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PREFACE

The analysis, design and construction of coastal structures is of
great concern to a broad cross-section of the population living near ma-
jor fresh and salt water bodies. Realizing this concern, the New York
Sea Grant Institute ingtituted a project to develop a manual to assist a
variety of user groups in addressing the problems associated with the
development of coastal structures and coastal facilities. Although the
engineering community will find the manual to be of use, the focus of
this manual has been to develop a simplified user's guide which focuses
on the analysis, design and construction of coastal structures., The em~
phasis has been on understanding the structures and their behavior, min-
imizing higher level mathematics, and presenting desigm charts and de-—
sign examples for smaller scale structures, typical of those of impor-
tance to a small community and the individual homeowner. Large scale
developments should be handled by design professionals with expertise in
the field.

This project was Initiated in late 1977 by the New York Sea Grant
Institute and has been developed by the School of Civil and Environmental
Engineering at Cormell University. The project was initiated by Drs.
Fred H. Kulhawy and Dwight A. Sangrey. Dr. Sangrey left Cornell before
much progress was made, and subsequent work has been supervised by Drs.
Fred H. Kulhawy and Philip L.~F. Liu.

Under the auspices of this project, the following reports have been

prepared and submitted te New York Sea Grant:
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1. "Coastal Construction Materials”, November 1979, by Walter D.
Hubbell and Fred H. Kulhawy |

2. “Environmental Loads in Coastal Coustruction"”, November 1979,
by Walter D. Hubbell and Fred H. Kulhawy

3. "Analysis, Design and Construction of Pile Foundations in the
Coastal Environment”, April 1981, by Francis K.-P. Cheung and

Fred H. Kulhawy

4. “Breakwaters, Jetties and Groins: A Design Guide”, March 1982,
by Laurie A. Ehrlich and Fred H. Kulhawy

5. "Analysis, Design and Construction of Bulkheads in the Coastal
Environment”, May 1982, by Thomas M. Saczynskl and Fred H.

Kulhawy

Additional reports to be completed in the near future include:

4. Boat Ramps
b. Docks, Piers and Wharves

Further topics to complete the manual should be initiated prior to the

end of 1982.
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ABSTRACT

The extensive employment of bulkheads in the coastal environment
represents ccnsiderable capital expenditure. In many instances these
bulkheads are constructed with little consideration for pertinent
soil properties, soil-structure behavior or fabrication preocedure.

This work is intended to describe the complex behavior of these systems,
to provide a rational and simplified design approach and to discuss
other pertinent design and construction aspects.

Based upon the evidence disclosed by the literature, a particular
design method was selected and a computer program was coded. The Free
Farth Support method, as modified by Rowe, was used as the basis for
a procedure to design anchored or cantilever .bulkheads in sand or clay.
The program was then modified so that parametric studies could be
conducted and the results could be incorporated into simplified design
charts. The reliability of the chosen design methed and resulting
design curves were tested by probabilistic methods.

Other design considerations, such as extermal loading, cost
effectiveness, and component design and dimensioning, are elaborated
upon. Examples are given which illustrate the use of the Free Earth
Support method, as modified by Rowe, and the simplified method de-
veloped. Construction procedures and their impact upon wall perform-

ance are also discussed.
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CHAPTER 1

INTRODUCTION

Waterfront use has always posed a very basic problem: access
to waterborne vehicles from the shore. The bulkhead has been exten-
sively employed as the solution to this problem. The casual observer
may conclude that the imstallation of these critical structures is a
simple process. In reality, the only simple aspect of bulkheads is
their geometry. The actual design, construction and behavior of these
soil-structure systems is complex. Simplified approaches have often
resulted in either overly conservative design or failure, both to the
detriment of the owner. A rational approach is required which incor-
porates an understanding of bulkhead behavior, a sound computational
procedure and good construction practices. The objective &f this work
is to provide such an approach, emphasizing a simplified design chart
format.

Application of the approach suggested herein is intended for
bulkhead sites where shore activity is relatively light, such as private
residences and marinas. Sufficient flexibility does exist, however, to
permit use over a broad spectrum of loading and soil conditions. Dis-
cretion is always incumbent upon the designer, especially where bulk-
head heights exceed 15 feet (4,57 m), soil conditions are complex,

heavy loads are anticipated or environmental conditions are severe.



1.1. Statement of the Problem

Bulkheads are flexible soil retaining walls which derive their
stability from the structural members and the strength of the soil.

The soil, as well as providing stability, creates loads upon the system
which must be resisted. Figure 1-1 illustrates the configuration of the
basic anchored bulkhead.

The principal component of the system is the sheet pile. Horizon~
tal stresses exerted by the soil on the backfill side of the wall tend
to move the piles outward. This cutward movement is resisted by that
portion of the wall embedded in the subgrade. If the penetration of
the toe into the subgrade is not sufficient, failure will result whereby
the toe "kicks out."”

The horizoantal stresses acting on the pile cause bending, making
the pile function as a beam. Therefore pile design is twofold: the
pile must be long encugh to resist toe failure ;nd it must be stout
enough to resist flexural stresses induced by bending.

The sheet piles are tied together by wales. These members are
designed to resist bending and are fastened to the piles by bolts or
nails. At various points the wales will require splices which must
resist the same loads as the wales.

The resistance to outward movement of the wall may be enhanced
by employing a tie-rod and anchorage. Since a portion of the horizoatal
load is transmitted to the anchorage through the tie-rod, the tie-rod
must be suitably designed. The anchorage must alsc be adequately
dimensioned and properly p&sitioned. If the anchorage is too close to
the wall, it will be located within the failing soil mass, or failure

wedge, and will be of no use.
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1.1.1. Sheet Piles

Sheet piles are usually made of steel, concrete, or pressure
rreated wood. Other materials may be used as well, such as aluminum
and asbestoes.

Wooden sheet piles are generally a foot wide and vary in length
and thickness to suit design conditions. An interlocking system, such
as tongue-and-groove, is built into the pile as shown in Figure 1-2.

The configuration of steel and concrete sheet piles varies
considerably. The choice of the appropriate section is a matter of
computing the required engineering properties. Steel and conecrete
sheet piles also have interlocking devices, such as ball-and-socket
connections shown in Figure 1-3 for steel. Concrete sheet pile incar-

locking is normally tongue-and-groove.

1.1.2, Bulkhead Types

The anchored bulkhead described earlier may be altered to produce
another bulkhead type. The most basic variation is to remove the
anchorage and tie-rod, creating a cantilevered wall (Figure 1-4). This
variation may prove to be economical where relatively low walls are
installed. In such cases, the additional penetration depth required to
compensate for the lack of anchorage may very well be less costly than
the anchorage.

A smooth- or flush-faced bulkhead may be designed by locating the
wale on the backfill side of the wall. Although this may enhance boat
docking to some extent, it requires more fasteners than the wale on

the dredge side of the wall.
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Figure 1-3. Typical ball and socket (United States Steel, 1975,
facing p. 1)



SUSET PILE
™

WATER,
LEvEL kvi

Q&LCKFI L L.D

sRiGiNal,
GRAUND
SoNFIGURATION

T-“-T{EDG_E nSVEL
D)

Figure 1l-4. Cantilevered wall



The navy bulkhead is another variation of the anchored wall.
These walls incorporate the use of 8 in (203 mm) diameter fender piles
located in front of the sheet piles, as shown in Figure 1-3. The
presence of the fender pile adds considerable rigidity to the system.
This is warranted omly for relatively high walls or for locations where
there will be large external loads. Otherwise, the presence of the
fender piles is not required.

Bulkhead types may alsd be categorized by construction sequence,
i.e., a bulkhead may be a fill type or a dredge type. The sequence for
a fill type is: drive the piles, install tie-rod and anchorage, then
backfill. The sequence for a dredge type is: drive the piles, install
the tie-rod and anchorage, backfill, then dredge in froat of the wall
to the desired depth. A consequence of construction sequence is the
resulting stress distribution. Some advantage may be realized where
dredge bulkheads are required as the soil behavior tends to be

beneficial.

1.1.3. Secils

One of the most critical aspects of the bulkhead site is the type
of soil present. In a very general sense, there are two types of soils
that the designer must contend with: cohesionless soils, which can
be referred to as sand, and cohesive soils, which can be referred to
as clay. The behavior of sands is reasonably predictable and reliable
designs may be rendered with minimal complications. Clays, on the
other hand, are complex soils. Their strength varies considerably from
point to point and their behavior depends upon a wide range of condi-

tions, such as mineralogy, soil structure and stress history.
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The presenc; of sand in the majority of bulkhead sites in New
York State suggests that the design of most bulkheads may proceed in
a straightforward manner. The less fortunate designer who must deal
with clay is advised to use a cautious approach when attempting to
derermine the characteristics of the soil. A more detailed discussion
regarding site and soil characterization may be found in textbooks

(e.g., Wu, 1976).

1.2. Approach to the Solution

The key element in the design of bulkheads is a sound computa-
tional procedure. Such a procedure depends largely upon the adequacy
of the mathematical model chosen to represent the behavior of the
system. An examination of prior investigations of bulkhead behavior

not only reveals weak and strong points of the varicus models, it also

10

provides valuable insights as to the behavior itself. The valid aspects

of the various approaches may then be incorporated, while questionable
assumptions and details may be disregarded. A sound design procedure
will be the result. This is the objective of the next chapter: to
examine previous work, glean the useful facts, and formulate a compu-
tational approach.

Unfortunately, existing bulkhead design methods are cumberscme.

Obvicusly, a simplified version of the most valid method is desirable.

A simplified design procedure is therefore the major goal of this work.

The third chapter explains such a simplified method and the means used
to compose it. The fourth chapter explains the recommended design

procedures,
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Although the pile and tie-rod dimensions are the most difficult
parameters to design, there are other considerations. Location and
design of the anchorage, design of wales, splices and fasteners, ex-
ternal loadings, environmental factors, and the properties of the
structural components are discussed in the fifth chapter. Other topics
concerning the construction of bulkheads are contained in the sixth
chapter.

The seventh chapter is a qualitative treatment of the reliability
of bulkhead design. It explores the probability of failure in pene-
tration depth, tie-rod pull, and moment of a hypothetical anchored
wall. The design deals with sand and clay subgrades and lends credence
to the statement that clay subgrades pose more difficult problems than
sand subgrades.

Examples are provided in the appendices to illustrate each portion

of the design procedure.

1.3. Summary

The problem to be solved by the bulkhead designer is to compute
the dimensions of sheet piling so that the toe is driven to an adequate
depth and the section is large enough to withstand bending stresses.

If the designer opts for an anchorage and tie-rod, these must alsoc be
properly designed.

Herein, a procedure is developed in detail for the design of

bulkheads.



CHAPTER 2

EVALUATION OF SOIL STRESSES AND THE
DEVELOPMENT OF BULKHEAD DESIGN

Prior to the turn of the century, bulkhead design was govefned
by classical approaches or merely by rules of thumb. As worldwide
commerce increased, the demand for port and harbor facilities also
increased. To accommodate this demand, sites had to be utilized which
required bulkheads with greater dimensions than previously necessary.
The larger dimensions invalidated rules of thumb and rendered the
classical approaches obsolete because of economics. A state of the
art evolved for bulkhead design as a result of the continuing attempt
to understand the complex behavior of these structures.

Each investigation and explanation of bulkhead behavior required
simplifying assumptions so that the complexities of horizontal soil
stress distribution could be dealt with. An examination of the various
thoughts on bulkheads serves to determine the adequacy of the underlying
assumptions, to highlight valid contributions which should be incor-
porated into a design scheme, and to give an overall concept of the

true nature of bulkheads.

2.1. Soil Strength and Horizontal Stresses

The computation of stresses in fluids is relatively simple,.
Consider for example a vat of water as in Figure 2-la. The stresses
at point A are determined from the height of the water above A, h,

12
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and the unit weighe of the water, Y The vertical stress is T
$ince the water has no shear strength, the horizontal stress, gg,is
equal to the vertical stress.

Soil stresses are more complicated to determine because the soil
does possess shear streagth. Therefore, the stresses in a soil mass at

point B in Figure 2-1b are given by: o = y_h, where y_ 1s the unit
s s

v

weight of the seil, and o, = Kcv, where K is a horizontal soil stress

B
coefficient.

To illustrate the concept of horizontal soil stress coefficient,
consider an infinitely rigid, infinitely thin wall retaining
an adjacent mass of soil of height H, as shown in Figure 2-2a., The
magnitude of the coefficient K depends on the amount of deflection, A,
with respect to the wall height, H. With no wall deflection, the soil
is said to be at rest and the coefficient is designated as KO. As
rhe wall is deflected away from the soil mass, the stress exerted
reduces to a lower equiliprium state, known as the active state. The
active stress coefficient is designated as Ka' If the wall is deflected
into the soil mass, the stress exerted by the soil increases until the
soil reaches an upper equilibrium state, known as the passive state.
The passive stress coefficient is denoted by Kp.

Tests performed by Terzaghi (1954) revealed that minimum deflec-
tions are required to reach the limiting active and passive states.
As suggested by Figure 2-2b, relatively small deflections are needed
to reach the full active state and relatively large deflections are

needed to reach the full passive state. Also indicated in the figure

is thar the net change in stresses is much greater for the passive



Figure 2-2.
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Horizontal stress coefficient as a function of
deflection (Terzaghi, 1954, p. 1243)
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case than for the active case for the same magnitude of deflection.
The soil stress coefficient depends upon the shear stremgth of
rhe soil as well as the relative deflecticn of the wall. Shear strength

is defined in terms of the Mohr-Coulomb failure criterion as
T=¢+ g tan ¢ (2-1)

in which: T = sghear stremgth, c = soil cohesion, ¢ = the angle of
internal friction, and ¢ = normal stress on the failure plane. Figure
2-3 illustrates this concept, which shows increasing strength with
increasing normal stress.

For the purpose of this work, shear strength will be in terms
either ¢ or ¢. Sand, silt and gravel are assumed to possess only fric-
tional strength, so that ¢ = 0. This applies to any combination of
these granular soils. Clay soils are more complex, demonstrating
different properties for short- and long-term behavior. When a cohesive
soil is rapidly loaded to failure, water pressure in the pores is not
allowed to drain and the soil exhibits cohesive strength ﬁnly. If
the pore water is allowed to dissipate as the soil is loaded to failure,
it will exhibit frictional strength and may be assumed to maintain none
of its cohesion. Therefora, the short-term strength of clays is
represented by the undrained streagth where ¢ = 0, and the long-term
strength is represented by the drained strength where c = 0, The
drained and undrained strengths vary over a wide range.

The horizental stress coefficients for soils with friction, in-
cluding the drained case for clays, depend upon the angle of internal

friction, &, the angle of wall friction (i.e., strength of wall-soil
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SHEAR SIRENGTH

NOSRMAL STRESSD

Mohr-Coulomb failure criterion

17



interface), §, and the angle of inclination, w, of the backfill with
respect to the horizontal. The active stress coefficient, Ka, is

given by

2
cos” ¢
K = - (2-2)
a [sin(¢+6) 31n(¢—m)3l/2} 2

cos8d cosw

The passive stress coefficient, Kp, is given by

2

cos” ¢
Kp a o - [sin(¢+6) sin(¢+m)]1/2} > (2-3)
cosd cosw

The angle of wall friction is often taken as
§ =34 (2-4)

for wood and steel walls (Rowe, 1952). TFurther discussion of the wall-
soil interface appears later in this sectiom.
The active and passive stresses, Pa and Pp, may be computed using

Rankine's formulation for frictionless seils,
Pa = Ysh - 2c (2-5)
Pp = Ysh + 2¢ (2-6)

when dealing with the undrairned strength of clay.

If the length of the previously described hypothetical wall
(Figure 2~2) 1is increased so that it penetrates into the subgrade to a
depth, D, the wall deflection will produce an active state on one side
and a passive state on the other., If D is sufficiently large, static

equilibrium exists as the horizontal forces exerted on the active side

18
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are balanced by the horizontal forces on the passive side. A canti-
levered bulkhead is thus established as in Figure 2-4a. The depth of
penetration required below the dredge level to achieve equilibrium can
be decreased by employing a tie-rod and anchoring system mnear the top
of the wall as in Figure 2-4b. An anchored bulkhead is thus established.
With a known or assumed stress distriburion, the depth of penetra-
tion, tie-rod load, and bending moment in the wall may be computed.
By examining the evolution of bulkhead design, scrutiny of Fhe under-
lying assumptions of each approach is possible., As the evidence produced
by each investigation is aCCumulatedvand evaluated, it becomes clear
which assumptions are valid and which aspects of a procedure are worthy
of retention. These are the components of the design procedure which
will result in the most representative calculations of depth, tie-rod
load and bending moment.
With these concepts in mind, an examination of the evolution of

bulkhead design follows.

2.2. (Classical Theories

2.2.1. TFixed Earth Support

The Fixed Earth Support method, one of the classical approaches,
relies on the premise that the toe of the wall does not move. With
this assumption, the wall may be considered as a cantilevered beam
above the point of fixity, permitting the assumption of a reaction at
the point of fixity, F, as shown in Figure 2=5a. The third assumption

is that the passive stress resultant is applied at a depth 0.8D.
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One way to analyze this case is to assume a depth of penetration,
D, and compute the deflections of the wall based upon simple beam
theory. If the deflection is not zero at 0.8D, another trial depth is
attempted and deflections are recomputed. This process continues until
a depth of penetration is achieved where the deflection computed at
0.8D is zero. This is the elastic line approach (Figure 2-5b).

Another approach simplifies the computations by assuming a hinge
at the point of contraflexure, C, in Figure 2-5b. This permits the
wall to be analyzed as two equivalent beams. The upper portion is
treated as a simply supported beam with reactions at the tie-rod level
and point of comtraflexure, as shown in Figure 2-5c. The resultant
forces are summed about the tie-rod level.

The active and passive stress coefficients suggested by

Tschebotarioff (1951) are given by:
X = ran® (45 - $/2) and (2-7)
Kp = I/Ka (2-8)

Aside from the cumbersome numerical procedures involved, the
Fixed Earth Support methed has serious shortcomings that stem from the
assumptions. Model tests have shown that deflectioms at the toe always
occur (Rowe, 1952), thereby invalidating the premise that the wall may
always be treated as a cantilever. Fixed Earth Support assumptiens
are good only for limited applications where toe deflections are

relatively small.
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2.3.2. Free Earth Support (FES)

This other c¢lassical method assumes that the toe of the wall is
free to move, thereby enabling the full passive stress to develop
along the pile below the dredge line. At the time of toe failure, the
Free Earth Support (FES) stress distribution shown in Figure 2-6 can
be computed using Coulomb's definitions for active and passive stresses.

Experiments have shown that the stress distribution for inadequate
penetration is accurately described by the FES values (Rowe, 1952).

This means that the minimum penetration depth where failure is imminent
may be computed. The penetration is then adjusted so that the minimum
depth is exceeded and a margin of safety is realized,

For penetration less than the required minimum depth, equilibrium
is not achieved and the wall rotates as a rigid body. For penetration
exceeding the minimum value, rigid bedy movement no longer occurs and
the stresses are redistributed because of the Elexibility.of the wall.
This redistribution causes the computation of bending moments, based
upon FES assumptions, to be overly conservative and thereby uneconomi-
cal. In spite of this inaccuracy, it still remains a useful procedure

for computing penetration depths, although an alternative procedure

for calculating bending moments and tie-rod lecads is warranted.

2.3. Danish Rules

In spite of the rational approaches provided by the classical
methods, quay walls in Denmark around 1900 were built with the guidance
rhat "dimensions appear to be reascmable” (Tschebotarioff, 1951).

Increased commerce at thig time led to the demand for higher walls,
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which in turn necessitated more stringent design procedures. Use of
the Coulomb procedure to check timber walls already built showed that
the stresses in these walls were three to four times higher than
allowable stresses for timber. Since the walls had withstoed the test
of time with no apparent malfunction, it was surmised that the actual
stresses were substantially less than the stresses predicted from the
Coulomb methed. With this deviation in mind, the Danish engineers
Christiani and Nielsen designed the dalborg Pier in 1906. This was
considered a daring undertaking, not only because the pier was
underdesigned with respect to Coulomb guidelines, but also because it
was made of reinforced concrete and not timber. Although the design
has often been criticized for lack of conservatism, the structure has
stood for decades (Tschebotarioff, 1951).

One reason for the pier not failing is the presence of piles
driven through the backfill into the subgrade. These piles transfer
any surcharge load to below the subgrade so that this lcad does not
add to the horizontal soil stresses already acting on the wall. Another
more significant reason is a redistribution of stresses because of
soil arching. As the wall deflected horizontally, the £ill deformed
so that an arch of soil formed between the tie-rod and dredge levels.
The arch then carried part of the horizontal load imposed by the
£i11. This arching concept formed the basis for a set of design pro-
cedures called the Danish Rules.

The stress diagram for this formulation appears in Figure 2~7,
The Free Earth Support stress is reduced by an amount defined by the

parabola with amplitude, q, such that:
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_ k(4 + 10 h/L)
q 57 10 B/ ‘m (2-9)
and
_ 1
k-1+0.l Tro Ea, (2-10)
sing Lo

in which: h = distance from the tie-rod to the top of backfill, n =
the ratio of bending moments at the tie-rod and at the dredge level,
£ = the elastic modulus of the sheer pile, a = the wall thickness,
Pm = an assumed distributed load, and ¢ = the allowable bending stress
of the wall.

The depth of penetration is taken as 3 to 3.5 times the distance
HW and then multiplied by a safety factor.

Although the Danish Rules have produced successful bulkheads,
this approach is not recommended as it lacks rigorous analytical or

experimental substantiation. However, the rules demonstrated the

validity of using reduced stresses acting on the wall.

2.4, Limit Equilibrium Approaches

A method for solving scil stress problems based upon rupture
theory was devised by Hansen (1953). The underlying principle
of this approach is that a scil mass in a state of failure takes on a
specific geometry, i.e., a specific figure of rupture (Figure 2-8).
When the figure is established, K¥tter's equation is used to compute
soil stresses and the kimetatics are computed as shown in Figure 2-9.
By varying certain dimensions, critical rupture figures can be
determined. The design of the structure can then be completed by using

the forces and moments stemming from the critical conditions.



hwR 1) awP

M1 susnc E SLASTIC

—  ZONES Zowas

Figure 2-8. Rupture figures (Hansen, 1953, pp. 73-79)

28



Figure 2-9,

Kinematics of a rupture figure (Hansen, 1953,
p. 104)
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Brinch Hamnsen's approach appears attractive in that it enables
the designer to obtain a true concept of the forces involved whiéh tend
to produce a particular mode of failure. Use of KBtter's equation in
computing the stresses of soils in a plastic state is quite valid and
enhances the accuracy of the computations. In spite of these benefits,
the procedure is very tedious because many iterations are necessary
to arrive at a satisfactory solution and K8tter's equation is very

cumberscme.

2.5. Studies by Tschebotarioff

Large-scale model tests of bulkheads were conducte@ by
Tschebotarioff at Princeton (1948) to corroborate or refute earlier
concepts of bulkhead behavior. Tests were performed with three objec-
tives in mind: reducing stresses acting on the wall from a fluid
clay backfill; determine the effects of consolidation upon the magnitude
of stresses exerted on the wall and observe the phenomenon of arching;
investigate the distribution of stresses acting upon the wall.

The placement of dredge spoil as backfill is common practice as
it greatly reduces the amount of fill required from a borrow area.

There is an obviocus advantage to this practice, but there are two
significant disadvantages. Fluid clay has such a high water content
that it behaves as a fluid, i.e., it has very little shear strength

and the horizontal stresses are much higher than those from normal
backfill. Also, the fluid clay must consolidate prior to any operations
on its surface, such as construction of buildings. The studies in-

volving fluid clay backfills are thus noteworthy.
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An important consideration in these tests is the range of soils
used. The angle of internal friction of the sands studied range be-
tween 32° and 36°, indicating that the sands were in the loose to
medium dense range. The clay used, except for the fluid clay backfill,
showed a cohesion of 300 psf (14.4 Pa) and an angle of intermal
friction of 17°, determined from consolidated-undrained shear tests.

A mixture of sand and clay was produced with a resulting angle of in-
ternal friction of 32°.

Tests were conducted to determine the means required to minimize
the horizontal stresses exerted by a fluid clay backfill. It was
found that a sand dike placed at its natural angle of repose, shown
as line 6-6 in Figure 2-10, was fully effective in reducing the stresses
exarted by the fluid clay fill, i.e., the stresses were the same as
i{f the entire fill was composed of sand. The same results were found
when a sand blanket was placed whose width was equal to Ehe wall
height, as shown by line 8-8. A sand blanket whose width was 30 percent
of the wall height, as shown by line 9-9, was 50 percent effective.

A blanket width of 10 percent of the wall height was found tec have no
effact.

The presence of the sand dike or sand blanket did not enhance
the rate of consolidatioq, but prefabricated cylindrical drains did.
Vertical drains were acceptable, but were difficult to place because
of construction impediments. Horizontal drains, on the other hand,
were conceived as shown in Figure 2-11. It was felt that, alchough
such drains would be expensive, they would be practical and would

accelerate consclidation,
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A major assumption of the Danish Rules is that an arch of soil
forms between the tie-rod and dredge level which reduces the horizontal
stresses acting upon the wall, as suggested by Figure 2-8. Tsche-
botarioff felt that this arching phenomenon warranted closer scrutiny.
He made a distinction between dredge and fill b;lkheads based upon
his observaticns of arching.

For an arch of sand to form, a stable "abutment" must first be
present. Then, as the wall deflects becweeﬁ the tie-rod and dredge
lavel, an arch forms between these two abutments. For fill bulkheads,
this abutment is present at the dredge level, but is lacking at the
tie-rod until the fi%l is raised beyond that level. As the fill is
placed, the wall deflects and no arch may form without the secend
abutment. Dredge bulkheads, on the other hand, allow the formation of
an arch when the material in front of the wall is removed. When the
two abutments are present, the dredging operation causes wall deflec-
tions between the tie-rod and final dredge level, and an arch forms.
However, the arch is unstable as addicional tie-rod yiéld causes it to
break dowm.

A recommended design procedure evolved after the third set of
tests. The approach suggested was a simplified equivalent beam pro-—
cedure where a hinge is assumed to be located at the dredge level., For
bulkheads in a subgrade of clean sand, the depth of penetration 1is
raken to be 43 percent of the wall height, H, based upon limited test
results. The factor of safety against toe failure was said to be at

least 2.0. The acrive stress was computed from:



335

Pa = Ka YSH, where (2-11)

R, = (1 *—5‘—3) 0.33 £'1°, (2-12)

in which: a = the height of soil above the tie-rod, f' = 3.5 and £'''
= 0.9, based upon limited test results. Bending moments can be com—
puted from the stress diagram (Figure 2-12). Tie-rod pulls should be

designed for overstressing by dividing computed loads by the expression:

(1 - =) £ (2-13)

f' H

The term £'' = 1.0 for known subgrade materials and should be decreased
for uncertainties in the subgrade.

A further observation made with respect to vibrating the backfill
was that it increased the bending moments by 60 percent; similar
vibration of the soil in front of the bulkhead tended to reduce the
bending moments.

The tests at Princeton did not establish any wvalid relatiomship
between the shear strength of clay and lateral stresses. This lack
of correlation was interpreted to signify that once a safe depth of
penetration was established, horizontal stresses in clay are a problem
of deflection, not of rupture.

Since the range of .soils tested was limited to a narrow band,
the empirically derived formulas for bulkhead design are valid only
for that range. As soils vary beyond the test range, their stress dis-
tributions must also vary, especially for clays. A more comprehensive

design procedurs is needed which encompasses a broader spectrum of

soil conditions.
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2.6. Studies by Rowe

Rowe contributed significantly to the understanding of bulkhead
behavior (Rowe, 1951, 1952, 1955, 1956, 1957). His work began by ob-
serving the performance of scale model bulkheads in cohesionless soils
where he focused upon the effects of sheet pile flexibility and soil
stiffness. Based upon his findings, he formulated a bulkhead design
procedure. He then developed a theoretical and analytical model where
bulkhead behavior could be described as a beam on an elastic foundation.
Several years later he performed further tests on walls in a cohesive
subgrade, coupled these data with his previcusly developed analytical
model, and recommended a procedure for the design of walls in clay.

In subsequent work, he compared designs based upon his recommended
procedures with Hansen's approach. Rowe's work was extensive
well-documented, and it provided an insight that is very helpful in

understanding bulkhead behavior.

2.6.1. Anchored Walls in Sand

Rowe felt that variations in the distribution of stress acting
upon sheet pile walls resulted from variations in surcharge, tie-rod
level, anchor yield, dredge level, pile flexibility and soil stiffness.
To determine such effects, he instituted two series of stress tests
and one series of flexibility tests (Rowe, 1952).

The stress tests were conducted on a 3 ft-6 in (1.07 m) high
model wall, as shown in Figure 2-13a. The sequencing of these tests
is shown in Figure 2-13b. Stress measurements were made directly by

stress gauges, and bending induced strains were measured by strain
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gauges. The only soil used In the stress tests was dry sand in a loose
state,

The flexibility tests were conducted in the apparatus shown in
Figure 2-14. The properties of the different piles used are given in
Table 2-1. Different soils were used, each with a different angle of
internal friction and dry unit weight. Each soil was tested in the
loose state, with relative density equal to 0 percent, and in the dense
state, with relative density equal to 100 percent. The soil properties

are summarized in Table 2-2.

2.6.1.1. Conclusions Based Upon the Stress Tests

The first series of stress tests demonstrated that the initial
stress distribution deviated from Coulomb's FES predictions. As the
dredging continued, however, the stress distribution eventually reached
the free earth values when toe failure occurred. Prior &o failure,
stress increases developed above the tie-rod and decreases developed
below, i.e., arching occurred. The stress reduction, because of
arching, was substantially less than that predicted by the Danish Rules.
The first series of tests also showed that a considerable shear force
developed at the toe which tended to resist outward movement.

The second series of stress tests incorporated controlled anchor
vield while the first series permitted none. The placement of various
surcharge loads was another added feature. This series showed that
arch instability resulted with anchor yield or additional dredging
and that the stress distribution developed was in accordance with Free

Earth Support predictions. The amcunt of yield necessary for the
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Table 2~1. Pile characteristics (Rowe, 1952)

Plate Thickness Pile Length Flexibility

Material in (mm) in (m) log o Test
Steel 0.330 (8.318) 42 (1,07 -3.32 Stress Tests
Steel g.164 (4.19 36 (0.91) -3.18 "

32 (0.8L) -3.38 n

30 (0.76) -3.49 "

28 ° (0.7D) -3.61 "

26 (0.66) -3.74 "
Steel 0.109 (2.77) 36 (G.91) -2.52 Flexibility Tests

31.5 (0.80) -2.74 "

27.5 {0.70) -2.98 "

24 (0.61) -3,22 "

21 (0.53) -3.45 "
Aluminum  0.083 (2.11) 29 (0.74) -2.07 "

26 (0.66) -2.26 "

23 (0.58) -2.48 "

20 (0.51) -2.72 "
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complete breakdown of arching was equal to HD/IOOO. Rowe stated that
the amount of yield ome could expect in the field is between HD/930
and HD/360. In other words, arching is not a stable state under normal
conditions.

The active stresses acting upon the model walls were found to
agree closely with Tschebotarioff's predictions. Bending moments,
however, were at times found to be as much as twice as high. Rowe sur-
mised that this discrepancy could be resolved by observing the affects
of varying the pile flexibility. This was the objective of the flexi-

bility tests.

2.6.1.2, Conclusions Based Upon the Flexibility Tests

Rowe determined that prototype walls must behave in the same
manner as the model walls if the conditions of similitude are maincained.
The most important aspects of these conditions shown by the tests are
two ratios. The first proportiomality states that bending moment, M,

and pile length, HD; are related by the constant T, such that

M
T=_—-— —
3 (2-14)

0

The second states that the pile length, elastic modulus of the pile and
moment of inertia of the pile are related by the pile flexibility number,

o, such that:

(2-13)

Pl

He then concluded that the behavior of prototype and model walls must

be similar if their relative wall heights, 2 (Figure 2-15) are egual,
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and relative tie-rod levels, 8, are equal, where

(2-186)

Sala

and

H
g =2 (2-17)

iy

It was determined that pile flexibility had a major effect upon strass
distribution and bending moment. As demonstrated in Figure 2-16a, a
more flexible pile permits larger deflections, 4, at the dredge level
relative to the deflections at the toe. The larger deflection causes

a greater amount of passive stress to be mobilized at that point. Con-
sequently, the passive stress resultants occur closer to the dredge
level with more flexible piles, as shown in Figure 2-16b. The influence
of pile flexibility in dense subgrades is similar, but with a more
pronounced effect as the passive stress resultant was located even
closer to the dredge level.

The flexibility tests also indicated that tie-rod loads differ
from the Free Barth Support values, depending upon relative tie—-rod
height, 8, relative wall height, a, and pile flexibility. It was also
shown that tie-rod loads could be increased by as much as 50 percent
because of differential tie-rod yield and anchor settlement, i.e.,
adjacent tie-rods may deflect unevenly, thus causing one tie-rod to

take more of the load.

2.6.1.3. Design Procedure for Anchored Walls in Sand

As well as providing a sound qualitative description of bulkhead

behavior, Rowe's observations and conclusions served as a basis for
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éomputing penetration depths, bending moments, and tie-rod loads.

Since much of Rowe's observations were reported in terms of deviations
from FES values, it is not surprising then to find that his recomnended
design procedure begins by computing the FES values. These values are
modified by employing factors derived from the tests, the factors de-
pending upon relative wall height, relative tie-rod level, pile
flexibility and the relative density of the subgrade.

It has been suggested that once a safe penetration depth has been
achieved, bulkhead design is a matter of deflection (Rowe, 1952;
Tschebotarioff, 1948). Rowe's work clearly established that the stress
distribution acting upon the wall at the time of toe failure was
accurately described by the FES method. Hence, the FES method can be
used to compute a safe penetration when safety factors are applied
to the loads. Once the penetration depth is computed, its maximum
bending moment and tie-rod loads are computed using the FES stress
digtribution. The safety factor used for the penetraticn computation
i{s not used for the moment and tie-rod computations.

The FES bending moment is used to determine the design bending
moment by incorporating a reduction factor, Ty chosen from Figure
3-17a. The reduction factor is read directly from the figure for the
appropriate relative wall height, 4, and subgrade relative density.

The reduction factor is chosen for several values of pile flexibilicy, o.

For the oonditlons of similitude to be obeyed, the maximum bend-

ing moment is converted to

_ - Mnax
‘max Hy

(2-18)
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where Mmax is the maximum bending moment in inch-pounds. An operating
curve is then developed as shown in Figure 2-18 where
(2-19)

and ry = the reduction factor for that particular value of log p. A

structural curve is then developed for each value of p with

e - (2-20)
STR (50 2,173
and
£
b
o = (2-21)
) 2/3

where y = flexibility characteristic, £, = allowable bending stress,

S = gsection modulus, E = elastic modulus of the pile material, and I =
moment of inertia. The intersection of the operating and structural
curves gives the solution in terms of t. The design bending moment then
may be computed by using Eq. 2-18.

The tie-rod load is more simply computed by aultciplying the FES
value by the tie-rod load factor, fc, found in Figure 2-17b. The
factor,fc, is read directly for the appropriate values of 2 and 8.

For dredge type bulkheads with unyielding anchorages, additional
reductions in bending moment may be computed by using Figure 2-17¢. The
reduction factor, Too is read for appropriate values of 2 and 3,

The FES method and Rowe reduction methods are quite lengthy
procedures. They are described in greater detail in a later sectiom.

Design examples may be found in the Appendices.
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2.6.2. Comments by Terzaghi

Terzaghi reviewed the works of Tschebotarioff and Rowe shortly
after Rowe's scale model test results were published (Terzaghi, 1954).
He stated that Tschebotarioff was in error to suggest that the Fixed
Farth Support method be used for all calculations since the fixity of
the pile toe ranged between fully free and fully fixed, depending
upon pile flexibiliry and the relative density of the subgrade material,
He agreed with Rowe that soil stresses can be computed based upon
Coulomb's formulation, the maximum bending moment can be found using
the Free Earth Support method, and a reduction should be applied to the
maximum moment, depending upon pile £lexibility and subgrade relative
density.

In this work Terzaghi also suggested the scope of exploration
required for bulkheads. He recommended standard penetration tests and
laboratory tests for sands. For clays, he recommended undisturbed
sampling for laboratory tests in addition to vane shear tests. The
exploration should also be of such an extent that it reveals soft soils
beneath the pile tip which could cause excessive settlement and slope
failures of submerged soils in front of the bulkhead which could under-

mine the stability of the toe.

2.6.3. Theoretical Analysis

Rowe performed a theoretical analysis of sheet pile walls by
modeling the wall as a beam on an elastic foundation. The differential

equation which governs the model behavier is

44
EI &L - kv = 0 (2-22)
ax™
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in which: E = elastic modulus of the beam {pile), I = moment of inertia,
y = axis in the direction of beam deflections, v = magnitude of beanm
deflections, x = axis of the long dimension of the beam, and k = sub-
grade modulus in stress units (Rowe, 1953).

For a subgrade modulus that increases linearly with depth, the
differential equation must be solved by series. The resulting polynomial
for Rowe's solution was of the 30th order, a very cumbersome expression.
¥evertheless, he proceeded to compute deflecticns and bending moments
for walls in sand and in clay.

A comparison was made between the results of the theoretical
analysis of anchored walls in sand and the observations made on the
tests of model walls. The comparison showed very good agreement, except
for very stiff walls in dense sand. This apparent discrepancy is not
important since, it is pointed out by Rowe, the stiffness of the walls
in the anomolous case was beyond the range normally encountered in the
field.

The theoretical analysis is too unwieldly to use as a design
tool, but the agreement with the experimental evidence of walls in
sands suggests that it may be useful in providing information about

walls in clay.

2.6.4. Anchored Walls in Clay

Rowe approached the problem of a wall in clay as a beam on an
elastic foundation (1957). He stated that the subgrade modulus could
be related to its cohesion in terms of Skempton's stability number

(1945),
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5§ = —= ll +§— (2-23)

in whiceh: ¢ = cchesion in the subgrade, cy = adhesion on the wall,
h = overburden stress of the fill, and q = surcharge. He also noted
that the term Jl +‘%— could be taken as 1.25 in most cases.

W

Incorporating Terzaghi's work in determining subgrade moduli
(Terzaghi, 1935), Rowe developed a relationship using the subgrade
modulus, subgrade compressibility and stability number. The beam on
elastic foundation analysis proceeded with variations of pile flexi-
bility and stability number. Thecoretical bending moments were compared
with FES values and the percent reduction was plotted versus log ».

A series of scale model tests was performed which defined the
limits of applicability of the theorefical analysis. The tests also
substantiated the accuracy of the analysis. Correlating the theoretical
and experimental data, Rowe presented three figures for the amount of
reduction allowed as a function of stability number, which are shown
in Figure 2-19. The figures represent pile flexibilities which will
give three points on an operating curve. The flexibilities represented
are: maximum stiffness for log p = -3.1, minimum stiffness for log o
= -2.0, and a typical working stiffness for log p = -2.6.

Operating and structural curves are generated in the same manner
as for anchored walls in sand. Once the design flexibility is deter-
mined, Figure 2~-19b is used to find the required tie-rod load factor,
using the stability number of the subgrade and design log o of the wall.

A derailed procedure is found in a later chapter.
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2.6.5. Comparison with Limit Equilibrium Approach

Rowe computed bulkhead designs based upon Hansen's limit
equilibrium analysis and compared these to the results of the scale
model tests in sand (1956). In general, the limit equilibrium and
model test results were in close agreement.

In addition to corroborating the moment reduction method, this
comparison led to other observatioms that enhanced bulkhead design.

One such observation was that the most economical designs resulted

where the relative wall height, o, was approximately 0.73 and the
relative tie-~rod location, R, was approximately 0.20. The finding that
tie-rod loads should be factored within a range between 0.88 and 1.25
was also a consequence of this comparison and is reflected in Figure
2-17b. And, based upon this work, it was clearly shown that wich
sufficient penetration, bulkhead design becomes a problem of deformation,

-

not ultimate collapse.

2.6.6, Cantilevered Walls in Sand

One of Rowe's earlier works dealt with cantilevered walls in
sand (1951). His studies proceeded in a manner similar to the anchored
wall studies. A series of tests were conducted that compared the
amount of moment reduction from the FES method depending upon relative
wall height, o, pile flexibility, o, and relative demsity of the sub-
grade. The reduction curves shown in Figure 2-20 resulted from these

studies.
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2.7. %Numerical Methods Analyses

The rapid development of the digital computer enhanced the via-
bility of the finite element method of analysis (FEM) to a great extent.
This method has been extremely valuable in describing the complex
phenomena of soil-structure interaction. The finite element method has
been applied to assess many soil stress problems.

One such application was an analysis of the Port Allen and Old
River locks. Clough and Duncan developed an incremental finite element
analysis with nonlinear, stress dependent, Inelastic 30il stress-strain
behavior (1969). The analysis was accurate in predicting the behavior
of thege U-shaped, reinforced concrete structures as was shown by
comparisons with the extensive instrumentation which was installed to
monitor the locks.

An investigation of the behavier of high anchored bulkheads in
Norway was reported by Bjerrum, Clausen amd Duncaan (1972). The bulk-
heads were instrumented with strain gauges and inclinometers were
installed in the adjaceat soil. A finite element analysis of the bulk-
heads was conducted using a modified version of the Port Allen computer
program. Comparison of the FEM results with the instrumentation data
and Rowe reduction method showed good agreement.

Finite element analysis has also been a tool for examining the
behavior of tie back excavations. Although this behavior is somewhat
different from bulkhead behavior in that anchors are employed at
multiple levels and are basically unyielding, some observations can be

applied to bulkheads on a qualitative basis.



59

In a study by Tsui (1974), discontinuous wall behavior was ex-
amined. A soldier pile and lagging wall, or Berlin wall, was first
analyzed by FEM as a continuous, planar wall, then as a discontinuous
wall. An equivalent planar wall was developed by distributing the stiff-
ness of the soldier piles across the spacing between adjacent piles.
The discontinuous wall was modeled by stimulating the ties 2s spring
supports, applying a soil stress of 1 tsf (96.2 N/mz) and varying the
coil modulus as 100 tsf (9.61 kN/m?), 200 tsf (19.2 kN/m), and 400 tsf
(38.5 kN/mz). Comparisons of these two models (Figure 2-21) show that
deflections in the lagging were 70 percent greater for the planar
wall in soft soil, and 27 percent greater in stiffer soil. The Berlin
wall behavior is analogous to the behavior of navy bulkheads where the
8 in (0.2 m) fender piles are similar to the soldier piles as they
represent great increases in stiffness at discrete points along the

wall. The navy bulkhead problem will be addressed later in this work,

2.8. Soil-Structure Interface Strength

The strength of the soil-structure interface is an important aspect
of bulkhead behavior, as suggested by the Coulomb formulation for active
and passive soil stress coefficients (Eqs. 2-2 and 2-3). The interface
strength, 6, was suggested by Rowe to be taken as 2/3% for steel and
timber sheet piles (Rowe, 1952). This recoﬁmendation was made without
the corroboration of significant test results.

A more recent study has, however, addressed interface strength
more comprehensively. Kulhawy and Peterson (1979) conducted tests

using concrete blocks with four variatioms in roughness, three relative
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densities for each of two soil types, and three normal stresses. The
tests were performed in a direct shear device.

It was pointed out that the causitive aspect of the interaction
lay in the relative roughness of the structural face with respect to
the roughness of the soil, i.e., large soil particles and small asper-—
ities in the wall allow the soil particles to skid across the wall,
while small or large particles acting along a wall with high amplitude,
small wavelength asperities tend to develop more friction.

The implications of the tests as they concern bulkheads are that:
for precast concrete sheet piles, § can be taken as 0.94; for steel
and timber sheet piles, other data must be consulted, although the
principles of relative roughness heold true.

Peterson et al. (1976), summarized test conditions and results of
investigations cf skin frictiom. O0f particular imterest are the ratios
of §/¢ for steel and for wood, with the direction of frictiomal re-
sistance parallel to the grain. These values are summarized in Table
2-3. Also of interest are values of § that were determined, but without
reference to ¢. These are also shown in Table 2-3.

The significance of the summarized skin friction data is that the
value suggested by Rowe, § = 2/3¢, is a reasonable value to use; it
seems overly conservative in the case of wood sheet piles. However,
the sample size of only eight values for wood is too small to be used
for application to other design situations. In the case of steel, it
can be seen that the mean value for ¢ is 37.2 degrees. This value
obviously precludes granular soils in the loose state, which tend to
show lower ratios of &6/4 (Peterson et al., 1976). Here Rowe's sugges-

tion again appears reasonable.
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The conservatism resulting from using § =‘2/3¢, in lieu of 0.8 ,
is raflected in Table 2-4. It can be seen that the conservatism results
in small increases in the active case, a 17 percent increase in the
passive case for loose soils, and a 54 percent increase for dense
soils. With the exception of dense soils, the conservatism does not
appear to be substantial., In the case of dense soils, penetration
depths are already substan;ially less than those for lcoose soils. Thus,
the conservatism results in only slight increases in depth when compared

to depths computed using the less conservative assumption.

2.9, Summary

Tracing the evolution of thought that goverms bulkhead design
serves twopurposes: it provides an understanding of the complex inter-
action of the soil and the flexible retaining wall, and it presents
rat;onale for choosing the optimum design procedure.

Although conservative, the classical methods provided rational
approaches to design. Both methods assumed a linear stress distributicn,
but made contrary assumptions with respect to fixity at the toe of the
pile. Later approaches assumed nonlinear pressure distribution. The
Danish Rules allowed for reduced wall stresses because of arching of
the soil between the anchor and dredge levels.

Large scale model tests performed by Tschebotarioff revealed that
arching was unstable in bulkheads with yielding anchcrages and that
reductions of wall loads were because of stress distributions that
deviated from the classical assumptions. His test results also suggested

that high wall stresses from fluid clay backiill could be alleviated by

using sand blankets or dikes adjacent to the wall.
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The extensive investigationms by Rowe covered a broad speétrum of
conditions and contributed significantly to the understanding of bulk-
head behavior. His tests demonstrated that the stress distribution at
the time of toe failure of a wall is accurately described using free
earth support assumptioms. The Free Earth Support value for depth of
penetration therefore specifies the minimum depth for a factor of
safety of 1.0. With increasing depths and increasing densities of
subgrades, fixity approaches the Fixed Barth Support assumption (Ter-
zaghi, 1955). Once a safe depth of penetration is established, Rowe
determined that the deviation of loads from the Free Earth Support
method is a function of subgrade strength and wall flexibiliry. A&
more applicable model than the simply supported beam was used to de-
scribe the soil-structure interaction, i.e., the beam on elastic
foundation with a linearly varying subgrade modulus. Rowe compared
his model test results to the results of other investigators. He found
that Tschebotarioff's suggested method was valid only for the ranges of
s0il stiffness and pile flexibility that were tested at Princeton.
Within this range, there was close agreement. Comments by Terzaghi
indicated that he agreed with Rowe's findings. The approach using
the theory of plaéticity prépoéed by Hénsen also pfodﬁced deéigns
very similar to those resulting from the Rowe method. Considering
the difficultries in manipulating the complex equations and rupture
figures of Hansen's methed, the Rowe approach offers a very attractive
alternative.

Rowe's study of bulkheads was then extended to walls in cohesive

subgrades. A method was derived from this investigation whereby
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designs could be developed based upon the undrained strength of the
soil.

The finite element method provides an accurate means to investigate
the complex natures of soil-structure interaction and horizontal soil
stresses. A proven FEM routine was used to evaluate a large bulkhead
and the results compared faverably with instruments and strain gauges
used to momitor the wall. The rasults also demonstrated good agreement
with the Rowe methed, thus adding more credence to the Rowe procedure.

An investigationm of tied-back walls served to qualitatively
model and explain the mechanics of a discontinuous wall. The behavior
of the soldier pile and lagging system can be expected to be somewhat
similar to the behavior of the 8 inch fender pile and sheet pile
system of a navy bulkhead. A discussion of these implications appears

later in this work.



CHAPTER 3
DEVELOPMENT OF A STMPLIFIED DESIGN APPROACH

The discussion in the preceding chapter illustrated the variety
of approaches to bulkhead design and showed that one approach is both
reasonable and comprehensive. Therefore the Rowe maethod, which in-
corporates the Free Earth Support method, with modifications te bending
moment and tie-rod load, is selected as the basis for a simplified
design methed.

In spite of its obvious merits, the Rowe method is somewhat more
involved than the simpler methods. This, coupled with a lack of under-
standing of bulkhead Pehavior, will lead engineers who have not
benefited from extensive training in soil mechanics to employ less
complex methods. The results can range from overdesigned, uneconomical
walls to inadequately designed walls. TFor these reasons, a simplified
approach is developed herein where design curves are generated from
data utilizing the Rowe method. These curves can then be employed in
conjunction with simple manipulations of the pertinent parameters

to develop bulkhead designs.

3.1. Computer Program

The development of a design curve requires a substantial number of
data points for establishing a clear trend. To produce these data by

using the Rowe method and hand calculations would be a formidable task
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and require a great deal of time. Use of the digital computer greatly
diminishes the time necessary to produce a sufficient amount of data.
A computer program was therefore developed that would yield bulkhead
dasigns for cantilevered and anchored walls in sand and clay. The de-
sired output consisted of pemetration depths, tie=rod loads, and
maximum bending moments for walls made of timber, A328 steel and A690
steel,

It was considered to be necessary that the program have the capa-
bility of dealing with any geometry (e.g., standing wall height, water
level) and heterogeneous (multi-layered) solls with the assumption that
each soil layer is isotropic and homogeneous. These arbitrary param-—
aters define the problem and enter the program as input data. The
parameters are (Figure 3-1):

H

[}

standing wall height,

H, = anchor level height,

A
HW = low water level height,
Yy = appropriate unit weight of ith soil layer,

4., = angle of internal friction of ith soil layer,

i
c; = cohesion of ith soil layer, and
£, = thickness of ith layer.

Since the Rowe method entails the use of curves, selected data
points on the curves must be read in as data. The curves are factors
to be applied against bending moments and tie-rod loads for anchored
walls in sand (Figure 2-17), anchored walls in clay (Figure 2-19) and

cantilevered walls in sand (Figure 2-20).
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I+ was noted earlier that once a.safe penetration depth is estab-
lished, the problem becomes ome of deflection. From Rowe's studies
(1952), it was ascertained that the stress distribution at the time of
toe failure is adequately described by Free Earth Support computations.
Since this is the penetration depth at failure, a safety factor must be
applied. Terzaghi suggested applying such a factor against the soil
strength parameter (1954). Since shear strength of cohesionless soil

varies with the tangent of the internal angle of frictiom:

¢f = tan-l %E tand), (3=1)

in which: dg = factored soil parameter, ¢ = unfactored soil parameter
and FS = a safety factor.

It follows that the computer program should factor the soil
strength parameter and £ind the appropriate depth of penetration by the
Free Earth Support method. Then, tie-rod load and maximum bending
moment can be computed based upon unfactored soil parameters and Free
Earth Support pressure distributionms. The Free Earth Suppoert procedure
is detailed in a later sectiomn.

The computer program must then choose the proper factors for
bending moment and tie-rod loads. It must, therefore, "enter" the
proper curve at the proper place by interpolating. Since it is unlikely
that relative densities can be accurately established in the field and
reduction curves only provide for "loose" and "dense” sands, the pro-
gram must correlate relative density with the angle of intermal fric-
tion. The routine must, therefore, arbitrarily select a friction angle

of 30 degrees for lcose sand and 40 degrees for dense sand. For
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intermediate values the routine must interpolate and, for values outside
this range, it must assign the upper or lower bound as appropriate.

This argument also holds for the stability number of clays.

Once the proper ''graphs” are selected by the program, an operating
curve must be generated whereby a reductionm factor is chosen for the
maximum bending moment depending upon the pile flexibility number, p.

A struetural curve is developed based upon the material properties of
the member in question, its shape factor and flexibility number, p.

The intersection of these curves is found and the design bending moment
is computed. This process must be accomplished for wood piles, and
steel piles fabricated from A328 steel and A690 steel. A similar, but
less complicated, process must occur for the tie-rod loads. The Rowe

method is demonstrated in detail in a later section.

3.1.1. Subroutines *

The computer program developed for designing bulkheads was enticled
"WALL" and consists of a main program and 12 subroutines. A description
of the various functions follows.

The main program serves to input and display data, to regulate
data sent to subroutines and to make decisions as to which subroutine
is to be used.

Subroutine "FACTOR" is first called to apply a safety factor
against the strength parameter, compute active and passive stress
coefficients, and to keep track of the unfactored strength parameters

and associated coefficients.
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Subroutine "DEPTH" arranges soil layers sequentially by depth.

In addition to those already input, it identifies the depths of the
water level and dredge level as layers. If this causes duplicity, a
logical statement is invoked and the redundancy is eliminated,

Subroutine "PARAM" maintains the proper association between soil
layers and their respective soil properties. It also computes the
submerged unit weight for soils below the water table.

Subroutine "FORCES" is used to compute horizontal soil stresses,
resultant forces and moments based upon Free Earth Support calculatioms.
The main program decides whether to use factored or unfactored soil
stress coefficients. Moments are summed about the tie-rod .for penetra-
tion computations. The main program controls an iterative process
where the depth of penetration is increased or decreased until the sum
of moments about the tie-rod is equal to zero. When the depth of pene~
tration iterations are completed, the main program directs "FORCES" to
compute stresses and forces based upon the design penetration and un-
factored soil stress coefficients. Output is generated for the factored
and unfactored cases. For verification purposes, the following param-
eters are displayed for respective layer depths: active and passive
soil stress coefficients, unit weight, overburden stress, horizontal
stress, resultant force and moment. Penetration depth is also displayed.

Subroutine "TIE" is called to compute moments about the point of
application of the passive stress resultant. The moments are based
upon resultant forces from unfactored soil parameters. This subroutine
is bypassed for cantilevered walls. The tie-rod load is displaved as

output.
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"MOM" locates the point of zero shear, then computes

Subroutine
the maximum bending moment. TFree Earth Support caleculations are now
complete and the point of zero shear and maximum bending moment are
displayed.

Subroutine "ROWE'" computes the bending moments and tie-rod loads
used for design. It controls which reduction curves to use, i.e.,
anchored walls in sand or clay, or cantilevered walls in sand. No re-
ductions are allowed for cantilevered walls in clay. In addition to
selecting the proper curves, it serves to: interpolate between graphs,
generate operating and structural curves, compute the design moment
and tie-rod loads, and select the corresponding sections for wood
members, A328 steel members and A690 steel members.

Subroutines "SAND," '"CLAY," and "CANT" select the appropriate
moment and tie-rod load factors based upon decisions made in the
"ROWE" subroutine. .

The intersection of operating and structural curves is acceomplished
by calling subroutine "POI." This subroutine solves for the point of
intersection of two straight line segments that are defined by four
points, two points from each curve., Linear approximation is adequare
for anchored walls in sand because the curvature of the graph is spread
over 25 points. A similar argument applies to cantilever walls in
sand. For anchored walls in clay, however, only 3 points are given by

the Rowe reduction curves, one each for:

-3.1 {(stiff walls)

log o
log o= ~2.6 (working stress zone), and

log o= =2.0 (first yield)
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This necessitates generating a curﬁé with sufficient data points based
upon a best fit of the 3 given points. A curve fitting algorithm is
provided by subroutine "FIT" which performs a linear regression based
upon bivariant log-normal distribution. The equation of the line of
best fit is displayed along with the correlation coefficient, the
original data points, corresponding fitted data points, and the difference
between the original and the fitted point. For the purpose of generating
an operating curve with sufficient points to use in the "POI" subrou-
tine, the equation of the line of best fit is utilized to produce 24
line segments for selected values of pile flexibility.

A computer source list, sample output and User's Guide may be

found in the Appendices.

3.2, Producing Data for Design Curves

Once the program was debugged, it was modified so that variations
of input parameters would produce enough data of statistical signifi-

cance for each case.

3.2.1. Case I: Anchored Walls in Sand

There were six curves generated for this case, each depending upon
the relative density of fill with respect to the relative density of the
subgrade. The free-standing wall height was varied for each combination
of relative densitries, the water level was varied for each wall height

-

and the anchor level was varied for each height of water, i.e., H =5
10, 15 and 20 £t (1.50, 3.05, 4,57, and 6.10 m), Hw = 0.6H, 0.7H and

0.8H, and H, = 0.9 (H-Hw)’ c.8 (H—HW), 0.7 (H—Hw)’ 0.6 (H-HW), 0.5 (H—Hw).

A

The combinations of relative densities were:



Loose Fill/Loose Subgrade,
Loose Fill/Medium Subgrade,
Looge Fill/Dense Subgrade,
Medium Fill/Medium Subgrade,
Medium Fill/Dense Subgrade, and

Dense Fill/Dense Subgrade

The £111 was considered to consist of one soil type which extended

above and below the water level. The only property difference was in

the unit weight. Above the water table, moist unit weight was assigned

and below the water level, submerged unit weight was assigned. Unit
weights were correlated with relative demsities, which in turn were
correlated to intermal angles of friction. Table 3-1 lists these

relarionships. A total of 360 data points was generacted for Case I.

3.2.2. Case II: Anchored Walls in Clay (Undrained)

There were 3 curves generated for Case II, each depending upon
the ratio of the moist unit weight of £ill times the standing wall

height to the cohesion of the subgrade:

74

C
w5 = 0.25, (3-2.2)
1
S = 0.30, and (3-2.1b)
'Y H . » L
1
c

— = 0,35, (3-2.¢)



Table

3-1. Relationship of soil properties (sand)
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A

Y

9 Relative Density moist sat

30° Loose 100 pcf 3 120 pcf 3
(15.7 kN/m™) (18.8 kKN/a™)

35° Medium 105 pef 4 125 pef 3
(16.5 N/m™) (19.6 kN/am™)

40° Dense 110 pef 3 130 pet 3
(17.2 kN/m™) (20.4 kN/m™)

Note: Yeub - Ysat - Yuater Use Ysub for the actual analysis.
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These relationships produced stability aumbers between 0.40 and 0.70.
Stability numbers greater than 0.70 produce results with very small
depths of penetration and very low bending moments and tie-rod loads;

the long-term (drained) conditiom will prevail under these circumstances.
Stability numbers less than 0.40 will produce no data since, using the
factored cohesion parameter, the stability number is less than 0.25

and walls cannot stand for any depth of penetration with such low sta-
bility numbers.

Sand backfill was assumed to be present from the dredge level to
the top of the wall. Also assumed was that the sand backfill was in
the loose state as it is genmerally not compacted with the bulkhead in
place., Cohesive material above the dredge level produces low stresses
for the undrained case since Rankine distribution prevails (Mana, 1978).
In cases where cohesion is present above the dredge level, the drained
condition will prevail. .

The relationship establishing the density of the subgrade is given

by:
c 1b
Y3 = 110 + 555 T3
£t
(3-3)
_ e KN
=172 + S B

The relationship of densities for the fill material is the same as in
Case I.
The wall heights, warer level heights and anchor level heights

were varied as in Case I so that 180 data points were generatead.
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3.2.3. Case III: Anchored Walls in Clay (Drained)

There were six curves generated for Case ILI, 3 curves for loose
sand £ill overlying a clay subgrade and 3 curves for homeogeneous ma-
terial. Relationships between the angle of internal friction and soil
unit weight are shown in Table 3-2,

The wall heights, water level heights and anchor level heights

were varied as before to give rise to 360 data points.

3.2.4. Cantilevered Walls

Case IV: Cantilevered Walls in Sand
Case V: Cantilevered Walls in Clay (Undrained)
Case VI: Cantilevered Walls in Clay {(Drained)

The cases for cantilevered walls proceeded similarly to the
anchored cases. The only difference was that, since there was no tie-
rod, there could be no variation for anchor level. Consequently,
there were five times fewer sets of data. .

For all cohesionless cases, each ser of data included the soil
properties of each layer (Ka, v, z), the tie-rod load (P) and the
bending moment for A328 steel, A690 steel and wood (Ml, MZ’ M3). The
depth of penetration was displayed as the depth to the bottom of trhe
third layer (t3). The anchor level was also included where appropriate.

Tor the cohesive cases, each data set included the same parameters
as listed above, plus the factored and unfactored cohesions and sta-

bility numbers.



Table 3-2. Relationship between drained strength of clay and
unit weights

] Tmoist Ysatr
24° 94 pef 3 114 pef 3
(14.7 kN/m™) (17.9 kN/m™)
26° 96 pef 3 116 pef 3
(15.0 kN/m™) (18.2 kN/m™)
28° 98 pef 3 118 pef 3
(15.4 kN/m”) (18.5 kN/m™)
30° 100 pef 3 120 pef 3
» (15.7 kN/m™) (18.8 kN/m™)

¥ote: Ysub = Ysat - Yoater' Usa Yqub for the actual analysis.
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3.3, Manipulating the Data

The sets of data generated represented designs for a wide range
of geometric and soil comditlons. More than 1100 values now required
rendering the data into a meaningful and usable format. The approach
was to find the mathematical relationships between the loading conditions
and the resulting penetration depths, maximum bending moments and tie~
rod loads. The mathematical functions to be formulated required sim-

plicity, wide ranges of applicability and clearly established correlations.

3.3.1. The Normalized Parameters

Normalized parameters were sought as these would offer the mest
general format for design curves. Loading parameters were nondimen-
sionalized in terms of the known geometric and soil parameters. Since
Free Earth Support calculations are the basis for the Rowe method and
involve unit weight times some length cubed, a combination involving
the unit weight and thickness cubed of each layer was used as a basis
for establishing relationships. Each of the three layers contributes
to the loading and resulting design parameters, but the thickness of
the third layer is initially unknown as this is the depth of penetration.

The ratio, R, was therefore formulated as

R = (3-4}

The numerator represents the loads above the dredge level., The denomin-
ator normalizes the term utilizing the unit weight of the subgrade.
Since the depth of penetration, D, is unknown, the standing wall height

was considered the most pertinent variable with length units.



With R established as an independent variable, nendimensionalized

dependent variables were chosen as % a dimensionless depth, —EE =
yL

dimensionless tie-rod load, and 'EE = dimensionless bending moment,
yL

where L = some parameter of length units, and y = one of the 3 umit

weights of the problem.

3.3.2, Testing the Relationmships

Since plotting the dependent and independent variables by hand
was a problem because of the amount of data, a curve-fitting technique
was established utilizing linear regression analysis. This approach
enables a curve of best fit to be established from a population of
ordered pairs. The fit can then be tested from the Pearson product-
moment correlation. For an ordered pair (x,y), in which: x = the in-
dependent variable and y = the dependent variable, a population cf n
ordered pairs can be analyzed with a resulting line of best fit., The

following Gaussian elimination scheme defines the process:

- 1 ° -
x == T X, (x = mean) (3-3)
i=1
- 1 B -
y== I v (y = mean) (3-6)
i=1
n
g2 - Ql T x?) - ;2, (52 = variance) (3=7)
X nooy E X
n
g% = Q% £ yi) - §2, (32 = variance) (3-8)
7 i=1
}Sin _
S¢ = yo-1 °* (Sx = standard deviation) (3-9)

80
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S™n
{
SY = _;ng , (Sy = gtandard deviatiocmn) (3-10)
n n o n n
m = (% T s T v - P xiyi) + [%-( L xi)2 - I xi],
i=1 i=1 i=al i=1 1=1
(3-11)
b=y - mx , (3-12)
sx
r=mg (3-13)
¥

in which: m = slope of the line of best fit, b = y-intercept of the
line of best fit, and r = the correlation coefficient of the test. The
correlation coefficient for a bivariant normal distribution will range
from zero, for a distribution of abscolutely ne relationship, to = 1.0,
for a distribution whose ordered pairs are all located om the line of
best fit.

Some gituations required the best fit of a curved line to data.
This was implemented using the natural logarithm of the variables, thus
creating a bivariant log-normal distribution. The curve of best fit

would then be described as:
lny =mlogx+b, or {(3-13)
y = ebxm . (3-14)

It became apparent that other parameters wouid need to be incor-
porated because low correlation coefficients resulted from the initial
tests. Since penetration depth, tie-rod load and maximum moment vary

with tie-rod height and water level height, it followed that these
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parameters be utiiized as modifying factors. Pemetratioan depth is also
a modifying factor for tie-rod loads and bending moments.

Situations with cohesion in the subgrades required a somewhat
different loading ratio, R, because of a different stress distribution,
such that:

3 3 3 3
" 1181 Yot Y181 T Yot

7 5 (3-13)
(5¢ =~ Y18y - YZCZ)H (4cr - Y18y - thz)H

Modifying factors are applied in a similar manner as for cohesionless
soils with the addition of the dimensionless stability number, St'
Tasting for the curve of best fit proceeded whereby the combina-
rions of factors for a medifying coefficient, C, were varied until the
highest correlation coefficient resulted. For example, for penetration

depth for anchorad walls in sand
RD = Cj R (3-15a)

o
H - HA

Hw 2
CD = (ﬁ—a (3-15b)

Modifying coefficients are similarly formulated for moments and
tie~rod loads, and are subscripted as M and and P respectively. Modi-
fying coefficients are summarized in Table 3-3.

When testing for best fit of these parameters, it was found

that for the normalizing term, yL, the best fit resulted for:
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Table 3-3. Modifying coefficients for curve fitting

Depth Bending Moment Tie-rod Pull
Case p Cy Cp
@y @, (8,) (H,)
I Hy A @ A Dy AT
R G ® T ® T
By Hy
I —— 1.00 —
(8-H,) S _ (D) (§p)
@)? ) (8,) ®,)
1334 i A @ Pa o Fa
RN CE ® Ty @ Ty
(€D
v . 1.00 % n/a
3 3
(07 (@
T
v 1.00 -—*'r n/a
VI 1.00 (B)
n/a

(D)
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Y =¥ for tie-rod pull, and
Y = Ya for bending moment, using L = distance from tie-rod
to point of application of passive pressure =
2

(H - HA t3 D), (3-16)

The trials proceeded with the objective of attaining correlation
coefficients of 0.90 or greater. This insured statistical significance
of the relationship. Statistical significance does not necessarily imply
eugineering significance, that is, a correlation coefficient of 0.90
may still have an unacceptable deviation between the fitted value of
a data point and the original value. Conversely, a lower correlatioen
coefficient, say 0.75, may have a small deviation. For this reason,
the correlation coefficient was used as a primary test value. If the
value proved satisfactory, or improved values could not be attained,
acceptance was based upon the percent difference between the fitted
and original values.

Once the optimum fits were established, the data points and curves
of best fit were plotted utilizing a COMPLOT DP plotter. For use as
design charts, the curves were replotted without the data points.

It was apparent from examining the data that bending moments for
A690 steel and wood members deviated from bending moments for A328
steel members in a consistent but negligible manner. It was therefore
deemed appropriate to formulate a ratio of bending moments with those
for A328 steel members as the basis. This was done by computer for

anchored walls in sand and cantilevered walls in sand. A normal
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distribution of ratios for each case was rendered and a mean value and

standard distribution were computed. The raesults are summarized in

Table 3-4.
3.4, Summary

The curves of best fit are shown in Figures 3-2 through 3-16.

The equations of the curves are governed by:

% = mRD +b (Penetration depth), (3-16)
M m .

—3 = bRM (Bending moments), and {(3-17)
Y3L

—-’;2 = pRD (Tie-rod pull). (3-18)
YL

The modifying coefficients of the curves are listed in Table 3-4, and
the curve constants m and b are given in Table 3-5. The variability
of the design curves is displayed in Table 3-6 in terms of the mean
and standard deviation of percent difference. This parameter, percent
difference, reflects the difference between the curve of best fit and
the original data point after the ordinates have been dimensionalized,

i.e., the parameters penetration depth, bending moment and tie-red pull.

3.5, Conclusions
The data points in Figures 3-2 through 3-16 follow the specific
trends indicated by the curves of best fit. The apparent scatter in

some plots may be misleading as they seem to signify a large difference



Table 3-4., Bending moment ratios
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Material Relationship A690/A328 Wood /A328
Mean 0.90 0.94
Standard Deviation 0.05 Q.03
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between the curve ;nd actual design values. The true significance of
the variability of the data may be established by investigating the
reliability of the design. This examination is conducted in a later
chapter and it incorporates data contained in Table 3-6.

The presence of the data peints in the figures tends to interfere
with use of the curves as design aids. For this reason, the curves are
presented in Chapter 4 without the data points. The equations of the
curve best fit may be used in lieu of the curves by employing the curve
constants listed in Table 3-5.

The design curves reflect the bending moments computed for A328
steel only, but they may still be used for computing moments for A690
steel and wood. As suggested by Table 3-3, the bending moments for
A690 steel and wood are slightly less than for A328 steel. It is,
therefore, slightly conservative tc use values computed for A328 steel

for the design of A690 steel or wood members.
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CHAPTER 4

DESIGN PROCEDURES

The following pages outline the steps to be followed for the
Free Earth Support, Rowe reduction, and simplified methods. Each of
these is described in general terms. Specific examples illustrating
the application of these methods in bulkhead design are contained in

the Appendices.

4.1. Defining the Problem

Prior to amy computations, the designer must take the information
produced from the soils investigation and render it into a useful for-
mat. A sketch of the bulkhead geometry superimposed on the anticipated
final soil profile is extremely helpful. For simplicity, soil layer
interfaces should be horizontal planes. For example: the existing
ground surface slopes downward as in Figure &4~la. For design purposes,
it is more convenient to assume a profile as in Figure 4=1b. A
laevel slope is assumed to exist on the dredge side of the bulkhead.

1t should be noted that the water table is identified as a soil
layer interface. Although it is essentially the same soil below the
water table as above, the moist unit weight is used above and the
submerged unit weight below. Soil properties should be labeled for

each layer,
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The stress distribution, resultant forces, and centroids should
be diagrammed as showm in Figure 4-2. Values should be tabulated in
terms of rectangular and triangular stress distributions, resultant
forces, centroids, moments about the tie-rod and moments about the point
of application of the passive pressure resultant (2/3 D).

Penetration depth, tie-rod load and maximum bending moment compu-

tations are facilitated and may commence.

4,2. Anchored Walls in Sand

4.2.1., Free Earth Support Computatious

The Free Earth Support method uses statics to find the depth of
penetration required for equilibrium, that is, the sum of moments taken
about the tie-rod is zero. Using unfactored soil parameters would
result in a factor of safety of unity, thus indicating imminent failure.
Therefore, factored soil parameters are used to provide an adequate

factor of safety against failure. For cohesionless soils,
-1 '
b = tan (3= tan ¢) (3-1)

in which ¢f = factored soil parameter, ¢ = unfactored soil parameter,
and SF = a safety factor (commonly a minimum of 1.5). The factored
active and passive stress coefficients are then computed in accordance
with Equations 2-2 and 2-3. Figure 4-2 shows FES stress distributions
and formulation to produce resultant forces, centroids, moment arms,
and moments for the triangular and rectangular stress components.

Summing the moments about the tie-rod gives an equation:

,
aD> + BDE 4+ D + d = 0 (4-1)
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. = i L t = _1__ L 1 - "]_._ Y
in which: a 3 (Ka3 KP) Y3 b 3 (Ka3 KP) Y3 (4 HA) + 5 K.éz

= ' - =
(q. +Tltl + thz) y © K-az (q + Yltl + thz) (H HA)’ and 4 FRJ.

1 2
Rz(it‘i- _HA)+F

2
2 ¥ 8 11 3 &1 e+t

- HA) + F 3

T2

- HA) + F 1

1
SR

- HA)' K, and Ké signify that ¢y was used.

A value for D is assumed and a trial-and-error process ensues until a
satisfactory value for D is found, i.e., the sum of the moments is
close to zero.

Including toe shear in the calculation tends to decrease the
minimum penetration somewhat. Toe shear, TS, is computed from the alge-
braic sum of the active and passive forces, the weight of pile and the

effect of the soil-structure interface strength, such that:

2

T = (F - FTA) tan (Gf}

s T1 + F.s + F + F + F + T

T2 T3 R1 R2 R3

+ WP Hy tan (6f) (4=2)

in which: Wp = weight per square foot of pile.
The toe shear is then added to the passive stress resultant (FT4) and
the iteratioms begin again. A reduced depth will result.

Once the penetration depth is established, the tie-rod load,
PFES (force per unit length of wall), is computed by summing moments

about the peint of application of the passive stress resultant, such

that:

PFES L = M_Rl + M.Rz + MRB + MTl + MTZ’ and (4=3a)

L=GD+H-H (4-3b)

N



This computation entails use of the unfactored s50il parameters.
The maximum bending moment is then found by finding the point of
zero shear, x, and summing moments about that point. If x is distance

below the water table where shear is zero,

b + Vbt - 4ad (mtt

2a

=

i i H = }- = = -
in which: a =35 K_, v, b = K oy ty» and 4 Frq ¥ Foy P. The

maximum moment (ft=lbs per unit length of wall) is found from:
=P (¢, +x ~H,) - F (é t, +x) - F GL £, 4+ X)
Myax = Fres (&1 2 "3 5 r1 781
1 3 1 2
~ 3% KaZYZ x* -3 KEZYltlx . (4-3)

Again, unfactored soil parameters are used.

4.2.2, Rowe Reduction .

Since the actual tie-rod loads and bending moments differ from
those calculated by the Free Earth Support method (Rowe, 1952}, the
Rowe reduction method is applied. To proceed with this method, the

following parameters must be computed:

H

o = = (4—6)
HD
H
A

3 - A (4=7)
%

12 %
oo (o8

111
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Establishing the tie-rod load is simple when using Figure 2-17b:
enter the tie-rod chart at the appropriate value and read off the
factor, fc’ for the appropriate value. For unyielding anchorages, the

factor r, is also applied. The resulting tie-rod load

P=f PrES (4-9)

or, where appropriate

P = fc r,. PFES (4-10)

Bending moment reductions are much more complex to figure. A
pair of curves must be developed, one reprasenting the loading and soil
properties, the other representing flexibility characteristics of the

pile. The cperating curve is generated by values of

T = (4-11)

op "Max Td
Values of r, are taken from the moment reduction chart in Figure 2-17a

for values of log p.

The structural curve is generated by values of

T = -
s 2273 (4-12)
® 9
in which ¢ = the flexibility characteristic and
f
b
v = ——— (4=13)
(EI)2/3
where f = the allowable bending stress, S = the section modulus per

b
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unit length of wall, E = the elastic modulus, and I = the moment of
inertia per unit length of wall. For rectangular sections, such as
timber sheet piles,

2 fy
—_— (4-14)

For a first approximation using Mariner steel sheet piling, ¥
can be taken as 0.400 and, for A328 steel, ¥ can be taken as 0.260. The
intersection of operating and structural curves gives the design value

v, and the bending moment is found by
3
M o= TH. (4-15)

The section modulus required is

(4=16)

This design section modulus is the minimum section required. The
section modulus of the actual section used is then introduced into the
computation of the structural curve values. In this case the actuél
flexibility characteristic of the section, ¢, is used. The design sec-
rion resulting will mest likely be the same as that calculated using
the first approximation.

An example of the Free Earth Support metrhod with Rowe reductieon

is given in the Appendices.
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4.3, Cantilevered Walls in Sand

The procedures are gimilar to those for anchored walls in sand.
The difference for depth calculations is that moments are taken about
the toe of the wall because there is no tie-rod. Moment reductions
proceed in the same manner, except that reduction factors are taken
from Figure 2~-20.

An example of the design of a cantilevered wall is contained in

the Appendices.

4.4, Walls in Clay

The short term behavior of anchored walls in clay is governed by

the strength of the subgrade. The stability number, S5, is the prime

t

indicator of the ability of a wall to stand, where

2cer

= 417
L q + Yltl + thl ( )

S

in which: ¢ = the cohesion of the clay and r can be taken as 1.25.

From the geometry of the problem (Figure 4-3a), equilibrium
cannot be achieved when the overburden is greater tham 4 e¢r for any
depth of penetration, or when St is less than or equal to 0.25. The
first step in designing walls in clay is, therefore, to compute the
stability number. Design should be abandoned for values of S, less
than or equal to 0.33.

If the stability number is of sufficient magnitude, depth of
penetration is computed in the same manner as for walls in sand, except
that the soil parameters are unfactored above the dredge level. The

cohesion parameter is, however, factored. The ensuing computation 1is
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simplified because of the resulting rectangular stress distribution
below the dredge level (Figure 4-3b). The summation of moments about

the tie-rod becomes
a?p? + yp +d = 0 (4-18a)

i . = é — - - k) — - -
in which: a =3 (4 er - q - v 8y thz), b= (4cr=-q- vyt

1 . 2 .2 1 2,2
(th) (B - HA), and d = 5 Ka, vt (3 T - HA) + 3 Kay yv,t, (3 L, + &y
1
HA) + KaZ(Yltl + q) GE ty + £, - HA)‘
The solution for depth becomes a matter of solving the quadratic equa-

tion

. b + Jbz - 4ad

2a

D (4-18b)

The computations for tie-rod loads, point of zero shear, and

maximum bending moment proceeds as for walls in sand.

4.4,1. Rowe Reduction Method, Anchored Walls in Clay

The procedure for wmoment reduction for walls in clay differs from
that of walls in sand in the development of the operatimg curve. As
seen in Figure 2-20a, a reductioen factor, Ty is given for only three

different wall flexibilicies:

log o = =-3.6 (stiff walls),
log o = -2.6 (working stress), and
log ¢ = -2.0 (first yield).

Each selection of T4 is based upon the stability number, St’ and the

relative wall height, «.
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The structural curve is developed in the same manner as for walls
in sand. Tie=-rod loads are alse computed similarly, with the exception
that factors are given in Figure 2-20b.

An example of the design of anchored walls in clay for the undrained

{short term) case is contained in the Appendices.

4,4,2. Cantilevered Walls in Clay (Undrained)

As no investigation has been performed on cantilevered walls in
clay subgrades, no reductions are allowed for bending moment. Penetré—
tion and bending moment calculations proceed by the Free Earth Support
method. It can be anticipated that the resulting design will be con-
gervative.

4.4.3. Undrained (Short Term) Cendition wvs. Drained
(Long Term) Condition

Calcu%ations should be made for both drained and undrained condi-
tions. It is conceivable that soft clay subgrades could result in the
short term case controlling while stiff clay subgrades would most likely
result in the long term case controlling. The stability number may
provide some hint, i.e., stability numbers greater than 0.5 indicate

that the long term case will probably control.

4.5, Procedure for the Simplified Method

The essence of the simplified method is to utilize non-dimensional
loading to find non-dimensional design parameters. The desired design
parameter is then computed by multiplying the non-dimensional parameter

by a factor.
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The basic loading ratio, R, is merely the ratio of lecading condi-
tions above the dredge line to those below. For cohesionless condi-

tions (walls in sand, walls in clay, drained)

3 3
Y15 T Yot

3
Y3H

R =

(3-4)

and for clay (undrained)

3 3
_if T et

(5¢ - Yyt = thz) H

R

2 (3-15)

in which Y "= unit weight of the ith layer, L, = thickness of the ith

layer, H = free standing wall height, and ¢ = cchesion of the subgrade.
A modifying coefficient, C, is used in conjunction with the

loading factor for the particular design parameter sought, that is
R =R . C (3-17a)

RP =R . CP’ and {(3-17b)

RM =R . CM (3-17c)

in which D = depth of penetration, P = tie-rod load and M = bending
moment. A recap of the constituents of the modifying coefficients is
shown in Table 3-4.

The non-dimensional design parameters are dimensionless penetration
depth, D', dimensionless tie-rod load, P', and dimensionless moment,
M', and are summarized in Table 4~-1, L is the distance between tie-rod

and point of passive stress application, or



Table 4-1. Normalizing parameters

Normalizing Parameter Sand Clay
Dimensionless Depth: D' % %
Dimensionless Tlie~Rod Load: P' —P—-z- %ﬁ'
YlL
Dimensionless Moment: M' - i
3 2
YZL ch

119
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2

L = 3 D+ H - HA’ and (4=14)
2

L= EID + H (4-20)

for anchored and cantilevered walls in sand, respectively.

The non-dimensional design parameters are found by entering the
appropriate curve (Figures 4=~4 through 4-8) at the computed loading
factorland reading off the result. An alternative is to use the equa-
tion of the curve, inserting the independent variable, the loading
factor, and computing the resulting non-dimensional parameter.

Each case is comprised of different site couditions, i.e., dif-
ferent relative densities or cohesions for the fills and subgrades. If
the design condition does not coincide with the conditions of the
graph (Tables 3-l1 and 3-2, Equatioms 3-2 and 3-3) interpolation, extra-
polation, or assuming the most conservative condition are choices left
to the designer. For instance, if the site has a subgrade whose anglg
of internal friction is 32 degrees, and loose fill will be placed, the
designer may wish to interpolate between the "loose fill/loose sub-
grade” and "loose fill/medium subgrade" conditioms. Orlhe may opt
for the conservative approach and use "loose fill/loose subgrade.”

The sequence for using the simplified method is to first compute
the depth of penmetration, D, then tie-rod load per unit length of wall,
P, and finally, the bending moment, M. The design curves are entered
using the appropriate loading factors, R. The non-dimensional design
parameters are read from the curve and are multiplifed by the nor-

malizing factors to give the design values sought.
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An alternative to using the curves is to use the formulation pro-
vided. The operations can be performed easily with a hand calculator.
The design curves are contained in Figures 4-4 through 4-18 at

the end of this chapter.

4,5,1. Walls in Sand

Each curve on a design chart refers to a particular condition.

For walls in sand, the descriptions signify

loose: in which ¢ = 30°, Ym0 = 100 pef, Yeat = 120 pcf;

ist

medium: in which ¢ = 357, Yoo = 105 pcf, Toar - 125 pef; and

ist

dense: in which ¢ = 40°, Y o = 110 pcf, Year = 130 pef.

ist

The first term of the description refers to the comdition of the fill,
and the second refers to the subgrade. Each curve is labelled such

that

L/L = loose fill over loose subgrade,

L/M = loose fill over medium subgrade,

M/M = medium fill over medium subgrade,
M/D = medium fill over dense subgrade,.and
D/D = dense fill over dense subgrade.

Variations in unit weight cause no significant problems in com-
putations as these merely change the value of the loading factor, R.
Deviations from the specified angle of internal friction on the other
hand must be dealt with by interpolating or by assuming a conservative
value. When actually performing the computations, the submerged unit

weight should be used.
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An example of the design for an anchored wall in sand appears in

the Appendices.

4.5.2. Walls in Clay (Undrained)

Design curves for walls in clay (undrained) are identified by
the condition describing the ratioc of overburden stress to cohesion, that
1s, o/YH, in which Yy = the unit weight of the £111, taken as 100 pcf
(15.7 kN/mS), ¢ = the subgrade cohesion, and H = the free standing wall
height.

Granular soil of loose sand is assumed for the fill as cchesion
in the fill renders an unconservative stress distribution in the un-

drained condition. The Rankine active stress distribution,
Gy = yh - 2¢ (4=-21)

results in no loading against the wall, even for modest amounts of
cchesion. The drained conditiom would control in such situations.'

To identify the site in terms of the proper design curve, the
moist unit weight of the fill, free standing wall height, and cohesion
are combined as above. It is likely that interpolation will be re-
quired. High values of cohesion generally result in low values of
penetration depth, thus a2 small range of values 1s presented in the
charts,

An example of the design of an anchored wall in clay {undrained)

appears in the Appendices.
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4.5.3. Walls in Clay (Drained)

The design curves for walls in clay (drained) are identified by
the fill component and subgrade strength. The fill compenent may
consist of loose granular fill or it may consist of the same material
as the subgrade. The minimum value of subgrade strength is an angle of
internal friction of 24 degrees. Lower values may be extrapolated from
the curve data, but cautiom should be used since accuracy decreases as
the range of extrapolation increases. Interpolation between curves
should prove to be less of a problem.

An example of the design of an anchored wall in clay (drained)

appears in the Appendices.

4.6, Conclusicus

The use of the simplified curves enables the designer to compute
the desired design parameters quickly. Because the Free Earth Support
and Rowe methods involve many steps, there is greater potemtial for
arror than in using the design curves. In spite of the apparent sim-
plicity, care must be taken to insure that graphs are read correctly
and extrapolations do not extend beyond a reasonable range. Unusually

high or low results should indicate that an error may have occurred.

4.7, Summary

The design procedure for the Free Earth Support method, Rowe re-
duction method, and the new simplified method were outlined. The com-
plexity involved in the Free Earth Support and Rowe reduction methods

renders those methods tedious and has high potential for error. The
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simplified method, if properly used, reduces the potential for errvor
and is simple compared to the other methods. The examples found in
the Appendices demonstrate the application of Free Earch Suppeort, Rowe

raduction, and new methods.
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CHAPTER 35
DESIGN QOF THE BULKHEAD SYSTEM

Bulkhead design requires more than determining penetration depth,
bending moment, and tie-rod load. External loads must be considered
and the structural compouents must be designed keeping in mind the
cost aeffectiveness of various comstruction materials. External loads
include surcharges imposed upon the backfill, hydrostatic imbalance in
the backfill, ice-thrust, mooring loads, and impact loads. The struc-
tural components, i.e., sheet piles, tie-rods, wales, splices, and
anchorages, must be dimensioned and detailed. The cost effectiveness
of the entire system requires comsideration of the strength, longevity,

availability, and fastening methods of the component materials.

5.1. External Loading

External loads must be accounted for when designing an earth
retaining system as these loads will increase the required penetration
depth, maximum bending moment, and tie-rod load. The external loads
that the designer must contend with are uniformly distributed loads,
point loads, line loads, hydrostatic imbalance, ice thrust, mooring
pull, and impact loads. Other environmental loads are discussed by

Hubbell and Kulhawy (1979).
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5.1.1. Uniformly Distributed Loads

Uniformly distributed loads are easily dealt with. The horizontal

Stress, Py, resulting from a surcharge, q (force/unit area), is given by
=K. q (5-1)

in which Ka = the active stress coefficient. The resulting stress dis-
tribution is rectangular (Figures 2-6 and 4-1). The resultant forces
are then inecorporated into the equilibrium calculations for penetration
depth and tie-rod loads.

When the design charts are used, the surcharge can be converted
into an equivalent height of soil, heq’ given by

a3 -
heq Y {5-2a)

in which Y, = the unit weight of soil comprising the backfill. The
equivalent height of soil is merely added to the free standing wall
height, H, and the resulting dimension is used throughout the computa-

tions. An example is given in the Appendices.

5.1.2. Point and Line Loads

The effects of point and line loads are treated in a semi-
empirical manner (Terzaghi, 1954). Elastic theory, as expressed in the
Boussinesq equation, was modified by experiment and the results given
as in Figure 5-1. Knowing the intensity of the surcharge load, the
designer uses the formula shown to compute the resultant horizontal
force, PH' The point of application is then found by choosing the

appropriate dimension L for the corresponding value of m in Figure 5-1b

and the computations may proceed.
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When the design charts are used, an equivalent height of soil is
employed in a manner similar to the uniformly distributed case. For

point and line loads,

Py

heq = m (5-2b)

in which: H = the free standing wall height, and L = the distance from
the dredge level to the point of application of PH' The free standing
wall height is then adjusted by increasing the dimension by heq’ Design

examples are given in the Appendices.

5.1.3. Hydrostatic and Seepage Effects

Fills containing significant amounts of soils of low permeability,
such as clay, silt or fine sand, may cause a hydrostatic imbalance.
Rapid tidal changes or substantial precipitation will cause saturatcion
of the fill above the water level and, because of the low permeability
of the f£ill, a hydrostatic imbalance results. The proper analysis of
this condition calls for the use of a flow net (Figure 5-2a). If the
soil is relatively homogeneous, an approximation of the pressure dis-
tribution as illustrated in Figure 5-2a (Terzaghi, 1954) may be used.
As indicated by the flow met, the passage of water under the toe of
the bulkhead has an upward gradient on the dredge side of the wall.
The net result of this upward flow of water is a reduction of the
effective unit weight of the soil, Ay. The relationship between the
hydrostatic imbalance Hu and reduced unit weight are shown in Figgre

5-3 and described by the relationship
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Figure 5-2. Hydrostatic and seepage stresses (Terzaghi, 1954, p. 1243)

L~
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Figure 5-3. Reduction of effective unit weight (Terzaghi, 1954, p. 1243)
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Ay (pef) = 20%E . (5-3)

The reduced unit weight of the soil is then used for passive stress

computations.

5.1.4. Ice Thrust

Ice thrust is a phenomenon which occurs when there is ground water
or capillary water above the frost line. Horizontal thrust is the re-
sult of volume expansion of ice upon temperature change. Horizontal
loads due to ice thrust are often too large to be designed for and should,
therefore, be eliminated by employing free draining soils for £ill
material (Teng, 1962).

In addition to reducing large lateral loads due to cohesive ma-
rerial in the backfill, sand dikes or sand blankets (Figure 5-4) can
be incorporated to eliminate the potential for ice thrust and hydro=-
static imbalance. A backfill conslsting of clean, coarse-grained soil
is highly permeable and precludes any significant capillary action in

the intergranular voids.

5.1.5. Mooring and Ship Impact

Loads associated with mooring pull can be assumed te be equal to
the capacity of the winch used on the boat (Teng, 1962).

Ship impact loads are usually too high to design for. As an
alternative, a fendering system should be installed to minimize the

amount of impact.
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1962, p. 373)
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5.1.6. Load Factors

load factors are employed to provide an adequate safety margin
in cases where the extent of variations in the actual loading are un-
known. Such a situation occurs when tie-rods are employed.

Tie-rod loads may be higher than the values calculated for a
aumber of reasons. Settlement of the f£ill, or soft soil in the sub-
grade, causes the tie-rods to sag. This additional elongation is
accompanied by an increase in stress.

Such overstressing could be eliminated by installing the tie-rod
within a PVC pipe. As the soil beneath the pipe sattles, the pipe
moves, but not the tie-red (Teng, 1962).

Tie-rods may also become overstressed because of improper con=
struction methods, i.e., placing the backfill unevenly, compacting the
backfill, surcharging the backfill without first calculating the
effect, or overtightening the tie-rod. -

Since tie-rods are susceptible to overstressing, the loads on
tie—rods should be increased by 1.2 in cases where the designer is
reasonably assured of little overstressing, and by 1.4 in cases where
the designer is uncertain.

Load factors need not be applied to penetration, sheet pile
anchorage, wale, or splice calculations. The safety factor used in
penetration calculations (Equation 3-1) accounts for any variation in
direct soil stresses acting upon the wall. Although the unfactored
soil parameters are used to compute bending moment in sheet piles,
the values are still conservative. Additionally, allowable loads in

materials are substantially lower than failure loads.
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Although load factors are not applied to penetration depths,
an increase in penetration must be applied to prevent failure from
overdredging and scour. In such cases, the designer arbitrarily in-
creases the penetration depth based upon local codes or the amount

of scour and overdredging that the designer considers likely to occur.

5.2, Cost Effectiveness

The optimum design is that which is the most economical and
performs the desired function for a specified lifetime, i.e., it is
the most cost effective gystem., To attain this, the designer must
consider the wall types, anchorage types, matérials, and fastening

‘methods available.

The discussion regarding materials is limited to steel and timber,
as these comprise the majority of bulkheads. Reinforced concrete has
been used for bullkheads. However, its use 1s often teoo costly for
spaller walls and the complexity of the design procedure places its
treatment beyond the scope of this work. Other structural materials,
such as aluminum, are alse available.

High strength bolts for steel walls, common bolts and nails for
wood walls, and turnbuckles for tie-rods are the fasteners which will

be discussed.

5.2.1. Wall Types

5.2,1.,1, Anchored Wall vs. Cantilevered Wall

It may be advantageous to employ a cantilevered wall system when
the standing wall height is small or when some aspect of the site pre-

cludes the installation of an anchorage. For example, the cost of
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utilizing an anchorage, with the required wales, tie-rods and connectors,
may be higher than the cost of the increased depth of penetration re-
quired for a cantilevered wall; or, a utilicy line may be located

which prevents employment of an anchorage. Use of the simplified design
method facilitates the economic comparison between an anchored wall

and a cantilevered wall in such cases.

5.2.1.2. Navy Bulkheads

A frequent sight along waterfronts is a structure commonly rTe-—
ferred to as a navy bulkhead. It 1s characterized by wooden sheet pile
members employed in conjunction with eight in (203 mm) diameter wooden
timber piles {(Figure 5-5). This structure gives the appearance of
increased resistance to lateral loads when compared to smooth-faced
bulkheads. The addition of the eight in (203 mm) piles does provide
added strength, but the flexibility-of the system is decreased and the
interaction between the soil and structure is affected.

A qualitative analogy can be inferred from the discussion in
Chapter 2 fegarding a soldier pile and lagging system (Tsui, 1974).

The soldier pile is very stiff as compared to the lagging and this is
roughly analogous to the stiffness of an 8 in (203 mm) pile relative to
the stiffness of the sheet piles. As shown by the finite element
analysis of the discontinuous walls (Figure 2-21), the displacement

of the lagging was two times that of the soldier piles for softer soils,
and 1.5 times for stiffer soils. When deflections of an equivalent,
continuous planar wall were computed, it was found that the displacement

for the lagging was 1.6 times greater for the softer soils and 1.3
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Figure 5-5. Navy bulkhead (AWPI, 1970, p. 3)
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times greater for stiffer soils. One can therefore suggest that similar

behavior occurs for the navy bulkheads. In other words, deflectious,

and therefore bending moments and bending stressas, are substantially

greater at the midpoint between two piles than at the piles themselves.
As previously mentioned, the flexibility criteria for bulkhead

design is determined by the flexibilicy number, p:

(2-15)

S SN

in which: HD = total sheetr pile length, E = elastic modulus of the
members, and I = moment of inertia per unit length of wall (Rowe, 1952).
A brief fnvestigation of varying member sizes leads to the essence
of pile flexibility with respect to navy bulkheads. With total sheet
pile length and the elastic modulus held coastant, the governing factor
determining wall flexibility is the moment of inertia. For rectangular

members,
1 =i pe3 (5-4)

in which: b = member width, and t = thickness. With the addition of an
8 in (203 mm) pile, the moment of inertia is greatly increased and can

be determined utilizing the parallel axis theorem:

2 . .2
I = Il + Aldl + 12 + A2d2 {5-5a)
in which: I1 and 12 = moment of inertia of sections 1 and 2, Al and A2

= ¢cross Sectional areas of sections 1 and 2, and dl and d, = distance

from the neutral axis to the centroids of sections 1 and 2. For the
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navy bulkhead (Figure 5-6):

I, = -E % = 201 in® (8.37 x 10’ m®) (5-5b)
1 3

Iy =93 L t5» (5-5¢)
= el =503 m? (3.2 x 10* m®), (5-5d)
Ay =t (5-5e)
d,. = ¢ -i t_, and

1 7 tg2 (5-5%)
dy =t + T, +4-c (in) =t +t, +10.2-c (), (5-5g)

in which ¢ = length of wall under consideration, ¢ = distance to the

thickness of the

neutral axis, t_ = rhickness of sheet pile, and e
wale. Moments of imertia and planar, equivalent moments of inertia were
computed and are given in Table 5-1 for varying combinations of sheet
pile thickness, wale thickness and lengths of wall. It is obvious

that the presence of the 8 in (203 mm) pile adds considerably to the
stiffness of the system, even when a planar equivalent is computed with
a distance of 7 ft (213 m) between 8 in (203 mm) piles.

The effect of the increased stiffness, or decreased flexibility,
on bulkhead design can be appreciated when selecting sheet pile thick-
ness. The values of critical pile flexibility, oq» defined as the
minimum flexibility to permit moment reductions based upon Free Earth

Support computations are
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Figure 5-6. Dimensions of navy bulkhead
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Table 5-1. Effect of 8 inch piles on flexibility

% tw ts ] I4 4I
(inches) (inches) {inches) (inches) (in ") (in /£E)
12 8 2 9.79 2954 2954

3 9.36 4031 4050
4 9.16 5077 5080
10 2 11.15 3864 3860
3 10.53 5270 5270
& 10.18 6550 6550
12 2 12.51 4903 4900
3 11.70 6652 6650
24 8 2 7.65 4367 2180
3 7.05 5650 2830
4 6.81 6795 3400
10 2 8.67 5742 2870
3 7.87 7367 3680
4 7.50 8775 4390
12 2 9,70 7310 3660
3 8.69 8040 4020
4 8,19 11,020 5510
48 8 2 5.46 5809 1450
3 4,99 7100 1180
4 4,90 8265 2070
10 2 6.15 7656 1510
3 5.51 §260 2320
4 5.32 10,635 2660
12 2 6.80 9235 2310
3 6.03 9320 2330
4 5.73 13,360 31340
34 8 2 3.99 6796 970
3 .374 8028 1150
4 3.82 9219 1320
10 2 4.45 8962 1280
3 4,08 10,460 1490
4 4.08 11,840 1690
12 2 4,92 11,440 1630
K] 4,41 12,060 1720
4 4,34 15,560 2220
No piles — 2 1.0 - 8
_ 3 1.5 - 27
— 4 2.0 _— 64
Note: 1 in = 25.4 mm 1 in4 = 4,16 x 10_? rndIL
1 f£ = 0.305 m 4

bm_

.4 _
l'lt“ 1.37 x 10
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log p = =4.00 for dense sand, and

log o = -3.50 for loose sand (Rowe, 1952).

These values correspond to pile lengths:

19.2 £t (5.85 m) for dense sand, and

"
fp

25.6 ft (7.80 m) for loose sand, for

4 4
in m
1 970 e (1.33 Ero,

the moment of imertia per umit length of an aquivalent, planar wall, with

t, = 2 i1a (50.8 mm) and

Ly = 8 in (203 mm}.

It can therefore be concluded that moment reduction should not be
allowed for navy bulkheads of moderate height., It should also be noted
that the planar equivalent should not be used for selecting sheet pile
thickness beﬁause bending stresses can be cousiderably higher at the
midpoint between & in (203 mm) piles than stresses computed for the
planar equivalent.

Although the analogy between the soldier pile and lagging wall and
the navy bulkhead is incomplete, it does suggest that a comnservative
approach be used in designing navy bulkheads. The consequence of this
conservatism results in thicker sheet pile members and, therefore,
higher costs. The convenience of a built-in fendering system may uot be
warranted because of this increased expense. However, large impact
loads caused by large ships or breaking waves may necessitate the added

cost of navy bulkheads,
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5.2.2. Anchorage Type and Location

The anchorage may be deadmen, braced piles, sheet piles, or the
footings of large structures (Figure 5-7). The passive stress developed
in front of the anchorage determines the capacity cf deadmen and sheet
piles. Foundation footings derive their capacity to resist horizomtal
movement from the passive stress developed and from the frictiom de-
veloped along the bottom of the footing. Determination of pile capacity
is beyond the scope of this work. Methods for computing pile capacity
are given by Cheung and Kulhawy (1981).

The anchorage must be located so that it is not within the active
failure wedge of the wall, which is defined by line segment ab in
Figure 5-8. Since the anchorage develops passive stresses, the passive
wedge of the anchorage must not intersect the active wedge of the wall.
Line segment'gg repregents the closest proximity of the wedges. The
safe zone for anchorage location is outlined by segments ed and dc,

Figure 5-8 rep;esents the anchorage location for a sheet pile
length, HD, of 17.5 ft (5.33 m) and angle of intermal friction, ¢, of
32 degrees, the geometry and soil parameter for example #1. Point "a"
marks the pile toe, and point "e" marks the intersection of line seg-
ment ae, inclined at an angle equal'to $ from the horizontal, with the
surface of the f£ill.

The capacity of a continuous deadman or sheet pile anchorage

(force per unit length of anchorage), is given by
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SHEET MLE ANCHOR FQUTING ANCHONR

Figure 5-7. Types of anchorage (Teng, 1962, p. 374)
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in which Pp = pagsive stress resultant and Pa = active stress resultant

(Figure 5-9a).

Short deadmen located near the ground surface provide added
capacity because of end friction (Figure 5-9b). The capacity of short
deadmen is given by (Teng, 1962)

1 3
Tyorr L(PP -B) +3 K.Y (ﬁE; + JE;) he tan ¢ (5-7)

in which 1L = the deadmen length, KO = the at rest soil stress coeffi-
cient and may be taken as 0.40 (Teng, 1962), and h, = the height of the
Jeadman. For cohesive soils, the relationship is
T . =L(®_ -P) +2 b (5-8)
ULT P a hL

in which ¢ = the soil cohesion.

5.2.3. Material Strength

Material strength affects the cost of components in two ways,
i.e., higher strength materials are generally more expensive, and the
strength of the material is a determinant of the component dimensions.
Since the unit cost of materials is subject to wide fluctuation, the
discussion of material strength will be confined to its influence om
component dimensions.

Most of the structural compeonents are flexural members, i.e.,
they must resist bending stresses. The dimensioning of the member is
in terms of the section modulus, S, and is determined by the bending

moment, M, and allowable bending stress of the material, Eb’ such that:
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Figure 5-9. Capacity of deadmen (Teng, 1962, p. 376)
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s =X (5-9)
b

Since most of the timber components are rectangular, the dimensiocns

may be selected using the relationship

J1 .2 (5-10a)

S g b h s, OT

§ =+b%h (5-10b)
5

depending upon the direction of the bending. Equation 5-10a is used for
bending about the majer axis, and Equation 5-10b is used with respect
to the minor axis, as shown in Figure 5-10.
The section moduli for structural steel members can be found in
Table 5-2 for sheet pile sections and Table 5-3 for channel sections.
Member dimensions are determined from section moduli which are, in
turn, directly proportional to the bending moment, M, and inversely
proportional to the allowable bending stress, fb' ﬁence, the cost of
the member is related to its strength in terms of its allowable stress.
Table 5-4a contains a partial list of allowable stresses for
southern pine, the wood type most commonly used in New York. A more ex-

haustive list may be found in Timber Design and Comstruction Manual by

the Timber Engineering Co. Columns 3 through 7 of Table 5-4a indicate
the allowable: Bending stress (f), tensile stress {t), shear stress
(#), compressive stress perpendicular to the grain {(cL) and parallel
to the grain (c), and the elastic modulus (E). The shear stress is

given by
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A--1
— T
L_J i
s:Lbh? A —d ——
CELTION A-4
Q. BENDING AROUT STRONG AXIS
5—11
( o Lk
1
b 2

_ <2CTION 2-2
b. RENDING AROUT WEAK XIS

Figure 5-10. Section modulus of rectangular members
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Table 5-4a. Allowable stresses for southern pine (Timber Engineering
Co., 1956, p. 483)

Allowable unic stresses, psi E
H 2 3 é 5§ g
Species and Graded J -4 £eke [ E
cormmercial grade by

Pine, southern  °

DS 86 KD 2 in. thick onlyt SPIB 3,000 145 455 | 2,250 1,760,000
DS 72 KD " 2,500 150 455 | 1,950 1,760,000
DS 65 KD " 2,250 135 455 | 1,800 1,760,000
DS 58 KD " 2,050 120 455 | 1,650 1,760,000
No. 1 Demse KD " 2,050 135 455 | 1,750 1,760,000
No. 1 KD ” 1,750 13% 390 | 1,500 1,760,000
No. 2 Dense KD " 1,750 120 458 | 1,300 1,750,000
No. 2KD » 1,500 120 90 | 1,100 1,760,000
DS 86 2 in. thick oniy 2300 150 455 | 2,200 1,740,000
D3 T2 i 2,350 135 45% | 1,800 1,760,000
DS &% - 2,050 120 4%% | 1,500 1,760,000
DS 58 ”» - 1,750 105 455 1 1,450 1,760,000
No. 1 Dense ” 1,7%0 120 455 | 1,550 1,760,000
No. 1 * 1,500 120 390 | 1,350 1,760,000
No. 2 Densec e 1,400 105 455 | 1,050 1,760,000
No. 2 " 1,200 105 390 00 1,760,000
DS 36 3in. & 4in. | SPIB 2,900 150 455 | 2,200 1,760,000
DS 72 * thick 2,350 138 455 | 1,800 1,760,000
DS 65 bl 2,050 120 455 | 1,600 1,760,000
DS 58 " 1,750 105 455 | 1,450 1,760,000
No. 1 Dens= SR - i 1,750 120 455 [ 1,750 1,760,000
No. 1 SR " 1,500 120 90 | 1,500 1,760,000
Na. 2 Demse SR " ’ 1,400 108 485 ¢ 1,050 | 1,760,000
No. 2 SR " 1,200 105 390 900 1,760,000
DS 86 § or more in. 82,400 150 45% | 1,800 1,760,000
D8 72 » thick W2.000 135 455 | 1,550 1,766,000
DS 65 " 41,300 1200 455 | 1,400 1,760,000
DS 58 » 1,500 105 455 | 1,300 1,740,000
Na. 1 Dense SR " 191,500 120 455 | 1,500 1,750,000
Na. t SR r 18,400 120 390 | 1,200 1,760,000
No. 2 Dense SR " 1,400 105 455 | 1,0%0 1,760,000
No. 2 SR ” 19,200 105 390 %00 | 1,760,000
IND 85 KD 1in, 1% in. | SPIB 2,600 165 300 | 1,950 1,760,000
IND 72 KD and 1 14 in. thick| 2,200 150 390 | 1,650 1,740,000
IND 6% KD " 2,000 135 390 | 1,550 1,750,000
IND 58 KD » 1,750 120 30 | 1,400 1,760,000
IND 50 KD » 1,500 120 a0 1,100 1,760,000
{ND &6 » 2,500 150 390 | 1,900 1,760,000
IND 72 » 2,000 135 390 | 1,550 1,760,000
IND 65 b 1,750 120 3G | 1,350 1,760,000
IND 58 "o 1,500 108 390 | 1,250 1,760,000
IND 50 " 1,200 105 390 200 1,760,000
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v ' -
H 3 oh (5-11)

in which V = the total shear force.

Table 5~4b contains dimensions and properties for lumber.

The allowable bending stress in steel members is a function of
its minimum yield point, fy' For steel sheet piles, ASTM A328, A572,

and A690 (United States Steel, 1975},

fb = 0.65 fy (5-12a)

For A36 steel, which is commonly used for channels, tie-rods, and plates,

(AISC, 1973),
fb = 0,60 fy’ (5-12b)

the allowable tensile stress, ft’ {5 evaluated the same as for bending

stress, l.e.,

ft = 0,60 fy, (5-12¢)
and the allowable shear stress may be taken as (AISC, 1973)

fv = 0.40 fy. (5-12d)

Table 5-5 reflects the minimum yield point for various ASTM steel

specifications.

5.2.4, Fasteners
Timber components may be fastened by nails or common bolts. High

strength bolts (ASTM A325) are used for steel.
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Table 5-4b. Dimensional properties of lumber (Timber Engineering Co.,

Nowminal 'Americzn Standacd!  Area of Moment of inertia i Secuon madulus
size ! drested size (345) tection
b i i in. | S [guy = Syen = Sy =

EX A C e xk A=k si/12 834712 h2/6 Fh/6
1% 4 B/g X 3% 2.83 3.10 0.14 . 0.7
1 X 6 B/ X 5K 4.39 - 11.59 0.22 4,12 92.57
1 X 8 Wi X TIH 5.36 2747 0.30 7.32 0.76
1 %10 B X IR T.42 55.82 0.38 11.7% 0.97
1 X 12 B X 11K 8.98 $9.02 0.46 17.22 1.17
2X 2 1% X 14 2.64 0.58 0.58 0.72 072
2X 4 1% X % 5.89 6.45 1.30 3.56 1.60
2xX & 1% X M 9.14 24.10 20 8.57 2.48
2> 8 1% X 7w 12.19 57.13 2.68 15.23 3.30
2 x10 154 X 9% 15.44 116.10 3.40 24.44 4.18
2 x12 138 X 11% 18.69 205.95% 4.11 35.82 5.06
2 X 14 14 X 13% 21.94 33018 4.83 49.36 , 594
IX 4 2% X M 9.52 10.42 5.46 5.7% 416
I 6 2% X 5% 14.77 38.93 8.48 13.84 .46
3x 8 m X T¥ 19.69 92.29 11.20 24.61 8.61
3 X 10 2 X 9% 24.94 187.55 14.32 39.48 10
Ix1i12 2% X 1144 30.19 132.69 17.33 57.86 3.2
314 2% X 134 35.44 £38.21 20.35 79.73 15.5¢
IxX1s 2% X 15\ 40.69 814.50 23.36 105.11 17.30
4 X 4 34 X 3% 13.14 14.39 14,39 7.94 7.54
4 X 6§ B4 X W 20.39 §53.76 22.33% 19.12 12,32
4x 8 I X T z7.19 127.44 0.77 33.08 16,43
4 X110 I X % 34.44 259.00 wn 54.53 20.31
4 X123 3% = 11y 41.69 459 43 45,65 79.90 25.19
4 X 14 3¥e X 13% 48.94 743.24 53.59 110.11 29.57
4 X 14 33 x 1534 £6.19 1,124.92 61.53 145.15 13,95
6 X 6 54 X 5% 30.2% 76.26 76.24 2173 773
6 X 8 5% X Tk 41.25 193.36 103.98 51.56 K71
5 X 10 34 X 94 52.2% 392.96 131.711 82.73 47.90
6 X 12 S X 1114 63.25 697.07 159,44 121.23 57.98
6 X 14 34 X 13% T4.25 1,127.67 187.17 167.06 68.06
6 X 16 534 X 15Kk 85.25 1,706.78 214,90 . 220.23 78.15
4 X 18 5% X 1TA 96.25 2,456.38 242.63 230.73 £8.23
§xX 8 TH XK TV 56.2% 263.67 263.67 70.31 0.3
8 x 10 T x 94 71.2% 535.86 333.98 112.81 89.06
g8 X 12 T X 11 86.25 950.55 404.30 165.31 107.81
314 T X 131 101.25 1,837.73 474.61 227.31 126.56
8 X 16 Tia X 15% 116.25 2,327.42 544,92 300.31 14531
8 x 18 Tk X 1T 131.25% 3,3149.61 615.23 382.81 164.00
8 X2 74 X 19% 146.25 4,634.30 685.55 475.31 18281
10 x 10 914 X 914 20,25 478.76 678,76 14290 142.90
10 X 12 I X 114 109.25 1,204.03 §21.56 200,40 | 172,98




Table 5-4b,

Continued

Nominal American Standard| Ares of Moment of inertia Section madulus

size dressed size (S45) section

- . » in las = lyy = Spa = Spy ™

X Ak XA A= bk ba3/12 634/12 BRI/ 34/6

10 X 14 94 X 13% 128.28 1,947.80 964.55 288.56 203,06
10 % 16 9% X 1514 147.2% 2,948.07 1,107.44 380.40 23315
10 X 18 9" X 1714 166.29 4,242.84 1,250.34 484.90 263.23
10 X 20 9% X 19% 185.28 5,870.11 1,393.23 602.06 293.31
10 X 24 N4 X 2344 223.25 | 10,274.15 1,679.03 874.40 453,49
12 X 12 1% X 1% 132.2% 1,457.51 1,457.51 2%3.48 253,49
12 X 14 1114 X 1344 155.2% 2,357.86 1,710.98 349,31 297.56
12 % 16 1115 X 151 178.25 3,568.71 1,964.46 460.48 341.65
12 X 18 1115 X 17w 201.25 5,136.07 2,217.94 586.98 385.73
12 X 20 113 X 1914 224.25 7,105.92 2,471.42 728.81 429.81
12 x22 1144 X 2114 247.25 9,524.28 2,724.90 885.98 473.90
12 X 24 1114 X 2314 270,25 | 12,437.13 2,978.38 1,058.48 517.98
14 X 14 1314 X 1345 182.25 2,767.92 2,767.92 410.06 410.06
14 X 16 13% X 1544 209.25 4,189.36 3,177.98 §40.56 470.81
14 x 18 131 X 17% 236.25 6,029.30 3,588.05 £89.06 531.56
14 X 20 1318 X 19% 263.25 3,341.73 3,998.11 B55.36 | 592.31
14 X 24 1315 X 234 31725 | 14,600.11 4,818.23 1,242.56 713.81
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Table 5-5. Minimum yield point

Steel Brand or Grade

£
y

A328
4592 Gr 30
A640

A36

38,500 psi (265 MN¥/m?2)
50,000 psi (344 MN/m2)
50,000 psi (344 MN/m?)

36,000 psi (248 M¥/m%)
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The capacity of a nail as a fastener is determined by its resistance
to withdrawal, Wr’ which is in turn a function of the effective length
of embedment, Tos allowable load in withdrawal per inch of embedment,
p, and specific gravity, G. The effective length of a nail fastening
a sheet pile to a wale is the length of embedment in the wale, i.e.
the nail length minus the thickness of the sheet pile.
To find the allowable locad 1n withdrawal of a particular nail
size, the specific gravity, Gs’ of the wood is first found by using
Table 5-6, then entering Table 53-7 for the desired nail size and specific

gravity. The resistance to withdrawal is given by

W_ = ph, (5-13)

The allowable lateral loads on nails should be checked. WNails
fastening southern pine and douglas fir are allowed a maximum shear

of

3/2

V = 1650 D (5-14)

in which V = the allowable shear in pounds and D is the nail diameter
in inches (Timber Engineering Co., 1956).

Common bolts may be used in wood splices and their allowable
loads may be found in Table 5-8. Allowable loads are for bolts in
double shear, i.e., bolts used in 3 member joints, as in splice plates
for wales (Figure 5-1la)., The controlling factors in Figures 5-10 and
3-11 are the bolt diameter, 4, the length of bolt in the main member,

b, and the relative size of the splice members and the main member. The
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Table 5-6. Specific gravity of wood members (Timber Engineering Co.,
1956, p. 553)

Specitie Apecta
Tomatm of wood Gr‘n&"'w Suastes of wood cr(a&;tr
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Figure 5-11. Common bolts as fasteners
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vabulated loads are for members where side members are at least 1/2 the
dimension of the main member. Where side members are thinner tﬁan 1/2
the main member, then, for the purpose of determining the allowable
load, b = 2a. For example, if a wale is 6 in (152 mm), then the b
dimension used for Table 53-8 would be 3 in (76.2 mm).

The values in Table 5-8 are represented by P for loads parallel
to the grain and by Q for loads perpendicular to the grain. For the
purpose of wale splices, the allowable load in shear per bolt, V, can
be taken as Q in Table 5-8.

For 2 member joints (Figure 5-11b) of equal thickness, the allow-
able load is 1/2 the tabulated value for a main member whose thickness
is twice that of the actual member. For example, for a 2 in (50.8 mm)
member in southern pine, enter Table 5-8 at 4 in (101.6 mm) for the
appropriate bolt diameter. The allowable load, Q, for a 1 in (25.4 mm)
bolt is 4720 pounds (21.0 kN) and the allowable load in shear per
bolt, V, is 2360 pounds (10.5 kN).

For 2 member joints of unequal thickness, the procedure outlined
in the previous paragraph 1is applied with respect Co the thinner
member.

Where steel plates are used as splice members, the allowable
ioad is increased by 25 percent.

The criteria for allowable loads in common bolts are summarized
in Table 5-9.

The allowable loads on high strength bolts (ASTM A325) are
40,000 psi (276 MN/m®) in temsion, f , and 15,000 psi (103 WN/m?) in

shear, fv (AISC, 1973).
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Table 5-9. Summary of allowable loads in common bolts used for

splice plates

Relative Enter Table 5-8, Allowable

Joint Type Dimensions Columm b at Load, V
3 Member a %b b b P

a <<%b b 2a P
2 Member a=>m b 2a %P

a<b b 2a %P

a>b b o= 2b %p
Steel Side Plate n/a b b 1.25P
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The cost of fasteners is dependent upon their réquired size and
aumber which are, in turn, determined by their capacity and loads.
Another determinant to be considered is the location of the wale, 1.e.,
whether it is located om the fill side or the dredge side of the wall.
Locating the wale on the fill side presents a smooth face for the
user, whereas locating the wale on the dredge side presents a protru-
sion which may interfere with mooring. However, with the wale located
inside the fill, more fasteners are required as the fill tends to push
the sheet piles away from the wale, exerting a prying force
(Figure 5-12a). On the other hand, a wale outside the £111 bears
against the sheet piles, thereby eliminating the comsideration of
prying forces. The number of nails required per weoed pile section,

n, is
n s — {5-15)

in which P = the tie-rod pull (force per unit length of wall), w =
the width of the pile section, and Wr = the resistance to withdrawal
per nail. The number of high strength bolts per steel sheet pile,

n, is

_ 4Pw
2

wd~ £
ol
in which 4 = the bolt diameter and ft = the allowable tensile stress
ser bolt, taken as 40,000 psi (275 MN/mZ) for A325 bolts. The allow-

able shear stress, fv, in A325 bolts is 15,000 psi (103 MN/mz).
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Holes are 1/32 in (0.79 mm) larger than the bolt diameter for

wood and 1/6 in (1.6 mm) for steel.

5.2.5. Bulkhead Lifetime

The life expectancy of a bulkhead depends upon the components of
the system, i.e., 1f one component fails, the system 1s no louger
viable. Obviously, the lifetimes of components vary from material to
material, and the material with the shortest lifetime will control the
bulkhead lifetime. The designer must, therefore, insure that the
material of each component is the optimum.

The structure must be protected from harmful agents that exist in
the environment. Timber must be protected from rot and other
hiological agents by an appropriate treatment as recommended by the
American Wood Preservation Institute (AWPI) and the American Wood
Preservative Association (AWPA).

Timber sheet piles usually comsist of heartwoed instead of sap-
wood. This may cause the purchaser some consternation as standards
established for preservative penetration are for sapwecod, not heartwood.
Sipece heartwood is more resistant to preservative penetration, it follows
that the preservative penetration of many sheet piles will be less than
optimum.

Steel sheet pile and tie-rod life can be prolonged by applying
special coatings. Corrosion and decay rates should be determined for a
particular environment so that the life of the structure can be esti-
mated. A detailed discussion of materials and the hazards present in

certain environments is contained in ''Coastal Structure Materials"

(Hubbell and Kulhawy, 1979).



Tie-rods, turnbuckles, bolts, nuts, washérs, and nails receive
protection from corrosion by galvanizing. Electro-deposited zine
coatings, in accordance with ASTM B633, or hot-dip coatings, in accord-
ance with ASTM A513, may be specified to increase the life of steel
components.

When the cost is favorable, hardware may be comprised of wrought
iron.

If no coating or treatment is specified for the hardware, the
required dimensions will be reduced by corrasion. If the amount of
deterioration is known, the dimensions of the hardware should be in-
creased by this amount to preclude failure. Recommended increases in
hardware dimensions are shown in Table 5-10 (Johnsen, 19653).

Bulkheads sited in ercsiom zomes should incorporate returns on
the flanks of the bulkhead (see Chapter 6, Figure 6-1). These are sec-~
tions censtructed perpendicular to the wall which prevent the washout

of backfill around the flanks.

5.2.6. Compliance with Industry Standards

The designer may enhance the quality assurance of the product by
making certain that suppliers comply with industry standards, such as
ASTM and AWPA specifications. This may be accomplished by inspecting
timber products for grademarks (Figure 5-13) and by requesting certifi-
cates of compliance from the supplier. Such requests are reasonable
and the documents certify that the provisions of the specifications

are met.
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Table 5-10. Recommended increase in dimensions of hardware
(summarized from Johnson, 1965)

Marine Exposure

Exterior Exposure In and Below Above Splash
Dimension {(Except Marine) Splash Zone Zone
Bolt 1/8 in 1/2 in 1/4 in
Diameter (3.18 mm) (12.7 mm) (6.35 mm)
Plate 1/8 in 1/4 in 1/8 in
Thickness (3.18 pm) (6.35 mm) (3.18 mm)

Note: Washers for marine exposure (in and below splash zone) should
be ogee. For other exposures, l/4 in (6.35 mm) plate types
are unsuitable, ogee optional.
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Figure 3-13. Typical grademarks (Timber Engineering Co., 1956, p. 37)
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5.3. Design of Components

5.3.1. Sheet Piles

When the maximum moment has been determined (Chapters 2 and &),
the required section modulus is found by employing Equatiom 5~9. Since
the moment is computed in terms of moment per unit length of wall, the
section modulus must also be in terms of unit length per wall. For
steel sheet piles, Table 5-2 is consulted, as is demonstrated in design
examples found in the Appendices.

For rectangular wood piles, the required thickness is found by
employing Equation 5-10a, as is also demonstrated in design examples.

No load factors are required for sheet pile calculatioms. A
material factor is already employed in the allowable bendiné stress,

fb’ for steel and wood.

5.3.2. Tie~Rod Diameter

The computation of the tie-rod diameter is quite simple. Once
the tie-rod pull, P (force per unit length of wall), is found, the
tie-rod tension, T, is found by multiplying the tie-rod load times the
spacing between ties (see Section 6.1.5. for further discussion on the

tie-rod spacing). A load factor is then applied (Section 5.2.6.) and

the diameter found by

r——

4 = jAT,LF (5-17)
'r'I'Zt

in which LF = a load factor of 1.2 to 1.4 and Et = the allowable tension

of A36 steel (Equatiom 5-12c and Table 5-5). At this point the designer
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may decide to increase the diameter of the tie-rod for corrosion if no
other precautions were taken (Section 3.2.5.).

Tables 5-11 and 5-12 contain data for tie-rods and turnbuckles,
respectively.

An example of determining the tie-rod diameter is givem in the

Appendices.

5.3.3. Wale Design

The bending moment in wales is somewhere between that for a single
span, simply supported, and that for three continuous spans, simply
supported. The maximum bending moment can therefore be taken as (Teng,

1962)

v = % P (5-18)

in which P = the tie-rod force (per unit length of wall) and 2 = the
distance between tie-rods.

The section modulus is determined from Equation 5-9. Once this
is found, Table 5-3 may be used to find the appropriare channel size
or, if wood wales are used, Equation 5-10a or Table 5-4b is used to find
the proper dimensions. Examples of steel and wood wale designs may be

found in the Appendices.

5.3.2.1. TFastening Wood Piles and Wales

Wales located on the fill side of the wall have 2 tendency to
separate from the sheet piles. The prying force exerted on each sheet

pile may be taken as the tie-rod load per unit length of wall, P, since
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Tie rods (AISC, 1967, p. 4-93)
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Table 5-12.

Turnbuckles (AISC, 1980, p. 4-143)
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each sheet pile is approximately one foot wide. The number of nails, n,
required per pile may be found by selecting a nail size, determining
its allowable load in withdrawal, Wr, from Tables 5-6 and 5-7 and

Equation 5-13, then using the simple relationship

(5-19)

=]
u
zrv
3]

An example may be found in the Appendices.

Wales located on the dredge side of the bulkhead require nails
for construction only. Using two nails per sheet pile should be suffi-
cient. The nails should, however, be long enougb to have adequate
embedment in the wale so as to be capable of transmitting shear, i.e.,

2/5 of their length (Timber Engineering Co., 1956) or

Ly = 2/5 L. (5-20a)

Since the effective length, ze, is the length, %, minus the pile thick-

ness, t, the nail length should be

2 = 5/3 t. (5-20b)

An example may be found in the Appendices.

5.3.3.2. Splices in Wood Wales

Advantages are gained by locating the splices of outside wales
at the tie-rods (Figure 5-14). The bending moments here cause compres-=

sion of the outside edge of the wale and tension at the inside edge.
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The tension is resisted by the sheet pile attached to the wale at this.
location (Figure 5-14b).

A splice requiring a 2- or 3-member joint (Figure 5-11) may be
eliminared. In addition to cost savings, elimination of the splice re-
moves the potential for ponding that would occur between the horizontal
members of the splices. Ponding hastens the decay of the wood.

An advantage is also gained as the tie-rod hole in the wale occurs
in an area which is penetrated with preservative throughout the entire
length of the hole.

The bearing plate is designed in a manner similar to the design
for bearing of a steel beam on a masonry wall. The plate area is
determined from the allowable bearing pressure, fp, taken as c1 from

Table 5-4. The area, A, is found from

A = (5-21)
£
P
The thickness of the plate is given by (AISC, 1973)
3 F_ N?
£ o= _E_._ (5~22)

in which: FP = the actual bearing pressurae, N = 1/2 the short dimension
of the plate minus the hole radius , and fb = rhe allowable bending
stress of the steel. An example of the bearing plate design for an

outside wale may be found in the Appendices.
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Inside wale splices must be 2~ or 3-member joints (Figure 5-11).
The average shear force, V, that the bolts must resist may be found

from

1
v =3 T - —-PL.b (5=23)

in which Lb = the distance between extreme bolts. Equation 5-23 is
valid for splices centered over the tie-rod. The splice should also be
designed to resist the maximum moment.
Bolts in the splice have minimum requirements for end distance,
edge distance, bolt spacing, and distance between rows of bolts. A
summary of these requirements appears in Table 5~13. These are for
loads acting perpendicular to the grain (Timber Emgineering Co., 1956) .
The procedure for designing a splice is to select Lb’ compute V,
select a bolt size in accordance with Section 53.2.4, determine the
arrangement of bolts, and determine the final length of the splice member.

Examples of 2- and 3-member splice designs may be found in the Appendices.

5.3.3.3. Fasteners and Splices for Steel Wales

Figure 5-15 displays typical details for inside and cutside wales
used with steel sheet piles. Inside wales are fastened using high
strength bolts in conjunction with a fixing plate. The number of bolts
is determined by Equation 5~16 and the fixing plate may be dimensioned
by approximating it as a simply supported beam with a point load.

The nminimum distance from the center of the bolt hole to the edge

of the member may be taken as 1.5 times the bolt diameter for rolled or



Table 5-13. Distance requirements for belted comnections (Timber
Engineering Co., 1956).
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Distance Number of Bolt Diameters, n,
1

End =

bl 1 3

Edge 4

Bolt Spacing 4

Rows of Bolts 2% (for 1/d $ 2)

5 for 1/d 5 6)

(5/8) (1/d) + 1% (for 2 < 1/d < 6)

1/d = bolt length/bolt diameter



195

+ H
ANCHOR ROD (TIE ROD} + 4 IPMLATE WASHER)
P CUTSIDE
STEEL SHEET w‘tso
PHILE ANCHOR -
FIXING BOLTI -
L BOLTR
FIXING PLATE
PLATE WASHERE

Figure 5-15. Typical wale and anchor details (U.S. Steel, 1975, p. 39)
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gas cut edges. Minimum spacing is three bolt diameters (AISC, 1973).
An example of the design of an inside wale may be found in the
Appendices.

An outside wale may be fastened by merely employing a plate of
sufficient dimensions between the wale and the tie-rod nut. A plate
washer will suffice if the separators allow the channels to be close
enough to each other.

Splices in wales should be able to transfer the maximum moment
in the wales (Equation 5~18). The splice plate may be dimensioned
using Equations 5-9, 5-10a, and 5-23. Design of splice plates for

steel channel wales may be found in the Appendices.

5.4. Anchorage

Once the anchorage is adequately located with respect o the
gedmetry and soil stremgth of the site, the type of anchorage must be

chosen and dimensioned.

5.4,1. Continuous Deadman

The capacity of a continuous deadman stems from the net resultant
of the soil stresses acting, as shown in Figure 5-16. When considering
these stresses, the distance to the high water mark should be considered

as this represents the lowest capacity of the deadman. The stress

coefficients K; and K; used are factored, thus requiring no additional

load factors for the design. An example is given in the Appendices.
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5.4.2. Short Deadman Near the Surface

The caleculation for short deadmen near the surface can be facil-
itated using the information obtained from the design of a continuous
deadman. The net capacity per length of anchorage (Pp - Pa) is
already computed in terms of hL’ deadman height. The remaining values
are merely substituted into Equation 5.7. The Appendices contain an

example of the design of a short deadman.

5.5, Summary
Bulkhead design requires the integrated comsideration of loading,

cost-effectiveness, and the design of the basic bulkhead components.
A detailed examination of these considerations has been presented in
this chapter.

The bulkhead may have to withstand load§ other than those
stemming from the retained soil. These include surcharges placed on
the backfill, hydrostatic imbalance, ice thrust, mooring loads and
ship impact. The loads imposed on some components should be increased
by. load factors, depending upon the inherent uncertainties.

Cost-effectiveness is dependent upon such interrelated factors
as type and configuration of the wall, material strength of the com-
ponents, ability to withstand harmful agents of the environment, and
fastening methods.

Each structural compeonent must be dimensioned and the type,

number, and spacing of fasteners must be determined. As each item
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is being selected, the designer must keep in mind alternative materials

and schemes, costs, and the desired function of the component.



CHAPTER &

CONSTRUCTION CONSIDERATIONS

The construction of bulkheads is less complicated than the design
proess. Figures 6-la through 6-1f are a pictorial sequence of a typical
navy bulkhead construction operation. Im spite - of the apparent sim-
plicity, there are factors which must be considered to comply with
design criteria and result in optimum performance. This section includes

a discussion of these factors.

6.1. General Construction Procedure

6.1.1. Pile Installation

Prior to installing the sheet piles, the bulkhead alignment is
determined and guides are placed, such as wales placed on temporary
stakes. This is not necessary for navy bulkheads because the fender
piles and wales provide the proper horizontal alignment. Vertical align-
ment may include a slight batter in the direction of the f£ill side of
wall. This is standard practice in areas subject to freezing and tide
changes. The overall effect is to diminish pile uplift by ice on a
rising tide. A temporary wale may be placed below the upper wale to
facilirate construction. This lower wale is not necessary for the
permanent structure.

Sheet piles are generally installed by driving, jetting, or a

combination of both., Driving is more desirable from a soil mechanics
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Figure 6-1. Typical construction sequence {BBS Creosore Lumber Co.

Inc., undated)
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standpoint as the doynward force of the pile tip tends to locally éom-
pact the soil, thus increasing its strength. Jetting is more commonly
practiced where timber sheet piling is installed. This procedure entails
pumping water through a pipe under approximately 100 psi (689 N/m2) pres-
sure and advancing the pipe into the subgrade closely followed by the
pile. Jetting is not effective in gravel, silt, or clay and tends to
loosen the soil locally, thus decreasing the soil strength.

Because jettiﬁg facilitates installation and driving enhances soil
strength, a combination of these creates the optimum operation where the
pile is jetted to within a few feet of the required depth and the re-
mainder is driven.

As piles interlock using tongue-—and-groove or ball-and-socket
fittings (Figure 6-2), it is recommended that the direction of construc-
tion leads with the tomgue, or ball. This will eliminate the danger of
soil clogging the groove, or socket, and subsequent improper interlock
and leaning.

Driving in pairs or in panels (Figure 6~3) eliminates some of the
interlock frictionm occurring between piles. This also facilitaces
driving as rigidity is increased and leaning is reduced.

Other causes of leaning may include defective guides, pile defor-
mation, improper driving and improper jetting. Remedies include pulling
the heads of piles during installatiom (Figure 6-4a), use of guide piles
in conjunction with driving in panels (Figure 6-4b), applying the
driving force at an angle (Figure 6-4c), use of piles with chamfers at
the foot (Figure 6-~4d), and use of specialty fabricated wedge-shaped

piles (Figure 6-4e) (Teng, 1962).
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b. Typical ball and socket (U.S. Steel, 1975, £ p. 1)

Figure 6-2. Continued
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Crection of drrung

Driving sheet piles in panels (Teng, 1962, p. 378)

Figure 6-3.
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Figure 6-4. Remedial actions (Teng, 1962, p. 379)
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6.1.2. Wales

After the piles are installed, wales are connected by bolting
channels to each steel sheet pile section or by nailing timber wales
to timber sheet piles (Section 5.4.3.).

Splices are made in wales where required. Locating the splices of
wooden wales at the tie-rod eliminates the need for splice plates and
reduces the potential for ponding, thereby accruing some economic
advantages.

Typical details of wales for steel walls are shown in Figure 6-3.

6.1.3. Anchorage

The anchorage should be installed in parent material a safe dis-
tance from the wall (Section 5.3.2.). 1If the parent material is unde-
sirable, it should be removed and the backfill in front of the anchorage
should be compacted. .

Alternative anchoring schemes are shown in Figure 6~6 and alterna-

tive anchorage schemes are shown in Figure 6-7.

6.1.4, Tie-Rods

Holes are drilled through fender piles (if used), wales, sheet
piles and anchorages. One tie-rod segment is passed through the wall,
another segment through the anchorage, and the two segments are joined
using a turnbuckle. If settlement of the tie-rods is considered a
problem, PVC pipe should surround the tie-rod (Section 6.2.6.).

If the tie-rod is not horizontal, the design leoad should be in-

creased by a load factor

1
LF = cos 8 (6-1)
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Figure 6-5. Standard wale details (U.S. Steel, 1976, pp. 71-73)
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DOUSLE INSIDE CHANNEL WALES—WELDED INTERMEDIATE BEAM OR CHAMNEL SEFARATORE

o

DOUBLE INSIOE CHANNEL WALES=-SOLTED CHANNEL SEPARATORS

d

Table 6-~5. Continued



DOUBLE INSIDE CHANNEL WALES—BOLTED MPE SEPARATORS
e

— R

DOUBLE QUTSIDE CHANNEL WALES~-WELDED INTERMEDIATE EEAM OR CHAMMEL SEPARATORS

£

Figure 6-53. Continued
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THE RODS AND A-FRAME REICK ANCHORS (OR EARTH ANCHORS)

Figure 6-6. Alternative anchoring schemes (U.S. Steel, 1976, pp. 74-75)
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2R

SHEET PHLE ANCHOR REINFORCED CONCIETE WALL
WALL MAY BE CONTINUOLES
OR INTERMITTENT

d
e f
VERTICAL AND BATTER VERTICAL AND BATTER
PILE ANCHOR WITH FeBEAM PILL ANCHOR WITH
REINFORCED CONCRETE CAP

REINFQRCID CONCRETE CA®

Figure 6-7. Alternative anchorages (U.S. Steel, 1976, p. 82)
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in which 8 = the angle between the tie-rod and the horizomtal plane.

In corrosive environments the tie-rod should be protected by
using galvanized steel and employing protective wraps, Situminous treat-
ment or special painting.

Turnbuckles should be tightened until slack is removed from the
tie-rods. Overtightening causes anchor yield and excess stresses in

the tie~rod and sheet piling.

6.1.5. Tie-Rod Spacing

Tie-rods in wood bulkheads are frequently spaced at 7.5 ft (2.27 m).
intervals. Construction details do not interfere with this spacing or
any variation thereof. Steel bulkheads, on the other hand, limit the
designer's flexibility in choosing the interval as pile sections differ
in driving width (Table 5-2). For example, the section shown in Figure
=52 is a PDA 27 with a width of 16 in (0.41 m) and tie-rods at every
saventh section for an interval of 8 ft (2.44 m); Figure 6-3c shows a
P238 pile with an 18 in (0.46 m) width and tie-rods at every seventh
section for an interval of 9 ft (2.74 m).

The designer must be aware of these constraints because the tie-
rod tension is a function of the spacing, as well as the computed pull
per unit length of wall. An interval used for computations that is
different from the interval permitted by the pile'section configuration
will result either in overdesigned, uneconomic tie-rods and wales, or a

design prome to failure from overstressing.
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6.1.6. Backfill and Dredging

Free-draining backfill material should be used. If the expense
is too great to employ coarse material for the entire fill, a sand drain
or sand blanket should be employed (Figure 5-4). If either of these is
not feasible, then the additional load of saturated material must be
considered, as well as the reduction of the effective depth of penetra-
tion because of hydrostatic imbalance (Section 5.2.3.).

The £ill should be placed in equal lifts across the entire length
of the bulkhead. Piling up the £ill in one area results in local over-
stressing of pile members and tie-rods. The backfill should not be
compacted as this increases the stresses beyond the designed values.

Dredging, if required, should be accomplished after backfilling
is completed. The net result of this sequence is to provide additiomal
reduction of the bending moment because of arching of séil between the

tie-rod and dredge level.

6.1.7. Tightening of Nuts

For timber structures, the proper tightening tension is reached
when washers begin to indent the adjacent timber. High strength bolts
used for steel sheet piling are tightened in accordance with the
Specification for Structural Joints using ASTM A325 or A490 bolts,

Manual of Steel Comstructiom (AISC, 1976).

6.2. Other Considerations

6.2.1. Construction Equipment

Bulkheads are often the first structures completed in new de-

velopments. This implies that construction activity will take place
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nearby. If this is anticipated, surcharges from heavy equipment must
be accounted for in the design procedure or restrictions must be made

as to the allowable proximity of the equipment. A horizontal distance
equal to the wall height is recommended as the closest a piece of equip-
ment may be allowed. If the tie-tod and anchorage are shallow, the

equipment should not be allowed to pass over these.

6.2.2. Quality Assurance of Materials

To insure that materials are in compliance with design specifica-
tions, some measures need to be taken. The most fundamental step is
an inspection of the material for obvious defects. If timber is the
basic structural material, grademarks (Figure 5-13) should be found on
the members which indicate the grade marking service and stress grade.
A certificate is also available from the grading agency. Certificates
of compliance may be requested from suppliers for assurance that the
proper preservation process and amount was used. Certification may
also be requested tc insure compliance with the proper ASTM designactions

and any orderad special treatment such as bituminous coating.

6.2.3. Cutting and Notching

Treated timber members should not be cut to size. This practice
subjects the cut ends to attack from the elements from which protection
was desired. Preservation treatment should be specified as being
applied to all surface areas of timber members.

A similar argument applies for notching or countersinking recesses
for tie-rods to provide a £lush face. In addition to limiting the

effectiveness of preservatives, it reduces the net area of the section



in terms of its effectiveness to carry a load. An altermative to this
practice is to nail a coil of rope around the protruding tie-rod. This
will offer the desired protection to the moored vehicles.

If any cutting is done, preservative should be post-applied at
the site. This is not as effective as pressure treatment, but it is a

vast improvement over leaving the cut unprotected.

6.2.4. Regulations Pertaining to Coastal Use

The use of coastal zones implies that some change in the environ-
ment will occur stemming from such use. Permission may be required
prior to using coastal lands by the U.S. Army Corps of Engineers,
Environmental Protective Agency, county or local governments. In New
York State a Coastal Zone Management Program exists under the auspices
of the Department of State, although regulatory functions are delegated

to localities. At any rate, the structure's impact upon the environ-
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ment must be assessed and the need to obtain permits must be ascertained.

For details, see "Regulatory Processes in Coastal Structure Comnstruc-

tion" (Roman, 1979).

6.2.5. Construction Details

Typical construction details appear in Figures 6-8 through 6-12.

6.3. Summary

Although the construction of bulkheads is relatively straightforward

some factors must be taken into account which may affect the desired

performance of the system. Certain problems inherent in the installation

of sheet piles can be overcome with some suggested techniques. Connec-

tion of wales and tie-rods and installation of the anchorage must be
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Typical bolting details, timber (Timber Engineering Co.,
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Figure 6-10, Common arrangement of wales and tie-rods {(Teng, 1962,
p. 372)
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Figure 6-12. $teel bulkhead with timber fender piles (U.5. Steel,
1976, p. 74)
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accomplished with respect to conditions imposed by the design. Benefits
may accrue from the optimum sequencing of dredging and undesirable
consequences may result in the improper placement of backfill. Sur-
charges imposed by construction equipment must be accounted for eor
damage to the system may occur. Measures should be taken to assure that
the material purchased complies with the quality specified in the design.
Field alterations performed on treated timber reduce the effectiveness
of the preservative. Consideration of these factors during construction

will enhance the longevity and proper functioning of the bulkhead.



CHAPTER 7
RELTABILITY AND FACTOR OF SAFEIY

The chance of a system performing successfully is termed its
reliability, R. The complement of reliability is the probability of

failure, Pf, which is defined as

P, =1-R (7-1)

£

Every system has a finite probability of failure that depends upon:
the system's ability to sustain loads, i.e., the capacity; the locads
placed upon the system, i.e., the demand; and the variabilicy of the
capacity and demand.

Capacity-demand models involving penetration depth, tie~rod pull
and bending moment for a particular hypothetical situation cannot be
used to determine the probability of failure of all bulkhead systems.
It can, however, suggest the order of magnitude of reliability to be
expected, if realistic values and assumptions are chosen. A portiomn of
this chapter is, therefore, dedicated to such a hypothetical situation
where the reliability and factors of safety are explored.

The situation presented here is a bulkhead designed in accordance
with Rowe's reduction method. Probabilistic methods are employed to
determine the probability of failure of the design and some qualitative
conclusions are drawn. Since the simplified design procedure suggested
in this work is based on the Rowe method and some variability exists

224
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between the Rowe and simplified methods solutions, probabilistic methods

are again utilized to investigate reliability.

7.1. Assumptions

Certain assumptions are inherent in the simplified design procedure
and the argument presented in this chapter. A discussion of :hesé
assumptions should help to establish the validity of this work.

A very basic, yet critical, assumption is that the soil strength
and unit weight are established by virtue of sufficient investigationm.
Some variability in these parameters can be expected and some variability
will, comsequently, occur in the loadings and the capacity to resist
failure.

Variability in loadings caused by faulty construction procedure
is not addressed.

As suggested in Chapters 2 and 3, the Free Earth Support and Rowe
methods have been established as accurate means of describing Buikhead
behavior. They have been corroborated by experiment and by comparison
to theoretical and sophisticated analytical techniques. It can then
be readily assumed that these methods can be modified to portray ade-
quate capacity-demand models.

Some variability exists in the ultimate strengths of construction
materials comprising bulkheads. It is suggested that the average factor
of safaty of stress graded timber is 2.5 and that 99 percent of all
tosts will demonstrate a minimum factor of safety of 1.25 (Timber
Engineering Co., 1974). If a design value of 2,000 psi (13.8 MN/mz) is

assumed for the flexural strength of timber sheet piles composed of
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southefn pine, the average ultimate strength can be assuﬁed as 3,000
psi (34.4. MN/mz) and 99 percent of the same material can be assumed to
possess an ultimate strength of 2,500 psi (17.2 Mmez). Tie-rods made
from grade A36 steel must possess a minimum yield strength of 36,000
psi (248 MN/mZ). The average yield strength of all A36 steel members
is not known, but a conservative value may be assumed to be 40,000 psi
(275 MN/mz). It may also be assumed, conservatively speaking, that 99
percent of all A36 steel possesses at least the minimum required yield
strength, 36,000 psi (248 M¥/m%).

Conservative assumptions are also made for selecting the appro-
priate mean value of soil parameters. The variabilities of these
parameters reflect data taken from the technical literature. The random
values chosen for soil and material parameters are assumed to be nor-
mally discributed and to represent infinite populations.

A hypothetical situation may be used to illustrate the facto;s of
safety against penetration failure, tie—rod-failure, and bending moment
failure, and the associated precbabilities of failure. With the factor

of safety defined as the ratio of demand, D, to capacity, C, or

C
FS D (7-2)

then a factor of safety of unity or less signifies imminent failure,
i,a,, when the capacity is equal to the demand. The margin of safety,

SM, is the difference o¢f capacity and demand, or
SM =C - D (7=3a)

Failure will occur when SM 5 G.
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The capacity and demand will vary depending upon many factors,
such as material flaws, heterogeneity, etc., and are, therefore, termed
variates. The value that occurs most frequently is termed the expected
value, or mean, and a measure of the amount that values differ from the
mean is termed the standard deviatiom.

If C and D are normal variates, then € and D are the means and

SC and SD are the standard deviations. The mean safety margin may be

defined as
SM =C ~ D, and (7-3b)
the standard deviation of the safety margin may be defined as

3 .2
Ssu /Sc *+ Sy (7-3¢)

A standardized value, z, is determined by
Z W - (7-4)

From this value can be determined the probability that SM s 0, or the
probability of failure. Such a determination is made from probability
density functions which may be found in statistical tables.

Capacity and demand for the three modes of failure previously
mentioned will be analyzed statistically to find the mean and standard
deviation of the safety margin. The standard score will then be deter-

mined and converted to the probability of failure.
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7.2. Anchored Walls in Sand

7.2.1. Hypothetical Situation

A design will be illustrated for a bulkhead whose geometry is

given in Figure 4-1, with the dimensions

H=10" (3.05 m)
H, = 6" (1.83 m)

H, = 2' (0.61 m)

A
Ly = 4' (1.22 m), and
£, = 6' (1.83 m)

The material comprising the fill and subgrade is loose sand. The mean
values of the design parameters assigned to layer 3 and t, are assumed

as.:

100 pef (15.8 kN/m>)

Yy =
¢1 = 30 degrees .
Yy = 120 - 62.4

57.6 pef (9.09 kN/m>), and

30 degrees

-
™~
]

The design proceeded by calculating the depth of penetration by
the Free Earth Support method and the tie-rod pull and bending moments
by the Rowe reduction method. A factored angle of internal friction

was used for computing the required depth of penetration, such that
- -1 ,1
b = tanm (SF tan $) (3-1)

in which SF = an appropriate safety factor, taken as 1.5, ¢ = angle of
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internal frictiom, unfactored, and b = angle of intermal frictiom,

factored. The tie-rod diameter is then calculated based on an allowable

tensile strength, £ = 22,000 psi (151 MN/m®). Finally, the sheet pile

member thickness is selected based upon an allowable flexural stress

of £ = 2,000 psi (13.8 N/mZ). The resulting minimum parameters required

are a penetration depth, D = 4.8 ft (l.46 m), tie-rod diameter, d =

0.68 in (17.2 mm), and sheet pile thickness, t = 1.81 in (46.0 mm) .
Penetration depth stems from the demand found by summing moments

about the tie-rod. The demand moment is from active stress applied

against the wall. This motivating phenomena is computed as

- H,)

+t1 A

» Gt
D+H-H)

+t, - H)

+ K 1 "

C

t. t GL
a2¥1%1%2 2 ~2

1
+ Ka3 (Ylt1 + thz) D GE D+H-~ HA). (7-6a)

For the geometry of this situation and for vy, = Yqe and Kal = Kaz
K33=Ka,

M=K, [(318) Y1 + (317 YZ] (7-6b)
The capacity to resist this demand is provided by the moment about the

tie~rod produced by the application of passive stress such that
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(7-7a)

1 2 2
R = E'Kp Y3D GE D+H- HA)’ or
R = KpYS (121). (7-70)

The variability of a parameter, x, can be demonstrated in terms
of its coefficient of variation
(7-8)

100%

-

mlxl

V =
X
in which X = the mean value of the parameter, and Sx = the standard

deviation.
A correlation was found between variance of horizontal stress

coefficients and the angle of internal friction (Singh, 1972), such

that
(7-9a)

Vey = 1.15 Vo , and
* (7-9b)

VKP = 1,10 V¢.
For example, for an angle of internal friction, ¢ = 30 degrees, VKA =
16.1 percent and VKP = 15.4 percent.

The standard deviations associated with stress coefficients KA
= (0,884 respectively.

0.279 and Kp = 5,74 are SKA = (0,0449 and SKP
Other pertinent parameters with variability are void ratio, e

(Schultze, 1972), and specific gravity of the soil solids, GS {Schultze,
Appropriate values assigned to

1972; Padilla and Vanmarcke, 1974}.
these parameters are a mean void ratic of 0.663 with a2 standard devia-

tion 0.088, and a mean specific gravity of 2.65 with a standard devia-

tion of 0.01.
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The relationship existing between the unit weight, void ratio,

and specific gravity for saturated soll is

G, + e)
YA E e Tw (7-10)

in which Yo = unit weight of water.
A mechanism relating the variability of n independent parameters

X to the dependent parameter y is (Hahn and Shapiro, 1967)

2 n 3y 2 2 -
SY iil (axi) (Sxi) (7-11)

Therefore, for the relationship between unit weight, void ratio and

specific gravity

(1 -G
By =372
(1 + &) w
y _Yw
e ~ite ~ 373
5
2 _ 3y,2 2 oy .2 2
s?= D7 s+ 65%;) (5gg)%s and

5, = 3.30 1b/fe2 (0.521 kN/m7).

Using Equations 7-7 through 7-11 and the selected values, the means
and standard deviations can be computed for the motivating moments, M,
the resisting moments, R, and the probability of failure. The results

are shown in Table 7-1.
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Table 7-1. Probability of failure and factor of safety
Penetration Tie-Rod Pull Bending Stress
D C D C D C
Parameter (ft-1b) (f£-1b) (15) (1B) {psi) {psl)
Mean 17,200 40,000 7,100 14,500 1,900 5,000
Standard
Deviation 2,830 6,600 1,162 560 311 970
Standard
Score 3,17 5.74 3.04
Probabilicty -4 -9 -3
of Failure 8.00 x 10 5.10 1,20 x 10
Factor of
Safety 2.33 2.04 2.63
Vote: 1 ft=1b = 1.356 N-m
1 1b = (.00444 kN

1l psi

0.00689 MN/m?
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Similar approaches can be taken with the tie-rod and bending

stress demands. Tie-rod load is given by

T = Ka [(200) Y1 + (9417) YZ]' (7-12)
Hence

2 aT .2 2 9T .2 2
§5 = (=) (S Y+ (=" (58, )
T 3 3 Y
Y1 Yl Y2 2

aT .2 2
+ (&-)° (8, )", and
aKa Kﬁ

Sp = 1162 1b (5.16 kN).

The maximum bending moment for this situation is given by

MMAX = 5.88P - K, [(71.8) Yy + (12.8) 72)]

- K [(71.8) v, + (9.74) v,] (7-13b)
=%, [(67.2) y; + (50.8) v,). (7-13¢)

For a reduction factor in bending of 0.30 and section modulus of 6.55

in3/ft in this case, the maximum bending stress is

g = (0.304) (12) MMAX/(G.SS) (7-14a)

=K, [(47.5) vy, + (35.9) Yol (7-14b)
The standard deviatien for bending stress is given by

2

a ) " (8, )
S 61 "1 3, g

39 42
+ (BKa) (SKa) , and
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5, = 31 psi (2.14 MN/m?) .

As previously established, the mean flexural strength of wood
sheet piles can be taken as 5,000 psi (34.4 MNlmz) and mean yield

strength of A36 steel can be taken as 40,000 psi (275 MN/mz) so that

Z (7-15)

T
T Z-d v

ULT

(0.68)% (40,000)

&=

= 14,500 1b (64.4 KN),

The standard deviations of the capacities can be found by back-
calculation. Assumed cumulative probabilities of 99 percent associated
with a minimum yield strength of 36,000 psi (248 MN/mz) for A36 steel
and a minimum flexural strength of 2,000 psi (13.8 MN/mz) for timber
sheet piles result in standard deviations of 560 1b (2.49 kN), for

. 2
TULT’ and 970 psi (6.68 MN/m™) for o.
The probability of failure in penetration depth, tie-rod pull and
bending stress may now be computed using Equations 7-2 through 7-5.

The results are given in Table 7-1.

7.2.2. Reliability of the Design Curves

The preceding hypothetical situation clearly demonstrates high
reliability and comfortable factors of safety against failure for a 10
foot (3.05 m) wall in loose sand. One is able to surmise that similar
results would occur in analyses of various geometries and soil condi-

tions.
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The same reliability might be expected from the design curves
which comprise the basis for the simplified method as they were derived
from the Rowe procedure. The design curves, however, do not coincide
exactly with design solutions provided by the Rowe method, since the
curves represent mean values of the solutions. The variabilities of
the differences between the Rowe solutions and mean values of the
design curves are demonstrated in Figures 3-4 through 3-15 and Table 3-5.

The variation of the design curves is expressed in terms of
percent difference, This can bé converted to the same units that ex-
press the variation in the hypothetical situation. Since the‘design
curves are the result of a least squares method of best fit, the mean
percent difference between the curve and the data points is very close
to zero. The means of the design curves can thus be assumed to be
equal to the means of the demand of the hypothetical situatiomn, i.e.,
the mean percent difference betwe;n the curve and the demand of all
hypothetical situations is zerc. The standard deviations can be dimen-
sionalized by multiplying the standard deviacion, expressed as a
percent, by the associated mean of the hypothetical situation. For ex-
ample, a 10 percent standard deviation for tie-rod loads would conver:

Lo

ST = (0.10) (7100)

= 710 1b (3.16 kN).

The reliability of the design curves, expressed in terms of the prob-

ability of failure, is shown in Table 7-2.
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Table 7-2. Reliability of the design curves (anchored walls in sand)

Penetration Tie=Rod Pull Bending Stress
D c D C D Cc
Parameter (fe~-1b)  (fr-1b) (1b) (1) (psi) (psi)
Mean 17,200 40,000 7,270 14,500 2,000 5,000
Standard
Deviation 530 4,750 511 560 210 g70
Standard
Score 4.77 4,53 3.02
Probability -6 -22 -3
of Faflure w10 Al 1.30 x 10

Noze: 1 ft-1b = 1.356 N-m
1 1b = 0.00444 kN
1 psi = 0.00689 M¥/m2
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7.2.3. Reliability of the Simplified Method

The simplified method may be conrsiderad as a system consisting
of 2 components: the Rowe reduction method and the design curves. The
reliability of a system whose components operate in series may be ex-

pressed as

R.= @I R, (7=16)

in which Ri = the reliability of the ith component and n = the number

of components in the system. In terms of probability of failure, the

relationship is

n
=1 1-aQ-2; (7-17)
i=1

Py

in which Py = the probability of failure of the ith component (Harr,
1977). The reliability of the simplified method may thus be assessed
from the combinatorial probability of failure of its components 4s

shown in Table 7-3.

7.3. Anchored Walls in Clay

7.3.1. Hypothetical Situation (Undrained)

The conditions assumed for anchored walls in sand remains the
same with the exception of a cohesive subgrade where ¢ = 250 psi (1,72
MN/m2), an anchored wall in clay may be designed in accordance with
the Rowe reduction method. The design depth of penetration, tie-rod

pull, tie-rcd diameter, bending stress and pile thickness are



Table 7-3. Reliabilircy
sand

of the simplified method (amchored walls in
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Parameter Probability of Failure
Penetration 8.00 x 10'4
Tie-Rod Pull <1070

Bending Stress 2.50 x 10‘3




Lwr)
[}

5.54 feet (1.69 m)

L~}
[]

6,530 pounds (28.2 kN)

[+D
]

0.615 inches (15.6 mm)

1,990 psi (13.7 Pa) and

Q
]

1.92 inches (48.8 mm)

-
]
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The analysis proceeds as before with additions of another variant,

the cchesion parameter, whose coefficient of variation may be taken as
Ve = 18.6 percent (Lumb, 1972), which gives a standard distribution of
Sc = 46.5. The resulting capacities, demands, standard scores and
probabilities of fallure are shown in Table 7-4.

The most striking aspect of the results is the relatively large
probability of failure in penetration as compared to what is virtually
a very substantial factor of safety. This disparity stems from the
large variance of the cohesion parameter.

Coefficients of variation for the cohesion range as high as 30
percent (Harr, 1977). Incorperating this value into the foregoing
analysis results in a probability of failure in penetration of Pf =
0.25.

7.3.2. Hypothetical Situation: Penetration Computed
for Drained Condition

If the long-term case (drained conditiom) is considered, the
design results in a depth of penetration D = 9.2 ft (2.8 m), factor of
safety F$ = 2.2 and probability of failure P, = 0.003. This is based
on the assumption that the variance of the parameters is the same as

the variance for cohesionless soils. If this depth of penetratiom is
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Table 7-4. Probability of failure, anchored walls in clay (undrained)
Penetration Tie~Rod Load Bending Stress
D c D c c

Parameter (£t-1b) (f£-1b) (1b) {1b) (psi) (psi)

Mean 5,230 30,500 6,530 11,500 1,990 5,000

Standard

Deviation 920 13,800 1,070 320 970

Standard

Score 1.83 4.45 2.95

Probability -2 -6 -3

of Failure 3.40 x 10 i0 1.60 x 10

Factor of

Safety 5.83 1.76 2.51

Note: 1 ft-lb = 1.356 N-m

1 1b = (0,00444 kN

1 psi

= 0.00689 MN/m2
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used to compute the probability of failure for the short term case, the
probability of failure would be almost zero for a coefficient of varia-

6

rion of 18.6 percent on cohesion, and approximately 10 ° for a coeffi-

cient of variation of 50 percent.

7.4. Summary and Conclusicns

The investigation of a hypothetical situation provided a concep-
tualization of the reliability of anchored bulkheads. 3By incorporating
varigtions in the pertinent soil and materilal parameters found in the
technical literature, a means was established whereby the probability
of failure in penetration, tie-rod pull, and bending stress could be
estimated.

A capacity-demand model was formulated for each of the three
potential modes of failure for walls in a sand subgrade, in a clay sub-
grade under undrained conditions, and in a clay subgrade under drained
conditions. Penetration failure ;as seen to be the most probable mode
of failure while tie-rod failure was virtually improbable under the
assumptions declared. The probability of flexural failure of timber
members was less than penetration failure, but not nearly as low as
tie-rod failure.

Recalling that the safety margin, variance in capacity and demand,

and the probability of failure are related by

SM=C-D, (7-3a)
2 2 -
SSM = Sc - SD , and {7-3b)
= .
Pf = (T) y (7-].?)
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the reasons for the general trend appear c;gar: a high safety margin
results in a low probability of failure, while a high variance in either
capacity or demand has the opposite effect.

Since the specified engineering properties of steel can be rela-
tively easy to attain with low variance, steel products will show a
rather high capacity. Added reliance stems from the fact that, to
achieve the minimum yigld for each lot manufactured, the metallurgical
design process 1s conservative and an average yield results which is
substantially higher than the required minimum. Rigid quality control
insures that a very low percentage of the final product has a yield less
than the specified minimum.

Since timber cannot be processed and refined to the extent that
iron ore can, the final product exhibits more variability in its en-
gineering properties. Designs using timber show high reliability which
is derived from the quality assurance provided by stress grading.‘

Both demand and capacity of the penmetration model are functions of
the g$oil parameters and penetrati&n depth. Since high variance in soil
parameters pertains to both capacity and demand, a high safety margin
is required to achieve an acceptable reliability. Obviously, increasing
the safety margin may be accomplished by decreasing the demand or in-
creasing the capacity. The only choices available to obtain either end
are to replace the in-situ material with a more suitable one, or to
increase the depth of penetration. Additional excavation and backfilling
is costly, thus increasing the penetration depth is more attractive.
Unfortunately, large increases in depth are necessary to offset high

variability, low soil strength, or both.
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Harr states that, fFor most problems in geotechnical engineering,
P. s 10-3" (Harr, 1977). It is not unreasonable theéefore, to consider
this order of magnitude as a desired standard and to declare as accept-
able any probability of failure that is less than 0.01L.

The numerical results of the analysis of the hypothetical situatiom
demonstrate the acceptable reliability except for one case. The reli=-
ability of tie-rods and flexural member (sheet piles) are acceptable in
all cases. Penetration depth, ﬁowever, is unreliable for clays in the
undrained condition, even for the moderate coefficient of variation of
18.6 percent. This realization is important as the apparent factor of
safety against failure of 5.83 is very substantial and falsely suggests
an adequate design. However, when the wall is redesigned for the
drained condition, an acceptable reliability results for both long and
short term,

The design curves possess small variability and show high reli-
ability as a result. When considered as a component of a design system
which incorporates the Free Earth Support method with Rowe reduction,
the design curves lead to reliable designs providing, of course, that
there is not excessive variability exhibited by the soil parameters.

The technical literature suggests that the undrained strength of
cchesive soils demonstrates high variability. Deterministic designs
based upen undrained strength produce an inherent risk of failure.
Designs based upon drained strength, however, show good reliability;
hence the drained condition can be comsidered to control the design

process.
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The reliability of a particular design can be egtimated provided
that the site was adequately investigated. One important aspect regard-
ing the adequacy of the investigation is the number of data points used
to determine the mean soil parameters. Since the investigation entails
sampling from a population whose standard distribution is unknown, the
desired probability of failure (confidence interval) may be investi-
gated by utilizing a cumulative probability function described by a

student distribution (Harr, 1977), where the standard score is given by

(7-18)

Al

A table is consulted to ‘ascertain the probability of failure for a
particular number of data points.

The t scores for a desired probability of failure less than 0.01
are shown in Table 7-5. It is readily observed that as the number of
data points decreases, the t score increases. This indicates that for
the desired reliability a greater safety margin; lower variance in seil
parameters, or both, is required for fewer data points. The only
option left to the designer confronted with scant data is to increase
the safety margin. This is very likely to be less cost-effective than
an increased scope in site investigation.

It may be concluded that the Free Earth Support, Rowe, and simpli-
fied methods are inherently reliable for walls in sand subgrades. To
extend this high reliability to walls in cohesive subgrades, an adequate
site investigation is required whose scope will be determined by the

variability of the data.
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Table 7-5. t Score required for a probability of failure less than 0.01

No. Data Points t Score
3 31.821
& 6.965
5 4.451
6 3.747
7 3.365
8 3.143
9 2.998

10 2.896
11 2.821
12 2.764
13 2.718
14 2.681
15 2.650
16 2.624
17 2.602
18 2.583
19 2.567
20 2.552
21 2.539
22 : 2.528
23 2,518
24 2.508
25 2.500
26 2.492
27 2.485
28 2.479

29 2.473




CHAPTER 8

SUMMARY AND CONCLUSIONS

Bulkheads must be designed to resist failure from bending and
from lack of sufficlent penetration below the dredge level. The forces
causing failure stem from horizontal stresses exerted upon the wall
from the soil on the backfill side. Resistance to bending failure is
derived from the properties of the wall, and outward movement of the
toe of the wall is resisted by the soil on the dredge side. Regquired
penetration depth may be reduced by employing a tie-rod and anchorage
on the fill side, adequately dimensioned and located.

Bulkhead behavior is governed by the complicated interaction of
many variables, requiring equally complex procedures to determine the
design loads. Overly simplified methods tend to over- or under-design
the system. A simplified procedure is needed which addresses the
pertinent variables, and this is described herein.

Various approaches have been used to determine the horizontal
stress distribution and the resultant forces and moments. Of the seven
approaches reviewed in Chapter 2, the Free Earth Support method with
Rowe reductions was found to be the most extensively examined and
covered the widest range of conditions. In spite of its technical merit,
the FES/Rowe procedure is complex. A simplified method was therefore

derived from the more complicated cne.
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A computer program was devised which calculated penetration depth,
moment and tie-rod load in accordance with the FES/Rowe method for a
wide variety of soil conditions and site geometries. Chapter 3 explains
the methodology by which the pertinent parameters were combined and
corralated to generate simplified design curves.

A detailed explanation of the FES/Rowe and simplified methods
is given in Chapter 4. The expediency of the simplified method is made
apparent in that explanation and is substanciated by the procedural flow
tables and design examples that appear in the Appendices.

Although the determination of penetration depth and loadings is
of prime importance in bulkhead design, there are other items that re-
quire careful consideration to complete the design. Chapter 5 provides
a discussion of other pertinent factors, i.e., overall system cost-
effectiveness, external loads, component dimensioning and detailing.
Procedural flow tables and examples are provided in the Appendices for
the design of components.

Proper construction practices are also required for a properly
functioning system. A general construction procedure is discussed in
Chapter 6, as well as some other practical considerations concerning
construction methods.

A qualitative description of bulkhead reliability was develcped
by inference in Chapter 7. A capacity-demand model of a typical bulk-
head was examined with respect to penetration depth, moment, and tie-
rod load. Both sand and clay subgrades were considered. 3oil and
material strength parameters and variability were selected from the

technical literature and incorporated into the model. The models
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showed that, because of the high variability of clay strength parameters,
walls in clay were less reliable than walls in sand. However, a design
based upon the long-term strength of clay results in a reliable design,
aven when the short-term parameters are considered.

By examining the capacity-demand model using probabilistic methods,
several concepts were reinforced, i.e., once an adequate penetration
depth is found, the probability of system failure is low; the risk of
penetration fallure in a clay subgrade is high when considering short-
term strength, but is reduced when the long-term strength is used for
design; and as the number of data points used to determine the strength
parameters of the soil increases, the probability of system fallure

decreases.



APPENDIX A

COMPUTER PROGRAM USER'S GUIDE

Title

Bulkhead Design for Anchored or Cantilevered Walls in Sand or
Clay Subgrades.

Purpose

The purpose of this computer program is to determine the depth of
penetration of bylkhead sheet-piles, determine the tie-rod load per
unit length of wall, compute the maximum bending moment, and select the
appropriate USS steel sheet pile and timber sheet pile. The design
method is Free Earth Support as medified by Rowe.

Ioput

Cards 1 through 30 comprise moment and tie-rod reduction factrors
and USS steel sheet pile design data. These data cards are provided
with the program.

Control Cards: 2 each. Must be right-justified.

Card 1 _
1-2 NP ~ Number of designs to be run.
Card 2
1-2 RC - Type of wall to be designed.
KC = 0: Anchored wall only,
KC = 1: Cantilevered wall cnly.
KC = 2: Both types will be designed.
3-4 N - Number of soil layers in the site.

N must be 2 or greater.

Soil Parameter Cards: 1 card for each soil layer. English units. Not
right or left-justified, but a decimal is required.

249
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1-10 PHI - Angle of internal frictiom,
11-20 GAMMA - Total unit weight (1b/ft3).
91-30 € - Cohesion (#/ft2). Must be zero if ¢ # 0.

r3

Site Geometry Cards: cards

Card 1
1-10 BOMEGA - Angle of backfill slope.
11-20 DOMEGA - Angle of dredge slope.

Card 2
1-10 H - Free standing wall height (ft).
11-20 HW - Height of water above dredge level (DL).

, This is the low water level.
21-30 HHW - Height of tie-rod above DL.
31-40 Tl -~ Distance from top of wall to 2nd scil layer.
41-50 T2 Distance from top of wall to 3rd soil layer.
51-60 T3 Distance from top of wall to 4th soil layer.

Surcharge Cards: 1 card

Card 1 2
1-10 Qs - Uniformly distributed load (1b/ft").
11-20 QL - Line load (lb/ft).
21-30 QP - Point load (1b}.
31-40 X - Horizontal distance from wall to load (for

QL and QP only).

ExElanation

Most sites can be approximated using 3 layers: the first layer
consisting of moist (not saturated) scil between the top of the wall and
the water level; the second layer extending to the DL; and the third
layer extending beyond. Input of T3 = 50 ft is a good value since any
distance beyond the depth of pemetration will be neglected.

The field width for each soil layer is 10 spaces. Each additional
soil layer may be input utilizing this width, e.g., T4 would be input
using columns 61-70.

Values of zero must be input on soil parameter, site geometry and
surcharge cards with a decimal point.

The use of cohesion parameters above the DL will result in un-
conservative designs. An explanation is contained in Chapter 3., Long
term strength parameters should be used instead.
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APPENDIX C

SAMPLE OUTPUT

Site Geometry and Soil Parameters

The geometric and soil parameters are listed in the output to
provide a check. This output should be checked first when debugging.

Factored Soil Parameters

Factored soil parameters are used to compute the following in
each soil layer:

Depth of soil layer interface (from top of wall)

Active and passive stress coefficients

Effective unit weight

Triangular stress distribution (overburden and horizontal)
Rectangular stress distribution (overburden and horizontal)
Resultant force for each stress distribution

Centroid for each stress distribution

Moment arm for each stress distribution .
Resultant moment for each stress distribution

Depth of Penetration

The required penetration depth is printed out. If the subgrade
cohesion renders an unstable wall, a message reading "THIS WALL CANNOT
STAND" will appear and theé program will texminate. The stability number
of factor of safety against failure in penetration are listed for co-
hesive subgrades.

Unfactored Soil Parameters

A listing appears of the same parameters output for "Factored
Soil Paramerers," the difference being that this listing is computed
for tie-rods loads and bending moments using unfactored soil parameters.

Tie-Rod Load

The tie-rod load is listed in lb/ft of wall.
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Maximum Moment

The maximum bending moment, as computed by the Free Earth Support
method is displayed. The location of the maximum moment is also shown
(point of zero shear).

Operating and Structural Curves

Ordered pairs of T and log p are shown for 4328 steel sections,
A570/A690 steel sections, and wood piles. Ordered pairs are first given
for typical sections, then the actual design sectiom. Curve~-fitting
data is given for clay subgrades where there are only three values of
pile flexibility given in the Rowe reduction curves. The value of
representing the point of intersection of the operating and structural
curves is shown.

Design Section Modulus

The results of the Rowe reduction procedure are listed i{n in3/ft
of wall for A328 steel, A570/A6%90 steel and timber.

Design Section

The final USS section is listed for A328 steel, A570/A4690 steel,
as well as the required actual thickness for a timber pile. The tie-rod
load is also output.
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APPENDIX E

DESIGN EXAMPLES

EXAMPLE *1: GWEN THE EOUSWING SITE GEDMETRY AND SOW

CINDITIONS, FIND THE PENETSATION CESTH, BENDING MCMENT

AND TIE -RCD PulLlL USING THE FREZ EARTH SUPFPORT

METHOD WITH ROWE RAEDUCTION:
a2 s d %2 100 pef
Mus & ty: & Y2v 1224 2aF
Ha oz T Y32 1224 2

¥ a 30"
[+ 32°
%1 32°

(PG =l )

L) FING FACTORED AND UNFACTORED SoiL PARAMETERS

1
& = 30" Qe = Tt (T wan 30%) 1 20
&g 232" 3F = 226" = Q3 €
3 = 20° GF = 14°
$2 2 2.3 S 7 8 1 SyF
Ka 3 254 9 2
L"\I N (c-smsma j
Kp = caaz D
\ SN (B-SISING |
L x os 3 _1
FACTORED @ wa' = 0,428 Ko,
Ka'g = 2.332 THay
UNFACTORED K2, * @279 Wi

Kﬂ‘z = 3’2‘5& ’KQ:

5_{2 2 122.4 -&2.4
el Def = 5.3

s 2.20

34

{BASUVANT  UNIT

(z@ 3-1)

(222-2)

(s@ z-2)

Kppa3.32 1 <33

KPz 7 33 r <23

WEIGMT}
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2} (OMEUTE RESULTANT FORCES ANC UM MOMENTS ABOUT
Tig RoC (Fla 4.2, B2.4-3)

TDOWRTEEE VINIRVE DA T3 FIPCRRIN PErs aur
(Btqet, -Ha)» kaj (5% * Gy 20) OCED 4 » T {p) =a's)
1508 (40-u-Ha) 7 0
UB - 3380 » T30 + 70 ~{le8 - 881) sh38.8 0% 0
12,930 = 33600 - 130%- 38.a0% 10
0 5.6
3) COMBPUTE TOE SHEAR BASED URON HC+H+0 TG
(FT v BTy« PR, + PRy +7Ty ~FT4 ) TAN § » {5q. 4-2)
[: 1 Kay %et o '2 Ka, Xy o5 *Kay % =g Ra’y (L8, #328) O
i O TARVEAR'S of] AN 5, »
(326 + T33 ¢ 1220 +1880 - 2760) (T8 14*) 2 345 %
PR WEGHT CF PILE BER ScoT oF ~ZiGwmT 22 W: 22 Veu
Tee [(22)(1.%) ~ (3¢9)] {TAN 147) = 184 7
4) ABPLY FomcZ &7 ¥3 0 AND SUM MOMENTS ASOUT TIE-253:
Ts(s-'.--:-o -HA) = (184)(1377) = 7520

(12930 - 1930) » 32603 - T35%-33.823= 2
10,40 » 32600 - T30 - 53,.80% o
o= 53, Luss D= 35’

5} FIND TIE-RCD USING UNFAGTORED 3JotL PARAMETER v SUMMING
MOMENTS oF RESULTANT ~CRCES agouT ¥32: {E2. 4-3)

i ! 2

2
tHag (& " ¥ptq) (']G'.Oz)" P (H"% O-ra)z e

(5co » 310 + G280 -114¢) = 37P

Pres = 983 ¥=r.

t r z . “
- Ka, ¥, t? (-.9:-':, *tg «% R+ 3HKay ¥q gy (5-.';: -3 D) Kag iz, (eaefo) -
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&) FIND ROINT OF ZERC SHEAR (e 4-4)
=z Prr- ’i Ky “g Xt Kag X, w2 Q
|
RV arees WHERE &7 ZKaq ¥y » 168
Xt _EL%_.‘T’..E‘E_ Bz Kap I 2, 7%l4, N0
es FT-T1l2Ka, %23 P
1 - TGO

T} FIND MAXIMUM MCMENT

X 477 BElow THE WATER UNE (%))
(ex. 4-5)

| ¥ e :ﬁ('h,-x-i-ln.\, - F?,( ‘Et, b)&)-l& kq: é xi. ‘IE kag Ygt. J(z
a (983)(8772) -(223)(8.C%5) -(7T1) - (1310}
* 3650 S ¥/ M.

8.) CoMPUTE TIE-RoD LoAD SASED UPON ROWE METHOD:
Yt

o 2 ;D'I‘Ll"..ﬁ 2 &&9
BEds s o
Lo, 2 .02

&2 fePrag .
? 2 (1.02){983) * [0co™ [,
FOR SPLCING OF TIES AT T-h CENTERS

TeP 753 300 *

(Fa.2-11k)

COMBUTE ZENMDING MOMENT

2) Traax + () Meax (603 = () (3690) [(17:5)% = 826 (£Q.4-8)
USING Fia. 147D FOR VALUES oF rd | INTERDGUATE C.20 x DISTANCE
BETWEEN LIREE SAND AND JENSE $AND @ =<z O], USE oF
W% FOR INTERPOLATION STEMS “RCM cHoosNG X = 3¢°
FOR LOOSE SAND, 9= 40° FOR DENSE SANDQ, AND %: 32°
FOR THE SUBGRADE SO TWAT:

32" 30 ™
‘o a0 = B4
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W2 24 {20e)

Top * Toax 2 rd (Eq. 4-11)
Tae (& 4-12)

E—;;a I )ﬂ’ <. 30% (WOQD)

3 0,260 (APPRCX. FOR A328 STREL)
: 0,400 (APPROX. FOR AR STEEL)

o o -3.00 | =275 {250 |-2.29 {-2.001-175
rd 0% | a4di 039 | Q.29 | 77 | 077 |
Top 494 [ 397 312 | 2.81 140 | 113

(Hep?)T | 388 |2a2| 119 |2 | 830 3585|
Tem (weo0) | 11.8 | 80| 545 | 3 | 253 | LT
(A32B) | 10.0 | &8 | 4463 | 31T | 216, 16O
(Ae90) | 9.4 | Ti6 | 488 332 | 226 | 154

(SEE Pror NEXT PAGE)

B} DESKaNM SEaTIoN

M’ ’ro Hai (sQA‘!E)
se M (3@ 1)
-'-B ]

MATERMAL | T [ M(in-®)} #(asl) | S(inY/ee) |
WoEh | 237] 12,700 | 20c0| @.3%
A28 48| 13,300 | Wooo| €.932
AGHC 22| 11%e0 | F2co0| Q.37 l

FOR weoD SESTION: |

'E‘é 'gtz, :QP'BIIQ:J;I\,% (EQ.'-':-IOQ}

1178, USE Bxi2 {NCeMINAL &2%)

2o A3Z8 ¢ AGYC STESL, T-E SMALLEST $3CTIoN, PS78 Hag
Sz 13 n¥/fed>s reox. (TRBLE 5-2 )
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£ )

Q) RECOMBUTE FLEXISILTY CHARACTERISTICS:

Ysa Th Ih (g, 413}

MATERIAL | +(nsi) | € (pai) s (inyde) | Tlnd2el| ¥
A328 | 2%,000 | 30xi10% 12 - 2248
AGHO | 000 | 2oxio® 1.3 (- 2317

d) RECOMDUTE Tem aND FIND INTERSECTION OF T8

OPERATING AND NEW STRUCTURAL CURVES FLR
A28 AND AGOC STEEL:

log & =229 [+2.¢0|-LTS |-.3C

(M e 12,2 | &30 5.65 | 388
Tsmm (4328) |3.03 | 2.CG| 140|035
(A@90) 1449 | 465! 3k | 2.9

Top 1.8l | 240|223 | 223

&) IBCIMBUTED VALUES:

MATERIAL | T | Mman | Sres. |
A328 LGl 14,300 | 2.572 |
AGIC 228 | 1,800 Q.307 !

T=E SECTIONS SELEATED ARE SATISFACTIRY. A 2287

ANBLYS IS Will, SETERMINE whiCH MATERIAL (& BEST!

WCoD, A328 SR AGIQ.
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EAMBLE 2: USING THE CONDITICNS CF EXAMPLE #1 ASCERTAN
THE DRESRABILITY OF A CANTILEVERED wall.

|) ZeMeUTE TEPTH OF PENETRATION: Suv MOMENTS AEQUT To&

I ! -

3 Kd’i !ld‘:’!z (%tr *‘E.‘*U) ‘l'% Kaq ‘tz t.zz -Ig-".z vD}
s kap b (4 240) = Ka3 (G ~ B t) T
< L (kay-K3) ¥ D320

371 (3,93 +0)+ T3 (2.67+0) + 1220 (4-0) » 168 0%=29.40% 0
D= 134

2) NEGLECT T2 SHEAR: MOMENT ARM § 0 ANG THE

e —

AESULTING MOMENT SSMBUTED FROM TR SHEAR 13 YERY SmalL.

3) FING MAXIMUM MOMENT :

Q) POINT OF 2ERO SHEAR IS SOME DISTANCE X BE.OW
CRECAS LEVEL {USE 'UNFALTORED OW SARAMETERS)

FT o+ FT2 -FR2 = Kag{ §5,* Yy8a) X = F{Ka =Kag} ¥5x'= 0
(224 + 4%+ &19)+ 125 x - 197x 2

e jaladas
s 4

Xz 242

X 2 AWERE 22197, 2:-22F S:-1335

3) Muae 3 F7 (80 <82 %) - Tre (3224 X0+ T (34244
- 'jE Kag { ¥)&, - g2 )X -z (Ka- Kag) ¥z X >
3 724 (12.9) +(292) (@ 28) + (&12){7.41)
v (225) (3.8 5 (394) (3.41)°
2 10NG ¥~ »
&) COMEUTE BENDING MOMENT (wWooO SNLY)
Q) Tean, = Mumag x 12 2 =03 3

s (1C970) 12}/ (13.4 +12)
= 3,00
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Y oece B ay &
S Nt e BT T (1) T TR

C.) GENERATE CPERATING AND STRUCTUSAL CURVES.
FROM Fid, 3.4, SELLECT VALUES SF rd =oR THE
CORRESPONDING VALUES CF LoaG 2t

Tom 2 Traax xd

s

28 (2)(1eod)

FOR weaD, Y= =73 'E__]_(IEJUO") z,

: 2.3CH

log@ =30 |-279 | ~2301-22% | -2.00!~11% 1~1.50
rd C.e0 | G52 | Q4% 1243 1045 (024 (044 |
(Hee?) |24,0(73.2 | 19.8 | 0.8 7:33 1499 340,
Psr Q.4 7,071 4.82) 3.281 224 | .32 | l.cd |

LT CAN 32 SEEN FROM INSPECTION , THAT TWE INTER -
SECTION OF THE GRAPWHS FALLS 3BTWEEN lego <150
AND log 21 -2,79, APPROXIMATING T=8 STRUCTUPAL
ANID OPERATING CURVE SISMENTE iS5 4TRAIGMWT
AND EMPLOVYING SIMPLE CCORDINATE GEOMETRY

YIELDS: T:387 9 .',? o 2=73%
Mz Trdp 2 (2.8 (15.4)%: 34100-&

. 420 .
s+ 3 fke TN
S s =uoud for Dai?, =:J%

“= 2 3,58 in
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Sx\1 {(NamMiNAL) SREET - PILES ARE REQUIREDR. THIS SiTE
SEATION 18 PROSADLY NOT AVAILABLE. A TTEEL,
SECTION SR NAVY Wall WouLD ZE LAPCSRORRIATE.

FCR ADLD STEEL:
¥ = .20
FomR waQli:
We Q309

ZORMING A RATIO OF A32B/WCOD aND APPLYING
1T AGAINST THE EXISTING VALUES o Tsr PRECLUCES
GENERATING ANOTHES STRUCTURAL CQURVE.

FOR log p 2 -2.29, Tar = (-%::5-35 ) (3.28) = 279
Q. e
.20
THIS SEGMENT CF TWE CURVES /8 ICENTIFIER 3Y:

legq @ =23Q =225
Top 392 3.84
Tsr <.1Q .79

FoR log P 1-2.40, TsT = }(4.82)s 410

(Y —
R

Nerm—

R 17 =5
T e 3N ;
M a{3.91){70.4) = &4 1CQin-1a.

Mo (ICD) | 3
S = 3 z 75,000 T 1306
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LUSE PMATZ, WHERE Sz 5.4 in3 NO RECOMEUTATICN 4
NEEDED AS THE SSECTION MOECULUS B 3UBSTANTIALLY
GREATER TRAN THE MiNiMUM REQUIRED.

S) THE CANTILEVERED Wall 1S Muck LESS SCONOMICAL
OWING TO THE GREAT INCREASES N THE REQUWRED
SECTION AND CVERALL PWLE LENGTH.

EXAMPLE 3: USING CONDITIONS GIVEN IN EXAMPLE |, FIND THE
CENETRATION DEFTH, TIE ~RCD LTAD AND BENDING
MOMENT, USING THE DESIGN CHARTS:

1) SOMPUTE Ro:

heden,ed | (00) (). (wo)(8)?

Re o 7 —Ga(s
s O.358
Wy 27 W &5\ 2
ca = (20 () «(8) ()
30-0559

Ry * R-Cg = (0.398) (2.0889) = 0.0318

) EIND D¢ SINGE THE SUBGRADE IS SCMEWHERE 3ETWEEIN
“AZ " LCOSE " AND "MEDIUM" CONTITIONS, INTERPOLATION
WILL GIVE THE DESIRED ValUES.

ENTIR Sl 4-4 3 Rn s QO3S ANB READ CFF T =R LA
ANQ “L/M . INTERPOLATION BY CONSIDERING THE
CESIRED VALUE 7o LIS 240 TIMES T&E DISTANCE TRCM
L/ TE TL/MT QIVES THE PROPER VALLE.

CENSITION Ds !

v 3s o%a3
0ESIRED 225 asen.x]* 2167
VI 3= Q.336 4
x 2
el T [
X 2 Q.07

N e ae3G —= D= 2(0.434) (12) =523
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3) CCMPUTE RmiARp :

[=% aRp F RCm o R-<p
Cp * St *(%)( (ﬂ%)(—) * 0,109
Rm s ReCm 2 (0.3%8) (0.1¢9) = 0.9 + Rp
4) FIND M‘: INTERPOLATE &Y ENTERING "L/ AND "L/M°

@ Bm =z o.033
CENDITION

pi

Le e .7 x 2
CESIRED 32}"}5 cme—x} lo o2 Son’3

L/™ ] Q.1 Xt 00048

Lt 2D -n-HA = (3)(5.23) #1222
+ 133

Mo M Xg 3 (O-lCa) {QO) (|35)3
2 15,200 in-# (2323 STEEL)

<) FIND 2': ENTER "L/ aND "L/M° 3 Rp2C.040
L2NQITION 2s 2
Wk 207, e332 ) 0
DESIRED 32 ] 2.6352+x £ jc.ciao
L/M 35 Q.c932
2.2
cosat §
X = ©.023
° 1 C.0622

Pe Y0 =(cca-zz)(|cc)(|3 -;} : I3 */

™I,
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%) TwE PERCENT DIFFERENCE RETWEEN THE RESULTS
USING THE DEZIGN CHARTS WITH TWE RESULTS oF
THE HAND CALCULATICNS ARE:

SENETRATION DEPTW : -i.3%
RENDING MCMENT i 3%
TIE - RED Dl : 13.0%

EVAMPLE 4! SoNSIDER THE SITE GIOMETRY GF EXAMPLE [
AND THE FOULOWING SOIL CONDITIONS AND MBUTE T=HE
SENSTRATION DEFTH, 3ENDING MEMENT AND TI2-ROD PULL:

& 3O° s ioopef
s 20° 4L (119-62.4) = §TGpef
™1 O Y2 (110=62.4) = 47.4pe
Cs= SOOPQ-P
L) CETERMINE STABILITY NUMBER AND =3 PARAMETERS:
Sea —SL (30)(128) _ . 04355 .75, o«

(%)= -Xﬂ-.ﬂ : Cleo)(a) -7 NEPR!
ol &1 =3¢" Ka 22079 {UNFAZTIRED)
C 2 Hac (I 5‘ (300) 'zoopa:

7) CoOMPUTE RESUTANT FRIRCIS AND $uM MOMENTS AZouT TE 200:

% Ka Y, 2 \g =t --‘ﬁ) - - wa ?-,_t-l %‘tg -y "Hﬁlj Ka 4, wltg

fl . '
(3=2% “Ha) ={acr =Yk, - $q22) D(-,‘;.D +H-Ha) 22

145+ 3770 » 336 =(139.2) 0 (-a+&) o
2. 4D ~ 92380 =<

-‘ 4 1-4 -
22 =+; S5, WHERE q2&00
a =g i
C: 3280
ST @l
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3) FIND TIE- ROD CAD BY SUMMING MCMENTS ARCUT o

4)

I ? -]- - 4-' -II- -'-2 J !
EKQX""Y<5t| o) ED‘}"Q"’\"X‘;_-‘A{E%%ED}*

b | L
Ra %=tz -i-zg-i--;ib)-P(?zDrn--IA) =
TG « WS ~4I50 -P (13) 3O

D = 9@ W/,

FIND TWE SQINT CF ZERe SHEAR
P-Fn ---'-,Z ®a Yg X1-Ka Y, 2, X 32

 HG=123 - A.04x% - 12X 2 2

X 1 “mef 5t =dac WHERE ar 1172
2a bs 8,04
X465 Cs =(96~1223) = =693

LOMBUTE  Man @

-

. . - ] i i
Mmax 32 (2, +x=Ha)aFm (=% ex) == axde = ax*
t va Tttt G Z

v (916) (anteB) = (1233(3.98) = (1.39)(4.67) - (56} (4.43)

: 342 P~ m/fe,

aomBUTE BEMDING MOMAENT
a) Toax = (12) Muan /40 £ (12) (3412)/ L8’

W o
ms%:rg :Q.C;?

[T T
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B) GENERATE OFERATING AND STRUCTURAL CURVES:
Top » Tviax e 72 (VALUES ©F rd ARE FROM Fid. 3.3q)
Y

M ==, .  USE Y 1 8305 {(Wecom)
(Hept)3 ¥ 1 0.260 (A328)
Wz 0400 {Awae)
[ Loy © «3.0 | =2.%]| -2}
rd aT9 07| O
Tan 585593 498

{ Homt)i 44.% 104 258
Tera (woD) | 13.4 | @281 2.92
{a328) | t.@ | 5.30| 2.49
(AG9) | 11.8 | 8.24( 3.83

¢.) R2GOMBUTATION oF Tarm 18 NOT NECESSARY, INSPECTION GF
. THE GRAPH SUGGSISTS THAT LITTLE CHANGE 1N T Wikl RESULT,

@) MaToHe?

MATERIAL | M JH(In*/&)i‘-‘:H(;ai}s(m’/-Pt.

wood | 512 | 294c0 | 00| 5.0
A28 5.9 | 30080 | 15,000 L9 |
AL 729 ¥5c0 ) 32,000 0FL

7)) SELECT MEMBER SizE:
G..) WoOD i = 2 Vg EREY; l-% z ‘Z'[a' "y e 4:12(MOMiNAL}

b) A328 ; USE PS28; 219> LIS
Q) AGHO ; USZ B8 S219 > 1.i9
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éa TIg-FROD LoADd

a) FROM Fia. 3.3, VALUES OF fc "R St 1 C4239 ARE:

log @ | =21t ~2.| - 2.0
fe 14a( L2% | .83

B) VALUES OF ioq @ CAN SE ESTABLISHED FRoM
&
P ES

AND fz CAM THEN 2B INTERFOLATED. ™=2 TE-5CD
LoAD BOR SPACING OF 746§ TmEN COMPUTED BY
T 3(7.3) fe P s

mMaYSRIAL | 2{zai) E Tim*ée) L o | fe iPsas [ T =
waos |15 xieel za4  |-274] 129 %G
A228 [3@x10°] L& -3
AIO i3ox0®! 2.8

e850 |
134 | 216 (9230
~290] 134 | W 9730




EXAMPLE %: U%iNG THE SONDITIONS SIVEN IN SXAMPLE 3
FIND TWHE BENETRATICN DEPTH, BENQING MOMENT AND
TIE 200 PULL, WSING THE QESIGN CRARTS,

1) LoMPuUTE RO

R Aok A . (100)(4)'+(57,0)(8)3
TTECE SN At ((93(300) -(ee)(#) - (37.6)(&); (12)?
: 0390

H 2
C°’(H-i)se. * ) (0.43%)

- It54

Ret RCg 7 (O.i%)(l.adr) T OT7

2} COMPUTE Q! ENTER FIGURE 4-7 $ {0 =CTIT AND
F'zmcﬁ'r-'t: FerR %‘;{--o.ﬂ:

20,233
D« OH 2 (0483)(12) s 5.8

3) SoMPUTE Jm it TIND M

e 51

R * R Qo » 8.35Q

ENTER FIGURE 4-3 3 Rw e 0,390 IND J2AD SFF ™' J0R
-~

§ 0%

ot
M 208 4 = (22 zze=2SioN 3 L33)

Mamen?
Mz (2.99) (3¢0) (5.86)% 1 30,8C0 A -/,
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&) COMBUTE Ra § FIND D ¢
Wda N3 {7} i

Cs 2 (37 =) ° (52w (e43)| 0.483

Re x R-Cp 1 {0.390) (0.483) = C.i88

ENTER FIGURE 4-8 @ Rps £770 aND READ OFF P’ meRr:

e .

Tn c.‘z%_

2's 0,554
P P'ED = (0.584)(300)(5.86) = 97¢ T/ fe

2) COMPARING TWE SRSULTS wWITH IXAMPALE 4:

REFPTH : =27 % DIFFERENCE
2ENDING MOMENT: 27% OIFFERENCE (4323 <T3EL)
TIE - RSO PULL: =21 % DIFFERENCE

THE SIGNIFICANCE OF THE TIE-ROD LCAD CAN & SXAMINED
BY COMBARING THE ISALIRED SIAMETERS.

CESIGN CART VALUES:
T 2(974)(19) = T309

-~ S ral
Areqs p2oos = 03320

des f'f“ . [m);ﬁz)j' . 065

HANG  CALSULATICON
T=:930"

e, 1230
Y 2Z000

d = i,"i"’—)é%-"’—@j’é 2073

—

a 0420 it

301



EXAMPLE &! ATTERBERS LT TESTS FERFCRMED AN THE CLAY
FRACTION OF THE SUSGRADE MATERWL IN EXAMPLE %

REVEALED: .
WATER CoNTSNT: W= 40%
LRUIin LIMT L= 559'.

PLASTIC LIMIT: PLr34%

1) DETERMINE PLASTIGITY INOEX { LIQUIDITY INDEX:

PlallL-PL = 49-34« 2

- 4a-
IL:EJ—QIL = 2!343 Q29

2) DETERMINE ACTIVITY (60% CLAY)!

ez 2
RCLAY W0

-1

z Q3%

TLE INDICATORS SUGGEST THAT THWis CLAY SO Wikl CAUSE
NGO TROUBLEIS (LOW ACTIVITY, Low FLASTICITY AND Low LiQ-

UIDITY INDEX.) SEE Wu, 916
3) THE DRAINED STRENGTM CAN BE ESTIMATED AS:

K3 24 (Wu, $G)

4) SECALCULATE PENETRATION TEPTH:

L Aede et eoy@).(57.0(8)
' FAPEE B CI XYL

a DDl

Co = (0 (24 (2 (E) = ocee9

Rg + R:Cq = (0.436) (C.0889) = ©.0388

INTIR TIGURE 410 @ =5 » O.0338 AND READ CFF O

ZoR " SANDFILL /BT * 26° "¢
o= o9
O=20H 2 [279){17) * 8.62 4.

Joz2



5) AECALCULATE BENOING MOMENT

o - A {8.63){(2)
H Hw) [m)(s) ]' o419

R v R C 3 (C.436) (0.178) * 0.8

ENTER FIGURE 4+12 § AM 3 0.0780 AND KEAR CFF M
FOR " SAND FiLL /FHI 3 26°

M1 Q100

bl
soR L.z—:-D"H-HA = (-g-)(a.cea) + 10 18,75
Ms MY LY 2 (0.098)(47.6) (15.8)° = 18,400 in-ia./ 5.

%) RECALCULATE TIZ-ROD Sull:
Cas Qu = 2179
Re: ReCpsRMm = COTR

ENTER F‘IGURE 4-1] @ Rp= Q.G780 AND READ SFR P r-‘or-a
CEANQPILL [ P=I s 2%

B 8.0334
s p'y, s (o.cm)(im)(ii.a)ze 234 1. /fe,
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EXAMBLE "7 CETERMINE THE DIAMETER oF THE TIZ-RCD SASED

LPON THE WSAD GiVEN IN EXAMPLE ¥ 1
1y SINEN: T=* 7,300

D
‘ 3-‘-\!—_-%5'

a) CAeeSE L 312

B) fe s QGO F
2{A4C) (ga,m)
2 2, 6cd pal

<) (AN Tmea) (1.2]
PPN EOTE= S

{2, wcs)

Q728 N,

3) AGD V& 1N PR FRISH WATER
(R = 853 ., usd Ty )

ARG Ya N, marz 50T WATER
(& 2 d.‘!"fa lN., wag ! lNo)

(a2, 5-1T)

{58, 3.2.6)
(8a. 3-12)

A{TaR B-3)

(B 3-9)

4) USE A 1V8 HeLE e THE TE-ReD 3Is2NG PLATE
C4 1732 ineH MALE FROR THE waLE AND PILE (wWoeD WALES)

LsSE A 178 HOLE Mo TWE TIE~ RACD FPARSING THERSUGH

LTEEL S-EET FLES.
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EXAMPLE *8: GiVEN THE LOADS IN EXAMPLE ¥/, CESIGN 4
WALE Fo2 STEEL ANGQ WCOQ SHEET FILES.

1) GIVEN? Paicao */Ak., L2195 A

2) BETERMINE MOMENT AND SEATION MADULUS REAURED

3_) g:ﬂl z ToocQ

4y

M= g DLE
(& Xisea) 7.9)2 (i)
2 79,000 N.o=LE.
s 2

. (78, 000) /(22,c00)  (ABL STEEL)
z 3,41 1M 3‘ UsSE 2 EA. C4x D4 SHANNELS
sx 193 w3/ PE2 SHONNEL x 2 CHANNELS

2.8¢ WA> 2.410m3

{ecuTHERN FINE)
o 2oy .

z 375 a3
LUSE 4210 MEMBER | 57 24,53 .2

A 3xlo SBTTION =4 AQZEUATE SECTCN McDUI_US, i
—CWEVER 4 | VI3 N, MOLE LSAVES ONLY 2.3 iN- aF
weoh BRETWESEN BouT AND 250E CF wWALE.

(B0, 3-19)

{3, ®-9)

3
&
gt
1
w
L

(Tas T-46) |

3
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ZXAMALE ¥ 9: DETERMINE THE SiZE AND NUMBER oF NAILS
HEAQUIRED TO FAGTEN THE PILES CENGNED

N BXAMPLE = | Ta

1) SAVEN @ P: looa /Py,
ne 2% N (3x12 NomNAL)
TMSER MATERIAL 1% SQUTHIRN INE

1) FIND G
ar 2,89
2) TAY A <40 PannyY AL (40 d)
L=z 5m
aa 83 =/,
La a 5.»-25'5..;, 2 '2315 |
= z ¢
s (83 2,378)
* |97 a'/ NAIL

4) NUMBZR OF NAILS
=
e
wr
i logD
Ch
: 508, USE & NALS/Big

3) TAY A d0d Pz

Q=3
Pr T /0y,

Wra202
() {2.37%8)
z 230 =/ 4Pk

R s

ns 2 '
7 o % 2 4,25, B8 3 smkes/ms

{148 B+&)

(Ta8 %-7)

(EQ. 5+13)

{Em, 9-1%)

4
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EXAMPLE ¥10: DETERMINE THE VAL SIZE REGUIRED T&
FASTEN SHEET PILED 70 AN QUTSIDE WALZ.

1) GvEN: & = 258 .

) K= %3= (Sa. B-20b)
{33)(2.429)
&, 375 N

2) usg 32od NnalL (A= 4721N)

(TAB %-7)

EXAMPLE #11: 023N A ZEAANG PLATE R0Q TWE TiE-Fom TERIGNED
iN ExaMBLE =7

1) GWeN:Ts35c0™
dx L (V8 N HeLg)

7) RETERMINE AR2mA REQUIRED

A=Vre 4
 (T800) /(4%5) ¢
T |G 4D N *

3} W™2E THE PLATE ,
Az ok - Aucug , USE B = 372 .
Ax T g?
{3t
r 0.99 n%

nalieedr 99) /(3.5)
1 499, usd 3V Z . SATE

4) DETERMINE Fp, N AND &
Fp* T/ (Aov ~Awai)

F3e0)/ CL3BNE - (259
4od =5

W on W

M (= A el )
Y2 (3.5 - 1.1L5)
12

3 Fa N? ' (@, 5-22)

N

o non

== 2°"8

-
Ll
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EBXAMPLE ¥ 12 | A UNIFCRMLY DISTRIBUTED SuRCHAZGE LOAC
aF 2co LS, TaZ Q. =T % To BE BLACEND WFON
HE RACKTILL OF THE SITE CESARIBHED 1N
EXAMPLE #]. DETEZMINE THE JEQUIRED
SENATRATION DESTH, TIE-200 104D, ANMD
MAXIMUM BENDING MEMENT.

1) GIVEN: g =z 2o ¥/AL?
HEIMESZY AND S0t COMNOITICNS oiVEN 1IN SX. ®i
2) THE EFFECT CF THE UNIFORMLY CISTRISUTED 2URCHARGE 1S
A RECTANGULAR 472258 DTisTRIBUTION IN EACH SOIL LAYER,
A% SHEWN IN Fid, 4-2. COMPUTE THE TESULTING MOMENTS
ABAUT THZ TE-RoD AND ACD TO THE MOmMENTS CaMBUTID
IN EXAMPLE * [,

(ka' @ {24, = Ha) 4 (Kazqp ) ( 7253 +% = HA) +{<asq D) (D"
-, -iﬁ,%;-Ha) - '(Iqm - 5,1530Q"-“3921' ’58-8 :5J ¥ g

(@) = {34707 » (382 OF » U4 D)+ {I0, 400 » 33LOD - B DZ -
28.8 03 =0 _

4070 + 41200 - 6T1aD%-288 0% 0
D=2’
3) SuM MOMENTS ABCUT %3 D @ DETERMINE TE-RoO L2AD
. p ! -
a3 %08 2T TA00s S e el N T 250
wax D (¥ o v i3e2=-F ) (%)~ F({r-HID-HA)2 D
3za - 3010 - MO0 + 33LQ - 770 - 4P TO '
2z 30 ®/FT
&) FIND SQINT OF ZER0 SHEAR, x 7T BELow THE wWATER L2ViL (=
P- 2 ka, (2, 2 g )=, = Y2 Kagdg Xz = Kag ( Yerg)Xx =@
.e8x% - 124Xx=1175 10

X = - eV BE-dacy wALRE @ T7.0LE
- 2ﬂ = |§4
o= 173

X:S.9C 2ELIW &,
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2.) FING MAXIMUM MCMENT

Muwax = D(&, »x=Ha) - 2 ka, 22 ( /3%, +§<) - Kay g (Y2, ex) =
72 ez (G = g) X = Vo Kaz 2 X

11,920 = 1l - dis - 2470 -53Q
GGRO P2, +ib. [ Lk,

Gy 2oMPUTE o¢ % /B
B _42__ , 0.6G
e (12+46.2)

T g —
Mg (2=@i)

% Quit

» TIE-Rel Load :
fec 7 09% (Fice 2-1712)
P2 (0950 1mia) = 1435 LZ-T

3) =aMPuTE REDUCTIONS FROM CPERATING Al STRULCTUEAL
=URVES FeZ W, 4% 1IN Ex, ¥

T T (GBS /182)% 3.3

P 1 4,56
iz Pagda (294)08.2)°
z 7.7)‘530 NxT

ExaMPLEFIR | USE THE SIMPLIFIED VETHeD pdoM THE
PRECEDING TUATION

1) DETERMINE THE EQUIVALENT WEIGHT OF SOIL 02 ¢ AND
ADD THIS Ta THE FREE =TANDING WALL HEIGHT, =

Ha:z‘. 2% - 2 A
= %

loa
Azi2eZ 2 |4 FT,
2) Flom Ex, *3, 2 : 043G = D
e D 2 DH = (0ATG)(I14) = L. FT

1) Teom 2x. 3B Wz E?L.S : o103

Lz ¥30+r=ma 2 (Y300 = (14)~{D) = 1GJ &7

MM Y3L? s (aios)(eo)(le) 3z 25 8co . F/RT.
4) FéoM 2x,®3 P'= '3%:2 : 8.c622

Pz P f L22(0.0622)(1ca) {iai)® = 14612 ®/7r
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ExAMPLE ¥4 DETERMINE, THE FENETEZATION TEPTH. RENDING

4)

%

MCMENT, AND ME-RoD LOAD R THE walL IN

THE PREVIQUS BXAMPLE, INSTEAD CF A TaINT
LOAD, CONSIOER 4 CONTINUOUS FOUNOATISN ~ocT-
ING O PT. M2OM THE SHEET PILES WMH A LOAD
OF S KIPS /[ FT,

GIVEN: Q4 = 5000 */FT.
X= |0 FT.
SEOMBTRY AND 4CIL CENDITIONS REMAIN UNCHANGED:

% e
M T-;".fz‘o‘és

o&tad _ (c.wa)(%a08) | .
P = (M2, 1) (28372 = 1890 */Fm, (Fe %-ia)

EXTRARCLATE L FEOM FIGUEE D-ib. 2 M= 0.83,

T 043 4 = Bl FT.

SUM MCMENTS LZ0UT TIE-DO, &% (N PREVIOUS EXAMPFLE :
P (m=l==a) = (1890)(12-5,16-2) = N1BO

(2180) = (1Qaco) - 234600 -0 %-28.803:0
=62

SuM MOMENTS 420Ut %30. P4 ¢S @ (L+Y30) 7Rom Y3 0
4 (L-730) = (1330) [1e+(%3)(e2)] = 17, %60

{17.2G0) - { 3cco - 3340 - 140} = 4.} 2

Pz 18co =/ AT

FING POINT CF ZERO SHEAR:

cz /2 Ka, L1 - H-F = 23
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THE VALLE CF € 18 POSiTNE , weiCH WOIGATES TWAT THE
SHEAR FORLE DIAGRAM CHMANGES ABRUPTLY (AT =g FoINT
OF Pr ) FEOM TOSITIVE T8 NEGATNE. TWis 19 WHEZE, THE
MARMUM MSMENT Wikl QQQu.
X 2 M=l e, 22,84 BELOW THE WATER LEVEL.
<) FIND Muax |
Muax * (1808)(4.84) - (223)(4.17) = (&a) - (413} = T30 E1-% FT.
&) CoMPUTE THE TIE-ROD LoAD
B Vazrcn == Y82 1066 fz 093 (A&, 217
Paf. Prs » (098) (1860) = (MOH/ =T,
3) coMpPUTE BENDING MOMENT SELUCTICNS
T = (2)(T310) /(18.2) 37 4.6

GENEZATING NEW Ten VALLES CAING THE %aME FenucTion
PAETORS WILL GIVE .

Tz 550
Mz Prgdz (%380)(18.2) 7 35 400 w. ¥/FT.




ExAMPLE #15 ¢ USE THE SIMPLIFIED METHQD TROM THE
PRRCEOING SITUATICN.

1) SETERMINE AN SRUIVALENT HEIGHT oF SeIL =R PH AND
200 THIS To THE FREE STANDING WALL RHEIGHT, MH*

o 1890 ,
Hey = gi4-i) - (ooiz-sie) © .7
We12r 276 * 14.8
2) FRoM Ex. *3, & = Q436 D
S DEDH z (S436)(14.8) ¢ @3’

3) FeaM =x.*3, M'= M qie3
) Ex.*3, s

L2 Y30 rH-Fa 2 ¥3N D) - (14.8) -(z) 21743

M2 M Yy L3 = (0163 (wa) (17.13)F = Bl,ico . F/FT
=

Q) Faem 3x. %3, P'r I 200622
R

P2 By L= (o.0022) (e (17.1) & 2 1828 ¥/,
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EXAMPLE PG A 10000 LA L2AD 16 T Be LoCATED 3 M TROM
THE SHEET TILZS oF THE WALL GIVEN N EX. ¥,
TETERMINE THE RESUIZED FENETEATION
DEFTH, T8 -RO0D LOAD, AND MAXIMUM BENT-
NG MOMENT.

1) GIVEN: Q@p = igec0 * (me 8- d)
X 2 3 oe
SGECMETZY AMD 201l CaNOITIONS GIVEN 1IN EX. # |

1 ez X - S .

) R A

Pyt CoB %’ s 4So W

2) INTERPOLATE L F&M =6 3-1b
L2 OS4H 2 &a8 P,
4) SuUM MOMENTS AZ0UT ™2 -R00:

Do ACTS AT %4 5T F2OM DL o (W-i-Ha) = .52 &
TeaM TE - RoO.

ACS PR (H=L~Ha) T® MCMSNTS caMPUTED N STEP <, 2.0
(495) (3.52) » 104co - 32waD - 13N 58.803% = 0
D=35Fn

3) SumM MOMEBENTS ARCUT Y30, P ACTS 4T A TISTANCE
(e 3 3) = 19,7 7T FROM Y30

AT P [ L+ Y310) TS MOMENTS CoMPUTED IN STEP 5, X *i:
(45Q)(87) ~ (2802 » 3110 - GLBO+ 14D} * 3T P
P s (5co™/FT.

@) FIND SoNT oF 2ERe SHEAR A% (N STER &, EX. ¥, SxcaPT TRAT:
o : 2 Ka, ¥ty * Pu-P =823
K710 FT. BELOW THZ WATER LEVEL (1€, BELowtk,)
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T) FING THE MAXIMUM MCOMENT, AS In STEP 7, 8¢ #! (NCLUCING
THE MOMENT CAUSED BY PH (Lri,+Xx~H)

Mumax, 2 ={45C) (@98 =&+ Lic -12) +»{12¢0)(9.10) - {223)(8.43) -
(D) - { 2582)

z ®7%O Fr. ¥/ 2T,

8) CoMPUTE THE TE-RoD Lead, A IN STER 8, gx. 1
B=zY15 =01, %3 g5 269 Fz=1.0 (P16 2-1Tk)
Pz 8 Pras o (1L.8){I%00) = B0 */=T,

8) comPUTE ZENDING MOMENT RISDUCTIGN 4% IN STEP 9, Ex. ™!
Traax, ® (12)(9760) /(11.5) *2 12,90

GENSRZATE NBW T VALUES USING THE SAME RapucTion
FASTORSE AS IN EX, *1. !

T2 3.48
ms Tag3 »(348)073) %2 18,650 m. L3 /FT. |

EXAMPLE ¥ 71 USE THE SIMPLIFIED METHOD RSoR TWE
PRESEDING SITUATION.

W DETERMINE AN EQUIVALENT HEIGHT OF S0I1L a2 Pk
AND ADD THIS T2 THE =ZIE STANDING WALL HEIGHT, =!

i
[ P -1-J 32
= 5y © (COV 2=t dB) .3
oz 2282 £12.82

2y Feem ex.®3, 2= 0436+ D’

S D= DA 2 (0.4%) (12.82) = 529 =2 3.6
ol
3) FRom EBXx. ¥ 3 M=z q 5 T Q03
Le Y30+ M -Ha *» (V3)(5.0) ~(12.82) - (2) = 4.5
MeM XL 3 2 (Qi03) (@) (14.6)3 = 19, 800 8, =

4) From 2. =3, P’ 2 = 00622
35, L%

P 2y (2 2 (Q.0e22)i0e)(i4.4)2 = 330%/7T
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EXAMELE 18: CESIGA A 2 MEMSER SRLICE FCR AN INSIDE
WALE HAVING THE TIMENSIONG AND LoADS
AS IN EXAMPBLE ¥8,

1) GIVEN : WALE IS 4|0
M T TRCOON. I,

) SeLECT Le, FIND V
TRY Lbz?,d.l'l'\.

LI, P

V=3 =

ic) casy s 24 g, 5-23)
(- (F (7 (
sﬁs"aﬁ

3) USE THE SAME SIZE MEMEBER A4S THE WALE Fm THE
SPLCE PUATE, SELEST dAND @ BASED onl b

Foz 4x10, ‘o« 3 7g

Q1620 # Rz 4 7 lin, (128 5-8)
FeR 72-MEMEER TOINTS OF BQUAL b J2E 3 @
S o

4} NUMBER oF 20UTS FEQUIRED F EACH ENDS

52 . G e BE 2 RewS SF T BT
Zio

Y-

k.n
L

CETIRMINEGE TISTANGE REGUISEMINTS Feg BovT
TIAMETER oF 1in (/g = 3629/, = 2.625)

ERGE =<4 n. BolT smaminG 2 & {(TAE 5-1)
ENT 2 iY¥pin, RON  SPACING =

G. Tead SISTANCE RESUIREMENTS Feg SS52 AND Fows ofF RS
EXCEED THE CIMENSION ©F T-E MEMREL .. SEP2AT STEPS
2 THRD F, USING La t U NSHES. THIE WLl PERMIT SVERAL .
LENGTH Cf THE <PUCE AATE oF ‘74w, ALLOWING EMD
DISTAMEES o (/2 . @ BRCH ENGC,
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oo (fro = rd]
7y ve (20 - (N E) = 332
FoR Vv BOLT, Q '%-‘-’ : 409 3

13312 5 543 .. USE 2 AOWS oF 3 SouTS
7= A Y3 aeur, 44 ¢ 5.8

med 2% . ZELT SAACING = 2.5
ENG * 0.338, %6 |

Row SRACING : V4 * 3.023/0.42% = 5.8
ng : (%)(5.8) -1 %= 4375
Fow SPASING {4,875 ¥3) = 2o, sar 3.

E) JEE & SAaM 7!‘5 IN. 2CLTS N SACK SND

'. i bl )
1 ! Y]

! R - -4 S W .. i :
\ e == -y - [
LY 1 . .-;_‘“!, b g |
T‘ R~ B P S, V... o, @

| e - ' - - o . by o

i T 0 -
? i H
i ] t

P28 e g2 25°.25 I°
"~ r | 1 v 0 v




EXAMBLE 151! LEsiN A 3 MEMRER SFLICE USING THE CATA
FRCM THE PREVIOUS ECAMBLE.

1) GIVEN t WALE 1S 4x10
m: j/Heoe N -LE

2) USE SaME La 4% FREVIQUS EXAMPLE
FoR La = 21 IN., Vs 3312

1) SELECT A SPUGE CIMENSIONS: .
THE SECTION off EACK PLATE MUST BE /2 THE REQUIRED.

' pEGuREs S337.5 N3 28:180%
USE 2x10 (& 5 24.44 > 1871%) (Ta8 B-21%)
az).%25 ‘ (P16, B-11)
TAKkE b2 2a = {2(1.4629) * 325
sz X:os 20 N TRELE 8-
Heager dmna
Eog 8 N Bay, QFiCC0
2212

Ar m—— =

ISco

1

B S USE L ROWS OF 2 (=TS
3) DETEAMING aBACING B2 -i/cQ B 5/‘;}6 2 4.8

ECGE » 24 BoLT SPALING
Zo0 293258 AcH SPAGCING

o i
AL
. f.“'“

o) USE 4 EA. Vg N BouTs @ EACH END

|
]

4
%
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EXAMPLE 12C: DETERMINE THE FASTENERS REQUIRED FeR THE
STIZL SWEZT PILE WALL IN EXAMPLE *§ ANO
THE WALES N BXAMFLE ¥8.

1) GWEN: PSZ8 SESCTICN
C 2T WALES
pzicco #/FT,

2) CETERMINE THE NUMBER OF BOUTS RENRED R AN

INSIDE WALE.

USSR wiE VT M. (a8 %-2}
ZELEZT A Vg iN. BouT (SMALLEST 2ouT)

s 40w
” «rair.,_
1
. (43} 1e00)( R}
T (2.029)*(40.c00)
c.102

oo

uSE | BRELT BVERY CTHER SECTION
3) DIMENSICN THE FIXING PLATE

USING SEE SIPARATORS 2 M. LONG GIVES A SFAN
RETNEEN CHANNELS CF 2 IN.

USING | EA. 7B (N. BOLT RVERY CTHER SECTION
EXERTS A TENSILE RRCE N TRE TOLT OF

15
F2 20w = (7)(1000) (R )
s 2500 ¥
THE MOMENT N THE FIXING PLATE 12

Ms LR e (F)(25eoXD
2 VIS0 M. R
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() (128N 3
- 2 : 2 N
+ = ) (4)(2'2'“‘?) 2 2, JEE t..-.sm

ErGE TISTANCE 3 125 & = (1213)(3%) = ang N
RESUIRQERD MINIMUM DIMENSICN 12 TWICE THE
E0GE DISTANCE PLUS THE ROLT HOLE. THE BeLT
HOLE 16 7g 1N LARGER THAN TeE BCLT.

Q= (2)(oa8)+ (%) +('2) = 231 N, MIN,

use R 5/5 x 3w 3
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EXAMBLE $21: CESIGN SPLICE FLATES FOD THE WAl CTESIGMED

I EXAMPLE # 8,

1) GWEN: M* 5000 . L3,

4 x %K. 4 CHAMNNELS

4) TWE DLATE WICTH 18 LMITED BY THE FLANGE -To-FLANGE

7)

WITH OF THE GHANNEBLS ESGE DISTANGE ANO 20UT
MOLE TIAMETER,

ba d-2%p : (TAR S-3)

r (4,.00) - (1)(D.1%)
2 Z4p

Tor A V3 N, BouT, THE ECGE DISTANGE AND 80uT MOLE

REQUIRBMENTS GIVE A MINIMUM o oF 2,31 1IN, (21 *13)
S 8s b BN

- -5? 2 3,40 0.3 (FRom Bx. *3) €2 %5-9)

s 3% £6% (BENDING 4BouT STRanG AxS) (24 %-i06)
€= S% . 184 IN. %R 2 PLATES (ToP & B0TToM ZHANNELS)

o)

WSE A 12 N LoNG BLATE | MINIMUM EZOGE DISTANCE 1S
LEO &, aR O.94¢ N, RR Yg iN. BOLTS. USE Liy 210 1N,

. T Fle PPN
V-Z-T (E@ $-23)

=(82) (=D

z 3542 ¥
CAPACITY cF A4 78 BOLT IN SINGLE SIWEAR 1S
Fy = (mcaaA  (IBeaa)l DT « qeco™
CAPACITY (N CouBLE SWEAR 1& 20 ¥> 3342 F

"L LEE | BAGH VB ., B0LT & M. FROM TME EING,
USE R [x3<[27(2 EacH)
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EXAMPLE F 22 GIVEN TW@ SoNCITIONS OF BxamMPui *i) cesion
A& CENTIMUOUS SEADMAN ANCHOIRAGE.

[y GNEN: &, s F . X zicopef  Ke'=3.CO
Ha t2Fk  fy= GCPed | Aa'r 0408

N SELECT h =Pk, Xp'-ig r 259

2YLET hy, =y, ACTHOUGH TWE TIE-R00 1$ LACATED IWGHTLY

fdouE TREI WATER WNE,

4) CEMPUTE THE RESULTANT FugCsid ACTING o
THE AMCHORAGE ( FIGURE =-2%)

Q) NET FaeCES:
(Rp'-Ka' Y Y Ry = (2330 Ge) (U = 259y
3 Ckpeka') Y, (h =) 224 (239 CooX(2-)? = 1295
(Kp' = Ka') ¥y (huoe 3, wing- 1) 2 (239)(106) (240 Lag=1)
29k, - 252
% (kp'-ka') ¥g (I rh <r )P s 1 (2390 (h=DT
o =TI WP-122.8 bk - T

) SUM NET FoRCES, EQUATE To TR-Rod FULL/UNIT LENGTH .

P: 158 h, ¢ 1198 + 269 h - 228 ¢ T17 1 2-BR.4 h =TT
e = T Th? £ 35B.6h - 218
) SOWE THE GUADRATIC FOR by
TUT bt + ZBR.G 1y, - 1081.8

W, 23885 TV(388 G- (AXTTT)(~10%1.8)
- @

z 2‘“7 AL
L2E PosITIVE RCOT Iy 27,04 2.0C 15 oK.
§) LSING THE SAMeE MATERIAL AS TME wAlL TEQURES
NG SLETAER CESKeM. WALES oM THE ANCMCLAGE
AZS THE SAME 48 =of T-E& WALES ON THE WALL.

&) TNSURE THAT THE TOE OF THE WALL D988 NOT N TERSECT
e FALLEE WEDGE (FIGURE S-8).
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EXAMBLE, ¥ 23) USiNG TRE TATA oF SxaMPLE ® 1S CESIGN A SHORT
DRALMAN.

0) SveEN: (Fp=Pa) s TT T 2+3%2.6\ - 5.8

a0 Kp'r3.0c @z’
L1e0 Ko 20408 K s 3.4

2) SELEST ALENGTH 1 Lv 4 &T,

) INCORPOEATE THE DaT4 oF B 15 1y 24, 5-7:

Toz 2L (B-2)+ A W X( Jke' + {Ka' ) 1,3 Tan x

2 VALUES oF ¥, Y ougR TeE LINGTH hy, =W,
U AR THE LINGTH h‘-a.-h,_-‘n.q

Tar * LCR-RY =5 Ko VRore JRar ) 7 @10y
SRICRINENL

3 (4)(T7.7 Rt - 3m8.G - 1.3 (1) (4N L3The.334)
C G 4 (@@ (=112 ]
TRO0 = 154.8 n % & 1424 1, - 1072

-170 + 128 (h,_-l)s
TEC0 1 B P+ 3302

- 1450 hy_- 2o
: .23 3+ 22 1 r 430 - T
4) SoWE T-E Cumic BY TRIAL ANC ERRCR
s 2774 wsam 2957
5) CETERMING RBIUREMENTS '\F AN § . CWMETER By

£ 5 WEED
L= : 03

5D £ 30.9 N2+ 28T hy - Hud+i%i =728 (1)

@2 7.28m 23 Eibh e 309W -T822

he: 8.4, Too LARGE, & N PILES AGE NOT
FRASABLE BY T=EMSELVES.
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