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Abstract

In the context of class S theories and 4D/2D duality relations there, we discuss the
skein relations of general topological defects on the 2D side which are expected to be
counterparts of composite surface-line operators in 4D class S theory. Such defects are
geometrically interpreted as networks in a three dimensional space. We also propose a
conjectural computational procedure for such defects in two dimensional SU(N) topolog-
ical q-deformed Yang-Mills theory by interpreting it as a statistical mechanical system
associated with ideal triangulations.
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Introduction

The quantum field theory [1–3] has long history and has made great successes not only in
the particle physics but also in the condensed matter physics, for example. Among several
kinds of field theories, in particular, conformal field theories (CFTs) [4] and gauge theo-
ries are so powerful to make themselves predictive based on their symmetry constraints.
Even recently, there are many progresses in them such as conformal bootstraps [5,6] and
reformulations of gauge theory scattering amplitudes [7–10]. One of the motivations of
these researches is the new reformulation of the old style QFTs based on Lagrangians or
path integrals. Actually, CFTs can be defined with only the flavor symmetry and the
operator product expansions (OPEs), namely, three points correlators of primary fields.
In gauge theory, the computations of amplitudes are very hard tasks compared to their
simplicities of final results [11].

From the purely theoretical viewpoint, topological field theories (TQFTs) and su-
persymmetric theories [12] are more powerful and, indeed, have provided us many ways
to understand what “quantum field theories” are and many aspects of them, such as
anomaly, non-perturbative effects (confinement, chiral symmetry breaking) and dualities
although they are less phenomenological. Notice that the dualities of (supersymmetric)
gauge theories are marvellous phenomena that two different Lagrangians describe the same
physics, in many cases, in the infra-red (IR) fixed point. Furthermore, the combination of
supersymmetries and conformal symmetry produces more interesting class called super-
conformal filed theories (SCFTs). These theories naturally appear in superstring theories.
For examples, the world sheet theories are superconformal. In the original and simplest
example of the AdS/CFT correspondences [13], the 4D field theory (CFT side) is a SCFT
known as 4D N=4 super Yang-Mills theory. In this thesis, SCFTs are main targets and,
in particular, we focus on a part of 4D N=2 SCFTs called class S theories [14–16]. 1) In
many case, they have no known Lagrangian descriptions but several properties of these
theories are determined by using string dualities and symmetry constraints. Surprisingly,
some other types of QFTs, that is to say, non-SUSY 2D CFTs or 2D TQFTs show up in
this context and these totally different theories describe the (BPS) observables of the 4D
SCFTs. We refer to this phenomenon as the 4D/2D duality relation [17,18]. The details
of this marvellous duality relation are remarked later.

Although this relation is limited, this offers new approaches to these Lagrangian un-

1)The letter “S” comes from ”Six-dimension” because they are defined as the dimensional reduction of
special 6D theories usually reffered to as 6D N=(2, 0) SCFTs.
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known theories. Furthermore, this relation is still relevant for gauge theories with La-
grangians. Some string theory’s brane constructions of gauge theories [19,20] make both
reasons clear. The most important observation in these constructions is that several
non-trivial dualities of some gauge theories are explained as some geometrical equiva-
lences in the stringy set-ups. For example, the famous Montonen-Olive duality (N=4
S-duality) [21] which exchanges the role of electric particles and that of magnetic parti-
cles is geometrically understood as the exchange of two different cycles of a 2-torus [22].
This suggests that the dualities of gauge theories maybe beyond the QFT frameworks at
this stage can be naturally understood in terms of geometrical viewpoints. In addition,
this viewpoint is independent of the existences of the Lagrangians. And these geometrical
realizations are directly encoded in these 2D theories of the above 4D/2D duality relation.
That is why we consider this 4D/2D duality relation as some clues to discuss Lagrangian
unknown theories and still a valid method to understand gauge theory dualities.

However, there are another relevant objects in this thesis : defects. Although we
have no unified definitions of defects and, instead, discuss the characterization of them
in Chapter 1, we give a concept for them here. Roughly speaking, defects are some
regions in space-time where the physics is different from that at bulk to some extent. The
terminology also means the physics there. For example, the boundaries of the space and
boundary conditions there are defects in this sense. As you see from this simple example,
defects are not minor but seems to be common objects in physics. Other interesting
aspects of defects not discussed in this thesis are the roles of order parameters of phases.
The most famous examples are Wilson loop operators [23]. Intuitively speaking, they just
insert a non-dynamical electric particles, namely, heavy quarks and see their responses in
the free energy, for example. Their behaviours at a large loop limit measure the force or
the potential energy between two heavy quarks and, in some cases, determine the gauge
theory phase (Coulomb, Higgs and confinement).

Defects are common and important concepts in the string theory, in particular ,branes
too. Recall that the branes have the following aspects. They can arise as the boundaries of
fundamental strings or other branes and also naturally show up as the dynamical solitons
in string theory [24]. And the effective theories of the (BPS-)branes are (supersymmetric)
gauge theories in the simple set-ups. Therefore, the natural objects can be described by
the boundaries of those effective theories. In other words, the sting theory offers several
viewpoints on the defects of gauge theories and, conversely, the field theories describe the
dynamics of branes in the string theory. They play the role of a bridge between these
totally different theories.

Now that we see that the defects are important in understanding the frameworks of
QFTs and the string theory. The works discussed in this dissertation are motivated by
the following questions:

• In general, QFTs allow the existence of defects but how can we characterize them ?
In particular, how can we study the defects in the Lagrangian unknown theories ?

• If they are defined once, how can we compute the spectrum ?
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Here recall the previous idea : some aspects of special field theories, regardless of whether
or not they have some Lagrangians, are geometrically described. This relation is expected
to be also applied to the defects without exceptions and, indeed, turned out to hold true
based on several observations [25–28] for examples. This is the starting point to answer
the above questions.

Let us review the developments of the defects in the context of class S theories and
4D/2D duality relations there.

First of all, see the above story in detail. The field theories we would like to analyze
are interacting superconformal field theories called “class S theory” which are obtained
as twisted compactifications of the 6d N=(2, 0) SCFTs on Riemann surfaces C with
punctures. 2) Interestingly, even though almost all of the SCFTs have no definition
based on the Lagrangians, some of their BPS observables have been evaluated assuming
the dualities following their geometrical constructions. In particular, for theories with
N=2 Lagrangian descriptions, their partition functions on the squashed four-sphere S4

b

[29, 30] and the superconformal indices (SCIs) [31] (in the Schur limit) or equivalently
partition functions on S1 ×q S3 [32] were computed. Based on their explicit expressions,
it was recently suggested that many class S theories beyond the Lagrangian definition 3)

have alternative effective descriptions by some 2D theories : Liouville/Toda CFTs for S4
b

case [17, 38] and 2D topological q-deformed Yang-Mills for S1 ×q S3 case [18, 39, 40]. In
particular, the conjectural SCI expression of the (non-Lagrangian) Argyres-Seiberg dual
theory [41] for SU(3) Nf = 6 superconformal QCD was obtained using the inversion
formula [18]. Indeed, in addition to the partition functions, these 4D/2D dualities also
offer new geometrical descriptions of supersymmetric defects in such SCFTs, which are
main subjects of this thesis.

Let us focus on the 4D gauge theory at first. As basic objects, there are supersymmet-
ric Wilson-’t Hooft line operators [23, 42–49]. 4) They are one-dimensional objects, loops
in 4D and the natural extensions of Wilson loop operators by replacing the electrically
charged particles (quarks) by both electrically and magnetically charged heavy probes
(dyons). As another generalization of loop operators, there are half-BPS surface opera-
tors [50–56]. They are two-dimensional objects in 4D. They correspond to the insertions
of heavy string-like objects (for instance, cosmic strings [57]) or some non-dynamical vor-
tex. Here we quote a fact that 6D N=(2, 0) SCFTs have codimension-two defects and
codimension-four defects. Then, before the dimensional reduction via C (a punctured
Riemann surface), both loops and surface operators are expected to be some codimension
four defects. 5) Equivalently speaking, both defects come from codimension-four defects

2)The punctures correspond to the codimension two defects in 6D as explanied in Chapter. 2 and
Appendix. F.

3)In this thesis, we focus on the Riemann surface compactifications with more than two regular punc-
tures and no irregular ones. There are generalized proposals for non-SCFTs and Argyres-Douglas theories
which need such irregular punctures [15,33–37].

4)Throughout this thesis, we use the words defects and operators interchangeably. We also use loops
and lines interchangeably although there are subtle differences.

5)Precisely speaking, some surface operators can also come from codimension-two defects in the 6D
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appearing in 6D N=(2, 0) SCFTs and both have the same origin in 6D. Notice that 4D
loop defects and 4D surface defects looks like codimension-one defects and local defects
on the 2D side, respectively. Their appearances in those 2D theories on C look totally
different. See Fig. 1.

Figure 1: By starting the 6D N=(2, 0) SCFT, after the twisted compactification by C,
we have some 4D N=2 theory according to the choice of C and types of punctures on it.
On the other hand, reduced onto C, some 2D theory lives on C. We have a decomposition
6 = 4 + 2. Strictly speaking, they capture only BPS sectors of the 4D theory. In this
set-up, we can add codimension four defects in 6D ( = two dimensional surfaces). There
are at least two ways of reductions : 2 = 1 + 1 (red) or 2 = 2 + 0 (green). The first case
is 4D loop defects and the latter is 4D surface defects.

Let us focus on the 2D theory. The 4D loop operators correspond to Verlinde network
operators/Wilson network operators in the Liouville-Toda CFTs/q-deformed Yang-Mills
theories, see [25,62–64] for the geometrical viewpoint, [26–28,65–68] for the Verlinde net-
work and [69–75] for the Wilson network. On the other hand, the 4D surface operators are
mapped into (fully degenerate) vertex operators/difference operators in the CFTs/Yang-
Mills theories, see [26, 28, 76] and [55, 77–81]. Geometrically, they can be represented as
special punctures on the Riemann surface in both the set-ups. These works seems to
give the answers to the above questions. However, they are far from the complete an-
swer. One of the reasons is that they discuss only SU(2) gauge theories and some special
cases of SU(3) type theories at most. Our work [75] provided the extension to general
SU(N)-type theory.

The key concept in this work is the class S skein relation. To explain that, we regard
the above 4D/2D duality relation as follows. This duality relates the charge of 4D loops
and the network geometry in 2D and, näıvely, it is expected that this correspondence
is one-to-one. However, this is not true actually and the map is many-to-one, that is
to say, there are infinitely many networks to give the same 4D loop operators. In this
thesis, we view the skein relations as the equivalence relations. See Chapter. 4 as for the
more precise definition and their concrete examples. Among the skein relations, there is
a special class of skein relations called crossing resolutions. This relation connects the
OPEs of loop operators in 4D and the resolutions of all crossings between networks in
2D. We found that these relations naturally coincide with those already well-known in
mathematics. We do many consistency checks that this conjecture is true in Chapter. 4
and 5.

theory [58–61]. However, we do not pay attentions to them in this thesis.
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At this stage, there appear no surface defects. Let us consider a situation in which
both line operators and surface operators coexist [82]. A key observation to describe their
skein relations on the geometrical side as follows. On both the Liouville/Toda CFT and
the q-deformed Yang-Mills theory, the concept of crossings of networks exists and, in fact,
they correspond to the ordering of corresponding half-BPS line operators in one space
direction determined by the unbroken supersymmetry in 4D gauge theory [48, 49,75, 83].
Then, the existence of crossings among several networks suggests that there is a hidden
direction which is exactly identified with one of physical directions on the 4D gauge theory
side. 6) In other words, there appears a three dimensional geometry combined with the 2D
space C and one of 4D directions which is determined by the unbroken supersymmetry for
the half-BPS loop operators. This is the more familiar story in RCFTs whose conformal
blocks are the wave functions of the corresponding 3D Chern-Simon theories [84,85]. See
also [86, 87] as for Verlinde loop operators in the Liouville CFT. We must note that the
closer story exists for q-deformed Yang-Mills theory [74, 88, 89] but we do not know the
precise relation between two systems. When we recall that the expectation values of BPS
loops are independent of the positions on that direction [30, 48, 49, 83], it is natural to
speculate that the networks are still topological in the new geometry. In this new three
dimensional geometry, codimension four defects are expressed as knot with junctions and
both surface defects and line defects are on the same ground. We refer the corresponding
defects in the q-deformed Yang-Mills theory to as “punctured networks”. This discussion
is the half story of our paper [90] and shown in Chapter. 4.

Once we have understood the geometrical relations on the 2D side, we go to the second
question before : How to compute the correlators for the given general network defects in
the 2D q-deformed Yang-Mills theories ? 7) Naively speaking, it seems to be enough to
replace ordinary Lie groups by “quantum group” as gauge groups at mathematical level.
Indeed, the rigorous definition of Wilson loops without junctions in that case was given
in [73] based on quantum groups, but its extension to any networks is not obvious yet for
several reasons. Furthermore, even if it can be well-defined, it is not useful for the actual
computations because it needs the general invariant tensors in the quantum group sense.
Instead of giving rigorous definitions, we will propose the direct procedure to obtain the
conjectural expressions in Chapter. 4 and apply them to many examples in 5. This is
based on the other half of the paper [90] mainly.

Finally, we make a few comments on the applications of the skein relations. The
first concerns the dyonic loop operators of N=4 SU(N) Yang-Mills theory. From the 4d
gauge theory perspective, their classification was performed in [44]. When the electric
charge and the magnetic charge of a dyonic loop are parallel in the weight system, there
is an obvious realization of such dyonic loop in the class S language as a loop wrapping
the torus. When they are not parallel, it was expected that they are represented by
networks on the torus. We will give a complete description in the case of SU(3). Later,

6)If we replace the 4-manifold on which the gauge theory is defined by the squashed 4-sphere S4
b , there

are locally two such directions which are exchanged under the flip from b to b−1 [30]. Here we focus on
either direction.

7)See [68] for the Verlinde networks.
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we discuss the extension to general SU(N) cases. The other is proposals of new kinds of
skein relations. This work is based on [91].

The organization of this dissertation is following: In the chapter. 1, we see what defects
are and their examples briefly. In Sec. 1.1, we summarize the author’s viewpoint on the
notion of defects. In Sec. 1.2, we introduce the 4D Wilson-’t Hooft loop operators which
are important class of loop operators if we have some gauge theory Lagrangian description.
In the chapter. 2, we review the main set-ups called the class S theories which are 4D N=2
theories obtained by the 6D N=(2, 0) theory compactifications. Notice that Appendix. F
is the complement of this chapter. In Sec. 2.1, we provide another approach to analyze the
class S theories. In Sec. 2.2, we discuss the analysis on the 6D codimension two defects
and see their important consequences about the dimensions of moduli spaces are shown
in Sec. 2.3. In 2.4, we see the several class S theory examples needed for later arguments.
Notice that there is a bit argument not explicitly discussed before as we know

After the set-ups are explained, we move on to the observables called the supercon-
formal indices (SCI) and its relations to TQFTs in the chapter. 3. In Sec. 3.1, we discuss
the state-operator correspondence and then in Sec. 3.2, we define the SCI and explain
their properties. In Sec. 3.3, we make a brief comment on the poles of SCI. In Sec. 3.5, we
state the 4D/2D duality relations between the class S Schur indices and 2D topological
q-deformed Yang-Mills theory and check them for free hypermultiplets in Sec. 3.6 which
includes a discussion explicitly written nowhere before. In Sec. 3.7, we briefly comments
on the SCI in the presence of defects. Finally, we briefly review the necessary facts about
2D q-deformed Yang-Mills in Sec. 3.8.

The central works done by author originally are written in chapter 4 and 5 mainly.
The chapter. 4 is main subject in this thesis. The first two chapters are based on [75]
and all sequent sections on [90]. In Sec. 4.1, we review the 4D physical interpretation
of crossings of networks on the 2D side and make the dictionary between 4D and 2D. In
Sec. 4.2, we discuss the geometrical descriptions, namely, skein relations. We see there
they are equivalent to those already known in mathematics. In Sec. 4.3, we introduce the
new definitions of defects in the 2D topological q-deformed Yang-Mills theory, what we
call, Wilson punctured network defects. We explain their 6D viewpoint. Sequentially, in
Sec. 4.4, we translate these results into the language of q-defomred Yang-Mills correlators
or their operator actions. In Sec. 4.5, finally, we propose the new conjectural formula to
compute their correlators.

The sequent chapter. 5 focus on the applications of the results in the previous chapter.
Sec. 5.1 includes both the result in [90] and unpublished results. There we exhibit many
computations of Schur indices based on the conjectural formula and see the results support
it conversely. In Sec. 5.2, we propose the new kinds of skein relations which means that
they include 6D codimension two defects. In Sec. 5.3 and Sec. 5.5, we apply the skein
relations to see the charge/netwrok correspondence which is the 4D/2D duality relation
for 4D loop operators and 2D networks, in particular, when some gauge theory Lagrangian
exists. In Sec. 5.4, we exhibit several examples in the 4D N=4 SU(N) super Yang-Mills
theory.
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Throughout this thesis, we use several conventions on the expressions of irreducible
representations. In particular, we summarize several basis of weight vectors and some
formulae about them in Appendix. A.

9



Chapter 1

Defects in QFTs

In this chapter, we give our perspectives on defects in QFTs. In Sec. 1.1, we classify the
defects from the dimensional viewpoint at first and in terms of the characterizations. In
many cases, these characterizations are related each other but we do not discuss this point
in this thesis. Notice also that these viewpoints are far from complete classifications. In
Sec. 1.2, we focus on the special well-known defects called 4D Wilson-’t Hooft loops which
we will use in the later chapters.

1.1 The brief taxonomy of defects

In this section, we use some examples of defects without detail definitions. See Sec. 1.2
as for Wilson-’t Hooft loops.

1.1.1 Dimensional viewpoint

First of all, defects can be categorized according to the dimensions or the codimensions
of their locus. Let us consider four cases below.

The dimension zero defect are just local operators. We usually compute the correlation
functions of these local operators. The dimension one defects are loop / line operators.
The 4D Wilson-’t Hooft loop operators are such examples. In 3D, there are Wilson loops
and vortex loops [92]. The dimension two defects are called surface defects [50]. If we have
a two-form Abelian gauge field, they can couple to surfaces as the extension of Wilson
loops. These are sometimes called Wilson surface operators. The dimension three defects
are volume defects.

The other characterization is the codimension. The codimension four defects are
realized as non-dynamical instanton [93]. The codimension three defect includes the
monopole operator for example. The above Wilson-’t Hooft loops are such examples
in 4D. The codimension two are some vortex like operators. In 4D, these are just the
surface operators. In this thesis, we focus on this type of operators in Appendix. 2. The
codimension one defects are domain walls [94–96]. Formally, we can consider codimension
zero, namely, “full filling” defects. These defects just induce the new matters in the bulk.

10



If some Lagrangian descriptions, they just add some new Lagrangian to the original
Lagrangian. The codimension two defects in 6D localized at the 2D Riemann surface in
the class S story are such defects for the 4D theories after the compactification.

More precisely, defects with different dimensions can couple each other. In particular,
some d-dimensional defects with some boundaries can be attached to by some (d − 1)-
dimensional defects. The first examples are open Wilson lines. When a Wilson open line
operator in the representation R is put on, to make it gauge invariant, we must attach
some local operators qR(x) at the ends like

WR([b, a]) = q∗R(b)P exp

[∫ b

a

ρR(A)ds

]
qR(a) (1.1.1)

where ρR is the representation map from g to the endmorphism of the dimR representation
vector space and qR transforms as the representation R.

The second examples are open surface operators.

exp

[∫

S

B

]
exp

[∮

∂S

A

]
(1.1.2)

where S is an open surface and B and A are some 2-form and 1-form gauge fields, respec-
tively. A TQFT called BF theory has this kind of operators [97,98].

The third examples are the interfaces between different defects. The composite surface-
line system we consider in Chapter. 4.3 is such an example. This system is expected to
be realized as the surface defect on which some interface exists. It is possible to consider
two kinds of surface defects glued along their boundaries. As briefly remarked later, we
can view this as two 2D systems with different gauge groups or matters coupled through
an interface. The S-duality wall in 4D N=4 SYM is also such an example [28,95,96].

1.1.2 Characterization of defects

The important and interesting properties of defects are that they can be characterized in
several ways. We briefly see this below. Notice that they are sometimes equivalent in the
sense that they flow to the same object in the IR.

In particular, we focus on the (super)conformal theories because any defect is expected
to be introduced at the UV CFT. We assume that the bulk β function (at least far away
from the defects inserted regions) is free from defects insertions except full filling defects.
In other words, the systems still remain conformal. We call such defects conformal defects.
If the system enjoys supersymmetry, the defects break it because the supersymmetry
generators lead to the space-time translational generators some of which are broken in
the presence of defects. However, in many cases, it is possible to consider the defects
preserving some of supersymmetry generators. We also call such defects BPS defects. In
this thesis, we only treat the maximally supersymmetric ones in 4D N=2 systems and
they are usually called half-BPS defects.
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defects as general boundary condition

The original definition of defects introduced by ’t Hooft [42] is the imposition of singular
boundary conditions on dynamical fields. We show two important examples in this thesis
: Gukov-Witten type surface defects [50], namely, codimension two defects and ’t Hooft
loop defects. See Sec. 1.2.2 for the definition of Wilson-’t Hooft loops.

The UV ’t Hooft loops [44] are defined by requiring the boundary condition

F ∼ BdΩS2 (1.1.3)

around a locus at which the loop inserted. 1) dΩS2 is a volume two-form on S2 linking the
loop by one. Notice that the magnetic charge arising from the loop

∫
S2 F is quantized. At

the topological level, this charge corresponds to the first Chern class of the gauge bundle
or an element of π1(G) [42].

In the case of the Gukov-Witten type surface defects, we require the boundary condi-
tion like

A ∼ αθ (1.1.4)

where θ is the coordinate of S1 which links with the surface defect locus. The holonomy
around the surface defect is given by

∮
S1 A = 2πα where α is not quantized. And the

topological charge is given by π0(G) which is trivial in usual cases.

defects as coupled theory

The second definition is the most practical one, at least, in the many supersymmetric
gauge theories, where their partition functions can be computed by the localization meth-
ods.

This concept is well-discussed in [94, 95], [50] for example. Let us consider a theory
with defects on which some lower dimensional field theory lives. The formal computation
of partition function of the composite system is given by

Zcoupled[xbg
others] =

∫
DXZbulk[X]DYMZdefect[YM ]δ(X|M − YM) (1.1.5)

where X represents some bulk fields and YM does all fields on defects M . After the
coupling, they are gauged if they are background gauge fields on the defects.

Notice that the delta function comes from the integration over some auxiliary field J
coupled to both X as

δ(X|M −XM) ∼
∫
DJ e

∫
dDxδ(M)J ·(X|M−Xbg

M ). (1.1.6)

1)We ignore the regularization or counter terms in this thesis. In the localization computation, they
are needed [46].
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More generally speaking, when we have D-dimensional (S)CFT with the global sym-
metry Gbulk and p-dimensional (S)CFT with the global symmetry Gdefect, by gauging some
H satisfying Gbulk ⊃ H ⊂ Gdefect and being non-anomalous, we have new system with
flavor symmetry FDd

bulk×F pd
defect where each F is the commutant group of H in each G. We

call such set-ups Dd-pd coupled systems.
In particular,

Zcoupled =

∫
DV Zbulk[V ]Zdefect[VM ]δ(V |M − VM) (1.1.7)

where Zbulk includes the contribution of the gauge field or the vector multiplet V . This
perspective is natural in terms of D-brane construction, see [99,100] for example.

The concrete examples of this kind of systems are following : 4d-2d system [54, 55,
76, 101] (N=2 and N=(2, 2)) [102] (N=1 and N=(2, 0)), 4d-3d system [94, 95] (N=4
and N=4), 4d-2d-0d system [103] ( In 4d N=2, there are two kinds of 2d N=(2, 2)
systems and 0d N=4 QM appears at their intersection ), 3d-1d system [104](N=4 and
two kinds of N=4), 5d-3d system [105–107] (N=1 and N=4), 5d-3d-1d system [108]
(strictly speaking, not analyzed as coupled systems), 5d-1d [93].

defects as varying parameters

The third characterisation of defects is valid in some IR theories into which some UV
theory flows after relevant perturbations. The idea is simple as follows [26,50].

Let us consider a space-varying classical background of a field with characteristic scale

` at UV CFT. After flowing at the energy scale
1

L
<<

1

`
, we have the lower dimensional

region where the background field dramatically changes. In the deep IR, we may identify
this as some defects. By regarding a physical parameter as the vacuum expectation value
of a dynamical field, it is possible to replace it by the physical parameter in the above
discussion.

Let P be a parameter space or a classical vacuum manifold. Now, we have a map

Map(M → P) (1.1.8)

where M be some space-time manifold. In the long distance limit, the map may have some
dramatically changed regions which are identified as defects. Recall that the disconnected
part of the space of maps corresponds to the topological sector of field configurations.
Therefore, in some cases, we can regard some defects as the IR limit of heavy topological
solitons.

These viewpoints sometimes provide new ways of computations of the corresponding
correlators. The most successful story was did in [77] and they add a bi-fundamental
hypermultiplet and, by giving variant VEVs to it, construct a N=(2, 2) vortex in 4D
N=2 systems which flows to an IR surface defect. They found this operations results in
the actions of difference operators on the superconformal indices.

In this thesis, in particular, in Sec. 4.3, we view 4D line defect coupled to the 2D
surface defect as the 2D interface. Let us discuss this perspective. There, P is a Riemann
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surface C in the class S theory. By recalling that the brane construction of the N=(2, 2)
surface defects [26] on which some 2D N=(2, 2) system lives [109], we can expect the
local coordinate is identified with the 2D complexified FI parameters. It is considered
that P is some parameter space of surface defects in the corresponding 4D N=2 systems
determined by C. M is the 2D surface defect in this case (not R4) because we would like
to consider the interface on it. Furthermore, we may reduce one of directions along the
interface will extend. Now, a map from R or S1 (one of 4D directions) to C (2D space)
appears and we can view this as an orbit in R × C or S1 × C. This is the background
idea in Sec. 4.3 where S1 is just the Hopf fiber direction there.

The related simple example is the Abelian Wilson loop in two dimension. Let η be a
2D FI parameter and varies as one direction denoted by x1 as follows;

η(x1) = π

[
1 + tanh

(
x1 − a
`

)]
. (1.1.9)

If we take the IR limit `→ 0,

η(x1) −→ 2πθ(x1 − a). (1.1.10)

Now, we have the FI coupling

1

2π

∫
ηF = − 1

2π

∫
dx0

∫
dx1∂1η(x1)A0 = −

∫
dx0A0(x1 = a). (1.1.11)

where we assumed A(x0 = ±∞) = A(x1 = ±∞) = 0. This is exactly the 2D Wilson
loop. The higher dimensional extension is also possible by introducing the electric surface
operator.

The other example is the Abelian Higgs model just discussed above in the construction
of the 2D surface defects in the 4D.

defects as probe

The fourth definition is also related to the previous viewpoints : just addition of some
probes. For example, the Wilson-’t Hooft loops are abstractly viewed as non-dynamical
(heavy) dyonic particles. At least, for the Abelian Wilson loops, this is realized by adding
the interaction terms j(x)A(x) to the Lagrangian where j(x) = δ(γ) is a (D − 1)-form
which is Pincaré dual to the loop γ.

defects as representation of symmetries

The final viewpoint is just characterization by the representations of the conformal sym-
metry and the flavor symmetry. This is powerful in the sense that the form of correlation
functions are constrained. Any local operator in CFT is such example.

The flat D-dimensional Euclidean CFT has SO(D + 1, 1) conformal symmetry and
global symmetry F and any local operator belongs to a unitary representation of SO(d+
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1, 1)×F . In 2D CFT, the boundary conditions in RCFT are determined [110,111]. Some
recent progresses have been done in the conformal bootstrap developments. In particular,
by analysing the conformal quadratic Casimir equation, they discuss the conformal block
in the presence of defects [112,113].

1.2 Wilson-’t Hooft loops

In this section, we define the Wilson-’t Hooft (or dyonic) loop defects following [44].

1.2.1 Wilson network defects

First of all, let us define the Wilson loop operator. This just inserts the factor

WR(γ) := TrR

[
P exp

(
i

∮

γ

A

)]
(1.2.1)

for the real gauge field A and the closed path γ.
Next, we extend these Wilson loops to networks. To see that these objects are also

physically natural, let us interpret the ordinary Wilson loop cases in terms of the probe
descriptions.

In the Abelian gauge theory, the insertion of the q charged Wilson loop along ℘
corresponds to the addition of the following term to the Lagrangian

q

∫

℘

dsA℘ = q

∫
ddxδ(℘)A (1.2.2)

where s is one parameter coordinate along ℘ and A℘ is the pull-back of A onto ℘. In the
non-Abelian case, this probe looks like a heavy quark.

Now, let us take ℘ to be the trajectory of a pair of quarks in a creation-annihilation
process. T and L are the process time interval and the average of space separation length
respectively. Roughly, the logarithm corresponds to the potential energy between quarks

1

T
log(〈WR(γ)〉) ∼ VMRR∗ (L). (1.2.3)

Since the Wilson loop measures an effective potential energy of a meson, it is possible
to define the counterpart for hadrons. The trajectory of three bound quarks is a graph
consisting of three open edges ℘1, ℘2, ℘3 and two trivalent junctions (Fig. 1.1):

W ({℘1, R1;℘2, R2;℘3, R3}) = Inv1i:R1⊗R2⊗R3 [U(℘1)U(℘2)U(℘3)] (1.2.4)

where R1, R2 and R3 are representations of G̃ satisfying that R1⊗R2⊗R3 includes trivial
one 1. 2)

2)If there is multiplicity, we must attach the information of the choice of the invariant tensors or the
projections to each junction.
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Figure 1.1: The Wilson network operators.

1.2.2 Wilson-’t Hooft loop

Although the original definition of ’t Hooft operators was given in [42], we adopt a more
refined definition following [44]. Their supersymmetric cases are discussed in [45] and
some following papers. 3) In this section, we do not require any supersymmetry but
introduce scalars which will be a complex scalar in a (N=2) vector multiplet.

Especially, we consider maximal symmetric class of the loop operators. This means
that the loop defects break the full conformal isometry into the stabilizer subgroup maxi-
mally preserving their locus, namely, SO(3)×SL(2,R). This is the same for the boundary
in 2d CFTs. In fact, we can conformally map this geomertry R× R≥0 × S2 into H× S2

which have the common isometry group.

Monopole background

Let us first analyse what boundary condition preserving the maximal isometry is allowed
in the Abelian case. Then, we generalize this result to non-Abelian case.

For a field strength F ∈ Ω2(R1,3\(R × {0})) where R × {0} is the loop/line operator
locus the SO(3)-invariance requires

LLiF = 0 for i = 1, 2, 3 −→ F =
1

2
(B(t, r)dΩS2 + E(t, r)dt ∧ dr)

Li=1,2,3 is the SO(3) Killing vector i.e. satisfying su(2) algebra.
Imposing the maximal conformal symmetry (SO(3)× SL(2,R) here) further, we gain

the result as follow :

Lr∂r+t∂tF = L∂tF = 0 −→ F =
1

2

(
BdΩS2 + E

dr

r2
∧ dt

)

Note that the above solutions satisfy the Bianchi identity dF = Qmδ(r)d
3x and the

equation of motion d ? F = Qeδ(r)d
3x and the electric and magnetic charge is given as

Qe =
∫
S2 ?F = 2πE and Qm =

∫
S2 F = 2πB.

3)For the supersymmetric Wilson loops in N=4 SYM, this had been already defined in [114] for
example.
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The Abelian gauge field is represented as

A =
B

2
(1− cos θ)dφ− E

2

dt

r
(1.2.5)

which is not globally defined on even R1,3\(R×{0}). The undefined region is R×R≥0 =
{(r, θ, φ)|θ = 0} and this is the exactly famous Dirac string.

It is straightforward to generalize from the Abelian case to the non-Abelian case.
There is a new constraint that [B,E] = 0 i.e.

E ∈ gB := {X ∈ g|[X,B] = 0} (1.2.6)

where gB is called the stabilizer of B in g and also turn out to be a Lie subalgebra using
the Jacobi identity. For simplicity, we set E to be zero i.e. consider no electric charge
background at first. We consider B to be an element of g however. The consistency with
the equations of motion depends on the details of the system and we will make a comment
on it later.

Recalling that any element in g can be in the Cartan subalgebra h of g, it is possible
to regard B as an element of h. Notice also that the above boundary condition makes
sense when the gauge fixing is specified like this.

Quantization condition and magnetic charge

The existence of the Dirac string says that it is impossible to define a global and non-
trivial connection (gauge fields with topological charges) without any singularities over
S2 or R3 \ {0} and it is necessary to have at least two patches UN(0 < θ ≤ π) and
US(0 ≤ θ < π). The non-Abelian version of (1.2.5) in E = 0 are defined on UN and we
need the gauge field expression on US. This can be obtained by changing θ → π − θ and
φ→ −φ. 4)

AN =
B

2
(1− cos θ)dφ over UN (1.2.7)

AS =
B

2
(−1− cos θ)dφ over US (1.2.8)

The common region is UNS := UN ∩ US = S2\{pN , pS} ' S1 × R where pN and pS are
the north pole and south pole respectively. The transition function over UNS should be
given by

gNS(θ, φ) = exp (iBφ) ∈ TG̃ ⊂ G̃ for (θ, φ) ∈ UNS. (1.2.9)

Naively, the single valued condition for gNS can be written

exp (2πiB) = IdG̃. (1.2.10)

4)This is not a coordinate transformation in the same patch but a transformation between two patches.
The latter one is needed to preserve the orientation on S2.
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However, in the case that there are only adjoint matters for example, we can weaken
the above condition. In that case, if we choose gNS(φ = 2π) 6= IdG̃ but satisfying
Ad(gNS(φ = 2π)) = IdAd,G̃, this transition function acts on all the wave functions appro-
priately in the sense that it is single valued.

To be precise and to avoid confusions, we cautiously redefine the ordinarily used term
“gauge group” at this stage [83,115]. Denote the theory we consider by X and its universal

gauge group by G̃ which is uniquely determined. There is also a unique maximal subgroup
ZX of ZG̃ such that all purely electrically charged dynamical matters are invariant under

ZX action. Now, we define “unframed electric gauge group” as GX := G̃/ZX .
Next, let us choose a discrete group Γ satisfying

ZX ⊂ Γ ⊂ ZG̃ (1.2.11)

and define a “framed electric gauge group” as Ĝ = ĜΓ := G̃/Γ. This depends on the
choice of Γ and is not unique unlike GX . When we say that the framed electric gauge
group of the theory is ĜΓ, we do not allow the Wilson loops charged for Γ.

Hereafter, we use simply G = G̃/ΓG for GX or Ĝ.
When there are only matters neutral to ZG-charge, we may relax (1.2.10) to

RG (exp (2πiB)) = IdRG for ∀RG ∈ Rep(G) (1.2.12)

where RG is the unitary irreducible representation set of G not G̃. This expression is
equivalent to

RG(B) ∈ Z · IdRG (1.2.13)

and, after setting B ∈ TG, this reduces to

λRG(B) ∈ Z (1.2.14)

where λRG is the highest weight of RG.
Now, the condition (1.2.12) is simply expressed as

λ(B) ∈ Z for λ ∈ ΛG
ch (1.2.15)

where ΛG
ch is the character lattice of G which is defined by the integral linear combinations

of the highest weights of G. See Fig. 1.2 for the A2 = su(3) example. This is the
non-Abelian version of Dirac quantization condition derived in [116] and called Goddard-
Nuyts-Olive quantization condition named after it. Notice also that the cocharacter lattice
ΛG

cc is defined as the set of B satisfying this quantization condition which form the lattice
structure.

This result suggests an important and expected fact. Recalling that ΛG
cc equals to

the character lattice of the dual group G∨ i.e. ΛG
cc ' ΛG∨

ch and that the Weyl equivalent
elements are also gauge-equivalent by definition, we can conclude that possible magnetic
charges B or ’t Hooft loops are classified by the irreducible representation of G∨.

B ∈ ΛG∨
ch /Wg ' ΛG

cc/Wg (1.2.16)

18



~e1

~e2 ~e3

~ω1

~ω2

3

3∗ 6

6∗

10

10∗

15′

15′∗

21∗

21

8

15

15∗ 24∗

24

35

35∗

27

42

42∗ 60∗

60

64

Figure 1.2: For example, A2 or SU(3) charge lattice. Each number shows the dimension
of the representation which corresponds to the highest weight. •, ? and N mean that the
center charges of Z(SU(3)) = Z3 are 0,1 and 2 respectively.

In this framework, the original classification of the ’t Hooft loops in [42] referred to as
the “topological charge” is given by

ΛG
cc/Λ

G
cr ' π1(G) ' ZG∨ ' ZG̃/ZG. (1.2.17)

This is because the topological charge corresponds to the center element of gNS(0)−1gNS(2π)

in G̃ where ZG acts on the wave function trivially by the physical definition. Mathemat-
ically, this is the isotopy class of glue transition function or the topology class of an
associated vector bundle specified by (G, ρmatter). They are related via π0(Map(S1 →
G)) = π1(G).

When G = GX = Gad := G̃/ZG̃, Λcc equals to Λmw. This is the case for N=4 Super
Yang-Mills or pure Yang-Mills and the magnetic charges are classified by π(Gad) ' ZG̃.
Note that if the dual fundamental quarks (monopoles for the original gauge theory) exist,
any magnetic charge are screened by them and ’t Hooft loops have no information in the
deep IR (N-ality). On the other hand, if G = GX = G̃, Λcc equals to Λcr. This is the
case for general QCDs with fundamental quarks. In this case, there are no non-trivial
topological charge by nature.

In the compact Abelian case G = GX = U(1), we can define the minimum electric
charge as e and (1.2.10) reduces to the simple condition

exp (2πieB) = 1 i.e. B =
m

e
for m ∈ Z. (1.2.18)

The magnetic charge Qm = 2πB = m2π
e

is quantized where the minimal magnetic charge
is 2π

e
and this is the exactly Dirac quantization condition. Mathematically, the topological
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charge m is the element of π1(U(1)) ' Z. This is the infinite choice whereas the set of
topological charges is a finite set in any non-Abelian groups.

1.2.3 The classification of Wilson-’t Hooft loops

The classification of possible charged loop defects in gauge theory has some subtle prob-
lems. They seem to be labelled by pairs of representation of G and G∨, namely (RG, RG∨),
but the correct answer is not so simple. As explained, we must specify G for the possible
set of loop operators. However, for the purpose of the classification, we should not specify
the detail of dynamical matters neither.

Now, let us define the Wilson-’t Hooft loops following [44]. This is defined by inserting
a non-dynamical monopole at first and then adding the Wilson loop on it. At Rt × {0}
which is the boundary or the orbit of the charged non-dynamical probe particle, the
gauge symmetry G is (classically) broken to GB which is the stabilizer subgroup of B ∈
ΛG

cc = Λg
mw with the adjoint action. Now, we can introduce a Wilson loop for G̃B. In

conclusion, the Wilson-’t Hooft loops are classified by pairs (B,RB) where RB is an

irreducible representation of G̃B.
Notice that different B which are mapped into each other by a Weyl reflection gives

distinct GB but GB1 ' GB2 for any B1 and B2 mapped via a Weyl reflection action each
other, that is to say, ∃w B1 = w−1B2w. This is natural and consistent with the previous
result (1.2.6) on the boundary condition analysis.

Kapustin also show that the possible pair (B,RB) is also specified by the set

(Λg
mw × Λg

wt)/Wg (1.2.19)

where the quotient means that there exits a w ∈ Wg such that (B, µ) ∼ (w · B,w · µ).
Here we have written the element as (B, µ). 5)

Two types of Wilson-’t Hooft loops There are two types of dyonic loop operators.
We define these in N=4 super Yang-Mills theory in order to make use of the SL(2,Z)
duality and then extend them to the other CFTs.

One type is parallelizable Wilson-’t Hooft loops which can be mapped into Wilson
loops without no magnetic charge in some appropriate duality frames. We call this charge
“pure dyonic charge” and the other one “complex dyonic charge”. For the simplest
example, see fig.1.3.

Quantum definition using path integral

Now that we know the possible boundary conditions, we define the expectation values or
correlators by the path integrals under the boundary condition and with the Wilson loops

5)Be aware taht the ordering of the electric charge and magentic charge depends on the literatures.
We adopt magnetic-electric order because the magnetic charge is first determined in the definion.
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Figure 1.3: Consider the case that the electric and magnetic charges correspond to ω1 and
ω2 respectively. We do map the magnetic charge into the highest weight (in the closure
of the fundamental Weyl chamber) using the Weyl action. In this rule, the electric charge
is a weight ω1 of the fundamental representation and the magnetic charge is the highest
weight of the anti-fundamental representation. There are three choices for the weights
of the electric charge which are exchanged each other under the Weyl action. One is a
weight −ω1 − ω2. This can be mapped into the fundamental Wilson loop using sequent
duality transformations ST y. (left) This becomes a pure charge. The other two ω1

and ω2 − ω1 are Weyl equivalent even when they are paired into dyonic charge with the
magnetic one ω2. (right) This can not be mapped into any purely Wilson loops.

as follows.

〈D(B,µ)(γ)〉 ∼
∫

1
2π

∫
S2
γ
F=B

DAD~ΦWR(γ)eiS[A,~Φ] (1.2.20)

where ~Φ stands for the other fields. Notice that it is necessary to consider the gauge fixing
terms (ghosts) and the counter terms exactly.

Half-BPS Wilson-’t Hooft loop operator

To have a benefit of the localization techniques, we must have Q-closed operators where
Q is a nilpotent twisted supercharge. In order to be Q-invariant, it is necessary to modify
the definition because the supersymmetric transformation of A include a gluino. To cancel
the gluino, we have to add the complex scalar in the gauge multiplet. For the Wilson
loops ( [117] for N=4 for instance),

W S
R(γ) = TrR

[
P exp

(∫

γ

iAγ + φ · θ|dxµ|
)]

(1.2.21)

where φ are the scalars which is the adjoint representation of G and the vector represen-
tation of R-symmetry and θ is a constant vector with the same component as the number
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of the adjoint scalars. Note that θ determine the unbroken algebra. 6)

δεW
S
R(γ) = TrR

[
P

∫

γ

dsλ̄

(
iΓµ

dxµ

ds
+ Γaθ

a

∣∣∣∣
dxµ

ds

∣∣∣∣
)
ε · exp

(∫

γ

iAγ + φ · θ|dxµ|
)]

(1.2.22)

where a runs over 5, 6, . . . , 10 for N=4 or 5, 6 for N=2. Then we attain the half-BPS
condition for ε

(
iΓµ

dxµ

ds
+ Γaθ

a

∣∣∣∣
dxµ

ds

∣∣∣∣
)
ε = 0 (1.2.23)

For the ’t Hooft loops, we also require the singular boundary condition of φ determined
by the supersymmetric transformation. ( [44] [45]) Notice that we must use the same ε for
the half-BPS Wilson loop if considering the half-BPS Wilson-’t Hooft loop. The concrete
form is unnecessary because we do not calculate the expectation values directly using the
localization method or the gauge/gravity setup.

Operator product expansion and ring structure

We comments on the OPE structure briefly. At first we ignore the divergence in the OPE.
By the definition W1 = 1 and Wilson loops form a representation ring of G whose additive
+ and product · correspond to the direct sum ⊕ and the tensor product ⊗ respectively.

〈WRaWRb〉 = 〈WRa⊗Rb〉 =
∑

i

N i
ab 〈WRi〉 (1.2.24)

for Ra ⊗Rb = ⊕iN i
ab Ri (1.2.25)

where N i
ab is the Littlewood-Richardson coefficient.

The same structure is conjectured to be hold true for the ’t Hooft loop operators.
( [45])

〈TR∨aTR∨b 〉 = 〈TR∨a⊗R∨b 〉 =
∑

i

N∨ iab 〈TR∨i 〉 (1.2.26)

for R∨a ⊗R∨b = ⊕iN∨ iab R
∨
i (1.2.27)

Therefore the loop/line operators form some algebra. 7)

Note that for N=2 supersymmetric gauge theories the half-BPS fully time-like loop
operators are topological. There are two given supercharges that annihilates the half-BPS
loop operators and the anticommutator gives the spatial translational generators. 8) This
says that no divergence appears in the OPE of the half-BPS loop operators.

6)In [15], θ is written as ζ and plays an important role by analytically continuation and the Stokes
phenomena on the plane.

7)Rigorously speaking, the line defect operators form a semiring because there should be a (monoid)
homomorphism from the Z≥0 coefficient group semiring of the charge lattice (as an additive group) to
the semiring of the Hilbert space.

8)Precisely speaking, there is a continuous parameter determining the type of half-BPS loops (= how
to break the SUSY by half) and this is not true for loops with the different types.
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It is natural to ask the following question : what types of dyonic loop operators appear
when two general dyonic operators approach each other ? The satisfactory answer has
not been given and this is the future problem.

It is necessary to note that for space-like loop operators it is followed from the definition
of the ’t Hooft operator in operator formalism that

ŴRe(γe)T̂R∨m(γm) = exp
[
2πi〈λRe , λR∨m〉g · L(γe, γm)

]
T̂R∨m(γm)ŴRe(γe) (1.2.28)

where 〈λ1, λ2〉g is the metric defined on the lattice and L(γ1, γ2) is the linking number
of loops γ1 and γ2. This says that the OPE is ill-defined for the Wilson-’t Hooft loop
operators whose charge 〈λRe , λR∨m〉g · L(γe, γm) ∈ Z. The same relation may be true for
(fully) time-like ones too because it is just the quantization condition itself. 9)

1.2.4 Abelian duality for loop operators

Are ’t Hooft loops dual objects for Wilson loops ? In the U(1) case, we can check it using
“Abelian S-duality” proposed in [118] in terms of path integral. Assume that there is no
charged matter (the Maxwell theory).

Let us evaluate a Wilson loop Wq(γ) = exp

[
iq

∫

γ

A

]
. Define the Abelian holomorphic

coupling as τ := θ
π

+ 2πi
e2

and introduce the dual gauge field B, an auxiliary field G and a
new gauge-invariant field strength F := F −G.

〈Wq(γ)〉τ =

∫
DA Wq(γ)e−

1
4πi

∫
(τF+∧F+−τ̄F−∧F−)

=

∫
DADBDG e−

1
4πi

∫
(τF+∧F+−τ̄F−∧F−)+

i
2π

∫
G∧FB+iq

∫
D(FA−G)

=

∫
DBDG e−

1
4πi

∫
(τG+∧G+−τ̄G−∧G−)+

i
2π

∫
G∧(FB−2πq[D])

=

∫
DB e−

1
4πi

∫
(τ∨F̃B+∧F̃B+−τ̄∨F̃B−∧F̃B−) = 〈Tq(γ)〉τ∨ (1.2.29)

where F̃B := FB − 2πq[D] and τ∨ := − 1
τ
. We also omit the volume factor. D is a surface

satisfying C = ∂D and [D] is the Poincaré dual δ 2-form of D. In this case for ∀p ∈ C,∫
S2
p
F̃B = 2πq ensures that there exists a monopole and a magnetic current through C.

Since this exchanges the Wilson loop as the order parameter and the ’t Hooft loop
as the disorder parameter, this duality is also called “Kramers-Wannier” duality. Notice
that it is possible to consider this duality over general manifolds and with general actions
as formally shown as

∫
[DA/Vol] e−I[dA] =

∫
DF δ(dF ) e−I[F ] =

∫
DF e−I[F ]

∫
[DB/Vol] ei

∫
dF∧B

9)The linking number is not defined in that case. It is unnecessary.

23



=

∫
[DB/Vol] e−I

∨[dB] =

∫
DH δ(dH) e−I

∨[H] (1.2.30)

where

A ∈ Ωp−1(M) F = dA ∈ Ωp(M) B ∈ Ωd−p−1(M) H = dB ∈ Ωd−p(M) (1.2.31)

and

∫
[DA/Vol] · · · represents the path integral over the gauge inequivarent configuration.

1.2.5 Duality action on Wilson-’t Hooft loop operators

We see the S-duality action on the loop operators in the non-Abelian gauge group G in
the 4D N=4 SYM. The full S-duality group SL(2,Z) are generated by S, T and it is
enough to investigate the action of S, T only. 10) However, in addition, we consider the
charge conjugation C = S2.

As it is discussed before, the loop operators are classified by the Kapustin’s charge
lattice (up to the simultaneous Weyl action) of the gauge group G. Therefore, each duality
action acts on the charge lattice. For the action to be well-defined, it is necessary to be
compatible with the actions of the Weyl reflection group Wg. In other words,

∀w∃w′ wX = Xw′ (1.2.32)

where w,w′ ∈ Wg.

Witten effect

Recalling that T corresponds to the Witten effect, we expect11) that this shifts the electric
charge by a charge proportional to the magnetic charge as follows:

T : (B, µ) 7−→ (B, µ+B∨) (1.2.33)

and see fig.1.4 for example. See also [119].

Charge conjugation

The charge conjugation is simple. This corresponds to taking the complex conjugation
and for non-Abelian charges

C : (B, µ) 7−→ (−B,−µ) (1.2.34)

and see fig.1.5 for example.

10)The S-duality for non-simply laced is a subgroup of this and is included automatically.
11)See [44] for the proof.
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T

Figure 1.4: The θ-shift action on (ω2, ω1)

C Weyl

Figure 1.5: The charge conjugation action on (ω2, ω1)

Montonen-Olive duality

The most interesting action on loop operators is the S-duality map. This is expected to
exchange the electric charge and the magnetic charge but they belong to the different
lattice. Taking S2 = C into consideration, we can naturally expect

S : (B, µ) 7−→ (µ∨,−B∨) (1.2.35)

and see fig.1.6 for example.
For non-simply-laced case, T action is modified to

ST qS : (B, µ) 7−→ (qµ∨ −B,−µ). (1.2.36)
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S Weyl

Figure 1.6: The S-dual action on (ω2, ω1)

26



Chapter 2

Class S description

In this chapter, we review several aspects of the class S theory in terms of codimension two
defects. In particular, we explain the classification of codimension two defects in Sec. 2.2,
the local contributions of the defects to the Coulomb branch and the Higgs branch in
Sec. 2.3 and relevant examples of the class S theory in Sec. 2.4. Since other aspects of the
class S theory are necessary to understand the 4D physics and 4D/2D duality relation in
detail but less important to the later discussions, we review several of them, in particular,
the Seiberg-Witten curve approach, brane constructions in string theory and the dualities
of class S theories in Appendix. F. We use the following important facts of the class S
theory (observations,conjectures) :

• The choice of a duality frame corresponds to that of a pants decomposition of the
punctured Riemann surface.

• The 4D holomorphic gauge couplings is specified by the complex moduli of punc-
tured Riemann surface (Teichmüller space).

• The exact dualities in 4D are realized by changing the decompositions and holo-
morphic coordinates on the moduli.

The other results will be introduced when necessary.
For the purpose to derive the necessary results for later, we explain the background

story (relations to the M-theory and 6D SCFTs viewpoint) of Sec. 2.1. The following
overview is summarized in Fig.2.1 to some extent. In the gravity decoupling limit, the
effective theories of the spatially coincident M5-branes are expected to be non-trivial
SCFTs called type A (g = su) 6D N=(2, 0) SCFT. On M5-branes, there lives a self-dual
2-form gauge field. Since the proper Lagrangians of self-dual forms are unknown yet, these
theories are sometimes referred to as non-Lagrangian theories. However, these theories
satisfy several properties following the string properties. One of the important properties
is that, after the S1 compactification, these theories flow to 5D maximally supersymmetric
Yang-Mills (MSYM) theories in the IR. On the string theory side, this corresponds to the
fact that the S1 reduction of M5-branes lead to D4-branes.
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The 6D N=(2, 0) superconformal algebra (SCA) indicates the existence of the two
types of defects : codimension two and codimension four defects. In terms of M-theory
( the 11D supersymmetry algebra ), this corresponds to the existence of BPS M2-branes
and M5-branes. On the S1 compactification, there are two ways to reduce each codimen-
sion two and four defects and, at first, we focus on the cases that these defects extend
along the reduced S1 direction at first. This reduction helps us find the classification of
defects of 6D N=(2, 0) SCFTs once we assume that there is some one-to-one correspon-
dence between the UV defects and IR ones. For the codimension four defects, they are
loop operators coupled to the gauge field in 5D and they are expected to be Wilson loops.
This fact suggests that the codimension four defects may be labelled by the irreducible
representations of the Lie algebra type su of 6D N=(2, 0) SCFTs. 1) This can be under-
stood in terms of the string theory. Because M2-branes reduce to F1-strings and their
end points look electrically charged particles, namely, Wilson loops. Correspondingly,
the two-form gauge field B reduces to one-form gauge field A. On the other hand, the
codimension two defects become vortex like defects. This means that the classification of
the codimension two defects is equivalent to the analysis of some BPS solutions with a
specified monodromy. This BPS equation is called Hitchin equation as we will discuss in
Sec. 2.2.

Next, let us consider the other type of the reduction in which the defects are localize
d at S1-direction. In this case, the codimension four defects become surface defects in
5D which are expected to be non-dynamical monopole strings and the codimension two
defects become domain walls or boundaries of the 5D theories. Therefore, the classification
of the codimension two defects is replaced by that of the half-BPS boundary conditions of
5D MSYM whose BPS equation is called Nahm equation. We will see this analysis later
in Sec. 2.2.

In both systems, we can characterize the codimension two defects by the classification
of the half-BPS (codimension two and one) boundary conditions. This analysis is reviewed
in Sec. 2.2. The stringy approach is reviewed in Appendix.F.3.

Keep in mind that, in this chapter, all the general punctures on the punctured Riemann
surface correspond to the codimension two defects extending along the whole directions
of 4D but that there are cases that the codimension four defects are some of punctures
and extend along two directions in 4D in later chapters. See also 4.3.

Now, let us unify the above story and 4D N=2 theories called class S theories. Several
4D N=2 superconformal field theories can be obtained by the compactification of 6D
N=(2, 0) SCFTs on some punctured Riemann surfaces C. For this purpose, let us further
compactify the 4D theory into the 3D N=4 theory in the IR. This analysis was done
in [122], for example. This relates the moduli spaces of 4D theories with those of 3D
theories. Concretely speaking, each 3D Coulomb branch is the torus fibration of the
corresponding 4D Coulomb branch and its dimension is doubled. Therefore, if we know

1)Strictly speaking, we use the fact that the reduction without any twist leads to the gauge symmetry
G which is a compact Lie group of g. In this thesis, we focus on g = su(N) = AN−1 case with trivial
outermorphism, namely, no twisted punctures [120, 121]. In string theory language, this corresponds to
the absence of orientifolds.
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the dimensions of moduli spaces in 3D, we can also compute those of both 4D branches.
On the other hand, each 3D Higgs branch is equivalent to the corresponding 4D Higgs
branch. 2) However, in general, this 3D theory is some non-Lagrangian theory because
the original 4D theory is so and this does not help us analyse the 4D theories.

Next, let us exchange the order of compactifications, namely, S1 at first and then on
C. In this operation, we have the 5D MSYM at first and we can apply the above story.
Further compactification on C gives a 3D theory which is expected to be the mirror
theory [123] to the above 3D theory as explained in Sec. 2.1. Here, a nice thing happens.
Since the 5D MSYM has a Lagrangian description, the reduced theory to 3D is expected
to have some Lagrangian description too [124]. In turn, this can help us search several
properties of the original non-Lagrangian 3D theory via the 3D mirror symmetry.

6d N=(2, 0) SCFT

5d N=2 SYM

4d N=2 SCFT 4d N=2 SCFT

3d N=4 SCFT 3d N=4 SCFT

5d N=2 SYM

S1
R

S1
ρ

Γ

C

C

S1
R

S1
ρ

Γ

3D mirror

codim. 2 (vortex) : Cp

vortex : Cp

filling boundary

filling filling

boundary

S1
R

S1
ρ

R

Cp

Cp

S1
R

S1
ρ

Γ

3D mirror

Figure 2.1: The 6D N=(2, 0) SCFT and its descendant theories at each dimension. Here
we approximate the Riemann surface C as S1×Γ where Γ is the trivalent graph according
to the given pants decomposition of C. That is the meaning of the gauge theory on the
graph Γ.

2.1 5D Super Yang-Mills viewpoint

This section is mainly based on [15,94,95,124,125]. The starting set-up is the 6DN=(2, 0)
SCFT on R3× S1

R×C where C is punctured Riemann surface and R is the radius of S1
R.

Instead of considering the punctured Riemann surface C, we locally analyse the physics
near one of punctures.

To this end, let us consider the open patch around the given puncture p as a cigar
geometry, which is a S1-fibration over a half-open line. Hereafter we write this open

2)In the former case, the real scalar coming from the compactified component the 4D gauge field and
its dual photon form the torus at the generic point of the 4D Coulomb branch. In the latter case, this
holds true because of the hyperKähler structure to prevent the moduli from the quantum corrections.
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region near the puncture as S1
ρ × R≥0 where × is not the direct product in the rigorous

sense. Notice that ρ is the typical scale of tubes of C.
Now, we have a 2-torus fibration over R≥0 and consider the torus compactification of

the 6D N=(2, 0) SCFT. The low-energy effective theory at generic bulk point locally is
well-known to be the 4D maximally super Yang-Mills (MSYM). However, upon the order
of compactifications, the effective Lagrangians looks different although they describe the
same physics. This phenomenon is called S-duality originally found in [21]. See Fig.2.2
In the following, we take a look at this in the presence of the boundary at 0 ∈ R≥0.

6d N=(2, 0) SCFT

5d N=2 SYM

w/ boundary (Nahm)

4d N=4 SYM

w/ boundary
4d N=4 SYM

w/ boundary

5dN=2 SYM

w/ vortex (Hitchin)

S1
R

S1
ρ

S1
ρ

S1
R

S-dual

Figure 2.2: The S-duality of the 4D MSYM from the exchange of the order on the torus
compactification of the 6D N=(2, 0) SCFT. We can rephrase this change as the SL(2,Z)
modular transformation or the mapping class group of the 2-torus in the geometrical
language. Notice also that this slightly differs from the situation in Fig. 2.1.

Before analysing the reductions, we refer to the multiplet of the 6D N=(2, 0) SCFT. It
consists of the self-dual 2-form B, two symplectic Majorana fermions and five real scalars
which correspond to the NG modes for the translation symmetry of transverse directions
to M5-branes. ϕ denotes the complex scalar for the fiber direction in T ∗C and χ does
three scalars for the other transverse directions along R3.

S1
R reduction

When the S1
R is reduced at first, we have 5D MSYM with gauge group G1 = SU(N) 3)

defined on R3 × S1
r × R≥0.

Let us look at bulk physics at first. Classically, the gauge coupling g2 is proportional
to the radius g2

5D ∼ R. 4) Further reduction on S1
ρ of this theory gives the 4D N=4 Super

3)Here, we do not pay attention to the topological stcture, that is to say, do not distinguish between
SU(N) and PSU(N) = SU(N)/Z for example. See also a recent reference [115] on this point.

4)The rough derivation is following. When the M-theory is reduced into the type IIA string theory, the
string coupling gs is proportional to its radius because D0-branes with tension ∼ 1

gs`s
are identified with

the KK momentum
1

R
. Then, we use the relation between the D4-brane tension and the string coupling

like TDp ∼ 1
`psgs

where `s is the string scale. Notice that the classical Yang-Mills coupling appears in the

overall factor of the DBI action as
1

g2
(p+1)DYM

. See [126] for these facts.
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Yang-Mills (SYM) with SU(N) and the gauge coupling is given as

g2
4D,(1) ∼

R

ρ
. (2.1.1)

On approaching to the boundary, this coupling becomes stronger because ρ → 0. We
explain what happens at the boundary in this framework later.

Next, to see the global structure of C, consider the direct compactification from the 5D
SYM theory over C×R3 to 3D N=4 theories living on R3. In order to keep the half of the
supersymmetry, we must consider the 3d Poincaré invariant vacuum, namely, translational
invariant BPS configuration. In other words, we have the self-dual Yang-Mills equation
reduced on C as the BPS equation, which is known as the Hitchin equation [127]. This
is the equation for (AC , ϕ, ϕ̄).

In the string set-up, ϕ and ϕ̄ correspond to the NG modes along the fiber direction
( or Seiberg-Witten 1-form differential ) and they parametrize the Coulomb branch in
the 4D theory. Therefore, the Coulomb branch is described by the moduli space of the
Hitchin equation.

In summary,

M3D Coulomb =MHitchin (2.1.2)

dimC B4D Coulomb = 2 dimCM3D Coulomb = dimHM3D Coulomb (2.1.3)

where B4D Coulomb, M3D Coulomb and MHitchin are the 4D Coulomb branch, the 3D
Coulomb branch and the Hitchin moduli space respectively.

S1
ρ reduction

Let us repeat the above story by exchanging the reduction order. We have 5D MSYM
with G2 defined on R3 × S1

R × R≥0 with g2
5D ∼ ρ. The sequent reduction with S1

R gives
4D N=4 SYM with the gauge coupling

g2
4D,(2) ∼

ρ

R
. (2.1.4)

By comparing this to (2.1.1), we get a relation

g2
4D,(2) ∼

1

g2
4D,(1)

(2.1.5)

which suggests the two bulk 4D N=4 SYM are S-dual [21] (See [22] as for the derivation
without punctures). In contrast to the former case, at the boundary, the theory is weakly
coupled.

To analyse the boundary condition, go back to the brane construction. As explained
in Appendix. F, any regular puncture comes from some D4-D6 brane system. 5) The

5)Of course, NS5-branes exist but they are identified with simple punctures in the weak coupling.
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M-theory on S1
ρ × S1

R reduces to the effective 9D string theory with (g9D
s )2 ∼ (g10D

s )2 1
R
∼

ρ2

`2sR
( we focus on the closed string sector, namely, the gravity sector although we see

the brane action in the former case) and M5-branes and the codimension two defect
(puncture) reduce to D4-branes and D6-branes, respectively. Both D-branes wind S1

R-
direction. Using T-duality, we have type IIB realization of this 9D string theory, namely,

type IIB string theory with S1
`2s/R

and g10D
s ∼ g9D

s
`s
R1/2 ∼

ρ

R
. Now, D4- and D6-branes

are realized as D3- and D5-branes, respectively. In this set-up, the boundary condition
for D5-branes, namely, Dirichlet-type boundary condition appears and they were studied
in [94]. There, it turned out that the moduli of the supersymmetric vacua in 4D N=4
SYM in the presence of this boundary is described by the Nahm equations. They are
equations for ~χ which correspond to the NG modes in the R3 directions in the original
M-theory. This is dictated by the Higgs branch in the 4D theory. Since there are some five
branes in each picture, it is expected that there exists some flavor symmetry associated
with each codimension two defect, namely, the boundary or the puncture.

Recalling that the former system is S-dual of this system (indeed, the gauge coupling
relation is reproduced here), the former strongly coupled boundary is realized as D3-NS5
systems or Hanany-Witten systems [19]. In other words, there lives the degrees of freedom
at the boundary. This is the story of [95], which claims the S-duality map the Dirichlet
boundary to the boundary with some 3D theory on it. The 4D N=4 S-duality is identified
with the type IIB string S-duality and it also acts on the five-three brane systems as 3D
mirror symmetry [19, 123]. After the total reduction of C × S1

R to 3D, the former theory
is expected to be a 3D N=4 non-Lagrangian theory and the latter becomes collections
of 3D theories living at the 4D boundary in each local analysis. Indeed, in [124], they
claim that all the 3D theory are SU(N) diagonally gauged since each has SU(N) flavor
symmetry. Notice also that this exchanges the Coulomb branch and the Higgs branch,
namely, the moduli of Hitchin systems and that of Nahm systems.

In summary,

M3D Higgs =MNahm (2.1.6)

dimHM4D Higgs = dimHM3D Higgs (2.1.7)

where M4D Higgs, M3D Higgs and MNahm are the 4D Higgs branch, the 3D Higgs
branch and the Nahm moduli space respectively.

2D topological q-deformed Yang-Mills from 5D SYM

We make brief comments on the appearance of 2D q-deformed Yang-Mills theory in terms
of 5D SYM. Historically, it appeared in [74] where they studied the theory living on the
topological D4-branes on a line bundle in a two line bundle over C. Since the effective
theory of D4-branes is the 5D MSYM, they reduce them to the 2D topological q-deformed
Yang-Mills with chemical potentials (D2 and D0-branes inclusion effects) after some topo-
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logical twist.
The direct derivation from the Lagrangian based on the localization technique is dis-

cussed in [128,129]. 6)

Codimension four defects

In this section, we discuss the Abelian free 6D N=(2, 0) theory which is the effective
theory of a single M5-brane. Let x0 and θ be the coordinates of S1

R and S1
ρ respectively.

7) Now, the 5D U(1) gauge field has both components denoted by

A
(H)
θ ∼ RBθ0 A

(N)
θ ∼ ρB0θ (2.1.8)

where only the zero modes ofBθ0 are considered. This relation implies that two holonomies
along the circles coincide:

∮

S1
ρ

A(H) ∼ −
∮

S1
R

A(N) ∼ RρBθ0 ∼
∫

S1
R×S1

ρ

B. (2.1.9)

In other words, classically, if the B field is a constant two-form along S1
ρ × S1

θ directions,
this says that the holonomy around punctures on C and the holonomy around S1

R coincide
up to sign.

In terms of 6D viewpoint, the (BPS) codimension four operators in 6DN=(2, 0) SCFT
which are surface operators coupled to the B-field may be described by two different ways
: the Wilson loops around punctures on C or the Wilson loops winding S1

R.
If we go to the 4D/2D duality relations as discussed in Sec. 4, this naive expectation

is translated into the conjecture of equivalence between the partition function with a 4D
Wilson loop in a representation R associated with a flavor symmetry F at a puncture p
and the partition function with a 2D Wilson loop in the same R encircling the puncture
p. This conjecture is the essential start point of our analysis later.

2.2 Codimension two defects

We see that the some new BPS equations appear when codimension two defects are
inserted. The sequent task is the analysis of this moduli space and their classifications. See
also the Seiberg-Witten curves and type IIA string approach reviewed in Appendix. F. The
physics references on these moduli spaces are [45] and [50,51] for the Hicthin system, [94]
for the Nahm system and [131] for its relations to the spectral curves and so on. Keep in
mind that g is real simple Lie algebra, in particular, su(N) in this section.

6)In [130], the (4DN=1) SCIs was realized as partition functions on the primary Hopf surface where p, q
are complex moduli. The fugacity of a flavor symmetry is realized as holomorphic line bundle structure.

7)The normalizations, that is to say,
∮
S1
R
dx0 and

∮
S1
ρ
dθ are not fixed here because we ignore the

constant ambiguity.
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Hitchin system

The Hitchin equation [127] naturally appears when the 4D instanton equation (or the BPS
equation called Kapustin-Witten equation [45]) is reduced into 2D and can be defined on
Riemann surfaces C. In particular, punctures play a role of the boundary condition of
fields [132].

Let A and ϕ be a gauge field (connection) on C and a holomorphic 1-form field valued
in g, i.e. the adjoint representation. Mathematically speaking, ϕ ∈ KC ⊗R Ad(g) where
KC is the canonical complex line bundle over C. The Hitchin equation without any
punctures, or some singular boundary conditions, is given as

Ω0 := F − [ϕ, ϕ̄]dz ∧ dz̄ = 0

Ω+ := −D̄ϕdz =
(
∂̄ϕ+ [Az̄, ϕ]

)
dz ∧ dz̄ = 0 (2.2.1)

Ω− := Dϕ̄dz̄ = (∂ϕ̄+ [Az, ϕ̄]) dz ∧ dz̄ = 0

or, equivalently,

F := dA+A ∧A = 0 F̃ := dÃ+ Ã ∧ Ã = 0 (2.2.2)

where the relation between two is given as

A = A+ iϕdz + iϕ̄dz̄ Ã = A+ ϕdz − ϕ̄dz̄. (2.2.3)

The second equation is the flatness condition for the complexified gauge connection
but the gauge transformation is not complexified at this stage. However, notice that this
condition is invariant under the complex valued gauge transformations.

Nahm system

The Nahm equation is introduced to construct monopoles satisfying the Bogomol’nyi
equation [133]. In terms of branes, this equation appears in the D(p+2) of D(p+2)-Dp-
branes systems. For the Dp-brane, this is exactly the equation for the boundary condition.
As performed in [94], this also naturally appears in the analysis of half-BPS boundary
conditions in 4D N=4 SYM without the string theory.

Let Ta = Ta(s) (a = 1, 2, 3) and A be real scalars valued in g and gauge field defined
on s ∈ R≥0. The Nahm equation is given as

Ωa :=
DTa
Ds
−

∑

b,c=1,2,3

εabcTbTc = 0 for a = 1, 2, 3 (2.2.4)

where εabc is the antisymmetric tensor with ε123 = 1 or the structure constant of su(2)

and
D

Ds
=

d

ds
− AdA. We will analyze the solutions later.

There is an equivalent equation by introducing the complex fields A = A + iT3 and
X = T1 + iT2 (A = A− iT3 and X = T1 − iT2),

Ω+ := DAX =
dX
ds
− [A,X ] = 0 (2.2.5)
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Ω0 :=
d

ds

(
A−A

)
+ [A,A] + [X ,X ] = 0.

and Ω− := (Ω+)∗. Notice that this equation is invariant under the complexified gauge
transformation. In addition, the gauge transformation at the boundary is the large gauge
transformation and we fix the value there to be the identity element, namely, g(0) = e (the
identity element). We also require X (∞) is regular, namely, the commutant ZGC(X (∞))
is the maximal torus TC. Any non-regular element is defined as the limit of some regular
element to keep the moduli space smooth. Indeed, the set of the regular elements are
dense and the unbroken gauge symmetry become larger on top of it discontinuously.

HyperKähler construction

Here, our aim is to know the moduli space or solutions of equations (2.2.4) and (2.2.1)
and they have a hyperKähler quotient construction. Although we focus on the Hitchin
system here, its application to the Nahm system is straightforward. The moment map is
given as

µa(θG;A, ϕ) ∼
∫

C

Tr [θGΩa] for a = +, 0,− (2.2.6)

where θG is an element of the Lie algebra of the gauge transformation group G =
Map(C −→ G). When W denotes the infinite dimensional space of the possible field
configuration (A, ϕ), ~µ := (µ0,<(µ+) = <(µ−),=(µ+) = −=(µ−)) is the function over W
valued on (Lie(G))∗ ⊗ R3 where ∗ means the dual operation as vector spaces. 8) Since G
naturally acts on W , we can formally define the quotient of W by G identified with the
Hitchin moduli space MHitchin ' W/G. This is just infinite dimensional extension of the
ordinary hyperKähler quotient construction.

Precisely speaking, the moduli space also depends on the boundary conditions at
infinity but we ignore it here because they depends on the global gluing conditions.

As discussed in [134], we have the following equivalence :

W///G := ~µ−1(0)/G
hyperKähler quotient

∼ (W ∩ µ−1
R (0))//G := µ−1

C (0)/G
sympelctic quotient

∼ µ−1
C (0)/GC (2.2.7)

where µR := µ0, µC := µ+ and GC is the complexified gauge transformation group. Here
the complex “gauge group” shows up. The benefit of this equality is the reduction of
three equations to one simple equation written by the action of the covariant derivative.
Later, we see this relevance.

Finally, let us remark the effects of some boundary conditions [15,132]. The addition
of some δ(zP )-like singularity to the holomorphic scalar field over C is equivalent to the
addition of Trg [θP ζ] to µC where θP is the chosen generator at the puncture and ζ ∈ gC
is determined by the boundary condition.

8)To define the dual vector space, we need an inner product and it is defined by (θ1, θ2) = ±
∫
C

Trg [θ1θ2]
where the overall sign ± depends on the convention but is chosen such that the inner product is positive
definite.
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2.2.1 Moduli space of Hitchin equation with Hitchin pole

From Hitchin to Nahm on boundary conditions

As remarked in Sec. 2.1, the Hitchin system can describe the codimension two defect and
the Nahm system can describe the codimension one defect in 5D MSYM. However, their
6D origin is the same, that is to say, both come from the codimension two defects in the
6D N=(2, 0) SCFT. How are these two systems related ? The answer is simple. At the
neighbourhood around the codimension two boundary, the reduction along the angular
direction in the Hitchin system gives the Nahm system as expected.

The boundary condition for which such a relation exists is called the regular singularity.
Before defining it, notice that the Hitchin equation (2.2.1), after gauging away the Az̄,
claims that ϕ is holomorphic in the z coordinate. This assures the axial symmetric
behaviour with the following form

A ∼ a(r)dθ =
a(r)

2i

(
dz

z
− dz̄

z̄

)
(2.2.8)

ϕdz ∼ b(r) + ic(r)

2z
dz (2.2.9)

where z = reiθ the Ar component has been gauged away.
Now, for the boundary condition, the Hitchin equations (2.2.1) are equivalent to the

Nahm equations (2.2.4)

da

ds
= [b, c]

dc

ds
= [a, b]

db

ds
= [c, a] (2.2.10)

where s := − log r. The elimination of the gauge connection in the covariant derivative
corresponds to that of Ar.

Semi-simple type

At least, there are two types of conditions. One is given by any triple of commuting
elements in g. Since we can put each triple into the same Cartan subalgebra and, fur-
thermore, we can identify different a’s related by the large gauge transformations around
the singularity, they are labelled by (T × h × h)/W = (h × h × h)/Waff [50] where the
corresponding Lie group is simply-laced.

Nilpotent type

The conditions of the other type are labelled by the embedding homomorphism ρ :
su(2)→ g. Using ti := − i

2
ρ(σi) where σi are the Pauli matrices,

a(r) = − t2
s+ 1/f

b(r) = − t3
s+ 1/f

c(r) = − t1
s+ 1/f

(2.2.11)
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where f ∈ R≥0. Notice that this solution is valid for 0 ≤ r < e1/f and we should modify
the solutions for large r.

The classification of the embedding of su(2) −→ g = su(N) is equivalent to the decom-
position ways of the su(N) define representation N into the irreducible representations
of su(2). In other words, they are classified by the partition of N . In particular, for the
partition [n1, n2, . . . , nk] = {s1, s2, . . . , sr} where the sequent n and s is related as the
transposition of the Young diagram (See D), we can assign the Jordan block

J{s1,s2,...,sr} := Js1 ⊕ Js2 ⊕ · · · ⊕ Jsr Jd :=

d components︷ ︸︸ ︷


0 1 0 0
0 0 1 · · · 0

...
. . . . . .

... 0 1
0 0 · · · 0 0




(2.2.12)

because the restriction of ρ(σ+) on the representation vector space of si is expressed by
J{si}.

Once we have the boundary behaviours of the Nahm equation, we can go back to the
Hitchin system. The complexified connection is

Aθ = a(r)− ic(r) =





1st. type : ξ for ξ := α− iγ ∈ hC

2nd. type :
it+

s+ 1/f
for t+ := t1 + it2 = −iρ(σ+)

(2.2.13)

and the related monodromy is

UR := U(ΓR) := P exp

(
−
∮

Γ

A
)

(2.2.14)

where ΓR := {Reiθ | θ ∈ [0, 2π)}. Since the gauge connection A is valued in gC, this
monodromy for fixed s is an element of GC and the gauge transformation is complexified.

The flatness condition (2.2.2) says that the conjugacy class of this monodromy de-
pends only on the homotopy class of the loop ΓR and then is independent of R. The
first type is clearly independent of R. For the second type, the independence is a bit
non-trivial. In this case, the monodromy is given as

UR = exp

(
−2πi

t+

− log(R) + 1/f

)
(2.2.15)

and it is enough to show that the conjugacy class of λt+ is independent of λ, in other
words, there exists Vλ ∈ GC such that V −1

λ (λt+)Vλ = t+ for any λ ∈ C×. Indeed,
Vλ = exp

[
−1

2
log(λ)ρ(σ3)

]
∈ GC is such a solution. Now we can directly see that the

conjugacy class is independent of R for fixed ρ.
In mathematical terminology, the first type is labelled by the semi-simple orbit and

the latter is by the nilpotent orbit. Indeed, it is known that the nilpotent orbit is classified
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by the above embedding ρ in Hom×(sl(2), gC)/AdGC where AdGC represents the conjugacy
action. See [135] and Appendix.D on these subjects.

Notice that, as f → ∞, the boundary condition approaches to the trivial one and
this implies the moduli is the form of a cone. Indeed, the closure of the nilpotent orbit is
known to be the hyperKähler cone [136].

HyperKähler quotient

Consider a new complex coordinate ω := log(z). In this coordinate,

A =
a− ic

2i
(dω − dω̄) +

−b
2i

(dω + dω̄) (2.2.16)

where we used

Az = Az + iϕ Az̄ = Az̄ + iϕ̄. (2.2.17)

Let us consider the second-type solution case

a = − t3
s+1/f

b = − t1
s+1/f

c = − t2
s+1/f

. (2.2.18)

Notice that, when ρ is of [1N ]-type, they have the following matrix form

(t3)ab = −i
(
N

2
− a
)
δab (t+)ab = −i

√
a(N − a)δa,b−1. (2.2.19)

Using a different basis of SU(2)R from the previous one, we have

A = − it3
ω + ω̄ + κ

(dω − dω̄) ϕdz =
t+

ω + ω̄ + κ
dω (2.2.20)

where κ := −2/f .
Now, let us consider the trivialization by using the gauge transformation

U := U(ω, ω̄) = uit
3

(2.2.21)

where u :=
ω + ω̄ + κ

ω
. Notice that

ρ is of [1N ]-type : U = diag(u
N
2
−1, u

N
2
−2, . . . , u1−N

2 , u−
N
2 ). (2.2.22)

The covariant derivative Dω = ∂ω̄ + Aω̄ is transformed into

Dω
U

= UDωU
−1 = ∂ω

ϕU = UϕdzU−1 = uϕdz =
t+dω

ω
(2.2.23)
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because u−α∂ωuα = α
ω+ω̄+κ

.

In the ω coordinate and after this gauge transformation, A is locally trivialized and ϕ
has a simple pole at the origin whose residue is a nilpotent. By using the mathematical
argument in D.3 and the fact that mass deformations correspond to a semi-simple element
in the residue, we can expect that the possible mass deformation is restricted. If we have
a nilpotent orbit specified by Y = [n] = {s}, the corresponding semi-simple orbit has the
orbit of diag(m1, . . . ,m1︸ ︷︷ ︸

n1

,m2, . . . ,m2︸ ︷︷ ︸
n2

, . . . ,mk, . . . ,mk︸ ︷︷ ︸
nk

) with
∑k

i=1 nimi = 0. Therefore, we

can read off the associated flavor symmetry as S(
∏

a U(fa)) where fa is the number of
the appearance of a in [n].

It is expected that the degree of freedom at puncture is given by the choice of the
nilpotent orbit, namely, OJ{s} . Its complex dimension is given by

N2 −
k∑

i=1

n2
i . (2.2.24)

There are two special punctures. One is specified by [1N ] = {N} called full or maximal.
In this case, we have N − 1 independent mass parameters and SU(N) flavor symmetry.
The other is specified by [N − 1, 1] = {2, 1N−2} called simple or minimal. In this case, we
have only one independent mass parameter and U(1) flavor symmetry.

2.2.2 Moduli space of Nahm equation with Nahm pole

At first, let us consider the case A is non-singular at s = 0. By using the complexified

gauge transformation with g(0) = e, we can set Ag = gAg−1 +
dg

ds
g−1 = 0. 9) The degree

of freedom of A is encoded in the Wilson line

g(∞) = exp

[
−
∫

R≥0

A
]

(2.2.25)

modulo by the complexified gauge transformation at infinity TC. X g(s) := gX (s)g−1

after the gauge transformation satisfies the complex Nahm equation Ω+ = 0 with A =

0, namely,
dX g

ds
= 0 and X g(s) is constant : X g(s) = X g(0) = X (0) = X g(∞) =

g(∞)X (∞)g(∞)−1. In other words, if we fix g(∞), X is also fixed. Conversely, if we fix
X (0), g(∞) is determined up to TC.

Using the discussion in Sec. D.1, when X∞ is a regular semi-simple element, the left
moduli is given by

OX (∞) ∼ GC/TC. (2.2.26)

9)Such a g is unique : g(s) = exp
[
−
∫ s

0
A
]
.
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In the limit X (∞) → 0, this approaches to the nilpotent cone Ng as discussed in
Appendix. D.3. This corresponds to the Higgs branch associated to the full puncture
([1N ] type) in the Hitchin system.

Now, we come to the solutions with the following singular boundary condition called
Nahm pole.

X → t+

s
A → it3

s
as s→ 0 (2.2.27)

In this case, we cannot completely gauge away the singularity of A at the boundary but

can fix A =
it3
s

. Notice that there are left some gauge transformation to preserve this

gauge fixing. The problem is to solve the equation (2.2.5). Let us perturb X around
t+

s
,

namely, δX = X − t+

s
satisfies the condition that δX (0) is finite. Then, δX obeys

d

ds
δX = [it3, δX ] (2.2.28)

and, by using the basis of the parabolic subalgebra of gC

p = {Xα ∈ g | [it3, Xα] = mαXα, mα ≥ 0}, (2.2.29)

we can expand δX as

δX (s) =
∑

α∈Basis(p)

cαXαs
mα . (2.2.30)

In particular, the left gauge transformation can gauge away the zero modes, namely, the
components generated by the commutant of it3 which is the Cartan part. Finally, δX is
generated by the basis of this unipotent radical of the parabolic subgroup.

The set of Lie algebra element t++⊕αCXα in the nilpotent cone is called Slodowy slice
mathematically, and, the δX is labelled by this slice. It is known that this is transverse
to Ot+ at t+. The Nahm moduli space is given this and its complex dimension is given
by

dimCNg − dimCOt+ =
∑

a

s2
a −N. (2.2.31)

To see the relations to the classification in Hitchin system, we need the mirror sym-
metry analysis but, intuitively speaking, the S-duality acts on transposed operation on
the Young diagram representation as seen in F.3.1. Therefore, the embedding ρH ap-
pearing in the Hitchin system and that ρN in this Nahm system differ but related by the
transposition.
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2.3 Branch dimension analysis

Now, we know the moduli space coming from each puncture locally. They are indepen-
dent and there is an internal moduli coming from the degree of freedom after we fix the
boundary conditions at punctures.

We expect that the dimensions of the 4D Coulomb branch and the 4D Higgs branch
are given by the following formula

dimC BCoulomb =
∑

A

dimC BCoulomb(YA)− 1

2
χC dimR g (2.3.1)

dimHMHiggs =
∑

A

dimHMHiggs(YA) + rkg (2.3.2)

where χC is the Euler number of the Riemann surface ignoring the punctures. Keep in
mind that the analysis up to now are locally and do not give any global information.

Higgs branch

The degree of freedom not from punctures is given by rkg. If we have two full punctures,
there is SU(N) × SU(N) symmetry and can be diagonally gauged. Since there is the
moduli equivalent to the nilpotent cone Ng at each full puncture, after the quotient of
the gauge transformation, the difference of the complex dimension of the moduli between
before and after the gauging operation is given by

dimCNg − dimCGC = −rkg. (2.3.3)

This suggests that the internal degree of freedom is independent of the genus of C.
Now, comparing the results in the Lagrangian case, we see that this degree is given by
rkg = N − 1.

Coulomb branch

For the 4D Coulomb branch, we use the fact that the 3D Coulomb branch is the Hitchin
fibration over the 4D branch and is expected to be the moduli space of Hitchin equation
(2.2.1).

dimC BCoulomb(Y = [n] = {s}) = dimHM3D Coulomb(Y = [n] = {s}) =
1

2
dimCOmY

(2.3.4)

Since the Hitchin equation is equivalent to the flat condition for the complex connec-
tion,

MCoulomb ∼ Map(π1(C), GC) ∼ 〈Uα,i, Uβ,i |
g∏

i=1

[Uα,i, Uβ,i] = eGC〉/ ∼Conjugate (2.3.5)

41



where Uα/β,i is the GC holonomy around the i-th α/β cycle and eGC is the identity el-
ement. ∼Conjugate is the common conjugate action of GC to all holonomies. Therefore,
the dimension of the Hitchin moduli without any punctures is given by 2g dimCGC −
dimCGC − dimCGC = −χC dimR g.

When g = su(N), the above local contributions to each dimension are given as

dYC := dimC BCoulomb(Y = [n] = {s}) =
1

2

(
N2 −

∑

i

n2
i

)
(2.3.6)

dYH := dimHMHiggs(Y = [n] = {s}) =
1

2

(∑

i

s2
i −N

)
(2.3.7)

However, the 4D Coulomb branch has more information about the scaling dimension of
the Coulomb branch operators. This approach cannot derive the result about the number
of the Coulomb branch operators at each scaling dimension. 10) We quote (F.3.18) in
Appendix. F.3. That is

dYC,k = pYk = k −Hk = k −min{a |
a∑

b=1

sb ≥ k} for k = 2, 3, . . . , N (2.3.8)

where Y = {s} and see Appendix. F.3 as for the definition of Hk. Indeed, the sum over
k = 2, 3, . . . , N reproduces the above result

N∑

k=2

dYC,k =
1

2
N(N + 1)−

N∑

k=1

Hk =
1

2
N(N + 1)−

s1∑

i=1

ni∑

j=1

j = dYC (2.3.9)

where we use dYC,k=1 = 0 and (D.0.10).
By quoting the result in Appendix. F.3 again, we find that the Coulomb branch of the

theory is given by

dimC B(k)
Coulomb =

∑

A

dYC,k − (2k − 1) (2.3.10)

for k = 2, 3, . . . , N .

2.4 Examples of class S theories

In this section, we introduce three kinds of non-gauge theory examples : TN -theory,
the free hypermultiplets and rank 1 SCFTs. All are obtained by some three punctured
spheres. 11)

10)We asuume that all the scaling dimensions are integer. This assumption is true for all the class S
theories with regular punctures. The counterexamples are Argyres-Douglas theories, for instance, but
they are constructed with irregular singularities (fractional power singularities).

11)Although, in [121, 137], they studied SCFTs from the three punctured spheres allowing the formal
irregular punctures and twisted ones and classified them up to g = A4, we restrict ourselves to cases with
only untwisted regular singularities but for general A-type.
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In this thesis,

T Sg=su(N)[C(Y1, Y2, . . . , Yn)] (2.4.1)

denotes the resulting 4DN=2 theory in the IR after the compactification on the punctured
Riemann surface C with punctures whose types are specified by Y1, Y2, . . . , Yn.

In the first subsection of the TN -theory, we also explain the two important procedures
in the class S theory : “gauging” and “partially closing/Higgsing”.

2.4.1 TN-theory

First class is the parent theory in the sense that other theories are obtained by two
operations called gauging (gluing) and partially closing (Higgsing). See Appendix. F.4.1
as for the construction from the Lagrangian theories.

The TN -theory is the 4D N=2 theory specified by

T S [C([1N ], [1N ], [1N ])] (2.4.2)

namely a sphere with three full punctures.
By applying the previous formula (2.3.2), the dimensions of each branch are given by

dimHMHiggs =
1

2
(3N + 2)(N − 1) (2.4.3)

dimC B(k)
Coulomb = k − 2 (2.4.4)

In the simplest case N = 2, there is no Coulomb branch and the quaternionic dimen-
sion of the Higgs branch is 4. We have three SU(2)-symmetry. This theory is expected
as 4 free hypermultiplets Qabc in the representation 2A ⊗ 2B ⊗ 2C . Then, this theory is
also referred to as the tri-fundamental hypermultiplet.

N = 3 is the next simplest case. In this case, there is a one dimensional Coulomb
branch whose scaling dimension is three and the Higgs branch is eleven dimensional. The
important point is that this theory has no gauge multiplet or holomorphic gauge coupling
and is not a gauge theory although it has a non-trivial Coulomb branch. Since we do
not know such a theory described by Lagrangian yet up to now, this theory is sometimes
called no Lagrangian theory. 12)

Gauging

First of all, we use the relation between the one-loop β function of holomorphic gauge
couplings and central charge of the gauge symmetry currents [139]. 13)The coefficient of

12)In the IR after relevant deformations or moving to a generic point at the brnach, this theory has
an effective Lagrangian of one U(1) vector multiplet as usual. It was also proposed that an UV N=1
Lagrangian theory flows to this theory with the supersymmetry and the R-symmetry enhancement [138].

13)The flavor central charge k4D
F which is the normalization of the OPE of currents or the two point corre-

lation functions of flavor currents associated with F . We count the contribution of the half-hypermultiplet
(one 4D N=1 chiral multiplet) in the representation R as T (R) (T (�) = 1. See Appendix. A.1). This
is the same notation used in [140] for instance. In the trace anomaly, kF appears as the coefficient of
quadratic term of the field strength [141].
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the one-loop β function is proportional to sum of all the flavor central charges of matters
and the vector multiplet. The contribution of vector multiplet is −4h∨.

Let us remark the computation of kF associated to each puncture with a flavor sym-
metry F . For that purpose, we use the results reviewed in Appendix. F.3. Recall
that, for the regular puncture specified by [n] = {s}, the flavor symmetry is given by
S(
∏h

a=1;da>0 U(da)) where da = sa − sa+1. Each flavor symmetry U(da) acts on the
da fundamental hypermultiplets of SU(ka) as the da-dimensional representation where

ka =
a∑

b=1

sb.

Now, we know kSU(N) = 2N for SU(N) symmetry associated to the full puncture.
The β-function for holomorphic gauge coupling vanishes when two SU(N) symmetry
associated with two full punctures are identified and gauged.

On the other hand, when we have a four fully-punctured sphere, in a degeneration limit
associated to a pants decomposition (= choice of one-cycle in this case), they decompose
into two different spheres with three full punctures one of which is new and weakly gauged.
We represent this as

T S [C([1N ]A, [1
N ]B, [1

N ]C , [1
N ]D)]→ T S [C([1N ]A, [1

N ]B, [1
N ]E)] +

SU(N)E

T S [C([1N ]E, [1
N ]C , [1

N ]D)]

(2.4.5)

and see Fig. 2.3.

→
τ→i∞

A

B

C

D

A

B

C

D

E E

Figure 2.3: The sphere with four full punctures is decomposed into two sphere with three
full punctures at the weak coupling limit in a duality frame.

The other decomposition corresponds to the weak coupling limit in other duality frame.

T S [C([1N ]A, [1
N ]B, [1

N ]C , [1
N ]D)]→ T S [C([1N ]A, [1

N ]C , [1
N ]F )] +

SU(N)F

T S [C([1N ]F , [1
N ]A, [1

N ]D)]

(2.4.6)

Higgsing / Partially closing

Although we discuss the Nahm system, we translate it into the 4D language [142].
If we have global SU(N) symmetry in 4D N=2 SCFTs, there are BPS primary op-

erators in the same supermultiplet as the flavor current belongs to. They are the triplet
of SU(2)R R-symmetry and the adjoint representation of SU(N) global symmetry. By
giving a nilpotent VEV to the highest weight of those operators at UV point, we have
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another SCFTs in the IR. This is called partially Higgsing/closure operation [125, 142].
The nilpotent orbit of SL(N,C) can be always uniquely mapped to the Jordan normal
forms JY = ⊕iJni whose all eigenvalues vanish and they are classified by the partition
Y = [n1, n2, . . . , nd] of N . Now that SU(2)R × SU(N) global symmetry is spontaneously
broken into a subgroup U(1)×GY . In particular, this U(1) is generated by

I3
IR := I3

UV ⊗ 1− 1⊗ 1

2
ρ3
Y (2.4.7)

where ρY is the unique embedding homomorphism from su(2) into su(N) satisfying JY =

ρY

[(
0 1
0 0

)]
, ρ3

Y := ρY

[(
1 0
0 −1

)]
and I3

UV is a diagonal R-symmetry generator of

SU(2)R. This R-symmetry generator in new IR SCFT is enhanced to SU(2)IRR and the
SCI can be also defined there.

Hereafter, we use the transpose of Y to specify the type of punctures. For example,
[1N ] represents the full (maximal) puncture and [N − 1, 1] does the simple (minimum)
puncture.

2.4.2 Free hypermultiplet

In our analysis, we assume that all the SCFTs without any Coulomb branch are free
hypermultiplets specified by the representation of the flavor symmetry. Under the con-
dition that only untwisted regular punctures are allowed, we can classify them. Using
the formula (2.3.8) and the condition (dC)k = 0 leads to the constraint pAk + pBk + pCk =
2k − 1 for k = 2, 3, . . . , N . We use the property that the regular punctures must satisfy
pk+1 − pk = 0 or 1 in addition. These constraints determine all the possibility of pA,B,Ck

and all the three punctures combinations are listed in Table. 2.1. We categorize them
into four classes. From the analysis later, we call each Bi-fundamental type, Second rank
anti-symmetric type and two exceptional types.

To determine what representations of the explicit global symmetry associated to three
punctures, we use the information about the dimension of the Higgs branch and flavor
central charges for non-Abelian simple group.

theory explicit flavor symmetry dH flavor central charges

T S [C([1N ], [1N ], [N − 1, 1])] SU(N)1 × SU(N)2 × U(1) N2 kSU(N)1 = kSU(N)2 = 2N

T S [C([1N ], [n2], [n, n− 1, 1])] (N = 2n ≥ 4) SU(N)× SU(2)× U(1)2 1
2
N(N + 3) kSU(N) = N , kSU(2) = 2N

T S [C([1N ], [n2, 1], [n+ 1, n])] (N = 2n+ 1 ≥ 5)

T S [C([16], [23], [4, 2])] SU(6)× SU(3)× U(1) 28 kSU(6) = 12, kSU(3) = 12

T S [C([2, 14], [23], [32])] SU(4)× SU(3)× SU(2)× U(1) 24 kSU(4) = 10, kSU(3) = 12,kSU(2) = 12

Table 2.1: Classification of the class S free hypermultiplets and their data
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Half-hypermultiplet

If we have an N=2 supersymmetry (not superconformal), we can diagonalize the anti-
commutators for physical states like {A†a, Ab} = δab(M ± Z) (a, b = 1, 2, 3, 4). The irre-
ducible representations are annihilated by A for example. In addition, the BPS repre-
sentation consists of the states annihilated by half of these combined supercharges A†.
Therefore, the dimension of that representation is four formed by |Ω〉, A†1|Ω〉, A†2|Ω〉 and
A†1A

2 † |Ω〉. |Ω〉 belongs to a representation R of the gauge/flavor group. This multiplet
is usually not CPT invariant (R is mapped into R∗) and the physical multiplet is doubled
to make them CPT invariant. But when R is pseudo-real, namely, an antisymmetric map
ε : R⊗ R→ 1 exists, this multiplet is CPT self-conjugate and physically allowed. This
is called half-hypermultiplet. Notice that ∧k� is the pseudo-real representation when
k = N/2 is odd.

As is well-known ( see, for example, [143]), the fourth homotopy groups π4G of simple
groups are Z2 when G = Sp(N), Sp(N)/Z2 (N = 1, 2, 3, . . .) and trivial otherwise.

In [144], the global anomaly exists when there exists the odd number of even di-
mensional representations of SU(2). To avoid that, we need the even number of half-
hypermultiplets and this is why only hypermultiplets are allowed in the SU(2) gauge
theory.

Bi-fundamental type

The first case T S [C([1N ], [1N ], [N − 1, 1])] is well-known to be the bi-fundamental free
hypermultiplet [14]. In fact, the bi-fundamental free hypermultiplets has SU(N)1 ×
SU(N)2 × U(1)-symmetry where U(1) is the baryon symmetry.

In them of N=1 chiral multiplets, the representation is given as (N,N, 1)⊕(N,N,−1)
and this means kSU(N)i = 2N × T (�) = 2N (i = 1, 2). The degree of freedom in H also
equals to dH = N2.

We can also see this fact from the associated Seiberg-Witten curves.

Second rank anti-symmetric type

Although the class S realizations of the even and odd cases look different, we discuss both
cases at the same time because the 4D physical properties are uniformly treated.

We have two cases. In the case that N = 2n (N ≥ 4 or n ≥ 2) is even, the theory
T S [C([1N ], [n2], [n, n− 1, 1])] is rank 0. In the case that N = 2n+ 1 (N ≥ 5 or n ≥ 2) is
odd, the theory T S [C([1N ], [n2, 1], [n+ 1, n])] is also rank 0.

However, the following arguments are independent from the even-odd property of N .
Indeed, we can read off explicit flavor symmetry as SU(N) × SU(2) × U(1)2 for N ≥ 5
and SU(N)× SU(2)2 × U(1) when N = 4. In both cases, kSU(N) = 2N and kSU(2) = 2N
(kSU(2)1 = 8 and kSU(2)2 = 6 when N = 4) holds true. The dimension of Higgs branch is
given by dH = 1

2
N(N + 3).
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The matter content, namely, the representation in terms of the chiral multiplets, sat-
isfying these conditions is following :

(N,2, ∗)⊕ (N,2, ∗)⊕ (∧2N,1, ∗)⊕ (∧2N,1, ∗) (2.4.8)

where ∗ represents an undetermined U(1) charge. When N = 4,

(4,2,1, ∗)⊕ (4,2,1, ∗)⊕ (∧26,1,2, ∗). (2.4.9)

We can see in Sec. 3.6 that this conjecture is consistent with the 4D/2D duality relation
conjecture by deriving the SCI expression.

Exceptional case 1 : TS [C([16], [23], [4,2])]

In this case, the flavor symmetry is SU(6)× SU(3)×U(1), the flavor central charges are
kSU(6) = 12 and kSU(3) = 12 and the Higgs branch dimension is dH = 28.

The candidates satisfying the above conditions are the following two cases:

(∧36 = 20,1, ∗)⊕ (6,3, ∗)⊕ (6,3, ∗) (2.4.10)

or

(∧36 = 20,1, ∗)⊕ (∧36 = 20,1, ∗)⊕ (1,Adj = 8, ∗)⊕ (1,Adj = 8, ∗). (2.4.11)

In the author’s knowledge, we cannot determine which candidate is actually true. How-
ever, we will see that the former case is true by the SCI computation. 14)

Exceptional case 2 : TS [C([2,14], [23], [32])]

In this case, the flavor symmetry is SU(4) × SU(3) × SU(2) × U(1), the flavor central
charges are kSU(4) = 10, kSU(3) = 12 and kSU(2) = 12 and the Higgs branch dimension is
dH = 24.

The candidate of the matter content is given by

(∧24 = 6,1,2, ∗)⊕ (4,3,1, ∗)⊕ (4,3,1, ∗)⊕ (1,3,2, ∗)⊕ (1,3,2, ∗) (2.4.12)

and this is reproduced by computing the corresponding SCI in Sec. 3.6.

2.4.3 Rank 1 SCFT

Among the rank 1 SCFTs, we focus on the special rank 1 SCFTs with larger global
symmetries. See [14,41,145,146].

14)Naively speaking, if the latter case is true, there may exists a SU(2) symmetry but such symmetry
does not appear.
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E6 SCFT in A2-type

The first example of rank 1 SCFT we consider is the the E6 theory of Minahan and
Nemeshcansky theory [147] or T3-theory which appeared at the strong coupling limit of the
SU(3) Nf = 6 superconformal QCD [41]. The corresponding punctured Riemann surface
is the 2-sphere with three maximal/full punctures and the 4D theory is represented by
T S [C([13], [13], [13])] as we see above. Although it was found in the analysis of the SU(3)
Nf = 6 Seiberg-Witten curve originally [147], we rephrase them from the punctured
Riemann surface [14].

It can be also realized as a seven-three branes system in the type IIB string theory
[145, 148]. In that set-up, the flavor symmetry and the Higgs branch of the theory on
the D3-branes are the gauge symmetry and the instanton moduli of the theory on the
seven branes respectively. Indeed, the dimension of the one-instanton moduli of E6 after
removing the center mode is given by h∨E6

− 1 = 11. This is another evidence.
Let us start from the SU(3)Nf = 6 SCFT. This is constructed from two bi-fundamental

hypermultiplets T S [C([13], [13], [2, 1])] by gauging each SU(3) flavor symmetry and then
specified by T S [C([13], [13], [2, 1], [2, 1])]. Now, we have other duality frame corresponding
to different pants decomposition like

T S [C([13], [13], [2, 1], [2, 1])]→ T S [C([13], [13], [13])] + T S [C([13], [2, 1], [2, 1])]. (2.4.13)

T S [C([13], [13], [13]) is exactly the T3 theory. However, a subtle problem happens. To
see this, let us consider the remnant theory T S [C([13], [2, 1], [2, 1])]. On computing the
dimension of Coulomb branch, the formal number of the Coulomb branch operators whose
scaling dimension is 3 is negative, namely, −1. This implies that the total theory has not
SU(3) symmetry but only subgroup. Indeed, this is true and SU(3) is broken to SU(2).
In terms of the Higgs branch, the formal Higgs branch dimension is 7 but, at a generic
point, SU(3) cannot be completely Higgsed after gauging. If there remains SU(2) gauge
symmetry in the reduction form 6D to 4D, five NG hypermultiplets are eaten by gauge
bosons and there remains only two which charged under SU(2). Indeed, the flavor central
charge kSU(2) contributing from this and TN theory is given by 2 and 6 respectively, and
the β-function of this SU(2) gauge coupling vanishes. These theories with different flavor
symmetries between at UV and at IR are called bad [149].

E7 SCFT in A3-type

The next SCFT is expected to have E7 symmetry and given by T S [C([14], [14], [2, 2])].
There is one Coulomb branch operator with the scaling dimension 4 and the Higgs branch
dimension is 17. With the same reason before, this coincides with the dimension of the
instanton moduli space h∨E7

− 1 = 17.
Let us remark the class S construction from some Lagrangian theory. Using the pre-

vious results in free hypermultiplets, the theory T S [C([14], [3, 1], [2, 2], [2, 1, 1])] is realized
as SU(4) gauge theory with three fundamental hypermultiplet and single third-rank an-

48



tisymmetric half-hypermultiplet like

T S [C([14], [3, 1], [2, 2], [2, 1, 1])] = T S [C([14]G, [1
4], [3, 1])] +G T

S [C([14]G, [2, 2], [2, 1, 1])].
(2.4.14)

Now let us consider another decomposition like

T S [C([14], [3, 1], [2, 2], [2, 1, 1])] = T S [C([14]H , [1
4], [2, 2])] +H T

S [C([14]H , [3, 1], [2, 1, 1])].
(2.4.15)

In the same reason as before, SU(4) gauge symmetry is broken to its subgroup, actually,
SU(3) gauge symmetry. The formal Higgs branch dimension of the theory T S [C([14]H , [3, 1], [2, 1, 1])]
is 13. After the gauging process, there remain 6 hypermultiplets in the IR. If they forms
the fundamental representations of SU(3), there are two such hypermultiplets whose cen-
tral charges is given by kSU(3) = 4. The sum of central charges is 12 which assures that
this is conformally gauged.

E8 SCFT in A5-type

The final rank 1 SCFT is given by T S [C([16], [23], [32])]. There is one Coulomb branch
operator with the scaling dimension 6 and the Higgs branch dimension is 29 = h∨E8

− 1.
The class S construction from some Lagrangian theory is following. We can construct

SU(6) conformal gauge theory with five fundamental hypermultiplets, single second-
rank anti-fundamental hypermultiplets and single third-rank anti-fundamental hypermul-
tiplets. That is to say, (� ⊕ �)⊕5 ⊕ (∧2� ⊕ ∧2�) ⊕ (∧3�). That SQCD corresponds to
T S [C([23], [32], [4, 2], [3, 2, 1])] in the class S language.

T S [C([23], [32], [4, 2], [3, 2, 1])] = T S [C([16]G, [3
2], [3, 2, 1])] +G T

S [C([16]G, [2
3], [4, 2])].

(2.4.16)

Other decomposition we consider is given by

T S [C([23], [32], [4, 2], [3, 2, 1])] = T S [C([16]H , [2
3], [32])] +H T

S [C([16]H , [3, 2, 1], [4, 2])].
(2.4.17)

In this case, the additional coupling theory is T S [C([16]H , [3, 2, 1], [4, 2])]. The formal
Higgs branch dimension is given by 26 and the number of the formal Coulomb branch op-
erator with the scaling dimension 6 is −1. It is expected that SU(6) is broken into SU(5)
in this case. In this case, if we assume that all belong to the fundamental representation
of SU(5), SU(5) symmetry is not conformally gauged. To make it conformally coupled,
the remaining 15 hypermultiplets should be the sum of single fundamental hypermultiplet
and single second-rank anti-symmetric hypermultiplet. Indeed, the flavor central charge
for these matters is given by 2 + 6 = 8 and that from the rank 1 SCFT sector is 12. The
sum cancels the contribution −20 from the SU(5) vector multiplet.
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Chapter 3

Superconformal index and 2D
q-deformed Yang-Mills

First of all, let us define the full superconformal indices (SCIs) in the absence of any
defects. [31]. When we add several conformal BPS-defects, the original superconformal
symmetry is partially broken. However, using this general definition, we can define the
superconformal indices in the presence of these defects in the same way.

In particular, in 4D N=2 superconformal case, they are formal power series of three
variables each coefficient of which is a polynomial of flavor fugacities. 1)Furthermore, there
are many special limits : Macdonald limits, Schur limit, Hall-Littlewood limit Coulomb
limit. In this thesis, we mainly focus on the Schur limit 2) and, in this limit, the SCIs are
usually called Schur indices. Only this limit allow the loop operators ( and domain walls)
although the surface operators are allowed in any cases. In this special case, there are two
other approaches to Schur indices : the vacuum characters of hidden chiral algebras [140]
and the trace of Kontsevich-Soibelman quantum monodromy operators associated to their
IR BPS quivers [36,150,151].

3.1 State-operator correspondence

One of the most important properties (but assumption) of CFT is the state-operator
correspondence. Consider any d-dimensional connected open region with a local operator
inserted at a point inside it. After removing the point, it has a non-trivial topology like
R × Sd−1 which allows us to reinterpret the first R-component as a new time direction.
In other words, we view some d − 1 dimensional surfaces surrounding that point as the
time slice. If we have an exact symmetry which generates the translation along the radial
direction, we have the new Hamiltonian which equals to the dilatation operator in the

1)I do not know the proof for general 4D N=2 SC theories but this claim holds true for free hypermul-
tiplets and vector multiplets.

2)There are two Schur limits, q = t and p = t, which are exchanged under a SO(4) rotational symmetry
(z, w −→ w,−z).

50



flat Euclidean space. This happens for CFTs or, TQFTs which are more symmetric and
where there are many candidates for the new Hamiltonian.
HSd−1

r
denotes the Hilbert space over the Sd−1

r which is the d− 1 dimensional sphere
with the radius r. The scaling symmetry suggests the isomorphism between the Hilbert
space with different radii

HSd−1
r1
' HSd−1

r2
(3.1.1)

and, hereafter, we denote the representative space HSd−1 .
In this set-up, the state-operator correspondence claims that there is a natural iso-

morphism 3) between the local operators and the states of HSd−1 . In particular, in the
unitary theory, the vacuum state |Ω〉 have zero eigenvalue which is minimum for the scal-
ing operator D. Therefore, the identity operator corresponds to the vacuum state. Now,
the general map from operators into states is simple:

|φ〉 := φ(0)|Ω〉 = lim
x→0

φ(x)|Ω〉 (3.1.2)

and this means that the eigenvalues of each generators of the symmetry for |ψ〉 if diago-
nalized equal to that of local operators.

Conversely, if we specify all the weights of the symmetry group, the corresponding local
operators are expected to be almost unique, at least, we have no general way to distinguish
them. Here we assume that the inverse map from any state into local operators exists.

In the discussion of superconformal theories, there is an important class of local opera-
tors called superconformal primary (or chiral primary). In d = 4, we use this terminology

for the operators O(x) satisfying the condition [S,O(0)} = [S̃,O(0)} = 0. See the nota-
tion in Appendix. B. In the state language, this means that the states are annihilated by
S, S̃. The superconformal primary property automatically assures the primary condition
[Kµ,O(0)] = 0 and O(x) is called a primary operator.

Conformal mapping

Next, we show that Rd\{0} and Sd−1 × R are conformally equivalent. In the above
discussion, we do not need this mapping at all. However, this map naturally introduces
the supersymmetry on Sd−1. In other words, we can discuss the defects configurations in
the original flat space and the unbroken symmetry algebra associated to them.

Let us consider a following conformal map

ϕ : Rd\{0} −→ Sd−1 × R

∈ ∈

(xa) 7−→ (ΩSd−1 , τ := log(r))
(3.1.3)

3)Here, we ignore the structures other than additions and symmetry actions, namley, the operator
product expansion (OPE), for example.
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where the Euclidean Rd is equipped with a natural Descartes coordinate {xa}, {0} is its
origin and r :=

√
xaxa.

4) These two geometries with natural metrics are conformally
equivalent because of

ds2
Rd = dxadxa = dr2 + r2dΩSd−1 = r2

(
dr2

r2
+ dΩSd−1

)
= e2τ

(
dτ 2 + dΩSd−1

)
= e2τds2

R×Sd−1 .

(3.1.4)

When d = 4, notice that the natural U(1)2 action on C2 are identified with the Cartan
U(1)2 in SO(4) acting on S3 if we take a complex structure and identify R4 as C2 following
it.

The S1 compactification does not break neither supersymmetry and conformal sym-
metry, and after this conformal mapping, we usually perform this reduction. This implies
the equivalence between the superconformal indices and Sd−1×S1 partition functions [32].
In fact, this is true in some sense, however, when d = 4 at least, there is a subtle difference
usually called supersymmetric Casimir energies , or some anomaly not removed by finite
supersymmetric counter terms [152–155], finally related to the central charges a, c. In this
thesis, we ignore this subtle quantity.

Conjugation

In the ordinary canonical quantization, the Hilbert space consists of the set of normalized
functions over Rd−1 and the Hamiltonian H = P 0 acts on it. Any wave function is
a functional over such configuration space. Similarly, in the the radial quantization,
the normalized functions over Sd−1 give the new Hilbert space HSd−1 on which the new
Hamiltonian D (dilatation/scaling operator) acts. The state-operator correspondence
says that any element of HSd−1 is generated by a local operator insertion.

Hereafter, unless we refer to, we use the symbol † as the conjugation in the radial
quantization sometimes called BPZ conjugation. Roughly speaking, this operation cor-
responds to τ → −τ (inversion). An in-state identified as a local operator at the origin
is mapped into an out-state identified as that at the infinity. In the original conjugation
on R3 × R, the translation generators Pµ are mapped into themselves. However, in this
conjugation, they are mapped into the special conformal translation generator Kµ. See
also the BPZ conjugation part in Appendix. B.

Conformal defect

Let us consider non-local defects not breaking the scaling symmetry. Such defects must
pass through the origin at least. 5)Among them, we consider defect locus preserving the

4)In the Minkowski metric, this space is conformally equivalent to AdS2 × S2 which do not have any
global time. Therefore, SCIs are defined only in the Euclidean CFT in this thesis.

5)We can map such defects into others not passing thourgh the origin with the broken symmetry
generators. Such generators change the defects locus by definition. Strictly speaking, in the context of
SCIs, we only allow the generators commuting the supercharges to define the SCIs.
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maximal symmetry as possible. The natural choice of such locus of the codimension
q conformal defects in Rd is the hyperplane Rd−q. Since they extend along the radian
direction, after the conformal mapping, the defect locus is Sd−q−1 in Sd−1.

In these cases, the Hilbert space is the wave functional satisfying some boundary
conditions, for example. In the operator language, it is expected that the corresponding
operators are the defect local operators induced by 4D local operators.

More precisely, we have two interpretations at least in gauge theories. One interpreta-
tion is natural in the line operators, namely, codimension one defects, of gauge theories.
They are bulk local operators which can be line changing operators or junction operators
in general [151]. The other interpretation is also natural in coupled systems in gauge the-
ories with gauge symmetry G. If we have a bulk local operator φA(0) in a representation

R for G and a defect local operator φ̃A(0) in R∗ for G which may be the flavor symmetry
for defect theories, after gauging, there is a composite gauge-singlet operator like

(φAφ̃
A)(0) (3.1.5)

and, in the SCI languages, it counts such composite operators satisfying some BPS con-
ditions as discussed later.

3.2 General definition

Let sc be the superconformal algebra. In the important case d = 4, sc = su(2, 2|N )
(N=1, 2, 3) or psu(2, 2|4) (N=4). See Appendix. B.

By the definition of the super Lie algebra, sc is decomposed into two parts as follows:

scB := {X ∈ sc
∣∣ (−1)FX = X(−1)F } (3.2.1)

scF := {X ∈ sc
∣∣ (−1)FX = −X(−1)F } (3.2.2)

where (−1)F is the operator giving the Z2 grading structure in sc. Notice that scB is
closed under the Lie bracket but scF is not so, that is to say, {scF , scF} ⊂ scB where {, }
is the super Lie bracket. Let h be the Cartan subalgebra of scB including so(1, 1). 6) In
addition to the super Lie algebra structure, there is a involution called the conjugation
in the canonical quantization. As remarked before, the † operation depends on the time
axis and we also use † associated to the radial quantization.

6)In general, some Lie algebras over R has several Cartan subalgebras which are non-conjugate each
other. However, in the d dimensional Euclidean conformal theory, scB is considered to consist of the
conformal algebra so(d + 1, 1) and the R-symmetry algebra which may be a compact Lie algebra. The
later algebra has the unique Cartan subalgebra. The former one also has the unique one when d is even
but two different ones when d is odd [156]. There, we choose the Cartan subalgebra whose Lie group has
a non-compact direction. Notice also that, in the Minkowski CFT cases, the above statement does not
hold true for all d.
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Comments on choices of Q
Now, let us pick up a supercharge denoted Q which is an element of C∗\(scF\{0}) (scaling
is not irrelevant). Then, we can define a superconformal index for each choice of Q.
However, in usual, we have several essentially different SCIs. Let us discuss this briefly
before defining SCIs. First of all, we can divide † operation as we easily see from the
definition remarked later. Next, let us consider SCB = Exp(scB)-orbit of Q denoted
SCB(Q) := {ρ(g)Q | g ∈ SCB} where ρ is the representation to which the supercharges
belong. Any supercharge in SCB(Q) may give the same SCI.7) In 4D N=2 case, as vector
spaces, scF ' (4,2) ⊕ (4,2) under SO(5, 1)C × U(2)R. There, we identify this as a pair

of 2× 4 matrices Q = (Q, S̃) and Q̃ = (Q̃,S). To have the maximal bosonic symmetry,
it is expected that Q must belong to either representation of SO(5, 1)C × U(2)R, that is

to say, either C = 0 or C̃ = 0 for Q = Tr [CQ] + Tr
[
C̃Q̃

]
where C, C̃ are 4× 2 matrices.

Then, the choice of C after the quotient by SO(5, 1) × U(2) is expected to be classified

by the rank, namely, 1 or 2. The first case is Q̃+̇
1 and the latter case is Q̃+̇

1 + Q̃−̇2 which
corresponds to the pq = t limit (See Sec. B.1.1). When the bosonic symmetry is allowed

to be smaller, we can take linear combinations of elements both from Q and from Q̃.
This includes the Schur limit we will focus on later.

Weights for the commutant group of Q
As it is well believed in quantum mechanics, any state is specified by the eigenvalues of
all generators (sometimes called weights) which commute each other up to the label of
finite degeneracy. To see such generators, let us define the commutant of Q and Q† at
first.

z := zsc(Q,Q†) := {X ∈ sc
∣∣ [X,Q} = [X,Q†} = 0} (3.2.3)

Next, let y be a maximal and commutative subalgebra in scB ∩ z. Since E := {Q,Q†} ∈ z
and [{Q,Q†}, Y ] = 0 for ∀Y ∈ y by definition, E = {Q,Q†} ∈ y always holds true.
Furthermore, {Q,Q†} includes D which is a generator of non-compact algebra, namely,
R. Then, in general, Lie(y) ' U(1)` × R when the R-symmetry is compact group. We
assume that this subalgebra is unique up to the conjugacy action of scB ∩ z after we fix
Q.

Suppose {Yα}α generate y and are linearly independent each other. GF and f denote
the global symmetry and its Cartan subalgebra which is unique up to the conjugacy
action. {Fi}i are their basis of f.

In summary, the Cartan subalgebra which commutes with Q is generated by

E , Yα=1,2,...,`, Fi=1,2,...,rkGF (3.2.4)

7)Here we assume that for any Q′ ∈ SCB(Q), there exists g ∈ SCB such that Q′ = gQg−1. Then,
y′ = gyg−1 in the above definition.
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Fermion number

The super Lie algebra is graded by (−1)F called “Fermion number”. Indeed, to define
the SCI, we must specify the action of (−1)F on the Hilbert space. Rigorously speaking,
(−1)F is not an element of the superconformal algebra and we want to express it in terms
of the algebra, actually, its Lie group of scB. 8)

For that purpose, recall the property (−1)FQ = −Q(−1)F and (−1)FQ† = −Q†(−1)F .
If we take L satisfying

[L,Q] =
1

2
Q mod ZQ, (3.2.5)

it is possible to define it as

(−1)F := exp (2πiL) . (3.2.6)

Furthermore, we need the condition [(−1)F , Yα] = 0. When h is a Cartan subalgebra
including y, L ∈ h is sufficient condition for this and we take L from h. Notice that there
is ambiguity of the choice because of the addition of h.

In the 4D theory, we have one choice L = j1 + j2, namely, (−1)F = e2πi(j1+j2) where j1

and j2 are the Cartan of SO(4) isometry. This choice is maybe natural by recalling the
spin-statistical theorem where F is exactly the fermion number. In the case of 4D N=2
systems, this can be also true for L = −I, namely, (−1)F = e2πiI where I is the Cartan
of SU(2)R symmetry or for L = r which is the Cartan of the U(1)r-symmetry. We will
see this ambiguity of choice later.

If we define Q to be a natural basis, namely, the eigenstate of the action of h, we can
always say

h = y⊕ y⊥ (3.2.7)

where

y⊥ = RL y = RE ⊕
⊕

α

RYα. (3.2.8)

In this discussion, when we choose Q be the above simple one, the maximal number
of fugacities associated to the superconformal symmetry is given by dim h− 2.

Superconformal index

Now, we can define the fully refined superconformal indices by

I(a; b, y) := TrH
Sd−1

[
(−1)F bE

∏

α

yYαα
∏

i

aFii

]
. (3.2.9)

8)Strictly speaking, we cannot identify (−1)F for sc and (−1)F in the SCI in general. Instead, we have
a weaker condition that (−1)F plays a role of Z2-grading operator for y. In fact, only the property to
define SCI is {(−1)F ,Q} = 0, ((−1)F )† = (−1)F and [(−1)F , Yα] = [(−1)F , Fi] = 0. However, through
this thesis, we use the same symbols both for sc and for the SCIs.
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where the action of (−1)F on the Hilbert space is defined later. Notice that the SCIs
depends on the choice of Q up to the inner automorphism Inn(sc) as seen before. There-
fore, if the duality acts on the supercharge non-trivially (map to the different SCB-orbit)
such as the 3D N=4 mirror symmetry, we care about the supercharge choice in the du-
ality check. However, in 4D with any supercharges, since it is believed that there is no
non-trivial actions up to phase (See a footnote in [45] for N=4), we have no troubles in
the later discussion.

Next, we discuss several properties about this quantities.

3.2.1 b-independence

Grading

To this end, let us decompose Hilbert space according to its weights discussed above. First
of all, it decomposes into the bosonic sector and the fermionic sector following (−1)F as

HSd−1 = HB
Sd−1 ⊕HF

Sd−1 . (3.2.10)

9) On the other hand, we have the weights (other than E here) decomposition as

HSd−1 =
⊕

yα,fi

H(yα,fi)

Sd−1 . (3.2.11)

Non-BPS cancellations

Here we see that the contributions from the Hilbert space with E > 0 cancels.
There are two important properties to show this. One is the unitarity implying that

there is no zero norm in the physical Hilbert space except zero itself. The other is that,
in the quantum mechanical description, the Hamiltonian E (either in the radial or in the
ordinary quantization) is generated by odd charges Q in the algebra of symmetry.

Let us take one of states |v〉 := |E, yα, fi;α〉 ∈ Ker(Q) with definite charges for Yα and
Fi and positive E (the eigenvalue of E) where α is other labels if exits. 10) Then, Q†|v〉
has the same charges. (Q†)2 = 0 and Q(Q†|v〉) = E|v〉 mean that |v〉 and Q†|v〉 forms
an irreducible representation of the super algebra 〈Q,Q†, E | {Q,Q†} = E〉 when E 6= 0.
This also means

H(E>0,y,f),B

Sd−1 ' H(E>0,y,f),F

Sd−1 . (3.2.12)

Furthermore, the unitarity implies

|| Q†|v〉 ||2 = 〈v|{Q,Q†}|v〉 = E ≥ 0. (3.2.13)

9)We do not discuss other possibilities like (−1)F acts on the state as the non-real phase.
10)We can always take the state in Ker(Q) because Q commutes with the charges and Q2 = 0 means

Im(Q) ⊂ Ker(Q).
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and E = 0 is equivalent to |v〉 ∈ Ker(Q†).
In summary,

HBPS
Sd−1 := HE=0

Sd−1 ' Ker(Q) ∩Ker(Q†) (3.2.14)

HE>0
Sd−1 = 2pair ⊗ V (3.2.15)

where 2pair is the above irreducible representation and V is the vector space for the label
α.

Since Tr2pair

[
(−1)F

]
= 0, it is enough to take the trace over HBPS

Sd−1 . So, the index has
the form like

I(a; y) =
∑

y,f

∏

α,i

yxαα afii TrHBPS,(yα,fi)
Sd−1

[
(−1)F

]
(3.2.16)

where we assumed that the eigenvalues are discrete. Now, the SCI is clearly b-independent
and we can drop off the b in the expressions. 11)

3.2.2 A few comments

Constant series over conformal manifolds

The SCIs are expected to be invariant under any exactly marginal deformation. 12) In 4D
N=2 SCFTs, the holomorphic gauge couplings are such parameters and it is believed that
they are only possible deformations. Since the SCIs just count the BPS local operators
with Z2-grading, and each coefficient is always integer. Therefore, there are two possibil-
ities : discontinuous changes of the coefficients and continuous changes of the exponents
of fugacities. The former case does not happen because we focus on the Hilbert space on
the compact space and the long multiplets do not contribute to the SCI.

Let us remark on the latter case. Since the weights of compact Lie groups are discrete,
only the scaling dimensions and r-charges of BPS operators can be continuous. However,
in all the known examples, they are discretized, namely, valued in the integer multiples
of some fractional number. Moreover, according to [157], we can restrict the form of the
exactly marginal operators13) which ensures the vanishing of three points correlators of
two chiral operators and any single exactly marginal operator.

The independence of SCIs from the holomorphic couplings enables us to evaluate them
at any point of the conformal manifold. As seen in Sec. 3.4.1 in the 4D N=2 SCFTs,
we can evaluate them at the weakly coupled region where some almost free Lagrangian
descriptions may exist. In other words, we can compute the SCIs in the near free limit
if exists. In such regions, the Lagrangian consist of those of hypermultiplets and vector
multiplets and it is enough to evaluate it for each multiplet and finally to couple them.

11)We also assume that each BPS Hilbert space over Sd−1 is finite dimensional.
12)As commented in [31], all the deformation operators commuting with the chosen supercharge to

define the SCI are allowed.
13)We greatfully thank Y.Tachikawa for telling us this fact and K.Yonekura for proving the invariance

of SCI based on this fact.
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In the class S cases, by construction, the conformal manifolds are identified with the
Teichmüller spaces which are moduli spaces of punctured Riemann surfaces C.

Let C ,T Sg and Ip,q,t be the set of all the punctured Riemann surface with the holonomies
data at punctures and with the complex moduli, a map from C to the set of 4D N=2
SCFTs T4D N=2 SCFT and the SCI map from T4D N=2 SCFT to Cp,q,t,{a} = Z[[p1/2, q1/2, t±1/2]]⊗
Z((a)) where p, q and t are fugacities for y as introduced later in Sec. 3.4 and Z((a)) (a
is the set of flavor fugacities) depends on the theory respectively. 14) After the choice of
C other than the complex moduli, the composition Zg,p,q,t := Ip,q,t ◦ T Sg |C (C) is the map
from the moduli spaceMC of C to Cp,q,t,{a} but constant from the above discussion. The
important point is that Zg,p,q,t can be regarded as a TQFT correlator on C. In Sec. 3.5,
we see that Zg,p,q,t in some special limit (q = t) is essentially same as the 2D topological
q-deformed Yang-Mills correlators.

At the most singular point of MC , C fully degenerate to a trivalent graph Γ and we
can evaluate the above map. Let IΓ be the integral expression of it based on the gauging
operations (discussed below) where there is an integral over a subgroup of H in G at
each internal edge. Therefore, when we have two different degenerations Γ1 and Γ2, there
should be the equality IΓ1 = IΓ2 ∈ Cp,q,t,{a} which is highly non-trivial. Notice that these
infinitely many non-trivial equalities becomes trivial, however, after the identification as
the q-deformed Yang-Mills correlators.

Unitarity bound

First of all, recall that we have the degree of freedom to change the basis {Yα}α of y. If we
have the special basis written as Ŷβ := {Q̂†β, Q̂β} by using Q̂ for some β’s, the eigenvalues

of Ŷβ are non-negative on HSd−1 . This is because, in unitary theories, the squared norm
of any physical state is positive and Qβ map any physical state to other physical state or
0. ŷα is uniquely defined by

∏

α

yYαα =
∏

α

ŷŶαα . (3.2.17)

One way to find the above Q̂’s is to take them from

x := z ∩ scF (3.2.18)

where {x, x} ⊂ y.
When we view the SCIs as the formal polynomial of ỹβ where β may not run over all

indices of the new basis of y, their exponents are always non-negative.

Gauging process

The final comment is on the “gauging” of flavor symmetries.

14)Here we ignore the rigourous mathematical treatments and do not insert any defects.
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Consider several superconformal theories with a simple flavor symmetry G at least
denoted by Ti = Ti[G] (i = 1, 2, . . . , s) and assume that they are conformally gauged
together, that is to say, the sum of the flavor symmetry central charge kG,i associated to

G equals to 4h∨G. Then, the SCI of the resulting theory denoted by T̂ is given by

IT̂ ({zA}A) =

∮

TG
[da]∆Haar(a)Ivector(a)

s∏

i=1

ITi(a, {zi,αi}αi) (3.2.19)

where {zi,αi}αi is the other fugacities set of the i-th theory Ti and {zA}A represents the
total set of them. Here we use the Weyl’s integration formula stating

∫

G

[dU ]f(U) =

∮

Trkg
[da]∆Haar(a)f(a) (3.2.20)

where a ∈ Trkg, f is the class function over G which means f(U) = f g(U) := f(gUg−1)
for ∀ g ∈ G. ∆(a)Haar is the Haar measure coming from the fiber (or the adjoint orbit)
integration. In the case g = su(N),

∫

SU(N)

[dU ]f(U) =
1

N !

∮

TN−1

N−1∏

i=1

dai
2πiai

∆(a)∆(a−1)f(a)

∣∣∣∣∣
aN=

∏
i a
−1
i

(3.2.21)

where we also introduced new symbols

∮

TN−1

N−1∏

i=1

dai
2πiai

=:

∮
[da]

∮
[da]∆Haar(a) =:

∮
[da]Haar (3.2.22)

∆Haar(a) =
1

N !
∆(a)∆(a−1) =

1

N !

∏

i

a
−(N−1)
i

∏

i 6=j
(ai − aj) =

1

N !

∏

i 6=j
(1− ai

aj
) (3.2.23)

∆(a) :=
∏

i<j

(ai − aj) discriminant (3.2.24)

with the constraint a0 :=
∏N

i=1 ai = 1. 15)

3.3 Reduced SCIs

In many cases, the fully refined SCIs ( = the number of fugacities is maximal ) are hard to
treat although we can compute them if we have a Lagrangian description in some duality
frame. To simplify them, we can reduce the number of fugacities as long as the dimension
of each BPS Hilbert space is finite.

15)This corresponds to U(N)/U(1) ' PSU(N) = SU(N)/ZN case not SU(N) strictly speaking [98,158].

If Ai := ai/a
1/N
0 , Ai corresponds to the SU(N) fugacity. The above formula differs by |ZN | = N with

respect to this difference but we ignore this subtlety.
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More generally speaking, we may define the new indices by removing the divergent
part like

Ĩ(ã; ỹ) = lim
{a,y}→{ỹ,ã}

1

J (y; a)
I(y; a) (3.3.1)

where J (y; a) is some zero modes contributions which diverges at (a, y) = (ã, ỹ).

3.3.1 Poles of the index

The superconformal indices have infinitely many poles in the fugacity plane. Are there
any physical meanings for them ? To answer the questions, we explain the idea discussed
in [77].

For that purpose, let us go back to the flat space formulation. Let a be the fugacity
which we focus on and b be all others, namely, bg =

∏
i b
gi
i .

I(a, b) = TrHBPS

[
(−1)Fafbg

]
(3.3.2)

Now, we assume that we have the singular structure like

I =
Ĩ(a, b)

1− afObgO (3.3.3)

where we assume that fO is an integer. 16) It is expected that the singular part
1

1− afObgO
comes from a bosonic chiral operator O with charges f = fO, g = gO. The divergence
comes from the equal contributions of the sequence of operators

{O,O2,O3, . . .} (3.3.4)

which are powers of O. In other words, there is a zero mode at the special fugacities
choice.

Taking the residues corresponds to the removal of this zero mode and the set of a to
the special values consisting of b. The latter means that

Tr
[
(−1)F bf

new]
(3.3.5)

where fnew = f − fO
gO
g. Since O is uncharged under fnew, this new charge is preserved

when O has some VEV. This fact implies that the zero mode is the NG mode associated
to the symmetry breaking by a VEV of O and taking the residue corresponds to the SCI
in the IR after the RG flow triggered by the giving VEV to O.

When we apply this discussion to the free hypermultiplets and to the pole in the
U(1)B symmetry, it is expected that the multiplets produce a vortex at the UV and flows

16)At least, this is always possible when all the symmetry groups associated with a are compact.
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to a surface defect in the IR. In particular, we couple the free hypermultiplets to the
original theory at the UV and then, in the IR, we expect that the original theory with
the surface defect. Interestingly, this procedure results in the difference operator action
on the would-be gauged fugacity of the original theory.

Instead of performing the full computation, we see the simplest mathematical toy
model. The divergence comes from the contour pinch of the integral, namely, the pole
inside the contour and that outside collide in the limit corresponding to the residue.

For some function f(z) of z, consider

F (a, b) :=

∮

|z|=1−ε

dz

2πi

f(z)

(z − ab±)(z − q b±
a

)
(3.3.6)

where |a| = |b|, |q| < 1 and (x− ya±) := (x− ya)(x− ya−1). Using the residue theorem,
we have

F (a, b) =
a3bf(q b

a
)

q(a− q1/2)(a+ q1/2)(a− q1/2b)(a+ q1/2b)(b2 − 1)
+ (b→ b−1) (3.3.7)

+
∑

zi

f(zi)

(zi − ab±)(zi − q b±a )
(3.3.8)

where zi( 6= q1/2b±) are simple poles of f(z) inside the contour. F (a, b) have some poles
in the a-plane and we focus on one pole a = q1/2. Indeed, two simple poles z = ab± and
z = q b

±
a

in the original integrand coincide for each ±. Then, the residue is

Res
a=q1/2

F (a, b) = − b

2q(1− b2)2
f(q1/2b) + (b→ b−1) (3.3.9)

and the result can be written as the difference operator actions on z when we identify z
and b again. Notice that this is not just the change of the variable by multiplying q1/2.

3.4 4D N=2 superconformal indices

In this section, we focus on the 4D N=2 superconformal systems.
First of all, the superconformal algebra is given by

sc = su(2, 2|2) scB = su(2, 2)⊕ su(2)R ⊕ u(1)r (3.4.1)

and there are 16 supercharges : eight super Poincaré supercharges Q and eight supercon-
formal supercharges S. See Appendix. B. To use the recent standard notation in the 4D
N=2 SCIs, we quote the results in [40].

For QαA and Q̃α̇A, A, α and α̇ denote the indices of SU(2)R, SU(2)1 and SU(2)2

symmetry, respectively. The relation between Q and S is given by

(QαA)† = SαA (Q̃α̇A)† = −S̃ α̇A (3.4.2)
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where † is the BPZ conjugate.
The supercharge to define the SCI is usually chosen as

Q = Q̃1−̇. (3.4.3)

and the anti-commutator with Q† = S̃2+̇ is

E = 2Ỹ0 := {Q,Q†} = ∆ + r − 2j2 − 2I ≥ 0. (3.4.4)

The Hilbert space over S3 with E = 0 is given by

Ker(Q) ∩Ker(Q†) = H(∆=2j2+2I−r,j1,j2,I,r)
S3 (3.4.5)

where other fugacities ignored here.
Notice that all choices of Q from the supercharges with definite weights for the fixed

Cartan are equivalent under some involutions as follows.

z ←→ w SU(2)1 ←→ SU(2)2 Q ←→ Q̃
I → −I π-rotation in SU(2)R 1←→ 2
j1 → −j1 π-rotation in SU(2)1 +←→ −
j2 → −j2 π-rotation in SU(2)2 +̇←→ −̇
τ → −τ inversion in SO(1, 1)D Q ←→ S

We do not consider linear combinations of these supercharges although some appear
in the limit of fugacities. The above choice of Q is the case with the maximal fugacities
of superconformal symmetry. Since rkh = 4, rky = 3 is expected. Indeed,

x = 〈Q1−,Q1+, Q̃2+̇〉 (3.4.6)

and

y = 〈δ(Q1−), δ(Q1+), δ(Q̃2+̇)〉 (3.4.7)

holds true where we have introduced the new symbol δ(Q′) := 2{Q′†,Q′}. The discussion
in the unitarity bound part in 3.2.2 gives

2Ŷ1 = δ(Q1−) = ∆− 2j1 − 2I − r = 2Ŷ0 + 2(I + j2) (3.4.8)

2Ŷ2 = δ(Q1+) = ∆ + 2j1 − 2I − r = 2Ŷ0 + (j2 − j1 − r) (3.4.9)

2Ŷ3 = δ(Q̃2+̇) = ∆ + 2j2 + 2I + r = 2Ŷ0 + (j2 + j1 − r) (3.4.10)

and

ŷ1 =: ρ ŷ2 =: σ ŷ3 =: τ. (3.4.11)

Using this basis of fugacities,

I(a; b, ρ, σ, τ) = Tr
[
(−1)FρŶ1σŶ2τ Ŷ3e−βEa

]
(3.4.12)
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where b = e−β

Several choices of fugacities are used in [18,39,40] and they are related as follows:





ρ = t′v1/2y = q/
√
t

σ = t′v1/2y−1 = p/
√
t

τ = t′2v−1/2 = t1/2





t′ = (ρστ 2)1/6 = (pq)1/6

y = ρ−1/2σ1/2 =
√
p/q

v = (ρσ/τ)2/3 = (pq)2/3/t





p = στ = t′3y

q = ρτ = t′3y−1

t = τ 2 = t′4/v

(3.4.13)

Obeying the more recent convention, we use the (p, q, t) parameter representation. In
this basis of fugacities, the corresponding generators of y up to E are 17)

Y1 = j2 − j1 − r Y2 = j2 + j1 − r Y3 = I + r (3.4.14)

y1 = q y2 = p y3 = t. (3.4.15)

Fermion number convention

As discussed in 3.2, we have several choices of the Fermion number operator (−1)F . One
natural choice is

Lj = j1 + j2 (3.4.16)

and we use this choice through this thesis. However, other convention sometimes used
[151] is

LR = −I. (3.4.17)

However, the difference between two is in y and, indeed,

Lj − LR = j1 + j2 + I = Y2 + Y3 ∈ y. (3.4.18)

In terms of fugacity, this is just replacement of p, t by e2πip, e2πit. In the Schur limit, this
is the map from q1/2 to −q1/2. This difference of conventions is equivalent to that of the
conventions introduced in Sec. 4.2.

The other possible simple choice is

Lr = r (3.4.19)

and the difference between this and Lj is

Lj − Lr = j1 + j2 − r = Y2 ∈ y. (3.4.20)

17)Some references like [140] use the a bit different conventions where p and q are exchanged, or equiv-
alently, j1 is flipped −j1.
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Various limitation and index contribution from the short multiples of SCA

There are special important limitations : Macdonald limit (p → 0), Schur limit (q = t),
Hall-Littlewood (HL) limit (p, q → 0) and Coulomb limit (p, q, t → 0 for fixed T := pq

t
).

18)

Following the notations introduced in [159], we list which short multiplets contribute
to each index from [40].

At the index level,

B̂I = ĈI−1(−1/2,−1/2) DI(0,j2) = ĈI−1/2(−1/2,j2)

DI(j1,0) = ĈI−1/2(j1,−1/2) BI,r,(j1,0) = CI−1/2,r+1/2(j1,−1/2) (3.4.21)

and types B, C and E vanish.
First of all, for the full index,

CI,r(j1,j2) : −(−1)Fj(pq)j2−rtI+r
(1− pq

t
)(t− p)(t− q)(pj1+1q−j1 − p−j1qj1+1)

(1− p)(1− q)(p− q) (3.4.22)

ĈI(j1,j2) : (pq)j1+1tJ2−j1+I+1 (1− pq
t

)

(1− p)(1− q)(p− q)

[(
p

q

)j1
p

(
1

q
− 1

t

)
−
(
q

p

)j1
q

(
1

p
− 1

t

)]

(3.4.23)

Er(j1,0) : (−1)2j1

(
t

pq

)r+1
(t− p)(t− q)(pj1+1q−j1 − p−j1qj1+1)

t(1− p)(1− q)(p− q) (3.4.24)

D0(j1,0) : (−1)2j1

(
t

pq

)j1+1
1

(1− p)(1− q)(p− q)

×
[(

p

q

)j1
p

(
1 + t− q − 1

q

)
−
(
q

p

)j1
q

(
1 + t− p− 1

p

)]
(3.4.25)

D0(0,j2) : (−1)2j2+1 t
j2+1(1− pq

t
)

(1− p)(1− q) (3.4.26)

For the Macdonald index (p→ 0),

ĈI(j1,j2) : (−1)Fj
q2j1+1tj2−j1+I+1

1− q D0(j1,0) : (−1)2j1+1 q
2j1+1t−j1

1− q D0(0,j2) = (−1)2j2+1 t
j2+1

1− q .
(3.4.27)

For the Schur index (t→ q in the Macdonald index),

ĈI(j1,j2) : (−1)Fj
qj1+j2+I+2

1− q D0(j1,0) : (−1)2j1+1 q
j1+1

1− q D0(0,j2) = (−1)2j2+1 q
j2+1

1− q .
(3.4.28)

18)For computational convenience, we define q-Coulomb limit p, t→ 0. The Coulomb limit is obtained
with the further limit q → 0.
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For the Hall-Littlewood index (q → 0 in the Macdonald limit),

ĈI(− 1
2
,j2) : −(−1)2j2tj2+I+ 3

2 D0(0,j2) = (−1)2j2+1tj2+1. (3.4.29)

It is known that this index is equivalent to the Hilbert series on the Higgs branch [160].
Th examples are Ĉ0(0,0) : stress-energy tensor multiple, B̂1/2 : free hypermultiplet, B̂1

: flavor current multiplet and D0(0,0)⊕D0(0,0) : vector multiplet. We can easily check that
the corresponding single letter satisfies the above expressions.

Unitarity bound

The non-negativity condition of physical norms

2Ỹ1 = δ(Q1−) ≥ 0 2Ỹ2 = δ(Q1+) ≥ 0 2Ỹ3 = δ(Q̃2+̇) ≥ 0 (3.4.30)

with the constraint 2Ỹ0 = δ(Q̃2+̇) = 0 (3.4.10) claim that

I + j2 ≥ 0, j2 ± j1 − r ≥ 0. (3.4.31)

Notice also

∆ + r =
Ỹ0=0

2(I + j2) ≥ 0. (3.4.32)

When j2 linearly depends on the others, we have the constraints

∆ ≥ 2|j1|+ 2I + r ∆ ≥ −r. (3.4.33)

When ∆ linearly depends on the others, we have

j2 − |j1| − r ≥ 0 j2 +R ≥ 0. (3.4.34)

For the (ρ, σ, τ) parameter representation of SCIs, their exponents are always non-
negative by definition. For the (p, q, t) parameter representation, we can say that the
exponents of p, q are always non-negative and half-integers when r is integer.

Finally, let us discuss the unitarity bound in the particular limits. In the Macdonald
limit p→ 0, the condition j2 + j1 − r ≥ 0 becomes j2 + j1 = r. Using j2 − j1 ≥ r, j1 ≤ 0.
Combining the other bound I + j2 ≥ 0, I + j2− j1 ≥ 0 holds true. In the Hall-Littlewood
limit p, q → 0, we have j1 = 0 and j2 = r. The left unitary bound is I + r = I + j2 ≥ 0.

On the other hand, in the Schur limit t→ q, there left two bosonic generators j2+j1−r
and j2 − j1 + I and the supercharge Q2− accidentally commutes with both, that is to
say, there happens the ”supersymmetry enhancement”. This means that only the state
belonging to Ker(Q2−) contribute the SCIs. Since 2δ(Q2−) =

Ỹ0=0
j1 + j2− r, there happens

the additional constraint j1 + j2 = r for the contributing states. This is exactly the same
as the Macdonald limit and we have the condition ∆ − I = I + j2 − j1 ≥ 0. 19) In
conclusion, the exponent of q in the Schur limit is always non-negative.

19)The corresponding supercharge is given by
√

2Q̃−̇2 +Q2+.
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Single letter functions

As discussed in Sec.3.2.2, we can evaluate the SCI at the almost zero coupling region,
namely , at the free limit. The free fields contributing to SCIs, that is to say, satisfying
the condition E = 0 are listed in Table. 3.1.

Letters full Macdonald Schur HL q-Coulomb

vector
multiplet





φ pq
t

0 0← (p) 0 T
λ1+ −p 0 0← (−p) 0 0
λ1− −q −q −q 0 −q → 0

λ1+̇ −t −t −q −t 0
F +̇+̇ pq 0 0← (pq) 0 0

∂−+̇λ1+ + ∂++̇λ1− = 0 pq 0 0← (pq) 0 0
half-hyper-
multiplet

{
Q t

1
2 t

1
2 q

1
2 t

1
2 0

ψ+̇ − pq

t
1
2

0 0← (−pq 1
2 ) 0 0

descendant

{
∂++̇ p 0 0← (p) 0 0
∂−+̇ q q q 0 0

Table 3.1: Single letter and their associated fugacities in each limit.

Because of the Dirac equation (the on-shell condition) ∂−+̇λ1+ + ∂++̇λ1− = 0 (re-
call that we must discuss the operators on the “physical” Hilbert space), two letters
∂
n±
±+̇
∂−+̇λ1+ and ∂

n±
±+̇
∂++̇λ1− coincides and the overlap must be subtracted. The combina-

tion of the minus sign comes from this subtraction and their contribution are −pq gives
pq in the Table 3.1.

We can compute each contribution called single letter from each BPS multiplet [161].
In particular, let us compute the vector multiplet case and the half-hypermultiplet case
with respect to the weights of y. Using the Table. 3.1,

f
1
2
H(p, q, t) =

pq
t

+ 2pq − p− q − t
(1− p)(1− q) (3.4.35)

fV (p, q, t) =
t1/2(1− pq

t
)

(1− p)(1− q) . (3.4.36)

The flavor symmetry part is simple. If a multiplet follows the representation R for the
flavor symmetry F , by definition of characters, the contribution is given by χFR(a) where
a is the corresponding fugacities.

3.4.1 Evaluations of Indices based on free Lagrangians

Now, let us remark the computation procedure when we have some Lagrangian. See the
definitions and formulae in Appendix. C.1.
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Fundamental SCIs from single letter functions

Using the single letter function (3.4.36), we can evaluate the SCI as

I full
multiplet(a; p, q, t) = exp

[ ∞∑

n=1

1

n
fmultiplet(p

n, qn, tn)χFR(an)

]
=: P.E.[fmultiplet(p, q, t)χ

F
R(a)]

(3.4.37)

where P.E. is called the plethystic exponential.

Vector multiplet SCI : I full
vector(a)

Using the equations (C.1.23) and (C.1.21), we can see

Ifullvector(a) := exp

( ∞∑

n=1

1

n
fV (pn, qn, tn)χAdj(a

n)

)

= exp

( ∞∑

n=1

1

n

−pn − qn − tn + pnqn(2 + 1/tn)

(1− pn)(1− qn)

[
N∑

i,j=1 i 6=j

(
ai
aj

)n
+N − 1

])

=

(
(p; p)(q; q)

Γ(t; p, q)

)N−1∏

i<j

(
1

(1− ai/aj)(1− aj/ai)
1

Γ((ai/aj)±; p, q)Γ(t(aj/ai)±; p, q)

)

(3.4.38)

=

(
(p; p)(q; q)

Γ(t; p, q)

)N−1
1

∆(a)∆(a−1)

∏

i 6=j

(
Γ(pqt−1(ai/aj); p, q)

Γ((ai/aj); p, q)

)
. (3.4.39)

Half-hypermultiplet SCI : I full
hyper(a)

Let us see the SU(N) × SU(N) bi-fundamental half-hypermultiplet case and SU(2) tri-
fundamental half-hypermultiplet case.

In the bi-fundamental case, the global symmetry is given by SU(N)A × SU(N)B ×
U(1)B whose class S realization is T S [C([1N ], [1N ], [N − 1, 1])] as we have seen in Sec. 2.4.
Let a, b and m be the fugacities of SU(N)A, SU(N)B and U(1)B respectively. Now, the
full SCI for the half-hypermultiplet is given as

Ifullb.f. h.h.(a, b,m) := exp

( ∞∑

n=1

1

n
f

1
2
H(pn, qn, tn)mnχ

SU(N)
� (an)χ

SU(N)
� (bn)

)
(3.4.40)

= exp

( ∞∑

n=1

1

n

tn/2(1− pnqn/tn)

(1− pn)(1− qn)

N∑

i,j=1

(maibj)
n

)

=
N∏

i,j=1

Γ(
√
t(bxiyj); p, q). (3.4.41)
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The other similar example is the SU(2) tri-fundamental half-hypermultiplet.

I full
t.f. h.h.(a, b, c) := exp

( ∞∑

n=1

1

n
f

1
2
H(pn, qn, tn)

[
χ
SU(2)
� (an)χ

SU(2)
� (bn)χ

SU(2)
� (cn)

])
(3.4.42)

= exp

( ∞∑

n=1

1

n

tn/2(1− pnqn/tn)

(1− pn)(1− qn)
(a±b±c±)n

)

= Γ(
√
t(a±b±c±); p, q). (3.4.43)

3.4.2 Results in various limit

In this subsection, we summarize the expressions I(m)
multiplet for the superconformal index

with respect to a single flavor charge (weight) in the various limits. The final answer is
given as their products over all the weights.

I full
multiplet(a; p, q, t) =

∏

w∈Π(R)

I(m),full
multiplet(a

w) (3.4.44)

For the vector multiplet of the simple Lie group G, R is always the adjoint represen-
tation Adj.

I(m),full
vector (x) :=

1

(1− x)Γ(x; p, q)Γ(tx−1; p, q)
=

Γ(pq
t
x; p, q)

(1− x)Γ(x; p, q)
(3.4.45)

I(m),full
hyper (x) := Γ(t

1
2x; p, q) (3.4.46)

where I(m),full
vector (x) does not coincide with P.E.

[
fV (p, q, t)χGAd(x)

]
and see the derivation

around (C.1.23). In the Macdonald limit,

I(m),Macdonald
vector (x) := lim

p→0
I(m),full

vector (x) = (qx; q)∞( t
x
; q)∞ (3.4.47)

I(m),Macdonald
hyper (x) := lim

p→0
I(m),full

hyper (x) =
1

(t
1
2x; q)

(3.4.48)

where we have used (C.1.20).
In the Schur limit,

I(m),Schur
vector (x) := lim

q→t
I(m),Macdonald

vector (x) =
θ(x; q)

1− x = (qx±)∞ (3.4.49)

I(m),Schur
hyper (x) := lim

q→t
I(m),Macdonald

hyper (x) =
1

(q
1
2x; q)∞

(3.4.50)

and, for the pair of the opposite charges,

I(m),Schur
hyper (x±) =

1

θ(q
1
2x)

. (3.4.51)
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In the Hall-Littlewood limit,

I(m),HL
vector (x) := lim

q→0
I(m),Macdonald

vector (x) = 1− t

x
(3.4.52)

I(m),HL
hyper (x) := lim

q→0
I(m),Macdonald

hyper (x) =
1

1− t 1
2x
. (3.4.53)

In the Coulomb limit,

I(m),q−Coulmob
vector (x) := lim

p→0
I(m),full

vector (x) =
(qx; q)∞
(Tx; q)∞

q→0−→ 1

1− Tx =: I(m),Coulmob
vector (x) (3.4.54)

I(m),q−Coulomb
hyper (x) := lim

p→0
I(m),full

hyper (x) = 1 := I(m),Coulmob
hyper (x) (3.4.55)

where T :=
pq

t
and q are fixed in p→ 0. We have also used the equality

lim
p→0

Γ(p
1
2y; p, q) = 1. (3.4.56)

In particular, using (C.1.18),

I(m),full
vector (1) =

(p; p)∞(q; q)∞
Γ(t; p, q)

(3.4.57)

I(m),Macdonald
vector (1) = (q; q)∞(t; q)∞ (3.4.58)

I(m),Schur
vector (1) = (q; q)2

∞ (3.4.59)

I(m),HL
vector (1) = 1− t (3.4.60)

I(m),q−Coulmob
vector (1) =

1

1− T = I(m),Coulmob
vector (1) (3.4.61)

which corresponds to the neutrally charged vector multiplet, to say, including the photon.

Gauging process

We revisit the gauging process.

PaQ
a :=

∫

G

[dU ] Ivector(U)P(U)Q(U−1) (3.4.62)

=
(Γ(pq/t; p, q)(p; p)(q; q))rkg

|Wg|

∮
[da]

∏

α∈∆g

Γ(pqt−1aα; p, q)

Γ(aα; p, q)
P(a)Q(a−1) (3.4.63)

=

∮
[da]

∮
[db]η(a, b)P(a)Q(b−1) (3.4.64)

and

γp,q,t := Γ(pq/t; p, q)(p; p)(q; q) =
(p; p)(q; q)

Γ(t; p, q)
(3.4.65)
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η(a, b) := Iv(a)∆̃(a)δ(ab) =
γrkg
p,q,t

|Wg|
∏

α∈∆g

Γ(pqt−1aα; p, q)

Γ(aα; p, q)
δ(ab) (3.4.66)

where

∮
[da]δ(a) = 1.

Pole

We also roughly look at the pole structure. The contribution of some descendant of the
chiral operator O may have the form, at the leading order,

1

1− prqsafO (3.4.67)

where afO =
∏

i

a
fO,i
i and a can include p, q and t other than the flavor fugacities.

In this case, the operator is given by (∂z)
r (∂w

)sO and, at the classical level, they can
acquire the constant VEV like

〈(∂z)m
(
∂w
)nO〉infitinyspace ∼ vδm,rδn,s (3.4.68)

and O has a variant VEV

O ∼ vzrws (3.4.69)

for large |z|, |w|.

3.5 4D/2D duality : class S Schur indices and 2D

q-deformed Yang-Mills correlators

In this section, we further focus on the Schur limit. The important result throughout
this thesis is the 4D/2D duality relations. In a special case, this claims that the class
S 4D Schur indices are equivalent to the 2D q-deformed topological Yang-Mills partition
functions [39].

As we have seen in Sec. 2.4, all the class S theories are constructed from several TN
theories by conformally gauging some flavor groups G and by partially closing some full
punctures into required ones. Hereafter, we focus on g = su(N). The discussion in the
g = so(2N) case is discussed in [162].

In [39], they proposed the conjecture that, for every (good) class S theory, up to the
common overall factors depending only N and q, its Schur index equals to the partition
function of 2D topological q-deformed Yang-Mills theory on C with appropriate prescrip-
tions for punctures.
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First of all, let us directly define the three points correlator as

ZqY M [C([1N ], [1N ], [1N ])](a, b, c) =
∑

λ∈P(su(N))

χR(a)χR(b)χR(c)

dimq R(λ)
. (3.5.1)

Gluing them together as discussed in Sec. 3.8, we can construct the `-points correlators
as

ZqY M [C(` · [1N ])](a = {ai}i=1,...,N) =
∑

λ∈P(su(N))

(dimq R(λ))χ̃C
∏̀

i=1

χR(ai). (3.5.2)

where χ̃C is the Euler character of the punctured Riemann surface C. Notice that χ̃C =
χC − ` where χC is the ordinary Euler character on ignoring the punctures.

The difference between ZqY M(a; q) and ISchur(a; q) consists of two factors : each factor
associated to each puncture and overall factor. The factor associated to each puncture is
given by

K(a; q) = K[1N ](a; q) =
1

ISchur
vector(a; q)1/2

=
3.4.50

∏

α∈Adj

1

(qaα)
(3.5.3)

and the overall factor is given by

N (q) := K[N ](; q) =
N∏

i=2

(qi; q). (3.5.4)

Now, we have the relation

ISchur[C(` · [1N ])](a; q) = N (q)
∏̀

i=1

K(ai)ZqY M [C(` · [1N ])](a) (3.5.5)

In the N = 2 case, the T2 theory is just 8 free half-hypermultiplets and we already
know both expressions. However, either side (the Schur index) is the infinite product and
the other side (q-deformed Yang-Mills) is the infinite summation. To prove the equality,
we must analyze the poles and the residues. In the N = 3 case, the direct computation
of the Schur index of the T3 theory is difficult but was derived in [163] by using some
inversion formula for cycle integrals.

Next, let us consider the effect of the partial closure in Sec. 2.4.1. Recall the equation
(2.4.7). This relation and the RG invariance implies

q−I
3
IRaIR = q−I

3
UV aY (3.5.6)

where aIR is the fugacities in the Cartan subgroup of GY and aY belong to TN−1. There-
fore, the partially closing operation on each maximal puncture is equivalent to the follow-
ing replacement [39,77,142] :

aY −→ q
ρ3
Y

2 aIR. (3.5.7)
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As for the notation used here, see the beginning of Sec. 4.3.
However, in this limit, the factor K(a; q) diverge. Recalling the discussion in Sec. 3.3,

there appears some zero modes from the symmetry breaking of the SU(N) symmetry into
the subgroup GY .

As seen before, the embedding ρ : su(2) → su(N) for Nahm boundary describe the
mixture of SU(2)R symmetry and the flavor symmetry SU(N) because µ+ is the highest
weight of the SU(2)R-triplet. In other words, the SU(2)UVR singlet matter in N for the
SU(N) symmetry are charged under SU(2)IRR following the decomposition

N −→
⊕

i

ni. (3.5.8)

Under the SU(2)IRR ×GY symmetry, the N matter belongs to

⊕

i

ni =
⊕

a

ma ⊗ da (3.5.9)

for Y = [n], GY = S(
∏

a U(da)). This is true for the gauge multiplet. Under the
G→ SU(2)R ×GY ,

Adj −→
⊕

m

m⊗Rm (3.5.10)

where Rm is the representation under GY and m runs over a subset of the irreducible
representations of SU(2), namely, positive integer (dimension).

Therefore, recalling that the expression for K[1N ](a; q) is the product over all the
weights of the gauge multiplet, the reduced expression should be given by the product
of the factor (q1+Iaw; q)∞ (j2 − j1 = 1) over all the weights w of Rd and over possible d.
Therefore, the reduced expression is given by

KY (aIR; q) =
∏

d

∏

w∈Π(Rd)

1

(q
d+1

2 awIR)
(3.5.11)

where aIR is the fugacity of GY . Notice that the highest of d for SU(2)IRR has the

additional
d− 1

2
charge compared to the UV where the gaugino (not all) contribute to

SCIs as qaw. This reproduces the rule given in [39].
By introducing the new function for each Y defined as

ψ
(Y )
R (a; q) := KY (a; q)χR(aY ), (3.5.12)

we write down the complete expression of general class S Schur indices as

ISchur
TS [C(Y1,Y2,...,Y`)

(a; q) = N (q)
∑

λ∈P(su(N))

(dimq R(λ))χ̃C
∏̀

i=1

ψR(aGYi ; q). (3.5.13)
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3.6 Concrete computations from 2D q-deformed Yang-

Mills theory

In this section, we compare the two expressions of free hypermultiplets between the direct
computation and the q-deformed Yang-Mills theory. To this end, we expand them in the
parameter q around 0 (|q| < 1).

For any free hypermultiplet, by using (3.4.50), the expression has the form like

ISchur
freehyper(a; q) = 1 + q1/2

∑

w

aw + q

( ∑

w1 6=w2

aw1+w2 +
∑

w

a2w

)
+O(q3/2) (3.6.1)

= 1 + q1/2
∑

w

aw + q


1

2

(∑

w

aw

)2

+
1

2

∑

w

a2w


+O(q3/2) (3.6.2)

where w runs over all the weights for the whole flavor symmetry F .

Prefactors

For example, the prefactor associated with the full puncture is given as

K[1N ](a; q) =
1∏

α∈Adj(qa
α)∞

= 1 + qχAdj(a) + q2

[ ∑

α∈Adj

(a2α + aα) +
1

2

∑

α 6=β∈Adj

aα+β

]
(3.6.3)

+ q3

[ ∑

α∈Adj

(a3α + aα) +
∑

α,β∈Adj

aαaβ +
∑

α 6=β∈Adj

a2α+β +
1

3!

∑

α,β,γ∈Adjdistinct

aα+β+γ

]
+O(q4)

= 1 + qχAdj(a) + q2

[
1

2
χAdj(a)2 +

1

2
χAdj(a

2) + χAdj(a)

]

+ q3

[
1

6
χAdj(a)3 +

1

2
χAdj(a)χAdj(a

2) +
1

3
χAdj(a

3) + χAdj(a)2 + χAdj(a)

]
+O(q4) (3.6.4)

= 1 + qχAdj(a) + q2
[
χ2(ω1+ωN−1) + χω2+ωN−2

+ 2χω1+ωN−1
+ 1
]

+ q3
[
χ3(ω1+ωN−1)(a) + 2χ2(ω1+ωN−1)(a) + 5χω1+ωN−1

(a) + 2

+ χω1+ω2+ωN−2+ωN−1
(a) + 2χω2+ωN−2

(a) + 2χω2+2ωN−1
(a) + 2χ2ω1+ωN−2

(a)

+ χω3+ωN−3
(a)
]

+O(q4) (3.6.5)

where N ≥ 7.
When N = 2,

1

(q)∞(qa±2)∞
= 1 + qχ

SU(2)
3 (a) + q2

[
χ
SU(2)
5 (a) + χ

SU(2)
3 (a) + 1

]
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+ q3
[
χ
SU(2)
7 (a) + χ

SU(2)
5 (a) + 3χ

SU(2)
3 (a) + 1

]
+O(q4). (3.6.6)

Wehn N = 3,

1∏
α∈Adj(su(3))(qa

α)∞
= 1 + qχ

SU(3)
[11] (a) + q2

[
χ
SU(3)
[22] (a) + 2χ

SU(3)
[11] (a) + 1

]

+ q3
[
χ
SU(3)
[33] (a) + 2χ

SU(3)
[22] (a) + 4χ

SU(3)
[11] (a) + 2 + 2χ

SU(3)
[30] (a) + 2χ

SU(3)
[03] (a)

]
+O(q4).

(3.6.7)

For instance, for the simple puncture,

K[N−1,1](a; q) =
1∏N−1

d=1 (qd)∞(qN/2a±)∞

=
(
1 + q + 3q2 +O(q3)

) (
1 + qN/2(a+ a−1) + qN/2+1(a+ a−1) +O(qN , qN/2+2)

)

=





1 + q + q3/2(a+ a−1) + 3q2 + 2q5/2(a+ a−1) +O(q3) for N = 3

1 + q + q2(a+ a−1 + 3) +O(q3) for N = 4

1 + q + 3q2 + q5/2(a+ a−1) +O(q3) for N = 5

1 + q + 3q2 +O(q3) for N > 6.

(3.6.8)

q-deformed Yang-Mills part

First of all, we can expand the inverse of q-dimension as

1

dimq R(λ)
=qρ

αλα(1−#{α | λα 6= 0}+O(q2)) (3.6.9)

where

ρα =
1

2
α(N − α). (3.6.10)

Therefore, the leading exponent is given by

gR :=
1

2

N−1∑

α=1

α(N − α)λα. (3.6.11)

For characters,

χR(λ)(aY ) =:qρ
α
L;Y λα(fR,Y (aGY ) +O(q1/2)) (3.6.12)

where ραL,Y ≤ 0 for α = 1, 2, . . . , N − 1. For Y = [1N ], ραL,Y = 0. For Y = [1N ],
ραL,Y = −1

2
α(N − α). See Table. 3.2 for the A5 example.

In the total expressions,

∑

λ∈P(su(N))

∏n
i=1 χR(λ)(ai,Yi)

(dimq R(λ))−χ̃
=

∑

λ∈P(su(N))

q(−χρα+
∑
ραL;Yi

)λa
(
fR({a}) +O(q1/2)

)
(3.6.13)
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and we can see that the leading exponent is linear in the dominant weight. To have a well-
defined q-series, we must require that Lα := (−χρα+

∑
ραL;Yi

) > 0 for all α. We conjecture
that this is always true for any good class S theories whose formal number of the Coulomb
branch operators at each scaling dimension is non-negative [91]. In particular, for bad
theories with vanishing ραL,Y , we can compute the Schur indices but δ functions appear to

reproduce the symmetry breaking. 20)

[16] [214] [2212] [23]
[0, 0, 0, 0, 0] [-1, -1, -1, -1, -1] [-1, -2, -2, -2, -1] [-1, -2, -3, -2, -1]
[1, 2, 3, 4, 5] [1, 2, 3, 4, 4] [1, 2, 3, 3, 4] [1, 2, 2, 3, 4]

[313] [321] [32] [412]
[-2, -2, -2, -2, -2] [-2, -3, -3, -3, -2] [-2, -4, -4, -4, -2] [-3, -4, -4, -4, -3]

[1, 2, 3, 3, 3] [1, 2, 2, 3, 3] [1, 1, 2, 2, 3] [1, 2, 2, 2, 2]

[42] [51] [6]
[-3, -4, -5, -4, -3] [-4, -6, -6, -6, -4] [-5, -8, -9, -8, -5]

[1, 1, 2, 2, 2] [1, 1, 1, 1, 1] [0, 0, 0, 0, 0]

Table 3.2: The list for g = su(6) (A5) : the puncture type Y = [n], 2ραL,Y and the numbers
of Coulomb branch operators with scaling dimensions 2, 3, 4, 5, 6 in this order.

Bi-fundamental type : T S [C([1N ], [1N ], [N − 1, 1])]

ψ
([N−1,1])
R (a; q) = K[N−1,1](a; q)χR(qρ[N−1,1]aν[N−1,1]) = 1 + q1/2 +O(q) (3.6.14)

and

fR(a) =




a
−NλN

2 + a
−NλN

2 +1 for N : even and λN
2
6= 0

a
−Nλ

[N+1
2 ] for N : otherwise

(3.6.15)

See (A.1.6) for λi.

ραsimple,L =

{
1
2
α2 − 1

2
(N − 1)α for 1 ≤ α ≤ [N

2
]

1
2
α2 − 1

2
(N + 1)α + 1

2
N for [N

2
] + 1 ≤ α ≤ N − 1

(3.6.16)

gR + ραsimple,L(λR)α = 1
2

∑

1≤α≤[N
2

]

αλα + 1
2

∑

[N
2

]+1≤α≤N−1

(N − α)λα (3.6.17)

20)The author thanks Y.Tachikawa for the discussion on these things.
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where λN+1
2

= 0 when N is even. Since this is strictly increasing as any λα increases, this

assures that the SCI is well-defined as the q-expansion around q = 0.
Up to O(q), the following contributes to the computation.

q0 : R = · (3.6.18)

q1/2 : R = �,� (3.6.19)

q1 : R = Adj, Sym2�, Sym2�,∧2�,∧2� (3.6.20)

When N ≥ 3

I(a; q) = 1 + q1/2
[
zχ�(a)χ�(b) + z−1χ�(a)χ�(b)

]

+ q
[
z2 (χ∧2�(a)χ∧2�(b) + χ��(a)χ��(b)) + z−2 (χ∧2�(a)χ∧2�(b) + χ��(a)χ��(b))

+ (χAdj(a) + 1) (χAdj(b) + 1)] +O(q3/2) (3.6.21)

By using the equality

χ�(a2)χ�(b2) = 2χ∧2�(a)χ∧2�(b) + 2χ��(a)χ��(b)− χ�(a)2χ�(b)2, (3.6.22)

the above expression matches with the original expression (3.6.2) up to q1-order.

Second rank anti-symmetric type

In this case,

La =





[
a+ 1

2

]
for 1 ≤ a ≤

[
N
2

]
[
N − a+ 1

2

]
for

[
N+1

2

]
≤ a ≤ N − 1

(3.6.23)

and, up to O(q1/2),

q0 : R = · (3.6.24)

q1/2 : R = �,�,∧2�,∧2�. (3.6.25)

In case that N = 2n is even, b[n,n] = (qρnb1, q
ρnb2) (b1b2 = 1) and c[n,n−1,1] =

(qρnc1, q
ρn−1c2, c3) (cn1c

n−1
2 c3 = 1). On the other hand, in the case that N is odd,

b̃[n,n,1] = (qρn b̃1, q
ρn b̃2, b̃3) (b̃1

n
b̃2

n
b̃3 = 1) and c̃[n+1,n] = (qρn+1 c̃1, q

ρn c̃2) (c̃1
n+1c̃2

n = 1).
From the concrete computations, we will find the relation between two as

b = (b̃1/b̃2)1/2 ci = (b̃1b̃2)1/2c̃i for i = 1, 2. (3.6.26)

When N = 4, SU(2) and U(1) fugacity is given by c = c1c2 (c−1 = c1c3) and c1 respec-
tively.
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At q1/2 order, the Schur index is given by

q1/2 : χ
SU(N)
� (a)χ

SU(2)
� (b)c1 + χ

SU(N)

∧2� (a)c1c2 + (c.c.) (3.6.27)

where (c.c.) is obtained by replacement of each fugacity x by x−1.
Using the above computations, we can determine the undetermined U(1)-charges as

N = 4

(4,2,1, 1)⊕ (4,2,1,−1)⊕ (6,1,2, 0) (3.6.28)

N : even

(N,2, (1, 0))⊕ (N,2, (−1, 0))⊕ (∧2N,1, (1, 1))⊕ (∧2N,1, (−1,−1)) (3.6.29)

N : odd

(N, (2, 1), 1)⊕ (N, (2,−1),−1)⊕ (∧2N, (1, 2),− 2
N−1

)⊕ (∧2N, (1− 2), 2
N−1

) (3.6.30)

where we adopt the normalizations of U(1)-charges as c1 (N = 4), c1, c2 (N : even) and

b̃1, c̃1 (N : odd).

Exceptional case 1 : TS [C([16], [23], [4,2])]

In this case,

La = (1, 2, 1, 2, 1) (3.6.31)

and

q0 : R = · (3.6.32)

q1/2 : R = �,�,∧3� ' ∧3� (3.6.33)

Up to q1/2,

ISchur
ex1.freehyper(aSU(6), bSU(3), cU(1); q) = 1 + q1/2

[
χ6(a)χ3(b)c+ χ6(a)χ3(b)c−1 + χ20(a)

]
+O(q)

(3.6.34)

and then we can find

(20,1, 0)⊕ (6,3, 1)⊕ (6,3,−1) (3.6.35)

is the answer.

Exceptional case 2 : TS [C([2,14], [23], [32])]

La = (1, 1, 1, 1, 1) (3.6.36)
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and

q0 : R = · (3.6.37)

q1/2 : R = ∧α� for α = 1, 2, 3, 4, 5 (3.6.38)

(3.6.39)

The computation supports

(6,1,2, 0)⊕ (4,3,1, 1
2
)⊕ (4,3,1,−1

2
)⊕ (1,3,2, 1)⊕ (1,3,2,−1) (3.6.40)

which exactly coincides with the analysis before up to U(1) charge.

3.7 Defect indices

Now, let us turn to the system with defects. If we have (BPS) defects, they break the
original superconformal symmetry into the less one. The strategy to define the SCI is
totally same if we use the unbroken superconformal algebra. However, in general, the
number of fugacities is reduced and several unitarity bounds are no more true.

In our case, the full superconformal algebra is su(2, 2|2) and its bosonic part is
SO(4, 2) × SU(2)R × U(1)r in the Minkowski signature. The Cartan subalgebra is h =
u(1)1 ⊕ u(1)2 ⊕ so(1, 1)D ⊕ u(1)I ⊕ u(1)r.

3.7.1 SCIs with surface defects

There exist two special types of surface defects which preserve the bosonic subalgebra
gbsurf,i = so(2, 2)i,D×so(2)ī. For both cases, whole the Cartan subalgebra remain unbroken
hsurf = h and we can define the full SCI.

However, as discussed in Appendix. B.1.1, some unitarity bound do not hold. This
breakdown of the unitarity bound do not ensure the well-definedness of SCIs.

3.7.2 SCIs with loop defects

In this case, gbloop,i = sl(2,R)⊕ so(2)ī⊕ su(2)R. The rank of Cartan subalgebra is reduced
by 2. Indeed, the SCI is defined only in the Schur limit. See Appendix. B.1.1 for the
detail. 21)

3.8 2D toplogical q-deformed Yang-Mills theory

In this section, we briefly explain the basis facts about 2D q-deformed Yang-Mills theory.
Instead of giving the statistical mechanical rigorous definition based on quantum groups
[164] [73], we see that they give a 2D TQFT correlators.

See [74,165] on the q-deformed Yang-Mills, and see also a review [72] when q = 1.

21)In the appendix convention, the loop operators defined at another Schur limit p = t which exchange
the two C planes.
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3.8.1 Brief reviews on the partition functions and loops expec-
tation values

In this section, we review the following three points :

1. Formula for no network defect cases

2. Gluing (= gauging process on the 4D side)

3. Formula in the presence of loops

Let us introduce the q-number as

[n]q :=
qn/2 − q−n/2
q1/2 − q−1/2

. (3.8.1)

dimq R denotes the q-dimension of an irreducible representation R. See (E.1.7) for its
definition.

1. Formula for no network defect cases

When C̃ is a genus g̃ Riemann surface with ñ punctures with SU(N) holonomies, 22) its
partition function IC̃({z}) is given by [74]

IC̃({z}) =
∑

R

(dimq R)χC̃
n∏

i=1

χR(zi) (3.8.2)

where R runs over all unitary irreducible representations of SU(N), {z} represents the
set of holonomies and i is the index of punctures.

For each summand labelled by R, we can represent the Riemann surface with which
R is assigned. This interpretation will be important later.

2. Gluing

There is a natural operation, gluing, which identifies two holonomies on different punctures
and connect them geometrically. On the 4D SCFT side, there are two SU(N) flavor
symmetries which are identified by adding the vector multiplet [149].

If we have two pairs of a Riemann surface with punctures and generic networks on it
allowing the case of empty, which are denoted by (CA,ΓA) and (CB,ΓB), we can construct
new one (CAB,ΓA t ΓB) by gluing each pair of several punctures. See Fig. 3.1. Let
IC,Γ({z}) be the expectation values of the 2D topological q-deformed Yang-Mills theory
on C with a Wilson network defect Γ. The corresponding expectation values can be
constructed as

ICAB ,ΓAtΓB({a}, {b}) =
∏

i

(∮
[dzi]Haar

)
ICA,ΓA({z−1}, {a})ICB ,ΓB({z}, {b}) (3.8.3)

22)In the language of class S theory, they are called maximal (or full) punctures.
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z

a
b

CA CB

Figure 3.1: Any Riemann surface can be constructed from more fundamental ones by
gluing pairs of punctures as dashed lines.

where [dz]Haar is the Haar measure of SU(N) introduced in (3.2.22), {z} are gauged fugac-
ities and {a} and {b} are ungauged ones on CA and CB, respectively. The independence
of the order in the glues is obvious.

3. Formula in the presence of loops

According to the result in [47,48], the SCI in the presence of 4D loop operators turns out
to coincide with the VEV of Wilson loops in the 2D q-deformed Yang-Mills as discussed
in [75]. This can be obtained by simply adding the corresponding SU(N) character on
gluing as seen soon later.

In this case, Γ is a pure loop γ along a one cycle in C as depicted in Fig. 3.2. Let us

RW

CA CB

RBRA γ

Figure 3.2: A 2D Wilson loop in RW around the cylindrical part in C.

cut along the Wilson loop labelled by an irreducible representation RW , which is exactly
the reversed operation to the previous gluing process, and assume that they are separated
after the cut for simplicity. 23) Let z denote the new holonomy or fugacity along the new
boundary cycle. Using the new Riemann surfaces CA and CB which have two additional
punctures in total compared to C, we can express the Wilson loop expectation value of
the 2D q-deformed Yang-Mills as

IC,γ({a}) =

∮
[dz]HaarχRW (z)ICA(z−1, {a})ICB(z, {b}) (3.8.4)

=
∑

RA,RB

N RA
RBRW

(dimq RA)χCA (dimq RB)χCB
∏

i

χRA(ai)
∏

i

χRB(bi) (3.8.5)

23)If not, it is enough to replace two expectation values ICA and ICB by a single one in (3.8.4).
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RW

RA RB

Figure 3.3: Two adjacent regions across an edge labelled by RW .

where N RA
RBRW

is the Littlewood-Richardson coefficient which counts the multiplicity of
the representation RA appearing in the tensor product of RB and RW . The recursive
applications can give the computations in all the general cases that Γ consists of multiple
loops and networks.

If we have two isolated regions across an edge labelled by RW , to each summand in
(3.8.5), we can assign irreducible representations RA and RB to CA and CB, respectively.
See Fig.3.3. The summand vanishes unless N RA

RBRW
6= 0 and then we have the constraint

RB ∈ RA ⊗ RW meaning that the irreducible decomposition of RA ⊗ RB includes RW .
In particular, in our convention, the charge on each edge is a fundamental representation
∧a� and the above constraint on RA and RB becomes powerful, which will turn out to
be useful in the analysis in Sec. 4.5.2.

Let us make a few remarks. When ZR denotes the center charge of R, this constraint
leads to ZRB + a = ZRA mod N when RW = ∧a�. This implies that the expectation
values vanish unless all the intersection numbers of any one cycles 24) with the Wilson
networks vanish. For example, in the case that C is an once-punctured torus, the expec-
tation value of the fundamental Wilson loop along α-cycle vanishes. In particular, when
the puncture is special called simple or minimum, this introduces a Wilson loop in � in
some duality frames on the 4D SU(N) gauge theory side but it is localized at a point in
S3 which is a compact space. Its center charge is not screened by the dynamical matter
because all belongs to the adjoint representations and this theory is anomalous because
there is a single source with a non-trivial Abelian charge on the compact space [12,166].

24)We define it by summing up all the intersecting edge’s charges flowing from the left to the right along
the one cycle following its orientation.
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Chapter 4

Geometrical Eyes on Class S Defects

Now that we have reviewed several subjects necessary to discuss the geometrical descrip-
tions of 4D BPS-defects originating from the codimension four defects in 6D.

The first discussion in this approach was done in [25]. In that paper, they constructed
a bijective map from the non-intersecting (unoriented) loops on C to the charge lattice
of Wilson-’t Hooft loops of the associated 4D theory when g = su(2). In particular, the
natural “coordinate” on the collection of loops called lamination corresponds to the choice
of duality frames via the pants decomposition. See Appendix. G for the details.

There arise several questions :

• Why non-intersecting ?

• How can we extend the results to higher rank cases (g = su(N)) ?

• What the intersections mean physically ?

The answer to the first question is simple [26]. The reason we only have to consider
non-intersecting loops on the Riemann surface for the A1 case is the existence of a skein
relation resolving each crossing into a sum of two non-crossing ones :

= q−1/2 + q1/2 , (4.0.1)

where q = eπib
2

in the Liouville theory and q = q1/2 in the q-deformed Yang-Mills.
Next, let us move to the answer to the second question. However, in the higher rank

cases, namely for SU(N) with N > 2 or equivalently for Ak with k = N − 1 > 1, there
is no such simple skein relation, since junctions of lines inevitably appear. This results
in the networks1) of lines on the Riemann surface, as already mentioned in [28,67]. Such
networks were treated and discussed in [62,68], putting special emphasis on the SU(3) case.
In [62] the analysis was mainly carried out using the approach of the higher Teichmüller

1)The same objects are also called as webs or spiders. In this paper, we only use the terminology
networks.
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theory classically (q = 1), and in [68] the study was done mainly in the framework of
Toda CFTs for general q. These analyses gave rise to the skein relations that had been
discovered in the context of mathematics before [167].

One of our aims in this chapter is to describe the skein relations of the networks in
the general SU(N) case. We have, for example, the relation

��

= q
1
N
−1

��

+ q
1
N

��

∧2�

� �

(4.0.2)

that reduces to the equation (4.0.1) when N = 2. These skein relations were first found
in [168] in the context of knot invariants.

The guiding principle for us is that the representation theory of the quantum group
SUq(N) underlies these networks and their skein relations. The relation of the loop
operators of 2d CFTs and the quantum group has been known for quite some time,
mainly in the context when q is a root of unity, see e.g. [169]. In the case of 2d q-
deformed Yang-Mills, the relation of their loops and the quantum group is very direct,
because the q-deformed Yang-Mills is a gauge theory whose gauge group is the quantum
group [73,164]. This is one of the main subjects in Sec. 4.2.

Finally, the answer to the third question is given in Sec. 4.1.
At this stage, let us define the class S skein relations.

Class S skein relations

Once we have introduced the 3D geometry discussed in Sec. 4.3.2, the meaning of skein
relations are exactly same as those in the knot theory. Instead, throughout this paper,
we use the skein relations in the following sense.

Let Wq[Γ]({a}) be the expectation value of the 2D Wilson network operator associated
with Γ in the 2D q-deformed Yang-Mills theory. {a} are all holonomies around punctures
of C. And let us consider two sub graphs γA and γB. For any pair of two graphs ΓA and
ΓB which include γA and γB respectively but are same on removing these sub graphs,
when the equality shown just below always holds true, we identify γA and γB and write
this as γA ∼ γB. The equality is

Wq[ΓA]({a}) = Cq(γA → γB)Wq[ΓB]({a}) (4.0.3)

where Cq(γA → γB) is a function of only q and independent of all holonomies around
punctures and is also determined by γA and γB only. 2) Notice that, in many cases, this

2)In all examples we know, Cq is a product of a polynomial of q
1
2 and a monomial with a negative

rational power of q. In addition, Cq = Cq−1 always holds true. This comes from the symmetry (an
assumption, however) of the 2D q-deformed Yang-Mills theory. Actually, we can compute the skein
relations in the 2D topological q-deformed Yang-Mills theory not in the Schur indices because they differ
by just the overall factors.
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relation is enough local and independent of the choice of C. Now we have the equivalence
relations ∼ and refer to them as the ”skein relations” hereafter.

Finally, we make a few comments. Under the parameter identification q = e2πib2

[75, 170] where b is a physical parameter in the Liouville/Toda CFT, the skein relations
are common both in the CFTs and in the 2D q-deformed Yang-Mills theory. This is
because the skein relations are expected to be the local relations about codimension four
defects in the 6D N=(2, 0) SCFTs and to be independent of the four dimensional global
background geometries, namely, the choice of S4

b or S1 ×q S3.
Notice also that the crossing skein relation may suggest the new direction of the 2D

q-deformed Yang-Mills theory but the appearance is not so obvious in this 2D theory
itself. However, this class S picture from the 6D N=(2, 0) SCFTs strongly suggest that.
See also Sec 4.3.2.

Finally, we dare to say that the above definition is a bit incomplete. Indeed, we will
discuss new kinds of skein relations in Sec. 5.2.

4.1 Loop operators in 4d and skein relations in 2d

In the Liouville theory, a Verlinde loop operator is defined in terms of monodromy actions
on the conformal block F along a loop γ. It is possible to insert more than one Verlinde
operator and LγALγBF 6= LγBLγAF in general when γA and γB intersect each other, as
we see from the concrete calculations. See Fig. 4.1 for an illustration.

γA

γB ↔ LγALγB 6= LγBLγA ↔

γA

γB

Figure 4.1: Non-commutativity of actions of loop operators.

Under the 2d-4d correspondence, the Verlinde operators map to loop operators of the
4d theory. Therefore, there should be a concept of ordering of loops on the 4d side, such
that the product becomes non-commutative. In this section we review how this ordering
arises, following [47,49,50,83]. See also the recent reviews [171,172].

4.1.1 Sums and products of loops

We consider the 4d set-ups where some kind of localization computations is possible.
Typically there is a supercharge preserved in the background, whose square involves a
linear combination of two isometries k1,2. Supersymmetric loops wrap along the direction
of k1 and sit at the fixed point of k2.
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In the neighborhood of the loop, we can approximate the geometry as S1 × C × R,
where k1 shifts the coordinate along S1 and k2 is the phase rotation of C. The loop now
wraps S1 and sits at the origin of C, and the position x ∈ R is arbitrary. Therefore, we
can place multiple loops L1,2,... on x1,2,... preserving the same supercharge.

This gives an intrinsic ordering of loops on the 4d side, and furthermore, the expecta-
tion values are unchanged under infinitesimal changes of the positions xi. The choice of
the local supersymmetric background at a loop can be characterized by a single parame-
ter which we denote by q. These statements can be explicitly checked in the case of the
localizations on S1 × S3 [28], S1 × R3 [49] and S4

b [30].
Given two types of loop defects L1 and L2, we denote loops placed at x ∈ R by Li(x).

We define a formal sum L1 + L2 of two loops by

〈· · · (L1 + L2)(x)〉 := 〈· · ·L1(x)〉+ 〈· · ·L2(x)〉 (4.1.1)

where the ellipses stand for other operator insertions. The product L1 · L2 of two loops
are now defined by

〈· · · (L1 · L2)(x)〉 := 〈· · ·L1(x1)L2(x2)〉 (4.1.2)

where we demand x1 > x > x2 so that L1 and L2 are the loops closest to x from the left
and from the right. Since the expectation values depend only on the order but independent
of the relative distance, this gives a consistent definition.

At this stage, we can make sense of the operator product expansion for defects. Sup-
pose that there is a set L1,2,... of loops which cannot be decomposed into any sum of other
simpler ones. We then have the following expansion of correlation functions

〈· · ·Li · Lj(x)〉 =
∑

k

ckij(q)〈· · ·Lk(x)〉 (4.1.3)

that can be written succinctly as

Li · Lj =
∑

k

ckij(q)Lk. (4.1.4)

The OPE coefficients ckij(q) are asymmetric under the exchange i↔ j due to the intrinsic
ordering along R. However, we can simultaneously flip the R direction and S1 direction
in the local S1 × C × R geometry to obtain another supersymmetric background. The
background is parameterized by q as remarked before, and we use the parameterization
such that this flip is represented by q 7→ q−1. Then we should have the relation

ckij(q) = ckji(q
−1). (4.1.5)

There is also an order for the defect networks on the two dimensional geometry side.
In order to make the relation between two orders, let us consider the case when the 4d
side is S4

b and the 2d side is the Liouville/Toda theory [17, 38]. In this case the Verlinde
operators associated to the networks on the 2d side act on the space Hconf of conformal
blocks, and the loop operators on the 4d side act on the space Hhemi of holomorphic
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γ2γ1

←→ Lγ1Lγ2|a〉 ←→

x

Lγ2

Lγ1

networks in 2d operators on H loops in 4d

Figure 4.2: Left: the part of networks γ1 and γ2. For any other crossing of γ1,2, γ1 is
always above γ2. Middle: the expressions acting on H = Hconf = Hhemi. Right: the
ordering on the 4d side, along R.

Nekrasov partition functions defined on a hemisphere [26, 27, 46, 68]. Since Hconf and
Hhemi are naturally isomorphic, we can see the relations among three orderings as shown
in Fig. 4.2.

Corresponding to (4.1.4), there should be the operator product expansions of defect
networks which are indeed skein relations as resolutions of the crossings. In Sec. 5.3, we
will see that we can calculate many OPE coefficients in terms of defect networks.

4.1.2 Non-commutativity and the angular momentum

Let us recall the origin of the non-commutativity when the geometry is globally S1×C×R,
following the discussions in [49,83]. Considering the S1 as the time direction, the partition
function of S1 × C× R is given by

Ω = TrH
[
(−1)F e2πiλJ3

]
(4.1.6)

where H is the Hilbert space of the system, J3 = J3 + I3 is the sum of the spin along R
and the Cartan of the SU(2) R-symmetry. Our parameter q is then given by q = eπiλ.

Suppose now that we have a U(1) gauge theory, that the first loop L1 is purely elec-
trically charged with electric charge e and that the second loop L2 is purely magnetically
charged with magnetic charge m. Then there appears the Poynting vector carrying the
angular momentum JP = (~/2)em along the R direction. The magnitude of JP is inde-
pendent of the distance between two particles but the sign depends on the ordering, and
therefore we have

L1 · L2 = q−2emL2 · L1. (4.1.7)

In the classical limit (q→ 1), this product becomes commutative.

4.2 Networks and skein relations in 2d

In this section we discuss possible types of networks in class S theories of type SU(N)
and their skein relations. Our guiding principle is that they are described by the struc-
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ture of the quantum groups underlying both the q-deformed Yang-Mills and the Liou-
ville/Toda CFT, and that the skein relations are universal under an appropriate parame-
ter identification. The skein relations exhibited below already appear in the mathematical
works [168,173,174], up to the overall factors and the changes in conventions.

Skein relations introduce equivalence relations among all possible networks, and it
would be extremely useful if we can pick a natural representative element out of a given
equivalence class of networks allowing linear combinations of networks. In this thesis we
at least give a general method to simplify a given network:

• In principle, edges in a network can carry arbitrary representations of SU(N). We
will first rewrite them in terms of representations ∧k� for k = 1, . . . , N − 1. These
are the fundamental representations in the mathematical terminology,3) and within
the diagrams we just denote them by 1, 2, . . . , N − 1.

• Then we rewrite all crossings in terms of linear combinations of junctions that are at
most rectangular. The concrete formulas are given in (4.2.36). We call this process
crossing resolutions.

In the A1 case, these procedures eliminate all the crossings and no junctions remain,
thus reproducing the classification in [25]. In the A2 case, we will see that all digons
and rectangles can be eliminated, and we will find a natural representative for a given
equivalence class of networks. We will detail this process in Sec. 5.3.4.

Hereafter we use a version of the standard quantum number defined as

〈n〉 := (−1)n−1[n] := (−1)n−1q
n − q−n

q− q−1
(4.2.1)

and the factorial defined as

〈0〉! = 1, 〈n〉! = 〈n〉〈n− 1〉!. (4.2.2)

As this section is rather long, let us pause here to explain the organization: in
Sec. 4.2.1, we start by recalling that codimension-4 operators of the 6d N=(2, 0) theory
are labeled by representations and they can have junctions corresponding to the invariant
tensors. In Sec. 4.2.2, we describe how an arbitrary representation can be rewritten in
terms of just the fundamental representations of the form ∧k�. In Sec. 4.2.3, we then
describe the trivalent junctions where three edges labeled by fundamental representations
meet. In Sec. 4.2.4, we show how a crossing of two edges can be rewritten in terms of
junctions. We start from the crossing of two edges labeled by � and then describe the
general case. In Sec. 4.2.5 we summarize the Reidemeister moves that are fundamental
equivalence relations guaranteeing the isotopy invariance. In Sec. 4.2.6 we note other
useful skein relations that can be used to simplify networks. Finally in Sec. 4.2.7, we
explicitly display the skein relations for A2 and A3.

3)Contrary to the standard physics usage, we do not restrict the fundamental representation to be the
defining N -dimensional representation in this thesis.
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In general, it would also be important in the class S theory to study skein relations
with full and other punctures in [14] or networks ending on other punctures. We do not,
however, consider such objects in this thesis.

4.2.1 Generalities

Before proceeding, let us first recall the fact that a codimension-4 operator of the 6d
N=(2, 0) theory of type SU(N) has a label given by a representation of SU(N), and how
a multiple number of such operators can be joined.

A cylinder of the N=(2, 0) theory gives rise to a 4d N=2 vector multiplet with gauge
group SU(N). On the 4d side, then, we can consider the Wilson loop operator in a
representation R of SU(N). This should come from some codimension-4 operator of the
N=(2, 0) theory wrapped around the cylinder. Then this codimension-4 operator also
needs to be labeled by a representation R.

When we multiply two parallel Wilson loops with representations R1 and R2, we get
a Wilson loop with representation R1 ⊗ R2, and the product is commutative. The same
should be then true among codimension-4 operators of the N=(2, 0) theory.

On the 4d side, three Wilson loops in representations R1,2,3 can be joined at a point
consistently if R1⊗R2⊗R3 contains an SU(N) invariant subspace, or equivalently when
there is an invariant tensor in this triple tensor product. The number of independent ways
to join them is given by the number of linearly independent invariant tensors. Then, three
codimension-4 operators of the N=(2, 0) theory labeled by R1,2,3 can be joined along a
one-dimensional subspace when there are invariant tensors in R1⊗R2⊗R3. The number of
distinct ways to connect is given by the number of linearly independent invariant tensors.

Since this should be an intrinsic property of codimension-4 operators of the 6d theory,
we can join three codimension-4 operators along a one-dimensional loop on the 4d side.
This gives a junction of three edges labeled by R1, R2, R3 on the 2d side. Using many
such junctions, we end up having networks on the 2d side.

4.2.2 Restriction of labels

First, note that Wilson loop on the 4d side in a representation R in a direction can be
thought of as a Wilson loop in the representation R̄ in the opposite direction. This feature
should also be carried over to the codimension-4 defects of the N=(2, 0) theory, and to
the networks on the 2d side. This can be represented diagrammatically as

R = R∗ . (4.2.3)

As it is cumbersome to use arbitrary representations R as labels, we next rewrite
them in terms of fundamental representations ∧k�, k = 1, . . . , N − 1. An irreducible
representation R can be specified by a Young diagram (`i) where `i is the number of boxes
in the i-th row, so that

∑
`i = N . For example, ∧k� is represented by (1 1 1 . . . 1︸ ︷︷ ︸

k

) = (1k).
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Note that any symmetric polynomial of N variables x1, x2, . . . , xN , under a constraint
x1x2 . . . xN = 1, can be written as a polynomial of the elementary symmetric polynomials.
As a character χR(diag(x1, . . . , xN)) of SU(N) in a representation R is such a symmetric
polynomial, and χ(1k)(diag(x1, . . . , xN)) for k = 0, 1, 2, . . . , N − 1 are exactly elementary
symmetric polynomials, this means that any representation R can be decomposed as the
direct sum (allowing negative integral coefficients) of the tensor products of ∧k�.

For example, we have the equalities

χ(2) = χ2
(1) − χ(12), χ(21) = χ(12)χ(1) − χ(13), (4.2.4)

χ(3) = χ3
(1) − 2χ(12)χ(1) + χ(13), χ(22) = χ(12)χ(12) − χ(1)χ(13) (4.2.5)

which we can diagrammatically depict, in the case of closed loops, as

= 1

1

−
2

, = 1

2

−
3

, (4.2.6)

= 2

2

− 1

3

, =
1

1

1

− 2 1

2

+

3

.

(4.2.7)

These relations are locally applicable on parallel edges. Therefore, we can insert some
punctures or networks inside the circle, for example.

4.2.3 Canonical junctions and removal of digons

Canonical junctions

Now our edges are labelled by the fundamental representations ∧k�, k = 0, 1, . . . , N − 1.
We can just use the integer k to label the edge, and an edge labelled by 0 can be removed.
Reversing the orientation now corresponds to replacing the label k by N − k. An edge
labeled by k has charge k under the center of SU(N), and therefore we call these integer
labels as the charge. 4)

For each trivalent junction, the sum of three inflowing charges must equal to zero
modulo N . Say we have three edges labelled by a, b and c = a + b. There is only a
single invariant tensor in ∧a� ⊗ ∧b� ⊗ ∧N−c�, and this corresponds to the projection
from ∧a� ⊗ ∧b� to ∧c=a+b�. Therefore, there is no need to place a label on a junction
to distinguish the possible invariant tensors.

Sometimes these labels k are then taken to be defined modulo N as in [62,68], but it
is useful to consider them just as integers between 0 and N − 1. This is because we can

4)Note that it is a special property of Ak that there is the one-to-one correspondence between the set
of the fundamental representations ∧k� including the trivial one and the charge under the center.
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write down the invariant tensor rather explicitly using the quantum group representation
theory when the net inflowing charge to a junction vanishes in Z. We call such a junction
canonical. We call a junction non-canonical if the net inflowing charge vanishes only in
ZN . See Fig. 4.3 for examples.

b

c a = b+ c

b = a+ c

c
a

canonical junctions

b

c N − b− c
b

c N − b− c

non-canonical junctions

Figure 4.3: Canonical and non-canonical junctions

Let us now describe the invariant tensors associated to the canonical junctions. Let
� be spanned by the vectors e1, . . . , eN . We define the q-deformed wedge product by the
rule

ei ∧ ej = −qej ∧ ei, (i ≤ j) (4.2.8)

where in particular ei ∧ ei = 0 where we do not sum over i. This defines the projection π
from �⊗� to ∧2� by

π1,1→2 : ei ⊗ ej 7→ ei ∧ ej. (4.2.9)

Furthermore, ∧2� can be naturally embedded within �⊗� by the rule

ι2→1,1 : ei ∧ ej 7→ −qei ⊗ ej + ej ⊗ ei, (i < j). (4.2.10)

More generally, we associate to any canonical junction that combines labels a, b to
a+ b the projection

πa,b→a+b : ei1 ∧ · · · ∧ eia ⊗ ej1 ∧ · · · ∧ ejb 7→ ei1 ∧ · · · ∧ eia ∧ ej1 ∧ · · · ∧ ejb (4.2.11)

and to any canonical junction that splits the label a+b to two labels a, b the map ιa+b→a,b
where

ιa+b→a,b : ek1 ∧ · · · ∧ eka+b

7→ (−q)ab
∑

i1<···<ia, j1<···<jb
(−q−1)n(i,j;k)ei1 ∧ · · · ∧ eia ⊗ ej1 ∧ · · · ∧ ejb (4.2.12)

where we assume k1 < · · · < ka+b, the sum is over the disjoint split of indices

{k1, . . . , ka+b} = {i1, . . . , ia} t {j1, . . . , jb}, (4.2.13)

and n(i, j; k) is the minimal number of adjacent transpositions to bring the sequence
i1, . . . , ia, j1, . . . , jb to k1, . . . , ka+b. These maps are described in more detail mathemati-
cally in [175].
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Then these maps πa,b→a+b and ιa+b→a,b naturally combine according to the following
diagrams together with the ones with reversed arrows:

a b c

x

d

=

a b c

y

d

(4.2.14)

or equivalently

cb

x

a d

=

cb

y

a d

. (4.2.15)

Here x = a+ b = d− c, y = b+ c = d− a and d = a+ b+ c.

Removal of digons

Now, we can check that any digons can be removed as

i1 i2 i3 i`

k

k

=
〈k〉!

〈i1〉!〈i2〉! . . . 〈il〉! k (4.2.16)

where
∑̀

a=1

ia = k.

Note that in the classical limit q→ 1 the prefactor becomes

(−1)
∑
a<b iaib

k!

i1!i2! · · · il!
(4.2.17)

due to the fact that the classical limit of ιa+b→a,b is (−1)ab times the standard map that
follows from the classical epsilon symbol.

This somewhat unusual sign is however necessary to match with the known skein
relations in the Liouville/Toda theory, and it also simplifies the signs appearing in the
general crossing resolutions (4.2.36). In the q-deformed Yang-Mills theory it would be
more conventional to drop this sign and the canonical junctions would be defined to be
πa,b→a+b and (−1)abιa+b→a,b. Notice that this convention change exactly corresponds to
that of the Fermion number convention of SCI on the 4D side discussed in Sec. . Concretely
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speaking, the choice (3.4.17) corresponds to the Liouville/Toda convention at the skein
relation level. We will stick to the Liouville/Toda convention in this chapter.

When the sum of il is N , we can use the rule to evaluate a network with two trivalent
junctions, since edges labelled by N can be removed. For example, when i + j + k = N ,
we have

i j k =
〈N〉!

〈i〉!〈j〉!〈k〉! . (4.2.18)

More simply, we can evaluate a closed loop with label k by considering it as a digon with
edges labelled by k and N − k:

k

=
〈N〉!

〈k〉!〈N − k〉!
= (−1)k(N−k)χ∧k�(diag(qN−1, qN−3, . . . , q1−N)) = (−1)k(N−k) dimq ∧k�. (4.2.19)

Again, this shows that our convention is different by a factor of (−1)k(N−k) from the
convention in the q-deformed Yang-Mills. We also see at this point that, to compare with
the skein relation of the Toda theory or the q-deformed Yang-Mills theory, we need to use
the relation

q = eπib
2

= q
1/2
SCI. (4.2.20)

4.2.4 Crossing resolutions

The R matrix

Let us first discuss the best-known case: the R-matrix for �⊗� of SU(N), which is given
by

R = A(Q+ q−1I�⊗�). (4.2.21)

Here, IV is the identity operator on a vector space V , Q is an operator

Q =
∑

i 6=j
eij ⊗ eji − q

∑

i<j

eii ⊗ ejj − q−1
∑

i>j

eii ⊗ ejj (4.2.22)

where eij is a matrix whose only non-zero entry is 1 at the i-th row and j-th column and
A is the overall normalization which we will be fixed later.

The action of Q on the base ea ⊗ eb of �⊗� is

Q(ea ⊗ eb) =





eb ⊗ ea − qea ⊗ eb, (a < b)

0, (a = b)

eb ⊗ ea − q−1ea ⊗ eb, (a > b)

. (4.2.23)
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The resulting entries are the basis vectors of the second rank antisymmetric representation
of SUq(N). Indeed, the operator Q is the composition of the projection π1,1→2 : �⊗�→
∧2

q� and the natural embedding ι2→,1,1 : ∧2
q�→ �⊗�:

Q = ι2→1,1π1,1→2. (4.2.24)

Note also that Q satisfies
Q2 = −(q + q−1)Q = 〈2〉Q. (4.2.25)

This is a special case of the digon elimination.
We can now represent the R-matrix R diagrammatically as

��

= A




��

∧2�

� �

+ q−1

��



. (4.2.26)

The inverse of the R-matrix R is

R−1 = A−1(Q+ qI�⊗�) (4.2.27)

that we represent as

� �

= A−1




��

∧2�

� �

+ q

��




(4.2.28)

Below, we call the crossing (4.2.26) as positive and the crossing (4.2.28) as negative.

The A1-case: In this case,
∧2� is the trivial one-dimensional representation and there

is the pseudo-reality condition � ' � which we can diagrammatically write as

� = � =: . (4.2.29)

Then the general equation (4.2.26) reduces to

= q−1/2 + q1/2 . (4.2.30)

where we have set A = q1/2. We then have

q−1/2 − q1/2 = (q−1 − q) (4.2.31)
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These reproduce the standard skein relations of the Liouville theory found in [26,27] under
the identification q = eiπb

2
.

The relation Q2 = 〈2〉Q shows

= 〈2〉 = −χ�(diag(q, q−1)). (4.2.32)

From this we see that q = q
1/2
SCI where qSCI is the parameter used commonly in the liter-

ature on the superconformal index. The minus sign here is a convention common in the
Liouville/Toda literature, i.e. the definition of a loop in the representation � differs by
an overall minus sign between the Liouville theory and the q-deformed Yang-Mills.

The A2-case: Here we have � =
∧2�, and therefore we have

� =
∧2� . (4.2.33)

As we now only have one type of the label �, we can drop it altogether. The general
R-matrix (4.2.26) then becomes

= q1/3 + q−2/3 (4.2.34)

where we have set A = q1/3. This reproduces the fundamental skein relations of the SU(3)
Toda theory found in [68], again under the identification q = eiπb

2
.

General case: The analysis so far suggests that we should take

A = q
1
N (4.2.35)

in general. As we will see soon, this is consistent with the general crossing resolutions
(4.2.36).

General crossing resolutions

Now let us move on to the crossing resolutions in the general case. The expression was
found in [168] up to an overall factor, which we quote here:

a b

= q
ab
N

s∑

i=0

q−i i a+ b− i

b− i

a− i
a b

b a

(4.2.36)
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where s = min(a, b,N − a,N − b) and a, b = 0, 1, 2, . . . , N − 1. With this choice of the
overall factor, this equality is invariant with a reversal of an arrow and the rotation of
the diagrams by 90◦. Note also that when a = b = 1, this equality reduces to (4.2.26) we
already discussed.

Let us introduce the names to the fundamental objects on the right hand side of
(4.2.36):

Qab
(i) := i a+ b− i

b− i

a− i
a b

b a

= a+ b− i i

b− i

a− i

a b

b a

. (4.2.37)

Note that the number of possible choices of i matches with the number of irreducible
summands of the decomposition of the tensor product ∧a� ⊗ ∧b�. We expect that all
these Qab

(i) cannot be further decomposed as parts of networks.

The intersection number and the powers of q

Let us briefly discuss the significance of the prefactor q
ab
N in (4.2.36). In general, two

loop operators in a class S theory of type SU(N) can be mutually nonlocal, and the
nonlocality can be measured in terms of the Dirac pairing that takes values in ZN [176].
In terms of the 2d networks realizing the 4d loop operators, the Dirac pairing is given by
their intersection number. We can define it by assigning a local intersection number to a
crossing as follows:

a b

: + ab,

ba

:− ab. (4.2.38)

This is consistent with the reversal of arrows, since it sends the label a to N − a.
The intersection number I(Γ1,Γ2) of two networks Γ1 and Γ2 is then defined by sum-

ming the contributions from all the crossings:

∑

c : crossing

sign(c)a(1)
c a(2)

c ∈ ZN (4.2.39)

where sign(c) is the sign of the crossing c and a
(i)
c is the charge of Γi at c.

In the Liouville/Toda setup, we expect the expectation value of any network without
crossings is a single-valued function of q = eπib

2
invariant under q → e2πiq. Similarly,

in the superconformal index, the expectation value of a loop operator on the 4d side is
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a single valued function of q = q
1/2
SCI, since the index is a trace Tr

[
(−1)F q∆−I3

]
and the

scaling dimensions ∆ of a class S theory are integral or half-integral.
Non-invariance of the expectation value under q → e2πiq then captures the mutual

non-locality, and we can think of the prefactor q
ab
N in (4.2.36) as encoding the difference

in the local intersection number between the left hand side and the right hand side, to keep
track of this non-locality. The difference in the powers of q among different summands
in the resolutions of the crossings should be integral, and the relation (4.2.36) indeed
satisfies this requirement.

SL(2,Z) action on the torus

We can define the operation I which we call the inversion by reversing all the arrows
simultaneously. This is an involution that we can identify with the charge conjugation on
the 4d side.

When the network is on a torus, we can also consider the action of SL(2,Z) on the
networks. Two basic actions are the T -action and the S-action. T corresponds to sending
α 7→ α, β 7→ β + α and S corresponds to α 7→ β, β → −α, where α, β are two bases of
the 1-cycles on the torus.

The operation C = S2 generates the center of SL(2,Z) and is the charge conjugation
action in the 4d N=4 SYM theory. Then we need to have two operations, C and I,
to be consistent on the torus. The relation (4.2.37) relating two forms of the networks
representing the same object Qab

(i) is exactly the one required to have C = I, when these
networks are put on the torus and open edges are connected to the opposite ones.

4.2.5 Reidemeister moves

In knot theory, a projective representation in two dimension of knots and links in a three
dimensional space is not unique, and any different representations can be mapped to each
other by a combination of three so-called Reidemeister moves, see e.g. [177]. The move
I straightens a twist in an edge, the move II slides one edge over another edge to two
parallel edges, and the move III changes the order of three crossings. In the presence of
junctions, we need to add another move, where we move an edge over a junction. We call
this as the move IV.

Since we expect that the charge of a loop in the 4d theory is determined by the isotropy
class of networks, we would like to require that a network is invariant under these moves.
This is indeed possible for the moves II, III and IV, but the move I results in a q-dependent
factor. In the context of 3d Chern-Simons theory, this can be understood from the change
in the framing of the link [70]. Let us describe these moves explicitly below.

R-Move II: This relation says that the the negative crossing is given by the inverse
R−1 of the R-matrix R corresponding to the positive crossing.
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V2V1

=

V2V1

=

V1 V2

. (4.2.40)

R-Move III This is the Yang-Baxter equation which the R-matrix R should satisfy.

V1 V3V2

=

V1 V3V2

. (4.2.41)

R-Move IV This is the additional move for the networks with junctions.

V1

V2
V3 W

= V1

V2 V3

W
=

W

V1

V2
V3

. (4.2.42)

R-Move I Finally, this move involves a non-trivial factor. The other one is Reidemeister
move I :

R

= σRq
−C2(R)

R

,

R

= σRq
C2(R)

R

. (4.2.43)

where R can be any irreducible representation other than fundamental representations
∧a�.

Indeed, when the representation R is ∧k�, the coefficient Ck(q) can be calculated by
using the general crossing resolution (4.2.36) and the relation (4.2.16) removing digons.

The i-th network on the right hand side of (4.2.36) gives a coefficient 〈N−k+i〉!
〈i〉!〈k−i〉!〈N+i−2k〉!

thanks to (4.2.16). We then find that the overall factor gives Ck(q) = (−1)k(N+1)q−(1+
1
N

)k(N−k)

and expect the above relation holds true for any R. A direct understanding of this coef-
ficient in 4d and 6d would be an interesting problem.

4.2.6 More simplifying relations

Let us list various other skein relations that can be used to simplify networks. All relations
except (4.2.47) are known in [174] [173] and references therein.
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Triangle contraction relations

We have rules to remove triangles. In order to express the rules, we first map all the
junctions so that they are canonical. Then, there are four possibilities up to the mirror
images:

a

b c
ji =

〈a〉!
〈i〉!〈j〉!

a

b c
,

a

b c
ji =

〈N − a〉!
〈N − i〉!〈j〉!

a

b c
,

(4.2.44)

a

b c
ji =

〈a〉!
〈i〉!〈j〉!

a

b c
,

a

b c
ji =

〈N − a〉!
〈i〉!〈N − j〉!

a

b c
.

(4.2.45)

Note that whether three vertices are totally ordered by arrows or not changes the look of
the factors.

Rectangle decaying relations

The rectangles Q
(i)
ab that we had in (4.2.37) can not be further simplified, but there are

many other rectangles that are equivalent to sums of simpler ones. Let us show one class:

k + j `− j

j

j
k `

k `

=

min(j,k)∑

s=max(0,j−`+k)

〈`− k〉!
〈`− k + s− j〉!〈j − s〉! k − s `+ s

s

s
k `

k `

.(4.2.46)

This is valid for k ≤ l and 0 ≤ j ≤ min(k,N − `) or k ≤ j ≤ ` ≤ N − k.
These relations assure that any network constructed from only rectangles around a

tube can always be decomposed into a sum of closed loops around the tube. For example,
using (4.2.46) recursively, we can see

q−
k2

N

k k

= q−k
k∑

i=−k
(−1)iqi

2+i

k − ik + i

, (4.2.47)

where the two horizontal thin parallel lines signify that they are to be identified so that
the network is on a tube.
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There are various other relations. Here we just note one example:

1 k 2

k − 1

1
2

k − 2
3 k

k 3

= 〈3〉 k + 1 2

1

k − 2
3 k

k 3

+ 〈2〉 k + 2 1

2

k − 1
3 k

k 3

. (4.2.48)

4.2.7 Examples: A2 and A3

The skein relations of the A1 case and the A2 case have already been described in the
literature.

A2

Let us record the A2 case as a summary. We have two types of junctions :

1

1 2
= ,

1

1 2
= . (4.2.49)

The basic skein relation was (4.2.34), which we copy here [62,68,167]:

= q1/3 + q−2/3 . (4.2.50)

The following two relations are useful to simplify the networks:

= 〈2〉 , = + . (4.2.51)

A3

Let us now discuss the next nontrivial case of A3. Note that the label 3 can be traded with
1 by reversing the arrow, and since 2 is a real representation we do not have to exhibit
the direction for edges labeled by 2. In this case, there are also two types of junctions as
we see below.

There are three types of crossing resolutions :

1 1

= q1/4

11

2

1 1

+ q−3/4

11

, (4.2.52)
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1 2

= q1/2

12

3

1 2

+ q−1/2

12

1

1 2

, (4.2.53)

2 2

= q

22

22

+ 1 3

1

1
2 2

2 2

+ q−1

22

. (4.2.54)

There are three decaying relations for one rectangle:

1 2

1

1
2 1

2 1

=

12

+

12

1

2 1

, (4.2.55)

2 2

1

1
1 1

1 1

= 〈2〉

1

1

+
1

1

, (4.2.56)

2 2

1

1
1 1

11

= 〈2〉

1

1

2

1

1

. (4.2.57)

4.3 Wilson punctured network defects in 2D and com-

posite surface-line systems in 4D

As explained in the introduction, in the 2D system, the geometric counterparts of 4D line
operators and 4D surface operators are networks and punctures, respectively. As long
as we treat either only surface operators or only line operators, the projection onto C
is natural to discuss the 4D physics. However, if we have line defects bounded on 2D
surface defects in 4D, it is not unique picture and there appears the new direction which
line defects are localized in but surface defects extend along.

In this section, we introduce the 2D counterpart of the 4D composite surface-line
defects in the 4D/2D duality relation. We call such objects Wilson punctured network
defects. Such defects in the topological 2D q-deformed Yang-Mills theory are defined by
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the isotopy class of the networks in some 3D space as explained hereafter. 5)

To explain the physical idea, let us go back to the brane picture [26, 53, 55]. First of
all, on the surface defects which we focus on, some 2D N=(2, 2) gauge theory with a U(1)
factor lives. Indeed, we consider the surface operators coming from the codimension four
defects in the 6D N=(2, 0) SCFT and the surface defects can be realized as a type IIA
brane set-up constructed from the combination of NS5-D4-D6 systems by Witten [20] and
NS5’-D2-NS5-D4 systems by Hanany-Hori [109]. In particular, as discussed in [109], the
complexied FI parameters corresponds to the position on the punctured Riemann surface
locally, at least, around a simple puncture. Therefore, we set a natural assumption that
the end point position of M2-branes (or the position of another M5-brane far from the
bulk M5-branes) on the punctured Riemann surface determines the some parameter of
surface operators which can be a complexified FI parameter in an appropriate duality
frame. Now, recalling the defects characterization by varying parameters explained in
Sec. 1.1.2, the composite surface-line defects are realized as the M2-branes varying in C
as they go in the direction transverse to line defects but along the surface defects. See
Fig. 4.4.

L 0

Figure 4.4: The 4D loop/line defect ( interface for the surface defects ) is generated from
a position-dependent variation of the (UV) parameter space of surface operators which is
identified with the punctured Riemann surface C. The horizontal direction and the cycle
direction correspond to one of the directions in the surface operator and to a non-trivial
1-cycle in C respectively. L is the varying scale relative to the system scale and ΛL→ 0
means flowing to the IR. If only a surface operator exists, we get a line operator bound to
the surface operator. (red cycle and red dash-dotted line) If there are a pair of surface
operators with opposite charges each other, they vanish to leave only a line operator after
the parameter for one of the two is varied. (red line and blue line)

5)We can also define them for the finite area q-deformed Yang-Mills theory.
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In Sec. 4.3.1, we review several basic facts needed later. Next, we take a look at the
geometrical configurations of two types of defects in Sec. 4.3.2. In Sec. 4.3.3, we discuss the
skein relations including fully degenerate punctures. First, by introducing new topological
moves, we derive such skein relations in some simple cases. Then, in the last Sec. 4.3.4,
we rederive more general skein relations assuming the projection invariance.

4.3.1 Brief review on surface defects in the Schur indices

Notation

Although we summarize the Lie algebra notation in Appendix. A.1, we take a brief look
at necessary ones. For a maximal torus element a ∈ TN−1 of SU(N) and a weight vector

λ ∈ Λwt ' ZN−1, we introduce a symbol aλ := (a
λ1

1 , a
λ2

2 , . . . , a
λN
N ) where λi := (λ, hi) i =

1, 2, . . . , N . 6) ρ denotes the Weyl vector, which is defined as
N−1∑

a=1

ωa. C2(R) is the

quadratic Casimir defined as (λ, λ+ 2ρ) which is nomalized as C2(�) = N − 1
N

. We also
introduce a symbol σR = (−1)|R|(N−1) where |R| is the number of the boxes in the Young
diagram corresponding to the irreducible representation R.

The first of all, let us recall the discussions of Sec. 3.3. It was discussed in [77] that
the SCIs in the presence of surface defects can be physically obtained by coupling a
free hypermultiplet carrying U(1) baryon symmetry to the original theory at UV and by
taking the IR limit of that theory after giving variant VEVs to Higgs branch operators. At
the mathematical level, this corresponds to taking the residues at a pole in the fugacity
complex planes, associated with the surface operator’s charges and finally results in a
difference operator acting on the flavor fugacities of the original theory.

The above procedure is expected to reproduce in the IR the same defects as those from
codimension four defects in 6D N=(2, 0) SCFTs and, in fact, this was checked in [55] by
comparing these results with 4D SCIs coupled to the elliptic genera of the 2D N=(2, 2)
theories living on the surface defects. The difference operators in the Schur limit actually
form the representation ring of su(N) because the codimension four defects are labelled
by representations of su(N) [78, 79].

According to [77–79], we rewrite the difference operator for the surface defect labelled
by an irreducible representation S as

ĜS = (
√
Ivector(a)) ·


 ∑

λ∈Π(S)

q−N(λ,λ)aNλ∆̂−λ


 · (

√
Ivector(a))−1 (4.3.1)

= (
√

∆Haar(a))−1


 ∑

λ∈Π(S)

∆̂−λ


 · (

√
∆Haar(a)) (4.3.2)

6)Note that we keep the symbol λα as the Dynkin labels which are coefficients of ωα of the highest
weight. See also Appendix. E as for Lie algebra notations. The inner product (, ) is also defined there.
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where we have renormalized so that they form the representation ring of su(N) exactly,
Ivector(a) is the SCI contribution from the vector multiplet whose concrete expression

does not matter in this paper, ∆Haar(a) is the Haar measure of SU(N) and ∆̂−λ acts
on a holonomy a by q−2λa. The characters χR(a) are common eigenfunctions of these
operators for any S and their eigenvalues are given by

Ē (S)
R = χS(q−2(ρ+λR)) =

dimq S

dimqR
χR(q−2(ρ+λS)). (4.3.3)

Finally, we remark on the mathematical relation between the codimension four defects
and the codimension two defects [28]. In the Liouville-Toda CFT set-up, the general
vertex operator is given by Vα(z) =: e〈α,φ(z)〉 : where α is a vector in h∨ which is the
dual to Cartan subalgebra, z ∈ C and φ(z) is the Liouville-Toda scalar field. This
corresponds to the general codimension two defect ([1N ] type or full/maximal puncture)
when α − (b + 1/b)ρ ∈ iRN−1 ' h∨. On the other hand, the codimension four defect
labelled by a su(N) irreducible representation S is obtained by taking the limit α→ −bλS
or −1

b
λS. 7) The vertex operator in this limit is called fully degenerate and we also refer

to the corresponding punctures as fully degenerate punctures which exactly represent the
4D surface defects.

In the 2D q-deformed Yang-Mills theory, the procedure similar to the above one is
given as

lim
a→q−ρ−λ

χR(a)

dimqR
=
Ē (S)
R

dimq S
(4.3.4)

where the denominator on the right hand side is just simply the normalization factor of
the surface defect. In our normalization, the surface defects exactly reproduce the su(N)
representation ring :

ĜS1 ◦ ĜS2 =
∑

S3

N S3
S1S2

ĜS3 or Ē (S1)
R Ē (S2)

R =
∑

S3

N S3
S1S2

Ē (S3)
R . (4.3.5)

4.3.2 Geometrical configurations

Originally, the bulk geometry of 6D N=(2, 0) SCFT is S3×S1
E×C. Both surface defects

and line defects in 4D wrap S1
E. After the S1

E reduction, the geometry is the product
of C and a S1

H-fibration over S2 in our viewpoint. S1
H is a Hopf fiber which is the

support of surface defects in 4D. 8) On the other hand, line defects in 4D are networks
on C. Therefore, both types of defects are knots with junction in the fiber geometry
S1
H × C =: M and localized at the same point in base geometry S2. In the following

7)The two limits correspond to two types of configurations of surface defects in S4
b . See the next

subsection 4.3.2.
8)There are at least two kinds of surface defects when line defects are absent. The other one is obtained

by exchanging two SCI fugacities p and q as seen in [77].
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discussion, we regard S1
H as an interval IH whose two end points are identified. Then

let Cin and Cout denote two boundaries of IH × C. We interpret the surface defects as a
defect running from a point in Cin to the same point in Cout along the IH-direction.

Note that if we consider a 6D N=(2, 0) SCFT on S4 × C, a similar argument holds
true. This is because OPEs of two BPS defects are expected to be determined locally and
independent from the global background geometry. Concretely, a surface defect extends
along a S2 = {(z, w = 0, x) ∈ C × C × R | b2|z|2 + x5 = 1} in S4 = {(z, w, x) ∈
C × C × R | b2|z|2 + b−2|w|2 + x5 = 1} [76] and some line defects live on S1 = {(z, w =
0, x5 = x∗) ∈ C×C×R} where x∗ is an arbitrary constant satisfying |x∗| < 1 [30]. Since
only the local geometry around the defect locus is relevant, instead of S1

H , we take the
new direction as the x5 direction (open interval) in this case. Therefore, it is expected
that the skein relations discussed in Sec. 4.3.3 are also applied to the Liouville-Toda CFTs
and we can check, in several examples, the claim that they are common in both systems.
The relation between q and b is given in [47] or [75] as q = eiπb

2
.

The phenomenon inherent in the S4
b case is that there simultaneously exist two types

of line operators and, in a such case, it seems to be necessary to treat them in the full five
dimensional geometry rather than three dimensional one. Notice also that there are two
distinct origins of the non-commutativity of line operators correspondingly. One comes
from the Poynting vector in the bulk generated by line’s charges as discussed in [49,83] and
this classical picture also may be valid in the Schur index case. The other interpretation
is similar but different. There, both line operators cannot be genuine line operators and
either should be the boundary of an open surface operator. Then, two operators have
some contact interactions under the exchange of their ordering in the 4D bulk [97,98,115].

4.3.3 Skein relations with fully degenerate punctures

At first, we use the same projection of M onto the 2D plane as before. This is the
projection onto C which we call “C-projection”.

If the 4D surface defects are topological in M , by deforming its orbit in M , we expect
the following relation :

S = S = σSq
C2(S)

S
= σSq

−C2(S) S . (4.3.6)

Here we must take the framing factor appearing in R-move I (4.2.43) into consideration.
Let a white dot (a circle) and a black one (a filled circle) in the C-projection plane

represent each intersection point of a surface defect with Cin and Cout, respectively. Then
new moves appear :

S

R

=

S

R

S

R

= R

S

. (4.3.7)
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On the left hand side, a line labelled by S stems from the white dot in M and, on the right
hand side, a line by S goes into the black dot in M . We call this relation Reidemeister
move V (R-move V). In particular, because two types of dots are identified in S1

H , they
coincide in C-projection and we have

R
=

R
. (4.3.8)

We refer to the edges with dots on it as “punctured edges”. Be aware that the punctured
edges are just open lines in the three dimensional space M . A view from the right hand
towards the left hand is shown in Fig. 4.5. See also Sec. 4.3.4 for the detail.

S

S

S

←→

S

SS

S
Cout

Cin

(4.3.9)

Figure 4.5: A punctured edge labelled by S in the left can be depicted as the right in the
projection from M onto other 2D plane extending along the Hopf fiber direction.

What we are interested in is the situation where a line in C passes near a fully degen-
erate puncture. The above relation (4.3.8) leads to

S

R

=

R

S (4.3.10)

and now we can apply the crossing resolutions (4.2.36) to the network representation on
the right hand. 9)

9)Another more useful way to derive the same result is to separate the locations of ingoing and outgoing
punctures (white and black dots) in C firstly, to apply the skein relations secondly and to merge them
again finally.
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Special case

Let us take S and R as � (or 1) and ∧k� (or k), respectively. There are two ways to do
the calculations :

k

1 = σ�q
C2(�)

k

1
= q

2k
N

k

1 + (−1)kq
2k−1
N

+k−1(q− q−1)

1

1
k

k − 1

k

.

(4.3.11)

On the other hand,

k

1 = σ�q
−C2(�)

k

1 = q
2k
N
−2

k

1 + (−1)k−N−1q
2k+1
N

+k−1−N(q− q−1)

1

1k

k + 1

k

.

(4.3.12)

Comparing both expressions, we have

k

1 = (−1)k−N−1q
1
N

+k−N
1

1k

k + 1

k

+ (−1)k+1qk−
1
N

1

1
k

k − 1

k

(4.3.13)

= q−
k
N




1

1

k

k + 1

k

+ q

1

1

k

k − 1

k



. (4.3.14)

In the same way, we also have

k

1 = q
k
N




1

1

k

k + 1

k

+ q−1

1

1

k

k − 1

k



. (4.3.15)
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In the simplest case N = 2 and k = 1 which do not need any junctions and arrows on
edges, this becomes simpler as follows :

1

1 = q−
1
2

1

1

+ q
1
2

1

1

(4.3.16)

and the other relation can be obtained by mapping q to q−1.
If we apply either relation to the loop wrapping a cylinder and one fully degenerate

puncture near it, there appear two kinds of knots. One winds around the cylinder by
one time as it goes from Cin to Cout and the other does in the opposite way. Recalling
the fact that there lives a 2D N=(2, 2) U(1) gauged linear σ model on the surface defect
labelled by � [55, 76], it is expected that these loops in M represent the U(1) Wilson
loops charged ±1 according to the widing orientation, in the 2D system on the surface
defect.

General case

How do the similar relations look like for any pair S = ∧`� and R = ∧k� ? From the
above examples, we can expect that the general skein relations are

k

`
= q

k`
N

min(k,`)∑

s=0

q−s

s

k

k

`

`
(4.3.17)

where the coefficients are the same as those of the crossing resolution (4.2.36). The other
relations are

k

`
= q−

k`
N

min(k,`)∑

s=0

qs

s

k

k

`

`
. (4.3.18)

In the case of ` = 1, each reduces into (4.3.14) or (4.3.15). We see in the next subsection
4.3.4 that these relations are indeed reproduced in another approach.
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4.3.4 Other projections

The requirement of the topological property of networks in M means that their projection
onto a 2D plane can be taken arbitrarily. So far we have used C-projection, but actually,
we can consider other projections onto a plane extending along IH-direction. We call
those projections “H-projections”.

Now it is possible to directly obtain the same result as before by applying the skein
relation in a H-projection. Let us view the crossing network on the left hand side in
(4.3.18) from the right hand and apply the crossing resolution on the new projection.
This can be expressed as

`

k

Cout

Cin

= q
k`
N

min(k,`)∑

s=0

q−s

`

`

k k
s

Cout

Cin

. (4.3.19)

This relation exactly matches with the previous expressions (4.3.18) and we have a
relation between distinct projections like

s

k

k

`

`
=

`

`

k k
s

Cout

Cin

(4.3.20)

where the left hand side is the usual C-projection but the right one is a H-projection
including IH direction.

Finally, we make a brief comment on the reproduction of the relation (4.3.4). This
can be geometrically expressed as

S
R

= σRχR(q−ρ−λS) S (4.3.21)

or locally

S

R = σRχR(q−ρ−λS)

S

. (4.3.22)

We can derive this relation in some simple cases.
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4.4 Coexistence of closed networks and isolated punc-

tures

In this section, we compare the previous new skein relations with the computation of
q-deformed Yang-Mills expectation values or the Schur indices. From the comparison, we
can extract the operator action of some punctured networks. Based on this discussion, in
Sec. 4.5.3, we propose the modified formula for general punctured networks and interpret
the modification as the addition of the local Boltzmann factors assigned with dual arrowed
edges.

Let C be a two-sphere with several punctures and γ be a 2D Wilson loop wrapping
a tube in C. This is the same situation as discussed in part 3 in Sec. 3.8.1. The general
set-up can be discussed in the similar way. Recalling the discussion around (3.8.5), let
us cut along γ and decompose the Riemann surface C into the two parts which we call
CA and CB here. In the following, we see the operator structure in two distinct basis.

Fugacity/Holonomy basis

The formula (3.8.5) says that the whole partition function is given by

∮
[da]HaarICA(a, . . .)χM(a)ICB(a−1, . . .). (4.4.1)

Now let us add a surface defect labelled by S. There are two choices of its addition,
namely, the fully degenerate puncture on CA or on CB as shown in Fig. 4.6.

M

CA CB

RBRA

S

M

CA CB

RBRA
S

Figure 4.6: Coexistence of a 2D Wilson loop and a fully degenerate puncture in C. Left
corresponds to (4.4.2) (4.4.19) and right does to (4.4.4) (4.4.19).

They are evaluated as

ICAtWM (γ)(CB ,S) :=

∮
[da]HaarICA(a, . . .)χM(a)(ŜSICB)(a−1, . . .) (4.4.2)

and

I(CA,S)tWM (γ)CB :=

∮
[da]Haar(ŜSICA)(a, . . .)χM(a)ICB(a−1, . . .) (4.4.3)

=

∮
[da]HaarICA(a, . . .)ŜS(χM(a)ICB)(a−1, . . .) (4.4.4)
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where we use the self-adjoint property of the difference operator ŜS. And two expressions
give different answers.

In particular, the special case M = ∧`� and S = ∧k� is important. Let Π(R) be the
set of weights for an irreducible representation R and we also introduce a subset defined
as

Π(∧k�,∧`�)s :=
{

(λ, µ) ∈ Π(∧k�)× Π(∧`�) | (λ, µ) = s− k`
N

}
. (4.4.5)

In the following network representations in this subsection, we identify two end points of
any open edge in networks such that they once wrap a tube in C.

On one side, we have a relation like

k

`
←→ Ŵ∧k�Ŝ∧`� =

∑

λ∈Π(∧k�)

µ∈Π(∧`�)

aλ∆̂χ
−µ =

min(k,`)∑

s=0

qs−
k`
N Ô(k,`)

s (4.4.6)

where we have defined new difference operators conjugate to ∆̂−λ

∆̂χ
−λ := (

√
∆Haar(a))−1 · ∆̂−λ · (

√
∆Haar(a)) (4.4.7)

and another difference operator

Ô(k,`)
s :=

∑

(λ,µ)∈Π(∧k�,∧`�)s

aλ/2∆χ
−µa

λ/2 =
∑

(λ,µ)∈Π(∧k�,∧`�)s

q
k`
N
−saλ∆χ

−µ. (4.4.8)

We also use the formula

aλ∆̂−µ = q2(λ,µ)∆̂−µa
λ aλ∆̂χ

−µ = q2(λ,µ)∆̂χ
−µa

λ. (4.4.9)

On the other hand, we have

k

`
←→ Ŝ∧`�Ŵ∧k� =

∑

λ∈Π(∧k�)

µ∈Π(∧`�)

∆̂χ
−µa

λ =

min(k,`)∑

s=0

q
k`
N
−sÔ(k,`)

s . (4.4.10)
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Comparing (4.3.17) and (4.3.18) with these results, we naturally get the correspon-
dence

s

k

k

`

`
←→ Ô(k,`)

s . (4.4.11)

In the special case s = k = `, we have

k

k

←→ Ô(k,k)
k = q−

1
N
k(N−k)

∑

λ∈Π(∧k�)

aλ∆̂χ
−λ. (4.4.12)

Representation basis

We repeat the same analysis in another new basis. For that purpose, let us expand the
partition functions on CA and CB by the SU(N) characters as

FRA({b}) :=

∮
[da′]χRA(a′−1)ICA(a′, {b}) (4.4.13)

GRB({c}) :=

∮
[da′]χRB(a′−1)ICB(a′, {b}) (4.4.14)

and then we can express the expectation value of the Wilson loop in the representation
M as

〈F|ŴM |G〉 :=
∑

RA,RB

∮
[da]HaarχRA(a−1)FRA({b})χM(a)χRB(a)GRB({c}). (4.4.15)

where we introduced a matrix representation like

|F〉 =
∑

R

FR({b})|R〉 (4.4.16)

|G〉 =
∑

R

GR({c})|R〉 (4.4.17)

〈R1|R2〉 = δR1,R2 orthonormal basis. (4.4.18)

Using the eigenvalues of difference operators (4.3.3), the addition of surface operators
in this basis corresponding to (4.4.2) and (4.4.4) are expressed as

〈F|ŴMŜS|G〉 =
∑

RA,RB

N RA
RBS

FRA({b})Ē (S)
RB
GRB({c}) (4.4.19)
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and

〈F|ŜSŴM |G〉 =
∑

RA,RB

N RA
RBS

Ē (S)
RA
FRA({b})GRB({c}), (4.4.20)

respectively. Note that 4D Wilson loops act as “difference operators” and 4D surface
defects do as diagonal multiplications in this basis.

When M = ∧`� and S = ∧k�, we can also repeat the similar computation to the
previous one. First of all, let us rewrite the eigenvalue Ē (S)

R by using (4.3.3) into

Ē (S)
R =

∑

L

q
−2
∑
j∈L(ρ+λR)j =

∑

L

q−2(ρ+λR,hL) (4.4.21)

where L runs over all the `-element subsets of {1, 2, . . . , N}. Next, the sum including the
Littlewood-Richardson coefficient can be written as follows.

∑

RA,RB

N RA
RB∧k� =

∑

λRB

∑

K

(4.4.22)

where λRA − λRB =
∑

i∈K
hi =: hK ∈ Π(∧k�) and K runs over all the k-element subsets of

{1, 2, . . . , N}.
Now (4.4.20) leads to

〈F|ŜSŴM |G〉 =
∑

λB

∑

K,L

q−2(ρ+λB+hK ,hL)FR(λB+hK)({b})GR(λB)({c}) (4.4.23)

=

min(k,`)∑

s=0

q
−2

(
s−k`

N

) ∑

λB
>=0
>=−hK

∑

K,L
|K∩L|=s

q−2(ρ+λB ,hL)FR(λB+hK)({b})GR(λB)({c})

(4.4.24)

(4.4.25)

where we use (hK , hL) =
∑

(i,j)∈K×L
(hi, hj) = |K ∩ L| − k`

N
in the second line and λ ≥ 0

means that it is a dominant weight, that is to say, λα ≥ 0 for all α. By evaluating (4.4.19)
in the same way, we have the similar correspondence

s

k

k

`

`
RA RB ←→

∑

K,L
|K∩L|=s

δλA−λB ,hKq
−(2ρ+λB+λA,hL) (4.4.26)
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which is the dual expression of the operator Ô(k,`)
s .

Setting s = k = `, we finally get the following one needed later soon.

k

k

RA RB ←→
∑

K

δλA−λB ,hKq
−(2ρ+λA+λB ,λA−λB). (4.4.27)

4.5 Proposal of conjectural formula for Wilson punc-

tured network defects in 2D q-deformed Yang-

Mills

In this section, we see how the expectation values of any closed Wilson punctured network
defects can be evaluated. Here “closed” means that the networks do not touch on general
punctures coming from codimension two defects in 6D SCFTs not codimension four ones.
We divide the evaluation procedure into two steps : giving the computational procedures
for special cases (See Sec. 4.5.2) and then constructing the general cases by using them
(See Sec. 4.5.1). However, we will explain these two steps in the reversed order by starting
the general cases and then by decomposing them into several special building blocks for
which we will give the procedure.

In Sec. 4.5.1, we show the procedure to obtain the special building blocks from the
general set-ups. In Sec. 4.5.2, we go back to the evaluation of defect expectation values.
There, we map such evaluations for special building blocks into the computations of
partition functions of statistical mechanical systems with infinite degrees of freedom. The
construction of such a mapping and giving the Boltzmann factor are the main points.
Finally, we make a few comments on the above mapping of R-matrix in a special case in
Sec. 4.5.5. The properties necessary in this section are already summarized in Sec. 3.8.1.

We also summarize the conventions remarked before.
There are two different conventions called “Liouville-Toda” convention and “q-deformed

Yang-Mills” one. Although we focus on the 2D q-deformed Yang-Mills theory, we also
use the former convention which is mostly used in the context of the 4D/2D duality.
There, instead of q, we use another symbol q which is related to q by q = q1/2. Note
also that the skein relations in the q-deformed Yang-Mills convention are obtained under
the replacement of q by −q1/2, where the additional minus sign appears compared to the
above actual relation. This is because the normalizations of the junctions differ in two
conventions.

For a while, we consider the Wilson network operators without any crossings. They
are defined as some networks satisfying the following two conditions:

1. Each network consists of trivalent junctions and arrowed edges with a charge a ∈
{0, 1, 2, . . . , N − 1} ' ZN on each. Each charge corresponds to the fundamental
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bc

a

bc

a

Figure 4.7: Inflowing (Left) and outflowing (right) (a, b, c)-junctions.

representations ∧a� of SU(N) which form the minimal set to generate all the ir-
reducible representations. Notice also that edges with 0 can be removed and we
ignore them hereafter.

Flipping arrow is equivalent to the replacement by the charge conjugate represen-
tation as we have seen. In particular, as we only consider the fundamental repre-
sentations ∧a�, this operation corresponds to a→ N − a.

If we use an edge labelled by an irreducible representation R, we interpret it as a
bunch of edges according to a polynomial expression of R of SU(N) representation
ring generators of ∧a�.

2. There is the charge conservation on each junction. More precisely, if we have all
three inflowing/outgoing edges with charges a, b and c, they must satisfy a+b+c = 0
mod N . On forgetting to take the N -modulo operation, there are two possibilities
: a + b + c = N or 2N . We call the former one (a, b, c)-junction for both inflowing
one and outflowing one, see Fig. 4.7. If a+ b+ c = 2N , the redefinition a′ = N − a,
b′ = N−b and c′ = N−c makes a′+b′+c′ = N and the exchange between inflowing
and outflowing, and we have (N − a,N − b,N − c)-junction for the latter case.

3. Any crossing can be resolved into networks without any crossing as discussed in
Sec. 4.2.4. Therefore, we can remove all the crossings from the network by applying
the above relation to each but have a sum of several networks instead.

4.5.1 Reduction onto special cases

Here we see how the most general pairs of the Riemann surface and defects on it decompose
into the several special ones as the building blocks.

Let C be a Riemann surface with genus g and n punctures and Γ be any closed networks
on it. To each puncture, we assign a holonomy which corresponds to the fugacity in the
SCI language. On the types of punctures and their holonomies, see the review in Sec. 3.8.1
later. Γ may consist of several disconnected components and we write the decomposition
as Γ = t

α
Γ̌α. Next, consider a neighborhood of Γ̌α which is sometimes called a ribbon

graph or a fat graph. This fat graph denoted by Čα is a two dimensional open surface and
its boundary consists of several copies of S1. See Fig. 4.8. Cutting along the boundaries
of Čα, we have a decomposition of C. By the above construction, in addition to Čα’s,
there are other connected components denoting C̃A which have no network defects. Note
that we identify each boundary isomorphic to S1 with a puncture.
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Γ
C

Figure 4.8: A fat graph Č from a network Γ̌. The red graph represents the network and
each region is mapped to a hole. In this example, this is isomorphic to the six-punctured
sphere.

Let us make one comment on the topological property of Č. If Γ̌ has 2` (` > 0)
junctions and the boundary of its fat graph Č is isomorphic to k copies of S1, Č is the
k-punctured genus (`−k)/2 + 1 Riemann surface. Note that its Euler character is −`. 10)

In particular, when Γ̌ is a pure loop without junctions, Č is the twice-punctured sphere.
Now C consists of two types of connected components : Čα which is homotopic to Γ̌α

and C̃ for which we already know how to compute their partition functions as remarked
later. Since we can reconstruct the expectation values of the original system by gluing
together as shown around (3.8.3), all we have to do is know the expectation values for
each pair (Čα, Γ̌α). Before showing that procedure (Sec. 4.5.2), we review several facts
needed for the complete reconstruction and later discussions.

4.5.2 A proposal for closed Wilson networks

At this stage, any expectation value of any network defect is a function of holonomies
for SU(N) global symmetries on each maximal puncture. Recall that we can always take
each SU(N) holonomy in the maximal torus TN−1 which is a N -tuple of U(1) holonomies
a1, a2, . . . , aN with the constraint a1a2 · · · aN = 1 but there left the ambiguity of its
permutations. The invariance under the permutations (or conjugacy actions of SU(N))
implies that the expectation values can be expanded with the characters of SU(N) again
and written as

IČ,Γ̌({a}) =
∑

{Rp}
BΓ̌:{Rp}

n∏

p=1

χRp(ai). (4.5.1)

where {Rp}means that each Rp runs over the set of the unitary irreducible representations
of SU(N). We also use the same n as before for the number of maximal punctures on
Č. As we have seen in (3.8.2), for any 2D q-deformed Yang-Mills partition functions

10) Let e,v(= 2`) and f be the number of edges, junctions of Γ̌ and regions in Č, respectively. By
construction, f = k holds true. The closedness of the network Γ̌ and the trivalence property of junctions
also say 2e = 3v. The Euler’s theorem applied to Č ignoring all the punctures gives 2− 2g = f − e+ v.
Combined with all, we finally have the claim χČ = 2− 2g − k = − 1

2v = −`.
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without defects, the coefficient B in the character expansion is diagonal in {Ri} and each
component is given by (dimq R)χČ . In other words,

B:{R} = (dimq R)χČ
n∏

p=1

δRp,R (4.5.2)

where δRp,R gives 1 when Rp = R and 0 otherwise.
Now our goal is to give the procedure for computations of BΓ̌:{R}. For that purpose,

let us interpret this as a Boltzmann factor of a statistical mechanics on a lattice system
defined by following three steps :

1. Make a dual ideal triangulation

The Riemann surface Č decomposes into the several components by removing the
locus of network defects Γ̌. The previous construction via fat graphs ensures the nat-
ural one-to-one correspondence between the components of regions and the bound-
aries/punctures. Now consider the dual quiver on Č associated with the network Γ̌.
This is obtained when each region or puncture and network’s edge are mapped into
a vertex and an arrow with the charge, respectively. At this stage, the summation
in (4.5.1) says that there lives a discrete but infinite physical degree of freedom la-
belled by the irreducible representations of SU(N) or the dominant weights on each
vertex. Any junction is mapped into a triangle because of the trivalence property of
the network. Note that similar operations already appeared many times in various
contexts, see [15, 62] for example. So we have (ideal) triangulations with a charge
on each edge, of Č. Two or three vertices of a triangle are allowed to be common
at this stage but, in Sec. 4.5.2, we will see that we can ignore such triangulations.
Notice also that the number of triangles is given by −2χČ on recalling footnote. 10).

2. Consider the allowed configurations of dominant weights

The whole configuration space is the set of all maps from each quiver vertex to an
irreducible representation or a dominant weight. However, for many configurations,
BΓ̌,{R} in (4.5.1) vanishes as we will discuss in 4.5.2 and we can restrict the range
of the summation to the non-vanishing configurations.

3. Give the Boltzmann factor for each configuration

As with the ordinary statistical mechanics such as Ising models, we assume the
Boltzmann factor of a given configuration is the product of local Boltzmann factors
over all the triangles. In other words, the local Boltzmann factor denoted B4λA,λB ,λC
is a function on triples of dominant weights living on three vertices of a single
triangle 4 and the total Boltzmann factor is given by

BΓ̂:{R} =
∏

4
B4λ4,A,λ4,B ,λ4,C (4.5.3)

where 4 runs over all the triangles on the ideal triangulation of Č. The concrete
formula of B4λA,λB ,λC will be given as (4.5.8) in Sec. 4.5.2.
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aAB

aBCaCA

A B

C

Figure 4.9: There are three regions around each junction. The red dashed arrows represent
its dual quiver.

Selection rules on dominant weights

Here we exhaust all the configurations whose Boltzmann factors are non-vanishing. The
strategy is same as that used in [75].

Let us consider (aAB, aBC , aCA)-junction and three regions around it as shown in
Fig.4.9. There are still two types of junctions, inflowing one and outgoing one but here-
after we focus on outflowing one only because the final expressions for B4 are same for
both types. Let three dominant weights living on its vertices be λA, λB and λC and de-
fine λXY := λX − λY for X, Y ∈ {A,B,C}. The gluing procedure stated in Sec. 3.8.1
tells that R(λY ) ⊗ ∧aXY� contains R(λX) for (X, Y ) = (A,B), (B,C) and (C,A). This
statement equals to λXY ∈ Π(∧aXY�) where Π(R) is a set of all weights of the highest
representation R. Then there is a unique subset EXY of {1, 2, . . . , N} consisting of aXY
elements such that λXY =

∑

s∈EXY
hs. The cycle condition λAB + λBC + λCA = 0 means

that EAB,EBC and ECA has no common element and EAB tEBC tECA = {1, 2, . . . , N}.
In conclusion, allowed configurations have several sectors determined by the choice of
EAB, EBC and ECA which is a partition of {1, 2, . . . , N} into three sets. Note that there

are
N !

aAB!aBC !aCA!
sectors for single junction. And in each sector, there is a summation

over λA for example, 11) with a constraint that all λA, λB and λC are dominant weights.
12)

Notice also that two adjacent vertices must have different center charges as we have
seen at part 3 in Sec. 3.8.1 and we can say that there is no edge whose starting vertex
and terminating one are common.

11)Of course, it is possible to choose λB or λC instead. In all cases, the other two dominant weights are
determined if we specify the sector at first.

12)In other words, this is just summation over λA and pairs of λB − λA and λC − λA. The later two
pairs label the sectors.
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λ1:1 λ1:2 λ1:N−2 λ1:N−1

λ2:1 λ2:2 λ2:N−3 λ2:N−2

λN−2:1 λN−2:2

λN−1:1

Figure 4.10: Pyramid, an assembly of 1
2
N(N − 1) integers.

Conjectural formula for the local Boltzmann factor

The last task is to show the way to get the local Boltzmann factor for any allowed triple
of dominant weights λA, λB and λC .

Before going to the final result, we must prepare some tools to express it simply. First
of all, we introduce a mathematical object playing central roles in our computations.
This is just an assembly of integers designated by two labels h and α = αh. h runs over
1, 2, . . . , N − 1 and α does over 1, 2, . . . , N − h for each h. Therefore, this object consists
of 1

2
N(N − 1) integers. We call such object “pyramid” hereafter. See Fig. 4.10.
In particular we have a natural map defined just below which sends a weight λ =

[λ1, λ2, . . . , λN−1] where λ =
N−1∑

β=1

λβωβ to a pyramid and denote the image by λ̂ or λ̂h:α.

The definition of the map is

λ̂h:α :=
α+h−1∑

β=α

λβ. (4.5.4)

Hereafter, we permit an abuse of notation. We use the same symbol λ̂ for the pyramids
not in the image of this inclusion map too. In such cases, λ̂ is to be considered as a single
symbol as a whole and λ is meaningless.

Next, we define majority function mj for three variables :

mj(a, b, c) :=





a b = a or c = a

b a = b or c = b

c a = c or b = c

. (4.5.5)

Since, hereafter, there appears no case that all variables are distinct, this definition is
well-defined in our usage. In particular, we extend this to the case that the variables are
pyramids as follows :

mj(λ̂A, λ̂B, λ̂C) := {mj((λ̂A)h:α, (λ̂B)h:α, (λ̂C)h:α)}h:α. (4.5.6)

Finally, we define q-dimension function D :

D[λ̂] :=
N−1∏

h=1

N−h∏

α=1

[(λ̂)h:α + h]q
[h]q

. (4.5.7)
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Now that we get all necessary tools, let us write down the local Boltzmann factors for
three dominant weights λA, λB and λC living on its vertices. This is expressed as

B4λA,λB ,λC =
1

D[mj(λ̂A, λ̂B, λ̂C)]
1
2

. (4.5.8)

Based on this proposal, we derive several skein relations in App. E.3, which provides
a (mathematical) evidence that this proposal works well. The other physical evidences
come from the consistency checks in the next Chapter. 5.

Then, the number of appearances of each q-number is always even.
We do not claim that the local Boltzmann factors are physically significant but only

the total Boltzmann factor is physical. In other words, there may exist other expressions
for the local Boltzmann factor but giving the same for the total Boltzmann factor and
satisying the skein relations. For the research of 4D/2D duality relations, it is enough to
know the total Boltzmann factor.

4.5.3 Formulae for Wilson punctured networks

We have independently discussed the computations of expectation values for closed net-
works in the previous section and the geometrical structures of the composite surface-line
systems (Sec. 4.4) and here we will unify two things.

After performing the crossing resolutions, there appear several networks allowing the
punctured edges as shown in Fig. 4.11.

`

`

RA RB

`

`

RA RB

Figure 4.11: Punctured edge.

The modification of the statistical model previously introduced in Sec. 4.5.2 is simple
: add another local Boltzmann factor for pairs of two adjacent dominant weights or,
equivalently, edges. The last result (4.4.27) in the previous section suggests that this
factor is given by

B→,n→λA,λB→ = q−n(2ρ+λA+λB ,λA−λB) = q−n(λ̃A+λ̃B ,λ̃A−λ̃B) (4.5.9)

where n is the number of “punctured” on the edge and λ̃ := λ+ ρ.
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R
B

R
A

R
C

R
D

a

b

Figure 4.12: Two dual intersecting loops. If the upper punctures are simple / minimum
type [N − 1, 1], the red loop corresponds to the fundamental Wilson loop and the green
one does to some ’t Hooft loop.

As a simple application, we can see a new but naturally expected skein relation like

b
c

a RA

RB

RC
=

b

c

a
RA

RB

RC
(4.5.10)

because of the following equality

q−(λ̃A+λ̃C ,λ̃A−λ̃C) = q−(λ̃A+λ̃B ,λ̃A−λ̃B)q−(λ̃B+λ̃C ,λ̃B−λ̃C). (4.5.11)

It is the interesting problem to prove the equalities (4.3.17) or (4.3.18) based on the
dual statistical model but we have no proof for them in general cases yet.

4.5.4 Dual intersecting loops in T4fulls

Let us consider the case with a = b = 1 in Fig. 4.12. This theory reduces into SU(N)
superconformal QCD (SCQCD) on partially closing two of four punctures into the simple
([N − 1, 1]-type) punctures. On that theory, these two loops correspond to the ordinary
fundamental Wilson loop and some ’t Hooft loop. 13) Using the crossing resolutions, this
decomposes into four components. By evaluating each component and then by summing
them up, we have the following results for the whole Boltzmann factor (the definition of
EXY is given in Sec. 4.5.2) :

1. case EBA = EDA = ECB = ECD = {`} for ` ∈ {1, 2, . . . , N}

Bβ◦α:{λ} =
1

D[λ̂B]2
(4.5.12)

13)At least, its ’t Hooft’s topological charge is neutral. It is an interesting problem to identify what line
defect on the 4D SCQCD precisely corresponds to the given loops on the 2D geometry side.
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where λB = λD.

2. case EBA = EDA = {`} and ECB = ECD = {k} for ` 6= k ∈ {1, 2, . . . , N}

Bβ◦α:{λ} =
1

D[λ̂B]2[κ+ σ0]2q
(4.5.13)

where h0 := |k − `|, α0 := min(k, `), σ0 := sgn(`− k) and κ := (λ̂B)h0:α0 + h0. Note
also λB = λD.

3. case ECD = EBA = {`} and EDA = ECB = {k} for ` 6= k ∈ {1, 2, . . . , N}

Bβ◦α:{λ} =
1

D[λ̂B + f̂{`},{k}]D[λ̂D + f̂{k},{`}]
(4.5.14)

where λB − hk = λD − h` and see App. E as to f̂{k},{`}.

It is possible to rewrite the above expression into

Bβ◦α:{λ} =
1

D[λ̂B]D[λ̂D]

[κ]q[κ+ 2σ0]q
[κ+ σ0]2q

. (4.5.15)

There is a relation κ = (λ̂B)h0:α0 + h0 = (λ̂D)h0:α0 + h0 − 2σ0.

Note that the ordering of additions of the two loops is irrelevant in q-deformed Yang-
Mills theory (not so in the Liouville-Toda CFT case) and they commutes each other.
We can naturally understand this if we put them in three dimensional space C × S1 as
discussed in Sec. 4.3.

4.5.5 A remark on R-matrix

1 1

RB

RC

RD

RA λA

EBA

λB

ECB

EDA

λD

ECD

λC

Figure 4.13: There are four regions around any crossing. This means that the R-matrices
(Left) can be mapped into the local Boltzmann factors associated with rectangles (Right).

As we see in the last example in the previous section, it is possible to compute the local
Boltzmann factor for a single crossing or on the dual rectangle. See Fig. 4.13. Roughly
speaking, the factors are the square root of the previous results, but there appear some
additional powers of q. The factors can be given as follows :
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1. case EBA = EDA = ECB = ECD = {`}

B�crossing = (−q1/2)
1
N
−q−1/2

D[λ̂B]
(4.5.16)

where λB = λD again.

2. case EBA = EDA = {`} and ECB = ECD = {k} for ` 6= k

B�crossing = (−q1/2)
1
N
−σ0q

−σ0κ−1

D[λ̂B][κ+ σ0]q
(4.5.17)

where we use the same κ and σ0 as before. Note also λB = λD again.

3. case ECD = EBA = {`} and EDA = ECB = {k} for ` 6= k

B�crossing = (−q1/2)
1
N

1

D[λ̂B]1/2D[λ̂D]1/2
[κ]

1/2
q [κ+ 2σ0]

1/2
q

[κ+ σ0]q
. (4.5.18)

The other crossing is obtained by just replacing q by q−1. All the above results can have
similar structures to those for triangles.

It is a very interesting problem to analyze all types of crossings or to relate the above
local Boltzmann factors to the known models such as face or (R)SOS models [169, 178–
181].
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Chapter 5

Return to SCIs and skein relations

5.1 Schur indices with line defects

In this section, we analyse three cases : rank 1 SCFTs, free hypermultiplets and super-
conformal QCDs in class S theories.

Among the possible networks on the trinion, there are the minimal ones depicted
in Fig. 5.1. They were discussed explicitly at first in [62] and shown to be elementary
generators of the line operator algebra in [64]. They are called pants networks there and
one shown in Fig. 5.1 is called (aAB, aBC , aCA)-type and denoted by ℘(aAB, aBC , aCA).
The computation of the SCI in the simplest case, the T3 theory case, was done in our
paper [75]. However, the extension to other types of pants networks had been impossible
before our work [90] explained in the previous section. Notice that these pants networks
are expected to generate all the possible networks not touching on the punctures.

Through this and next sections, there is an important assumption : there is the same
number of independent elementary pants networks as the rank of IR charge lattice which
equals to the Coulomb branch dimension. The first example we can check readily is the
TN -theory. As seen in Sec. 2.4.1, the Coulomb branch dimension of the TN -theory equals
to (N−1)(N−2)

2
. On the other hand, the number of possible junctions in the type AN−1

case is given by the number of the possible partitions of N into three parts, that is, just
(N−1)(N−2)

2
. 1)

Next, let us see the rank 0 SCFTs, namely, free hypermultiplets. They have no
Coulomb branch moduli and there is no dynamical gauge field. Therefore, if all loop
operators given by pants networks are types of Wilson loops, they are expected to be
flavor Wilson loops which are just the classical holonomies because the gauge fields are
just the background fields.

At the computation level, this fact is realized as the factorization of the Schur indices

1)In the other types, this is not true. For example, in the g = so(2N) case, the Coulomb branch real
dimension is given as 2N(N−2). In particular, when N = 4 or so(8), sixteen independent pants networks
are expected if we follow the above assumption. However, the actual number of possible junctions is
10. The reason why we consider the real dimension is just these networks are invariant under charge
conjugation.
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a
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BC

a
CA

R
A
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R
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λA

λB

λC

Figure 5.1: The (aAB, aBC , aCA)-type pants network ℘(aAB, aBC , aCA) and the associated
dual quiver.

Figure 5.2: An example of complicated networks on the trinion which appears in the
product resolution of two elementary pants networks.

with the pants networks into the no defect Schur indices and some simple factors. In
particular, by interpreting that new kinds of skein relations happen on C as discussed in
Sec. 5.2, we assume that these factors are invariant under q → q−1 as explained before
and check that this is true in the concrete examples.

We find that both the above two assumptions and the conjectural formula are consis-
tent and support each other by the computation in this section and the analysis in the
next section.

5.1.1 Free hypermultiplets

Bi-fundamental representation

Let us see the simple case at first. This is the A2 bi-fundamental hypermultiplet whose fla-
vor symmetry is given by SU(3)×SU(3)×U(1). There, we consider the (aAB, aBC , aCA) =
(1, 1, 1)-type pants network on T S [C([13], [13], [2, 1])] = Hyper(�,�, 1). Let a, b and c be
the holonomies of SU(3) × SU(3) × U(1). There are six sectors. Up to q1/2-order, we
can see that the q-deformed Yang-Mills correlators receive the contributions from all the
triple of dominant weights at punctures listed in Table. 5.1.

The result is given by

ISchur

F
(bf)
A2

w/. ℘(1,1,1)
(a, b, c) =

[
χ3(a)c−1 + χ3(b)c

]
+ q1/2

[
2χ3(a)χ3(b) + χ3(b)c−2 + χ3(a)c2

+χ8(a)χ3(b)c−2 + χ3(a)χ8(b)c2 + χ6(a)χ3(b) + χ3(a)χ6(b)
]

+ q
[
c3χ3(a)χ3(b)
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((λA)1, (λA)2) ((λB)1, (λB)2) ((λC)1, (λC)2)

q0, q1/2

{
(0, 0) (0, 1) (1, 0)
(1, 0) (0, 0) (0, 1)

q1/2





(2, 0) (1, 0) (1, 1)
(1, 1) (0, 1) (0, 2)
(1, 0) (1, 1) (0, 2)
(0, 1) (0, 2) (1, 1)
(0, 1) (1, 0) (0, 0)
(0, 1) (1, 0) (1, 1)

Table 5.1: The dominant configurations contributing to q0 and q1/2 terms.

+ c−1χ15′(a)χ8(b) + 2c−1χ6(a)χ8(b) + c−3χ15
′(a)χ6(b) + c−1χ6(a)χ10(b) + cχ10(a)χ6(b)

+ c−3χ6(a)χ3(b) + c3χ6(a)χ15′(b) + 3cχ3(b) + 3c−1χ3(a) + cχ15
′(b) + 3c−1χ3(a)χ8(b)

+ c−3χ3(a)χ6(b) + c3χ3(a)χ6(b) + 2cχ8(a)χ6(b) + cχ8(a)χ15
′(b) + 3cχ8(a)χ3(b)

+c−1χ15′(a) + c−1χ6(a) + c−3χ3(a)χ3(b) + c3χ6(a)χ3(b) + cχ6(b)
]

+O(q3/2)

=
[
χ3(a)c−1 + χ3(b)c

]
ISchur

F
(bf)
A2

(a, b, c) (5.1.1)

where

ISchur

F
(bf)
A2

(a, b, c) = 1 + q1/2
[
cχ3(a)χ3(b) + c−1χ3(a)χ3(b)

]
+ q [1 + χ8(a) + χ8(b) + χ8(a)χ8(b)

+c2χ3(a)χ3(b) + c−2χ6(a)χ6(b) + c2χ6(a)χ6(b) + c−2χ3(a)χ3(b)
]

+O(q3/2)

(5.1.2)

and 15′ = R(2ω1 + ω2).
Then, we find the flavor Wilson loop factor. In terms of the representations of the

global symmetry, it is

W bi−fund
℘(1,1,1) = (3,1,−1)⊕ (1,3, 1). (5.1.3)

In the generalAN case ( T S [C([1N ], [1N ], [N−1, 1])] = Hyper(�,�, 1) = 1
2
Hyper(�,�, 1)⊕

1
2
Hyper(�,�,−1) ), we conjecture that the (a, b, c)-type (N = a + b + c) pants network

gives the flavor Wilson loops

W bi−fund
(a,b,c) =

(
b+ c− 1

b

)

q

W flavor(∧a�,1,−b)⊕
(
b+ c− 1

c

)

q

W flavor(1,∧a�, c).

(5.1.4)

In the same way, we can check this factorizations for several second rank anti-fundamentalt
type hypermultiplets and both exceptional types [91].

5.1.2 rank 1 SCFTs

In this section, we focus on the rank 1 SCFT with enhancement global symmetry, E6,7,8

symmetry.
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Rank 1 E6 SCFT case

The first result is already discussed in [75] in another way. There is only one type ele-
mentary pants network specified by (1, 1, 1).

ISchur
rank 1 E6 SCFT w/. ℘(1,1,1)(a, b, c) = q1/2χE6

27(a, b, c) + q3/2χE6
1728(a, b, c)

+ q5/2
(
χE6
46332(a, b, c) + χE6

1728(a, b, c) + χE6
351(a, b, c) + χE6

27(a, b, c)
)

+ q7/2
(
χE6
741312(a, b, c) + χE6

51975(a, b, c) + χE6
46332(a, b, c) + χE6

17550(a, b, c)

+2χE6
1728(a, b, c) + χE6

351(a, b, c) + 2χE6
27(a, b, c)

)
+O(q9/2).

Here all the irreducible representations appearing in characters are non-trivially charged
under its center group Z3.

Notice that the Schur indices in the absence of defects up to q3 order is given as

ISchur
rank 1 E6 SCFT(a, b, c) = 1 + qχE6

78(a, b, c) + q2
(
χE6
2430(a, b, c) + χE6

78(a, b, c) + 1
)

+ q3
(
χE6
43758(a, b, c) + χE6

2925(a, b, c) + χE6
2430(a, b, c) + 2χE6

78(a, b, c) + 1
)

+O(q4).

ω1 ω2 ω3 ω4 ω5

ω6

Figure 5.3: E6 Dynkin diagram. ωi gives i mod 3 charge under the center group Z3.

dimension 27 351 1728 17550 46332 51975
Dynkin labels (100000) (000100) (100001) (000101) (100002) (101000)

dimension 741312 78 2430 2925 43758
Dynkin labels (100003) (000001) (000002) (001000) (000003)

Table 5.2: The dimensions of irreducible representations and their Dynkin labels in E6.
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Rank 1 E7 SCFT case

In this theory, we find that the (2, 1, 1)-type pants network gives the non-trivial 4D loop
operator respecting the E7-symmetry. Indeed, the computation up to q7/2 gives 2)

ISchur
rank 1 E7 SCFT w/. ℘(2,1,1)(a, b, c) = q1/2χE7

56(a, b, c) + q3/2χE7
6480(a, b, c)

+ q5/2
(
χE7
320112(a, b, c) + χE7

6480(a, b, c) + χE7
912(a, b, c) + χE7

56(a, b, c)
)

+ q7/2
(
χE7
9405760(a, b, c) + χE7

362880(a, b, c) + χE7
320112(a, b, c) + χE7

86184(a, b, c)

+2χE7
6480(a, b, c) + χE7

912(a, b, c) + 2χE7
56(a, b, c)

)
+O(q9/2). (5.1.5)

Notice that all the irreducible representations appearing in characters are non-trivially
charged under its center group Z2.

The no defect Schur index of this SCFT is given by

ISchur
rank 1 E7 SCFT(a, b, c) = 1 + qχE7

133(a, b, c) + q2
(
χE7
7371(a, b, c) + χE7

133(a, b, c) + 1
)

+ q3
(
χE7
238602(a, b, c) + χE7

8645(a, b, c) + χE7
7371(a, b, c) + 2χE7

133(a, b, c) + 1
)

+O(q4).
(5.1.6)

The other two pants networks are just flavor Wilson loops, that is to say, factorized
into the Schur index without any networks and the following factors.

(1, 2, 1) : χ4(b)χ
SU(2)
2 (c) + χ4(a)

(1, 1, 2) : χ4(a)χ
SU(2)
2 (c) + χ4(b)

ω1 ω2 ω3 ω4 ω5 ω6

ω7

Figure 5.4: E7 Dynkin diagram. ω4,6,7 gives non-trivial charge under the center group Z2.

Rank 1 E8 SCFT case

In this SCFT, only the (3, 1, 2)-type pants network is the non-trivial network respecting
the E8-symmetry. The result is following.

ISchur
rank 1 E8 SCFT w/. ℘(3,1,2)(a, b, c)− [2]qISchur

rank 1 E8 SCFT(a, b, c) = q1/2
(
χE8
248(a, b, c) + 1

)

2)We do not exactly check the terms at q7/2 but only see the match of the values at the trivial fugacities
a = b = c = 1. Notice also that there is the common structure between the previous E6 SCFT and this
E7 SCFT on replacing the fundamental weights ωE6

6 , ωE6
3 , ωE6

1 , ωE6
4 by ωE7

1 , ωE7
2 , ωE7

6 , ωE7
7 respectively.

The similar structure also appears in the SU(2) Nf = 4 SQCD, namely, the SO(8) SCFT with or without
the fundamental Wilson line, for example. However, it seems to be not true in the E8 SCFT as we see
later.
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dimension 56 912 6480 86184 320112 362880
Dynkin labels (0000010) (0000001) (1000010) (1000001) (2000010) (0100010)

dimension 9405760 133 7371 8645 238602
Dynkin labels (3000010) (1000000) (2000000) (0100000) (3000000)

Table 5.3: The dimensions of irreducible representations and their Dynkin labels in E7.

+ q3/2
(
χE8
30380(a, b, c) + χE8

27000(a, b, c) + χE8
248(a, b, c) + 1

)

+ q5/2
(
χE8
4096000(a, b, c) + χE8

1763125(a, b, c) + χE8
30380(a, b, c) + 2χE8

27000(a, b, c)

+χE8
3875(a, b, c) + 3χE8

248(a, b, c) + 1
)

+O(q7/2)

where we have subtracted the Schur index without the defects expressed as

ISchur
rank 1 E8 SCFT(a, b, c) = 1 + qχE8

248(a, b, c) + q2
(
χE8
27000(a, b, c) + χE8

248(a, b, c) + 1
)

+ q3
(
χE8
1763125(a, b, c) + χE8

30380(a, b, c) + χE8
27000(a, b, c) + 2χE8

248(a, b, c)
)

+O(q4).
(5.1.7)

Notice that in the presence of (3, 1, 2)-type pants network, the lowest exponent of q is −1
2
.

The other pants networks are written as the flavor Wilson loops as follows :

(1, 1, 4) : [2]qχ6(a)χ
SU(2)
2 (c) + [2]qχ

SU(3)

3
(b)

(1, 2, 3) : [3]qχ6(a) + χ6(a)χ
SU(2)
3 (c) + ([2]q)

2χ
SU(3)

3
(b)χ

SU(2)
2 (c)

(1, 3, 2) : [3]q[2]qχ
SU(3)

3
(b) + [2]qχ

SU(3)

3
(b)χ

SU(2)
3 (c) + [2]qχ6(a)χ

SU(2)
2 (c)

(1, 4, 1) : ([2]q)
2χ

SU(3)

3
(b)χ

SU(2)
2 (c) + χ6(a)

(2, 1, 3) : χ15(a)χ
SU(2)
2 (c) + χ6(a)χ

SU(3)

3
(b) + χ6(a) + χ

SU(3)
3 (b)χ

SU(2)
2 (c)

(2, 2, 2) : ([2]q)
2χ

SU(3)
3 (b) + χ15(a) + χ6(a)χ

SU(3)

3
(b)χ

SU(2)
2 (c) + χ6(a)χ

SU(2)
2 (c)

+ χ
SU(3)
3 (b)χ

SU(2)
3 (c) + χ

SU(3)

6
(b)

(2, 3, 1) : ([2]q)
2χ

SU(3)
3 (b)χ

SU(2)
2 (c) + χ6(a)χ

SU(3)

3
(b) + χ6(a) + χ

SU(3)

6
(b)χ

SU(2)
2 (c)

(3, 2, 1) : ([2]q)
2χ

SU(2)
2 (c) + χ6(a)χ

SU(3)
3 (b) + χ6(a)χ

SU(3)

3
(b) + χ

SU(3)
8 (b)χ

SU(2)
2 (c)

(4, 1, 1) : χ6(a) + χ6(a)χ
SU(3)
3 (b) + χ

SU(3)

3
(b)χ

SU(2)
2 (c)

dimension 248 3875 27000 30380 1763125 4096000
Dynkin labels (00000010) (10000000) (00000020) (00000100) (00000030) (000000110)

Table 5.4: The dimensions of irreducible representations and their Dynkin labels in E8.
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ω1 ω2 ω3 ω4 ω5 ω6 ω7

ω8

Figure 5.5: E8 Dynkin diagram. The center group is trivial.
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A
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D

Figure 5.6: For the A1 or SU(2) SCQCD cases obtained by the four punctured sphere,
we show a 4D Wilson loop in � = R(ω1) = 2 (Left), a 4D ’t Hooft loop labelled by
� = R(ω1) = 2 (Middle) and both Wilson and ’t Hooft loops (Right).

5.1.3 Superconformal QCDs

SU(2) Nf = 4 SQCD

Here we introduce the following symbol.

χ(RA, RB, RC , RD) = χ
SU(2)
RA

(a)χ
SU(2)
RB

(b)χ
SU(2)
RC

(c)χ
SU(2)
RD

(d). (5.1.8)

See also Appendix. A.2 on the so(8) convention.
We also written down the Schur index expression of SU(2) Nf = 4 SQCD for com-

parison.

Iφ(a, b, c, d) = ISU(2),Nf=4(a, b, c, d) =

1 + qχ
SO(8)
28 + q2

[
χ
SO(8)
300 + χ

SO(8)
28 + 1

]
(5.1.9)

+ q3
[
χ
SO(8)
1925 + χ

SO(8)
350 + χ

SO(8)
300 + 2χ

SO(8)
28 + 1

]
+O(q4) (5.1.10)

where χ
SO(8)
28 corresponds to the meson operator MAB = εabQaAQbB (a, b : SU(2) indices,

A,B : SO(8) indices) with ∆ = 1 and I3 = 1
2
.

When we add the Wilson loop W�, the Schur index computed from the q-deformed
Yang-Mills formula is given by

IW�
(a, b, c, d) = q1/2 [χ(2,2,1,1) + χ(1,1,2,2)]

+ q3/2 [χ(2,2,1,1) + χ(1,1,2,2) + χ(2,2,3,3) + χ(3,3,2,2)

+ χ(3,1,2,2) + χ(1,3,2,2) + χ(2,2,3,1) + χ(2,2,1,3)
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+ χ(4,2,1,1) + χ(2,4,1,1) + χ(1,1,4,2) + χ(1,1,2,4)] +O(q5/2)
(5.1.11)

= q1/2χ[1,0,0,0](a, b, c, d) + q3/2χ[1,1,0,0](a, b, c, d) +O(q5/2) (5.1.12)

= q1/2χ8v(a, b, c, d) + q3/2χ160v(a, b, c, d) +O(q5/2) (5.1.13)

which matches with the known result in [151] for example. 3)

Next, let us see the dual ’t Hooft operators. Although its field theoretical definition
is not known yet, from the geometrical point of view, this acts on the above Wilson
loop expression simply as the permutation of two simple punctures. In particular, this
permutation is equivalent to the triality action of SO(8), that is to say, the exchange of
the simple roots α1 and α4. Therefore, its Schur index expression is

ITdual
�

(a, b, c, d) = q1/2χ8s + q3/2χ160s

+ q5/2 [χ8s + χ56s + χ160s + χ1400s ] +O(q7/2). (5.1.14)

We can interpret the Schur index as the count of local operators playing the role of
line changing operators between the fundamental Wilson loop and the minimal ’t Hooft
loop.

Although we can directly compute this Schur index by using the result in Sec. 4.5.4,
let us do the computation in another equivalent way. By representing the four punctured
sphere as the disk by removing one point in the sphere, we can geometrically compute
the OPE of the Wilson loop and the dual ’t Hooft loop with the crossing resolutions as
follows:

A

B C

D

= +

− q1/2 − q−1/2 (5.1.15)

= +

− q1/2 − q−1/2 (5.1.16)

3)Of course, this is obviously true when that of the free bi-fundamental hypermultiplets does. The
insertion of the corresponding character and the integration over the gauge group are same operations.
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The first two terms give

χ2(b)χ2(d) + χ2(a)χ2(c) = χ
SO(8)
8c (a, b, c, d) (5.1.17)

and the latter two have the same Schur index ( different in the 4D loop operators ) up to
the prefactors q±1/2. The final expression is

ITdual
� ◦W�

(a, b, c, d) = IW�◦Tdual
�

(a, b, c, d) = χ8cIφ − [2]qIWT�

= qχ56c + q2 [χ8c + χ840c ] +O(q3). (5.1.18)

Since we have no duality frame where both loops are simultaneously magnetically
neutral, it is difficult to interpret this result based on the Lagrangian description.

SU(3) Nf = 6 SCQCD case

Here we adopt the different notation from the previous one : the labels of punctures
different as shown in Fig. 5.7.

R
B

R
A

R
C

R
D

a

R
B

R
A

R
C

R
D

b

R
B

R
A

R
C

R
D

a

b

Figure 5.7: For the higher rank cases, Wilson loop in ∧a� (Left), A ’t Hooft loop labelled
by ∧b� (Middle) and both Wilson and ’t Hooft loops (Right). Notice that the ordering
of the insertions of two loops is irrelevant in this case.

In the absence of loop defects,

ISchur
SU(3) Nf=6 SQCD (a, b, c, d) = 1 + q (2 + c−1d−1χ3(a)χ3(b) + χ8(a)

+ cdχ3(a)χ3(b) + χ8(b)) + q3/2 (c−2dχ3(a)χ3(b) + cd−2χ3(a)χ3(b)

+ c−1d2χ3(a)χ3(b) + c2d−1χ3(a)χ3(b) + c−3 + c3 + d3 + d−3) +O(q2) (5.1.19)

= 1 + q(χ
U(6)
Adj + 1) + q3/2(χ

U(6)

∧36 + χ
U(6)

∧36
) +O(q2) (5.1.20)

where χ
U(6)
6 = cχ3(b) + d−1χ3(a) and χ

U(6)

6
= dχ3(a) + c−1χ3(b).

When we add both fundamental Wilson loop and dual ’t Hooft loop as shown in
fig:loops in SQCD for higher rank, the answer is

ISchur
SU(3) Nf=6 SQCD w/. Tdual

� ◦W�
(a, b, c, d) = q1/2 (cχ3(a) + c2dχ3(b))

+ q (c−2χ3(a) + cd−3χ3(a) + c2d−2χ3(b) + 2c−1dχ3(b) + cd3χ3(a) + d2χ3(a)χ3(b))

+ q3/2 (3d−1χ3(a)χ3(b) + 2c−1d−2χ3(b) + c3d2χ3(a)χ6(b) + c−3d2χ3(a)χ3(b) + c−4dχ3(b)
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+ 5cχ3(a) + 3cχ3(a)χ8(b) + c2dχ6(b) + d−1χ3(a)χ6(b) + c−2d3χ3(a) + c3d2χ3(a)χ3(b)

+ 2c2dχ8(a)χ3(b) + c−1d−2χ8(a)χ3(b) + c2dχ15′(b) + 2d−1χ6(a)χ3(b) + 4c2dχ3(b)

+ cχ15
′(a) + cχ6(a) + c−2d−3χ3(a)) +O(q2). (5.1.21)

= q1/2cdχ
U(6)
6 + q

[
cdχ

U(6)

∧26 + cd(c−3 + d−3)χ
U(6)
6

]

+ q3/2 (c−2d)
[
d3χ

U(6)
[20001] + d3χ

U(6)
[01001] + χ

U(6)
[10100] + (1 + c3d−3)χ

U(6)
[00010] + c3χ

U(6)
[10000]

]
+O(q2)

(5.1.22)

where we use the Boltzmann weight result for each crossing given in [90]. Notice that

χ
U(6)
[0...1

k
...] := χ

U(6)

∧k6 and χ
U(6)

∧66 = c3d−3.

5.2 New kinds of skein relations

In this section, we show several new kinds of skein relations based on the formula. Notice
that all the skein relations satisfy the mirror operation defined as

M :
x

c

c

a b ←→ x

c

c

b a (5.2.1)

M : x←→ x∗ = x−1 (5.2.2)

M :

c

Y ←→

c

Y (5.2.3)

and some skein relations are invariant and others gives the new relations. This operation
is clearly involution and no more relations appear.

5.2.1 Simple punctures

This puncture corresponds to Y = [N − 1, 1]-type and the U(1)N fugacity is expressed

as c[N−1,1] = (q
N−2

2 c, q
N−4

2 c, . . . , q
−N+4

2 c, q
−N+2

2 c, c−(N−1)) where c is the U(1) fugacity
where this U(1) is the maximal torus of GY .
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Y

a+ b

a+ b

a b = c−a
(
a+ b− 1

a

)

q

a+ b

Y + cb
(
a+ b− 1

b

)

q

a+ b

Y

(5.2.4)

where we have introduced the q-binomial coefficient

(
x+ y
y

)

q

:=
[x+ y]q!

[x]q![y]q!
=

∏x+y
i=1 [i]q∏x

i=1[i]q
∏y

i=1[i]q
. (5.2.5)

5.2.2 A3 case

Y = [22]

Y

3

3

2 1 =

3

Y + χ
SU(2)
2 (c)

3

Y (5.2.6)

Y

3

3

1 2 = χ
SU(2)
2 (c)

3

Y +

3

Y (5.2.7)

5.2.3 A5 case

Let us focus on T S [C([16], [23], [42])]. Since this theory is a just free hypermultiplet as
seen in Sec. 2.4.2, it is expected that all the pants networks are flavor Wilson loops and
decompose into the networks without any junctions. In fact, the actual computations
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implies that the pants networks specified by (1, 1, 4),(1, 2, 3), (1, 3, 2) and (1, 4, 1) nat-
urally decompose into the flavor Wilson loops. The other pants networks are also not
independent and we can expect the following relation

(2, 1, 3) ∼ (2, 2, 2) ∼ (2, 3, 1) ∼
ii

(1, 4, 1) ∼
ii

(4, 1, 1) ∼ (3, 2, 1) ∼ (3, 1, 2) (5.2.8)

where ii corresponds to the relation for Y = [23] and others to Y = [42] which give new
relations.

This analysis and the previous analysis of rank 1 E8 SCFT suggest the following skein
relations

Y = [42]

The flavor symmetry associated with this puncture Y = [42] is S(U(1) × U(1)) ' U(1).
The associated fugacity is given by c[42] = (q3/2c1, q

1/2c1, q
−1/2c1, q

−3/2c1, q
1/2c2, q

−1/2c2).
In particular, we introduce c := c1. It is expected that there are 7 independent skein
relations.

i-1 & i-2

Y

5

5

1 4 = ([3]qc
−1 + c2)

5

Y + c

5

Y (5.2.9)

Y

5

5

2 3 = [3]q(c+ c−2)

5

Y + ([3]q + c3)

5

Y (5.2.10)

ii

Y

4

4

2 2 − [2]qc
Y

4

4

3 1 = c−2

4

Y − [3]q c
2

4

Y . (5.2.11)
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and its mirror operated relation.

iii

c
Y

3

3

2 1 − Y

3

3

1 2 = c2

3

Y − c−1

3

Y . (5.2.12)

Y = [32]

The flavor symmetry associated with this puncture Y = [32] is S(U(2)) ' SU(2). The
associated fugacity is given by c[32] = (qc, c, q−1c, qc−1, c−1, qc−1). It is expected that there
are 6 independent skein relations.

i

Y

5

5

4 1 =

5

Y + [2]qχ
SU(2)
2 (c)

5

Y (5.2.13)

and

Y

5

5

2 3 = ([3]q + χ
SU(2)
3 (c))

5

Y + [2]qχ
SU(2)
2 (c)

5

Y (5.2.14)

and their mirror operated relations.
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ii

χ
SU(2)
2 (c)

Y

4

4

3 1 − Y

4

4

2 2 = χ
SU(2)
3 (c)

4

Y −

4

Y (5.2.15)

and its mirror operated relation.

Y = [23]

The flavor symmetry associated with this puncture Y = [23] is S(U(3)) ' SU(3).
The associated fugacity is given by c[23] = (q1/2c1, q

−1/2c1, q
1/2c2, q

−1/2c2, q
1/2c3, q

−1/2c3)
(c1c2c3 = 1). It is expected that there are 3 independent skein relations.

i

Y

5

5

3 2 − χSU(3)
3 (c)

Y

5

5

4 1 =

5

Y − χSU(3)
6 (c)

5

Y (5.2.16)

and its mirror operated relation.

Y

5

5

1 4 − Y

5

5

4 1 = χ
SU(3)

3
(c)

5

Y − χSU(3)
3 (c)

5

Y . (5.2.17)

As application, let us consider T S [C([16], [23], [23])] which is rank 4 SCFT. Using the
above relations, there are equivalence relation up to trivial factors between elementary
pants networks as follows.

(1, 2, 3) ∼ (1, 1, 4) ∼
ii

(1, 4, 1) ∼
ii

(4, 1, 1) ∼ (3, 2, 1)
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(1, 3, 2) ∼ (1, 4, 1) ∼ (2, 3, 1) (5.2.18)

ii corresponds to the second skein relation. Notice that (2, 2, 2), (2, 1, 3) and (3, 1, 2) are
independent

There are (at least) four independent pants networks. We assume that there are no
more skein relations and this is consistent with the fact the complex dimension of Coulomb
branch is 4.

We can derive the similar relations for any general punctures. All other examples in
A3,A4 and A5-type theories and the general conjectural skein relations are shown in [91].

5.3 Networks for N=4 Yang-Mills

As the fundamental aspects of defect networks in the two dimensional theories have been
discussed, we can move on to the discussion of the correspondence between networks on
the 2d side and loops on the 4d side. In this section, we restrict ourselves to the most
familiar N=4 case. On the gauge theory side, the charges of the loop operators were
classified in [44]. It is not easy to construct the corresponding networks for the general
Ak case, but we will see that the skein relations allow us to describe and classify the
networks for A2 concretely.

Before proceeding, let us quickly recall the possible charges of the loop operators of
N=4 SU(N) Yang-Mills, following [44]. We denote the weight lattice by Λ. We use the
notations ωi for the fundamental weights and hi for the weight vectors in the defining
N -dimensional representation. They are explicitly given by

ωi = (1− i
N
, . . . ,

i

1− i
N
,
i+1

− i
N
, . . . ,− i

N
), (5.3.1)

hi = (− 1
N
, . . . ,− 1

N
,

i

1− 1
N
,− 1

N
, . . . ,− 1

N
). (5.3.2)

Note that ω1 = h1 and ωN−1 = −hN .
Let us consider a Wilson loop labeled by an irreducible representation R. We can

also use its highest weight λ as the label, and possible highest weights are in one-to-one
correspondence with Λ/W where W is the Weyl group. Similarly, a ’t Hooft loop can be
characterized by a charge vector in Λ, considered up to the action of the Weyl group.

For a dyonic loop operator, we need to specify a pair of electric and magnetic charges
(µ, λ) ∈ Λ × Λ but the charges need to be identified under a simultaneous action of the
Weyl group. Therefore a dyonic charge corresponds to an element in (Λ × Λ)/W and
represent the element as [(µ, λ)]. We also call it [(µ′, λ′)] lower than [(µ, λ)] if µ′ and λ′

are lower than µ and λ respectively when mapped to Λ/W .
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5.3.1 The product of Wilson loops and ’t Hooft loops

It is well known how pure Wilson loops and pure ’t Hooft loops are represented as loops
on the torus :

Wωa ⇐⇒
a

, Tωb ⇐⇒ b (5.3.3)

where we identify each pair of parallel opposite edges to make the parallelogram the torus.
Here WR is the Wilson loop in the representation R, and we identify an irreducible repre-
sentation and its highest weight vector. We use a similar notation for the ’t Hooft loop.
We also fix the horizontal one cycle as α-cycle and the vertical one as β-cycle. Note that
the S transformation on the torus is naturally identified with S duality transformation of
N=4 gauge theory.

We can now decompose the product Wωa · Tωb using the crossing resolution (4.2.36).
Here we express it in a form to make the data of electromagnetic charges manifest:

b a

=
∑

[(µ
(i)
b ,λ

(i)
a )]∈D(ωb,ωa)

q−〈µ
(i)
b ,λ

(i)
a 〉

i a+ b− i

a− i

b− i
b a

a b

(5.3.4)

where
D(µ, λ) := (W(µ)×W(λ))/W (5.3.5)

is the set parameterizing the possible ways to combine a magnetic charge W(µ) Weyl-
conjugate to µ and an electric charge W(ν) Weyl-conjugate to ν.

The number of elements in the set D(ωb, ωa) is given by s = min(a, b,N−a,N−b) and
is in a one-to-one correspondence with the label i in the summation (4.2.36). The label i

and a representative [(µ
(i)
b , ν

(i)
a )] ∈ D(ωb, ωa) can be naturally related by the equation

i =
ab

N
+ 〈µ(i)

b , λ
(i)
a 〉. (5.3.6)

Recalling the fact reviewed in Sec. 4.1.2 and that 〈µ(i)
b , λ

(i)
a 〉 is the x-component of

the classical angular momentum associated to the Poynting vector under electric charge
λ

(i)
a and magnetic charge µ

(i)
b in the Coulomb phase with the gauge group U(1)N−1, we

naturally expect the following correspondence : 4)

i

b

aa

b

⇐⇒ D
[(µ

(i)
b ,λ

(i)
a )]
⇐⇒

a

b

i
(5.3.7)

4)There are other three equivalent networks connected to each other under (4.2.14) or (4.2.15).
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where we use the symbol D[(µ,ν)] to denote the dyonic loop operator with the charge

[(µ, ν)] ∈ (Λ× Λ)/W . We also use a simple symbol Db,a
(i) for D

[(µ
(i)
b ,λ

(i)
a )]

. See also Fig. 5.8

for the brane realization. Below, we call these dyonic loops Db,a
(i) and the corresponding

networks elementary.

Figure 5.8: The corresponding brane picture for Qba
(i) on the 2-torus. On the stack of N

D3-branes, a F1-strings (Red) and b D1-strings (Green) end on. The number of D3-branes
on which both F1- and D1-strings end is given by i. In this case, a = 3, b = 4 and i = 2.

5.3.2 Analysis in the Liouville/Toda theory

Let us now connect our analysis so far with a computation on the Liouville/Toda theory
side, using the localization in the gauge theory [29,46].

Hereafter we use symbols a = (a1, a2, . . . , aN) under the constraint
∑N

i=1 ai = 0,
Ai(a) := exp[2πib〈a, hi〉] and A(a) = diag(A1(a), A2(a), . . . , AN(a)). We also denote the
N=4 holomorphic partition function by Z(a).

As seen in [29] and [46], Wilson loop WR and ’t Hooft loop TR are written in the form
of matrix model :

〈WR〉 =

∫

iRN−1

daZ(a)∗χR(A(a))Z(a), (5.3.8)

〈TR〉 =

∫

iRN−1

daZ(a)∗
∑

λ∈Π(R)

T
(R)
λ (a)Z(a− bλ) (5.3.9)

where χR is the character of R and Π(R) is the set of weights corresponding to the

irreducible representation R. T
(R)
λ (a) are some functions of a related to the character χR

via a Fourier transformation in a [28, 46] but the concrete expressions are unnecessary
hereafter.

In general, any loop operator is expected to be represented as

〈X〉 =

∫

iRN−1

daZ(a)∗
∑

ν

Xν(a)Z(a− bν) (5.3.10)

where ν runs over some finite set in the weight lattice Λ and Xν(a) are some functions
the detail of which we do not need either. The additions of WR and TR in the ordering of
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loops seen in Sec. 4.1.1 are written as follows :

〈WRX〉 =

∫

iRN−1

daZ(a)∗WR

∑

ν

Xν(a)Z(a− bν)

=

∫

iRN−1

daZ(a)∗
∑

ν

Xν(a)χR(A(a− bν))Z(a− bν), (5.3.11)

〈TRX〉 =

∫

iRN−1

daZ(a)∗TR
∑

ν

Xν(a)Z(a− bν)

=

∫

iRN−1

daZ(a)∗
∑

µ∈Π(R)

∑

ν

T (R)
µ (a− bν)Xν(a)Z(a− bν − bµ). (5.3.12)

In particular, let us choose R as one of the fundamental representations ∧n� and
introduce W (k) := W∧k� and T (`) := T∧`�. Then consider insertions both of W (k) and of
T (`). One way to insert is

〈· · ·T (`)W (k)X〉 =

∫

iRN−1

daZ(a)∗ · · ·
∑

µ∈Π(∧`�)

∑

ν

T (`)
µ (a− bν)Xν(a)χ∧k�(A(a− bν))Z(a− bν − bµ) (5.3.13)

where the ellipsis represents further insertions of other loops.

Recalling χR(A(a)) =
∑

λ∈Π(R)

exp[2πib〈a, λ〉], then define the following operators la-

belled by m = 1, 2, . . . ,min(k, `) :

〈· · · [TW ](`,k)
m X〉 :=

∫

iRN−1

daZ(a)∗ · · ·
∑

(λ,µ)∈Π(∧`�,∧k�)m

∑

ν

T (`)
µ (a− bν)Xν(a) exp[2πib〈a− bν, λ〉]Z(a− bν − bµ).

(5.3.14)

where we decompose the set Π(∧`�) × Π(∧k�) = W(ω`) × W(ωk) into several sectors
defined by

Π(∧`�,∧k�)m := {(µ, λ) ∈ Π(∧`�)× Π(∧k�) | 〈µ, λ〉 = m− k`
N
} = D(ω`, ωk).(5.3.15)

We then have

〈· · ·T (`)W (k)X〉 =
∑

m

〈· · · [TW ](`,k)
m X〉. (5.3.16)

Note that the decomposition of T (`)W (k) is independent of the ellipsis . . . and X assuring
that this expansion is local and represent the product as T (`) ·W (k) or T (`) ×W (k).
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On the other hand, the insertion in the opposite order is

〈· · ·W (k)T (`)X〉 =

∫

iRN−1

daZ(a)∗ · · ·
∑

µ∈Π(∧`�)

∑

ν

T (`)
µ (a− bν)Xν(a)χ∧k�(A(a− bµ− bν))Z(a− bν − bµ)

(5.3.17)

and we also have

〈· · ·T (`)W (k)X〉 =
∑

m

〈· · · q2

(
k`
N
−m

)
[TW ](`,k)

m X〉 (5.3.18)

where we use

exp[2πib〈a− bµ− bν, λ〉] = q
2

(
k`
N
−m

)
exp[2πib〈a− bν, λ〉]. (5.3.19)

In summary, we have found the relations

T (`) ×W (k) =

min(k,`)∑

m=0

[TW ](`,k)
m , W (k) × T (`) =

min(k,`)∑

m=0

q
2

(
k`
N
−m

)
[TW ](`,k)

m . (5.3.20)

Comparing the product expansion (5.3.20) and the graphical expansion (5.3.4) we find
the following identification :

(Q`k
(m) on T 2) ↔ D`,k

(m) ↔ [(µ
(m)
` , λ

(m)
k )] ↔ q−〈µ

(m)
` ,λ

(m)
k 〉[TW ]

(`,k)
m

network 4d loop charge operator
. (5.3.21)

Here the pair of weights [(µ
(m)
` , λ

(m)
k )] was chosen as in (5.3.4), and therefore we have

〈µ(m)
` , λ

(m)
k 〉 = m− k`

N
.

Let us see how T transformation of the SL(2,Z) duality action acts on these loop
operators. The θ dependence originally comes from the classical part of N=4 partition
function Z(a) = exp[−πiτ〈a, a〉] where holomorphic gauge coupling τ = θ

2π
+ 4πi

g2
YM

and

the monodromy action under the change θ → θ + 2π is following :

Z(a)∗Z(a− bλ) −→
τ→τ+1

exp[−πi(〈a− bλ, a− bλ〉 − 〈a, a〉)]Z(a)∗Z(a− bλ)

= q−〈λ,λ〉e2πib〈λ,a〉Z(a)∗.Z(a− bλ) (5.3.22)

The Witten effect on the partition function can be re-expressed in the loop operators
which acts on the partition functions. In particular, when λ is in Π(∧`�) = W(ω`),
Z(a)∗Z(a− bλ) is accompanied by

q−`+
`2

N e2πib〈λ,a〉 (5.3.23)
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as θ shifts by 2π. Summing it up over Π(∧`�),

T (`) −→ q−`+
`2

N [TW ]
(`,`)
` = D[(ω`,ω`)] = D`,`

(`) (5.3.24)

under θ → θ + 2π. Since D[ω`,ω`] = D`,`
(`) is given by

`` . (5.3.25)

This θ → θ + 2π action is graphically represented as

T : ` −→ ``

Tω` D[(ω`,ω`)].

(5.3.26)

and matches with the T transformation on the torus.

5.3.3 Examples of products of loops in A2

Let us focus on the A2 case and perform some explicit computations. The examples in
the general Ak case will be given in Appendix 5.4. We will see the geometric SL(2,Z)
action on the torus is nicely mapped to the SL(2,Z) action on the electric and magnetic
weight systems.

S

S
C C

T−1

S, T

S, T

T−1

T T−1

T T−1

(ω2, h1) (ω2, h2) (ω2,−h1)(ω2,−h2)

(ω1,−h3)(ω1,−h2) (ω1, h2) (ω1, h3)

Figure 5.9: The SL(2,Z) duality orbit of D1,1
(0) (below right) and their dyonic charges.

Two adjacent expressions of a pair of weights are equivalent via some Weyl reflections.
Red weights correspond to electric weights and green’s to magnetic ones.
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Example 1. The simplest case is W� × T�, which corresponds to the equation (5.3.4)
with a = 1 and b = 1 :

W� × T� = q1/3D1,1
(0) + q−2/3D1,1

(1) (5.3.27)

where D1,1
(0) = D[(ω1,h2)] = D[(ω1,h3)] and D1,1

(1) = D[(ω1,ω1)]. This was originally found

in [62,68] in the context of class S theory.
The dyonic loop D1,1

(1) is obtained from the ’t Hooft loop T� by an application of the T
operation. In particular this loop can be mapped to a Wilson loop in some duality frame.
The object D1,1

(0) cannot be mapped into a network localized on any one cycle by the
torus modular transformations. In the language of charges, this means that the electric
weight and the magnetic weight are not parallel. We can now work out how the SL(2,Z)
transformations act on this particular network and the pair of weights, see Fig.5.9.

Example 2. The next example is W�� × T�:

�

�� = q2/3


 −

+ q−1 + q−2


 . (5.3.28)

In this example, the first term on the right hand side is a network that cannot be
mapped by SL(2,Z) to any of the networks we already studied explicitly. It is natural to
posit the following expansion

W�� × T� = q2/3D[(ω1,2h2)] + q−1/3D[(ω1,h1+h2)] + q−4/3D[(ω1,2ω1)]

+ (loops with lower weights) (5.3.29)

since we expect that the exponent of q multiplying D[(λm,λe)] equals −〈λm, λe〉 to capture
the angular momentum. Then we can identify

D[(ω1,2h2)] ∼ (5.3.30)

up to the lower contribution D[(ω1,hi+hj(>i))] from lower weights. Hereafter, we try to map

networks and charges of the dyonic loops up to the contributions from lower weights.5)

5)The complication comes from two sources. One is common with what we encountered in Sec. 4.2.2:
irreducible representations are linear combinations of networks even in the Wilson loop case. Another
is related to the bubbling effect of the monopole moduli space. See the related works to this subject
[45,46,182,183].
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Example 3. The third example is WAdj × T� : The skein relation gives us

�

Adj = q + + q−1

(5.3.31)

while from gauge theory we expect

WAdj × T�
= qD[(ω1,h2−h1)] +D[(ω1,h1+2h2)] + q−1D[(ω1,2h1+h2)]

+ (loops with lower weights). (5.3.32)

For a graphical representation of weights involved, see Fig. 5.10.
The first term and the third term can be obtained by SL(2,Z) transformations on

D1,1
(0). The second term is a new type:

D[(ω1,h1+2h2)] ∼ . (5.3.33)

(ω1, 2h1 + h2) (ω1, h1 + 2h2) (ω1, h2 − h1)

Figure 5.10: Representative weights in D(ω1, ω1 + ω2)

Example 4. Our final example is WAdj × TAdj. The skein relation gives

Adj

Adj = 4(2 + q2 + q−2) +

2
Adj

+ 2 Adj + q−2

Adj
+ q2

Adj

144



+ q−1


 +


+ q


 +




(5.3.34)

while the gauge theory computation yields

WAdj × TAdj = q−2D[(λAdj,λAdj)] + q2D[(λAdj,−λAdj)]

+ q−1D[(λAdj,λ1+)] + q−1D[(λAdj,λ2+)] + qD[(λAdj,λ2−)] + qD[(λAdj,λ1−)]

+ (loops with the lower weights) (5.3.35)

where λAdj = ω1 +ω2 is the highest weight of the adjoint representation and see Fig. 5.11
for λ1,2±. It would be interesting to reproduce the terms with lower weights from a purely
4d gauge theoretic computations.

λAdj

λ2−

λ2+λ1−

λ1+

Figure 5.11: Representative weights in D(ω1 + ω2, ω1 + ω2)

5.3.4 Classification of networks on T 2 for A2

We have seen some basic examples of products of loops and the identification of the charge
and the network. Here we establish the general mapping between the networks and the
charges in the case of the A2 theory on the torus, or equivalently the N=4 SU(3) Yang-
Mills. This is a minimal extension of the dictionary of Drukker, Morrison and Okuda [25].

Let us first classify the possible A2 networks on the torus purely in terms of the
skein relation. First, recall that all networks with crossings are resolved into those with
junctions only. In particular, for the A2 case, there are only two types of junctions, namely
the one where the heads of three arrows meet and another one where the tails of three
arrows meet. Therefore the networks are bipartite [62] and there appear only polygons
with degree-even vertices.

We now use the skein relations we discussed so far. Recall the basic conventions we
discussed in Sec. 4.2.7. All digons can be contracted, and all rectangles are resolved to
two pairs of curves, as we discussed in (4.2.51).

At this point, the network might contain several disconnected components. If there
are no vertices at all, the network consists of parallel loops wrapping the same one-cycle
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on T 2. Assume now there is at least one vertex. Pick a connected component. It has the
topology of either a disk, an annulus or a torus.

Now, let us denote the number of edges, or equivalently the number of vertices, of
the i-th polygon in this connected component by pi(= 2, 4, 6, . . .). Denote the number of
polygons by f . The total number of vertices, edges and faces of the network is then given
by

V =
1

3

∑

i

pi, E =
1

2

∑

i

pi, F = f. (5.3.36)

Furthermore, denote the number of boundary edges by B which vanish if the connected
component has the topology of torus. From Euler’s theorem we should have

χ+
1

6
B = V − E + F = F − 1

6

∑

i

pi ≥ 0 (5.3.37)

since the connected component is either a disk (χ = 1, B > 0), an annulus (χ = 0, B > 0),
or a torus (χ = 0, B = 0). Since we removed all digons and rectangles, pi ≥ 6, and
therefore we have

F − 1

6

∑

i

pi ≤ 0. (5.3.38)

From this we see that the connected component has the topology of the torus, and every
polygon is a hexagon. Therefore, the possible A2 networks on T 2 are mapped into the
bipartite hexagon tilings with three corner condition at every vertex.

It is interesting to note at this point that bipartite hexagon tilings of the torus appeared
in the string theory literature in the context of brane tilings [184–186]. In this case the
bipartite hexagon tilings corresponded to Abelian orbifolds of C3.

e1

e2

Figure 5.12: The infinite bipartite hexagonal tiling and its basis vectors

Now let us make the dictionary between the bipartite hexagon tilings and the dyonic
charges. Instead of thinking of filling a torus by hexagons, we can take the quotient of
the bipartite hexagon tiling filling the entire plane, and then we define the vectors e1 and
e2 there, see Fig.5.12. To specify a bipartite hexagon tiling, we choose the α and the β
cycles of the torus from Ze1 ⊕ Ze2 so that they are linearly independent. In Fig. 5.13 we
show the hexagonal tilings and the dyonic charges that already appeared in our analysis
so far.

From these examples, we can find the general map. We first naturally identify the A2

weight lattice Λ and the dual lattice of the hexagonal tiling. Then, the rule is

(λe, λm) 7→ (α, β) = (λm,−λe). (5.3.39)
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(ω1, h2) (ω1, ω2)

(ω1, 2h2)
(ω1,−2h3)

Figure 5.13: Some examples of the hexagonal tilings and the dyonic charges that we have
already identified

under the condition q1p2 − q2p1 > 0 where λe = q1ω1 + q2ω2 and λm = p1ω1 + p2ω2.
It is clear that the action of the Weyl group is consistent. Because the cycles α, β

define the basis of charges, the action of SL(2,Z) on the dyonic charges (λe, λm) and that
on the cycles (α, β) should be transpose of each other, and indeed the mapping (5.3.39)
satisfies this condition. Let us end this section by exhibiting some more examples of the
mapping between the dyonic charges and the hexagonal tilings, see Fig. 5.14.

(ω1 + ω2, h3)
(ω1 + ω2, 2h2 + h1)

Figure 5.14: Some more examples of the hexagonal tilings and the dyonic charges

In this section we only discussed the A2 case. In Sec. 5.5, we briefly discuss the general
map from the charge of the dyonic loops to the networks for or general Ak>2 cases.

5.4 Examples of OPE and charge/network dictionary

Here we present some more examples of the OPE and the correspondence of the dyonic
charge and the networks for the N=4 theory, or equivalently for the torus. The results
of the OPE are for AN−1>2 unless otherwise stated. For the A2 case, the edges with 3

147



should be removed and those with 2 can be replaced by the reversed ones with 1. We use
the convention that the magnetic weight lies in the fundamental Weyl chamber Λ/W but
the electric one is unrestricted.

5.4.1 Pure dyonic loops

Dyonic loops can be roughly classified into two, which we call pure and complex. The pure
ones are those that can be mapped to a Wilson loop in a duality frame, and the complex
ones are those without any such duality frame. Let us first discuss the representation of
the pure ones as loops on the torus.

We abbreviate a bundle of arrows with charges s1, s2, . . . , sr−1 and sr as an single
arrow without any label:

:=

s1 s2 s3 sr−1 sr

. (5.4.1)

Let ωI =
r∑

i=1

ωsi . Then there are four types as follows:

(µm, λe) = (pωI , qωI), (µm, λe) = (pωI ,−qωI)

q ≥ p : q

p

, q

p

, (5.4.2)

p ≥ q : q

p

, q

p

. (5.4.3)

This is essentially the same as the discussion in [25].

5.4.2 W�� × T�
Let us compute the skein relation of W�� and T�. Comparing with what we expect from
the gauge theory, we can then identify various networks with complex dyonic loops. From
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the skein relation, we have

�

�� = q2/N


 2

2
− 2 2

3

+ q−1
2

2 + q−2




(5.4.4)

The first term is a new one, the second and third ones are elementary and the final one
is pure. Then we identify:

D[(ω1,2hi(6=1))] ∼
2

2
, D[(ω1,hi(6=1)+hj(>i))] ∼ 2 2

3
, (5.4.5)

D[(ω1,h1+hi(6=1))] ∼ 2
2 , D[(ω1,2ω1)] ∼ . (5.4.6)

5.4.3 W(2,1) × T�
Let us next consider W(2,1) × T�:

�

= q3/N


 2

23

2
− 3 3

4

+ q−1 2

2

2 + q−2

2
2


 (5.4.7)
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The first and the third terms are new, the second one is elementary and the fourth one is
obtained by a T action of some elementary one. When N = 3, the second one does not
appear and indeed this case is the same as Example 5.4.5.

We can therefore identify:

D[(ω1,2hi(6=1)+hj(>i))] ∼ 2
23

2
, D[(ω1,hi(6=1)+hj(>i)+hk(>j))] ∼ 3 3

4
,

(5.4.8)

D[(ω1,h1+2hi(6=1))] ∼ 2

2

2 , D[(ω1,2h1+hi(6=1)] ∼
2

2

.

(5.4.9)

5.4.4 W��� × T�
Our next example is W��� × T�:

�

��� = q3/N




2

2

2

− 2
2

23

2
+ 3 3

4

+ q−1




2

2

2 −
3

3
2




+ q−2

2
2

+ q−3


 (5.4.10)

The first term is new, the fifth one is elementary, the seventh one is pure and others have
appeared in the previous case. When N = 3, the third one does not appear. We therefore
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identify:

D[(ω1,3hi(6=1))] ∼
2

2

2

, D[(ω1,h1+hi(6=1)+hj(>i))] ∼
3

3
2

, (5.4.11)

D[(ω1,3ω1)] ∼ . (5.4.12)

5.4.5 WAdj × T�
As a further example, let us consider WAdj × T�:

�

Adj =

q

2

+ 2

2

+ q−1

2

(5.4.13)

The second term is new, and the first and the third ones are obtained by some duality
actions of some elementary one. Our identifications are:

D[(ω1,hi(6=1)−h1)] ∼
2

, D[(ω1,hi(6=1)−hj(6=i)+hj(>i))] ∼ 2

2

, (5.4.14)

D[(ω1,h1−hi(6=1))] ∼
2

. (5.4.15)

5.4.6 WAdj × TAdj

We now move on to the example WAdj × TAdj:
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Adj

Adj =

2 2

22

+
Adj

+ Adj

+ q−2

Adj

Adj

+ q2

Adj

Adj

+ (2[N − 2] + [N − 4]) + (3 + q2 + q−2)

+ q−1




2

22

+

2 2

2




+ q




2

22

+

2 2

2


 (5.4.16)

The first one does not appear when N = 3 but reduces to a sum of simpler ones.
Then the charge/network dictionary for the new ones is:

D[(λAdj,hi( 6=1,N)−h1)] ∼

2 2

22

, (5.4.17)

D[(λAdj,hi(6=1)−hN )] ∼
2

22

, D[(λAdj,h1−hi(6=1,N))] ∼
2 2

2

,

(5.4.18)
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D[(λAdj,−h1+hi(6=1,N))] ∼
2

22

, D[(λAdj,hN−hi(6=1,N))] ∼
2 2

2

(5.4.19)

where λAdj = h1 − hN is the highest weight of the adjoint representation.

5.4.7 An OPE of complex dyonic loops

Finally we give an example of the OPE of two elementary dyonic loops D1,1
(0) and D`,k

(0) for

`, k ≤ N/2 in N=4 SYM:

1

1

2

1

1

k

`

k + `

`

k

= qk−`/N




1

1

2

k

`

k + 1

`+ 1

k + `

`

k

+ q−1

k

`+ 1

1
1

`+ 2
+ q

`

k + 1
1

1

k + 2




(5.4.20)

where

• the first term corresponds to D[(ω`+ω1,2hjs=1
+
∑k
s=2 hjs )] where js > `,

• the second one to D[(ω`+1,hi(≤`+1)+2hjs=1
+
∑k−1
s=2 hjs )] where js > `+ 1,

• the third one to D[(ω`+ω1,h(1<)i(≤`)+
∑k
s=1 hjs )] where js > `.

Here we require js differ for each s. It would be interesting to apply the diagrammatic
approach to more complicated OPEs and read off the charge information from networks
in general.

5.5 General charge/network correspondence

We have seen the one-to-one mapping between the charge lattice for N=4 su(3) theory
proposed by Kapustin [44] and A2 networks on the 2-torus. Here we state the mapping
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for general AN . This is a minimal extension of a work for general A1 class S theories [25].
6) The generalization and refinement to general class S theories are interesting future
problems. Note that the following relations can hold true in the Liouville-Toda CFTs
and also that the expectation values vanish in the 2D q-deformed Yang-Mills when their
electric/magnetic weights are not in the root lattices as explained in part 3 in Sec. 3.8.1.

5.5.1 Useful symbol

Here we introduce a useful symbol expressing an element of su(N) Wilson-’t Hooft loop
charge lattice (Λmw × Λwt)/Wsu(N) where Λmw, Λwt and Wsu(N) are the magnetic weight
lattice, the weight lattice and the Weyl reflection group, respectively. Be aware that
Λmw ' Λwt for su(N) and then we use the same basis. For a given pair of (µ, λ), it is
always possible to take µ into a dominant weight µ′ using a Weyl reflection. According
to this operation, λ is also mapped into an element λ′ which is not always uniquely
determined. There, we have a Young diagram YM associated with µ′. In the same way
as (E.2.1), λ′ can be expanded with hs and we have unique elements λ′s (s = 1, 2, . . . , N)
which are non-negative integers. By putting λ′s boxes in the s-th row in the similar way
as the ordinary Young diagrams, we have a diagram referred to as YE. Now, we make a
new diagram which is a pair of the horizontally flipped and filled YM and the diagram
YE. See Fig. 5.15 below for examples.

(2h1 + h2, h1 + 2h2) (h1 + h2 + h3, h4 + h5) (3h1, 2h1) (3h1 + h2 + h3 + h4, 2h3 + h5) (2h1 + 2h2 + h3 + h4, 2h1 + h4 + 2h5)

Figure 5.15: Several examples for the relation between an element of the su(N) charge
lattice (above) and its diagrammatic symbol (below).

5.5.2 Charge to network

For a given charge pair (µ, λ), let Mi be subsets of 1, 2, . . . , N so that there is a box in
YM specified by i-th column and a-th row only if a ∈ Mi. By replacing YM by YE, we
also define Ei in the same way. Then, define spq as the number of elements of Mp ∩ Eq

6)Here we consider N=4 SYM as the very special case of class S theories. The similar relations are
expected to hold true in the N=2∗ gauge theory but precise dictionaries are not established completely
because there appears a flavor symmetry related to the hypermultiplet mass term.
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and Qpq
(s) as an open network like

Qpq
(s) ←→

s

p

qq

p

. (5.5.1)

By using these, the BPS Wilson-’t Hooft line operator in N=4 SU(N) SYM is geomet-
rically represented by

Qpq
(spq)q

p
(5.5.2)

where edges are connected on any adjacent parallelograms and each pair of opposite edges
is identified. Note also that this relation holds up to lower charges (see the beginning of
Sec.4 in [75]). We show two examples.

←→
1

1

2

2

4

3

5

6

4

2
←→ 2

5

1
1

6

. (5.5.3)

The reversed operation can be done by computing the trace functions associated with
the network because the trace function is a polynomial (allowing negative powers) of two
U(1)N/U(1) fugacities along α-cycle and β-cycle of the 2-torus.
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Chapter 6

Conclusion : summary and
discussions

In this dissertation, we focus on the defects and class S theories.
Since defects naturally appear in the brane systems in string theories, the study of

defects expected to offer some clues to understand the properties in the presence of several
different type defects and then their dynamics hopefully. The defects are also important
in the sense that they provide the refinement checks of dualities in field theories and
some information on the spectrum, for example. For these two motivations, we focus on
a certain class of 4D supersymmetric gauge theories. In the recent developments, many
N=2 SCFTs are constructed from the 6D N=2 SCFTs with several codimension two
defects. They are called class S theories and closely related to M5-brane systems. We do
not directly answer the first motivation but we believe that our works such as discoveries
of the new kinds of the skein relations are useful to understand this, in particular, the
composite systems of M5-branes and M2-branes. On the other hand, in this set-up, we
give some answers to the questions arising from the second motivation because the Schur
indices with line defects give such checks and information. Before remarking this point,
let us see the methods we have adopted.

The class S theories are originally obtained from a special but interesting 6D theory
closely related to the string theory. Although their field theoretical treatments are far
from clear yet because of the lack of Lagrangians, we can describe BPS sectors of them
geometrically once we admit the 4D/2D duality relations. Additions of several defects
are interesting problems and, in fact, their developments have revealed the properties of
(BPS) defects themselves and supported the 4D/2D duality relations. However, as for the
correspondence between 4D BPS loop/line operators and 2D some topological network
defects, there are only a few works before our developments. Therefore, we have two
natural questions arise here as explained in the introduction.

• In general, QFTs allow the existence of defects but how can we characterize them ?
In particular, how can we study the defects in the Lagrangian unknown theories ?

• If they are defined once, how can we compute the spectrum ?
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We believe that our works [75, 90] shed new light on these subjects, at least, the ge-
ometrical descriptions and the computation of class S Schur indices with any closed 6D
codimension four defects. This approach gives a partial answer that we characterize the
line defects in the class S theories as the networks on C with the (class S) skein relations
identifications. We identify the class S skein relations with the skein relations already
known in the mathematics context as we do several consistency checks in the Lagrangian
theories. Since the skein relations are local relations on C, they are independent of the
existence of Lagrangians in 4D and we can apply them to the general class S theories, al-
most all of which are Lagrangian unknown theories. The only problem left is to determine
all the skein relations but this partial analysis is still enough to see non-trivial results as
shown through this dissertation. We also answer the second questions by proposing the
computation formula via the above 4D/2D duality relations. Finally, this helps us to
find new kinds of the skein relations in the sense that they include the codimension two
defects.

Now, go back to the motivations. Since the codimension two defects come from the
M5-branes and the networks from the M2-branes, the new skein relations are expected
to be the relations between M5-branes and M2-branes. Although we cannot translate
these relations to the string theory language at this stage actually, we may give some
hints for the dynamics of the M5-M2 brane systems. As for the roles as dualities checks
and spectrum information, we have good answers. Indeed, our works support the 4D-2D
duality relations and some dualities between 4D SCFTs and allow us to see the BPS local
operators coupled to some non-trivial line operators defined by the 2D networks. The new
questions to answer in the future are whether these spectra have some universal properties
beyond class S theories, to what extent we can reproduce in the 4D theory framework
and how we can relate them to the first motivation, namely, the string language.

Achievements Now, the main achievements in this thesis are summarized as follows.

• Developments of class S skein relations and the charge/network correspondence in
the 4D/2D duality relations (4.2,5.3,5.4,5.5)

• Discussions of composite surface-line defects in the context of the Schur indices and
their geometrical counterparts, what we call, Wilson punctured network defects in
the 2D q-deformed Yang-Mills theory (4.3,4.4)

• Proposal of conjectural formula for the Wilson punctured network defects and its
non-trivial consistency checks (4.5,5.1,App.E)

• Discovery of new kinds of skein relations (5.2)

The first work discusses the relation between the “charge” of 4D BPS loop operators
and their network realizations on the punctured Riemann surfaces with skein relations.
For 4D N=4 super Yang-Mills where some Lagrangian exists, we establish the correspon-
dence dictionary for leading charges of 4D Wilson-’t Hooft loop operators. The second
work is new in the context of the 4D/2D duality relations and unify both loop ans surface
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defects in term of the 6D SCFTs Such networks are geometrically knots with junctions
in the three dimensional space which includes C and one of 4D directions and expected
to be the counterparts of composite surface-line systems in 4D. The third work is the
proposal of totally new formula although there is no derivation and many evidences are
given in the final work. This allows us to compute the Schur indices in the presence of 4D
BPS loop operators specified by networks on C. It seems to be strange because there is
no definition of charges for loop operators but instead they are defined by the geometry
on 2D side. However, even in the absence of defects, we cannot define the 4D theory in
their own framework and we believe that these developments will sometimes help us to
understand the 4D SCFTs themselves.

Future perspective Now, we list several problems to be solved in future. Related to
the first work, the comparison with some localization computations including the precise
study of “dyon” bubbling are very important. This will helps us establish more general
dictionary of the charge/network correspondence. Another interesting problems are re-
lations with 4D loop operators defined in the IR [64, 151, 187]. In our framework, we
see the loop operators at UV superconformal point before the relevant perturbations. Of
course, they are related via RG flows and it is believed there is a correspondence between
two [188]. For a given network (a UV loop operator), the construction of this RG flow
map to the IR loops is needed because we know the effective Lagrangian there.

As for the second work, they also need other approaches. In the gauge theory perspec-
tives, it is necessary to discuss the 4D descriptions of the composite surface-line systems
and compare the SCIs with the expectation values. The 4D line operators are bounded
to the surface operators and expected to be some interfaces including 2D Wilson lines
of the two dimensional N=(2, 2) gauged linear sigma models [189–191]. Although we
do not discuss the detail in this thesis, the extension to another 4D/2D relation called
AGT correspondence [17, 38] is possible and we can formally check the above conjecture
in special case. However, the general discussion is still far from clear. On the other hand,
since the three geometry is encoded in 5D space, it is possible to describe them based on
5D SYM language like [129]. It is also interesting to relate them to the well-known 3D-
3D correspondence story [47, 170] where the 3D N=2 gauge theories on S3 and complex
Chern-Simons theories on hyperbolic spaces are related. More additions of defects in this
correspondence were also discussed in [192], for example.

The last two works have many unsolved problems. The derivation of the conjectural
formula in the framework of 2D q-deformed Yang-Mills theory (there is no derivation even
at q = 1) and their relations to other integrable systems [193], the extensions to general
open networks [87] which are composite systems of codimension two and four defects,
the reproductions in the higher dimensional gauge theory like [74, 129] for example, the
analysis of large N limit [194] and relations to higher Teichmüller space structure [62],
spectral networks [195] or Liouville-Toda analysis [196,197].

All the above works should be generalized to other simple Lie algebras (simply-laced
in the context of class S), in particular D-series [198, 199] or in the presence of twisted
lines in A2N−1-series [121]. Finally, we hope that these works would help us understand
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the string dynamics, in particular, some new brane dynamics.
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Appendix A

Lie algebra convention

• Π(R) : weights of the representation R

• ∆g : the set of roots other than 0

• ∆+
g : the set of positive roots

• P(g) : the set of dominant weights

• ρ : Weyl vector =
∑rkg

a=1 ωa =
1

2

∑
α∈∆+

g
α

R(λ) denotes the irreducible representation associated with a dominant weight λ, λR
does the dominant weight to R conversely.

A.1 A-type Lie algebra convention

In this thesis, for many reasons, we use several conventions on representations. To express
the su(N) irreducible representation, for example, we use the Young diagram ∧k� or (1k),
the Dynkin weights (labels) [0, . . . , 1

k
, . . . , 0] or (0 · · · 01

k
0 · · · 0), weight vector ωk and the

dimension ∧kN. If necessary, we refer to the convention in the beginnings of several
(sub)sections again.

Basis of weights systems

Let {αa}a=1,2,...,rkg=N−1 be a set of chosen positive simple roots. Notice all choices are
equivalent under the Weyl reflection actions.

ωα for α = 1, 2, ..., N −1 are fundamental weights, hi for i = 1, 2, . . . , N are weights in
Π(R(ω1) = �) 1) and there are relations among them as ha = ωa−ωa−1 where ωN = ω0 = 0

1)The perfect order of the indices of hi is determined by the partial order in the weight lattice.
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and αa = ea − ea+1. We also use the standard metric in weight vectors determined by

hi = ei − 1
N

N∑

i=1

ei and (ei, ej) = δi,j.

The coefficients for some basis are

λa := (λ, αa) λa := (λ, ωa) λ̃ := λ+ ρ (A.1.1)

and, in addition to them, we define

λi := (λ, hi) λî := λi − λN (A.1.2)

which satisfy

N∑

i=1

λi = 0. (A.1.3)

Notice that λî represents the number of the boxes in the i-th row of the corresponding
Young tableau.

Of course, among the above coefficients, there are relations. Since αa = ha − ha+1,

λa = λâ − λâ+1. (A.1.4)

Conversely,

λi =
N−1∑

a=i

λa −
1

N

N−1∑

a=1

aλa λî =
N−1∑

a=i

λa (A.1.5)

λi = λî − 1
N

N−1∑

k=1

λk̂ (A.1.6)

λ =
N−1∑

i=1

λîhi =
N∑

i=1

λihi =
N−1∑

a=1

λaωa (A.1.7)

We have the vector representation of weights, for example,

λ = (λ1, λ2, . . . , λN) (A.1.8)

Notice other useful relations:

(hi)k = (hi, hk) = δik − 1
N

(A.1.9)

(λ, µ) =
N∑

i=1

λiµi =
N∑

i=1

(λ, hi)(hi, µ) (A.1.10)

(λ, µ) =
N−1∑

a=1

(λ, ωa)µa =
N−1∑

a=1

λaµa (A.1.11)

λa =
a∑

i=1

λi. (A.1.12)
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Formulae

TrR
[
T aT b

]
= T (R)δab (A.1.13)

dim g∑

a=1

(ρR(T a))2 = C2(R)IR (A.1.14)

where this is the relation on the representation space of R.
There is a relation between two like

T (R) =
dimR

dim g
C2(R) (A.1.15)

C2(R) = (λR, λR + 2ρ) (A.1.16)

where λR is the dominant weight of R.
The dimension of R(λ) is given by

dimR =
∏

α∈∆+
g

(λR + ρ, α)

(ρ, α)
. (A.1.17)

See Appendix. E as for quantum dimension.

C2(∧k�) = (1 +
1

N
)k(N − k) (A.1.18)

T (∧k�) =

(
N − 2
k − 1

)
(A.1.19)

A.2 so(8) convention

fundamental weights

ω1 = e1 ω2 = e1 + e2 ω3 = 1
2
(e1 + e2 + e3 − e4) ω4 = 1

2
(e1 + e2 + e3 + e4) (A.2.1)

positive simple roots

α1 = e1 − e2 α2 = e2 − e3 α3 = e3 − e4 α4 = e3 + e4 (A.2.2)

The so(8) fugacity is assigned by ei → Xi.
We have another fugacities (a, b, c, d):

X1 = ab X2 = a/b X3 = cd X4 = c/d (A.2.3)

and their relations to fundamental weights are

a←→ 1
2
(e1 + e2) = 1

2
ω2 b←→ 1

2
(e1 − e2) = ω1 − 1

2
ω2 (A.2.4)
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c←→ 1
2
(e3 + e4) = ω4 − 1

2
ω2 d←→ 1

2
(e3 − e4) = ω3 − 1

2
ω2. (A.2.5)

The triality which is the outermorphism of so(8) is realized as

a←→ b : ω2 −→ 2ω1 − ω2 (A.2.6)

b←→ c : ω1 ←→ ω4

c←→ d : ω3 ←→ ω4

b←→ d : ω1 ←→ ω3

fundamental representations

8v ←→ [1000] = ω1 8c ←→ [0010] = ω3 8s ←→ [0001] = ω4 (A.2.7)

and

Adj = 28 = ∧28v ←→ [0100] = ω2 (A.2.8)

branching rules For the decomposition so(8)→ su(2)A ⊕ su(2)B ⊕ su(2)C ⊕ su(2)D,

8v = (2A ⊗ 2B)⊕ (2C ⊗ 2D) (A.2.9)

8s = (2A ⊗ 2C)⊕ (2B ⊗ 2D) (A.2.10)

8c = (2A ⊗ 2D)⊕ (2B ⊗ 2C) (A.2.11)

(A.2.12)

and

Adj = 28 = (2A ⊗ 2B ⊗ 2C ⊗ 2D)⊕ 3A ⊕ 3B ⊕ 3C ⊕ 3D (A.2.13)

in the character sense.
For higher irreducible representations,

[0, 1, 0, 0] : 28 = (2,2,2,2)⊕ (3,1,1,1)⊕ (1,3,1,1)⊕ (1,1,3,1)⊕ (1,1,1,3)

[2, 0, 0, 0] : 35v = 1⊕ (2,2,2,2)⊕ (3,3,1,1)⊕ (1,1,3,3)

[0, 0, 1, 1] : 56v = (3,1,2,2)⊕ (1,3,2,2)⊕ (2,2,3,1)⊕ (2,2,1,3)⊕ 8v

[1, 1, 0, 0] : 160v = 56v ⊕ (2,4,1,1)⊕ (4,2,1,1)⊕ (1,1,2,4)⊕ (1,1,4,2)⊕
(3,3,2,2)⊕ (2,2,3,3). (A.2.14)

We introduce a symbol like χ(RA, RB, RC , RD) := χ
SU(2)
RA

(a)χ
SU(2)
RB

(b)χ
SU(2)
RC

(c)χ
SU(2)
RD

(d).
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A.3 so(4) convention : the four vector and spinors

Pauli matrices

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(A.3.1)

σ+ =

(
0 1
0 0

)
σ− =

(
0 1
0 0

)
(A.3.2)

and

(σµE)αβ̇ = (iσx,y,z, 1) (A.3.3)

where µ runs over 1, 2, 3, 4.
Using this, we can identify the four vector and bi-spinor as

Pαβ̇ =
1

2
Pµ(σµE)αβ̇ =

1

2
×

(α \ β̇ +̇ −̇
+ P4 + iP3 iP1 + P2

− iP1 − P2 P4 − iP3

)
. (A.3.4)
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Appendix B

Superconformal algebra

The relevant superconformal algebras in this thesis su(2, 2|2). However, if we have defects,
they are replaced by its subalgebras. The relation to the convention used in superalgebra
literatures are follwoing : su(m + 1|n + 1) = A(m,n) for m 6= n and psu(n + 1|n + 1) =
A(n, n). See [200] on Lie superalgebra.

Super Lie algebra

The super Lie algebras g are Z2-graded algebra with the supercommutator denoted by
[} defined just later. First of all, the Z2-grading means that each algebra is the direct
sum of two algebras as the vector spaces like g = gB ⊕ gF . In particular, we introduce
the grading operator (−1)F called the Fermion number such that (−1)F · gB = gB and
(−1)F · gF = −gF . Here, we can define the supercommutator as follows:

[X, Y } := XY − (−1)FY X(−1)F =

{
{X, Y } = XY + Y X for X, Y ∈ gF

[X, Y ] = XY − Y X otherwise.
(B.0.1)

This supercommutator must satisfy the super Jacobi identity

Ad[X,Y }(Z) = [AdX ,AdY }(Z) (B.0.2)

where AdX(Y ) := [X, Y } which defines g action itself.

B.1 4D SCA

First of all, let us consider 4D N = m superconformal algebra A(3,m−1). Their fermion
part consists of eight superPoincaré charges denoted by Q and eight superconformal
charges denoted by S which are conjugate each other in the radial time sense. Here
we follow the convention in [31] mainly. 1)

1)There is a bit difference between the literature and this thesis (or recent literatures in class S theories)
on the r-charge normalization. It is r = rhere = 1

mrthere. This corresponds to the fact U(m) ' (SU(m)×
U(1))/Zm 6= SU(m)× U(1).
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4D N=m supercharges Q and S belong to the representation (4,N ) ⊕ (4,N ) of
su(4) ⊕ u(N ) 2) where we used analytic continuation of the conformal algebra su(4) ∼
so(5, 1). However, instead of the full conformal group, we use the subalgebra su(2)1 ⊕
su(2)2 ⊕ so(1, 1).

Hereafter, we take a basis of the representation vector space and give their indices
as follows. α, β, . . . run over +,− which are indices for su(2)1, α̇, β̇, . . . over +̇, −̇ for
su(2)2 and A,B, . . . over 1, 2, . . . ,m for su(m)R. For the Abelian symmetry group so(1, 1)
and su(1)r, we abbreviate them because their irreducible representations are always one-
dimensional. Now, let us see the supercommutation relations below.

scB = {scF , scF}
The non-trivial anti-commutators are given as follows:

{QαA, Q̃β̇B} = Pαβ̇ ⊗ δAB (B.1.1)

{SαA, S̃Bβ̇ } = Kαβ̇ ⊗ δBA (B.1.2)

{QαA,SβB} = (J1)αβ ⊗ δAB − δαβ ⊗RA
B +

(
D

2
− 4−m

4
r

)
δαβ ⊗ δAB (B.1.3)

{Q̃α̇A, S̃Bβ̇ } = (J2)α̇
β̇
⊗ δBA + δα̇

β̇
⊗R B

A +

(
D

2
+

4−m
4

r

)
δα̇
β̇
⊗ δBA (B.1.4)

where other relations are anti-commuting. 3)

scF = [scB, scF ]

These commutation relations are encoded in the supercharges representations (or indices)
of bosonic symmetry. See the Table. B.1.

su(2)1 su(2)2 so(1, 1)D su(m)R u(1)r

Q 2 1 1
2

m 1
m

S 2 ' 2 1 −1
2

m − 1
m

Q̃ 1 2 1
2

m − 1
m

S̃ 1 2 ' 2 −1
2

m 1
m

Table B.1: The representations of supercharges.

2)Hereafter, we sometimes idetify the algebra and its universal covering Lie group. In addition, for
the bosonic symmetry algebra g1 ⊕ g2, we also use the abbreviate notation (R1, R2) for R1 ⊗C R2. The
corresponding Lie group denotes G1 × G2. The same notation is used for the case that more simple
algebras are directly summed.

3)There is possibility that the ”centeral charge” usually denoted by Z can appear in the anti-
commutators {Q,Q} and so on when m = 2. However, this does not commute with D and if a state has
a non-zero eigenvalue, it breaks the scale symmetry.

166



If we introduce R̂A
B := RA

B + r, they are the natural generators of u(m)R and satisfy

[R̂A
B,QC / SC ] = δCBQA / SA [R̂A

B, Q̃C / S̃C ] = −δCBQ̃A / S̃A (B.1.5)

There are other generators in so(5, 1) not in the so(4)⊕ so(1, 1) : Pαβ̇ and Kαβ̇.

Roughly speaking, by ignoring the so(4) spinor indices, P and K acts on

( Q
S̃

)
and

(
Q̃
S

)
as raising and lowering operators respectively. Precisely, we fix the numerical

factors as follows. 4)

[Pαα̇, S̃A
β̇

] = −δα̇
β̇
QαA [Kαα̇,QβA] = δβαS̃Aα̇ (B.1.6)

[Pαα̇,SβA] = −δαβ Q̃α̇A [Kαα̇, Q̃β̇A] = δβ̇α̇SαA (B.1.7)

scB = [scB, scB]

[(J1)αβ , P
γδ̇] = δγβP

αδ̇ − 1

2
δαβP

γδ̇ (B.1.8)

[(J1)αβ , Kγδ̇] = −δαγKβδ̇ +
1

2
δαβKγδ̇ (B.1.9)

[(J2)α̇
β̇
, P γδ̇] = δδ̇

β̇
P γα̇ − 1

2
δα̇
β̇
P γδ̇ (B.1.10)

[(J2)α̇
β̇
, Kγδ̇] = −δα̇

δ̇
Kγβ̇ +

1

2
δα̇
β̇
Kγδ̇ (B.1.11)

where (Ji)
α
β ∈ su(2)i (i = 1, 2). In particular, we use

(Ji)
α
β =

(
(Ji)

z (Ji)
+

(Ji)
− −(Ji)

z

)
=

(
1
2
σz σ+

σ− −1
2
σz

)
(B.1.12)

where the last expression means the matrix representation acting on

(
Q+A

Q−A
)

for i = 1

or

(
Q̃+
A

Q̃−A

)
for i = 2.

The other non-trivial relations are

[D,Pαβ̇] = Pαβ̇ [D,Kαβ̇] = −Kαβ̇ (B.1.13)

[Kαα̇, P
ββ̇] = δβ̇α̇(J1)βα + δβα(J2)β̇α̇ + δβαδ

β̇
α̇D. (B.1.14)

These form the algebra so(1, 5).

4)There may be some mistakes in Appendix A.1 in [31]. We use the oscillator construction in Appendix
A.2 there.
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BPZ conjugation

When an operator quantization is given after fixing the time direction and the associated
Killing vector identified with a Hamiltonian, there is a conjugation operation defined as

|out〉 ⊗X|in〉 ' X†|out〉 ⊗ |in〉 −→ 〈out|X|in〉. (B.1.15)

Unless we mention otherwise, we use the symbol † for the radian quantization sense,
sometimes called ”BPZ” conjugation [201]. This corresponds to the inversion operation
and †2 is just the identity operation, that is to say, the involution. We require that this
† operation is closed in the symmetry algebra.

In particular, † acts on P,K as K,P respectively and on the other bosonic generators
D, Ji, r trivially. For the fermionic generator,

(
QαA

)†
= SαA

(
Q̃α̇A

)†
= S̃ A

α̇ . (B.1.16)

B.1.1 4D N=2 superconformal algebra

Hereafter, we focus on the 4D N=2 superconformal algebra, namely, m = 2.
We fix the SU(2)i invariant tensors for the fundamental representation as

ε+− = −ε−+ = ε−+ = −ε+− = +1 (B.1.17)

for i = 1. The i = 2 case is obtained by +,− =⇒ +̇, −̇. Notice that SU(4) invariant
tensor are given by δAB.

Now, we use the supercharge basis as QαA := εαβεABQβB and Q̃α̇A := εα̇β̇Q̃β̇A. and
they satisfy

(QαA)† = SαA (Q̃α̇A)† = −S̃ α̇A. (B.1.18)

Here notice that (εαβ)† = εβα = εαβ and that we use the same invariant tensor for SU(2)R
symmetry as SU(2)i symmetry.

∆ and r are same and the others are defined as 5)

ji := −(Ji)
z for i = 1, 2 I := −Rz = −R1

1 = R2
2 (B.1.19)

Now let us list the charges, namely, the weight of the Cartan subalgebra so(1, 1)D ⊕
u(1)1 ⊕ u(1)2 ⊕ u(1)R ⊕ u(1)r.

Using the anticommutator (B.1.3) and (B.1.4), we can compute

{QαA, (QβB)†} =
[
−εαγεβδ(J1)γδ

]
δBA +

[
εACε

BD(R)CD
]
δβα +

1

2
(D − r)δβαδBA (B.1.20)

{Q̃α̇A, (Q̃β̇B)†} =
[
−εα̇γ̇εβ̇δ̇(J2)γ̇

δ̇

]
δBA + (R)BAδ

β̇
α̇ +

1

2
(D + r)δβ̇α̇δ

B
A (B.1.21)

5)The minus sign before (Ji)
z or Rz is convenient because the lowering SU(2) indices by the ε tensor

exchanges +, +̇ and −, −̇.
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and the special case α = β and A = B give

2{QαA, (QαA)†} = 2ηαj1 − 2ηAI +D − r (B.1.22)

2{Q̃α̇A, (Q̃β̇B)†} = 2ηα̇j2 − 2ηAI +D + r (B.1.23)

where η± = ±,η±̇ = ±. η1 = +1 and η2 = −1. See Table. B.2.

∆ j1 j2 I r 2{Q,Q†}
Q±1

1
2
±1

2
0 1

2
1
2

∆± 2j1 − 2I − r
Q±2

1
2
±1

2
0 −1

2
1
2

∆± 2j1 + 2I − r
Q̃±̇1

1
2

0 ±1
2

1
2
−1

2
∆± 2j2 − 2I + r

Q̃±̇2
1
2

0 ±1
2
−1

2
−1

2
∆± 2j2 + 2I + r

Table B.2: Each charge associated to superPoincaré charges and their anticommutators.

The other relations are almost same to the original ones. For example, we have

{QαA, Q̃β̇B} = Pαβ̇εAB. (B.1.24)

Now, following the discussion in Sec. 3.2, let us consider supercharges anticommuting
with Q := Q̃−̇1 = Q̃+̇

1 . The answer is

Q±2, Q̃α̇A,SαA, S̃2
−̇. (B.1.25)

On the other hand, the supercharges anticommuting with S := S̃1
+̇

= −S̃−̇1(= Q†) are

QαA, Q̃−̇2 ,S±2, S̃Aα̇ . (B.1.26)

Therefore, the supercharges anticommuting with both Q and S are following six super-
charges (3 superPoincaré and 3 superconformal) :

Q±2 = ∓Q∓1, Q̃−̇2 = −Q̃+̇2, S±2, S̃2
−̇ (B.1.27)

B.1.2 Differential operator representation of bosonic generators

In our convention, (x1, x2, x3, x4) is the natural global coordinate on the flat Euclidean
space R4. It has a complex structure induced by z := x1 + ix2 and w := x3 + ix4, that is
to say, ∂x1 = ∂1 = ∂z + ∂z and ∂x2 = ∂2 = i(∂z − ∂z) ( same for ∂3,4 ).

By recalling the relation

[j1, P
±δ̇] = ∓1

2
P±δ̇ [j2, P

γ±̇] = ∓1

2
P γ±̇ (B.1.28)

[j1, K±δ̇] = ±1

2
K±δ̇ [j2, Kγ±̇] = ±1

2
Kγ±̇, (B.1.29)
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we can express ji, P , K and D as

j1 + j2 = L34 = w∂w − w̄∂w j1 − j2 = L12 = z∂z − z̄∂z, (B.1.30)

P++̇ =
1

2
(P4 + iP3) = ∂w P−−̇ =

1

2
(P4 − iP3) = −∂w (B.1.31)

P+−̇ =
1

2
(iP1 + P2) = ∂z P−+̇ =

1

2
(iP1 − P2) = ∂z, (B.1.32)

K++̇ = K−−̇ =
1

2
(K4 − iK3) = w2∂w + w(z∂z + z̄∂z)− |z|2∂w (B.1.33)

K−−̇ = K++̇ =
1

2
(K4 + iK3) = −

[
w̄2∂w + w̄(z∂z + z̄∂z)− |z|2∂w

]
(B.1.34)

K+−̇ = −K−+̇ =
1

2
(K2 − iK1) = z2∂z + z(w∂w + w̄∂w)− |w|2∂z (B.1.35)

K−+̇ = −K+−̇ =
1

2
(−K2 − iK1) = z̄2∂z + z̄(w∂w + w̄∂w)− |w|2∂z (B.1.36)

and

D = −xµ∂µ = −z∂z − z̄∂z − w∂w − w̄∂w. (B.1.37)

Notice that j1 + j2 rotates the w-plane and j1 − j2 does the z-plane.

∂−+̇ = −∂+−̇ = −i∂z ∂++̇ = ∂−−̇ = −i∂w (B.1.38)

∂−−̇ = ∂++̇ = i∂w ∂+−̇ = −∂−+̇ = −i∂z (B.1.39)

∂z ∂z ∂w ∂w
j1 −1

2
1
2
−1

2
1
2

j2
1
2
−1

2
−1

2
1
2

∆ 1 1 1 1

D − 2j2 0 2 2 0
j2 − j1 1 -1 0 0
j2 + j1 0 0 -1 1

Table B.3: The charges for the derivatives.

Since the index contributions come from the derivatives satisfying D = 2j2 + 2I − r =
2j2, only ∂z and ∂w contribute to the single letters as p and q respectively.
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B.1.3 line defects insertion

Let us consider a line operator located on a straight line defined by

arg(z) = ϕ = const. mod π and w = 0 (B.1.40)

in the z-plane. There, j1 + j2 is the symmetry but j1 − j2 is not because it rotates the
line operators. 6)

The translations P and the special conformal transformations K are also broken except
the two generators

Pϕ :=
1

i

[
eiϕ∂z + e−iϕ∂z

]
=

1

i

[
eiϕP+−̇ + e−iϕP−+̇

]
(B.1.41)

Kϕ := i
[
e−iϕK+−̇ + eiϕK−+̇

]
(B.1.42)

and they generates sl(2,R) algebra :

[Kϕ, Pϕ] = 2D [D,Pϕ] = Pϕ [D,Kϕ] = −Kϕ (B.1.43)

where we have used the relations

[K±∓̇, P
∓±̇] = 0 (B.1.44)

[K±∓̇, P
±∓̇] = D ∓ (j1 − j2). (B.1.45)

Since these generators, j1 + j2,R and r commutes with each other, the bosonic symmetry
is at most

sl(2,R)⊕ so(2)w ⊕ su(m)R ⊕ u(1)r. (B.1.46)

Now let us focus on the odd part of algebras. If we assume that there exists some
degrees of freedom living on the line defect, they might be supersymmetric. In other
words, there are some supercharges generates Pϕ and Kϕ. 7) For example,

iPϕ = eiϕP+−̇ + e−iϕP−+̇ = eiϕ{Q+A, Q̃−̇A}+ e−iϕ{Q−B, Q̃+̇
B} (B.1.47)

where both A and B are free, that is to say, not summed up over 1, 2, . . . ,m. The
anti-commuting properties

{Q+A,Q−B} = {Q̃+̇
A, Q̃−̇B} = 0 (B.1.48)

6)This is called a “full line defect” in [151]. There are also a “half-line defect” case (arg(z) = ϕ
mod 2π) and “multiple half-line defects” case. In the later two case, the unbroken symmetries are
subgroups of the first one which we do not discuss in detail. The Schur indices can be defined for any
case without any differences.

7)We also implicitly assume that the † operation exists, namely, the radial time reversal operation
τ −→ −τ acts on the symmetry in the closed form.
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implies a natural decomposition of Pϕ like

iPϕ = {Q+A + e−iϕQ̃+̇
B,Q−B + eiϕQ̃−̇A}. (B.1.49)

By introducing the new supercharges

W±〈AB〉ϕ := Q±A + e∓iϕQ̃±̇B (B.1.50)

and

(W±〈AB〉ϕ )† = S±A + e±iϕS̃B±̇ , (B.1.51)

we have the following relations :

{W±〈AB〉ϕ ,W±〈CD〉ϕ } = e∓iϕP±±̇δCB + e∓iϕP±±̇δAD (B.1.52)

{
(
W±〈AB〉ϕ

)†
,
(
W±〈CD〉ϕ

)†} = e±iϕK±±̇δ
B
C + e±iϕK±±̇δ

D
A (B.1.53)

{W±〈AB〉ϕ ,
(
W±〈CD〉ϕ

)†} = (J1)±±δ
A
C + e∓±iϕ(J2)±̇±̇δ

D
B

+ δ±±
[
−RA

C + e∓±iϕRD
B

]
+

(
D

2
− 4−m

4
r

)
δ±±δ

A
C + e∓±iϕ

(
D

2
+

4−m
4

r

)
δ±±δ

D
B

(B.1.54)

Now let us construct a super subalgebra including the subalgebra generated by Pϕ, Kϕ, D
and j1 + j2. For that purpose, it is natural to choose the following four supercharges

W :=W+〈AB〉
ϕ W̃ :=W−〈BA〉ϕ (B.1.55)

V :=
(
W+〈AB〉

ϕ

)† Ṽ :=
(
W−〈BA〉ϕ

)†
(B.1.56)

and their anti-commutators are given as

{W ,W} = 2e−iϕδABP
++̇ {W̃ , W̃} = 2eiϕδBAP

−−̇ (B.1.57)

{V ,V} = 2eiϕδBAK++̇ {Ṽ , Ṽ} = 2e−iϕδABK−−̇ (B.1.58)

{W , W̃} = iPϕ {V , W̃} = −iKϕ (B.1.59)

{W ,V} = D −R〈AB〉 − (j1 + j2) {W̃ , Ṽ} = D +R〈AB〉 + (j1 + j2) (B.1.60)

{W , Ṽ} = δAB

[
(J1)+

− + e−2iϕ(J2)+̇
−̇

]
{V , W̃} = δAB

[
(J1)−+ + e2iϕ(J2)−̇

+̇

]
. (B.1.61)

where R〈AB〉 := RA
A −RB

B.
Since P±±̇, P±±̇, (J1)± or (J2)± themselves are not symmetry of the line defect inserted

systems, we must require A 6= B. This is only possible m > 1 at least and we consider
only the cases m = 2, 3, 4 hereafter.

Finally, let us analysis the R-symmetry actions. First of all, the definition of the above
supercharges implies that u(1)r symmetry is completely broken for m = 2, 3. For the non-

Abelian R-symmetry, since Q and Q̃ belong to the different R-symmetry representations
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m and m respectively andW , W̃ ,V and Ṽ depends on A and B, it seems to be completely
broken too. However, in the case of m = 2, the full R-symmetry SU(2)R is unbroken
because of 2 ' 2, in other words, the existence of the invariant tensor εAB. In the similar
way, in the m = 3 cases, R-symmetry is not completely broken but broken into the
SU(2)-symmetry acting on the index A and B. Furthermore, in the case of m = 4, the
SU(2)-symmetry is left and, indeed, there remains SO(5) ∼ Sp(2)-symmetry.

Notice also that all the supercharges commute with j1 + j2 but do not commute with
j1 − j2. This means that the u(1)-symmetry generated by j1 + j2 is the global symmetry
for the degrees of freedom living on the line defects.

For example, we have

[RA
B −RC

D,QαE] = δEBQαA − δEDQαC −
1

m
δABQαE +

1

m
δCDQαE (B.1.62)

and, in the special case,

[R〈AB〉,QαC ] = (δCA − δCB)QαC . (B.1.63)

By using the similar relation for Q̃,S, S̃, the R-symmetry generators act on the super-
charges as

[R〈AB〉,W ] =W [R〈AB〉, W̃ ] = −W̃ (B.1.64)

[R〈AB〉,V ] = −V [R〈AB〉, Ṽ ] = Ṽ . (B.1.65)

In summary, we have su(1, 1|1) symmetry:

{W , W̃} = iP {V , W̃} = −iK {W ,V} = D − Y {W̃ , Ṽ} = D + Y (B.1.66)

{W , Ṽ} = 0 {V , W̃} = 0 (B.1.67)

[P,K] = 2D [D,P ] = P [D,K] = −K (B.1.68)

[K,Y ] = [P, Y ] = [D, Y ] = 0 (B.1.69)

[D,W ] =
1

2
W [D,V ] = −1

2
V [D, W̃ ] =

1

2
W̃ [D, Ṽ ] = −1

2
Ṽ (B.1.70)

[Y,W ] =
1

2
W [Y,V ] = −1

2
V [Y, W̃ ] =

1

2
W̃ [Y, Ṽ ] = −1

2
Ṽ (B.1.71)

where we redefine the generator Y := R〈AB〉 + (j1 + j2).

Notice that Y is quantized, that is to say, the R-symmetry group is U(1)
( 1

2
)

Y .
In the m = 2 case (4D N=2 SCA), we can choose A = 2 and B = 1 without the loss

of generality. In this case, Y = R〈12〉 + j1 + j2 = j1 + j2 + 2I.

Surface defects insertion

Next, we discuss the surface defects. There are two kinds of maximal BPS flat surface
defects

Σq = {z ∈ C, w = 0} Σp = {w ∈ C, z = 0}. (B.1.72)
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Notice that Σq and Σp are flipped by j1 → −j1 or the exchange +←→ −.
Without loss of generality, we can focus on Σq. The locus of this surface defect break

the full conformal symmetry into SO(3, 1)×SO(2)j1+j2 . P±±̇,K±±̇ and (J1,2)±∓̇ are broken
generators.

Let us assume that Q̃α̇A is the unbroken supersymmetry charge. Since the above genera-
tors should not appear in the unbroken symmetry algebra, the following four supercharges
are forbidden.

QαA, S̃A
β̇
, SαA, Q̃β̇A (B.1.73)

where α 6= β. The other fermionic generators QβA and SβA generates P βα̇ and Kβα̇ which
can be the symmetry of the surface defects.

Then, the minimal subalgebra is

su(1|1)2;α̇A := Q̃α̇A ⊕ S̃Aα̇ ⊕ δ̃α̇A(= D+ + 2RA
A + 2(J2)α̇α̇) (B.1.74)

or

su(1|1)1;βA := QβA ⊕ SβA ⊕ δAα̇A (= D− − 2RA
A + 2(J1)ββ. (B.1.75)

The next minimal superalgebra including the above two superalgebras is given as

su(1|1)1;βA ⊕ su(1|1)2;α̇A ⊕ P βα̇ ⊕Kβα̇ (B.1.76)

where α 6= β is still assumed. However, this is not physically natural because P−+̇

or K−+̇ itself are not the Hermite operator in the ordinary quantization where P 0 is
the Hamiltonian. Requiring the condition that the algebra is invariant both under the
Hermite conjugate and under BPZ conjugate, the above algebra is modified as

s(2D N=1;αA) := su(1|1)1;βA ⊕ su(1|1)2;α̇A ⊕ P βα̇ ⊕Kβα̇ ⊕ Pαβ̇ ⊕Kαβ̇ ⊕ (j1 − j2).

(B.1.77)

This algebra is indeed closed because Pαβ̇ and Kαβ̇ commute with all the supercharges

and [Kαβ̇, P
αβ̇] = D − ηα(j1 − j2). Notice that M = j1 − j2 and YA := 1

2
r − ηAI acts

on s(2D N=1;αA)F as constants −ηα and ηA, respectively. By this construction, this
algebra is not simple because there is non-trivial ideal B.1.76 in it.

There are two possibility for further extension to have 4+4 supercharges in total. One
is made of s(2D N=1;αA) and s(2D N=1; βB) and the other of s(2D N=1;αA) and
s(2D N=1;αB).

Here we can set A = 1 and α = − without loss of generality.

N=(2, 2) SCA

The superPoincaré charges are given by

Q+,1 := Q−1, Q−,1 := Q+2, Q+,2 := Q̃+̇
1 , Q−,2 = Q̃−̇2 (B.1.78)
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and the bosonic part is given by

so(1, 3)⊕ rL ⊕ rR (B.1.79)

where so(1, 3) is the 2D conformal algebra and there are also the U(1)×U(1) R-symmetry
rL := r+ (j1 + j2 + 2I) and rR := r− (j1 + j2 + 2I). The bosonic charges for supercharges
are given by

[M,Qα,A] = 1
2
ηαQα,A (B.1.80)

[rL/R, Qα,A] = (+;L/−;R)Qα,A. (B.1.81)

Therefore, the bosonic algebra includes the Cartan subalgebra y of z for 4D N=2 SCA
and we can define the full SCIs, which has three non-flavor fugacities.

If we take the SCI supercharge as Q = Q+,2, Q−,1 and Q−,2 commute with this
supercharge. The non-negativity condition of physical norms leads to Ỹ1 ≥ 0 and Ỹ3 ≥ 0.
However, we have missed the constraint j1 + j2 ≥ r. Intuitively speaking, this is because
the surface defects, sometimes constructed as the IR defects of vortex strings, generate
the angular momentum around w = 0 which can arbitrarily decrease j1 + j2.

N=(0, 4) SCA

The superPoincaré charges are given by

Q+,+ := Q−2, Q+,− := Q̃+̇
1 , Q−,+ := Q−1, Q−,− = Q̃+̇

2 (B.1.82)

and the bosonic part is given by

so(1, 3)⊕ su(2)R ⊕ u(1)r′ (B.1.83)

where r′ = r − j1 − j2. Here we only see the subalgebra of full SO(4) R-symmetry. The
bosonic charges for supercharges are given by

[M,QA,B] = 1
2
QA,B (B.1.84)

[I,QA,B] = 1
2
ηAQA,B (B.1.85)

[r − j1 − j2, QA,B] = 1
2
ηBQA,B. (B.1.86)

In this case, we also have three bosonic generators commuting with Q and can define the
full SCIs too.

However, the unitarity bound changes. There is only Q+,+ anti-commuting with Q.
δ(Q+,+) =

δ(Q)=0
j1 + j2 − r ≥ 0 which is opposite condition to the previous N=(2, 2) case.
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Appendix C

Formulae for SCI

In this Appendix, we list several definitions and formulae necessary to compute the SCIs.

C.1 Symbols used in SCI

f(x±) := f(x)f(x−1) (C.1.1)

f(xλ) :=
∏

w∈Π(R(λ))

f(xw) (C.1.2)

where λ is the highest weight. When g = su(N),

xw :=
N∏

i=1

x
wî
i =

N∏

i=1

xwii (C.1.3)

where we used the fact that wî − wi is independent of i.

Definition

(a; q)n :=
n−1∏

k=0

(1− aqk) q-Pochhammer symbol (C.1.4)

(a; q) := (a; q)∞ (C.1.5)

θ(z; q) := (z; q)(q/z; q) =
∞∏

n=0

(1− qnz)(1− qn+1/z) for |q| < 1 q-theta function

(C.1.6)

Γ(z; p, q) :=
∏

j,k≥0

1− z−1pj+1qk+1

1− zpjqk for |p|, |q| < 1 elliptic Γ function (C.1.7)
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Useful formulae

(qz; q) = (1− z)−1(z; q) (C.1.8)

θ(qz; q) =
−1

z
θ(z; q) θ(q/z; q) = θ(z; q) = (−z)θ(1/z; q) θ(

√
qz−1; q) = θ(

√
qz; q)

(C.1.9)

Γ(z; p, q) = Γ(z; q, p) Γ(z; p, q)Γ(pq/z; p, q) = 1 (C.1.10)

Γ(p; p, q) =
(q; q)

(p; p)
= Γ(q; p, q)−1 (C.1.11)

Γ(pz; p, q) = (z; q)(z−1q; q)Γ(z; p, q) = θ(z; q)Γ(z; p, q) (C.1.12)

Γ(qz; p, q) = (z; p)(z−1p; p)Γ(z; p, q) = θ(z; p)Γ(z; p, q) (C.1.13)

θ(z; q)Γ(z; p, q)Γ(q/z; p, q) = θ(z; q)θ(z−1; p)Γ(z±; p, q) = 1 (C.1.14)

Γ(
√
qz±; p, q) =

1

θ(
√
qz; q)

=
1

(
√
qz±; q)

(C.1.15)

θ(z±; q) = (1− z)−1(1− z−1)−1(z±; q)2 = (1− z)(1− z−1)(qz±; q) (C.1.16)

In particular,

1

Γ(x±)
=

(x±; p)∞(x±; q)∞
(1− x)(1− x−1)

(C.1.17)

In the limitation,

lim
z→1

(1− z)Γ(z; p, q) =
1

(p; p)(q; q)
(C.1.18)

θ(z; 0) = 1− z (C.1.19)

Γ(z; q, 0) = Γ(z; 0, q) =
1

(z; q)
(C.1.20)

Γ(x; p, q) has a P.E. expression like

log(Γ(x; p, q)) =
∑

j,k≥0

log(1− z−1pj+1qk+1)− log(1− zpjqk)

= −
∑

j,k≥0,m≥1

1

m

[
(z−1pj+1qk+1)m − (zpjqk)m

]

= −
∑

m≥1

1

m(1− p)(1− q)
[(pq

z

)m
− zm

]
. (C.1.21)

Derivation of vector multiplet full SCI

First of all, notice that

P.E.

[
2pq + pq

t
− p− q

(1− p)(1− q) x

]
= P.E.

[
2(pq − 1) + (pq

t
− t)

(1− p)(1− q) x+
x

1− p +
x

1− q

]
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=
1

Γ(x; p, q)2Γ(tx; p, q)(x; p)(x; q)
. (C.1.22)

By pairing the opposite charge, we have

P.E.

[
2pq + pq

t
− p− q

(1− p)(1− q) (x+ x−1)

]
=

1

Γ(x±; p, q)2Γ(tx±; p, q)(x±; p)(x±; q)

=
(C.1.17)

1

Γ(x±; p, q)Γ(tx±; p, q)(1− x±)
(C.1.23)

and we can define the I(m),full
vector (x) as

1

Γ(x; p, q)Γ(tx; p, q)(1− x)
(C.1.24)

because there always exists the opposite charged supermulitplet.
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Appendix D

Orbit of simple Lie algebra

The references of this appendix are [50,51,55,94,125,131,135,202].

Lie algebra and group In this appendix, g can be any simple Lie algebra both complex
or real. However, when we emphasize the field, we use the following symbols: gC and GC
are complexified Lie group and complexified Lie algebra respectively. On the other hand,
GR and gR are their compact real form. In particular, it is enough to consider the case

GC = SL(N,C) gC = sl(N,C) (D.0.1)

GR = SU(N) gR = su(N). (D.0.2)

Recall that any Lie algebra can be viewed as a vector space, that is to say, g ' Cdim g.
Then, for X, Y ∈ g, we have an operator acting on g defined as AdX(Y ) := [X, Y ]g.

The Jordan decomposition theorem says

AdX = (AdX)s + (AdX)n = AdXs + AdXn (D.0.3)

such that

diagonalizable (Ad)sXi = ∃λiXi with g '
⊕

i

CXi (D.0.4)

(local) nilpotency ∃k ∈ N ((AdX)n)k ≡ 0 (D.0.5)

[(AdX)s, (AdX)n] ≡ 0 (D.0.6)

Correspondingly, we have the decomposition X = Xs +Xn satisfying [Xs, Xn] = 0.

partition of N Let Y be a Young diagram with N boxes. Each is specified by a
partition of N but we have two representations [n] = [n1, n2, n3, . . . , nk] (counting the
height of each row) and {s} = {s1, s2, s3, . . . , sr} (counting the width of each line). We
write this as [n] = {s} or {s} = {n}t where t is the transpose operation for the Young
diagrams. By definition,

N =
k∑

i=1

ni =
r∑

a=1

sa. (D.0.7)
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We label each box in Y as �(i,a) ∈ Y where i and a runs over the row and the line

respectively. Now, there are two ways to express
∑

�(i,a)∈Y
i as follows.

one way : =
r∑

a=1

sa∑

i=1

i =
r∑

a=1

1

2
sa(sa + 1) =

1

2

(
r∑

a=1

s2
a +N

)
(D.0.8)

the other way : =
k∑

i=1

ni∑

a=1

i =
k∑

i=1

ini (D.0.9)

and therefore we have the relation

r∑

a=1

s2
a = 2

k∑

i=1

ini −N =
k∑

i=1

(2i− 1)ni. (D.0.10)

D.1 Semi-simple orbit

Every semi-simple element can be mapped into the diagonal by definition.

M = diag(m1,m2, . . . ,mN) (D.1.1)

In particular, we can introduce subsets of the elements specified by the partition of N
as

M({n}) = m1In1 ⊕m2In2 ⊕ · · · ⊕mkInk ∈ sl(N,C). (D.1.2)

For this element, the Levi subgroup is defined as

L := L(M) := {g ∈ G | Adg(M) = M} (D.1.3)

and its Lie algebra is given by

l = l(M) := {X ∈ g | [X,M ] = 0} (D.1.4)

Therefore, the orbit through M is roughly given by OM ∼ G/L. In the g = gC case,
notice that

OM ∼ GC/LC ∼ T ∗(GR/LR). (D.1.5)

Since GR/LR is the homogeneous Kähler manifold, T ∗(GR/LR) is the hyper Kähler man-
ifold.

According to [203], any compact and simply connected homogeneous Kähler manifolds
are of this form. Let us compute the dimension. It is enough to analyze locally, that is
to say, the tangent space ( = the Lie algebra) at generic point.

dimCOM = dimCGC − dimC LC (D.1.6)
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and, in the special case G = SL(N,C),

dimCOm = N2 −
k∑

i=1

n2
i (D.1.7)

because LC = S(
∏k

i=1 U(ni)).
Notice

GR/LR ∼ GC/P LR = G ∩ P (D.1.8)

where P is a parabolic subgroup for SL(N,C) whose complex dimension is given by

N2 +
∑

i n
2
i

2
− 1. (D.1.9)

D.2 Nilpotent orbit

Next, we consider the nilpotent elements. The nilpotent cone is defined by

Ng = {X ∈ gC | ∃k (AdX)k = 0} (D.2.1)

We can decompose the nilpotent cones into sum of GC-orbits. It si known that this
equivalence class Ng/GC is specified by the principal embedding ρ : su(2) 7→ g [135]. In
particular, in the case g = su(N), this is equivalent to the decomposition of the define
representation N into the direct sum of the representations of su(2). In other words,
this set corresponds to the partition of N . Furthermore, we can take the representative
element of sl(N,C) for each nilpotent orbit as the form of the Jordan blocks :

J[n] = ⊕iJni (D.2.2)

for each partition of N .
Without loss of generality, we can take n1 ≥ n2 ≥ . . . ≥ nk by using some adjoint

action.
For a matrix A, let us define new ni × nj matrix Ǎij for each i, j = 1, 2, . . . , k whose

elements are give as

(Ǎij)uv = Api+u,pj+v for u = 1, 2, . . . , ni and v = 1, 2, . . . , nj. (D.2.3)

In the same way as the semi-simple orbit, the commutant (or the stabilizer for the
group action) defined as

Z[n] := Zg(J[n]) := {X ∈ sl(N,C) | [X, J{n}] = 0} (D.2.4)

Let us analyze this Lie algebra. Introduce

(Ea,b)uv := δuaδvb (D.2.5)
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where δ is the ordinary Kronecker’s δ. Then,

X̌ij =

min(ni.nj)∑

a=1

x(ij)
a

a∑

k=1

Ek,k+nj−a (D.2.6)

where xa ∈ C. This has the constraint coming from the traceless condition, that is to say,

k∑

i=1

nix
(ii)
1 = 0. (D.2.7)

The number of x
(ij)
a is given by

k∑

i,j=1

min(ni, nj) =
∑

i

(2i− 1)ni =
r∑

a=1

s2
a (D.2.8)

where we used (D.0.10) and {s} = [n].

Since the complex dimension of Z{n} equals to the number of “independent” x
(ij)
a ,

dimCZ[n] =
r∑

a=1

s2
a − 1. (D.2.9)

Let us exhibit an example : N = 6 and its partition {3, 2, 1}

J{321} =




0 1 0
0 0 1
0 0 0

O O

O
0 1
0 0

O

O O 0




Z{n} =








x
(11)
1 x

(11)
2 x

(11)
3

0 x
(11)
1 x

(11)
2

0 0 x
(11)
1

x
(12)
1 x

(12)
2

0 x
(12)
1

0 0

x
(13)
1

0
0

0 x
(21)
1 x

(21)
2

0 0 x
(21)
1

x
(22)
1 x

(22)
2

0 x
(22)
1

x
(23)
1

0

0 0 x
(31)
1 0 x

(32)
1 x

(33)
1








(D.2.10)

where 3x
(11)
1 + 2x

(22)
1 + x

(33)
1 = 0 and dimCZ{n} = 13.

Therefore, the dimension of the nilpotent orbit is given by

dimCOJ{n} = dimC sl(N,C)− dimCZ{n} = N2 −
r∑

a=1

s2
a. (D.2.11)

D.3 Induced orbit

Comparing the above two results for the dimension, we expect

Oss[n] ∼ Onil{s} (D.3.1)
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a2 + bc = m2

a2 + bc = 0
m→ 0

Figure D.1: The image of the principal nilpotent orbit and the semi-simple orbit ap-
proaching to it in the case sl(2,C). The origin is smaller nilpotent orbit and some special
region in the semi-simple orbit approaches to this trivial orbit as the eigenvalues vanish.
The limitation and the orbiting do not commute each other.

where [s] = [n]t. Naively speaking, we can expect that Oss[n] approaches to Onil{s} as we take
the eigenvalues which specify the semi-simple orbit to zero. This is the idea of induced
orbit (Richardson orbit). 1)

Let us consider a general element X of sl(N,C). Then, the G-orbit through X is OX =
SL(N,C) ·X = AdSL(N,C)(X). Now recall that the Jordan decomposition X = Xs +Xn.
By the definition of the semi-simpleness, we can map Xs into an element M({n}), that
is to say, Xs ∈ Oss{n}.

Then we have a question : When we specify the type of Levi group, namely, {n},
what is the possible choice of Xn ? For example, when Xs is a generic element of g, its
commutant a maximal torus of g and its intersection with Ng is only a zero element 0.
Therefore, Xn must be 0. In other words, the Levi type restrict the possible choice of the
nilpotent orbit.

In fact, we can take the limit M({n})→ 0 and then

lim
M({n})→0

OXS+XN = OJ{`} (D.3.2)

where the closure of a nilpotent orbit appears. 2)

parabolic subalgebra The maximal solvable subalgebra of g is called a Borel subal-
gebra denoted b. There is a decomposition b = h ⊕ n and n is the nilradical of b and
equals to [b, b]. h is the Cartan subalgebra of g. p is called a parabolic subalgebra of g if
it contain a Borel subalgebra.

Let us construct the, For that purpose, let Θ be a subset of the set of simple roots S.
Then,

pΘ := h⊕
∑

α∈Z〈S,−Θ〉∩∆+

lΘ := h⊕
∑

α∈Z〈Θ〉∩∆+

nΘ := pΘ\lΘ (D.3.3)

1)Originally, induced orbits are introduced to construct the nilpotent orbits not associated to semisimple
orbits.

2)Näıvely, after taking the limit M → 0, its G-orbit always remains OXn . Since the order of two
operations, namely, the limitation (Xs → 0) and the consideration of its G-orbit do not commute, we
must consider the orbit Ox at first, and then taking the limit M → 0.
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The parabolic subalgebras are one-to-one corresponding to the power set of S.
Given a parabolic subalgebra p = l ⊕ n and a nilpotent orbit Ol ∈ Nl/L in l, there

exists a nilpotent orbit O such that (Ol + n) ∩ O is a dense set in n and O is denoted
as Indg

p(Ol). This induced orbit is independent of the choice of p for fixed l. In the
special case Ol = O, the nilpotent orbit O is called Richardson. For g = sl(N,C), all the
nilpotent orbits are known as Richardson, that is to say, there is a corresponding Levi
subalgebra l. Any nilpotent orbit not induced from any proper parabolic subalgebra is
called rigid.

Nilpotent orbit construction

Let us see the above story concretely [55,135].
When a partition of N is given as [n], we introduce a new symbol as

pj :=

j∑

i=1

ni. (D.3.4)

Next, choose Θ as

Θ = (set of all the positive simple roots)\〈epi − epj+1, j = 1, 2, . . . , k〉 (D.3.5)

and we can define the parabolic subalgebra. After the identification between the vector ei
and the corresponding Lie algebra element in gl(N,C), we can introduce the vector space

Vj =

pj⊕

i=1

Cei (D.3.6)

and

p[n] = {X ∈ sl(n,C)|X(Vj) ⊂ Vj} (D.3.7)

n[n] = {X ∈ sl(n,C)|X(Vj) ⊂ Vj−1}. (D.3.8)

The fact that X i acts on Vi as 0 for X ∈ n[n] means

rk(Xj) ≤ n− dimC Vj = n− pj (D.3.9)

where rk is the rank as N×N matrices. However, the important point is that there exists
such X satisfying the equality in the above inequality. By analyzing the kernel of X i, we
can find that the SL(N,C)-orbit through this X is a nilpotent element specified by [n]t.

184



Appendix E

More mathematics on the dual
model

Here we develop some useful tools to compute the local Boltzmann factor B4 using
(4.5.8) and to prove some skein relations in App.E.3. First of all, recall the notations of
Lie algebras and their representations. Consider the case that the Lie algebra is su(N).
R(λ) denotes the irreducible representation associated with a dominant weight λ, λR does
the dominant weight to R conversely and Π(R) does the set of weights in R. ωα for α =
1, 2, ..., N−1 are fundamental weights, hi for i = 1, 2, . . . , N are weights in Π(R(ω1) = �)
1) and there are relations between two as ha = ωa−ωa−1 where ωN = ω0 = 0. We also use

the standard metric in weight vectors determined by hi = ei− 1
N

N∑

i=1

ei and (ei, ej) = δi,j.

E.1 Definitions

Let us start by repeating some definitions which appeared in Sec. 4.5.2.
We introduced a mathematical object which we call “pyramid”. This is just an as-

sembly of integers designated by two labels h and α = αh. h runs over 1, 2, . . . , N − 1
and α does over 1, 2, . . . , N − h for each h. Therefore, this object consists of 1

2
N(N − 1)

integers. There is an inclusion of weights into the pyramid as follows :

λ̂h:α :=
α+h−1∑

β=α

λβ (E.1.1)

where λ =
N−1∑

β=1

λβωβ. We also use the same symbol λ̂ for the pyramids not in the image

of this inclusion map. In such cases, λ̂ is considered as a single symbol as a whole and λ

1)The perfect order of the indices of hi is determined by the partial order in the weight lattice.
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is meaningless. Note that the addition can be defined as

(c1ŝ1 + c2ŝ2)h:α := c1(ŝ1)h:α + c2(ŝ2)h:α (E.1.2)

which is consistent with the above inclusion map in the sense that it preserves the original
additional structure in the weight vector space. 0̂ is the identity element of this operation.
There can be also a product defined as

(ŝ1 ∗ ŝ2)h:α := (ŝ1)h:α(ŝ2)h:α. (E.1.3)

The distributive property is obvious.
We also defined two functions :

1. (4.5.5) majority function mj for three variables :

mj(a, b, c) :=





a b = a or c = a

b a = b or c = b

c a = c or b = c

(E.1.4)

and

mj(λ̂1, λ̂2, λ̂3) := {mj((λ̂1)h:α, (λ̂2)h:α, (λ̂3)h:α)}h:α (E.1.5)

As there appears no case that all variables are distinct, this definition is well-defined
in our usage

2. (4.5.7) q-dimension function D :

D[λ̂] :=
N−1∏

h=1

N−h∏

α=1

[(λ̂)h:α + h]q
[h]q

(E.1.6)

and there is a simple relation to the ordinary q-dimension as

dimq R(λ) = D[λ̂] (E.1.7)

where λ̂ is the natural inclusion into the pyramid of the dominant weight λ.
Finally, let us introduce following pyramids defined for any two subsets I, J of {1, 2, . . . , N}

satisfying I ∩ J = φ :

f̂I,J := mj(0̂,−ĥI , ĥJ) (E.1.8)

where hI :=
∑

i∈I
hi. They have equivalent definitions

(f̂I,J)h:α :=





+1 if α ∈ J and α + h ∈ I
−1 if α ∈ I and α + h ∈ J
0 otherwise

(E.1.9)
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or

(f̂I,J)h:α :=
∑

i∈I,j∈J
sgn(i− j)δh,|i−j|δα,min(i,j) (E.1.10)

where δ is the ordinary Kronecker’s δ symbol.
These pyramids satisfy the following properties :

f̂I,J = −f̂J,I skewsymmetric (E.1.11)

f̂I,JtK = f̂I,J + f̂I,K linearity (E.1.12)

ĥJ = f̂J̄ ,J . (E.1.13)

E.2 Convenient formulae

Now let us start the argument recalling the discussion in Sec.4.5.2. Consider three regions
called A,B and C clockwise around a trivalent junction and denote their dominant weights
λA, λB and λC . See Fig.4.9 in Sec.4.5.2. We also denote the outgoing charge associated
with the edge between the regions X and Y by aXY for (X, Y ) = (A,B), (B,C) and
(C,A).

We define the following objects in order.

λXY := λX − λY =:
N−1∑

α=1

Λα
XY ωα =:

N∑

s=1

λsXY hs. (E.2.1)

λsXY is not uniquely determined due to the condition
∑

s

hs = 0 in the root vector space.

But it is uniquely determined if we impose the conditions λsXY ≥ 0 and ∃s λsXY = 0.
We can find that λsXY is either 1 or 0 and define EXY := {s ∈ {1, 2, . . . , N}|λsXY = 1}

where |EXY | = aXY follows and EXY := {1, 2, . . . , N}\EXY = EY X . The cycle condition
λAB + λBC + λCA = 0 tells us EAB t EBC t ECA = {1, 2, . . . , N} (disjoint union). Now
we have

mj(λA, λB, λC) = λ̂A + f̂EAB ,ECA (E.2.2)

and we obtain two other similar expressions by permuting the above cyclically as A →
B → C → A. This formula will turn out to be useful in the next section.

Finally, we list a few propositions also used later.

1.

D[x̂+ ẑ]D[ŷ] = D[x̂]D[ŷ + ẑ] when (x̂− ŷ) ∗ ẑ = 0̂. (E.2.3)

Each element in pyramid satisfies x = (x̂)h:α = (ŷ)h:α = y or z = (ẑ)h:α = 0 and
then we can say [x+ z]q[y]q = [x]q[y + z]q for any (h : α).
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2.

f̂I,J ∗ f̂K,L = 0̂ for (I t J) ∩ (K t L) = φ (E.2.4)

Using (f̂P,Q)h:α = 0 for α /∈ P tQ, this statement holds true.

3.

f̂I,J ∗ f̂I,K = 0̂ for J ∩K = φ (E.2.5)

Assume (f̂I,J)h:α 6= 0 and (f̂I,K)h:α 6= 0 for some common (h : α). If α ∈ I, we have
α + h ∈ J and α + h ∈ K but it is impossible by definition and we say J ∩K = φ.
This is same for the case α+h ∈ I. So the assumption is always false and the above
statement is true.

Note that there is a more general formula including last two propositions :

f̂I,J ∗ f̂K,L = (f̂I∩K,J∩L)2 − (f̂I∩L,J∩K)2 (E.2.6)

where x̂2 := x̂ ∗ x̂.

E.3 Derivation of several skein relations

Based on our proposal for the local Boltzmann factor (4.5.8), we prove elementary skein
relations in this appendix.

E.3.1 Associativity

The associativity skein relation is given by

rq

s

p v

RA

RB

RC

RD
=

rq

t

p v

RA

RB

RC

RD
. (E.3.1)

Here s = p+ q = v − r, t = q + r = v − p and v = p+ q + r. Their dual triangle quivers
are given as

λA
Q

λB

P

λD

R

P tQ tR

λC

P tQ =

λA
Q

λB

P

λD

R

P tQ tR

λC

Q tR
. (E.3.2)
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which is the flip of the triangulations. We have introduced here P := ECB, Q := EBA
and R := EAD. (E.2.2) tells that the local Boltzmann factors’ expression associated with
this equality is equivalent to

D[λ̂B + f̂Q,P ]−1/2D[λ̂A + f̂R,PtQ]−1/2 = D[λ̂B + f̂QtR,P ]−1/2D[λ̂A + f̂R,Q]−1/2 (E.3.3)

for any λA, λB, λC and λD. In the following, we prove this equality.
Introduce x̂ := λ̂B + f̂Q,P and ŷ := λ̂A + f̂R,Q. Now we get

(l.h.s)−2 = D[x̂]D[ŷ + f̂R,P ] (E.3.4)

(r.h.s)−2 = D[x̂+ f̂R,P ]D[ŷ]. (E.3.5)

To apply the proposition (E.2.3) to the above, it is enough to check (x̂ − ŷ) ∗ f̂R,P = 0̂.

Since λ̂B − λ̂A = ĥQ = f̂Q̄,Q,

(x̂− ŷ) ∗ f̂R,P = (f̂Q̄,Q + f̂Q,P + f̂R,Q) ∗ f̂R,P (E.3.6)

= (2f̂R,Q + f̂PtQtR,Q) ∗ f̂R,P = 0̂ (E.3.7)

where we have used the two propositions (E.2.4) and (E.2.5) in the last line. Now we
have proved the expected equality.

E.3.2 Digon contractions

There is more non-trivial skein relations what we call digon contractions as shown below.

a

b

a+ b a+ b

RA

RB

=
[a+ b]q!

[a]q![b]q!

a+ b
RA

RB

(E.3.8)

where [n]q! :=
∏n

i=1[i]q for a positive integer n.
First of all, let us introduce several definitions. For fixed EAB, we define a natural

embedding

`−1 : {1, 2, . . . , a+ b} bijec.−→ EAB (E.3.9)

`−1
γ := `−1(γ) for γ ∈ {1, 2, . . . a+ b} `i := `(i) for i ∈ EAB (E.3.10)

satisfying that 1 ≤ `−1
γ < `−1

γ′ ≤ N for 1 ≤ γ < γ′ ≤ a+ b.

M := {(`−1
γ′ − `−1

γ , `−1
γ ) for any γ′ > γ}. (E.3.11)

By definition, for any two subsets I,J (I ∩J = φ) of EAB, it is true that (f̂I,J)h:α 6= 0⇐⇒
(h, α) ∈M .
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Next, let M̌ be the index set of the pyramid for SU(a + b) weights. In other words,
for (ȟ : α̌) ∈ M̌ , ȟ runs over 1 to a + b − 1 and α̌ does over 1 to a + b − ȟ. The map `
induces a new bijection map ˇ̀ from M to M̌ as follows.

(ȟ : α̌) := ˇ̀(h, α) := (`α+h − `α : `α) (E.3.12)

If we label the representation assigned to the inside region of the digon as S, the left
hand side gives

∑

S

dimq S

D[mj(λ̂A, λ̂B, λ̂S)]
=

∑

I:=ESB⊂EAB

D[λ̂B + ĥI ]

D[λ̂B + f̂EBA,I ]
(E.3.13)

=
∑

I⊂EAB
|I|=b

D[λ̂B + f̂EBA,I + f̂EAS ,I ]

D[λ̂B + f̂EBA,I ]
=
∑

I⊂EAB
|I|=b

D[λ̂B + f̂EAS ,I ]

D[λ̂B]
(E.3.14)

=
∑

I⊂EAB
|I|=b

∏

(h,α)∈M

[(λ̂B + f̂EAS ,I)h:α + h]q

[λ̂B + h]q
=
∑

I⊂EAB
|I|=b

∏

(ȟ,α̌)∈M̌

[(µ̂)ȟ:α̌ + (f̂EAS ,I)ˇ̀−1(ȟ,α̌) + ȟ]q

[(µ̂)ȟ:α̌ + ȟ]q

(E.3.15)

where we have used hI = f̂Ī,I , Ī = EBA t EAS and the proposition (E.2.3) using also

(E.2.5) f̂EBA,I ∗ f̂EAS ,I = 0̂. In the 3rd line, we have used (f̂EAS ,I)h:α = 0 for (h, α) /∈ M
and M

ˇ̀

' M̌ and redefined (µ̂)ȟ:α̌ := (λ̂B)ˇ̀−1(ȟ,α̌) + h− ȟ where h = h(ȟ, α̌) = `−1
ȟ+α̌
− `−1

α̌ .
Now what we should prove are two following equations.

α̌+ȟ−1∑

β=α̌

µ̂1:β = µ̂ȟ:α̌ (E.3.16)

(
̂
h
SU(a+b)
`(I) )ȟ,α̌ = (f̂EAS ,I)ˇ̀−1(ȟ,α̌) (E.3.17)

The former equality says that µ̂ is the image of a weight µ in the pyramid and follows
from the direct computation based on the above definitions. The latter one means that
f̂EAS ,I gives an image of a weight in Π(∧b�) of SU(a+ b), and it also readily follows from
the equality

(
̂
h
SU(a+b)
`(I) )ȟ,α̌ = (f̂EAB\I,I)`−1

α+h−`
−1
α :`−1

α
. (E.3.18)

In conclusion, the numerator in (E.3.15) equals to the q-dimension of the SU(a + b)
irreducible representation R(µ + h`(I)) up to the common factor

∏
(ȟ:α̌)[ȟ]q and, the sum

over all the b element subsets of EAB equals to all irreducible representations appearing in
the tensor product of R(µ) and ∧b�. Therefore, this gives dimSU(a+b)

q ∧b� which exactly
reproduces the prefactor in the right hand of (E.3.8).
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Appendix F

Seiberg-Witten curve and Gaiotto
duality

This appendix is based on the review part of my master thesis (unpublished).

F.1 Gaiotto duality

The 4d N=2 SCFT has an UV marginal complexified gauge coupling for each (simple)
gauge group i.e. forms an UV deformation parameter space. Gaiotto claims that this
space is an Teichmüller space for a punctured Riemann surface and that many properties
including UV dualities can be naturally interpreted or derived based on this fact.

Let denote Cg,n, Tg,n, M̂g,n and Γ̂g,n be the punctured Riemann surface with genus
g and n distinguishable punctures 1) , its Teichmüller space, its marked moduli space
and its mapping class group (MCG) respectively. Note that M̂g,n = Tg,n/Γ̂g,n and the
moduli space has some cusps in general corresponding to the full degenerations of the
Riemann surface Cg,n. The author in [14] speculated that there exists a weakly-coupled
gauge theory (but permitting some strongly-coupled matters with unknown Lagrangian
descriptions) for each cusp giving a degenerate Riemann surface. It also reminds that
many perturbation descriptions exist for the undefined M-theory or non-perturbative
string theory.

Then, what a gauge theory corresponds to each degenerate Riemann surface ? The
partial answer is as follow : These degenerate Riemann surfaces are graphs constructed
out of internal edges I, external edges E and trivalent vertices V . Each internal edge gives
a gauge group or a vector multiplet and external edge does a flavor symmetry specified by
the data on each puncture. Each trivalent vertex gives a intricate tri-fundamental “matter
multiplet” 2) in general specified by three legs or punctures. Therefore from the graphs we

1)It is orientable and have no boundaries except puctures. According to the contexts, they include or
not a hyperbolic metric or a complex structure. We use “marked” if we distinguish the punctures and
“unmarked” if not.

2)Since there may be no Langrangian descriptions, we do use this word instead of “hypermultiplet”
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can read off roughly how the gauge fields and the charged matters are coupled although
the details of the matters are still unknown. Some examples are shown in Fig. F.1 and
F.2. As the fully general constructions are unknown and the more detail one must be
discussed individually, we will exhibit some examples soon later and discuss some special
cases in F.4.

A

D

C

E F

B

Figure F.1: There exist various pants decompositions for a punctured Riemann surface.
Four examples are shown for the genus two and no puncture case : A,B,C (above left),
A,C,D (below left), C,D,E (above right) and D,E, F (below right). Here the circles
represent the boundaries of the pants to cut along and a gauge group is assigned to
each one. The graphs are the degenerate Riemann surfaces or the quiver forms of gauge
theories. In general, there exist the infinite pants’ choices and each gives a duality frame.

A

B

D
C

E

Figure F.2: The external edges can be seen as the zero length limit of thin tubes. They
are also open edges in the degenerate graphs. Four examples are shown for the genus one
and one puncture case : A,B (above left), C,D (below left), A,E (above right) and C,E
(below right).

In this stage, it is expected to identify the MCG Γ̂g,n with self-dualities. As the
special case they include SL(2,Z) duality for N=4 super Yang-Mills. The full duality
which exchanges duality frames is the Moore-Seiberg groupoid which includes the MCG
as a “subgroup”. (See [204] for example.) A direct evidence for the full duality is the AGT
correspondence mainly for SU(2) case. The other and weaker one for self-dualities is the
M-theory construction itself in which the four dimensional physics depends on only the
complex moduli of the Seiberg-Witten curve in a given complex structure of a background

except for some cases with free Lagrangians.
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hyperKähler manifold. However, in summary, there is little understanding for this except
for SU(2) case. We do explain some of these subjects in terms of the well-known aspects of
both string theories and field theories. We consider hereafter only AN−1-type i.e. SU(N)
gauge theories. 3)

F.1.1 A1 case

In A1 case, each internal edge (thin tube) and external edge (puncture) gives a gauge
group SU(2) and a flavor group SU(2) respectively and this is all of the rules in A1

case. In other words, a pair of pants gives a free tri-fundamental chiral multiplet 4) and a
degenerate graph says how coupled these matters are via gauge multiplets corresponding
to the tubes between the pants. Assume that all punctures are equivalent but have one
mass parameter which is a Cartan of SU(2)-flavor symmetry for each puncture.

Nc = 2 Nf = 4 SQCD is a famous example of SCQCD with fundamental “quarks”
admitting a non-trivial SL(2,Z) duality and its marginal deformation space of the holo-
morphic gauge coupling is given as a four-punctured Riemann surface. The outstanding
property of this duality is a triality combined in the Spin(8) flavor symmetry, 5) which
maps quarks physics into monopoles one or dyons one. In the above Gaiotto’s framework,
this triality is realized as the permutations of the punctures. Since each puncture carry
a SU(2)-flavor symmetry, the explicit flavor symmetry read off from the four-punctured
Riemann sphere is SU(2)A × SU(2)B × SU(2)C × SU(2)D ' Spin(4)× Spin(4) and this
is the maximal subgroup of Spin(8).

The self-duality stems from the equivalence of all four punctures up to their mass
parameters although it is less trivial in terms of the type IIA construction. The famous
triality corresponds to the action under the permutation of SU(2) i.e. S4. This exchanges
the three 8 dimensional representations of Spin(8) :

8v = (2a ⊗ 2b)⊕ (2c ⊗ 2d) · · · · · · quark

8s = (2a ⊗ 2c)⊕ (2b ⊗ 2d) · · · · · · monopole (F.1.1)

8c = (2a ⊗ 2d)⊕ (2b ⊗ 2c) · · · · · · dyon

The corresponding geometrical point is shown in Fig. F.3.
We can extend the above discussion to the more complicated gauge theories. The

mapping class group of the starting punctured Riemann surface is generated by some
local actions on two pairs of pants. Weakening some gauge couplings or thinning the
corresponding tubes geometrically, and then applying the SL(2,Z) duality on the four
punctured sphere (permutation of punctures), we finally obtain other duality frames.

3)At least, we can treat DN -type i.e. SO/USp gauge theories incorporating M-orientifolds. ( [205])
Note that USp gauge groups appear even in the set-up of A-type 6d N=(2, 0) SCFTs.

4)It has 24 = 16 degrees of freedom in real. The tri-fundamental representation in SU(2)3 gives 8
and the complex value does 2. This is the half of the ordinary hypermultiplet and usually called “half-
hypermultiplet”.

5)The triality is the outermorphism of Spin(8) and the full global symmetry is SL(2,Z) n Spin(8).
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CA

DB

BA

DC

BA

CD

SU(2)

SU(2)CSU(2)A

SU(2)DSU(2)B

SU(2)

SU(2)BSU(2)A

SU(2)DSU(2)C

SU(2)

SU(2)BSU(2)A

SU(2)CSU(2)D

Figure F.3: We can gain three types of SU(2) Nf = 4 quivers. These are related by the
permutation of punctures. Each puncture has global SU(2)-symmetry and these are also
exchanged.

Let us consider C0,6 case. This enjoys a non-trivial duality which is not self-dual in
the sense that some action can map the original quiver gauge theory into distinct duality
frames where some vector multiplets and some hypermultiplets are differently coupled.
See Fig. F.4. In this case, there shows up a tri-fundamental half-hypermultiplet coupled
to three gauge groups.

The more non-trivial cases are shown in Fig. F.1 and F.2. The former has three SU(2)
gauge groups and two hypermultiplets and closed loops stand for the adjoint indices of
the matter. The latter does two SU(2) gauge groups and SU(2)×SU(2) flavor symmetry.

F.1.2 A2 case

For Nc = 3 case, we have a more non-trivial and interesting phenomenon. This theory

enjoys only the Γ0(2) duality generated by τ̃ → τ̃ + 2, τ̃ → −1/τ̃ where τ̃ =
θ

π
+

8πi

g2

(See later or [206]) and there appears the infinite strongly-coupled point not to map into
the weakly-coupled point via it. This can be easily accounted for considering a four
punctured sphere whose punctures are categorized as two and two into two groups called
simple/minimal and full/maximal punctures. We will explain the kind of punctures in
F.3.1. There exist two kind of degenerate limits : See Fig. F.5 and F.6.

Then we obtain two essentially distinct duality frames one of which is well-known
SCQCD with six fundamental hypermultiplets. The other is mysterious because there
appears a SU(2) gauge group. Decoupling this SU(2) gauge coupling of dual theory, we
obtain one free SU(2) fundamental hypermultiplet and non-trivial SCFT named Minahan-
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A

B

C D

E

F

A

B

C D

E

F

SU(2) SU(2) SU(2)SU(2)B

SU(2)A

SU(2)C

SU(2)D

SU(2)E

SU(2)F

SU(2)

SU(2) SU(2)

SU(2)C SU(2)D

SU(2)B

SU(2)A SU(2)F

SU(2)E

Figure F.4: SU(2) quiver gauge theories with distinct degenerations

Nemeschansky theory or T3 theory with E6 flavor symmetry. 6) Note that the explicit
flavor symmetry seen from the punctures is SU(3)3 which is the maximal subgroup of E6.
In F.2.2, we will see this duality in terms of the Seiberg-Witten curve (or the Gaiotto
curve).

F.2 Gaiotto curve from the Seiberg-Witten curve

Next, we are going to derive and ensure some aspects of the Gaiotto’s conjectures and
discussions via the Seiberg-Witten curves’ analysis. Utilizing the famous Witten’s M-
theory construction [20], the Seiberg-Witten curve of a linear quiver gauge theory T with
n gauge groups and fundamental hypermultiplets gauged under only gauge groups at ends
of a quiver is given by

FT (t, v) :=
N∏

`=1

(v − v(∞)
` )tn+1 +

n∑

α=1

cαqα(v)tn+1−α + cn+1

N∏

`=1

(v − v(0)
` ) = 0 (F.2.1)

where we use a holomorphic coordinate v := x4 + ix5 and s := x6+ix10

R10
(R10 is the radius

of x10-direction) or t := e−s corresponding to the choice of a complex structure in the

6)See also Fig. F.7 and F.8 later.
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⇒ SU(3)

U(1)C

SU(3)A

U(1)D

SU(3)B

Figure F.5: This is a Gaiotto curve of Nf = 6 SCQCD. There are two types of punctures.

⇒ T3

SU(3)A

SU(3)B

SU(3) SU(2) U(1)F

Figure F.6: The same Gaiotto curve gives another duality frame that one SU(2) funda-
mental hypermultiplet is weakly coupled to a isolated SCFT via a SU(2) gauge field.

flat hyperKähler space R4. v
(∞)
` and v

(0)
` are the positions of the M5-brane at t =∞ and

t = 0 respectively and correspond to the mass deformations. cα (α = 1, . . . , n + 1) are
functions of the effective gauge couplings and qα(v) (α = 1, . . . , n) are polynomials of v

and the Coulomb branch parameters ũ
(α)
` except for ũ

(α)
1 given by

qα(v) := vkα −
kα∑

j=1

ũ
(α)
j vkα−j (F.2.2)

where the whole gauge groups are SU(k1)×SU(k2)×· · ·×SU(kn). Each ũ
(α)
j (j 6= 1) is an

expectation value of the j-th order Casimir operator in the Coulomb branch for SU(kα)

and ũ
(α)
1 are constants decided by some linear combinations of the mass deformation

parameters and vanish for the fully massless case. 7)

The original field-theoretical representation of the curves appearing in [206] which
we call “standard” here (following [15]) is introduced later as a remark for the special
C0,4 case. In this relation, we can see that ũ1 is concretely determined by the mass
deformations.

Introducing K := max{k1, k2, . . . , kn}, (F.2.1) can be written for v’s order

FT (t, v) =
∏

α

(t− tα)vK +
K∑

j=1

pj(t)v
K−j = 0 (F.2.3)

7)These u1 correspond to non-normalizable modes on the deformation space of the complex structure.
See also F.2.3.
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which we will use later to derive the Gaiotto’s form. Notice that cα are symmetric poly-
nomials of −tα.

Now let us impose the balanced (for D-branes) or conformal (for gauge theories)
condition :

bi := −2ki + ki+1 + ki−1 = 0 (F.2.4)

In terms of IIA brane set-up, this means the force-balanced condition for each NS5-brane
because each is forced by D4-branes ending on that from both sides and bends in general
except that the forces or the numbers are balanced. 8) In fact the bending is consistent
with the running of the (holomorphic) gauge coupling at 1-loop level. ( [20])

Finally, the Seiberg-Witten differential is given by

λord := v
dt

t
= −vds (F.2.5)

in this case ( [207], [208]) but we redefine the Seiberg-Witten differential subsequently.
Note that this also differs from the differential for the standard form of the Seiberg-Witten
curve in [206] as remarked later.

(F.2.3) can be further written as

FT (t, v′) =
∏

α

(t− tα)(v′)K +
K∑

j=2

p′j(t)(v
′)K−j = 0 (F.2.6)

such that the coefficient of v′K−1 to vanish. p′j(t) are not polynomials of t but ratio-
nal functions allowing the poles at t = tα. Then we redefine the new Seiberg-Witten
differential as

λ = λM := v′
dt

t
= −v′ds (F.2.7)

This redefinition is important for this new formulation but subtle point at the same time.

Mass parameters and residues

The difference between the ordinary one and this new one is the local center of mass.

∆λ = (v′ − v)
dt

t
= −V (t)

N

dt

t
(F.2.8)

where

V (t) :=

∑n+1
α=0 cαṼαt

n+1−α
∏n+1

α=1(t− tα)
(F.2.9)

8)We assume that D6-branes are absent or if exist, moved to infinity via branes’ creations and annihi-
lations. See F.3.1.
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and

Ṽα :=





∑N
`=1 v

(∞)
` α = 0

ũ
(α)
1 1 ≤ α ≤ n∑N
`=1 v

(0)
` α = n+ 1

(F.2.10)

The residues of λ can be calculated by those of λord. They are given as

Res
t=0

λord = −v(∞)
1 ,−v(∞)

2 , . . . ,−v(∞)
N (F.2.11)

Res
t=tα

λord = 0, 0, . . .︸ ︷︷ ︸
N−1

,
1

tα
lim
t→tα

(t− tα)V (t) (F.2.12)

Res
t=∞

λord = v
(0)
1 , v

(0)
2 , . . . , v

(0)
N (F.2.13)

noticing that the limits are well-defined because of the definition (F.2.9).
The fact that the sum of residues of λ vanishes helps us to attain

Res
t=0

λ = −∆v
(∞)
1 ,−∆v

(∞)
2 , . . . ,−∆v

(∞)
N (F.2.14)

Res
t=tα

λ =

(
1

tα
lim
t→tα

(t− tα)V (t)

)
× (− 1

N
,− 1

N
, . . .︸ ︷︷ ︸

N−1

, N−1
N

) (F.2.15)

Res
t=∞

λ = ∆v
(0)
1 ,∆v

(0)
2 , . . . ,∆v

(0)
N (F.2.16)

with ∆v
(0/∞)
` = v

(0/∞)
` − 1

N
V(0/∞).

The overall factors at t1, tn+1 and tα (1 < α < n + 1) in the second line (F.2.15)
correspond to the center of mass V∞ and V0 and the mass deformation parameters of the
(α− 1)-st bi-fundamental hypermultiplet respectively.

Recalling that the mass parameters belong to the adjoint representation of the flavor
symmetry, we can say that there is SU(N) symmetry at t = 0,∞ and U(1) symmetry at
the others. Actually, in the weakly-coupled limit of all gauge couplings, t1 approaches to
0 and the total flavor symmetry SU(N) × U(1) accord with the flavor symmetry U(N)
of the N D4-branes. The redefinition of λord to λ corresponds to the decoupling of the
diagonal U(1) in U(N). To correctly reproduce the BPS mass formulae, we must redefine
the flavor charges assigned to the flavor cycles. Since ∆λ in (F.2.8) are independent of
the Coulomb branch parameters, the expectation value of adjoint complex scalar in the
N=2 vector multiplet are only shifted by a linear combination of mass parameters. To
verify that this redefinition always works well in general case is so difficult problem and
we assume that we have another realization of 4d N=2 supersymmetric gauge theories
via the M5-brane. 9)

9)I appreciate the participants in my seminar for the thesis to make me reconsider this subtle point.
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There is the more convenient and mostly used form of the Seiberg-Witten curve in
terms of a projected curve :

xN =
N∑

i=2

ϕi(t)x
N−i (F.2.17)

x :=
v′

t
ϕi(t) := − p′i(t)

ti
∏n+1

α=1(t− tα)
(F.2.18)

or equivalently

λN =
N∑

i=2

φi(t)λ
N−i φi(t) := ϕi(t)dt

⊗i (F.2.19)

which is used later.
In the framework of the construction lifting from the type IIA set-up, this projective t-

“plane” is always a complex plane or a Riemann sphere. However once we attain this place
describing the UV information of 4d N=2 superconformal gauge theories geometrically, it
is natural to extend the punctured sphere to a general punctured Riemann surface. This
is the Gaiotto curve itself ! 10)

The Seiberg-Witten curve is a holomorphic curve of (t, λ(t)) or (t, x(t)) and equiv-
alently ΣSW ⊂ T ∗(1,0)C. The relation between the Seiberg-Witten curve ΣSW and the
Gaiotto curve Cg,n is clear : ΣSW is the N-fold cover of Cg,n. N values of λ(t) corresponds
to the positions of the M5-brane along the fiber direction at t ∈ Cg,n and some points in
Cg,n at which some of λ degenerate is a ramified point in terms of Cg,n.

Finally, let us see the massless case. In this case the things is so simple that v′ = v,
λord = λ and

p′j(t) = pj(t) = −
n∑

α=1

cαũ
(α)
j tn+1−α (F.2.20)

and we attain

φi(t) =

∑n
α=1 cαũ

(α)
i tn−α∏n+1

α=1(t− tα)

dt⊗i

ti−1
(F.2.21)

Notice that the orders of poles at t = tα=1,2,...,n+1 are always 1 and those at t = 0,∞
are i − 1 for φi(t). These numbers have a close relation to the flavor symmetries at the
punctures. It will be discussed about this point in F.3.1.

SU(N) and C0,4 case

In this case K = N and n = 1, (F.2.1) is

FT (t, v) =
N∏

`=1

(v − v(∞)
` )t2 − (1 + q)

(
vN −

N∑

`=1

ũ`v
N−`
)
t+ q

N∏

`=1

(v − v(0)
` ) = 0 (F.2.22)

10)This curve itself when CP 1 has been considered for a long time as an auxiliary tool.
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Here we rescale t to set c1 = 1 + q, c2 = q where q is a UV holomorphic coupling. 11)

F.2.1 Nc = 2 Nf = 4 case

This is the most simple case. The Seiberg-Witten curve (F.2.22) is

(v − va)(v − vb)t2 + (1 + q)(v2 − ũ1v − ũ2)t+ q(v − vc)(v − vd) = 0 (F.2.23)

(t− 1)(t− q)v2 + (−(va + vb)t
2 − (1 + q)ũ1t− (vc + vd))v

+ (vavbt
2 + qvcvd − (1 + q)ũ2t) = 0 (F.2.24)

and

p0(t)v2 + p1(t)v + p2(t) = 0⇐⇒ x2 = ϕ2(t) (F.2.25)

where ϕ2(t) =
p2

1 − 4p0p2

4t2p2
0

where q = t2/t1 and τUV := 1
2iπ

log(q). Note that this definition is only valid for |q| < 1 if
requiring =(τUV ) > 0.

If u1 =
q

1 + q
(va + vb + vc + vd), the masses which are associated to each puncture and

given by the residue of λ̃ are ±va ± vb
2

,±vc ± vd
2

. These are very SO(8) (adjoint) masses

and reproduce quark masses |±mX +A| (X = a, b, c, d) where we denote the scalar VEV
A to avoid confusing it with the label of puncture a.

In fact,

λ = v
dt

t
= ±

√
qu2dt√

t(t− 1)(t− q)
(F.2.26)

and the behaviour at each puncture is the same. This suggests that the four punctures
t = 0, q, 1,∞ are locally equivalent. This is consistent with the discussion F.1.1.

On the other hand, we have room to map the punctures via SL(2,Z) translation on
C0,4.

t→ az + b

cz + d
, x→ (cz + d)2x (F.2.27)

We can gain arbitrary positions of punctures za, zb, zc, zd but they are subject to a constant

cross ratio q =
zabzcd
zadzbc

. This is useful to move freely the punctures to collide each other.

Using the permutation subgroup of the above SL(2,Z) preserving the punctures’ po-
sitions 0, 1,∞, we can map q into 1− q for example. As we see in F.2.3, this corresponds

to τSW → −
1

τSW
.

11)The relation to the Seiberg-Witten holomorphic (IR) coupling is remarked in F.2.3.
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F.2.2 Nc = 3 Nf = 6 case

Here, we explain the simplest case of Argyres-Seiberg dualities from the Gaiotto’s formu-
lation.

The Seiberg-Witten curve of Nc = 3 Nf = 6 SQCD is given by

p0(t)v3 + p1(t)v2 + p2(t)v + p3(t) = 0⇐⇒ x3 = ϕ2(t)x+ ϕ3(t) (F.2.28)

where ϕ2(t) =
p2

1 − 3p0p2

3t2p2
0

ϕ3(t) = −2p3
1 − 9p0p1p2 + 27p2

0p3

27t3p3
0

Especially, p0(t) = (t− 1)(t− q) and all the masses turn off

φ2(t) = − (1 + q)u2

t(t− 1)(t− q) φ3(t) = − (1 + q)u3

t2(t− 1)(t− q) (F.2.29)

For this curve, we at first take a limit q → 1 and u2 → 0 (the latter correponds to
turning off the mass deformation in coupled SU(2) sector) :

x3 =
−2u3

t2(t− 1)2
(F.2.30)

This says that all the three punctures at t = 0, 1,∞ are equivalent (in the meaning
that each is a second order pole in K⊗3

C ) and that the puncture at t = 1 carry SU(3) flavor
symmetry. Then the explicit flavor symmetry is SU(3) × SU(3) × SU(3) but enhanced
to E6 as expected. This can be seen via the famous Kodaira’s classification of the elliptic
singularities with the standard forms of the curves.

For this purpose, we change the variables as

w′ =
1

2
u3v y′ =

iu3

4
[(t− 1) + u3] u′ =

1

2i
u3 (F.2.31)

Note that this is invertible and preserves the Seiberg-Witten differential up to the (mero-
morphic) exact 1-form (giving the same physics). The curve (F.2.30) is rewritten as

y′2 = w′3 − u′4 (F.2.32)

This is the E6 type elliptic curve or Minahan-Nemeschansky’s curve ( [147]) in physics.
The Gaiotto curve picture is shown in Fig. F.7.

Another point of view corresponds to a collision of the simple punctures. In order

to derive it, change the cross ratio using a SL(2,C) transformation z =
(q − 1)t

q − t . 12)

This maps 0, q, 1,∞ into 0,∞, 1, q′ = 1− q and x into
q − 1

z + q − 1
x. Therefore (F.2.28) is

rewritten as

x3 =
(2− q′)u2

z(z − 1)(z − q′)x+
−(2− q′)q′u3

z2(z − 1)(z − q′)2
(F.2.33)

12)We have done the reduction.
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Figure F.7: collision of two simple
punctures in A2

Figure F.8: collision of two full
punctures in A2

In a colliding limit q′ → 0, we have (factoring out x)

x2 =
2u2

z2(z − 1)
(F.2.34)

This is the very SU(2) Nf = 4 curve without masses in the weak coupling limit.(Fig. F.8)
Actually we can gain the coupled one setting u3 be zero in (F.2.33).

Taking the above two observations into consideration, we can guess the special case
of Argyres-Seiberg duality :

SU(3) w/ 6 · (3⊕ 3̄) ←→
S−dual

SU(2) w/ (2 · 2⊕ SCFTE6) (F.2.35)

F.2.3 Remarks on the relation to the standard Seiberg-Witten
curve

Here we discuss the the most simple and important C0,4 case about the relation to the
original representation of the curves.

The standard forms of the Seiberg-Witten curves in superconformal cases (AN−1-type)
are given by [206]

y2 = P (w)2 − (1− g(τ)2)Q(w) (F.2.36)

P (w) := det(w − u) Q(w) :=
2N∏

I=1

(w + gµ+ µI)

Here mI are the mass parameters of U(2N) flavor symmetry, µ :=
1

2N

∑2N
I=1mI is the

center of mass and µI := mI − µ is the relative to it. g(τ) is a modular function defined
as

g(τ) :=
ϑ4(q)4 + ϑ2(q)4

ϑ4(q)4 − ϑ2(q)4
for q := e2πiτ (F.2.37)

which gives the UV coupling qUV = e2πiτUV . 13)

13)This terminology is the convention too. Both describes the same physics but differ by a finite
renormalization.
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These standard curves are related to those via M-theory by the following variable
transformations

t :=
1

1− g(τ)

P (w)− y
Q∞(w)

v := w + (g − 1)µ vI := −mI (F.2.38)

and these are one-to-one because the inverse ones exist. The sign difference between v
and the mass cancels the minus of −v′ds in (F.2.5).

Here divide the 2N hypermultiplets’ masses into two groups N and N as

Q∞(v) :=
N∏

i=1

(v − v(∞)
i ) Q0(v) :=

N∏

a=1

(v − v(0)
a ) (F.2.39)

Then we attain the M-theoretically constructed curves :

Q∞(v)t2 − (1 + q)P̃ (v) + qQ0(v) = 0 (F.2.40)

where P̃ (v) := P (v− (g− 1)µ). This is why we use the notation ũ instead of u in (F.2.2)
and so on.

Next focus on the Seiberg-Witten differential. Recall that the differential is given by

λSW =
w + (g − 1)µ

2πi
d log

(
P (w)− y
P (w) + y

)
(F.2.41)

λM = vd log(t) (F.2.42)

The relation between two is

λM +
v

2
d log

(
Q∞(v)

Q0(v)

)
= πiλSW (F.2.43)

This says that two are equivalent up to an exact 1-form.

The Seiberg-Witten curve with fundamental hypermultiplets

A string ending on a D4-brane and a D6-brane at the center of a monopole generate
a quark in (anti-)fundamental representation. Therefore the Seiberg-Witten curves in
Q describe dynamics with hypermultiplets. However, it is complexified and difficult to
analyse it on the non-trivial background metric of Q.

We can replace Q by flat R4 with a trick. For the purpose, recall that the four
dimensional low-energy physics is independent of the Kähler parameters because the curve
and Seiberg-Witten differential are determined by only the complex structures. The
Kähler parameters of the Taub-NUT space are the center positions of the monopoles
and this suggests us to take arbitrary positions. It seems strange because we can get
the D6-branes away to the infinity and then the D6-branes give no effect on the four
dimensional low-energy physics. The solution to this puzzle is to consider the branes’
creation-annihilation process sometimes called Hanany-Witten effect (transition). ( [19])
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Then we can replace Q by R4 with the generated D4-branes. The brane creation-
annihilation are dictated by a linking number. This linking number for each D6-brane is
defined by

(L−R)− 1

2
(`− r) (F.2.44)

where L/R =(# of D4-branes in the left/right) and `/r =(# of NS5-branes in the
left/right). We can define those of NS5-brane by replacing NS5-branes into D6-branes in
the above. Then the Hanany-Witten effect says that the linking numbers are preserved
before and after the branes’ contact. 14)

Now let us write down the Seiberg-Witten curve taking this into the consideration.
Let Iα be the α-th interval between α-th and (α+1)-st NS5-branes in the type IIA setup.
Then introduce

Jα(v) :=
∏

x6
`∈Iα

(v − va) J0(v) := Jn+1(v) := 1 (F.2.45)

gα(v) :=vkα −
kα−1∑

i=1

ũ
(α)
i vkα−i g0(v) := gn+1(v) := 1 (F.2.46)

for α = 1, 2, . . . , n

where x6
` is the x6-position of `-th D6-brane (` here is not the number of NS5-branes

used in the linking number) and Jα(v) and gα(v) are degree dα and kα polynomial of v
respectively. With these polynomials,

Aα(v) := cαgα(v)
α∏

β=0

Jβ(v)α−β for α = 0, 1, . . . , n, n+ 1 (F.2.47)

where cα are constant complex numbers associated to the gauge couplings.
Assembling these ingredients, define

q̂α(v) := cαgα(v)
α∏

β=0

Jβ,R(v)α−β
n+1∏

β=α+1

Jβ,L(v)−α+β for α = 0, 1, . . . , n, n+ 1 (F.2.48)

and finally the complete Seiberg-Witten curve can be written down as

FT (t, v) :=
n+1∑

α=0

q̂α(v)tn+1−α = 0 (F.2.49)

Note that the position along x4 and x5 directions of the D4-brane created by the Hanany-
Witten effect is fixed by the position of the D6-brane. In fact, there are no other variable
complex parameters. See Fig. F.10.

14)I thank S.Sugimoto for telling me a nice and intuitive interpretation in terms of M-theory as follow.
Roughly speaking, the moving M5-brane is hooked on the Taub-NUT center and the hooked part of the
M5-brane reduces into D4-brane in the type IIA setup. (See [209])
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We find that the degrees of v for ĝα(v) can be all the same for each conformal quiver
by appropriately moving the D6-branes to the left or right infinities. This proof and
the classification of possible conformal quiver tails will be discussed in F.3.1 for that of
conformal punctures.

F.3 Classification of punctures

In this section, we focus on a puncture. This is a boundary condition and restricts the
Seiberg-Witten curve or four dimensional low-energy physics. In terms of six dimensional
SCFT, this is a codimension two defect which arises from a M5-M5 branes’ intersection.
Therefore there naturally appear the same tools describing the surface operators in four
dimension.

There are two types of puncture, one of which naturally appears in the superconformal
quiver gauge theories and is called regular. We analyse this type of punctures in detail and
the definition will be clear finally. The other type of punctures (not regular) are called
irregular. These punctures play important roles in the construction of non-conformal
quiver gauge theories or AD theories but are not treated in this thesis. (See [15] or [210]
for example.)

F.3.1 Regular punctures

In this stage, we can not define regular punctures directly but they are punctures or defects
preserving conformal symmetry roughly speaking. Here the punctures constructed from
the IIA set-ups lifted to M-theory are called “regular”. It is possible to represent the data
(integer sequences) in various equivalent manners.

• the orders of the pole of φ at the puncture : {pi} (= Newton polygon P )

• the leading orders of the pole of λ ∼ O((z − za)
1−qa
qa )dz : {qa}

• gauge groups
∏

a U(ka) : {ka}

• flavor groups S(
∏

a U(da)) : {da}

We can simply summarize them as a Young diagram Y as explained later and it will be
also clear that there exists an one-to-one correspondence between the diagrams and the
punctures. Then we have p(N) kinds of regular punctures. 15) Here p(N) denote the
number of the partition of N . We will explain this fact by starting from IIA set-up.

Consider one end of a (conformal) quiver gauge theory and assume that it is like the
form in Fig. F.9. This is sometimes called a quiver tail. ( [211]) In this case, we have a

15)As we will see soon, they include a negligible puncture which does not affect the theory and there
are p(N)− 1 kinds exactly for A-type.

205



SU(k1)

U(d1)

SU(k2)

U(d2)

SU(N)

U(dh)

SU(N)

Figure F.9: conformal quiver tail Figure F.10: NS5-D4-D6 systmes

sequent gauge groups and flavor groups for fundamental hypermultiplets and denote those
sizes (= rank for U / rank+1 for SU) by {ka} and {da} (a = 1, 2, . . . , h) respectively.
h is the length of gauge groups chains and is an arbitrary positive integer. Note that
kh−1 6= kh = N (definition of h) and add k0 = d0 = 0 and kh+1 = N, dh+1 = N for later
convenience. Then define another sequence {qa} as qa := ka − ka−1.

The conformal quiver condition in N=2 gauge theory says that the one-loop part of
the β function should vanish or that is

ba := −2ka + ka+1 + ka−1 + da = 0 (F.3.1)

which is modified from (F.2.4). (F.3.1)) says that dh > 0 or kh−1 < kh and that {qa} is
non-increasing since qa+1 = qa − da ≤ qa using (F.3.1).

We also have a restriction ka ≥ 2 because non-vanishing U(1) gauge couplings are not
conformal in four dimension and find that

q1 ≥ q2 ≥ · · · ≥ qh = dh > 0 (F.3.2)

These assert that {ka} is a strictly increasing sequence starting from k1 greater than 1.
This assertion actually guarantees the first assumption of the tail form.

Now we have a N ’s partition {qa} since
h∑

a=1

qa = kh − k0 = N . The reverse map from

a partition to a quiver is trivial except for N = 1 + 1 + · · ·+ 1. It is summarized that the
classification of the conformal quiver tails equals to the set of all partitions of N except
for a partition like [1, 1, 1, . . . , 1] (all 1). 16) It is conventional and useful to introduce the
corresponding Young diagram by Yq and its transposed by Y := Y T

q = [n1, n2, . . . , ns].
We number boxes in Y by 1 to N such that ka−1 + 1, ka−1 + 2, . . . , ka from the left to the
right in the a-th row. We also denote the height of i-box in Y by Hi.

For instance, the classified list for theA5-type quiver gauge theory is shown in Fig. F.11.

The form of Seiberg-Witten curve

Next we investigate the pole structures of the mass-undeformed Seiberg-Witten curve or
the Seiberg-Witten differential. Before doing this analysis, we must prove the fact that

16)The exception type is called “null puncture” but plays no role for A-type.
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SU(2) SU(3) SU(4) SU(5)

1 1

[4, 1]

SU(3) SU(5)

1 2

[2, 2, 1]

SU(2) SU(4) SU(5)

1 1

[3, 2]

SU(4) SU(5)

3 1

[2, 1, 1, 1]

SU(3) SU(4) SU(5)

2 1

[3, 1, 1]

SU(5)

5

[1, 1, 1, 1, 1]

Figure F.11: The classification of all the possible quiver tails and their Young diagrams
for A5 (SU(6)) case.

all ĝα(v) can have the same degree of v if moving the D6-branes appropriately. This is
the extension of the last analysis of the quiver tail.

We can see in the same way as before that {kα+1 − kα}α=0,1,...,n is a non-increasing
sequence and we have

k1 ≤ k2 ≤ . . . < khL = kh+1 = · · · = kn+1−hR = N > . . . ≥ kn−2 ≥ kn−1 ≥ kn (F.3.3)

Note that when k1 = N or kn = N , hL = 1 or hR = 1 respectively. Then divide the
D6-branes into two groups such that all in Iα (α ≤ hL) belong to a group L and all in
Iα (α ≥ hR) to another group R when hL < n+ 1− hR. For hL = n+ 1− hR =: h case,
dL := N − kh−1 D6-branes are put into L and dR := N − kh+1 = dh − dL into R. After
moving all the D6-branes to the left infinity if in L or the right infinity if in R, we have
k̂α D4-branes in Iα. The previous analysis tells us that

k̂α = kα +

hL−1∑

j=α+1

(j − α)dj + (hL − α)dL for α = 0, . . . , hL − 2

k̂hL−1 = khL−1 + dL

k̂α = kα = N for α = hL, . . . , n+ 1− hR (F.3.4)
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k̂n+2−hR = kn+2−hR + dR

k̂α = kα +
α−1∑

j=n+2−hR
(α− j)dj + (α− hR)dR for α = n+ 3− hR, . . . , n+ 1

For q̂α := k̂α − k̂α−1,

q̂α+1 − q̂α = kα+1 + kα−1 − 2kα + dα = −bα = 0 (F.3.5)

except for α = hL = n+ 1− hR = h

q̂h+1 − q̂h = k̂h+1 + k̂h−1 − 2k̂h = kh+1 + kh−1 − 2kh + dh = −bh = 0 (F.3.6)

for hL = n+ 1− hR = h

shows that q̂1 = q̂2 = · · · = q̂n = q̂n+1 = q̂h = 0 and k̂α = N for ∀α = 0, 1, . . . , n, n+ 1 in
conclusion.

Pole structures

As a final step we study the behaviour of φi and λ at a t = ∞ pole labelled by Y . As
t→∞, the Seiberg-Witten curve (F.2.49) gives

n+1∏

a=0

(t− ta)vN +
N∑

i=2

(−csiũ(si)
i tn+1−si − csi+1ũ

(si+1)
i tn−si − . . .)vN−i = 0 (F.3.7)

where we define

si := min{α|kα ≥ i} (F.3.8)

which equals to Hi by definition.
Recalling (F.2.21),

φi(t)→ csiu
(si)
i tn+1−si as t→∞ (F.3.9)

In the coordinate z = 1/t, pi is defined as

φi(z)→ z−pidz⊗i as z → 0 (t→∞) (F.3.10)

and on the other hand (F.3.9) says

φi(z) =
pi(z)∏

a(z − za)zi
dz⊗i ∼ z−(n+1−si)zn+1z−i = zsi−i (F.3.11)

Then we obtain the relation between pi and Hi.

pi = i− si = i−Hi (F.3.12)
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p1

pk1+1

pk2+1

··
··
··

pN

p2

· · ·
· · ·
· · ·
pk3

· · ·
pk2

pk1

⇒
(2, p2)

(k1, pk1)

(k2, pk2)

k1 k2

Figure F.12: The numbers pi = i−Hi assigned to each box of the Young diagram (left)
give a Newton polygon (right). The shape of the polygon is restricted such that the slope
given by each neighbored two points is either 0 or 1.

This can be determined by the rule shown in Fig. F.12. Note that pi+1 − pi = 0 or 1 and
then {pi} is a non-decreasing sequence.

The final relation to prove is the singular behaviour of λ or x. If we assume x ∼ z−α

as z → 0 then we gain

φi(z)λN−i ∼ z−(pi+(N−i)α) as z → 0 (F.3.13)

The leading order cancellation suggests

∃a < b pa + (N − a)α = pb + (N − b)α (F.3.14)

pa + (N − a)α ≥ pi + (N − i)α for i(6= a, b) = 0, 1, . . . , N (F.3.15)

and this can be rewritten as the condition

pb − pa
b− a





≥ pi − pa
i− a for i > a

≤ pi − pa
i− a for i < a

(F.3.16)

This condition and the non-decrease of {pi} tell us the restriction shown in Fig. F.13 and
finally give a Newton polygon shown in Fig. F.12.

The equation (F.3.14) means that the order of the singularity at z = 0 in λ is given
by the slopes shown in Fig. F.12 because

pka − pka−1

ka − ka−1

=
qa − 1

qa
(F.3.17)
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(a, pa)

(b, pb)

allowed region

Figure F.13: Given the two points which cause the leading cancellation of φiλ
N−i, the

other points are restricted to the shaded areas.

There exist qa of N solutions with a behaviour λ ∼ z
1−qa
qa around z = 0.

In summary, we see the previous list to characterize the punctures constructed from
the type IIA set-up. To gain the quiver tail from the 6d N=(2, 0) SCFT, we need some
U(1) flavor symmetries of each bi-fundamental hypermultiplet and fundamental ones. For
the purpose, it is necessary to collide enough number of simple punctures with the generic
regular puncture. In fact, the claim that the punctures to collide should be the simple
ones is found from the analysis of the Seiberg-Witten curve (F.2.49). This can be also
found in terms of the number matching of complex structure moduli parameters and the
holomorphic gauge couplings. See Fig. F.16 as the example.

Revisit the definition of regular punctures. We once defined it by the lift from the
brane constructions of quiver tails in the type IIA string theory. A clear definition will be
introduced in analysing the boundary conditions of the Hitchin system in F.3.2. However,
we see that a general puncture satisfying the assumptions gives a conformal quiver tail
when we collide enough simple punctures with it and admit some assumptions and justify
the former definition.

Assume that the order of each pole in φi in the massless case is an integer and less than
i. The integral condition claims that ϕi(z) are single valued functions. Then colliding
enough simple punctures to the puncture to take the appropriate weak coupling limit,
we can have a degeneration shown in the left of Fig. F.17. Each pair of pants has a
simple puncture. For the purpose, let us count the Coulomb dimension for it. This is the
number of independent coefficients (complex moduli parameters) of the polynomial lying
in the numerator of φk(z). As we know the singular behaviour at each puncture, we can
determine the degree of the polynomial. The result is

dk = (p
(0)
k + p

(1)
k + p

(∞)
k )− (2k − 1) (F.3.18)

which is the Riemann-Roch theorem, mathematically speaking. If there is a simple punc-
ture at z = 0, p

(0)
k = 1 and p

(0)
k +p

(1)
k +p

(∞)
k ≤ 2k−1. Then the pair of pants with a simple

puncture has no Coulomb moduli and gives just free hypermultiplets coupled to gauge
fields because there are no degrees of freedom in the 4d low-energy effective theory. Now
returning the starting set-up with a general regular puncture and enough simple ones, we
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Figure F.14: This is a Newton polygon for
[4, 2, 1]. The horizontal axis represents the
order of the pole in the degree i differential
φi(z) and the vertical does pi. The slopes of
the dashed segments correspond to qs.

SU(3) SU(5) SU(6) SU(7)

1 1 1

Figure F.15: The quiver tail graph
for [4, 2, 1] type. This is conformal.

Figure F.16: The punctures for regular one [4, 2, 1] and four simple ones give the above
right quiver tail subdiagram if they collides. ? accompanied with a Young diagram has the
data about (the flavor symmetry of) the fundamental hypermultiplets without a diagonal
U(1) and •’s do the U(1) and (those of) the bi-fundamental ones.

have an ordinary conformal quiver gauge theory if the conformality is unbroken in the
process and this must be included in the already obtained classification started from the
IIA set-up.

A direct interpretation of Young diagram

Finally. we comment on how to see readily what brane configuration appears in the type
IIA with a general puncture labelled by Y and enough many simple punctures. A box in
α-th row and `-th column of the Young diagram Y represents a D4-brane connecting the
`-th D6-brane and the α-th NS5-brane. Here we label the orders of D6-branes such that
the outer D6-branes be the smaller.

This point of view will be useful on considering the mirror dual set-up. When we
consider the appropriate T-dual NS5-D3-D5 set-up, the S-duality in type IIB string theory
acts on the Young diagram as the transposition. (c.f. [125])

211



F.3.2 Punctures as the boundary condition of the Hitchin sys-
tem

The discussion here is based on [131]. The starting point is the Hitchin equation over
Cg,n (2.2.1).

Consider a general puncture preserving the conformal symmetry at z = 0 and see the
singular behaviour of the Higgs field :

Φ(z) := 〈ϕ(z)〉 =
Φ̆

z
+ (regular) (F.3.19)

where Φ̆ is an element of sl(N,C) and a semisimple (= diagonalizable) element.

Φ̆ ∼ diag(m1,m2, . . . ,mN) satisfying
N∑

i=1

mi = 0 (F.3.20)

Here ∼ means that they are equivalent up to conjugacy. Recalling the Seiberg-Witten
curve is given by the Hitchin equation, we find out that {mi}i=1,2,...,N equal to the residues
of λ at z = 0 and then just the mass deformation parameters.

What happens in the massless case ? Naively, Φ̆ vanishes and there seems to disappear
the Seiberg-Witten curve. However Φ̆ is an element of sl(N,C) in general and not always
diagonalizable. Since all the eigenvalues are degenerate to zero in this case, there are all
possibilities of the Jordan blocks with only zero eigenvalues. We write the Jordan blocks
and Jordan cell as

J[d1,d2,...,dt] := Jd1 ⊕ Jd2 ⊕ · · · ⊕ Jdt Jd :=

d components︷ ︸︸ ︷


0 1 0 0
0 0 1 · · · 0

...
. . . . . .

... 0 1
0 0 · · · 0 0




(F.3.21)

and there appears a partition or a Young diagram Yd again. Therefore it is expected that
there exists an one-to-one correspondence between the regular punctures and the types
of the Jordan blocks.

The proof is straightforward. It is possible to suppose the regular (non-singular) term
in Φ(z) to be non-zero in general. Then it is enough to represent det(λM − Φ(z)dz) as
a polynomial of x for λM = xdz and read off the singular behaviour of each coefficient
function of z when Φ̆ = J[d1,d2,...,dt] for d1 ≥ d2 ≥ · · · ≥ dt. Using the definition of
determinant, we can decide the most singular term of z among the terms with a fixed
degree of x. Notice that there are no xN−1 terms. The most singular term for xi comes
from (N− i+1, N− i+1), (N− i+2, N− i+2), . . . , (N,N) components in the diagonal
and the order of the singularity is.

β∑

α=1

(dα − 1) for ∃β s.t.
t∑

α=β+1

dα = i (F.3.22)
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β+1∑

α=1

(dα − 1)− δi for dβ > δi := i−
t∑

α=β+1

dα > 0 (F.3.23)

Actually, these values are given by the rule just remarked in F.3.1 from Young diagram
Yq = [q1, q2, . . . , qN ] to {pi} itself.

In summary, we can conclude that the Jordan block type Yd of Φ̆(z) gives the type of
regular puncture for Y = Y T

d and that the insertions of codimension 2 defects or punctures
impose boundary conditions of the Higgs field in the Hitchin system.. The behaviour of
the Higgs field at a puncture is also the simple definition of regular punctures. If Φ̆ is the
more singular than 1/z at z = 0, we have a “irregular puncture”.

Y2

Y1

Y3

SU(ka)

U(da)

SU(kb)

U(db)

SU(kc)

U(dc)

U(kd)

SU(ka)

U(da)

SU(kb)

U(db)

U(kc)

SU(ka)

U(da)

U(kb)

Figure F.17: The degeneration makes new punctures at both edge of the thin tube. The
above shows that Y1 and •(simple) give rise to Y2 and that Y2 and • do to Y3. (left) The
corresponding quivers are changed by decoupling the gauge group at the end one by one.
(right)

F.3.3 Operator product expansion of regular puncture defects

We can regard the choice of pants decomposition and its degeneration limit as the operator
product expansion (OPE) of punctures in terms of the six dimension SCFT. We assume
that the OPE of the punctures or the codimension 2 defects should be determined locally.
In other words, the newly generated defect in the OPE is determined if we choose the
kinds of colliding puntures.

The most clear case is the OPE of a regular puncture and a simple puncture. See
Fig. F.17. The procedure in terms of Young diagram for the regular puncture is shown
in Fig. F.18.
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→ → →
SU(5) SU(8) SU(11) SU(12)

Figure F.18: This is the sequent collisions of simple punctures. The group below each
Young diagrams is the gauge group at the end of the quiver tail in each step.

We can analyse what type of puncture appears in the OPE of two general regular
punctures as follow. Suppose q is a position of a puncture enough near 0 and the sigular
behavior of Φ(z) both at 0 and at q is

Φ(z) =
Φ̆Y Ta

z
+

Φ̆Y Tb

z − q + (regular) (F.3.24)

and we can set Φ̆Y Ta = Ja and Φ̆Y Tb = g−1Jbg for some g ∈ SL(N,C).
The OPE corresponds to the limit q → 0 and we gain

Φ(z) −→ Φ̆YA + Φ̆Yb

z
+ · · · = Ja + g−1Jbg

z
+ · · · (F.3.25)

In general Ja + g−1Jbg has non-zero eigenvalues m′1,m
′
2, . . . ,m

′
N and is semisimple.

This says that the generated puncture in the OPE has a non-zero mass deformation.
Therefore we must take the massless limit m′1,m

′
2, . . . ,m

′
N → 0. All the eigenvalues

vanish and the new type of the puncture is determined.
For example, we can directly check for N = 3. Recall that the partition [3] corresponds

to the full puncture with SU(3) flavor symmetry and [2, 1] does to the simple puncture
with U(1) flavor symmetry. The concrete calculation following the above procedure shows

[3]× [3] = [3] [3]× [2, 1] = [3] [2, 1]× [2, 1] = [3] (F.3.26)

and this supports Argyres-Seiberg duality discussion.

F.4 Class S construction

We explain why codimension 2 defects are important for class S theories and derive some
fundamental properties utilizing string dualities. [212]

The building blocks are called triskelion. 17) Especially, the most basic theory is
obtained from the N M5-branes wrapped on the sphere with three full punctures (C0,3f ).
This is usually called TN and non-Lagrangian theory for N > 2. 18)

17)This is a terminology introduced in [124].
18)For N = 2, T2 is a free hypermultiplet in the trifundamental of SU(2)3 since the simple and the full

are same. For N > 2,there are some Coulomb branch deformations in spite of non-gauge theory.
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Figure F.19: The example of the procedure for A4. The extension to general N is direct.
Left : This is a Riemann sphere with 12 simple punctures. Middle : 3 branches of
4 simple punctures are gathered. When 4 simple punctures approach each other, there
appears a quiver tail with gauge groups SU(2) × SU(3) × SU(4) × SU(5) × SU(4) ×
SU(3) × SU(2) and with 1,1 and 2 fundamental hypermultiplets are coupled to left end
SU(2), right end SU(2) and SU(5) respectively. In the weak limit, the Riemann sphere
gives rise to the quiver shown in fig.F.20. Right : This is a trinion (pairs of pants). The
low-energy theory appearing when N M5-branes wrapped on this is usually called TN .

F.4.1 TN theory

Here we explain how this TN theory is obtained from a Riemann surface’s configuration
with a weakly-coupled Langrangian description. Let us start from the sphere with 3N−3
simple punctures which gives a linear quiver gauge theory and then the simple punctures
are grouped into three banches with N − 1 simple punctures in each banch. Recalling
that colliding N−1 simple punctures yields a full puncture from F.3.1 and F.3.3, we can
replace each banch by a full puncture. 19) Decoupling the gauge symmetries, we attain
the desired trinion with three full punctures. This procedure is also shown in Fig. F.19.

The Seiberg-Witten curve for this TN theory can be written down recalling the previous

discussion in F.3. The behavior at a puncture is known and ϕk ∼
1

(z − za)k−1
for the full

puncture at za. We can set three punctures at z = 0, 1,∞ by the SL(2,Z) transformation.
Then we have

φk(z) =
Pk−3(z)

zk−1(z − 1)k−1
dz⊗k for k ≥ 3 (F.4.1)

where Pk(z) is an order k − 3 polynomial of z and each coefficient of zi gives a Coulomb

branch parameter u
(i)
k whose scaling dimension is k. The Seiberg-Witten curve is

xN =
N∑

k=3

ϕk(z)xN−k (F.4.2)

19)Here we assume that the kind of the puncture are determined locally.
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Figure F.20: The triangle quiver gauge theory corresponding to the middle in fig.F.19.

as we have seen before.
The total dimension of the Coulomb branch is

N∑

k=3

(k − 2) =
(N − 1)(N − 2)

2
(F.4.3)

We can do the same discussion for any theories (not gauge theories) which can be
obtained as the four dimensional low-energy theories from the N coincide M5-branes
compatification by a three-punctured sphere C0,3 with three codimension two defects

labelled by {p(0)
i }, {p(1)

i } and {p(∞)
i }. Here {p(z)

i } represents the order of the singularity of
φi(z) at z. Its Coulomb dimension is already given in (F.3.18). This pair of pants is the
triskelion. Then we can construct many kinds of quiver gauge theories by sewing several
triskelions. The sewing means gauging some subgroups of flavor symmetries associated
to the punctures.
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Appendix G

Drukker-Morrison-Okuda’s
correspondence

In this Appendix, we see that there exists a correspondence between the charges of Wilson-
’t Hooft loop operators and the curves on Cg,n (genus g Riemann surface with n ([12]-type)
punctures) for generalized quiver gauge theories. This one-to-one correspondence between
the total charge lattice and a certain class of curves on Cg,n was mathematically discussed
in [25]. Their precise claim is that the Wilson-’t Hooft loop operator classification includ-
ing flavor ’t Hooft loops in the A1 quiver gauge theory T SA1

[Cg(n · [12])] associated to Cg,n
is the same as the isotropic classification of the multiple non-(self-)intersecting unoriented
curves on the punctured Riemann surface Cg,n. Using the skein relations, we can decom-
pose any curves into non-self-intersecting loops. No orientation for curves corresponds
to the fact 2 ' 2∗. Notice that they just claim that both generate the same modules.
The concrete map does not guarantee the precise correspondence but just true for “the
highest weight”. See the introduction in Sec. 5.3 for example. Note that all the dyonic
loops are pure type in the A1 quiver gauge theory, that is to say, any dyonic loop can be
mapped to a Wilson loop by a duality action i.e. a Moore-Seiberg groupoid action. This
fact corresponds to the absence of junctions in the language of the 2D geometry on Cg,n.

We introduce a useful mathematical terminology for this purpose. Consider a set of
closed curves over Cg,n without any intersection points but permitted to end on punctures.
This may be disconnected but all the loops contractible to a point or homotopic to the
cycle around a puncture should be removed away from it. 1) We call the isotropic class of
the collection of these curves lamination on Cg,n.

G.1 Possible set of loop operators

At first, we classify all the loop operators in the A1-type quiver gauge theory associated
to a punctured Riemann surface Cg,n with a pants decomposition σ. Recalling the classi-

1)Or we consider the equivalent class up to such loops.
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fication result for one gauge group (1.2.19), each cuff gives a pair of integers (pi, qi).
2)

pi corresponds to an element of Λmw/Wsu(2) ' Z≥0 or a magnetic charge. If pi 6= 0, there
remains no Weyl gauge symmetry and qi is an element of Λwt ' Z. If pi = 0, the possible
choice of qi matches with the classification of Wilson loop and is an element of Λwt ' Z.
There are 2(3g − 3 + n) integers because the number of gauge groups is 3g − 3 + n.

In addition to these, there are another n parameters corresponding to the flavor (’t
Hooft) loop which is coupled to the background (dual) gauge field with the associated
flavor (magnetic) charge. We label them by pi where i runs from 3g−3+n+1 to 3g−3+2n
because these are the ordinary ’t Hooft loops after it is gauged. In summary, each pi is
associated to a cuff (i = 1, 2, . . . , 3g−3+n) or a puncture (i = 3g−3+n+1, . . . , 3g−3+2n).
Then we have 6g−6+3n parameters. However there is another constraint in these quiver
gauge theories : quantization condition. Each free hypermultiplet associated to each
trinion gets a phase when it is transported around the Dirac string of loops. When the
integers pa, pb and pc represent charges which the hypermultiplet has, the phase factors
acting on the tri-fundamental hypermultiplet of SU(2) (See Sec. 2.4.1) are given as

(e
2πipa

(
1
2
σ3

)
, e

2πipb

(
1
2
σ3

)
, e

2πipc
(

1
2
σ3

)
) (G.1.1)

for each SU(2) symmetry. Therefore, the diagonal components of the 8× 8 matrix acting
on the free matters are exp[πi(±pa ± pb ± pc)]. Since the gauge transformation must be
single-valued, we should impose the constraint 3)

pa + pb + pc ∈ 2Z (G.1.2)

and then the above 8× 8 phase factor matrix become the identity matrix.
In summary, the generalized Wilson-’t Hooft loops which include flavor loops of the

quiver theory T SA1
[Cg(n · [12])] are parametrized by 6g − 6 + 3n integers with a Weyl

reflection identification and the quantization condition.

G.2 Construction of the one-to-one map

Although there are several manners to characterize the lamination, we use the tube-pants
decomposition adding tubes between the pairs of pants here because this corresponds to
a choice of the duality frames of the SU(2) quiver gauge theory. 4) Now, the n punctured
genus g Riemann surface consists of 3g − 3 + n thin tubes and 2g − 2 + n pairs of pants.
We depict a pair of pants by a disk with two holes as shown in Fig. G.1.

1. Homotopic operation

The lamination is also decomposed according to th e pants decomposition. We can keep
any windings around the thin tubes on the decomposition. The part of the lamination on

2)Here we use the different notation in which the root has length 1.
3)The factor 2 before Z origins from the different notation. See the last footnote.
4)The viewpoint from the triangulation is remarked in [83] for example.
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Figure G.1: The pair of pants can be represented as a disk with two holes. If one or
two of the cuffs are punctures, we replace the puncture(s) by a hole(s). Notice that there
are two regions “upper” side and “lower” side separated by the dashed lines in both
representations. It is necessary to map the upper side of the pair of pants into that of the
disk.

a pair of pants is the collection of several arcs ending on the boundaries of each pair of
pants. Assign a number to each cycle around the thin tube or each puncture in order.

After removing the loops around punctures, each non-trivial arc connecting two bound-
aries or a common boundary can be always continuously moved to one of the six funda-
mental arcs shown in Fig. G.2 without no intersections among the arcs. Note that we
define the upper side and the lower side on the twice-holed disk separated by dashed lines
in Fig. G.2.

Figure G.2: The six types of building arcs on the pair of pants.

2. Intersection numbers

Denote by Pi the number of endpoints of the arcs on the i-th cuff or the intersecting
number of the lamination. This gives a map from the lamination to the 3g − 3 + 2n
non-negative integers as pi = Pi where each gauge/flavor group is also naturally labelled
by the number assigned to the corresponding tube/puncture.
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Next, let us consider the inverse map from three non-negative integers to the lami-
nation. Let us focus on a pair of pants or the disk with two holes and there are three
integers Pi,Pj and Pk to each boundary cycle γi, γj and γk respectively. We also define
the arc `ij connecting γi and γj permitting the case i = j. Hereafter, a`A + b`B + · · ·
denotes the collection of non-intersecting arcs on the pair of pants with a arcs `A, b arcs
`B and such as for · · · part.

Without the loss of generality, we can have two possibilities for the arc construction:

• Pi > Pj + Pk, Pj ≤ Pk + Pi and Pk ≤ Pi + Pj case : the collection of the arcs is

1
2
(Pi − Pj − Pk)`ii + Pj`ij + Pk`ik (G.2.1)

• Pi ≤ Pj + Pk, Pj ≤ Pk + Pi and Pk ≤ Pi + Pj case : the collection of the arcs is

1
2
(Pi + Pj − Pk)`ij + 1

2
(Pj + Pk − Pi)`jk + 1

2
(Pk + Pi − Pj)`ki (G.2.2)

and we gain a lamination on sewing all the pairs of pants to keep the upper part and the
lower part without the “twisting” discussed in the following. Finally, by setting Pi to be
pi, the map from laminations to loop operators is completed.

3. Twisting number

We define a twisting number Qi of arcs by the winding number for the i-th tube. The non-
intersecting condition implies that the winding numbers of the several arcs are common. If
Pi = 0, this is the number of loops which is a non-negative integer Qi ≥ 0. Otherwise, we
have a sign in addition to how many times they wind. The sign of the twisting number
is defined such that the winding in the right direction along the arc gives the positive
sign. For the positive twisiting number, see arcs in Fig. G.3. This procedure determines

Figure G.3: The winding arcs on a thin tube with a common positive twisting number 5.

3g−3+n integers for the lamination. The inverse construction is trivial by the definition.
Combining the equality Qi = qi with the previous results Pi = pi, we finally have the

desired map.
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Texts in Contemporary Physics. Springer New York, 2012.

[5] D. Simmons-Duffin, TASI Lectures on the Conformal Bootstrap, 1602.07982.

[6] S. Rychkov, EPFL Lectures on Conformal Field Theory in D¿= 3 Dimensions,
1601.05000.

[7] N. Arkani-Hamed, F. Cachazo, and J. Kaplan, What is the Simplest Quantum
Field Theory?, JHEP 09 (2010) 016, [0808.1446].

[8] F. Cachazo, P. Svrcek, and E. Witten, MHV vertices and tree amplitudes in gauge
theory, JHEP 09 (2004) 006, [hep-th/0403047].

[9] R. Britto, F. Cachazo, B. Feng, and E. Witten, Direct proof of tree-level recursion
relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602,
[hep-th/0501052].

[10] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov,
and J. Trnka, Scattering Amplitudes and the Positive Grassmannian, 1212.5605.

[11] S. J. Parke and T. R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev.
Lett. 56 (1986) 2459.

[12] P. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan,
D. R. Morrison, and W. Edward, Quantum Fields and Strings: A Course for
Mathematicians Vol.I and Vol.II. American Mathematical Soc., 1999.

221

http://xxx.lanl.gov/abs/1602.07982
http://xxx.lanl.gov/abs/1601.05000
http://xxx.lanl.gov/abs/0808.1446
http://xxx.lanl.gov/abs/hep-th/0403047
http://xxx.lanl.gov/abs/hep-th/0501052
http://xxx.lanl.gov/abs/1212.5605


[13] J. M. Maldacena, The Large N limit of superconformal field theories and
supergravity, Int. J. Theor. Phys. 38 (1999) 1113–1133, [hep-th/9711200]. [Adv.
Theor. Math. Phys.2,231(1998)].

[14] D. Gaiotto, N=2 dualities, JHEP 1208 (2012) 034, [0904.2715].

[15] D. Gaiotto, G. W. Moore, and A. Neitzke, Wall-crossing, Hitchin Systems, and
the WKB Approximation, 0907.3987.

[16] Y. Tachikawa, N=2 supersymmetric dynamics for pedestrians, in Lecture Notes in
Physics, vol. 890, 2014, vol. 890, p. 2014, 2013. 1312.2684.

[17] L. F. Alday, D. Gaiotto, and Y. Tachikawa, Liouville Correlation Functions from
Four-dimensional Gauge Theories, Lett.Math.Phys. 91 (2010) 167–197,
[0906.3219].

[18] A. Gadde, E. Pomoni, L. Rastelli, and S. S. Razamat, S-Duality and 2D
Topological QFT, JHEP 1003 (2010) 032, [0910.2225].

[19] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles, and
three-dimensional gauge dynamics, Nucl.Phys. B492 (1997) 152–190,
[hep-th/9611230].

[20] E. Witten, Solutions of four-dimensional field theories via M theory, Nucl.Phys.
B500 (1997) 3–42, [hep-th/9703166].

[21] C. Montonen and D. I. Olive, Magnetic Monopoles as Gauge Particles?, Phys.Lett.
B72 (1977) 117.

[22] C. Vafa, Geometric origin of Montonen-Olive duality, Adv.Theor.Math.Phys. 1
(1998) 158–166, [hep-th/9707131].

[23] K. G. Wilson, Confinement of Quarks, Phys.Rev. D10 (1974) 2445–2459.

[24] J. Polchinski, Tasi lectures on D-branes, in Fields, strings and duality.
Proceedings, Summer School, Theoretical Advanced Study Institute in Elementary
Particle Physics, TASI’96, Boulder, USA, June 2-28, 1996, pp. 293–356, 1996.
hep-th/9611050.

[25] N. Drukker, D. R. Morrison, and T. Okuda, Loop operators and S-duality from
curves on Riemann surfaces, JHEP 0909 (2009) 031, [0907.2593].

[26] L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, and H. Verlinde, Loop and
surface operators in N=2 gauge theory and Liouville modular geometry, JHEP
1001 (2010) 113, [0909.0945].

[27] N. Drukker, J. Gomis, T. Okuda, and J. Teschner, Gauge Theory Loop Operators
and Liouville Theory, JHEP 1002 (2010) 057, [0909.1105].

222

http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/0904.2715
http://xxx.lanl.gov/abs/0907.3987
http://xxx.lanl.gov/abs/1312.2684
http://xxx.lanl.gov/abs/0906.3219
http://xxx.lanl.gov/abs/0910.2225
http://xxx.lanl.gov/abs/hep-th/9611230
http://xxx.lanl.gov/abs/hep-th/9703166
http://xxx.lanl.gov/abs/hep-th/9707131
http://xxx.lanl.gov/abs/hep-th/9611050
http://xxx.lanl.gov/abs/0907.2593
http://xxx.lanl.gov/abs/0909.0945
http://xxx.lanl.gov/abs/0909.1105


[28] N. Drukker, D. Gaiotto, and J. Gomis, The Virtue of Defects in 4D Gauge
Theories and 2D CFTs, JHEP 1106 (2011) 025, [1003.1112].

[29] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric
Wilson loops, Commun.Math.Phys. 313 (2012) 71–129, [0712.2824].

[30] N. Hama and K. Hosomichi, Seiberg-Witten Theories on Ellipsoids, JHEP 1209
(2012) 033, [1206.6359].

[31] J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju, An Index for 4
dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209–254,
[hep-th/0510251].

[32] C. Romelsberger, Counting chiral primaries in N = 1, d=4 superconformal field
theories, Nucl. Phys. B747 (2006) 329–353, [hep-th/0510060].

[33] D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, J.
Phys. Conf. Ser. 462 (2013), no. 1 012014, [0908.0307].

[34] D. Gaiotto and J. Teschner, Irregular singularities in Liouville theory and
Argyres-Douglas type gauge theories, I, JHEP 12 (2012) 050, [1203.1052].

[35] M. Buican and T. Nishinaka, On the superconformal index of Argyres–Douglas
theories, J. Phys. A49 (2016), no. 1 015401, [1505.05884].

[36] C. Cordova and S.-H. Shao, Schur Indices, BPS Particles, and Argyres-Douglas
Theories, JHEP 01 (2016) 040, [1506.00265].

[37] J. Song, Superconformal indices of generalized Argyres-Douglas theories from 2d
TQFT, JHEP 02 (2016) 045, [1509.06730].

[38] N. Wyllard, AN−1 Conformal Toda Field Theory Correlation Functions from
Conformal N = 2 SU(N) Quiver Gauge Theories, JHEP 11 (2009) 002,
[0907.2189].

[39] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, The 4D Superconformal Index
from Q-Deformed 2D Yang-Mills, Phys.Rev.Lett. 106 (2011) 241602, [1104.3850].

[40] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, Gauge Theories and
Macdonald Polynomials, Commun.Math.Phys. 319 (2013) 147–193, [1110.3740].

[41] P. C. Argyres and N. Seiberg, S-duality in N=2 supersymmetric gauge theories,
JHEP 0712 (2007) 088, [0711.0054].

[42] G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement,
Nucl.Phys. B138 (1978) 1.

223

http://xxx.lanl.gov/abs/1003.1112
http://xxx.lanl.gov/abs/0712.2824
http://xxx.lanl.gov/abs/1206.6359
http://xxx.lanl.gov/abs/hep-th/0510251
http://xxx.lanl.gov/abs/hep-th/0510060
http://xxx.lanl.gov/abs/0908.0307
http://xxx.lanl.gov/abs/1203.1052
http://xxx.lanl.gov/abs/1505.05884
http://xxx.lanl.gov/abs/1506.00265
http://xxx.lanl.gov/abs/1509.06730
http://xxx.lanl.gov/abs/0907.2189
http://xxx.lanl.gov/abs/1104.3850
http://xxx.lanl.gov/abs/1110.3740
http://xxx.lanl.gov/abs/0711.0054


[43] J. M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998)
4859–4862, [hep-th/9803002].

[44] A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and
S-duality, Phys.Rev. D74 (2006) 025005, [hep-th/0501015].

[45] A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric
Langlands Program, Commun.Num.Theor.Phys. 1 (2007) 1–236,
[hep-th/0604151].

[46] J. Gomis, T. Okuda, and V. Pestun, Exact Results for ’t Hooft Loops in Gauge
Theories on S4, JHEP 1205 (2012) 141, [1105.2568].

[47] T. Dimofte, D. Gaiotto, and S. Gukov, 3-Manifolds and 3D Indices, 1112.5179.

[48] D. Gang, E. Koh, and K. Lee, Line Operator Index on S1 × S3, JHEP 1205
(2012) 007, [1201.5539].

[49] Y. Ito, T. Okuda, and M. Taki, Line operators on S1 ×R3 and quantization of the
Hitchin moduli space, JHEP 1204 (2012) 010, [1111.4221].

[50] S. Gukov and E. Witten, Gauge Theory, Ramification, And The Geometric
Langlands Program, hep-th/0612073.

[51] S. Gukov and E. Witten, Rigid Surface Operators, Adv.Theor.Math.Phys. 14
(2010) [0804.1561].

[52] Y. Nakayama, 4D and 2D superconformal index with surface operator, JHEP 08
(2011) 084, [1105.4883].

[53] D. Gaiotto, Surface Operators in N = 2 4d Gauge Theories, JHEP 1211 (2012)
090, [0911.1316].

[54] N. Doroud, J. Gomis, B. Le Floch, and S. Lee, Exact Results in D=2
Supersymmetric Gauge Theories, JHEP 05 (2013) 093, [1206.2606].

[55] A. Gadde and S. Gukov, 2d Index and Surface operators, JHEP 03 (2014) 080,
[1305.0266].

[56] S. Gukov, Surface Operators, 1412.7127.

[57] J. Polchinski, Introduction to cosmic F- and D-strings, in String theory: From
gauge interactions to cosmology. Proceedings, NATO Advanced Study Institute,
Cargese, France, June 7-19, 2004, pp. 229–253, 2004. hep-th/0412244.

[58] L. F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4d gauge
theories, Lett. Math. Phys. 94 (2010) 87–114, [1005.4469].

224

http://xxx.lanl.gov/abs/hep-th/9803002
http://xxx.lanl.gov/abs/hep-th/0501015
http://xxx.lanl.gov/abs/hep-th/0604151
http://xxx.lanl.gov/abs/1105.2568
http://xxx.lanl.gov/abs/1112.5179
http://xxx.lanl.gov/abs/1201.5539
http://xxx.lanl.gov/abs/1111.4221
http://xxx.lanl.gov/abs/hep-th/0612073
http://xxx.lanl.gov/abs/0804.1561
http://xxx.lanl.gov/abs/1105.4883
http://xxx.lanl.gov/abs/0911.1316
http://xxx.lanl.gov/abs/1206.2606
http://xxx.lanl.gov/abs/1305.0266
http://xxx.lanl.gov/abs/1412.7127
http://xxx.lanl.gov/abs/hep-th/0412244
http://xxx.lanl.gov/abs/1005.4469


[59] C. Kozcaz, S. Pasquetti, F. Passerini, and N. Wyllard, Affine sl(N) conformal
blocks from N=2 SU(N) gauge theories, JHEP 01 (2011) 045, [1008.1412].

[60] Y. Tachikawa, On W-algebras and the symmetries of defects of 6d N=(2,0) theory,
JHEP 03 (2011) 043, [1102.0076].

[61] E. Frenkel, S. Gukov, and J. Teschner, Surface Operators and Separation of
Variables, JHEP 01 (2016) 179, [1506.07508].

[62] D. Xie, Higher laminations, webs and N=2 line operators, 1304.2390.

[63] D. Xie, Aspects of line operators of class S theories, 1312.3371.

[64] I. Coman, M. Gabella, and J. Teschner, Line operators in theories of class S,
quantized moduli space of flat connections, and Toda field theory, JHEP 10 (2015)
143, [1505.05898].

[65] E. P. Verlinde, Fusion Rules and Modular Transformations in 2D Conformal Field
Theory, Nucl.Phys. B300 (1988) 360.

[66] F. Passerini, Gauge Theory Wilson Loops and Conformal Toda Field Theory,
JHEP 1003 (2010) 125, [1003.1151].

[67] J. Gomis and B. Le Floch, ’t Hooft Operators in Gauge Theory from Toda CFT,
JHEP 1111 (2011) 114, [1008.4139].

[68] M. Bullimore, Defect Networks and Supersymmetric Loop Operators, 1312.5001.

[69] A. A. Migdal, Recursion Equations in Gauge Theories, Sov. Phys. JETP 42
(1975) 413. [Zh. Eksp. Teor. Fiz.69,810(1975)].

[70] E. Witten, Gauge Theories and Integrable Lattice Models, Nucl.Phys. B322 (1989)
629.

[71] E. Witten, Gauge Theories, Vertex Models and Quantum Groups, Nucl. Phys.
B330 (1990) 285.

[72] S. Cordes, G. W. Moore, and S. Ramgoolam, Lectures on 2-d Yang-Mills theory,
equivariant cohomology and topological field theories, Nucl. Phys. Proc. Suppl. 41
(1995) 184–244, [hep-th/9411210].

[73] E. Buffenoir and P. Roche, Two-Dimensional Lattice Gauge Theory Based on a
Quantum Group, Commun.Math.Phys. 170 (1995) 669–698, [hep-th/9405126].

[74] M. Aganagic, H. Ooguri, N. Saulina, and C. Vafa, Black Holes, Q-Deformed 2D
Yang-Mills, and Non-Perturbative Topological Strings, Nucl.Phys. B715 (2005)
304–348, [hep-th/0411280].

225

http://xxx.lanl.gov/abs/1008.1412
http://xxx.lanl.gov/abs/1102.0076
http://xxx.lanl.gov/abs/1506.07508
http://xxx.lanl.gov/abs/1304.2390
http://xxx.lanl.gov/abs/1312.3371
http://xxx.lanl.gov/abs/1505.05898
http://xxx.lanl.gov/abs/1003.1151
http://xxx.lanl.gov/abs/1008.4139
http://xxx.lanl.gov/abs/1312.5001
http://xxx.lanl.gov/abs/hep-th/9411210
http://xxx.lanl.gov/abs/hep-th/9405126
http://xxx.lanl.gov/abs/hep-th/0411280


[75] Y. Tachikawa and N. Watanabe, On skein relations in class S theories, JHEP 06
(2015) 186, [1504.00121].

[76] J. Gomis and B. Le Floch, M2-brane surface operators and gauge theory dualities
in Toda, 1407.1852.

[77] D. Gaiotto, L. Rastelli, and S. S. Razamat, Bootstrapping the superconformal
index with surface defects, JHEP 01 (2013) 022, [1207.3577].

[78] L. F. Alday, M. Bullimore, M. Fluder, and L. Hollands, Surface Defects, the
Superconformal Index and Q-Deformed Yang-Mills, JHEP 1310 (2013) 018,
[1303.4460].

[79] M. Bullimore, M. Fluder, L. Hollands, and P. Richmond, The superconformal
index and an elliptic algebra of surface defects, JHEP 10 (2014) 62, [1401.3379].

[80] L. F. Alday, M. Bullimore, and M. Fluder, On S-duality of the Superconformal
Index on Lens Spaces and 2d TQFT, JHEP 05 (2013) 122, [1301.7486].

[81] S. S. Razamat and M. Yamazaki, S-duality and the N=2 Lens Space Index, JHEP
10 (2013) 048, [1306.1543].

[82] D. Gaiotto, G. W. Moore, and A. Neitzke, Wall-Crossing in Coupled 2d-4d
Systems, 1103.2598.

[83] D. Gaiotto, G. W. Moore, and A. Neitzke, Framed BPS States, 1006.0146.

[84] E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math.
Phys. 121 (1989) 351–399.

[85] E. Witten, Quantization of Chern-Simons Gauge Theory With Complex Gauge
Group, Commun. Math. Phys. 137 (1991) 29–66.

[86] J.-F. Wu and Y. Zhou, From Liouville to Chern-Simons, Alternative Realization of
Wilson Loop Operators in AGT Duality, 0911.1922.

[87] D. Gaiotto, Open Verlinde line operators, 1404.0332.

[88] S. de Haro, Chern-Simons theory, 2d Yang-Mills, and Lie algebra wanderers, Nucl.
Phys. B730 (2005) 312–351, [hep-th/0412110].

[89] R. J. Szabo and M. Tierz, q-deformations of two-dimensional Yang-Mills theory:
Classification, categorification and refinement, Nucl. Phys. B876 (2013) 234–308,
[1305.1580].

[90] N. Watanabe, Wilson punctured network defects in 2D q-deformed Yang-Mills
theory, JHEP 12 (2016) 063, [1603.02939].

226

http://xxx.lanl.gov/abs/1504.00121
http://xxx.lanl.gov/abs/1407.1852
http://xxx.lanl.gov/abs/1207.3577
http://xxx.lanl.gov/abs/1303.4460
http://xxx.lanl.gov/abs/1401.3379
http://xxx.lanl.gov/abs/1301.7486
http://xxx.lanl.gov/abs/1306.1543
http://xxx.lanl.gov/abs/1103.2598
http://xxx.lanl.gov/abs/1006.0146
http://xxx.lanl.gov/abs/0911.1922
http://xxx.lanl.gov/abs/1404.0332
http://xxx.lanl.gov/abs/hep-th/0412110
http://xxx.lanl.gov/abs/1305.1580
http://xxx.lanl.gov/abs/1603.02939


[91] N. Watanabe, Schur indices with class S line operators from networks and further
skein relations, 1701.04090.

[92] N. Drukker, T. Okuda, and F. Passerini, Exact results for vortex loop operators in
3d supersymmetric theories, JHEP 07 (2014) 137, [1211.3409].

[93] H.-C. Kim, Line defects and 5d instanton partition functions, JHEP 03 (2016)
199, [1601.06841].

[94] D. Gaiotto and E. Witten, Supersymmetric Boundary Conditions in N=4 Super
Yang-Mills Theory, J.Statist.Phys. 135 (2009) 789–855, [0804.2902].

[95] D. Gaiotto and E. Witten, S-Duality of Boundary Conditions In N=4 Super
Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721, [0807.3720].

[96] K. Hosomichi, S. Lee, and J. Park, AGT on the S-duality Wall, JHEP 12 (2010)
079, [1009.0340].

[97] S. Gukov and A. Kapustin, Topological Quantum Field Theory, Nonlocal
Operators, and Gapped Phases of Gauge Theories, 1307.4793.

[98] A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and Duality, JHEP 04
(2014) 001, [1401.0740].

[99] J. Gomis and F. Passerini, Holographic Wilson Loops, JHEP 08 (2006) 074,
[hep-th/0604007].

[100] J. Gomis and F. Passerini, Wilson Loops as D3-Branes, JHEP 01 (2007) 097,
[hep-th/0612022].

[101] D. Gaiotto, S. Gukov, and N. Seiberg, Surface Defects and Resolvents, JHEP 09
(2013) 070, [1307.2578].

[102] Y. Ito and Y. Yoshida, Superconformal index with surface defects for class Sk,
1606.01653.

[103] J. Gomis, B. Le Floch, Y. Pan, and W. Peelaers, Intersecting Surface Defects and
Two-Dimensional CFT, 1610.03501.

[104] B. Assel and J. Gomis, Mirror Symmetry And Loop Operators, JHEP 11 (2015)
055, [1506.01718].

[105] D. Gaiotto and H.-C. Kim, Surface defects and instanton partition functions,
JHEP 10 (2016) 012, [1412.2781].

[106] M. Bullimore, H.-C. Kim, and P. Koroteev, Defects and Quantum Seiberg-Witten
Geometry, JHEP 05 (2015) 095, [1412.6081].

227

http://xxx.lanl.gov/abs/1701.04090
http://xxx.lanl.gov/abs/1211.3409
http://xxx.lanl.gov/abs/1601.06841
http://xxx.lanl.gov/abs/0804.2902
http://xxx.lanl.gov/abs/0807.3720
http://xxx.lanl.gov/abs/1009.0340
http://xxx.lanl.gov/abs/1307.4793
http://xxx.lanl.gov/abs/1401.0740
http://xxx.lanl.gov/abs/hep-th/0604007
http://xxx.lanl.gov/abs/hep-th/0612022
http://xxx.lanl.gov/abs/1307.2578
http://xxx.lanl.gov/abs/1606.01653
http://xxx.lanl.gov/abs/1610.03501
http://xxx.lanl.gov/abs/1506.01718
http://xxx.lanl.gov/abs/1412.2781
http://xxx.lanl.gov/abs/1412.6081


[107] F. Nieri, S. Pasquetti, and F. Passerini, 3d and 5d Gauge Theory Partition
Functions as q-deformed CFT Correlators, Lett. Math. Phys. 105 (2015), no. 1
109–148, [1303.2626].

[108] M. Bullimore and H.-C. Kim, The Superconformal Index of the (2,0) Theory with
Defects, JHEP 05 (2015) 048, [1412.3872].

[109] A. Hanany and K. Hori, Branes and N=2 theories in two-dimensions, Nucl. Phys.
B513 (1998) 119–174, [hep-th/9707192].

[110] J. L. Cardy, Boundary conformal field theory, hep-th/0411189.

[111] V. B. Petkova and J. B. Zuber, Generalized twisted partition functions, Phys. Lett.
B504 (2001) 157–164, [hep-th/0011021].
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