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I. INTRODUCTION

For several reasons, the Nambu-Goto string is an
interesting model: It exhibits diffeomorphism invariance,
making it a toy model for (quantum) gravity. It also
provided motivation for the Polyakov string, which led
to string theory as a candidate for a fundamental theory.
Furthermore, it constitutes a phenomenological model for
QCD vortex lines connecting quarks, i.e., for the descrip-
tion of hadrons. In this context, the generalization to masses
at the end points [1] is particularly interesting [2].
It is well known [3,4] that in the covariant quantization of

the open massless Nambu-Goto string, the intercept a is a
free parameter, only constrained by the fact that the theory
is consistent only for a ≤ 1 and D ≤ 25 or a ¼ 1 and
D ¼ 26. Furthermore, the ground state energies El1;2 for a
given angular momentum l1;2 > 0, say in the 1–2 plane, lie
on the Regge trajectory,

E2
l1;2

¼ 2πγðl1;2 − aÞ; ð1Þ

with γ the string tension.
In light cone gauge quantization, the allowed range for a

and D shrinks to the critical case a ¼ 1 and D ¼ 26. In the
Polyakov string [5], a new scalar field is present, which
decouples only for D ¼ 26. In noncritical dimension
D < 26, it is governed by the Liouville action. a ¼ 1 is
then a special but not the only possible value, cf. [6–8], for
example. However, for the application as a phenomeno-
logical model in QCD, it is certainly desirable to have a
unique prediction for a for D < 26, in particular D ¼ 4, at
least to leading order.
Apart from Liouville theory, there are two different

frameworks for the treatment of the bosonic string at

noncritical dimension. The approach taken here is based
on the finding that, as an effective field theory, in the sense
of perturbation theory around arbitrary nondegenerate
classical solutions, the Nambu-Goto string is anomaly-free
in any target space dimension [9]. Perturbation theory is
there based on splitting the embedding X: Σ → RD into a
classical solution X̄ and a perturbation φ, i.e.,

X ¼ X̄ þ γ−
1
2φ; ð2Þ

and to quantize the perturbation φ.
The other approach to effective string theory in non-

critical dimensions, related to Liouville theory, is defined
by the Polchinski-Strominger (PS) action [10]. It is derived
by fixing the parametrization to conformal gauge and
introducing singular supplementary terms in order to
preserve the conformal symmetry at the quantum level.
Concretely, it is the full embedding X: Σ → RD, cf. (2),
which is gauge fixed. In particular, this implies constraints
on the parametrization of the classical embedding X̄.
Conceptually, this is quite different from our approach to

effective string theory [9]: There, gauge conditions are only
imposed on the fluctuations φ, the parametrization of the
classical solution X̄ being arbitrary. This corresponds to the
standard treatment of Yang-Mills theories in background
fields or of perturbative quantum gravity.1

For the PS action, the intercept

a ¼ 1 ð3Þ

was obtained in [14] for rotating open strings, independ-
ently of the dimension D. The corrections due to the
supplementary PS term were evaluated in a classical
rotating solution. Boundary divergences appearing in this
calculation were removed by a boundary counterterm. To
this, the Casimir contribution aCas ¼ D−2

24
was added. The

latter is obtained in the ground state (not on a rotating
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background). Therefore, we think that the result is not
obviously interpretable as a semiclassical value, in the
sense that it is not obtained by perturbation theory around
classical solutions. Thus, it seems desirable to check the
result by a direct semiclassical calculation, and we can
indeed confirm (3). Apart from that, our approach has
further benefits:

(i) We obtain information about the spectrum of physi-
cal excitations.

(ii) The issue of renormalization ambiguities and boun-
dary counterterms may be more transparent in our
approach.

(iii) Our approach allows to also treat open strings with
masses at the end points. In particular, one may
confirm that in the massless limit, one obtains the
result for the massless string.2

(iv) It provides an analytically tractable toy model for
locally covariant renormalization on curved space-
times [15].

Let us briefly describe our approach. Our starting point is
classical rotating string solutions for the Nambu-Goto
string. We then quantize the perturbations to these solutions
at second order in the perturbation, obtaining a free
quantum field living on the world sheet. This is a curved
manifold, and the equations of motion for the fluctuations
only depend on the world-sheet geometric data, i.e., the
induced metric and the second fundamental form. Hence, it
seems natural, in line with the framework of [9], to use
methods from quantum field theory on curved space-time
[15,16] for the renormalization of the free world-sheet
Hamiltonian H0. The crucial requirements are that the
renormalization is performed in a local and covariant way,
and that the renormalization conditions are fixed only once.
The latter means that they are “the same” on all classical
solutions for the same bare parameters (in the present case,
the only bare parameters are the string tension and possibly
the masses at the ends). We find that there are only two
renormalization ambiguities in H0, amounting to geodesic
curvature counterterms on the two boundaries. For identical
masses at the boundaries, this reduces to a single ambiguity,
which amounts to an Einstein-Hilbert counterterm.
Furthermore, the energy density is locally finite but
diverges in a nonintegrable fashion at the boundaries. In
line with the usual treatment of such divergences [17], we
regularize them by introducing geodesic curvature counter-
terms at the boundaries. The correspondence between the
world-sheet Hamiltonian and the target space energy then
gives corrections to the classical Regge trajectories.
Let us analyze this in a bit more detail. To simplify the

discussion, we here restrict to the massless string. The
modifications due to masses at the end points are discussed

in Sec. III. The classical target space energy and angular
momentum for the string rotating in the 1–2 plane are

Ē ¼ γπR; L̄1;2 ¼
1

2
γπR2; ð4Þ

with 2R the string length in target space. In the para-
metrization that we are using, the world-sheet time τ is
dimensionless, and so should be the world-sheet
Hamiltonian H, which generates translations in τ. Its free
part H0 does not contain any further parameters, the string
tension γ appearing in inverse powers in the interaction
terms. By dimensional analysis, we must thus have

H ¼ H0 þOðR−1γ−
1
2Þ;

with H0 independent of R and γ.3 In our parametrization,
the relation between the world-sheet Hamiltonian H, the
quantum correction Eq to the target space energy E, and the
quantum correction Lq

1;2 to the angular momentum L1;2 is

Eq ¼ 1

R
ðH þ Lq

1;2Þ; ð5Þ

leading to

E2 ¼ ðĒþ EqÞ2
¼ γ2π2R2 þ 2γπðH þ Lq

1;2Þ þOðR−2Þ
¼ 2γπðL1;2 þH0Þ þOðL̄−1

2

1;2Þ:

By comparison with (1), one can directly read off the
intercept a from the expectation value of H0, i.e.,

a ¼ −hH0i: ð6Þ

As already stated, our method yields the intercept (3),
independently of the dimension, consistent with the result
obtained using the PS action [14].
Let us comment on the relation to other semiclassical

calculations of the intercept. In [18], the nonrelativistic
limit of the rotating string with masses at the ends was
considered. The calculation of the energy proceeds via the
series of eigenfrequencies. Now there are many different
ways to regularize such a series, so without any physical
input, one can get an arbitrary dependence of the energy
on the angular momentum. This is exemplified by consid-
ering two, mathematically well-motivated, schemes, that
lead to qualitatively different results. This constitutes a
good example for the need for a physically motivated

2This is not obvious, since, as noted below, the boundary
conditions for the massive string do not converge to the open
string boundary conditions in the massless limit.

3In principle, also a term logΛR, with Λ a renormalization
scale, might be induced by renormalization. This would imply
that the intercept is ambiguous. However, we find that such a term
is not present.
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renormalization scheme in order to obtain unambiguous
results. We think that our local renormalization scheme
fulfills this criterion.
In [19], building on results in [20], the full relativistic

problem was considered. This work is closest in spirit to
our calculation, so we discuss the differences in some
detail. The quantization of the fluctuations around the
rotating string solution with masses at the ends there led to
the intercept

a ¼ D − 2

24
; ð7Þ

which would be consistent with the above-mentioned
results for D ¼ 26. However, some comments are in order.
First, for the fluctuations, Dirichlet boundary conditions are
imposed. These are not the ones that one obtains with
masses at the ends [21]. Second, the renormalization, in
particular of the logarithmic divergences, is not manifestly
local on the world sheet.4 Third, for the corrections to the
energy as a function of the classical angular momentum L̄,

ā ¼ 1

2
þD − 2

24
ð8Þ

is obtained. The result (7) is then gotten upon the
replacement

L̄ ¼ lþ 1

2
: ð9Þ

While this so-called Langer modification is well known in
semiclassical calculations, it applies to quantum mechani-
cal problems in three spatial dimensions if no fluctuations
perpendicular to the plane of rotation are allowed. All these
criteria are not fulfilled in the setting of [19,20], so the
substitution (9) does not seem to be justified.5 Finally, let us
remark that the additional term 1

2
in (8) is due to the fact that

a mode with frequency equal to the rotation frequency of
the classical solution is absent from the spectrum.
In [22], the fluctuations around solutions to the massless

Nambu-Goto string were quantized. The calculation of the
intercept then proceeded by ζ function regularization of the
series of eigenmodes,6 leading to (8). As before, the reason
is the absence of a certain mode. A similar calculation is
also performed for the Polyakov action, leading to the
intercept (7).

Hence, both in [19,22], a certain mode, that one might
naively expect to be present, is absent. In our terminology,
introduced below, this is the planar n ¼ 1 mode, and it is
also absent in our approach to the massless string.7

However, for the massive string, the mode is present and
can be interpreted as a Nambu-Goldstone mode for the
broken translation invariance in the plane of rotation [21].
We will show that there is a corresponding linearly growing
mode and that the two modes form a canonical pair, i.e.,
there is indeed no ground state energy corresponding to this
mode. Furthermore, we point out that this mode is also
absent, more precisely represented by a null state, in the
covariantly quantized open string for the intercept (3),
cf. Sec. VIII.
The article is structured as follows: In the next section,

we discuss, as a motivating example for our semiclassical
calculation, the hydrogen atom. The aim is to introduce
some of the terminology used later on, such as the
distinction of the world-sheet Hamiltonian and the target
space energy. Furthermore, it shows that some, at first sight
disturbing, features we will encounter in the discussion of
the Nambu-Goto string are in fact generic for a semi-
classical analysis. In Sec. III, we discuss the classical
rotating string solutions for the case of masses at the end
points. In Sec. IV, the fluctuations of classical rotating
string solutions and their canonical quantization are dis-
cussed. In Sec. V, the relation between the world-sheet
Hamiltonian and the target space energy is discussed. In
Sec. VI the locally covariant renormalization of the world-
sheet Hamiltonian is explained and performed in the
massless case, yielding the intercept (3). In Sec. VII,
the massive string is treated. Section VIII is devoted to
the comparison of the excitation spectra of the semiclassical
string and that of the covariantly quantized string.
Appendices contain some calculations that were omitted
in the main part.

II. A MOTIVATING EXAMPLE:
THE HYDROGEN ATOM

As a motivating example for our semiclassical approach,
we consider the hydrogen atom in a semiclassical approxi-
mation. We do not do this in the most straightforward way,
but rather in a fashion that is very close to our treatment of
the Nambu-Goto string. In particular, we introduce a
parametrization time τ and consider trajectories tðτÞ,
x⃗ðτÞ in the target space-time R ×R3. The Lagrangian
for these is given by

L ¼ 1

2

j_x⃗j2
_t

þ 1

jx⃗j _t;

4One mistake in the calculation was already pointed out in
[14]. But there is a further mistake in the treatment of the
logarithmic divergences, cf. footnote below.

5In Sec. II, we will see that if, in the quantum mechanical
context, fluctuations perpendicular to the plane of rotation are
allowed, then the correct result is obtained without the Langer
modification.

6The problem with such calculations was already discussed
above.

7Interestingly, there is also an absent n ¼ 1 mode in Liouville
theory, cf. the discussion below (1), in the case a ¼ 1 [7].
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where the dot denotes derivatives with respect to τ. The
energy and angular momentum in the 1–2 plane is given by

E ¼ −
∂L
∂_t ¼ 1

2

j_x⃗j2
_t2

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

p ;

L ¼ ∂L
∂ _ϕ ¼ ρ2

_ϕ
_t
;

where we switched to cylindrical coordinates ðρ;ϕ; zÞ.
There are circular orbits extremizing the above action.

The aim is to quantize the perturbations around these. We
parametrize them as

ρðτÞ ¼ Rð1þ γ−
1
2rðτÞÞ;

ϕðτÞ ¼ τ þ γ−
1
2φðτÞ;

zðτÞ ¼ Rγ−
1
2ξðτÞ;

tðτÞ ¼ R
3
2ðτ þ γ−

1
2ϑðτÞÞ

with

γ ¼ R
1
2:

Expanding the Lagrangian up to second order in the
perturbations ðr;φ; ξ; ϑÞ, we obtain an irrelevant constant,
a first order term which is a total derivative, and the second
order term

L0 ¼ 1

2
ð_r2þð _φ− _ϑÞ2þ _ξ2− ξ2þ 3r2þ 4rð _φ− _ϑÞÞ; ð10Þ

henceforth also called the free part. We see that the
combination φþ ϑ does not appear in the Lagrangian,
so we may consistently set it to zero, i.e., perform the gauge
fixing ϑ ¼ −φ, and redefine

ϕðτÞ ¼ τ þ 1

2
γ−

1
2φðτÞ;

tðτÞ ¼ R
3
2

�
τ −

1

2
γ−

1
2φðτÞ

�
; ð11Þ

yielding the free Lagrangian

L0 ¼ 1

2
ð_r2 þ _φ2 þ _ξ2 − ξ2 þ 3r2 þ 4r _φÞ: ð12Þ

The free Hamiltonian corresponding to this action is

H0 ¼ 1

2
ð_r2 þ _φ2 þ _ξ2 þ ξ2 − 3r2Þ: ð13Þ

Each supplementary order in the perturbations ðr;φ; ξÞ is
suppressed by a factor of γ−

1
2, which we use as the formal

expansion parameter in our perturbative treatment.

For the expansion of the energy and the angular
momentum in the perturbations ðr;φ; ξÞ, we obtain

E ¼ 1

R

h
−
1

2
þ γ−

1
2ð2rþ _φÞ

þ γ−1
1

2
ð_r2 þ 2 _φ2 þ _ξ2 þ 4r _φ − r2 þ ξ2Þ

i
þOðR−7

4Þ; ð14Þ

L ¼ γ
h
1þ γ−

1
2ð2rþ _φÞ þ γ−1

1

2
ð _φ2 þ 4r _φþ 2rÞ

i
þOðR−1

4Þ: ð15Þ

We separate E and L into the classical parts Ē and L̄, which
are independent of the perturbations ðr;φ; ξÞ, and the
remainder Eq and Lq, i.e.,

E ¼ Ēþ Eq; L ¼ L̄þ Lq:

Obviously, we have

Ē ¼ −
1

2

1

L̄2
; ð16Þ

the classical relation between energy and angular momenta
for circular orbits.
In the theory where the perturbations are quantized, Eq

and Lq should generate target space-time translations and
rotations, while the Hamiltonian H should generate para-
metrization time translations. From the relation (11), it
follows that, up to a scale, a target time translation
corresponds to a parametrization time translation.
However, the classical solution also rotates, so the correct
relation between the energy correction Eq and the
Hamiltonian H is

R
3
2Eq ¼ H þ Lq: ð17Þ

This is clearly the analog of (5). That this relation is correct
up to second order in the perturbation ðr;φ; ξÞ can easily be
checked from (13)–(15). Furthermore, the parametrization
time translation τ ↦ τ þ 2π corresponds to the target
space-time translation t ↦ tþ 2πR

3
2. Comparing with

(17), we find that the spectrum of Lq should be the integers,
as expected for an angular momentum operator.
Let us expand Eq ¼ Eq

1 þ Eq
2 þ � � � in powers of γ−

1
2 and

likewise for Lq. Assume that we may choose an eigenstate
of Eq

1 (and hence also Lq
1) of eigenvalue 0. This will be

justified below. In such a state, we have
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ð−EÞ−1
2 ¼ ð−ĒÞ−1

2 þ 1

2
ð−ĒÞ−3

2Eq
2 þOðR−1

4Þ
¼ 2

1
2ðL̄þ R

3
2Eq

2Þ þOðR−1
4Þ

¼ 2
1
2ðLþH0Þ þOðR−1

4Þ: ð18Þ

It follows that the semiclassical correction to the classical
relation (16) can be computed by finding the ground state
energy in the free Hamiltonian H0.
Let us thus quantize the free theory defined by the

Lagrangian (12). Setting f ¼ ðr;φ; ξÞ, the free equations of
motion can be written as

f̈ þ A _f þ Bf ¼ 0; ð19Þ

with

A ¼

0
B@

0 −2 0

2 0 0

0 0 0

1
CA; B ¼

0
B@

−3 0 0

0 0 0

0 0 1

1
CA:

Because of the term with a single time derivative in (12),
canonical quantization has to be performed with some care.
The symplectic form can be written as

σððf; _fÞ; ðf̃; _̃fÞÞ ¼
�
f _f

��
A 13
−13 03

�� f̃
_̃f

�
:

Looking for mode solutions of the form

fiðtÞ ¼ fie−iωit;

we find

ω1 ¼ 0 f1 ¼ ð0; 1; 0Þ;
ω2 ¼ 1 f2 ¼ 2−

1
2ð1;−2i; 0Þ;

ω3 ¼ 1 f3 ¼ 2−
1
2ð0; 0; 1Þ:

Note that we already symplectically normalized the modes
f2, f3, according to

σðf̄i; fjÞ ¼ −iδij:

This is of course not possible for the zero mode f1. It is
accompanied by a linearly growing mode, so that

fθ ¼
ffiffiffi
3

p
ð0; 1; 0Þ; fλ ¼

ffiffiffi
3

p �
2

3
;−t; 0

�
ð20Þ

form a symplectic pair, i.e.,

σðfθ; fλÞ ¼ 1: ð21Þ

We now write the general solution of the equation of
motion (19) as a linear combination of these modes, i.e.,

f ¼ ½a2f2 þ a3f3 þ H:c:� þ θfθ þ λfλ:

For the expansion of Eq and Lq in the perturbation we
obtain

Eq ¼ −3−1
2R−1γ−

1
2λþOðR−3

2Þ;
Lq ¼ −3−1

2R
1
2γ−

1
2λþOðR0Þ:

We thus see that we should interpret λ as the leading
contribution to (a multiple of) the angular momentum
operator Lq. Recalling that Lq should have the integers as
the spectrum,we conclude that λ should be quantized not as a
momentum operator, as suggested by (21), but as an angular
momentumoperator, i.e., as amultiple of−i∂ϕ onL2ðS1Þ. In
particular, λ̂ should have an eigenvalue 0. Restricting to the
corresponding eigenstate amounts to fixing the angular
momentum to its classical value up to corrections ofOðR0Þ.
In terms of the coefficients ai, θ, λ, the free Hamiltonian

reads

H0 ¼ a2ā2 þ a3ā3 −
1

2
λ2: ð22Þ

The sign of the last term on the right-hand side (rhs) is due
to the unusual sign of the linearly growing term in (20).
Being in the λ̂ eigenstate of eigenvalue 0, we may ignore
this term. The first two terms on the rhs constitute a two-
dimensional harmonic oscillator with frequency ω ¼ 1.
Hence, we find that the kth excited state is kþ 1 times
degenerate with eigenvalue kþ 1. By (18), we thus find

E ¼ −
1

2ðmþ kþ 1Þ2 þOðm−5
2Þ

for the energy of the kth excited state with magnetic
quantum number m > 0, i.e., the correct result. In particu-
lar, we see that the Langer modification (9) yields the
wrong result if perturbations perpendicular to the plane of
rotation are allowed.

III. THE CLASSICAL ROTATING STRING

The action for the Nambu-Goto string with masses at the
ends [1] is given by

S ¼ −γ
Z
Σ

ffiffiffiffiffi
jgj

p
−
X
c∈�

mc

Z
∂cΣ

ffiffiffiffiffiffi
jhj

p
; ð23Þ

where Σ is the world sheet, ∂�Σ its two boundary
components, γ is the string tension, m� the masses at

SEMICLASSICAL ENERGY OF OPEN NAMBU-GOTO STRINGS PHYS. REV. D 97, 066028 (2018)

066028-5



the two boundaries. Furthermore, g is the induced metric in
the bulk and h the induced metric on the boundary. We
work in signature ð−;þÞ.
Following [21], it is convenient to parametrize the

rotating string solution as

X̄ðτ; σÞ ¼ Rðτ; cos τ sin σ; sin τ sin σ; 0Þ; ð24Þ

where σ ∈ ½−S−; Sþ�, S� < π=2. For simplicity, we here
assumed that the target space-time is four dimensional.
Adding further dimensions (or deleting one) is straightfor-
ward. Equation (24) is a solution to the above action,
provided that

γR
m�

¼ tan S�
cos S�

: ð25Þ

The induced metric on the world sheet and on the boundary,
in the coordinates introduced above, is

gμν ¼ R2cos2σημν; h ¼ −R2cos2σ: ð26Þ

The bulk metric has scalar curvature

R ¼ 2

R2 cos4 σ

and the boundary component c the geodesic curvature

κc ¼ −
tan Sc
R cos Sc

: ð27Þ

The (angular) momenta corresponding to the action (23)
are given by

Pi ¼
Z

δS
δ∂0Xi

dσ

¼ −γ
Z

Sþ

−S−

ffiffiffi
g

p
g0ν∂νXidσ þ

X
c

mcjhj−1
2∂0Xijc; ð28Þ

Lij ¼
Z

δS
δ∂0Xj Xidσ − i ↔ j

¼ γ

Z
Sþ

−S−

ffiffiffi
g

p
g0νXj∂νXidσ

−
X
c

mcjhj−1
2Xj∂0Xijc − i ↔ j: ð29Þ

Here ·jc denotes the evaluation at σ ¼ cSc. The target space
energy is given by E ¼ P0.
For the energy Ē and the angular momentum L̄ ¼ L̄1;2 of

the solution (24), one finds

Ē ¼
X
c∈�

�
γRSc þ

mc

cos Sc

�
¼ γR

X
c∈�

�
Sc þ

1

tan Sc

�
; ð30Þ

L̄ ¼
X
c∈�

�
γR2

2

�
Sc −

sin 2Sc
2

�
þmcR

sin2Sc
cos Sc

�

¼ γR2

2

X
c∈�

�
Sc −

sin 2Sc
2

þ sin2Sc
tan Sc

�
: ð31Þ

In the massless limit (m� → 0 with R, γ fixed) this reduces
to (4). In particular, one finds the famous Regge trajectory

Ē2 ¼ 2πγL̄:

The Regge intercept a is defined as the shift of the
trajectory,

E2 ¼ 2πγðL − aÞ; ð32Þ

possibly up to correction of OðL−1Þ (which are not present
in the covariant quantization scheme).
To discuss the massive case, let us denote the two

components of the energy and the angular momentum in
(30) and (31) by Ē� and L̄�. For large R, we have

Ēc ¼
πγ

2
Rþ m

3
2
c

3γ
1
2

R−1
2 þ m

5
2
c

20γ
3
2

R−3
2 þOðR−5

2Þ;

L̄c ¼
πγ

4
R2 −

m
3
2
c

3γ
1
2

R
1
2 þ 3m

5
2
c

20γ
3
2

R−1
2 þOðR−3

2Þ: ð33Þ

We thus obtain the modified Regge trajectory,

Ē2 ¼ 2πγL̄þ 2
1
44π

3
4

3
γ
1
4ðm3

2þ þm
3
2−ÞL̄1

4

−
2

3
4π

5
4

10
γ−

1
4ðm5

2þ þm
5
2−ÞL̄−1

4 þOðR−1Þ: ð34Þ

This gives the next-to-next-to-leading order correction to
the Regge trajectory for nonvanishing quark masses.
Analogously to (32), we define the Regge intercept a as
the OðL0Þ shift of this relation, i.e.,

E2 ¼ 2πγðL − aÞ þ CL
1
4 þOðL−1

4Þ; ð35Þ

with some constant C.
For later convenience it is helpful to note that the

inclusion of an Einstein-Hilbert term

SEH ¼ −
α

2

Z
Σ
R

ffiffiffiffiffi
jgj

p
ð36Þ

into the action (23), which by the Gauß-Bonnet theorem is
equivalent to the addition of geodesic curvature boundary
terms, modifies the subleading term in (34), i.e., [23]
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Ē2 ¼ 2πγL̄−
4π

3
4

2
1
43
γ
1
4

×

�X
c∈�

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

cþ 4αγ
q

− 2mc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

cþ 4αγ
qr �

L̄
1
4

þOðL−1
4Þ: ð37Þ

It is remarkable that the leading order effects of an Einstein-
Hilbert (or geodesic curvature) term and masses at the end
points occur at the same order. In particular, the coefficient
of the subleading term has no definite sign. Furthermore,
even for coinciding masses, mþ ¼ m− ¼ m, the coefficient
of the OðL1

4Þ term does not determine the coefficient of the
OðL−1

4Þ term, unless either α or m are known. But, as we
will argue below, α is subject to renormalization
ambiguities.

IV. FLUCTUATIONS OF THE
ROTATING STRING

Our goal is now to perform a (canonical) quantization of
the fluctuations φ around the classical background X̄,
cf. (24), i.e., we consider X ¼ X̄ þ γ−

1
2φ. At second order

in φ, i.e., at Oðγ0Þ, the fluctuations parallel to the world-
sheet drop out of the bulk part of the action [9], and
analogously, the fluctuations parallel to the boundary drop
out of the boundary action. This is analogous to φþ ϑ
dropping out of the free Lagrangian (10) in our semi-
classical treatment of the hydrogen atom. Hence, it is
natural to parametrize the fluctuations as

φa ¼ fs

0
BBB@
0

0

0

1

1
CCCAþfp

0
BBB@

tanσ

−sinτ=cosσ

cosτ=cosσ

0

1
CCCAþfr

0
BBB@

0

cosτ

sinτ

0

1
CCCA: ð38Þ

Here the scalar component fs describes the fluctuations in
the direction perpendicular to the plane of rotation, and the
planar component fp describes the fluctuations in the
plane of rotation (at least approximately for small σ). These
components are orthonormal to each other and the bulk
world sheet. The radial component fr is orthonormal to the
others and the boundary of the world sheet. This compo-
nent is only relevant at the boundary, as is obvious from the
action [21]

S0 ¼
1

2

Z
Σ

�
_fp

2−f0p2−
2

cos2σ
f2pþ _fs

2−f0s2
�
dσdτ

þ 1

2

X
c∈�

1

tanSc

Z
∂cΣ

�
_fp

2þ _fr
2þ _fs

2þ 1

cos2Sc
f2p

þð1þ 2tan2ScÞf2r þ
2

cosSc
ð _fpfr−fp _frÞ

�
dτ: ð39Þ

Of course, going to higher dimensional target space-time
simply amounts to multiplying the number of scalar fields.
Furthermore, it should be noted that the string world sheet
is actually curved, cf. (26). This does not matter for the
canonical quantization procedure described in this section,
but will be important in the discussion of renormalization in
the following one.
From the action (39), one obtains the bulk equations of

motion (where derivatives with respect to τ are denoted by
dots and those with respect to σ by primes):

− f̈s þ f00s ¼ 0; ð40Þ

−f̈p þ f00p −
2

cos2σ
fp ¼ 0; ð41Þ

supplemented by the boundary conditions

−f̈sð�S�Þ ¼ � tan S�f0sð�S�Þ; ð42Þ

− f̈pð�S�Þ þ
1

cos2 S�
fpð�S�Þ −

2

cos S�
_frð�S�Þ

¼ � tan S�f0pð�S�Þ; ð43Þ

−f̈rð�S�Þþð1þ2tan2S�Þfrð�S�Þþ
2

cosS�
_fpð�S�Þ¼0:

ð44Þ

In fact these boundary conditions can also be interpreted as
equations of motion on the boundary, with boundary values
of normal derivatives of the bulk fields as sources (on the
rhs of the equations). This point of view was taken in [24],
where it was shown that the scalar sector, i.e., (40) and
(42), has a well-posed initial value formulation and causal
propagation. It is obvious that the scalar fluctuations
decouple, whereas the planar and radial one are coupled.
We thus introduce the notation

fq ¼ ðfp; frÞ

for the perturbations in the planar sector.
In the massless limit, the boundary conditions (42) for

the scalar polarization turn into Neumann boundary con-
ditions, as for the massless string. However, the planar
boundary conditions do not converge to the boundary
conditions of the massless string, cf. Sec. VI.
We will canonically quantize this system. A basic

ingredient in this is the symplectic form, which is non-
standard due to the presence of single time derivative terms
in the action (39):
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σððf1; _f1Þ; ðf2; _f2ÞÞ ¼
Z

Sþ

−S−
ðf1s _f2s − _f1sf2s þ f1p _f

2
p − _f1pf2pÞ

þ
X
c∈�

1

tan Sc

�
f1s _f

2
s − _f1sf2s þ f1p _f

2
p

− _f1pf2p þ f1r _f
2
r − _f1rf2r

−
2

cos Sc
ðf1rf2p − f1pf2rÞ

�
: ð45Þ

Canonical quantization in such a situation is systematically
developed in the Appendix to [25]. All our results, in
particular on the behavior of symplectically non-
normalizable modes, is consistent with the general results
derived there.
The basis of the canonical quantization of the system is

mode solutions, i.e., solutions of the form

fs;nðτ; σÞ ¼ fs;nðσÞe−iωs
nτ;

fq;nðτ; σÞ ¼ fq;nðσÞe−iω
q
nτ:

The corresponding modes for the bulk equations of motions
are

fs;n ¼ A cosωs
nσ þ B sinωs

nσ; ð46Þ

fp;n ¼ Aðωq
n cosω

q
nσ þ tan σ sinωq

nσÞ
þ Bðωq

n sinω
q
nσ − tan σ cosωq

nσÞ: ð47Þ

Setting B (A) to zero yields (anti)symmetric modes, which
are realized for coinciding massesmþ ¼ m−, by symmetry.
One easily checks that both scalar and planar modes

always have the lowest non-negative eigenvalues ω0 ¼ 0,
ω1 ¼ 1, where

fs;0 ¼ 1; fq;0 ¼ ðtan σ; 0Þ;

fs;1 ¼ sin σ; fq;1 ¼
�

1

cos σ
; i

�
: ð48Þ

These have a natural geometric interpretation [21]: The
scalar zero mode corresponds to a translation in the
direction orthogonal to the plane of rotation and the planar
zero mode to a rotation in that plane. The scalar ω ¼ 1
mode corresponds to rotations in a plane spanned by e⃗3
and a vector in the plane of rotation, and the planar ω ¼ 1
mode to translations in the plane of rotation.8 These modes
can thus be interpreted as (pseudo-)Goldstone modes for
these broken symmetries.
Note that in the planar sector, for coinciding masses, the

modes with odd (even) n are (anti)symmetric, in contrast to
the open string case, cf. Sec. VI. This is a manifestation of

the fact, discussed above, that the planar boundary con-
ditions of the Chodos-Thorn string do not turn into the
boundary conditions of the open string in the massless
limit. Nevertheless, in both cases the same intercept a will
be found.
There are solutions growing linearly in time, associated

to the zero modes (48). One easily checks that they form
canonical pairs with the zero modes, when normalized as

fs;Q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
c∈�ðSc þ cot ScÞ

p 1;

fs;P ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
c∈�ðSc þ cot ScÞ

p τ

and

fq;θ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

c∈�ðSc þ sin 2Sc
1þsin2 Sc

Þ
q ðtan σ; 0Þ;

fq;λ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

c∈�ðSc þ sin 2Sc
1þsin2 Sc

Þ
q �

τ tan σ;∓ 2 sin S�
1þ sin2 S�

�
;

i.e.,9

σðfs;Q; fs;PÞ ¼ σðfp;θ; fp;λÞ ¼ 1:

We note the unusual sign of the linearly growing mode fq;λ,
which was also found for the analogous fλ mode in our
semiclassical treatment of the hydrogen atom in Sec. II. It is
natural to interpret ðfs;Q; fs;PÞ, or rather the coefficients of
these modes, as a pair of position and momentum
perpendicular to the plane of rotation and ðfq;θ; fq;λÞ as
a pair of angle and angular momentum in the 1–2 plane.
This will be corroborated below.
For the planar sector, there is even a linearly growing

solution associated to the n ¼ 1 mode. To be precise, we
define

fq;Q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
P

c∈�ðSc þ cotScÞ
p �

1

cosσ
; i

�
e−iτ;

fq;P ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
P

c∈�ðSc þ cotScÞ
p �

τ

cosσ
þ i cosσ; iτ− 1

�
e−iτ

þ ufq;Q;

with

u¼−
i
4

P
c∈�ð3Scþ4cotScÞ− cosðSþ−S−ÞsinðSþþS−ÞP

c∈�ðScþ cotScÞ
:

8The phase of the mode determines the corresponding vector in
the plane of rotation.

9Here and in the following, we identify a solution f with its
Cauchy data ðf; _fÞ.
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We then have

σðfq;Q; fq;PÞ ¼ 1;

σðfq;Q; fq;PÞ ¼ σðfq;Q; fq;QÞ ¼ σðfq;P; fq;PÞ ¼ 0: ð49Þ

Hence, ðfq;Q; fq;PÞ and ðfq;Q; fq;PÞ are pairs of canonically
conjugate variables. The linearly growing modes fq;P, fq;P
correspond to a uniform movement in the plane of rotation.
This suggests that we should view these modes as positions
and momenta in the plane of rotation, cf. also below.
The scalar modes with n ≥ 1 and the planar modes with

n ≥ 2 are normalized symplectically as

σðfr;n; fr0;n0 Þ ¼ −iδrr0δnn0 ; ð50Þ

where r ∈ fs; qg. The normalization (50) amounts to

δnm ¼ ðωs
n þ ωs

mÞ
�Z

Sþ

−S−
fs;nfs;m þ

X
c∈�

1

tan Sc
fs;nfs;m

�
;

ð51Þ

δnm ¼ ðωq
n þ ωq

mÞ

×

�Z
Sþ

−S−
fp;nfp;m þ

X
c∈�

1

tan Sc
ðfp;nfp;m − fr;nfr;mÞ

�

þ
X
c∈�

2i
sin Sc

ðfr;nfp;m þ fp;nfr;mÞ; ð52Þ

for n, m > 0.
In order to prepare for the canonical quantization, we

write

ϕs ¼
X
n∈Ns

ðas;nfs;n þ H:c:Þ þQsfs;Q þ Psfs;P ð53Þ

ϕq ¼
X
n∈Nq

ðaq;nfq;n þ H:c:Þ þ θfq;θ þ λfq;λ

þ ðQqfq;Q þ Pqfq;P þ H:c:Þ; ð54Þ

where

Ns ¼ fn ≥ 1g; Nq ¼ fn ≥ 2g;

and the coefficientsQs, Ps, θ, λ are real. One then finds, for
the expansion of the energy, cf. (28),

E ¼ Ēþ ffiffiffi
γ

p �Z
Sþ

−S−
tan σ _fpðσÞdσ

þ
X
c∈�

�
_fpðcScÞ þ

2

cos Sc
frðcScÞ

��
þOðγ0Þ;

¼ Ēþ ffiffiffi
γ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
c∈�

�
Sc þ

sin 2Sc
1þ sin2Sc

�s
σðfq;θ;ϕÞ þOðγ0Þ

¼ Ēþ ffiffiffi
γ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
c∈�

�
Sc þ

sin 2Sc
1þ sin2Sc

�s
λþOðγ0Þ: ð55Þ

Similarly, one obtains for the angular momentum and the
momenta, cf. (28) and (29),

L1;2 ¼ L̄1;2 þ ffiffiffi
γ

p
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
c∈�

�
Sc þ

sin 2Sc
1þ sin2Sc

�s
λ

þOðγ0Þ; ð56Þ

P3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ
X
c∈�

ðSc þ cot ScÞ
r

Ps þOðγ0Þ

¼
ffiffiffiffiffiffiffiffiffi
Ē=R

q
Ps þOðγ0Þ; ð57Þ

P1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ

X
c∈�

ðSc þ cot ScÞ
r

ℑP̄q þOðγ0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Ē=R

q
ℑP̄q þOðγ0Þ; ð58Þ

P2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ

X
c∈�

ðSc þ cot ScÞ
r

ℜPq þOðγ0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Ē=R

q
ℜPq þOðγ0Þ: ð59Þ

This supports the identification of the modes fq;λ, fs;P, fq;P
with (angular) momenta discussed above.
Canonical quantization now proceeds as follows: One

introduces annihilation and creation operators âr;n, â�r;n for
r ∈ fs; qg, n ∈ Nr, fulfilling

½âr;n; â�r0;n0 � ¼ δrr0δnn0 :

Furthermore, one introduces position operators Q̂s, θ̂, Q̂q,

Q̂�
q and momenta P̂s, λ̂, P̂q, P̂�

q with commutation
relations10

½Q̂s; P̂s� ¼ i; ½θ̂; λ̂� ¼ i; ½Q̂�
q; P̂q� ¼ i; ½Q̂q; P̂q� ¼ 0:

Then one replaces the coefficients in (53) and (54) by the
hatted corresponding operators. The fulfillment of the

10The complex positions Q̂q can be represented on L2ðR2Þ as
Q̂q ¼ 1ffiffi

2
p ðQ1 þ iQ2Þ, and analogously for the momenta.
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canonical equal time commutation relations then follows
from completeness of the modes. Mathematically, this is
expressed by the fact that the Cauchy data of

ffs;n; fs;ngn∈Ns
∪ ffs;Q; fs;Pg ∪ ffq;n; fq;ngn∈Nq

∪ ffq;Q; fq;P; fq;Q; fq;P; fq;θ; fq;λg

are a basis of a Krein space with indefinite inner product
given by

½fjg� ¼ iσðf̄; gÞ;

or, more precisely, that

X
r∈fs;qg

X
n∈Nr

ðjfr;n�½fr;nj − jfr;n�½fr;njÞ þ ijfs;Q�½fs;Pj

− ijfs;P�½fs;Qj þ ijfq;θ�½fq;λj − ijfq;λ�½fq;θj
þ ijfq;Q�½fq;Pj − ijfq;P�½fq;Qj þ ijfq;Q�½fq;Pj
− ijfq;P�½fq;Qj ¼ 1:

This is due to the fact that the Hamiltonian on this Krein
space is Krein self-adjoint, definitizable, and regular at
infinity [26] and has a real spectrum. As proofs of these
statements lie outside of the main interest of this paper, we
omit them.
Omitting the positions and momenta (this will be

justified below) we thus have quantum fields ϕs, ϕq with
two-point functions:

wsðx;x0Þ≔hΩjϕsðxÞϕsðx0ÞjΩi¼
X
n∈Ns

fs;nðxÞfs;nðx0Þ;

wqðx;x0Þ≔hΩjϕqðxÞϕqðx0ÞjΩi¼
X
n∈Nq

fq;nðxÞfq;nðx0Þ; ð60Þ

where for the planar sector one has to take into account also
the radial component at the boundary.

V. THE WORLD-SHEET HAMILTONIAN
AND THE TARGET SPACE ENERGY

The free world-sheet Hamiltonian for the fluctuations
around the rotating string solutions has been derived
in [21]:

H0 ¼ 1

2

Z
Sþ

−S−

�
_ϕ2
p þ ϕ0

p
2 þ 2

cos2 σ
ϕ2
p þ _ϕ2

s þ ϕ0
s
2

�
dσ

þ 1

2

X
c∈�

1

tan Sc

�
_ϕ2
p þ _ϕ2

r −
1

cos2 Sc
ϕ2
p

− ð1þ 2 tan2 ScÞϕ2
r þ _ϕ2

s

�
: ð61Þ

With (53) and (54), this can formally be written as

H0 ¼ 1

2

X
r∈fs;qg

X
n∈Nr

nðâr;nâ�r;n þ â�r;nâr;nÞ −
1

2
λ̂2 þ 1

2
P̂2
s

þ iP̂qQ̂q
� − iP̂q

�Q̂q þ P̂q
�P̂q: ð62Þ

We note the similarity of this expression, regarding the
presence of the negative energy λ2 mode, with the free
Hamiltonian (22) derived for the semiclassical hydro-
gen atom.
To understand the significance of this free world-sheet

Hamiltonian, we note the relation

H ¼ REq − Lq
1;2; ð63Þ

analogous to (17) in the semiclassical hydrogen atom,
between the full world-sheet Hamiltonian H and the
quantum corrections Eq and Lq

1;2 to the (target space)
energy and angular momentum. The latter are defined by
the split

E ¼ Ēþ Eq; L1;2 ¼ L̄1;2 þ Lq
1;2;

into the classical and the φ dependent parts. The relation
(63) is a consequence of the fact that H generates trans-
lations in the world-sheet time τ, whereas Eq generates
translations in the target space-time X0. The factor R is due
to the relation between the two, cf. (24). Furthermore, the
time evolution generated byH acts on the coefficient of the
basis vectors vp, vr, vs, cf. (38). The first two of these
rotate, which is seen by the time evolution generated by Eq.
To correct this, the generator of rotations has to be added.
The relation (63) has been already checked to first order in
the perturbation, cf. (55) and (56), as the Hamiltonian H
does not have a first order term. It can also easily be
checked that the second order term on the right-hand side
coincides with the free Hamiltonian (61).
Furthermore, the classical solution breaks the time

translation invariance to discrete translations X0 ↦
X0 þ 2πR. These correspond to world-sheet translations
τ ↦ τ þ 2π. Hence,

Eq ¼ 1

R
H mod

1

R
:

With (63), it follows that Lq
1;2 must have spectrum in the

integers, as expected for an angular momentum operator.
By (56), this implies that λ̂ has a discrete spectrum with
eigenvalue 0. In the following, we are only considering
such eigenstates. In particular, this means that the first order
corrections to L1;2 and E vanish.
Let us thus consider the second order correction to E2.

Using that the first order variation δ1E of E vanishes (we
write E ¼ ĒþP

kδ
kE, with k denoting the order of the
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perturbation φ appearing in δkE), we have, by (33)
and (63),

δ2E2 ¼ 2Ēδ2E ¼ 2πγðδ2L1;2 þH0Þ þOðR−3
2Þ;

where we also used that, by (26), (25) and (28), (29), Rδ2E
and δ2L1;2 are classically ofOðR0Þ. Plugging this into (34),
we find, with E2 ¼ Ē2 þ δ2E2 and L ¼ L̄þ δ2L,

E2 ¼ 2πγðLþH0Þ þ 4π

3
γ
1
2ðm3

2þ þm
3
2−Þ
�
2

γπ

�1
4

L
1
4 þOðL−1

4Þ:

ð64Þ

Comparison with (35) shows that we can determine the
intercept a by computing the OðR0Þ contribution of the
vacuum expectation value of the free Hamiltonian H0.11

Let us discuss the influence of the P2 terms in (62).
Using (57)–(59) and (33), we see that the leading order
contribution to E2 from these terms is

E2 ¼ πγR
Ē

P2
i ¼ P2

i þOðR−3
2Þ;

as one would expect. For the determination of the intercept,
this spatial momentum contribution to the energy should of
course be neglected. Furthermore, one can easily see that
the PQ terms in (62) are the center of mass contribution to
the angular momentum −L1;2. By (63), such a term has to
be expected in H, as, for a nonzero spatial momentum, one
can, by a translation, change the angular momentum L1;2

without changing the energy. Equation (63) can thus only
be correct if this is compensated in H. For the determi-
nation of the Regge trajectory, one has of course to consider
a vanishing center of mass contribution to the angular
momentum. Hence, all but the first term on the rhs of (62)
should be neglected for the determination of the intercept.

VI. RENORMALIZING THE WORLD-SHEET
HAMILTONIAN: THE MASSLESS STRING

As for the massive string the evaluation of the renor-
malized world-sheet Hamiltonian has to be performed
numerically; we begin by discussing the massless case
first, where an analytic treatment is possible. This has the
advantage that the tools necessary for local renormalization
can be introduced in a more transparent context.
In the context of the massless string, it is advantageous12

to choose coordinates σ ∈ ð0; πÞ such that the metric, the

scalar curvature, and the equation of motion for the planar
polarization are given by

gμν ¼ R2 sin2 σημν; ð65Þ

R ¼ 2

R2 sin4 σ
; ð66Þ

−f̈p ¼ −f00p þ
2

sin2 σ
fp: ð67Þ

The trajectory τ ↦ ðτ; sÞ, with s fixed, has the geodesic
curvature

κs ¼ −
cot s
R sin s

: ð68Þ

From the massless boundary condition

ffiffiffiffiffi
jgj

p
g1μ∂μX ¼ 0; ð69Þ

one derives the boundary conditions

0 ¼ f0sð0Þ ¼ f0sðπÞ; ð70Þ

0 ¼ fpð0Þ ¼ fpðπÞ ¼ f0pð0Þ ¼ f0pðπÞ ð71Þ

for the scalar and the planar polarization, as shown in
Appendix A.
The operatorsΔs¼−∂2

σ ,Δp ¼ −∂2
σ þ 2

sin2 σ on L
2ð½0; π�Þ,

on the domain C2ð½0; π�Þ with boundary conditions (70)
and (71), are essentially self-adjoint, so they admit a unique
self-adjoint extension.13 Defining NN ¼ fn ∈ Njn ≥ Ng,
these have spectrum N0, N2, with normalized [with respect
to the L2 inner product, not the symplectic form (45)]
eigenvectors

fs;n ¼
ffiffiffi
2

pffiffiffi
π

p cos nσ;

fp;n ¼
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðn2 − 1Þ

p ðn cos nσ − cot σ sin nσÞ:

In the massless case, the planar n ¼ 0 and n ¼ 1 mode are
thus absent, as already noted in [20,22]. The scalar zero

11Aswewill see below, the expectationvalue ofH0 has a term of
OðR1

2Þ, due to logarithmic divergences. This, however, is a
renormalization ambiguity, corresponding to a geodesic curvature
boundary term affecting the coefficient of theOðL1

4Þ term, cf. (37).
12The advantage is that one can write the symmetric and

antisymmetric eigenmodes in a uniform notation.

13For Δs this is clear. Δp is obviously symmetric. It thus
remains to show that the deficiency indices vanish. The generic
solution to Δpf ¼ �if is

fðxÞ ¼ C1

ffiffiffiffiffiffiffiffiffi
sin σ

p
P3=2
ði�1Þ= ffiffi

2
p

−1=2
ðcos σÞ

þ C2

ffiffiffiffiffiffiffiffiffi
sin σ

p
Q3=2

ði�1Þ= ffiffi
2

p
−1=2

ðcos σÞ:

It is easy to see that there are no normalizable solutions of this
form.
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mode corresponds to translations perpendicular to the plane
of rotation. There is also an associated momentum. For the
purposes of the calculation of the Regge intercept, we want
to fix the spatial momentum, so we do not consider the zero
modes in the following. The usual canonical quantization
then yields quantum fields ϕs, ϕp with two-point functions:

wsðx; x0Þ ≔ hΩjϕsðxÞϕsðx0ÞjΩi

¼
X
n≥1

1

2n
fs;nðσÞfs;nðσ0Þe−inðτ−τ0−iεÞ; ð72Þ

wpðx; x0Þ ≔ hΩjϕpðxÞϕpðx0ÞjΩi

¼
X
n≥2

1

2n
fp;nðσÞfp;nðσ0Þe−inðτ−τ0−iεÞ: ð73Þ

The canonical quantization scheme in particular implies
that the physical fluctuations are represented on a positive
definite Fock space.
The free Hamiltonian corresponding to the free action

(39) is

H0 ¼ 1

2

Z
π

0

�
_ϕ2
p þ ϕ0

p
2 þ 2

sin2 σ
ϕ2
p þ _ϕ2

s þ ϕ0
s
2

�
dσ:

We see that the planar and the scalar polarization decouple.
Let us first concentrate on the scalar sector. Formally, the
vacuum expectation value is given by

hH0
si ¼

1

2

X
n≥1

n:

This sum is of course quadratically divergent. As long as
one does not impose some conditions on the renormaliza-
tion prescription, one can obtain any result. The renorm-
alization prescription that we are going to employ is based
on the framework of locally covariant field theory [15],
where the renormalization is performed locally, by using
the local geometric data. In that framework, the expectation
value of Wick squares (possibly with derivatives) is
determined as follows:

hΩjð∇αϕ∇βϕÞðxÞjΩi ¼ lim
x0→x

∇α∇0βðwðx; x0Þ − hðx; x0ÞÞ:

Here α, β are multi-indices, w is the two-point function in
the stateΩ, defined as on the left-hand side (lhs) of (72) and
(73), and h is a distribution which is covariantly con-
structed out of the local geometric data, the Hadamard
parametrix. Importantly, for physically reasonable states
(ground states in particular), the difference w − h is
smooth, so that the above coinciding point limit exists
and is independent of the direction from which x0
approaches x. This method has been reliably used for

the computation of Casimir energies and vacuum polari-
zation, cf. [16,27,28] for example.
For our purposes, it is advantageous to perform the limit

of coinciding points from the time direction, i.e., we take
x ¼ ðτ; σÞ, x0 ¼ ðτ þ t; σÞ, and t → þ0. Performing the
summation in (60), we find

1

2
ð∂0∂ 0

0 þ ∂1∂ 0
1Þwsðx; x0Þ ¼ −

1

2πðtþ iεÞ2 −
1

24π
þOðtÞ:

For a minimally coupled scalar field with a variable mass
m2ðxÞ in two-dimensional space-time, the Hadamard para-
metrix is given by (see, e.g., [29])

hðx; x0Þ ¼ −
1

4π

�
1þ 1

2
m2ðxÞρðx; x0Þ þOððx − x0Þ3Þ

�

× log
ρεðx; x0Þ

Λ2
;

where ρ is the Synge world function, i.e., 1
2
times the

squared (signed) geodesic distance of x and x0, cf. [30], and
Λ is a length scale (the “renormalization scale”). For the
local covariance, it is crucial that Λ is fixed and does not
depend on any geometric data [15]. Inside of the logarithm,
the world function is equipped with an iε prescription as
follows:

ρεðx; x0Þ ¼ ρðx; x0Þ þ iεðτ − τ0Þ:

For the scalar part, the mass term is absent. The world
function can be Taylor expanded in coordinates around
coinciding points as [31]

ρðx; x0Þ ¼ 1

2
gμνðxÞΔxμΔxν þ AμνλðxÞΔxμΔxνΔxλ

þ BμνλρðxÞΔxμΔxνΔxλΔxρ;

Aμνλ ¼ −
1

4
∂ðμgνλÞ;

Bμνλρ ¼
1

12
∂ðμ∂νgλρÞ −

1

24
gστ

�
1

4
∂σgðμν∂ jτjgλρÞ

− ∂σgðμν∂λgρÞτ þ ∂ðμgνjσj∂λgρÞτ

�
;

where Δx ¼ x − x0. One thus finds, for a metric of the form
gμν ¼ fðσÞημν,

ρ ¼ 1

2
fðσÞð−Δτ2 þ Δσ2Þ þ 1

4
f0ðσÞΔτ2Δσ

−
1

96
fðσÞ−1f0ðσÞ2Δτ4

þ
�
1

48
fðσÞ−1f0ðσÞ2 − 1

12
f00ðσÞ

�
Δτ2Δσ2

þOðΔx5;Δσ3Þ;
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and hence, for the coinciding point limit from the time
direction,14

1

2
ð∂0∂ 0

0 þ ∂1∂ 0
1Þhs ¼ −

1

2πðtþ iεÞ2 þ
1

32π

f02

f2

−
1

48π

f00

f
þOðtÞ:

In the special case of the metric (65), this yields

1

2
ð∂0∂ 0

0 þ ∂1∂ 0
1Þhs ¼ −

1

2πðtþ iεÞ2 þ
1

12πsin2σ

−
1

24π
þOðtÞ: ð74Þ

For the scalar contribution to the energy density, we thus
obtain

hH0
sðσÞi ¼ −

1

12π sin2 σ
: ð75Þ

This is locally finite, but diverges in a nonintegrable fashion
at the boundaries. As discussed below, this term may be
absorbed in the renormalization freedom of the planar
contribution. Alternatively, one recognizes it as a multiple
of R

ffiffiffiffiffiffi−gp
, cf. (65) and (66), which can be absorbed in a

geodesic curvature boundary counterterm, cf. also the
discussion below.
Also the two-point function of the planar part can be

computed explicitly. Evaluating the sums in (73), one
obtains, cf. Appendix B,

1

2

�
∂0∂0

0 þ ∂1∂1
0 þ 2

sin2σ

�
wpðx;x0Þ

¼ −
1

2π

�
1

ðtþ iεÞ2 þ
1

2sin2σ
log

−ðtþ iεÞ2
4sin2σ

þ 3

2sin2σ
þ 1

12

�
þOðtÞ: ð76Þ

For the parametrix, we note that given the metric (65), the
mass square which is implicit in the free action is

m2 ¼ 2

R2 sin4 σ
;

so that we obtain

1

2

�
∂0∂ 0

0 þ ∂1∂ 0
1 þ

2

sin2σ

�
hp

¼ −
1

2π

�
1

ðtþ iεÞ2 þ
1

2sin2σ
log

−ðtþ iεÞ2R2sin2σ
Λ2

þ 1

3sin2σ
þ 1

12

�
þOðtÞ: ð77Þ

Hence, for the planar contribution to the energy density, we
find

hH0
pðσÞi ¼ −

1

2π sin2 σ
log

Λ
2R sin2 σ

−
7

12π sin2 σ
:

In the last term, we have the same nonintegrable divergence
that we already found in (75). However, we see that both
these terms can be absorbed in a change of the scale Λ.
Noting that 1

sin2 σ ¼ 1
2

ffiffiffiffiffijgjp
R, this corresponds to an

Einstein-Hilbert counterterm. In fact, the most general
redefinition of a parametrix that affects Wick powers with
up to two derivatives is

h ↦ hþ c0 þ c1Rρþ c2m2ρ:

This has no effect on the scalar contribution to the energy
density and its effect on the planar contribution is exactly
corresponding to a finite renormalization of the Einstein-
Hilbert term. Our final expression for the local energy
density in D-dimensional target space is thus

hH0ðσÞi ¼ −
1

2π sin2 σ
log

Λ
R sin2 σ

: ð78Þ

The final expression (78) still contains a nonintegrable
singularity at the boundaries. We recall that near Dirichlet
boundaries, the energy density of a massive scalar field in
two space-time dimensions behaves as

ε ∼ −
m2

2π
log

λ

md
;

with d the distance to the boundary, cf. [32] for example. In
view of this and the divergence of m2 near the boundary, a
divergence as in the second term in (78) has to be expected.
Such nonintegrable divergences near boundaries are a
well-known phenomenon [33], in particular in space-time
dimensions larger than 2. For the treatment of our singu-
larity, we follow the approach proposed in [17], i.e., to
introduce boundary counterterms. Concretely, one per-
forms the integration of the energy density only up to a
distance d to the boundary and introduces a d-dependent
local counterterm on this boundary. We denote by s the
value of σ at which this shifted boundary resides. In the
spirit of locally covariant field theory, a boundary counter-
term may only depend on the boundary geometric data and
the proper distance ds ¼ 2R sin2 s

2
to the boundary. More

precisely, it should be of the form

ffiffiffiffiffiffiffi
jhsj

p
pðd−1s ; log ds=Λbd; κs;RðsÞ; m2ðsÞÞ; ð79Þ

with hs and κs the induced metric and geodesic curvature
on the boundary, p a polynomial (which may also contain

14Here and in the following, OðtÞ also includes terms of the
form t log t.
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normal derivatives ofR andm2), and Λbd a renormalization
scale. We computeZ

π−s

s

1

sin2 σ
log

Λ
R sin2 σ

dσ ¼ −4sþ 2π

þ 2 cot s log
Λ

e2R sin2 s
:

The only way to cancel the divergence in the last term with
a counterterm of the form (79) is to add the counterterm

1

π

ffiffiffiffiffiffiffi
jhsj

p
κs log

e2ds
Λ

;

cf. (68). It is important to note that the scale Λbd in the
logarithm is fixed by the renormalization scale Λ, so that
there is no renormalization ambiguity (a change in Λ would
lead to a nonintegrable divergence of the energy density,
unless compensated by a change of Λbd). Similar (geodesic
curvature) boundary counterterms for open strings were
also used in [14,19] for the calculation of the energy.
Hence, for the renormalized total energy, we finally obtain

hH0
reni ¼ −1;

which, by (6), yields the intercept (3).15

VII. RENORMALIZING THE WORLD-SHEET
HAMILTONIAN: THE MASSIVE STRING

The first term on the rhs of (62) naturally decomposes
into a scalar and a planar contribution,

H0 ¼ H0
s þH0

q:

Let us first concentrate on the scalar contribution H0
s .

Formally, its vacuum expectation value is given by

hH0
si ¼

1

2

X
n≥1

ωs
n: ð80Þ

To give meaning to this divergent series, we again perform
a local renormalization, as for the massless case treated in
the previous section. A major difference to that case is the
presence of a boundary term. Let us start by considering the

bulk. According to (60), the scalar two-point function ws is
given by

wsðτ; σ; τ0; σ0Þ ¼
X
n≥1

fs;nðσÞfs;nðσ0Þe−iωs
nðτ−τ0Þ:

Note that, as discussed above, the contribution of the zero
mode is suppressed. As above, we perform the coinciding
point limit from the time direction, i.e., we take
x0 ¼ ðτ þ t; σÞ, where x ¼ ðτ; σÞ and t → þ0. We then
obtain

1

2
ð∂0∂ 0

0 þ ∂1∂ 0
1Þwsðx; x0Þ ¼

1

2

X
n≥1

ðωs
nc2nÞ2eiωs

nðtþiεÞ;

where csn are the normalization constants for the scalar
modes (46) such that (51) holds. Using the asymptotic form
of ωs (for Sþ ¼ S−, this was proven in [24]),

ωs
n¼

ðn−1Þπ
SþþS−

þ 1

ðn−1Þπ
X
c∈�

tanScþOððn−1Þ−3Þ; ð81Þ

one finds

dsn ≔ ðωs
nc2nÞ2 ¼

πðn − 1Þ
ðSþ þ S−Þ2

þOððn − 1Þ−3Þ: ð82Þ

The parametrix was already computed in the previous
section. Taking into account the change in the range of σ
with respect to the treatment of the massless case, we have,
cf. (74),

1

2
ð∂0∂ 0

0 þ ∂1∂ 0
1Þhs ¼ −

1

2πðtþ iεÞ2 þ
1

12π

1

cos2 σ

−
1

24π
þOðtÞ:

Using

X∞
n¼1

neiðnþb
nÞðtþiεÞ ¼ −

1

ðtþ iεÞ2 −
1

12
− bþOðtÞ; ð83Þ

we may thus write

1

2
ð∂0∂ 0

0 þ ∂1∂ 0
1Þðws − hsÞ ¼

1

2
ds1e

iωs
1
t þ 1

2

X∞
n¼1

�
dsnþ1e

iωs
nþ1

ðtþiεÞ −
πn

ðSþ þ S−Þ2
eið

πn
SþþS−

þ
P

tan Sc

πn ÞðtþiεÞ
�

þ 1

24π
−

π

24ðSþ þ S−Þ2
−

1

2πðSþ þ S−Þ
X
c

tan Sc −
1

12πcos2σ
þOðtÞ:

15We remark that omitting the factor sin2 σ in the logarithm in the planar parametrix (77) (such a modification singles out a preferred
parametrization of the world sheet and corresponds to the regularization performed in [19]) leads to subtracting 1

2
from the intercept.
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From (81) and (82) it follows that the sum on the rhs can be
bounded uniformly in t and ε. Furthermore, the resulting
local bulk energy density is finite. However, one already
sees that this is no longer the case in the massless limit
S� → π

2
. Performing the limit of coinciding points and the

integration over σ, we thus obtain the bulk contribution to
the expectation value of the scalar Hamiltonian:

hH0
s;bki ¼

Sþ þ S−
2

�
ds1 þ

X∞
n¼1

�
dsnþ1 −

πn
ðSþ þ S−Þ2

��

þ Sþ þ S−
24π

−
π

24ðSþ þ S−Þ
−

7

12π

X
c∈�

tan Sc:

ð84Þ
For the boundary part, we cannot use a one-dimensional

Hadamard parametrix, as the boundary field is not a solution
to a free wave equation, cf. the source term on the rhs of
(42). The boundary quantum field is in fact a generalized
free field [24]. For its renormalization we thus take the
following approach: We determine the local singularities
and construct a corresponding counterterm out of the local
geometric data. Using (81), one straightforwardly obtains

jfs;nð�S�Þj2 ¼
ðSþ þ S−Þ2 tan2 S�

π3ðn − 1Þ3 þOððn − 1Þ−5Þ ð85Þ

for the normalized mode solutions. For the two-point
function on the boundary, we thus obtain

wbd
s;�ðτ; τ0Þ ¼

X
n∈N1

jfs;nð�S�Þj2eiωs
nðtþiεÞ

¼ i
ðSþ þ S−Þ tan2 S�

6
t

þ tan2 S�
π

t2
�
ζð3Þ − 3

4
þ 1

4
log

−π2ðtþ iεÞ2
ðSþ þ S−Þ2

�
þOðt3Þ;

where t ¼ τ0 − τ. For the corresponding parametrix, we
write distances in terms of the local geometric data, i.e., in
terms of

ρ ¼ 1

2
t2R2 cos2 S�;

cf. (26), so that a suitable parametrix is

hbds;� ¼ tan2 S�
2πR2 cos2 S�

ρ log
−ρε
Λ2
�
þOðt3Þ:

Here Λ� are renormalization length scales which may
depend on the boundary component, at least if the masses
at the two end points are distinguishable.
For the renormalization of the boundary contribution to

the scalar Hamiltonian, we thus have to consider

∂0∂ 0
0h

bd
s;� ¼ −

tan2 S�
2π

log
ðtþ iεÞ2R2 cos2 S�

Λ2
�

þOðtÞ

¼
X∞
n¼1

tan2 S�
πn

ei
πn

SþþS−
ðtþiεÞ

−
tan2 S�
2π

log
ðSþ þ S−Þ2R2 cos2 S�

π2Λ2
�

þOðtÞ:

The subtraction of the boundary divergences then yields

hH0
s;bd;�i ¼ lim

t→0

1

2 tan S�
∂0∂ 0

0ðwbd
� − hbd� Þ

¼ 1

2 tan S�

�
es1;� þ

X∞
n¼1

�
esnþ1;� −

tan2S�
πn

�

þ tan2S�
2π

log
ðSþ þ S−Þ2R2cos2S�

π2Λ2
�

�
;

where we used the abbreviation

esn;� ≔ ðωs
nÞ2jfs;nð�S�Þj2

and the expansions (81) and (85).
For the full expectation value of the free scalar

Hamiltonian, we thus obtain

hH0
si ¼

Sþ þ S−
2

ds1 þ
X
c∈�

es1;c
2 tan Sc

þ
X∞
n¼1

�
Sþ þ S−

2
dsnþ1 þ

X
c∈�

esnþ1;c

2 tan Sc
−

πn
2ðSþ þ S−Þ

−
X
c∈�

tan Sc
2πn

�

þ Sþ þ S−
24π

−
π

24ðSþ þ S−Þ
þ
X
c∈�

tan S�
4π

log
ðSþ þ S−Þ2R2 cos2 S�

π2Λ2
�

;

where we absorbed the last term in (84) in a change
of the scales Λ�. With integration by parts, and
using the equation of motion (40), the boundary condition
(42), and the normalization condition (51), one
finds

ðSþ þ S−Þdsn þ
X
c∈�

1

tan Sc
esn;c ¼ ωs

n;

so that we may write the above as
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hH0
si ¼

1

2

�
ωs
1 þ

X∞
n¼1

�
ωs
nþ1 −

�
πn

Sþ þ S−
þ
X
c∈�

tan Sc
nπ

���

þ Sþ þ S−
24π

−
π

24ðSþ þ S−Þ

þ
X
c∈�

tan Sc
2π

log
ðSþ þ S−ÞR cos Sc

Λc
: ð86Þ

In particular, only knowledge of the mode frequencies ωs
n is

required. This expression can thus be seen as the appro-
priate regularization of (80).
Let us discuss the renormalization ambiguities in our

derivation. For this, it is advantageous to write the scalar
part of the action in the proper geometric form,

Ss
0 ¼ −

1

2

Z
Σ
∂μfs∂μfs

ffiffiffiffiffi
jgj

p
d2x

−
1

2

X
c∈�

R cos Sc
tan Sc

Z
∂cΣ

∂afs∂afs
ffiffiffiffiffiffi
jhj

p
dx:

In the second term, the latin indices refer to coordinates on
the boundary and are raised with h−1. The factor R cosSc

tan Sc
in

front of the boundary term should be seen as a coupling
constant. Multiplication of a free action with a constant is
compensated by the multiplication of the two-point func-
tion with the inverse of that constant. It follows that a factor
of tan Sc

R cos Sc
in front of the boundary parametrix is due to this

coupling constant. Let us thus consider the corrected
boundary parametrix,

h̃bds;� ¼ R cos S�
tan S�

hbds;� ¼ −
κ�
2π

ρ log
−ρε
Λ2
�
þOðt3Þ;

where we used the geodesic curvature κc, cf. (27). Hence,
this parametrix is constructed out of the local geometric
data and changing the scale Λc amounts to adding a
geodesic curvature counterterm at the boundary compo-
nent c. On the other hand, it is clear that h̃bds;�↦ h̃bds;�þλ�κρ
with some coefficients λ� is the only locally constructed
redefinition of h̃bds;� with the correct scaling behavior that
contributes to the Hamiltonian. In the previous section, we
saw that there are no bulk renormalization ambiguities for
the scalar part. So we have seen that the only renormaliza-
tion ambiguity for the scalar Hamiltonian amounts to the
redefinition

hH0
si → hH0

si þ
X
c∈�

λc tan Sc; ð87Þ

corresponding to a geodesic curvature counterterm
κc

ffiffiffiffiffiffiffiffijhcj
p

. Note that, by (25), tan Sc ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γR=mc

p
∼ L

1
4 for

large R, so this is consistent with the fact that an inclusion

of geodesic curvature counterterms modifies the Regge
trajectory at OðL1

4Þ, cf. (37).
Let us note that the final result (86) could also have been

obtained by a point-split regularization of the formal
expression (80),

hH0
sðtÞi ¼

1

2

X
n≥1

ωs
neiω

s
nðtþiεÞ;

combined with a subtraction of the integral over σ of the
point-split bulk parametrix and the point-split boundary
parametrix. We did not take that approach here, as it is
a priori not clear whether the integration over σ commutes
with the limit t → 0. For simplicity, we will perform the
calculation of the planar contribution in this way. A
calculation analogous to the one performed in the scalar
case can be found in Appendix C.
Analogously to the scalar contribution, the formal

expression for the expectation value of the planar contri-
bution is

hH0
qi ¼

1

2

X
n≥2

ωq
n:

The point-split version of this is

hH0
qðtÞi ¼

1

2

X
n≥2

ωq
neiω

q
nðtþiεÞ:

In order to get a finite result, we should subtract the
singularity obtained by integration over the contribution
from the parametrix. In the coordinates chosen in the
present section, the planar parametrix fulfills, cf. (77),

1

2

�
∂0∂ 0

0 þ ∂1∂ 0
1 þ

2

cos2σ

�
hp

¼ −
1

2π

�
1

ðtþ iεÞ2 þ
1

2cos2σ
log

−ðtþ iεÞ2R2cos2σ
Λ2

þ 1

3cos2σ
þ 1

12

�
þOðtÞ:

Integration over σ yields the following result for the
coinciding point divergence due to the bulk:

−
Sþ þ S−

2π

1

ðtþ iεÞ2 −
1

2π
log

ðtþ iεÞR
Λ

X
c∈�

tan Sc

−
Sþ þ S−
24π

þ Sþ þ S−
2π

−
1

2π

X
c∈�

tan Sc logðe cos ScÞ

−
1

6π

X
c∈�

tan Sc:

In particular, the bulk contributes a logarithmic divergence,
contrary to the scalar sector. However, its coefficient is
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P
c∈� tan Sc, so that the renormalization ambiguity due to

the bulk (by changing the renormalization scale Λ) is
contained in the renormalization ambiguity (87) already
determined.
Let us now focus on the boundary contribution. For large

n, we have the asymptotic behavior

ωq
n ¼ðn−2Þπ

SþþS−
þ 2

ðn−2Þπ
X
c∈�

tanSc

þOððn−2Þ−3Þ;

jfp;nð�S�Þj2 ¼
ðSþþS−Þ2tan2S�

π3ðn−2Þ3 þOððn−2Þ−5Þ;

jfr;nð�S�Þj2 ¼
4ðSþþS−Þ4tan2S�
π5ðn−2Þ5cos2S�

þOððn−2Þ−7Þ: ð88Þ

Hence, considering (61), we expect the following loga-
rithmic singularity in the coinciding point limit at the
boundary:

−
1

2

X
c∈�

tan Sc
π

log
πðtþ iεÞ
Sþ þ S−

:

As for the scalar contribution, one argues that this
divergence should be canceled by the addition of the
counterterm

X
c∈�

tan Sc
2π

log
ðtþ iεÞR cos Sc

Λc
:

However, as for the scalar contribution, it is advantageous
to perform the subtraction in the sum, in such a way that the
limit of coinciding points can be commuted with the
summation limit. One thus obtains

hH0
qi ¼

1

2

�
ωq
2 þ

X∞
n¼1

�
ωq
nþ2 −

nπ
Sþ þ S−

−
2

nπ

X
c∈�

tan Sc

��

þ Sþ þ S−
24π

−
π

Sþ þ S−

1

24
−
Sþ þ S−

2π

þ
X
c∈�

tan Sc
π

log
RðSþ þ S−Þ cos Sc

Λc
; ð89Þ

where once again we absorbed constant multiples of tan Sc
in a redefinition of Λc.
Our attempts to analytically evaluate (86) and (89) failed,

so that we resort to numerical calculations. For that, we
confine ourselves to the case of identical masses at the end
points, so in particular Sþ ¼ S− ¼ S and Λþ ¼ Λ− ¼ Λ.
The numerical calculation of (86) and (89) then proceeds as
follows:
(1) First, we choose γ

m ¼ 1 and a grid of values of R and
determine the frequencies ωs

n, ω
q
n for n ≤ 1000 and

all values of R by taking the general solutions (46)
and (47) (with either B ¼ 0 or A ¼ 0) and looking
for zeros of the boundary condition. One can
confirm the asymptotic behavior given by (81)
and (88).

(2) Due to the asymptotic behavior (81) and (88), the
errors due to a cutoff of the sums in (86) and (89) at
some fixed N are asymptotically ofOðN−2Þ, with an
R dependent coefficient. To correct this, we proceed
as follows: We choose a grid in N and determine the
expressions (86) and (89) for the different values of
R, with the sum cut off at N. For fixed R, we fit
the result with an c0 þ c1N−2 ansatz in the range
N ∈ ½500; 1000�. The number c0 then gives the
result for this R.

(3) The resulting function of R is then fitted to

C0 tan Sþ C1 þ C2R−1
2 ð90Þ

in the range R ∈ ½100; 1000�. The first term corre-
sponds to the renormalization ambiguity and is thus
not relevant. The second term, however, directly
yields the intercept (up to the sign), according to the
discussion below (64).

Note that the contribution of the last term in (86) and (89)
to the target space energy behaves asymptotically as
R−1

2 logR, i.e., it slightly dominates the renormalization
ambiguity. The quality of the fits to (90) indicates16 that it
has been properly subtracted, yielding a test of our
renormalization prescription.
Our method yields the values

Cs
1 ≃ −0.00001 Cq

1 ≃ −1.00001

for the scalar and the planar part. These results are quite
robust under changes of the fitting range or the fitting
function. We interpret them as being the numerical
approximation of

Cs
1 ¼ 0 Cq

1 ¼ −1;

corresponding to the intercept (3).
Let us comment on the implications of the result for the

Nambu-Goto string as a phenomenological model for
hadrons. For measured meson trajectories and the end
point masses and the intercepts as free parameters, inter-
cepts in the range a ∈ ½−0.55; 0� were found [2] (for a fit to
the orbital angular momentum), in plain contradiction with
the theoretical value a ¼ 1. However, one has to keep in
mind that our semiclassical calculation is only valid for
large angular momenta. The maximum spin which was
used to determine the trajectories in [2] was L ¼ 6.

16One can also include such a term into the fits and finds that it
has a very small coefficient.
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But 6
1
4 ≃ 1.57, so L

1
4, L0 and L−1

4 are all of the same order.
It seems doubtful that one can consistently distinguish
between these contributions with so little data. Apart from
that, the model is of course rather crude in that it neglects,
for example, the spin of the quarks. However, it is
conceivable that fixing a to the theoretical value yields a
more consistent assignment of quark masses and the α
parameter of the Einstein-Hilbert term (36) to the different
trajectories.

VIII. DEGENERACIES OF EXCITED STATES

For the semiclassical spectrum of excitations of the
massless open string with a fixed angular momentum
component L1;2, we found oscillators with frequency
n ≥ 1 for each of the D − 3 directions perpendicular to
the plane of rotation and oscillators with frequency n ≥ 2 for
excitations in the plane of rotation. The goal of this section is
to comparewith the spectrumof excitations of the covariantly
quantized open string, i.e., to investigate the physical states
that are eigenstates of the energy and of angular momentum
L1;2 ¼ l. A particular focus will be on the presence or
absence of an n ¼ 1 excitation in the plane of rotation.
In the covariantly quantized Nambu-Goto string, the

state of minimal energy for a fixed angular momentum l in
the 1–2 plane is given by (for simplicity, we fix πγ ¼ 1)

jli ¼ ðξ · α−1Þlj0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðl − aÞ

p
i:

Here

ξ ¼ 1ffiffiffi
2

p ð0; 1; i; 0;…; 0Þ

and j0; mi stands for the ground state with vanishing spatial
momentum and rest mass m. We recall the definitions,
cf. [34],

Lm ¼ 1

2

X∞
n¼−∞

αm−n · αn; m ≠ 0

L0 ¼
1

2
α20 þ

X∞
n¼1

α−n · αn;

Jμν ¼ −i
X∞
n¼1

1

n
ðαμ−nανn − αν−nα

μ
nÞ;

and the commutation relations

½αμm; ανn� ¼ mδmþnη
μν: ð91Þ

In order to avoid confusion with the Virasoro generators
Lm, we here switch to the notation Jμν for the angular
momentum. We also omitted the center-of-mass contribu-
tion to Jμν. We note that α0 ¼ p, the momentum operator.
The commutation relations (91) imply

½Lm; ζ · α−k� ¼ kζ · αm−k;

½J12; ζ · α−k� ¼ ζ̃ · α−k;

where

ζ̃ ¼ ð0;−iζ2; iζ1; 0;…; 0Þ:

With the last equation, one straightforwardly checks that
jli is an eigenstate of J12 of eigenvalue l. Furthermore, one
checks that the state jli is physical, i.e., it fulfills the
conditions

ðLm − δ0maÞjli ¼ 0 ∀ m ≥ 0:

Finally, (91) implies that jli has positive norm.
Let us begin by considering the minimal excitations of

jli, i.e., the physical states which are eigenstates of J12

with eigenvalue l and of p2 with eigenvalue 2ðlþ 1 − aÞ.
It is easy to find D − 3 linearly independent states:

ζ · α−1ðξ · α−1Þlj0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlþ 1 − aÞ

p
i:

Here ζ is an element of the subspace spanned by e3—eD−1.
These correspond to the D − 3 scalar excitations for n ¼ 1
of the semiclassical open rotating string. These states
obviously have positive norm, so they count as proper
physical excitations.
We can see the D − 3 linearly independent operators ζ ·

α−1 as the creation operators for the oscillator of frequency
n ¼ 1. As a slight complication, also the momentum needs
to be shifted and when powers of these operators are
applied, correction terms need to be added to ensure
physicality. For example,

�
ðζ · α−1Þ2 −

ζ2

1 − 2p2

�
1

p2
ðp · α−1Þ2 − p · α−2

��

× ðξ · α−1Þlj0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlþ 2 − aÞ

p
i

is the state obtained by twice acting with ζ · α−1 and adding
corrections to ensure physicality. Similarly, one may see
the D − 3 linearly independent operators ζ · α−n as the
creation operators for the oscillator with frequency n, up to
correction terms. In the scalar sector, we thus have
complete agreement of the spectra of the semiclassical
and the covariantly quantized Nambu-Goto string.
The analog of the first excitation of the planar n ¼ 2

mode is given by

�
ξ̄ · α−1ξ · α−1 −

lþ 1

1 − 2p2

�
1

p2
ðp · α−1Þ2 − p · α−2

��

× ðξ · α−1Þlj0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlþ 2 − aÞ

p
i:
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This state has positive norm, at least in the range a ≤ 2.
Higher excitations of this mode are constructed by applying
ξ̄ · α−1ξ · α−1 several times, and adding correction terms to
ensure physicality. Similarly, excitations of the nth planar
mode are obtained by acting with ξ̄ · α−nþ1ξ · α−1 and
applying correction terms. This exhausts the excitation
spectrum of the semiclassical string.
However, there is also a state corresponding to a planar

n ¼ 1 mode:

½ξ ·α−2ðξ ·α−1Þl−1−2p−2p ·α−1ðξ ·α−1Þl�j0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlþ1−aÞ

p
i:

It is straightforward to check that this is an eigenstate of J12

of eigenvalue l and of L0 with eigenvalue a. Also the
physicality conditions are fulfilled. However, one finds that
this state has positive norm for a < 1, is null for a ¼ 1, and
has negative norm for a > 1. In the critical covariantly
quantized string, i.e., with a ¼ 1, this state would thus not
correspond to a physical excitation. In this sense, the
spectra of excitations in the semiclassical and the critical
covariantly quantized string coincide.
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APPENDIX A: THE BOUNDARY CONDITIONS

The boundary is a submanifold of codimension D − 1,
so in addition to the scalar and planar perturbations, also
radial perturbations could be relevant there. To the rhs of
(38), we thus add frvr with vr ¼ ð0; cos τ; sin τ; 0Þ.
To work out the implication of the boundary condition

(69) on the perturbations φ, we first determine the variation
of the metric (the brackets denote symmetrization in μ, ν):

δgμν ¼ 2∂ðμX̄a∂νÞφa

¼ 2∂ðμX̄a∂νÞvapfp þ 2∂ðμX̄a∂νÞvarfr þ 2∂ðμX̄avar∂νÞfr

¼ 2R

��
fp −

1

2
sin σ _fr

��
0 1

1 0

�
þ cos σfr

�
1 0

0 0

�

− sin σf0r

�
0 0

0 1

��
:

Here we used that the vectors vs, vp are orthogonal to the
world sheet, that ∂νvs ¼ 0 and

∂0X̄ ¼ R cos σ sin σvp þ R sin2 σe0;

∂1X̄ ¼ −R sin σvr;

v0p ¼ − cot σvp − e0;

with e0 the unit vector in the time direction. This implies

δ
ffiffiffiffiffi
jgj

p
¼ −R cos σfr − R sin σf0r;

δgμν ¼ 2fp − sin σ _fr
R3 sin4 σ

�
0 1

1 0

�
−
2 cos σfr
R3 sin4 σ

�
1 0

0 0

�

þ 2f0r
R3 sin3 σ

�
0 0

0 1

�
:

We thus obtain

δ½
ffiffiffiffiffi
jgj

p
g1ν∂νX� ¼ cot σfrvr þ f0svs

þ ðcot σfp − cos σ _fr þ f0pÞvp
þ ðfp − sin σ _frÞe0:

Linear independence of vp, vs, vr, e0 implies that
fr ¼ fp ¼ f0s ¼ 0 at the boundary. Furthermore, with
l’Hôpital’s rule, we also obtain f0p ¼ 0.

APPENDIX B: THE PLANAR
TWO-POINT FUNCTION

To compute the lhs of (76), we have to evaluate

X∞
n¼2

1

4n

��
n2 þ 2

sin2σ

�
f2p;n þ f0p;n2

�
einðtþiεÞ:

Straightforward manipulations simplify this to

X∞
n¼2

n
2πðn2 − 1Þ

�
n2 þ cot2σ þ 2

sin2σ
cos 2nσ

−
3 cot σ
nsin2σ

sin 2nσ þ 2cos2σ þ 1

n2sin4σ
sin2nσ

�
einðtþiεÞ:

Using
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X∞
n¼2

n3

n2 − 1
einðtþiεÞ ¼ −

1

ðtþ iεÞ2 −
1

2
log½−ðtþ iεÞ2�

−
11

6
þOðtÞ;

X∞
n¼2

n
n2 − 1

einðtþiεÞ ¼ −
1

2
log½−ðtþ iεÞ2� − 3

4
þOðtÞ;

X∞
n¼2

n cos 2nσ
n2 − 1

einðtþiεÞ ¼ −
1

2
−
1

4
cos 2σ

−
1

2
cos 2σ log½4 sin2 σ� þOðtÞ;

X∞
n¼2

sin 2nσ
n2 − 1

einðtþiεÞ ¼ 1

4
sin 2σ −

1

2
sin 2σ log½4 sin2 σ�

þOðtÞ;X∞
n¼2

sin2 nσ
nðn2 − 1Þ e

inðtþiεÞ ¼ 3

4
sin2 σ −

1

2
sin2 σ log½4 sin2 σ�

þOðtÞ;

one obtains the rhs of (76).

APPENDIX C: THE CALCULATION
OF THE PLANAR PART

In this Appendix, we want to discuss the calculation of
the planar part in the massive case in the same fashion as for
the scalar part, i.e., without assuming that integration over σ
and the limit t → 0 commute. For simplicity, we assume
equal masses, i.e., Sþ ¼ S− ¼ S.
Let us first concentrate on the bulk. For odd (even) n, the

(anti)symmetric planar mode fp;n is realized. With the

normalization given in (47) with AðBÞ ¼ 1, we obtain (we
set fn ¼ fp;n, ωn ¼ ωq

n)

�
ω2
n þ

2

cos2σ

�
fnðσÞ2 þ f0nðσÞ2

¼ ω4
n þ ω2

ntan2σ � ω2
n

2

cos2σ
cos 2ωnσ

� 3ωn
tan σ
cos2σ

sin 2ωnσ þ 2sin2σ þ 1

2cos4σ
ð1 ∓ cos 2ωnσÞ:

ðC1Þ

Asymptotically, the normalization constants cn, that have to
be multiplied to fn for the normalization (50), fulfill

c2nω4
n ¼

π

4S2
ðn − 2Þ þ 1

πðn − 2Þ þOððn − 2Þ−3Þ;

so that only the first three terms on the rhs of (C1)
contribute to the t → 0 singularity of the two-point func-
tion. We denote their sum by TnðσÞ. The remaining terms
are denoted by RnðσÞ. Using (83) and

X∞
n¼1

1

n
einðtþiεÞ ¼ −

1

2
log−ðtþ iεÞ2 þOðtÞ;

X∞
n¼1

ð−1Þn
n

einðtþiεÞ cosð2nσÞ ¼ −
1

2
log 4cos2σ þOðtÞ

jσj < π

2
;

we may thus write

1

2

�
∂0∂ 0

0 þ ∂1∂ 0
1 þ

2

cos2σ

�
ðwq − hqÞ ¼

1

2
c22T2ðσÞ þ

1

2

X∞
n¼1

�
c2nþ2Tnþ2ðσÞeiωnþ2ðtþiεÞ −

πn
4S2

eiðπn2Sþ4 tan S
πn ÞðtþiεÞ

−
1

πncos2σ

�
1 − ð−1Þn2 cos 2 πn

2S
σ

�
ei

πn
2SðtþiεÞ

�
þ 1

2

X∞
n¼2

c2nRnðσÞ þ
1

24πcos2σ

−
π

96S2
−
tan S
πS

þ 1

24π
þ 1

4πcos2σ
log

4S2R2cos2σ
π2Λ2

þ 1

2πcos2σ
log 4cos2

π

2S
σ:

In this expression, we may take the limit t → 0, to obtain the bulk energy density,

1

2

�
∂0∂ 0

0 þ ∂1∂ 0
1 þ

2

cos2σ

�
ðwq − hqÞ ¼

1

2
c22T2ðσÞ þ

1

2

X∞
n¼1

�
c2nþ2Tnþ2ðσÞ −

πn
4S2

−
1

πncos2σ

�
1 − ð−1Þn2 cos 2 πn

2S
σ

��

þ 1

2

X∞
n¼2

c2nRnðσÞ þ
1

24πcos2σ
−

π

96S2
−
tan S
πS

þ 1

24π

þ 1

4πcos2σ
log

4S2R2cos2σ
π2Λ2

þ 1

2πcos2σ
log 4cos2

π

2S
σ:
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Due to (C1) and the asymptotic forms of cn and ωn, the sum
can be dominated uniformly in σ for σ ∈ ½−S; S� and S < π

2
.

Hence, except for the last term, the energy density is
bounded for σ ∈ ½−S; S� for S < π

2
. The logarithmic diver-

gence of the energy density near the boundary is a well-
knownphenomenon in two-dimensionalmassive scalar field
theories, cf. [32] for example. We have thus established that
the energy density is integrable and integration over σ yields

hH0
q;bki ¼

1

2

Z
c22ðT2ðσÞ þ R2ðσÞÞdσ

þ 1

2

X∞
n¼1

�Z
c2nþ2ðTnþ2ðσÞ þ Rnþ2ðσÞÞdσ −

πn
2S

−
2 tan S
πn

þQn

�
þ tan S

12π
−

π

48S
−
2 tan S

π
þ S
12π

−
S
π
þ tan S

π
þ tan S

2π
log

4S2R2cos2σ
π2Λ2

þQ;

with

Qn ¼ ð−1Þn
Z

S

−S

2

πn cos2 σ
cos

πn
S
σdσ;

Q ¼
Z

S

−S

1

2π cos2 σ
log 4 cos2

π

2S
σdσ:

Using integration by parts, one shows that jQnj < Cn−2 and

1

2

X∞
n¼1

Qn ¼ −Q;

so that the above reduces to

hH0
q;bki ¼

1

2

Z
c22ðT2ðσÞ þ R2ðσÞÞdσ

þ 1

2

X∞
n¼1

�Z
c2nþ2ðTnþ2ðσÞ þ Rnþ2ðσÞÞdσ

−
πn
2S

−
2 tan S
πn

�
−

π

48S
þ S
12π

−
S
π

þ tan S
2π

log
4S2R2cos2σ

π2Λ2
;

where we absorbed terms of the form C tan S in a change of
the scale Λ.
For the boundary component, one obtains, analogously

to the scalar part,

hH0
q;bdi ¼

1

tan S

�
eq2 þ

X∞
n¼1

�
eqnþ2 −

tan2S
πn

�

þ tan2S
2π

log
4S2R2cos2S

π2Λ2

�
;

where we used

eqn≔c2n

��
ω2
n−

1

cos2S

�
fp;nðSÞ2þðω2

n−1−2tan2SÞjfr;nj2
�
:

In total, we thus have

hH0
qi ¼

1

2

Z
c22ðT2ðσÞ þ R2ðσÞÞdσ þ 1

tan S
eq2

þ 1

2

X∞
n¼1

�Z
c2nþ2ðTnþ2ðσÞ þ Rnþ2ðσÞÞdσ

þ 2

tan S
eqnþ2 −

πn
2S

−
4 tan S
πn

�
−

π

48S
þ S
12π

−
S
π

þ tan S
π

log
4S2R2cos2σ

π2Λ2
:

Using integration by parts, the equations of motion (41),
(43), (44), and the normalization (52), one finds

1

2

Z
c2nðTnðσÞ þ RnðσÞÞdσ þ 1

tan S
eqn ¼ 1

2
ωq
n:

Hence, we obtain (89) for the special case Sþ ¼ S− ¼ S.
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