

UNIVERSITARY MASTER IN INDUSTRIAL

ENGINEERING

FINAL MASTER THESIS

Analysis of an edge-computing-based solution for

local data processing at secondary substations

Author: Néstor Rodríguez Pérez

Director: Miguel Ángel Sanz Bobi

Co-Director: Aurelio Sánchez Paniagua

Madrid

August, 2020

19

11

UNIVERSITARY MASTER IN INDUSTRIAL

ENGINEERING

FINAL MASTER THESIS

Analysis of an edge-computing-based solution for

local data processing at secondary substations

Author: Néstor Rodríguez Pérez

Director: Miguel Ángel Sanz Bobi

Co-Director: Aurelio Sánchez Paniagua

Madrid

August, 2020

ANÁLISIS DE UNA SOLUCIÓN BASADA EN “EDGE

COMPUTING” PARA EL PROCESAMIENTO LOCAL DE DATOS

EN CENTROS DE TRANSFORMACIÓN
Autor: Rodríguez Pérez, Néstor.

Director: Sanz Bobi, Miguel Ángel

Co-Director: Sánchez Paniagua, Aurelio

Entidad Colaboradora: i-DE (Grupo Iberdrola)

RESUMEN DEL PROYECTO

1. Introducción

El uso de “Edge computing”, siguiendo un enfoque de Internet de las cosas y

microservicios, en la red de distribución, está considerado como el siguiente paso hacia

una red más inteligente, ya que aliviaría la carga del sistema central y de la infraestructura

de comunicaciones y, al mismo tiempo, proporcionaría capacidades de control y

vigilancia en tiempo semi-real.

En Europa, el proyecto OpenNode [ASGM12] intentó implementar una solución modular

de “Edge computing” para construir el Centro de Transformación "Inteligente". Más

tarde, Siemens introdujo Gridlink [CeHP16], una infraestructura de comunicaciones para

desplegar aplicaciones Java, probándola con una aplicación de control de tensión

mediante transformadores OLTC. ABB [Abb16] sólo considera dispositivos inteligentes

especializados, pero no diferentes "microservicios" en el mismo dispositivo. Sin entrar en

detalles arquitectónicos, [JWHY18] analiza las aplicaciones de “Edge computing” en las

redes de distribución. [CWWL19] define una arquitectura “Edge” que demuestra reducir

el ancho de banda de transmisión y el retardo en las comunicaciones para el mismo

número de dispositivos y [WLYC18] propone una arquitectura “fog computing” (que se

basa en “Edge computing”) para la red de distribución que utiliza el protocolo MQTT y

Node-RED como herramienta de programación.

En febrero de 2020, Intel y Minsait (Indra) publicaron la arquitectura de consolidación de

la carga de trabajo en el borde (“Edge”) (eWLCA) [OSMC20] que incluye el uso de

diferentes tecnologías de código abierto para el despliegue de microservicios en el borde.

Minsait y la empresa española de distribución eléctrica i-DE (Grupo Iberdrola) están

desarrollando una prueba de concepto (PoC) de “Edge computing” en la red de

distribución siguiendo esta arquitectura.

Este proyecto analiza las tecnologías propuestas en el eWLCA y sus posibles alternativas,

considerando los requisitos de la empresa distribuidora (operación, seguridad, etc.); sus

ventajas, desafíos y posibles funcionalidades en la red de distribución de BT, y el impacto

económico que tendría la implementación de esta solución en todo el sistema y en la

distribuidora, a fin de determinar la conveniencia (o no) de aplicar “Edge computing” en

centros de transformación (CTs) con esta arquitectura. Para ello, se utilizan dos entornos

de prueba: uno local y otro remoto. El entorno local se utiliza para comparar tecnologías

y para desarrollar y probar una aplicación de balance en tiempo real programada en

Python, para lo que también se desarrolla un sencillo generador de datos en Node-RED.

El entorno remoto se utilizará para probar el proceso de despliegue a distancia y para

probar una versión modificada de la aplicación de balance para procesar informes

similares a los S02 que suelen ser proporcionados por los concentradores de datos de los

CTs.

1.1 Visión general de la solución

Para el análisis, se distinguen tres elementos en la solución basada en el eWLCA:

• El Nodo “Edge”. El hardware que se instale en el CT y su software.

• El Sistema de Gestión (en la nube u “on premises”). Para supervisar y gestionar

el despliegue remoto de microservicios en los nodos Edge.

• Las comunicaciones. Tres entornos: las comunicaciones internas entre las

aplicaciones del nodo; comunicaciones entre el nodo y el sistema de gestión; y las

comunicaciones con otros dispositivos (fuera o dentro del CT)

2. Análisis

2.1 Ventajas, desafíos y funcionalidades

Las ventajas que se esperan de esta solución son numerosas. El procesamiento de datos

en los CTs reduce el retraso en las comunicaciones y las decisiones, y proporciona

autonomía a los CTs en caso de fallos de comunicación. El uso de tecnologías de

virtualización (por ejemplo, Docker) permite aislar las aplicaciones. El despliegue de

estas funcionalidades (o microservicios) se haría desde el sistema central, reduciendo, por

tanto, el tiempo entre desarrollo y la producción (metodología Agile).

En esta arquitectura, software y hardware están disociados, lo que aumentará la

competitividad para el desarrollo de microservicios, y proporcionará flexibilidad, ya que

se podrían desplegar distintos equipos con distintas funcionalidades en función del CT

("Personalización" de las funcionalidades). El uso de un único dispositivo para múltiples

funcionalidades conducirá, inevitablemente, a la sustitución futura de dispositivos

actualmente presentes en los CTs (concentradores de datos, SABTs...). En cuanto al

funcionamiento, se podrían desplegar muchas funcionalidades para un mejor control y

monitorización de la red de BT, lo que redundaría en una mejora final de la calidad del

servicio. Además, esta solución puede ser el impulso para el desarrollo de funcionalidades

innovadoras y disruptivas, y las comunicaciones actuales entre los CTs (a través de fibra

óptica/PLC) podrían utilizarse para que los nodos trabajen juntos en procesos de alta carga

computacional (procesamiento de imágenes, etc).

No sólo la solución analizada presentará ventajas, sino también algunos desafíos.

Inicialmente, el principal desafío será el relacionado con el hardware. Será complejo

determinar la relación adecuada entre la capacidad y el coste, así como encontrar un

dispositivo en el mercado que también cumpla con los requisitos y dimensiones para ser

instalado en un CT (por ejemplo, pruebas de aislamiento eléctrico, temperatura, etc.). En

cuanto al funcionamiento, algunas funcionalidades disruptivas que podría soportar la

solución no están aun totalmente reguladas (flexibilidad de la demanda, el

almacenamiento de energía, la integración de los VEs, etc.). Además, algunas

funcionalidades requieren datos de los contadores inteligentes que, actualmente, pueden

estar incompletos o no estar disponibles debido a desconexiones temporales, por lo que

debe mejorarse estas comunicaciones en cuanto a fiabilidad y velocidad para aprovechar

al máximo la solución.

En cuanto a las posibles funcionalidades de la solución, éstas cubren diferentes áreas.

Conocimiento y análisis de la red: algoritmos de conectividad de fase, cálculo de la

impedancia de las líneas de BT, algoritmos de detección de fraude y contabilidad de las

pérdidas de energía. Monitorización de la red: detección, localización y clasificación de

faltas en BT y estimación del estado de la red de BT. Gestión y mantenimiento de

activos: aplicaciones de mantenimiento predictivo, funcionalidades de seguridad

(cámaras térmicas, etc.) y predicción de la demanda del CT. Flexibilidad y

funcionalidades innovadoras: supervisión y control de la generación distribuida y del

almacenamiento de energía, integración del VE y flexibilidad de la demanda. Este tipo de

funcionalidades todavía necesita una fuerte regulación. Con toda probabilidad, esta lista

de funcionalidades aumentará cuando la solución se pruebe en campo con éxito.

2.2 Análisis del Nodo Edge

a) Tecnología de Virtualización

Se analizan tres tecnologías de virtualización: Máquinas Virtuales (MVs), Contenedores

(i.e. Docker) y Unikernels (Figura 1)

El despliegue de funcionalidades utilizando exclusivamente máquinas virtuales (MVs)

estándar (un sistema operativo completo por cada máquina virtual, Figura 1) sería

extremadamente difícil a pesar de su madurez y del alto nivel de seguridad y aislamiento

proporcionado. Las imágenes resultantes son muy grandes (GB) y requieren mucho

tiempo de desarrollo. Además, como se espera que se desplieguen múltiples aplicaciones,

el consumo de recursos en el dispositivo sería altamente ineficiente [CDLR19] y el

mantenimiento del SO requeriría más de una actualización por nodo.

El uso de contenedores (Docker) presenta mejores características en los casos en los que

las máquinas virtuales carecen de ellas. Las aplicaciones comparten el mismo sistema

operativo del host (Figura 1) y son más ligeras (MBs). También muestra un buen nivel de

seguridad desde el punto de vista local (cuando no hay intermediarios externos)

[MRCD18]. En cuanto a la seguridad de la propiedad intelectual, las imágenes de los

dockers tendrían que construirse con un usuario no root, y con su código fuente ofuscado.

También existen herramientas comerciales para gestionar los permisos de los usuarios

(por ejemplo, Docker Enterprise). Docker es muy popular entre los desarrolladores

porque es relativamente sencillo, de código abierto (versión comunitaria gratuita) y

reduce el tiempo entre desarrollo y producción.

Finalmente, en la última década, los Unikernels han surgido como alternativa. Los

Unikernels son similares a las MVs, pero con un kernel optimizado en lugar de un SO

completo. Las imágenes son incluso más ligeras que los contenedores [Luci17] pero más

difíciles de depurar. Las pruebas realizadas por [GSAV18] muestran que los Unikernels

podrían lograr un mejor rendimiento que los contenedores. Su mayor inconveniente es

que esta tecnología se encuentra en una fase temprana para su uso en producción

[MRCD18] y todavía es demasiado compleja para el desarrollador medio [Eybe19].

Por lo tanto, en base a este análisis, la tecnología recomendada para utilizar en el Nodo

Edge es el uso de contenedores mediante Docker. Docker es también la tecnología

definida en el eWLCA y la utilizada por Minsait para su PoC con i-DE.

Figura 1. General Virtual Machine (left) and containerization (right) architectures

b) Sistema Operativo (SO)

Docker necesita un kernel de linux para ser ejecutado. Por lo tanto, el uso de Windows

Server se descarta. Entre los sistemas operativos Linux disponibles, se recomienda el uso

de uno ya homologado por la distribuidora (RedHat o RedHat Oracle Linux en el caso de

i-DE) para que el mantenimiento pueda ser llevado a cabo por la distribuidora de un modo

sencillo.

c) Base de Datos

Las distribuidoras españolas están trabajando conjuntamente (FutuRed) para definir un

esquema de datos común en JSON basado en la Arquitectura de la Red de Cosas (WOT-

A), patrocinado por el W3C [KMLK20]. Por lo tanto, la base de datos que se utilice debe

ser apropiada para trabajar con documentos JSON.

El uso de una base de datos SQL se descarta, ya que existen bases No-SQL optimizadas

para almacenar documentos como JSON y una base de datos relacional suele requerir más

tiempo en las consultas de datos para aplicaciones en tiempo semi-real [CeME15].

Entre los tipos de bases de datos no relacionales (No-SQL), las orientadas a documentos

(MongoDB) y los de series temporales (InfluxDB) son las más apropiadas. Tanto

MongoDB como InfluxDB se probaron en el entorno de pruebas local para comparar su

funcionamiento. En este entorno, MongoDB consume 6 veces más CPU y tiene 4 veces

más procesos abiertos que InfluxDB, aunque ambos muestran un consumo de memoria

similar (Figura 2). Además, MongoDB necesita al menos 3 réplicas para garantizar

disponibilidad (modelo CAP).

Figura 2.Captura de pantalla de las estadísticas de Docker: consumo de InfluxDB y MongoDB como contenedores

Como la capacidad de computación del Nodo Edge es muy limitada, se recomienda

utilizar InfluxDB como base de datos: muestra un buen rendimiento al trabajar con

sensores y para el análisis de datos (soporte de lenguajes R y Python) [NaAb19], tiene un

lenguaje de consulta tipo SQL, es compatible con JSON y está diseñado específicamente

para métricas y eventos, que son el tipo de información que el Nodo Edge procesará.

InfluxDB es también la base de datos definida en el eWLCA y la utilizada por Minsait

para su PoC con i-DE.

d) Hardware

Algunas plataformas Edge requieren su propio hardware, mientras que otras son más

flexibles y pueden utilizan uno de terceros. Independientemente de esto, el dispositivo

debe satisfacer los requisitos y pruebas para ser instalado en un CT. Específicamente, se

deben pasar hasta 29 pruebas, clasificadas en 6 grupos: aislamiento, perturbaciones

radioeléctricas, inmunidad, eléctrica, mecánica y climática. Estas pruebas deben ser

certificadas por un laboratorio. Además, las dimensiones del aparato no deben exceder de

220x140x130 mm (ancho x alto x fondo) para poder ser incluido en los armarios

eléctricos actualmente desplegados por i-DE.

2.3 Comunicaciones

Los dos protocolos IoT considerados para este análisis son MQTT(v3.1, v5.0 es

demasiado reciente) [Oasi19] y AMQP (v1.0) [Oasi12] ya que son los más populares en

el ámbito IoT. Se basan en un sistema publicación/suscripción y ambos son protocolos

abiertos, aunque difieren en su funcionamiento y otras características. Como se mencionó

en 1.1, en la solución se distinguen tres entornos de comunicaciones con diferentes

requisitos principales.

a) Comunicaciones internas

Para proporcionar datos a los microservicios y permitir las posibles comunicaciones entre

ellos, se necesita un bus de comunicaciones interno. Los principales requisitos son que

sea ligero y fiable. Para comparar MQTT y AMQP en estos aspectos, se realizó una

prueba con brokers "dockerizados" de MQTT y AMQP publicando cuatro mensajes

JSON ficticios simultáneamente en cuatro temas/colas diferentes cada cinco segundos.

Todos los mensajes fueron recibidos correctamente por los suscriptores. Las estadísticas

de rendimiento se muestran en la Figura 3.

Figura 3. Captura de pantalla de los resultados de la prueba de comparación MQTT-AMQP.

Observando la Figura 3, MQTT es notablemente más ligero que AMQP. Además, MQTT

proporciona tres niveles de calidad de servicio (es decir, fiabilidad) frente a los dos niveles

proporcionados por AMQP. Por lo tanto, se recomienda el uso de MQTT para las

comunicaciones internas. MQTT es también el que utiliza Minsait para su PoC con i-DE.

b) Comunicaciones con el Sistema de gestión

En este caso, el principal aspecto a considerar es la seguridad del protocolo. Ambos

protocolos proporcionan seguridad TLS/SSL pero AMQP tiene, además, compatibilidad

con SASL (autenticación). El aumento de la carga en los mensajes no debería ser un

problema, ya que la solución reduciría la cantidad de datos que deben enviarse al sistema

central para su procesamiento, por lo que la actual infraestructura de comunicaciones

debería ser suficiente. Además, AMQP proporciona más control sobre las colas y tiene

un tipo de función de solicitud/respuesta (Remote Procedure Call) para ejecutar funciones

bajo demanda. Por lo tanto, se recomienda el uso de AMQP para estas comunicaciones.

El PoC de Minsait con i-DE utiliza MQTT+TLS.

c) Comunicaciones con otros dispositivos

Inicialmente, será necesario el desarrollo de adaptadores de

protocolo para comunicarse con los diferentes dispositivos

presentes actualmente en un CT (Figura 4). En el caso de los

nuevos dispositivos (por ejemplo, HEMS), MQTT es el más

utilizado por los investigadores y es tan ligero que podría

desplegarse en el Nodo Edge un agente MQTT adicional para

estas comunicaciones. Además, como se trata de un protocolo

abierto, los fabricantes pueden producir fácilmente

dispositivos compatibles.

2.4 Sistema de Gestión

Hay decenas de plataformas Edge en el mercado que tienen diferentes propósitos y

características. De acuerdo con MachNation [Toka17], los principales aspectos que hay

que tener en cuenta son: la compatibilidad de los protocolos de comunicación, el nivel

Figura 4. Integración del Nodo Edge

con los protocolos de comunicación ya

en uso.

de autonomía alcanzable, el alojamiento (nube u “on premises”), la dependencia del

hardware y las capacidades de visualización.

En cuanto a la orquestación de la carga de trabajo, Docker Compose es la herramienta

utilizada. La Figura 5 muestra el proceso de despliegue que se utiliza y se prueba en la

prueba #2.

Figura 5. Diagrama simplificado del proceso de despliegue de una aplicación. Fuente del icono: https://icons8.com

2.5 Impacto Económico

La solución analizada sería clasificada como una inversión de tipo 2 por el organismo

regulador (relacionada con la red inteligente). Se asume un coste del dispositivo de ~450€

por unidad y una vida útil reglamentaria de 12 años (equipo de Smart Grids). Los ahorros

inmediatos estarían relacionados con la reducción del Time To Market (TTM) de las

funcionalidades (Tabla 1).

Enfoque Tradicional

(Hardware+software)

Nuevo Enfoque (Nodo

Edge)

(Solo software)

Tiempo medio de desarrollo 3 años 4 meses

Num. Proveedores necesarios 3 1

Competencia para los desarrollos Baja Muy Alta

Coste de material ✓

Coste de servicio ✓

Coste de la aplicación ✓ ✓

El coste equivalente de desplegar sólo una nueva funcionalidad se reduciría en un 87,5%

con respecto al enfoque actual. La futura sustitución de dispositivos actuales por su

versión "en contenedor" reducirá los correspondientes costes de mantenimiento. Además,

las funcionalidades de mantenimiento predictivo en el nodo podrían reducir el coste de

mantenimiento en un 12% y aumentar la vida útil de los activos en un 20% [HKDM18],

lo que se retribuiría en un ≥30% adicional a la retribución, por activo, por operación y

mantenimiento.

Tabla 1. Resumen de las diferencias entre los dos enfoques para el desarrollo de una nueva funcionalidad

Considerando que, hoy en día, el algoritmo de conectividad desarrollado por Ariadna Grid

se ejecuta en el sistema central, si se desplegara en el Nodo Edge el ahorro estimado en

computación y almacenamiento central, y comunicaciones, supondría ~15.000€ y

~280.000€ (i-DE) anuales, respectivamente.

Hoy en día, el valor anual estimado de las pérdidas técnicas y no técnicas para i-DE es

de 364,62 millones de euros. Algunas de las funcionalidades que podrían desplegarse en

el Nodo Edge contribuirían a la reducción de las pérdidas (por ejemplo, detección de

fraudes, algoritmo de conectividad, etc.). La Tabla 2 muestra un resumen de los ahorros

calculados en este aspecto.

Tabla 2.. Resumen de los ahorros en pérdidas de energía

Ahorros por dispositivo sustituido/evitado y año (despliegue en el

25% de los CTs de i-DE)
100,000 €

Detección de fraude (cualitativamente)

Mayor rapidez en la detección

Menos "falsos positivos" => Menos inspecciones

Nuevos tipos de fraude detectados

Ahorros por año debido al equilibrado de fases (escenario del 25%) ≥ 5,500,000 €

3. Pruebas

3.1 Prueba #1: Balance en tiempo real en entorno local de pruebas

Se desarrolla un generador de datos aleatorios para proporcionar la funcionalidad de “en

tiempo real”. La aplicación de balance, programada en Python, se conecta al bróker

MQTT interno para recibir los datos, en JSON, cada 10s (consumo de potencia activa

registrado por un supervisor y tres contadores), luego calcula el balance de potencia activa

(independientemente del número de dispositivos) y publica el resultado en un tema

MQTT. Node-RED se utiliza entonces para comprobar el correcto funcionamiento de la

aplicación y para almacenar los resultados en la base de datos InfluxDB.

Esta prueba muestra las posibilidades que la solución puede proporcionar. La aplicación

desarrollada puede adaptarse fácilmente a un entorno real, funciona en tiempo real con

MQTT sin necesidad de consultar la base de datos o cualquier otro intermediario y

funciona de forma aislada (es decir, un error en la aplicación no afectaría a los demás

contenedores). Además, los datos de entrada y el resultado del balance pueden

visualizarse en tiempo real utilizando Grafana (Figura 6) o Chronograph, sin necesidad

de almacenar los datos en el sistema central.

Figura 6. Panel Grafana para visualizar los datos y los resultados del balance (media de pérdidas = 9,5% y las pérdidas absolutas)

3.2 Prueba #2: Balance en tiempo real en el entorno remoto de pruebas

usando informes tipo S02.

En esta prueba se comprobó el proceso de despliegue que se muestra en la Figura 5 con

una versión modificada de la aplicación de balance de la prueba #1 para leer los mensajes

JSON que siguen una estructura similar a la de S02 (S02 son los informes de "incremento

diario" definidos por la especificación STG-DC). El entorno de prueba remoto es

proporcionado por Minsait para i-DE, por lo que todo el proceso de despliegue se hace

de manera similar a como se haría en un despliegue de funcionalidad real en un CT.

El correcto despliegue y funcionamiento de la aplicación se muestra en la Figura 7. En

esta fase inicial de la PoC, los pasos 2, 3 y 4 del proceso (Figura 5) pueden convertirse en

una fuente de errores durante el despliegue, principalmente debido a la complejidad de

los archivos de configuración involucrados y al uso de la línea de comandos, que no es

muy amigable de usar.

Figura 7. Captura de pantalla de Node-RED para comprobar el correcto funcionamiento del balance en este entorno

4. Conclusiones

Este proyecto ha analizado las tecnologías (y sus alternativas) que intervienen en una

solución basada en “Edge computing” que sigue el eWLCA [OSMC20]; las ventajas,

desventajas y funcionalidades que esta solución podría tener en la distribución en BT y

su impacto económico en el sistema y en la distribuidora (i-DE), cumpliendo los objetivos

inicialmente establecidos. Además, la solución se ha probado parcialmente utilizando dos

entornos de prueba diferentes (local y remoto) mediante el desarrollo de una aplicación

de balance energético que funciona en tiempo real.

La conclusión que puede extraerse de este proyecto es que la aplicación de “Edge

computing” a nivel de centro de transformación tiene el potencial para ser el nuevo

paradigma de cómo se monitorea y controla la red de BT, proporcionando grandes

beneficios a la empresa distribuidora, al sistema y a la industria eléctrica en general. Las

tecnologías utilizadas en la arquitectura analizada se consideran apropiadas. Su

modularidad y el hecho de ser de código abierto proporcionará gran flexibilidad a la

distribuidora eléctrica y promoverá los desarrollos en la universidad y en la industria,

aunque el proceso de despliegue probado debería mejorar la “amigabilidad” de uso y la

capacidad de realizar cambios de configuración en línea y despliegues de nuevas

aplicaciones. No obstante, estos aspectos, junto con el desafío del hardware, están cerca

de solucionarse en las futuras fases de la prueba de concepto llevada a cabo en i-DE.

ANALYSIS OF AN EDGE-COMPUTING-BASED SOLUTION FOR

LOCAL DATA PROCESSING AT SECONDARY SUBSTATIONS
Author: Rodríguez Pérez, Néstor.

Supervisor: Sanz Bobi, Miguel Ángel.

Co-Supervisor: Sánchez Paniagua, Aurelio

Collaborating Entity: i-DE (Iberdrola Group)

SUMMARY OF THE PROJECT

1. Introduction

The implementation of edge computing, following an IoT and microservices approach, in

the distribution grid, is considered to be the next step towards a smarter grid, since it could

alleviate the load of the central system and the communications infrastructure and, at the

same time, provide semi-real time control and monitoring capabilities.

In Europe, the OpenNode project [ASGM12] tried to implement a modular edge

computing solution to achieve the “Smart” Secondary Substation. Later, Siemens

introduced Gridlink [CeHP16], a communications infrastructure to deploy Java

applications, testing it with a voltage control application using OLTC transformers. ABB

[Abb16] only considers specialized smart devices, but not different modular applications

in the same device. Without entering into architectural details, [JWHY18] discusses the

applications of edge computing in distribution networks. [CWWL19] defines an edge

computing architecture that proves to reduce the bandwidth and delay in communications

for the same number of devices and [WLYC18] proposes a fog-computing-based

architecture (which is based on edge computing) for the distribution grid that uses the

MQTT protocol and Node-RED as programming tool.

On February 2020, Intel and Minsait (Indra) published the open Edge Workload

Consolidation Architecture (eWLCA) [OSMC20] that specifies the use of different open

source technologies for the deployment of microservices in the edge. Minsait and the

Spanish electric distribution utility i-DE (Iberdrola Group) are developing a proof of

concept (PoC) of edge computing at the distribution grid following this architecture.

This project analyses the technologies proposed in the eWLCA and their possible

alternatives, considering the requirements of the distribution utility (e.g. operation,

security, etc.); its advantages, challenges, and possible functionalities in the LV

distribution grid, and the economic impact that the implementation of this solution would

have on the system and on the utility, in order to determine the convenience (or not) of

applying edge computing at secondary substations (SSs) with this architecture. For this,

two tests environments are used: one local and one remote. The local environment is used

to compare technologies and to develop and test a real-time balance application

programmed in Python, for what a simple data generator in Node-RED is also developed.

The remote environment is used to test the remote deployment process and to test a

modified version of the balance application to process S02-like reports that are commonly

provided by data concentrators at SSs.

1.1 Overview of the solution

For the analysis, three elements are distinguished in the solution based on the eWLCA:

• The Edge Node. The hardware installed in the SS and its software architecture.

• The Management System (on cloud or on premises). To monitor and manage the

deployment of microservices (i.e. applications, functionalities) on the Edge nodes.

• Communications. Three environments: inner communications between

applications in the node; communications between the node and the management

system; and communications with other devices (in or out of the SS).

2. Analysis

2.1 Advantages, challenges and functionalities

The advantages that are expected from this solution are numerous. Data processing at

SSs reduces the delay in communications and decisions and provides autonomy to the SS

in case of communication failures. The use of virtualization technologies (e.g. Docker)

allows the isolation between applications. The functionalities (i.e. microservices)

deployment would be done from the central system and hence reducing the time between

development and production (Agile methodology).

In this architecture, software is decoupled from hardware, which will significantly

increase the competitiveness for the development of microservices, and will provide

flexibility, since different hardware with different functionalities could be deployed based

on the type of SS (“Customization” of functionalities). The use of a unique device for

multiple functionalities (i.e. microservices) will inevitably lead to the future substitution

of devices currently present in SSs (e.g. data concentrators, low voltage supervisors…).

In terms of operation, many functionalities could be deployed for a better control and

monitor of the LV grid, resulting in an ultimate improvement of the quality of service.

Besides, this solution can be the driver for innovative and disruptive functionalities, and

current communications between SSs (through optical fiber/PLC) could be used to make

the Edge Nodes work together for high computing processes (e.g. image processing, etc.).

Not only the analyzed solution will present advantages but also some challenges to be

faced. Initially, the main challenge will be hardware related. It will be complex to

determine the adequate relation between computing capacity and cost, as well as to find

a device in the market that also complies with the requirements and dimensions to be

installed in SSs (e.g. electric isolation tests, temperature, etc.). In terms of operation, some

disruptive functionalities that this solution could support are not fully regulated yet (e.g.

demand response, energy storage, EV integration, etc.). Furthermore, some

functionalities require data from smart meters which, currently, might be incomplete, or

unavailable due to temporary disconnections, so reliability and speed of these

communications should be improved to take full advantage of the solution.

Regarding the functionalities of the edge-computing-based solution, they cover different

areas. Grid knowledge and analysis: phase connectivity algorithms, calculus of the

impedance of LV lines, fraud detection algorithms and power losses accountability. Grid

monitoring: detection, location and classification of LV faults, and state estimation of

the LV grid. Asset management and maintenance: predictive maintenance applications,

security functionalities (e.g. thermal cameras, movement detectors, etc.) and demand

prediction for the SS. Flexibility and innovative functionalities: monitoring and control

of distributed generation and energy storage, EV integration and demand response

schemes. These types of functionalities still need strong regulation. In all likelihood, this

overall list of functionalities will grow significantly when the solution gets tested on field

successfully.

2.2 Analysis of the Edge Node

a) Virtualization Technology

Three virtualization technologies are analyzed: Virtual Machines (VMs),

Containerization (i.e. Docker) and Unikernels (Figure 1)

The deployment of functionalities using exclusively standard VMs (a complete OS per

VM, Figure 1) would be extremely challenging despite its maturity and the high level of

security and isolation provided. The resulting images are very large (GBs) and have long

development times. Besides, as multiple applications are expected to be deployed, the

resources consumption in the device would be highly inefficient [CDLR19] and the

maintenance of the OS would require more than one update per node.

 Containerization (Docker) presents better characteristics where VMs lack.

Applications share the same host OS (Figure 1) and are lighter (MBs). It also shows good

security level from a local point of view (when there are no external intermediaries)

[MRCD18]. In terms of intellectual property security, docker images should be built with

a non-root user, and with their source code obfuscated. There are also commercial tools

to manage user’s permissions (e.g. Docker Enterprise). Docker is very popular among

developers because it is relatively simple, open source (free community version) and

reduces time between development and production.

Finally, in the last decade Unikernels have emerged as an alternative. They are similar

to VMs but with an optimized kernel instead of an entire OS. Images are even lighter than

containers [Luci17] but more difficult to debug. Tests carried out by [GSAV18] showed

that Unikernels could achieve better performance than containers. The biggest drawback

is that this technology is at an early stage of development for production environments

[MRCD18] and is still too complex for the average developer [Eybe19].

Therefore, based on this discussion, the recommended technology to be used in the Edge

Node is containerization using Docker. Docker is also the technology defined in the

eWLCA and the one used by Minsait for its PoC with i-DE.

b) Operating System (OS)

Docker needs a linux kernel in order to be executed. Therefore, Windows Server is

discarded. Among the Linux OS available, it is recommended the use of one already

homologated by the utility (RedHat or RedHat Oracle Linux in the case of i-DE) so that

the maintenance can be carried out by the utility easily.

c) Database

The Spanish utilities are working together (FutuRed) to define a common JSON schema

based on the Web of Things Architecture (WOT-A), sponsored by W3C [KMLK20].

Therefore, the database used must be appropriate to work with JSON documents.

Figure 1. General Virtual Machine (left) and containerization (right) architectures

The use of a relational (SQL) database is discarded since there are No-SQL databases

optimized to store documents like JSON and a relational database usually requires more

time to query data for semi-real time applications [CeME15].

Among the non-relational (No-SQL) database types, the document-oriented (MongoDB)

and the time series (InfluxDB) types are the most appropriate. Both MongoDB and

InfluxDB were tested on the local test environment to compare their functioning. In this

environment, MongoDB consumes 6 times more CPU and have 4 times more open

processes than InfluxDB, although both show similar memory consumption (Figure 2).

In addition to this, MongoDB needs at least 3 replicas to have availability (CAP model).

Figure 2. Screenshot of Docker stats showing the consumption of InfluxDB and MongoDB in Docker containers.

As the computing capacity of the Edge Node is very limited, InfluxDB is recommended

to be used as database. It shows good performance when working with sensors and for

data analytics (it supports R and Python) [NaAb19], it has a SQL-like query language, it

is compatible with JSON and it is specifically designed for metrics and events, which are

the type of data that the Edge Node will process. InfluxDB is also the database defined in

the eWLCA and the one used by Minsait for its PoC with i-DE.

d) Hardware

Some Edge platforms require their own specific device whereas other are more flexible

and can use a third-party device. Regardless of this, the device must pass the requirements

and tests to be installed in a SS. Specifically, up to 29 tests have to be passed, classified

in 6 groups: insulation, radioelectric disturbances, immunity, electrical, mechanical, and

climatic. These tests must be certificated by a laboratory. Besides, the dimensions of the

device should not exceed 220x140x130 mm (width x height x depth) in order to be

included in the electric cabinets currently deployed by i-DE.

2.3 Communications

The two IoT protocols considered for this analysis are MQTT(v3.1, v5.0 is too recent)

[Oasi19] and AMQP (v1.0) [Oasi12] since they are the most popular in IoT. They are

based on publish/subscribe and both of them are open protocols, although they differ in

functioning and other characteristics. As mentioned in 1.1, three communications

environments with different main requirements are distinguished in the solution.

a) Inner communications

In order to provide input data to the microservices and to allow the possible

communications between them, an inner communications bus is needed. The main

requirements are lightness and reliability. In order to compare MQTT and AMQP in

these aspects, a test was carried out using “dockerized” MQTT and AMQP brokers by

publishing four dummy JSON messages simultaneously on four different topics/queues

every five seconds. All the messages were correctly received by the subscribers.

Performance results are shown in Figure 3.

Figure 3. Screenshot of the MQTT-AMQP comparison test results.

Observing Figure 3, MQTT is remarkably lighter than AMQP. Besides, MQTT provides

three levels of quality of service (i.e. reliability) versus the two levels provided by AMQP.

Therefore, the use of MQTT is recommended for the inner communications. MQTT is

also the one used by Minsait for its PoC with i-DE.

b) Communications with the Management System

In this case, the main aspect to consider is the security of the protocol. Both protocols

provide TLS/SSL security but AMQP additionally has compatibility with SASL

(authentication). The increase in the messages load should not be a problem since the

solution would reduce the amount of data that has to be sent to the central system for

processing, so the current communications infrastructure should be enough. Furthermore,

AMQP provides more control over queues and has a sort of request/response feature

(Remote Procedure Call) to execute functions on demand. Therefore, the use of AMQP

is recommended for these communications. The PoC of Minsait with i-DE uses

MQTT+TLS.

c) Communications with other devices

Initially, it will be necessary the development of protocol

adapters to communicate with the different devices currently

present in a SS (Figure 4). For new devices (e.g. HEMS),

MQTT is the most used by researchers and is so light that an

additional MQTT broker for these communications could be

deployed on the Edge Node. Furthermore, as it is an open

protocol, manufacturers can easily produce compatible devices.

2.4 Management System

There are tens of Edge platforms in the market that have different purposes and

characteristics. According to MachNation [Toka17], the main aspects to consider are:

communications protocols compatibility, level of autonomy achievable, the hosting (on

cloud or on premises), hardware dependence and visualization capabilities.

Docker compose is the tool used for workload orchestration. Figure 5 shows the

development and deployment process that is used and tested in test #2.

Figure 5. Simplified diagram of the application deployment process. Icon source: https://icons8.com

Figure 4. Integration of the Edge Node

with already in-use communication

protocols.

2.5 Economic Impact

The analyzed solution would be categorized as a Type 2 investment by the regulatory

body (smart grid related). The device is assumed to cost ~450€ per unit and to have a

regulatory life of 12 years (Smart Grids equipment). The immediate savings would be

related with the reduction in Time To Market (TTM) of the functionalities (Table 1).

Traditional Approach

(Hardware+software)

New Approach (Edge Node)

(Only software)

Average dev. time 3 years 4 months

No. Providers needed 3 1

Competitiveness for developments Low Very high

Cost of material ✓

Cost of service ✓

Cost of application ✓ ✓

The equivalent cost of just deploying one new functionality would be reduced in an 87.5%

with respect to the current approach. The future substitution of current devices by their

“containerized” version will reduce the corresponding maintenance costs. Furthermore,

predictive maintenance functionalities in the node could reduce maintenance cost in

12% and increase the lifetime of assets by 20% [HKDM18], which would suppose an

additional ≥30% of the retribution, per asset, for O&M.

Considering that, nowadays, the connectivity algorithm developed by Ariadna Grid is

executed at the central system, if it was deployed in the Edge Node the estimated savings

in central computing and storage, and communications would account for ~15,000€

and ~280,000€ (i-DE) per year, respectively.

Nowadays, the estimated annual value of technical and non-technical losses for i-DE

are 364.62 M€. Some of the functionalities that could be deployed in the Edge Node

would contribute to the reduction of losses (e.g. fraud detection, connectivity algorithm,

etc.). Table 2 shows a summary of the calculated savings in this aspect.

Table 2. Summary of energy losses savings

Energy Losses

Savings per device substituted/avoided and year

(considering 25% of i-DE's SSs)
100,000 €

Fraud detection (qualitative)

Faster detection

Less inspections

New frauds detected

Savings per year for phase balancing (25% scenario) ≥ 5,500,000 €

3. Tests

3.1 Test #1: Real-time balance in local test environment

A random data generator is developed to provide the real-time characteristic. The balance

application, written in python, connects to a topic of the inner MQTT broker to receive

the data, in JSON, every 10s (active power demand registered by a supervisor and three

meters), then it calculates the active power balance (independently of the number of

Table 1. Summary of the differences between the two approaches for the development of a new functionality

devices) and publishes the result on a MQTT topic. Node-RED is then used to check the

correct functioning of the application and to store the results in the InfluxDB database.

This test shows the possibilities that the solution could provide. The application can be

easily adapted to a real environment, it works on real-time with MQTT without the need

of querying the database or any other intermediary and it works in an isolated way (i.e.

an error in the application would not affect the other containers). Furthermore, the input

data and the result of the balance can be visualized in real time by using a Grafana (Figure

6) or Chronograph, without the need of storing the data in the central system.

3.2 Test #2: Real-time balance in remote test environment using S02-like

reports.

This test checked the deployment process shown in Figure 5 with a modified version of

the balance application from test #1 to read JSON messages that follow an S02-like

structure (S02 are “Daily incremental” reports defined by the STG-DC specification). The

remote test environment is provided by Minsait for i-DE, so all the deployment process

is done similarly to how it would be done in a real functionality deployment in a SS.

The correct deployment and functioning of the application is shown in Figure 7. At this

initial phase of the PoC, steps 2, 3 and 4 of the process (Figure 5) can become a source of

errors during deployment, mainly because the complexity of the configuration files

involved and because of the use of the command line tool, which is not very user-friendly.

Figure 7. Node-RED screenshot to check the functioning of the balance application in the remote environment

4. Conclusions

This project has analyzed the technologies (and their alternatives) involved in an edge-

computing-based solution that follows the eWLCA [OSMC20]; the advantages,

disadvantages, and functionalities that this solution could have in the LV distribution and

its economic impact on the system and on the utility (i-DE), fulfilling the objectives

initially set. Furthermore, the solution has been partially tested using two different test

Figure 6. Grafana dashboard to visualize the data and the results of the balance (9.5% average losses and absolute losses)

environments (local and remote) by developing an active energy balance application that

works in real time.

The conclusion that can be extracted from this project is that the application of edge

computing at the secondary substation level has the potential to be the new paradigm of

how the LV grid is monitored and controlled, providing great benefits to the utility, to the

system, and to the electric industry in general. The technologies used in the analyzed

architecture are found to be the appropriate. Its modularity and the fact of being open-

source-based will provide great flexibility to the utility and promote developments by

academics and industry, although the deployment process tested should improve on user

friendliness and on the capacity of making online configuration changes and new

application deployments. However, these aspects, together with the hardware challenge,

are close to be solved in future phases of the PoC developed at i-DE.

References

[Abb16] ABB: Technical Guide: "Smart Grids 2. The "smart" secondary substation" (2016)

[ASGM12] ALBERTO, MARTA ; SORIANO, RAÚL ; GÖTZ, JÜRGEN ; MOSSHAMMER, RALF ;

ESPEJO, NICOLÁS ; LEMÉNAGER, FLORENT ; BACHILLER, RAÚL: "OpenNode: A

smart secondary substation node and its integration in a distribution grid of the

future". In: 2012 Federated Conference on Computer Science and Information

Systems (FedCSIS), 2012, S. 1277–1284

[CDLR19] CAPROLU, MAURANTONIO ; DI PIETRO, ROBERTO ; LOMBARDI, FLAVIO ; RAPONI,

SIMONE: "Edge Computing Perspectives: Architectures, Technologies, and Open

Security Issues". In: 2019 IEEE International Conference on Edge Computing

(EDGE). Milan, Italy : IEEE, 2019 — ISBN 978-1-72812-708-8, S. 116–123

[CeHP16] CEJKA, STEPHAN ; HANZLIK, ALEXANDER ; PLANK, ANDREAS: "A framework for

communication and provisioning in an intelligent secondary substation". In: 2016

IEEE 21st International Conference on Emerging Technologies and Factory

Automation (ETFA), 2016, S. 1–5

[CeME15] CEJKA, STEPHAN ; MOSSHAMMER, RALF ; EINFALT, ALFRED: "Java embedded

storage for time series and meta data in Smart Grids". In: 2015 IEEE International

Conference on Smart Grid Communications (SmartGridComm), 2015, S. 434–439

[CWWL19] CHEN, SONGLIN ; WEN, HONG ; WU, JINSONG ; LEI, WENXIN ; HOU, WENJING ;

LIU, WENJIE ; XU, AIDONG ; JIANG, YIXIN: "Internet of Things Based Smart Grids

Supported by Intelligent Edge Computing". In: IEEE Access Bd. 7 (2019), S. 74089–

74102

[Eybe19] EYBERG, IAN: "Introduction To Unikernels". URL

https://nordicapis.com/introduction-to-unikernels/. - accessed on 2020-06-03.

— Nordic APIs

[GSAV18] GOETHALS, TOM ; SEBRECHTS, MERLIJN ; ATREY, ANKITA ; VOLCKAERT, BRUNO ;

DE TURCK, FILIP: "Unikernels vs Containers: An In-Depth Benchmarking Study in

the Context of Microservice Applications". In: 2018 IEEE 8th International

Symposium on Cloud and Service Computing (SC2), 2018, S. 1–8

[HKDM18] HAARMAN, MARK ; DE KLERK, PIETER ; DECAIGNY, PETER ; MULDERS, MICHEL ;

VASSILIADIS, COSTAS ; SIJTSEMA, HEDWICH ; GALLO, IVAN: "Predictive

Maintenance - Beyond the hype: PdM 4.0 delivers results" : PWC and Mainnovation,

2018

[JWHY18] JINMING, CHEN ; WEI, JIANG ; HAO, JIAO ; YAJUAN, GUO ; GUOJI, NIE ; WU, CHEN:

"Application Prospect of Edge Computing in Smart Distribution". In: 2018 China

International Conference on Electricity Distribution (CICED). Tianjin, China :

IEEE, 2018 — ISBN 978-1-5386-6775-0, S. 1370–1375

[KMLK20] KOVATSCH, MATTHIAS ; MATSUKURA, RYUICHI ; LAGALLY, MICHAEL ;

KAWAGUCHI, TORU ; TOUMURA, KUNIHIKO ; KAJIMOTO, KAZUO: "Web of Things

(WoT) Architecture". URL https://www.w3.org/TR/wot-architecture/. - accessed on

2020-08-03

[Luci17] LUCIA, MICHAEL J DE: "A Survey on Security Isolation of Virtualization, Containers,

and Unikernels". In: US Army Research Laboratory (2017), S. 18

[MRCD18] MARTIN, A. ; RAPONI, S. ; COMBE, T. ; DI PIETRO, R.: "Docker ecosystem –

Vulnerability Analysis". In: Computer Communications Bd. 122 (2018), S. 30–43

[NaAb19] NASAR, MOHAMMAD ; ABU KAUSAR, MOHAMMAD: "Suitability Of Influxdb

Database For Iot Applications". In: International Journal of Innovative Technology

and Exploring Engineering Bd. 8 (2019), Nr. 10, S. 1850–1857

[Oasi12] OASIS STANDARD: "OASIS Advanced Message Queuing Protocol (AMQP) Version

1.0", Oasis Open (2012)

[Oasi19] OASIS STANDARD: "OASIS MQTT Version 5.0.", OASIS Open (2019)

[OSMC20] ORTEGA DE MUES, MARIANO ; SESEÑA, DANIEL ; MARTÍNEZ SPESSOT, CÉSAR ;

CARRANZA, MARCOS ; LANG, JORGE: "Creating an effective and scalable IoT

infrastructure by introducing Edge Workload Consolidation (eWLC)." URL

https://www.intel.com/content/www/us/en/develop/articles/edge-workload-

consolidation-ewlc.html. - accessed on 2020-06-24. — Intel

[Toka17] TOKAR, DIMA: "Whitepaper: Five requirements of a leading IoT edge platform."

URL https://www.machnation.com/2017/09/18/whitepaper-five-requirements-

leading-iot-edge-platform/. - accessed on 2020-07-10. — MachNation

[WLYC18] WANG, PAN ; LIU, SHIDONG ; YE, FENG ; CHEN, XUEJIAO: "A Fog-based

Architecture and Programming Model for IoT Applications in the Smart Grid". In:

arXiv:1804.01239 [cs] (2018). — arXiv: 1804.01239

16

1. Table of content

1. TABLE OF CONTENT .. 1

2. INDEX OF FIGURES .. 2

3. INDEX OF TABLES .. 4

4. GLOSSARY OF TERMS .. 6

5. INTRODUCTION .. 8

5.1 CONTEXT ... 8

5.2 STATE OF THE ART ... 11

5.3 MOTIVATION ... 16

5.4 OBJECTIVES .. 17

6. RELEVANT THEORY AND TOOLS .. 18

6.1 OVERVIEW OF CURRENT INFRASTRUCTURE .. 18

6.2 MQTT.. 21

6.3 AMQP ... 24

6.4 VIRTUAL MACHINES AND CONTAINERIZATION .. 26

6.5 KUBERNETES .. 28

6.6 NODE-RED .. 28

6.7 DATABASES .. 28

6.7.1 Relational databases .. 29

6.7.2 Non-relational databases ... 29

6.8 LOCAL TEST ENVIRONMENT ... 30

6.9 REMOTE TEST ENVIRONMENT .. 32

7. ANALYSIS .. 33

7.2 OVERVIEW OF THE SOLUTION ... 33

7.3 ADVANTAGES, CHALLENGES AND FUNCTIONALITIES.. 35

7.4 ANALYSIS OF THE EDGE NODE .. 39

7.4.1 Virtualization Technology ... 39

7.4.2 Operating System (OS) .. 44

7.4.3 Database ... 45

7.4.4 Hardware .. 50

7.5 COMMUNICATIONS ... 51

7.5.1 Inner Communications .. 51

7.5.2 Communications with Management System .. 54

2

7.5.3 Communications with other devices ... 56

7.6 MANAGEMENT SYSTEM .. 58

7.6.1 Criteria for vendor selection ... 58

7.6.2 Remote access to the Edge Node .. 59

7.6.3 Workload orchestration and containers deployment ... 60

8. ECONOMIC IMPACT .. 61

8.1 SAVINGS RELATED TO THE NEW APPROACH FOR NEW FUNCTIONALITIES IMPLEMENTATION 62

8.2 SAVINGS RELATED TO DEVICE SUBSTITUTION IN A SS ... 64

8.4 SAVINGS IN CENTRAL SYSTEM COMPUTING CAPABILITIES ... 66

8.5 SAVINGS RELATED TO ENERGY LOSSES .. 67

8.5.1 Devices consumption .. 68

8.5.2 Fraud detection ... 68

8.5.3 Phase balancing .. 69

8.6 SUMMARY OF ECONOMIC IMPACT .. 71

9. TESTS .. 72

9.1 TEST #1: REAL-TIME BALANCE IN LOCAL TEST ENVIRONMENT ... 72

9.2 TEST #2: REAL-TIME BALANCE IN REMOTE TEST ENVIRONMENT USING S02-LIKE REPORTS 77

10. CONCLUSIONS .. 80

11. RECOMMENDATIONS FOR FUTURE WORKS .. 82

ANNEX I. HARDWARE REQUIREMENTS .. 83

ANNEX II. UNITED NATIONS SDG ... 84

ANNEX III. CODE DEVELOPED ... 87

12. BIBLIOGRAPHY .. 90

2. Index of figures

Figure 1. Simplified diagram of the main communications needed for a secondary

substation .. 9

Figure 2. Communications Smart Meters-Data Concentrator and Data Concentrator-

Central System .. 20

Figure 3. Communications diagram for a group of secondary substations that form a level

2 aggregation .. 20

Figure 4. Example of a MQTT network with 4 clients and 3 topics 21

3

Figure 5. AMQP functioning with a broker. Publish/Subscribe and Request/Response.

 .. 24

Figure 6. General Virtual Machine architecture ... 26

Figure 7. Container-based architecture using docker ... 27

Figure 8. CAP model .. 30

Figure 9. Overall representation of the architecture. .. 34

Figure 10. Screenshot of MongoDB GUI (mongo express) and how it stores the JSON

documents. .. 47

Figure 11. Screenshot of a query in InfluxDB that shows how data is stored................ 47

Figure 12. Screenshot of Docker stats showing the consumption of InfluxDB and

MongoDB in Docker containers. .. 48

Figure 13. Simple general representation of the inner communications in the Edge Node

 .. 51

Figure 14. Screenshot of the MQTT-AMQP comparison test results. 52

Figure 15. Screenshot of the error when trying to publish/subscribe to a non-defined

queue (‘measurements’) in the AMQP broker. .. 55

Figure 16. Diagram of the integration of the Edge Node with already in-use

communication protocols. .. 56

Figure 17. Simplified diagram of the application deployment process. Icon source:

https://icons8.com/ .. 60

Figure 18. Classification of the investments made by electric distribution utilities.

[Cnmc19] .. 61

Figure 19. Difference between the equivalent cost of deploying a single functionality in

25% of i-DE’s SSs for the two approaches: 5.76 M€ for one device / two functionalities

approach and 0.72 M€ for the Edge Node approach (edge computing) 64

Figure 20. Approximate percentage of consumers per electric distribution company in

Spain. Based on the number of meters provided by the CNMC in [PVBL19] and by the

CIDE [Cide00] .. 67

Figure 21. Estimated economic savings per year for phase balancing in i-DE considering

different percentages of achievement. Calculated using the estimation of 20000 GWh of

losses in 2016. .. 70

Figure 22.Screenshot of the random data generator developed in Node-RED. It generates

data pretending to be a LV supervisor and three smart meters 72

file:///C:/Users/nesto/OneDrive/TFM/Documentación/ICAI/Prueba/FinalReport.docx%23_Toc48635623
file:///C:/Users/nesto/OneDrive/TFM/Documentación/ICAI/Prueba/FinalReport.docx%23_Toc48635623

4

Figure 23. Screenshot of the Node-RED flow to store the JSON published on

"feeder/balance" MQTT topic, in the local InfluxDB database 74

Figure 24. Grafana dashboard to visualize, in real time, the data from the devices and the

results of the balance application (9.5% of average losses and the absolute losses) 75

Figure 25. Screenshot of Docker stats for test #1 ... 76

Figure 26. Node-RED Flow screenshot to check that the balance application deployed in

the remote test environment works correctly ... 79

3. Index of tables

Table 1. Summary of the characteristics of this work in comparison to the literature

presented in the State of the Art ... 15

Table 2. Examples of using wildcards for subscriptions to MQTT topics 22

Table 3. Summary of MQTT. Advantages and Disadvantages 23

Table 4. Summary of AMQP. Advantages and Disadvantages 25

Table 5. Docker client and docker engine versions installed in the VM 30

Table 6. Docker-compose version .. 31

Table 7. Python packages installed .. 31

Table 8. Summary of the comparison between virtualization alternatives..................... 43

Table 9. Summary of the comparison between possible Operating Systems 44

Table 10. Examples of JSON and XML formats. Dummy data of a LV Supervisor 45

Table 11. Summary of the comparison between Database alternatives 49

Table 12. Summary for the selection of the inner communications protocol................. 53

Table 13. Summary for the selection of the protocol for communications with the

Management System .. 55

Table 14. Summary for the selection of the protocol for communications with new devices

 .. 57

Table 15. Summary of the differences between the two approaches for the development

of a new functionality. .. 63

Table 16. RLE factor for each extended lifetime year. Calculated according to the

formulas provided by the CNMC in [Cnmc19] .. 65

Table 17. Cost in € for a Google Cloud server in Belgium (europe-west1). [Data00]... 66

Table 18. Estimated annual value of technical and non-technical losses for i-DE 68

5

Table 19. Estimated economic savings for the system under different achievement

scenarios for phase balancing in i-DE. Present Value of each scenario assuming r=2.58%

(WACC of Iberdrola on 18/06/2020) ... 70

Table 20. Summary of the economic impact of applying edge computing at SSs 71

Table 21. Examples of the JSON documents generated by the random data generator . 73

Table 22. Range of values for the active power factor and voltage factor for each meter.

 .. 73

Table 23. Example of part of the JSON document that contains the AI signal data for the

supervision meter. This structure is repeated for every magnitude contained in a S02

report and for every meter. ... 77

Table 24. List of requirements for the device to be installed in an i-DE's SS. Source: i-DE

 .. 83

Table 25. Summary of the SDGs that the solution analysed in this project could have an

impact on. Images source: [Unit00] ... 86

6

4. Glossary of terms

ACID Atomicity, Consistency, Isolation, Durability

ADSL Asymmetric Digital Subscriber Line

AMI Advanced Metering Infrastructure

AMQP Advanced Message Queuing Protocol

BN Base Node in a PRIME subnetwork

DC Data concentrator

CLI Command Line Interface

COSEM Companion Specification for Energy Metering

DLMS Device Language Message Specification

DG Distributed Generation

DR Demand Response

EDF Électricité de France

EDP Energias De Portugal

eWLCA Edge WorkLoad Consolidation Arcthitecture

EV Electric Vehicle

FTP File Transfer Protocol

GPRS General Packet Radio Service

HEMS Home Energy Management System

IoT Internet of Things

JSON JavaScript Object Notation

LAN Local Area Network

LV Low Voltage

LVAS Low Voltage Advanced Supervisor

M2M Machine-to-machine

MQTT Message Queuing Telemetry Transport

MV Medium Voltage

OASIS Organization for the Advancement of Structured Information

Standards

OLTC On Load Tap Changer (transformer)

7

O&M Operation and Maintenance

OS Operative System

OT Operational Technology

PLC Power Line Communications

PoC Proof of Concept

PRIME PowerLine Intelligent Metering Evolution

PSU Power Supply Unit

RLE Retribution due to Lifetime Extension

RTU Remote Terminal Unit

RUL Remaining Useful Life

RMS Remote Management System

SASL Simple Authentication and Security Layer

SCADA Supervisory Control And Data Acquisition

SCTP Stream Control Transmission Protocol

SDG Sustainable Development Goal

SN Service Node in a PRIME subnetwork

SS Secondary Substation

SSH Secure SHell

SSL Secure Sockets Layer

SSS Smart Secondary Substation

STG “Sistema de TeleGestión” in Spanish. Equivalent to the RMS

TTM Time To Market

TLS Transport Layer Security

WAN Wide Area Network

WOT-A Web Of Things Architecture

W3C World Wide Web Consortium

WS WebService

XML eXtensible Markup Language

8

5. Introduction

5.1 Context

In the recent years, the concept of Smart Grid has emerged in the electric power industry

as the natural evolution of traditional power grids to be more flexible and reliable. There

are several definitions of what a Smart Grid is. One of them is the definition given by the

Spanish electric distribution utility i-DE Redes Eléctricas Inteligentes (Iberdrola): “Smart

Grid is a technological evolution of the energy distribution system that combines

traditional facilities with modern monitoring technologies, information and

telecommunications systems. It will offer a wider range of customers services, improve

supply quality, respond to the demand for electric power required of society in the future

and achieve an optimal power distribution management”[Iber00].

A great step in this technological evolution was the mandate of the European Union to

deploy smart electricity metering covering, at least, 80% of electricity consumers by 2020

if the cost-benefit analysis of this deployment resulted positive in each member state

[Coun14]. In the case of Spain, this target will be successfully accomplished. This massive

deployment has meant the adaptation of thousands of secondary substations with

additional equipment (e.g. Data Concentrator or DC) and telecommunications systems.

Smart Meters do not only send information related to energy billing and consumption,

they also send information (events) related to quality, security, fraud, high occurrence,

etc. Therefore, the DC must cope with hundreds of millions of smart meter events every

month and send this data to the Remote Management System (RMS), where it can be

processed and analyzed in order to make decisions to improve grid performance and

quality of service (e.g. commercial losses detection).

In addition to smart metering, grid automation and monitoring in real time are also

important features to be considered during the path to a smarter grid. These features

involve additional components, with different functionalities and communications

protocols, that advanced secondary substations must have installed. Some of these

components are:

• Remote Terminal Units (RTUs): It is a device that connects physical devices (e.g.

breakers) with an automation system (Supervisory Control And Data Acquisition,

SCADA).

• Power Supply Unit (PSU): It is a device in charge of managing the internal

batteries present in the secondary substation.

• Low Voltage Advanced Supervisor (LVAS): It monitors electric (e.g. current

profile) and quality parameters of the secondary substation low voltage feeders.

• Switch/Router to connect those components that allow TCP/IP communications

with the control system.

9

Figure 1 shows a simplified diagram of the main communications that take place between

a secondary substation and the corresponding centralized system (although it depends on

the equipment available at the secondary substation).

Figure 1. Simplified diagram of the main communications needed for a secondary substation

Once the data is sent to the RMS or to the SCADA, it is processed/analyzed to decide the

actuation or to generate a report. Several research has been done in this field (Data

Science, Artificial Intelligence), proposing multiple machine learning models and

algorithms to get very interesting outcomes from the collected data, from demand

forecasting to fault detection. Some of these algorithms are even designed to work with

real-time measured data. However, these real-time applications must face some important

constraints when applied in industry:

• The delay in the communications between the secondary substation and the

meters, caused mainly by the characteristics of this type of communication, which

uses the PRIME PLC standard. Obviously, physical distance is also an important

factor that affects this delay. If smart meter data has to be sent to the central system

to be processed, and the result of the data analysis is an action over any component

of the secondary substation, this delay would limit real time applications despite

the delay between the secondary substation and the central system is minimum in

most cases.

• The increasing computing capacity (and storage) needed to process the collected

data and its results/reports.

These constraints have also their effects on cost when additional equipment (e.g. sensors)

is installed in a secondary substation: communications links might need a reinforcement

and the necessary computing capacity as well as storage increases.

To address these problems, numerous researchers propose the implementation of edge

computing ([CWWL19, HLWF18, JWHY18]), following an Internet of Things (IoT)

approach, as a significant step towards a smarter grid.

Edge computing is the utilization of hardware and software resources installed at the edge

of the network [JWHY18] (in this case, the secondary substation) to process and analyze

10

the data generated near/at this edge. It must not be seen as a substitute of cloud/centralized

computing, but as a supplement or complement to it, since it would alleviate the workload

of both the communications systems and the centralized data system (whether it is on

cloud or not). Non-real-time, big data processes could be left to the cloud while real-time

and short data processing could be done at the edge.

This approach is considered to have a great potential for the development of some Smart

Grid-related features such as lines monitoring, demand response (DR), home energy

management systems (HEMS) and smart substations [JWHY18].

In this context, the Spanish electric distribution utility i-DE Redes Eléctricas Inteligentes

wants to evaluate the deployment of edge computing in terms of potential applications,

benefits, and integration with the existing elements (i.e. DCs, sensors, communications

systems…) in the grid.

11

5.2 State of the art

The idea of giving secondary substations the capacity of local data processing and

autonomous actuation has been around for years in order to achieve a more reliable and

smarter grid, giving birth to the “Smart” Secondary Substation (SSS) concept.

In 2010, the European Commission started the OpenNode project, carried out by a group

of companies such as i-DE, EDP and EDF, among others. The objective of the project

was to develop an “Open Architecture for Secondary Nodes of the Electricity SmartGrid”

[Ref00a]. This Open Architecture, presented in [ASGM12] in 2012 (end of the project),

has some similarities with the edge-computing architecture that is analysed in this project.

First of all, it outlines the convenience of implementing changes over the traditional grid

step by step, considering not only the integration with existing apparatus but also the

consequent new assets management and return of the investment. The OpenNode

architecture [ASGM12] is made of three main elements that would turn a traditional SS

into a SSS:

• The Secondary Substation Node (SSN). Defined as a device with the ability of

making decisions autonomously and remotely controlled. It is able to interact with

any electrical equipment and local devices that are available in the SS.

• The Middleware. The element in charge of managing the information of the

devices of the system, software provisioning, etc.

• Communications architecture. Fundamental element to provide the interactions

between the SSN and the rest of devices, between the SSN and the Middleware,

and even inside the SSN.

The essence of these three elements is also present in the solution discussed in this project:

the edge computing device or “intelligent” node, the management system (on cloud or on

premise) and the communications architecture. However, as expected when comparing

two architectures spaced eight years, great differences arise in terms of technologies used.

Starting with the software of the SSN, [ASGM12] distinguishes two (literal) partitions of

software:

• Base Partition (BP): include the basic functionality of the SSN and provides the

interface for communicating with the Extensibility Partition.

• Extensibility Partition (EP): A Java Virtual Machine that contains the software

(extension modules) that provides additional secure functionalities.

The idea behind these partitions was to provide some sort of flexibility, since it was

intended that the extension modules could be developed by third parties (respect to the

SSN manufacturer) and that these modules could be run/stop/start without rebooting the

SSN. These features also constitute the basis for the solution discussed in this project,

but as mentioned before, by other means. The use of a Java Virtual Machine in the EP

defined in OpenNode [ASGM12] requires the extension modules to be programmed in

12

Java, which limits software suppliers with know-how in other languages and big

data/machine learning applications that might be written in Python or R, common

languages for these purposes. Nowadays, containerization technology or even additional

virtual machines (not only two partitions), provide isolated environments that give this

programming language flexibility and, at the same time, isolated functioning.

As for the Middleware, analogous to the foreseen management system on cloud/premises,

its purpose is basically the same: communicate with the SSN and store data provided by

this. The OpenNode project [ASGM12] chooses to use a NoSQL database (Apache

Cassandra) to store this data, based on the prevision of daily big data collection (50 TB).

In this project it is not expected such big data collection by the management system, so

the choice between relational and NoSQL databases may be discussed. This reduction in

the amount of data collected affects directly to the communications architecture. The

architecture detailed in [ASGM12] considers the use of WiFi, cellular networks (e.g.

GPRS), PLC, Industrial Ethernet, etc. together with protocols such as DLMS/COSEM,

IEC 61870-5-104, IEC 61850, etc. Although the OpenNode solutions were planned to be

built on TCP/IP, it does not consider open protocols such as MQTT or AMQP, which are

currently considered to be used in this kind of architectures.

All in all, the OpenNode project presented in [ASGM12] can be considered one of the

first approaches to edge computing in electric distribution grids and it is a proof of the

interest that this field was already raising a decade ago.

Based on the OpenNode idea, Siemens proposed in 2016 Gridlink [CeHP16], an

architecture for an “intelligent” SSN. Basically, a communications infrastructure to

deploy distributed applications written in Java. The reference [CeHP16], however, does

not give details about the protocols used: it only mentions that is based on messages

handled in a bus and that two types of commands are supported, send and publish,

which might indicate some sort of publish/subscribe protocol (e.g. MQTT or AMQP).

However, it mentions that Gridlink has compatibility for REST and XMPP protocols for

communications with external components. The reference [CeHP16] basically focuses

on introducing Gridlink in general terms and on the possible applications, such as the

voltage control through OLTC transformers, which constitutes the experiment carried out

by Siemens to test Gridlink and whose results are discussed in the mentioned paper.

 In a later publication [FCSF17], the functioning of Gridlink for a non-real-time operation

is depicted, describing the interaction between the Java modules, mainly based on

requests and responses between them and with the storage module (database). It also

specifies the database used in the local machine (node installed in the SS), Storacle, a

time-series database embedded in Java, which significantly improves its functioning in

comparison to other databases, as discussed by some of the same authors in [CeME15].

ABB, one of the leading manufacturers in electrical apparatus, defines the SSS simply as

secondary substations where the apparatus are also “smart”: circuit-breakers with

13

automation logic, OLTC transformers with automatic switch, communications with the

control centre, etc. [Abb16]. In the Technical Guide about SSS [Abb16], published in

2016, ABB highlights the importance of interoperability between the devices produced

by different manufacturers, and the importance of choosing a communications system

that guarantees this interoperability as well as security and a good performance.

However, this ABB’s document only considers specialized smart devices, that is to say,

hardware with embedded software that runs a specific functionality (e.g. protections

automation) and that communicates with the central system of the utility. It does not

contemplate a unique device in the SS where multiple functionalities are deployed to send

orders to different electrical apparatus (e.g. OLTC transformers, circuit breakers, etc.)

based on local data processing.

From an economic perspective, [SoLi12] conducts a pure economic study of the life cycle

cost of a smart substation in China. Despite it considers CAPEX and OPEX, it does not

consider possible retributions due to added functionalities nor savings in time of

deployment (as it is commonly said, time is money). Besides, it only makes reference to

primary substations and not SSs, and its description of a smart substation is very general,

not matching the approach that is discussed in this project.

From a general perspective, [JWHY18] discusses the possibilities of applying edge

computing to distribution networks, presenting edge computing not as a substitute of

cloud computing, but as a supplement to it to carry out real and semi-real time operations.

It also discusses cases of use such as LV grid management, LV topology identification,

fault identification and losses analysis, as well as its possible usefulness for applications

related to EVs, DG and energy storage. Additionally, it identifies some challenges to be

addressed. The first one is the definition of a framework that satisfies the requirements of

distribution grids; it mentions ParaDrop (which is based on containerization) and

Cloudlet, but considers that they need modifications. The other challenges are the

problem of scalability due to the computing capacity-price relationship of chips, the need

of collaboration between cloud and the node to apply AI algorithms, and the challenges

related to security and privacy in the Edge node [JWHY18]. This reference [JWHY18] is

an “Application Prospect”, so it does not discuss the technologies that may conform that

necessary framework, the factors to take into account, and the possible economic benefits

or savings (if any) of implementing edge computing in distribution grids.

An edge computing system for smart grids is proposed in [CWWL19]. It defines an

architecture made of five layers: cloud computing, application layer, data layer, network

layer and device layer. However, it does not discuss which technologies are used (e.g. if

it uses virtual machines or containers, IoT communication protocols, etc.), but it does

review the advantages of edge computing in electric distribution systems, the challenges,

and some possible functionalities (e.g. video surveillance, micro-grid systems…),

proposing some algorithms for data protection and prediction, and task grading. To prove

14

some of the advantages, [CWWL19] carries out some simulations that show that the

transmission bandwidth in an edge computing architecture would be significantly lower

for the same number of devices than in a cloud architecture (centralized). Same with the

delay in communications.

Similar to edge computing, a fog-based architecture is proposed by [WLYC18] to deploy

applications in the distribution grid. It uses an additional layer, made of fog computing

coordinators, that is in charge of managing the different groups of fog nodes (Edge nodes

in this work), so that they can work together to carry out complex tasks. However, the

result of these tasks must be sent back to the corresponding fog computing coordinator to

send an order to the action device. Although this approach is significantly different from

the one discussed in this work, it uses some technologies that will also be present in the

discussion of this work: it uses MQTT as the communication protocol between fog nodes

and fog coordinators and it uses Node-RED as programming tool. [WLYC18] uses what

it calls “OSS servers” in order to execute the applications, assuring better characteristics

than VMs and Docker containers, but it does not provide much information about them.

The paper does not give details about what database would be used for storage capabilities

in the fog nodes, it does not consider inner communications between applications in the

fog nodes, how communications with other devices would be done, and, although

intuitive, it does not specify where the fog computing coordinators and the fog nodes

would be located, which is something to consider in order to determine the

communications possibilities.

In an attempt of defining a standardized architecture for edge computing, Intel and

Minsait (Indra) published on February 2020 the open Edge Workload Consolidation

Architecture (eWLCA) [OSMC20]. This architecture defines four tiers (that use different

Intel processors) that may be or not in a final deployment, depending on the industry and

the client:

• Edge devices: what in industry are known as IoT Gateways or Edge Compute

Devices. They are placed close to where the data is generated. Enough computing

capacity to host processing applications.

• Edge server: collects data from the Edge devices. They are usually servers on-

premise, to reduce dependence from cloud providers. Its role could be similar to

the fog computing coordinator presented in [WLYC18].

• Edge core: a management system for the edge devices and servers.

• Edge cloud: to carry out cloud operations.

This open architecture specifies the use of different open source technologies, such as the

MQTT protocol for communication, InfluxDB as the database to store the collected data,

Docker as the containerization environment, Kubernetes to manage the workload in the

Edge server… Minsait has adopted this open architecture (with few modifications) for its

edge computing solution and has developed its own (proprietary) management system

(edge core tier), called Onesait Things Platform. This solution will be tested by i-DE.

15

Table 1. Summary of the characteristics of this work in comparison to the literature presented in the State of the Art

Ref.

Compares

virtualization

alternatives

(VMs,

Unikernels,

Containers…)

Analyses the use of

open IoT

communication

protocols (MQTT,

AMQP) in three

levels (Inner, with

Central System,

with other devices)

Economic study of

possible benefits and

savings derived from

Edge Computing

functionalities

Advantages/Challenges/

Functionalities of Edge

Computing at SS

Smart Secondary

Substation concept

Considers

Software

decoupled from

hardware

Analyzes the

database to be

used in the Edge

compute device

Test the

solution

[ASGM12] / ✓/~ ✓ ✓ ✓(Different) ✓

[CeHP16,
CeME15,
FCSF17]

 / /✓ ✓ ✓ ✓(Different) ✓

[Abb16] / ✓/✓ ✓ ···

[JWHY18] ✓/✓/✓ ~(Mentioned) ✓

[WLYC18] ~(Mentioned) ✓/✓/✓ ✓ ✓

[CWWL19] ✓/✓/✓ ✓ ✓(Deduced) ✓

[SoLi12] ··· ···
Focuses on CAPEX

and OPEX of the

substation
··· ~(Not secondary) ··· ···

This
Project ✓ ✓ ✓ ✓/✓/✓ ✓ ✓ ✓ ✓

1
5

16

5.3 Motivation

The State-of-the-art shows that there is an interest by part of the electric industry of

moving data processing and decision-making to the edge of the distribution network,

more specifically, to the SS. It also shows that, along the years, there have been different

proposals about how to do this approach by academics and industry.

Table 1 shows that these proposals mainly focus on the technical and operational

advantages, challenges and functionalities that edge computing in the distribution grid

could provide but do not usually discuss the alternatives for each technology used and,

therefore, do not fully justify why the selected one is better than the others. In addition

to this, none of the literature reviewed in Table 1 distinguishes clearly the three

communications environments (and which IoT protocol would suit better for each) that

must be considered by the electric distribution company to evaluate its future integration

in a SS.

This work will analyse the main technologies (and their main alternatives) defined in the

eWLCA defined by Minsait and Intel [OSMC20] since i-DE and Minsait are working on

a Proof of Concept (PoC) following this architecture. This architecture is general (i.e. it

is not specifically designed for electric distribution), so this analysis is necessary to make

sure these technologies can address the requirements of an electric utility in terms of

operation and security.

The possible economic benefits and savings that Edge Computing (and its possible

functionalities) could provide to the electric utility and to the entire system are also

discussed in this project (no confidential data from i-DE is used). This type of discussion

has not been found in the State-of-the-art (see Table 1), but it should be considered when

analysing a solution that could constitute an important investment and an important

change in the future operation of the LV grid, overall considering that the electric

distribution in Spain is a regulated sector.

Therefore, this work is a great opportunity to evaluate the convenience (or not) of

applying edge computing at secondary substations, the technologies that might be used

nowadays and the possible economic benefits for the system and for the utility.

17

5.4 Objectives

The main objectives of this project are:

1. To determine advantages, disadvantages, and challenges of edge computing

respect to current secondary substations, including functionalities that could be

implemented with this solution.

2. To evaluate an edge-computing-based solution (its supporting architecture,

protocols…) for the deployment at secondary substations and compare it with

alternative solutions in different aspects: technical, maturity of the technology

used, flexibility…

3. To economically study this new approach and identify benefits in comparison to

the traditional procedures for the deployment of new functionalities/devices in a

secondary substation.

18

6. Relevant theory and tools

6.1 Overview of current infrastructure

Although the devices and communications that most I-DE’s secondary substations have

been briefly mentioned in the Introduction section, this section will explain in more detail

the current infrastructure (systems, protocols, etc.) in order to understand fully the

environment where an edge computing device would be installed.

The deployment of smart metering made by I-DE in Spain constitutes what is called an

Advanced Metering Infrastructure (AMI), which includes bidirectional communication

between the meters and the central system, allowing functionalities such as service

connection/disconnection and to obtain measures (not always related with consumption,

such as voltages) at specific times to improve grid performance.

However, the connection between I-DE’s central system (STG, Spanish acronym of

“Sistema de TeleGestión”, which in English would be Remote Management System) and

the millions of smart meters that are deployed is not usually direct. There is a device, the

Data Concentrator (DC), installed in the SS, which acts as an intermediary between them.

The communication between the DC and the smart meter is done using DLMS/COSEM1

specification over PRIME2 PLC3, which is a standard designed for “Advanced Metering,

Grid Control and Asset Monitoring applications”[Prim00a], that allows the use of power

lines to exchange information, avoiding the deployment of a costly additional

communications infrastructure. Two nodes can be distinguished in a PRIME subnetwork:

the Base Node (BN), which is the master node that manages the network resources, and

the Service Nodes (SN), nodes managed by the BN, that can act as terminals or as

switches (repeating other nodes’ information packets for connectivity expansion)

[SSBS16]. PRIME v1.3.6, which is the version currently deployed, reaches up to 128.6

kbps of data rate, while PRIME v1.4 (compatible devices still under development) would

allow between 5.4 kbps and 1028.8 kbps of data rate, depending on the technical

characteristics (number of channels, modulation scheme…) [SSBS16]. PRIME v1.4 will

provide new modes, the “robust modes”, that will expand the supported frequency up to

500kHz (allowing higher data rates in specific environments) and will enable

communication in those environments with low signal-to-noise ratio [Prim00b] .

Generally speaking, PRIME v1.4 improves robustness, data transfer speed, and safety

(encryption mechanisms), being appropriate for networks with high noise, while keeping

compatibility with v1.3.6 existing devices. Considering this, v1.4 is expected to allow

1 DLMS stands for Device Language Message Specification. It is the application layer protocol that creates

the messages using the information stored by the meter [Over00]. COSEM stands for Companion

Specification for Energy Metering. It is the model that allows the description of almost any application.

[Over00]
2 PRIME stands for PoweRline Intelligent Metering Evolution, defined and maintained by the PRIME

Alliance [Prim00a]
3 PLC stands for Power Line Communications

19

new functionalities that are currently limited by v1.3.6 in the smart meter [Garc16,

Prim00b].

On the other hand, the communications between the STG and the DC are based on

WebServices (WS) (HTTP/1.1 transport protocol) and FTP (File Transfer Protocol),

using a proprietary STG-DC interface protocol. This protocol defines how the STG and

the DC both exchange information based on XML messages. This bidirectional

communication can be due to different reasons [CMFL15]:

• The STG sends a request to a DC to take any action or to provide the requested

information. This information can be sent as soon as possible (synchronous

request, usually using WS) or at a specific time (asynchronous request, using WS

or FTP). Smart meter/DC firmware updates are done using FTP, due to the

complexity and weight of the files.

• The DC sends to the STG the data corresponding to the programmed internal tasks

or related to events (e.g. alarms) in a meter or in the DC. This is done using WS

or FTP. The programmed tasks typically included in a DC are [CMFL15]:

o Daily billing values collection

o Daily load profile collection

o End of billing profile collection

o Event reports collection

o Daily absolute report collection

When the STG requests information, there are different alternatives, depending on the

source required: it can be a request to the DC database, a request directly to the meter(s)

(e.g. for instantaneous values), or a combination of the two previous, where the request

is done to the DC and, if it does not have the information or it is incomplete, it asks the

meter(s).

Figure 2 shows a diagram of the communications protocols and links that currently take

place at an i-DE secondary substation (for AMI). If a SS wants to communicate with the

central system (STG), it must have a router (level 3) or a switch (level 2) that aggregates

several secondary substations and connects them with the central system through a router.

The connection between the DC and the router/switch is usually made via ethernet since

both devices are usually placed in the same cabinet as the DC. Some DC models do not

even need connection to a router since they already have direct connection with the STG

through a built-in 2G/3G modem. The connection between the router and the central

system, on the other hand, is usually done using communication networks owned by the

electric utility (in the case of i-DE, optical fiber or MV PLC). Due to the natural

geographical dispersion of secondary substations, this utility-owned network does not

reach to every SS, so, in those cases, this communication is provided by a third party,

mostly 3G (GPRS, General Packer Radio Service is currently in disuse, with few

exceptions) or ADSL (Asymmetric Digital Subscriber Line) if there is no coverage.

20

Figure 2. Communications Smart Meters-Data Concentrator and Data Concentrator-Central System

The aggregation of multiple secondary substations in the level 2 is usually done using

PLC MV or optical fiber for the connections between switches (Figure 3). The final

communication with the central system is done via a router (level 3), usually called

“Concentration header”.

Figure 3. Communications diagram for a group of secondary substations that form a level 2 aggregation

21

6.2 MQTT

Message Queuing Telemetry Transport (MQTT) is an open OASIS and ISO standard

based on a lightweight publish/subscribe architecture that allows the communication

between machines (M2M) relying on TCP/IP. It has gain popularity for IoT devices as it

works well with low network bandwidth due to its lightness and it also has low power

consumption [Oasi19].

The publish/subscribe protocol is based on a simple idea: those devices that want to

transmit any information must publish it as a message on a topic; every other device that

is subscribed to that topic will receive the published message with the data inside. To

manage the topics (subscribers and publishers, which are the MQTT clients), it is needed

the figure of a MQTT broker. A MQTT broker is just a server that routes all the published

messages on a topic to the corresponding subscribed MQTT clients. This way, publishers

do not need to know how many subscribers their topics have or where these subscribers

are; the broker manages it.

If a topic does not have any subscriber, the MQTT broker does not store any message

unless it is marked as a retained message. In this case, when the first client subscribes to

the topic, the last retained message will be sent to the subscriber. Although the figure of

the MQTT broker does not allow the MQTT clients to “see” each other, publishers can

set a message to be sent to the subscribers of the topic if the publisher suddenly loses

connection with the broker, as a way of keeping track of remote devices and possible

failures. This feature is commonly known as “Last Will and Testament” [Mqtt00a].

Figure 4 shows a simplified example of the functioning of the MQTT protocol in a

network made up of four clients and three topics.

Figure 4. Example of a MQTT network with 4 clients and 3 topics

22

Topics in MQTT follow a tree architecture. For example, a topic could be

substation1/temp_sensor/status, each term separated by a forward slash constitutes a

topic level (branches of the tree). To allow the subscription to various topics by the same

client, MQTT allows single-level and multi-level wildcards [Oasi19]. Table 2 shows some

examples of the use of wildcards in topics. Wildcards can only be used by subscribers

and not by publishers.

Table 2. Examples of using wildcards for subscriptions to MQTT topics

Single-level (+) Multi-level (#)

Example: substation1/+/status

✓ substation1/temp_sensor/status

✓ substation1/O2_sensor/status

 substation1/temp_sensor/data

 substation2/temp_sensor/status

Example: substation1/#

✓ substation1/temp_sensor/status

✓ substation1/O2_sensor/status

✓ substation1/temp_sensor/data

 substation2/temp_sensor/status

Three quality of service levels are defined in MQTT [Oasi19]:

• 0: The message will be delivered by the broker once, without needing

confirmation of delivery.

• 1: The message will be delivered by the broker at least once, needing confirmation

of delivery.

• 2: The message will be delivered by the broker once, but using a four-step

handshake.

An important feature of MQTT is that it is data agnostic. This means that messages do

not follow any format, it is flexible, the payload of the message can be anything up to

around 250-260 MB (256 MB) [Mqtt00b]. However, this payload cannot be a file, it must

be sent as a text. For example, if a CSV file has to be sent, it would be necessary to extract

its content to be included as the payload of a MQTT message (or by traducing it to binary).

The subscribers will have to process and interpret this message conveniently.

As for security features, since version 3.1, the MQTT protocol allows to set a username

and a password. Nevertheless, encryption of messages is not built-in to the protocol (it

would lose its lightness). If, due to the importance of the data, encryption is needed, it

should be done by an external encryption application. For example, TLS/SSL protocol

can be used to manage encryption in the network, but using a different TCP port (8883)

[Oasi19].

23

Table 3. Summary of MQTT. Advantages and Disadvantages

MQTT

Advantages Disadvantages

• Very simple to implement • It is not convenient for sending files

• Publish/Subscribe allows broadcast,

multicast and M2M. MQTT v5.0

introduces request-response feature.

• Does not work well with very high

volumes of data. Limit of payload.

• It needs virtually no administration (e.g.

the topics are created automatically)

• Encryption of messages and advanced

security is not built-in to the protocol.

It must be set apart.

• Light and low power consumption • A broker is needed. Weak point of the

network (bottleneck)

• 3 levels of Quality of service • Cannot control data flow,

automatically done by the broker

• Compatible with TLS/TLS

• Availability to be used in different

programming languages (e.g. Java,

Python, etc)

• Supported by big companies (e.g. IBM,

Facebook, etc.)

• Data agnostic (binary encoding)

• It is open source

• “Last Will and Testament” feature

24

6.3 AMQP

The Advanced Message Queuing Protocol (AMQP) is an open OASIS and ISO standard

that supports two architectures: publish/subscribe (like MQTT) and a sort of

request/response. Similar to MQTT, AMQP is characterized for also being a light M2M

protocol which relies on TCP/IP or SCTP, but focused on interoperability [Naik17].

Although AMQP is based on publish/subscribe, its functioning is not as simple as MQTT.

In AMQP, two elements can be distinguished inside the broker: exchanges and queues.

An exchange is where messages are delivered by the publishers. Queues are created by

the consumers and linked to an exchange. When the exchange receives a message, it looks

at its routing key (message attribute) in order to route the message to the corresponding

queue; this process is called “binding” [Naik17]. Once in the queue, the message can be

directly sent to the consumers (publish/subscribe) or it can be stored to be delivered when

requested by the consumer (request/response). Figure 5 shows the basic functioning of

AMQP with the supported architectures.

Figure 5. AMQP functioning with a broker. Publish/Subscribe and Request/Response.

Different types of exchange are defined in AMQP [Naik17]:

• Direct: the message is assigned to the queue(s) whose binding key is exactly the

routing key defined in the message.

• Fan-out: the exchange routes the message to all the queues linked to it.

• Topic: the message is routed based on the matching between the routing key and

the routing pattern (wildcard). This way, messages can be routed to one or more

queues at the same time.

• Header: similar to the topic exchange, it differs in that the routing criteria is

contained in the message Header and not in the routing key.

AMQP messages are encoded in binary format (data agnostic as MQTT) and the message

size is not defined, it depends on the capacity of the broker or on the programming

technology [Naik17]. One of the main features of AMQP is its reliability and, to achieve

it, two main quality of service levels are defined: settle format (message is sent at most

once) and unsettle format (message is sent at least once) [Naik17].

25

As for security, AMQP v1.0 specifies how to establish TLS sessions (to encrypt

communications) and how to establish a SASL layer (for authentication purposes)

[Oasi12].

Table 4. Summary of AMQP. Advantages and Disadvantages

AMQP

Advantages Disadvantages

• Publish/Subscribe allows broadcast,

multicast and M2M

• Maximum message size depends on the

broker and programming tool

• Allows request/response (RPC) • Not as simple and light as MQTT

• Interoperability, reliability, and

security are at its core.

• Although a broker is not necessary, it

has a significant impact on reliability.

• A broker is not strictly necessary.

• Every new version is compatible

with previous ones

• It does not specify limit in maximum

message size

• Big companies support the standard

(e.g. Microsoft, Thales, etc.)

• Specifies advanced security

measures (TLS and SASL)

• Availability to be used in different

programming languages (e.g. Java,

Python, etc)

• Data agnostic (binary encoding)

• It is open source

26

6.4 Virtual machines and containerization

The edge computing device is expected to run based on virtualization and/or containers

(docker), which constitutes one of its main features and advantages. For this reason, first

it is necessary to define what virtualization is, what docker is and what is the difference

between a virtual machine and a container.

First thing to note is that virtual machines and containers are compatible; you can deploy

both at the same time, and both of them result in self-contained virtual packages.

However, they have different characteristics and operation, resulting in distinct use cases.

The result of virtualization is called a “virtual machine” (VM): an emulation of a physical

computer with its own Operating System (OS). Therefore, several different operating

systems can be run on the same hardware (host machine) through VMs. These VMs run

thanks to a hypervisor, which is the software/firmware/hardware in charge of assigning

the resources to each VM (storage, RAM, etc.) [Suma13]. Two types of hypervisors can

be distinguished [Suma13]:

• Type I or “Bare metal” hypervisors: When it is directly implemented between the

hardware and the working framework (OS).

• Type II or “Embedded” hypervisors: When the hypervisor is installed as software

on the OS. The most known hypervisors of this type are VirtualBox and VMWare.

Figure 6 shows the general virtualization architecture. The difference between type I and

II in the diagram would be the placement of the OS stack: over the hypervisor for type I

and below the hypervisor for type II.

Figure 6. General Virtual Machine architecture

Containerization, on the other hand, consists on the encapsulation of an application

(typically one per container) together with all its requirements (libraries, settings, etc.) so

that the application can run anywhere, independently of the host OS, as it already has

everything it needs. As opposite to virtual machines, containers run its operating

environment on the same host OS. The most famous tool for containerization is Docker,

an open source project that has an extraordinary adoption by developers. Figure 7 shows

the container-based architecture using docker (simplified).

27

Figure 7. Container-based architecture using docker

Briefly explained, docker architecture is basically made up of three components

[Dock20a]:

• Client (docker CLI): the way users interact with Docker by using commands.

• REST API: it sets the interface used by programs/users to talk to the docker

daemon.

• Docker daemon: it receives the Docker API requests and operates the instructions.

In addition to these architectural components, there are the so-called Docker objects, the

following are the basic ones [Dock20a]:

• Images: it is a read-only file that indicates how to create a Docker container.

Images can be created by you or by other people who publish them in a registry.

The creation of an image is based on a Dockerfile, which is a file that specifies

the steps that must be followed to create and run it.

• Containers: it is a “runnable instance of an image”[Dock20a]. Containers can be

manipulated (stop, delete, move…) using the docker CLI. The level of isolation

from other containers and the host machine is also controllable, as well as its

storage configuration.

Sometimes, containerized applications may not be made of just one container but of many

that need to be able to interact between them. For multi-container applications, Docker

offers a tool called Docker Compose that, based on a defined file (docker-compose.yml),

stablishes the services that build the application [Dock20b].

28

6.5 Kubernetes

Kubernetes, initially developed by Google as open source since 2014, is a platform for

the management of containerized workloads and services [Kube20a]. The result of the

deployment of Kubernetes is a cluster, which is one or more worker devices (nodes)

where containers are run. The basic unit created and managed by Kubernetes is a pod. A

pod is just a group of containers that share the same storage/network and that contains a

file that specifies how the containers must be run. Therefore, pods make it simple to

deploy and manage applications whose components need to share data/communicate

between them [Kube20b].

Kubernetes is specifically designed to run distributed systems in a resilient way. If more

than one container is needed to run an application, and one of these containers fails for

whatever reason, Kubernetes restarts the failing container, so that the application can still

run (it is self-healing). Kubernetes is, therefore, very useful for high computing

applications (e.g. image processing) that require multiple nodes working together, since

it automatically manages the available capacity of these nodes to run the applications,

saving deployment time.

6.6 Node-RED

Node-RED, initially developed by IBM and currently part of the JS Foundation, is a

programming tool based on flows [Node00]. It is a free and open source tool. In Node-

RED, applications are described with a set of black-boxes (nodes) connected together

(building a flow). Each node receives data, works with it and then it passes the result to

the following node. One of the main advantages of Node-RED is that it can run on low-

cost hardware (e.g. Raspberry Pi) and on cloud, and it is designed to be used by a wider

range of users (not only professionals). However, functions must be written in JavaScript,

which might be a barrier for less advanced users [Node00].

6.7 Databases

Whether for the central management system or for the edge computing device, a database

will be needed to store events and relevant information. Two main types of databases are

distinguished: relational databases and non-relational databases. To assess the reliability

of a database type, there are the so-called ACID properties [JPAK12]:

• Atomicity: a transaction fails if any part of it is incomplete.

• Consistency: if the database remains stable before and after a transaction.

• Isolation: transactions do not interfere with each other when executing at the

same time.

• Durability: when a transaction is completed, it will stay in the same state.

29

6.7.1 Relational databases

In relational databases data is organized in well-defined tables (columns and rows). Each

row in these tables constitutes a record and, each column, a field that each record should

have filled. The information contained in different tables can be linked by using indexes

or foreign keys (“relation”) [JPAK12].

Most of the relational databases allow to easily access and modify the data stored using

SQL. Some of the main advantages of relational databases are that they are self-

documenting and, if the schema of the database is required to be changed, it is a simple

process. Besides, most relational databases provide ACID properties. On the other hand,

some disadvantages of relational databases are its limited scalability, its complexity in

case that the data cannot follow a table structure and, if the database is very large, the

complexity of managing a distributed database among different servers [JPAK12].

6.7.2 Non-relational databases

The main difference between relational databases and non-relational databases is that the

last does not use tables as structure. They do not use SQL as the language to modify,

insert or look data, either (non-relational database = No-SQL database). According to

[JPAK12], up to ten different types of non-relational databases may be distinguished:

• Key Value Stores: data is stored as key-value pairs.

• Document Oriented Database: documents (PDF, XML, Microsoft Office, etc.) are

stored by assigning them a unique key .

• Graph Database: data is represented by using edges, nodes and graph data

structures [JPAK12].

• Column Oriented Databases: they use columns to store the data (not in rows as

relational databases).

• Object Oriented Databases: data stored as objects (with similarities to object-

oriented programming).

• Grid and Cloud Databases.

• XML Databases.

• Multidimensional Databases: data is stored as n-dimensional matrix.

• Multivalue Databases: three dimension data (fields, values and subvalues)

[JPAK12].

• Multimodel Databases: a mix of other non-relational databases.

Additionally, Time Series Databases should be added to the previous list. In this type of

databases, data is stored as a relation between time and value(s) (time series)

Generally speaking, non-relational databases are more effective at managing large

amounts of data than relational databases, so they are a good solution for cloud

30

architectures. However, non-relational databases have a lower reliability level since many

of them renounce to some ACID properties to increase performance (usually

consistency). In fact, non-relational databases must choose two out of three possible

properties: Consistency, Availability and Partition tolerance (CAP model, Figure 8)

[GiLy12]. Relational databases would be positioned as CA in this model whereas most

of non-relational databases would be divided between CP and AP.

Figure 8. CAP model

6.8 Local Test environment

To carry out tests and experiments for the analysis, an edge computing device is

simulated. The community version containers of the Onesait Platform (free and open

source) will be used in this simulation/test environment since i-DE and Indra are

developing a proof on concept of this platform (enterprise version, which mainly differs

in the cloud management system) to be used at smart secondary substations.

The test environment will be a local virtual machine, with VirtualBox 5.2 as hypervisor,

with Ubuntu 18.04.4 installed as OS, and giving this virtual machine 3,018 GB of RAM

and 30,75 GB of storage. Docker engine (Table 5) and docker compose (Table 6) are

installed in this VM. The “containerd” version used by the docker engine installed is

1.2.13.

Table 5. Docker client and docker engine versions installed in the VM

Docker Client – Community

version

Docker Engine – Community

version

Version: 19.03.8 19.03.8

API version: 1.40 1.40

Go version: go1.12.17 go1.12.17

OS/Arch: Linux/amd64 Linux/amd64

31

Table 6. Docker-compose version

Docker-compose

Docker-compose version: 1.25.5

Docker-compose build: 8a1c60f6

Docker-py version 4.1.0

CPython version 3.7.5

OpenSSL version 1.1.01 (10 Sep 2019)

The Onesait Platform webpage specifies which dockers are standardly used in the edge

node and explains how to install them using docker-compose (free containers) [Edge00a]:

• Node-RED (v0.20.5) container.

• InfluxDB (v1.8.0) Database container.

• Inner MQTT broker container. Based on Mosquitto MQTT broker.

Additional containers that are installed to do the analysis and compare technologies:

• MongoDB (v4.2.7) Database container (to compare with InfluxDB).

• Inner AMQP broker container. RabbitMQ broker (to compare with MQTT).

• Grafana. To visualized stored data in a dashboard.

To develop simple test programs, Python 3.8.1 will be used as programming language.

The use of docker makes it unnecessary to install Python on the VM, in fact, these

programs will be developed in a separated environment that uses Windows 10 as OS, just

as it would be the case for a real application provider. Some free Python packages that

may be useful to install are shown in Table 7.

Table 7. Python packages installed

Package Description Installation via pip install

Paho-mqtt 1.5.0 Python MQTT Client library paho-mqtt

Pika 1.1.0 Python AMQP Client library pika

In addition to this, it is recommended the installation of mqttfx4, a free software developed

by Jens Deters, that provides a graphical user interface to publish and subscribe to MQTT

topics of an external broker server. This program might be useful to debug errors when

interacting with the inner MQTT broker container in the edge node during development.

4 https://mqttfx.jensd.de/

https://mqttfx.jensd.de/

32

6.9 Remote Test environment

In order to test how an application would be deployed in a remote node on field, Minsait

has provided i-DE access to an instance of its Onesait Edge Management System (in

Azure) and to a remote node (Ubuntu 16.04 LTS, 230.7 GB of storage and 15.6 GB of

memory, not representative of the real edge node that would be deployed but useful for

testing). Minsait has also provided access to a container registry in Azure in order to make

tests, as well as a STG-DC simulator in a container. Since this environment is own by

Minsait, no details will be given in this work about the management system interface or

the STG-DC simulator.

33

7. Analysis

7.2 Overview of the solution

The architecture that is taken as reference, and that will be analysed, is the eWLCA

defined by Intel and Minsait in [OSMC20] and that was mentioned in the State-of-the-

Art.

This architecture can be understood as a compendium of open and proprietary

technologies that play a specific role each. The relationship between technology and role

is not unique (in most cases), so multiple technologies might be appropriate to play the

same role. The choice should be made based on, not only present cases of use, but also

on potential uses and ways of functioning, remembering that flexibility is a key factor to

consider.

Although the eWLCA defines four tiers, not all of them are necessary. In the proof of

concept (PoC) that is being developed by Minsait for i-DE to achieve a SSS, only the

Edge Device tier and the Edge Core (Management System) are considered.

To carry out the analysis, more focused on i-DE’s requirements and the PoC, three main

elements will be distinguished in this architecture (as in the OpenNode project mentioned

in the State-of-the-Art):

• The Edge Node (edge compute device, intelligent node): it includes the hardware

that will be installed in the secondary substation and the corresponding software

architecture (e.g. OS, VMs, Docker, databases, etc.)

• The Management System whether on cloud or on premises: it is in charge of

monitoring, managing the nodes and the maintenance and deployment of

microservices (i.e. applications, functionalities…) on these nodes.

• Communications: as a key component in the solution, it makes reference not only

to the communications between the node and the management system, but also to

inner communications in the node (between applications), communications with

local devices in the SS, such as the data concentrator, OLTC transformer, etc. and

communications with external devices such as smart meters, protections, energy

storage etc.

Figure 9 shows, in general terms, the architecture for applying edge computing at a SS

and the relationships between each of its components.

34

Figure 9. Overall representation of the architecture.

Each of these three main elements has, at the same time, multiple parts that can vary from

one solution chosen to other. For the Edge Node these parts would be:

• Hardware: not only the hardware must have enough computing capacity but

comply with the electrical requirements to be installed in a SS (e.g. electrical

isolation).

• Security elements: Mechanisms that guarantee that information received at the

management system is the same as the sent by the Edge Node.

• Operating System.

• Virtualization technology: it can be based on VMs, containers (dockers), both at

the same time, Unikernels... Whatever the virtualization technology chosen, to be

integrated with the existing devices in an i-DE’s SS, it must contain specific

applications to “understand” the data that the Edge Node receives through:

o DLMS

o STG-DC interface (i-DE)

o Modbus. For MV/LV automation, transformers, etc.

o Zigbee. To receive information from sensors or send orders to circuit

breakers.

• Database: Between relational and non-relational, it must be determined which

type adapts better to the data formats and requirements in the node.

For the communications layer, as previously mentioned, three environments can be

distinguished:

• Communications with the Management System.

• Inner communications between applications in the Edge Node.

• Communications with other devices. Inside this type, it could be distinguished

between devices in the SS (e.g. data concentrator, low voltage supervisor, etc.)

and devices out of the SS (e.g. smart meters, breakers out of the SS, etc.).

Finally, the Management System is usually a proprietary software of the supplier, that is

to say, it does not depend very much on open source software. For example, Minsait has

its own platform, “Onesait Things Platform” [Edge00b], so does Nebbiolo Technologies,

35

with its “fogSM” [Nebb19]. Nevertheless, independently of the platform used, the

Management System should have the following basic features:

• Authentication of devices. To determine that the data is being received from (or

sent to) an authorized node.

• Cybersecurity. It must guarantee that the data has not been altered by third parties.

• Registry/Catalogue of applications that can be deployed remotely, together with

their configuration files.

• A Graphical User Interface (GUI) so that the Management System is more user-

friendly and accessible for a wider range of users.

• Database to store the data sent by the nodes and accessible through the GUI.

7.3 Advantages, Challenges and Functionalities

The implementation of edge computing at secondary substations have several advantages

and cases of use. However, the challenges it poses are not few; if the final solution proves

to be less scalable or flexible than expected, its viability will be questioned. The

functionalities that can be carried out by the solution must also prove to have benefits in

the operation of the LV grid that can be translated into economic savings/incomes, not

only for the utility but for the entire system. The solution itself should prove to save

money and time respect to traditional procedures (discussed in section 8. Economic

Impact)

The main advantages that are expected from this solution are:

• As data is processed close to where it is generated, time between data collection

and the decision is reduced.

• Gives SS autonomy as it relies on local communications. If, for whatever reason,

communications between the SS and the central system fail, some functionalities

and processes would still be guaranteed.

• The centralized management system makes it simple to deploy applications in the

different nodes, avoiding the need of a technician going to the place to upload

applications.

• Virtualization and/or dockerization makes it simpler to correct bugs in

applications. Applications are independent between them; if one of them has

errors, it can be stopped and restarted, once its code has been debugged, without

the fear of having altered other functionalities.

• Time for the deployment of applications (functionalities), and their updates, is

significantly reduced. It makes it easier to apply the Agile methodology during

development, as applications can be tested in a real environment faster.

36

• Depending on the SS, some applications might be useful or not. “Customization”

of functionalities based on the SS.

• Applications providers are decoupled from hardware providers. It is expected

more competitiveness for the development of functionalities. Related to the

previous point, this would also provide flexibility, since not only the

functionalities could be “customized” depending on the SS, but also the hardware

where they will be installed.

• Ultimate improvement of quality of service. Functionalities such as voltage

control or control of circuit breakers have a direct impact on quality of service

• In the future, the edge computing device is expected to substitute some of the

devices that are present at SSs (DCs, low voltage supervisors…). The expected

flexibility of the architecture would ease this process.

• If various SSs are connected between them (same LAN through optical fiber or

PLC), it would be possible to make them work together for a process that has

higher computing requirements (e.g. complex machine learning models, image

processing, etc.)

• It can be the driver for the development of innovative and disruptive

functionalities.

On the other hand, as every solution, it will have some disadvantages and challenges to

be faced:

• Initially, this implies a new device to be installed at the SS. Problems of space

might appear, although it is not believed to be a major challenge.

• The computing capacity of the edge computing device: if excessively high, it

would be quite expensive for its deployment at several nodes; if excessively low,

some applications might not run properly, cause significant delays or the number

of functionalities might be significantly limited.

• Some disruptive functionalities are not regulated yet. Functionalities related to

demand response, energy storage at distribution level or electric vehicles need to

be clearly ruled by the regulatory body yet.

• Some functionalities require data provided by smart meters. Currently, this data

might be incomplete, inaccurate, or even unavailable due to temporary

disconnections of smart meters. If the Edge Node is expected to carry out local

data processing, these communications with other devices must be improved in

reliability and speed. Meanwhile, pre-processing algorithms may be needed in

order to select the appropriate sources of data (the most reliable) to be used as

input in other processes.

37

• As edge computing in SSs is not very extended, initially, it might result

challenging to find the hardware for the Edge Node, since it must pass numerous

tests to be installed in a SS.

Regarding the possible functionalities of the edge-computing-based solution, they cover

different areas of an electric distribution utility.

Grid control:

1. Low voltage control through actions to the OLTC transformer, using voltage

measurements from smart meters and low voltage supervisors.

2. Control breakers, switches and other protections based on alarms/events.

Grid knowledge and analysis:

3. Run algorithms to detect which phase each smart meter is connected to.

Nowadays, one of the biggest objectives of electric distribution companies is to

have an inventory of the connections phase-meter, looking for a balanced system

(approximately the same consumption on each phase).

4. Algorithms to determine the impedance of LV lines.

5. Fraud detection algorithms. If the phase is known, these algorithms will be more

effective.

6. SS balance, power losses accountability.

Grid monitoring:

7. Fault detection, location and even classification in the LV grid.

8. State estimation of the LV grid.

Asset management and maintenance:

9. Predictive maintenance. Monitoring of indicators (e.g. temperature of

transformer, vibrations…). If the risk surpasses a level, send an alarm to the

central system in order to take an action.

10. Security functionalities. Movement detectors, thermal cameras, fire detectors, etc.

11. Demand prediction for the transformer. This could be used to plan maintenance

actions in advance, minimizing the impact on consumers.

Flexibility and innovative functionalities:

12. Monitoring and control of Distributed Generation (DG). Calculus of the balance

between generation-demand.

13. Control of energy storage (e.g. batteries) at the distribution level. To alleviate

transformer load during peak hours and, if the subnetwork is net exporter during

38

just some hours, to avoid reverse power flow. However, the use of energy storage

at the distribution level by the utility is not regulated (not allowed) in Spain at this

moment.

14. Electric Vehicle (EV) integration.

o Smart charging EVs at night. Optimizing not only the vehicles that are at

the same garage, but all the vehicles charged by the same transformer. If

the phase is known (no. 3), charging could be optimized to keep a balanced

system.

o The solution could enable the so-called vehicle-to-grid (V2G)

functionality. Not regulated in Spain at this moment

o New possibilities for EV public charging infrastructure, such as the

discussed by [OkOz16], but considering fog computing (edge nodes can

interact between them). Great regulation is needed in Spain for this

functionality.

15. Demand response schemes. Interaction between the edge node at the SS and a

HEMS to take any action. It could be combined with load identification

algorithms.

These functionalities constitute only an example of what edge computing at SSs could

provide. In all likelihood, this list will grow significantly when the solution gets tested on

field successfully.

39

7.4 Analysis of the Edge Node

7.4.1 Virtualization Technology

As mentioned in previous sections, VMs and containerization are the two main

virtualization technologies that are considered as options to support the functionalities of

the Edge Node. Explanation of basic concepts has been previously provided in 6.4.

Virtual Machines. The deployment of functionalities using exclusively standard VMs (a

complete OS per VM, Figure 6 in subsection 0) would be extremely challenging despite

it would provide high level of security and isolation between applications. As first

hypothesis, if it is supposed one application per VM, a large amount of computing and

storage resources would be wasted within the Edge Node, since each VM would have

RAM and storage allocated by the hypervisor no only to run the specific application but

to run an entire OS that contains many libraries that will never be used by the application

[CDLR19]. As the Edge Node is expected to run multiple applications, this would require

multiple VMs that would lead, inevitably, to a large amount of redundant processes. This

hypothesis would be highly inefficient [Luci17].

The second hypothesis would be the use of VMs that contain more than one application.

Despite this would improve the resources usage, it does not guarantee isolation between

applications (unless containerization is added), so this hypothesis can be directly

discarded.

Both hypothesis mentioned so far would have the added disadvantages of extended

development time of applications [Stro19] and large image size that would make the

deployment (Management System to Edge Node) a big challenge [Luci17, Stro19].

Besides, it would be necessary to keep updated the OS of each VM (which implies more

than one update per node) to keep it secure.

Containerization (Docker). The deployment of applications as Docker containers would

be a lighter alternative to standard VMs. Redundancy of processes is avoided since the

containers are run directly on the host OS and some of its libraries may be shared

[CDLR19]. This feature, however, hides a drawback: as the OS is shared by multiple

containers, a successful cyberattack or vulnerability in the OS will compromise all the

containers [Luci17]. On the other hand, two security analysis carried out in [Bui15] and

[MRCD18] concluded that the default configuration of Docker is relatively secure. To

improve this security, [Bui15] proposes to run the containers without root privileges and

to enable security improvements of the Linux kernel. [MRCD18] goes deeper and

concludes that a great number of vulnerabilities in Docker result from using containers as

VMs (use of an OS as a container, this is not contemplated as a solution for the Edge

Node). This same reference, [MRCD18], states that, although Docker is relatively secure

from a local point of view, it can be vulnerable from an ecosystem point of view if there

40

are external intermediaries involved in the deployment of containers (e.g. Docker Hub,

public repositories, etc.).

Docker has become very popular among software developers because it is a simple, open

source (community version), way of deploying an application anywhere and it

significantly reduces the time between development and its use in production. Tools as

Docker Compose and Kubernetes, that eases the process of deploying multiple containers

simultaneously, have helped in this extraordinary adoption of Docker.

Unikernels. An alternative that has also emerged in the last decade is the use of

Unikernels (University of Cambridge 2013-2015 with MirageOS, [Luci17]). Unikernels

are similar to VMs but with the difference that Unikernels do not have the entire kernel

of an OS and that they are typically run directly on an hypervisor (no need of an

intermediary OS) [CDLR19]. That is to say, the application has its own optimized kernel

that only contains the processes and operations that it needs to run [MRCD18].

Application code and kernel code are not separated, which makes images even lighter

than containers [Luci17] but more difficult to debug. The use of an optimized kernel has

two different but coherent security consequences, according to the consulted literature;

on the one hand, by removing unnecessary processes and operations of an entire kernel,

the “attack surface” is strongly reduced [Luci17]; on the other hand, this removal implies,

at the same time, the removal of some security mechanisms that could be used by an OS

[CDLR19].

In addition to the lightness, another advantage of Unikernels is the provision of high

isolation levels, similar to standard VMs, by the hypervisor [Luci17].

A deep comparison between Unikernels and containers was carried out in [GSAV18]

using different programming languages (Java, Go and Python). It concludes that

Unikernels are faster than containers at responding (response time) but the performance

is similar with heavy workloads (except for Python, where the container outperforms the

Unikernel) [GSAV18]. It also shows that Unikernels consume far more memory than

containers. The explanation given by [GSAV18] is that the Unikernels applications have

the extra code for its own optimized kernel whereas containers use the kernel of the host

OS. Therefore, the total memory consumption of a group of Unikernels in the same

hypervisor may be less than that of multiple containers together with their host OS.

Final choice. Although Unikernel technology is a good competitor of containerization

(Docker) due to its lightness, good performance and isolation capabilities, the technology

is still at an early stage of development and the number of implementations in production

is very low [MRCD18]. To develop a Unikernel application, it is needed to have great

knowledge of Operating Systems (which the average developer does not have) [Eybe19]

and its deployment process is also complex, so further research is needed [Luci17].

41

Therefore, based on this discussion, the recommended technology to be used in the Edge

Node is containerization using Docker due to its ease of use and deployment, its high

adoption by developers (easy search of support), and its relative maturity. In essence, it

satisfies the requirements of i-DE in terms flexibility (i.e. applications can be developed

by third parties, containers are isolated so that they can be stop/run/debugged without

altering other applications, etc.) and security, which can be improved taking specific

measures as already discussed. Docker is also the technology chosen by Minsait for its

PoC with i-DE.

However, the use of Docker requires the adoption of additional measures to protect the

intellectual property of the applications. For example, if a third party is hired to develop

an application, in all likelihood the utility will have to provide some containers so that the

third party can test its application integration during the development. To create/run/stop

containers, the user must be root-privileged (docker community version), which means

that it will also have access to the containers provided by the utility (to their source

code…). To tackle this, different approaches can be taken:

1. Adoption of security measures when building the docker images. To avoid the

intrusion into the filesystem of a running container, the access to its sh and bash

console should be denied. This is done by adding Code 1 to the Dockerfile that

builds the image (source: Minsait).

Code 1. Lines to add to the Dockerfile to remove access to the sh and bash console in a container. The

container gets associated to user 9000. Source: Minsait

RUN /bin/rm -R /bin/sh
USER 9000

However, if the user is root, by using Docker export (Code 2) the complete

filesystem of a container would be included in a .tar file, including its source

code.

Code 2. Use of Docker Export to obtain the filesystem of a container in a .tar file

docker export [container_id] > [file].tar

Therefore, some additional measures are necessary. The developer, by default,

should obfuscate the code of the application before creating the container (e.g.

using pyarmor5 for Python or ProGuard6 for Java). Then, in addition to this

obfuscation, the container image could be encrypted using the free tool

“containerd imgcrypt” [Lum19] so that only authorized users can run the

container.

5 https://pypi.org/project/pyarmor/ (3/7/2020)
6 https://www.guardsquare.com/en/products/proguard (3/7/2020)

https://pypi.org/project/pyarmor/
https://www.guardsquare.com/en/products/proguard

42

2. To use the paid version of Docker, Docker Enterprise, whose Universal Control

Plane allows the definition of different user roles, with different restrictions and

privileges [Mira20]. The integration of Docker Enterprise with the Management

System (proprietary by a third party) should be then studied.

3. To use a commercial security tool (e.g. Twistlock7) that may have mechanisms to

limit user privileges and to add extra security. As in the previous point, its

integration with the Management System should be then studied.

4. Non-technical mechanisms. For example, to leave the test process entirely to the

utility (not advisable, would delay the deployment of the application), to substitute

the provision of the containers by a simulation environment (depending on the

data, the creation of this environment could be complex) or to use strong

confidentiality agreements and control procedures so that the source code of these

containers can be better protected (it would not completely guarantee that the

source code has not been inspected).

Obviously, if all these measures were taken, the proprietary source code (algorithms,

logic, etc.) of the applications would be extremely secure. Since options 2 and 3 imply an

additional cost, a deeper study should be done in the future analysing the additional

security and functioning benefits that these could give. Without any doubt, the first option

(free) must be done regardless of the adoption of non-technical mechanisms (fourth

option) and commercial tools.

7 https://www.twistlock.com/solutions/docker-security/ (3/7/2020)

https://www.twistlock.com/solutions/docker-security/

43

Table 8. Summary of the comparison between virtualization alternatives

 VMs Unikernels
Containerization

(Docker)

Security ✓ High security level

✓ Reduced "attack

surface"

 May lack of some

security mechanisms

that a complete OS

has

 All the containers
depend on the security of

the OS

✓ Relatively secure in its

default configuration and

with "good practices"

 Requires additional

mechanisms/tools to

guarantee intellectual

property of third-party

applications

Application

Isolation
✓High isolation level ✓High isolation level ✓Good isolation level

Efficiency
 Inefficient for

multiple applications

✓ Better memory

consumption for

multiple applications

than containerization

✓Faster response

than containers

✓Unikernel-like

performance with heavy

workloads

Size of

images
 Large image size ✓ Very light images ✓ Light images

Maturity of

technology
✓ Very mature

 Early stage of

development for

production

✓ Experience in

production environments

Additional

information

 Multiple OS updates

per Node

✓ No need of an

entire OS

 Still too complex

for the average

developer

✓ Very popular and

relatively easy to use

✓ Time between

application development

and production is reduced

Recommendation: Containerization (Docker)

44

7.4.2 Operating System (OS)

Since the recommended software architecture is the use of containerization (Docker), the

Edge Node must have an OS where the Docker engine can run. The Docker daemon needs

some specific Linux kernel features to run, so Docker does not run natively on Windows.

To do so, there are two alternatives [Micr19]:

• To run Docker in a full Linux VM, with Windows as the host OS and a type II

hypervisor.

• To run Docker using Hyper-V isolation. Hyper-V provides an optimized virtual

machine with its own kernel to Docker.

The objective is to run containerized applications in the Edge Node, hence there is no

need of using Windows as OS, since it would only add complexity to the deployment.

Therefore the OS of the Edge Node should be based on Linux. There are tens of this type

of OS (e.g. Ubuntu, Debian, OpenSUSE, etc.) and, as they are open source, their

vulnerabilities are rapidly corrected by the community as they arise. It is also possible for

the OT staff of the electric utility to patch the OS when required. For this reason, to make

the maintenance of the OS easier, it is recommended the use of a Linux OS already in

use/homologated by the electric utility. In the case of i-DE, this would be RedHat 7.5 (or

higher) or RedHat Oracle Linux 7 (or higher).

Table 9. Summary of the comparison between possible Operating Systems

Microsoft Windows (Windows

Server ≥ 2016)

Linux OS

Ubuntu, Fedora, Debian, etc.
RedHat ≥ 7.5

RedHat Oracle Linux ≥ 7

 Proprietary OS ✓ Open Source

 Docker needs Linux Kernel (A

Linux VM or Hyper-V isolation

would be necessary)

✓ Vulnerabilities are rapidly corrected by the community

(usually)

✓ Supports Docker

✓Homologated by i-DE Not homologated by i-DE ✓Homologated by i-DE

Recommendation: RedHat or RedHat Oracle Linux

45

7.4.3 Database

In order to discuss which database would be more appropriate to install in the Edge Node

to store the data, it is necessary to define how the data would be structured. It was

mentioned in 6.1 (Overview of current infrastructure) that the STG-DC interface uses

XML format. Although this format is useful to represent resources, it is a bit complex to

understand and requires more time to be processed than other formats such as JSON

(JavaScript Object Notation). JSON format is one of the most used formats in IoT

architectures to represent resources and for information exchange. It is based on key-

value pairs and is also shorter and easier to be read by humans and machines.

As the Edge Node will receive data in different formats (or no format at all) from different

devices, it is necessary to stablish a common format to be used by the applications. The

JSON format is proposed for this purpose given its extended use in modern IoT

architectures and its simplicity. However, this means that every data received must be

“traduced” to JSON (e.g. data received by STG-DC interface should change from XML

to JSON) before its storage or use by the applications. In fact, one of the objectives of i-

DE and the rest of electric distribution utilities (FutuRed working groups) is to define a

common JSON schema for these messages based on the Web of Things Architecture

(WOT-A), sponsored by W3C [KMLK20]

Table 10. Examples of JSON and XML formats. Dummy data of a LV Supervisor

JSON

{

 "supervisor": {

 "id": 1,

 "date": "2020-06-19T17:09:36.261Z",

 "activepower": 2524.53,

 "type": "triphasic",

 "voltage": 235.39

 }

}

XML

<measurements>

 <supervisor>

 <activepower>2524.53</activepower>

 <date>2020-06-19T17:09:36.261Z</date>

 <id>1</id>

 <type>triphasic</type>

 <voltage>235.39</voltage>

 </supervisor>

</measurements>

SQL vs No-SQL. The first decision related to the database is which type suits better for

the Edge Node, SQL or No-SQL (i.e. relational or non-relational).

46

SQL databases (e.g. PostgreSQL) requires data to be structured in form of a table. It is

relatively easy to traduce a JSON file to a table: each key would be a column and each

value would be inserted into its corresponding column. The problem is that the format of

the table must be predefined and additional columns suppose a significant change in the

table. For example, let’s suppose that it is required that all the data sent by a LV supervisor

has to be stored in a table called “supervisor_data”, but not all the measures are sent at

the same time (e.g. current and voltage every five minutes and power measures every

fifteen minutes) or that other type of related data has to be stored (e.g. an event, an

alarm…). This would mean that not all the columns are filled for every row, but every

row would still have a value for those “empty” columns (null value). This would be

extremely confusing when querying data from the table. Therefore, our intention of

having all the data related to the LV supervisor in the same table would have to be

discarded and create different tables, which can also be confusing. Nevertheless, an

alternative would be the insertion of the JSON document in a table where a column has

‘JSON’ as its defined data type. Although functional, this approach is not rational since

there already exist No-SQL databases optimized to store documents like JSON (e.g.

MongoDB). Furthermore, SQL databases are difficult to scale [JPAK12] (the Edge Node

will have to store millions of measures per month) and require more time to query data

for semi-real time applications [CeME15].

On the other hand, non-relational databases can manage huge amounts of data better and

the existence of different subtypes (as discussed in 6.7.2 Non-relational databases)

increases the range of possibilities. Given the nature of the data, which is time-related

(i.e. every measure or event is associated to the time when it was acquired) and its format

(JSON), two subtypes of No-SQL databases are considered to better manage this type of

data:

• Document Oriented Database: According to DB-ENGINES ranking [Db-e00]

(June 2020), the most popular document database is, by far, MongoDB, which is

open source and has a community version (free). MongoDB is specifically

designed to store JSON documents and it provides complete ACID transactions

like relational databases [Ref00b]. It is available as a Docker image (i.e. it can be

used as a container).

• Time Series Database: The DB-ENGINES ranking [Db-e00] places InfluxDB

(open source, free community version) as the most popular time series database,

followed by Kdb+ (proprietary) and Prometheus (open source, free). For this

project, only the free alternatives will be considered (InfluxDB and Prometheus)

as the electric utility must try not to depend on a proprietary solution, since once

the investment was made on licenses, it would be difficult to change the used

database in case a better alternative appears in the future. Both InfluxDB and

Prometheus are also available as Docker images.

47

MongoDB vs Time Series Databases. The first dilemma to solve is between MongoDB

and time series databases (InfluxDB or Prometheus). In order to make the comparison,

MongoDB v4.2.7 and InfluxDB v1.8.0 (because of its popularity) were installed as

Docker containers in the test environment (6.8 Local Test environment). The Docker

image of InfluxDB and MongoDB weights 304 MB and 388 MB, respectively.

As it is obvious, MongoDB and InfluxDB store data in a different way. In MongoDB,

although the GUI shows the data (contained in a collection) structured as a table (Figure

10), each row is only the representation of a JSON document, so different types of JSON

documents can be stored in the same collection (i.e. not having the same fields/keys does

not suppose a problem like in relational databases, as it was mentioned previously). Each

document gets an automatic id (“_id” column in Figure 10) that is related to the time when

it was stored.

Figure 10. Screenshot of MongoDB GUI (mongo express) and how it stores the JSON documents.

In InfluxDB, data is also shown in form of a table, but instead of collections, the entries

are associated to a tag or “measurement” (InfluxDB notation) so, as in MongoDB, it is

not necessary that every entry has the same fields/keys, as long as they get grouped under

a different tag/measurement. Figure 11 shows data stored under the measurement

“meter1” in a sample database. In InfluxDB, instead of _id, each entry is associated to a

number that indicates the time when it was inserted (“time” column in Figure 11), which

is more intuitive than the alphanumeric _id of MongoDB.

Figure 11. Screenshot of a query in InfluxDB that shows how data is stored

48

In terms of how the data is stored, neither MongoDB nor InfluxDB represent a challenge

for its integration in the Edge Node: in MongoDB the JSON would be directly stored and,

in InfluxDB, the information contained in a JSON can be easily extracted to be inserted

in the database. However, one characteristic of InfluxDB that may be an advantage is that

queries can be done using a SQL-like language (see Figure 11), whereas MongoDB has

its own query language [Ref00b]. Although this query language might not be difficult to

learn, the utility’s staff may be more familiar with SQL and more support is available on

the internet for this language. An additional interesting feature of InfluxDB is that a tool

called Telegraf (open source) can be used to directly insert the data received through

AMQP or MQTT (inner communications of the Node) into a database, depending on the

topic/queue.

Regarding the performance and requirements, these constitute the most decisive factors

to choose the database. A comparison made in [Chur18] (v1.7.2 of InfluxDB and v4.0.4

of MongoDB) shows that InfluxDB is 2.4 times more efficient at writing data, 5.7 times

faster querying and uses 20 times less disk space (better compression of the stored data).

In a container environment, Figure 12 shows general performance stats (Docker stats).

Memory usage is similar for both databases, but the percentage of CPU used is around 6

times more in MongoDB and the number of processes (PIDS) initiated are also higher.

Figure 12. Screenshot of Docker stats showing the consumption of InfluxDB and MongoDB in Docker containers.

In the CAP model (explained in 6.7.2 Non-relational databases), MongoDB is originally

considered CP: it is consistent and partition tolerant. To increase the availability of

MongoDB, replica sets should be used (at least three MongoDBs installed in the node).

Following a linear relationship, this would mean 3 times more percentage of CPU and

memory usage in Figure 12 and, consequently, 60 times more disk space usage than

InfluxDB (based on [Chur18]). InfluxDB, on the other hand, is a mix of CP-AP that does

not need replicas [Pato16].

Final choice. From the previous discussion it can be clearly extracted the conclusion that

a time series database like InfluxDB should be used to store the data in the Edge Node.

Prometheus, the alternative to InfluxDB also mentioned, is more focused on monitoring

applications, whereas InfluxDB is better for sensors (metrics, events, time series data)

and data analytics (supporting programming languages such as R or Python) [NaAb19].

Given the popularity of InfluxDB and these facts, a deeper comparison between these two

open source time series databases is not necessary in order to assure that InfluxDB would

suit to the Edge Node (requirements and functioning) better. The PoC of Onesait for i-

DE also chose InfluxDB as the database to be used (eWLCA, [OSMC20]).

49

Table 11. Summary of the comparison between Database alternatives

 SQL (e.g. PostgreSQL)

No-SQL

Document-Oriented

(MongoDB)

Time Series

(InfluxDB)

Storage

Format and

data

insertion

~Based on tables. Needs

JSON-to-table

conversion or definition

of JSON as a data type

for a field
✓Specifically

designed for JSON

documents

✓Designed for metrics,

events…

Table fields must be

predefined

✓Compatible with

JSON

✓Compatible with

MQTT and AMQP

through Telegraf

Performance

Difficult to scale
Test shows 6 times

more CPU

consumption and 4

times more open

processes than

InfluxDB (in Docker)

✓Better efficiency, data

compression and higher

speed than MongoDB

(external comparison)
Slow queries for semi-

real time applications

ACID

properties /

CAP model

✓Generally provides

ACID transactions

✓Provides ACID

transactions

✓Mix of CP-AP (CAP

model)

✓Is considered to be

CP (CAP model)

Needs at least 3

replicas to have

Availability (CAP

model)

Type of

license

✓Open source and

proprietary alternatives

✓Open source (free

community version)

✓Open source (free

community version)

Query

Language
✓SQL Own query language

✓SQL-like query

language

Maturity of

technology

✓Very mature. Some

were created more than

20 years ago (e.g.

PostgreSQL)

✓Very mature (2009) ✓Mature (2013)

Docker

availability

✓Most available as

Docker image

✓Available as Docker

image

✓Available as Docker

image

Additional

Information

✓Historically very used.

Easy to find support and

staff is typically

familiarized with this

type of databases

✓Most popular

Document-oriented

database (DB-

ENGINES)

✓Most popular Time

series database (DB-

ENGINES)

Recommendation: InfluxDB

50

7.4.4 Hardware

Choosing the right hardware is one of the most difficult parts of applying edge computing

in secondary substations. Some Edge platform vendors have developed their own specific

device whereas other vendors are more flexible and use a third-party device. Secondary

substations can be considered as high-risk installations due to the voltage, the devices it

contains and the temperatures that can be achieved (e.g. summer in the south of Spain).

The requirements and tests that must be satisfied by any device to be installed in an i-

DE’s SS are shown in ANNEX I. Hardware Requirements (insulation, radioelectric

disturbances, immunity, electrical tests, mechanical tests, and climatic tests). These tests

should be carried out by a laboratory that provides certification of compliance. In addition

to this, the device should not exceed the dimensions 220x140x130 mm (width x height x

depth) if it is going to be included in the electric cabinets currently deployed by i-DE.

Some of the main industrial computer manufacturers are Advantech, Lanner, Kontron and

Axiomtek.

51

7.5 Communications

As previously said, three main types of communications can be distinguished in the Edge

Node, inner communications between applications, communications with the

Management System and communications with other devices (in and out of the SS).

7.5.1 Inner Communications

The decision of using containerized applications also involves the need of an inner

communications protocol. In the traditional approach, where software is embedded in

hardware, the device would receive the necessary data and, either would be immediately

used, or would be stored to be used later to provide the functionality. In this new solution,

the Edge Node receives a large amount of data from the data concentrator, smart meters,

sensors, etc. but not all the data is relevant or will be used by every application. Therefore,

it is needed an inner communications protocol, to which every container (application) has

access, in order to provide to each application the data it needs to work. This provision

of data could be in the form of the necessary raw data, a message indicating where the

data is stored, etc.

Figure 13. Simple general representation of the inner communications in the Edge Node

There are tens of communication protocols designed for IoT architectures that could be

considered to be used for this purpose (except wireless protocols). In this project, only

MQTT (v3.1) and AMQP (v1.0) protocols will be considered, as they are among the most

used in IoT (they are light), have the support of large companies, use TCP as the transport

protocol and are free to use.

As presented in subsections 6.2 and 6.3, both protocols do not put restrictions on the

format of the message, so it could follow a JSON structure (very used to represent objects

and related information in IoT) or any other message structure. As they both are based on

publish/subscribe using an intermediary broker, the configuration of the communications

is rather simple for both protocols.

As only internal applications (dockers) are expected to be communicating through this

inner broker, at first, this does not have to be accessible from the outside world, that is to

say, the IP address of this broker is the localhost (with ports 1883/8883 for MQTT or

5672/5671 for AMQP).

52

It is already known that the MQTT protocol is lighter than AMQP. However, to put

numbers to that difference and to effectively compare these protocols, both MQTT and

AMQP have been tested in the configured Test Environment (6.8 Local Test

environment). In both cases, the brokers have been installed as Dockers: Mosquitto broker

in the case of MQTT and RabbitMQ in the case of AMQP. The test consisted on

publishing four dummy messages (JSON structured, same length each, without using

TLS) simultaneously on four different topics/queues every five seconds. Obviously, in

the real Edge Node, messages will be more complex, and the frequency of messages may

be higher, but the objective of this test was to make a comparison between MQTT and

AMQP working at the same time. The results of this test are shown in Figure 14 (in both

cases the messages were always correctly received by the subscriber). These are obtained

using Docker stats [Ref20].

Figure 14. Screenshot of the MQTT-AMQP comparison test results.

Figure 14 shows that MQTT uses 10 times less CPU and 100 times less memory than

AMQP. This extreme lightness is the reason why MQTT is so used in IoT, it can run in

almost any device and it works well. The column NET I/O indicates the amount of data

sent (input) and received (output) over its network (it is not static, it increases every five

seconds in this test) [Ref20]; although the messages are the same in both protocols, the

extra load added by AMQP produces this difference between NET I/O values. The

simplicity of MQTT is also shown in the number of processes (PIDs) of the container:

AMQP creates 86 whereas MQTT only creates one.

A deeper benchmarking of these protocols was carried out in [Naik17]. It determines that

AMQP is more interoperable than MQTT although it has a lower level of reliability since

it only has two quality of service levels versus the three levels that MQTT offers. AMQP

is also more standardized and secure than MQTT [Naik17]. Despite MQTT supports

TLS/SSL security, its authentication features are very poor (based on username &

password). On the other hand, AMQP supports different ways of including TLS (Single-

port TLS Model, Pure TLS and WebSockets Tunnel TLS Model [Naik17]) and SASL (for

authentication purposes).

If the containers deployed in the Edge Node are all authenticated and validated, and the

cybersecurity of the node is appropriate, there is no need of using advanced security

features for inner communications if the broker remains in the localhost, since they would

increase the weight of the inner communications and the complexity.

It must be remembered that the main objective of the Edge Node is to provide

functionalities, hence the more CPU and memory available for these, the better.

53

Considering this, the main requirements that the inner communications protocol must

have are reliability and lightness. These two requirements are satisfied by MQTT better

than AMQP. Besides, the MQTT functioning is a bit simpler than AMQP. For example,

it does not need to create the topic -queue in AMQP- previous to publication in that topic.

It also allows the use of wildcards to subscribe to more than one topic at the same time,

which in AMQP would be done using different types of predefined exchanges or using

multiple lines of code.

Final choice. Although AMQP would be a valid protocol to implement the inner

communications in the Edge Node, it is recommended the use of MQTT since it complies

better with the requirements of the Edge Node and it is also simpler to configure, while

being able to provide basic TLS in case it is needed in the future. MQTT is also the

protocol chosen by Onesait to be used in the inner communications of the Edge Node in

the PoC with i-DE.

Table 12. Summary for the selection of the inner communications protocol.

Main Requirements MQTT AMQP

Message format

compatibility

✓ No restrictions in format

of the message
✓ No restrictions in format

of the message

Simplicity ✓ Very simple ✓ Simple

Availability of a broker as

a Docker container
✓ Available ✓ Available

Lightness (comparison

test)

✓ 916 KiB memory usage 87.36 MiB memory usage
✓ 1 process

 86 processes
✓ 10 times less CPU %

QoS Levels (Reliability) ✓ 3 levels 2 levels

Recommendation: MQTT for inner communications in the Edge Node

54

7.5.2 Communications with Management System

The communication protocol to be used in the bidirectional communications between the

Edge Node and the Management System will also be discussed between MQTT and

AMQP. For this purpose, it is considered that the broker is hosted by the Management

System and not by the node, so more available CPU and memory can be expected. The

reasons why it is better to host the broker in the central system (Management System),

apart from the aforementioned CPU and memory savings in the node, are related to

simplicity and security:

• Simplicity. Both the Management System and the Edge Node will be clients of

the communications broker. If the broker is hosted by the Edge Node, it would be

the client of thousands of brokers, which is not an efficient approach in terms of

management (thousands of IP addresses to connect to).

• Security. When the broker is hosted by the central system, it is easier to provide

security to the communications (e.g. TLS) and to the broker, since its only one IP

address which is accessible and not thousands (reduction of “attack surface”).

The requirements for the communications with the Management System are significantly

different from the inner communications ones. The lightness of the broker running in the

central system is no longer very relevant; any utility’s OT system would not have any

problem to allocate resources to the broker. The relevance taken by the size of the

messages depends on the communications infrastructure between the SS and the central

system. One of the main aims of applying edge computing in SSs was to increase

processing capacity at the SS so that the amount of data sent to the central system could

be less or less frequent, hence the extra load added by the studied communications

protocols should not suppose a major problem for the infrastructure. What is especially

relevant is the security. The clients of the broker must be authenticated (have permission)

so no unauthorized client can publish/subscribe to topics/queues in the broker. The

confidentiality and integrity of the exchanged messages must be guaranteed as well.

Final choice. Considering these requirements and the characteristics of MQTT and

AMQP discussed in the previous subsection (7.5.1), AMQP can constitute a better option

than MQTT for this purpose:

• Security is at its core by allowing the configuration of TLS and SASL.

• The functioning of AMQP may be more appropriate. In AMQP both the

exchanges and the queues must be created before publishing any message

(otherwise, it raises an error, Figure 15). This implies that the utility must create

a list of queues and exchanges, and the relationships between them. It obviously

requires a great methodology and organization, but in exchange it gives control

over the communications broker to the utility. No unnecessary queues and

exchanges could be created without the express intention of doing so.

55

Figure 15. Screenshot of the error when trying to publish/subscribe to a non-defined queue (‘measurements’) in the

AMQP broker.

• Another unique feature of AMQP is that it supports a request/reply (Remote

Procedure Call, RPC) pattern, which can be used by the central system to obtain

results from an Edge Node on demand.

• The messages in AMQP are compatible with those messages that would be used

in the inner MQTT broker of the Edge Node. The content does not need to change

its format.

In the PoC developed by Minsait for i-DE, the protocol used is TLS-MQTT which,

although acceptable, differs from the recommended in this work for the communications

between the node and the Management System.

Table 13. Summary for the selection of the protocol for communications with the Management System

Main

Requirements
MQTT AMQP

Message format

compatibility

✓ No restrictions in format of

the message
✓ No restrictions in format of the

message

Security ✓ TLS/SSL
✓ TLS/SSL

✓ SASL (Authentication)

Control over

topics/queues

~ Topics are created as they are

used.

✓ No unnecessary queues and

exchanges can be created

unintentionally

Other

characteristics

✓ Publish / Subscribe. New

MQTT v5.0 (2019) includes

request/response feature

✓ Remote Procedure Call (sort of

request/response)

✓ Publish / Subscribe

Recommendation: AMQP for communications with the Management System

56

7.5.3 Communications with other devices

The Edge Node, at least, initially, is thought to be a data processer, not a measuring

device, although it should be able to provide this functionality in case the utility requires

it. It needs to communicate not only with the measuring equipment but also with the

actuation equipment (e.g. tap changer of an OLTC transformer, a breaker, etc.), whether

they are out or in the SS.

Although the electric utility might modify, in the distant future, the current

communication protocols used by the smart meters or by the DC (e.g. the STG-DC

interface) to better communicate with the Edge Node, the definition of these is out of the

scope of this work. Nevertheless, it must be remarked that, in the case of STG-DC, the

new protocol should keep the transactional control currently provided by the STG-DC

interface.

Since edge computing is still not applied massively in i-DE’s SSs, the solution must be

tested for a period of time in parallel with the current infrastructure, which means that the

Edge Node must be configured to “understand” the protocols currently in use. In other

words, it is considered that the Edge Node has to adapt to the existing devices and not the

opposite, at least while the solution is under test. This can be done using containers

(protocol adapters) dedicated to Modbus, STG-DC, DLMS, Zigbee, etc. that convert the

received information into a more human-readable format, such as JSON, and inject it

(publish it) into the inner MQTT communication broker (and into the database of the

node) to be used by the applications containers (Figure 16).

Figure 16. Diagram of the integration of the Edge Node with already in-use communication protocols.

Regarding the devices (mainly out of the SS) that have not been massively installed yet

(e.g. HEMS devices, DG inverters, EV charging points owned by individuals, etc.), their

future connection to the Edge Node in its corresponding SS should be considered, to take

full advantage of the functionalities that this solution could provide (7.3 Advantages,

Challenges and Functionalities). The communication standard to be used will definitely

57

depend on the environment of these new devices (e.g. coverage, internet availability…).

MQTT is the protocol mainly chosen by researchers to carry out tests and experiments

for this type of devices, and it is definitely one of the best options for communicating with

the Edge Node; the same inner MQTT broker could be used by allowing external

connections (taking security measures) or an additional broker for these communications

(maybe, the best option to avoid inferences with inner communications) could be

deployed in the node without any problem thanks to its lightness.

Nevertheless, the choice of the communication protocol for this purpose will require the

consensus of the main manufacturers and distribution utilities. In other words, a common

and normalized protocol should be agreed to make the deployment of these devices, and

their integration with this Edge architecture, easier.

Table 14. Summary for the selection of the protocol for communications with new devices

Main Requirements MQTT AMQP

Lightness (Broker is expected to

be in the Edge Node) ✓

Companies Support ✓ ✓

License ✓Open Source ✓Open Source

Security ✓ TLS/SSL

✓ TLS/SSL

✓ SASL

(Authentication)

✓ Consensus between manufacturers and distribution utilities is necessary

✓ Most researchers choose MQTT for communications with new devices

Recommendation: MQTT for communications with new devices

58

7.6 Management System

The Management System is the part of the architecture that interacts with the Edge Nodes

to deploy (or retrieve) functionalities and to receive information from these in a secure

and simple way. There are tens of Edge platforms in the market that have different

purposes, application areas, limitations, characteristics, etc. Most of these platforms are

thought for architectures that may differ from the eWLCA, taken as reference in this

work.

7.6.1 Criteria for vendor selection

MachNation, a company specialised in testing IoT platforms, publishes every year a

report called “IoT Edge Scorecard” whose executive summary is publicly available for

free [Hilt20]. The scorecard of 2020 studies 11 different IoT Edge platforms (Onesait

platform, the one developed by Minsait, is not included) and categorizes them according

to four main aspects [Hilt20]:

1. The capacity of processing edge data.

2. The capacity of managing edge devices.

3. The proposed architecture and how it integrates.

4. The strategy and business of the vendor.

This scorecard shows that most of the vendors who already have their Edge platform

ready for the market (good performance in aspects 1, 2 and 4 of the previous list) are also

the ones who are more focused on the software capabilities than on the hardware that is

deployed, which proves that the complexity of implementing edge computing is generally

more related with software than with hardware.

The analysis carried out in previous sections constitutes a good evaluation of aspect no.3

of the eWLCA for its integration in a SS of i-DE.

The main characteristics, according to MachNation [Toka17], that an IoT edge platform

should prove to have in order to lead the market are also the characteristics that better

suits i-DE’s requirements to implement edge computing at SSs:

• Support of different communications protocols so that different sources of data

can be used. As discussed in subsection 7.5.3, the eWLCA would be able to cover

this by using protocol adapters containers.

• The Edge compute device (Edge Node) should be able to work autonomously

offline. The communications between the management system and the device

(subsection 0) should only be focused on specific orders and on final reports sent

by the Node.

• The management is based on cloud. For some industries, a third-party cloud

provider might be a good option, but, in the case of electric utilities, the

59

management system should be on premises so that the cybersecurity does not

depend on a third-party.

• The architecture is independent of hardware and scalable. The eWLCA complies

with this fact (so does, therefore, Minsait’s solution for i-DE). However, some

requirements must be considered for this hardware in order to be installed in a SS

(subsection 7.4.4).

• The platform provides tools to analyse and visualise the data.

In addition to these main characteristics, the electric utility should consider the following

features when choosing the platform:

• Experience of the vendor. The electric utility will trust more those vendors who

have already worked on other projects with the utility or that have proven to

deploy a similar system in a comparable industry (e.g. gas distribution).

• A user-friendly GUI. The deployment of application and other actions in the Edge

Nodes must be easy to do through a GUI.

• Programming Languages for applications. As the analysed eWLCA uses Docker

as virtualization technology, any programming language (compatible with the

MQTT broker or with the database). can be used to develop a containerized

application It is important not to reduce the options to just one language like in

past projects (see State-of-the-Art).

• Integration with central system. Edge computing is not a substitute of the

computing carried out at the central system (i.e. “cloud” computing). Therefore,

the management system should have mechanisms to “share” the data with other

processes carried out in the central system and vice versa.

• Security measures. How the platform guarantees that an authorized device is

receiving or sending the correct information.

7.6.2 Remote access to the Edge Node

The Edge Node, from a computing point of view, is a remote server. When deployed, the

electric utility should protect it using a restrictive firewall, since an undesired access to

the node can compromise, not only data, but the security of the LV grid as functionalities

are implemented.

Typically, system admins use SSH to access remotely to a server in a secure way, using

TCP port 22, what is known as an SSH tunnel, in which the information that circulates is

encrypted. However, the use of a firewall makes it difficult to connect this way. In this

case, reverse SSH must be used. Briefly explained, reverse SSH consists on the remote

server stablishing a connection with the local computer (computer in the central system)

and waiting for the local computer to request an SSH connection through the same port.

Once this request is done, the local computer creates a new connection with the remote

server, a “reverse” connection [Mcka19].

60

7.6.3 Workload orchestration and containers deployment

The most widely used tool to orchestrate containers is Kubernetes (see 6.5 Kubernetes),

which is also one of the technologies, together with Docker Compose, defined by the

eWLCA for this purpose [OSMC20].

Kubernetes, as previously explained, is useful when the nodes are expected to work

together for a high-computing application and when the nodes are able to communicate

between them. The exchange of information between SSs is possible thanks to the level

2 aggregation (6.1 Overview of current infrastructure), but the architecture would need

an extra node (“master” node) to orchestrate the workloads of the “worker” nodes (Edge

Nodes) with Kubernetes, which would result in a fog computing architecture (such as the

one mentioned in the State-of-the-art) which differs from the one followed by Minsait in

its PoC and studied in this work.

Therefore, the tool used by Minsait in its PoC with i-DE is Docker Compose. Its

functioning is rather simple: it deploys all the containers listed in a docker-

compose.yml file accordingly to the instructions defined in the same file. These

instructions would include specific configuration parameters for the services, such as

users, passwords, default MQTT topics, CPU limit, etc. The definition of these

parameters can become quite complex for unexperienced users so, ideally, the

Management System should have a friendly GUI to automatically generate the .yml file.

 A simplified diagram of the deployment of applications in an Edge Node is shown in

Figure 17. This process is the one followed for Test #2.

Figure 17. Simplified diagram of the application deployment process. Icon source: https://icons8.com/

https://icons8.com/

61

8. Economic Impact

In this section the economic impact of applying the analysed edge computing solution is

briefly discussed, not only in terms of the possible savings and benefits that the new

approach would suppose compared to traditional procedures, but also in terms of the

benefits that could be obtained from some possible functionalities. The values obtained

in this section are only an estimation and may differ significantly under different

assumptions or input data, so this discussion must be interpreted as a collection of some

possible benefits and savings that the electric utility and the regulatory body should take

into account to implement this new paradigm that edge computing poses.

In Spain, the electric distribution is a regulated sector that is decoupled from generation

and retail. The pertinent regulatory body in Spain is the CNMC (National Commission of

Markets and Competence), which is in charge of stablishing the methodology to calculate

the retribution (and penalties) of distribution companies based on investments,

operational costs, quality of service and improvements.

In its last circular ([Cnmc19], dated December 2019), the CNMC defines three types of

investments to be retributed. Figure 18 summarizes them.

Figure 18. Classification of the investments made by electric distribution utilities. [Cnmc19]

According to Figure 18, and based on the expected functionalities and benefits of the

analysed solution, this should be categorized as a “Type 2” investment, so it must be

retributed accordingly to its audited value.

To deploy the analysed solution, the electric distribution utility would initially incur in

different costs:

• New installations (complete cost).

• Renewal of an installation (≥85% of the reference cost).

• Justification of actions whose cost is 150% the reference cost.

• Retributed according to the audited value with mid-term review.

Type 0

• Installations whose cost is <85% of the reference cost.

• Retributed according to the audited value.

• Must be classified by the CNMC.

Type 1

• Investments in digitalization and automation of grids, necessary
for the energy transition.

• Installations without an associated unitary cost.

• Retributed according to the audited value.

Type 2

62

• Initial implementation cost. Mainly the cost of implementing the management

system, expected to be provided by a third party (proprietary software), and

necessary software licenses.

• Cost of material: the hardware for the Edge Node, cables, adaptations of SSs etc.

• Cost of service: staff configuring the communications, displacements to the SSs

for the installation, configuration of the Management System, etc.

• Cost of applications: the associated cost of developing applications for the

functionalities of the Edge Node and their certification. This would be the only

cost per functionality once the Edge Node is deployed.

Most of these costs are difficult to estimate reliably since they depend on the providers

and on confidential information of the electric utility. Others, such as the cost of the

hardware for the Edge Node, can be estimated based on general market information.

For this section, the average hardware of the Edge Node is assumed to be similar to the

Axiomtek ICO300 Industrial IoT Gateway model8. According to Westward Sales, the

basic cost of this model is around 370€, so the final cost (with additional features and

considering that it must be previously certified, which is a one-time cost of around 5000€)

is assumed to be ~450€ per unit. The CNMC stablishes that the equipment related with

“Smart Grids” has a regulatory life of 12 years.

8.1 Savings related to the new approach for new

functionalities implementation

The decoupling of software from hardware analyzed in this project would change the way

the electric utility deploys new functionalities. Traditionally, when i-DE wants to

implement a new functionality that requires a new equipment (because it cannot be

included in any of the devices already installed and it cannot be implemented in the central

system), three providers are asked to develop, independently, the hardware+software ad

hoc solution, that would be like a “black box” for the utility. This way, the electric utility

can choose the best option while keeping the others as alternatives for the future, in case

that the chosen one has any problem, or the provider cannot longer maintain it. Therefore,

the investment needed for every development is multiplied by three and the process is

long, requiring around 2-3 years to see the new functionality deployed on field (1.5 years

if it is very urgent). This deployment is also costly since for every secondary substation

the equipment must be acquired and installed physically.

In the new approach using edge computing, with the Edge Node deployed, the

development process of new functionalities is strongly simplified. The hardware would

no longer be part of the development and all the efforts could be focused on the software.

8https://www.axiomtek.com/Default.aspx?MenuId=Products&FunctionId=ProductView&ItemId=1151&

upcat=134#

https://www.axiomtek.com/Default.aspx?MenuId=Products&FunctionId=ProductView&ItemId=1151&upcat=134
https://www.axiomtek.com/Default.aspx?MenuId=Products&FunctionId=ProductView&ItemId=1151&upcat=134

63

Although it depends on the complexity of the functionality, software typically takes less

time to be developed (Agile methodology), overall if it does not include a GUI, so in

around 3-4 months a new functionality could be deployed on field (after being certified).

With these short development times, and its reduced cost in comparison with the

traditional approach (since more competitivity for software developments is expected), it

is not worthy asking multiple providers to develop the same functionality. Once

developed, there is no additional cost during deployment since the software container can

be deployed remotely on the Edge Nodes.

Table 15 shows the different Time To Market (TTM) of these two approaches for a new

functionality. The traditional approach, apart from being more expensive, supposes 2.5

years less of benefits (operational and economic) that a new functionality could provide.

It also shows that the “typical” costs of a deployment would not appear in the new

approach (with the Edge Node already on field).

Table 15. Summary of the differences between the two approaches for the development of a new functionality.

Traditional

Approach

(Hardware+software)

New Approach (Edge

Node)

(Only software)

Average development time 3 years 4 months

No. Providers needed 3 1

Competitiveness for developments Low Very high

Cost of material ✓

Cost of service ✓

Cost of application ✓ ✓

To compare and estimate the equivalent cost for the deployment of a new functionality in

the two approaches, the following assumptions are made:

• A dedicated device is needed, in the traditional approach, for every two

functionalities listed in this work (7.3 Advantages, Challenges and

Functionalities, 15 functionalities ≈ 8 devices).

• Average price per device similar to the Edge Node device (~450€).

• Deployment in 25% of i-DE’s SSs (~24000 secondary substations).

• A single Edge Node device would be able to support these 15 functionalities at

the same time in a SS.

• Development cost is not considered.

Under these assumptions, by dividing the cost of hardware deployment between the

number of functionalities that this deployment would support, the equivalent cost of

deployment per functionality is estimated in order to give an idea of the economic

64

magnitude (Figure 19). The result shows that with the edge computing solution analyzed

in this work, the equivalent cost of just deploying one new functionality is reduced in an

87.5%. This difference becomes greater as the number of functionalities that can be run

in the Edge Node increases.

Figure 19. Difference between the equivalent cost of deploying a single functionality in 25% of i-DE’s SSs for the

two approaches: 5.76 M€ for one device / two functionalities approach and 0.72 M€ for the Edge Node approach

(edge computing)

The deployment of additional devices for new functionalities (traditional approach)

proves to be inefficient sometimes. For many new functionalities, the cost-benefit

analysis may result negative, which makes them an unjustifiable investment before the

regulatory body. Furthermore, the inclusion of a new device in a SS is many times

unviable due to space restrictions. For this reason, the electric utility usually tries to

contact the manufacturers of the already-deployed devices to evaluate if it is possible the

inclusion of the new functionality in the existing software as an update. Usually

manufacturers adjust the hardware to the initial functionality, so the hardware might need

to be modified or errors in the initial functionality might appear as a consequence of the

update.

8.2 Savings related to device substitution in a SS

If edge computing constitutes a new approach for the deployment of new functionalities,

it happens the same with the functionalities provided by currently deployed devices (e.g.

DCs, RTUs, etc.). If this new way becomes successful, the path to follow would be the

substitution of other devices in a SS by their equivalent software container running in the

Edge Node. Therefore, the savings would be of the same type as those discussed in 8.1.

65

8.3 Savings in OPEX and benefits related to predictive

maintenance applications

The implementation of the Edge Node in a SS would also suppose a reduction in OPEX:

since it would substitute some electronic devices, the maintenance costs of these would

be saved by the utility. Besides, the customization in the deployment of functionalities

depending on the SS would allow the optimization of the control and monitoring of each

SS, what would also lead to reductions in OPEX.

One of the functionalities mentioned in this work, that could be implemented in the Edge

Node in the future, was predictive maintenance applications. The Edge Node could

process semi real-time data from different sensors (e.g. sensors monitoring parameters of

the transformer, the feeder, other equipment, etc.) to calculate the Remaining Useful Life

(RUL) so that the state of the assets is perfectly known, and their maintenance can be

planned in advance by sending a report to the central system. According to a report by

PWC and Mainnovation [HKDM18], by applying predictive maintenance the asset could

increase its lifetime by 20% and achieve an overall maintenance cost reduction of 12%

(OPEX).

The electric distribution industry is considered to be a capital-intensive industry.

Therefore, the electric utility must guarantee the lifetime of its assets until matching their

regulatory life, at least (to recover the initial investment). In Spain, if the utility manages

to increase the lifetime of the asset above its regulatory life, there is an increase in the

regulated retribution for operation and maintenance (O&M), which receives the name of

“Retribution due to Lifetime Extension” (RLE)9 [Cnmc19].

For example, a transformer has a regulatory life of 40 years according to the CNMC. If

its lifetime is extended by 20%, that would suppose 8 years of additional retribution for

the utility in concept of RLE, as Table 16 shows.

Table 16. RLE factor for each extended lifetime year. Calculated according to the formulas provided by the CNMC in

[Cnmc19]

Additional Year 1 2 3 4 5 6 7 8

Additional retribution in O&M

(%) (RLE)
30% 30% 30% 30% 30% 31% 32% 33%

9 In Spanish, this concept is REVU: “Retribución por Extensión de Vida Útil”.

66

8.4 Savings in Central System computing capabilities

Processing data at the edge of the LV network would alleviate the computing

requirements in the Central System. As an example, the savings of running a connectivity

algorithm (developed by Ariadna Grid) are estimated in this section. To run the algorithm,

the S91 report by the LV advanced supervisor must be provided per line and day, adding

270 kB with respect to when the algorithm is not going to be executed, according to i-DE

and Ariadna Grid. i-DE expects to implement LV advanced supervision for around

550,000 lines. Considering the simultaneous execution of the connectivity algorithm in

Edge Nodes for this number of lines, the size of the data avoided to be processed in the

central system would be 148.5 GB/day.

To estimate the economic value of these savings the prices of using the Dataflow tool of

Google Cloud are used (Table 17). Since i-DE uses its own servers, the OPEX are difficult

to estimate for these, so they are compared to the costs of renting a third-party

infrastructure.

Table 17. Cost in € for a Google Cloud server in Belgium (europe-west1). [Data00]

Type of

worker
vCPU / h

Memory (per GB

and hour)

SSD Storage (per

GB and hour)

Processed data (per

GB)

Batch 0.05015 0.0035462 0.0002533 0.00935

The cost of processing 148.5 GB of data per day during a year using Google Cloud would

be ~507€. If this daily amount data is stored during, at least, one month (30 days, a total

of 4,455 GB), the cost of storing it in SSD would be ~9885€ per year.

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 148.5
𝐺𝐵

𝑑𝑎𝑦
· 365 𝑑𝑎𝑦𝑠 ·

0.00935€

𝐺𝐵
= 506.79€

𝑆𝑆𝐷 𝑐𝑜𝑠𝑡 = 148.5
𝐺𝐵

𝑑𝑎𝑦
· 365 𝑑𝑎𝑦𝑠 · 24

ℎ

𝑑𝑎𝑦
· 30 𝑑𝑎𝑦𝑠 · 0.0002533

€

𝐺𝐵 · ℎ
= 9,885.24€

According to Google Cloud [Data00], the Batch worker consists on one vCPU, 3.75 GB

of memory and 250 GB of storage. To store 30 days of data (4,455 GB), 18 Batch workers

would be needed. Assuming that these workers would be working at half of their capacity,

the cost of these vCPUs would be ~4,000€ and the memory usage would be ~1,000€.

𝑣𝐶𝑃𝑈 𝑐𝑜𝑠𝑡 = 18 · 50% · 365 𝑑𝑎𝑦𝑠 · 24 ℎ𝑜𝑢𝑟𝑠 ·
0.05015€

𝑣𝐶𝑃𝑈
= 3,953.83€

𝑀𝑒𝑚𝑜𝑟𝑦 𝑐𝑜𝑠𝑡 = 18 · 50% · 3.75𝐺𝐵 · 365 𝑑𝑎𝑦𝑠 · 24 ℎ𝑜𝑢𝑟𝑠 ·
0.0035462€

𝐺𝐵 · ℎ𝑜𝑢𝑟
= 1,048.43€

Therefore, the economic savings of executing the connectivity algorithm in the Edge

Nodes instead of the cloud (Central System) would account for ~15,000€ per year only

67

in computing. In addition to this, the corresponding reduction in data transmission (i.e.

communications) has been valued by i-DE to be up to ~280,000€ per year (source: i-DE).

The previous savings are only in terms of operation. In terms CAPEX, i-DE uses its own

centralized server infrastructure, so the savings in this aspect should also be considered

internally by the utility.

8.5 Savings related to energy losses

According to the CNMC [FGHR16] , in 2016 the sum of both technical and non-technical

losses in the distribution system (i.e. transmission not considered) was estimated to be

20000 GWh which, at an average price of ~48 €/MWh (average price in 2019 in Spain,

according to the market operator OMIE), supposes an overrun for the system of around

960 M€, which is distributed to be paid by every consumer. From these losses, it is

believed that between 150-300 M€ are non-technical losses (e.g. illegal connections,

smart meter manipulation, etc.). For this work, 200 M€ will be considered.

i-DE supplies energy to around 11 M customers (metering points). If it is assumed that

the distribution of the losses could be proportional to the number of clients10, i-DE’s grid

would mean around 38% of the losses in the distribution level of Spain (Figure 20), valued

in ~364.62 M€. From this losses, 64% take place in the LV grid (≤1 kV) [FGHR16],

which is something to be considered since the Edge Node would be installed in SSs,

receiving data mainly from the LV grid.

Figure 20. Approximate percentage of consumers per electric distribution company in Spain. Based on the number of

meters provided by the CNMC in [PVBL19] and by the CIDE [Cide00]

10 This also implies the assumption that the clients are similarly distributed, the quality of the grids is similar

for every utility, similar % of rural/urban clients, etc. No official data about the electric losses per company

is public, so the results obtained in this section are approximated.

68

Table 18 shows an estimation of the annual value of the technical and non-technical losses

for i-DE based on the assumptions and data already mentioned. These values will be used

to estimate the potential savings for the system, derived from the deployment of the

solution based on edge computing discussed in this project and some of its possible

functionalities. It is important to remark that these savings are for the system, not for the

utility. The economic impact of these savings for the utility depends on how the regulatory

body retributes the reduction of losses (incentives), which is based on the self-

improvement of the utility respect to previous years and limited to up to 2% of the annual

retribution of the utility [Cnmc19]

Table 18. Estimated annual value of technical and non-technical losses for i-DE

8.5.1 Devices consumption

The energy consumption of SS’s devices is considered as non-technical losses. The

grouping of functionalities in a single device (Edge Node) has its impact on energy

consumption (less devices in the SS). Assuming an average power consumption of 10W

per device (an Intel Atom processor consumes 8W), and considering that it is expected to

be working 8760 hours per year, the amount of energy consumed in a year accounts for

87.6 kWh, which has an estimated yearly cost of 4.2€ (average price of 48€/MWh in 2019

in Spain). This would mean a saving for the system of ~0.1 M€ in energy per device and

year if it is installed in, at least, 25% of i-DE’s SSs.

8.5.2 Fraud detection

The circular published by the CNMC in December 2019 [Cnmc19] considers that the

fraud detection incentive that was specified in the regulation has not been traduced into a

real improvement in this area by the distribution utilities. For that reason, the CNMC

proposes to delete this type of incentive and include it in the proposed losses reduction

incentive.

Specialized fraud detection algorithms deployed in the Edge Node can help the utility to

better (faster) detect anomalies and frauds in the electric consumption. Although the

possible change in the regulation makes it even more difficult to estimate the value of the

economic savings/retributions that this improvement could provide, they can be discussed

in a qualitative way.

According to Smartgrids Info [Smar19], an electric distribution company similar to i-DE

in the number of clients (e-Distribución, see Figure 20) detected in 2018 around 65000

fraud cases with an efficiency of 40% (4 out of 10 inspections concluded in fraud

Estimated i-DE Non-technical losses (M€) 75.96

Estimated i-DE Technical losses (M€) 288.66

Total (M€) 364.62

69

detection). This efficiency could be improved by knowing better the LV grid (e.g. phase

connectivity, line impedance, line balance, etc. possible functionalities deployed in the

Edge Node) and by implementing fraud detection algorithms (whether in the Edge Node

or in the central system using the results from the node). There are three possible

scenarios:

• The number of fraud cases detected remains approximately the same but requiring

less inspections (less “false positives”), which would let the utility to reduce the

expenditure on inspections.

• Fraud cases that could remain undetected previously are now detected. After the

deletion of the incentive, the economic retribution of this improvement will be

extremely difficult to estimate for the utility, but it will keep its value for the

system.

• A combination of the two previous. This would be, obviously, the most beneficial

scenario.

In the odd case that no improvement is achieved in comparison to current methods, the

wide range of possible functionalities for the Edge Node are believed to be enough to

justify its future deployment.

8.5.3 Phase balancing

One of the benefits that can result from functionalities of the Edge Node, such as the

phase connectivity algorithm (i.e. which phase each meter is connected to) or even

demand response schemes (e.g. reduction of loads connected to a specific phase due to a

strong phase imbalance), is a more balanced grid. According to data sent by i-DE to the

CNMC, an optimal phase balancing would suppose a 10% reduction of (technical) losses

[FGHR16].

Considering this, to calculate the expected savings of phase balancing (by i-DE) for the

system, four scenarios are studied, assuming a linear relationship and a 5% reduction in

the average price of energy (€/MWh) per year due to the penetration of renewables

(decreasing economic value of losses):

1. 25% of achievement (2.5% reduction of technical losses).

2. 65% of achievement (6.5% reduction of technical losses).

3. 100% of achievement (10% reduction of technical losses).

4. Progressive achievement (+2.5% reduction each year)

Figure 21 plots the savings for the first three scenarios for each year and the price of

energy used for each (second axis). Table 19 gathers the data plotted and the calculated

present value for each scenario.

70

Figure 21. Estimated economic savings per year for phase balancing in i-DE considering different percentages of

achievement. Calculated using the estimation of 20000 GWh of losses in 2016.

Table 19. Estimated economic savings for the system under different achievement scenarios for phase balancing in i-

DE. Present Value of each scenario assuming r=2.58% (WACC of Iberdrola on 18/06/2020)

Achievement Scenarios for Phase Balancing

100% 65% 25% Progressive

Year 1 25,888,339 € 16,827,420 € 6,472,085 € 25%

Year 2 24,593,922 € 15,986,049 € 6,148,481 € 50%

Year 3 23,364,226 € 15,186,747 € 5,841,056 € 75%

Year 4 22,196,015 € 14,427,410 € 5,549,004 € 100%

PV (r=2.58%) 90,300,694 € 58,695,451 € 22,575,173 € 54,275,283 €

The worst scenario studied (only 25% of achievement, 5%-annual reduction in the price

of energy) would mean ~22.5 M€ of total savings (present value) in four years for the

entire system. The progressive scenario, which is the most natural, would mean ~54 M€

of savings and it would also be the scenario where the utility can benefit more from

incentives (it self-improves). The possible incentives that the utility could receive are not

calculated in this section due to the lack of available information and complexity of the

method, so it is limited to the “social” benefit.

71

8.6 Summary of economic impact

Table 20. Summary of the economic impact of applying edge computing at SSs

Investment classification by CNMC
Type 2: Retribution

based on audited value

Regulatory life 12 years

Edge Node cost (per device) 450 €

Cost of the analysed technologies for the architecture:

• Containerization

• InfluxDB database

• MQTT protocol

• AMQP protocol

• Linux OS

0€

Cost of functionality development in comparison to

traditional approach (hardware+software)(Table 15)
3x less (minimum)

Equivalent cost reduction in new functionality

deployment
87.50%

Retribution increment per asset and year due to RLE

(Predictive Maintenance applications)
≥ 30%

Cost reduction in maintenance (Predictive Maintenance

applications)
Up to 12%

Decentralisation of Ariadna's connectivity algorithm

Computing and storage savings per year 15,000 €

Communications savings per year 280,000 €

Energy losses

Savings per device substituted/avoided and year

(considering 25% of i-DE's SSs)
100,000 €

Fraud detection

Faster detection

Less "false positives" =>

less inspections

New frauds detected

Savings per year for phase balancing (25% scenario) ≥ 5,500,000 €

72

9. Tests

9.1 Test #1: Real-time balance in local test environment

This test consists on running a Docker container (developed in python) that calculates, in

real time, the active power balance between a LV supervisor (whose ID is known) in a

SS and the smart meters connected to the same feeder, so that the result is the sum of the

power losses in the LV feeder (no distributed generation is considered).

 This test is carried out in the local test environment (6.8 Local Test environment),

(without any access to devices that could provide real-time data). To simulate the entrance

of data in real time, a random data generator is developed using the Node-RED container

(6.6 Node-RED) of this environment. This generator, shown in Figure 22, generates data

in four different JSON documents (one per device: one LV supervisor and three smart

meters) that follow the same structure (Table 21). Then, it waits until every JSON

document is generated, creates a single JSON that includes all the data and finally

publishes this JSON on an MQTT topic (which, in this case, is “measurements”) to be

used by the balance application. Additionally, this generator also stores each individual

JSON in the local InfluxDB database and publishes them on topics associated to each

device.

Examples of the JSON documents generated by this random data generator are shown in

Table 21. The structure of these JSONs is just an example so that the balance can be

calculated, since no “official” JSON structure is defined yet for this type of data (i-DE

and Futured are currently working on this definition, as mentioned in 7.4.3). For this test,

data is generated every 10 seconds. This rate was chosen just to check performance in a

fast way, but it can be easily changed by modifying the “timestamp” block in Figure 22.

Figure 22.Screenshot of the random data generator developed in Node-RED. It generates data pretending to be a LV supervisor

and three smart meters

73

Table 21. Examples of the JSON documents generated by the random data generator

Example of individual JSON

document generated per device

Example of JSON document used by the

balance application

{

 "meter_id": 1,

 "date":"2020-07-06T09:15:46.614Z",

 "activepower": 8377.501330215542,

 "type": "triphasic",

 "voltage": 235.5713914634916

}

{

 "supervisor": {

 "meter_id": 1,

 "date":"2020-07-06T09:09:25.069Z",

 "activepower": 9003.348300075664,

 "type": "triphasic",

 "voltage": 236.4842570622542

 },

 "meter1": {

 "meter_id": 2,

 "date": "2020-07-06T09:09:25.070Z",

 "activepower": 2640.9651014563265,

 "type": "monophasic",

 "voltage": 229.67703850550868

 },

 "meter2": {

 "meter_id": 3,

 "date": "2020-07-06T09:09:25.071Z",

 "activepower": 2745.90033160985,

 "type": "monophasic",

 "voltage": 222.28580672618412

 },

 "meter3": {

 "meter_id": 4,

 "date":"2020-07-06T09:09:25.072Z",

 "activepower": 2998.384320984686,

 "type": "monophasic",

 "voltage": 220.839067261682

 }

}

Although the data is generated randomly, the generator is designed to be coherent with

reality in different aspects:

• The active power measured by the supervisor varies between 7 and 10.5 kW

(approximately 3.5 kW per meter). The power measured by each meter is the

result of applying a random factor to the supervisor’s power. The range of values

of this factor for each meter is shown in Table 22.

• The voltage measured by the supervisor varies between 235 and 238 V. As with

the active power, the voltage measured by each meter depends on a random factor

applied to the supervisor’s power that varies in a defined range (Table 22).

Table 22. Range of values for the active power factor and voltage factor for each meter.

 Active Power

Factor range

Voltage

Factor range

Meter 1 [0.27, 0.30] [0.96, 0.98]

Meter 2 [0.30, 0.35] [0.94, 0.96]

Meter 3 [0.30, 0.35] [0.91, 0.94]

74

The script to calculate the balance is developed in python and containerized afterwards

(Code 4). The pseudocode of the application is shown in Code 3. At the end of the code,

it waits 9 seconds to start again to receive messages through MQTT (the rate of generation

was set to one message every 10 seconds).

Code 3. Pseudocode of the real-time balance script developed.

CONNECT to localhost MQTT broker container, port 1883

IF CONNECT is successful:

PRINT “Successfully connected!”

GO TO #1

ELSE:

PRINT "Bad connection Returned code=" and show error code

#1

WHILE TRUE:

SUBSCRIBE to “measurements” MQTT topic

RECEIVE JSON Document

EXTRACT “activepower” values

EXTRACT “meter_id” values

MATCH “meter_id” WITH “activepower” in a “power” DICTIONARY

SET Balance TO 0

FOR “meter_id” IN “power”:

IF “meter_id” == supervisor’s ID:

Balance = (Balance + “activepower”)

ELSE:

Balance = (Balance – “activepower”)

CREATE JSON message WHERE:

“balance_w” = Balance

“percentage” = Balance*100/(supervisor’s “activepower”)

PUBLISH JSON message ON “feeder/balance” MQTT topic

WAIT 9 seconds

Once the result of the balance application is published on the “feeder/balance” MQTT

topic, it is stored in the same InfluxDB database as the JSONs for each device, but with

a different tag (“balance” in this case).

Figure 23. Screenshot of the Node-RED flow to store the JSON published on "feeder/balance" MQTT topic, in the

local InfluxDB database

Finally, the real-time data and the resulting balance can be visualized in a Grafana

dashboard (

75

Figure 24) since everything is being stored in the local InfluxDB database. Specifically,

Figure 24 shows:

1. The active power measured by the supervisor and the result of the balance (active

power losses) during the last five minutes in the upper left graph.

2. The voltage of every device during the last five minutes in the upper right graph.

3. The average percentage of losses in the last five minutes (9.5%).

4. The average voltage (monophasic) of each device in the last five minutes.

Figure 24. Grafana dashboard to visualize, in real time, the data from the devices and the results of the balance

application (9.5% of average losses and the absolute losses)

The outcome of this test cannot be discussed in terms of how this feeder performs (as it

is random data), but it shows the possibilities that the solution could provide. The real

time balance application can be easily adapted to a real environment, since it is only

necessary the supervisor’s ID, the specific structure of the JSON document that contains

the input data and the time between measures, as Test #2 will show. It is independent of

the number of smart meters connected, as it can be deduced from Code 3.

This test also shows how different containers (e.g. Node-RED, InfluxDB, the balance

application…) can work together without any difficulty by using the inner MQTT

communications broker. If, for any reason, the balance application stops working or raises

an error, the rest of containers would not be affected as it only interacts with them through

the inner MQTT broker: the flow of Figure 23 would wait until receiving a message and

the data generated would still be published on the MQTT topics and stored in the local

InfluxDB database.

Finally, the possibility of deploying data visualization programs such as Grafana (the one

used in Figure 24) or Chronograf as Docker containers, can be very useful for the utility’s

staff.

76

In terms of computing performance, Figure 25 shows the Docker stats for the containers

actively used in this test. The InfluxDB container (database) takes up the most resources

(CPU% and MEM%), which is something expected given that 5 insertions of data are

done every 10 seconds and that the Grafana dashboard does 11 SQL-like queries every

10 seconds in order to represent the data (Figure 24). The MQTT broker container keeps

a consumption similar to the one obtained during the AMQP-MQTT comparison test

(Figure 14, subsection 7.5.1 Inner Communications), keeping an outstanding

performance. It is remarkable the low requirements of the application developed for this

test, the balance.app container. Although the code is not very complex, since it only

consists on data processing, balance.app contains its own python environment (light

version) and an additional library to interact with the MQTT broker, so the stats shown

in Figure 25 for this container are acceptable. The stats for the Node-RED container in

this test are not worth discussing since it is used for data generation, which would not be

its use in a real deployment (data processer).

Figure 25. Screenshot of Docker stats for test #1

In conclusion, this test in the local test environment shows how a simple real time

application would work in the edge computing solution analysed in this project, and how

data can be easily stored and visualized in the node without the need of sending it

immediately to the central system for that purpose.

77

9.2 Test #2: Real-time balance in remote test environment

using S02-like reports

The objective of test #2 is to check the overall process from the development of the

application to its deployment (using Onesait management system) in an Edge Node “on

field” that already has other containers deployed and that already receives data that

follows a determined structure. Therefore, the Remote Test environment is used for this

test (described in 6.9 Remote Test environment).

The STG-DC simulator of this environment generates random S02 hourly reports,

converts them into JSON (STG-DC original reports are in XML format, as explained in

subsection 6.1) and publishes them on the inner MQTT broker. The number of simulated

devices is 24 (1 supervision meter and 23 residential meters). Table 23 shows the main

structure followed by the resulting JSON document. The STG-DC specification

[CMFL15] titles the S02 report as “Daily incremental”, and it contains the values of six

magnitudes (2 active and 4 reactive) per meter and hour. The relevant magnitudes

(signalId) of this report to calculate the balance are:

• AI. Active Import. Measured in Wh for standard meters and kWh for supervision

meters.

• AE. Active Export. Measured in the same way as AI.

Additionally, the ID of the device (deviceId) must be extracted to perform the operation.

Table 23. Example of part of the JSON document that contains the AI signal data for the supervision meter. This

structure is repeated for every magnitude contained in a S02 report and for every meter.

As, in this test, the S02-like report in JSON (Table 23) is used as data input, the

application developed for test #1 (9.1 Test #1: Real-time balance in local test

environment) is modified in order to extract the relevant information from these reports.

The python code of this application can be seen in Code 6, ANNEX III. Code developed.

{"profile":"STGDC",

 "deviceId":"DC1-METER0000",

 "signalId":"AI",

 "signal":"ACTIVE_ENERGY",

 "description":"Active Import",

 "value":"2.84",

 "number":2.84,

 "timeStamp":1596551391727,

 "timeStampInNanos":1596551391727000000,

 "deviceType":"SUPERVISION",

 "temporality":1

}

78

Once the code has been modified, the process to deploy it in the remote test environment

is the one shown by Figure 17 and detailed below:

1. Application development.

2. Generation of the docker image. Using Dockerfile shown by Code 4 and docker

build command. As it can be observed, Code 1 (subsection 7.4.1) is inserted to

retrieve access to the sh and bash console (security reasons).

Code 4. Dockerfile used for Docker image generation. Used for test #1 and #2.

FROM python:3.8-slim-buster

Keeps Python from generating .pyc files in the container

ENV PYTHONDONTWRITEBYTECODE 1

Turns off buffering for easier container logging

ENV PYTHONUNBUFFERED 1

Install pip requirements (paho-MQTT library)

ADD requirements.txt .

RUN python -m pip install -r requirements.txt

RUN /bin/rm -R /bin/sh

USER 9000

ADD balance.py /

CMD ["python", "./balance.py"]

3. Upload image to registry. Using docker login command and the user and

password provided by Minsait. Due to security and confidentiality reasons, neither

these credentials nor the address of this registry are shown in this work. The

upload is done using docker push command.

4. Update docker-compose.yml in the git repository of the management system.

Since this .yml file contains the configuration and details of other containers that

are already deployed in the remote node, Code 5 only shows the piece of code to

be included for the balance application developed. Except for the container name,

the omission of any other field in Code 5 would, in the best case, disable the

balance application and, in the worst case, raise an error during deployment. The

application is configured to restart every time the Edge Node is rebooted.

Code 5. Configuration of the balance application developed in this work to be included in the Docker-

compose.yml file in the private git repository.

version: '3'

services:

 testbalance:

 restart: always

 image: [url of the image in the registry]

 container_name: edge.testbalance

 depends_on:

 - mqtt

 links:

 - mqtt

79

 networks:

 - edgenet

networks:

 edgenet:

 driver: bridge

5. Update containers deployed using the command available in the management

system provided by Minsait. Although only one application is added, the system

updates all the containers listed in the docker-compose.yml. Steps 6, 7 and 8

(Figure 17) are done automatically afterwards.

Once deployed, its correct functioning is checked using a node-RED flow which

subscribes to the MQTT topic (“test/balance”) where the balance result is being published

(Figure 26).

Figure 26. Node-RED Flow screenshot to check that the balance application deployed in the remote test environment

works correctly

In terms of computing requirements, the modified balance application container presents

the same values as in test #1 (Figure 25).

As opposite to test #1, where the results of the balance application were also inserted in

the local InfluxDB database (see Figure 23), in this environment the ports of the database

were not accessible, so the insertion of data from the “test/balance” topic into the database

could not be done in a simple way through node-RED. It would be done by changing the

configuration of the database in the Docker-compose.yml or by using Telegraf, whose

configuration file is also complex. Due to the nature of this environment (own by

Minsait), this configuration was not modified and, therefore, the resulting balance was

not stored in the database during the test.

80

10. Conclusions

This project has analyzed the technologies (and their alternatives) involved in an edge-

computing-based solution that follows the eWLCA [OSMC20]; the advantages,

disadvantages, and functionalities that this solution could have in the LV distribution and

its economic impact on the system and on the utility (i-DE), fulfilling the objectives

initially set. Furthermore, the solution has been partially tested using two different test

environments (local and remote) by developing an active energy balance application that

works in real time. Considering this, the following conclusions can be extracted:

► The technologies proposed by the eWLCA are, in general, appropriate for its use in

the LV distribution industry. A good level of intellectual property protection in

Docker containers can be easily achieved by taking the measures listed in subsection

7.4.1. Additionally, the OS of the Edge Node should be one already homologated by

the utility to ease future maintenance.

► The modularity of the solution (container-based) allows the deployment of

functionalities as independent microservices based on the specific requirements and

characteristics of the SS. That is to say, the deployment of microservices in SSs can

be optimized to only deploy those which would really be useful in a determined SS

or even during a determined period of time.

► Each of the three communications environments (inner, with management system

and with other devices) of the solution have different requirements. This work has

evaluated them and recommends the use of AMQP instead of MQTT (+TLS) for the

communications between the Edge Node and the central system, increasing security

in exchange of a higher load in communications. The use of MQTT for the other two

environments is justified.

► The decoupling of software and hardware is a tendency among the edge platform

vendors and one of the main advantages of the solution. However, finding the

hardware that complies with all the requirements to be installed in a SS while

providing acceptable computing capabilities, and at a good price, represents a major

challenge that will require a deeper collaboration with manufacturers at these initial

phases of implementation.

► The economic impact that the solution would have on the system and on the utility

has a strong dependency on the final number of functionalities supported (hardware

limitations) and on how the regulatory body retributes the improvements and

investments of the utility. Nevertheless, the savings, benefits and advantages

identified in this work for this solution are significant enough to justify the use of this

edge computing solution in SSs.

81

► Three main critical elements are identified in the container deployment process

(Test #2): the private container registry, the private git repository, and the

management system. A successful attack over any of these elements would suppose

a high operational and property risk, therefore they should be under the control of the

utility’s cybersecurity department.

► A specification that defines the structure of the messages to be used in the Edge Node

(e.g. JSON version of the STG-DC reports) and the inner MQTT topics used is

essential, since, with it, many processing applications could be developed and tested

in a local environment in its final version, as test #1 showed (adaptation for test #2

would not have been necessary). This specification should also include the structure

of the reports elaborated by the microservices deployed.

► The generation of a Docker image is found not to be an easy process. The employees

of the utility would need some training and a guidebook to develop applications

internally. The upload of the image to the registry is through the command line, which

is not very user-friendly.

► The configuration of a container in the docker-compose.yml file can become

extremely complex. Wrong docker-compose.yml configuration can result in errors

during deployment, data losses, errors in communications, etc. This sensitivity to

errors in configuration could be minimized in future phases of the PoC carried out at

i-DE by, for example, the development of a user-friendly GUI to automatically

generate this file or to check its syntax.

► Once deployed, containers cannot be easily reconfigured online. They have to be

stopped and deployed again with the new configuration. The described (and tested)

process in this work, at this initial phase of the PoC of the solution, deploys all the

containers every time a new application is added or reconfigured, which is not

advisable during operation (i.e. no application is running during some seconds in the

node). These two aspects are especially relevant in the case of the database container,

which should be operational full-time and that, currently, has to be reconfigured every

time a new application (that uses a new MQTT topic) is deployed (if the database port

was available, node-RED could be easily used for this purpose). This is expected to

be solutioned at future phases of the PoC.

► Visualization (e.g. through Grafana or Chronograph) of the data stored in the node is

relatively simple to achieve (it is based on SQL-like queries) and can be very useful

for the utility. As test #1 showed, it would even be possible to visualize “real time”

data as it is received and processed by the node, without the need of storing it in the

central system, and increasing the visual monitoring of the LV grid at the SS level.

► The fact that the base technologies of this architecture are freely available and open

source, allows the utility to partially avoid vendor-locking (not in the case of the

82

management system) and promotes the research and development of functionalities

by academics and industry, since, as test #1 has shown, the Edge Node can be

reproduced at low cost.

► This use of open source technologies, combined with the modularity of the solution,

provides great flexibility for the utility to substitute in the future those technologies

that become obsolete or when a better alternative technology arises.

All in all, the application of edge computing at the secondary substation level has the

potential to be the new paradigm of how the LV grid is monitored and controlled,

providing great benefits to the utility, to the system, and to the electric industry in general.

The technologies used in the analyzed architecture are found to be the appropriate,

although the deployment process tested should improve on user friendliness and on the

capacity of making online configuration changes and new application deployments.

However, these aspects, together with the hardware challenge, are close to be solved in

future phases of the PoC developed at i-DE.

11. Recommendations for future works

Further to the analysis carried out in this work, some recommendations for future works

are:

• Development of protocol adapter containers (e.g. STG-DC, Modbus, etc.).

• Classification of secondary substations according to their characteristics,

requirements, and necessary functionalities to standardize microservices

deployments according to this classification (i.e. customization of functionalities

per type of SS).

• Study the future use of an IoT protocol (MQTT, AMQP, CoAP…) to

communicate with smart meters while keeping PLC PRIME communication.

• Definition of the internal data models to be used in the solution taking WoT as

reference.

• Taking advantage of this solution and the valuable information it will provide,

study/develop the use of digital twins of SSs and the assets contained in them.

• Development of software microservices to provide functionalities in the Edge

Node (similar to the balance application developed for this work).

• Study in depth (and develop) the use of edge computing for new energy services

(i.e. DR schemes, energy storage, EV integration, etc.) at LV distribution level.

Study technical and regulatory viability of these functionalities at the edge.

83

ANNEX I. Hardware Requirements

Table 24. List of requirements for the device to be installed in an i-DE's SS. Source: i-DE

N TEST NORM

Insulation

1 Insulation resistance UNE-EN 60255-27

2 Electric strength UNE-EN 60255-27

3 Insulation with voltage impulses UNE-EN 60255-27

Radioelectric disturbances

4 Conducted emissions UNE-EN 55022

5 Radiated emissions UNE-EN 55022

Immunity

6 Electrostatic discharge UNE-EN 61000-4-2

7 Radiated high-frequency UNE-EN 61000-4-3

8 Fast transients UNE-EN 61000-4-4

9 Surges UNE-EN 61000-4-5

10 Conducted RF UNE-EN 61000-4-6

11 Magnetic field UNE-EN 61000-4-8

12 Damped Magnetic field UNE-EN 61000-4-10

13 Low Frequency Harmonics UNE-EN 61000-4-13

14 Ring wave UNE-EN 61000-4-18

Electrical

15 AC Voltage DIPS/SAGS UNE-EN 61000-4-11

16 Ground faults EN 62052-11

17 Short time overcurrent influence EN 62053-21

Mechanical

20 Vibration ETSI EN 300 019-2-2

21 Fall test (equipment) ETSI EN 300 019-2-2

22 Fall test (equipment installed in the cabinet) ETSI EN 300 019-2-2

23 IP protection EN 20324

Climatic

25 Damp heat UNE-EN 60068-2-78

26 Dry heat UNE-EN 60068-2-2

27 Cold UNE-EN 60068-2-1

28 Temperature variation UNE-EN 60068-2-14

29 Accelerated reliability test UNE EN 62059-31-1 or similar

84

ANNEX II. United Nations SDG

The application of Edge computing and IoT to the LV electric distribution, as the analysed

solution in this project, would be, not only a step forward to a smarter grid, but a step

forward to some of the Sustainable Development Goals (SDG) for 2030 established by

the United Nations in 2015 [Unit00].

Among these SDG, this project is directly related to two goals, and other impacts can be

deduced from expected functionalities of the solution, although some of them depend on

the degree of collaboration of third parties (e.g. regulatory bodies, electric consumers,

etc.)

The first directly-related goal is SDG no.9 which is titled as "Build resilient

infrastructure, promote sustainable industrialization and foster innovation" [Unit00].

This goal describes innovation and new infrastructures as ways of generating

employment, competitiveness and income, and it considers as a key factor the efficient

use of resources and energy. Among the eight targets of this goal, target 9.411 is

considered to be addressed by the solution analysed in this project. The edge computing

approach will mean a complete change of paradigm of how LV grids are managed and

monitored. Functionalities such as those related to predictive maintenance would improve

the use of the available resources and could increase the useful life of many grid

components in 20%, as discussed in the Economic Impact. In the future, the Edge Node

device itself, as it will include multiple functionalities that traditionally would be

deployed in different hardware devices, will constitute an efficient use of the resources

(less electronic hardware manufactured, less cable length used, etc), promoting indirectly

target 12.212 under the goal no.12 of “Responsible production and consumption”

[Unit00].

As mentioned in Advantages, Challenges and Functionalities, the solution can also be the

driver for a higher penetration of EVs, DG and future DR schemes. Together with

functionalities related to voltage control, power losses accountability and fraud detection,

they would be in consonance with SDG no.7, “Affordable and clean energy”, specifically

target 7.3 (“In 2030, double the global rate of improvement in energy

efficiency”)[Unit00]. For example, if, as a result of different functionalities deployed in

the Edge Node, i-DE achieves just a 2.5% reduction of power losses by means of a more

phase-balanced LV grid (one of the scenarios studied in the Economic Impact), the

amount of energy saved per year is estimated to be ~150 GWh (reducing, consequently,

the bill of consumers) which is equivalent to 43200 tons of CO2 per year (assuming an

11(9.4)“By 2030, upgrade infrastructure and retrofit industries to make them sustainable, with increased

resource-use efficiency and greater adoption of clean and environmentally sound technologies and

industrial processes, with all countries taking action in accordance with their respective capabilities”

[Unit00]
12(12.2)“By 2030, achieve the sustainable management and efficient use of natural resources” [Unit00]

85

average of 0.288 kgCO2e / kWh in the electricity mix of Spain, according to the Carbon

Footprint webpage [Carb00]).

In addition to this, the expected substitution of devices (both the existing ones in the SSs

and the new ones for new functionalities) would decrease the energy consumption in a

SS in 87.6 kWh per device and year (8. Economic Impact), which is equivalent to 25.23

kg of CO2e.

Furthermore, by achieving a reduction in the losses (technical and non-technical) of the

LV grid (depending on the magnitude of the reduction), the generation dispatch could

change, lowering, in all likelihood, the average price of energy and increasing the interest

for generation technologies with low operational costs (mainly renewables). This interest

would be supported at the distribution level by the edge computing solution, since one

expected functionality is the control of DG and energy storage. Flexibility functionalities

(e.g. demand response, EV integration, etc.) in the node would suppose new energy

services for consumers. Therefore, an indirect impact on targets 7.113 and 7.214 could be

considered.

From a business strategy perspective, the SDGs aforementioned (7, 9 and 12) are also

collected by Iberdrola Group’s strategy15, which shows the alignment of the analysed

solution with the objectives of Iberdrola Group.

13 (7.1)“By 2030, ensure universal access to affordable, reliable and modern energy services” [Unit00]
14 (7.2)“By 2030, increase substantially the share of renewable energy in the global energy mix” [Unit00]
15 https://www.iberdrola.com/sustainability/committed-sustainable-development-goals

https://www.iberdrola.com/sustainability/committed-sustainable-development-goals

86

Table 25. Summary of the SDGs that the solution analysed in this project could have an impact on. Images source:

[Unit00]

SDG Target Relationship Impact

9.4 Direct

Higher resource efficiency, increase

useful life of assets (≤ 20%), change

of paradigm in LV control and

monitoring

7.3 Direct

Just 2.5% reduction in energy losses

would save 150 GWh (43200 tons of

CO2e)

25.23 kg CO2e per device substituted

and year

7.1 Indirect
DR schemes, EV integration, DG

control mechanisms

7.2 Indirect
DG and energy storage control

mechanisms in the Edge Node would

ease renewables integration

12.2 Indirect

Less electronic hardware

manufactured, less cable length used,

etc

87

ANNEX III. Code developed

Code 6. Python script to calculate the energy balance using the S02-like report received through MQTT in the remote

test environment

"""
Version: v1.5.0
Last update: 06/08/2020
Author: Nestor Rodriguez Perez

Description: Script to calculate the balance of a feeeder. Data is obtained
 through MQTT message in a JSON format (S02 Hourly Report)
"""
Import MQTT client library, time module and JSON library
import paho.mqtt.client as mqtt
import paho.mqtt.subscribe as subscribe #Import subscription function
import time #To wait between measures
import json
#--
#Callbacks functions for MQTT
def on_log(client, userdata, level, buf):
 print("log: "+buf)

def on_connect(client, userdata, flags, rc):
 if rc==0:
 print("Connection achieved")
 else:
 print("Wrong connection. Returned code=", rc)

def on_disconnect(client, userdata, flags, rc=0):
 print("DisConnected. Result code "+str(rc))
#--
'''
Function for JSON data extraction
Source: https://hackersandslackers.com/extract-data-from-complex-json-python/
'''
def extract_values(obj, key):
 #Pull all values of specified key from nested JSON
 arr = []

 def extract(obj, arr, key):
 #Recursively search for values of key in JSON
 if isinstance(obj, dict):
 for k, v in obj.items():
 if isinstance(v, (dict, list)):
 extract(v, arr, key)
 elif k == key:
 arr.append(v)
 elif isinstance(obj, list):
 for item in obj:
 extract(item, arr, key)
 return arr

 results = extract(obj, arr, key)
 return results
#--
'''
Function to find the indexes in a list

88

Source: https://stackoverflow.com/questions/5419204/index-of-duplicates-items-in-a-
python-list
'''
def search_index(seq,item):
 begin_at = -1
 ind = []
 while True:
 try:
 loc = seq.index(item,begin_at+1)
 except ValueError:
 break
 else:
 ind.append(loc)
 begin_at = loc
 return ind
#--
def balance(imported, exported, supervisor_id=1):

"""Function to calculate the balance between the supervisor in a SS
and the smart meters at that are fed by this SS (same supervisor).

 Args:
 imported (dictionary): Keys=meters_id ,values=active energy imported.
 exported (dictionary): Keys=meters_id ,values=active energy exported.
 supervisor_id (int, string): Supervisor’s ID. Defaults to 1.

 Returns:
 [float]: The resulting active energy balance
 """
 balance=0
 for key in imported:
 if key == supervisor_id:
 balance = (balance + imported[key]*1000)
 else:
 balance = (balance - imported[key])

 for key in exported:
 if key == supervisor_id:
 balance = (balance - exported[key]*1000)
 else:
 balance = (balance + exported[key])

 return balance
#--
#--
#Connection to the inner MQTT broker
broker = "mqtt" #Inner MQTT broker IP address
client = mqtt.Client("processer_1") #Create new client of MQTT broker

client.on_connect = on_connect #Bind call back function on connection
client.on_disconnect = on_disconnect #Bind call back function on disconnection
client.on_log = on_log

print("Connecting to MQTT broker ", broker)
client.connect(host=broker, port=1883)
client.loop_start() #Start loop
#--
#Starting the loop once the connection to MQTT is successful
condition = True
while condition:

89

 #Subscription to the specific topic
 msg = subscribe.simple([("topic/stgdc",0)], hostname=broker, port=1883)
 #Decodification of received message (JSON structure)
 message_con = str(msg.payload.decode("utf-8"))
 message_json = json.loads(message_con)

 #-----------------------------------
 #Extract the signalId, deviceId from the JSON
 signal_id = extract_values(message_json, "signalId")
 meter_id = extract_values(message_json, "deviceId")
 #Supervisor ID: DC1-METER0000
 #Extract the values for ALL magnitudes
 values = extract_values(message_json, "value")

 #-----------------------------------
 #Initialize dictionary for energy imported
 energy_import = {}
 #Find the indices of the list with active energy imported
 index_active_energy_import = search_index(signal_id, "AI")

 #Initialize dictionary for energy exported
 energy_export = {}
 #Find the indices of the list with active energy exported
 index_active_energy_export = search_index(signal_id, "AE")

 for i in index_active_energy_import:
 #Dictionary with meter_id : active energy imported
 energy_import.update({meter_id[i]: float(values[i])})
 for i in index_active_energy_export:
 #Dictionary with meter_id : active energy exported
 energy_export.update({meter_id[i]: float(values[i])})
 #-----------------------------------
 #Calculus of the balance between supervisor and smart meters
 balance_result = balance(energy_import, energy_export, supervisor_id="DC1-
METER0000")

 #Result Message to be published in a MQTT topic
 balance_message = {}
 balance_message = {"Balance_WH":balance_result}

 #Message published on the MQTT topic to be stored or used by other app
 client.publish(topic="test/balance", payload=json.dumps(balance_message))
 #Time between loops
 time.sleep(5)

90

12. Bibliography

[Abb16] ABB: Technical Guide: "Smart Grids 2. The "smart“ secondary substation"

(2016)

[ASGM12] ALBERTO, MARTA ; SORIANO, RAÚL ; GÖTZ, JÜRGEN ; MOSSHAMMER, RALF

; ESPEJO, NICOLÁS ; LEMÉNAGER, FLORENT ; BACHILLER, RAÚL:

"OpenNode: A smart secondary substation node and its integration in a

distribution grid of the future". In: 2012 Federated Conference on Computer

Science and Information Systems (FedCSIS), 2012, S. 1277–1284

[Bui15] BUI, THANH: "Analysis of Docker Security". In: arXiv:1501.02967 [cs]

(2015). — arXiv: 1501.02967

[Carb00] CARBON FOOTPRINT: "Carbon Footprint. Your solution for cutting carbon

and caring for the climate". URL https://www.carbonfootprint.com/. -

accessed on 2020-07-07

[CDLR19] CAPROLU, MAURANTONIO ; DI PIETRO, ROBERTO ; LOMBARDI, FLAVIO ;

RAPONI, SIMONE: "Edge Computing Perspectives: Architectures,

Technologies, and Open Security Issues". In: 2019 IEEE International

Conference on Edge Computing (EDGE). Milan, Italy : IEEE, 2019

— ISBN 978-1-72812-708-8, S. 116–123

[CeHP16] CEJKA, STEPHAN ; HANZLIK, ALEXANDER ; PLANK, ANDREAS: "A framework

for communication and provisioning in an intelligent secondary substation."

In: 2016 IEEE 21st International Conference on Emerging Technologies and

Factory Automation (ETFA), 2016, S. 1–5

[CeME15] CEJKA, STEPHAN ; MOSSHAMMER, RALF ; EINFALT, ALFRED: "Java

embedded storage for time series and meta data in Smart Grids". In: 2015

IEEE International Conference on Smart Grid Communications

(SmartGridComm), 2015, S. 434–439

[Chur18] CHURILO, CHRIS: "MongoDB vs InfluxDB | InfluxData Time Series

Workloads." URL https://www.influxdata.com/blog/influxdb-is-27x-faster-

vs-mongodb-for-time-series-workloads/. - accessed on 2020-06-10.

— InfluxData

[Cide00] CIDE: "CIDE". URL http://www.cide.net/donde-distribuimos.php. -

accessed on 2020-06-17

[CMFL15] CERERO, R. ; MARTÍNEZ, P. ; FERRER, V. ; LARUMEB, I.: "STG-DC

INTERFACE SPECIFICATION v3.4", Iberdrola Distribución Eléctrica,

SA. (2015)

[Cnmc19] CNMC: "Memoria Justificativa de la Circular de la CNMC por la que se

establece la metodología para el cálculo de la retribución de la actividad de

la distribución de energía eléctrica.", CNMC (2019)

[Coun14] COUNET, JEROME: "Over 70% European consumers to have a smart meter

for electricity by 2020" URL https://ec.europa.eu/jrc/en/news/over-70-

percent-european-consumers-have-smart-meter-electricity-2020. - accessed

on 2020-05-03. — EU Science Hub - European Commission

[CWWL19] CHEN, SONGLIN ; WEN, HONG ; WU, JINSONG ; LEI, WENXIN ; HOU, WENJING

; LIU, WENJIE ; XU, AIDONG ; JIANG, YIXIN: "Internet of Things Based Smart

Grids Supported by Intelligent Edge Computing". In: IEEE Access Bd. 7

(2019), S. 74089–74102

91

[Data00] "Dataflow pricing" URL https://cloud.google.com/dataflow/pricing. -

accessed on 2020-07-28. — Google Cloud

[Db-e00] "DB-Engines Ranking" URL https://db-

engines.com/en/ranking/time+series+dbms. - accessed on 2020-06-10.

— DB-Engines

[Dock20a] "Docker overview" URL https://docs.docker.com/get-started/overview/. -

accessed on 2020-05-20. — Docker Documentation

[Dock20b] DOCKER: "Overview of Docker Compose" URL

https://docs.docker.com/compose/. - accessed on 2020-05-21. — Docker

Documentation

[Edge00a] EDGE ONESAIT PLATFORM: "Deployment and Installation - Onesait Platform

Developer Portal" URL

https://onesaitplatform.atlassian.net/wiki/spaces/OP/pages/39813152/Deplo

yment+and+Installation. - accessed on 2020-05-25

[Edge00b] EDGE ONESAIT PLATFORM: "Management System - Onesait Platform

Developer Portal." URL

https://onesaitplatform.atlassian.net/wiki/spaces/OP/pages/164986881/Man

agement+System. - accessed on 2020-05-03

[Eybe19] EYBERG, IAN: "Introduction To Unikernels." URL

https://nordicapis.com/introduction-to-unikernels/. - accessed on 2020-06-

03. — Nordic APIs

[FCSF17] FASCHANG, MARIO ; CEJKA, STEPHAN ; STEFAN, MARK ;

FRISCHENSCHLAGER, ALBIN ; EINFALT, ALFRED ; DIWOLD, KONRAD ;

PRÖSTL ANDRÉN, FILIP ; STRASSER, THOMAS ; U. A.: "Provisioning,

deployment, and operation of smart grid applications on substation level:

Bringing future smart grid functionality to power distribution grids". In:

Computer Science - Research and Development Bd. 32 (2017), Nr. 1–2,

S. 117–130

[FGHR16] FERNÁNDEZ PÉREZ, MARÍA ; GARCÍA MATILLA, EDUARDO ; DE LA HIGUERA

GONZÁLEZ, CLOTILDE ; RODRÍGUEZ RODRÍGUEZ, DIEGO ;

ZENARRUTZABEITIA BELDARRAÍN, IDOIA: "Informe sobre la Evaluación del

Potencial de Eficiencia Energética de las Infraestructuras Eléctricas",

CNMC (2016)

[Garc16] GARCIA, BENJAMIN: "PRIME v1.4 is ready to improve Smart Grids." URL

https://www.teldat.com/blog/en/prime-plc-technology-prime-v14-smart-

grid-cenelec-a-dbpsk/. - accessed on 2020-06-08. — Teldat Blog -

Connecting the World

[GiLy12] GILBERT, SETH ; LYNCH, NANCY: "Perspectives on the CAP Theorem" In:

Computer Bd. 45 (2012), Nr. 2, S. 30–36

[GSAV18] GOETHALS, TOM ; SEBRECHTS, MERLIJN ; ATREY, ANKITA ; VOLCKAERT,

BRUNO ; DE TURCK, FILIP: "Unikernels vs Containers: An In-Depth

Benchmarking Study in the Context of Microservice Applications". In: 2018

IEEE 8th International Symposium on Cloud and Service Computing (SC2),

2018, S. 1–8

[Hilt20] HILTON, STEVE: "MachNation rates 11 IIoT edge vendors in 2020 IoT Edge

ScoreCard" URL https://www.machnation.com/2020/02/07/machnation-

rates-iiot-edge-vendors-2020-iot-edge-scorecard/. - accessed on 2020-07-

09. — MachNation

92

[HKDM18] HAARMAN, MARK ; DE KLERK, PIETER ; DECAIGNY, PETER ; MULDERS,

MICHEL ; VASSILIADIS, COSTAS ; SIJTSEMA, HEDWICH ; GALLO, IVAN:

"Predictive Maintenance - Beyond the hype: PdM 4.0 delivers results" :

PWC and Mainnovation, 2018

[HLWF18] HUANG, YUTAO ; LU, YUHE ; WANG, FENG ; FAN, XIAOYI ; LIU, JIANGCHUAN

; LEUNG, VICTOR C.M.: "An Edge Computing Framework for Real-Time

Monitoring in Smart Grid". In: 2018 IEEE International Conference on

Industrial Internet (ICII). Seattle, WA : IEEE, 2018 — ISBN 978-1-5386-

7771-1, S. 99–108

[Iber00] IBERDROLA: "Star Project". URL https://www.i-de.es/smart-

grids/deployment-projects-areas/star-project. - accessed on 2020-05-03

[JPAK12] JATANA, NISHTHA ; PURI, SAHIL ; AHUJA, MEHAK ; KATHURIA, ISHITA ;

GOSAIN, DISHANT: "A Survey and Comparison of Relational and Non-

Relational Database". In: International Journal of Engineering Research Bd.

1 (2012), Nr. 6, S. 5

[JWHY18] JINMING, CHEN ; WEI, JIANG ; HAO, JIAO ; YAJUAN, GUO ; GUOJI, NIE ; WU,

CHEN: "Application Prospect of Edge Computing in Smart Distribution". In:

2018 China International Conference on Electricity Distribution (CICED).

Tianjin, China : IEEE, 2018 — ISBN 978-1-5386-6775-0, S. 1370–1375

[KMLK20] KOVATSCH, MATTHIAS ; MATSUKURA, RYUICHI ; LAGALLY, MICHAEL ;

KAWAGUCHI, TORU ; TOUMURA, KUNIHIKO ; KAJIMOTO, KAZUO: "Web of

Things (WoT) Architecture". URL https://www.w3.org/TR/wot-

architecture/. - accessed on 2020-08-03

[Kube20a] KUBERNETES: "What is Kubernetes?" URL

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/. -

accessed on 2020-05-25

[Kube20b] KUBERNETES: "Pods." URL

https://kubernetes.io/docs/concepts/workloads/pods/pod/. - accessed on

2020-05-26

[Luci17] LUCIA, MICHAEL J DE: "A Survey on Security Isolation of Virtualization,

Containers, and Unikernels" In: US Army Research Laboratory (2017), S. 18

[Lum19] LUM, BRANDON: "Encrypting container images with containerd imgcrypt!"

URL https://medium.com/@lumjjb/encrypting-container-images-with-

containerd-imgcrypt-3c07f8e8e8d4. - accessed on 2020-07-03. — Medium

[Mcka19] MCKAY, DAVE: "What Is Reverse SSH Tunneling? (and How to Use It)".

URL https://www.howtogeek.com/428413/what-is-reverse-ssh-tunneling-

and-how-to-use-it/. - accessed on 2020-07-14. — How-To Geek

[Micr19] MICROSOFT: "Linux Containers on Windows 10" URL

https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-

containers/linux-containers. - accessed on 2020-06-04

[Mira20] MIRANTIS: "Mirantis Documentation: Define roles with authorized API

operations" URL https://docs.mirantis.com/docker-

enterprise/v3.0/dockeree-products/ucp/authorization/define-roles.html. -

accessed on 2020-06-16

[Mqtt00a] MQTT. URL https://mqtt.org/. - accessed on 2020-05-17

[Mqtt00b] "mqtt/mqtt.github.io". URL https://github.com/mqtt/mqtt.github.io. -

accessed on 2020-05-17. — GitHub

93

[MRCD18] MARTIN, A. ; RAPONI, S. ; COMBE, T. ; DI PIETRO, R.: "Docker ecosystem –

Vulnerability Analysis". In: Computer Communications Bd. 122 (2018),

S. 30–43

[NaAb19] NASAR, MOHAMMAD ; ABU KAUSAR, MOHAMMAD: "Suitability Of Influxdb

Database For Iot Applications." In: International Journal of Innovative

Technology and Exploring Engineering Bd. 8 (2019), Nr. 10, S. 1850–1857

[Naik17] NAIK, NITIN: "Choice of effective messaging protocols for IoT systems:

MQTT, CoAP, AMQP and HTTP". In: 2017 IEEE International Systems

Engineering Symposium (ISSE). Vienna, Austria : IEEE, 2017 — ISBN 978-

1-5386-3403-5, S. 1–7

[Nebb19] NEBBIOLO TECHNOLOGIES INC.: "Overview of Nebbiolo fogSM Software",

Nebbiolo Technologies Inc. (2019)

[Node00] NODE-RED: "About Node-RED". URL https://nodered.org/about/. -

accessed on 2020-05-23

[Oasi12] OASIS STANDARD: "OASIS Advanced Message Queuing Protocol (AMQP)

Version 1.0", Oasis Open (2012)

[Oasi19] OASIS STANDARD: "OASIS MQTT Version 5.0.", OASIS Open (2019)

[OkOz16] OKAY, FEYZA YILDIRIM ; OZDEMIR, SUAT: "A fog computing based smart

grid model". In: 2016 International Symposium on Networks, Computers and

Communications (ISNCC), 2016, S. 1–6

[OSMC20] ORTEGA DE MUES, MARIANO ; SESEÑA, DANIEL ; MARTÍNEZ SPESSOT, CÉSAR

; CARRANZA, MARCOS ; LANG, JORGE: "Creating an effective and scalable

IoT infrastructure by introducing Edge Workload Consolidation (eWLC)."

URL https://www.intel.com/content/www/us/en/develop/articles/edge-

workload-consolidation-ewlc.html. - accessed on 2020-06-24. — Intel

[Over00] "Overview | dlms". URL https://www.dlms.com/dlms-cosem/overview. -

accessed on 2020-05-12

[Pato16] PATO, BALINT: "Jepsen and InfluxDB, Chapter II. Where is InfluxDB on the

CAP scale?" URL

http://www.refactorium.com/distributed_systems/InfluxDB-and-Jepsen-

Chapter-II-Where-is-influxdb-on-the-cap-scale/. - accessed on 2020-06-22.

— The Refactorium

[Prim00a] PRIME Alliance | "Advanced Meter Reading & Smart Grid Standard." URL

https://www.prime-alliance.org/. - accessed on 2020-05-12

[Prim00b] PRIME ALLIANCE: "PRIME v1.4 White Paper", PRIME Alliance

[PVBL19] PÉREZ, MARÍA FERNÁNDEZ ; VALDÉS DÍAZ, BENIGNO ; BACIGALUPO

SAGGESE, MARIANO ; LORENZO ALMENDROS, BERNARDO ; ORMAETXEA

GARAI, XABIER: "Acuerdo por el que se emite el informe sobre el

cumplimiento del último hito del plan de sustitución de contadores", CNMC

(2019)

[Ref00a] CORDIS | EUROPEAN COMISSION: "Open Architecture for Secondary Nodes

of the Electricity SmartGrid: OpenNode Project". URL

https://cordis.europa.eu/project/id/248119. - accessed on 2020-05-27

[Ref00b] MONGODB: "MongoDB: The most popular database for modern apps".

URL https://www.mongodb.com. - accessed on 2020-06-21. — MongoDB

[Ref20] DOCKER: "Docker stats" URL

https://docs.docker.com/engine/reference/commandline/stats/. - accessed on

2020-06-08. — Docker Documentation

94

[Smar19] SMARTGRIDS INFO: "Los algoritmos avanzados y el big data ayudaron a

Endesa a detectar casi 65.000 fraudes eléctricos en 2018". URL

https://www.smartgridsinfo.es/2019/02/01/algoritmos-avanzados-big-data-

ayudaron-endesa-detectar-casi-65000-fraudes-electricos-2018. - accessed

on 2020-07-09. — Smartgrids Info

[SoLi12] SONG, YI ; LI, JINGRU: "Analysis of the life cycle cost and intelligent

investment benefit of smart substation". In: IEEE PES Innovative Smart Grid

Technologies, 2012, S. 1–5

[SSBS16] SENDIN, ALBERTO ; SANCHEZ-FORNIE, MIGUEL A. ; BERGANZA, IÑIGO ;

SIMON, JAVIER ; URRUTIA, IKER: "Telecommunication networks for the smart

grid", Artech house power engineering series. Norwood, Massachusetts :

Artech House, 2016 — ISBN 978-1-63081-046-7

[Stro19] STRONG, AARON: "Containerization vs. Virtualization: What’s the

Difference?" URL https://www.burwood.com/blog-

archive/containerization-vs-virtualization - accessed on 2020-06-02.

— Burwood Group

[Suma13] SUMASTRE, MICHAEL GABRIEL: "Virtualization 101: What is a Hypervisor?"

URL https://www.pluralsight.com/blog/it-ops/what-is-hypervisor. -

accessed on 2020-05-20

[Toka17] TOKAR, DIMA: "Whitepaper: Five requirements of a leading IoT edge

platform". URL https://www.machnation.com/2017/09/18/whitepaper-five-

requirements-leading-iot-edge-platform/. - accessed on 2020-07-10.

— MachNation

[Unit00] UNITED NATIONS: "United Nations Sustainable Development – 17 Goals to

Transform Our World" URL https://www.un.org/sustainabledevelopment/. -

accessed on 2020-07-07

[WLYC18] WANG, PAN ; LIU, SHIDONG ; YE, FENG ; CHEN, XUEJIAO: "A Fog-based

Architecture and Programming Model for IoT Applications in the Smart

Grid". In: arXiv:1804.01239 [cs] (2018). — arXiv: 1804.01239

