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In a classically scale-invariant quantum field theory, tunneling rates are infrared divergent due to the
existence of instantons of any size. While one expects such divergences to be resolved by quantum effects,
it has been unclear how higher-loop corrections can resolve a problem appearing already at one loop. With
a careful power counting, we uncover a series of loop contributions that dominate over the one-loop result
and sum all the necessary terms. We also clarify previously incomplete treatments of related issues
pertaining to global symmetries, gauge fixing, and finite mass effects. In addition, we produce exact closed-
form solutions for the functional determinants over scalars, fermions, and vector bosons around the scale-
invariant bounce, demonstrating manifest gauge invariance in the vector case. With these problems solved,
we produce the first complete calculation of the lifetime of our Universe: 10139 years. With 95% con-
fidence, we expect our Universe to last more than 1058 years. The uncertainty is part experimental
uncertainty on the top quark mass and on αs and part theory uncertainty from electroweak threshold
corrections. Using our complete result, we provide phase diagrams in themt/mh and the mt/αs planes, with
uncertainty bands. To rule out absolute stability to 3σ confidence, the uncertainty on the top quark pole
mass would have to be pushed below 250 MeV or the uncertainty on αsðmZÞ pushed below 0.00025.
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I. INTRODUCTION

Tunneling through a barrier is a quintessentially
quantum phenomenon. In quantum mechanics (QM),
tunneling has been studied analytically, numerically, and
experimentally, leading to a consistent and comprehen-
sive picture of when and how fast tunneling occurs. In
quantum field theory (QFT), much less is known. In
QFT, one cannot solve the Schrödinger equation, even
numerically, due to the infinite dimensionality of the
Hilbert space. The only approach to calculating tunnel-
ing rates in QFT seems to be through the saddle-point
approximation of the path integral [1–5]. This approach
involves analytic continuation in an essential way.
Because tunneling in QFT has important implications,
such as for the stability of the Standard Model vacuum
[6–20] and because QFT tunneling rates are nearly
impossible to measure experimentally, it is critical to
make sure the rather abstract formalism is actually
capable of calculating something physical.

A number of the subtleties in going from QM to QFT
were resolved long ago, some more recently, and some
challenges still exist. For example, while tunneling rates are
physical and therefore should be gauge invariant, it has
been challenging to check directly that this is the case.
Although exact nonperturbative proofs of gauge invariance
exist [21,22] and there have been many investigations into
gauge dependence [18,23–36], it has not been shown that
gauge invariance holds order by order in perturbation
theory, as it does for S-matrix elements. For some context,
recall that for the simpler question of whether a state is
absolutely stable in the quantum theory, it was found that
the corresponding bound was gauge dependent with then-
current perturbative methods [17,37,38]. The problem was
traced to an inconsistent power counting and improper use
of the renormalization group equations. A consistent
method was recently developed in [17,38], with non-
negligible implications for precision top and Higgs-boson
mass bounds in the Standard Model. Recently, progress
was made in understanding the gauge invariance of
tunneling rates by Endo et al. [39,40]; these authors showed
explicitly that the rate is gauge invariant to one loop for
general massive scalar scalar field theory backgrounds and
we build upon their results.
In fact, gauge invariance is the least of our worries. In

order to produce a precision calculation of the tunneling
rate—or even the leading order rate with the correct units—
one must understand a whole slew of subtleties not relevant
for the absolute stability bound. First of all, there are
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suspicious elements in the common derivations [41–46] of
the Callan-Coleman decay rate formula [3,4]. The leading-
order confusion is that the rate is said to be determined,
even in QM, by taking the imaginary part of haje−HT jai, a
manifestly real expression. The resolution of this paradox
involves not analytic continuation of the potential, as is
often cited, but the specification of complex paths to be
integrated over in the path integral [47,48]. A more physical
derivation of a decay rate in QFTwas presented recently in
[49,50]. Some elements are reviewed in Sec. II.
Even if we ignore gauge dependence and trust the

decay rate formulas, we encounter a new roadblock in
trying to evaluate tunneling rates in QFTs like the
Standard Model, due to classical scale invariance.
The basic issue with scale invariance can be seen in
the Gaussian approximation to the path integral around a
reference field configuration ϕb:

Γ
V
∼

1

TV

Z
Dϕe−S½ϕbþϕ�≈

1

TV

Z
Dϕe−S½ϕb�−1

2
ϕS00½ϕb�ϕ: ð1:1Þ

One typically evaluates the right-hand side by expanding
the fluctuations ϕ in a basis of eigenfunctions of the
operator S00½ϕb�. If the action has a symmetry sponta-
neously broken by ϕb, then there will be fluctuation
directions ϕ0 with zero eigenvalue, that is, for which
S00½ϕb�ϕ0 ¼ 0. Integrating over dξ0 in the field direction
ϕ ¼ ξ0ϕ0 then leads to an infrared divergence in
Eq. (1.1). Examples include the zero modes associated
with translation invariance where ϕ0 ∝ ∂μϕb or scale
invariance where ϕ0 ∝ ð1þ xμ∂μÞϕb. For translations, the
infrared divergence is expected—it generates a factor of
VT so that the rate is extrinsic, a decay rate per unit
volume. For scale invariance, the infrared divergence has
no natural volume cutoff and so the decay rate is
apparently infinite.
Anyone with even minimal familiarity with QFT would

immediately guess that the resolution to the scale-invariance
divergence is related to dimensional transmutation [51] and
that the classical scale invariance is broken by quantum
effects. Unfortunately, connecting the β functions to the
decay rate calculation within a consistent perturbative
framework has remained elusive. In fact, there are two
related technical difficulties.
First of all, to integrate over a zero-mode fluctuation, one

must use a collective coordinate [1,52–55] rather than an
infinitesimal fluctuation. For example, with translations,
one must integrate over xμ0 parametrizing fields ϕbðxμ þ xμ0Þ
in the path integral before the Gaussian approximation is
applied [in the middle expression in Eq. (1.1) not the
rightmost one]. The difference between xμ0 and coefficients
ξμ of fluctuations in the ∂μϕb direction is a Jacobian
factor J ¼ R d4xð∂μϕbÞ2. For translations, this Jacobian
is finite. For scale transformations, one wants to move from
linearized fluctuations ϕ ¼ ξdϕd proportional to the

dilatation mode ϕd ¼ ð1þ xμ∂μÞϕb to a collective scale
coordinate R. Unfortunately, in this case, the Jacobian
factor J ¼ R d4xϕ2

d is infinite. Related Jacobians for the
spontaneously broken SUð2Þ ×Uð1Þ symmetry of the
Standard Model are also infinite [11,19,56].
The second problem is that even if one could regularize

the Jacobian and go to collective coordinates, the resulting
integral

R
dR over scales R would still be infinite. While

quantum corrections do break scale invariance at some
order, they do not resolve the infinity in the one-loop
approximation. Indeed, the R dependence of the integrand
can be deduced from renormalization group invariance. As
we review in Sec. III at one loop, the integral is still infinite.
While there is R dependence at higher-loop order, for the
higher-loop effects to cancel the infinity form the one-loop
integrand would require a diversion from the usual loop
power counting. This is certainly possible, as the unusual
power counting of the Coleman-Weinberg model [51] is
often required to extract physical predictions from the
effective potential [17,23,38], but a proper power counting
for the decay rate does not seem to have been explored in
the literature.
A number of unsatisfying approaches to resolve the two

problems with the dilation mode have been used in the
literature. One method is to impose a scale on the bounce
by hand, by demanding a constraint be satisfied [57–60],
such as hϕ3i ¼ Λ3 for some fixed Λ. Then one can try to
split the path integral into integrations around the con-
strained instanton and integrations over Λ. This approach
seems impractical, as explicit constrained instantons are
hard to find [59] and the Jacobian to go between R and Λ is
no simpler than between ξd and R. While constrained
instantons are helpful in understanding how a scalar mass
can be a small perturbation, as we discuss in Sec. VII, they
are irrelevant to resolving the integral over R.
In practice, for the decay rate in the Standard Model,

people always just invoke dimensional analysis
[11,19,61,62]: cut off the divergence in the Jacobian by
theHiggsmass and assume the integral overR is dominated
by the bubble size Rm with the maximal rate. This seems to
us a bit cavalier. After all, the fate of the Universe is on
the line.
In this paper, we provide definitive resolutions to

both challenges associated with the dilatation mode. To
regularize the Jacobian, a powerful approach has been
known for some time but has not been widely appreciated
[58,63–65]. The approach is a based on a powerful
stereographic projection into five dimensions, where sym-
metries are manifest and the natural inner product is the
conformal metric on the 4-sphere. By undoing this trans-
formation, it becomes clear that the projection is not
actually necessary. The key is simply that a zero mode
satisfying S00½ϕb�ϕd ¼ 0 is also a zero mode of any rescaled
operator fðxÞS00½ϕb�ϕd. Since the rescaling factor fðxÞ
changes the norm on the eigenfunctions, one can choose
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fðxÞ so that ϕd is normalizable and the Jacobian is finite.
More explicitly, for S00½ϕb� ¼ −□ − V 00½ϕb�, a wise choice
is fðxÞ ¼ V00½ϕb�−1 which allows the spectrum of eigen-
functions to be found in closed form, and the same basis to
be used for fluctuations around ϕb and around ϕ ¼ 0. We
explain this procedure in Sec. III A.
Once collective coordinates have been invoked, we

address the issue of the proper power counting required
to evaluate the integral over R. Indeed, at one loop, the
integral over R is infinite. At two loops, there is an
expð−ℏ ln2 RÞ term which makes the integral over R finite.
Despite the ℏ suppression of this term, the integral scales as
ℏ−1/2 compared to the one-loop integral, making it diver-
gent as ℏ → 0. In other words, the two-loop result is
parametrically more important than the one-loop result, a
scaling essential to regulating the divergence. At three
loops, the integral scales like ℏ−3/2, so that three loops is
more important than two loops. Conveniently, for four
loops and higher, the integral stills scales like ℏ−3/2

compared to one loop. We show that the entire series of
leading contributions can be summed in closed form.
With these scale invariance problems solved, we proceed

to compute the functional determinants around the bounce
over real scalar, complex scalar, vector boson, and fer-
mionic fluctuations. We produce for the first time exact
formulas for the path integrals in each case. In the gauge
boson case, we work in a general 1-parameter family of
Fermi gauges and show the result is gauge invariant and
that it agrees with the result in Rξ gauges as well.
Applying our exact formulas to the Standard Model, we

update the famous stability/metastability phase diagram.
For the first time, we can give an exact next-to-leading
order (NLO) prediction for the instability/metastability
phase boundary. We find that with current data, the
dominant uncertainties are from the top quark mass and
αs, and these are both comparable to the theory uncertainty
from electroweak threshold corrections, currently known to
next-to-next-to-leading order (NNLO).
Although this paper is rather long, we have tried to

compartmentalize it into more or less self-contained sec-
tions. Section II reviews how tunneling rates are computed.
This section is very brief and the interested reader is
referred to [50] for more details. Section III contains
new results about resolving the problems associated with
scale invariance of the classical action. Section IV intro-
duces the methods we will use in later sections to generate
exact expressions for functional determinants. The longest
section is Sec. V which computes one by one the functional
determinants for scalars, vectors, and fermions. For a reader
just interested in the final formulas, these are summarized
in Sec. V E. The application to the Standard Model is in
Sec. VI. We tie up one lose end about the finite Higgs boson
mass in Sec. VII. Our results are digested, including a
summary of the SM bounds and limits in our conclusions,
in Sec. VIII.

II. TUNNELING FORMULAS AND
FUNCTIONAL DETERMINANTS

In this section we review how to compute a decay rate in
quantum field theory. We give some formal expressions for
the rate in Sec. II A and show how to use the saddle-point
approximation and how to evaluate functional determinants
around nontrivial backgrounds in Sec. II B.

A. Defining the decay rate

Suppose our QFT has a metastable extremum
localized around the constant classical field configuration
ϕðxÞ ¼ ϕFV. We would like to compute the lifetime of ϕFV
or equivalently the rate to tunnel form ϕFV through the
energy barrier to any other field configuration. The basic
tunneling formula was introduced into high-energy theory
by Coleman and Callan in 1977 [4], although it has roots in
earlier condensed matter treatments (e.g. [1]). The formula
is explained at length in Coleman’s famous Erice lectures
[66], as well as in numerous textbooks [44–46,67]. Most of
these treatments start with the premise that the decay rate
can be computed by evaluating

Γ
2
∼ Im lim

T→∞

1

T
lnhϕFVje−HT jϕFVi

∼ Im lim
T→∞

1

T
ln
Z

ϕðT/2Þ¼ϕFV

ϕð−T/2Þ¼ϕFV

Dϕe−S½ϕ�: ð2:1Þ

Unfortunately, this formula cannot be correct as written,
since the matrix element, and path integral over real paths,
are purely real.
We would like the T → ∞ limit to pick out the energy of

a state localized near the false vacuum whose imaginary
part is to give the decay rate. This is certainly the intuition
behind Eq. (2.1). Instead, Eq. (2.1) picks out the true
ground state energy E0 which is real. To see this, we note
that there are three relevant paths through field space
satisfying the boundary conditions ϕð− T

2
Þ ¼ ϕðT

2
Þ ¼ ϕFV:

(1) The constant state ϕ ¼ ϕFV; (2) the bounce, interpolat-
ing from ϕFV at Euclidean time τ ¼ �T/2 to a bubble of
shape ϕbðx⃗Þ in a small time window (hence the name
instanton) near τ ¼ 0; and (3) the shot, ϕshot matching ϕFV
at τ ¼ �T/2 but hovering near the true vacuum ϕ0 over
most of Euclidean time [49,50]. While the hope is for the
path integral to pick out the bounce configuration at large
T, instead it picks out the shot since the shot has smaller
action, with the result that the path integral is real. In Fig. 1
we show a sketch of the real part of the action along paths z
passing through ϕFV, ϕb, and ϕshot.
In order for the path integral and energies to be complex

we must introduce a unitary-violating unphysical deforma-
tion of the theory. This deformation should prevent flux
from returning to the false vacuum so that the strict T → ∞
limit can be taken. For example, we could impose Gamow’s
outgoing-wave-only boundary conditions to solve the
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Schrödinger equation [68]. A more formal deformation
commonly used is analytic continuation of the classical
potential. For example, with a potential VðϕÞ ¼ m2ϕ2 þ
λϕ4 if λ is positive then energies are real, but if λ is negative
energies are complex. The analog of this potential in
nonrelativistic quantum mechanics has been studied for
decades [69–74]. Unfortunately, the analytic continuation
method only works for (unphysical) situations in which
the potential is unbounded from below. When the potential
is unbounded, no flux can return, but also the path integral
over real field configurations is divergent so one has no
choice but to change the integration domain to over
complex paths. If the path integral is finite, as in the
Standard Model, then it is analytic in a domain around real
paths and analytic continuation simply reproduces the
original (real) result [49,50].
A useful way to define the rate for physical situations,

where the action is bounded from below, is to change the
integration domain from real field configurations to field
configurations associated with steepest descent contours
(i.e. those for which ImS½ϕ� ¼ 0) [47,48]. To be precise, the
rate per unit volume for the formation of bubbles with the
shape ϕbðx⃗; 0Þ is given by

1

2

Γ
V
¼ lim

T→∞

1

2

1

TV

Im
R
Cb
Dϕe−S½ϕ�

Re
R
CFV

Dϕe−S½ϕ�
: ð2:2Þ

Here S is the Euclidean action, V the volume of space, and
T is a time for which the transition rate has exponential
behavior (see discussion in [49,50]). The contour CFV
(green contour in Fig. 1) is the steepest descent trajectory
through field space passing through ϕFV. The contour Cb
(red contour in Fig. 1) is the steepest descent trajectory
passing through the bounce. Note that if we ignore these
contour prescriptions and just integrate over real field
configurations, along the black dashed line in Fig. 1,
passing through ϕFV, ϕb, and ϕshot, there is no imaginary
part and the rate defined this way is zero, similar
to Eq. (2.1).

For additional perspective, and insight into the factor of
1
2
, we can alternatively write the decay rate as

1

2

Γ
V
¼ lim

T→∞

1

TV

Im
R
CFV

Dϕe−S½ϕ�

Re
R
CFV

Dϕe−S½ϕ�
: ð2:3Þ

The contour CFV passes through real field configurations
until the saddle point ϕ ¼ ϕb is reached when it veers into
complex field space (even for real ϕ) traveling along Cb as
in Fig. 1. In contrast, if we reverse the trajectory Cb, as it
passes through ϕb it does not head towards ϕFV, since
Reð−S½ϕ�Þ increases in that direction, rather it continues
into the conjugate complex field space. Thus integrating
along Cb gives twice the imaginary part of the integral along
CFV. The doubling of the contour is the origin of the factor
of 1

2
in Eq. (2.2).

The explanation of why these arcane contour prescrip-
tions produce the decay rate is given in [49,50]. Briefly, the
idea is to start by relating the tunneling rate to the time
derivative of the probability

R
R d3xjψðxÞj2 for a state to be

found in a region R on the other side of the energy barrier.
This leads to the formula

Γ ¼ lim
T →∞

���� 2Im R Dϕe−S½ϕ�δðτΣ½ϕ�ÞR
Dϕe−S½ϕ�

����: ð2:4Þ

Here, Σ is codimension-1 surface bounding R comprising
fields with the same energy density as the false vacuum
U½ϕ� ¼ U½ϕFV� and τΣ½ϕ� is the Euclidean time at which the
field configuration ϕðx⃗; τÞ first passes through Σ. Unlike
Eq. (2.3), this formula has the advantage that the left-hand
side can be shown to be the decay rate. In the saddle-point
approximation, it reduces to Eq. (2.2).

B. Functional determinants and zero modes

Since the decay rate is defined by path integrals along
steepest descent contours, we can compute these path
integrals in the saddle-point approximation. To quadratic
order, Eq. (2.2) reduces to

FIG. 1. Left: real part of the action along family of field configurations ϕðzÞ parametrized by a complex parameter z. z is chosen so that
real z passes through ϕFV (green dot), ϕb (red dot), and ϕshot (blue dot). Right: top-down view. Integrating along real field configurations
only (black dashed contour) makes the path integral real. The decay rate must be calculated by integrating along steepest descent
contours (red and green contours) which involve complex field configurations.
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1

2

Γ
V
¼ lim

T→∞

1

2TV
Im
R
Dϕe−S½ϕb�−1

2
ϕS00½ϕb�ϕR

Dϕe−S½ϕFV�−1
2
ϕS00½ϕFV�ϕ

: ð2:5Þ

To evaluate these path integrals, we must be precise
about the integral measure. We do this by expanding the
fields in some basis ϕj:

ϕ ¼ ϕbðxÞ þ
X

ξjϕjðxÞ: ð2:6Þ

The path integral measure can then be defined as
Dϕ ¼Qjdξj.
An orthogonal basis is naturally provided by eigenfunc-

tions of an operator. It is often convenient to take the
operator to be S00½ϕb�, so that

S00½ϕb�ϕj ¼ ð−□þ V 00½ϕb�Þϕj ¼ λjϕj: ð2:7Þ

To find the inner product on these basis functions, we note
that

λk

Z
d4xϕjϕk ¼

Z
d4xϕjð−□þ V 00½ϕb�Þϕk

¼ λj

Z
d4xϕjϕk ð2:8Þ

where integration by parts has been used in the last step. So
functions with different eigenvalues are orthogonal accord-
ing to the inner product hϕijϕji ¼

R
d4xϕiϕj. It is also

convenient to normalize the fluctuations so that

hϕijϕji ¼ 2πδij: ð2:9Þ

Then we findZ
Dϕe−S½ϕb�−1

2
ϕS00½ϕb�ϕ

¼ e−S½ϕb�
Y
j

Z
∞

−∞
dξje

−1
2
λjξ

2
j2π ¼ e−S½ϕb�

Y
j

ffiffiffiffi
1

λj

s
: ð2:10Þ

The point of the normalization convention in Eq. (2.9) is to
make removing a normalized fluctuation equivalent to
removing its eigenvalue from the product in Eq. (2.10).
If one of the eigenvalues is negative, then this expression

(after analytic continuation) will have an imaginary part, as
desired. There is at most a single negative eigenvalue [75].
It corresponds to the bounce being a local maximum of the
action on the direction from ϕFV (see Fig. 1) but a local
minimum in all other directions.
If there are zero eigenvalues, then Eq. (2.10) is infinite.

Examples are the translation modes, which are proportional
to ∂μϕb. To check, using S0½ϕb� ¼ 0 and that S½ϕ� has no
explicit position dependence, we find

S00½ϕb�∂μϕb ¼ ∂μðS0½ϕb�Þ ¼ 0 ð2:11Þ

confirming that ∂μϕ are zero modes. To set the normali-
zation of these modes according to our convention, we
note that

h∂μϕbj∂νϕbi ¼
1

4
δμν

Z
d4xð∂λϕbÞð∂λϕbÞ ¼ δμνS½ϕb�:

ð2:12Þ

Thus the rescaled modes
ffiffiffiffiffiffi
2π
S½ϕ�

q
∂μϕb are normalized accord-

ing to Eq. (2.9).
Separating out the translation modes Eq. (2.6) becomes

ϕξ ¼ ϕbðxÞ þ ξμ

ffiffiffiffiffiffiffiffiffi
2π

S½ϕ�

s
∂μϕbðxÞ þ

X
ξjϕjðxÞ: ð2:13Þ

To integrate over translations, we use collective coordinates
[1,52–55], parametrizing fields with

ϕx0;ζ ¼ ϕbðxμ þ xμ0Þ þ
X

ζjϕjðxμ þ xμ0Þ: ð2:14Þ

By expanding Eq. (2.14) for small xμ0 and comparing to
Eq. (2.13) we see that the Jacobian to go from ξμ to xμ0 is

J ¼
ffiffiffiffiffiffiffiffiffiffiffi
S½ϕb�
2π

r
: ð2:15Þ

Then the path integral can be written as

Z
CFV

Dϕe−S½ϕ� ¼N
�
S½ϕb�
2π

�
2
Z

d4x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

det0S00½ϕb�

s
ð2:16Þ

where det0 refers to the functional determinant with the zero
eigenvalues taken out by hand and N some (infinite)
constant. Noting that the integral over d4x0 gives the
volume of Euclidean space time, we find

Γ
V
¼
�
S½ϕb�
2π

�
2

e−S½ϕb�þS½ϕFV�Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½S00½ϕFV��
det0½S00½ϕb�

s
: ð2:17Þ

III. SCALE INVARIANCE

Any classically scale invariant action will admit an
infinite family of bounces related by scale transformations.
To be explicit, we take the potential VðϕÞ ¼ 1

4
λϕ4 and

assume throughout this paper that λ < 0. Then there is a
5-parameter family of bounces given by

ϕ
R;xμ

0

b ðxÞ ¼
ffiffiffiffiffiffi
8

−λ

r
R

R2 þ ðxþ x0Þ2
: ð3:1Þ
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These Fubini-Lipatov instantons [76,77] all satisfy
□ϕb − λϕ3

b ¼ 0 and all have the same Euclidean action

S½ϕb� ¼
Z

d4x

�
1

2
ð∂μϕbÞ2 þ

1

4
λϕ4

b

�
¼ −

8π2

3λ
> 0: ð3:2Þ

There are four normalizable fluctuations around the bounce

corresponding to translations ϕμ ¼
ffiffiffiffiffiffiffiffi
2π

S½ϕb�
q

∂μϕb. These are

handled using collective coordinates as discussed above.
We therefore take x0 ¼ 0 without loss of generality. We
also use r ¼ ffiffiffiffiffiffiffiffiffi

xμxμ
p

as our radial coordinate so that the
bounce is

ϕbðxÞ ¼
ffiffiffiffiffiffi
8

−λ

r
R

R2 þ r2
: ð3:3Þ

The (unnormalized) dilatation mode is

ϕdðxÞ¼ ∂Rϕb ¼−
1

R
ð1þxμ∂μÞϕb¼

ffiffiffiffiffiffi
8

−λ

r
r2−R2

ðr2þR2Þ2 :

ð3:4Þ

Like the translation modes, it is an eigenfunction of the
second variation of the action around the bounce with zero
eigenvalue:

S00½ϕb�ϕd ¼ ½−□þ V 00ðϕbÞ�ϕd ¼ ð−□þ 3λϕ2
bÞϕd ¼ 0:

ð3:5Þ

We would like to proceed, as with translations, by going
from linearized fluctuations ϕ ¼ ξdðNdϕdÞ, with Nd a
normalization factor, to the collective coordinate R so that
we can write

Γ
V
¼
�
S½ϕb�
2π

�
2

e−S½ϕb�þS½ϕFV�Im
Z

dRJd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½S00½ϕFV��
det0½S00½ϕb�

s
ð3:6Þ

with det0 now having the ϕd dilatation mode removed and
Jd the Jacobian.
There are two problems with this. First, the Jacobian is

infinite:

J2d ¼
hϕdjϕdi

2π
¼ 1

2π

Z
d4xϕ2

d ¼ ∞: ð3:7Þ

Second, the integral over R is divergent. Even including the
one-loop R dependence from dimensional transmutation, as
required at this order, is not enough to remove this infrared
divergence.
In the literature, for the first problem Jd is often assumed

to be made finite by natural infrared cutoff of the scalar

mass [11,19]. Unfortunately, the scalar mass adds more
problems than it solves—adding a m2ϕ2 term to the
Lagrangian removes all bounces from the solution to the
equations of motion. Moreover, adding an infrared cutoff
seems to miss the point. Why is the Jacobian infinite in the
first place? Going from small linear fluctuations around a
bounce to fluctuations corresponding to exact scale trans-
formations seems perfectly reasonable and therefore should
be nonsingular. In fact, the mass term is irrelevant to the
problem (see Sec. VII).
For the second problem, of the IR divergent integral over

R, it is common to pick the scale R⋆ for which the leading
order result Γ ¼ expð 8π2

3λðR−1⋆ ÞÞ is maximal, with λðμÞ the

running coupling, and evaluate the R integral by dimen-
sional analysis [11,19,61,62]. Although this ad hoc solution
does produce an answer, we cannot assess its accuracy, since
dimensional analysis has ignored rather than solved the
problem. To get a dimensionally correct answer, one could
try choosing μ ¼ R−1⋆ or μ ¼ R−1 before calculating the R
integral, or calculating the R integral before choosing R at
all. None of these attempts are consistent with perturbation
theory, and in any case they all give a divergent answer.
An alternative approach that is discussed in the literature

invokes constrained instantons [57–60]. The idea of con-
strained instantons is to fix R by demanding that some
operator have a given expectation value, such as hϕ3i ¼ Λ3

for someΛ. Fixing the scale in this way merely swaps the R
integral for an integral over Λ−1, and the problem is
still there.
One might hope these infinities from Jd and the R

integral would cancel, but they do not (and should not).
From a physical point of view, unless something makes the
rate to produce different size bubbles different, the net
decay rate should be infinite. It is quantum corrections
which break the scale invariance, but the Jacobian is
determined by the bounce from the classical theory. We
will explain how to deal with the IR divergent integral over
R and what scale the couplings are evaluated at in Sec. III B
after we have solved the Jacobian problem in the next
section.

A. Solving the Jacobian problem

The Jacobian is infinite because the dilatation fluctuation
ϕd is not normalizable. Of course, the path integral is basis
independent; changing the normalization of a fluctuation
Ndϕd → ϕd in the expansion in Eq. (2.13) can be compen-
sated for by rescaling ξj →

1
Nd

in the path integral measure.
The problem with having a non-normalizable zero mode is
that one cannot see clearly what happens when it is removed
in computing det0. In fact, the infinite Jacobian is secretly
compensated by an infinity in det0 (see Appendix A). Here,
we cleanly resolve the Jacobian problem by choosing a
judicious basis in which the numerator and denominator
path integrals can be computed exactly.
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What basis would allow us to diagonalize fluctuations
around the bounce and around the false vacuum simulta-
neously? Taking eigenfunctions of S00½ϕb� ¼ −□þ V 00½ϕb�
will not work, since these are not also eigenfunctions of
S00½ϕFV� ¼ −□. Instead, we use eigenfunctions of

Oϕ ≡ −1
V 00½ϕb�

S00½ϕb� ¼
1

3λϕ2
b

□ − 1 ð3:8Þ

for the scalar fluctuations around the bounce and eigen-
functions of

bOϕ ≡ −1
V 00½ϕb�

S00½ϕFV� ¼
1

3λϕ2
b

□ ð3:9Þ

for fluctuations around the false vacuum. Note that even for
an arbitrary potential these operators will differ only by a
constant and therefore have the same eigenfunctions.
An important feature of eigenfunctions of these oper-

ators is the inner product by which they are orthogonal.
Similarly to Eq. (2.8) we find that if bOϕϕj ¼ λjϕj then

λk

Z
d4xV 00½ϕb�ϕjϕk ¼

Z
d4xϕjð□Þϕk

¼ λj

Z
d4xV 00½ϕb�ϕjϕk ð3:10Þ

so that eigenfunctions are orthogonal according to

hϕjjϕkiV ≡ −
Z

d4xV 00½ϕb�ϕjϕk ¼ hϕjjϕjiVδjk: ð3:11Þ

Since we are using the same basis for both path integrals,
we can normalize the eigenfunctions however we like. For
example, we could choose hϕjjϕjiV ¼ 2π, and indeed even
the dilatation mode will be normalizable according to this
metric. Furthermore, this basis still lets us evaluate the path
integral, sinceZ

d4xϕjS00½ϕb�ϕk ¼ −
Z

d4xV 00½ϕb�ϕj
bOϕϕk

¼ λjhϕjjϕjiVδjk: ð3:12Þ

Thus the path integrals are still Gaussian in the fluctuations.
The integral over a fluctuation normalized with hϕjjϕjiV ¼
2π then gives the usual factor of

ffiffiffi
1
λj

q
. Note that these

observations apply to any theory, not just a scale invariant
one: one can always simultaneously diagonalize fluctua-
tions around the bounce and fluctuations around the false
vacuum.
Now we restrict to the scale-invariant case, with

VðϕÞ ¼ 1
4
λϕ4. Explicitly, our eigenfunctions should satisfy

Oϕϕn ¼ λϕnϕb; Oϕ ¼ 1

3λϕ2
b

□ − 1 ð3:13Þ

and be orthogonal with respect to the inner product

hϕjjϕkiV ¼ −
Z

d4xV 00½ϕb�ϕjϕk

¼
Z

d4x
24R2

ðR2 þ r2Þ2 ϕjðxÞϕkðxÞ: ð3:14Þ

Remarkably, we can find the solutions in closed form. For
x0 ¼ 0 in Eq. (3.1), they are

ϕnslmðr;α;θ;ϕÞ¼
1

r
P−s−1
nþ1

�
R2− r2

R2þ r2

�
Yslmðα;θ;ϕÞ; ð3:15Þ

with Pm
l ðxÞ the associated Legendre polynomial and

Yslmðα; θ;ϕÞ are the 3D spherical harmonics:

Yslmðα;θ;ϕÞ¼ 1ffiffiffiffiffiffiffiffiffi
sinα

p P
−l−1

2

sþ1
2

ðcosαÞPm
l ðcosθÞe−imϕ: ð3:16Þ

These spherical harmonics satisfy

L⃗2Yslm ¼ −
1

sin2α

�
∂αðsin2α∂α·Þ þ

1

sin θ
∂θðsin θ∂θ·Þ

þ 1

sin2θ
∂2
ϕ

�
Yslmðα; θ;ϕÞ ð3:17Þ

¼ sðsþ 2ÞYslmðα; θ;ϕÞ ð3:18Þ

and are normalized as

hYslmjYs0l0m0 iΩ ¼
Z

π

0

dαsin2α
Z

π

0

dθ sinθ
Z

2π

0

dϕYslmYs0l0m0

ð3:19Þ

¼ 4π

ð2lþ1Þðsþ1Þ
ðs− lÞ!

ðsþ lþ1Þ!
ðlþmÞ!
ðl−mÞ! δss0δll0δmm0 : ð3:20Þ

The full eigenfunctions in Eq. (3.15) satisfy
Eq. (3.13), i.e.

Oϕϕnslm ¼
�

1

3λϕ2
b

�
∂2
r þ

3

r
∂r−

L⃗2

r2

�
−1

�
ϕnslm¼ λϕnϕnslm

ð3:21Þ

with L⃗2ϕnslm ¼ sðsþ 2Þϕnslm. The eigenvalues only
depend on n:

λϕn ¼ λnslm ¼ ðn − 1Þðnþ 4Þ
6

¼ −
2

3
; 0; 1;

7

3
; � � � : ð3:22Þ
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The eigenvalues of bOϕ are

λ̂ϕn ¼ λϕn þ1¼ðnþ1Þðnþ2Þ
6

¼ 1

3
;1;2;

10

3
; � � � : ð3:23Þ

The indices in ϕnslm are integers constrained by
0 ≤ jmj ≤ l ≤ s ≤ n ¼ 0; 1; 2; � � �. The degeneracy of each
eigenvalue is therefore

dn ¼
1

6
ðnþ 1Þðnþ 2Þð2nþ 3Þ ¼ 1; 5; 14; 30;…: ð3:24Þ

The eigenfunctions are normalized as

hϕnslmjϕn0s0l0m0 iV ¼
12

2nþ3

ðn− sÞ!
ðnþ sþ2Þ!δnn0 hY

slmjYs0l0m0 iΩ
ð3:25Þ

with hYslmjYs0l0m0 iΩ in Eq. (3.20).
The modes with s ¼ l ¼ m ¼ 0 are spherically sym-

metric functions of only r. The mode with n ¼ 0 that has
λϕ0 ¼ − 2

3
is

ϕ0000¼
ffiffiffi
2

π

r
R

R2þ r2
; λϕ0 ¼−

2

3
; d0¼ 1: ð3:26Þ

This mode is directly proportional to the bounce itself:

ϕ0000 ¼
ffiffiffiffi
−λ
4π

q
ϕb. The negative eigenvalue arises because the

action has a local maximum at the bounce in the direction
going from ϕFV to ϕb (see Fig. 1).
There are 5 modes with n ¼ 1, with λϕ1 ¼ 0. The

spherically symmetric one is

ϕ1000 ¼
ffiffiffi
2

π

r
R

R2−r2

ðR2þ r2Þ2 ; λϕ1 ¼ 0; d1¼ 5: ð3:27Þ

This is proportional to the dilatation mode:

ϕ1000 ¼ −
ffiffiffiffi
−λ
4π

q
Rϕd. The other n ¼ 1 modes, which

also have λ1 ¼ 0, are the zero modes for translations.
The modes with n > 1 are not particularly interesting:

ϕ2000 ¼
ffiffiffi
2

π

r
Rðr4þR4−3r2R2Þ

ðr2þR2Þ3 ; λϕ2 ¼ 1; d2 ¼ 14

ð3:28Þ

and so on.
Since the dilation and translation modes are both normal-

izable, computing the Jacobian is straightforward:

Jd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕdjϕdiV

2π

r
¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6S½ϕb�
5π

r
: ð3:29Þ

The Jacobian for the translation modes with this metric
differs from Eq. (2.15):

JT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h∂μϕbj∂μϕbiV

2π

r
¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6S½ϕb�
5π

r
: ð3:30Þ

Note the important factors of R in both Jacobians—these
are expected by dimensional analysis but obscure without
the rescaling (cf. Appendix A). So we find

Γ
V
¼ e−S½ϕb�

�
6S½ϕb�
5π

�5
2

Im
Z

dR
R5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det bOϕ

det0 Oϕ

s
: ð3:31Þ

Note that all the eigenvalues of bOϕ and Oϕ are dimension-
less, so this expression has the correct units.
We have shown that by rescaling the operators for

fluctuations around the bounce and the false vacuum, the
natural basis for field fluctuations changes, and the Jacobian
for going between this basis and the basis containing a
collective coordinate for dilatations is finite. Since the final
result in Eq. (3.31) should be independent of this rescaling,
there must be something that compensates for the infinite
Jacobian if we do not rescale. InAppendixAwe show that in
fact without rescaling det0 is infinite as well.

B. Solving the scale invariance problem

The next problem is that the integral over R in Eq. (3.31)
is infinite. Even without evaluating the functional deter-
minants, we can determine the R dependence of the
integrand in Eq. (3.31) completely by exploiting renorm-
alization group invariance of Γ. To see this, and to resolve
the infrared divergence issue, it is critical to be consistent in
power counting the loop expansion, or equivalently, orders
of ℏ. A similar consistency was essential to resolve the
gauge invariance problem of the ground state energy
density in [17,38]. In the following, we insert appropriate
factors of ℏ. Powers of ℏ will always correspond to powers
of couplings such as λ in this scalar field theory or g2 in a
gauge theory.
To leading order (LO) in ℏ, the rate is determined

entirely by the exponential factor in Eq. (3.31).
Expanding this factor out explicitly we have

Γ
V
¼ e

1
ℏ

8π2

3λðμÞ

Z
dR
R5

� � � ð3:32Þ

where λðμÞ is the MS coupling at the scale μ and � � � refer to
the rest of Eq. (3.31). Everything after the exponential
comes from a one-loop calculation and is subleading in ℏ. It
is commonly said that the leading-order prediction for the

rate is Γ/V ¼ e
8π2

ℏ3λðμÞ. However, such a claim does not really
make sense—not only is this equation dimensionally
inconsistent, there is no indication at what scale μ to
choose—so it is really no prediction at all. Indeed, the
leading prediction must start at one loop. And, as we will
see the leading prediction actually involves terms at two
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loops and higher. We will refer to the leading finite
prediction with correct units as the NLO rate.
Now, Γ is physical, so μ d

dμΓ ¼ 0. This implies that
the implicit μ dependence of λðμÞ must be compensated
by explicit μ dependence in the NLO contribution. In turn,
the μ dependence of λðμÞ is fixed by its renormalization
group equation (RGE). Thus we know the exact μ depend-
ence of the integrand to one-loop-higher order than we
know the μ-independent part. By dimensional analysis, the
only scale around to compensate μ is R, and therefore we
also know the full R dependence of Eq. (3.32) to one loop:

Γ
V
¼
Z

∞

0

dR
R5

e
1
ℏ

8π2

3λðμÞ−
8π2

3

βðμÞ
λðμÞ2 lnðμRÞð� � �Þ: ð3:33Þ

At one loop, the terms in ð� � �Þ have no explicit dependence
on μ, by RG invariance, and therefore no dependence on R
either, by dimensional analysis. Here βðμÞ is the β-function
coefficient in the RGE for λ, μ d

dμ λ ¼ βðμÞ. Now we see
clearly the IR divergence problem. All of the R dependence
in the one-loop rate is explicit and the integral over R is
infinite.
The only hope is for two-loop and higher-order con-

tributions to come in and resolve the infinity. At first pass,
this seems impossible, simply by counting factors of ℏ:
terms in ð� � �Þ at two loops and higher are necessarily ℏ
suppressed compared to the terms we have written. The
resolution is that after the integral, superleading ℏ depend-
ence is generated, as we will now see.
First of all, let us assume the MS coupling λðμÞ has a

minimum at some scale μ ¼ μ⋆, so βðμ⋆Þ ¼ 0. If this is not
true, then the running coupling λðμÞ is unbounded from
below and rate is actually infinite. In fact, in this quartic
scalar field theory, λðμÞ is monotonic, so we are going to
have to assume there are other fields in the theory to
continue. For a more general theory, we can perform the
path integral over all other fields around the bounce,
leading to a decay rate formula of exactly the same form
as Eq. (3.33), but with the β function for λ depending all
other couplings in the theory. In this case, βðμÞ can vanish,
as for example it does in the Standard Model for the Higgs
quartic at the scale μ⋆ ∼ 1017 GeV.1

Since Γ is independent of μwe are free to choose μ ¼ μ⋆.
Let us do so. Then the exponential in Eq. (3.33) has no R
dependence [since βðμ⋆Þ ¼ 0] at all and the integral is
surely infinite. With μ ¼ μ⋆, the leading R dependence in
the exponential factor comes in at two loops, and has the
form

Γ
V
¼
Z

∞

0

dR
R5

e−
1
ℏS½ϕ⋆

b �þℏS½ϕ⋆
b �

β0
0⋆
λ⋆ ln2ðμ⋆RÞð� � �Þ ð3:34Þ

where λ⋆ ¼ λðμ⋆Þ, S½ϕ⋆
b� ¼ − 8π2

3λ⋆, β
0 ¼ μ d

dμ βðμÞ, and β00⋆ ¼
β0ðμ⋆Þ using the one-loop β-function coefficients only
[cf. Eq. (6.13) for its SM expression]. At two loops, there
is an additional single log term in the exponent scaling like
ℏ lnðμ⋆RÞ. This will contribute subleading in ℏ after the
integral so we have dropped it.
Now we observe that since β00⋆ > 0 and λ⋆ < 0 at the

minimum, the integral over R is finite:

Γ2 ¼
Z

∞

0

dR
R5

eℏS½ϕ
⋆
b �

β0
0⋆
λ⋆ ln2 Rμ⋆ ¼ μ4⋆

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

πλ⋆
ℏS½ϕ⋆

b�β00⋆

s
e
− 4λ⋆
ℏS½ϕ⋆

b
�β0
0⋆ :

ð3:35Þ

Note that this contribution is parametrically more important
as ℏ → 0 than the one-loop correction which scales like ℏ0.
Indeed, Γ2 blows up as ℏ → 0, as it must to reproduce the
divergence of the one-loop integral. Thus, even though the
two-loop result is formally higher order in ℏ, we cannot
justify expanding the exponential to provide only ℏ
corrections to ð� � �Þ in Eq. (3.33).
Also note that the divergence returns if β0⋆ ¼ 0. Thus the

scale invariance is not regulated by just dimensional
transmutation (i.e. by β ≠ 0) but requires in addition that
the β function have a minimum.
A natural concern is that since the two-loop result

parametrically dominates over the one-loop result as
ℏ → 0, the three-loop result might dominate over two
loops, and so on. To see if this happens, we examine
possible terms in the exponent, as allowed by RG invari-
ance. At each logarithmic order, the coefficient of lnn Rμ⋆ is
of order ℏn−1 plus terms suppressed by additional factors of
ℏ. That is, we have lnRμ⋆, ℏ ln2 Rμ⋆, ℏ2 ln3 Rμ⋆ and so on.
Using the two-loop term to set up a Gaussian around which
we perform a saddle-point approximation in ℏ, we find a
generic term becomesZ

dR
R5

eℏS½ϕ
⋆
b �

β0
0⋆
λ⋆ ln2 Rμ⋆þℏn−1cn lnn Rμ⋆

¼
Z

dR
R5

eℏS½ϕ
⋆
b �

β0
0⋆
λ⋆ ln2 Rμ⋆ð1þ ℏn−1cn lnn Rμ⋆ þ � � �Þ

¼ 1

ℏ
Γ2cn

�
2λ⋆

S½ϕ⋆
b�β00⋆

�
n
þ � � � : ð3:36Þ

The � � � are all terms subleading in ℏ. So we see that in fact
three-loop and higher-order contributions are more impor-
tant than the one- and two-loop terms, but all terms at three
loops and beyond are the same order in ℏ.
One might worry that since the n ¼ 3 term is more

important than the n ¼ 2 term, the saddle-point approxi-
mation cannot be justified. Note, however, that expanding

1Note that the vanishing of the β function can be achieved by
balancing couplings g2 ∼ λ at the same loop order. This is
different from the requirement that the effective potential have
a minimum, which requires two-loop terms to cancel one-loop
terms [38]. The scale μ⋆ where the βðμ⋆Þ ¼ 0 can be parametri-
cally different from the scale μX where V 0

effðμXÞ ¼ 0.
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the exponential of the n ¼ 3 term to next order gives a
term scaling like ℏ4 ln6 Rμ⋆. This term is subleading by a
factor of ℏ to the terms we keep from the expansion of
the n ¼ 6 term. The same justification explains why we
can ignore R dependence coming from the RG invariance
of the nonlogarithmic one-loop terms; these are also
subleading in ℏ.
Since an infinite number of terms are relevant,

we have to sum the series. Fortunately, this is possible
since all of these terms depend on only the leading order
β-function coefficients. In a pure scalar field theory, the
one-loop RGE is easy to solve in closed form. In a
general theory, this will not be true. In any theory, we
can write

ℏλðμÞ ¼ ℏλ⋆ þ
X
n≥2

ðℏnþ1κn þ � � �Þ lnn μ

μ⋆ : ð3:37Þ

Note that we now sum over n ≥ 2 since λ0ðμ⋆Þ ¼ 0 by
definition of μ⋆ and, matching our previous notation,
κ2 ¼ β00⋆. The κn coefficients are all determined by the β
functions in the theory evaluated at one loop. The terms
denoted � � � all depend on β-function coefficients beyond
one loop and contribute to subleading order in ℏ to the final
answer, so we drop them.
Equation (3.37) represents a perturbative solution of the

coupled RGEs which is always possible to work out order-
by-order in the couplings. It implies

1

ℏλðμÞ ¼
1

ℏλ⋆

X
m≥0

�
−
X

n≥2ℏ
n κn
λ⋆

lnn
μ

μ⋆
�

m
þ � � � : ð3:38Þ

Here the � � � have terms of the same logarithmic order but
subdominant in ℏ compared to the terms we keep. For the
integrand to be RGE invariant, we know the rate can be
written as

Γ
V
¼ Γno-R × ΓR ð3:39Þ

where Γno-R is R independent. For example, from
Eq. (3.31),

Γno-R ¼
24e−S½ϕb�ðRJTÞ4ðRJdÞIm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ôϕ

det0Oϕ

s 35
R¼μ−1¼ðμ⋆Þ−1

ð3:40Þ

and

ΓR ¼
Z

dR
R5

exp

�
−
S½ϕ⋆

b�
ℏ

X
m≥1

�
−
X

n≥2ℏ
n κn
λ⋆

lnn
1

μ⋆R

�
m
�

þ � � � : ð3:41Þ

To repeat, there are corrections to this exponent that are
subleading in ℏ both from the higher-order terms in
Eq. (3.37) and from those fixed by the RG invariance of
one-loop (or higher) nonlogarithmic terms in the integrand.
All of these terms necessarily make subleading contribu-
tions to the rate.
Now, every term in the exponent in Eq. (3.41) is

proportional to ℏa−1 lnaðμ⋆RÞ for some a. There is only
one term with a ¼ 2, corresponding to n ¼ 2, m ¼ 1.
This term generates a factor of Γ2 after integration,
as in Eq. (3.35). All the other terms, including the cross
terms, have a > 3 and contribute to the same order in ℏ
after integration by Eq. (3.36). We can perform the
Gaussian integrals over all n and m by adding and
subtracting the n ¼ 2, m ¼ 1 term. Then, as in
Eq. (3.36), we get

ΓR ¼ Γ2

�
1 −

1

ℏ
S½ϕ⋆

b�
X
m≥1

�
−
X

n≥2ℏ
n κn
λ⋆

�
2λ⋆

ℏS½ϕ⋆
b�β00⋆

�
n
�
m

−
1

ℏ
S½ϕ⋆

b�
κ2
λ⋆

�
2λ⋆

S½ϕ⋆
b�β00⋆

�
2
	
þ � � � : ð3:42Þ

The 1 is subleading in ℏ, so we can drop it. The
geometric series is easily resummed, giving

ΓR ¼ 1

ℏ
S½ϕ⋆

b�Γ2

(
ℏλ⋆

ℏλ⋆ þ
P

n≥2ℏ
nþ1κnð 2λ⋆

ℏS½ϕ⋆
b �β00⋆Þ

n

− 1 −
4λ⋆

S½ϕ⋆
b�2β00⋆

)
þ � � � : ð3:43Þ

Finally, we can express the answer in terms of the
running coupling. The result is

ΓR ¼ 1

ℏ
S½ϕ⋆

b�Γ2

�
λ⋆

λ1-loopðμ̂Þ
− 1 −

4λ⋆
S½ϕ⋆

b�2β00⋆

�
þ � � � :

ð3:44Þ

In this expression λ1-loopðμ̂Þ means solve the coupled
RGEs using the one-loop β-function coefficients only
and evaluate at the scale

μ̂ ¼ μ⋆ exp
�

2λ⋆
ℏS½ϕ⋆

b�β00⋆

�
: ð3:45Þ

For example, in a complex scalar theory, μ̂ ¼ μ⋆ expð− π2

6λÞ.
Note that for small coupling, the scales μ̂ and λ⋆ can be very
far apart. Keep in mind, however, that all the couplings
in λ1-loopðμ̂Þ are evaluated at μ⋆, so this resummation
does not indicate sensitivity to high scales; it is merely
shorthand for a series of terms all of the same order and
the couplings.
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Putting everything together and resetting ℏ ¼ 1, we find

Γ
V
¼

264e−S½ϕb�ðRJTÞ4ðRJdÞIm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detÔϕ

det0Oϕ

s Y
fieldsA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detÔA

det0OA

s 375
R¼μ−1¼ðμ⋆Þ−1

μ4⋆

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
πλ⋆S½ϕ⋆

b�
β00⋆

s
e
− 4λ⋆
ℏS½ϕ⋆

b
�β0
0⋆

�
λ⋆

λ1-loopðμ̂Þ
−1−

4λ⋆
S½ϕ⋆

b�2β00⋆

�
:

ð3:46Þ

Here the extra determinants come from integrating over
fluctuations of fields other that ϕ in the theory around the
bounce and false vacuum backgrounds. As long as μ⋆ exists
[meaning λðμÞ has a minimum], this is a finite expression
derived with consistent power counting. All of the singu-
larities associated with scale invariance have been com-
pletely resolved.
Finally, we point out that one does not have to choose

μ ¼ μ⋆. For μ ≠ μ⋆ there are terms linear in lnðμRÞ in the
exponent proportional to βðμÞ, which generate a slew of
additional terms in Eq. (3.46). For example, Eq. (3.35)
becomes

Γ2ðμÞ ¼ μ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

πλ2

S½ϕb�ðβ00λ − β20Þ

s

× exp

�
−

4

S½ϕb�
ðλþ 1

4
S½ϕb�β0Þ2

β0
0λ − β20

�
ð3:47Þ

with β0 the one-loop β-function coefficient for λ. The
general expression including terms like this can be used to
calculate the scale uncertainty on the final prediction.

IV. FUNCTIONAL DETERMINANTS:
GENERAL RESULTS

With the divergences associated with scale invariance
understood, we now proceed to evaluating the functional
determinants. We will be evaluating determinants for a
number of cases: real scalar fluctuations, Goldstone boson
fluctuations, gauge boson fluctuations (in general gauges),
and Dirac fermion fluctuations. These are similar enough
that it is helpful to work out some results first that we can
then apply to the different examples of interest.
In this section we consider the general operator

MðxÞ ¼ −□ − 3xλϕ2
b ð4:1Þ

and will evaluate

DðxÞ ¼ detMðxÞ
detMð0Þ ð4:2Þ

Comparing to Eq. (3.8), we see that the functional
determinant for the bounce corresponds to x ¼ −1. Later
we will see that Goldstone fluctuations have x ¼ − 1

3
and

transverse gauge boson fluctuations in Fermi gauge

have x ¼ − g2

3λ.

A. Regularized sum

The key to calculating DðxÞ in Eq. (4.2) is that we know
the spectrum exactly. Although we know it exactly in d
dimensions [63,64], regularizing the eigenvalues does not
necessarily correspond to a well-understood subtraction
scheme. Instead, we will work in four dimensions and
remove the divergences using Feynman diagrams.
Defining

OðxÞ ¼ −
1

3λϕ2
b

MðxÞ ¼ 1

3λϕ2
b

□þ x ð4:3Þ

we know the spectrum of OðxÞ exactly, as in Sec. III A;

OðxÞϕnslm ¼ λnðxÞϕnslm;

λnðxÞ ¼ λ̂ϕn þ x ¼ ðnþ 1Þðnþ 2Þ
6

þ x: ð4:4Þ

Then the determinant is

lnDðxÞ ¼ ln

Q
n≥0½λnðxÞ�dnQ
n≥0½λnð0Þ�dn

¼
X
n≥0

dn ln
λnðxÞ
λnð0Þ

ð4:5Þ

where the degeneracies dn are in Eq. (3.24).
This sum is UV divergent at large n. We regularize the

sum by subtracting the terms of order x and x2 and then we
will add those terms back in through dimensionally regu-
larized Feynman diagrams. Expanding at small x, we find

SnsubðxÞ≡
�
dn ln

λnðxÞ
λnð0Þ

�
x;x2

¼ð2nþ3Þx− 9þ6n
n2þ3nþ2

x2:

ð4:6Þ

Then we can perform the sum. That is, we compute

SfinðxÞ ¼
X∞
n¼0

�
dn ln

λnðxÞ
λnð0Þ

− SnsubðxÞ
�

ð4:7Þ

finding
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SfinðxÞ ¼ ð−3þ 6γEÞx2 þ
11

36
þ ln 2π þ 3

4π2
ζð3Þ− 4ζ0ð−1Þ

− xκx

�
ψ ð−1Þ

�
3þ κx

2

�
− ψ ð−1Þ

�
3− κx
2

��
þ
�
6x−

1

6

��
ψ ð−2Þ

�
3þ κx

2

�
þ ψ ð−2Þ

�
3− κx
2

��
þ κx

�
ψ ð−3Þ

�
3þ κx

2

�
− ψ ð−3Þ

�
3− κx
2

��
− 2

�
ψ ð−4Þ

�
3þ κx

2

�
þ ψ ð−4Þ

�
3− κx
2

��
ð4:8Þ

where ψ ðnÞðxÞ ¼ dn
dzn ψðzÞ (defined by analytic continuation

for complex n) with ψðzÞ the digamma function,

κx ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 24x

p
ð4:9Þ

and ζ0ð−1Þ ≈ −0.165 is the derivative of the ζ function at−1.

B. Divergent parts

To the subtracted part, we must add in dimensionally
regularized MS-subtracted divergent contributions. The
subtractions were determined by removing the terms to
second order in x. These terms can be reproduced by
computing contributions to second order in x to the effective
action using Feynman diagrams. The Euclidean action
whose second variation gives MðxÞ in Eq. (4.1) is

S ¼
Z

d4x

�
1

2
ð∂μϕÞ2 −

1

2
ð3xλϕ2

bÞϕ2

�
: ð4:10Þ

We want to treat the mass term, proportional to x, as an
interaction to compute the divergent contribution to the
effective action.
To compute Feynman diagrams in Euclidean space,

we expand e−S. The − sign in front of S affects all the
Feynman rules, and Feynman diagrams produce contribu-
tions to −Seff ; that is, in Euclidean space −1 serves the role
that the i prefactor does in Minkowski space. Thus, the
interaction Feynman rule is

ð4:11Þ

In our notation solid lines are propagating ϕ fields and
dashed lines are background field insertions. The injected
momentum is distributed according to the Fourier trans-
form of the bounce squared [11]:

ϕ̃2
bðqÞ¼

Z
d4xeiq

μxμϕbðxÞ2¼
16π2R2

−λ
K0


 ffiffiffiffiffi
q2

q
R
�
:

ð4:12Þ

At order x, there is only one graph, a tadpole

ð4:13Þ

Here, the 1
2
in front is a symmetry factor. This graph is scaleless and vanishes in dimensional regularization. Note that in 4D,

the graph is quadratically divergent, in agreement with the OðnÞ term in Eq. (4.6) which is quadratically divergent when
summed over n.
There is one graph with two x insertions:

ð4:14Þ

Here the 1
4
is the symmetry factor. The k integral can be done first giving

B0 ¼ μd−4
Z

ddk
ð2πÞd

1

k2
1

ðkþ qÞ2 ¼
1

16π2

�
1

ε
− γE þ lnð4πÞ þ 2 − ln

q2

μ2

�
: ð4:15Þ

Then we use

Z
d4q
ð2πÞ4 ϕ̃

2
bðqÞϕ̃2

bð−qÞ ¼
32π2

3λ2
ð4:16Þ

Z
d4q
ð2πÞ4 ϕ̃

2
bðqÞϕ̃2

bð−qÞ ln
q2

μ2
¼ 32π2

9λ2

�
1 − 6γE − 6 ln

Rμ
2

�
ð4:17Þ
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to find that

−Sx2 ¼
�
3

2ε
þ 5

2
þ 3

2
γE þ 3

2
ln πR2μ2

�
x2 ð4:18Þ

and therefore, rescaling μ2 → μ2

4πe−γE to go to MS, we have

−SloopsðxÞ ¼ −Sx − Sx2 ¼
�
3

2ε
þ 5

2
þ 3γE þ 3 ln

Rμ
2

�
x2:

ð4:19Þ

Note that the integrals in Eqs. (4.16) and (4.17) are
proportional to S½ϕb�. This is not a coincidence, as the
divergences must be canceled by renormalizing λ in the
tree-level action.2

The full result in MS for a bosonic functional determi-
nant is combined with Eq. (4.7)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detMð0Þ
detMðxÞ

s
¼ exp

�
−
1

2
lnDðxÞ

�
¼ exp

�
−
1

2
SfinðxÞ − SloopsðxÞ

�
ð4:20Þ

with SfinðxÞ in Eq. (4.8).

C. Angular momentum decomposition

We will also find it helpful to do the above sum in a
different order, summing over n first exactly and then
regularizing the sum over angular momentum modes s. The
operators whose determinants we are trying to calculate are
spherically symmetric. Thus their eigenfunctions are sepa-
rable and can be written as

ϕðr; α; θ;ϕÞ ¼ fsðrÞYslmðα; θ;ϕÞ: ð4:21Þ

The 4D Laplacian then reduces to a 1D operator,
□ϕ ¼ Δsϕ, where

Δs ≡ ∂2
r þ

3

r
∂r −

sðsþ 2Þ
r2

ð4:22Þ

and there is a ð1þ sÞ2-fold degeneracy for each s.
In terms of the angular momentum decomposition, the

ratio of functional determinants in Eq. (4.2) becomes

DðxÞ ¼ detMðxÞ
detMð0Þ ¼

Y
s

½Rs�ðsþ1Þ2 ð4:23Þ

where

RsðxÞ ¼
det ½ 1

3λϕ2
b
Δs þ x�

det ½ 1
3λϕ2

b
Δs�

: ð4:24Þ

The exact radial eigenfunctions of these operators are
given in Eq. (3.15):

ϕnsðrÞ ¼
1

r
P−s−1
nþ1

�
R2 − r2

R2 þ r2

�
: ð4:25Þ

These satisfy�
1

3λϕ2
b

Δs þ x

�
ϕns ¼ λnðxÞϕns ð4:26Þ

with λnðxÞ in Eq. (4.4). There are only eigenfunctions with
n ≥ s. Thus,

RsðxÞ ¼
det ½ 1

3λϕ2
b
Δs þ x�

det ½ 1
3λϕ2

b
Δs�

¼
Y
n≥s

λnðxÞ
λnð0Þ

¼ Γð1þ sÞΓð2þ sÞ
Γð3

2
þ s − κx

2
ÞΓð3

2
þ sþ κx

2
Þ ð4:27Þ

with κx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 24x

p
as in Eq. (4.9). In computing the

product in Eq. (4.23), the divergent contributions all appear
at order x and x2 so we compute subtraction terms

SssubðxÞ≡ ½ðsþ 1Þ2 lnRsðxÞ�x;x2
¼ 6ðsþ 1Þxþ 18½3þ 2s − 2ðsþ 1Þ2ψ 0ð1þ sÞ�x2:

ð4:28Þ

The appearance of the digamma function ψðzÞ makes
this subtraction more complicated than the subtraction in
Eq. (4.6). Note that ψ 0ðsþ 1Þ ∼ 1

s at large s so there is a
logarithmic divergence encoded in this expression.
Performing the sum, we find

X∞
s¼0

½ðsþ 1Þ2 lnRsðxÞ − SssubðxÞ� ¼ SfinðxÞ ð4:29Þ

in exact agreement with Eq. (4.8).

D. The Gelfand-Yaglom method

There is a very powerful way of computing functional
determinants, that does not require knowing the exact
spectrumof theoperators, called theGelfand-Yaglommethod
[78]. Reviews and derivations of the method can be found in

2Technically, one should calculate the integrals in Eqs. (4.16)
and (4.17) in d dimensions, using a d-dimensional bounce,
generating OðεÞ terms which contribute additional finite parts
to Eq. (4.19). However, these finite parts must exactly cancel the
finite contributions from the d-dimensional action renormalizing
λ, since both multiply the same 1

ε terms. Thus we can ignore both
and use the 4D integrals as written.
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[40,45,79–81]; here we just summarize its application to the
scale-invariant potential of interest in this paper.
The Gelfand-Yaglom method says that functional deter-

minants can be calculated by finding zero modes of the
operators and evaluating their asymptotic behavior. For
example, for one-dimensional operators, like the ratio Rs in
Eq. (4.27), the method says that

Rs ¼
det ½ 1

3λϕ2
b
Δs þ x�

det ½ 1
3λϕ2

b
Δs�

¼
�
lim
r→0

ϕs
0ðrÞ

ϕs
xðrÞ

��
lim
r→∞

ϕs
xðrÞ

ϕs
0ðrÞ

�
≡ ϕs

0ð0Þ
ϕs
xð0Þ

ϕs
xð∞Þ

ϕs
0ð∞Þ ð4:30Þ

where ϕð∞Þ and ϕð0Þ are shorthand for the limits in this
equation and the functions ϕs

x satisfy�
1

3λϕ2
b

Δs þ x

�
ϕs
x ¼ 0: ð4:31Þ

The boundary conditions are that the functions be regular
at r ¼ 0.
Note how powerful the method is: instead of finding an

infinite number of eigenvalues and taking their product,
we simply solve the differential equations in Eq. (4.31),
which can be done numerically, and evaluate the solutions
as r → ∞ and r → 0.
To see how the Gelfand-Yaglom method works, consider

the real scalar case ðx ¼ −1Þ first. First of all, we already
know the answer from Eq. (4.27):

Rs ¼
det ½ 1

3λϕ2
b
Δs − 1�

det ½ 1
3λϕ2

b
Δs�

¼
Y
n≥s

1
6
ðnþ 1Þðnþ 2Þ − 1
1
6
ðnþ 1Þðnþ 2Þ

¼ sðs − 1Þ
ðsþ 2Þðsþ 3Þ : ð4:32Þ

To use the Gelfand-Yaglom method, we find the exact
solution to Eq. (4.31) regular at r ¼ 0. It is

ϕs
0 ¼ rs: ð4:33Þ

The regular solution to Eq. (4.31) that reduces to ϕs
0 at small

r is

ϕs
−1¼

rs

ðR2þ r2Þ2
�
R4þ2R2ðs−1Þ

sþ2
r2þ sðs−1Þ

ðsþ2Þðsþ3Þr
4

�
:

ð4:34Þ

Thus Gelfand-Yaglom predicts that

Rs ¼ lim
r→∞

ϕs
−1ðrÞ
ϕs
0ðrÞ

¼ sðs − 1Þ
ðsþ 2Þðsþ 3Þ ð4:35Þ

in exact agreement with Eq. (4.32).
Note that for n ¼ 1, Eq. (4.32) gives Rs ¼ 0. This is

because for n ¼ 1 there are zero modes. Indeed, the n ¼ 1,
s ¼ 0 zero mode is the dilatation mode and the n ¼ 1,
s ¼ 1 modes are the translations. For the s ¼ 1 case, the
determinant ratio with eigenvalues removed is

R0
1 ¼

det ½ 1
3λϕ2

b
Δ1 − 1�

det0 ½ 1
3λϕ2

b
Δ1�

¼
Q

n≥1
1
6
ðnþ 1Þðnþ 2Þ − 1Q

n≥2
1
6
ðnþ 1Þðnþ 2Þ ¼ 1

10
:

ð4:36Þ
Similarly, R0

0 ¼ − 1
5
by multiplying the eigenvalues.

To use Gelfand-Yaglom to calculate the zero eigenval-
ues, we shift the operator by order ϵ. That is, we replace
Eq. (4.31) by �

1

3λϕ2
b

Δs − 1þ ϵ

�
ϕ1;ϵ
−1 ¼ 0: ð4:37Þ

Shifting the free-theory operator by ϵ is not necessary
since all of its eigenvalues are nonzero. Note that the
zero mode ϕ11 is an eigenfunction of the shifted operator
with eigenvalue ϵ. The function with eigenvalue 0 is
ϕ1;ϵ
−1ðrÞ ¼ ϕnϵ;1ðrÞ with ϕnsðrÞ in Eq. (4.25) and

nε ¼ − 3
2
þ 5

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 24

25
ϵ

q
. Then, using ϕ1

0ðrÞ ¼ r,

R0
1 ¼ lim

ϵ→0

1

ϵ

�
lim
r→∞

ϕ1;ϵ
−1ðrÞ
r

��
lim
r→0

r
ϕ1
−1ðrÞ

�
¼ 1

10
ð4:38Þ

in agreement with Eq. (4.36).
The s ¼ 0 functional determinant can be computed in

exactly the same way without any additional complication,
finding R0

0 ¼ − 1
5
, in agreement with the direct calculation.

V. FUNCTIONAL DETERMINANTS

In this section we compute the functional determinants
for the fluctuation of scalars, Goldstone bosons, vector
bosons, and Dirac fermions around the scale-invariant
bounce configuration. We produce analytic formulas for
all the cases. In the vector boson case, we check explicitly
that the result is gauge invariant by using a generic value of
ξ in Fermi gauges, and also show agreement between Fermi
and Rξ gauges.

A. Real scalars

The case of a single scalar field was introduced in
Sec. III. The Euclidean Lagrangian is
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L ¼ 1

2
ð∂μϕÞ2 þ

λ

4
ϕ4: ð5:1Þ

The Euclidean equations of motion −□ϕþ λϕ3 ¼ 0 are
solved by ϕ ¼ ϕb. The operator for quadratic fluctuations
around ϕb is

Mϕ ¼ −□þ 3λϕ2
b: ð5:2Þ

Thus real scalar fluctuations correspond to the case studied
in Sec. IV with x ¼ −1.
For x ¼ −1, the finite contribution from the sum over

n ≥ 0 is singular [SfinðxÞ in Eq. (4.8) is singular as
x → −1]. This is due to the zero modes at n ¼ 1 corre-
sponding dilatations and translations around the bounce. To
compute the determinant with zero modes removed, we
must first rescale the operator. We therefore define

Oϕ ¼ −
1

3λϕ2
b

Mϕ ¼ 1

3λϕ2
b

□ − 1: ð5:3Þ

Recall from Sec. III A that this rescaling allows the change
to collective coordinates to have a finite Jacobian. The
Jacobians for dilatation and translations are given in
Eqs. (3.29) and (3.30).
To compute det0 Oϕ we must remove these modes from

the sum in Eq. (4.7) and add in only the n ¼ 1 contributions
to the false vacuum fluctuations. We note that the n ¼ 1
terms in Eq. (4.7) give

d1 ln
λ1ðxÞ
λ1ð0Þ

¼ 5 lnðxþ 1Þ: ð5:4Þ

This is also singular at x ¼ −1. Removing the n ¼ 1 terms
from the sum, we find a smooth limit as x → −1:

Sϕfin ¼ lim
x→−1

½SfinðxÞ − 5 lnðxþ 1Þ�

¼ 15

2
þ 6γE − iπ − 12ζ0ð−1Þ þ ln

7776

3125
: ð5:5Þ

Note that we should leave the x2 terms in the subtraction at
n ¼ 1 to avoid overcounting, since these are included in the
loops. For det0 we should only remove the n ¼ 1modes for
the bounce, not the false-vacuum; however, λ1ð0Þ ¼ 1 so
removing the false-vacuum n ¼ 1 mode has no effect.
Combining with the divergent part from Eq. (4.19), we

then have

Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ôϕ

det0Oϕ

s
¼ 25

36

ffiffiffi
5

6

r
exp

�
3

2ε
−
5

4
þ 6ζ0ð−1Þ þ 3 ln

Rμ
2

�
:

ð5:6Þ
Here, bOϕ means the operator with ϕb ¼ 0, corresponding
to fluctuations around the false vacuum. Note how the
factors of γE have dropped out.

The remaining task is to renormalize. In MS the Z factor
for λ at one loop is

Zλ ¼ 1þ 9λR
16π2

1

ε
: ð5:7Þ

The renormalized action on the bounce then becomes

S½ϕb� ¼ −
8π2

3λ0
¼ −

8π2

3ZλλR
¼ −

8π2

3λR
þ 3

2ε
þ � � � : ð5:8Þ

Combining with Eq. (5.6), we get

e−S½ϕb�Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ôϕ

det0Oϕ

s

¼ e
8π2

3λR
25

36

ffiffiffi
5

6

r
exp

�
−
5

4
þ 6ζ0ð−1Þ þ 3 ln

Rμ
2

�
: ð5:9Þ

B. Complex scalars and global symmetries

Next, we discuss the case when the false vacuum
admits a continuous global symmetry that is spontaneously
broken by the bounce. For concreteness, we take the
simplest example, a field theory of a complex scalar field
Φ with a globalUð1Þ symmetry. The Euclidean Lagrangian
density is

L ¼ j∂μΦj2 þ VðΦÞ ð5:10Þ

where VðϕÞ ¼ λjΦj4. We expand the field as

Φ ¼ 1ffiffiffi
2

p ðϕb þ ϕþ iGÞ: ð5:11Þ

With this normalization for a complex field, the bounce is
the same as Eq. (3.3) and still satisfies −□ϕb þ λϕ3

b ¼ 0.
Expanding around the bounce background to quadratic

order, the scalar and Goldstone modes satisfy

ð−□þ 3λϕ2
bÞϕ ¼ 0; ð5:12Þ

ð−□þ λϕ2
bÞG ¼ 0: ð5:13Þ

Both of these equations are special cases of to Eq. (4.1), with
x ¼ −1 forϕ and x ¼ − 1

3
forG. The scalar fluctuationsϕwe

have already discussed: there are five zeromodeswithn ¼ 1
[since λ1ð−1Þ ¼ 0with λnðxÞ in Eq. (4.4)], corresponding to
translations and dilatations. The Jacobians for removing
these zero modes in conformal coordinates are given in
Eq. (3.29) and (3.30) and the functional determinant with
zero modes removed is in Eq. (5.9).
For G with x ¼ − 1

3
there is a single zero mode

[λ0ð− 1
3
Þ ¼ 0] corresponding to phase rotations Φ → eiαΦ.

The n ¼ 0mode has no degeneracy and the eigenfunction is

SCALE-INVARIANT INSTANTONS AND THE COMPLETE … PHYS. REV. D 97, 056006 (2018)

056006-15



G0 ¼ ϕ0000 ∝ ϕb ð5:14Þ

as in Eq. (3.26). Infinitesimally along this direction, Φ ¼
1þiαffiffi

2
p ϕb which has the same action as Φ up to order α2.

As with ϕ, we have to remove the fluctuations
along the zero-mode direction exactly using collective
coordinates. With the measure determined by the operator
OG ¼ 1

3λϕ2
b
ð□ − λϕ2

bÞ we have

JG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕbjϕbiV

2π

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

2π

Z
d4xV 00½ϕb�ϕ2

b

s

¼
ffiffiffiffiffiffiffiffi
16π

−λ

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6S½ϕb�

π

r
: ð5:15Þ

To calculate the determinant with zero mode removed we
follow the procedure in Sec. VA. The n ¼ 0 mode in
Eq. (4.7) contributes

d0 ln
λ0ðxÞ
λ0ð0Þ

¼ lnð3xþ 1Þ: ð5:16Þ

Note the singularity as x → − 1
3
. Removing this from the

sum, we find a smooth limit as x → − 1
3
:

SGfin ¼ lim
x→−1

3

½SfinðxÞ − lnð3xþ 1Þ�

¼ 13

18
þ 2

3
γE − 4ζ0ð−1Þ − ln

3

2
: ð5:17Þ

Adding in the divergent piece, in Eq. (4.19) with x ¼ − 1
3
,

we getffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ÔG

det0OG

s
¼

ffiffiffi
3

2

r
exp

�
1

6ε
−

1

12
þ 2ζ0ð−1Þ þ 1

3
ln
Rμ
2

�
:

ð5:18Þ
The full contribution from the Goldstone fluctuations is

thereforeZ
dθJG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ÔG

det0OG

s

¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6S½ϕb�

π

r ffiffiffi
3

2

r
exp

�
1

6ε
−

1

12
þ 2ζ0ð−1Þ þ 1

3
ln
Rμ
2

�
ð5:19Þ

where
R
dθ ¼ 2π gives the volume of Uð1Þ.

For other gauge groups, the procedure is identical up to
the group volume factor. Indeed, at quadratic order, all of
the Goldstone boson directions decouple and the path
integral over each direction gives a factor of Eq. (5.18)
and a Jacobian. All that needs to be changed is the group
volume factor. For SUð2Þ, this is 16π2.

Putting the results for the Goldstone fluctuations
together with the scalar fluctuations, we get for the complex
scalar theory

Γ
V
¼ 1

VT
e−S½ϕb�

Z
d4x

Z
dR
Z

dθJdJ4TJG

× Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det bOϕ

det0Oϕ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det bOG

det0 OG

s
ð5:20Þ

¼ e−S½ϕb�6S½ϕb�3
π2

Z
dR
R5

exp

�
5

3ε
−
4

3
þ8ζ0ð−1Þþ10

3
ln
Rμ
2

�
:

ð5:21Þ

The R integral would be cutoff by higher-order effects if
λðμÞ were bounded from below (which it is not in this
theory). The UV divergence is canceled by the rernorm-
alization of λ, as in the real scalar theory. In this case, the
action on the bounce in renormalized perturbation theory is
[cf. Eq. (5.8)]

S½ϕb� ¼ −
8π2

3λR
þ 5

3ε
þOðλRÞ: ð5:22Þ

So that,

Γ
V
¼ e−S½ϕb�6S½ϕb�3

π2

Z
dR
R5

exp

�
−
4

3
þ8ζ0ð−1Þþ10

3
ln
Rμ
2

�
ð5:23Þ

which is UV finite.
We note for future reference that at each s the contri-

bution to the functional determinant for the Goldstone
modes follows from Eq. (4.27)

RG
s ¼ Rs

�
−
1

3

�
¼ s

sþ 2
: ð5:24Þ

We also note that for s ¼ 0 there is a zero mode. Removing
the zero mode we find RG

0
0 ¼ 1.

C. Vector fields and local symmetries

Next, we discuss the contribution of gauge bosons to the
decay rate. We continue the Uð1Þ case, but now with
Euclidean Lagrangian

L ¼ 1

4
F2
μν þ ð∂μΦ⋆ þ igAμΦ⋆Þð∂μΦ − igAμΦÞ

þ VðΦÞ þ LGF þ Lghost ð5:25Þ

where V ¼ λjΦj4 as before and we expand Φ ¼ 1ffiffi
2

p ðϕb þ
ϕþ iGÞ as in Eq. (5.11). For the gauge-fixing term, we can
consider the Rξ gauges, as in [11,19], where
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L
Rξ

GF ¼
1

2ξ
ð∂μAμ − gϕbGÞ2: ð5:26Þ

So that at quadratic order,

LRξ
¼ 1

2
Aμ

�
ð−□þ g2ϕ2

bÞδμν þ
ξ − 1

ξ
∂μ∂ν

�
Aν

þ 1

2
G

�
−□þ

�
g2

ξ
þ λ

�
ϕ2
b

�
G

þ
�
1

ξ
þ 1

�
gAμð∂μϕbÞGþ

�
1

ξ
− 1

�
gAμϕbð∂μGÞ

þ c̄½−□þ g2ϕ2
b�c: ð5:27Þ

While these gauges have some convenient features, par-
ticularly for ξ ¼ 1, they have a very serious drawback: they
break the global Uð1Þ symmetry. As a consequence there is
no zero mode for the Goldstone fluctuations. Thus we
cannot pull out a collective coordinate and calculate det0,
and the limit g → 0 may not be smooth. In fact, because of
the missing zero mode, we are unable to reproduce the
results of [11,19]. Although it is probably possible to get
gauge-invariant answers consistent with the g ¼ 0 limit
using Rξ gauges, we choose instead to use Fermi gauges, as
in [40].
In Fermi gauges, the gauge-fixing term is

LGF ¼
1

2ξ
ð∂μAμÞ2: ð5:28Þ

So that at quadratic order

LFermi ¼
1

2
Aμ

�
ð−□þ g2ϕ2

bÞδμν þ
ξ − 1

ξ
∂μ∂ν

�
Aν

þ 1

2
G½−□þ λϕ2

b�G
þ gAμð∂μϕbÞG − gϕbAμ∂μG − c̄□c: ð5:29Þ

Fermi gauges leave the global Uð1Þ symmetry of the
Lagrangian intact (the action is invariant under Φ → eiαΦ,
Aμ → Aμ). Note that since the ghost Lagrangian is indepen-
dent of the bounce, the functional determinant over ghosts
normalized to the false vacuum is just 1.
In Fermi gauges, the equations of motion for Aμ and G

are coupled. At quadratic order

ð−□þ g2ϕ2
bÞAμ þ

�
1 −

1

ξ

�
∂μ∂νAν

þ gð∂μϕbÞG − gϕb∂μG ¼ 0; ð5:30Þ

ð−□þ λϕ2
bÞGþ 2gð∂μϕbÞAμ þ gϕb∂μAμ ¼ 0: ð5:31Þ

Following [11,19,40], we then exploit the spherical sym-
metry, expanding Aμ as

Aμ ¼
X

s¼0;1;2;���

�
aSðrÞ

xμ
r
þ aLðrÞ

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 2Þp ∂μ

þ ðaT1ðrÞVð1Þ
ν þ aT2ðrÞVð2Þ

ν Þϵμνρσxρ∂σ

�
Yslmðα; θ;ϕÞ

ð5:32Þ

with Vð1Þ
μ and Vð2Þ

μ two independent generic vectors and
Yslmðα; θ;ϕÞ the 3D spherical harmonics in Eq. (3.16). In
this basis, and writing GðxÞ ¼ GðrÞYslmðα; θ;ϕÞ the fluc-
tuation operators decouple for each s, l,m and the resulting
operators depend only on s. After some algebra (see [11]
for some details), we find for ξ ¼ 1 that the aS and aL
modes couple to G, through the operator

MSLG
s ¼

0BBBBB@
−Δs þ 3

r2 þ g2ϕ2
b − 2

ffiffiffiffiffiffiffiffiffiffi
sðsþ2Þ

p
r2 gϕ0

b − gϕb∂r

− 2
ffiffiffiffiffiffiffiffiffiffi
sðsþ2Þ

p
r2 −Δs − 1

r2 þ g2ϕ2
b −

ffiffiffiffiffiffiffiffiffiffi
sðsþ2Þ

p
r gϕb

2gϕ0
b þ gϕb∂r þ 3

r gϕb −
ffiffiffiffiffiffiffiffiffiffi
sðsþ2Þ

p
r gϕb −Δs þ λϕ2

b

1CCCCCAþMξ
s ð5:33Þ

where the gauge-dependent piece is

Mξ
s ¼

�
1 −

1

ξ

�
0BBBBB@

∂2
r þ 3

r ∂r − 3
r2 −

ffiffiffiffiffiffiffiffiffiffi
sðsþ2Þ

p
r

�
∂r −

1

r

�
0ffiffiffiffiffiffiffiffiffiffi

sðsþ2Þ
p

r

�
∂r þ

3

r

�
−
sðsþ 2Þ

r2
0

0 0 0

1CCCCCA ð5:34Þ
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and Δs is in Eq. (4.22). The corresponding false-vacuum
operator is MSLG

s with ϕb ¼ 0:

cMSLG
s ¼

0BBBBB@
−Δsþ

3

r2
−
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ2Þp
r2

0

−
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ2Þp
r2

−Δs−
1

r2
0

0 0 −Δs

1CCCCCAþMξ
s:

ð5:35Þ

Note that in Fermi gauges the gauge-dependent part Mξ
s

does not depend on ϕb so contributes in the same way to

MSLG
s and cMSLG

s . This is very useful for establishing
gauge invariance of the result, as we will see.
In Fermi gauges, the transverse modes fluctuate inde-

pendently, through

MT
s ¼ −Δs þ g2ϕ2

b ð5:36Þ
or more simply, they satisfy the Lorentz-invariant equation
with operator

MT ¼ −□þ g2ϕ2
b: ð5:37Þ

1. Transverse fluctuations

For the transverse fluctuations in Fermi gauge, we can
calculate the determinant exactly. In fact we already have,
in Sec. IV. The transverse fluctuation operator MT is the

same as in Eq. (4.1) with x ¼ − g2

3λ. There are no zero
modes, and so including both transverse polarizations

ln
detMT

detcMT ¼ Sfin

�
−
g2

3λ

�
þg4

λ2

�
−
1

3ε
−
5

9
−
2

3
γE−

2

3
ln
Rμ
2

�
ð5:38Þ

where the finite part is in Eq. (4.8) and for this case

κx → κ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8g2

λ

r
ð5:39Þ

the divergent part of Eq. (5.38) came from Eq. (4.19).
To compare to other results, it is also helpful to have the

determinant at each s value. That result is in Eq. (4.27):

RT
s ¼ Rs

�
−
g2

3λ

�
¼ Γð1þ sÞΓð2þ sÞ

Γð3
2
þ s − κ

2
ÞΓð3

2
þ sþ κ

2
Þ : ð5:40Þ

2. Fluctuations with s = 0

For s ¼ 0, Y000 is constant and so the transverse and
longitudinal modes decouple. In this case, only the scalar
vector boson polarization and the Goldstone mode remain.
The fluctuation operator is

MSG
0 ¼

0BBB@
1

ξ

�
−Δ0 þ

3

r2

�
þ g2ϕ2

b gϕ0
b − gϕb∂r

2gϕ0
b þ gϕb∂r þ

3

r
gϕb −Δ0 þ λϕ2

b

1CCCA:

ð5:41Þ

The corresponding operator with ϕb ¼ 0 is

cMSG
0 ¼

0B@ 1

ξ

�
−Δ0 þ

3

r2

�
0

0 −Δ0

1CA: ð5:42Þ

Note that MSG
0 has two zero modes regular at r ¼ 0:

Ψ1 ¼
�

0

ϕb

�
and Ψ2 ¼

�
r

g
2
r2ϕb

�
: ð5:43Þ

The first zero mode corresponds to the global Uð1Þ
invariance we saw already in the g ¼ 0 case. The two zero

modes for cMSG
0 regular at r ¼ 0 are

Ψ̂1 ¼
�
0

1

�
and Ψ̂2 ¼

�
r

0

�
: ð5:44Þ

We need to remove the zero modes by going to collective
coordinates, just as in Sec. V B. Since we do not know the
eigenfunctinos of MSG

0 exactly we will use the Gelfand-
Yaglom method. After rescaling our operator we add to it a
shift of order ϵ. Then we need to compute

RSG
0

0 ¼
det0 ð −1

3λϕ2
b
MSG

0 Þ
det ð −1

3λϕ2
b

cMSG
0 Þ

¼ lim
ε→0

1

ε

det ð −1
3λϕ2

b
MSG

0 þ ε · 1Þ
det ð −1

3λϕ2
b

cMSG
0 Þ

:

ð5:45Þ

We can compute the zero modes of −1
3λϕ2

b
MSG

0 þ ε · 1

perturbatively. Since only Ψ1 goes to zero at r → ∞,
we only need the corrections to it. So we expand,
following [40]:

ΨðεÞ
1 ¼ Ψ1 þ εΨ̌þOðε2Þ: ð5:46Þ

If the function Ψ̌ satisfies

−1
3λϕ2

b

MSG
0 Ψ̌ ¼ −Ψ1 ð5:47Þ

then wewill have ð −1
3λϕ2

b
MSG

0 þ ε ·1ÞΨðεÞ
1 ¼Oðε2Þ as desired.

We can find the solution to this differential equation
exactly by integration, following [40]:
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Ψ̌¼

0BBB@
−ξ

ffiffiffiffiffi
2g2

−λ

q
r3

R3ϕb�
r2

R2

�
1þ2g2

λ
ξ

�
þ
�
2−2

g2

λ
ξ

�
ln

�
1þ r2

R2

��
ϕb

1CCCA:

ð5:48Þ

The result is

RSG
0

0 ¼
�
lim
r→0

detðΨ̂1Ψ̂2Þ
detðΨ̌Ψ2Þ

��
lim
r→∞

detðΨ1Ψ2Þ
detðΨ̂1Ψ̂2Þ

�
¼ 1: ð5:49Þ

Note that the result is gauge invariant, and its (trivial) g → 0

limit agrees with RG
0
0 ¼ 1 computed at the end of Sec. V B.

3. Fluctuations with s > 0

Now let us consider the s > 0 fluctuations. We need to
find three independent solutions to MSLG

s Ψ ¼ 0 andcMSLG
s Ψ̂ ¼ 0 with MSLG

s and cMSLG
s given in Eqs. (5.33)

and (5.35). The solutions need to be regular at the origin, but
can have arbitrary normalization. The determinant is then

RSLG
s ¼ detMSLG

s

det cMSLG
s

¼ det Ψ̂ð0Þ
detΨð0Þ

detΨð∞Þ
det Ψ̂ð∞Þ ð5:50Þ

where detΨ ¼ detðΨj
iÞwhere Ψi are the 3 solutions and Ψ

j
i

are the components of those solutions. Here and in the
following, when we write Ψð0Þ or Ψð∞Þ we mean the
leading behavior as r → 0 or r → ∞ respectively.
The functions of Ψ̂ are easy to find. They are

Ψ̂1 ¼

0BB@ srs−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 2Þp

rs−1

0

1CCA;

Ψ̂2 ¼

0BB@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 2Þp ðs − sξ − 2ξÞrsþ1

ðs2 þ 4s − 2sξ − s2ξÞrsþ1

0

1CCA;

Ψ̂3 ¼

0BB@
0

0

rs

1CCA: ð5:51Þ

So

det Ψ̂ðrÞ ¼ 2sðsþ sξþ 2ξÞr3s: ð5:52Þ

Note that the ξ dependence of det Ψ̂ is only in the
normalization, so it will drop out in the ratio of the
determinant at r ¼ 0 and r ¼ ∞.

To find the solutions Ψ, as discussed in [40], an
immensely useful observation is that they can be expressed
in terms of three auxiliary functions η, χ, and ζ as

Ψ¼

0BBBBBBBB@

∂rχþ
1

rg2ϕ2
b

η−2
ϕ0
b

g2ϕ3
b

ζffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ2Þp
r

χþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ2Þp

r2g2ϕ2
b

∂rðr2ηÞ

gϕbχþ
1

gϕb
ζ

1CCCCCCCCA
ð5:53Þ

where the auxiliary functions satisfy

Δsχ −
2ϕ0

b

rg2ϕ3
b

η −
2

r3
∂r

�
r3ϕ0

b

g2ϕ3
b

ζ

�
þ ξζ ¼ 0; ð5:54Þ

ðΔs−g2ϕ2
bÞη−

2ϕ0
b

r2ϕb
∂rðr2ηÞþ

2sðsþ2Þϕ0
b

rϕb
ζ¼ 0; ð5:55Þ

Δsζ ¼ 0: ð5:56Þ

We define Ψ1 as the solution with ζ ¼ η ¼ 0, Ψ2 is the
solution with ζ ¼ 0 and η ≠ 0 and Ψ3 as the solution with
ζ ≠ 0. Note that only Ψ3 can be gauge dependent.
The exact form of Ψ1 is easy to find. With ζ ¼ η ¼ 0 we

find χ ¼ rs and so

Ψ1ðrÞ ¼

0B@ srs−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 2Þp

rs−1

gϕbrs

1CA: ð5:57Þ

For Ψ2 which has ζ ¼ 0 but η ≠ 0, we can solve
Eq. (5.55) exactly. We find that the nonzero solution
regular at r ¼ 0 is

η2ðrÞ¼ rsðr2þR2Þκ−12 2F1

�
1þ κ

2
;sþ3þ κ

2
;2þ s;−

r2

R2

�
ð5:58Þ

with κ in Eq. (5.39). At small and large r

η2ð0Þ ∼ rsRκ−1
�
1 −

r2

R2

7þ 4sþ κ2

4ðsþ 2Þ
�
;

η2ð∞Þ ∼ Cηrs−2Rκþ1 ð5:59Þ

where

Cη ¼
Γð1þ sÞΓð2þ sÞ

Γðsþ 3
2
− κ

2
ÞΓðsþ 3

2
þ κ

2
Þ : ð5:60Þ

Note the reappearance of the ratio in Eq. (5.40).
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Now given η2, we can solve for χ using Eq. (5.54).
Conveniently, we do not need the full solution for all r, only
its small r and large r behavior. Equation (5.54) simplifies
in these limits and we find

χ2ð0Þ ∼
λ

8g2
Rκ−1

sþ 2
rsþ2;

χ2ð∞Þ ∼ Cη
λ

8g2
Rκ−1

sþ 2
rsþ2: ð5:61Þ

To these we could add a homogeneous solution of the form
χ ¼ rs. However, this is exactly the Ψ1 solution which is
orthogonal, so adding a Ψ1 component to Ψ2 will not affect
the functional determinant. Dropping the homogeneous
solutions is extremely important—it is the essential sim-
plification allowed by using these auxiliary functions.
Using the limiting forms of η2 and χ2, following the
procedure outlined in [40], we find

Ψ2ð0Þ∼−
λ

8g2
Rκþ1rs−1

0BBBBB@
1−

r2

R2

g2

λ

2

sþ 2ffiffiffiffiffiffiffiffiffiffi
sþ 2

s

r �
1−

r2

R2

g2

λ

2ðsþ 4Þ
ðsþ 2Þ2

�
0

1CCCCCA;

Ψ2ð∞Þ∼CηRκþ1rs−1

0BBBBBBBBB@

1

4ðsþ 2Þffiffiffiffiffiffiffiffiffiffi
sþ 2

s

r
sþ 4

4ðsþ 2Þ2

−

ffiffiffiffiffiffi
−λ
g2

s
r
R

1

sþ 2

1CCCCCCCCCA
: ð5:62Þ

Here we have written only the terms that contribute at
leading nonvanishing order to the determinant.
For Ψ3, defined to have ζ ≠ 0, we can solve Eq. (5.56)

exactly for ζ ¼ rs. Proceeding as for Ψ2, we find

Ψ3ð0Þ ∼ −
λ

8g2
rs−1R2

0BBBBBBBBBB@

sðsþ 2Þ λ
g2

ðsþ 2Þ λ
g2 þ 2

�
1 − 2

r2

R2

g2

λ

s − ðsþ 2Þξ − 2ξ g2

λ

sðsþ 2Þ
�

ffiffiffiffiffiffiffiffiffiffiffi
s

sþ 2

r ðsþ 2Þ2
ðsþ 2Þ þ 2 g2

λ

�
1 − 2

r2

R2

g2

λ

sþ 4 − ðsþ 2Þξ − 2 g2

λ ξ

ðsþ 2Þ2
�

ffiffiffiffiffiffiffi
8g2

−λ

r
r
R

1CCCCCCCCCCA
ð5:63Þ

and

Ψ3ð∞Þ ∼ rsþ1

0BBBBB@
s − ðsþ 2Þξ
4ðsþ 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðsþ 2Þ
p 4þ s − ðsþ 2Þξ

4ðsþ 2Þ2
0

1CCCCCA: ð5:64Þ

Putting these solutions together we find

detΨð0Þ ¼
ffiffiffiffiffiffiffi
−λ
8g2

s
Rκr3s

sþ ðsþ 2Þξ
2
ffiffiffi
s

p ðsþ 2Þ3/2 ;

detΨð∞Þ ¼ Cη

ffiffiffiffiffiffiffi
−λ
8g2

s
Rκr3s

ffiffiffi
s

p ½sþ ðsþ 2Þξ�
2ðsþ 2Þ5/2 ; ð5:65Þ

and so

RSLG
s ¼ detMSLG

s

det cMSLG
s

¼ det Ψ̂ð0Þ
detΨð0Þ

detΨð∞Þ
det Ψ̂ð∞Þ ¼ Cη

s
sþ 2

ð5:66Þ
which is manifestly gauge invariant.

Comparing to Eqs. (5.24) and (5.40) we see that

RSLG
s ¼ RT

s RG
s : ð5:67Þ

Thus the scalar and longitudinal vector modes together
contribute the same as a transverse mode to the determi-
nant. As a check, at g ¼ 0, the vector bosons become free
RT ¼ 1, and RSLG

s ¼ RG
s as expected. Combining with the

transverse modes the full determinant for s > 0 is

RSLGT
s ¼ ðRT

s Þ3RG
s ð5:68Þ

We have shown this result to be manifestly gauge invariant.
We also checked through a numerical implementation of
the Gelfand-Yaglom method that the same formula emer-
gences in Rξ gauges for each s.
The full functional determinant requires summing over s.

We note that at large s,

ðsþ 1Þ2 lnRSLGT
s ∼ −2s

�
1þ 3g2

λ

�
− 2

�
1þ 3g2

λ

�
−

2

3s

�
1þ 3g4

λ2

�
ð5:69Þ
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thus there are quadratic, linear, and logarithmic divergences
in the sum.

4. Renormalization

To regulate the sum over s, we will subtract the divergent
terms and add in dimensionally regulated Feynman dia-
grams, as explained in Sec. IV. An important cross-check
on the result is that the UV divergences should cancel those
from −S½ϕb� using the renormalized coupling. In scalar
QED, the one-loop Z factor for λ is

Zλ ¼ 1þ 1

16π2
1

ε

�
10λR − 6g2R þ 3

g4R
λR

�
: ð5:70Þ

The action on the bounce then becomes

S½ϕb� ¼ −
8π2

3λR
þ 1

ε

�
5

3
−
g2R
λR

þ g4R
2λ2R

�
þ � � � : ð5:71Þ

Thus we need the UV divergences in Eq. (5.71) to be
matched by the functional determinant over scalar, gauge,
and Goldstone modes.
To proceed, we want to compute the divergent contribu-

tions with Feynman diagrams in d dimensions and subtract
the corresponding contribution from the 4D result to sum
over s. Unfortunately, performing the subtractions in Fermi
gauge is difficult. In Fermi gauge, due to the gϕbAμ∂μG term
in Eq. (5.29) there is a Feynman rule picking up the
momentum of virtual Goldstones. This extra-loop momen-
tum generates newUV divergences and makes the diagrams
difficult. This is explained in more detail in Appendix B
where we compute all the divergent parts (but not the finite
parts). These divergences exactly correspond to those in
Eq. (5.71) as expected.
Fortunately, we can compute the regularized contribution

in any gauge. Indeed we have checked numerically that our
result for the finite s functional determinant is identical in
Rξ gauge and Fermi gauges. In Rξ gauge, with ξ ¼ 1 with
Lagrangin in Eq. (5.27), the Feynman rules are

ð5:72Þ

In addition, in Rξ gauge the ghosts do not decouple and have an interaction

ð5:73Þ

Then we find

ð5:74Þ

ð5:75Þ

ð5:76Þ

ð5:77Þ
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The sum, after taking μ → μffiffiffiffiffiffiffiffiffiffi
4πe−γE

p for MS is

−SAGloops

�
−
g2

3λ

�
¼ −SRξ

GG − S
Rξ

AA − S
Rξ

AG − S
Rξ

c̄c ¼
1

ε

�
1

6
−
g2

λ
þ g4

2λ2

�
þ
�
5

18
þ 1

3
γE þ 1

3
ln
Rμ
2

�
−
g2

λ

�
7

3
þ 2γE þ 2 ln

Rμ
2

�
þ g4

λ2

�
1

2
þ γE þ ln

Rμ
2

�
: ð5:78Þ

Note that the divergent terms agree with those in Fermi gauge, Eq. (B16), and when the scalar contribution is
added (with divergence 3

2ε), the poles exactly cancel those in Eq. (5.71).
To perform the subtraction, we need to compute the contribution to the functional determinants in 4D from terms to

second order in the couplings. Note that in Rξ gauge the transverse modes have the same quadratic fluctuations as the ghosts
and they cancel exactly in 4D. For the other photon polarizations and Goldstones, the fluctuation matrix with ξ ¼ 1 is

M
SLG;Rξ
s ¼

0BBBBBB@
−Δs þ

3

r2
þ g2ϕ2

b −
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 2Þp
r2

2gϕ0
b

−
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 2Þp
r2

−Δs −
1

r2
þ g2ϕ2

b 0

2gϕ0
b 0 −Δs þ ðg2 þ λÞϕ2

b

1CCCCCCA: ð5:79Þ

Changing basis, following [11] we find a convenient almost diagonal form

U−1M
SLG;Rξ
s U ¼

0BBBBB@
−Δs−1 þ g2ϕ2

b 0 g
s

sþ 1
ϕ0
b

0 −Δsþ1 þ g2ϕ2
b −g

sþ 2

sþ 1
ϕ0
b

2gϕ0
b −2gϕ0

b −Δs þ ðg2 þ λÞϕ2
b

1CCCCCA ð5:80Þ

where

U ¼

0B@ 1 −1 0ffiffiffiffiffiffi
sþ2
s

q ffiffiffiffiffiffis
sþ2

p
0

0 0 1

1CA: ð5:81Þ

In this form, we see that if we turn off the off-diagonal couplings, each diagonal term is a 1D operator and the exact result
can then be read off, using Eq. (4.27):

R
SLG;Rξ

s;diag ¼ Rsþ1

�
−
g2

3λ

�
Rs−1

�
−
g2

3λ

�
Rs

�
−
g2 þ λ

3λ

�
: ð5:82Þ

The required subtractions to second order in the diagonal interactions then come from the expansions of these function to
second order in their arguments:

½lnRSLG;Rξ

s;diag �
sub

¼ 2ðs3 þ 4s2 þ 4sþ 2Þ
s2ðsþ 1Þ2 − 4ψ 0ðsÞ þ

�
2ðs4 þ 9s3 þ 20s2 þ 18sþ 8Þ

s2ðsþ 1Þ2ðsþ 2Þ − 8ψ 0ðsÞ
�
g2

λ

þ
�
2ð2sþ 5Þð3s4 þ 12s3 þ 18s2 þ 12sþ 4Þ

s2ðsþ 1Þ2ðsþ 2Þ2 − 12ψ 0ðsÞ
�
g4

λ2
ð5:83Þ

with ψðzÞ ¼ Γ0ðzÞ
ΓðzÞ the digamma function. The remaining required subtractions involve the off diagonal couplings in

Eq. (5.80). Since these couplings are linear in g there are no contributions to first order in g (corresponding to no
diagrams with one g insertion). The contributions to second order in g can then be computed turning all the diagonal
interactions (mass term) to zero. We do this with the Gelfand-Yaglom method perturbative in g, following a similar
procedure to the one used in Sec. V C. The result is
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½lnRSLG;Rξ

s;off-diag�sub
¼
�
8ð2s4 þ 7s3 þ 10s2 þ 6sþ 2Þ

s2ðsþ 1Þ3 − 16ψ 0ðsÞ
�
g2

λ
:

ð5:84Þ

As a check, we note that adding Eqs. (5.83) and (5.84),
multiplying by ð1þ sÞ2 and expanding at large s, all of the
divergent terms of the all-orders result ð1þ sÞ2 lnRSLGT

s , as
shown in Eq. (5.69), are reproduced exactly.
Then, using Eq. (4.28) we compute

SAGdiff

�
−
g2

3λ

�
¼
X∞
s¼1

�
ðsþ 1Þ2

h
lnR

SLG;Rξ
s

i
sub

− 3Sssub

�
−
g2

3λ

�
− Sssub

�
−
1

3

�	
ð5:85Þ

¼
�
4π2 −

121

3

�
g2

λ
−
5g4

2λ2
: ð5:86Þ

Adding Eq. (5.78), Eq. (5.86), and the finite parts Eq. (4.8),
we finally haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ÔAG

det0OAG

s
¼ exp

�
−
3

2
Sfin

�
−
g2

3λ

�
− SAGloops

�
−
g2

3λ

�
−
1

2
SAGdiff

�
−
g2

3λ

�
−
1

2
SGfin

�
ð5:87Þ

with SGfin the finite contribution for the Goldstone fluctua-
tions with the zero modes removed, Eq. (5.17).

D. Fermions

Next, let us consider the addition of Dirac fermions. The
Euclidean Lagrangian for a real scalar interacting with a
Dirac fermion is

L ¼ 1

2
ð∂μϕÞ2 þ

1

4
λϕ4 þ ψ̄=∂ψ þ yffiffiffi

2
p ϕψ̄ψ : ð5:88Þ

Around the bounce configuration, ϕ ¼ ϕb, the fermion
fluctuation operator is

Mψ ¼ =∂ þ yffiffiffi
2

p ϕb: ð5:89Þ

To calculate the determinant of this operator, we expand in
a basis of half-integer spin spherical harmonics.
Including angular momentum, Dirac spinors transform in

the direct sum of ðkþ 1
2
; kÞ and ðk; kþ 1

2
Þ representations of

the Lorentz algebra suð2Þ ⊗ suð2Þ ≅ oð4Þ. In a particular
representation of the Euclidean Dirac algebra, the half-
integer spherical harmonics take the form of hypergeometric
functions (see Appendix A of [82]). Expanding in this basis,
Mψ reduces to a form which depends only on the radial
coordinate r and only on two components of theDirac spinor

Mkþ
ψ ¼

 ∂r − 2k
r

yffiffi
2

p ϕb

yffiffi
2

p ϕb ∂r þ 2kþ3
r

!
;

Mk−
ψ ¼

 ∂r þ 2kþ3
r

yffiffi
2

p ϕb

yffiffi
2

p ϕb ∂r − 2k
r

!
: ð5:90Þ

To match the literature, the first matrix here corresponds to
Eq. (3.17) of [82] withK → k and the second to (3.18) with
L ¼ K − 1

2
→ k. Themultiplicity of the ða; bÞ representation

is ð2aþ 1Þð2bþ 1Þ, so we have

detMψ ¼
Y

k¼0;1
2
;1;���

ðdetMk−
ψ Mkþ

ψ Þð2kþ1Þð2kþ2Þ: ð5:91Þ

Next, we reduce the product of these operators to a
quadratic form by conjugating with the unitary matrices
U ¼ diagð 1

r3/2 ;
1
r3/2Þ and V ¼ diagð 1

r3/2 ;−
1
r3/2Þ:

U−1Mk−
ψ UV−1Mkþ

ψ V ¼

0BB@ ∂2
r −

ð4kþ 3Þð4kþ 1Þ
4r2

−
y2

2
ϕ2
b −

yffiffiffi
2

p ϕb
0

−
yffiffiffi
2

p ϕb
0 ∂2

r −
ð4kþ 3Þð4kþ 5Þ

4r2
−
y2

2
ϕ2
b

1CCA: ð5:92Þ

This simplifies slightly by writing k ¼ j
2
− 3

4
. Then

j ¼ 2kþ 3
2
¼ 3

2
; 5
2
; 7
2
; � � �, the multiplicity becomes j2 − 1

4

and

ln detMψ ¼
X

j¼3
2
;5
2
;7
2
;���

�
j2 −

1

4

�
ln detMj

ψ̄ψ ð5:93Þ

where

Mj
ψ̄ψ ¼

0B@∂2
r −

jðj−1Þ
r2 − y2

2
ϕ2
b − yffiffi

2
p ϕ0

b

− yffiffi
2

p ϕ0
b ∂2

r −
jðjþ1Þ

r2 − y2

2
ϕ2
b

1CA ð5:94Þ

in agreement with [11]. The matrix for fluctuations around

the false vacuum, cMj
ψ̄ψ is the same as this one with ϕb ¼ 0.

Following similar techniques to those described in
previous sections, we find
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Rψ̄ψ
j ¼ det

Mj
ψ̄ψcMj
ψ̄ψ

¼

264 Γðjjj þ 1
2
Þ2

Γðjjj þ 1
2
þ

ffiffiffiffi
y2

λ

q
ÞΓðjjj þ 1

2
−

ffiffiffiffi
y2

λ

q
Þ

375
2

:

ð5:95Þ

For the subtractions, it is helpful to have the result for the
determinant when the off-diagonal terms inMj

ψ̄ψ are set to
zero. When the matrix is diagonal, the fermion case is a
special case of the general formula in Sec. IV. The result is

Rψ̄ψ
j;diag ¼ Rs¼j−3

2

�
−
y2t
6λ

�
Rs¼j−1

2

�
−
y2t
6λ

�
ð5:96Þ

with RsðxÞ given in Eq. (4.27).
The subtractions required to sum over j are given

by the expansions of Rψ̄ψ
j to second order in the diagonal

couplings and second order in the off-diagonal couplings:

Sψ̄ψsub ¼
�
j2−

1

4

�
½lnRψ̄ψ

j �
y2
þ
�
j2−

1

4

�
½lnRψ̄ψ

j;diag�y4 ð5:97Þ

¼
�
j2 −

1

4

��
−
2y2

λ
ψ 0
�
jjj þ 1

2

�
þ 8y4

λ2
ðjþ 1Þð4j2 þ 1Þ

ð4j2 − 1Þ2

−
2y4

λ2
ψ 0
�
jjj þ 1

2

��
: ð5:98Þ

Using this, we find

X∞
j¼�3

2
;�5

2
;���

��
j2−

1

4

�
lnRψ̄ψ

j −Sψ̄ψsub

�
¼ Sψ̄ψfin

 ffiffiffiffiffi
y2

λ

r !
ð5:99Þ

where

Sψ̄ψfin ðzÞ ¼ 16ψ ð−4Þð2Þ − 8

3
ψ ð−2Þð2Þ þ 4z2

3
ð1 − γEÞ −

z4

3
ð1 − 2γEÞ

−
4z
3
ð1 − z2Þ½ψ ð−1Þð2þ zÞ − ψ ð−1Þð2 − zÞ� þ 4

3
ð1 − 3z2Þ½ψ ð−2Þð2þ zÞ þ ψ ð−2Þð2 − zÞ�

þ 8z½ψ ð−3Þð2þ zÞ − ψ ð−3Þð2 − zÞ� − 8½ψ ð−4Þð2þ zÞ þ ψ ð−4Þð2 − zÞ�: ð5:100Þ

This function is real for imaginary z and contains only even
powers of z when expanded around z ¼ 0.
The UV-divergent part is added back in through a

dimensionally regulated calculation quadratic in the inter-
actions. We do this by evaluating the functional determi-
nant as in [11]:

−Sloopsψ̄ψ

�
y2

λ

�
¼ 1

2

�
ln
detMj

ψ̄ψ

detcMψ̄

�
W2

¼ 1

2

�
ln
detð−□þWÞ
detð−□Þ

�
W2

ð5:101Þ

¼ −
1

2
Tr½□−1W� − 1

4
Tr½□−1W□

−1W� ð5:102Þ

where W ¼ y2

2
ϕ2
b þ yffiffi

2
p ð=∂ϕbÞ are the interactions from

Eq. (5.94), and the subscript W2 indicates that we are
truncating the expansion in W to second order. The traces
can be rewritten in momentum space

Tr½□−1W� ¼
Z

ddk
ð2πÞd

−1
k2

Z
d4xTr½WðxÞ�; ð5:103Þ

Tr½□−1W□
−1W�

¼
Z

ddq
ð2πÞd

ddk
ð2πÞd

1

k2ðkþqÞ2Tr½W̃ðqÞW̃ð−qÞ�: ð5:104Þ

The singleW trace is zero in dimensional regularization, and

we can evaluate the other one using W̃ðqÞ ¼ y2

2
ϕ̃2
bðqÞþ

i yffiffi
2

p =qϕ̃bðqÞ

Tr½□−1W□
−1W�

¼
Z

ddq
ð2πÞd

ddk
ð2πÞd

1

k2ðkþ qÞ2 ½y
4ϕ̃2

bðqÞ þ 2y2q2ϕ̃bðqÞ2�

ð5:105Þ

¼
Z

d4q
ð2πÞ4 ½y

4ϕ̃2
bðqÞ þ 2y2q2ϕ̃bðqÞ2�B0ðqÞ ð5:106Þ

with B0ðqÞ defined in Eq. (4.15). In MS the result is

−Sloopsψ̄ψ

�
y2

λ

�
¼ 1

ε

�
y2

3λ
−

y4

6λ2

�
þ y2

λ

�
13

18
þ 2

3
γE þ 2

3
ln
Rμ
2

�
−
y4

λ2

�
5

18
þ 1

3
γE þ 1

3
ln
Rμ
2

�
: ð5:107Þ

The final result for a single fermion is thenffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMψ̄ψ

detcMψ̄ψ

s
¼ exp

�
1

2
Sψ̄ψfin

� ffiffiffiffiffi
y2

λ

r �
−Sloopsψ̄ψ

�
y2

λ

��
: ð5:108Þ
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As a check, we note that the action on the bounce in this
Yukawa theory in terms of the renormalized couplings is

S½ϕb� ¼ −
8π2

3λR
þ 1

ε

�
3

2
þ y2R
3λR

−
y4R
6λ2R

�
þ � � � : ð5:109Þ

The UV divergences in this action exactly cancel those in
Eq. (5.108) and Eq. (5.6).

E. Summary of results

To provide a convenient reference, we summarize here
the main results of this section: the functional determinants
for scalars, vectors, and fermions.
For a real scalar, there are zero modes corresponding to

dilatations and translations, with Jacobian factors given in
Eqs. (3.29) and (3.30):

Jd ¼
1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6S½ϕb�
5π

r
; JT ¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6S½ϕb�
5π

r
: ð5:110Þ

The fluctuation determinant with zero modes removed is in
Eq. (5.6):

Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detÔϕ

det0Oϕ

s
¼ 25

36

ffiffiffi
5

6

r
exp

�
3

2ε
−
5

4
þ6ζ0ð−1Þþ3 ln

Rμ
2

�
:

ð5:111Þ

In collective coordinates, we must integrate over d4xdR.
For a complex scalar field, there is a global Uð1Þ

invariance spontaneously broken by the bounce. There is
a zero mode corresponding to phase rotations. The Jacobian
for changing to collective coordinates is given in Eq. (5.15)

JG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6S½ϕb�

π

r
ð5:112Þ

and the fluctuation operator for the Goldstone bosons is in
Eq. (5.18)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detÔG

det0OG

s
¼

ffiffiffi
3

2

r
exp

�
1

6ε
−

1

12
þ2ζ0ð−1Þþ1

3
ln
Rμ
2

�
:

ð5:113Þ

In collective coordinates this must be integrated over the
volume V ¼ 2π of Uð1Þ.
For a Uð1Þ gauge theory with a complex scalar, namely

the Coleman-Weinberg model, the dilatation, translation,
and phase rotation modes are still present. The functional
determinant over gauge and Goldstone fluctutations with
zero modes removed is in Eq. (5.87)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ÔAG

det0OAG

s
¼ exp

�
−
3

2
Sfin

�
−
g2

3λ

�
−
1

2
SAGdiff

�
−
g2

3λ

�
− SAGloops

�
−
g2

3λ

�
−
1

2
SGfin

�
; ð5:114Þ

with SfinðxÞ in Eq. (4.8), SGfin in Eq. (5.17), SAGdiff in
Eq. (5.86), and SAGloops in Eq. (5.78). The determinant over
the real scalar fluctuations in this theory is the same as in
Eq. (5.111).
For a Dirac fermion, the fluctuation determinant is in

Eq. (5.108):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMψ̄ψ

det cMψ̄ψ

s
¼ exp

�
1

2
Sψ̄ψfin

� ffiffiffiffiffi
y2

λ

r �
− Sψ̄ψloops

�
y2

λ

��
ð5:115Þ

with Sψ̄ψfin ðzÞ in Eq. (5.100) and Sψ̄ψloops in Eq. (5.107). If the
fermion is colored, then we get Nc copies of Eq. (5.115).

VI. VACUUM STABILITY IN THE
STANDARD MODEL

Now we have all the ingredients necessary to compute
the next-to-leading order decay rate in the Standard Model.
The relevant part of the Standard Model Lagrangian is

LSM ¼ ðDμHÞ†ðDμHÞ þ λðH†HÞ2 − 1

4
ðWa

μνÞ2 −
1

4
B2
μν

þ iQ̄=DQþ it̄R=DtR þ ib̄R=DbR − ytQ̄HtR

− y⋆t t̄RH†Q − ybQ̄ H̃ bR − y⋆bb̄RH̃†Qþ � � � ð6:1Þ

where H is the Higgs doublet, H̃ ¼ iσ2H, Wμ are the
SUð2Þ gauge bosons,Bμ is the hypercharge gauge boson,Q
is the third generation left-handed quark doublet, and tR
and bR are the right-handed top and bottom quarks.
Contributions from other fermions are negligible and
gluons have no effect at next-to-leading order. We have
set the Higgs mass parameter m2 to zero; m2 ≠ 0 correc-
tions will be discussed in Sec. VII.
From this Lagrangian we see that there are only five

parameters relevant to the NLO decay rate: λ; yt; yb and the
SUð2Þ × Uð1Þ couplings g and g0. All of these parameters
depend on scale. As explained in Sec. III B, for a consistent
power counting the tunneling calculation has to be done
near the scale μ⋆ where βλðμ⋆Þ ¼ 0. In the SM this scale is
μ⋆ ≈ 1017 GeV. The five parameters are determined at
much lower scales, μ ∼ 100 GeV (or μ ∼mb for yb). In
determining the parameters matching conversions (also
known as threshold corrections) are made from a physical
scheme (like the pole-mass scheme where the W and Z
masses aremeasured). The ingredients for thismatching step
are known at NNLO and depend on additional SM param-
eters, such as αs. After matching, onemust run the couplings
up to μ ∼ 1017 GeV. The RG equations for this running are
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known at three or four loops and involve additional
parameters like αs as well. To be clear, the goal of the
matching and running is to get λðμ⋆Þ; ytðμ⋆Þ; ybðμ⋆Þ; gðμ⋆Þ,
and g0ðμ⋆Þ in MS. Thus, it is perfectly consistent to match at
NNLO, run at three or four loops and compute the decay rate
at NLO—each step is a separate well-defined calculation.

A. NLO tunneling rate formula

To compute the NLO tunneling rate in the SMwe need to
combine the formulas from Sec. V.
The bounce spontaneously breaks translation and scale

invariance as well as SUð2Þ ×Uð1ÞY → Uð1ÞEM. The zero
modes for translations and dilatations must be integrated
over with collective coordinates with appropriate Jacobian
factors. The three broken internal generators produce three
zero modes which must be integrated over the volume of

the broken gauge group. As we work to NLO only, we only
need the action quadratic in the fluctuations around the
bounce. For gauge bosons, this means the non-Abelian
interactions are irrelevant and each gauge boson can be
treated independently. Thus, each gauge group collective
coordinate produces a factor of JG in Eq. (5.15) as for a
Uð1Þ. In addition, since the Uð1Þ representing electromag-
netism is unbroken, fluctutations of the photon are the same
around the false vacuum and the bounce and therefore
do not contribute to the rate. We can therefore compute
the gauge-boson fluctuations by integrating over W�
and Z boson fluctuations and their associated Goldstone
bosons.
Resolving the integral over instanton size R through the

technique described in Sec. III B and using Eq. (3.46), the
NLO rate formula in the SM is therefore

Γ
V
¼ e−S½ϕb�ImVSUð2ÞJ3GðRJTÞ4ðRJdÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ôh

det0Oh

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ÔZG

det0OZG

s
det ÔWG

det0OWG

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detOt̄t

det Ôt̄t

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detOb̄b

det Ôb̄b

s

× μ4⋆

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
πS½ϕ⋆

b�λ⋆
β00⋆

s
e
− 4λ⋆
S½ϕ⋆

b
�β0
0⋆

�
λ⋆

λ1-loopðμ̂Þ
− 1 −

4λ⋆
S½ϕ⋆

b�2β00⋆

�
: ð6:2Þ

This formula is valid for R−1 ¼ μ ¼ μ⋆, with μ⋆ the scale
where βλðμ⋆Þ ¼ 0. For other values of μ, there are addi-
tional factors of βλ not shown, as in Eq. (3.47). The scale μ̂
is in Eq. (3.45).
The Jacobian factors for dilatations and translations are

in Eqs. (3.29) and (3.30):

ðJdÞðJTÞ4 ¼
1

R5

�
6S½ϕb�
5π

�
5/2
: ð6:3Þ

With SUð2Þ generators normalized as τj ¼ 1
2
σj, with σj the

Pauli matrices, the group theory volume factor is3

VSUð2Þ×Uð1Þ
VUð1Þ

¼ VSUð2Þ ¼
Z

dΩSUð2Þ ¼ 16π2: ð6:4Þ

Thus Z
dΩSUð2ÞJ3G ¼ 16π2

�
6S½ϕb�

π

�
3/2
: ð6:5Þ

For the real Higgs scalar, the determinant with zero
modes removed is in Eq. (5.111). Setting R ¼ 1

μ gives

Im

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ôh

det0Oh

s
¼ 25

288

ffiffiffi
5

6

r
exp

�
3

2ε
−
5

4
þ 6ζ0ð−1Þ

�
: ð6:6Þ

For gauge bosons, we note that theW and Z bosons couple
to ϕb with strengths gW ¼ 2 mW

v ¼ g and gZ ¼ 2 mZ
v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ ðg0Þ2
p

, respectively. Including the conventional
factor of 1

2
normalizing Abelian versus non-Abelian gen-

erators, the gauge bosons and Goldstone fluctuations give
the result summarized in Eq. (5.114)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ÔZG

det0OZG

s
¼ exp

�
−
3

2
Sfin

�
−

g2Z
12λ

�
−
1

2
SAGdiff

�
−

g2Z
12λ

�
− SAGloops

�
−

g2Z
12λ

�
−
1

2
SGfin

�
; ð6:7Þ

det ÔWG

det0OWG
¼ exp

�
−3Sfin

�
−
g2W
12λ

�
− SAGdiff

�
−
g2W
12λ

�
− 2SAGloops

�
−
g2W
12λ

�
− SGfin

�
: ð6:8Þ

The top quark contributes as in Eq. (5.115) with a factor of
NC ¼ 3 for colorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detMt̄t

detcMt̄t

s
¼exp

�
NC

2
Sψ̄ψfin

� ffiffiffiffiffi
y2t
λ

r �
−NCS

ψ̄ψ
loops

�
y2t
λ

��
: ð6:9Þ

3SUð2Þ are matrices ð a
−b⋆

b
a⋆Þ with jaj2 þ jbj2 ¼ 1. Thus the

volume is related to that of the 4-sphere, 2π2. With the
normalization τj ¼ 1

2
σj, one has to go twice as far around

in each direction [expð4πiτjÞ ¼ 1] as expected, so the volume
is 16π2.
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The bottom quark contribution is identical with yt → yb and we omit yb for simplicity in the next set of formulas.
The UV divergences from the product of these functional determinants in 4 − 2ε dimensions is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ÔhZWt

det0OhZWt

s
¼ exp

�
1

ε

�
2 −

2g2W þ g2Z
4λ

þ 2g4W þ g4Z
32λ2

þ NCy2t
3λ

−
NCy4t
6λ2

�
þOðε0Þ

�
¼ exp

�
1

ε

�
2 −

3g2 þ g02

4λ
þ 3g4 þ 2g2g02 þ g04

32λ2
þ NCy2t

3λ
−
NCy4t
6λ2

�
þOðε0Þ

�
: ð6:10Þ

These are exactly canceled by the renormalized tree-level action on the bounce

−S½ϕb� ¼
8π2

3λ
−
�
1

ε

�
2 −

3g2 þ g02

4λ
þ 3g4 þ 2g2g02 þ g04

32λ2
þ NCy2t

3λ
−
NCy4t
6λ2

��
: ð6:11Þ

In the SM, the one-loop β function for λ is

β0λ ¼
dλ

d ln μ
¼ 1

16π2

�
24λ2 þ 9

8
g4 þ 3

8
g04 þ 3

4
g2g02 − 9g2λ − 3g02λþ 4NCy2t λ − 2NCy4t

�
: ð6:12Þ

This one-loop β function is of course linearly related to the 1
ε poles in Eq. (6.11). The derivative of βλ, required for

Eq. (6.2) is

β0λ
0 ¼ μ

dβ0λ
dμ

¼ 1

ð16π2Þ2
�
1152λ3 − 648g2λ2 − 216g02λ2 þ 192g4λþ 90g2g02λ − 14g04λ −

195

8
g6 −

119

8
g4g02 þ 37

8
g2g04

þ 73

8
g06 þ N2

Cð16λy4t − 8y6t Þ þ NC

�
9

2
g4y2t þ 3g2g02y2t þ 36g2y4t − 90g2λy2t þ

3

2
g04y2t þ

52

3
g02y4t

−
106

3
g02λy2t − 64g2sy2t λþ 64g2sy4t − 36y6t − 60λy4t þ 288λ2y2t

��
: ð6:13Þ

Note that although β0λ is formally two-loop order, it depends
only on one-loop β-function coefficients. Thus in the
consistent NLO calculation all that is needed is one-loop
results.

B. Absolute stability

Absolute stability means that Γ ¼ 0 and our electroweak
vacuum will never decay. A naive criterion for Γ ≠ 0 is that
λ⋆ < 0. That is

βλðμ⋆Þ ¼ λðμ⋆Þ ¼ 0 ðnaive absolute stabilityÞ:
ð6:14Þ

This criterion has been used in many treatments to establish
the stability boundaries of phase space. For example, in
[18,83], this boundary is fixed by λðμcriÞ ¼ βλðμcriÞ ¼ 0

(their μcri is our μ⋆). We call this criterion “naïve” because it
is not systematically improvable: it only depends on the
running λ. For example, if λ⋆ is positive but very small, the

rate can still be nonzero due to loop corrections but the
naive criterion would miss this possibility.4

To compute the absolute-stability phase space
boundary, a gauge-invariant systematically improvable
procedure was developed in [17,38]. The starting point
is that absolute stability is equivalent to the electroweak
vacuum being the absolute minimum of the effective
potential. Although the exact value of the potential at a
minimum is known to be gauge invariant [21,22], some
care has to be exercised in extracting this minimum value in
perturbation theory. Because the effective potential having
a minimum requires tree-level and one-loop effects to be
comparable, the standard loop power counting cannot be
used to establish stability (it violates gauge invariance). A
self-consistent gauge-invariant procedure for establishing

4The way we compute Γ in this paper is to expand around the
bounce solution which requires λ⋆ < 0. If λ⋆ > 0 and the
electroweak vacuum is still unstable, one would have to modify
the procedure to compute the rate (see [84]).
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absolute stability was developed in [38]. Briefly, one starts
with the leading-order effective potential

VLOðhÞ ¼ 1

4
λh4 þ h4

1

2048π2

×

�
−5g04 þ 6ðg02 þ g2Þ2 ln h

2ðg02 þ g2Þ
4μ2

− 10g02g2 − 15g4 þ 12g4 ln
g2h2

4μ2

þ 144y4t − 96y4t ln
y2t h2

2μ2

�
: ð6:15Þ

The first term of this potential is tree level and the rest
comprises all of the one-loop corrections consistent with the
power counting established in [17,38]. The point of the
power counting is that since the one-loop contribution must
overwhelm the tree-level contribution to turn the potential
over, λ must be the size of the one-loop corrections.
Remarkably, one must impose this power counting consis-
tently for gauge invariance to hold order-by-order in
perturbation theory. The minimum of VLO is where the
couplings satisfy

λ ¼ 1

256π2

�
g4 þ 3g04 þ 2g2g02 þ 3ðg2 þ g02Þ2 ln 4

g2 þ g02

þ 6g4 ln
4

g2
− 16NCy4t

�
ln

2

y2t
þ 1

��
: ð6:16Þ

We denote by μX the MS renormalization-group scale
where this equation holds. The NLO effective potential
with this consistent power counting is then computed by
combining one-loop, two-loop, and an infinite set of higher-
loop daisy diagrams. Since the stability bound with this
procedure is gauge invariant (as checked explicitly in scalar
QED in [38]), we can choose any gauge. Landau gauge
(ξ ¼ 0) is particularly convenient as all the daisy diagrams
vanish. The NLO effective potential in Landau gauge is
extracted from [14,15]. We present it in Appendix C for
completeness.
One cannot be certain that our Universe is absolutely

stable, as quantum gravity or new physics coming in at an
arbitrary high scale can open up new tunneling directions
that can destabilize the Universe [16,19,50,62,85–87]. So
there is no sensible way of estimating a lower bound on the
lifetime of our vacuum including new physics. The best one
can do is to put an upper bound on the lifetime, and the only
question we can reasonably ask about new physics is at
what scale, ΛNP, it could come in to stabalize our vacuum?
That is, how strong would it have to be to raise the upper
bound on the lifetime to make it absolutely stable? To
determine this scale, we add to the effective potential a
gauge-invariant operator

ΔVeff ¼
1

Λ2
NP

h6: ð6:17Þ

This operator contributes to VLO and modifies the equation
for μX, Eq. (6.16). Then we ask for given SM couplings,
what value of ΛNP will lift the minimum of Veff to zero. The
curves for this condition in the SM are shown in Fig. 3.

C. Numerical results

For numerical calculations, we take as inputs GF, m
pole
W ,

mpole
Z , mpole

b , mpole
t , mpole

h , and αsðmZÞ. These inputs are
converted to MS at a scale μ0 ¼ mpole

t using threshold
corrections known to two loops in all SM couplings
[14,15,83], including mixed strong/electroweak contribu-
tions, and partially to three and four loops in αs. The
couplings are then run to high energy using the three-loop
renormalization group equations with four-loop running
included for αs [88–90]. All of these threshold and running
calculations are conveniently performed using the MR

package of Kniehl, Pikelner, and Veretin [91].
The numerical values are taken from the 2017 Particle

Data Group [92]. We take as inputs

GF ¼ 1.115 × 10−5 GeV−2; mpole
W ¼ 80.385 GeV;

mpole
Z ¼ 91.1876 GeV; mpole

b ¼ 4.93 GeV: ð6:18Þ
The uncertainty on these have a negligible effect on the rate
so we set their uncertainties to zero. We also take current
world averages [92]5

mpole
t ¼ 173.1� 0.6 GeV;

mpole
h ¼ 125.09� 0.24 GeV

αsðmZÞ ¼ 0.1181� 0.0011: ð6:19Þ
These uncertainties will be propagated through to the final
results.
With these values, we find that λ has a minimum at

μ⋆ ¼ 3.11 × 1017 GeV: ð6:20Þ
At this scale, there is an instability (λ < 0) and

λðμ⋆Þ ¼ −0.0138; ytðμ⋆Þ ¼ 0.402;

gðμ⋆Þ ¼ 0.515; g0ðμ⋆Þ ¼ 0.460; gZðμ⋆Þ ¼ 0.691:

ð6:21Þ

5The most precise top quark mass measurements are
currently done by matching experimental measurements to
Monte Carlo (MC) simulators, and hence it is mMC

t that is being
measured, notmpole

t . The uncertainty in translating frommMC
t to a

well-defined short-distance mass scheme has been studied, and
early estimates were of order 1 GeV [93], although it may be
much smaller, perhaps below 100 MeV [94,95]. For this analysis
we will only use the standard PDG values for our central value
and uncertainty, and do not include the mMC

t vs mpole
t uncertainty.

See also [96–98].
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Note that the gauge couplings are quite large at this scale.
And, as needed for Eq. (6.2),

β00⋆ ¼ 5.50 × 10−5; μ̂ ¼ 0.76μ⋆;
λ1-loopðμ̂Þ ¼ 0.99993λ⋆: ð6:22Þ

The action on the bounce is

S½ϕb� ¼ −
8π2

3λ⋆
¼ 1900: ð6:23Þ

The terms in Eq. (6.2) evaluate to

e−S½ϕb�|fflffl{zfflffl}
10−826

VSUð2Þ|fflffl{zfflffl}
102

J3G|{z}
105

ðRJTÞ4ðRJdÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
107

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Ôh

det0Oh

s
|fflfflfflfflffl{zfflfflfflfflffl}

10−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ÔZG

det0OZG

s
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

1017

det ÔWG

det0OWG|fflfflfflffl{zfflfflfflffl}
1019

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detOt̄t

det Ôt̄t

s
|fflfflfflfflffl{zfflfflfflfflffl}

1025

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detOb̄b

det Ôb̄b

s
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

0.995

ð6:24Þ

and

μ4⋆|{z}
1070 GeV4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

πλ⋆
S½ϕ⋆

b�β00⋆

s
e
− 4λ⋆
S½ϕ⋆

b
�β0
0⋆|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1.09

S½ϕ⋆
b�
�

λ⋆
λ1-loopðμ̂Þ

− 1 −
4λ⋆

S½ϕ⋆
b�2β00⋆

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0.653

: ð6:25Þ

Multiplying everything together, we find the decay rate per unit volume is

Γ
V
¼ 10−683 GeV4 ×

�
10−279

10162

�
mt

×

�
10−39

1035

�
mh

×

�
10−186

10127

�
αs

×

�
10−61

10102

�
thr

×

�
10−2

102

�
NNLO

¼ 10−683
−409
þ202 GeV4: ð6:26Þ

The first three uncertainties are from variation ofmt,mh, and
αs, respectively, according to Eq. (6.19). The fourth un-
certainty is theory uncertainty from varying the threshold
matching scale μthr ¼ ξmpole

t with 1
2
< ξ < 2 used in con-

verting observables to MS and as the starting point for RGE
evolution. The final uncertainty marked NNLO represents
the unknown two-loop contributions to the functional
determinant around the bounce. We estimate this error by
scale variation around μ⋆ by a factor of 1

2
or 2. Noting that the

NLO tt̄ functional determinant contributes in the exponent at
around 3% of the tree-level bounce action, our NNLO
estimate of 7% compared to NLO seems reasonable.
The variations in the first line of Eq. (6.26) are not

independent and the dependence of Γ on the masses and
scales is highly nonlinear. Nevertheless, since we can
compute the effect on Γ for any combination of their
variations, we can determine their total correlated effect on
the rate. To do this, we maximize or minimize the rate over
the χ2 ¼ 1 hypersurface. We find that at 68% confidence
10−1291 < Γ

VGeV4 < 10−481.6 The range of decay rates
allowed at 95% confidence is e−2320 < Γ

VGeV4 < 10−359.

Thus, the lifetime of the Standard Model universe is

τSM ¼
�
Γ
V

�
−1/4

¼ 10139
þ102
−51 years: ð6:27Þ

That is, to 68% confidence, 1088 < τSM
years < 10291. To

95% confidence 1058 < τSM
years < 10549.

To be more clear about what the lifetime means, we can
ask a related question: what is the probability that we
would have seen a bubble of a decaying universe by
now? Using the space-time volume of our past lightcone
[15], ðVTÞlight-cone ¼ 0.15

H4
0

¼ 3.4 × 10166 GeV−4 and the
Hubble constant H0 ¼ 67.4 km

sMpc ¼ 1.44 × 10−42 GeV,
the probability that we should have seen a bubble by now is

P ¼ Γ
V
ðVTÞlight-cone ¼ 10−516

−409
þ202 : ð6:28Þ

Since the bubbles expand at the speed of light, chances are if
we saw such a bubble we would have been destroyed by it;
thus it is reassuring to find the probability of this happening
to be exponentially small.
The phase diagrams in the mt/mh and mt/αs planes are

shown in Fig. 2. In these diagrams, the boundary between
metastability and instability is fixed by P ¼ 1, where P is
the probability that a bubble of true vacuum should
have formed without our past lightcone, as in Eq. (6.28).
The boundary between metastability and instability is

6For reference, this lower bound at 10−481 is for
mpole

t ¼ 173.5 GeV, mpole
h ¼ 125.06 GeV, αsðmZÞ ¼ 0.1175

and μthr ¼ 1.3mpole
t . As evidence of the correlations and non-

linearities, we also note that combining the 1σ errors in quad-
rature gives 10−1026 < Γ

VGeV4 < 10−450.
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determined by the gauge-invariant consistent procedure
detailed in Sec. VI B (and in [17,38]). Although the
absolute stability boundary is close to the condition λ⋆ ¼
0 in Eq. (6.14), it is systematically higher and a better fit to
the curve for λ⋆ ¼ −0.0013.
Varying one parameter holding the others fixed, we find

that the ranges of mpole
t , mpole

h , or αs for the SM to be in the
metastability window are

171.18 <
mpole

t

GeV
< 177.68;

129.01 >
mpole

h

GeV
> 111.66; 0.1230 > αsðmZÞ > 0.1077:

ð6:29Þ
Numbers on the left in these ranges are for absolute stability
and on the right for metastability.

FIG. 2. Top: phase diagram for stability in the mpole
t /mpole

h plane and closeup of the SM region. Ellipses show the 68%, 95%, and 99%
contours based on the experimental uncertainties on mpole

t and mpole
h . The shaded bands on the phase boundaries, framed by the dashed

lines and centered on the solid lines, are combinations of the αs experimental uncertainty and the theory uncertainty. Bottom: phase
diagram in the mpole

t /αsðmZÞ plane, with uncertainty on the boundaries given by combinations of uncertainty on mpole
h and theory. The

dotted line on the right plots is the naive absolute stability prediction using Eq. (6.14).
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To be absolutely stable, the bounds on the parameters are

mpole
t

GeV
< 171.18þ 0.12

�
mpole

h /GeV − 125.09
0.24

�
þ 0.43

�
αsðmZÞ − 0.1181

0.0011

�
þ ðthÞþ0.17

−0.35 ;

mpole
h

GeV
> 129.01þ 1.2

�
mpole

t /GeV − 173.1
0.6

�
þ 0.89

�
αsðmZÞ − 0.1181

0.0011

�
þ ðthÞþ0.34

−0.72 ;

αsðmZÞ > 0.1230þ 0.0016

�
mpole

t /GeV − 173.1
0.6

�
þ 0.0003

�
mpole

h /GeV − 125.09
0.24

�
þ ðthÞþ0.0005

−0.0010 :

ð6:30Þ
Absolute stability is currently excluded at 2.48σ, which
translates to a one-sided confidence of 99.3%. To exclude
absolute stability to the one-sided confidence for 3σ, the
top quark mass uncertainty must be reduced below
250 MeV. Similarly for αs for a 3σ uncertainty must be
less than Δαs < 0.00025.
The dashed lines Fig. 3 indicate the scale at which new

physics operators at the scale ΛNP can stabilize the SM,
added as in Eq. (6.17). Recall that because tunneling is a
nonperturbative phenomenon, higher-dimension operators
do not decouple: new physics at an arbitrarily high scale

can destabilize the SM my opening up new tunneling
directions [19,50,62,85–87]. To stabalize the SM, they
have to be strong enough to lift the potential from negative
to positive. In Fig. 3 we see that the density of ΛNP curves
increases near the absolute stability line. This happens
because the absolute stability region is necessarily insen-
sitive to the addition of a positive operator.

VII. MASS CORRECTIONS

One remaining technical detail is how to handle the fact
that the Higgs potential in the StandardModel is not exactly
scale invariant, since there is a finite mass term for the Higgs
field. We saw in Sec. III that with a scale-invariant classical
potential, quantum corrections naturally pick out the scale
μ⋆ where λðμÞ is minimal so that the action is dominated
by bounces of a size R⋆ ¼ 1

μ⋆. One hopes that because the

Higgs mass parameter m ∼ 102 GeV is much smaller than
μ⋆ ∼ 1017 GeV, the corrections to the decay rate from the
mass termwill be completely negligible. Although normally
classical effects, like the Higgs mass term, dominate over
quantum effects, in this case the quantum scale violation can
be dominant since it scales as an inverse power of ℏ [see
Eq. (3.35)]. Despite this convincing logic, producing a
quantitative estimate of the effect on the decay rate of a
finite mass term is surprisingly challenging.

A. A bound on the m2 correction

Consider the potential VðϕÞ¼ 1
2
m2ϕ2þ 1

4
λϕ4 with λ < 0

and m > 0. Trying to solve the Euclidean equations of

FIG. 3. Phase diagram for stability in the mpole
t /mpole

h plane with dotted lines indicating the scale at which the addition of higher-
dimension operators could stabilize the SM. Note that the curves accumulate on the stability/metastability boundary. ΛNP curves in the
αs/m

pole
t plane (not shown) are similar.
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motion for this potential, ϕ00 þ 3
rϕ

0 −m2ϕ − λϕ3 ¼ 0, one
quickly discovers that the only solution is ϕ ¼ 0. There are
many ways to see this [57,59,60,62] such as with Derrick’s
theorem [99]. An intuitive way is to use Coleman’s trick of
thinking of the solution the Euclidean equations of motion
as a ball rolling with friction down a hill shaped like −VðϕÞ
starting at ϕð0Þ and ending at ϕ ¼ 0 at “time” r ¼ ∞. For
m ¼ 0, the potential is scale invariant, so no matter where
the ball starts it will get to ϕ ¼ 0 only asymptotically at
infinite time; different starting points correspond to differ-
ent R for the bounce solutions in Eq. (3.1). Now, when we
add 1

2
m2ϕ2 to the potential, it creates a depression in−VðϕÞ

near ϕ ¼ 0. Since for any R the bounces just barely got to
ϕ ¼ 0 at infinite time, adding even an infinitesimal depres-
sion prevents solutions to the equations of motion from ever
reaching ϕ ¼ 0. Thus there are no bounces when m2 > 0.
Assuming m is small compared to μ⋆, one might think

we can write ϕ ¼ ϕb þm2Δϕþ � � � and evaluate the
corrections to the action perturbatively. Trying this, one
immediately finds

ΔS ¼
Z

d4x
1

2
m2ϕbðxÞ2 ¼ ∞: ð7:1Þ

This behavior is due to the non-normalizabilty of ϕb. Thus
Γ ∼ e−S ¼ 0 confirming that even an infinitesimal m2

seems to prevent vacuum decay.
To understand this unintuitive result, let us consider the

alternative, more physical, treatment of tunneling described
in [49,50]. There, a formula for the tunneling rate was
derived inspired by the understanding of tunneling in
nonrelativistic quantum mechanics. In quantum field
theory, the exponential factor determining the decay rate
along a path parametrized by ϕðx⃗; τÞ is the integral

− lnΓϕ ¼ 4

Z
0

−∞
dτU½ϕðτÞ� ¼

Z
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U½ϕðsÞ�

p
ð7:2Þ

where the energy functional is [75,100,101]

U½ϕðτÞ� ¼
Z

d3x

�
1

2
ð∇ϕÞ2 þ VðϕÞ

�
: ð7:3Þ

In Eq. (7.2) τ is the Euclidean time and s is the proper time,
determined by ðdsdτÞ2 ¼ 2U½ϕ�. Using s gives a formula
exactly like the Wentzel-Kramers-Brillouin (WKB) expo-
nent formula

R
dx

ffiffiffiffiffiffiffiffiffiffiffiffi
2VðxÞp

in quantum mechanics, but now
with a contribution from gradient energy.
With this formulation let us now revisit the perturbative

solution. If we try to calculate Γϕ along the m ¼ 0 bounce
path ϕbðr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x⃗2 þ τ2

p
Þ, we find

U½ϕbðτÞ� ¼ −
2π2

λ

R2τ2

ðR2 þ τ2Þ5/2 −m2
4π2

λ

R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ τ2

p : ð7:4Þ

The integral over the first term gives S½ϕb� ¼ − 8π2

3λ , as for
m ¼ 0. The second term, however, shifts UðτÞ along this
path up by a finite positive amount at each τ, and the
resulting integral over τ is infinite.
One fault of using the path through the ϕb bounces in a

non-scale-invariant potential is that conservation of energy
is violated. Since bubbles are produced at rest, we can see
this through U½ϕðτ ¼ 0Þ� ≠ U½ϕðτ ¼ ∞Þ�. If the Euclidean
equations of motion are satisfied, energy is conserved and
this cannot happen.
Let us consider instead a path through field space of the

form

ϕG ¼ ϕ0 exp

�
−
τ2 þ x⃗2

R2

�
: ð7:5Þ

These Gaussian bubbles were previously introduced and
discussed in [50]. Their energy is

U½ϕGðτÞ� ¼
3
ffiffiffi
2

p
π3/2

8
Re−2

τ2

R2ϕ2
0 þ

π3/2

32
λR3e−4

τ2

R2ϕ4
0

þ
ffiffiffi
2

p
π3/2

8
m2R3e−2

τ2

R2ϕ2
0: ð7:6Þ

Setting U½ϕGðτ ¼ 0Þ� ¼ U½ϕGðτ ¼ ∞Þ� gives

ϕ0 ¼
1

R
25/4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þm2R2

−λ

r
: ð7:7Þ

With this value for ϕ0, the partial width for decaying to
Gaussian bubbles is

lnΓϕG
¼ −

Z
∞

−∞
dτU½ϕGðτÞ� ¼

π2ð ffiffiffi
2

p
− 1Þ

2λ
ð3þm2R2Þ2:

ð7:8Þ

This is finite. Moreover, it has a nonzero maximum at
R ¼ 0. We conclude that the exponent is bounded from
above. In other words,

8π2

3λ
≤ lnΓ ≤

8π2

3λ

27ð ffiffiffi
2

p
− 1Þ

16
≈ ð0.7Þ 8π

2

3λ
: ð7:9Þ

The lower bound comes from m ¼ 0 and the upper bound
comes from the Gaussian bubbles as R → 0. We conclude
that the rate is finite.

B. Constrained instantons

Now that we know the rate is finite, what is it? The
Gaussian bubbles are in fact far from producing the optimal
path through field space, as we will see. What we would
like to do is directly minimize

R
dτU½ϕðτÞ� over field

configurations with ϕð0Þ ¼ 0. Luckily, we do not have to
find the absolute minimum; if we find any path which gives
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a finite rate close enough to the m ¼ 0 case that we can
neglect it for the Standard Model, we can conclude that
ignoring m when m ≪ μ⋆ is justified.
One way to find a finite-action path through field space is

through the constrained instanton approach [57,60]. In
brief, the idea is that instead of minimizing the action
absolutely, we find the minimum along some surface. For
example, we can look along the surface where

R
d4xϕn ¼ k

for some k and some n. This constraint can be imposed
through a Lagrange multiplier by writing the action as

Sσ ¼
Z

d4x
�
1

2
ð∂μϕÞ2þ

1

2
m2ϕ2þ1

4
λϕ4þσϕn

�
−k:

ð7:10Þ

Taking n ¼ 2 or n ¼ 4 does not produce anything helpful
since the new term is just like one of the old ones. Taking
n ≥ 5 is also unhelpful, since for a normalizable solution
we need ϕ → 0 at large distance, but then the ϕn term is
subdominant to the λϕ4 term which produced the non-
normalizable mode in the first place. Thus n ¼ 3 is our only
hope. (See [59] for a thorough discussion of constraints on
the constraints.)
For n ¼ 3, the procedure for producing a normalizable

well-behaved constrained solution that reduces to ϕb at
m ¼ 0 is discussed in [59,58]. The solution and Langrange
multiplier can be expanded perturbatively in m2:

ϕ ¼ ϕb þ ϕ2 þ � � � ; σ ¼ σ2 þ � � � : ð7:11Þ

It is helpful to write ϕ2 ¼ ϕ2;a þ ϕ2;b with

ϕ2;a¼
m2Rffiffiffiffiffiffiffiffi
−2λ

p
r2

�
9R2r2−3r4þðR2−10R2r2þr4Þ lnð1þ r2

R2Þ
R2þr2

þ6R2r2
R2−r2

ðR2þr2Þ2Li2
�
−
r2

R2

��
ð7:12Þ

satisfying ϕ00
2;a þ 3

rϕ
0
2;a −m2ϕ2

b − 3λϕ2
bϕ2;a ¼ 0 and

ϕ2;b ¼ −
1

λ
σ2 ¼ const: ð7:13Þ

So that □ϕ −m2ϕ − λϕ3 − 3σϕ2 ¼ Oðm4Þ.
To determine the constant in Eq. (7.13) and the Oðm2Þ

value of the Lagrange multiplier, we note that the pertur-
bative solution is not normalizable. This non-normaliz-
ability is easy to understand: a solution perturbative in m
can never describe the asymptotic behavior for r ≫ 1

m, no
matter how small m is. Indeed, a normalizable solution
should have ϕ → 0 as r → ∞ and therefore match on to
ϕKðrÞ ¼ K0

1
mrK1ðmrÞ which solves ð□þm2Þϕ ¼ 0. At

large r, ϕKðrÞ ∼ K0

ffiffi
π
2

p
1

ðmrÞ3/2 e
−mr which is exponentially

suppressed and gets contribution from all orders in m. We

choose K0 ¼
ffiffiffiffi
8
−λ

q
m2

R so that to orderm0, ϕKðrÞmatches on

to ϕbðrÞ at large r. This fixes the value for ϕ2;b in Eq. (7.13)
to be

ϕ2;b ¼
ffiffiffiffiffiffi
2

−λ

r
Rm2

�
ln
mR
2

þ γE þ 1

�
: ð7:14Þ

This is the unique solution allowing ϕ2 at large r to match
the m2 terms of ϕKðrÞ. The Lagrange multiplier in
Eq. (7.13) is then σ ¼ −λϕ2;b þOðm4Þ so that ϕ satisfies
the (constrained) equations of motion to order m2. Higher
order terms can be systematically computed guaranteeing
exponential suppression at large r [58,59].
Given these results, we now need to check that the

decay rate along the constrained-instanton path is finite. If
we work strictly to order m2 we find the action gets
corrected by

ΔS¼m2

2

Z
d4xϕ2

bþ
Z

d4x½ð∂μϕbÞð∂μϕ2Þþλϕ3
bϕ2� ¼∞:

ð7:15Þ

This is not surprising as ϕb þ ϕ2 is not normalizble. The
key to getting a finite action is to be careful with the
boundary term. Without integrating by parts we can write

S½ϕ� ¼
Z

d4x

�
1

2
ð∂μϕÞ2 þ

1

2
m2ϕ2 þ 1

4
λϕ4

�
ð7:16Þ

¼
Z

d4x

�
1

2
∂μðϕ∂μϕÞ −

1

2
ϕð□ϕ −m2ϕ − λϕ3 − 3σϕ2Þ

−
1

4
λϕ4 −

3

2
σϕ3

�
: ð7:17Þ

The equations of motion on the constraint surface imply
□ϕ −m2ϕ − λϕ3 − 3σϕ2 ¼ 0 so we drop this term. We
also drop the total derivative term using that the exact ϕ
vanishes exponentially at infinity (although not at any fixed
order in m2). The remainder can then be evaluated
perturbatively:

S½ϕ�¼
Z

d4x
�
−
1

4
λϕ4

b

�
þ
Z

d4x
�
−λϕ3

bϕ2−
3

2
σϕ3

b

�
ð7:18Þ

¼ −
8π2

3λ

�
1 −

3

2
m2R2

�
ln
m2R2

4
þ 2γE þ 1

��
: ð7:19Þ

For m ¼ mpole
h in Eq. (6.19) and R ¼ R⋆ ∼ 1

μ⋆ in Eq. (6.20),

S½ϕ� ¼ −
8π2

3λ
½1þ 1.02 × 10−28�: ð7:20Þ
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This justifies neglecting the mass for the Standard Model
lifetime, as we have done through the rest of this paper.

C. Comments on constrained instantons

Before concluding, we add some comments on the
constrained instanton approach.
First, we made no claim that the constrained instanton

produces the exact decay rate, as there may be lower-action
configurations satisfying different constraints. For situa-
tions where m=≪ 1

R⋆ it may be important to look for other
solutions and Eq. (7.19) cannot be used in such contexts.
Second, we never try to integrate over the value for the

constraint k. Normally one sets k at the outset and solves for
the Lagrange multiplier σ as a function of k. Here we have
found σ by requiring the solution have finite action; k is
then fixed by σ. Although at order m2, k ¼ ∞, k should be
finite when the full solution is used, since in the full
solution ϕ dies off exponentially at large distance. In any
case, we do not need k to compute the tunneling rate, as we
have seen.
Third, although the constrained instanton approach is

useful to understand m > 0, it does not help resolve the
divergent integral over instanton size R for m ¼ 0. Since
the true minimum of the action is known when m ¼ 0, the
divergence must be resolved from higher-order perturbative
effects, as we explained in Sec. III B. There has been some
confusion about this point in the literature [11].
Fourth, we note that there is an apparent contradiction

that the Euler-Lagrange equations have no solution with
m2 > 0, but we have proven there is a finite, nonzero
minimum to the action. The resolution is that Euler-
Lagrange equations are derived dropping a boundary term,
but the behavior of the solutions at infinity are critical to
finding a correct minimum. As we have seen, to any finite
order in m2, the boundary terms cannot be dropped, so one
would never come upon a perturbative solution like ours
using the Euler-Lagrange equations alone. The importance
of the boundary behavior is emphasized and discussed at
length in [57–59] as a motivation for the constrained
instanton approach.
Finally, we have done the whole analysis here, following

[58,59] for the case m2 > 0. The case with m2 < 0 is also
interesting. For m2 < 0, the energy function U½ϕbðτÞ� gets
shifted down and, for mR > 1, the tunneling rate is in fact
infinite: there is no barrier to tunneling (as in quantum
mechanics with a potential like V ¼ −x2). This result is
also wrong. The argument is flawed, since U½ϕbð0Þ� ≠ 0

just like for the m2 > 0 case, so the proposed tunneling
path violates energy conservation and is not allowed.
Tunneling should speed up, for m2 < 0, but only by an
amount suppressed by factors of m2R2. By analytic
continuation we can still use Eq. (7.19); for m2 < 0 S½ϕ�
now has a small imaginary part, but this produces a tiny
effect on the final result, since Γ ∼ Imðie−S½ϕ�Þ.

VIII. CONCLUSIONS

In this paper we have produced the first complete
calculation of the lifetime of the Standard Model.
Previous treatments were incomplete in a number of ways.
First, there was a long-standing problem of how to perform
instanton calculations when scale-invariance is spontane-
ously broken. The problem is that in a classically scale
invariant theory, the integral over instanton size R is
divergent at next-to-leading order. We showed that in fact
there are contributions which seem higher order in ℏ but
which in fact dominate over the NLO contribution after the
integral over R is performed. Including all the relevant
terms, to all-loop order, we are able to integrate over
instanton size exactly giving a finite result.
The second problem we resolved is also related to

instanton size. Since fluctuations associated with changing
the size R are unsuppressed, one has to allow for large
deviations in field space. Changing to collective coordi-
nates allows the integral over all R to be done; however, it
generates an infinite Jacobian. We showed that this infinite
Jacobian is in fact compensated by an infinity in the
functional determinant previously missed. To handle the
infinity and the zero, we employ a judicious operator
rescaling inspired by a conformal mapping to the 4-sphere.
We find the spectrum of the rescaled operators exactly and
give an analytic formula for the Jacobian (now finite) as
well as the functional determinant with zero modes
removed (also finite now).
The third problem we resolved has to do with fluctua-

tions of vector bosons around the instanton background.
When a global internal symmetry is spontaneously broken
there are additional zero modes. In previous treatments the
Jacobian for going to collective coordinates for these
symmetries was found to be infinite. We show that this
infinity was an artifact of working in Rξ gauge where the
symmetry is actually explicitly broken by the gauge fixing.
Instead we work in Fermi gauges, and using the same
technique as for the dilatation zero mode, show that the
Jacobian for internal symmetries is finite.
The next new result in our paper is a complete analytic

computation of the functional determinant around the
instanton background for real and complex scalar fields,
vector bosons, and fermions. Moreover, we showed that the
final result is gauge invariant (of the parameter ξ in Fermi
gauges and between Fermi and Rξ gauges). For the scalars,
the insight which allowed for these exact results was to use
the exact spectrum known from the operator rescaling and
mapping to the 4-sphere [63–65]. For the vector bosons, we
exploited a remarkable simplification of the fluctuation
equations discovered in [39,40]. These authors found that
the equations that couple the scalar and longitudinally
polarized gauge bosons with the Goldstone bosons can be
written in terms of a set of simplified equations using
auxiliary fields. Although the treatment in [39,40] assumed
a mass term for the scalar, so that their results do not exactly

ANDREASSEN, FROST, and SCHWARTZ PHYS. REV. D 97, 056006 (2018)

056006-34



apply to the case of the Standard Model, our treatment very
closely parallels theirs.
Combining all our results together we produced a

complete prediction for the lifetime of our metastable
vacuum in the Standard Model. We find the lifetime to be

τSM ¼ 10139
þ102
−51 years: ð8:1Þ

The enormous uncertainty in this number is roughly equal
parts uncertainty on the top quark mass, uncertainty on the
value of the strong-coupling constant αs, and theory
uncertainty from threshold corrections, that is, from match-
ing between observable pole masses and MS parameters at
the electroweak scale. The uncertainty to the decay rate
from error on the Higgs boson mass is small, and,
thankfully, so is the uncertainty associated with the
unknown NNLO corrections.
Phase diagrams in the mt/mh plane and the mt/αs plane

are shown in Fig. 2. This figure indicates that the SM seems
to sit in a peculiarly narrow swath of metastability in the
phase space of top quark mass, Higgs boson mass, and
strong-coupling constant. An important fact to keep in
mind when interpreting this tuning is that the phase
diagram assumes no gravity and no physics beyond the
SM. In fact, any arbitrarily high-scale physics can desta-
bilize the SM by opening up new tunneling directions
[19,50,62,85–87]. Moreover, near the absolute stability
boundary, operators at an arbitrarily high scale can also
stabilize the SM, as can be seen from Fig. 3. For the SM,
which appears not to be on the stability boundary, the
relevant scale of new physics is around 1013 GeV.
Because of the importance of the top quark mass, the

Higgs boson mass and αs in determining stability, it is
interesting to look at their allowed ranges. We find that,
varying each parameter separately, the bounds for the SM
to lie in the metastability window are

171.18<
mpole

t

GeV
< 177.68; 129.01>

mpole
h

GeV
> 111.66;

0.1230> αsðmZÞ> 0.1077: ð8:2Þ

If we hope to rule out absolute stability to 3σ confidence,
assuming nothing else changes, we would need Δmpole

t <
250 MeV or ΔαsðmZÞ < 0.00025.
Finally, we note that the predicted lifetime of

10139 years, while enormously long, has an exponent of
roughly the same order of magnitude as the current lifetime
of the Universe, 109 years. Indeed, the long lifetime of the
SM is due to the fact that the Higgs quartic coupling has a
minimum value of λ⋆ ¼ −0.0138. If the minimum of the
coupling were smaller, say λ⋆ ¼ −0.1, then the SM lifetime
which scales like expð8π2

3λ Þ would be only 10−20 sec.
Furthermore, since the lifetime is finite and the Universe
infinite, there is likely a bubble of true vacuum already out

there, far away. It is sobering to envision this bubble, with
its wall of negative energy, barreling towards us at the speed
of light. It seems the long-term future of our Universe is not
going to be slow freezing due to cosmic acceleration but an
abrupt collision with one of these bubble walls.
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APPENDIX A: REMOVING ZERO MODES
WITHOUT RESCALING

In this appendix, we explore what goes wrong when we
try to calculate the determinant for fluctuations around the
bounce without rescaling the operators as in Sec. III. Recall
from the discussion in that section that without the operator
rescaling the Jacobian for going to collective coordinates
for scale transformations is infinite [Eq. (3.7)]. Since the
full functional determinant should be independent of the
operator rescaling, this infinity must be compensated by
something else. However previous investigations found a
finite value for det0. So something seems inconsistent.
To connect to previous work, let us perform the angular-

momentum decomposition as in Sec. IV C. This lets us
write the functional determinant asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det½□�
det0½−□þV 00½ϕb��

s
¼
h
R̃0
0ðR̃0

1Þ4
Y

s≥2½R̃s�ðsþ1Þ2
i
−1/2 ðA1Þ

where

R̃s ¼
det ½Δs − 3λϕ2

b�
det½Δs�

ðA2Þ

with Δs in Eq. (4.22). For s ¼ 0 there is one mode, the
dilatation mode, which has zero eigenvalue, so R̃0 ¼ 0.
For s ¼ 1 there are four zero modes corresponding to
translations. For s ≥ 2 all the eigenvalues are positive.
Removing the zero modes from the numerator, Ref. [11]
found R̃0

0 ≈ −1 and R̃0
1 ≈ 0.041.

First, we look at s ≥ 2. Here there are no zero modes, so
there are no issues with rescaling the operators for these
values of s. That is,

R̃s≥2 ¼
det ½3λϕ2

b� · det ½ 1
3λϕ2

b
Δs − 1�

det ½3λϕ2
b� · det ½ 1

3λϕ2
b
Δs�

¼ Rs≥2 ðA3Þ

with Rs≥2 in Eq. (4.32).
For s ¼ 0 and s ¼ 1 there are zero modes. Since zero

modes are still zero modes if the operator is rescaled, we
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know the explicit form of these modes. They are in
Eq. (4.25) with n ¼ 1 and s ¼ 0 or s ¼ 1

ϕ10 ¼ R
R2 − r2

ðR2 þ r2Þ2 ; ϕ11 ¼
R2r

2ðR2 þ r2Þ2 : ðA4Þ

It is easy to check that ðΔ0−3λϕ2
bÞϕ10¼0 and

ðΔ1−3λϕ2
bÞϕ11¼0. Because of the zero modes, we need

to compute

R̃s
0 ¼ det0 ½Δs−3λϕ2

b�
det½Δs�

¼ lim
ϵ→0

1

ϵ

det0 ½Δs−3λϕ2
bþ ϵ�

det½Δs�
: ðA5Þ

Note that the zero modes become modes with eigenvalue ϵ
of the shifted operators, so the shifted determinant will be
proportional to ϵ as desired.
For s ¼ 1, the zero modes are translations and the

Jacobian is finite [Eq. (2.15)]. Thus we expect R̃0
1 to be

finite too. To compute R̃0
1 we can first try the Gelfand-

Yaglom method as in Sec. IV D. The Gelfand-Yaglom
method requires us to find a solution to

½Δs − 3λϕ2
b þ ϵ�ϕ̃1ε ¼ 0 ðA6Þ

that scales like the free solution, ϕ̂1 ¼ r near r ¼ 0 and
r ¼ ∞. Unfortunately, this does not work. At finite ϵ, ϕ̃1ϵ is
oscillatory at large r while the free-theory solution ϕ̂1 ¼ r is
not. Thus the two cannot approach each other and the
Gelfand-Yaglom method does not seem to give a sensible
answer.
To understand the failure of the Gelfand-Yaglom method

we note that adding the ϵ term as in Eq. (A5) is equivalent
to adding a mass term 1

2
ϵϕ2 to the potential. One would

think that a small mass would be a small change in the
theory, but it actually has a dramatic effect: it removes all
bounce solutions to the equations of motion. Thus the limit
ϵ → 0 is not smooth. One can deal with small masses using
the constrained instanton approach described in Sec. VII;
however, there is a simpler way to compute R̃0

1.
Since R̃0

1 is supposed to be finite, we can rescale the
operator as for s ≥ 2:

R̃0
1 ¼ lim

ϵ→0

1

ϵ

det ½3λϕ2
b� · det ½ 1

3λϕ2
b
Δ1 − 1þ ϵ

3λϕ2
b
�

det ½3λϕ2
b� · det ½ 1

3λϕ2
b
Δs�

: ðA7Þ

Wecan nowevaluate these determinants in the basis of s ¼ 1
modes, ϕn1 given in Eq. (4.25). These functions satisfy

1

3λϕ2
b

Δ1ϕn1 ¼ λnϕn1; λn ¼
ðnþ1Þðnþ2Þ

6
ðA8Þ

as in Eq. (3.23) and are normalized as

Z
drr3½ð−3λÞϕ2

bϕn1ϕm1� ¼Nn1δnm;

Nn1¼
12ðn−1Þ!

ð2nþ3Þðnþ3Þ! : ðA9Þ

Then

det

�
1

3λϕ2
b

Δ1 − 1þ ϵ

3λϕ2
b

�
¼
Y
n≥1

Z
drr3ð3λϕ2

bÞϕn1

�
1

3λϕ2
b

Δ1 − 1þ ϵ

3λϕ2
b

�
ϕn1

ðA10Þ

¼
Y
n≥1

�
Nn1ðλn − 1Þ þ ϵR2

6nðnþ 3Þ
�
: ðA11Þ

In this derivation we have used a property of Legendre
polynomials, that

Z
drr3ϕn1ϕm1 ¼

R2

6nðnþ 3Þ δnm: ðA12Þ

As ϵ → 0 the first term in Eq. (A11) always dominants
unless λn ¼ 1. Thus the n ¼ 1 mode contributes εR2

24
to

the product and we can set ϵ ¼ 0 for the other modes. We
then find

R̃0
1 ¼ R0

1

Z
drr3ϕ2

11 ¼
R2

24
R0
1: ðA13Þ

This factor of 1
24
¼ 0.041matches the result from numerical

calculations in [11].
Now we try the same approach for the s ¼ 0 modes. In

this case, the relevant mode is ϕ10 in Eq. (A8), correspond-
ing to dilatations. Attempting the same calculation as for
s ¼ 1 we find

R̃0
0 ¼ R0

0

Z
drr3ϕ2

10 ¼ ∞ · R0
0: ðA14Þ

Thus we conclude that the ratio of determinants in Eq. (A1)
is zero, even after the zero mode is removed. This result,
while in disagreement with finite numerical extractions in
[11,19], is expected from our treatment using rescaled
operators in Sec. III.
In conclusion, we find the infinite Jacobian for dilatations

found in previous work to be compensated by an infinity of
the determinant after zero modes are removed.We therefore
find no inconsistency in the functional determinant calcu-
lated with or without rescaling the operators.
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APPENDIX B: DIVERGENT GRAPHS IN FERMI GAUGE

In Fermi gauge, the Lagrangian is given in Eq. (5.29). We treat all the mass terms as interactions. The Feynman rules are

ðB1Þ

Here, the dashed lines are background fields, sold lines are Goldstones, and wavy lines are photons. The Fourier transform
of the bounce-squared is given in Eq. (4.12). The Fourier transform of the bounce is

ϕ̃bðqÞ ¼
ffiffiffiffiffiffi
2

−λ

r
8π2R2

q
K1ðqRÞ: ðB2Þ

At second order in the interactions, there are thee divergent loops. One with just Goldstones

ðB3Þ

¼ 1

6ε
þ 5

18
þ 1

6
γE þ 1

6
ln πR2μ2 ðB4Þ

one with just photons

ðB5Þ

¼ g4

λ2

�
2

3ε
þ 7

9
þ 2

3
γE þ 2

3
ln πR2μ2

�
ðB6Þ

and one with Goldstone-photon mixing:

ðB7Þ

This graph is quadratically divergent. We can write it as the sum of scaleless integrals and a logarithmically divergent
integral by noting that the numerator is −ðq − kÞ2 ¼ ðqþ kÞ2 − 2k2 − 2q2. Then we evaluate the logarithmically divergent
integral using Eq. (4.15) and Z

d4q
ð2πÞ4 q

2ϕ̃bðqÞϕ̃bð−qÞ ¼ −
32π2

3λ
; ðB8Þ

Z
d4q
ð2πÞ4 q

2ϕ̃bðqÞϕ̃bð−qÞ ln
q2

μ2
¼ 16π2

9λ

�
1þ 12γE þ 12 ln

Rμ
2

�
; ðB9Þ

to find
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−SAG ¼ −
g2

λ

�
2

3ε
þ 13

9
þ 2

3
γE þ 2

3
ln πR2μ2

�
: ðB10Þ

In Fermi gauge there are additional divergent integrals. At cubic order in couplings, there are two divergent graphs:

ðB11Þ

This is a difficult graph to evaluate completely. However, the UV divergent part can be extracted relatively simply by taking
the leading behavior at large k. We get

−SAGG ¼ −
g2

λ

1

3ε
þ finite: ðB12Þ

And the other 3-point graph gives

ðB13Þ

¼ −
g4

λ2
1

3ε
þ finite: ðB14Þ

Finally, there is a divergent box diagram

ðB15Þ
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The sum of all the divergent graphs in Fermi gauges

−SGG − SAA − SAGG − SAAG − SAGAG ¼ 1

ε

�
1

6
−
g2

λ
þ g4

2λ2

�
þ finite: ðB16Þ

These are identical to the UV divergences in Rξ gauges, in Eq. (5.78).

APPENDIX C: NLO EFFECTIVE POTENTIAL

In this appendix we list the effective potential at NLO according to the consistent power counting developed in [17,38].
The LO effective potential is in Eq. (6.15). In the consistent power counting of [17,38], there are contributions from the one-
loop effective potential to the NLO effective potential. However, in Landau gauge these vanish. The full two-loop effective
potential was first computed in [102], and simplified in [14]. With the consistent power counting, in Landau gauge, we only
need the terms of order λ0 in the two-loop potential; these can be found in [15]. In the consistent power counting, one cannot
resum the Higgs field strength with the factor Γ as in [15]; instead, one must include the single and double logarithmic terms
only. The complete NLO effective potential in Landau gauge is therefore

VNLOðhÞ ¼ h4

4

1

ð4πÞ4
�
8g2sy4t ð3r2t − 8rt þ 9Þ þ 1

2
y6t ð−6rtrW − 3r2t þ 48rt − 6rtW − 69 − π2Þ

þ 3y2t g4

16
ð8rW þ 4rZ − 3r2t − 6rtrZ − 12rt þ 12rtW þ 15þ 2π2Þ

þ y2t g04

48
ð27r2t − 54rtrZ − 68rt − 28rZ þ 189Þ þ y2t g2g02

8
ð9r2t − 18rtrZ þ 4rt þ 44rZ − 57Þ

þ g6

192
ð36rtrZ þ 54r2t − 414rWrZ þ 69r2W þ 1264rW þ 156r2Z þ 632rZ − 144rtW − 2067þ 90π2Þ

þ g4g02

192
ð12rtrZ − 6r2t − 6rWð53rZ þ 50Þ þ 213r2W þ 4rZð57rZ − 91Þ þ 817þ 46π2Þ

þ g2g04

576
ð132rtrZ − 66r2t þ 306rWrZ − 153r2W − 36rW þ 924r2Z − 4080rZ þ 4359þ 218π2Þ

þ g06

576
ð6rZð34rt þ 3rW − 470Þ − 102r2t − 9r2W þ 708r2Z þ 2883þ 206π2Þ

þ y4t
6
ð4g02ð3r2t − 8rt þ 9Þ − 9g2ðrt − rW þ 1ÞÞ þ 3

4
ðg6 − 3g4y2t þ 4y6t ÞLi2

g2

2y2t

þ y2t
48

ξ

�
g2 þ g02

2y2t

��
9g4 − 6g2g02 þ 17g04 þ 2y2t

�
7g02 − 73g2 þ 64g4

g02 þ g2

��
þ g2

64
ξ

�
g2 þ g02

g2

��
18g2g02 þ g04 − 51g4 −

48g6

g02 þ g2

�
þ 1

48
Vð1Þ
logs ln

h
μ
þ Vð2Þ

logsln
2
h
μ

�
ðC1Þ

with

Vð1Þ
logs ¼ −12g4 ln gð−9g02 þ 11g2 þ 36y2t Þ þ 2g06ð−235 − 91 ln 8Þ þ 192ð4g02 þ 48g2s − 9y2t Þy4t ln yt

þ 3ðg02 þ g2Þ½91g04 − 36y2t ðg02 þ g2Þ þ 36g02g2 − 11g4� lnðg02 þ g2Þ − 2g04½g2ð343þ 127 ln 8Þ þ 12y2t ð8 − 3 ln 8Þ�
− 2g02½g4ð166þ 43 ln 8Þ − 72g2y2t ð4þ ln 8Þ þ 64y4t ð4þ ln 8Þ�
þ 2g6ð474þ 33 ln 8Þ þ 216g4y2t ln 8þ 96y4t ½3y2t ð8þ ln 8Þ − 16g2sð4þ ln 8Þ� ðC2Þ

and

Vð2Þ
logs ¼ 8y4t ðg02 þ 12g2sÞ −

9

4
y2t ðg04 þ 2g02g2 þ 3g4Þ þ 1

16
ð91g06 þ 127g04g2 þ 43g02g4 − 33g6Þ − 18y6t ðC3Þ
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and where

rW ≡ ln
g2

4
; rZ ≡ ln

g2 þ g02

4
; rt ≡ ln

y2t
2
; rtW ≡ ðrt − rWÞ ln

�
y2t
2
−
g2

2

�
ðC4Þ

and

ξðzÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4z

p �
2ln2

z −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4z

p

2z
− ln2z − 4Li2

�
z −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 4z

p

2z

�
þ π2

3

�
: ðC5Þ
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