}}=\tan ^{-1}\left(\frac{1}{\mathrm{SF}} \tan \phi\right) \tag{3-1}
\end{equation*}
$$

in which $\phi_{f}=$ factored soil parameter, $\phi=$ unfactored soil parameter, and $S F=$ a safety factor (commonly a minimum of 1.5). The factored active and passive stress coefficients are then computed in accordance with Equations $2-2$ and $2-3$. Figure $4-2$ shows FES stress distributions and fommlation to produce resultant forces, centroids, moment arms, and moments for the triangular and rectangular stress components.

Summing the moments about the tie-rod gives an equation:

$$
\begin{equation*}
a D^{3}+b D^{2}+c D+d=0 \tag{4-1}
\end{equation*}
$$

	트아ANGULAF
Fonctis	$\begin{aligned} & F_{F_{1}}=K_{a_{1}} t_{1} t_{1} \\ & F_{2}=K_{a_{2}}\left(q_{1}+x_{1}\right) t_{2} \\ & F_{5}=K_{a_{3}}\left(q_{t}+y_{1} t_{1}-y_{2} t_{2}\right) D \end{aligned}$

cmanars	CH_{4}
	CHz_{2}
	$\operatorname{CHz}_{3} / 2$

$F_{T_{1}}, H_{2} K_{a_{1}} X_{1} E_{1}^{2}$
$F r_{2}=1 / 2 K_{a n} y_{2}-z$
$F_{3}=1 / 2 K_{4} X_{4} y^{2}$
$\mathrm{FH}_{4}=1 / 2 \mathrm{~K}_{9} \mathrm{C}_{3} \mathrm{~g}^{2}$
C相 $7 / 3$ t

$M T_{1}=E_{-1}\left(C H_{4}-H_{A}\right)$
$H_{2}=F_{-1}\left(C_{t}+t_{1}-H_{4}\right)$

$M F_{1}=F=H_{1}(3 / 30+H-C t)$
$M T_{4}=F_{2}\left(430-t_{2}-G_{2}\right)$
$M H_{3}=\varnothing$

Figure 4-2. Stress distribution and resultants
in which: $a=\frac{1}{3}\left(K_{a 3}^{\prime}-K_{p}^{\prime}\right) \gamma_{3}, b=\frac{1}{2}\left(K_{a 3}^{\prime}-K_{p}^{\prime}\right) \gamma_{3}\left(H-H_{A}\right)+\frac{1}{2} K_{a}^{\prime}{ }^{\prime}$ $\left(q+\gamma_{1} t_{1}+\gamma_{2} t_{2}\right), c=K_{a 2}^{\prime}\left(q+\gamma_{1} t_{1}+\gamma_{2} t_{2}\right)\left(H-H_{A}\right)$, and $d=F_{R 1}$ $\left(\frac{1}{2} t_{1}-H_{A}\right)+F_{R 2}\left(\frac{1}{2} t_{2}+t_{1}-H_{A}\right)+F_{T 1}\left(\frac{2}{3} t_{I}-H_{A}\right)+F_{T 2}\left(\frac{2}{3} t_{2}+t_{1}\right.$ $-H_{A}$). K_{a}^{\prime} and K_{p}^{\prime} signify that ϕ_{f} was used.

A value for D is assumed and a trial-and-error process ensues until a satisfactory value for D is found, i.e., the sum of the moments is close to zero.

Including toe shear in the calculation tends to decrease the minimum penetration somewhat. Toe shear, T_{s}, is computed from the algebraic sum of the active and passive forces, the weight of pile and the effect of the soil-structure interface strength, such that:

$$
\begin{align*}
T_{s} & =\left(F_{T 1}+F_{T 2}+F_{T 3}+F_{R 1}+F_{R 2}+F_{R 3}-F_{T 4}\right) \tan ^{2}\left(\delta_{f}\right) \\
& +W_{P} H_{D} \tan \left(\delta_{f}\right) \tag{4-2}
\end{align*}
$$

in which: $W_{P}=$ weight per square foot of pile. The toe shear is then added to the passive stress resultant ($F_{T 4}$) and the iterations begin again. A recuced depth will result.

Once the penetration depth is established, the tie-rod load,
$P_{\text {FES }}$ (force per unit length of wall), is computed by summing moments about the point of application of the passive stress resultant, such that:

$$
\begin{align*}
& P_{F E S} L=M_{R 1}+M_{R 2}+M_{R 3}+M_{T 1}+M_{T 2}, \text { and } \tag{4-3a}\\
& L=\left(\frac{2}{3} D+H-H_{A}\right) \tag{4-3b}
\end{align*}
$$

This computation entails use of the unfactored soil parameters.
The maximum bending moment is then found by finding the point of zero shear, x , and summing moments about that point. If x is distance below the water table where shear is zero,

$$
\begin{equation*}
x=\frac{-b+\sqrt{b^{2}-4 a d}}{2 a} \tag{4-4}
\end{equation*}
$$

in which: $a=\frac{1}{2} K_{a 2} \gamma_{2}, b=K_{a 2} \gamma_{1} c_{1}$, and $d=F_{T 1}+F_{R 1}-P$. The maximum moment (ft-lbs per unit length of wall) is found from:

$$
\begin{align*}
M_{M A X} & =P_{F E S}\left(t_{1}+x-H_{A}\right)-F_{T I}\left(\frac{1}{3} t_{1}+x\right)-F_{R 1}\left(\frac{1}{2} t_{1}+x\right) \\
& -\frac{1}{6} K_{a 2} \gamma_{2} x^{3}-\frac{1}{3} X_{a 2} \gamma_{1} t_{1} x^{2} . \tag{4-5}
\end{align*}
$$

Again, unfactored soil parameters are used.

4.2.2. Rowe Reduction

Since the actual tie-rod loads and bending moments differ from those calculated by the Free Earth Support method (Rowe, 1952), the Rowe reduction method is applied. To proceed with this method, the following parameters must be computed:

$$
\begin{align*}
\alpha & =\frac{H}{H_{D}} \tag{4-6}\\
\beta & =\frac{H_{A}}{H_{D}} \tag{4-7}\\
\tau_{\mathrm{MAX}} & =\frac{12 \mathrm{M}_{\mathrm{MAX}}}{H_{D}^{3}} \tag{4-8}
\end{align*}
$$

Establishing the tie-rod load is simple when using Figure 2-17b: enter the tie-rod chart at the appropriate value and read off the factor, f_{c}, for the appropriate value. For unyielding anchorages, the factor r_{t} is also applied. The resulting tie-rod load

$$
\begin{equation*}
P=f_{c} P_{F E S} \tag{4-9}
\end{equation*}
$$

or, where appropriate

$$
\begin{equation*}
P=f_{c} r_{t} P_{F E S} \tag{4-10}
\end{equation*}
$$

Bending moment reductions are much more complex to figure. A pair of curves must be developed, one representing the loading and soil properties, the other representing flexibility characteristics of the pile. The operating curve is generated by values of

$$
\begin{equation*}
\tau_{o p}=\tau_{\operatorname{MAX}} r_{d} \tag{4-11}
\end{equation*}
$$

Values of r_{d} are taken from the moment reduction chart in Figure 2-17a for values of $\log p$.

The structural curve is generated by values of

$$
\begin{equation*}
\tau_{S}=\frac{\psi}{\left(H_{D}{ }^{2}\right)^{2 / 3}} \tag{4-12}
\end{equation*}
$$

in which $\psi=$ the flexibility characteristic and

$$
\begin{equation*}
\psi=\frac{E_{b}}{(E I)^{2 / 3}} \tag{4-13}
\end{equation*}
$$

where $f_{b}=$ the allowable bending stress, $S=$ the section modulus per
unit length of wall, $E=$ the elastic modulus, and $I=$ the moment of inertia per unit length of wall. For rectangular sections, such as timber sheet piles,

$$
\begin{equation*}
\psi=\frac{2 \mathrm{f}_{\mathrm{b}}}{\mathrm{E}^{2 / 3}} \tag{4-14}
\end{equation*}
$$

For a firsc approximation using Mariner steel sheet piling, ψ can be taken as 0.400 and, for A328 stee1, ψ can be taken as 0.260 . The intersection of operating and structural curves gives the design value τ; and the bending moment is found by

$$
\begin{equation*}
\mathrm{M}=\tau \mathrm{H}_{\mathrm{D}}^{3} \tag{4-15}
\end{equation*}
$$

The section modulus required is

$$
\begin{equation*}
s=\frac{M}{E_{b}} \tag{4-16}
\end{equation*}
$$

This design section modulus is the minimum section required. The section modulus of the actual section used is then introduced into the computation of the structural curve values. In this case the actual flexibility characteristic of the section, ψ, is used. The design section resulting will most likely be the same as that calculated using the first approximation.

An example of the Free Earth Support method with Rowe reduction is given in the Appendices.

4.3. Cantilevered Walls in Sand

The procedures are similar to those for anchored walls in sand. The difference for depth calculations is that moments are taken about the toe of the wall because there is no tie-rod. Moment reductions proceed in the same manner, except that reduction factors are taken from Figure 2-20.

An example of the design of a cantilevered wall is contained in the Appendices.

4.4. Walls in Clay

The short cerm behavior of anchored walls in clay is governed by the strength of the subgrade. The stability number, S_{t}, is the prime indicator of the ability of a wall to stand, where

$$
\begin{equation*}
s_{t}=\frac{2 c r^{\prime}}{q+\gamma_{1} t_{1}+\gamma_{2} t_{1}} \tag{4-17}
\end{equation*}
$$

in which: $c=$ the cohesion of the clay and r can be taken as 1.25 .
From the geometry of the problem (Figure 4-3a), equilibrium cannot be achieved when the overburden is greater than 4 or for any depth of penetration, or when S_{t} is less than or equal to 0.25 . The first step in designing walls in clay is, therefore, to compute the stability number. Design should be abandoned for values of S_{t} less than or equal to 0.33 .

If the stability number is of sufficient magnitude, depth of penetration is computed in the same manner as for walls in sand, except that the soil parameters are unfactored above the dredge level. The cohesion parameter is, however, factored. The ensuing computation is

Figure 4-3. Stress distribution for walls in clay
simplified because of the resulting rectangular stress distribution below the dredge level (Figure $4-3 \mathrm{~b}$). The sumnation of moments about the tie-rod becomes

$$
\begin{equation*}
a^{2} D^{2}+b D+d=0 \tag{4-18a}
\end{equation*}
$$

in which: $a=\frac{1}{2}\left(4 \mathrm{cr}-q-\gamma_{1} t_{1}-\gamma_{2} t_{2}\right), b=\left(4 \mathrm{cr}-q-Y_{1} t_{1}-\right.$ $\left.\gamma_{2} t_{2}\right)\left(H-H_{A}\right)$, and $d=\frac{1}{2} K a_{1} \cdot \gamma_{1} t_{i}^{2}\left(\frac{2}{3} t_{1}-H_{A}\right)+\frac{1}{2} K a_{2} \gamma_{2} t_{2}^{2}\left(\frac{2}{3} t_{2}+t_{1}-\right.$ $\left.H_{A}\right)+K a_{2}\left(Y_{1} t_{1}+q\right)\left(\frac{1}{2} t_{2}+t_{1}-H_{A}\right)$. The solution for depth becomes a matter of solving the quadratic equation

$$
\begin{equation*}
D=\frac{-b+\sqrt{b^{2}-4 a d}}{2 a} \tag{4-18b}
\end{equation*}
$$

The computations for tie-rod loads, point of zero shear, and maximum bending moment proceeds as for walls in sand.

4.4.1. Rowe Reduction Method, Anchored Walls in Clay

The procedure for moment reduction for walls in clay differs from that of walls in sand in the development of the operating curve. As seen in Figure 2-20a, a reduction factor, r_{d}, is given for only three different wall flexibilities:

```
log 0 = -3.6 (stiff walls),
Iog p = -2.6 (working stress), and
log 0 = -2.0 (first yield).
```

Each selection of r_{d} is based upon the stability number, S_{t}, and the relative wall height, α.

The structural curve is developed in the same manner as for walls in sand. Tie-rod loads are also computed similarly, with the exception that factors are given in Figure 2-20b.

An example of the design of anchored walls in clay for the undrained (short term) case is contained in the Appendices.

4.4.2. Cantilevered Wails in Clay (Undrained)

As no investigation has been performed on cantilevered walls in clay subgrades, no reductions are allowed for bending moment. Penetration and bending moment calculations proceed by the Free Earth Support method. It can be anticipated that the resulting design will be conservative.

4.4.3. Undrafned (Short Term) Condition vs. Drained (Long Tern) Condition

Calculations should be made for both drained and undrained conditions. It is conceivable that soft clay subgrades could result in the short term case controlling while stiff clay subgrades would most likely result in the long term case controlling. The stability number may provide some hint, i.e., stability numbers greater than 0.5 indicate that the long term case will probably control.
4.5. Procedure for the Simplified Method

The essence of the simplified method is to utilize non-dimensional loading to find non-dimensional design parameters. The desired design parameter is then computed by multiplying the non-dimensional parameter by a factor.

The basic loading ratio, R, is merely the ratio of loading conditions above the dredge line to those below. For cohesionless conditions (walls in sand, walls in clay, drained)

$$
\begin{equation*}
R=\frac{\gamma_{1} t_{1}^{3}+\gamma_{2} t_{2}^{3}}{\gamma_{3} H^{3}} \tag{3-4}
\end{equation*}
$$

and for clay (undrained)

$$
\begin{equation*}
R=\frac{\gamma_{1} t_{1}^{3}+\gamma_{2} t_{2}^{3}}{\left(5 c-\gamma_{1} t_{1}-\gamma_{2} t_{2}\right) H^{2}} \tag{3-15}
\end{equation*}
$$

in which $\gamma_{I}=$ unit weight of the $i^{\text {th }}$ layer, $t_{i} *$ thickness of the $i^{\text {th }}$ layer, $H=$ free standing wall height, and $c=$ cohesion of the subgrade.

A modifying coefficient, C, is used in conjunction with the loading factor for the particular design parameter sought, that is

$$
\begin{align*}
& R_{D}=R \cdot C_{D} \tag{3-17a}\\
& R_{P}=R \cdot C_{P}, \text { and } \tag{3-17b}\\
& R_{M}=R \cdot C_{M} \tag{3-17c}
\end{align*}
$$

in which $D=$ depth of penetration, $P=$ tie-rod load and $M=$ bending moment. A recap of the constituents of the modifying coefficients is shown in Table 3-4.

The non-dimensional design paramerers are dimensionless penerration depth, D^{\prime}, dimensionless tie-rod load, P^{\prime}, and dimensionless moment, M^{\prime}, and are summarized in Table $4-1$. L is the distance between tie-rod and point of passive stress application, or

Table 4-1. Normalizing parameters

Normalizing Parameter	Sand	Clay
Dimensionless Depth: D^{\prime}	$\frac{D}{H}$	$\frac{D}{H}$
Dimensionless Tle-Rod Load:	P^{\prime}	$\frac{P}{\gamma_{1} L^{2}}$
Dimensionless Moment:	M^{\prime}	$\frac{M}{Y_{2} L^{3}}$

$$
\begin{align*}
& L=\frac{2}{3} D+H-H_{A}, \text { and } \tag{4-14}\\
& L=\frac{2}{3} D+H \tag{4-20}
\end{align*}
$$

for anchored and cantilevered walls in sand, respectively.
The non-dimensional design parameters are found by entering the appropriate curve (Figures $4-4$ through $4-8$) at the computed loading factor and reading off the result. An alternative is to use the equation of the curve, inserting the independent variable, the loading factor, and computing the resulting non-dimensional parameter.

Each case is comprised of different site conditions, i.e., different relative densities or cohesions for the fills and subgrades. If the design condition does not coincide with the conditions of the graph (Tables 3-1 and 3-2, Equations 3-2 and 3-3) interpolation, extrapolation, or assuming the most conservative condition are choices left to the designer. For instance, if the site has a subgrade whose angle of internal friction ts 32 degrees, and loose fill will be placed, the designer may wish to interpolate between the "loose fill/loose subgrade" and "loose fill/medium subgrade" conditions. Or he may opt for the conservative approach and use "loose fill/loose subgrade."

The sequence for using the simplified method is to first compute the depth of penetration, D, then tie-rod load per unit length of wall, P, and finally, the bending moment, M. The design curves are entered using the appropriate loading factors, R. The mon-dimensional design parameters are read from the curve and are multiplifed by the normalizing factors to give the design values sought.

An alternative to using the curves is to use the formulation provided. The operations can be performed easily with a hand calculator.

The design curves are contained in Figures $4-4$ through $4-18$ at the end of this chapter.

4.5.1. Walls in Sand

Each curve on a design chart refers to a particular condition. For walls in sand, the descriptions signify
loose: in which $\phi=30^{\circ}, \gamma_{\text {moist }}=100 \mathrm{pcf}, \gamma_{\text {sat }}=120 \mathrm{pcf}$;
medium: in which $\phi=35^{\circ}, \gamma_{\text {moist }}=105 \mathrm{pcf}, \gamma_{\text {sat }}=125 \mathrm{pcf}$; and dense: in which $\phi=40^{\circ}, \gamma_{\text {moist }}=110 \mathrm{pcf}, \gamma_{\text {sat }}=130 \mathrm{pcf}$.

The first tem of the description refers to the condition of the fill, and the second refers to the subgrade. Each curve is labelled such that
$\mathrm{L} / \mathrm{L}=$ loose fill over loose subgrade,
$\mathrm{L} / \mathrm{M}=$ loose fill over medium subgrade,
$M / M=$ medium fill over medium subgrade,
$M / D=$ medium fill over dense subgrade, and
$D / D=$ dense fill over dense subgrade.
Variations in unit weight cause no significant problems in computations as these merely change the value of the loading factor, R. Deviations from the spectfied angle of internal friction on the other hand must be dealt with by interpolating or by assuming a conservative value. When actually performing the computations, the submerged unit weight should be used.

An example of the design for an anchored wall in sand appears in the Appendices.

4.5.2. Walls in Clay (Undrained)

Design curves for walls in clay (undrained) are identiffed by the condition describing the ratio of overburden stress to cohesion, that is, $c / \gamma H$, in which $\gamma=$ the unit weight of the fill, taken as 100 pcf $\left(15.7 \mathrm{kN} / \mathrm{m}^{3}\right), \mathrm{c}=$ the subgrade cohesion, and $\mathrm{H}=$ the free standing wall height.

Granular soil of loose sand is assumed for the fill as cohesion in the fill renders an unconservative stress distribution in the undrained condition. The Rankine active stress distribution,

$$
\begin{equation*}
a_{H}=\gamma h-2 c \tag{4-21}
\end{equation*}
$$

results in no loading against the wall, even for modest amounts of cohesion. The drained condition would control in such situations.

To identify the site in terms of the proper design curve, the moist unlt weight of the fill, free standing wall height, and conesion are combined as above. It is likely that interpolation will be required. High values of cohesion generally result in low values of penetration depth, thus a small range of values is presented in the charts.

An example of the design of an anchored wall in clay (undrained) appears in the Appendices.

4.5.3. Walls in Clay (Drained)

The design curves for walls in clay (drained) are identified by the fill component and subgrade strength. The fill component may consist of loose granular fill or it may consist of the same material as the subgrade. The minimum value of subgrade strength is an angle of fnternal friftion of 24 degrees. Lower values may be extrapolated from the curve data, but caution should be used since accuracy decreases as the range of extrapolation increases. Interpolation between curves should prove to be less of a problem.

An example of the design of an anchored wall in clay (drained) appears in the Appendices.

4.6. Conclusions

The use of the simplified curves enables the designer to compute the desired design parameters quickly. Because the Free Earth Support and Rowe methods involve many steps, there is greater potential for error than in using the design curves. In spite of the apparent simplicity, care must be taken to fnsure that graphs are read correctly and extrapolations do not extend beyond a reasonable range. Unusually high or low results should indicate that an error may have occurred.
4.7. Summary

The design procedure for the Free Earth Support method, Rowe reduction method, and the new simplified method were outlined. The complexity involved in the Free Earth Support and Rowe reduction methods renders those methods tedious and has high potencial for error. The
simplified method, if properly used, reduces the potential for error and is simple compared to the other methods. The examples found in the Appendices demonstrate the application of Free Earth Support, Rowe reduction, and new methods.

Figure 4-4. D' vs. R_{D} : sand

Figure 4-6. M' vis. R_{M} : sand

Pigure 4-9. M^{\prime} vs. K_{M} : clay (undrained)

Figure 4-10. D' vs. R_{D} : clay (drained)

Figure 4-11. P^{\prime} vs. R_{p} : clay (drained)

Wigure 4-13. D^{\prime} vs R_{D} : sand

Wigure 4-14. M'Vs. Ry: sand

Figure 4-15. D^{\prime} vs. R_{D} : clay (undrained)

Figure 4-16. M^{\prime} vs R_{M} : clay (undrained)

Figure 4-17. D' vs R_{D} : clay (drained)

CHAPTER 5

design of the bulkhead system

Bulkhead design requires more than determining penetration depth, bending moment, and tie-rod load. External loads must be considered and the structural components must be designed keeping in mind the cost effectiveness of various construction materials. External loads include surcharges imposed upon the backfill, hydrostatic imbalance in the backfill, ice-thrust, mooring loads, and impact loads. The structural components, i.e., sheet piles, tie-rods, wales, splices, and anchorages, must be dimensioned and detailed. The cost effectiveness of the entire system requires consiceration of the strength, longevity, availability, and fastening methods of the component materials.

5.1. Extemal Loading

External loads must be accounted for when designing an earth retaining system as these loads will increase the required penetration depth, maximum bending moment, and tie-rod load. The external loads that the designer must contend with are uniformly distributed loads, point loads, line loads, hydrostatic imbalance, ice thrust, mooring pull, and impact loads. Other environmental loads are discussed by Hubbell and Kulhawy (1979).

5.1.1. Uniformly Distributed Loads

Uniforaly distributed loads are easily dealt with. The horizontal stress, p_{h}, resulting from a surcharge, q (force/unit area), is given by

$$
\begin{equation*}
P_{h}=K_{a} q \tag{5-1}
\end{equation*}
$$

in which $X_{a}=$ the active stress coefficient. The resulting stress distribution is rectangular (Figures 2-6 and 4-1). The resultant forces are then incorporated into the equilibrium calculations for penetration depth and tie-rod loads.

When the design charts are used, the surcharge can be converted into an equivalent height of soil, $h_{e q}$, given by

$$
\begin{equation*}
h_{e q}=\frac{q}{\gamma_{1}} \tag{5-2a}
\end{equation*}
$$

in which $\gamma_{1}=$ the unit weight of soil comprising the backfill. The equivalent height of soil is merely added to the free standing wall height, H, and the resulcing dimension is used throughout the computations. An example is given in the Appendices.

5.1.2. Point and Line Loads

The effects of point and line loads are treated in a semiempirical manner (Terzaghi, 1954). Elastic theory, as expressed in the Boussinesq equation, was modified by experiment and the results given as in Figure 5-1. Krowing the intensity of the surcharge load, the designer uses the formula shown to compute the resultant horizontal force, P_{H}. The point of application is then found by choosing the appropriate dimension L for the corresponding value of min Figure 5-1b and the computations may proceed.

a. Horizontal stress due to line load (Teng, 1962, p. 89)

b. Horizontal stress due to point and line load (Naval

Facilities Engineering Comand, p. 7-10-10)

Figure 5-1. Surcharge loads

c. Horizontal stress due to point Ioad (Teng, 1962, p. 91)

d. Horizontal stress due to point load (Teng, 1962, p. 91)

Figure 5-1. Continued

When the design charts are used, an equivalent height of soil is employed in a manner similar to the uniformly distributed case. For point and line loads,

$$
\begin{equation*}
h_{e q}=\frac{P_{H}}{\gamma_{1}(H-L)} \tag{5-2b}
\end{equation*}
$$

in which: $H=$ the free standing wall height, and $L=$ the distance from the dredge level to the point of application of P_{H}. The free standing wall height is then adjusted by increasing the dimension by $h_{\text {eq }}$. Design examples are given in the Appendices.

5.1.3. Hydrostatic and Seepage Effects

Fills contafning significant amounts of soils of low permeability, such as clay, silt or fine sand, may cause a hycrostatic imbalance. Rapid tidal changes or substantial precipitation will cause saturation of the fill above the water level and, because of the low permeability of che fill, a hydrostatic imbalance results. The proper analysis of this condition calls for the use of a flow net (Figure 5-2a). If the soil is relatively homogeneous, an approximation of the pressure distribution as illustrated in Figure 5-2a (Terzaghi, 1954) may be used. As indicated by the flow net, the passage of water under the toe of the bulkhead has an upward gradient on the dredge side of the wall. The net result of this upward flow of water is a reduction of the effective unit weight of the soil, $\Delta \gamma$. The relationship between the hydrostatic imbalance H_{u} and reduced unit weight are shown in Eigure 5-3 and described by the relationship

Figure 5-2. Hydrostatic and seepage stresses (Terzaghi, 1954, p. 1243)

Figure 5-3. Reduction of effective unit weight (Terzaghi, 1954, p. 1243)

$$
\begin{equation*}
\Delta Y(p c f)=20 \frac{H_{u}}{D} . \tag{5-3}
\end{equation*}
$$

The reduced unit weight of the soil is then used for passive stress computations.

5.1.4. Ice Thrust

Ice thrust is a phenomenon which occurs when there is ground water or capillary water above the frost line. Horizontal thrust is the result of volume expansion of ice upon temperature change. Horizontal loads due to ice thrust are often too large to be designed for and should, therefore, be eliminated by employing free draining soils for fill material (Teng, 1962).

In addition to reducing large lateral loads due to cohesive material in the backfill, sand dikes or sand blankets (Figure 5-4) can be incorporated to eliminate the potential for ice thrust and hydrostatic imbalance. A backfill consisting of clean, coarse-grained soil is highly permeable and precludes any significant capillary action in the intergranular voids.

5.1.5. Mooring and Ship Impact

Loads associated with mooring pull can be assumed to be equal to the capacity of the winch used on the boat (Teng, 1962).

Ship impact loads are usually too high to design for. As an alternative, a fencering system should be installed to minimize the amount of impact.

Figure 5-4. Reduction of horizontal stress in clay fills (Teng, 1962, p. 373)

5.1.6. Load Factors

Load factors are employed to provide an adequate safety margin in cases where the extent of variations in the actual loading are unknown. Such a situation occurs when tie-rods are employed.

Tie-rod loads may be higher than the values calculated for a number of reasons. Settiement of the fill, or soft soil in the subgrade, causes the tie-rods to sag. This additional elongation is accompanied by an increase $\mathfrak{f n}$ stress.

Such overstressing could be eliminated by installing the tie-rod within a PVC pipe. As the soil beneath the pipe settles, the pipe moves, but not the tie-rod (Teng, 1962).

Tie-rods may also become overstressed because of improper construction methods, i.e., placing the backfill unevenly, compacting the backfill, surcharging the backfill without first calculating the effect, or overtightening the tie-rod.

Since tie-rods are susceptible to overstressing, the loads on tie-rods should be increased by 1.2 in cases where the designer is reasonably assured of $1 \pm t 51 e$ overstressing, and by 1.4 in cases where the designer is uncertain.

Load factors need not be applied to penetration, sheet pile anchorage, wale, or splice calculations. The safety factor used in penetration calculations (Equation 3-1) accounts for any variation in direct soil stresses acting upon the wall. Although the unfactored soil parameters are used to compute bending moment in sheet piles, the values are still conservative. Additionally, allowable loads in materials are substantially lower than failure loads.

Although load factors are not applied to penetration depths, an increase in penetration must be applied to prevent failure from overdredging and scour. In such cases, the designer arbitrarily increases the penetration depth based upon local codes or the amount of scour and overdredging that the designer considers likely to occur.

5.2. Cost Effectiveness

The optimum design is that which is the most economical and performs the desired function for a specifled lifetime, i.e., it is the most cost effective system. To attain this, the designer must consider the wall types, anchorage types, materials, and fastening methods available.

The discussion regarding materials is limited to steel and timber, as these comprise the majority of bulkheads. Reinforced concrete has been used for bulkheads. However, its use is often too costly for salaller walls and the complexity of the design procedure places its treatment beyond the scope of this work. Other structural materials, such as aluminum, are also available.

High strength bolts for steel walls, comon bolts and nails for wood walls, and turnbuckles for tie-rods are the fasteners which will be discussed.

5.2.1. Wall Types

5.2.1.1. Anchored Wall vs. Cantilevered Wall

It may be advantageous to employ a cantilevered wall system when the standing wall height is small or when some aspect of the site precludes the installation of an anchorage. For example, the cost of
utilizing an anchorage, with the required wales, tie-rods and connectors, may be higher than the cost of the increased depth of penetration required for a cantilevered wall; or, a utility line may be located which prevents employment of an anchorage. Use of the simplified design method facilitates the economic comparison between an anchored wall and a cantilevered wail in such cases.

5.2.1.2. Navy Bulkheads

A frequent sight along waterfronts is a structure commonly referred to as a navy bulkhead. It is characterized by wooden sheet pile members employed in conjunction with eight in (203 mm) diameter wooden timber piles (Figure 5-5). This structure gives the appearance of increased resistance to lateral loads when compared to smooth-faced bulkheads. The addition of the eight in (203 min) piles does provide added strength, but the flexibility of the system is decreased and the interaction between the soil and structure is affected.

A qualitative analogy can be inferred from the discussion in Chapter 2 regarding a soldier pile and lagging system (Tsui, 1974). The soldter pile is very stiff as compared to the lagging and this is roughly analogous to the stiffness of an 8 in (203 mm) pile relative to the stiffness of the sheet piles. As shown by the finite element analysis of the discontinuous walls (Figure 2-21), the displacement of the lagging was two times that of the soldier piles for softer soils, and 1.5 times for stiffer soils. When deflections of an equivalent, contimuous planar wall were computed, it was found that the displacement for the lagging was 1.6 times greater for the softer soils and 1.3

Figure 5-5. Navy bulkhead (AWPI, 1970, p. 5)
times greater for stiffer soils. One can therefore suggest that similar behavior occurs for the navy bulkheads. In other words, deflections, and therefore bending moments and bending stresses, are substantially greater at the midpoint between two piles than at the piles themselves.

As previously mentioned, the flexibility criteria for bulkhead design is deternined by the flexibility number, $p:$

$$
\begin{equation*}
\rho=\frac{H^{4}}{E I} \tag{2-15}
\end{equation*}
$$

in which: $H_{D}=$ total sheet pile length, $E=$ elastic modulus of the members, and $I=$ moment of inertia per unit length of wall (Rowe, 1952).

A brief investigation of varying member sizes leads to the essence of pile flexibility with respect to navy bulkheads. With total sheet pile length and the elastic modulus held constant, the governing factor determining wall flexibility is the moment of inertia. For rectangular members,

$$
\begin{equation*}
I=\frac{1}{12} b t^{3} \tag{5-4}
\end{equation*}
$$

in which: $b=$ member width, and $t=$ thickness. With the addition of an 8 in (203 mm) pile, the moment of inertia is greatly increased and can be determined utilizing the parallel axis theorem:

$$
\begin{equation*}
I=I_{1}+A_{1} d_{1}^{2}+I_{2}+A_{2} d_{2}^{2} \tag{5-5a}
\end{equation*}
$$

in which: I_{1} and $I_{2}=$ moment of inertia of sections 1 and $2, A_{1}$ and A_{2} $=$ cross sectional areas of sections 1 and 2 , and d_{1} and $d_{2}=$ distance from the neutral axis to the centroids of sections 1 and 2. For the
navy bulkhead (Figure 5-6):

$$
\begin{align*}
& I_{1}=\frac{\pi}{4} r^{4}=201 \mathrm{in}^{4}\left(8.37 \times 10^{7} \mathrm{~mm}^{4}\right) \tag{5-5b}\\
& I_{2}=\frac{1}{12} \ell t_{s}^{3} \tag{5-5c}\\
& A_{1}=\pi r^{2}=50.3 \mathrm{in}^{2}\left(3.24 \times 10^{4} \mathrm{~mm}^{2}\right) \tag{5-5d}\\
& A_{2}=\ell t_{s}, \tag{5-5e}\\
& d_{1}=c-\frac{1}{2} t_{s}, \text { and } \tag{5-5£}\\
& d_{2}=t_{s}+t_{w}+4-c(i n)=t_{s}+t_{w}+10.2-c(\mathrm{~mm}), \tag{5-5~g}
\end{align*}
$$

in which $\ell=$ length of wall under consideration, $c=$ distance to the neutral axis, $t_{s}=$ thickness of sheet pile, and $t_{w}=$ thickness of the wale. Moments of inertia and planar, equivalent moments of inertia were computed and are given in Table 5-1 for varying combinations of sheet pile thickness, wale thickness and lengths of wall. It is obvious that the presence of the 8 in (203 mm) pile adds considerably to the stiffness of the system, even when a planar equivalent is computed with a distance of 7 ft (213 m) between 8 in (203 mm) piles.

The effect of the increased stiffness, or decreased flexibility, on bulkhead design can be appreciated when selecting sheet pile thickness. The values of critical pile flexibility, O_{C}, defined as the minimum flexibility to permit moment reductions based upon Free Earth Support computations are

Figure 5-6. Dimensions of navy buikhead

Table 5-1. Effect of 8 fnch piles on flexibility

$\begin{gathered} 2 \\ \text { (inches) } \end{gathered}$	$\begin{gathered} t_{W} \\ \text { (inches) } \end{gathered}$	$\begin{gathered} \mathrm{t}_{\mathrm{s}} \\ \text { (inches) } \end{gathered}$	$\begin{gathered} c \\ \text { (inches) } \end{gathered}$	$\begin{gathered} \mathrm{I}_{4} \\ \left(\mathrm{in}^{2}\right. \end{gathered}$	$\left(\mathrm{n}^{4} / \mathrm{f} t\right)$
12	8	2	9.79	2954	2954
		3	9.36	4051	4050
		4	9.16	5077	5080
	10	2	11.15	3864	3860
		3	10.53	5270	5270
		4	10.18	6550	6550
	12	2	12.51	4903	4900
		3	11.70	6652	6650
24	8	2	7.65	4367	2180
		3	7.05	5650	2830
		4	6.81	6795	3400
	10	2	8.67	5742	2870
		3	7.87	7367	3680
		4	7.50	8775	4390
	12	2	9.70	7310	3660
		3	8.69	8040	4020
		4	8.19	11,020	5510
48	8	2	5.46	5809	1450
		3	4.99	7100	1180
		4	4.90	8265	2070
	10	2	6.15	7656	1910
		3	5.51	9260	2320
		4	5.32	10,655	2660
	12	2	6.80	9235	2310
		3	6.03	9320	2330
		4	5.73	13,360	3340
84	8	2	3.99	6796	970
		3	. 374	8028	1150
		4	3.82	9219	1320
	10	2	4.45	8962	1280
		3	4.08	10,460	1490
		4	4.08	11,840	1690
	12	2	4.92	11,440	1630
		3	4.41	12,060	1720
		4	4.34	15,560	2220
No piles	-	2	1.0		8
	-	3	1.5		27
	-	4	2.0	-	64
$\begin{array}{ll} \text { Note: } & 1 \text { in }=25.4 \mathrm{~mm} \\ & \text { I } \mathrm{ft}=0.305 \mathrm{~m} \end{array}$		$1 \mathrm{in}^{4}=4.16 \times 10^{-7} \mathrm{~m}^{4}$			
		$\frac{1 . \mathrm{in}^{4}}{\mathrm{ft}}=1.37 \times 10^{-6} \frac{\mathrm{~m}^{4}}{\mathrm{~m}}$			

```
log}\rho=-4.00\mathrm{ for dense sand, and
log \rho =-3.50 for loose sand (Rowe, 1952).
```

These values correspond to pile lengths:

$$
\begin{aligned}
H_{D} & =19.2 \mathrm{ft}(5.85 \mathrm{~m}) \text { for dense sand, and } \\
H_{D} & =25.6 \mathrm{ft}(7.80 \mathrm{~m}) \text { for loose sand, for } \\
I & =970 \frac{\mathrm{in}^{4}}{\mathrm{ft}}\left(1.33 \frac{\mathrm{~m}^{4}}{\mathrm{~m}}\right),
\end{aligned}
$$

the moment of inertia per mit length of an equivalent, planar wall, with

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{s}}=2 \mathrm{in}(50.8 \mathrm{~mm}) \text { and } \\
& \mathrm{t}_{\mathrm{w}}=8 \mathrm{in}(203 \mathrm{~mm}) .
\end{aligned}
$$

It can therefore be concluded that moment reduction should not be allowed for navy bulkheads of moderate height. It should also be noted that the planar equivalent should not be used for selecting sheet pile thickness because bending stresses can be considerably higher at the midpoint between 8 in (203 mm) piles than stresses computed for the planar equivalent.

Although the analogy between the soldier pile and lagging wall and the navy bulkhead is incomplete, it does suggest that a conservative approach be used in designing navy bulkheads. The consequence of this conservatism results in thicker sheet pile members and, therefore, higher costs. The convenience of a built-in fendering system may not be warranted because of this increased expense. However, large impact loads caused by large ships or breaking waves may necessitate the added cost of navy bulkneads.

5.2.2. Anchorage Type and Location

The anchorage may be deadmen, braced piles, sheet piles, or the footings of large structures (Figure 5-7). The passive stress developed in front of the anchorage determines the capacity of deadmen and sheet piles. Foundation footings derive their capacity to resist horizontal movement from the passive stress developed and from the friction developed along the bottom of the footing. Determination of pile capacity is beyond the scope of this work. Methods for computing pile capacity are given by Cheung and Kulhawy (1981).

The anchorage must be located so that it is not within the active failure wedge of the wall, which is defined by line segment $\overline{a b}$ in Figure 5-8. Since the anchorage develops passive stresses, the passive wedge of the anchorage must not intersect the active wedge of the wall. Line segment be represents the closest proximity of the wedges. The safe zone for anchorage Location is outlined by segments $\overline{\mathrm{ed}}$ and $\overline{\mathrm{dc}}$,

Figure 5-8 represents the anchorage location for a sheet pile length, F_{D}, of $17.5 \mathrm{ft}(5.33 \mathrm{~m})$ and angle of internal friction, ϕ, of 32 degrees, the geometry and soil parameter for example \#1. Point "a" marks the pile toe, and point " e " marks the intersection of line segment $\overline{a e}$, inclined at an angle equal to ϕ from the horizontal, with the surface of the fill.

The capacity of a continuous deadman or sheet pile anchorage (force per unit length of anchorage), is given by

$$
\begin{equation*}
P_{\mathrm{ULT}}=\mathrm{P}_{\mathrm{p}}-\mathrm{P}_{\mathrm{a}} \tag{5-6}
\end{equation*}
$$

Figure 5-7. Types of anchorage (Teng, 1962, p. 374)

Figure 5-8. Location of the anchorage
in which $P_{p}=$ passive stress resultant and $P_{a}=$ active stress resultant (Figure 5-9a).

Short deadmen located near the ground surface provide added capacity because of end friction (Figure 5-9b). The capacity of short deadmen is given by (Teng, 1962)

$$
\begin{equation*}
T_{T \pi T}=L\left(P_{p}-P_{a}\right)+\frac{1}{3} K_{o} Y\left(\sqrt{K_{p}}+\sqrt{K_{a}}\right) h_{L}^{3} \tan \phi \tag{5-7}
\end{equation*}
$$

in which $L=$ the deadmen length, $K_{0}=$ the at rest soil stress coefficient and may be taken as 0.40 (Teng, 1962), and $h_{L}=$ the height of the deadman. For cohesive soils, the relationship is

$$
\begin{equation*}
T_{\mathrm{ULT}}=L\left(P_{\mathrm{p}}-\mathrm{P}_{\mathrm{a}}\right)+2 \mathrm{c} \mathrm{~h}_{\mathrm{L}}^{2} \tag{5-8}
\end{equation*}
$$

in which $c=$ the soil cohesion.

5.2.3. Material Strength

Material strength affects the cost of components in two ways, i.e., higher strength materials are generally more expensive, and the strength of the material is a determinant of the component dimensions. Since the unit cost of materials is subject to wide fluctuation, the discussion of material strength will be confined to its influence on component dimensions.

Most of the structural components are flexural members, i.e., they must resist bending stresses. The dimensioning of the member is in terms of the section modulus, S, and is determined by the bending moment, M, and allowable bending stress of the material, f_{b}, such that:

Figure 5-9. Capacity of deadmen (Teng, 1962, p. 376)

$$
\begin{equation*}
S=\frac{M}{E_{b}} \tag{5-9}
\end{equation*}
$$

Since most of the timber components are rectangular, the dimensions may be selected using the relationship

$$
\begin{align*}
& s=\frac{1}{6} b h^{2}, \text { or } \tag{5-10a}\\
& s=\frac{1}{6} b^{2} h \tag{5-i0b}
\end{align*}
$$

depending upon the direction of the bending. Equation 5-10a is used for bending about the major axis, and Equation $5-10 b$ is used with respect to the minor axis, as shown in Figure 5-10.

The section modulif for structural steel members can be found in Table 5-2 for sheet pile sections and Table 5-3 for channel sections. Member dimensions are determined from section moduli which are, in turn, directly proportional to the bending moment, M, and inversely proportional to the allowable bending stress, f_{b}. Hence, the cost of the member is related to its strength in terms of its allowable stress.

Table 5-4a contains a partial list of allowable stresses for southern pine, the wood type most commonly used in New York. A more exhaustive list may be found in Timber Design and Construction Manual by the Timber Engineering Co. Columns 3 through 7 of Table 5-4a indicate the allowable: Bending stress (f), tensile stress (t), shear stress (H), compressive stress perpendicular to the grain ($c \perp$) and parallel to the grain (c), and the elastic nodulus (E). The shear stress is given by

Q. BENDING \triangle SOUT STRENG $A \times 15$

b. BENDING ABOUT WEAK AXIS

Figure 5-10. Section modulus of rectangular members

Table 5-2. Engineering properties of steel sheet piling (United States Steel, 1979, facing p. 1)

Table 5-4a. Allowable stresses for southern pine (Timber Engineering Co., 1956, p. 483)

7		2 Graded by	Allowable unit stresmen, psi				$\begin{aligned} & 7 \\ & E \end{aligned}$	
		3	4	5	6			
Species and entmoreial prade			f	\boldsymbol{H}	¢	E		
Pine, southern .	2 in. thiek only		SPIB					
DS 86 KD		3,000		165	455	2,250	760,000	
OS 72 KD	"	2,500		150	455	1,950	1,760,009	
DS 65 KD	n	2.250		135	455	1,800	1,760,000	
DS 58 KD	H	2,050		120	455	1,650	1,760,000	
No. 1 Denact KD	*	2,050		135	455	1,750	1,760,000	
No. 1 KD	\cdots	1,750		135	390	1,500	1,760,000	
No. 2 Denee KD	"	1,750		120	455	1,300	1,760,000	
No. 2 KD	*	4,500		120	390	1,100	1,760,000	
DS 86	2 in , thick outy		2,900	150	455	2,200	1,760,000	
DS 72	2 17.		2,350	135	455	1,800	1,760,000	
DS 65	19		2,050	120	455	1,600	1,760,000	
DS 58	0		1,750	105	455	1,450	1,760,000	
Na. 1 Dense	\cdots		1,750	120	455	1,350	1,760,000	
No. 1	*		1,500	120	390	1,350	1,760,000	
No. 2 Deme	*		1,400	105	455	1,050	1,760,000	
No. 2	\%		1,200	105	390	900	1,760,000	
DS 86	3 in \% 4 in	SPIP	2,900	150	455	2,200	1,760,000	
DS 72	*think		2,350	135	455	1,800	1,760,000	
DS 65	-		2,050	120	455	1,600	1,760,000	
DS 58	\cdots		1,750	105	455	1,450	1,760,000	
No. 1 Dente SR	\cdots		1.750	120	455	1,750	1,760,000	
No. 1 SR	"		1,500	120	390	1,500	1,760,000	
No. 2 Derwe SR	"		1.400	105	455	1,050	1,760,000	
No. 2 SR	"		1,200	105	390	900	1.760,000	
	5 or mory in		142,400	150	455	1,800	1,760,000	
$\begin{aligned} & \text { DS } 86 \\ & \text { DS } 72 \end{aligned}$	* thick		102,090	135	455	1,550	1,760,000	
DS 65			149,800	120	455	1,400	1,760,000	
DS 58	*		101,600	105	455	1,300	1,760,000	
Na. 1 Denwe SR	*		121,600	120	455	1,500	1,760,000	
No, 1 SR	\%		111,400	129	390	1,300	1,760,000	
No. 2 Denve SR	*		141,400	105	455	1,050	1,760,000	
Na. 2 SR	*		141,200	105	350	900	1,760,000	
IND 86 KD	1 in., $11 / 4 \mathrm{in}$	SPIS	2,600	165	390	1,950	1,760,000	
IND 72 KD	and $11 / 2$ in. thicix		2,200	150	390	1,650	1,760,000	
IND 65 KD			2,000	135	390	1,550	1.760,000	
IND 38 KD	*		1,750	120	390	1,400	$1.760,000$ $1.760,000$	
IND 50 KD	\cdots		1,500	120	390	1,100	1,760,000	
	13		2,500	130	390	1,900	1,760,000	
$\text { IND } 72$	n		2,000	135	390	1.550	1,760,000	
IND 65	\#		1,750	120	390	1,350	1,760,000	
IND 58	-		1,500	105	390	1,250	1,760,000	
LND 50	"		1,200	:05	390	900	1,760,000	

$$
\begin{equation*}
H=\frac{3 V}{2 b h} \tag{5-11}
\end{equation*}
$$

in which $V=$ the total shear force.
Table 5-4b concains dimensions and properties for lumber.
The allowable bending stress in steel members is a function of its minimum yield point, f_{y}. For steel sheet piles, ASTM A328, A572, and A690 (United States Steel, 1975),

$$
\begin{equation*}
f_{b}=0.65 \mathrm{f}_{\mathrm{y}} \tag{5-12a}
\end{equation*}
$$

For $A 36$ steel, which is commonly used for channels, tie-rods, and plates, (AISC, 1973),

$$
\begin{equation*}
f_{b}=0.60 \mathrm{f}_{\mathrm{y}}, \tag{5-12b}
\end{equation*}
$$

the allowable tensile stress, f_{t}, is evaluated the same as for bending stress, i.e.,

$$
\begin{equation*}
f_{t}=0.60 \mathrm{f}_{\mathrm{y}}, \tag{5-12c}
\end{equation*}
$$

and the allowable shear stress may be taken as (AISC, 1973)

$$
\begin{equation*}
\mathrm{f}_{\mathrm{v}}=0.40 \mathrm{f}_{\mathrm{y}} . \tag{5-12d}
\end{equation*}
$$

Table 5-5 reflects the minimum yield point for various ASTM steel specifications.

5.2.4. Fasteners

Timber components may be fastened by nails or conmon bolts. High strength bolts (ASTM A325) are used for steet.

Table 5-4b. Dimensional properties of lumber (Timber Engineering Co., 1956, pp. 362-363)

Nominal size in$\$ \times k$	Amarican Standardt difesed size (54S) in$t \times \hbar$	Area oí section His in.$A=\partial$	Moment of incria		Section modutur	
				$t_{b-1}=$	$S_{\pi+*}=$ bh2/6	$S_{\substack{x-p \\ b, h / 6}}=$
1×4	2/m× 340	2.83	3.10	0.14	1.71	0.37
1×6		4.39	- 11.59	0.22	4.12	0.57
1×8		5.86	27.47	0.30	7.32	0.76
1×10	2/39 $\times 91 / 2$	7.42	55.82	0.38	11.75	0.97
1×12	\% $\%$ ¢ 1142	8.98	99.02	0.46	17.22	1.17
2×2	1重 $\times 14$	2.64	0.58	0.58	0.72	0.72
2×4	154×34	5.89	6.45	1.30	3.56	1.60
2×6	154×54	9.14	24.10	2.01	8.57	2.48
2×8	14×712	12.19	57.13	2.68	15.23	3.30
2×10	$154 \times 91 / 2$	15.44	116.10	3.40	24.44	4.18
2×12	154×114	18.69	205.95	4.11	35.82	5.06
2×14	$1 \% \times 1312$	21.94	333.18	4.83	49.36	5.94
3×4	2\% \times 344	9.52	10.42	5.46	5.75	4.16
3×6	2\% \times 5\%	14.77	38.93	8.48	13.84	6.46
3×8	$2 \% \times 71 / 2$	19.69	92.29	11.30	24.61	8.61
3×10	25×942	24.94	157.55	14.32	39.48	10.91
3×12	$2 \% \times 111 / 2$	30.19	332.69	17.33	57.86	13.21
3×14	$254 \times 131 / 2$	35.44	538.21	20.35	79.73	15.50
3×16	$2 \% \times 151 / 2$	40.69	814.60	23.36	105.11	17.80
4×4	3\% $\times 34$	13.14	14.39	14.39	7.94	7.94
4×6	356 \times 54	20.39	53.76	22.33	19.12	12.32
4×8	3\% $\times 71 / 2$	27.19	127.44	29.77	33.98	16.43
4×10	$3 \% \times 91 / 2$	34.44	259.00	37.71	54.53	20.81
4×12	34×114	41.69	459.43	45.65	79.90	25.19
4×14	394×1342	48.94	743.24	53.59	110.11	29.57
4×16	$33 \times 151 / 2$	56.19	$1,124.92$	61.53	145.15	33.95
6×6	5\% \times 54	30.25	76.26	76.24	27.73	27.73
6×8	$5 \% \times 71 / 2$	41.25	193.36	103.98	51.56	37.81
6×10	$57 / 4 \times 91 / 2$	52.25	392.96	131.71	82.73	47.90
6×12	$59 \times 111 / 2$	63.23	697.07	159.44	121.23	57.98
6×14	5\% $\times 13 \%$	74.75	1,127.67	187.17	167.06	68.06
6×16	5\% $\times 151 / 2$	85.25	1,706.78	214.90	220.23	78.15
6×18	5\% $\times 171 / 2$	96.25	2,456.38	242.63	280.73	88.23
8×8	74×714	56.25	263.67	263.67	70.31	70.31
8×10	$71 / 2 \times 91 / 2$	71.25	535.86	333.98	112.31	89.06
8×12	$71 / 2 \times 111 / 2$	86.25	950.55	404.30	165.31	107.81
8×14	$74 / 2 \times 134 / 2$	101.25	1,537.73	474.61	227.81	126.56
8×16	$71 / 2 \times 1514$	116.25	2,327.42	544.92	300.31	145.31
8×18	$71 / 2 \times 1712$	131.25	3,349.61	615.23	382.81 474.31	164.06 18281
8×20	$71 / 2 \times 1945$	146.25	4,634.30	685.55	475.31	18281
10×10	$914 \times 91 / 2$	90.25	678.76	679.76	t42.90	142.90
10×12	$91 / 2 \times 111 / 2$	109.25	1,204.03	821.56	209.40	172.98

Table 5-4b. Continued

Nominal tind in, dx 1	$\|$Ameriean Standard dremed size (S4S) inn $d \times h$	Aren of sectign 4㙁 $A=b t$	Moment of intria		Seetion modulus	
			$\mathrm{I}_{\Delta x=1}=$	${ }_{b \cdot 4 / 12}=$	SJ- $=$ Wh $1 / 6$	$\underset{b 4 / 6}{S_{y-w}}$
10×14	91/2 $\times 131 / 2$	128.25	1,947.80	964.55	288.56	203.06
10×16	943, $\times 1514$	147.25	2,948.07	1,107.44	380.40	233.15
10×18	$91 / 4 \times 171 / 4$	166.25	4,242.84	1,240.34	484.90	263.23
10×20	$91 / 4 \times 194 / 4$	185.25	5,870.11	1,393.23	602.06	293.31
10×24	$974 \times 231 / 2$	223.25	10,274,15	1,679.03	874.40	353.48
12×12	$1116 \times 111 / 2$	132.25	1,457.51	1,457.51	253.48	253.49
12×14	$111 / 2 \times 134 / 2$	155.25	2,357.36	1,710.98	349.31	297.56
12×16	$1112 \times 151 / 2$	178.25	3,568.71	1,964.46	460.48	341.65
12×18	$111 / 2 \times 171 / 2$	201.25	5,136.07	2,217.94	586.98	385.73
12×20	$114 / 2 \times 191 / 2$	224.25	7,105.92	2,471.42	728.81	429.81
12×22	$114 / 2 \times 241 / 2$	247.25	9,524.28	2,724.90	885.98	473.90
12×24	$1154 \times 231 / 2$	270.25	12,437.13	2,978.38	1,058.48	517.98
14×14	1312 $\times 1346$	182.25	2,767.92	2,767.92	410.06	410.06
14×16	$1314 \times 151 / 2$	209.25	4,189.36	3,177.98	540.56	470.81
14×18	$1312 \times 171 / 2$	236.25	6,029.30	3.588.05	689.06	531.56
14×20	131/2 $\times 194 / 2$	263.25	8,341.73	3,998.11	855.56	592.31
14×24	1342×234	317.25	14,600.11	4,818.23	1,242.56	713.81

Table 5-5. Minimum yield point

Steel Brand or Grade	f_{y}
A328	$38,500 \mathrm{psi}\left(265 \mathrm{MN} / \mathrm{m}^{2}\right)$
A592 Gr 50	$50,000 \mathrm{psi}\left(344 \mathrm{MN} / \mathrm{m}^{2}\right)$
A640	$50,000 \mathrm{psi}\left(344 \mathrm{MN} / \mathrm{m}^{2}\right)$
A36	$36,000 \mathrm{psi}\left(248 \mathrm{MN} / \mathrm{m}^{2}\right)$

The capacity of a nail as a fastener is determined by its resistance to withdrawal, W_{r}, which is in turn a function of the effective length of embedment, ℓ_{e}, allowable load in withdrawal per inch of embedment, p, and specific gravity, G. The effective length of a nail fastening a sheet pile to a wale is the length of embedment in the wale, i.e. the nail length minus the thickness of the sheet pile.

To find the allowable load in withdrawal of a particular nail size, the specific gravity, G_{s}, of the wood is first found by using Table 5-6, then entering Table 5-7 for the desired nail size and specific gravity. The resistance to withdrawal is given by

$$
\begin{equation*}
W_{r}=p \ell_{e} \tag{5-13}
\end{equation*}
$$

The allowable lateral loads on nails should be checked. Nails fastening southern pine and douglas fir are allowed a maximum shear of

$$
\begin{equation*}
v=1650 \mathrm{D}^{3 / 2} \tag{5-14}
\end{equation*}
$$

in which $V=$ the allowable shear in pounds and D is the nail diameter in inches (Timber Engineering Co., 1956).

Common bolts may be used in wood splices and their allowable loads may be found in Table 5-8. Allowable loads are for bolts in double shear, i.e., bolts used in 3 member joints, as in splice plates for wales (Figure 5-11a). The controlling factors in Figures 5-10 and 5-11 are the bolt diameter, d, the length of bolt in the main member, b, and the relative size of the splice members and the main member. The

Table 5-6. Spectfic gravity of wood members (Timber Engineering Co., 1956, p. 553)

	＊$⿻ ⿱ 一 ⿱ 日 一 丨 一 力 刂_{4}^{4}$	F9\％	998	7 5 事	5 3 85	889		Ms8	호우른	Etis	
		87\％	A 5 为	呂異 $=$	9995	878	要安事			¢후를	흐으ㄹㅜㅜㄴ
	足 $-\frac{1}{4}$	－784	突要富		9880	9 98	9898돈	98\％	F－8，	骂客高	옹홀
		278	SR9		999ㅜ궁	1983	3885	8家\％	Es家		옥흘
	－ $0 \cdot \frac{1}{4}$	홀댁	788	号事可	－的 $=$	3F\％	我家䨋	－ 5 S ${ }^{\text {c }}$	的平男	영용여	2t宣
				8884	予如需	국ㅎ		5988		品早易	383
	$81-\frac{\text { 雲 }}{}$	포표	E或式	\％ 8 贾号	万哿号		－7588	암변영	\＃5 5	우규T	
		르르․․	9－72	7 A_{4}		盛面雨	7 78		3835		7808
		－¢ \％	꽆․․				79\％	＋ $\boldsymbol{F}_{5} 9$	955	88옹영	
	ㅇ｜$\|=\| \begin{aligned} & \text { ¢ } \\ & 0\end{aligned}$	퓨․․․		두ำ武	－ 88.			7両采	엉흉	388	罗平家
	$\pm 1 \pm 19$	！									
	3 ${ }^{\text {a }}$ 知	－		号事3		궁¢	888	可或畧	F 7 \％	¢ ${ }_{\text {¢ }}^{4} \mathbf{8}$	95
	8 ${ }_{4}$	요요			少耍品	－7 79	풓	537	38		\％8ず
			二め5		－7n	융ㅇ․	45	580．8	－あ	二小	9785．
				Finct	8\％	\＃ F	－	＋	E85	$5{ }^{5} 9$	2959
	21－$\frac{8}{6}$		픈휵	\％ \boldsymbol{H}_{6}	E898	离司耍	虫두ㄱㅜㅜㄱ	379	吕55	8종3	풍둔
	－缶家	－${ }^{\text {＋}}$	브울	옾프․	88	5－79	部可鸸	如유춫	푸훆	家号苼	588
		$\pm \pm$ 우우	工易里	툰․․	－ 58	ES县		－\quad 罢罧	95975	9098	405
	－	二¢ㅜㄹ	프를		－meder	定哑異	A $\overline{\text { \％}}$	\＃3耍	부¢ㅜㅢ	97978	cis
		므으․	－¢\％	보으플	9987		易止定	¢9\％	$\boldsymbol{\sim}$	F국	
	－${ }_{\text {c }}^{\text {c }}$	）∞－	9三59		브た․․	985		安灾雨	－${ }^{\text {¢ }}$	\％6\％	宣帘7
	1 1 1	，${ }^{1}$									
	示					（1）					

(0) Wour inocino rivily of wood is	bizl of nail.											3Ize of bpiek										
	-	-	1	10	12	${ }^{16}$	2	10	to	10	∞	-	10	12	14	20	30	40	50	∞	L/10	${ }^{1 / 8}$
	$1-$	1	$21 / 2$	1	16	31	-	15	5	b	0	I-	1	3	13	4	4)	-	0	-	1	H-12
	D.	0.113	0.131	0.148	0.168	0.102	0.102	0.202	0.223	0.24	0.26	D-	0.102	0.10	0.208	0.23	0.24	0.200	2039	0. 291	0.12	0.171
.at-.....................:-		4	$\begin{aligned} & \text { 品 } \\ & \text { an } \end{aligned}$	$\begin{array}{\|c\|} \hline \begin{array}{l} 40 \\ 90 \\ 80 \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} 40 \\ 42 \\ 48 \\ 48 \end{array}$	$\begin{array}{\|l\|} \hline 8 \\ \hline 89 \\ 70 \end{array}$	$\begin{aligned} & 77 \\ & \hline 80 \\ & 80 \\ & \hline 0 . \end{aligned}$	$\begin{aligned} & 83 \\ & 808 \\ & 800 \end{aligned}$		$\begin{array}{\|c\|c\|} \substack{\text { g00 } \\ 1020} \\ 100 \end{array}$	$\begin{array}{\|l\|} \hline 106 \\ 110 \\ 110 \end{array}$		$\begin{aligned} & 77 \\ & \hline 04 \\ & \hline 04 \end{aligned}$	$\begin{aligned} & 17 \\ & \mathrm{ab} \end{aligned}$	${ }_{\infty}^{\mathbf{B}}$	$\underset{\sim}{\omega}$	$\begin{array}{\|c\|c\|} \substack{802 \\ 1020 \\ 1002} \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 106 \\ 108 \end{array}$	${ }_{121}^{1414}$	$\left\lvert\, \begin{aligned} & 1111 \\ & 1121 \end{aligned}\right.$	$\begin{array}{\|l\|l} 1250 \\ 150 \\ 1820 \end{array}$	
		$\begin{aligned} & \hline 8 \\ & 80 \\ & 06 \end{aligned}$	$\begin{array}{\|l\|} \hline y_{2} \\ \text { a } \\ \hline 4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 80 \\ 70 \\ 72 \\ \hline \end{array}$	$\begin{aligned} & 97 \\ & 10 \\ & 10 \\ & \hline 10 \end{aligned}$	$\begin{aligned} & 79 \\ & 76 \\ & \hline 10 \end{aligned}$	$\begin{array}{\|l} \hline \text { 㫛 } \\ \text { H } \\ \hline \end{array}$	$\begin{array}{r} 30 \\ 0.01 \\ 0.01 \end{array}$	$\left\lvert\, \begin{aligned} & 102 \\ & 1020 \\ & 106 \end{aligned}\right.$	$\begin{array}{\|l\|l} \hline 415 \\ 115 \end{array}$	$\begin{array}{\|l\|} \hline 12 \\ 123 \\ 123 \end{array}$		$\begin{aligned} & \hline 17 \\ & \hline \boldsymbol{H} \end{aligned}$		$\left[\begin{array}{l} 98 \\ 408 \\ 107 \end{array}\right.$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 119 \\ & 119 \\ & \hline 19 \end{aligned}$	$\begin{array}{\|l\|} \hline 124 \\ 123 \\ \hline 123 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & 121 \\ & 131 \\ & 133 \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 138 \\ 133 \end{array}$	$\begin{array}{\|c\|} \hline 418 \\ 108 \end{array}$	-
		$\begin{aligned} & \hline 87 \\ & 80 \\ & 80 \\ & \hline 20 \end{aligned}$	$\begin{array}{\|l\|} \hline \begin{array}{c} 0 \\ \vdots \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7 . \\ \hline 18 \\ \hline 10 \end{array}$	$\begin{array}{\|l} \hline 7 \\ 7 \\ \hline 17 \\ \hline \end{array}$		$\begin{aligned} & 97 \\ & 100 \\ & 105 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 1098 \\ 1183 \\ \hline 18 \\ \hline \end{array}$	$\begin{aligned} & 119 \\ & 163 \\ & 23 \end{aligned}$	$\begin{aligned} & 121 \\ & 123 \\ & 133 \end{aligned}$	$\begin{array}{\|c} 123 \\ 183 \\ 183 \end{array}$		$\left[\begin{array}{l} 90 \\ 100 \\ 105 \end{array}\right.$	$\left\lvert\, \begin{aligned} & 101 \\ & 100 \\ & 100 \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 108 \\ 100 \\ 113 \end{array}$	$\overline{114}$	$\begin{array}{\|l} 122 \\ 122 \\ 124 \end{array}$	$\begin{array}{\|l} 131 \\ 138 \\ 183 \end{array}$	$\begin{aligned} & 14 \\ & 14 . \\ & 194 \\ & 15 \end{aligned}$		$\left\lvert\, \begin{aligned} & 1414 \\ & 1700 \\ & 170 \end{aligned}\right.$	
		$\begin{aligned} & 80 \\ & 76 \\ & 76 \end{aligned}$		$\begin{aligned} & 81 \\ & \text { at } \\ & 109 \end{aligned}$		$\begin{array}{\|c} 102 \\ 1020 \\ 120 \end{array}$	$\begin{aligned} & 100 \\ & 120 \\ & 102 \end{aligned}$	$\begin{array}{\|l\|} \hline 178 \\ 187 \\ \hline 180 \end{array}$	$\left[\begin{array}{l} 123 \\ 181 \\ 172 \end{array}\right.$	$\begin{array}{\|l\|} \hline 31 \\ 131 \\ 102 \end{array}$	$\begin{array}{\|l\|} \hline 19 \\ 197 \\ 010 \end{array}$		$\begin{array}{\|l\|} \hline 100 \\ 1200 \\ 1202 \end{array}$	$\begin{aligned} & 109 \\ & 1206 \\ & 150 \end{aligned}$	$\begin{aligned} & 177 \\ & 1163 \\ & 163 \end{aligned}$	$\begin{aligned} & 1231 \\ & 178 \\ & 182 \end{aligned}$	$\begin{aligned} & 188 \\ & 198 \\ & 192 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 18 \\ \hline 20 \\ \hline 20 \end{array}$	$\begin{aligned} & 160 \\ & 1000 \\ & 223 \end{aligned}$	$\left[\begin{array}{l} 100 \\ 100 \\ 202 \end{array}\right.$	$\begin{array}{\|l\|} \hline 17 \\ 270 \\ 2014 \\ 20 \end{array}$	

Table 5-8. Allowable load per bolt in double shear (Timber Engineering Co., 1956, Pp. 520-52l)

a. 3 MEMBEE JOINT

b. 2 MEMBER FOINT

Figure 5-11. Common bolts as fasteners
tabulated loads are for members where side members are at least $1 / 2$ the dimension of the main member. Where side members are thinner than $1 / 2$ the main member, then, for the purpose of determining the allowable load, $b=2 a$. For example, if a wale is 6 fn (152 mm), then the b dimension used for Table 5-8 would be 3 in (76.2 mm).

The values in Table $5-8$ are represented by P for loads parallel to the grain and by Q for loads perpendicular to the grain. For the purpose of wale splices, the allowable load in shear per bolt, V, can be taken as Q in Table 5-8.

For 2 member joints (Figure 5-11b) of equal thickness, the allowable load is $1 / 2$ the tabulated value for a main member whose thickness is twice that of the actual member. For example, for a 2 in (50.8 mm) member in southern pine, enter Table $5-8$ at 4 in (101.6 mm) for the appropriate boit diameter. The allowable load, Q, for a 1 in (25.4 mm) bolt is 4720 pounds (21.0 kN) and the allowable load in shear per bolt, \forall, is 2360 pounds (10.5 kN).

For 2 member joints of unequal thickness, the procedure outlined in the previous paragraph is applied with respect to the thinner member.

Where steel plates are used as splice nembers, the allowable load is increased by 25 percent.

The criteria for allowable loads in common bolts are sumarized in Table 5-9.

The allowable loads on high strength bolts (ASTM A325) are $40,000 \mathrm{psi}\left(276 \mathrm{MN} / \mathrm{m}^{2}\right.$) in tension, f_{t}, and $15,000 \mathrm{psi}\left(103 \mathrm{MN} / \mathrm{m}^{2}\right)$ in shear, $f_{v}(A I S C, 1973)$.

Table 5-9. Sumary of allowable loads in common bolts used for splice plates

Joint Type	Relative Dimensions	Enter Table 5-8, Columm $b a t$	Allowable Load, V
3 Member	$a \geq \frac{1}{2} b$	$b=b$	P
2 Member	$a<\frac{1}{2} b$	$b=2 a$	P
	$a=b$	$b=2 a$	$\frac{1}{2^{2}}$
	$a<b$	$b=2 a$	$\frac{1}{2^{2}}$
Steel Side Plate	$a>b$	$b=2 b$	$\frac{1}{2^{2}}$

The cost of fasteners is dependent upon their required size and number which are, in turn, determined by their capacity and loads. Another determinant to be considered is the location of the wale, i.e., whether it is located on the fill side or the dredge side of the wall. Locating the wale on the fill side presents a smooth face for the user, whereas locating the wale on the dredge side presents a protrusion which may interfere with mooring. However, with the wale located inside the fill, more fasteners are required as the fill tends to push the sheet piles away from the wale, exerting a prying force (Figure 5-12a). On the other hand, a wale outside the fill bears agafnst the sheet piles, thereby eliminating the consideration of prying forces. The number of nails required per wood pile section, n, is

$$
\begin{equation*}
n=\frac{P W}{W_{r}} \tag{5-15}
\end{equation*}
$$

in which $P=$ the tie-rod pull (force per unit length of wall), w $=$ the width of the pile section, and $W_{r}=$ the resistance to withdrawal per nail. The number of high strength bolts per steel sheet pile, n , is

$$
\mathrm{n}=\frac{4 \mathrm{P} w}{\pi d^{2} f_{t}}
$$

in which $d=$ the bolt diameter and $f_{t}=$ the allowable tensile stress per bolt, taken as $40,000 \mathrm{psi}\left(275 \mathrm{MN} / \mathrm{m}^{2}\right)$ for A 325 bolts. The allowable shear stress, f_{v}, in A325 bolts is $15,000 \mathrm{psi}\left(103 \mathrm{MN} / \mathrm{m}^{2}\right)$.

Figure 5-12. Transfer of loads from piles to wales

Holes are $1 / 32$ in (0.79 mm) larger than the bolt diameter for wood and $1 / 6 \mathrm{in}(1.6 \mathrm{~mm})$ for steel.

5.2.5. Bulkhead Liferime

The life expectancy of a bulkhead depends upon the components of the system, 1.e., if one component fails, the system is no longer viable. Obviously, the lifetimes of components vary from material to material, and the material with the shortest lifetime will control the bulkhead liferime. The designer must, therefore, insure that the material of each component is the optimum.

The structure must be protected from harmful agents that exist in the enviroment. Timber must be protected from zot and other biological agents by an appropitate treatment as recommended by the American Wood Preservation Institute (AWPI) and the American Wood Preservative Association (AWPA).

Timber sheet piles usually consist of heartwood instead of sapwood. This may cause the purchaser some consternation as standards established for preservative penetration are for sapwood, not heartwood. Since heartwood is more resistant to preservative penetration, it follows that the preservative penetration of many sheet piles will be less than optimum.

Steel sheet pile and tie-rod life can be prolonged by applying special coatings. Corrosion and decay rates should be determined for a particular environment so that the life of the structure can be estimated. A detailed discussion of materials and the hazards present in certain environments is contained in "Coastal Structure Materials" (Hubbell and Kulhawy, 1979).

Tie-rods, turnbuckles, bolts, nuts, washers, and nails receive protection from corrosion by galvanizing. Electro-deposited zinc coatings, in accordance with ASTM B633, or hot-dip coatings, in accordance with ASTM A513, may be specifled to increase the life of steel components.

When the cost is favorable, hardware may be comprised of wrought iron.

If no coating or treatment is specified for the hardware, the required dimensions will be reduced by corrosion. If the amount of deterforation is known, the dimensions of the hardware should be increased by this amount to preclude failure. Recommended increases in hardware dimensions are shown in Table 5-10 (Johnson, 1965).

Bulkheads sited in erosion zones should incorporate returns on the flanks of the bulkhead (see Chapter 6, Figure 6-1). These are sections constructed perpendicular to the wall which prevent the washout of backfill around the flanks.

5.2.6. Compliance with Industry Standards

The designer may enhance the quality assurance of the product by making certain that suppliers comply with industry standards, such as ASTM and AWPA specifications. This may be accomplished by inspecting timber products for grademarks (Figure 5-13) and by requesting certificates of compliance from the supplier. Such requests are reasonable and the documents certify that the provisions of the specifications are met.

Table 5-10. Recompended increase in dimensions of hardware (summarized from Johnson, 1965)

Dimension		Marine Exposure	
	Exterior Exposure (Except Marine)	In and Below Splash Zone	Above Splash Zone
Bolt Diameter	$\begin{aligned} & 1 / 8 \mathrm{in} \\ & (3.18 \mathrm{man}) \end{aligned}$	$\begin{aligned} & 1 / 2 \mathrm{fn} \\ & (12.7 \mathrm{~mm}) \end{aligned}$	$\begin{gathered} 1 / 4 \mathrm{in} \\ (6.35 \mathrm{~mm}) \end{gathered}$
plate Thickness	$\begin{gathered} 1 / 8 \mathrm{in} \\ (3.18 \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & 1 / 4 \mathrm{in} \\ & (6.35 \mathrm{~mm}) \end{aligned}$	$\begin{gathered} 1 / 8 \mathrm{in} \\ (3.18 \mathrm{~mm}) \end{gathered}$

Note: Washers for marine exposure (in and below splash zone) should be ogee. For other exposures, $1 / 4$ in (6.35 mm) plate types are unsuitable, ogee optional.

Figure 5-13. Typical grademarks (Timber Engineering Co., 1956, p. 37)

5.3. Design of Components

5.3.1. Sheet Piles

When the maximum moment has been determined (Chapters 2 and 4), the required section modulus is found by employing Equation 5-9. Since the moment is computed in terms of moment per unit length of wall, the section modulus must also be in terms of unft length per wall. For steel sheet piles, Table 5-2 is consulted, as is demonstrated in design examples found in the Appendices.

For rectangular wood piles, the required thickness is found by employing Equation $5-10 a$, as is also demonstrated in design exampies.

No load factors are required for sheet pile calculations. A material factor is already employed in the allowable bending stress, f_{b}, for steel and wood.

5.3.2. Tie-Rod Diameter

The computation of the tie-rod diameter is quite simple. Once the tie-rod pull, P (force per unit length of wall), is found, the tie-rod tension, T, is found by multiplying the tie-rod load times the spacing between ties (see Section 6.1.5. for further discussion on the tie-rod spacing) . A load factor is then applied (Section 5.2.6.) and the diameter found by

$$
\begin{equation*}
d=\sqrt{\frac{4 T I F}{\pi f}} \tag{5-17}
\end{equation*}
$$

in which $L F=$ a load factor of 1.2 to 1.4 and $f_{t}=$ the allowable tension of A36 steel (Equation $5-12 c$ and Table 5-5). At this point the designer
way decide to increase the diameter of the tie-rod for corrosion if no other precautions were taken (Section 5.2.5.).

Tables 5-11 and 5-12 contain data for tie-rods and turnbuckies, respectively.

An example of determining the tie-rod diameter is given in the Appendices.

5.3.3. Wale Design

The bending moment in wales is somewhere between that for a single span, simply supported, and that for three continuous spans, simply supported. The maximum bending moment can therefore be taken as (Teng, 1962)

$$
\begin{equation*}
M=\frac{1}{9} P 2^{2} \tag{5-18}
\end{equation*}
$$

in which $P=$ the tie-rod force (per unit length of wall) and $\ell=$ the distance between tie-rods.

The section modulus is determined from Equation 5-9. Once this is found, Table 5-3 may be used to find the appropriate channel size or, if wood wales are used, Equation 5-10a or Table 5-4b is used to find the proper dimensions. Examples of steel and wood wale designs may be found in the Appendices.
5.3.2.1. Fastening Wood Piles and Wales

Wales located on the fill side of the wall have a tendency to separate from the sheet piles. The prying force exerted on each sheet pile may be taken as the tie-rod load per unit length of wall, P, since

Table 5-11. Tie rods (AISC, 1967, p. 4-93)

Table 5－12．Turnbuckles（AISC，1980，p．4－i43）

OUNH D												Tumaticut 5AFE WCRHING LOAD，KIPS＂
	Dintimsions，incits											
｜${ }^{\text {d }}$	A	N	E	E	6	－	－	12	18	24	16	
4	6	\％	\％	\％	154＊	.41						1.2
Y	6	\％	7\％	＂400	17\％	73	0.4	1.00				12
4	6	H2m	$7{ }^{7}$	the	\％ 7	＋ 60	1.18	1.50	2.43			3.5
4	6	13\％	8\％	1444	1楥	1.45	T．63	2.13	1.0	4.25		5.2
\％	6	1考	AY，		1\％4	t． 83		2.85	4.20	5.43		77
1	6	1\％	84\％	1\％7	21\％	2.40		3．20	4.40	6.55	10.0	9.3
17	6	174\％	944	14\％	1\％	2.72		4.70	6.10			11.6
14	6	144	91／4	1\％8．	764．3．	3.54		4.70	7，13	17.10	\＄3．1	15.2
1\％	6	164ta	97\％	＋14\％	24	4.50						17.4
14\％	6	271	19\％	${ }^{+18} 4$	J4．	5.50		8.00	9.93	16 ct	19.4	11.6
14	6	2\％	10\％	1448，	3\％\％	750						24.5
14	6	7\％	1t	2M	334	9，54		13.25	14.00	19.50		20.3
15\％	6	24	174	2\％	4	11.50						17.2
$\underline{1}$	6	248	1741	744	4	$1+50$		1535		27.50		173
214	6	3\％	1244	2190	44	18．00		75，25		47．50		410
2\％	6	5＊	13\％	3	5	23.25		31.69		4210		60.0
7\％	6	4\％	t4\％	1\％／4	54	11.50				54.00		73.4
3	4	4\％	15	3\％	645	35.59						967
䨍	6	59	thtit	1\％	6×4	60．50						1221
314	6	5\％	T4Y	1\％	6＊	60.99						127．2
134	4	6	＋${ }^{\text {P }}$	4\％	147	94－00						167．8
4	6	6	14	44	A4	95.00						167．
＋42	9	64	236	5\％	944		432．0					213.8
44	9	644	23\％	3%	944		1920					2334
4＊4	9	6\％	22\％	$3 \% 4$	9\％		＋52．0					23．4
5	9	＋	24	6	14		200.0					294.7

each sheet pile is approximately one foot wide. The number of nails, n, required per pile may be found by selecting a nail size, determining its allowable load in withdrawal, W_{r}, from Tables 5-6 and 5-7 and Equation 5-13, then using the simple relationship

$$
\begin{equation*}
n=\frac{P}{W_{r}} \tag{5-19}
\end{equation*}
$$

An example may be found in the Appendices.
Wales located on the dredge side of the bulkhead require nails for construction only. Using two nails per sheet pile should be sufficient. The nails should, however, be long enough to have adequate embedment in the wale so as to be capable of transmitting shear, i.e., $2 / 5$ of their length (Timber Engineering Co., 1956) or

$$
\begin{equation*}
\ell_{e}=2 / 5 \quad \ell \tag{5-20a}
\end{equation*}
$$

Since the effective length, 2 , is the length, 2 , minus the pile thickness, t, the nail length should be

$$
\begin{equation*}
2=5 / 3 \mathrm{t} \tag{5-20b}
\end{equation*}
$$

An example may be found in the Appendices.

5.3.3.2. Splices in Wood Wales

Advantages are gained by locating the splices of outside wales at the tie-rods (Figure 5-14). The bending moments here cause compression of the outside edge of the wale and tension at the inside edge.

a. TIE-RO $\triangle N O$ BEARING PATE

D. MOMENTS ANO GTRESSES

Figure 5-14. Locating the splice at tie-rods

The tension is resisted by the sheet pile attached to the wale at this. location (Figure 5-14b).

A splice requiring a 2 - or 3 -member joint (Figure 5-11) may be eliminated. In addition to cost savings, elimination of the splice removes the potential for ponding that would occur between the horizontal members of the splices. Ponding hastens the decay of the wood.

An advantage is also gained as the tie-rod hole in the wale occurs in an area which is penetrated with preservative throughout the entire length of the hole.

The bearing plate is designed in a manner similar to the design for bearing of a steel beam on a masonry wall. The plate area is determined from the allowable bearing pressure, f_{p}, taken as $c \perp$ from Table 5-4. The area, A, is found from

$$
\begin{equation*}
A=\frac{T}{F_{P}} \tag{5-21}
\end{equation*}
$$

The thickness of the plate is given by (AISC, 1973)

$$
\begin{equation*}
t=\frac{3 F_{P} N^{2}}{f_{b}} \tag{5-22}
\end{equation*}
$$

in which: $F_{p}=$ the actual bearing pressure, $N=1 / 2$ the short dimension of the plate minus the hole radius, and $f_{b}=$ the allowable bending stress of the steel. An example of the bearing plate design for an outside wale may be found in the Appendices.

Inside wale splices must be 2 - or 3 -member joints (Figure 5-11). The average shear force, V, that the bolts must resist may be found from

$$
\begin{equation*}
V=\frac{I}{2} T-\frac{1}{4} P L_{b} \tag{5-23}
\end{equation*}
$$

fn which $L_{b}=$ the distance between extreme bolts. Equation 5-23 is valid for splices centered over the tie-rod. The splice should also be designed to resist the maximum moment.

Bolts in the splice have minimum requirements for end distance, edge distance, boit spacing, and distance between rows of bolts. A sumary of these requirements appears in Table 5-13. These are for loads acting perpendicular to the grain (Timber Engineering Co., 1956).

The procedure for designing a splice is to select L_{b}, compute V, select a bolt size in accordance with Section 5.2.4, determine the arrangement of bolts, and determine the final length of the splice member. Examples of 2- and 3-member splice designs may be found in the Appendices.

5.3.3.3. Fasteners and Splices for Steel Wales

Figure $5-15$ displays typical details for inside and outside wales used with steel sheet piles. Inside wales are fastened using high strength boits in conjunction with a fixing plate. The number of bolts is determined by Equation 5-16 and the Fixing plate may be dimensioned by approximating it as a simply supported beam with a point load.

The minimum distance from the center of the bolt hole to the edge of the member may be taken as 1.5 times the bolt diameter for rolled or

Table 5-13. Distance requirements for bolted connections (Timber Engineering Co., 1956).

Distance	Number of Bolt Diameters, n_{d}
End	$1 \frac{1}{2}$
Edge.	4
Bolt Spacing	4
Rows of Bolts	$2 \frac{1}{2}($ for $1 / \mathrm{d} \leq 2)$
	5 for $1 / \mathrm{d} \leq 6)$
$1 / \mathrm{d}=$ boit length/bolt diameter	$(5 / 8)(1 / \mathrm{d})+1 \frac{1}{4}$ (for $2<1 / \mathrm{d}<6$)

Figure 5-15. Typical wale and anchor details (J.S. Stee1, 1975, p. 39)
gas cut edges. Minimum spacing is three bolt diameters (AISC, 1973). An example of the design of an inside wale may be found in the Appendices.

An outside wale may be fastened by merely employing a plate of sufficient dimensions between the wale and the tie-rod nut. A plate washer will suffice if the separators allow the channels to be close enough to each other.

Splices in wales should be able to transfer the maximum moment in the wales (Equation $5-18$). The splice plate may be dimensioned using Equations 5-9, 5-10a, and 5-23. Design of splice plates for steel channel wales may be found in the Appendices.

5.4. Anchorage

Once the anchorage is adequately located with respect to the geometry and soil strength of the site, the type of anchorage must be chosen and dimensioned.

5.4.1. Continuous Deadman

The capacity of a continuous deadman stems from the net resultant of the soil stresses acting, as shown in Figure $5-16$. When considering these stresses, the distance to the high water mark should be considered as this represents the lowest capacity of the deadman. The stress coefficients K_{p}^{\prime} and K_{a}^{\prime} used are factored, thus requiring no additional load factors for the design. An exampie is given in the Appendices.

5.4.2. Short Deadman Near the Surface

The calculation for short deadmen near the surface can be facilitated using the information obtained from the design of a continuous deadman. The net capactty per length of anchorage ($P_{p}-P_{a}$) is already computed in terms of h_{L}, deadman height. The remaining values are merely substituted into Equation 5.7. The Appendices contain an example of the design of a short deadman.

5.5. Surmary

Bulkhead design requires the integrated consideration of loading, cost-effectiveness, and the design of the basic bulkhead components. A detailed examination of these considerations has been presented in this chapter.

The bulkhead may have to withstand loads other than those stemming from the retained soil. These include surcharges placed on the backfill, hydrostatic imbalance, ice thrust, mooring loads and ship impact. The loads imposed on some components should be increased by load factors, depending upon the inherent uncertainties.

Cost-effectiveness is dependent upon such interrelated factors as type and configuration of the wall, material strength of the components, ability to withstand harmful agents of the environment, and fastening methods.

Each structural component must be dimensioned and the type, number, and spacing of fasteners must be determined. As each item
is being selected, the designer must keep in mind alternative materials and schemes, costs, and the desired function of the component.

CHAPTER 6

CONSTRUCTION CONSIDERATIONS

The construction of bulkheads is less complicated than the design proess. Figures 6-1a through 6-1f are a pictorial sequence of a typical navy buikhead construction operation. In spite of the apparent simplicity, there are factors which must be considered to comply with design criteria and result in optimum performance. This section includes a discussion of these factors.

6.1. General Construction Procedure

6.1.1. Pile Installation

Prior to installing the sheet piles, the bulkhead alignment is detemined and guides are placed, such as wales placed on temporary stakes. This is not necessary for navy bulkheads because the fender piles and wales provide the proper horizontal alignment. Vertical alignment may inciude a slight batter in the direction of the fill side of wall. This is standard practice in areas subject to freezing and tide changes. The overall effect is to diminish pile uplift by ice on a rising tide. A temporary wale may be placed below the upper wale to facilitate construction. This lower wale is not necessary for the permanent structure.

Sheet piles are generally installed by driving, jetting, or a combination of both. Driving is more desirable from a soil mechanics

 -
a

C

b

G-manimed TIE ROOS are connetod to DEADMEN

d

 erropres the batie strwigh of the bulkhent. if
 thinid the buthoted
e

EACKFILLING to the derifod heintr eonedit the T1: RODS and providen for 1 low proparty to the wationcti.
f

Figure 6-1. Continued
standpoint as the downard force of the pile tip tends to locally compact the soil, thus increasing its strength. Jetting is more commonly practiced where timber sheet piling is installed. This procedure entails pumping water through a pipe under approximately $100 \mathrm{psi}\left(689 \mathrm{~N} / \mathrm{m}^{2}\right.$) pressure and advancing the pipe into the subgrade closely followed by the pile. Jetting is not effective in gravel, silt, or clay and tends to loosen the soil locally, thus decreasing the soil strength. Because jetting facilitates installation and driving enhances soil strength, a combination of these creates the optimum operation where the pile is jetted to within a few feet of the required depth and the remainder is driven.

As piles interlock using tongue-and-groove or ball-and-socket fittings (Figure 6-2), it is recomended that the direction of construction leads with the tongue, or ball. This will eliminate the danger of soil clogging the groove, or socket, and subsequent improper interlock and leaning.

Driving in pairs or in panels (Figure 6-3) eliminates some of the interlock Eriction occurring between piles. This also facflitates driving as rigidity is increased and leaning is reduced.

Other causes of leaning may include defective guides, pile deformation, improper driving and improper jetting. Remedies include pulling the heads of piles during installation (Figure 6-4a), use of guide piles in conjunction with driving in panels (Figure 6-4b), applying the driving force at an angle (Figure 6-4c), use of piles with chamfers at the foot (Figure 6-4d), and use of specialty fabricated wedge-shaped piles (Figure 6-4e) (Teng, 1962).

Figure 6-2. Typtcal piles (AWPI, p. 3)

Figure 6-2. Continued

Figure 6-3. Driving sheet piles in panels (Teng, 1962, p. 378)

Figure 6-4. Remedial actions (Teng, 1962, p. 379)

6.1.2. Wales

After the piles are installed, wales are connected by boiting channels to each steel sheet pile section or by nafling timber wales to timber sheet piles (Section 5.4.3.).

Splices are made in wales where required. Locating the splices of wooden wales at the tie-rod eliminates the need for splice plates and reduces the potential for ponding, thereby accruing some economic advantages.

Typical details of wales for steel walls are shown in Figure 6-5.

6.1.3. Anchorage

The anchorage should be installed in parent material a safe distance from the wall (Section 5.3.2.). If the parent material is undesirable, it should be removed and the backfill in front of the anchorage should be compacted.

Alternative anchoring schemes are shown in Figure 6-6 and alternative anchorage schemes are shown in Figure 6-7.

6.1.4. Tie-Rods

Holes are drilled through fender piles (if used), wales, sheet piles and anchorages. One tie-rod segment is passed through the wall, another segment through the anchorage, and the two segments are joined using a turnouckle. If settlement of the tie-rods is considered a problem, PVC pipe should surround the tie-rod (Section 6.2.6.).

If the the-rod is not horizontal, the design load should be increased by a load factor

$$
\begin{equation*}
\mathrm{LF}=\frac{1}{\cos \theta} \tag{6-1}
\end{equation*}
$$

a

douste orawil curtiot wall
b

Figure 6-5. Standard wale details (U.S. Steel, 1976, pp. 71-73)

c

Table 6-5. Continued

£

Figure 6-5. Continued

Figure 6-6. Alternative anchoring schemes (U.S. Steel, 1976, pp. 74-75)

in which $\theta=$ the angle between the tie-rod and the horizontal plane.
In corrosive environments the tie-rod should be protected by using galvanized steel and employing protective wraps, bituminous treatment or special painting.

Tumbuckles should be tightened until slack is removed from the tie-rods. Overtightening causes anchor yield and excess stresses in the tie-rod and sheet piling.

6.1.5. T1e-Rod Spacing

Tie-rods in wood bulkheads are frequently spaced at $7.5 \mathrm{ft}(2.27 \mathrm{~m})$ intervals. Construction details do not interfere with this spacing or any variation thereof. Steel bulkheads, on the other hand, limit the designer's flexibility in choosing the interval as pile sections differ in driving width (Table 5-2). For example, the section shown in Figure $6-5 a$ is a PDA 27 with a width of 16 in (0.41 m) and tie-rods at every seventh section for an interval of $8 \mathrm{ft}(2.44 \mathrm{~m})$; Figure $6-5 \mathrm{c}$ shows a P238 pile with an 18 in (0.46 m) width and tie-rods at every seventh section for an interval of $9 \mathrm{ft}(2.74 \mathrm{~m})$.

The designer must be aware of these constraints because the tierod tension is a function of the spacing, as well as the computed pull per unit length of wall. An interval used for computations that is different from the interval permitted by the pile section configuration will result either in overdesigned, uneconomic tie-rods and wales, or a design prone to failure from overstressing.

6.1.6. Backfill and Dredging

Free-draining backfill material should be used. If the expense is too great to employ coarse material for the entire fill, a sand drain or sand blanket should be employed (Figure 5-4). If either of these is not feasible, then the additional load of saturated material must be considered, as well as the reduction of the effective depth of penetration because of hydrostatic imbalance (Section 5.2.3.).

The fill should be placed in equal lifts across the entire length of the bulkhead. Piling up the fill in one area results in local overstressing of pile members and tie-rods. The backfill should not be compacted as this increases the stresses beyond the designed values.

Dredging, if required, should be accomplished after backfilling is completed. The net result of this sequence is to provide additional reduction of the bending moment because of arching of soil between the tie-rod and dredge level.

6.1.7. Tightening of Nuts

For timber structures, the proper tightening tension is reached when washers begin to indent the adjacent timber. High strength bolts used for steel sheet piling are tightened in accordance with the Specification for Structural Joints using ASTM A325 or A490 bolts, Manual of Steel Construction (AISC, 1976).

6.2. Ocher Constderations

6.2.1. Construction Equipment

Bulkheads are often the first structures completed in new developments. This implies that construction activity will take place
nearby. If this is anticipated, surcharges from heavy equipment must be accounted for in the design procedure or restrictions must be made as to the allowable proximity of the equipment. A horizontal distance equal to the wall height is recommended as the closest a piece of equipment may be allowed. If the tie-rod and anchorage are shallow, the equipment should not be allowed to pass over these.

6.2.2. Quality Assurance of Materials

To insure that materials are in compliance with design specifications, some measures need to be taken. The most fundamental step is an inspection of the material for obvious defects. If timber is the basic structural material, grademarks (Figure 5-13) should be found on the members which indicate the grade marking service and stress grade. A certificate is also available from the grading agency. Certificates of compliance may be requested from suppliers for assurance that the proper preservation process and amount was used. Certification may also be requested to insure compliance with the proper ASTM designations and any ordered special treatment such as bituminous coating.

6.2.3. Cutting and Notching

Treated timber members should not be cut to size. This practice subjects the cut ends to attack from the elements from which protection was desired. Preservation treatment should be specified as being applied to all surface areas of timber members.

A similar argument applies for notching or countersinking recesses for tie-rods to provide a flush face. In addition to limiting the effectiveness of preservatives, it reduces the net area of the section
in terms of its effectiveness to carry a load. An alternative to this practice is to nafl a coil of rope around the protruding tie-rod. This will offer the desired protection to the moored vehicles.

If any cutting is done, preservative should be post-applied at the site. This is not as effective as pressure treatment, but it is a vast improvement over leaving the cut unprotected.

6.2.4. Regulations Pertaining to Coastal Use

The use of coastal zones implies that some change in the environment will occur stemming from such use. Pernission may be required prior to using coastal Lands by the U.S. Army Corps of Engineers, Environmental Protective Agency, county or local governments. In New York State a Coastal Zone Management Program exists under the auspices of the Department of State, although regulatory functions are delegated to localities. At any rate, the structure's impact upon the environment must be assessed and the need to obtain permits must be ascertained. For details, see "Regulatory Processes in Coastal Structure Construction" (Ronan, 1979).

6.2.5. Construction Details

Typical construction details appear in Figures 6-8 through 6-12.
6.3. Summary

Although the construction of bulkheads is relatively straightforward some factors must be taken into account which may affect the desired performance of the system. Certain problems inherent in the installation of sheet piles can be overcome with some suggested techniques. Connection of wales and tie-rods and installation of the anchorage must be

Figure 6-8. Typical bulkhead, wale outside (AWPI, p. 4)

Figure 6-9. Typical bolting details, timber (Timber Engineering Co., 1956, pp. 511-513)

Figure $6-10$. Common arrangement of wales and tie-rods (Teng, 1962, p. 372)

Figure 6-12. Steel bulkhead with timber fender piles (U.S. Steel,
accomplished with respect to conditions imposed by the design. Benefits may accrue from the optimum sequencing of dredging and undesirable consequences may result in the improper placement of backfili. Surcharges imposed by construction equipment must be accounted for or damage to the system may occur. Measures should be caken to assure that the materfal purchased complies with the quality specified in the design. Field alterations performed on treated timber reduce the effectiveness of the preservative. Consideration of these factors during construction will enhance the longevity and proper functioning of the bulkhead.

CHAPTER 7

RELIABILITY AND FACTOR OF SAFETY

The chance of a system performing successfully is termed its reliability, R. The complement of reliability is the probability of failure, P_{f}, which is defined as

$$
\begin{equation*}
\mathrm{P}_{\mathrm{f}}=1-\mathrm{R} \tag{7-1}
\end{equation*}
$$

Every system has a finite probability of failure that depends upon: the system's ability to sustain loads, 1.e., the capacity; the loads placed upon the system, i.e., the demand; and the variability of the capacity and demand.

Capacity-demand models involving penerration depth, tie-rod pull and bending moment for a particular hypothetical situation cannot be used to determine the probability of failure of all bulkhead systems. It can, however, suggest the order of magnitude of reliability to be expected, if realistic values and assumptions are chosen. A portion of this chapter is, therefore, dedicated to such a hypothetical situation where the reliability and factors of safety are explored.

The situation presented here is a bulkhead designed in accordance with Rowe's reduction method. Probabilistic methods are employed to determine the probability of failure of the design and some qualitative conclusions are drawn. Since the simplified design procedure suggested in this work is based on the Rowe method and some variability exists
between the Rowe and simplified methods solutions, probabilistic methods are again utilized to investigate reliability.

7.1. Assumptions

Certain assumptions are inherent in the simplified design procedure and the argument presented in this chapter. A discussion of these assumptions should help to establish the validity of this work.

A very bastc, yet critical, assumption is that the soil strength and unit weight are established by virtue of sufficient investigation. Some variability in these parameters can be expected and some variability will, consequently, occur in the loadings and the capacity to resist failure.

Variability in loadings caused by faulty construction procedure is not addressed.

As suggested in Chapters 2 and 3, the Free Earth Support and Rowe methods have been established as accurate means of describing bulkhead behavior. They have been corroborated by experiment and by comparison to theoretical and sophisticated analytical techniques. It can then be readily assumed that these methods can be modified to portray adequate capacity-demand models.

Some variability exists in the ultimate strengths of construction materials comprising bulkheads. It is suggested that the average factor of safety of stress graded timber is 2.5 and that 99 percent of all tests will demonstrate a minimum factor of safety of 1.25 (Timber Engineering Co., 1974). If a design value of $2,000 \mathrm{psi}\left(13.8 \mathrm{MN} / \mathrm{m}^{2}\right)$ is assumed for the flexural strength of timber sheet piles composed of
southern pine, the average ultimate strength can be assumed as 5,000 psi (34.4 . $\mathrm{NN} / \mathrm{m}^{2}$) and 99 percent of the same material can be assumed to possess an ultimate strength of $2,500 \mathrm{psi}\left(17.2 \mathrm{MN} / \mathrm{m}^{2}\right)$. Tie-rods made from grade A36 steel must possess a minimum yield strength of 36,000 psi ($248 \mathrm{MN} / \mathrm{m}^{2}$). The average yield strength of all A36 steel members is not known, but a conservative value may be assumed to be $40,000 \mathrm{psi}$ ($275 \mathrm{MN} / \mathrm{m}^{2}$). It may also be assumed, conservatively speaking, that 99 percent of all A36 steel possesses at least the minimum required yield strength, $36,000 \mathrm{psi}\left(248 \mathrm{MN} / \mathrm{m}^{2}\right)$.

Conservative assumptions are also made for selecting the appropriate mean value of soil parameters. The variabilities of these parameters reflect data taken from the technical literature. The random values chosen for soil and material parameters are assumed to be normally distributed and to represent infinite populations.

A hypothetical situation may be used to illustrate the factors of safety against penetration failure, tie-rod"failure, and bending moment failure, and the associated probabilities of failure. With the factor of safety defined as the ratio of demand, D, to capacity, C, or

$$
\begin{equation*}
F S=\frac{C}{D} \tag{7-2}
\end{equation*}
$$

then a factor of safety of unity or less signifies imminent failure, i.e., when the capacity is equal to the demand. The margin of safety, SM, is the difference of capacity and demand, or

$$
\begin{equation*}
S M=C-D \tag{7-3a}
\end{equation*}
$$

Failure will occur when $S M \leqq 0$.

The capacity and demand will vary depending upon many factors, such as material flaws, heterogeneity, etc., and are, therefore, termed variates. The value that occurs most frequently is temed the expected value, or mean, and a measure of the amount that values differ from the mean is termed the standard deviation.

If C and D are normal variates, then \bar{C} and \bar{D} are the means and S_{C} and S_{D} are the standard deviations. The mean safety margin may be defined as

$$
\begin{equation*}
\overline{S M}=\bar{C}-\bar{D}, \text { and } \tag{7-3b}
\end{equation*}
$$

the standard deviation of the safety margin may be defined as

$$
\begin{equation*}
s_{S M}=\sqrt{s_{C}^{2}+s_{D}^{2}} \tag{7-3c}
\end{equation*}
$$

A standardized. value, z, is determined by

$$
\begin{equation*}
z=\frac{\overline{S M}}{S_{S M}} \tag{7-4}
\end{equation*}
$$

From this value can be determined the probability that $\overline{S M} \leq 0$, or the probability of failure. Such a determination is made from probability density functions which may be found in statistical tables.

Capacity and demand for the three modes of failure previously mentioned will be analyzed statistically to find the mean and standard deviation of the safety margin. The standard score will then be determined and converted to the probability of failure.

7.2. Anchored Walls in Sand

7.2.1. Hypothetical Situation

A design will be illustrated for a bulkhead whose geometry is given in Figure 4-1, with the dimensions

$$
\begin{aligned}
H & =10^{\prime}(3.05 \mathrm{~m}) \\
H_{W} & =6^{\prime}(2.83 \mathrm{~m}) \\
H_{A} & =2^{\prime}(0.61 \mathrm{~m}) \\
t_{1} & =4^{\prime}(1.22 \mathrm{~m}), \text { and } \\
t_{2} & =6^{\prime}(1.83 \mathrm{~m})
\end{aligned}
$$

The material comprising the fill and subgrade is loose sand. The mean values of the design parameters assigned to layer t_{1} and t_{2} are assumed as:

$$
\begin{aligned}
\gamma_{1} & =100 \text { pcf }\left(15.8 \mathrm{kN} / \mathrm{m}^{3}\right) \\
\phi_{1} & =30 \text { degrees } . \\
\gamma_{2} & =120-62.4 \\
& =57.6 \text { pcf }\left(9.09 \mathrm{kN} / \mathrm{m}^{3}\right), \text { and } \\
\phi_{2} & =30 \text { degrees }
\end{aligned}
$$

The design proceeded by calculating the depth of penetration by the Free Earth Support method and the tie-rod pull and bending moments by the Rowe reduction method. A factored angle of internal friction was used for computing the required depth of penetration, such that

$$
\begin{equation*}
\phi_{\mathrm{f}}=\tan ^{-1}\left(\frac{1}{\mathrm{SF}} \tan \phi\right) \tag{3-1}
\end{equation*}
$$

in which $S F=$ an appropriate safety factor, taken as l.5, $\phi=$ angle of
internal friction, unfactored, and $\phi_{f}=$ angle of internal friction, factored. The tie-rod diameter is then calculated based on an allowable tensile strength, $f=22,000 \mathrm{psi}\left(151 \mathrm{MN} / \mathrm{m}^{2}\right)$. Finally, the sheet pile member thickness is selected based upon an allowable flexural stress of $\mathrm{f}=2,000 \mathrm{psi}\left(13.8 \mathrm{~N} / \mathrm{m}^{2}\right.$). The resulting minimum parameters required are a penetration depth, $D=4.8 \mathrm{ft}(1.46 \mathrm{~m})$, tie-rod diameter, $\mathrm{d}=$ $0.68 \mathrm{in}(17.2 \mathrm{~mm})$, and sheet pile thickness, $\mathrm{t}=1.81 \mathrm{in}$ (46.0 mm).

Penetration depth stems from the demand found by summing moments about the tie-rod. The demand moment is from active stress applied against the wall. This motivating phenomena is computed as

$$
\begin{align*}
M & =\frac{1}{2} K_{a 1} Y_{1} t_{I}^{2}\left(\frac{2}{3} t_{1}-H_{A}\right) \\
& +\frac{1}{2} K_{a 2} Y_{2} t_{2}^{2}\left(\frac{2}{3} t_{2}+t_{1}-H_{A}\right) \\
& +\frac{1}{2} K_{a 3} Y_{3} D^{2}\left(\frac{2}{3} D+H-H_{A}\right) \\
& +K_{a 2} Y_{1} t_{I} t_{2}\left(\frac{1}{2} t_{2}+t_{1}-H_{A}\right) \\
& +K_{a 3}\left(Y_{1} t_{I}+Y_{2} t_{2}\right) D\left(\frac{1}{2} D+H-E_{A}\right) \tag{7-6a}
\end{align*}
$$

For the geometry of this situation and for $\gamma_{2}=\gamma_{3}$, and $K_{a 1}=K_{a 2}=$ $K_{a 3}=K_{a}$,

$$
\begin{equation*}
\mathrm{M}=\mathrm{K}_{\mathrm{a}}\left[(318) \gamma_{1}+(517) \gamma_{2}\right] \tag{7-6b}
\end{equation*}
$$

The capacity to resist this demand is provided by the moment about the tie-rod produced by the application of passive stress such that

$$
\begin{align*}
& R=\frac{1}{2} K_{p} \gamma_{3} D^{2}\left(\frac{2}{3} D+H-H_{A}\right) \text {, or } \tag{7-7a}\\
& R=K_{P} \gamma_{3}(121) . \tag{7-7b}
\end{align*}
$$

The variability of a parameter, x, can be demonstrated in terms of its coefficient of variation

$$
v=\frac{\vec{x}}{S_{x}} \cdot 100 \%
$$

in which $\bar{x}=$ the mean value of the parameter, and $S_{x}=$ the standard deviation.

A correlation was found between variance of horizontal stress coefficients and the angle of intemal friction (Singh, 1972), such that

$$
\begin{align*}
& \mathrm{V}_{\mathrm{KA}}=1.15 \mathrm{~V}_{\phi}, \text { and } \tag{7-9a}\\
& \mathrm{V}_{\mathrm{KP}}=1.10 \mathrm{~V} \phi . \tag{7-9b}
\end{align*}
$$

For example, for an angle of internal friction, $\phi=30$ degrees, $V_{K A}=$ 16.1 percent and $V_{K P}=15.4$ percent.

The standard deviations associated with stress coefficients $\mathrm{K}_{\mathrm{A}}=$ 0.279 and $K_{p}=5.74$ are $S_{K A}=0.0449$ and $S_{K P}=0.884$ respectively. Other pertinent parameters with variability are void ratio, e (Schultze, 1972), and specific gravity of the soil solids, G_{S} (Schultze, 1972; Padilla and Vanmarcke, 1974). Approprtate values assigned to these parameters are a mean void ratio of 0.663 with a standard deviation 0.088 , and a mean specific gravity of 2.65 with a standard deviation of 0.01.

The relationship existing between the unit weight, void ratio, and speciffc gravity for saturated soil is

$$
\begin{equation*}
Y=\frac{\left(G_{S}+e\right)}{(1+e)} \quad \gamma_{W} \tag{7-10}
\end{equation*}
$$

in which $\gamma_{w}=$ unit weight of water.
A mechanism relating the variability of n independent parameters
x_{n} to the dependent parameter y is (Hahn and Shapiro, 1967)

$$
\begin{equation*}
S_{y}^{2}=\sum_{i=1}^{n}\left(\frac{\partial y_{1}}{\partial x_{i}}\right)^{2}\left(S_{x i}\right)^{2} \tag{7-11}
\end{equation*}
$$

Therefore, for the relationship between unit weight, void ratio and specific gravity

$$
\begin{aligned}
& \frac{\partial Y}{\partial e}=\frac{\left(1-G_{S}\right)}{(1+e)^{2}} Y_{W}=-37.2, \\
& \frac{\partial \gamma}{\partial G_{S}}=\frac{\gamma_{w}}{1+e}=37.5, \\
& S_{Y}^{2}=\left(\frac{\partial \gamma}{\partial e}\right)^{2}\left(S_{e}\right)^{2}+\left(\frac{\partial \gamma}{\partial G_{S}}\right)^{2}\left(S_{G S}\right)^{2}, \text { and } \\
& S_{Y}=3.30 \mathrm{Lb} / \mathrm{ft}^{3}\left(0.521 \mathrm{kN} / \mathrm{m}^{3}\right) .
\end{aligned}
$$

Using Equations $7 \rightarrow 7$ through $7-11$ and the selected values, the means and standard deviations can be computed for the motivating moments, M, the resisting moments, R, and the probability of failure. The results are shown in Table 7-1.

Table 7-1. Probability of failure and factor of safety

Parameter	Penetration		Tie-Rod Pull		Bending Stress	
	$\begin{gathered} D \\ (f t-1 b) \end{gathered}$	$\begin{gathered} C \\ (f t-1 b) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ \hline 1 \mathrm{l}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C} \\ (\mathrm{lb}) \\ \hline \end{gathered}$	$\begin{gathered} \hline D \\ \text { (psi) } \\ \hline \end{gathered}$	$\begin{gathered} C \\ (\mathrm{psi}) \end{gathered}$
Mean	17,200	40,000	7,100	14,500	1,900	5,000
Standard Deviation	2,830	6,600	1,162	560	311	970
Standard Score	3.17		5.74		3.04	
Probability of Failure	8.00×10^{-4}		5.10^{-9}		1.20×10^{-3}	
Factor of Safety	2.33		2.04		2.63	

Note: $1 \mathrm{ft}-\mathrm{lb}=1.356 \mathrm{~N}-\mathrm{m}$
$1 \mathrm{lb}=0.00444 \mathrm{kN}$
$1 \mathrm{psi}=0.00689 \mathrm{MN} / \mathrm{m}^{2}$

Similar approaches can be taken with the tie-rod and bending stress demands. Tie-rod load is given by

$$
\begin{equation*}
T=K_{a}\left[(200) \gamma_{1}+(9417) \gamma_{2}\right] \tag{7-12}
\end{equation*}
$$

Hence

$$
\begin{aligned}
S_{T}^{2} & =\left(\frac{\partial T}{\partial \gamma_{1}}\right)^{2}\left(S_{Y}\right)^{2}+\left(\frac{\partial T}{\partial \gamma_{2}}\right)^{2}\left(S_{\gamma_{2}}\right)^{2} \\
& +\left(\frac{\partial T}{\partial K_{a}}\right)^{2}\left(S_{K_{a}}\right)^{2}, \text { and } \\
S_{T} & =1162 \mathrm{ib}(5.16 \mathrm{kN}) .
\end{aligned}
$$

The maximum bending moment for this situation is given by

$$
\begin{align*}
M_{\operatorname{MAX}} & \left.=5.88 P-K_{a}\left[(71.8) \gamma_{1}+(12.6) \gamma_{2}\right)\right] \\
& -K_{a}\left[(71.8) \gamma_{1}+(9.74) \gamma_{2}\right] \tag{7-13b}\\
& =K_{a}\left[(67.2) \gamma_{1}+(50.8) \gamma_{2}\right) . \tag{7-13c}
\end{align*}
$$

For a reduction factor in bending of 0.30 and section modulus of 6.55 in ${ }^{3} / \mathrm{ft}$ in this case, the maximum bending stress is

$$
\begin{align*}
\sigma & =(0.304) \text { (12) } \mathrm{M}_{\mathrm{MAX}} /(6.55) \tag{7-14a}\\
& =\mathrm{K}_{\mathrm{a}}\left[(47.5) \mathrm{Y}_{1}+(35.9) \mathrm{Y}_{2}\right] \tag{7-14b}
\end{align*}
$$

The standard deviation for bending stress is given by

$$
\begin{aligned}
\mathrm{S}_{\sigma}^{2} & =\left(\frac{\partial \sigma}{\partial \gamma_{1}}\right)^{2}\left(\mathrm{~S}_{\gamma_{1}}\right)^{2}+\left(\frac{\partial \sigma}{\partial \gamma_{2}}\right)^{2}\left(\mathrm{~S}_{\gamma_{2}}\right)^{2} \\
& +\left(\frac{\partial \sigma}{\partial \mathrm{K}_{\mathrm{a}}}\right)^{2}\left(\mathrm{~S}_{\mathrm{k}_{\mathrm{a}}}\right)^{2}, \text { and }
\end{aligned}
$$

$$
S_{\sigma}=311 \mathrm{psi}\left(2.14 \mathrm{MN} / \mathrm{m}^{2}\right) .
$$

As previously established, the mean flexural strength of wood sheet piles can be taken as $5,000 \mathrm{psi}\left(34.4 \mathrm{MN} / \mathrm{m}^{2}\right.$) and mean yield strength of A.36 steel can be taken as $40,000 \mathrm{psi}\left(275 \mathrm{mN} / \mathrm{m}^{2}\right)$ so that

$$
\begin{align*}
T_{U L T} & =\frac{\pi}{4} d^{2} f_{y} \tag{7-15}\\
& =\frac{\pi}{4}(0.68)^{2}(40,000) \\
& =14,5001 \mathrm{~b}(64.4 \mathrm{kN}) .
\end{align*}
$$

The standard deviations of the capacities can be found by backcalculation. Assumed cumulative probabilities of 99 percent associated with a minimum yield strength of $36,000 \mathrm{psi}\left(248 \mathrm{MN} / \mathrm{m}^{2}\right)$ for A36 steel and a minimum flexural strength of $2,000 \mathrm{psi}\left(13.8 \mathrm{w} / \mathrm{m}^{2}\right.$) for timber sheet piles result in standard deviations of $560 \mathrm{lb}(2.49 \mathrm{kN})$, for $T_{\text {ULI }}$, and $970 \mathrm{psi}\left(6.68 \mathrm{mN} / \mathrm{m}^{2}\right.$) for σ.

The probability of failure in penetration depth, tie-rod pull and bending stress may now be computed using Equations 7-2 chrough 7-5. The results are given in Table 7-1.

7.2.2. Reliability of the Design Curves

The preceding hypothetical situation clearly demonstrates high reliability and comfortable factors of safety against failure for a 10 foot (3.05 m) wall in loose sand. One is able to surmise that similar results would occur in analyses of various geometries and soil conditions.

The same reliability might be expected from the design curves which comprise the basis for the simplified method as they were derived from the Rowe procedure. The design curves, however, do not coincide exactly with design solutions provided by the Rowe method, since the curves represent mean values of the solutions. The variabilities of the differences between the Rowe solutions and mean values of the design curves are demonstrated in Figures 3-4 through 3-15 and Table 3-5.

The variation of the design curves is expressed in terms of percent difference. This can be converted to the same units that express the variation in the hypothetical situation. Since the design curves are the result of a least squares method of best fit, the mean percent difference between the curve and the data points is very close to zero. The means of the design curves can thus be assumed to be equal to the means of the demand of the hypothetical situation, i.e., the mean percent difference between the curve and the demand of all hypothetical situations is zero. The standard deviations can be dimensionalized by mulciplying the standard deviation, expressed as a percent, by the associated mean of the hypothetical situation. For example, a 10 percent standard deviation for tie-rod loads would convert to

$$
\begin{aligned}
S_{T} & =(0.10)(7100) \\
& =7101 \mathrm{~b}(3.16 \mathrm{kN}) .
\end{aligned}
$$

The reliability of the design curves, expressed in terms of the probability of failure, is shown in Table 7-2.

Table 7-2. Reliability of the design curves (anchored walls in sand)

Parameter	Penetration		Tie-Rod Pull		Bending Stress	
	$\frac{\mathrm{D}}{(\mathrm{f} \mathrm{c}-\mathrm{Ib})}$	$\frac{c}{(\mathrm{ft}-1 \mathrm{~b})}$	$\begin{gathered} \mathrm{D} \\ (\mathrm{Ib}) \end{gathered}$	$\begin{gathered} \mathrm{C} \\ (\mathrm{lb}) \\ \hline \end{gathered}$	$\begin{gathered} D \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} C \\ (\mathrm{psi}) \end{gathered}$
Mean	17,200	40,000	7,270	14,500	2,000	5,000
Standard Deviation	530	4,750	511	560	210	970
Standard Score	4.77		4.53		3.02	
Probability of Faflure	$\sim 10^{-6}$		$\sim 10^{-22}$		1.30×10^{-3}	
$\text { Note: } \begin{aligned} 1 \mathrm{ft}-1 \mathrm{~b} & =1.356 \mathrm{~N}-\mathrm{m} \\ 1 \mathrm{lb} & =0.00444 \mathrm{kN} \\ 1 \mathrm{psi} & =0.00689 \mathrm{MN} / \mathrm{m}^{2} \end{aligned}$						

7.2.3. Reliability of the Simplified Method

The simplified method may be considered as a system consisting of 2 components: the Rowe reduction method and the design curves. The reliability of a system whose components operate in series may be expressed as

$$
\begin{equation*}
R_{s}=\underset{i=1}{n} R_{i} \tag{7-16}
\end{equation*}
$$

in which $R_{1}=$ the reliability of the $i^{\text {th }}$ component and $n=$ the number of components in the system. In terms of probability of failure, the relationship is

$$
\begin{equation*}
P_{f}=\prod_{i=1}^{n} I-\left(1-P_{i}\right) \tag{7-17}
\end{equation*}
$$

in which $P_{i}=$ the probability of failure of the $i^{\text {th }}$ component (Harr, 1977). The reliability of the simplified method may thus be assessed from the combinatorial probability of failure of its components as shown in Table 7-3.

7.3. Anchored Walls in Clay

7.3.1. Hypothetical Situation (Undrained)

The conditions assumed for anchored walls in sand remains the same with the exception of a cohesive subgrade where $c=250$ psi (1.72 $\mathrm{yN} / \mathrm{m}^{2}$), an anchored wall in clay may be designed in accordance with the Rowe reduction method. The design depth of penetration, tie-rod pull, tie-rod diameter, bending stress and pile thickness are

Table 7-3. Reliability of the simpliffed method (anchored walls in sand

Parameter	Probability of Failure
Penetration	8.00×10^{-4}
Tie-Rod Pull	$<10^{-10}$
Bending Stress	2.50×10^{-3}

```
D = 5.54 feet (1.69 m)
P=6,530 pounds (28.2 kN)
d = 0.615 inches (15.6 mm)
\sigma=1,990 psi (13.7 Pa) and
t = 1.92 inches (48.8 mm)
```

The analysis proceeds as before with additions of another variant, the conesion parameter, whose coefficient of variation may be taken as $V_{c}=18.6$ percent (Lumb, 1972), which gives a standard distribution of $S_{c}=46.5$. The resulting capacities, demands, standard scores and probabilities of fallure are shown in Table 7-4.

The most striking aspect of the results is the relatively large probability of failure in penetration as compared to what is virtually a very substantial factor of safety. This disparity stems from the large variance of the cohesion parameter.

Coeffictents of variation for the cohesion range as high as 50 percent (Harr, 1977). Incorporating this value into the foregoing analysis results in a probability of failure in penetration of $\mathrm{P}_{\mathrm{f}}=$ 0.25 .

7.3.2. Hypothetical Situation: Penetration Computed for Drained Condition

If the long-term case (drained condition) is considered, the design results in a depth of penetration $D=9.2 \mathrm{ft}(2.8 \mathrm{~m})$, factor of safety $F S=2.2$ and probability of failure $P_{f}=0.003$. This is based on the assumption that the variance of the parameters is the same as the variance for cohesionless soils. If this depth of penetration is

Table 7-4. Probability of failure, anchored walls in clay (undrained)

Parameter	Penetration		Tie-Rod Load		Bending Stress	
	$\begin{gathered} \hline D \\ (f t-1 b) \end{gathered}$	$\frac{C}{(f t-1 b)}$	$\begin{gathered} \mathrm{D} \\ (\mathrm{lb}) \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \text { (ib) } \end{gathered}$	$\begin{gathered} D \\ (p s i) \end{gathered}$	$\begin{gathered} \mathcal{C} \\ (p s i) \end{gathered}$
Mean	5,230	30,500	6,530	11,500	1,990	5,000
Standard Deviation	920	13,800	1,070	450	320	970
Standard Score	1.83		4.45		2.95	
Probability of Failure	3.40×10^{-2}		10^{-6}		1.60×10^{-3}	
Factor of Safety	5.83		1.76		2.51	

Note: I ft-1b $=1.356 \mathrm{~N}-\mathrm{m}$
$1 \mathrm{lb}=0.00444 \mathrm{kN}$
$1 \mathrm{psi}=0.00689 \mathrm{NN} / \mathrm{m}^{2}$
used to compute the probability of failure for the short tern case, the probability of failure would be almost zero for a coefficient of variation of 18.6 percent on cohesion, and approximately 10^{-6} for a coefficient of variation of 50 percent.

7.4. Summary and Conclusions

The investigation of a hypothetical sfutuation provided a conceptualization of the reliability of anchored bulkheads. By incorporating variations in the pertinent soil and material parameters found in the technical literature, a means was estabiished whereby the probability of failure in penetration, tie-rod pull, and bending stress could be estimated.

A capacity-demand model was formulated for each of the three potential modes of failure for walls in a sand subgrade, in a clay subgrade under undrained conditions, and in a clay subgrade under drained conditions. Penetration fallure was seen to be the most probable mode of failure while tie-rod failure was virtually improbable under the assumptions declared. The probability of flexural failure of timber members was less than penetration failure, but not nearly as low as tie-rod failure.

Recalling that the safety margin, variance in capacity and demand, and the probability of failure are related by

$$
\begin{align*}
\overline{S M} & =\overrightarrow{\mathrm{C}}-\overline{\mathrm{D}}, \tag{7-3a}\\
\mathrm{~S}_{\mathrm{SM}} & =\sqrt{\mathrm{S}_{\mathrm{C}}^{2}-\mathrm{S}_{\mathrm{D}}^{2}}, \text { and } \tag{7-3b}\\
P_{\mathrm{f}} & =\left(\frac{\overline{\mathrm{SM}}}{\mathrm{~S}_{\mathrm{SM}}}\right), \tag{7-17}
\end{align*}
$$

the reasons for the general trend appear clear: a high safety margin results in a low probability of failure, while a high variance in either capacity or demand has the opposite effect.

Since the specified engineering properties of steel can be relatively easy to attain with low variance, steel products will show a rather high capacity. Added relfance stems from the fact that, to achieve the minimu yield for each lot manufactured, the metallurgical design process is conservative and an average yield results which is substantially higher than the required minimum. Rigid quality control insures that a very low percentage of the final product has a yield less than the specified minimum.

Since timber cannot be processed and refined to the extent that iron ore can, the final product exhibits more variability in its engineering properties. Designs using fimber show high reliability which is derived from the quality assurance provided by stress grading.

Both demand and capacity of the penetration model are functions of the soil parameters and penetration depth. Since high variance in soil parameters pertains to both capacity and demand, a high safety margin is required to achieve an acceptable reliability. Obviously, increasing the safety margin may be accomplished by decreasing the demand or increasing the capacity. The only choices available to obtain either end are to replace the in-situ material with a more suitable one, or to increase the depth of penetration. Additional excavation and backfilling is costly, thus increasing the penetration depth is more attractive. Unfortunately, large increases in depth are necessary to offset high variability, low soil strength, or both.

Harr states that, "For most problems in geotechnical engineering, $\mathrm{P}_{\mathrm{f}} \leq 10^{-311}$ (Harr, 1977). It is not unreasonable therefore, to consider this order of magnitude as a desired standard and to declare as acceptable any probabillty of failure that is less than 0.01 .

The numerical results of the analysis of the hypothetical situation demonstrate the acceptable reliability except for one case. The reliability of tie-rods and flexural member (sheet piles) are acceptable in all cases. Penetration depth, however, is unreliable for clays in the undrained condition, even for the moderate coefficient of variation of 18.6 percent. This realization is important as the apparent factor of safety against failure of 5.83 is very substantial and falsely suggests an adequate design. However, when the wall is redesigned for the drained condition, an acceptable reliability results for both long and short terfic.

The design curves possess small variability and show high reliability as a result. When considered as a component of a design system which incorporates the Free Earth Support method with Rowe reduction, the design curves lead to reliable designs providing, of course, that there is not excessive variability exhibited by the soil parameters.

The technical literature suggests that the undrained strength of cohesive soils demonstrates high variability. Deterministic designs based upon undrained strength produce an inherent risk of failure. Designs based upon drained strength, however, show good reliability; hence the drained condition can be considered to control the design process.

The reliability of a particular design can be estimated provided that the site was adequately investigated. One important aspect regarding the adequacy of the investigation is the number of data points used to determine the mean soil parameters. Since the investigation entails sampling from a population whose standard distribution is unknown, the desired probability of failure (confidence interval) may be investigated by utilizing a cumulative probability function described by a student distribution (Harr, 1977), where the standard score is given by

$$
\begin{equation*}
t=\frac{\overline{S M}}{S_{S M}} \tag{7-18}
\end{equation*}
$$

A table is consuited to ascertain the probability of failure for a particuiar number of data points.

The t scores for a desired probability of failure less than 0.01 are shown in Table $7-5$. It is readily observed that as the number of data points decreases, the t score increases. This indicates that for the desired reliability a greater safety margin, lower variance in soil parameters, or both, is required for fewer data points. The only option left to the designer confronted with scant data is to increase the safety margin. This is very likely to be less cost-effective than an increased scope in site investigation.

It may be concluded that the Free Earth Support, Rowe, and simplified methods are inherently reliable for walls in sand subgrades. To extend this high reliability to walls in cohesive subgrades, an adequate site investigation is required whose scope will be determined by the variability of the data.

Table 7-5. t Score required for a probability of failure less than 0.01

No. Data Points	t Score
3	31.821
4	6.965
5	4.451
6	3.747
7	3.365
8	3.143
9	2.998
10	2.896
11	2.821
12	2.764
13	2.718
14	2.681
15	2.650
16	2.624
17	2.602
18	2.583
19	2.567
20	2.552
21	2.539
22	2.528
23	2.518
24	2. 508
25	2.500
26	2.492
27	2.485
28	2.479
29	2.473

CHAPTER 8

SUMMARY AND CONCLUSIONS

Bulkheads must be designed to resist failure from bending and from lack of sufficient penetration below the dredge level. The forces causing failure stem from horizontal stresses exerted upon the wall from the soil on the backfill side. Resistance to bending failure is derived from the properties of the wall, and outward movement of the toe of the wall is resisted by the soti on the dredge side. Required penetration depth may be reduced by employing a tie-rod and anchorage on the fill side, adequately dimensioned and located.

Bulkhead behavior is governed by the complicated interaction of many variables, requiring equally complex procedures to determine the design loads. Overly simplified methods tend to over- or under-design the system. A simplified procedure is needed which addresses the pertinent variables, and this is described herein.

Various approaches have been used to determine the horizontal stress distribution and the resultant forces and moments. Of the seven approaches reviewed in Chapter 2, the Free Earth Support method with Rowe reductions was found to be the most extensively examined and covered the widest range of conditions. In spite of its rechnical merit, the FES/Rowe procedure is complex. A simplified method was therefore derived from the more complicated one.

A computer program was devised which calculated penetration depth, moment and tie-rod load in accordance with the FES/Rowe method for a wide variety of soil conditions and site geometries. Chapter 3 explains the methodology by which the pertinent parameters were combined and correlated to generate simplified design curves.

A detailed explanation of the FES/Rowe and simplified methods is given in Chapter 4. The expediency of the simplified method is made apparent in that explanation and is substantiated by the procedural flow tables and design examples that appear in the Appendices.

Although the detemination of penetration depth and loadings is of prime importance in bulkhead design, there are other items that require careful consideration to complete the design. Chapter 5 provides a discussion of other pertinent factors, i.e., overall system costeffectiveness, external loads, component dimensioning and detailing. Procedural flow tables and examples are provided in the Appendices for the design of components.

Proper construction practices are also required for a properly functioning system. A general construction procedure is discussed in Chapter 6, as well as some other practical considerations conceming construction methods.

A qualitative description of bulkhead reliability was developed by inference in Chapter 7. A capacity-demand model of a typical bulkhead was examined with respect to penetration depth, moment, and tierod load. Both sand and clay subgrades were considered. Soil and material strength parameters and variability were selected from the technical Iiterature and incorporated into the model. The models
showed that, because of the high variability of clay strength parameters, walls in clay were less reliable than walls in sand. However, a design based upon the long-term strength of clay results in a reliable design, even when the short-term parameters are considered.

By examining the capacity-demand model using probabilistic methods, several concepts were refnforced, i.e., once an adequate penetration depth is found, the probability of system failure is low; the risk of penetration failure in a clay subgrade is high when considering shortterm strength, but is reduced when the long-term strength is used for design; and as the number of data points used to determine the strength parameters of the soil increases, the probability of system failure decreases.

APPENDIX A

COMPUTER PROGRAM USER'S GUIDE

Title

Bulkhead Design for Anchored or Cantilevered Walls in Sand or Clay Subgrades.

Purpose

The purpose of this computer program is to determine the depth of penetration of bulkhead sheet-piles, determine the tie-rod load per unit length of wall, compute the maximum bending moment, and select the appropriate USS steel sheet pile and timber sheet pile. The design method is Free Earth Support as modified by Rowe.

Input

Cards 1 through 30 comprise moment and tie-rod reduction factors and USS steel sheet pile design data. These data cards are provided with the program.

Control Cards: 2 each. Must be right-justified.

Soil Parameter Cards: 1 card for each soil layer. English units. Not right or left-justified, but a decimal is required.

```
1-10 PHI - Angle of internal friction,
11-20 GAMMA - Total unft weight (lb/ft 3).
21-30 C - Cohesion (非䄪). Must be zero if \phi & 0.
```

S1te Geometry Cards: 2 cards

```
Card 1
    1-10 BOMEGA - Angle of backfili slope,
Il-20 DOMEGA - Angle of dredge slope.
```

Card 2
1-10 H - Free standing wall height ($f t$).
11-20 HW - Height of water above dredge level (DL).
This is the low water level.
21-30 HHW - Height of tie-rod above DL.
31-40 TI - Distance from top of wall to 2nd soil layer.
41-50 T2 - Distance from top of wall to 3rd soil layer.
$51-60$ T3 - Distance from top of wall to 4 th soil layer.

Surcharge Cards: 1 card

Explanation

Most sites can be approximated using 3 layers; the first layer consisting of moist (not saturated) soil between the top of the wall and the water level; the second layer extending to the DL; and the third layer extending beyond. Input of T3 $=50 \mathrm{Et}$ is a good value since any distance beyond the depth of penetration will be neglected.

The field width for each soil layer is 10 spaces. Each additional soil layer may be input utilizing this width, e.g., T4 would be input using columns 6i-70.

Values of zero must be input on soil parameter, site geometry and surcharge cards with a decimal point.

The use of cohesion parameters above the DL will result in unconservative designs. An explanation is contained in Chapter 3. Long terill strength parameters should be used instead.

APPENDIX C

SAMPLE OUTPUT

Site Geometry and Soil Parameters

The geometric and soil parameters are listed in the output to provide a check. This output should be checked first when debugging.

Factored Soil Parameters
Factored soil parameters are used to compute the following in each soil layer:

Depth of soll layer fnterface (from top of wall)
Active and passive stress coefficients
Effective unit weight
Trfangular stress distribution (overburden and horizontal)
Rectangular stress distribution (overburden and horizontal)
Resultant force for each stress distribution
Centroid for each stress distribution
Moment arm for each stress distribution
Resultant moment for each stress distribution

Depth of Penetration

The required penetration depth is printed out. If the subgrade cohesion renders an unstable wall, a message reading "THIS WALL CANNOT STAND" will appear and the program will terminate. The stability number of factor of safety against failure in penerration are listed for cohesive subgrades.

Unfactored Soil Parameters

A listing appears of the same parameters output for "Factored Soil Parameters," the difference being that this listing is computed for tie-rods loads and bending moments using unfactored soil parameters.

Tie-Rod Load

The tie-rod load is listed in lb/ft of wall.

Maximum Moment

The maximum bending moment, as computed by the Free Earth Support method is displayed. The location of the maximum moment is also shown (point of zero shear).

Operating and Structural Curves
Ordered pairs of τ and $\log \rho$ are shown for $A 328$ steel sections, A570/A690 steel sections, and wood piles. Ordered pairs are first given for typleal sections, then the actual design section. Curve-fitting data is given for clay subgrades where there are only three values of pile flexibility given in the Rowe reduction curves. The value of representing the point of intersection of the operating and structural curves is shown.

Design Section Modulus
The results of the Rowe reduction procedure are listed in in ${ }^{3} / f t$ of wall for A328 steel, A570/A690 steel and timber.

Design Section
The final USS section is listed for A328 steel, A570/A690 steel, as well as the required actual thickness for a timber pile. The tie-rod load is also output.

APPENDIX D: FLOW TABLES FOR DESIGN
Table D-1. Preliminary actions

Step	Action	Reference Section
1.	Establish soil profile	4.2
2	Determine bulkhead type (fill or dredge, anchored or cantilevered) and geometry, i.e., wall height, anchor level, dredge level, high and low water levels	
3	Determine soil parameters for each soil layer (ϕ, c, γ)	4.2
4	Compute soil stress coefficients using factored soil parameters ($\phi^{\prime}, c^{\prime}$) for penetration depth and unfactored (ϕ, c) for the-rod and moment calculations	$\begin{aligned} & 2.3 .1, \text { Eq. } 2-2, \\ & 2-3 ; 4.3 \end{aligned}$
5	Compute stability number for walls in clay	4.5, Eq, 4-17
6	Produce a sotl stress diagram to aid in calculations	4.3.1, 4.5

Table D-2. Free Earth Support calculations

Step	Action	Reference Section
1	Compute soil stresses, resultant forces, centroids sum moments about	
	a. Tie-rod (anchored walls in sand)	4.3.1
	b. Tle-rod (anchored walls in clay)	4.5 .1
	c. Pile toe (cantilevered walls in sand)	
	d. Pile toe (cnatilevered walls in clay)	4.5 .3
2	Solve for penetration depth, D, using factored soil parameters for	
	a. Anchored walls in sand	4.3 .1
	b. Anchored walls in clay	4.5.1
	c. Cantilevered walls in sand	4.4
	d. Cantilevered walls in clay	4.5 .3
3	Conpute tie-rod pull, P (force per unit length of wall) by summing moments about	
	a. 2/30 (anchored walls in sand)	4.3 .1
	b. 1/2D (anchored walls in clay)	4.5 .1
4	Find point of zero shear for:	
	a. Anchored walls	4.3.1, 4.5.1
	b. Cantilevered walls	4.4
5	Compute maximum bending moment at point of zero shear	$\frac{4.3 .1}{4.4}, 4.5 .1$

Table D-3. Rowe reduction calculations

Step	Action	Reference Section
1	Compute $M_{\text {max }}$ from FES maximum moment	4.3.1, 4.4, 4.5.1
2	Develop an operating curve based upon $M_{\max }$ and moment reduction factors for	
	a. Anchored walls in sand	4.3 .1
	b. Anchored walls in clay	4.5 .1
	c. Cantilevered walls in sand	4.4
3	Develop structural curves based upon the average properties of the sheet pile material under consideration	$\begin{aligned} & \text { 4.3.1, } 4.4,4.5 .1, \\ & 2.7 .1,3, \text { Fig. } 2-17 \mathrm{a}, \\ & 2.7 .4, \text { Fig, } 2-19 \mathrm{a}, 2.7 .6, \\ & \text { Fig. } 2-20 \end{aligned}$
4	Find T from the intersection of the operating and structural curves	$\begin{aligned} & 4.3 .1,4.4,4.5 .1, \\ & 2.7 .1 .3, \text { Fig. } 2-18 \end{aligned}$
5	Determine the member size from 'f	4.3.1, 4.4, 4.5.1
6	Recompute the structural curve based upon the properties of the selected section	4.3.1, 4.4, 4.5.1
7	Repeat steps 4 and 5 to insure that the selected section is adequate	4.3.1, 4.4, 4.5.1
8	Apply tie-rod factors	
	a. Walls in sand	$\begin{aligned} & \text { 4.3.1, 2.3.7.1, Fig. } \\ & 2-17 \mathrm{~b} \end{aligned}$
	b. Walls in clay c. Non-yielding anchorages	$\begin{aligned} & 4.5 .1,2,7.4, \text { Fig. } 2-19 b \\ & 2.7 .1,3, \text { Fig. } 2-17 \mathrm{c} \end{aligned}$

Table D-4. Computations for stmplified procedure

Step	Action	Reference Section
1	Compute loading ratio, R	4.6
2	Compute modifying coefficient for depth, C_{D}	4.6
3	Compute $\mathrm{R}_{\mathrm{O}}=\mathrm{R} \times \mathrm{C}_{\mathrm{D}}$, find dimensionless depth, D^{\prime} from design charts or equations	4.6
4	Compute $\mathrm{D}=\mathrm{D}^{\prime} \times \mathrm{H}$	4.6
5	Compute modifying coefficient for moment and tie-rod pull, $C_{M}=C_{P}$	4.6
6	Compute $R_{M}=R \times C_{M}$, find dimensionless bending moment, M^{\prime}, from charts or equation	4.6
7	Compute moment $\mathrm{M}=\mathrm{M}^{\prime} \mathrm{Y}_{3} \mathrm{~L}^{\mathbf{3}}$	4.6
8	Compute $\mathrm{R}_{\mathrm{P}}=\mathrm{R} \times \mathrm{C}_{\mathrm{P}}$, find dimensionless tie-rod pull, P^{\prime}	4.6
9	Compute pull, $\mathrm{P}=\mathrm{P}^{\prime} \mathrm{rL}^{2}$	4.6

Table D-5. Component design computations

Step	Action	Reference Section
1	Design tie-rod	
	a. Compute tie-rod tension based on pull per unit length of wall times the tie-rod spacing	5.4 .2
	b. Apply load factors	5.4.2., 5.2 .6
	c. Compute required diameter	5.4.2
	d. Determine length based on anchorage location	5.4.2, 5.3.2
2	Wale design	
	a. Compute bending moment in wale	5.4 .3
	b. Dimension the wale	5.4.3
3	Fastening wales to sheet piles	
	a. Inside wales, wood: select a nail size and determine the number of nails required per section to resist the prying force, P (tie-rod pull/unit length of wall)	5.4.3.1
	b. Outside wales, wood: use 2 nalls/pile. Select nail size with adequate length to transmit shear	5.4.3.1
	c. Inside wales, steel	5.4 .3 .3
	1) Select a bolt size and determine the number of bolts required to resist the prying force, P (tie-rod pull/ unit length of wall)	5.4.3.3
	2) Compute tensile force in each bolt	5.4.3.3
	3) Compute bending moment in fixing plate	5.4.3.3
	4) Dimension the fixing plate	5.4.3.3
	d. Outside wale, steel: use number of bolts required to facilitate construction	5.4.3.3

Table D-5. Continued

APPENDIX E

DESIGN EXAMPLES

EXAMFLE "I: GIVEN THE FOUCWING SITE GEOMETRY AND SOL CENOTTONS, FIND THE PENETGATION EEFTH BENDING MCMENT ANO TIE - ROD PULL USING THE FPEE EARTA SUPFORT MSTHOD WITH ROWE FEDLCTION:

は'	$t=4{ }^{4}$	$x_{1}=100765$	$\theta_{1} .30^{\circ}$	(7e.4-1)
Hu= ${ }^{\prime}$	$t_{2}: 3^{\prime}$	$\gamma_{2}=122.4=35$, ${ }_{2}$ * ${ }^{\prime \prime}$	
$H=2^{*}$		$\gamma_{3}=122.4$ paf	$*_{3}=32^{*}$	

i.) FIND FACTORED ANO LNFACTORSO SOIL FARAMETERS
$\theta_{1}=30^{\circ} \quad \omega_{1} f=7_{4}-1\left(\frac{1}{1.2} \tan 30^{\circ}\right): 2^{\circ} \quad$ ($=9.1$)
$\theta_{2}=32^{*} \quad \theta_{2} f=22.6^{*} * \theta_{3} f$
$\delta_{1}=20^{\circ} \quad \delta_{1}{ }^{\circ}=14^{\circ}$
$\delta_{2}=21.3^{\circ} \quad \delta_{x}=15^{*}=\xi_{3}{ }^{*}$
$\operatorname{Ka} \operatorname{tos}^{2} \phi$
$(\Rightarrow 2-3)$
$\left[1+\sqrt{\frac{\sin (9-5) \sin 9}{\cos 5}}\right]^{2}$

$$
k_{\rho}=\frac{\cos ^{2} \theta}{\left[1-\sqrt{\frac{\sin (x+5) \sin \phi}{\cos s}}-2\right.}
$$

```
Factored : ka', \(0.40 \mathrm{Ka}=3 . \infty\)
    \(\alpha_{1}^{\prime}=0.332=K_{3}\)
UNFACTORED: KA * 0279
```



```
    \(K_{p_{1}}+3 . \mathbf{N}_{4}\)
    \(\mathrm{ka}_{2}=2.256=\mathrm{ka}_{3}\)
```



```
    \(X_{2}=122.4-62.4\) (BOUYANT UNIT WEIGMT)
        \(\because G\) Pef \(=x_{3}\)
```

2.) GOMFUTE RESLLIANT FORCEA ANO SLM MCMENTS ABOUT Tie ROC (Fic. 4-2, EOS.4-3)

$$
\begin{aligned}
& \frac{1}{2} K a_{1}^{\prime} \gamma_{1} t_{1}^{2}\left(\frac{1}{3} t_{7}-H_{A}\right)-\frac{1}{2} K a_{2}^{\prime} X_{2} t_{2}^{3}\left(\frac{1}{3} t_{2}+t_{7}-i-4\right)+K a_{2}^{\prime} y_{1} t_{1} t_{2}
\end{aligned}
$$

$$
\begin{aligned}
& i_{1} \mathrm{O}^{2}\left(\frac{1}{3} \mathrm{O}+\mathrm{H}-\mathrm{H}_{4}\right)=0 \\
& 218-3330-7330+33600-(163-881) 0^{2}-38.80^{3}=0 \\
& 12,930-33600-7130^{2}-38.80^{3}=0 \\
& \text { D }=5.6^{\prime}
\end{aligned}
$$

3) SOMPUTE TOE SHEAR BASED UPON $N C=H+0=17.6$
$-\frac{1}{2} k a_{1}^{\prime} x_{1}+\frac{1}{2}+\frac{1}{2} k a_{2} \gamma_{2} t_{2}^{2}+k a_{2}^{\prime} \gamma_{1} t_{1} t_{2}+k \alpha_{3}^{\prime}\left(x_{1} t_{1}+\gamma_{2} t_{2}\right) 0$
$\left.-\frac{1}{2}\left(K_{3}^{\prime}-k p_{3}^{\prime}\right) Y_{3} 0^{2}\right]$ TAN S_{1}.
$(320+733+1220+1880-2760)\left(\right.$ TAN $\left.14^{*}\right)=3494$
$T E=[(22)(17.6)+(349)]\left(T A N 14^{3}\right)=184^{*}$
4) APPLY FORCE AT 430 AND SUM MCMENTS ABOUT DE-RCE:
$75\left(4-\frac{2}{3} D-H A\right)=(184)(13.7)=2730$
$\left.(12,930-2530)+3360 \geqslant-7132^{2}-56.3\right)^{3}=0$
$10,400+32600-7130^{2}-53.60^{3}=0$

5.) FIND TE-RCD UEING UNFAGTGRED SOLL FARAMETER 引Y SUMMING MOMENTS OF RESULTANT FOFCES AFOUT $2 / 3 \mathrm{D}:$ (ES.4-3)
$\frac{1}{2} k a_{1} \gamma_{1} E_{1}^{2}\left(\frac{1}{3} t_{1}+ \pm_{2}+\frac{2}{3} D\right)+\frac{1}{2} k a_{2} \gamma_{2} t_{2}^{2}\left(\frac{1}{3} t_{2}-\frac{2}{3} D\right)+k_{a_{2}} \gamma_{1}=-\left(\frac{1}{2}-\frac{1}{3} 0\right)$.
$+k a_{1}\left(\gamma_{1} t_{1}+\gamma_{2} t_{2}\right)\left(\frac{1}{6} D^{2}\right)-P\left(H-\frac{2}{3} D-H_{4}\right)=0$
$(2900+3110+6280-140)=13.7 p$
PFES $=983 \mathrm{~F} / \mathrm{F}$.
6.) FIND POINT GF ZERO SHEAR
$P=F_{T H}-\frac{1}{2} K a_{2} X_{2} x^{2}-K a_{2} X_{1} t_{1} \times=0$

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{3 a}
$$

$$
\text { WHERE } a=\frac{1}{2} K a_{2} \gamma_{2} \times 7.65
$$

$b=K \mathrm{Ka}_{2} \mathrm{X}_{2}=1=61,4,2 \mathrm{NG}$
C. FT-T: $1 / 2 K_{a_{1}} X_{1}-2 \rightarrow P$
$=-760$
x * G.72' BELOW THE WATER LINE ($=1$)
7.) FIND MAXIMUM MEMENT
(EQ.4-5)
$M_{\text {max }}=p\left(t_{1}-x-H a_{i}\right)-F_{T_{1}}\left(\frac{1}{3} t_{1}+x\right)-\frac{1}{6} k a_{2} \gamma_{2} x^{3}-\frac{1}{2} k a_{2} \gamma_{2} t_{1} x^{2}$

- (983) (8.72)-(223)(3.05)-(77)-(2310)
- 3690 H $4 / 4$
3.) SOMPUTE TE-ROD LOAD EASED UPON FOWE :HETHOD:
$\approx=\frac{H}{40}=\frac{12}{17.5}=0.69$
$A=\frac{14}{m 0}=\frac{2}{17.5}=0.11$
f f $=1.02$
(FG. 2-176)
$E: F_{6} \cdot P_{\text {ris }}$
$p=(1.02)(983)=1000^{*} / 4 t$.
for spaging of tiss ht Tré enters
T:P.7.5= $7,500^{*}$
a.) GOMPUTE EENOING MOMENT
A) $T_{\text {Hax }} \cdot(12) M_{\text {maxa }} / 40^{3}=(12)(3690) /(17.5)^{3}=8.26$ ($\left.=0.4-8\right)$

قETNEEN LOREE SAND LND IENSEE SLND © 0 O~ C.7. USE OF 20% FOR :NTERPOLITION STEMS FFCM GHOOSING $\geqslant=30^{\circ}$ FOR LOOSE SANO, $\phi=40^{\circ}$ FOR IENSE SAND, AND $7=52^{\circ}$
FOR THE SUGGRADE SO THAT:

$$
\frac{32-30}{40-30}=20 \%
$$

(EQ. 4-11)
Tsten * $\frac{\psi}{\left(\text { Hap }^{2}\right)^{\text {ris }}}$
$\psi=\frac{\frac{2 F}{*}}{E^{\frac{3}{3}}}=\frac{2(3000)}{\left(1.5 \times 10^{6}\right)^{13}}=0.305$ (W000)
s 0.260 (APPRCX. FOR 4328 STEEL)
$=0.400$ (AFFROX. FOR A690 STEE:)

\log	-3.00	-275	-2.50	-2.25	-2.00	-1.75
Td	0.57	043	0.39	0.29	6.7	0.27
+os	4.54	3.97	3.22	2.81	2.40	2.33
($\left.\mathrm{Map}^{2}\right)^{-\frac{1}{3}}$	38.5	26.2	17.9	122	8.30	3.85
Tsmm (wcoc)	11.8	8.0	5.45	3.71	2.53	1.17
(A32B)	10.0	4	4.63	3.17	2.16	1.60
(A690)	15.4	7.16	4.88	3.32	2.26	1.34

(SEE PLOT NExt PaGE)
b) DESIGN SETTION

$M=T \cdot H_{3}{ }^{3}$					(3c.4-15)
- ${ }_{-}$					($30.4-16$)
MATCPIAL	T	M (in-in)	4 (Esi)	$3\left(\mathrm{in}^{3} / 46\right)$	
wC00	237	12,700	2,000	6.35	
4328	2.48	13,300	25,000	0.532	
A690	2.22	11,900	32,000	0.372	

FOR WCOD SECTION:
$5 \times \frac{1}{6} b t^{2}$, for $=112^{2}==\sqrt{\frac{5}{2}} \quad$ (Es. 5-100)
$=: 1.78$, USE 3×12 (VEMINAL SizE)
FOR A323 \& 7090 STEEL, T-E SMALLEET GECTION, PS 23 has

$$
s=1.9 \mathrm{in}^{3} / f+>\leq r=0 . \quad(T \text { BLL } 5-2)
$$

c) RECOMPUTE FLSxISILTY GHARACTERISTISE:
$\psi=\frac{f}{I^{2} / 3} \quad \frac{S}{I^{2 / 3}}$
$(50.4 \cdot 13)$

MATERIAL	F(bsi)	E(psi)	$5\left(1 n^{3 / 2 t}\right)$	I $\left(\mathrm{m}^{2} / 2+0.\right)$	4
A328 A 490	$\begin{aligned} & 25, \infty \infty \\ & 32, \infty \infty \end{aligned}$	$\begin{aligned} & 30 \times 10^{6} \\ & 30 \times 10^{6} \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 0.248 \\ & 0.317 \end{aligned}$

d.) RECOMZUTE TgTR ANO FIND INTERgECTION OF THE GPGRATING ANO NEW STRUGTURAL GURVES FER A328 AND Д690 STEEL:

${ }_{\text {a }}$	2.2			-1.\% 70
$\left(H_{0} P^{2}\right)^{-1 / 3}$			5.67	
T 5 st (4328)	3.03	2.64	1.40	0.95
(A690)	4.65	4.63	3.16	2.
Pop	2.8	2.4	223	2

4) FESOMEUTES VALUES:

Manelat	T	Mmak	Sres.
4328	2.66	14,300	$0.5 \overline{1}$
4690	2.21	11,300	0.307

THE SECTONS SELEGTED ARE SATi三FACTORY A ENT ANALYSIS WILL SETERMINE WHIGH MATERIAL I E EEST: wCOO, A32S GR ACFO.

EAMPLE 2: LSING TAE CONDITIONS GF EXAMPLE ${ }^{\prime}$! ASCEFTAN THE DESIRABILITY OF A CANTILEVEVED WALL.
1.) COMPUTE DEPTH OF FENETFATION: FLM MOMENTE AEOUT TOE

$$
\frac{1}{2} k \dot{a}_{1} x_{1}=2\left(\frac{1}{3} t_{1}+t_{2}+0\right)+\frac{1}{2} k a_{2}^{\prime} x_{2} t_{2}^{2}\left(\frac{1}{3} \dot{t}_{2}+0\right)
$$

$+k a_{2}^{\prime} r_{1} t_{1} t_{2}\left(\frac{1}{2} t_{2}+0\right)-\frac{1}{2} k a_{3}^{\prime}\left(\gamma_{1} t_{1}-\gamma_{2} t_{2}\right) U^{2}$
$-\frac{1}{6}\left(K_{3}^{\prime}-K_{p}^{\prime}\right) \gamma_{3} D_{3}=0$
$321(9.33+0)+73(2.67+0)+1220(4-0)+1630^{2}-29.40^{3} \cdot 0$ $0=13.4$
2) NEGLECT TOE SHEAR: MOMENT ARM $\leq \frac{1}{3} D$ AND THE FESULTING MOMENT COMFUTED FROM TOE GHEAR IS VEFY SMALL.
3.) FINO MAXIMUM MOMENT:
a.) FOINT OF zERO SHEAR IS GOME DISTANCE X BEIOW

> CRECGE LEVEL (USE UNFACTORED SOM AVRAMETERS)
$F T_{1}+F T_{2}+F R_{2}-K a_{3}\left(X_{1} t_{1}+Y_{2} t_{2}\right) x-\frac{1}{2}\left(K=-K a_{3}\right) X_{3} x^{2}=0$
$(224+492+819)+225 x-197 x^{2}$
$x=\frac{-b+\sqrt{\theta^{2}-4 x}}{2 a}$, NHERE $2=197,=*-225$ E $=-1335$
$x=3.42$
$\Rightarrow M_{\text {wer }}=F_{1}\left(\frac{1}{3} t_{1}-t_{2}+x\right)-F_{12}\left(\frac{1}{3} t_{2}+x\right)+F a_{2}\left(\frac{1}{2} t_{2}+x\right)$
$-\frac{1}{2} k a_{3}\left(x_{1}=_{1}-x_{2}=_{2}\right) x^{2}-\frac{1}{6}\left(k_{3}-K a_{3}\right) x_{3} x^{3}$
$=(224)(12.9)+(192)(6.28)+(310)(7.61)$
$+\frac{1}{2}(225)(3.4)^{2}-\frac{1}{6}(394)(3.41)^{3}$
$=10916 \mathrm{f}$
4) COMFUTE BENDING MOMENT (WOOD ONLY)
a.) $T_{\text {max. }}=M_{\operatorname{man}} \times 12 \div \operatorname{lan}^{3}$

$$
\begin{aligned}
& =M_{\operatorname{man} \times 12} \times 120^{3} \\
& =(10920)(12) /(13.4+12)^{3} \\
& =3.00
\end{aligned}
$$

b) $\alpha=\frac{H}{H 0}=\frac{(12)}{(13.4-i 2)}=\frac{(12)}{(25.4)}=0.472$
C.) GENERATE CPERATING AND STRUCTURAL GURES. FROM FIG. 3.4, sELECT VALUES OF rd FER THE CORRESPONDING VALUEG GF LOG ρ :
$T_{\text {Pop }}=T_{\text {max }} \times \mathrm{ra}$
$T_{T T}=\frac{\psi}{\left(H_{D} P^{2}\right)_{3}}$
For woon, $\left.\psi=\frac{2 f}{E^{4 / 3}} \cdot \frac{(2)(3000)}{\left[(1.5)\left(10^{0}\right)\right.}\right]^{\frac{2}{3}}=0.305$

$\log p$	-3.0	-2.73	-290	-2.29	-2.00	-1.75	-1.50
rd	0.60	0.53	0.49	0.43	0.45	0.4	0.44
Top	4.80	4.24	3.92	3.84	3.6	3.72	3.52
(Her^{2}) ${ }^{\text {- }}$	34.0	23.2	15.3	10.3	7.33	4.99	3.40
Tsp	10.4	7.07	4.62	3.28	2.24	1.72	1.04

IT GN BE EEEN FROM insPECTION, THAT THE INTER SEETION OF THE GRAFLS ARUS SETWEEN log $p^{\circ}=-2.50$ ANO log $e:-2.25$, APTPCoximating T-E structupal
AND PPEPATING ELRVE SESMENTE AS STRAIGIT:
AND EMPLOYING SIMFLE GCORDINATE GEOMETRY YIELES:
$T=3.87$ 得 $f=-2.35$
$M=T \times H=(3.87)(25.4)^{3}=63420 \mathrm{in}-7$
$S=\frac{M}{T}=\frac{63.420}{2000}=31.7 \mathrm{in}^{3}$
$\$=\frac{1}{6} b r^{2}$, for $b=\imath^{\prime \prime}, \pm=\sqrt{\frac{2}{2}}$
$t=3.98 \mathrm{in}$
5×12（NOMINAL）SHEET－PILES ARE REOUIREE．THIS SIE SECTION IS PEOGABLY NOT AVALLABLE．A FTEEL SECTION OR NAVY WALL WOULD 引E APEFOPRIATE．

兴积 A32 STEEL：

$$
\Psi=0.360
$$

FOR WOOD：
$\Psi .0 .305$
FOFMING A RATIO OF A32g／WOOD AND APPLYING IT AGAINST THE EXISTINE VALUES OF Ts：PQECiUOGS GENERATINS ANOTEES STRUETURAL CURVE．
$\Rightarrow \mathrm{OR} \log p=-2.25,1 s t=\left(\frac{0.200}{0.705}\right)(3.28)=2.79$
FOR $\log _{6} \rho=2.20, \operatorname{TsT}=\left(\frac{0.260}{0.305}\right)(4.82)=4.10$
FHS SEGMENT GF THE CURVES IS ICENTIFIED BY：

$\log \rho$	－2．30	－2． 25
号	3.92	4
st	4．10	2.

T＝3．91
$M=(3.91)(25.4)^{3}=64,100 \mathrm{in} \cdot 16$.
$s=\frac{M}{F}=\frac{(64,100)}{25,000}=2.76 \mathrm{in}^{3}$

USE PMAZ2, WHERE $5=5.4 \mathrm{in}^{3}$ NO PECOMPUTATICN IS neecec as the section moculus is substantially GFEATER THAN THE MINIMUM FEQUIRED.
5.) ThE CANTILEVERED WALL IS MLEH: LESS ECONOMICAL OWING TO THE GREAT INCREASES IN THE REQUIRED SECTION AND CUERALL PLE LENGTH.

EXAMPLE 3: USING CONDITIONS GIVEN IN EXAMPLE I, FIND TAE CENETRATION DEPTH, TIE-ROD LEAD AND AENDING MOMENT, USING THE DESIGN CHARTS:
1.) SMPuTE RO:

$$
\begin{aligned}
R & =\frac{\gamma_{1} t_{1}^{3}+\gamma_{2}+2_{2}^{3}}{\gamma_{3} H^{3}}=\frac{(100)(4)^{3}-(60)(8)^{3}}{(60)(12)^{3}} \\
& =0.358 \\
C_{0} & =\left(\frac{H_{1}}{H}\right)^{2}\left(\frac{H_{4}}{4-H_{4}}\right)=\left(\frac{8}{12}\right)^{2}\left(\frac{2}{12-2}\right) \\
& =0.0889 \\
R_{0} & =R \cdot C_{0}=(0.353)(0.0889)=0.0313
\end{aligned}
$$

2) FIND D': SINEE THE SUQGRADE IS SOMEWHERE BETNEZN T-E "LCOSE"ANO "MEDUM" CONSTTIONS, INTERPOLATION WIGL GIVE THE DESIRED valuES.
 ANO "HM." INTERPOLATION ZY EONSICERING THE DESIRED VALUE TO LIE O.40 TMMES THE DISTNGE FZOM "L/L"TOMM" SIVES THE FROOER VALLE.

$$
\begin{aligned}
& -\frac{x}{-0.67}=\frac{2}{5} \\
& x=0.067 \\
& S^{\prime}=0.436-2=J^{\prime} \cdot 4=(0.436)(12)=5.23^{\prime}
\end{aligned}
$$

3.) EеMPUTE RM\&Rp:
$R=R_{\rho}=R \cdot G M * R \cdot C_{p}$
$\epsilon_{p}=C=\left(\frac{D}{H}\right)\left(\frac{H_{A}}{H W}\right)=\left(\frac{5.23}{12}\right)\left(\frac{2}{8}\right)=0.109$
$R_{m}=R \cdot C_{m}=(0.355)(0.1 c 9)=0.039 * R_{p}$
4.) FIND Mi: INTERPOLATE BY ENTERING "L/L"AND "L/M"

(6) RM $=0.033$

$L=\frac{2}{3} D+4-H A=\left(\frac{2}{3}\right)(5.23)+12-2$
$=3 .{ }^{\prime}$
$M^{\prime}=M^{\prime} \gamma_{3} L^{3}=(0.103)(60)(13.5)^{\frac{3}{2}}$
$=15.200 \mathrm{in}=$ 井 (A328 STEEL)

ENOTTION
Ds
H
DESIRED
L/M

$\left.\left.\begin{array}{l}\frac{p^{\prime}}{0.372} \\ 0.0352+x \\ 0.0932\end{array}\right\} \times x\right\} 0.0570$
$\frac{x}{2066}=\frac{2}{5}$
$x=0.0231$
$P=0.0622$
$P=\rho^{\prime} x_{1} L^{2}=(0.0622)(1 \infty)(13.5)^{2}=11 \pm 0 \% / \pi$.
-.) THE PERGENT DIFFERENGE BETWEEN THE RESULTS USING THE SEEGGN CHARTS with THE RESULTS OF THE LAND CALCULATICNS ARE:
PENETRATION DEPTH:
BENDING MCMENT:
TIE-ROD 3.3%
TIN

EXAMPLEE 4: EONSIDER THE SITE GEOMETRY OF EXAMPIEI AND THE FOLOWING SOIL CONDITIONS AND SOMPUTE THE OENETRATION DEFTH, GENDING MEMENT ANO TIE-ROD PML:

$\phi_{1}=30^{\circ}$	$\gamma_{1}=100 \mathrm{pef}$
$\phi_{2}=30^{\circ}$	$\gamma_{2}=(120-62.4)=57.6 \mathrm{pcf}$
$\phi_{3}=0$	$\gamma_{3}=(110-62.4)=47.6 p 60$
$\sigma_{3}=300 p 5$	

1.) GETBRMINE STABILTTY NUMBER AND EAL PARAMETERS: $S_{t}=\frac{C_{r}}{\left(X_{1} t_{1}-x_{2} t_{2}\right)}=\frac{(300)(.25)}{[(100)(4)-(57.6)(\Delta)]}=0.435>.25,0 \mathrm{~K}$
$\sigma_{1}=Q_{2}=30^{\circ}, \mathrm{ka}=0.279$ (UNFAKTVRED)
$C^{\prime}=\frac{1}{1.3 C}=\left(\frac{1}{1.5}\right)(300)=20003 i$
2.) GOMPUTE RESULTANT RERCES $\angle N O$ SLM MOMENTS HBOUT TE ROD:
$\frac{1}{2} k_{a} y_{1}=\left(\frac{z}{3}=--\mu_{4}\right)-\frac{1}{2} \kappa_{a} y_{2} t_{2}^{2}\left(\frac{2}{3} t_{2}+=-H_{A}\right)+k_{a} x_{1} t_{1} t_{2}$ $\left(\frac{1}{2}+2+t_{1}-H A\right)-\left(4 \epsilon^{\prime} r-X_{1} E_{1}-X_{2}-2\right) D\left(\frac{1}{2} D+H-H A\right)=0$ $149+3770+3360-(39.2) 0\left(\frac{1}{2} 7+8\right)=0$ $62.6 D^{2}+11140-9230=0$

$$
\begin{aligned}
& \text { c: 9220 }
\end{aligned}
$$

$3=6.02$
3.) FINO TIE-ROD GEAD BY SUMMING MCMENTS AECUT $\frac{1}{2} \mathrm{D}$:
$\frac{1}{2} x \in x_{1}=2\left(\frac{1}{3} t_{1}+t_{2}-\frac{1}{2} D\right)+\frac{1}{2}$ xa $x_{2}=2\left(\frac{1}{3}-2+\frac{1}{2} D\right)-$
Ka $r_{1}=+t_{2}\left(\frac{1}{2}+2+\frac{1}{2} D\right)-P\left(\frac{1}{2} D+H-H A\right)=0$
$2750+2910-6250-P(13)=0$
p = 76 \#/ $/ 4$.
4.) FIND THE FOINT CF ZERO SHEAR
$p-F T 1-\frac{1}{2} k_{a} y_{2} x^{2}-k_{a} y_{1} t_{1} x=0$
$916-223-3.04 x^{2}-112 x=0$
$x=\frac{-b-\sqrt{b^{2}-4 a x}}{2 a} \quad$ WHERE $2=112$
$b: 3 . \infty$
$x=4.65$ $c=-(916-223)=-693$
5.) SEMPUTE Mman :
$\operatorname{Mmax}-F_{1}\left(\epsilon_{1}+x-\mu_{4}\right)-F+\left(\frac{1}{3} w_{1}-x\right)-\frac{1}{2} a x^{3}-\frac{1}{2} \Delta x^{2} \quad$.

- (916) $(6.65)-(223)(3.98)-(1.34) / 4.65)^{3}-(569)(4.65)^{2}$
$=3412 \mathrm{FE}-\mathrm{m} / \mathrm{F}$.

6) GMPUTE EENDING MOMENT
a.) $T_{\text {max }}=(12) M_{\text {was }} / H_{3}^{3}=(12)(3412) /(18)^{3}$
$=\frac{H}{40}=\frac{12}{12}=0.67$
$\theta=\frac{H a}{H O}=\frac{2}{18}=0.11$
Q) GENERATE ORERATING AND STRUETURAL EURVES:

lo¢ p	-3.1	-2.0	-2.1
Pd	0.79	0.76	0.71
Top	5.35	5.33	4.98
	44.5	20.6	9.58
Tspa (woob)	13.6	6.28	2.92
(4328)	11.6	5.36	2.49
(4690)	17.8	8.24	3.83

C.) RECOMRUTATION OF TATM IS NOT NECESSARY, INSAEETTON CF THE GRAPH SUGGESTS THAT LTTTLE GHANGE IN \hat{i} WHL RESULT.
e) $M=T \cdot H^{3}$

MATERIAL	T	$1 \mathrm{~m}\left(\mathrm{n} /{ }^{* / \mathrm{c}}\right)$	1 (3)	$3\left(1 \mathrm{~m}^{3} / \mathrm{t} t\right.$
W000	5.12	29,4c0	2,000	15.0
4328	5.15	30,000	45,000	1.19
1.690	5.05	29,500	32,00	0.82

7.) SELECT MEMEER SIZE:
a) $\mathbf{w} C 00:=\sqrt{\frac{5}{2}}=\sqrt{\frac{15}{2}}=2.73 \mathrm{in}$; LSE 4×12 (NOMINAL)
b.) 4328 ; USE FS $28 ; 5=1.9>1.19$
c) $A 670$; Use $0528 ; 5 \times 1.9>1.19$
3.) TIE-ROP LOAD
a) FROM Fle 3.30, Vauss of fe FCR St 20.435 AFE:

$\log \rho$	-3.1	-2.6	-2.0
+6	1.40	1.25	1.05

a) VALUES OF igg A CAN SE ETABLISHES FROM
$P=\frac{H^{+}}{E-2}$
AND PE CAN THEN BE INTEROOLATED. T-EE TIE-GOD LOAD FOR SFACING OF 7:G" THEN GOMPUTES EY $T=(7.5) \mathrm{fe} P$ res

MATERJAL	ㅂ(esi)	I ($1 n^{4} / \sim_{*}^{4}$)	ρ	Ac	$\mathrm{F}_{\text {xas }}$	T(\%)
W000	1.5×10^{6}	38.4	-2.74	1.29	916	8050
A328	$130 \times 10^{\circ}$	2.8	-2.00	1.34	916	23]
4690	30×10^{2}	2.3	-2.90	1.34	916	9630

EXAMPLE E: USING THE GONDITIONS SIVEN IN EXAMPLS 3, FIND TAE DENETRATION DEPTH, EENOING MOMENT AND TE ZOO FULL, WING TAE DESIGN GHARTS.
1.) EOMPIUTE RP

$=0.390$
$C_{D}: \frac{H_{H}}{\left(H-H_{A}\right) S E}=\frac{3}{(12-2)(0.435)}=1.34$
$R_{0}=R \cdot C_{0}=(0.390)(1.84)=0.717$
2.) GOMPUTE D: ENTER FIGURE 4-7 R R $=0.717$ AND REAS OFF D^{\prime} FCR $\frac{c}{\gamma i+i}=0.23:$
$a^{\prime}=0.403$
D. D'H $=(0.483)\langle 12)=5.56^{\prime}$
3.) GOMPUTE $\operatorname{ZM}=$ =iND:M
$G_{m}: 1$
$F_{M}=R \cdot G_{M}=0.390$
 $\frac{S}{x i n}=0.25$
$M^{\prime}=2.99 * \frac{M}{C L}(C=-205: 0 N ;-2)$
$M=M^{\prime} \in D^{2}$
$M=(2.99)(300)(5.36)^{2}=30,300 \cap-* / \div 4$.
4) GOMPUTE Re FIND: :
$c_{0}=\left(\frac{d 4}{0.36}\right)^{3}=\left[\frac{(2)}{(5.26)(0435)}\right]^{3}=0.483$
$R_{p}=R_{P} \cdot \epsilon_{p}=(0.390)(0.433)=0.188$
ENTER FIGURE $4-8$ ORp= 0.770 AND REAS OFF P'FGR: $\frac{\xi}{y}=0.25$.
$\rho^{\prime}=0.554$
$\theta=\exists^{\prime} \in D=(0.574)(300)(5.86)=974 * / f$
5.) CMPARING THE FसELLTS WITH EXAMPLE \&:

DETH: - 2.7 \% DFFERENEE
큰NDING MOMENT: 2.7% OFFERENEE (A323 ETESL)
TIE R RO PULb: - 21% SIFFFRENGE
THE GIGNIFIGANCE OF THE TEE-ROD LOAD CAN ZE EXAMINED BY COMPARING THE FEOLIRED JAMETERG.
EESIGN MHATT VMLUES:
$T \cdot(774)(7.5)=7305^{3}$
$A r * 1=\frac{7305}{22,000}=0.332 i R^{2}$
$\hat{f}=\sqrt{\frac{44}{\pi}}=\left[\frac{(4)(.532)}{\pi}\right]^{\frac{1}{2}}=0.65$
HANO Catculution:
$\vec{T}=7230=$
$4+\operatorname{sig}=\frac{9,30}{22,000}=2420 \mathrm{in}^{2}$
$d=\left[\frac{(4)(0.420)}{4}\right]^{\frac{1}{2}}=0.73$

EXAMPLE G: ATTEREERG LMAT TESTS FEFFCRMED ON THE CLAY FRACTICN OF THE zUBGRADE MATEFIAL IN EXAMPLE 3 FEVEALED:

$\begin{array}{ll}\text { WATER CONTENT: Wz } 40 \% \\ \text { UQUO UMIT: } & L L=55 \% \\ \text { PLASTIC LMIT: } & \text { PLF } 34 \%\end{array}$
1.) DETERMNE PLASTICITY INDEX \& LGUIDMY INDEX:

$$
\begin{aligned}
& P F=L-P_{L}=35-34: 21 \\
& F L=\frac{4-F_{L}}{P I}=\frac{40-34}{2!}=0.29
\end{aligned}
$$

2.) DETERMINE ACTIVITY (60% CLAY):

$$
A=\frac{P I}{H C L A Y}=\frac{21}{60}=0.33
$$

THE INOICATORS SUCGEST THAT THIS GLAY GOUL WIL: CAUSE NO TROUBLES (LOW ACTIVITY, LOW FIASTIGTTY ANO LOW LIOUIDITY INDEX.) SEE Wh, IGTO
3) THE DRANED STRENGTH CAN BE EETMMATES AS:

$$
\theta=26^{\circ} \quad(W u, 1 * 6)
$$

4) FECALCULATE PENETRATION $=$ STM :
$\Rightarrow=\frac{x_{1}=1_{3}+x_{2}+{ }_{2}^{3}}{x_{3} n^{3}}=\frac{(1-0)(4)^{3}-(57.6)(a)^{3}}{(47.6)(12)^{3}}=0.436$
$C_{0}=\left(\frac{H W}{H}\right)^{2}\left(\frac{H A}{H-H A}\right)=\left(\frac{3}{12}\right)^{2}\left(\frac{2}{10}\right)=0.0889$
$R_{0}=7 \cdot \epsilon_{6}:(0.434)(0.0889)=0.0388$
 FOR "SANOFILL FHI 326° ":
$D^{\prime}=0.719$
$0=3 \cdot 4=(0.79)(12)+8.62=4$
5.) aecaleulate benoing moment

$$
\begin{aligned}
& \epsilon_{M}=\left(\frac{0 \cdot H_{A}}{H \cdot H_{W}}\right)=\left[\frac{(8.63)(2)}{(12)(8)}\right]=0.179 \\
& R_{M}=R \cdot C_{M}=(0.436)(0.179)=0.0780
\end{aligned}
$$

ENTER FIGURE 4-12 ©RM $=0.0780$ AND READ GFFM FOR "SANO FHL/FHI : 26 "
$M^{\prime}=0.100$
$\Rightarrow L=\frac{2}{3} D+H-H A=\left(\frac{2}{3}\right)(0.63)+10=15.75$
$M=M^{\prime} Y_{3} L^{3}=(0.098)(47.6)(15.3)^{3}=13,400 \mathrm{in}+i \mathrm{i} . / \mathrm{H}$.
6) REEALCULATE ME-ROD.ZLL:
$\epsilon_{0}: \epsilon_{n}=0.179$
$P_{p}=R \cdot G_{p}=R M=0.073$
ENTER FIGURE 411 B RP = C.CTBO AND READ off ρ for GANOFLL / PuI : 2
$F=0.0334$
$\rho=F^{\prime} x_{1} 1^{2}+(0.0334)(1 \infty)(15.3)^{2}: 334 \mathrm{it} / \mathrm{fe}$.

EXAMPGE \# : SETERMINE TAE DIAMETBR JFTHE TE-RCD BASED UPON THE LOAS GIVEN IN EXAMPLE ${ }^{*}$ I:
1.) GIVEN: $T+7,500$ F
2)
$d=\sqrt{\frac{\Delta T \cdot L E}{T H}}$
(EQ. 5-17)
a.) GHoose $\mathrm{LF}=1.2$
(5Ec. 3.2.6a)
b) $f=2.60+4$ $7(0.60)(3,0,00)$ $=21,600$ psi
(30. $3-12 c$)

$$
\text { e) } \begin{aligned}
Q & =\sqrt{\frac{(4)(7900)(1.2)}{\pi(21,000)}} \\
& =0.728 \mathrm{~N} .
\end{aligned}
$$

$\sin 3+9)$

ACD $1 / 4$ in. FOR SALT WATER

4) UsE A 1/8 HotE Fer The TE-Rod 글AENiG JTATE,

A $11 / 22$ inct male EOR THE WALE AND PILE (WOOD WALESS)
LSE A I'g HOLE FCR THE TIE-RCD PASSING TRZOUGH STEEEL SHE゙ET FitES.

EXAMPLE $\#$: GIVEN THE LDADS IN EXAMPLE ${ }^{\#}$! DESIGN A WALE FOR STEEL ANO WOOO SHEEST FILEAS.

2.) DETERMINE MOMENT AND SECTION MODULUS REQLIRES $M=\frac{1}{9} S L^{2}$
$3\left(\frac{1}{5}\right)(1000)(7.5)^{2}(12)$
6토.5-19)
= 75, 000 in. $=43$.
$s=\frac{10}{26}$

- (15, ∞) $/(22, \infty)$ (A 3 , 느튼)
$=3.41 \mathrm{in}^{3}$, USE 2 EA. 64×5.4 GHANNELS
$5 \times 1.93 \mathrm{mN}^{3} / \mathrm{PE}$ GHANNEL $\times 2$ EHANNELS (TAB S-3)
$=3.36 \mathrm{iN} .^{3}>3.41 \mathrm{iN}^{3}$
3.) $5=\frac{m}{f^{\prime} 0}=\frac{75000}{2000} \quad$ (ScuTHEZN FNNE)
$=37.5 \mathrm{iN} .^{3}$

4) USE $4 \times 10 \mathrm{MEMg}$ 解, $3=34.53 \mathrm{Ni}^{3}$
(72 3-46)
$A 3 \times 10$ SECTION 43 ACEGUATE SERTCN MCDULUS,
 WCOD BETNERN BOLT AND EBEE GF WALS.

تRAMPLE G：DETEFMINE THE SIZE AND NUMBER AF NAUS in EXAMPLEE $=1$ TO

i）GVEN：$P=1000$＊$/$ 色．
$t=2^{2 / 8} / \mathrm{N} .(3 \times 12$ NOMHANAL）
TMgER MATERIAL IS SOUTHERN PINE
2）FiD $6:$
$6: 0.59$
（TAS 5－6）
3）TRY a 40 PENNY NaIl $(40$ Q）
$2=5 \ln$.
$F=83=1 N$.
（TAB 5－7）

$\omega r=R Q=$
（EGA 5－13）
（83）（2，375）
$=197$／NALL
4）NuMBEF On Nails
$n=\underset{W}{E}$
（톤．5－19）
－$\frac{10 c 0}{97}$
＝5．c8，usE 6 NALS／Fル三
i．）TRY 4 40 $\hat{\alpha}$ SPIKE
$2=3 \mathrm{~m}$.
$\rho=97=1 \mathrm{~m}$.
$W F=P Q 日$
$=(97)(2.375)$
$=230$－spikg
$n=\frac{?}{1 / 2}=\frac{1000}{23}=4.35$, JSE 5 SPikE $/$ PILE

EXAMPLE \#IO: DETEFMINE THE NAIL SIZE REGURRED TO FASTEN SHEET PMLES TO AN OUTSIDE WHLE.
1.) GVEN: $t=2^{5 / 8} \mathrm{~N}$.

$$
\text { 2.) } \begin{aligned}
Q & =(53) \\
& =(5,3)(2.625) \\
& =4.375 \mathrm{~N} .
\end{aligned}
$$

(50. $5 \cdot 2$ -
3.) USE 30 \& NAIL ($Q=41 / 2$ IN. $)$
(TAB $\overline{-1}-7$)

EXAMPLE II: SESIGN A SEAPING PLATE FOQ THETH-GOD DESIGNED in ExaMFle $=7$
1.) GIVEN: $\begin{aligned} T & =7500^{*} \\ d & =110 .(1 / 8 \mathrm{Na}, \text { Hecz) })\end{aligned}$
2) DETERMINE AREA FEOURRED
$A=T / \rho_{p}$
$=(7-\infty) /(455)$
(EQ. $5-2$)
= 16.48 N .2
3) SZE THE PLATE

$h_{1}\left(A+A\right.$ man $\left.\sum^{i}\right) b$
$A=\frac{\pi}{4} a^{2}$
$=\left(\frac{\pi}{4}\right)(1.125)^{2}$
$=0.99 \mathrm{~km} .^{2}$
$h=(16.48+99) /(3.5)$

4.) PETERMINE $\overrightarrow{F P}_{p}$; NANS =
$F_{p}=T /\left(A_{0}-A_{\text {man }}\right)$
$=-500) /[(3.5)(5)-(0.99)]$
$=45435 i$
$N=2(\xi-\hat{N}$ Habs $)$
$=1 / 2\} 3.5=1.125\rangle$
$=1.19$
$=\sqrt{\frac{3 F N^{2}}{P b}}$
(E0.5-22)
$=\left[\frac{(\xi)(454)(1.19)^{2}}{22,000}\right]^{\frac{1}{2}}$
$=0.30$
USE 3 将 $\times .5 \times 5$

巴XAMPLE \＃ $12: \operatorname{A}$ UNIFCRMLY DISTRISLTED SUREHAROA LOUE
 THE BAC＜FILL OF THE SITE DESCRBED IN EXAMPLE T．DETEQMINE THE ZEQUIRED FENETRATION DEOTH，TIE－ROO LOD，AND MAXIMUM EENDINK MOMENT．

1．）GIVEN：$q=200 \% / \neq \underbrace{2}$
GEOMETKY $\triangle N O$ SOTL COMOTIONS GVEN IN EX．\＃ 1
2．）THE GFFETT OF THE UNFORMLY DISRIBUTED SURUHARGE is A RECTANGULAQ STRESS DISTRIBUTION IN EACH SOIL LAYER， AS 三HOWN IN FIG．4－2．COMPUTE THE ZESULTING MOMENTS
 iN EXANPISE

$(0)+(3670)+\left(38.2 D^{2}+7640\right)+\left(10,400-3360 D-713 D^{2}-\right.$
$58.8 D^{3}=0$
$14,070+41200-475 D^{2}-58.80^{3}=0$
$3=0.2^{\prime}$
3．）SUM MOMENTS ABOUT $2 / 3 \rho$ TO DETERMINE TE－ROD LSAO
$\left(\mathrm{Ka}_{1} \theta_{1} t_{1}\right)\left(1 / 2 t-t_{2}-2 / 30\right)-\left(1 / 2 k a_{1} \alpha_{1} t_{1}{ }^{2}\right)\left(1 / 3-1-t_{2}-2 / 30\right)+$

$3130+3010+900+3340-70-1413=0$

4）FIND FONT Of zERESHEAR，x FT BEtEN THE WATE2 iEVEL（Fi）：
$=-1 / 2 k a_{1}\left(x_{1} \psi_{1}-\frac{a}{b}\right)=1-1 / 2 k a_{2} x_{2} x_{2}-k a_{2}\left(\gamma_{1}=-a_{3}\right) x=0$
$7.68 x^{2}-104 x-1175=0$
$x=\frac{-b+\sqrt{p^{2}-4 a c o}}{2 a}$
$\begin{aligned} \text { NHERE } & =7.60 \\ b & =134 \\ c & =175\end{aligned}$
$x=5.90^{\prime}$ シビロW せ，

5．）FINI MAXIMUN MCMENT

$=11,930-1610-440-2670-530$
$=6080 \sim-16 . / f t$.
4．）लのMPUTE $\propto 4 \beta$ ：
$x=\frac{H}{H_{0}}=\frac{12}{(12+6.2)}=0.66$

$$
\frac{H_{4}}{H_{0}}=\frac{2}{(12+6.2)}=0.11
$$

7．）TE－ROO LOAD ：
fes $=0.95$
（F゙に 2－i76）
$P=(0.95)(1510)=1435 \% / \rho 4$.
3．）تMFuTE REDUCTIONS FFOM OPERATING $4 N O$ STRLCTLEAL ElRUES FeZ wood，As in Ex．Fi：
$T_{\text {max }}=(12)(\cos 0) /(182)^{3}=13.3$
$T=4.56$
$m=P+\theta^{3}=(295)(18.2)^{3}$
$=27,510$ in．w

EXAMPLEFIZ ：LSE THE SIMPUFFED VETHOD FROM THE PRECEDING 4 TIATION

1．）DETERMINE THE EQUIVALENT WEIGHT OF SOLL FOR O AND ADD THIS TO THE FREE JTANPING NALL HEIGHT，H：
$H_{H}=\frac{Y_{1}}{X_{1}}=\frac{200}{100}=2=r$.
$-=12+2=14$ FT．
2．）Fenm $E x, F, \frac{D}{H}=0.436=D^{\prime}$
$\therefore D=D H=(0.436)(14)=6.1 \mathrm{FT}$
3）FRom Ex． $73, M^{\prime}=\frac{M}{X_{3}}=0.103$
$L=2 / 30+H-H A=(2 / 3)(6.1)-(14)-(2)=16.1 \mathrm{FT}$. $M=M^{\prime} Y_{3} L^{3}=(0.103)(60)(16.1)^{3}=25,800 \mathrm{~N} .7 / \mathrm{FT}$.
4）FZOM $\Xi x . \#^{\#} 3, P^{\prime}=\frac{P}{\gamma_{1} L^{2}}=0.0622$
$F=P^{\prime} X_{1}^{\prime} y^{2}=(0.0622)(100)(16.1)^{2}=1612 \pm /=1$.

EXAMPLE \# 14: DETERMINE THE FENETRATION DEPTH: EENDING MCMENT, AND TE-ROD LOAD FCE THE WALL IN THE PREVIOUS EXAMPIE INSTEAD OF A ZOINT WOAD, CONSIOER A EONTINUOUS FOUNOATION FOLTING IO FT. FEOM THE SHEET PLES WTHH A LOAO QF 5 KIPS/FT.
1.) GIVEN: Qג = 9000 /FT. $x=10 \equiv 1$
GEMETRY AND SOIL ENDITIONS FEMAIN UNCHANGED
2.) $M=\frac{x}{H}=\frac{10}{12}=0.83$
$P H=\frac{0.64 Q Q}{\left(M^{2}+1\right)}=\frac{(0.64)(5000)}{(0.03)^{2}-1}=1890 \% / F T \quad \quad(F 16-1 a)$
3) EXIZA FOLATE L FZOM FGUEE 5-1b. Foz M = 0.83,
$h=0.43 t=5.16 \mathrm{~F}$.
4) SUM MOMENTS LBOUT TEERRD, AS IN PREVIOUS EXAMPLE : 개 $(H-14-14)=(1990)(12-5.16-2)=9150$ $(9150)-(10400)-33600-730^{2}-58.80^{3}=0$ $B=6.2$
7) SUM MOMENTS 4 BOUT $2 / 30$. FH ACTS O (L+ $2 / 30$) FROM $2 / 30$:
$3(6-430)=(1340)[12+(2,3)(6.2)]=17.360$
$(1+360)-(3 \operatorname{scc}-3340-1440)=14.1 p$
$P=1800=/$ F.
6) FINE BONT OF ZERO SHEAR:
$c=1 / 2$ रo, $x_{1}+2-O_{H}-3=313$
 SHEAR FOREE DUGRAM GHANESE ABRUPTLY GAT TH FONT
 MAXMUM MGMENT WILL GEEUK
$x \neq M-1=$ H, $_{1}=2.84^{\prime}$ BELOW THE NATER LEVEL
Z) FWNR MMAX
$M_{\text {Max }}:(1800)(4.84)-(223)(4.17)-(60)-(413)=7310 F T-* /$ FT.
8) COMPUTE THE THEROD LOAD

$P_{2} f_{c} F_{\text {x }}=(0.45)(1800)=1710 \pm / E T$.
Q) CaMPUTH BENDING MOMENT EEPuETIONS
$T_{\text {rata }}=(18)(7310) /(18.2)^{3} \pm 14.6$
 FACTORG WIL GIVE
$\pi=5.76$
$M=$ PGe $^{3}=(5,9)(15.2)^{2}=35, \cos \mathrm{w}+/ \mathrm{F}$.

EXAMPLE * 15 : USE THE SIMPLIFIES METHOD FROM THE PRECEDING SITUATION.
1.) Deft ERMENE $A N$ EQuivalENT HEIGHT OF SOIL FGR PH ANO ADO THIS TO THE FREE STANDING WALL HEIGHT, H: $H_{\text {es. }}=\frac{\partial H}{x_{1}(4-i)}=\frac{1890}{(100)(12-5.16)}=2.77^{\prime}$
$H=12+276 * 14.8$
2) $\operatorname{RROM} \equiv x . * 3, \frac{D}{i=}=0.436=0^{\prime}$
$\therefore D=D^{\prime \prime} 4=(0.436)(14.8): 6.5^{\prime}$
3.) FROM $\equiv x * 3, M^{\prime}=\frac{M}{X_{3} L^{3}}=0.103$
$L=2 / 30-H-H A=(3 / 3)(4.5)-(14.8)-(2)=17.3$
$M=M^{\prime} X_{3} L^{3}=(0.103)(60)(17.13)^{3}=31.100 \mathrm{iN} 7 / F=1$.
4) FRom $\equiv x,=3, P^{\prime}=\frac{P}{4^{2}}=0.0622$
$P=P x_{1} L^{2}=(0.0622)(100)(17.1)^{2}=1 \varepsilon 2 \theta^{\#} / F$.

EXAMPLE FIG: A 10,000 LS LAAD IS T BE LOCATED $\Rightarrow F F F F M$ THE SHEET PLESS OF THE WALL GMEN N Ex. 1 . DETERMINE THE REGUNZED FENETRATICN DEFTH, TE-ROD LOAD, AND MAXIMUM EENDine MOMENT.
1.) GIVEN: $\begin{aligned} A_{p} & =10, \infty \\ x & =5,0\end{aligned}$
(F165-1d)
GEOMEIKY LND SOLL CONDITIONS GVEN IN EX. 半!
2) $m=\frac{x}{H}=\frac{5}{10}=0.5$
$P_{H}=045 \frac{Q_{H}}{H} \cdot 450 \%$ 台
3.) INTERPOLATE L FFEM $\Rightarrow G \quad 3-1 b$
$L=0.54 H=6.48+t$.
4.) SUM MOMENTS ABOUT TIE-ROO:

SH ACTS AT 5.4 HT FIEM DL OR (H-H H H) $=3.72$ नT. FتصM TME-700.

$(450)(3.52)+10,400-33600-713 D^{2}=58.80^{3}=0$
$D=5.5$ FT.
5.) SUM MOMENTS ABCUT 2/3O. FL ACTS AT A DSTANCE

$(450)(15.7)-(2900+3110-6280+1140)=13.77$
$P=1500 \% / \mathrm{FT}$.
6) GIND GONT of ZERO SHEAR AS IN STEO G, Ex. ${ }^{H}$, ExCEPT THAT:
$c=1 / 2 \mathrm{Ka}_{1} \gamma_{1} t_{1}^{2}+F-p=-323$

 THE MOMENT CAUEED EY FH (L+ $+1+x \rightarrow$ - $)$
$M_{\max }=-(450)(6.48-4+7.10-12)-(1800)(9.10)-(223)(8.43)-$ (916)-(2580)
$=5760 \mathrm{Fr} / \mathrm{FT}$.
8.) COMPUTE THE TIE-FOD LAAD, AS IN STEF g: Ex. \#1:
$\beta=2,7.5=0.11, \alpha=12 / 15.5=0.69, f=1.0 \quad$ (FiG 2-176) $P=f$ Feas $=(1.0)\langle 1500)=1500 \% / F$.
9.) COMPUTE ZENDING MOMENT REDUCTION AS IN STEP G, EX. \boldsymbol{Z} : : $T_{\text {Max }}=(12)(5760) /(17.5)^{3}=12 . x$
GENERATE NEW Pop VALUES USING THE SAME REDUCTION Fhetors as in Ex. I.
$T=3.48$
$m=P_{m 0^{3}}=(3.48)(17.5)^{3}=18,650 \mathrm{~m}, 63 . / F T$.

EXAMPLE \#/7: USE THE SIMPLIFIES METHOC FOR THE PRECEIDING SITUATION.
i.) DETERMINE AN EQUIVALENT MEIGHT OF SOIL FER PH

$H=\frac{P_{H}}{h_{1}(H-i)}=\frac{480}{(190)(i 2-6.43)}=0.32$
$u=12-a 82 \div 12.32$
2) Feem Ex. $73, \frac{3}{4}=0.436 \times D^{\prime}$
$\therefore D=3^{+1}+=(0.436)(12.82)=5.59=5.6^{\prime}$
3) $\operatorname{FRam} E x=3, M_{1}=\frac{M}{y_{3} L^{3}}=0.103$

L $=2 / 3 \mathrm{O}+\mathrm{H}-\mathrm{HA}(2 / 3)(5.6)-(12.82)-(2)=14.5$
$M=M^{+} X_{3} L^{3}=(0.103)(60)(14.6)^{3}=19,800 \mathrm{~N},=$
4) $\operatorname{FROM} \equiv \mathrm{F} .=3, \quad P^{\prime} ; \frac{P}{X_{1} L^{2}}=0.0422$
$P=P \not Y_{1} L^{2}=(0.0422)(i 00)(i 4,6)^{2}=350 \# /=7$.

EXAMFIE 18: EESIGN A 2 MEMAER SFLIEE FCR AN INEICE WALE HAVING THE TIMENSIONS ANO LEACS AS IN EXAMFLE B.
1.) GIVEN: WALE IS 4:10 $M=75 \mathrm{cocin}-1 \mathrm{l}$.
2) Za 트르 Le, FIND V

TRY $b_{0}=24 \mathrm{in}$.
$v=\frac{\bar{i}}{2}-\frac{F L_{0}}{4}$
$=\left(\frac{7500}{2}\right)-\left(\frac{1000}{4}\right)\left(\frac{24}{12}\right)$
(en.5-23)

* 2250 "
3.) USE THE SAME SIZE MEMEER AS THE WALE FAR THE引PMCE PATE, GELEGT \& AND 2 BABED ON b
For $4 \times 10, b=3$ 3/8;

\therefore a $=$ 흥

4) NLMEER GF 2RTS FEGUIRED F FACH ENU
$v=\frac{3150}{310}=4.01 \quad \therefore 14220 w 5+52$ 30ti5

6.) THE ELSANGE REOUGEMENTS FES ESOE AND EOWS OF ECLTS EXEEED THE CIMENSION TV THE MEMBEE. FFEPEAT ETEPS
 GENGTH GF THE SZUCE PLATE CF 24 N . ALLOWING END DISTANEES OF I $/ 2$ IN. Q EACOS ENO.
7.) $v=\left(\frac{7500}{2}\right)-\left(\frac{1000}{4}\right)\left(\frac{21}{12}\right)=3312$

FOR $7 / 8$ in BOTT, $Q=\frac{1219}{2}=\cos { }^{3}$
ก: $3312=5.43 \therefore$ UsE 2 FONS OF 三 EOLTS
$\Rightarrow=845 / 8$ in $30-T, 2 / 2=5.5$
EOGE $=2.5^{\prime \prime} \quad$ \#ct spacing $=2.3^{\prime \prime}$

Fiw sfacing : $2 / 2=3.623 / 0.625=5.5$
nQ = (5/4) (5.3) -1/4 $=4.375$
FON SOAEING $=(4.875)\left(\frac{9}{3}\right)=305,54 Y 3 \mathrm{NW}$.

EXAMFLE A: CEEIGN A 3 MEMRER SFIGE LEING THE DATA FFOM THE FREVIOUS EXAMFLE.
i) GIVEN: WALE IS 4×0
2) USE SAME LBAS FREVIOUS EXAMPLE FOR Lる $=21 \mathrm{~N} ., V=3312$
3) GELEET A SPLIEE DMENSIONS:

- FEGURED $S=37.5 \mathrm{IN}^{3} ; 1 / 25=18 \mathrm{TH}^{4}$

UsE $2 \times 10(5=24.44>18.75)$
(TAS 5-4b)
a. $=1.625$
(F16.5-11)
ThKE $b: 2 a=(2)(1.625)=3.25$
USE $\mathcal{L}=2.3 .0$ in TBLE 5.8
4) $5 E L E C T$ A AND Q

FOR 5/8 IN ZOLT, Q $=1000$
$n=\frac{3 \underline{3} 12}{1000}=3.31 \therefore$ USE 2 KWS OF 2 ECLTS
7.) DETEFMINE SPACING FOE Q/Q: $3 / 5 / 8=4.8$

```
EcgE = 2% END = O.9로
ENT SPACNGG \(=2.5\) EN: RGN SPAGinG=2.GラG
```

6) USE 4 EA. $7 / \mathrm{gn}$. Bats 옹 EACH END

```
EXAMFLE #2C: DETERMINE THE FASTENERS EEOUIRED FCO THE 5TE톤 SHEET FILE WALL IN EXAMPLE－ 4 ANO THE WALES IN EXAMFLE \({ }^{\text {F }} \mathrm{B}\) ．
1．）GIVEN：FE 28 SEETICN
C3xת WALES
```


2）CETERMWE THE NUNBER GF BOLTS REQLIRED FOR AN． INきI卉 WALE．

USE Wix 13 N．
（7as 5－2）

$n=\frac{4 \rho W}{\pi d^{2} f_{z}}$
$=\frac{(4)(1000)\left(\frac{14}{12}\right)}{\pi(0.425)^{2}(40.000)}$
： 0.102
USE 1 己®L EVEAY GTHER EECTIGN
3．）PIMENSICN THE FIXING PYATE
USINE FकE SジアARATORS 2 N．LENG GVES A SFAN BETNEEN JHANNELS OFIN．
USING IEA．FB IN．SOLT EVERY ORHER EECTION EXERTSA TENSiLE FORCE N THE ZOLT OF゙
$F=2 F W=(2)(1000)\left(\frac{15}{12}\right)$
$=2500^{\circ}$
THE WCMENT IN THE FIXING PIATE IG
$M=\frac{1}{4} P_{n}=\left(\frac{1}{4}\right)(25 \infty)(-)$
$=1750 \mathrm{im} .13$.

$t=\sqrt{\frac{G M}{B f}}$
Her b=3:
$t=\sqrt{\frac{S(S)(1250)}{(4)(22,000)}}=0.29,1$ UsE $t=\frac{3}{8} \mathrm{~N}$.
ELGE DISTANCE $=1.25 d=(1.25)(\% / 9)=078 \mathrm{in}$.
PEGUIRED MINIMLM DIMENSICN IS TWICE THE ECGE DISTANCE RLUS THE BOLT HOLE. THE BCLT

$Q=(2)(0.78)+\left(\frac{5}{8}\right)+(1 / 8)=2.31 \mathrm{NN}$. MIN.
USE R $3 / 8 \times 3 \times 3$


```
    |N EXAMPIE #S.
```



``` C4×5.4 GHANNELS
2) TWE PDATE WIOTH IS LMTED EY THE MANEE - TO-FANGE WIDTH FF THE GHANNELS, EEGE STTANEE AND 首ET
```


$b=8-2 t_{6}$
(TAB 5-3)

```
\(=(4 . \infty)-(2)(0.206)\)
* \(3.41^{\prime}\)
```

FOR A FG IN. BCLT, THE EDGE CGTANGE ANO BCLT HCLE GEOLIPEMENTS GIVE A MINIMLM OGF 2.31 NN . (EX. \#B) \therefore USE bx 3/4 1 N.
3) $S=\frac{m}{h_{4}}=3.41 \mathrm{~cm}^{3}$ (FROM EX. F) (EQ. 5-9)
$5: \% \pm b^{2}$ (ZENTING AEOUT STRONG AX15) (Ea 5 -lOb)
$t=\frac{G E}{b^{2}}=1.94 \mathrm{IN} . \operatorname{FOR} 2$ PATES (TOP E BOTTOM ONNELS)
4.) USE A 12 N LUNG PASTE MINIMUM EOGE DUTANEE 15

$$
\begin{aligned}
V & =\frac{T}{2}-\frac{F_{6}}{4} \\
& =\left(\frac{3500}{2}\right)-\left(\frac{1900}{4}\right)\left(\frac{10}{12}\right) \\
& =3542=
\end{aligned}
$$

 CAPACTTY IN ROUELE 气WEAR IS F200*>3342
\therefore UEE I EAGA Eg N. 3OLT OIIN. FLOM THE END.
USE R $1^{\prime \prime} \times 3^{*} \times 12^{\prime \prime}(2$ ERH)

EXAMPLE FI2: GVEN TME EONCITIONS OF EXAMPLE I, OESGON A EONTALUOUS DEABMAN ANCHORAGE.
1.) GIVEN: $t_{1}=4$ H. $K_{4}=100 p f^{\prime} \quad K_{i}=3.00$ $H_{A}=2 \mathrm{ft} \quad \mathrm{x}_{2}=60 \mathrm{pc}, \quad \mathrm{KA}_{\mathrm{A}}^{\prime}=0.408$
2) $\subseteq E L E \subset T \quad M_{1}=1 f t_{1}, K_{p}^{\prime}=K_{0}^{\prime}=2.59$
3) LET $h_{H}=H_{A}$, ALTHOUGH THE TH: \#OD IS LSCATED SLIGHTGY ASOVE THE WATER LNE.
4) COMOITE THE RESULTANT FORCSS ATINE QN THE ANCHCRAGE (FIGUEE 3-2S)
4.) NET FareEs:
$\left(K p^{\prime}-K_{a^{\prime}}\right) \gamma_{1} h_{t} h_{L}-(2.27)(100)(1) h_{L}=259 h_{L}$
$\frac{1}{2}\left(K_{p}{ }^{\prime}-K_{a} a^{\prime}\right) \gamma_{1}\left(h_{w-}-h_{1}\right)^{2}=\frac{1}{2}(2.59)(100)(2-1)^{2}=129.5$
$\left(k_{p^{\prime}}-k_{a^{\prime}}\right) \gamma_{3}\left(h_{w}-h_{1}\right)\left(h_{1}+n_{L}-h_{w}\right)=(2.30)(+\infty)(2-1)\left(h_{6}-1\right)$
$=2 \Rightarrow 3 h_{b}-257$
$\frac{1}{2}\left(k_{p}^{\prime}-k_{a}^{\prime}\right) x_{2}\left(h_{2}+h_{6}-h_{w}\right)^{2}-\frac{1}{2}(2 F 9)(60)\left(h_{L}-1\right)^{2}$

$$
= \pm 77.7 h^{2}-130.4 h_{1}+77.7
$$

Ej SUM NLET FORCES, ERUATE TO THEROD RULL/UNIT GENGTH.
$P=259 h_{.}+129.5+259 h_{L}-259 \div 77.7 h_{6}{ }^{2}-155.4 h_{L}-77.7$
$1000=77.7 h_{k}{ }^{2}+356.6 h_{1}-51.6$
c) SOLVE THE GUADRATIC FOR $h_{\text {L }}$
$77.7 h_{1}{ }^{2}+358.6 h_{1}-1051.8$
$r_{b}=\frac{-958.6 \pm \sqrt{\left(355.6^{2}-(4)(77.7)(-4051.8)\right.}}{(2)(77.7)}$

$$
=204,-655
$$

UAE FOSTTIVE $\overline{\text { KCOT, }} \mathrm{h}_{\mathrm{L}}=2.04 ; 2.00$ is OK.
5) USING THE SAME MATERLAL AE THE WALI GEQUIEES NE FUGTHE DESKEN. WALES ON TWE ANCWCRACEE AREC THE SANE AS FOR T-E WALES ON THE WALL.
6.) ENSLURE TWAT THE TOE CF THE WLLL DUEE NOT NTERSEGT THE FAURE WESGE (FIGWEE 5-8).
 ESABMAN.
1.) SMEN: $\left(P_{p}-P_{a}\right)=77.7 h_{L}^{2}+359.6 h_{2}-51.8$

$$
\begin{array}{lll}
\frac{4}{1}=100 & k_{6}^{\prime}=3.50 & \Phi_{f}=21^{\prime} \\
x_{2}=00 & k_{0}^{\prime}=0.400 & K_{0}^{\prime}=0.4
\end{array}
$$

2.) SELECT A LENGTH:L. 4 FT.

$T_{W_{L}=}=L\left(P_{P}-P_{Q}\right)+B K_{a} x\left(\sqrt{K_{p^{\prime}}}+\sqrt{K_{a^{\prime}}}\right) h_{L^{3}} \tan h_{f}$

 $\left.\left\langle x_{2}\right)\left(h_{1}+h_{6}-h_{4}\right)^{3}\right]$
$\left.=(4)\left(77.7 h_{4}^{2}-3 \times 8.6-51.8\right)+\left(\frac{1}{3}\right)(0.4)(2.37), 0.334\right)$
$\left[(1 \infty)(1)^{3}+(60)\left(n_{6}-1\right)^{3}\right]$
$7500=154.3 h_{L}{ }^{2}+1434 h_{1}-207.2+12.1+7.28\left(h_{L_{-}}-1\right)^{3}$

- $\quad 7500=7.28 h_{L}{ }^{3}+133 h_{L}^{2}-1456 h_{t}-202$

$$
=: 7.23 n_{4} 3+132 h_{4}^{2}+1436=7700
$$

4) SOLVE THE OUGC EY TRIAL ANC ERRCR

5) DETEPMINE FEDLAEMENTS IFAN 8 N . BLSMETER FILE IS NEED $L=\frac{8}{12}=0.9$
$7-400=30.0 h_{6}^{2}+287 h_{1}-4.4+i 2.1-7.28\left(h_{6}-1\right)^{3}$

$$
0=9.28 n_{t}^{3}+6.16 m_{6}^{2}+309 m_{-}-7322
$$

$h_{2}=8.4$, TEO $A R G E, ~ \& ~ I N . ~ P L E S ~ A G E ~ N O T ~$
FEASAELE BY T-EMSELVES.

REFERENCES

Amerfcan Institute of Steel Construction (1963), Manual of Steel Construction, 6th ed., New York, NY, p. 4-93.

Amertcan Institute of Steel Construction (1980), Manual of Steel Construction, 8 th ed., Chicago, IL, pp. 1-36, $\overline{\mathrm{I}-37}, 4-143$.

American Wood Preservers Institute (1970), "Bulkheads: Design and Construction, Part II," Technical Guidelines, S3, AWPI, Washington, D.C., 5 p.

BBS Creosote Lumber Co. Inc., "A Word about Bulkheading," from undated publication, Materials Checklist for Bulkheads and Docks, 0M-418-11, Speonk, NY, 4 p.

Bjerrum, L., Clausen, C. T. F., and Duncan, J. M. (1972), "Earth Pressures on Flexible Structures," Proceedings, 5th European Conference on Soil Mechanics and Foundation Engineering, Madrid, pp. 169-196.

Cheung, F. K.-P. and Kulhawy, F. H. (1981), Analysis, Design and Construction of Pile Foundations in the Coastal Environment, Report to New York Sea Grant Institute, Albany, NY, 298 p.

Duncan, J. M., and Clough, G. W. (1971), 'Finite Element Analysis of Port Allen Lock," Journal of the Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 97, No. SM8, Aug., Pp. 10531068.

Hahn, G. J., and Shapiro, S. S. (1967), Statistical Models in Engineering, John Wiley and Sons, New York, NY, 355 p.

Hansen, J. B. (1953), Earth Pressure Calculations, The Danish Technical Press, Copenhagen, 271 p.

Harr, M. E. (1977), Mechanics of Particulate Media, McGraw-Hill Book Co., New York, NY, 543 p.

Hubbell, W. D. and KuIhawy, F. H. (1979), Coastal Construction Materials, Report to New York Sea Grant Institute, Albany, NY, lll p.

Hubbell, W. D. and Kulhawy, F. H. (1979), Environmental Loads for Coastal Structures, Report to New York Sea Grant Institute, Albany, NY, 218 p.

Johnson, S. M. (1965), Deterioration, Maintenance, and Repair of Structures, McGraw-Hill Book Co., New York, NY.

Kulhawy, F. H. and Peterson, M. S. (1979), "Behavior of Sand-Concrete Interfaces," Proceedings, 6th Pan-American Conference on Soil Mechanics and Foundation Engineering, Vol. 2, Lima, pp. 225-236.

Lumb, P. (1972), "Precision and Accuracy of Soil Tests," Statistics and Probability in Civil Engineering, Hong Kong University Press, distributed by Oxford University press, London (as referenced in Harr, 1977).
Mana, A. I. (1978), "Finite Element Analysis of Deep Excavation Behavior in Soft Clay," dissertation in partial fulfillment of Ph.D. requirements," Stanford University, Stanford, CA, 309 p.

Peterson, M. S., Kulhawy, F. H., Nucci, L. R. and Wasil, B. A. (1976), "Stress Deformation Behavior of Soil Concrete Interfaces," Contract Report $B-49$ (1) to Niagara Mohawk Power Co., Syracuse, NY, 526 p .
Ronan, S. A. (1979), Regulatory Processes in Coastal Structure Construction, Report to New York Sea Grant Institute, Albany, NY, 41 p .
Rowe, P. W. (1951), "Cantilevered Sheet Piling in Cohesionless Soil," Engineering, Vol. 172, Sep. 7, London, Pp. 316-319.

Rowe, P. W. (1952), "Anchored Sheet Pile Walls," Proceedings, Institution of Civil Engineers, Vol. 1, Part 1, Jan., London, pp. 27-70.

Rowe, P. W. (1955), "A Theoretical and Experimental Analysis of Sheet Pile Walls," Proceedings, Institution of Civil Engineers, Vol. 4, Part I, Jan., London, pp. 32-69.
Rowe, P. W. (1957), "Sheet Pile Walls in Clay," Proceedings, Institution of Civil Engineers, Vol. 7, Part 1, JuI., London, pp. 629-654.

Schultze, E. (1972), "Frequency Distributions and Correlations of Soil Properties," Statistics and Probability in Civil Engineering, Hong Rong University Press, distributed by Oxford University Press, London (as referenced in Harr, 1977).
Singh, A. (1972), "How Reliable is the Factor of Safety in Foundation Engineering?" Statistics and Probability in Civil Engineering, Hong Kong University Press, distributed by oxford University Press, London (as referenced in Harr, 1977).
Skempton, A. W. (1945), "Earth Pressures and the Stability of Slopes," The Principals and Applications of Soil Mechanics, Institution of Civil Engineers, London (as referenced in Rowe, 1957).

Teng, W. C. (1962), Eoundation Design, Prentice Hall, Englewood Cliffs, $\mathrm{NJ}, 466 \mathrm{p}$.

Terzaghi, K. (1954), "Anchored Bulkheads," Transactions, ASCE, Vol. 119, pp. 1243-1280.

Terzaghi, K. (1955), "Evaluation of Subgrade Reactions," Geotechnique, Vo1. 5, No. 4, May, pp. 297-326.

Timber Engineering Co. (1956), Timber Design and Construction Handibook, McGraw-Hill Book Co., New York, NY, 622 p.

Tschebotarioff, G. P. (1949), "Large Scale Tests with Model Flexible Bulkheads," Final Report to U.S. Bureau of Yards and Docks, U.S. Navy, Princeton, NJ, 272 p.

Tschebotarioff, G. P. (1951), Soil Mechanics, Foundations and Earth Structures, McGraw-Hill Book Co., New York, NY, 655 p.

Tsui, Y. (1974), "A Fundamental Study of THed-Back Wall Behavior," dissertation in partial fulfillment of Ph.D. requirements, Duke University, Durham, NC, 258 p.

United States Steel (1975), Steel Sheet Piling Design Manual, United States Steel Corp., Pittsburg, PA, 132 p.

United States Steel (1976), Steel Sheet Piling Eandbook, United States Steel Corp., Pittsburg, PA, 102 p.
U.S. Naval Facilities Engineering Command (1971), Design Manual DM-7, J.S. Government Printing Office, Washington, D.C., 286 p.

Wu, T. H. (1976), Soil Mechanics, 2nd ed., Allyn and Bacon, Boston, MA, 440 p.

