
DEPART AMENTO DE CIENCIA DA COMPUT A<;AO 

Relat6rio Tt!cnico 

RT-MAC-2007-06 

AN ESSAY ON THE ROLE OF BERNOUUJ AND 
POISSON PROCESSES IN BAYESIAN STATISrICS 

CARLOS ALBERTO DE BRAGIIN<;A PEREIRA AND Juuo 
MICHAEi. STERN 

Junho de 2007 



An Essay on the Role of Bernoulli and Poisson 
Processes in Bayesian Statistics 

Carlos Alberto de Braganc;a Pereira 
Julio Michael Stern 

Institute of Mathematics and Statistics, 
University of Sao Paulo, Brazil. 

capereira@ime. usp. br jstern@ime. usp. br 

Tech.Rep. MAC-2007-06, June 11, 2007. 

Abstract 

The objective of this essay is to present the properties of some dis
crete distributions derived from the Bernoulli and Poisson processes, 
together with some associated discrete and continuous distributions, 
like the Multinomial and the Dirchlet. These processes and distrib
utions appear naturally in counting processes, and are the most nat
ural tool for treating discrete or categorical data. A great variety of 
statistical problems admit discretized models, this is also a way of 
introducing non parametric solutions. 
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1 Introduction and Notation 

This essay presents important properties of the distributions used for cat
egorical data analysis. Regardless of the population size being known or 
unknown, or the specific observational stopping rule, the Bernoulli Processes 
generates the sampling distributions considered. On the other hand, the 
Gamma distribution generates the prior and posterior distributions obtained: 
Gamma, Gamma-Poisson, Dirichlet, and Dirichlet-Multinomial. The Poisson 
Processes as generator of sampling distributions is also considered. 

The generation form of the discrete sampling distributions presented in 
Section 2 is, in fact, a characterization method of such distributions. If one 
recalls that all the distribution classes being mixed are complete classes and 
are Blackwell sufficient for the Bernoulli processes, the mixing distributions 
are unique. This characterization method is completely described in Basu 
and Pereira (1983). 

Section 9 describes the Reny-Aczel characterization of the Poisson distri
bution. Although it could be thought as a de Finetti type characterization 
this characterization is based on alternative requirements. While de Finetti 
chaparcterization is based on a permutable infinite 0-1 process, Reny-Aczek 
characterization is based on a homogeneous Markov process in a finite in
terval, generating finite discrete Markov Chains. Using Reny-Aczel charac
terization, together with Theorem 4, one can obtain a characterization of 
Multinomial distributions. 

Section 7 describes the Dirichlet of Second Kind. In this section we also 
show how to use a multivariate normal approximation to the logarithm of 
a random vector distributed as Dirichlet of Second Kind, and a log-normal 
approximation to a Gamma distribution, see Aitchison and Shen (1980). 
In many examples of the authors' consulting practice these approximations 
proved to be a powerful modeling tool, leading to efficient computational 
procedures. 

The development of the theory in this essay is self contained, seeking a 
unified treatment of a large variety of problems, including finite and infinite 
populations, contingency tables of arbitrary dimension, deficiently catego
rized data, logistic regressions, etc. These models also present a way of 
introducing non parametric solutions. 

The singular representation adopted is unusual in statistical te>..-ts. This 
singular representation makes it simpler to extend and generalize the results 
and greatly facilitates numerical and computational implementation. In this 
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essay, corollaries, lemmas, propositions and theorems are numbered sequen
tially. 

Let us first define some matrix notation. The operator r:s:t, to be r~ad 
from r to t with step s, indicates the vector [r, r + s, r + 2s, ... t] or the 
corresponding index domain. r:t is a short hand for r:1:t. Usually we write 
a matrix, A, with subscript row index and superscript column index. Hence, 
A{ is the element in the i-th row and j-th column of matrix A Index vectors 
can be used to build a matrix by extracting from a larger matrix a given 
sub-set of rows and columns. For example, A;!~% is the northeast block, 
i.e. the block with the first rows and last columns, from A. Alternatively, 
we may write a matrix with row and column indices in parenthesis. Hence, 
we may write the northeast block as A(l: m/2, n/2: n). The next example 
shows a more general case of this notation, 

A;= A(r,s) = I)! !~ !fl . 
V > 0 is a positive definite matrix. The Diagonal operator, diag, if 

applied to a square matrix, extracts the main diagonal as a vector, and if 
applied to a vector, produces the corresponding diagonal matrix. 

[ 
Ai ] , d,·ag(a) -- [ aoo:_1 aoo, "~: 1 

diag(A) - 1: -
A list of matrices can be indexed with left subscript or superscript indices. 

In case of block matrices, these left indices indicate the row and column block 
position, like in the following example, 

{A ~A fA 

A= 
!A ~A ~A 

:A ~A :A 
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Hence • A~ is the element in the i-th row and j-th column of the block 
situat;l a~ the r-th block of rows and s-th block of columns of matrix A. 
Alternatively, we may write block indices in braces, that is, we may write 
:A{ as A{r, s}(i,j). 

The Vee operator stacks the columns of the argument matrix in a single 
vector. The Kronecker product, also known as direct or tensor product, is 
defined as follows, 

_ u2 A~B A~B . . . A2B 

r 

u
1 1 [ AlB Af B . . . Af Bl 

Vec(U1 ·n) = : , A®B = : : .. : . . . . . 
. un _ A~B A~B . .. A~B 

We now introduce some concepts and notations related to the permuta
tion and partition of indices. Let 1 : m be an index domain or, in this essay 
context, a classification index. Let p = cr(l: m) be a permutation of these 
indices. The corresponding (Row) Permutation Matrix is 

p =Ip= [ lp:(t) l ' hence , p . ~ l = [ p\l) l 
lp(ml m p(m) 

A permutation vector, p, and a termination vector, t, define a partition 
of the m original classes in s super-classes: 

p (1) 

. p (t(l)) _ 
1 

[ p ( t( 1 ! + 1) l · . . [ p ( t ( s - : 1) + 1) ] 

p(t(2)) p (t(s)) _ 

where t(O) = 0 < t(l) < ... < t(s - 1) < t(s) = m 

We define the corresponding permutation and partition matrices, P and T, 
as 
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These matrices facilitate writing functions of a given partition, like 

• The class indices in the super-class r . ~-l = [ p (t(r ~-1) + 1) l 
rP(l :m) = rP 

. m . p(t(r)) 

• The number of classes in the super class r 

Tr 1 = t(r) - t(r - 1) 

• A sub-matri.x with the row indices in super-class r 

rP A = [ Ap(t(r~ l)+l) ] 

Ap(t(r)l 

• The summation of the rows of a submatrix with row indices in super
class r 

• The rows of a matrix, added over each super-class 

Note that a matrix T represents a partition of m-classes into s-super
classes if T has dimension s x m, T~ E {O, l} and T has orthogonal rows. 
The element Tl indicates if the class j E 1: m is in super-class h E 1: s. 

We introduce the following notation for observation matrices, and respec
tive summation vectors: 

U - [ 1 2 I ui: n - [ I 2 "] n - ui :n1 - "'" j - U , U , • . • , - U , U , •• , U , X - - L..,j;I tL • 

The tilde accent indicates some form of normalization like, for example, x = 
(l/l'x)x. 
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Lemma 1: If u1, . •• u" are i.i.d random vectors, 

x = U1:"1 ~ E(x) = nE(u1
) and Cov(x) = nCov(u1

) 

The first result is trivial. For the second result, we only have to remember 
the transformation properties of for the expectation and covariance operators 
by a linear operation on their argument, 

E(AY + b) = AE(Y) + b , Cov(AY + b) = ACov(Y)A' , 

and write 

Cov(x) = Cov(U1:"1) 

= Cov((l'®J)Vec(U1
:")) = (l'®J)(J ® Cov(u1)) (1 ® J) 

= (l'@Cov(u1))(1®J) = nCov(u1
) 

2 The Bernoulli Process 

Let us consider a sequence of random vectors u1, u2 , .. . where, Vui can assume 
only two values 

representing success or failure. That is, ui can assume the value of any 
column of the identity matrix, I. We say that u; is of class k, c(ui) = k, iff 
u; = I"'-, k E !I, 2]. 

Also assume that (in your opinion), this sequence is exchangeable, that 
is, if p = [p(I),p(2), . . . p(n)I is a permutation of II, 2, . . . nJ , than, Vn,p, 

Pr ( u 1, • . . u") = Pr ( uP(l} , . . . up(n)) 

Just from this exchangeability constraint, that can be interpreted as saying 
that the index labels are non informative, de Finetti Theorem establishes the 
existence of an unknown vector 
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such that, conditionally on 8, u1, u2
, ••• are mutually independent, and the 

conditional probability of Pr(u; = Jk 18) is 0k, i.e. 

00 

I 2 II . k ( u II u II ... ) I 0 or 1t; I 0 , and Pr( u' = I I 0) = 01c . 
i=l 

Vector 0 is characterized as the limit of proportions 

Conditionally on 0, the sequence u1 , u2, .•• receives the name of Bernoulli 
process. As we sho.11 see, many well known discrete distributions can be 
obtained from transformations of this process. 

The expectation and covariance ( conditionally on 0) of any vector in the 
sequence are: 

• E(u;) = 0 

• Cov(ui)= E(ui®(ui)')- E(ui)®E((ui)')=diag(B)-8©0' 

When the summation domain 1 : n, is understood, we may use the relaxed 
notation x instead of xn. We also define the Delta operator, or ''pointwise 
power product" between two vectors of same dimension: Given 0, and x, 
n X 1, 

n 

8 t:,, x = IT ( 8;)"'; 

A stopping rule, 6, establishes, for every n = l, 2, ... , a decision of ob
serving ( or not) un+t, after the observations u1 , ..• un. 

For a good understanding of this text, it is necessary to have a clear 
interpretation of conditional expressions like x" In or x2 I xi. In both cases we 
are referring to a unknown vector, xn, but with a different partial information. 
In the first case, we know n, and therefore we know the sum of components, 
xj + x2 = n; however, we know neither component xj nor x2. In the second 
case we only know the first component, of xn, xi, and do not know the second 
component, x2, obviously we also do not know the sum, n = x1 + x2. Just 
pay attention: We list what we know to the right of the bar and, {unless we 
have some additional information) everything that can not be deduced from 
this list is unknown. 
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The first distribution we are going to discuss is the Binomial. Let o(n) 
be the stopping rule where n is the pre-established number of observations. 
The (conditional) probability of the observation sequence U1 :n is 

The summation vector, x", has Binomial distribution with parameters n 
and 8, and we write xn I [n, 0] ~ Bi(n, 0). When n (or o(n)) is implicit in the 
context we may write x 10 instead of xn I [n, 0]. The Binomial distribution 
has the following expression: 

where 
( n \ = f(n + l) = ~ and n = 1'x 
\ x ) - f(x 1 + 1) f(x2 + I) x1! x2! · 

A good exercise for the reader is to check that expectation vector and the 
covariance matrix of x" I [n, 0] have the following expressions: 

I
. 1 -1 ·1 E(xn) = n0 and Cov(x") = n(B 61) . _ 1 1 . 

The second distribution we discuss is the Negative Binomial. Let o(x;') 
be the rule establishing to stop at observation un when obtaining a pre
established number of x1 successes. The random variable x2, the number of 
failures he have when we obtain the required x1 successes, is called a Negative 
Binomial with parameters x1 e 0. It is not hard to prove that the Negative 
Binomial distribution x2 I [xi', 0] ~ NB(x1, 0), has expression,\:/ x2 E IN, 

Note that, from the definition this distribution, x1 is a positive integer 
number. Nevertheless, we can extend the definition above for any real posi
tive value a, and still obtain a probability function. For this, we use 

co f(a + ') . 
]; r(a)j~ (I - 1r)' = 71'-a , \:/ a E [O, oo[ and 71' E]O, l[ 

8 I 
i 

. 
F 

I-



The reader is asked to check the last equation, as well as the following ex
pressions for the expectation and variance of x2: 

E ( n I n O) x'i02 d V, ( n I n O) x'i0z 
x2 x1, = T. an ar x2 x1, = (Oi)2 • 

In the special case of o(xj = 1), the Negative Binomial distribution is 
also known as the Geometric distribution with parameter 0. If a random 
variables are independent and identically distributed (i.i.d.) as a geometric 
distribution with parameter 0, then the sum of these variables has Negative 
Binomial distribution with parameters a and 0. 

The third distribution studied in this essay is the Hypergeometric. Going 
back to tlie original sequence, u 1, u2 , ... , assume that a first observer knows 
the first N observations, while a second observer knows only a subsequence 
of n < N of these observations. Since the original sequence, u 1, u 2

, ... , is 
exchangeable, we can assume, without loss of generality, that the subsequence 
known to the second observer is the subsequence of the first n observations, 
u 1, ... un . Using de Fi net ti theorem, we have that x" e xN - x" = un+l : N 1 
are conditionally independent, given 0. That is, xnII(xN -x") I 0, Moreover, 
we can write 

x" I [n, 0] ~ Bi(n, 0) , xN I [N, 0] ~ Bi(N, 0) and 

(xN - x") I [(N - n), 0] ~ Bi(N - n, 0). 

Our goal is to find the distribution function of x" I xN. Note that xN is 
sufficient for U1 : N given 0, and xn is sufficient for U1 :n_ Moreover x" I [n, xNj 
has the same distribution of x" I [n, xN, OJ. Using the basic rules of probability 
calculus and the properties above, we have that 

Pr(xn In, XN, 0) 
Pr(xn,xN In, N, 0) Pr(x", (xN - xn) In, N, 0) 

= Pr(xN I n, N, 0) Pr(xN In, N, 0) 

- Pr(x" In, N, 0) Pr(xN - x" In, N, 0) 
Pr(xN In, N, 0) 

Hence, x" I [n, xN] has distribution function 
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where O < xn < xN < NI I'xn = n I'xN = N - - - ) , 
This is the vector representation of the Hypergeometric probability distrib
ution. 

x" I In, xN] ~ Hy(n, N, xN) . 

The reader is asked to check the following expressions for the expectation 
and ( conditional) covariance of x" I [n, N, xN], and covariance of ui and uJ, 
i,j ~ n: 

n N n(N - n) N 
E(x") = - x and Cov(x") = -:----,- (x b.1) 

N (N - 1) I

. 1 -1 ·1 
-1 1 . . 

i ; N _ l N [ -1 1 ] Cov(u,u Ix )-(N-l)N2 (x b.1) 1 _ 1 

We finish this section presenting the derivation of the Beta-Binomial dis
tribution. Let us assume that the first observer observed x2 failures, until 
observing a pre-established number of x1 successes. A second observer makes 
more observations, observing x!J failures until completing the pre-established 
number of xf successes, xj < x{". 

Since x1 and xf" are pre-established, we can write 

x!J I 0 ~ NB(xf, 0) , x2 I 0 ~ NB(x1, 0) 

(x!J - X2) 10 ~ NB(xf - xi'' 0) and X2 11 (x!J - X2) 10-
As before, our goal is to describe the distribution of x2 I !xi, xN]. If one 
notices that lx1, xN] is sufficient for lxn, (xN - x")], with respect to 0, the 
problem becomes similar to the Hypergeometric case, and one can obtain 

P ( n I n N) x!J ! r(xf) r(x;' + xj) r(x!J - x;' + xf" - xj) 
r X2 X1, X = ( N N N N ' f X2 + X1 ) X2! f(x\.') (x2 - X2)! r(xl - xr) 

X2 E {0, 1, ... , x!J }. 
This is the distribution function of a random variable called Beta Binomial 
with parameters xj e xN. 

The properties of this distribution will be studied in the general case of the 
Dirichlet-Multinomial, in the following sections. 
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Generalized categories for k > 2 can be represented by the orthonormal 
base [ 1, [ 2 , .•• I", i.e., the columns of the k-dimcnsional identity matrix. The 
Multinomial and Hypergeometric multivariate distributions, presented in the 
next sections, are distributions derived of this basic generalization. 

3 Multinomial Distribution 

Let u', i = 1, 2, ... be random vectors with possible results in the set of 
columns of the m-dimensional identity matrix, I", k E 1: m. We say that ui 
is of class k, c(ui) = k, iff ui = I". 

Let() E [O, l]m be the vector of probabilities for an observation of class k 
in am-variate Bernoulli process, i.e., 

Like in the last section, let U 

U = [u1 ,u2
, ••• j and xn = u1 :n1 

Definition: If the knowledge of () makes the vectors ui independent, then 
the (conditional) distribution of xn given () is the Multinomial distribution 
of order m with parameters n e B, given by 

where 

( n \ _ r(n + 1) _ n! d _ 
1
, 

I } = ( ) ( ) - 1 1 an n - x . ,x rx,+l ... rxm+l X1----Xm-

We represent them-Multinomial distribution writing 

When m = 2, we have the binomial case. 
Let us now examine some properties of the Multinomial distribution. 

Lemma 2: If x I() ~ Mnm(n, 8) then the ( conditional) expectation and 
covariance of x are 

E(x) = n0 and Cov(x) = n(diag(0) - 0@ 0') 
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Proof: Analogous to the binomial case. 
The ne>..1; result presents a characterization of the Multinomial in terms 

of the Poisson distribution. 
Lemma 3: Reproductive property of the Poisson distribution. 

x; ~ Ps(,\) =} l'x I>. ~ Ps(l'>.) 

that is, the sum of (independent) Poisson variates is also Poisson. 

Theorem 4: Characterization of the Multinomial by the Poisson. 
Lei x = (x1, ... , xm]' be a vector with independent Poisson distributed com
ponents with parameters in the known vector >. = f>. 1, ... , >-ml' > 0. Let n be 
a positive integer. Then, given>., 

1 
x I [n = l'x, >.] ~ Mnm(n, 0) where 0 = 

1
, >. >. 

Proof: The joint distribution of x, given >. is 

Using the Poisson reproductive property, 

Pr(x[l'x=n,..\) 
Pr (l'x = n I\ x I..\) 

= Pr (l'x = n I>.) 
, Pr(x I>.) 

=O(n=lx)P(' I..\) r 1 x = n 

The following results state important properties of the Multinomial dis
tribution. The proof of these properties is simple, using the characterization 
of the Multinomial by the Poisson, and the Poisson reproductive property. 

Theorem 5: Multinomial Class Partition 
Let 1: m be the index domain for the classes of a order m Multinomial 
distribution. Let T be a partition matrix breaking the m-classes into s
super-classes. Let x ~ Mnm(n,0), then y = Tx ~ Mn.(n, T0). 

Theorem 6: Multinomial Conditioning on the Partial Sum. 
If x ~ Mnm(n, 8), then the distribution of part of the vector x conditioned on 
its sum has Multinomial distribution, having as parameter the corresponding 
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pa.rt of the original (normalized) parameters. In more detail, conditioning on 
the t first components, we have: 

X1:1 I (l'x1:t = j) ~ Mn, (i, 
1
,;

1 
:/1 :,) where O :S j :Sn 

Theorem 7: Multinomial-Binomial Decomposition. 
Using the last two theorems, if x ~ Mnm(n, 8), 

Pr(x I n,8) = 

= tPr(x1:di, 1,;. Bu) 
1=0 1 . 1 

Pr!x1+1:ml(n-j),
1
,
0

1 
81+1:m) 

\ 1+1 : m 

( 
I
. j ·11 1· }'81. I ·1) 

Pr . (n - j) . n, . 1181+1°: m . 

Analogously, we could write the Multinomial-Trinomial decomposition for 
a three-partition of the class indices in three super-classes. More generally, 
we could also write the m-nomial-s-nomial decomposition for the partition 
of the m class indices into s super-classes. 

4 Multivariate Hypergeometric Distribution 

In the first section we have shown how an Hypergeometric variate can be 
generated from a Bernoulli process. The natural generalization of this result 
is obtained considering a Multinomial process. As in the last section, we say 
that u; is of class k, c(u;) = k, iff u; = Jk. 

We take a sample of size n from a finite population of size N(> n), that is 
partitioned into m classes. The population frequencies (number of elements 
in each category) are represented by [,p1, . . • "Pm], hence N = l't/J. Based on 
the sample, we want to make an inference on '1/J. xi. e is the sample frequency 
of class k. 

One way of describing this problem is to consider an um with N balls 
of m different colors, indexed by 1, ... m. VJk is the number of balls of color 
k. Assume that the N balls are separated into two smaller boxes, so that 
box 1 has n balls and box 2 has the remaining N - n balls. The statistician 
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can observe the composition of box 1, represented by vector x of sample 
frequencies. The quantity of interest for the statistician is the vector 'I/) - x 
representing the composition of box 2. 

As in the bivariate case, we assume that U1: N is a finite sub-sequence 
in an exchangeable process and, therefore, any sub-sequence extracted from 
U 1: N has the same distribution of U 1: ". Hence, x = ui: "1 has the same 
distribution of the frequency vector for a sample of size n. 

As in the bivariate case, our objective is to find the distribution of x I 1/J. 
Again, using de Finetti theorem, there is a vector O $ 0 $ 1 , 1'0 = 1, such 
thatUf=0 uil0 and Pr(c(ui)=k)=01c. 
Theorem 8: As in the Multinomial case, the following results follow: 

• 'l/)10~Mnm(N,0) 

• xl0~Mnm(n,0) 

• ('1/J- x) I 0 ~ Mnm((N - n),0) 

• (iJ.,-x)IIxl0 

Using the results of the last section and following the same steps as in the 
Hy2 case in the first section, we obtain the following expression for m-variate 
Hypergeometric distribution, x" I [n, N, 1/1] ~ Hym(n, N, 1/1) : 

where O $ x" $ 1J, $ Nl , l'x" = n , 1'1/1 = N 

This is the vector representation of the Hypergeometric probability distrib
ution. 

xn I [n, xN] ~ Hy(n, N, xN) . 

Alternatively, we can write the more usual formula, 

Pr(x I 1/1) = 
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Theorem 9: The expectation and covariance of a random vector with Hy
pergeometric distribution, x ~ Hym(n, N, 1/J), are: 

E(x) = n,0 , Cov(x) = n; = 7 ( diag( ~) - ~ ® -0') where '¢ = t 7/J . 

Proof: Use that 

Cov(x") = nCov(u1)+n(n-l)Cov(u1 ,u2
) 

Cov(u1
) = E (u1 ® (u1

)') - E(u1
) ® E(u1

)' = diag(,0) --J@-0' 
Cov(u1,u2

) = E (u' ® (u2
)') - E(u1

) ® E(u2
)' 

The second term of the last two equations are equal, and the first term of 
the last equation is 

Algebraic manipulation yields the result. 
Note that, as in the order 2 case, the diagonal elements of Cov( u 1

) are 
positive, while the diagonal elements of Cov( u 1, u2

) are negative. In the off 
diagonal elements, the signs are reversed. 

5 Dirichlet Distribution 

In the second section we presented the multinomial distribution, Mnm(n, 0). 
In this section we present the Dirichlet distribution for the parameter 0. Let 
us first recall the univariate Poisson and Gamma distributions. 

A random variable has Gamma distribution, x I [a, b] ~ G(a, b), a, b > 0, 
if its distribution is continuous with density 

bu 
f(x I a, b) = r(a) xu-l exp(-bx) I X > 0 

The expectation and variance of this variate are 

a a 
E(x) = b and Var(x) = b2 
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Lemma 10: Reproductive property for the Gamma distribution. 
If n independent random variables x; I a;, b ~ G(a;, b), then 

l'x ~ G(l1a,b) 

Lemma 11: The Gamma distribution is conjugate to the Poisson distribu
tion. 
Proof: 
If y I>.~ Ps(>.) e >. has prior>. j a, b ~ G(a, b), then 

That is, the posterior distribution of>. is Gamma with parameters [a+y, b+ l]. 

Definition: Dirichlet distribution. 
A random vector 

y E Sm-I= {y E .nr IO~ y ~ l A l'y = 1} 

has Dirichlet distribution of order m with positive a E JR:" if its density is 

P ( I ) 
= y 6 (a - 1) 

r y a B(a) 

Note that Sm-l, the m - 1 dimensional Simplex, is the region of Rm 
subject to the "constraint", l'y = l. Hence, a point in the Simplex has only 
m - 1 "degrees of freedom". In this sense we say that the Direchlet distri
bution has a "singular" representation. It is possible to give a non-singular 
representation to the distribution [yi, ... Ym-i]', known as the Multivariate 
Beta distribution, but at the cost of obtaining a convoluted algebraic for
mulation that also loses the natural geometric interpretation of the singular 
form. 

The nonnalization factor for the Dirichlet distribution is 

B(a)=1 (y6(a-l))dy 
11ES,.. - 1 
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Lemma 12: Beta function. 
The normalization factor for the Dirichlet distribution defined above is the 
Beta function, defined as 

B( ) = rrk=l r(ak) 
a r(l'a) 

The proof is given at the end of this section. 

Theorem 13: Dirichlet as Conjugate of the Multinomial: 
If 8 ~ Dim(a) e x I 8 ~ Mnm(n, 8) then 

8 Ix~ Di,n(a + x) . 

Proof: 
We only have to remember that the Multinomial likelihood is proportional 

to 8 !::,, x, and that a Dirichlet prior is proportional to 8 !::,, (a -1). Hence, the 
posterior is proportional to 0 !::,, (x + a - 1). At the other hand, B(a + x) is 
the normalization factor, i.e., equal to the integral on 8 of 8 !::,, (x + a - l ), 
and so we have a Dirichlet density function, as defined above. 

Lemma 14: Dirichlet Moments. 
If 0 ~ Dim(a) and p E Jvm, then 

Proof: 

E(0.6p) = B(a + p) 
B(a) 

fe(8.6p)f(Ola)d8= B~a) /e(06p)(8.6(a-l))d8= 

1 / B~+~ 
B(a) le (O .6 (a+ P - l)) dO = B(a) 

Choosing the exponents, p, appropriately, we have 
Corollary 15: If 8 ~ Dim(a) , then 

E(8) 

Cov(O) 

- 1 = a:-a 
l'a 

1 
= l'a + l (diag(a) - a® a') 
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Theorem 16: Characterization of the Dirichlet by the Gamma: 
Let the components of the random vector x E '/R,m be independent variables 
with distribution G(ak, b). Then, the normalized vector 

y = +x ~ Dim(a) , l'x ~ Ga(l'a) and y ll l'x 
lx 

Proof: 

Consider the normalization, 

} / 

Y = -X t = 1 X X = ty t ' , 

as a transformation of variables. Note that one of the new variables, say 
Ym = t(l - Y1 ... - Ym-d, becomes redundant. 

The Jacobian matrix of this transformation is 

t 0 0 YI 

8 (x1,X2, · ·. Xm-1, Xm) 
0 t 0 Y2 

J = 8 (Yi, Y2, ... Ym-1, t) = 
0 0 t Ym-1 
-l -t -t l -y1 · · · -Ym-1 

By elementary operations (see appendix F) that add all rows to the last one, 
we obtain the LU factorization the Jacobian matrix, J = LU, where 

1 0 0 0 t 0 0 YI 
0 1 0 0 0 t 0 Y2 

L= and U = 
0 0 1 0 0 0 t Ym-1 
-1 -1 -1 1 0 0 0 1 

A triangular matrix determinant is equal to the product of the elements in 
its main diagonal, hence IJI = ILi IUI = 1 tm-1

. 

At the other hand, the joint distribution of x is 
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and the joint distribution in the new system of coordinates is 

g({y, ti) = IJI J ( x-1([y, t])) 
m ~ m ~ = tm-1 II --e-b:rk(xk)a.k-1 = tm-1 n --e-bty•(tyk/·-1 

k=I f(a1:) k=l r(ak) 

= I n k bl'a.e-b!tl'a-mtm- 1 = ( II k bl'ae-bttl'a.-1 I m (y )a.•-1) I m (y )a.k-1 ) 
\ k=l f(a1:) '.k=l f(ak) 

Hence, the marginal distribution of y = [Yi,, .. Y1:]' is 

g(y) = 1:g([y,t])dt 

= (ft (yk)a•-1) {°° bl'ae-bttl'a-ldt 
k=l r(a1:) lt=O 

= (ft (y1:)a•-1) r(I'a) = y b.. (a -1) 
,k=l r(ak) B(a) 

In the last passage, we have replaced the integral by the normalization factor 
of a Gamma density, Ga(l' a, b ). Hence, we obtain a density proportional to 
y b.. (a - 1), i.e., a Dirichlet, Q.E.D. 

In the last passage we also obtain the Dirichlet normalization factor, 
prooving the Beta function lemma. 

Lemma 17: Bipartition of Indices for the Dirichlet. 
Let 1 : t, t + 1 : m be a bipartition of the class index domain, 1 : m, of an order 
m Dirichlet, in two super-classes. Let y ~ Dim(a), and 

l 1 2 1 1· 1 'Y1 : t ·1 
Z = -1,--Yi: t , Z = l' Yt+l : m , W = I'y . 

Y1: t Yt+J:m . t+l.m . 

We than have, z1 ll z2 ll w and 

z1 ~ Dii(a1:1), z2 ~ Dim-t(ai+1:m) and w ~ Db ([ 
1
!'ai:t ·1) 
a1+1 :m . 

Proof: 
From the Dirichlet characterization by the Gamma we can imagine that the 
vector y is built by normalizing of a vector x, as follows, 

1 m 

y = l'xx, Xk ~ Ga(a1:,b), Il x,. 
k=l 
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Considering isolatetly each one of the super-classes, we build the vectors z1 

and z2 that are distributed as 

1 1 
z' = -,-Y1:1 = - 1--x, :1 ~ Di1{a1:1) 

1 Y1: t 1 x, :1 
1 1 

z2 = 
1
, Y1+1:m = l' X1+1:m ~ Dim-1(a1+1 :m) 
Y1+1:m X1+1 :m 

z1 IJ z2 , that are in turn independent of the partial sums 

Using again the theorem characterizing the Dirichlet by the Gamma dis
tribution for these two Gamma variates, we obtain the result, Q.E.D. 

We can generalize this result for any partition of the set of classes, as 
follows. If y ~ Dim{a) and Te is e. s-partition of them classes, the intra and 
extra super-class distributions are independent Dirichlets, as follows 

1 
Zr = -T. rPY ~ Dir,1 (,Pa) 

,y 
w = Ty ~ Di,(Ta) 

6 Dirichlet-Multinomial 

We say that a random vector x E Iv" I l'x = n has Dirichlet-Multinomial 
(DM) distribution with pare.meters n e a E Rm, iff 

_ B(a+x) { n) _ B(a+x) _l_ 
Pr(x In, a) - B(a) \ x - B(a) B(x) x 6.1 

Theorem 18: Characterization of the OM as a Dirichlet mixture of Multin<>
mials. 

Se 0 ~ Dim(a) and x I 0 ~ Mn(n, 0) then x I [n, a]~ DMm(n, a) 

Proof: 
The joint distribution of 0, x is proportional to 0 6. (a+ x - I), which 

integrated on 0 is B(a + x). Hence, multiplying by the joint distribution 
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constants, we have the marginal for x, Q.E.D. Therefore, we have also proved 
that the function DM is normalized, that is 

Pr(x) = /, ( n) (96x)B(l )96(a-1)d9 
,es ... -1 :r a 

= - 1-(n) { (96(x+a-1))d9 = B(x+a) (n) 
B(a) :r }9es,._1 B(a) x 

Theorem 19: Characterization of the DM by m Negative Binomials. 
Let a E N'.;, and x E Nm, be a vector whose components are independent 
random variables, ai. ~ NB(ai., 0). Then 

x I [l'x = n, al~ DMm(n, a) 

Proof: 

Pr(xl9,a) = Il ( 0 " + Xk - l) 0°•(1-9)"'• 
k=l X1t 

( , 19 ) ( l'a +
1
1
1
x'x -1 ) 91•"(l - 9)l'a Pr 1 x ,a = 

Then, 

Pr(xll'x=n,9,a) = 
Pr(x I a,0) 

Pr(l'x = n I 0) 

TI"'- ( ai. + X1c - 1 ) 
k-l Xk 

= -(-1-'' a'-+-l'_x ___ l_).,_ 
l'x 

Hence, 

Pr(x[I'x=n,0,a) = Pr(xll'x=n,a) 

= fl r(ak + xi.) I r(l'a + n) = B(a + x) ( n ) 
k=l x!r(a1,) r(l' a)n! B(a) X 

Theorem 20: The DM as Pseudo-Conjugate for the Hypergeometric 

Sex~ Hy,,.(n, N, 1/J) and 1/J ~ DMm(N, a) then (v,-x) Ix~ DM,,.(N -n, a) 

Proof: Using the properties of the Hypergeometric already presented, we 
have the independence relation, (1/1 - x) II x I 8. We can therefore use the 
Multinomial sample x \ 8 for updating the prior and obtain the posterior 

8lx ~ Dim(a+x) 
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Hence, the distribution of the non sampled pat of the population, 1/J - x, 
given the sample x, is a mixture of (1/J - x)0 buy the posterior for 0. By the 
characterization of the DM as a mixture of Multinomials by a Dirichlet, the 
theorem follows, i.e., 

(1/J- x) \ [0,x] ~ ('/Ji - x) 10 ~ Mn,...(N -n,0) } 
0\x~Dim(a + x) ::::} 

=l> ('IP - x) Ix~ Dim(N - n, a+ x) 

Lemma 21: DM Expectation and Covariance. 
If x ~ DMm(n, a) then 

Proof: 

E(x) = 
E(x ®x') 

= 
= 
= 
= 

= 

= 

Cov(x) = 

= 

= 

E(x) 

Cov(x) 

- 1 = na= -a I'a 
n(n + l'a) (d' (-) _ '°' _,) = l'a+l 1aga -a'O'a 

E9 ( E:r(x I 0)) = Eo(n0) = na 
Eo(E,,(x®x'l0)) 
Ee ( E(x 10) ® E(x j 0)' + Cov(x j 0) ) 

Eo ( n (diag(0) - 0 ® 0') + n20 ® 0') 

nEs (diag(0)) + n(n - 1) E9(0 ® 0') 

ndiag(a) + n(n - 1) ( E(0) ® E(0)' + Cov(0)) 

ndiag(a) + n(n - 1) (a:® a'+ -,-
1
- (diag(a) - a® a')) 

la+l 

ndiag(a) +n(n -1) ( -,-
1
-diag(a) + ~a® a') 

la+l la+l 

E(x ® x') - E(x) ® E(x)' = E{x ® x') - n2a ® a' 

( n(n-1)) ( I'a ' n + 
1
, 

1 
diag(a) + n(n - 1)-,-- - n2

} a.® a' 
a+ la+l / 

n(n+ l'a) 
l'a + l (diag(a) - a ® a') Q.E.D. 

Theorem 22: DM Class Bipartition 
Let l : t, t + l : m a bipartition of the index domain for the classes of an order 
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m DM, 1 : m, in two super-classes. Then, the following conditions (i) to (iii) 
are equivalent to condition (iv): 

i: 

ii-1: 

ii-2: 

iii: 

iv: 

[ 
n1 ., ~ DM2 { n, [ 

1
l'a1,t ] ) 

n2 . \ 1 at+l:m 

X ~ DMm(n,a) 

Proof: We only have to show that the joint distribution can be factored 
in this form. By the DM characterization as a mixture, we can write it 
as Dirichlet mixture of Multinomials. By the bipartition theorems, we can 
factor both, the Multinol!lials and the Dirichlet, so the theorem follows. 

7 Dirichlet of the Second Kind 

Consider y ~ Dim+1(a). The vector z = (1/y,,,.+1)Yi:m has Dirichlet of the 
Second Kind (D2K) distribution. 
Theorem 23: Characterization of D2K by the Gamma distribution. 
Using the characterization of the Dirichlet by the Gamma, we can write the 
D2K variate as a function of m + 1 independent Gamma variates, 

Similar to what we did for the Dirichlet (of the first kind), we can write 
the D2K distribution and its moments as: 

z.6(a1:m-l) 
f(z I a)= (1 + l'z)l'a B(a) 

E(z) = e = (1/0m+1)a1 :m 

Cov(z) = 1 

2 
(diag(e) + e ® e') 

Um+1-
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The logarithm of a Gamma variate is well approximated by a Normal 
variate, see Aitchison & Shen (1980). This approximation is the key to 
several efficient computational procedures, and motivates the computation 
of the first two moments of the log-D2K distribution. For that, we use the 
Digamma, t/J( ), and Trigamma fonction, 1/J'( ), defined as; 

d I"(a) , d 
t/)(a) = da ln r(a) = r(a) , 1/J (a) = da 'if,(a) 

Lemma 24: The expectation and covariance of a log-D2K variate are: 

Proof: Consider a Gamma variate, x ~ G(a, 1) : 

Taking the derivative with respect to parameter a, we have 

[
00 ell.-p(-x) f'(a) 

0 = lo 1n(x)x.,._1 f(a) dx - r2(a{(a) = E(ln(x)) - -rp(a) 

Taking the derivative with respect to parameter a a second time, 

1/J'(a) = ~E(ln(x)) = !!_ f"" ln(x) x"- 1 exp(-x)dx 
da da lo r(a) 

= koo (ln(x)2x"-1 ex~iajx) dx - ~f :; E(ln(x)) 

= E(ln(x)2) - E(In(x))2 = Var(ln(x)) 

The lemma follows from the D2K characterization by the Gamma. 

8 Examples 

Example 1: Let A, B be two attributes, each one of them present or absent 
in the elements of a population. Then each element of this population can 
be classified in exactly one of 22 = 4 categories 
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A B k I" 
present present 1 [l, 0, 0, OJ' 
present absent 2 [O, 1,0,0]' 
absent present 3 ID, 0, 1, O]' 
absent absent 4 [0,0,0, l]' 

According to the notation above, we can write x In, 8 ~ Mn4(n, 8). 
If 8 = (0.35, 0.20, 0.30, 0.15] and n = 10, then 

Pr{x10 
J n, 8) = ( ;~ ) (8 6 x10

) 

Hence, in order to compute the probability of x = [1, 2, 3, 4]' given 8, we use 
the expression above, obtaining 

Pr 

1 

[ ~ ] 1 [ ~:l~ . ' = 0.000888 

, 4 . . 0.15 . 1 

Example 2: If XI 8"' Mn3(10, 8), 8 = [0.20, 0.30, 0.15], one can conclude, 
using the result above, that 

E(X) = (2, 3, 1.5), 

while the covariance matrix is 

[ 

1.6 -0.6 -0.3 
E = -0.6 2.1 -0.45 

-0.3 -0.45 1.28 

Example 3: Assume that XI 8 ~ Mn3(10, 8), with 8 = [0.20, 0.30, 0.15], as 
in Example 2. Let us take Ao = {0, 1 }, A1 = {2, 3}. Then, 

Lxi I 0 = X2 + X3 I 8 ~ Mn1{l0,82 + 83) ' 
Ai 

or 
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Analogously, 

Xo + X1 I 0 ~ Mn1 (10, 0.55) , 

Xi + X310 ~ Mn1 (10, 0.35) , 

X2 IO ~ Mn1 (10, 0.30) . 

Note that, in general, if XI 8 ~ Mnk(n, 8) then X; I 0 ~ Mn1 (n, 0;), i = 
1, ... ,k. 
Example 4: 3x3 Contingency Tables. 
Assume that X [ 0 ~ Mna ( n, 8), as in a 3x3 Contingency Tables: 

Applying Theorem 5 we get 

This result tell us that 

with 

X11 X12 

X21 X22 

X31 X32 

X13 

X23 

X33 

x •• 
x2. 
X3e 

z. 1 x. 2 x.3 n 

0: = (8i1,0i2,0;3), 0~; = 1-0;., i = 1,2,3. 

We can now apply Theorem 6 to obtain the probability distribution of each 
row of the contingency table, conditioned on its sum, or conditioned on the 
sum of the other rows. We have 

with 

The next result expresses the distribution of X I 0 in term of the condi
tional distributions, of each row of the table, in its sum, and in term of the 
distribution of these sums. 
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Proposition 25: If X 10 ~ Mn,2_1(n,0), as in an r x r, contingency table, 
then P(X 10) can be written as 

P(X I 0) = [g P(X;i, ... , X;,r-1 IX;., 0)] P(X1o, ... , Xr-1• 10) . 

Proof: We have: 

P(Xl0) = 
r 0"• g:ru 9r...-

l rr _ i_ = I 11 · · · rr n. I n. I I 
i=l X;. Xu, ... Xrr • 

From Theorems 5 and 6, as in the last example, we recognize each of the first 
r factors above as the probabilities of each row in the table , conditioned on 
its sum, and recognize the last factor as the joint probability distribution of 
sum of these r rows. 

Corollary 26: If XI 0 ~ Mn,2_1(n, 0), as in Theorems 5 and 6, then 

r 

P(X I X1o, ..• , Xr-Jo, 0) = n P(X,1, ... ,X,,r-1 Ix,., 0) 
i=l 

and, knowing 0, X1o, ••. , Xr-lo, 

Proof: Since 

from Theorems 5 and 6 we get the proposed equality. 

The following result will be used next to express Theorem 7 as a canonical 
representation for P(X 10). 

Proposition 27: If X 10 ~ Mn, 2_1 (n, 0), as in Proposition, then a transfor
mation 
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given by 
>.11 = ~9

8 .. 
). - fu 

rl - e,.. 

, ... , 

> • • • I 

7/1 = 01o, 7/2 = 02., •·· , 7/r-1 = 0(,-1)• 

is a onto transformation defined in {O < 0u + ... + 0r,r-l < 1; 0 < 0ij < 1} 
over the unitary cube of dimension r 2 - 1. Moreover, the Jacobian of this 
transformation, t, is 

J r-1 r-1 r-1 (1 )r-1 = 7/ '1/1 ··· T/r-1 - T/1 - ,., - 7/r-1 · 

The proof is left as an exercise. 

Example 5: Let us examine the case of a 2 x 2 contingency table: 

n 1 

In order to obtain the canonical representation of P(X j 0) we use the trans
formation T in the case r = 2: 

hence, 

P(X10) = 

021 + 022 ' 
T/1 = 011 + 012 l 

= ( ::: ) >.ff1 (1 _ )'11)"'
2 

( ::: ) ).2~1 (1 _ >-:nr"n ( x~. ) 71:1o(1 _ T/t)z2° , 

0 < 011 < 1 ·' 0 < 021 < 1 ' 0 < 7/1 < 1 . 
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9 Functional Characterizations 

The objective of this section is to derive the general form of a homogeneous 
Markov random process. Theorem 28, by Reny and Aczel, states that such a 
process is described by a mixture of Poisson distributions. Our presentation 
follows Aczel (1966, sec. 2.1 and 2.3) and Janossy, Reny and Aczel (1950). It 
follows from the characterization of the Multinomial by the Poisson distribu
tion given in theorem 4, that Rcny--Aczel characterization of a homogeneous 
and local time point process is analogous to de Finetti characterization of an 
infinite exchangeable 0-1 process as a mixture of Bernoulli distributions, see 
for example Feller (1971, v.2, ch.VII, sec. 4). 

Cauchy's Functional Equations 

Cauchy's additive functional equation has the form 

f(x + y) = f(x) + J(y) 

The following argument from Cauchy (1821) shows that a continuous solution 
of this functional equation must have the form 

J(x) = ex 

Repeating the sum of the same argument, x, n times, we must have 
J(nx) = nf(x). If x = (m/n)t, then nx = mt and 

nf(x) = f(nx) = /(mt) = mf(t) hence, 

f (: t) = : f(t), 

talcing c = /(1), and x = m/n, it follows that f(x) = ex, over the rationals, 
x E Q. From the continuity condition for /(x), the last result must also be 
valid over the reals, x E JR. Q.E.D. 

Cauchy's multiplicative functional equation has the form 

f(x + y) = f(x)J(y) , 'r/x, y > 0 , f(x) ~ 0 . 

The trivial solution of this equation is J(x) = 0. Assuming f(x) > 0, we take 
the logarithm, reducing the multiplicative equation to the. additive equation, 

ln/(xv) = ln/(x) + ln/(y), hence, 

ln f(x) = ex , or /(x) = exp(cx) . 
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Homogeneous Discrete Markov Processes 

We seek the general form of a homogeneous discrete Markov process. Let 
wk(t) , for t ~ 0, be the probability of occurrence of exactly k events. Let us 
also assume the following hypotheses: 

Time Locality: If t1 $ t2 $ t3 $ t4 then, the number of events in ft 1, t2[ 
is independents of the number of events in [t3, t4 [. 

Time Homogeneity: The distribution for the number of events occurring 
in [t1, t2 { depends only on the interval length, t = t2 - t1 . 

From time locality and homogeneity, we can decompose the occurrence 
of no (zero) events in [O, t + u[ as , 

wo(t + u) = wo(t)wo(u) 

Hence, w0(t) must obey Cauchy's functional equation, and 

wo(t ) = exp(ct) = exp(->.t) . 

Since w0 (t) is a probability distribution, w0(t) :S 1, and >. > 0. 
Hence, v(t) = 1 - w0(t) = 1 - exp(- >.t), the probability of one or more 

events occurring before t > 0, must be the familiar exponential distribution. 
For k ~ l occurrences before t + u, the general decomposition relation is 

n 

Wn(t + u) = L Wk(t)wn-k(v.) 
k=O 

Theorem 28: (Reny-Aczel) The general (non trivial) solution of this 
this system of functional equations has the form: 

w1c(t) = e-,\t L IT (cjlr' I A = f Cj • 

< r,k> j=l Tj! j=l 

where the index set < r, k, n > is defined as 

< r, k, n >= { r1, r2, . . . r1c I r1 + 21·2 . .. + krk = n} 

and < r, k > is a shorthand for < r, k, k >. 
Proof. By induction: The theorem is true for k = 0. Let us assume, 

as induction hypothesis, that it is true to k < n. The last equation in the 
recursive system is 

n 

Wn(t + u) = L w1c(t)wn-k(u) = 
k: O 
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n-1 
Wn(t)e-.Xu + Wn(u)e-.Xt + e--X(t+u) L L ~ Ilk (e;tY' Ilk (c;u)•J 

~ r ·1 s ·1 
k=l <r,k> <a,n-k> i=l •· j=I ,-

Defining 

the recursive equation takes the form 

and can be solved as a general Cauchy's equation, that is, 

From the last equation and the definition off n(t), we get the expression of 
wn(t) as in theorem 28. The constant ,\ is chosen so that the distribution is 
normalized. 

The general solution given by theorem 28 represents a composition (mix
ture) of Poisson processes, where an event in the j-the process in the com
position corresponds to the simultaneous occurrence of j single events in 
the original homogeneous Markov process. If we impose the following rarity 
condition, the general solution is reduced to a mixture of ordinary Poisson 
processes. 

Rarity Condition: The probability that a.n event occurs in a short time 
at least once is approximately equal to the probability that it occurs exactly 
once, that is, the probability of simultaneous occurrences is zero. 

10 Final Remarks 

This work is in memory of Professor D Basu who was the supervisor of the 
first author PhD dissertation, the starting point for the research in Bayesian 
analysis of categorical data presented here. A long list of papers follows 
Basu and Pereira (1982). We have chosen a few that we recommend for 
additional reading: Albert {1985), Gunel (1984), Irony, Pereira and Tiwari 
(2000), Paulino and Pereira (1992, 1995) and Walker (1996). To make the 
analysis more realistic, extensions and mixtures of Dirichlet also were con
sidered. For instance see Albert and Gupta (1983), Carlson (1977), Dickey 
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(1983), Dickey, Jiang and Kadane (1987), and Jiang, Kadane and Dickey 
(1992). 

Usually the more complex distributions are used to realistic represent sit
uations for which the strong properties of Dirichlet seems to be not realistic. 
For instance, in a 2 x 2 contingency table, the first line to be conditional 
independent of the second line given the marginal seems to be unrealistic in 
some situations. Mixtures of Dirichlet in some cases take care of the situation 
as shown by Albert and Gupta (1983). 

The properties presented here are also important in non-parametric Bayesian 
statistics in order to understand the Dirichlet process for the competitive risk 
survival problem. See for instance Salinas-Torres, Pereira and Tiwari (1997, 
2002). In order to be historically correct we cannot forget the important book 
of Wilks, published in 1962, where one can find the definition of Dirichlet 
distribution. 

The material presented in this essay adopts a singular representation for 
several distributions, as in Pereira and Stem (2005). This representation is 
unusual in the statistical literature, but the singular representation makes it 
simpler to extend and generalize the results and greatly facilitates numerical 
and computational implementations. 

We end this essay presenting the Reny-Aczel characterization of the Pois
son mixture. This result can be interpreted as an alternative to de Finetti 
characterization theorem introduced in Finetti (1937). Using the characteri
zation of binomial distributions by Poisson processes conditional arguments, 
as given by Theorem 4, and Blackwell (minimal) sufficiency properties dis
cussed in Basu and Pereira (1983), Section 9 leads in fact to a De Finetti 
characterization for Binomial distributions. Also, if one recall the indifference 
principle (Mendel, 1989) the finite version of Finetti argument can simply be 
obtained. See also Irony and Pereira (1994) for the motivation of these ar
guments. The consideration of Section 9 could be viewed as a very simple 
formulation of the binomial distribution finite characterization. 

Bibliography 

- J .H.Albert (1985). Bayesian Estimation Methods for Incomplete Two-Way 
Contingency Tables using Prior Belief of Association, in Bayesian Statistics 
2:589-602, Bernardo, JM; DeGroot, MH; Lindley, DV; Smith, AFM eds. 
Amsterdam, North Holland. 

32 



- J .H.Albert, A.K.Gupta (1983). Bayesian Estimation Methods for 2x2 Con
tingency Tables using Mixtures of Dirichlet Distributions. JASA 78, 831-41. 
- J.Aitchison, S.M.Shen (1980). Logistic-Normal Distributions: Some Prop
erties and Uses. Biometrika, 67, 261-72. 
- J .Aitchison (2003). The Statistical Analysis for Compositional Data (2nd 
edition). Caldwell: Blackburn Press. 
- D.Basu, C.A.B.Pereira (1982). On the Bayesian Analysis of Categorical 
Data: The Problem of Nonresponse. JSPI 6, 345-62. 
- D.Basu, C.A.B.Pereira (1983). A Note on Blackwell Sufficiency and a 
Shibinsky Characterization of Distributions. Sankhya A, 45,1, 99-104. 
- B.de Finetti (1947). La prevision: Des lois logiques, ses sourses subjectives. 
Annalles de l'Institut Henri Poincare 7,1-68. English translation: Foresight: 
Its logical laws, its subjective sources, in Kiburg and Smoker Eds. (1963), 
Studies in Subjective Probability, p.93-158, New York: Wiley. 
- J.M.Dickey (1983) . Multiple Hypergeometric Functions: Probabilistic In
terpretations and Statistical Uses. JASA, 78, 628-37. 
- J.M.Dickey, T .J.Jiang, J .B.Kadane (1987). Bayesian Methods for Categor
ical Data. JASA 82, 773-81. 
- W.Feller (1957). An Introduction to Probability Theory and Its Applications 
(2nd ed.), V.I. New York: Wiley. 
- W .Feller (1966) . An Introduction to Probability Theory and Its Applications 
(2nd ed.), V.II. New York, Wiley. 
- E.Gunel (1984). A Bayesian Analysis of the Multinomial Model for a Di
chotomous Response with Non-Respondents. Communications in Statistics 
- Theory and Methods, 13, 737-51. 
- T .Z.Irony, C.A.B.Pereira (1994). Motivation for the Use of Discrete Distri-
butions in Quality Assurance. Test, 3,2, 181-93. 
- T.Z.Irony, C.A.B.Pereira, R.C.Tiwari (2000). Analysis of Opinion Swing: 
Comparison of Two Correlated Proportions. The American Statistician, 54, 
57-62. 
- T.J.Jiang, J .B.Kadane, J.M.Dickey (1992). Computation of Carsons Mul
tiple Hipergeometric Function R for Bayesian Applications. Journal of Com
putational and Graphical Statistics, 1, 231-51. 
- J.B.Kadane (1985). Is Victimization Chronic? A Bayesian Analysis of 
Multinomial Missing Data. Journal of Econometrics, 29, 47-67. 
- R.J.A.Little, D.B.Rubin (1987). Statistical Analysis with Missing Data. 
New York: Wiley. 
- J .J .Martin (1975). Bayesian decision and probe/ms and Markov Chains. 

33 



- M.B.Mendel (1989). Development of Bayesian Parametric Theory with 
Application in Control. PhD Thesis, MIT, Cambridge: MA. 
- C.D.M.Paulino, C.A.B.Pereira (1992). Bayesian Analysis of Categorical 
Data Informatively Censored. Communications in Statistics - Theory and 
Methods, 21, 2689-705. 
- C.D.M.Paulino, C.A.B.Pereira (1995). Bayesian Methods for Categorical 
Data under Informative General Censoring. Biometrika, 82,2, 439-446. 
- C.A.B.Pereira, J.M.Stern (205). Inferencia Indutiva com Dados Discretos: 
Uma Visao Genuinamente Baycsiana. COMCA-2005. Chile: Universidad 
de Antofagasta. 
- V.H.S.Salinas-Torres, C.A.B.Pereira, R.C.Tiwari (1997). Convergence of 
Dirichlet Measures Arising in Context of Bayesian Analysis of Competing 
Risks Models. J. Multivariate Analysis, 62,1, 24-35. 
- V.H.S.Salinas-Torres, C.A.B.Pereira, R.C.Tiwari (2002). Bayesian Non
parametric Estimation in a Series System or a Competing-Risks Model. J.of 
Nonparametric Statistics, 14,4, 449-58. 
- P.J .Srnith, E.Gunel (1984). Practical Bayesian Approaches to the Analysis 
of 2x2 Contingency Table with Incompletely Categorized Data. Communi
cation of Statistics - Theory and Methods, 13, 1941-63. 
- J.M.Stern, JM (2007). Cognitive Constructivism and the Epistemic Signif
icance of Sharp Statistical Hypotheses. 2007 Summer Program, Institute of 
Mathematics and Statistics, University of Sao Paulo, Brazil. 
- G.L.Tian, K.W.Ng, Z.Geng (2003). Bayesian Computation for Contingency 
Tables with Incomplete Cells-Counts. Stntistica Sinica, 13, 189-206. 
- S.Walker(l986). A Bayesian Maximum Posteriori Algorithm for Categorical 
Data under Informative General Censoring. The Statistician, 45, 293-8. 
- S.S.Wilks (1962). Mathematical Statistics. NY: Wiley. 

34 



RELA T6RIOS TECNICOS 

DEPARTAMENTO DE CIENCIA DA COMPUTA<;AO 
Ins ti tuto de Matem.itica e Estatf stica da USP 

A listagem conlendo os relat6rios l«nicos anteriores a 2003 poder4 ser consultada ou 
solicitada A Secretaria do Departamento, pessoalmente, por carta ou e-mail 
(mac@ime.usp.br). 

Cristina G. Fernandes, Edward L. Green and Arnaldo Mandel 
FROM MONOMIALS TO WORDS TO GRAPHS 
RT-MAC -2003-01 - fevereiro 2003, 33pp. 

Andrei Goldchleger, M~cio Rodrigo de Freitas Carneiro e Fabio Kon 
GRADE: UM PADRAO ARQUTTETURAL 
RT- MAC - 2003-02 - mar~o 2003, 19pp. 

C. E. R. Alves, E. N. C4ceres and S. W. Song 
SEQUENTIAL AND PARAUEL ALGORITHMS FOR THE ALL-SUBSTRINGS 
LONGEST COMMON SUBSEQUENCE PROBLEM 
RT- MAC - 2003-03 - abril 2003, 53 pp. 

Said Sadique Adi and Carlos Eduardo Ferreira 
A GENE PREDICTION ALGORITHM USING THE SPUCED ALIGNMENT PROBLEM 
RT- MAC - 2003-04 - maio 2003, l 7pp. 

Eduardo Laber, Renato Carrno, and Yoshiharu Kohayakawa 
QUERYING PRICED INFORMATION IN DATABASES: THE CONJUNTIVE CASE 
RT-MAC-2003-05-julho 2003, 19pp. 

E. N. C4ceres, F. Dehne, H. Mongelli, S. W. Song and J.L. Szwarcfiter 
A COARSE-GRAINED PARALLEL ALGORITHM FOR SPANNING TREE AND 
CONNECTED COMPONENTS 
RT-MAC - 2003-06- agosto 2003, 15pp. 

E. N. C4ceres, S. W. Song and J.L. Szwarcfiter 
PARALLEL ALGORTTMS FOR MAXIMAL CLIQUES IN CIRCLE GRAPHS AND 
UNRESTRICTED DEPTH SEARCH 
RT-MAC - 2003-07 - agosto 2003, 24pp. 

Julio Michael Stem 
PARACONSISTENT SENSTTlVITY ANALYSIS FOR BAYESIAN SIGNIFICANCE TESTS 
RT-MAC - 2003-08 - dezembro 2003, 15pp. 

mailto:mac@ime.usp.br


Lourival Paulino da Silva e FJ.l.vio Soares Correa da Silva 
A FORMAL MODEL FOR THE FIF11/ DISCIPLINE 
RT-MAC-2003-09 - dezcmbro 2003, 75pp. 

S. Zacks and J. M. Stem 
SEQUENTIAL ESTIMATION OF RATIOS, WITH APPLICATION TO BAYESIAN 
ANALYSIS 
RT-MAC-2003-IO- dezembro 2003, 17pp. 

Alfredo Goldman, F.ibio Kon, Paulo J. S. Silva and Joe Yoder 
BEING EXTREME IN THE CT.ASSROOM: EXPERIENCES TEACHING XP 
RT-MAC - 2004-01-janeiro 2004, I 8pp. 

Cristina Gomes Fernandes 
MULTILENGTH SINGLE PAIR SHORTEST DISJOINT PATHS 
RT-MAC 2004-02- fevereiro 2004, !8pp. 

Luciana Brasil Rebelo 
f..RVORE GENEAL6GICA DAS ONTOLOGIAS 
RT- MAC 2004-03 - fevereiro 2004, 22pp. 

Marcelo Finger 
TOWARDS POLYNOMIAL APPROXIMATIONS OF FUU PROPOSITIONAL LOGIC 
RT- MAC 2004-04 - abril 2004, 15pp. 

Renato Carmo, Tomas Feder, Yoshiharu Kohayakawa, Eduardo Laber, Rajeev Motwani, 
Liadan 0 ' Callaghan, Rina Panigrahy, Dilys Thomas 
A TWO- Pl.AYER GAME ON GRAPH FACTORS 
RT-MAC 2004-05 - Julho 2004 

Paulo J. S. Silva, Carlos Humes Ir. 
RESCALED PROXIMAL METHODS FOR UNEARLY CONSTRAINED CONVEX 
PROBLEMS 
RT-MAC 2004-06-setembro 2004 

Julio M. Stem 
A CONSTRUCTIVIST EPISTEMOLOGY FOR SHARP STATISTICAL HYPOTHESES IN 
SCIENTIFIC RESEARCH 
RT-MAC 2004-07- outubro 2004 

Arlindo Fl.l.vio da Concci~iio, Fabio Kon 
0 USO DO MECANISMO DE PARES DE PACOTES SOBRE REDES IEEE 802.J lb 
RT-MAC 2004-08 - outubro 2004 



Carlos H. Cardonha, Marcel K. de Carli Silva e Cristina G. Fernandes 
COMPUTA<;AO QUANT/CA: COMPLEX/DADE E ALGORITMOS 
RT- MAC 2005-01 - janeiro 2005 

C.E.R. Alves, E, N. Caceres and S. W. Song 
A BSPICGM ALGORITHM FOR FINDING ALL MAXIMAL CONTIGUOS 
SUBSEQUENCES OF A SEQUENCE OF NUMBERS 
RT- MAC- 2005-02- janeiro 2005 

Aavio S . Correa da Silva 
WHERE AM I? WHERE ARE YOU? 
RT- MAC- 2005-03 - marc,o 2005, l 5pp. 

Chri~tian Paz-Trillo, Renata Wassennann and Fabio Kon 
A PATTERN-BASED TOOL FOR LEARNING DESIGN PATTERNS 
RT- MAC - 2005-04 - abril 2005, l 7pp. 

Wagner Borges and Julio Michael Stem 
ON THE TRUTH VALUE OF COMPLEX HYPOTHESIS 
RT- MAC - 2005-05 - mnio 2005, 15 pp. 

Jose de Ribamar Braga Pinheiro Jr., Alexandre Cesar Tavares Vida and Fabio Kon/ 
IMPLEMENTA<;AO DE UM REPOSITOR/0 SEGURO DE APLICA<;OES BASEADO 
EM GSS - PROJETO TAQUARA 
RT- MAC- 2005-06 - agosto 2005, 21 pp. 

Helves Domingues and Marco A. S. Netto 
THE DYNAMICDEPENDENCE MANAGER PATTERN 
RT- MAC 2005-07 - dezembro 2005, 12 pp. 

Marco A. S. Netto, Alfredo Goldman and Pierre-Fram;:ois Dutot 
A FLEXIBLE ARCHITECTURE FOR SCHEDULING PARALLEL APUCATIONS ON 
OPPORTUNISTIC COMPUTER NETWORKS 
RT- MAC 2006-01-Janeiro 2006, 18 pp. 

Julio M. Stem 
COGNJTNE CONSTRUCTJVISM AND LANGUAGE 
RT - MAC 2006-02 - Mnio 2006, 67 pp. 

Arlinda Flavia da Conceic,lio and Fabio Kon 
EXPERJMENTS AND ANALYSIS OF VOICE OVER IEEE 802.J J INFRASTRUCITJRED 
NETWORKS 
RT - MAC 2006-03 - Junho 2006, 



Giuliano Mega and Fabio Kon 
DISTRIBUTED SYMBOLIC DEBUGGING FOR THE COMMON PROGRAMMER 
RT- MAC 2006-04 - Junho 2006 

Pedro J. Fernandez, Julio M. Siem, Carlos Alberto de Braganya Pereira and Marcelo S. 
Laureno 
A NEW MEDIA OPTMIZ£R BASED ON THE MEAN-VARIANCE MODEL 

RT - MAC 2006-05 - Junho 2006, 24 pp. 

P. Feofiloff, C.G. Fernandes, C.E. Ferreira and J.C. Pina, 
"A NOTE ON JOHNSON, MINKOFF AND PHILLIPS' ALGORITHM FOR THE 
PRIZE-COUECTING STEINER TREE PROBLEM" 
RT-MAC2006-06- Setembro 2006, 11 pp. 

Julio Michael Stem 
DECOUPLING. SPARSITY, RANDOMIZATION, AND OBJECFIVE BAYESIAN 
INFERENCE 
RT-MAC2006-07 - Novembro 2006, 36 pp. 

Cristiane Maria Sato, Yoshiharu Kohayakawa 
ENTROPJA DE GRAFOS 
RT - MAC2006-08 - Dezembro 2006 , 44 pp. 

Julio M. Stem 
LANGUAGE, METAPHOR AND METAPHYSICS: THE SUBJECTNE SIDE OF 
SCIENCE 
RT-MAC-2006-09 - Dczembro 2006, 35 pp. 

Thiago A. de Andre and Paulo J. S. Silva 
EXACT PENALTIES FOR KKT SYSTEMS ASSOCJATED TO VARIATIONAL 
INEQUALITIES 
RT-MAC-2007-01- Marva 2007, 21 pp. 

Flivio Soares Correa da Silva, Rogerio Panigassi and Carlos Hulot 
LEARNING MANAGEMENT SYSTEMS DESIDERATA FOR COMPETITIVE 
UNNERSfflES 
RT-MAC-2007-02- Maio 2007, 12 pp. 

Alexandre Freire da Silva, Fabio Kon, Alfredo Goldman 
77-JREE ANTI-PRACTICES WHILE TEACHING AGILE METHODS 
RT-MAC-2007-03 - Maio 2007, 20pp. 

Silvio do Lago Pereira e Leliane Nunes de Barros 
PLANEJAMENTO BASEADO EM PROCESSOS DE MARKOV/ANOS 
RT-MAC-2007-04- Maio 2007, 17pp. 



Silvio do Lago Pereira e Lehane Nunes de Barros 
DMGRAMASDEDEC~AOBINARM 
RT-MAC-2007-05 - Maio 2007, 16pp. 

Carlos Alberto de Bragan~a Pereira and Julio Michael Stem 
AN ESSAY ON THE ROLE OF BERNOULU AND POISSON PROCESSES IN 
BAYESIAN STATISTICS 
RT-MAC-2007-06-Junho 2007, 39pp. 




