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ABSTRACT
Genomic prediction models have been commonly used in 
plant breeding but only in reduced datasets comprising a few 
hundred genotyped individuals. However, pedigree information 
for an entire breeding population is frequently available, as are 
historical data on the performance of a large number of selection 
candidates. The single-step method extends the genomic 
relationship information from genotyped individuals to pedigree 
information from a larger number of phenotyped individuals in 
order to combine relationship information on all members of the 
breeding population. Furthermore, genomic prediction models 
that incorporate genotype ´ environment interactions (G ´ E) 
have produced substantial increases in prediction accuracy 
compared with single-environment genomic prediction models. 
Our main objective was to show how to use single-step genomic 
and pedigree models to assess the prediction accuracy of 
58,798 CIMMYT wheat (Triticum aestivum L.) lines evaluated in 
several simulated environments in Ciudad Obregon, Mexico, and 
to predict the grain yield performance of some of them in several 
sites in South Asia (India, Pakistan, and Bangladesh) using a 
reaction norm model that incorporated G ´ E. Another objective 
was to describe the statistical and computational challenges 
encountered when developing the pedigree and single-step 
models in such large datasets. Results indicate that the genomic 
prediction accuracy achieved by models using pedigree only, 
markers only, or both pedigree and markers to predict various 
environments in India, Pakistan, and Bangladesh is higher 
(0.25–0.38) than prediction accuracy of models that use only 
phenotypic prediction (0.20) or do not include the G ´ E term.

Global wheat production is increasing by less than 
1% annually and recently, wheat yields have stag-

nated in many regions of South Asia (Ray et al., 2012). In 
South Asia, the wheat crop is already being grown under 
high temperature conditions; however, because of climate 
change, temperatures could increase well beyond the 
optimal for growing wheat, which would further reduce 
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Core Ideas

•	 Genomic prediction accuracy models have been 
commonly used in plant breeding but only in reduced 
datasets comprising a few hundred genotyped 
individual plants.

•	 In this study we used pedigree and genomic 
data from 58,798 wheat lines evaluated in 
different environments.

•	 We use pedigree and genomic information in a 
model that incorporates genotype ´ environment 
interactions to predict wheat line performance in 
environments in South Asia.
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grain yield. As a result, South Asian countries may not 
be able to meet the region’s already growing demand for 
wheat grain.

Well-managed crop improvement programs are 
necessary to increase food production in different parts 
of the world. Several molecular marker methods have 
proven their relevance in different cereal crops. Genomic 
selection (GS) is becoming a standard approach to 
achieving genetic progress in plants because it reduces 
the generation interval by reducing the need to have 
progeny field-tested every cycle. Breeding values can 
be predicted as the sum of the effects of all markers by 
regressing the values of the phenotypes on all markers 
(Meuwissen et al., 2001). Several authors have success-
fully implemented GS in plant breeding with intermedi-
ate to high density marker coverage for traits such as 
grain yield, biomass yield, resistance to several diseases, 
and flowering evaluated under different environmental 
conditions. Studies have demonstrated that some of the 
factors determining prediction accuracy in GS are the 
heritability of the trait, the number of markers, the size 
of the training population, the relationship between the 
training and the testing sets, and G ´ E (de los Campos 
et al., 2009; Crossa et al., 2010, 2011; Pérez-Rodríguez 
et al., 2012; Burgueño et al., 2012; Hickey et al., 2012; 
González-Camacho et al., 2012; Riedelsheimer et al., 
2012; Weber et al., 2012). Furthermore, including high-
density marker platforms with G ´ E interactions adds 
power to GS models (Burgueño et al., 2012; Jarquín et al., 
2014; López-Cruz et al., 2015; Heslot et al., 2012).

Recently, genomic predictions have been extensively 
studied in bread wheat using elite germplasm sets (de los 
Campos et al., 2009, 2010; Crossa et al., 2010; González-
Camacho et al., 2012; Heslot et al., 2012; Pérez-Rodríguez 
et al., 2012; López-Cruz et al., 2015). The results have 
proven that the use of dense molecular markers coupled 
with pedigree information increases the prediction accu-
racy of unobserved phenotypes. One of the problems 
usually encountered by GS in animal and plant breeding 
is that the number of evaluated lines exceeds the num-
ber of genotyped lines, because of the genotypic costs. 
Nejati-Javaremi et al. (1997) were the first to propose 
incorporating genotypic information for predicting the 
breeding values of animals in a similar manner to the 
way pedigree information is used in the best linear unbi-
ased predictor method. When the pedigrees of all phe-
notyped individuals were available but only some were 
genotyped, dairy cattle researchers (Misztal et al., 2009; 
Legarra et al., 2009; Aguilar et al., 2010, 2011; Chris-
tensen et al., 2012) derived a unified (single-step) com-
putation approach for Genomic Best Linear Unbiased 
Predictor (ssGBLUP) for combining phenotypic, pedi-
gree, and genomic information based on Henderson’s 
(1975, 1976) standard mixed model equations. These 
authors augmented a pedigree-based relationship matrix 
(Matrix A) with contributions from a genomic relation-
ship matrix (Matrix G) of the genotyped individuals. 
They showed how to modify the original Matrix A to 

obtain Matrix H, which includes not only the pedigree-
based relationship matrix but also a matrix that contains 
the differences between genomic-based and pedigree-
based matrices. These authors also developed efficient 
computer algorithms for inverting Matrix H computed 
from large numbers (millions) of animals in the data.

Although augmenting Matrix A by using only a 
fraction of the individuals that were genotyped would 
reduce genotyping costs, the ssGBLUP method has not 
been extensively applied in plant breeding. Just recently, 
Ashraf et al. (2016) were the first to investigate the impact 
on prediction accuracy when some wheat lines were not 
genotyped and only pedigree and phenotype information 
was available; the authors concluded that the ssGBLUP 
method for deriving Matrix H can provide higher pre-
diction accuracy than either genomic or pedigree-based 
prediction. In plants, the ssGBLUP approach proposed 
by Ashraf et al. (2016) has been used with a limited 
number of lines. The approach has not been tested on 
large datasets [e.g., CIMMYT’s Global Wheat Program 
(GWP), which generates thousands of new breeding lines 
that are candidates for field evaluation every cropping 
cycle]. Applying GS in the GWP is economically feasible 
(i) when advancing breeding lines in the first preliminary 
yield trials to predict the performance of the selected 
lines in multienvironment trials or (ii) for predicting a 
selected set of lines in different international target envi-
ronments using the parents evaluated in Mexico and the 
progeny to be predicted in international environments 
such as those in South Asia as a training set.

In recent years, the GWP aimed to form a large ref-
erence dataset comprising 58,798 breeding lines, includ-
ing the lines’ phenotypic and pedigree data from the last 
seven cropping cycles in Ciudad Obregon, Mexico, and 
South Asia. This large reference set contains complete 
phenotypic data and pedigree information; however, only 
29,484 of the lines have been genotyped. Therefore, an 
H matrix that combines wheat lines that have molecular 
markers only with those that have pedigree and pheno-
type must be generated.

The main objectives of this study were (i) to use the 
large reference set for predicting the performance of 
wheat lines in several environments in South Asia; and 
(ii) to perform predictions using phenotypic, pedigree, 
and genomic information to evaluate the wheat lines 
genetically using a single-step model that combines pedi-
gree and marker information into a unified H matrix. 
Here, we used information for genotyped and nongeno-
typed individuals combined by applying the method pro-
posed by Legarra et al. (2009) and Aguilar et al. (2010). 
Prediction accuracy was studied using a G ´ E interac-
tion multiplicative model (the reaction norm model of 
Jarquín et al., 2014) with pedigree information (Matrix 
A), genomic information (Matrix G), or both (Matrix 
H) and comparing its prediction accuracy results with 
those of a genomic model that does not include the G ´ 
E interaction. This reaction norm model uses highly ran-
dom dimensional matrices for the genomic and pedigree 
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matrices. We also describe the statistical and computa-
tional challenges encountered when developing the pedi-
gree and single-step models in such large datasets.

MATERIALS AND METHODS
Experimental Data
The dataset included a total of 58,798 wheat lines that 
were evaluated at the Norman E. Borlaug Experiment 
Research Station in Ciudad Obregon, Mexico, under 
various field management conditions (optimal, drought, 
late heat, severe drought, and early heat) during seven 
cycles (2009–2016). Some of the lines were also evalu-
ated under the same conditions in South Asia (Jalbapur, 
Ludhiana, and Pusa in India; Faisalabad in Pakistan; and 
Jamalpur in Bangladesh) during 2013 to 2016. The origi-
nal data from each year comprise a large number of tri-
als, each established using an a-lattice design with three 
replicates. The field management conditions under which 
each trial was established in each year are described in 
Table 1. The condition–location combinations will be 
referred to as environments. Table 2 shows the number of 
lines evaluated in each environment.

The basic model fitted to each of the 12 environments 
described in Table 2 comprises the random effects of the 
trials, the random effects of the replicates within trials, the 
random effects of the incomplete blocks within trials and 
replicates, and the random effects of the breeding lines.

A pedigree relationship matrix (A) for the 58,798 
individuals was computed using a modified version of 
the software ‘pedigreemm’ (Bates and Vazquez, 2009) 
that accounts for self-pollination; the latest version of the 
routines can be found at https://github.com/Rpedigree/
pedigreeR (accessed 5 Apr. 2017). Given the dimensions 
of A, it is difficult to hold it in random access memory 
(RAM) and compute it. Appendix A shows the small 
R script (R Core Team, 2016) that was used to obtain 

and store the relationship matrix. It uses results from 
partitioned matrices to obtain the results and speed up 
the computations; R was recompiled from the source 
and linked with OpenBLAS [http://www.openblas.net 
(accessed 5 Apr. 2017)]. For further details on the compu-
tations, see Appendix A. In total, 29,484 individuals were 
genotyped using genotyping-by-sequencing (e.g., Elshire 
et al., 2011). We kept all the single nucleotide polymor-
phism markers and imputed the missing values using 
observed data. Markers with a minor allele frequency 
of less than 0.05 were removed; after this process, 9045 
markers were available for prediction.

Statistical Models
Recently, Jarquín et al. (2014) and López-Cruz et al. (2015) 
proposed statistical models for performing genomic pre-
dictions taking G ´ E into account. The models were orig-
inally developed to incorporate genetic information from 
molecular markers and, in the case of Jarquín’s model, it is 
also possible to incorporate environmental covariates. Jar-
quín’s model has also shown to be useful when the genetic 
information is obtained from a pedigree (Pérez-Rodríguez 
et al., 2015). Here, we describe Jarquín’s model based on 
genomic and pedigree information. To speed up the com-
putations and make them feasible, we reparametrized the 
original model by using very well-known results from 
Cholesky decomposition and mixed models (e.g., Hender-
son, 1976; Harville and Callanan, 1989).

Model 1: G ´ E Interaction Using Pedigree
The parametric G ´ E interaction model takes the main 
effect of environments (E), the main effect of genotypes 

Table 1. Description of the conditions under 
which the 58,798 wheat lines were evaluated in 
different environments.

Description Field management conditions

Standard management conditions Optimal

Delayed planting Late heat

Bed planting and five irrigations Optimal

Bed planting and two irrigations Drought

Zero-till, bed planting and five irrigations Optimal

Zero-till, bed planting and two irrigations Drought

Melgas flat planting and five irrigations Optimal

Melgas flat planting and drip irrigation Severe drought

Bed planting and drip irrigation Severe drought

Early heat Early heat

Late heat Late heat

Table 2. Number of lines evaluated in different 
environments during 2009–2016 by the Global 
Wheat Program.

Environment† Number of lines evaluated

B5I_OBR 56,964

B2I_OBR 4,063

DRB_OBR 5,913

EHT_OBR 2,188

LHT_OBR 4,736

MEL_OBR 4,735

DLP_FAS 1,547

STN_FAS 1,547

STN_JAM 537

STN_JBL 1,548

STN_LDH 1,548

STN_PUS 1,548

† FAS, Faisalabad, Pakistan; JAM, Jamalpur, Bangladesh; JBL, Jabalpur, India; LDH, Ludhiana, India; 
OBR, Ciudad Obregon, Mexico; PUS, Pusa, India; STN, standard management conditions; DLP, delayed 
planting; B5I, bed planting and five irrigations; B2I, bed planting and two irrigations; MEL, Melgas flat 
planting and five irrigations; DRB, bed planting and drip irrigation; EHT, early heat; LHT, late heat.
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and the interaction between genotypes and the environ-
ment into account. In matrix notation, the model can be 
written as:

=m + + + +b u u eE E g 1 21y Z Z , 	             [1]

where = ¼ '1 E( , , )y y y  is the response vector and jy  
represents the observations in the jth environment 
( 1, ,j E= ¼ ). The general mean is m;  EZ  is an inci-
dence matrix for environments, which is assumed to be 
multivariate with s2~ ( , )E EMN 0 Ib ; gZ  is an incidence 
matrix that connects genotypes with phenotypes; 1u  
represents the random effect of genotypes, which is 
assumed multivariate with s2

1 u~ ( , )MNu 0 A ; and 2u  
represents the effect of G ´ E interaction. We assume 

¢ ¢s2
2 ge g g E E~ ( , ( )#( ))MNu 0 Z GZ Z Z , where # denotes the 

Hadamard product (cell by cell) of the two matrices in 
parentheses (see Jarquín et al., 2014; Pérez-Rodríguez et 
al., 2015). Finally, we assume that the residuals are dis-
tributed as follows: s2~ ( , )eMNe 0 I , where e is the residual 
error; MN is the multivariate normal, and I is the iden-
tity matrix.

Since A is positive definite and symmetric, it can be 
factored as ¢=A LL  by using Cholesky decomposition 
where Matrix L is a lower triangular matrix with positive 
diagonal entries and is usually named the Cholesky fac-
tor. Therefore, from Eq. [1]:

= *
g 1 g 1 

d
Z u Z Lu , 	                                             [2]

where s* 2
1 u~ ( , )MNu 0 I . Furthermore, it is not necessary 

to calculate the ZgL product because for each row of the 
resulting matrix, we just need to copy the kth row of L, 
where k is the column in the ith row of Zg that is different 
from zero (i.e., Zg (i, k) = 1). The matrix ¢E EZ Z  is a block 
diagonal; blocks different from zero correspond to matri-
ces with ones:

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷¢ =ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷çè ø



1

2
E E

E

   
   
   
   

J
J

Z Z

J

, 	                             [3]

where = ¼ ( 1, ,j j EJ ) is a square matrix with ones whose 
dimensions correspond to the number of genotypes eval-
uated in environment j. Since ¢E EZ Z  is a block diagonal, 
to compute ¢ ¢g g E E#Z AZ Z Z , we just need to compute the 
corresponding block elements in the diagonal of 

¢ ¢ ¢=g g g gZ AZ Z LL Z . Let = 

gZ L Z ; then:

¢æ öæ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷¢ ç ç÷ ÷= = ÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè øè ø
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 
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     



 

 

11 12 1E 11 12 1E

21 22 2E 21 22 2E

E1 E2 EE E1 E2 EE

Z Z Z Z Z Z

Z Z Z Z Z Z
A ZZ

Z Z Z Z Z Z

,       [4]

The block diagonal elements of A  can be computed 
as follows:

¢= =å  

11 1j 1j 11
Environments

A Z Z A ,



¢= =å  

EE Ej Ej EE
Environments

A Z Z A , 		             [5]

where , jjA corresponds to the relationship matrix for 
individuals evaluated in environment j. From Eq. [3] and 
Eq. [5] and by using Cholesky decomposition, the term 

¢ ¢g g E E#Z AZ Z Z  can be obtained as follows:

( )¢ ¢ = ¼

¢ ¢ ¢= ¼ =
g g E E 11 EE

1 1 E E ge ge

# , ,
                        ( , , )

BDiag
BDiag

Z AZ Z Z A A
L L L L L L

,  [6]

where = ¼ge 1 E( , , )BDiagL L L . Therefore, from Eq. [6], 
we obtain:

= *
2 ge 2 

d
u L u ,				               [7]

where s* 2
2 ge~ ( , )MNu 0 I  and = 

d
 stands for equality in dis-

tribution.
Therefore, using the results from Eq. [2] and Eq. [7], 

Model 1 can be written as:

=m + + + +b * *
E E g 1 ge 21y Z Z Lu L u e  	            [8]

Equation [1] and Eq. [8] are equivalent, but Eq. [8] 
has at least two advantages over Eq. [1]: (i) it avoids many 
matrix products and (ii) it can be implemented relatively 
easily using the well-known Gibbs sampler (Geman and 
Geman, 1984) in the Bayesian framework.

Model 2: G ´ E Interaction Using 
Molecular Markers
Let W be a ´g p  matrix of standardized markers, where 
g is the number of genotyped individuals and p is the 

number of markers; let 
¢

=
p

WWG  be the genomic rela-

tionship matrix (López-Cruz et al., 2015). A model simi-
lar to Eq. [8] can be obtained by replacing A with G.

Model 3: G ´ E Interaction Using Molecular 
Markers and Pedigree (Single-Step Approach)
In this model, the information for genotyped and non-
genotyped individuals is combined using the approach 
proposed by Legarra et al. (2009) and Aguilar et al. 
(2010). A relationship matrix that includes full pedigree 
and genomic information is given as:

( )- - -

-

é ù¢ ¢+ -ê ú= ê ú
ê ú
ë û

1 1 1
nn gn gg a gg gg gn gn gg a

1
a gg gn a

A A A G A A A A A G
H

G A A G
,  [9]

where the matrix is divided according to whether the indi-
viduals have been genotyped or not. Submatrices gg nn, A A , 
and gnA  are submatrices of A containing the relationships 
among genotyped individuals, among nongenotyped 
individuals and between genotyped and nongenotyped 
individuals, respectively (Legarra et al., 2009; Christensen 
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et al., 2012). Ga is an adjusted relationship matrix obtained 
from the genomic relationship matrix given by López-

Cruz et al. (2015) (i.e., 
¢

=
p

WWG and Agg):

=b +aaG G , 			             [10]

where b  and a  are obtained by solving the following 
system of equations:

( )( ) ( )( )b+a= ggAvg diag Avg diag ,G A         [11]

( )b+a= ggAvg Avg( )G A ,                               [12]

where Ga is a rescaled matrix such that: (i) the average 
of the diagonal elements is equal to the average of the 
diagonal elements of Agg, and (ii) the average of all the 
elements is equal to the average elements of Agg. See 
Christensen et al. (2012) for further details. Note that in 
this formulation based on H (and not its inverse), H does 
not need to be full rank.

The Appendix shows the R code that allowed us to 
build Matrix H. A parametric G ´ E interaction model 
takes the effect of the environments, the main effect of 
genotypes and the G ´ E interaction into account. A 
model that uses information obtained from markers and 
pedigree can be obtained by replacing the A matrix in 
Model 1 with the Matrix H described above (Eq. [8]).

Model without G ´ E Interactions
Note that models that do not include the G ´ E term 
can be derived from Model 1 to Model 3 just by 
removing the corresponding random G ´ E term. 
For example, by removing the term u2 representing 
the effect of G ´ E from Model 1 (Eq. [8]), it becomes 
=m + + +bE E g 11y Z Z u e .

In this case, the resulting models are equivalent to the 
cross-environment genomic best linear unbiased predic-
tor model of López-Cruz et al. (2015). We include models 
without the G ´ E term to compare the prediction accuracy 
of models with and without G ´ E interactions. The single-
environment model was not included because all the wheat 
lines included in the prediction of South Asian environments 
had complete pedigree and markers, and thus developing 
Matrix H for the single-step model did not make sense.

Assessing the Models’ Predictive Ability
The main interest of breeders is to predict the perfor-
mance of nonevaluated lines in South Asian sites (Jalba-
pur, Ludhiana, and Pusa in India; Faisalabad in Pakistan; 
and Jamalpur in Bangladesh). To mimic that situation, 
we designed a cross-validation scheme where we fitted 
the G ´ E models (Models 1–3) as well as models with-
out G ´ E using all available records under drought, late 
heat, optimal, and severe drought conditions obtained in 
Ciudad Obregon (Mexico), and 20% of available records 
in each of the South Asian sites assigned at random as 
the training set. In the prediction process, 80% of lines 
in the corresponding sites in the South Asian countries 

(India, Pakistan, and Bangladesh) were predicted using 
the rest of the records. A total of 20 random partitions 
(such as the ones described above) were generated.

The models’ predictive abilities were compared by 
using Pearson’s correlation coefficient. The models that 
used the A and H matrices included the phenotypic 
information of the 58,798 wheat lines, whereas the model 
that was based on markers only included information 
for 29,484 wheat lines that correspond to the individu-
als that were genotyped. The genotyped individuals were 
a subset of the individuals with pedigree information; 
therefore, lines in the testing set had pedigree and marker 
information. The numbers of individuals in the testing 
sets in South Asian sites were shown in Table 3, so in each 
random partition, the same individuals are predicted with 
three different models based on the A, G, and H matrices.

Software
The models described above were fitted using a modified 
version of the BGLR package (de los Campos and Pérez-
Rodríguez, 2015). The package was modified to accept 
big.matrix objects created using the bigmemory package 
as input (Kane et al., 2013). The bigmemory package was 
used to handle the huge matrices that had to be used 
during the analysis and also to take advantage of what in 
computer science is known as “shared memory”. Once 
loaded into RAM memory, the data can be accessed from 
several processors, making it possible to perform a cross-
validation relatively easily.

Data Availability
The complete phenotypic and marker data can be found 
at http://genomics.cimmyt.org/wheat_50k/PG/ (accessed 
5 Apr. 2017).

RESULTS
Descriptive Statistics
Figure 1 shows a boxplot of grain yield per location and 
median yield per location. From the plot, it can be seen 
that the optimal conditions had the highest grain yield, 
whereas the late heat and severe drought conditions had 
the worst grain yield. Yields in South Asian environments, 
especially in Pakistan and Bangladesh, were usually lower 

Table 3. Number of individuals in the testing set in 
South Asian sites.

Environment† Number of individuals in the testing set

DLP_FAS 1237

STN_FAS 1237

STN_JAM 429

STN_JBL 1238

STN_LDH 1238

STN_PUS 1238

† FAS, Faisalabad, Pakistan; JAM, Jamalpur, Bangladesh; JBL, Jabalpur, India; LDH, Ludhiana, India; 
STN, standard management conditions; DLP, delayed planting.
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than those in Mexican environments. Table 4 shows the 
number of lines evaluated in each environment and the 
number of lines in common between pairs of environ-
ments. It also shows sample correlations for grain yield for 
each pair of environments. The number of lines evaluated 
in common between pairs of environments ranged from 
537 to 4735. The phenotypic sample correlation ranged 
from –0.05 to 0.53, which suggests large G ´ E effects.

Figure 2 displays the distribution of the diagonal 
entries for Matrices A, H, and G. Note that in the A 
matrix, the diagonal entries are around ~1.5; in this case, 
( ), 1 ia i i F= + , where iF  is the inbreeding coefficient of 

the ith individual. The diagonal entries of Matrix G are 
around 1.0, reflecting the fact that the markers were cen-
tered and standardized. The diagonal entries of Matrix H 

are around 1.5, which stems from standarding G to be on 
the same scale as A.

Prediction Accuracy of Models without G ´ E
Table 4 shows the phenotypic correlations between pairs 
of environments. For example, the phenotypic correla-
tion of the 4062 wheat lines in common between the 
environment with the bed planting with five irrigations 
at Obregon and the bed planting with two irrigations at 
Obregon is 0.156, whereas the phenotypic correlation of 
the 1537 wheat lines in common between the bed plant-
ing with five irrigations at Obregon and standard man-
agement conditions at Pusa, India, is 0.210. In general, 
the phenotypic correlations were not high, ranging from 
-0.051 to 0.481.

Fig. 1. Boxplot of wheat grain yield (t ha–1) per environment (condition–location combination). OBR, Obregon, Mexico; FAS, Faisala-
bad, Pakistan; JAM, Jamalpur, Bangladesh; JBL, Jabalpur, India; LDH, Ludhiana, India; PUS, Pusa, India; STN, standard management 
conditions; DLP, delayed planting; B5I, bed planting and five irrigations; B2I, bed planting and two irrigations; Z5I, zero-till, bed plant-
ing, and five irrigations; Z2I, zero-till, bed planting, and two irrigations; MEL Melgas flat planting and five irrigations; DRM, Melgas flat 
planting and drip irrigation to impose drought; DRB, bed planting and drip irrigation; EHT, early heat; LHT, late heat.

Table 4. Number of genotypes (diagonal, in bold), number of genotypes in common in a pair of environments 
(upper triangular), and sample phenotypic correlations (lower triangular) per environment (Env.).

Env.† B5I_OBR B2I_OBR DRB_OBR EHT_OBR LHT_OBR MEL_OBR DLP_FAS STN_FAS STN_JAM STN_JBL STN_LDH STN_PUS

B5I_OBR 56,964 4062 4090 2187 4734 4735 1537 1537 532 1537 1537 1537

B2I_OBR 0.156 4063 4063 2186 4063 4062 1515 1515 530 1515 1515 1515

DRB_OBR –0.050 0.534 5913 2186 4091 4090 1535 1535 530 1535 1535 1535

EHT_OBR 0.479 0.186 –0.051 2188 2187 2187 1062 1062 532 1062 1062 1062

LHT_OBR 0.203 0.262 0.167 0.199 4736 4734 1537 1537 532 1537 1537 1537

MEL_OBR 0.370 0.238 0.117 0.354 0.169 4735 1537 1537 532 1537 1537 1537

DLP_FAS 0.154 0.094 0.111 0.131 0.067 0.174 1547 1547 537 1547 1547 1547

STN_FAS 0.124 0.120 0.167 0.009 0.029 0.120 0.338 1547 537 1547 1547 1547

STN_JAM 0.228 0.146 0.130 0.160 0.079 0.113 0.170 0.206 537 537 537 537

STN_JBL 0.188 0.176 0.168 0.082 0.136 0.143 0.235 0.263 0.136 1548 1548 1548

STN_LDH 0.225 0.079 0.078 0.190 0.040 0.168 0.206 0.286 0.382 0.140 1548 1548

STN_PUS 0.210 0.137 0.099 0.117 0.025 0.173 0.280 0.241 0.481 0.255 0.222 1548

† FAS, Faisalabad, Pakistan; JAM, Jamalpur, Bangladesh; JBL, Jabalpur, India; LDH, Ludhiana, India; OBR, Obregon, Mexico; PUS, Pusa, India; STN, standard management conditions; DLP, delayed planting; B5I, 
bed planting and five irrigations; B2I, bed planting and two irrigations; MEL, Melgas flat planting; DRB, bed planting and drip irrigation; EHT, early heat; LHT, late heat.
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Table 5 shows the average Pearson’s correlations 
between observed and predicted phenotypes and their 
corresponding SD for the model without G ´ E. The 
average correlations come from 20 random partitions 
with all the data records available in Mexico and 20% 
of the data available in South Asia. Note that these are 
the predictions for 80% of the entries included in the six 
South Asian environments. The prediction accuracies are 

relatively low, with those based on pedigree being slightly 
higher than those based on markers or on both pedigree 
and markers.

Prediction Accuracy of G ´ E Models
Table 6 shows the average Pearson’s correlations between 
the observed and predicted phenotypes and the corre-
sponding standard obtained using the same cross-vali-
dation scheme described above but including the G ´ E 

Fig. 2. Distribution of the diagonal entries of (a) the additive relationship matrix derived from pedigree (A), (b) the genomic relationship 
matrix (G), and (c) the combined matrix (H).

Table 5. Correlations (plus SD in parentheses) between 
predicted and observed values obtained by using 
the cross-validation where all the wheat lines from 
Ciudad Obregon, Mexico, plus 20% of the wheat lines 
in each of the environments in India, Pakistan, and 
Bangladesh were used in the training set to predict 
80% of the lines in the corresponding environments in 
India, Pakistan, and Bangladesh for models without 
genotype ´ environment effects (G ´ E). 

Environment‡

Models without G ´ E

Pedigree (A) Markers (G)
Pedigree + 

markers (H)

DLP_FAS 0.2113† (0.0304) 0.1716 (0.0104) 0.1834 (0.0135)

STN_FAS 0.1611 (0.0181) 0.1235 (0.0129) 0.1455 (0.0120)

STN_JAM 0.2448 (0.0251) 0.1861 (0.0189) 0.1992 (0.0213)

STN_JBL 0.2480 (0.0184) 0.1928 (0.0154) 0.2075 (0.0163)

STN_LDH 0.2554 (0.0158) 0.2472 (0.0104) 0.2477 (0.0094)

STN_PUS 0.2361 (0.0143) 0.1989 (0.0112) 0.2117 (0.0107)

† The highest correlations in each environment are in bold typeface.

‡ FAS, Faisalabad, Pakistan; JAM, Jamalpur, Bangladesh; JBL, Jabalpur, India; LDH, Ludhiana, India; 
PUS, Pusa, India; STN, standard management conditions; DLP, delayed planting conditions.

Table 6. Correlations (plus SD in parentheses) between 
predicted and observed values obtained using the 
cross-validation where all the wheat lines from Ciudad 
Obregon, Mexico, plus 20% of the wheat lines in 
sites in India, Pakistan, and Bangladesh were used 
in the training set to predict 80% of the lines in the 
corresponding sites in India, Pakistan, and Bangladesh 
for models with genotype ´ environment effects (G ´ E). 

Environment‡

G ´ E model

Pedigree (A) Markers (G)
Pedigree + 
markers (H)

DLP_FAS 0.2462† (0.0294) 0.2327 (0.0132) 0.2345 (0.0123)

STN_FAS 0.2360 (0.0227) 0.2414 (0.0180) 0.2455 (0.0175)

STN_JAM 0.2942 (0.0414) 0.2681 (0.0293) 0.2656 (0.0309)

STN_JBL 0.2921 (0.0183) 0.2741 (0.0163) 0.2739 (0.0165)

STN_LDH 0.3699 (0.0109) 0.3785 (0.0157) 0.3651 (0.0155)

STN_PUS 0.2842 (0.0175) 0.2622 (0.0191) 0.2684 (0.0185)

† The highest correlations in each environment are in bold typeface.

‡ FAS, Faisalabad, Pakistan; JAM, Jamalpur, Bangladesh; JBL, Jabalpur, India; LDH, Ludhiana, India; 
PUS, Pusa, India; STN, standard management conditions; DLP, delayed planting conditions.
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term. The predictive ability of models based on pedigree, 
markers, and pedigree + markers is about the same, with 
pedigree prediction accuracy being higher than genomic 
and pedigree + genomic prediction accuracy in four 
environments (delayed planting at Faisalabad, standard 
management at Faisalabad, standard management at 
Jamalpur, and standard conditions at Pusa). Ludhiana 
and Faisalabad under standard management conditions 
(0.3785, 0.2455, respectively) were the best predictive 

models for the genomic and pedigree + genomic 
model, respectively.

Figure 3a–c shows scatterplots of the predictive cor-
relations for each of the 20 cross-validations across the 
six environments in South Asia. Figure 3a depicts the 
correlations between predicted values based on markers 
(Matrix G) versus those based on Matrix H and shows 
that the prediction accuracy based on Matrix G was 
superior to that obtained based on H. Figure 3b displays 

Fig. 3. Plots of the predictive correlations for each of 20 cross-validations and six environments in South Asia for wheatr grain yield. (a) 
When the best linear model is based on Matrix G, this is represented by black squares; when the best model is based on Matrix H, this 
is represented by white squares. (b) When the best model is based on Matrix G, this is represented by black squares; when the best 
linear model is based on Matrix A, this is represented by white squares. (c) When the best model is based on Matrix H, this is repre-
sented by black squares; when the best linear model is based on Matrix A, this is represented by white squares. The histograms depict 
the distribution of the correlations in the testing set obtained from the partitions for different models. The horizontal (vertical) dashed line 
represents the average of the correlations for the testing set in the partitions for the model shown on the y (x) axis. The solid line repre-
sents y = x (i.e., both models have the same prediction ability).
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the correlation based on markers (Matrix G) versus that 
obtained based on pedigree (Matrix A), where the pre-
diction based on pedigree seems slightly better than that 
based on Matrix H (Fig. 3c).

Table 7 shows the percentage of change in the pre-
diction accuracy of models with and without G ´ E. The 
percentage of change was calculated as:

-
´G×E noG×E

noG×E

100
r r

r
, 		                            [13]

where G×Er  is the Pearson’s correlation for a model 
with the G ´ E term and no G×Er  is the Pearson’s cor-
relation for a model without the G ´ E term. From the 
results in Table 7, it is clear that models that include the 
G ´ E term predict better than those that do not include 
G ´ E. For example, the G ´ E model using Matrix H 
gave a 66% increase in prediction accuracy compared 
with the model using Matrix H but without G ´ E.

Figure 4 presents a bar plot of correlations for each 
predicted environment in South Asia using the H matrix. 
Black bars represent the mean of the weighted pheno-
typic correlation of a given environment and the rest of 
the environments in Table 4. The phenotypic correlation 
for environment j in South Asia can be obtained as fol-
lows: 

¹

=å jk
j jk

jk j

n
r r

n , 		                            [14]

where = ¼1, ,6j  (environments in South Asia) and 
= ¼1, ,11k  represents the set of environments in South 

Asia and Mexico excluding environment j, njk cor-
responds to the number of lines in common between 
environments j and k, =åj jk

k

n n , and rjk is the pheno-

typic correlation between environments j and k. As an 
example, Table 8 presents the information needed to 
compute the weighted correlation for the environment 
with delayed planting at Faisalabad; the columns present 
the information needed to compute the weighted correla-
tion (note that this information was obtained from Table 

4). The rest of the correlations were obtained by using the 
approach described above. The gray bars represent the 
means of the correlations between the observed and pre-
dicted values obtained from cross-validations. Note that 
in general, the G ´ E models gave good predictions, usu-
ally better than those from the phenotypic correlations. 
Although we predicted 80% of the records in each of the 
South Asian environments, the correlations are higher 
than the phenotypical correlations between a given envi-
ronment and the rest of the environments.

DISCUSSION
In wheat breeding, the cost of genotyping thousands of 
plants in segregating populations or in advanced genera-
tions makes the application of GS unfeasible. One pos-
sibility for solving this problem would be to augment 
the numerical relationship Matrix (A) of all individuals 
with the genomic relationship matrix (G) of the geno-
typed individuals and to perform predictions based on 
the resulting complete Matrix H, which would allow us 
to predict nongenotyped individuals in the testing set. 
Augmenting Matrix A by using only a fraction of the 
genotyped individuals would reduce genotyping costs. 
Furthermore, as described by Christensen et al. (2012), 
the single-step method allows the genomic relationship 
matrix of genotyped individuals to be extended using 
pedigree information to a combined relationship Matrix 
H of all individual plants or lines. This allows one to use 
all phenotypic data and not merely data from phenotypes 
that have pedigree and marker information; this extra 
phenotypic information should also enhance prediction 

Table 7. Comparison of the predictive ability of models 
with and without genotype ´ environment effects (G ´ E).

Environment‡ Pedigree (A) Markers (G)
Pedigree + 

markers (H)

––––––––––– % change† –––––––––––

DLP_FAS 16.52 35.61 26.88

STN_FAS 46.49 95.47 65.91

STN_JAM 20.18 44.06 34.59

STN_JBL 17.78 42.17 32.10

STN_LDH 44.83 53.11 52.81

STN_PUS 20.37 31.83 23.85

† % change was calculated via Eq. [13].

‡ FAS, Faisalabad, Pakistan; JAM, Jamalpur, Bangladesh; JBL, Jabalpur, India; LDH, Ludhiana, India; 
PUS, Pusa, India; STN, standard management conditions; DLP, delayed planting conditions.

Fig. 4. Barplot of correlations for each predicted environment in 
South Asia. Gray bars represent the means of the correlations 
between observed and predicted values obtained from the cross-
validation in Table 6 using Matrix H. Black bars represent the 
weighted mean of the phenotypic correlation of a given environ-
ment and the rest of environments in Table 4; for example, for 
DPL_FAS, the weighted correlation can be obtained by using 
the data shown in Table 8. FAS, Faisalabad, Pakistan; JAM, 
Jamalpur, Bangladesh; JBL, Jabalpur, India; LDH, Ludhiana, India; 
OBR, Obregon, Mexico; PUS, Pusa, India; STN, standard man-
agement conditions; DLP, delayed planting conditions.
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accuracy. This makes the models and methods developed 
by Misztal et al. (2009), Legarra et al. (2009) and Aguilar 
et al. (2010; 2011) very attractive for predicting unob-
served and nongenotyped plants.

In a recent article, Fernando et al. (2014) proposed a 
single-step Bayesian regression strategy that allows the 
use of all genotyped and nongenotyped individuals by 
means of imputed marker covariates for nongenotyped 
individuals. The advantage of the Bayesian approach over 
the single-step best linear unbiased predictor is that it does 
not require one to compute the inverse of G. However, this 
model has not yet been applied to realistic datasets.

The single-step approach of Misztal et al. (2009), 
Legarra et al. (2009) and Aguilar et al. (2010; 2011) was 
used in dairy cattle studies and first applied to plant 
breeding data by Ashraf et al. (2016) in a set of 1176 
genotyped CIMMYT wheat lines and 11,131 nongeno-
typed wheat lines tested in five environments in Ciu-
dad Obregon, Mexico, during the 2012–2013 cycle. We 
developed optimized weighting factors for Matrix H and 
applied a multivariate method for assessing G ´ E and 
found that the prediction accuracy of the single-step H 
matrix was higher than the accuracies achieved using the 
A and G matrices. The present study used seven selection 
cycles of CIMMYT wheat breeding with a total of 58,798 
wheat lines evaluated in Ciudad Obregon and predicted 

several wheat lines in South Asian environments (India, 
Pakistan, and Bangladesh).

Genomic Prediction Accuracy for Models  
with and without G ´ E
From the results in Table 5 to Table 7, it is clear that mod-
els that include the G ´ E term predict the environments 
in South Asia better than models that do not include the 
G ´ E term. The gain in the prediction accuracy of mod-
els that include G ´ E ranges from 16 to 90% with an 
average of 40%. However, models that do not incorporate 
G ´ E but use pedigree or high-density molecular mark-
ers, or both are still superior in terms of prediction accu-
racy than those that use phenotypic data only.

Genomic Prediction Accuracy Versus the 
Phenotypic Prediction Accuracy of G ´ E Models
In this study, we assessed the prediction accuracy of a 
large number of wheat lines evaluated in several envi-
ronments and years in Ciudad Obregon, Mexico, and 
predicted lines in several South Asian environments. For 
Ludhiana, Pusa, and Jabalpur, about 1227 wheat lines 
were predicted on the basis of the performance of these 
lines in six environments in Ciudad Obregon plus the 
performance of about 57,000 wheat lines related to those 
to be predicted (1227) and evaluated in previous years in 
Ciudad Obregon, Mexico.

Prediction accuracy was the correlation between 
the predicted values of the lines in Ciudad Obregon plus 
a low proportion of them (20%) in six environments in 
South Asia using three G ´ E models (those using Matri-
ces A, G, and H) with the observed values of 80% of the 
lines in the six environments in South Asia (which were 
not phenotyped). The correlations for all the environ-
ments were around 0.25 to 0.27, except for Ludhiana 
in India, which showed higher prediction accuracy 
(0.36–0.37). These genomic prediction accuracies were 
higher than the prediction accuracies computed from 
the common phenotypic correlations between all pairs of 
environments. These results indicated that the prediction 
accuracy with which breeders make selections in Ciudad 
Obregon, Mexico, is lower than the accuracy they could 
obtain by performing genomic selection and predic-
tion. Although wheat breeders expect that lines selected 
in Ciudad Obregon will perform well in South Asian 
environments, the results of this study should prompt 
them to increase research on genomic selection in Ciu-
dad Obregon (a very stable site with high radiation) of 
candidates for selection that will perform well in several 
environments in different South Asian countries (India, 
Pakistan, and Bangladesh).

The prediction accuracy of models with Matrices 
A, G, and H for models with or without G ´ E did not 
change much. This is an important result that allows, 
through the use of Matrix H, one to use all phenotypic 
data to predict the genetic values of the unobserved 
wheat lines, thereby avoiding having to use only a 
subset of the phenotypes of lines with pedigree data 

Table 8. Phenotypic correlations and numbers of lines 
in common between delayed planting conditions at 
Faisalabad, Pakistan (DLP_FAS) and the rest of the 
environments in Mexico and South Asia.

j
Environment 
in South Asia k†

Other 
environments jkr jkn

jk

j

n

n
jk

j jk 

n

n r

1 DLP_FAS‡ 1 B5I_OBR 0.154 1537 0.099 0.015

1 DLP_FAS 2 B2I_OBR 0.094 1515 0.098 0.009

1 DLP_FAS 3 DRB_OBR 0.111 1535 0.099 0.011

1 DLP_FAS 4 EHT_OBR 0.131 1062 0.069 0.009

1 DLP_FAS 5 LHT_OBR 0.067 1537 0.099 0.006

1 DLP_FAS 6 MEL_OBR 0.174 1537 0.099 0.017

1 DLP_FAS 7 STN_FAS 0.338 1547 0.100 0.033

1 DLP_FAS 8 STN_JAM 0.170 537 0.035 0.005

1 DLP_FAS 9 STN_JBL 0.235 1547 0.100 0.023

1 DLP_FAS 10 STN_LDH 0.206 1547 0.100 0.020

1 DLP_FAS 11 STN_PUS 0.280 1547 0.100 0.028

n1 = 15,448 r1 = 0.18

† k = 1,…,11 represents the environments, r1 represents the weighted phenotypic correlation for 
Environment 1 in South Asia (i.e. Faisalabad), and n1 is the total of the column labeled as njk.

‡ FAS, Faisalabad, Pakistan; JAM, Jamalpur, Bangladesh; JBL, Jabalpur, India; LDH, Ludhiana, India; 
PUS, Pusa, India; STN, standard management conditions; DLP, delayed planting; B5I, bed planting and 
five irrigations; B2I, bed planting and two irrigations; MEL, Melgas flat planting; DRB, bed planting 
and drip irrigation; EHT, early heat; LHT, late heat
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and another subset of phenotype data from lines with 
marker data only. The single-step method for computing 
Matrix H allows the inclusion of both components of the 
breeding value to be predicted: the parental average or 
between-family variability captured by the pedigree and 
the Mendelian sample component (or with family vari-
ability) accounted for the by markers.

Big Data Used to Derive Pedigree and Combine 
it with Markers into the Single-Step Prediction 
Method with a G ´ E Model
So far, no studies using plant breeding data on more than 
50,000 lines have been reported in the GS literature. This 
is the first study to show that large training populations 
can provide genomic predictions that are more precise 
than phenotypic predictions. This is the first time that 
the theory used to develop and implement the pedigree 
system for such a large number of lines has been reported 
in plant breeding. Although the models used for pre-
diction are now well known, from the computational 
and statistical points of view, it is necessary to develop 
algorithms and data structures that allow researchers to 
handle the data and fit the models efficiently.

In this study, we used the G ´ E reaction norm model 
on a large dataset in conjunction with pedigree, mark-
ers, or both, in GS and prediction. We compared models 
including and excluding G ´ E. In the genomic prediction 
literature, there are plenty of examples where including 
those interactions significantly improved the prediction 
accuracy of untested individuals. The single-step method 
that combines the use of pedigree and markers through 
Matrix H allows the use of all the available information. 
Also, the reaction norm G ´ E model allows us to swap 
information among positively correlated environments, 
although the predictive power of the model was similar to 
that of the model that included markers only. Ashraf et al. 
(2016) used the single-step H approach on a set of 11,131 
nongenotyped and 1176 genotyped wheat lines.

Animal breeders make extensive use of the fact that 
the relationship Matrix A has a very sparse inverse that 
can be computed directly from the pedigree, if all indi-
viduals (including those with no phenotype) are included 
(Henderson, 1976, 1977). This results in a sparse -1H  
structure as well (Aguilar et al., 2010; Christensen and 
Lund, 2010), with a storage cost that is quadratic in the 
number of genotyped individuals but is only linear in 
the number of nongenotyped individuals. These sparse 
inverses exist for any level of autopolyploid species (Kerr 
et al., 2012) and could potentially be used for prediction 
with large data sets. However, this would preclude the 
use of Cholesky decomposition as used in Eq. [8].

CONCLUSIONS
This study shows how to solve statistical and computa-
tional challenges when incorporating and combining 
high-dimensional pedigree and genomic matrices into 
a single-step model for predicting unobserved individu-
als in other environments. We found that the genomic 

prediction of genotyped and nongenotyped wheat lines 
produces higher prediction accuracy than that of lines 
predicted from phenotypic data. The results provide 
evidence that the single-step approach that combines 
pedigree and marker information is useful for reducing 
genotyping costs while maintaining the prediction accu-
racy of unobserved individuals at relatively intermediate 
levels. The incorporation of G ´ E models using a com-
bination of pedigree and genomic information is another 
way of increasing the prediction accuracy of unobserved 
candidates for selection and offers plant breeders an 
important alternative for predicting germplasm evalu-
ated under different environmental conditions.

APPENDIX
R Script Used to Obtain and Store Relationship 
Matrix A
This script computes relationship Matrix A.
Inputs:

(1) A text file with pedigree information for the 
individuals that we are interested in. The file should 
have three columns separated by tabs, ID (the 
identification number of the individual), Sire (male 
parent), and Dam (female parent).

(2) A text file with the individuals that we are interested in.

Output: The relationship matrix.
To speed up the computations, we used dense partitioned 
matrixes and linked R with OpenBLAS (http://www.
openblas.net, accessed 5 Apr. 2017). At the end of the 
process, the relationship matrix was also stored as a par-
titioned matrix on hard disk in binary R format (RData). 
Below, we detail the steps used to build the matrix.

Step 1: Read the Data and Compute the Relationship 
Matrix from the Pedigree Information
#Clean workspace
rm(list=ls())

#Load
library(pedigreemm)

#Read the pedigree file
a=read.csv(“pedigree/RAVI_58K_GIDS_PROGEN.
csv”,header=TRUE)
a=a[,c(1:3)]
a=a[a[,1]!=0 & a[,2]!=0,]

colnames(a)=c(“Mparent”,“FParent”,“ID”)
a=a[!duplicated(a),]

cat(“nrow=”,nrow(a),“\n”)
cat(“selfing=”,sum(a[,1]==a[,2]),“\n”)

#Read the ids of individuals with phenotypic records
ids=scan(“GIDsForUSAIDprediction_20160406.csv”)
ids=as.character(ids)
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pede=editPed(sire=a$MParent,dam=a$FParent,label=a$I
D,verbose=TRUE)
ped=with(pede, pedigree(label=label, sire=sire, dam=dam))

Now use the relfactor function for the pedigree, that is:
= 'full full fullA X X , 	                                          [A1]

where Xfull is an upper triangular, sparse (right) Cholesky 
factor of the relationship matrix. In this case, Xfull is a 
matrix with n = 177,376 rows and the same number of 
columns. The code for obtaining the relfactor is given 
below.

Xfull=relfactor(ped)

We do not need Afull; we just need a subset of this matrix 
with the 58,798 individuals so we can take a subset of 
58,798 columns from Xfull. The columns correspond to 
the individuals that we are interested in. Let X be the 
resulting matrix; we then have =A X'X , where X has n 
= 177,376 rows and p = 58,798 columns. The R code for 
obtaining this matrix is shown below.

index=ped@label%in%ids
X=Xfull[,index]

Step 2: Partition the Relationship Factor
Since X is a huge matrix, it is very difficult to obtain A 
directly; furthermore, since X is sparse, the product can-
not be parallelized easily. We then partitioned X into sev-
eral submatrices and saved the submatrices as binary files 
that can later be retrieved in order to obtain the product.
For example:

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ æ ö¢ ¢ ¢ ¢ ¢ç ÷ ÷ç÷ç ÷¢ ç= =÷ç ÷ç÷ç ÷¢ ¢ ¢ ¢ ¢ ÷ç÷ è øç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø

11 12

21 22
11 21 31 41 51

31 32
12 22 32 42 52

41 42

51 52

; 

X X
X X

X X X X X
X XX X

X X X X X
X X
X X

,   [A2]

where Xij is a submatrix obtained from X.
The R code below was used to partition matrix X into five 
submatrices and save the results to binary files.

n_submatrix=5
n=nrow(X)
p=ncol(X)

to_row=0;
delta=as.integer(n/n_submatrix);

for(i in 1:n_submatrix)
{

from_row=to_row+1;
to_row=delta*i;
if(i==n_submatrix) to_row=n;
#Another slice for X
for(j in 1:2)

{
if(j==1)
{

from_column=1
to_column=29401

}else{
from_column=29402
to_column=p

}
cat(“***********************\n”)
cat(“Submatrix: ”,i,“ ”,j,“\n”);
cat(“from_row: ”,from_row,“\n”);
cat(“to_row: ”,to_row,“\n”);
cat(“from_column: ”,from_column,“\n”);

#Conventional matrix object so that we can use
#optimized dense matrix products
Xij=as.matrix(X[from_row:to_row,from_column:to_
column])
save(Xij,file=paste(“X_”,i,j,“.RData”,sep=“”))
}

}

Step 3: Compute the Relationship Matrix  
using the Partitioned Matrices from Step 2
Given the partition of the relationship factor, we can 
compute the Matrix A as follows:

11 12

21 22

æ ö÷ç ÷= =ç ÷ç ÷÷çè ø

A A
A X X

A A
' . 	                          [A3]

where:
¢ ¢ ¢ ¢ ¢= + + + +11 11 11 21 21 31 31 41 41 51 51A X X X X X X X X X X

¢ ¢ ¢ ¢ ¢= + + + +22 12 12 22 22 32 32 42 42 52 52A X X X X X X X X X X

¢ ¢ ¢ ¢ ¢= + + + +12 11 12 21 22 31 32 41 42 51 52A X X X X X X X X X X

¢ ¢ ¢ ¢ ¢= + + + +21 12 11 22 21 32 31 42 41 52 51A X X X X X X X X X X , 

[A4]

Note that now we need to calculate several products of 
matrices. There are optimized libraries that can be used 
for this task. For example, in R, we can recompile the 
program so that we can use OpenBLAS. Details are given 
at http://www.openblas.net/ (accessed 5 Apr. 2017) and 
http://www.rochester.edu/college/psc/thestarlab/help/
moreclus/BLAS.pdf (accessed 5 Apr. 2017).

We recompiled R version 3.2.3 (R Core Team, 2016) 
in order to use OpenBLAS so it can perform matrix 
operations in parallel. The next fragment of code obtains 
Matrix A11 using the partitioned matrices.

rm(list=ls())
n_submatrix=5
A11=matrix(0,nrow=25000,ncol=25000)
for(i in 1:n_submatrix)
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{
cat(“i=”,i,“\n”)
load(paste(“X_”,i,“1.RData”,sep=“”))
A11=A11+crossprod(Xij);

}
save(A11,file=“A11.RData”)

The rest of the matrices can be obtained similarly. With 
this approach and by using eight cores for the matrix 
product, we obtained the 58,798 ´ 58,798 Matrix A in 
less than 3 hr in the CIMMYT-BSU server, which has 
12 Intel Xeon Cores (Intel, Santa Clara, CA) @ 3.47 GHz 
and ~ 48 Gb of RAM.

R Script to Obtain Matrix H 
The script presented below computes the relationship 
Matrix H that includes full pedigree and genomic infor-
mation (see equation 4 in Legarra et al., 2009). It adjusts 
the elements of genomic relationship Matrix G, so that 
the entries of the relationship Matrix A share the same 
scale (Christensen et al., 2012).
Inputs:

1) Matrices A and G. The row and column names of both 
matrices include the identification numbers of the 
individuals.

Output:
1) Matrix H.

#Clean workspace
rm(list=ls())

#Load A
load(“../output/A11.RData”)
load(“../output/A12.RData”)
load(“../output/A21.RData”)
load(“../output/A22.RData”)
A=rbind(cbind(A11,A12),
        cbind(A21,A22))

rm(A11,A12,A21,A22)

# read G and construct matrix of pedigree relationships of
# genotyped individuals, Agg (called A22 in Legarra et 
#al., 2009 and A11 in OF Christensen notation)

#Read the genotypes (markers)
load(“G80_42706_29489_correctedgid.RData”)

#Center and scale the markers
X=scale(X,center=TRUE,scale=TRUE)

#Compute the genomic relationship matrix (López-Cruz 
#et al., 2015)
G=tcrossprod(X)/ncol(X)

#Ids of genotyped individuals
genotyped=colnames(G)

cat(“genotyped: ”,length(genotyped),“\n”)

#Ids of individuals with pedigree
inpedigree=colnames(A)
cat(“inpedigree: ”,length(inpedigree),“\n”)

#Ids of individuals not genotyped
nongenotyped=setdiff(inpedigree,genotyped)
cat(“in pedigree nongenotyped: ”,length(nongenotyped),“\n”)

genotypednotinpedigree=setdiff(genotyped,inpedigree)
cat(“genotyped not in pedigree”,length(genotypednotin 
   pedigree),“\n”)

genotypedinpedigree=intersect(genotyped,inpedigree)
cat(“genotyped in pedigree”,length(genotypedinpedigree) 
   ,“\n”)

# we have individuals with genotype that are NOT in 
#matrix A
# we get rid of these individuals
G=G[genotypedinpedigree,genotypedinpedigree]
genotyped=genotypedinpedigree

#extract submatrix of A concerning genotyped individuals
Agg=matrix(NA,ncol(G),nrow(G))
Agg=A[genotyped,genotyped]

# now we need to make both matrices compatible. Use 
#here Christensen et al. 2012 to make
# average inbreeding and average relationships compatible
# so that G <- a+bG
# O. F. Christensen, P. Madsen, B. Nielsen, T. Ostersen 
#and G. Su (2012). Singlestep methods
# for genomic evaluation in pigs. animal,6, pp 15651571 
#doi:10.1017/S1751731112000742

meanG=mean(G)
meandiagG=mean(diag(G))
meanAgg=mean(Agg)
meandiagAgg=mean(diag(Agg))
cat(meanG,meandiagG,meanAgg,meandiagAgg,“\n”)
b=(meandiagAgg-meanAgg)/(meandiagG-meanG)
a=meandiagAgg-meandiagG*b
cat(a,b,“\n”)

# a should be positive !!!
# modification to make G compatible
G=a+b*G

# invert Agg as we need it
Aggi=solve(Agg)

# a problem here is to divide A neatly between genotyped 
#and not genotyped individuals.
# Usually we use sparse operators and this is easier.
# here I use the colnames and should be efficient
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# --------------------------------------- #
# option 1 to construct H not its inverse
# --------------------------------------- #
# use expression (4) in Legarra-Aguilar-Misztal 2009
H=matrix(NA,ncol(A),nrow(A))
colnames(H)=colnames(A)
rownames(H)=rownames(A)
H[genotyped,genotyped]=G
H[nongenotyped,genotyped]=A[nongenotyped,genotype 
   d]%*%(Aggi%*%G)
#H[genotyped,nongenotyped]=G%*%Aggi%*%A[genotyped 
#,nongenotyped]
H[genotyped,nongenotyped]=t(H[nongenotyped,geno 
   typed])
H[nongenotyped,nongenotyped]=A[nongenotyped,non 
   genotyped] +
A[nongenotyped,genotyped]%*%(Aggi%*%(G-Agg)%*% 
   Aggi)%*%A[genotyped,nongenotyped]
cat(mean(diag(H)),mean(H),“\n”)

# in principle H is (SEMI-)positive definite but can be 
#quite bad conditioned,
# e.g. if there are pedigree errors or label switching
save(H,file=“H.Rdata”)
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