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1 Introduction

The superconformal index of four dimensional field theories [1, 2] provides an interesting

probe to the spectrum of such theories. It can be defined by a weighted sum with alternat-

ing signs for bosons and fermions and extra fugacities for global symmetries. This sum over

all states can be combined from the “single letter index” contribution of a single field to

that of gauge invariant composite operators, organized by specific factors for the different

multiplets. In particular, the Schur index which counts states preserving double the mini-

mal amount of supersymmetery is an “unrefinement” of the usual index. It is achieved by

eliminating some of the global charge fugacities and can be expressed as an elliptic matrix

model — where the measure and interaction between eigenvalues are all elliptic functions.

Recently it was realized that this matrix model in the case of N = 4 SYM can be

mapped to the problem of one dimensional fermions on a circle with no interaction nor any

potential [3], as reviewed briefly below (the generalization to circular quiver theories is done

in [4]). This problem can be solved in closed form giving the exact large N expansion of

the index including all exponentially suppressed corrections as well as finite N expressions

in terms of derivatives of Jacobi theta functions or complete elliptic integrals.

The index can be viewed as the partition function of the theory on S3×S1 with super-

symmetry preserving boundary conditions around the circle. As such, one can consider the

insertion of loop operators wrapping the non-contractible circle, also known as Polyakov
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loops. These can be electric lines (i.e., Wilson loops), magnetic (’t Hoof loops) or dyonic.

The effect of such insertions on the matrix model of the index was studied in [5] (see

also [6, 7]). One important point is that due to the Gauss law on the compact S3, the total

charge carried by the line operators must vanish. In particular, the simplest non-trivial

insertion is a pair of lines carrying opposite charges one at each of the north and south

poles of S3. The purpose of this note is to study the case of Wilson loops insertions using

the newly discovered formalism of [3].

1.1 The Schur index as a Fermi gas

The Schur index of N = 4 SYM on S3×S1 with gauge group U(N) is given by the matrix

model [1–3, 8–11]

I(N) =
q−N2/4η3N (τ)

N !πN

∫ π

0
dNα

∏

i<j ϑ
2
1(αi − αj)

∏

i,j ϑ4(αi − αj)
. (1.1)

Here q = eiπτ is the one fugacity which remains in the restriction to the Schur index.1 η

is the Dedekind function and ϑi(z) are Jacobi theta functions with the nome q suppressed

(see appendix A). When the argument z is also omitted (as in (1.2) below), this is ϑi(0).

Using an elliptic determinant identity [3, 12–14] this can be written as

I(N) =
q−N2/4

∆N
Z(N) , Z(N) =

1

N !

∑

σ∈SN

(−1)σ
∫ π

0
dNα

N
∏

i=1

ϑ2
2

2π
cn

(

(αi − ασ(i))ϑ
2
3

)

.

(1.2)

Here cn(z) ≡ cn(z, k2) is a Jacobi elliptic function with the usual modulus associated to q,

given by k = ϑ2
2/ϑ

2
3 and the normalisation is

∆N =

{

1 , N even,

ϑ2/ϑ3 , N odd .
(1.3)

Equation (1.2) has the form of the partition function of N free fermions on a circle.

The Fermi gas partition function is completely determined by the spectral traces

Zℓ = Tr(ρℓ0) =
1

πN

∫ π

0
dα1 . . . dαℓ ρ0 (α1, α2) . . . ρ0 (αℓ, α1) ,

ρ0
(

α, α′) =
ϑ2
2

2
cn

(

(α− α′)ϑ2
3

)

=
∑

p∈2Z+1

eip(α−α′)

qp/2 + q−p/2
,

(1.4)

where the last identity uses the Fourier expansion of the cn function. It is convenient

to define

ch p ≡ 2 cosh
iπτp

2
= qp/2 + q−p/2 . (1.5)

It is then easy to perform the integrals in (1.4) to find

Zℓ =
∑

p∈2Z+1

1

chℓ p
. (1.6)

1Following the conventions of [3], which are slightly different than the rest of the literature.
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The approach employed in [3] (following [15] who studied ABJM theory) was to in-

troduce a fugacity κ and consider the sum over the partition function of the fermions

associated to theories with arbitrary rank N . This gives the grand canonical partition

function

Ξ(κ) = 1 +
∞
∑

N=1

Z(N)κN . (1.7)

The result is a Fredholm determinant of a very simple form

Ξ(κ) = exp

(

−
∞
∑

ℓ=1

(−κ)ℓZℓ

ℓ

)

= det(1 + κρ0) =
∏

p∈2Z+1

(

1 +
κ

ch p

)

. (1.8)

This product turns out to be expressible in terms of theta functions [3]

Ξ(κ) =

∞
∏

p=1

(

1+q2p−1+κq−(p−1/2)

1 + q2p−1

)2

=
1

ϑ4

(

ϑ3

(

arccos
κ

2

)

+
ϑ2

ϑ3
ϑ2

(

arccos
κ

2

))

. (1.9)

1.2 The Schur index with Polyakov loops

As stated above, the purpose of this note is to study the index in the presence of line

operators at the north and south poles. For Wilson loops in conjugate representations R

and R̄ the matrix integral in (1.1) gets modified by the insertion of the characters of those

representations

IR(N) =
1

I(N)

q−N2/4η3N (τ)

N !πN

∫ π

0
dNα TrR(e

2iα) TrR̄(e
2iα)

∏

i<j ϑ
2
1(αi − αj)

∏

i,j ϑ4(αi − αj)
. (1.10)

Note that this expression is normalized with the index in the absence of the Wilson loop,

which simplifies some of the steps to come. In particular the prefactor relating I(N) and

Z(N) in (1.2) does not affect this quantity, so after applying the determinant identity as

before, the matrix model becomes (cf., (1.2))

IR(N) =
1

Z(N)N !

∑

σ∈SN

(−1)σ
∫ π

0

dNα

πN
TrR(e

2iα) TrR̄(e
2iα)

N
∏

i=1

ρ0(αi, ασ(i)) . (1.11)

For the fundamental representation the Wilson loop (in the canonical ensemble) is

I�(N) =
1

Z(N)N !

∑

σ∈SN

(−1)σ
∫ π

0

dNα

πN

N
∑

j,k=1

e2iαje−2iαk

N
∏

i=1

ρ0(αi, ασ(i)) . (1.12)

Or course as far as the matrix model is concerned, this insertion is actually the product of

the fundamental and antifundamental, which is the direct sum of the identity and adjoint.

Each of the latter have a non vanishing VEV in this matrix model. Still, in keeping

with the picture of the index with two Wilson loop insertions, this is labeled here as

the fundamental representation. Likewise when discussing antisymmetric representations

below, the matrix model insertion is the product of two antisymmetrics. For the nth

antisymmetric representation, the product is a direct sum of n+1 representations with N

– 3 –
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boxes and two columns where the second column’s height is less or equal to n (including

zero, the identity representation).

For the symmetric representation the product is reducible to the sum of n + 1 repre-

sentations with i filled columns, n − i columns of height N − 1 and the same number of

columns of unit height. Again, those are denoted below by the symmetric Young diagram,

and not by the product representation.

The Fermi-gas approach to solving the matrix models describing supersymmetric field

theories in three dimensions was pioneered in [15]. This was generalized to allow for Wilson

loop operators in [16–18] (see also [19]). A lot of the techniques used below are taken from

these papers. As in some of those papers, it proves useful to define the Wilson loop also in

the grand canonical ensemble by

WR(κ) =
1

Ξ(κ)

∞
∑

N=1

IR(N)Z(N)κN . (1.13)

It should be noted that in addition to Wilson loops, four dimensional field theories

have BPS ’t Hooft loops (and dyonic ones). Their effect on the matrix model was also

studied in [5]. In N = 4 SYM ’t Hooft loops should be S-dual to Wilson loops, and

therefore the index with ’t Hooft loops and with Wilson loops should be equal. This has

not been demonstrated in [5] nor is it pursued here. The results presented below apply to

’t Hooft loops assuming S-duality and it would be desirable to have a direct calculation to

demonstrate this equivalence.

In the next section some formalism is developed to write down the index with Wilson

loop insertions in the grand canonical ensemble. The resulting expressions for the first few

antisymmetric and symmetric representations are given as an infinite sum over an explicit

κ dependent function. The following section studies those sums in the large κ limit, where

they can be approximated by an integral. The leading large N result can then be derived

for the first few antisymmetric and symmetric representations. A simple pattern emerges

in this calculation and it is conjectured to apply to higher dimensional representations

too. Finally, in section 4 the sums arising at finite N are explored and the case of the

fundamental representation for N = 2 is evaluated in closed form.

2 Generating functions

2.1 Antisymmetric representations

To study the Wilson loops in the grand canonical ensemble and apply the Fermi-gas for-

malism it is easier to include a determinant, rather than a trace, as done for ABJM theory

in [17]. This is easy to implement, since the characters of the antisymmetric representa-

tion are the symmetric polynomials generated by
∏N

j=1

(

1 + se2iαj
)

. Including a second

conjugate representation one finds

N
∏

j=1

(

1 + se2iαj
) (

1 + te−2iαj
)

= 1 +
N
∑

j=1

(

se2iαj + te−2iαj
)

+ st
N
∑

j,k=1

e2i(αj−αk)

+
∑

j<k

(

s2e2i(αj+αk) + t2e−2i(αj+αk)
)

+ · · · .
(2.1)
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At order st this is indeed the product of the traces in the fundamental and in the antifun-

damental representations (1.12).

As mentioned before, the index vanishes unless two conjugate representations are in-

serted, so only the terms of equal powers of s and t survive. This is also evident in the

calculation below. The inclusion of the generating function of the Wilson loops in the

partition function amounts to replacing the density operator ρ0 (1.4) with

ρA ≡ (1 + se2iα)(1 + te−2iα)ρ0 . (2.2)

The generating function of the Wilson loops in the antisymmetric representations in

the grand canonical ensemble is then

1 +

∞
∑

k=1

(st)kWasymk(κ) =
det (1 + κρA)

det (1 + κρ0)
= det (1 +XAR) . (2.3)

where

XA = se2iα + te−2iα + st , R =
κρ0

1 + κρ0
=

κ

κ+ ch p
. (2.4)

It is useful to write the determinant as

det(1 +XAR) = exp

[ ∞
∑

n=1

(−1)n+1

n
Tr(XAR)n

]

. (2.5)

In these expressions one should think of α and p as conjugate position-momentum operators

(periodic and discrete, repectively). If one commutes the α dependent terms in XA through

R, then in the momentum basis

Rn ≡ e−2inαRe2inα =
κ

κ+ ch(p+ 2n)
, (2.6)

and for simplicity denote R± ≡ R±1. This allows to write explicit normal ordered expres-

sions for (XAR)n. For example

(XAR)2 = s2e4iαRR+ + s2te2iαR(R+R+) + stR(R− +R+) + s2t2R2

+ st2e−2iαR(R+R−) + t2e−4iαRR− .
(2.7)

Clearly the terms with sltm come with e2i(l−m)α, whose trace is zero unless l = m (also

when multiplying a function of p).

From (2.4), (2.7) it is clear that

Tr(XAR) = stR =
∑

p∈2Z+1

κ

κ+ ch p
,

Tr(XAR)2 = stTr(RR+ +RR−) + (st)2Tr(R2)

=
∑

p∈2Z+1

κ

κ+ ch p

(

2stκ

κ+ ch(p+ 2)
+

(st)2κ

κ+ ch p

)

.

(2.8)

The last identity uses that the trace is invariant under shifts of all the subscripts of Rn and

under an overall change of sign, since the sum is over all odd p and the function R is even.
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More generally, the three terms in XAR (2.4) can be thought of as three possible steps

in a one-dimensional random walk where the step e2iα from position l is weighted by sRl

and increases l by one. Likewise e−2iα decreases l by one and is weighted by tRl and staying

in place is weighted by stRl. Finally, the trace enforces that the endpoint has l = 0, so

Tr(XAR)n is represented by this closed n-step random walk. The next few powers are

Tr(XAR)3 = 6(st)2Tr(R2R+) + (st)3Tr(R3) ,

Tr(XAR)4 = (st)2Tr(2R2R2
+ + 4RR2

+R++) + (st)3Tr(8R3R+ + 4R2R2
+) + (st)4Tr(R4) ,

(2.9)

Using this, one finally gets

det(1 +XAR) = expTr

[

st
(

R−RR+

)

(2.10)

−(st)2

2

(

R2 − 4R2R+ +R2R2
+ + 2RR2

+R++

)

+O
(

(st)3
)

]

The terms up to order (st)5 are given in appendix B.1.

2.2 Symmetric representations

The analog of equation (2.1) for the symmetric representation is

N
∏

j=1

1
(

1− se2iαj
) (

1− te−2iαj
) = 1 +

N
∑

j=1

(

se2iαj + te−2iαj
)

+ st
N
∑

j,k=1

e2i(αj−αk)

+
∑

j≤k

(

s2e2i(αj+αk) + t2e−2i(αj+αk)
)

+ · · · .
(2.11)

The subtle difference between the symmetric and antisymmetric representations is just the

limit on the sum on the second line.

defining the density operator for the symmetric representations as

ρS ≡ 1

(1− se2iα)(1− te−2iα)
ρ0 =

1

1− st

(

1

1− se2iα
+

1

1− te−2iα
− 1

)

ρ0 . (2.12)

then the generating function of the Wilson loops in the symmetric representations in the

grand canonical ensemble is

1 +

∞
∑

k=1

(st)kWsymk(κ) =
det (1 + κρS)

det (1 + κρ0)
= det (1 +XSR) , (2.13)

where

XS =
1

1− st

(

se2iα

1− se2iα
+

te−2iα

1− te−2iα
+ st

)

=
1

1− st

(

st+
∞
∑

j=1

(

sje2ijα + tje−2ijα
)

)

.

(2.14)

The determinant can be written again as the exponent of the trace of the log of the

argument, which requires to calculate traces of the form

Tr (XSR)n =
1

(1− st)n
Tr

(

stR+
∞
∑

j=1

(

sje2ijαR+ tje−2ijαR
)

)n

. (2.15)
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This is again a closed n-step random walk with arbitrary integer size steps weighted by

an overall 1/(1− st)n and then sjRj for a j size step to the right from position l, by tjRl

when going left and stRl when staying in the lth position. For the first few n this gives

n = 1 :
stR

1− st
,

n = 2 :
1

(1− st)2

(

(st)2R2 + 2
∞
∑

j=1

(st)jRRj

)

,

n = 3 :
1

(1− st)3

(

(st)3R3 + 6

∞
∑

j=1

(st)j+1R2Rj + 6

∞
∑

j=2

j−1
∑

l=1

(st)jRRlRj

)

,

n = 4 :
1

(1− st)4

(

(st)4R3 + 4

∞
∑

j=1

(st)j+2
(

2R3Rj +R2R2
j

)

+ 8

∞
∑

j=2

j−1
∑

l=1

(st)j+1
(

2R2RlRj +RR2
lRj

)

+ 8

∞
∑

j=3

j−2
∑

l=1

j−l−1
∑

m=1

(st)jRRmRlRj

+ 2
∞
∑

j=2

j−1
∑

l,m=1

(st)j (2RRlRmRj +RRlRl−mRj−m)

)

.

(2.16)

Then2

det(1 +XSR) = exp

[ ∞
∑

n=1

(−1)n+1

n
Tr(XSR)n

]

= expTr

[

st
(

R−RR+

)

− (st)2

2

(

−2R+ 4RR+ +R2 + 2RR++

− 4R2R+ − 4RR+R++ +R2R2
+ + 2RR2

+R++

)

+O
(

(st)3
)

]

.

(2.17)

Clearly the term linear in st is the same as in (2.10), giving again the fundamental rep-

resentation. The next term, related to the first symmetric representation is very different

from that in (2.10).

As seen above, for either symmetric or antisymmetric representations, the only nonzero

terms in the expansion have equal powers of s and t. It is therefore unambiguous to set

s = t. If one further defines s = t = eσ then the densities are

ρA = 4eσ cosh2
(

σ + 2iα

2

)

ρ0 , ρS =
e−σ

4 sinh2
(

σ+2iα
2

) ρ0 . (2.18)

Those insertions are rather reminiscent of the contributions due to fundamental matter

fields in the Fermi-gas approach to 3d Chern-Simons-matter theories. Possibly some of

the techniques employed there, like Wigner’s phase space, could be used here as well,

rather than the explicit commutators employed above. This may allow to study arbitrary

representations more efficiently.

2The terms of order (st)3 and (st)4 are in appendix B.2.
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It should also be noted that in the case of ABJ(M) it was very useful to consider hook

representations, whose generating functions is (1+s1e
2iα)/(1−s2e

2iα) [17]. As seen above,

the symmetric and antisymmetric representations are complicated enough. One reason is

that the Index vanishes unless two loops of conjugate representations are introduced, at

opposite poles of S3.

3 Large N limit

To study the index in the large N limit one can consider the grand canonical ensemble

at large κ, as a saddle point equation guarantees that these limits are equivalent. Af-

ter evaluating the large κ = eµ expression, one gets the index by the integral transform

(cf., (1.13))

IR(N) =
1

Z(N)

∫ 2iπ

0

dµ

2πi
e−µNΞ(eµ)WR(e

µ) . (3.1)

For the fundamental representation the term linear in st in (2.10) gives

W�(κ) = Tr(R−RR+) =
∑

p∈2Z+1

κ ch(p+ 2)

(κ+ ch p)(κ+ ch(p+ 2))
. (3.2)

For large κ one can use the continuum approximation for the sum

W�(κ) ≈
1

2

∫ ∞

−∞
dp

κ(q−p/2−1 + qp/2+1)

(κ+ q−p/2 + qp/2)(κ+ q−p/2−1 + qp/2+1)

=
κ

(

κ2 − (1+q)2

q

)

log q





κ(1 + q) log κ+q−p/2+qp/2

q(κ+q−p/2−1+qp/2+1)

2(1− q)
+

κ2 arctanh
√
κ2−4

κ+2qp/2+1√
κ2 − 4

−
(

κ2 − 2 (1+q)2

q

)

arctanh
√
κ2−4

κ+2qp/2√
κ2 − 4





∞

−∞

=
1 + q

1− q

1 + 2 (1−q2)
q log q

arctanh
√

1−4/κ2

κ2
√

1−4/κ2

1− (1+q)2

qκ2

.

At leading order at large κ this is simply

W�(κ) =
1 + q

1− q
+O

(

κ2 log κ
)

. (3.3)

Since this leading asymptotics has no κ dependence, the factor of WR(e
µ) in (3.1) can be

taken out of the integral, which just gives Z(N) (cf., (1.7)). Hence at leading order at large

N (or κ) the Wilson loop in the canonical and grand-canonical ensembles are equal

I�(N) ≈ W�(κ) ≈
1 + q

1− q
. (3.4)

One can consider higher dimensional representations. At order (st)2 in (2.10), using

the same integral approximation as for the fundamental, one finds

− 1

2
Tr

(

R2 − 4R2R+ +R2R2
+ + 2RR2

+R++

)

≈ 1

2

1 + q2

1− q2
. (3.5)
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Expanding the exponent in (2.10) gives

W (κ) ≈ 1

2

(

(1 + q)2

(1− q)2
+

1 + q2

1− q2

)

, (3.6)

and at this order this is also the asymptotic value of I (N).

Repeating the calculation for the term cubic in st in (2.10) gives at leading order

1

3

1 + q3

1− q3
+O

(

κ−2
)

. (3.7)

so to leading order the Wilson loop in either the canonical or grand canonical ensemble

is simply

W (κ) ≈ I (N) ≈ 1

6

(

(1 + q)3

(1− q)3
+ 3

1 + q2

(1− q)2
+ 2

1 + q3

1− q3

)

. (3.8)

Indeed, the leading large κ behavior for all terms in (2.10) up to (st)5 (see ap-

pendix B.1) is
(st)n

n

1 + qn

1− qn
. (3.9)

It is natural to conjecture that this pattern continues, so that at large κ the determinant

in (2.10) would be

det(1 +XAR) ≈ exp

[ ∞
∑

n=1

(st)n

n

1 + qn

1− qn

]

= exp

[ ∞
∑

n=1

(st)n

n

(

2

1− qn
− 1

)

]

= (1− st) exp

[

2
∞
∑

n=1

∞
∑

k=0

(stqk)n

n

]

=
1− st

∏∞
k=0(1− stqk)2

.

These products are known as q-Pochhammer symbols

det(1 +XAR) =
1 + st

(st; q)2∞
=

1

(st; q)∞(stq; q)∞
. (3.10)

It is simple to expand these expressions to arbitrary orders in st.

Applying the same techniques to the symmetric representation, the leading order at

large κ for the term multiplying (st)2 in (2.17) is

1

2

1 + q2

1− q2
, (3.11)

which is the same as the antisymmetric representation (3.5). Indeed the same is true for

the three and four box symmetric representations (see appendix B.2). Again it would be

natural to conjecture that this pattern continues for all N and that also for the symmetric

representation

det(1 +XSR) ≈ 1− st
∏∞

k=0(1− stqk)2
=

1

(st; q)∞(stq; q)∞
. (3.12)
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Figure 1. The continuum approximation of W�(κ) for q = 1/4: on the left graph different

approximations of W�(κ) are plotted as function of κ. The dotted blue line is the asymptotic value
1+q

1−q
= 5/3. The green dashed line includes the 1/κ2 correction and the red dash-dotted line also the

1/κ4 corrections in (3.13). The full continuum approximation in (3.3) and the numerical evaluation

of the sum in (3.2) are the solid black line. The difference between them cannot be seen at this

scale, and is plotted in the right graph.

Having seen that the answer at large N for all the the above examples does not depend

on whether they were symmetric or antisymmetric representation, it is natural to further

conjecture that the leading result depends only on the number of boxes in the Young

diagram.3

The discussion so far involved only the leading order at large N of IR(N). To find sub-

leading corrections it is possible to examine the corrections to WR(κ). For the fundamental

representation one can expand equation (3.3) to find

W�(κ) ≈
1 + q

1− q
+

(1 + q)2

qκ2

(

1 + q

1− q
+ 2 logq κ

)

+
(1 + q)2

q2κ4

(

(1 + q)3

1− q
− 2q

log q
+ 2(1 + 4q + q2) logq κ

)

+O(κ−6 log κ) .

(3.13)

As can be seen in figure 1, for q = 1/4 the continuum approximation (3.3) of the sum (3.2)

is very good, differing from the exact expression by less than 1% for arbitrary κ and much

much better for large κ. A wide range of q gives similarly looking graphs. The same figure

also shows the large κ expansion of this result, which also furnishes a good approximation.

The continuum approximation breaks down, though, for negative κ, where (3.3)

and (3.13) have branch cuts. The origin of this is the infinite number of poles of W�(κ)

at κ = −qp/2 − q−p/2 (3.2). These poles all occur at zeros of Ξ(κ) (1.8), so they have

no dramatic effect on the integral (3.1). The branch cuts, on the other hand, make the

integral ambiguous. It would be interesting to find a workaround to extract the corrections

to I�(N) beyond the leading large N result (3.4).

3Alternatively, on the length of the longest hook in the diagram, which for the antisymmetric and

symmetric representations is equal to the total number of boxes.
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4 Fundamental representation at small N

To evaluate the index with Wilson loops at finite N , one can also expand (3.2) in a power

series in κ

W�(κ) =
∞
∑

N=1

(−1)N+1κN
∑

p∈2Z+1

N
∑

k=1

1

chk p chN−k(p+ 2)
. (4.1)

Multiplying by Ξ(κ) (1.7) one finds at order κN

Z(N)I�(N) =

N
∑

n=1

Z(N − n)(−1)n+1
∑

p∈2Z+1

n
∑

k=1

1

chk p chn−k(p+ 2)
. (4.2)

Z(N) can be expressed as infinite sums, for example by expanding (1.8) and evaluated

using the techniques in [3, 4, 20]

Z(1) =
∑

p∈2Z+1

1

ch p
=

kK

π
,

Z(2) =
1

2





(

∑

p∈2Z+1

1

ch p

)2

−
∑

p∈2Z+1

1

ch2 p



 =
K(K − E)

2π2
.

(4.3)

where K and E are complete elliptic integrals with modulus k = θ22/θ
2
3.

The remaining sum in (4.2) needed to calculate I�(2) is
∑

p∈2Z+1

1

ch p ch(p+ 2)
=

q

1− q2
, (4.4)

which gives

I�(2) =
1

Z(2)

(

k2K2

π2
− KE − (1− k2)K2

π2
− q

1− q2

)

= 2− 1

Z(2)

q

1− q2
. (4.5)

One can consider higher dimensional representations and N > 2, but the necessary sums

get rather unwieldily.
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A Theta functions

The Jacobi theta function ϑ3(z, q) is given by the series and product representations as

ϑ3(z, q) =
∞
∑

n=−∞
qn

2

e2inz =
∞
∏

k=1

(

1− q2k
)(

1 + 2q2k−1 cos(2z) + q4k−2
)

, (A.1)
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in terms of which the auxiliary theta functions are given by

ϑ1(z, q) = iq1/4e−izϑ3

(

z − πτ

2
− π

2
, q

)

ϑ2(z, q) = q1/4e−izϑ3

(

z − πτ

2
, q

)

ϑ4(z, q) = ϑ3

(

z − π

2
, q

)

.

(A.2)

B Higher order expansions

B.1 Antisymmetric representations

The next few terms in (2.10) which could fit on less than a page in a reasonable font are

det(1 +XAR) = expTr

[

st
(

R−RR1

)

− (st)2

2

(

R2R2
1 +R2 − 4RR2

1 + 2RR2
1R2

)

+
(st)3

3

(

−R3R3
1 +R3 + 6R2R3

1 − 3R2R2
1 − 6RR3

1 − 6RR3
1R

2
2 + 6RR2

1R
2
2

+ 6RR3
1R2 − 3RR2

1R
2
2R3

)

− (st)4

4

(

R4R4
1 +R4 − 8R3R4

1 + 8R3R3
1 + 12R2R4

1 − 8R2R3
1 + 6R2R4

1R
2
2 − 8R2R3

1R
2
2

+ 4R2R2
1R

2
2 − 8RR4

1 + 8RR4
1R

3
2 − 16RR3

1R
3
2 + 8RR2

1R
3
2 − 24RR4

1R
2
2

+ 16RR3
1R

2
2 + 8RR2

1R
3
2R

2
3 − 8RR2

1R
2
2R

2
3 + 12RR4

1R2 + 8RR3
1R

3
2R3

− 16R2
1R

3
2R3 + 4RR2

1R
2
2R

2
3R4

)

+
(st)5

5

(

−R5R5
1 +R5 + 10R4R5

1 − 15R4R4
1 − 20R3R5

1 + 30R3R4
1 − 5R3R3

1 + 20R2R5
1

− 10R2R4
1 − 20R2R5

1R
3
2 + 40R2R4

1R
3
2 − 30R2R3

1R
3
2 + 10R2R2

1R
3
2

− 5R2R3
1R

3
2R

2
3 + 10R2R2

1R
3
2R

2
3 − 5R2R2

1R
2
2R

2
3 − 10RR5

1 − 10RR5
1R

4
2

+ 30RR4
1R

4
2 − 30RR3

1R
4
2 + 10RR2

1R
4
2 + 40RR5

1R
3
2 − 60RR4

1R
3
2 + 20RR3

1R
3
2

− 10RR2
1R

4
2R

3
3 + 20RR2

1R
3
2R

3
3 − 10RR2

1R
2
2R

3
3 − 60RR5

1R
2
2 + 30RR4

1R
2
2

− 30RR3
1R

4
2R

2
3 + 30RR2

1R
4
2R

2
3 + 40RR3

1R
3
2R

2
3 − 20RR2

1R
3
2R

2
3

− 20RR3
1R

2
2R

2
3 − 10RR2

1R
2
2R

3
3R

2
4 + 10RR2

1R
2
2R

2
3R

2
4 + 20RR5

1R2

− 15RR4
1R

4
2R3 + 60RR3

1R
4
2R3 − 30RR2

1R
4
2R3 − 20RR3

1R
3
2R3

− 20RR2
1R

3
2R

3
3R4 + 20RR2

1R
2
2R

3
3R4 + 10RR2

1R
3
2R

2
3R4

− 5RR2
1R

2
2R

2
3R

2
4R5

)

+O
(

(st)6
)

]

.

B.2 Symmetric representations

The next few terms in (2.17) are

det(1 +XSR) = expTr

[

st
(

R−RR1

)

− (st)2

2

(

R2R2
1 − 4R2R1 +R2 + 4RR1 + 2RR2

1R2 − 4RR1R2 + 2RR2 − 2R
)
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)
0
1
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+
(st)3

3

(

−R3R3
1 + 6R3R2

1 − 6R3R1 +R3 − 9R2R2
1 + 18R2R1 − 6R2R3

1R2 + 18R2R2
1R2

− 18R2R1R2 + 6R2R2 − 3R2 − 9RR1 + 6RR3
1R2 − 18RR2

1R2 + 18RR1R2

− 6RR2 − 6RR2
1R3 − 3RR2

1R
2
2R3 + 12RR1R3 + 12RR2

1R2R3 − 12RR1R2R3

− 3RR3 + 3R
)

− (st)4

4

(

R4R4
1 − 8R4R3

1 + 12R4R2
1 − 8R4R1 +R4 + 16R3R3

1 − 48R3R2
1 + 32R3R1

+ 8R3R4
1R2 − 32R3R3

1R2 + 48R3R2
1R2 − 32R3R1R2 + 8R3R2 − 4R3

+ 36R2R2
1 + 6R2R4

1R
2
2 − 24R2R3

1R
2
2 + 36R2R2

1R
2
2 − 24R2R1R

2
2 + 6R2R2

2

− 48R2R1 − 24R2R4
1R2 + 96R2R3

1R2 − 144R2R2
1R2 + 96R2R1R2

− 24R2R2 + 8R2R3
1R3 − 24R2R2

1R3 + 8R2R3
1R

2
2R3 − 24R2R2

1R
2
2R3

+ 24R2R1R
2
2R3 − 4R2R2

2R3 + 24R2R1R3 − 16R2R3
1R2R3 + 48R2R2

1R2R3

− 48R2R1R2R3 + 16R2R2R3 − 8R2R3 + 6R2 − 4RR2
1R

2
3 + 16RR1

+ 12RR4
1R2 − 48RR3

1R2 + 72RR2
1R2 − 48RR1R2 + 12RR2 − 16RR3

1R3

+ 8RR3
1R

3
2R3 + 48RR2

1R3 − 48RR3
1R

2
2R3 + 72RR2

1R
2
2R3 − 48RR1R3

+ 48RR3
1R2R3 − 144RR2

1R2R3 + 72RR1R2R3 + 8RR3 + 8RR2
1R4

+ 8RR2
1R

2
2R4 − 16RR1R

2
2R4 + 4RR2

2R4 + 4RR2
1R

2
3R4 + 4RR2

1R
2
2R

2
3R4

− 16RR2
1R2R4 + 32RR1R2R4 − 8RR2R4 − 16RR2

1R3R4 − 16RR2
1R

2
2R3R4

+ 16RR1R
2
2R3R4 − 8RR2

1R2R
2
3R4 − 16RR1R4 + 16RR1R3R4

+ 32RR2
1R2R3R4 − 32RR1R2R3R4 + 4RR4 − 4R

)

+O
(

(st)5
)

]

. (B.1)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories,

Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

[2] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super

conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

[3] J. Bourdier, N. Drukker and J. Felix, The exact Schur index of N = 4 SYM,

arXiv:1507.08659 [INSPIRE].

[4] J. Bourdier, N. Drukker and J. Felix, The N = 2 Schur index from free fermions,

arXiv:1510.07041 [INSPIRE].

[5] D. Gang, E. Koh and K. Lee, Line operator index on S1 × S3, JHEP 05 (2012) 007

[arXiv:1201.5539] [INSPIRE].

[6] Y. Ito, T. Okuda and M. Taki, Line operators on S1 ×R3 and quantization of the Hitchin

moduli space, JHEP 04 (2012) 010 [arXiv:1111.4221] [INSPIRE].

– 13 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.nuclphysb.2006.03.037
http://arxiv.org/abs/hep-th/0510060
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510060
http://dx.doi.org/10.1007/s00220-007-0258-7
http://arxiv.org/abs/hep-th/0510251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510251
http://arxiv.org/abs/1507.08659
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.08659
http://arxiv.org/abs/1510.07041
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.07041
http://dx.doi.org/10.1007/JHEP05(2012)007
http://arxiv.org/abs/1201.5539
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5539
http://dx.doi.org/10.1007/JHEP04(2012)010
http://arxiv.org/abs/1111.4221
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.4221


J
H
E
P
1
2
(
2
0
1
5
)
0
1
2

[7] N. Mekareeya and D. Rodriguez-Gomez, 5D gauge theories on orbifolds and 4D ‘t Hooft line

indices, JHEP 11 (2013) 157 [arXiv:1309.1213] [INSPIRE].

[8] F.A. Dolan and H. Osborn, Applications of the superconformal index for protected operators

and q-hypergeometric identities to N = 1 dual theories, Nucl. Phys. B 818 (2009) 137

[arXiv:0801.4947] [INSPIRE].

[9] A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2D topological QFT,

JHEP 03 (2010) 032 [arXiv:0910.2225] [INSPIRE].

[10] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge theories and Macdonald

polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].

[11] S.S. Razamat, On a modular property of N = 2 superconformal theories in four dimensions,

JHEP 10 (2012) 191 [arXiv:1208.5056] [INSPIRE].
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