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Resumo

A seguinte tese apresenta uma analise empirica de como o Covid-19 afetou a atividade econdmica, o
crédito e a taxa de juro da Federal Reserve nos EUA, entre 4 de marco de 2020 e 9 de margo de 2022.
Outra questdo é se o crédito ajudou a impulsionar a atividade econdmica. Para atingir tal objetivo, sdo
aplicados modelos VAR. Para estimar o impacto do Covid-19 nestas varidveis, utilizamos funcdes de

Resposta a Impulsos Ortogonais.

Os resultados indicam que, apds um choque de um desvio-padrdo na taxa de crescimento do
numero de casos ou mortes do Covid-19 haverd uma resposta negativa na varia¢cdo do indice de
atividade econdmica, entre 0,3% e 0,16%. A taxa de crescimento do crédito total e a taxa de juro do
Federal Reserve apresentam um efeito perto de zero. Sobre duragdo a do impacto, existe um efeito
negativo médio de 0,3% até quinze semanas na variagao do indice de atividade econémica, causado

pela taxa de crescimento de mortes por Covid-19.

Nos modelos com o crédito discriminado, verificamos os seguintes tipos de crédito que mais
contribuiram para a atividade econdémica: crédito ao consumidor, e crédito comercial e industrial, que
geram um efeito semanal de 0,2% e 0,15% respetivamente, quatro semanas apds o choque inicial de
um desvio-padrdo. Sobre o efeito acumulado, o crédito ao consumidor é o Unico tipo de crédito que é
eficaz para impulsionar a atividade econdmica, com o pico dois meses apds o choque inicial, com um

efeito médio semanal de 0,24%.

Finalmente, concluimos que nossos modelos VAR inadequados para prever futuros valores das

variaveis.
Cddigo JEL: C32 C53

Palavras-chave: Modelo VAR, Covid-19, Atividade econdmica, Crédito, Taxa de juros da Reserva

Federal, Decomposicdao de Cholesky;






Abstract

The following thesis presents an empirical analysis of how Covid-19 affected the real economic activity,
credit, and the Fed funds rate in the US between March 4th, 2020, and 9th, 2022. Another question of
interest is whether the credit helped boost real economic activity in this period. To achieve the
objective, VAR models are employed. To estimate the impact of Covid-19 on these variables, we use

OIRF’s.

The results indicate that, there will be a negative response in the real economic activity index to
the new confirmed cases or deaths growth rate Covid-19 one-standard deviation shock, between 0.3%
and 0.16%. Also, the total credit growth rate and the Fed Funds rate are not considerably affected,
with an effect close to zero. Moreover, in terms of impact duration, there is a negative effect for fifteen
weeks on the real economic activity index caused by the Covid-19 deaths growth rate with an average

effect of 0.3%.

In the models with the discriminated credit, we see which types of credit most contributed to the
short-term economic activity: consumer and commercial and industrial loans, which create a positive
effect of about 0.2% and 0.15%, on average one month after the initial shock. Regarding the
accumulated impact, consumer loans are the only type of credit that seems effective in boosting real
economic activity, with the peak occurring two months after the initial shock with an average effect of

0.24%.
Finally, we conclude that our VAR models are not suited to predict future variables values.
JEL Code: C32 C53

Keywords: VAR model, Covid-19, Real economic activity, Credit, Fed Funds Rate, Cholesky

decomposition;
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1. Introduction

SARS-CoV-2 began in China, with the first Covid-19 known case identified in December 2019. The virus
immediately spread to the rest of the world at an increasingly fast pace, with the first registered case
in the U.S. recorded at the end of January 2020. Each day the number of confirmed cases and infections
increased exponentially and, in March 2020, the World Health Organization (WHO) identified Covid-
19 as a pandemic. Amid there was no vaccine, most countries' healthcare systems showed incapacity
to deal with the exponential increase of cases; as a result, preventive measures such as curfew
restrictions and lockdowns had to be implemented by governments worldwide, reducing the
production capacity to produce goods and services, Brinca, Duarte, and Faria e Castro (2020); Gupta,
Simon, and Wing (2020). These measures affected welfare and the world economy. The movement of
people became restricted, and supply chains were disrupted. At the same time, it originated a partial
shutdown of economic activity and immediate losses in output, Pellegrino, Ravenna and Zillig (2021).
Moreover, hit labor markets with a drop in employment and a cut in wages, Cajner et al. (2020) and
Kurmann et al., (2020), reaching values tantamount to those in the worst recessions. Also, in most
countries, the unemployment rate increased, interest rates fell or turned negative, and prices

decreased, Younes and Altug (2020).

At this early stage, volatility and uncertainty were very high, and it was difficult to measure the
social and economic impacts of the pandemic since it depended on the success of containing the
pandemic and restarting economic activity. The first hit was in the stock market. At the end of 2019,
the volatility index (VIX) reached similar values to the global financial crisis. In the first months of 2020,
equity markets posted their worst losses since the 2008 financial crisis, with the S&P500 index

dropping 20% in the first quarter of 2020.

The pandemic has led to companies' bankruptcy, a decline in private investment, reduced
integration into value chains, and less productive capabilities and human capital. Particularly in the
U.S., the Covid-19 contraction is comparable to the one in the Great Depression of the 1930s, which

was the most significant and prolonged slump in economic activity history.

According to the Bureau of Economic Analysis (BEA), Gross Domestic Product (GDP) went down
31.4% from its peak in the second quarter of 2020, which was the highest drop ever occurred in U.S.
history since 1947, Weinstock (2021). At the same time, imports and exports of goods and services fell
by 13% on average in the first five months of 2020. As for the unemployment rate, the Bureau of Labor

Statistics (BLS) registered an incredibly 14.7%, reaching its highest value since 1948.



With the surge of the economic downturn, the U.S. Federal Reserve (FED) immediately used
forward guidance and implemented unconventional monetary policy measures, such as lowering
interest rates to zero lower bound, offering unlimited quantitative easing (QE), and maintaining credit
flow. Moreover, to support the flow of credit, the FED opened its discount window to commercial
banks by lowering the rate to 0.25%, re-established liquidity swap line arrangements, eliminated
reserve requirements, and expanded repurchase agreement operations. It has also reintroduced
facilities used during the global financial crisis and created new ones. The reintroduced facilities were
the Commercial Paper Funding Facility (CPFF), the Primary Dealer Credit Facility (PDCF), the Money
Market Mutual Fund Liquidity Facility (MMLF), and the Term Asset-Backed Securities Loan Facility
(TALF). As for the new ones, Primary Market Corporate Credit Facility (PMCCF), the Secondary Market
Corporate Credit Facility (SMCCF), the Repurchase Agreement Facility for Foreign and International
Monetary Authorities (FIMA Repo Facility), the Paycheck Protection Program Liquidity Facility (PPPLF)
and the Municipal Liquidity Facility (MLF). In broad terms, the intended goals of these measures are to
support financial market functioning, encourage banks to lend, support corporations and businesses,
support households and consumers, support state and municipal borrowing, and cushion United States

money markets from international pressures.

At the end of the first quarter of 2020, the U.S. Congress approved four fiscal stimulus packages.
The First included 8.3 billion USD for the Coronavirus Preparedness and Response Supplemental
Appropriations Act (P.L. 116-123). The second package, 100 billion, comprised to "Families First
Coronavirus Response Act (P.L. 116-127). Third, more than 2 trillion for the" Coronavirus Aid, Relief,
and Economic Security (CARES) Act (P.L. 116-136). Fourth, 484 billion for the Paycheck Protection
Program and Health Care Enhancement Act t (P.L. 116-139).

New legislation was also approved in April and June to improve the effectiveness of the programs
at the course, as the FED provided up to 2.3 trillion USD in lending to support households, employers,
financial markets, and state and local governments, Cheng et al. (2021). Lastly, the U.S. Congress
approved 4.5 trillion destined to total aid spending. As a result, federal agencies have formally
committed to using about 4 trillion and have accounted, to date, for 3.5 trillion in outlays, Rattner and

Pramuk (2021).

This research aims to examine and estimate the impact of the exogenous Covid-19 shock on the
U.S. real economic activity and, consequently, on credit availability. This research focuses on whether
and to what scale the pandemic crisis affected real economic activity and credit availability. How did

the U.S. financial sector recover after an increase in credit during the pandemic, and what were the



effects of the increase in different types of credit on real economic activity? Furthermore, we study

whether the VAR model is a good option to forecast the U.S. real economic activity.

In order to answer these questions, we estimate a Vector Auto Regression (VAR) model for U.S.
weekly data on Covid-19 new confirmed cases (cases), Covid-19 new confirmed deaths (deaths), loans
and leases in bank credit (LLBC), loans to commercial banks (LCB), Weekly economic index (WEI), and
Federal Funds Effective Rate (FF), covering the period between March 4th, 2020 and March 9th, 2022.
Our approach is generally more comparable to Brueckner and Vespignani (2021) but with minor
differences in the methods. We opt for dropping the first two months of observations associated with
the pandemicin the VAR. This choice is motivated by the works of Lenza and Primiceri (2020), Bobeica
and Hartwig (2021), and Carriero et al. (2021), whose findings ensure more stable parameters when
the model is estimated. Similar to Brueckner and Vespignani (2021), we decided to include in the model
a dummy variable for the beginning of the vaccination process and an extra exogenous variable with
the correspondent time series for the vaccination rate per hundred people. In addition, orthogonalized
impulse response functions are computed, which enable us to make statements concerning the

dynamic relationship between Covid-19 confirmed cases, real economic activity, and credit.

What first motivates this research is the lack of literature on the variables chosen. Few
econometric studies have measured the impact of the pandemic using Covid-19 confirmed cases and
VAR models, and the ones that do that, do not focus on the real economic activity and credit. This
study fills this gap. Second, it will complement the studies on the effects of the pandemic on the
economy and the effects of the increase in different types of credit on real economic activity. Third,
the substantial support provided by the U.S. government and the conventional and unconventional
monetary policies applied by the FED are also motives why we focus on the impact of the pandemic
on credit. Fourth, the results of the relationships found in the model might be valuable to policymaking

and taking appropriate measures toward a future recession of this type.

The main findings of the first part of this research illustrate that a one-standard deviation increase
in the growth rate of Covid-19 confirmed cases and deaths decreases the WEI in the first two weeks
after the initial shock, with an average effect of about 0.1%, whereas the effect on the aggregated
credit growth rate and the Fed funds rate is very close to zero. In terms of effects that lasts more than
three months, they are only significant for the model with the growth rate of Covid-19 deaths, with a
negative effect over the real economic activity index lasting for fourteen weeks with an average effect
of about 0.3%. Regarding the main findings of the second part of the research, the effects of both
pandemic variables on real economic activity are robust to the ones from Part one. According to the

analysis of which type of credit helps boost real economic activity the most in the short-run, we find



that consumer and commercial, and industrial loans are the most effective, with an average positive
maximum effect of about 0.9% and 0.7%. In terms of long-run effects, a shock in the consumer loans
growth rate increases the weekly economic index on average by 0.15%. Considering the forecast

ability, none of the VAR models is accurate for predicting future values of economic growth.

The remainder of this work organizes as follows. Section 2 reviews the theoretical and empirical
literature. Section 3 describes the data and methodology. Then, in section 4, we present and analyze

the results. Moreover, section 5 concludes.



2. Literature Review

Regarding the wide variety of existing studies about the effects of the pandemic and the variables of
interest in our research, the literature review follows in two sections. First, it includes works on
econometric models that study the Covid-19 impact, providing some details about the diversity of the
existing literature. Next, it contains works focusing on the variables we choose for our model,

enhancing acquaintance with them.

2.1. Covid-19 impact

Various authors have measured the effects of the pandemic using econometric models to estimate its
shock on different economic variables of interest. However, the first empirical works had to take

different approaches to measure Covid-19 shocks regarding the lack of data available at the time.

With Covid-19 starting at the end of 2019 in China and identified as a worldwide pandemic,
uncertainty began to establish, and consumer confidence was hitting rock bottom. Pellegrino,
Ravenna, and Zllig (2020) discuss the impact of Covid-19 uncertainty on the Euro area economy by
estimating a VAR model with Industrial production (IP), inflation, and policy rate data. They conclude
that uncertainty shocks significantly impacted the economy only during pessimistic times. One way to
interpret high uncertainty can be the perceived idea of the probability of very adverse outcomes. The
mystery behind the development of the pandemic raised uncertainty, and the U.S. government took
several containment measures, such as lockdowns and curfews. Deb et al. (2021) estimated a negative

impact of these measures of about 10% on economic activity over the first month of implementation.

A few months after the pandemic started, it became possible to estimate its impact on a
macroeconomic variable by knowing the exact moment when there was an increase in the shock
variance. However, with the inclusion of new observations in the model, the estimated coefficients
became distorted since there was an immense variation in macroeconomic variables (e.g., real
activity). Therefore, some authors such as Carriero et al. (2021), Bobeica and Hartwig (2021), and Lenza
and Primiceri (2020) propose to tackle this problem by treating the extreme observations as outliers.

As for the last ones, take a different approach by modeling the significant change in shock volatility.

One of the first impacts observed was in the financial markets. According to Altig et al. (2020) VAR
model with stock market volatility and News-Based Uncertainty Measures data, there was high
volatility, and colossal uncertainty jumps. Initially, there was a collapse, but the markets began to
recover a few months later. Therefore, some authors have focused on financial and commodities
market data. For example, Miescu and Rossi (2021) extract Covid-19 shocks with a VAR model using
daily data (e.g., S&P500, volatility index) and find that while having contractionary effects on the

economy, the Covid-19 shocks and structural uncertainty shocks have a high correlation (86%).
5



Adekoya and Oliyide (2020) estimate a VAR model with several financial and commodity market series
and the Covid-19 proxies (the equity market volatility due to infectious diseases index and the U.S.
Covid-19 new confirmed cases growth rate). Both examined how connectedness among the markets
was influenced by this period, concluding that Covid-19 has been responsible for risk transmission

across various commodity and financial markets.

Also, about the effects of the pandemic on the stock and commodities markets, Xu (2021)
examined stock return responses to the pandemic in the U.S. and Canada, covering stock return and
Covid-19 cases data between January 21th, 2020, and July 2nd, 2020. Moreover, it finds a symmetric
relationship between the stock return responses and the increase and decrease of Covid-19 cases in
the U.S. On the other hand, in Canada, the stock return responses are asymmetric to the increase and
decrease of Covid-19 cases. Finally, Brueckner and Vespignani (2021) take similar conclusions in a VAR
application for Australia, with Covid-19 infections having a significant positive effect on the
performance of the Australian stock market between May 28th, 2019, and May 22nd, 2020, covering
ASX-200 and Covid-19 infections data. Also, Chen and Hsu (2021), by estimating a regression model
with Covid-19, economic news, stock indexes, and medical stocks data show that vaccination and

treatment medicine developments directly and significantly affected the stock market movements.

Besides the pandemic influencing the stock market, it also affected significant macroeconomic
aggregates, such as unemployment, GDP, I.P., consumer spending, and many more. For example, the
unemployment rate in the U.S. spiked to its highest since the WWII era, registering 14.7% in the early
2020 months, according to FRED. Katris (2021) studied the relationship between Covid-19 cases and
unemployment in 27 European Union (E.U.) countries between November 2019 and January 2021,

using a VAR model, where he concludes that Covid-19 cases granger causes unemployment.

To estimate Covid-19 shocks, Ludvigson et al. (2020) quantify the impact of costly and deadly
disasters that occurred in the U.S. by calibrating different shock profiles and translating the estimates
into an analysis of the likely impact of Covid-19. This study concluded that Covid-19 could create a
12.75% drop in I.P., a loss in service employment of 17%, and reductions in air traffic. Altig et al. (2020)
studied the pandemic uncertainty shocks and predicted drops in I.P. between 12% and 19%. Pellegrino,
Ravenna, and Ziillig (2020) on the effect of the pandemic shocks cover data between January 1999 to
March 2020 for the Euro area, estimating a yearly loss of 15.41% on I.P., with the peak seven months
after the shock occurs, recovering with a rebound to pre-crisis levels in June 2021. Furthermore, Baker
et al. (2020) assess the macroeconomic effects of Covid-19 induced uncertainties using stock market
volatility and newspaper-based economic uncertainty data and estimate a year-on-year contraction in

U.S. real GDP of nearly 11% as of the last quarter of 2020.



In order to fight the downturn in the economy, policymakers quickly responded with monetary
and fiscal stimulus. Feldkircher, Huber, and Pfarrhofer (2021) extract the results of a VAR model on
U.S. monetary policy measures' effectiveness with I.P., unemployment, inflation, stock prices, and
interest rate spreads data. They conclude that the monetary policy expansion caused higher output
growth and stock market returns. Moreover, U.S. economic activity would have been significantly
lower without such interventions. A similar study conducted by Trifonova and Kolev (2021) concluded
that Fed's monetary policy influences the changes in the bond yields, the S&P 500 index, and the value
of the U.S. dollar.

Regarding credit, no empirical frameworks using VAR models estimate the impact of Covid-19
confirmed cases in the U.S. Aforementioned, there is a study for China where Isaac Appiah-Otoo (2020)
estimates the impact of Covid-19 cases and deaths in domestic credit, concluding that a rise in Covid-

19 confirmed cases and deaths significantly increases domestic credit.

Also, policymakers have to consider the risks associated with long-term inflation targeting. Apergis
and Apergis (2020), studying the effects of Covid-19 in the course of inflation expectations, using a
GARCH model covering Covid-19 confirmed cases and deaths, VIX, and crude oil prices data between
January 2019 and the end of July 2020, estimate that one standard deviation of Covid-19 deaths in the
U.S. increases mean inflation by 0.84 (given that the mean inflation was 1.75). Accordingly, such results

can affect real activity.

2.2. Variables of interest: Credit, Real economic activity, and Fed Funds Rate

This subsection presents several literature findings contributing to a better understanding of the

variables we select for the study in our model.

Moreover, there are studies on how domestic credit to the private sector drives economic activity
- a term typically used synonymously with total output, Lipschitz and Schadler (2019). For example,
Basset et al. (2014), covering loans and net interest margin data between 1992 and 2011, find that
bank credit supply shocks have significant macroeconomic effects. This research concludes that a
negative credit supply shock substantially reduces businesses' and households' capacity to borrow
from the financial sector and significantly declines real GDP. Similar research by Mésonnier and
Stevanovic (2016) estimates a panel regression model using hundreds of U.S. large bank holding
companies' data, concluding that shocks to large U.S. banks' capital explain a substantial share of the
variance of bank credit to firms and real activity. Also, Meeks (2017) links aggregate bank capital and
aggregate bank credit and evaluates the business cycle consequences of banking shocks in the U.K.
The main conclusion was that increasing capital requirements lowered lending to firms and

households, reduced aggregate expenditure, and raised credit spreads.



Meeks (2011), on how corporate credit shocks drive output during the great recession concludes
that adverse credit shocks significantly increased bond spreads and drove down output. Also,
Exogenous financial shocks are an independent driver of the U.S. business cycles. Finally, for Italy,
Cipollini and Parla (2017), using a VAR model, estimate credit demand and supply shocks and their
effects on real economic activity during the great recession finding that credit supply shocks play a

more critical role than credit demand shocks.

Lopez-Salido and Zakrajsek (2015), through a forecast model with loans interest rate, loans growth
rate, and employment to population ratio U.S. data between 1929 to 2015, conclude that elevated
credit-market sentiment in the current year is associated with a decline in economic activity two and
three years after. Investor sentiment in credit markets can be an essential driver of economic
fluctuations. A similar study conducted by Ding Du (2017), but this time for the period between 1960
to 2015, finds robust evidence that U.S. credit-supply shocks influence real activities in economies the

more economically or geographically integrated with the U.S.

More recent studies by Goaied and Gasmi (2020) measure the effects of firm credit on growth
using a panel VAR with economic growth and credit data from 1995 to 2014. A sample of 142 countries
confirms that firm credit expansion is essential to economic growth and that higher allocations of
household credit are obstacles to this effect. Kiiciik, Ozlii, and Yiinciiler (2021) take similar conclusions
in a VAR model for Turkey data covering the period between 2009 and 2018, credit expansions have
statistically significant impacts on economic activity and investment, boosting it at least for the first six

months. At the same time, household loans have a minor impact compared to business loans.

Therefore, several pieces of research also approach the credit-growth nexus; see Schularick and
Taylor (2012); Jorda et al. (2012); Rousseau and Wachtel (2009); Levine et al. (1999); and King and
Levine (1993).

Apart from the credit, monetary and fiscal, other shocks such as oil, energy, employment,
unemployment, I.P., and many others also influence real economic activity. For more insights, a
considerable amount of literature supports the hypothesis that shocks in volatility and uncertainty
have a contractionary effect on real activity. For example, Urom et al. (2021) examined the interactions
and causality between real economic activity and volatility shocks from stock and gold markets using
a nonlinear cointegrating autoregressive distributed lag (NARDL) model. Results show that an increase
in volatility shocks is harmful to economic activity. Additionally, Jurado et al. (2015) estimated a VAR
model using hundreds of macroeconomic indicators and found a meaningful relationship between
uncertainty and real economic activity. Uncertainty shocks account for up to 29% of United States I.P.

variation at business cycle frequencies.



Also, Bloom (2009) estimates that uncertainty impact on macroeconomic aggregates has a
negative impact in the short run, and the medium run induces an overshoot in output, employment,
and productivity. For example, Bachmann et al. (2013) state that business uncertainty shocks led to
declines in economic activity. The same conclusions for Basu and Bundick (2015) VAR model,
estimating data from 1986 to 2014, uncertainty shocks cause significant declines in output,
consumption, investment, and hours worked. Aforementioned, see also Leduc and Liu (2015), Baker
et al. (2016), Piffer and Podstawski (2016), Ludvigson, et al. (2021), Alessandri and Mumtaz (2014),
Mumtaz and Zanetti (2013), Jackson et al. (2019) and Fernandez-Villaverde et al. (2015).

Some studies have also investigated how oil shocks can transmit to economic activity. For
example, Jo (2012) estimates a VAR model and shows that an oil price uncertainty shock negatively
affects the world I.P. Charles et al. (2020) took similar conclusions and showed that an increase in oil
price uncertainty negatively affects output growth. Therefore, plenty of studies associate oil shocks,
either in price, supply, or demand, with effects on economic activity. For example, De Michelis et al.
(2020) demonstrate that a decrease in oil price diminishes consumption effects in oil-exporting
economies worldwide. However, for the U.S., results are not linear. In the short run, there is a
temporary decrease in GDP, but continuously consumption increases gradually, pushing GDP towards

higher levels.

Similarly, Brown and Ycel (2012) link oil prices to aggregate economic activity and find that
increasing oil prices stimulate GDP losses. Papapetrou (2001), using a VAR model for Greece's
macroeconomic data, have suggestive results that oil price changes affect real economic activity and
employment. He et al. (2010), utilizing Kilian economic index as a real activity proxy, find a
cointegrating relationship between real future crude oil prices and the Kilian economic index. Finally,
An et al. (2014) found that the negative impacts of higher oil prices are more significant than the
positive effects of lower oil prices. For more insight, see also, ley (2021), Lyu (2021), Maghyereh et al.
(2021), Atallah and Blazquez (2015), Darrat et al. (1996), Pinno and Serletis (2013).

Several authors aborded this topic regarding monetary policy shocks, with a general agreement
that the FED employs its monetary policy by setting a target to the FF, Labonte (2020). Also, about how
these shocks can affect credit availability and real economic activity, Gertler and Karadi (2015) show
that monetary policy measures influence credit costs, consequently affecting economic activity.
Feldkircher et al. (2021) studied the effectiveness of the policies to stimulate real economic activity
taken by the FED between January 2011 and June 2020. The results extracted from a mixed frequency
vector autoregressive (MF-VAR) model are clear, monetary expansion increases output growth and

long-term financing conditions. The FED has successfully stimulated growth but must be cautious with



U.S. dollar depreciation and inflation in future outcomes. Finally, the authors support that monetary
policy can mitigate uncertainty shocks but can no longer maintain its stabilization properties on a zero
lower bound period. Azada, Serletis, and Xu (2021) investigate fiscal and monetary policy taken in
Canada covering GDP income, government taxes and expenses, consumer price index (CPl), 3-Month
Treasury bill rate, and output gap data between 1990 and 2020, finding that the positive effects on

real GDP and real private consumption fade out with the end of the fiscal stimulus.

Canova and Gambetti (2008) cover a large U.S. period from 1967 to 2006 to study how the policy
shocks affect output growth volatility. The researchers apply monetary policy restrictions from a DGSE
model to an SVAR model. Results show that policy shocks explain a small fraction of the average output
growth variability. Also, according to Kim's (2020) VAR model covering a very similar period, between
1974 and 1996, expansionary monetary policy shocks increase output temporarily and prices over

time.

Bernanke (1990) contributed to the literature on how interest rates and spreads are good
predictors of the state and the consequent course of the economy. An additional important conclusion
of this work is that the effects of uncertainty shocks are statistically larger when the zero lower bound
monetary policy is in action. Following the knowledge that interest rates and spreads have predictive
power, Bomfim (1997) uses long-term interest rates to proxy the equilibrium funds rate. The VAR
model, covering the period between 1968 and 1994, concluded that term structure spreads are useful

for predicting economic activity. Also, a Fed Funds rate change can be considered a policy shock.

Our econometric research and model fall between the two points, 2.1. and 2.2., in the current
section 2. It estimates the impact of the pandemic, using data from its progression, on the variables of
interest referred to in subsection 2.2. Noticeably, no econometric literature concerning these

variables' relationships using VAR models is available to date.
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3. Data and Methodology

In this section, we present the data and explain the adopted methodology. Subsection 3.1. describes
the chosen data and its transformations for the period under analysis. Subsection 3.2. shows the

stationarity tests, and Subsection 3.3. presents the approach and methods used in our models.

3.1. Data

This econometric analysis is based on U.S. weekly data from March 4th, 2020, to March 9th, 2022. The
time series is composed of T=106 observations, which is sufficient for constructing the econometric
models and carrying out the necessary analysis. Also, it includes nine variables: new confirmed Covid-
19 cases (cases), new confirmed Covid-19 deaths (deaths), loans and leases in bank credit (LLBC), loans
to commercial banks (LCB), commercial and industrial loans (CIL), consumer loans (CL), other loans and
leases (OLL), Weekly economic index (WEI), and Federal Funds Effective Rate (FF). The Covid-19 data
is collected from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University
(JHU). The remaining data, such as LLBC, LCB, CIL, CL, OLL, WEI, and FF is obtained through the Federal
Reserve Economic Data (FRED) website at the Federal Reserve of St. Louis. Table 1 in the Appendix
displays the hyperlinks containing the data available for download. Table A.1 presents the descriptive

statistics of the variables.

According to the literature presented in subsection 2.1., the magnitude of the pandemic can be
defined based on changes in the number of confirmed Covid-19 cases and deaths. Therefore, this
research selects the number of new confirmed Covid-19 cases and deaths in the U.S. to measure the
epidemic effects and consequences in the chosen macroeconomic aggregates. Both variables are in

daily frequency.

Furthermore, we choose the WEI as a proxy variable for real economic activity, which suffered a
massive contraction. According to Lewis et al. (2020), the index can track in "real-time" the economic
evolution in high frequency. The variable is not seasonally adjusted and has a weekly periodicity,
ending every Saturday. It is also important to refer to how this index is created and interpreted. WElI is
computed using ten weekly measures of real economic activity, the main ones being consumption,
labor input, and production. This real economic activity index is scaled to match the mean and standard
deviation of four-quarter GDP growth® and also has good predictability power for real economic

activity.

1Since the WEI is scaled to the four-quarter GDP growth, taking the quarterly average values for WEI provides a natural

nowcast for the four-quarter GDP growth.
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To represent credit in our model, we searched on the FRED website for the balance sheet of all
commercial banks in the U.S. and selected on the asset side LLBC and LCB. LLBC represents all the loans
and leases conceded by U.S. commercial banks, such as commercial and industrial loans (CIL), real
estate loans (REL), consumer loans (CL), and other types of loans and leases (OLL)%. LCB represents the
loans carried out between all commercial banks in the U.S. All variables are in billions of dollars,

seasonally adjusted, and in a weekly frequency, ending every Wednesday.

Credit is also affected by interest rates, specifically, we choose the FF, as it is the short-term
overnight nominal interest rate and a starting point rate for banks and financial institutions to charge
their interest rates. In addition, the variable is not seasonally adjusted and has a weekly periodicity,
ending every Wednesday. Our choice is also informed by theoretical models and empirical research on
the credit-growth nexus. For example, Luintel and Khan (1999) suggest that variables such as interest
rates are fundamental to measuring the relationship between loans and economic growth and are

strongly linked with economic activity and GDP growth.

In order to achieve an equal length of the datasets, the Covid-19 data is daily and transformed to
weekly observations by only keeping the records for Wednesdays. In addition, this study used
interpolation methods to impute and fill missing values in the WEI data to ensure the validity and
accuracy of the results. There was a mismatch in the data of two days between WEI and the other
variables. WEI values are reported on Saturdays, while LCB, LLBC, and FF are reported on Wednesdays.
In order to distinguish the two, we named "Weilnterp" to the transformation made in WEI3, which now
has the missing values for Wednesdays. Regarding more data transformations, we create a new
variable, LCBLLBC, by summing LCB and LLBC, representing U.S. total credit in our model. Finally, the
growth rate for cases, deaths, LCBLLBC, CIL, CL, and OLL were obtained for stationarity purposes,
renaming them as casesgrowth, deathsgrowth, LCBLLBCgrowth, ClLgrowth, CLgrowth, and OLLgrowth,

respectively.

Figure A.1 and figure A.2 illustrate the U.S. new confirmed Covid-19 cases and deaths time series,
respectively. Figure A.3 shows the total credit during the observed period. Figure A.4 is the WEI, and

figure A.5 is the FF and so on. All of the time series are presented in the Appendix section A.

20ther types of loans and leases (OLL) aggregate loans to non-depository financial institutions and all loans not elsewhere

classified.

3The interpolation was computed using the following formula: Weilnterp=WEI(currentweek)x(;)+

WEI(next week) (;)
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3.2. Stationarity tests

Stationarity tests are performed using the data between March 4th, 2020, and March 9th, 2022
(T=106).

We start with the Augmented Dickey-Fuller (ADFc) test with a constant for the unit root for all
variables, using a 1% significance level. Table C.1 shows that the null hypothesis was rejected for
casesgrowth, deathsgrowth, LCBgrowth, LLBCgrowth, LCBLLBCgrowth, ClLgrowth, and FF. In
OLLgrowth, the null hypothesis of non-stationarity is rejected for a significance level of 10%. Therefore,
these variables are stationary and can be included in a VAR model without taking the first differences
or detrending the time series. For Weilnterp and CLgrowth, the results are different. Since the null

hypothesis was not rejected, we conclude that we are in the presence of a non-stationary time series.

Once we have a non-stationary time series (p.e. Weilnterp and CLgrowth), the second step is to
compute the Augmented Dickey-Fuller (ADFct) test with a constant and a trend for the unit root, to
see whether the time series is a Difference-Stationary Process (DSP) or a Trend-Stationary Process
(TSP). The Weilnterp results show that for a 10% significance level, the null hypothesis of a DSP is not
rejected, concluding that the time series is stationary integrated of order one I(1) after applying the
first differences. On the other hand, for CLgrowth, results show that for a 1% significance level, the null

hypothesis of a DSP is rejected, concluding that the time series is stationary after removing the trend.

We take the first differences in Weilnterp to convert the series into a stationary one, and named
it dWeilnterp. After taking the first differences, the ADFc test with constant is computed again to
confirm that the series is stationary, as shown in Figure C.1. The same process is done for CLgrowth.
The series' linear trend is removed in STATA, converting the series into a stationary one and confirming

it through the ADFc test. The detrended series of CLgrowth is named CLgrowth_detrended.
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3.3. Methodology

In this section, we present and explain the adopted methodology. Then, to analyze the interaction
between the variables included in our data and answer the research questions, we estimate four
Vector Auto Regression (VAR) models. The first part of the research focuses on the impact of Covid-19
cases and deaths in the U.S. real economy and the availability of credit, as it estimates a VAR model
including Covid-19 cases shocks and another for Covid-19 deaths shocks. The second part of the
research focuses on estimating credit growth's ability to boost economic activity during pandemic
times, discriminating for different credit types. Again, a VAR model is estimated with new confirmed
cases growth rate and another one with the new confirmed deaths growth rate. All econometric

analysis is obtained in STATA version 14.

When starting to construct our models, concerning that the first months of the pandemic are
associated with huge variability in different macroeconomic variables, we choose to drop the
observations of the first months of the Covid-19 outbreak. This approach has the objective of
parameter estimation and model stabilization, according to Lenza and Primiceri (2020), Bobeica and
Hartwig (2021), and Carriero et al. (2021). Therefore, the dataset will start on March 4th, 2020, not
January 22nd, 2020 (T=106).

3.3.1. VAR model

In order to achieve the objectives of this study, a VAR model proposed by Sims (1980) is adopted. This
statistical model describes the evolution of a multivariate linear time series with K endogenous
variables Y; = (W1¢, ) Ykt» - Yxe) for k =1, ..., K. The evolution of these endogenous variables in
the system is considered a linear function of their own history and a linear function of the p lagged
values of all K variables, plus an error term v. A brief mathematical review of the reduced-form model

follows.
The general reduced form of a K dimensional VAR(p) model with p lags and exogenous variables:
Ve=CH @Y1+ F QpYep+ YiXe—1+ o+ YoXeqg+ UVt (1)

The general reduced form of a K dimensional VAR(p) model with p lags and exogenous variables

in matrix notation:

1 1
Vit o oM @\ /Y1 o . @\ Yie-p e ygj) X1t
(1 (1 62) 62) (6] (6] .
Ykt Ck Pr1 - Prr Vkt-1 (pkpl (sz;c Vkt-p Vi1 - Y Xjt
(@ (@

Y11 - Yqj X1t—q V1t
y%) yg.']l.) Xjt—q Ukt
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Y: represents a vector of endogenous variables of length k, each ; is a matrix coefficient of size
KxKfori=1,..p, and Cisa K X 1 vector of intercepts. Each X represents a vector of exogenous
variables of length J X 1, and each y; is a matrix coefficient of size ] X J for i = 0, ... q. The vector of
errors v has an expected value of zero, are white noise processes and are not autocorrelated. The
variance-covariance matrix () is positive semidefinite: v,~WN,, such that E(v,) = Opxq, E(W, V') = Qpxre

,E(Wv's) = 0ppr t # S.
Additional information about VAR models are in the Appendix.

3.3.2. Stationarity tests

The first thing to test before estimating a VAR is to check the stationarity of the variables. A standard
unit root test was conducted on all-time series, more specifically the Augmented Dickey-Fuller (ADF),
one of the most popular in the field. We select the optimal lag for each variable by running the
command varsoc with a maximum lag length of 12%. Next, we performed the stationarity tests for a

significance level of 1%, except for OLLgrowth.

For the ADF test, we first compute the version with constant (ADFc) to check the presence of a
unit root. The null hypothesis is that the series we are testing is non-stationary and has at least one

unit root.

In case of the null is not rejected, the next step is to perform the Augmented Dickey-Fuller (ADFct)
test with a constant and a trend for the unit root to see whether the time series is a Difference-
Stationary Process (DSP) or a Trend-Stationary Process (TSP). If the null hypothesis is not rejected, it is

possible to conclude that the variable studied is a DSP.
More details about the Augmented Dickey—Fuller (ADF) test are in the Appendix.

3.3.3. Exogenous variables

Itis known by the theory that exogenous or control variables may be added to VAR models to improve
estimation. Our models include two exogenous variables to capture health measures taken into
account to control the spread of the virus, "vac" represents the total number of people who received
at least one vaccine dose per 100 people in the total population, and an instrumental variable named

"dummy".

4The number of lags considered to compute the ADF tests were the ones suggested by the information criteria
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Since most of the endogenous variables are in growth rates, we computed the growth rates for
"vac" and named the new variable "vacgrowth". Another fact taken into account is that "vac" has an
upward trend having a permanent effect on the series, making it almost a deterministic variable, so

we decide to consider "vacgrowth" since it captures the variation of the vaccination rate in the U.S.

The binary variable, "dummy", assumes a value of 0 between March 4th, 2020, and March 31st,
2021, and a value of 1 between April 7th, 2021, and March 9th, 2022; this was when the variable "vac"
reached 33%, meaning that one-third of the total population in the U.S had received at least one dose
of the Covid-19 prevention vaccine®. We believe the vaccine plays a significant role in containing

pandemic development, so we test for that hypothesis in our model.

3.3.4. Identification scheme strategy
In order to correctly specify and identify the IRFs, restrictions were applied, more concretely, the
Cholesky decomposition. This recursive identification scheme is the most common in the field when

no economic theory is behind to support the model.

In this case, the reduced form innovations v;; depend on mutually uncorrelated structural orthogonal

shocks &;:

1
€,~WN,(0,1,),i.e., v, = Be, = LDz g, (6)

In this case, B is assumed to be lower triangular. The covariance matrix of VAR residuals is
orthogonalized with the variables ordered in a specific way. The order of the variables is crucial, as it
plays a key role in defining which shocks have no contemporaneous effect on some system variables
in a recursive way. The Covid-19 series are ordered first since a pandemic event is by nature seen as
an exogenous one, followed by the economic activity indicator, credit measures, and the Fed Funds
Rate. The subsequent order was decided through the decreasing exogeneity principle based on the

results of the Granger causality tests between the variables.

After deciding on the ordering, we checked that results are robust, meaning that the results hold
and are the same for different variable orderings. After it, the ordering of the macroeconomic series is
irrelevant as tested. Completing, this is the identification restriction used in the estimated VAR models
meaning that economic activity, credit, and interest rates can respond contemporaneously to Covid-

19 shocks, but not the other way around.

The structural model with Cholesky decomposition that follows from the unrestricted one is

represented in the Appendix section, as also the mathematical relationship between both models.

5The time series for the exogenous variables are in the appendix section A- see Figure A.6, A.7 and A.8.
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3.3.5. Stability condition and residual diagnostics
Stability and residual diagnostics are crucial before estimating the model. Such tests ensure that the

model is well specified and that the forecasts will not explode.
More details about the Stability condition and residual diagnostics are described in the Appendix.

3.3.6. Optimal lag selection
The purpose of choosing the optimal lag is to eliminate the serial correlation of each error. The
importance of an appropriate lag length is that if it is too small, the model can be miss specified, but if

it is too large, degrees of freedom can be wasted, according to literature.
More details about the optimal lag selection are described in the Appendix.

3.3.7. Granger causality

When estimating VAR models, one important property of its interpretation is Granger causality since
it allows one to assess the dynamic relationship between the variables in the system. The core of the
test is to examine whether the lagged values of one variable help to predict or cause other variables
in the model. This type of test can also be performed to analyze the exogeneity of a variable. If that

variable is not affected by any other variables in the model, it can be assumed as exogenous.

3.3.8. Point forecast and forecast error

According to literature, VAR models are common in the field when forecasting variables' future values.

The restricted model with the Cholesky decomposition may be an added value to estimate the
effect of the pandemic shocks, but another pertinent point is whether the VAR model is also a useful
approach for forecasting. After including the pandemic data, it becomes more difficult to determine
what works in forecasting. In this case, we firstly focus on an Ex-post analysis by looking at different
error measurement criteria to judge the suitability of the VAR models and compare their forecast
errors with the ones from an Autoregressive (AR(1)) model. Secondly, we generate the Ex-ante

forecasts to see how the model predicts the data into the future.

3.3.8.1. Forecast error variance decomposition

The Forecast error variance decomposition (FEVD) displays the percentage of the error made
forecasting a variable over time due to a specific shock; this is, how much of the variability in the
dependent variable is explained by its own shocks versus the shocks in the other variables in the

system. All variance decompositions start at lag zero, where there is no forecast error.
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3.3.9. Orthogonalized impulse response functions

The impulse response functions (IRFs) allow us to trace the time path response (current and future
values) of the variables in our model to a one unit increase impulse in the current value of one of the
VAR errors. This means IRFs capture the effect of one-unit shock in y; on a different or the same y;.,
i.e., the dynamic marginal effect of each shock on all variables over time. After estimating the VAR
models and the dynamic impulse response functions, they must converge to zero at a certain pointin
time, even though there is no limit on how far these IRFs can extend. If this effect is not visible, then

the VAR model can be misspecified or unstable due to non-stationarity properties in some variable(s).

Also, functions like these are calculated based on identification assumptions that will originate
unique conclusions according to the constraints applied to the model. This research will use the
orthogonal impulse response functions (OIRF) instead of impulse response functions (IRF). The main
difference is the fact that the variance-covariance matrix (Q) is decomposed using the Cholesky
approach. In our case, orthogonalizing the shocks in the model is important so that the shocks tracked

by OIRFs are uncorrelated.

3.3.10. Cumulative orthogonalized impulse response functions

The cumulative orthogonalized impulse response functions (COIRFs) also are based on applying the
Cholesky decomposition as the OIRFS. Recalling that the objective of the OIRFs is to track in our
dynamic system how the endogenous variables will respond to a one-time exogenous shock, also called
an impulse. The COIRFs interpretation has the same logic behind the process; the difference is that the
cumulative case plots the impact of the shock on the variables in the model across time and not at a
single point in time. In other words, the long-run effects are associated with the impulses since it is the

cumulative sum of all OIRFs.
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4. Empirical Results

This section presents the empirical results. It is worth noting that the models obtained generated a
large amount of output. That said, only the most important results are shown to the reader, focusing
exclusively on answering the research questions. Additional interpretable results are displayed in the

Appendix.
PART I: Whether and to what scale does the pandemic crisis affect real

economic activity and credit availability?

4.1. VAR model with new confirmed Covid-19 cases growth rate
The first VAR model measures the impact of the pandemic on the U.S real economy and the
consequent availability of credit. The model contains four endogenous variables. These are

casesgrowth, dWeilnterp, LCBLLBCgrowth, and FF. A similar version with deathsgrowth instead of

casesgrowth is also estimated in section 4.2..

Given equation (2), our four-dimensional VAR(p) model has a vector of endogenous variables

casesgrowth
J th
t = dWeilnterp , and a vector of exogenous variables X; = (vacgrow )
LCBLLBCgrowth dummy
FF

4.1.1. Stability condition
Figure C.2 shows the stability results for the largest "p" allowed for the model. All the eigenvalues lie
inside the unit circle, concluding that the VAR model satisfies the stability condition for a maximum of

15 lags®.
4.1.2. Optimal lag selection

4.1.2.1. Minimum information criteria

We proceed to the optimal lag selection using the maximum correspondent number of lags (p) for
which the model is stable. Figure C.3 shows that according to AIC, SBIC, and HQIC, the optimal lag is

always one (p=1), independently of the maximum number of lags we test for’.

5The model is stable from (p=1) lags until (p=15) lags.

"The criteria were tested from (p=1) lags until (p=15) lags.
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4.1.2.2. Wald lag-exclusion statistics test

The conclusions are very different when compared to the minimum information criteria results.
Independently of the maximum number of lags we test for, the optimal lag (p) tends to be always the

highest admitted in the selection. Figure C.4 shows the Wald lag-exclusion statistics test results.

After evaluating the results from the minimum information criteria and the Wald lag-exclusion
statistic test, we are left with two main conclusions. First, either the optimal (p) lag is the highest
allowed in the VAR according to the Wald lag-exclusion test, having into consideration the stability
condition (p=15), or second, the optimal (p) lag is equal to one (p=1) according to the Minimum

Information Criteria.

To make the final decision between (p=1) and (p=15), we test for serial correlation of the residuals
for the optimal lag options taken into account. Next, we observe the difference in the significance of
the exogenous variables in controlling the pandemic when changing p. To choose between the criteria
already enunciated, the consequent relationships that the model retrieves are decisive and must make

sense economically.

4.1.3. Residual diagnostics

Figure C.6 shows the Lagrange multiplier test for the serial correlation between residuals for p=1.
When the p-value is greater than the significance level, we cannot reject the null hypothesis of no serial
correlation of the residuals at a specific lag order. For a significance level of 1%, we conclude that there
is autocorrelation in the first two lags. In this specific case, the optimal lag is p=1 according to minimum
information criteria, which is wrongly assessed because the errors cannot be serially correlated for a
VAR model to be well specified. After various tests, we concluded that the serial correlation of the
residuals tends to decrease as the lag "p" increases. For this first specific model, autocorrelation
problems stand when running the VAR model with optimal lag p=1, 2, or 158 lags. We are left to choose

between p=3 and p=14.

Also, for p=1, for a 10% significance level, both variables “vacgrowth” and “dummy” are not
significant to explain the new confirmed cases growth rate (casesgrowth). We also test the hypothesis
for the dummy variable to assume different vaccination rates, such as 33%, 50%, and 66%. The
conclusions are similar. Such results can be counterintuitive as we expect that the vaccine has
statistical significance when explaining casesgrowth. When increasing the number of p lags, the

exogenous variables tend to become more significant to explain casesgrowth, which may explain the

8 For p=15 lags, the errors are serially correlated at the 6™ lag, assuming a significance level of 1%.
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fact that the vaccine does not have an immediate effect on controlling the pandemic. It takes a
certain period for that effect to be felt in society (at least two weeks for an individual and much more
for herd immunity). After that, we checked the Granger causality for the different p's and concluded
that the model's relationships started to make economic sense as the number of lags increased.
Aforementioned, there is no specific way to choose the optimal lag, so we focused on our own
selection process. All tests indicate that the model is better specified when for larger p's. To finalize
the support of our choice, we look at the literature which indicates that for higher data frequency a
greater number of lags should be used. Following our decision process, the optimal lag for the VAR

model will be p=14.

Figure C.7 shows the Lagrange multiplier test for the serial correlation between residuals for p=14.
For a significance level of 1%, we conclude that there is no autocorrelation of the error terms at all
lags. Also, now for p=14, the p-value for “vacgrowth” is smaller than 0.10, meaning that at a 10%
significance level, the variable is significant in explaining the cases growth rate. “vacgrowth” has a
negative coefficient of -0.0469772, meaning that cases growth rate decreases when the vaccination

growth rate increases®. More residual diagnostics can be found in the Appendix (figure C.8, C.9, C.10).

4.1.4. Granger causality

When analyzing the results of figure C.11, it is possible to conclude that there is strong evidence for
Granger causality among most variables. However, only casesgrowth does not help to predict FF'°. The
first row of results is not interpretable, this means that casesgrowth Granger causes (GC) the other
variables but not vice versa. Also, it is common knowledge that at the beginning of the pandemic,
interest rates had a sharp fall to stimulate the economy in the pandemic times, which could create
expectations about how Covid-19 affected the FF. Therefore, according to the results, one way to
interpret it could be that casesgrowth GC dWeilnterp, and dWeilnterp GC FF, in this case, FF is
indirectly affected by the pandemic. Also, the FF in our data sample has very small variability, which

may explain why casesgrowth does not GC FF in the model.

Orthogonalized impulse response functions

As stated in 3.3.9., we compute the OIRFs instead of the non-orthogonal IRFs because the
decomposition of the variance-covariance matrix is through Cholesky factorization. Also, the ordering

of the variables is already defined in the code when estimating the VAR.

9The vaccination rate assumed for the dummy variable was 33%.

0The Granger causality tests are performed assuming a significance level of 10%.
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Firstly, figure C.12 in the Appendix displays all results to compare the magnitude of the effects
between OIRFs. Next, the analysis is done of each of the dynamic relationships that results from a

shock in casesgrowth for a horizon of at most 20 weeks (five months)**.

Response: dWeilnterp

. irf graph oirf, set(IRF) irf(IRF) impulse (casesgrowth) response (dWeilnterp) yline(0)
(file IRF.irf now active)

. irf table oirf, set(IRF) irf(IRF) impulse (casesgrowth) response (dWeilnterp

(file IRF.irf now active) Results from IRF

(1) (1) (1)

step oirf Lower Upper
IRF, casesgrowth, dWeilnterp 0 -061066 -000689 -121443
2 1 -.029075 -.097617 .039466
2 -.097751 -.166322 -.029179
3 .02529 -.048739 .099318
4 -.007792 -.081969 .066385

14 5 -.027975 -.104769 .04882
6 .005574 -.074505 .085653
7 -.007031 -.089691 .075629
8 -.0323 -.116918 .052317
0+ - 7 - 9 -.072852 -.160229 .014525
10 -.094945 -.186914 -.002977
11 -.028134 -.120357 .064089
12 -.013683 -.114652 .087286
-1 13 .023017 -.078902 .124935
14 .077848 -.02377 .179467
15 .088396 -.015535 .192327
16 .006243 -.092491 .104978
'2" : : : : 17 -.071429 -.162781 .019924
0 5 10 15 20 18 -.05757 -.149785 .034646
step 19 -.082735 -.174498 .009029

20 -.021725 -.110081 .06663

95% CI orthogonalized irf
Graphs by irfname, impulse variable, and response variable 95% lower and upper bounds reported

(1) irfname = IRF, impulse = casesgrowth, and response = dWeilnterp

Figure 1 — casesgrowth shock in dWeilnterp OIRFs for the model with optimal lag (p=14).

Figure 1 shows the effects of casesgrowth in dWeilnterp. First, we see that a one-standard deviation
(0.126723%) shock in casesgrowth increases dWeilnterp in the current week by about 0.06%. Then,
there is a decreasing effect in the following two weeks after the initial shock, with the peak occurring
in the second week of between [-0.029179; -0.166322] percentage points. After the second week, the

effect goes rapidly to zero, with the statistical significance of the effect disappearing.

Response: LCBLLBCgrowth

. irf graph oirf, set(IRF) irf (IRF) impulse (casesgrowth) response (LCBLLBCgrowth) yline(0)
(file IRF.irf now active)

. irf table oirf, set(IRF) irf(IRF) impulse (casesgrowth) response (LCBLLBCgrowth)
(file IRF.irf now active)

11 Recalling, there is no Granger causality between casesgrowth and FF. Therefore, there is no need to compute

the OIRF and COIRF for this specific case.
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Results from IRF

IRF, casesgrowth, LCBLLBCgrowth step oi(i)f Lov(vil)f Up;::
.0005
0 5.5e-06 -.000166 .000177
1 -.00037 -.000552 -.000187
2 -.000048 -.000242 .000147
3 -.000227 -.000426 -.000027
4 -.000279 -.000483 -.000075
5 -.00027 -.000486 -.000054
0o\ — - 6 -.000277 -.000503 -.000051
7 .000012 -.00022 .000245
8 .000052 -.000187 .000291
9 .000189 -.000057 .000435
10 .00015 -.000105 .000405
11 .000185 -.000085 .000456
12 -.000051 -.000332 .000231
| 13 -.000242 -.000526 .000042
SIS 14 -.000171 -.000455 .000113
‘0 é 1‘0 1‘5 2‘0 15 .000026 -.00024 .000293
16 .000041 -.000219 .000302
step 17 -.000015  -.000271 .000241
95% ClI onhogonaﬁzediﬁ 18 .000085 -.000171 .00034
19 9.6e-06 -.00024 .000259
Graphs by irfname, impulse variable, and response variable 20 ~.000028 ~.000277 000221

95% lower and upper bounds reported

(1) irfname = IRF, impulse = casesgrowth, and response = LCBLLBCgrowth

Figure 2 — casesgrowth shock in LCBLLBCgrowth OIRF for the model with optimal lag (p=14).

Figure 2 shows the effects of new confirmed Covid-19 cases' growth rate on the model's total credit
growth rate. We see that a one-standard-deviation (0.126723%) shock in casesgrowth has no
immediate effect on LCBLLBCgrowth but decreases it between [-0.000187; -0.000552] at the first week
and between the third and sixth weeks after the shock, with the lowest point happening four weeks
following the shock [-0.000075; -0.000483]. After it, the response associated with the shock quickly

dies out and has no more significance.

It is important to note that these results do not mean that credit has not been boosted by
government aid, as seen in the introduction and literature review section, but the growth rate in Covid-
19 cases decreased the credit growth rate in the American economy. This fact can be explained by the
large increase in credit provided at the early stages of the pandemic, and throughout its development,
available credit grew but less and less, having a negative effect. Even though the results mentioned

are significant, the effect is very close to zero.

4.1.5. Cumulative orthogonalized impulse response functions

As stated in point 3.3.9. the COIRFs capture the accumulated effects of the shocks in the model.

Firstly, in figure C.23, we display all results to compare the magnitude of the effects between
COIRFs. Next, the analysis is done of each of the dynamic relationships that results from a shock in

casesgrowth.
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Response: dWeilnterp

. irf table coirf, set(IRF) irf (IRF) impulse (casesgrowth) response (dWeilnterp)
(file IRF.irf now active)
IRF, casesgrowth, dWeilnterp
.59
0+
-5
14
T T T T
0 20 40 60

step

95% ClI cumulative orthogonalized irf ‘

Graphs by irfname, impulse variable, and response variable

Figure 3 — casesgrowth shock in dWeilnterp COIRFs for the model with optimal lag (p=14).

Assessing figure 3, it is possible to conclude that casesgrowth has no significant cumulative effect in

dWeilnterp.

Response: LCBLLBCgrowth

. irf graph coirf, set(IRF) irf(IRF) impulse (casesgrowth) response (LCBLLBCgrowth) yline(0)

(file

. irf table coirf, set(IRF) irf(IRF) impulse (casesgrowth) response (LCBLLBCgrowth

IRF.irf now active)

Results from IRF

(file IRF.irf now active)

(1) (1) (1)

IRF, casesgrowth, LCBLLBCgrowth step coirf Lower Upper

w2 0 .5e-06 -.000166 .000177
1 .000364 -.000629 -.000099
2 .000412 -.000755 -.000069
3 .000638 -.001066 -.000211
04 4 .000917 -.001431 -.000404
5 .001187 -.001791 -.000584
6 .001465 -.002171 -.000758
7 .001452 -.002266 -.000639
8 .0014 -.002321 -.000479
-.002 9 .001211 -.002238 -.000184
10 .001061 -.0022 .000078

11 .000876 -.002114 .000362

12 .000927 -.002244 .000391

13 .001169 -.002581 .000243

-.0044 14 001339  -.002842 .000164
15 .001313 -.002879 .000253

16 .001272 -.002881 .000338

g U u U 17 .001287 -.002948 .000375

0 2y &0 60 18 .001202 -.002922 .000518

step 19 .001192 -.002984 .0006
- ) _ 20 .00122 -.003095 .000655
95% CI cumulative orthogonalized irf

Graphs by irfname, impulse variable, and response variable

95% lower and upper bounds reported

(1) irfname = IRF,

impulse = casesgrowth, and response = LCBLLBCgrowth

Figure 4 - casesgrowth shock in LCBLLBCgrowth COIRFs for the model with optimal lag (p=14).

Figure 4 shows the effects of new confirmed Covid-19 cases' growth rate on the model's total credit

growth rate. It is possible to see that a shock in casesgrowth has a decreasing long-run effect on
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LCBLLBCgrowth. The effect peaks in the sixth week [-0.002171; -0.000758] and lasts for ten weeks after
the initial shock. The results are expectable; as mentioned in the introduction, the FED provided large
amounts of credit at the beginning of the pandemic, which means that as Covid-19 cases exponentially

grew in the first stages, on the other hand, credit also continued to grow but not as at its initial rates.

4.1.6. Point forecast

In this section, we present the forecasts for dWeilnterp using our VAR model and compare them with
the ones from a simple benchmark AR(1), based on the generated forecast errors. The analysis focus

on the economic activity as it is the variable of greatest interest in our model regarding forecasting.

Ex-post Forecast

The Ex-post forecasts are generated using the rule of thumb method: the first 80% of the sample is

used to train the model, and the rest 20% is used to predict the time series.

VAR(14) model:

Forecast for dWeilnterp

<4
T T T T T T
2020w1 2020w27 2021w1 2021w26 2022w1 2022w26
date

T T T T
dWeilnterp ———-—- forecast1_dWeilnterp, dyn(2021w50) ‘ 2021w48 2022w1 2022w5 2022w9

Figure 5 — dWeilnterp Ex-post forecast for VAR(14)

AR(1) Model:
~ 0
B4
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N+ —
% o+
o
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x
o 2
s
°
o 5]
=
5
=
o
<
T T T T T T
2020w1 2020w27 2021w1 g 2021w26 2022w1 2022w26 0
e <1
' T T T T
dWeilnterp ————- dWeilnterp (forecastAR1model f ) 2021w48 2022w1 date 2022w5 2022w9

Figure 6 — dWeilnterp Ex-post forecast for AR(1)
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Forecast error

This analysis answers whether our VAR(14) model is better for forecasting purposes of real economic
activity or whether one should consider another approach since it could achieve more accurate results.
The results are displayed in Table 2. To decide the model's forecasting accuracy, we compare the

forecast errors measures.

VAR(14) VS. AR(1) Ex-post forecast errors for dWeilnterp
Forecast error VAR(14) AR(1)
MAE 0.6200248 0.0413469
MAPE 3.6400895 0.1419424
MSE 0.53571891 0.0241532
RMSE 0.73192822 0.15541314

Table 2 - VAR(14) VS. AR(1) Ex-post forecast errors for dWeilnterp

The main conclusion from Table 2 is that the VAR(14) model is not the best approach for
forecasting dWeilnterp. Clearly, the simple AR(1) model is more accurate when forecasting real

economic activity index in first differences.
Ex-ante Forecast

The Ex-ante forecasts for the VAR(14) model are generated 16 weeks ahead, from 16th March 2022 to
29th June 2022. Regarding the values of exogenous variables "vacgrowth" and "dummy," the binary
variable still assumes a value of 1 along the forecast period, while for "vacgrowth" the actual data was

collected and entered into STATA once values for this date had already been published.

VAR(14) model:

. var casesgrowth dWeiInterp LCBLLBCgrowth FF, exog (dummy vacgrowth) lags(1/14)
. fcast compute forecast2_ , step(16)

. twoway (line dWeilnterp date) (line forecast2_dWeiInterp date, lpattern(dash))

Forecast for dWeilnterp

¥4

T T
2020w1 2020w27

T T T T
2021w1 2021w26 2022w1 2022w26 0 |
date '

T T T T T
dWeilnterp  ———-—- forecast2_dWeilnterp, dyn(2022w11) ‘ 2022w9 2022w13 2022w18 2022w22 2022w26

Figure 7 — dWeilnterp Ex-ante forecast for VAR(14)
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Figure 7 shows dWeilnterp real values in blue and the forecasted values in red. Analyzing
dWeilnterp behavior since 2020 is possible to verify that there has always been an oscillation between
positive and negative values, with values above zero indicating a week of economic growth and values
below zero indicating a week of economic recession. In this case, the forecast follows this pattern. Our
forecast indicates that from March 23" (2022w11), to April 20" (2022w16) and from May 18"
(2022w20), to June 15 (2022w24) will be periods of economic growth, while from April 27t
(2022w17), to May 11th (2022w19), and June 22" (2022w25), to June 29" (2022w26), will be periods

of economic recession.
Forecast error variance decomposition

In the estimated VAR model, most of the variation associated with a variable in the first weeks is due
to itself. For example, the variation associated with dWeilnterp shocks in the first week is of
approximately 99%. Also, approximately 96% of the variation in the Federal Funds rate is due to shocks

to the Federal Funds rate itself; the remaining 4% is from the other variables, and so on.

Part | of this thesis aims to see whether the pandemic affected real economic activity, where we
focus this analysis. By looking at figure 8, it is possible to conclude that after sixteen weeks, around
33% of dWeilnterp uncertainty is explained by casesgrowth, 7% of dWeilnterp by LCBLLBCgrowth, 8%

by FF, and the rest of the variability in dWeilnterp is associated to itself (around 52%).

. varbasic casesgrowth dWeilInterp LCBLLBCgrowth FF, lags(1/14) step (16) fevd
. irf table fevd, impulse (casesgrowth dWeilnterp LCBLLBCgrowth FF) response (dWeilnterp) noci std
Results from varbasic
(1) (1) (2) (2) (3) (3) (4) (4)
step fevd S.E. fevd S.E. fevd S.E. fevd S.E.
0 0 0 0 0 0
1 .014372 .024773 .985628 .024773 0 0
2 .034645 .02747 .896507 .049022 .051265 .036262 .017582 .020174
3 .136012 .07077 .77206 .083241 .057008 .043379 .03492 .035637
4 .117704 .065658 .786007 .078512 .062855 .038619 .033435 .035767
5 .119783 .068898 .757305 .088097 .056268 .03406 .066645 .053448
6 .140104 .081732 .732479 .097664 .058173 .032585 .069244 .058981
7 .142087 .084667 .721572 .099164 .064856 .037272 .071485 .061903
8 .146146 .08615 .709554 .101365 .069075 .034743 .075225 .063589
9 .160728 .089995 .680948 .105331 .074698 .035146 .083626 .06437
10 .199604 .098706 .641971 .108324 .079273 .034942 .079151 .061287
11 .246002 .109982 .5998 .110505 .079266 .035074 .074932 .057072
12 .254015 .115811 .59318 .112584 .078098 .034688 .074707 .055931
13 .25277 .116991 .585998 .110851 .08224 .035302 .078993 .054996
14 .251778 .113506 .586665 .107788 .081193 .034697 .080363 .05476
15 .283508 .110334 .559063 .105006 .077443 .032329 .079986 .053039
16 .332862 .115224 .516136 .107095 .072102 .029591 .0789 .050871
(1) irfname = varbasic, impulse = casesgrowth, and response = dWeilnterp
(2) irfname = varbasic, impulse = dWeilnterp, and response = dWeilnterp
(3) irfname = varbasic, impulse = LCBLLBCgrowth, and response = dWeilnterp
(4) irfname = varbasic, impulse = FF, and response = dWeilnterp

Figure 8 - Forecast error variance decomposition for dWeilnterp




4.2. VAR model with new confirmed Covid-19 deaths growth rate
The second VAR model is estimated to measure the impact of the deaths caused by the pandemic on

the U.S economy and the availability of credit. The model contains four endogenous variables: new

confirmed deaths growth rate, LCBLLBC growth rate, dWeilnterp, and FF.

Given equation (2), our four-dimensional VAR(p) model has a vector of endogenous variables

deathsgrowth
[ th
Y, = dWeilnterp , and a vector of exogenous variables X; = (vacgrow )
LCBLLBCgrowth dummy
FF

4.2.1. Stability condition
Figure C.35 shows the stability results for the model's largest "p" allowed. Again, all the eigenvalues lie
inside the unit circle, concluding that the VAR model satisfies the stability condition for a maximum of

14 lags.

4.2.2. Optimal lag selection

4.2.2.1. Minimum information criteria

As mentioned in subsection 3.3.1.4., we proceed to the optimal lag selection using the maximum

correspondent number of lags (p) for which the model is stable.

According to AIC, SBIC, and HQIC, the optimal lag is always one (p=1), independently of the

maximum number of lags we test for!2,
4.2.2.2. Wald lag-exclusion statistics test

The conclusions are very different when compared to the minimum information criteria results.
Independently of the maximum number of lags we test for, the optimal lag (p) tends to be the highest

admitted in the selection.

After evaluating the results from the minimum information criteria and the Wald lag-exclusion
statistic test, we are left with two main conclusions. First, either the optimal (p) lag is the highest
allowed in the VAR, having into consideration the stability condition (p=14), or second, the optimal (p)
lag is equal to one (p=1) according to AIC, SBIC, and HQIC. Figure C.37 shows Wald lag-exclusion

statistics test results®.

1 The model is stable from (p=1) lags until (p=14) lags.
12The criteria were tested from (p=1) lags until (p=14) lags.

3 For an optimal lag of (p=14), all lags are jointly significant for a significance level of 10% except for (p=7).
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To make the final choice between (p=1) and (p=14), we test for serial correlation of the residuals
for the options considered. Next, we observe the difference in the significance of the exogenous
variables in controlling the pandemic when changing "p". To choose between the criteria already
enunciated, the consequent relationships that the model retrieves are decisive and must make sense

economically.

4.2.3. Residual diagnostics

Figure C.38 shows the Lagrange multiplier test for the serial correlation between residuals for p=1.

When the p-value is greater than the significance level, we cannot reject the null hypothesis of no
serial correlation of the residuals at a specific lag order. For a significance level of 1%, we conclude that
there is autocorrelation in the first two lags. In this specific case, the optimal lag is p=1 according to
minimum information criteria, which is wrongly assessed because the errors cannot be serially
correlated for a VAR model to be well specified. After various tests, we concluded that the serial
correlation of the residual tends to decrease as the lag "p" increases. For this first specific model, the
autocorrelation problems stand when running the VAR model with optimal lag p=1 or 2. We are left to

choose between p=3 and p=14.

Also, for p=1, for a 10% significance level, both control variables “vacgrowth” and “dummy” are
not significant to explain the new confirmed deaths growth rate (deathsgrowth). We also test the
hypothesis for the dummy variable to assume different vaccination rates, such as 33%, 50%, and 66%*.
Such results can be counterintuitive as we expect that the vaccine has statistical significance when
explaining deathsgrowth. When increasing the number of "p" lags, the exogenous variables tend to
become more significant in explaining deathsgrowth. After that, we checked Granger causality for the
different p's and concluded that the model's relationships started to make more economical sense as
the number of lags increased. Following our decision process, the optimal lag for the VAR model will

be p=14%.

Figure C.39 shows the Lagrange multiplier test for the serial correlation between residuals for
p=14. For a significance level of 1%, we conclude that there is no autocorrelation of the error terms at

all lags.

14 The vaccination rate assumed for the dummy variable was 33%.

5 For an optimal lag of (p=14), all lags are jointly significant for a significance level of 1% except for (p=7).
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4.2.4. Granger causality
When analyzing the results of figure C.43, it is possible to conclude that there is strong evidence

for Granger causality among variables?®. Again, the first row of results is not interpretable.

4.2.5. Orthogonalized impulse response functions
Firstly, in figure C.44, we display all results to compare the magnitude of the effects between
OIRFs. Lastly, due to the identification scheme adopted, a singular analysis is done on each dynamic

relationship that results from a shock in deathsgrowth for a horizon of at most 20 weeks (five months).

Response: dWeilnterp

. irf graph oirf, set(IRF) irf (IRF) impulse (deathsgrowth) response (dWeilnterp) yline(0)
(file IRF.irf now active)

. irf table oirf, set(IRF) irf (IRF) impulse (deathsgrowth) response (dWeilnterp)
(file IRF.irf now active)

Results from IRF

IRF, deathsgrowth, dWeilnterp (1) (1) (1)
step oirf Lower Upper
! 0 -.022215  -.07916 .03473
1 -.07569 -.139592  -.011788
2 -.100097  -.163801  -.036393
3 -.042867  -.105985 .020251
4 -.03701 -.102233 .028213
U - B 5 .035007 -.029166 .099181
6 .012362 -.053536  .078259
7 -.056731  -.12117 .007708
8 -.031856  -.095662 .031949
9 .025931 -.036593 .088454
1 10 -.025452  -.087309  .036405
11 -.008251  -.06883 .052328
12 .048302 -.017034 .113638
13 -.018484  -.085344 .048377
14 .025298 -.03801 .088605
15 .061241 .001406 .121077
=2 . . . . 16 036746 -.028015 .101508
0 5 10 15 20 17 -.004518  -.065667 .056631
step 18 .0258 -.032811 .084411
19 .006232 -.051073 .063537
95% Cl orthogonalized irf 20 -.002446  -.058487 053594

Graphs by iffname, impulse variable, and response variable 95% lower and upper bounds reported

(1) irfname = IRF, impulse = deathsgrowth, and response = dWeilnterp

Figure 9 — deathsgrowth shock in dWeilnterp OIRF for the model with optimal lag (p=14).

Figure 9 shows the effects of deathsgrowth shocks in dWeilnterp, which have an immediate negative
impact of approximately 0.022 percentual points. We see that a one-standard deviation (0.15
percentage points) shock in deathsgrowth decreases dWeilnterp in the first two weeks by about 0.1
percentage points [-0.036393; -0.163801]. After the second week, the effect goes rapidly to zero, with
the statistical significance of the effect disappearing. The effect caused by Covid-19 deaths growth rate
is negative as expected; once deathsgrowth increases, it means individuals (p.e. human capital,
consumers, producers) are being removed from the economic circle, ceasing their contribution to

economic activity. The magnitude of the effects is very similar to the ones obtained in subsection 4.1.5.

16 The Granger causality tests are performed assuming a significance level of 10%.
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Response: LCBLLBCgrowth

. irf graph oirf, set(IRF) irf(IRF) impulse (deathsgrowth) response (LCBLLBCgrowth) yline(0)
(file IRF.irf now active)

. irf table oirf, set(IRF) irf(IRF) impulse (deathsgrowth) response (LCBLLBCgrowth)Results from IRF
(file IRF.irf now active)

(1) (1) (1)
IRF, deathsgrowth, LCBLLBCgrowth step oirf Lower Upper
.0005-

0 000305 000102 000507

1 000089 -.000116 000294

2 -.000043 -.000248 .000163

3 -.000128 -.000321 000065

4 -.000023 -.000212 .000166

5 .000046 -.000143 000235

6 00001 -.000181 .000201

7 000038 -.000149 .000226

01— B 8 -.000062 -.000244 .00012

9 .000136 -.000045 .000318

10 00015 -.000037 .000337

11 000175 -.000016 .000366

12 000177 -.000039 .000394

13 000081 -.000129 .00029

14 000037 -.000155 000229

15 000082 -.000101 000265

-.0005 16 000033 -.000153 .000218

0 5 10 15 20 17 -.000042  -.000228 000144

4 18 -.000107 -.000286 .000071

Step 19 000024 -.000147 .000195

95% ClI orthogonalized irf 20 000071 -.000101 .000242

Graphs by irfname, impulse variable, and response variable 95% lower and upper bounds reported

(1) irfname = IRF, impulse = deathsgrowth, and response = LCBLLBCgrowth

Figure 10 — deathsgrowth shock in LCBLLBCgrowth OIRF for the model with optimal lag (p=14).

Figure 10 shows the effects of new confirmed Covid-19 deaths' growth rate on the model's total credit
growth rate. We see that a one-standard deviation (0.15 percentage points) shock in deathsgrowth
immediately affects LCBLLBCgrowth by about 0.0003 percentual points. The rest of the effect is

considered insignificant.

Response: FF

. irf graph oirf, set(IRF) irf (IRF) impulse (deathsgrowth) response (FF) yline(0)
(file IRF.irf now active)

. irf table oirf, set(IRF) irf(IRF) impulse (deathsgrowth) response (FF) Results from IRF
(file IRF.irf now active)
(1) (1) (1)
step oirf Lower Upper
IRF, deathsgrowth, FF

002 0 .00021 -.000315 000735
1 .000227 -.000364 .000818
2 -.000358 -.000961 .000246
3 .000168 -.000416 .000753
0014 4 000533 -.000038 001103
5 .000303 -.000273 .000878
6 .000377 -.000231 .000985
7 .000587 -.000044 .001218
0o+ - L 8 .000207 -.00043 .000843
9 .000195 -.000473 .000863
10 -.000562 -.001306 .000181
11 .001122 .000383 .001861
0011 12 .000685 -.000072 .001442
13 .00075 -.000024 .001524
14 -.000804 -.001681 .000073
15 -.000761 -.001662 .00014
-0024 16 -.00046 -.001384 .000464
T T T " ’ 17 -.000029 -.000926 .000869
0 5 10 1 ® 18 -.000345 -.001225 .000536
step 19 -.000533  -.001402 .000335
95% ClI orthogonalized irf 20 -.000181 -.001072 .000711

Graphs by irfname, impulse variable, and response variable 95% lower and upper bounds reported

(1) irfname = IRF, impulse = deathsgrowth, and response = FF

Figure 11 — deathsgrowth shock in FF OIRF for the model with optimal lag (p=14).

The effects of deathsgrowth shocks in FF are almost insignificant. In this case, the output is significant

only in the eleventh week, with an average effect of 0.001122 percentual points.
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4.2.6. Cumulative orthogonalized impulse response functions
Firstly, in figure C.55, we display all results to compare the magnitude of effects between COIRFs.
Lastly, a singular analysis for each relationship that results from a shock in deathsgrowth is done.

Response: dWeilnterp

. irf graph coirf, set(IRF) irf (IRF) impulse (deathsgrowth) response (dWeilnterp) yline (0)
(file IRF.irf now active)

. irf table coirf, set(IRF) irf(IRF) impulse (deathsgrowth) response (dWeilnterp)

(file IRF.irf now active) Results from IRF
IRF, deathsgrowth, dWeilnterp 1) 1 1)
24 step coirf Lower Upper
0 -.022215 -.07916 .03473
1 -.097905 -.199517 .003707
o+ | 2 -.198002 -.325896 -.070108
3 -.240869 -.398119 -.083619
4 -.277879 -.462601 -.093157
5 -.242871 -.438605 -.047138
24 6 -.23051 -.428442 -.032577
: 7 -.287241 -.487853 -.086629
8 -.319097 -.52624 -.111954
9 -.293166 -.503947 -.082385
10 -.318618 -.532121 -.105115
4 11 -.326869 -.545598 -.108139
12 -.278567 -.497398 -.059737
13 -.297051 -.516055 -.078046
14 -.271753 -.488903 -.054603
-6, . . . . 15 -.210512 -.424268 003245
0 5 10 15 20 16 -.173765 -.39112 .04359
step 17 -.178283 -.402832 046266
18 -.152483 -.38215 .077184
95% ClI cumulative orthogonalized irf 19 ~.146251 ~.380076 .087575
Graphs by irfname, impulse variable, and response variable 20 - 148697 --385621 -088227

95% lower and upper bounds reported
(1) irfname = IRF, impulse = deathsgrowth, and response = dileilnterp

Figure 12 — deathsgrowth shock in dWeilnterp COIRF for the model with optimal lag (p=14).

Assessing figure 12, it is possible to conclude that deathsgrowth has a significant long-run effect in
dWeilnterp from the second to the fourteenth week, with the peak occurring at the eighth week [-
0.52624;0.111954]. This negative effect could be explained by the fact that once economic agents are
unexpectedly removed from the economy (focusing on individuals), it creates inefficiencies which
translates into a decrease in economic activity. Although this fact also creates instability and
uncertainty in companies as they lose workforce and consumers in one hit, the adaptation process to

this new reality is not immediate.
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Response: LCBLLBCgrowth

irf graph coirf, set(IRF) irf (IRF) impulse (deathsgrowth) response (LCBLLBCgrowth) yline (0)
(file IRF.irf now active)

irf table coirf, set(IRF) irf (IRF) impulse (deathsgrowth) response (LCBLLBCgrowth)
(file IRF.irf now active)

Results from IRF

1) (1) &8

IRF, deathsgrowth, LCBLLBCgrowth step coirt Lower Upper
205 0 .000305 .000102 .000507
1 000394 .000073 .000715
2 .000351 -.00008 .000783
3 .000224 -.000295  .000742
4 L0002 -.000394  .000795

g 5 .000246 -.000408  .0009
6 .000257 -.000432  .000945
7 .000295 -.000421  .001011
8 .000233 -.000506  .000972
9 .000369 -.000397  .001136
10 .000519 -.000277  .001316
o+—— 1 000694 -.000148  .001536
12 .000872 -5.2e-07  .001744
13 .000952 .000046 .001858

14 .000989 .000078 L0019
15 .001071 .000173 .001969
16 .001103 .0002 .002007
001 . . . . 17 001061 000138 001985
0 5 10 15 20 18 000954 .000021 .001887
step 19 .000978 .000032 .001925

20 .001049 .000077 .00202

95% ClI

cumulative orthogonalized irf ‘

95% lower and upper bounds reported

(Clizhis (5 T, (D VR, ETie (Es e Ve EL D (1) irfname = IRF, impulse = deathsgrowth, and response = LCBLLBCgrowth

Figure 13 — deathsgrowth shock in LCBLLBCgrowth COIRF for the model with optimal lag (p=14).

Figure 13 shows the effects of new confirmed Covid-19 deaths' growth rate on the model's total credit
growth rate. It is possible to see that a shock in deathsgrowth has an increasing long-run effect on

LCBLLBCgrowth. The effect peaks at the sixteenth week [0.0002;0.002007].

Response: FF

irf graph coirf, set(IRF) irf (IRF) impulse (deathsgrowth) response (FF) yline(0)
(file IRF.irf now active)

. irf table coirf, set(IRF) irf (IRF) impulse (deathsgrowth) response (FF)
(file IRF.irf now active)

Results from IRF

IRF, deathsgrowth, FF .(l) () w

014 step coirf Lower Upper
0 .00021 -.000315 000735
1 000437 -.000543 001417
2 000079 -.001296 .001455
3 000248 -.001427 001923
1005 4 000781 -.001156 002717
5 001083 -.001055 .003222
6 00146 -.000893 .003813
7 002047 -.00051 004605
8 002254 -.000528 005036
9 002449 -.000606 005504
01 — B 10 001887 -.0015 .005273
11 003009 -.000676 006694
12 003694 -.00024 007627
13 004444 .000234 .008653
14 .00364 -.000923 .008203
ol 15 002879 -.001919 007677
T T y ; y 16 002419 -.00257 007408

© 2 L B 20 17 .00239 -.00277 .00755
step 18 002046 -.003254 007346
95% CI —— cumulative orthogonalized irf ‘ ;2 ggig;i _ggzgjg gg:ig;

Graphs by irffname, impulse variable, and response variable
95% lower and upper bounds reported

(1) irfname = IRF, impulse = deathsgrowth, and response = FF

Figure 14 — deathsgrowth shock in FF COIRF for the model with optimal lag (p=14).

The effects of an impulse in deathsgrowth are only significant for the Fed Funds rate in the thirteenth

week, though it is very small [0.000234;0.008203].

33



4.2.7. Point forecast

This section presents the forecasts for our VAR model, this time with deathsgrowth instead of
casesgrowth. Again, the analysis will focus on the real economic activity, which is the variable of

greatest interest when it comes to forecasting.

Ex-post Forecast

The Ex-post forecasts are generated using the rule of thumb method: The first 80% of the sample used

to train, and the rest 20% is used to predict the time series.

VAR(14) model:

Forecast for dWeilnterp

<4

T T T T T T
2020w1 2020w27 2021w1 2021w26 2022w1 2022w26
date <
‘ dWeilnterp ——-——- forecast1_dWeilnterp, dyn(2021w50) ‘ 2021‘w48 202‘2‘”1 202‘2‘”5 202‘2‘”9
Figure 15 — dWeilnterp Ex-post forecast for VAR(14)
AR(1) Model:
¥ 0
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~ 2
So
o
£
x
o 5
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g
=
el
2%
5
T T T T T T T
2020w1 2020w27 2021w1 - 2021w26 2022w1 2022w26 )
ate =
' T T T T
dWeilnterp ———-- dWeilnterp (forecastAR1model f_) ‘ 2021w48 2022w1 date 2022w5 2022w

Figure 16 — dWeilnterp Ex-post forecast for AR(1)

Forecast error

This analysis answers whether our VAR(14) model is better for forecasting purposes of real economic
activity or whether one should consider another approach since it could achieve more accurate results.

The results are displayed in table 3. the model's forecasting accuracy, we compare the forecast errors.
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VAR(14) VS. AR(1) forecast errors for dWeilnterp
Forecast error VAR(14) AR(1)
MAE 0.39945128 0.0413469
MAPE 1.85737 0.1419424
MSE 0.2693513 0.0241532
RMSE 0.51899063 0.15541314

Table 3 — VAR(14) VS. AR(1) Ex-post forecast errors for dWeilnterp

The main conclusion from table 3 is the same as the first VAR(14) model using casesgrowth. Our

VAR(14) model is not an accurate approach to forecast dWeilnterp.
Ex-ante Forecast

The Ex-ante forecasts for the VAR(14) model are generated 16 weeks ahead, from 16th March 2022 to
29th June 2022. Regarding the values of exogenous variables "vacgrowth" and "dummy," the binary
variable still assumes a value of 1 along the forecast period, while for "vacgrowth" the actual data was

collected and entered into STATA once values for this date had already been published.

. var deathsgrowth dWeilnterp LCBLLBCgrowth FF, exog (dummy vacgrowth) lags(1/14)

. fcast compute forecast2 , step(16)

. twoway (line dWeilnterp date) (line forecast2 dWeilInterp date, lpattern(dash))

< Forecast for dWeilnterp
I”\

I

A

I\
y W

5 4

T T T T T T
2020w1 2020w27 2021w1 2021w26 2022w1 2022w26
date

7 T T T T T
dWeilnterp  ————- forecast2_dWeilnterp, dyn(2022w11) | 2022w9 2022w13 202218 2022w22 202226

Figure 17— dWeilnterp Ex-ante forecast for VAR(14)

Figure 17 shows dWeilnterp real values in blue and the forecasted values in red. Analyzing our forecast,
it indicates that from March 30%™ (2022w13) to April 13" (2022w15) and from June 1% (2022w22) to
June 29" (2022w26) will be periods of economic growth, while from March 23™ (2022w12) and April
20" (2022w16) to May 25 (2022w21) will be periods of economic recession.

Forecast error variance decomposition

In the model estimated VAR model, most of the variation associated with a variable in the first weeks
is due to itself. For example, the variation associated with dWeilnterp shocks in the first week is of

approximately 98%.
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Part | of this thesis aims to see whether the pandemic affected real economic activity, which is
where we will focus this analysis. By looking at figure 18, it is possible to conclude that after sixteen
weeks, around 23% of dWeilnterp uncertainty is explained by deathsgrowth, 19% of dWeilnterp by

LCBLLBCgrowth, 18% by FF, and the rest of the variability in dWeilnterp is associated to itself (around

40%).
Results from varbasic
(1) (1) (2) (2) (3) (3) (4) (4)
step fevd S.E. fevd S.E. fevd S.E. fevd S.E.
0 0 0 0
1 .017952 .027587 .982048 .027587 0 0
2 .083115 .059695 .783255 .073981 .023777 .026202 .109853 .051985
3 .185653 .085237 .675067 .090122 .026293 .031734 .112987 .058038
4 .207786 .092455 .647848 .095594 .034549 .028595 .109818 .058874
5 .199193 .091138 .547776 .099216 .060104 .040345 .192928 .080164
6 .184729 .087855 .510404 .101182 .095932 .061754 .208934 .089002
7 .172859 .084832 .482873 .102318 .149675 .084606 .194593 .084929
8 .193621 .086734 .456306 .102911 .165488 .093338 .184584 .082098
9 .207282 .08998 .445332 .102283 .168014 .095102 .179372 .081106
10 .207914 .091063 . 445085 .102257 .167691 .094468 .17931 .08165
11 .213782 .092578 .435488 .098472 .174544 .092958 .176186 .080138
12 .215497 .093481 .432691 .097048 .176371 .093693 .175441 .078957
13 .212336 .09066 .422929 .094143 .192223 .095931 .172512 .077234
14 .211349 .090289 .422055 .093666 .195076 .097195 .17152 .076917
15 .213869 .088977 .414732 .092568 .19423 .095576 177168 .076784
16 .230182 .089851 .401863 .092166 .18829 .091559 .179665 .077362
(1) irfname = varbasic, impulse = deathsgrowth, and response = dWeilnterp
(2) irfname = varbasic, impulse = dWeilInterp, and response = dWeilnterp
(3) irfname = varbasic, impulse = LCBLLBCgrowth, and response = dWeilnterp
(4) irfname = varbasic, impulse = FF, and response = dWeilnterp

Figure 18 — Forecast error variance decomposition for dWeilnterp

PART Il: What are the effects of the increase in different types of credit in real
economic activity?

4.3. VAR model with new confirmed Covid-19 cases growth rate

The third VAR model is estimated to measure the impact of different types of credit on U.S real

economic activity. The model contains six variables: casesgrowth, dWeilnterp, ClLgrowth,

ClLgrowth_detrended, OLLgrowth, and FF. A similar version with deathsgrowth instead of casesgrowth

is also estimated in section 4.4..

Given equation (2), our six-dimensional VAR(p) model has a vector of endogenous variables

casesgrowth
dWeilnterp
CILgrowth
CLgrowth_detrended
OLLgrowth
FF

vac growth)

, and a vector of exogenous variables X; = (
dummy

t —
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4.3.1. Stability condition and residual diagnostics
Figure C.66 shows the stability results for the largest “p” allowed for the model. Again, all the

eigenvalues lie inside the unit circle, concluding that the VAR model satisfies the stability condition for

a maximum of 11 lags?’.

4.3.2. Optimal lag selection
Unlike Part I, the results for optimal lag selection were quite straightforward and according to the

criteria, without having to make decisions supported by a specific rational process.

4.3.2.1. Minimum information criteria

Figure C.67 shows that according to AIC, the optimal lag is (p=11), and for SBIC and HQIC, (p=1).
4.3.2.2. Wald lag-exclusion statistics test

According to the Wald lag-exclusion statistics test results in figure C.68, it is possible to conclude that

all lags are jointly significant, which is not conclusive for selecting an optimal lag.

We are left with two main results, either the optimal (p) lag is the highest allowed in the VAR
(p=11), or the optimal (p) lag is equal to one (p=1). Therefore, we select the optimal lag (p=11). As will
be shown in the next section, there is autocorrelation between the errors for an optimal lag (p=1),

which does not happen for the other case (p=11).

4.3.3. Residual diagnostics

Figure C.69 shows the Lagrange multiplier test for the serial correlation between residuals for p=1.

When the p-value is greater than significance level, we cannot reject the null hypothesis of no
serial correlation between residuals at a specific lag order. For a significance level of 1%, we conclude
that there is autocorrelation between the error terms in the first lag. In this case, the optimal lag is p=1

according to minimum information criteria, which is wrongly assessed.

Figure C.70 shows the Lagrange multiplier test for the serial correlation of the residuals for p=11.
Since the p-value is greater than the significance level, we cannot reject the null hypothesis of no serial
correlation between residuals at a specific lag order. For a significance level of 1%, we conclude that

there is no autocorrelation at all lags®®.

More residuals diagnostics can be found in the Appendix (figure C.71, C.72, C.73)

7The model is stable from (p=1) lags until (p=11) lags.

8 The vaccination rate assumed for the dummy variable was 33%.
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4.3.4. Granger causality
When analyzing the results of figure C.74, it is possible to evaluate the Granger causality among
all variables. In this case, we decided to diminish the significance level from 10% to 1%. Again,

casesgrowth can GC the other variables but not the other way around.

4.3.5. Orthogonalized impulse response functions

Response: dWeilnterp

. irf graph oirf, set(IRF) irf (IRF) impulse (casesgrowth) response (dWeilnterp) yline(0)
(file IRF.irf now active)

. irf table oirf, set(IRF) irf (IRF) impulse (casesgrowth) response (dWeilnterp)
(file IRF.irf now active)

Results from IRF

IRF, casesgrowth, dWeilnterp step oii)f Lov(qi)r Up;:r
1 0 .010259 -.035073 .05559
1 -.087162 -.132394 -.04193
2 -.110414 -.161258 -.059569
3 -.02925 -.08574 .027239
4 -.053997 -.117601 .009606
Uy — B 5 .006577 -.058475 .071629
6 053557 -.01381 .120924
7 018801 -.047983 .085584
8 -.006795 -.071395 .057805
9 -.001115 -.066765 .064535
O 10 -.014995 -.083325 .053335
11 -.008749 -.081236 .063738
12 015274 -.056938 .087486
13 030694 -.040436 .101825
14 -.006972 -.077517 .063573
21 r r r r r 15 -.033838 -.106891 .039215
0 5 10 15 20 16 -.012143 -.087366 .06308
step 17 -.016157 -.090238 .057924
— 18 ~.00425 -.078942 .070441
95% ClI orthogonalized irf 19 .001051 -.073294  .07539%6
Graphs by irfname, impulse variable, and response variable 20 -026063 -.044078 -096203

95% lower and upper bounds reported
(1) irfname = IRF, impulse = casesgrowth, and response = dWeilnterp

Figure 19— casesgrowth shock in dWeilnterp OIRF for the model with optimal lag (p=11).

Figure 19 shows the effects of casesgrowth in dWeilnterp. We see that one standard-deviation shock
in casesgrowth increases dWeilnterp in the current week by about 0.01%. Then, there is a decreasing
effect in the first two weeks after the initial shock, with the peak occurring in the second week between
[-0.059569; -0.161258] percentual points. After the second week, the effect goes rapidly to zero, with
the statistical significance of the effect disappearing. Nevertheless, the results are robust with the ones

obtained in the last models.
Impulse: ClLgrowth

Response: dWeilnterp

. irf graph oirf, set(IRF) irf(IRF) impulse (CILgrowth) response (dWeilnterp) yline(0)
(file IRF.irf now active)

. irf table oirf, set(IRF) irf(IRF) impulse (CILgrowth) response (dWeilnterp)
(file IRF.irf now active)
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IRF, ClLgrowth, dWeilnterp

10 20
step

95% CI orthogonalized irf

Graphs by irfname, impulse variable, and response variable

Results from IRF

(1) (1) (1)
step oirf Lower Upper
0 0 0 0
1 -.04507 -.082303 -.007838
2 -.013627 -.051994 .024739
3 028668 -.015622 .072957
4 028798 -.021217 .078813
5 061116 013217 .109015
6 076442 .027298 .125585
7 005197 -.043529 053923
8 000619 -.045742 .04698
9 -.004231 -.050952 .042491
10 -.041099 -.091235 .009036
11 -.007518 -.058576 .043539
12 -.048347 -.098715 00202
13 -.033092 -.081311 .015127
14 -.007747 -.054608 039115
15 -.009174 -.055474 .037126
16 04587 -.001951 .093691
17 024261 -.023822 .072344
18 004082 -.044152 .052316
19 016462 -.031468 064391
20 .012198 -.034325 .058721
95% lower and upper bounds reported

(1) irfname = IRF, impulse = CILgrowth, and response = dWeilnterp

Figure 20 — ClLgrowth shock in dWeilnterp OIRF for the model with optimal lag (p=11).

Figure 20 shows the effects of the growth rate of commercial and industrial loans in the first differences

of the weekly economic index. It is possible to see that a shock in ClLgrowth has a small decreasing

effect in dWeilnterp in the first week between [-0.082303; -0.007838] and an increasing effect from

the fifth to the sixth week. The effect peaks in the sixth week [0.027298;0.125585]. Overall, the results

are expectable; an increase in commercial and industrial loans contributes to generating economic

activity. Also, the first decrease can seem as a point when companies or factories are investing the

borrowed capital (p.e. companies can close a

construction works).
Impulse: CLgrowth_detrended

Response: dWeilnterp

department or a factory having to upgrade by

. irf graph oirf, set(IRF) irf(IRF) impulse (CLgrowth detrended) response (dWeilnterp) yline(0)
(file IRF.irf now active)
. irf table oirf, set(IRF) irf(IRF) impulse (CLgrowth detrended) response (dWeilnterp)
(file IRF.irf now active)
Results from IRF
(1) (1) (1)
IRF, CLgrowth_detrended, dWeilnterp step oirf Lower Upper
24
0 0 0 0
1 -.028422 -.073119 016276
2 .013817 -.03238 .060014
A 3 061373 008591 114155
4 .090035 .028763 .151308
5 020377 -.042119 082872
6 .015032 -.047964 078028
0 — B 7 034548 -.031739 100834
8 .031561 -.035177 098298
9 -.05485 -.123189 .013489
10 -.069999 -.144578 .00458
-1 11 -.060621 -.138642 .017401
12 -.035036 -.113424 .043351
13 -.028815 -.110582 052952
14 -.052856 -.139239 033526
-2+ 15 -.012488 -.101672 076696
0 5 10 15 2 16 .012432 -.080706 .10557
17 .02877 -.066684 124225
SER 18 .052072 -.043309  .148053
95% ClI orthogonalized irf 19 .034635 -.062151 .131421
20 .01826 -.082971 .119491
Graphs by iffname, impulse variable, and response variable

95% lower and upper bounds reported

(1) irfname = IRF, impulse = CLgrowth_detrended,

and response = dWeilnterp

Figure 31 — CLgrowth_detrended shock in dWeilnterp OIRF for the model with optimal lag (p=11).
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By observing figure 21, a shock in the growth rate of consumer loans increases dWeilnterp from the
third to the fourth week after the initial shock, as expected once money is inserted into the economy
to stimulate consumption. The peak is in the fourth week [0.028763; 0.151308]. After that, the effect

is no longer significant.
Impulse: OLLgrowth

Response: dWeilnterp

. irf graph oirf, set(IRF) irf(IRF) impulse (OLLgrowth) response (dWeilInterp) yline(0)
(file IRF.irf now active)

. irf table oirf, set(IRF) irf(IRF) impulse (OLLgrowth) response (dWeilInterp)

(file IRF.irf now active)
Results from IRF

(1) (1) (1)
IRF, OLLgrowth, dWeilnterp step oirf Lower Upper
A7
0 0 0 0
1 -.036705 -.076861 .00345
2 -.026613 -.070181 .016955
3 -.060164 -.1082 -.012129
4 -.089213 -.142438 -.035987
0 1 B 5 -.02304 -.078366 .032286
6 -.021022 -.07789 .035846
7 -.052082 -.109884 .00572
8 .017829 -.038893 .07455
9 .018331 -.035754 .072416
14 10 .053406 -.001699 .108511
11 .041581 -.013274 .096437
12 -.023443 -.080233 .033348
13 -.009043 -.06548 .047393
14 -.021831 -.082011 .038349
15 -.017549 -.075495 .040398
2" : : : : 16 -.0057 -.063918 .052518
0 5 10 15 20 17 -.001802 -.064827 .061223
step 18 .024956 -.03883 .088742
19 .007202 -.056465 .070868
95% ClI orthogonalized irf 20 .001021 -.064486 066528

Graphs by irfname, impulse variable, and response variable 95% lower and upper bounds reported

(1) irfname = IRF, impulse = OLLgrowth, and response = dWeilnterp

Figure 24 — OLLgrowth shock in dWeilnterp OIRF for the model with optimal lag (p=11).

Assessing figure 22, itis possible to conclude that a shock in OLLgrowth has a significant negative effect
on dWeilnterp from the third to the fourth week, with the peak occurring at the fourth week [-
0.142438; -0.035987], the rest of the effect is insignificant. Although the shown result is not
straightforward, as credit should help boost the economy in the short-run, this could support the fact
that the governments should be extremely careful where to inject the credit and in which amount so

as not to create inefficiencies in the economy.

4.3.6. Cumulative orthogonalized impulse response functions
Firstly, in figure C.76, we display all results to compare the magnitude of effects between COIRFs.

Lastly, a singular analysis is done of each long-run dynamic relationship.
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Results from IRF

Response: dWeilnterp

(1) (1) (1)
step coirf Lower Upper
. irf graph coirf, set(IRF) irf(IRF) impulse (casesgrowth) response (dWeilnterp) yline(0)
) ) 0 .010259 -.035073  .05559
(file IRF.irf now active) 1 -.076903  -.146094  -.007712
2 -.187316  -.270951  -.103681
3 -.216567  -.324199  -.108934
. irf table coirf, set(IRF) irf(IRF) impulse (casesgrowth) response (dWeiInterp) 4 7-270564 - -.404509  -.136618
5 -.263987  -.417453  -.110521
(file IRF.irf now active) 6 -.21043 -.380563  -.040297
7 -.191629  -.378959  -.0043
8 -.198424  -.400108  .00326
9 -.199539  -.409555  .010477
10 -.214534  -.427941  -.001128
- 11 -.223284  -.436535  -.010033
IRF, casesgrowth, dWeilnterp 12 o080t _a1sse 002541
2 13 -.177315  -.380762  .026132
14 -.184287  -.382724  .014149
15 -.218125  -.413139  -.023111
16 -.230268  -.422738  -.037798
17 -.246425  -.439805  -.053046
18 -.250676  -.446192  -.055159
19 -.249625  -.450597  -.048653
20 -.223562  -.425248  -.021876
21 -.18922 -.389672  .011232
22 -.188195  -.387128  .010739
23 -.191369  -.387011  .004272
24 -.161226  -.35621 .033757
25 -.128672  -.325899  .068555
26 -.090675  -.29003%  .108689
27 -.082834  -.280739  .11507
28 -.109846  -.305611  .085919
29 -.115844  -.309545  .077858
30 -.138955  -.331352  .053443
e 31 -.182169  -.377078  .012741
32 -.205373  -.406103  -.004644
T T T T T 33 -.222585  -.426919  -.018251
0 10 20 30 40 34 -.222183  -.423887  -.02048
step 35 -.213171  -.412207  -.014134
36 -.212221  -.413163  -.011279
o - : ; ; 37 -.18336 -.390946  .024226
95% ClI cumulative orthogonalized irf e T liiaes S esmia o730
Graphs by irfname, impulse variable, and response variable 39 -.113673  -.328778 -101433
10 -.105973  -.316932  .104987

95% lower and upper bounds reported
(1) irfname = IRF, impulse = casesgrowth, and response = dWeilnterp

Figure 53 — casesgrowth shock in dWeilnterp COIRF for the model with optimal lag (p=11).

Assessing figure 23, it is possible to conclude that casesgrowth has a significant long-run effect in
dWeilnterp from the first to the seventh week, with the peak occurring at the fourth week [-0.404509;
-0.136618], from the tenth to the eleventh week, with the new peak at the eleventh week [-0.436535;
-0.010033], from the fifteenth to the twentieth week, with the peak at the eighteenth week [-
0.446192; -0.055159], and from the thirty-second to the thirty-sixth week, with the peak at the thirty-
fourth week [-0.423887; -0.02048]*°.

Impulse: ClLgrowth

Response: dWeilnterp

. irf graph coirf, set(IRF) irf(IRF) impulse (CILgrowth) response (dWeiInterp) yline (0)
(file IRF.irf now active)

. irf table coirf, set(IRF) irf(IRF) impulse (CILgrowth) response (dWeilnterp)
(file IRF.irf now active)

19 For this case, we generated the COIRFs 40 steps ahead due to the long-run response's significance.
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Results from IRF

(1) (1) (1)
IRF, ClLgrowth, dWeilnterp step coirf Lower Upper
44
0 0 0 0
1 -.04507 -.082303 -.007838
2 -.058698 -.120991 003596
3 -.03003 -.106962 046902
2] 4 -.001232 -.105043 .102579
h 5 .059884 -.064969 .184737
6 .136326 -.003351 .276003
7 .141523 -.010881 .293927
8 .142142 -.01899 303274
9 137911 -.027068 .30289
[\ I— u 10 096812 -.064644 258267
11 089293 -.065528 244115
12 040946 -.110585 192477
13 007854 -.
14 000107 -.
15 -.009067 -
-2 ; ; ; ; ; 16 .036803 -.
0 5 10 15 20 17 061064 -. .
step 18 .065146 -. ,271387
19 .081608 -.078272 .241488
95% ClI cumulative orthogonalized irf 20 -093806 -.069994 -257606
Graphs by irfname, impulse variable, and response variable 95% lower and upper bounds reported

(1) irfname = IRF, impulse = CILgrowth, and response = dWeilnterp

Figure 64 — ClLgrowth shock in dWeilnterp COIRF for the model with optimal lag (p=11).

Figure 24 shows the long-run effects of the growth rate of commercial and industrial loans in the first
differences of the weekly economic index. In this case, the negative effect occurs only in the first week

and has a magnitude that is considered very close to zero.
Impulse: CLgrowth_detrended

Response: dWeilnterp

. irf graph coirf, set(IRF) irf(IRF) impulse (CLgrowth detrended) response (dWeilnterp) yline(0)
(file IRF.irf now active)

. irf table coirf, set(IRF) irf(IRF) impulse (CLgrowth_detrended) response (dWeilInterp)
(file IRF.irf now active)

Results from IRF

1 1 1
IRF, CLgrowth_detrended, dWeilnterp step coi(r’f ch(.'el Up;,el
44
0 0 0 0
1 -.028422 -.073119 .016276
2 -.014605 -.083958 .054749
2 3 .046768 -.040899 .134435
4 .136803 .016413 .257193
5 .15718 .009741 .304619
6 .172212 .007005 .33742
0+ L 7 .20676 .023172 .390348
8 .238321 .039389 .437253
9 .183471 -.025047 .391988
10 .113472 -.09897 .325914
2 11 052851 -.162494 .268197
12 .017815 -.204037 .239667
13 -.011 -.239595 .217594
14 -.063856 -.301571 .173859
4 15 -.076344 -.326423 .173734
0 p 10 5 20 16 -.063912  -.329404 201579
step 17 -.035142 -.318237 4247953
18 .01693 -.280677 .314537
95% Cl cumulative orthogonalized irf 19 051565 -.251771 -354901
20 .069825 -.230778 .370428
Graphs by ifname, impulse variable, and response variable

95% lower and upper bounds reported
(1) irfname = IRF, impulse = CLgrowth_detrended, and response = dWeilnterp

Figure 75 — CLgrowth_detrended shock in dWeilnterp COIRF for the model with optimal lag (p=11).

According to figure 25, a shock in the consumer loans growth rate increases dWelnterp from the fourth

to the eighth week, peaking at the eighth week [0.039389; 0.437253].
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Impulse: OLLgrowth Results from IRF

(1) (1) (1)
o step coirf Lower Upper
Response: dWeilnterp : o
0 0 0 0
1 -.036705 -.076861 .00345
. irf graph coirf, set(IRF) irf(IRF) impulse (OLLgrowth) response (dWeilnterp) yline(0) 2 ~.063319 ~.12976 003122
(file IRF.irf now active) 3 - -.211267 -.035698
4 - -.329928 -.095463
. - . oy . 5 - -.379368 -.092103
. irf table coirf, set(IRF) irf(IRF) impulse (OLLgrowth) response (dWeiInterp) 6 B 218884 094631
(file IRF.irf now active) 7 - -.486436 -.131243
8 - -.48022 -.101802
9 - -.470555 -.074805
10 - -.419798 -.01875
1 -.177693 -.376382 .020997
IRF, OLLgrowth, dWeilnterp 12 -.201136 -.394527 -.007744
24 13 -.210179 -.398409 -.021949
14 -.23201 -.416881 -.047138
15 -.249558 -.436197 -.06292
16 -.255258 -.447584 -.062932
17 -.25706 -.462615 -.051505
0 _ 18 -.232105 -.453209 -.011
19 -.224903 -.45683 .007024
20 -.223882 -.464828 017064
21 -.22997 -.476459 .01652
22 -.243854 -.494893 007185
2 23 - -.477468 .024723
24 - -.465691 .025085
25 - -.44777 .018405
26 - -.431236 .004787
27 -.207647 -.41006 -.005234
44 28 -.191186 -.384499 .002127
29 -.181881 -.375993 .012231
30 -.15727 -.359822 .045282
31 -.121563 -.336727 093601
32 -.117696 -.343546 .108155
6 . . . . 33 -.143642 -.379853 .092569
0 10 20 30 40 34 -.180538 -.426578 .065501
35 -.215089 -.470482 .040303
step 36 -.236122 -.496098 .023855
95% CI cumulative orthogonalized irf 28 72:;25 712?;: 7?1;3‘21
Graphs by irfname, impulse variable, and response variable 39 --260028 --491647 —-028409
40 -.235133 -.454569 -.015696

95% lower and upper bounds reported
(1) irfname = IRF, impulse = OLLgrowth, and response = dWeilnterp

Figure 86 — OLLgrowth shock in dWeilnterp COIRF for the model with optimal lag (p=11).

By looking at figure 26, it is possible to conclude that a shock in OLLgrowth has a significant negative
long-run effect on dWeilnterp from the third to the tenth week, with the peak occurring at the seventh
week [-0.486436; -0.131243], the negative effect also holds from the twelfth until the eighteenth
week, with the peak at the sixteenth week [-0.447584; -0.062932], and finally in the twenty-seventh

week. The rest of the effect is insignificant?.

4.4. VAR model with new confirmed Covid-19 deaths growth rate

The fourth VAR model is estimated to measure the impact of different types of credit on U.S real
economic activity. The model contains six variables: deathsgrowth, dWeilnterp, ClLgrowth,

ClLgrowth_detrended, OLLgrowth, and FF.

Given equation (2), our six-dimensional VAR(p) model has a vector of endogenous variables

deathsgrowth
dWeilnterp
th
t = ClLgrowth , and a vector of exogenous variables X; = (vacgrow )
CLgrowth_detrended dummy
OLLgrowth

FF

20 For this case, we generated the COIRFs 40 steps ahead due to the significance of the long-run response.
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4.4.1. Stability condition and residual diagnostics
Figure C.77 shows the stability results for the model's largest "p" allowed. Again, all the
eigenvalues lie inside the unit circle, concluding that the VAR model satisfies the stability condition for

a maximum number of 10 lags?™.

4.4.2. Optimal lag selection

4.4.2.1. Minimum information criteria

As mentioned in subsection 3.3.1.5., we proceed to the optimal lag selection using the maximum

correspondent number of lags (p) for which the model is stable.

According to AIC, SBIC, and HQIC, the optimal lag is always one (p=1), independently of the

maximum number of lags we test for?2.
4.4.2.2. Wald lag-exclusion statistics test

According to the Wald lag-exclusion statistics test results in figure C.79, it is possible to conclude that

all lags are jointly significant, which is not conclusive in selecting an optimal lag.

We are left with two main results, either the optimal (p) lag is the highest allowed in the VAR
(p=10), or the optimal (p) lag is equal to one (p=1). Therefore, we select as optimal lag (p=10).
Furthermore, as will be shown in the next section, there is autocorrelation between the errors for an

optimal lag (p=1), which does not happen for the other case (p=10).

4.4.2.3. Residual diagnostics
According to the minimum information criteria results (SBIC and HQIC), the optimal lag is p=1. As so,
we test for that possibility. Figure C.80 shows the Lagrange multiplier test for the serial correlation

between residuals for p=1.

When the p-value is greater than the significance level, we cannot reject the null hypothesis of no
serial correlation of the residuals at a specific lag order. For a significance level of 1%, we conclude that
there is autocorrelation in the first lag. In this specific case, the optimal lag is p=1 according to minimum

information criteria, which is wrongly assessed.

21The model is stable from (p=1) lags until (p=10) lags.

22The criteria were tested from (p=1) lags until (p=14) lags.
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Figure C.81 shows the Lagrange multiplier test for the serial correlation of the residuals for p=11.
Since the p-value is greater than the significance level, we cannot reject the null hypothesis of no serial
correlation between residuals at a specific lag order. For a significance level of 1%, we conclude that

there is no autocorrelation between the error terms at all lags?3.
More residuals diagnostics can be found in the Appendix (figure C.82, C.83, C.84)

4.4.2.4. Granger causality

When analyzing the results of figure C.85, it is possible to evaluate that there is Granger causality
among most variables. Therefore, we also decided to select 1% as the significance level in this case.
Also, the first row of results is not interpretable since the identification scheme is based on the
Cholesky decomposition; this means that deathsgrowth can affect the other variables but the other

way around.?*

4.4.2.5. Orthogonalized impulse response functions

Response: dWeilnterp

. irf graph oirf, set(IRF) irf(IRF) impulse (deathsgrowth) response (dWeilnterp) yline(0)
(file IRF.irf now active)

. irf table oirf, set(IRF) irf(IRF) impulse (deathsgrowth) response (dWeilnterp)

. X X Results £ IRF
(file IRF.irf now active) esults from

(1) (1) (1)
IRF, deathsgrowth, dWeilnterp step oirf Lower Upper
A

0 .030262 -.023458 .083981
1 -.015204 -.071222 .040815

2 -.075577 -.133884 -.01727

3 -.010797 -.073077 .051482

o . | 4 -.016676 -.081963 .048611
5 .002888 -.062853 .068629

6 000983 -.063517 065484
7 -.029464 -.093303 .034375

8 -.01226 -.07539 .05087

9 002785 -.062895 .068465

-1 10 -.028057 -.094727 .038613
11 .005354 -.058194 .068902

12 .01044 -.05319 .07407

13 -.010489 -.071955 050976

14 039194 -.021484 099872

15 01658 -.042093 .075252

-2 . . . . 16 006051 -.050544 .062645
0 5 10 15 20 17 .028164 -.02797 .084299
step 18 .03574 -.019629 .091109

19 -.00085 -.055216 .053516

95% ClI orthogonalized irf 20 .004476 -.048063 .057015

Graphs by irfname, impulse variable, and response variable 95% lower and upper bounds reported

(1) irfname = IRF, impulse = deathsgrowth, and response = dWeilnterp

Figure 97 — deathsgrowth shock in dWeilnterp OIRFs for the model with optimal lag (p=10).

Figure 27 shows the effects of deathsgrowth shocks in dWeilnterp. We see that a one-standard-
deviation shock in deathsgrowth decreases dWeilnterp in the second week between [- 0.01727; -
0.133884] percentual points. After the second week, the effect goes rapidly to zero, with the statistical

significance of the effect disappearing.?®

2 The vaccination rate assumed for the dummy variable was 33%.
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24pccording to the Granger causality tests, there is no GC between Clgrowth detrended and

dWeilnterp for a significance level of 1%. In this way, the output will not be parsed.
ZEven though there is GC, a shock in ClLgrowth does not have a significant response from dWeilnterp.
Impulse: OLLgrowth

Response: dWeilnterp

. irf graph oirf, set(IRF) irf(IRF) impulse (OLLgrowth) response (dWeilInterp) yline(0)
(file IRF.irf now active)

. irf table oirf, set(IRF) irf(IRF) impulse (OLLgrowth) response (dWeilnterp)
(file IRF.irf now active) Results from IRF

N (1) (1) (1)
IRF, OLLgrowth, dWeilnterp step oirf Lower Upper
A4
0 0 0 0
1 -.078768 -.130933 -.026602
2 -.09279 -.152773 -.032807
3 -.086232 -.146382 -.026082
0 = 4 -.077815 -.142087 -.013544
5 -.001353 -.067997 .065291
6 .008515 -.058322 .075352
7 -.010396 -.075885 .055093
8 .029031 -.035051 .093112
14 9 .012417 -.051862 .076696
10 .038868 -.029265 .107001
11 -.004512 -.07363 .064605
12 -.057643 -.127507 .012222
13 -.0086 -.076447 .059248
14 -.017898 -.082972 .047175
-21, T T T . 15 -.042169 -.104719 .020381
0 5 10 15 20 16 .004271 -.057354 065896
step 17 -.019272 -.081178 .042633
. . 18 .013445 -.048308 .075199
95% CI orthogonalized irf 19 045875 01701 10876
Graphs by ifname, impulse variable, and response variable 20 .023857 -.03973 .087444

95% lower and upper bounds reported
(1) irfname = IRF, impulse = OLLgrowth, and response = dWeilnterp

Figure 108 — OLLgrowth shock in dWeilnterp OIRFs for the model with optimal lag (p=10).

Assessing figure 28, it is possible to conclude that a shock in OLLgrowth has a significant negative effect
on dWeilnterp from the first to the fourth week, with the peak occurring at the second week [-
0.152773; -0.032807], the rest of the effect is insignificant. However, results are robust with the third
VAR in section 4.3..

4.4.2.6. Cumulative orthogonalized impulse response functions
OlLgrowth is the only variable with a significant accumulated effect in dWeilnterp.

Impulse: OLLgrowth

Response: dWeilnterp
. irf graph coirf, set(IRF) irf(IRF) impulse (OLLgrowth) response (dWeilInterp) yline(0)

(file IRF.irf now active)

. irf table coirf, set(IRF) irf(IRF) impulse (OLLgrowth) response (dWeilnterp)
(file IRF.irf now active)

By looking at figure 29, it is possible to conclude that a shock in OLLgrowth has a significant negative
long-run effect on dWeilnterp from the first to the ninth week, with the peak occurring at the fifth

week [-0.530772; -0.143142], the negative effect also holds from the twelfth until the eighteenth
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week, with the peak at the sixteenth week [-0.447584; -0.062932], and finally in the twenty-seventh

week. The rest of the effect is insignificant.

IRF, OLLgrowth, dWeilnterp

step

95% CI — cumulative orthogonalized irf

Graphs by irfname, impulse variable, and response variable

Results from IRF

(1) (1) (1)

step coirf Lower Upper
0 0 0 0
1 -.078768 -.130933 -.026602
2 -.171557 -.267868 -.075247
3 -.257789 -.382778 -.1328
4 -.335604 -.495923 -.175286
5 -.336957 -.530772 -.143142
6 -.328442 -.546415 -.11047
7 -.338838 -.574663 -.103014
8 -.309808 -.559091 -.060525
9 -.297391 -.558317 -.036465
10 -.258523 -.523324 .006278
11 -.263035 -.52771 .00164
12 -.320678 -.587126 -.054231
13 -.329278 -.599405 -.05915
14 -.347176 -.620366 -.073986
15 -.389345 -.666205 -.112485
16 -.385074 -.664749 -.105399
17 -.404346 -.685198 -.123495
18 -.390901 -.67027 -.111532
19 -.345026 -.620249 -.069802
20 -.321168 -.590522 -.051815
21 -.30321 -.564919 -.041501
22 -.275291 -.530741 -.019841
23 -.259032 -.508417 -.009647
24 -.28209 -.524854 -.039327
25 -.284776 -.523893 -.045658
26 -.29249 -.5307 -.054279
27 -.299798 -.538344 -.061253
28 -.291616 -.532752 -.05048
29 -.298665 -.542504 -.054825
30 -.293019 -.537218 -.04882
31 -.263855 -.505477 -.022233
32 -.254184 -.488667 -.019701
33 -.25591 -.482074 -.029746
34 -.259699 -.479176 -.040222
35 -.27108 -.484685 -.057475
36 -.280937 -.490304 -.07157
37 -.295529 -.504242 -.086815
38 -.312926 -.522739 -.103112
39 -.313075 -.524364 -.101786
40 -.305107 -.518611 -.091602

95% lower and upper bounds reported
(1) irfname = IRF, impulse = OLLgrowth, and response = dWeilnterp

Figure 119 — OLLgrowth shock in dWeilnterp COIRFs for the model with optimal lag (p=10).
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5. Concluding Remarks

Based on weekly data over the last two and a half years and the registered number of cases and deaths
related to the pandemic, we estimate for the U.S economy the impact of Covid-19 in some
macroeconomic aggregates using the Cholesky decomposition as the identification scheme restriction
in VAR models. This thesis contributes to recent literature on the effects of the Covid-19 pandemic on
the economy and fills the gap of the lack of studies using the variables chosen. Also, it assesses the
impacts of different types of credit on real economic activity, which can add value to the scope of

policy making.

Our main empirical results point out that a one-standard deviation Covid-19 growth rate shock in
cases and deaths can create an average drop in the following first weeks of between 0.16% and 0.3%
in the changes of real economic activity index. Also, when analyzing different loan types' capability to
boost the real U.S. economic activity, we conclude that the most effective ones in the short run are
consumer, commercial and industrial loans, which create a positive effect of around 0.02% and 0.15%.
These findings support the idea that the allocation of credit is important for financial development and
real economic activity performance. Moreover, the effect of the pandemic on the variables of interest
tends to have a short memory, but the constant increases in the growth rate of cases and deaths create
a continuously lasting effect. Finally, as in recent Covid-19 literature, our VAR model is acceptable for
parameter estimation but not an accurate model to forecast the future values of the economic

aggregates.

The study of the pandemic effects is challenging and can have gaps as the new pandemic
observations distort parameter estimation, and impulse response functions become explosive. To
control these matters, we decided to drop the pandemic initial observations, as did the prior works
related to this subject. Also, Covid-19 cases and deaths are used to define the pandemic series but are
not economic series, which can complicate the models' estimation. Also, the frequency used in the
model can overestimate or underestimate the effects. One way to improve this could be by
implementing a time-varying parameter VAR (TVP- VAR) model, as it allows for the coefficients to vary
over time. Moreover, this research may not have controlled for all the factors involved in the pandemic
as several more instrumental variables could be taken into account, such as quarantines and
lockdowns, the twelve-day period it takes for the protective effect of the vaccine to become active in

an individual, and the exact time when was reached herd immunity, which is debatable.
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Appendix

Variable Hyperlink

New confirmed Covid-19 cases (NCC)
New confirmed Covid-19 deaths (NCD) | https://github.com/owid/covid-19-data/tree/master/public/data

Total vaccinations per hundred (vac)

Balance sheet of Commercial Banks in | https://fred.stlouisfed.org/release/tables?rid=228&eid=822916#snid=822918

the U.S.

Loans and leases in bank credit (LLBC) | https://fred.stlouisfed.org/series/TOTLL

Commercial and industrial loans (CIL) Commercial and Industrial Loans, All Commercial Banks (TOTCI) | FRED | St. Louis

consumer loans (CL) Fed (stlouisfed.org)
other loans and leases (OLL) https://fred.stlouisfed.org/series/CLSACBW027SBOG

https://fred.stlouisfed.org/series/AOLACBW027SBOG

Loans to commercial banks (LCB) https://fred.stlouisfed.org/series/LCBACBW027SBOG
Weekly economic index (WEI) https://fred.stlouisfed.org/series/WEI
Federal Funds Effective Rate (FF) https://fred.stlouisfed.org/series/FF

Table 1 - hyperlinks containing the data available for download

A) Descriptive Statistics and time series plots

. summarize casesgrowth deathsgrowth dWeilInterp LCBLLBCgrowth FF CILgrowth CLgrowth OLLgrowth vacgrowth

Variable Obs Mean Std. Dev. Min Max
casesgrowth 106 .2328356 1.222583 -.4722698 10.06061
deathsgrowth 106 .2103837 1.20475 -.6391673 11
dwWeilInterp 105 .0357007 .763435 -2.747143 2.981429
LCBLLBCgro~h 106 .0007934 .0035675 -.0044155 .021382
FF 106 .109434 .180849 .04 1.51

CILgrowth 106 .0007793 .0114071 -.0153288 .063511
CLgrowth 106 .0005472 .0028078 -.0108415 .0054347
OLLgrowth 106 .0021378 .0061397 -.0086815 .0393018
vacgrowth 122 . 642459 .9405338 0 3.91

Table A.1 — Descriptive statistics of the variables

55


https://github.com/owid/covid-19-data/tree/master/public/data
https://fred.stlouisfed.org/release/tables?rid=22&eid=822916#snid=822918
https://fred.stlouisfed.org/series/TOTLL
https://fred.stlouisfed.org/series/TOTCI
https://fred.stlouisfed.org/series/TOTCI
https://fred.stlouisfed.org/series/CLSACBW027SBOG
https://fred.stlouisfed.org/series/AOLACBW027SBOG
https://fred.stlouisfed.org/series/LCBACBW027SBOG
https://fred.stlouisfed.org/series/WEI
https://fred.stlouisfed.org/series/FF

cases
200000 400000 600000 800000 100000¢

o 4

2020w1 2020w27 2021&1 2021w26 2022w1
ate

Figure A.1 - U.S new confirmed Covid-19 cases time series

5000
1

deaths
3000 4000
1

2000
1

1000

o

2020w1 2020w27 2021g1 2021w26 2022w1
ate

Figure A.2 - U.S new confirmed Covid-19 deaths time series
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Figure A.3 - U.S total credit time series
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Figure A.4 - Weekly economic index time series

1.50
1

1.00
Il

FF

050
1

2022w1

o

=]

o
2

020w1 2020w27 2021w1 2021w26
date
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Figure A.9 - U.S new confirmed Covid-19 cases growth rate time series
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Figure A.10 - U.S new confirmed Covid-19 deaths growth rate time series

.02
|

.015
|

.01
|

LCBLLBC growth
.005
1

0
|

005

s T T T T T T
2020w1 2020w27 2021w1 2021w26 2022w1 2022w26
date

Figure A.11 - U.S total credit growth rate time series
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Figure A.12 - U.S Commercial and industrial loans growth rate time series
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Figure A.14 - U.S Other loans and leases growth rate time series

dWeilnterp

T T T T T T
2020w1 2020w27 2021w1 2021w26 2022w1 2022w26
date
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B) VAR model background

The general reduced form of a K dimensional VAR(p) model with p lags and exogenous variables:

Yi=CH+ oY p + T X g+ Vi (3)

(») (» (@ (@

Vit G ©17 - ©qp Vit-p X1t Yi1 - Yik
Yt = w b C=| - ; ¢p = ( ) () ; Yt—p = ; Xt = s Fq = ( ) () ;
Vit Ck (pkpl ‘sz;c YVit-p Xkt qu1 yk‘z

Which can also be written as:

) ®

(6] (6] (1)
Yie =6+ @ Vi1t t @ Vg1t F+ @ Vg1t @ Vg1t Vi X1 o F

(1D 62) » R
Vi Xkeer o F VY Xpeq F o F Vg Kooy + Vi, withi=1,..,k (4)

Linkage between unrestricted and structural model with Cholesky decomposition:
The general structural form of a “k” dimensional VAR(p) model with “p” lags and exogenous variables

using the Cholesky decomposition:
Aoyt =D+ a1yeq1 + -+ @pYi—p + P1Xe—1 + -+ ppXe—p + Be, withp=1,..,k (8)

The general structural form of a “k” dimensional VAR(p) model with “p” lags and exogenous

variables in matrix notation using the Cholesky decomposition:

Vit d, aP . aD\ /v a® L a®\ yiep
A)l )= )+ . TP I C i (PR T
Vit dy a,(cll) a,((}() Yikt-1 “z(g) a,(f,’() Vit-p

€Y ® (@) (@)

P11 - P1g \ /X1t-1 P11 - P1x \ [X1t—a €1¢

T I TR |+ B[ - (9)
1 1

ol .. pW ) \Xke—1 p@ . p\@ | \Xiet—q Ekt
Or:
A()Yt =D + Apyt—p + PpXt—q + BEt (10)

61



Y1t X1t dq g . gy Yie-p
Vit Xkt dp ® ,® YVikt-p

X1t-q pﬂ) pi‘,’() €1t €1¢
Xkt—q (@) (@) €kt €t

Pk1 - Pkk
Which can also be written as:
1 1
Aoyie =di+ aPyieos + -+ @ Ve + o+ Py + o+ @ Vi +
1 1 1
+ pgl)xlt_l + -t pgk)xkt_l + -+ pg’)xlt_l + pg,i’)xkt_l + Bg,, withi=1,...,k (11)
Where each Y; represents a vector of endogenous variables of length k, each A, and P; isa K X K

matrix, D is an K X 1 vector of intercepts, and X; represents a vector of exogenous variables of length

K x 1. E; represents a K X 1 vector of uncorrelated structural orthogonal shocks &;.

Finally, in order to relate the unrestricted VAR(p) with the SVAR(p), we need to pre-multiply Ay!
on the SVAR:

Apye =D+ a1ye 1+ F QpYep + P1Xe—1 T+ PpXe—q + BE;

ye =Ag D+ Ayt aryeq + 4 Ayt apyeop + Agt prxeq + o+ Ayt ppxe—q + Ayt Beg

Ve=CH@1ye a1+ -+ @pYep+ YiXe1+ 0+ YpXe—qt+ Ve (12)
With:
C = Ay'D
®p = Ag'Ap

Vt = Aal BSt

Q=A;'BB'A'y"

2\vh-1 .2
g Yis=0 Cij,s

k 2vVvh-1 .2
j=1(07" 2o ¢ s)

Wijp =

Withi=1,2,...,k

Identification scheme strategy
The Cholesky decomposition implies that Ay = I,. Also, the variance-covariance matrix Q is the

identity matrix, meaning that diagonals are ones and off diagonals are zeros, which implies that v, =
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Beg;. (v; does not have to be pure white noise, the expectation is zero since it is unpredictable, but the

variance is not necessarily equal to one).

Stability condition and residual diagnostics
To test for stability in our model, we use the command varstable, which calculates the eigenvalues of

the companion matrix in modulus. If all modulus of each eigenvalue is less than one and lie outside the

bp _’Uk| =

unitcircle (i.e., are bigger than one in absolute value), then we have a stable VAR. This is,

0, where A, represents the eigenvalues of the matrix ¢,,.

The stability of a VAR model can also be tested by calculating if the k X p characteristic roots, z,

of the lag polynomial equation |T1(2)| = |I, — b,z — $pz2 — - — ¢pzp| = 0 are outside the unit circle.

The stability test is performed until we reach a "p" lag that turns the model into an unstable one.
Then, the objective is to find the maximum "p" allowed for the model to compute the optimal lag

selection tests.

Regarding the Lagrange multiplier test statistic (LM) for the serial correlation between residuals,
the command varlmar is used. If the p-value is > significance level, we cannot reject the null hypothesis
of no serial correlation between residuals at a specific lag order. Therefore, we will perform the
Lagrange multiplier test for the serial correlation between residuals for a significance level of 1%. In
the Appendix section, after choosing the optimal lag, we will also show the residuals of the variables,

the covariance, and the correlation between variables for each model.

Optimal lag selection

The optimal lag selection is essential to improve model estimation. We focus on two methods to
choose the optimal lag, the minimum information criteria and the Wald lag-exclusion statistics test.
Sometimes it can happen that the criteria do not agree, so when choosing the optimal lag, it is
mandatory to have some degree of judgment, logic, or reasoning when choosing between the
recommendations. Furthermore, macroeconomic relationships held in the past must be assumed to

be still valid.

Granger causality

To perform the test, we use the command vargranger. Stata uses an F-test to jointly test the
significance of the lags in the explanatory variables by employing a Wald test. The null hypothesis is
that the estimated coefficients on the lagged values of X are jointly zero. In other words, if the null
hypothesis is not rejected, there is no Granger causality between variables. The GC test results of

causal relationships are purely statistical.
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The null hypothesis tested is the following:

{Ho:¢1:¢2 = =¢, =0 (7)

The Granger causality tests will be performed for a significance level of 10%.

Point forecast and forecast error
The Forecast error is a measure that, according to each criterion, measures the difference between

the observed and predicted values.

To verify the quality of each forecast, we analyze the forecast errors. Those we look for are the
most common in the literature, more specifically, the Mean Absolute Error (MAE), Mean squared error
(MSE), Root mean square error (RMSE), Mean absolute percentage error (MAPE), and Root mean

square percentage error (RMSPE).

Forecast error variance decomposition

Usually, the shocks reflected on the series explain most of the error's variance, but the shocks also
affect other variables in the system. Variance decomposition requires identifying restrictions, as in the
OIRF, the variance decomposition applies the Cholesky decomposition for identification purposes. It is
important to stress that, as in IRFs, the conclusions of variance decomposition can change according
to the underlying assumptions. Since it also is connected to the identification scheme, the ordering of

the variables may also play an important role.

The command varbasic is applied instead of var to achieve the output regarding the forecast error
variance decomposition. In order to maintain the Cholesky decomposition as in the OIRFs, the

command fevd is used after the number of steps ahead we desire to test.

The FEVDs are computed 16 weeks ahead, using the command fevd.

C) Empirical results

Stationarity tests
The ADF test hypothesis:

HyAd=¢—1=0
{0 Hi:A<0 (5)

Where testing for A = 0 is the same as testing for a presence of a unit root in y,.

Augmented Dickey Fuller test with constant (ADFc) in levels

Variable ‘ Lags ‘ t-Statistic 1% t-Statistic ‘ p-value ‘ Accepts HO/H1 Stationary/Non-Stationary
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casesgrowth 1 -5.296 -2.580 0.0000 Accepts H1 Stationary
5 -4.633 -2.580 0.0001 Accepts H1 Stationary
deathsgrowth 0 -6.556 -2.580 0.0000 Accepts H1 Stationary
Weilnterp 2 -1.628 -2.580 0.4683 Accepts HO Non-Stationary
5 -1.801 -2.580 0.3800 Accepts HO Non-Stationary
LCBLLBCgrowth 2 -3.999 -2.580 0.0014 Accepts H1 Stationary
FF 1 -19.257 -2.580 0.0000 Accepts H1 Stationary
ClLgrowth 1 -3.771 -2.580 0.0032 Accepts H1 Stationary
6 -4.511 -2.580 0.0002 Accepts H1 Stationary
ClLgrowth 4 -2.474 -2.580 0.1220 Accepts HO Non-Stationary
OLLgrowth (10% 1 -5.341 -2.580 0.0000 Accepts H1 Stationary
statistic test) 12 -2.587 -2.582 0.0957 Accepts H1 Stationary
Augmented Dickey Fuller test with trend (ADFct) in levels
Variables Lags t-Statistic 10% t-Statistic p-value Accepts HO/H1 DSP/ TSP
Weilnterp 1 -3.206 -3.149 0.0832 Accepts H1 TSP
5 -1.417 -3.150 0.8560 Accepts HO DSP
ClLgrowth 4 -3.809 -3.150 0.0161 Accepts H1 TSP

. varsoc casesgrowth, maxlag(12)

Selection-order criteria

Table C.1 - Stationarity tests results

Sample: 2020w21 - 2022wl0 Number of obs 94

lag LL LR df P FPE AIC HQIC SBIC
0 -7.07314 .069522 .171769 .182698 .198825
1 14.0363 42.219 1 0.000 .045322 -.256091 -.234233 -.201978*
2 15.441 2.8095 1 0.094 .044934 -.264702 -.231916 -.183533
3 15.5074 .1328 1 0.716 .045837 -.244838 -.201123 -.136613
4 17.6196 4.2245 1 0.040 .044767 -.268503 -.213859 -.133221
5 20.571 5.9027 1 0.015 .04295 -.31002 -.244448* -.147682
6 20.6119 .08191 1 0.775 .04384 -.289615 -.213114 -.100221
7 21.9047 2.5856 1 0.108 .043573 ~-.295845 -.208414 -.07939%4
8 22.298 .78664 1 0.375 .044147 -.282937 -.184578 -.03943
9 22.5881 .58022 1 0.446 .044829 -.267832 -.158545 .002731
10 22.9603 .74432 1 0.388 .045444 -.254474 -.134258 .043145
11 28.8321 11.744% 1 0.001 .040983* -.35813* -.226984 -.033454
12 28.8889 .11366 1 0.736 .041829 -.338062 -.195988 .01367

Endogenous: casesgrowth

Exogenous: _cons
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dfuller casesgrowth, regress lags(10)

Augmented Dickey-Fuller test for unit root Number of obs = 95
Interpolated Dickey-Fuller
Test % Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -3.580 -3.517 -2.894 -2.582
MacKinnon approximate p-value for Z(t) = 0.0062
D.
casesgrowth Coef. Std. Err. t P>|t| [95% Conf. Interval]
casesgrowth
Ll. -.5741987 .1603868 -3.58 0.001 -.8932017 -.2551958
LD. .0090504 .152657 0.06 0.953 -.2945781 .3126789
L2D. .200641 .1387507 1.45 0.152 -.0753286 .4766107
L3D. .385953 .1353265 2.85 0.005 .116794 .6551121
L4D. .3273159 .1395103 2.35 0.021 .0498356 .6047962
L5D. .0884037 .1403945 0.63 0.531 -.1908353 .3676426
L6D. .0751342 .1205653 0.62 0.535 -.1646654 .3149338
L7D. -.033992 .0843638 -0.40 0.688 -.2017883 .1338043
L8D. -.0181382 .0671309 -0.27 0.788 -.1516588 .1153824
L9D. .032654 .0589823 0.55 0.581 -.0846593 .1499673
L10D. .0096311 .0247493 0.39 0.698 -.0395942 .0588565
_cons .0266139 .0234142 1.14 0.259 -.019956 .0731837
dfuller casesgrowth, regress lags(0)
Dickey-Fuller test for unit root Number of obs = 105
Interpolated Dickey-Fuller
Test % Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -5.296 -3.508 -2.890 -2.580
MacKinnon approximate p-value for Z(t) = 0.0000
D.
casesgrowth Coef. Std. Err. t P>t [95% Conf. Interval]
casesgrowth
Ll. -.4287439 .080962 -5.30 0.000 -.5893131 -.2681748
_cons .099143 .1007507 0.98 0.327 -.1006723 .2989583
. varsoc deathsgrowth, maxlag(12)
Selection-order criteria
Sample: 2020w21 - 2022wl0 Number of obs = 94
lag LL LR df P FPE AIC HQIC SBIC
0 -8.50204 .071668* .202171%* L2131%  .229227%*
1 -8.17576 .65256 1 0.419 .072704 .216506 .238363 .270618
2 -6.91983 2.5119 1 0.113 .07231 .21106 .243847 .292229
3 -6.17866 1.4823 1 0.223 .072711 .216567 .260282 .324792
4 -5.94654 .46424 1 0.496 .073913 .232905 .287549 .368187
5 -5.78134 .3304 1 0.565 .075243 .250667 .316239 .413005
6 -5.62005 .32257 1 0.570 .076605 .268512 .345013 .457906
7 -5.41871 .40268 1 0.526 .077929 .285505 .372935 .501955
8 -4.33293 2.1716 1 0.141 .0778 .283679 .382038 .527186
9 -4.29704 .07178 1 0.789 .07943 .304192 .41348 .574756
10 -4.23805 .11797 1 0.731 .081058 .324214 .44443 .621834
11 -2.76018 2.9557 1 0.086 .080264 .314046 .445192 .638722
12 -2.52106 .47824 1 0.489 .081606 .330235 .472309 .681968
Endogenous: deathsgrowth
Exogenous: _cons
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dfuller deathsgrowth, regress lags(0)

Dickey-Fuller test for unit root Number of obs = 105

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -6.556 -3.508 -2.890 -2.580
MacKinnon approximate p-value for Z(t) = 0.0000
D.
deathsgrowth Coef. Std. Err. t P>t [95% Conf. Interval]
deathsgrowth
Ll. -.5889423 .0898316 -6.56 0.000 -.7671022 -.4107825
_cons .1248953 .1098771 1.14 0.258 -.09302 .3428107

varsoc LCBLLBCgrowth, maxlag(12)

Selection-order criteria

Sample: 2020w21 - 2022wl0 Number of obs = 94
lag LL LR df P FPE AIC HQIC SBIC
0 453.086 3.9e-06 -9.61885 -9.60792 -9.5918
1 469.902 33.631 1 0.000 2.8e-06 -9.95535 =-9.93349 -9.90124
2 476.806 13.808* 1 0.000 2.5e-06* =-10.081* -10.0482* =-9.9998%*
3 476.812 .01242 1 0.911 2.5e-06 -10.0598 -10.0161 -9.9516
4 477.134 .64329 1 0.423 2.5e-06 -10.0454 -9.99075 -9.91011
5 477.135 .00236 1 0.961 2.6e-06 -10.0241 -9.95857 -9.8618
6 477.401 .53343 1 0.465 2.6e-06 -10.0085 -9.93204 -9.81915
7 477.43 .0578 1 0.810 2.7e-06 -9.98788 -9.90045 -9.77143
8 477.588 .31611 1 0.574 2.7e-06 -9.96997 -9.87161 -9.72646
9 477.641  .10525 1 0.746 2.8e-06 -9.94981 -9.84052 -9.67925
10 478.496 1.7096 1 0.191 2.8e-06 -9.94672 -9.8265 -9.6491
11 478.603 .2141 1 0.644 2.9e-06 -9.92772 -9.79657 -9.60304
12 479.334 1.4633 1 0.226 2.9e-06 -9.92201 -9.77994 -9.57028

Endogenous: LCBLLBCgrowth
Exogenous: _cons
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dfuller LCBLLBCgrowth, regress lags(l)

Augmented Dickey-Fuller test for unit root Number of obs = 104

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -3.999 -3.509 -2.890 -2.580
MacKinnon approximate p-value for Z(t) = 0.0014
D.
LCBLLBCgrowth Coef. Std. Err. t P>|t| [95% Conf. Interval]
LCBLLBCgrowth
Ll. -.3027937 .0757211 -4.00 0.000 -.453004 -.1525835
LD. .0358035 .0993003 0.36 0.719 -.1611815 .2327885
_cons .0002107 .0002535 0.83 0.408 -.0002923 .0007136

varsoc Weilnterp, maxlag(12)

Selection-order criteria

Sample: 2020w2l1 - 2022wlO0 Number of obs = 94
lag LL LR df P FPE AIC HQIC SBIC
0 -291.03 29.24 6.21341 6.22434 6.24047
1 -85.6367 410.79 1 0.000 .377849 1.86461 1.88647 1.91872
2 -63.423 44.427 1 0.000 .240605 1.41326 1.44604 1.49442~*
3 -63.4072 .03157 1 0.859 .245704 1.4342 1.47791 1.54242
4 -60.8172 5.1799 1 0.023 .237542 1.40037 1.45501 1.53565
5 -57.5989 6.4367* 1 0.011 .226608* 1.35317* 1.41874* 1.51551
6 -57.5463 .10525 1 0.746 .231245 1.37332 1.44983 1.56272
7 -56.3893 2.314 1 0.128 .230506 1.36998 1.45741 1.58644
8 -55.2707 2.2372 1 0.135 .229965 1.36746 1.46582 1.61097
9 -55.2002 .14088 1 0.707 .23461 1.38724 1.49653 1.6578
10 -55.1996 .00131 1 0.971 .239716 1.4085 1.52872 1.70612
11 -54.8686 .66201 1 0.416 .243232 1.42274 1.55388 1.74741
12 -54.8225 .09219 1 0.761 .248314 1.44303 1.58511 1.79476

Endogenous: Weilnterp
Exogenous: _cons
dfuller Weilnterp, regress lags(4)
Augmented Dickey-Fuller test for unit root Number of obs = 101

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -1.801 -3.510 -2.890 -2.580
MacKinnon approximate p-value for Z(t) = 0.3800
D.Weilnterp Coef. Std. Err. t P>|t| [95% Conf. Interval]
Weilnterp
Ll. -.014343 .0079643 -1.80 0.075 -.0301541 .0014682
LD. .6821746 .0952788 7.16 0.000 .4930222 .871327
L2D. -.1660475 .1132689 -1.47 0.146 -.3909146 .0588197
L3D. .3734067 .112613 3.32 0.001 .1498416 .5969718
L4D. -.2670382 .0893385 -2.99 0.004 -.4443976 -.0896788
_cons .0786356 .0476807 1.65 0.102 -.0160226 .1732938
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dfuller Weilnterp, trend regress lags(4)

Augmented Dickey-Fuller test for unit root Number of obs = 101

Interpolated Dickey-Fuller

Test % Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -1.417 -4.040 -3.450 -3.150

MacKinnon approximate p-value for Z(t) = 0.8560

D.Weilnterp Coef. Std. Err. t P>t [95% Conf. Interval]
Weilnterp

Ll1. -.0222637 .0157168 -1.42 0.160 -.0534698 .0089425

LD. .6820024 .0956107 7.13 0.000 .4921651 .8718396

L2D. -.1642909 .1137025 -1.44 0.152 -.3900498 .061468

L3D. .3717938 .1130383 3.29 0.001 .1473536 .5962339

L4D. -.2540934 .0923372 -2.75 0.007 -.4374311 -.0707558

_trend .0018076 .0030884 0.59 0.560 -.0043246 .0079398
_cons -.0067984 .1536125 -0.04 0.965 -.3117996 .2982027

dfuller WeilInterp, regress lags(l)
Augmented Dickey-Fuller test for unit root Number of obs = 104

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -1.628 -3.509 -2.890 -2.580

MacKinnon approximate p-value for Z(t) = 0.4683

D.Weilnterp Coef. Std. Err. t P>t [95% Conf. Interval]
WeilInterp

Ll. -.0142191 .0087319 -1.63 0.107 -.0315408 .0031026

LD. .7353835 .0675997 10.88 0.000 .601284 .8694831

_cons .0356086 .0536981 0.66 0.509 -.0709139 .1421311

dfuller WeilInterp, trend regress lags(l)
Augmented Dickey-Fuller test for unit root Number of obs = 104

Interpolated Dickey-Fuller

Test % Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -3.206 -4.039 -3.449 -3.149
MacKinnon approximate p-value for Z(t) = 0.0832
D.Weilnterp Coef. std. Err. t P>|t| [95% Conf. Interval
Weilnterp
Ll. -.048243 .0150482 -3.21 0.002 -.0780982 -.0183879
LD. .7362122 .0655314 11.23 0.000 .6061999 .8662246
_trend .0080922 .0029591 2.73 0.007 .0022214 .0139631
_cons -.3375603 .1460507 -2.31 0.023 -.6273207 -.0477998
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varsoc FF, m

Selection-o

axlag(12)

rder criteria

Sample: 2020w2l - 2022wl0 Number of obs = 94
lag LL LR df P FPE AIC HQIC SBIC
0 283.807 .000143 -6.01717 -6.00625 -5.99012
1 346.367 125.12 1 0.000 .000039* -7.32696* -7.30511* -7.27285%
2 346.581 .42755 1 0.513 .000039 -7.31023 ~-7.27745 -7.22907
3 347.335 1.5088 1 0.219 .000039 -7.30501 -7.26129 -7.19678
4 347.589 .50717 1 0.476 .00004 -7.28913 -7.23448 -7.15385
5 350.013 4.8481 1 0.028 .000039 -7.31943 -7.25385 -7.15709
6 350.607 1.1884 1 0.276 .000039 -7.31079 -7.23429 -7.1214
7 350.706 .19753 1 0.657 .00004 -7.29162 -7.20419 ~-7.07517
8 351.501 1.5898 1 0.207 .00004 -7.28725 -7.18889 -7.04375
9 352.326 1.6502 1 0.199 .00004 -7.28353 -7.17424 -7.01297
10 352.441 .23003 1 0.632 .000041 -7.2647 -7.14449 -6.96708
11 352.851 .81916 1 0.365 .000042 -7.25214 -7.121 -6.92746
12 355.231 4.7611% 1 0.029 .00004 -7.28151 =-7.13944 -6.92978
Endogenous: FF
Exogenous: _cons

dfuller FF,

Dickey-Fuller

regress lags(0)

test for unit root Number of obs = 105

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -19.257 -3.508 -2.890 -2.580
MacKinnon approximate p-value for Z(t) = 0.0000
D.FF Coef. sStd. Err. t P>|t| [95% Conf. Interval]
FF
Ll. -.3810071 .019785 -19.26 0.000 -.4202459 -.3417684
_cons .0281829 .0041847 6.73 0.000 .0198836 .0364822

varsoc dWeilnterp, maxlag(l2)

Selection-order criteria

Sample: 2020w22 - 2022wl0 Number of obs = 93

lag LL LR df P FPE AIC HQIC SBIC
0 -87.8524 .395711 1.91081 1.9218 1.93804
1 -65.1784 45.348 1 0.000 .248286 1.4447 1.46669 1.49916%
2 -65.1508 .05512 1 0.814 .253537 1.46561 1.4986 1.54731
3 -62.7644 4.7729 1 0.029 .246097 1.43579 1.47978 1.54472
4 -59.3538 6.8211%* 1 0.009 .233676* 1.38395* 1.43893* 1.52011
5 -59.2787 .15037 1 0.698 .238388 1.40384 1.46982 1.56724
6 -57.7862 2.9849 1 0.084 .235902 1.39325 1.47022 1.58388
7 -57.0945 1.3833 1 0.240 .237505 1.39988 1.48785 1.61774
8 -57.0943 .00045 1 0.983 .24271 1.42138 1.52034 1.66647
9 -57.0115 .16571 1 0.684 .247601 1.44111 1.55106 1.71343
10 -56.4726 1.0778 1 0.299 .250138 1.45102 1.57197 1.75058
11 -56.3632 .21866 1 0.640 .255061 1.47018 1.60212 1.79696
12 -56.2915 .14337 1 0.705 .260307 1.49014 1.63308 1.84416

Endogenous: dWeilnterp

Exogenous: _cons




dfuller dWeilnterp, regress lags(3)

Augmented Dickey-Fuller test for unit root Number of obs = 101

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value

Z(t) -5.403 -3.510 -2.890 -2.580
MacKinnon approximate p-value for zZ(t) = 0.0000

D.dWeilnterp Coef. Std. Err. t P>t [95% Conf. Interval]

dWeiInterp

Ll. -.4044438 .0748562 -5.40 0.000 -.5530322 —-.2558554

LD. .108201 .0963994 1.12 0.264 -.0831503 .2995522

L2D. -.0729314 .0900719 -0.81 0.420 -.2517227 .10586

L3D. .2956015 .0889406 3.32 0.001 .1190558 .4721473

_cons .0529143 .0460198 1.15 0.253 -.0384343 .1442629

dfuller dWeilnterp, regress lags(0)

Dickey-Fuller test for unit root Number of obs = 104

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value

Z(t) -4.017 -3.509 -2.890 -2.580
MacKinnon approximate p-value for Z(t) = 0.0013

D.dWeilInterp Coef. Std. Err. t P>lt| [95% Conf. Interval

dWeilInterp
Ll. -.2729602 .0679488 -4.02 0.000 -.4077362 -.1381841
_cons .0109251 .0519297 0.21 0.834 -.0920771 .1139274

varsoc CLgrowth, maxlag(12)

Selection-order criteria

Sample: 2020w21 - 2022wl0 Number of obs = 94

lag LL LR df P FPE AIC HQIC SBIC
0 468.655 2.8e-06 -9.9501 -9.93917 -9.92304
1 474.963 12.616 1 0.000 2.5e-06 -10.063 -10.0412 -10.0089
2 482.363 14.8 1 0.000 2.2e-06 -10.1992 -10.1664 -10.118
3 484.431 4.1364 1 0.042 2.le-06 -10.2219 -10.1782 -10.1137
4 487.081 5.2993* 1 0.021 2.le-06* -10.257* -10.2024* -10.1218%*
5 487.513 .86555 1 0.352 2.le-06 -10.245 -10.1794 -10.0826
6 488.841 2.6551 1 0.103 2.le-06 -10.2519 -10.1754 -10.0625
7 489.012 .34279 1 0.558 2.le-06 -10.2343 -10.1469 -10.0179
8 489.042 .0595 1 0.807 2.le-06 -10.2137 -10.1153 -9.97015
9 489.062 .0404 1 0.841 2.2e-06 -10.1928 -10.0835 =-9.92225
10 489.642 1.1592 1 0.282 2.2e-06 -10.1839 -10.0637 -9.88625
11 490.213 1.1416 1 0.285 2.2e-06 -10.1747 -10.0436 -9.85006
12 490.792 1.1576 1 0.282 2.3e-06 -10.1658 -10.0237 -9.81405

Endogenous: CLgrowth
Exogenous: 7CODS
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dfuller CLgrowth, regress lags(3)

Augmented Dickey-Fuller test for unit root Number of obs = 102

Interpolated Dickey-Fuller

Test % Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -2.474 -3.509 -2.890 -2.580
MacKinnon approximate p-value for Z(t) = 0.1220
D.CLgrowth Coef. Std. Err. t P>t [95% Conf. Interval
CLgrowth
Ll. -.1788476 .0722939 -2.47 0.015 -.3223311 -.0353642
LD. -.3547824 .1043793 -3.40 0.001 -.5619464 -.1476183
L2D. .0427017 .107732 0.40 0.693 -.1711166 .2565199
L3D. .0639984 .0934803 0.68 0.495 -.121534 .2495309
_cons .0001926 .0001743 1.10 0.272 -.0001534 .0005386

dfuller CLgrowth, trend regress lags(3)

Augmented Dickey-Fuller test for unit root Number of obs = 102

Interpolated Dickey-Fuller

Test % Critical 5% Critical 10% Critical
Statistic Value Value Value

Z(t) -3.809 -4.039 -3.450 -3.150
MacKinnon approximate p-value for Z(t) = 0.0161

D.CLgrowth Coef. Std. Err. t P>|t| [95% Conf. Interval]

CLgrowth

Ll. -.3999318 .1049857 -3.81 0.000 -.6083267 -.191537

LD. -.2248061 .1108611 -2.03 0.045 -.4448637 -.0047484

L2D. .1252886 .1081079 1.16 0.249 -.0893039 .339881

L3D. .1105923 .0917984 1.20 0.231 -.0716262 .2928107

_trend .000024 8.51e-06 2.82 0.006 7.11e-06 .0000409

_cons -.0010197 .0004617 -2.21 0.030 -.0019361 -.0001033

. varsoc CLgrowth detrended, maxlag(12)

Selection-order criteria

Sample: 2020w21 - 2022wl0 Number of obs = 94

lag LL LR df P FPE AIC HQIC SBIC
0 484.877 2.0e-06 -10.2953 -10.2843* -10.2682*
1 485.194 .63473 1 0.426 2.0e-06 -10.2807 -10.2589 -10.2266
2 487.5 4.6102 1 0.032 2.0e-06 -10.3085 -10.2757 =-10.2273
3 487.996 .99201 1 0.319 2.0e-06 =-10.2978 -10.2541 -10.1896
4 489.143 2.2943 1 0.130 2.0e-06 -10.3009 -10.2463 -10.1656
5 490.581 2.8771 1 0.090 1.9e-06* -10.3102* -10.2447 -10.1479
6 490.989 .81627 1 0.366 2.0e-06 =-10.2976 -10.2211 -10.1083
7 491.932 1.8849 1 0.170 2.0e-06 -10.2964 -10.209 -10.08
8 492.109 .35331 1 0.552 2.0e-06 -10.2789 -10.1805 -10.0354
9 492.375 .53376 1 0.465 2.0e-06 -10.2633 -10.154 -9.99274
10 492.383 .01544 1 0.901 2.le-06 -10.2422 -10.122 -9.94458
11 494.649 4.5318~* 1 0.033 2.0e-06 -10.2691 -10.138 -9.94445
12 494.649 8.3e-05 1 0.993 2.1e-06 -10.2479 -10.1058 -9.89612

Endogenous: CLgrowth detrended
Exogenous: _cons



. dfuller CLgrowth_ detrended,

regress lags(0)

Dickey-Fuller test for unit root Number of obs = 105
Interpolated Dickey-Fuller
Test % Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -6.563 -3.508 -2.890 -2.580
MacKinnon approximate p-value for Z(t) = 0.0000
D.
CLgrowth_detrended Coef. Std. Err. t P>t [95% Conf. Interval
CLgrowth_detrended
Ll. -.521639 .0794836 -6.56 0.000 -.679276 -.364002
_cons -.0000702 .000175 -0.40 0.689 -.0004172 .0002768

. dfuller CLgrowth_detrended, regress lags (4

Augmented Dickey-Fuller test for unit root

Number of obs =

Interpolated Dickey-Fuller

101

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -4.926 -3.510 -2.890 -2.580
MacKinnon approximate p-value for Z(t) = 0.0000
D.
CLgrowth_detrended Coef. Std. Err. t P>t [95% Conf. Interval
CLgrowth_detrended
Ll. -.4990022 .101309 -4.93 0.000 -.7001259 -.2978785
LD. -.2362009 .1094704 -2.16 0.033 -.4535272 -.0188746
L2D. .1047248 .1021587 1.03 0.308 -.098086 .3075355
L3D. .2332254 .0983679 2.37 0.020 .0379405 .4285104
L4D. .3323693 .0833923 3.99 0.000 .1668148 .4979239
_cons .0000469 .0001507 0.31 0.756 -.0002522 .0003459
varsoc CILgrowth, maxlag(1l2)
Selection-order criteria
Sample: 2020w21 - 2022wl0 Number of obs = 94
lag LL LR df P FPE AIC HQIC SBIC
0 372.746 .000022 -7.9095 -7.89857 -7.88244
1 392.251 39.009 1 0.000 .000015 -8.30321 -8.28135* -8.24909*
2 393.284 2.0675 1 0.150 .000014 -8.30392 -8.27114 -8.22275
3 393.877 1.1853 1 0.276 .000015 -8.29526 -8.25154 -8.18703
4 394.229 .70376 1 0.402 .000015 -8.28147 -8.22682 -8.14619
5 394.352 .24523 1 0.620 .000015 -8.2628 -8.19723 -8.10046
6 399.213 9.7235* 1 0.002 .000014* -8.34496* -8.26846 -8.15557
7 399.471 .51567 1 0.473 .000014 -8.32917 -8.24174 -8.11272
8 399.756 .57059 1 0.450 .000014 -8.31397 -8.21561 -8.07046
9 399.983 .45266 1 0.501 .000015 -8.29751 -8.18822 -8.02694
10 400.149 .33275 1 0.564 .000015 -8.27977 -8.15955 -7.98215
11 400.889 1.4794 1 0.224 .000015 -8.27423 -8.14309 -7.94956
12 401.273 .76781 1 0.381 .000015 -8.26112 -8.11905 -7.90939

Endogenous: CILgrowth
Exogenous: _cons
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dfuller CILgrowth, regress lags(0)

Dickey-Fuller test for unit root Number of obs = 105

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -3.771 -3.508 -2.890 -2.580
MacKinnon approximate p-value for Z(t) = 0.0032
D.CILgrowth Coef. Std. Err. t P>t [95% Conf. Interval
CILgrowth
Ll. -.2446362 .0648673 -3.77 0.000 -.3732851 -.1159872
_cons .0002192 .0007397 0.30 0.768 -.0012477 .0016862

dfuller CILgrowth, regress lags(5)

Augmented Dickey-Fuller test for unit root Number of obs = 100

Interpolated Dickey-Fuller

Test 1% Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -4.511 -3.510 -2.890 -2.580
MacKinnon approximate p-value for Z(t) = 0.0002
D.CILgrowth Coef. Std. Err. t P>t [95% Conf. Interval
CILgrowth
Ll. -.3115926 .0690677 -4.51 0.000 -.4487474 -.1744378
LD. -.2111487 .0842731 -2.51 0.014 -.3784985 -.043799
L2D. .0234132 .0814977 0.29 0.775 -.138425 .1852515
L3D. -.0061682 .076674 -0.08 0.936 -.1584275 .1460911
L4D. .012313 .0599225 0.21 0.838 -.1066811 .1313072
L5D. .2549136 .0592978 4.30 0.000 .13716 .3726672
_cons -.0004016 .0004391 -0.91 0.363 -.0012736 .0004704

varsoc OLLgrowth, maxlag(1l2)

Selection-order criteria

Sample: 2020w21 - 2022wl0 Number of obs = 94
lag LL LR df P FPE AIC HQIC SBIC
0 396.103 .000013 -8.40644 -8.39551 -8.37938
1 401.458 10.71 1 0.001 .000012 -8.4991 -8.47724* -8.44499%*
2 402.628 2.3399 1 0.126 .000012 -8.50272 -8.46993 -8.42155
3 404.044 2.8335 1 0.092 .000012 -8.51158 -8.46787 -8.40336
4 404.045 .00139 1 0.970 .000012 -8.49032 -8.43568 -8.35504
5 404.046 .0016 1 0.968 .000012 -8.46906 -8.40349 -8.30672
6 407.366 6.6408 1 0.010 .000012 -8.51843 -8.44193 -8.32904
7 408.238 1.7436 1 0.187 .000012 -8.5157 -8.42827 -8.29925
8 408.26 .04458 1 0.833 .000012 -8.4949 -8.39654 -8.2514
9 408.921 1.3206 1 0.250 .000012 -8.48767 -8.37839 -8.21711
10 408.965 .08952 1 0.765 .000012 -8.46735 -8.34713 -8.16973
11 409.024 .11674 1 0.733 .000013 -8.44732 -8.31617 -8.12264
12 413.443 8.839* 1 0.003 .000012* -8.52007* -8.378 -8.16834

Endogenous: OLLgrowth
Exogenous: _cons



. dfuller OLLgrowth, regress lags (0

Dickey-Fuller test for unit root Number of obs = 105
Interpolated Dickey-Fuller
Test % Critical 5% Critical 10% Critical
Statistic Value Value Value
Z(t) -5.341 -3.508 -2.890 -2.580
MacKinnon approximate p-value for Z(t) = 0.0000
D.OLLgrowth Coef. Std. Err. t P>t [95% Conf. Interval
OLLgrowth
Ll1. -.4231701 .0792271 -5.34 0.000 -.5802984 -.2660418
_cons .0008347 .0005117 1.63 0.106 -.0001803 .0018496
dfuller OLLgrowth, regress lags(1l1l)
Augmented Dickey-Fuller test for unit root Number of obs = 94
Interpolated Dickey-Fuller
Test % Critical % Critical 10% Critical
Statistic Value Value Value
Z(t) -2.587 -3.518 -2.895 -2.582
MacKinnon approximate p-value for Z(t) = 0.0957
D.OLLgrowth Coef. Std. Err. t P>|t]| [95% Conf. Interval
OLLgrowth
Ll. -.415528 .1606286 -2.59 0.011 -.7351285 -.0959276
LD. -.3651675 .1721789 -2.12 0.037 -.7077494 -.0225855
L2D. -.2324717 .1758632 -1.32 0.190 -.5823843 .1174408
L3D. -.1003069 .1705559 -0.59 0.558 -.4396596 .2390459
L4D. -.1934926 .1594669 -1.21 0.229 -.5107817 .1237966
L5D. -.2757929 .1484608 -1.86 0.067 -.5711833 .0195976
L6D. -.0387217 .1432288 -0.27 0.788 -.3237021 .2462587
L7D. .0376899 .1181159 0.32 0.750 -.1973237 .2727034
L8D. -.0263859 .0863409 -0.31 0.761 -.1981773 .1454055
LOD. .0714429 .0797371 0.90 0.373 -.087209 .2300947
L10D. .0912745 .072004 1.27 0.209 -.0519909 .2345398
L11D. .1915823 .0677931 2.83 0.006 .0566953 .3264693
_cons .0009223 .0004035 2.29 0.025 .0001194 .0017252

Figure C.1 — Stationarity tests
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Part I: Whether and to what scale does the pandemic crisis affect real economic
activity and credit availability?

VAR model with new confirmed Covid-19 cases growth rate
Stability condition

. varstable

Eigenvalue stability condition

Eigenvalue Modulus
.9398761 + .3203728i .992978
.9398761 - .3203728i .992978

-.04436982 + .98396861 .984968
-.04436982 - .98396861 .984968
.5392229 + .8185221i .980173
.5392229 - .8185221i .980173
-.9256341 + .28580661 .968754
-.9256341 - .28580661 .968754
-.7543267 + .6015147i .964795
-.7543267 - .60151471 .964795
.1147892 + .9567887i1 .96365
.1147892 - .9567887i1 .96365
-.821195 + .49975831 .961311
-.821195 - .49975831 .961311
-.9513971 + .1345327i .960862
-.9513971 - .1345327i .960862
.9569314 + .084843421 .960685
.9569314 - .084843421 .960685
.6633717 + .69375041 .959871
.6633717 - .69375041 .959871
-.575673 + .76666581 .958737
-.575673 - .76666581 .958737
.8705642 + .38774771 .953011
.8705642 - .3877477i .953011
-.3369501 + .8913707i .952931
-.3369501 - .8913707i .952931
.7646329 + .5518713i .942988
.7646329 - .55187131 .942988
.3274316 + .87912961 .938126
.3274316 - .87912961 .938126
.9039888 + .24535051 .936692
.9039888 - .24535051 .936692
.04586036 + .93470591 .93583
.04586036 - .93470591 .93583
-.3147861 + .87978151 .934401
-.3147861 - .8797815i .934401
-.6538693 + .66241811 .930775
-.6538693 - .66241811 .930775
-.4962076 + .7789427i .923566
-.4962076 - .7789427i .923566
.370829 + .84229841i .920316
.370829 - .84229841 .920316
.7986654 + .44665471 .915077
.7986654 - .44665471 .915077
-.9019447 .901945
-.102631 + .88993211 .89583
-.102631 - .88993211 .89583
.6127064 + .60544921 .861381
.6127064 - .60544921 .861381
-.8241651 + .22413761 .854099
-.8241651 - .22413761 .854099
-.3782147 + .68344371 .781116
-.3782147 - .68344371 .781116
.1699194 + .7179611 .737794
.1699194 - .7179611 .737794
.5954707 + .21645591 .633592
.5954707 - .21645591 .633592
-.4037766 + .20348421 .452152
-.4037766 - .20348421 .452152
.129304 .129304

All the eigenvalues lie inside the unit ci
VAR satisfies stability condition.

Figure C.2 - stability test for the first VAR model
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Optimal lag selection
Minimum information criteria

varsoc casesgrowth dWeilnterp LCBLLBCgrowth FF,

Selection-order criteria

exog

(dummy vacgrowth) maxlag(15)

Sample: 2020w25 - 2022wl0 Number of obs 90

lag LL LR df P FPE AIC HQIC SBIC
0 688.685 3.5e-12 -15.0375 -14.903 -14.7041
1 765.352 153.33 16 0.000 9.0e-13* -16.3856* -16.072* -15.6079*
2 773.395 16.086 16 0.447 1.le-12 -16.2088 -15.7159 -14.9866
3 786.23 25.671 16 0.059 1.2e-12 -16.1385 ~-15.4664 -14.4719
4 797.957 23.454 16 0.102 1.3e-12 -16.0435 -15.1922 -13.9325
5 814.071 32.227 16 0.009 1.3e-12 -16.046 -15.0155 -13.4907
6 821.377 14.613 16 0.553 1.7e-12 -15.8528 -14.6431 -12.8531
7 836.883 31.013 16 0.013 1.7e-12 -15.8419 -14.453 -12.3977
8 844.762 15.757 16 0.470 2.2e-12 -15.6614 -14.0933 -11.7728
9 867.89 46.256 16 0.000 2.0e-12 -15.8198 -14.0724 -11.4868
10 882.225 28.671 16 0.026 2.3e-12 -15.7828 -13.8562 -11.0054
11 890.463 16.475 16 0.420 3.le-12 -15.6103 -13.5045 -10.3885
12 922.086 63.247 16 0.000 2.5e-12 -15.9575 -13.6725 =-10.2912
13 935.78 27.388 16 0.037 3.2e-12 -15.9062 -13.4421 -9.79558
14 954.896 38.231 16 0.001 3.8e-12 -15.9755 -13.3321 -9.4204
15 971.881 33.971* 16 0.005 5.le-12 -15.9974 -13.1748 -8.99789

Endogenous: casesgrowth dWeilnterp LCBLLBCgrowth FF

Exogenous: dummy vacgrowth _cons

Figure C.3 — First Var model optimal lag criteria selection

Wald lag-exclusion statistics test

. varwle
Equation: casesgrowth
lag chi2 df Prob > chi2
1 34.07038 4 0.000
2 24.62343 4 0.000
3 11.61123 4 0.020
4 7.848711 4 0.097
5 15.88355 4 0.003
6 7.699674 4 0.103
7 24.27116 4 0.000
8 14.61755 4 0.006
9 14.10358 4 0.007
10 2.910552 4 0.573
11 6.760428 4 0.149
12 19.44731 4 0.001
13 8.731119 4 0.068
14 13.53048 4 0.009
15 15.50118 4 0.004
Equation: dWeilnterp Equation: FF
lag chi2 df Prob > chi2 lag chi2 df Prob > chi2
1 36.75929 4 0.000 1 18.76071 4 0.001
2 20.35426 4 0.000 2 2.409013 4 0.661
3 15.49236 4 0.004 3 3.198841 4 0.525
4 11.59234 4 0.021 4 6.629992 4 0.157
5 5.473361 4 0.242 5 9.423967 4 0.051
6 15.98405 4 0.003 6 4.374884 4 0.358
7 9.44866 4 0.051 7 9.74846 4 0.045
8 3.459215 4 0.484 8 8.764457 4 0.067
9 14.38772 4 0.006 9 14.34407 4 0.006
10 5.792705 4 0.215 10 3.692279 4 0.449
11 21.11747 4 0.000 11 7.953094 4 0.093
12 8.186612 4 0.085 12 11.06679 4 0.026
13 11.06437 4 0.026 13 9.677893 4 0.046
14 3.018352 4 0.555 14 11.89055 4 0.018
15 12.74382 4 0.013 15 8.785632 4 0.067
Equation: LCBLLBCgrowth Equation: ALl
lag chi2 df Prob > chi2 lag chi2 df Prob > chi2
1 28.58639 4 0.000 1 122.9348 16 0.000
2 17.87488 4 0.001 2 74.1881 16 0.000
3 11.88289 4 0.018 3 42.94994 16 0.000
4 6.599222 4 0.159 4 34.05005 16 0.005
5 19.0808 4 0.001 5 53.05685 16 0.000
6 10.51292 4 0.033 6 49.47095 16 0.000
7 11.01123 4 0.026 7 54.0257 16 0.000
8 15.45494 4 0.004 8 46.1357 16 0.000
9 5.117583 4 0.275 9 45.01073 16 0.000
10 14.68316 4 0.005 10 25.36526 16 0.064
11 16.86668 4 0.002 11 48.8688 16 0.000
12 25.01679 4 0.000 12 60.22613 16 0.000
13 4.671412 4 0.323 13 36.6005 16 0.002
14 11.06463 4 0.026 14 42.90712 16 0.000
15 5419744 4 0.969 15 37.30957 16 0.002
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Figure C.4 - Wald lag-exclusion statistics test for p=15.

Residual diagnostics

varlmar, mlag(4)

Lagrange-multiplier test

lag chi2 df Prob > chi2
1 56.1369 16 0.00000
2 29.1886 16 0.02270
3 19.9266 16 0.22355
4 13.8472 16 0.61009

HO: no autocorrelation at lag order

Figure C.5 — Lagrange multiplier test for the serial correlation between residuals for the model with
optimal lag, p=1.
. var casesgrowth dWeilnterp LCBLLBCgrowth FF, exog (dummy vacgrowth) lags (1/14

Vector autoregression

Sample: 2020w24 - 2022wl10 Number of obs = 91
Log likelihood = 964.5256 AIC = -16.01155
FPE = 3.53e-12 HQIC = -13.3845
Det (Sigma_ml) = 7.3le-15 SBIC = -9.499873
Equation Parms RMSE R-sq chi2 P>chi2
casesgrowth 59 .213698 0.7703 305.2204 0.0000
dWeilnterp 59 .500876 0.7754 314.2484 0.0000
LCBLLBCgrowth 59 .001406 0.8053 376.3447 0.0000
FF 59 .004872 0.9304 1216.871 0.0000
Coef. Std. Err. z P>|z| [95% Conf. Interval]
casesgrowth
casesgrowth
Ll. .5111743 .1022146 5.00 0.000 .3108373 .7115113
L2. -.2489897 .1195853 -2.08 0.037 -.4833726 -.0146068
L3. .171739 .1215326 1.41 0.158 -.0664604 .4099385
L4. -.0252937 .1278714 -0.20 0.843 -.275917 .2253296
L5. -.3402594 .1257305 -2.71 0.007 -.5866867 -.0938322
L6. .1717798 .1158675 1.48 0.138 -.0553163 .398876
L7. -.3234173 .124126 -2.61 0.009 -.5666999 -.0801348
L8. .2704722 .1242784 2.18 0.030 .0268911 .5140534
L9. -.1898271 .1163341 -1.63 0.103 -.4178377 .0381836
L10. -.1722591 .117216 -1.47 0.142 -.4019982 .05748
Lll. -.0078782 .1240627 -0.06 0.949 -.2510366 .2352802
Ll2. -.2627135 .1148645 -2.29 0.022 -.4878439 -.0375832
L13. -.0671935 .1137675 -0.59 0.555 -.2901738 .1557868
L1l4. .0142191 .0951542 0.15 0.881 -.1722797 .2007178
dWeiInterp
Ll. -.0930834 .0462178 -2.01 0.044 -.1836688 -.0024981
L2. .1206856 .0502583 2.40 0.016 .0221812 .21919
L3. -.1078178 .0555166 -1.94 0.052 -.2166284 .0009927
L4. .0204219 .0577517 0.35 0.724 -.0927694 .1336132
L5. -.0934398 .0590111 -1.58 0.113 -.2090994 .0222197
L6. .1244929 .0620318 2.01 0.045 .0029128 .246073
L7. -.1472096 .0650299 -2.26 0.024 -.2746659 -.0197533
L8. .0381748 .0636959 0.60 0.549 -.0866669 .1630165
L9. -.0897225 .0650733 -1.38 0.168 -.2172638 .0378188
L10. -.0508874 .0691395 -0.74 0.462 -.1863982 .0846235
Lll. .0245995 .0635976 0.39 0.699 -.1000494 .1492485
Ll2. -.0534954 .0639264 -0.84 0.403 -.1787889 .071798
L13. .0367168 .0633809 0.58 0.562 -.0875074 .1609411
Ll4. -.1215514 .0540209 -2.25 0.024 -.2274303 -.0156724
LCBLLBCgrowth
Ll. -28.52754 15.19979 -1.88 0.061 -58.31858 1.263504
L2. 37.31666 15.38398 2.43 0.015 7.164622 67.4687
L3. -11.25864 14.93762 -0.75 0.451 -40.53583 18.01856
L4. 23.24349 14.73237 1.58 0.115 -5.631424 52.11841
L5. 6.239784 14.50064 0.43 0.667 -22.18095 34.66052
L6. -22.37985 15.088 -1.48 0.138 -51.95178 7.192089
L7. -1.283318 14.87042 -0.09 0.931 -30.4288 27.86217
L8. -9.419737 13.88725 -0.68 0.498 -36.63825 17.79878
L9. -11.5149 14.68818 -0.78 0.433 -40.30321 17.27341
L10. -18.05987 14.78389 -1.22 0.222 -47.03576 10.91602
Lll. 10.67206 14.26758 0.75 0.454 -17.29187 38.636
Ll2. -32.61791 13.50988 -2.41 0.016 -59.09678 -6.139033
L13. .6989867 12.7428 0.05 0.956 -24.27645 25.67442
Ll4. -17.33065 11.74409 -1.48 0.140 -40.34864 5.687337
FF
Ll. 1.020976 3.929295 0.26 0.795 -6.680302 8.722254
L2. 4.505434 4.303723 1.05 0.295 -3.929708 12.94058
L3. -2.580565 4.228235 -0.61 0.542 -10.86775 5.706624
L4. -4.298927 4.190515 -1.03 0.305 -12.51219 3.91433
L5. -2.337116 4.04373 -0.58 0.563 -10.26268 5.588449
L6. -.4359642 4.126737 -0.11 0.916 -8.52422 7.652292
L7. 4.191484 4.063014 1.03 0.302 -3.771877 12.15484
L8. -6.55859 4.103406 -1.60 0.110 -14.60112 1.483939
L9. 1.285653 3.971965 0.32 0.746 -6.499256 9.070562
L10. 4.653785 3.688383 1.26 0.207 -2.575313 11.88288
L11. -9.141766 3.590451 -2.55 0.011 -16.17892 -2.104612
Ll2. 6.746347 2.813052 2.40 0.016 1.232867 12.25983
78 L13. .8956173 1.021248 0.88 0.380 -1.105992 2.897226
L1l4. 1.035236 .8582006 1.21 0.228 -.6468064 2.717278
dummy .0672896 .0595877 1.13 0.259 -.0495002 .1840794
vacgrowth -.0469772 .0263904 -1.78 0.075 -.0987015 .004747
_cons .2116638 .5450171 0.39 0.698 -.85655 1.279878




dWeiInterp

casesgrowth
Ll. -.4545112 .2395757 -1.90 0.058 -.9240709 .0150485
L2. -.5039812 .2802899 -1.80 0.072 -1.053339 .0453769
L3. .4196083 .284854 1.47 0.141 -.1386952 .9779118
L4. -.3665184 .2997112 -1.22 0.221 -.9539416 .2209047
L5. .4566697 .2946933 1.55 0.121 -.1209185 1.034258
L6. -.3191428 .271576 -1.18 0.240 -.8514219 .2131363
L7. .1693874 .2909326 0.58 0.560 -.40083 .7396049
L8. -.3934693 .2912897 -1.35 0.177 -.9643868 .1774481
L9. -.0428154 .27726696 -0.16 0.875 -.577238 .4916071
L10. -.4504166 .2747365 -1.64 0.101 -.9888903 .0880572
L1l. .2538266 .2907842 0.87 0.383 -.3161 .8237532
Ll2. -.3264683 .2692251 -1.21 0.225 -.8541398 .2012032
L13. -.1624456 .2666539 -0.61 0.542 -.6850777 .3601864
L14. .0380138 .223027 0.17 0.865 -.399111 .4751386
dWeilnterp
Ll. .4484146 .1083277 4.14 0.000 .2360963 .6607329
L2. -.353137 .1177978 -3.00 0.003 -.5840164 -.1222576
L3. .5233898 .1301225 4.02 0.000 .2683544 .7784253
L4. -.1806109 .1353613 -1.33 0.182 -.4459143 .0846924
L5. .1080129 .138313 0.78 0.435 -.1630757 .3791014
L6. -.2693884 .1453931 -1.85 0.064 -.5543536 .0155769
L7. -.0690496 .1524203 -0.45 0.651 -.3677879 .2296887
L8. .0325095 .1492936 0.22 0.828 -.2601006 .3251195
L9. -.2854922 .1525219 -1.87 0.061 -.5844296 .0134453
L10. .2081818 .1620524 1.28 0.199 -.1094351 .5257987
L11. -.4825353 .1490631 -3.24 0.001 -.7746936 -.190377
Ll12. .4027256 .1498338 2.69 0.007 .1090568 .6963945
L13. -.2639714 .1485553 -1.78 0.076 -.5551343 .0271916
L14. .1193076 .1266168 0.94 0.346 -.1288567 .367472
LCBLLBCgrowth
Ll. -91.4321 35.62601 -2.57 0.010 -161.2578 -21.6064
L2. -13.59899 36.05772 -0.38 0.706 -84.27082 57.07283
L3. 46.33987 35.01152 1.32 0.186 -22.28145 114.9612
L4. 68.80635 34.53045 1.99 0.046 1.12791 136.4848
L5. 41.75381 33.98731 1.23 0.219 -24.8601 108.3677
L6. 81.66099 35.36399 2.31 0.021 12.34884 150.9731
L7. -105.1183 34.85401 -3.02 0.003 -173.4309 -36.80567
L8. -25.94222 32.54962 -0.80 0.425 -89.7383 37.85386
L9. -106.2408 34.42688 -3.09 0.002 -173.7162 -38.7653
L10. 20.74696 34.6512 0.60 0.549 -47.16814 88.66207
L11. 19.7226 33.44104 0.59 0.555 -45.82063 85.26584
Ll2. 38.95517 31.66511 1.23 0.219 -23.1073 101.0177
L13. 10.34155 29.8672 0.35 0.729 -48.1971 68.88019
L14. 26.34177 27.52636 0.96 0.339 -27.60891 80.29245
FF
Ll. -11.78433 9.209675 -1.28 0.201 -29.83496 6.266297
L2. 8.597082 10.08728 0.85 0.394 -11.17361 28.36778
L3. 2.579503 9.910343 0.26 0.795 -16.84441 22.00342
L4. -19.72247 9.821933 -2.01 0.045 -38.9731 -.4718354
L5. 23.13573 9.477891 2.44 0.015 4.559401 41.71205
L6. -23.27997 9.672448 -2.41 0.016 -42.23762 -4.322323
L7. 7.919995 9.523089 0.83 0.406 -10.74492 26.58491
L8. -2.488548 9.617764 -0.26 0.796 -21.33902 16.36192
L9. 12.20941 9.309687 1.31 0.190 -6.037241 30.45606
L10. -2.536893 8.645012 -0.29 0.769 -19.48081 14.40702
L11. 10.09329 8.415474 1.20 0.230 -6.400737 26.58732
Ll2. -11.64798 6.593369 -1.77 0.077 -24.57075 1.274783
L13. 1.019978 2.393651 0.43 0.670 -3.671491 5.711447
L14. .8022721 2.011493 0.40 0.690 -3.140181 4.744725
dummy -.3292341 .1396647 -2.36 0.018 -.6029718 -.0554964
vacgrowth .0865341 .0618551 1.40 0.162 -.0346997 .2077679
_cons .7683554 1.277438 0.60 0.548 -1.735376 3.272087
LCBLLBCgrowth
casesgrowth
Ll. -.0025825 .0006725 -3.84 0.000 -.0039006 -.0012644
L2. .0010395 .0007868 1.32 0.186 -.0005026 .0025815
L3. -.0027193 .0007996 -3.40 0.001 -.0042865 -.0011521
L4. -.0014626 .0008413 -1.74 0.082 -.0031115 .0001864
L5. -.0023264 .0008272 -2.81 0.005 -.0039478 -.0007051
L6. -.0012703 .0007623 -1.67 0.096 -.0027645 .0002238
L7. .0014173 .0008167 1.74 0.083 -.0001833 .003018
L8. -.0005609 .0008177 -0.69 0.493 -.0021635 .0010417
L9. .0015711 .0007654 2.05 0.040 .0000709 .0030713
L10. -.0012105 .0007712 -1.57 0.117 -.002722 .0003011
L1l. -.0007099 .0008163 -0.87 0.384 -.0023097 .0008899
Ll12. -.0012494 .0007557 -1.65 0.098 -.0027307 .0002318
L13. -.0019347 .0007485 -2.58 0.010 -.0034018 -.0004676
L1l4. -.001607 .0006261 -2.57 0.010 -.0028341 -.00038
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dWeiInterp

Ll. .0005318 .0003041 -1.75 0.080 -.0011278 .0000642
L2. .0010819 .0003307 -3.27 0.001 -.00173 .0004338
L3. .0001525 .0003653 -0.42 0.676 -.0008684 .0005634
L4. .0004728 .00038 -1.24 0.213 -.0012175 .0002719
L5. .0007984 .0003883 2.06 0.040 .0000375 .0015594
L6. .0005843 .0004081 -1.43 0.152 -.0013842 .0002156
L7. .0006949 .0004279 1.62 0.104 -.0001437 .0015335
L8. .0017926 .0004191 -4.28 0.000 -.002614 .0009712
L9. .0003484 .0004281 0.81 0.416 -.0004908 .0011875
L10. .0015993 .0004549 -3.52 0.000 -.0024909 .0007078
L11. .001433 .0004184 3.42 0.001 .0006129 .0022531
Ll2. .0020748 .0004206 -4.93 0.000 -.0028991 .0012504
L13. -.000071 .000417 -0.17 0.865 -.0008883 .0007463
Ll4. .0010216 .0003554 -2.87 0.004 -.0017182 .0003249
LCBLLBCgrowth
Ll. .0497371 .1000049 0.50 0.619 -.1462689 .2457432
L2. .1657497 .1012168 -1.64 0.102 -.3641309 .0326315
L3. .0210445 .09828 0.21 0.830 -.1715808 .2136697
L4. .1196938 .0969296 -1.23 0.217 -.3096724 .0702847
L5. .203923 .095405 2.14 0.033 .0169327 .3909133
L6. .1212369 .0992694 1.22 0.222 -.0733276 .3158014
L7. .1839257 .0978379 1.88 0.060 -.007833 .3756844
8. .0674703 .0913693 0.74 0.460 -.1116102 .2465508
L9. .0453624 .0966389 0.47 0.639 -.1440463 .2347712
L10. .1664917 .0972686 -1.71 0.087 -.3571346 .0241512
L11. .1537956 .0938716 -1.64 0.101 -.3377805 .0301892
L12. .0739327 .0888864 -0.83 0.406 -.2481469 .1002814
L13. .0394271 .0838395 0.47 0.638 -.1248953 .2037495
L14. .0989225 .0772686 -1.28 0.200 -.2503662 .0525212
FF
Ll. .0735685 .0258523 2.85 0.004 .022899 .124238
L2. .0770953 .0283158 -2.72 0.006 -.1325931 .0215974
L3. .0041839 .0278191 -0.15 0.880 -.0587083 .0503405
L4. .0181824 .0275709 0.66 0.510 -.0358556 .0722204
L5. -.071989 .0266052 -2.71 0.007 -.1241341 .0198438
L6. .0458475 .0271513 1.69 0.091 -.0073681 .099063
L7. .0049195 .026732 -0.18 0.854 -.0573134 .0474743
L8. .002178 .0269978 0.08 0.936 -.0507367 .0550927
L9. .0339463 .026133 -1.30 0.194 -.0851661 .0172734
L10. .0316961 .0242672 -1.31 0.192 -.079259 .0158667
L11. .0139396 .0236229 0.59 0.555 -.0323603 .0602396
L12. .0096585 .0185081 0.52 0.602 -.0266167 .0459337
L13. .0098244 .0067192 1.46 0.144 -.0033449 .0229937
L14. .01247 .0056464 2.21 0.027 .0014032 .0235368
dummy .0005041 .000392 1.29 0.199 -.0002643 .0012725
vacgrowth .0001706 .0001736 -0.98 0.326 -.0005109 .0001697
_cons .0049329 .0035859 1.38 0.169 -.0020952 .0119611
FF
casesgrowth
Ll. .0037355 .0023306 1.60 0.109 -.0008323 .0083033
L2. -.004683 .0027266 -1.72 0.086 -.0100271 .0006611
L3. .0051522 .002771 1.86 0.063 -.0002789 .0105833
L4. .0000841 .0029156 0.03 0.977 -.0056303 .0057985
L5. .0062547 .0028667 2.18 0.029 .000636 .0118734
L6. .0013341 .0026419 -0.50 0.614 -.0065121 .0038438
L7. .0007094 .0028302 -0.25 0.802 -.0062564 .0048376
L8. .0012481 .0028336 0.44 0.660 -.0043058 .0068019
L9. .0007631 .0026525 -0.29 0.774 -.0059619 .0044357
L10. .0029891 .0026726 1.12 0.263 -.0022491 .0082273
L1l. .0015224 .0028287 0.54 0.590 -.0040218 .0070665
Ll12. .0042001 .002619 -1.60 0.109 -.0093333 .000933
L13. .0046485 .002594 1.79 0.073 -.0004356 .0097326
L14. .0028143 .0021696 1.30 0.195 -.001438 .0070666
dWeiInterp
Ll. .0003748 .0010538 0.36 0.722 -.0016906 .0024402
L2. .0015618 .0011459 1.36 0.173 -.0006842 .0038078
L3. .0021524 .0012658 -1.70 0.089 -.0046333 .0003286
L4. .0034164 .0013168 2.59 0.009 .0008355 .0059972
L5. .0045746 .0013455 -3.40 0.001 -.0072117 .0019375
L6. .0016271 .0014144 1.15 0.250 -.001145 .0043992
L7. .0050544 .0014827 -3.41 0.001 -.0079605 .0021483
L8. .0024735 .0014523 1.70 0.089 -.000373 .00532
L9. .0042852 .0014837 -2.89 0.004 -.0071933 .0013772
L10. .0023377 .0015764 -1.48 0.138 -.0054274 .000752
L11. .0003785 .0014501 -0.26 0.794 -.0032206 .0024636
L12. .0020796 .0014576 1.43 0.154 -.0007772 .0049364
L13. -.000557 .0014451 -0.39 0.700 -.0033894 .0022754
Ll4. .0018354 .0012317 1.49 0.136 -.0005787 .0042495
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LCBLLBCgrowth
L1. -.4650675 .3465658 -1.34 0.180 -1.144324 .2141889
L2. .2126599 .3507653 0.61 0.544 -.4748275 .9001473
L3. -.237715 .3405881 -0.70 0.485 -.9052553 .4298253
L4. .4747495 .3359083 1.41 0.158 -.1836186 1.133118
LS. -.5123402 .3306246 -1.55 0.121 -1.160353 .1356723
L6. -.1246083 .3440168 -0.36 0.717 -.798869 .5496523
L7. -.3444904 .3390558 -1.02 0.310 -1.009028 .3200468
L8. -.8458641 .316639 -2.67 0.008 -1.466465 -.2252631
L9. -.909504 .3349008 -2.72 0.007 -1.565897 -.2531105
L10. .202034 .3370829 0.60 0.549 -.4586364 .8627043
L1l. .4674791 .3253106 1.44 0.151 -.170118 1.105076
Ll2. -.3105014 .3080346 -1.01 0.313 -.9142381 .2932352
L13. .2838773 .2905447 0.98 0.329 -.2855799 .8533345
L14. -1.041879 .2677733 -3.89 0.000 -1.566705 -.5170531
FF

Ll. .4431085 .0895907 4.95 0.000 .2675141 .618703
L2. -.0254121 .0981279 -0.26 0.796 -.2177392 .1669149
L3. -.0751015 .0964067 -0.78 0.436 -.2640552 .1138521
L4. .0812713 .0955466 0.85 0.395 -.1059966 .2685393
LS. -.076682 .0921998 -0.83 0.406 -.2573904 .1040263
L6. -.0561524 .0940925 -0.60 0.551 -.2405702 .1282654
L7. -.0002993 .0926395 -0.00 0.997 -.1818694 .1812708
L8. .0152656 .0935605 0.16 0.870 -.1681096 .1986409
L9. .0309715 .0905636 0.34 0.732 -.1465298 .2084728
L10. -.1120254 .0840977 -1.33 0.183 -.2768538 .052803
L1l. -.2247623 .0818648 -2.75 0.006 -.3852142 -.0643103
Ll2. .2296318 .0641395 3.58 0.000 .1039206 .3553429
L13. -.0704505 .0232852 -3.03 0.002 -.1160885 -.0248124
Ll4. -.0114756 .0195676 -0.59 0.558 -.0498273 .0268761
dummy .000605 .0013586 0.45 0.656 -.0020579 .0032679
vacgrowth -.0029539 .0006017 -4.91 0.000 -.0041333 -.0017746
_cons .0723307 .0124268 5.82 0.000 .0479747 .0966867

. varlmar, mlag(16)

Lagrange-multiplier test

lag chi2 df Prob > chi2
1 12.5094 16 0.70823
2 13.9232 16 0.60444
3 16.7453 16 0.40226
4 15.0559 16 0.52054
5 15.9348 16 0.45752
6 26.2836 16 0.05017
7 8.9078 16 0.91716
8 28.4369 16 0.02802
9 12.0965 16 0.73731
10 9.6393 16 0.88477
11 10.4930 16 0.83965
12 19.3062 16 0.25311
13 10.6789 16 0.82886
14 10.8531 16 0.81846
15 26.0824 16 0.05288
16 15.9088 16 0.45934

HO: no autocorrelation at lag order

Figure C.6 — VAR(14) model estimation and Lagrange multiplier test for the serial correlation between

residuals for a model with optimal lag, p=14.

summarize rescasesgrowth resdWeilnterp resLCBLLBCgrowth resFF

Variable Obs Mean Std. Dev. Min Max
rescasesgr~h 91 -9.62e-11 .1274248 -.400363 .631493
resdWeilnt~p 91 1.79%e-11 .2986645 -1.060426 .9575102
resLCBLLBC~h 91 5.64e-12 .0008384 -.0029537 .001772

resfFF 91 -4.00e-12 .0029054 -.0100899 .0091451

Figure C.7 — Residuals of the variables for the model with optimal lag (p=14).
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. corr rescasesgrowth resdWeilInterp resLCBLLBCgrowth resFF,

(obs=91)
rescas~h resdWe~p resLCB~h resFF
rescasesgr~h .016237
resdWeilnt~p .007824 .089201
resLCBLLBC~h 7.0e-07 -.000048 7.0e-07
resFF -.000018 -.000075 4.2e-07 8.4e-06

Figure C.8 — Covariance between residuals for the model with optimal lag (p=14).

cov

corr rescasesgrowth resdWeiInterp resLCBLLBCgrowth resFF

(obs=91)
rescas~h resdWe~p resLCB~h resFF
rescasesgr~h 1.0000
resdWeilInt~p 0.2056 1.0000
resLCBLLBC~h 0.0066 -0.1934 1.0000
resFF -0.0482 -0.0859 0.1710 1.0000

Figure C.9 — Correlation between residuals for the model with optimal lag (p=14).

Granger causality

. vargranger

Granger causality Wald tests

Equation Excluded chi? df Prob > chi?
casesgrowth dWeilnterp 26.093 14 0.025
casesgrowth LCBLLBCgrowth 24.784 14 0.037
casesgrowth FF 19.776 14 0.137
casesgrowth ALL 77.35 42 0.001
dileiInterp casesgrowth 26.637 14 0.021
dWeilnterp LCBLLBCgrowth 41.226 14 0.000
dileiInterp FF 21.537 14 0.089
dileiInterp ALL 72.408 42 0.002

LCBLLBCgrowth casesgrowth 75.002 14 0.000
LCBLLBCgrowth difeiInterp 62.932 14 0.000
LCBLLBCgrowth FF 33.068 14 0.003
LCBLLBCgrowth ALL 151.33 42 0.000
FF casesgrowth 18.613 14 0.180
FF dWeilInterp 113.59 14 0.000
FF LCBLLBCgrowth 46.805 14 0.000
FF ALL 214.07 42 0.000

Figure C.10 - Granger causality between variables for the model with optimal lag (p=14)

82



Orthogonalized impulse response functions

. irf create IRF, set(IRF, replace) step (20) order (casesgrowth dWeiInterp LCBLLBCgrowth FF)
(file IRF.irf created)

(file IRF.irf now active)

(file IRF.irf updated)

In Stata, we start by creating an IRF entry in a file called IRF to hold the results of the VAR(14) and
run the IRF effect horizon out over 20 weeks (five months). Next, the order of the variables is listed

again in the IRFs command?®.

The final step to attaining the output is to plot the orthogonal impulse response functions and

table their values. To get the OIRFs case, it is necessary to run oirf instead of irf.

. irf graph oirf, set(IRF) irf (IRF) impulse (casesgrowth dWeilnterp LCBLLBCgrowth FF) response (casesgrowth dWeiInterp LCBLLBCgrowth
> FF) yline(0)
(file IRF.irf now active)

This command will provide all OIRFs?’ results in the same graphic, which can make interpretation
of some values difficult regarding the different scales of effects caused. If the output containing the

table with the values is desired, the same command is applied, replacing graph with table.

IRF, FF, FF IRF, FF, LCBLLBCgrowth IRF, FF, casesgrowth IRF, FF, dWeilnterp

44

.24

0 —_————— NN T T
-2

IRF, LCBLLBCgrowth, FF IRF, LCBLLBCgrowth, LCBLLBCgrowth  IRF, LCBLLBCgrowth, casesgrowth IRF, LCBLLBCgrowth, dWeilnterp

44

.24

0 ~ T —— e ——— vw
-2

IRF, casesgrowth, FF IRF, casesgrowth, LCBLLBCgrowth IRF, casesgrowth, casesgrowth IRF, casesgrowth, dWeilnterp

® A ’\’/\’\/\,\/

IRF, dWeilnterp, FF IRF, dWeilnterp, LCBLLBCgrowth IRF, dWeilnterp, casesgrowth IRF, dWeilnterp, dWeilnterp
44
2
0 - — . WS B
-2
T T T T T T T T T T T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
step
o - . .
95% Cl orthogonalized irf

Graphs by irffname, impulse variable, and response variable

Figure C.11 — All OIRF’S for the model with optimal lag (p=14).

28 This particular step is unnecessary once the order is already defined in the var command.

27The shaded area in the OIRFs represents the confidence interval bands of our VAR model.
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Impulse: casesgrowth

Response: casesgrowth

irf graph oirf, set(IRF) irf(IRF) impulse (casesgrowth) response
(file IRF.irf now active)

irf table oirf, set(IRF) irf(IRF) impulse (casesgrowth) response
(file IRF.irf now active)

IRF, casesgrowth, casesgrowth

-.051

!
0 5 10 15 20
step

95% CI — orthogonalized irf

Graphs by irfname, impulse variable, and response variable

(casesgrowth) yline(0)

(casesgrowth)

Results from IRF
(1) (1) (1)
step oirf Lower Upper
0 126723 .108312 145133
1 058795 031553 086037
2 .019143 -.009285 047571
3 005799 -.022464 .034062
4 004359 -.024047 032765
5 -.041198 -.072222 -.010175
6 -.01441 -.046243 017423
7 -.034745 -.069025 -.000465
8 -.02253 -.058479 013418
9 -.011059 -.04757 .025451
10 -.028164 -.065684 009356
11 001257 -.03676 039274
12 -.003583 -.046884 039718
13 .003804 -.040787 .048396
14 027416 -.018538 07337
15 040274 -.004472 .08502
16 .029921 -.013486 .073328
17 .050362 .007189 093534
18 .032456 -.012003 .076914
19 .021037 -.026055 068129
20 031279 -.017105 079663

95% lower and upper bounds reported
(1) irfname = IRF, impulse = casesgrowth, and response = casesgrowth

Figure C.12 — casesgrowth shock on itself OIRF for the model with optimal lag (p=14).

Figure C.13 shows the effects of a shock in the growth rate of new Covid-19 confirmed cases on future

values of its own growth. In both cases, a one-standard-deviation shock to casesgrowth is just over

0.12 percent (0.126723%).
Impulse: dWeilnterp

Response: dWeilnterp

irf graph oirf, set(IRF) irf(IRF) impulse (dWeiInterp) response (dWeilnterp)

(file IRF.irf now active)

irf table oirf, set(IRF) irf (IRF) impulse (dWeilInterp) response (dWeilnterp)

(file IRF.irf now active)

IRF, dWeilnterp, dWeilnterp

4
2
04—\ — |
=2 T T T T T
0 5 10 15 20
step
‘ 95% CI — orthogonalized irf ‘

Graphs by irffname, impulse variable, and response variable

yline (0)
Results from IRF
(1) (1) (1)
step oirf Lower Upper

0 .290674 .248444 .332904
1 .148158 .082153 .214163
2 -.010257 -.079151 .058637
3 .118641 .045495 .191787
4 .077661 .001318 .154003
5 -.012838 -.087961 .062285
6 -.067229 -.142212 .007754
7 -.062368 -.137878 .013142
8 -.031141 -.105465 .043182
9 -.016467 -.090828 .057895
10 .001924 -.074232 .07808

11 -.007527 -.085619 .070566
12 -.023306 -.100167 .053556
13 031813 -.045063 .108689
14 00134 -.074895 .077575
15 .007793 -.068842 .084428
16 -.00065 -.078191 .076891
17 -.000085 -.074435 .074264
18 -.043996 -.119302 .03131

19 -.069816 -.148447 .008815
20 -.027337 -.104901 .050228

95% lower and upper bounds reported
(1) irfname = IRF, impulse = dWeilnterp, and response = dWeilnterp

Figure C.13 — dWeilnterp shock on itself OIRF for the model with optimal lag (p=14).
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Figure C.14 shows the effects of shocks to the first differences of the economic activity index on
future values of its own. In this case, a one-standard deviation shock to dWeilnterp is about 0.3

percent.

Response: LCBLLBCgrowth

. irf graph oirf, set(IRF) irf (IRF) impulse (dWeilnterp) response (LCBLLBCgrowth) yline(0)
(file IRF.irf now active)

. irf table oirf, set(IRF) irf(IRF) impulse (dWeilnterp) response (LCBLLBCgrowth)
(file IRF.irf now active)

Results from IRF

(1) (1) (1)
IRF, dWeilnterp, LCBLLBCgrowth step oirf Lower Upper
0005

0 -.000166  -.000336  3.7e-06
1 -.000179  -.000355  -3.5e-06
2 -.000293 -.000488 -.000097
3 -.000199  -.000397 1.7e-07
4 -.000129  -.000333 000075
5 .000144 -.000067 000356
6 -.00012 -.000332 000092
oo _ | 7 -.000049  -.000267 000169
8 -.000162 -.000377 000053
9 -.000037 -.000248 000175
10 -.00011 -.000323 .000102

11 000137 -.000077 .00035
12 -.000182 -.000396 000031
13 -.000249  -.00047 -.000028
14 -.000094 -.000319 000132
15 -.00001 -.000233 000213
-0005 . . . . 16 000051 -.000164 .000265
0 5 10 15 20 17 -.000166  -.000375 .000043
step 18 000073 -.000133 .000279
19 -.00013 -.000341 000082
95% CI orthogonalized irf 20 .000042 -.000162 .000246

Graphs by irfname, impulse variable, and response variable 95% lower and upper bounds reported

(1) irfname = IRF, impulse = dWeilnterp, and response = LCBLLBCgrowth

Figure C.14 — dWeilnterp shock in LCBLLBCgrowth OIRF for the model with optimal lag (p=14).

The first thing to notice is the immediate negative effect that a shock on dWeilnterp has on
LCBLLBCgrowth, on average -0.000166%. The negative effect of the shock remains during the first two
weeks. The peak occurs in the second week [-0.000097; -0.000488]. Even though the results mentioned

are significant, the effect is very close to zero.

A positive shock in the first differences in real economic activity can be viewed as economic
growth. Once there is economic growth, the government's stimulus to credit can gradually decrease,

generating a negative effect, as shown in the chart above.
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Response: FF

. irf graph oirf, set(IRF) irf(IRF) impulse (dWeilnterp) response (FF) yline(0)

(file IRF.irf now active)

. irf table oirf, set(IRF) irf (IRF) impulse (dWeilnterp) response (FF)
(file IRF.irf now active)

Results from IRF

1) (1) (1)
IRF, dWailnterp, FF step oirf Lower Upper
004

0 -.000224  -.000816  .000368
1 .000087 -.000551 .000724
2 .000518 -.000122  .001157
3 .000118 -.000503  .000739
1002 4 000566 -.000059  .001191
5 -.000354 -.000982 .000274
6 -.000704  -.001352  -.000056
7 -.001007  -.001677  -.000337
0+ = 8 -.000862 -.001546 -.000178
9 -.000968  -.001689  -.000247
10 -.002057  -.002854  -.00126
11 -.000892 -.001733 -.000052
002 12 -.00001 -.000866 .000845
13 -.000206  -.001063  .000652
14 .000428 -.000466  .001322
15 .001264 .000311 .002217
16 .002005 .000982 .003028

004 . . . . 17 00195 0009 .003
0 5 10 15 20 18 .001099 .00003 .002168
step 19 .000556 -.000505 .001617
20 .000588 -.000463  .001638

95% CI

Graphs by irfname, impulse variable, and response variable

orthogonalized irf

95% lower and upper bounds reported
(1) irfname = IRF, impulse = dWeilnterp, and response = FF

Figure C.15 — dWeilnterp shock in FF OIRF for the model with optimal lag (p=14).

Figure C.16 shows the effects of dWeilnterp in FF. We see that one-standard deviation (0.3
percentage points) shock in dWeilnterp has no instantaneous effect on the Fed Funds rate. The shock
only starts being significant five weeks ahead of its occurrence. From the fifth to the tenth week, the
response is negative, with the lowest point in the tenth week reaching percentual values of [-0.00126;
-0.002854]. After the response starts being positive from the thirteenth week, the twenty-second, with

the peak in the sixteenth week, registering values between [0.000982;0.003028].

This dynamic between variables could be supported by the fact that the FED implemented easing
monetary policy to boost real economic activity, p.e. lowering interest rates. By analyzing the results
from a short-term political perspective, the output becomes more interesting as it is possible to see.
After the initial positive shock in real economic activity, the Fed funds interest rates decreased,
intending to continue to stimulate the economy. Then, more a less three months later, the interest
rates increased proportionally to what had decreased to control the initial downfall and future

inflation.
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Impulse: LCBLLBCgrowth

Response: LCBLLBCgrowth

. irf graph oirf, set(IRF) irf (IRF) impulse (LCBLLBCgrowth) response (LCBLLBCgrowth) yline(0)

(file IRF.irf now active)

. irf table oirf, set(IRF) irf(IRF) impulse (LCBLLBCgrowth) response (LCBLLBCgrowth)

(file IRF.irf now active)

IRF, LCBLLBCgrowth, LCBLLBCgrowth
.001+

0005

=i T T T T T
0 5 10 15 20
step

95% Cl

Graphs by irffname, impulse variable, and response variable

orthogonalized irf

Results from IRF

(1) (1) (1)
step oirf Lower Upper
0 .000817 .000698 .000936
1 000074 -.000091 00024
2 -.000079 -.000255 000098
3 .000023 -.000151 .000197
4 .000017 -.000156 .000191
5 .000076 -.000101 .000254
6 -.000032 -.000212 000148
7 6.9e-06 -.000175 000189
8 -.000029 -.000205 .000146
9 .00005 -.000123 .000224
10 7.9e-06 -.000167 000183
11 000166 -.000011 000344
12 -1.2e-07 -.000181 .000181
13 .000145 -.000039 .000329
14 .000038 -.000162 .000238
15 -.000049 -.000238 000141
16 000016 -.000168 .0002
17 .000023 -.000161 .000207
18 -4.4e-06 -.000189 .00018
19 .000021 -.000165 .000208
20 000068 -.000111 000246

95% lower and upper bounds reported

(1) irfname = IRF, impulse = LCBLLBCgrowth, and response = LCBLLBCgrowth

Figure C.16— LCBLLBCgrowth shock on itself OIRF for the model with optimal lag (p=14).

Figure C.17 shows the effects of shocks to the growth rate of total credit in the US on future values of

its own growth. In this case, a one-standard deviation shock to LCBLLBCgrowth is just 0.000817

percent.

Response: dWeilnterp

. irf graph oirf, set(IRF)
(file IRF.irf now active)

irf (IRF) impulse (LCBLLBCgrowth) response (dWeilnterp) yline(0)

. irf table oirf, set(IRF) irf (IRF) impulse (LCBLLBCgrowth) response (dWeilnterp)

(file IRF.irf now active)

IRF, LCBLLBCgrowth, dWeilnterp

0 5 10 15 20
step

95% Cl

Graphs by irffname, impulse variable, and response variable

orthogonalized irf

Results from IRF

(1) (1) (1)
step oirf Lower Upper
0 0 0 0
1 -.080121 -.138613 -.021629
2 -.037436 -.099897 .025026
3 05566 -.00489 .116211
4 020663 -.04438 .085705
5 .041882 -.02267 106434
6 059831 -.00434 124002
7 -.02886 -.092939 .03522
8 -.026089 -.089235 .037057
9 -.017647 -.081351 .046056
10 -.006092 -.069399 057216
11 039864 -.024761 .10449
12 -.011204 -.074882 .052473
13 013685 -.048945 076316
14 028665 -.034666 091996
15 024409 -.036336 085153
16 061007 001844 120169
17 .02549 -.031263 .082243
18 .021016 -.034714 076746
19 020808 -.035371 076987
20 -.004444 -.061614 .052727

95% lower and upper bounds reported
(1) irfname = IRF, impulse = LCBLLBCgrowth, and response = dWeilnterp

Figure C.17 — LCBLLBCgrowth shock in dWeilnterp OIRF for the model with optimal lag (p=14).

Figure C.18 shows the effects of the growth rate of total credit in the first differences in the real

economic activity index. We see that a one-standard deviation (0.000817 percentage points) shock in

87



LCBLLBCgrowth has no immediate effect in dWeilnterp. The first week after the shock dWeilnterp has
an adverse response between [-0.021629; -0.138613]. After it, the impulse associated with shock

quickly dies out and has no more significance.

Response: FF

. irf graph oirf, set(IRF) irf(IRF) impulse (LCBLLBCgrowth) response (FF) yline(0)
(file IRF.irf now active)

. irf table oirf, set(IRF) irf(IRF) impulse (LCBLLBCgrowth) response (FF)
(file IRF.irf now active)

Results from IRF

(1) (1) (1)
IRF, LCBLLBCgrowth, FF step oirf Lower Upper
L0014
0 .00046 -.000128 .001047
1 -.000176 -.000788 000435
2 -.000066 -.000643 000511
3 -.000136 -.000656 000383
4 000254 -.000255 .000764
o W B 5 -.000276 -.000793 .00024
6 -.000235 -.000796 000325
7 .00006 -.000506 000626
8 -.000444 -.001015 000127
9 -.000925 -.001524 -.000327
-.0014 10 -.000378 -.000996 000241
11 000231 -.000475 000937
12 -.000258 -.000958 000441
13 -.000547 -.001234 .00014
14 -.001404 -.002137 -.00067
0024 15 -.000867 -.001636 -.000099
. . . . . 16 -.000285 -.001088 .000518
0 5 10 15 20 17 .000073 -.000771 .000918
18 5.7e-06 -.000875 000886
SEp 19 000122 -.000755 .000999
95% ClI orthogonalized irf 20 -.000059 -.000916 .000798
Graphs by irfname, impulse variable, and response variable 95% lower and upper bounds reported
(1) irfname = IRF, impulse = LCBLLBCgrowth, and response = FF

Figure C.18— LCBLLBCgrowth shock in FF OIRF for the model with optimal lag (p=14).

Looking at figure 35, the first thing to analyse in the initial effect that a shock on LCBLLBCgrowth has
in the FF.

Looking at figure C.19, the first thing to analyze is the initial effect that a shock on LCBLLBCgrowth
has on the FF. The first thing to notice is the immediate effect that a shock on LCBLLBCgrowth has on
FF. A one-standard deviation shock in LCBLLBCgrowth (0.000817 percent) changes FF in the current
week between [-0.000128;0.001047] percentual points. The short-term response is negative in the
ninth week between [-0.000327; -0.001524] and the fourteenth week between [-0.00067; -0.002137].
This result reflects the monetary policy taken by the Fed in the period of analysis, a boost (shock) in

credit followed by a reduction in the Fed funds rate.
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Impulse: FF

Response: FF

irf table oirf, set(IRF) irf(IRF) impulse (FF) response (FF)
(file IRF.irf now active)

irf graph oirf, set(IRF) irf (IRF) impulse (FF) response (FF) yline (0)

(file IRF.irf now active)
Results from IRF

(1) (1) (1)

IRF, FF, FF step oirf Lower Upper
.003 0 .00284 002428 003253
1 001259 000727 00179
2 .000387 -.000157 000931
3 -8.4e-06 -.000515 000498
-002+4 4 .00014 -.000337 .000618
5 -.000095 -.000575 000384
6 -.000245 -.000727 .000236
7 -.000022 -.000523 000478
20014 8 -.000013 -.000535 000509
9 -.000033 -.000561 .000495
10 -.000418 -.000977 000141
11 -.000323 -.000968 000322
O ™ 12 000206 -.000427 000839
13 000193 -.000398 000784
14 .00017 -.000416 .000756

1 15 -.000446 -.001092 0002
~0017 ‘ ‘ : ‘ 16 -.000144  -.000847  .000559
0 5 10 15 20 17 .000105 -.000662 .000872
step 18 -.000189 -.000978 000601
19 -.000152 -.000906 000602
95% CIl ——— orthogonalized irf 20 -.000233 -.000946 .000481

Graphs by irfname, impulse variable, and response variable 95% lower and upper bounds reported

(1) irfname = IRF, impulse = FF, and response = FF

Figure C.19 — FF shock on itself OIRF for the model with optimal lag (p=14).

Figure C.20 show the effects of shocks to the FF on future values of its own. In this case, a one-standard

deviation shock to FF is between [0.002428;0.003253] percent.

Response: dWeilnterp

irf graph oirf, set(IRF) irf(IRF) impulse (FF) response (dWeilnterp) yline(0)
(file IRF.irf now active)
irf table oirf, set(IRF) irf(IRF) impulse (FF) response (dWeilnterp)

(file IRF.irf now active)
Results from IRF

(1) (1) (1)
IRF, FF, dWeilnterp step oirf Lower Upper
14
0 0 0 0
1 -.033472 -.084972 018029
2 -.025846 -.084467 032775
3 .0134 -.04403 .07083
4 -.042864 -.