グアニジンの立体特性を利用した 水溶性芳香族分子構築

棚 谷 綾

ダアニジンの立体特性を利用した 水溶性芳香族分子構築

平成7年度進学 棚谷 積 指 導 教 宮 乙藤 紘一

グアニジンの立体特性を利用した 水溶性芳香族分子構築

平成7年度進学 棚谷 綾 指 導 教 官 首藤 紘一

第1章 序		
第1節	グアニジンとその化学的性質	1
第2節	グアニジノ基の構造	2
第3節	グアニジンの医薬化学	3
第4節	芳香族アミドの立体化学	5
第5節	芳香族グアニジンへの展開	8
第2章 芳	香族グアニジンの立体化学	
第1節	序	10
第2節	芳香族グアニジン類の合成	11
第3節	NN' -Diphenylguanidineの結晶構造	12
第4節	N-メチル化芳香族グアニジンの結晶構造	15
第5節	芳香族グアニジン類の溶液中での立体化学	20
第3章 N-	メチル化によるシス型優先性の一般化	
第1節	芳香族グアニジン類の立体特性	
	- 芳香族アミド、ウレアとの比較-	24
第2節	芳香族アミジン類への応用	26
第3節	芳香族チオウレア	28
第4節	芳香族ウレアにおけるシス型優先性の拡張	29
第4章 プ	ロベラ状グアニジニウムイオンの分子不斉	
第1節	分子不斉	31
第2節	o-Bis(N-methyl-N-phenylamino)benzeneの分子不斉	31
第3節	N.N.N",N"- Tetramethyl-N'.N"- diphenylguanidinium ion (6) の分子不斉	32
第4節	プロペラ状グアニジニウムイオン	34
第5章 水	溶性芳香族多層状分子	
第1節	芳香族多層分子のデザイン	37
第2節	グアニジンオリゴマーの合成	38
第3節	グアニジンオリゴマーの溶液中での立体構造	39
第4節	グアニジンオリゴマーの結晶構造	40
第5節	グアニジンオリゴマーの新しい機能	
	ー新規DNAマイナーグループ結合性分子-	44
結論		46
実験の部		47
参考文献		63
謝辞		68
Appendix		sl

目 次

T

第一工政

第1章 序

第1節 グアニジンとその化学的性質

グアニジンは3つのC-N結合からなる構造(Figure1-1)をもち、有機化合物の 中でも強塩基性をもつ官能基として知られている¹⁾。その共役酸であるグアニジニ ウムイオン(C*(NH₂)₃、Figure1-1)のpKaは13.6であり、これはマロン酸エステル の活性メチレン(13)や水(H₂O、15.7)に匹敵する。

Guanidinium Ion (Y-delocalization)

このようなグアニジンの強塩基性を説明する考え方としてダアニジニウムイオ ンのY型共役と呼ばれる共鳴安定化が1972年にGundにより提唱された³³。この考え 方では、グアニジニウムイオンにおいて炭素カチオンを中心に3つの窒素原子の 孤立電子対、計6π電子がY字型に非局在化し、そのため、芳香族化合物に劣らぬ 安定性をもつ性質に名付けられたものである。その後、分子軌道計算の進歩とと もに様々なグループによりY型共役の寄与の程度について計算がなされた³³。これ に対してWibergの1990年の報告によれば、グアニジンがその比較化合物としての Propane-2-imineと比べても、プロトン化による安定化がほとんど変わらないこと、 そしてグアニジニウムイオンの回転障壁が小さいことなどから、Y型共役による 安定化はほとんどなく、グアニジニウムイオンの安定性は主に溶媒との強い水素 結合によるものと考えられている⁴³。また、1993年にはFrenkingらが、計算により グアニジンおよびグアニジニウムイオンの最安定構造は完全なplanarからはややは ずれており、グアニジンの強塩基性はやはりグアニジニウムイオンの強い水素結 合能に由来していると述べている³⁵。とはいえ、Y型化合物の安定可能の根源につ いてはまだわからないことも多く、今後の研究に期待がもたれる分野である。

このように水素結合能をもつグアニジノ基は、そのドナーともアクセプターと もなり、分子認識や分子集合体形成においても重要な役割を演じている⁽³⁷⁾。例え ば、Hamiltonらは、フォスフォジエステラーゼ酵素としてDNAやRNAの加水分解 反応を加速させる Staphylococcal nuclease

(SN) がArg35と Arg87に活性部位があ ることにヒントを得 て、Figure1-2に示す ような人工レセプター を合成した⁶⁰。この合 Figure 1-2 Acceleration of a Phosphate Diester Transesterification by bis(guanidinium) receptors and an added base (A) and by a bis-(guanidinium) receptor with an appended basic group (B).

成レセプターとフォスフォジエステルは、4つの水素結合を形成し、フォスフォ ジエステル基のリン原子上への求核攻撃を容易にし、その結果、フォスフォジエ ステルの開裂を加速していることが明らかとなった。また、Rebekらは、Figure 1-3 に示すような2'-deoxyadenylyl(3'→5')-2'-deoxyadenosine(d(AA))に対する人工レセ プターを合成し、d(AA)と高い親和性を持つことをNMRにより明らかとした⁶⁰⁰。 この場合もやはり、bicyclicなグアニジニウムイオンが、フォスフォジエステルと 水素結合を形成するための鍵構造となっている。

Figure 1-3 A Synthetic Receptor for d(AA) (A) and proposed structure for the complex (B). Arrows illustrate intermolecular NOE.

第2節 グアニジノ基の構造

前節のように水素結合能を有する様々なグアニジンおよびグアニジニウムイオ ンの構造は、その結合様式や電子的性質を知るためにも重要であり、これまで多 くの報告がなされてきた"。

最もシンプルな無置換のグアニジニウムイオンC*(NH₂)₁は、X線結晶解析⁸、IR 、Ramanスペクトル⁹や計算³等により、その構造は平面であることが示唆されて

築 L 章

第] 華

いる。更にメチルグアニジニウムイオン¹⁰⁰やクレアチン¹¹等の置換グアニジニウム イオンも結晶中でダアニジノ基が平面性を保持していることが報告されている。

また、モノ置換あるいはジ置換グアニジンにはアミド基やウレア基等と異なり、 イミノ型、アミノ型と名付けられる2つの互変異性体が存在する。例えば、N.N'-Diphenylguanidineの場合をFigure 1-4aに示した。もちろんアミド基、ウレア基にも このような互変異性(例えば、N.N'-Diphenylureaの場合をFigure 1-4bに示す)が存 在するが、一般には結合エネルギー的にケト型が圧倒的に有利であり、グアニジ ンの場合のような互変異性は問題にならない。グアニジン類の場合、"N-NMR、 IR等のスペクトル解析により、L-arginine¹²⁰のようなmonoalkylguanidineではイミノ

型、一方、monoarylguanidine⁽³⁾やニトロ基・ シアノ基等の電子吸引基 を置換基にもつグアニジ ン⁽⁴⁾ではアミノ型をとる 傾向がみられた。結晶構 造に関しては報告例が少 ないこと及び多くのグア ニジン化合物が結晶中で 水素結合のネットワーク 構造を形成してしまうた め、法則性を見いだすに は至らない。

第3節 ダアニジンの医薬化学

グアニジノ基は、これまで述べてきた化学的特性のほかにも、生体にもなじみ の深い官能基でもあり、Arginineの側鎖としてペプチド等の機能発現に必須な構造 要素としてもみいだされるほか、多くの医薬品の重要な部分構造としてみいだす ことができる⁽⁵⁾。

Arginineは、その構造内にグアニジノ基をもつ必須アミノ酸であり、尿素回路に 関わるほか、免疫増強やホルモン分泌促進、近年では特に様々な生理活性をもつ など、重要な役割を果たしている¹⁰。また最近注目されている一酸化窒素(NO) の生成にもArginineが関与している¹⁰。

一酸化窒素(NO)は、一説によると、血管拡張を促進したり、血小板粘着と凝

菊 1 隆

集を抑制する働きをもつ血管内皮細胞由来弛緩因子(EDRF)の本体であると考えられているが、生体内においてはL-arginineのグアニジノ基の窒素からNO合成酵素(NOS)によって産生される。Fukutoらにより、L-arginineからCitrullineおよびNOへの変換反応は中間体としてN-Hydroxy-L-arginineを経る2段階反応であることが提唱されている(Figure1-5)¹⁷⁰。

また、多くの蛋白(受容体や酵素)の活性部位においてもArginineが重要な役割 を果たしていることも種々報告されている¹⁸⁾。例えば、Arginineのグアニジノ基と、 Phenylalanine、Tyrosine、Tryptophan等の芳香族アミノ酸の芳香環とが、パラレル なスタッキング構造をとることにより特有の三次元構造を生み出し、それがしば しば機能発現に重要な役割を担っているとの報告もある。このグアニジノ基と芳 香環の相互作用は水素結合ともイオンキレーションとも全く異なった性質のもの と考えられている。また、基質側としてArginineが関与する例としてはトリプシン やトロンビン等が知られている。

ー方、グアニジノ基の特性をいかした例として、 核酸と相互作用するアンチセンスにグアニジノ基を 利用した報告もある¹⁹。DNAやRNAのリンキンググ ループであるフォスフォジエステル基はマイナス電荷 をもつため、DNAやRNAが二重鎖や三重鎖を形成す る際に電子的な反発がいくらか存在すると考えられる。 また、アンチセンスを目的とした分子構築をする場合 にはフォスフォジエステル基では各種ヌクレアーゼに 弱いという欠点もでてくる。そこで、Bruiceらは、リ ンキンググループをプラス電荷を有するグアニジニウ ムイオンに置き換えたDNG(Figure1-6)を合成し、 DNA、RNAとの融解温度を測定した結果、DNGが溶

第 1 飛

液中でDNA、RNAと二重鎖、三重鎖を形成することを明らかにした。この化合物 は、有力なアンチセンス分子として今後の塩基選択性の克服へと期待がもたれる。

医薬化学におけるグアニジン類の最近の例として は、 σ レセプターやN-Methyl-D-aspartate (NMDA) レセプターのリガンドとして芳香族グアニジンが注 目されている。 σ レセプターは、1976年にMartinら によってオピオイドレセプターのサプタイプの一つ として提唱されたが²⁰、その生化学的な作用機構は

Figure 1-7

N.N'-di-o-tolylguanidine(DTG)

未だ解明されていない。N,N'-di- σ -tolylguanidine (DTG、Figure1-7) は、 Haloperidol-Sensitive σ レセプターの選択的なリガンドとして注目されており、特 に、放射性ラベルした [³H] DTGは、 σ レセプターの存在の確認に重要な役割を 果たしている²¹⁾。

一方、σレセブターと密接な関係があるといわれているNMDAレセプターは、 興奮性アミノ酸レセブターのサブタイプの一つで、中枢神経系の可塑性形成過程 や脳虚血、脳外傷に伴う遅発性神経細胞壊死の発現に高い関連性をもつことが知 られている。NMDAレセブターのリガンドのなかには、σレセブターと親和性を 持つものも少なくない。ところが、NMDAレセプターに選択的なリガンドを探索 していたReddyらは²³、N.N'-diarylguanidineのN.N'位(すなわちarylと直接結合した 窒素原子)に更にアルキル基を導入した3置換あるいは4置換グアニジン誘導体 は、NMDAレセブターへの親和性は保持するが、σレセブターへの親和性は大幅 に低下することをみいだした。彼らは、この理由として、N.N'位のアルキル化に より、もとのdiarylguanidineと比べ、立体的なコンフォメーションの変化がおこっ ている可能性を挙げている。

第4節 芳香族アミドの立体化学

当薬化学研究室では、これまで立体化学的もしくは医薬化学的興味から種々の 芳香族アミド・ウレア誘導体の合成と構造解析を行い、「N-メチル化に伴うシス 型優先性」という興味深い立体特性を見いだしてきた。これらの知見は本論で述 べる芳香族グアニジン類の立体特性と重要な関わり合いを持っているので、本節 において説明する。

影近は合成レチノイドの構造と活性に関する研究¹³において、アミド結合をも つ活性化合物がアミド基のN-メチル化により、その活性を著しく低下させるとい う結果を得た(Figure I-8)²⁴⁾。この事実から、N-メチル化による立体の大きな変

第10

化が予測され、X線結晶解析、NMR等の各種スペクトルの吟味により、活性な二 級アミド体 (Am80) が結晶中、溶液中ともにトランス型アミドで存在するのに対 し、不活性な三級アミド体 (Am90) はシス型アミドで存在するという現象を見い だした²⁵。

この考察をふまえて、東 屋は芳香族アミドの立体特 性の一般化と展開を行って きた。すなわち、最も基本 的な芳香族アミドである Benzanilideが結晶中でその アミド結合がトランス型で 存在しているのに対して²⁶、 、N-Methylbenzanilideは2

つのベンゼン環が向かい合ったシス型アミド構造で存在していることを明らかと した(Figure 1-9)³⁷⁾。また、BenzanilideとN-Methylbenzanilideの¹H-NMRスペクト ルは大きく異なり、N-Methyl-benzanilideの芳香環プロトンのケミカルシフトは Benzanilideに比べて高磁場シフトしている(Figure 1-10)。この高磁場シフトの程 度はメチル基の電子的効果だけでは説明できず、溶液中でもN-Methylbenzanilideが シス型を優先していることを示している。そこで、N-Methylbenzanilideの¹H-NMR スペクトルの温度変化(Dynamic NMR)を詳細に解析したところ、CD₂Cl₂中、室 温では1種類のシグナルを与えるが、温度を下げるにつれ、シス/トランス異性 化の過程が観測され、193Kではシス対トランスが98.3:17の比率で存在している ことが明らかとなった(Figure 1-11)。この時、N-メチル基のケミカルシフト差Δv (56 Hz)と融合温度(coalescence point、233±5K)とから、この温度におけるシ ス体からトランス体への異性化の活性化エネルギーは13.2±0.2 kcal/molと求めら れている。このN-Methylbenzanilideのシス型優先性を応用してユニークな三次元構

-6-

第 1 章

造をもつアミド化合物が合成、解析されたが(Figure 1-12)³⁸⁻³⁰⁾、その幾つかについては本論中において解説した。

Figure 1-10 ¹H-NMR Spectra of Benzanilide and N-Methylbenzanilide in CDCI₃ at 293 K

M, major peak; m, minor peak; s, ¹³C satelite.

Figure 1-12 Unique Crystal Structure of Aromatic cis-Amides

(左) 3つのN-Ph基が中央のPh基に対し同じ側に位置するトリアミド。

(中)キラルな結晶として自然分晶するジアミド。そのキラリティーは低温下溶液中でも保たれる。
(右)キラルなキャビティーを形成する現状アミド。N-メチル体は1ステップで合成できる。

また、伊藤により、芳香族ウレアについてもN-メチル化に伴う立体転換が示さ れた。すなわち、N.N'-Diphenylureaは結晶中、トランス型で存在することが知ら れているが³¹⁾、N-メチル基を導入することによりシス型となり、N.N'-Dimethyl-N.N'-diphenylureaでは、(シス、シス)型の結晶構造を示した(Figure1-13)³²。 ウレア基の場合はアミド基の場合と異なり、cross conjugationのため、C-N結合の 回転障壁が低く、溶液中での各異性体を識別することができなかったが、ケミカ ルシフトの比較により、各々結晶構造と同じ構造を溶液中でも優先していると考 えられる。

Figure 1-13

第5節 芳香族グアニジンへの展開

以上の芳香族アミド・ウレアの立体特性をふまえ、更なる展開として、私は芳 香族ダアニジンに興味を持ち、研究に着手した。前述したようにダアニジノ基は

多くの生理活性物質に見いだされるにも関わらず、 その立体化学については統一的な研究がなされてい ない。グアニジノ基は構造的にはウレア基の酸素原 子を窒素原子に置き換えただけの官能基であり、こ れまで当研究室で明らかにしてきた現象を土台にす

Figure 1-14

N,N'-Diphenylguanidine

第 1 章

れば、芳香族グアニジンに対しても、より深い考察ができると考えた。そこで、 N,N'-Diphenylguanidine (Figure 1-14)を基本骨格とし、種々のN-メチル化体、オリ ゴマーを合成することにより、芳香族グアニジノ基の立体特性を明らかとし、水 溶性機能性分子へと展開した。

第 2 底

第2章 芳香族グアニジンの立体化学

第1節 序

前章「序」でも述べたように芳香族グアニジンは立体化学的にも医薬化学的に も興味深い分子であるのに、その結晶構造の報告は数少ない³³。本章ではN.N⁻ diphenylguanidineとそのN-メチル化体の構造解析の結果とアミド・ウレア類との立 体特性の比較について述べる。

芳香族グアニジン類の立体は互変異性体の存在により複雑である。そこで便宜 上、以下のように定義した。まず、互変異性体については、C=N二重結合上にフェ ニル基をもたないものをイミノ型、もつものをアミノ型と名付けた。N.N'diphenylguanidineの場合をFigure2-1に示したが、N-メチル化体の場合もメチル基の 位置に関わらず、Figure2-1に従って名付けた。

Figure 2-1 Tautomerization of N,N*Diphenylguanidine (1, E, E-form)

-10-

imino form

また、各原子には説明をわかりやすくするため に、Figure2-2のように番号付けをした。すなわち、 いずれの互変異性体でもフェニル基を有する2つ のC-N結合のうち、短いほうの窒素原子をN(1)、 長いほうをN(2)、フェニル基をもたない窒素原子 をN(3)として順番に番号付けした。炭素原子の番 号付けも図示したとおり、この順番にならった。 よって、C(1)-N(1)結合は常にC(1)-N(2)結合結合 よりも2重結合性が強いことになる。

E/Zコンフォメーションに関しては、メチル置換基の有無や二重結合性の位置に関係なく、フェニル基同士の位置関係により定義した。例えば、 イミノ型N,N'-diphenylguanidineの3つのコンフォ メーションはFigure2-3のように表現される。

 $1 (R² = R³ = R⁴ = H) \\ 2 (R² = CH₃, R³ = R⁴ = H) \\ 3 (R² = R⁴ = H, R³ = CH₃) \\ 4a (R¹ = R² = CH₃, R³ = H) \\ 4b (HBr salt of 4a) \\ 5 (R² = R³ = R⁴ = CH₃) \\ 6 (R¹ = R² = R³ = R⁴ = CH₃)$

Figure 2-3 Possible Conformations of the N,N-Diphenylguanidine (imino form)

第2節 芳香族グアニジン類の合成

芳香族グアニジンの立体化学を調べるために、まず、Figure2-2に示す化合物1-5 およびすべての窒素原子が置換されたグアニジニウムイオン6を合成することにし た。グアニジノ基の構築はシアノ基とアミノ基の縮合もしくはウレア、チオウレ アからの変換等の方法が一般的である³⁴。また、Boc-基で保護されたチオウレア を用いる合成法等も有用な方法として知られているが35、多置換グアニジンの合 成法には使えない。例えば、N.N'-Dimethyl-N,N'-diphenyl guanidine (4a)の合成は、 Figure2-4に示したようにN-Methyl-N-phenylcyanamideとN-Methylaniline hydrochlorideとをニートで150℃で加熱して行った20。これはグアニジノ基の3つ の窒素が反応性がほぼ等しく、グアニジノ基を構築した後に望みの位置にメチル 基を導入することが困難なためである。しかもこの反応は出発原料のN-メチル化 体の反応性がおちることから、以上のような過激な反応条件となり、56%の収率 で4aを得ることができた。一方、3や5の合成では、N.N'-diphenylthioureaを酸化鉛 で活性化した後、アミンと反応させる方法をとった(Figure2-5a)³⁶⁾。この方法は 簡便なのでグアニジン合成に広く一般的に採用したいところだが、立体環境に大 きく影響され、例えば、N,N'-Dimethyl-N,N'-diphenylthioureaから4aへの変換はでき なかった(Figure 2-5b)。合成した1-6はすべてNMR、元素分析、X線結晶解析に よりその構造を決定した。詳しい合成法、物性については実験の部に記した。

Figure 2-4 Synthesis of N.N'-Dimethyl-N,N'-diphenylguanidine (4a)

-11-

N,N'-Dimethyl-N,N'-diphenylthiourea

第3節 N,N'-Diphenylguanidineの結晶構造

置換基をもたないN.N'-Diphenylguanidine (1)のX線結晶解析は、1980年に Zakharovらによって行われている³⁷⁰。これに対し、筆者らがこの結晶解析を行っ

たところ、Zakharovらとは異なる1 の結晶データを得た。しかも筆者 が得た結晶はキラルな空間群をも つという興味深いものであった。 そこで溶媒の条件を種々検討し再 結晶を試みたところ、同じエタノー ルから再結晶しても2種類の異なっ た結晶が得られることがわかった。 温度、濃度等の条件を様々に変え てみたが、結局、2種類の結晶を それぞれ得るための再結晶条件は 特定できなかったが、一方の結晶 のタネを用いることで1つのフラ スコ内に望みの結晶だけを析出さ せることができた。2種類の結晶 は、その外形と空間群で区別する ことができる (Table2-1) 。 すなわ

Table 2-1 Crystal Data of N.N-Diphenylguanidines

3

Compound	1 (chiral)	1 (racemic)
Formula	C13H13N3	C13H13N3
Mr	211.27	211.27
Recryst solvent	EtOH	EtOH
Crystal system	orthorhombic	monoclinic
Space group	P 212121	P21/C
a, Å	12.653(5)	8.906(2)
b, Å	20.54(2)	12.342(1)
c, Å	8.944(5)	21.335(2)
α, °	-	-
β,°	-	96.66(1)
Y. °	-	-
V. Å ³	2324(2)	2329,1(6)
Deale , g.cm-3	1.207	1.205
Z	8	8
R	0.085	0.048
Crystal shape	Plate	Prisms

-12-

第 2 康

ち、空間群 P2,2,2,2,1に属するキラル結晶はプレート状の外形をしており、一方、空 間群P2,/cに属するラセミ結晶はプリズム状の結晶として得られ、このプリズム状 ラセミ結晶は、その格子定数等のパラメータからZakharovらのデータと一致して いることがわかった。Table2-1からわかるようにキラル結晶もラセミ結晶もその 格子定数が極めて似ているが、粉末X線解析により全く異なる結晶系であること が確認できた(Appendix)。また、両結晶は、IRスペクトルからも区別すること ができた(Figure2-6)。例えば、キラル結晶の1535cm⁻¹、1360cm⁻¹の吸収は、ラセ

ミ結晶ではそれぞれ2つのビーク(1540cm⁻¹と1520cm⁻¹、 1365cm⁻¹と1520cm⁻¹、 1365cm⁻¹と1350cm⁻¹)に分裂している。IRスペクトルにおける差 はもちろん再現性をもっているが、更に結晶構造と対応づけるために、1つの単結晶を2つに 割り、一方をIRサンプルに、もう一方をX線結晶解析のサンプルに用いることで確認した。

Figure 2-6 IR spectra of chiral and racemic crystals of 1

キラル結晶、ラセミ結晶はどちらも単位格子中にN,N'-diphenylguanidine (1) を 8分子含んでおり、非対称単位には2分子存在していた(Figure 2-7)。いずれも

-13-

第2章

分子内のねじれによりキラルなコンフォメーションとなっているが、キラル結晶 は一方のエナンチオマーのみ存在しているのに対し、ラセミ結晶では互いにエナ ンチオマーの関係にある分子が単位格子中に等量存在していることになる。N,N'diphenylguanidine (1) の各結晶中における構造はどちらも類似していた (Figure2-8) 。このとき分子間水素結合は観測されず、どの分子も、芳香環を有する2つの C-N結合のうちの1つの長さ (C(1)-N(1)、1.28-1.30Å) が、もう1つのC-N結合 の長さ (C(1)-N(2)、1.37-1.39Å) よりも短く、かつ、C=N二重結合長の標準値 (約1.28Å) に近いことから、アミノ型で存在していることがわかる (Table2-2) 。 グアニジノ基はその結合角およびねじれ角から、すべて平面性を保持していた。 ダアニジノ平面の3つの結合角とその反対側の結合長とは相関しており、例えば、 N(2)-C(1)-N(3)結合角 (111-113°) は常に他の2つよりも小さい (Table2-3) 。

1のコンフォメーションは、キラル結晶でもラセミ結晶でも(E,Z)型で、短い C(1)-N(1)結合がE型、長いC(1)-N(2)結合がZ型である(Figure2-8)。2つの芳香環 はどちらもグアニジノ平面に対して大きくねじれているが、特にN(1)上の芳香環 はグアニジノ平面に対してほぼ直角である(65-87°)。一方、N(2)上の芳香環は、 2面角が23-34°とやや浅くなっている。結果として、分子内の2つの芳香環同士 の2面角も75-87°とかなり大きな値となっている。

Figure 2-8

Compound	N(1)	-C(1)	N(2)	-C(1)	N(3)-G(1)
	Length (Å)	Conformation	Length (Å)	Conformation	Length (Å)
1 (chiral)*	1.286(5)	E	1.367(6)	Z	1.344(6)
	1.297(5)	E	1.371(6)	Z	1.332(6)
1 (racemic)*	1.287(3)	E	1.385(3)	Z	1.357(3)
	1.278(3)	E	1.374(4)	Z	1.358(3)

Table 2-2 Bond Lengths and Conformations of Guanidine Bonds

a) Two independent molecules exist in the asymmetric unit.

Table 2-3 Bond Angles (deg) in the Crystal Structures of 1

	Compound	1 (chiral)*	1 (racemic) ⁴
-	Bond angles		
	N(1)-G(1)-N(2)	122.5(4), 120.6(4)	121.1(3), 122.4(3)
	N(2)-C(1)-N(3)	112.7(4), 113.4(4)	111.3(3), 112.3(3)
	N(3)-C(1)-N(1)	124.9(4), 125.8(4)	127.4(3), 125.3(3)

a) Two independent molecules exist in the asymmetric unit.

第4節 N-メチル化芳香族グアニジンの結晶構造

NN[•]-DiphenylguanidineをN-メチル化した可能な7種類の化合物(塩は除く)の うち4種類(2-5、Figure2-2)についてX線結晶解析を行うことができた(Table2-4)。特にNN⁻ Dimethyl-NN⁻ diphenylguanidine(4a)は、室温においてはオイル状 であるが、-20°Cでn-hexaneから再結晶し、-100°Cで平板イメージングプレートを 装備した高速X線回折装置を用いることで結晶解析を行うことができた³⁸⁾。興味深 いことに4a(Z=4)は、単位格子に水2分子とn-hexane1分子を含んでいた。従っ て結晶のdisorderによるものか、結合長、結合角等の値の標準偏差が大きい(Table2-5、2-6)。この表からわかるようにグアニジンの場合は概して通常の(例 えば芳香族アミドやウレアの解析データと比べて)標準偏差(1/1000-2/1000)よ りも大きいが、これらもdisorderの影響によるのかもしれない。また、ケアニジニ ウム塩4a、6の場合も精密な結合長、結合角が得られていないが、これは共存する 重原子(Brまたは1)アニオンによるものではないかと考えている。

-15-

Compound	2	3	4a	4b	5	6
Formula	$C_{\tau4}H_{\tau5}N_3$	C ₁₄ H ₁₅ N ₃	C ₁₅ H ₁₇ N ₃ . 1/2H ₂ O-1/4C ₆ H ₁₄	C15H18N3Br	C ₁₆ H ₁₉ N ₃	C17H22N3I-H2O
Mr	225.29	225.29	269.87	320.23	253.35	413.30
Recryst solvent Crystal system	CH ₂ Cl ₂ orthorhombic	AcOEt/n-C ₆ H ₁₄ monoclinic	n-C ₆ H ₁₄ triclinic	CHCl ₃ triclinic	n-C ₆ H ₁₄ monoclinic	CHCl ₃ /AcOEt orthorhombic
Space group	P212121	Cc	PT	PT	C2/c	P2.2.2
a, A	5.666(1)	11.212(2)	11.590(5)	13.034(3)	18.532(2)	12.055(3)
b, Å	10.126(3)	12,757(2)	16.44(2)	13.216(4)	7.736(2)	14.776(3)
c, A	21.17(2)	9.281(1)	8,320(4)	9.711(2)	20.462(2)	10.466(4)
ά, *	-	-	97.21(7)	91.85(2)	_	-
β.,*	-	112.21(1)	90.73(3)	94 99(2)	104,273(9)	-
7. "	-	-	77.50(7)	65.14(1)	-	-
V.A3	1214(3)	1229.1(4)	1535(2)	1512.1(6)	2842(1)	1864 3(7)
D _{calc} , g-cm ⁻³	1.232	1.217	1.167	1.407	1.184	1.472
Z	4	4	4 ^a	40	8	4
R	0.075	0.062	0.097	0.079	0.069	0.065

Table 2-4 Crystal Data of Various Diphenylguanidines

a) Two independent molecules exist in the asymmetric unit.

Compound	N(1)-C(1)		N(2)-C(1)		N(3)-C(1)
	Length (Å)	Conformation	Length (Å)	Conformation	Length (Å
2	1.284(6)	E	1.394(6)	Z	1.345(7)
3	1.270(9)	Z	1.380(9)	Z	1.379(10)
4aª	1.40(1)	Z	1.40(1)	Z	1.27(1)
	1.39(1)	Z	1.40(1)	Z	1.26(1)
4b*	1.35(2)	Z	1.38(2)	Z	1.33(2)
	1.34(2)	Z	1.35(1)	Z	1.33(1)
5	1.298(5)	Z	1.409(5)	E	1.345(5)
6°	1.32(2)	E	1.36(1)	Z	1.32(1)

Table 2-5 Bond Lengths and Conformations of Guanidines

a) Two independent molecules exist in the asymmetric unit.

b) The average values of (+)- and (-)-crystals are shown.

punoduto	1 (chiral) *	1 (racemic)*	2	5	4a *	4b *	s,	6 p
ond angles								
N(1)-C(1)-N(2)	122.5(4), 120.6(4)	121.1(3), 122.4(3)	119.8(4)	127.8(7)	112(1), 113(1)	116(1), 118(1)	125.2(4)	119.6/10
N(2)-C(1)-N(3)	112.7(4), 113.4(4)	111.3(3), 112.3(3)	115.1(4)	111.4(7)	124(1), 121(1)	121(1), 120(1)	115.5(4)	1176/10
N(3)-C(1)-N(1)	124.9(4), 125.8(4)	127.4(3), 125.3(3)	124.9(5)	120.8(7)	123(1), 125(1)	122(1). 121(1)	119 3(4)	0106 661
C(1)-N(1)-C(2)	t	1	1	5	123.0(10), 123.0(10)	122(1), 122(1)	-	192 5(9)
C(2)-N(1)-C(14)	1	1	1	j	119(1), 117(1)	118(1), 116(1)	1	115.7(9)
C(14)-N(1)-C(1)	1	1	1	1	117(1), 116(1)	119(1), 120(1)	1	121 8/9/
C(1)-N(2)-C(8)	1	Ţ	119.4(4)	ī	123.2(9), 121.9(9)	122(1), 120(1)	120.7(3)	120.1/10
C(8)-N(2)-C(15)	1	1	118.1(4)	ĩ	119(1), 118.7(9)	121(1), 117(1)	120.6(4)	117.6/10
C(15)-N(2)-C(1)	ĩ	ŕ	118.1(5)	1	115(1), 118(1)	115(1), 120(1)	118.6(4)	122.1110
C(1)-N(3)-C(16)	1	1	1	1	1	1	118.6(4)	121.8/10
C(16)-N(3)-C(17)	Ĩ	1	1	1	1	-	117 4(5)	115 1/10
C(17)-N(3)-C(1)	1	1	1	4	4	1	199 0161	OND GOL
orsion angles								N. Laboratoria
C(2)-N(1)-C(1)-N(2)	178.5(4), -172.7(4)	-171.9(3), 175.7(3)	-175,9(5)	21(1)	-39(1), 31(1)	149(1)144(1)	-15,1/7/	AR FIDI
C(2)-N(1)-C(1)-N(3)	-1.0(7), 12.5(7)	12.9(5), -7.2(5)	8.1(8)	-159.8(8)	138(1), 149(1)	-50(1) -132(1)	167 BIAN	Inhorate -
2(8)-N(2)-C(1)-N(1)	-6.6(7), 26.7(8)	28.0(5), -17.1(5)	20.9(7)	.34(1)	-32(1), 39(1)	-48(11, 49(1)	127 7(5)	(1)68-
2(8)-N(2)-C(1)-N(3)	173.0(4), -157.9(5)	-156.1(3), 165.4(3)	-162.7(5)	-143.6(8)	-147(1), -140(1)	-30(1), 32(1)	-55.0(6)	138 1110
C(3)-C(2)-N(1)-C(1)	-91.0(7), 69.68(6)	-124.1(3), -72.3(4)	-110.5(6)	-138.1(8)	147(1), -136(1)	147(1), -148(1)	41.7(7)	11/25-
2(9)-C(8)-N(2)-C(1) hedral angles	162.6(5), 178.3(4)	-177.7(3), 160.2(3)	51.8(7)	(1)61	-40(1), -147(1)	-32(1), 34(1)	-21.5(6)	-41(1)
Suanidine vs Ph	86.7, 72.9	115.9, 73.6	75.9,	59.8	62.0, 62.5	112.2, 72.9	49.2	69.69
	22.9, 23.7	28.8, 145.7	63.0	49.7	62.9, 62.1	111.0, 68.4	66.6	71.4
h vs Ph	105.0, 96.3	87.4, 75.5	115.4	59.3	37.0.38.3	1 12 2.02	70 6	107.0

-17-

a) Two independent molecules exist in the asymmetric unit. b) The average values of (+)- and (-)-crystals are shown.

第 2 章

第 2

N-Methyl-N,N'-diphenylguanidine (2) は、N,N'-Diphenylguanidine (1) と同様ア ミノ型をとっており、C(1)-N(1)の結合長が1.284Åと短い(Figure 2-9)。そのコン フォメーションも (E,Z) 型であり、メチル基によりN(2)-フェニル基のダアニジノ

平面に対するねじれ角が大 きく (63°) なっている以外 は1とよく類似している。た だし、窒素原子の周りの結 合角をみると、N(2)原子の 平面性がわずかではあるが ずれていることがわかる。 N(2)の周りの3つの結合角 の和は355.6°であり、N(2)は それに結合する3つの炭素 原子のつくる平面から約 0.17Åの距離にある。この平 面からのずれは以下に述べ るような立体的に混んでい ると思われる化合物5や6を 含めて今回結晶解析した分 子の中でもこの窒素原子に しかみられない(Table2-6)。 化合物2の結晶中における分 子間相互作用を調べてみる

Figure 2-9 Crystal Structure of 2 1.394(6) Å 1.345(7) A .284(6) A

Figure 2-10 Hydrogen-bonding Network in the crystal of 2

と、この一連の化合物の中では唯一例外的に水素結合のネットワークを形成して いた(Figure 2-10)。また、2のN(2)のメチル基は、結晶中、隣接した分子のN(1) の芳香環の上にあり(図中、矢印の部分)、その距離(CM-Ph間)は3.29Åと、 CH/π相互作用が存在する可能性が示唆される³⁹。これらの分子間相互作用の存在 が分子構造に影響しているのかもしれない。

もう1つのモノメチル体であるN- Figure 2-11 Stereoview Crystal Structures of 3 Methyl-N',N''-diphenylguanidine (3) も、C(1)-N(1)の結合長が1.270Åと アミノ型であるが、1や2とは異なる (Z,Z)型コンフォメーションを示

第2章

した(Figure2-11)。これはN(3)-メチル基の存在によりN(1)-フェニル基が混んでいないZ側へ向いたと考えられる。

N,N'-Dimethyl-N,N'-diphenylguanidine (4a) も定義に従うと3と同様 (Z,Z) 型コ ンフォメーションであるが、この構造は明らかに3と異なっている(Figure2-12)。 まず、グアニジノ基の構造について3は1や2と同様アミノ型であったのに対し、4a はC(1)-N(3)の結合長が1.26-1.27Åと短く、イミノ型をとっている。更に両化合物 の決定的な違いは、2つの芳香環どうしの2面角である。3では2つの芳香環どう しの2面角は59°と大きく、異なる方向を向いているが、4aでは37-38°とかなり平 行に近く、互いに向かいあっている。このことは、3の2つの芳香環の中心間距離 が4.28Åと大きいのに対し、4aではCinte-Cinteで2.89Å、リングセンターどうしで 3.85Åとなっていることからもわかる。ゆえに3と4aは、コンフォメーションの分 類上では同じだが、その根源は全く異なったものである。4aにおける芳香環が層 状に向かいあったイミノ型 (Z,Z) コンフォメーションはN,N'-Dimethyl-N,N'diphenylureaの結晶構造とよく類似している(Figure 1-13)。いずれの構造におい ても2つの芳香環は平行から幾分ずれているが、これはπ電子同士の反発による ものと考えられる40。興味深いことに、この芳香環層状コンフォメーションは、 4aのHBr塩である4bの結晶構造においてもみられた(Figure2-12)。4bではグアニ ジノ基の3つのC-N結合の長さがほぼ等しく(Table2-5)、部分二重結合性が同等 に分布していることがわかり、Y型共役の効果がうかがわれる。このようにグア ニジニウムイオンが同じく層状構造をとることは興味深く、この結果は後述(第 5章)する水溶性芳香族多層分子の基本構造となる。

> Figure 2-12 Stereoview Crystal Structures of 4a and 4b 4a (two independent molecules)

4b (two independent molecules)

-19-

フリーのN,N'-ジフェニルグアニジン類では最多置換体であるN,N,N'-Trimethyl-N',N''-diphenylguanidine (5)のコンフォメーションは一見すると1や2と同じだが、 短いC(1)-N(1)結合がZ型、C(1)-N(2)結合がE型で、その点は逆といえる (Figure 2-13a)。5ではそのメチル基の立体障害から、二重結合性の弱いC(1)-N(2)結合 (1.409Å)のまわりのねじれ角が大きく (52-55°)、グアニジノ平面と2つの芳香 環との2面角も大きい (49°と67°)。すなわち、この立体障害はグアニジノ基の 平面性を崩すまでにはいたらないが、N-置換基のグアニジノ平面からのねじれを

増大させる。この現象は更にメチル化 して得られる*N,N,N',N"*-Tetramethyl-*N',N"*-diphenylguanidinium ion (6) に おいては、一層顕著にみられる (Figure2-13b)。6のコンフォメーショ ンは (*E,Z*)型であり、グアニジノ平 面においては、芳香環を有するC-N結 合はグアニジノ平面に対して34-42°ね じれ、同じくC(1)-N(3)結合もグアニ ジノ平面に対して26-31°ねじれている。 この置換基が立体的に混み合うことに よって生じるねじれ構造は、ユニーク なプロペラ状構造を形成する要因となっ たわけであるが⁴¹、これについては第 4章で述べる。

Figure 2-13

(a) Stereoview Crystal Structures of 5

(b) Stereoview Crystal Structures of 6

第5節 芳香族グアニジン類の溶液中での立体化学

温度を変化させながらNMRを測定することにより、溶液中におけるその化合物の動的挙動を知ることができる⁴²¹。アミド結合は共鳴効果により、その C_{co} -N結合が部分的な二重結合性をおびているため、 C_{co} -N結合の回転は、通常の単結合と比較してかなり束縛されている。一般にアミド結合の異性化の障壁は15-20kcal/mol程度であり、置換基の種類にもよるが、NMRのタイムスケールで異性化の観測が可能な場合が多い⁴³⁾。一方、ウレア結合は2つの窒素原子の孤立電子対がともにカルボニル基と共鳴するCross-conjugationのため、アミド結合に比べ、 C_{co} -N結合の二重結合性は減少している⁴⁴⁾。そのため、 C_{co} -N結合の回転障壁は10kcal/molあるいはそれ以下であることも多く、NMRのタイムスケールでは異性

化の観測が困難である。

グアニジンでは、ウレアと同様のCross-conjugationに加え、窒素原子上の反転に より回転障壁は一層低くなる⁴⁹。実際、今回合成した芳香族グアニジン誘導体1、 3、4は、CD₂Cl₂中で183Kまで温度を下げても単一の芳香環に対応するシグナルし か与えず、マイナービークは観測されなかった。おそらくこれらの化合物は、2 つの芳香環が等価となる対称なコンフォマーで存在しているか、あるいはいくつ かのコンフォマー間の速い平衡にある可能性が考えられる。

N,N'-Dimethyl-N,N'-diphenylguanidine (4a) の芳香環プロトンのケミカルシフト はN,N'-diphenylguanidine (1) やN-Methyl-N',N''-diphenylguanidine (3) よりも 0.1-0.2ppm高磁場シフトしている (Table2-7)。従って1では (Z,Z) 型の寄与はほ とんどないが、4aでは結晶構造に対応する (Z,Z) 型コンフォメーションを優先し ていると考えられる。しかし、ケミカルシフト差を、トランス型、シス型構造を もつ芳香族アミド・ウレアと比べると小さい (Table2-7)。

	ortho	meta	para	Δδortho	Δδmeta	Δδpara
N,N'-Diphenylguanidine						
unsubstituted (1)	7.12	7.31	7.06			
N,N-dimethyl (4a)	6.93	7.17	6.96	0.19	0.14	0.10
N,N ¹ Diphenylguanidinium salt						
unsubstituted	7.31	7.46	7.37			
N,N'-dimethyl (4b)	6.80	7.16	7.12	0.51	0.30	0.25
Benzanilide						
unsubstituted	7.64	7.38	7.16			
N-methyl	7.04	7.22	7.12	0.60	0.16	0.04
N.N'-Diphenvlurea						
unsubstituted	7.35	7.35	7.13			
N,N'-dimethyl	6.79	7.04	6.93	0.56	0.31	0.20

Table 2-7 Comparison of 'H-NMR Chemical shifts (δ) of Aromatic Protons in Secondary and Tertiary Anilino Groups in CDCl₃ at 303 K.

この違いの理由としてN.N'-diphenylguanidine (1)の互変異性(アミノ型)の寄 与があると考えられる。実際、4aのHBr塩4bでは、1の塩と比較すると、更に顕著 な高磁場シフトが観測され、具体的にはオルト位で0.51ppm、メタ位で0.30ppm、 パラ位で0.25ppmだけ高磁場シフトしている。これらの値は、芳香族ウレアの場合 とよく対応している。2つのグアニジニウムイオンのケミカルシフトの差は同じ くD₂O中においてもみられた(Figure 2-14)。従って、N.N'-Dimethyl-N.N'diphenylguanidine (4a) およびそのグアニジニウムイオン4bは、種々の有機溶媒中 もしくは水溶液中で、2つの芳香環が向かいあった(Z,Z)構造を優先しているこ とが示唆された³⁸。

Figure 2-14

一方、N,N,N',N"-Tetramethyl-N',N"-diphenylguanidinium ion (6) はダアニジノ基 のすべての窒素原子上にメチル基を持つグアニジニウムイオンであり、立体的に 混み合っているため、回転障壁は大きくなると予想される。実際、6について温度 を変えながらNMR測定を行ったところ、6のN-メチル基は室温では単一のシグナ ルを与えるが、温度を下げていくにつれ融合点を経てビークは複雑になり、183K では7本のシングレットピークに分かれてくる(Figure2-15)。6の溶液中での可 能な3種類のコンフォマー(EE)、(EZ)、(ZZ)では、それぞれ2本、4本、 2本の非等価なメチル基が存在するため、これら3つのコンフォマーの混ざりと 考えてよい。このシグナルをアサインするために6のN(1)位とN(2)位のメチル基を d置換した化合物(6-d₆)を合成した(Figure2-16)。化合物6-d₆のNMRチャートで は、N(3)位のジメチルのピークしか観測されないことになる(Figure2-16)。また、

3.0ppmよりも高磁場にあるビークは分子 内の芳香環のアニソトロビー効果を受け たメチル基(星印を付けたメチル基)に 対応すると考えられる。これらの情報と NMRチャートの積分値とを考察すると、 7本に見えたピークはそれぞれ同じアル ファベット記号をもつメチル基にアサイ ンされ、その結果、6はCD₂Cl₂中、183K においては、(E,E)、(E,Z)、(Z,Z) のコンフォマーがそれぞれ2:5:3の比の 混ざりで存在すると決定できた。最安定 のコンフォマーは(E,Z)型であり、これ は結晶中のコンフォマーと同じである。 また、4と同じ(Z,Z)型コンフォマーは、 4つのメチル基の大きな立体障害にもか

かわらず、30%の寄与がある。この結果は、メチル基をもたないN,N'-Diphenylguanidine (1) もしくはその塩においては (Z,Z) 型コンフォメーションの寄与 (存在) がわずかであることと比べると対照的である。

Figure 2-16 Conformational Behavior of 6 in CD₂Cl₂ at 183K

-23-

第 3 章

第3章 N-メチル化によるシス型優先性の一般化

第1節 芳香族グアニジン類の立体特性

- 芳香族アミド・ウレアとの比較-

これまで第1章で述べてきた芳香族アミド・ウレアでみられた立体特性に基づ いて、第2章では芳香族グアニジン類の立体化学について論じてきた。この章で は、これらの共通性についてまとめ、いくつか応用例も紹介したい。

まず、N-メチル化によるコンフォメーション転換の一般式をFigure3-1に示す。 第2章でグアニジンの立体を表現するのに用いていたE/Z表記との混同をさけるた め、この章では一般的な立体(幾何異性)をあらわすものとしてトランス/シス 表記を用いた。例えば、Figure3-1においてメチル基(または水素原子)がC=X二 重結合に対して同じ側にあるのがシス型である。N-メチル化に伴うシス型への立 体転換は、Xが酸素原子であるアミド、ウレアで一般的に成立する^{17,37)}。第2章で 述べたグアニジン化合物はXが窒素原子に対応するわけだが、互変異性体が存在 するため複雑になっているため、「N-メチル化に伴う立体転換」という式では統 一的に表現できないが、「二級アニリドがトランス、N-メチル化アニリドがシス 型を優先」という立体特性は共通している。

Figure 3-1

第2章の1-6の結晶のコンフォメーションを吟味してみると、1と3では、N(2)-フェニル基がC=N(Ph)二重結合(X=NPh)に対してはトランス型であり、また4a(X=NH)と5(X=NPh)ではN-メチル基をもつフェニル基はシス型コンフォメーションをとっている(Figure 3-2)。唯一の例外としてこの法則を破っているのが2であり、N-メチル基はC(1)=N(1)二重結合に対してトランスに位置している。しかし、2は1-6の中で唯一水素結合(およびCH/π相互作用)のネットワークが観測された化合物であるから、あるいは2のコンフォメーションがこのような分子間相互作用も少なからず影響されている可能性もある。

Figure 3-2

グアニジン類のもう1つのフェニル基は化合物4を除いてC=N二重結合上にあり、 アミドやウレアの場合とは様子が異なる。結晶構造を比較すると、この二重結合 上のフェニル基はより立体的にすいている方に配向している傾向がある。化合物3 のN(1)-フェニル基がZ型となっていることから、メチル基とN(2)-フェニル基とで は立体的にメチル基の方がかざ高いといえるのかもしれない。これは球状のかざ 高さをもつメチル基に対し、フェニル基は方向性をもったかさ高さを有している ためであろう。

このN-メチル化によるシス型優先性の根源は何であろうか。このシス/トランスのエネルギー差は非常に小さいため、計算化学的に解明することは困難である と予想される。斉藤・板井らのab initio計算を用いた報告によれば、トランス型の

AcetanilideをN-メチル化すると、N-メチル基の立体障害やカルボニル基の非共有 電子対とフェニル基のπ電子との電子的反発等によりトランス型コンフォメーショ ンが不安定化し、その結果としてシス型が優先されるという説明がなされている (Figure 3-3)⁴⁶⁾。この説明が正しいかどうかはまだわからないが、このN-メチル 化体のシス型優先性が4bのようなアミド、ウレア・グアニジンとは電子的性質の 異なるグアニジニウムイオンにおいても観測されたことは興味深い。グアニジニ ウムイオンではπ電子はY型共役により、広く分布しており、またカルボニル酸 素のような非共有電子対はない。斉藤らの計算では2つの効果のうち前者の立体 的効果が大きいと考えられており、グアニジニウムイオンの場合にもあてはまる のではないだろうか。

Figure 3-3 Energy Relationships of Conformers of Acetanilide and N-Methylacetanilide

trans-N-Methylacetanilide (0) trans-N-Methylacetanilide (90) cis-N-Methylacetanilide

第2節 芳香族アミジン類への応用

アミジノ基はアミド基の酸素原子を窒素原子に置き換えた官能基であり(X = NH、Figure 3-la)、グアニジンと同様、塩基性を示すため塩にすることで、アミドの特性をもちながら水溶性をも兼ねそろえた分子の構築に利用できる。すなわち、グアニジン類がウレアに対応するのに対し、アミジン類はアミドに対応している。そこでまず、N-Phenylbenzamidine hydrochloride (7)およびその N-メチル化体であるN-Methyl-N-phenylbenzamidine hydrochloride (8)を合成し、その結晶構造を解析した(Figure 3-4)。その結果、アミドの場合と極めてよく類似した立体特性をもつことがわかり、この場合もシス型優先性則に従っていた。

Figure 3-4 Stereoview Crystal Structures of 7 and 8

N-Phenylbenzamidinium Chloride (7)

N-Methyl-N-phenylbenzamidinium Chloride (8)

そこで、更に3つのペンゼン環を2つのN-メチルアミジノ基でそれぞれメタ位、 パラ位で連結した化合物(9および10)を合成し、そのX線結晶解析を行った(Figure3-5)。これらの化合物のアミド誘導体(9'および10')は東屋により既に合 成・構造解析が行われている²⁶)。Figure3-5に示したようにアミドもアミジンもす ペてシス型で存在するとともに、パラ置換体(10および10')では、末端の2つの N-フェニル基は中央のペンゼン環の面に対して反対側、アンチ型に位置している のに対し、メタ置換体(9および9')では、2つのN-フェニル基が中央のペンゼン 環の面に対して同じ側、シン型に配置しているという共通の特徴を有していた。 メターアミド体9'の場合は'H-NMRの詳細な解析により、低温では結晶構造と同じ シン体を優先しているが、温度を上げるにつれアンチ型の割合が増加してくるこ とが示されている。メタ-アミジン(9)でも同様の'H-NMRの温度変化を示し、同 様の立体変化がおこっていることが示唆された。このメタ体のシン優先性および 溶液中でのシン/アンチの変化は、芳香環ー芳香環相互作用に起因していると考 えている²⁸。

Figure 3-5 Stereoview Crystal Structures of 9 and 10

meta-Diamidine (9)

para-Diamidine (10)

また、m-(N-Methylamino)benzoic acidをビリジン中、Tetrachlorosilane (SiCl₄) で 処理すると、環状アミド化合物 (いずれもN-メチルアミド基はすべてシス型) を 生成すること (Figure 3-6a) も東屋により明らかにされた m^{30} 、同様にm-(N-Methylamino)benzonitrileをAlCl₄と反応 (160°C) させると、環状トリアミジン誘導

-27-

体11を低収率ながら得ることができた(Figure 3-6b)。この化合物もN-メチルアミジノ基はすべてシス型のおわん状の結晶構造を示した(Figure 3-7)。化合物11は後述(第5章)するようにDNAとの相互作用が確認されており、現在、この化合物を含めてN-メチルアミジン類の構造と機能性分子への応用を進めている。

Figure 3-6

Figure 3-7 Stereoview Crystal Structure of 11

第3節 芳香族チオウレア

ウレア・ダアニジンについてみられたシス型優先性がチオウレアでは成立する かを確かめるため、N,N'-Diphenylthiourea (12) とN,N'-Dimethyl-N,N'diphenylthiourea (13) を合成し、X線結晶解析を行ったところ、予想したとおり、 12はトランス型、13はシス型をとっていることがわかった(Figure3-8)。シス型 のウレア、グアニジン誘導体と、2つの芳香環同士の2面角を比較したところ、 チオウレア体が23°と、最も平行に近いことがわかった。これは硫黄原子が酸素原 子や窒素原子に比べて大きいことによるのかもしれない。以上のことからFigure3-

-28-

第 3 章

1に示した一般式は、Xが酸素原子、窒素原子ばかりでなく、硫黄原子でも成立す ることがわかった。

第4節 芳香族ウレアにおけるシス型優先性の拡張

N-メチル化によるシス型優先性則が、メチル基以外の置換基でも成立するかど うかを調べるために、N-メチル基のかわりにカルボキシル基やアミノ基を持つア ルキル基で置き換えた芳香族ウレアを合成し、その構造を調べた。ここでは、そ の一例として、アミノ酸を持つ化合物14について紹介する。この化合物では光学 活性なアミノ酸を出発原料とする合成法はうまくいかず、種々検討した結果、 Strecker法を用いた方法 (Figure 3-9) でメソ体とラセミ体の混合物として合成する ことができた。このジアステレオマーを分離するために、アミノニトリル体をト

第 3 章

リフルオロアセチル化した後カラムで分離し、酸加水分解により目的物へと導い た。このうち、ラセミ体の結晶解析に成功し、その構造もN.N'-Dimethyl-N.Ndiphenylureaと同様のシス型構造を示すことを明らかとした(Figure 3-10)。他に も、酢酸、アミノアルキル基などを持つウレア誘導体もシス型構造を持つことも 確認した。以上の結果はシス型優先性を生じさせるためには、必ずしもN-メチル 基のような小さな基ばかりでな

く、よりかさ高い基や極性基を Figure 3-10 Stereoview Crystal Structure of (FIR/SS)-14

含んでいてもよいことを示して いる。従って、基本骨格として アミジノ基やグアニジノ基を有 していなくてもN-メチル基を修 飾することによっても水溶性や 機能性をもった層状芳香族分子 の構築ができるといえよう。

また、特殊な例としてN.N'-Dimethyl-N.N'-diphenylureaの芳香環部のクロム錯体 を合成したところ、低収率ながら得られたジクロミウム錯体15も結晶中シス型構 造を示した(Figure3-11)。(この化合物も不安定でイメージングプレートを用い る迅速なX線解析法でようやく結晶構造を明らかにすることができた。)後述 (第5章)するようにN-メチル化ウレアのシス型優先性を利用して芳香族多層構 造を構築することができることと組み合わせると、何らかの機能性分子への発展 が可能と考えている。

Figure 3-11

Stereoview Crystal Structure of 15

第1章

第4章 プロペラ状グアニジニウムイオンの分子不斉

第1節 分子不斉

生理活性物質が結合する生体のレセブター空間がキラルであることは、そのレ セプターを構成しているアミノ酸や糖が不斉炭素をもつ光学活性体であることを 考えると、当然のことのように思われる。すなわち、キラルな生理活性物質の鏡 像体はレセプターによって異なる物質として認識され、一般には同種の作用は発 現しない。しかしながら、不斉炭素をもたない薬物分子が光学不活性であるかと いえば必ずしもそうとは限らず、レセプターと相互作用する際にキラルなコンフォ メーションをとっている場合もある。言い換えると、このような薬物分子では分 子不斉が発生しており、不斉炭素をもたなくてもコンフォメーションにより生じ た不斉の一方の鏡像体のみが作用を発現する。

当研究室では、アミド結合あるいはウレア結合を複数組み合わせた芳香族化合物の立体化学について研究を行ってきたが、その過程でいくつかの化合物が固定した不斉炭素を持たないにも関わらず、キラル分子として振るまうことを示してきた。特に最近、結晶化に伴う不斉の発生とその応用(例えばキラル結晶からの不斉合成)の報告が増えてきたが^{41,48}、グアニジン類の分子不斉について述べる前に芳香族アミドにおける興味深い一例を次節で紹介する。

第2節 o-Bis(N-methyl-N-phenylamino)benzeneの分子不斉

当研究室の東屋は、芳香族アミドの結晶構造を調べている過程において、の-Bis(N-methyl-N-phenylamino)benzeneベンゼンが、それ自身固定した不斉中心をも たず室温下では種々のコンフォマー間の速い平衡にあるにも関わらず、酢酸エチ ルから再結晶すると光学活性な結晶として自然分晶することを見いだした(Figure4-1)²⁹⁾。この時、再結晶の条件により、1つのフラスコより得られるすべ ての結晶が同一の鏡像体となり、絶対的な不斉の生成がおこる。この結晶構造で は、2つのアミド基がシスであると同時に、互いに中央のベンゼン環の反対側に 位置するアンチコンフォメーションをとっていた。この場合、Figure4-1に示すよ うにPh-N結合の回転により互いにエナンチオマーの関係となるが、結晶中におい ては単位格子内にある4分子がすべて一方の鏡像体として存在していることがわ かった。

2種類の光学活性な結晶は、その結晶の外形からも区別可能であるが、対称な CDスペクトル(KBr中)によって識別される。上述したように、室温下では種々 のコンフォマー間の速い平衡にあるため、溶液中でのCDスペクトルは観測されな いが、低温下(-100°C)で溶解させることにより、結晶の場合と対応したCDスペ クトルを得ることができ、この結晶の光学活性が溶液中でも低温下で保持される ことがわかった。また、この化合物とキラルな1,1'-bi-2-naphtholと再結晶すると一 方のキラリティーをもったアミド化合物が1,1'-bi-2-naphtholと混晶してくることか ら、絶対構造の決定にも至っている。

第3節 N.N.N'.N"- Tetramethyl-N'.N" - diphenylguanidinium ion (6)の分子不育 これまで扱ってきた7つの芳香族グアニジン類はもちろん固定した不斉をもた ないが、3つがキラル結晶(1、2と6)を生じた(Table2-4)。東屋らは約60の芳 香族アミド、芳香族ウレアの結晶構造を調べたが、このうちわずか4種類の化合 物しか光学活性な空間群をもつものがなかったことを考慮すると、グアニジン類 のキラル結晶発生率は極めて高いといえるであろう。化合物1、2ではわずかな分 子のねじれによるものであるが、N.N.N",N"-Tetramethyl-N.N"-diphenylguanidinium ion (6)では窒素原子上の6つの置換基の存在により興味深い構造を示していた ので詳細に解析した。

第2章で述べたように6はすべてのC(1)-N結合がグアニジノ平面に対して約40° ねじれており、そのねじれが一方向にそろったキラルなプロペラ状構造を形成し ていた(Figure4-2)。6のキラルな結晶中には片方のエナンチオマーのみ含まれて いるのである。従ってこの場合もていねいに結晶化することにより、(ラセミ溶 液から)一方のキラリティーをもつ結晶のみを得ることができ、タネを用いれば

范 1 章
第4章

望みのキラル結晶を生成させることができる。この互いにエナンチオマーの関係 にあるキラル結晶はKBrを用いてタブレットにしたサンブルでCD測定することに より区別することができた(Figure4-2)。そこで320nmのコットン効果の符号から (+)-crystal、(-)-crystalと名付けた。キラルな結晶中における分子の絶対構造を決め る方法としてBijvoet法というのがある⁴⁹。これはX線の異常散乱を利用する方法で あるが、通常C、N、Oのような軽原子しか含まない低分子有機化合物ではエナン チオマーによる強度差が小さいために測定は困難である。幸い6ではカウンターア ニオンにヨウ素原子という重原子を含んでいたためにBijvoet法を用いることがで きた。結局、6のキラル結晶について(+)-crystalが6A、(-)-crystalが6Bと、その絶対 構造を決定することができた(Table4-1)。

64

(+)-crystal

Table 4-1 Determination of the Absolute Structure of 6

Crystal	Assignment	Fridel pai	irs		R/Rw	Flack paramete
(+)-crystal	6A	agree	-	932	0.063 / 0.075	0.0044(11)
		disagree	1	262		
	6B	agree	4	262	0.088 / 0.104	0.9587(14)
		disagree	4	930		
(-)-crystal	6A	agree	-	336	0.089 / 0.100	1.2310(10)
		disagree	4	782		
	6B	agree	-	780	0.065 / 0.075	-0.0108(78)
		disagree	1	339		

-33-

第1章

第2章でも述べたように、溶液中での6の異性化は室温下では極めて速い。特に 6のラセミ化は、3つのC(1)-N結合が回転する過程をへるにも関わらずとても速く、 低温下で結晶を溶かすという手法を用いてもキラリティーを保持させることはで きなかった。しかしながら、キラル試薬として1.1^r-bi-2-naphtholを共存させて NMRを測定することにより、213K以下でキラリティーを識別することができた。

第4節 プロペラ状グアニジニウムイオン

前節で述べたように、立体的に混み合ったダアニジノ基は、Triphenylmethyl captionやTriphenylamine誘導体等と同様に、新しいタイプのキラルなプロペラ分子 を構築できることが分かった⁵⁰⁾。そこで6よりも更に対称性の高いプロペラ分子と して、NNN^{**} -trimethyl-NN^{**} triphenylguanidinium iodide (16)をデザイン、合 成した。16にはNMRによって区別しうる異性体としては、16A、16Bの2種類の みが考えられる(Figure4-3)。16Aは、3つの芳香環がグアニジノ平面に対して同一 方向に向いた、より対称性の高いコンフォマーであり、この16Aの芳香環を1つ または2つのC(1)-N結合を軸に回転させると16Bが得られるが、これは4の結晶構 造で見られた芳香環の層状構造を持ち合わせたコンフォマーである。CD₂Cl₂中、 16は室温下では1本のN-メチルピークを与えるが、低温下では積分値が等しい3 本のシングレット(2.16、3.44、3.85ppm)と一本のシングレット(3.10ppm)に分裂す る(Figure4-3)。このことから16は193Kにおいては、16Aと16Bは1:3.8の比率の平 衡にあることが明らかになった。

Figure 4-3 Temperature-dependent NMR of 16

16**B**

1:3.8 in CD2Cl2 at 193K

-34-

第 4 章

16の溶液中における分子不斉は、1.1'-bi-2-naphthol等のキラルな分子を共存させ ることによっても識別できるが、より単純な方法として16のエチル誘導体である 17によって観測を試みた。本来、NMRではエナンチオマーを区別することはでき ないが、17ではラセミ化がNMRのタイムスケールに対して遅くなると、エチル基

Figure 4-4 Conformational Behaviour of 17

Equilibrium between Conformational Isomers Equilibrium between Conformational Enantiomers

A form

1:4 in CD2Cl2 at 183K

A form

-CH3 ____

H₃C

Figure 4-5 DQF-COSY NMR Spectra of 17 in CD2Cl2 at 183K

第 4 章

のメチレンの2つのジェミナルプロトンが非等価になって別々に観測できる (Figure 4-4)。16と同様、17にも17A、17Bの2種類の異性体が考えられるが、いず れのコンフォマーにもそのエナンチオマーが存在する。183KにおけるNMRのメチ レンのシグナルは複雑であったが、2D-NMR(DQFCOSY、Figure 4-5)により17A のメチレンピーク、17Bでの3種類のメチレンピークのすべてが2つに分裂し、 計8つのピークが観測されることがわかり、低温下ではラセミ化が遅いことが示 された。しかし、そのラセミ化速度は17Aと17B間の異性化速度に匹敵するくらい に速いため、ラセミ化速度を特定することはできなかった。残念なことに16も17 もその結晶構造を得ることはできていないが、16は結晶のCDスペクトルからキラ ル結晶であることは確認している。このプロペラ状のグアニジニウムイオンの分 子不斉については結晶構造、溶液中でのラセミ化、異性化速度定数の決定などの 課題が残っており、種々の誘導体を合成することにより明らかにしていきたいと 考えている。

第5章 水溶性芳香族多層状分子

第1節 芳香族多層分子のデザイン

N,N'-Dimethyl-N,N'-diphenylguanidinium塩(4b)は、N,N'-Dimethyl-N,N'diphenylurea同様、シス型コンフォメーションを持ち、二つの芳香環が向かい合っ た層状構造をとっている。もし、これらのリンキンググループ(N_N '-ジメチルグ アニジノ基およびNN'-ジメチルウレア基)のシス型優先性が一般的であるならば、 この特性を用いて芳香族多層分子を構築することができる(Figure5-1)。

Figure 5-1 Design of Aromatic Layers Using cis-Preference of Urea and Guanidinium Group

5PU (19) X = O 5PG (23) X = NH₂⁺

芳香族多層ウレア化合物について は、当研究室の伊藤によりメタ置換 体5MU(18)およびパラ置換体5PU (19)が合成され、その多層構造が 確認されている(Figure 5-2)^{51,52]}。 このような多層構造は、電気伝導物 質への応用なども期待される。そこ で、更なる機能性分子への応用、特 に生理活性物質へ応用していくため には水溶性であることが重要な鍵に なると考え、N.N.ジメチルグアニ

Figure 5-2 Stereoview Crystal structure of 5MU (18)

ジノ基で芳香環を3つ連結した化合物3MG(20、メタ体)、3PG(21、パラ体) および5つ連結した化合物5MG(22、メタ体)、5PG(23、パラ体)をデザイン、 合成し、その構造と機能を検討した。

第2節 グアニジンオリゴマーの合成

グアニジノ基の3つの窒素原子の反応性はほとんど差がないため、特殊な保護 基でも用いない限り、NN・ジメチルグアニジノ基を構築しようとする際に、N-メ チル化をグアニジノ基を合成した後のステップで行うことはできない。このこと がアミド・ウレアの場合とは異なり、合成スキームを組み立てる際の制約になり、 中間体の難溶性等の問題ともあいまって、特に、5MG (22)、5PG (23)の合成 を予想以上に困難にした。結局、NN・ジメチルグアニジノ基は、N-Methylaniline ユニットとN-methyl-N-phenyleyanamideユニットのカップリングによって構築して いくことになった。

5MG (22) の合成スキームを Figure 5-3に示す。*m*-Nitroaniline から4 ステップで 得られる*N*-Acetyl-*N*-cyano-*N*,*N*'-dimethyl-*meta*-phenylenediamine (28) と*N*,*N*'-Dmethyl-*meta*-phenylenediamine dihydrogen chloride (29) とをクロロベンゼン中、 160°Cで加熱することによって、23%と低収率ながらジグアニジン体30を得ること ができた。30のアセチル基をはずして、末端アミノ基を塩酸塩としてから、*N*-Methyl-*N*-phenylcyanamideと、28と29をカップリングさせたのと同様の条件で反 応を試みたが、分解物のみを与え、目的とする5MG (22) は得られなかった。落 媒、温度、酸等の条件を種々検討した結果、AICl₃存在下で反応させることで46% の収率で5MG (22) を得ることができた。

(a) Ac₂O; (b) H₂ / 10 % Pd-C / E(OH; (c) BrCN; (d) NaH / DMF; CH₃I; (e) N,N⁴dimethyl-m-phenylenediamine dlhydrochloride (29) / PhCl / Δ; (f) HCl / CH₃OH; (g) HCl; N-methyl-N-phenylcyanamide / AlCl₃ / PhCl / Δ

一方、5PG(23)に関しても5MG(22)と同様のスキーム、すなわち、最終段 階で連結する部分構造のベンゼン環の数で表記すると、[1+3+1]型スキームでの合 成を試みたが、30に対応するパラ誘導体が非常に難溶性のため、カップリング反

応がうまく進行しなかった。そこでFigure 5-5に示した[2+1+2]型スキーム(Figure 5-4)に変更し、やはり最終段階でAICI,を用いることにより5PG(23)を合 成することができた。両化合物とも予想した通り、非常に高い親水性を示した。

Figure 5-4

第3節 グアニジンオリゴマーの溶液中での立体構造

5MG (22)、5PG (23) の¹H-NMR測定をすると、芳香環プロトンのケミカル シフトがモノマーに相当する4bやシス型アミドと同じ高磁場シフトをしているこ とから、有機溶媒および水中で層状構造を優先していることが示唆された(Table5-1)。層状構造の内側の芳香環プロトンは末端の芳香環プロトンよりも更 に大きな高磁場シフトが観測された。これらNM -dimethylguanidineユニットが種々 の溶媒中で層状構造を優先していることはNOEによっても支持された。しかし、 CD₃Cl₂中、183Kまで温度を下げてNMR測定を行っても、複数のコンフォマーへの 分裂は観測されず、緩やかなブロードニングがみられるだけであった。また、様々 なキラル試薬も用いたがキラルコンフォメーションの分離もできなかった。おそ らく、メジャーである層状コンフォメーションといくつかのマイナーコンフォメー

Table 5-1 HNMR	Chemical shifts of Aromat	c Layered Guanidines	(4b, 20	- 23) in D.O at 303 K
----------------	---------------------------	----------------------	---------	-----------------------

Compound		Chemical shifts (ppm) of aromatic protons ^a		
Ph-1		Ph-2	Ph-3	
4b	7.06 (o), 7.28 (m), 7.22 (p)	-	-	
20	6.90 (o), 7.22 (m), 7.16 (p)	6.32 (0.0), 6.88 (o, m), 7.15 (m, m)	-	
21	6.97 (o), 7.23 (m), 7.18 (p)	6.81	-	
22	6.83 (o), 7.17 (m), 7.15 (p)	6.21 (0, 0), 6.73&6,87 (a, m), 7.09 (m, m)	6.19 (o. o), 6.77 (o, m), 7.09 (m, m)	
23	6.91 (o), 7.20 (m), 7.15 (p)	6.71 & 6.76	6.71	

a) Aromatic rings are numbered as Ph-1, Ph-2 or Ph-3 from the terminal. The positions of protons relative to guanidino group(s) are shown in parenthesis. Thus, (o, o) means protons ortho to two guanidino groups.

第 5 竜

ションの速い平衡にあるのだろう。

第4節 グアニジンオリゴマーの結晶構造

合成したオリゴマー4種(20-23)の結晶構造とデータを、Table 5-2、5-3およびFigure 5-5に示す。

Compound	20	21	22	23	
Formula	C24H30Nel2	CasHanNela	C.H.N.CIO.	C.H.N.CLO.	
Mr	656.35	656.35	904.81	940.84	
Recryst solvent	MeOH/ether	MeOH/AcOEt	MeOH/AcOEt	MeOH	
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	
Space group	P2,/a	P2,/c	P2./c	P2./n	
a, Á	11.312(2)	10.929(2)	11.647(2)	10.854(2)	
<i>b</i> , Å	15.420(2)	11.173(2)	25.027(3)	20.205(2)	
c, A	16.236(3)	11.895(2)	15.866(2)	13.388(2)	
α, α	-	-	-	-	
β, °	101.33(1)	113.56(1)	93.52(1)	113,59(1)	
7.°	-	-	-	-	
V. Á'	2776.9(8)	1331.3(5)	4616.1(9)	2690.7(6)	
D _{calc} , g·cm ⁻¹	1.570	1.637	1.302	1,161	
Z	4	2	4	2	
R	0.057	0.041	0.066	0.069	

Table 5-2 Crystal Data of Aromatic Di- and Tetraguanidinium Salts (20 - 23)

Table 5-3 Dihedral	Angles	(deg)	between	Aromatic and	Guanidino	Planes	in 20	- 23
--------------------	--------	-------	---------	--------------	-----------	--------	-------	------

Compound	20	21	22	23	
Ph(1) vs Ph(2)	34.0	152.0	31.7	28.9	
Ph(2) vs Ph(3)	30.5	152.0	38.8	153.3	
Ph(3) vs Ph(4)	_	_	30.4	153.3	
Ph(4) vs Ph(5)	-	-	35.7	28.9	
Ph(1) vs Ph(3)	4.8	-	17.3	155.5	
Ph(2) vs Ph(4)	-	-	14.2	_	
Ph(3) vs Ph(5)	-	-	12.8	155.5	
Gua(1) vs Gua(2)	135.2	-	34.6	67.0	
Gua(2) vs Gua(3)	_	-	37.4	-	
Gua(3) vs Gua(4)	-	-	34.3	67.0	
Gua(1) vs Gua(3)	-	-	8.6	-	
Gua(2) vs Gua(4)	-	-	3.5	-	

a) Aromatic rings and guanidino grouops are numbered from the terminal.

-40-

Figure 5-5 Stereoview Crystal Structures of Aromatic Layered Guanidines $\left(20-23\right)$ The counter anions and water molecules are omitted.

第5章

N.N'- Dimethyl-N.N'- diphenylguanidinium bromide (4b) の結晶構造から推測した ように、いずれもすべてのグアニジノ基がシス型アンチコンフォメーションをと n、分子内で芳香族層状構造を形成していた。これらオリゴマーの部分構造(NN'-dimethyl-NN'-diphenylguanidineユニット)は、モノマー単位である4bとよく 類似していた。芳香環同士または芳香環とグアニジノ平面の2面角(Table5-3) からもわかるように芳香環同士のなす角は、いずれも30°程度であるが、5PG(23)のほうが5MG(22)よりも幾分平行に近い。芳香環同士が完全な平行から少し はずれているのは、π-πの反発的な相互作用によると考えられる。このことは、 基本的モデルとしてベンゼンダイマーの安定構造について種々の計算が行われて いるが、それによると、ずれた平行構造やT型構造のほうが、完全に重なった平 行なサンドイッチ構造よりも安定であるという結果からも妥当であるといえよう ³⁰。いずれにしても、様々に自由度をもつはずのこのNN -dimethylguanidineユニッ トが不安定要素を含んでいるにも関わらず芳香環層状構造をとるということは、 これまでこのような分子内芳香環層状構造が固定された骨格を用いて構築されて きた点5%を考えあわせると、非常に興味深い。また、芳香環どうしの2面角は、

1つおきの芳香環どうし(例えば、Ph(1)と Ph(3)、Ph(2)Ph(4)等)が、より平行に近く of 5MG (22) from the top なっている。グアニジノ基についても同じ 傾向が見られ、Gua(1)とGua(3)、あるいは Gua(2)とGua(4)のなす角はほぼ平行である。 この2組のグアニジノ基はFigure5-6からも わかるように、層状ベンゼン環からみて同 じ側に位置している。

Figure 5-6 View of the crystal structure

さて、層状分子の中で、メタ置換体3MG(20)と5MG(22)は分子の巻き方 (軸性不斉の方向性)により、らせん構造をなすのではないかと予測したが、実 際、結晶中、すべての軸性不斉がall-R(もしくはall-S)のキラルならせん状分子 となっていた。らせん状化合物としては、ヘリセンなどの固定された構造を持つ もの551もしくは水素結合ネットワーク560や金属原子への配位(ヘリケート)57を利 用したものが主であり、このような自由度の高い分子が分子内でらせん構造をな すのは興味深い。同様のらせん構造は、ウレア誘導体5MU(18)でもみられたが、 これらの化合物の芳香環がメタ位でつながっているにも関わらず、らせん軸が3. もしくは3,ではなく2,をとっていた。これは、芳香環が完全に重なっておらず、ず れているためである(Figure 5-6)。いずれの化合物においても、単一の分子はキ

ラルならせん状構造であったが、単位格子に右巻きらせんをもつ分子と左巻きら せんをもつ分子を1:1で含むことによりラセミ結晶となっていることがわかった (Figure 5-7)⁵³⁾。しかしながら、5MU (18)と5MG (22)のバッキング構造を比 較すると大変おもしろい結果が得られた。5MU (18)では、分子間でもきれいに 積み重なったパッキング構造を形成しており、隣り合う分子間での末端のベンゼ ン環同士はほぼ平行で、その距離は約4.1Åであった。各分子のキラリティーに注 目すると、左巻き、右巻き、左巻き、右巻きと交互に配列していた。一方、5MG (22)ではジグザグ状の二本鎖を形成しており、各一本鎖は、単一のエナンチオ マーで構成されていた。例えば、ある一本鎖が右巻きだけなら、その隣の一本鎖 は左巻きだけといった具合である。この場合、一本の鎖中の隣り合う分子の末端 のベンゼン環同士は、T型構造をとっており、その距離は約4.9Åとなっていた。こ のように5MU (18)と5MG (22)でバッキング様式に違いがみられるのは、リン キンググループの電子的性質やカウンターアニオンの有無に由来していると考え ている。

Figure 5-7 Packing Structures (stereoviews) of 5MU (18,a), and 5MG (22,b). The intramolecular relationships of terminal phenyl rings (parallel, c), urea bonds (d) of 5MU (18), T-shaped terminal phenyl rings of 5MG (22, e) are also shown.

(a) 5MU (18)

(b) 5MG (22)

第五章

第5節 グアニジンオリゴマーの新しい機能

-新規DNAマイナーグループ結合性分子-

前節までに述べてきた層状構造において、各芳香環の距離が2本鎖DNAの塩基 対同士の距離と類似していることにヒントを得て考察したところ、層状分子の形 状がDNAのマイナーグループによくフィットすることが予想された。すなわち、 層状芳香環の両側に2つずつグアニジノ基が存在することになるが(例えば Figure5-6)、一方がDNAの中に入り核酸塩基と相互作用し、残りの一方がDNAの 外側の環境(例えば水分子)と相互作用すると考えられる。この時、層状分子の 大きさはマイナーグループの大きさによく適しており、大きなファンデルワール ス相互作用が期待できる。

このような観点から、当教室の福富によって5MG (22)、5PG (23) とDNAと の相互作用の検討がなされた。その結果、限外濾過膜を用いた結合実験⁵³により 5MG (22)、5PG (23) はともに結合定数が10⁷ M⁴と大変高いDNA親和性を有し ており、代表的なマイナーグループバインダーであるNetropsinよりも高い親和性 を示した(Table5-4)。また、二本鎖DNAに熱を加えていくと、その構造がほぐ されていく様子が観測でき、その転移の中点を融解温度Tmと呼ぶが、このTm値は DNAと複合体をつくる化合物の添加により高くなることが知られている。Table5-4に示すように5MG (22)、5PG (23) は各種DNAのTm値を著しく高め、DNAと 安定な複合体を形成していることがわかった。

Compound	ultrafilt	ration assay ^a	$\Delta Tm (deg)^{b}$			
	Ka (M ⁻¹)	n (per base pair)	calf thymus DNA	poly(dT)-poly(dA)	poly(dA-dT) ₂	
5MG (22)	6.2×10^{6}	0.20	10.3	29.8 ^c	25.1	
5PG (23)	1.2×10^{7}	0.19	9.9	25.8 ^c	22.2	
netropsin	1.0×10^{5}	0.52	23.0	53.4	45.4	

Table 5-4 Binding Abilities of Aromatic Layered Guanidines 5MG (22) and 5PG (23) with DNAs.

a) Binding constant (Ka) and number of binding sites per base pair (n) were calculated from Scatchard analyses.

b) ΔTm is defined as the difference of the melting temperature (*Tm* values) of DNAs in the presence and absence of the test compound. The molar ratio of the test compound to DNAs (per base pair) was 0.5. *Tm* values were measured at 260 nm, and those of calf thymus DNA, poly(dT)-poly(dA), and poly(dA-dT)₂ were 63.9, 45.4, and 39.0 °C, respectively. e) Biphasic *Tm* behavior was observed.

現在、福富によって更に詳細な結合様式の解析がなされているが、計算化学的 もしくは各種スペクトルの結果は5MG(22)、5PG(23)が予想通りDNAのマイ ナーグループにぴったりはまりこんでいることが示唆されている。これまでマイ ナーグループパインダーとしては主にNetropsinのような平面的構造の化合物が多 く知られているが^{59,60}、5MG(22)、5PG(23)のように層状でしかもある程度 厚みも持ち合わせた化合物は、新規なマイナーグループパインダーとして、今後 の展開が期待できるであろう。

また、更に、第3章で述べた環状トリアミジン誘導体11(Figure 5-8)も5MG(22)、5PG(23)ほど強くはないがDNAと結合(約6×10⁴M⁴の結合定数)する

こともわかった。この化合物11は、5MG(22)、 5PG(23)等と異なり、おわん状のかさ高い構造を しており、メジャーグルーブへの結合の可能性も考 えられ、現在解析中である。

ここでは、DNA結合性をとりあげたが、本章での 最初にも述べたように電気伝導性などの物性も期待 でき、水溶性多層グアニジン化合物は新たな機能性 芳香族分子へと展開できると考えている。

結 論

アミド基・ウレア基でみられたN-メチル化に伴うシス型優先性がグアニジノ基 やアミジノ基に対しても一般性をもつ立体的性質であることを示してきた。この 立体特性は部分二重結合性が等しく分布しているグアニジニウムイオンにおいて も成立し、水溶性分子構築への足がかりとなった。

また、グアニジノ基はそのねじれ構造から分子不斉を発生させる頻度が高く、 この性質を詳細に解析することで、キラルなプロペラ状分子の構造を明らかにした。

更にシス型優先性による芳香環の層状構造とグアニジニウムイオンの水溶性を 組み合わせることで、分子内多層構造をもつ水溶性分子5MG、5PGを構築するこ とができた。特に芳香環をメタ位でつないだ5MGでは、結晶中、左巻き、右巻き を等量含むきれいならせん状構造をとっていた。

また、これら層状構造が核酸塩基対の形状に類似していることにヒントを得て、 DNAとの結合実験を行ったところ、強いDNA結合能があることが認められた。こ れに例示されるように以上述べてきた化合物は水溶性芳香族機能分子として今後 も様々な応用展開が期待できるであろう。

結 論

実験の部

General. Melting points were determined by using a Yanagimoto hot-stage melting point apparatus and are uncorrected. Elemental analyses were carried out in the Microanalytical Laboratory, Faculty of Pharmaceutical Sciences, University of Tokyo, and were within \pm 0.3 % of the theoretical values. NMR spectra were recorded on a JEOL JNM-A500 (500 MHz) or a JEOL JNM-GX400 (400 MHz) spectrometer. Chemical shifts are expressed in ppm relative to tetramethylsilane in CDCl₃ and DMSO- d_{69} or sodium 2,2-dimethyl-2silapentane-5-sulfonate in D₂O. IR spectra were taken with a Shimadzu IR-408 IR spectrometer and values are expressed in cm⁻¹. N,N⁺-Diphenylguanidine (1) was purchased from WAKO Co. and recrystallized from EtOH.

X-ray Crystallography. The X-ray crystal structure analyses were performed on crystals of compounds 1 - 12. Diffraction data were obtained by a Rigaku AFC7S four-circle diffractometer and a Rigaku RAXISIIC imaging plate diffractometer with graphite-monochromated Cu K α radiation ($\lambda = 1.54050$ Å) and MoK α ($\lambda = 0.71070$ Å) radiation, respectively. Generally, indexing was performed from 3 oscillation which were exposed for 4.0 minutes and a total of 15 oscillation images within the 20 value of 50.0° were collected in the case of that using imaging plate area detector. The crystal data are given in Table 1 and 5. The crystal structures were solved by the direct method and the hydrogen atoms were located on a difference electron-density map.

N-Methyl-*N*,*N*'-diphenylguanidine (2). A solution of cyanogen bromide (95%, 1.71 g, 15 mmol) in ether (10 ml) was added to a solution of aniline (2.02 g, 22 mmol) in ether (20 ml), and the mixture was stirred overnight. The reaction mixture was filtered, and the filtrate was washed twice with water, dried over Na₂SO₄, and evaporated to give *N*-phenylcyanamide (1.15 g, 45 %). *N*-Phenylcyanamide: ¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, 2 H, *J* = 8.1 Hz), 7.09 (t, 1 H, *J* = 7.5 Hz), 7.02 (d, 2 H, *J* = 7.7 Hz), 6.70 (s, 1 H).

A mixture of *N*-phenylcyanamide (340 mg, 2.9 mmol) and *N*-methylaniline hydrochloride (432 mg, 3.0 mmol) was stirred at 150°C under an argon atmosphere. After 4 h, water was added to the reaction mixture, and the whole was washed with CH₂Cl₂. The aqueous layer was basified with 2 N NaOH, and extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, and evaporated. The crude product was purified by silica gel column chromatography

 $(CH_2CI_2; MeOH : NH_4OH = 8 \le 1 : 0.2)$ to give *N*-methyl-*N*,*N*'-diphenylguanidine (2, 390 mg, 60 %). *N*-Methyl-*N*,*N*'-diphenylguanidine (2): colorless prisms (CH_2CI_2) ; mp 63°C; 'H NMR (400 MHz, CDCI₃) δ 7.41 (t, 2 H, *J* = 7.7 Hz), 7.24-7.35 (m, 5 H), 6.98 (m, 3 H), 3.70-4.30 (br s, 1 H), 3.41 (s, 3 H), 1.30-2.20 (br s, 1 H); Anal Calcd. for C₁₄H₁₅N₂; C, 74.64; H, 6.71; N, 18.65; Found: C, 74.43; H, 6.59; N, 18.48.

N-Methyl-*N'*,*N''*-diphenylguanidine (3). Lead monoxide³⁶ (1002 mg, 4.5 mmol) was added to a solution of *N*,*N'*-diphenylthiourea (506 mg, 2.2 mmol) in 10 ml of MeOH at 60°C. The resulting black suspension was stirred for 15 min, and 3 ml of 40 % CH₃NH₂ in MeOH was added. The mixture was stirred for 4.5 h. The PbS precipitate was filtered off, and the solvent was evaporated to leave an oily residue which was purified by silica gel column chromatography (CH₂Cl₂ : MeOH : NH₄OH = 8 : 1 : 0.2) to give *N*-methyl-*N'*,*N''*-diphenylguanidine (3, 403 mg, 81 %). *N*-Methyl-*N'*,*N''*-diphenylguanidine (3): colorless prisms (AcOEt-*n*-hexane); mp 108°C; ¹H NMR (400 MHz, CDCl₅) δ 7.30 (t, 4 H, *J* = 7.9 Hz), 7.05 (d, 6 H, *J* = 8.1 Hz), 3.80-4.40 (br, 2 H), 2.91 (s, 3 H); Anal Calcd. for C₁₄H₁₅N₃; C, 74.64; H, 6.71; N, 18.65; Found: C, 74.93; H, 6.98; N, 18.37.

N,*N*'-**Dimethyl**-*N*,*N*'-**diphenylguanidine** (4). NaH (60 %, 189 mg, 4.7 mmol) was washed twice with *n*-hexane, and suspended in 10 ml of dry DMF. A solution of *N*-phenylcyanamide (505 mg, 4.3 mol) in 5 ml of dry DMF was added to this suspension at 0°C, the mixture was stirred for 10 min and then 2 ml of CH₃I was added to it. After 2 h, the solvent and excess CH₃I were removed under vacuum. The residue was diluted with CH₂Cl₂, washed with 2 N hydrochloric acid and H₂O, dried over Na₂SO₄ and evaporated to give *N*-methyl-*N*-phenylcyanamide (578 mg, quant). *N*-Methyl-*N*-phenylcyanamide: ¹H NMR (400 MHz, CDCl₃) δ 7.39 (t, 2 H, *J* = 8.1 Hz), 7.11 (m, 3 H), 3.35 (s, 3 H).

A mixture of *N*-methyl-*N*-phenylcyanamide (333 mg, 2.4 mmol) and *N*-methylaniline hydrochloride (340 g, 2.4 mmol) was stirred at 150°C under an argon atmosphere. After 6.5 h, water was added to the reaction mixture and the whole was washed with CH_2CI_2 , basified with 2 N NaOH, and extracted with CH_2CI_2 . The organic layer was dried over Na₂SO₄, and evaporated to give *N*,*N*'-dimethyl-*N*,*N*'-diphenylguanidine (**4a**, 339 mg, 56 %). *N*,*N*'-Dimethyl-*N*,*N*'-diphenylguanidine (**4a**): colorless oil (solidified below -10°C); ¹H NMR (400 MHz, CDCI₃) δ 7.17 (t, 4 H, *J* = 8.0 Hz), 6.97 (t, 2 H, *J* = 8.0 Hz), 6.93 (d, 4 H, *J* = 7.7 Hz), 5.70-6.50 (br s, 1 H), 3.15 (s, 6 H).

4a was converted to the hydrobromide salt (4b) in a conventional manner.

4b: colorless prisms (CHCl₃); mp 248°C; ¹H NMR (400 MHz, CDCl₃) δ 9.01 (br s, 2 H), 7.10-7.18 (m, 6 H), 6.79 (d, 4 H, *J* = 7.7 Hz), 3.60 (s, 6 H); Anal Caled. for C₁₃H₁₈N₃Br: C. 56.26; H, 5.67; N, 13.12; Found: C, 55.98; H, 5.59; N, 13.10.

N,*N*,*N*'**Trimethyl**-*N*',*N*''-**diphenylguanidine** (5). NaH (60 %, 203 mg, 5.1 mmol) was washed twice with *n*-hexane, and suspended in 3 ml of dry DMF. A solution of *N*-methyl-*N*',*N*''-diphenylguanidine (**3**, 503 mg, 2.2 mmol) in 4 ml of dry DMF was added to this suspension at 0°C, the mixture was stirred for 10 min, and then 0.4 ml of CH₃I was added to it. After 2.5 h, the solvent and excess CH₃I were removed under vacuum. The residue was diluted with CH₂Cl₂, washed with 2 N hydrochloric acid and H₂O, dried over Na₂SO₄, and evaporated. The crude product was purified by silica gel column chromatography (CH₂Cl₂ : NH₄OH = 40 : 1) to give *N*,*N*,*N*'-trimethyl-*N'*,*N*''-diphenylguanidine (**5**, 261 mg, 46 %). *N*,*N*,*N*'-Trimethyl-*N'*,*N*''-diphenylguanidine (**5**): colorless prisms (*n*-hexane); mp 77.5-78.5°C; ¹H NMR (400 MHz, CDCl₃) & 7.26 (t, 2 H, *J* = 7.9 Hz), 7.12 (t, 2 H, *J* = 7.9 Hz), 6.85-6.90 (m, 2 H), 6.78-6.83 (m, 4 H), 2.86 (br, 9 H); Anal Calcd, for Cl₁₆H₁₉N₃: C, 75.85; H, 7.56; N, 16.59; Found: C, 75.74; H, 7.28; N, 16.45.

N-Phenylbenzamidinium Chloride (7). To a mixture of benzonitrile (2.27 g, 22 mmol)

-49-

and aniline (2.00 g, 22 mmol) was added aluminum chloride (3.00 g, 22 mmol) over 20 min, and the whole was heated at 185°C. After 1 h, the reaction mixture was poured into 0.15 N hydrochloric acid (160 ml). Activated carbon (2.0 g) was added to the aquerous solution. After filtration, the filtrate was poured into 4.6 N NaOH (120 ml), and the precipitates were collected by filtration, washed with water, and dried under vacuum to give *N*-phenylbenzamidine (5.15 g, quant). *N*-Phenylbenzamidine: colocless prisms (AcOEt-*n*-hexane); ¹H NMR (400 MHz, CDCl₃) & 7.86 (brs, 2 H), 7.43-7.51 (m, 3 H), 7.36 (t, 2 H, J = 7.7 Hz), 7.07 (t, 1 H, J = 7.4 Hz), 7.00 (d, 2 H, J = 7.2 Hz), 4.85 (br, 2 H); Anal Caled. for C₁₃H₁₂N₂; C, 79.56; H, 6.16; N, 14.27; Found: C, 79.35; H, 6.14; N, 14.48.

A 1 N hydrochloric acid ether solution (7 ml) was added to a solution of *N*-phenylbenzamidine (538 mg, 2.7 mmol) in CH₂Cl₂ (10 ml), and the mixture was stirred. The precipitates were collected by filtration to give *N*-phenylbenzamidinium chloride (7, 561 mg, 88 %). *N*-Phenylbenzamidinium Chloride (7): colorless prisms (MeOH-AcOEt); mp 243-244°C; Anal Caled. for $C_{13}H_{13}N_2Cl$: C, 67.10; H, 5.63; N, 12.04; Found: C, 67.09; H, 5.55; N, 11.80.

N-Methyl-*N*-phenylbenzamidinium Chloride (8). To a mixture of benzonitrile (5.15 g, 50 mmol) and *N*-methylaniline (5.35 g, 50 mmol) was added aluminum chloride (6.7 g, 50 mmol) over 20 min, and the whole was heated at 160° C.⁶¹ After 20 min, the reaction mixture was poured into 0.12 N hydrochloric acid (200 ml). Activated carbon (2.0 g) was added to the aquerous solution. After filtration, the filtrate was poured into 5.5 N NaOH (100 ml), and extracted with AcOEt. The organic layer was dried over Na₂SO₄, and evaporated to give *N*-methyl-*N*-phenylbenzamidine (7.7 g, 74 %). *N*-Methyl-*N*-phenylbenzamidine: ⁴H NMR (400 MHz, CDCl₅) δ 7.27 (d, 2 H, J = 7.7 Hz), 7.12-7.20 (m, 5 H), 6.96-7.01 (m, 3 H), 3.51 (s, 3 H).

A 1 N hydrochloric acid ether solution (10 ml) was added to a solution of *N*-methyl-*N*-phenylbenzamidine (1.09 g, 5.2 mmol) in ether (15 ml), and the mixture was stirred, then the precipitates were collected by filtration to give *N*-methyl-*N*-phenylbenzamidinium chloride (**8**, 1.15 g, 90 %). *N*-Methyl-*N*-phenylbenzamidinium Chloride (**8**): colorless prisms (MeOH-AcOEt).

meta-Diamidine (9). A solution of isophthalonitrile (4.00 g, 31 mmol) and *N*-methylaniline (6.66 g, 62 mmol) in chlorobenzene (2 ml) was heated at 150°C and aluminum chloride

(8.50 g, 64 mmol) was slowly added to the mixture. After 20 min, the reaction mixture was poured into 0.2 N hydrochloric acid (200 ml). Activated carbon (2.0 g) was added to the aquerous solution. After filtration, the blue filtrate was poured into 5.5 N NaOH (100 ml), and the precipitates were collected by filtration, washed with water, and dried under vacuum to give *meta*-diamidine (9, 3.72 g, 35 %). *meta*-Diamidine (9): colorless prisms (AcOEt-*n*-hexane); mp 119.5-120.5°C; ¹H NMR (400 MHz, CDCl₃) & 7.23 (s, 1 H), 7.14 (t, 4 H, J = 7.7 Hz), 7.01-7.07 (m, 4 H), 6.96 (t, 1 H, J = 7.7 Hz), 6.81 (d, 4 H, J = 7.7 Hz), 3.45 (s, 6 H); Anal Calcd, for C₂₂H₂₂N₄; C, 77.16; H, 6.48; N, 16.36; Found: C, 76.91; H, 6.48; N, 16.20.

para-Diamidine (10). A solution of terephthalonitrile (4.00 g, 31 mmol) and *N*-methylaniline (6.65 g, 62 mmol) in chlorobenzene (2 ml) was heated at 150°C and aluminum chloride (8.58 g, 64 mmol) was slowly added to the mixture. After 20 min, the reaction mixture was poured into 0.2 N hydrochloric acid (200 ml). Activated carbon (2.0 g) was added to the aquerous solution. After filtration, the blue filtrate was poured into 5.5 N NaOH (100 ml), and the precipitates were collected by filtration, washed with water, and dried under vacuum. The crude product was purified by silica gel column chromatography (CH₂CL₂ : MeOH : NH₄OH = 8 : 1 : 0.2) to give *para*-diamidine (10, 6.80 g, 64 %). *para*-Diamidine (10): colorless prisms (CH₂CL₂); mp 210-211°C; ¹H NMR (400 MHz, CDCl₃) δ 7.09 (t, 4 H, *J* = 7.7 Hz), 7.08 (s, 4 H), 7.00 (t, 2 H, *J* = 7.2 Hz), 6.85 (d, 4 H, *J* = 8.0 Hz), 3.45 (s, 6 H); Anal Calcd. for C₂₂H₂₂N₄: C, 77.16; H, 6.48; N, 16.36; Found: C, 76.86; H, 6.31; N, 16.58.

cyclic-**Triamidine (11).** To a solution of 3-(methylamino)benzonitrile (213 mg, 1.6 mmol) in 1 ml of chlorobenzene was added aluminum chloride (228 mg, 1.7 mmol), and the mixture was heated at 150°C. After 2 h, the reaction mixture was poured into 0.1 N hydrochloric acid (20 ml). Activated carbon (2.0 g) was added to the aquerous solution. After filtration, the filtrate was poured into 5.8 N NaOH (10 ml), and extracted with AcOEt, CH₂Cl₂. The organic layer was dried over Na₂SO₄, and evaporated. The crude product was purified by silica gel column chromatography (CH₂Cl₂ : MeOH : NH₄OH = 8 : 1 : 0.2) to give *cyclic*-triamidine (11). *cyclic*-Triamidine (11): colorless prisms (CH₂Cl₂-AcOEt); mp 220°C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 6.98 (t, 1 H, *J* = 7.7 Hz). 6.93-6.96 (m, 6 H), 6.85 (d, 3 H, *J* = 7.1 Hz), 3.33 (s, 9 H); FAB mass [M+H]* = 397.

実験の部

N,*N*^{*}-**Bis**(β-alanyl)-*N*,*N*^{*}-**diphenylurea** (14). NaH (60 %, 2.3 g, 58 mmol) was washed twice with *n*-hexane, and suspended in 30 mI of dry THF. A solution of *N*,*N*^{*}-diphenylurea (5.0 g, 24 mmol) in 20 ml of THF was added to this suspension, the mixture was stirred for 20 min and then 8 ml of allyl bromide was added to it. The whole was left overnight, then the solvent and excess allyl bromide were removed under vacuum. The residue was diluted with CH₂Cl₂, washed with H₂O, dried over Na₂SO₄ and evaporated to give *N*,*N*^{*}-diallyl-*N*,*N*^{*}-diphenylurea (6.78 g, 98 %). *N*,*N*^{*}-Diallyl-*N*,*N*^{*}-diphenylurea: ¹H NMR (400 MHz, CDCl₃) δ 6.99 (t, 4 H, *J* = 7.5 Hz), 6.91 (t, 2 H, *J* = 7.5 Hz), 6.71 (d, 4 H, *J* = 7.5 Hz), 5.94 (m, 2 H), 5.04-5.09 (m, 4 H), 4.18 (d, 4 H, *J* = 6.6 Hz).

To a solution of *N*,*N'*-diallyl-*N*,*N'*-diphenylurea (5.99 g, 21 mmol) in 80 ml of ether and 80 ml of H₂O was added osmium tetraoxide (557 mg, 2.2 mmol).⁶²¹ After 15 min, sodium metaperiodate (18.01 g, 84 mmol) was added in small portions over 30 min, and the mixture was stirred for 1.5 h. The mixture was extracted with ether, and the extract was dried over Na₂SO₄ and evaporated to give *N*,*N'*-di(formylmethyl)-*N*,*N'*-diphenylurea. *N*,*N'*-Di(formylmethyl)-*N*,*N'*-diphenylurea: ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 2 H), 7.02 (t, 4 H, *J* = 7.3 Hz), 6.94 (t, 2 H, *J* = 7.3 Hz), 6.91 (d, 4 H, *J* = 7.0 Hz), 4.37 (s, 4 H).

To a solution of *N*,*N*'-di(formylmethyl)-*N*,*N*'-diphenylurea and TMSCN (5.18 g, 52 mmol) in 20 ml of THF was added zinc iodide (319 mg, 1.0 mmol).⁶³ After stirring for 10 min, a saturated methanolic ammonia (90 ml) was added. The reaction mixture was stirred at 50°C for 6 h. After evaporation, the residue was purified by silica gel column chromatography (AcOEt : MeOH = 20 ; 1) to give a mixture of diastereomeric *N*,*N*'-bis(2-amino-2-cyanoethyl)-*N*,*N*'-diphenylureas (2.28 g, 32 % from *N*,*N*'-diallyl-*N*,*N*'-diphenylurea).

Pyridine (2.9 ml) and trifluoroacetic anhydride (5.0 ml) were added to a solution of N.N'-bis(2-amino-2-cyanoethyl)-N.N'-diphenylureas (2.05 g, 5.9 mmol) in 60 ml of CH_2Cl_2 , and the mixture was stirred for 8 h. The reaction mixture was diluted with CH_2Cl_2 , washed successively with 2 N hydrochloric acid, H_2O , sat. NaHCO, and H_2O . The organic layer was dried over Na_2SO_4 , and evaporated. The crude product was purified by silica gel column chromatography (AcOEt : *n*-Hexane = 1 : 3) to give a mixture of diastereomeric N.N'-bis(2-cyano-2-trifluoroacetamino)-N.N'-diphenylureas (2.22 g, 70 %).

The two diastereomers were separated by silica gel column chromatography (CH_2CI_2 : *n*-Hexane = 3 : 1). The diasteromer with high Rf could be assigned as racemic (*RR/SS*) by

crystal structure of 14 which was prepared from this isomer. Resultantly, the diastereomer with low Rf could be assigned meso (RS).

High Rf of *N*,*N*'-bis(2-cyano-2-trifluoroacetamino)-*N*,*N*'-diphenylurea (racemic): ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, 2 H, *J* = 5.5 Hz), 7.09 (brs, 6 H), 6.57 (brs, 4 H), 4.57-4.62 (ddd, 2 H, *J* = 3.5, 5.5, 11 Hz), 4.41-4.47 (dd, 2 H, *J* = 11, 14 Hz), 3.76-3.81 (dd, 2 H, *J* = 3.5, 14 Hz).

Low Rf isomer of *N*,*N*'-bis(2-cyano-2-trifluoroacetamino)-*N*,*N*'-diphenylurea (meso): 'H NMR (400 MHz, CDCl₃) δ 8.94 (d, 2 H, *J* = 6.2 Hz), 7.05-7.08 (m, 6 H), 6.64-6.65 (m, 4 H), 4.76-4.81 (ddd, 2 H, *J* = 3.9, 6.2, 8.8 Hz), 4.25-4.31 (dd, 2 H, *J* = 8.8, 15 Hz), 3.93-3.98 (dd, 2 H, *J* = 3.9, 15 Hz).

Hydrochloric acid (8 ml) was added to a solution of N,N'-bis(2-cyano-2-trifluoroacetamino)-N,N'-diphenylurea (high Rf isomer, 763 mg, 1.4 mmol) in EtOH (80 ml), and the mixture was refluxed for 24 h. After removal of the solvent, the residue was basified with sat. NaHCO₃, and extracted with AcOEt. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated. The crude product was purified by silica gel column chromatography (AcOEt : MeOH = 10 : 1) to give N,N'-bis(2-amino-2-cyanoethyl)-N,N'-diphenylurea (racemic, 319 mg, 65 %). N,N'-Bis(2-amino-2-cyanoethyl)-N,N'-diphenylurea (racemic): 'H NMR (400 MHz, CDCl₃) & 6.99-7.05 (m, 6 H), 6.80-6.83 (m, 4 H), 4.06 (t, 2 H, J = 7.5 Hz), 3.97-4.02 (dd, 2 H, J = 7.3, 13 Hz), 3.70-3.75 (dd, 2 H, J = 7.3, 13 Hz), 1.72 (brs, 4 H).

Hydrochloric acid (8 ml) was added to *N*,*N*'-bis(2-amino-2-cyanoethyl)-*N*,*N*'-diphenylurea (racemic, 301 mg, 0.86 mmol), and the mixture was heated at 90°C. After 1.5 h, the reaction mixture was basified with sat. NaHCO₃, and was purified by RP-silica gel chromatography (H₂O : MeOH = 1 : 1) to give *N*,*N*'-bis(β-alanyl)-*N*,*N*'-diphenylurea (14, racemic, 184 mg, 55 %). *N*,*N*'-Bis(β-alanyl)-*N*,*N*'-diphenylurea (14): colorless prisms (H₂O-MeOH): mp 226°C (dec.); ¹H NMR (400 MHz, D₂O, 30°C) δ 7.11-7.20 (m, 6 H), 6.95-7.00 (m, 4 H), 4.24-4.30 (dd, 2 H, *J* = 8.4, 15 Hz), 4.14-4.19 (dd, 2 H, *J* = 2.9, 15 Hz), 3.86-3.89 (dd, 2 H, *J* = 2.9, 8.4 Hz).

Similarly, low Rf isomer of N,N'-bis(2-cyano-2-trifluoroacetamino)-N,N'-diphenylurea was converted to N,N'-bis(β -alanyl)-N,N'-diphenylurea (meso). Hydrochloric acid (6 ml) was added to a solution of N,N'-bis(2-cyano-2-trifluoroacetamino)-N,N'-diphenylurea (low Rf isomer, 546 mg, 1.0 mmol) in EtOH (60 ml), and the mixture was refluxed for 24 h. After removal of the solvent, the residue was basified with sat, NaHCO₃, and extracted

with AcOEt. The organic layer was washed with brine, dried over Na_2SO_4 , and evaporated. The crude product was purified by silica gel column chromatography (AcOEt : MeOH = 10 : 1) to give *N*,*N*'-bis(2-amino-2-cyanoethyl)-*N*,*N*'-diphenylurea (meso): 'H NMR (400 MHz, CDCl₄) δ , δ , θ , θ , N, θ = 10 : 0.5 (m, 6 H), 6.80-6.82 (m, 4 H), 3.99-4.07 (m, 4 H), 3.66-3.74 (m, 2 H), 1.72 (brs, 4 H).

Hydrochloric acid (6 ml) was added to N,N'-bis(2-amino-2-cyanoethyl)-N,N'-diphenylurea (meso, 247 mg, 0.71 mmol), and the mixture was heated at 100°C. After 1 h, the reaction mixture was basified with sat. NaHCO₃, and was purified by RP-silica gel chromatography (H₂O : MeOH = 1 : 1) to give N,N'-bis(β -alanyl)-N,N'-diphenylurea (meso, 228 mg, 83 %). N,N'-Bis(β -alanyl)-N,N'-diphenylurea (meso): colorless prisms (H₂O-MeOH); mp 239°C (dec.): ¹H NMR (400 MHz, D₂O, 30°C) δ 7.09-7.18 (m, 6 H), 6.96 (d, 4 H, J = 7.3 Hz), 4.24 (m, 4 H), 3.90-3.93 (dd, 2 H, J = 4.2, 6.0 Hz).

N,*N*'-Dimethyl-*N*,*N*'-diphenylurea Bis[(tricarbonyl)chromium] Complex (15). A mixture of *N*,*N*'-dimethyl-*N*,*N*'-diphenylurea (1.00 g, 4.2 mmol) and chromium hexacarbonyl (1.73 g, 7.9 mmol) in 30 ml of *n*-butylether and 5 ml of THF was heated at reflux under N₂ atmosphere for 36 h.⁶⁴⁾ The solvent of the reaction mixture was removed under vacuum, the residue was diluted with benzene, and was filtered on celite. The filtrate was evaporated and was purified by silica gel column chromatography (AcOEt : *n*-hezane = 1 : 3) to give *N*.*N*'-dimethyl-*N*,*N*'-diphenylurea bis[(tricarbonyl)chromium] complex (15, 130mg, 6 %) besides monochromium complex. *N*,*N*'-Dimethyl-*N*,*N*'-diphenylurea Bis[(tricarbonyl)chromium] Complex (15): yellow prisms (AcOEt-ether); mp 162-167°C; 'H NMR (400 MHz, CD₃OD) δ 5.59 (d, 4 H, *J* = 7.0 Hz), 5.45 (t, 4 H, *J* = 6.6 Hz), 5.30 (t, 2 H, *J* = 6.2 Hz), 3.25 (s, 6 H); Anal Calcd. for C₂₁H₁₆N₂O₇Cr₂: C, 49.23; H,3.15; N, 5.47; Found: C, 49.20; H, 2.96; N, 5.55.

N,*N*',*N*''-**Trimethyl-N**,*N*',*N*''-**triphenylguanidinium iodide (16).** Lead monoxide was added to a solution of *N*,*N*'-diphenylthiourea (1.00 g, 4.4 mmol) in 14 ml of MeOH at 65° C. The resulting black suspension was stirred for 15 min, and a solution of aniline (0.46 g, 5.0 mmol) in 1 ml of MeOH was added. The mixture was stirred overnight. The PbS precipitate was filtered off and the solvent was evaporated to leave an oily residue, which was purified by silica gel column chromatography (CH₂Cl₂ : MeOH = 8 : 1) to give

N,N',N''-triphenylguanidine (1.12 g, 89 %). N,N',N''-Triphenylguanidine: colorless prisms (CH₂Cl₂-*n*-hexane); mp 139-141°C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, 6 H, J = 7.9 Hz), 7.19 (d, 6 H, J = 7.7 Hz), 7.05 (t, 3 H, J = 7.3 Hz); Anal Calcd. for C₁₉H₁₇N₃; C, 79.42; H, 5.96; N, 14.62; Found: C, 79.13; H, 5.97; N, 14.89.

NaH (60 %, 164 mg, 4.1 mmol) was washed twice with *n*-hexane, and suspended in 1 ml of dry DMF. A solution of *N*,*N'*,*N''*-triphenylguanidine (500 mg, 1.7 mmol) in 3 ml of dry DMF was added to this suspension at 0°C, the mixture was stirred for 10 min, and then 1 ml of CH₃I was added to it. After 3 h, the solvent and excess CH₃I were removed under vacuum. The residue was diluted with CH₂Cl₂, washed with 2 N hydrochloric acid and H₂O, dried over Na₂SO₄, and evaporated. The crude product was purified by silica gel column chromatography (CH₂Cl₂ : MeOH : NH₄OH = 10 : 1 : 0.4) to give *N*,*N'*,*N''*-trimethyl-*N*,*N'*,*N''*-triphenylguanidinium iodide (7, 666 mg, 84 %). *N*,*N'*,*N''*-trimethyl-*N*,*N''*,*N''*-triphenylguanidinium iodide (7): colorless prisms (CH₂Cl₂-AcOEt); mp 209-210°C; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (t, 6 H, *J* = 7.7 Hz), 7.30 (d, 6 H, *J* = 7.7 Hz), 7.26 (t, 3 H, *J* = 7.1 Hz), 3.44 (s, 9 H); Anal Calcd. for C₂₂H₂₄N₃E: C, 57.78; H, 5.29; N, 9.19; Found: C, 57.83; H, 5.29; N, 8.92.

N,N',N''-Triethyl-N,N',N''-triphenylguanidinium iodide (17). NaH (60 %, 180 mg, 4.5 mmol) was washed twice with n-hexane, and suspended in 2 ml of dry DMF. A solution of N,N',N''-triphenylguanidine (500 mg, 1.7 mmol) in 4 ml of dry DMF was added to this suspension at 0°C, the mixture was stirred for 30 min, and then 1 ml of C,H,I was added to it. The whole was left overnight, then the solvent and excess C,H,I were removed under vacuum. The residue was diluted with CH,Cl,, washed with 2 N hydrochloric acid and HO, dried over Na,SO, and evaporated. The crude product was purified by silica gel column chromatography (CH,Cl, : MeOH : NH,OH = 16 : 1 : 0.4) to give N,N'-diethyl-N.N', N"-triphenylguanidine (410 mg, 69 %). Next, 1 ml of C,H,I was added to a solution of N,N'-diethyl-N,N',N''-triphenylguanidine (203 mg, 0.59 mmol) in CH2Cl2 (5 ml) and the mixture was heated overnight at 70 °C. The solvent and excess C2H,I were removed under vacuum and the crude product was purified by silica gel column chromatography $(CH_2CI_2 : MeOH : NH_4OH = 16 : 1 : 0.2)$ to give N,N',N''-triethyl-N,N',N''triphenylguanidinium iodide (8, 248 mg, 84 %). N.N',N''-triethyl-N,N',N''triphenylguanidinium iodide (8): colorless needle (CHCl₁-AcOEt); mp 232-232.5°C; Anal Caled. for C2;H10N,I: C, 60.12; H, 6.05; N, 8.41; Found: C, 60.12; H, 6.16; N, 8.69.

meta-Substituted Diguanidine (20). Pyridine (25 ml) was added to a solution of *meta*phenylenediamine (25.0 g, 0.23 mol) in acetic anhydride (100 ml) at 0°C, and the mixture was stirred at room temperature for 4 h, then poured into 2 N hydrochloric acid. The precipitates were collected by filteration, washed with water and dried under vacuum to give *N*,*N*⁻diacetyl-*meta*-phenylenediamine (31.5 g, 71 %). *N*,*N*^{*}-Diacetyl-*meta*phenylenediamine: pale yellow prisms (MeOH-AcOEt); mp 151°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.92 (s, 2 H), 7.87 (s, 1 H), 7.25 (d, 2 H, *J* = 7.7 Hz), 7.16 (t, 1 H, *J* = 7.2 Hz), 2.02 (s, 6 H); Anal Calcd. for C₁₀H₁₂N₂O₂: C, 62.49; H, 6.29; N, 14.57; Found: C, 62.30; H, 6.35; N, 14.50.

NaH (60 %, 13.58 g, 0.34 mol) was washed twice with *n*-hexane, and suspended in 80 ml of dry DMF. A solution of *N*,*N*^{*}-diacetyl-*meta*-phenylenediamine (28.19 g, 0.15 mol) in 80 ml of dry DMF was added to this suspension at 0°C, the mixture was stirred for 30 min, and then 30 ml of CH₃I was added to it. After 2 h, the solvent and excess CH₃I were removed under vacuum. The residue was diluted with CH₂Cl₂. The organic layer was washed with 2 N hydrochloric acid and H₂O, and dried over Na₂SO₄. After removal of the solvent, the crude product was recrystallized from CH₂Cl₂*n*-hexane to give *N*,*N*^{*}-diacetyl-*N*,*N*^{*}-diacetyl-*N*,*N*^{*}-dimethyl-*meta*-phenylenediamine (23.26 g, 72 %). *N*,*N*^{*}-Diacetyl-*N*,*N*^{*}-dimethyl-*meta*-phenylenediamine: colorless prisms (CH₂Cl₂*n*-hexane); mp 153°C; ^{*}H NMR (400 MHz, CDCl₃) δ 7.48 (t, 1 H, *J* = 7.7 Hz), 7.20 (d, 2 H, *J* = 7.2 Hz), 7.07 (s, 1 H), 3.29(s, 6 H). 1.91 (s, 6 H); Anal Caled. for C₁₂H₁₆N₂O₂: C, 65.43; H, 7.32; N, 12.72; Found: C, 65.53; H, 7.10; N, 12.44.

Hydrochloric acid (10 ml) was added to a solution of *N*,*N*'-diacetyl-*N*,*N*'-dimethylmeta-phenylenediamine (10.25 g, 47 mmol) in EtOH (200 ml), and the mixture was refluxed for 27 h. After removal of the solvent, the residue was basified with 2N NaOH, and extracted with CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated. The crude product was purified by silica gel column chromatography (CH₂Cl₂) to give *N*,*N*'-dimethyl-*meta*-phenylenediamine (**29**, 5.52 g, 87 %). *N*,*N*'-Dimethyl-*meta*phenylenediamine (**29**): 'H NMR (400 MHz, CDCl₃) δ 7.01 (t, 1 H, *J* = 8 Hz), 6.04 (dd, 2 H, *J* = 2, 8 Hz), 5.89 (t, 1 H, *J* = 2 Hz), 3.0-3.8 (brs, 2 H), 2.82 (s, 6 H).

A 1 N hydrochloric acid ether solution (80 ml) was added to a solution of N,N^{-} dimethyl-*meta*-phenylenediamine (**29**, 4.96 g, 36 mmol) in ether (40 ml), and the precipitates were collected by filteration to give N,N^{-} -dimethyl-*meta*- phenylenediamine dihydrochloride

(7.23 g, 95 %). A mixture of *N.N*^{*}-dimethyl-*meta*- phenylenediamine dihydrochloride (507 mg, 2.4 mmol) and *N*-methyl-*N*-phenylcyanamide (642 mg, 4.9 mmol) in chlorobenzene (1.5 ml) was heated at 150°C under an argon atmosphere. After 24 h, the reaction mixture was basified with 2 N NaOH, and extracted with CH_2CI_2 . The organic layer was dried over Na_2SO_4 , and evaporated. The crude product was purified by silica gel column chromatography (CH_2CI_2 : MeOH : $NH_4OH = 8 : 1 : 0.2$) to give **20a** (286 mg, 29 %). **20a**: ¹H NMR (400 MHz, $CDCI_3$) δ 7.16 (t, 4 H, *J* = 8.0 Hz), 6.99 (t, 1 H, *J* = 8.0 Hz), 6.96 (t, 2 H, *J* = 7.1 Hz), 6.88 (d, 4 H, *J* = 7.7 Hz), 6.57 (d, 2 H, *J* = 8.3 Hz), 6.38 (s, 1 H), 3.11 (s, 6 H), 3.01 (s, 6 H), 1.90 (brs, 2 H). **20b** (**20a**·**2HI**): pale brown prisms (MeOH-ether): mp 285-287°C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.87 (s, 4 H), 7.17 (t, 4 H, *J* = 7.7 Hz), 7.08 (t, 2 H, *J* = 7.2 Hz), 7.03 (t, 1 H, *J* = 8.0 Hz), 6.92 (d, 4 H, *J* = 7.2 Hz), 6.80 (d, 2 H, *J* = 8.3 Hz), 6.45 (s, 1 H), 3.26 (s, 6 H), 3.11 (s, 6 H); Anal Calcd. for $C_{24}H_{30}N_6I_2$: C, 43.92; H, 4.61; N, 12.80; Found: C, 43.65; H, 4.65; N, 12.77.

para-Substituted Diguanidine (21). NaH (60 %, 210 mg, 5.3 mmol) was washed twice with *n*-hexane, and suspended in 2 ml of dry DMF. A solution of 1,4phenylenebiscyanamide⁶⁵⁾ (326 mg, 2.1 mmol) in 5 ml of dry DMF was added to this suspension at 0°C, the mixture was stirred for 10 min, and then 0.5 ml of CH₃I was added to it. After 5 h, the solvent and excess CH₃I were removed under vacuum. The residue was diluted with CH₂Cl₂, washed with 2 N hydrochloric acid and H₂O, and dried over Na₂SO₄ to give *N*,*N*^{*}-dicyano-*N*,*N*^{*}-dimethyl-*para*-phenylenediamine (412 mg, quant). *N*,*N*^{*}-Dicyano-*N*,*N*^{*}-dimethyl-*para*- phenylenediamine: ³H NMR (400 MHz, CDCl₃) δ 7.11 (s, 4 H), 3.35 (s, 6 H).

A mixture of *N*-methylaniline hydrochloride (634 mg, 4.4 mmol) and *N*,*N*^{*}-dicyano-*N*,*N*^{*}-dimethyl-*para*- phenylenediamine (412 mg, 2.2 mmol) in chlorobenzene (3 ml) was heated at 140°C under an argon atmosphere. After 24 h, the reaction mixture was basified with 2 N NaOH, and extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, and evaporated. The crude product was purified by silica gel column chromatography (CH₂Cl₁ : MeOH : NH₄OH 8 : 1 : 0.2) to give **21a** (357 mg, 40 %). **21a**: ¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, 4 H, *J* = 8.0 Hz), 6.99 (t, 2 H, *J* = 7.4 Hz), 6.91 (d, 4 H, *J* = 7.7 Hz), 6.75 (s, 4 H), 3.15 (s, 6 H), 3.11 (s, 6 H). **21b** (**21a**·**2HI**): pale brown prisms (MeOH-AcOEt); mp >300°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.82 (s, 4 H), 7.21 (t, 4 H, *J* = 7.7 Hz), 7.13 (l, 2 H, *J* = 7.4 Hz), 7.01 (d, 4 H, *J* = 7.2 Hz), 6.88 (s, 4 H), 3.23 (s, 6 H), 3.22 (s, 6 H);

Anal Caled. for C₂₄H₃₀N₆I₂: C, 43.92; H, 4.61; N, 12.80; Found: C, 44.00; H, 4.58; N, 12.68.

meta-Substituted Tetraguanidine (22). Pyridine (20 ml) was added to a solution of *meta*-nitroaniline (24, 42.58 g, 308 mmol) in acetic anhydride (300 ml) at 0°C, and the mixture was stirred at room temperature for 4 h, then poured into 2 N hydrochloric acid. The precipitates were collected by filteration, washed with water and dried under vacuum to give *meta*-nitroacetoanilide (25, 55.30 g, quant.). *meta*-Nitroacetoanilide (25): colorless prisms (AcOEt-*n*-hexane); mp 152°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.43 (s, 1 H), 8,62 (s, 1 H), 7.88 (m, 2 H), 7.59 (t, 1 H, *J* = 8.3 Hz), 2.09 (s, 3 H); Anal Calcd. for C₈H₈N₂O₃: C, 53.33; H, 4.48; N, 15.55; Found: C, 53.35; H, 4.52; N, 15.44.

meta- Nitroacetoanilide (**25**, 10.15 g, 56 mmol) was hydrogenated with 10 % Pd-C in MeOH (200 ml). After 2 h, the reaction mixture was filtered and the filtrate was evaporated to give *N*-acetyl-*meta*- phenylenediamine (**26**, 8.88 g, quant.) as colorless prisms. *N*-Acetyl-*meta*- phenylenediamine (**26**): ¹H NMR (400 MHz, CDCl₃) δ 7.43 (brs, 1 H), 7.14 (s, 1 H), 7.06 (t, 1 H, *J* = 8.0 Hz), 6.67 (d, 1 H, *J* = 8.3 Hz), 6.43 (d, 1 H, *J* = 8.3 Hz), 3.10 (br, 2 H), 2.14 (s, 3 H).

Cyanogen bromide (95 %, 3.39 g, 30 mmol) and 1 N NaOH (45 ml) were added to a solution of *N*-acetyl-*meta*- phenylenediamine (**26**, 4.53 g, 30 mmol) in 90 % aqueous acetic acid (50 ml) at 0°C, and the mixture was stirred overnight. The colorless precipitates were collected by filteration and washed with water to give *N*-acetyl-*N*⁻-cyano-*meta*-phenylenediamine (**16**, 6.04 g, quant.). *N*-Acetyl-*N*⁻-cyano-*meta*- phenylenediamine (**27**): yellow prisms (MeOH); mp 146-147°C; ¹H NMR (400 MHz, DMSO-*d*₅) δ 10.15 (s, 1 H), 10.02 (s, 1 H), 7.45 (s, 1 H), 7.23 (t, 1 H, *J* = 8.0 Hz), 7.14 (d, 1 H, *J* = 8.2 Hz), 6.61 (d, 1 H, J = 8.2 Hz), 2.03 (s, 3 H); Anal Caled. for C₃H₃N₃O: C, 61.70; H, 5.18; N, 23.99; Found: C, 61.55; H, 4.96; N, 24.13.

NaH (60 %, 9.72 g, 0.24 mol) was washed twice with *n*-hexane, and suspended in 50 ml of dry DMF. A solution of *N*-acetyl-*N*'-cyano-*meta*- phenylenediamine (**27**, 18.91 g, 0.11 mol) in 70 ml of dry DMF was added to this suspension at 0°C, the mixture was stirred for 30 min, and then 24 ml of CH₃I was added to it. After 1 h, the solvent and excess CH₃I were removed under vacuum. The residue was diluted with CH₃Cl₂, washed with 2 N hydrochloric acid and H₂O, and dried over Na₂SO₄. After removal of the solvent, the crude product was recrystallized from AcOEt-*n*-hexane to give *N*-acetyl-*N*'-cyano-

 N_iN^* -dimethyl-*meta*- phenylenediamine (**28**, 23.12 g, quant). N-Acetyl-N*-cyano-N.N*dimethyl-*meta*- phenylenediamine (**28**): colorless prisms (AcOEt-*n*-hexane); mp 98°C; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (t, 1 H, *J* = 8.0 Hz), 7.07 (d, 1 H, *J* = 8.3 Hz), 6.95 (brd, 2 H), 3.37 (s, 3 H), 3.27 (s, 3 H), 1.90 (s, 3 H); Anal Caled. for C₁₁H₁₃N₃O: C, 65.01; H, 6.45; N, 20.68; Found: C, 65.10; H, 6.52; N, 20.42.

A mixture of *N*,*N*²-dimethyl-*meta*- phenylenediamine dihydrochloride (**29**, 5.45 g, 26 mmol, see the section on synthesis of **20**) and *N*-acetyl-*N*²-cyano-*N*,*N*²-dimethyl-*meta*-phenylenediamine (**28**, 10.86 g, 53 mmol) in chlorobenzene (6 ml) was heated at 160°C under mechanical stirring in an argon atmosphere. After 2 h, the reaction mixture was basified with 2 N NaOH, and extracted with CH_2Cl_2 . The organic layer was dried over Na_2SO_4 , and evaporated. The crude product was purified by silica gel column chromatography (CH_2Cl_2 : MeOH : NH₄OH = 8 : 1 ; 0.2) to give **30** (3.2 g, 23 %). **30**: ¹H NMR (400 MHz, $CDCl_3$) δ 7.22 (t, 2 H, *J* = 8.1 Hz), 7.00 (t, 1 H, *J* = 8.0 Hz), 6.89 (d, 2 H, *J* = 8.3 Hz), 6.79 (d, 2 H, *J* = 6.6 Hz), 6.69 (s, 2 H), 6.55 (d, 2 H, *J* = 8.8 Hz), 6.50 (s, 1 H), 3.17 (s, 6 H), 3.15 (s, 6 H), 3.08 (s, 6 H), 1.76 (s, 6 H).

A solution of **30** (1.28 g, 2.4 mmol) in 2 N hydrochloric acid (30 ml) was refluxed at 120°C. After 22 h, the reaction mixture was neutralized with Na₂CO₃, and extracted with CH₂Cl₂. The extract was dried over Na₂SO₄, and evaporated. The crude product was purified by silica gel column chromatography (CH₂Cl₂ : MeOH : NH₄OH = 8 : 1 : 0.2) to give **31** (751 mg, 69 %). **31**: ¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, 1 H, *J* = 8.0 Hz), 7.04 (t. 2 H, *J* = 8.0 Hz), 6.76 (dd, 2 H, *J* = 2.2, 8.3 Hz), 6.61 (brt, 1 H), 6.35 (dd, 2 H, *J* = 1.4, 8.8 Hz), 6.31 (dd, 2 H, *J* = 1.7, 8.3 Hz), 6.23 (t, 2 H, *J* = 2.2 Hz), 3.24 (s, 6 H), 3.09 (s, 6 H), 2.73 (s, 6 H).

A 1 N hydrochloric acid ether solution (30 ml) was added to a solution of **31** (2.94 g, 6.4 mmol) in MeOH (10 ml), and the mixture was stirred for 30 min, then evaporated to give **31** hydrochloride (3.96 g, quant). **31** hydrochloride: 'H NMR (400 MHz, DMSO- d_b) δ 9.04 (brs, 4 H), 7.05 (t, 1 H, J = 8.3 Hz), 6.97 (t, 2 H, J = 8.0 Hz), 6.83 (dd, 2 H, J = 1.9, 8.0 Hz), 6.66 (brs, 1 H), 6.57 (br, 2 H), 6.25-6.46 (br, 4 H), 3.75 (br 4 H), 3.27 (s, 6 H), 3.19 (s, 6 H), 2.61 (s, 6 H).

Aluminum chloride (1.65 g, 12 mmol) was added to a solution of *N*-methyl-*N*-metaphenylcyanamide (1.32 g, 10 mmol) in chlorobenzene (10 ml) and the mixture was heated at 160°C under mechanical stirring in an argon atmosphere. After 10 min, **31**·HCl (2.62 g, 4.3 mmol) was added and the mixture was refluxed for 22 h. Water was added, and the -59whole was washed with CH_3Cl_2 , basified with 2 N NaOH, and extracted with CH_3Cl_2 . The organic layer was dried over Na_2SO_4 , and evaporated. The crude product was purified by silica gel column chromatography (CH_2Cl_2 : MeOH : $NH_4OH = 8 : 1 : 0.2$) to give 22a (1.44 g, 46 %). 22a: ¹H NMR (400 MHz, $CDCl_3$) δ 7.15 (t, 4 H, J = 8.0 Hz), 6.95-7.01 (m, 5 H), 6.87 (d, 4 H, J = 7.7 Hz), 6.58 (d, 1 H, J = 8.8 Hz), 6.52-6.55 (m, 4 H), 6.42 (s, 1 H), 6.40 (s, 2 H), 3.16 (s, 6 H), 3.02 (s, 6 H), 3.00 (s, 6 H), 2.98 (s, 6 H). 22b (22a·4HCl): colorless prisms (MeOH-AcOEt); mp 242-245°C; ¹H NMR (400 MHz, D_2O , 30°C) δ 7.14-7.19 (m, 6 H), 7.10 (t × 2, 3 H, J = 8.0 Hz), 6.87 (d, 2 H, J = 6.6 Hz), 6.83 (d, 4 H, J = 6.6 Hz), 6.77 (d, 2 H, J = 8.3 Hz), 6.72 (d, 2 H, J = 7.7 Hz), 6.21 (s, 2 H), 6.19 (s, 1 H), 3.32 (s, 6 H), 3.09 (s, 6 H), 3.08 (s, 6 H); Anal Caled. for $C_{42}H_{54}N_{12}Cl_4$ ·3.5H₂O: C, 54.14; H, 6.60; N, 18.04; Found: C, 54.00; H, 6.34; N, 17.69.

para-Substituted Tetraguanidine (23). Pyridine (15 ml) was added to a solution of *para* - nitroaniline (23.94 g, 173 mmol) in acetic anhydride (160 ml) at 0 °C, and the mixture was stirred at room temperature for 3 h, then poured into 2 N hydrochloric acid. The precipitates were collected by filtration, washed with water and dried under vacuum to give *para*- nitroacetanilide (30.28 g, 97 %). *para*- Nitroacetanilide: colorless powder (AcOEt-*n*-hexane); mp 214.5-215.5°C; ¹H NMR (400 MHz, DMSO-*d_b*) δ 10.56 (s, 1 H), 8.21 (d, 2 H, *J* = 9.4 Hz), 7.82 (d, 2 H, *J* = 9.4 Hz), 2.11 (s, 3 H); Anal Calcd. for C₈H₈N₂O₃: C, 53.33; H, 4.48; N, 15.55; Found: C, 53.12; H, 4.35; N, 15.76.

para-Nitroacetanilide (8.87 g, 49 mmol) was hydrogenated over 10 % Pd-C in MeOH (200 ml). After 2 h, the reaction mixture was filtered and the filtrate was evaporated to give *N*-acetyl-*para*- phenylenediamine (6.96 g, 94%). *N*-Acetyl-*para*- phenylenediamine: pale brown prisms (MeOH-AcOEt); mp 166.5-167°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.47 (s, 1 H), 7.18 (d, 2 H, *J* = 8.6 Hz), 6.48 (d, 2 H, *J* = 8.3 Hz), 4.89 (brs, 2 H), 1.94 (s, 3 H); Anal Calcd. for C₈H₁₀N₂O; C, 63.98; H, 6.71; N, 18.65; Found: C, 63.85; H, 6.69; N, 18.35.

Cyanogen bromide (95 %, 3.04 g, 27 mmol) and 1 N NaOH (45 ml) were added to a solution of *N*-acetyl-*para*- phenylenediamine (4.12 g, 27 mmol) in 90 % aqueous acetic acid (50 ml) at 0 °C, and the mixture was stirred overnight. The colorless precipitates were collected by filtration and washed with water to give *N*-acetyl-*N*'-cyano-*para*-phenylenediamine (4.69 g, 97%). *N*-Acetyl-*N*'-cyano-*para*- phenylenediamine: colorless prisms (MeOH-CH₂Cl₂); mp 181-183°C; ¹H NMR (400 MHz, DMSO-d₆) δ 9.89 (s, 1 H).

実験の部

7.54 (d, 2 H, J = 8.8 Hz), 6.88 (d, 2 H, J = 8.8 Hz), 2.00 (s, 3 H); Anal Calcd. for $C_0H_1N_1O$: C, 61.70; H, 5.18; N, 23.99; Found: C, 61.44; H, 5.00; N, 24.21.

NaH (60 %, 3.29 g, 82 mmol) was washed twice with *n*-hexane, and suspended in 20 ml of dry DMF. A solution of *N*-acetyl-*N*^{*}-cyano-*para*- phenylenediamine (6.58 g, 37 mmol) in 35 ml of dry DMF was added to this suspension at 0°C, and the mixture was stirred for 1 h. CH₃I (7 ml) was added to the reaction mixture. After 2 h, the solvent and excess CH₃I were removed under vacuum. The residue was diluted with CH₃Cl₂, washed with 2 N hydrochloric acid and H₂O, and dried over Na₂SO₄ to give *N*-acetyl-*N*^{*}-cyano-*N*,*N*^{*}-dimethyl-*para*- phenylenediamine (**32**): pale yellow prisms (CH₂Cl₂-*n*-hexane); mp 85-90 °C; ¹H NMR (400 MHz, CDCl₃) & 7.23 (d, 2 H, *J* = 8.8 Hz), 7.14 (d, 2 H, *J* = 8.8 Hz), 3.38 (s, 3 H), 3.24 (s, 3 H), 1.86 (s, 3 H); Anal Calcd. for C₁₀H₁₀N₃O: C, 65.01; H, 6.45; N, 20.68; Found: C, 64.89; H, 6.35; N, 20.68.

A mixture of *N*-acetyl-*N*^{*}-cyano-*N*,*N*^{*}-dimethyl-*para*⁻ phenylenediamine (**32**, 17.49 g, 86 mmol) and *N*-methylaniline hydrochloride (12.57 g, 88 mmol) in chlorobenzene (5 ml) was heated at 160°C under mechanical stirring in an argon atmosphere. After 4 h, the reaction mixture was basified with 2 N NaOH, and extracted with CH_2Cl_2 . The organic layer was dried over Na₂SO₄, and evaporated. The crude product was purified by silica gel column chromatography (CH_2Cl_2 : MeOH : NH₄OH = 8 : 1 : 0.2) to give **33**(6.15 g, 23 %). **33**: ¹H NMR (400 MHz, CDCl₃) δ 7.13 (t, 2 H, *J* = 7.7 Hz), 6.97 (t, 1 H, *J* = 7.7 Hz), 6.93 (d, 2 H, *J* = 8.4 Hz), 6.84-6.89 (m, 4 H), 3.25 (s, 3 H), 3.22 (s, 3 H), 2.18 (s, 3 H), 1.81 (s, 3 H).

A solution of **33** (4.22 g, 14 mmol) in 2 N hydrochloric acid (100 ml) was refluxed at 100°C. After 22 h, the reaction mixture was neutralized with Na₂CO₃, and extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, and evaporated. The crude product was purified by silica gel column chromatography (CH₂Cl₂: MeOH : NH₄OH = 8 : 1 : 0.2) to give **34** (3.67 g, quant). **34**: ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, 2 H, *J* = 7.7 Hz), 7.08 (t, 1 H, *J* = 7.5 Hz), 6.94 (d, 2 H, *J* = 7.3 Hz), 6.72 (d, 2 H, *J* = 8.8 Hz), 6.42 (d, 2 H, *J* = 8.8 Hz), 3.75 (brs, 1 H), 3.33 (s, 3 H), 3.25 (s, 3 H), 2.79 (s, 3 H).

A 1 N hydrochloric acid ether solution (2 ml) was added to a solution of **34** (124 mg, 0.46 mmol) in MeOH (2 ml), then the mixture was stirred for 30 min, and evaporated to give **34**-dihydrochloride (166 g, quant). Aluminum chloride (1.76 g, 13 mmol) was added to a solution of N_N -dicyano- N_N -dimethyl-*para*- phenylenediamine (1.03 g, 5.5 mmol).

see the section on synthesis of **21**) in chlorobenzene (15 ml) and the mixture was heated at 160°C under mechanical stirring in an argon atmosphere. After 1 h, **34**-dihydrochloride (3.43 g, 10 mmol) was added, and the mixture was refluxed for 22 h. It was then neutralized with 2 N NaOH, and extracted with CH_2Cl_2 . The organic layer was dried over Na_2SO_4 , and evaporated. The crude product was purified by silica gel column chromatography (CH_2Cl_2 : MeOH : $NH_4OH = 8 : 1 : 0.2$) to give **23a** (1.36 g, 37 %). **23a**: 'H NMR (400 MHz, $CDCl_3$) δ 7.17 (t, 4 H, J = 7.9 Hz), 6.97 (t, 2 H, J = 7.3 Hz), 6.90 (d, 4 H, J = 7.3 Hz), 6.77 (m, 12 H), 3.13 (s, 6 H), 3.09 (s, 6 H), 3.04 (s, 12 H). **23b** (**23a·4HCl**): colorless prisms (MeOH-AcOEt); mp >300°C; 'H NMR (400 MHz, D₂O, 30°C) δ 7.15-7.21 (m, 6 H), 6.91 (d, 4 H, J = 7.2 Hz), 6.76 (d, 4 H, J = 8.8 Hz), 6.71 (s, 4 H), 6.71 (d, 4 H, J = 8.8 Hz), 3.30 (s, 6 H), 3.27 (s, 12 H), 3.23 (s, 6 H).

参考文献

参考文献

- 1 Yamamoto, Y.; Kojima, S. in "The Chemistry of Amidines and Imidates" vol. 2, Chap. 10, Patai, S.; Rappoport, Z. (eds.) John Wiley & Sons, New York, 1991.
- 2 Gund, P. J. Chem. Educ. 1972, 49, 100-103.
- (a) Capitani, J. F.; Pedersen, L. Chem. Phys. Lett. 1978, 54, 547-550. (b) Sapse, A.
 M.; Massa, L. J. J. Org. Chem. 1980, 45, 719-721. (c) Mills, N. S.; Shapiro, J.;
 Hollingsworth, M. J. Am. Chem. Soc. 1981, 103, 1263-1264. (d) Ohwada, T.; Itai, A.;
 Ohta, T.; Shudo, K. J. Am. Chem. Soc. 1987, 109, 7036-7041. (e) Williams, M. L.;
 Gready, J. E. J. Comput. Chem. 1989, 10, 35-54.
- 4 Wiberg, K. B. J. Am. Chem. Soc. 1990, 112, 4177-4182.
- 5 Gobbi, A.; Frenking, G. J. Am. Chem. Soc. 1993, 115, 2362-2372.
- 6 (a) Galán, A.; de Mendoza, J.; Toiron, C.; Bruix, M.; Deslongchamps, G.; Rebek, J. Jr. J. Am. Chem. Soc. 1991, 113, 9424-9425. (b) Deslongchamps, G.; Galán, A.; de Mendoza, J.; Rebek, J. Jr. Angew. Chem. Int. Ed. Engel. 1992, 31, 61-63. (c) Kato, Y.; Conn, M. M.; Rebek, J. Jr. J. Am. Chem. Soc. 1994, 116, 3279-3284. (d) Schiessl, P.; Schmidtchen, F. P. J. Org. Chem. 1994, 59, 509-511. (e) Peschke, W.; Schiessl, P.; Schmidtchen, F. P.; Bissinger, P.; Schier, A. J. Org. Chem. 1995, 60, 1039-1043. (f) Jubian, V.; Veronese, A.; Dixon, R. P.; Hamilton, A. D. Angew. Chem. Int. Ed. Engel. 1995, 34, 1237-1239. (g) Molina, P.; Alajarín, M.; Sánchez-Andrada, P. Tetrahedron Lett. 1995, 36, 9405-9408. (h) Perreault, D. M.; Cabell, L. A.; Anslyn, E. V. Bioorg. Med. Chem. 1997, 5, 1209-1220.
- 7 (a) Sánchez-Quesada, J.; Seel, C.; Prados, P.; de Mendoza, J.; Dalcol, I.; Giralt, E. J. Am. Chem. Soc. 1996, 118, 277-278. (b) Russell, V. A.; Evans, C. C.; Li, W.; Ward, M. D. Science 1997, 276, 575-578.
- 8 (a) Haas, D. J.; Harris, D. R.; Mills, H. Acta Crystallogr. 1965, 19, 676-679. (b)
 Adams, J. M.; Small, R. W. H. Acta Cryst. 1974, B30, 2191-2193. (c) Pajak, Z.;
 Grottel, M.; Koziol, A. E. J. Chem. Soc., Faraday Trans. 2 1982, 78, 1529-1538. (d)
 Kozak, A.; Grottel, M.; Koziol, A. E.; Pajak, Z. J. Phys. C 1987, 20, 5433-5447.
- 9 Angell, C. L.; Sheppard, N.; Yamaguchi, A.; Shimanouchi, T.; Miyazawa, T.; Mizushima, S. Trans. Faraday Soc. 1957, 53, 589-600.
- 10 Cotton, F. A.; Day, V. W.; Hazen, Jr., E. E.; Larsen, S. J. Am. Chem. Soc. 1973, 95, 4834-4840.
- 11 Kato, Y.; Haimoto, Y.; Sakurai, K. Bull. Chem. Soc. Jpn. 1979, 52, 233-234.
- 12 Kanamori, K.; Roberts, J. D. J. Am. Chem. Soc. 1983, 105, 4698-4701.

参考文献

- 13 Botto, R. E.; Schwartz, J. H.; Roberts, J. D. Proc. Natl. Acad. Sci. USA 1980, 77, 23-25.
- [4 (a) Bryden, J. H.; Burkardt, L. A.; Hughes, E. W.; Donohue, J. Acta Crystallogr. 1956, 9, 573. (b) Alléaume, M.; Gulko, A.; Herbstein, F. H.; Kapon, M.; Marsh, R. E. Acta Chrystallogr., Sect. B 1976, 32, 669. (c) Sullivan, G. R.; Roberts, J. D. J. Org. Chem. 1977, 42, 1095. (d) Moffat, J. B. J. Mol. Struct. 1981, 86, 119. (e) Boyar, A.; Marsh, R. E. J. Am. Chem. Soc. 1982, 104, 1995-1998. (f) Rice, S.; Cheng, M. Y.; Cramer, R. E.; Mandel, M.; Mower, H. F.; Seff, K. Boyar, A.; Marsh, R. E. J. Am. Chem. Soc. 1984, 106, 239-243.
- (a) Greenhill, J. L.; Lue, P. in "Progress in Medicinal Chemistry" vol 30, Chapter 5, Ellis, G. P.; Luscombe, D. K. (eds.), Elsevier Science, 1993. (b) Greenhill, J. V.; Lue, P. Prog. Med. Chem. 1993, 30, 203-326.
- 16 医学のあゆみ 1994, 170 (13), 1076-1077.
- (a) White, K. A.; Marletta, M. A. Biochemistry 1992, 31, 6627-6631. (b) Ignarro, L. J. Biochem. Soc. Trans. 1992, 20, 465-469. (c) Fukuto J. M., Stuehr D. J., Feldman P. L., Bova M. P., Wong P., J. Med. Chem. 1993, 36, 2666-2670. (d) Beaumier, L.; Castillo, L.; Yu, Y. M.; Ajami, A. M.; Young, V. R. Biomed. & Environment. Sci. 1996, 9, 296-315.
- (a) Mitchell, J. B. O.; Thornton, J. M.; Singh, J. J. Mol. Biol. 1992, 226, 251-262.
 (b) Flocco, M. M.; Mowbray, S. L. J. Mol. Biol. 1994, 235, 709-717.
- (a) Dempcy, R. O.; Browne, K. A.; Bruice, T. J. Am. Chem. Soc. 1995, 117, 6140-6141.
 (b) Blaskó, A.; Dempcy, R. O.; Minyat, E. E.; Bruice, T. C. J. Am. Chem. Soc. 1996, 118, 7892-7899.
 (c) Luo, J.; Bruice, T. C. J. Am. Chem. Soc. 1997, 119, 6693-6701.
- 20 Martin, W. R. J. Pharm. Exp. Ther. 1976, 197, 517-532.
- 21 Scherz M. W.; Fialeix M.; Fischer J.B.; Reddy N. L.; Server A. C.; Sonders M. S.; Tester B. C.; Weber E.; Wong S. T.; Keana J. F. W. *J. Med. Chem.* **1990**, *33*, 2421-2429.
- 22 (a) Reddy, N. L.; Hu, L.-Y.; Cotter, R. E.; Fischer, J. B.; Wong, W. J.; McBurney, R. N.; Weber, E.; Holmes, D. L.; Wong, S. T.; Prasad, R.; Keana, J. F. K. *J. Med. Chem.* **1994**, *37*, 260-267. (b) Reddy, N. L.; Connaughton, S.; Daly, D.; Fischer, J. B. Bioorg, Med. Chem. Lett. **1995**, *5*, 2259-2262.
- 23 Shudo, K.; Kagechika, H. Structural Evolution of Retinoids. Adv.Drug Res. 1993, 24, 81-119.
- 24 Kagechika, H.; Kawachi, E.; Hashmoto, Y.; Himi, T.; Shudo, K. J. Med. Chem. 1988, 31, 2182-2192.

- 25 (a) Kagechika, H.; Himi, T.; Kawachi, E.; Hashmoto, Y.; Shudo, K. J. Med. Chem 1989., 32, 2292-2296. (b) Toriumi, Y.; Kasuya, A.; Itai, A. J. Org. Chem. 1990, 55, 259.
- 26 Kashino, S.; Ito, K.; Haisa, M. Bull. Chem. Soc. Jpn. 1979, 52, 365-369.
- 27 Itai, A.; Toriumi, Y.; Tomioka, N.; Kagechika, H.; Azumaya, I.; Shudo, K. *Tetrahedron Lett.* **1989**, *30*, 6177-6180.
- 28 Azumaya, I.; Kagechika, H.; Yamaguchi, K.; Shudo, K. Tetrahedron 1995, 51, 5277-5290.
- 29 Azumaya, I.; Yamaguchi, K.; Okamoto, I.; Kagechika, H.; Shudo, K. J. Am. Chem. Soc. 1995, 117, 9083-9084.
- 30 Azumaya, I.; Kagechika, H.; Yamaguchi, K.; Shudo, K. Tetrahedron Lett. 1996, 37, 5003-5006.
- 31 Dannecker, W.; Kopf, J.; Rust, E. Cryst. Struct. Comm. 1979, 8, 429-432.
- 32 伊藤有史:マスター論文(1992年)
- (a) Carpy, P. A.; Leger, J.-M.; Wermuth, C.-G.; Leclerc, G. Acta Cryst. 1981, B37, 885-889.
 (b) Brown, C. J.; Gash, D. J. Acta Cryst. 1984, C40, 562-564.
 (c) Antolini, L.; Marchetti, A.; Preti, C.; Tagliazucchi, M.; Tassi, L.; Tosi, G. Aust. J. Chem. 1991, 44, 1761-1769.
- 34 Levallet, C.; Lerpiniere, J.; Ko, S. Y. Tetrahedron 1997, 53, 5291-5304.
- 35 Ko, S. Y.; Lerpiniere, J.; Christofi, M. SYNLETT 1995, 815-816.
- 36 Vidaluc, J.-L.; Calmel, F.; Bigg, D.; Carilla, E.; Stenger, A.; Chopin, P.; Briley, M. J. Med. Chem. 1994, 37, 689-695.
- 37 Zakhararov, L. N.; Adrianof, V. G.; Struchkov, Y. T. Kristallografiya 1980, 25, 65-71.
- 38 Tanatani, A.; Kagechika, H.; Azumaya, I.; Yamaguchi, K.; Shudo, K. Chem. Pharm. Bull. 1996, 44, 1135-1137.
- 39 Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. Tetrahedron 1995, 51, 8665-8701.
- ⁴⁰ (a) Clough, R. L.; Kung, W. J.; Marsh, R. E.; Roberts, J. D. J. Org. Chem. **1976**, 41, 3603-3609. (b) Cozzi, F. Cinquini, M.; Annuziata, R.; Dwyer, T.; Siegel, J. S. J. Am. Chem. Soc. **1992**, 114, 5729-5733. (c) Cozzi, F.; Cinquini, M.; Annuziata, R.; Siegel, J. S. J. Am. Chem. Soc. **1993**, 115, 5330-5331.
- 41 Santoro, A. V.; Mickevicious, G. J. Org. Chem. 1979, 44, 117-120.
- 42 Oki, M. Applications of Dynamic NMR Spectroscopy to Organic Chemistry, VCH Publishers, Inc.: Florida, 1985.
- ⁴³ (a) Gutowsky, H. S.; Holm, C. H.; J. Chem. Phys. **1956**, 25, 1228-1234. (b) Jaeschke, A.; Muensch, H.; Schmid, H. C.; Friebolin, H.; Mannschreck, A. J. Mol.

警考文献

Spectrosc. 1969, 31, 14-31.

- 44 Stewart, W. E.; Siddall, T. H. III Chem. Rev. 1970, 70, 517-551.
- 45 Bally, T.; Diehl, P.; Haselbach, E.; Tracey, A. S. Helv. Chem. Acta. 1975, 58, 2398-2402.
- 46 Saito, S.; Toriumi, Y.; Tomioka, N.; Itai, A. J. Org. Chem. 1995, 60, 4715-4720.
- 47 化学増刊モレキュラー・キラリティー(原 昭二・古賀 憲司・首藤 紘一編) 1993,123.
- 48 Recent selected papers on molecular chirality: (a)Toda, F.; Yagi, M.; Soda, S. J. Chem. Soc., Chem. Commun. 1987, 1413.; (b) Casarini, D.; Lunazzi, L.; Pasquali, F.; Gasparrini, F.; Villani, C. J. Amer. Chem. Soc. 1992, 114, 6521.; (c) Shieh, W.-C.; Carlson, J. A. J. Org. Chem. 1994, 59, 5463. (d) Gasparrini, F.; Lunazzi, L.; Misiti, D.; Villani, C. Acc. Chem. Res. 1995, 28, 163-170. (e) DeRossi, U.; Dähne, S.; Meskers, S. C. J.; Dekkers, P. J. M. Angew. Chem. Int. Ed. Engl. 1996, 35, 760-763. (f) Koshima, H.; Ding, K.; Chisaka, Y.; Matsuura, T. J. Am. Chem. Soc. 1996, 118, 12059-12065. (g) Sakamoto, M. Chem. Eur. J. 1997, 3, 684-689. (h) Suh, I.-H.; Park, K. H.; Jensen, W. P.; Lewis, D. E. J. Chem. Educ. 1997, 74, 800-805.
- 49 Bijvoet, J. M.; Peerdeman, A. F.; van Bommel, A. J. Nature 1951, 271-271.
- 50 (a) Ito, S.; Morita, N.; Asao, T. Tetrahedron Lett. 1992, 33, 6669-6672. (b) Ito, S.; Morita, N.; Asao, T. Tetrahedron Lett. 1994, 35, 3723-3726. (c) Rappoport, Z.; Biali, S. E. Acc. Chem. Res. 1997, 30, 307-314.
- 51 Yamaguchi, K.; Matsumura, G.; Kagechika, H.; Azumaya, I.; Ito, Y.; Itai, A.; Shudo, K. J. Am. Chem. Soc. 1991, 113, 5474-5475.
- 52 Tanatani, A.; Kagechika, H.; Azumaya, I.; Fukutomi, R.; Ito, Y.; Yamaguchi, K.; Shudo, K. Tetrahedron Lett. 1997, 38, 4425-4428.
- 53 (a) Jorgensen, W. L.; Severance, D. L. J. Am. Chem. Soc. 1990, 112, 4768-4774. (b) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525-5534. (c) Hobza, P.; Selzle, H. L.; Schlag, E. W. J. Am. Chem. Soc. 1994, 116, 3500-3506. (d) Chipot. C.; Jaffe, R.; Maigret, B.; Pearlman, D. A.; Kollman, P. A. J. Am. Chem. Soc. 1996, 118, 11217-11224.
- ⁵⁴ (a) Hopf, H.; Witulski, B.; Bubenitschek, P.; Jones, P. G. Angew. Chem. Int. Ed. Engl.
 1992, 31, 1073-1074. (b) Nugent, H. M.; Rosenblum, M.; Klemarczyk, P. J. Am.
 Chem. Soc. **1993**, 115, 3848-3849. (c) Mataka, S.; Mitoma, Y.; Sawada, T.; Tashiro,
 M. Tetrahedron Lett. **1996**, 37, 65-68. (d) Breidenbach, S.; Ohren, S.; Vögte, F.
 Chem. Eur. J. **1996**, 2, 832-837.
- 55 Martin, R. H. Angew. Chem. Int. Ed. Engl. 1974, 13, 649-660.
- 56 Recent selected papers: (a) Geib, S. J.; Vicent, C.; Fan, E.; Hamilton, A. D. Angew.

参考文献

Chem. Int. Ed. Engl. 1993, 32, 119-121. (b) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. Angew. Chem., Int. Ed. Engl. 1994, 33, 446-448. (c) Hanessian, S.; Gomtsyan, A.; Simard, M.; Roelens, S. J. Am. Chem. Soc. 1994, 116, 4495-4496.

- 57 (a) Constable, E. C. Tetrahedron 1992, 48, 10013-10059. (b) Lehn, J.-M. Supramolecular Chemistry, VCH, Weinheim, 1995, Chapter 9. (c) Williams, A. Chem. Eur. J. 1997, 3, 15-19.
- 58 Fukutomi, R.; Kagechika, H.; Hashimoto, Y.; Shudo, K. Chem. Pharm. Bull. 1996, 44, 1983-1985.
- 59 (a) Turner, P. R.; Denny, W. A. Mutation Res. 1996, 355, 141-169. (b) Neidle, S. Biopoly, 1997, 44, 105-121.
- 60 最近、Distamycinが2分子並んでマイナーグルーブに結合するという報告や、 Dervanらのヘアピン構造をもつマイナーグルーブバインダーの報告がある
 (a) Pelton, J. G.; Wemmer, D. E. Proc. Natl. Acad. Sci. USA 1989, 86, 5723-5727.
 (b) Pelton, J. G.; Wemmer, D. E. J. Am. Chem. Soc. 1990, 112, 1393-1399.
 (c) Mrksich, M.; Wade, W. S.; Dwyer, T. J.; Geierstanger, B. H.; Wemmer, D. E.; Dervan, P. B. Proc. Natl. Acad. Sci. USA 1991, 89, 7586-7590.
 (d) Wade, W. S.; Mrksich, W.; Dervan, P. B. J. Am. Chem. Soc. 1991, 114, 8783-8794.
 (e) Chen, X.; Ramakrishnan, B.; Rao, S. T.; Sundaralingam, M. Nature Str. Biol. 1994, 1, 169-175.
 (f) Parks, M. E.; Dervan, P. B. Bioorg. Med. Chem. 1996, 4, 1045-1050.
- 61 Oxley, P.; Partridge, M. W.; Short, W. F. J. Chem. Soc. 1947, 1110-1116.
- 62 Pappo, R.; Allen, D. S. Jr.; Lemieux, R. U.; Johnson, W. S. J. Org. Chem. 1956, 21, 478-479.
- 63 Mai, K.; Patil, G. Tetrahedron Lett. 1984, 25, 4583-4586.
- 64 Desobry, V.; Kündig, E. P. Helv. Chim. Acta 1981, 64, 1288-1297.
- 65 Fauss, R.; Riebel, H. J. Chem. Abstr. 106: 49795j.

谢 辞

本研究を行うにあたり、御指導、御鞭撻いただいた東京大学薬学部薬化学教室・ 首藤紘一教授に心より感謝の意を表します。また、常にあたたかい御指導、御助 言を与えて下さった影近弘之博士に感謝いたします。X線結晶解析をしていただ き適切な御助言を下さった千葉大学中央分析センター・山口健太郎助教授に深く 感謝いたします。共同研究者として豊富なアイデアを提供して下さった福富竜太 修士に感謝いたします。また、NMRやX線結晶解析に関する有益な御助言を下さっ た東屋功博士に感謝いたします。さらにいろいろな角度からアドバイスを下さっ た遠藤泰之助教授及び大和田智彦博士をはじめとする薬化学教室のみなさまに感 謝いたします。最後に終始あたたかく見守って下さった父母、妹に心より感謝い たします。

1998.3.3 棚谷 綾

谢 辞
Appendix

Index

X-ray Structure Reports

1	N,N'-Diphenylguanidine (1, chiral crystal)	s2 - s5
2	N,N'-Diphenylguanidine (1, racemic crystal)	s6 - s10
3	N-Methyl-N,N'-diphenylguanidine (2)	s11 - s13
4	N-Methyl-N',N''-diphenylguanidine (3)	s14 - s17
5	N.N'-Dimethyl-N,N'-diphenylguanidine (4a)	s18 - s22
6	N,N'-Dimethyl-N,N'-diphenylguanidinium Bromide (4b)	s23 - s26
7	N,N,N'-Trimethyl-N',N''-diphenylguanidine (5)	s27 - s30
8	N,N,N',N''-Tetramethyl-N',N''-diphenylguanidinium Iodide (6)	
	(+)-Crystal	s31 - s34
9	(–)-Crystal	s35 - s38
10	N-Phenylbenzamidinium Chloride (7)	s39 - s41
11	N-Methyl-N-phenylbenzamidinium Chloride (8)	s42 - s44
12	meta-Diamidine (9)	s45-s48
13	para-Diamidine (10)	s49 - s51
14	cyclic-Triamidine (11)	s52 - s55
15	N,N'-Diphenylthiourea (12)	s56 - s58
16	N,N'-Dimethyl-N.N'-diphenylthiourea (13)	s59 - s61
17	(±)- N , N' -Bis(β -alanyl)- N , N' -diphenylurea (14)	s62 - s65
18	N,N'-Dimethyl-N.N'-diphenylurea	
	[Bis(tricarbonyl)chlomium] Complex (15)	s66 - s70
19	meta-Substituted Diguanidinium Iodide (19)	s71 - s74
20	para-Substituted Diguanidinium Iodide (20)	s75 - s77
21	meta-Substituted Tetraguanidinium Chloride (21)	s78 - s84
22	para-Substituted Tetraguanidinium Chloride (22)	s85 - s88
Powe	der X-ray Crystallographical Data of 1	s89 - s90

N,N'-Diphenylguanidine (1, chiral crystal)

A. Crystal Data Empirical Formula Formula Weight Crystal Color. Habit Crystal Dimensions Crystal System Lattice Type Indexing Images Detector Position Detector Position Detector Swing Angle Pixel Size Lattice Parameters

- $\begin{array}{l} \text{Space Group} \\ Z \text{ value} \\ D_{edc} \\ F_{col} \\ \mu(MoK\alpha) \\ B. \text{ Intensity Measurements} \\ Diffractometer \\ Radiation \end{array}$
- Detector Aperture Data Images Oscillation Range Detector Position Detector Swing Angle Pixel Size 20_{max} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No.Observations (1>1.505(1)) No.Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff, Map Minimum peak in Final Diff, Map

C₁,H₁,N₁ 211.27 clear, prism 0.30 X 0.30 X 0.30 mm orthorhombic Primitive 3 oscillations @ 5.0 minutes 86.33 mm 0.00" 0.203 mm a = 12.653(5)Å b = 20.54(2) Å c = 8.944(5) Å $V = 2324(2) \text{ Å}^3$ P2,2,2, (#19) 1.207 g/cm' 896.00 0.75 cm1 RAXIS-II $MoK\alpha (\lambda = 0.71070 \text{ Å})$ graphite monochromated 200 mm x 200 mm 15 exposures @ 5.0 minutes 7.0° 86.33 mm 0.00° 0.203 mm 54.1° Total: 4670 Unique: 3231 (R_{int} = 0.069) Lorentz-polarization Secondary Extinction (coefficient: 3.72051e-05)

Direct Methods (SAPI91) Full-matrix least-squares $\Sigma \le (IFo| - |Fc|)^2$ $w = 1/[G2(Fo_2) + P^2 + P]$ 0.0100 All non-hydrogen atoms 2694 290 9.29 0.085; 0.091 1.78 0.02 0.25 e/\tilde{A}^3 -0.25 e/\tilde{A}^3

Table 1-1. Atomic coordinates and Biso/Beq

atom	X	y	Z	Beg
N(1)	0.7685(3)	0.2667(2)	-0.0320(4)	8.0(1)
N(2)	0.7048(3)	0.2798(2)	0.2116(4)	7.18(9)
N(3)	0.6508(3)	0.1944(2)	0.0602(4)	7.9(1)
N(4)	0.7466(4)	0.8330(2)	-0.0440(4)	9.0(1)
N(5)	0.7889(3)	0.8228(2)	0.2088(4)	7.10(9)
N(6)	0.8439(3)	0.7471(2)	0.0318(4)	7.27(10)
C(1)	0.7920(4)	0.8026(2)	0.0727(4)	6.8(1)
C(2)	0.7353(3)	0.8818(2)	0.2397(4)	6.8(1)
C(3)	0.7850(5)	0.9399(3)	0.239(1)	12.5(2)
C(4)	0.7331(7)	0.9966(4)	0.276(2)	14.8(3)
C(5)	0.6373(6)	0.9970(3)	0.3221(8)	9.7(2)
C(6)	0.5862(5)	0.9408(4)	0.3292(9)	11.5(2)
C(7)	0.6346(4)	0.8827(3)	0.2903(9)	10.3(2)
C(8)	0.9085(3)	0.7062(2)	0.1163(5)	6.5(1)
C(9)	0.9271(4)	0.6440(2)	0.0591(6)	8.0(1)
C(10)	0.9896(5)	0.6012(3)	0.1333(8)	9.4(2)
C(11)	1.0353(4)	0.6188(4)	0.2667(8)	10.3(2)
C(12)	1.0183(4)	0.6791(4)	0.3223(7)	9.8(2)
C(13)	0.9562(4)	0.7233(3)	0.2489(5)	8.1(1)
C(14)	0.7077(4)	0.2504(2)	0.0834(4)	6.9(1)
C(15)	0.5586(4)	0.1720(2)	0.1272(5)	7.0(1)
C(16)	0.5056(4)	0.2065(2)	0.2368(5)	7.3(1)
C(17)	0.4160(4)	0.1812(3)	0.2995(6)	8,8(2)
C(18)	0.3758(5)	0.1229(4)	0.2521(8)	10.0(2)
C(19)	0.4258(5)	0.0901(3)	0.1427(9)	10.0(2)
C(20)	0.5165(5)	0.1135(3)	0.0781(6)	9.0(2)
C(21)	0.7552(4)	0.3412(2)	0.2217(5)	7.6(1)
C(22)	0.7127(5)	0.3948(3)	0.1481(7)	10.4(2)
C(23)	0.7614(9)	0.4552(4)	0.178(1)	14.4(3)
C(24)	0.840(1)	0.4630(6)	0.273(1)	15.1(4)
C(25)	0.8794(8)	0.4101(6)	0.3403(8)	13.6(3)
C(26)	0.8379(5)	0.3494(3)	0.3154(6)	9.7(2)

Table 1-2. Anisotropic Displacement Parameters

atom	U11	U22	U33	U12	UI3	U23
N(1)	0.103(3)	0.126(3)	0.073(2)	-0.011(2)	0.018(2)	-0.012(2)
N(2)	0.112(3)	0.096(3)	0.066(2)	-0.014(2)	0.007(2)	-0.004(2)
N(3)	0.109(3)	0.116(3)	0.077(2)	-0.011(2)	0.015(2)	-0.020(2)
N(4)	0.147(4)	0.119(3)	0.076(2)	0.027(2)	-0.011(2)	0.004(2)
N(5)	0.113(3)	0.088(2)	0.069(2)	0.004(2)	-0.006(2)	0.003(2)
N(6)	0.113(3)	0.096(3)	0.067(2)	0.013(2)	-0.006(2)	-0.004(2)
C(1)	0.100(3)	0.090(3)	0.070(2)	-0.005(2)	-0.001(2)	0.014(2)
C(2)	0.099(3)	0.087(3)	0.071(2)	-0.001(2)	0.001(2)	0.004(2)
C(3)	0.130(4)	0.102(5)	0.244(9)	-0.020(3)	0.075(5)	-0.028(5)
C(4)	0.142(6)	0.104(5)	0.32(1)	-0.027(4)	0.058(7)	-0.038(6)
C(5)	0.131(5)	0.104(4)	0.134(5)	-0.001(4)	0.008(3)	-0.005(3)
C(6)	0.107(4)	0.141(6)	0.188(6)	0.018(4)	0.024(4)	0.002(5)
C(7)	0.094(4)	0.104(4)	0.195(6)	-0.002(3)	0.015(4)	0.008(4)
C(8)	0.083(3)	0.087(3)	0.077(2)	-0.009(2)	0.009(2)	0.002(2)
C(9)	0.102(3)	0.093(3)	0.109(3)	-0.008(2)	-0.008(3)	0.003(3)
C(10)	0.119(4)	0.105(4)	0.131(5)	0.005(3)	-0.001(4)	0.014(3)
C(11)	0.108(4)	0.149(5)	0.136(5)	0.033(4)	-0.003(4)	0.031(5)
C(12)	0.103(4)	0.162(6)	0.106(4)	0.021(4)	-0.016(3)	0.001(4)
C(13)	0.102(3)	0.121(4)	0.085(3)	0.001(3)	-0.008(2)	-0.004(3)
C(14)	0.095(3)	0.100(3)	0.067(2)	0.000(2)	0.009(2)	-0.005(2)
C(15)	0.096(3)	0.096(3)	0.076(2)	-0.005(2)	-0.004(2)	0.011(2)
C(16)	0.094(3)	0.107(3)	0.078(3)	-0.004(2)	0.002(2)	0.011(3)
C(17)	0.105(4)	0.133(5)	0.096(3)	0.006(3)	0.006(3)	0.023(3)
C(18)	0.104(4)	0.137(5)	0.140(5)	-0.005(4)	0.009(4)	0.048(5)
C(19)	0.111(4)	0.104(4)	0.165(6)	-0.024(3)	-0.014(4)	0.020(4)
C(20)	0.121(4)	0.095(4)	0,127(4)	-0.009(3)	-0.003(3)	-0.004(3)
C(21)	0.111(3)	0.095(4)	0,081(3)	-0.005(3)	0.023(2)	-0.015(2)
C(22)	0.162(5)	0.102(5)	0.130(4)	0.024(4)	0.038(4)	-0.003(4)
C(23)	0.26(1)	0.082(5)	0.208(9)	0.021(6)	0.093(8)	-0.007(5)
C(24)	0.27(1)	0.155(9)	0.147(8)	-0.111(9)	0.077(8)	-0.059(7)
C(25)	0.205(8)	0.196(9)	0.115(5)	-0.096(8)	0.033(5)	-0.028(6)
C(26)	0.133(4)	0.150(5)	0.085(3)	-0.040(4)	0.005(3)	-0.006(3)

Table 1-3. Bond Lengths (Å)

atom	atom	distance	atom	atom	distance
N(1)	C(14)	1.332(6)	N(2)	C(14)	1.297(5)
N(2)	C(21)	1.416(6)	N(3)	C(14)	1.371(6)
N(3)	C(15)	1.390(6)	N(4)	C(1)	1.344(6)
N(5)	C(1)	1.286(5)	N(5)	C(2)	1.416(6)
N(6)	C(1)	1.367(6)	N(6)	C(8)	1.395(6)
C(2)	C(3)	1.349(7)	C(2)	C(7)	1.353(7)
C(3)	C(4)	1.38(1)	C(4)	C(5)	1.282(10)
C(5)	C(6)	1.325(9)	C(6)	C(7)	1.387(9)
C(8)	C(9)	1.395(6)	C(8)	C(13)	1.375(6)
C(9)	C(10)	1,356(7)	C(10)	C(11)	1.373(9)
C(11)	C(12)	1.351(9)	C(12)	C(13)	1.368(8)
C(15)	C(16)	1.384(7)	C(15)	C(20)	1.386(7)
C(16)	C(17)	1.368(7)	C(17)	C(18)	1.367(9)
C(18)	C(19)	1.347(9)	C(19)	C(20)	1.372(9)
C(21)	C(22)	1.390(8)	C(21)	C(26)	1.349(8)
C(22)	C(23)	1.41(1)	C(23)	C(24)	1.31(2)
C(24)	C(25)	1,34(2)	C(25)	C(26)	1.37(1)

Table 1-4. Bond Angles (deg)

atom C(14) C(1) N(4) N(5) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(1) N(3) C(16) C(16) C(16) C(18) N(2) C(22) C(22) C(3) C(2) C(3) C(10) C(10) C(16) C(16) C(16) C(16) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(3) C(2) C(2) C(3) C(10) C(16) C(16) C(2) C(2) C(2) C(2) C(2) C(2) C(2) N(1) C(2) C(aiom N(2) N(5) C(1) C(1) C(2) C(3) C(3) C(7) C(8) C(11) C(13) C(14) C(15) C(15) C(15) C(15) C(15) C(15) C(15) C(21) C(21) C(21) C(23)	atom C(21) C(2) N(5) C(7) C(4) C(6) C(6) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(20) C(20) C(22) C(22) C(22) C(22) C(22) C(24) C(22)	angle 117.2(4) 118.4(3) 124.9(4) 122.5(4) 122.5(4) 122.5(4) 121.8(6) 118.1(6) 120.9(5) 124.8(4) 120.9(5) 119.7(5) 119.7(5) 123.1(4) 118.8(5) 120.1(5) 119.7(5) 124.0(10) 121.6(9)	atom C(14) C(1) N(4) N(5) C(3) C(3) C(3) C(3) C(3) C(3) C(3) C(1) N(6) C(9) C(9) C(9) C(11) N(2) N(2) N(2) N(2) N(2) C(17) C(15) C(21) C(21) C(22)	atom N(3) N(6) C(1) C(2) C(2) C(4) C(2) C(4) C(8) C(12) C(14) C(15) C(16) C(15) C(16) C(20) C(21) C(21) C(22) C(24) C(24)	atom C(15) C(8) N(6) C(3) C(7) C(5) C(7) C(13) C(11) C(11) C(11) N(2) N(3) C(20) C(17) C(19) C(26) C(19) C(25) C(25)	angle 130.6(4) 129.8(3) 112.7(4) 122.3(4) 115.2(5) 122.3(6) 121.4(6) 116.9(4) 118.4(5) 125.8(4) 120.6(4) 120.6(4) 118.1(4) 120.0(5) 119.3(5) 119.4(6) 119.8(5) 119.4(6) 119.8(5) 119.8(6)
--	--	--	--	---	--	--	---

Table 1-5. Least Squares Planes

Plane n	umber 1			Plane number	4	
Atoms	defining plane	Distance		Atoms definin	g plane	Distance
	C(1)	-0.002(4)		N(1)		0.007(4)
1	N(4)	0.001(5)		N(2)		0.007(4)
	N(5)	0.001(4)		N(3)		0.006(4)
	N(6)	0.001(4)		C(14)		-0.026(5)
Plane n	umber 2	100.000		Plane number	5	
Atoms	defining plane	Distance		Atoms definin	g plane	Distance
4	C(2)	-0.007(4)		C(15)	o r	0.011(4)
	C(3)	0.036(10)		C(16)		-0.014(5)
1	C(4)	-0.01(1)		C(17)		0.005(5)
1	C(5)	-0.005(7)		C(18)		0.006(6)
N	C(6)	-0.002(8)		C(19)		-0.005(6)
	C(7)	0.016(7)		C(20)		-0.009(6)
Plane n	umber 3			Plane number	6	
Atoms	defining plane	Distance		Atoms defining	g plane	Distance
(C(8)	-0.004(4)		C(21)		-0.002(4)
. (C(9)	0.003(5)		C(22)		-0.001(6)
(C(10)	0.004(6)		C(23)		0.015(8)
1	C(11)	-0.006(6)		C(24)		-0.015(9)
1	C(12)	-0.002(6)		C(25)		-0.003(8)
. (C(13)	0.008(5)		C(26)		0.006(5)
Summa	ry	plane	mean devia	tion	CHI	
		1	0.0011		0.4	
		2	0.0132		22.2	
		3	0.0045		5.5	
		4	0.0115		40.0	
		5	0.0083		21.5	
-		6	0.0071		7.2	
Dihedra	al angles betwee	en planes (deg)				
plane	1	2	3	4	5	
4	86.70					
3	22.89	105.03				
4	73.59	50.57	76.37			
2	84,17	28.14	94.16	23.68	- Incore	
0	55.12	119.60	33.16	72.89	96.34	

N,N'-Diphenylguanidine (1, racemic crystal)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions. Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 20_{max} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (I>3.00σ(I)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

C.H.N. 211.27 colorless, prismatic 0.30 X 0.30 X 0.48 mm monoclinic Primitive 20 (28.2 - 31.4") 0.37 a = 8.906(2)Å b = 12.342(1) Å c = 21.335(2) Å $\beta = 96.66(1)o$ $V = 2329.1(6) \text{ Å}^3$ P2./c (#14) 1.205 g/cm 896.00 5.83 cm **Rigaku AFC7S** $CuK\alpha$ ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factor = 8.99) 6.0 9.0 nun horizontal 13.0 mm vertical 235 mm 23.0°C ω-20 16.0°/min (in w) (up to 3 scans) $(1.68 + 0.30 \tan \theta)^{\circ}$ 120.2 Total: 3913 Unique: 3650 (Rint = 0.021) Lorentz-polarization Secondary Extinction (coefficient: 2.69339e-05)

Direct Methods (SHELXS86) Full-matrix least-squares $\Sigma \le (F_0) - |F_0|^2 \le (F_0)^2 \le F_0^2 + F_0^2 \le F_0^2 + F_0^2 \le F_0^2 \le$

Table 2-1. Atomic coordinates and Biso/Beq

atom	x	v	Z	Beg
N(1)	0.0264(3)	0.1098(2)	0.4107(1)	4.22(6)
N(2)	0.2684(3)	0.0409(2)	0.4487(1)	4.66(7)
N(3)	0.1434(3)	-0.0265(2)	0.3586(1)	5.02(7)
N(4)	0.3108(3)	0.5580(2)	0.1260(1)	4.84(7)
N(5)	0.2254(3)	0.3869(2)	0.1058(1)	5.67(8)
N(6)	0:4824(3)	0.4253(2)	0.1040(1)	4 41(7)
C(1)	0.1418(3)	0.0484(2)	0.4069(1)	4.17(8)
C(2)	0.0654(3)	-0.0223(2)	0.2969(1)	4.26(8)
C(3)	0.0822(4)	-0.1099(3)	0.2583(2)	6.5(1)
C(4)	0.0113(5)	-0.1112(3)	0,1972(2)	7.1(1)
C(5)	-0.0745(4)	-0.0254(3)	0.1738(2)	6.1(1)
C(6)	-0.0900(4)	0.0613(3)	0.2119(2)	6.3(1)
C(7)	-0.0209(4)	0.0640(3)	0.2731(2)	5.27(9)
C(8)	0.0424(3)	0.1933(2)	0.4565(1)	3.94(7)
C(9)	-0.0583(3)	0.1988(3)	0.5012(1)	4.77(8)
C(10)	-0.0479(4)	0.2814(3)	0.5451(2)	5.8(1)
C(11)	0.0617(4)	0.3596(3)	0.5451(2)	6.1(1)
C(12)	0.1613(4)	0.3561(3)	0.5000(2)	5.64(10)
C(13)	0.1521(4)	0.2737(3)	0.4563(1)	4.75(8)
C(14)	0.3478(3)	0.4533(2)	0.1121(1)	4.15(8)
C(15)	0.5082(3)	0.3138(2)	0.0943(1)	4.20(8)

Table 2-1. Atomic coordinates and Biso/Beq (Continued)

atom C(16) C(17) C(18) C(19) C(20) C(21) C(22) C(22) C(23) C(24) C(24) C(25) C(25) C(26)	x 0.5100(4) 0.5379(5) 0.5690(4) 0.5720(4) 0.5720(4) 0.4070(3) 0.3525(4) 0.4364(5) 0.5790(5) 0.6347(4) 0.5489(4)	y 0.2400(3) 0.1319(3) 0.0952(3) 0.1676(3) 0.2764(3) 0.6422(3) 0.7460(3) 0.8181(4) 0.7157(4) 0.6267(3)	2 0.1427(2) 0.1338(2) 0.0761(2) 0.0274(2) 0.1483(1) 0.1402(2) 0.1633(2) 0.1942(2) 0.2029(2) 0.1805(2)	Beq 5.7(1) 7.0(1) 6.7(1) 6.0(1) 4.85(9) 4.46(8) 6.0(1) 7.5(1) 7.2(1) 7.2(1) 7.3(1) 5.8(1)
--	--	---	---	---

Table 2-2. Anisotropic Displacement Parameters

atom	UII	U22	U33	U12	U13	U23
N(1)	0.046(1)	0.062(2)	0.052(2)	0.009(1)	0.003(1)	-0.006(1)
N(2)	0.056(2)	0.065(2)	0.053(2)	0.014(1)	+0.007(1)	-0.006(1)
N(3)	0.075(2)	0.057(2)	0.055(2)	0.017(2)	-0.006(1)	-0.008(1)
N(4)	0.045(2)	0.059(2)	0.079(2)	0.001(1)	0.004(1)	-0.012(1)
N(5)	0.049(2)	0.068(2)	0.097(2)	-0.008(1)	0.004(2)	-0.020(2)
N(6)	0.048(2)	0.050(2)	0.072(2)	-0.002(1)	0.015(1)	-0.006(1)
C(1)	0.057(2)	0.055(2)	0.047(2)	0.004(2)	0.005(2)	0.003(2)
C(2)	0.058(2)	0.053(2)	0.050(2)	-0.001(2)	0.005(2)	-0.006(2)
C(3)	0.108(3)	0.069(3)	0.066(2)	0.024(2)	-0.003(2)	-0.016(2)
C(4)	0.118(4)	0.083(3)	0.067(3)	0.006(3)	-0.003(2)	-0.027(2)
C(5)	0.095(3)	0.079(3)	0.055(2)	-0.013(2)	-0.001(2)	-0.004(2)
C(6)	0.105(3)	0.069(3)	0.061(2)	0.004(2)	-0.014(2)	0.001(2)
C(7)	0.086(3)	0.055(2)	0.057(2)	0.004(2)	-0.004(2)	-0.005(2)
C(8)	0.045(2)	0.058(2)	0.046(2)	0.013(2)	0.000(1)	0.004(2)
C(9)	0.047(2)	0.072(2)	0.062(2)	0.007(2)	0.006(2)	-0.003(2)
C(10)	0.063(2)	0.094(3)	0.064(2)	0.021(2)	0.012(2)	-0.013(2)
C(11)	0.081(3)	0.070(3)	0.079(3)	0.019(2)	-0.003(2)	-0.019(2)
C(12)	0.077(3)	0.056(2)	0.080(3)	0.002(2)	0.001(2)	-0.002(2)
C(13)	0.064(2)	0.060(2)	0.057(2)	0.005(2)	0.010(2)	0.006(2)
C(14)	0.053(2)	0.057(2)	0.047(2)	-0.006(2)	0.003(2)	-0.003(2)
C(15)	0.044(2)	0.052(2)	0.064(2)	-0.005(1)	0.004(2)	-0.003(2)
C(16)	0.093(3)	0.064(2)	0.061(2)	-0.003(2)	0.012(2)	-0.001(2)
C(17)	0.104(3)	0.060(3)	0.099(3)	0.002(2)	0.006(3)	0.012(3)
C(18)	0.074(3)	0.054(3)	0.126(4)	-0.001(2)	0.004(3)	-0.013(3)
C(19)	0.069(3)	0.075(3)	0.084(3)	-0.002(2)	0.012(2)	-0.028(2)
C(20)	0.054(2)	0.064(2)	0.067(2)	-0.001(2)	0.010(2)	-0.004(2)
C(21)	0.053(2)	0.063(2)	0.056(2)	-0.005(2)	0.017(2)	-0.010(2)
C(22)	0.081(3)	0.060(2)	0.084(3)	-0.009(2)	0.001(2)	0.003(2)
C(23)	0.112(4)	0.066(3)	0.107(4)	-0.019(3)	0.013(3)	0.002(2)
C(24)	0.097(3)	0.086(3)	0.094(3)	-0.035(3)	0.027(3)	-0.024(3)
C(25)	0.063(3)	0.110(4)	0.094(3)	-0.009(2)	0.012(2)	-0.042(3)
C(26)	0.058(2)	0.078(3)	0.085(3)	0.002(2)	0.006(2)	-0.027(2)

Table 2-3. Bond Lengths (Å)

atom N(1) N(2) N(3) N(4) N(6) C(2) C(3) C(5) C(3) C(5) C(9) C(11) C(15) C(16) C(16) C(16) C(18) C(21) C(24)	ato C(1 C(1 C(2 C(2 C(2 C(2 C(2 C(2 C(2 C(2 C(2 C(2	m))))))))))))))))))))))))))	distance 1.287(3) 1.357(3) 1.395(4) 1.278(3) 1.377(4) 1.382(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.375(4) 1.375(4) 1.375(4) 1.375(4) 1.375(4) 1.375(4) 1.375(4) 1.373(4) 1.373(4) 1.363(5)	atom N(1) N(3) N(4) N(5) C(2) C(4) C(6) C(8) C(10) C(12) C(15) C(17) C(19) C(21) C(23) C(25)	alor C(8 C(1 C(1 C(1 C(7 C(7 C(7 C(1 C(7 C(1 C(7 C(1 C(2 C(2 C(2 C(2 C(2 C(2 C(2 C(2 C(2 C(2	m)))))))))))))	distance 1,416(3) 1,385(3) 1,372(4) 1,373(4) 1,358(3) 1,415(3) 1,375(4) 1,375(4) 1,373(5) 1,375(4) 1,373(5) 1,375(4) 1,375(4) 1,375(4) 1,387(4) 1,387(4) 1,386(4) 1,375(5) 1,390(4)
atom C(1) C(14) N(1) N(2) N(3) C(2) C(4)	atom N(1) N(4) C(1) C(1) C(2) C(2) C(3)	atom C(8) C(21) N(2) N(3) C(7) C(4) C(4)	angle 117.1(2) 128.4(3) 127.4(3) 111.3(3) 124.3(3) 120.2(4)	atom C(1) C(14) N(1) N(3) C(3) C(3)	atom N(3) N(6) C(1) C(2) C(2) C(2) C(4)	atom C(2) C(15) N(3) C(3) C(7) C(5)	angle 128.3(3) 117.0(3) 121.1(3) 116.8(3) 118.9(3) 120.7(4)
C(4) C(2) N(1) C(8) C(10) C(8) N(4) N(6) C(16) C(16) C(16) C(18) N(4) C(22) C(22)	C(5) C(7) C(8) C(9) C(11) C(13) C(14) C(15) C(15) C(15) C(17) C(19) C(21) C(21)	C(6) C(13) C(10) C(12) C(12) N(6) C(16) C(20) C(18) C(20) C(22) C(22) C(22)	118.8(4) 120.0(3) 122.1(3) 120.4(3) 120.8(3) 122.4(3) 122.4(3) 122.4(3) 121.5(3) 117.7(3) 120.3(4) 120.3(4) 120.3(4) 120.4(4) 117.2(3) 118.8(3)	C(5) N(1) C(9) C(11) N(4) N(5) C(15) C(15) C(15) C(15) N(4) C(21)	C(6) C(8) C(10) C(12) C(14) C(14) C(15) C(16) C(16) C(18) C(20) C(21) C(22)	C(7) C(9) C(13) C(13) N(5) N(6) C(20) C(17) C(19) C(19) C(26) C(23)	121.4(4) 119.3(3) 118.5(3) 120.7(3) 120.1(4) 122.3(3) 125.3(3) 121.7(4) 119.2(4) 120.6(3) 123.9(3) 121.3(4)
C(22) C(22) C(24)	C(21) C(23) C(25)	C(26) C(24) C(26)	118.8(3) 119.7(4) 120.6(4)	C(21) C(23) C(21)	C(22) C(24) C(26)	C(23) C(25) C(25)	121.3(119.7(119.7(

Table 2-5. Least Squares Planes

 Distance -0.0030(2 0.0052(3 -0.0028(4 -0.0005(3 0.0005(3 0.0005(3 0.0016(3 	29) 39) 41) 36) 37) 33)	Plane numbe Atoms defini C(15) C(16) C(17) C(18) C(19) C(20)	r 4 ng plane	Distance -0.0111(28) 0.0138(35) -0.0022(39) -0.0078(36) 0.0036(33) 0.0058(30)
 Distance 0.0052(2 -0.0052(3 -0.0013(2 0.0076(3 -0.0049(3 -0.00228(3 	26) 30) 33) 4) 2) 29)	Plane numbe Atoms defini C(21) C(22) C(23) C(24) C(25) C(26)	r 5 ng plane	Distance 0.0043(29) 0.0025(36) -0.0104(40) 0.0065(38) 0.0036(38) -0.0083(34)
Distance 0.0228(2 -0.0070(2 -0.0070(2 -0.0070(2	Distance 0.0228(29) -0.0070(24) -0.0070(25) -0.0070(26)		r 6 ng plane	Distance 0.0133(28) -0.0044(25) -0.0048(27) -0.0046(24)
plane 1 2 3 4 5 6	mean devi 0.0023 0.0044 0.0110 0.0074 0.0059 0.0067	ation	CHI ² 3.0 13.4 77.2 36.1 15.8 27.7	
2 115.89 52.95 107.08	3 63.93 41.67	4 75.49	5	
	 Distance -0.0030(2) -0.0028(4) -0.0005(2) -0.0005(3) -0.0005(3) -0.0016(3) Distance 0.0052(2) -0.0013(3) -0.0013(3) -0.0013(3) -0.0013(3) -0.00228(2) -0.0070(2) <	 Distance -0.0030(29) -0.0028(41) -0.00052(36) -0.0005(37) -0.0005(37) -0.0016(33) Distance 0.0052(30) -0.0013(33) -0.0076(34) -0.0028(29) -0.00228(29) -0.00228(29) -0.0070(24) -0.0070(24) -0.0070(25) plane mean devi 1 0.00076 -0.0070(26) plane mean devi -0.0070(25) -0.0070(26) plane mean devi -0.0070(26) plane devi -0.0070(26) -0.0074 -0.0074 -0.0067 -0.0067 -0.0067 -0.0067 -0.0067 -0.0067 -0.0074 -0.0067 -0.0067 -0.0067 -0.0067 -0.0067 -0.0067 -0.0074 -0.0067 -0.0067 -0.0067 -0.0067 -0.0074 -0.0067 -0.0067 -0.0067 -0.0067 -0.0074 -0.0067 -0.0067 -0.0070 -0.0067 -0.0070 -0.0070 -0.0070 -0.0070 -0	Plane numbe Distance Atoms defini -0.0030(29) C(15) -0.0028(39) C(16) -0.0005(36) C(17) -0.0005(37) C(19) 0.005(26) C(21) 0.0052(26) C(21) -0.0052(30) C(22) -0.0013(33) C(23) 0.0076(34) C(24) -0.0028(29) C(26) Distance Atoms defini 0.0028(29) C(26) Distance Atoms defini 0.0028(29) C(26) Distance Atoms defini 0.0028(29) C(26) Distance Atoms defini 0.0070(24) N(4) -0.0070(25) N(5) -0.0070(26) N(6) plane mean deviation 1 0.0023 2 0.0044 3 0.0110 4 0.0059 6 0.0059 6 0.0067 ren planes (deg)	Plane number 4 Distance Atoms defining plane $-0.0030(29)$ C(15) $0.0052(39)$ C(16) $-0.0028(41)$ C(17) $-0.0005(36)$ C(18) $0.0052(30)$ C(20) Plane number 5 Atoms defining plane $0.0052(26)$ C(21) $-0.0052(30)$ C(22) $-0.0052(30)$ C(22) $-0.0049(32)$ C(24) $-0.00228(29)$ C(26) Distance Plane number 6 Distance Atoms defining plane $0.00228(29)$ C(25) $-0.0049(32)$ C(24) $-0.0070(24)$ N(4) $-0.0070(25)$ N(5) $-0.0070(26)$ N(6) plane mean deviation 2 0.0044 13.4 3 0.0110 77.2 4 0.0075 15.8 6 0.0059 15.8 6 0.0067 27.7 ven planes (deg) <

N-Methyl-N,N'-diphenylguanidine (2)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Indexing Images Detector Position Detector Swing Angle Pixel Size Lattice Parameters

- $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ D_{\text{calk}} \\ F_{\text{gav}} \\ \mu(\text{MoK}\alpha) \\ \text{B. Intensity Measurements} \\ \text{Diffractometer} \\ \text{Radiation} \end{array}$
- Detector Aperture Data Images Oscillation Range Detector Position Detector Swing Angle Pixel Size 20_{max} No. of Reflections Measured Corrections C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (I>4.50o(I)) No. Variables Reflection/Parameter Ratio Residuals: R: Rw Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

CIAH, N 225.29 clear, prism 0.50 X 0.35 X 0.22 mm orthorhombic Primitive 3 oscillations @ 5.0 minutes 86.33 mm 0.00° 0.203 mm a = 5.666(1)Å b = 10.126(3) Å c = 21.17(2) Å $V = 1214(3) Å^3$ P2,2,2, (#19) 4 1.232 g/cm3 480.00 0.00 cm⁻¹ RAXIS-II MoK α ($\lambda = 0.71070 \text{ \AA}$) graphite monochromated 200 mm x 200 mm 15 exposures @ 5.0 minutes 7.0° 86.33 mm 0.00° 0.203 mm 44.0° Total: 819 Lorentz-polarization Direct Methods (SIR88) Full-matrix least-squares $\Sigma w (|Fo| - |Fc|)^2$ $w = 1/[sigma2(Fo^2) + P^2 + P]$ 0.0100 All non-hydrogen atoms 775 214 3.62 0.075; 0.076 3.58 2.22 0.33 c-/Å3 -0.34 c-/Å

Table 3-1. Atomic coordinates and Biso/Beq

atom	x	У	z	Beq
N(1)	-0.1252(9)	0.1342(5)	0.7345(2)	4.8(1)
N(2)	-0.0336(7)	-0.0901(4)	0.7301(2)	3.7(1)
N(3)	0.0289(8)	0.0287(4)	0.8221(2)	3.9(1)
C(1)	-0.0409(10)	0.0212(5)	0.7591(2)	3.6(1)
C(2)	-0.0909(9)	-0.0925(6)	0.6649(2)	3.9(1)
C(3)	-0.299(1)	-0.1528(7)	0.6457(3)	5.4(2)
C(4)	-0.347(1)	-0.1622(9)	0.5821(3)	6.6(2)
C(5)	-0.194(1)	-0.1137(7)	0.5379(3)	6.3(2)
C(6)	0.008(1)	-0.0556(7)	0.5567(3)	5.6(2)
C(7)	0.062(1)	-0.0450(6)	0.6203(3)	4.6(1)
C(8)	0.1782(9)	-0.0712(5)	0.8476(2)	3.6(1)
C(9)	0.386(1)	-0.1050(6)	0.8171(3)	4.4(1)
C(10)	0.538(1)	-0.1976(6)	0.8424(3)	4.5(1)
C(11)	0.480(1)	-0.2595(6)	0.8985(3)	5.0(2)
C(12)	0.278(1)	-0.2244(7)	0.9292(3)	5.1(2)
C(13)	0.125(1)	-0.1336(6)	0.9037(2)	4.3(1)
C(14)	-0.119(1)	0.1038(7)	0.8659(3)	4.7(2)

Table 3-2. Anisotropic Displacement Parameters

atom	U11	U22	U33	U12	U13	U23
N(1)	0.086(4)	0.043(3)	0.054(3)	0.008(3)	-0.015(3)	-0.001(2)
N(2)	0.057(2)	0.038(3)	0.047(3)	0.006(2)	-0.002(2)	-0.001(2)
N(3)	0.055(2)	0.050(3)	0.042(2)	0.007(2)	-0.001(2)	-0.004(2)
C(1)	0.051(3)	0.040(4)	0.047(3)	0.008(3)	-0.003(2)	-0.001(2)
C(2)	0.059(3)	0.042(4)	0.045(3)	0.010(3)	-0.004(3)	-0.002(2)
C(3)	0.057(4)	0.091(5)	0.057(3)	0.009(4)	-0.006(3)	-0.021(3)
C(4)	0.071(5)	0.100(6)	0.080(5)	0.022(4)	-0.021(5)	-0.032(4)
C(5)	0.101(6)	0.086(5)	0.051(4)	0.023(5)	-0.019(4)	-0.012(3)
C(6)	0.090(5)	0.067(4)	0.056(3)	0.015(4)	0.008(4)	0.006(3)
C(7)	0.068(4)	0.059(4)	0.049(3)	0.008(3)	-0.001(3)	0.002(3)
C(8)	0.051(3)	0.043(3)	0.041(3)	-0.005(3)	-0.002(3)	-0.004(2)
C(9)	0.058(3)	0.065(4)	0.043(3)	-0.008(3)	0.000(3)	-0.005(3)
C(10)	0.055(4)	0.058(4)	0.058(4)	0.005(3)	-0.006(3)	-0.010(3)
C(11)	0.077(5)	0.058(4)	0.054(3)	0.009(4)	-0.015(3)	-0.008(3)
C(12)	0.076(4)	0.069(4)	0.047(3)	0.006(4)	-0.004(3)	0.007(3)
C(13)	0.055(4)	0.063(4)	0.047(3)	-0.001(3)	0.003(3)	-0.002(3)
C(14)	0.072(4)	0.062(4)	0.046(3)	-0.001(4)	0.004(3)	-0.009(3)

Table 3-3, Bond Lengths (Å)

atom N(1) N(2) N(3) C(2) C(3) C(5) C(8) C(9) C(11)	atom C(1) C(2) C(8) C(3) C(4) C(6) C(6) C(9) C(10) C(12)	distance 1.345(7) 1.418(6) 1.424(7) 1.387(9) 1.377(10) 1.35(1) 1.388(8) 1.378(9) 1.365(10)	atom N(2) N(3) C(2) C(4) C(6) C(6) C(10) C(12)	atom C(1) C(14) C(7) C(5) C(7) C(13) C(11) C(13)	distance 1.284(6) 1.394(6) 1.367(9) 1.367(9) 1.367(9) 1.367(9) 1.383(9) 1.379(8) 1.375(9)	
---	--	---	--	--	--	--

Table 3-4. Bond Angles (deg)

atom	atom	atom	angle	atom	atom	atom	anyle
C(1)	N(2)	C(2)	118.3(4)	C(1)	N(3)	C(8)	119.4(4)
C(1)	N(3)	C(14)	118.1(5)	C(8)	N(3)	C(14)	118,1(4)
N(1)	C(1)	N(2)	124.9(5)	N(1)	C(1)	N(3)	115.1(4)
N(2)	C(1)	N(3)	119.8(4)	N(2)	C(2)	C(3)	119.2(5)
N(2)	C(2)	C(7)	121.4(5)	C(3)	C(2)	C(7)	119.2(6)
C(2)	C(3)	C(4)	119.0(8)	C(3)	C(4)	C(5)	121.4(8)
C(4)	C(5)	C(6)	119.4(7)	C(5)	C(6)	C(7)	120.5(8)
C(2)	C(7)	C(6)	120.4(7)	N(3)	C(8)	C(9)	120.3(5)
N(3)	C(8)	C(13)	121.4(5)	C(9)	C(8)	C(13)	118.3(6)
C(8)	C(9)	C(10)	121.1(6)	C(9)	C(10)	C(11)	119.7(7)
C(10)	C(11)	C(12)	119.3(7)	C(11)	C(12)	C(13)	121.1(6)
C(8)	C(13)	C(12)	120 4(6)			accest.	(o)

Table 3-5. Least Squares Planes

Plane number 1		Plane number 2		
Atoms defining plane	Distance	Atoms defining plane	Distance	
C(2)	-0.003(6)	C(8)	0.001(5)	
C(3)	0.003(7)	C(9)	0.001(6)	
C(4)	0.002(8)	C(10)	0.005(6)	
C(5)	-0.002(7)	C(11)	-0.011(6)	
C(6)	0.000(7)	C(12)	0.017(7)	
C(7)	0.003(6)	C(13)	-0.008(6)	

Plane number 3 Atoms defining plane

Atoms defining plane	Distance
C(1)	0.021(6)
N(1)	-0.007(5)
N(2)	-0.002(4)
N(3)	-0.003(4)

0.8
12.0
17.6

Dihedral angles between planes (deg) plane 1 2 2 115.41 1 115.41 75.88 63.04

N-Methyl-N',N"-diphenylguanidine (3)

C.H.N.

225.29

A. Crystal Data Empirical Formula Formula Weight Crystal Color. Habit Crystal Dimensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

Space Group Z value D_{out} F_{so} $\mu(CuK\alpha)$ B. Intensity Measurements Diffractometer Radiation

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 20_{max} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (1>3.0057(1)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Diff. Map Minimum peak in Final Diff. Map

colorless, prismatic 0.45 X 0.30 X 0.20 mm monoclinic C-centered 19 (48.9 - 54.2) 0.24 a = 11,212(2)Å b = 12.757(2) Å c = 9.281(1) Å $\beta = 112.21(1)^{10}$ $V = 1229.1(4) Å^3$ Cc (#9) 4 1.217 g/cm 480.00 5.82 cm1 Rigaku AFC5S CuK α ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factors = 1.00, 3.57, 12.70, 45.11) 6.0ª 9.0 mm horizontal 13.0 mm vertical 258 mm 23.0°C ω-20 16.0°/min (in w) (up to 3 scans) $(1.57 + 0.30 \tan \theta)^{\circ}$ 135.0° Total: 1197 Unique: 1135 (Rint = 0.110) Lorentz-polarization Absorption (trans. factors: 0.7703 - 1.1204)

Direct Methods (SHELXS86) Full-matrix least-squares $\Sigma \le (Fo] - (Fc)^2$ $\le (Fo)^2 + P^2 + P]$ 0.0020 All non-hydrogen atoms 1004 212 4.74 0.062 ; 0.064 6.69 5.14 0.30 $e \cdot (\tilde{A}^3)$ 0.32 $e \cdot (\tilde{A}^3)$

-s14-

Appendix

Table 4-1. Atomic coordinates and Biso/Beq

atom	x	У	Z	Beq
N(1)	0.6496	0.0787(5)	0.0378	4.1(1)
N(2)	0.7015(8)	0.0523(5)	-0.1857(9)	4.6(2)
N(3)	0.5635(9)	-0.0579(5)	-0.1323(10)	4.7(2)
C(1)	0.6399(9)	0.0301(5)	-0.0856(9)	3.7(2)
C(2)	0.6918(9)	0.1837(5)	0.0648(10)	3.8(2)
C(3)	0.7756(10)	0.2127(7)	0.209(1)	4.6(2)
C(4)	0.8125(10)	0.3143(7)	0.246(1)	5.3(2)
C(5)	0.765(1)	0.3928(8)	0.134(1)	5.8(2)
C(6)	0.680(1)	0.3640(7)	-0.008(1)	5.5(2)
C(7)	0.6436(10)	0.2610(6)	-0.047(1)	4.4(2)
C(8)	0.8273(9)	0.0924(5)	-0.1460(10)	4.0(2)
C(9)	0.9197(10)	0.0872(6)	0.003(1)	4.6(2)
C(10)	1.0445(10)	0.1229(7)	0.032(1)	5.3(2)
C(11)	1.074(1)	0.1615(8)	-0.085(1)	6.0(3)
C(12)	0.986(1)	0.1639(7)	-0.231(1)	6.4(3)
C(13)	0.861(1)	0.1342(7)	-0.263(1)	5.3(2)
C(14)	0.471(1)	-0.0839(8)	-0.062(1)	5.4(2)

U23 -0.001(3) -0.014(3) -0.006(3) 0.000(3) -0.003(3) -0.003(3) -0.009(4) -0.024(5) -0.022(5) -0.001(4) -0.001(4) -0.001(4) -0.005(5) -0.010(5) -0.010(5) -0.010(5)

0.003(5)

nom	U11	U22	U33	U12	1113
N(1)	0.065(4)	0.048(3)	0.047(3)	-0.001(3)	0.026(3)
N(2)	0.063(4)	0.073(4)	0.049(4)	-0.013(3)	0.034(3)
N(3)	0.068(4)	0.062(4)	0.055(4)	-0.006(3)	0.030(3)
C(1)	0.062(4)	0.045(4)	0.039(4)	0.003(3)	0.023(3)
C(2)	0.059(4)	0.054(4)	0.041(4)	0.000(3)	0.030(3)
C(3)	0.057(5)	0.064(5)	0.050(5)	0.009(4)	0.017(4)
C(4)	0.060(5)	0.076(6)	0.065(5)	-0.007(4)	0.024(4)
C(5)	0.073(6)	0.071(7)	0.083(6)	-0.006(5)	0.035(5)
C(6)	0.092(7)	0.050(5)	0.077(6)	-0.005(5)	0.043(6)
C(7)	0.062(5)	0.061(5)	0.050(5)	-0.001(4)	0.027(4)
C(8)	0.064(4)	0.051(4)	0.046(4)	-0.007(4)	0.030(4)
C(9)	0.069(5)	0.051(5)	0.066(5)	0.005(4)	0.037(4)
C(10)	0.056(5)	0.074(6)	0.081(6)	0.001(4)	0.038(5)
C(11)	0.076(6)	0.088(7)	0.081(7)	-0.010(5)	0.047(6)
C(12)	0.113(8)	0.077(6)	0.090(7)	-0.023(5)	0.079(7)
C(13)	0.087(6)	0.074(6)	0.054(5)	-0.018(5)	0.041(5)
C(14)	0.069(6)	0.068(6)	0.075(6)	-0.008(5)	0.037(5)

Table 4-3. Bond Lengths (Å)

atom	atom	distance	atom	atom	distance
N(1)	C(1)	1.270(9)	N(1)	C(2)	1 411(9)
N(2)	C(1)	1.380(9)	N(2)	C(8)	1.412(9)
N(3)	C(1)	1.379(10)	N(3)	C(14)	1.46(1)
C(2)	C(3)	1.37(1)	C(2)	C(7)	1.38(1)
C(3)	C(4)	1.36(1)	C(4)	C(5)	1.39(1)
C(5)	C(6)	1.35(1)	C(6)	C(7)	1.38(1)
C(8)	C(9)	1.38(1)	C(8)	C(13)	1.39(1)
C(9)	C(10)	1.40(1)	C(10)	C(11)	1.34(1)
C(11)	C(12)	1.34(2)	C(12)	C(13)	1.36(1)

Table 4-4. Bond Angles (deg)

atom C(1) C(1) N(1) C(3) C(3) C(5) N(2) C(9) C(9)	atom N(1) N(3) C(1) C(2) C(2) C(2) C(2) C(4) C(6) C(8) C(8) C(8) C(10)	atom C(2) C(14) N(3) C(3) C(7) C(5) C(7) C(7) C(9) C(13) C(11)	angle 122.2(6) 120.5(8) 120.8(7) 119.4(8) 118.2(8) 120.2(10) 122(1) 122.8(7) 18.5(8) 119(1)	atom C(1) N(1) N(2) N(1) C(2) C(4) C(2) N(2) C(8) C(10)	atom N(2) C(1) C(2) C(3) C(5) C(7) C(8) C(9) C(11)	atom C(8) N(2) N(3) C(7) C(4) C(6) C(10) C(12)	angle 127.1(7) 127.8(7) 111.4(7) 122.2(7) 122.1(10) 117(1) 119.2(9) 118.6(8) 119.7(8) 120(1)
C(9) C(11)	C(10) C(12)	C(11) C(13)	119(1) 121.3(10)	C(10) C(8)	C(11) C(13)	C(12) C(12)	120(1) 119.7(10)

Table 4-5. Least Squares Planes

Plane number 1 Atoms defining plane C(8) C(9) C(10) C(11) C(12) C(13)	Distance 0.0031(8 0.0041(9 -0.0065(9 -0.0123(1 0.0258(1 -0.0204(1	P A 32) 32) 39) (14) 12) 04)	lane number 2 toms defining C(2) C(3) C(4) C(5) C(6) C(7)	plane	Distance 0.0009(96) -0.0023(107) 0.0018(111) 0.0076(114) -0.0116(115) 0.0057(112)
Plane number 3 Atoms defining plane N(1) N(2) N(3) C(1)	Distance 0.0009(3 0.0014(9 0.0017(9 -0.0098(9	39) 32) 88) 91)			
Summary	plane 1 2 3	mean deviati 0.0120 0.0050 0.0034	on	CHI ² 10.6 2.4 1.7	

Dihedral angles between planes (deg) plane 1 2 2 59.28 3 49.74 59.84

N,N'-Dimethyl-N,N'-diphenylguanidine (4a)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Indexing Images Detector Position Detector Swing Angle Pixel Size Lattice Parameters

Space Group Z value D_{olk} F_{so} μ(MoKα) B. Intensity Measurements Diffractometer Radiation

Detector Aperture Data Images Oscillation Range Detector Position Detector Swing Angle Pixel Size 20,00 No. of Reflections Measured Corrections C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (I>4.50o(I)) No. Variables Reflection/Parameter Ratio Residuals: R: Rw Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

C16.50 H21.50 N 10 .50 269.87 clear, prism 0.30 X 0.30 X 0.30 mm triclinic Primitive 3 oscillations @ 5.0 minutes 86.33 mm 0.00° 0.203 mm a = 11.590(5)Å b = 16.44(2) Å c = 8.320(4) Å $\alpha = 97.21(7)^{\circ}$ $\beta = 90.73(3)^{\circ}$ $\gamma = 77.50(7)^{\circ}$ $V = 1535(2) \text{ Å}^3$ PT (#2) 1.167 g/cm 582.00 0.72 cm⁻¹ RAXIS-II MoK α ($\lambda = 0.71070$ Å) graphite monochromated 200 mm x 200 mm 15 exposures @ 5.0 minutes

7.0° 86.33 mm 0.00° 0.203 mm 54.2° Total: 4425 Lorentz-polarization

Direct Methods (SHELXS86) Full-matrix least-squares $\Sigma \le (IFol - IFcl)^2$ w = $I/[\sigma^2(Fo^2) + P^2 + P]$ 0.0100 All non-hydrogen atoms 2320 517 4.49 0.097; 0.127 3.87 4.03 0.43 e/\bar{A}^3

-0.45 c-/Å

Table 5-1, Atomic coordinates and Biso/Beq

atom	x	У	Z	Beq
0(1)	0.9398(6)	0.4988(5)	0.2470(9)	3.5(2)
N(1)	0.7797(8)	0.6899(5)	0.798(1)	3.3(2)
N(2)	0.7440(8)	0.7167(6)	1.076(1)	3.2(2)
N(3)	0.8665(9)	0.5894(6)	0.962(1)	4.0(3)
N(4)	1.1114(8)	0.6852(5)	0.302(1)	3.4(2)
N(5)	1.1520(8)	0.7094(6)	0.576(1)	3,4(2)
N(6)	1.0813(9)	0.5888(6)	0.474(1)	4.0(3)
C(1)	1.1135(10)	0.6557(8)	0.453(1)	3.2(3)
C(2)	1.126(1)	0.6969(9)	0.742(1)	4.1(4)
C(3)	1,147(1)	0.6233(9)	0.159(2)	4.2(4)
C(4)	1.235(1)	0.7578(8)	0.550(1)	3.4(3)
C(5)	1.332(1)	0.7236(9)	0.450(2)	4.3(4)
C(6)	1.411(1)	0.775(1)	0.417(2)	6.0(5)
C(7)	1.394(2)	0.858(1)	0.491(2)	6.6(5)
C(8)	1.295(2)	0.889(1)	0.593(2)	6.5(5)
C(9)	1.215(1)	0.8401(8)	0.624(2)	4.1(3)
C(10)	1.074(1)	0.7702(7)	0.282(1)	3.0(3)
C(11)	1.125(1)	0.8041(8)	0.159(1)	3.4(3)
C(12)	1.088(1)	0.8874(8)	0.139(2)	3.9(3)
C(13)	1.000(1)	0.9386(9)	0.237(2)	4.1(4)
C(14)	0.950(1)	0.9065(8)	0.360(2)	4.0(3)
C(15)	0.987(1)	0.8215(8)	0.382(1)	3.5(3)
C(16)	0.801(1)	0.6606(8)	0.949(1)	3,3(3)
C(17)	0.780(1)	0.6987(9)	1.242(1)	3.8(3)
C(18)	0.633(1)	0.7726(8)	1.060(1)	3.5(3)
C(19)	0.619(1)	0.8557(8)	1.134(2)	4.1(3)

Table 5-1. Atomic coordinates and Biso/Beq (Continued)

$\begin{array}{cccc} alom & x \\ C(20) & 0.510(1) \\ C(21) & 0.420(2) \\ C(22) & 0.439(1) \\ C(23) & 0.547(1) \\ C(24) & 0.7741(9) \\ C(25) & 0.8427(10) \\ C(25) & 0.8427(10) \\ C(26) & 0.835(1) \\ C(27) & 0.764(1) \\ C(28) & 0.695(1) \\ C(29) & 0.698(1) \\ C(30) & 0.778(1) \\ C(31) & 0.618(2) \\ C(32) & 0.553(2) \\ C(32) & 0.553(2) \\ C(33) & 0.533(2) \\ \end{array}$	y 0.9110(10) 0.884(1) 0.7434(9) 0.7748(7) 0.8221(7) 0.9052(8) 0.9417(8) 0.8934(8) 0.8116(8) 0.6291(9) 0.503(1) 0.471(1) 0.517(1)	2 1.116(2) 1.021(2) 0.946(2) 0.968(2) 0.777(1) 0.872(1) 0.846(2) 0.728(1) 0.635(1) 0.650(1) 0.654(2) 0.348(3) 0.209(3) 0.071(2)	Beq 5 6(4) 6,3(5) 5,5(4) 4,0(3) 3,2(9) 3,3(3) 3,8(3) 3,8(3) 3,8(3) 3,8(3) 3,8(3) 3,8(3) 3,8(3) 3,4(3) 4,2(4) 7,2(6) 9,7(7) 8,1(6)
--	---	---	---

Table 5-2. Anisotropic Displacement Parameters

atom	UII	U22	U33	U12	U13	U23
Q(1)	0.046(5)	0.043(5)	0.042(5)	-0.005(4)	-0.002(4)	0.016(4)
N(1)	0.065(7)	0.032(5)	0.027(5)	-0.007(5)	0.000(4)	0.005(4)
N(2)	0.047(6)	0.038(5)	0.034(6)	0.000(5)	-0.002(4)	0.007(5)
N(3)	0.054(7)	0.029(6)	0.064(7)	0.000(5)	-0.009(5)	0.010(5)
N(4)	0.060(7)	0.032(6)	0.035(6)	-0.009(5)	0.003(5)	0.003(5)
N(5)	0.056(7)	0.047(6)	0.027(5)	-0.013(5)	0.001(4)	0.007(5)
N(6)	0.063(7)	0.037(6)	0.056(7)	-0.011(5)	0.012(5)	0.012(5)
C(1)	0.040(7)	0.054(8)	0.023(7)	-0.003(6)	0.008(5)	0.003(6)
C(2)	0.07(1)	0.058(9)	0.033(8)	-0.015(8)	0.004(6)	0.012(7)
C(3)	0.07(1)	0.045(8)	0.042(8)	-0.012(7)	0.010(7)	-0.014(6)
C(4)	0.041(8)	0.058(8)	0.033(7)	-0.013(6)	-0.006(5)	0.011(6)
C(5)	0.048(9)	0.066(10)	0.056(9)	-0.019(8)	-0.012(7)	0.016(8)
C(6)	0.052(10)	0.11(2)	0.07(1)	-0.019(10)	-0.010(8)	0.03(1)
C(7)	0.07(1)	0.10(1)	0.09(1)	-0.03(1)	-0.04(1)	0.05(1)
C(8)	0.10(1)	0.06(1)	0.09(1)	-0.02(1)	-0.05(1)	0.020(9)
C(9)	0.053(9)	0.046(8)	0.057(9)	-0.014(7)	-0.015(7)	0.005(7)
C(10)	0.051(8)	0.034(7)	0.034(7)	-0.015(6)	-0.006(5)	0.007(5)
C(11)	0.048(8)	0.049(8)	0.036(7)	-0.016(6)	0.004(6)	0.004(6)
C(12)	0.063(9)	0.045(8)	0.045(8)	-0.018(7)	-0.007(6)	0.016(6)
C(13)	0.059(9)	0.048(8)	0.051(9)	-0.011(7)	-0.007(7)	0.012(7)
C(14)	0.045(8)	0.053(9)	0.053(8)	-0.012(7)	-0.003(6)	0.003(7)
C(15)	0.044(8)	0.045(8)	0.048(8)	-0.015(6)	-0.002(6)	0.009(6)
C(16)	0.044(7)	0.049(8)	0.035(7)	-0.017(6)	0.001(5)	0.005(6)
C(17)	0.062(9)	0.057(9)	0.023(7)	-0.008(7)	-0.006(6)	0.003(6)
C(18)	0.038(7)	0.052(8)	0.041(7)	0.002(6)	0.005(6)	0.016(6)
C(19)	0.051(9)	0.043(8)	0.056(9)	0.002(7)	0.010(6)	0.009(6)
C(20)	0.08(1)	0.063(10)	0.07(1)	0.001(9)	0.024(8)	0.013(8)
C(21)	0.07(1)	0.09(1)	0.07(1)	0.011(10)	0.014(9)	0.030(10)
C(22)	0.041(9)	0.10(1)	0.08(1)	-0.014(9)	-0.004(7)	0.034(10)
C(23)	0.053(9)	0.053(9)	0.047(8)	-0.012(7)	0.000(6)	0.008(7)
C(24)	0.038(7)	0.040(7)	0.031(7)	-0.005(5)	0.011(5)	0.004(5)
C(25)	0.036(7)	0.046(8)	0.047(8)	-0.011(6)	-0.004(6)	0.008(6)
C(26)	0.052(8)	0.047(8)	0.053(8)	-0.016(7)	0.002(6)	0.003(7)
C(27)	0.054(8)	0.042(8)	0.049(8)	-0.007(6)	-0.001(6)	0.013(6)
C(28)	0.049(8)	0.045(8)	0.046(8)	0.003(6)	0.002(6)	0.009(6)
C(29)	0.046(8)	0.046(8)	(0.039(7))	-0.008(6)	-0.001(6)	0.009(6)
C(30)	0.08(1)	0.038(8)	0.039(8)	-0.013(7)	-0.008(7)	-0.007(6)
C(31)	0.09(1)	0.09(1)	0.09(2)	-0.02(1)	-0.01(1)	0.01(1)
C(32)	0.16(2)	0.10(2)	0.10(2)	-0.01(1)	-0.06(2)	0.00(1)
C(33)	0.15(2)	0.07(1)	0.08(1)	-0.01(1)	-0.03(1)	0.005(10)

Table 5-3. Bond Lengths (Å)

atom	atom	distance	atom	atom	distance
N(I)	C(16)	1.40(1)	N(1)	C(24)	1.41(1)
N(I)	C(30)	1.46(2)	N(2)	C(16)	1.30(1)
NI(2)	C(17)	1.48(1)	NU2	C(18)	1.33(1)
N(2)	C(16)	1.26(1)	NUC	C(1a)	1.45(1)
IN(S)	C(1)	1.47/2)	NTC4)	C(I)	1.40(1)
N(4)	CON	1.40(1)	N(4)	C(10)	1.40(1)
N(5)	C(I)	1.40(1)	N(5)	C(2)	1,47(1)
N(5)	C(4)	1.41(1)	N(6)	C(1)	1.27(1)
C(4)	C(5)	1.38(2)	C(4)	C(9)	1.39(2)
C(5)	C(6)	1.43(2)	C(6)	C(7)	1.40(2)
C(7)	C(8)	1.41(2)	C(8)	C(9)	1.41(2)
C(10)	C(11)	1.42(2)	C(10)	C(15)	1.38(2)
C(11)	C(12)	1.38(2)	C(12)	C(13)	1.38(2)
C(13)	C(14)	1.40(2)	C(14)	C(15)	1.41(2)
C(18)	C(19)	1.40(2)	C(18)	C(23)	1.38(2)
C(19)	C(20)	1.40(2)	C(20)	COL	1.41/2)
0(21)	C(22)	1.42(2)	C(22)	C(22)	1.41(2)
COA	C(25)	1.40(2)	CILLI	0(20)	1.41(2)
0(24)	0(26)	1,40(2)	0(24)	C(29)	1.92(2)
C(45)	C(20)	1.39(2)	C(20)	C(27)	1.38(2)
C(27)	C(28)	1,41(2)	C(28)	C(29)	1.38(2)
C(31)	C(32)	1,48(3)	C(32)	C(33)	1.45(3)
C(33)	C(33)	1.51(3)			

Table 5-4. Bond Angles (deg)

atom	atom	atom	angle	atom	atom	atom	angle
C(16)	N(1)	C(24)	121.9(9)	C(16)	N(1)	C(30)	118(1)
C(24)	N(1)	C(30)	118.7(9)	C(16)	N(2)	C(17)	116(1)
C(16)	N(2)	C(18)	123.0(10)	C(17)	N(2)	C(18)	117(1)
C(1)	N(4)	C(3)	117(1)	C(1)	N(4)	C(10)	123.0(10)
C(3)	N(4)	C(10)	119(1)	C(1)	N(5)	C(2)	115(1)
C(1)	N(5)	C(4)	123.2(9)	C(2)	N(5)	C(4)	119(1)
N(4)	C(1)	N(5)	112(1)	N(4)	C(1)	N(6)	123(1)
N(5)	C(1)	N(6)	124(1)	N(5)	C(4)	C(5)	119(1)
N(5)	C(4)	C(9)	118(1)	C(5)	C(4)	C(9)	122(1)
C(4)	C(5)	C(6)	119(1)	C(5)	C(6)	C(7)	120(1)
C(6)	C(7)	C(8)	117(1)	C(7)	C(8)	C(9)	122(1)
C(4)	C(9)	C(8)	118(1)	N(4)	C(10)	C(11)	120(1)
N(4)	C(10)	C(15)	120(1)	C(11)	C(10)	C(15)	[19(1)
C(10)	C(11)	C(12)	120(1)	C(11)	C(12)	C(13)	120(1)
C(12)	C(13)	C(14)	120(1)	C(13)	C(14)	C(15)	120(1)
C(10)	C(15)	C(14)	119(1)	N(1)	C(16)	N(2)	113(1)
N(1)	C(16)	N(3)	121(1)	N(2)	C(16)	N(3)	125(1)
N(2)	C(18)	C(19)	117(1)	N(2)	C(18)	C(23)	118(1)
C(19)	C(18)	C(23)	123(1)	C(18)	C(19)	C(20)	117(1)
C(19)	C(20)	C(21)	120(1)	C(20)	C(21)	C(22)	119(1)
C(21)	C(22)	C(23)	120(1)	C(18)	C(23)	C(22)	118(1)
N(1)	C(24)	C(25)	120(1)	N(1)	C(24)	C(29)	119(1)
C(25)	C(24)	C(29)	120(1)	C(24)	C(25)	C(26)	118(1)
C(25)	C(26)	C(27)	122(1)	C(26)	C(27)	C(28)	118(1)
C(27)	C(28)	C(29)	121(1)	C(24)	C(29)	C(28)	119(1)
C(31)	C(32)	C(33)	118(2)	C(32)	C(33)	C(33)	118(2)

Table 5-5. Least Squares Planes

Plane number 1 Atoms defining plane N(1) N(2) N(3) C(16)		Distance -0.0009(97) -0.0008(97) -0.0012(103) 0.0037(112)		Plane number 4 Atoms defining plane C(1) N(4) N(5) N(6)		Distance 0.083(111) -0.0022(97) -0.0020(99) -0.0027(103)
Plane no Atoms (((((umber 2 defining plane C(18) C(20) C(20) C(21) C(22) C(23)	Distance -0.0026(1 0.0126(1 -0.0140(1 0.0009(1 0.0110(1 -0.0073(1	13) 26) 41) 52) 42) 29)	Plane number Atoms defini C(4) C(5) C(6) C(7) C(8) C(9)	r 5 ng plane	Distance -0.052(110) 0.0125(127) -0.0149(148) 0.0055(150) 0.0024(150) 0.0000(127)
Plane number 3 Atoms defining plane C(24) C(25) C(26) C(27) C(28) C(29)		Distance 0.0080(102) -0.0013(120) -0.0099(129) 0.0083(129) 0.0029(123) -0.0121(120)		Plane number 6 Atoms defining plane C(10) C(11) C(12) C(13) C(14) C(15)		Distance -0.047(109) 0.0035(120) 0.0028(126) -0.0072(130) 0.0039(122) 0.0020(117)
Summa	гу	plane 1 2 3 4 5 6	mean dev 0.0017 0.0081 0.0071 0.0038 0.0067 0.0040	iation	CHI ² 0.1 2.9 2.4 0.7 2.2 0.7	
Dihedra plane 2 3 4 5	l angles betwee 1 62.45 62.13 56.59 68.94	en planes (dej 2 38.25 69.78 124.61	g) 34.24 95.86	4	5	
6	35.09	97.28	86.40	62.94	37.01	

N,N'-Dimethyl-N,N'-diphenylguanidinium bromide (4b)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ D_{calc} \\ F_{000} \\ \mu(\text{CuK}\alpha) \\ \text{B. Intensity Measurements} \\ \text{Diffractometer} \\ \text{Radiation} \end{array}$

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 20_{ma} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (1>3.00σ(1)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Ocycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

C,H,N,Br 320.23 colorless, prismatic 0.20 X 0.10 X 0.45 mm triclinic Primitive 25 (40.1 - 43.6) 0.23° a = 13.034(3)Å b = 13.216(4) Å c = 9.711(2) Å $\alpha = 91.85(2)^{\circ}, \beta = 94.99(2)^{\circ}, \gamma = 65.14(1)^{\circ}$ $V = 1512.1(6) \text{ Å}^3$ PT(#2) 4 1.407 g/cm3 656.00 36.21 cm1 Rigaku AFC5S CuK α ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factors = 1.00, 3.57, 12.70, 45.11) 6.0° 9.0 mm horizontal 13.0 mm vertical 258 mm 23.0°C ω-20

32.0°/min (in ω) (up to 3 scans) (1.42 + 0.30 tan θ)° 120.2° Total: 4723 Unique: 4493 (Rint = 0.054) Lorentz-polarization Absorption (trans. factors: 0.6299 - 1.3013)

Table 6-1. Atomic coordinates and Biso/Beq

atom	x	У	Z	Beq
Br(1)	0.4097(1)	0.2575(2)	0.6476(2)	5.71(5)
Br(2)	0.1796(1)	0.1576(1)	0.2356(1)	4.57(4)
N(1)	0.9417(8)	0.6820(9)	0.2546(10)	3.8(3)
N(2)	0.8633(8)	0.6989(8)	0,4663(10)	3.7(3)
N(3)	1.0522(8)	0.6691(8)	0.4597(10)	3.3(2)
N(4)	0.4932(8)	0.1623(10)	0.1501(10)	3.9(3)
N(5)	0,4717(9)	0.0173(10)	0.262(1)	4.4(3)
N(6)	0.6360(8)	0.0477(9)	0.3075(10)	3.7(3)
C(1)	1.125(1)	0.711(1)	0.403(1)	3.8(3)
C(2)	1.238(1)	0.646(1)	0.389(2)	4.4(4)
C(3)	1.307(1)	0.686(1)	0.338(1)	5.1(4)
C(4)	1.257(1)	0.802(2)	0.296(1)	5.0(4)
C(5)	1,144(1)	0.871(1)	0.306(1)	4.7(4)
C(6)	1.077(1)	0.825(1)	0.360(1)	3.9(3)
C(7)	1.089(2)	0.618(2)	0.594(2)	5.3(5)
C(8)	0.952(1)	0.6830(10)	0.395(1)	3,3(3)
C(9)	0.827(1)	0.735(2)	0.180(2)	5,3(5)
C(10)	1.039(1)	0.613(1)	0.178(1)	3.7(3)
C(11)	1.103(1)	0.508(1)	0.208(2)	5.0(4)
C(12)	1.190(2)	0.451(1)	0.130(2)	7.0(6)
C(13)	1.224(2)	0.488(1)	0.030(2)	6.0(5)
C(14)	1.158(2)	0.590(2)	-0.004(2)	7.0(6)
C(15)	1.063(1)	0.664(1)	0.067(1)	4.7(4)
C(16)	0.510(1)	0.309(1)	0.299(1)	5.4(4)
C(17)	0.542(1)	0.403(1)	0.314(2)	6.8(5)
C(18)	0,579(1)	0.445(2)	0.208(2)	7.6(5)
C(19)	0.588(1)	0.389(1)	0.080(2)	6.1(5)
C(20)	0.561(1)	0.299(2)	0.065(2)	5.5(4)
C(21)	0.521(1)	0.254(1)	0.170(1)	3.7(3)
C(22)	0.411(1)	0.162(2)	0.034(2)	5.2(4)
C(23)	0.532(1)	0.073(1)	0.240(1)	3.6(3)
C(24)	0.662(2)	-0.003(2)	0.446(2)	4.7(4)
C(25)	0.7237(10)	0.0642(10)	0.246(1)	3.2(3)
C(26)	0.787(1)	0.111(1)	0.321(1)	4.0(3)
C(27)	0.873(1)	0.125(1)	0.260(2)	4.6(4)
C(28)	0.833(1)	0,044(1)	0.052(1)	4.6(4)
C(29)	0.748(1)	0.026(1)	0.111(1)	3.8(3)
L(30)	0.894(1)	0.094(1)	0.127(2)	4.7(4)

-\$24-

Appendix

Table 6-2. Anisotropic Displacement Parameters

atom	UII	U22	U33	U12	U13	1123
Br(1)	0.054(1)	0.099(1)	0.072(1)	-0.0380(10)	0.0094(8)	0.0106(10
Br(2)	0.0508(9)	0.077(1)	0.0442(9)	-0.0252(8)	0.0065(7)	-0.0045(7)
N(1)	0.035(6)	0.071(8)	0.038(6)	-0.023(6)	0.004(5)	-0.006(5)
N(2)	0.042(6)	0.055(7)	0.045(6)	-0.020(5)	0.013(5)	-0.003(5)
N(3)	0.042(6)	0.051(7)	0.035(6)	-0.021(5)	0.001(5)	0.010(5)
N(4)	0.036(6)	0.080(9)	0.037(6)	-0.028(6)	0.003(5)	0.002(6)
N(5)	0.050(7)	0.084(9)	0.049(7)	-0.040(7)	0.014(6)	0.007(6)
N(6)	0.037(6)	0.068(8)	0.031(6)	-0.016(6)	0.005(5)	0.015(5)
C(1)	0.043(8)	0.07(1)	0.031(7)	-0.028(7)	-0.004(6)	0.001(7)
C(2)	0.038(8)	0.06(1)	0.061(10)	-0.013(8)	-0.004(7)	0.013(8)
C(3)	0.050(9)	0.09(1)	0.059(10)	-0.033(9)	0.006(8)	0.000(9)
C(4)	0.07(1)	0.10(1)	0.045(9)	-0.06(1)	0.005(8)	-0.003(9)
C(5)	0.06(1)	0.07(1)	0.053(9)	-0.036(9)	0.003(8)	0.013(8)
C(6)	0.050(9)	0.054(9)	0.044(8)	-0.022(8)	0.000(7)	-0.002(7)
C(7)	0.05(1)	0.09(1)	0.06(1)	-0.03(1)	0.003(9)	0.019(10)
C(8)	0.046(8)	0.038(7)	0.046(8)	-0.020(6)	0.001(6)	0.000(6)
C(9)	0.05(1)	0.09(2)	0.06(1)	-0.02(1)	-0.012(8)	0.02(1)
C(10)	0.039(8)	0.066(10)	0.037(7)	-0.025(7)	0.001(6)	-0.004(7)
C(11)	0.07(1)	0.048(9)	0.07(1)	-0.025(9)	0.027(9)	-0.004(8)
C(12)	0.10(2)	0.05(1)	0.12(2)	-0.03(1)	0.04(1)	-0.01(1)
C(13)	0.08(1)	0.05(1)	0.09(1)	-0.020(10)	0.03(1)	-0.003(10)
C(14)	0.07(1)	0.18(2)	0.036(10)	-0.07(1)	0.024(9)	-0.03(1)
C(15)	0.046(9)	0.10(1)	0.041(8)	-0.035(9)	-0.001(7)	0.000(8)
C(16)	0.041(9)	0.09(1)	0.047(9)	-0.001(8)	0.003(7)	0.007(9)
C(17)	0.06(1)	0.06(1)	0.10(1)	-0.001(9)	-0.026(10)	-0.03(1)
C(18)	0.07(1)	0.11(1)	0.09(1)	-0.02(1)	0.00(1)	0.03(1)
C(19)	0.06(1)	0.06(1)	0.11(2)	-0.024(8)	-0.004(10)	0.02(1)
C(20)	0.047(9)	0.10(1)	0.039(9)	-0.012(9)	0.009(7)	0.004(9)
C(21)	0.035(7)	0.052(9)	0.045(8)	-0.011(6)	-0.003(6)	0.002(7)
C(22)	0.05(1)	0.10(1)	0.046(9)	-0.04(1)	-0.017(8)	0.030(9)
C(23)	0.043(8)	0.046(8)	0.032(7)	-0.002(6)	0.008(6)	0.001(6)
C(24)	0.06(1)	0.09(1)	0.036(8)	-0.04(1)	0.004(7)	0.012(8)
C(25)	0.033(7)	0.040(7)	0.039(7)	-0.007(6)	0.001(6)	0.005(6)
C(26)	0.048(9)	0.053(9)	0.039(8)	-0.011(7)	0.002(7)	-0.002(7)
C(27)	0.044(9)	0.054(9)	0.08(1)	-0.023(7)	0.012(8)	-0.013(8)
C(28)	0.051(9)	0.07(1)	0.046(8)	-0.011(8)	0.010(7)	0.008(7)
C(29)	0.040(8)	0.065(9)	0.036(7)	-0.019(7)	0.007(6)	0.002(6)
C(30)	0.041(9)	0.061(10)	0.08(1)	-0.018(7)	0.019(8)	0.007(8)

Table 6-3. Bond Lengths (Å)

atom	atom	distance	atom	atom	distance
N(1)	C(8)	1.35(1)	N(1)	C(9)	1.50(2)
N(1)	C(10)	1.47(2)	N(2)	C(8)	1 33(1)
N(3)	C(1)	1.44(2)	N(3)	C(7)	1.44(2)
N(3)	C(8)	1.34(2)	N(4)	C(21)	1.40(2)
N(4)	C(22)	1 47(2)	N(A)	0(21)	1.40(2)
N(5)	C(23)	1 33(2)	NG	C(23)	1.25(2)
N(6)	C(24)	1 47(2)	NIG	C(25)	1.55(2)
C(1)	C(2)	1 38(2)	C(1)	CIEX	1.43(1)
C(2)	C(3)	1 37(3)	C(1)	C(0)	1.4(2)
C(4)	C(5)	1 27(3)	C(5)	C(4)	1,44(2)
C(IO)	COL	1.37(2)	C(3)	C(0)	1.39(2)
COL	C(11)	1,30(2)	C(10)	C(15)	1.41(2)
C(12)	C(12)	1.40(2)	C(12)	C(13)	1.24(2)
Pile	C(14)	1,34(3)	C(14)	C(15)	1.43(2)
C(10)	C(17)	1,48(2)	C(16)	C(21)	1.42(2)
CUM	C(18)	1,39(3)	C(18)	C(19)	1.39(2)
0(19)	C(20)	1.38(4)	C(20)	C(21)	1.41(3)
C(25)	C(26)	1.37(2)	C(25)	C(29)	1.40(2)
C(26)	C(27)	1.40(2)	C(27)	C(30)	1.36(2)
C(28)	C(29)	1,40(2)	C(28)	C(30)	1.39(2)

Table 6	-4. Bond A	Angles (deg)					
atom C(8) C(9) C(1)	atom N(1) N(1) N(3)	atom C(9) C(10) C(8)	angle 120(1) 117(1) 122(1)	atom C(8) C(1)	atom N(1) N(3) N(3)	atom C(10) C(7) C(8)	angle 120(1) 116(1) 120(1)
C(21)	N(4)	C(22)	121(1)	C(21)	N(4)	C(23)	122(1)
C(22)	N(4)	C(23)	115(1)	C(23)	N(6)	C(24)	
C(23)	N(6)	C(25)	122(1)	C(24)	N(6)	C(25)	118(1)
N(3)	C(1)	C(2)	121(1)	N(3)	C(1)	C(6)	118(1)
C(2)	C(1)	C(6)	119(1)	C(1)	C(2)	C(3)	121(1)
C(2)	C(3)	C(4)	117(1)	C(3)	C(4)	C(5)	123(1)
C(4)	C(5)	C(6)	117(1)	C(1)	C(6)	C(5)	120(1)
N(1)	C(8)	N(2)	120(1)	N(1)	C(8)	N(3)	118(1)
N(2)	C(8)	N(3)	121(1)	N(1)	C(10)	C(11)	122(1)
N(1)	C(10)	C(15)	117(1)	C(11)	C(10)	C(15)	120(1)
C(10)	C(13)	C(12)	117(1)	C(11)	C(12)	C(13)	127(1)
C(12)		C(14)	116(2)	C(13)	C(14)	C(15)	121(2)
C(16)	C(17)	C(18)	125(1)	C(17)	C(16)	C(21)	118(1)
C(18)	C(19)	C(20)		C(17)	C(18)	C(19)	113(1)
N(4) C(16)	C(21) C(21)	C(16) C(20)	121(1)	N(4)	C(20) C(21)	C(20)	125(1)
N(4)	C(23)	N(6)	116(1)	N(5)	C(23)	N(6)	122(1)
N(6)	C(25)	C(26)	120(1)	N(6)	C(23)	C(29)	
C(26)	C(25)	C(29)	120(1)	C(25)	C(26)	C(27)	119(1)
C(26)	C(27)	C(30)	120(1)	C(29)	C(28)	C(30)	
C(25)	C(29)	C(28)	118(1)	C(27)	C(30)	C(28)	119(1)

Table 6-5. Least Squares Planes

Plane nu	mber 1				Plane ni	umber 4		
Atoms d	efining plan	e D	istance		Atoms o	lefining plane	Distance	
C	(1)	0	.0058(12	1)	(2(25)	-0.0211(120)	
C	C(2) -0.0111(172)		2)	0	(26)	0.0095(145)		
C	(3)	0	.0019(15	D	C	(27)	0.0171(161)	
C	(4)	0	0056(15)	8)	- C	(28)	-0.0032(146)	
C	(5)	-0	.0043(14)	8)	C	(29)	0.0239(137)	
C	(6)	-0	.0021(13	9)	Č	(30)	-0.0197(154)	
Plane nu	mber 2		a construction	2	Plane ni	mber 5	-otorsu(rsa)	
Atoms di	efining plan	e D	istance		Atoms	efining nlane	Distance	
C	(10)	0	0027(120	5	C	(16)	-0.0142(145)	
C	άn	0.	0106(179	2)	C	(17)	0.0126(160)	
C	(12)	-0	0479(22	7)	Č	(18)	0.0120(100)	
C	(13)	0	0421(20)	73	C C	(10)	-0.0014(102)	
C	(14)	-0	0206(22)		č	20	0.0005(271)	
C	15)	-0	0024/14	2)	č	20)	0.0005(271)	
Plane nur	mber 3	-0.		11	Plane nu	(21)	0.0007(124)	
Atoms de	fining plan	· Di	istance		Atomed	afining aluna	Distances	
C	(8)	0	0058(12)	1	Autorius u	V22	0.0104(120)	
N	(1)	-0	0018/114	3	N	(23)	0.0104(120)	
N	(2)	.0	0018(10)	75		1(5)	-0.0030(109)	
N	(3)	-0	0018(10)	75		161	-0.0038(115)	
	1.1	-0,	0010(10)	9	19	101	-0.0051(100)	
Summary		plane	mean d	eviation	CHI ²	plane	mean deviation	CH
		1	0.00	52	0.8	4	0.0158	8.8
		2	0.02	11	8.5	5	0.0070	1.8
		3	0.00	28	0,3	6	0.0051	0.9
Dihedral	angles berw	een nla	nes (dea)					
plane	I	2	nes (neE)	3	4	5		
2	31.11	~		2		<i></i>		
3	106.94	1112	73					
4	81.19	70	87	31.08				
5	72.00	56	80	50.90	20.6	7		
6	141.14	117	01	55 75	67.6	1 60.0	17	
	1.1.14	117.	M.1	22.20	07.2	09.1	1.0	

-526-

N,N,N'-Trimethyl-N',N''-diphenylguanidine (5)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ D_{abc} \\ \text{From} \\ \mu(\text{CuK}\alpha) \\ \text{B. Intensity Measurements} \\ \text{Diffractometer} \\ \text{Radiation} \end{array}$

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 20max No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (1>3.000(1)) No. Variables Reflection/Parameter Ratio Residuals: R: Rw Goodness of Fit Indicator Max Shift/Error in Final Diff. Map Minimum peak in Final Diff. Map C₁₆H₁₉N₃ 253.35 colorless, prismatic 0.50 X 0.40 X 0.25 mm monoclinic C-centered 19 (49.0 - 50.9°) 0.18°

 $\begin{array}{l} 6.73\\ a=18.532(2) \dot{A}\\ b=7.736(2) \, \dot{A}\\ c=20.462(2) \, \ddot{A}\\ \beta=104.273(9)^{\circ}\\ V=2842(1) \, \ddot{A}^{3}\\ C2/c \, (\#15)\\ 8\\ 1.184 \, g/cm^{3}\\ 1088.00\\ 5.55 \, cm^{-1} \end{array}$

Rigaku AFC5S CuK α ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factors = 1.00, 3.57, 12.70, 45.11) 6.0 9.0 mm horizontal 13.0 mm vertical 258 mm 23.0°C ω-20 32.0°/min (in a) (up to 3 scans) $(1.37 + 0.30 \tan \theta)^{\circ}$ 120.9° Total: 2390 Unique: 2304 (Rint = 0.014) Lorentz-polarization Absorption (trans. factors: 0.6783 - 1.1041)

Direct Methods (SHELXS86) Full-matrix least-squares $\Sigma \le (IFo) - IFcI)^2$ $w = I/[\sigma^2(Fo^2) + P^2 + P]$ 0.0030 All non-hydrogen atoms 1532 248 6.18 0.069 ; 0.066 4.61 0.30 $e \cdot / \hat{A}^3$ -0.26 $e \cdot / \hat{A}^3$

Table 7-1. Atomic coordinates and Biso/Beq

atom	X	Y	z	Beg
N(1)	0.6061(2)	0.1231(5)	0.2691(2)	4,71(10)
N(2)	0.6692(2)	-0.0166(5)	0.1941(2)	4.04(9)
N(3)	0.6007(2)	0.2364(5)	0.1651(2)	4 79(10)
C(1)	0.6239(2)	0.1127(6)	0.2117(2)	4 1(1)
C(2)	0.6165(2)	-0.0187(7)	0.3145(2)	46(1)
C(3)	0.6006(3)	-0 1902(7)	0.2950(3)	53(1)
C(4)	0.6124(4)	-0.3167(9)	0.3433(4)	67(2)
C(5)	0.6391(3)	-0.2783(10)	0.4105(3)	7.2(2)
C(6)	0.6512(3)	-0.1095(10)	0.4293(3)	6 9(7)
C(7)	0.6390(3)	0.0185(8)	0 3816(3)	5.6(1)
C(8)	0.6452(2)	-0.1103(6)	0.1350(2)	4.0(1)
C(9)	0.5686(3)	-0.1214(7)	0.1037(2)	5 1(1)
C(10)	0.5456(3)	-0.2166(8)	0.0454(2)	5.9(1)
C(II)	0.5956(3)	0.3073(7)	0.0172(2)	6.0(1)
C(12)	0.6698(4)	0.2034(7)	0.0172(3)	5 8(2)
C(13)	0.6045(3)	0.2004(7)	0.0460(5)	2.8(4)
C(14)	0.7407(3)	-0.2004(7)	0.1001(2)	4.8(1)
C(15)	0.7407(3)	-0.0317(10)	0.2393(3)	2.2(1)
C(16)	0.6394(4)	0.278(1)	0.1138(3)	6.0(2)
0(10)	0.5428(4)	0.3201(9)	0,1739(3)	6.2(2)

Table 7-2. Anisotropic Displacement Parameters

anam	un	U22	1733	1112	1113	1123
N(1)	0.061(3)	0.063(3)	0.056(2)	0.001(2)	0.015(2)	0.000(2)
N(2)	0.043(2)	0.059(2)	0.049(2)	0.006(2)	0.006(2)	-0.005(2)
N(3)	0.067(3)	0.064(3)	0.052(2)	0.018(2)	0.015(2)	0.013(2)
C(1)	0.042(3)	0.064(3)	0.049(2)	-0.001(2)	0.009(2)	-0.007(3)
C(2)	0.054(3)	0.070(4)	0.053(3)	-0.004(3)	0.016(2)	0.002(3)
C(3)	0.074(4)	0.065(4)	0.063(3)	-0.013(3)	0.018(3)	0.001(3)
C(4)	0.095(5)	0.075(5)	0.094(5)	-0.023(4)	0.038(4)	0.003(4)
C(5)	0.097(5)	0.098(5)	0.080(4)	-0.014(4)	0.026(4)	0.032(4)
C(6)	0.093(5)	0.109(6)	0.059(4)	-0.034(4)	0.017(3)	0.013(4)
C(7)	0.082(4)	0.079(4)	0.052(3)	-0.016(3)	0.018(3)	-0.005(3)
C(8)	0.051(3)	0.055(3)	0.046(2)	0.000(2)	0.010(2)	0.003(2)
C(9)	0.055(3)	0.075(4)	0.062(3)	0.004(3)	0.009(3)	-0.003(3)
C(10)	0.064(4)	0.088(4)	0.061(3)	-0.002(3)	-0.003(3)	-0.010(3)
C(11)	0.096(5)	0.073(4)	0.053(3)	0.006(4)	0.011(3)	-0.006(3)
C(12)	0.088(5)	0.074(4)	0.064(3)	0.014(3)	0.030(3)	-0.006(3)
C(13)	0.053(3)	0.069(4)	0.063(3)	0.004(3)	0.018(3)	-0.003(3)
C(14)	0.044(3)	0.074(4)	0.071(4)	0.008(3)	-0.003(3)	0.000(3)
C(15)	0.082(5)	0.084(5)	0.063(3)	0.008(4)	0.020(3)	0.014(4)
C(16)	0.085(5)	0.074(4)	0.071(4)	0.027(4)	0.007(4)	0.004(4)

Table 7-3. Bond Lengths (Å)

alom	atom	distance	atom	atom	distance
N(1)	C(1)	1.298(5)	N(1)	C(2)	1,419(6)
N(2)	C(1)	1.409(5)	N(2)	C(8)	1.387(5)
N(2)	C(14)	1.443(6)	N(3)	C(1)	1.345(5)
N(3)	C(15)	1.444(7)	N(3)	C(16)	1.462(6)
C(2)	C(3)	1.396(6)	C(2)	C(7)	1.365(6)
C(3)	C(4)	1.369(8)	C(4)	C(5)	1.375(8)
C(5)	C(6)	1.364(9)	C(6)	C(7)	1.368(8)
C(8)	C(9)	1.409(6)	C(8)	C(13)	1.390(6)
C(9)	C(10)	1.378(6)	C(10)	C(11)	1.375(7)
C(11)	C(12)	1.370(7)	C(12)	C(13)	1.359(7)

atom	atom	atom	angle	atom	atom	atom	anala
C(1)	N(I)	C(2)	121.3(4)	C(1)	N(2)	C(8)	120.7/31
C(1)	N(2)	C(14)	118.6(4)	C(8)	N(2)	C(14)	120.6(4)
C(1)	N(3)	C(15)	122.9(5)	C(1)	N(3)	C(16)	118 6(4)
C(15)	N(3)	C(16)	117.4(5)	N(1)	C(1)	N(2)	125.2(4)
N(1)	C(1)	N(3)	119.3(4)	N(2)	C(1)	N(3)	115.5(4)
N(1)	C(2)	C(3)	124.3(4)	N(1)	C(2)	C(7)	117.0(5)
C(3)	C(2)	C(7)	118.6(5)	C(2)	C(3)	C(4)	119.2(5)
C(3)	C(4)	C(5)	121.4(7)	C(4)	C(5)	C(6)	118.8(6)
C(5)	C(6)	C(7)	120.4(6)	C(2)	C(7)	C(6)	121.3(6)
N(2)	C(8)	C(9)	119.9(4)	N(2)	C(8)	C(13)	122.0(4)
C(9)	C(8)	C(13)	118.1(5)	C(8)	C(9)	C(10)	119.2(5)
C(A)	C(10)	C(11)	121.6(5)	C(10)	C(11)	C(12)	118.8(6)
C(11)	C(12)	C(13)	121.2(6)	C(8)	C(13)	C(12)	121.1(5)

Table 7-5. Least Squares Planes

Plane number 1 Atoms defining plane C(2) C(3) C(4) C(5) C(6) C(7)	Distance 0.0205(4 -0.0153(5 -0.0095(6 0.0215(6 -0.0058(6 -0.0225(5	Pli At 51) 54) 53) 50) 57)	ane number 2 oms defining C(8) C(9) C(10) C(11) C(12) C(13)	plane	Distance 0.0075(42) -0.0015(51) -0.0016(55) 0.0069(54) -0.0028(56) -0.0059(50)
Plane number 3 Atoms defining plane C(1) N(1) N(2) N(3)	Distance -0.0137(4 0.0044(3 0.0032(3 0.0047(3	11) 16) 14) 19)			
Summary	plane 1 2 3	mean deviatio 0.0158 0.0054 0.0065	m	CHI ² 55.9 8.0 13.5	
Dihadral anglas batuaa	n planas (da	2			

Dihedral angles between planes (deg) plane 1 2 2 79.56 3 48.64 66.63

N,N,N',N''-Tetramethyl-N',N''-diphenylguanidinium iodide (6) (+)-Crystal

A. Crystal Data Empirical Formula Formula Weight Crystal Color. Habit Crystal Joinensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ Z \text{ value} \\ D_{alk} \\ \mu(CuK\alpha) \\ B. Intensity Measurements \\ Diffractometer \\ Radiation \end{array}$

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 20_{max} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (1>3.00σ(1)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Diff. Map Minimum peak in Final Diff. Map C₁₇H₂₂N₃IO 413.30 colorless, prismatic 0.30 X 0.20 X 0.40 mm orthorhombic Primitive

 $\begin{array}{l} 20 \;(\; 53.7 - 56.0^{\circ} \;) \\ 0.17^{\circ} \\ a = \; 12.044(2) \tilde{A} \\ b = \; 14.786(4) \; \tilde{A} \\ c = \; 10.444(1) \; \tilde{A} \\ V = \; 1860.0(5) \; \tilde{A}^2 \\ P2_1 2_1 2_1 \; (\#19) \\ 4 \end{array}$

1.476 g/cm³ 832.00 135.60 cm³

Rigaku AFC5S CuK α ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factors = 1.00, 2.37, 6.13, 15.65) 6.0 9.0 mm horizontal 13.0 mm vertical 258 mm 23.0°C ω-20 16.0°/min (in w) (up to 3 scans) $(1.21 + 0.30 \tan \theta)^{\circ}$ 135.2 Total: 3867 Unique: 1935 (Rint = 0.063) Lorentz-polarization Secondary Extinction (coefficient: 2.19084e-06)

Direct Methods (SIR92) Full-matrix least-squares $\Sigma \le (IFo) - (Fc))^2$ w = $V[\sigma^2(Fo^2) + P^2 + P]$ 0.0200 All non-hydrogen atoms 3283 200 16.42 0.063; 0.075 2.79 0.17 1.38 e- (A^3) -1.99 e- (A^3)

Table 8-1. Atomic coordinates and Biso/Beq

atom	x	У	Z	Beq
I(1)	-1.30469(4)	-0.46405(3)	-0.34451(4)	3.351(9)
O(1)	-0.7643(4)	-0.1533(3)	-0.3587(5)	4.8(1)
N(1)	-1.0522(4)	-0.2727(4)	-0.3806(5)	2.6(1)
N(2)	-1.0055(4)	-0.3746(3)	-0.2206(4)	1.90(9)
N(3)	-0.9563(4)	-0.4021(4)	-0.4316(5)	2.3(1)
C(1)	-1.0043(4)	-0.3484(4)	-0.3435(6)	1.90(9)
C(2)	-1.0081(7)	-0.2209(5)	-0.4930(8)	4.5(2)
C(3)	-1.1429(6)	-0.2315(5)	-0.3121(7)	3.7(2)
C(4)	-1.0076(5)	-0.4708(4)	-0.1843(5)	2.5(1)
C(5)	-0.9968(4)	-0.3123(4)	-0.1151(5)	1.6(1)
C(6)	-1.0599(5)	-0.3219(4)	-0.0058(6)	2.5(1)
C(7)	-1.0430(7)	-0.2657(5)	0.0995(7)	3.6(2)
C(8)	-0.9642(6)	-0.1994(5)	0.0942(7)	3.5(2)
C(9)	-0.9047(5)	-0.1855(5)	-0.0159(7)	3,3(1)
C(10)	-0.9185(5)	-0.2404(4)	-0.1206(6)	2.3(1)
C(11)	-1.0085(6)	-0.4174(6)	-0.5585(6)	4.3(2)
C(12)	-0.8520(5)	-0.4454(4)	-0.4056(5)	2.0(1)
C(13)	-0.7678(5)	-0.3993(4)	-0.3443(7)	2.7(1)
C(14)	-0.6661(5)	-0.4418(4)	-0.3220(7)	3.1(1)
C(15)	-0.6477(5)	-0.5253(5)	-0.3634(6)	3.1(1)
C(16)	-0.7290(6)	-0.5734(5)	-0.4222(8)	3.9(2)
C(17)	-0.8336(5)	-0.5349(5)	-0.4479(7)	3.4(1)
			and a second	

Table 8-2. Anisotropic Displacement Parameters

atom	U11 0.0378(2)	U22 0.0508(2)	U33 0.0386(2)	U12	U13	L123
10(1)	0.060(3)	0.060(3)	0.064(4)	-0.015(3)	0.020(3)	0.007/31
NOL	0.026(3)	0.043(3)	0.028(3)	-0.003(2)	0.012(2)	0.004(2)
N/21	0.026(2)	0.023(2)	0.023(2)	-0.006(2)	-0.003(2)	0.001(2)
N(2)	0.024(2)	0.040(3)	0.024(2)	0.009(2)	-0.011(2)	0.0010(2)
con	0.014(2)	0.039(3)	0.018(2)	-0.008(2)	-0.003/3)	-0.006(2)
0(1)	0.056(5)	0.063(6)	0.050(5)	-0.005(4)	0.000(4)	0.038(4)
0(3)	0.038(4)	0.046(4)	0.057(5)	0.022(3)	-0.006(3)	0.001(4)
C(4)	0.041(3)	0.024(2)	0.029(3)	-0.005(3)	0.008(3)	0.003(3)
C(5)	0.016(3)	0.024(3)	0.022(2)	-0.001(2)	-0.005(2)	0.000(2)
CIEN	0.031(4)	0.031(3)	0.032(3)	-0.008(3)	0.012(3)	0.001(2)
C(T)	0.055(5)	0.055(5)	0.026(3)	0.007(3)	0.007(4)	-0.006(3)
C(8)	0.048(4)	0.048(4)	0.037(3)	0.014(3)	0.010/3)	-0.016(4)
C(9)	0.029(3)	0.038(4)	0.059(4)	-0.011(3)	-0.002/31	0.024(3)
0(10)	0.020(3)	0.032(3)	0.034(3)	-0.013(2)	0.006(3)	0.003(2)
C(II)	0.042(4)	0.091(6)	0.029(3)	0.012(4)	0.022(3)	0.003(2)
C(12)	0.021(2)	0.035(3)	0.021(3)	0.003(2)	0.003(2)	0.028(4)
C(12)	0.026(3)	0.030(3)	0.038(3)	0.001(2)	0.011/3	0.009(2)
C(14)	0.022(3)	0.048(4)	0.047(4)	-0.001(2)	-0.001(3)	-0.000(3)
C(14)	0.034(3)	0.057(4)	0.026(3)	0.007(2)	0.001(3)	()()(2(3)
C(15)	0.044(3)	0.011(4)	0.020(3)	0.027(3)	0.000(2)	0.003(3)
C(13)	0.036(3)	0.039(3)	0.055(4)	-0.007(3)	0.020(3)	-0.012(4)

Table 8-3. Bond Lengths (Å)

Table

atom	atom	distance	atom	atom	distance
N(1)	C(1)	1.32(1)	N(1)	C(2)	1.50(1)
N(1)	C(3)	1.44(1)	N(2)	C(1)	1.34(1)
N(2)	C(4)	1.47(1)	N(2)	C(5)	1.44(1)
N(3)	C(1)	1.35(1)	N(3)	C(11)	1.48(1)
N(3)	C(12)	1.44(1)	C(5)	C(6)	1.38(1)
C(5)	C(10)	1.42(1)	C(6)	C(7)	1.39(1)
C(7)	C(8)	1.37(2)	C(8)	C(9)	1.37(2)
C(9)	C(10)	1.37(1)	C(12)	C(13)	1.38(1)
C(12)	C(17)	1.41(1)	C(13)	C(14)	1.40(1)
C(14)	C(15)	1.33(2)	C(15)	C(16)	1.36(2)
C(16)	CUT	1.41/20	0(10)	e(ra)	a montant.

rante o	-4. Bond P	ingles (deg)					
atom	atom	atom	angle	atom	atom	atom	angle
C(1)	N(1)	C(2)	120.6(10)	C(1)	N(1)	C(3)	123.1(9)
C(2)	N(1)	C(3)	116.2(10)	C(1)	N(2)	C(4)	121.7(8)
C(1)	N(2)	C(5)	123.2(8)	C(4)	N(2)	C(5)	115.0(7)
C(1)	N(3)	C(11)	121.2(9)	C(1)	N(3)	C(12)	120.6(8)
C(11)	N(3)	C(12)	118.1(8)	N(1)	C(1)	N(2)	121.4(9)
N(1).	C(1)	N(3)	119.3(10)	N(2)	C(1)	N(3)	119.3(9)
N(2)	C(5)	C(6)	121.9(8)	N(2)	C(5)	C(10)	119.7(8)
C(6)	C(5)	C(10)	118,4(9)	C(5)	C(6)	C(7)	120.8(10)
C(6)	C(7)	C(8)	119(1)	C(7)	C(8)	C(9)	120(1)
C(8)	C(9)	C(10)	121.1(10)	C(5)	C(10)	C(9)	119.4(9)
N(3)	C(12)	C(13)	120.7(9)	N(3)	C(12)	C(17)	119.7(9)
C(13)	C(12)	C(17)	119.5(9)	C(12)	C(13)	C(14)	119.9(10)
C(13)	C(14)	C(15)	120(1)	C(14)	C(15)	C(16)	120(1)
C(15)	C(16)	C(17)	121(1)	C(12)	C(17)	C(16)	117(1)

Table 8-5. Least Squares Planes

Plane number 1 Atoms defining plane C(5) C(6) C(7) C(8) C(9) C(10)	Distance 0.0188(9 -0.0187(1 -0.0073(1 0.0216(1 -0.0140(1 -0.0096(1	P (1) (07) (130) (113) (20) (03)	Plane number 2 Atoms defining C(12) C(13) C(14) C(15) C(16) C(17)	g plane	Distance -0.0010(95) 0.0052(122) -0.0127(114) 0.0142(106) -0.0142(128) 0.0036(123)
Plane number 3 Atoms defining plane C(1) N(1) N(2) N(3)	Distance 0.0107(8 -0.0042(8 -0.0040(7 -0.0041(8	30) 36) 79) 33)			
Summary	plane 1 2 3	mean deviat 0.0150 0.0085 0.0057	ion	CHI ² 12.7 4.4 2.3	

Dihedral angles between planes (deg) plane 1 2 2 107.26 3 69.44 71.03

N,N,N',N''-Tetramethyl-N',N''-diphenylguanidinium iodide (6) (-)-Crystal

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (2θ range) Omega Scan Peak Width at Half-height Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ D_{cak} \\ P_{auk} \\ \mu(CuK\alpha) \\ \text{B. Intensity Measurements} \\ \text{Diffractometer} \\ \text{Radiation} \end{array}$

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 20_{max} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (1>3.005(1)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map C₁₇H₂₄N₃IO 413.30 colorless, prismatic 0.30 X 0.15 X 0.40 mm orthorhombic Primitive

 $\begin{array}{l} 20\ (\ 144.4 - 49.0^{9}) \\ 0.22^{0} \\ a = \ 12.055(3)\,\tilde{A} \\ b = \ 14.776(3)\,\,\tilde{A} \\ c = \ 10.466(4)\,\,\tilde{A} \\ V = \ 1864.3(7)\,\,\tilde{A}^{3} \\ P2_{2}2_{1}2_{1}\ (\#19) \\ 4 \end{array}$

1.472 g/cm³ 832.00 135.29 cm⁻¹

Rigaku AFC5S CuK α ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factors = 1.00, 2.37, 6.13, 15.65) 6.0° 9.0 mm horizontal 13.0 mm vertical 258 mm 23.0°C ω-20 16.0°/min (in w) (up to 3 scans) $(1.37 + 0.30 \tan \theta)^{\circ}$ 135.1° Total: 3872 Unique: 1938 (Rint = 0,090) Lorentz-polarization Absorption (trans. factors: 0.8578 - 1.5304)

Direct Methods (SIR92) Full-matrix least-squares $\Sigma w (lFo) - lFc)^2$ $w = 1/(\sigma^2(Fo^2) + P^2 + P]$ 0.0000 All non-hydrogen atoms 3107 199 15.61 0.065; 0.075 1.95 0.38 3.86 e-/Å³ -1.28 e-/Å⁵

Table 8-1. Atomic coordinates and Biso/Beq

atom	x	У	z	Beq
I(1)	-0.19457(5)	-0.46471(4)	-0.84484(6)	3.50(1)
0(1)	-0.7372(6)	-0.1532(4)	-0.8590(8)	5.0(2)
N(1)	-0.4487(6)	-0.2730(5)	-0.8800(7)	3.0(2)
N(2)	-0.4944(5)	-0.3739(4)	-0.7208(6)	2.0(1)
N(3)	-0.5431(6)	-0.4026(5)	-0.9314(7)	2.7(1)
C(1)	-0.4956(6)	-0.3481(5)	-0.8401(9)	2.0(1)
C(2)	-0.4880(9)	-0.2221(8)	-0.994(1)	4.8(3)
C(3)	-0.3547(8)	-0.2315(6)	-0.8131(10)	3.7(2)
C(4)	-0.4922(7)	-0.4709(6)	-0.6847(8)	2.8(2)
C(5)	-0.5024(7)	-0.3107(5)	-0.6189(8)	2.2(1)
C(6)	-0.4402(8)	-0.3212(6)	-0.5070(9)	3.1(2)
C(7)	-0.4538(10)	-0.2658(7)	-0,4020(9)	3.8(2)
C(8)	-0.5379(9)	-0.1989(7)	-0.4095(10)	4.0(2)
C(9)	-0.5944(8)	-0.1846(6)	-0.5192(10)	3.4(2)
C(10)	-0.5800(7)	-0.2401(6)	-0.6235(8)	2.7(2)
C(11)	-0.4934(9)	-0.4187(8)	-1.0568(9)	4.7(3)
C(12)	-0.6483(7)	-0.4463(5)	-0.9052(8)	2.3(1)
C(13)	-0.7323(6)	-0.3980(5)	-0.844(1)	2.9(2)
C(14)	-0.8352(7)	-0.4406(6)	-0.8213(9)	3,3(2)
C(15)	-0.8513(7)	-0.5309(8)	-0.8654(8)	3.6(2)
C(16)	-0.7692(9)	-0.5767(6)	-0.925(1)	4.2(2)
C(17)	-0.6655(7)	-0.5338(7)	-0.9466(10)	3.7(2)
Table 8-2. Anisotropic Displacement Parameters

atom 1(1) Q(1) N(1) N(2) N(3) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(6) C(7) C(6) C(7) C(8) C(9) C(10) C(12) C(12) C(13) C(12) C(13) C(1) C(1) C(1) C(2) C(2) C(2) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(1) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(1) C(2) C(3) C(1) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(2) C(3) C(1) C(2) C(3) C(1) C(2) C(3) C(1) C(2) C(3) C(1) C(2) C(3) C(1) C(2) C(3) C(1) C(2) C(3) C(1) C(2) C(3) C(1) C(2) C(3) C(1) C(2) C(2) C(3) C(1) C(2) C(3) C(1) C(1) C(2) C(3) C(1) C(2) C(3) C(1) C(2) C(3) C(1) C(2) C(3) C(1) C(1) C(2) C(3) C(1)	U11 0.0428(3) 0.064(4) 0.035(4) 0.021(3) 0.026(3) 0.015(3) 0.044(5) 0.044(5) 0.044(5) 0.044(5) 0.044(5) 0.044(5) 0.044(5) 0.044(5) 0.031(4) 0.031(4) 0.037(5) 0.033(4) 0.037(5) 0.033(4) 0.057(7) 0.025(4) 0.030(4) 0.025(4) 0.025(4) 0.025(4) 0.025(4) 0.025(4) 0.025(4) 0.025(4) 0.025(4) 0.025(4) 0.025(4) 0.026(3) 0.037(5) 0.037(5) 0.025(3) 0.025(3) 0.025(3) 0.025(3) 0.025(3) 0.025(3) 0.025(3) 0.025(3) 0.025(3) 0.025(3) 0.025(4) 0.025(4) 0.025(3) 0.026(3) 0.025(4) 0.026(3) 0.025(4) 0.026(3) 0.026(3) 0.025(4) 0.026(3) 0.026(3) 0.026(3) 0.025(4) 0.026(3) 0.025(4	$\begin{array}{c} U22\\ 0.0422(3)\\ 0.054(4)\\ 0.031(4)\\ 0.020(3)\\ 0.043(4)\\ 0.029(3)\\ 0.067(7)\\ 0.039(5)\\ 0.018(3)\\ 0.022(3)\\ 0.031(5)\\ 0.033(5)\\ 0.033(5)\\ 0.040(5)\\ 0.033(5)\\ 0.033(5)\\ 0.030(4)\\ 0.030(4)\\ 0.030(4)\\ 0.058(5)\\ \end{array}$	U33 0.0479(3) 0.072(5) 0.047(4) 0.035(3) 0.034(3) 0.032(3) 0.061(6) 0.059(7) 0.044(5) 0.033(4) 0.033(4) 0.044(5) 0.033(4) 0.044(5) 0.033(5) 0.033(4) 0.040(5) 0.033(4) 0.051(6) 0.0351(6) 0.026(5)	U12 0.0011(3) 0.017(3) 0.007(3) 0.002(3) 0.002(3) 0.002(6) 0.0021(4) 0.000(4) 0.000(4) 0.0001(4) -0.0113(4) 0.0002(4) 0.002(4) 0.002(4) 0.002(4) 0.002(4) 0.002(4) 0.002(3) -0.021(6) 0.0001(3) 0.0005(3) 0.0005(3)	U13 0.0046(3) -0.010(4) 0.006(3) -0.001(3) 0.006(3) 0.008(4) 0.008(4) 0.003(4) 0.005(3) 0.003(4) 0.005(3) -0.022(4) -0.009(5) 0.013(4) 0.006(4) -0.017(5) -0.004(3) 0.0004(4) 0.000(4) 0.0004(4) 0.000(4) 0.0004(4) 0.000(4) 0.0004(4) 0.000(4) 0.0004(4) 0.000(4) 0.0004(4) 0.000(4) 0.0004(4) 0.000(4) 0.0004(4) 0.000(4) 0.0004(4) 0.000(4) 0.0004(4) 0.000(4) 0.0004(4) 0.000(4) 0.000(4) 0.000(4) 0.000(4) 0.000(4) 0.000(4) 0.000(5) 0.0	U23 -0.0072(3) 0.006(4) 0.005(3) 0.001(2) -0.010(3) 0.000(3) 0.043(6) -0.005(5) 0.002(4) 0.003(3) -0.008(4) -0.008(4) -0.002(4) -0.002(4) -0.027(5) -0.027(4) -0.022(5) -0.022(6) 0.005(3) -0.013(5) -0.002(4) -0.002(4) -0.002(4) -0.005(3) -0.013(5) -0.002(4)
C(13) C(14) C(15) C(16) C(17)	0.025(4) 0.043(4) 0.047(5) 0.037(4)	0.051(5) 0.058(5) 0.032(5) 0.036(4)	0.051(5) 0.051(6) 0.036(5) 0.082(8) 0.066(6)	-0.005(3) -0.023(4) -0.017(4) 0.008(4)	0.004(4) 0.000(4) -0.010(4) -0.016(5) 0.002(4)	-0.013(5) -0.002(4) 0.001(5) -0.021(5) -0.027(5)
		a constant of	and all all	dimental al	numet at	anon (12)

Table 8-3. Bond Lengths (Å)

atom	atom	distance	atom	atom	distance
N(1)	C(1)	1.31(1)	N(1)	C(2)	1.49(2)
N(1)	C(3)	1.47(2)	N(2)	C(1)	1.30(2)
N(2)	C(4)	1.48(1)	N(2)	C(5)	1.42(1)
N(3)	C(1)	1.37(1)	N(3)	C(11)	1.46(2)
N(3)	C(12)	1.45(1)	C(5)	C(6)	1.40(2)
C(5)	C(10)	1.40(1)	C(6)	C(7)	1.38(2)
C(7)	C(8)	1.42(2)	C(8)	C(9)	1.35(2)
C(9)	C(10)	1.38(2)	C(12)	C(13)	1.40(2)
C(12)	C(17)	1.38(2)	C(13)	C(14)	1.41(2)
C(14)	C(15)	1.43(2)	C(15)	C(16)	1.35(2)
C(16)	C(17)	1.42(2)		1000	

Table 8-4. Bond Angles (deg)

atom	atom	angle	atom	atom	atom	angle
N(1)	C(2)	123(1)	C(1)	N(1)	C(3)	122(1)
N(1)	C(3)	114(1)	C(1)	N(2)	C(4)	121.8(9)
N(2)	C(5)	121.7(9)	C(4)	N(2)	C(5)	116.4(9)
N(3)	C(11)	123(1)	C(1)	N(3)	C(12)	119.5(9)
N(3)	C(12)	117(1)	N(1)	C(1)	N(2)	123(1)
C(1)	N(3)	116(1)	N(2)	C(1)	N(3)	119.8(10)
C(5)	C(6)	121.3(10)	N(2)	C(5)	C(10)	120.6(10)
C(5)	C(10)	117(1)	C(5)	C(6)	C(7)	122(1)
C(7)	C(8)	117(1)	C(7)	C(8)	C(9)	121(1)
C(9)	C(10)	121(1)	C(5)	C(10)	C(9)	120(1)
C(12)	C(13)	119.7(10)	N(3)	C(12)	C(17)	119(1)
C(12)	C(17)	121(1)	C(12)	C(13)	C(14)	119(1)
C(14)	C(15)	118(1)	C(14)	C(15)	C(16)	121(1)
C(16)	C(17)	119(1)	C(12)	C(17)	C(16)	119(1)
	atom N(1) N(2) N(3) N(3) C(1) C(5) C(5) C(7) C(2) C(12) C(12) C(14) C(16)	atom atom N(1) C(2) N(1) C(3) N(2) C(5) N(3) C(11) N(3) C(12) C(1) N(3) C(5) C(6) C(5) C(6) C(7) C(8) C(9) C(10) C(12) C(13) C(12) C(17) C(14) C(15) C(16) C(17)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 8-5. Least Squares Planes

Plane number 1 Atoms defining plane C(5) C(6) C(7) C(8) C(9) C(10)	Distance -0.0125(111) 0.0062(132) 0.0242(148) -0.0361(142) 0.01930(133) 0.0056(125)	$\begin{array}{c} Plane number 2\\ Atoms defining plane\\ C(12)\\ C(13)\\ C(14)\\ C(15)\\ C(16)\\ C(16)\\ C(17)\\ \end{array}$	Distance 0.0033(111) -0.0083(151) 0.0076(135) -0.0052(127) 0.0052(160) -0.0026(148)
Plane number 3 Atoms defining plane C(1) N(1) N(2) N(3)	Distance -0.0145(92) 0.0063(108) 0.0055(88) 0.0053(97)		

Summary	plane	mean deviation	CHI ²
	2	0.0053	1.1
	3	0.079	3.4

Dihedral angles between planes (deg) plane 1 2 2 106.91 3 69.19 70.96

N-Phenylbenzamidinium Chloride (7)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ Z \text{ value} \\ D_{ode} \\ \mu(CuK\alpha) \\ B_{non} \\ B_{ode} \\ \text{Measurements} \\ \text{Diffractometer} \\ \text{Radiation} \end{array}$

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 2 θ_{max} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (1>2.005(1)) No. Variables Reflection/Parameter Ratio Residuals: R: Rw Goodness of Fit Indicator Max Shift/Error in Final Diff. Map Minimum peak in Final Diff. Map

C13H13N2CI 232.71 colorless, prismatic 0.20 X 0.20 X 0.20 mm tetragonal Primitive 20 (43.7 - 46.4") 0.37 a = 16.565(2) Å c = 8.880(3)Å V = 2436.6(5) Å P42/n (#86) 8 1.269 g/cm 976.00 25.49 cm1 **Rigaku AFC7S** CuK α ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factor = 8.99) 6.0° 9.0 mm horizontal 13.0 mm vertical 235 mm 23.0°C ω-20 16.0°/min (in to) (up to 3 scans) $(1.21 + 0.30 \tan \theta)^{\circ}$ 135.1° Total: 2535; Unique: 2365 (Rint = 0.030) Lorentz-polarization Absorption (trans. factors: 0.9314 - 0.9991) Secondary Extinction

Direct Methods (SIR92) Full-matrix least-squares S w $(IFo| - [Fc|)^2$ w = $I/[S^2(Fo^2) + P^2 + P]$ 0.0020 All non-hydrogen atoms 1500 146 10.27 0.043; 0.035 1.66 0.05 0.16 e- IA^3

(coefficient: 2.36218e-06)

Table 10-1. Atomic coordinates and Biso/Beq

atom	x	у	Z	Beq
Cl(1)	0.40354(5)	-0.04598(5)	0.6729(1)	4.74(2)
N(1)	0.1207(1)	0.0108(2)	0.9160(3)	3,84(6)
N(2)	0.2565(1)	-0.0170(1)	0.8813(3)	3 19(6)
C(1)	0.1872(2)	0.0146(2)	0.8371(3)	3.03(6)
C(2)	0.1859(2)	0.0560(2)	0.6891(3)	3.08(6)
C(3)	0.2498(2)	0.1053(2)	0.6484(4)	3.96(8)
C(4)	0.2480(2)	0.1442(2)	0.5114(4)	5.17(10)
C(5)	0.1834(3)	0.1346(2)	0.4160(4)	5.5(1)
C(6)	0.1202(2)	0.0851(2)	0.4551(4)	4.97(10)
C(7)	0.1215(2)	0.0456(2)	0.5926(4)	4.08(8)
C(8)	0.2721(2)	-0.0559(2)	1.0216(3)	3.03(7)
C(9)	0.2554(2)	-0.0189(2)	1.1575(4)	3,90(8)
C(10)	0.2751(2)	-0.0572(2)	1.2908(4)	4,33(9)
C(11)	0.3110(2)	-0.1317(2)	1.2883(4)	4.40(9)
C(12)	0.3274(2)	-0,1683(2)	1.1530(4)	4.53(9)
C(13)	0.3089(2)	-0.1306(2)	1.0188(4)	3.73(7)

Table 10-2. Anisotropic Displacement Parameters

atom	UII	U22	U33	U12	U13	U23
CI(1)	0.0698(6)	0.0465(5)	0.0638(5)	0.0006(4)	0.0341(5)	-0.0065(4)
N(1)	0.041(2)	0.060(2)	0.045(2)	0.008(1)	0.010(1)	0.020(1)
N(2)	0.037(1)	0.047(2)	0.037(1)	0.000(1)	0.006(1)	0.004(1)
C(1)	0.043(2)	0.034(2)	0.038(2)	-0.003(1)	0.004(1)	0.002(1)
C(2)	0.044(2)	0.035(2)	0.037(2)	0.005(1)	0.008(1)	0.003(1)
C(3)	0.055(2)	0.040(2)	0.055(2)	-0.002(1)	0.007(2)	0.005(2)
C(4)	0.079(3)	0.051(2)	0.066(3)	0.002(2)	0.023(2)	0.021(2)
C(5)	0.103(3)	0.058(2)	0.047(2)	0.025(2)	0.021(2)	0.020(2)
C(6)	0.074(3)	0.071(3)	0.044(2)	0.017(2)	-0.010(2)	0.006(2)
C(7)	0.054(2)	0.056(2)	0.046(2)	0.002(2)	0.000(2)	0.004(2)
C(8)	0.031(2)	0.046(2)	0.038(2)	-0.002(1)	0.000(1)	0.004(1)
C(9)	0.059(2)	0.049(2)	0.041(2)	0.007(2)	0.004(2)	0.000(2)
C(10)	0.061(2)	0.069(2)	0.034(2)	0.004(2)	0.005(2)	0.002(2)
C(11)	0.048(2)	0.071(2)	0.048(2)	0.004(2)	-0.005(2)	0.016(2)
C(12)	0.054(2)	0.053(2)	0.065(3)	0.011(2)	-0.012(2)	0.006(2)
C(13)	0.043(2)	0.050(2)	0.048(2)	0.006(1)	-0.005(2)	-0.003(2)

Table 10-3. Bond Lengths (Å)

atom N(1) N(2) C(2) C(3) C(5) C(8) C(9) C(11)	atom C(1) C(8) C(3) C(4) C(6) C(9) C(10) C(12)	distance 1.308(3) 1.426(4) 1.386(4) 1.377(4) 1.375(5) 1.382(4) 1.382(4) 1.373(4)	atom N(2) C(1) C(2) C(4) C(6) C(6) C(8) C(10) C(12)	atom C(1) C(2) C(7) C(5) C(7) C(13) C(11) C(13)	distance 1.321(3) 1.482(4) 1.379(4) 1.379(4) 1.385(4) 1.379(4) 1.379(4) 1.379(4)
---	--	--	--	---	--

Table 10-4. Bond Angles (deg)

atom	atom	atom	angle	atom	atom	atom	angle
C(1)	N(2)	C(8)	126.7(2)	N(1)	C(1)	N(2)	123.6(3)
N(1)	C(1)	C(2)	119.0(3)	N(2)	C(1)	C(2)	117.4(3)
C(1)	C(2)	C(3)	119.5(3)	C(1)	C(2)	C(7)	120.3(3)
C(3)	C(2)	C(7)	120.2(3)	C(2)	C(3)	C(4)	119.3(3)
C(3)	C(4)	C(5)	120.5(3)	C(4)	C(5)	C(6)	120.4(3)
C(5)	C(6)	C(7)	119.5(3)	C(2)	C(7)	C(6)	120,1(3)
N(2)	C(8)	C(9)	121.7(3)	N(2)	C(8)	C(13)	118.0(3)
C(9)	C(8)	C(13)	120.2(3)	C(8)	C(9)	C(10)	119.8(3)
C(9)	C(10)	C(11)	120.1(3)	C(10)	C(11)	C(12)	119.9(3)
C(11)	C(12)	C(13)	120.8(3)	C(8)	C(13)	C(12)	119.2(3)

Table 10-5. Least Squares Planes

Plane number 1 Atoms defining plane C(2) C(3) C(4) C(5) C(6) C(7)	Distance -0.0035(28) 0.0017(31) 0.0036(36) -0.0067(38) 0.0026(37) 0.0029(33)	Plane number 2 Atoms defining plane C(8) C(9) C(10) C(11) C(12) C(13)		0032(27) 0003(32) 0003(32) 00027(34) 0003(34) 00052(33) 00062(30)		
Plane number 3 Atoms defining plane N(1) N(2) C(8)	Distance 0.0 0.0 0.0 0.0	Summary plane 1 2 3	mean deviatio 0.0035 0.0030 0.0000	m	CHI ² 7.1 8.6 0.0	

Dihedral angles between planes (deg)

plane	1	2
2	85.39	
3	41.22	125.69

N-Methyl-N-phenylbenzamidinium Chloride (8)

A. Crystal Data Empirical Formula Formula Weight Crystal Color. Habit Crystal Dimensions Crystal System Lattice Type Indexing Images Detector Position Detector Swing Angle Pixel Size Lattice Parameters

- $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ D_{cale} \\ F_{oot} \\ \mu(MoK\alpha) \\ \text{B. Intensity Measurements} \\ \text{Diffractometer} \\ \text{Radiation} \end{array}$
- Detector Aperture Data Images Oscillation Range Detector Position Detector Swing Angle Pixel Size 20 No. of Reflections Measured Corrections C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (I>3.000(I)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

C15H19N2CIO 278.78 clear, prism 0.38 X 0.30 X 0.01 mm monoclinic Primitive 3 oscillations @ 5.0 minutes 86.33 mm 0.00° 0.203 mm a = 6.91(2)Å b = 22.13(5) Å c = 9.918(8) Å $\beta = 94.8(2)^{\circ}$ V = 1511.8 Å P2,/c (#14) 4 1.225 g/cm 592.00 2.47 cm1 RAXIS-II MoK α ($\lambda = 0.71070$ Å) graphite monochromated 200 mm x 200 mm 15 exposures @ 5.0 minutes 7.0° 86.33 mm 0.00° 0.203 mm 54.2 Total: 2121 Lorentz-polarization Direct Methods (SHELXS86) Full-matrix least-squares Sw(IFol - IFcl)2 $w = 1/[s^2(Fo^2) + P^2 + P]$ 0.020 All non-hydrogen atoms 1547 172 8.99 0.102; 0.118 5.39 0.11

0.41 e-/Å

-0.43 e-/Å

Table 11-1. Atomic coordinates and Biso/Beq

atom	X	0.012	y	Z		Beq
CI(I)	0,38	82(3)	0.29327(9)	0.25	29(1)	5.54(5)
N(I)	0.29	7(1)	0.0688(4)	0.69	66(6)	11.0(3)
IN(1)	-0.39	83(10)	0.2003(3)	0.05	96(5)	5.0(1)
N(2)	-0.13	32(8)	0.1406(3)	0.02	54(4)	4.5(1)
C(1)	0.01	7(1)	0.0986(3)	0.07	39(6)	4.6(2)
C(2)	-0.02	9(1)	0.0513(3)	0.15	71(6)	5,1(2)
C(3)	0.11	6(2)	0.0116(4)	0.20	58(7)	6.7(2)
C(4)	0.29	9(2)	0.0173(4)	0.16	42(9)	7.3(3)
C(5)	0.34	2(1)	0.0637(4)	0.07	98(8)	6.6(2)
C(6)	0.20	1(1)	0.1046(4)	0.03	20(7)	5.5(2)
C(7)	-0.16	9(1)	0.1477(4)	-0.12	20(5)	5.7(2)
C(8)	-0.24	0(1)	0.1710(3)	0.10	73(5)	4.2(2)
C(9)	-0.18	3(1)	0.1728(3)	0.25	36(6)	4.5(2)
C(10)	-0.31	8(1)	0.1572(3)	0.34	57(6)	5.7(2)
C(11)	-0.25	8(2)	0.1600(4)	0.48	43(6)	6.4(2)
C(12)	-0.07	4(2)	0.1793(4)	0.52	53(8)	6.5(2)
C(13)	0.05	1(1)	0.1956(4)	0.43	75(6)	5.9(2)
C(14)	0.00	3(1)	0.1923(3)	0.29	94(6)	5.1(2)
C(15)	0.28	6(2)	0.0502(5)	0.57	0(1)	9.9(4)
Table 11	-2. Anisotropic	Displacemen	t Parameters			
atom	UII	1122	1133	1112	1113	1122
CI(1)	0.073(2)	0.075(1)	0.0615(8)	0.0034(10)	0.0017(8)	0.0043
0(1)	0.213(10)	0.108(6)	0.095(4)	0.004(6)	-0.011(5)	0.00043
MOD	0.000000	0.100(0)	0.035(4)	0.004(0)	0.011(2)	0.003(*

Sec. 1	- · · ·	100 million	Sec. 2	5-1 8	010	10 2.0
-1(1)	0.073(2)	0.075(1)	0.0615(8)	0.0034(10)	0.0017(8)	-0.0043(8)
0(1)	0.213(10)	0.108(6)	0.095(4)	0.004(6)	-0.011(5)	0.009(4)
N(1)	0.062(4)	0.062(4)	0.068(3)	0.001(3)	0.007(3)	-0.005(3)
N(2)	0.067(4)	0.059(4)	0.045(2)	0.005(3)	0.006(3)	0.001(2)
-(1)	0.071(6)	0.049(4)	0.054(3)	0.001(4)	0.001(3)	-0.002(3)
.(2)	0.067(6)	0.058(5)	0.067(3)	0.004(4)	0.001(4)	-0.002(3)
-(3)	0.129(10)	0.055(5)	0.070(4)	0.015(5)	0.009(5)	0.003(4)
-(4)	0.110(9)	0.065(6)	0.099(5)	0.025(5)	0.005(5)	-0.008(5)
(5)	0.063(7)	0.070(6)	0.118(6)	0.008(5)	0.018(5)	-0.006(5)
(6)	0.068(6)	0.067(5)	0.074(4)	-0.008(4)	0.003(4)	0.000(4)
-(7)	0.088(7)	0.078(6)	0.051(3)	0.013(4)	0.003(3)	-0.003(3)

Tante		defense	desire for the	ine i manifeter.	- Le Ginaina	5547			
$\begin{array}{c} \text{atom} \\ C(8) \\ C(9) \\ C(10) \\ C(11) \\ C(12) \\ C(13) \\ C(14) \\ C(15) \end{array}$	U11 0.055 0.066 0.082 0.106 0.096 0.096 0.081 0.072 0.156	U 7(5) 5(5) 2(6) 5(8) 5(8) 5(8) 1(7) 2(6) 1)	22 0.050(4) 0.049(4) 0.063(5) 0.084(6) 0.069(5) 0.077(6) 0.054(5) 0.102(9)	U33 0.052(3) 0.056(3) 0.075(4) 0.055(3) 0.082(5) 0.063(3) 0.066(3) 0.127(7)	U12 -0.000 0.000 0.011 0.001 0.010 -0.000 -0.000	U 8(3) 1(3) 8(4) 5(5) 7(5) 7(5) 9(4) 5(4) 2(7)	113 -0.005(3) 0.006(3) 0.028(4) 0.019(4) 0.009(5) -0.013(4) 0.001(4) 0.029(7)	L123 0.000 0.002 0.003 -0.007 0.000 -0.000 -0.000 0.000)(3))(3))(3))(3))(3))(3))(3))(3)
Table I	1-3. Bond	Lengths	(Ä)						
atom O(1) N(2) N(2) C(1) C(3) C(5) C(9) C(10) C(12)	ator C(1 C(8 C(6 C(4 C(6 C(1) C(1) C(1)	n 5)))))))))))))))))))	distance 1.32(1) 1.444(9) 1.324(8) 1.38(1) 1.37(1) 1.38(1) 1.406(9) 1.40(1) 1.33(1)			atom N(1) N(2) C(1) C(2) C(4) C(8) C(9) C(11) C(13)	ator C(8 C(7 C(2 C(2 C(3 C(3 C(3 C(3 C(3) C(1) C(1) C(1) C(1)	n)))))))))))))))))))	distance 1.327(9) 1.470(7) 1.387(9) 1.39(1) 1.37(1) 1.472(8) 1.39(1) 1.37(1) 1.37(1) 1.37(1) 1.384(9)
Table 1	1-4. Bond	Angles	(deg)						
atom C(1) C(7) N(2) C(1) C(3) C(1) N(1) C(8) C(10) C(10) C(12)	atom N(2) N(2) C(1) C(2) C(4) C(6) C(8) C(9) C(9) C(11) C(13)	atom C(7) C(8) C(6) C(5) C(5) C(5) C(9) C(10) C(14) C(14) C(14)	an 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ngle 17.1(5) 20.0(6) 19.6(6) 19.3(8) 20.2(8) 18.4(7) 18.9(6) 19.7(7) 20.7(6) 19.8(8) 21.2(9)		atom C(1) N(2) C(2) C(2) C(4) N(1) N(2) C(8) C(9) C(11) C(9)	atom N(2) C(1) C(3) C(5) C(8) C(8) C(9) C(10)) C(12) C(14)	atom C(8) C(2) C(6) C(4) C(6) N(2) C(9) C(14) C(11) C(13) C(13)	angle 122.8(5) 119.4(7) 121.0(7) 121.3(8) 121.0(5) 120.1(7) 119.6(6) 117.7(8) 122.0(8) 122.0(8) 118.5(7)
Table 1 Plane nu Atoms C C C C C C C C C C C C C C C C C C C	1-5. Least umber 1 defining pl: C(1) C(2) C(3) C(4) C(5) C(6)	Squares	Planes Distance 0.0133(63 0.0180(66 0.0170(78 0.0058(82 0.0002(83 0.0074(72		Plane numb C(9) C(10 C(11 C(12 C(12 C(12 C(14	per3 ning pla)) () () 2) 3) 1)	ine Distar 0.007 -0.013 0.008 0.007 -0.011 0.004	nce 9(69) 4(77) 6(86) 1(87) 6(82) 3(73)	
Plane nu Atoms c N N	umber 2 lefining pla k(1) k(2) C(8)	ane	Distance 0.0 0.0 0.0	S F	Summary Ilane 2 3	mear 0.0 0.0 0.0	n deviation 103 000 088	CH 18 0 7	I ² 2 0 9
Dihedra	l angles be	tween p	lanes (deg))					
plane 2 3	1 61.32 120.44	12	2						

Table 11-2. Anisotropic Displacement Parameters (COntinued)

meta-Diamidine (9)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Jimensions Crystal System Lattice Type Indexing Images Detector Position Detector Swing Angle Pixel Size Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ Z \text{ value} \\ D_{ole} \\ F_{oo} \\ \mu(MoK\alpha) \\ B. Intensity Measurements \\ Diffractometer \\ Radiation \end{array}$

Detector Aperture Data Images Oscillation Range Detector Position Detector Swing Angle Pixel Size 20_{max} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (I>4.00σ(I)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

C.H.N. 342.44 elear, prismatic 0.30 X 0.30 X 0.30 mm triclinic Primitive 3 oscillations @ 5.0 minutes 86.33 mm 0.00° 0.203 mm a = 9.19(3)Å, b = 13.58(5) Å, c = 8.47(2) Å $\alpha = 93.74(8)^{\circ}, \beta = 117.1(2)^{\circ}, \gamma = 83.7(1)^{\circ}$ V = 935.7000 Å PT (#2) 1.215 g/cm 364,00 0.00 cm1 RAXIS-II MoK α ($\lambda = 0.71070$ Å) graphite monochromated 200 mm x 200 mm 15 exposures @ 5.0 minutes 7.0° 86.33 mm

0.00° 0.203 mm 50.3° Total: 2295 Lorentz-polarization Absorption (trans. factors: -1.4750 - 65.0260) Secondary Extinction (coefficient: 5.88973e-05)

Direct Methods (SIR92) Full-matrix least-squares $\Sigma \le (IFo)^{-} (IFc)^{0}$ $w = I/[\sigma^{2}(Fo^{2}) + P^{2} + P]$ 0.0250 All non-hydrogen atoms 1572 236 6.66 0.107; 0.129 6.18 0.01 0.30 c-/Å³ -0.33 c-/Å³

Table 12-1. Atomic coordinates and Biso/Beq

alom	X	У	z	Beq
N(1)	1.2435(6)	0.3822(4)	1.5346(7)	5.4(1)
N(2)	1.2484(7)	0.2467(4)	1.6915(7)	6.0(1)
N(3)	0.7194(6)	0.0234(3)	0.9979(7)	5.1(1)
N(4)	0.8128(7)	-0.0088(4)	1.2936(7)	6.0(1)
C(1)	1.2293(8)	0,4085(5)	1.3659(9)	5.2(2)
C(2)	1.2099(9)	0.5068(5)	1.319(1)	6.2(2)
C(3)	1.2036(9)	0.5327(5)	1.165(1)	6.7(2)
C(4)	1.2149(9)	0.4619(6)	1.047(1)	6.8(2)
C(5)	1,2363(9)	0.3645(5)	1.0917(10)	6.3(2)
C(6)	1.2394(9)	0.3370(5)	1.2462(10)	6.0(2)
C(7)	1.3946(9)	0.4080(5)	1.686(1)	7.1(2)
C(8)	1.1744(8)	0.2983(5)	1.5475(9)	5.1(2)
C(9)	1.0120(7)	0.2778(4)	1.4008(8)	4.6(1)
C(10)	0.8866(8)	0.3549(4)	1.3167(9)	5.3(2)
C(11)	0.7348(8)	0.3325(4)	1.1874(8)	5.1(2)
C(12)	0.7036(7)	0.2351(4)	1.1353(8)	4.6(1)
C(13)	0.8235(7)	0.1590(4)	1.2140(8)	4.4(1)
C(14)	0.9763(7)	0.1810(4)	1.3461(8)	4.6(1)
C(15)	0.7213(8)	0.0777(4)	0.8602(8)	5.0(2)
C(16)	0.8645(9)	0.1145(5)	0.880(1)	6.5(2)
C(17)	0.862(1)	0.1688(7)	0.749(2)	9.0(3)
C(18)	0.724(2)	0.1861(7)	0.596(2)	9.3(3)
C(19)	0.580(1)	0.1472(7)	0.572(1)	8.3(3)
C(20)	0.5807(9)	0.0936(5)	0.7072(9)	6.6(2)
C(21)	0.6618(8)	-0.0744(5)	0.9526(9)	6.1(2)
C(22)	0.7898(7)	0.0525(4)	1.1733(9)	4.6(1)

Table 12-2. Anisotropic Displacement Parameters

atom	ULL	U22	U33	1112	1/13	1/23
N(1)	0.081(3)	0.063(3)	0.065(4)	-0.029(3)	0.033(3)	-0.012(2)
N(2)	0.089(4)	0.083(4)	0.054(3)	-0.017(3)	0.028(3)	.(1.002/3)
N(3)	0.076(3)	0.053(3)	0.058(3)	-0.012(2)	0.024(3)	-0.001(2)
N(4)	0.099(4)	0.055(3)	0.071(4)	-0.018(3)	0.032(3)	0.012(3)
C(I)	0.073(4)	0.056(4)	0.078(5)	-0.018(3)	0.041(3)	-0.004(3)
C(2)	0.097(5)	0.059(4)	0.099(6)	-0.015(3)	0.058(5)	-0.001(3)
C(3)	0.093(5)	0.063(4)	0.113(7)	-0.016(4)	0.055(5)	0.008(4)
C(4)	0.094(5)	0.091(6)	0.094(6)	-0.019(4)	0.053(4)	0.013(4)
C(5)	0.101(5)	0.076(5)	0.073(5)	-0.004(4)	0.051(4)	0.003(3)
C(6)	0.101(5)	0.057(4)	0.083(5)	-0.015(3)	0.053(4)	-0.007(3)
C(7)	0.093(5)	0.080(5)	0.097(6)	-0.034(4)	0.042(4)	-0.033(4)
C(8)	0.078(4)	0.064(4)	0.059(4)	-0.017(3)	0.037(4)	-0.013(3)
C(9)	0.069(4)	0.065(4)	0.050(4)	-0.019(3)	0.031(3)	-0.009(3)
C(10)	0.077(4)	0.051(4)	0.080(5)	-0.015(3)	0.040(4)	-0.006(3)
C(11)	0.074(4)	0.049(4)	0.073(4)	-0.003(3)	0.036(4)	0.001(3)
C(12)	0.063(4)	0.052(4)	0.057(4)	-0.009(3)	0.023(3)	0.004(3)
C(13)	0.075(4)	0.051(3)	0.057(4)	-0.014(3)	0.039(3)	0.001(3)
C(14)	0.068(4)	0.046(3)	0.064(4)	-0.008(3)	0.031(3)	0.004(3)
C(15)	0.077(4)	0.052(3)	0.064(4)	-0.006(3)	0.035(4)	-0.004(3)
C(16)	0.081(4)	0.089(5)	0.089(6)	-0.006(4)	0.047(4)	-0.003(4)
C(17)	0.141(8)	0.118(8)	0.125(9)	0.011(6)	0.095(7)	0.024(6)
C(18)	0.19(1)	0.097(7)	0.101(8)	0.019(7)	0.096(8)	0.011(5)
C(19)	0.128(8)	0.096(6)	0.081(6)	0.011(5)	0.042(6)	0.001(4)
C(20)	0.096(5)	0.082(5)	0.064(5)	-0.008(4)	0.028(4)	-0.001(4)
C(21)	0.087(4)	0.058(4)	0.075(4)	-0.023(3)	0.020(4)	-0.005(3)
C(22)	0.068(4)	0.046(3)	0.066(4)	-0.012(3)	0.032(3)	-0.003(3)

Table 12-3, Bond Lengths (Å)

atom	atom	distance	atom	atom	distance
N(1)	C(1)	1.442(8)	N(1)	C(7)	1.458(9)
N(1)	C(8)	1.396(8)	N(2)	C(8)	1.301(8)
N(3)	C(15)	1.429(8)	N(3)	C(21)	1.446(7)
N(3)	C(22)	1.374(8)	N(4)	C(22)	1.286(7)
C(1)	C(2)	1.387(9)	C(1)	C(6)	1.384(10)
C(2)	C(3)	1.35(1)	C(3)	C(4)	1.37(1)
C(4)	C(5)	1.37(1)	C(5)	C(6)	1.372(9)
C(8)	C(9)	1.487(9)	C(9)	C(10)	1,420(9)
C(9)	C(14)	1.388(8)	C(10)	C(11)	1.378(9)
C(11)	C(12)	1.385(8)	C(12)	C(13)	1.377(8)
C(13)	C(14)	1.390(9)	C(13)	C(22)	1,497(7)
C(15)	C(16)	1.39(1)	C(15)	C(20)	1.359(9)
C(16)	C(17)	1.36(1)	C(17)	C(18)	1.35(1)
C(18)	C(19)	1.40(2)	C(19)	C(20)	1.39(1)

Table I	2-4, Bond	Angles (deg)				
utom	atom	atom	angle	atom	atom	atom	angle
0(1)	NUL	CIPI	114.1(5)	0(1)	N(1)	C(8)	120.0(5)
C(1)	N(T)	C(22)	117.0(5)	C(15)	N(3)	C(21)	117.3(5)
C(12)	C(D)	C(22)	123.0(3)	C(21)	N(3)	C(22)	118.4(5)
N(1)	C(I)	C(2)	121.3(6)	N(1)	C(1)	C(6)	121.5(6)
C(2)	C(1)	C(0)	117.2(7)	C(1)	C(2)	C(3)	121.9(7)
C(2)	C(3)	C(4)	120.7(7)	C(3)	C(4)	C(5)	118.4(8)
C(4)	C(5)	C(6)	121.4(8)	C(1)	C(6)	C(5)	120.2(6)
N(1)	C(8)	N(2)	118.9(5)	N(1)	C(8)	C(9)	117.6(6)
N(2)	C(8)	C(9)	123.3(5)	C(8)	C(9)	C(10)	121.8(5)
C(8)	C(9)	C(14)	120.4(6)	C(10)	C(9)	C(14)	117.7(5)
C(9)	C(10)	C(11)	120,1(5)	C(10)	C(11)	C(12)	120,7(5)
C(11)	C(12)	C(13)	120.4(5)	C(12)	C(13)	C(14)	119.3(5)
C(12)	C(13)	C(22)	121.9(5)	C(14)	C(13)	C(22)	118.6(5)
C(9)	C(14)	C(13)	121.9(5)	N(3)	C(15)	C(16)	121.2(6)
N(3)	C(15)	C(20)	119.1(6)	C(16)	C(15)	C(20)	119.6(7)
C(15)	C(16)	C(17)	120.1(8)	C(16)	C(17)	C(18)	121.6(10)
C(17)	C(18)	C(19)	119.0(9)	C(18)	C(19)	C(20)	119.8(8)
C(15)	C(20)	C(19)	119,8(8)	N(3)	C(22)	N(4)	120.1(5)
N(3)	C(22)	C(13)	117.2(5)	N(4)	C(22)	C(13)	122,5(6)

Table 12-5. Least Squares Planes

Atoms	umber 1 defining plane C(1) C(2) C(3) C(4) C(5) C(6)	Distance 0.0052(6) -0.0001(7) -0.0009(7) -0.0080(7) 0.0148(7) -0.0148(7)	1) 0) 2) 4) 2) 2) 2)	Plane numbe Atoms defin C(9) C(10) C(11) C(12) C(13) C(14)	r 2 ing plane	Distance -0.0014(59) 0.0066(67) -0.0063(68) 0.0009(63) 0.0011(57) -0.0020(62)
Plane n Atoms	umber 3 defining plane C(15) C(16) C(17) C(18) C(19) C(20)	Distance -0.0058(6) 0.0124(7) -0.0090(10 -0.0082(9) 0.0115(8) 0.0004(7)	2) 5) 00) 1) 5) 5)	Plane numbe Atoms defini N(1) N(2) C(8)	r 4 ing plane	Distance 0.0 0.0 0.0
Plane n Atoms o I	umber 5 defining plane N(3) N(4) Z(22)	Distance 0.0 0.0 0.0				
Summa	ry	plane 1 2 3 4 5	mean devi 0.0071 0.0031 0.0079 0.0000 0.0000	ation	CHI ² 9.1 2.1 6.8 0.0 0.0	
Dihedra	l angles betwe	en planes (deg	ō			
plane 2 3	1 70.60 81.45	2 61.08	3	4		
4 5	117.78 28.64	139.21 52.78	154.06 54.13	146.39		

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System

- Crystal System Lattice Type Indexing Images Detector Position Detector Swing Angle Pixel Size Lattice Parameters
- $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ D_{ralc} \\ F_{rot} \\ \mu(MoK0) \\ \text{B. Intensity Measurements} \\ \text{Diffractometer} \\ \text{Radiation} \end{array}$
- Detector Aperture Data Images Oscillation Range Detector Position Detector Swing Angle Pixel Size $2\theta_{max}$ No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (I>3.500(I)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

para-Diamidine (10)

C.,H.,N. 342.44 clear, prism 0.45 X 0.30 X 0.08 mm monoclinic Primitive 3 oscillations @ 5.0 minutes 86.33 mm 0.00% 0.203 mm a = 7.82(2)Åb = 12.63(3) Å c = 9.507(5) Å $\beta = 92.41(9)'$ $V = 938.2 \text{ Å}^3$ P2,/c (#14) 2 1.212 g/cm3 364.00 0.74 cm' RAXIS-II MoK α ($\lambda = 0.71070$ Å) graphite monochromated 200 mm x 200 mm 15 exposures @ 5.0 minutes 7.0° 86.33 mm 0.00" 0.203 mm 54.0° Total: 1352 Lorentz-polarization Absorption (trans. factors: -0.6420 - 1.7095) Direct Methods (SHELXS86) Full-matrix least-squares

Put-matrix leaves squares S_{2} w $(Fo) - (Fc)^{2}$ w $(Fo) - (Fc)^{2}$ w $-1/[\sigma^{2}(Fo^{2}) + P^{2} + P]$ 0.0200 All non-hydrogen atoms 1007 118 8.53 0.076 ; 0.091 4.41 0.07 0.27 e/A^{3} -0.32 e/A^{3} Appendix

Table 13-1. Atomic coordinates and Biso/Beq

atom	x	y	Z	Beg
N(1)	0.8038(5)	0.5173(3)	0.1336(3)	4.62(9)
N(2)	0.9590(5)	0.6664(3)	0.1775(4)	5.9(1)
C(1)	0.7006(6)	0.4315(3)	0.1799(4)	4.3(1)
C(2)	0.7140(6)	0.3344(4)	0.1170(5)	5,5(1)
C(3)	0.6141(9)	0.2510(5)	0.1598(6)	7.5(2)
C(4)	0.5023(9)	0.2638(6)	0.2634(7)	7.9(2)
C(5)	0.4860(7)	0.3610(6)	0.3268(5)	7.2(2)
C(6)	0.5847(6)	0.4462(4)	0.2852(4)	5.6(1)
C(7)	0,7730(6)	0.5539(4)	-0.0130(4)	5.8(1)
C(8)	0.9038(6)	0.5789(3)	0.2225(4)	4.15(10)
C(9)	0.9507(5)	0.5363(3)	0.3657(4)	3.96(9)
C(10)	0.9388(5)	0.6016(3)	0.4818(4)	4.03(10)
C(11)	1.0129(5)	0.4339(3)	0.3853(4)	4.20(10)

Table 13-2. Anisotropic Displacement Parameters

atom	U11	U22	U33	U12	U13	U23
N(1)	0.069(2)	0.062(2)	0.044(2)	-0.010(2)	-0.005(2)	0.005(2)
N(2)	0.105(3)	0.057(2)	0.061(2)	-0.005(2)	-0.007(2)	0.009(2)
C(1)	0.055(3)	0.058(3)	0.049(2)	-0.007(2)	-0.002(2)	0.005(2)
C(2)	0.076(3)	0.067(3)	0.066(3)	-0.020(3)	-0.005(2)	-0.004(2)
C(3)	0.116(5)	0.083(4)	0.083(4)	-0.033(4)	-0.014(3)	0.000(3)
C(4)	0.106(5)	0.109(5)	0.085(4)	-0.051(4)	-0.016(4)	0.017(4)
C(5)	0.067(4)	0.142(6)	0.065(3)	-0.020(4)	0.004(2)	0.024(3)
C(6)	0.059(3)	0.091(4)	0.061(3)	-0.002(3)	0.000(2)	0.007(2)
C(7)	0.092(4)	0.089(4)	0.040(2)	-0.003(3)	-0.010(2)	0.013(2)
C(8)	0.065(3)	0.042(2)	0.050(2)	0.001(2)	-0.001(2)	0.005(2)
C(9)	0.056(3)	0.043(2)	0.052(2)	-0.001(2)	0.000(2)	0.002(2)
C(10)	0.063(3)	0.039(2)	0.051(2)	0.003(2)	-0.002(2)	0.001(2)
C(11)	0.063(3)	0.040(2)	0.056(2)	0.004(2)	0.001(2)	-0.004(2)

Table 13-3. Bond Lengths(Å)

$\begin{array}{c ccccc} atom & atom & distance \\ N(1) & C(1) & 1.432(5) \\ N(1) & C(8) & 1.369(5) \\ C(1) & C(2) & 1.370(6) \\ C(2) & C(3) & 1.383(7) \\ C(4) & C(5) & 1.377(9) \\ C(4) & C(9) & 1.495(5) \\ C(9) & C(11) & 1.393(5) \\ \end{array}$	atom N(1) N(2) C(1) C(3) C(5) C(9) C(10)	atom C(7) C(8) - C(6) C(4) C(6) C(10) C(11)	distance 1.479(5) 1.268(5) 1.391(7) 1.354(9) 1.391(7) 1.383(5) 1.378(5)	
---	---	--	--	--

Table 13-4. Bond Angles (deg)

atom C(1) C(7) N(1) C(1) C(3) C(1) N(1) C(8)	atom N(1) C(1) C(2) C(4) C(6) C(8) C(9)	atom C(7) C(8) C(6) C(3) C(5) C(5) C(9) C(10)	angle 117.1(3) 118.0(3) 120.9(4) 119.9(5) 120.0(5) 119.2(5) 118.0(3) 118.0(3)	atom C(1) N(1) C(2) C(2) C(4) N(1) N(2) C(2)	alom N(1) C(1) C(3) C(5) C(8) C(8) C(8)	atom C(8) C(2) C(6) C(4) C(6) N(2) C(9) C(9)	angle 123.7(3) 119.3(4) 119.9(4) 120.9(6) 120.2(5) 118.8(3) 123.1(4)
C(8) C(10) C(9)	C(9) C(9) C(11)	C(10) C(11) C(10)	119,4(3) 118,8(3) 120,3(3)	C(8) C(9)	C(9) C(10)	C(11) C(11)	121.8(3) 120,9(3)

Table 13-5. Least Squares Planes

Plane number 1	
Atoms defining plane	Distance
C(1)	0.0028(32)
C(2)	-0.0057(38)
C(3)	0.0054(47)
C(4)	0.0023(47)
C(5)	-0.0043(43)
C(6)	0.0004(35)

Atoms defining plane	Distance
C(9)	0.0
C(10)	0.0
C(11)	0.0

Plane number 2 Atoms defining plane	Distance	Summary plane	mean deviation	CHI ²
N(1) N(2)	0.0	1	0.0035	5.2
C(8)	0.0	3	0.0000	0.0

Dihedral angles between planes (deg)

plane	1	2
2	117.68	
3	118.29	47.91

cyclic-Triamidine (11)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ D_{odc} \\ F_{oos} \\ \mu(\text{CuK}\alpha) \\ \text{B. Intensity Measurements} \\ \text{Diffractometer} \\ \text{Radiation} \end{array}$

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 20_{ma} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (I>1.5σ(I)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Dyff. Map Minimum peak in Final Diff. Map C₂₃H₂₆N₆O 414.51 colorless, prismatic 0.45 X 0.45 X 0.40 mm monoclinic Primitive

20 (53.3 - 56.6°) 0.40° a = 11.521(1)Å, b = 10.302(1)Å $\beta = 93.044(7)°$ V = 2104.3(4)Å³ P2,/c (#14) 4 1.308 g/cm³ 880.00 6.69 cm³ Rigaku AFC7S CoVm (0 = 1.54179Å)

CuKo: ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factor = 8.99) 6.0 9.0 mm horizontal 13.0 mm vertical 235 mm 23.0°C ω-20 16.0°/min (in w) (up to 3 scans) $(1.37 + 0.30 \tan \theta)^{"}$ 135.2 Total: 4229; Unique: 4020 (Rint = 0.023) Lorentz-polarization Absorption (trans. factors: 0.9224 - 0.9989)

Direct Methods (SIR92) Full-matrix least-squares $\Sigma \le (IFol - IFc)^2$ $w = I/[\sigma^2(F\sigma^2) + P^2 + P]$ 0.0120 All non-hydrogen atoms 2646 280 9.45 0.057; 0.061 2.79 0.28 e- $/\tilde{A}^3$ -0.19 e- $/\tilde{A}^1$

Table 14-1. Atomic coordinates and Biso/Beq

atom	x	v	2	Beg
O(1)	0.2398(3)	0.1297(3)	0.4671(2)	7.23(10)
N(1)	1.0013(2)	0.1931(3)	0.7225(2)	3.23(6)
N(2)	1.1556(2)	0.2685(3)	0.8013(2)	4,44(8)
N(3)	0.7820(2)	0.0068(3)	0.9571(2)	4.05(7)
N(4)	0.6716(3)	-0.1736(3)	0.9269(2)	5.01(9)
N(5)	0.5110(3)	0.0768(3)	0.6696(2)	4.46(8)
N(6)	0.5945(3)	0.0741(5)	0.5547(2)	8 3(1)
C(1)	1.0481(3)	0.2369(3)	0.7916(2)	3 38(8)
C(2)	0.9657(3)	0.2366(3)	0.8541(2)	3.16(8)
C(3)	0.9012(3)	0.1268(3)	0.8701(2)	3.20(8)
C(4)	0.8358(3)	0.1254(4)	0.9337(2)	3.49(8)
C(5)	0.8300(3)	0.2344(4)	0.9788(2)	4.53(10)
C(6)	0.8908(4)	0.3440(4)	0.9616(2)	49(1)
C(7)	0.9607(3)	0.3442(4)	0.9014(2)	4 08(9)
C(8)	1.0810(3)	0.1909(4)	0.6614(2)	4.47(10)
C(9)	0.6928(3)	-0.0524(4)	0.9179(2)	3,46(8)
C(10)	0.6155(3)	0.0344(3)	0.8701(2)	3 78(8)
C(11)	0.6063(3)	0.0208(4)	0.7921(2)	3.43(8)
C(12)	0.5235(3)	0.0927(4)	0.7501(2)	3 72(8)
C(13)	0.4488(3)	0.1742(4)	0.7855(2)	4.28(9)
C(14)	0.4573(3)	0 1871(4)	0.8632(2)	4.52(10)
C(15)	0.5419(3)	0.1187(4)	0.9055(2)	4 20(9)
C(16)	0.8478(3)	-0.0685(4)	1.0147(2)	5.2(1)
C(17)	0.5961(3)	0.1085(4)	0.6236(2)	3.97(9)
C(18)	0.6897(3)	0.1972(4)	0.6557(2)	3 30/8)
C(19)	0.8011(3)	0.1521(3)	0.6748(2)	3.14(8)
C(20)	0.8858(3)	0.2383(3)	0.7010(2)	3.01(7)
C(21)	0.8611(3)	0.3698(4)	0.7059(2)	3 53(8)
C(22)	0.7513(3)	() 4145(4)	0.6871(2)	4.05(9)
C(23)	0.6652(3)	() 3283(4)	0.6621(2)	A 13(9)
C(24)	0.4078(3)	0.0069(4)	0.6397(2)	5.4(1)

Table 14-2. Anisotropic Displacement Parameters

atom O(1) N(1) N(2) N(3) N(3)	UT1 0.114 0.031 0.030 0.045 0.065	(3) 0.0 (1) 0.0 (2) 0.0 (2) 0.0 (2) 0.0	22 75(2) 48(2) 68(2) 62(2) 48(2)	U33 0.081(2) 0.044(2) 0.069(2) 0.045(2)	U12 -0.003(2) 0.001(1) -0.006(2) -0.013(2) 0.005(2)	-0. 0. -0. -0.	U13 029(2) 002(1) 002(1) 009(1)	U23 0.001 -0.002 0.010 0.016	(2) (1) (2) (2)
N(5) N(6) C(1) C(2) C(3)	0.046 0.079 0.040 0.031 0.037	(2) 0.0 (3) 0.1 (2) 0.0 (2) 0.0 (2) 0.0	75(2) 69(5) 40(2) 44(2) 43(2)	0.046(2) 0.070(3) 0.048(2) 0.044(2) 0.040(2)	-0.020(2) -0.054(3) 0.004(2) -0.002(2) 0.002(2)	-0. 0. -0. -0.	014(1) 024(2) 001(2) 004(1) 003(2)	0.009 0.012 -0.061 0.006 0.004 0.004	(2) (3) (2) (2) (2)
C(4) C(5) C(6) C(7) C(8) C(9)	0.035 0.056 0.067 0.049 0.046 0.037	(2) 0.0 (2) 0.0 (3) 0.0 (2) 0.0 (2) 0.0 (2) 0.0 (2) 0.0	55(2) 72(3) 57(3) 46(2) 68(3) 55(2)	0.042(2) 0.045(2) 0.060(3) 0.059(2) 0.057(2) 0.039(2)	-0.006(2) -0.005(2) -0.003(2) -0.007(2) 0.004(2) 0.000(2)	-0. 0. -0. 0.	005(2) 009(2) 007(2) 002(2) 012(2)	0.006 -0.011 -0.017 -0.002 -0.003	(2) (2) (2) (2) (2) (2)
C(10) C(11) C(12) C(13) C(14)	0.034 0.035 0.039 0.039 0.045	(2) 0.0 (2) 0.0 (2) 0.0 (2) 0.0 (2) 0.0 (2) 0.0 (2) 0.0	44(2) 48(2) 53(2) 49(2) 53(3)	0.023(2) 0.046(2) 0.046(2) 0.048(2) 0.074(3) 0.074(3)	-0.006(2) -0.007(2) -0.014(2) 0.000(2) 0.003(2)	-0. -0. -0. -0. -0. -0.	002(2) 003(2) 002(2) 005(2) 005(2) 002(2)	0.002 0.001 0.002 0.010 0.011 -0.007	(2) (2) (2) (2) (2) (2)
C(15) C(16) C(17) C(18) C(19) C(20)	0.048 0.066 0.036 0.036 0.038 0.038	(2) 0.0 (3) 0.0 (2) 0.0 (2) 0.0 (2) 0.0 (2) 0.0 (2) 0.0 (2) 0.0 (3) 0.0 (2) 0.0 (3) 0.0	56(3) 77(3) 60(3) 53(2) 43(2) 44(2)	0.055(2) 0.053(3) 0.054(2) 0.036(2) 0.038(2) 0.037(2)	-0.002(2) -0.009(2) -0.003(2) -0.002(2) 0.001(2) 0.002(2)	-0.0 -0.0 -0.0 0.0 0,0	001(2) 020(2) 003(2) 004(1) 000(1)	-0.007 0.021 -0.006 -0.005 -0.002 0.003	(2) (2) (2) (2) (2)
C(21) C(22) C(23) C(24)	0.041 0.049 0.036 0.055	2) 0.04 2) 0.04 2) 0.05 2) 0.05 2) 0.08	45(2) 44(2) 59(3) 81(3)	0.048(2) 0.061(2) 0.062(2) 0.066(3)	-0.005(2) 0.008(2) 0.009(2) -0.024(2)	-0.0 0.0 0.0 -0.0	001(2) 001(2) 001(2) 001(2) 017(2)	0.000 -0.002 -0.001 0.011	(2) (2) (2) (2) (2)
Table 1	4-3. Bond 1	lengths (Å)							
alom N(1) N(3) N(3) N(5) N(5) C(1) C(2) C(4) C(10) C(11) C(11) C(11) C(11) C(12) C(20) C(20) C(22) Table 14	atom C(1) C(20 C(4) C(16 C(12 C(24 C(2) C(7) C(7) C(7) C(11 C(12 C(11 C(12 C(11) C(12) C(2) C(2) C(2) C(2) C(1) C(1) C(2) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2	dia 1.3 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	stance 390(4) 442(4) 441(4) 463(4) 139(4) 165(4) 198(5) 193(5) 173(5) 188(5) 173(5) 188(5) 103(5) 188(5) 103(5) 188(5)			tom V(1) V(2) V(3) V(4) V(5) C(2) C(3) C(3) C(3) C(10) C(12) C(14) C(19) C(21)	atom C(8) C(9) C(1) C(1) C(1) C(1) C(1) C(1) C(1) C(1	1 1 10 10 10 10 10 10 10 10 10	distance 1.458(4) 1.283(4) 1.283(4) 1.284(4) 1.284(4) 1.273(5) 1.391(4) 1.391(4) 1.391(4) 1.391(4) 1.395(4) 1.395(4) 1.397(5) 1.391(5) 1.390(4) 1.382(4) 1.382(4) 1.370(4)
atom C(1) C(8) C(4) C(12) C(17) N(1)	4. Bond / atom N(1) N(1) N(3) N(5) N(5) C(1)	Angles (deg) atom C(8) C(20) C(16) C(17) C(24) C(2)	ang) 115 114 115 122 120 114	le .6(3) .6(3) .8(3) .4(3) .1(3) .9(3)	a C C C C N N	tom (1) (4) (9) (12) (1) (2)	atom N(1) N(3) N(3) N(5) C(1) C(1)	atom C(20) C(9) C(16) C(24) N(2) C(2)	angle 116.0(3) 124.1(3) 118.1(3) 116.9(3) 121.8(3) 123.1(3)

angle 119.5(3) 119.5(3) 119.2(3) 119.2(3) 119.9(3) 120.8(4) 120.8(4) 120.1(4) 120.1(4) 120.8(4) 129.9(3) 129.8(4) 129.8(3) 129.8(4) 129.8(4) 129.8(3) 129.8(4) 129.8(3) 129.8(4) 129.8(4) 129.8(3) 129.8(4) 129.8(3) 129.8(4) 129.8(3) 129.8(4) 129.8(3) 129.8(3) 129.8(4) 129.8(3) 129.8(3) 129.8(4) 129.8(3) 120.8(3)

Table 14 atom C(1) C(3) C(3) C(5) N(4) C(5) C(10) N(5) C(10) N(5) C(10) N(5) C(10) N(5) C(10) N(5) C(10) N(1) C(19) N(1) C(21)	I-4, Bond A atom C(2) C(2) C(4) C(4) C(4) C(9) C(10) C(11) C(12) C(12) C(15) C(17) C(15) C(17) C(18) C(20) C(22)	angles (deg) (Ci atom C(3) C(7) C(3) C(5) C(7) N(4) C(10) C(15) C(12) C(12) C(12) C(13) C(14) C(14) C(14) C(14) C(14) C(18) C(19) C(23) C(23)	ontinued) angle 121.3(3) 119.0(3) 120.2(3) 120.2(4) 121.2(3) 122.8(3) 119.6(3) 119.4(3) 120.0(4) 119.6(3) 119.4(3) 120.0(4) 116.6(3) 121.6(3) 119.7(3) 120.3(3) 120.3(3)	atom C(1) C(2) N(3) C(4) C(2) N(3) C(9) C(11) N(3) N(5) N(6) C(17) C(13) N(6) C(17) C(18) N(1) C(20) C(18)	atotti C(2) C(3) C(5) C(7) C(9) C(10) C(10) C(12) C(12) C(14) C(17) C(14) C(17) C(17) C(18) C(19) C(20) C(21) C(21) C(21)	atom C(7) C(4) C(5) C(6) C(10) C(15) C(10) C(15) C(11) C(13) C(13) C(13) C(13) C(13) C(13) C(13) C(13) C(23) C(23) C(21) C(22) C(22)
Table 14	-5. Least Sc	quares Planes				
Plane nu Atoms de C C C C C C	mber 1 efining plan (2) (3) (4) (5) (6) (7)	e Distance 0.002(3) -0.015(3) 0.016(3) 0.000(4) -0.025(4) 0.018(4)		Plane number 2 Atoms defining plane C(10) C(11) C(12) C(13) C(14) C(15)	Distar -0.003 -0.007 0.011 -0.004 -0.009 0.013	nce (3) (3) (3) (4) (4) (4)
Plane nui Atoms de Ci Ci Ci Ci Ci	mber 3 efining plan (18) (19) (20) (21) (22) (23)	e Distance 0.000(3) 0.007(3) -0.010(3) 0.009(4) 0.001(4) -0.006(4)		Plane number 4 Atoms defining plane N(1) C(1) N(2)	Distar 0.0 0.0 0.0	ice
Plane nui Atoms de N(N(mber 5 fining plan (3) (4) (9)	e Distance 0.0 0.0 0.0 0.0	F /	lane number 6 Moms defining plane N(5) N(6) C(17)	Distan 0.0 0.0 0.0	ice
Summary	Α	plane 1 2 3 4 5 6	mean deviat 0.0128 0.0079 0.0055 0.0000 0.0000 0.0000 0.0000	ion CHI ² 103.0 32.7 21.1 0.0 0.0 0.0		

Dihedral angles between planes (deg)

plane	1	2	3	4	5
2	79.31				
3	110.35	66.98			
4	50.76	126.02	108,42		
3	98.76	108.80	148.58	98.93	
0	142.56	70.24	77.51	163.71	72.12

N.N'-Diphenylthiourea (12)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ D_{ok} \\ F_{o0} \\ \mu(\text{CuK}\theta) \\ \text{B. Intensity Measurements} \\ \text{Diffractometer} \\ \text{Radiation} \end{array}$

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 2 θ_{max} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (1>3.000(1)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map C₁₁H₁₂N₂S 228.31 colorless, prismatic 0.30 X 0.05 X 0.48 mm orthorhombic Primitive

 $\begin{array}{l} 16 \left(44.1 - 49.1^{\circ} \right) \\ 0.28^{\circ} \\ a = 7.946(2) \dot{A} \\ b = 25.588(4) \dot{A} \\ c = 5.689(1) \ddot{A} \\ V = 1156.7(4) \dot{A}^{3} \\ Pnma (\#62) \\ 4 \\ 1.311 \ g/cm^{3} \\ 480.00 \\ 22.44 \ cm^{-1} \end{array}$

Rigaku AFC5S CuK α ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factors = 1.00, 3.57, 12.70, 45.11) 6.0° 9.0 mm horizontal 13.0 mm vertical 258 mm 23.0°C ω-20 32.0"/min (in w) (up to 3 scans) $(1.47 + 0.30 \tan \theta)^{\circ}$ 119.9 Total: 1062 Lorentz-polarization Absorption (trans. factors: 0.6742 - 1.2281)

Direct Methods (SHELXS-86) Full-matrix least-squares $\Sigma \le (iFo) - (Fc))^2$ w $= iI/(G^2(Fo^2) + P^2 + P]$ 0.0070 All non-hydrogen atoms 641 100 6.41 0.062; 0.065 3.81 1.89 0.45 e-/Å³ -.39 e-/Å³

Table 15-1. Atomic coordinates and Biso/Beq

atom	x	У	Z	Bea
S(1)	0.0860(3)	0.7500	0.1128(4)	4.02(5)
N(1)	0.3103(8)	0.7064(2)	-0.168(1)	4.4(1)
C(1)	0.2459(10)	0.7500	-0.085(2)	3.3(2)
C(2)	0.2667(8)	0.6542(2)	-0.103(1)	3.7(1)
C(3)	0.1762(10)	0.6241(2)	-0.260(1)	4.3(2)
C(4)	0.1346(9)	0.5722(2)	-0.203(1)	4.7(2)
C(5)	0.1848(10)	0.5526(3)	0.013(1)	5.1(2)
C(6)	0.2763(10)	0.5829(3)	0.165(1)	4.7(2)
C(7)	0.3154(9)	0.6341(2)	0.110(1)	4.3(2)

Table 15-2. Anisotropic Displacement Parameters

atom	UII	U22	U33	U12	U13	U23
S(1)	0.051(1)	0.048(1)	0.054(1)	0.0000	0.015(1)	0.0000
N(1)	0.064(4)	0.041(3)	0.062(4)	-0.002(3)	0.029(4)	0.001(3)
C(1)	0.039(5)	0.042(4)	0.045(5)	0.0000	0.010(5)	0.0000
C(2)	0.047(4)	0.042(3)	0.049(4)	-0.001(3)	0.005(4)	-0.004(3)
C(3)	0.051(4)	0.059(4)	0.054(4)	0.005(4)	0.002(4)	-0.002(4)
C(4)	0.053(5)	0.054(4)	0.073(6)	0.001(4)	-0.005(4)	-0.012(4)
C(5)	0.065(5)	0.046(4)	0.082(5)	0.003(4)	0.016(5)	0.003(4)
C(6)	0.072(5)	0.052(4)	0.054(5)	0.004(4)	0.002(4)	0.002(4)
C(7)	0.061(5)	0.052(4)	0.051(4)	-0.007(4)	-0.007(4)	-0.007(4)

Table 15-3. Bond Lengths (Å)

atom	atom	distance	atom	atom	distance
S(1)	C(1)	1.696(8)	N(1)	C(1)	1.315(7)
N(1)	C(2)	1.428(8)	C(2)	C(3)	1.381(8)
C(2)	C(7)	1.375(9)	C(3)	C(4)	1.405(8)
C(4)	C(5)	1.388(9)	C(5)	C(6)	1.370(9)
C(6)	C(7)	1 383/81	1000	1000	

Table 15-4. Bond Angles (deg)

atom	atom	atom	angle	atom	atom	atom	angle
C(1)	N(1)	C(2)	127.2(6)	S(1)	C(1)	N(1)	122.1(4)
S(1)	C(1)	N(1)	122.1(4)	N(1)	C(2)	N(1)	115.9(8)
N(1)	C(2)	C(3)	118.9(6)	N(1)	C(2)	C(7)	120.7(6)
C(3)	C(2)	C(7)	120.5(6)	C(2)	C(3)	C(4)	120.2(7)
C(3)	C(4)	C(5)	118.5(7)	C(4)	C(5)	C(6)	120.4(7)
C(5)	C(6)	C(7)	121.0(7)	C(2)	C(7)	C(6)	119.3(7)

Table 15-5. Least Squares Planes

Plane number 1 Atoms defining plane S(1) N(1) C(1)	Distance 0.0 0.0 0.0	Plane Atom	number 2 is defining (C(2) C(3) C(4) C(5) C(6)	plane	Distance 0.002(6) -0.001(7) 0.002(7) -0.008(7) 0.011(7)
C(7)	-0.008(7)				
Summary	plane 1 2	mean deviation 0.0000 0.0053		CHI ² 0.0 4.6	

Dihedral angles between planes (deg) : 105.10

N,N'-Dimethyl-N,N'-diphenylthiourea (13)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ D_{cole} \\ F_{000} \\ \mu(\text{CuK}\alpha) \\ \text{B. Intensity Measurements} \\ \text{Diffractometer} \\ \text{Radiation} \end{array}$

Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 20_{max} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (1>3.00σ(1)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Diff, Map Minimum peak in Final Diff, Map C₁₅N₂SH_{1m} 256.36 clear, prismatic 0.30 X 0.30 X 0.30 mm monoclinic Primitive

 $\begin{array}{l} 0 \left(0.0 - 0.0^{\circ} \right) \\ 0.00^{\circ} \\ a = 15.91 \left(7 \right) \tilde{A} \\ b = 11.611 \left(3 \right) \tilde{A} \\ c = 7.539 \left(7 \right) \tilde{A} \\ \beta = 96.93 \left(1 \right)^{\circ} \\ V = 1382 \left(1 \right) \tilde{A}^3 \\ P2_{\gamma} / n \left(\#14 \right) \\ 4 \\ 1.232 \ g/cm^3 \\ 544.00 \\ 19.30 \ cm^{\circ 1} \end{array}$

Rigaku AFC5S CuK α ($\lambda = 1.54178$ Å) graphite monochromated 2.8 2.0 - 2.5 mm horizontal 2.0 mm vertical 21 mm 0.0°C ω 0.0°/min (in w) (up to 0 scans) $(0.00 + 0.00 \tan \theta)^{\circ}$ 120.3° Total: 2371; Unique: 2189 (Rint = 0.026) Lorentz-polarization Absorption (trans. factors: 0.9077 - 1.2880)

Direct Methods (SHELXS86) Full-matrix least-squares $\Sigma \le (|Fo| - |Fc|)^2$ w = $1/[\sigma^2(Fo^2) + P^2 + P]$ 0.0400 All non-hydrogen atoms 1848 227 8.14 0.049; 0.054 4.71 6.73 0.25 c $/\tilde{A}^3$ -0.31 c $/A^3$

Table 16-1. Atomic coordinates and Biso/Beq

atom	X	y	Z	Beg
S(1)	-0.56387(5)	-0.82879(8)	-0.1970(1)	4,76(2)
N(1)	-0.4461(1)	-0.6948(2)	-0.3104(3)	3.03(5)
N(2)	-0.4157(1)	-0.8895(2)	-0.2950(3)	3,15(6)
C(1)	-0.4029(2)	-0.6733(2)	-0.4636(3)	2.70(6)
C(2)	-0.3317(2)	-0.6054(3)	-0.4515(4)	3,45(7)
C(3)	-0.2916(2)	-0.5858(3)	-0.6011(5)	4,44(9)
C(4)	-0.3228(3)	-0.6334(3)	-0.7627(5)	4.86(9)
C(5)	-0.3953(2)	-0.6997(3)	-0.7772(4)	4.21(8)
C(6)	-0.4357(2)	-0.7195(3)	-0.6272(4)	3.38(7)
.C(7)	-0.2772(2)	-0.8227(3)	-0.1591(4)	3.56(7)
C(8)	-0.1931(2)	-0.8004(3)	-0.1699(5)	4,31(8)
C(9)	-0.1586(2)	-0.8261(3)	-0.3241(5)	4.51(9)
C(10)	-0.2076(2)	-0.8768(3)	-0.4658(5)	4.03(8)
C(11)	-0.2914(2)	-0.8999(2)	-0.4550(4)	3.32(7)
C(12)	-0.3275(2)	-0.8696(2)	-0.3035(4)	2.75(6)
C(13)	-0.4712(2)	-0.8035(2)	-0.2699(3)	2.95(6)
C(14)	-0.4942(3)	-0.5959(4)	-0.2552(6)	4.7(1)
C(15)	-0.4399(3)	-1.0098(3)	-0.2719(8)	4.9(1)

Table 16-2. Anisotropic Displacement Parameters

atom	UII	U22	U33	U12	U13	U23
S(1)	0.0455(5)	0.0705(6)	0.0686(6)	0.0003(4)	0.0222(4)	0.0115(5)
N(1)	0.042(1)	0.030(1)	0.045(1)	0.007(1)	0.012(1)	0.001(1)
N(2)	0.036(1)	0.030(1)	0.055(2)	-0.001(1)	0.007(1)	0.004(1)
C(1)	0.037(2)	0.025(1)	0.040(2)	0.006(1)	0.004(1)	0.005(1)
C(2)	0.049(2)	0.033(2)	0.049(2)	-0.005(1)	0.004(2)	-0.004(1)
C(3)	0.061(2)	0.038(2)	0.073(2)	-0.014(2)	0.019(2)	0.000(2)
C(4)	0.086(3)	0.049(2)	0.055(2)	-0.001(2)	0.028(2)	0.008(2)
C(5)	0.068(2)	0.051(2)	0.040(2)	0.004(2)	0.003(2)	0.003(2)
C(6)	0.041(2)	0.039(2)	0.047(2)	0.000(1)	-0.004(1)	0.003(1)
C(7)	0.049(2)	0.041(2)	0.044(2)	0.004(2)	0.002(2)	0.000(1)
C(8)	0.049(2)	0.050(2)	0.060(2)	-0.002(2)	-0.015(2)	-0.003(2)
C(9)	0.039(2)	0.051(2)	0.080(3)	0.001(2)	0.001(2)	0.003(2)
C(10)	0.046(2)	0.048(2)	0.060(2)	0.005(2)	0.013(2)	-0.003(2)
C(11)	0.040(2)	0.035(2)	0.049(2)	0.003(1)	0.001(1)	-0.005(1)
C(12)	0.035(2)	0.025(2)	0.044(2)	0.004(1)	0.003(1)	0.004(1)

Table I	6-2. Anisol	tropic D	Displaceme	nt Paran	neters (C	ontinued)	1112		11111	
C(13) C(14) C(15)	0.038 0.066 0.062	(2) (3) (3)	0.042(2) 0.046(2) 0.032(2)	0.0) 0.0' 0.0'	32(1) 70(3) 95(4)	0.000(1) 0.015(2) -0.007(2)	0.0	003(1) 024(2) 018(3)	0.002() -0.004(2 0.008(2	1) 2) 2)
Table 1	6-3. Bond	Lengths	(Å)							
alom C(1)	C(13		1.660	2	AT/15		atom	ator	m d	istance
NUL	COR	1	1.000	(4)	N(1)		C(I)		1.434(3)	
N(2)	C(12	5	1.432	(3)	N(2)		C(14)		1.408(4)	
N(2)	C(15	õ	1.465	(4)	C(1)		C(2)		1.301(4)	
C(1)	C(6)		1.387	(4)	C(2)		C(3)		1.380(4)	
C(3)	C(4)		1.375	(5)	C(4)		C(5)		1.380(5)	
C(5)	C(6)		1.386	(4)	C(7)		C(8)		1.375(4)	
C(7)	C(12	0	1.383	(4)	C(8)		C(9)		1.376(5)	
C(9)	C(10))	1.377	(5)	C(10)		C(11)		1.372(4)	
C(11)	C(12	:)	1.384	(4)						
Table 1	6-4. Bond /	Angles	(deg)							
atom	atom	atom	a	ngle			atom	atom	atom	angle
C(1) C(13)	N(1) N(1)	C(13 C(14		21.4(2) 18 7(3)		1	C(1)	N(1)	C(14)	114.2(3)
C(12)	N(2)	C(15	í i	15.6(3)			C(13)	N(2)	C(15)	119.9(3)
N(1)	C(1)	C(2)	1	21.1(3)		1	N(1)	C(1)	C(6)	118.9(3)
C(2)	C(1)	C(6)	1	20.0(3)		(C(1)	C(2)	C(3)	119.9(3)
C(4)	C(5)	C(6)	1	20.5(3)			C(3)	C(4)	C(5)	120.2(3)
C(8)	C(7)	C(12) 1	20.2(3)			C(7)	C(8)	C(9)	119.9(3)
C(8)	C(9)	C(10) 1	20.2(3)		(C(9)	C(10)	C(11)	120.0(3)
C(10) N(2)	C(11)	C(12) 1	20.2(3)		3	N(2)	C(12)	C(7)	120.4(3)
S(1)	C(12)	N(1)	1	20.1(3) 22.1(2)			S(1)	C(12)	N(2)	119.4(3)
N(1)	C(13)	N(2)	i	15.6(3)				elist	ri(m)	Teara(a)
Table 1	6-5. Least S	Squares	Planes							
Plane m	umber 1				Plan	e number	2			
Atoms of	defining pla	ine	Distance		Ator	ns definin	g plane	Dista	nce	
0	2(1)		-0.0087(20	5)		C(7)		-	0.0135(31)	
č	2(2)		0.0075(3.	3		C(8)		Ē	0.0069(35)	
0	2(4)		-0.0101(3	Ď		C(10)			0.0019(34)	
9	2(5)		0.0025(34	4)		C(11)		-	0.0174(30)	
	.(0)		0.0070(30	n		C(12)		0	0.0191(27)	
Plane nu	umber 3		Participant -							
Atoms C	V(1)	ine	0.0012/22	1						
Ň	N(2)		0.0012(24	5						
S	S(1)		0.0001(10))						
C	2(13)		0.0040(2)	1)						
Summar	ry.		plane	mean d	leviation		CHI2			
			1	0.00	66		30.4			
			3	0.01	16		2.5			
Dihedra	l angles bet	ween n	lanes (deo	1						
plane	1		2	-						
2	22	.96								
3	74	.27	7	2.19						

(±)-N,N'-Bis(β-alanyl)-N.N'-diphenylurea (14)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ Z \text{ value} \\ D_{out} \\ F_{out} \\ \mu(CuK\alpha) \\ B. Intensity Measurements \\ Diffractometer \\ Radiation \end{array}$

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 29_{ans} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (1>2,000(1)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Dyff. Map Minimum peak in Final Diff. Map C₃₈H₂₂N₄O₅ 386.41 colorless, prismatic 0.30 X 0.30 X 0.10 mm orthorhombic Primitive

Rigaku AFC5S CuK α ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factors = 1.00, 2.37, 6.13, 15.65) 6.0 9.0 mm horizontal 13.0 mm vertical 258 mm 23.0°C ω-20 16.0°/min (in w) (up to 3 scans) $(1.10 + 0.30 \tan \theta)^{\circ}$ 135.2ª Total: 4554 Lorentz-polarization Absorption (trans. factors: 0.8489 - 0.9992)

Direct Methods (SIR92) Full-matrix least-squares $\Sigma \le (IFo| - |Fc|)^3$ $w = 1/[\sigma^3(F\sigma^2) + P^2 + P]$ 0.020 All non-hydrogen atoms 1784 290 6.15 0.084; 0.081 2.39 0.17 0.42 $c_1 \tilde{A}^3$ -0.38 $c_2 \tilde{A}^3$

07

Table 17-1, Atomic coordinates and Biso/Beq

atom	x	y	z	Beg
O(1)	0.9375(5)	0.0966(3)	-0.2892(6)	6.5(2)
O(2)	0.8712(5)	0.0207(3)	-0.2503(6)	5.3(2)
O(3)	0.7261(4)	0.0647(2)	0.0674(5)	3.4(2)
O(4)	0.5447(4)	0.0745(3)	0.4191(6)	5.2(2)
Q(5)	0.4417(5)	0.0471(3)	0.3029(6)	5.9(2)
Q(6)	0.713(1)	0.0694(6)	0.524(1)	22.0(7)
O(7)	0.3897(5)	0.4368(4)	0.5157(6)	8,1(3)
O(8)	0.0906(4)	0.0934(3)	0.6047(5)	4.7(2)
O(9)	0.1899(5)	0.0146(4)	0.7231(9)	11.9(4)
N(1)	0.6878(4)	0.1431(3)	0.1575(6)	2.8(2)
N(2)	0.7914(4)	0.1441(3)	0.0145(6)	2.5(2)
N(3)	0.8772(5)	0.0360(3)	-0.0253(6)	3.6(2)
N(4).	0.5488(5)	0.0586(3)	0.1232(6)	3.6(2)
C(1)	0.6642(5)	0.1988(4)	0.1452(7)	2.8(2)
C(2)	0.6222(6)	0.2152(4)	0.0485(8)	3.6(3)
C(3)	0.5958(7)	0.2693(5)	0.0383(9)	4.9(3)
C(4)	0.6115(7)	0.3060(4)	0.125(1)	5.3(3)
C(5)	0.6531(7)	0.2886(4)	0.2204(9)	4.4(3)
C(6)	0.6790(6)	0.2347(4)	0.2313(8)	3.8(3)
C(7)	0.7339(5)	0.1142(4)	0.0782(7)	2.8(2)
C(8)	0.8363(6)	0.1893(4)	0.0606(8)	2.9(2)
C(9)	0.8388(6)	0.2379(4)	0.0025(9)	4.0(3)
C(10)	0.8842(7)	0.2814(4)	0.051(1)	5.3(3)
C(11)	0.9236(7)	0.2762(5)	0.155(1)	5.1(3)
C(12)	0.9205(7)	0.2270(5)	0.2105(9)	4.9(3)
C(13)	0.8769(6)	0.1829(4)	0.1642(8)	3.4(2)
C(14)	0.8139(5)	0.1222(3)	-0.0980(7)	2.7(2)
C(15)	0.8908(5)	0.0840(4)	-0.1002(7)	3.1(2)
C(16)	0.9018(6)	0.0645(4)	-0.2244(8)	3.5(2)
C(17)	0.6466(6)	0.1116(4)	0.2483(8)	3.3(2)
C(18)	0.5554(6)	0.0963(4)	0.2206(8)	3.3(2)
C(19)	0.5100(7)	0.0695(4)	0.3247(9)	3.9(3)

Table 17-2. Anisotropic Displacement Parameters

atom	U11	U22	U33	UI2	613	6123
O(1)	0.119(7)	0.056(5)	0.071(5)	0.004(5)	0.050(5)	0.008(4)
O(2)	0.109(6)	0.047(4)	0.045(4)	-0.009(5)	0.006(4)	-0.017(4)
0(3)	0.041(4)	0.035(4)	0.052(4)	-0.009(3)	0.007(3)	-0.004(4)
O(4)	0.060(5)	0.098(6)	0.041(4)	0.010(5)	0.021(4)	0.019(5)
0(5)	0.056(5)	0.092(6)	0.074(6)	-0.028(5)	0.018(5)	0.009(5)
O(6)	0.29(2)	0.24(2)	0.31(2)	-0.02(2)	-0.03(2)	-0.03(2)
0(7)	0.068(5)	0.172(9)	0.068(5)	0.015(6)	-0.016(5)	-0.023(6)
O(8)	0.061(5)	0.074(5)	0.045(4)	-0.006(4)	0.005(4)	-0.001(4)
0(9)	0.078(6)	0.172(10)	0.20(1)	-0.030(7)	-0.023(7)	0.132(9)
N(1)	0.040(5)	0.035(5)	0.032(4)	0.000(4)	0.008(4)	0.002(4)
N(2)	0.030(4)	0.036(5)	0.028(4)	-0.006(4)	0.007(4)	-0.012(4)
N(3)	0.062(6)	0.039(5)	0.035(4)	0.008(5)	0.000(4)	-0.003(4)
N(4)	0.052(5)	0.054(6)	0.029(4)	-0.022(4)	0.011(4)	0.002(4)
C(1)	0.032(5)	0.041(6)	0.032(5)	0.003(5)	0.006(5)	0.002(5)
C(2)	0.048(6)	0.042(6)	0.048(6)	-0.002(6)	0.005(6)	-0.010(5)
C(3)	0.053(7)	0.073(9)	0.062(8)	0.002(7)	-0.001(6)	0.015(7)
C(4)	0.069(8)	0.046(7)	0.086(9)	0.007(7)	0.011(8)	-0.007(7)
C(5)	0.060(7)	0.048(7)	0.060(8)	-0.010(6)	0.009(6)	-0.021(6)
C(6)	0.055(7)	0.047(6)	0.043(6)	-0.001(5)	-0.002(6)	-0.010(6)
C(7)	0.028(5)	0.051(6)	0.026(5)	-0.003(5)	0.003(5)	-0.002(5)
C(8)	0.035(5)	0.033(5)	0.042(6)	-0.005(5)	0.009(5)	-0.010(5)
C(9)	0.052(6)	0.049(7)	0.050(6)	-0.008(6)	0.002(6)	-0.001(6)
C(10)	0.079(9)	0.038(7)	0.083(9)	-0.011(7)	0.017(8)	0.001(6)
C(11)	0.058(8)	0.051(8)	0.086(9)	-0.008(7)	0.004(7)	-0.033(8)
C(12)	0.047(7)	0.078(9)	0.062(7)	0.003(7)	0.003(6)	-0.025(7)
C(13)	0.039(6)	0.042(6)	0.049(6)	-0.001(5)	0.002(6)	-0.012(5)
C(14)	0.036(6)	0.039(5)	0.028(5)	-0.001(5)	-0.002(5)	-0.001(5)
C(15)	0.027(5)	0.042(6)	0.046(6)	-0.002(5)	-0.002(5)	-0.012(5)
C(16)	0.049(6)	0.043(6)	0.041(6)	0.014(6)	0.012(5)	0.000(6)
C(17)	0.050(6)	0.046(6)	0.029(5)	-0.002(5)	0.005(5)	0.004(5)
C(18)	0.034(5)	0.047(6)	0.042(6)	0.001(5)	0.003(5)	0.010(5)
C(19)	0.060(7)	0.051(7)	0.038(6)	0.015(6)	0.016(6)	0.011(6)

Table 17-3. Bond Lengths (Å)

atom	atom	distance	atom	aiom	distance
O(1)	C(9)	1.229(10)	0(2)	C(9)	1.225(10)
0(3)	C(10)	1.227(9)	O(4)	C(18)	1.25/11
O(5)	C(18)	1.24(1)	N(L)	CIG	1.126(0)
N(1)	C(7)	1.472/01	NULL	C(10)	1,420(9)
N(2)	C(8)	1 495/101	N(1)	C(10)	1.390(9)
N(3)	C(11)	1.485(10)	N(3)	C(10)	1.380(9)
NO	C(11)	1.432(9)	N(3)	C(16)	1.467(9)
(4)	C(17)	1.469(10)	C	C(11)	1.36(1)
City	C(12)	1.39(1)	C(1)	C(2)	1.39(1)
C(1)	C(6)	1.38(1)	C(2)	C(3)	1.37(1)
C(3)	C(4)	1.38(1)	C(4)	C(5)	1.40(1)
C(5)	C(6)	1.38(1)	C(7)	C(8)	1.53(1)
C(8)	C(9)	1.54(1)	C(11)	C(15)	1.37(1)
C(12)	C(13)	1.37(1)	C(13)	C(14)	1 30/11
C(14)	C(15)	1 30(1)	C(16)	CUT	1.53/11
C(17)	COSI	1.55(1)	C(10)	with)	1.12111
and the second s	C(10)	1,0000			

Table 17-4. Bond Angles (deg)

-1000	atom	atom	angle				1.110
atom C(6)	N(1)	C(7)	120 3(6)	atom	atom	atom	angle
017)	N(1)	C(10)	116 4(6)	C(0)	N(1)	C(10)	122.7(6)
C(10)	N(3)	COD	116.5(7)	C(10)	N(3)	C(II)	124.5(7)
CIU	C	C(12)	170.3(7)	C(11)	N(3)	C(16)	117,9(7)
C(II)	C(2)	C(12)	120,1(9)	C(2)	C(1)	C(6)	119.0(9)
0(1)	CIA	0(5)	121.1(10)	C(2)	C(3)	C(4)	119.1(10)
C(3)	C(4)	C(5)	121.1(10)	C(4)	C(5)	C(6)	118.6(9)
N(1)	C(0)	C(1)	118.4(8)	N(1)	C(6)	C(5)	120.6(8)
C(1)	C(0)	C(5)	121.0(8)	N(1)	C(7)	C(8)	116.0(6)
N(2)	C(8)	C(7)	111.1(7)	N(2)	C(8)	C(9)	109,5(7)
C(7)	C(8)	C(9)	107.3(7)	O(1)	C(9)	0(2)	126.0(9)
0(1)	C(9)	C(8)	116.5(9)	O(2)	C(9)	C(8)	117.3(9)
O(3)	C(10)	N(1)	122.5(8)	O(3)	C(10)	N(3)	121.8(8)
N(1)	C(10)	N(3)	115.7(8)	N(3)	C(11)	C	120.2(8)
N(3)	C(11)	C(15)	119.5(8)	C	C(11)	C(15)	120 2(8)
C	C(12)	C(13)	120.8(9)	C(12)	C(13)	C(14)	119.0(9)
C(13)	C(14)	C(15)	120.2(9)	C(11)	C(15)	C(14)	119.8(8)
N(3)	C(16)	C(17)	113.2(7)	N(A)	CUIT	CUE	112 7(7)
N(4)	C(17)	C(18)	108.1(7)	C(16)	COT	C(18)	111.7(7)
0(4)	C(18)	0(5)	127 5(9)	0(1)	C(18)	C(17)	115.000
0(5)	C(18)	C(17)	117.4(9)	()(4)	C(10)	Cun	112.0(3)

Table 17-5. Least Squares Planes

Plane number 1 Atoms defining plane C(1) C(2) C(3) C(4) C(5) C(6)	Distance 0.0048(7 -0.0029(8 -0.0024(9 0.0040(1 0.0004(9 -0.0054(9	P A (77) (86) (05) (02) (95) (90)	lane number 2 toms defining C(10) C(11) C(12) C(13) C(14) C(15)	plane	Distance -0.0032(77) -0.0030(91) 0.0105(102) -0.0075(100) -0.0011(94) 0.0051(80)
Plane number 3 Atoms defining plane N(1) N(2) C(7) O(3)	Distance 0.0029(6 0.0026(6 -0.0116(7 0.0037(5	55) (2) (6) (5)			
Summary	plane 1 2 3	mean deviati 0.0033 0.0051 0.0052	on	CHI ² 0.9 2.2 2.8	

Dinedrat a	ngles between pla	nes (deg)
plane	1	2
2	31.02	
3	72.97	72.06

N,N'-Dimethyl-N.N'-diphenylurea Bis[(tricarbonyl)chlomium] Complex (15)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Indexing Images Detector Position Detector Swing Angle Pixel Size Lattice Parameters

 $\begin{array}{l} \text{Space Group} \\ \text{Z value} \\ D_{cale} \\ F_{000} \\ \mu(MoK\alpha) \\ \text{B. Intensity Measurements} \\ \text{Diffractometer} \\ \text{Radiation} \end{array}$

Detector Aperture Data Images Oscillation Range Detector Position Detector Swing Angle Pixel Size 20 max No. of Reflections Measured Corrections C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (1>3.00o(1)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

C, H, N, O, Cr. 512.36 Yellow, Prismatic 0.30 X 0.30 X 0.30 mm orthorhombic Primitive 3 oscillations @ 5.0 minutes 86.33 mm 0.00" 0.203 mm a = 13.483(3)Å b = 17.416(3) Å c = 18.08(1) Å $V = 4245(4) \text{ Å}^3$ Pbcn (#60) 8 1.603 g/cm 2080.00 0.00 cm⁻¹ RAXIS-II MoK α ($\lambda = 0.71070$ Å) graphite monochromated 200 mm x 200 mm 15 exposures @ 5.0 minutes 7.0° 86.33 mm 0.00 0.203 mm 44.0° Total: 2005 Lorentz-polarization Direct Methods (SHELXS86) Full-matrix least-squares $\Sigma \le (|Fo| - |Fc|)^2$ $w = 1/[\sigma^2(Fo^2) + P^2 + P]$ 0.0100 All non-hydrogen atoms 1230 353 3.48 0.047:0.048 1.30

2.24 0.37 e-/Å

-0.48 c-/Å

Table 18-1. Atomic coordinates and Biso/Beq

atom	x	у	z	Beg
Cr(1)	0.1927(1)	0.03644(9)	0.34985(9)	4.70(4)
Cr(2)	0.2671(1)	-0.25602(9)	0,61096(9)	4.96(4)
O(1)	0.5168(5)	-0.0991(4)	0.4577(4)	6.3(2)
Q(2)	0.3815(6)	0.0842(4)	0.2798(4)	7.0(2)
O(3)	0.1098(7)	0.1936(5)	0.3390(6)	10.3(3)
O(4)	0.1080(6)	0.0034(5)	0.2013(5)	7.8(3)
0(5)	0.4754(7)	-0.3022(5)	0.5866(6)	11.4(3)
0(6)	0.2064(6)	-0.4175(5)	0.6407(5)	8.3(3)
O(7)	0.3135(8)	-0.2525(5)	0.7722(5)	10.0(3)
N(1)	0.3654(7)	-0.0897(4)	0.4064(5)	4.6(2)
N(2)	0.3851(6)	-0.1091(4)	0.5338(5)	4.5(2)
C(1)	0.2706(8)	-0.0550(6)	0.4150(5)	4.5(3)
C(2)	0.188(1)	-0.0853(6)	0.3815(7)	6.3(4)
C(3)	0.096(1)	-0.0516(10)	0.3892(10)	7.7(5)
C(4)	0.085(1)	0.009(1)	0.4335(9)	7.4(5)
C(5)	0.1658(10)	0.0424(7)	0.4693(7)	6.1(4)
C(6)	0.2587(8)	0.0096(6)	0.4582(5)	4.7(3)
C(7)	0.403(1)	-0.1062(8)	0.3330(8)	7.7(5)
C(8)	0.4257(9)	-0.0991(5)	0.4651(7)	4.7(3)
C(9)	0.4466(9)	-0.0933(8)	0.5988(7)	5.7(4)
C(10)	0.2944(7)	-0.1499(6)	0.5443(6)	4.1(3)
C(11)	0.2691(8)	-0.2097(6)	0.4981(6)	4.9(3)
C(12)	0.1803(10)	-0.2483(7)	0.5081(7)	5.7(3)
C(13)	0.1198(8)	-0.2273(8)	0.5680(9)	6.6(4)
C(14)	0.1472(8)	-0.1719(8)	0.6165(8)	6.0(4)
C(15)	0.2354(8)	-0.1313(6)	0.6035(6)	4.9(3)
C(16)	0.3093(8)	0.0667(6)	0.3075(6)	5.2(3)
C(17)	0.1435(8)	0.1339(8)	0.3421(7)	6.7(4)
C(18)	0.1422(7)	0.0164(6)	0.2582(7)	5.6(3)
C(19)	0.3948(8)	-0.2854(6)	0.5987(6)	6.3(3)
C(20)	0.2307(8)	-0.3564(8)	0.6288(6)	6,3(4)
C(21)	0.2925(8)	-0.2531(6)	0.7094(7)	6,4(3)

Appendix

Table 18-2. Anisotropic Displacement Parameters

atom	UII	U22	U33	U12	U13	U23
Cr(1)	0.0607(10)	0.055(1)	0.063(1)	-0.0021(8)	0.0019(9)	0.0095(9)
Cr(2)	0.069(1)	0.047(1)	0.072(1)	0.0005(9)	-0.0003(9)	0.0087(9)
0(1)	0.067(5)	0.070(6)	0.103(7)	0.013(4)	0.012(4)	0.009(4)
O(2)	0.075(5)	0.095(6)	0.095(6)	-0.014(4)	0.004(5)	0.038(5)
0(3)	0.130(8)	0.070(7)	0.19(1)	0.028(6)	0.034(7)	0.013(7)
O(4)	0.093(6)	0.126(8)	0.075(6)	-0.020(5)	-0.011(5)	0.006(6)
O(5)	0.080(6)	0.110(8)	0.24(1)	0.036(6)	0.028(7)	0.056(8)
0(6)	0.119(7)	0,060(6)	0.138(8)	-0.024(5)	-0.016(5)	0.023(5)
0(7)	0.207(10)	0.092(7)	0.079(7)	-0.003(7)	-0.031(6)	-0.005(6)
N(1)	0.080(7)	0.049(6)	0.044(7)	0.010(4)	0.014(5)	0.000(4)
N(2)	0.074(6)	0.047(6)	0.052(6)	-0.006(4)	-0.003(5)	0.015(4)
C(1)	0.058(7)	0.066(8)	0.047(6)	-0.010(7)	-0.008(5)	0.001(6)
C(2)	0.11(1)	0.045(8)	0.080(9)	0.001(9)	-0.010(9)	0.027(6)
C(3)	0.09(1)	0.08(1)	0.12(1)	-0.03(1)	-0.014(10)	0.04(1)
C(4)	0.067(9)	0.12(2)	0.09(1)	0.02(1)	0.007(8)	0.057(10)
C(5)	0.084(9)	0.08(1)	0.071(9)	0.034(8)	0.012(7)	0.008(7)
C(6)	0.062(7)	0.063(8)	0.054(7)	-0.004(6)	-0.008(6)	0.001(6)
C(7)	0.14(1)	0.07(1)	0.08(1)	0.02(1)	0.018(9)	-0.003(9)
C(8)	0.065(7)	0.038(7)	0.076(9)	-0.002(5)	0.004(8)	0.002(6)
C(9)	0.076(8)	0.085(10)	0.056(9)	-0.018(7)	-0.005(7)	-0.003(8)
C(10)	0.060(7)	0,046(7)	0.051(7)	-0.002(6)	-0.002(6)	0.011(5)
C(11)	0.070(8)	0.045(8)	0.070(8)	-0.006(6)	-0.003(6)	0.011(6)
C(12)	0.091(9)	0.048(8)	0.077(9)	0.006(8)	-0.016(7)	0.003(6)
C(13)	0.058(7)	0.06(1)	0.13(1)	-0.007(7)	-0.020(9)	0.021(9)
C(14)	0.056(8)	0.08(1)	0.10(1)	0.000(7)	0.017(6)	0.014(9)
C(15)	0.064(7)	0.048(7)	0.075(8)	0.003(6)	0.002(7)	-0.002(6)
C(16)	0.075(8)	0.057(8)	0.067(8)	-0.013(6)	-0.001(6)	0.021(6)
C(17)	0.083(9)	0.066(9)	0.10(1)	0.025(7)	0.024(7)	0.000(8)
C(18)	0.068(7)	0.070(8)	0.073(9)	-0.015(6)	0.008(6)	0.019(7)
C(19)	0.066(8)	0.064(8)	0.108(10)	0.014(6)	0.008(7)	0.022(7)
C(20)	0.082(8)	0.068(9)	0.089(10)	-0.007(7)	0.008(6)	0.020(7)
C(21)	0.119(10)	0.052(8)	0.072(9)	-0.010(7)	-0.008(7)	-0.004(7)

Table 18-3. Bond Lengths(Å)

atom	atom	distance	atom	atom	distance
Cr(1)	C(1)	2.24(1)	Cr(1)	C(2)	2.20(1)
Cr(1)	C(3)	2.14(1)	Cr(1)	C(4)	215(1)
Cr(1)	C(5)	7 10(1)	Cr(1)	CIA	2.20/11
Cr(1)	CUG	1.83(1)	Cr(1)	C(17)	1.92(1)
Cr(1)	C(18)	1.83(1)	Crith	C(III)	1.0.2(1)
Crim	C(10)	1.62(1)	Cn(2)	C(10)	2.238(10)
Crizi	CIIII	2.19(1)	Cr(2)	C(12)	2.20(1)
CHE	C(13)	2.19(1)	Cr(2)	C(14)	2.18(1)
Cr(2)	C(15)	2.22(1)	Cr(2)	C(19)	1.81(1)
Cr(2)	C(20)	1.84(1)	Cr(2)	C(21)	1.81(1)
0(1)	C(8)	1.24(1)	O(2)	C(16)	1.14(1)
0(3)	C(17)	1.14(1)	O(4)	C(18)	1.15(1)
O(5)	C(19)	1.15(1)	O(6)	C(20)	1.13(1)
O(7)	C(21)	1.17(1)	N(1)	C(1)	1.42(1)
N(1)	C(7)	1.45(2)	N(1)	C(8)	1.35(1)
N(2)	C(8)	1.37(1)	N(2)	C(9)	1.46(1)
N(2)	C(10)	1.43(1)	C(1)	C(2)	1.38(2)
C(1)	C(6)	1 38(1)	C(2)	C(3)	1.38(2)
C(3)	C(A)	1.33(7)	C(A)	C(5)	1 20(2)
C(5)	C(4)	1.20(1)	0(10)	CUL	1.29(1)
Cria	CO	1.32(1)	COD	Can	1,20(1)
C(12)	0(15)	1.57(1)	C(11)	C(12)	1.38(1)
Cal	C(13)	1.40(2)	C(13)	C(14)	1.30(2)
6114)	(15)	1 40/11			

Table 18-4, Bond Angles (deg)

atem atem (1) (1) (1) (1) (1) (1) (1) (1)	aiom aiom (F(1)) (F	$ \begin{array}{l} \operatorname{atom} \\ \mathbb{C}(2) \\ \mathbb{C}(4) \\ \mathbb{C}(5) \\ \mathbb{C}(17) \\ \mathbb{C}(5) \\ \mathbb{C}(16) \\ \mathbb{C}(16) \\ \mathbb{C}(18) \\ \mathbb{C}(17) \\ \mathbb{C}(18) \\ \mathbb{C}(17) \\ \mathbb{C}(18) \\ \mathbb{C}(17) \\ \mathbb{C}(18) \\ \mathbb{C}(13) \\ \mathbb{C}(13) \\ \mathbb{C}(12) \\ \mathbb{C}(13) \\ \mathbb{C}(12) \\ \mathbb{C}(12) \\ \mathbb{C}(12) \\ \mathbb{C}(15) \\ \mathbb{C}(12) \\ \mathbb{C}(15) \\ \mathbb{C}(12) \\ \mathbb{C}(15) \\ \mathbb{C}(12) \\ \mathbb{C}(15) \\ \mathbb{C}(11) \\ \mathbb{C}(13) \\ \mathbb{C}(15) \\ \mathbb{C}(15)$	angle 36.2(4) 77.8(4) 36.1(3) 150.4(5) 37.0(5) 77.5(5) 114.5(5) 92.2(5) 66.7(6) 150.8(7) 86.4(6) 66.4(5) 90.9(6) 36.9(4) 88.4(5) 95.0(4) 156.6(5) 89.8(5) 36.2(3) 76.7(4) 35.9(3) 157.1(5) 36.7(4) 35.9(3) 157.1(5) 36.7(4) 78.8(4) 88.8(5) 154.2(5) 66.7(5) 114.8(5) 158.1(5) 65.2(5) 92.1(5) 37.2(4) 115.5(5) 116.9(5) 93.9(5) 114.8(5) 158.1(5) 65.2(5) 93.9(5) 114.8(5) 158.1(5) 65.2(5) 93.9(5) 114.8(5) 158.1(5) 65.2(5) 93.9(5) 114.8(5) 158.1(6) 120.9(10) 73.7(7) 70.3(6) 120.9(10) 73.7(7) 121.1(1) 71.9(6) 73.6(6) 121.1(1) 119(1) 128.6(6) 71.3(6)	atom C(1) C(1) C(1) C(2) C(2) C(2) C(2) C(3) C(3) C(3) C(3) C(3) C(3) C(4) C(4) C(4) C(5) C(5) C(6) C(10) C	ator() ator() Cr(() Cr(())	$\begin{array}{l} atom \\ C(3) \\ C(5) \\ C(18) \\ C(17) \\ C(18) \\ C(18) \\ C(17) \\ C(18) \\ C($	angle 66.5(5) 66.0(4) 91.3(4) 121.0(5) 65.2(5) 36.2(5) 78.3(5) 118.0(7) 37.5(5) 160.1(6) 110.1(6) 122.8(5) 147.3(5) 147.3(5) 147.3(5) 147.3(5) 147.3(5) 147.3(5) 147.3(5) 147.3(5) 147.3(5) 147.3(5) 147.3(5) 152.1(6) 120.0(5) 37.3(5) 77.7(5) 152.1(6) 152.1(6) 152.1(6) 152.1(6) 152.1(6) 152.6(5) 90.4(5) 152.6(5) 90.7(8) 117(1) 71.2(7) 71.2(7) 71.2(7) 71.2(7) 71.2(7) 71.2(6) 120.6(10
Cr(1) Cr(1) C(1) O(1) Cr(2) Cr(2) N(2) Cr(2)	C(5) C(6) C(6) C(8) C(10) C(10) C(10) C(11)	C(6) C(1) C(5) N(2) C(15) C(15) C(15) C(10)	71.9(6) 73.6(6) 121(1) 119(1) 128.6(6) 71.3(6) 118(1) 73.6(6)	C(4) C(1) O(1) N(1) Cr(2) N(2) C(11) Cr(2)	C(5) C(6) C(8) C(8) C(10) C(10) C(10) C(11)	C(6) C(5) N(1) N(2) C(11) C(11) C(15) C(12)	117(1) 71.2(7) 120(1) 119(1) 70.2(6) 120.6(10) 120.4(10) 72.0(7)
C(10) Cr(2) Cr(2) C(12) Cr(2) Cr(2) C(10)	C(11) C(12) C(13) C(13) C(14) C(15) C(15)	C(12) C(13) C(12) C(14) C(15) C(10) C(14)	120(1) 70.9(7) 71.8(7) 121(1) 72.7(6) 72.8(6) 120(1)	Cr(2) C(11) Cr(2) Cr(2) C(13) Cr(2) Cr(1)	C(12) C(12) C(13) C(14) C(14) C(14) C(15) C(16)	C(11) C(13) C(14) C(13) C(15) C(14) O(2)	71.3(6) 118(1) 71.7(7) 72.2(7) 118(1) 70.1(7) 178(1)

Table 18-4, Bond Angles (deg) (Continued)

$\begin{array}{cccc} alon & alon & alon & algle \\ Cr(1) & C(17) & O(3) & 177(1) \\ Cr(2) & C(19) & O(5) & 175(1) \\ Cr(2) & C(21) & O(7) & 176(1) \\ \end{array}$	Cr(1)	C(18)	O(4)	178.2(10)
	Cr(2)	C(20)	O(6)	178(1)

Table 18-5. Least Squares Planes

Plane number 1 Atoms defining plane C(1) C(2) C(3) C(4) C(5) C(6)	Distance -0.004(10) -0.01(1) 0.03(1) -0.01(1) -0.01(1) 0.013(10)	Plane Aton	e number 2 ns defining plane C(10) C(11) C(12) C(13) C(14) C(15)	Distance -0.017(9) 0.025(10) -0.01(1) -0.02(1) 0.03(1) 0.00(1)
Plane number 3 Atoms defining plane N(1) N(2) O(1) C(8)	Distance -0.001(8) -0.001(8) -0.001(7) 0.002(10)			
Summary	plane 1 2 3	mean deviation 0.0127 0.0162 0.0009	CHI 8. 18. 0.	2 4 2 1

Dihedral angles between planes (deg) plane 1 2 2 140.09 3 3 61.96124.30

meta-Substituted Diguanidinium iodide (19)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

Space Group Z value D_{rabc} F_{soft} $\mu(CuK\alpha)$ B. Intensity Measurements Diffractometer Radiation

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 20_{max} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (I>3.000(I)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Diff. Map Minimum peak in Final Diff. Map

CaHuN.L. 656.35 brown, prismatic 0.50 X 0.40 X 0.60 mm monoclinic Primitive 20 (48.9 - 51.0) 0.16 a = 11.312(2)Å b = 15.420(2) Å c = 16.236(3) Å $\beta = 101.33(1)^{\circ}$ $V = 2776.9(8) \text{ Å}^3$ P2,/a (#14) 1.570 g/cm' 1288.00 179.47 cm1 Rigaku AFC5S CuK α ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factors = 1.00, 3.57, 12.70, 45.11) 6.0° 9.0 mm horizontal 13.0 mm vertical 258 mm 23.0°C ω-20 $(1.47 + 0.30 \tan \theta)^{\circ}$ 120.1° Total: 4566 Unique: 4325 (Rint = 0.181) Lorentz-polarization Absorption (trans. factors: 0.8384 - 1.1060) Direct Methods (SHELXS86) Full-matrix least-squares $\Sigma \le (|Fo| - |Fc|)^2$ $w = 1/[\sigma^2(F\sigma^2) + P^2 + P]$

0.0080 All non-hydrogen atoms 2696 409 0.057 ; 0.057 2.67 3.06 1.21 c-/Å³ -0.93 c-/Å³

Table 19-1. Atomic coordinates and Biso/Beq

atom	x	V	z	Beg
1(1)	0.23156(9)	0.21340(6)	0.94260(6)	3.55(2)
1(2)	0.3404(1)	0.73059(8)	1.54510(6)	4.92(3)
N(1)	0.0108(10)	0.3864(7)	1.1734(7)	2.5(3)
N(2)	0.1819(10)	0.4213(7)	1,1214(6)	2.0(3)
N(3)	0.4314(9)	0.6037(6)	1.3285(6)	1.6(2)
N(4)	0.630(1)	0.5599(8)	1.3548(7)	2.7(3)
N(5)	0.570(1)	0.6695(9)	1.4345(7)	3.2(3)
N(6)	0.034(1)	0.3347(9)	1.0430(9)	4.4(4)
C(1)	0.382(1)	0.5218(8)	1 3038(7)	13(3)
C(2)	0.404(1)	0.4518(9)	1.3572(8)	1.8(3)
C(3)	0.355(1)	0.3700(9)	1.3334(9)	2.4(3)
C(4)	0.281(1)	0.3617(8)	1.2562(9)	1.8(3)
C(5)	0.257(1)	0.4316(8)	1 2021(7)	1.5(3)
C(6)	0.308(1)	0.5121(8)	1 2242(7)	1.4(3)
C(7)	0.075(1)	0.3811(9)	1.1111(9)	27(4)
C(8)	0.020(1)	0.4614(9)	1.2253(8)	2.5(4)
C(9)	0.045(2)	0.451(1)	1.312(1)	4.3(5)
C(10)	0.050(7)	0.525(1)	1364(1)	4.8(5)
C(11)	0.035(2)	0.608(1)	1 331(1)	5.7(6)
C(12)	0.002(2)	0.542(1)	1.187(1)	3.9(4)
C(13)	0.544(1)	0.6120(9)	1.3726(8)	1.9(3)
C(14)	0.625(1)	0.5278(10)	1.2680(8)	2 5(3)
C(15)	0.629(1)	0.4396(10)	1.2548(9)	2.9(4)
C(16)	0.007(2)	0.613(1)	1.244(2)	69(7)
C(17)	0.609(2)	0.5876(10)	1 2041(9)	3.9/4
C(18)	0.509(2)	0.557(1)	1 122(1)	50(5)
C(19)	0.599(2)	0.468(1)	1 109(1)	4.6(5)
	10.002 (2)	the stand of f	11110/111	1000
Table 19-1. Atomic coordinates and Biso/Beq (Continued)

atom C(20) C(21) C(22) C(23) C(24)	x 0.62 -0.07 0.23 0.34 0.74	4(2) 3(2) 2(2) 7(2) 3(1)	y 0.411(1) 0.317(1) 0.446(1) 0.678(1) 0.542(2)	2 1.17 1.18 1.04 1.31 1,41	5(1) 8(1) 68(10) 3(1) 6(1)	Beq 4.2(5) 5.9(7) 3.7(5) 3.6(4) 4.8(5)
Table 19-	2. Anisotropic	Displacement	Parameters			
atom 1(1) 1(2) N(1) N(2) N(3) N(4) N(5) N(6) C(1) C(3) C(4) C(3) C(4) C(5) C(6) C(7) C(8) C(6) C(1) C(12) C(12) C(14) C(12) C(14) C(15) C(14) C(15) C(14) C(15) C(17) C(18) C(17) C(20) C(20) C(21) C(22) C(23) C(24)	$\begin{array}{c} U11\\ 0.0566(7)\\ 0.0681(8)\\ 0.0228(7)\\ 0.032(7)\\ 0.024(6)\\ 0.034(7)\\ 0.040(9)\\ 0.06(1)\\ 0.021(7)\\ 0.015(7)\\ 0.015(7)\\ 0.022(8)\\ 0.021(7)\\ 0.032(9)\\ 0.022(8)\\ 0.021(7)\\ 0.032(9)\\ 0.022(8)\\ 0.021(7)\\ 0.032(9)\\ 0.022(8)\\ 0.022(8)\\ 0.07(1)\\ 0.09(2)\\ 0.06(1)\\ 0.024(8)\\ 0.022(8)\\ 0.05(1)\\ 0.10(2)\\ 0.06(1)\\ 0.08(2)\\ 0.06(1)\\ 0.05(1)\\ 0.05(1)\\ 0.03(1)\\ \end{array}$	$\begin{array}{c} U22\\ 0.0365(6)\\ 0.0883(10)\\ 0.037(7)\\ 0.024(7)\\ 0.022(6)\\ 0.050(8)\\ 0.052(9)\\ 0.054(10)\\ 0.021(8)\\ 0.024(8)\\ 0.024(8)\\ 0.024(8)\\ 0.024(8)\\ 0.024(8)\\ 0.024(8)\\ 0.024(8)\\ 0.024(8)\\ 0.024(8)\\ 0.035(10)\\ 0.045(1)\\ 0.088(2)\\ 0.045(1)\\ 0.035(10)\\ 0.035(10)\\ 0.035(10)\\ 0.035(10)\\ 0.026(9)\\ 0.06(1)\\ 0.07(1)\\ 0.07(1)\\ 0.07(1)\\ 0.07(1)\\ 0.07(1)\\ 0.03(1)\\ 0.07(1)\\ 0.03(1)\\ 0.07(1)\\ 0.03(1)\\ $	$\begin{array}{c} U33\\ 0.0401(6)\\ 0.0316(6)\\ 0.038(7)\\ 0.028(6)\\ 0.016(6)\\ 0.020(6)\\ 0.032(7)\\ 0.052(10)\\ 0.011(6)\\ 0.013(7)\\ 0.035(9)\\ 0.013(6)\\ 0.016(7)\\ 0.042(10)\\ 0.042(10)\\ 0.04(1)\\ 0.04(1)\\ 0.04(1)\\ 0.04(1)\\ 0.04(1)\\ 0.032(9)\\ 0.032(9)\\ 0.032(9)\\ 0.032(9)\\ 0.032(9)\\ 0.032(9)\\ 0.032(9)\\ 0.032(9)\\ 0.032(9)\\ 0.032(9)\\ 0.032(9)\\ 0.032(9)\\ 0.032(9)\\ 0.032(1)\\ 0.09(2)\\ 0.021(9)\\ 0.03(1)\\ 0$	U12 0.0081(6) 0.0539(7) -0.008(6) -0.013(5) -0.004(5) -0.0017(7) -0.028(8) -0.005(6) 0.0004(7) 0.0004(7) 0.0007(7) 0.0001(7) 0.000	U13 0.0058(5) 0.0127(5) 0.021(6) 0.010(5) 0.005(6) 0.012(7) 0.007(8) 0.015(6) 0.012(7) 0.007(8) 0.015(6) 0.002(6) 0.012(7) 0.005(6) 0.021(6) 0.021(6) 0.021(6) 0.021(6) 0.021(6) 0.021(7) 0.005(6) 0.021(1) 0.000(10) 0.010(6) 0.0112(7) 0.002(1) 0.002(1) 0.010(1) 0.010(6) 0.012(7) 0.002(1) 0.002(1) 0.002(1) 0.005(1) 0.05(1) 0.04(1) 0.04(1) 0.04(1) 0.04(1) 0.04(1) 0.018(9) -0.007(9) -0.008(8)	$\begin{array}{c} U23\\ -0.0092(5)\\ 0.0025(6)\\ -0.011(5)\\ -0.008(5)\\ -0.0023(7)\\ -0.046(8)\\ -0.003(6)\\ 0.013(6)\\ 0.013(6)\\ 0.013(6)\\ 0.013(6)\\ 0.013(6)\\ 0.009(7)\\ -0.009(7)\\ -0.009(7)\\ -0.009(7)\\ -0.009(7)\\ -0.009(7)\\ -0.009(7)\\ -0.009(7)\\ -0.009(7)\\ -0.009(7)\\ -0.009(7)\\ -0.009(7)\\ -0.000(6)\\ -0.012(7)\\ -0.001(7)\\ -0.005(6)\\ -0.011(9)\\ -0.005(6)\\ -0.011(9)\\ -0.005(6)\\ -0.011(7)\\ -0.001(7)\\ -0.001(7)\\ -0.001(1)\\ -0.000(8)\\ -0.001(1)\\ -0.03(1)\\ -0.03(1)\\ -0.000(8)\\ -0.004(9)\\ -0.03(1)\\ \end{array}$
Table 19-3	3. Bond Length	is (Å)				
atom N(1) N(2) N(3) N(3) N(3) N(4) N(5) C(1) C(2) C(4) C(6) C(9) C(14) C(14) C(15) C(18)	atom C(7) C(21) C(1) C(1) C(23) C(14) C(2) C(3) C(2) C(3) C(5) C(9) C(10) C(10) C(16) C(15) C(20) C(19)	distance 1.36(2) 1.48(2) 1.44(2) 1.41(1) 1.49(2) 1.33(2) 1.33(2) 1.33(2) 1.33(2) 1.38(2) 1.40(2) 1.38(2) 1.32(2) 1.32(2) 1.32(2) 1.32(2) 1.32(2)		atoi N(1) N(2) N(4) N(6) C(1) C(3) C(6) C(1) C(1) C(1) C(1) C(1)	m aton) C(8) C(5)) C(2)) C(1)) C(1)) C(1)) C(1)) C(2)) C(2)) C(4)) C(4)) C(1) 2) C(4)) C(1) 2) C(1) 2) C(2)) C($ \begin{array}{cccc} a & distance \\ & 1.42(2) \\ a & 1.42(1) \\ c & 1.42(1) \\ c & 1.34(1) \\ c & 1.34(1) \\ c & 1.33(2) \\ c & 1.33(2) \\ c & 1.33(2) \\ c & 1.33(2) \\ c & 1.37(2) \\ c & 1.39(2) \\ c & 1.38(2) \\ c & 1.39(2) \\ c & 1.39(2) \\ c & 1.39(2) \\ c & 1.39(2) \\ c & 1.38(2) \\ c & 1.39(2) \\ c & 1.38(2) \\ c & 1.$

Table 19-4. Bond Angles (deg)

mote	atom	atom	angle
C(7)	N(1)	C(8)	119(1)
C(8)	N(1)	C(21)	118(1)
C(5)	N(2)	C(22)	117(1)
C(1)	N(3)	C(13)	121(1)
0(13)	N(3)	C(23)	122(1)
C(13)	N(4)	C(24)	122(1)
N/31	C(1)	C(2)	120(1)
con	C(I)	C(6)	120(1)
CON	C(3)	C(4)	118(1)
N(2)	CISI	C(A)	120(1)
CAL	C(5)	CIG	120(1)
2(4)	CON	NUD	120(1)
N(1)	CO	N(2)	118(1)
N(2)	C(7)	N(0)	120(1)
N(1)	C(8)	C(12)	118(1)
C(8)	C(9)	C(10)	118(1)
C(10)	C(11)	C(16)	116(1)
N(3)	C(13)	N(4)	118(1)
N(4)	C(13)	N(5)	120(1)
N(4)	C(14)	C(17)	117(1)
C(14)	C(15)	C(20)	118(1)
C(14)	C(17)	C(18)	117(1)
C(18)	C(19)	C(20)	121(1)

atom	atom	alom	angle
C(7)	N(I)	C(21)	121(1
C(5)	N(2)	C(7)	121(1
C(7)	N(2)	C(22)	119(1)
C(1)	N(3)	C(23)	116(1
C(13)	N(4)	C(14)	120(1
C(14)	N(4)	C(24)	115(1)
N(3)	C(1)	C(6)	119(1
C(I)	C(2)	C(3)	120(1
C(3)	C(4)	C(5)	121/1
N(2)	C(5)	C(6)	118(1)
C(1)	C(6)	C(5)	118(1)
N(1)	C(7)	N(6)	120(1)
N(1)	C(8)	C(9)	118(1)
C(9)	C(S)	C(12)	122(1)
C(9)	COLON	COLD	121/13
C(8)	C(12)	C(16)	115(1
N(3)	C(12)	NICSI	120(1)
NIAY	C(14)	C(15)	110(1)
C(15)	C(14)	CUD	133(1)
C(1)	C(14)	C(17)	123(1)
CIT	C(10)	C(12)	120(1)
CUS	C(18)	C(19)	119(1)
C(15)	C(20)	C(19)	(19(1)

Table 19-5. Least Squares Planes

Plane	number 1		Pla	ne number 2		
Atom	s defining plane	Distance	Ate	oms defining i	plane	Distance
	N(1)	0.00(1)		N(3)		-0.002(10
	N(2)	0.00(1)		N(4)		0.00(1)
	N(6)	0.01(2)		N(5)		0.00(1)
	C(7)	-0.01(1)		C(13)		0.01(1)
Plane	number 3		Pla	ne number 4		and all at
Atom	s defining plane	Distance	Atc	oms defining i	ana	Distance
	C(8)	0.00(1)		C(1)		0.00(1)
	C(9)	0.00(2)		C(2)		-0.01(1)
	C(10)	-0.01(2)		C(3)		0.01(1)
	C(11)	0.02(2)		C(4)		0.00(1)
	C(12)	0.00(2)		C(5)		-0.01(1)
	C(16)	-0.03(3)		C(6)		0.01(1)
Plane	number 5	ander		alar		anest 13
Atoms	s defining plane	Distance				
	C(14)	0.01(1)				
	C(15)	-0.02(2)				
	C(17)	0.00(2)				
	C(18)	-0.01(2)				
	C(19)	-0.01(2)				
	C(20)	0.03(2)				
		Concert.				
Summ	ary	plane	mean deviation	n	CHI	
		1	0.0060		1.0	
		2	0.0039		0.5	
		3	0.0118		2.7	
		4	0.0082		3.3	
		5	0.0138		5.0	
Dihed	ral angles betwee	n planes (deg)			
plane	1	2	3	4		
2	135.16					
3	71.64	67.17				
4	68.92	66.67	30.51			
5	68.93	71.03	4.78	34.00		

parta-Substituted Diguanidinium iodide (20)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

Space Group Z value $D_{rde} = \int_{t_{con}}^{t_{con}} \mu(CuK\alpha)$ B. Intensity Measurements Diffractometer Radiation

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Température Scan Type Scan Rate Scan Width 29_{min} No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (I>3.00σ(J)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Diff. Map Maximum peak in Final Diff. Map

C.H.N.L. 656.35 brown, prismatic 0.60 X 0.20 X 0.20 mm monoclinic Primitive 20 (43.9 - 48.9°) 0.14 a = 10.929(2)Å b = 11.173(2) Å c = 11.895(2) Å $\beta = 113.56(1)^{\circ}$ $V = 1331.3(5) \text{ Å}^3$ P2,/c (#14) 1.637 g/cm 644.00 187.16 cm⁻¹ Rigaku AFC5S CuK α ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factors = 1.00, 3.57, 12.70, 45.11) 6.0° 9.0 mm horizontal 13.0 mm vertical 258 mm 23.0°C 0-20 16.0°/min (in ω) (up to 3 scans) $(1.37 + 0.30 \tan \theta)^{\circ}$ 120.1° Total: 2226 Unique: 2105 (Rint = 0.079) Lorentz-polarization Absorption (trans. factors: 0.9396 - 1.0326) Patterson Methods (SAPI)

Full-matrix least-squares $\Sigma \le (IFo) - (Fc))^2$ $w = 1/[\sigma^2(Fo^2) + P^2 + P]$ 0.0050 All non-hydrogen atoms 1555 205 7.59 0.041 ; 0.044 2.91 5.63 0.64 c-/Å³ -0.43 c-/Å³

[]

Table 20-1. Atomic coordinates and Biso/Beq

atom	x	v	Z	Ben
1(1)	0.37859(7)	0.31187(6)	0.51120(6)	3.75(2)
N(2)	0.7263(7)	0.4360(7)	0.8860(6)	2 8(2)
N(3)	0.7503(8)	0.2863(7)	1.0302(7)	29(2)
N(4)	0.5734(8)	0.2779(8)	0.8369(7)	4.4(2)
C(5)	0.6819(10)	0.3327(9)	0.9159(9)	3.2(2)
C(7)	0.8010(10)	0.3624(9)	1.1336(8)	2 9(2)
C(8)	0.904(1)	0.5829(9)	0.9978(9)	2 8(3)
C(9)	0.967(1)	0.3869(9)	0.9470(9)	2.7(2)
C(10)	0.932(1)	0.352(1)	1.220(1)	4.0(3)
C(11)	0.637(1)	0.514(1)	0.790(1)	4.4(3)
C(12)	0.721(1)	0.452(1)	1.1490(9)	4.0(3)
C(13)	0.985(1)	0.425(1)	1.3206(9)	4.2(3)
C(14)	0.773(1)	0.530(1)	1.249(1)	5.2(4)
C(15)	0.906(1)	0.514(1)	1.334(1)	4.6(3)
C(16)	0.744(1)	0.157(1)	1.045(1)	4.6(4)
C(17)	0.8669(10)	0.4694(8)	0.9439(7)	2.7(2)

Table 20-2. Anisotropic Displacement Parameters

atom	UIT	U22	U33	U12	U13	U23
1(1)	0.0532(4)	0.0466(4)	0.0382(4)	-0.0081(4)	0.0138(3)	0.0012(4)
N(2)	0.033(4)	0.034(5)	0.033(4)	-0.002(4)	0.009(4)	0.004(4)
N(3)	0.050(5)	0.028(5)	0.030(4)	-0.004(4)	0.013(4)	0.007(4)
N(4)	0.061(6)	0.048(6)	0.043(5)	-0.025(5)	0.004(4)	-0.010(4)
C(5)	0.044(6)	0.039(7)	0.041(6)	0.002(5)	0.018(5)	0.002(5)
C(7)	0.041(6)	0.040(6)	0.023(5)	-0.005(5)	0.006(5)	0.010(5)
C(8)	0.046(7)	0.023(6)	0.042(6)	0.008(5)	0.021(5)	-0.001(5)
C(9)	0.048(7)	0.022(6)	0.040(6)	-0.003(5)	0.025(5)	-0.007(5)
C(10)	0.052(8)	0.046(8)	0.059(8)	0.012(6)	0.026(6)	0.025(6)
C(11)	0.061(9)	0.041(8)	0.047(8)	0.008(7)	0.002(6)	0.010(6)
C(12)	0.053(7)	0.073(9)	0.029(6)	-0.001(7)	0.019(5)	-0.001(6)
C(13)	0.058(8)	0.060(9)	0.023(6)	-0.015(7)	-0.004(5)	-0.004(6)
C(14)	0.075(9)	0.08(1)	0.051(8)	0.010(8)	0.033(7)	-0.004(7)
C(15)	0.072(9)	0.066(10)	0.033(7)	-0.012(7)	0.017(6)	-0.007(6)
C(16)	0.07(1)	0.024(8)	0.072(10)	0.007(6)	0.021(7)	0.015(6)
C(17)	0.051(6)	0.034(6)	0.019(5)	-0.010(5)	0.016(4)	0.000(4)

-\$76-

Table 20-3. Bond Lengths (Å)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	atom N(2) N(3) C(7) C(8) C(9) C(12) C(14)	atom C(11) C(5) C(16) C(10) C(10) C(17) C(14) C(15)	distance 1.45(1) 1.36(1) 1.45(1) 1.40(1) 1.34(1) 1.34(1) 1.39(2) 1.39(2)	
--	--	---	--	--

Table 20-4. Bond Angles (deg)

atom atom angle $C(5)$ $N(2)$ $C(11)$ $121.2(9)$ $C(11)$ $N(2)$ $C(17)$ $118.1(8)$ $C(5)$ $N(3)$ $C(16)$ $118.1(9)$ $N(2)$ $C(5)$ $N(3)$ $119.6(9)$ $N(3)$ $C(5)$ $N(4)$ $120.4(10)$ $N(3)$ $C(7)$ $C(12)$ $120.3(9)$ $C(9)$ $C(8)$ $C(17)$ $121.1(10)$ $C(7)$ $C(13)$ $123(1)$ $C(10)$ $C(10)$ $C(13)$ $C(12)$ $123(1)$ $C(10)$ $C(13)$ $C(14)$ $121(1)$ $N(2)$ $C(17)$ $C(9)$ $120.0(8)$	C(5) C(5) C(7) N(2) N(3) C(10) C(8) C(7) C(12) N(2) C(8)	N(2) N(3) N(3) C(5) C(7) C(7) C(7) C(9) C(12) C(12) C(14) C(17)	a(0)17 C(17) C(16) N(4) C(10) C(12) C(17) C(14) C(15) C(8) C(8)	120.6(8) 119.7(8) 121.0(9) 120.0(9) 121(1) 118(1) 119.6(9) 119(1) 120(1) 120(1) 120.7(9)
--	--	--	---	--

Table 20-5. Least Squares Planes

Plane number 1		Plane number 2	
Atoms defining plane	Distance	Atoms defining plane	Distance
C(5)	-0.035(96)	C(7)	-0.0019(89)
N(2)	0.0008(75)	C(10)	0.0067(104)
N(3)	0.0009(80)	C(13)	-0.0058(117)
N(4)	0.0018(112)	C(15)	-0.0019(120)
	Constanting (C(14)	0.0079(129)
		C(12)	-0.0032(104)
Plane number 3		-(1-)	- and a section of
Atoms defining at	D'		

Atoms defining plane	Distance
C(8)	0.0000
C(9)	0.0000
C(17)	0.0000

Summary	plane	mean deviation	CHI
	1	0.0018	0.2
	2	0.0046	1.1
	3	0.0000	0.0

Dihedral angles between planes (deg) plane 1 2 2 72.30 3 111.82 152.03

meta-Substituted Tetraguanidinium Chloride (21)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Indexing Images Detector Position Detector Swing Angle Pixel Size Lattice Parameters

Space Group Z value D_{calc} F_{con} $\mu(MoK\alpha)$

B. Intensity Measurements Diffractometer Radiation

Detector Aperture Data Images Oscillation Range Detector Position Detector Swing Angle Pixel Size 20max No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-faetor Anomalous Dispersion No. Observations (I>3.00σ(I)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

C42H38N C10, 904.81 clear, needle 0.35 X 0.30 X 0.30 mm monoclinic Primitive 3 oscillations @ 5.0 minutes 86.33 mm 0.00° 0.203 mm a = 11.647(2)Å b = 25.027(3) Å c = 15.866(2) Å $\beta = 93.52(1)^{\circ}$ $V = 4616.1099 \text{ Å}^3$ P2,/c (#14) 1.302 g/cm3 1912.00 3.06 cm

RAXIS-II MoKa ($\hat{\lambda} = 0.71070$ Å]) graphite monochromated 200 mm x 200 mm 15 exposures @ 5.0 minutes 7.0° 86.33 mm 0.00° 0.203 mm 44.0° Total: 5313 Lorentz-polarization Absorption (trans. factors: 0.8384 - 1.0905)

Direct Methods (SIR92) Full-matrix least-squares $\Sigma \le (IFo) - (Fc))^2$ w = $I/[\sigma^2(Fo^2) + P^2 + P]$ 0.0200 All non-hydrogen atoms 4814 541 8,90 0.066 ; 0.081 4.23 0.06 0.47 $e/[\Lambda^4]$ -0.53 $e/[\Lambda^4]$

Table 21-1. Atomic coordinates and Biso/Beg

atom	X	У	Z	Beg
CI(55)	0.8881(1)	0.61303(5)	0.41598(8)	4.21(3)
CI(56)	0.38638(9)	0.43210(5)	0.08798(7)	3.25(3)
Cl(57)	0.5304(1)	0.37524(6)	0.56308(8)	4.52(3)
Cl(58)	1.00060(9)	0.31340(5)	0.12776(7)	3.65(3)
O(59)	0.6926(3)	0.5737(2)	0.5256(2)	4 97(9)
Q(60)	0.6538(3)	0.5964(2)	0.3031(2)	4.97(9)
N(43)	1.2707(3)	0.5649(2)	0.2597(2)	3,51(9)
N(44)	1.3205(3)	0.5240(2)	0.3884(2)	3,93(10)
N(45)	1.1383(3)	0.5116(2)	0.3250(2)	3,25(9)
N(46)	0.7907(3)	0.5141(1)	0.1362(2)	3.05(9)
N(47)	0.6238(3)	0.4864(2)	0.0625(3)	3.75(10)
N(48)	0.7213(3)	0.4280(1)	0.1539(2)	2.81(9)
N(49)	0.9229(3)	0.3327(2)	0.3866(2)	3.00(8)
N(50)	0.9711(3)	0.2856(2)	0.5085(2)	3.34(9)
N(51)	0.7808(3)	0.2861(1)	0.4521(2)	2.91(9)
N(52)	0.4336(3)	0.3350(1)	0.2802(2)	3.04(9)
N(53)	0.2663(3)	0.3398(1)	0.1924(2)	3.16(9)
N(54)	0.3069(3)	0.2626(1)	0.2689(2)	3.23(9)

Appendix

Table 21-1. Atomic coordinates and Biso/Beq (Continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1) C(2) C(3) C(4) C(5) C(6) C(7)
$\begin{array}{cccccc} C(2) & 1.1791(4) & 0.5991(2) & 0.1266(3) & 3.9(1) \\ C(3) & 1.0958(5) & 0.6298(2) & 0.0844(3) & 4.5(1) \\ C(4) & 1.0182(5) & 0.6598(2) & 0.1294(4) & 5.1(2) \\ C(5) & 1.0249(4) & 0.6557(2) & 0.2157(4) & 5.2(2) \\ C(6) & 1.1086(4) & 0.6261(2) & 0.2592(3) & 3.9(1) \\ C(7) & 1.3890(4) & 0.5679(2) & 0.2322(3) & 4.3(1) \\ C(8) & 1.2433(4) & 0.5330(2) & 0.3249(3) & 3.4(1) \\ C(8) & 1.2433(4) & 0.4966(2) & 0.4037(3) & 3.4(1) \\ C(10) & 1.0778(4) & 0.4975(2) & 0.2464(3) & 3.0(1) \\ C(11) & 1.1329(4) & 0.4681(2) & 0.1886(3) & 3.3(1) \\ C(12) & 1.0761(4) & 0.4535(2) & 0.0968(3) & 3.2(1) \\ C(13) & 0.9628(4) & 0.4685(2) & 0.0968(3) & 3.2(1) \\ C(14) & 0.9078(5) & 0.4983(2) & 0.1560(3) & 2.8(1) \\ C(15) & 0.9640(4) & 0.5132(2) & 0.2310(3) & 2.9(1) \\ C(16) & 0.7662(4) & 0.5710(2) & 0.1247(3) & 3.3(1) \\ C(17) & 0.7111(4) & 0.4766(2) & 0.1166(3) & 3.1(1) \\ C(18) & 0.6818(4) & 0.3800(2) & 0.1090(3) & 3.5(1) \\ C(20) & 0.753(3) & 0.4235(2) & 0.2420(3) & 2.69(1) \\ C(21) & 0.7381(4) & 0.4533(2) & 0.3839(3) & 3.2(1) \\ C(22) & 0.8057(4) & 0.4110(2) & 0.4134(3) & 3.1(1) \\ C(23) & 0.848(3) & 0.376(2) & 0.3630(3) & 3.2(1) \\ C(24) & 0.8253(3) & 0.3819(2) & 0.2704(3) & 2.6(1) \\ C(25) & 1.0431(4) & 0.3341(2) & 0.3630(3) & 3.5(1) \\ C(26) & 0.8918(4) & 0.3014(2) & 0.4360(3) & 2.9(1) \\ C(25) & 1.0431(4) & 0.3341(2) & 0.3630(3) & 3.5(1) \\ C(25) & 1.0431(4) & 0.3341(2) & 0.3630(3) & 2.6(1) \\ C(27) & 0.7379(4) & 0.2634(2) & 0.3299(3) & 3.2(1) \\ C(28) & 0.7078(3) & 0.2801(2) & 0.3299(3) & 3.2(1) \\ C(28) & 0.7078(3) & 0.2801(2) & 0.3299(3) & 3.2(1) \\ C(28) & 0.7078(3) & 0.2801(2) & 0.3299(3) & 3.2(1) \\ C(28) & 0.7078(3) & 0.2819(2) & 0.3299(3) & 3.2(1) \\ C(28) & 0.7078(3) & 0.281(2) & 0.3299(3) & 3.2(1) \\ C(28) & 0.7078(3) & 0.281(2) & 0.3299(3) & 3.2(1) \\ C(28) & 0.7078(3) & 0.281(2) & 0.3299(3) & 3.2(1) \\ C(28) & 0.7078(3) & 0.281(2) & 0.3299(3) & 3.2(1) \\ C(28) & 0.7078(3) & 0.281(2) & 0.3299(3) & 3.2(1) \\ C(28) & 0.7078(3) & 0.281(2) & 0.3299(3) & 3.2(1) \\ C(28) & 0.7078(3) & 0.281(2) & 0.3299(3) & 3.2(1) \\ C(28) & 0.7078(3) & 0.281(2) & 0.3299$	C(2) C(3) C(4) C(5) C(6) C(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3) C(4) C(5) C(6) C(7)
$\begin{array}{ccccc} C(4) & 1.0182(5) & 0.6589(2) & 0.1294(4) & 5.1(2) \\ C(5) & 1.0249(4) & 0.6557(2) & 0.2157(4) & 5.2(2) \\ C(5) & 1.0249(4) & 0.6557(2) & 0.2157(4) & 5.2(2) \\ C(6) & 1.086(4) & 0.6561(2) & 0.2592(3) & 3.9(1) \\ C(7) & 1.3890(4) & 0.5679(2) & 0.2322(3) & 4.3(1) \\ C(8) & 1.2433(4) & 0.5330(2) & 0.3249(3) & 3.4(1) \\ C(9) & 1.0853(4) & 0.4966(2) & 0.4037(3) & 3.4(1) \\ C(10) & 1.0778(4) & 0.4966(2) & 0.4037(3) & 3.4(1) \\ C(11) & 1.1329(4) & 0.4681(2) & 0.1886(3) & 3.3(1) \\ C(12) & 1.0761(4) & 0.4535(2) & 0.0968(3) & 3.2(1) \\ C(13) & 0.9628(4) & 0.4685(2) & 0.0968(3) & 3.2(1) \\ C(14) & 0.9078(3) & 0.4988(2) & 0.150(3) & 2.8(1) \\ C(15) & 0.9640(4) & 0.5132(2) & 0.2510(3) & 2.9(1) \\ C(16) & 0.7662(4) & 0.5710(2) & 0.1247(3) & 3.3(1) \\ C(18) & 0.6818(4) & 0.3800(2) & 0.1090(3) & 3.5(1) \\ C(20) & 0.7121(4) & 0.4756(2) & 0.2392(3) & 3.3(1) \\ C(21) & 0.7381(4) & 0.4533(2) & 0.3839(3) & 3.2(1) \\ C(22) & 0.8057(4) & 0.4110(2) & 0.4134(3) & 3.1(1) \\ C(23) & 0.8457(3) & 0.3819(2) & 0.2704(3) & 2.6(1) \\ C(25) & 1.0431(4) & 0.3341(2) & 0.3630(3) & 3.5(1) \\ C(25) & 1.0431(4) & 0.3341(2) & 0.3630(3) & 3.5(1) \\ C(26) & 0.8918(4) & 0.3014(2) & 0.4363(3) & 3.2(1) \\ C(25) & 1.0431(4) & 0.3341(2) & 0.3630(3) & 3.5(1) \\ C(25) & 1.0431(4) & 0.3341(2) & 0.3630(3) & 3.5(1) \\ C(27) & 0.7379(4) & 0.2634(2) & 0.5299(3) & 3.8(1) \\ C(28) & 0.7078(3) & 0.2819(2) & 0.2792(3) & 3.8(1) \\ C(28) & 0.7078(3) & 0.2819(2) & 0.2704(3) & 2.6(1) \\ C(27) & 0.7379(4) & 0.2634(2) & 0.5299(3) & 3.8(1) \\ C(28) & 0.7078(3) & 0.2819(2) & 0.2792(3) & 3.8(1) \\ C(28) & 0.7078(3) & 0.2819(2) & 0.2792(3) & 3.8(1) \\ C(28) & 0.7078(3) & 0.2819(2) & 0.2704(3) & 2.6(1) \\ C(28) & 0.7078(3) & 0.2819(2) & 0.2704(3) & 2.6(1) \\ C(27) & 0.7379(4) & 0.2634(2) & 0.5299(3) & 3.8(1) \\ C(28) & 0.7078(3) & 0.2819(2) & 0.2708(3) & 2.8(1) \\ C(28) & 0.7078(3) & 0.281(2) & 0.3702(2) & 0.375(2) & 0.382(3) \\ C(28) & 0.7078(3) & 0.2819(2) & 0.375(2) & 0.375(2) & 0.2819(3) \\ C(28) & 0.7078(3) & 0.281(2) & 0.375(2) & 0.375(2) & 0.2819(3) \\ C(28) & 0.7078(3) & 0.281(2) & 0.375(2) & 0.37$	C(4) C(5) C(6) C(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5) C(6) C(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6) C(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)
C(27) 0.7379(4) 0.2634(2) 0.5299(3) 3.8(1) C(28) 0.7078(3) 0.2801(2) 0.3755(3) 2.67(4)	C(26)
C(28) = 0.7078(3) = 0.2801(2) = 0.3255(3) = 3.6(1)	C(27)
	C(28)
C(29) = 0.7354(4) = 0.2433(2) = 0.3155(3) = 2.07(1)	C(29)
C(30) 0.6617(4) 0.2355(2) 0.2454(3) 3.1(1)	C(30)
C(31) 0.5615(4) 0.2650(2) 0.2434(3) 5.1(1)	C(31)
C(32) $C(32)$ $C(32$	C(32)
C(33) = 0.555(5) = 0.5052(2) = 0.2959(3) = 2.8(1) = 0.2959(3) = 2.8(1)	C(33)
C(34) = 0.000(5) = 0.5101(2) = 0.5008(5) = 2.9(1)	C(34)
C(35) = 0.3342(4) = 0.3922(2) = 0.3001(3) = 3.0(1) = 0.3129(2) = 0.31457(2) = 2.0(1)	C(35)
C(35) $0.53+5(4)$ $0.5120(2)$ $0.2403(3)$ $2.9(1)C(36)$ $0.277(4)$ $0.220(2)$ $0.21403(3)$ $1.9(1)$	C(36)
C(30) = 0.2277(4) = 0.2300(2) = 0.2141(3) = 4.2(1) C(37) = 0.3467(4) = 0.2420(2) = 0.2506(2) = 2.2(1)	C(37)
(37) $(.3402(4)$ $(.2420(2)$ $(.3500(3)$ $3.2(1)$	C(38)
C(30) = 0.3571(4) = 0.2529(2) = 0.4220(3) = 3.8(1) = 0.2529(2) = 0.5005(2) = 4.2014	C(30)
C(40) = 0.3772(4) = 0.2328(2) = 0.5005(5) = 4.2(1)	C(AD)
C(41) $0.4245(4)$ $0.2025(2)$ $0.5004(3)$ $4.2(1)$	C(41)
C(42) 0.4515(4) 0.1718(2) 0.4547(3) 4.0(1) C(42) 0.2660(3) 3.7(1)	
0.1914(2) 0.3500(3) 3.7(1)	C(42)

Table 21-2. Anisotropic Displacement Parameters

atom	UII	U22	U33	1112	UIT	1152
CI(55)	0.0480(7)	0.0560(8)	0.0552(8)	0.0071/6	0.0040/61	10000000
CI(56)	0.0394(6)	0.0424(7)	0.0412275	0.0071(0)	-0.0040(0)	0.0008(0)
(1)(57)	0.0334(0)	0.0424[1]	0.0412(7)	-0.0030(5)	-0.0013(5)	0.0060(5)
CI(57)	0.04/6(/)	0.0033(9)	0.0288(8)	-0.0016(6)	-0.0005(6)	-0.0170(7)
CI(58)	0.0408(6)	0.0478(8)	0.0488(7)	0.0014(5)	-0.0071(5)	-0.0121(6)
0(59)	0.061(2)	0.071(3)	0.057(2)	0.008(2)	0.005(2)	0.015(2)
0(60)	0.060(2)	0.071(3)	0.056(2)	-0.003(2)	0.000(2)	0.012(2)
N(43)	0.036(2)	0.051(3)	0.046(2)	0.002/21	0.000(2)	0.000(2)
51(44)	0.030(2)	0.067(3)	0.040(2)	-0.005(2)	-0.003(2)	0.003(2)
14(44)	0.039(2)	0.007(3)	0.042(2)	-0.005(2)	-0.010(2)	0.005(2)
N(45)	0.041(2)	0.044(2)	0.037(2)	-0.002(2)	-0.003(2)	-0.001(2)
N(46)	0.032(2)	0.033(2)	0.050(2)	-0.002(2)	-0.007(2)	0.004(2)
N(47)	0.040(2)	0.042(3)	0.057(3)	-0.009(2)	-0.020(2)	0.016(2)
N(48)	0.034(2)	0.033(2)	0.039(2)	-0.001(2)	-0.008(2)	0.003/2)
N(49)	0.033(2)	0.039(2)	0.041(2)	0.002(2)	0.001(2)	0.007/2)
N(50)	0.037(2)	0.045(2)	0.043(2)	0.001(2)	0.009(7)	0.00/12/
N(51)	0.038(2)	0.030(2)	0.022(2)	-0.001(2)	-0.008(2)	0.011(2)
14000	0.022(2)	0.039(2)	0.035(2)	0.003(2)	-0.006(2)	0.003(2)
N(52)	0.033(2)	0.032(2)	0.049(2)	-0.003(2)	-0.005(2)	0.001(2)
N(53)	0.037(2)	0.036(2)	0.046(2)	-0.003(2)	-0.009(2)	0.005(2)
N(54)	0.039(2)	0.037(2)	0.045(2)	-0.005(2)	-0.011(2)	0.007(2)
C(1)	0.038(3)	0.043(3)	0.049(3)	-0.010(2)	-0.007(2)	0.000(2)
C(2)	0.055(3)	0.041(3)	0.052(3)	-0.008(3)	0.005(2)	0.000(2)
CON	0.065(4)	0.044(3)	0.060(4)	0.000(3)	-0.000(3)	-0.002(2)
CIA	0.053(2)	0.044(3)	0.000(4)	-0.010(5)	-0.019(3)	0.001(3)
0(5)	0.035(5)	0.039(3)	0.099(5)	-0.012(3)	-0.017(3)	0.017(3)
C(5)	0.048(3)	0.051(4)	0.098(5)	-0.006(3)	0.015(3)	0.015(3)
C(6)	0.049(3)	0.043(3)	0.055(3)	-0.002(3)	0.003(3)	0.002(3)
C(7)	0.035(3)	0.070(4)	0.057(3)	-0.005(2)	0.000(2)	0.000(3)
C(8)	0.035(3)	0.048(3)	0.045(3)	-0.005(2)	-0.006(2)	-0.003(2)
C(9)	0.039(3)	0.045(3)	0.046(3)	0.000(2)	0.006(2)	0.003(2)
COD	0.037/31	0.037/31	0.070(2)	0.000(2)	-0.000(2)	0.004(2)
CILL	0.037(3)	0.037(3)	0.059(3)	-0.008(2)	-0.007(2)	(0.003(2))
C(III)	0.032(2)	0.041(3)	0.052(3)	0.002(2)	0.003(2)	0.002(2)
C(12)	0.045(3)	0.044(3)	0.041(3)	0.000(2)	0.001(2)	-0.004(2)
C(13)	0.037(3)	0.042(3)	0.043(3)	-0.007(2)	-0.006(2)	0.000(2)
C(14)	0.029(2)	0.037(3)	0.039(3)	-0.004(2)	-0.005(2)	0.005(2)
C(15)	0.035(3)	0.035(3)	0.041(3)	-0.001(2)	-0.003(2)	0.002(2)
C(16)	0.033(2)	0.041(3)	0.051/3)	0.002(2)	0.007(2)	0.001/2
C(17)	0.030(3)	0.041(7)	0.020(2)	0.002(2)	0.001(2)	0.004(2)
COR	0.045(2)	0.037(3)	0.059(5)	-0.002(2)	-0,001(2)	0.004(2)
C(10)	0.045(3)	0.037(3)	0.050(3)	-0.002(2)	-0.009(2)	0.003(2)
C(19)	0.030(2)	0.036(3)	0.035(3)	-0.010(2)	-0.003(2)	0.005(2)
C(20)	0.039(3)	0.034(3)	0.052(3)	-0.003(2)	-0.002(2)	0.003(2)
C(21)	0.046(3)	0.042(3)	0.034(3)	0.000(2)	-0.002(2)	-0.003(2)
C(22)	0.043(3)	0.037(3)	0.035(3)	0.000(2)	-0.001(2)	0.005(2)
C(23)	0.031(2)	0.034(3)	0.040(3)	0.001(2)	-0.006(2)	0.006(2)
C(24)	()()29(2)	0.030(3)	0.030(3)	0.004/2)	0.004/2)	0.001/2)
C(25)	() () 38(2)	0.050(2)	0.012(2)	0.004(2)	0.004(2)	(1001(2)
C(26)	0.038(3)	0.030(3)	0.045(3)	-0.001(2)	-0.004(2)	0.004(2)
C(20)	0.036(3)	0.034(3)	0.039(3)	0.001(2)	-0.006(2)	0.000(2)
C(27)	0.045(3)	0.058(3)	0.039(3)	0.001(2)	0.000(2)	0.009(2)
C(28)	0.035(2)	0.031(3)	0.036(3)	-0.003(2)	-0.003(2)	0.005(2)
C(29)	0.039(2)	0.042(3)	0.042(3)	0.005(2)	0.000(2)	0.005(2)
C(30)	0.044(3)	0.037(3)	0.038(3)	0.003(2)	0.000(2)	-0.004(2)
C(31)	0.036(2)	0.043(3)	0.037/3)	.0.002(2)	-0.003(2)	0.002/21
C(32)	0.030(2)	0.017(2)	0.041(3)	0.000(2)	0.001/21	0.002(2)
COTT	0.036(2)	0.037(3)	0.041(3)	0.000(2)	-0.004(2)	0.007(2)
6030	0.035(2)	0.033(3)	0.043(3)	-0.003(2)	-0.002(2)	-0.003(2)
C(34)	0.046(3)	0.044(3)	0.046(3)	0.004(2)	-0.004(2)	0.000(2)
C(35)	0.037(3)	0.035(3)	0.039(3)	-0.003(2)	-0.002(2)	0.002(2)
C(36)	0.051(3)	0.050(3)	0.055(3)	-0.010(2)	-0.009(2)	0.006(3)
C(37)	0.036(2)	0.042(3)	0.044(3)	-0.008(2)	-0.003(2)	0.004(2)
C(38)	0.047(3)	0.045(3)	0.053(3)	-0.001(2)	0.003(2)	0.002(3)
C(39)	0.056(2)	0.061(4)	0.044(2)	0.014(2)	0.005(2)	0.002(3)
CUM	0.061(3)	0.001(4)	0.044(3)	-0.014(3)	0.005(2)	-0.001(3)
CIAN	0.001(3)	0.047(4)	0.051(3)	-0.012(3)	-0.000(2)	0.010(3)
C(41)	0.058(3)	0.044(3)	0.048(3)	-0.007(2)	-0.015(2)	0.011(3)
C(42)	0.048(3)	0.041(3)	0.053(3)	-0.007(2)	-0.002(2)	0.000(3)

Table 21-3. Bond Lengths (Å)

N(4-3) C(10) N(46) C(16) N(47) C(17) N(48) C(18) N(49) C(23) N(51) C(26) N(51) C(28) N(51) C(28) N(52) C(34) N(53) C(34) N(54) C(36) C(1) C(2) C(2) C(3) C(4) C(55) C(10) C(11) C(11) C(12) C(13) C(14) C(19) C(20) C(20) C(21) C(21) C(23) C(22) C(23) C(23) C(23) C(24) C(52) C(25) C(23) C(26) C(21) C(27) C(23) C(38) C(32) C(38) C(38) C(40) C(41) Table 21-4 Bond A) 1.455) 1.455) 1.344) 1.344) 1.347) 1.466) 1.316) 1.466) 1.316 1.365 1.374 1.366 1.373 1.366 1.373 1.366 1.379 1.378 1.382 1.399 1.378 1.382 1.399 1.378 1.382 1.399 1.378 1.382 1.399 1.378 1.386 1.382 1.399 1.378 1.386 1.387 1.386 1.387 1.386 1.386 1.387 1.386 1.387 1.386 1.387 1.386 1.387 1.386 1.387 1.386 1.387 1.387 1.386 1.387 1.386 1.387 1.387 1.386 1.387 1.387 1.387 1.387 1.387 1.387 1.387 1.387 1.387 1.387 1.386 1.387 1.377 1.378	(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)	N(48) N(48) N(48) N(50) N(51) N(52) N(54) N(54) N(54) C(1) C(3) C(12) C(14) C(19) C(21) C(23) C(23) C(23) C(32) C(32) C(32) C(34)		77 9) 55 6) 77 55 55 77 6 6 77 55 55 55 77 6 6 77 9 55 55 55 55 55 55 55 55 55 55 55 55 5	1.355(6) 1.433(5) 1.471(5) 1.328(6) 1.471(5) 1.328(6) 1.474(6) 1.435(6) 1.343(6) 1.343(6) 1.349(6) 1.349(6) 1.389(6) 1.389(6) 1.389(6) 1.389(6) 1.389(6) 1.399(6) 1.399(6) 1.399(6) 1.392(7) 1.387(
$\begin{array}{llllllllllllllllllllllllllllllllllll$	atom C(7) C(8) C(10) C(10) C(12) C(12) C(25) C(25) C(26) C(23) C(23) C(23) C(23) C(23) C(2) C(34) C(35) C(2) C(4) C(4) C(4) C(12) C(14) C(15) C(12) C(14) C(14) C(15) C(12) C(14) C(12) C(14) C(12) C(14) C(12) C(12) C(12) C(12) C(12) C(12) C(2	angle 117.3(4) 121.6(4) 119.8(3) 118.1(3) 121.7(4) 120.5(4) 117.1(3) 120.5(4) 121.5(3) 119.1(3) 120.3(4) 120.7(4) 120.7(4) 120.6(4) 119.7(4) 120.6(4) 119.7(4) 120.2(4) 119.3(4) 120.7(4) 120.3(4)	atom C(1) C(8) C(2) C(2) C(2) C(2) C(2) C(2) C(3) C(3) C(3) C(3) C(3) C(3) C(3) C(3	atom N(43) N(45) N(46) N(48) N(48) N(51) N(51) N(51) N(54) C(1) C(2) C(14) C(10) C(10) C(10) C(10) C(14) C(14) C(14) C(14) C(14) C(14) C(14) C(17) C(17) C(17) C(12) C(22) C(22) C(22) C(22) C(24)	atom C(8) C(9) C(10) C(18) C(26) C(27) C(26) C(35) C(35) C(35) C(35) C(35) C(36) C(35) C(36) C(5) C(5) C(11) C(15) C(11) C(15) C(11) C(15) C(13) C(15) N(45) C(15) N(45) C(24) C(24) C(24) C(23) C(24) C(23)	angle 121.1(4) 122.3(4) 117.6(3) 119.4(4) 120.7(4) 120.2(4) 120.2(4) 120.2(4) 120.2(4) 120.2(4) 120.2(4) 120.2(4) 120.5(4) 120.5(4) 119.3(4) 119.3(4) 119.3(4) 119.3(4) 119.1(5) 119.0(5) 119.1(5) 119.1(5) 119.2(4) 121.1(4) 121.1(4) 121.1(4) 121.2(4) 121.2(4) 121.2(4) 121.2(4) 120.2(4) 121.2(4) 121.2(4) 122.3(4) 123.2(

Table 21-4. Bond Angles (deg) (continued)

atom N(49) N(50) N(51) C(28) C(30) N(52) C(28) N(52) N(52) N(54) C(38) C(38) C(38)	atom C(26) C(26) C(28) C(29) C(31) C(32) C(33) C(35) C(37) C(37) C(37) C(39) C(41)	atom N(50) N(51) C(33) C(32) C(32) C(32) N(54) C(38) C(38) C(42) C(40) C(42)	angle 119.2(4) 121.7(4) 118.5(4) 119.5(4) 119.9(4) 120.0(4) 118.0(4) 119.1(4) 120.0(4) 120.8(4) 120.1(5) 121.0(5)	atom N(49) N(51) C(29) C(29) N(52) C(31) N(52) N(53) N(54) C(37) C(37)	atom C(26) C(28) C(30) C(32) C(32) C(35) C(35) C(35) C(35) C(37) C(38) C(40) C(42)	atorti N(51) C(29) C(33) C(31) C(31) C(31) C(33) N(53) N(54) C(42) C(39) C(41) C(41)	angle 119.1(4) 119.6(4) 121.8(4) 119.9(4) 119.1(4) 120.9(4) 120.5(4) 120.4(4) 119.2(4) 119.3(5) 119.8(5) 118.9(4)
---	---	--	---	---	---	---	---

Table 21-5. Least Squares Planes

Plane number 1 Atoms defining plane C(1) C(2)	Distance -0.007(5) 0.002(5)	Plane number 2 Atoms defining plane C(10) C(11)	Distance -0.001(5)	
C(3) C(4) C(5) C(6)	0.000(5) 0.006(5) -0.013(6) 0.013(5)	C(12) C(13) C(14) C(15)	0.001(5) 0.000(5) -0.002(4) 0.002(5)	
Plane number 3 Atoms defining plane	Distance	Plane number 4 Atoms defining plane	Distance	

toms defining nlane	Distance	Atoms defining plane	Distance
C(19)	-0.008(4)	C(28)	0.006(d)
C(20)	0.003(4)	C(29)	0.007(5)
C(21)	0.007(5)	C(30)	-0.010(5)
C(22)	-0.007(5)	C(31)	-0.002(4)
C(23)	-0.001(4)	C(32)	0.014(4)
C(24)	0.008(4)	C(33)	-0.017(4)

Plane number 5 Atoms defining plane C(37) C(38) C(39) C(40) C(41)	Distance -0.001(4) -0.003(5) 0.002(5) 0.005(5) -0.010(5)	Plane number 6 Atoms defining plane C(8) N(43) N(44) N(45)	Distance 0.005(5) -0.001(4) -0.001(4) -0.001(4)
C(41) C(42)	-0.010(5) 0.007(5)		

9	Plane number 7		Plane number 8	
Ņ	Atoms defining plane	Distance	Atoms defining plane	Distance
	C(17)	0.002(4)	C(26)	-0.006(5)
	N(46)	-0.001(4)	N(49)	0.002(4)
	N(47)	-0.001(4)	N(50)	0.002(4)
	N(48)	0.000(4)	N(51)	0.001(4)

Table 11-5. Least Squares Planes (Continued)

Plane n Atoms	umber 9 defining plane C(35) N(52) N(53) N(54)	Distance -0.002(4) 0.001(4) 0.001(4) 0.001(4)					
Summa	ry	plane 1 2 3 4 5 6 7 8 9	mean devi 0.0067 0.0011 0.0055 0.0092 0.0049 0.0021 0.0011 0.0015 0.0010	ation	CHI ² 14.6 0.4 12.2 34.1 8.2 1.1 0.4 1.8 0.3		
Dihedra	angles betwee	n planes (deg)				
plane	1	2	3	4	5	6	7
23456789	31.74 17.31 30.52 30.11 115.02 85.03 121.00 88.48 34.29	38.79 14.19 47.23 110.74 76.15 112.23 78.80	30.35 12.81 98.10 70.23 104.56 73.74	35.72 98.44 64.00 101.13 66.94	85.58 59.72 92.37 63.21	34.60 8.55 31.96	37.42 3.51

para-Substituted Tetraguanidinium Chloride (22)

A. Crystal Data Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type No. of Reflections Used for Unit Cell Determination (20 range) Omega Scan Peak Width at Half-height Lattice Parameters

Space Group Z value D_{cuk} F_{ooo} $\mu(CuK\alpha)$ B. Intensity Measurements Diffractometer Radiation

Attenuator Take-off Angle Detector Aperture

Crystal to Detector Distance Temperature Scan Type Scan Rate Scan Width 20max No. of Reflections Measured Corrections

C. Structure Solution and Refinement Structure Solution Refinement Function Minimized Least Squares Weights p-factor Anomalous Dispersion No. Observations (J>3.000(I)) No. Variables Reflection/Parameter Ratio Residuals: R; Rw Godness of Fit Indicator Max Shift/Error in Final Diff. Map Minimum peak in Final Diff. Map C₄H₄₅N₁₂Cl₄O₄ 940.84 colorless, prismatic 0.40 X 0.20 X 0.06 mm monoclinic Primitive

 $\begin{array}{l} 20 \left(\begin{array}{c} 38.5 + 41.6^{\circ} \right) \\ 0.26 \sigma \\ a = 10.854(2) \mbox{\mathring{A}} \\ b = 20.205(2) \mbox{\mathring{A}} \\ c = 13.388(2) \mbox{\mathring{A}} \\ \beta = 113.59(1)^{\circ} \\ V = 2690.7(6) \mbox{\mathring{A}}^{\circ} \\ P2_{i}/n \ (\#14) \\ 2 \\ 1.161 \ g/cm^{3} \\ 996.00 \\ 23.84 \ cm^{-1} \end{array}$

Rigaku AFC7S CuK α ($\lambda = 1.54178$ Å) graphite monochromated Ni foil (factor = 8.99) 6.0 9.0 mm horizontal 13.0 mm vertical 235 mm 23.0°C 0-20 16.00/min (in w) (up to 3 scans) $(1.26 + 0.30 \tan \theta)^{\circ}$ 135.2° Total: 5258 Unique: 4992 (Rint = 0.054) Lorentz-polarization Secondary Extinction (coefficient: 3.57980e-07)

Table 12-1. Atomic coordinates and Biso/Beq

atom	х	y	z	Beg
Cl(1)	0.2245(2)	0.04140(10)	0.6167(2)	5.66(5)
Cl(2)	0.5576(2)	-0.12959(10)	0.8122(1)	4.66(4)
O(1)	0.8514(7)	0.2523(4)	0.4837(6)	12 3(3)
O(2)	0.9817(8)	0.0723(4)	0.3782(6)	11.3(3)
O(3)	0.0970(7)	0.1889(3)	0.5958(7)	10.6(3)
O(4)	0.1105(7)	0.2386(3)	0.7977(6)	10.5(2)
N(1)	0.5079(6)	0.1406(3)	0.5255(4)	4 4(1)
N(2)	0.6045(7)	0.0776(4)	0.4311(5)	5.3(2)
N(3)	0.7251(5)	0.0986(3)	0.6142(4)	41(1)
N(4)	0.7203(5)	0.0982(3)	1.0333(4)	34(1)
N(5)	0.6672(6)	0.0382(3)	1.1570(5)	4.1(1)
N(6)	0.7903(5)	-0.0117(2)	1.0716(4)	3.2(1)
C(1)	0.5259(6)	0.1933(3)	0.6017(5)	3.8(2)
C(2)	0.6104(8)	0.2445(4)	0.6088(7)	5 ()(2)
C(3)	0.6273(9)	0.2949(4)	0.6816(8)	6.0(2)
C(4)	0.5555(10)	0.2934(5)	0.7477(8)	6.6(3)
C(5)	0.4686(9)	0.2421(5)	0.7411(8)	59(2)
C(6)	0.4524(7)	0.1916(4)	0.6665(7)	4.8(2)
C(7)	0.3731(10)	0.1316(7)	0.4393(8)	6.6(3)
C(8)	0.6128(7)	0.1066(4)	0.5237(5)	4.0(2)
C(9)	0.8543(10)	0.0830(7)	0.6083(8)	6.7(3)
C(10)	0.7229(6)	0.0992(3)	0.7215(5)	3.5(1)
C(11)	0.8110(6)	0.1395(3)	0.8011(5)	3.4(1)
C(12)	0.8110(6)	0.1388(3)	0.9051(5)	3 5(2)
C(13)	0.7204(6)	0.0984(3)	0.9249(5)	3.0(1)
C(14)	0.6316(7)	0.0591(3)	0.8455(5)	3 7(2)
C(15)	0.6335(7)	0.0583(3)	0.7413(5)	3.8(2)

Table 22-1. Atomic coordinates and Biso/Beq

atom C(16) C(17) C(18) C(19) C(20)	x 0.68 0.72 0.76 0.89 0.88 0.88	5(1) 74(6) 30(10) 86(6) 89(6)	y 0.1609(4) 0.0413(3) -0.0779(4) -0.0052(3) -0.0379(3)	z 1.0699(8) 1.0873(5) 1.030(8) 1.0355(5) 0.9413(5)		Beq 5.2(2) 3.2(1) 4.7(2) 3.1(1) 3.3(1)
Table 22-	2. Anisotropic	Displacemen	-0.0310(3)	0.90	(78(5)	3.4(1)
			urumenena			
cl(1)	0.006(2)	0.066(1)	0.050(1)	U12	U13	U23
C1(1)	0.0502/10	0.000(1)	0.059(1)	0.001(1)	0.037(1)	0.0029(10)
0(1)	0.0555(10)	0.077(1)	0.0528(10)	0.0008(9)	0.0281(8)	-0.0026(10)
0(1)	0.115(0)	0.205(9)	0.143(7)	-0.020(6)	0.046(5)	0.048(6)
0(2)	0.100(6)	0.140(7)	0.134(7)	-0.022(6)	0.055(6)	0.032(5)
0(5)	0.109(0)	0.083(3)	0.207(9)	-0.005(4)	0.063(6)	0.011(5)
U(4)	0.152(7)	0.094(5)	0.135(6)	0.018(5)	0.040(5)	0.027(5)
N(1)	0.049(3)	0.073(4)	0.042(3)	0.007(3)	0.016(3)	0.003(3)
11(2)	0.009(3)	0.034(0)	0.037(3)	0.015(4)	0.019(3)	-0.002(4)
N(2)	0.045(3)	0.074(4)	0.037(3)	0.004(3)	0.017(3)	-0.001(3)
N(4).	0.054(3)	0.042(3)	0.046(3)	0.004(3)	0.032(3)	-0.001(3)
N(S)	0.058(4)	0.056(4)	0.036(4)	0.011(3)	0.039(3)	0.011(3)
N(O)	0.045(3)	0.039(3)	0.046(.5)	0.005(2)	0.025(3)	0.006(2)
C(1)	0.048(4)	0.048(4)	0.047(4)	0.005(3)	0.018(3)	0.006(3)
CILI	0.002(3)	0.000(5)	0.004(5)	0.006(4)	0.027(4)	0.022(4)
CO	0.070(0)	0.050(5)	0.094(7)	-0.008(5)	0.025(5)	0.010(5)
C(4)	0.084(7)	0.001(0)	0.099(8)	0.008(5)	0.028(6)	-0.015(5)
0(5)	0.073(0)	0.070(6)	0.089(7)	0.006(5)	0.041(5)	-0.015(5)
C(0)	0.052(5)	0.062(5)	0.075(5)	0.004(4)	0.033(4)	0.000(4)
CIPI	0.034(3)	0.13(1)	0.052(5)	0.005(6)	0.008(4)	-0.006(6)
CON	0.053(4)	0.062(5)	0.038(4)	-0.002(4)	0.021(3)	0.002(3)
C(10)	0.035(3)	0.14(1)	0.000(6)	0.026(6)	0.026(5)	-0.005(7)
C(10)	0.040(4)	0.055(4)	0.035(3)	0.006(3)	0.019(3)	0.005(3)
C(11)	0.044(4)	0.045(4)	0.044(4)	-0.006(3)	0.021(3)	0.004(3)
C(12)	0.046(4)	0.044(4)	0.043(4)	-0.004(3)	0.017(3)	0.001(3)
CUM	0.045(4)	0.038(3)	0.038(3)	0.002(3)	0.022(3)	0.002(3)
CUS	0.049(4)	0.047(4)	0.049(4)	-0.009(3)	0.026(3)	0.001(3)
C(16)	0.048(4)	0.055(4)	0.037(4)	-0.005(3)	0.012(3)	-0.005(3)
CUT	0.097(7)	0.045(5)	0.085(7)	0.011(5)	0.063(6)	-0.004(5)
C(18)	0.039(3)	0.040(4)	0.040(3)	-0.001(5)	0.021(3)	0.000(3)
COD	0.077(6)	0.043(4)	0.072(6)	-0.002(4)	0.044(5)	0.002(4)
C(20)	0.041(4)	0.030(3)	0.045(4)	0.004(3)	0.023(3)	0.002(3)
C(21)	0.051(4)	0.041(4)	0.040(4)	-0.003(3)	0.020(3)	-0.008(3)
6(21)	0.051(4)	0.045(4)	0.037(3)	0.004(3)	0.022(3)	-0.012(3)
Table 22-2	Bond Length	s (Å)				
atom	atom	distance		ator	n ator	n distance
N(1)	C(1)	1.431(8)		NO) C(7	1.464(8)
N(1)	C(8)	1.338(8)		N(2) C(8	1.339(8)
N(3)	C(8)	1.341(8)		N(3) (0	1 474(8)
N(3)	C(10)	1.444(7)		N(4) C(1	3) 1.452(7)
N(4)	C(16)	1.464(8)		N/4) C(1)	7) 1.344(7)
N(5)	C(17)	1.334(7)		N(6) C(1)	7) 1.330(7)
N(6)	C(18)	1.468(8)		N(6) C(19	9) 1.446(7)
Ç(1)	C(2)	1.361(9)		C(1) C(6	1.396(9)
C(2)	C(3)	1.37(1)		C(3) C(4	1.40(1)
C(4)	C(5)	1.37(1)		C(5) C(6	1.386(10)
C(10)	C(11)	1.378(8)		C(1)	0) C(15	5) 1.380(8)
C(11)	C(12)	1.389(8)		COL	2) C(1)	3) 1.382(8)
C(13)	C(14)	1.368(8)		CO	 C(1) 	5) 1.402(8)
C(19)	C(20)	1.392(8)		C(1)	9) C(2)	1.351(8)
C(20)	C(21)	1.369(8)		at it		in the stat

Table 22-4. Bond Angles (deg)

atom	atom	atom	angle	atom	atom	atom	angle
C(1)	N(1)	C(7)	117.4(6)	C(1)	N(1)	C(8)	121.3(6)
C(7)	N(1)	C(8)	120.7(6)	C(8)	N(3)	C(9)	121.6(6)
C(8)	N(3)	C(10)	121.8(5)	C(9)	N(3)	CUM	116 2(5)
C(13)	N(4)	C(16)	115.7(5)	C(13)	N(4)	C(17)	131 3(5)
C(16)	N(4)	C(17)	122.0(5)	C(17)	NUGY	CURY	121,2(3)
C(17)	N(6)	C(19)	121.2(5)	CUISI	NI(6)	C(10)	121.0(5)
N(I)	C(I)	C(2)	120.6(6)	NI(1)	COL	C(19)	117.4(5)
C(2)	C(I)	C(6)	121 0(7)	COD	Ca	C(0)	118.3(6)
CON	C(3)	C(1)	110 3(9)	0(1)	6(2)	C(3)	120.4(7)
C(A)	CIS	CIG	119.3(6)	C(3)	C(4)	C(5)	120.6(8)
C(4)	C(3)	C(0)	119.7(8)	C(1)	C(6)	C(5)	118.9(7)
N(1)	C(8)	N(2)	119.9(6)	N(1)	C(8)	N(3)	121.1(6)
N(2)	C(8)	N(3)	118.9(6)	N(3)	C(10)	C(11)	119.5(6)
N(3)	C(10)	C(15)	118.7(6)	C(11)	C(10)	C(15)	121.8(5)
C(10)	C(11)	C(12)	119.5(6)	C(11)	C(12)	C(13)	118.8(6)
N(4)	C(13)	C(12)	118.7(5)	N(4)	C(13)	C(14)	119.4(5)
C(12)	C(13)	C(14)	121.9(6)	C(13)	C(14)	C(15)	119 5(6)
C(10)	C(15)	C(14)	118.5(6)	N(4)	C(17)	N(5)	118 4(6)
N(4)	C(17)	N(6)	121.7(5)	N(5)	C(17)	N(6)	110.9(6)
N(6)	C(19)	C(20)	118.8(5)	N(6)	C(19)	C(21)	120.8(5)
C(20)	C(19)	C(21)	120 4(5)	C(10)	C(20)	0/213	110 6(5)
C(19)	C(21)	C(20)	121.0(5)	C(15)	C(20)	0(21)	(18,0(2)
	21411	No. 1. April 10	F He 1 . 1 / 1				

Table 22-5. Least Squares Planes

Plane	number 1			Plane numbe	er 2	
Atoms defining plane		Distance	Atoms defining plane			Distance
N(1)		-0.004(6)	N(4)			-0.002(5
N(2)		-0.004(7)	N(5)			-0.002(6
N(3)		-0.003(6)	N(6)			-0.002(5
C(8)		0.012(7)	C(17)			0.006(6
Plane number 3				Plane numbe	er 4	
Atoms defining plane		Distance	Atoms defining plane			Distance
C(1)		0.006(6)	C(10) 0.0			0.000(6)
C(2)		-0.005(7)		C(11)		-0.009(6
C(3)		0.000(8)		C(12)	÷	0.009(6)
C(4)		0.002(9)		C(13)		0.000(6)
C(5)		0.002(8)		C(14)		-0.009(7)
C(6)		-0.006(7)		C(15)		0.009(6)
Plane r	number 5					
Atoms defining plane		Distance				
C(19)		0.0				
C(20)		0.0				
C(21)		0.0				
Summary		plane	mean devia	tion	CHI2	
		1	0.0055		3.7	
		2	0.0028		1.3	
		3	0.0034		1.9	
		4	0.0060		7.4	
		5	0.0000		0.0	
Dihedr	al angles betwee	en planes (deg)			
plane	1	2	3	4		
2	67.02	10.10				
3	108.67	48.18				
4	111.20	69.80	28.89			
.3	48.39	107.74	155.47	153.28		

