DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Relatório Técnico

RT-MAC-2007-06
AN ESSAY ON THE ROLE OF BERNOULII AND POISSON PROCESSES IN BAYESIAN STATISTICS

Carlos alberto de Bragança Pereira and Jullo Michael.Stern

Junho de 2007

An Essay on the Role of Bernoulli and Poisson Processes in Bayesian Statistics

Carlos Alberto de Bragança Pereira Julio Michael Stern
Institute of Mathematics and Statistics, University of São Paulo, Brazil. capereira@ime.usp.br jstern@ime.usp.br
Tech.Rep. MAC-2007-06, June 11, 2007.

Abstract

The objective of this essay is to present the properties of some discrete distributions derived from the Bernoulli and Poisson processes, together with some associated discrete and continuous distributions, like the Multinomial and the Dirchlet. These processes and distributions appear naturally in counting processes, and are the most natural tool for treating discrete or categorical data. A great variety of statistical problems admit discretized models, this is also a way of introducing non parametric solutions.

1 Introduction and Notation

This essay presents important properties of the distributions used for categorical data analysis. Regardless of the population size being known or unknown, or the specific observational stopping rule, the Bernoulli Processes generates the sampling distributions considered. On the other hand, the Gamma distribution generates the prior and posterior distributions obtained: Gamma, Gamma-Poisson, Dirichlet, and Dirichlet-Multinomial. The Poisson Processes as generator of sampling distributions is also considered.

The generation form of the discrete sampling distributions presented in Section 2 is, in fact, a characterization method of such distributions. If one recalls that all the distribution classes being mixed are complete classes and are Blackwell sufficient for the Bernoulli processes, the mixing distributions are unique. This characterization method is completely described in Basu and Pereira (1983).

Section 9 describes the Reny-Aczel characterization of the Poisson distribution. Although it could be thought as a de Finetti type characterization this characterization is based on alternative requirements. While de Finetti chaparcterization is based on a permutable infinite 0-1 process, Reny-Aczek characterization is based on a homogeneous Markov process in a finite interval, generating finite discrete Markov Chains. Using Reny-Aczel characterization, together with Theorem 4, one can obtain a characterization of Multinomial distributions.

Section 7 describes the Dirichlet of Second Kind. In this section we also show how to use a multivariate normal approximation to the logarithm of a random vector distributed as Dirichlet of Second Kind, and a log-normal approximation to a Gamma distribution, see Aitchison and Shen (1980). In many examples of the authors' consulting practice these approximations proved to be a powerful modeling tool, leading to efficient computational procedures.

The development of the theory in this essay is self contained, seeking a unified treatment of a large variety of problems, including finite and infinite populations, contingency tables of arbitrary dimension, deficiently categorized data, logistic regressions, etc. These models also present a way of introducing non parametric solutions.

The singular representation adopted is unusual in statistical texts. This singular representation makes it simpler to extend and generalize the results and greatly facilitates numerical and computational implementation. In this
essay, corollaries, lemmas, propositions and theorems are numbered sequentially.

Let us first define some matrix notation. The operator $r: s: t$, to be read from r to t with step s, indicates the vector $[r, r+s, r+2 s, \ldots t]$ or the corresponding index domain. $r: t$ is a short hand for $r: 1: t$. Usually we write a matrix, A, with subscript row index and superscript column index. Hence, A_{i}^{j} is the element in the i-th row and j-th column of matrix A. Index vectors can be used to build a matrix by extracting from a larger matrix a given sub-set of rows and columns. For example, $A_{1: m / 2}^{n / 2: n}$ is the northeast block, i.e. the block with the first rows and last columns, from A. Alternatively, we may write a matrix with row and column indices in parenthesis. Hence, we may write the northeast block as $A(1: m / 2, n / 2: n)$. The next example shows a more general case of this notation,

$$
\begin{gathered}
A=\left[\begin{array}{lll}
11 & 12 & 13 \\
21 & 22 & 23 \\
31 & 32 & 33
\end{array}\right], r=\left[\begin{array}{ll}
1 & 3
\end{array}\right], s=\left[\begin{array}{lll}
3 & 1 & 2
\end{array}\right], \\
A_{r}^{s}=A(r, s)=\left[\begin{array}{lll}
13 & 11 & 12 \\
33 & 31 & 32
\end{array}\right] .
\end{gathered}
$$

$V>0$ is a positive definite matrix. The Diagonal operator, diag, if applied to a square matrix, extracts the main diagonal as a vector, and if applied to a vector, produces the corresponding diagonal matrix.

$$
\operatorname{diag}(A)=\left[\begin{array}{c}
A_{1}^{1} \\
A_{2}^{2} \\
\vdots \\
A_{n}^{n}
\end{array}\right], \operatorname{diag}(a)=\left[\begin{array}{cccc}
a_{1} & 0 & \ldots & 0 \\
0 & a_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n}
\end{array}\right]
$$

A list of matrices can be indexed with left subscript or superscript indices. In case of block matrices, these left indices indicate the row and column block position, like in the following example,

$$
A=\left[\begin{array}{cccc}
{ }_{1}^{1} A & { }_{1}^{2} A & \ldots & { }_{1}^{s} A \\
{ }_{2}^{1} A & { }_{2}^{2} A & \ldots & { }_{2}^{s} A \\
\vdots & \vdots & \ddots & \vdots \\
{ }_{r}^{1} A & { }_{r}^{2} A & \ldots & { }_{r}^{s} A
\end{array}\right]
$$

Hence, ${ }_{\tau}{ }_{i}^{j}{ }_{i}^{j}$ is the element in the i-th row and j-th column of the block situated at the r-th block of rows and s-th block of columns of matrix A. Alternatively, we may write block indices in braces, that is, we may write ${ }_{r}^{s} A_{i}^{j}$ as $A\{r, s\}(i, j)$.

The Vec operator stacks the columns of the argument matrix in a single vector. The Kronecker product, also known as direct or tensor product, is defined as follows,

$$
\operatorname{Vec}\left(U^{1: n}\right)=\left[\begin{array}{c}
u^{1} \\
u^{2} \\
\vdots \\
u^{n}
\end{array}\right], A \otimes B=\left[\begin{array}{cccc}
A_{1}^{1} B & A_{1}^{2} B & \ldots & A_{1}^{n} B \\
A_{2}^{1} B & A_{2}^{2} B & \ldots & A_{2}^{n} B \\
\vdots & \vdots & \ddots & \vdots \\
A_{m}^{1} B & A_{m}^{2} B & \ldots & A_{m}^{n} B
\end{array}\right]
$$

We now introduce some concepts and notations related to the permutation and partition of indices. Let $1: m$ be an index domain or, in this essay context, a classification index. Let $p=\sigma(1: m)$ be a permutation of these indices. The corresponding (Row) Permutation Matrix is

$$
P=I_{p}=\left[\begin{array}{c}
I_{p(1)} \\
\vdots \\
I_{p(m)}
\end{array}\right] \text {, hence , } P\left[\begin{array}{c}
1 \\
\vdots \\
m
\end{array}\right]=\left[\begin{array}{c}
p(1) \\
\vdots \\
p(m)
\end{array}\right]
$$

A permutation vector, p, and a termination vector, t, define a partition of the m original classes in s super-classes:

$$
\begin{aligned}
& {\left[\begin{array}{c}
p(1) \\
\vdots \\
p(t(1))
\end{array}\right],\left[\begin{array}{c}
p(t(1)+1) \\
\vdots \\
p(t(2))
\end{array}\right] \cdots\left[\begin{array}{c}
p(t(s-1)+1) \\
\vdots \\
p(t(s))
\end{array}\right]} \\
& \text { where } t(0)=0<t(1)<\ldots<t(s-1)<t(s)=m
\end{aligned}
$$

We define the corresponding permutation and partition matrices, P and T, as

$$
\begin{gathered}
P=I_{p(1: m)}=\left[\begin{array}{c}
{ }_{1} P \\
{ }_{2} P \\
\vdots \\
{ }_{s} P
\end{array}\right], \quad{ }_{r} P=I_{p(t(r-1)+1: t(r))}, \\
T_{r}=1^{\prime}\left({ }_{r} P\right) \text { and } T=\left[\begin{array}{c}
T_{1} \\
\vdots \\
T_{s}
\end{array}\right]
\end{gathered}
$$

These matrices facilitate writing functions of a given partition, like

- The class indices in the super-class r

$$
{ }_{r} P(1: m)={ }_{r} P\left[\begin{array}{c}
1 \\
\vdots \\
m
\end{array}\right]=\left[\begin{array}{c}
p(t(r-1)+1) \\
\vdots \\
p(t(r))
\end{array}\right]
$$

- The number of classes in the super class r

$$
T_{r} 1=t(r)-t(r-1)
$$

- A sub-matrix with the row indices in super-class r

$$
{ }_{r} P A=\left[\begin{array}{c}
A_{p(t(r-1)+1)} \\
\vdots \\
A_{p(t(r))}
\end{array}\right]
$$

- The summation of the rows of a submatrix with row indices in superclass r

$$
T_{r} A=1^{\prime}\left({ }_{r} P A\right)
$$

- The rows of a matrix, added over each super-class

$$
T A=\left[\begin{array}{c}
T_{1} A \\
\vdots \\
T_{s} A
\end{array}\right]
$$

Note that a matrix T represents a partition of m-classes into s-superclasses if T has dimension $s \times m, T_{h}^{j} \in\{0,1\}$ and T has orthogonal rows. The element T_{h}^{j} indicates if the class $j \in 1: m$ is in super-class $h \in 1: s$.

We introduce the following notation for observation matrices, and respective summation vectors:

$$
U=\left[u^{1}, u^{2}, \ldots\right], U^{1: n}=\left[u^{1}, u^{2}, \ldots u^{n}\right], x^{n}=U^{1: n} 1=\sum_{j=1}^{n} u^{j} .
$$

The tilde accent indicates some form of normalization like, for example, $\tilde{x}=$ $\left(1 / 1^{\prime} x\right) x$.

Lemma 1: If $u^{1}, \ldots u^{n}$ are i.i.d random vectors,

$$
x=U^{1: n} 1 \Rightarrow \mathrm{E}(x)=n \mathrm{E}\left(u^{1}\right) \text { and } \operatorname{Cov}(x)=n \operatorname{Cov}\left(u^{1}\right)
$$

The first result is trivial. For the second result, we only have to remember the transformation properties of for the expectation and covariance operators by a linear operation on their argument,

$$
E(A Y+b)=A E(Y)+b, \quad \operatorname{Cov}(A Y+b)=A \operatorname{Cov}(Y) A^{\prime}
$$

and write

$$
\begin{aligned}
& \operatorname{Cov}(x)=\operatorname{Cov}\left(U^{1: n} 1\right) \\
& =\operatorname{Cov}\left(\left(1^{\prime} \otimes I\right) \operatorname{Vec}\left(U^{1: n}\right)\right)=\left(1^{\prime} \otimes I\right)\left(I \otimes \operatorname{Cov}\left(u^{1}\right)\right)(1 \otimes I) \\
& =\left(1^{\prime} \otimes \operatorname{Cov}\left(u^{1}\right)\right)(1 \otimes I)=n \operatorname{Cov}\left(u^{1}\right)
\end{aligned}
$$

2 The Bernoulli Process

Let us consider a sequence of random vectors u^{1}, u^{2}, \ldots where, $\forall u^{i}$ can assume only two values

$$
I^{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { or } I^{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { where } I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

representing success or failure. That is, u^{i} can assume the value of any column of the identity matrix, I. We say that u^{i} is of class $k, c\left(u^{i}\right)=k$, iff $u^{i}=I^{k}, k \in[1,2]$.

Also assume that (in your opinion), this sequence is exchangeable, that is, if $p=[p(1), p(2), \ldots p(n)]$ is a permutation of $[1,2, \ldots n]$, than, $\forall n, p$,

$$
\operatorname{Pr}\left(u^{1}, \ldots u^{n}\right)=\operatorname{Pr}\left(u^{p(1)}, \ldots u^{p(n)}\right)
$$

Just from this exchangeability constraint, that can be interpreted as saying that the index labels are non informative, de Finetti Theorem establishes the existence of an unknown vector

$$
\theta \in \Theta=\left\{\left.0 \leq \theta=\left[\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right] \leq 1 \right\rvert\, 1^{\prime} \theta=1\right\}
$$

such that, conditionally on $\theta, u^{1}, u^{2}, \ldots$ are mutually independent, and the conditional probability of $\operatorname{Pr}\left(u^{i}=I^{k} \mid \theta\right)$ is θ_{k}, i.e.

$$
\left(u^{1} \amalg u^{2} \amalg \ldots\right) \mid \theta \text { or } \coprod_{i=1}^{\infty} u_{i} \mid \theta, \text { and } \operatorname{Pr}\left(u^{i}=I^{k} \mid \theta\right)=\theta_{k} .
$$

Vector θ is characterized as the limit of proportions

$$
\theta=\lim _{n \rightarrow \infty} \frac{1}{n} x^{n}, \quad x^{n}=U^{1: n} 1=\sum_{j=1}^{n} u^{j} .
$$

Conditionally on θ, the sequence u^{1}, u^{2}, \ldots receives the name of Bernoulli process. As we shall see, many well known discrete distributions can be obtained from transformations of this process.

The expectation and covariance (conditionally on θ) of any vector in the sequence are:

- $\mathrm{E}\left(u^{i}\right)=\theta$

- $\operatorname{Cov}\left(u^{i}\right)=\mathrm{E}\left(u^{i} \otimes\left(u^{i}\right)^{\prime}\right)-\mathrm{E}\left(u^{i}\right) \otimes \mathrm{E}\left(\left(u^{i}\right)^{\prime}\right)=\operatorname{diag}(\theta)-\theta \otimes \theta^{\prime}$

When the summation domain $1: n$, is understood, we may use the relaxed notation x instead of x^{n}. We also define the Delta operator, or "pointwise power product" between two vectors of same dimension: Given θ, and x, $n \times 1$,

$$
\theta \Delta x \equiv \prod_{i=1}^{n}\left(\theta_{i}\right)^{x_{i}}
$$

A stopping rule, δ, establishes, for every $n=1,2, \ldots$, a decision of observing (or not) u^{n+1}, after the observations $u^{1}, \ldots u^{n}$.

For a good understanding of this text, it is necessary to have a clear interpretation of conditional expressions like $x^{n} \mid n$ or $x_{2}^{n} \mid x_{1}^{n}$. In both cases we are referring to a unknown vector, x^{n}, but with a different partial information. In the first case, we know n, and therefore we know the sum of components, $x_{1}^{n}+x_{2}^{n}=n$; however, we know neither component x_{1}^{n} nor x_{2}^{n}. In the second case we only know the first component, of x^{n}, x_{1}^{n}, and do not know the second component, x_{2}^{n}, obviously we also do not know the sum, $n=x_{1}^{n}+x_{2}^{n}$. Just pay attention: We list what we know to the right of the bar and, (unless we have some additional information) everything that can not be deduced from this list is unknown.

The first distribution we are going to discuss is the Binomial. Let $\delta(n)$ be the stopping rule where n is the pre-established number of observations. The (conditional) probability of the observation sequence $U^{1: n}$ is

$$
\operatorname{Pr}\left(U^{1: n} \mid \theta\right)=\theta \Delta x^{n}
$$

The summation vector, x^{n}, has Binomial distribution with parameters n and θ, and we write $x^{n} \mid[n, \theta] \sim \operatorname{Bi}(n, \theta)$. When n (or $\delta(n)$) is implicit in the context we may write $x \mid \theta$ instead of $x^{n} \mid[n, \theta]$. The Binomial distribution has the following expression:

$$
\operatorname{Pr}\left(x^{n} \mid n, \theta\right)=\binom{n}{\dot{x}^{n}}\left(\theta \Delta x^{n}\right)
$$

where

$$
\binom{n}{x}=\frac{\Gamma(n+1)}{\Gamma\left(x_{1}+1\right) \Gamma\left(x_{2}+1\right)}=\frac{n!}{x_{1}!x_{2}!} \text { and } n=1^{\prime} x
$$

A good exercise for the reader is to check that expectation vector and the covariance matrix of $x^{n} \mid[n, \theta]$ have the following expressions:

$$
\mathrm{E}\left(x^{n}\right)=n \theta \text { and } \operatorname{Cov}\left(x^{n}\right)=n(\theta \triangle 1)\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

The second distribution we discuss is the Negative Binomial. Let $\delta\left(x_{1}^{n}\right)$ be the rule establishing to stop at observation u^{n} when obtaining a preestablished number of x_{1}^{n} successes. The random variable x_{2}^{n}, the number of failures he have when we obtain the required x_{1}^{n} successes, is called a Negative Binomial with parameters x_{1}^{n} e θ. It is not hard to prove that the Negative Binomial distribution $x_{2}^{n} \mid\left[x_{1}^{n}, \theta\right] \sim \mathrm{NB}\left(x_{1}^{n}, \theta\right)$, has expression, $\forall x_{2}^{n} \in \mathbb{N}$,

$$
\left.\operatorname{Pr}\left(x^{n} \mid x_{1}^{n}, \theta\right)=\frac{x_{1}^{n}}{n}\binom{n}{x^{n}}\left(\theta \Delta x^{n}\right)=\theta_{1} \operatorname{Pr}\left(\left(x^{n}-I^{1}\right) \mid(n-1), \theta\right)\right) .
$$

Note that, from the definition this distribution, x_{1}^{n} is a positive integer number. Nevertheless, we can extend the definition above for any real positive value a, and still obtain a probability function. For this, we use

$$
\sum_{j=0}^{\infty} \frac{\Gamma(a+j)}{\Gamma(a) j!}(1-\pi)^{j}=\pi^{-a}, \forall a \in[0, \infty[\text { and } \pi \in] 0,1[
$$

The reader is asked to check the last equation, as well as the following expressions for the expectation and variance of x_{2}^{n} :

$$
\mathrm{E}\left(x_{2}^{n} \mid x_{1}^{n}, \theta\right)=\frac{x_{1}^{n} \theta_{2}}{\theta_{i}} \text { and } \operatorname{Var}\left(x_{2}^{n} \mid x_{1}^{n}, \theta\right)=\frac{x_{1}^{n} \theta_{2}}{\left(\theta_{1}\right)^{2}} .
$$

In the special case of $\delta\left(x_{1}^{n}=1\right)$, the Negative Binomial distribution is also known as the Geometric distribution with parameter θ. If a random variables are independent and identically distributed (i.i.d.) as a geometric distribution with parameter θ, then the sum of these variables has Negative Binomial distribution with parameters a and θ.

The third distribution studied in this essay is the Hypergeometric. Going back to the original sequence, u^{1}, u^{2}, \ldots, assume that a first observer knows the first N observations, while a second observer knows only a subsequence of $n<N$ of these observations. Since the original sequence, u^{1}, u^{2}, \ldots, is exchangeable, we can assume, without loss of generality, that the subsequence known to the second observer is the subsequence of the first n observations, $u^{1}, \ldots u^{n}$. Using de Finetti theorem, we have that x^{n} e $x^{N}-x^{n}=U^{n+1: N_{1}}$ are conditionally independent, given θ. That is, $x^{n} \amalg\left(x^{N}-x^{n}\right) \mid \theta$. Moreover, we can write

$$
\begin{gathered}
x^{n}\left|[n, \theta] \sim \operatorname{Bi}(n, \theta), x^{N}\right|[N, \theta] \sim \operatorname{Bi}(N, \theta) \text { and } \\
\left(x^{N}-x^{n}\right) \mid[(N-n), \theta] \sim \operatorname{Bi}(N-n, \theta) .
\end{gathered}
$$

Our goal is to find the distribution function of $x^{n} \mid x^{N}$. Note that x^{N} is sufficient for $U^{1: N}$ given θ, and x^{n} is sufficient for $U^{1: n}$. Moreover $x^{n} \mid\left[n, x^{N}\right]$ has the same distribution of $x^{n} \mid\left[n, x^{N}, \theta\right]$. Using the basic rules of probability calculus and the properties above, we have that

$$
\begin{aligned}
& \operatorname{Pr}\left(x^{n} \mid n, x^{N}, \theta\right) \\
& \quad=\frac{\operatorname{Pr}\left(x^{n}, x^{N} \mid n, N, \theta\right)}{\operatorname{Pr}\left(x^{N} \mid n, N, \theta\right)}=\frac{\operatorname{Pr}\left(x^{n},\left(x^{N}-x^{n}\right) \mid n, N, \theta\right)}{\operatorname{Pr}\left(x^{N} \mid n, N, \theta\right)} \\
& \quad=\frac{\operatorname{Pr}\left(x^{n} \mid n, N, \theta\right) \operatorname{Pr}\left(x^{N}-x^{n} \mid n, N, \theta\right)}{\operatorname{Pr}\left(x^{N} \mid n, N, \theta\right)} .
\end{aligned}
$$

Hence, $x^{n} \mid\left[n, x^{N}\right]$ has distribution function

$$
\operatorname{Pr}\left(x^{n} \mid n, x^{N}\right)=\frac{\binom{n}{x^{n}}\binom{N-n}{x^{N}-x^{n}}}{\binom{N}{x^{N}}}
$$

$$
\text { where } 0 \leq x^{n} \leq x^{N} \leq N 1,1^{\prime} x^{n}=n, 1^{\prime} x^{N}=N
$$

This is the vector representation of the Hypergeometric probability distribution.

$$
x^{n} \mid\left[n, x^{N}\right] \sim \operatorname{Hy}\left(n, N, x^{N}\right) .
$$

The reader is asked to check the following expressions for the expectation and (conditional) covariance of $x^{n} \mid\left[n, N, x^{N}\right]$, and covariance of u^{i} and u^{j}, $i, j \leq n$:

$$
\begin{gathered}
\mathrm{E}\left(x^{n}\right)=\frac{n}{N} x^{N} \text { and } \operatorname{Cov}\left(x^{n}\right)=\frac{n(N-n)}{(N-1)}\left(x^{N} \Delta 1\right)\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
\quad \operatorname{Cov}\left(u^{i}, u^{j} \mid x^{N}\right)=\frac{1}{(N-1) N^{2}}\left(x^{N} \Delta 1\right)\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]
\end{gathered}
$$

We finish this section presenting the derivation of the Beta-Binomial distribution. Let us assume that the first observer observed x_{2}^{n} failures, until observing a pre-established number of x_{1}^{n} successes. A second observer makes more observations, observing x_{2}^{N} failures until completing the pre-established number of x_{1}^{N} successes, $x_{1}^{n}<x_{1}^{N}$.

Since x_{1}^{n} and x_{1}^{N} are pre-established, we can write

$$
\begin{aligned}
x_{2}^{N} \mid \theta & \sim \mathrm{NB}\left(x_{1}^{N}, \theta\right), \quad x_{2}^{n} \mid \theta \sim \mathrm{NB}\left(x_{1}^{n}, \theta\right) \\
\left(x_{2}^{N}-x_{2}^{n}\right) \mid \theta & \sim \mathrm{NB}\left(x_{1}^{N}-x_{1}^{n}, \theta\right) \text { and } x_{2}^{n} \amalg\left(x_{2}^{N}-x_{2}^{n}\right) \mid \theta .
\end{aligned}
$$

As before, our goal is to describe the distribution of $x_{2}^{n} \mid\left[x_{1}^{n}, x^{N}\right]$. If one notices that $\left[x_{1}^{n}, x^{N}\right]$ is sufficient for $\left[x^{n},\left(x^{N}-x^{n}\right)\right]$, with respect to θ, the problem becomes similar to the Hypergeometric case, and one can obtain

$$
\begin{gathered}
\operatorname{Pr}\left(x_{2}^{n} \mid x_{1}^{n}, x^{N}\right)=\frac{x_{2}^{N}!\Gamma\left(x_{1}^{N}\right)}{\Gamma\left(x_{2}^{N}+x_{1}^{N}\right)} \frac{\Gamma\left(x_{2}^{n}+x_{1}^{n}\right)}{x_{2}^{n}!\Gamma\left(x_{1}^{n}\right)} \frac{\Gamma\left(x_{2}^{N}-x_{2}^{n}+x_{1}^{N}-x_{1}^{n}\right)}{\left(x_{2}^{N}-x_{2}^{n}\right)!\Gamma\left(x_{1}^{N}-x_{1}^{n}\right)}, \\
x_{2}^{n} \in\left\{0,1, \ldots, x_{2}^{N}\right\} .
\end{gathered}
$$

This is the distribution function of a random variable called Beta Binomial with parameters x_{1}^{n} e x^{N}.

$$
x_{2}^{n} \mid\left(x_{1}^{n}, x^{N}\right) \sim \mathrm{BB}\left(x_{1}^{n}, x^{N}\right)
$$

The properties of this distribution will be studied in the general case of the Dirichlet-Multinomial, in the following sections.

Generalized categories for $k>2$ can be represented by the orthonormal base $I^{1}, I^{2}, \ldots I^{k}$, i.e., the columns of the k-dimensional identity matrix. The Multinomial and Hypergeometric multivariate distributions, presented in the next sections, are distributions derived of this basic generalization.

3 Multinomial Distribution

Let $u^{i}, i=1,2, \ldots$ be random vectors with possible results in the set of columns of the m-dimensional identity matrix, $I^{k}, k \in 1: m$. We say that u^{i} is of class $k, c\left(u^{i}\right)=k$, iff $u^{i}=I^{k}$.

Let $\theta \in[0,1]^{m}$ be the vector of probabilities for an observation of class k in a m-variate Bernoulli process, i.e.,

$$
\operatorname{Pr}\left(u^{i}=I^{k} \mid \theta\right)=\theta_{k}, 0 \leq \theta \leq 1, \mathbf{1}^{\prime} \theta=1
$$

Like in the last section, let U

$$
U=\left[u^{1}, u^{2}, \ldots\right] \text { and } x^{n}=U^{1: n} 1
$$

Definition: If the knowledge of θ makes the vectors u^{i} independent, then the (conditional) distribution of x^{n} given θ is the Multinomial distribution of order m with parameters n e θ, given by

$$
\operatorname{Pr}\left(x^{n} \mid n, \theta\right)=\binom{n}{x^{n}}\left(\theta \Delta x^{n}\right)
$$

where

$$
\binom{n}{x} \equiv \frac{\Gamma(n+1)}{\Gamma\left(x_{1}+1\right) \ldots \Gamma\left(x_{m}+1\right)}=\frac{n!}{x_{1}!\ldots x_{m}!} \text { and } n=1^{\prime} x .
$$

We represent the m-Multinomial distribution writing

$$
x^{n} \mid[n, \theta] \sim \mathrm{Mn}_{m}(n, \theta) .
$$

When $m=2$, we have the binomial case.
Let us now examine some properties of the Multinomial distribution.
Lemma 2: If $x \mid \theta \sim \operatorname{Mn}_{m}(n, \theta)$ then the (conditional) expectation and covariance of x are

$$
\mathrm{E}(x)=n \theta \text { and } \operatorname{Cov}(x)=n\left(\operatorname{diag}(\theta)-\theta \otimes \theta^{\prime}\right)
$$

Proof: Analogous to the binomial case.
The next result presents a characterization of the Multinomial in terms of the Poisson distribution.
Lemma 3: Reproductive property of the Poisson distribution.

$$
x_{i} \sim \operatorname{Ps}\left(\lambda_{i}\right) \Rightarrow 1^{\prime} x \mid \lambda \sim \operatorname{Ps}\left(1^{\prime} \lambda\right)
$$

that is, the sum of (independent) Poisson variates is also Poisson.
Theorem 4: Characterization of the Multinomial by the Poisson.
Let $x=\left[x_{1}, \ldots, x_{m}\right]^{\prime}$ be a vector with independent Poisson distributed components with parameters in the known vector $\lambda=\left[\lambda_{1}, \ldots, \lambda_{m}\right]^{\prime}>0$. Let n be a positive integer. Then, given λ,

$$
x \mid\left[n=1^{\prime} x, \lambda\right] \sim \operatorname{Mn}_{m}(n, \theta) \text { where } \theta=\frac{1}{1^{\prime} \lambda} \lambda
$$

Proof: The joint distribution of x, given λ is

$$
\operatorname{Pr}(x \mid \lambda)=\prod_{k=1}^{m} \frac{e^{-\lambda_{k} \lambda_{i}^{x_{k}}}}{x_{k}!} .
$$

Using the Poisson reproductive property,

$$
\begin{aligned}
& \operatorname{Pr}\left(x \mid \mathbf{1}^{\prime} x=n, \lambda\right) \\
& \quad=\frac{\operatorname{Pr}\left(\mathbf{1}^{\prime} x=n \wedge x \mid \lambda\right)}{\operatorname{Pr}\left(\mathbf{1}^{\prime} x=n \mid \lambda\right)}=\delta\left(n=\mathbf{1}^{\prime} x\right) \frac{\operatorname{Pr}(x \mid \lambda)}{\operatorname{Pr}\left(\mathbf{1}^{\prime} x=n \mid \lambda\right)}
\end{aligned}
$$

The following results state important properties of the Multinomial distribution. The proof of these properties is simple, using the characterization of the Multinomial by the Poisson, and the Poisson reproductive property.

Theorem 5: Multinomial Class Partition

Let $1: m$ be the index domain for the classes of a order m Multinomial distribution. Let T be a partition matrix breaking the m-classes into s -super-classes. Let $x \sim \operatorname{Mn}_{m}(n, \theta)$, then $y=T x \sim \operatorname{Mn}_{s}(n, T \theta)$.

Theorem 6: Multinomial Conditioning on the Partial Sum.
If $x \sim \mathrm{Mn}_{m}(n, \theta)$, then the distribution of part of the vector x conditioned on its sum has Multinomial distribution, having as parameter the corresponding
part of the original (normalized) parameters. In more detail, conditioning on the t first components, we have:

$$
x_{1: t} \left\lvert\,\left(\mathbf{1}^{\prime} x_{1: t}=j\right) \sim \mathrm{Mn}_{t}\left(j, \frac{1}{1^{\prime} \theta_{1: t}} \theta_{1: t}\right)\right. \text { where } 0 \leq j \leq n
$$

Theorem 7: Multinomial-Binomial Decomposition.
Using the last two theorems, if $x \sim \operatorname{Mn}_{m}(n, \theta)$,

$$
\begin{aligned}
& \operatorname{Pr}(x \mid n, \theta)= \\
& =\sum_{j=0}^{n} \operatorname{Pr}\left(x_{1: t} \mid j, \frac{1}{1^{\prime} \theta_{1: t}} \theta_{1: t}\right) \\
& \quad \operatorname{Pr}\left(x_{t+1: m} \mid(n-j), \frac{1}{1^{\prime} \theta_{t+1: m}} \theta_{t+1: m}\right) \\
& \quad \operatorname{Pr}\left(\left.\left[\begin{array}{c}
j \\
(n-j)
\end{array}\right] \right\rvert\, n,\left[\begin{array}{c}
1^{\prime} \theta_{1: t} \\
1^{\prime} \theta_{t+1: m}
\end{array}\right]\right)
\end{aligned}
$$

Analogously, we could write the Multinomial-Trinomial decomposition for a three-partition of the class indices in three super-classes. More generally, we could also write the m-nomial- s-nomial decomposition for the partition of the m class indices into s super-classes.

4 Multivariate Hypergeometric Distribution

In the first section we have shown how an Hypergeometric variate can be generated from a Bernoulli process. The natural generalization of this result is obtained considering a Multinomial process. As in the last section, we say that u^{i} is of class $k, c\left(u^{i}\right)=k$, iff $u^{i}=I^{k}$.

We take a sample of size n from a finite population of size $N(>n)$, that is partitioned into m classes. The population frequencies (number of elements in each category) are represented by $\left[\psi_{1}, \ldots \psi_{m}\right]$, hence $N=1^{\prime} \psi$. Based on the sample, we want to make an inference on $\psi . x_{k}$ é is the sample frequency of class k.

One way of describing this problem is to consider an urn with N balls of m different colors, indexed by $1, \ldots m$. ψ_{k} is the number of balls of color k. Assume that the N balls are separated into two smaller boxes, so that box 1 has n balls and box 2 has the remaining $N-n$ balls. The statistician
can observe the composition of box 1 , represented by vector x of sample frequencies. The quantity of interest for the statistician is the vector $\psi-x$ representing the composition of box 2 .

As in the bivariate case, we assume that $U^{1: N}$ is a finite sub-sequence in an exchangeable process and, therefore, any sub-sequence extracted from $U^{1: N}$ has the same distribution of $U^{1: n}$. Hence, $x=U^{1: n} 1$ has the same distribution of the frequency vector for a sample of size n.

As in the bivariate case, our objective is to find the distribution of $x \mid \psi$. Again, using de Finetti theorem, there is a vector $0 \leq \theta \leq 1,1^{\prime} \theta=1$, such that $\amalg_{j=0}^{N} u^{j} \mid \theta$ and $\operatorname{Pr}\left(c\left(u^{j}\right)=k\right)=\theta_{k}$.
Theorem 8: As in the Multinomial case, the following results follow:

- $\psi \mid \theta \sim \mathrm{Mn}_{m}(N, \theta)$
- $x \mid \theta \sim \mathrm{Mn}_{\mathrm{m}}(n, \theta)$
- $(\psi-x) \mid \theta \sim \operatorname{Mn}_{m}((N-n), \theta)$
- $(\psi-x) \amalg x \mid \theta$

Using the results of the last section and following the same steps as in the Hy_{2} case in the first section, we obtain the following expression for m-variate Hypergeometric distribution, $x^{n} \mid[n, N, \psi] \sim \operatorname{Hy}_{m}(n, N, \psi)$:

$$
\operatorname{Pr}\left(x^{n} \mid n, \psi\right)=\frac{\binom{n}{x^{n}}\binom{N-n}{\psi-x^{n}}}{\binom{N}{\psi}}
$$

$$
\text { where } 0 \leq x^{n} \leq \psi \leq N 1,1^{\prime} x^{n}=n, 1^{\prime} \psi=N
$$

This is the vector representation of the Hypergeometric probability distribution.

$$
\left.x^{n}\right\}\left[n, x^{N}\right] \sim \operatorname{Hy}\left(n, N, x^{N}\right) .
$$

Alternatively, we can write the more usual formula,

$$
\operatorname{Pr}(x \mid \psi)=\frac{\binom{\psi_{1}}{x_{1}}\binom{\psi_{2}}{x_{2}} \cdots\binom{\psi_{m}}{x_{m}}}{\binom{N}{n}}
$$

Theorem 9: The expectation and covariance of a random vector with Hy pergeometric distribution, $x \sim \operatorname{Hy}_{m}(n, N, \psi)$, are:

$$
\mathrm{E}(x)=n \tilde{\psi}, \operatorname{Cov}(x)=n \frac{N-n}{N-1}\left(\operatorname{diag}(\tilde{\psi})-\tilde{\psi} \otimes \tilde{\psi}^{\prime}\right) \text { where } \tilde{\psi}=\frac{1}{N} \psi .
$$

Proof: Use that

$$
\begin{aligned}
\operatorname{Cov}\left(x^{n}\right) & =n \operatorname{Cov}\left(u^{1}\right)+n(n-1) \operatorname{Cov}\left(u^{1}, u^{2}\right) \\
\operatorname{Cov}\left(u^{1}\right) & =\mathrm{E}\left(u^{1} \otimes\left(u^{1}\right)^{\prime}\right)-\mathrm{E}\left(u^{1}\right) \otimes \mathrm{E}\left(u^{1}\right)^{\prime}=\operatorname{diag}(\tilde{\psi})-\tilde{\psi} \otimes \tilde{\psi}^{\prime} \\
\operatorname{Cov}\left(u^{1}, u^{2}\right) & =\mathrm{E}\left(u^{1} \otimes\left(u^{2}\right)^{\prime}\right)-\mathrm{E}\left(u^{1}\right) \otimes \mathrm{E}\left(u^{2}\right)^{\prime}
\end{aligned}
$$

The second term of the last two equations are equal, and the first term of the last equation is

$$
\mathrm{E}\left(u_{i}^{1} u_{j}^{2}\right)=\left\{\begin{array}{l}
\frac{\psi_{i}}{N} \frac{\psi_{i}-1}{N-1} \text { if } i=j \\
\frac{\psi_{i}}{N} \frac{\psi_{j}}{N-1} \text { if } i \neq j
\end{array}\right.
$$

Algebraic manipulation yields the result.
Note that, as in the order 2 case, the diagonal elements of $\operatorname{Cov}\left(u^{1}\right)$ are positive, while the diagonal elements of $\operatorname{Cov}\left(u^{1}, u^{2}\right)$ are negative. In the off diagonal elements, the signs are reversed.

5 Dirichlet Distribution

In the second section we presented the multinomial distribution, $\mathrm{Mn}_{m}(n, \theta)$. In this section we present the Dirichlet distribution for the parameter θ. Let us first recall the univariate Poisson and Gamma distributions.

A random variable has Gamma distribution, $x \mid[a, b] \sim G(a, b), a, b>0$, if its distribution is continuous with density

$$
f(x \mid a, b)=\frac{b^{a}}{\Gamma(a)} x^{a-1} \exp (-b x), x>0
$$

The expectation and variance of this variate are

$$
E(x)=\frac{a}{b} \text { and } \operatorname{Var}(x)=\frac{a}{b^{2}}
$$

Lemma 10: Reproductive property for the Gamma distribution. If n independent random variables $x_{i} \mid a_{i}, b \sim G\left(a_{i}, b\right)$, then

$$
1^{\prime} x \sim G\left(1^{\prime} a, b\right)
$$

Lemma 11: The Gamma distribution is conjugate to the Poisson distribution.

Proof:

If $y \mid \lambda \sim \operatorname{Ps}(\lambda)$ e λ has prior $\lambda \mid a, b \sim G(a, b)$, then

$$
\begin{aligned}
& f(\lambda \mid y, a, b) \propto L(\lambda \mid y) f(\lambda) \\
& \quad=\exp (-\lambda) \frac{\lambda^{y}}{y!} \frac{b^{a}}{\Gamma(a)} \lambda^{a-1} \exp (-b \lambda) \propto \lambda^{y+a-1} \exp (-(b+1) \lambda)
\end{aligned}
$$

That is, the posterior distribution of λ is Gamma with parameters $[a+y, b+1]$.
Definition: Dirichlet distribution.
A random vector

$$
y \in \mathcal{S}_{m-1} \equiv\left\{y \in \mathbb{R}^{m} \mid 0 \leq y \leq 1 \wedge 1^{\prime} y=1\right\}
$$

has Dirichlet distribution of order m with positive $a \in \mathbb{R}^{m}$ if its density is

$$
\operatorname{Pr}(y \mid a)=\frac{y \Delta(a-1)}{B(a)}
$$

Note that \mathcal{S}_{m-1}, the $m-1$ dimensional Simplex, is the region of \mathbb{R}^{m} subject to the "constraint", $1^{\prime} y=1$. Hence, a point in the Simplex has only $m-1$ "degrees of freedom". In this sense we say that the Direchlet distribution has a "singular" representation. It is possible to give a non-singular representation to the distribution $\left[y_{1}, \ldots y_{m-1}\right]^{\prime}$, known as the Multivariate Beta distribution, but at the cost of obtaining a convoluted algebraic formulation that also loses the natural geometric interpretation of the singular form.

The normalization factor for the Dirichlet distribution is

$$
B(a) \equiv \int_{y \in S_{m-1}}(y \Delta(a-1)) d y
$$

Lemma 12: Beta function.
The normalization factor for the Dirichlet distribution defined above is the Beta function, defined as

$$
B(a)=\frac{\prod_{k=1}^{m} \Gamma\left(a_{k}\right)}{\Gamma\left(1^{\prime} a\right)}
$$

The proof is given at the end of this section.
Theorem 13: Dirichlet as Conjugate of the Multinomial:
If $\theta \sim \operatorname{Di}_{m}(a)$ e $x \mid \theta \sim \operatorname{Mn}_{m}(n, \theta)$ then

$$
\theta \mid x \sim \operatorname{Di}_{m}(a+x) .
$$

Proof:

We only have to remember that the Multinomial likelihood is proportional to $\theta \Delta x$, and that a Dirichlet prior is proportional to $\theta \Delta(a-1)$. Hence, the posterior is proportional to $\theta \Delta(x+a-1)$. At the other hand, $B(a+x)$ is the normalization factor, i.e., equal to the integral on θ of $\theta \Delta(x+a-1)$, and so we have a Dirichlet density function, as defined above.

Lemma 14: Dirichlet Moments. If $\theta \sim \operatorname{Di}_{m}(a)$ and $p \in \mathbb{N}^{m}$, then

$$
\mathrm{E}(\theta \Delta p)=\frac{B(a+p)}{B(a)}
$$

Proof:

$$
\begin{gathered}
\int_{\theta}(\theta \Delta p) f(\theta \mid a) d \theta=\frac{1}{B(a)} \int_{\theta}(\theta \Delta p)(\theta \Delta(a-1)) d \theta= \\
\frac{1}{B(a)} \int_{\Theta}(\theta \Delta(a+p-1)) d \theta=\frac{B(a+p)}{B(a)}
\end{gathered}
$$

Choosing the exponents, p, appropriately, we have
Corollary 15: If $\theta \sim \operatorname{Di}_{m}(a)$, then

$$
\begin{aligned}
\mathrm{E}(\theta) & =\tilde{a} \equiv \frac{1}{1^{\prime} a} a \\
\operatorname{Cov}(\theta) & =\frac{1}{1^{\prime} a+1}\left(\operatorname{diag}(\tilde{a})-\tilde{a} \otimes \tilde{a}^{\prime}\right)
\end{aligned}
$$

Theorem 16: Characterization of the Dirichlet by the Gamma:
Let the components of the random vector $x \in \mathbb{R}^{m}$ be independent variables with distribution $G\left(a_{k}, b\right)$. Then, the normalized vector

$$
y=\frac{1}{1^{\prime} x} x \sim \mathrm{Di}_{m}(a), 1^{\prime} x \sim \mathrm{Ga}\left(\mathbf{1}^{\prime} a\right) \text { and } y \amalg 1^{\prime} x
$$

Proof:
Consider the normalization,

$$
y=\frac{1}{t} x, t=1^{\prime} x, x=t y
$$

as a transformation of variables. Note that one of the new variables, say $y_{m} \equiv t\left(1-y_{1} \ldots-y_{m-1}\right)$, becomes redundant.

The Jacobian matrix of this transformation is

$$
J=\frac{\partial\left(x_{1}, x_{2}, \ldots x_{m-1}, x_{m}\right)}{\partial\left(y_{1}, y_{2}, \ldots y_{m-1}, t\right)}=\left[\begin{array}{ccccc}
t & 0 & \cdots & 0 & y_{1} \\
0 & t & \cdots & 0 & y_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & t & y_{m-1} \\
-t & -t & \cdots & -t & 1-y_{1} \cdots-y_{m-1}
\end{array}\right]
$$

By elementary operations (see appendix F) that add all rows to the last one, we obtain the LU factorization the Jacobian matrix, $J=L U$, where

$$
L=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
-1 & -1 & \cdots & -1 & 1
\end{array}\right] \text { and } U=\left[\begin{array}{ccccc}
t & 0 & \cdots & 0 & y_{1} \\
0 & t & \cdots & 0 & y_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & t & y_{m-1} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right]
$$

A triangular matrix determinant is equal to the product of the elements in its main diagonal, hence $|J|=|L||U|=1 t^{m-1}$.

At the other hand, the joint distribution of x is

$$
f(x)=\prod_{k=1}^{m} \mathrm{Ga}\left(x_{k} \mid a_{k}, b\right)=\prod_{k=1}^{m} \frac{b^{a_{k}}}{\Gamma\left(a_{k}\right)} e^{-b x_{k}}\left(x_{k}\right)^{a_{k}-1}
$$

and the joint distribution in the new system of coordinates is

$$
\begin{aligned}
& g([y, t])=|J| f\left(x^{-1}([y, t])\right) \\
& \quad=t^{m-1} \prod_{k=1}^{m} \frac{b^{a_{k}}}{\Gamma\left(a_{k}\right)} e^{-b x_{k}}\left(x_{k}\right)^{a_{k}-1}=t^{m-1} \prod_{k=1}^{m} \frac{b^{a_{k}}}{\Gamma\left(a_{k}\right)} e^{-b t y_{k}}\left(t y_{k}\right)^{a_{k}-1} \\
& \quad=\left(\prod_{k=1}^{m} \frac{\left(y_{k}\right)^{a_{k}-1}}{\Gamma\left(a_{k}\right)}\right) b^{1^{\prime} a} e^{-b t} t^{1^{\prime} a-m} t^{m-1}=\left(\prod_{k=1}^{m} \frac{\left(y_{k}\right)^{a_{k}-1}}{\Gamma\left(a_{k}\right)}\right) b^{1^{\prime} a} e^{-b t} t^{1^{\prime} a-1}
\end{aligned}
$$

Hence, the marginal distribution of $y=\left[y_{1}, \ldots y_{k}\right]^{\prime}$ is

$$
\begin{aligned}
g(y) & =\int_{t=0}^{\infty} g([y, t]) d t \\
& =\left(\prod_{k=1}^{m} \frac{\left(y_{k}\right)^{a_{k}-1}}{\Gamma\left(a_{k}\right)}\right) \int_{t=0}^{\infty} b^{1^{\prime} a} e^{-b t} t^{1^{\prime} a-1} d t \\
& =\left(\prod_{k=1}^{m} \frac{\left(y_{k}\right)^{a_{k}-1}}{\Gamma\left(a_{k}\right)}\right) \Gamma\left(1^{\prime} a\right)=\frac{y \Delta(a-1)}{B(a)}
\end{aligned}
$$

In the last passage, we have replaced the integral by the normalization factor of a Gamma density, $\mathrm{Ga}\left(\mathbf{1}^{\prime} a, b\right)$. Hence, we obtain a density proportional to $y \Delta(a-1)$, i.e., a Dirichlet, Q.E.D.

In the last passage we also obtain the Dirichlet normalization factor, prooving the Beta function lemma.

Lemma 17: Bipartition of Indices for the Dirichlet.
Let $1: t, t+1: m$ be a bipartition of the class index domain, $1: m$, of an order m Dirichlet, in two super-classes. Let $y \sim \operatorname{Di}_{m}(a)$, and

$$
z^{1}=\frac{1}{1^{\prime} y_{1: t}} y_{1: t}, z^{2}=\frac{1}{1^{\prime} y_{t+1: m}} y_{t+1: m}, w=\left[\begin{array}{c}
1^{\prime} y_{1: t} \\
1^{\prime} y_{t+1: m}
\end{array}\right]
$$

We than have, $z^{1} \amalg z^{2} \amalg w$ and

$$
z^{1} \sim \operatorname{Di}_{t}\left(a_{1: t}\right), z^{2} \sim \operatorname{Di}_{m-t}\left(a_{t+1: m}\right) \text { and } w \sim \operatorname{Di}_{2}\left(\left[\begin{array}{c}
1^{\prime} a_{1: t} \\
1^{\prime} a_{t+1: m}
\end{array}\right]\right)
$$

Proof:

From the Dirichlet characterization by the Gamma we can imagine that the vector y is built by normalizing of a vector x, as follows,

$$
y=\frac{1}{1^{\prime} x} x, x_{k} \sim \mathrm{Ga}\left(a_{k}, b\right), \coprod_{k=1}^{m} x_{k}
$$

Considering isolatetly each one of the super-classes, we build the vectors z^{1} and z^{2} that are distributed as

$$
\begin{aligned}
& z^{1}=\frac{1}{1^{\prime} y_{1: t}} y_{1: t}=\frac{1}{1^{\prime} x_{1: t}} x_{1: t} \sim \operatorname{Di}_{t}\left(a_{1: t}\right) \\
& z^{2}=\frac{1}{1^{\prime} y_{t+1: m}} y_{t+1: m}=\frac{1}{1^{\prime} x_{t+1}: m} x_{t+1: m} \sim \mathrm{Di}_{m-t}\left(a_{t+1: m}\right)
\end{aligned}
$$

$z^{1} \amalg z^{2}$, that are in turn independent of the partial sums

$$
1^{\prime} x_{1: t} \sim \mathrm{Ga}\left(1^{\prime} a_{1: t}, b\right) \text { and } 1^{\prime} x_{t+1: m} \sim \mathrm{Ga}\left(1^{\prime} a_{t+1: m}, b\right)
$$

Using again the theorem characterizing the Dirichlet by the Gamma distribution for these two Gamma variates, we obtain the result, Q.E.D.

We can generalize this result for any partition of the set of classes, as follows. If $y \sim \operatorname{Di}_{m}(a)$ and T é is a s-partition of the m classes, the intra and extra super-class distributions are independent Dirichlets, as follows

$$
\begin{aligned}
z^{r} & =\frac{1}{T_{r} y}{ }_{r} P y \sim \mathrm{Di}_{T_{r 1}}\left({ }_{r} P a\right) \\
w & =T y \sim \mathrm{Di}_{g}(T a)
\end{aligned}
$$

6 Dirichlet-Multinomial

We say that a random vector $x \in \mathbb{N}^{n} \mid 1^{\prime} x=n$ has Dirichlet-Multinomial (DM) distribution with parameters n e $a \in \mathbb{R}^{m}$, iff

$$
\operatorname{Pr}(x \mid n, a)=\frac{B(a+x)}{B(a)}\binom{n}{x}=\frac{B(a+x)}{B(a) B(x)} \frac{1}{x \Delta 1}
$$

Theorem 18: Characterization of the DM as a Dirichlet mixture of Multinomials.
$\operatorname{Se} \theta \sim \operatorname{Di}_{m}(a)$ and $x \mid \theta \sim \operatorname{Mn}(n, \theta)$ then $x \mid[n, a] \sim \operatorname{DM}_{m}(n, a)$

Proof:

The joint distribution of θ, x is proportional to $\theta \Delta(a+x-1)$, which integrated on θ is $B(a+x)$. Hence, multiplying by the joint distribution
constants, we have the marginal for x, Q.E.D. Therefore, we have also proved that the function DM is normalized, that is

$$
\begin{aligned}
& \operatorname{Pr}(x)=\int_{\theta \in S_{m-1}}\binom{n}{x}(\theta \Delta x) \frac{1}{B(a)} \theta \Delta(a-1) d \theta \\
& \quad=\frac{1}{B(a)}\binom{n}{x} \int_{\theta \in \mathcal{S}_{m-1}}(\theta \Delta(x+a-1)) d \theta=\frac{B(x+a)}{B(a)}\binom{n}{x}
\end{aligned}
$$

Theorem 19: Characterization of the DM by m Negative Binomials.
Let $a \in \mathbb{N}_{+}^{m}$, and $x \in \boldsymbol{N}_{m}$, be a vector whose components are independent random variables, $a_{k} \sim \mathrm{NB}\left(a_{k}, \theta\right)$. Then

$$
x \mid\left[1^{\prime} x=n, a\right] \sim \operatorname{DM}_{m}(n, a)
$$

Proof:

$$
\begin{aligned}
\operatorname{Pr}(x \mid \theta, a) & =\prod_{k=1}^{m}\binom{a_{k}+x_{k}-1}{x_{k}} \theta^{a_{k}}(1-\theta)^{x_{k}} \\
\operatorname{Pr}\left(1^{\prime} x \mid \theta, a\right) & =\binom{1^{\prime} a+1^{\prime} x-1}{1^{\prime} x} \theta^{1^{\prime} a}(1-\theta)^{1^{\prime} a}
\end{aligned}
$$

Then,

$$
\operatorname{Pr}\left(x \mid \mathbf{1}^{\prime} x=n, \theta, a\right)=\frac{\operatorname{Pr}(x \mid a, \theta)}{\operatorname{Pr}\left(1^{\prime} x=n \mid \theta\right)}=\frac{\prod_{k=1}^{m}\binom{a_{k}+x_{k}-1}{x_{k}}}{\binom{1^{\prime} a+1^{\prime} x-1}{1^{\prime} x}}
$$

Hence,

$$
\begin{aligned}
& \operatorname{Pr}\left(x \mid 1^{\prime} x=n, \theta, a\right)=\operatorname{Pr}\left(x \mid 1^{\prime} x=n, a\right) \\
& \quad=\prod_{k=1}^{m} \frac{\Gamma\left(a_{k}+x_{k}\right)}{x!\Gamma\left(a_{k}\right)} / \frac{\Gamma\left(1^{\prime} a+n\right)}{\Gamma\left(1^{\prime} a\right) n!}=\frac{B(a+x)}{B(a)}\binom{n}{x}
\end{aligned}
$$

Theorem 20: The DM as Pseudo-Conjugate for the Hypergeometric
Se $x \sim \operatorname{Hy}_{m}(n, N, \psi)$ and $\psi \sim \operatorname{DM}_{m}(N, a)$ then $(\psi-x) \mid x \sim \operatorname{DM}_{m}(N-n, a)$
Proof: Using the properties of the Hypergeometric already presented, we have the independence relation, $(\psi-x) \amalg x \mid \theta$. We can therefore use the Multinomial sample $x \mid \theta$ for updating the prior and obtain the posterior

$$
\theta \mid x \sim \operatorname{Di}_{m}(a+x)
$$

Hence, the distribution of the non sampled pat of the population, $\psi-x$, given the sample x, is a mixture of $(\psi-x) \theta$ buy the posterior for θ. By the characterization of the DM as a mixture of Multinomials by a Dirichlet, the theorem follows, i.e.,

$$
\left.\begin{array}{c}
(\psi-x)|[\theta, x] \sim(\psi-x)| \theta \sim \operatorname{Mn}_{m}(N-n, \theta) \\
\theta \mid x \sim \operatorname{Di}_{m}(a+x)
\end{array}\right\} \Rightarrow
$$

Lemma 21: DM Expectation and Covariance.
If $x \sim \mathrm{DM}_{m}(n, a)$ then

$$
\begin{aligned}
\mathrm{E}(x) & =n \tilde{a} \equiv \frac{1}{1^{\prime} a} a \\
\operatorname{Cov}(x) & =\frac{n\left(n+1^{\prime} a\right)}{1^{\prime} a+1}\left(\operatorname{diag}(\tilde{a})-\tilde{a} \otimes \tilde{a}^{\prime}\right)
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\mathrm{E}(x) & =\mathrm{E}_{\theta}\left(\mathrm{E}_{x}(x \mid \theta)\right)=\mathrm{E}_{\theta}(n \theta)=n \tilde{a} \\
\mathrm{E}\left(x \otimes x^{\prime}\right) & =\mathrm{E}_{\theta}\left(\mathrm{E}_{x}\left(x \otimes x^{\prime} \mid \theta\right)\right) \\
& =\mathrm{E}_{\theta}\left(\mathrm{E}(x \mid \theta) \otimes \mathrm{E}(x \mid \theta)^{\prime}+\operatorname{Cov}(x \mid \theta)\right) \\
& =\mathrm{E}_{\theta}\left(n\left(\operatorname{diag}(\theta)-\theta \otimes \theta^{\prime}\right)+n^{2} \theta \otimes \theta^{\prime}\right) \\
& =n \mathrm{E}_{\theta}(\operatorname{diag}(\theta))+n(n-1) \mathrm{E}_{\theta}\left(\theta \otimes \theta^{\prime}\right) \\
& =n \operatorname{diag}(\tilde{a})+n(n-1)\left(\mathrm{E}(\theta) \otimes \mathrm{E}(\theta)^{\prime}+\operatorname{Cov}(\theta)\right) \\
& =n \operatorname{diag}(\tilde{a})+n(n-1)\left(\tilde{a} \otimes \tilde{a}^{\prime}+\frac{1}{1^{\prime} a+1}\left(\operatorname{diag}(\tilde{a})-\tilde{a} \otimes \tilde{a}^{\prime}\right)\right) \\
& =n \operatorname{diag}(\tilde{a})+n(n-1)\left(\frac{1}{1^{\prime} a+1} \operatorname{diag}(\tilde{a})+\frac{1^{\prime} a}{1^{\prime} a+1} \tilde{a} \otimes \tilde{a}^{\prime}\right) \\
\operatorname{Cov}(x) & =\mathrm{E}\left(x \otimes x^{\prime}\right)-\mathrm{E}(x) \otimes \mathrm{E}(x)^{\prime}=\mathrm{E}\left(x \otimes x^{\prime}\right)-n^{2} \tilde{a} \otimes \tilde{a}^{\prime} \\
& =\left(n+\frac{n(n-1)}{1^{\prime} a+1}\right) \operatorname{diag}(\tilde{a})+\left(n(n-1) \frac{1^{\prime} a}{1^{\prime} a+1}-n^{2}\right) \tilde{a} \otimes \tilde{a}^{\prime} \\
& =\frac{n\left(n+1^{\prime} a\right)}{1^{\prime} a+1}\left(\operatorname{diag}(\tilde{a})-\tilde{a} \otimes \tilde{a}^{\prime}\right) \quad \text { Q.E.D. }
\end{aligned}
$$

Theorem 22: DM Class Bipartition
Let 1:t,t+1:mabipartition of the index domain for the classes of an order
$m \mathrm{DM}, 1: m$, in two super-classes. Then, the following conditions (i) to (iii) are equivalent to condition (iv):
i:

$$
x_{1: t} \amalg x_{t+1: m} \mid n_{1}=1^{\prime} x_{1: t}
$$

ii-1: $\quad x_{1: t} \mid n_{1}=1^{\prime} x_{1 ; t} \sim \operatorname{DM}_{t}\left(n_{1}, a_{1: t}\right)$
ii-2: $\quad x_{t+1: m} \mid n_{2}=1^{\prime} x_{t+1: m} \sim \operatorname{DM}_{m-t}\left(n_{2}, a_{t+1: m}\right)$
iii: $\left[\begin{array}{l}n_{1} \\ n_{2}\end{array}\right] \sim \operatorname{DM}_{2}\left(n,\left[\begin{array}{c}1^{\prime} a_{1: t} \\ 1^{\prime} a_{t+1: m}\end{array}\right]\right)$
iv: $\quad x \sim \operatorname{DM}_{m}(n, a)$
Proof: We only have to show that the joint distribution can be factored in this form. By the DM characterization as a mixture, we can write it as Dirichlet mixture of Multinomials. By the bipartition theorems, we can factor both, the Multinomials and the Dirichlet, so the theorem follows.

7 Dirichlet of the Second Kind

Consider $y \sim \operatorname{Di}_{m+1}(a)$. The vector $z=\left(1 / y_{m+1}\right) y_{1: m}$ has Dirichlet of the Second Kind (D2K) distribution.
Theorem 23: Characterization of D2K by the Gamma distribution.
Using the characterization of the Dirichlet by the Gamma, we can write the D2K variate as a function of $m+1$ independent Gamma variates,

$$
z_{1: m} \sim\left(1 / x_{m+1}\right) x_{1: m} \text { where } x_{k} \sim G a\left(a_{k}, b\right)
$$

Similar to what we did for the Dirichlet (of the first kind), we can write the D2K distribution and its moments as:

$$
\begin{gathered}
f(z \mid a)=\frac{z \Delta\left(a_{1: m}-1\right)}{\left(1+1^{\prime} z\right)^{1^{a}} B(a)} \\
E(z)=e=\left(1 / a_{m+1}\right) a_{1: m} \\
\operatorname{Cov}(z)=\frac{1}{a_{m+1}-2}\left(\operatorname{diag}(e)+e \otimes e^{\prime}\right)
\end{gathered}
$$

The logarithm of a Gamma variate is well approximated by a Normal variate, see Aitchison \& Shen (1980). This approximation is the key to several efficient computational procedures, and motivates the computation of the first two moments of the \log-D2K distribution. For that, we use the Digamma, $\psi()$, and Trigamma function, $\psi^{\prime}()$, defined as:

$$
\psi(a)=\frac{d}{d a} \ln \Gamma(a)=\frac{\Gamma^{\prime}(a)}{\Gamma(a)}, \quad \psi^{\prime}(a)=\frac{d}{d a} \psi(a)
$$

Lemma 24: The expectation and covariance of a log-D2K variate are:
$E(\log (z))=\psi\left(a_{1: m}\right)-\psi\left(a_{m+1}\right) 1, \operatorname{Cov}(\log (z))=\operatorname{diag}\left(\psi^{\prime}\left(a_{1: m}\right)+\psi^{\prime}\left(a_{m+1}\right) 1 \otimes 1^{\prime}\right.$
Proof: Consider a Gamma variate, $x \sim G(a, 1)$:

$$
1=\int_{0}^{\infty} f(x) d x=\int_{0}^{\infty} \frac{1}{\Gamma(a)} x^{a-1} \exp (-x) d x
$$

Taking the derivative with respect to parameter a, we have

$$
0=\int_{0}^{\infty} \ln (x) x^{a-1} \frac{\exp (-x)}{\Gamma(a)} d x-\frac{\Gamma^{\prime}(a)}{\Gamma^{2}(a)} \Gamma(a)=E(\ln (x))-\psi(a)
$$

Taking the derivative with respect to parameter a a second time,

$$
\begin{aligned}
\psi^{\prime}(a) & =\frac{d}{d a} E(\ln (x))=\frac{d}{d a} \int_{0}^{\infty} \frac{\ln (x)}{\Gamma(a)} x^{a-1} \exp (-x) d x \\
& =\int_{0}^{\infty}\left(\ln (x)^{2} x^{a-1} \frac{\exp (-x)}{\Gamma(a)} d x-\frac{\Gamma^{\prime}(a)}{\Gamma(a)} E(\ln (x))\right. \\
& =E\left(\ln (x)^{2}\right)-E(\ln (x))^{2}=\operatorname{Var}(\ln (x))
\end{aligned}
$$

The lemma follows from the D2K characterization by the Gamma.

8 Examples

Example 1: Let A, B be two attributes, each one of them present or absent in the elements of a population. Then each element of this population can be classified in exactly one of $2^{2}=4$ categories

A	B	k	I^{k}
present	present	1	$[1,0,0,0]^{\prime}$
present	absent	2	$[0,1,0,0]^{\prime}$
absent	present	3	$[0,0,1,0]^{\prime}$
absent	absent	4	$[0,0,0,1]^{\prime}$

According to the notation above, we can write $x \mid n, \theta \sim \mathrm{Mn}_{4}(n, \theta)$.
If $\theta=[0.35,0.20,0.30,0.15]$ and $n=10$, then

$$
\operatorname{Pr}\left(x^{10} \mid n, \theta\right)=\binom{10}{x^{10}}\left(\theta \Delta x^{10}\right)
$$

Hence, in order to compute the probability of $x=[1,2,3,4]^{\prime}$ given θ, we use the expression above, obtaining

$$
\operatorname{Pr}\left(\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
0.35 \\
0.20 \\
0.30 \\
0.15
\end{array}\right]\right)=0.000888
$$

Example 2: If $X \mid \theta \sim \mathrm{Mn}_{3}(10, \theta), \theta=[0.20,0.30,0.15]$, one can conclude, using the result above, that

$$
\mathrm{E}(X)=(2,3,1.5)
$$

while the covariance matrix is

$$
\Sigma=\left[\begin{array}{ccc}
1.6 & -0.6 & -0.3 \\
-0.6 & 2.1 & -0.45 \\
-0.3 & -0.45 & 1.28
\end{array}\right]
$$

Example 3: Assume that $X \mid \theta \sim \mathrm{Mn}_{3}(10, \theta)$, with $\theta=[0.20,0.30,0.15]$, as in Example 2. Let us take $A_{0}=\{0,1\}, A_{1}=\{2,3\}$. Then,

$$
\sum_{A_{1}} X_{i}\left|\theta=X_{2}+X_{3}\right| \theta \sim \mathrm{Mn}_{1}\left(10, \theta_{2}+\theta_{3}\right),
$$

or

$$
X_{2}+X_{3} \mid \theta \sim \mathrm{Mn}_{1}(10,0.45) .
$$

Analogously,

$$
\begin{aligned}
X_{0}+X_{1} \mid \theta & \sim \mathrm{Mn}_{1}(10,0.55) \\
X_{1}+X_{3} \mid \theta & \sim \mathrm{Mn}_{1}(10,0.35) \\
X_{2} \mid \theta & \sim \mathrm{Mn}_{1}(10,0.30)
\end{aligned}
$$

Note that, in general, if $X \mid \theta \sim \mathrm{Mn}_{k}(n, \theta)$ then $X_{i} \mid \theta \sim \mathrm{Mn}_{1}\left(n, \theta_{i}\right), i=$ $1, \ldots, k$.
Example 4: 3x3 Contingency Tables.
Assume that $X \mid \theta \sim \operatorname{Mn}_{8}(n, \theta)$, as in a 3×3 Contingency Tables:

x_{11}	x_{12}	x_{13}	$x_{1 \bullet}$
x_{21}	x_{22}	x_{23}	$x_{2 \bullet}$
x_{31}	x_{32}	x_{33}	$x_{3 \bullet}$
$x_{\bullet 1}$	$x_{\bullet 2}$	$x_{\bullet 3}$	n

Applying Theorem 5 we get

$$
\left(X_{1 \bullet}, X_{2_{\bullet}}\right) \mid \theta \sim \operatorname{Mn}_{2}\left(n, \theta^{\prime}\right), \theta^{\prime}=\left(\theta_{1 \bullet}, \theta_{2 \bullet}\right), \theta_{0}^{\prime}=\theta_{3}
$$

This result tell us that

$$
\left(X_{i 1}, X_{i 2}, X_{i 3}\right) \mid \theta \sim \mathrm{Mn}_{3}\left(n, \theta_{i}^{\prime}\right),
$$

with

$$
\theta_{i}^{\prime}=\left(\theta_{i 1}, \theta_{i 2}, \theta_{i 3}\right), \theta_{0 i}^{\prime}=1-\theta_{i \bullet}, \quad i=1,2,3
$$

We can now apply Theorem 6 to obtain the probability distribution of each row of the contingency table, conditioned on its sum, or conditioned on the sum of the other rows. We have

$$
\left(X_{i 1}, X_{i 2}\right) \mid x_{i \bullet}, \theta \sim \operatorname{Mn}_{2}\left(x_{i \bullet}, \theta_{i}^{\prime}\right)
$$

with

$$
\theta_{i}^{\prime}=\frac{\left(\theta_{i l}, \theta_{i 2}\right)}{\theta_{i \bullet}}, \theta_{0 i}^{\prime}=\frac{\theta_{i 3}}{\theta_{i \bullet}} .
$$

The next result expresses the distribution of $X \mid \theta$ in term of the conditional distributions, of each row of the table, in its sum, and in term of the distribution of these sums.

Proposition 25: If $X \mid \theta \sim \mathrm{Mn}_{r^{2}-1}(n, \theta)$, as in an $r \times r$, contingency table, then $P(X \mid \theta)$ can be written as

$$
P(X \mid \theta)=\left[\prod_{i=1}^{r} P\left(X_{i 1}, \ldots, X_{i, r-1} \mid x_{i \bullet}, \theta\right)\right] P\left(X_{1 \bullet}, \ldots, X_{r-1} \mid \theta\right)
$$

Proof: We have:

$$
\begin{aligned}
P(X \mid \theta) & =n!\prod_{i=1}^{r} \frac{\theta_{i}^{x_{i}}}{x_{i}!}=n!\frac{\theta_{11}^{x_{11}} \ldots \theta_{r r}^{x_{r r}}}{x_{11}!\ldots x_{r r}!} \\
& =\left[\prod_{i=1}^{r} \frac{x_{i \bullet}!}{x_{i 1}!\ldots x_{i r}!}\left(\frac{\theta_{i 1}}{\theta_{i \bullet}}\right)^{x_{i 1}} \ldots\left(\frac{\theta_{i r}}{\theta_{i \bullet}}\right)^{x_{i r}}\right] \frac{n!}{x_{i \bullet}!\ldots x_{r \bullet}!} \theta_{1 \bullet}^{x_{1 \bullet}} \ldots \theta_{r \bullet}^{x_{r \bullet}}
\end{aligned}
$$

From Theorems 5 and 6 , as in the last example, we recognize each of the first r factors above as the probabilities of each row in the table, conditioned on its sum, and recognize the last factor as the joint probability distribution of sum of these r rows.

Corollary 26: If $X \mid \theta \sim \mathrm{Mn}_{\mathrm{r}^{2}-1}(n, \theta)$, as in Theorems 5 and 6 , then

$$
P\left(X \mid x_{1 \bullet}, \ldots, x_{r-1 \bullet}, \theta\right)=\prod_{i=1}^{r} P\left(X_{i 1}, \ldots, X_{i, r-1} \mid x_{i \bullet}, \theta\right)
$$

and, knowing $\theta, x_{1 \bullet}, \ldots, x_{r-1 \bullet}$,

$$
\left(X_{11}, \ldots, X_{1, r-1}\right) \amalg \ldots \amalg\left(X_{r 1}, \ldots, X_{r, r-1}\right) .
$$

Proof: Since

$$
P(X \mid \theta)=P\left(X \mid x_{1_{\bullet}}, \ldots, x_{r-1_{\bullet}}, \theta\right) P\left(X_{1_{\bullet}}, X_{2 \bullet}, \ldots, X_{r-1_{\bullet}} \mid \theta\right),
$$

from Theorems 5 and 6 we get the proposed equality.
The following result will be used next to express Theorem 7 as a canonical representation for $P(X \mid \theta)$.

Proposition 27: If $X \mid \theta \sim \mathrm{Mn}_{r^{2}-1}(n, \theta)$, as in Proposition, then a transformation
$T:\left(\theta_{11}, \ldots, \theta_{1 r}, \ldots, \theta_{r 1}, \ldots, \theta_{r, r-1}\right) \rightarrow\left(\lambda_{11}, \ldots, \lambda_{1, r-1}, \ldots, \lambda_{r 1}, \ldots, \lambda_{r, r-1}, \eta_{1}, \ldots, \eta_{r-1}\right)$
given by

$$
\begin{gathered}
\lambda_{11}=\frac{\theta_{11}}{\theta_{1 \bullet}}, \ldots, \lambda_{1, r-1}=\frac{\theta_{1, r-1}}{\theta_{1 \bullet}} \\
\vdots \\
\lambda_{r 1}=\frac{\theta_{r}}{\theta_{r \bullet}}, \ldots, \lambda_{r, r-1}=\frac{\theta_{r, r-1}}{\theta_{r \bullet}} \\
\eta_{1}=\theta_{1 \bullet}, \eta_{2}=\theta_{2 \bullet}, \ldots, \eta_{r-1}=\theta_{(r-1) \bullet}
\end{gathered}
$$

is a onto transformation defined in $\left\{0<\theta_{11}+\ldots+\theta_{r, r-1}<1 ; 0<\theta i j<1\right\}$ over the unitary cube of dimension $r^{2}-1$. Moreover, the Jacobian of this transformation, t, is

$$
J=\eta^{r-1} \eta_{1}^{r-1} \ldots \eta_{r-1}^{r-1}\left(1-\eta_{1}-\ldots-\eta_{r-1}\right)^{r-1} .
$$

The proof is left as an exercise.
Example 5: Let us examine the case of a 2×2 contingency table:

x_{11}	x_{12}
x_{21}	x_{22}

θ_{11}	θ_{12}
θ_{21}	θ_{22}

In order to obtain the canonical representation of $P(X \mid \theta)$ we use the transformation T in the case $r=2$:

$$
\begin{aligned}
\lambda_{11} & =\frac{\theta_{11}}{\theta_{11}+\theta_{12}}, \\
\lambda_{21} & =\frac{\theta_{11}}{\theta_{21}+\theta_{22}}, \\
\eta_{1} & =\theta_{11}+\theta_{12}
\end{aligned}
$$

hence,

$$
\begin{aligned}
& P(X \mid \theta)= \\
& =\binom{x_{1 \bullet}}{x_{11}} \lambda_{11}^{x_{11}}\left(1-\lambda_{11}\right)^{x_{12}}\binom{x_{2 \bullet}}{x_{21}} \lambda_{21}^{x_{21}}\left(1-\lambda_{21}\right)^{x_{22}}\binom{n}{x_{1 \bullet}} \eta_{1}^{x_{1 \bullet}}\left(1-\eta_{1}\right)^{x_{2 \bullet}}, \\
& \quad 0<\theta_{11}<1, \quad 0<\theta_{21}<1, \quad 0<\eta_{1}<1 .
\end{aligned}
$$

9 Functional Characterizations

The objective of this section is to derive the general form of a homogeneous Markov random process. Theorem 28, by Reny and Aczel, states that such a process is described by a mixture of Poisson distributions. Our presentation follows Aczel (1966, sec. 2.1 and 2.3) and Janossy, Reny and Aczel (1950). It follows from the characterization of the Multinomial by the Poisson distribution given in theorem 4, that Reny-Aczel characterization of a homogeneous and local time point process is analogous to de Finetti characterization of an infinite exchangeable 0-1 process as a mixture of Bernoulli distributions, see for example Feller (1971, v.2, ch.VII, sec. 4).

Cauchy's Functional Equations

Cauchy's additive functional equation has the form

$$
f(x+y)=f(x)+f(y)
$$

The following argument from Cauchy (1821) shows that a continuous solution of this functional equation must have the form

$$
f(x)=c x
$$

Repeating the sum of the same argument, x, n times, we must have $f(n x)=n f(x)$. If $x=(m / n) t$, then $n x=m t$ and

$$
\begin{gathered}
n f(x)=f(n x)=f(m t)=m f(t) \text { hence, } \\
f\left(\frac{m}{n} t\right)=\frac{m}{n} f(t)
\end{gathered}
$$

taking $c=f(1)$, and $x=m / n$, it follows that $f(x)=c x$, over the rationals, $x \in Q$. From the continuity condition for $f(x)$, the last result must also be valid over the reals, $x \in \mathbb{R}$. Q.E.D.

Cauchy's multiplicative functional equation has the form

$$
f(x+y)=f(x) f(y), \quad \forall x, y>0, f(x) \geq 0
$$

The trivial solution of this equation is $f(x) \equiv 0$. Assuming $f(x)>0$, we take the logarithm, reducing the multiplicative equation to the additive equation,

$$
\begin{aligned}
\ln f\left(x_{y}\right) & =\ln f(x)+\ln f(y), \text { hence, } \\
\ln f(x) & =c x, \text { or } f(x)=\exp (c x)
\end{aligned}
$$

Homogeneous Discrete Markov Processes

We seek the general form of a homogeneous discrete Markov process. Let $w_{k}(t)$, for $t \geq 0$, be the probability of occurrence of exactly k events. Let us also assume the following hypotheses:

Time Locality: If $t_{1} \leq t_{2} \leq t_{3} \leq t_{4}$ then, the number of events in $\left|t_{1}, t_{2}\right|$ is independents of the number of events in $\left[t_{3}, t_{4}\right]$.

Time Homogeneity: The distribution for the number of events occurring in $\left[t_{1}, t_{2}\right]$ depends only on the interval length, $t=t_{2}-t_{1}$.

From time locality and homogeneity, we can decompose the occurrence of no (zero) events in $[0, t+u[$ as,

$$
w_{0}(t+u)=w_{0}(t) w_{0}(u)
$$

Hence, $w_{0}(t)$ must obey Cauchy's functional equation, and

$$
w_{0}(t)=\exp (c t)=\exp (-\lambda t)
$$

Since $w_{0}(t)$ is a probability distribution, $w_{0}(t) \leq 1$, and $\lambda>0$.
Hence, $v(t)=1-w_{0}(t)=1-\exp (-\lambda t)$, the probability of one or more events occurring before $t>0$, must be the familiar exponential distribution.

For $k \geq 1$ occurrences before $t+u$, the general decomposition relation is

$$
w_{n}(t+u)=\sum_{k=0}^{n} w_{k}(t) w_{n-k}(u)
$$

Theorem 28: (Reny-Aczel) The general (non trivial) solution of this this system of functional equations has the form:

$$
w_{k}(t)=e^{-\lambda t} \sum_{\langle r, k>} \prod_{j=1}^{k} \frac{\left(c_{j} t\right)^{r_{j}}}{r_{j}!}, \quad \lambda=\sum_{j=1}^{\infty} c_{j} .
$$

where the index set $\langle r, k, n\rangle$ is defined as

$$
<r, k, n>=\left\{r_{1}, r_{2}, \ldots r_{k} \mid r_{1}+2 r_{2} \ldots+k r_{k}=n\right\}
$$

and $\langle r, k\rangle$ is a shorthand for $\langle r, k, k\rangle$.
Proof. By induction: The theorem is true for $k=0$. Let us assume, as induction hypothesis, that it is true to $k<n$. The last equation in the recursive system is

$$
w_{n}(t+u)=\sum_{k=0}^{n} w_{k}(t) w_{n-k}(u)=
$$

$w_{n}(t) e^{-\lambda u}+w_{n}(u) e^{-\lambda t}+e^{-\lambda(t+u)} \sum_{k=1}^{n-1} \sum_{\langle r, k\rangle} \sum_{\langle s, n-k\rangle} \prod_{i=1}^{k} \frac{\left(c_{i} t\right)^{r_{i}}}{r_{i}!} \prod_{j=1}^{k} \frac{\left(c_{j} u\right)^{s_{j}}}{s_{j}!}$
Defining

$$
f_{n}(t)=e^{\lambda t} w_{n}(t)-\sum_{\langle r, n-1, n\rangle} \prod_{j=1}^{n-1} \frac{\left(c_{j} t\right)^{r_{j}}}{r_{j}!}
$$

the recursive equation takes the form

$$
f_{n}(t+u)=f_{n}(t)+f_{n}(u)
$$

and can be solved as a general Cauchy's equation, that is,

$$
f_{n}(t)=c_{n} t
$$

From the last equation and the definition of $f_{n}(t)$, we get the expression of $w_{n}(t)$ as in theorem 28. The constant λ is chosen so that the distribution is normalized.

The general solution given by theorem 28 represents a composition (mixture) of Poisson processes, where an event in the j-the process in the composition corresponds to the simultaneous occurrence of j single events in the original homogeneous Markov process. If we impose the following rarity condition, the general solution is reduced to a mixture of ordinary Poisson processes.

Rarity Condition: The probability that an event occurs in a short time at least once is approximately equal to the probability that it occurs exactly once, that is, the probability of simultaneous occurrences is zero.

10 Final Remarks

This work is in memory of Professor D Basu who was the supervisor of the first author PhD dissertation, the starting point for the research in Bayesian analysis of categorical data presented here. A long list of papers follows Basu and Pereira (1982). We have chosen a few that we recommend for additional reading: Albert (1985), Gunel (1984), Irony, Pereira and Tiwari (2000), Paulino and Pereira $(1992,1995)$ and Walker (1996). To make the analysis more realistic, extensions and mixtures of Dirichlet also were considered. For instance see Albert and Gupta (1983), Carlson (1977), Dickey (1992).

Usually the more complex distributions are used to realistic represent situations for which the strong properties of Dirichlet seems to be not realistic. For instance, in a 2×2 contingency table, the first line to be conditional independent of the second line given the marginal seems to be unrealistic in some situations. Mixtures of Dirichlet in some cases take care of the situation as shown by Albert and Gupta (1983).

The properties presented here are also important in non-parametric Bayesian statistics in order to understand the Dirichlet process for the competitive risk survival problem. See for instance Salinas-Torres, Pereira and Tiwari (1997, 2002). In order to be historically correct we cannot forget the important book of Wilks, published in 1962, where one can find the definition of Dirichlet distribution.

The material presented in this essay adopts a singular representation for several distributions, as in Pereira and Stern (2005). This representation is unusual in the statistical literature, but the singular representation makes it simpler to extend and generalize the results and greatly facilitates numerical and computational implementations.

We end this essay presenting the Reny-Aczel characterization of the Poisson mixture. This result can be interpreted as an alternative to de Finetti characterization theorem introduced in Finetti (1937). Using the characterization of binomial distributions by Poisson processes conditional arguments, as given by Theorem 4, and Blackwell (minimal) sufficiency properties discussed in Basu and Pereira (1983), Section 9 leads in fact to a De Finetti characterization for Binomial distributions. Also, if one recall the indifference principle (Mendel, 1989) the finite version of Finetti argument can simply be obtained. See also Irony and Pereira (1994) for the motivation of these arguments. The consideration of Section 9 could be viewed as a very simple formulation of the binomial distribution finite characterization.

Bibliography

- J.H.Albert (1985). Bayesian Estimation Methods for Incomplete Two-Way Contingency Tables using Prior Belief of Association, in Bayesian Statistics 2:589-602, Bernardo, JM; DeGroot, MH; Lindley, DV; Smith, AFM eds. Amsterdam, North Holland.
- J.H.Albert, A.K.Gupta (1983). Bayesian Estimation Methods for 2x2 Contingency Tables using Mixtures of Dirichlet Distributions. JASA 78, 831-41. - J.Aitchison, S.M.Shen (1980). Logistic-Normal Distributions: Some Properties and Uses. Biometrika, 67, 261-72.
- J.Aitchison (2003). The Statistical Analysis for Compositional Data (2nd edition). Caldwell: Blackburn Press.
- D.Basu, C.A.B.Pereira (1982). On the Bayesian Analysis of Categorical Data: The Problem of Nonresponse. JSPI 6, 345-62.
- D.Basu, C.A.B.Pereira (1983). A Note on Blackwell Sufficiency and a Shibinsky Characterization of Distributions. Sankhya A, 45,1, 99-104.
- B.de Finetti (1947). La prévision: Des lois logiques, ses sourses subjectives. Annalles de l'Institut Henri Poincaré 7,1-68. English translation: Foresight: Its logical laws, its subjective sources, in Kiburg and Smoker Eds. (1963), Studies in Subjective Probability, p.93-158, New York: Wiley.
- J.M.Dickey (1983). Multiple Hypergeometric Functions: Probabilistic Interpretations and Statistical Uses. JASA, 78, 628-37.
- J.M.Dickey, T.J.Jiang, J.B.Kadane (1987). Bayesian Methods for Categorical Data. JASA 82, 773-81.
- W.Feller (1957). An Introduction to Probability Theory and Its Applications (2nd ed.), V.I. New York: Wiley.
- W.Feller (1966). An Introduction to Probability Theory and Its Applications (2nd ed.), V.II. New York, Wiley.
- E.Gunel (1984). A Bayesian Analysis of the Multinomial Model for a Dichotomous Response with Non-Respondents. Communications in Statistics - Theory and Methods, 13, 737-51.
- T.Z.Irony, C.A.B.Pereira (1994). Motivation for the Use of Discrete Distributions in Quality Assurance. Test, 3,2, 181-93.
- T.Z.Irony, C.A.B.Pereira, R.C.Tiwari (2000). Analysis of Opinion Swing:

Comparison of Two Correlated Proportions. The American Statistician, 54, 57-62.

- T.J.Jiang, J.B.Kadane, J.M.Dickey (1992). Computation of Carsons Multiple Hipergeometric Function R for Bayesian Applications. Journal of Computational and Graphical Statistics, 1, 231-51.
- J.B.Kadane (1985). Is Victimization Chronic? A Bayesian Analysis of Multinomial Missing Data. Journal of Econometrics, 29, 47-67.
- R.J.A.Little, D.B.Rubin (1987). Statistical Analysis with Missing Data. New York: Wiley.
- J.J.Martin (1975). Bayesian decision and probelms and Markov Chains.
- M.B.Mendel (1989). Development of Bayesian Parametric Theory with Application in Control. PbD Thesis, MIT, Cambridge: MA.
- C.D.M.Paulino, C.A.B.Pereira (1992). Bayesian Analysis of Categorical Data Informatively Censored. Communications in Statistics - Theory and Methods, 21, 2689-705.
- C.D.M.Paulino, C.A.B.Pereira (1995). Bayesian Methods for Categorical

Data under Informative General Censoring. Biometrika, 82,2, 439-446.

- C.A.B.Pereira, J.M.Stern (205). Inferência Indutiva com Dados Discretos:

Uma Visāo Genuinamente Baycsiana. COMCA-2005. Chile: Universidad de Antofagasta.

- V.H.S.Salinas-Torres, C.A.B.Pereira, R.C.Tiwari (1997). Convergence of Dirichlet Measures Arising in Context of Bayesian Analysis of Competing Risks Models. J. Multivariate Analysis, 62,1, 24-35.
- V.H.S.Salinas-Torres, C.A.B.Pereira, R.C.Tiwari (2002). Bayesian Nonparametric Estimation in a Series System or a Competing-Risks Model. J.of Nonparametric Statistics, 14,4, 449-58.
- P.J.Smith, E.Gunel (1984). Practical Bayesian Approaches to the Analysis of 2×2 Contingency Table with Incompletely Categorized Data. Communication of Statistics - Theory and Methods, 13, 1941-63.
- J.M.Stern, JM (2007). Cognitive Constructivism and the Epistemic Significance of Sharp Statistical Hypotheses. 2007 Summer Program, Institute of Mathematics and Statistics, University of São Paulo, Brazil.
- G.L.Tian, K.W.Ng, Z.Geng (2003). Bayesian Computation for Contingency

Tables with Incomplete Cells-Counts. Statistica Sinica, 13, 189-206.

- S.Walker(1986). A Bayesian Maximum Posteriori Algorithm for Categorical

Data under Informative General Censoring. The Statistician, 45, 293-8.

- S.S.Wilks (1962). Mathematical Statistics. NY: Wiley.

RELATÓRIOS TECNICOS

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

Instituto de Matemática e Estatística da USP
A listagem contendo os relatórios técnicos anteriores a 2003 poderá ser consultada ou solicitada à Secretaria do Departamento, pessoalmente, por carta ou c-mail (mac@ime.usp.br).

Cristina G. Fernandes, Edward L. Green and Amaldo Mandel
FROM MONOMIALS TO WORDS TO GRAPHS
RT-MAC - 2003-01 - fevereiro 2003, 33pp.
Andrei Goldchleger, Márcio Rodrigo de Freitas Carneiro e Fabio Kon
GRADE: UM PADRĀO ARQUITETURAL
RT- MAC - 2003-02 - março 2003, 19pp.
C. E. R. Alves, E. N. Cáceres and S. W. Song

SEQUENTIAL AND PARALLEL ALGORITHMS FOR THE ALL-SUBSTRINGS LONGEST COMMON SUBSEQUENCE PROBLEM RT- MAC - 2003-03 - abril 2003, 53 pp.

Said Sadique Adi and Carlos Eduardo Ferreira
A GENE PREDICTION ALGORITHM USING THE SPLICED ALIGNMENT PROBLEM RT- MAC - 2003-04 - maio 2003, 17pp.

Eduardo Laber, Renato Carmo, and Yoshiharu Kohayakawa QUERYING PRICED INFORMATION IN DATABASES: THE CONJUNTIVE CASE RT-MAC - 2003-05 - julho 2003, 19pp.
E. N. Cáceres, F. Dehne, H. Mongelli, S. W. Song and J.L. Szwarcfiter

A COARSE-GRAINED PARALLEL ALGORITHM FOR SPANNING TREE AND CONNECTED COMPONENTS
RT-MAC - 2003-06 - agosto 2003, 15pp.
E. N. Cáceres, S. W. Song and J.L. Szwarcfiter

PARALLEL ALGORITMS FOR MAXIMAL CLIQUES IN CIRCLE GRAPHS AND UNRESTRICTED DEPTH SEARCH
RT-MAC - 2003-07 - agosto 2003, 24pp.
Julio Michael Stem
PARACONSISTENT SENSITIVITY ANALYSIS FOR BAYESIAN SIGNIFICANCE TESTS RT-MAC - 2003-08 - dezembro 2003, 15pp.

Lourival Paulino da Silva e Flávio Soares Cortêa da Silva A FORMAL MODEL FOR THE FIFTH DISCIPLINE RT-MAC-2003-09 - dezembro 2003, 75pp.
S. Zacks and J. M. Stern

SEQUENTIAL ESTIMATION OF RATIOS, WITH APPLICATION TO BAYESIAN ANALYSIS
RT-MAC - 2003-10 - dezembro 2003, 17pp.
Alfredo Goldman, Fábio Kon, Paulo J. S. Silva and Joe Yoder BEING EXTREME IN THE CLASSROOM: EXPERIENCES TEACHING XP RT-MAC - 2004-01-janeiro 2004, 18pp.

Cristina Gomes Fernandes
MULTILENGîH SINGLE PAIR SHORTEST DISJOINT PATHS
RT-MAC 2004-02 - fevereiro 2004, 18pp.
Luciana Brasil Rebelo
ARVORE GENEALÓGICA DAS ONTOLOGIAS
RT- MAC 2004-03 - fevereiro 2004, 22pp.
Marcelo Finger
TOWARDS POLYNOMIAL APPROXIMATIONS OF FULL PROPOSITIONAL LOGIC RT- MAC 2004-04 - abril 2004, 15pp.

Renato Carmo, Tomás Feder, Yoshiharu Kohayakawa, Eduardo Laber, Rajeev Motwani, Liadan O` Callaghan, Rina Panigrahy, Dilys Thomas
A TWO- PLAYER GAME ON GRAPH FACTORS
RT-MAC 2004-05 - Julho 2004
Paulo J. S. Silva, Carlos Humes Jr.
RESCALED PROXIMAL METHODS FOR LINEARLY CONSTRAINED CONVEX PROBLEMS
RT-MAC 2004-06-setembro 2004
Julio M. Stem
A CONSTRUCTIVIST EPISTEMOLOGY FOR SHARP STATISTICAL HYPOTHESES IN SCIENTIFIC RESEARCH
RT-MAC 2004-07- outubro 2004
Arlindo Flávio da Conceiçāo, Fábio Kon
O USO DO MECANISMO DE PARES DE PACOTES SOBRE REDES IEEE 802.11b
RT-MAC 2004-08 - outubro 2004

Carlos H. Cardonha, Marcel K. de Carli Silva e Cristina G. Fernandes COMPUTAÇÃO QUÂNTICA: COMPLEXIDADE E ALGORITMOS
RT- MAC 2005-01 - janeiro 2005
C.E.R. Alves, E. N. Cáceres and S. W. Song

A BSP/CGM ALGORITHM FOR FINDING ALL MAXIMAL CONTIGUOS SUBSEQUENCES OF A SEQUENCE OF NUMBERS
RT- MAC- 2005-02 - janeiro 2005
Flávio S. Corrêa da Silva
WHERE AM I? WHERE ARE YOU?
RT- MAC- 2005-03 - março 2005, 15pp.
Christian Paz-Trillo, Renata Wassermann and Fabio Kon
A PATTERN-BASED TOOL FOR LEARNING DESIGN PATTERNS
RT- MAC - 2005-04 - abril 2005, 17pp.
Wagner Borges and Julio Michael Stern
ON THE TRUTH VALUE OF COMPLEX HYPOTHESIS
RT- MAC - 2005-05 - maio 2005, 15 pp .
José de Ribamar Braga Pinheiro Jr., Alexandre César Tavares Vida and Fabio Konl
IMPLEMENTAÇÃO DE UM REPOSITÓRIO SEGURO DE APLICAÇŌES BASEADO
EM GSS - PROJETO TAQUARA
RT- MAC - 2005-06 - agosto 2005, 21 pp.
Helves Domingues and Marco A. S. Netto
THE DYNAMICDEPENDENCE MANAGER PATTERN
RT - MAC 2005-07 - dezembro 2005, 12 pp.
Marco A. S. Netto, Alfredo Goldman and Pierre-François Dutot
A FLEXIBLE ARCHITECTURE FOR SCHEDULING PARALLEL APLICATIONS ON OPPORTUNISTIC COMPUTER NETWORKS
RT- MAC 2006-01 - Janeiro 2006, 18 pp.
Julio M. Stern
COGNITIVE CONSTRUCTIVISM AND LANGUAGE
RT - MAC 2006-02 - Maio 2006, 67 pp.
Arlindo Flávio da Conceição and Fabio Kon
EXPERIMENTS AND ANALYSIS OF VOICE OVER IEEE 802.11 INFRASTRUCTURED NETWORKS
RT - MAC 2006-03 - Junho 2006,

Giuliano Mega and Fabio Kon
DISTRIBUTED SYMBOLIC DEBUGGING FOR THE COMMON PROGRAMMER
RT - MAC 2006-04 - Junho 2006
Pedro J. Fernandez, Julio M. Stern, Carlos Alberto de Bragança Pereira and Marcelo S. Lauretto
a New Media Optmizer Based on The Mean-Variance Model
RT - MAC 2006-05 - Junho 2006, 24 pp.
P. Feofiloff, C.G. Fernandes, C.E. Ferreira and J.C. Pina,
"A NOTE ON JOHNSON, MINKOFF AND PHILLIPS' ALGORITHM FOR THE
PRIZE-COLLECTING STEINER TREE PROBLEM"
RT-MAC2006-06 - Setembro 2006, 11 pp.
Julio Michael Stern
DECOUPLING, SPARSITY, RANDOMIZATION, AND OBJECTIVE BAYESIAN INFERENCE
RT-MAC2006-07 ~ Novembro 2006, 36 pp.
Cristiane Maria Sato, Yoshiharu Kohayakawa
ENTROPIA DE GRAFOS
RT - MAC2006-08 - Dezembro 2006, 44 pp.
Julio M. Stern
LaNGUAGE, METAPHOR AND METAPHYSICS: THE SUBJECTIVE SIDE OF SCIENCE
RT-MAC-2006-09 - Dezembro 2006, 35 pp.
Thiago A. de André and Paulo J. S. Silva
eXACT PENALTIES FOR KKT SYSTEMS ASSOCIATED TO VARIATIONAL INEQUALITIES
RT-MAC-2007-01- Março 2007, 21 pp.
Flávio Soares Correa da Silva, Rogério Panigassi and Carlos Hulot LEARNING MANAGEMENT SYSTEMS DESIDERATA FOR COMPETITIVE UNIVERSTTIES
RT-MAC-2007-02 - Maio 2007, 12 pp.
Alexandre Freire da Silva, Fabio Kon, Alfredo Goldman
THREE ANTI-PRACTICES WHILE TEACHING AGILE METHODS
RT-MAC-2007-03 - Maio 2007, 20pp.
Silvio do Lago Pereira e Leliane Nunes de Barros
PLANEJAMENTO BASEADO EM PROCESSOS DE MARKOVIANOS
RT-MAC-2007-04 - Maio 2007, 17pp.

Silvio do Lago Pereira e Leliane Nunes de Barros DIAGRAMAS DE DECISĀO BINÁRIA RT-MAC-2007-05 - Maio 2007, 16pp.

Carlos Alberto de Bragança Pereira and Julio Michael Stem AN ESSAY ON THE ROLE OF BERNOULLI AND POISSON PROCESSES IN BAYESIAN STATISTICS
RT-MAC-2007-06 - Junho 2007, 39pp.

