SERIES 37XXXC VECTOR NETWORK ANALYZER PROGRAMMING MANUAL

Software Version: 4.00

WARRANTY

The ANRITSU product(s) listed on the title page is (are) warranted against defects in materials and workmanship for three years from the date of shipment.

ANRITSU's obligation covers repairing or replacing products which prove to be defective during the warranty period. Buyers shall prepay transportation charges for equipment returned to ANRITSU for warranty repairs. Obligation is limited to the original purchaser. ANRITSU is not liable for consequential damages.

LIMITATION OF WARRANTY

The foregoing warranty does not apply to ANRITSU connectors that have failed due to normal wear. Also, the warranty does not apply to defects resulting from improper or inadequate maintenance by the Buyer, unauthorized modification or misuse, or operation outside of the environmental specifications of the product. No other warranty is expressed or implied, and the remedies provided herein are the Buyer's sole and exclusive remedies.

TRADEMARK ACKNOWLEDGEMENTS

V Connector and K Connector are registered trademarks of ANRITSU Company. ANACAT is a registered trademark of EEsof, Inc.
Ink Jet and Think Jet are registered trademarks of Hewlett-Packard Co.
MS-DOS is a registered trademark of Microsoft Corporation.
Excel is a registered trademark of Microsoft Corporation.

NOTICE

ANRITSU Company has prepared this manual for use by ANRITSU Company personnel and customers as a guide for the proper installation, operation and maintenance of ANRITSU Company equipment and computer programs. The drawings, specifications, and information contained herein are the property of ANRITSU Company, and any unauthorized use or disclosure of these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used in whole

DECLARATION OF CONFORMITY

Manufacturer's Name: ANRITSU COMPANY

Manufacturer's Address: Microwave Measurements Division

490 Jarvis Drive

Morgan Hill, CA 95037-2809

USA

declares that the product specified below:

Product Name:

Vector Network Analyzer

Model Number:

371XXA, 372XXA, 373XXA, 371XXB, 372XXB, 373XXB

371XC, 3722XXC, 373XXC

conforms to the requirement of:

EMC Directive 89/336/EEC as amended by Council Directive 92/31/EEC & 93/68/EEC Low Voltage Directive 73/23/EEC as amended by Council directive 93/68/EEC

Electromagnetic Interference:

Emissions:

CISPR 11:1990/EN55011: 1991 Group 1 Class A

Immunity:

EN 61000-4-2:1995/EN50082-1: 1997 - 4kV CD, 8kV AD

EN 61000-4-3:1997/EN50082-1: 1997 - 3V/m

ENV 50204/EN50082-1: 1997 - 3V/m

EN 61000-4-4:1995/EN50082-1: 1997 - 0.5kV SL, 1kV PL EN 61000-4-5:1995/EN50082-1: 1997 - 1kV L-L, 2kV L-E

Electrical Safety Requirement:

Product Safety:

IEC 1010-1:1990 + A1/EN61010-1: 1993

Marcel Dubois, Corporate Quality Director

Morgan Hill, CA

20 - JUNE - 00

Date

European Contact: For Anritsu product EMC & LVD information, contact Anritsu LTD, Rutherford Close, Stevenage Herts, SG1 2EF UK, (FAX 44-1438-740202)

DECLARATION OF CONFORMITY

Manufacturer's Name: ANRITSU COMPANY

Manufacturer's Address: Microwave Measurements Division

490 Jarvis Drive

Morgan Hill, CA 95037-2809

USA

declares that the product specified below:

Product Name: Broadband System

Model Number: ME7808A

conforms to the requirement of:

EMC Directive 89/336/EEC as amended by Council Directive 92/31/EEC & 93/68/EEC Low Voltage Directive 73/23/EEC as amended by Council directive 93/68/EEC

Electromagnetic Interference:

Emissions: CISPR 11:1990/EN55011: 1991 Group 1 Class A

EN 61000-3-2:1995 Class A EN 61000-3-3:1995 Class A

Immunity: EN 61000-4-2:1995/EN50082-1: 1997 - 4kV CD, 8kV AD

EN 61000-4-3:1997/EN50082-1: 1997 - 3V/m

ENV 50204/EN50082-1: 1997 - 3V/m

EN 61000-4-4:1995/EN50082-1: 1997 - 0.5kV SL, 1kV PL EN 61000-4-5:1995/EN50082-1: 1997 - 1kV L-L, 2kV L-E

EN 61000-4-6:1994/EN61326: 1998 - 3V

EN 61000-4-11:1994/EN61326: 1998 - 100% @ 20msec

Electrical Safety Requirement:

Product Safety: IEC 1010-1:1990 + A1/EN61010-1: 1993

Director of Corporate Quality

Morgan Hill, CA

10-DEC-01

European Contact: For Anritsu product EMC & LVD information, contact Anritsu LTD, Rutherford Close, Stevenage Herts, SG1 2EF UK, (FAX 44-1438-740202)

Table Of Contents

Part 1 — GPIB Interface

Chapter 1 — Series 37XXXC GPIB Programmer Interface

This chapter provides an introduction to the 37XXXC GPIB programmer interface and GPIB communications.

Chapter 2 — GPIB Programming Basics

This chapter provides programming information, including equipment and controller setup and elemental GPIB programming techniques.

Chapter 3 — Series 37XXXC Programming Examples

This chapter provides sample program elements that demonstrate common 37XXXC operations. These sample elements are useful as an aid in developing 37XXXC programs.

Part 2 — GPIB Function Groups

Chapter 4 — Measurement Functions

This chapter provides a detailed description of the 37XXXC specific GPIB commands that control the various data display and measurement control functions of the 37XXXC.

Chapter 5 — Calibration Functions

This chapter describes the 37XXXC error correction (calibration) functions and the commands used to implement a measurement calibration. It also describes the AutoCal function and provides a listing of applicable commands.

Chapter 6 — Markers and Limits Functions

This chapter describes commands used for data analysis, which consists of markers and limits function commands.

Chapter 7 — Remote-Only Functions

This chapter describes 37XXXC functions that support operations typically required when in the remote-only (GPIB) mode. The commands described consist of data transfer, error reporting, SRQ/status reporting, 488.2 common commands, and synchronization.

Chapter 8 — System Functions

This chapter describes the commands used to implement certain system functions. They consist of hard copy, system state, save/recall, disk function, and diagnostics commands.

Chapter 9 — Special Applications Functions

This chapter describes the commands used to implement special measurement functions. They consist of time domain, multiple source, sweep control, rear panel output, CW sweep, gain compression, Millimeter Wave System commands.

37XXXC PM

Part 3 — Programming Reference

Chapter 10 — Command Dictionary

This chapter provides an alphabetically-ordered, dictionary-type listing and description of all 37XXXC GPIB programming commands. The listing for each command includes relevant details about the command.

Chapter 11 — Instrument Data

This chapter provides general (non-command specific) tabular information for the 37XXXC. Much of this information is presented in Chapters 4 through 10, but is provided in this chapter for easy access.

Chapter 12 — Error Messages

This chapter provides a list of all Error Messages including those related to remote-only (GPIB) operation of the 37XXXC.

Part 4 — Supplemental Data

Appendix A — **Introduction to the IEEE 488 Bus**

This appendix contains an introduction to the IEEE 488 Bus (GPIB). This material is intended to assist new users in understanding GPIB basics.

Appendix B — GPIB Quick Reference Guide

This appendix provides a quick reference to all 37XXXC GPIB commands. Each reference lists the command name, a brief description of the command function, and a reference to the pertinent Chapter in this manual.

ii 37XXXC PM

Part 1 The GPIB Interface

This part consists of three chapters that describe how the IEEE- 488 (GPIB) interface is implemented within the 37XXXC Vector Network Analyzer and how to perform basic GPIB communications operations.

- **Chapter 1** briefly describes the 37XXXC GPIB programmer interface and describes the communication to and from the interface during remote-only (GPIB) operation of the 37XXXC.
- **Chapter 2** provides a tutorial for performing basic GPIB operations such as sending and receiving messages, synchronizing instrument operations, setting timeouts, and status checking.
- **Chapter 3** provides sample program elements to familiarize the user with 37XXXC programming techniques. They are also useful as an aid in developing 37XXXC programs.

Chapter 1 Series 37XXXC GPIB Programmer Interface

Table of Contents

1-1	MANUAL SCOPE
1-2	INTRODUCTION
1-3	RELATED MANUALS
1-4	REMOTE OPERATION
1-5	GPIB COMMUNICATION 1-8 Bus Interface Function Messages 1-8 37XXXC Specific Messages 1-8 Separator Characters 1-9 Terminator Character 1-9 GPIB Error Conditions 1-9 Testing the 37XXXC GPIB Operation 1-10
1-6	IEEE 488 2 SUMMARY 1-11

Chapter 1 Series 37XXXC GPIB Programmer Interface

1-1 MANUAL SCOPE

This manual provides IEEE 488 bus (GPIB) programming information and data for all models of the Series 37000C Vector Network Analyzer. It contains the entire command set for programming all features. Consequently, not all of the codes documented in this manual apply to all models within the series (371XXC, 372XXC, 373XXC). The reader needs to be aware of the feature set available within the model for which programming is being written. Feature set information is documented in the applicable operation manual (OM) for any particular model.

1-2 INTRODUCTION

This chapter contains a brief introduction to the 37XXXC GPIB interface and programming environment.

1-3 RELATED MANUALS

The series contains an operation manual, a maintenance manual, and a GPIB Quick Reference Guide (Appendix B). ANRITSU Part numbers and manual titles are given below:

Manual Title	Part Number
37XXXC Operation Manual (OM)	10410-00226
37XXXC Maintenance Manual (MM)	10410-00228
37XXXC GPIB Quick Reference Guide	10410-00229

1-4 REMOTE OPERATION

The following paragraphs describe the 37XXXC facilities for remote operation.

The 37XXXC fully supports the IEEE 488.2–1992 GPIB standard. All 37XXXC front panel functions (except Power on/off and GPIB Test) can be controlled remotely using the GPIB commands listed in this manual and an external computer equipped with an IEEE 488 GPIB controller. When in the GPIB operating mode, the 37XXX VNA functions as both a listener and a talker.

37XXXC PM 1-3

GPIB Setup Menu The 37XXXC VNA GPIB address defaults to 6. This value may be changed via the Utility Menu key's GPIB ADDRESSES menu (below).

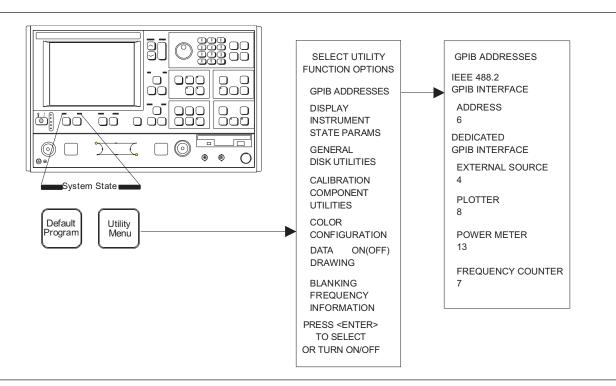
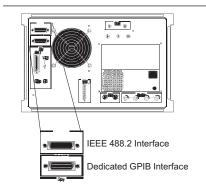



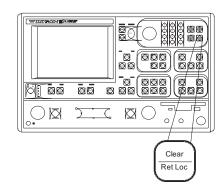
Figure 1-1. GPIB Address Menu

1-4 37XXXC PM

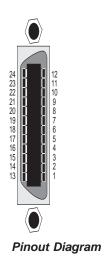
Interface Connection

Connect your external controller to the IEEE 488.2 GPIB interface connector on the rear panel (left). A pinout listing of this connector is contained in Figure 1-2.

NOTE

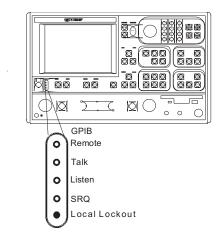

Do not connect your external GPIB controller to the "Dedicated GPIB Interface" connector (located below the "IEEE 488.2 GPIB interface" connector (left). This dedicated GPIB port is used by the 37XXXC to control external GPIB devices, such as a plotter, second frequency source, frequency counter, or a power meter.

The GPIB system can accommodate up to 15 devices at any one time. To achieve maximum performance on the bus, proper timing and voltage level relationships must be maintained. If either the cable length between separate instruments or the accumulated cable length between all instruments is too long, the data and control lines cannot be driven properly and the system may fail to perform. The following guidelines should be observed:


- □ No more than 15 instruments may be installed on the bus (including the controller).
- ☐ Total accumulative cable length (in meters) may not exceed two times the number of bus instruments or 20 meters—whichever is less.
- □ Individual cable length should not exceed 4 meters.
- \square 2/3 of the devices must be powered on.
- □ Devices should not be powered on while bus is in operation (that is; actively sending or receiving messages, data, etc.).
- Minimize cable lengths to achieve maximum data transfer rates.

Local Operation Key

Press the Ret Loc key (below) to quickly restore the 37XXXC to local operation. Local operation will be restored unless the 37XXXC is programmed for local lockout; the Local Lockout LED indicator will be lit.


37XXXC PM 1-5

PIN	NAME	DESCRIPTION
1-4	DIO 1 thru DIO 4	Data Input/Output. Bits are HIGH with the data is logical 0 and LOW when the data is logical 1.
5	EOI	End Or Identify. A low-true state indicates that the last byte of a multibyte message has been placed on the line.
6	DAV	Data Valid. A low-true state indicates that the talker has (1) sensed that NRFD is LOW, (2) placed a byte of data on the bus, and (3) waited an appropriate length of time for the data to settle.
7	NRFD	Not Ready For Data. A high-true state indicates that valid data has not yet been accepted by a listener.
8	NDAC	Not Data Accepted. A low-true state indicates that the current data byte has been accepted for internal processing by a listener.
9	IFC	Interface Clear. A low-true state places all bus instruments in a known state—such as, unaddressed to talk, unaddressed to listen, and service request idle.
10	SRQ	Service Request. A low-true state indicates that a bus instrument needs service from the controller.
11	ATN	Attention. A low-true state enables the controller to respond to both it's own listen/talk address and to appropriate interface messages — such as, device clear and serial poll.
12	Shield	Ground Point.
13-16	DIO 5 thru DIO 8	Data Input/Output. Bits are high with the data is logical 0 and LOW when the data is logical 1.
17	REN	Remote Enable. A low-true state enables bus instruments to be operated remotely, when addressed.
18- 24	GND	Logic ground.

Figure 1-2. Pinout Diagram, IEEE 488.2 GPIB Connector

1-6 37XXXC PM

Remote Operation LED Indicators

GPIB Remote Indicators (above) signal operational status of the GPIB, as described below:

Remote:

Lights when the 37XXXC switches to remote (GPIB) control. It remains lit until the unit returns to local control.

Talk:

Lights when you address the 37XXXC to talk and remains lit until unaddressed to talk.

Listen:

Lights when you address the 37XXXC to listen and remains lit until unaddressed to talk.

SRQ:

Lights when the 37XXXC sends a Service Request (SRQ) to the external controller. The LED remains lit until the 37XXXC receives a serial poll or until the controller resets the SRQ function.

Local Lockout:

Lights when a local lockout message is received. The LED remains lit until the message is rescinded. When lit, you cannot return the 37XXXC to local control via the front panel.

Audible Indicators

A single beep is issued as follows:

- (1) on a GPIB error,
- (2) when a user warning is issued (see Chapter 12, Operational Error Messages)
- (3) when a test limit line has been exceeded, if the limits testing beep function has been set (see Chapter 6)
- (4) on system reset.
- (5) any time the user's attention is required, such as at the end of a calibration step.

37XXXC PM 1-7

1-5 GPIB COMMUNICATION

The following paragraphs present a short summary of 37XXXC GPIB communication. Subjects covered are program messages, separator/termination characters, status reporting, and GPIB error conditions and corresponding 37XXXC responses. Refer to Chapter 7, Remote-Only Operation, for detailed description of these topics.

The primary GPIB messages that effect 37XXXC operation consist of two major groups; Bus Interface Function messages, and Instrument Specific messages.

Bus Interface Function Messages

These are low level bus messages defined by IEEE 488.1. A discussion of these messages is beyond the scope of this programming manual. For further information, please refer to your GPIB controller documentation and/or to IEEE 488.1 Standards documents. Also refer to Appendix A at the end of this Programming Manual for a brief primer on the GPIB Interface. Table 1-1 summarizes some of the key Interface Function Messages and the 37XXXC response to them.

Table 1-1. IEEE-488 Interface Function Messages

Interface Function Message	Message Function	Addressed Command	37XXXC VNA Response
DCL SDC	Device Clear Selected Device Clear	No Yes	Resets the 37XXXC GPIB communication functions. Resets the 37XXXC GPIB communication functions.
GTL	Go To Local	Yes	Returns the 37XXXC to local (front panel) control.
GET	Group Execute Trig- ger	Yes	Executes a string of commands defined by the IEEE 488.2 common command *DDT. A GET is also done by using the *TRG command (see Chapter 10, Command Dictionary).
IFC	Interface Clear	No	Stops the 37XXXC GPIB from talking/listening.
LLO	Local Lockout	No	Disables the front panel RETURN TO LOCAL key.
REN	Remote Enable	No	Places the 37XXXC in remote when addressed to listen.

37XXXC Specific Messages

The 37XXXC specific GPIB messages (also known as commands, queries, and mnemonics) are used to control 37XXXC front panel functions. They also provide for remote only operations such as data transfers, status reporting and service request generation, error reporting, and instrument-to-application program timing synchronization.

Refer to Chapter 10, Command Dictionary; Appendix B, Quick Reference Guide; and Chapters 4-9 for information on all 37XXXC commands. The commands are organized both alphabetically and by command function groups. There are many examples throughout this manual to assist you in learning and using a desired command.

Most 37XXXC commands are three character contractions of their functional descriptions. Examples include: **OM1** (Output Marker 1),

1-8 37XXXC PM

IFV (input Frequency List), **TRS** (Trigger Sweep), **WFS** (Wait for a Full Sweep), **OFD** (Output Final [display format] Data), and **PFS** (Print Full Screen).

Numeric parameter entry commands *must* be followed by a numeric value. These commands can optionally accept a units or suffix terminator mnemonic. For example, **SRT 2 GHZ** (set start frequency to 2 GHz.)

Query commands, typically ending in a question mark (?), are used to inquire about the state of a particular instrument function. Many 37XXXC setup commands have corresponding query commands listed in the same section as the basic setup command. An example is the **MK1**? query. It *outputs* the setting of Marker 1 Frequency, where the **MK1** command *sets* Marker 1 frequency.

IEEE 488.2 Common commands, which always start with the asterisk character (*), are defined by the IEEE 488.2 Standard. They are used to implement many standard instrument GPIB operations such as querying when an operation completes, status reporting, self test, and querying the instrument identification string. These commands are described throughout the Programming Manual in the specific funtional group where they are used. A consolidated listing of these commands can be found in Table 1-2, item 12 below and in Chapter 7. An example IEEE 488.2 Common command is the *IDN? query (Output Instrument ID String.)

Separator Characters

Separator characters are used to delimit program message elements sent to or received from the 37XXXC. The permitted characters: semicolon (;), comma (,), and space () and their usage is shown below.

Character	Used to separate	
;	Multiple commands and multiple output response messages.	
,	Multiple ASCII data elements for a single command.	
Space	A command, its numerical entry value, and suffix mnemonic.	

Terminator Character

The only allowed terminator character for 37XXXC GPIB messages is the linefeed character (0A, decimal 10).

GPIB Error Conditions

The 37XXXC responds to GPIB errors in the following manner:

- □ A beep is issued.
- □ An error message is displayed on the screen.
- □ A bit is set in the Standard Event Status Register, and, if enabled, an SRQ is generated.

37XXXC PM 1-9

- □ An entry is written into the non-volatile Service Log describing the error condition, along with time and date and, often, details helpful in handling the error. When full, error entries at the bottom of the log are removed to make room for new entries.
- ☐ If the error is GPIB related, the error message and the offending program message, if applicable, can be output over the GPIB via a query command. The previous error, if any, is also available via another query.

The bits set in the Standard Event Status Register for GPIB errors are as follows:

Bit 5 - Command Error (CME)

Invalid syntax, unrecognized command or command arguments, separaters or terminators that do not conform to correct IEEEE 488.2 formats. *The 37XXXC will ignore the remainder of commands in that program message.*

Bit 4 - Execution Error (EXE)

This bit is set if:

- (1) A data entry parameter is out of range or not applicable.
- (2) Action is impossible.
- (3) Action is not possible in the current context or instrument state, or if a required option is not fitted.

Bit 3 - Device Dependent Error (DDE)

This bit is set if a valid requested action failed due to an instrument specific error condition, such as attempting to access a bad floppy disk.

Bit 2 - Query Error (QYE)

This bit is set if the 37XXXC cannot provide the requested data. For example, if an output is attempted when no data has been requested or available, or if the output buffer is cleared due to sending more commands when data from a previous request has not yet been output.

Refer to Chapter 12, Error messages, for a listing of all 37XXXC error messages (including GPIB errors).

Testing the 37XXXC GPIB Operation

The following test can be used to check your GPIB cable and 37XXXC GPIB connectors.

- 1. Disconnect all GPIB cables from the 37XXXC.
- 2. Connect your GPIB cable between the two GPIB connectors on the 37XXXC rear panel.
- Invoke the test from the front panel as follows: Option Menu key, DIAGNOSTICS, PERIPHERAL TESTS, GPIB TEST. The test will run for a few seconds, then report the result on the front panel display.

1-10 37XXXC PM

1-6 IEEE 488.2 SUMMARY

Table 1-2 provides answers to the "Device Documentation Requirements" listed in the IEEE Standard 488.2-1992. It is also a good summary of the GPIB operational characteristics of the 37XXXC.

 Table 1-2.
 37XXXC IEEE 488.2 Standard Documentation Summary (1 of 3)

Number	Requirement Item	Implementation in VNA
1	Interface Function Subsets Implemented	SH1, AH1, T6, L4, SR1, RL1, PP1, DC1, DT1, C0, E2.
2	Device behavior when the user (unit) GPIB address is set outside of the 0–30 range	VNA returns an Out-of-Range error, issues an audible beep, and the entry color on front panel menu display is changed to red. Entered address is not accepted.
3	When is a user address change recognized?	New address is accepted and entry color remains green.
4	Description of settings at power-on	The front panel setup that was in effect prior to power down will be restored, <i>except:</i> the 37XXXC will be taken out of hold if it was previously set. Periodic IF Cal will be returned to timed operation.
		Memories saved: 1. GPIB address 2. Internal hardware calibration data 3. Information reported via the *IDN? and *OPT? queries. 4. Calibration coefficients 5. Normalized trace data 6. Stored front panel setups Memories Cleared: 1. Service Request message. 2. Standard event status register (except the Power-On bit is set) 3. Extended event status register 4. Limit pass/fail status register 5. Enable registers for items 2 thru 4, above. 6. GPIB input and output queues. 7. Trigger action for *TRG and GET reset to null. Data Transfer: 1. Data transfer is reset to MSB first for numerical array data transfers. 2. Data transfer format is reset to default, ASCII mode (FMA) for numerical array transfers. 3. Data pair format for OFD/IFD/OM1-OM6 commands is set to default (off) mode. (See command DPR0.)
		Menu Displayed: Setup Menu

37XXXC PM 1-11

 Table 1-2.
 37XXXC IEEE 488.2 Standard Documentation Summary (2 of 3)

Number	Requirement Item	Implementation in VNA
5	Message exchange options	
	a. Size and behavior of input buffer	a. Default size = 3 KByte. Size increases to required amount, as needed, for <arbitrary block=""> transfers. For the <indefinite arbitrary="" block="" length=""> data elements, the input buffer size for that element is 64 Kbyte. Attempting to program more data than 64 KByte will cause a loss of all data for that element. A DDE error message will be issued to indicate this condition. For <definite arbitrary="" block="" length=""> data elements, an attempt is made to set the buffer size for that element to the size indicated in the header. If there is insufficient system memory available at the time, all data for that element is lost. A DDE error message will be issued to indicate this condition.</definite></indefinite></arbitrary>
	b. Queries that return more than one <re- SPONSE MESSAGE UNIT></re- 	b. None
	c. Queries that generate a response when parsed	c. All
	d. Queries that generate a response when read	d. None
	e. Commands that are coupled	e. None
6	Functional elements used in construction of device- specific commands.	See command descriptions.
7	Buffer size limitations	37XXXC Attempts to allocate amount required; sets DDE error if not possible. (See 5a., above)
8	<program data=""> elements that may appear within an <expression></expression></program>	N/A (expressions are not used)
9	Response syntax for queries	See command descriptions.
10	Description of device-to-device message transfer traffic that does not follow the rules for <response messages=""></response>	None
11	Size of block data responses	Variable, See command descriptions for details.
12	IEEE.488.2 Common commands and queries that are implemented	*CLS, *DDT, *DDT?, *ESE, *ESE?, *ESR?, *IDN?, *IST?, *OPC, *OPC?, *OPT?, *PRE, *PRE?, *RST, *SRE, *SRE?, *STB?, *TRG, *TST?, *WAI
13	State of VNA following the successful completion of the Calibration query	Normal State
14	Maximum length of the block used to define the trigger macro (1.) The method of interpreting *TRG within a *DDT command sequence (2.)	1. 255 characters. 2. On execution, the 37XXXC returns a command error and ignores the rest of the string.

1-12 37XXXC PM

 Table 1-2.
 37XXXC IEEE 488.2 Standard Documentation Summary (3 of 3)

Number	Requirement Item	Implementation in VNA
15	Maximum length and complexity of macro labels; maximum length of block used to define a macro; and how recursion is handled during macro expansion, if macro commands are implemented.	N/A
16	Response to common query *IDN?.	ANRITSU, <model>, <sn>, <sw revision=""></sw></sn></model>
17	Size of the protected user data storage area, if the *PUD command or *PUD? query are implemented.	N/A
18	Size of resource description, if the *RDT command or *RDT? query are implemented.	N/A
19	States affected by *RST, *LRN?, *RCL, and *SAV.	*RST = default state (see Chapter 11), *LRN, *RCL, *SAV not implemented
20	Scope of the self test performed by *TST? command.	Fully automated internal hardware testing/reporting. Failure results, if any, are written to the internal non-volatile service log for user access.
21	Additional status data structures used in status reporting.	Limits Event Status and Extended Event Status registers; refer to Chapter 7 for details.
22	Statement describing whether each command is overlapped or sequential.	All commands are sequential.
23	Functional criteria that is met when an operation complete message is generated in response to that command.	N/A – No overlapped commands.
24	Descriptions used for infinity and not-a-number.	N/A

37XXXC PM 1-13/1-14

Chapter 2 GPIB Programming Basics

Table of Contents

2-1	INTRODUCTION
2-2	EQUIPMENT AND CONFIGURATION2-3Required Equipment2-3Configuration2-4
2-3	GPIB PROGRAM ELEMENTS
2-4	INITIALIZING THE GPIB 2-6
2-5	SHUTTING DOWN THE GPIB SYSTEM 2-6
2-6	DETECTING GPIB ERRORS
2-7	OPERATION TIME OUT
2-8	SENDING COMMANDS
2-9	RECEIVING DATA

2-10	SRQ HANDLING 2-11
	Calculating the Binary Weighted Bit Value 2-11
	Enabling Service Request 2-11
	Example
	Commands Used 2-12 NI488
	RQ Functions
2-11	COMPLETE OPERATIONS 2-13
	Example 1
	Example 2
	37XXXC Commands Used 2-14

Chapter 2 GPIB Programming Basics

2-1 INTRODUCTION

This chapter contains a brief introduction to GPIB programming techniques and describes procedures to be used when preparing GPIB programs for the 37XXXC VNA. It includes information about equipment requirements and configuration for GPIB control of the 37XXXC VNA, and many programming tips.

Familiarity with manual (front panel) operation of the 37XXXC is assumed. (Throughout this section, the 37XXXC VNA is referred to simply as "37XXXC".) A complete description of front panel operation is contained in the appropriate 371XXC, 372XXC, or 373XXC Vector Network Analyzer System Operation Manual.

2-2 EQUIPMENT AND CONFIGURATION

The programming examples contained in this chapter assume the equipment listed below is present and configured as described.

Required Equipment

The following equipment represents a minimum GPIB controllable 37XXXC VNA system:

- □ A 37XXXC Vector Network Analyzer.
- □ A computer/controller that supports the IEEE 488 GPIB standard. The examples in this chapter address the IBM compatible computers.
- □ An IEEE-488 GPIB interface (built in, or add-in peripheral card) with appropriate driver software. The National Instruments GPIB IEEE-488.2 interface is assumed for all examples in this chapter.
- □ Appropriate software (any of the following):

Microsoft QuickBASIC, version 4.0 (or later) Microsoft "C", version 5.1 or later, or Quick C, version 2.5. Any other programming language, or application software, that supports the IEEE 488 GPIB interface (Pascal, Fortran, etc.).

□ A GPIB cable (preferably 2 meters long).

37XXXC PM 2-3

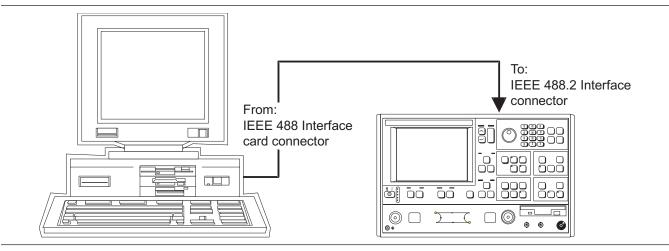
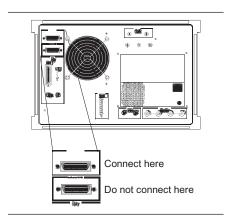



Figure 2-1. Model 37XXXC Shown Connected to an IEEE 488.2 Controller

NOTE

The IBM PC and National Instruments GPIB interface were chosen for demonstrating the 37XXXC GPIB operation in this manual. Any other GPIB controller that conforms to the IEEE 488 standard can be used to interface to the 37XXXC.

Configuration

Configure the 37XXXC as shown in Figure 2-1. Apply power to the 37XXXC and allow the system software to load from disk. Once the software has finished loading and start-up testing is complete, the 37XXXC is ready to be remotely controlled via the GPIB. It is important to note that the 37XXXC will not respond to GPIB commands until the 37XXXC system software has been loaded.

Connect a GPIB cable from the computer/controller to the rear panel IEEE 488.2 GPIB connector (left).

Apply power to the computer/controller and load the appropriate programming language software (QuickBASIC, "C", etc.).

The default GPIB address for the 37XXXC (6) is assumed for all examples in this chapter.

2-4 37XXXC PM

2-3 GPIB PROGRAM ELEMENTS

The discussions in this chapter demonstrate basic GPIB programming concepts that are typical elements of most GPIB application programs.

The controller used to demonstrate these concepts is the National Instruments 488.2 GPIB Interface which will be referred to as NI488 throughout this chapter.

NOTE

Regardless of the controller used, consult its documentation and software distribution disks for complete details and examples on setup and use of the controller's hardware and interface software functions.

National Instruments GPIB Interface

Throughout this chapter references will be made to variables, constants, and controller function calls declared in the NI488 file that your application uses to interface to the GPIB controller. This file is decl.h for C and qbdecl.bas for QuickBASIC, and it must be included in your GPIB program. Consult your documentation for the files used for other environments.

Including and compiling the appropriate NI488 file when preparing your application is what allows use of the NI488 GPIB interface procedures and function calls in your program. Also, the file named <code>gpib.com</code> must be installed in memory upon bootup of your computer. Typically, access to this file is through your system configuration file (that is, config.sys for DOS based computers).

The gpib.com is what allows your GPIB program to physically interface to the installed GPIB controller and to execute GPIB function calls during operation.

NOTE

Consult your controller's documentation for complete details on software and hardware setup, test, and use prior to proceeding with the following discussion. Knowledge of your controller and its operation will be assumed from this point forward.

Definitions

The following definitions apply for the remainder of this chapter:

- □ board = 0, Active controller board number
- \Box address = 6, GPIB address of the instrument.
- □ Address List = addresList, list of GPIB addresses terminated with the NI488 constant NOADDR. For our examples the list consists of two elements (6, NOADDR).

37XXXC PM 2-5

2-4 INITIALIZING THE GPIB

Initializing is the process of directing your controller to take control of the bus (become CIC — Controller In Charge) and setting the GPIB software to initial default settings.

NOTE

Default initial installation configuration is assumed for the NI488 hardware and software.

NI488 does this by sending an interface clear to the desired board using:

```
SendIFC (board)
```

The board will become CACS (Active controller). NI488 software allows use of up to 4 controllers. The board specified by the <code>SendIFC()</code> function must be designated CIC – Controller In Charge in its setup and configuration. See NI488 config utility in NI488 documentation.

 ${\tt SendIFC()} \ is also useful anytime you want to insure that your GPIB controller has control over the bus, the GPIB software is in its default parameters, and GPIB of all instruments on the bus is cleared and in idle state.$

The following NI488 functions are also useful when initializing your application.

□ To place all instruments in remote state, use:

EnableRemote(board, addressList)

□ To clear GPIB operation of all instruments use:

DevClearList(board, addressList)

2-5 SHUTTING DOWN THE GPIB SYSTEM

An important step in quitting a GPIB application is to shut down the GPIB interface. For the NI488 this is done by

- ☐ Insuring that you have control over the bus.
- □ Clearing all instruments' GPIB and placing them in an idle state.
- □ Releasing the controller GPIB software and hardware.

Implement the above by sending:

SendIFC(board)
ibonl(board, 0)

2-6 37XXXC PM

2-6 DETECTING GPIB ERRORS

It is important to use error checking code throughout your application program. Error checking usually does not significantly impact the speed of a GPIB application. This is because the GPIB bus operations are I/O operations whose execution time depends on a handshake process. This process is typically much slower than executing (error checking) code in your computer's memory.

Full Error Detection

Full error detection and handling is an invaluable debugging tool that should be used to its fullest during development of your application.

Limited Handling Error Detection

Error detection with at least a limited amount of handling should be used after each GPIB I/O operation in your final program. This will insure predictable operation of your application, proper system control, and accurate data processing.

NI488 Global Variables

The NI488 interface maintains three global variables useful in determining correct GPIB operations. These variables are updated after, and reflect the condition of, the last GPIB call to the interface. The variables are:

□ IBSTA

This variable provides the latest bus activity status; that is, errors, completions, time outs, etc.

☐ IBERR

This variable provides information on the type of error, if an error was reported in IBSTA.

□ IBCNT/IBCNTL

The number of data bytes transferred on the bus in the last operation. IBCNTL is the "long integer" version of IBCNT.

Example

Error checking for the NI488 interface is as follows. After each GPIB call, the IBSTA is checked for errors using the NI488 declared constant EERR - in BASIC, or ERR in C. If true, the <code>gpiberr()</code> function is called to decode and display the global variables IBSTA, IBERR, and IBCNT. For example, for QuickBASIC, the following code is inserted after a GPIB call:

```
IF IBSTA% AND EERR THEN

CALL gpiberr (error during GPIB operation)

END IF
```

NOTE

The NI488 disks and documentation contain the source listing of the <code>gpiberr()</code> function. This function should be copied into your code and used after each GPIB function call. Use the example programs provided on the NI488 distribution disks. Note that <code>gpiberr()</code> can also be modified to fit a particular application's requirements.

37XXXC PM 2-7

2-7 OPERATION TIME OUT

Setting GPIB time out is necessary to allow for lengthy instrument operations to complete before the application program continues with its processing. (Refer to paragraph 2-1, Waiting for Instrument Operations to Complete.)

Example

The NI488 time out is set using the $\mbox{ibtmo}()$ interface call, as follows:

ibtmo(instrument handle, timeout setting)

Where:

- ☐ instrument_handle = The value returned by the ibfind() or ibdev() interface call for the instrument.
- □ timeout_setting = A value that disables or sets the time out setting. NI488 uses declared constants to represent the allowable time out settings, for example, the T100s constant is 100 seconds, T30ms is 30 milliseconds, TNone is 0, etc. The complete list is in the NI488 include file for your language (qbdecl.bas, decl.h).

NOTE

Consult NI488 documentation and distribution disks for information and an example on using ibtmo(), ifbind(), and ibdev().

2-8 37XXXC PM

2-8 SENDING COMMANDS

GPIB controllers provide for sending GPIB commands to an instrument (or the controller itself if its address is used). The NI488 uses several commands, the most common is:

Send (board, address, buffer, numBytes, eot mode)

Where:

- \Box board, address = see section 2-3 for definitions.
- □ buffer = String of one or more instrument specific GPIB commands from the defined list in the instrument's GPIB documentation.
- □ buffer = String of one or more instrument specific GPIB commands from the defined list in the instrument's GPIB documentation
- \Box numBytes = The number of bytes contained in the buffer.
- eot_mode = The method used to signal end of transmission. This is typically done using ASCII linefeed character OA hex (10 decimal) and then setting EOI state (end of transmission) on the bus. The NI488 defines the following constants for use to setup end of transmission methods:
 - NLend Linefeed with EOI
 - DABend EOI only
 - NULLend -Do nothing to mark end of transmission

Example:

Send the 37XXXC at address 6, the commands "CH2; DSP; MAG", from controller number 0, using the linefeed with EOI to mark the end of transmission:

```
Send (0, 6, "CH2; DSP; MAG", 11, NLend)
```

37XXXC Commands Used

The above example uses the following commands defined in the 37XXXC command set:

```
CH2 - sets active channel to 2,
```

DSP - displays only the active channel on the whole screen,

 ${\bf MAG}$ - displays the active channel's data in log magnitude format (dB).

NOTE

The semicolon (;) is used to separate the different commands.

37XXXC PM 2-9

2-9 RECEIVING DATA

In order to receive data from an instrument over the GPIB, you must first instruct the instrument to output the desired data. You do this by using one of the instrument's defined data output commands and the controller Send() function (see paragraph 2-8, "Sending commands").

The instrument must then be given permission to start sending data (talk). The NI488 call to do this is:

```
Receive(board, address, buffer, numBytes, eod mode)
```

Where:

- \square board, address = see section 2-3 for definitions.
- □ buffer = The name of the memory address of the buffer where the received data is to be placed. Typically this is an array of type characters (a string). Although, for binary data transfers, the NI488 software will accept an array of almost any type; that is. integer, floating point, etc.
- □ numBytes = The maximum number of bytes to read from the instrument. Insure that "buffer" above is of at least this size.
- □ eod_mode = The method used to signal the controller to stop receiving data. Typically the NI488 constant STOPend is used (EOI state end of transmission set with the last byte). If you want to stop receiving when a certain transmission terminator character is received, then use the hex value of that character instead of the STOPend.

Example:

Use the NI488 controller number 0, to send the 37XXXC at address 6, the command "ONP" using the line feed with EOI to mark end of transmission:

```
Send(0, 6, "ONP", 3, NLend)
```

Upon receiving a data output command, the 37XXXC will prepare the data requested and wait for the controller to put it in the talk state so it can put the data out on the bus. This is done by:

```
numBytes = 20
Receive(0, 6, buffer, numBytes, STOPend)
```

Error Handling:

The number of bytes actually sent on the bus can now be retrieved from the NI488 interface software by immediately storing the value of the IBCNT global variable in a program variable as follows:

```
actualReceivedBytes = IBCNT
```

2-10 37XXXC PM

If we expected an exact number of bytes to be received, we can compare the requested number of bytes "numBytes" with the actual received "actualReceievedBytes" and take some corrective action if they do not match. You should do this before continuing to the data processing section of the program:

```
If numBytes ISNOTEQUALTO actualReceivedBytes then
   Call gpiberr("incorrect number of bytes
   received")
END IF
```

NOTE

Consult your programming language syntax for the operator used to check in-equality, to use in place of ISNOTE-QUALTO.

37XXXC Commands Used

The above example uses the following commands defined in the 37XXXC command set:

□ ONP – Outputs the number of data points in the current sweep. It will output the number represented in ASCII format.

2-10 SRQ HANDLING

Controllers use a dedicated line on the GPIB to detect if an instrument has requested service. An instrument sets this line when a predetermined set of conditions inside it have been met. These conditions are selected and programmed into the instrument by setting the Service Request Enable Register to a decimal value that corresponds to the bit values which, when true, will generate an SRQ. This is a binary weighted decimal value in the range 0-255.

Calculating the Binary Weighted Bit Value

The decimal value of a bit in a register is equal to the number 2 raised to a power equal to the bit number. For example, the decimal value of bit 4 in the Service Request Enable Register is 2 raised to the power 4 which is: $2^4 = 16$. Similarly, the decimal value of bit 0 is: $2^0 = 1$.

Enabling Service Request

To enable service request in the 37XXXC, use the command *SRE - Service Request Enable, with the desired value.

Example

Command the 37XXXC to request service; that is, generate an SRQ, when it has data to send, then output the number of points in the current sweep. We need to enable bit 4 (MAV), Message Available, in the Service Request Enable Register, so a service request will be generated when the data is ready. The decimal value of bit 4 is $16 (2^4 = 16)$.

The NI488 Send() function is used to send the 37XXXC at address 6, the commands "*SRE 16;ONP" (12 ASCII bytes), from controller number 0, using the linefeed with EOI to mark end of transmission:

```
Send(0, 6, "*SRE 16; ONP", 12, NLend)"
```

37XXXC PM 2-11

Commands Used

The above example uses the following commands defined in the 37XXXC command set:

```
*SRE - Sends a Status Request Enable mask.

ONP - Outputs the number of sweep points.
```

NI488 RQ Functions

The following NI488 functions are useful in handling SRQ operations. Consult your NI488 documentation for full details.

□ To test for occurrence of SRQ:

```
TestSRQ(board, SRQset)
```

Where:

SRQset contains 1 if SRQ is set, or 0 if it is not.

☐ To wait for occurrence of SRQ and report if it was set:

```
WaitSRQ(board, SRQset)
```

Where:

SRQset contains 1 if SRQ was set within the time out allowed, or 0 if it was not. (See paragraph 2-8, Setting GPIB Operation Time Out.)

☐ To find out which instrument is requesting service (set SRQ), instruct the controller to perform a serial poll and return the results as follows:

```
FindRQS(board, addressList, statusByte)
```

Where:

statusByte = The status byte of the first requester found is returned in this variable.

The index in addressList that contains the address of the instrument requesting service is returned in the IBCNT global variable.

□ To read out the SRQ byte from an instrument:

```
ReadStatusByte(board, address, statusByte)
```

□ To parallel poll, see the following functions in the NI488 documentation.

```
PPoll()
PPollConfig()
PPollUnconfig()
```

2-12 37XXXC PM

2-11 COMPLETE OPERATIONS

Instruments often require a period of time to complete certain operations such as disk I/O, measurement sweep, data preparation, etc.. Your application program must allow the instrument time to complete these operations and be able to detect when operations are completed.

The simplest mechanism for synchronizing operations over the GPIB involve using the *OPC? -Operation Complete query and the *OPC - Operation Complete command.

Example 1 Command the 37XXXC to perform a sweep and hold then place an ASCII "1" in its output buffer (*OPC?) when done.

The NI488 Send() function is used to send the 37XXXC at address 6, the commands, "HLD; TRS; WFS; *OPC?", from controller number 0, using the linefeed with EOI to mark end of transmission. The Receive() function is then used to hold the program from continuing processing until it receives the output of the *OPC command (or times out):

```
buffer = "HLD;TRS;WFS;*OPC?"
Send(0, 6, buffer, 17, NLend)
oneByte = 1
Receive(0, 6, buffer, oneByte, STOPend)
```

NOTE

The time out must be set high enough to allow the sweep to complete (see "Setting time outs" in paragraph 2-8).

Example 2 Now we will modify the above example to request service when bit 4 (MAV) in the Status Byte Register is set (*SRE 16) to let the program know when the *OPC? data is ready to be output. This overcomes the time out problem but it does increase program complexity.

```
buffer = "*SRE 16;HLD;TRS;WFS;*OPC?"
Send(0, 6, buffer, 25, NLend)
SRQset = 0
WHILE (SRQset = 0)
    WaitSRQ(board, SRQset)
ReadStatusByte(board, address, statusByte)
oneByte = 1
Receive(0, 6, buffer, oneByte, STOPend)
```

NOTE

 $\label{tensor} \begin{tabular}{ll} TestSRQ(\) & can be used instead of WaitSRQ(\) & to check for the occurrence of SRQ in the WHILE loop. This would allow your program to perform other tasks while waiting for SRQ inside the WHILE loop. \\ \end{tabular}$

37XXXC PM 2-13

37XXXC Commands Used

Examples 1 and 2 above used the following commands defined in the 37XXXC command set:

*SRE - sends a Status Request Enable value.

HLD - places VNA into hold mode

TRS - triggers a sweep. Since the VNA is already
 in hold mode, the hold mode is changed to
 single sweep and hold.

WFS - waits one full sweep and stops

***OPC? -** outputs an ASCII "1" when operation is complete

NOTE

Refer to Chapter 7, Remote Only Operations for more information and examples on status reporting and service request generation.

2-14 37XXXC PM

Chapter 3 Series 37XXXC Programming Examples

Table of Contents

3-1	INTRODUCTION
3-2	37XXXC PROGRAMMING EXAMPLES 3-3
3-3	EXAMPLE 1
3-4	EXAMPLE 2
3-5	EXAMPLE 3
3-6	EXAMPLE 4
3-7	EXAMPLE 5
3-8	EXAMPLE PROCEDURE 1
3-9	EXAMPLE FUNCTION 1
3-10	EXAMPLE PROCEDURE 2

Chapter 3 Series 37XXXC Programming Examples

3-1 INTRODUCTION

This chapter contains example programs to familiarize the user with 37XXXC programming. Familiarity with manual (front panel) operation of the 37XXXC is assumed. (Throughout this section, the 37XXXC VNA is referred to simply as "37XXXC".) A complete description of front panel operation is contained in the 37XXXC Vector Network Analyzer System Operation Manual.

Also, it is assumed that you have read Chapters 1 and 2 and are familiar with the information they contain. This information describes the various syntax and functions used in the example sequences presented throughout the chapter. This includes: Send, Receive, IBCNT, IBERR, ISNOTEQUALTO, and others.

3-2 37XXXC PROGRAMMING EXAMPLES

The main sequences for five example 37XXXC programs are listed and explained in the following pages. In these examples, the NI488 function calls are abbreviated; refer to Chapter 2 and the NI488 documentation for full details. Refer to the 37XXXC Command Function groups and the Command listings in this manual for complete details on 37XXXC command operations.

NOTE

The functions and procedures called from the example sequences in paragraphs 3-3 through 3-7 are provided at the end of this chapter in paragraphs 3-8 through 3-10.

The intent of these example program sequences is to provide algorithms useful when programming various features of the 37XXXC. You are encouraged to study these algorithms, copy them into your programming environment, and tailor them for your language and application.

37XXXC PM 3-3

3-3 EXAMPLE 1

This example sequence lists and explains some common 37XXXC operations.

Setup display and sweep frequencies

Send (0,6,"CH2;DSP;MPH;SRT 40 MHZ;STP 20 GHZ",NLend)

■ Setup markers

Send (0,6,"MK1 40 MHZ; MK2 20 GHZ", NLend)

- Read and store current instrument setup
 - □ Request instrument setup string

Send (0,6,"OFP", NLend)

□ Read instrument setup string

Receive (instrSetup, MAXSIZE, STOPend)

□ Get number of bytes transferred3

sizeInstrSetup = IBCNT

NOTE

Program variables *instrSetup* and *sizeInstrSetup* will be used later with the **IFP** command to input the saved setup string.

- Read sweep frequencies
 - ☐ Trigger and wait for full sweep then hold

Send (0,6,"HLD; TRS; WFS", NLend)

□ Wait for operations to complete (See "Wait for Instr()" example, page 3-12.)

WaitForInstr()

□ Request sweep frequencies (**OFV**):

Use floating point (64 bit) binary format (**FMB**), Least Significant Byte first ordering (**LSB** for IBM/compatible PCs only).

Send (0,6,"LSB;FMB;OFV",NLend)

□ Get number of bytes to read:

See Chapter 7, "Data Transfer" section for details on <Arbitrary Block> data transfers and structure of the header used to precede and give number of bytes in data block. (See "Get-NumBytes()" example, page 3-13.)

numBytes = GetNumBytes(address, headerString)

□ Read frequencies

freqArray is a floating point double precision array of up to 1601 elements.

Receive(freqArray, numBytes, STOPend)

3-4 37XXXC PM

□ Check for complete transfer

```
if (numBytes ISNOTEQUALTO IBCNT then
    gpiberr("Could not read freq list correctly")
```

- Reset instrument
 - □ Send reset command

```
Send (0,6,"*RST",NLend)
```

□ Wait for operations to complete (page 3-12)

```
WaitForInstr()
```

- Download and restore a previously saved setup
 - □ Command instrument to receive a setup string. Use "NUL-Lend" (see Chapter 2, paragraph 2-9.)

```
Send (0,6,"IFP ",NLend)
```

NOTE

The space after the **IFP** command is needed to separate it from the setup string, which follows.

□ Send the setup string. Use "NLend" (see Chapter 2, paragraph 2-9.)

```
Send (0,6,(instrSetup, sizeInstrSetup),NLend)
```

□ Check if all data was sent correctly

```
if (sizeInstrSetup ISNOTEQUALTO IBCNT then
   gpiberr("Error sending setup string")
```

■ Select instrument Marker 1 active

```
Send (0,6,"MR1", NLend)
```

- Read measurement trace
 - ☐ Trigger and wait for full sweep then hold

```
Send (0,6,"TRS;WFS;HLD",NLend)
```

□ Wait for operations to complete (page 3-12)

```
WaitForInstr()
```

□ Request trace data:

in final trace graph type values (**OFD**), in floating point (32 bit) binary format (**FMC**). Use Least significant Byte first ordering (**LSB**, for IBM/compatible PCs only)

```
Send (0,6,"LSB;FMC;OFD",NLend)
```

37XXXC PM 3-5

□ Get number of bytes to read (page 3-13)

```
numBytes = GetNumBytes
```

□ Read out the trace data values.

```
Receive(traceData, numBytes, STOPend)
```

Check if all data was transferred

```
if (numBytes ISNOTEQUALTO IBCNT then
   gpiberr("Could not receive data.")
```

□ Calculate number of sweep points in data string POINTSIZE is 8 bytes for data transfers using the **FMB** format and 4 bytes if using the **FMC** format. See Chapter 7, "Data Transfer Commands."

```
numFreqs = numBytes / POINTSIZE
```

■ Put instrument(s) in local to allow use of front panel

```
EnableLocal (board, addressList)
```

3-4 EXAMPLE 2

This example sequence lists and explains 37XXXC commands used for automated 12 Term Calibration.

■ Display instructions to operator on computer screen

```
PRINT "Install 33KFKF Phase Equal Insertable on Port 1"

PRINT "Install 3670K502 Thru Line female side to Port 2"

PRINT "so the new Port 2 is the male end of the thru"

PRINT "Shape the end of the thru so it is near Port 1"

PRINT "(Press a key when ready)"
```

■ Set up calibration parameters

```
Send (0,6,"SCM;LTC;C12;ISN",NLend)
```

Set up calibration frequencies

```
Send (0,6,"DFC;FRS 1 GHZ;FRI 100 MHZ;FRP 41;FIL;DFD",NLend)
```

Set up connectors and loads

```
Send (0,6,"P1C;CFK;P2C;CMK;BBL",NLend)
```

■ Begin calibration data collection

```
Send (0,6,"BEG", NLend)
```

■ Wait for operations to complete (page 3-12)

```
WaitForInstr()
```

3-6 37XXXC PM

■ Instruct operator via the controller screen...

To connect ISOLATION DEVICES between Ports 1 and 2 and wait for him; then measure devices. (See TakeCalData(), pg 3-14).

```
PRINT "Connect ISOLATION DEVICES between Ports 1 and 2"
PRINT "Press ENTER when ready"
TakeCalData()
```

■ Instruct operator via the controller screen....

To connect BROADBAND LOADS between Ports 1 and 2 and wait for him; then measure devices.

```
PRINT "Connect BROADBAND LOADS between Ports 1 and 2."
PRINT "Press a key when ready"
TakeCalData()
```

■ Instruct operator via the controller screen....

To connect OPEN to Port 1 and SHORT to Port 2 and wait for him; then measure devices.

```
PRINT "Connect OPEN to Port 1 and SHORT to Port 2"

PRINT "Press a key when ready"

TakeCalData()
```

■ Instruct operator via the controller screen....

To connect SHORT to Port 1 and OPEN to Port 2 and wait for him; then measure devices.

```
PRINT "Connect SHORT to Port 1 and OPEN to Port 2
PRINT "Press a key when ready"
TakeCalData()
```

■ Instruct operator via the controller screen....

To connect Port 1 and Port 2 with the reminder to NOT INSTALL ADDITIONAL THRU LINES/ADAPTERS BETWEEN PORTS, and wait for him; then measure devices.

```
PRINT "Connect Port 1 and Port 2 but
DO NOT INSTALL ADDITIONAL THRU
LINES/ADAPTERS BETWEEN PORTS
PRINT "Press a key when ready"
TakeCalData()
```

37XXXC PM 3-7

3-5 EXAMPLE 3

This example sequence lists and explains 37XXXC commands for transferring calibration error terms/coefficients.

- Setup a Frequency Response Transmission Calibration.
 - □ Set up calibration parameters

```
Send (0,6,"SCM; LTC; CFT", NLend)
```

□ Set up calibration frequencies

```
Send (0,6,"DFC;FRS 1 GHZ;FRI 100 MHZ;FRP 41;FIL;DFD",NLend)
```

□ Begin calibration data collection

```
Send (0,6,"BEG", NLend)
```

■ Wait for operations to complete (page 3-12)

```
WaitForInstr()
```

Instruct operator via the controller screen...
 To connect THRU LINE between Ports 1 and 2 and wait for him.

```
PRINT "Connect THRU LINE between
Ports 1 and 2"
PRINT "Press ENTER when ready"
```

□ Measure thruline (page 3-12).

TakeCalData()

- □ Read Calibration Coefficient Data from instrument and store the 488.2 data transfer header which is useful for sending the same size data array back to the 37XXXC later. Also calculate and store the number of frequency points read in.
- □ Request the error term/coefficient array (**OC1**) in 64 bit Floating Point format (**FMB**), Least Significant Byte order (**LSB**, for PCs only). See Chapter 7, "Data Transfer Commands" for the error terms returned by the OCx series commands.

```
Send (0,6,"LSB;FMB;OC1",NLend)
```

□ Get number of bytes contained in the data string and store the header read from the 37XXXC into calHeader (string of characters). See GetNumBytes(), page 3-13.

```
numBytes = GetNumBytes(address, calHeader)
```

□ Read calibration data values calData is an 82 element double precision floating point array.

```
Receive(calData, numBytes, STOPend)
```

3-8 37XXXC PM

□ Check if all data was transferred

□ Store number of calibration data bytes transferred

```
calDataSize = IBCNT
```

□ Calculate number of frequency points in the data trace if desired. POINTSIZE is 8 bytes for data transfer using the **FMB** format. See Chapter 7, "Data Transfer Commands." The division by two is because each data point represents a complex data pair (real, imaginary).

```
numFreqs = (CalDataSize / 2) / POINTSIZE
```

- Send Calibration Coefficient Data to instrument
 - □ Simulate a Transmission Calibration
 Command the 37XXXC to apply transmission calibration coefficients to data (**AFT**), then input the calibration coefficient array for transmission error term (**IC1**), in 64 bit Floating Point format (**FMB**), Least Significant Byte order (**LSB**, for use with PCs only). Use "NULLend" (see Chapter 2, paragraph 2-9.)

```
Send (0,6,"AFT; LSB; FMB; IC1", NLend)
```

NOTE

Note the space after the **IC1** command; it is needed to separate it from the calibration coefficient data array, which follows.

□ Send cal coefficient #1 data transfer header (same one that was received from the **OC1** transfer). Use "NULLend" (see Chapter 2, paragraph 2-9.)

```
calHeaderSize = LENGTHOFSTRING(calHeader)
Send (0,6, (calHeader, calHeaderSize, NULLend), NLend)
```

NOTE

Consult your compiler documentation for a function that returns length of a string.

□ Check for proper transfer

```
if (CalHeaderSize ISNOTEQUALTO IBCNT) then
   gpiberr("Data not sent properly")
```

□ Send cal coefficient #1 data. Use "NLend" (see Chapter 2, paragraph 2-9.)

```
Send (0,6, (calData, calDataSize), NLend)
```

37XXXC PM 3-9

□ Check for proper transfer

```
if (calDataSize ISNOTEQUALTO IBCNT1 then
    gpiberr("Data not sent properly")
```

□ Wait for operation to complete (page 3-12)

WaitForInstr()

□ Turn on/apply error correction

Send "CON"

3-6 EXAMPLE 4

This is an example sequence showing data string input to the 37XXXC. The string sent below is used to set hardcopy data output labels.

The 37XXXC requires the double quote characters ("") to delimit ASCII strings being sent to it. That is, to send a string called *mystring* you would actually send "*mystring*". This presents a problem since programming languages also delimit a character string with double quotes. In order to send the 37XXXC a quote (") as a regular character, you must precede it with the backslash (\) character in the C language and with a quote character (") in BASIC.

NOTE

A 37XXXC ASCII string may also be delimited using a single quote character () at the beginning and end of the string. In which case, the backslash (\setminus) for C and the double quote (") in BASIC are not required.

■ Define DUT Model in the data label.

The following command sequence needs to be sent to the 37XXXC:

```
LMS "4 8 FILTER"
```

☐ If using C use this syntax

```
Send (0,6, "LMS \"4 8 FILTER\"", NLend)
```

☐ If using BASIC use this syntax

```
Send (0,6,"LMS ""4_8_FILTER""",NLend)
```

□ Here the same command sequence can be sent with the single quotes (' ') without the need for additional character as above.

```
Send (0,6,\text{``LMS '4}_8_\text{FILTER'''},\text{NLend})
```

■ If shutting down the GPIB immediately after this series of commands, then you must also make the controller wait for the 37XXXC to completely receive this data before shut down.

```
WaitForInstr()
```

3-10 37XXXC PM

3-7 EXAMPLE 5

This example sequence lists and explains 37XXXC commands for 37XXXC internal disk operations.

■ Sweep, and store channel 1 trace data to memory

```
Send (0,6,"CH1;S11;CH3;S21;WFS;CH1;STD",NLend)
```

Store trace memory data to hard disk The following command sequence needs to be sent to the 37XXXC:

```
Send (0,6,"SAVE 'C:\CH1_S21.NRM'",NLend)
```

■ Wait for operations to complete (page 3-12)

```
WaitForInstr()
```

■ Output channels 1 Tabular Data to instrument floppy disk

```
Send (0,6,"SAVE 'A:\CH1_S21.DAT'",NLend)
```

■ Wait for operations to complete

```
WaitForInstr()
```

■ Save Front Panel and Calibration setup to hard disk

```
Send (0,6,"SAVE 'C:\SETUP1.CAL'", NLend)
```

Wait for operations to complete

```
WaitForInstr()
```

■ Reset system to default state

```
Send (0,6,"*RST",NLend)
```

■ Recal Front Panel and Calibration setup from hard disk

```
Send (0,6,"RECALL 'C:\SETUP1.CAL'", NLend)
```

Wait for operations to complete

```
WaitForInstr()
```

■ Recall channel trace/noramlization data from hard disk to CH3

```
Send (0,6,"CH3; RECALL 'C:\CH1 S21.NRM'; WFS", NLend)
```

■ Wait for operations to complete

```
WaitForInstr()
```

■ Delete channel 1 trace/normalization data file from hard disk

```
Send (0,6,"DEL 'C:\CH1_S21.NRM'",NLend)
```

■ Wait for operations to complete

```
WaitForInstr()
```

37XXXC PM 3-11

3-8 EXAMPLE PROCEDURE

This example sequence provides coding for the Wait for Instr () procedure used earlier in this chapter's example sequences.

NOTE

Do not use this procedure if the instrument was commanded to output data that has yet to be read by the program since the *OPC? query will, in itself, output data (the character "1")when done with previous operation.

■ Set GPIB time out limit to insure enough time is allowed for instrument operations to complete. See ibtmo() in the NI488 documentation for details.

```
ibtmo(instrument handle, T1000s)
```

■ Send the Operation Complete query

```
Send (0,6,"*OPC?", NLend)
```

■ Wait for instrument to output the ASCII character "1"

```
numBytes=1
Receive(buffer, numBytes, STOPend)
```

■ Restore default time out limit

```
ibtmo(instrument handle, T10s)
```

3-12 37XXXC PM

3-9 EXAMPLE FUNCTION 1

This example sequence provides coding for the ${\tt GetNumBytes}()$ function used earlier in this chapter's example sequences.

GetNumBytes() reads the 37XXXC output buffer and returns the number of data bytes to be transfered in the ensuing <Arbitrary Block> data string (see Chapter 7, "Data Transfers"). It does this by reading out and decoding the string data header. It will copy the header read out of the 37XXXC into headerString so the calling program can use it in cases where the same data block will be sent back to the 37XXXC, i.e. OC1/IC1.

NOTE

Consult your programming language documentation for string functions to copy, concatenate, and return value of string.

■ Read the first byte in the instrument output buffer. Buffer is a temporary array of characters of size 10.

```
numBytes = 1
Receive(buffer, numBytes, STOPend)
```

■ Check to be sure it is the "#" character then copy it to header— String

```
if (buffer[0] ISNOTEQUALTO '#') then
  gpiberr("Invalid data string")
else COPY(buffer, headerString)
```

Read second header byte from the instrument output buffer and append it (concatenate) to headerString

```
numBytes = 1
Receive(buffer, numBytes, STOPend)
CONCATENATE(buffer, headerstring)
```

■ Save the buffer value as a number...

```
numBytes = VALUEOF(buffer)
```

NOTE

This number is the next set of bytes to read. Those bytes when taken as a number will yield the number of actual data bytes contained in the binary string.

■ Read the number of bytes indicated by numBytes and append them (concatenate) to headerString

```
Receive(buffer, numBytes, STOPend)
CONCATENATE(buffer, headerString)
```

Save the buffer value as a number numBytes = VALUEOF(buffer)

NOTE

numBytes is the number of bytes, of actual data requested, waiting in the output buffer of the 37XXXC.

37XXXC PM 3-13

■ Return number of bytes to calling program

Return numBytes

NOTE

At this point headerString is exactly the same as the data transfer header output by the 37XXXC. Recall that this is useful to the calling program in cases where the same data read out is to be sent back to the instrument.

3-10 EXAMPLE PROCEDURE 2

This example sequence provides coding for the TakeCalData() procedure used earlier in this chapter's example sequences.

The TakeCalData() procedure will wait for the operator to press a key on the computer then measure the cal standard installed.

■ Wait for operator to press a key on computer when he is ready

WAITUNTIL (key is pressed)

NOTE

Consult your compiler documentation for a function that waits for a key to be pressed.

■ Take cal data then go on to next calibration step

Send (0,6,"TCD; NCS", NLend)

■ Wait for operation to complete (page 3-12)

WaitForInstr()

3-14 37XXXC PM

Part 2 GPIB Function Groups

This part consists of six chapters that relate the 37XXXC GPIB commands to functional groups. Tables within each group provide command descriptions and relationships to front panel keys and their associated menu functions.

- **Chapter 4** describes the commands and suffix mnemonics that relate to Measurement Functions.
- **Chapter 5** describes the commands that relate to Calibration Functions.
- **Chapter 6** describes the commands that relate to Markers and Limits Functions.
- **Chapter 7** describes the commands that relate to Remote-Only Functions.
- **Chapter 8** describes the commands that relate to System Functions.
- **Chapter 9** describes the commands that relate to Special Applications Functions.

Chapter 4 Measurement Functions

Table of Contents

4-1	INTRODUCTION
4-2	SUFFIX CODES
4-3	CHANNELS GROUP
4-4	DISPLAY GROUP
	Display Mode Function:
	Trace Memory Function:
	Limits Function:
	Scale Functions:
	Graph Type Functions:
4-5	MEASUREMENT GROUP
4-6	ENHANCEMENT GROUP 4-12

Chapter 4 Measurement Functions

4-1 INTRODUCTION

This chapter describes the measurement function commands (and suffix mnemonics) that control the channel control, measurement control, display control, and enhancement group functions.

NOTE

See Chapter 10, Special Applications Functions for measurement applications.

4-2 SUFFIX CODES

Many 37XXXC GPIB commands require a following numeric value (or values) that quantify the 37XXXC operational parameters being controlled (i.e., frequency, power, etc). These numeric values are scaled to the following units as appropriate:

DECIBELS METERS SECONDS
DEGREES OHMS VOLTS

HERTZ

All numeric data entries can be followed by an optional suffix mnemonic (see example). The suffix mnemonics for the 37XXXC are listed in Table 4-1. These mnemonics define a weighting factor that is applied to the associated numeric data value. (They perform the same function as the data entry termination keys on the 37XXXC front panel.) Furthermore, suffix mnemonics imply unit type, thus enhancing the readability of application programs.

Example: "SRT 2 GHz"

37XXXC PM 4-3

 Table 4-1.
 Numeric Data Suffix Mnemonics

Code	Parameter Type	Weighting Factor
DB, DBL, DBM	Power	1.0
DEG	Phase	1.0
RAD	Phase	180 /
HZ	Frequency	1.0
KHZ	Frequency	10E+3
MHZ	Frequency	10E+6
GHZ	Frequency	10E+9
REU	Real	1.0
IMU	Imaginary	1.0
S	Time	1.0
MS	Time	10E-3
US, USC	Time	10E-6
NS, NSC	Time	10E-9
PS, PSC	Time	10E-12
FS	Time	10E-15
M, MTR	Distance	1.0
CM, CMT	Distance	10E-2
MM, MMT	Distance	10E-3
OHM	Impedance	1.0
V, VLT	Voltage	1.0
MV	Voltage	10E-3
K, KS	Temperature	Degrees Kelvin
XM3	Unitless	10E-3
XX1	Unitless	1.0
XX3	Unitless	10E+3

4-4 37XXXC PM

4-3 CHANNELS GROUP

The commands listed in Table 4-2 perform two separate sets of functions:

- □ Select the currently active channel (CH1–CH4). The active channel is that channel to which any subsequent channel-based commands are applied.
- □ Select single or multi-channel display mode (commands D13, D14, D24, DSP, T13, and T24). Commands T13 and T24 each produce a single display frame containing overlaid traces for the two channels specified.

Table 4-2. Channel Command Group

Front Panel Key/Function	Command	Description
Ch1 key	CH1	Selects channel 1 as active channel.
Ch2 key	CH2	Selects channel 2 as active channel.
Ch3 key	CH3	Selects channel 3 as active channel.
Ch4 key	CH4 CHX?	Selects channel 4 as active channel. Active channel query.
Display Key/menus,	D13	Selects dual channel display, channels 1 & 3.
Display Mode, Display Mode menus	D14	Selects quad display, all four channels.
wode menus	D24	Selects dual channel display, channels 2 & 4.
	DSP	Selects single channel display, using the currently active channel.
	DSP?	Channel display mode query.
	T13	Selects overlaid dual channel (1 & 3) display (one display frame).
	T24	Selects overlaid dual channel (2 & 4) display (one display frame).

37XXXC PM 4-5

4-4 DISPLAY GROUP

The Display key offers menu selections that provide Display Mode, Trace Memory, Limits, Scale, and Graph Type functions, all of which are described below.

Display Mode Function:

This function provides selections for the display mode: Single, Dual 1&3, Dual 2&4, Overlay 1&3, Overlay 2&4, or Four Channel.

Trace Memory Function:

This function provides a sequence of menus that provide memory and math functions. Memory functions allow viewing of Data, Memory, Data & Memory, Data times Memory, Store Memory, and Disk Operations. Math functions provide Add, Substract, Multiply, and Divide operations.

Limits Function:

This function is closely related to the Marker key functions; therefore, it is described in Chapter 7, along with markers.

Scale Functions:

This function provides for resolving measurement values. There are selections for Log or Linear Magnitude, Phase, Smith Chart, Group Delay, Real or Imaginary. The operation of these commands are obvious, except for SCL, REF, and OFF.

SCL Command

This command sets the scaling-per-division characteristics of the graph on the active channel. The associated data value determines the resultant scaling factor. The SCL command can also be used to set the scaling on Smith chart type display as follows:

VALUE	SCALING
-3	Sets a 3 dB compressed scale
0	Sets the normal Smith chart scale
10	Sets a 10 dB expanded scale
20	Sets a 20 dB expanded scale
30	Sets a 30 dB expanded scale

REF Command

This command selects the graticule line of the active channel data display on which to place the "REFERENCE LINE." The Reference Line is the graticule line to which the caret points on the 37XXXC display, or graph. (Lines 0, 4, and 8 are the bottom, middle, and top of the graph respectively.)

NOTE

There is no reference line defined for Smith charts, inverted Smith charts, and linear polar or log polar displays.

OFF Command

This command sets the value of the offset associated with the "REFER-ENCE LINE" in the data graph display.

4-6 37XXXC PM

Changing the scaling-per-division (SCL), the Reference Line position (REF), or the offset value (OFF) in the bottom (secondary) graph of a two graph display is accomplished by using the appropriate suffix mnemonic for that graph, as shown in the table below. For example: to set the scaling value for the phase display of a log/phase type graph, use:

"SCL 20 DEG".

Command		Graph Type	
	Log Mag / Phase	Lin Mag / Phase	Real / Imaginary
SCL/OFF	DEG / RAD	DEG / RAD	IMU
REF	DEG	DEG	IMU

Graph Type Functions:

This function provides for selecting any of the various type of display graphs: Log or Linear Magnitude, Phase, Real, Imaginary, Log or Linear Polar, Smith Chart (Impedance), Smith Chart (Admittance), Group Delay, Power Out, SWR, Log Magnitude and Phase, Linear Magnitude and Phase, Real and Imaginary.

The usage of most of these commands is obvious, except SME, ISE, SMC and ISC.

NOTE

All the commands in the Display Group act on the currently selected active channel (see paragraph 4-3, Channels Group).

Both the SME and ISE commands require an associated data value to be included with the command (Table 4-3). The allowable data values for these commands are: 0, 10, 20, and 30. The example below selects a 20 dB expanded Smith chart on the active channel.

Example: "SME 20 DBL"

Commands SMC and ISC also require an associated data value to be included with the command. The allowable data values for these commands are 0 and 3. The example below selects a 3 dB compressed Smith chart on the active channel.

Example: "SMC 3 DBL"

The Display key commands are listed in Table 4-3.

37XXXC PM 4-7

 Table 4-3.
 Display Group Commands (1 of 3)

Command	Description
ADD	Select addition as trace math for active channel
APR	Enter group delay aperture setting on active channel
APR?	Output group delay aperture setting on active channel
ASC	Autoscale the active channel display
ASP	Enter polar stop sweep position angle
ASP?	Output polar stop sweep position angle
AST	Enter polar start sweep position angle
AST?	Output polar start sweep position angle
DAT	Display data only on active channel
DAT?	Output trace memory display mode
DIA	Select air as active dielectric
DIE	Enter a dielectric value
DIM	Select microporous teflon as active dielectric
DIP	Select polyethylene as active dielectric
DIT	Select Teflon as active dielectric
DIV	Select division as trace math for active channel
DIX?	Output dielectric constant
DLA	Select group delay display for active channel
DNM	Display data normalized to trace memory on active channel
DTM	Display measurement data and trace memory on active channel
GRF?	Output graph type for active channel
IMG	Select imaginary display for active channel
ISC	Enter scale and select inverted compressed Smith Chart display
ISE	Enter scale and select inverted expanded Smith Chart display
ISM	Select normal inverted Smith Chart for active channel
LIN	Select linear magnitude display for active channel
LPH	Select linear magnitude and phase display for active channel
MAG	Select log magnitude display for active channel
MEM	Display trace memory on active channel
MIN	Select subtraction as trace math for active channel
MOSET	Enter constant offset log magnitude for active channel
MOSET?	Output constant offset log magnitude for active channel
MPH	Select log magnitude and phase display for active channel
MTH?	Output trace math math type
MUL	Select multiplication as trace math for active channel
OFF	Enter offset value for top graph of active channel
OFF2	Enter offset value for bottom graph of active channel
OFF2?	Output offset value for bottom graph of active channel
OFF?	Output offset value for top graph of active channel
PCP	Select measurement phase polar chart mode
PCS	Select sweep position polar chart mode
PCX?	Output polar chart mode
PHA	Select phase display for active channel
PHO	Enter phase offset for display channel
PHO?	Output phase offset for display channel
PLG	Select log polar display for active channel
PLR	Select linear polar display for active channel
POSET	Enter constant offset phase for active channel

4-8 37XXXC PM

 Table 4-3.
 Display Group Commands (2 of 2)

Command	Description
POSET?	Output constant offset phase for active channel
POW	Select power out display for active channel
RDA	Select automatic reference delay calculation
RDD	Enter reference delay in distance for active channel
RDD?	Output reference delay in distance for active channel
RDT	Enter reference delay in time for active channel
RDT?	Output reference delay in time for active channel
REF	Enter reference line for top graph of active channel
REF2	Enter reference line for bottom graph of active channel
REF2?	Output reference line for bottom graph of active channel
REF?	Output reference line for top graph of active channel
REL	Select real display for active channel
RIM	Select real and imaginary display for active channel
SCL	Enter Scale Resolution for top graph of active channel
SCL2	Enter Scale Resolution for bottom graph of active channel
SCL2?	Output Scale Resolution for bottom graph of active channel
SCL?	Output Scale Resolution for top graph of active channel
SETUP	Display setup menu
SMC	Enter scale and select compressed Smith Chart display
SME	Enter scale and select expanded Smith Chart display
SMI	Select normal Smith Chart for active channel
STD	Store trace to memory on active channel

4-5 MEASUREMENT GROUP

The commands listed in Table 4-4 control sweep and test signal functions. This inicludes frequency, power, attenuation, Hold functions, and Trigger/IF calibration.

 Table 4-4.
 Measurement Group Commands (1 of 3)

Command	Description
AH0	Turn automatic DUT protection off
AH1	Turn automatic DUT protection on
AHX?	Output automatic DUT protection on/off status
BH0	Turn bias off while in hold
BH1	Turn bias on while in hold
BHX?	Output bias on/off during hold status
CNTR	Enter center frequency
CNTR?	Output center frequency
CTN	Continue sweeping from current point
CWDEC	Subtract 1 from the current CW index
CWF	Enter CW frequency and turn CW on
CWF?	Output CW frequency
CWI	Enter index for CW frequency and turn CW on
CWI2F?	Output frequency for index given
CWI?	Output current index number
CWINC	Add 1 to the current CW index
CWN2I	Add N to the current CW index

37XXXC PM 4-9

 Table 4-4.
 Measurement Group Commands (2 of 3)

Command	Description
CWON	Turn CW on at current CW frequency
CWON?	Output CW on/off status
CWP	Enter number of points drawn in CW
CWP?	Output number of points drawn in CW
CWSRT	Set CW frequency to the start frequency
CWSTP	Set CW frequency to the stop frequency
EANAIN	Measure External Analog In on active channel
FHI	Set data points to 1601
FIL	Fill defined discrete frequency range
FLO	Set data points to 101
FME	Set data points to 401
FP0	Turn flat power correction off
FP1	Turn flat power correction on
FRC	Clear all defined discrete frequency ranges
FRI	Enter Discrete Fill increment frequency
FRP	Enter Discrete Fill number of points
FRS	Enter Discrete Fill start frequency
HC0	Disable internal IF calibration
HC1	Enable internal IF calibration and trigger an IF calibration
HCT	Trigger an IF calibration
HCX?	Output internal IF calibration enable/disable status
HLD	Put sweep into hold mode
HLD?	Output the sweep hold status
IFP	Enter current front panel setup
IFV	Enter requency values
IS1	Enter front panel setup 1
IS10	Enter front panel setup 10
IS2	Enter front panel setup 2
IS3	Enter front panel setup 3
IS4	Enter front panel setup 4
IS5	Enter front panel setup 5
IS6	Enter front panel setup 6
IS7	Enter front panel setup 7
IS8	Enter front panel setup 8
IS9	Enter front panel setup 9
LA1	Select a1 = Ra as phase lock for parameter being defined
LA2	Select a2 = Rb as phase lock for parameter being defined
LAX?	Output phase lock selection for parameter being defined
NP101	Set data points to 101
NP1601	Set data points to 1601
NP201	Set data points to 7001
NP401	Set data points to 401
NP51	Set data points to 401
NP801	Set data points to 81
ONDF	Output number of discrete frequencies
PTP	Enter the target power for flat power correction
PTP?	Output the target power for flat power correction
PW1	Enter external source 1 power level
PW1?	Output external source 1 power level

4-10 37XXXC PM

 Table 4-4.
 Measurement Group Commands (3 of 3)

Command	Description
PW2	Enter external source power level
PW2?	Output external source power level
PWR	Enter internal source power level
PWR?	Output internal source power level
RH0	Select RF off in hold mode
RH1	Select RF on in hold
RHX?	Output RF on/off during hold status
RT0	Turn retrace rf off
RT1	Turn retrace rf on
RTX?	Output retrace rf on/off status
S11	Measure S11 on active channel
S12	Measure S12 on active channel
S21	Measure S21 on active channel
S22	Measure S22 on active channel
SA1	Enter port 1 source attenuator value
SA1?	Output port 1 source attenuator value
SA1MAX?	Output port 1 source attenuator max value
SAMP2	Use 2 samplers for measurements
SAMP3	Use 3 samplers for measurements
SAMP?	Output the number of samplers used for measurements
SELSP	Select S-Parameter test set operation
SPAN	Enter frequency span
SPAN?	Output frequency span
SRC2?	Output external source 2 existence information
SRT	Enter start frequency
SRT?	Output start frequency
STP	Enter stop frequency
STP?	Output stop frequency
SWP	Return to normal sweep mode
SWP?	Output sweep mode
SWPDIR?	Output instantaneous sweep direction forward/reverse
SXX?	Output s parameter or user defined parameter of active channel
TA2	Enter port 2 test attenuator value
TA2?	Output port 2 test attenuator value
TA2MAX?	Output port 2 test attenuator max value
TEX	Select external measurement triggering
TIN	Select internal measurement triggering
TRS	Trigger/restart sweep
TXX?	Output trigger source
WFS	Wait full sweep until all display data is valid

37XXXC PM 4-11

4-6 ENHANCEMENT GROUP

The commands listed in Table 4-5 control the data enhancement functions of the 37XXXC, which include IF bandwidth, averaging, and smoothing. These functions are the same as those controlled by the 37XXXC front panel Enhancement key group.

NOTE

Most of the commands associated with the Options Menu key are contained in Chapter 9, Special Applications Functions. However, the Triggers and I.F. Cal commands are contained in Table 4-4 in paragraph 4-5, Measurement Control.

 Table 4-5.
 Enhancement Group Commands (1 of 1)

Command	Description
AOF	Turn averaging off
AOF?	Output averaging on/off status
AON	Turn averaging on
AVG	Enter averaging count and turn on
AVG?	Output averaging count
IF1	Select 10 Hz IF bandwidth
IF2	Select 100 Hz IF bandwidth
IF3	Select 1 KHz IF bandwidth
IF4	Select 10 KHz IF bandwidth
IFA	Select 30 KHz IF bandwidth
IFM	Select 10 Hz IF bandwidth
IFN	Select 1 KHz IF bandwidth
IFR	Select 100 Hz IF bandwidth
IFX?	Output IF bandwidth
SOF	Turn off smoothing
SOF?	Output smoothing on/off status
SON	Enter smoothing value and turn on
SON?	Output smoothing value
SPLN	Select normal source lock polarity
SPLR	Select reverse source lock polarity
SPLX?	Output source lock polarity normal/reverse status
SPR0	Turn spur reduction off
SPR1	Turn spur reduction on
SPRX?	Output spur reduction on/off status

4-12 37XXXC PM

Chapter 5 Calibration Functions

Table of Contents

5-1	INTRODUCTION
5-2	RELATED COMMANDS
5-3	REQUIRED COMMAND SEQUENCE 5-4
5-4	FUNCTIONAL COMMANDS
5-5	EXAMPLE PROGRAM
5-6	FLAT TEST PORT
5-7	CALIBRATION COMMANDS 5-11
5-8	AUTOCAL FUNCTIONS

Chapter 5 Calibration Functions

5-1 INTRODUCTION

This chapter describes the 37XXXC S-Paremter error correction (calibration) functions. It describes the commands used to perform the following:

- □ Specify the calibration method, type, standards, and parameters.
- □ Control the calibration data-taking process.

NOTES

See Measurement/Test Signals Group for a description of the flat test port power calibration commands.

The 37XXXC calibration functions require operator intervention. However, it is possible to use the external controller to guide the operator through the calibration process using a suitable program containing the calibration commands described in this chapter.

5-2 RELATED COMMANDS

Related, non-calibration commands used during the calibration process are described in Table 5-1. The use of these commands, in relation to calibration activities, is described throughout this chapter, where appropriate. These command sets are fully described in their respective chapters as indicated in Table 5-1.

NOTE

See **ICx** and **OCx** series commands in the Data Transfer group (Chapter 7) for information on inputting and outputting calibration terms coefficients (error terms).

37XXXC PM 5-3

Table 5-1. Related Commands

Command	Command Function Group
FHI, FLO, FME NP51-NP1601	Measurement Group, Data Points (Ch 5)
SRT, STP, CWF, DFQ, DFD, FRS, FRI, FRP, FIL, FRC	Measurement Group, Frequency (Ch 5)
IFV, ICx, OCx	Data Tranfer Group (Ch 8)
*OPC, *OPC?	IEEE 488.2 Group, Synchronization (Ch 8)
All	Measurement, Test Signals (Ch 5)
All	Display, Graph Type (Ch 5)
All	Display, Scaling (Ch 5)
AVG, AOF. AON	Enhancement, Averaging (Ch 5)
IFA, IFN, IFR, IFM, IF1–IF4	Enhancement, Video IF Bandwidth (Ch 5)
CH1-CH4	Channels Group (Ch 5)

5-3 REQUIRED COMMAND SEQUENCE

A program used to control the calibration process $\it must$ follow a specific order for the GPIB calibration commands that are used. Table 5-2 lists this acceptable order.

5-4 37XXXC PM

Table 5-2. Calibration Command Ordering

Order	Item	Typical Commands Used
1	Calibration Type	C12, C8R, C8T, CRB, CRF, CRR, CBT, CFT, CRT
2	Calibration Method	SCM, OCM, LCM, TCM
3	Line Type	LTC, LTW, LTU
4	Isolation Usage	ISN, ISF
5	Data Points	NOC, DFC, TDC, CWC
6	Frequency:* Sweep Discrete Fill User Defined List** CW	SRT, STP DFQ, DFD, FRS, FRI, FRP, FIL, FRC, IFV
7	Test Port Connector Connector Type User Defined Connector Offset-Short Values	P1C, P2C CMS, CFS, CMK, CFK, CMV, CFV, CMC, CFC, CM2, CF2, CMN, CFN, CM3, CF3, CNG CND, COO, COS, CC0, CC1, CC2, CC3, CL0, CL1, CL2, CL3 SH1, SH2
8	Reflection Pairing	MAT, MIX
9	Load Type/Parameters	SLD, BBL, BBZ, BBZL
10	Through Parameters	TOL, TLZ
11	LRL Band	LR2, LR3
12	LRL Parameters	RM1, RRP, LL1, LL2, LL3, LM2, LM3, BPF, ROL, RLZ, RGZ
13	Reference Impedance	LLZ
14	Test Signals*	PWR, SA1, TA2
15	Flat Test Port Calibration *	PTP, PTS, SFC, FP0, FP1
16	Microstrip Parameters	U10, U15, U25, USW, SBT, SBD, USE, USZ
17	Waveguide Param's	WKI, WKD, WCO, WSH1, WSH2
18	Begin Calibration (Data Collection)	BEG
19	Take Cal Data	TCD, TC1, TC2
20	Next Cal Step	NCS

Refer to Chapter 5, "Measurement Group" for details on these commands.

37XXXC PM 5-5

^{**} See Chapter 8, Measurement Points Data Transfer Commands) CWF

5-4 FUNCTIONAL COMMANDS

Commands used for special types of calibrations are described in Table 5-3. The commands are used to invoke options and non-standard calibration procedures, and to simulate a calibration process.

 Table 5-3.
 Functional Commands Listing (1 of 2)

Command	Function	Description
NOC	Specify Normal Sweep Calibration	This command sets up a normal frequency range calibration.
DFC	Specify Discrete Frequency Calibration	This command sets up a calibration at discrete frequencies only. Use discrete fill commands to input frequency list for calibration. Refer to Chapter 5, Measurement Functions, paragraph 5-4.
		Alternatively, the IFV command allows for a frequency list input of calibration frequencies. Refer to "Data Transfer Commands Group (Chapter 8)," for more details.
CWC	Specify CW Calibration	This command sets up a continuous wave (CW) calibration. Use CWF to input CW frequency.
P1C, P2C	Set up to Specify Port 1 (PIC) or Port 2 (P2C) Standards	This command specifies Port 1 or Port 2 as the port to which subsequent connector-related commands will apply. Example: "P1C;CFK;P2C;CMK"
		This sequence of commands sets up a female K connector for port 1 (P1C CFK) and a male K connector for port 2 (P2C CMK).
CND	Other Connector Specification	This command allows a non-standard connector to be specified. This is the same as selecting OTHER from the front panel menu. When specifying the CND command, the connector offset for the open and/or short device and the capacitance coefficients for the open device also need to be entered to characterize the connector.
SLD, BBL	Specify Sliding Load or Broad Band Load for Cali- bration	Thie SLD command specifies a sliding load. The data-taking process for the load includes six slide positions. If any frequencies are below 2 GHz, you must also use a broadband load.
LM2, LM3		These commands are used to select a match for the second or the third device respectively during a LRM type calibration.
A12, A8T, A8R, ARF, AFT, ARB, ARR, ABT,	Calibration simulation	These commands simulate the completion of a calibration. The Axx series commands must be followed with the corresponding calibration error term coefficients using the ICx commands (see Chapter 8).
ART		The Axx series commands match up with corresponding calibration type commands. For example, A12 simulates C12, A8T simulates C8T, etc.
		NOTE
		If you attempt to apply a calibration without first having entered calibration coefficient data, the error correction may not be applied (as indicated by the Apply Cal LED being momentarily turned on, then off).

5-6 37XXXC PM

 Table 5-3.
 Functional Commands Listing (2 of 2)

Command	Function	Description
CON, COF	Turn on/off vector error correction	These commands are not used during calibration. They are used during normal measurements to apply the current calibration error correction to the measured data (CON) or to turn off error correction calibration (COF).
BEG, TC1, TC2, TCD, NCS, KEC, RPC	Calibration Sequencing and Control commands	These commands are used to start and control the data-taking process. KEC will keep existing calibration error corrections and return to the measurement mode. Command TC1 takes calibration data for the current (calibration) standard for port 1 using a separate forward measurement sweep. Command TC2 performs the same function for port 2 using a separate (reverse) sweep. (Note that command TCD performs these identical operations, using consecutive forward and reverse measurement sweeps.) Using the TC1 and TC2 commands allows one calibration standard of each type to be used for both ports.
U10, U15, U25	Calibration Kit selection commands	These commands are used to select 10, 15, or 25 mil UTF calibration kits respectively. These calibration kits are used to perform a 37XXXC calibration for microstrip device measurements.
MAT, MIX	Load match for Reflection devices measurement sequences	The MAT (MATched) command changes the measurement sequence for the standard 12 term, coaxial, two-channel calibration so that the "open" measurements are performed in sequence, followed by the "short" measurements. The MIX (MIXed) command returns to the normal sequence for a two-channel 12 term calibration.

37XXXC PM 5-7

5-5 EXAMPLE PROGRAM

The following is an example of how to set up a calibration sequence for the 37XXXC VNA:

"SCM;LTC;C12;DFC;FRS 1.0 GHZ;FRI 100 MHZ;FRP 41 XX1; FIL;DFD;P1C;CFK;P2C;CMK;BBL;BEG"

This example code sets up a calibration using standard calibration mode (SCM), coax cable media (LTC), and 12-term calibration type (C12). A discrete set of points is defined for frequency operation starting at 1 GHz (FRS 1.0 GHZ), spaced 100 MHz apart (FRI 100 MHZ), at 41 consecutive points (FRP 41 XX1). This range is confirmed or "filled" (FIL), then completed (DFD).

The Port 1 test port connector is defined as a female type K connector (P1C CFK) and the Port 2 test port connector is defined as a male K type connector (P2C CMK). Broadband loads are selected as the default load type (BBL). The BEG command instructs the 37XXXC to begin the calibration-data-taking-process.

The calibration control program should contain commands to control the data-collection portion of the calibration process. Typical commands used for this process are:

- □ Take Calibration Data for Current Standard (**TCD**, or **TC1**, or **TC2**)
- ☐ Go on to the Next Calibration Step (NCS)
- □ Averaging On and Set to Value (AVG)
- □ Set IF Bandwidth to 10 Hz (**IF1**)
- □ Set IF Bandwidth to 100 Hz (**IF2**)
- □ Set IF Bandwidth to 1 KHz (**IF3**)
- □ Set IF Bandwidth to 10 KHz (**IF4**)
- ☐ Any Graph Type Specification or Scaling Change
- □ Active Channel Specification (**CH1-CH4**)

The TCD (or **TC1**, or **TC2**) and **NCS** commands control the data-taking process. Commands **AVG**, **IFN**, **IFR**, **IFA**, and **IFM** control the data-enhancement function used for a particular measurement (refer to Chapter 3, paragraph 5-6, Enhancement Commands).

Before the **TCD** (or **TC1**, or **TC2**) and **NCS** commands are invoked in the program, the system operator must be instructed to perform the *exact* steps necessary to setup the calibration sequence for the type of 37XXXC calibration to be used. An example program segment to continue the 12-term calibration started in the previous example is shown on the next page. This example program segment is written in HP-BASIC.

The calibration control program should determine if the 37XXXC is ready for the next step of the calibration sequence before prompting the system operator to connect new calibration standards to the test

5-8 37XXXC PM

ports. This can be done by monitoring the status byte of the 37XXXC or by waiting for the operation to complete after executing the **NCS** command.

For example, the commands in the following example instruct the 37XXXC to take calibration data (**TCD**), go to the next calibration step (**NCS**), then output the number "1" (***OPC?**). When the controller is able to read the number "1" from the 37XXXC, the calibration step is complete.

260 OUTPUT 706; "TCD; NCS; *OPC?"

270 ENTER 706; N\$! READ AND DISCARD ASCII '1' WHEN

STEP IS COMPLETE

280 DISP "CALIBRATION STEP COMPLETE"

5-6 FLAT TEST PORT

Signal source power correction data produced during this type of 37XXXC calibration is used to flatten the signal power output from the test set port(s) over a specified frequency range. This feature is used to provide flat test stimulus signals to the device-under-test while performing normal measurements.

This process requires operator intervention. The system operator is guided through a sequence of operations and measurements that make up the flat test port calibration sequence. Before attempting to write a GPIB controlled program to produce this calibration sequence, first become thoroughly familiar with the manual procedure.

Flat test port calibrations require considerable time to perform. The time required is dependent upon the number of points selected; For these calibrations, the GPIB timeout value must be increased accordingly, or the control program must generate an appropriate time delay before executing subsequent commands. See the documentation for your GPIB controller for timeout-setting procedures.

The commands listed in Table 5-4 are used to invoke and control flat test port calibrations.

Flat Test Port Power Calibration Coefficients

The coefficients are input and output using the following codes:

□ IFPC – Enter the power sweep linearity calibration coefficients
 □ OFPC – Output the power sweep linearity calibration coefficients

These codes would be useful in applications where there is no power meter to hook up to the 37000 to perform the calibration normally, or the power meter is not one of the ones that the 37000 has been programmed to interface with.

The code OFPC outputs an arbitrary block of binary or ASCII data depending on the output mode selected with the codes FMA, FMB, FMC,

37XXXC PM 5-9

LSB and MSB. See the description of these codes in Chapter 10. See Chapter 10, paragraph 10-3 for a description of the arbitrary block format. Each coefficient represents the adjustment in dB (correct to a hundredth of a dB) required to achieve the correct power at the particular frequency point. There will be as many coefficients as there are frequency points in the sweep. If a VNA does not currently have a valid power sweep linearity calibration in place when the OFPC is received, an arbitrary block will be sent with zeros for each coefficient.

The code IFPC is used to input coefficients into the VNA and set up a valid flat test port power calibration. The coefficients are contained in an arbitrary block, which follows IFPC. The makeup of the arbitrary block is identical to the one described above. The VNA must be programmed with the appropriate number of frequency points prior to receiving IFPC. If the number of coefficients in the arbitrary block does not match what would be required by the current VNA setup, the data will be rejected and an error message displayed on the screen and recorded in the service log.

Table 5-4. Flat Test Port Power Commands

Commands	Description
PTP	Enter target power for calibration.
PTP?	Output target power for calibration.
PTS	Selects the number of frequency points $(1-65)$ to be skipped between each measured point on the power measurement sweep. It therefore determines the number of points measured on each sweep.
PTS?	Skipped points for flat test port power calibration query.
SFC	Starts the flat test port calibration sequence.
FP1	Causes the flat test port power correction data to be used during normal measurement mode.
FP0	Turns off the flat test port power correction for normal measurement mode.
FPX?	Flat power ON/OFFstatus query.
IFPC	Enter the power sweep linearity calibration coefficients
OFPC	Output the power sweep linearity calibration coefficients

5-10 37XXXC PM

5-7 CALIBRATION COMMANDS

Table 5-5 provides a listing of the commands used to perform measurement calibrations. Unless otherwise noted, all front panel menus mentioned in Table 5-5 are accessed by first pressing the Begin Cal key.

 Table 5-5.
 Calibration Commands (1 of 3)

Command	Description
A12	Simulate 12-term calibration
A8R	Simulate 1-path 2-port calibration reverse path
A8T	Simulate 1-path 2-port calibration forward path
ABT	Simulate trans freq response calibration forward and reverse
AFT	Simulate transmission frequency response calibration forward path
ARB	Simulate reflection only calibration both ports
ARF	Simulate reflection only calibration port 1
ARR	Simulate reflection only calibration port 2
ART	Simulate trans freq response calibration reverse path
BBL	Select broadband load for calibration
BBZ	Enter broadband load impedance for calibration
BBZL	Enter broadband load inductance for calibration
BEG	Begin taking calibration data
BPF	Enter break point frequency for 3 line LRL calibration
C12	Select 12 term calibration
C8R	Select 1-path 2-port calibration reverse path
C8T	Select 1-path 2-port calibration forward path
CBT	Select trans freq response calibration forward and reverse
CC0	Enter capacitance coefficient 0 for open
CC1	Enter capacitance coefficient 1 for open
CC2	Enter capacitance coefficient 2 for open
CC3	Enter capacitance coefficient 3 for open
CF2	Select female 2.4mm connector for current port
CF3	Select female GPC-3.5 connector for current port
CFC	Select female TNC connector for current port
CFK	Select female K connector for current port
CFN	Select female Type N connector for current port
CFN75	Select Female type N 75-ohm connector for current port
CFS	Select female SMA connector for current port
CFSP	Select Special Female connector for current port
CFT	Select trans freq response calibration forward path
CFV	Select female V connector for current port
CL0	Enter inductive coefficient 0 for short
CL1	Enter inductive coefficient 1 for short
CL2	Enter inductive coefficient 2 for short
CL3	Enter inductive coefficient 3 for short
CM2	Select male 2.4mm connector for current port
CM3	Select male GPC-3.5 connector for current port
CMC	Select male TNC connector for current port
CMK	Select male K connector for current port
CMN	Select male N connector for current port
CMN75	Select Male type N 75-Ohm connector for current port
CMS	Select male SMA connector for current port
00	Colock male Chire Collination for Current port

37XXXC PM 5-11

 Table 5-5.
 Calibration Commands (2 of 3)

Command	Description	
CMSP	Select Special Male connector for current port	
CMV	Select male V connector for current port	
CMX?	Output calibration method	
CND	Select user specified connector for current port	
CNG	Select GPC-7 connector for current port	
COF	Turn error correction off	
CON	Turn error correction on	
CON?	Output error correction on/off status	
COO	Enter offset for open for user specified connector (Standard Calibration)	
COS	Enter offset for short for user specified connector	
CRB	Select reflection only calibration both ports	
CRF	Select reflection only calibration port 1	
CRR	Select reflection only calibration port 2	
CRT	Select trans freq response calibration reverse path	
CSF?	Output cal start frequency	
CTF?	Output cal stop frequency	
CWC	Select CW frequency calibration data points	
CXX?	Output calibration type	
DFC	Select discrete frequency calibration data points	
DFD	Done specifying discrete frequency ranges	
DFQ	Enter single discrete frequency	
IC2	Input Calibration Coefficient 2	
IC3	Enter calibration coefficient 3	
IC4	Enter calibration coefficient 4	
IC5	Enter calibration coefficient 5	
IC6	Enter calibration coefficient 6	
IC7	Enter calibration coefficient 7	
IC8	Enter calibration coefficient 8	
IC9	Enter calibration coefficient 9	
ICA	Enter calibration coefficient 10	
ICB	Enter calibration coefficient 11	
ICC	Enter calibration coefficient 12	
ICD	Enter corrected data for active channel parameter	
ICF	Enter front panel setup and calibration data	
ICL	Enter all applicable calibration coefficients for cal type	
IFD	Enter final data for active channel parameter	
ISF	Exclude isolation	
ISN	Include isolation	
KEC	Keep existing calibration data	
LCM	Select LRL calibration method	
LL1	Enter length of line 1 for LRL calibration	
LL2	Enter length of line 2 for LRL calibration	
LL3	Enter length of line 3 for LRL calibration	-
LLZ	Enter line impedance for LRL calibration	
LM2	Select a match for the second device during a LRM type calibration	
LM3	Select a match for the third device during a LRM type calibration	
LR2	Specify 2 line LRL calibration	
LR3	Specify 3 line LRL calibration	
LTC	Select coaxial transmission line for calibration	

5-12 37XXXC PM

 Table 5-5.
 Calibration Commands (3 of 3)

Command	Description
LTU	Select microstrip transmission line for calibration
LTW	Select waveguide transmission line for calibration
LTX?	Output line type
MAT	Select matched reflective devices during cal
MIX	Select mixed reflective devices during calibration
NCS	Go to next calibration step
NOC	Select normal calibration data points
OCM	Select offset short calibration method
ONCT	Output number of cal terms for current calibration
P1C	Select port 1 for connector specification
P1C?	Output port 1 connector type
P1P?	Output approximate power level at port 1
P2C	Select port 2 for connector specification
P2C?	Output port 2 connector type
PSP	Enter number of power sweeps for flat power correction (obsolete)
PSP?	Output number of power sweeps for flat power correction (obsolete)
PTS	Enter number of points to be skipped during flat power correction
PTS?	Output number of points to be skipped during flat power correction
RGZ	Select reflective device greater than Z0
RLZ	Select reflective device greater than 20
RM1	Select reference plane at line 1 midpoint
ROL	Enter reflective device offset length
RPC	Repeat previous calibration
RRP	
	Select reference plane at reflection plane
SBD	Enter substrate dielectric for microstrip calibration
SBT	Enter substrate thickness for microstrip calibration
SCM	Select standard calibration method
SFC	Perform flat test port calibration
SH1	Set offset short 1 or 2 offset length for offset short calibration
SH2	Set offset short 1 or 2 offset length for offset short calibration
SLD	Select sliding load for calibration
TC1	Take calibration data for port 1
TC2	Take calibration data for port 2
TCD	Take calibration data on one or both ports as necessary
TCM	Select the TRM calibration method
TDC	Select time domain harmonic frequency calibration data points
TLZ	Enter through line impedance for calibration
TOL	Enter through offset length for calibration
U10	Select 10 mil UTF calibration kit
U15	Select 15 mil UTF calibration kit
U25	Select 25 mil UTF calibration kit
USE	Enter effective dielectric for microstrip calibration
USW	Enter microstrip width for microstrip calibration
USZ	Enter microstrip impedance for microstrip calibration
WCO	Enter waveguide cutoff frequency for user defined kit
WKD	Select user defined waveguide calibration kit
WKI	Select installed waveguide calibration kit
WSH1	Enter waveguide short offset 1 for user defined kit
WSH2	Enter waveguide short offset 2 for user defined kit

37XXXC PM 5-13

5-8 AUTOCAL FUNCTIONS

This function requires an optional AutoCal module that provides an automated method for performing fast, repeatable high-quality calibrations. The AutoCal module is inserted between the VNA test ports to perform the calibration. The commands for implementing this function remotely are provided in Table 5-6.

Table 5-6. List of AutoCal Commands (1 of 2)

Command	Description
ABORTCAL	Abort calibration in progress and keep existing calibration data
ACAA	Set AutoCal standard to assurance
ACADPL	Enter AutoCal adapter length
ACADPL?	Output AutoCal adapter length
ACADR	Set AutoCal type to adapter removal
ACAL1R2	Set adapter removal port configuration to ADAPT & L=1 and R=2
ACAR1L2	Set adapter removal port configuration to ADAPT & R=1 and L=2
ACARP?	Output AutoCal adapter removal port configuration
ACDEF	Select default AutoCal isolation averaging factor
ACF2P?	Output AutoCal full 2 port configuration
ACF2TC	Set AutoCal 2 port thru type to calibrator
ACF2TT	Set AutoCal 2 port thru type to true thru
ACF2TX?	Output AutoCal 2 port thru type selection
ACHFD	Save AutoCal characterization data to floppy disk
ACHHD	Save AutoCal characterization data to hard disk
ACIAF	Enter user AutoCal isolation averaging factor
ACIAF?	Output user AutoCal isolation averaging factor
ACIAX?	Output AutoCal isolation averaging factor omit/default/user selection
ACISO	Enter AutoCal isolation averaging number
ACISO?	Output AutoCal isolation averaging number
ACL1AR2	Set adapter removal port configuration to L=1 and ADAPT & R=2
ACL1R2	Set AutoCal full 2 port configuration to L=1 and R=2
ACLO	Enter AutoCal load averaging number
ACLO?	Output AutoCal load averaging number
ACLOAD	Set AutoCal standard to load
ACOMIT	Omit using AutoCal isolation averaging factor
ACOPEN	Set AutoCal standard to open
ACP1?	Output AutoCal S11 port configuration
ACP1L	Set AutoCal S11 port configuration to left
ACP1R	Set AutoCal S11 port configuration to right
ACP2?	Output AutoCal S22 port configuration
ACP2L	Set AutoCal S22 port configuration to left
ACP2R	Set AutoCal S22 port configuration to right
ACPL	Set AutoCal S11 port configuration to left
ACPR	Set AutoCal S11 port configuration to right
ACR1AL2	Set adapter removal port configuration to R=1 and ADAPT & L=2
ACR1L2	Set AutoCal full 2 port configuration to R=1 and L=2
ACRFL	Enter AutoCal reflection averaging number
ACRFL?	Output AutoCal reflection averaging number
ACS11	Set AutoCal type to S11

5-14 37XXXC PM

 Table 5-6.
 List of AutoCal Commands (2 of 2)

Command	Description
ACS22	Set AutoCal type to S22
ACSF2P	Set AutoCal type to full 2 port
ACSHORT	Set AutoCal standard to short
ACSTD?	Output AutoCal standard
ACSW	Enter AutoCal switch averaging number
ACSW?	Output AutoCal switch averaging number
ACTHRU	Set AutoCal standard to thru
ACTU	Enter AutoCal thru averaging number
ACTU?	Output AutoCal thru averaging number
ACTUAVG	Enter AutoCal thru update averaging number
ACTUAVG?	Output AutoCal thru update averaging number
ACTULS	Apply last thru update cal setup
ACX?	Output AutoCal type
BEGAC	Start AutoCal
BEGCH	Start AutoCal characterization
BEGTU	Start AutoCal thru update
IACCHAR	Input AutoCal characterization data from the GPIB
OACCHAR	Output AutoCal characterization data to the GPIB
TACD	Take AutoCal data

37XXXC PM 5-15/5-16

Chapter 6 Markers and Limits Functions

Table of Contents

6-1	INTRODUCTION	.3
6-2	MARKERS	.3
6-3	LIMITS 6-	.7
	Single (Non-Segmented) Limits 6-	.7
	Segmented Limits	8
	Limits Example	8
	Limits Pass/FailTesting	8

Chapter 6 Markers and Limits Functions

6-1 INTRODUCTION

This chapter describes markers and limits commands.

6-2 MARKERS

The commands listed in Table 6-1 (next page) control the location and display of the markers and the functions related to the markers. A full description of each command mnemonic is contained in Chapter 11, Command Dictionary.

A marker is turned on whenever any of the following conditions occur:

☐ When the marker is set to a value.

Example: "MK2 20 GHZ"

☐ When the marker is selected for readout.

Example: "MR2"

☐ When the marker is selected as the delta reference marker (left).

Example: "DR2 4.5632 GHZ"

MMN and MMX Commands — The MMN and MMX commands move the active marker to the minimum and maximum trace values on the active channel, respectively. There must be an active marker selected for these command to execute.

Example: "WFS;MR1;MMX"

This code instructs the 37XXX to:

- □ Wait for a full sweep of data to be present (WFS).
- ☐ Turn on marker 1 and select it for readout (MR1).
- □ Move marker 1 to the maximum value of the trace on the active channel (MMX).

37XXXC PM 6-3

 Table 6-1.
 Marker Commands (1 of 3)

Command	Description
AMKR	Select active marker on all channels marker mode
BWL3	Set bandwidth loss value to 3 dB
BWLS	Enter bandwidth loss value
BWLS?	Output bandwidth loss value
DR1	Select Marker 1 as Delta Reference Marker
DR2	Select Marker 2 as Delta Reference Marker
DR3	Select Marker 3 as Delta Reference Marker
DR4	Select Marker 4 as Delta Reference Marker
DR5	Select Marker 5 as Delta Reference Marker
DR6	Select Marker 6 as Delta Reference Marker
DRF	Turn delta reference mode on
DRO	Turn delta reference mode off
DRO?	Output delta reference mode on/off status
DRX?	Output delta reference marker number
DSF0	Disable filter shape factor calculation
DSF1	Enable filter shape factor calculation
DSFX?	Output filter shape factor calculation enable/disable status
DSQ0	Disable filter Q calculation
DSQ1	Enable filter Q calculation
DSQX?	Output filter Q calculation enable/disable status
FLTBW?	Output filter bandwidth
FLTC?	Output filter center frequency
FLTL?	Output filter loss at reference value
FLTQ?	Output filter Q
FLTS?	Output filter shape factor
FMKR	Select filter parameters marker mode
M1C	Set CW mode at marker 1 frequency
M1E	Set sweep/zoom end to marker 1 frequency distance or time
M1S	Set sweep/zoom start to marker 1 frequency distance or time
M2C	Set CW mode at marker 2 frequency
M2E	Set sweep/zoom end to marker 2 frequency distance or time
M2S	Set sweep/zoom start to marker 2 frequency distance or time
M3C	Set CW mode at marker 3 frequency
M3E	Set sweep/zoom end to marker 3 frequency distance or time
M3S	Set sweep/zoom start to marker 3 frequency distance or time
M4C	Set CW mode at marker 4 frequency
M4E	Set sweep/zoom end to marker 4 frequency distance or time
M4S	Set sweep/zoom start to marker 4 frequency distance or time
M5C	Set CW mode at marker 5 frequency
M5E	Set sweep/zoom end to marker 5 frequency distance or time
M5S	Set sweep/zoom start to marker 5 frequency distance or time
M6C	Set CW mode at marker 6 frequency
M6E	Set sweep/zoom end to marker 6 frequency distance or time
M6S	Set sweep/zoom start to marker 6 frequency distance or time
MK1	Enter marker 1 frequency distance or time and turn on
MK1?	Output marker 1 frequency distance or time
MK2	Enter marker 2 frequency distance or time and turn on

6-4 37XXXC PM

Table 6-1. Marker Commands (2 of 3)

Command	Description	
MK2?	Output marker 2 frequency distance or time	
MK3	Enter marker 3 frequency distance or time and turn on	
MK3?	Output marker 3 frequency distance or time	
MK4	Enter marker 4 frequency distance or time and turn on	
MK4?	Output marker 4 frequency distance or time	
MK5	Enter marker 5 frequency distance or time and turn on	
MK5?	Output marker 5 frequency distance or time	
MK6	Enter marker 6 frequency distance or time and turn on	
MK6?	Output marker 6 frequency distance or time	
MKRC	Select interpolated marker functionality	
MKRD	Select discrete marker functionality	
MKRX?	Output interpolated/discrete marker functionality	
MKSL	Marker search left	
MKSR	Marker search right	
MKT0	Turn marker tracking off	
MKT1	Turn marker tracking on	
MKTX?	Output marker tracking on/off status	
MMN	Move active marker to minimum trace value	
MMX	Move active marker to maximum trace value	
MO1	Turn off marker 1	
MO2	Turn off marker 2	
MO3	Turn off marker 3	
MO4	Turn off marker 4	
MO5	Turn off marker 5	
MO6	Turn off marker 6	
MOF	Turn marker display off	
MON	Turn marker display on	
MON?	Output marker display on/off status	
MR1	Turn marker 1 on and make it the active marker	
MR1?	Output marker 1 on/off status	
MR2	Turn marker 2 on and make it the active marker	
MR2?	Output marker 2 on/off status	
MR3	Turn marker 3 on and make it the active marker	
MR3?	Output marker 3 on/off status	
MR4	Turn marker 4 on and make it the active marker	
MR4?		
	Output marker 4 on/off status	
MR5	Turn marker 5 on and make it the active marker	
MR5?	Output marker 5 on/off status	
MR6	Turn marker 6 on and make it the active marker	
MR6?	Output marker 6 on/off status	
MRM	Display the Marker Readout menu	
MRX?	Output active marker number	
MSFH	Enter high loss value for shape factor calculation	
MSFH?	Output high loss value for shape factor calculation	
MSFL	Enter low loss value for shape factor calculation	
MSFL?	Output low loss value for shape factor calculation	
MSR0	Select 0 as reference for marker search and bandwidth calculation	
MSRD	Select delta reference marker as reference for marker search and bandwidth calculation	
MSRM	Select maximum as reference for marker search and bandwidth calculation	

37XXX PM 6-5

 Table 6-1.
 Marker Commands (3 of 3)

Command	Description
MSRX?	Output reference selection for marker search and bandwidth calculation
NMKR	Select normal markers on active channel marker mode
SMKR	Select marker search marker mode
SRCH	Enter marker search value
SRCH?	Output marker search value
XMKR?	Output marker mode

6-6 37XXX PM

6-3 LIMITS

The Limits commands perform the functions that are available via the Display key and Limits menus. Figure 6-1 shows the relationship between the major limits commands and the single and segmented limits displays. The various limit-types are described below and the limits commands are listed in Table 6-2 (page 6-).

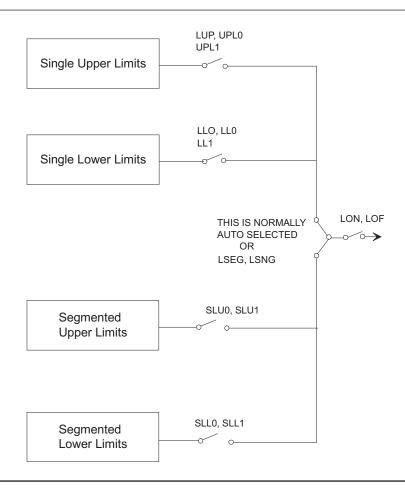


Figure 6-1. Relationship Between Limits Commands and Limits Displays

Single (Non-Segmented) Limits

The Non-Segmented Limits Commands do the following:

- □ Set up the upper and lower limit values for the active channel.
- □ Set the limit delta for the limit frequency readout function. The range of values and allowable terminator mnemonics are dependent on the graph type of the active channel, much like the SCL and REF commands.

The LFR, LFP, and LFD commands that define limit frequency readouts, are only available on the following graph types: log magnitude (MAG), log magnitude and phase (MPH), phase (PHA), linear

37XXXC PM 6-7

magnitude (LIN), linear magnitude and phase (LPH), standing wave ratio (SWR), and group delay (DLA). The active channel must be a frequency domain channel. The LFP command can be used to select phase limit frequency readouts on log magnitude and phase and linear magnitude and phase graph types.

To change values for the LFD, LLO, and LUP commands for the bottom graph of two graph display, use the appropriate suffix mnemonic as shown below:

Graph Type	Appropriate Suffix Mneumonic
Log Mag / Phase	DEG / RAD
Lin Mag / Phase	DEG / RAD
Real / Imag	IMU

Segmented Limits

Segmented limits (Table 6-4) allow different upper and lower limit values to be set at up to ten segments across the measurement range.

Limits Example

This example makes limit 2 the active segment, sets its vertical start to 10 dB, its horizontal start to 10 GHz, its vertical stop to 12 dB, its horizontal stop to 16 GHz, and sets it to display on the 37XXX screen.

"SL02;SPV 10 DBL;STH 10 GHZ;SPV 12 DBL;SPH 16 GHZ; SLA;SLL;DIS"

Limits Pass/FailTesting

Limits pass/fail testing commands are listed in Table 6-5. These commands are used to produce a beep and/or a TTL voltage at the rear panel External I/O connector when a measurement exceeds any of the set limits (refer to the 37XXX Operation Manual).

NOTE

Pass/fail testing, when turned on, will generate an SRQ (if enabled) whenever a test failure occurs. Refer to Chapter 7, "Status Reporting" for details.

6-8 37XXXC PM

Table 6-2.Limit Commands (1 of 2)

Command	Description
ATTN	Attach next segment and make the active segment
BEGN	Begin next segment and make it the active segment
CAS	Clear active segmented limit vertical/horizontal definitions
DIS	Display active segmented limit
DIS?	Output active segmented limit on/off status
HID	Hide active segmented limit
LB0	Turn limits testing beep on failure off
LB1	Turn limits testing beep on failure on
LBX?	Output limits testing beeper enable status
LFD	Enter limit frequency readout delta value
LFD2	Enter limit frequency readout delta value for bottom graph
LFD2?	Output limit frequency readout delta value for bottom graph
LFD?	Output limit frequency readout delta value
LFP	Select limit frequency readout for phase displays
LFR	Select limit frequency readout for active channel
LLM?	Output limit line display mode single or segmented
LLO	Enter lower limit value for top graph on active channel
LLO2	Enter lower limit value for bottom graph on active channel
LLO2?	Output lower limit value for bottom graph on active channel
LLO?	Output lower limit value for top graph on active channel
LOF	Limits display off
LOL0	Turn lower limit off
LOL1	Turn lower limit on at current value
LOL20	Turn lower limit off for bottom graph
LOL21	Turn lower limit on at current value for bottom graph
LOL2X?	Output lower limit on/off status for bottom graph
LOLX?	Output lower limit on/off status
LON	Limits display on
LON?	Output limits display on/off status
LPF1?	Output limit test failure status on channel 1
LPF2?	Output limit test failure status on channel 2
LPF3?	Output limit test failure status on channel 3
LPF4?	Output limit test failure status on channel 4
LPF?	Output limit test failure status all channels
LS1	Set lower segmented limit 100 as the active segment
LS10	Select lower segmented limit 10 as the active segment
LS2	Select lower segmented limit 2 as the active segment
LS3	Select lower segmented limit 3 as the active segment
LS4	Select lower segmented limit 4 as the active segment
LS5	Select lower segmented limit 4 as the active segment Select lower segmented limit 5 as the active segment
LS6	Select lower segmented limit 5 as the active segment Select lower segmented limit 6 as the active segment
LS7	Select lower segmented limit 0 as the active segment Select lower segmented limit 7 as the active segment
LS8	Select lower segmented limit 7 as the active segment Select lower segmented limit 8 as the active segment
LS9	Select lower segmented limit 6 as the active segment Select lower segmented limit 9 as the active segment
LSEG	Select segmented limit is as the active segment Select segmented limit line display mode
LSNG	Select segmented limit line display mode Select single limit line display mode
LSX?	Output active segmented limit
LT0	Turn limits testing off
LIU	Turn minic testing on

37XXXC PM 6-9

Table 6-3.Limit Commands (2 of 2)

Command	Description
LT1	Turn limits testing on
LT1?	Output limits testing enable status
LTST	Display the limits testing menu
LUP	Enter upper limit value for top graph on active channel
LUP2	Enter upper limit value for bottom graph on active channel
LUP2?	Output upper limit value for bottom graph on active channel
LUP?	Output upper limit value for top graph on active channel
LVH	Select high as limits testing TTL level
LVL	Select low as limits testing TTL level
LVX?	Output limits testing ttl level status
SLC	Clear all segmented limits definitions
SLH	Enter segmented limits horizontal offset
SLH?	Output segmented limits horizontal offset
SLL0	Turn lower segmented limits display off
SLL1	Turn lower segmented limits display on
SLLX?	Output lower segmented limits display on/off status
SLU0	Turn upper segmented limits display off
SLU1	Turn upper segmented limits display on
SLV	Enter segmented limits vertical offset
SLV?	Output segmented limits vertical offset
SPH	Enter active segmented limit horizontal stop position
SPH?	Output active segmented limit horizontal stop position
SPV	Enter active segmented limit vertical stop position
SPV?	Output active segmented limit vertical stop position
STH	Enter active segmented limit horizontal start position
STH?	Output active segmented limit horizontal start position
STV	Enter active segmented limit vertical start position
STV?	Output active segmented limit vertical start position
UPL0	Turn upper limit off
UPL1	Turn upper limit on at current value
UPL20	Turn upper limit off for bottom graph
UPL21	Turn upper limit on at current value for bottom graph
UPL2X?	Output upper limit on/off status for bottom graph
UPLX?	Output upper limit on/off status
US1	Select upper segmented limit 1 as the active segment
US10	Select upper segmented limit 10 as the active segment
US2	Select upper segmented limit 2 as the active segment
US3	Select upper segmented limit 3 as the active segment
US4	Select upper segmented limit 4 as the active segment
US5	Select upper segmented limit 5 as the active segment
US6	Select upper segmented limit 6 as the active segment
US7	Select upper segmented limit 7 as the active segment
US8	Select upper segmented limit 8 as the active segment
US9	Select upper segmented limit 9 as the active segment

6-10 37XXXC PM

Chapter 7 Remote-Only Functions

Table of Contents

7-1	INTRODUCTION
7-2	DATA TRANSFER PROTOCOL
	GPIB Messages
7-3	DATA TRANSMISSION METHODS
7-4	ASCII OR BINARY DATA FORMAT
	Non-Array Data7-10Numerical Data Arrays7-10Enhanced ASCII Formatting
7-5	DATA TRANSFER COMMANDS
	A Note On Query Commands
7-6	MEASUREMENT POINTS DATA
	Sweep Measurement Points Data Transfer Example 7-15
7-7	FAST CW OPERATION
	Fast CW Mode 1
7-8	INTERNAL BUFFER
7-9	TRIGGERS
7-10	CALIBRATION COEFFICIENTS
	Calibration Coefficients Data Transfer Example 7-21
7-11	MEASUREMENT DATA TRANSFER
	Measurement Data Transfer Example 7-24
7-12	ERROR REPORTING SYSTEM
	Error Reporting Actions

	GPIB Error Messages
7-13	SERVICE LOG
	Service Log Output Commands
7-14	GPIB ERROR STRUCTURES
	Error Reporting Data Output Example 7-31
7-15	STATUS REPORTING
	Event Status Registers7-34Selecting Events for Status Reporting7-34Output Queue7-34The Status Byte Register7-34Querying the Status Byte Register7-35Serial Polling the Status Byte Register7-35SRQ/Service Requests Generation7-35Parallel Polling the 37XXXC7-36Binary Weighted Decimal Values7-36Status Reporting Commands Example7-36
7-16	STATUS EVENT DESCRIPTIONS
7-17	IEEE 488.2 COMMON COMMANDS 7-41
7-18	SYNCHRONIZATION COMMANDS 7-42
7-19	MISCELLANEOUS COMMANDS

Chapter 7 Remote-Only Functions

7-1 INTRODUCTION

This chapter describes 37XXXC GPIB functions that support operations typically required when in remote mode:

- □ Data transfers (paragraphs 7-2 through 7-11)
- □ Error reporting, including the Service Log (paragraphs 7-12 through 7-14)
- □ Status reporting (paragraphs 7-15, 7-16)
- □ IEEE 488.2 Common commands (paragraph 7-17)
- □ Synchronization commands (paragraph 7-18).

7-2 DATA TRANSFER PROTOCOL

There are several basic ideas associated with transferring data between your controller and the 37XXXC. This paragraph introduces data transfer terminology, message terminator and separator characters, and data transfer methods (protocols) used by the 37XXXC.

GPIB Messages

A GPIB message is any information sent over GPIB to a device. This includes instrument commands or data that you send to or receive from the 37XXXC.

Program Message (PM)

This is the message string that your controller *sends to* the 37XXXC.

The message can contain commands, queries (or other requests for data transfer), and data strings.

Response Message

This is the data your controller *receives from* the 37XXXC.

The data can contain ASCII or binary represented numerical values, character strings or other arbitrary ASCII data, and 37XXXC internally represented binary strings.

Separation and Termination Methods

Termination and separation protocols of messages transmitted over the GPIB are specified by the IEEE 488.2 GPIB Standard. The 37XXXC conforms to those specifications as described below.

Message Elements Separator

A program or response message can consist of one or more elements, called units. Units are separated with the semi-colon (;) character.

Units in a program message are complete valid 37XXXC commands or queries. For example, "CH1;PHA;SRT 2 GHZ;SRT?" consist of four commands or queries that make channel 1 active, set it to phase display, sets start frequency to 2 GHz, then outputs the start frequency.

A single unit in a response message is the complete data output in response to a single command. For example, the command sequence "ONP;CHX?" Output Number of Points and Output Currently Active Channel, will output a response message that contains two units separated by a semi-colon (;). The first unit of data is the response to the ONP command. The second unit of data is the response to the CHX? query.

Message Unit Data Separator

The comma (,) character separates multiple ASCII data elements of a single command or response message unit. For example, the command **OM1** Output Marker 1 Value, will output a complex data value (two values, that is, dB and degrees) representing the measurement data at the marker. The two values in the complex data will be separated with a comma.

Message Terminator

A complete program or response message is terminated by sending the linefeed character (0A, or decimal 10) at the same time (concurrent with) setting the EOI state on the GPIB. The notation $<0A^{\text{NEND}}>$ will be used throughout this Programming Manual to reference the message terminator. Simply put, the message terminator signals the end of transmission.

NOTE

EOI is the GPIB End of Transmission state that is set by the controller, or an instrument, when it is done "talking," i.e. done sending a message on the GPIB and therefore releasing the GPIB for use by another device.

Separation and Termination Example

The following example shows how a program message with multiple units is sent to the 37XXXC. Also shown is the response message the 37XXXC will send back to the controller.

PROGRAM MESSAGE (to 37XXXC):

"CH2;LPH;MK6 2.5 GHZ;OM6;OFV".

This program message makes channel 2 active (**CH2**), sets it to linear magnitude and phase display (**LPH**), activates and sets marker 6 to 2.5 GHz (**MK6 2.5 GHZ**), outputs its value (**OM6**), then outputs the list of current sweep frequencies (**OFV**).

Response message elements:

<marker 6 dB value>,<marker 6 degrees value>;<frequency list
header> <frequency 1>,<frequency 2>,...,<frequency 101><0A^EOI>

7-4 37XXXC PM

NOTE

The (< >) characters in the message elements list are not actually transmitted in the response message; they are shown here in the text to distinguish the various data fields from each other.

A representative response from a Model 37325A:

```
1.00620877743E+00,-3.65609092712E+01;#418
174.00000000000E+7,1.74600000000E+08,...
...,1.3500000000E+100A
```

Response Description:

OM6 outputs 2 ASCII data items (dB,degrees). They are sent separated with a comma (,).

The output of **OM6** and **OFV** is separated with a semicolon (;). This was done because the external controller requested two outputs before reading the first one from the 37XXXC.

NOTE:

Note that certain data transfer commands require that you read their output before another data output command is sent [see <Arbitrary ASCII> format and <Arbitrary Block> format (Example 3), in paragraph 7-3].

The **OFV** command outputs data using the <Arbitrary Block> format (see description in paragraph 7-3). The frequency values are preceded by a <frequency list header> (#41817). This is an ASCII text string that is encoded with the number of 7-bit bytes to follow. This data transmission method, used by the **OFV** and other 37XXXC block data transfer commands, allows you to prepare an appropriate size memory block to receive the data in your application.

The first frequency value (4.0000000000E+7) is then transmitted immediately after the header followed by a comma. This continues until all 101 frequency values are transmitted.

NOTE:

The commas are used because the values are in ASCII format. If binary format was selected (see **FMA**, **FMB**, **FMC** format commands, paragraph 7-4), the frequency values would have been sent without commas.

The linefeed character (**0A**) signals the end of transmission at the end of the response message. The end of transmission (**EOI**) is set by the 37XXXC at the same time the linefeed is sent and thus the GPIB is released for use by another device.

7-3 DATA TRANSMISSION METHODS

Data transmissions to and from the 37XXXC conform to the protocols specified by the IEEE 488.2 GPIB Standard. The 488.2 Standard specifies how any data, such as ASCII numbers, strings, or blocks of data bytes, will be transmitted over the GPIB. This paragraph describes the various transmission methods in use by the 37XXXC.

The transmission method names described below (also called notations) will be used throughout the Programming Manual when describing specific 37XXXC data transfer commands.

Data transmission notations are easily distinguished in text as they are always shown surrounded by the "less than" and the "greater than" characters (< >). The transmission type notations used in describing various 37XXXC data transmissions are:

For ASCII numbers, the notations are:

```
<NR1>, <NR2>, <NR3>, or <NRf>
```

For ASCII strings (printable characters and print formatting codes), the notation is:

<ASCII String>

For generic (7-bit) ASCII characters, the notation is:

<ASCII Block>.

For generic binary bytes, (i.e. 7-bit ASCII or binary), the notation is:

<Arbitrary Block>

<NR1>

This notation represents ASCII integer values. A comma (,) is used to separate multiple values sent in a single command's input or output string.

Examples of values that can be represented by <NR1> notation:

1 0 -29,179

<*NR2*>

This notation represents ASCII floating point values in decimal point format. A comma (,) is used to separate multiple values sent in a single command's input or output string.

Examples of values that can be represented by <NR2> notation:

1.0 -0.00015 12.743,-180.07

7-6 37XXXC PM

<NR3>

This notation represents ASCII floating point values in exponential format (scientific notation). A comma (,) is used to separate multiple values sent in a single command's input or output string.

Examples of values that can be represented by <NR3> notation:

```
1.0E9
-7.056E3
9.0E-2,3.42E2
```

< NRf >

This notation is used to signify that data can be in either <NR1>, <NR2>, or <NR3> format as described above.

Examples of values that can be represented by <NRf> notation:

```
1.0E-9
10.005
-83,4.5E2,-234.9901
```

<String>

This notation represents a string of 7-bit ASCII characters (including non-printable characters) that is delimited (surrounded) with either single quotes (' ') or double quotes (" "). The string can include text formatting characters such as linefeed, space, or carriage return.

Note that if a double quote character must be sent as part of the string, then it must be followed by an additional double quote. Alternatively, the string can be sent using single quotes (See "cal_file" example below).

Examples of data represented by <String> notation:

```
"1/15/98"
"Save ""cal_file"" now."
'Save "cal_file" now.'
```

<Arbitrary ASCII>

This notation represents undelimited 7-bit ASCII text. The end of the text must be terminated with the 0A character (decimal 10) and concurrent setting (^) of the GPIB End of Transmission State (EOI). This requirement makes it necessary for <Arbitrary ASCII> text to be transmitted only at the end of a program or response message, i.e. at the end of a multiple input or output statement.

Example of data represented by <Arbitrary ASCII> notation:

```
ANRITSU,37247C,123456,1.0<0A^EOI>
```

The example shows a sample response from the *IDN?, 488.2 common query. In the example, the instrument identifies itself as a ANRITSU 37247C, with serial number 123456, and software version 1.0 installed.

Note that decimal 10 (0A character) must be sent with the EOI to signal end of transmission

<Arbitrary Block>

This notation represents data that is transmitted as 7-bit data bytes (00–FF hex, 0–255 decimal, notation is <DAB>). This is useful for transmitting large blocks of formatted ASCII or binary data or unformatted binary data. The data stream is immediately preceded by a variable length ASCII header that is encoded with the number of data bytes to be sent. The header always starts with the pound (#) character. Figure 7-1 below describes the header and the transmitted data messages.

EXAMPLE 1: #3204<DAB₁>...<DAB₂₀₄>

Where:

= The pound sign character. Required for binary data transfer.

 $n=\mbox{Number of digits to follow }(m_1..m_n)$ that make up the number m.

 $m_1..m_n$ = Taken together, this makes up the number m which is the number of data bytes to follow that constitute the requested data.

<DAB> = An 8 bit binary data byte. This is the data (or information) being sent.

NOTE

If n=0, then m is omitted, and transmission end is signaled by sending the linefeed character (0A, or decimal 10) and concurrent setting (^) of the GPIB End Of Transmission State (EOI) immediately following the last <DAB>.

Figure 7-1. <Arbitrary Block> Data Format

Example 1 shows how 204 7-bit bytes are transmitted using the proper header. The header in this example is comprised of 5 characters (#3204). It begins with with the pound character (#). The next character (3) indicates there are 3 digits to follow that indicate the number of bytes being transmitted (204). The next three characters (204) indicate the number of data bytes being transmitted immediately after the header. Next comes the actual data bytes, or information, being transmitted (<DAB₁>...<DAB₂₀₄>).

7-8 37XXXC PM

EXAMPLE 2: #512808<DAB₁>...<DAB₁₂₈₀₈>

Example 2 shows how 12808 7-bit bytes are transmitted using the proper header. The header in this example is comprised of 7 characters (#512808). It begins with with the pound character (#). The next character (5) indicates there are 5 digits to follow that indicate the number of bytes being transmitted (12808). The next five characters (12808) indicate the number of data bytes being transmitted immediately after the header. Next comes the actual data bytes, or information, being transmitted (<DAB $_1>...<$ DAB $_12808>$).

NOTE:

Examples 1 and 2 above demonstrate the <Arbitrary Block> form referred to as <*Definite* Length Arbitrary Block>. It is so called because the number of data bytes being transmitted is *known* from the encoded header.

EXAMPLE 3: $\#0 < DAB_1 > ... < DAB_n > < 0A^EOI >$

Example 3 shows how an *unknown* number of 7-bit bytes are transmitted using the proper header. The header in this example is comprised of 2 characters (#0). As usual, the header begins with the pound character (#). The next character (0) indicates there is an unknown number of data bytes being transmitted immediately after the header. Next comes the actual data bytes being transmitted ($\langle DAB_1 \rangle ... \langle DAB_n \rangle$). The end of the data stream is signaled by sending the linefeed character (0A, or decimal 10) and concurrent setting (^) of the GPIB End of Transmission State (EOI).

NOTES:

Example 3, above, demonstrates a special form of the <Arbitrary Block> referred to as the <*Indefinite* Length Arbitrary Block>. It is so called because the number of data bytes being transmitted is unknown, and therefore can not be encoded in the header. Instead, the header *always* consists of the pound and zero characters (#0) and end of the data stream is *always* signaled by sending the linefeed character (0A, or decimal 10) and concurrent setting (^) of the GPIB End of Transmission State (EOI). This requirement makes it necessary for <*Indefinite* Length Arbitrary Block> text to be transmitted only at the end of a program or response message, i.e. at the end of a multiple input or output statement.

When using this method to input data you must not exceed the 37XXXC input buffer size (refer to Chapter 1, Table 1-2.)

Three commands are provided to alter the way the arbitrary block header for output data is formed.

FDH0: Specifies that the length of the arbitrary block header will be minimized; that is, the byte count section will not contain leading zeros, thus its length is indeterminate. This means that a program must decode the header in order to skip over it.

FDH1: Specifies that the length of the arbitrary block header will be fixed at 11 characters. This is accomplished by forcing leading zeros as required in the byte count section. This means that a program can skip over the arbitrary block header by skipping 11 characters.

FDH2: Specifies that no arbitrary block header will be sent with the next transmission. This mode is not in compliance with IEEE 488.2 specifications and will only be in effect for the current program message. Afterwards, it will change to FDH1.

FDHX?: FDH mode query.

7-4 ASCII OR BINARY DATA FORMAT

The following paragraphs discuss the various data output formats.

- □ Data transfers *involving* numerical data arrays.
- □ Data transfers *not involving* numerical data arrays.
- □ Enhanced ASCII formatting.

Non-Array Data

The formats used for data transfers *not* involving numerical data arrays are preset. They always occur in either binary format or ASCII format, depending on the data.

These data transfers include a variety of information. Examples include: instrument setup strings, marker data, queries, and disk directory listings. See the desired data transfer command description for its applicable data transfer format.

Numerical Data Arrays

Numerical data array transfers are used to transfer the following types of data:

- Measurement data
- □ Calibration data
- □ Sweep frequency, time, or distance values.

Each of these data transfer types are individually explained in following paragraphs.

You can select either binary or ASCII format for data transfers involving numerical data arrays. The five commands described below will select and keep the format for all subsequent transfers (these commands are also listed and described in Table 7-1).

ASCII Format:

FMA: ASCII formatted values represented in <NR1>, <NR2>, <NR3>, or <NRf> formats as described in paragraph 7-3. The 37XXXC will accept any of the above formats as input. It will *always* output values us-

7-10 37XXXC PM

ing <NR3> exponential format with each value represented using 18 characters, plus a comma to separate multiple values.

Binary Format:

FMB: Each *eight* consecutive data bytes represent one floating point value in IEEE 754 64-bit format (double precision, 8 byte, floating point value).

FMC: Each *four* consecutive data bytes represent one floating point value in IEEE 754 32-bit format (single precision, 4 byte, floating point value).

FMX?: FMA, FMB, FMC format selection query.

MSB: Byte ordering is *most* significant byte first. For use only with FMB and FMC. This the default byte ordering mode for the 37XXXC.

LSB: Byte ordering is *least* significant byte first. For use with FMB and FMC. This is required for transferring data to/from Intel/IBM based computers.

XSB?: MSB, LSB format selection query.

FMT0: Turn ASCII enhancement off (normal default mode).

FMT1: Turn ASCII enhancement on.

FMTX?: ASCII enhancement ON/OFF status query.

Enhanced ASCII Formatting

Enhanced ASCII formatting can be applied to both non-array ASCII data and numerical data arrays in the FMA format when this data is output within an <arbitrary block> format. The format selectively replaces comma data element separators with a line feeds (ASCII 10) in order to enhance the visual effect. Figure 7-2 provides two examples of this enhanced structure.

7-5 DATA TRANSFER COMMANDS

Table 7-1 is an alphabetical listing of all data transfer commands. Tables 7-2 through 7-4 list these commands separately, with each table listing the commands for a particular data transfer type. These tables are located with the explanatory paragraphs.

A Note On Query Commands

Query commands are a special form of data transfer commands. They are used to query (or output) a variety of 37XXXC setup parameters. For example, **SRT?** will output the current sweep start frequency. Query command mnemonics typically closely resemble the corresponding setup command mnemonic but with an added question mark (?). For example, **CH1** is used to set the active channel to channel 1, **CHX?** is used to query the currently active channel setting. Query commands are listed in their respective Command Function Group chapter. For example, since **SRT?** queries a Measurement Function, it will be listed in Chapter 4, Measurement Group.

Error And Status Reporting Commands

Commands associated with transferring error and status reporting data are described in detail in paragraphs 7-11 and 7-15 respectively.

An unenhanced directory listing

An enhanced directory listing

```
#900000392
Directory of C:\ 1-30-96 13:03
UTIL
        <DIR>
                     1-25-96 12:58
       BMB 38462 1-22-96 14:41
PLOT
            307446
       BMC
                      1-22-96
PLOT
                              14:41
                      1-22-96
       CAL
               44174
                              17:02
TTT2
               44174
                      1-22-96 17:16
       CAL
PLOT1
       DAT
               10323
                     1-22-96 14:03
              19899 1-22-96 14:02
PLOT1
       HGL
               38462 1-25-96 13:16
PLOT2
       HGL
8 Files
               502940 Bytes
```

An unenhanced response to OCD

```
#9000000189-9.99750733376E-01, 3.21409821510E-01, 3.60706359148E-01, 9.82860028744E-01, 7.7 6742696762E-01,-5.06587028503E-01,-5.07535457611E-01,-8.45697641373E-01,-6.10321164131E-01, 6.05827927589E-01
```

An enhanced response to OCD

```
#9000000189
-9.99750733376E-01, 3.21409821510E-01
3.60706359148E-01, 9.82860028744E-01
7.76742696762E-01,-5.06587028503E-01
-5.07535457611E-01,-8.45697641373E-01
-6.10321164131E-01, 6.05827927589E-01
```

Figure 7-2. Examples of Enhanced ASCII Formatting

7-12 37XXXC PM

 Table 7-1.
 Alphabetical Listing of All 37XXXC Data Transfer Commands (1 of 2)

Command	Description
DPR0	Visible data only OFD format
DPR1	Data pair always OFD format
FDE0	Disable Output Data End Message
FDE1	Enable Output Data End Message
FDEX?	Output Output Data End Message enable/disable status
FMA	Select ASCII data transfer format
FMB	Select IEEE754 64 bit data transfer format
FMC	Select IEEE754 32 bit data transfer format
FMX?	Output data output mode FMA FMB or FMC
IC1	Enter calibration coefficient 1
IC10	Enter calibration coefficient 10
IC11	Enter calibration coefficient 11
IC12	Enter calibration coefficient 12
IFPC	Enter flat power coefficients
LSB	Select least significant byte first binary transfer
MSB	Select most significant byte first binary transfer
OAM1	Output channel 1 active marker value
OAM2	Output channel 2 active marker value
OAM3	Output channel 3 active marker value
OAM4	Output channel 4 active marker value
OC1	Output calibration coefficients 1
OC10	Output calibration coefficients 10
OC11	Output calibration coefficients 11
OC12	Output calibration coefficients 12
OC2	Output calibration coefficients 2
OC3	Output calibration coefficients 3
OC4	Output calibration coefficients 4
OC5	Output calibration coefficients 5
OC6	Output calibration coefficients 6
OC7	Output calibration coefficients 7
OC8	Output calibration coefficients 8
OC9	Output calibration coefficients 9
OCA	Output calibration coefficient A
OCB	Output calibration coefficient B
OCC	Output calibration coefficient C
OCD	Output corrected data for active channel parameter
OCF	Output front panel setup and calibration data
OCL	Output all applicable calibration coefficients for cal type

 Table 7-1.
 Alphabetical Listing of All 37XXXC Data Transfer Commands (2 of 2)

Command	Description
ODR	Output directory listing of the floppy drive
ODRH	Output directory listing of the hard drive
ODV	Output distance values for time domain
OEL	Output error list
OFD	Output final data for active channel parameter
OFP	Output current front panel setup
OFPC	Output flat power coefficients
OFV	Output frequency values
OGE	Output extended description of current GPIB error
OGL	Output extended description of previous GPIB error
OID	Output instrument identification string
OLM	Output limits status byte mask
OM1	Output marker 1 value
OM2	Output marker 2 value
OM3	Output marker 3 value
OM4	Output marker 4 value
OM5	Output marker 5 value
OM6	Output marker 6 value
ONCP	Output number of points for current calibration
ONE	Output number of lines in the error list
ORD	Output raw data for active channel parameter
OS1	Output front panel setup number 1
OS10	Output front panel setup number 10
OS2	Output front panel setup number 2
OS3	Output front panel setup number 3
OS4	Output front panel setup number 4
OS5	Output front panel setup number 5
OS6	Output front panel setup number 6
OS7	Output front panel setup number 7
OS8	Output front panel setup number 8
OS9	Output front panel setup number 9
OSL	Output service log
XSB?	Output byte order for output data LSB or MSB

7-14 37XXXC PM

7-6 MEASUREMENT POINTS DATA

The Sweep Measurement Points Data Transfer Commands are listed in Table 7-2. These commands are described in the following paragraphs.

The OFV command

Output Frequency Values, will output the current sweep measurement frequencies.

The OTV command

Output Time Values, and the **ODV** command - Output Distance Values, will output the current time domain sweep measurement points.

The IFV command

Used to input a user defined set of frequencies for measurement or calibration.

NOTE

The **IFV** command will delete the existing sweep frequency list and replace it with the newly input list. Therefore all existing calibration data will be lost.

The ONP command

Output Number of Points, can be used to allocate enough memory in your program to receive the measurement frequencies. For example, sending "ONP;OFV" to the 37XXXC when a 401 data point sweep is in progress will output the ASCII value 401. This value can now be used to set up an array of the correct size to receive the output of the OFV command.

Table 7-2. Sweep Measurement Points Data Transfer Commands

Command	Brief Description	Allowable Data Formatting
ODV	Output distance values for time domain sweep points	FMA, FMB, FMC
IFV	Input frequency list	FMA, FMB, FMC
OFV	Output measurement frequency values	FMA, FMB, FMC
OGCFV	Output gain compression frequency values	FMA, FMB, FMC
ONP	Output number of points currently being measured	None - Always ASCII
ONPV	Output the number of power sweep power values	None - Always ASCII
OPSV	Output power sweep power values	FMA, FMB, FMC
OTV	Output time values for time domain measurement points	FMA, FMB, FMC

Sweep Measurement Points Data Transfer Example The following is an example of Sweep Measurement Points Data Transfer commands usage:

"NP101; FMB; LSB; OFV"

These commands will perform the following functions:

NP101 will set up a 101 point sweep.

FMB will output data using 64-bit (eight bytes) floating-point format.

LSB causes data bytes to be output least significant byte first. This is for compatibility with INTEL/IBM based computer/controllers. If using other types of controllers that represent data in most significant byte format, then use the **MSB** command.

OFV uses the <Arbitrary Block> format. It will output the current list of measurement frequencies, f₁ thru f₁₀₁, using eight bytes each. The ASCII header (#3808), which shows that 808 data bytes follow, precedes the frequency values. The linefeed character (0A, decimal 10) signals the end of the data block.

EXAMPLE:

 $#3808 < f_1$, 8 bytes>...< f_{101} , 8 bytes>0A

NOTE:

The (< >) characters are not output from the 37XXXX. They are used in the text above to distinguish each frequency's 8 byte segments.

7-7 FAST CW OPERATION

Fast CW operation is a special mode where the instrument is in CW and measurements are made very rapidly. The measurement data is sent directly to the GPIB task which can either make the data available to the GPIB bus or store it in an internal buffer to be output later. To achieve a faster measurement rate, the display is not updated. See the next paragraph on Internal Buffer Data Collection for a description of how the Fast CW Data can be stored in an internal buffer and output at a later time.

There are currently 2 modes for fast CW: Mode 1 outputs the active channel S-Parameter or User Defined Parameter as a complex number. Mode 2 outputs the measurements B1, B2 and A as 3 complex numbers. When the data is output to the GPIB directly, it is output one point at a time. No intervening query mnemonics are required. The byte order of the floating point numbers is always Most Significant Byte first (MSB). If a data points is not read when available, it may be overwritten by a subsequent data point and lost. No indication is made if this happens as it is very likely that many data points will be lost if the controller is not fast enough to keep up with the measurement rate.

Fast CW Mode 1

Each data point is output in binary and consists of two IEEE 754 4byte floating point numbers (one for the real part and one for the

7-16 37XXXC PM

imaginary) encapsulated within an <arbitrary block> header (paragraph 7-3) and a trailing Line Feed with EOI. A total of 12 bytes:

#18 <4-byte float> <4-byte float><LF/EOI>

Fast CW Mode 2

Each data point is output in binary and consists of 3 sets of IEEE 754 4-byte floating point numbers (one for the real part and one for the imaginary) encapsulated within an <arbitrary block> header (paragraph 7-3) and a trailing Line Feed with EOI. A total of 29 bytes. The parameter order is [B1][B2][A1] for the forward sweep direction and [B1][B2][A2] for the reverse sweep direction:

#224 < 4-byte float><4-byte float><4-by

Most GPIB mnemonics interfere with proper Fast CW operation and are therefore not permitted. Refer to Table 7-3 for a list of Fast CW mnemonics and Table 7-4 for a list of Fast CW permitted mnemonics.

Table 7-3. Fast CW Mnemonics (1 of 1)

Command	Description
FCW0	Turn fast CW measurement mode off
FCW1	Turn fast CW measurement mode on
FCW2	Turn Fast CW mode 2 on
FCWX?	Output fast CW measurement mode on/off status

Table 7-4. Mnemonics Permitted During Fast CW Mode (1 of 1)

Command	Description	
ADDFC	Enter frequency counter GPIB address	
ADDPLT	Enter plotter GPIB address	
ADDPM	Enter power meter GPIB address	
SAMP2	Use 2 samplers for measurements	
SAMP3	Use 3 samplers for measurements	

7-8 INTERNAL BUFFER

Internal Buffer Data Collection (Table 7-5) provides for saving active channel measurement data from multiple sweeps without having to synchronize and collect data at the end of each sweep. The instrument can store up to 50,000 data point measurements; each one consisting of two IEEE 754 4-byte floating point numbers.

The mnemonics CCD, CFD and CRD initialize the collection process and specify which type of data will be collected: either Corrected Data, Final Data or Raw Data respectively. The measurement data in Fast CW mode is considered to be Raw Data. Once initialized, the collection process can be started by issuing the mnemonic DCCTN.

Before changing instrument parameters, temporarily suspend the collection process with the mnemonic DCHLD. After changes are completed, restart with DCCTN.

Sections of collected data can be delimited using the mnemonic DCMRK, which puts user specified values into the data buffer in real time.

The mnemonic OCS will output the data and reset the data collection buffer. The output format is fixed at FMC and DPR1. The user may, however, specify MSB or LSB. As is the case with all binary data transfers, the data will be encapsulated with an Arbitrary Block header (paragraph 7-3). The size of the output data is 2 X 4 X number of data points collected. The absolute maximum number of data points that can be collected is 50,000. Sometimes, depending on internal memory usage, the maximum count can be less. Use DCPMAX? to determine the maximum. If the internal buffer becomes completely filled, subsequent data is discarded. The CBF bit of the Extended Event Status Register will also be set.

Table 7-5. Internal Buffer Data Collection Mnemonics (1 of 1)

Command	Description	
CCD	Collect corrected data in an internal buffer	
CFD	Collect final data in an internal buffer	
CRD	Collect raw data in an internal buffer	
CXD?	Output internal buffer data collection mode	
DCCTN	Resume internal buffer data collection	
DCCTN?	Output internal buffer data collection resume/suspend status	
DCHLD	Suspend internal buffer data collection	
DCMRK	Inserts the mark value into the internal buffer	
DCOFF	Turn internal buffer data collection mode off	
DCPCUR?	Outputs the current point count in the collect buffer	
DCPMAX?	Outputs the maximum number of points that can be collected in the collect buffer	
ocs	Output internal buffer collected data	

7-18 37XXXC PM

7-9 TRIGGERS

Table 4-4, in Chapter 4, lists the mnemonics TEX and TIN which control the triggers that are visible from the front panel. There are, however, two additional trigger configurations controllable only from the GPIB.

The mnemonic TIB sets up the instrument similar to TEX except the GPIB Group Execute Trigger provides the trigger to got to the next frequency and take a measurement. Thus the user can cause the instrument to step along and take measurements as quickly or as slowly as desired. If the instrument has not finished with the measurement cycle from a previous GET and another GET is received, the GET will be lost. To show that this has happened, the TRH bit in the Limit Event Status Register is set.

The mnemonic TEB allows the rear panel external trigger to execute the program message contained in the *DDT trigger definition. This allows the rear panel trigger to control almost any instrument function(s) that can be controlled from the GPIB. Such as restarting the sweep, or even resetting the instrument. If the instrument has not finished with the *DDT trigger definition when another rear panel trigger is received, the trigger will be lost. To show that this has happened, the TRH bit in the limit event status register is set.

Table 7-6 contains the GPIBtrigger mnemonics only. Table 7-7 shows the relationships set up by the various trigger modes.

Table 7-6. Trigger Mnemonics (1 of 1)

Command	Description	
TEB	Select external trigger executes *DDT definition	
TIB	Select GPIB measurement triggering	

Table 7-7. Trigger Relationships (1 of 1)

Trigger Mode	Data Measurement	*DDT Trigger Definition
TIN	Internal	GPIB GET
TEX	External	GPIB GET
TIB	GPIB GET	None
TEB	Internal	External

7-10 CALIBRATION COEFFICIENTS

The Calibration Coefficients Data Transfer commands are listed in Table 7-8. These commands are described in the following paragraphs.

The **OCx** and **ICx** commands provide for outputting and inputting calibration error terms (coefficients). The **ONCT** command outputs the number of error terms available for the currently set calibration. For example, **ONCT** would output the number 12 for a 12-Term calibration and 2 for a Transmission Frequency Response calibration. The ordering of the calibration error terms for the various calibration types is shown in Chapter 12, Table 12-3. For example, to output the ETF error term from a 12-Term calibration use the **OC4** command.

Table 7-8. Calibration Coefficients Data Transfer Commands

Command	Brief Description	Allowable Data Formatting
IC1 – IC12	Input calibration coefficient 1-12	FMA, FMB, FMC
ICA, ICB, ICC	Input calibration coefficient 10–12	FMA, FMB, FMC
OC1 – OC12	Output calibration coefficient 1–12	FMA, FMB, FMC
OCA, OCB, OCC	Output calibration coefficient 10, 11, 12	FMA, FMB, FMC
OCL	Output all 12 calibration coefficients	FMA, FMB, FMC
ONCT	Output number of cal terms for current calibration	None - Always ASCII

The ICx commands are used to input user defined calibration error terms. The 37XXXC must be prepared to accept the appropriate calibration error terms using the Simulate Calibration commands, such as A12, A8T, etc.. These commands use the same mnemonic syntax as their related calibration selection commands (which are used to actually perform a calibration), except they start with the letter "A" instead of "C". For example, the A12 command is used to simulate a 12-Term calibration where as the command C12 is used to actually perform a 12-Term calibration. Similarly, the A8T command is used to simulate a 1 Path 2 Port FWD calibration where as the command C8T is used to actually perform a 1 Path 2 Port FWD calibration. Refer to Chapter 12, Table 12-3 and to Chapter 6, "Calibration Functions" for more information about calibration coefficients, and performing calibrations).

Calibration error terms (coefficients) are output, or expected as input, only for the currently defined set of sweep frequencies. If data points are not at the maximum values set during calibration and/or the frequency range has been zoomed-in (with error correction turned on), not all calibration coefficients will be output or used as input. Refer to paragraph 7-6, "Sweep Measurement Points Data Transfer," for details on outputting the current sweep measurement points.

7-20 37XXXC PM

If an attempt is made to transfer an unavailable calibration error term, that is, the EXR term from a Reflection Only calibration, the 37XXXC will issue an Execution Error (refer to paragraph 7-12, "The 37XXXC Error Reporting System").

Calibration Coefficients Data Transfer Example

The following is an example usage of Calibration Coefficients Data Transfer commands:

"NP101; ONCT; FMB; LSB; OC1"

These commands will perform the following functions:

NP101 will set up a 101 point sweep. This is only allowed if the calibration was done with at least 101 points in the sweep.

ONCT will output the number 12, since there are 12 error terms in a 12-term calibration.

The 37XXXC will then output a semi-colon (;) to separate the **ONCT** output data from the oncoming **OC1** data.

FMB will output the calibration data using 64-bit (eight bytes) floating-point format.

LSB causes data bytes to be output least significant byte first. This is for compatibility with INTEL/IBM based computer/controllers. If using other types of controllers that represent data in most significant byte format, then use the **MSB** command.

OC1 uses the <Arbitrary Block> format. It will output 101 real and imaginary data pairs (202 values). Each two consecutive values, 8 bytes each, represent the error term EDF at each measurement point. The total number of bytes expected (1616) is encoded in the ASCII header (#41616). The linefeed character (0A, decimal 10) signals the end of the data block.

EXAMPLE:

12;#41616< f_1 EDF real, 8 bytes> < f_1 , EDF imaginary, 8 bytes> < f_2 EDF real, 8 bytes> < f_2 , EDF imaginary, 8 bytes>... ...< f_{101} , EDF real, 8 bytes> < f_{101} , EDF imaginary, 8 bytes>**0A**

NOTES:

The (< >) characters shown in the example are not output from the 37XXXC. They are used in the text above to distinguish each 8 byte data segments.

Note the number 12, output in response to the **ONCT** command, and the semi-colon separator, that precede the EDF data output.

Your program can now iteratively issue and output the remaining 11 error terms using the commands **OC2**, **OC3**, ..., **OC12**.

7-11 MEASUREMENT DATA TRANSFER

The Measurement Data Transfer commands are listed in Table 7-9 . These commands are described in the following paragraphs.

Table 7-9. Measurement Data Transfer Commands

Command	Brief Description	Allowable Data Formatting
DPR0	Turn off outputting of data pairs for single graph data types only (when using OFD/IFD command)	N/A
DPR1	Turn on outputting of data pairs for single graph data types only (when using OFD/IFD commands)	N/A
DPRX?	Data pair mode query on/off.	N/A
ICD	Input corrected data for S-parameter on active channel	FMA, FMB, FMC
IFD	Input final (display format) data for S-parameter on active channel	FMA, FMB, FMC
OAM1-OAM4	Output active marker value on channel indicated	None - Always ASCII
OGCFD	Output gain compression final data to GPIB	FMA, FMB, FMC
OCD	Output corrected data for S-parameter on active channel	FMA, FMB, FMC
OFD	Output final (disp. format) data for S-parameter on active channel	FMA, FMB, FMC
OM1 – OM6	Output marker 1-6 value in display format. NOTE: Use MK1?-MK6? to output marker frequency. Refer to Chapter 6, Data Analysis, for more details.)	None - Always ASCII
OS11C	Output corrected S11 data to GPIB	FMA, FMB, FMC
OS11R	Output raw S11 data to GPIB	FMA, FMB, FMC
OS12C	Output corrected S12 data to GPIB	FMA, FMB, FMC
OS12R	Output raw S12 data to GPIB	FMA, FMB, FMC
OS21C	Output corrected S21 data to GPIB	FMA, FMB, FMC
OS21R	Output raw S21 data to GPIB	FMA, FMB, FMC
OS22C	Output corrected S22 data to GPIB	FMA, FMB, FMC
OS22R	Output raw S22 data to GPIB	FMA, FMB, FMC

The measurement data transfer commands are used to transfer S-parameter values to or from the currently active channel. Only the currently set number of measurement points will be output or expected as input. Refer to paragraph 7-6, "Sweep Measurement Points Data Transfer," for details on outputting the current sweep measurement points.

The **OAM1-OAM4**, **OFD/IFD** and **OM1-OM6** commands - Output/Input Final Display Formatted Data or marker value, transfer data values in the currently selected graph type units. If a dual graph type is

7-22 37XXXC PM

displayed, such as Log Magnitude and Phase, the data for each measurement point will be a pair of values. In the case of Log Magnitude and Phase, the data pair would be (dB value, degrees value). If a single graph type is displayed, such as Log Magnitude only, the data for each measurement point will be a single value, in this case (dB value).

The **DPR1** command - Data Pair Format On, modifies the **OAM1-OAM4**, **OFD/IFD** and **OM1-OM6** commands to transfer a complex data pair *when in a single graph type* display (that is, Phase only). Necessarily though, since it was not an actually measured value, the additional value will be set to zero. The output values for each graph type selection for both the DPRx modes are listed in Table 7-10.

Table 7-10. Output Value vs Graph Display Types

Cronb Dioplay Type	Data Units and Ordering	
Graph Display Type	w/DPR0	w/DPR1
Log magnitude	dB	dB, 0
Phase	degrees	0, degrees
Log mag & phase	dB, degrees	dB, degrees
Linear magnitude	Rho or Tau, degrees	Rho or Tau, 0
Linear mag & phase	Rho or Tau, degrees	Rho or Tau, degrees
Smith chart	Ohms	Ohms, j-Ohms
Inverted Smith	Siemens	Siemens, j-Siemens
Group delay	Seconds	Seconds, 0
Log polar	dB, degrees	dB, degrees
Linear polar	Rho or Tau, degrees	Rho or Tau, degrees
Real	Real	Real, 0
Imaginary	Imag	0, imag
Real & Imaginary	Real, imag	Real, imag
SWR	SWR	SWR, 0

NOTE:

The **DPR1** format will remain in effect until the 37XXXC receives the **DPR0** command that is, Data Pair Format Off. This mode is the default data transfer format.

For example, if the current graph type is Phase only, "DPR1;OFD" would output data pairs in the same format as if Magnitude and Phase dual graph type was currently displayed, but with the magni-

tude value set to zero (0, degrees value). Similarly, if the current graph type is Log Magnitude only, "**DPR1;OFD**" would output data pairs in the same format as if the Magnitude and Phase dual graph type was currently selected, but with the phase value set to zero (dB value, 0).

The **DPR1** functionality is useful in developing a single data transfer procedure in your application program for processing all data output commands; since they mostly transfer a data pair. This includes the **OAM1-OAM4, OFD, IFD**, and **OM1-OM6** measurement data transfer commands discussed here, and the **ICx** and **OCx** series commands (refer to paragraph 7-10, "Calibration Coefficient Data Transfer").

NOTE

Use the **MK1?-MK6?** queries to output the marker frequency. Refer to Chapter 4, Data Analysis, for full details on Markers.

The **ORD** command - Output Raw Data, and the **OCD/ICD** commands Output/Input Corrected Data all transfer data in real and imaginary pairs (real value, imag value). Raw data is uncorrected measurement data from a sweep without a calibration applied. Corrected data is measurement data which has been corrected according to the currently applied calibration type.

When S-parameter data input to the 37XXXC is complete (**ICD** and **IFD**) the 37XXXC redraws the parameter on the active channel using this data.

NOTE:

Always place the 37XXXC in hold (**HLD**) prior to inputting data using the **IFD** or **ICD** commands. This is to prevent the newly input data from being overwritten by subsequent sweeps.

Measurement Data Transfer Example

The following is an example usage of Measurement Data Transfer commands:

"NP101; CH2; MAG; HLD; TRS; WFS; FMC; LSB; OFD"

NP101 will set up a 101 point sweep. If a calibration is applied, this will only be allowed if the calibration was done with at least 101 points.

CH2 makes channel 2 the active channel for all subsequent channel specific commands.

MAG displays S-parameter data in Log Magnitude format on the active channel.

HLD places the VNA into hold.

TRS triggers a new sweep. Since the VNA is in hold, the hold is changed to single sweep and hold.

7-24 37XXXC PM

WFS waits for a full sweep to ensure the data is valid. A full sweep is a complete forward sweep and a complete reverse sweep when a 12-term calibration is applied. It also includes time/distance data processing time if in time domain mode.

NOTES:

You must wait for two full consecutive sweeps after first connecting a device, and prior to outputting data, when a 12-term calibration is applied, that is, "TRS;WFS; TRS:WFS".

Set your controller's time out value high enough to allow the sweep to complete. Refer to Chapter 2 for more details.

FMC will output data using 32-bit (four bytes) floating-point format. The measurement data can be read directly into a floating point array dimensioned to 101 elements.

LSB causes data bytes to be output least significant byte first. This is for compatibility with INTEL/IBM based computer/controllers. If using other types of controllers that represent data in most significant byte format, then use the **MSB** command.

NOTE

It is good practice to always preface a data transfer command with the desired format command(s) every time it is used, that is, "FMC:LSB:OFD", even if they were already set. This will help make your program more readable and easier to maintain and update in the future.

OFD uses the <Arbitrary Block> format. It will output 101 final measurement data values using the active channel's displayed graph units (dB). Each measurement value is represented using 4 bytes. The ASASCII header (#3404), which shows that 404 data bytes follow, precedes the measurement values. The linefeed character (0A, decimal 10) signals the end of the data block. EXAMPLE:

```
\#3404 < f_1, dB, 4 bytes> < f_2, dB, 4 bytes>.... < f_{101}, dB value, 4 bytes>0A
```

NOTE:

The (< >) characters are not output from the 37XXXX. They are used in the text above to distinguish each 8 byte data segment.

The following shows the data stream if "FMA;DPR0;OFD" had been sent instead of "FMC;LSB;OFD". This produces the data in ASCII format. The **DPR0** is default mode, but it is sent anyway to insure pre-

vious data transfers did not change the setting. Note the header is now #41892, signifying that 1892 data bytes follow. EXAMPLE:

```
#418921.611913055E+01,5.22284173965E+01,...,4.74120521545E+010A.
```

The following response shows the data output if "FMA;DPR1;OFD" had been sent instead of "FMC;LSB;OFD". Note that inclusion of DPR1 while in a single graph type display (MAG, magnitude in this case) will double the array size, by sending data pairs for each measurement point. Note also that the additional value is set to zero since the data for it was not measured. Refer to text above for complete details. Note the header is now #43731, signifying that 3731 data bytes follow. EXAMPLE:

```
 \texttt{\#437311.611913055E+01,0.00000000000E+00,5.22284173965E+01,0.00000000000E+00,....,4.74120521545E+01,0.00000000000E+00} \textbf{OA}
```

7-12 ERROR REPORTING SYSTEM

The 37XXXC implements a number of error reporting tools to assist you in detecting, reporting, and handling errors and other events in your application program. These tools will also prove invaluable to you during development of your application program. The tools are summarized below:

- □ Status Registers that you set to trigger an interrupt (or service request SRQ) on many events such as GPIB errors, measurement data pass/fail testing, and end of calibration process. Refer to paragraph 7-15, "Status Reporting," for complete details.
- □ A time ordered Service Log that stores errors and other important system information in non-volatile memory. The Service Log can easily be accessed via GPIB and from the front panel.
- □ A GPIB error message structure that contains the last two GPIB errors encountered. This includes details on the program message element that caused the error.

Error Reporting Actions

The following summarizes the actions taken by the 37XXXC when it detects an error:

An audible beep is issued to attract the operators attention.

An error message temporarily appears on the display.

An error message, with date and time and other details, is written in the Service Log (refer to paragraph 7-13 for details.) This is *non-volatile* storage, meaning it will survive a power down of the 37XXXC.

An error message string will also be saved internally in the GPIB software's Error Structures (refer to paragraph 7-12 for details.) This is *volatile* memory storage, meaning it will be lost when the 37XXXC is powered down.

7-26 37XXXC PM

The appropriate bit in the Standard Events Status Register is set, and if enabled, a Service Request (SRQ) will be generated (refer to paragraph 7-15 for details.)

GPIB Error Messages

Refer to Chapter 13 for a complete list of 37XXXC error messages and their descriptions.

37XXXC errors reported in the Service Log include four errors which are detected by the internal GPIB Parser software during remote operation:

7204 GPIB Command Error

7205 GPIB Execution Error

7206 GPIB Device Specific Error

7207 GPIB Query Error

These errors are typically generated as a result of incorrectly programming the 37XXXC. A detailed description of the errors and the data they provide in the Service Log and the GPIB Error Structures follows.

NOTE

Use the 37XXXC error reporting mechanisms to effectively detect and handle error conditions, both during development and when preparing your finished application program .

Each of the GPIB errors will further provide a more precise submessage of the specific condition that caused the error. Refer to Chapter 13, Table 13-3 for a complete list of these sub-messages and their descriptions.

"7204 GPIB Command Error"

These are errors in the syntactical correctness of a command, its numeric data entry element, or its data entry terminator code (or suffix mnemonic). As the internal GPIB command parser synchronization can be lost with this type of error, execution of the remainder of the program message is aborted.

If the command error was detected while executing a defined device trigger command sequence (refer to ***DDT** command, Chapter 10), execution of the remainder of the defined device trigger sequence will be aborted.

"7205 GPIB Execution Error"

These errors occur when a syntactically correct command fails to execute properly due to the command's parameters being out of range or not appropriate for the current instrument state.

"7206 GPIB Device Specific Error"

These errors occur when a command that is free of command and execution errors, fails to execute due to some unexpected instrument condition such as running out of memory.

"7207 GPIB Query Error"

These errors occur when the external controller attempts to read data from the 37XXXC output buffer when either no data is available or data in the output buffer is lost.

7-13 SERVICE LOG

The 37XXXC implements a non-volatile record of errors detected during front panel and GPIB operation in a Service Log. The log contains error messages along with the date and time and additional details about the error.

The Service Log can be viewed from the front panel Enhancement key group. Press the Option Menu key, then select DIAGNOSTICS and READ SERVICE LOG soft menus.

Refer to Chapter 8, "System Functions," for details on Service Log action commands such as printing, clearing, and saving it to disk.

Service Log Output Commands

Service Log data can be output via GPIB in two ways depending on the degree of detail desired about the errors. The commands listed in Table 7-11 will output all types of error messages. Refer to paragraph 7-12 for outputting *only* GPIB errors and their related details.

Table 7-11. Error data transfer Commands

OGE	Output extended description of latest GPIB error	None - Always ASCII
OGL	Output extended description of previous GPIB error	None - Always ASCII
ONE	Output number of error messages stored in Service Log	None - Always ASCII
OEL	Output list of error messages	None - Always ASCII
OSL	Output Service Log	None - Always ASCII

NOTE:

The Service Log error messages will remain stored, that is, they will not be deleted, when output via GPIB commands.

The **ONE** command - Output Number of Errors, can be used to periodically check if the 37XXXC detected a new error without having to use SRQ interrupts. The **OEL** command - Output Error List can then be used to output all the error messages in the Service Log. This is an ASCII text, comma separated list of all the error messages in the Service Log. The output is in <Arbitrary Block> format (refer to paragraph 7-3, Data Transfer Protocol Basics, for details.) In the example below,

7-28 37XXXC PM

the list is preceded by the output header (#42960), the words ERROR LOG, the current date and time, then the error list.

EXAMPLE:

#42960ERROR LOG 01/23/95 19:18, 7205 GPIB EXECUTION ERROR,

The **OSL** command - Output Service Log, is used to output the complete contents of the Service Log. The output is in ASCII text format, so it can be saved directly to a file for later viewing and analysis. The Service Log output includes:

System identity information such as model, serial number, and software version

System statistics such as total operational hours, initial turn on date and time, and current date and time

List of all error messages with date and time of occurrence and other pertinent information.

The Service Log output will look similar to the Service Log as viewed from the front panel menus (Utility key, **DIAGNOSTICS**, **SERVICE LOG**, then **DISPLAY LOG** soft keys). The only difference is each line of text in the Log as output via **OSL**, will be comma separated from the other lines of text.

GPIB Error Entries Description

This paragraph describes details of Service Log GPIB error entries. Use this information to assist in application program development and to handle GPIB errors in your program.

There are two types of service log entries made in response to GPIB errors (errors 7204, 7205, 7206, 7207):

- ☐ The first type is 4 lines long and is made when a program message is currently being parsed and executed (the error can then be associated with a particular command within the message).
- □ The second type is only 3 lines long and is made when there is no currently active program message.

Service Log entries, description:

LINE 1:

The type of error, i.e.

7204 GPIB COMMAND ERROR
7205 GPIB EXECUTION ERROR
7206 GPIB DEVICE DEPENDENT ERROR
7207 GPIB QUERY ERROR

37XXXC PM 7-29

LINE 2:

The date and time of the error:

11/14/95 09:26

LINE 3:

For a 3 line service log entry

This line contains only a verbal description of the error:

No response data available

For a 4 line service log entry

The description is followed by an index number which is used to interpret line 4:

Faulty program mnemonic syntax, 13

LINE 4:

This line (approximately 47 characters long) will contain as much of the currently active program message as is possible. The index number from line 3 represents the position of the parser's command pointer when the error occurred. (1 is the first character).

For example, the program message below generated a command error when the parser reached the beginning of the faulty mnemonic CH5 (only **CH1-CH4** are valid). The parser index is placed at position 13 to indicate the the location of the faulty command referenced to the beginning of the line.

CH1; WFS; ASC; CH5; WFS; ASC

1 13

If the program message is longer than 47 characters, then, as much as possible of the message segment that contained the error will be displayed. The index number in line 3 will be adjusted automatically such that 1 always refers to the first displayed character.

If the error was detected while executing a defined device trigger command sequence (refer to ***DDT** command, Chapter 10), then line 4 will contain as much of the command sequence as possible.

If the error was detected while parsing and converting numeric fields within an <Arbitrary Block> program data element (refer to <Arbitrary Block> in paragraph 7-3), then line 4 will contain as much of the data as possible.

7-14 GPIB ERROR STRUCTURES

The 37XXXC internal GPIB software task (Parser) maintains a list of the current and the previous GPIB errors that it generated. These two errors along with pertinent details can be output over the GPIB.

7-30 37XXXC PM

Refer to paragraph 7-13, Service Log, if you wish to output all 37XXXC errors, including GPIB errors.

NOTE:

Error messages will remain stored, that is, they will not be deleted, when output via the GPIB. Use the *CLS or CSB to clear the errors reported via the OGE and OGL commands.

The commands **OGE** - Output Current GPIB Error, and **OGL** - Output Previous GPIB Error (Table 7-6), will output a message in <Arbitrary ASCII> data format (refer to paragraph 7-3 for details.) The data output will contain either 2 or 4 ASCII text fields separated with commas as follows:

```
<Error Type>,<Error Description>
or,
<Error Type>,<Error Description>,<Index Number>,
<Program Message>
```

The <Error Type> field will be one of the following:

Command Error

Device Error

Execution Error

Query Error

No errors

The <Error Description> field will contain the same message as reported in LINE 3 of the Service Log GPIB error entry.

The <Index Number> and <Program Message> fields are also included if there is a currently active program message which can be associated with the occurrence of the error. These fields will contain the Index Number and Program Message (refer to LINE 3 and LINE 4 of the Service Log GPIB Error Entry, paragraph 7-13.)

Error Reporting Data Output Example

The following is an example usage of Error Reporting Data Output commands:

```
"*TST?;ONE;OEL;OGE"
```

These commands will perform the following functions:

*TST? will perform a self test and output the pass/fail status (0=pass, 1=fail). If any tests failed, the test number and error message will be written to the Service Log.

ONE will output the number of errors in the Service Log. The **OEL** will output the error message strings. **OSL** will output the complete Service Log text. If the **ONE** indicates there are errors

37XXXC PM 7-31

in the Log, you could use the **OSL** command to output a complete copy of the Service Log to file on your computer for later investigation. This is especially useful during a long un-monitored test, where you may want to save all data for failure analysis.

Investigate any errors prior to proceeding with your application program task. If the error is critical, you should contact a qualified Service Person. Note that you can also output and view the Service Log from the front panel (refer to paragraph 7-13, Service Log.)

NOTE

Errors in the Service Log include certain user errors that may not be actual 37XXXC system failures or errors.

For example, some DISK related errors may have been caused by a bad floppy or a floppy of the wrong media type.

Another example is RF POWER UNLEVELED and RF OVERLOAD errors (see Chapter 13), which are produced if the system reset power is exceeded to a point where the system becomes unleveled. This is normal behavior (the 37XXXC allows you to set power above reset power to accommodate special needs (refer to **OID** command, Chapter 11, "Command Dictionary").

In fact, the **ONE**, **OEL**, **PWR**, and **P1P?** commands can be used together to check for these errors if you are attempting to find the maximum leveled power setting for a specific frequency range. Refer to Chapter 10, Command Dictionary for command details.

OGE (and **OGL**) can be used to output the GPIB error number, or "No errors" message, if none occurred. This is useful while debugging your application during development for displaying the error on your computer's screen for example. Note that by definition, these errors should not occur on a finished application program or they may be indicative of an error prone application.

7-32 37XXXC PM

7-15 STATUS REPORTING

The following paragraphs describe the 37XXXC service request and status reporting model. The 37XXXC model implements all mandated and many optional status reporting features specified by the IEEE 488.2 Standard. These include the Standard Event Status Register and two additional event status registers, Service Request Enable Register, and Parallel Poll Enable Register. The 37XXXC implements full status and enable registers query capability. A diagram of the 37XXXC Status Reporting Model is shown in Figure 7-3.

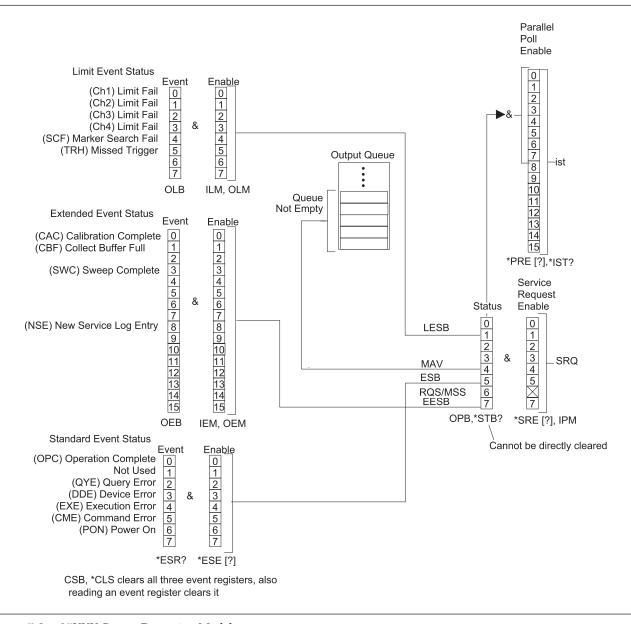


Figure 7-3. 37XXX Status Reporting Model

37XXXC PM 7-33

Event Status Registers

The 37XXXXA implements three *Event Status Registers* (ESRs). These are:

Standard Event Status Register (Standard ESR)

Extended Event Status Register (Extended ESR)

Limits Event Status Register (Limits ESR)

ESR bits always reflect the status of their specified 37XXXXA events (refer to paragraph 7-15, Status Events Description.) The registers are cleared (reset) when output by their respective query or output commands: *ESR? - Standard ESR Query, OEB - Output Extended ESR, OLB - Output Limits ESR. ESRs can also be cleared at any time via the Clear Status commands (*CLS or CSB).

The overall summary status of each ESR (that is, whether or not any of its enabled events have occurred), is reported in the Status Byte Register.

Selecting Events for Status Reporting

The 37XXXC *Event Status Enable Registers* (ESERs) allow you to select the specific event, or events, that you want summarized in the Status Byte Register.

The selection of a specific event, or events is done by enabling the desired event's bit. This is done by sending the appropriate ESER command with a binary weighted decimal value of the desired bit pattern.

The following commands are used to set and query ESER values:

***ESE**, ***ESE?** used to set and query the value of the *Standard* ESER

 $\boldsymbol{\mathsf{IEM}}, \boldsymbol{\mathsf{OEM}}$ – used to input and output the value of the Extended ESER

ILM, **OLM** used to input and output the value of the Limits ESER

Output Queue

The 37XXXC Output Queue holds data which was requested by your application program. At any one time, the status of this queue is either empty (no data bytes available), or not-empty (at least one data byte is available.)

The Output Queue status is always reported in the 37XXXC Status Byte Register. The Output Queue status bit is automatically set and cleared. The Output Queue is emptied when the last data byte it contains is output to the external controller or when the 37XXXC detects a Query Error.

The Status Byte Register

The Status Byte Register is the summary status register of the overall 37XXXC status. It can be directly queried for its value. It is also the basis for generating service requests, serial polling operations, and

7-34 37XXXC PM

parallel polling operations. The Status Byte Register consists of a single 7-bit byte comprised of:

The Status Byte (bits 0-5, and bit 7), and

The MSS message or the RQS message (bit 6).

The Status Byte (bits 0-5, and bit 7) contains the overall status of the 37XXXC. This includes the Output Queue status and the summary status of enabled bits in each event register. Once all enabled bits in an event register are cleared, or the Output Queue is emptied, the corresponding summary bit in the Status Byte Register will be reset.

The Master Summary Status (MSS) message is a single bit summary of the Status Byte (bits 0-5, and bit 7). This means bit 6 will be true if any of the other bits in the Status Byte Register are true, otherwise it will be false. The MSS message is sent in bit 6 when querying the status byte register and when generating the *IST message for parallel polling*.

The Requesting Service (RQS) message is true if the 37XXXC has generated an SRQ, that is, it requested service. This message is reset automatically when the 37XXXC is serial polled. The RQS message is sent in bit 6 if a serial poll is used to output the contents of the Status Byte Register.

Querying the Status Byte Register

The *STB? Status Byte Register Query, allows you to output the contents of the Status Byte Register without having to do a serial poll. When output in this manner, the Status Byte Register will contain the MSS message in bit 6 and the normal Status Byte in bits 0-5, and bit 7.

The *STB? query will not change; that is, reset, the value of the Status Byte (bits 0-5, and bit 7) and the MSS message (bit 6).

Serial Polling the Status Byte Register

Serial Polling the 37XXXC can also be used to output the contents of the Status Byte Register. The output will still contain the normal Status Byte in bits 0-5 and 7. The difference is this time the RQS message will be output in bit 6 instead of the MSS message.

It is important to note that serial polling will reset the RQS message in bit 6. This allows the 37XXXC to again set the RQS bit true if it has a new reason for requesting service. The value of the Status Byte (bits 0-5, and bit 7) will not be reset or otherwise changed by a serial poll.

SRQ/Service Requests Generation

The 37XXXC can be made to request service; that is, generate an SRQ interrupt, when any of the defined events occur. This is a two step process:

First, you need to enable the desired event (refer to Enabling Status Events)

37XXXC PM 7-35

Second, you need to enable the event's register bit in the Service Request Enable Register.

The *SRE and *SRE? commands are used to set and query the Service Request Enable Register. Sending "*SRE 0" to the 37XXXC will disable the 37XXXC service request.

Parallel Polling the 37XXXC

The Parallel Poll Enable Register is used to set the value of the 37XXXC parallel poll status bit. This bit corresponds to the 37XXXC individual status message (*ist*). The ist message can be output without a parallel poll operation using the *IST? query.

The *ist* message is set true when both of the following are true:

a bit is set true in the Status Byte Register, and,

the corresponding bit is enabled in the Parallel Poll Enable Register.

NOTE:

The MSS message is used in bit 6 of the Status Byte Register (refer to Status Byte Register above.)

The *PRE and *PRE? commands are used to set and query the Parallel Poll Enable Register. Sending "*PRE 0" to the 37XXXC will set the 37XXXC ist message, and therefore the parallel poll status bit, to false, that is, 0.

Binary Weighted Decimal Values

All the enable commands or query commands described above for status reporting take or return a single argument. This is a binary weighted decimal value representing the sum of all the true (or set) bits in the register.

The binary weighted decimal value of a bit in a register is calculated by raising the number 2 to a power equal to the bit position.

For example, the binary weighted decimal value of bit 4 is arrived at by raising the number 2 to the 4^{th} power ($2^4 = 16$). Similarly, the decimal value of bit 0 is the number 2 raised to the 0 power ($2^0 = 1$).

The total decimal value of a register is the sum of the individual binary weighted decimal values of all enabled, or true bits. In the above example, this would be 16 + 1 = 17.

Status Reporting Commands Example

Following are example usages of Status Reporting commands:

EXAMPLE 1:

"*CLS;TRS;WFS;OEB"

These commands will perform the following functions:

*CLS will clear all four event status registers.

7-36 37XXXC PM

TRS will trigger a new sweep.

WFS will set bit 4 (SWC) in the Extended Event Status Register when a full sweep is complete.

OEB will output the decimal value of the Extended Event Status Register. This will be the number 8 ($2^4 = 8$).

When a 12-term calibration is applied, a "full sweep" includes a complete forward sweep and a complete reverse sweep. It also includes time/distance data processing time if in time domain mode.

Set your controller's time out value high enough to allow the sweep to complete. Refer to Chapter 2 for more details.

EXAMPLE 2:

"*CLS; IEM 8; *SRE 128; TRS; WFS"

These commands will perform the following functions:

*CLS will clear all four event status registers.

IEM 8 will enable bit 4 (SWC) in the Extended Event Status Register (Extended ESR). This will set bit 7 (the summary status bit for the Extended ESR) in the Status Byte Register when the SWC bit gets set true.

*SRE 128 will cause the 37XXXC to issue a service request (SRQ) when the enabled bit in the Extended Event Status Register gets set true.

TRS will trigger a new sweep.

WFS will set bit 4 (SWC) in the Extended Event Status Register when a full sweep is complete. Because of the **IEM** and ***SRE** that were issued, this will cause the 37XXXC to issue a service request (SRQ).

7-16 STATUS EVENT DESCRIPTIONS

The following paragraphs describe the 37XXXC status events functions. Refer to Figure 7-3, 37XXXC Status Reporting Model (page 7-33) for the definition of bits in each of the three event registers described below. (Refer to paragraph 7-15, Status Reporting, for an operational description of the 37XXXC reporting model.)

Standard Event Status Register

This register reports on the following events:

Bit 0:

The Operation Complete bit (OPC) is set true when all pending operations are completed after the ***OPC** command is issued. This is used for synchronization of your application program with 37XXXC operations.

Bit 1:

Not used.

37XXXC PM 7-37

Bit 2:

The Query Error bit (QYE) is set true when the 37XXXC detects an error when attempting to execute an output or query command. Typically, this is due to requesting output when the Output Queue is empty or if the 37XXXC emptied the queue due to an error situation.

The 37XXXC will clear (empty) the Output Queue and issue a query error if it receives a program message while data requested by a previous command still remains in the Output Queue.

Bit 3:

The Device Specific Error bit (DDE) is set true when the 37XXXC detects an error during execution of a valid 37XXXC command and it is not able to complete its execution. An example of this is trying to access a bad floppy disk for read or write.

Bit 4:

The Execution Error bit (EXE) is set true when a valid command's argument is out of the 37XXXC range or operational capabilities. This bit is also set when a valid command cannot be executed due to some 37XXXC condition such as an option not installed or invalid state for the command.

Bit 5:

The Command Error bit (CME) is set true when the 37XXXC Parser detects an invalid command. This is often generated due to unrecognized or invalid command syntax and incorrect use of separators and terminators.

Bit 6:

The User Request bit (URQ) is set true when a front panel key or control is invoked.

Bit 7:

The Power On bit (PON) is set true when the 37XXXC is turned on.

Extended Event Status Register

This register reports on the following events:

Bit 0

The Calibration Complete bit (CAC) is set true when all the steps of an Error Correction Calibration are complete after issuing the **BEG** or **RPC** commands.

Bits 1,2:

Not used.

Bit 3:

The Sweep Complete bit (SWC) is set true when a full sweep is completed after issuing the **WFS** command.

7-38 37XXXC PM

Bits 4-7:

Not used.

Bit 8:

The new service log entry bit (NSE) is set whenever a new error is entered in the service log. It can be used to detect lock failure and unleveled conditions.

Bits 9:

The Collect Buffer Full bit (CSF) is set when collecting data into a buffer (see paragraph 7-8) and the buffer becomes full.

Bits 10-15

Not used.

Limits Event Status Register

This register reports on the following events:

Bit 0:

The Channel 1 bit (CH1) is set true when a limit line has been exceeded on channel 1 after the **LT1** command has been issued.

Bit 1:

The Channel 2 bit (CH2) is set true when a limit line has been exceeded on channel 2 after the **LT1** command has been issued.

Bit 2:

The Channel 3 bit (CH3) is set true when a limit line has been exceeded on channel 3 after the **LT1** command has been issued.

Bit 3:

The Channel 4 bit (CH4) is set true when a limit line has been exceeded on channel 4 after the **LT1** command has been issued.

Bit 4:

The search failure bitr (SCF) is set TRUE when a marker search command (MKSL or MKSE) was issued but the target value was not found.

Bits 5:

The missed trigger bit (TRH) is set when either the TIB or TEB trigger mode is set and a Group Execute Trigger is received before the previous trigger event has completed. *The trigger is lost*.

Bits 6-7:

Not used.

Status Byte Register

This register reports on the following events:

Bit 0:

Not used.

37XXXC PM 7-39

Bit 1:

The Limits Event Status Bit (LESB) is set true if any of the enabled events in the Limits Event Status Register are true.

Bits 2, 3:

Not used.

Bit 4:

The Message Available bit (MAV) is set true if the Output Queue contains at least one byte of data. refer to related *OPC?, Operation Complete Query.

Bit 5:

The Standard Event Status Bit (ESB) is set true if any of the enabled events in the Standard Event Status Register are true.

Bit 6:

This bit contains either the Master Summary Status message (MSS) or the Request Service message (RQS), depending on how the Status Byte Register contents are output or used.

Refer to Status Byte Register description in paragraph 7-15.

Bit 7:

The Extended Event Status Bit (EESB) is set true if any of the enabled events in the Extended Event Status Register are true.

7-40 37XXXC PM

7-17 IEEE 488.2 COMMON COMMANDS

The IEEE 488.2 GPIB Standard specifies a common set of commands to support many standard instrument operations. The mandated and optional common commands implemented in the 37XXXC are shown in Table 7-12 below.

These commands are fully described in Chapter 11, Command Dictionary. Further, the commands for status reporting are also described in paragraphs 7-15 and 7-16.

Table 7-12. IEEE 488.2 Commands

Command	Description
*CLS	Clear status bytes and structures
*DDT	Enter the 488.2 Define Device Trigger command string
*DDT?	Output the 488.2 Define Device Trigger command string
*ESE	Enter the 488.2 Standard Event Status Enable mask
*ESE?	Output the 488.2 Standard Event Status Enable mask
*ESR?	Output the 488.2 Standard Event Status Register value
*IDN?	Output the 488.2 instrument identification string
*IST?	Output the value of the ist message
*OPC	Initiate the 488.2 Operation Complete sequence
*OPC?	Initiate the 488.2 Operation Complete Query sequence
*PRE	Enter the 488.2 Parallel Poll Register Enable mask
*PRE?	Output the 488.2 Parallel Poll Register Enable mask
*RST	Instrument reset
*SRE	Enter the 488.2 Service Request Enable mask
*SRE?	Output the 488.2 Service Request Enable mask
*STB?	Output the 488.2 Status Byte value
*TRG	Initiate a Group Execute Trigger sequence
*TST?	Perform self test and output status
*WAI	Wait to continue
OPB	Output the 488.2 Status Byte value (same as *STB?)
TST	Perform self test and output status (same as *TST?)

37XXXC PM 7-41

7-18 SYNCHRONIZATION COMMANDS

The 37XXXC operation can be synchronized with your application program operations using the commands listed in Table 7-13 below. These commands are from various functional groups in the 37XXXC GPIB command set. Refer to the appropriate references listed in the table and to Chapter 11, "Command Dictionary," for more details.

These commands are helpful in many operations related to outputting data, waiting for the sweep and the display to be updated, and many others. Where applicable, these commands are referenced and shown used in examples throughout the Programming Manual.

NOTE

The two commands, "HLD;TRS" sent together place the VNA into single sweep and hold and triggers a sweep. The sweep will stop after a complete sweep, thus preventing overwriting the first point with new sweep data.

 Table 7-13.
 37XXXC Synchronization Operations Commands

Command	Brief Description	References
WFS	Wait for full sweep	Chapter 5, Table 5-4
*OPC	Operation complete status	Paragraphs 7-13, 7-14
*OPC?	Operation complete query	Paragraphs 7-13, 7-14
TRS	Trigger sweep	Chapter 5, Table 5-4
HLD	Hold Measurement Process	Chapter 5, Table 5-4
SWPDIR?	Output Current Sweep (Phase Lock) direction	Chapter 5, Table 5-4
CTN	Continue sweeping (from HOLD state)	Chapter 5, Table 5-4

7-42 37XXXC PM

 Table 7-15.
 37XXXC System State Commands

Command	Brief Description	Allowable Data Formatting
ICF	Input information for current front panel setup and calibration	None - Always Binary
IFP	Input information for current front panel setup	None - Always Binary
IS1 – IS10	Input information for stored front panel setup 1-10	None - Always Binary
OCF	Output front panel setup and calibration string	None - Always Binary
OFP	Output current front panel setup string	None - Always Binary
OS1-OS10	Ouput stored front panel setup string 1–10	None - Always Binary

7-19 MISCELLANEOUS COMMANDS

The 37XXXC Miscellaneous Data Transfer Commands are listed in Table 7-14, below. The System Setups Commands are listed in Table 7-15.

Table 7-14. 37XXXC Miscellaneous Data Transfer Commands

Command	Brief Description	Allowable Data Formatting
DIR	Output a disk subdirectory list	None - Always ASCII
IHDW	Enter hardware calibration data from GPIB	None - Always ASCII
IKIT	Enter calibration kit data from GPIB	None - Always ASCII
INRM	Enter trace memory data from GPIB	None - Always ASCII
OHDW	Output hardare calibration data to GPIB	None - Always ASCII
ONRM	Output trace memory data to GPIB	None - Always ASCII

37XXXC PM 7-43/7-44

Chapter 8 System Functions

Table of Contents

8-1	INTRODUCTION
8-2	RELATED COMMANDS
8-3	HARD COPY COMMANDS
8-4	SYSTEM STATE COMMANDS 8-7
8-5	SAVE/RECALL COMMANDS 8-10
8-6	DISK FUNCTION COMMANDS 8-11
	Drive Letters8-12Subdirectory Naming Conventions8-12File Naming Conventions8-12List of the Current 37XXXX File Types8-12Supported Commands for Backward Capability8-14
8-7	DIAGNOSTICS COMMANDS 8-17
8-8	PERIPHERALS /SELF TESTS 8-18
8-9	SERVICE LOG ACCESS COMMANDS 8-18
8-10	ADDRESSING
8-11	PASS-THROUGH COMMANDS 8-20

Chapter 8 System Functions

8-1 INTRODUCTION

This chapter describes the commands used to implement certain system functions. They consist of hard copy commands, system state commands, save/recall commands, disk function commands, and diagnostics commands. For certain functions, tables of commands are identified as being obsolete. This means they are no longer favored for new development. They were written for earlier product versions of the 37XXXX VNA. They still remain to provide backward compatability, and should not be used when developing new program code.

8-2 RELATED COMMANDS

Table 8-1 provides a list of commands related to those used for system diagnostics. Refer to Chapter 8, paragraphs 8-9 through 8-11 for further information.

Table 8-1. Related Commands

Command	Description
OGE	Outputs extended description of current GPIB error.
OGL	Outputs extended description of previous GPIB error.
OEL	Outputs error messages from Service Log.
ONE	Output number of error messages stored in service log.
OSL	Output service log.

8-3 HARD COPY COMMANDS

The commands concerned with hard copy output are listed in Table 8-2; obsolete Hard Copy commands are listed in Table 8-3. These commands are straightforward with the exception of commands PT0–PT9. The PT0 – PT9 commands are used to:

- ☐ Specify the density of tabular data points output to the printer when using the PTB and PMT commands, and
- □ Specify the number of data points included in the disk file created with the SAVE command for tabular data.

The value implicit in the PT0 – PT9 commands (0-9) specifies the number of points that are *skipped* during printing. Therefore, PT0 selects the *densest* printing mode while PT9 gives the *fewest* number of data points. The HD0 command disables headers and page formatting for tabular printouts. The HD1 command enables headers and page formatting.

The hard copy output commands consist of two categories: *action* and *setup:*

- □ *Action* commands actually initiate a print/plot for the subset of the display specified by the setup commands.
- Setup commands are those that specify the desired size and location of the print/plot and the pen numbers for each element of the plot.

The LOC, LMS, LID, and LNM commands require a string of characters to be sent over the GPIB along with the command. A string input to the 37XXXC *must* have the double quote characters ("") or single quote characters (') surrounding the desired input.

The SAVE and RECALL commands enable the user to store tabular data to the disk and recall it for output to the printer with the tabular printout points controlled by commands PTO – PT9. Other types of hard copy data can also be saved, but not recalled.

Text format hard copy data is formatted for *Microsoft Excel**. Before a user defined logo can be printed, the data file for that logo must exist on the hard drive in the "UTIL" subdirectory. See paragraph 10-6 for the data file names. These files can be created by the ANRITSU 37XXXC LOGO editor, a Windows* based program for your PC.

Bitmapped hard copy data is formatted as a Windows 3.0 (and later) Device Independent Bitmap. The size is 640 by 480, and if color bitmap is selected, it is in a 256-bit color format. The user can select either black on white, color on white, or true color for the bitmaps.

HPGL format hard copy data is the file of HPGL commands and data normally sent to a plotter connected to the dedicated GPIB port. Microsoft Word has the capability to load and print this file type. It may also be sent to a GPIB plotter.

8-4 37XXXC PM

^{*} Windows and Excel are both trademarks of Microsoft Corp.

Table 8-2. Hard Copy Commands (1 of 2)

Command	Description
BMPB	Select Black on White as bitmap type
BMPC	Select Color on White as bitmap type
BMPT	Select true color as bitmap type
DPN	Enter pen number for data
DPN?	Output pen number for data
FFD	Send form feed to printer and stop print/plot
GPN	Enter pen number for graticule
GPN?	Output pen number for graticule
HD0	Turn off tabular data headers and page formatting
HD1	Turn on tabular data headers and page formatting
HIST0	Turns off GPIB history writing to disk
HIST1	Turns on GPIB history writing to disk
HISTX?	Outputs the history writes to hard disk enable/disable status
HPN	Enter pen number for header
HPN?	Output pen number for header
LAND	Select landscape mode for output plot
LDT0	Disable printing date/time
LDT1	Enable printing date/time
LMS	Enter string for DUT model/serial number
LMS?	Output string for DUT model/serial number
LNM	Enter string for operator name
LNM?	Output string for operator name
LOC	Enter string for operator comment
LOC?	Output string for operator comment
LOGO0	Turn hard copy logo off
LOGO1	Turn hard copy logo on
LOGO?	Output hard copy logo selection standard/user defined
LOGOS	Select standard hard copy logo
LOGOU	Select user defined hard copy logo
LOGOX?	Output hard copy logo on/off status
MPN	Enter pen number for markers and limits
MPN?	Output pen number for markers and limits
OBMP	Output the display as a bitmap
ODAT	Output hard copy tabular data to GPIB
OGCTXT	Output text format gain compression data to GPIB
OHDR	Output hard copy header information to GPIB
OHGL	Output HPGL format data to GPIB
OS2P	Output S2P format data to GPIB
OTXT	Output text format data to GPIB

Table 8-2. Hard Copy Commands (2 of 2)

PBL Select 1/4 size plot bottom left corner PBR Select 1/4 size plot bottom right corner PFL Select full-size plot PFS Print full screen image PFSC Configure for printing entire screen graphic image PFSC Configure for printing entire screen graphic image PGR Print graph area screen image PGRC Configure for printing data area graphic image PGRC Configure for plotting graticule PLD Plot data area only PLDC Configure for plotting graticule PLD Plot data area only PLDC Configure for plotting data area PLH Plot header PLHC Configure for plotting header PLM Plot markers and limits PLMC Configure for plotting markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLS Configure for plotting entire screen PLT Plot data traces only PLTC Configure for plotting data traces PMK Print abular data for Markers PMKC Configure for plotting data traces PMK Print abular data for farkers PMK Configure for printing tabular data for markers PMN Plot menu PMN Configure for printing tabular data for markers PMN Pint menu PMT Print tabular data for traces and markers PMT Configure for printing tabular data for traces and markers PMT Select portrait mode for output plot PSS Select abular printout points skipped to 0 PT1 Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 0 PT3 Set tabular printout points skipped to 0 PT4 Set tabular printout points skipped to 6 PT5 Set tabular printout points skipped to 6 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 9 PTB PBTB PST Set part abular printout points skipped to 9 PTB PST Set part abular printout points skipped to 9 PTB PST Set part abular printout points skipped to 9 PTB PST Set point printout points skipped to 9 PTB PST Set part abular printout points skipped to 9	Command	Description
PFL Select full-size plot PFS Print full screen image PFSC Configure for printing entire screen graphic image PFSC Print graph area screen image PGRC Print graph area screen image PGRC Configure for printing data area graphic image PGRC Configure for printing data area graphic image PGRC Configure for plotting graticule PLD Plot data area only PLD Plot data area only PLDC Configure for plotting data area PLH Plot header PLH Plot markers and limits PLMC Configure for plotting markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLS Plot data traces only PLT Plot data traces only PLT Configure for plotting data traces PMK Print tabular data for Markers PMKC Print tabular data for Markers PMNC Ponfigure for printing tabular data for markers PMN Plot menu PMNC Configure for printing tabular data for traces and markers PMT Print tabular data for traces and markers PMT Print tabular data for traces and markers PMT Print tabular data for traces and markers PMT Select portrait mode for output plot PST Select portrait mode for output plot PST Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 6 PT5 Set tabular printout points skipped to 6 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 9	PBL	Select 1/4 size plot bottom left corner
PFSC Configure for printing and area graphic image PFSC Configure for printing entire screen graphic image PGR Print graph area screen image PGRC Configure for printing data area graphic image PGTC Configure for plotting graticule PLD Plot data area only PLDC Configure for plotting data area PLH Plot header PLH Plot header PLH Configure for plotting header PLM Plot markers and limits PLMC Configure for plotting markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLS Plot data traces only PLT Plot data traces only PLT Plot data traces only PLT Configure for plotting data traces PMK Print tabular data for Markers PMK Print tabular data for Markers PMN Plot menu PMNC Configure for plotting tabular data for markers PMT Print tabular data for traces and markers PMT Print tabular data for traces and markers PMT Print tabular data for traces and markers PMT Select portrait mode for output plot PST Stop print/plot PST Stop print/plot PST Step set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PST Set tabular printout points skipped to 4 PST Set tabular printout points skipped to 5 PST Set tabular printout points skipped to 6 PTS Set tabular printout points skipped to 6 PST Set tabular printout points skipped to 6 PST Set tabular printout points skipped to 7 PST Set tabular printout points skipped to 6 PST Set tabular printout points skipped to 7 PST Set tabular printout points skipped to 6 PST Set tabular printout points skipped to 6 PST Set tabular printout points skipped to 6 PST Set tabular printout points skipped to 7 PST Set tabular printout points skipped to 9 PST Set tabular printout points skipped to 8 PSTS Set tabular printout points skipped to 9	PBR	Select 1/4 size plot bottom right corner
PFSC Configure for printing and image PFSC Configure for printing entire screen graphic image PGR Print graph area screen image PGRC Configure for printing data area graphic image PGTC Configure for plotting graticule PLD Plot data area only PLDC Configure for plotting data area PLH Plot header PLH Plot header PLH Configure for plotting header PLM Plot markers and limits PLMC Configure for plotting markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLS Plot data traces only PLT Plot data traces only PLT Plot data traces only PLT Configure for plotting data traces PMK Print tabular data for Markers PMK Print tabular data for Markers PMN Plot menu PMNC Configure for plotting tabular data for markers PMT Print tabular data for traces and markers PMT Configure for printing tabular data for traces and markers PMT Print tabular data for traces and markers PMT Select portrait mode for output plot PST Stop print/plot PST Stop print/plot PST Step set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 9	PFL	Select full-size plot
PGR Print graph area screen image PGRC Configure for printing data area graphic image PGTC Configure for plotting graticule PLD Plot data area only PLDC Configure for plotting data area PLH Plot header PLHC Configure for plotting header PLHC Configure for plotting header PLM Plot markers and limits PLMC Configure for plotting markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLS Plot data traces only PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for plotting data traces PMK Print tabular data for Markers PMN Plot menu PMNC Configure for printing tabular data for markers PMT Print tabular data for traces and markers PMT Print tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PFS	· ·
PGR Print graph area screen image PGRC Configure for printing data area graphic image PGTC Configure for plotting graticule PLD Plot data area only PLDC Configure for plotting data area PLH Plot header PLH Plot header PLHC Configure for plotting header PLHM Plot markers and limits PLMC Configure for plotting markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLS Plot data traces only PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMK Print tabular data for Markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMT Print tabular data for traces and markers PMT Select portrait mode for output plot PST Select abular printout points skipped to 0 PT1 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PFSC	Configure for printing entire screen graphic image
PGRC Configure for printing data area graphic image PGTC Configure for plotting graticule PLD Plot data area only PLDC Configure for plotting data area PLH Plot header PLH Plot header PLHC Configure for plotting header PLHC Configure for plotting header PLM Plot markers and limits PLMC Configure for plotting markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLS Plot entire screen PLT Plot data traces only PLT Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for printing tabular data for markers PMT Print tabular data for traces and markers PMT Print tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PST Stop print/plot Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 9	PGR	
PGTC Configure for plotting graticule PLD Plot data area only PLDC Configure for plotting data area PLH Plot header PLHC Configure for plotting header PLHC Configure for plotting header PLM Plot markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLS Plot data traces only PLT Plot data traces only PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PMTC Select portrait mode for output plot PST Select portrait mode for output plot PST Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PGRC	
PLD Plot data area only PLDC Configure for plotting data area PLH Plot header PLHC Configure for plotting header PLHC Configure for plotting header PLM Plot markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLSC Configure for plotting entire screen PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMK Print tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMT Port tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PORT Select portrait mode for output plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 6 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 8	PGTC	
PLDC Configure for plotting data area PLH Plot header PLHC Configure for plotting header PLM Plot markers and limits PLMC Configure for plotting markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLSC Configure for plotting entire screen PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9 PT8 Set tabular printout points skipped to 9 PT8 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 9	PLD	
PLH Plot header PLHC Configure for plotting header PLM Plot markers and limits PLMC Configure for plotting markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLS Configure for plotting entire screen PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 8 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 8	PLDC	
PLM Plot markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLSC Configure for plotting entire screen PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 6 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PLH	
PLM Plot markers and limits PLMC Configure for plotting markers and limits PLO? Output plot mode portrait or landscape PLS Plot entire screen PLSC Configure for plotting entire screen PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 6 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PLHC	Configure for plotting header
PLO? Output plot mode portrait or landscape PLS Plot entire screen PLSC Configure for plotting entire screen PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMT Porint tabular data for traces and markers PMT Configure for printing tabular data for traces and markers PMT Pornt Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PLM	
PLO? Output plot mode portrait or landscape PLS Plot entire screen PLSC Configure for plotting entire screen PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMT Porint tabular data for traces and markers PMT Configure for printing tabular data for traces and markers PMT Pornt tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PLMC	Configure for plotting markers and limits
PLS Plot entire screen PLSC Configure for plotting entire screen PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PMTC Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PLT Plot data traces only PLTC Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PMTC Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PLTC Configure for plotting data traces PMK Print tabular data for Markers PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PLT	
PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMT Configure for printing tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		·
PMKC Configure for printing tabular data for markers PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PMN Plot menu PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PMKC	
PMNC Configure for plotting menu PMT Print tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PMN	
PMT Print tabular data for traces and markers PMTC Configure for printing tabular data for traces and markers PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PMNC	Configure for plotting menu
PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PMT	
PORT Select portrait mode for output plot PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PMTC	Configure for printing tabular data for traces and markers
PST Stop print/plot PTO Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PT0 Set tabular printout points skipped to 0 PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PT1 Set tabular printout points skipped to 1 PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PT2 Set tabular printout points skipped to 2 PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PT3 Set tabular printout points skipped to 3 PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9	PT2	
PT4 Set tabular printout points skipped to 4 PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PT5 Set tabular printout points skipped to 5 PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PT6 Set tabular printout points skipped to 6 PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PT7 Set tabular printout points skipped to 7 PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PT8 Set tabular printout points skipped to 8 PT9 Set tabular printout points skipped to 9		
PT9 Set tabular printout points skipped to 9		
FID FIIII IADUIAI UAIA IOI TIACES	PTB	Print tabular data for Traces
PTBC Configure for printing tabular data for traces		

8-6 37XXXC PM

 Table 8-3.
 Obsolete Hard Copy Commands

Command	Description
BBMP	Select black background for bit map
LDT	Enter string for test date/time (obsolete)
LDT?	Output string for test date/time (obsolete)
LIST	Output list of all mnemonics
OBMB	Output display as black and white bit map
OBMC	Output display as color bit map
WBMP	Select white background for bit map

Tables 8-4 lists the system state commands; obsolete commands are listed in Table 8-5. These commands are used to specify CRT display parameters, information display format, and other parameters that control the operation of the system. The function of approximately half of these commands is to display test set connector type information on the system screen. Table 8-4 list obsolete commands that remain for backward compatibality.

Table 8-4. System State Commands (1 of 3)

Command	Description
ANNCOL	Enter the color number for annotation and menu text
ANNCOL?	Output the color number for annotation and menu text
BC0	Turn CRT display off (disabled)
BC1	Turn CRT display on (disabled)
BCKCOL	Enter the color number for background
BCKCOL?	Output the color number for background
BCX?	Output CRT display on/off status
BEEP0	Disable the instrument beeper on GPIB errors
BEEP1	Enable the instrument beeper on GPIB errors
BEEPX?	Output GPIB beep on error enable/disable status
BRILL	Activate color configuration Brilliant
CLASS	Activate color configuration Classic
DATCOL	Enter the color number for data
DATCOL?	Output the color number for data
DATE	Enter the system date
DATE?	Output the system date
DC1	Display channel 1 and 2 operating parameters
DC3	Display channel 3 and 4 operating parameters
DCP	Display calibration parameters 1st page
DCP1	Display calibration parameters 1st page
DCP2	Display calibration parameters 2nd page

 Table 8-4.
 System State Commands (2 of 3)

Command	Description
DD0	Turn data drawing off
DD1	Turn data drawing on
DD1?	Output data drawing on/off status
DF2	Display 2.4mm female connector information
DF3	Display GPC-3.5 female connector information
DFK	Display K female connector information
DFN	Display N female connector information
DFN75	Display N Female 75-Ohm connector information
DFP	Display Front panel instrument state
DFS	Display SMA female connector information
DFSP	Display Special Female connector information
DFT	Display TNC female connector information
DFV	Display V female connector information
DG7	Display GPC-7 Male connector information
DGS	Display GPIB status information
DM2	Display 2.4mm male connector information
DM3	Display GPC-3.5 male connector information
DMK	Display K male connector information
DMN	Display N male connector information
DMN75	Display N Male 75-Ohm connector information
DMS	Display SMA male connector information
DMSP	Display Special Male connector information
DMT	Display TNC male connector information
DMV	Display V male connector information
DWG	Display waveguide parameters
FOF	Blank frequency information
FON	Display frequency information
FOX?	Output frequency information on/off status
GRTCOL	Enter the color number for the graticule
GRTCOL?	Output the color number for the graticule
INVER	Activate color configuration Inverse
LAYCOL	Enter the color number for overlay data
LAYCOL?	Output the color number for overlay data
MKRCOL	Enter the color number for the markers
MKRCOL?	Output the color number for the markers
MNUCOL	Enter the color number for the menu headers
MNUCOL?	Output the color number for the menu headers
NEWCO	Activate color configuration New

8-8 37XXXC PM

Table 8-4. System State Commands (3 of 3)

Command	Description
RST	Instrument reset (same as *RST)
RST0	Reset instrument front panel memories and reserved parameters
RST1	Reset instrument and front panel memories
RSTCOL	Reset color configuration to default
RTL	Return to local
SOFTCO	Activate color configuration Soft
STOCO	Store the current color configuration as Reset
TIME	Enter the system time
TIME?	Output the system time
TRCCOL	Enter the color number for memory data
TRCCOL?	Output the color number for memory data
WIDE	Use entire display width for graphs

 Table 8-5.
 Obsolete System State Commands

Command	Description
BLU	Select blue as third plane color
CYN	Select cyan as third plane color

8-5 SAVE/RECALL COMMANDS

The Save/Recall commands listed in Table 8-6 allow the system user to save and recall the following:

- ☐ Front panel setup data to and from internal memory.
- □ Calibration and front panel setup data to/from the disk.

Table 8-6. Front Panel Memory Save/Recall Commands (1 of 1)

Command	Description
RC1	Recall front panel setup number 1 from memory
RC10	Recall front panel setup number 10 from memory
RC2	Recall front panel setup number 2 from memory
RC3	Recall front panel setup number 3 from memory
RC4	Recall front panel setup number 4 from memory
RC5	Recall front panel setup number 5 from memory
RC6	Recall front panel setup number 6 from memory
RC7	Recall front panel setup number 7 from memory
RC8	Recall front panel setup number 8 from memory
RC9	Recall front panel setup number 9 from memory
SV1	Save front panel setup number 1 to memory
SV10	Save front panel setup number 10 to memory
SV2	Save front panel setup number 2 to memory
SV3	Save front panel setup number 3 to memory
SV4	Save front panel setup number 4 to memory
SV5	Save front panel setup number 5 to memory
SV6	Save front panel setup number 6 to memory
SV7	Save front panel setup number 7 to memory
SV8	Save front panel setup number 8 to memory
SV9	Save front panel setup number 9 to memory

8-10 37XXXC PM

8-6 DISK FUNCTION COMMANDS

The Disk Function commands perform the same functions as the Hard Copy key group Menu key selections. These commands are listed in Tables 8-7. They are used for the following:

- □ Copying files between disks
- □ Deleting files from disk
- □ Saving files to a disk
- □ Recalling files from a disk
- □ Creating, changing to and deleting disk directories
- □ Outputting files to the GPIB
- □ Inputting files from the GPIB
- □ Loading cal kit files
- □ Formatting a floppy disk
- □ Outputting a disk directory listing to the GPIB
- □ Printing a disk directory listing

Table 8-7. Disk Function Commands (1 of 1)

Command	Description
ADRIVE	Select the floppy drive as the default drive
CD	Change default directory
CDRIVE	Select the hard disk as the default drive
COPY	Copy a files contents to another file
CWD?	Output current working directory string
DEL	Delete a file from disk
DIR	Output a directory listing to the GPIB
DISKRD	Output disk file data to the GPIB
DISKWR	Write GPIB data to a disk file
EXISTD?	Output directory existence information
EXISTF?	Output file existence information
INT	Initialize (format) floppy disk
LDARF	Load adapter removal files from disk and calibrate
LKT	Load calibration kit information from floppy disk
MD	Create a new disk directory
PDR	Print directory listing of the floppy drive
PDRH	Print directory listing of the hard drive
PGT	Plot graticule
RD	Remove a disk directory
RECALL	Recall a data file from disk to a task
SAVE	Save a data file to disk
SAVEGC	Save text format gain compression data to disk

Most of the file handling commands require a filename as an argument. The filename needs to be enclosed in quotes and listed complete with extention. You may include a path before the filename that may include a drive letter. If a path is not included, the file will be assumed to be in the current default drive and directory.

☐ The allowable characters are 1 thru 0, all letters and the under-

Drive Letters Drive letters follow standard MS-DOS conventions: □ A:\for the floppy drive □ C:\ for the hard drive Subdirectory Naming Subdirectory naming conventions are as follows: **Conventions** □ Can have at most 11 characters ☐ The allowable characters are 1 thru 0, all letters, the period (.) and underscore (_) File naming conventions are as follows: File Naming **Conventions** ☐ The main portion of the filename can have at most 8 characters ☐ The extention portion of the filename can have at most 3 characters □ The filename must start with a letter

List of the Current 37XXXX File Types

List of the Current A list of current filetypes is shown in Table 8-8.

score (_)

8-12 37XXXC PM

Table 8-8.37XXXC File Types

Filename	File type
<user defined="">.BMP</user>	Screen dump in Windows bit map format (version 2.19)
<user defined="">.CAL</user>	Front panel and calibration data
<user defined="">.DAT</user>	Hard copy tabular data
<user defined="">.ELG</user>	Error log listing
<user defined="">.HGL</user>	Plotter dump in HPGL format
<user defined="">.LOG</user>	Service log listing
<user defined="">.NRM</user>	Trace memory data
<user defined="">.S2P</user>	Tabular data listing in S2P format
<user defined="">.TXT</user>	Tabular data listing in Microsoft Excel format
HW_CAL.ALC	ALC calibration data
HW_CAL.ALL	Contains all hardware calibration data elements
HW_CAL.FRE	Frequency calibration data
HW_CAL.LO1	1st LO calibration data
HW_CAL.LO2	2nd LO calibration data
HW_CAL.SLT	Source lock threshold calibration data
KIT_INFO.[xyz]	A data file for a connector type from a Cal Kit floppy disk Letter x 2 — 2.4 mm Connector A — Waveguide O — Open 3 — GPC 3.5 Connector F — Female S — Short G —GPC 7 Connector M — Male V — Waveguide K —K Connector N — GPC 7 connector N —N connector S — SMA Connector T — TNC connector V — V connector W — Waveguide
LOGO.EPS	User defined logo file for use on an Epson type printer
LOGO.HP	User defined logo file for use on an HP type printer
LOGO.PLT	User defined logo file for use on a plotter
MNEMONIC.HLP	GPIB mnemonic help file

Supported Commands for A listing of commands developed for previous versions of the software, **Backward Capability** but still supported, are listed in Table 8-9.

 Table 8-9. Obsolete Disk Functions Commands (1 of 3)

Command	Description
CPYALCFH	Copy ALC cal file from floppy to hard disk
CPYALCHF	Copy ALC cal file from hard to floppy disk
CPYALLFH	Copy combined hardware cal file from floppy to hard disk
CPYALLHF	Copy combined hardware cal file from hard to floppy disk
CPYCALFH	Copy calibration/front panel setup from floppy to hard disk
CPYCALHF	Copy calibration/front panel setup from hard to floppy disk
CPYDATFH	Copy tabular data file from floppy to hard disk
CPYDATHF	Copy tabular data file from hard to floppy disk
CPYELGFH	Copy error list file from floppy to hard disk
CPYELGHF	Copy error list file from hard to floppy disk
CPYFREFH	Copy frequency cal file from floppy to hard disk
CPYFREHF	Copy frequency cal file from hard to floppy disk
CPYLOGFH	Copy service log file from floppy to hard disk
CPYLOGHF	Copy service log file from hard to floppy disk
CPYNRMFH	Copy trace memory file from floppy to hard disk
CPYNRMHF	Copy trace memory file from hard to floppy disk
DEC	Delete calibration/front panel setup from floppy disk
DECH	Delete calibration/front panel setup from hard disk
DED	Delete tabular data file from floppy disk
DEDH	Delete tabular data file from hard disk
DELALC	Delete ALC cal file from floppy disk
DELALCH	Delete ALC cal file from hard disk
DELALL	Delete combined hardware cal file from floppy disk
DELALLH	Delete combined hardware cal file from hard disk
DELCAL	Delete calibration/front panel setup from floppy disk
DELCALH	Delete calibration/front panel setup from hard disk
DELDAT	Delete tabular data file from floppy disk
DELDATH	Delete tabular data file from hard disk
DELELG	Delete error list file from floppy disk
DELELGH	Delete error list file from hard disk
DELFRE	Delete frequency cal file from floppy disk
DELFREH	Delete frequency cal file from hard disk
DELLOG	Delete service log file from floppy disk
DELLOGH	Delete service log file from hard disk
DELNRM	Delete trace memory file from floppy disk
DELNRMH	Delete trace memory file from hard disk

 Table 8-9. Obsolete Disk Functions Commands (2 of 3)

Command	Description
DEN	Delete trace memory file from floppy disk
DENH	Delete trace memory file from hard disk
RCK	Recall trace memory file from floppy disk
RCKH	Recall trace memory file from hard disk
RCLALC	Recall ALC calibration file from floppy disk
RCLALCH	Recall ALC calibration file from hard disk
RCLALL	Recall combined hardware calibration file from floppy disk
RCLALLH	Recall combined hardware calibration file from hard disk
RCLCAL	Recall calibration/front panel setup from floppy disk
RCLCALH	Recall calibration/front panel setup from hard disk
RCLDAT	Recall tabular data file from floppy disk to printer
RCLDATH	Recall tabular data file from hard disk to printer
RCLELG	Recall error list file from floppy disk to printer
RCLELGH	Recall error list file from hard disk to printer
RCLFRE	Recall frequency calibration file from floppy disk
RCLFREH	Recall frequency calibration file from hard disk
RCLLOG	Recall service log file from floppy disk to printer
RCLLOGH	Recall service log file from hard disk to printer
RCLNRM	Recall trace memory file from floppy disk
RCLNRMH	Recall trace memory file from hard disk
RLD	Recall calibration/front panel setup from floppy disk
RLDH	Recall calibration/front panel setup from hard disk
RTB	Recall tabular data file from floppy disk to printer
RTBH	Recall tabular data file from hard disk to printer
SAVALC	Save ALC cal to floppy disk
SAVALCH	Save ALC cal to hard disk
SAVALL	Save combined hardware cal to floppy disk
SAVALLH	Save combined hardware cal to hard disk
SAVCAL	Save calibration/front panel setup to floppy disk
SAVCALH	Save calibration/front panel setup to hard disk
SAVDAT	Save tabular data to floppy disk
SAVDATH	Save tabular data to hard disk
SAVELG	Save error list to floppy disk
SAVELGH	Save error list to hard disk
SAVFRE	Save frequency cal to floppy disk
SAVFREH	Save frequency cal to hard disk
SAVLOG	Save service log to floppy disk
SAVLOGH	Save service log to hard disk

 Table 8-9.
 Obsolete Disk Functions Commands (3 of 3)

Command	Description
SAVNRM	Save trace memory to floppy disk
SAVNRMH	Save trace memory to hard disk
SDK	Save trace memory to floppy disk
SDKH	Save trace memory to hard disk
STO	Save calibration/front panel setup to floppy disk
STOH	Save calibration/front panel setup to hard disk
TDD	Save tabular data to floppy disk
TDDH	Save tabular data to hard disk

8-16 37XXXC PM

8-7 DIAGNOSTICS COMMANDS

The commands listed in Table 8-10 are used to provide diagnostics help in localizing system malfunctions, performing calibration of internal circuits, testing system functions, and managing error reporting and the service log. (These commands are intended for use by only by ANRITSU certified service engineers.

Table 8-10. Diagnostics Commands (1 of 2)

Command	Description
ALC	Perform ALC loop internal calibration
DBP	Select distance bandpass mode for active channel
DCA	Select automatic DC term calculation for lowpass
DCO	Select open for DC term for lowpass
DLP	Select distance lowpass mode for active channel
DRL	Diagnostic read latch
DVM	Enter DVM channel number
DWL	Diagnostic write latch
EDG	End diagnostics mode
EXD	Display external A/D input
FLC	Source frequency linearity internal calibration
FPX?	Output flat power correction on/off status
IFB	Select 1st IF bandpass testing
L1C	Perform LO1 internal calibration
L2C	Perform LO2 internal calibration
LKS0	Disable lock search mode
LKS1	Enable lock search mode
LO11	Select LO1 phase lock voltage testing
LO12	Select LO1 D/A voltage testing
LO21	Select LO2 main phase lock voltage testing
LO22	Select LO2 offset phase lock voltage testing
LO23	Select LO2 DDS phase lock voltage testing
LO24	Select LO2 main D/A voltage testing
LO25	Select LO2 offset D/A voltage testing
NRD	Display non-ratioed parameters on 4 channels
P2ALC	Perform Port 2 ALC loop internal calibration
PSL	Print the service log
SDG	Start diagnostics mode
SDR	Select standard receiver mode
SLT	Perform SLT internal calibration
SRC1	Select source linearity voltage testing

8-8 PERIPHERALS/SELF TESTS

Peripheral tests used to support system diagnostics are listed in Table 8-11. All peripheral tests require user interaction and response to messages displayed on the 37XXXX screen and front panel displays.

Table 8-11. Peripheral Test Commands (1 of 1

Command	Description
DGT	Display 1st CRT test pattern
DGT1	Display 1st CRT test pattern
DGT2	Display 2nd CRT test pattern
DGT3	Display 3rd CRT test pattern
EKT	Select external keyboard testing
FPT	Select front panel keypad testing
PRT?	Perform printer test and output status

8-9 SERVICE LOG ACCESS COMMANDS

Commands used to access and control the Service Log functions via the GPIB are listed in Table 8-12.

Table 8-12. Service Log Commands (1 of 1)

Command	Description
*OPT?	Output the 488.2 options installed string
CSL	Clear service log
PEL	Print the error list
RECALL	Recall a data file from disk to a task
SAVE	Save a data file to disk

8-18 37XXXC PM

8-10 ADDRESSING

The commands used to address system peripherals are listed in Table 8-13.

 Table 8-13.
 Addressing Commands

Command	Description
ADDFC	Enter frequency counter GPIB address
ADDFC?	Output frequency counter GPIB address
ADDPLT	Enter plotter GPIB address
ADDPLT?	Output plotter GPIB address
ADDPM	Enter power meter GPIB address
ADDPM?	Output power meter GPIB address
SRC1ADD?	Output external source 1 GPIB address

8-11 PASS-THROUGH COMMANDS

Four mnemonics have been added to turn on and off the RF power of the external sources connected to the dedicated GPIB bus.

- □ EX1RF0 Turn Extenral Source 1 RF Power off
- □ EX1RF1 Turn External Source 1 RF Power on
- □ EX2RF0 Turn External Source 2 RF Power off
- □ EX2RF1 Turn External Source 2 RF Power on

Two new mnemonics have been added to allow "Pass-through" control of instruments connected to the dedicated GPIB bus. Please review the Arbitrary Block data format in Chapter 10, paragraph 10-3:

- □ LTWRT adr, arb Sends program data in the arbitrary block arb to the instrument at address adr
- □ LTRD adr [, cnt] Reads response data from the instrument at address adr. Data is returned in arbitrary block format. Notice that the comma and the bytecount argument cnt can be omitted. If the bytecount argument cnt is omitted, then the data transfer is assumed to be in ASCII format and data transfer will be terminated whenever an end message is encountered or the maximum size of 1024 bytes is received. If the bytecount argument cnt is included, then the data transfer is assumed to be binary, and data transfer will be terminated whenever the bytecount is satisfied or the GPIB bus EOI line is asserted on the dedicated GPIB bus, to indicate the end of transmission.

NOTE

The 37XXXC must be put in Hold Mode before issuing any of these commands. If the VNA is not put into hold, these commands will disrupt the normal communcations which takes place between the VNA and the external sources; sometimes to the point that the power on the sources must be cycled to restore normal operation. Also, lock failures will almost certainly occur when the RF power is turned off while the VNA is still sweeping.

Examples using the pass thru mnemonics are shown below and in Figures 8-1 through 8-2

In this example the controller sends the mnemonic OI to the Synthesizer at address 4 on the dedicated GPIB bus and then reads the response back.

Controller send: LTWRT 4, #0 OI

The mnemonic OI is contained in an Indefinite Length Arbitrary Block indicated by the header characters #0. Please note that some controllers cannot set the GPIB EOI control line as required by the Indefinite

8-20 37XXXC PM

Length Arbitrary Block format and should use the Definite Length Arbitrary Block format instead. The command string below uses a Definite Length Arbitrary Block format and would work just as well

Controller send: LTWRT 4, #13 OI

Controller send: LTRD 4

Controller then reads data in. The response received is:

#2386837 2.0020.00 -20.013.03.37698008B0

The $\sharp 238$ is the arbitrary block header which says the block to follow contains 38 bytes. 36 bytes for the instrument OI of a 68037B plus the Carriage Return and Line Feed (which also come from the 68037B).

```
This example is a program which loads a power offset table into the Synthesizer:
/*******
     PERFORM TASK
********
Procedure prepares a 51 point flat power table and loads it into an Anritsu 68000
synthesizer. This table steps power from -1 dB to +1 dB in 51 steps to
produce a recognizeable sawtooth on the synthesizer power. As this synthesizer
is attached to the dedicated bus of an Anritsu 37000 VNA, we will use the
pass thru mnemonics to send the table.
void perform_task(void)
   long bytecount;
   long headersize;
   short status;
   short power;
   short index;
   short *short ptr;
   char CommandBuffer[256];
   char TableBuffer[256];
   char bcount[16];
   char *aux ptr;
   // The first step is to prepare the flat power table
   // Per the 68000 programming manual, the table is of the form:
   // PTL ClCh DlDh DlDh DlDh ... etc
   // Where PTL \, - is the mnemonic that puts the synthesizer into the load
                  a power flattening table mode
            ClCh - is the 16 bit integer representation of the number
   //
                  of points which will follow, Low Byte First
            DlDh - is the 16 bit integer representation of the first/next
                  power offset in hundredths of a dB. Low Byte First
   // First put in the mnemonic PTL
   aux ptr = TableBuffer;
   strcpy(aux_ptr, "PTL");
   aux ptr += strlen(aux ptr);
   // And put in the pointcount ClCh
   // The pointcount of 51
   short ptr = (short *)aux ptr;
   *short ptr = 51;
   short ptr++;
```

Figure 8-1. Example 2 Using GPIB Pass-Through Command (1 of 4)

8-22 37XXXC PM

```
// Now put in the offsets DlDh ...
power = -100;
for (index = 0; index < 51; index++)
   *short ptr = power;
   short ptr++;
   power += 4;
// Calculate the number of bytes in the buffer
aux_ptr = (char *)short_ptr;
bytecount = (long) (aux ptr - TableBuffer);
// Form the bytecount part of the arbitrary block header
sprintf(bcount, "%d", (int)bytecount);
// Now prepare the pass thru message to send to the VNA
// Assume the Synthsizer address is 4
aux ptr = CommandBuffer;
sprintf(aux ptr, "LTWRT 4, #%d%s", strlen(bcount), bcount);
aux ptr += strlen(aux ptr);
headersize = (long) (aux ptr - CommandBuffer);
// Tack on the tablebuffer contents
memcpy(aux_ptr, TableBuffer, bytecount);
aux ptr += bytecount;
bytecount += headersize;
// Tack on a line feed to finish the message
*aux ptr = 10;
bytecount++;
// Now open the GPIB and send the message
gpib timeout(60);
if ((status = initgpib()) == SUCCESS)
   // First put the VNA in hold
   pna addr = 6;
   status = ibszoutput(pna addr, "HLD");
   // This sets up the table
   status = ibbyoutput(pna addr, CommandBuffer, bytecount);
   // This turns the power offset table on
   status = ibszoutput(pna addr, "LTWRT 4, #0 PT1");
   // Now we can sweep again
   status = ibszoutput(pna addr, "CTN");
   closegpib();
}
```

Figure 8-1. Example 2 Using GPIB Pass-Through Command (2 of 4)

37XXXC PM 8-23

```
IBSZOUTPUT
********
Procedure sends a string the the gpib. Appends the end message.
short ibszoutput(short adr dev, char *string)
  short status;
  long byte count;
  char end message;
  // If a null string don't do anything
  status = SUCCESS;
  if ((byte count = (long)strlen(string)) > 0)
     // Otherwise address the device to listen
     enable it();
     if ((s\overline{t}atus = listen to me(adr dev)) == SUCCESS)
        // Send the string without EOI
        ibeot(gpib bd, EOT OFF);
        error message = OUTPUTING STRING;
        ibwrta(gpib_bd, string, byte_count);
        status = check error(byte count);
        // Send the end message with EOI
        if (status == SUCCESS)
           end message = 10;
           ibeot(gpib_bd, EOT ON);
           error_message = SENDING_END;
           ibwrta(gpib bd, &end message, 1);
           status = check error(1);
  }
  return(status);
/*******
     IBBYOUTPUT
********
Procedure sends a string the the gpib. Appends the end message.
short ibbyoutput(short adr dev, char *string, long byte count)
```

Figure 8-1. Example 2 Using GPIB Pass-Through Command (3 of 4)

8-24 37XXXC PM

```
short status;
char end_message;
// If a null string don't do anything
status = SUCCESS;
if (byte count > 0)
   // Otherwise address the device to listen
   enable it();
   if ((status = listen to me(adr dev)) == SUCCESS)
      // Send the string without EOI
      ibeot(gpib bd, EOT OFF);
      error_message = OUTPUTING STRING;
      ibwrta(gpib bd, string, byte count);
      status = check error(byte count);
      // Send the end message with EOI
      if (status == SUCCESS)
         end message = 10;
         ibeot(gpib bd, EOT ON);
         error message = SENDING END;
         ibwrta(gpib bd, &end message, 1);
         status = check error(1);
   }
return(status);
```

Figure 8-1. Example 2 Using GPIB Pass-Through Command (4 of 4)

37XXXC PM 8-25

This last example is a program which reads the user level tables out of the synthesizer. Notice that when the data is read out of the VNA, the bytecount received is 8239. 6 bytes for the arbitrary block header, 8232 for the User Level Tables and 1 for the linefeed at the end.

```
/*******
      PERFORM TASK
********
Procedure reads the user level tables out of an Anritsu synthesizer
connected to the dedicated bus of an Anritsu 37000.
void perform_task(void)
   short status;
   // Now open the GPIB and send the message
   gpib timeout(60);
   if ((status = initgpib()) == SUCCESS)
      // Put the VNA in hold
      // Send LUS mnemonics to the 68000
      // Read back up to 9000 binary bytes
      // Take the VNA out of hold
      pna addr = 6;
      status = ibszoutput(pna addr, "HLD; LTWRT 4, #14 LUS; LTRD 4, 9000; CTN");
      // Get the User Level Tables from the VNA
      status = ibbyinput(pna addr, user buffer, long)(sizeof(user buffer) - 1));
      // Report the number of bytes received
      sprintf(say_buff, "Received %ld bytes", ibcntl);
color_write(BLACK_COLOR, say_buff);
      new line();
      // Close the GPIB
      closegpib();
      // Wait for user to acknowledge
      // the bytecount message
      prompt key();
```

Figure 8-2. Example 3 Using GPIB Pass-Through Command (1 of 2)

8-26 37XXXC PM

```
IBBYINPUT
********
Procedure inputs a binary string from a device. Will terminate input
on either of 2 conditions:
1) An EOI is received
2) The bytecount is satisfied
short ibbyinput(short adr dev, char *array, long arraysize)
   short status;
   // Dont do anything if the bytecount requested is zero
   status = SUCCESS;
   if (arraysize > 0)
       // Otherwise address the device to talk and get the input string
       enable it();
       if ((status = talk to me(adr dev)) == SUCCESS)
          // Input the string
          error_message = INPUTING_STRING;
ibrda(gpib_bd, array, arraysize);
status = check_error(0);
if (status == SUCCESS) array[ibcntl] = 0;
       }
   return(status);
                                 }
```

Figure 8-2. Example 3 Using GPIB Pass-Through Command (2 of 2)

37XXXC PM 8-27/8-28

Chapter 9 Special Applications Functions

Table of Contents

9-1	INTRODUCTION
9-2	TIME DOMAIN
9-3	MULTIPLE SOURCE
9-4	REAR PANEL OUTPUT
9-5	RECEIVER MODE 9-10
9-6	USER DEFINED PARAMETERS
9-7	ADAPTER REMOVAL COMMANDS 9-12
9-8	GAIN COMPRESSION
	Swept Power Gain Compression
	Swept Frequency Gain Compression 9-13
	Power Sweep Linearity Calibration Coefficients 9-14
9-9	mmWAVE AND BROADBAND 9-17

Chapter 9 Special Applications Functions

9-1 INTRODUCTION

This chapter describes commands used to implement special measurement functions. They are associated with the functions controlled by the Domain key in the Measurement key group and the Option Menu key in the Enhancement key group. These include time domain commands, multiple source control commands, and rear panel output control commands.

9-2 TIME DOMAIN

The time domain commands for the 37XXXC are listed below in Table 9-1. Option 2 (High-Speed Time Domain [Distance] Software option) adds these commands to the 37XXXC software.

The time domain commands are used to:

- □ Specify the domain of a channel.
- □ Set up operating modes and parameters for the selected processing type of the channel.

 Table 9-1.
 Time Domain Commands (1 of 3)

Command	Description
DCS	Select short for DC term for lowpass
DCV	Enter value for DC term for lowpass
DCV?	Output lowpass DC term value
DCX?	Output lowpass DC term selection
DCZ	Select line impedance for DC term for lowpass
DDX?	Output active channel domain parameter frequency distance or time
DPI	Select distance phasor impulse mode for active channel
FGT	Select frequency with time gate for active channel
FQD	Select frequency domain for active channel
GCT	Enter gate center value distance or time
GCT?	Output gate center value
GDS	Gate symbols displayed on active channel
GLS	Select low sidelobe gate shape
GMS	Select minimum sidelobe gate shape

 Table 9-1.
 Time Domain Commands (2 of 3)

Command	Description
GNM	Select nominal gate shape
GOF	Turn off gating on active channel
GOF?	Output gating mode on active channel
GON	Turn on gating on active channel
GRT	Select Rectangular gate shape
GSN	Enter gate span value distance or time
GSN?	Output gate span value
GSP	Enter gate stop value distance or time
GSP?	Output gate stop value
GST	Enter gate start value distance or time
GST?	Output gate start value
GSX?	Output gate shape
LPI	Select lowpass impulse response for active channel
LPS	Select lowpass step response for active channel
LPSX?	Output lowpass response for active channel impulse or step
MRR	Restore original marker range
TBP	Select time bandpass mode for active channel
TDDIST	Set time domain parameter to distance for active channel
TDDIST?	Output active channel time domain parameter distance or time
TDPI0	Turn phasor impulse response off for active channel
TDPI1	Turn phasor impulse response on for active channel
TDPIX?	Output phasor impulse on/off status for active channel
TDTIME	Set time domain parameter to time for active channel
TDX?	Output domain mode for active channel
TLP	Select time lowpass mode for active channel
TPI	Select time phasor impulse mode for active channel
WLS	Select low sidelobe window shape
WMS	Select minimum sidelobe window shape
WNM	Select nominal window shape
WRT	Select rectangular window shape
WSX?	Output window shape

9-4 37XXXC PM

 Table 9-1.
 Time Domain Commands (3 of 3)

Command	Description
ZCT	Enter zoom range center value time or distance
ZCT?	Output zoom range center value
ZSN	Enter zoom range span value time or distance
ZSN?	Output zoom range span value
ZSP	Enter zoom range stop value time or distance
ZSP?	Output zoom range stop value
ZST	Enter zoom range start value time or distance
ZST?	Output zoom range start value

9-3 MULTIPLE SOURCE

Table 9-2 lists the multiple source control commands. These commands are used to define up to five different "multiple source control bands". In each, the device under test (DUT), source 1, source 2, and receiver frequency ranges may be different.

The DUT frequency range is entered using any of the frequency entry commands. The MSD command puts the 37XXXC in the DEFINE mode, which allows entry of arbitrary frequencies for the DUT. Band equations for source 1, source 2, and the receiver are then set up using the ED1, ED2, EDR, etc, commands. The band equations used are shown below. In these equations, "F" is the DUT frequency range.

```
For swept operation:

F = (multiplier/divisor) * (F + offset),

For CW operation:

F = (multiplier/divisor) (offset).
```

For a frequency band to be saved, the band equations must produce frequencies within the operating range of the respective system component.

Figure 9-1 shows an example program using multiple source control commands. This program is for a fixed LO, swept IF mixer measurement. The frequency values used are:

```
\begin{array}{l} DUT\ range = 2-6\ GHz\\ Source\ 1 = 2-6\ GHz = (1/1)\ X\ (F+0)\\ Source\ 2 = 500\ MHz\ CW = (1/1)\ X\ (500\ MHz)\\ Receiver = 1.5-5.5\ GHz = (1/1)\ X\ (F-500\ MHz) \end{array}
```

```
10 ! Multiple Source Control Example
20 OUTPUT 706; "MSD; SRT 2 GHZ; STP 6 GHZ"
30 OUTPUT 706; "BD1; BSP 6 GHZ"
40 OUTPUT 706; "ED1; ESW; EML 1 XX1"
50 OUTPUT 706; "EDV 1 XX1; EOS 0 GHZ"
60 OUTPUT 706; "ED2; ECW; EOS 500 MHZ"
70 OUTPUT 706; "EDR; ESW; EML 1 XX1"
80 OUTPUT 706; "EDV 1 XX1; EOS -500 MHZ"
90 OUTPUT 706; "SVB; MS1"
100 END
```

Figure 9-1. Multiple Source Control Example

9-6 37XXXC PM

 Table 9-2.
 Multiple Source Control Commands (1 of 2)

Command	Description
BD1	Select band 1 for definition
BD2	Select band 2 for definition
BD3	Select band 3 for definition
BD4	Select band 4 for definition
BD5	Select band 5 for definition
CLB	Clear all multiple source band definitions
CLBMM	Clear the new Millimeter Wave band definitions
ECW	Select CW operation for component being edited
ED1	Edit source 1 equation
ED2	Edit source 2 equation
EDR	Edit receiver equation
EDV	Enter divisor value for equation being edited
EDV?	Output divisor value for equation being edited
EML	Enter multiplier value for equation being edited
EML?	Output multiplier value for equation being edited
EOS	Enter offset frequency for equation being edited
EOS?	Output offset frequency for equation being edited
ESW	Select sweep operation for component being edited
EX1RF0	Turn external source 1 rf off
EX1RF1	Turn external source 1 rf on
EX2RF0	Turn external source 2 rf off
EX2RF1	Turn external source 2 rf on
EXW?	Output multiple source sweep flag for equation being edited
LTRD	Output response data from the dedicated GPIB bus
LTWRT	Send program data to the dedicated GPIB bus
MS0	Turn multiple source mode off
MS1	Turn multiple source mode on
MSD	Select multiple source define mode
MSX?	Output multiple source mode on/off/define
SRC1?	Output external source 1 existence information
SRC1AC	Select source 1 as active
SRC1AC?	Output source 1 active/inactive status

 Table 9-2.
 Multiple Source Control Commands (2 of 2)

Command	Description
SRC1ADD	Enter external source 1 GPIB address
SRC1EX	Select source 1 as external
SRC1EX?	Output source 1 external/internal status
SRC1G0	Turn source 1 GPIB control off
SRC1G1	Turn source 1 GPIB control on
SRC1GX?	Output source 1 GPIB control on/off status
SRC1MOD?	Output external source 1 model/version string
SRC1NA	Select source 1 as not active
SRC1NT	Select source 1 as internal
SRC2	Select source power voltage testing
SRC2AC	Select source 2 as active
SRC2AC?	Output source 2 active/inactive status
SRC2ADD	Enter external source 2 GPIB address
SRC2ADD?	Output external source 2 GPIB address
SRC2G0	Turn source 2 GPIB control off
SRC2G1	Turn source 2 GPIB control on
SRC2GX?	Output source 2 GPIB control on/off status
SRC2MOD?	Output external Source 2 model/version string
SRC2NA	Select source 2 as not active
SVB	Save current band definitions

9-8 37XXXC PM

9-4 REAR PANEL OUTPUT

Table 9-3 lists the commands for controlling the rear-panel voltage output of the 37XXXC. The RV1 command enables the output and command RV0 disables it. The orientation of the output can be set to either horizontal (RVH), vertical (RVV), lock direction (RVL), or DC value (RVD).

In the horizontal mode, the voltage output is a digital ramp starting at the voltage start value set by command VST and ending at the voltage stop value set by command VSP. The start value corresponds to the first point of the sweep and the stop value corresponds to last point of the sweep. In the vertical mode, the output voltage is a measure of the instantaneous data point value. The output voltage is related to the scaling of the graph for channel 1. The reference line corresponds to the zero volt value and each graticle line is equal to a 1 volt value span. The values set by the VST and VSP commands have no effect in the vertical mode.

In the lock direction mode, the start voltage value is output for forward sweeps (lock to Ra). The stop voltage value is output for reverse sweeps (lock to Rb).

In the DC value mode, the rear panel output voltage is set to the DC value programmed with the RPO command.

Table 9-3. Rear Panel Output Control Commands

Command	Description
RPO	Enter rear panel dc voltage value
RPO?	Output rear panel dc voltage value
RV0	Turn rear panel output voltage off
RV1	Turn rear panel output voltage on
RV1?	Output rear panel output voltage on/off status
RVD	Set rear panel output mode to dc value
RVH	Set rear panel output mode to horizontal
RVL	Set rear panel output mode to lock direction
RVV	Set rear panel output mode to vertical
RVX?	Output rear panel output mode
VSP	Enter rear panel stop voltage value
VSP?	Output rear panel stop voltage value
VST	Enter rear panel start voltage value
VST?	Output rear panel start voltage value

9-5 RECEIVER MODE

The Receiver Mode commands (Table 9-4) allow the user to change the way the receiver functions.

 Table 9-4.
 Receiver Mode Control Commands

Command	Description
SDR?	Output receiver mode
SL1	Select source lock mode
ST1	Select set on mode
TK1	Select tracking mode

9-10 37XXXC PM

9-6 USER DEFINED PARAMETERS

User defined parameters permit the user to substitute a different ratio for S parameters. The following commands (Table 9-5) are provided to accomplish this task.

 Table 9-5.
 User-Defined-Parameter Commands

Command	Description
DA1	Select a1 = Ra as denominator for parameter being defined
DA2	Select a2 = Rb as denominator for parameter being defined
DB1	Select b1 = Ta as denominator for parameter being defined
DB2	Select b2 = Tb as denominator for parameter being defined
DE1	Select unity as denominator for parameter being defined
DEN?	Output denominator selection for parameter being defined
NA1	Select a1 as numerator for parameter being defined
NA2	Select a2 as numerator for parameter being defined
NB1	Select b1 as numerator for parameter being defined
NB2	Select b2 as numerator for parameter being defined
NU1	Select unity as numerator for parameter being defined
NUM?	Output numerator selection for parameter being defined
USL	Enter label string for user parameter being defined
USL?	Output label string for user parameter being defined
USR1	Measure user parameter 1 on active channel
USR2	Measure user parameter 2 on active channel
USR3	Measure user parameter 3 on active channel
USR4	Measure user parameter 4 on active channel

9-7 ADAPTER REMOVAL COMMANDS

The Adapter Removal commands(Table 9-6) let the user perform an adapter removal calibration. This application involves performing two very specialized 12 term corrections and saving them to disk or the GPIB to recall later. Before using these commands, become thoroughly familiar with the manual procedure and instructions.

Table 9-6. Adapter Removal Control Commands

Command	Description
ADPL	Enter electrical length for adapter removal
ADPL?	Output electrical length for adapter removal
IARF	Enter adapter removal files from GPIB and calibrate

9-12 37XXXC PM

9-8 GAIN COMPRESSION

The 37XXXC uses two gain compression methods for amplifier testing: swept power and swept frequency. The gain compression commands are listed in Table 9-7.

Swept Power Gain Compression

The Swept Power Gain Compression Application lets users see the gain compression of an amplifier-under-test (AUT) at up to 10 continuous wave (CW) frequencies and sweeping power over a predefined range and stepsize.

There are actually three types of tests in this application. In each, marker search is used to automatically find the gain compression point. The tests are:

- □ The swept power gain compression test. In this test, the frequency is constant at one of the 10 CW frequencies programmed previously, and the power is swept over the power range. The displays are in power out and normalized S21. Users can change the frequency and observe the gain compression point at that frequency.
- □ *The swept power gain compression AM/PM test.* This test is identical to the swept power gain compression test above, except the displays are normalized S21 phase and magnitude.
- ☐ The multiple frequency swept power gain compression test. This is an all encompassing test which automatically measures the gain compression at all of the preselected frequencies and graphs the results. It is the results of this test that are referred to by the commands OGCFD, OGCTXT and SAVEGC.

Before using these commands, become thoroughly familiar with the manual procedure and instructions.

This application makes use of the Discrete Fill command set to program the test frequencies. The commands will not be relisted here.

Several of the commands listed in Table 10-8 are also applicable to the Swept Frequency Gain Compression Application which is described in another section of this manual. They will be listed again in that section.

Swept Frequency Gain Compression

The Swept frequency gain compression application lets users see the gain compression of an amplifier-under-test (AUT) over the full operating frequency range by creating two calibrated displays. The top display shows power out and the bottom in normalized gain. While sweeping the frequency range the user may vary the input power and observe any change in gain on the bottom graph. The user should become thoroughly familiar with the manual procedure and instructions before attempting to control the application from the GPIB.

This application makes use of a Flat Test Port Power Calibration to achieve a higher degree of accuracy. The commands for this calibration are not re-listed here.

Calibration Coefficients

Power Sweep Linearity The coefficients are input and output using the following codes:

- □ IPSC Enter the power sweep linearity calibration coefficients
- □ OPSC Output the power sweep linearity calibration coefficients

These codes would be useful in applications where there is no power meter to hook up to the 37XXXC to perform the calibration normally, or the power meter is not one for which the 37XXXC has been programmed to interface.

The code OPSC outputs an arbitrary block of binary or ASCII data depending on the output mode selected with the codes FMA, FMB, FMC, LSB and MSB. See the description of these codes in Chapter 10. See paragraph 10-3 for a description of the arbitrary block format. Each coefficient represents the adjustment in dB (correct to a hundredth of a dB) required to achieve the correct power at the particular power point and frequency (except if the power step size is less than 0.10 dB).

The minimum power step size in a linearity calibration is 0.10 dB. If the programmed power sweep step size is less than 0.10 dB, there may actually be fewer coefficients per power sweep, and the coefficients will not necessarily align with the power points in the power sweep. Interpolation between coefficients is used to determine the power adjustment. Suppose the VNA is programmed with four power points per sweep and two frequencies of interest. Then, the first four elements (numbers) in the arbitrary block will be the coefficients for the power sweep at the first frequency of interest, starting at the lowest power and proceeding upward. The next four numbers in the arbitrary block will be the coefficients for the next frequency of interest. The arbitrary block contains two groups of coefficients, one for each frequency of interest. Each group contains four coefficients, one for each power point in the corresponding power sweep. This is represented pictorially below:

[arbitrary block header][4 coefficients for frequency 1][4 coefficients for frequency 2]

If a VNA does not currently have a valid power sweep linearity calibration in place when the OPSC command is received, an arbitrary block will be sent with zeros for each coefficient.

The IPSC command is used to input coefficients into the VNA and set up a valid power sweep linearity calibration. The coefficients are contained in an arbitrary block, which follows IPSC. The composition of the arbitrary block is identical to the one described above. The VNA must be programmed with the appropriate number of power points and frequencies prior to receiving IPSC. If the number of coefficients in the arbitrary block does not match what would be required by the

9-14 37XXXC PM current VNA setup, the data will be rejected. An error message will be displayed on the screen and recorded in the service log.

To insure that the correct number of coefficients is contained in the arbitrary block, one should first use the codes:

PSCNFRQ? Output the power sweep linearity cal number of frequency points.

 Table 9-7.
 Gain Compression Commands (1 of 2)

Command	Description
CALR	Perform receiver cal for gain compression testing
DSPS21	Select Gain Compression bottom graph displays S21
DSPS21?	Output Gain Compression bottom graph selection Normalized/S2
GCMP	Enter gain compression point search value
GCMP?	Output gain compression point search value
IPSC	Enter power sweep linearity calibration coefficients
MFGCT	Start multiple frequency swept power gain compression test
NOFST	Enter nominal offset value for external gain
NOFST?	Output nominal offset value for external gain
NRMS	Normalize S21 for gain compression testing
NRMS21	Select Gain Compression bottom graph displays Normalized S21
OPSC	Output power sweep linearity calibration coefficients
PSCNFRQ?	Output the power sweep linearity cal number of frequency poi
PSCNPWR?	Output the power sweep linearity cal number of power points
PSCSTEP?	Output the power sweep linearity cal power step size
PSPWR	Enter power sweep off power level
PSPWR?	Output power sweep off power level
PSTEP	Enter power sweep step size
PSTEP?	Output power sweep step size
PSTOP	Enter power sweep stop power
PSTOP?	Output power sweep stop power
PSTRT	Enter power sweep start power
PSTRT?	Output power sweep start power
PSWC	Perform power sweep linearity calibration
PSWC0	Turn power sweep linearity calibration off

 Table 9-7.
 Gain Compression Commands (2 of 2)

Command	Description
PSWC1	Turn power sweep linearity calibration on
PSWCX?	Output power sweep linearity calibration on/off status
PSWP0	Turn power sweep off
PSWP1	Turn power sweep on
PSWPX?	Output power sweep on/off status
RSTGC	Reset gain compression parameters to default
SFGCA	Select swept frequency gain compression application
SFGCT	Start swept frequency gain compression test
SPAMPMT	Start swept power gain compression AM/PM test
SPGCA	Select swept power gain compression application
SPGCT	Start swept power gain compression test
UNDOGC	Exit gain compression and undo changes

PSCNPWR? Output the power sweep linearity cal number of power points per frequency.

(Not necessarily the number of power points in the power sweep)

PSCSTEP? Output the power sweep linearity cal power step size

(Not necessarily the power sweep power step size)

The number of coefficients in the arbitrary block will be:

[number of power points] X [number of frequencies]

9-16 37XXXC PM

9-9 mmWAVE AND BROADBAND

Two configurations provide Millimeter Wave S-Parameter testing in numerous waveguide bands:

- □ A 3735B Millimeter Wave Test Set in conjunction with a varied selection of Millimeter Wave Heads, a 371xxC series VNA and two synthesizers.
- □ A 3738A Broadband Test Set in conjuction with a varied selection of Millimeter Wave Heads, a 37xxxC VNA with Option 12 and two synthesizers.

A third configuration provides Broadband S-Parameter testing. This coverage is split into 0.04 to 65 GHz in coax and 65 to 110 GHz in waveguide. These two ranges can be combined with external couplers to provide a continuous 40 MHz to 110 GHz sweep in coax. this configureation consists of a 3738A Broadband Test Set in conjunction with two 3742-EW Millimeter Wave Heads, a 37x97C VNA with Option 12 and two synthesizers.

The Millimeter Wave test set configuration is established with the code SELMM. The Broadband test set configuration is established with the code SELBB. One can select the normal Internal Test set mode of operation with the code SELINT, or by issuing the master reset code RST0. All other resets maintain the currently programmed test set mode.

Millimeter Wave and Broadband operation are by definition, multiple source control modes of operation. The band and equation information is taken care of automatically by the VNA and require no user intervention. The user may however change the Millimeter Wave band start and stop frequencies and equations if desired. Broadband operation permits changing only the stop frequency.

Notice that there is only one band (even for Broadband operation). This band is separate from the normal Internal Test Set mode of operation. Therefore it is selected and controlled via the new codes BDMM, CLBMM and SVBMM. As both Millimeter Wave and Broadband are already active multiple source control modes, SVBMM both saves and activates the new band equations and frequencies. The normal multiple source codes ECW, ESW, MS0, MS1, MSD and BD1 through BD5 are not permitted.

The codes which control Millimeter Wave and Broadband operation are listed in Table 9-8 below:

Table 9-8. Millimeter Wave and Broadband Commands

Command	Description
BDMM	Define Millimeter Wave band equations
BSP	Enter band stop frequency
BSP?	Output band stop frequency
BST	Enter band start frequency
BST?	Output band start frequency
E12	Set Millimeter Wave band to E band (WR-12)
E12E	Set Millimeter Wave band to E band (WR-12)
F08	Set Millimeter Wave Band to F Band (WR-8)
MMBX?	Output Millimeter Wave band selection
P1MMA	Set Port 1 Millimeter Wave Head to Amplified (3742)
P1MMN	Set Port 1 Millimeter Wave Head to None
P1MMR	Set Port 1 Millimeter Wave Head to Receiver (3741)
P1MMT	Set Port 1 Millimeter Wave Head to Transmit/Receiver (3740)
P1MMX?	Output Port 1 Millimeter Wave Head type
P2MMA	Set Port 2 Millimeter Wave Head to Amplified (3742)
P2MMN	Set Port 2 Millimeter Wave Head to none
P2MMR	Set Port 2 Millimeter Wave Head to Receiver (3741)
P2MMT	Set Port 2 Millimeter Wave Head to Transmit/Receiver (3740)
P2MMX?	Output Port 2 Millimeter Wave Head type
Q22	Set Millimeter Wave Band to Q Band (WR-22)
SELBB	Select Broadband test set operation
SELINT	Select Internal (normal) test set operation
SELMM	Select Millimeter Wave test set operation
SELXX?	Output the test set selection MMWave/Internal
SVBMM	Save and activate the new Millimeter Wave band definitions
V15	Set Millimeter Wave Band to V Band (WR-15)
W10	Set Millimeter Wave Band to W Band (WR-10)
W10E	Set Millimeter Wave Band to extended W Band (WR-10E)

9-18 37XXXC PM

Part 3 Programming Reference

This part consists of three chapters that provide programming reference information for the 37XXXC VNA.

Chapter 10 – provides a list of all GPIB commands for the 37XXXC. The listing for each command (mnemonic) includes relevant details about the command.

Chapter 11 – provides general (non-command specific) tabular information for the 37XXXC. Much of this information is presented in Chapters 4 through 10, but is provided in this chapter for easy access.

Chapter 12 – provides a list of all Error Messages related to remote-only (GPIB) operation of the 37XXXC.

Chapter 10 Command Dictionary

Table of Contents

10-1	INTRODUCTION
10-2	TYPOGRAPHIC CONVENTIONS
10-3	DATA I/O FORMATS
10-4	FUNCTIONAL GROUPS
10-5	RELEVANT TABLES
10-6	COMMANDS

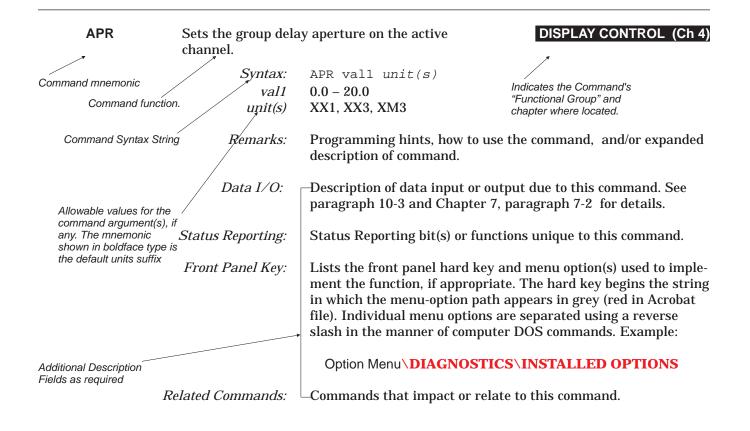


Figure 10-1. Typographic Conventions for the Command Listings

Chapter 10 Command Dictionary

10-1 INTRODUCTION

This chapter provides a listing of GPIB programming commands (mnemonics) used with the Model 37XXX Vector Network Analyzer.

10-2 TYPOGRAPHIC CONVENTIONS

The typographic conventions, abbreviations, and syntax legend used throughout this chapter to define the GPIB commands are described in Figure 10-1 (opposite page).

10-3 DATA I/O FORMATS

The data input and output formats and templates, referred to throughout this chapter, are delimited with the less-than and greater-than characters (< >). These characters are not part of the data; they are only used in this text to distinguish the data elements they represent. See Chapter 7, Remote Only Operations, "Data Transfer" for complete details.

37XXX data formats are summarized below:

<NR1>

This notation represents ASCII integer values. A comma (,) is used to separate multiple values sent in a single command's input or output string.

Examples of values that can be represented by <NR1> notation:

1 0 -29.179

<NR2>

This notation represents ASCII floating point values in decimal point format. A comma (,) is used to separate multiple values sent in a single command's input or output string.

Examples of values that can be represented by <NR2> notation:

1.0 -0.00015 12.743, -180.07

<*NR3*>

This notation represents ASCII floating point values in exponential format (scientific notation). A comma (,) is used to separate multiple values sent in a single command's input or output string.

37XXXC PM 10-3

Examples of values that can be represented by <NR3> notation:

1.0E9 7.056E3 9.0E2,3.42E2

$\langle NRf \rangle$

This notation is used to signify that data can be in either <NR1>, <NR2>, or <NR3> format as described above.

Examples of values that can be represented by <NRf> notation:

1.0E9 10.005 83,4.5E2,234.9901

<String>

This notation represents a string of 7-bit ASCII characters (including nonprintable characters) that is delimited (surrounded) with either single quotes ('') or double quotes (""). The string can include text formatting characters such as linefeed, space, or carriage return.

Note that if a double quote character must be sent as part of the string, then it must be followed by an additional double quote. Alternatively, the string can be sent using single quotes (See "cal_file" example below.)

Examples of data represented by <String> notation:

```
"1/15/98"
"Save" "cal_file" "now."
'Save" "cal_file" now.'
```

<Arbitrary ASCII>

This notation represents undelimited 7-bit ASCII text. The end of the text must be terminated with the 0A character (decimal 10) and concurrent setting (^) of the GPIB End of Transmission State (EOI). This requirement makes it necessary for <Arbitrary ASCII> text to be transmitted only at the end of a program or response message, i.e. at the end of a multiple input or output statement.

Example of data represented by <Arbitrary ASCII> notation:

```
Wiltron,37247A,123456,1.0<0A^EOI>
```

The example shows a sample response from the *IDN?, 488.2 common query. In the example, the instrument identifies itself as a Wiltron 37247A, with serial number 123456, and software version 1.0 installed. Note that decimal 10 (0A character) must be sent with the EOI to signal end of transmission.

10-4 37XXXC PM

<Arbitrary Block>

This notation represents data that is transmitted as 8-bit data bytes (00-FF hex, 0-255 decimal, notation is <DAB>). This is useful for transmitting large blocks of formatted ASCII or binary data or unformatted binary data. The data stream is immediately preceded by a variable length ASCII header that is encoded with the number of data bytes to be sent. The header always starts with the pound (#) character. Figure 10-2 below describes the header and the transmitted data messages.

#nm1..mn<DAB>1..<DAB>m

Where:

- # = The pound sign character. Required for binary data transfer.
- n = Number of digits to follow (m1..mn) that make up the number m.
- $m_1..m_n$ = Taken together, this makes up the number m which is the number of data bytes to follow that constitute the requested data.
- <DAB> = An 8-bit binary data byte. This is the data (or information) being sent.

NOTE

If n=0, then m is omitted, and transmission end is signaled by sending the linefeed character (0A, or decimal 10) and concurrent setting (^) of the GPIB End Of Transmission State (EOI) immediately following the last <DAB>.

Figure 10-2. <Arbitrary Block> Data Format

10-4 FUNCTIONAL GROUPS

Throughout this chapter, the distinctive, white on black text, in the upper corner of each command's description area, is the functional group to which the command belongs (see Figure 10-1, page 10-2). The 37XXX GPIB Function Groups are described in Chapters 4 through 9; they provide descriptive details and tabular data that apply to the group as a whole.

10-5 RELEVANT TABLES

Data referenced in many places within this chapter is located in Chapter 11, "Instrument Data."

10-6 COMMANDS

The remaining pages in this chapter provide an alphabetical listing of the commands (mnemonics) used to program the Model 37XXX Vector Network Analyzer.

37XXXC PM 10-5

*CLS Clear status bytes and structures

IEEE 488.2 (Ch 7)

Syntax: *CLS

Status Reporting: Clears the Standard Event Status Register, the Extended Event

Status Register, and the Limits Status Register. Also clears the Operation Complete Command and Query states by setting them to idle state, i.e. no operations pending. Also clears the

GPIB error message buffers (see OGE, OGL).

*DDT Enter the 488.2 Define Device Trigger

IEEE 488.2 (Ch 7)

command string

Syntax: *DDT

Val 1: Valid 37XXX GPIB command sequence in format

Remarks: Clears the Standard Event Status Register, the Extended Event

Status Register, and the Limits Status Register. Also clears the Operation Complete Command and Query states by setting them to idle state, i.e. no operations pending. Also clears the

GPIB error message buffers (see OGE, OGL).

Related Commands: *TRG

*DDT? Output the 488.2 Define Device Trigger

IEEE 488.2 (Ch 7)

command string

Syntax: *DDT?

Data I/O: The query response is sent using the <Arbitrary Block> format

(paragraph 10-3).

*ESE Enter the 488.2 Standard Event Status

IEEE 488.2 (Ch 7)

IEEE 488.2 (Ch 7)

Enable mask

Syntax: *ESE Val 1: 0-255

Remarks: Sets the bits of the Standard Event Status Enable Register to

the binary weighted bit pattern of the decimal value entered.

The register is cleared by sending a value of 0.

Data I/O: The value is input in ASCII <NRf> format (paragraph 10-3).

***ESE?** Output the 488.2 Standard Event Status

Enable mask

Syntax: *ESE?

10-6 37XXXC PM

Remarks: Returns the decimal value of the bit pattern of the Standard

Event Status Enable Register. The value is 0-255.

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3).

*ESR? Output the 488.2 Standard Event Status IEEE 488.2 (Ch 7)

Register value

Syntax: *ESR?

Remarks: Returns the decimal value of the bit pattern of the Standard

Event Status Register and clears it. The value is 0-255.

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3).

*IDN? Output the 488.2 instrument identification IEEE 488.2 (Ch 7)

string

Syntax: *IDN?

Remarks: This query returns the 37XXX identification string. The string

consists of four comma separated fields as follows: Anritsu,

Model. Serial #. Software Revision.

The actual model number, serial number, and software revision

of the 37XXX queried will be passed. The maximum length of

the string is 72 characters.

Data I/O: Outputs the 488.2 instrument identification string using an

<Arbitrary ASCII> format (paragraph 10-3).

Related Commands: OID, *OPT?

*IST? Output the value of the ist message IEEE 488.2 (Ch 7)

Syntax: *IST?

Remarks: The ist is the status bit sent by the 37XXX in response to a

> parallel poll. The *IST? query outputs the value of the *ist* without having to perform a parallel poll. The output value is 1

if ist is TRUE, 0 if it is FALSE.

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3).

Related Commands: *PRE, *PRE?

37XXXC PM *10-7* ***OPC** Initiate the 488.2 Operation Complete

IEEE 488.2 (Ch 7)

sequence

Syntax: *OPC

Status Reporting: Sets the Operation Complete bit 0 in the Standard Event Status

Register after all pending operations are complete.

Related Commands: *OPC?

***OPC?** Initiate the 488.2 Operation Complete Query

IEEE 488.2 (Ch 7)

sequence

Syntax: *OPC?

Remarks: Ouputs an ASCII "1" after all pending operations are complete.

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3).

Related Commands: *OPC

***OPT?** Output the 488.2 options installed string

SERVICE LOG (Ch 8)

Syntax: *OPT?

Remarks: This query returns the installed, reportable 37XXX options

identification string. The string consists of comma separated fields containing the option numbers or a 0 if none are installed.

The maximum length of the string is 255 characters.

Data I/O: Outputs an <Arbitrary ASCII> format (paragraph 10-3)

Front Panel Key: Option Menu\DIAGNOSTICS\INSTALLED OPTIONS

Related Commands: OID, *IDN?

*PRE Enter the 488.2 Parallel Poll Register Enable

IEEE 488.2 (Ch 7)

mask

Syntax: *PRE Val 1: 0 to 65535

Remarks: Sets the bits of the Parallel Poll Enable Register to the binary

weighted bit pattern of the decimal value entered. The register

is cleared by sending a value of 0.

Data I/O: The value is input in ASCII <NRf> format (paragraph 10-3).

10-8 37XXXC PM

*PRE? Output the 488.2 Parallel Poll Register

IEEE 488.2 (Ch 7)

Enable mask

Syntax: *PRE?

Remarks: Returns the decimal value of the bit pattern of the Parallel Poll

Enable Register.

Data I/O: Output the 488.2 Parallel Poll Register Enable mask using

ASCII <NR1> format (paragraph 10-3).

Related Commands: *IST?

*RST Instrument reset

IEEE 488.2 (Ch 7)

Syntax: *RST

Remarks: Resets the 37XXX to default state with all user programmable

parameters set to their default values. Default state settings are listed in Chapter 12. This command does not affect the Output Queue, any Status or Parallel Poll Registers, or the 37XXX

GPIB address setting.

Related Commands: RST, RST0, RST1

*SRE Enter the 488.2 Service Request Enable mask

IEEE 488.2 (Ch 7)

Syntax: *SRE Val 1: 0 to 55

Remarks: Sets the bits of the Service Request Enable Register to the

binary weighted bit pattern of the decimal value entered. The register is cleared by sending a value of 0. Note that the Master Summary Status (MSS) bit 6 (decimal 64) will be ignored since it represents the summary of all enabled status bits (bits 0-5, 7).

Data I/O: The value is input in ASCII <NRf> format (paragraph 10-3).

*SRE? Output the 488.2 Service Request Enable

IEEE 488.2 (Ch 7)

mask

Syntax: *SRE?

Remarks: Returns the decimal value of the bit pattern of the Service

Request Enable Register. The value will be 0 to 63, or 128 to 191, with the MSS bit 6 (decimal 64) zeroed out (See *SRE).

37XXXC PM 10-9

Data I/O: Outputs the 488.2 Service Request Enable mask using ASCII

<NR1> format (paragraph 10-3).

*STB? Output the 488.2 Status Byte value IEEE 488.2 (Ch 7)

Syntax: *STB?

Remarks: Returns the decimal value of the bit pattern of the Status Byte

and the Master Summary Status bit 6. The value will be 0 to

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3).

*TRG **Initiate a Group Execute Trigger sequence** IEEE 488.2 (Ch 7)

Syntax:

Remarks: The previously defined trigger action using the *DDT command

> will be placed in the GPIB input buffer, parsed, and executed. This is the instrument specific equivalent of the 488.1 GET,

Group Execute Trigger message.

Related Commands: *DDT, *DDT?

*TST? Perform self test and output status IEEE 488.2 (Ch 7)

Syntax: *TST?

Remarks: Causes the 37XXX to perform an extensive, fully automated

> internal circuits self test. Detailed error messages indicating self test failures, if any, are placed in the service log in the order they occur. The query returns a 1 if any part of the self test failed, or a 0 when passed. NOTE: When commands TST or *TST? are sent to the 37XXX, the VNA output power is momentarily set to the model-dependent Rated Power level during the self test. Ensure that any equipment connected to

Port 1 or Port 2 will not be damaged by this power level.

Data I/O: Returns a value in ASCII <NR1> format (paragraph 10-3).

Front Panel Key: Option Menu\DIAGNOSTICS\START SELF TEST

Related Commands: ONE, OEL, OSL, PSL, TST

*WAI Wait to continue IEEE 488.2 (Ch 7)

10-10 37XXXC PM Syntax: *WAI

Remarks: Suspends the execution of any further commands or queries

until all pending operations are completed. Note that this command is required by the 488.2 Standard but has no effect on

37XXX operation. The 37XXX executes all commands

sequentially, i.e. it will always wait for commands and queries to

finish executing prior to processing new commands.

Related Commands: *OPC, *OPC?

A12 Simulate 12-term calibration

CALIBRATION (Ch 5)

Syntax: A12

Remarks: This command sets the error correction type you wish to

simulate; it does not perform a calibration. After issuing this command, input the calibration data arrays you wish to apply to the measured data then issue the CON command to turn on

correction.

Related Commands: IC1-IC12, ICL, CON. Also see C12, OC1-OC12, OCL

A8R Simulate 1-path 2-port calibration reverse

CALIBRATION (Ch 5)

path

Syntax: A8R

Remarks: This command sets the error correction type you wish to

simulate; it does not perform a calibration. After issuing this command, input the calibration data arrays you wish to apply to the measured data then issue the CON command to turn on

correction.

Related Commands: IC1-IC5, CON. Also see C8R, OC1-OC5

A8T Simulate 1-path 2-port calibration forward

CALIBRATION (Ch 5)

path

Syntax: A8T

Remarks: This command sets the error correction type you wish to

simulate; it does not perform a calibration. After issuing this command, input the calibration data arrays you wish to apply to the measured data then issue the CON command to turn on

correction.

Related Commands: IC1-IC5, CON. Also see C8R, OC1-OC5

37XXXC PM 10-11

ABORTCAL Abort calibration in progress and keep

existing calibration data

Syntax: ABORTCAL

ABT Simulate trans freq response calibration

forward and reverse

Syntax: ABT

Remarks: This command sets the error correction type you wish to

simulate; it does not perform a calibration. After issuing this command, input the calibration data arrays you wish to apply to the measured data then issue the CON command to turn on

correction.

Related Commands: IC1-IC2, CON. Also see CBT, OC1-OC2

ACAA Set AutoCal standard to assurance

AUTOCAL (Ch 5)

AUTOCAL (Ch 5)

CALIBRATION (Ch 5)

Syntax: ACAA

Related Commands: ACLOAD, ACOPEN, ACSHORT, ACTHRU, ACSTD?

ACADPL Enter AutoCal adapter length

AUTOCAL (Ch 5)

Syntax: ACADPL

Val 1: electrical length of the adapter in time (0.0 - 9.999999e-7)

Units: S, US, NS, PS

Data I/O: Value is input in ASCII <NRf> format (paragraph 10-3)

Related Commands: ACADPL?

ACADPL? Output AutoCal adapter length

AUTOCAL (Ch 5)

Syntax: ACADPL?

Data I/O: Outputs value in ASCII <NR3 > format (paragraph 10-3).

Related Commands: ACADPL

ACADR Set AutoCal type to adapter removal

AUTOCAL (Ch 5)

Syntax: ACADR

10-12 37XXXC PM

Related Commands: ACS11, ACS22, ACSF2P, ACX?

ACAL1R2 Set adapter removal port configuration to

AUTOCAL (Ch 5)

ADAPT & L=1 and R=2

Syntax: ACAL1R2

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL

SETUP\ADAPTER REMOVAL\PORT CONFIG etc.

Related Commands: ACAR1L2, ACARP?, ACL1AR2, ACR1AL2

ACAR1L2 Set adapter removal port configuration to

AUTOCAL (Ch 5)

ADAPT & R=1 and L=2

Syntax: ACAR1L2

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL

SETUP\ADAPTER REMOVAL\PORT CONFIG etc.

Related Commands: ACAL1R2, ACARP?, ACL1AR2, ACR1AL2

ACARP? Output AutoCal adapter removal port

AUTOCAL (Ch 5)

configuration

Syntax: ACARP?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3) as

follows: "5" for ADAP L1_R2, "6" for L1 ADAPT_R2, "7" for

ADAP R1_L2, "8" for R1 ADAPT_L2.

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL

SETUP\ADAPTER REMOVAL\PORT CONFIG etc.

ACDEF Select default AutoCal isolation averaging

AUTOCAL (Ch 5)

factor

Syntax: ACDEF

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL

SETUP\ADAPTER REMOVAL\DEFAULT

Related Commands: ACIAF, ACIAF?, ACIAX?, ACOMIT

ACF2P? Output AutoCal full 2 port configuration

AUTOCAL (Ch 5)

Syntax: ACF2P?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3) as

follows: "3" for PORTS L1_R2, "4" for PORTS R1_L2.

Front Panel Key: Begin Cal\AUTOCAL\AUTOCAL TYPE

Related Commands: ACL1R2, ACR1L2

ACF2TC Set AutoCal 2 port thru type to calibrator

AUTOCAL (Ch 5)

Syntax: ACF2TC

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL SETUP\FULL 2

PORT\THRU TYPE CALIBRATOR

Related Commands: ACF2TT, ACF2TX?

ACF2TT Set AutoCal 2 port thru type to true thru

AUTOCAL (Ch 5)

Syntax: ACF2TT

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL SETUP\FULL 2

PORT\THRU TYPE TRUE

Related Commands: ACF2TC, ACF2TX?

ACF2TX? Output AutoCal 2 port thru type selection

AUTOCAL (Ch 5)

Syntax: ACF2TX?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3) as

follows: "1" for ACAL THRU, "2" for ACAL TRUE THRU.

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL SETUP\FULL 2

PORT\THRU TYPE

Related Commands: ACF2TC, ACF2TT

ACHFD Save AutoCal characterization data to floppy

AUTOCAL (Ch 5)

disk

Syntax: ACHFD

Front Panel Key: Utility Menu\AUTOCAL UTILITIES\SAVE TO FLOPPY

DISK

10-14 37XXXC PM

Related Commands: ACHHD

ACHHD Save AutoCal characterization data to hard

AUTOCAL (Ch 5)

disk

Syntax: ACHHD

Related Commands: ACHFD

ACIAF Enter user AutoCal isolation averaging factor

AUTOCAL (Ch 5)

Syntax: ACIAF

Val 1: the averaging number between 1 and 4096

Data I/O: The value is input in ASCII <NRf> format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL SETUP\FULL 2 PORT\AVERAGING

FACTOR

Related Commands: ACIAF?, ACDEF, ACOMIT

ACIAF? Output user AutoCal isolation averaging

AUTOCAL (Ch 5)

factor

Syntax: ACIAF?

Data I/O: Outputs value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL SETUP\ISOLATION

Related Commands: ACIAF, ACDEF, ACOMIT

ACIAX? Output AutoCal isolation averaging factor

AUTOCAL (Ch 5)

omit/default/user selection

Syntax: ACIAX?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3) as

follows: "0" for Omit Isolation Averaging, "1" for Isolation Averaging Default value, and "2" for Isolation Averaging Factor.

Front Panel Key: Begin Cal\AUTOCAL SETUP\ISOLATION

Related Commands: ACDEF, ACIAF, ACIAF?

ACISO Enter AutoCal isolation averaging number

AUTOCAL (Ch 5)

Syntax: ACISO

Val 1: The Autocal isolation averaging number between 1 and 4096

Data I/O: The value is input in ASCII <NRf> format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL

SETUP\ISOLATION

Related Commands: ACISO?

ACISO? Output AutoCal isolation averaging number

AUTOCAL (Ch 5)

Syntax: ACISO?

Data I/O: Outputs value in ASCII <NR1 > format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL

SETUP\ISOLATION

Related Commands: ACISO?

ACL1AR2 Set adapter removal port configuration to L=1

AUTOCAL (Ch 5)

and ADAPT & R=2

Syntax: ACL1AR2

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL

SETUP\ADAPTER REMOVAL\PORT CONFIG etc.

Related Commands: ACAL1R2, ACAR1L2, ACARP?, ACR1AL2

ACL1R2 Set AutoCal full 2 port configuration to L=1

AUTOCAL (Ch 5)

and R=2

Syntax: ACL1R2

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL SETUP\S22 1

PORT (or S11 1 PORT (or (FULL 2 PORT)\PORT 1

CONNECTION LEFT/RIGHT (or PORT CONFIG L=1, R=2; R=1, L=2 or Utility Menu\AUTOCAL UTILITIES\AUTOCAL CHARACTERIZATION\PORT CONFIG L=1, R=2; R=1, L=2

Related Commands: ACF2P?, ACR1L2

ACLO Enter AutoCal load averaging number

AUTOCAL (Ch 5)

10-16 37XXXC PM

Syntax: ACLO

Val 1: The averaging number between 1 and 4096

Data I/O: The value is input in ASCII <NRf> format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL SETUP\LOAD

Related Commands: ACLO?

ACLO? Output AutoCal load averaging number

AUTOCAL (Ch 5)

Syntax: ACLO?

Data I/O: Outputs value in ASCII <NR1 > format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL SETUP\LOAD

Related Commands: ACLO

ACLOAD Set AutoCal standard to load

AUTOCAL (Ch 5)

Syntax: ACLOAD

Related Commands: ACAA, ACOPEN, ACSHORT, ACSTD?, ACTHRU

ACOMIT Omit using AutoCal isolation averaging factor

AUTOCAL (Ch 5)

Syntax: ACOMIT

Front Panel Key: Begin Cal\AUTOCAL SETUP\ISOLATION

Related Commands: ACDEF, ACIAF, ACIAF, ACIAX

ACOPEN Set AutoCal standard to open

AUTOCAL (Ch 5)

Syntax: ACOPEN

Related Commands: ACAA, ACLOAD, ACSHORT, ACSTD?, ACTHRU

ACP1? Output AutoCal S11 port configuration

AUTOCAL (Ch 5)

Syntax: ACP1?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3) as

follows: "1" for Port 1 left, and "2" for Port 1 right.

Related Commands: ACP1L, ACP1R, ACPL, ACPR

ACP1L Set AutoCal S11 port configuration to left

AUTOCAL (Ch 5)

Syntax: ACP1L

Related Commands: ACP1R, ACP1?, ACPL, ACPR

ACP1R Set AutoCal S11 port configuration to right

AUTOCAL (Ch 5)

Syntax: ACP1R

Related Commands: ACP1L, ACP1?, ACPL, ACPR

ACP2? Output AutoCal S22 port configuration

AUTOCAL (Ch 5)

Syntax: ACP2?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3) as

follows: "3" for Ports L1 R2, and "2" for Ports R1 L2.

Related Commands: ACP2L, ACP2R

ACP2L Set AutoCal S22 port configuration to left

AUTOCAL (Ch 5)

Syntax: ACP2L

Related Commands: ACP2?, ACP2R

ACP2R Set AutoCal S22 port configuration to right

AUTOCAL (Ch 5)

Syntax: ACP2R

Related Commands: ACP2?, ACP2L

ACPL Set AutoCal S11 port configuration to left

AUTOCAL (Ch 5)

Syntax: ACPL

Related Commands: ACP1L, ACP1R, ACP1?, ACPR

10-18 37XXXC PM

ACPR Set AutoCal S11 port configuration to right AUTOCAL (Ch 5)

Syntax: ACPR

Related Commands: ACP1L, ACP1R, ACP1?, ACPL

ACR1AL2 Set adapter removal port configuration to R=1

AUTOCAL (Ch 5)

and ADAPT & L=2

Syntax: ACR1AL2

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL

SETUP\ADAPTER REMOVAL\PORT CONFIG etc.

Related Commands: ACL1AR2, ACAL1R2, ACAR1L2

ACR1L2 Set AutoCal full 2 port configuration to R=1

AUTOCAL (Ch 5)

and L=2

Syntax: ACR1L2

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL SETUP\S22 1

PORT (or S11 1 PORT (or (FULL 2 PORT)\PORT 1

CONNECTION LEFT/RIGHT (or PORT CONFIG L=1, R=2; R=1, L=2 or Utility Menu\AUTOCAL UTILITIES\AUTOCAL CHARACTERIZATION\PORT CONFIG L=1, R=2; R=1, L=2

Related Commands: ACF2P?, ACL1R2

ACRFL Enter AutoCal reflection averaging number

AUTOCAL (Ch 5)

Syntax: ACRFL

Val 1: The averaging number between 1 and 4096

Data I/O: The value is input in ASCII <NRf> format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL

SETUP\REFLECTION

Related Commands: ACRFL?

ACRFL? Output AutoCal reflection averaging number

AUTOCAL (Ch 5)

Syntax: ACRFL?

Data I/O: The value is output in ASCII <NR1> format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL

SETUP\REFLECTION

Related Commands: ACRFL

ACS11 Set AutoCal type to S11

AUTOCAL (Ch 5)

Syntax: ACS11

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL SETUP\S11 1

PORT

Related Commands: ACADR, ACS22, ACSF2P, ACX?

ACS22 Set AutoCal type to S22

AUTOCAL (Ch 5)

Syntax: ACS22

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL SETUP\S22 1

PORT

Related Commands: ACS11, ACSFP2, ACX?

ACSF2P Set AutoCal type to full 2 port

AUTOCAL (Ch 5)

Syntax: ACSF2P

Front Panel Key: Begin Cal\AUTOCAL\AUTOCAL TYPE

Related Commands: ACS11, ACS22, ACX?

ACSHORT Set AutoCal standard to short

AUTOCAL (Ch 5)

Syntax: ACSHORT

Related Commands: ACAA, ACLOAD, ACOPEN, ACSTD?, ACTHRU

ACSTD? Output AutoCal standard

AUTOCAL (Ch 5)

Syntax: ACSTD?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3) as

follows: "1" for Open, "2" for Short, "3" for Load, "4" for Thru,

and "5" for Assurance.

10-20 37XXXC PM

Related Commands: ACAA, ACLOAD, ACOPEN, ACSHORT, ACTHRU

ACSW Enter AutoCal switch averaging number

AUTOCAL (Ch 5)

Syntax: ACSW

Val 1: The averaging number between 1 and 16

Data I/O: The value is input in ASCII <NRf> format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL

SETUP\SWITCH AVERAGING

Related Commands: ACSW?

ACSW? Output AutoCal switch averaging number

AUTOCAL (Ch 5)

Syntax: ACSW?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL\CHANGE AUTOCAL

SETUP\SWITCH AVERAGING

Related Commands: ACSW

ACTHRU Set AutoCal standard to thru

AUTOCAL (Ch 5)

Syntax: ACTHRU

Front Panel Key: Begin Cal\AUTOCAL\THRU TYPE

Related Commands: ACAA, ACLOAD, ACOPEN, ACSHORT, ACSTD?

ACTU Enter AutoCal thru averaging number

AUTOCAL (Ch 5)

Syntax: ACTU

Val 1: The averaging number between 1 and 4096

Data I/O: The value is input in ASCII <NRf> format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL \CHANGE AUTOCAL

SETUP\NUMBER OF AVGS T HR U

Related Commands: ACTU?, ACTUAVG, ACTUAVG?

ACTU? Output AutoCal thru averaging number

AUTOCAL (Ch 5)

Syntax: ACTU?

Data I/O: The value is input in ASCII <NR1> format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL \CHANGE AUTOCAL

SETUP\NUMBER OF AVGS T HR U (Value)

Related Commands: ACTU, ACTUAVG, ACTUAVG?

ACTUAVG Enter AutoCal thru update averaging number

AUTOCAL (Ch 5)

Syntax: ACTUAVG

Val 1: The averaging number between 1 and 4096

Data I/O: The value is input in ASCII <NRf> format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL\NUMBER OF AVGS

Related Commands: ACTU, ACTU?, ACTUAVG?

ACTUAVG? Output AutoCal thru update averaging

number

Syntax: ACTUAVG?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3).

Front Panel Key: Begin Cal\AUTOCAL\NUMBER OF AVGS

Related Commands: ACTU, ACTU?, ACTUAVG

ACTULS Apply last thru update cal setup

AUTOCAL (Ch 5)

AUTOCAL (Ch 5)

Syntax: ACTULS

ACX? Output AutoCal type

AUTOCAL (Ch 5)

Syntax: ACX?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3) as

follows: "1" for S11 1 Port, "2" for S22 1 Port, "3" for Full 2 Port,

"4" for Adapter Removal.

Front Panel Key: Begin Cal\AUTOCAL\THRU TYPE

10-22 37XXXC PM

Related Commands: ACADR, ACS11, ACS22, ACSF2P

ADD Select addition as trace math for active

DISPLAY (Ch 4)

channel

Syntax: ADD

Remarks: Store trace data to memory. Issue this command then normalize

the trace to display the complex addition result of measured

data and memory data.

Front Panel Key: Trace Memory\SELECT TRACE MATH\ADD(+)

Related Commands: CH1-CH4, STD, DNM

ADDFC Enter frequency counter GPIB address

ADDRESSING (Ch 8)

Syntax: ADDFC
Val 1: 1-30
Units: XX1

Data I/O: The value is input in ASCII <NRf> format (paragraph 10-3)

Front Panel Key: Utility Menu\GPIB ADDRESSES\FREQUENCY COUNTER

Related Commands: ADDFC?, ADDPLT, ADDPM, SRC1ADD, SRC2ADD

ADDFC? Output frequency counter GPIB address

ADDRESSING (Ch 8)

Syntax: ADDFC?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3)

Front Panel Key: Utility Menu\GPIB ADDRESSES\FREQUENCY COUNTER

Related Commands: ADDFC,ADDPLT?,ADDPM?,SRC1ADD?,SRC2ADD?

ADDPLT Enter plotter GPIB address

ADDRESSING (Ch 8)

Syntax: ADDPLT
Val 1: 1-30
Units: XX1

Data I/O: The value is input in ASCII <NRf> format (paragraph 10-3)

Front Panel Key: Utility Menu\GPIB ADDRESSES\PLOTTER

Related Commands: ADDPLT?,ADDFC,ADDPM,SRC1ADD,SRC2ADD

ADDPLT? Output plotter GPIB address

ADDRESSING (Ch 8)

Syntax: ADDPLT?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3)

Front Panel Key: Utility Menu\GPIB ADDRESSES\PLOTTER

Related Commands: ADDPLT,ADDFC?,ADDPM?,SRC1ADD?,SRC2ADD?

ADDPM Enter power meter GPIB address

ADDRESSING (Ch 8)

Syntax: ADDPM
Val 1: 1-30
Units: XX1

Data I/O: The value is input in ASCII<NRf> format (paragraph 10-3)

Front Panel Key: Utility Menu\GPIB ADDRESSES\POWER METER

Related Commands: ADDPM?, ADDFC, ADDPLT, SRC1ADD, SRC2ADD

ADDPM? Output power meter GPIB address

ADDRESSING (Ch 8)

Syntax: ADDPM?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3)

Front Panel Key: Utility Menu\GPIB ADDRESSES\POWER METER

Related Commands: ADDPM,ADDFC?,ADDPLT?,SRC1ADD?,SRC2ADD?

ADPL Enter electrical length for adapter removal

ADAPTER REMOVAL (Ch 9)

Syntax: ADPL

Val 1: A number in ASCII <NRF> format (paragraph 10-3)

Units: Units of time: S, MS, US, PS

Front Panel Key: Appl\ADAPTER REMOVAL\ELECTRICAL LENGTH OF

THE ADAPTER

ADPL? Output electrical length for adapter removal

ADAPTER REMOVAL (Ch 9)

10-24 37XXXC PM

Syntax: ADPL?

Data I/O: Outputs electrical length for adapter removal using ASCII

<NRF> format (paragraph 10-3).

Front Panel Key: Appl\ADAPTER REMOVAL\ELECTRICAL LENGTH OF

THE ADAPTER

ADRIVE Select the floppy drive as the default drive

DISK FUNCTION (Ch 8)

Syntax: ADRIVE

Remarks: All disk operations which do not specify a drive will be

performed on the floppy drive

Related Commands: CDRIVE, CD, CWD?

AFT Simulate transmission frequency response

CALIBRATION (Ch 5)

calibration forward path

Syntax: AFT

Remarks: This command sets the error correction type you wish to

simulate; it does not perform a calibration. After issuing this command, input the calibration data arrays you wish to apply to the measured data then issue the CON command to turn on

correction.

Related Commands: IC1, CON. Also see CFT, OC1

AHO Turn automatic DUT protection off

MEASUREMENT (Ch 4)

Syntax: AH0

Related Commands: AH1, AHX?

AH1 Turn automatic DUT protection on

MEASUREMENT (Ch 4)

MEASUREMENT (Ch 4)

Syntax: AH1

Related Commands: AH0, AHX?

AHX? Output automatic DUT protection on/off

status

Syntax: AHX?

Data I/O: Outputs automatic DUT protection on/off status using ASCII

<NR1> format (paragraph 10-3) as follows: "0" for Automatic DUT Protection is off or "1" for Automatic DUT Protection is on.

Related Commands: AH0, AH1

ALC Perform ALC loop internal calibration DIAGNOSTICS (Ch 8)

Syntax: ALC

Remarks: For service use only.

AMKR Select active marker on all channels marker MARKERS (Ch 6)

mode

Syntax: AMKR

Related Commands: FMKR, NMKR, SMKR, XMKR?

ANNCOL Enter the color number for annotation and SYSTEM STATE (Ch 8)

menu text

Syntax: ANNCOL Val 1: 0 to 47

Remarks: Color palette numbers are listed in Table 10-3 at the end of this

chapter.

Front Panel Key: Utility Menu\COLOR CONFIGURATION\ANNOTATION

AND MENU TEXT

Related Commands: DATCOL, GRTCOL, LAYCOL, MKRCOL, MNUCOL, TRCCOL,

ANNCOL?

ANNCOL? Output the color number for annotation and SYSTEM STATE (Ch 8)

menu text

Syntax: ANNCOL?

Data I/O: Outputs the color palette number in ASCII <NR1> format

(paragraph 10-3)..

Front Panel Key: Utility Menu\COLOR CONFIGURATION\ANNOTATION

AND MENU TEXT

Related Commands: DATCOL?, GRTCOL?, LAYCOL?, MKRCOL?, MNUCOL?,

TRCCOL?, ANNCOL

10-26 37XXXC PM

AOF Turn averaging off

ENHANCEMENT (Ch 4)

Syntax: AOF

Remarks: Restarts the sweep. Does not change the currently set number.

Related Commands: AVG, WFS

AOF? Output averaging on/off status

ENHANCEMENT (Ch 4)

Syntax: AOF?

Data I/O: Outputs a 1 if ON, 0 if OFF in ASCII <NR1> format (paragraph

10-3).

Related Commands: AOF, AVG

AON Turn averaging on

ENHANCEMENT (Ch 4)

Syntax: AON

Remarks: Restarts the sweep, but does not change the averaging value

that is currently set.

Related Commands: AVG, AOF, WFS

APR Enter group delay aperture setting on active

DISPLAY (Ch 4)

channel

Syntax: APR

Val 1: 0.0 to 20.0 Units: XX1, XX3, XM3

Front Panel Key: Set Scale \ APERTURE X.X PERCENT OF SWEEP

Related Commands: CH1-CH4, DLA

APR? Output group delay aperture setting on active

DISPLAY (Ch 4)

channel

Syntax: APR?

Data I/O: Outputs value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Set Scale \ APERTURE X.X PERCENT OF SWEEP

ARB Simulate reflection only calibration both ports

CALIBRATION (Ch 5)

Syntax: ARB

Remarks: This command sets the error correction type you wish to

simulate; it does not perform a calibration. After issuing this command, input the calibration data arrays you wish to apply to the measured data then issue the CON command to turn on

correction.

Related Commands: IC1-IC6, CON. Also see CRB, OC1-OC6.

ARF Simulate reflection only calibration port 1

CALIBRATION (Ch 5)

Syntax: ARF

Remarks: This command sets the error correction type you wish to

simulate; it does not perform a calibration. After issuing this command, input the calibration data arrays you wish to apply to the measured data then issue the CON command to turn on

correction.

Related Commands: IC1-IC6, CON. Also see CRB, OC1-OC6.

ARR Simulate reflection only calibration port 2

CALIBRATION (Ch 5)

Syntax: ARR

Remarks: This command sets the error correction type you wish to

simulate; it does not perform a calibration. After issuing this command, input the calibration data arrays you wish to apply to the measured data then issue the CON command to turn on

correction.

Related Commands: IC1-IC3, CON. Also see CRR, OC1-OC3

ART Simulate trans freq response calibration

CALIBRATION (Ch 5)

reverse path

Syntax: ART

Remarks: This command sets the error correction type you wish to

simulate; it does not perform a calibration. After issuing this command, input the calibration data arrays you wish to apply to the measured data then issue the CON command to turn on

correction.

10-28 37XXXC PM

Related Commands: IC1, CON. Also see CRT, OC1

ASC Autoscale the active channel display

DISPLAY (Ch 4)

Syntax: ASC

Remarks: For best results, wait for a full sweep before issuing command.

Related Commands: CH1-CH4, WFS

ASP Enter polar stop sweep position angle

DISPLAY (Ch 4)

Syntax: ASP

Val 1: -360.00 to 360.00

Units: DEG

Front Panel Key: Set Scale\SELECT POLAR CHART MODE\STOP ANGLE

Related Commands: CH1-CH4, PCP, PCS, AST

ASP? Output polar stop sweep position angle

DISPLAY (Ch 4)

Syntax: ASP?

Data I/O: Outputs value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Set Scale\SELECT POLAR CHART MODE\STOP ANGLE

AST Enter polar start sweep position angle

DISPLAY (Ch 4)

Syntax: AST

Val 1: -360.00 to 360.00

Units: DEG

Front Panel Key: Set Scale\SELECT POLAR CHART MODE\START ANGLE

Related Commands: CH1-CH4, PCP, PCS, ASP

AST? Output polar start sweep position angle

DISPLAY (Ch 4)

Syntax: AST?

Data I/O: Outputs value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Set Scale\SELECT POLAR CHART MODE\START ANGLE

ATTN Attach next segment and make the active

LIMITS (Ch 6)

segment

Syntax: ATTN

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE LOWER (or

DEFINE UPPER)\ATTACH NEXT

Related Commands: CH1-CH4, L01-L10, U01-U10, DIS, BEGN

AVG Enter averaging count and turn on

ENHANCEMENT (Ch 4)

Syntax: AVG

Val 1: 1 to 4095

Units: XX1, XX3, XM3

Remarks: Restarts the sweep.

Front Panel Key: Avg/Smooth Menu\AVERAGING

Related Commands: AOF

AVG? Output averaging count

ENHANCEMENT (Ch 4)

Syntax: AVG?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3).

Front Panel Key: Avg/Smooth Menu\AVERAGING

BBL Select broadband load for calibration

CALIBRATION (Ch 5)

Syntax: BBL

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LOAD

TYPE\BROADBAND FIXED LOAD

Related Commands: SLD

BBZ Enter broadband load impedance for

CALIBRATION (Ch 5)

calibration

Syntax: BBZ

Val 1: 1.0 to 9999.99 Units: XX1, OHM

10-30 37XXXC PM

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LOAD

TYPE\BROADBAND FIXED LOAD

BBZL Enter broadband load inductance for

CALIBRATION (Ch 5)

calibration

Syntax: BBZL

Val 1: inductance value in ASCII <NRF> format (paragraph 10-3).

Units: XX1

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LOAD TYPE\BROADBAND FIXED LOAD\INDUCTANCE

BC0 Turn CRT display off (disabled)

SYSTEM STATE (Ch 8)

Syntax: BC0

Related Commands: BC1, BCX?

BC1 Turn CRT display on (disabled)

SYSTEM STATE (Ch 8)

Syntax: BC1

Related Commands: BC0, BCX?

BCKCOL Enter the color number for background

SYSTEM STATE (Ch 8)

Syntax: BCKCOL Val 1: 0 - 47

Remarks: Color palette numbers are listed in Table 10-3 at the end of this

chapter.

Front Panel Key: Utility Menu\COLOR CONFIGURATION\BACKGROUND

Related Commands: ANNCOL, DATCOL, GRTCOL, LAYCOL, MKRCOL, MNUCOL,

TRCCOL, BCKCOL?

BCKCOL? Output the color number for background

SYSTEM STATE (Ch 8)

Syntax: BCKCOL?

Data I/O: Outputs the color palette number in ASCII <NR1> format

Front Panel Key: Utility Menu\COLOR CONFIGURATION\BACKGROUND

(Color)

Related Commands: ANNCOL, DATCOL?, GRTCOL?, LAYCOL, MKRCOL?,

MNUCOL?, TRCCOL?, BCKCOL

BCX? Output CRT display on/off status

SYSTEM STATE (Ch 8)

Syntax: BCX?

Data I/O: Outputs a 1 if ON, 0 if off in ASCII <NR1> format (paragraph

10-3).

Related Commands: BC0, BC1

BD1 Select band 1 for definition

MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: BD1

Remarks: Only commands in Multiple Source group may be issued

between BDX and SVB command pairs.

Front Panel Key: Option Menu\MILLIMETER WAVE BAND

DEFINITION\DEFINE\BAND

Related Commands: SVB, CLB

BD2 Select band 2 for definition

MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: BD2

Remarks: Only commands in Multiple Source group may be issued

between BDX and SVB command pairs.

Front Panel Key: Option Menu\MILLIMETER WAVE BAND

DEFINITION\DEFINE\BAND

Related Commands: SVB, CLB

BD3 Select band 3 for definition

MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: BD3

Remarks: Only commands in Multiple Source group may be issued

between BDX and SVB command pairs.

10-32 37XXXC PM

Front Panel Key: Option Menu\MILLIMETER WAVE BAND

DEFINITION\DEFINE\BAND

Related Commands: SVB, CLB

BD4 Select band 4 for definition

MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: BD4

Remarks: Only commands in Multiple Source group may be issued

between BDX and SVB command pairs.

Front Panel Key: Option Menu\MILLIMETER WAVE BAND

DEFINITION\DEFINE\BAND

Related Commands: SVB, CLB

BD5 Select band 5 for definition

MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: BD5

Remarks: Only commands in Multiple Source group may be issued

between BDX and SVB command pairs.

Front Panel Key: Option Menu\MILLIMETER WAVE BAND

DEFINITION\DEFINE\BAND

Related Commands: SVB, CLB

BDMM Define Millimeter Wave band equations

MILLIMETER WAVE (Ch 9)

Syntax: BDMM

Remarks: Send this prior to redefining the equations for Millimeter Wave

Front Panel Key: Option Menu\TEST SET CONFIG\BROADBAND TEST SET

MODULES

Related Commands: BSP, BST, ED1, ED2, EDR, EDV, EML, EOS, CLBMM, SVBMM

BEEP0 Disable the instrument beeper on GPIB errors

SYSTEM STATE (Ch 8)

Syntax: BEEP0

Related Commands: BEEP1, BEEPX?

BEEP1 Enable the instrument beeper on GPIB errors SYSTEM STATE (Ch 8)

Syntax: BEEP1

Related Commands: BEEP0, BEEPX?

BEEPX? Output GPIB beep on error enable/disable

SYSTEM STATE (Ch 8)

status

Syntax: BEEPX?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3) as

follows: "0" for beep disabled or "1" for beep enabled.

Related Commands: BEEP0, BEEP1

BEG Begin taking calibration data

CALIBRATION (Ch 5)

Syntax: BEG

Remarks: After calibration parameters are configured (see CALIBRATION

group), use this command to start measuring calibration standards (data-collection process). The prompt to connect the first standard will be displayed. After prompt's action is carried out, issue commands to take calibration data for that standard

and then go to next calibration step.

Status Reporting: Extended Event Status Register bit 0 will be set when all

calibration standards have been measured and the entire

calibration process is complete.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\START CAL

Related Commands: TC1, TC2, TCD, NCS, RPC, KEC

BEGAC Start AutoCal AUTOCAL (Ch 5)

Syntax: BEGAC

Front Panel Key: Begin Cal\AUTOCAL\START AUTOCAL

Related Commands: BEGCH, BEGTU

BEGCH Start AutoCal characterization AUTOCAL (Ch 5)

10-34 37XXXC PM

Syntax: BEGCH

Related Commands: BEGAC, BEGTU

BEGN Begin next segment and make it the active

LIMITS (Ch 6)

segment

Syntax: BEGN

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE LOWER (or

DEFINE UPPER)\BEGIN NEXT

Related Commands: ATTN

BEGTU Start AutoCal thru update

AUTOCAL (Ch 5)

Syntax: BEGTU

Front Panel Key: Begin Cal\AUTOCAL\START THRU UPDATE

Related Commands: BEGAC, BEGCH

BH0 Turn bias off while in hold

MEASUREMENT (Ch 4)

Syntax: BH0

Front Panel Key: Setup Menu\HOLD BUTTON FUNCTION\BIAS HOLD

CONDITIONS—BIAS OFF

Related Commands: BH1, BHX?, HLD

BH1 Turn bias on while in hold

MEASUREMENT (Ch 4)

Syntax: BH1

Front Panel Key: Setup Menu\HOLD BUTTON FUNCTION\BIAS HOLD

CONDITIONS—BIAS ON

Related Commands: BH0, BHX?, HLD

BHX? Output bias on/off during hold status

MEASUREMENT (Ch 4)

Syntax: BHX?

Data I/O: Output bias on/off during hold status using ASCII <NR1>

format (paragraph 10-3): "1" for ON or "0" for OFF.

Front Panel Key: Setup Menu\HOLD BUTTON FUNCTION\BIAS HOLD

CONDITIONS—BIAS (Status)

Related Commands: BH0, BH1

BMPB Select Black on White as bitmap type

HARD COPY (Ch 8)

Syntax: BMPB

Remarks: Defines the bitmap response type to the mnemonic OBMP or

SAVE

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\FORMAT OF PRINTER

OUTPUT\BLACK ON WHITE BACKGROUND

Related Commands: BMPC, BMPT, OBMP, SAVE

BMPC Select Color on White as bitmap type

HARD COPY (Ch 8)

Syntax: BMPC

Remarks: Defines the bitmap response type to the mnemonic OBMP or

SAVE

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\FORMAT OF PRINTER

OUTPUT\COLOR ON WHITE BACKGROUND

Related Commands: BMPB, BMPT, OBMP, SAVE

BMPT Select true color as bitmap type

HARD COPY (Ch 8)

Syntax: BMPT

Remarks: Defines the bitmap response type to the mnemonic OBMP or

SAVE

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\FORMAT OF PRINTER

OUTPUT\TRUE COLOR

Related Commands: BMPB, BMPC, OBMP, SAVE

BPF Enter break point frequency for 3 line LRL

calibration

CALIBRATION (Ch 5)

10-36 37XXXC PM

Syntax: BPF

Val 1: frequency

Units: HZ, KHZ, MHZ, GHZ

Front Panel Key: Begin Cal\NEXT CAL STEP\INCLUDE

ISOLATION\NORMAL (1601 DATA POINTS)\NEXT CAL

STEP\LRL/LRM PARAMETERS\TWO

BANDS\BREAKPOINT

BRILL Activate color configuration Brilliant

SYSTEM STATE (Ch 8)

Syntax: BRILL

Front Panel Key: Utility Menu\COLOR CONFIGURATION\COLOR

SCHEMES\BRILLIANT COLORS

Related Commands: CLASS, INVER, NEWCO, SOFTCO, STOCO, RSTCOL

BSP Enter band stop frequency

MILLIMETER WAVE (Ch 9)

Syntax: BSP

Val 1: frequency

Units: HZ, KHZ, MHZ, GHZ

Remarks: Except for band 1, only band stop frequencies can be set. Band

start frequencies are automatically set to the previous band's

end frequency.

Front Panel Key: Option Menu\MILLIMETER WAVE BAND

DEFINITION\DEFINE BANDS\BAND STOP FREQ

Related Commands: BST, BSP?

BSP? Output band stop frequency

MILLIMETER WAVE (Ch 9)

Syntax: BSP?

Data I/O: Outputs band stop frequency using ASCII <NR3> format

(paragraph 10-3).

Front Panel Key: Option Menu\MILLIMETER WAVE BAND

DEFINITION\DEFINE BANDS\BAND STOP FREQ

(Status)

Related Commands: BST, BSP

BST Enter band start frequency

MILLIMETER WAVE (Ch 9)

Syntax: BST

Val 1: frequency

Units: HZ, KHZ, MHZ, GHZ

Remarks: Only band 1 start frequency can be set. Bands 2-5 automatically

start at the end of the previous band.

Front Panel Key: Option Menu\MILLIMETER WAVE BAND

DEFINITION\DEFINE BANDS\BAND START FREQ

Related Commands: BSP

BST? Output band start frequency

MILLIMETER WAVE (Ch 9)

Syntax: BST?

Data I/O: Outputs value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Option Menu\MILLIMETER WAVE BAND

DEFINITION\DEFINE BANDS\BAND START FREQ

(Status)

BWL3 Set bandwidth loss value to 3 dB

MARKERS (Ch 6)

Syntax: BWL3

Front Panel Key: Readout Marker\MARKER READOUT

FUNCTIONS\FILTER PARAMETERS\FILTER

SETUP\BANDWIDTH LOSS VALUE

Related Commands: FMKR, BWLS, BWLS?

BWLS Enter bandwidth loss value

MARKERS (Ch 6)

Syntax: BWLS

Val 1: Depends on graph type; refer to Table 11-2 at the end of this

chapter.

Units: Depends on graph type; refer to Table 11-2 at the end of this

chapter.

Front Panel Key: Readout Marker\MARKER READOUT

FUNCTIONS\FILTER PARAMETERS\FILTER

SETUP\BANDWIDTH LOSS VALUE

Related Commands: FMKR, BWL3, BWLS?

10-38 37XXXC PM

BWLS? Output bandwidth loss value

MARKERS (Ch 6)

Syntax: BWLS?

Data I/O: Outputs a value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Readout Marker\MARKER READOUT

FUNCTIONS\FILTER PARAMETERS\FILTER SETUP\BANDWIDTH LOSS VALUE (Status)

Related Commands: BWL3, BWLS

C12 Select 12 term calibration

CALIBRATION (Ch 5)

Syntax: C12

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12 TERM

C8R Select 1-path 2-port calibration reverse path

CALIBRATION (Ch 5)

Syntax: C8R

Front Panel Key: Begin Cal\NEXT CAL STEP\1 PATH 2 PORT\REVERSE

PATH (S22, S12)

C8T Select 1-path 2-port calibration forward path

CALIBRATION (Ch 5)

Syntax: C8T

Front Panel Key: Begin Cal\NEXT CAL STEP\1 PATH 2 PORT\FORWARD

PATH (S11, S21)

CALR Perform receiver cal for gain compression

GAIN COMPRESSION (Ch 9)

testing

Syntax: CALR

Remarks: A receiver calibration is one of the required steps in both swept

frequency and swept power gain compression testing.

Front Panel Key: Appl\SWEPT POWER GAIN

COMPRESSION\MORE\GAIN COMPRESSION

Related Commands: SFGCA, SPGCA, NRMS, UNDOGC

CAS Clear active segmented limit

vertical/horizontal definitions

LIMITS (Ch 6)

Syntax: CAS

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE LOWER (or

DEFINE UPPER)\CLEAR SEGMENT

CBT Select trans freq response calibration forward

CALIBRATION (Ch 5)

and reverse

Syntax: CBT

Front Panel Key: Begin Cal\NEXT CAL STEP\TRANSMISSION

FREQUENCY RESPONSE\BOTH PATHS (S21, S12)

CC0 Enter capacitance coefficient 0 for open

CALIBRATION (Ch 5)

Syntax: CC0

Val 1: -9999.99 to 9999.99

Units: XX1

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\USER DEFINED\TERM1-C0

Related Commands: P1C, P2C

CC1 Enter capacitance coefficient 1 for open

CALIBRATION (Ch 5)

Syntax: CC1

Val 1: -9999.99 to 9999.99

Units: XX1

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\USER DEFINED\TERM2-C1

Related Commands: P1C, P2C

CC2 Enter capacitance coefficient 2 for open

CALIBRATION (Ch 5)

Syntax: CC2

Val 1: -9999.99 to 9999.99

Units: XX1

10-40 37XXXC PM

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\USER DEFINED\TERM3-C2

Related Commands: P1C, P2C

CC3 Enter capacitance coefficient 3 for open

CALIBRATION (Ch 5)

Syntax: CC3

Val 1: -9999.99 to 9999.99

Units: XX1

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\USER DEFINED\TERM4-C3

Related Commands: P1C, P2C

CCD Collect corrected data in an internal buffer

INT. BUFFER DATA COLL. (Ch 7)

Syntax: CCD

Remarks: Sets up an internal buffer to collect Corrected Data.

Status Reporting: Sets the Collection Buffer Full bit (CBF) in the Extended Event

Status Register when the collection buffer becomes full.

Related Commands: CRD, CFD, CXD?, DCCTN, DCCTN?, DCHLD, DCMRK,

DCOFF

CD Change default directory

DISK FUNCTION (Ch 8)

Syntax: CI

Val 1: Pathspec is a combination of letters, numbers, \ characters and

underscores which spell out the pathspec to the subdirectory in

question

Related Commands: ADRIVE, CDRIVE, CWD?

CDRIVE Select the hard disk as the default drive

DISK FUNCTION (Ch 8)

Syntax: CDRIVE

Remarks: All disk operations which do not specify a drive will be

performed on the hard drive.

Related Commands: ADRIVE, CD, CWD?

CF2 Select female 2.4mm connector for current

CALIBRATION (Ch 5)

port

Syntax: CF2

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN) $\2.4$ mm (F)

Related Commands: P1C, P2C

CF3 Select female GPC-3.5 connector for current

CALIBRATION (Ch 5)

port

Syntax: CF3

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\GPC-3.5 (F)

Related Commands: P1C, P2C

CFC Select female TNC connector for current port

CALIBRATION (Ch 5)

Syntax: CFC

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\TNC (F)

Related Commands: P1C, P2C

CFD Collect final data in an internal buffer

INT. BUFFER DATA COLL. (Ch 7)

Syntax: CFD

Remarks: Sets up an internal buffer to collect Final Data.

Status Reporting: Sets the Collection Buffer Full bit (CBF) in the Extended Event

Status Register when the collection buffer becomes full.

Related Commands: CCD, CRD, CXD?, DCCTN, DCCTN?, DCHLD, DCMRK,

DCOFF

10-42 37XXXC PM

CFK Select female K connector for current port CALIBRATION (Ch 5)

Syntax: CFK

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\K-CONN (F)

Related Commands: P1C, P2C

CFN Select female Type N connector for current CALIBRATION (Ch 5)

port

Syntax: CFN

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\TYPE N (F)

Related Commands: P1C, P2C

CFN75 Select Female type N 75-ohm connector for CALIBRATION (Ch 5)

current port

Syntax: CFN75

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\TYPE N (F) 75

Related Commands: P1C, P2C

CFS Select female SMA connector for current port CALIBRATION (Ch 5)

Syntax: CFS

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\SMA (F)

Related Commands: P1C, P2C

CFSP Select Special Female connector for current CALIBRATION (Ch 5)

port

Syntax: CFSP

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\SPECIAL (F)

Related Commands: P1C, P2C

CFT Select trans freq response calibration forward

CALIBRATION (Ch 5)

path

Syntax: CFT

Front Panel Key: Begin Cal\NEXT CAL STEP\TRANSMISSION

FREQUENCY RESPONSE\FORWARD PATH (S21)

CFV Select female V connector for current port

CALIBRATION (Ch 5)

Syntax: CFV

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\V-CONN (F)

Related Commands: P1C, P2C

CH1 Make channel 1 the active channel

CHANNELS (Ch 4)

Syntax: CH1

Remarks: If channel to be activated is not currently displayed, the sweep

will be restarted with the requested active channel displayed. The channel display mode (single, dual, dual overlaid, or quad),

however, will be maintained.

Front Panel Key: Ch 1

Related Commands: CHX?, WFS

CH2 Make channel 2 the active channel

CHANNELS (Ch 4)

Syntax: CH2

Remarks: If channel to be activated is not currently displayed, the sweep

will be restarted with the requested active channel displayed. The channel display mode (single, dual, dual overlaid, or quad),

however, will be maintained.

10-44 37XXXC PM

Front Panel Key: Ch 2

Related Commands: CHX?, WFS

CH3 Make channel 3 the active channel

CHANNELS (Ch 4)

Syntax: CH3

Remarks: If channel to be activated is not currently displayed, the sweep

will be restarted with the requested active channel displayed. The channel display mode (single, dual, dual overlaid, or quad),

however, will be maintained.

Front Panel Key: Ch 3

Related Commands: CHX?, WFS

CH4 Make channel 4 the active channel

CHANNELS (Ch 4)

Syntax: CH4

Remarks: If channel to be activated is not currently displayed, the sweep

will be restarted with the requested active channel displayed. The channel display mode however, (single, dual, dual overlaid,

or quad), will be maintained

Front Panel Key: Ch 4

Related Commands: CHX?, WFS

CHX? Output active channel number

CHANNELS (Ch 4)

Syntax: CHX?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3).

CLO Enter inductive coefficient 0 for short

CALIBRATION (Ch 5)

Syntax: CL0

Val 1: Coefficient number

Units: XX1

Remarks: The coefficient is that number which when multiplied by

1.0*E02 yields the inductance value.

Data I/O: Enter the coefficient in ASCII <NRF> format (paragraph 10-3).

CL1 Enter inductive coefficient 1 for short

CALIBRATION (Ch 5)

Syntax: CL1

Val 1: Coefficient number

Units: XX1

Remarks: The coefficient is that number which when multiplied by

1.0*E-24 yields the inductance value.

Data I/O: Enter the coefficient in ASCII <NRF> format (paragraph 10-3).

CL2 Enter inductive coefficient 2 for short

CALIBRATION (Ch 5)

Syntax: CL2

Val 1: Coefficient number

Units: XX1

Remarks: The coefficient is that number which when multiplied by

1.0*E-33 yields the inductance value.

Data I/O: Enter the coefficient in ASCII <NRF> format (paragraph 10-3).

CL3 Enter inductive coefficient 3 for short

CALIBRATION (Ch 5)

Syntax: CL3

Val 1: Coefficient number

Units: XX1

Remarks: The coefficient is that number which when multiplied by

1.0*E-42 yields the inductance value.

Data I/O: Enter the coefficient in ASCII <NRF> format (paragraph 10-3).

CLASS Activate color configuration Classic

SYSTEM STATE (Ch 8)

Syntax: CLASS

Front Panel Key: Utility Menu\COLOR CONFIGURATION\COLOR

SCHEMES\CLASSIC COLORS

Related Commands: BRILL, INVER, NEWCO, SOFTCO, STOCO, RSTCOL

CLB Clear all multiple source band definitions

MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: CLB

10-46 37XXXC PM

Front Panel Key: Option Menu\MILLIMETER WAVE BAND

DEFINITION\DEFINE\CLEAR ALL DEFINITIONS

CLBMM Clear the new Millimeter Wave band

MULTIPLE SOURCE CONTROL (Ch 9)

definitions

Syntax: CLBMM

Remarks: Sets the Millimeter Wave band definitions to the default values

Front Panel Key: Option Menu\MILLIMETER WAVE BAND

DEFINITION\DEFINE\CLEAR ALL DEFINITIONS

Related Commands: BSP, BST, ED1, ED2, EDR, EDV, EML, EOS, BDMM, SVBMM

CM Suffix sets distance data type and scales by

DATA ENTRY SUFFIXES (Ch 4)

1E-2

Syntax: CM

Related Commands: CMT

CM2 Select male 2.4mm connector for current port

CALIBRATION (Ch 5)

Syntax: CM2

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\2.4mm (M)

Related Commands: P1C, P2C

CM3 Select male GPC-3.5 connector for current

CALIBRATION (Ch 5)

port

Syntax: CM3

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\GPC-3.5 (M)

Related Commands: P1C. P2C

CMC Select male TNC connector for current port

CALIBRATION (Ch 5)

Syntax: CMC

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\TNC (M)

Related Commands: P1C, P2C

CMK Select male K connector for current port

CALIBRATION (Ch 5)

Syntax: CMK

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\K-CONN (M)

Related Commands: P1C, P2C

CMN Select male N connector for current port

CALIBRATION (Ch 5)

Syntax: CMN

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\TYPE N (M)

Related Commands: P1C, P2C

CMN75 Select Male type N 75-Ohm connector for

CALIBRATION (Ch 5)

current port

Syntax: CMN75

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\TYPE N (M) 75

Related Commands: P1C, P2C

CMS Select male SMA connector for current port

CALIBRATION (Ch 5)

Syntax: CMS

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\SMA (M)

Related Commands: P1C, P2C

10-48 37XXXC PM

CMSP Select Special Male connector for current port CALIBRATION (Ch 5)

Syntax: CMSP

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\SPECIAL (M)

Related Commands: P1C, P2C

CMT Suffix sets distance data type and scales by DATA ENTRY SUFFIXES (Ch 4)

1E-2

Syntax: CMT

Related Commands: CM

CMV Select male V connector for current port CALIBRATION (Ch 5)

Syntax: CMV

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\V-CONN (M)

Related Commands: P1C, P2C

CMX? Output calibration method CALIBRATION (Ch 5)

Syntax: CMX?

Data I/O: Output calibration method using ASCII <NR1> format

(paragraph 10-3). Outputs as follows: "1" for Standard OSL, "2"

for Offset-Short or "3" for LRL/LRM.

Front Panel Key: Begin Cal\CAL METHOD

CND Select user specified connector for current port CALIBRATION (Ch 5)

Syntax: CND

Remarks: Enter specifications of the standard devices to be used during

the calibration.

Related Commands: P1C, P2C, CC0-CC3, CO0, COS

CNG Select GPC-7 connector for current port

CALIBRATION (Ch 5)

Syntax: CNG

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\GPC-7

Related Commands: P1C, P2C

CNTR Enter center frequency

MEASUREMENT (Ch 4)

Syntax: CNTR

Val 1: Can be any frequency from low frequency limit to high frequency

limit of 37XXX

Units: HZ, KHZ, MHZ, GHZ

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\SET CENTER/SPAN\CENTERlor

Setup Menu\SET CENTER/SPAN\CENTER

Related Commands: CNTR?, SPAN, SPAN?, SRT, SRT?, STP, STP?

CNTR? Output center frequency

MEASUREMENT (Ch 4)

Syntax: CNTR?

Data I/O: Output center frequency using ASCII <NR3> format (paragrah

11-3).

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\SET CENTER/SPAN\CENTERlor Setup Menu\SET CENTER/SPAN\CENTER (Frequency)

Related Commands: CNTR, SPAN, SPAN?, SRT, SRT?, STP, STP?

COF Turn error correction off

CALIBRATION (Ch 5)

Syntax: COF

Remarks: Restarts the sweep.

Front Panel Key: Apply Cal\APPLY CALIBRATION OFF

Related Commands: CON

10-50 37XXXC PM

CON Turn error correction on CALIBRATION (Ch 5)

Syntax: CON

Remarks: Restarts the sweep.

Front Panel Key: Apply Cal\APPLY CALIBRATION ON

Related Commands: CON

CON? Output error correction on/off status CALIBRATION (Ch 5)

Syntax: CON?

Data I/O: Output error correction on/off status using ASCII <NR1> format

(paragraph 10-3): "1" for ON or "0" for OFF.

Front Panel Key: Apply Cal\APPLY CALIBRATION

COO Enter offset for open for user specified

connector (Standard Calibration)

Syntax: COO

Val 1: -999.9999 to 999.9999 (meters)
Units: M, MTR, MM, MMT, CM, CMT

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 OPEN

(or PORT 2 OPEN)\PORT 1 CONN (or PORT 2

CONN)\USER DEFINED\ENTER THE OFFSET LENGTH

COPY Copy a files contents to another file

DISK FUNCTION (Ch 8)

CALIBRATION (Ch 5)

Syntax: COPY

Val 1: Source name specifies the filespec for the source file.

Targetname specifies the filespec for the target file. If the names contain extentions, then the extentions must be included. May

contain drive letters, paths and/or wildcards

Front Panel Key: Hard Copy Menu\DISK OPERATIONS\TABULAR DATA

FROM HARD DISK TO PRINTER (or TABULAR DATA FROM FLOPPY DISK TO PRINTER\FILE (1 thru 8)

Related Commands: DEL

COS Enter offset for short for user specified

CALIBRATION (Ch 5)

connector

Syntax: COS

Val 1: -999.999to 999.999(meters)
Units: M, MTR, MM, MMT, CM, CMT

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 SHORT

(or PORT 2 SHORT)\PORT 1 CONN (or PORT 2

CONN)\USER DEFINED\ENTER THE OFFSET LENGTH

CRB Select reflection only calibration both ports

CALIBRATION (Ch 5)

Syntax: CRB

Front Panel Key: Begin Cal\NEXT CAL STEP\REFLECTION ONLY\BOTH

PORTS (S11, S22)

CRD Collect raw data in an internal buffer

INT. BUFFER DATA COLL. (Ch 7)

Syntax: CRD

Remarks: Sets up an internal buffer to collect Raw Data.

Status Reporting: Sets the Collection Buffer Full bit (CBF) in the Extended Event

Status Register when the collection buffer becomes full.

Related Commands: CCD, CFD, CXD?, DCCTN, DCCTN?, DCHLD, DCMRK,

DCOFF

CRF Select reflection only calibration port 1

CALIBRATION (Ch 5)

Syntax: CRF

Front Panel Key: Begin Cal\NEXT CAL STEP\REFLECTION ONLY\PORT 1

ONLY (S11)

CRR Select reflection only calibration port 2

CALIBRATION (Ch 5)

Syntax: CRR

Front Panel Key: Begin Cal\NEXT CAL STEP\REFLECTION ONLY\PORT 2

ONLY (S22)

10-52 37XXXC PM

CRT Select trans freq response calibration reverse

CALIBRATION (Ch 5)

path

Syntax: CRT

Front Panel Key: Begin Cal\NEXT CAL STEP\TRANSMISSION

FREQUENCY RESPONSE\REVERSE PATH (S12)

CSB Clear status bytes and structures (same as

STATUS REPORTING (Ch 7)

*CLS)

Syntax: CSB

Related Commands: *CLS

CSF? Output cal start frequency

CALIBRATION (Ch 5)

Syntax: CSF?

Data I/O: Outputs value in ASCII <NR3> format (paragraph 10-3).

CSL Clear service log

SERVICE LOG (Ch 8)

Syntax: CSL

Remarks: This command will erase permanently any error messages in the

service log. Typically for service use only.

Related Commands: OEL, OSL, SSL, PSL, ONE

CTF? Output cal stop frequency

CALIBRATION (Ch 5)

Syntax: CTF?

Data I/O: Outputs value in ASCII <NR3> format (paragraph 10-3).

CTN Continue sweeping from current point

MEASUREMENT (Ch 4)

Syntax: CTN

Remarks: Takes the instrument out of hold mode and continues sweeping

from the current frequency.

Front Panel Key: Setup Menu\HOLD BUTTON FUNCTION\CONTINUE

Related Commands: HLD, TRS

CWC Select CW frequency calibration data points

CALIBRATION (Ch 5)

Syntax: CWC

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\C.W. (1 POINT)

Related Commands: CWF, NOC, TDC, DFC

CWD? Output current working directory string

DISK FUNCTION (Ch 8)

Syntax: CWD?

Data I/O: Outputs a string in <Arbitrary ASCII> format which contains

the complete path including the drive letter.

Related Commands: ADRIVE, CDRIVE, CD

CWDEC Subtract 1 from the current CW index

MEASUREMENT (Ch 4)

Syntax: CWDEC

Related Commands: CWINC, CWN2I

CWF Enter CW frequency and turn CW on

MEASUREMENT (Ch 4)

Syntax: CWF

Val 1: CW freq

Units: HZ, KHZ, MHZ, GHZ

Remarks: Restarts the sweep.

Front Panel Key: Begin Cal\AUTOCAL\NEXT CAL STEP\FULL 12

TERM\INCLUDE ISOLATION\C.W. (1 POINT)\C.W.

FREQ or Setup Menu\C.W. MODE ON

Related Commands: WFS, SWP, SRT, STP

CWF? Output CW frequency

MEASUREMENT (Ch 4)

Syntax: CWF?

Data I/O: Outputs value in ASCII <NR3> format (paragraph 10-3).

10-54 37XXXC PM

CWI Enter index for CW frequency and turn CW on

MEASUREMENT (Ch 4)

Syntax: CWI

Val 1: 0 to the number of points in sweep -1

Data I/O: Value is input in ASCII <NRf> format (paragraph 10-3)

CWI2F? Output frequency for index given

MEASUREMENT (Ch 4)

Syntax: CWI2F?

Val 1: 0 to the number of points in sweep -1

Data I/O: Val1 is input in ASCII <NRf> format and frequency is output in

ASCII <NR3> format (paragraph 10-3)

Related Commands: CWF2I?

CWI? Output current index number

MEASUREMENT (Ch 4)

Syntax: CWI?

Data I/O: Outputs value in ASCII <NR1 > format (paragraph 10-3).

CWINC Add 1 to the current CW index

MEASUREMENT (Ch 4)

Syntax: CWINC

Related Commands: CWDEC, CWN2I

CWN2I Add N to the current CW index

MEASUREMENT (Ch 4)

Syntax: CWN2I

Val 1: (+/-) the number of points in sweep -1

Data I/O: Value is input in ASCII <NRf> format (paragraph 10-3)

CWON Turn CW on at current CW frequency

MEASUREMENT (Ch 4)

Syntax: CWON

Remarks: Restarts the sweep.

Front Panel Key: Setup Menu\C.W. MODE ON

Related Commands: CWF

CWON? Output CW on/off status

MEASUREMENT (Ch 4)

Syntax: CWON?

Data I/O: Outputs CW on/off status using ASCII <NR1> format

(paragraph 10-3) as follows: "0" for OFF or "1" for ON.

Front Panel Key: Setup Menu\C.W. MODE

CWP Enter number of points drawn in CW

MEASUREMENT (Ch 4)

Syntax: CWP
Val 1: 1 to 1601
Units: XX1

Remarks: This is a CW "sweep" mode where the data trace represents

consecutive measurements at the same CW frequency. Restarts

the sweep.

Front Panel Key: Setup Menu\POINTS DRAWN IN CW

Related Commands: WFS, DD0, DD1, CWF, SWP

CWP? Output number of points drawn in CW

MEASUREMENT (Ch 4)

Syntax: CWP?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3).

Front Panel Key: Setup Menu\POINTS DRAWN IN CW

CWSRT Set CW frequency to the start frequency

MEASUREMENT (Ch 4)

Syntax: CWSRT

CWSTP Set CW frequency to the stop frequency

MEASUREMENT (Ch 4)

Syntax: CWSTP

CXD? Output internal buffer data collection mode

INT. BUFFER DATA COLL. (Ch 7)

Syntax: CXD?

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3), as

follows: "0" for No Collection Mode, "1" for Raw Data Collection,

10-56 37XXXC PM

"2" for Corrected Data Collection, or "3" for Final Data

Collection.

Status Reporting: Sets the Collection Buffer Full bit (CBF) in the Extended Event

Status Register when the collection buffer becomes full.

Related Commands: CCD, CFD, CRD, DCOFF

CXX? Output calibration type

CALIBRATION (Ch 5)

Syntax: CXX?

Data I/O: Outputs calibration type using ASCII <NR1> format (paragraph

10-3), as follows: "0" for None, "1" for 12 Term, "2" for 8 Term FWD, "3" for 8 Term REV, "4" for Transmission FWD, "5" for Transmission REV, "6" for Transmission FWD & REV, "7" for Reflection FWD, "8" for Reflection REV, or "9" for Reflection

FWD & REV).

Front Panel Key: Begin Cal\NEXT CAL STEP\TRANSMISSION

FREQUENCY RESPONSE\SELECT TRANSMISSION FREQ RESPONSE CALIBRATION TYPE (or SELECT

REFLECTION ONLY CALIBRATION TYPE)

Display channels 1 & 3

CHANNELS (Ch 4)

Syntax: D13

Remarks: Restarts the sweep.

Front Panel Key: Channels Menu\DUAL CHANNELS 1&3

Related Commands: WFS, T13

D14 Display all four channels

CHANNELS (Ch 4)

Syntax: D14

Remarks: Restarts the sweep.

Front Panel Key: Channels Menu\ALL FOUR CHANNELS

Related Commands: WFS

D24 Select dual channel display with channels 2 &

CHANNELS (Ch 4)

4

Syntax: D24

Remarks: Restarts the sweep.

Front Panel Key: Channels Menu\DUAL CHANNELS 2&4

Related Commands: WFS, T24

DA1 Select a1 = Ra as denominator for parameter USER DEFINED PARAMETERS (Ch 9)

being defined

Syntax: DA1

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\PHASE LOCK (or USER

LABEL\DENOMINATOR a1)

Related Commands: DA2, DB1, DB2, DE1, DEN?

DA2 Select a2 = Rb as denominator for parameter USER DEFINED PARAMETERS (Ch 9)

being defined

Syntax: DA2

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\PHASE LOCK (or USER

LABEL\DENOMINATOR a2)

Related Commands: DA1, DB1, DB2, DE1, DEN?

DISPLAY (Ch 4)

Syntax: DAT

Front Panel Key: Trace Memory\VIEW DATA

Related Commands: DNM

DAT? Output trace memory display mode DISPLAY (Ch 4)

Syntax: DAT?

Data I/O: Output trace memory display mode using ASCII <NR1> format

(paragraph 10-3), as follows: "1" for Data "2" for Memory, "3" for Data & Memory, or "4" for Data With Memory Mathematically

Combined.

10-58 37XXXC PM

Front Panel Key: Trace Memory\VIEW DATA (Status)

Related Commands: MTH?

DATCOL Enter the color number for data

SYSTEM STATE (Ch 8)

Syntax: DATCOL

Val 1: DATCOL val1

Remarks: Color palette numbers are listed in Table 10-3 at the end of this

chapter.

Front Panel Key: Utility Menu\COLOR CONFIGURATION\DATA

Related Commands: ANNCOL, GRTCOL, LAYCOL, MKRCOL, MNUCOL, TRCCOL,

DATCOL?

DATCOL? Output the color number for data

SYSTEM STATE (Ch 8)

Syntax: DATCOL?

Data I/O: Outputs the color palette number in ASCII <NR1> format.

Front Panel Key: Utility Menu\COLOR CONFIGURATION\DATA (Color)

Related Commands: ANNCOL?, GRTCOL?, LAYCOL?, MKRCOL?, MNUCOL?,

TRCCOL?, DATCOL

DATE Enter the system date

SYSTEM STATE (Ch 8)

Syntax: DATE

Val 1: val1, val2 and val3 are in ASCII <NRF> format (paragraph

10-3)

Remarks: val1 is the month (1 - 12), val2 is the day (1 - 31) and val3 is the

year (0 - 99). Notice the comma separators. This modifies the

system date stored on the processor board.

Front Panel Key: Utility Menu\SET DATE/TIME\DAY/MONTH/YEAR

Related Commands: DATE?. TIME. TIME?

DATE? Output the system date

SYSTEM STATE (Ch 8)

Syntax: DATE?

Data I/O: The date is output using ASCII <NR1> format (paragraph 10-3).

It uses three numbers separated by commas. The first is the month (1 - 12), the second is the day (1 - 31), and the third is the

year (0 - 99).

Front Panel Key: Utility Menu\SET DATE/TIME\DAY/MONTH/YEAR

(Current)

Related Commands: DATE, TIME, TIME?

DB Suffix sets power data type DATA ENTRY SUFFIXES (Ch 4)

Syntax: DB

Related Commands: DBL, DBM

DB1 Select b1 = Ta as denominator for parameter USER DEFINED PARAMETERS (Ch 9)

being defined

Syntax: DB1

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\PHASE LOCK (or USER

LABEL\DENOMINATOR b1)

Related Commands: DA1, DA2, DB2, DE1, DEN?

DB2 Select b2 = Tb as denominator for parameter USER DEFINED PARAMETERS (Ch 9)

being defined

Syntax: DB2

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\PHASE LOCK (or USER

LABEL\DENOMINATOR db2)

Related Commands: DA1, DA2, DB1, DE1, DEN?

DBL Suffix sets power data type DATA ENTRY SUFFIXES (Ch 4)

Syntax: DBL

Related Commands: DB, DBM

DBM Suffix sets power data type DATA ENTRY SUFFIXES (Ch 4)

10-60 37XXXC PM

Syntax: DBM

Related Commands: DB, DBL

DBP Select distance bandpass mode for active

DIAGNOSTICS (Ch 8)

channel

Syntax: DBP

DC1 Display channel 1 and 2 operating parameters

SYSTEM STATE (Ch 8)

Syntax: DC1

Front Panel Key: Utility Menu\DISPLAY INSTRUMENT STATE

PARAMS\CHANNEL 1&2

DC3 Display channel 3 and 4 operating parameters

SYSTEM STATE (Ch 8)

Syntax: DC3

Front Panel Key: Utility Menu\DISPLAY INSTRUMENT STATE

PARAMS\CHANNEL 3&4

DCA Select automatic DC term calculation for

DIAGNOSTICS (Ch 8)

lowpass

Syntax: DCA

Front Panel Key: Domain\SET RANGE\MORTE\SET D.C. TERM\AUTO

EXTRAPOLATE

DCCTN Resume internal buffer data collection

INT. BUFFER DATA COLL. (Ch 7)

Syntax: DCCTN

Remarks: Used to commence data collection after a collection mode is set

or to resume data collection after being paused with DCHLD.

Related Commands: CCD, CFD, CRD, DCCTN?, DCHLD

DCCTN? Output internal buffer data collection

resume/suspend status

Syntax: DCCTN?

INT. BUFFER DATA COLL. (Ch 7)

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3), as

follows: "0" for Data Collection is Suspended, "1" for Data

Collection is Active.

Related Commands: DCCTN, DCHLD

DCHLD Suspend internal buffer data collection

INT. BUFFER DATA COLL. (Ch 7)

Syntax: DCHLD

Remarks: Internal buffer data collection will be temporarily suspended to

allow parameter changes to be performed.

Related Commands: DCCTN, DCCTN?

DCMRK Inserts the mark value into the internal buffer

INT. BUFFER DATA COLL. (Ch 7)

Syntax: DCMRK

Val 1: Mark value

Units: Optionally, any of the terminator mnemonics currently

supported

Remarks: The value of the number will be inserted as the real portion of

the number inserted in the buffer. The imaginary part of the number will be zero. This is to allow the user to mark a spot in

the buffer for synchronization and separation.

Data I/O: Enter as an ASCII <NRf> number (paragraph 10-3).

Status Reporting: Sets the Collection Buffer Full bit (CBF) in the Extended Event

Status Register when the collection buffer becomes full.

Related Commands: DCCTN, DCHLD

DCO Select open for DC term for lowpass

DIAGNOSTICS (Ch 8)

Syntax: DCO

Front Panel Key: Domain\SET RANGE\MORTE\SET D.C. TERM\OPEN

DCOFF Turn internal buffer data collection mode off

INT. BUFFER DATA COLL. (Ch 7)

Syntax: DCOFF

Remarks: The internal buffer and all data will be deleted

10-62 37XXXC PM

Related Commands: CCD, CFD, CRD, CXD?

DCP Display calibration parameters 1st page SYSTEM STATE (Ch 8)

Syntax: DCP

Front Panel Key: Utility Menu\DISPLAY INSTRUMENT STATE

PARAMS\CALIBRATION

DCP1 Display calibration parameters 1st page SYSTEM STATE (Ch 8)

Syntax: DCP1

DCP2 Display calibration parameters 2nd page SYSTEM STATE (Ch 8)

Syntax: DCP2

DCPCUR? Outputs the current point count in the collect INT. BUFFER DATA COLL. (Ch 7)

buffer

Syntax: DCPCUR?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3)

Related Commands: DCPMAX?, CRD, CCD, CFD, OCS

DCPMAX? Outputs the maximum number of points that INT. BUFFER DATA COLL. (Ch 7)

can be collected in the collect buffer

Syntax: DCPMAX?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3)

Related Commands: DCPCUR?, CRD, CCD, CFD, OCS

DCS Select short for DC term for lowpass TIME DOMAIN (Ch 9)

Syntax: DCS

Front Panel Key: Domain\SET RANGE\MORTE\SET D.C. TERM\SHORT

DCV Enter value for DC term for lowpass TIME DOMAIN (Ch 9)

Syntax: DCV

Val 1: -999.999 to 999.999 Units: XX1, XX3, XM3

Front Panel Key: Domain\SET RANGE\MORTE\SET D.C. TERM\OTHER

Related Commands: DCV

DCV? Output lowpass DC term value

TIME DOMAIN (Ch 9)

Syntax: DCV?

Data I/O: Outputs the value in ASCII <NR3> format.

Front Panel Key: Domain\SET RANGE\MORTE\SET D.C. TERM\OTHER

Related Commands: DCV

DCX? Output lowpass DC term selection

TIME DOMAIN (Ch 9)

Syntax: DCX?

Data I/O: Outputs lowpass DC term selection using ASCII <NR3> format,

as follows: "0" fcor Value, "1" for Auto, "2" for Line Impedence,

"3" for Open, or "4" for Short.

Front Panel Key: Domain\SET RANGE\MORTE\SET D.C.

TERM\REFLECTION COEFFICIENT

Related Commands: DCA, DCO, DCS, DCV, DCZ

DCZ Select line impedance for DC term for lowpass

TIME DOMAIN (Ch 9)

Syntax: DCZ

Front Panel Key: Domain\SET RANGE\MORTE\SET D.C. TERM\LINE

IMPEDANCE

DD0 Turn data drawing off

SYSTEM STATE (Ch 8)

Syntax: DD0

Front Panel Key: Utility Menu\DATA DRAWING OFF

DD1 Turn data drawing on

SYSTEM STATE (Ch 8)

10-64 37XXXC PM

Syntax: DD1

Front Panel Key: Utility Menu\DATA DRAWING ON

DD1? Output data drawing on/off status

SYSTEM STATE (Ch 8)

Syntax: DD1?

Data I/O: Outputs data drawing on/off status using ASCII <NR1> format

(paragraph 10-3), as follows: "0" for OFF or "1" for ON.

Front Panel Key: Utility Menu\DATA DRAWING

DDX? Output active channel domain parameter

TIME DOMAIN (Ch 9)

frequency distance or time

Syntax: DDX?

Data I/O: Outputs selection value in ASCII <NR3> format, as follows: "0"

for Frequency, "1" for Time, or "2" for Distance.

Related Commands: TDDIST, TDTIME, TDDIST?

DE1 Select unity as denominator for parameter

USER DEFINED PARAMETERS (Ch 9)

being defined

Syntax: DE1

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\PHASE LOCK (or USER

LABEL\DENOMINATOR UNITY)

Related Commands: DA1, DA2, DB1, DB2, DEN?

DEG Suffix sets phase data type

DATA ENTRY SUFFIXES (Ch 4)

Syntax: DEG

DEL Delete a file from disk

DISK FUNCTION (Ch 8)

Syntax: DEL

Val 1: Filename is the name of the file to be deleted, complete with the

extention. It may include a drive letter, path and wildcards.

Related Commands: COPY

DEN? Output denominator selection for parameter USER DEFINED PARAMETERS (Ch 9)

being defined

Syntax: DEN?

Data I/O: Outputs its value using ASCII <NR1> format (paragraph 10-3),

as follows: "1" for Unity, "2" for a1, "3" for a2, "4" for b1, or "5"

for b2.

Related Commands: DA1, DA2, DB1, DB2, DE1

DF2 Display 2.4mm female connector information SYSTEM STATE (Ch 8)

Syntax: DF2

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\2.4 mm (F)

DF3 Display GPC-3.5 female connector information SYSTEM STATE (Ch 8)

Syntax: DF3

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\GPC-3.5 (F)

DFC Select discrete frequency calibration data CALIBRATION (Ch 5)

points

Syntax: DFC

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\N-DISCRETE FREQUENCIES (2 TO 1601

POINTS)

Related Commands: CWC, TDC, NOC, IFV, Discrete frequency list commands in

MEASUREMENT group: DFQ, DFD, FRS, FRI, FRP, FIL,

FRC.DFD, FRS, FRI, FRP, FIL, FRC.

DFD Done specifying discrete frequency ranges CALIBRATION (Ch 5)

Syntax: DFD

Remarks: Requires at least two points to have been entered. See

MEASUREMENT/DISCRETE FREQUENCY LIST description.

10-66 37XXXC PM

DFK Display K female connector information

SYSTEM STATE (Ch 8)

Syntax: DFK

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\K-CONN (F)

DFN Display N female connector information

SYSTEM STATE (Ch 8)

Syntax: DFN

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\TYPE N (F)

DFN75 Display N Female 75-Ohm connector

SYSTEM STATE (Ch 8)

information

Syntax: DFN75

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\TYPE N (F) 75

DFP Display Front panel instrument state

SYSTEM STATE (Ch 8)

Syntax: DFP

Front Panel Key: Utility Menu\DISPLAY INSTRUMENT STATE

PARAMS\OPERATING

DFQ Enter single discrete frequency

CALIBRATION (Ch 5)

Syntax: DFQ

Val 1: Frequency

Units: HZ, KHZ, MHZ, GHZ

Remarks: The frequency must be within start sweep frequency and stop

sweep frequency.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\N-DISCRETE FREQUENCIES (2 TO 1601

POINTS)\INDIVIDUAL FREQ INSERT

DFS Display SMA female connector information

SYSTEM STATE (Ch 8)

Syntax: DFS

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\SMA (F)

DFSP Display Special Female connector information SYSTEM STATE (Ch 8)

Syntax: DFSP

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\SPECIAL (F)

DFT Display TNC female connector information SYSTEM STATE (Ch 8)

Syntax: DFT

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\TNC (F)

DFV Display V female connector information SYSTEM STATE (Ch 8)

Syntax: DFV

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\V-CONN (F)

DG7 Display GPC-7 Male connector information SYSTEM STATE (Ch 8)

Syntax: DG7

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\GPC-7

DGS Display GPIB status information SYSTEM STATE (Ch 8)

Syntax: DGS

Front Panel Key: Utility Menu\DISPLAY INSTRUMENT STATE

PARAMS\SYSTEM

DGT Display 1st CRT test pattern PERIPHERAL TESTS (Ch 8)

Syntax: DGT

Remarks: For service use only (same as DGT1).

10-68 37XXXC PM

DGT1 Display 1st CRT test pattern PERIPHERAL TESTS (Ch 8)

Syntax: DGT1

Remarks: For service use only.

DGT2 Display 2nd CRT test pattern PERIPHERAL TESTS (Ch 8)

Syntax: DGT2

Remarks: For service use only.

DGT3 Display 3rd CRT test pattern PERIPHERAL TESTS (Ch 8)

Syntax: DGT3

Remarks: For service use only.

DIA Select air as active dielectric DISPLAY (Ch 4)

Syntax: DIA

Remarks: Value is set to air dielectric value (1.000649). Value Impacts

time domain distance calculations and reference plane position

settings.

Front Panel Key: Ref Plane\SET DIELECTRIC\AIR

DIE Enter a dielectric value DISPLAY (Ch 4)

Syntax: DIE

Val 1: 1 to 999.999 Units: XX1, XX3, XM3

Remarks: Impacts time domain distance calculations and reference plane

position settings.

Front Panel Key: Ref Plane\SET DIELECTRIC\OTHER

DIM Select microporous teflon as active dielectric DISPLAY (Ch 4)

Syntax: DIM

Remarks: Value set to microporous teflon dielectric value (1.69). Value

impacts time domain distance calculations and reference plane $% \left(1\right) =\left(1\right) \left(1\right$

position settings.

Front Panel Key: Ref Plane\SET DIELECTRIC\MICROPOROUS TEFLON

DIP Select polyethylene as active dielectric

DISPLAY (Ch 4)

Syntax: DIP

Remarks: Value set to polyethylene dielectric value (2.26). Value impacts

time domain distance calculations and reference plane position

settings.

Front Panel Key: Ref Plane\SET DIELECTRIC\POLYETHYLENE

DIR Output a directory listing to the GPIB

DISK FUNCTION (Ch 8)

Syntax: DIR

Val 1: Path to the directory in question and a filename filter, if desired.

May contain a drive letter and wildcards.

Data I/O: Outputs data in an <Arbitrary Block> format (paragraph 10-3)

containing a heavily formatted ASCII listing similar to one

obtained from a DOS-based machine.

Front Panel Key: Utility Menu\GENERAL DISK UTILITIES\FLOPPY DISK

UTILITIES (or HARD DISK UTILITIES)\DISPLAY

DIRECTORY

Related Commands: ADRIVE, CDRIVE, CD, CWD?, FMT1

DIS Display active segmented limit

LIMITS (Ch 6)

Syntax: DIS

Remarks: Displays the active segmented limit. Requires SLA or SLL, as

appropriate.

DIS? Output active segmented limit on/off status

LIMITS (Ch 6)

Syntax: DIS?

Data I/O: Output active segmented limit on/off status using <NR1> format

(paragraph 10-3), as follows: "0" for OFF or "1" for ON.

10-70 37XXXC PM

DISKRD Output disk file data to the GPIB

DISK FUNCTION (Ch 8)

Syntax: DISKRD

Val 1: Filespec is a string containing the filename and optional drive

letter and path. If the file has an extention, it must be included

in the filespec string. Wildcards are not allowed.

Data I/O: Outputs an <Arbitrary Block> (paragraph 10-3) containing the

contents of the file.

Related Commands: DISKWR

DISKWR Write GPIB data to a disk file

DISK FUNCTION (Ch 8)

Syntax: DISKWR

Val 1: File extension, if desired.

Remarks: If the extention is desired on the filename, it must be included

as Val1.

Data I/O: Enter filename/file extension as an <Arbitrary Block>

(paragraph 10-3). Notice the comma separator.

Related Commands: DISKRD

DIT Select Teflon as active dielectric

DISPLAY (Ch 4)

Syntax: DIT

Remarks: Impacts time domain distance calculations and reference plane

position settings.

Front Panel Key: Ref Plane\SET DIELECTRIC\TEFLON

DIV Select division as trace math for active

DISPLAY (Ch 4)

channel

Syntax: DIV

Remarks: Selects division as trace math for the active channel.

Front Panel Key: Trace Memory\SELECT TRACE MATH\DIVIDE(/)

Related Commands: DNM, CH1-CH4

DIX? Output dielectric constant

DISPLAY (Ch 4)

Syntax: DIX?

Data I/O: Outputs an ASCII value in <NR3 > format (paragraph 10-3).

DLA Select group delay display for active channel

DISPLAY (Ch 4)

Syntax: DLA

Front Panel Key: Graph Type GROUP DELAY

Related Commands: CH1-CH4, IMG, ISC, ISE, ISM, IMG, LIN, MAG, MPH, PCP,

PCS, PCX?, PHA, PLG, PLR, POW, REL, RIM, SMC, SME, SMI,

SWR

DLP Select distance lowpass mode for active

DIAGNOSTICS (Ch 8)

channel

Syntax: DLP

DM2 Display 2.4mm male connector information

SYSTEM STATE (Ch 8)

Syntax: DM2

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\2.4 mm (M)

DM3 Display GPC-3.5 male connector information

SYSTEM STATE (Ch 8)

Syntax: DM3

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\GPC-3.5 (M)

DMK Display K male connector information

SYSTEM STATE (Ch 8)

Syntax: DMK

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\K-CONN (M)

DMN Display N male connector information

SYSTEM STATE (Ch 8)

Syntax: DMN

10-72 37XXXC PM

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\TYPE N (M)

DMN75 Display N Male 75-Ohm connector

SYSTEM STATE (Ch 8)

information

Syntax: DMN75

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\TYPE N (M) 75

DMS Display SMA male connector information

SYSTEM STATE (Ch 8)

Syntax: DMS

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\SMA (F)

DMSP Display Special Male connector information

SYSTEM STATE (Ch 8)

Syntax: DMSP

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\SPECIAL (M)

DMT Display TNC male connector information

SYSTEM STATE (Ch 8)

Syntax: DMT

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\TNC (M)

DMV Display V male connector information

SYSTEM STATE (Ch 8)

DISPLAY (Ch 4)

Syntax: DMV

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

COAXIAL INFORMATION\V-CONN (M)

DNM Display data normalized to trace memory on

active channel

Syntax: DNM

Remarks: Store data from selected channel to memory (STD command),

before using this command to view a trace with trace memory

active.

Front Panel Key: Trace Memory\VIEW DATA (X) MEMORY

Related Commands: DIV, MUL, ADD, MIN, CH1-CH4, STD, WFS

DPI Select distance phasor impulse mode for active

TIME DOMAIN (Ch 9)

channel

Syntax: DPI

Related Commands: CH1-CH4

DPN Enter pen number for data

HARD COPY (Ch 8)

Syntax: DPN
Val 1: 1 to 8
Units: XX1

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PEN COLORS\DATA

PEN

DPN? Output pen number for data

HARD COPY (Ch 8)

Syntax: DPN?

Data I/O: Outputs value in ASCII <NR1 > format (paragraph 10-3).

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PEN COLORS\DATA

PEN

Related Commands: DPN, GPN?, HPN?, MPN?, TPN?

DPR0 Visible data only OFD format

DATA TRANSFER (Ch 7)

Syntax: DPR0

Remarks: See DPR1 for details.

DPR1 Data pair always OFD format

DATA TRANSFER (Ch 7)

Syntax: DPR1

10-74 37XXXC PM

Remarks:

This is a data formatting command for the OFD/IFD and OM1-OM6 commands that allows for sending complex data pairs (i.e., mag/phase or real/ imaginary) while using single graph displays (i.e. log mag or real), as if the related dual graph type was selected.

The data element not currently measured on the single display will be zeroed out. For example: if the log mag graph type is selected for the active channel and "DPR1; OFD" is issued, the data will be sent out in the same format as if the log mag/phase graph type was active(dB, degrees).

The only difference is the phase value will be zeroed out (dB, 0). Similarly, if "DPR1;OFD" is issued while a phase display is selected for the active channel, the data will be output as if the log mag/phase display was selected, except that the magnitude value will be zeroed out (0, degrees). See Table 7-7 for data output format information for all display types.

This command is useful in developing a standard data transfer routine in your application program, but it will impact throughput speed (for single displays only).

Related Commands: DPR0, OFD, IFD, OM1-OM12

DPRX? Output data pair mode visible only or pair

MEASUREMENT DATA (Ch 7)

always

Syntax: DPRX?

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3), as

follows: "0: for Visible Only or "1" for Data Pair Always.

Related Commands: DPR0, DPR1

DR1 Select Marker 1 as Delta Reference Marker

MARKERS (Ch 6)

Syntax: DR1

Front Panel Key: Marker Menu\SELECT REF MARKER\MARKER 1 or S

Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\RATIO

DR2 Select Marker 2 as Delta Reference Marker

MARKERS (Ch 6)

Syntax: DR2

Front Panel Key: Marker Menu\SELECT REF MARKER\MARKER 2

DR3 Select Marker 3 as Delta Reference Marker MARKERS (Ch 6)

Syntax: DR3

Front Panel Key: Marker Menu\SELECT REF MARKER\MARKER 3

DR4 Select Marker 4 as Delta Reference Marker MARKERS (Ch 6)

Syntax: DR4

Front Panel Key: Marker Menu\SELECT REF MARKER\MARKER 4

DR5 Select Marker 5 as Delta Reference Marker MARKERS (Ch 6)

Syntax: DR5

Front Panel Key: Marker Menu\SELECT REF MARKER\MARKER 5

DR6 Select Marker 6 as Delta Reference Marker MARKERS (Ch 6)

Syntax: DR6

Front Panel Key: Marker Menu\SELECT REF MARKER\MARKER 6

DRF Turn delta reference mode on MARKERS (Ch 6)

Syntax: DRF

Front Panel Key: Marker Menu\SET MARKERS\ REF MODE ON

Related Commands: DR1-DR12

DRL Diagnostic read latch DIAGNOSTICS (Ch 8)

Syntax: DRL

Remarks: For service use only.

DRO Turn delta reference mode off MARKERS (Ch 6)

Syntax: DRO

10-76 37XXXC PM

Front Panel Key: Marker Menu\SET MARKERS\ REF MODE OFF

DRO? Output delta reference mode on/off status

MARKERS (Ch 6)

Syntax: DRO?

Data I/O: Outputs delta reference mode on/off status using ASCII <NR1 >

format (paragraph 10-3), as follows: "1" for ON or "0" for OFF.

Front Panel Key: Marker Menu\SET MARKERS\ REF MODE

DRX? Output delta reference marker number

MARKERS (Ch 6)

Syntax: DRX?

Data I/O: Output delta reference marker number using ASCII value in

<NR1> format (paragraph 10-3).

Front Panel Key: Marker Menu\SELECT REF MARKER

DSF0 Disable filter shape factor calculation

MARKERS (Ch 6)

Syntax: DSF0

Front Panel Key: Readout Marker\FILTER SETUP\READOUTS SHAPE

FACTOR OFF

Related Commands: DSF1, DSFX?

DSF1 Enable filter shape factor calculation

MARKERS (Ch 6)

Syntax: DSF1

Front Panel Key: Readout Marker\FILTER SETUP\READOUTS SHAPE

FACTOR ON

Related Commands: DSF0, DSFX?

DSFX? Output filter shape factor calculation

MARKERS (Ch 6)

enable/disable status

Syntax: DSFX?

Data I/O: Outputs its value using ASCII <NR1> format (paragraph 10-3),

as follows: "0" for OFF or "1" for ON.

Front Panel Key: Readout Marker\FILTER SETUP\READOUTS SHAPE

FACTOR

Related Commands: DSF0, DSF1

DSP Select single channel display CHANNELS (Ch 4)

Syntax: DSP

Front Panel Key: Channels Menu\SINGLE CHANNEL

Related Commands: CH1-CH4

DSP? Output channel display mode CHANNELS (Ch 4)

Syntax: DSP?

Data I/O: Outputs channel display mode using ASCII <NR1> format

(paragraph 10-3), as follows: "1" for Single, "13" for Dual 1&3, "24" for Dual 2&4, "4" for Quad, "130" for Dual Overaly 1&3,

"240" for Dual Overlay 2&4.

Front Panel Key: Channels Menu\SINGLE CHANNEL

Related Commands: CH1-CH4

DSPS21 Select Gain Compression bottom graph GAIN COMPRESSION (Ch 9)

displays S21

Syntax: DSPS21

Front Panel Key: Setup Menu\SWEPT POWER GAIN

COMPRESSION\MORE\S21 OPTIONS\DISPLAY S21

GAIN COMPRESSION (Ch 9)

Related Commands: DSP21?, NRMS21

DSPS21? Output Gain Compression bottom graph

selection Normalized/S2

Syntax: DSPS21?

Data I/O: Outputs its value using ASCII <NR1> format (paragraph 10-3),

as follows:. "0" for sweep, "1" for CW. See the command's

function group.

10-78 37XXXC PM

Front Panel Key: Setup Menu\SWEPT FREQUENCY GAIN

COMPRESSION\NORMALIZE S21\NORMALIZE S21 or

Setup Menu\SWEPT POWER GAIN

COMPRESSION\MORE\S21 OPTIONS\NORMALIZE S21

(or DISPLAY S21)

Related Commands: DSP21, NRMS21

DSQ0 Disable filter Q calculation

MARKERS (Ch 6)

Syntax: DSQ0

Front Panel Key: Readout Marker\FILTER SETUP\READOUTS Q OFF

Related Commands: DSQ1, DSQX?

DSQ1 Enable filter Q calculation

MARKERS (Ch 6)

Syntax: DSQ1

Front Panel Key: Readout Marker\FILTER SETUP\READOUTS Q ON

Related Commands: DSQ0, DSQX?

DSQX? Output filter Q calculation enable/disable

status

MARKERS (Ch 6)

Syntax: DSQX?

Data I/O: Outputs filter Q calculation enable/disable status using ASCII

<NR1> format (paragraph 10-3), as follows: "0" for OFF or "1"

for ON.

Front Panel Key: Readout Marker\FILTER SETUP\READOUTS Q

Related Commands: DSQ0, DSQ1

DTM Display measurement data and trace memory

DISPLAY (Ch 4)

on active channel

Syntax: DTM

Remarks: Store data from selected channel to memory (STD command),

before using this command to view a trace with trace memory

active.

Front Panel Key: Trace Memory\VIEW DATA AND MEMORY

Related Commands: STD

DVM Enter DVM channel number DIAGNOSTICS (Ch 8)

Syntax: DVM Val 1: 0-128

Remarks: For service use only.

DWG Display waveguide parameters SYSTEM STATE (Ch 8)

Syntax: DWG

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\DISPLAY

WAVEGUIDE INFORMATION

Diagnostic write latch

Diagnostic write latch

Syntax: DWL

Remarks: For service use only.

E12 Set Millimeter Wave band to E band (WR-12) MILLIMETER WAVE (Ch 9)

Syntax: E12

E12E Set Millimeter Wave band to E band (WR-12) MILLIMETER WAVE (Ch 9)

Syntax: E12E

EANAIN Measure External Analog In on active channel MEASUREMENT (Ch 4)

Syntax: EANAIN

Remarks: This code displays the voltage at the external input BNC on the

rear panel on the active channel. To display properly, the user

should select the Real Display format

Related Commands: S11, S21, S12, S22

10-80 37XXXC PM

ECW Select CW operation for component being MULTIPLE SOURCE CONTROL (Ch 9)

edited

Syntax: ECW

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE DEFINE\EQUATION SUMMARY C.W. ON

ED1 Edit source 1 equation MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: ED1

Remarks: See Chapter 10, paragraph 10-3.

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE DEFINE\EQUATION TO EDIT SOURCE 1

ED2 Edit source 2 equation MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: ED2

Remarks: See Chapter 10, paragraph 10-3.

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE DEFINE\EQUATION TO EDIT SOURCE 2

EDG End diagnostics mode DIAGNOSTICS (Ch 8)

Syntax: EDG

Remarks: For service use only.

EDR Edit receiver equation MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: EDR

Remarks: See Chapter 10, paragraph 10-3.

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE DEFINE\EQUATION TO EDIT RECEIVER

Enter divisor value for equation being edited MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: EDV

Val 1: 099 to 0, 1 to 199 Units: XX1, XX3, XM3

Remarks: See Chapter 10, paragraph 10-3.

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE DEFINE\EQUATION SUMMARY DIVISOR

EDV? Output divisor value for equation being edited MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: EDV?

Data I/O: Outputs its value using ASCII <NR3 > format (paragraph 10-3).

See Chapter 10, paragraph 10-3.

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE DEFINE\EQUATION SUMMARY DIVISOR

EKT Select external keyboard testing PERIPHERAL TESTS (Ch 8)

Syntax: EKT

Remarks: For service use only.

Enter multiplier value for equation being MULTIPLE SOURCE CONTROL (Ch 9)

edited

Syntax: EML

Val 1: 099 to 0, 1 to 199 Units: XX1, XX3, XM3

Remarks: See Chapter 10, paragraph 10-3.

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE DEFINE\EQUATION SUMMARY MULTIPLIER

EML? Output multiplier value for equation being MULTIPLE SOURCE CONTROL (Ch 9)

edited

Syntax: EML?

10-82 37XXXC PM

Data I/O: Outputs its value using ASCII <NR3 > format (paragraph 10-3).

See Chapter 10, paragraph 10-3.

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE DEFINE\EQUATION SUMMARY MULTIPLIER

EOS Enter offset frequency for equation being

MULTIPLE SOURCE CONTROL (Ch 9)

edited

Syntax: EOS

Val 1: -999.9999 GHz to 999.9999 GHz

Units: HZ, KHZ, MHZ, GHZ

Remarks: See Chapter 10, paragraph 10-3.

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE

DEFINE\OFFSET FREQUENCY

EOS? Output offset frequency for equation being

MULTIPLE SOURCE CONTROL (Ch 9)

edited

Syntax: EOS?

Data I/O: Outputs its value using ASCII <NR3 > format (paragraph 10-3).

See Chapter 10, paragraph 10-3.

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE

DEFINE\OFFSET FREQUENCY

ESW Select sweep operation for component being

MULTIPLE SOURCE CONTROL (Ch 9)

edited

Syntax: ESW

Remarks: See Chapter 10, paragraph 10-3.

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE DEFINE\EQUATION SUMMARY SWEEP ON

EX1RF0 Turn external source 1 rf off

MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: EX1RF0

Related Commands: EX1RF1, EX2RF0, EX2RF1

EX1RF1 Turn external source 1 rf on MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: EX1RF1

Related Commands: EX1RF0, EX2RF0, EX2RF1

EX2RF0 Turn external source 2 rf off MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: EX2RF0

Related Commands: EX1RF0, EX1RF1, EX2RF1

EX2RF1 Turn external source 2 rf on MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: EX2RF1

Related Commands: EX1RF0, EX1RF1, EX2RF0

EXD Display external A/D input DIAGNOSTICS (Ch 8)

Syntax: EXD

Remarks: For service use only.

EXISTD? Output directory existence information DISK FUNCTION (Ch 8)

Syntax: EXISTD?

Val 1: Pathspec is the path to the directory in question. It may contain

a drive letter.

Data I/O: Outputs directory existence information using ASCII <NR1>

format (paragraph 10-3), as follows: "0" for directory does not

exist, "1" for directory exists.

Related Commands: EXISTF?

EXISTF? Output file existence information DISK FUNCTION (Ch 8)

Syntax: EXISTF?

Val 1: Filespec is a string containing the filename to check. It may

contain a drive letter and path.

10-84 37XXXC PM

Data I/O: Outputs file existence information using ASCII <NR1> format

(paragraph 10-3), as follows: "0" for file does not exist, "1" for

file exists.

Related Commands: EXISTD?

EXW? Output multiple source sweep flag for

MULTIPLE SOURCE CONTROL (Ch 9)

equation being edited

Syntax: EXW?

Data I/O: Outputs its value using ASCII <NR1> format (paragraph 10-3),

as follows:. "0" for sweep, "1" for CW. See the command's

function group.

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE

DEFINE\EQUATION SUMMARY

F08 Set Millimeter Wave Band to F Band (WR-8)

MILLIMETER WAVE (Ch 9)

Syntax: F08

Related Commands: E12,E12E,Q22,V15,W10,W10E

FCW0 Turn fast CW measurement mode off

FAST CW (Ch 7)

Syntax: FCW0

Remarks: The instrument will return to the normal measurement and

display mode.

Related Commands: FCW1, FCWX?

FCW1 Turn fast CW measurement mode on

FAST CW (Ch 7)

Syntax: FCW1

Remarks: The instrument display is not updated. Raw data from the active

channel is made available to the GPIB bus or collected in an

internal buffer.

Data I/O: If internal buffer data collection is not active, the raw data

measurement is output as an <Arbitrary Block> (paragraph 10-3). The format is always FMC. The most current data

measurement is returned.

Block Size: The data consists of a pair of 4-byte floating point numbers (real

and imaginary) for a total of 8 bytes.

Related Commands: FCW0, FCWX?, TEX, TIB

FCW2 Turn Fast CW mode 2 on

FAST CW (Ch 7)

Syntax: FCW2

Remarks: The instrument display is not updated. Raw data from the

measurement task is made available to the GPIB bus or

collected in an internal buffer.

Data I/O: If internal buffer data collection is not active, the raw data

measurement is output as an <Arbitrary Block>.

Block Size: The data consists of 3 complex measurements. Each

measurement consists of a pair of 4-byte floating point numbers

(real and imaginary). This gives a total of 24 bytes.

Related Commands: FCW0, FCW1, FCWX?, TEX, TIB

FCWX? Output fast CW measurement mode on/off status

FAST CW (Ch 7)

status

Syntax: FCWX?

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3), as

follows: "0" for OFF, "1" for ON.

Related Commands: FCW0, FCW1

FDE0 Disable Output Data End Message

DATA TRANSFER (Ch 7)

Syntax: FDE0

Related Commands: FDE1, FDEX?

FDE1 Enable Output Data End Message

DATA TRANSFER (Ch 7)

Syntax: FDE1

Related Commands: FDE0, FDEX?

10-86 37XXXC PM

FDEX? Output Output Data End Message

DATA TRANSFER (Ch 7)

enable/disable status

Syntax: FDEX?

Data I/O: Outputs value in ASCII <NR1 > format (paragraph 10-3).

Related Commands: FDE0, FDE1

FDH0 Select variable length arbitrary block headers

TRANSMISSION METHODS (Ch 7)

Syntax: FDH0

Remarks: This is the default mode.

Related Commands: FDH1, FDH2, FDHX?

FDH1 Select fixed length arbitrary block headers

TRANSMISSION METHODS (Ch 7)

Syntax: FDH1

Remarks: The block size portion of the arbitrary block header will be

padded with leading zeros as necessary to cause the overall length to be 11. For example, the fixed length header shown below would precede a data block containings 123 bytes:

#900000123

Related Commands: FDH0, FDH2, FDHX?

FDH2 Select zero length arbitrary block headers

TRANSMISSION METHODS (Ch 7)

Syntax: FDH2

Remarks: Reverts to the FDH1 mode after completion of the current

program message.

Related Commands: FDH0, FDH1, FDHX?

FDHX? Output arbitrary block header length selection

TRANSMISSION METHODS (Ch 7)

Syntax: FDHX?

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3), as

follows: "0" for variable length arbitrary block headers, "1" for fixed length arbitrary block headers, "2" for no arbitrary block

headers.

TIME DOMAIN (Ch 9)

MEASUREMENT (Ch 4)

Related Commands: FDH0, FDH1, FDH2

FFD Send form feed to printer and stop print/plot HARD COPY (Ch 8)

Syntax: FFD

FGT Select frequency with time gate for active

channel

Syntax: FGT

Remarks: Selects frequency with time gate mode for active channel.

Front Panel Key: Domain\FREQUENCY WITH TIME\GATE

Related Commands: CH1-CH4, OPC

FHI Set data points to 1601

Syntax: FHI

Front Panel Key: Data Points \1601 POINTS MAX

Related Commands: WFS, OPC, NP1601, FME, FLO

FIL Fill defined discrete frequency range MEASUREMENT (Ch 4)

Syntax: FIL

Remarks: See the command's function group.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\N-DISCRETE FREQUENCIES (2 TO 1601

POINTS)\FILL RANGE

FLC Source frequency linearity internal calibration DIAGNOSTICS (Ch 8)

Syntax: FLC

Remarks: For service use only.

FLO Set data points to 101 MEASUREMENT (Ch 4)

Syntax: FLO

10-88 37XXXC PM

Front Panel Key: Data Points \101 POINTS MAX

Related Commands: WFS, OPC, NP101, FME, FHI

FLTBW? Output filter bandwidth

MARKERS (Ch 6)

Syntax: FLTBW?

Data I/O: Outputs a value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Readout Marker\BANDWIDTH

Related Commands: BWL3, BWLS,

FLTC? Output filter center frequency

MARKERS (Ch 6)

Syntax: FLTC?

Data I/O: Outputs a value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Readout Marker\CENTER FREQ

Related Commands: BWL3, BWLS

FLTL? Output filter loss at reference value

MARKERS (Ch 6)

Syntax: FLTL?

Data I/O: Outputs a value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Readout Marker\LOSS AT REF

Related Commands: MSR0, MSRD, MSRM

FLTQ? Output filter Q

MARKERS (Ch 6)

Syntax: FLTQ?

Data I/O: Outputs a value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Readout Marker\Q

Related Commands: DSQ0, DSQ1

FLTS? Output filter shape factor

MARKERS (Ch 6)

Syntax: FLTS?

Data I/O: Outputs a value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Readout Marker\SHAPE FACTOR

Related Commands: DSF0, DSF1

FMA Select ASCII data transfer format

DATA TRANSFER (Ch 7)

Syntax: FMA

Remarks: Selects ASCII <NR3> as appropriate for succeeding data transfer

commands. The ASCII format will stay in effect until either the FMB or FMC (binary format) commands are issued. This command will have no effect on data transfer commands that cannot be output in ASCII format. See the specific command's

description to determine formats supported.

Related Commands: FMB, FMC

FMB Select IEEE754 64 bit data transfer format

DATA TRANSFER (Ch 7)

Syntax: FMB

Remarks: Selects IEEE-754 64-bit (double precision, 8 bytes) binary data

transfer format for succeeding data transfer commands. The 64-bit format will stay in effect until either the FMA (ASCII) or

FMC (32-bit binary) commands are issued.

This command will have no effect on data transfer commands that cannot be output in 64-bit format. See the specific command's description to determine formats supported.

Related Commands: FMA, FMC, LSB, MSB

FMC Select IEEE754 32 bit data transfer format

DATA TRANSFER (Ch 7)

Syntax: FMC

Remarks: Selects IEEE-754 32-bit (single precision, 4 bytes) binary data

transfer format for succeeding data transfer commands. The 32-bit format will stay in effect until either the FMA (ASCII) or

FMB (64-bit binary) commands are issued.

This command will have no effect on data transfer commands

10-90 37XXXC PM

that cannot be output in 32-bit format. See the specific command's description to determine formats supported.

Related Commands: FMA, FMB, LSB, MSB

FME Set data points to 401

MEASUREMENT (Ch 4)

Syntax: FME

Front Panel Key: Data Points \401 POINTS MAX

Related Commands: WFS, OPC, NP401, FHI, FLO

FMKR Select filter parameters marker mode

MARKERS (Ch 6)

Syntax: FMKR

Related Commands: AMKR, NMKR, SMKR, XMKR?

FMT0 Select normal ascii data element delimiting

TRANSMISSION METHODS (Ch 7)

Syntax: FMT0

Remarks: When data values are output with the FMA mode, each value is

separated with a comma. This is also true for listing type outputs such as for the service log or disk directory. This is the

default mode.

Related Commands: FMT1, FMTX?, FMA

FMT1 Select enhanced ascii data element delimiting

TRANSMISSION METHODS (Ch 7)

Syntax: FMT1

Remarks: When data values are output with the FMA mode, each data

pair is separated with a line feed. Each element within the pair is separated with a comma. If there is no data pair, each element is separated with a line feed. Each line in the service log listing or the disk directory listing is separated with a line feed.

Related Commands: FMT0, FMTX?, FMA

FMTX? Output ascii data element delimiting mode

TRANSMISSION METHODS (Ch 7)

Syntax: FMTX?

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3), as

follows: "0" for normal delimiting, "1" for enhanced delimiting.

Related Commands: FMT0, FMT1, FMA

FMX? Output data output mode FMA FMB or FMC

DATA TRANSFER (Ch 7)

Syntax: FMX?

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3), as

follows: "0" for FMA, "1" for FMB, "2" for FMC.

Related Commands: FMA, FMB, FMC

FOF Blank frequency information

SYSTEM STATE (Ch 8)

Syntax: FOF

Remarks: Blanks any frequency information from the screen and any hard

copy output. This command is useful for security reasons since the instrument cannot display frequency data again without the

FON command being issued or a reset is invoked.

Front Panel Key: Utility Menu\BLANK FREQUENCY INFORMATION

Related Commands: FON

FON Display frequency information

SYSTEM STATE (Ch 8)

Syntax: FON

Remarks: See FOF for more information.

Front Panel Key: Utility Menu\BLANK FREQUENCY INFORMATION

Related Commands: FOF

FOX? Output frequency information on/off status

SYSTEM STATE (Ch 8)

Syntax: FOX?

Data I/O: Outputs its value in ASCII <NR1 > format (paragraph 10-3), as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Utility Menu\BLANK FREQUENCY INFORMATION

10-92 37XXXC PM

FP0 Turn flat power correction off MEASUREMENT (Ch 4)

Syntax: FP0

FP1 Turn flat power correction on MEASUREMENT (Ch 4)

Syntax: FP1

FPT Select front panel keypad testing PERIPHERAL TESTS (Ch 8)

Syntax: FPT

Remarks: For service use only.

FPX? Output flat power correction on/off status

DIAGNOSTICS (Ch 8)

Syntax: FPX?

Remarks: For service use only.

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3), as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Appl\SWEPT FREQUENCY GAIN

COMPRESSION\FLATNESS CORRECTION

FQD Select frequency domain for active channel TIME DOMAIN (Ch 9)

Syntax: FQD

Related Commands: WFS, OPC

FRC Clear all defined discrete frequency ranges MEASUREMENT (Ch 4)

Syntax: FRC

Remarks: See command's function group.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\N-DISCRETE FREQUENCIES (2 TO 1601

POINTS)\CLEAR ALL

FRI Enter Discrete Fill increment frequency MEASUREMENT (Ch 4)

Syntax: FRI

Val 1: Frequency

Units: HZ, KHZ, MHZ, GHZ

Remarks: Val1 must be within 37XXX start- and stop-sweep frequencies.

See the command's function group.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\N-DISCRETE FREQUENCIES (2 TO 1601

POINTS)\INCREMENT

FRP Enter Discrete Fill number of points

MEASUREMENT (Ch 4)

Syntax: FRF

Val 1: 1 to current number of points, 1601 max

Units: XX1, XX3, XM3

Remarks: See command's function group.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\N-DISCRETE FREQUENCIES (2 TO 1601

POINTS)\NUMBER OF PTS

FRS Enter Discrete Fill start frequency

MEASUREMENT (Ch 4)

Syntax: FRS

Val 1: Frequency

Units: HZ, KHZ, MHZ, GHZ

Remarks: Val1 must be within 37XXX start- and stop-sweep frequencies.

See the command's function group.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\N-DISCRETE FREQUENCIES (2 TO 1601

POINTS)\START FREQ

GCMP Enter gain compression point search value

GAIN COMPRESSION (Ch 9)

Syntax: GCMP
Val 1: Number
Units: DB

Remarks: To search for the 1 dB gain compression point, enter a search

value of 1 dB.

10-94 37XXXC PM

Data I/O: Enter the search value in ASCII <NRF> format (paragraph

10-3).

Front Panel Key: Appl\SWEPT FREQUENCY GAIN COMPRESSION\GAIN

COMPRESSION POINT

Related Commands: SPGCA, GCMP?

GCMP? Output gain compression point search value

GAIN COMPRESSION (Ch 9)

Syntax: GCMP?

Data I/O: Outputs a value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Appl\SWEPT FREQUENCY GAIN COMPRESSION\GAIN

COMPRESSION POINT

Related Commands: SPGCA, GCMP

GCT Enter gate center value distance or time

TIME DOMAIN (Ch 9)

Syntax: GCT

Val 1: -999.999 to 999.999 ms,

Units: time = S, MS, USC, PS, PSC, NS, NSC; distance = M, MTR,

MM, MMT, CM, CMT

Remarks: The val1 limits listed above are for time only. To derive distance

limits, use the equation:

distance=time limit x 299792458 x10 /SQROOT of dielectric constant

Use the query command DIX? to output the value. If the time domain parameter is time, val1 is assumed to be a time value. If the time domain parameter is distance, val1 is assumed to be

a distance value.

Use the query command TDDIST? to get the time domain

parameter.

Front Panel Key: Domain\SET RANGE\CENTER

Related Commands: DIA, DIT, DIM, DIP, DIE, DIX?, TDDIST?

GCT? Output gate center value

TIME DOMAIN (Ch 9)

Syntax: GCT?

Data I/O: Outputs value in ASCII <NR3> format.

Front Panel Key: Domain\SET RANGE\CENTER

Related Commands: GCT

GDS Gate symbols displayed on active channel TIME DOMAIN (Ch 9)

Syntax: GDS

Front Panel Key: Domain\GATE DISPLAY

GHZ Suffix sets frequency data type and scales by DATA ENTRY SUFFIXES (Ch 4)

1E9

Syntax: GHZ

GLS Select low sidelobe gate shape TIME DOMAIN (Ch 9)

Syntax: GLS

GMS Select minimum sidelobe gate shape TIME DOMAIN (Ch 9)

Syntax: GMS

GNM Select nominal gate shape TIME DOMAIN (Ch 9)

Syntax: GNM

Front Panel Key: Domain\SET GATE\GATE SHAPE\NOMINAL

GOF Turn off gating on active channel TIME DOMAIN (Ch 9)

Syntax: GOF

Front Panel Key: Domain\GATE OFF

Related Commands: GOF?

GOF? Output gating mode on active channel TIME DOMAIN (Ch 9)

Syntax: GOF?

10-96 37XXXC PM

Data I/O: Outputs its value using ASCII <NR1> format, as follows: "0" for

OFF, "1" for ON, "2" for display gate symbols.

Front Panel Key: Domain\GATE

Related Commands: GOF

GON Turn on gating on active channel

TIME DOMAIN (Ch 9)

Syntax: GON

Front Panel Key: Domain\GATE ON

GPN Enter pen number for graticule

HARD COPY (Ch 8)

Syntax: GPN
Val 1: 1 to 8
Units: XX1

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PEN

COLORS\GRATICULE PEN

GPN? Output pen number for graticule

HARD COPY (Ch 8)

Syntax: GPN?

Data I/O: Outputs value in ASCII <NR1 > format (paragraph 10-3).

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PEN

COLORS\GRATICULE PEN

Related Commands: GPN, DPN?, HPN?, MPN?, TPN?

GRF? Output graph type for active channel

DISPLAY (Ch 4)

Syntax: GRF?

Data I/O: Outputs its value using ASCII <NR1> format (paragraph 10-3),

as follows: "1" for log mag, "2" for phase, "3" for log mag & phase, "4" for Smith-impedance, "5" for SWR, 6 for group delay, "7" for Smith-admittance, "8" for lin polar, "9" for log polar, "0" for lin mag, "11" for lin mag & phase, "12" for real, "13" for imaginary,

"14" for real & imaginary, "15" for power out.

GRT Select Rectangular gate shape

TIME DOMAIN (Ch 9)

Syntax: GRT

Front Panel Key: Domain\SET GATE\GATE SHAPE\MINIMUM

GRTCOL Enter the color number for the graticule

SYSTEM STATE (Ch 8)

Syntax: GRTCOL Val 1: 0 - 47

Remarks: Color palette numbers are listed in Table 10-3 at the end of this

chapter.

Front Panel Key: Utility Menu\COLOR CONFIGURATION\GRATICULE

Related Commands: ANNCOL, GRTCOL, LAYCOL, MKRCOL, MNUCOL, TRCCOL,

GRTCOL?

GRTCOL? Output the color number for the graticule

SYSTEM STATE (Ch 8)

Syntax: GRTCOL?

Data I/O: Outputs the color palette numbers in ASCII <NR1> format.

Front Panel Key: Utility Menu\COLOR CONFIGURATION\GRATICULE

(Color)

Related Commands: ANNCOL?, GRTCOL?, LAYCOL?, MKRCOL?, MNUCOL?,

TRCCOL?. GRTCOL

GSN Enter gate span value distance or time

TIME DOMAIN (Ch 9)

Syntax: GSN

Val 1: 0.0000 to 999.999 ms

Units: time = S, MS, USC, PS, PSC, NS, NSC; distance = M, MTR,

MM, MMT, CM, CMT

Remarks: The val1 limits listed above are for time only. To derive distance

limits, use the equation:

distance=time limit x 299792458 x10 /SQROOT of dielectric constant

Use the query command DIX? to output the value for dielectric constant. If the time domain parameter is time, val1 is assumed to be a time value. If the time domain parameter is distance,

val1 is assumed to be a distance value.

10-98 37XXXC PM

Use the query command TDDIST? to get the time domain

parameter.

Front Panel Key: Domain\SET RANGE\SPAN

Related Commands: DIA, DIT, DIM, DIP, DIE, DIX?, TDDIST?

GSN? Output gate span value

TIME DOMAIN (Ch 9)

Syntax: GSN?

Data I/O: Outputs its value using ASCII <NR3> format.

Front Panel Key: Domain\SET RANGE\SPAN

Related Commands: GSN

GSP Enter gate stop value distance or time

TIME DOMAIN (Ch 9)

Syntax: GSP

Val 1: -99.9999 to +999.9999 ms Units: S, MS, USC, PS, PSC, NS, NSC

Remarks: The val1 limits listed above are for time only. To derive distance

limits, use the equation:

distance=time limit x 299792458 x10 /SQROOT of dielectric constant

Use the query command DIX? to output the value for dielectric constant. If the time domain parameter is time, val1 is assumed to be a time value. If the time domain parameter is distance,

val1 is assumed to be a distance value.

Use the query command TDDIST? to get the time domain

parameter.

Front Panel Key: Domain\SET RANGE\STOP

Related Commands: DIA, DIT, DIM, DIP, DIE, DIX?, TDDIST?, GSP?

GSP? Output gate stop value

TIME DOMAIN (Ch 9)

Syntax: GSP?

Data I/O: Outputs value using ASCII <NR3> format.

Front Panel Key: Domain\SET RANGE\STOP

Related Commands: GSP

GST Enter gate start value distance or time

TIME DOMAIN (Ch 9)

Syntax: GST

Val 1: -99.9999 to +999.9999 ms Units: S, MS, USC, PS, PSC, NS, NSC

Remarks: The val1 limits listed above are for time only. To derive distance

limits, use the equation:

distance=time limit x 299792458 x10 /SQROOT of dielectric constant

Use the query command DIX? to output the value for dielectric constant. If the time domain parameter is time, val1 is assumed to be a time value. If the time domain parameter is distance,

val1 is assumed to be a distance value.

Use the query command TDDIST? to get the time domain

parameter.

Front Panel Key: Domain\SET RANGE\START

Related Commands: DIA, DIT, DIM, DIP, DIE, DIX?, TDDIST?

GST? Output gate start value

TIME DOMAIN (Ch 9)

Syntax: GST?

Data I/O: Outputs value using ASCII <NR3> format.

Front Panel Key: Domain\SET RANGE\START

Related Commands: GST

GSX? Output gate shape

TIME DOMAIN (Ch 9)

Syntax: GSX?

Data I/O: Outputs its value using ASCII <NR1> format, as follows: "1" for

rectangular, "2" for nominal, "3" for low sidelobe, "4" for

minimum sidelobe.

Related Commands: GLS, GMS, GNM, GRT, GSX?

HC0 Disable internal IF calibration

MEASUREMENT (Ch 4)

10-100 37XXXC PM

Syntax: HC0

Remarks: Prevents VNA from periodically and automatically performing

the internal calibration, to allow for synchronization between the 37XXX and a physical activity such as antenna rotation. Turn on IF Cal as soon as measurement is complete to retain

maximum measurement accuracy.

Front Panel Key: Options Menu\TRIGGERS\AUTOMATIC I.F. CAL OFF

Related Commands: HC1, HCX?, HCT

HC1 Enable internal IF calibration and trigger an

MEASUREMENT (Ch 4)

IF calibration

Syntax: HC1

Front Panel Key: Options Menu\TRIGGERS\AUTOMATIC I.F. CAL ON

Related Commands: HC0, HCX?, HCT

HCT Trigger an IF calibration

MEASUREMENT (Ch 4)

Syntax: HCT

Front Panel Key: Options Menu\TRIGGERS\TRIGGERS I.F. CAL

Related Commands: HC0, HC1

HCX? Output internal IF calibration enable/disable

MEASUREMENT (Ch 4)

status

Syntax: HCX?

Data I/O: Outputs its value using ASCII <NR1> format (paragraph 10-3),

as follows: "0" for disabled or "1" for enabled.

Front Panel Key: Options Menu\TRIGGERS\AUTOMATIC I.F. CAL

HD0 Turn off tabular data headers and page

HARD COPY (Ch 8)

formatting

Syntax: HD0

Remarks: Turns off the tabular data headers and page formatting from

tabular data printing or disk saves.

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\HEADER AND PAGE BREAKS OFF

Related Commands: HD1

HD1 Turn on tabular data headers and page

HARD COPY (Ch 8)

formatting

Syntax: HD1

Remarks: Turns on the tabular data headers and page formatting from

tabular data printing or disk saves.

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\HEADER AND PAGE BREAKS ON

Related Commands: HD0

HID Hide active segmented limit

LIMITS (Ch 6)

Syntax: HID

Related Commands: DIS, CH1-CH4

HISTO Turns off GPIB history writing to disk

HARD COPY (Ch 8)

Syntax: HISTO

Remarks: GPIB history is saved in files c:\hist\hist??.dat and consists of

all commands received and data output

Related Commands: HIST1, HISTX?

HIST1 Turns on GPIB history writing to disk

HARD COPY (Ch 8)

HARD COPY (Ch 8)

Syntax: HIST1

Remarks: GPIB history is saved in files c:\hist\hist??.dat and concists of a

record of all commands received and data output

Related Commands: HIST0, HISTX?

HISTX? Outputs the history writes to hard disk

enable/disable status

Syntax: HISTX?

10-102 37XXXC PM

Data I/O: Outputs status using ASCII <NR1> format (paragraph 10-3) as

follows: 0 means writing is disabled, 1 means writing is enabled.

Related Commands: HIST0, HIST1

HLD Put sweep into hold mode

MEASUREMENT (Ch 4)

Syntax: HLD

Front Panel Key: Setup Menu\HOLD BUTTON FUNCTION\HOLD (or

SINGLE SWEEP AND HOLD)

Related Commands: CTN, BH0, BH1, RH0, RH1

HLD? Output the sweep hold status

MEASUREMENT (Ch 4)

Syntax: HLD?

Data I/O: Outputs its value using ASCII <NR1> format, as follows: "0" for

not in hold or "1" for in hold.

Front Panel Key: Setup Menu\HOLD BUTTON

FUNCTION\HOLD/CONTINUE (Status)

Related Commands: HLD, CTN

HPN Enter pen number for header

HARD COPY (Ch 8)

Syntax: HPN
Val 1: 1 to 8
Units: XX1

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PEN COLORS\HEADER

PEN

HPN? Output pen number for header

HARD COPY (Ch 8)

Syntax: HPN?

Data I/O: Outputs value in ASCII <NR1 > format (paragraph 10-3).

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PEN

COLORS\HEADERS PEN

Related Commands: HPN, DPN?, GPN?, MPN?, TPN?

HZ Suffix sets frequency data type

DATA ENTRY SUFFIXES (Ch 4)

Syntax: HZ

IACCHAR Input AutoCal characterization data from the

AUTOCAL (Ch 5)

GPIB

Syntax: IACCHAR

Val 1: Characterization data in binary format

Data I/O: Inputs an <Arbitrary Block> (paragraph 10-3).

Related Commands: OACCHAR

IARF Enter adapter removal files from GPIB and

ADAPTER REMOVAL (Ch 9)

calibrate

Syntax: IARF

Remarks: val1 is the XX front panel and cal file data and val2 is the YY

front panel and cal file data. See the Adapter Removal

application for details.

Data I/O: Each of the blocks, val1 and val2 is in <Arbitrary Block> format

(paragraph 10-3). Notice the comma separator.

Related Commands: OCD, DISKWR, LDARF

IC1 Enter calibration coefficient 1

DATA TRANSFER (Ch 7)

Syntax: IC

Val 1: <Arbitrary Block>

Remarks: Allows entry of the user defined error correction coefficient

selected (1 - 24), see Table 10-1 at the end of this chapter. Prior

to entering error terms, set the desired calibration type

simulation with the matching Axx series calibration command (see Calibration Group). After inputting the error coefficients,

turn on error correction with the CON command.

Data I/O: Inputs a floating point array whose size is equal to twice the

number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an <Arbitrary

Block> (paragraph 10-3).

Related Commands: IFMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS,

CH1. CH4

10-104 37XXXC PM

IC10 Enter calibration coefficient 10

DATA TRANSFER (Ch 7)

Syntax: IC10

Val 1: <Arbitrary Block>

Remarks: Allows entry of the user defined error correction coefficient

selected (1 - 24), see Table 10-1 at the end of this chapter. Prior

to entering error terms, set the desired calibration type simulation with the matching Axx series calibration command (see Calibration Group). After inputting the error coefficients,

turn on error correction with the CON command.

Data I/O: Inputs a floating point array whose size is equal to twice the

number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an <Arbitrary

Block> (paragraph 10-3).

Related Commands: IFMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS,

CH1, CH4

IC11 Enter calibration coefficient 11

DATA TRANSFER (Ch 7)

Syntax: IC11

Val 1: <Arbitrary Block>

Remarks: Allows entry of the user defined error correction coefficient

selected (1 - 24), see Table 10-1 at the end of this chapter. Prior

to entering error terms, set the desired calibration type simulation with the matching Axx series calibration command (see Calibration Group). After inputting the error coefficients,

turn on error correction with the CON command.

Data I/O: Inputs a floating point array whose size is equal to twice the

number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an <Arbitrary

Block> (paragraph 10-3).

Related Commands: IFMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS,

CH1, CH4

IC12 Enter calibration coefficient 12

DATA TRANSFER (Ch 7)

Syntax: IC12

Val 1: <Arbitrary Block>

Remarks: Allows entry of the user defined error correction coefficient

selected (1 - 24), see Table 10-1 at the end of this chapter. Prior

to entering error terms, set the desired calibration type

simulation with the matching Axx series calibration command (see Calibration Group). After inputting the error coefficients, turn on error correction with the CON command.

Data I/O:

Inputs a floating point array whose size is equal to twice the number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an <Arbitrary Block> (paragraph 10-3).

Related Commands:

IFMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS, CH1, CH4

IC2 Input Calibration Coefficient 2

CALIBRATION (Ch 5)

Syntax: IC2

Val 1: <Arbitrary Block>

Remarks: Allows entry of the user defined error correction coefficent

selected (1 - 12), see Table 10-1 at the end of this chapter. Prior

to entering error terms, set the desired calibration type simulation with the matching Axx series calibration command

(see Calibration Group). After inputting the error coefficients,

turn on error correction with the CON command

Data I/O: Inputs a floating point array whose size is equal to twice the

number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an <Arbitrary

Block> (paragraph 10-3).

Related Commands: IFMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS,

CH1, CH4

IC3 Enter calibration coefficient 3

CALIBRATION (Ch 5)

Syntax: IC3

Val 1: <Arbitrary Block>

Remarks: Allows entry of the user defined error correction coefficient

selected (1 - 24), see Table 10-1 at the end of this chapter. Prior

to entering error terms, set the desired calibration type simulation with the matching Axx series calibration command

(see Calibration Group). After inputting the error coefficients,

turn on error correction with the CON command.

Data I/O: Inputs a floating point array whose size is equal to twice the

number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an <Arbitrary

Block> (paragraph 10-3).

10-106 37XXXC PM

Related Commands: IFMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS,

CH1, CH4

IC4 Enter calibration coefficient 4

CALIBRATION (Ch 5)

Syntax: IC4

Val 1: <Arbitrary Block>

Remarks: Allows entry of the user defined error correction coefficient

selected (1 - 24), see Table 10-1 at the end of this chapter. Prior to entering error terms, set the desired calibration type simulation with the matching Axx series calibration command (see Calibration Group). After inputting the error coefficients,

turn on error correction with the CON command.

Data I/O: Inputs a floating point array whose size is equal to twice the

number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an <Arbitrary

Block> (paragraph 10-3).

Related Commands: IFMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS,

CH1, CH4

IC5 Enter calibration coefficient 5

CALIBRATION (Ch 5)

Syntax: IC5

Val 1: <Arbitrary Block>

Remarks: Allows entry of the user defined error correction coefficent

selected (1 - 24), see Table 10-1 at the end of this chapter. Prior

to entering error terms, set the desired calibration type

simulation with the matching Axx series calibration command (see Calibration Group). After inputting the error coefficients,

turn on error correction with the CON command.

Data I/O: Inputs a floating point array whose size is equal to twice the

number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an Arbitrary

Block> (paragraph 10-3).

Related Commands: IFMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS,

CH1, CH4

IC6 Enter calibration coefficient 6

CALIBRATION (Ch 5)

Syntax: IC6

Val 1: <Arbitrary Block>

Remarks: Allows entry of the user defined error correction coefficient

selected (1 - 24), see Table 10-1 at the end of this chapter. Prior to entering error terms, set the desired calibration type

simulation with the matching Axx series calibration command (see Calibration Group). After inputting the error coefficients,

turn on error correction with the CON command.

Data I/O: Inputs a floating point array whose size is equal to twice the

number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an <Arbitrary

Block> (paragraph 10-3).

Related Commands: IFMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS,

CH1, CH4

IC7 Enter calibration coefficient 7

CALIBRATION (Ch 5)

Syntax: IC7

Val 1: <Arbitrary Block>

Remarks: Allows entry of the user defined error correction coefficient

selected (1 - 24), see Table 10-1 at the end of this chapter. Prior to entering error terms, set the desired calibration type simulation with the matching Axx series calibration command (see Calibration Group). After inputting the error coefficients,

turn on error correction with the CON command.

Data I/O: Inputs a floating point array whose size is equal to twice the

number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an <Arbitrary

Block> (paragraph 10-3).

Related Commands: IFMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS,

CH1, CH4

IC8 Enter calibration coefficient 8

CALIBRATION (Ch 5)

Syntax: IC8

Val 1: <Arbitrary Block>

Remarks: Allows entry of the user defined error correction coefficient

selected (1 - 24), see Table 10-1 at the end of this chapter. Prior to entering error terms, set the desired calibration type

simulation with the matching Axx series calibration command (see Calibration Group). After inputting the error coefficients,

turn on error correction with the CON command.

10-108 37XXXC PM

Data I/O: Inputs a floating point array whose size is equal to twice the

number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an Arbitrary

Block> (paragraph 10-3).

Related Commands: IFMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS,

CH1, CH4

IC9 Enter calibration coefficient 9

CALIBRATION (Ch 5)

Syntax: IC9

Val 1: <Arbitrary Block>

Remarks: Allows entry of the user defined error correction coefficent

selected (1 - 24), see Table 10-1 at the end of this chapter. Prior to entering error terms, set the desired calibration type

simulation with the matching Axx series calibration command (see Calibration Group). After inputting the error coefficients,

turn on error correction with the CON command.

Data I/O: Inputs a floating point array whose size is equal to twice the

number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an <Arbitrary

Block> (paragraph 10-3).

Related Commands: IFMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS,

CH1, CH4

ICA Enter calibration coefficient 10

CALIBRATION (Ch 5)

Syntax: ICA

Val 1: A, B, or C

Units: <Arbitrary Block>

Remarks: ICA, ICB, and ICC are equivalents of IC10, IC11, and IC12

comands respectively.

ICB Enter calibration coefficient 11

CALIBRATION (Ch 5)

Syntax: ICB

Val 1: Same as ICA Units: Same as ICA

Remarks: Same as ICA

ICC Enter calibration coefficient 12

CALIBRATION (Ch 5)

Syntax: ICC

Val 1: Same as ICA
Units: Same as ICA

Remarks: Same as ICA.

Enter corrected data for active channel parameter

CALIBRATION (Ch 5)

Syntax: ICD

Val 1: <Arbitrary Block>

Remarks: Data correction is for normalization and electrical length and, if

applicable, time domain. Place the 37XXX in hold (HLD) then

issue the ICD command.

Data I/O: Inputs a floating point array whose size is equal to twice the

number of points in the current sweep (real and imaginary data pairs for each point). The ICD command inputs an <Arbitrary

Block> (paragraph 10-3).

Related Commands: FMA, FMB, FMC, LSB, MSB, IFD, OCD, ONP, HLD, WFS,

CH1, CH4

ICF Enter front panel setup and calibration data

CALIBRATION (Ch 5)

Syntax: ICF

Val 1: <Arbitrary Block>

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) previously

output using the OCF command. The data is in internal system binary format and must not be edited or altered in any way.

Related Commands: OCF, IFP

ICL Enter all applicable calibration coefficients for

CALIBRATION (Ch 5)

cal type

Syntax: ICL

Val 1: <Arbitrary Block>

Remarks: Enter all error correction coefficients applicable to the current

calibration type; see Table 10-1 at the end of this chapter. Prior to entering error terms, set the calibration type simulation with

the corresponding Axx series calibration command (see

Calibration Group). After inputting the error coefficients, apply error coeficients to measurement data with the CON command.

10-110 37XXXC PM

Data I/O: An array of floating point values whose size is equal to the

currently set number of data points. The ICL command inputs an <Arbitrary Block> (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format

(see format selector commands FMA, FMB, FMC).

Related Commands: FMA, FMB, FMC, OCL, IC1-IC12, CON

IEM Enter extended status byte mask

STATUS BYTE (Ch 8)

Syntax: IEM

Val 1: 0 - 32767

Remarks: Sets the bits of the Standard Event Status Enable Register to

the binary weighted bit pattern of the decimal value entered.

The register is cleared by sending a value of 0.

Related Commands: OEM, OEB

IF1 Select 10 Hz IF bandwidth

ENHANCEMENT (Ch 4)

Syntax: IF1

Front Panel Key: Video IF BW\MINIMUM (10 Hz)

IF2 Select 100 Hz IF bandwidth

ENHANCEMENT (Ch 4)

Syntax: IF2

Front Panel Key: Video IF BW\REDUCED (100 Hz)

IF3 Select 1 KHz IF bandwidth

ENHANCEMENT (Ch 4)

Syntax: IF3

Front Panel Key: Video IF BW\NORMAL (1 kHz)

IF4 Select 10 KHz IF bandwidth

ENHANCEMENT (Ch 4)

Syntax: IF4

Front Panel Key: Video IF BW\MAXIMUM (10 kHz)

IFA Select 30 KHz IF bandwidth

ENHANCEMENT (Ch 4)

Syntax: IFA

Remarks: Same as IF4.

IFB Select 1st IF bandpass testing

DIAGNOSTICS (Ch 8)

Syntax: IFB

Remarks: For service use only.

IFD Enter final data for active channel parameter

CALIBRATION (Ch 5)

Syntax: IFD

Val 1: <Arbitrary Block>

Remarks: Place the 37XXX in hold (HLD); then issue the IFD command.

Data must match the current graph type as shown in Table 10-2

at the end of this chapter.

Data I/O: Inputs a floating point array whose size is equal to the number

of points in the current sweep (the arrary size is doubled for dual graph displays, i.e. log mag/phase). The IFD command inputs an <Arbitrary Block> (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected

format (see format selector commands FMA, FMB, FMC).

Related Commands: ICD, OFD, FMA, FMB, FMC, LSB, MSB, DPR0, DPR1, HLD,

ONP, CH1-CH4

IFM Select 10 Hz IF bandwidth

ENHANCEMENT (Ch 4)

Syntax: IFM

Remarks: Same as IF1.

Front Panel Key: Video IF BW\MINIMUM (10 Hz)

IFN Select 1 KHz IF bandwidth

ENHANCEMENT (Ch 4)

Syntax: IFN

Remarks: Same as IF3.

Front Panel Key: Video IF BW\NORMAL (1 kHz)

10-112 37XXXC PM

IFP Enter current front panel setup

MEASUREMENT (Ch 4)

Syntax: IFP

Val 1: <Arbitrary Block>

Remarks: The VNA will validate then change to the new setup.

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) previously

output using the OFP command. The data is in internal system binary format and must not be edited or altered in any way.

Related Commands: OFP, ICF

IFPC Enter flat power coefficients

DATA TRANSFER (Ch 7)

Syntax: IFPC

Val 1: The flat power coefficients

Data I/O: Inputs an <Arbitrary Block> (paragraph 10-3).

Related Commands: FMA, FMB, FMC, MSB, LSB, IFV, OFPC, OFV

IFR Select 100 Hz IF bandwidth

ENHANCEMENT (Ch 4)

Syntax: IFR

Remarks: Same as IF2.

Front Panel Key: Video IF BW\REDUCED (100 Hz)

IFV Enter frequency values

MEASUREMENT (Ch 4)

Syntax: IFV

Val 1: <Arbitrary Block>

Remarks: Inputs a list of frequencies for use as current sweep or for

calibration setup. NOTE: IFV will reset (delete) existing

calibration sweep and data.

Data I/O: An array of from 2 to 1601 floating point values containing

frequencies within the 37XXX range. The IFV command inputs an <Arbitrary Block> (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format

(see format selector commands FMA, FMB, FMC).

Related Commands: FMA, FMB, FMC, LSB, MSB, DFC, ONP, WFS

IFX? Output IF bandwidth

ENHANCEMENT (Ch 4)

Syntax: IFX?

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3) as

follows: "1" for 10 Hz, "2" for 100 Hz, "3" for 1 kHz, or "4" for 10

kHz.

Front Panel Key: Video IF BW\value

IHDW Enter hardware cal data from GPIB

MISCELLANEOUS (Ch 7)

Syntax: IHDW

Val 1: Val1 is the hardware calibration data previously output using

the command OHDW

Data I/O: The data is expected in <Ararbitrary Block> format (paragraph

10-3). Notice that it is not necessary to specify the type of hardware cal data as this information is contained within the

data itself.

Related Commands: OHDW, DISKWR, RECALL

IKIT Enter calkit data from GPIB

MISCELLANEOUS (Ch 7)

Syntax: IKIT

Val 1: Type is a three-letter string which indicates the type of

calibration kit data file. val1 is the actual calibration kit data.

Notice the comma separator.

Remarks: Calibration kit data files can be found on the data floppy disks

that come with the calibration kits. The type string is the 3

character extention of the data file.

Data I/O: The data, val1 is encapsulated in an <Arbitrary Block> format

(paragraph 10-3).

Related Commands: LKT, DISKWR, RECALL

ILM Enter limits status byte mask

STATUS BYTE (Ch 7)

Syntax: ILM Val 1: 0-255

Remarks: Sets the bits of the Standard Event Status Enable Register to

the binary weighted bit pattern of the decimal value entered. The register is cleared by sending a value of 0 NOTE: The

10-114 37XXXC PM

Limits Testing feature must be turned on (LT1) for the 37XXX to

report a limits pass/fail status.

Related Commands: OLM, OLB, LT1

IMG Select imaginary display for active channel

DISPLAY (Ch 4)

Syntax: IMG

Front Panel Key: Graph Type \IMAGINARY

Related Commands: DLA, CH1-CH4, ISC, ISE, ISM, IMG, LIN, MAG, MPH, PCP,

PCS, PCX?, PHA, PLG, PLR, POW, REL, RIM, SMC, SME, SMI,

SWR

IMU Suffix sets imaginary data type

DATA ENTRY SUFFIXES (Ch 4)

Syntax: IMU

IND Input Normalization data

MISCELLANEOUS (Ch 7)

Syntax: IND

Data I/O: Inputs is an <Arbitrary Block> (paragraph 10-3).

Related Commands: OND

INRM Enter normalization data from GPIB

MISCELLANEOUS (Ch 7)

Syntax: INRM

Val 1: Val1 is the normalization data encapsulated in an <Arbitrary

Block> format (paragraph 10-3)

Remarks: The normalization data is that which was gotten previously by

reading a normalization data file (*.NRM) or by using the

command ONRM.

Related Commands: ONRM, DISKWR, RECALL

INT Initialize (format) floppy disk

DISK FUNCTION (Ch 8)

Syntax: INT

Remarks: Initializes (formats) floppy disk in floppy drive to IBM/DOS 1.44

MB format. Command can take up to five minutes to complete

format. NOTE: All data on floppy disk will be erased immediately upon execution of this command.

Front Panel Key: Utility Menu\GENERAL DISK UTILITIES\FLOPPY DISK

UTILITIES\FORMAT FLOPPY DISK

Related Commands: *OPC, *OPC?

INVER Activate color configuration Inverse

SYSTEM STATE (Ch 8)

Syntax: INVER

Front Panel Key: Utility Menu\COLOR CONFIGURATION\COLOR

SCHEMES\INVERSE COLORS

Related Commands: BRILL, CLASS, NEWCO, SOFTCO, STOCO, RSTCOL

IPM Enter the 488.2 Service Request Enable mask

STATUS BYTE (Ch 7)

Syntax: IPM Val 1: 0-55

Remarks: Behaves exactly the same as the *SRE, 488.2 common

command. It sets the bits of the Service Request Enable Register to the binary weighted bit pattern of the decimal value entered. The register is cleared by sending a value of 0. Note that the Master Summary Status (MSS) bit 6 (decimal 64) will be ignored since it represents the summary of all enabled status bits (bits

0-5, 7). This command is same as *SRE.

IPSC Enter power sweep linearity calibration

coefficients

GAIN COMPRESSION (Ch 9)

Syntax: IPSC

Data I/O: Inputs an <Arbitrary Block> (paragraph 10-3).

Related Commands: OPSC, PSCNFREQ?, PSCNPWR?, PSCSTEP?

IS1 Enter front panel setup 1

MEASUREMENT (Ch 4)

Syntax: IS1

Val 1: <Arbitrary Block>

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) previously

output using the OS1-OS10 commands. The data is in internal

10-116 37XXXC PM

system binary format and must not be edited or altered in any

way.

Related Commands: OS1-S10

IS10 Enter front panel setup 10

MEASUREMENT (Ch 4)

Syntax: IS10

Val 1: <Arbitrary Block>

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) previously

output using the OS1-OS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Related Commands: OS1-S10

IS2 Enter front panel setup 2

MEASUREMENT (Ch 4)

Syntax: IS2

Val 1: <Arbitrary Block>

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) previously

output using the OS1-OS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Related Commands: OS1-S10

IS3 Enter front panel setup 3

MEASUREMENT (Ch 4)

Syntax: IS3

Val 1: <Arbitrary Block>

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) previously

output using the OS1-OS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Related Commands: OS1-S10

Enter front panel setup 4

MEASUREMENT (Ch 4)

Syntax: IS4

Val 1: <Arbitrary Block>

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) previously

output using the OS1-OS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Related Commands: OS1-S10

IS5 Enter front panel setup 5

MEASUREMENT (Ch 4)

Syntax: IS5

Val 1: <Arbitrary Block>

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) previously

output using the OS1-OS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Related Commands: OS1-S10

IS6 Enter front panel setup 6

MEASUREMENT (Ch 4)

Syntax: IS6

Val 1: <Arbitrary Block>

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) previously

output using the OS1-OS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Related Commands: OS1-S10

IS7 Enter front panel setup 7

MEASUREMENT (Ch 4)

Syntax: IS7

Val 1: <Arbitrary Block>

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) previously

output using the OS1-OS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Related Commands: OS1-S10

IS8 Enter front panel setup 8

MEASUREMENT (Ch 4)

Syntax: IS8

10-118 37XXXC PM

Val 1: <Arbitrary Block>

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) previously

output using the OS1-OS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Related Commands: OS1-S10

IS9 Enter front panel setup 9

MEASUREMENT (Ch 4)

Syntax: IS9

Val 1: <Arbitrary Block>

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) previously

output using the OS1-OS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Related Commands: OS1-S10

ISC Enter scale and select inverted compressed

DISPLAY (Ch 4)

Smith Chart display

Syntax: ISC

Val 1: 3

Units: DBL, XX1

Front Panel Key: Graph Type\SMITH CHART (ADMITTANCE)

Related Commands: DLA, CH1-CH4, IMG, ISE, ISM, LIN, MAG, MPH, PCP, PCS,

PCX?, PHA, PLG, PLR, POW, REL, RIM, SMC, SME, SMI, SWR

ISE Enter scale and select inverted expanded

Smith Chart display

Syntax: ISE

Val 1: 10, 20, 30 Units: DBL, XX1

Front Panel Key: Graph Type\SMITH CHART (ADMITTANCE)

Related Commands: DLA, CH1-CH4, IMG, ISC, ISM, LIN, MAG, MPH, PCP, PCS,

PCX?, PHA, PLG, PLR, POW, REL, RIM, SMC, SME, SMI, SWR

ISF Exclude isolation

CALIBRATION (Ch 5)

Syntax: ISF

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12 TERM\EXCLUDE

ISOLATION

Related Commands: ISN, C12, C8T, C8R

ISM Select normal inverted Smith Chart for active

DISPLAY (Ch 4)

channel

Syntax: ISM

Front Panel Key: Graph Type \SMITH CHART (ADMITTANCE)

Related Commands: DLA, CH1-CH4, ISC, ISE, LIN, MAG, MPH, PCP, PCS, PCX?,

PHA, PLG, PLR, POW, REL, RIM, SMC, SME, SMI, SWR

ISN Include isolation CALIBRATION (Ch 5)

Syntax: ISN

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12 TERM\INCLUDE

ISOLATION

KEC Keep existing calibration data CALIBRATION (Ch 5)

Syntax: KEC

Front Panel Key: Begin Cal\KEEP EXISTING CALIBRATION

KHZ Suffix sets frequency data type and scales by DATA ENTRY SUFFIXES (Ch 4)

1E3

Syntax: KHZ

L1C Perform LO1 internal calibration DIAGNOSTICS (Ch 8)

Syntax: L1C

Remarks: For service use only.

L2C Perform LO2 internal calibration DIAGNOSTICS (Ch 8)

Syntax: L2C

10-120 37XXXC PM

Remarks: For service use only.

LA1 Select a1 = Ra as phase lock for parameter

MEASUREMENT (Ch 4)

being defined

Syntax: LA1

Related Commands: LA2,LAX?

LA2 Select a2 = Rb as phase lock for parameter

MEASUREMENT (Ch 4)

being defined

Syntax: LA2

Related Commands: LA1,LAX?

LAND Select landscape mode for output plot

HARD COPY (Ch 8)

Syntax: LAND

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PLOT ORIENTATION

LANDSCAPE

Related Commands: PORT

LAX? Output phase lock selection for parameter

MEASUREMENT (Ch 4)

being defined

Syntax: LAX?

Data I/O: Outputs data using ASCII <NR1> format (paragraph 10-3): "1"

for A1 or "2" for A2.

Related Commands: LA1,LA2

LAYCOL Enter the color number for overlay data

SYSTEM STATE (Ch 8)

Syntax: LAYCOL Val 1: 0 - 47

Remarks: Color palette numbers are listed in Table 10-3 at the end of this

chapter.

Front Panel Key: Utility Menu\COLOR CONFIGURATION\OVERLAY DATA

Related Commands: ANNCOL, GRTCOL, LAYCOL, MKRCOL, MNUCOL, TRCCOL,

LAYCOL?

LAYCOL? Output the color number for overlay data

SYSTEM STATE (Ch 8)

Syntax: LAYCOL?

Data I/O: Outputs the color palette number using ASCII <NR1> format

(paragraph 10-3).

Front Panel Key: Utility Menu\COLOR CONFIGURATION\OVERLAY DATA

(Color)

Related Commands: DATCOL?, GRTCOL?, LAYCOL?, MKRCOL?, MNUCOL?,

TRCCOL?, LAYCOL

LB0 Turn limits testing beep on failure off

LIMITS (Ch 6)

Syntax: LB0

Front Panel Key: Limits\TEST LIMITS\BEEP FOR TEST FAILURE OFF

Related Commands: LB0, LT0, LBX?

LB1 Turn limits testing beep on failure on

LIMITS (Ch 6)

Syntax: LB1

Remarks: Issues an audible beep if a set limit is exceeded.

Front Panel Key: Limits\TEST LIMITS\BEEP FOR TEST FAILURE ON

Related Commands: LB0, LT0, LBX?

LBX? Output limits testing beeper enable status

LIMITS (Ch 6)

Syntax: LBX?

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for disabled or "1" for enabled.

Front Panel Key: Limits\TEST LIMITS\BEEP FOR TEST FAILURE

LCM Select LRL calibration method

CALIBRATION (Ch 5)

10-122 37XXXC PM

Syntax: LCM

Front Panel Key: Begin Cal\CHANGE CAL METHOD AND LINE

TYPE\LRL/LRM

Related Commands: SCM, OCM

LDARF Load adapter removal files from disk and

DISK FUNCTION (Ch 8)

calibrate

Syntax: LDARF

Remarks: "filespecxx" is the filename and path to the XX front panel and

calibration file. "filespecyy" is the filename and path to the YY front panel and cal file. Refer to the adapter removal description

for more details. Notice the comma separator.

LDT0 Disable printing date/time

HARD COPY (Ch 8)

Syntax: LDT0

Front Panel Key: Hard Copy Menu\SETUP HEADERS\DATE OFF

Related Commands: LDT1

LDT1 Enable printing date/time

HARD COPY (Ch 8)

Syntax: LDT1

Front Panel Key: Hard Copy Menu\SETUP HEADERS\DATE ON

Related Commands: LDT0

LFD Enter limit frequency readout delta value

LIMITS (Ch 6)

Syntax: LFD

Val 1: Depends on graph type

Units: Depends on graph type (see Table 11-2 at the end of this

chapter).

Remarks: Enter the value to offset Limit 2 from the currently set value of

Limit 1. Both limits must be on to use this command. The values and suffixes are as appropriate for the graph type displayed.

Front Panel Key: Limits\READOUT LIMIT\LIMIT DIFFERENCE

Related Commands: LFP, CH1-CH4, LFD?

LFD2 Enter limit frequency readout delta value for

LIMITS (Ch 6)

bottom graph

Syntax: LFD2

Val 1: Depends on graph type

Units: Depends on graph type (see Table 11-2 at the end of this

chapter).

Remarks: Enter the value to offset Limit 2 from the currently set value of

Limit 1. Both limits must be on to use this command. The values and suffixes are as appropriate for the graph type displayed.

Front Panel Key: Limits\READOUT LIMIT\LIMIT DIFFERENCE

Related Commands: LFP, CH1-CH4, LFD2?

LFD2? Output limit frequency readout delta value for

LIMITS (Ch 6)

bottom graph

Syntax: LFD2?

Data I/O: Outputs its value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Limits\READOUT LIMIT\LIMIT DIFFERENCE

Related Commands: LFD2

LFD? Output limit frequency readout delta value

LIMITS (Ch 6)

Syntax: LFD?

Data I/O: Outputs its value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Limits\READOUT LIMIT\LIMIT DIFFERENCE

Related Commands: LFD

LFP Select limit frequency readout for phase

LIMITS (Ch 6)

displays

Syntax: LFP

Remarks: Phase displays, which appears on a dual graph type like log

magnitude and phase, are set using this command.

10-124 37XXXC PM

Related Commands: LFD, CH1-CH4

LFR Select limit frequency readout for active

LIMITS (Ch 6)

channel

Syntax: LFR

Related Commands: LFD, LFP

LID Enter string for DUT identity

MISCELLANEOUS (Ch 7)

Syntax: LII

Val 1: String of up to 15 valid characters.

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\DEVICE ID ON

Related Commands: LDT, LMS, LNM. LID?

LID? Output string for DUT identity

MISCELLANEOUS (Ch 7)

Syntax: LID?

Data I/O: Outputs its string in <Arbitrary ASCII> format (paragraph

10-3).

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\DEVICE ID

Related Commands: LID

LIN Select linear magnitude display for active

DISPLAY (Ch 4)

channel

Syntax: LIN

Front Panel Key: Graph Type\LINEAR MAG

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, MAG, MPH, PCP, PCS,

PCX?, PHA, PLG, PLR, POW, REL, RIM, SMC, SME, SMI, SWR

LKS0 Disable lock search mode

DIAGNOSTICS (Ch 8)

Syntax: LKS0

Remarks: For service use only.

LKS1 Enable lock search mode DIAGNOSTICS (Ch 8)

Syntax: LKS1

Remarks: For service use only.

LKT Load calibration kit information from floppy DISK FUNCTION (Ch 8)

disk

Syntax: LKT

Front Panel Key: Utility Menu\CAL COMPONENT UTILITIES\INSTALL KIT

INFORMATION FROM FLOPPY DISK

LL1 Enter length of line 1 for LRL calibration CALIBRATION (Ch 5)

Syntax: LL1

Val 1: 0 to +999.9999

Units: M, MTR, MM, MMT, CM, CMT, LL2

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LRL/LRM
PARAMETERS\NEXT CAL STEP\CHARACTERIZE CAL

DEVICES DEVICE 1 LINE 1

LL2 Enter length of line 2 for LRL calibration CALIBRATION (Ch 5)

Syntax: LL2

Val 1: 0 to +999.9999

Units: M, MTR, MM, MMT, CM, CMT

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LRL/LRM
PARAMETERS\NEXT CAL STEP\CHARACTERIZE CAL

DEVICES DEVICE 2 LINE

LL3 Enter length of line 3 for LRL calibration CALIBRATION (Ch 5)

Syntax: LL3

Val 1: 0 to +999.9999

Units: M, MTR, MM, MMT, CM, CMT

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LRL/LRM
PARAMETERS\NEXT CAL STEP\CHARACTERIZE CAL

DEVICES DEVICE 3 LINE

10-126 37XXXC PM

LLM? Output limit line display mode single or

LIMITS (Ch 6)

segmented

Syntax: LLM?

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for single or "1" for segmented.

LLO Enter lower limit value for top graph on active

LIMITS (Ch 6)

channel

Syntax: LLO

Val 1: Depends on graph type (see DISPLAY group)

Units: Depends on graph type (see Table 11-2 at the end of this

chapter).

Front Panel Key: Limits\READOUT LIMIT\LOWER LIMIT

Related Commands: LUP, CH1-CH4

LLO2 Enter lower limit value for bottom graph on

LIMITS (Ch 6)

active channel

Syntax: LL02

Val 1: Depends on graph type (see DISPLAY group)

Units: Depends on graph type (see Table 11-2 at the end of this

chapter).

Front Panel Key: Limits\READOUT LIMIT\LOWER LIMIT

Related Commands: LFD2, LOL20, LOL21, LUP2, UPL20, UPL21

LLO2? Output lower limit value for bottom graph on

LIMITS (Ch 6)

LIMITS (Ch 6)

active channel

Syntax: LLO2?

Data I/O: Outputs its value using ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Limits\READOUT LIMIT\LOWER LIMIT

Related Commands: LLO2

LLO? Output lower limit value for top graph on

active channel

Syntax: LLO?

Data I/O: Outputs its value using ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Limits\READOUT LIMIT\LOWER LIMIT

LLZ Enter line impedance for LRL calibration

CALIBRATION (Ch 5)

Syntax: LLZ

Val 1: 0.001 to 1x10E+3 Units: XX1 XX3, XM3, OHM

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\REFERENCE

IMPEDANCE

LM2 Select a match for the second device during a

CALIBRATION (Ch 5)

LRM type calibration

Syntax: LM2

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LRL/LRM PARAMETERS\NEXT CAL STEP\CHARACTERIZE CAL

DEVICES DEVICE 2 MATCH

LM3 Select a match for the third device during a

CALIBRATION (Ch 5)

LRM type calibration

Syntax: LM3

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LRL/LRM PARAMETERS\NEXT CAL STEP\CHARACTERIZE CAL

DEVICES DEVICE 3 MATCH

LMS Enter string for DUT model/serial number

HARD COPY (Ch 8)

Syntax: LMS

Val 1: String of up to 15 valid characters.

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\MODEL ON

Related Commands: LMS

LMS? Output string for DUT model/serial number

HARD COPY (Ch 8)

10-128 37XXXC PM

Syntax: LMS?

Data I/O: Outputs string in <Arbitrary ASCII> format.

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\MODEL ON

Related Commands: LMS

LNM Enter string for operator name

HARD COPY (Ch 8)

Syntax: LNM

Val 1: String up to 15 characters long

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\OPERATOR ON

Related Commands: LID, LMS

LNM? Output string for operator name

HARD COPY (Ch 8)

Syntax: LNM?

Data I/O: Outputs its string in <Arbitrary ASCII> format (paragraph

10-3).

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\OPERATOR

Related Commands: LNM

LO11 Select LO1 phase lock voltage testing

DIAGNOSTICS (Ch 8)

Syntax: LO11

Remarks: For service use only.

LO12 Select LO1 D/A voltage testing

DIAGNOSTICS (Ch 8)

Syntax: LO12

Remarks: For service use only.

LO21 Select LO2 main phase lock voltage testing

DIAGNOSTICS (Ch 8)

Syntax: LO21

Remarks: For service use only.

LO22 Select LO2 offset phase lock voltage testing DIAGNOSTICS (Ch 8)

Syntax: LO22

Remarks: For service use only.

LO23 Select LO2 DDS phase lock voltage testing DIAGNOSTICS (Ch 8)

Syntax: LO23

Remarks: For service use only.

LO24 Select LO2 main D/A voltage testing DIAGNOSTICS (Ch 8)

Syntax: LO24

Remarks: For service use only.

LO25 Select LO2 offset D/A voltage testing DIAGNOSTICS (Ch 8)

Syntax: LO25

Remarks: For service use only.

LOC Enter string for operator comment HARD COPY (Ch 8)

Syntax: LOC

Val 1: String up to 79 characters long

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\COMMENT ON

Related Commands: LID, LNM, LMS

LOC? Output string for operator comment HARD COPY (Ch 8)

Syntax: LOC?

Data I/O: Outputs string in <Arbitrary ASCII> format (paragraph 10-3).

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\COMMENT

Related Commands: LOC

10-130 37XXXC PM

LIMITS (Ch 6)

Syntax: LOF

Front Panel Key: Limits\TEST LIMITS\LIMIT TESTING OFF

Related Commands: LON

LOGO0 Turn hard copy logo off HARD COPY (Ch 8)

Syntax: LOGO0

Remarks: After mnemonic is issued, printer and plotter will not form the

logo portion of the printout or plot.

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\SETUP LOGO\LOGO

OFF

Related Commands: LOGO1, LOGOX?

LOGO1 Turn hard copy logo on HARD COPY (Ch 8)

Syntax: LOGO1

Remarks: After mnemonic is issued, printer an plotter will form a logo

when printing or plotting.

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\SETUP LOGO\LOGO

ON

Related Commands: LOGO0, LOGOX?

LOGO? Output hard copy logo selection standard/user HARD COPY (Ch 8)

defined

Syntax: LOGO?

Data I/O: Outputs its number using ASCII <NR1> format (paragraph

10-3) as follows: "0" for standard Anritsu logo or "1" for user

defined logo.

Related Commands: LOGOS, LOGOU

LOGOS Select standard hard copy logo HARD COPY (Ch 8)

Syntax: LOGOS

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\SETUP LOGO\LOGO

TYPE STANDARD

Related Commands: LOGOU, LOGO?

LOGOU Select user defined hard copy logo

HARD COPY (Ch 8)

Syntax: LOGOU

Remarks: For the user-defined logo to function, the following files must be

present in the C:\UTIL subdirectory: LOGO.EPS for epson type printers LOGO.HP for HP type printers and LOGO.PLT for plotters. If the required file is not found, the standard Anritsu

logo will be used.

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\SETUP LOGO\LOGO

TYPE USER LOGO

Related Commands: LOGOS, LOGO?

LOGOX? Output hard copy logo on/off status

HARD COPY (Ch 8)

Syntax: LOGOX?

Data I/O: Outputs its number using ASCII <NR1> format (paragraph

10-3) as follows: "0" for logo off or "1" for logo on.

Front Panel Key: Hard Copy Menu\\SETUP HEADERS\SETUP LOGO\LOGO

TYPE

Related Commands: LOGO0, LOGO1

LOL0 Turn lower limit off

LIMITS (Ch 6)

Syntax: LOL0

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT OFF

Related Commands: LON, LOF, LOL1, LLO

LOL1 Turn lower limit on at current value

LIMITS (Ch 6)

Syntax: LOL1

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT ON

10-132 37XXXC PM

Related Commands: LON, LOF, LOL0, LLO

LOL20 Turn lower limit off for bottom graph

LIMITS (Ch 6)

Syntax: LOL20

Related Commands: LON, LOF, LOL21, LLO2

LOL21 Turn lower limit on at current value for

LIMITS (Ch 6)

bottom graph

Syntax: LOL21

Related Commands: LON, LOF, LOL20, LLO2

LOL2X? Output lower limit on/off status for bottom

LIMITS (Ch 6)

graph

LON

Syntax: LOL2X?

Data I/O: Outputs its number using ASCII <NR1> format (paragraph

10-3) as follows: "0" for logo off or "1" for logo on.

Related Commands: LOL20, LOL21

LOLX? Output lower limit on/off status

LIMITS (Ch 6)

Syntax: LOLX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3).(0 for

OFF, 1 for ON).

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT

LIMITS (Ch 6)

Syntax: LON

Front Panel Key: Limits\TEST LIMITS\LIMIT TESTING ON

LON? Output limits display on/off status

Limits display on

LIMITS (Ch 6)

Syntax: LON?

Data I/O: Outputs its number using ASCII <NR1> format (paragraph

10-3) as follows: "0" for logo off or "1" for logo on.

Front Panel Key: Limits\TEST LIMITS\LIMIT TESTING ON

LPF1? Output limit test failure status on channel 1

LIMITS (Ch 6)

Syntax: LPF1?

Data I/O: Outputs its number using ASCII <NR1> format (paragraph

10-3) as follows: "0" for logo off or "1" for logo on.

LPF2? Output limit test failure status on channel 2

LIMITS (Ch 6)

Syntax: LPF2?

Data I/O: Outputs its number using ASCII <NR1> format (paragraph

10-3) as follows: "0" for logo off or "1" for logo on.

LPF3? Output limit test failure status on channel 3

LIMITS (Ch 6)

Syntax: LPF3?

Data I/O: Outputs its number using ASCII <NR1> format (paragraph

10-3) as follows: "0" for logo off or "1" for logo on.

LPF4? Output limit test failure status on channel 4

LIMITS (Ch 6)

Syntax: LPF4?

Data I/O: Outputs its number using ASCII <NR1> format (paragraph

10-3) as follows: "0" for logo off or "1" for logo on.

LPF? Output limit test failure status all channels

LIMITS (Ch 6)

Syntax: LPF?

Data I/O: Outputs its number using ASCII <NR1> format (paragraph

10-3) as follows: "0" for logo off or "1" for logo on.

LPH Select linear magnitude and phase display for

active channel

DISPLAY (Ch 4)

Syntax: LPH

10-134 37XXXC PM

Front Panel Key: Graph Type\LINEAR MAG AND PHASE

Related Commands: CH1-CH4

LPI Select lowpass impulse response for active

TIME DOMAIN (Ch 9)

channel

Syntax: LPI

Remarks: Requires a calibration that used a harmonically related set of

data points - time domain calibration.

Front Panel Key: Domain\SET RANGE\RESPONSE IMPULSE

Related Commands: TDC, CH1-CH4

LPS Select lowpass step response for active

TIME DOMAIN (Ch 9)

channel

Syntax: LPS

Remarks: Requires a calibration that used a harmonically related set of

data points - time domain calibration.

Front Panel Key: Domain\SET RANGE\RESPONSE STEP

Related Commands: TDC, CH1-CH4

LPSX? Output lowpass response for active channel

TIME DOMAIN (Ch 9)

impulse or step

Syntax: LPSX?

Data I/O: Outputs its number using ASCII <NR1> format (paragraph

10-3) as follows: "0" for impulse or "1" for step.

Front Panel Key: Domain\SET RANGE\RESPONSE

LR2 Specify 2 line LRL calibration

CALIBRATION (Ch 5)

Syntax: LR2

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LRL/LRM
PARAMETERS\NUMBER OF BANDS USED ONE BAND

LR3 Specify 3 line LRL calibration

CALIBRATION (Ch 5)

Syntax: LR3

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LRL/LRM
PARAMETERS\NUMBER OF BANDS USED TWO BANDS

LS1 Set lower segmented limit 100 as the active

LIMITS (Ch 6)

segment

Syntax: LS1

Remarks: All succeeding limit segment commands will apply to LSx.

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT

Related Commands: US1-US10, CH1-CH4, LSX?

LS10 Select lower segmented limit 10 as the active

LIMITS (Ch 6)

segment

Syntax: LS10

Remarks: All succeeding limit segment commands will apply to LSx.

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT

Related Commands: US-US10, CH1-CH4, LSX?

LS2 Select lower segmented limit 2 as the active

LIMITS (Ch 6)

segment

Syntax: LS2

Remarks: All succeeding limit segment commands will apply to LSx.

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT

Related Commands: US-US10, CH1-CH4, LSX?

LS3 Select lower segmented limit 3 as the active

LIMITS (Ch 6)

segment

Syntax: LS3

Remarks: All succeeding limit segment commands will apply to LSx.

10-136 37XXXC PM

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT

Related Commands: US-US10, CH1-CH4, LSX?

LS4 Select lower segmented limit 4 as the active

LIMITS (Ch 6)

segment

Syntax: LS4

Remarks: All succeeding limit segment commands will apply to LSx.

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT

Related Commands: US-US10, CH1-CH4, LSX?

LS5 Select lower segmented limit 5 as the active

LIMITS (Ch 6)

segment

Syntax: LS5

Remarks: All succeeding limit segment commands will apply to LSx.

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT

Related Commands: US-US10, CH1-CH4, LSX?

LS6 Select lower segmented limit 6 as the active

LIMITS (Ch 6)

segment

Syntax: LS6

Remarks: All succeeding limit segment commands will apply to LSx.

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT

Related Commands: US-US10, CH1-CH4, LSX?

LS7 Select lower segmented limit 7 as the active

LIMITS (Ch 6)

segment

Syntax: LS7

Remarks: All succeeding limit segment commands will apply to LSx.

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT

Related Commands: US-US10, CH1-CH4, LSX?

LS8 Select lower segmented limit 8 as the active

LIMITS (Ch 6)

segment

Syntax: LS8

Remarks: All succeeding limit segment commands will apply to LSx.

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT

Related Commands: US-US10, CH1-CH4, LSX?

LS9 Select lower segmented limit 9 as the active

LIMITS (Ch 6)

segment

Syntax: LS9

Remarks: All succeeding limit segment commands will apply to LSx.

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT

Related Commands: US-US10, CH1-CH4, LSX?

LSB Select least significant byte first binary

DATA TRANSFER (Ch 7)

transfer

Syntax: LSB

Remarks: This is convenient for transferring data into or out of IBM/Intel

based computers.

Related Commands: MSB, FMB, FMC

LSEG Select segmented limit line display mode

LIMITS (Ch 6)

Syntax: LSEG

Remarks: Any segmented limit line command selects this mode

automatically.

Related Commands: LSNG

LSNG Select single limit line display mode

LIMITS (Ch 6)

Syntax: LSNG

Remarks: Any single limit line command selects this mode automatically.

10-138 37XXXC PM

Related Commands: LSEG

LSX? Output active segmented limit

LIMITS (Ch 6)

Syntax: LSX?

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3).

"1Ä10" for lower limit 1A10 or "100010" for upper limit 1Ä10.

Front Panel Key: Limits\SINGLE LIMITS\LOWER LIMIT

LT0 Turn limits testing off

LIMITS (Ch 6)

Syntax: LT0

LT1 Turn limits testing on

LIMITS (Ch 6)

Syntax: LT1

Status Reporting: A limit test failure will set bits (0A3 for Channels 1A4,

respectively) in the Limits Event Status Register.

LT1? Output limits testing enable status

LIMITS (Ch 6)

Syntax: LT1?

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3). "0"

for OFF or "1" for ON.

LTC Select coaxial transmission line for calibration

CALIBRATION (Ch 5)

MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: LTC

Remarks: Selects a coaxial transmission line for the calibration.

Front Panel Key: Begin Cal\CHANGE CAL METHOD AND LINE

TYPE\TRANSMISSION LINE TYPE COAXIAL

LTRD Output response data from the dedicated

GPIB bus

Syntax: LTRD

Val 1: val1: the gpib address of the device to read from, val2: the

number of bytes to read in ASCII <NRf> format (paragraph

10-3)

Data I/O: val1 and val2 in ASCII <NRf> format and Outputs an

<Arbitrary Block> (paragraph 10-3).

Related Commands: LTWRT

LTST Display the limits testing menu

LIMITS (Ch 6)

Syntax: LTST

Related Commands: LT0, LT1

LTU Select microstrip transmission line for

CALIBRATION (Ch 5)

calibration

Syntax: LTU

Front Panel Key: Begin Cal\CHANGE CAL METHOD AND LINE

TYPE\TRANSMISSION LINE TYPE MICROSTRIP

LTW Select waveguide transmission line for

calibration

CALIBRATION (Ch 5)

Syntax: LTW

Remarks: Can only use an offset short or CRL/LRM calibration method

with waveguide calibration.

Front Panel Key: Begin Cal\CHANGE CAL METHOD AND LINE

TYPE\TRANSMISSION LINE TYPE WAVEGUIDE

LTWRT Send program data to the dedicated GPIB bus MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: LTWRT

Val 1: val1 is the gpib address of the device to write the data to. Val2 is

the data to write

Data I/O: val1 in ASCII <NRf> format and val2 in <Arbitrary block>

format (paragraph 10-3)

Related Commands: LTRD

LTX? Output line type CALIBRATION (Ch 5)

10-140 37XXXC PM

Syntax: LTX?

Data I/O: Outputs its value in ASCII <NR1> format (paragraph 10-3) as

follows: "1" for coax, "2" for waveguide or "3" for microstrip.

Front Panel Key: Begin Cal\TRANSMISSION LINE TYPE

LUP Enter upper limit value for top graph on

LIMITS (Ch 6)

active channel

Syntax: LUP

Val 1: Depends on graph type; see Table 11-2 at the end of this chapter.

Units: Depends on graph type; see Table 11-2 at the end of this

chapter.

Remarks: The values and suffixes are as appropriate for the graph type

displayed. That is, DEG, dB, REU, etc.

Front Panel Key: Limits\READOUT LIMIT\UPPER LIMIT

Related Commands: LON, LOF, UPL0, UPL1

LUP2 Enter upper limit value for bottom graph on

LIMITS (Ch 6)

active channel

Syntax: LUP2

Val 1: Depends on graph type; see Table 11-2 at the end of this chapter.

Units: Depends on graph type; see Table 11-2 at the end of this

chapter.

Remarks: The values and suffixes are as appropriate for the graph type

displayed. That is, DEG, dB, REU, etc.

Front Panel Key: Limits\READOUT LIMIT\UPPER LIMIT

Related Commands: LON, LOF, UPL20, UPL21

LUP2? Output upper limit value for bottom graph on

LIMITS (Ch 6)

active channel

Syntax: LUP2?

Data I/O: Outputs its value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Limits\READOUT LIMIT\UPPER LIMIT

Related Commands: LUP2

LUP? Output upper limit value for top graph on

LIMITS (Ch 6)

active channel

Syntax: LUP?

Data I/O: Outputs its value using ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Limits\READOUT LIMIT\UPPER LIMIT

LVH Select high as limits testing TTL level

LIMITS (Ch 6)

Syntax: LVH

Front Panel Key: Limits\TEST LIMITS\LIMIT TEST TTL FAIL

CONDITION\TTL HIGH

Related Commands: LVL, LVX?

LVL Select low as limits testing TTL level

LIMITS (Ch 6)

Syntax: LVL

Front Panel Key: Limits\TEST LIMITS\LIMIT TEST TTL FAIL

CONDITION\TTL LOW

Related Commands: LVH, LVX?

LVX? Output limits testing ttl level status

LIMITS (Ch 6)

Syntax: LVX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for low or "1" for high.

Front Panel Key: Limits\TEST LIMITS\LIMIT TEST TTL FAIL CONDITION

M Suffix sets distance data type

DATA ENTRY SUFFIXES (Ch 4)

Syntax: M

Related Commands: MTR

M1C Set CW mode at marker 1 frequency

MARKERS (Ch 6)

Syntax: M1C

10-142 37XXXC PM

Remarks: Marker 1 must be set

Front Panel Key: Setup Menu\MARKER SWEEP\C.W. FREQ MARKER 1

Related Commands: MK1-MK12

M1E Set sweep/zoom end to marker 1 frequency

MARKERS (Ch 6)

distance or time

Syntax: M1E

Remarks: Marker 1 must be set

Front Panel Key: Domain\SET RANGE\MARKER RANGE\STOP TIME

MARKER 1

Related Commands: MK1-MK12

M1S Set sweep/zoom start to marker 1 frequency

MARKERS (Ch 6)

distance or time

Syntax: M1S

Remarks: Marker 1 must be set

Front Panel Key: Domain\SET RANGE\MARKER RANGE\START TIME

MARKER 1

Related Commands: MK1-MK12

M2C Set CW mode at marker 2 frequency

MARKERS (Ch 6)

Syntax: M2C

Remarks: Marker 2 must be set

Front Panel Key: Setup Menu\MARKER SWEEP\C.W. FREQ MARKER 2

Related Commands: MK1-MK12

M2E Set sweep/zoom end to marker 2 frequency

MARKERS (Ch 6)

distance or time

Syntax: M2E

Remarks: Marker 2 must be set

Front Panel Key: Domain\SET RANGE\MARKER RANGE\STOP TIME

MARKER 2

Related Commands: MK1-MK12

M2S Set sweep/zoom start to marker 2 frequency

MARKERS (Ch 6)

distance or time

Syntax: M2S

Remarks: Marker 2 must be set

Front Panel Key: Domain\SET RANGE\MARKER RANGE\START TIME

MARKER 2

Related Commands: MK1-MK12

M3C Set CW mode at marker 3 frequency

MARKERS (Ch 6)

Syntax: M3C

Remarks: Marker 3 must be set

Front Panel Key: Setup Menu\MARKER SWEEP\C.W. FREQ MARKER 3

Related Commands: MK1-MK12

M3E Set sweep/zoom end to marker 3 frequency

MARKERS (Ch 6)

distance or time

Syntax: M3E

Remarks: Marker 3 must be set

Front Panel Key: Domain\SET RANGE\MARKER RANGE\STOP TIME

MARKER 3

Related Commands: MK1-MK12

M3S Set sweep/zoom start to marker 3 frequency

MARKERS (Ch 6)

distance or time

Syntax: M3S

Remarks: Marker 3 must be set

10-144 37XXXC PM

Front Panel Key: Domain\SET RANGE\MARKER RANGE\START TIME

MARKER 3

Related Commands: MK1-MK12

M4C Set CW mode at marker 4 frequency MARKERS (Ch 6)

Syntax: M4C

Remarks: Marker 4 must be set

Front Panel Key: Setup Menu\MARKER SWEEP\C.W. FREQ MARKER 4

Related Commands: MK1-MK12

M4E Set sweep/zoom end to marker 4 frequency MARKERS (Ch 6)

distance or time

Syntax: M4E

Remarks: Marker 4 must be set

Front Panel Key: Domain\SET RANGE\MARKER RANGE\STOP TIME

MARKER 4

Related Commands: MK1-MK12

M4S Set sweep/zoom start to marker 4 frequency MARKERS (Ch 6)

distance or time

Syntax: M4S

Remarks: Marker 4 must be set

Front Panel Key: Domain\SET RANGE\MARKER RANGE\START TIME

MARKER 4

Related Commands: MK1-MK12

M5C Set CW mode at marker 5 frequency MARKERS (Ch 6)

Syntax: M5C

Remarks: Marker 5 must be set

Front Panel Key: Setup Menu\MARKER SWEEP\C.W. FREQ MARKER 5

Related Commands: MK1-MK12

M5E Set sweep/zoom end to marker 5 frequency

MARKERS (Ch 6)

distance or time

Syntax: M5E

Remarks: Marker 5 must be set

Front Panel Key: Domain\SET RANGE\MARKER RANGE\STOP TIME

MARKER 5

Related Commands: MK1-MK12

M5S Set sweep/zoom start to marker 5 frequency

MARKERS (Ch 6)

distance or time

Syntax: M5S

Remarks: Marker 5 must be set

Front Panel Key: Domain\SET RANGE\MARKER RANGE\START TIME

MARKER 5

Related Commands: MK1-MK12

M6C Set CW mode at marker 6 frequency

MARKERS (Ch 6)

Syntax: M6C

Remarks: Marker 6 must be set

Front Panel Key: Setup Menu\MARKER SWEEP\C.W. FREQ MARKER 6

Related Commands: MK1-MK12

M6E Set sweep/zoom end to marker 6 frequency

MARKERS (Ch 6)

distance or time

Syntax: M6E

Remarks: Marker 6 must be set

Front Panel Key: Domain\SET RANGE\MARKER RANGE\STOP TIME

MARKER 6

Related Commands: MK1-MK12

10-146 37XXXC PM

M6S Set sweep/zoom start to marker 6 frequency

MARKERS (Ch 6)

distance or time

Syntax: M6S

Remarks: Marker 6 must be set

Front Panel Key: Domain\SET RANGE\MARKER RANGE\START TIME

MARKER 6

Related Commands: MK1-MK12

MAG Select log magnitude display for active

DISPLAY (Ch 4)

channel

Syntax: MAG

Front Panel Key: Graph Type\LOG MAGNITUDE

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MPH, PCP, PCS,

PCX?, PHA, PLG, PLR, POW, REL, RIM, SMC, SME, SMI, SWR

MAT Select matched reflective devices during cal

CALIBRATION (Ch 5)

Syntax: MAT

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\REFLECTION PAIRING\MATCHED (OPEN-OPEN/SHORT-SHORT)

Related Commands: MIX

MD Create a new disk directory

DISK FUNCTION (Ch 8)

Syntax: MI

Val 1: "pathspec" is a combination of letters, numbers, \ characters

and underscores which spell out the path and name of the new

directory

Remarks: Pathspec may include a drive letter of the form A: for the floppy

disk or C: for the hard drive. Directory names follow the same

rules as file names.

Related Commands: ADRIVE, CDRIVE, CD, MD

MEM Display trace memory on active channel

DISPLAY (Ch 4)

Syntax: MEM

Remarks: Store data from selected channel to memory (STD command),

before using this command to view a trace with trace memory

active.

Front Panel Key: Trace Memory\VIEW MEMORY

Related Commands: STD, CH1-CH4

MFGCT Start multiple frequency swept power gain

GAIN COMPRESSION (Ch 9)

compression test

Syntax: MFGCT

Remarks: Begins the automated sequence which collects and displays the

multiple frequency swept power gain compression data.

Related Commands: SPGCA, SPGCT

MHZ Suffix sets frequency data type and scales by

DATA ENTRY SUFFIXES (Ch 4)

1E6

Syntax: MHZ

MIN Select subtraction as trace math for active

DISPLAY (Ch 4)

channel

Syntax: MIN

Front Panel Key: Trace Memory\SELECT TRACE MATH\SUBSTRACT(-)

Related Commands: MUL, ADD, DIV, CH1-CH4, MTH?

MIX Select mixed reflective devices during

CALIBRATION (Ch 5)

calibration

Syntax: MIX

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\REFLECTION

PAIRING\MIXED (OPEN-SHORT-SHORT/OPEN)

Related Commands: MAT

10-148 37XXXC PM

MK1 Enter marker 1 frequency distance or time

MARKERS (Ch 6)

and turn on

Syntax: MK1

Val 1: Limited to current frequency, time, or distance

sweep/zoomrange

Units: time = S, MS, USC, PS, PSC, NS, NSC

distance = M, MTR, MM, MMT, CM, CMT

frequency = HZ, KHZ, MHZ, GHZ

Front Panel Key: Marker Menu\SET MARKER\MARKER 1 ON

Related Commands: MR1-MR12

MK1? Output marker 1 frequency distance or time

MARKERS (Ch 6)

Syntax: MK1?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3). The

value is in time, distance, or frequency units depending on

current sweep domain.

Front Panel Key: Marker Menu\SET MARKER\MARKER

Related Commands: OM1-OM12

MK2 Enter marker 2 frequency distance or time

MARKERS (Ch 6)

and turn on

Syntax: MK2

Val 1: Limited to current frequency, time, or distance

sweep/zoomrange

Units: time = S, MS, USC, PS, PSC, NS, NSC

distance = M, MTR, MM, MMT, CM, CMT

frequency = HZ, KHZ, MHZ, GHZ

Front Panel Key: Marker Menu\SET MARKER\MARKER 2 ON

Related Commands: MR1-MR12

MK2? Output marker 2 frequency distance or time

MARKERS (Ch 6)

Syntax: MK2?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3). The

value is in time, distance, or frequency units depending on

current sweep domain.

Front Panel Key: Marker Menu\SET MARKER\MARKER 2

Related Commands: OM1-OM12

MK3 Enter marker 3 frequency distance or time

MARKERS (Ch 6)

and turn on

Syntax: MK3

Val 1: Limited to current frequency, time, or distance

sweep/zoomrange

Units: time = S, MS, USC, PS, PSC, NS, NSC

distance = M, MTR, MM, MMT, CM, CMT

frequency = HZ, KHZ, MHZ, GHZ

Front Panel Key: Marker Menu\SET MARKER\MARKER 3 ON

Related Commands: MR1-MR12

MK3? Output marker 3 frequency distance or time

MARKERS (Ch 6)

Syntax: MK3?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3). The

value is in time, distance, or frequency units depending on

current sweep domain.

Front Panel Key: Marker Menu\SET MARKER\MARKER 3

Related Commands: OM1-OM12

MK4 Enter marker 4 frequency distance or time

MARKERS (Ch 6)

and turn on

Syntax: MK4

Val 1: Limited to current frequency, time, or distance

sweep/zoomrange

Units: time = S, MS, USC, PS, PSC, NS, NSC

distance = M, MTR, MM, MMT, CM, CMT

frequency = HZ, KHZ, MHZ, GHZ

Front Panel Key: Marker Menu\SET MARKER\MARKER 4 ON

Related Commands: MR1-MR12

MK4? Output marker 4 frequency distance or time

MARKERS (Ch 6)

Syntax: MK4?

10-150 37XXXC PM

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3). The

value is in time, distance, or frequency units depending on

current sweep domain.

Front Panel Key: Marker Menu\SET MARKER\MARKER 4

Related Commands: OM1-OM12

MK5 Enter marker 5 frequency distance or time

MARKERS (Ch 6)

and turn on

Syntax: MK5

Val 1: Limited to current frequency, time, or distance

sweep/zoomrange

Units: time = S, MS, USC, PS, PSC, NS, NSC

distance = M, MTR, MM, MMT, CM, CMT

frequency = HZ, KHZ, MHZ, GHZ

Front Panel Key: Marker Menu\SET MARKER\MARKER 5 ON

Related Commands: MR1-MR12

MK5? Output marker 5 frequency distance or time

MARKERS (Ch 6)

Syntax: MK5?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3). The

value is in time, distance, or frequency units depending on

current sweep domain.

Front Panel Key: Marker Menu\SET MARKER\MARKER 5

Related Commands: OM1-OM12

MK6 Enter marker 6 frequency distance or time

MARKERS (Ch 6)

and turn on

Syntax: MK6

Val 1: Limited to current frequency, time, or distance

sweep/zoomrange

Units: time = S, MS, USC, PS, PSC, NS, NSC

distance = M, MTR, MM, MMT, CM, CMT

frequency = HZ, KHZ, MHZ, GHZ

Front Panel Key: Marker Menu\SET MARKER\MARKER 6 ON

Related Commands: MR1-MR12

MK6? Output marker 6 frequency distance or time

MARKERS (Ch 6)

Syntax: MK6?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3). The

value is in time, distance, or frequency units depending on

current sweep domain.

Front Panel Key: Marker Menu\SET MARKER\MARKER 6

Related Commands: OM1-OM12

MKRC Select interpolated marker functionality

MARKERS (Ch 6)

Syntax: MKRC

Front Panel Key: Marker Menu\MARKER READOUT FUNCTIONS\MARKER

MODE CONTINUOUS

Related Commands: MKRD, MKRX?

MKRCOL Enter the color number for the markers

SYSTEM STATE (Ch 8)

Syntax: MKRCOL Val 1: 0 - 47

Remarks: Color palette numbers are listed in Table 10-3 at the end of this

chapter.

Front Panel Key: Utility Menu\COLOR CONFIGURATION\MARKERS AND

LIMITS

Related Commands: ANNCOL, DATCOL, GRTCOL, LAYCOL, MNUCOL, TRCCOL,

MKRCOL?

MKRCOL? Output the color number for the markers

SYSTEM STATE (Ch 8)

Syntax: MKRCOL?

Data I/O: Outputs the color palette number in ASCII <NR1> format

(paragraph 10-3).

Front Panel Key: Utility Menu\COLOR CONFIGURATION\MARKERS AND

LIMITS (Color)

Related Commands: ANNCOL?, DATCOL?, GRTCOL?, LAYCOL?, MNUCOL?,

TRCCOL?, MKRCOL

10-152 37XXXC PM

MKRD Select discrete marker functionality

MARKERS (Ch 6)

Syntax: MKRD

Front Panel Key: Marker Menu\MARKER READOUT FUNCTIONS\MARKER

MODE DISCRETE

Related Commands: MKRC, MKRX?

MKRX? Output interpolated/discrete marker

MARKERS (Ch 6)

functionality

Syntax: MKRX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: ."0" for Discrete or "1" for Interpolated.

Front Panel Key: Marker Menu\MARKER READOUT FUNCTIONS\MARKER

MODE

Related Commands: MKRC, MKRD

MKSL Marker search left

MARKERS (Ch 6)

Syntax: MKSL

Val 1: Depends on graph type Units: Depends on graph type

Remarks: If the optional val1 unit(s) argument is not supplied, the search

marker (marker 2) is moved from its current position to the next most previous occurrence of the search value (see mnemonic SRCH). If the val1 unit(s) argument is supplied, the search value is updated to the argument value prior to moving the

search marker.

Status Reporting: If the search fails to find the search value, the search failure bit

(bit 4) in the Limits Event Status Register will be set. An

Execution Error will also be reported.

Front Panel Key: Readout Marker\SEARCH LEFT

Related Commands: MKSR, SMKR, SRCH, SRCH?

MKSR Marker search right

MARKERS (Ch 6)

Syntax: MKSR

Val 1: Depends on graph type

Units: Depend on graph type

Remarks: If the optional val1 unit(s) argument is not supplied, the search

marker (marker 2) is moved from its current position to the next occurance of the search value (see mnemonic SRCH). If the val1 unit(s) argument is supplied, the search value is updated to the

argument value prior to moving the search marker.

Status Reporting: If the search fails to find the search value, the search failure bit

(bit 4) in the Limits Event Status Register will be set. An

Execution Error will also be reported.

Front Panel Key: Readout Marker\SEARCH RICHT

Related Commands: MKSL, SMKR, SRCH, SRCH?

MKT0 Turn marker tracking off MARKERS (Ch 6)

Syntax: MKT0

Front Panel Key: Readout Marker\TRACKING OFF

Related Commands: MKT1, MKTX?

MKT1 Turn marker tracking on MARKERS (Ch 6)

Syntax: MKT1

Front Panel Key: Readout Marker\TRACKING ON

Related Commands: MKT0, MKTX?

MKTX? Output marker tracking on/off status MARKERS (Ch 6)

Syntax: MKTX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Readout Marker\TRACKING

Related Commands: MKT0, MKT1

MM Suffix sets distance data type and scales by DATA ENTRY SUFFIXES (Ch 4)

1E-3

10-154 37XXXC PM

Syntax: MM

MMBX? Output Millimeter Wave band selection

MILLIMETER WAVE (Ch 9)

Syntax: MMBX?

Data I/O: Returns a value in ASCII <NR1> format (paragraph 10-3) as

follows: (0=Q22,1=V15,2=E12,3=E12E,4=W10,5=W10E, 6=F08)

MMN Move active marker to minimum trace value

MARKERS (Ch 6)

Syntax: MMN

Front Panel Key: Marker Menu\CH1-S11\MARKER TO MIN

Related Commands: MMX, CH1-CH4

MMT Suffix sets distance data type and scales by

DATA ENTRY SUFFIXES (Ch 4)

1E-3

Syntax: MMT

Related Commands: MM

MMX Move active marker to maximum trace value

MARKERS (Ch 6)

Syntax: MMX

Front Panel Key: Marker Menu\CH1-S11\MARKER TO MAX

Related Commands: MMN, CH1-CH4

MNUCOL Enter the color number for the menu headers

SYSTEM STATE (Ch 8)

Syntax: MNUCOL Val 1: 0 - 47

Remarks: Color palette numbers are listed in Table 10-3 (end of chapter).

Front Panel Key: Utility Menu\COLOR CONFIGURATION\MENU HEADERS

(TITLES & INFO)

Related Commands: ANNCOL, DATCOL, GRTCOL, LAYCOL, MKRCOL, TRCCOL,

MNUCOL?

MNUCOL? Output the color number for the menu

SYSTEM STATE (Ch 8)

headers

Syntax: MNUCOL?

Data I/O: Outputs the color palette number in ASCII <NR1> format

(paragraph 10-3).

Front Panel Key: Utility Menu\COLOR CONFIGURATION\MENU HEADERS

(TITLES & INFO) (Color)

Related Commands: ANNCOL?, DATCOL?, GRTCOL?, LAYCOL?, MKRCOL?,

TRCCOL?, MNUCOL?

MO1 Turn off marker 1 MARKERS (Ch 6)

Syntax: MO1

Front Panel Key: Marker Menu\SET MARKER\MARKER 1 OFF

MO2 Turn off marker 2 MARKERS (Ch 6)

Syntax: MO2

Front Panel Key: Marker Menu\SET MARKER\MARKER 2 OFF

MO3 Turn off marker 3 MARKERS (Ch 6)

Syntax: MO3

Front Panel Key: V\SET MARKER\MARKER 3 OFF

MO4 Turn off marker 4 MARKERS (Ch 6)

Syntax: MO4

Front Panel Key: Marker Menu\SET MARKER\MARKER 4 OFF

MO5 Turn off marker 5 MARKERS (Ch 6)

Syntax: MO5

Front Panel Key: Marker Menu\SET MARKER\MARKER 5 OFF

10-156 37XXXC PM

MO6 Turn off marker 6 MARKERS (Ch 6)

Syntax: M06

Front Panel Key: Marker Menu\SET MARKER\MARKER 6 OFF

MOF Turn marker display off MARKERS (Ch 6)

Syntax: MOF

Front Panel Key: Marker Menu\DISPLAY MARKERS OFF

MON Turn marker display on MARKERS (Ch 6)

Syntax: MON

Front Panel Key: Marker Menu\DISPLAY MARKERS ON

MON? Output marker display on/off status MARKERS (Ch 6)

Syntax: MON?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Marker Menu\DISPLAY MARKERS

MOSET Enter constant offset log magnitude for active DISPLAY (Ch 4)

channel

Syntax: MOSET

Units: DB, DBL, DBM, XX1, XX3, XM3

MOSET? Output constant offset log magnitude for DISPLAY (Ch 4)

active channel

Syntax: MOSET?

MPH Select log magnitude and phase display for DISPLAY (Ch 4)

active channel

Syntax: MPH

Front Panel Key: Graph Type\LOG MAGNITUDE AND PHASE

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, PCP, PCS,

PCX?, PHA, PLG, PLR, POW, REL, RIM, SMC, SME, SMI, SWR

MPN Enter pen number for markers and limits

HARD COPY (Ch 8)

Syntax: MPN
Val 1: 1 to 8
Units: XX1

Front Panel Key: Hard Copy Menu**PLOT OPTIONS\PEN**

COLORS\MARKERS AND LIMITS PEN

MPN? Output pen number for markers and limits

HARD COPY (Ch 8)

Syntax: MPN?

Data I/O: Outputs value in ASCII <NR1 > format (paragraph 10-3).

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PEN

COLORS\MARKERS AND LIMITS PEN

Related Commands: MPN, DPN?, GPN?, HPN?, TPN?

MR1 Turn marker 1 on and make it the active

MARKERS (Ch 6)

marker

Syntax: MR1

Front Panel Key: Marker Menu\MARKER 1 ON

MR1? Output marker 1 on/off status

MARKERS (Ch 6)

MARKERS (Ch 6)

Syntax: MR1?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Marker Menu\MARKER 1

Related Commands: MR102, MO102

MR2 Turn marker 2 on and make it the active

marker

Syntax: MR2

10-158 37XXXC PM

Front Panel Key: Marker Menu\MARKER 2 ON

MR2? Output marker 2 on/off status

MARKERS (Ch 6)

Syntax: MR2?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Marker Menu\MARKER 2

Related Commands: MR102, MO102

MR3 Turn marker 3 on and make it the active

MARKERS (Ch 6)

marker

Syntax: MR3

Front Panel Key: Marker Menu\MARKER 3 ON

MR3? Output marker 3 on/off status

MARKERS (Ch 6)

Syntax: MR3?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Marker Menu\MARKER 3

Related Commands: MR102, MO102

MR4 Turn marker 4 on and make it the active

MARKERS (Ch 6)

marker

Syntax: MR4

Front Panel Key: Marker Menu\MARKER 4 ON

MR4? Output marker 4 on/off status

MARKERS (Ch 6)

Syntax: MR4?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Marker Menu\MARKER 4

Related Commands: MR102, MO102

MR5 Turn marker 5 on and make it the active

MARKERS (Ch 6)

marker

Syntax: MR5

Front Panel Key: Marker Menu\MARKER 5 ON

MR5? Output marker 5 on/off status

MARKERS (Ch 6)

Syntax: MR5?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Marker Menu\MARKER 5

Related Commands: MR102, MO102

MR6 Turn marker 6 on and make it the active

MARKERS (Ch 6)

marker

Syntax: MR6

Front Panel Key: Marker Menu\MARKER 6 ON

MR6? Output marker 6 on/off status

MARKERS (Ch 6)

Syntax: MR6?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Marker Menu\MARKER 6

Related Commands: MR102, MO102

MRM Display the Marker Readout menu

MARKERS (Ch 6)

Syntax: MRM

Related Commands: LFP, LFR, LTST

10-160 37XXXC PM

MRR Restore original marker range

TIME DOMAIN (Ch 9)

Syntax: MRR

Remarks: Valid only in the Time Domain mode.

Front Panel Key: Domain\SET RANGE\MARKER RANGE\RESTORE

ORIGINAL RANGE

MRX? Output active marker number

MARKERS (Ch 6)

Syntax: MRX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for No marker, "1" thru "6" for the marker number.

Related Commands: MR102

MS Suffix sets time data type and scales by 1E-3

DATA ENTRY SUFFIXES (Ch 4)

Syntax: MS

MS0 Turn multiple source mode off

MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: MS0

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE OFF

Related Commands: MS1, MSD

MS1 Turn multiple source mode on

MULTIPLE SOURCE CONTROL (Ch 9)

DATA TRANSFER (Ch 7)

Syntax: MS1

Front Panel Key: Options Menu\MILLIMETER WAVE BAND

DEFINITION\MULTIPLE SOURCE MODE ON

Related Commands: MS0, MSD

MSB Select most significant byte first binary

transfer

Syntax: MSB

Remarks: Default format for byte ordering — not suitable for IBM/Intel

based computers.

Related Commands: LSB

MSD Select multiple source define mode

MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: MSD

Related Commands: MS0, MS1

MSFH Enter high loss value for shape factor

MARKERS (Ch 6)

calculation

Syntax: MSFH

Val 1: Depends on graph type; refer to Table 11-2 at the end of this

chapter.

Units: Depends on graph type; refer to Table 11-2 at the end of this

chapter.

Front Panel Key: Readout Marker\SHAPE FACTOR HIGH

Related Commands: MSFL, MSFH?, FLTS?, DSF0, DSF1

MSFH? Output high loss value for shape factor

calculation

MARKERS (Ch 6)

Syntax: MSFH?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Readout Marker\SHAPE FACTOR HIGH

Related Commands: MSFH

MSFL Enter low loss value for shape factor

MARKERS (Ch 6)

calculation

Syntax: MSFI

Val 1: Depends on graph type; refer to Table 11-2 at the end of this

chapter.

Units: Depends on graph type; refer to Table 11-2 at the end of this

chapter.

Front Panel Key: Readout Marker\SHAPE FACTOR LOW

Related Commands: MSFH, MSFL?, FLTS?, DSF0, DSF1

10-162 37XXXC PM

MSFL? Output low loss value for shape factor

MARKERS (Ch 6)

calculation

Syntax: MSFL?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Readout Marker\SHAPE FACTOR LOW

Related Commands: MSFL

MSR0 Select 0 as reference for marker search and

MARKERS (Ch 6)

MARKERS (Ch 6)

MARKERS (Ch 6)

MARKERS (Ch 6)

bandwidth calculation

Syntax: MSR0

Front Panel Key: Readout Marker\REFERENCE 0 Db

Related Commands: MSRD, MSRM, MSRX?

MSRD Select delta reference marker as reference for

marker search and bandwidth calculation

itii caicalation

Syntax: MSRD

Related Commands: MSR0, MSRM, MSRX?

MSRM Select maximum as reference for marker

search and bandwidth calculation

Syntax: MSRM

Related Commands: MSR0, MSRD, MSRX?

MSRX? Output reference selection for marker search

and bandwidth calculation

Syntax: MSRX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for Zero dB, "1" for Delta Ref Mrkr, "2" for Maximum

value.

Front Panel Key: Readout Marker\REFERENCE 0 Db

Related Commands: MSR0, MSRD, MSRM

MSX? Output multiple source mode on/off/define MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: MSX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows:."0" for OFF, "1" for ON, "2" for DEFINE.

MTH? Output trace math math type

DISPLAY (Ch 4)

Syntax: MTH?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "1" for add, "2" for substract, "3" for multiply, "4" for

divide.

Related Commands: ADD, DIV, MUL, MIN, DAT?

MTR Suffix sets distance data type

DATA ENTRY SUFFIXES (Ch 4)

Syntax: MTR

Related Commands: M

MUL Select multiplication as trace math for active

DISPLAY (Ch 4)

channel

Syntax: MUL

Front Panel Key: Trace Memory\SELECT TRACE MATH\MULTIPLY(*)

Related Commands: DIV, ADD, MIN, MTH?, CH1-CH4

MV Suffix sets voltage data type and scales by

DATA ENTRY SUFFIXES (Ch 4)

1E-3

Syntax: MV

NA1 Select a1 as numerator for parameter being

USER DEFINED PARAMETERS (Ch 9)

defined

Syntax: NA1

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\PHASE LOCK (or USER

LABEL\NUMERATOR a1)

10-164 37XXXC PM

Related Commands: NA2, NB1, NB2, NU1, NUM?

NA2 Select a2 as numerator for parameter being USER DEFINED PARAMETERS (Ch 9)

defined

Syntax: NA2

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\PHASE LOCK (or USER

LABEL\NUMERATOR a2)

Related Commands: NA1, NB1, NB2, NU1, NUM?

NB1 Select b1 as numerator for parameter being USER DEFINED PARAMETERS (Ch 9)

defined

Syntax: NB1

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\PHASE LOCK (or USER

LABEL\NUMERATOR b1)

Related Commands: NA1, NA2, NB2, NU1, NUM?

NB2 Select b2 as numerator for parameter being USER DEFINED PARAMETERS (Ch 9)

defined

Syntax: NB2

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\PHASE LOCK (or USER

LABEL\NUMERATOR b2)

Related Commands: NA1, NA2, NB1, NU1, NUM?

NCS Go to next calibration step CALIBRATION (Ch 5)

Syntax: NCS

Related Commands: OPC, TCD, TC1, TC2

NEWCO Activate color configuration New SYSTEM STATE (Ch 8)

Syntax: NEWCO

Front Panel Key: Utility Menu\COLOR CONFIGURATION\COLOR

SCHEMES\NEW COLORS

Related Commands: BRILL, CLASS, INVER, SOFTCO, STOCO, RSTCOL

NMKR Select normal markers on active channel

MARKERS (Ch 6)

marker mode

Syntax: NMKR

Related Commands: AMKR, FMKR, SMKR, XMKR?

NOC Select normal calibration data points

CALIBRATION (Ch 5)

Syntax: NOC

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL (1601 POINTS MAXIMUM)

Related Commands: SRT, STP, TOC, DFC, CWC

NOFST Enter nominal offset value for external gain

GAIN COMPRESSION (Ch 9)

Syntax: NOFST

Val 1: The nominal offset value in ASCII <NRF> format (paragraph

10-3)

Units: DB

Remarks: This is the gain in the external path between port 1 and the

AUT.

Front Panel Key: Appl\SWEPT FREQUENCY GAIN

COMPRESSION\NOMINAL OFFSET

Related Commands: SFGCA, SPGCA, NOFST?

NOFST? Output nominal offset value for external gain

GAIN COMPRESSION (Ch 9)

Syntax: NOFST?

Data I/O: The value is output in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Appl\SWEPT FREQUENCY GAIN

COMPRESSION\NOMINAL OFFSET

Related Commands: SFGCA, SPGCA, NOFST

10-166 37XXXC PM

NP101 Set data points to 101

MEASUREMENT (Ch 4)

Syntax: NP101

Remarks: Restarts the sweep.

Front Panel Key: Data Points \1601 POINTS MAX or Begin Cal \NEXT CAL

STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\START FREQUENCY\MAXIMUM

NUMBER OF DATA POINT(S)

Related Commands: NPx series, WFS, *OPC, *OPC?, FLO

NP1601 Set data points to 1601

MEASUREMENT (Ch 4)

Syntax: NP1601

Remarks: Restarts the sweep.

Front Panel Key: Data Points \1601 POINTS MAX or Begin Cal \NEXT CAL

STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\START FREQUENCY\MAXIMUM

NUMBER OF DATA POINT(S)

Related Commands: NPx series, WFS, *OPC, *OPC?, FHI, ONP

NP201 Set data points to 201

MEASUREMENT (Ch 4)

Syntax: NP201

Remarks: Restarts the sweep.

Front Panel Key: Data Points 1601 POINTS MAX or Begin Cal NEXT CAL

STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\START FREQUENCY\MAXIMUM

NUMBER OF DATA POINT(S)

Related Commands: NPx series, WFS, *OPC, *OPC?, ONP

NP401 Set data points to 401

MEASUREMENT (Ch 4)

Syntax: NP401

Remarks: Restarts the sweep.

Front Panel Key: Data Points \1601 POINTS MAX or Begin Cal \NEXT CAL

STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\START FREQUENCY\MAXIMUM

NUMBER OF DATA POINT(S)

Related Commands: NPx series, WFS, *OPC, *OPC?, FME, ONP

NP51 Set data points to 51

MEASUREMENT (Ch 4)

Syntax: NP51

Remarks: Restarts the sweep.

Front Panel Key: Data Points \1601 POINTS MAX or Begin Cal \NEXT CAL

STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\START FREQUENCY\MAXIMUM

NUMBER OF DATA POINT(S)

Related Commands: NPx series, WFS, *OPC, *OPC?, ONP

NP801 Set data points to 801

MEASUREMENT (Ch 4)

Syntax: NP801

Remarks: Restarts the sweep.

Front Panel Key: Data Points \1601 POINTS MAX or Begin Cal \NEXT CAL

STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\START FREQUENCY\MAXIMUM

NUMBER OF DATA POINT(S)

Related Commands: NPx series, WFS, *OPC, *OPC?, ONP

NRD Display non-ratioed parameters on 4 channels

DIAGNOSTICS (Ch 8)

Syntax: NRD

Remarks: For service use only.

NRMS Normalize S21 for gain compression testing

GAIN COMPRESSION (Ch 9)

Syntax: NRMS

Remarks: An S21 normalization is one of the required steps in both swept

frequency and swept power gain compression testing.

10-168 37XXXC PM

Front Panel Key: Setup Menu\SWEPT POWER GAIN

COMPRESSION\MORE\S21 OPTIONS\WAIT FOR ONE

COMPLETE SWEEP BEFORE STORING

Related Commands: SFGCA, SPGCA, CALR, UNDOGC

NRMS21

NRMS21 Select Gain Compression bottom graph GAIN COMPRESSION (Ch 9)

displays Normalized S21 Syntax:

Front Panel Key: Setup Menu\SWEPT FREQUENCY GAIN

COMPRESSION\NORMALIZE S21\NORMALIZE S21 or

Setup Menu\SWEPT POWER GAIN

COMPRESSION\MORE\S21 OPTIONS\NORMALIZE S21

Related Commands: DSP21, DSP21?

NS Suffix sets time data type and scales by 1E-9 DATA ENTRY SUFFIXES (Ch 4)

> Syntax: NS

Related Commands: **NSC**

NSC Suffix sets time data type and scales by 1E-9 DATA ENTRY SUFFIXES (Ch 4)

> Syntax: NSC

Related Commands: NS

NU1 Select unity as numerator for parameter being USER DEFINED PARAMETERS (Ch 9)

defined

Syntax: NU1

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\PHASE LOCK (or USER

LABEL\NUMERATOR UNITY)

Related Commands: NA1, NA2, NB1, NB2, NUM?

NUM? USER DEFINED PARAMETERS (Ch 9) Output numerator selection for parameter

being defined

Syntax: NUM?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3) as

follows: "1" for unity, "2" for a1, "3" for a2, "4" for b1, "5" for

b2.

Related Commands: NA1, NA2, NB1, NB2, NU1

OACCHAR Output AutoCal characterization data to the GPIB

AUTOCAL (Ch 5)

._ __

Syntax: OACCHAR

Data I/O: Outputs an <Arbitrary Block> (paragraph 10-3).

Related Commands: IACCHAR

OACSER Output auto-cal box serial number

AUTOCAL (Ch 5)

Syntax: OACSER

Data I/O: Outputs the Autocal serial number in arbitrary ASCII format

(paragraph 10-3).

OACTYPE Output auto-cal box type

AUTOCAL (Ch 5)

Syntax: OACTYPE

Data I/O: Outputs its value using ASCII <NR1> format (paragraph 10-3),

as follows: "6" for ELECTRONIC, "9" for MECHANICAL.

OAM1 Output channel 1 active marker value

DATA TRANSFER (Ch 7)

Syntax: OAM1

Remarks: Data units depend on the graph type currently set. (See Table

10-2 at the end of this chapter.)

Data I/O: Outputs ASCII <NR3> formatted data (see paragraph 10-3). The

data output consists of one or two elements, whose values will be

determined by the graph display type selected.

Front Panel Key: Readout Marker\CH1-S11

Related Commands: OM1 thru OM6, OAM2, OAM3, OAM4

OAM2 Output channel 2 active marker value

DATA TRANSFER (Ch 7)

10-170 37XXXC PM

Syntax: OAM2

Remarks: Data units depend on the graph type currently set. (See Table

10-2 at the end of this chapter.)

Data I/O: Outputs ASCII <NR3> formatted data (see paragraph 10-3). The

data output consists of one or two elements, whose values will be

determined by the graph display type selected.

Front Panel Key: Readout Marker\CH2-S21

Related Commands: OM1 thru OM6, OAM1, OAM3, OAM4

OAM3 Output channel 3 active marker value

DATA TRANSFER (Ch 7)

Syntax: OAM3

Remarks: Data units depend on the graph type currently set. (See Table

10-2 at the end of this chapter.)

Data I/O: Outputs ASCII <NR3> formatted data (see paragraph 10-3). The

data output consists of one or two elements, whose values will be

determined by the graph display type selected.

Front Panel Key: Readout Marker\CH3-S12

Related Commands: OM1 thru OM6, OAM1, OAM2, OAM4

OAM4 Output channel 4 active marker value

DATA TRANSFER (Ch 7)

Syntax: OAM4

Remarks: Data units depend on the graph type currently set. (See Table

10-2 at the end of this chapter.)

Data I/O: Outputs ASCII <NR3> formatted data (see paragraph 10-3). The

data output consists of one or two elements, whose values will be

determined by the graph display type selected.

Front Panel Key: Readout Marker\CH4-S22

Related Commands: OM1 thru OM6, OAM1, OAM2, OAM3

OBMP Output the display as a bitmap

HARD COPY (Ch 8)

Syntax: OBMP

Data I/O: Bit map is output with an <Arbitrary Block> format (paragraph

10-3).

Block Size: 38470 bytes for a black on white bitmap, 307455 bytes for a color

on white or true color bitmap

Related Commands: BMPB,BMPC, BMPT, SAVE

OC1 Output calibration coefficients 1

DATA TRANSFER (Ch 7)

Syntax: OC1

Remarks: Outputs error correction coefficient selected (1 - 24), see Table

10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to twice the

currently set number of data points. The OCx commands output

an (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see

format selected.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: OCA-OCC, OCL, FMA, FMB, FMC, LSB, MSB, ONP

OC10 Output calibration coefficients 10

DATA TRANSFER (Ch 7)

Syntax: OC10

Remarks: Outputs error correction coefficient selected (1 - 24), see Table

10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to twice the

currently set number of data points. The OCx commands output

an (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see

format selected.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: OCA-OCC, OCL, FMA, FMB, FMC, LSB, MSB, ONP

OC11 Output calibration coefficients 11

DATA TRANSFER (Ch 7)

Syntax: OC11

10-172 37XXXC PM

Remarks: Outputs error correction coefficient selected (1 - 24), see Table

10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to twice the

currently set number of data points. The OCx commands output

an (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see

format selected.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: OCA-OCC, OCL, FMA, FMB, FMC, LSB, MSB, ONP

OC12 Output calibration coefficients 12

DATA TRANSFER (Ch 7)

Syntax: OC12

Remarks: Outputs error correction coefficient selected (1 - 24), see Table

10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to twice the

currently set number of data points. The OCx commands output

an (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see

format selected.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: OCA-OCC, OCL, FMA, FMB, FMC, LSB, MSB, ONP

OC2 Output calibration coefficients 2

DATA TRANSFER (Ch 7)

Syntax: OC2

Remarks: Outputs error correction coefficient selected (1 - 24), see Table

10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to twice the

currently set number of data points. The OCx commands output

an (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see

format selected.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: OCA-OCC, OCL, FMA, FMB, FMC, LSB, MSB, ONP

OC3 Output calibration coefficients 3

DATA TRANSFER (Ch 7)

Syntax: OC3

Remarks: Outputs error correction coefficient selected (1 - 24), see Table

10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to twice the

currently set number of data points. The OCx commands output

an (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see

format selected.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: OCA-OCC, OCL, FMA, FMB, FMC, LSB, MSB, ONP

OC4 Output calibration coefficients 4

DATA TRANSFER (Ch 7)

Syntax: OC4

Remarks: Outputs error correction coefficient selected (1 - 24), see Table

10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to twice the

currently set number of data points. The OCx commands output

an (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see

format selected.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: OCA-OCC, OCL, FMA, FMB, FMC, LSB, MSB, ONP

OC5 Output calibration coefficients 5

DATA TRANSFER (Ch 7)

Syntax: OC5

Remarks: Outputs error correction coefficient selected (1 - 24), see Table

10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to twice the

currently set number of data points. The OCx commands output

10-174 37XXXC PM

an (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see

format selected.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: OCA-OCC, OCL, FMA, FMB, FMC, LSB, MSB, ONP

OC6 Output calibration coefficients 6

DATA TRANSFER (Ch 7)

Syntax: OC6

Remarks: Outputs error correction coefficient selected (1 - 24), see Table

10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to twice the

currently set number of data points. The OCx commands output

an (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see

format selected.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: OCA-OCC, OCL, FMA, FMB, FMC, LSB, MSB, ONP

OC7 Output calibration coefficients 7

DATA TRANSFER (Ch 7)

Syntax: OC7

Remarks: Outputs error correction coefficient selected (1 - 24), see Table

10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to twice the

currently set number of data points. The OCx commands output

an (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see

format selected.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: OCA-OCC, OCL, FMA, FMB, FMC, LSB, MSB, ONP

OC8 Output calibration coefficients 8

DATA TRANSFER (Ch 7)

Syntax: OC8

Remarks: Outputs error correction coefficient selected (1 - 24), see Table

10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to twice the

currently set number of data points. The OCx commands output

an (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see

format selected.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: OCA-OCC, OCL, FMA, FMB, FMC, LSB, MSB, ONP

OC9 Output calibration coefficients 9

DATA TRANSFER (Ch 7)

Syntax: OC9

Remarks: Outputs error correction coefficient selected (1 - 24), see Table

10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to twice the

currently set number of data points. The OCx commands output

an (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see

format selected.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: OCA-OCC, OCL, FMA, FMB, FMC, LSB, MSB, ONP

OCA Output calibration coefficient A

DATA TRANSFER (Ch 7)

Syntax: OCA

Remarks: The OCA, OCB, and OCC are equivalents of OC10, OC11, and

OC12 respectively.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE 4 FMC MODE

OCB Output calibration coefficient B

DATA TRANSFER (Ch 7)

Syntax: OCB

10-176 37XXXC PM

Remarks: The OCA, OCB, and OCC are equivalents of OC10, OC11, and

OC12 respectively.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE 4 FMC MODE

OCC Output calibration coefficient C

DATA TRANSFER (Ch 7)

Syntax: OCC

Remarks: The OCA, OCB, and OCC are equivalents of OC10, OC11, and

OC12 respectively.

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE 4 FMC MODE

OCD Output corrected data for active channel parameter

DATA TRANSFER (Ch 7)

Syntax: OCD

Remarks: Data correction is valid for normalization and electrical length

and, if applicable, time domain. Wait for full sweep to be

updated (WFS) prior to outputting data.

Data I/O: Outputs a floating point array whose size is equal to twice the

number of points in the current sweep (contains real and imaginary data pairs for each point). The OCD command outputs an <Arbitrary Block> (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see format selector commands FMA, FMB,

FMC).

Block Size: 12 + (2 * NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: FMA, FMB, FMC, LSB, MSB, ORD, OFD, ONP, WFS, CH1-CH4

OCF Output front panel setup and calibration data

DATA TRANSFER (Ch 7)

Syntax: OCF

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3). This same

data can later be input using the ICF command. The data is in internal system binary format and must not be edited or altered

in any way.

Block Size: 21690 bytes (NO CALIBRATION) 188371 bytes

(CALIBRATION APPLIED)

Related Commands: OFP, ICF

OCL Output all applicable calibration coefficients

DATA TRANSFER (Ch 7)

for cal type

Syntax: OCL

Remarks: Outputs all error correction coefficients applicable to the current

calibration type; see Table 10-1 at the end of this chapter.

Data I/O: An array of floating point values whose size is equal to the

currently set number of data points. The OCL command outputs an <Arbitrary Block> (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format

(see format selector commands FMA, FMB, FMC).

Block Size: 12 + (2 * NUMBER OF POINTS) * (NUMBER OF CAL TERMS)

*18 FMA MODE *8 FMB MODE *4 FMC MODE

Related Commands: OC1-OC12, OCA, OCB, OCC, ICL, ONCP, ONP

OCM Select offset short calibration method

CALIBRATION (Ch 5)

Syntax: OCM

Front Panel Key: Begin Cal\CHANGE CAL METHOD AND LINE

TYPE\OFFSET SHORT

Related Commands: LCM, SCM

OCS Output internal buffer collected data

INT. BUFFER DATA COLL. (Ch 7)

Syntax: OCS

Remarks: The entire contents of the internal buffer are output and the

buffer reset. The output format is always FMC.

Data I/O: The data is output as an <Arbitrary Block> (pragraph 11-3).

Block Size: The size of the block depends of the number of data points

collected. SIZE = 8 * number of points.

Status Reporting: Sets the Collection Buffer Full bit (CBF) in the Extended Event

Status Register when the collection buffer becomes full.

10-178 37XXXC PM

Related Commands: CCD, CFD, CRD, DCCTN, DCCTN?, DCHLD, DCMRK

ODAT Output hard copy tabular data to GPIB

HARD COPY (Ch 8)

Syntax: ODAT

Remarks: Tabular data is the same as the data saved in a tabular data file

(*.DAT).

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3).

Block Size: Size varies depending on the display type and number of data

points. A 4 channel display at 401 data points produces 62,479 bytes. 4 channel 1601 points produces 239,780 bytes. 1 channel

401 points produces 22,530 bytes.

Related Commands: SAVE, DISKRD, OHGL, OS2P, OTXT

ODR Output directory listing of the floppy drive

DATA TRANSFER (Ch 7)

Syntax: ODR

Data I/O: Outputs <Arbitrary Block> formatted list (paragraph 10-3) of

comma separated filenames and sizes.

Block Size: 50 + 80 * (NUMBER OF FILES)

ODRH Output directory listing of the hard drive

DATA TRANSFER (Ch 7)

Syntax: ODRH

Data I/O: Outputs <Arbitrary Block> formatted list (paragraph 10-3) of

comma separated filenames and sizes.

Block Size: 50 + 80 * (NUMBER OF FILES)

ODV Output distance values for time domain

DATA TRANSFER (Ch 7)

Syntax: ODV

Remarks: The converted distance values depend on the dielectric type set

(see DISPLAY group, Dielectric commands).

Data I/O: An array of floating point values whose size is the currently set

number of data points. The ODV command outputs an

 $<\!$ Arbitrary Block> (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format

(see format selector commands FMA, FMB, FMC).

Block Size: 12 + (NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: FMA, FMB, FMC, LSB, MSB, ONP, OTV, OFV

OEB Output extended status byte

STATUS REPORTING (Ch 7)

Syntax: OEB

Remarks: Returns the decimal value of the binary bit pattern of the

Extended Event Status Register. The value will be from 0 to

32767.

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3.)

Related Commands: IEM, OEM

OEL Output error list

DATA TRANSFER (Ch 7)

Syntax: OEL

Data I/O: Outputs formatted list of error messages separated with

commas.

Block Size: 50 + 50 * (NUMBER OF ERRORS)

Related Commands: ONE, OGE, OGL

OEM Output extended status byte mask

STATUS REPORTING (Ch 7)

Syntax: OEM

Remarks: Returns the decimal value of the bit pattern of the Extended

Event Status Enable Register. The value will be from 0 to 32767.

Data I/O: Outputs value in ASCII <NR1> format paragraph 10-3)

Related Commands: IEM

OFD Output final data for active channel

parameter

DATA TRANSFER (Ch 7)

10-180 37XXXC PM

DISPLAY (Ch 4)

DISPLAY (Ch 4)

Syntax: OFD

Remarks: Data units depend on the graph type currently set. (See Table

10-2 at the end of this chapter).

Data I/O: Outputs a floating point array whose size is equal to the number

of points in the current sweep (the array is doubled for dual

graph displays, that is,. log mag/phase).

The OFD command outputs an <Arbitrary Block> (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see format selector

commands FMA, FMB, FMC).

Block Size: SINGLE GRAPH DPR0 MODE 12 + (NUMBER OF POINTS)

*18 FMA MODE *8 FMB MODE *4 FMC MODE DUAL

GRAPH OR SINGLE GRAPH DPR1 MODE 12 + (2 *

NUMBER, OF POINTS) *18 FMA MODE *8 FMB MODE

*4 FMC MODE

Related Commands: FMA, FMB, FMC, LSB, MSB, DPR0, DPR1, ONP, OCD, ORD,

CH1-CH4, WFS

OFF Enter offset value for top graph of active

channel

Syntax: OFF

Val 1: Depends on graph type (see DISPLAY group).

Units: Depends on graph type (see Table 11-2 at the end of this

chapter).

Front Panel Key: Set Scale\LOG MAG REFERENCE VALUE

Related Commands: SCL, ASC, CH1-CH4

OFF2 Enter offset value for bottom graph of active

channel

Syntax: OFF2

Val 1: Depends on graph type (see DISPLAY group).

Units: Depends on graph type (see Table 11-2 at the end of this

chapter).

Front Panel Key: Set Scale \ LOG MAG REFERENCE VALUE

Related Commands: SCL2, REF2

OFF2? Output offset value for bottom graph of active

DISPLAY (Ch 4)

channel

Syntax: OFF2?

Data I/O: Outputs a value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Set Scale\LOG MAG REFERENCE VALUE

Related Commands: OFF2

OFF? Output offset value for top graph of active

DISPLAY (Ch 4)

channel

Syntax: OFF?

Data I/O: Outputs a value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Set Scale\LOG MAG REFERENCE VALUE

OFP Output current front panel setup

DATA TRANSFER (Ch 7)

Syntax: OFP

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) for input

later using the IFP command. The data is in internal system binary format and must not be edited or altered in any way.

Block Size: 8711 bytes

Related Commands: OCF, IFP

OFPC Output flat power coefficients

DATA TRANSFER (Ch 7)

Syntax: OFPC

Data I/O: Outputs an <Arbitrary Block> (paragraph 10-3).

Related Commands: FMA, FMB, FMC, MSB, LSB, IFPC, OFV, IFV

OFV Output frequency values

DATA TRANSFER (Ch 7)

Syntax: OFV

Remarks: An array of floating point values whose size is the currently set

number of data points. The OFV command outputs an

<Arbitrary Block> (paragraph 10-3) containing either ASCII or

10-182 37XXXC PM

binary formatted data depending on currently selected format

(see format selector commands FMA, FMB, FMC).

Block Size: 12 + (NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: ONP, FMA, FMB, FMC, LSB, MSB

OGCFD Output gain compression final data to GPIB

MEASUREMENT DATA (Ch 7)

Syntax: OGCFD

Remarks: The data consists of two elements per swept power gain

compression frequency point. The first element is the input power which produces the target gain compression value, and the second element is the output power corresponding to that input power. The format of the output data depends on the FMA,

FMB or FMC mode programmed.

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3).

Block Size: The block size depends on the number of frequency points and

the FMA, FMB or FMC mode. For 10 frequency points, FMA produced 386 bytes, FMB produces 167 bytes and FMC produces 86 bytes. For 5 frequency points, FMA produces 196 bytes, FMB

produces 86 bytes and FMC produces 46 bytes.

Related Commands: SPGCA, MFGCT

OGCFV Output gain compression frequency values to GPIB

MEASUREMENT DATA (Ch 7)

Syntax: OGCFV

Remarks: This mnemonic outputs the frequency values for the swept

power gain compression application.

Data I/O: The data is formatted depending on the FMA, FMB, FMC, LSB,

MSB formats and encapsulated in an <Arbitrary Block> format

(paragraph 10-3).

Block Size: The block size depends on the number of data points and the

FMA, FMB, FMC format. For ten frequency points, FMA produces 195 bytes, FMB produces 85 bytes, FMC produces 45 bytes. For five frequency points, FMA produces 99 bytes, FMB

produces 45 bytes and FMC produces 25 bytes.

Related Commands: SPGCA, IFV, ONDF

OGCTXT Output text format gain compression data to

HARD COPY (Ch 8)

GPIB

Syntax: OGCTXT

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3).

Block Size: The block size depends on the number of frequency points. 10

frequency points produces 711 bytes. 5 frequency points

produces 430 bytes.

Related Commands: SPGCA, MFGCT, SAVEGC

OGE Output extended description of current GPIB

DATA TRANSFER (Ch 7)

error

Syntax: OGE

Remarks: See error handling information in Chapter 7 for interpretation of

the output string.

Data I/O: Outputs string in <Arbitrary ASCII> format.

Block Size: 210 bytes, maximum

Related Commands: ONE, OEL

OGL Output extended description of previous GPIB

DATA TRANSFER (Ch 7)

error

Syntax: OGL

Remarks: See error handling information in Chapter 7 for interpretation of

the output string.

Data I/O: Outputs string in <Arbitrary ASCII> format.

Block Size: 210 bytes, maximum

Related Commands: ONE, OEL.

OHDR Output hard copy header information to GPIB

HARD COPY (Ch 8)

Syntax: OHDR

10-184 37XXXC PM

Data I/O: Outputs data in Arbitrary Block format (paragraph 10-3).

Block Size: A maximum of approximately 1500 bytes

OHDW Output hardware cal data to GPIB

MISCELLANEOUS (Ch 7)

Syntax: OHDW

Val 1: A three character string that indicates the type of hardware

calibration data to output.

Remarks: The three character strings to indicate the currently defined

hardware calibration types are: "ALL" for the combined hardware calibration data, "ALC" for the ALC calibration data, "FRE" for the frequency calibration data, "LO1" for the First LO calibration data, "LO2" for the Second LO calibration data and "SLT" for the source lock threshold calibration data and "AL2"

for the Port 2 ALC data.

Data I/O: The data is output in <Arbitrary Block> format (paragraph

10-3).

Block Size: The "ALL" data is 1191 bytes, the "ALC" data is 297 bytes, the

"FRE" data is 436 bytes, the "LO1" data is 351 bytes, the "LO2"

data is 351 bytes and the "SLT" data is 293 bytes.

Related Commands: IHDW, SAVE, DISKRD

OHGL Output HPGL format data to GPIB

HARD COPY (Ch 8)

Syntax: OHGL

Remarks: This is the same data which gets written to the plotter on a plot.

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3).

Block Size: The block size varies depending on the display and number of

data points. A four-channel display with 401 points produces 40,314 bytes. A four-channel 1601 point display produces 110,314 bytes. A single channel 401 point display produces

12,659 bytes.

Related Commands: SAVE, DISKRD, ODAT, OS2P, OTXT

OHM Suffix sets impedance data type

DATA ENTRY SUFFIXES (Ch 4)

Syntax: OHM

OID Output instrument identification string

DATA TRANSFER (Ch 7)

Syntax: OID

Remarks: Outputs the VNA operation string containing the following fields

separated by commas: Model, Low Frequency in GHz, High Frequency in GHz, Low Power in dB, Reset Power in dB, Software Revision. The actual information for the 37XXX queried will be returned in each field. The power values indicate the ALC range. Use the PIP? query to output absolute

power setting at Port 1.

NOTE: System power in excess of reset level is available, but not guaranteed to remain level. Excessive system power setting will cause error 5110: RF PWR UNLEVELED and/or error 52XX: RF OVERLOAD to be reported. To determine maximum available power, consult Source Control Specifications in Operation

Manual.

Data I/O: Outputs an <Arbitrary ASCII > format (paragraph 10-3).

Block Size: 50 bytes, maximum

Related Commands: *IDN?, *OPT?, PIP?

OLB Output limits status byte

STATUS REPORTING (Ch 7)

Syntax: OLB

Remarks: Returns the decimal value of the bit pattern of the Limits Status

Register. The value will be 0 - 255.

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3).

Related Commands: ILB

OLM Output limits status byte mask

DATA TRANSFER (Ch 7)

Syntax: OLM

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3).

Related Commands: ILM

OM1 Output marker 1 value

DATA TRANSFER (Ch 7)

Syntax: OM1

10-186 37XXXC PM

Remarks: Data units depend on the graph type currently set. (See Table

10-2 at the end of this chapter.)

Data I/O: Outputs ASCII <NR3 > formatted data (see paragraph 10-3).

The data output consists of one or two elements, whose values

will be determined by the graph display type selected.

Front Panel Key: Marker Menu\MARKER 1 ON

Related Commands: CH1-CH4, DPR0, DPR1

OM2 Output marker 2 value

DATA TRANSFER (Ch 7)

Syntax: OM2

Remarks: Data units depend on the graph type currently set. (See Table

10-2 at the end of this chapter.)

Data I/O: Outputs ASCII <NR3 > formatted data (see paragraph 10-3).

The data output consists of one or two elements, whose values

will be determined by the graph display type selected.

Front Panel Key: Marker Menu\MARKER 2 ON

Related Commands: CH1-CH4, DPR0, DPR1

OM3 Output marker 3 value

DATA TRANSFER (Ch 7)

Syntax: OM3

Remarks: Data units depend on the graph type currently set. (See Table

10-2 at the end of this chapter.)

Data I/O: Outputs ASCII <NR3 > formatted data (see paragraph 10-3).

The data output consists of one or two elements, whose values

will be determined by the graph display type selected.

Front Panel Key: Marker Menu\MARKER 3 ON

Related Commands: CH1-CH4, DPR0, DPR1

OM4 Output marker 4 value

DATA TRANSFER (Ch 7)

Syntax: OM4

Remarks: Data units depend on the graph type currently set. (See Table

10-2 at the end of this chapter.)

Data I/O: Outputs ASCII <NR3 > formatted data (see paragraph 10-3).

The data output consists of one or two elements, whose values

will be determined by the graph display type selected.

Front Panel Key: Marker Menu\MARKER 4 ON

Related Commands: CH1-CH4, DPR0, DPR1

OM5 Output marker 5 value

DATA TRANSFER (Ch 7)

Syntax: OM5

Remarks: Data units depend on the graph type currently set. (See Table

10-2 at the end of this chapter.)

Data I/O: Outputs ASCII <NR3 > formatted data (see paragraph 10-3).

The data output consists of one or two elements, whose values

will be determined by the graph display type selected.

Front Panel Key: Marker Menu\MARKER 5 ON

Related Commands: CH1-CH4, DPR0, DPR1

OM6 Output marker 6 value

DATA TRANSFER (Ch 7)

Syntax: OM6

Remarks: Data units depend on the graph type currently set. (See Table

10-2 at the end of this chapter.)

Data I/O: Outputs ASCII <NR3 > formatted data (see paragraph 10-3).

The data output consists of one or two elements, whose values

will be determined by the graph display type selected.

Front Panel Key: Marker Menu\MARKER 6 ON

Related Commands: CH1-CH4, DPR0, DPR1

ONCP Output number of points for current

calibration

DATA TRANSFER (Ch 7)

Syntax: ONCP

Data I/O: Outputs the number of points in ASCII <NR1> format

(paragraph 10-3).

Related Commands: ONP

10-188 37XXXC PM

ONCT Output number of cal terms for current

CALIBRATION (Ch 5)

calibration

Syntax: ONCT

Remarks: Outputs the value in ASCII <NR1> format (paragraph 10-3). See

Table 10-1 at the end of this chapter.

OND Output Normalization data

DATA TRANSFER (Ch 7)

Syntax: OND

Data I/O: Outputs an <Arbitrary Block> (paragraph 10-3).

Related Commands: IND

ONDF Output number of discrete frequencies

MEASUREMENT (Ch 4)

Syntax: ONDF

Data I/O: Outputs number in ASCII <NR1> format (paragraph 10-3).

Related Commands: IFV, DFC

ONE Output number of lines in the error list

DATA TRANSFER (Ch 7)

Syntax: ONE

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3).

Related Commands: OEL, OGE, OGL

ONP Output number of points currently being

MEASUREMENT DATA (Ch 7)

measured

Syntax: ONP

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3).

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\SET CENTER/SPAN/DATA

POINTS Data Points \1601 POINTS MAX

ONPV Output the number of power sweep power

MEASUREMENT DATA (Ch 7)

values

Syntax: ONPV

Data I/O: Outputs number in ASCII <NR1> format (paragraph 10-3).

Related Commands: PSTRT, PSTOP, PSTEP, OPSV

ONRM Output stored normalization data to GPIB

MISCELLANEOUS (Ch 7)

Syntax: ONRM

Remarks: If normalization data has been stored, it will be output

Data I/O: The data will be encapsulated in an <Arbitrary Block> format

(paragraph 10-3).

Block Size: 12832 bytes

Related Commands: INRM, SAVE, DISKRD

OPB Output the 488.2 Status Byte value (same as

IEEE 488.2 (Ch 7)

*STB?)

Syntax: OPB

Remarks: This is the equivalent command to *STB?, 488.2 Status Byte

query. Returns the decimal value of the bit pattern of the Status Byte and the Master Summary Status bit 6. The value will be 0

to 255.

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3)

Related Commands: *STB?

OPSC Output power sweep linearity calibration

GAIN COMPRESSION (Ch 9)

coefficients

Syntax: OPSC

Data I/O: Outputs an <Arbitrary Block> (paragraph 10-3).

Related Commands: IPSC, PSCNFREQ?, PSCNPWR?, PSCSTEP?

OPSV Output power sweep power values

MEASUREMENT DATA (Ch 7)

Syntax: OPSV

10-190 37XXXC PM

Remarks: This mnemonic outputs the power values for power sweep.

Data I/O: The data is formatted depending on the FMA, FMB, FMC, LSB,

MSB formats and encapsulated in an <Arbitrary Block> format

(paragraph 10-3).

Block Size: The block size depends on the number of data points and the

FMA, FMB, FMC format. For 21 power points, FMA produces 404 bytes, FMB produces 174 bytes, FMC produces 89 bytes. For 11 power points, FMA produces 214 bytes, FMB produces 93

bytes and FMC produces 49 bytes.

Related Commands: PSTRT, PSTOP, PSTEP, ONPV

ORD Output raw data for active channel parameter

DATA TRANSFER (Ch 7)

Syntax: ORD

Remarks: Outputs the raw data (real and imaginary) pairs before any

correction is applied. Wait for full sweep to be updated (WFS)

prior to outputting data.

Data I/O: Outputs a floating point array whose size is equal to twice the

number of points in the current sweep (contains real and imaginary data pairs for each point). The ORD command outputs an <Arbitrary Block> (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format (see format selector commands FMA, FMB,

FMC).

Block Size: 12 + (2 * NUMBER OF POINTS)

*18 FMA MODE *8 FMB MODE *4 FMC MODE

Related Commands: CH1-CH4, OFD, OCD, ONP, FMA, FMB, FMC, LSB, MSB

OS1 Output front panel setup number 1

DATA TRANSFER (Ch 7)

Syntax: OS1

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) for later

input using the IS1-IS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Block Size: 8711 bytes

Related Commands: ISxx. OFP. OCF

OS10 Output front panel setup number 10

DATA TRANSFER (Ch 7)

Syntax: OS10

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) for later

input using the IS1-IS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Block Size: 8711 bytes

Related Commands: ISxx, OFP, OCF

OS11C Output corrected S11 data

MEASUREMENT DATA (Ch 7)

Syntax: OS11C

Remarks: If S11 data is being taken with the current channel selection and

display type, then the data will be output. If correction is turned on then the data will be corrected data otherwise it will be the raw data. This is identical to OCD when S11 is displayed on the

active channel.

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3). The data itself is a complex pair for each data point which is additionally formatted by the FMA, FMB and

FMC modes.

Block Size: The size depends on the number of data points and the format

mode. For FMA output mode, 51 points produces 1,944 bytes, 401 produces 15,237 bytes and 1601 produces 60,845 bytes. For the FMB mode, 51 points produces 822 bytes, 401 points

produces 6,423 bytes and 1601 points produces 25,624 bytes. For the FMC mode, 51 points produces 414 bytes, 401 points

the FMC mode, 51 points produces 414 bytes, 401 points produces 3,215 bytes and 1601 points produces 12,816 bytes.

Related Commands: CHx, OCD, OS11R, FMA, FMB, FMC

OS11R Output raw S11 data

MEASUREMENT DATA (Ch 7)

Syntax: OS11R

Remarks: If S11 data is being taken with the current channel selection and

display type, then the raw data will be output. This is identical

to ORD when S11 is displayed on the active channel.

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3). The data itself is a complex pair for each data

10-192 37XXXC PM

point which is additionally formatted by the FMA, FMB and

FMC modes.

Block Size: The size depends on the number of data points and the format

mode. For FMA output mode, 51 points produces 1,944 bytes, 401 produces 15,237 bytes and 1601 produces 60,845 bytes. For the FMB mode, 51 points produces 822 bytes, 401 points produces 6,423 bytes and 1601 points produces 25,624 bytes. For

the FMC mode, 51 points produces 414 bytes, 401 points produces 3,215 bytes and 1601 points produces 12,816 bytes.

Related Commands: CHx, ORD, OS11C, FMA, FMB, FMC

OS12C Output corrected S12 data

MEASUREMENT DATA (Ch 7)

Syntax: OS12C

Remarks: If S12 data is being taken with the current channel selection

and display type, then the data will be output. If correction is turned on then the data will be corrected data otherwise it will be the raw data. This is identical to OCD when S12 is displayed

on the active channel.

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3). The data itself is a complex pair for each data point which is additionally formatted by the FMA, FMB and

FMC modes.

Block Size: The size depends on the number of data points and the format

mode. For FMA output mode, 51 points produces 1,944 bytes, 401 produces 15,237 bytes and 1601 produces 60,845 bytes. For the EMB mode, 51 points produces 822 bytes, 401 points.

the FMB mode, 51 points produces 822 bytes, 401 points produces 6,423 bytes and 1601 points produces 25,624 bytes. For

the FMC mode, 51 points produces 414 bytes, 401 points produces 3,215 bytes and 1601 points produces 12,816 bytes.

Related Commands: CHx, OCD, OS12R, FMA, FMB, FMC

OS12R Output raw S12 data

MEASUREMENT DATA (Ch 7)

Syntax: OS12R

Remarks: If S12 data is being taken with the current channel selection

and display type, then the raw data will be output. This is identical to ORD when S12 is displayed on the active channel.

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3). The data itself is a complex pair for each data

point which is additionally formatted by the FMA, FMB and

FMC modes.

Block Size: The size depends on the number of data points and the format

mode. For FMA output mode, 51 points produces 1,944 bytes, 401 produces 15,237 bytes and 1601 produces 60,845 bytes. For the FMB mode, 51 points produces 822 bytes, 401 points produces 6,423 bytes and 1601 points produces 25,624 bytes. For the FMC mode, 51 points produces 414 bytes, 401 points

produces 3,215 bytes and 1601 points produces 12,816 bytes.

Related Commands: CHx, ORD, OS12C, FMA, FMB, FMC

OS2 Output front panel setup number 2

DATA TRANSFER (Ch 7)

Syntax: OS2

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) for later

input using the IS1-IS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Block Size: 8711 bytes

Related Commands: ISxx, OFP, OCF

OS21C Output corrected S21 data

MEASUREMENT DATA (Ch 7)

Syntax: OS21C

Remarks: If S21 data is being taken with the current channel selection

and display type, then the data will be output. If correction is turned on then the data will be corrected data otherwise it will be the raw data. This is identical to OCD when S21 is displayed

on the active channel.

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3). The data itself is a complex pair for each data point which is additionally formatted by the FMA, FMB and $\,$

FMC modes.

Block Size: The size depends on the number of data points and the format

mode. For FMA output mode, 51 points produces 1,944 bytes, 401 produces 15,237 bytes and 1601 produces 60,845 bytes. For the EMB mode, 51 points produces 822 bytes, 401 points

the FMB mode, 51 points produces 822 bytes, 401 points produces 6,423 bytes and 1601 points produces 25,624 bytes. For

the FMC mode, 51 points produces 414 bytes, 401 points produces 3,215 bytes and 1601 points produces 12,816 bytes.

10-194 37XXXC PM

Related Commands: CHx, OCD, OS21R, FMA, FMB, FMC

OS21R Output raw S21 data

MEASUREMENT DATA (Ch 7)

Syntax: OS21R

Remarks: If S21 data is being taken with the current channel selection

and display type, then the raw data will be output. This is identical to ORD when S21 is displayed on the active channel.

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3). The data itself is a complex pair for each data point which is additionally formatted by the FMA, FMB and

FMC modes.

Block Size: The size depends on the number of data points and the format

mode. For FMA output mode, 51 points produces 1,944 bytes, 401 produces 15,237 bytes and 1601 produces 60,845 bytes. For the FMB mode, 51 points produces 822 bytes, 401 points produces 6,423 bytes and 1601 points produces 25,624 bytes. For

the FMC mode, 51 points produces 414 bytes, 401 points produces 3,215 bytes and 1601 points produces 12,816 bytes.

Related Commands: CHx, ORD, OS21C, FMA, FMB, FMC

OS22C Output corrected S22 data

MEASUREMENT DATA (Ch 7)

Syntax: OS22C

Remarks: If S22 data is being taken with the current channel selection

and display type, then the data will be output. If correction is turned on then the data will be corrected data otherwise it will be the raw data. This is identical to OCD when S22 is displayed

on the active channel.

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3). The data itself is a complex pair for each data point which is additionally formatted by the FMA, FMB and

FMC modes.

Block Size: The size depends on the number of data points and the format

mode. For FMA output mode, 51 points produces 1,944 bytes, 401 produces 15,237 bytes and 1601 produces 60,845 bytes. For the FMB mode, 51 points produces 822 bytes, 401 points produces 6,423 bytes and 1601 points produces 25,624 bytes. For

the FMC mode, 51 points produces 414 bytes, 401 points produces 3,215 bytes and 1601 points produces 12,816 bytes.

Related Commands: CHx, OCD, OS22R, FMA, FMB, FMC

OS22R Output raw S22 data

MEASUREMENT DATA (Ch 7)

Syntax: OS22R

Remarks: If S22 data is being taken with the current channel selection

and display type, then the raw data will be output. This is identical to ORD when S22 is displayed on the active channel.

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3). The data itself is a complex pair for each data point which is additionally formatted by the FMA, FMB and

FMC modes.

Block Size: The size depends on the number of data points and the format

mode. For FMA output mode, 51 points produces 1,944 bytes, 401 produces 15,237 bytes and 1601 produces 60,845 bytes. For the FMB mode, 51 points produces 822 bytes, 401 points

produces 6,423 bytes and 1601 points produces 25,624 bytes. For

the FMC mode, 51 points produces 414 bytes, 401 points produces 3,215 bytes and 1601 points produces 12,816 bytes.

Related Commands: CHx, ORD, OS22C, FMA, FMB, FMC

OS2P Output S2P format data to GPIB

HARD COPY (Ch 8)

Syntax: OS2P

Remarks: The S2P output format is provided to interface with application

programs requiring that kind of data.

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3).

Block Size: The block size varies depending on the number of data points. 51

points produces 5,406 bytes, 401 points produces 41,107 bytes,

1601 points produces 163,508 bytes.

Related Commands: SAVE, DISKRD, ODAT, OHGL, OTXT

OS3 Output front panel setup number 3

DATA TRANSFER (Ch 7)

Syntax: OS3

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) for later

input using the IS1-IS10 commands. The data is in internal

10-196 37XXXC PM

system binary format and must not be edited or altered in any

way.

Block Size: 8711 bytes

Related Commands: ISxx, OFP, OCF

OS4 Output front panel setup number 4

DATA TRANSFER (Ch 7)

Syntax: OS4

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) for later

input using the IS1-IS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Block Size: 8711 bytes

Related Commands: ISxx, OFP, OCF

OS5 Output front panel setup number 5

DATA TRANSFER (Ch 7)

Syntax: OS5

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) for later

input using the IS1-IS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Block Size: 8711 bytes

Related Commands: ISxx, OFP, OCF

OS6 Output front panel setup number 6

DATA TRANSFER (Ch 7)

Syntax: OS6

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) for later

input using the IS1-IS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Block Size: 8711 bytes

Related Commands: ISxx, OFP, OCF

OS7 Output front panel setup number 7

DATA TRANSFER (Ch 7)

Syntax: OS7

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) for later

input using the IS1-IS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Block Size: 8711 bytes

Related Commands: ISxx, OFP, OCF

OS8 Output front panel setup number 8

DATA TRANSFER (Ch 7)

Syntax: OS8

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) for later

input using the IS1-IS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Block Size: 8711 bytes

Related Commands: ISxx, OFP, OCF

OS9 Output front panel setup number 9

DATA TRANSFER (Ch 7)

Syntax: 0S9

Data I/O: <Arbitrary Block> formatted data (paragraph 10-3) for later

input using the IS1-IS10 commands. The data is in internal system binary format and must not be edited or altered in any

way.

Block Size: 8711 bytes

Related Commands: ISxx, OFP, OCF

OSL Output service log

DATA TRANSFER (Ch 7)

Syntax: OSL

Remarks: This command is useful when troubleshooting system failure or

GPIB programming type problems. It is also useful for capturing and archiving error information for errors that occur during

Remote Only operation.

10-198 37XXXC PM

Data I/O: Outputs formatted data that consists of service data and all

error messages, with details about each error.

Block Size: 450 + 100 * (NUMBER OF ERRORS)

Related Commands: OEL, PSL, SAVLOG, SAVLOGH, CSL, ONE, OGE, OGL

OTV Output time values for time domain

MEASUREMENT DATA (Ch 7)

Syntax: OTV

Data I/O: An array of floating point values whose size is the currently set

number of data points. The OTV command outputs an

<Arbitrary Block> (paragraph 10-3) containing either ASCII or binary formatted data depending on currently selected format

(see format selector commands FMA, FMB, FMC).

Block Size: 12 + (NUMBER OF POINTS) *18 FMA MODE *8 FMB

MODE *4 FMC MODE

Related Commands: FMA, FMB, FMC, LSB, MSB, ODV, OFV, ONP

OTXT Output text format data to GPIB

HARD COPY (Ch 8)

Syntax: OTXT

Remarks: Outputs data similar to tabular except data fields are separated

with a tab character (ASCII value of 9) for easier loading and

display in Microsoft Excel.

Data I/O: The data is encapsulated in an <Arbitrary Block> format

(paragraph 10-3).

Block Size: The block size varies depending on the display and number of

data points. A 4 channel display with 401 points produces 39,465 bytes. A 4 channel 1601 point display produces 154,905bytes. A

single channel 401 point display produces 13,625 bytes.

Related Commands: SAVE, DISKRD, ODAT, OHGL, OS2P

P1C Select port 1 for connector specification

CALIBRATION (Ch 5)

Syntax: P1C

Remarks: Specifies port 1 as the port to which subsequent connector

related commands will apply.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\SMA (M)

Related Commands: P2C

P1C? Output port 1 connector type

CALIBRATION (Ch 5)

Syntax: P1C?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "1" for SMA male, "2" for SMA female, "3" for K male, "4" for K female, "5" for Type N male, "6" for Type N female, "7" for GPC 3.5 male, "8" for GPC 3.5 female, "9" for GPC 7, "10" for other & user specified, "11" for V male, "12" for V female, "13" for TNC male, "14" for TNC female, "15" for 2.4 mm male, "16" for

2.4 mm female.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\SMA (M)

P1MMA Set Port 1 Millimeter Wave Head to Amplified

MILLIMETER WAVE (Ch 9)

(3742)

Syntax: P1MMA

Front Panel Key: Option Menu\TEST SET CONFIG\PORT 1 (2) MODULE

Related Commands: P1MMN, P1MMR, P1MMT, P1MMX?

P1MMN Set Port 1 Millimeter Wave Head to None

MILLIMETER WAVE (Ch 9)

Syntax: P1MMN

Front Panel Key: Option Menu\TEST SET CONFIG\PORT 1 (2) MODULE

Related Commands: P1MMR, P1MMT,P1MMX?

P1MMR Set Port 1 Millimeter Wave Head to Receiver

MILLIMETER WAVE (Ch 9)

(3741)

Syntax: P1MMR

Front Panel Key: Option Menu\TEST SET CONFIG\PORT 1 (2) MODULE

10-200 37XXXC PM

Related Commands: P1MMN, P1MMT,P1MMX?

P1MMT Set Port 1 Millimeter Wave Head to

MILLIMETER WAVE (Ch 9)

Transmit/Receiver (3740)

Syntax: P1MMT

Front Panel Key: Option Menu\TEST SET CONFIG\PORT 1 (2) MODULE

Related Commands: P1MMN, P1MMR,P1MMX?

P1MMX? Output Port 1 Millimeter Wave Head type

MILLIMETER WAVE (Ch 9)

Syntax: P1MMX?

Data I/O: Returns a value in ASCII <NR1> format (paragraph 10-3) as

follows: 0=none,1=3740 (Transmit/Receive),2=3741 (Receive),

3=3742 (Amplified).

Front Panel Key: Option Menu\TEST SET CONFIG\PORT 1 (2) MODULE

Related Commands: P1MMN, P1MMR, P1MMT, P1MMA

P1P? Output approximate power level at port 1

CALIBRATION (Ch 5)

Syntax: P1P?

Remarks: Absolute power setting in dB. Includes flat test port power

correction, when applied.

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Setup Menu\TEST SIGNALS\PORT 1 POWER

Related Commands: PWR?, SA1?, FP0, FP1

P2ALC Perform Port 2 ALC loop internal calibration

DIAGNOSTICS (Ch 8)

Syntax: P2ALC

P2C Select port 2 for connector specification

CALIBRATION (Ch 5)

Syntax: P2C

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\SMA (M)

Related Commands: P1C

P2C? Output port 2 connector type

CALIBRATION (Ch 5)

Syntax: P2C?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows:

"1" for SMA male, "2" for SMA female, "3" for K male, "4" for K female, "5" for Type N male, "6" for Type N female, "7" for GPC 3.5 male, "8" for GPC 3.5 female, "9" for GPC 7, "10" for other & user specified, "11" for V male, "12" for V female, "13" for TNC male, "14" for TNC female,

"15" for 2.4 mm male, "16" for 2.4 mm female.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\PORT 1 CONN

(or PORT 2 CONN)\SMA (M)

P2MMA Set Port 2 Millimeter Wave Head to Amplified

MILLIMETER WAVE (Ch 9)

(3742)

Syntax: P2MMA

Related Commands: P2MMN, P2MMR, P2MMT, P2MMX?

P2MMN Set Port 2 Millimeter Wave Head to none

MILLIMETER WAVE (Ch 9)

Syntax: P2MMN

Related Commands: P2MMR, P2MMT,P2MMX?

P2MMR Set Port 2 Millimeter Wave Head to Receiver

MILLIMETER WAVE (Ch 9)

(3741)

Syntax: P2MMR

Related Commands: P2MMN,P2MMT,P2MMX?

P2MMT Set Port 2 Millimeter Wave Head to

Transmit/Receiver (3740)

MILLIMETER WAVE (Ch 9)

10-202 37XXXC PM

Syntax: P2MMT

Related Commands: P2MMN,P2MMR,P2MMX?

P2MMX? Output Port 2 Millimeter Wave Head type

MILLIMETER WAVE (Ch 9)

Syntax: P2MMX?

Data I/O: Returns a value in ASCII <NR1> format (paragraph 10-3) as

follows: 0=none,1=3740 (Transmit/Receive),2=3741 (Receive),

3=3742 (Amplified).

Related Commands: P2MMN, P2MMR, P2MMT, P2MMA

PBL Select 1/4 size plot bottom left corner

HARD COPY (Ch 8)

Syntax: PBL

Remarks: Selects a quarter-size plot, which appears in the bottom left

corner of the screen.

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PLOT SIZE\LOWER

LEFT

Related Commands: PBR, PFL

PBR Select 1/4 size plot bottom right corner

HARD COPY (Ch 8)

Syntax: PBR

Remarks: Selects a quarter-size plot, which appears in the bottom right

corner of the screen.

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PLOT SIZE\LOWER

RIGHT

Related Commands: PBL, PFL

PCP Select measurement phase polar chart mode

DISPLAY (Ch 4)

Syntax: PCP

Front Panel Key: Set Scale\SELECT POLAR CHART MODE\MAGNITUDE,

PHASE

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, MPH, PCS,

PCX?, PHA, PLG, PLR, POW, REL, RIM, SMC, SME, SMI, SWR

PCS Select sweep position polar chart mode

DISPLAY (Ch 4)

Syntax: PCS

Front Panel Key: Set Scale\SELECT POLAR CHART MODE\MAGNITUDE,

SWP POSITION

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, MPH, PCP,

PCX?, PHA, PLG, PLR, POW, REL, RIM, SMC, SME, SMI, SWR

PCX? Output polar chart mode

DISPLAY (Ch 4)

Syntax: PCX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "1" for phase or "2" for position.

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, MPH, PCP,

PCS, PHA, PLG, PLR, POW, REL, RIM, SMC, SME, SMI, SWR

PDR Print directory listing of the floppy drive

DISK FUNCTION (Ch 8)

Syntax: PDR

Remarks: A copy of the directory listing of the floppy drive is sent to the

printer.

Related Commands: ODR, ODRH, PDRH

PDRH Print directory listing of the hard drive

DISK FUNCTION (Ch 8)

Syntax: PDRH

Remarks: A copy of the directory listing of the hard drive is sent to the

printer.

Related Commands: ODR, ODRH, PDR

PEL Print the error list

SERVICE LOG (Ch 8)

Syntax: PEL

10-204 37XXXC PM

Remarks: A formatted list of the error messages in the service log is sent to

the printer.

Related Commands: OFL, OSL, PSL

PFL Select full-size plot HARD COPY (Ch 8)

Syntax: PFL

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PLOT SIZE\FULL SIZE

Related Commands: PBL, PFR

PFS Print full screen image HARD COPY (Ch 8)

Syntax: PFS

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\FULL PLOT

Related Commands: PGR

PFSC Configure for printing entire screen graphic HARD COPY (Ch 8)

image

Syntax: PFSC

Remarks: Heretofore configuration could only be set by mnemonic PFS

Related Commands: PGRC,PGTC,PLDC,PLHC,PLMC,PLSC,PLTC,PMKC,PMNC,P

MTC,PTBC

PGR Print graph area screen image HARD COPY (Ch 8)

Syntax: PGR

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\FORMAT OF PRINTER

OUTPUT\GRAPH ONLY

Related Commands: PFS

PGRC Configure for printing data area graphic HARD COPY (Ch 8)

image

Syntax: PGRC

Remarks: Heretofore configuration could only be set by mnemonic PGR

Related Commands: PFSC,PGTC,PLDC,PLHC,PLMC,PLSC,PLTC,PMKC,PMNC,PM

TC,PTBC

PGT Plot graticule DISK FUNCTION (Ch 8)

Syntax: PGT

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\GRATICULE ON

PGTC Configure for plotting graticule HARD COPY (Ch 8)

Syntax: PGTC

Remarks: Heretofore configuration could only be set by mnemonic PGT

Related Commands: PFSC,

PGRC,PLDC,PLHC,PLMC,PLSC,PLTC,PMKC,PMNC,PMTC,P

TBC

PHA Select phase display for active channel DISPLAY (Ch 4)

Syntax: PHA

Front Panel Key: Graph Type\PHASE

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, MPH, PCP,

PCS, PHX?, PLG, PLR, POW, REL, RIM, SMC, SME, SMI, SWR

PHO Enter phase offset for display channel DISPLAY (Ch 4)

Syntax: PHO

Val 1: 080 to +180 Units: DEG

Cintis. DLG

Front Panel Key: Set Scale \PHASE SHIFT

PHO? Output phase offset for display channel DISPLAY (Ch 4)

Syntax: PHO?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Set Scale \PHASE SHIFT

10-206 37XXXC PM

PLD Plot data area only HARD COPY (Ch 8)

Syntax: PLD

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\HEADER ON

PLDC Configure for plotting data area HARD COPY (Ch 8)

Syntax: PLDC

Remarks: Heretofore configuration could only be set by mnemonic PLD

Related Commands: PFSC,PGRC,PGTC,PLHC,PLMC,PLSC,PLTC,PMKC,PMNC,P

MTC,PTBC

PLG Select log polar display for active channel DISPLAY (Ch 4)

Syntax: PLG

Front Panel Key: Graph Type\LOG POLAR

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, MPH, PCP,

PCS, PHX?, PHA, PLR, POW, REL, RIM, SMC, SME, SMI, SWR

PLH Plot header HARD COPY (Ch 8)

Syntax: PLH

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\HEADER ON

PLHC Configure for plotting header HARD COPY (Ch 8)

Syntax: PLHC

Remarks: Heretofore configuration could only be set by mnemonic PLH

Related Commands: PFSC,PGRC,PGTC,PLDC,PLMC,PLSC,PLTC,PMKC,PMNC,PM

TC,PTBC

PLM Plot markers and limits HARD COPY (Ch 8)

Syntax: PLM

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\LIMITS ON

PLMC Configure for plotting markers and limits

HARD COPY (Ch 8)

Syntax: PLMC

Remarks: Heretofore configuration could only be set by mnemonic PLM

Related Commands: PFSC,PGRC,PGTC,PLDC,PLHC,PLSC,PLTC,PMKC,PMNC,PM

TC,PTBC

PLO? Output plot mode portrait or landscape

HARD COPY (Ch 8)

Syntax: PLO?

Data I/O: Outputs value in ASCII <NR1> format, as follows: "0" for

portrait, "1" for landscape.

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\ORIENTATION

Related Commands: PORT, LAND

PLR Select linear polar display for active channel

DISPLAY (Ch 4)

Syntax: PLR

Front Panel Key: Graph Type\LINEAR POLAR

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, MPH, PCP,

PCS, PHX?, PHA, PLG, POW, REL, RIM, SMC, SME, SMI, SWR

PLS Plot entire screen HARD COPY (Ch 8)

Syntax: PLS

Related Commands: CH1-CH4

PLSC Configure for plotting entire screen

HARD COPY (Ch 8)

Syntax: PLSC

Remarks: Heretofore configuration could only be set by mnemonic PLS

Related Commands: PFSC,

PGRC,PGTC,PLDC,PLHC,PLMC,PLTC,PMKC,PMNC,PMTC,P

TBC

10-208 37XXXC PM

PLT Plot data traces only HARD COPY (Ch 8)

Syntax: PLT

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PLOT TRACES AND

MARKERS ON

PLTC Configure for plotting data traces

HARD COPY (Ch 8)

Syntax: PLTC

Remarks: Heretofore configuration could only be set by mnemonic PLT

Related Commands: PFSC,

PGRC,PGTC,PLDC,PLHC,PLMC,PLSC,PMKC,PMNC,PMTC,P

TBC

PMK Print tabular data for Markers HARD COPY (Ch 8)

Syntax: PMK

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\MARKER DATA ON

Related Commands: CH1-CH4

PMKC Configure for printing tabular data for

HARD COPY (Ch 8)

markers

Syntax: PMKC

Remarks: Heretofore configuration could only be set by mnemonic PMK

Related Commands: PFSC,PGRC,PGTC,PLDC,PLHC,PLMC,PLSC,PLTC,PMNC,PM

TC,PTBC

PMN Plot menu HARD COPY (Ch 8)

Syntax: PMN

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\MENU ON

PMNC Configure for plotting menu HARD COPY (Ch 8)

Syntax: PMNC

Remarks: Heretofore configuration could only be set by mnemonic PMN

Related Commands: PFSC,PGRC,PGTC,PLDC,PLHC,PLMC,PLSC,PLTC,PMKC,PM

TC,PTBC

PMT Print tabular data for traces and markers

HARD COPY (Ch 8)

Syntax: PMT

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\MARKER DATA ON

Related Commands: CH1-CH4

PMTC Configure for printing tabular data for traces

HARD COPY (Ch 8)

and markers

Syntax: PMTC

Remarks: Heretofore configuration could only be set by mnemonic PMT

Related Commands: PFSC,PGRC,PGTC,PLDC,PLHC,PLMC,PLSC,PLTC,PMKC,PM

NC,PTBC

PORT Select portrait mode for output plot

HARD COPY (Ch 8)

Syntax: PORT

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PLOT ORIENTATION

PORTRAIT

Related Commands: LAND, PLO?

POSET Enter constant offset phase for active channel

DISPLAY (Ch 4)

Syntax: POSET

POSET? Output constant offset phase for active

DISPLAY (Ch 4)

channel

Syntax: POSET?

POW Select power out display for active channel

DISPLAY (Ch 4)

Syntax: POW

10-210 37XXXC PM

Front Panel Key: Graph Type\POWER OUT

Related Commands: DLA, IMG, ISC, ISE, ISM, IMG, LIN, MAG, MPH, PCP, PCS,

PCX?, PHA, PLG, PLR, REL, RIM, SMC, SME, SMI, SWR

PRT? Perform printer test and output status

PERIPHERAL TESTS (Ch 8)

Syntax: PRT?

Remarks: For service use only. Requires a special test fixture.

Data I/O: Returns a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for No failure or "1" for Failed.

PS Suffix sets time data type and scales by 1E02 DATA ENTRY SUFFIXES (Ch 4)

Syntax: PS

PSC Suffix sets time data type and scales by 1E02 DATA ENTRY SUFFIXES (Ch 4)

Syntax: PSC

PSCNFRQ? Output the power sweep linearity cal number

of frequency poi

Syntax: PSCNFRQ?

Data I/O: Outputs its value using ASCII <NR1> format (paragraph 10-3).

Related Commands: IPSC, OPSC, PSCNPWR?, PSCSTEP?

PSCNPWR? Output the power sweep linearity cal number

GAIN COMPRESSION (Ch 9)

GAIN COMPRESSION (Ch 9)

GAIN COMPRESSION (Ch 9)

of power points

Syntax: PSCNPWR?

Data I/O: Outputs its value using ASCII <NR1> format (paragraph 10-3).

Related Commands: IPSC, OPSC, PSCNFREQ?, PSCSTEP?

PSCSTEP? Output the power sweep linearity cal power

step size

Syntax: PSCSTEP?

Data I/O: Outputs its value using ASCII <NR3> format (paragraph 10-3).

Related Commands: IPSC, OPSC, PSCNFREQ?, PSCNPWR?

PSL Print the service log DIAGNOSTICS (Ch 8)

Syntax: PSL

PSP Enter number of power sweeps for flat power CALIBRATION (Ch 5)

correction (obsolete)

 Syntax:
 PSP

 Val 1:
 1 - 5

 Units:
 XX1

Remarks: OBSOLETE CODE

Related Commands: PSP?

PSP? Output number of power sweeps for flat power CALIBRATION (Ch 5)

correction (obsolete)

Syntax: PSP?

Remarks: OBSOLETE CODE

Data I/O: Outputs the value in ASCII <NR1> format.

Related Commands: PSP

PSPWR Enter power sweep off power level GAIN COMPRESSION (Ch 9)

Syntax: PSPWR Val 1: (-20 to 0)

Remarks: This code only makes sense withing the swept power gain

compression application and is the level to which the power is

set when power sweep is turned off

Data I/O: Data is input in ASCII <NRf> format (paragraph 10-3)

Front Panel Key: Setup Menu\POWER SWEEP OFF\POWER LEVEL

Related Commands: PSPWR?, PSWP0, PSWP1, PSWPX?

PSPWR? Output power sweep off power level GAIN COMPRESSION (Ch 9)

10-212 37XXXC PM

Syntax: PSPWR?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Setup Menu\POWER SWEEP OFF\POWER LEVEL

Related Commands: PSPWR, PSWP0, PSWP1, PSWPX?

PST Stop print/plot HARD COPY (Ch 8)

Syntax: PST

PSTEP Enter power sweep step size

GAIN COMPRESSION (Ch 9)

Syntax: PSTEP

Val 1: The power step value in ASCII <NRF> format (paragraph 10-3)

Units: DB

Front Panel Key: Setup Menu\STEPSIZE

Related Commands: PSTRT, PSTOP

PSTEP? Output power sweep step size

GAIN COMPRESSION (Ch 9)

Syntax: PSTEP?

Data I/O: The value is output in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Setup Menu\STEPSIZE

Related Commands: PSTRT, PSTOP, PSTEP

PSTOP Enter power sweep stop power

GAIN COMPRESSION (Ch 9)

Syntax: PSTOP

Val 1: The stop power in ASCII <NRF> format (paragraph 10-3).

Units: DB

Front Panel Key: Setup Menu\P STOP

Related Commands: PSTRT, PSTEP

PSTOP? Output power sweep stop power

GAIN COMPRESSION (Ch 9)

Syntax: PSTOP?

Data I/O: The value is output in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Setup Menu\P STOP

Related Commands: PSTRT, PSTOP, PSTEP

PSTRT Enter power sweep start power

GAIN COMPRESSION (Ch 9)

Syntax: PSTRT

Val 1: The start power in ASCII <NRF> format (paragraph 10-3)

Units: DB

Front Panel Key: Setup Menu\P START

Related Commands: PSTOP, PSTEP

PSTRT? Output power sweep start power

GAIN COMPRESSION (Ch 9)

Syntax: PSTRT?

Data I/O: The value is output in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Setup Menu\P START

Related Commands: PSTRT, PSTOP, PSTEP

PSWC Perform power sweep linearity calibration

GAIN COMPRESSION (Ch 9)

Syntax: PSWC

Remarks: Command will start the calibration. The frequency list and

power sweep power values must have already been entered.

Front Panel Key: Appl\SWEPTPOWER GAIN

COMPRESSION\MORE\CALIBRATE FOR

LINEARITY\START LINEAR POWER CALIBRATION

Related Commands: SPGCA, PSTRT, PSTOP, PSTEP, IFV

PSWC0 Turn power sweep linearity calibration off

GAIN COMPRESSION (Ch 9)

Syntax: PSWC0

Remarks: The power sweep linearity calibration coefficients will not be

applied to the power.

10-214 37XXXC PM

Front Panel Key: Appl\SWEPTPOWER GAIN

COMPRESSION\MORE\LINEARITY CORRECTION OFF

Related Commands: PSWC1, PSWCX?

PSWC1 Turn power sweep linearity calibration on

GAIN COMPRESSION (Ch 9)

Syntax: PSWC1

Remarks: The power sweep linearity calibration coefficients will be applied

to the power output.

Front Panel Key: Appl\SWEPTPOWER GAIN

COMPRESSION\MORE\LINEARITY CORRECTION ON

Related Commands: PSWC0, PSWCX?

PSWCX? Output power sweep linearity calibration

GAIN COMPRESSION (Ch 9)

on/off status

Syntax: PSWCX?

Data I/O: The value will be outut in ASCII <NR1> format (paragraph

10-3). (0 for calibration off, 1 for calibration on).

Front Panel Key: Appl\SWEPTPOWER GAIN

COMPRESSION\MORE\LINEARITY CORRECTION

Related Commands: PSWC0, PSWC1

PSWP0 Turn power sweep off

GAIN COMPRESSION (Ch 9)

Syntax: PSWP0

Remarks: Turns power sweep off at the current CWF frequency.

Front Panel Key: Setup Menu\POWER SWEEP OFF

Related Commands: CWF, PSWP1, PSWPX?

PSWP1 Turn power sweep on

GAIN COMPRESSION (Ch 9)

Syntax: PSWP1

Remarks: Turns power sweep on at the current CWF frequency.

Front Panel Key: Setup Menu\POWER SWEEP ON

Related Commands: CWF, PSWP0, PSWPX?

PSWPX? Output power sweep on/off status

GAIN COMPRESSION (Ch 9)

Syntax: PSWPX?

Data I/O: The value will be output in ASCII <NR1> format (paragraph

10-3) as follows: "0" for power sweep is off or "1" for power

sweep is on.

Front Panel Key: Setup Menu\POWER SWEEP

Related Commands: PSWP0, PSWP1

PT0 Set tabular printout points skipped to 0

HARD COPY (Ch 8)

Syntax: PT0

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\PRINT DENSITY

PT1 Set tabular printout points skipped to 1

HARD COPY (Ch 8)

Syntax: PT1

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\PRINT DENSITY

PT2 Set tabular printout points skipped to 2

HARD COPY (Ch 8)

Syntax: PT2

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\PRINT DENSITY

PT3 Set tabular printout points skipped to 3

HARD COPY (Ch 8)

Syntax: PT3

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\PRINT DENSITY

10-216 37XXXC PM

PT4 Set tabular printout points skipped to 4

HARD COPY (Ch 8)

Syntax: PT4

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\PRINT DENSITY

PT5 Set tabular printout points skipped to 5

HARD COPY (Ch 8)

Syntax: PT5

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\PRINT DENSITY

PT6 Set tabular printout points skipped to 6

HARD COPY (Ch 8)

Syntax: PT6

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\PRINT DENSITY

PT7 Set tabular printout points skipped to 7

HARD COPY (Ch 8)

Syntax: PT7

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\PRINT DENSITY

PT8 Set tabular printout points skipped to 8

HARD COPY (Ch 8)

Syntax: PT8

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\PRINT DENSITY

PT9 Set tabular printout points skipped to 9

HARD COPY (Ch 8)

Syntax: PT9

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\PRINT DENSITY

PTB Print tabular data for Traces

HARD COPY (Ch 8)

Syntax: PTB

Front Panel Key: Hard Copy Menu\PRINT OPTIONS\TABULAR

DATA\SWEEP DATA ON

Related Commands: PT0-PT9

PTBC Configure for printing tabular data for traces

HARD COPY (Ch 8)

Syntax: PTBC

Remarks: Heretofore configuration could only be set by mnemonic PTB

Related Commands: PFSC,PGRC,PGTC,PLDC,PLHC,PLMC,PLSC,PLTC,PMKC,PM

NC,PMTC

PTL Select 1/4 size plot top left corner

HARD COPY (Ch 8)

Syntax: PTL

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PLOT SIZE\UPPER

LEFT

Related Commands: PTR, PBR, PBL, PFL

PTP Enter the target power for flat power

MEASUREMENT (Ch 4)

correction

Syntax: PTP

Val 1: The power level in ASCII <NRF> format (paragraph 10-3)

Units: DBM

Remarks: The calibration will be performed using this as the power level

to be achieved.

Front Panel Key: Setup Menu\TEST SIGNALS\CALIBRATE FOR

FLATNESS\POWER TARGET

Related Commands: PTP?, SFC, FP0, FP1

PTP? Output the target power for flat power

et power for flat power MEASUREMENT (Ch 4)

correction

Syntax: PTP?

10-218 37XXXC PM

Data I/O: The target value will be output in ASCII <NR3> format

(paragraph 10-3).

Front Panel Key: Setup Menu\TEST SIGNALS\CALIBRATE FOR

FLATNESS\POWER TARGET

Related Commands: PTP, SFC, FP0, FP1

PTR Select 1/4 size plot top right corner

HARD COPY (Ch 8)

Syntax: PTR

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PLOT SIZE\UPPER

RIGHT

Related Commands: PTL, PBR, PBL, PFL

PTS Enter number of points to be skipped during

CALIBRATION (Ch 5)

flat power correction

Syntax: PTS
Val 1: 1 to 65
Units: XX1

Front Panel Key: Setup Menu\TEST SIGNALS\CALIBRATE FOR

FLATNESS\XXX POINTS MEASURE 1 PWR POINT

EVERY XX POINTS

PTS? Output number of points to be skipped during

CALIBRATION (Ch 5)

flat power correction

Syntax: PTS?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3).

Front Panel Key: Setup Menu\TEST SIGNALS\CALIBRATE FOR

FLATNESS\XXX POINTS MEASURE 1 PWR POINT

EVERY XX POINTS

PW1 Enter external source 1 power level

MEASUREMENT (Ch 4)

Syntax: PW1

Val 1: Depends on power range of source 1

Remarks: Sets the power level of external source number 1

Data I/O: Data is input in ASCII <NRf> format (paragraph 10-3)

Front Panel Key: Setup Menu\TEST SIGNALS\SOURCE 1 POWER

Related Commands: PW1?,PW2, PW2?

PW1? Output external source 1 power level

MEASUREMENT (Ch 4)

Syntax: PW1?

Remarks: Outputs the power level setting of external source number 1

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Setup Menu\TEST SIGNALS\SOURCE 1 POWER

Related Commands: PW1,PW2, PW2?

PW2 Enter external source power level

MEASUREMENT (Ch 4)

Syntax: PW2

Val 1: Depends on power range of source

Units: DBM, XX1, XX3, XM3

Front Panel Key: Setup Menu\TEST SIGNALS\SOURCE 2 POWER

PW2? Output external source power level

MEASUREMENT (Ch 4)

Syntax: PW2?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Setup Menu\TEST SIGNALS\SOURCE 2 POWER

PWR Enter internal source power level

MEASUREMENT (Ch 4)

Syntax: PWR

Val 1: Depends on 37XXX power range

Units: DB, XX1, XX3, XM3

Front Panel Key: Setup Menu\TEST SIGNALS\POWER CONTROL

Related Commands: OID, P1P?, PWR?

PWR? Output internal source power level

MEASUREMENT (Ch 4)

10-220 37XXXC PM

Syntax: PWR?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Setup Menu\TEST SIGNALS\POWER CONTROL

Related Commands: OID, PIP?

Q22 Set Millimeter Wave Band to Q Band (WR-22) MILLIMETER WAVE (Ch 9)

Syntax: Q22

RAD Suffix sets phase data type and scales by DATA ENTRY SUFFIXES (Ch 4)

180/pi

Syntax: RAD

RC1 Recall front panel setup number 1 from

memory

Syntax: RC1

Front Panel Key: Save/Recall Menu\RECALL\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 1

RC10 Recall front panel setup number 10 from

memory

Syntax: RC10

Front Panel Key: Save/Recall Menu\RECALL\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 10

RC2 Recall front panel setup number 2 from

SAVE/RECALL (Ch 8)

SAVE/RECALL (Ch 8)

SAVE/RECALL (Ch 8)

SAVE/RECALL (Ch 8)

memory

Syntax: RC2

Front Panel Key: Save/Recall Menu\RECALL\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 2

RC3 Recall front panel setup number 3 from

memory

Syntax: RC3

Front Panel Key: Save/Recall Menu\RECALL\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 3

RC4 Recall front panel setup number 4 from

SAVE/RECALL (Ch 8)

memory

Syntax: RC4

Front Panel Key: Save/Recall Menu\RECALL\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 4

RC5 Recall front panel setup number 5 from

SAVE/RECALL (Ch 8)

memory

Syntax: RC5

Front Panel Key: Save/Recall Menu\RECALL\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 5

RC6 Recall front panel setup number 6 from

SAVE/RECALL (Ch 8)

memory

Syntax: RC6

Front Panel Key: Save/Recall Menu\RECALL\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 6

RC7 Recall front panel setup number 7 from

SAVE/RECALL (Ch 8)

memory

Syntax: RC7

Front Panel Key: Save/Recall Menu\RECALL\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 7

RC8 Recall front panel setup number 8 from

SAVE/RECALL (Ch 8)

memory

Syntax: RC8

Front Panel Key: Save/Recall Menu\RECALL\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 8

RC9 Recall front panel setup number 9 from

SAVE/RECALL (Ch 8)

memory

10-222 37XXXC PM

Syntax: RC9

Front Panel Key: Save/Recall Menu\RECALL\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 9

RD Remove a disk directory

DISK FUNCTION (Ch 8)

Syntax: RD

Val 1: "pathspec" is a combination of letters, numbers, \ characters

and underscores which spell out the path and directory name

Remarks: "pathspec" may include a drive letter of the form A: for the

floppy disk and C: for the hard drive. Directory names follow the

same rules as filenames.

Related Commands: MD

RDA Select automatic reference delay calculation

DISPLAY (Ch 4)

Syntax: RDA

Remarks: Calculation impacted by dielectric setting.

Front Panel Key: Ref Plane \AUTO

Related Commands: CH1-CH4, RDD, RDT, DIx commands in DISPLAY Group.

RDD Enter reference delay in distance for active

DISPLAY (Ch 4)

DISPLAY (Ch 4)

channel

Syntax: RDD

Val 1: -999.999 to +999.999

Units: M, MTR, MM, MMT, CM, CMT

Remarks: Calculation impacted by dielectric setting.

Front Panel Key: Ref Plane\DISTANCE

Related Commands: CH1-CH4, RDA, RDT, DIx commands in DISPLAY Group.

RDD? Output reference delay in distance for active

channel

Syntax: RDD?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Ref Plane \ DISTANCE

RDT Enter reference delay in time for active

DISPLAY (Ch 4)

channel

Syntax: RDT

Val 1: -999.999 to +999.999 *Units:* SEC, MS, US, NS, PS

Status Reporting: CH1-CH4, RDD, RDA

Front Panel Key: Ref Plane TIME

RDT? Output reference delay in time for active

DISPLAY (Ch 4)

channel

Syntax: RDT?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Ref Plane\TIME

RECALL Recall a data file from disk to a task

DISK FUNCTION (Ch 8)

DISPLAY (Ch 4)

Syntax: RECALL

Val 1: filename is the name of the file to be recalled. May include a

drive letter and path.

Remarks: Not all files are recallable. One can recall files with the following

name/extentions: (front panel and calibration data files) *.CAL, (normalization data files) *.NRM, (tabular data files) *.DAT, (service log files) *.LOG, (error list files) *.ELG, (hardware calibration files) HW_CAL.*, (calibration kit data files) KIT_INFO.*. Recalled tabular data, service log and error list files go to the printer for printing. The others are stored

internally.

Front Panel Key: Utility Menu\AUTOCAL UTILITIES\RECALL FROM HARD

(or FLOPPY) DISK

Related Commands: SAVE

REF Enter reference line for top graph of active

channel

Syntax: REF Val 1: 0-8

10-224 37XXXC PM

Units: Depends on graph type; see Table 11-2 at the end of this chapter.

Status Reporting: CH1-CH4, OFF, SCL

Front Panel Key: Set Scale\LOG MAG REFERENCE LINE

REF2 Enter reference line for bottom graph of active

DISPLAY (Ch 4)

channel

Syntax: REF2 Val 1: 0-8

Units: Depends on graph type; see Table 11-2 at the end of this chapter.

Front Panel Key: Set Scale\LOG MAG REFERENCE LINE

Related Commands: CH1-CH4, OFF2, SCL2

REF2? Output reference line for bottom graph of

DISPLAY (Ch 4)

active channel

Syntax: REF2?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3).

Front Panel Key: Set Scale\LOG MAG REFERENCE LINE

Related Commands: REF2

REF? Output reference line for top graph of active

DISPLAY (Ch 4)

channel

Syntax: REF?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3).

Front Panel Key: Set Scale LOG MAG REFERENCE LINE

REL Select real display for active channel

DISPLAY (Ch 4)

Syntax: REL

Front Panel Key: Graph Type\REAL

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, MPH, PCP,

PCS, PHX?, PHA, PLG, POW, PLR, RIM, SMC, SME, SMI, SWR

REU Suffix sets real data type DATA ENTRY SUFFIXES (Ch 4)

Syntax: REU

RGZ Select reflective device greater than Z0 CALIBRATION (Ch 5)

Syntax: RGZ

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\OPEN

(GREATER THAN Zo)

Related Commands: RLZ

RHO Select RF off in hold mode MEASUREMENT (Ch 4)

Syntax: RH0

Front Panel Key: Setup Menu\HOLD BUTTON FUNCTION\BIAS HOLD

CONDITIONS—RF OFF

Related Commands: HLD, RHI, BH0

RH1 Select RF on in hold MEASUREMENT (Ch 4)

Syntax: RH1

Front Panel Key: Setup Menu\HOLD BUTTON FUNCTION\BIAS HOLD

CONDITIONS—RF ON

Related Commands: HLD, RH0, BH0

RHX? Output RF on/off during hold status MEASUREMENT (Ch 4)

Syntax: RHX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Setup Menu\HOLD BUTTON FUNCTION\BIAS HOLD

CONDITIONS—RF (Status)

RIM Select real and imaginary display for active DISPLAY (Ch 4)

channel

10-226 37XXXC PM

Syntax: RIM

Front Panel Key: Graph Type\REAL AND IMAGINARY

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, MPH, PCP,

PCS, PHX?, PHA, PLG, POW, PLR, REL, SMC, SME, SMI, SWR

RLZ Select reflective device less than Z0

CALIBRATION (Ch 5)

Syntax: RLZ

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\SHORT (LESS

THAN Zo)

Related Commands: RGZ

RM1 Select reference plane at line 1 midpoint

CALIBRATION (Ch 5)

Syntax: RM1

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LRL/LRM PARAMETERS\LOCATION OF REFERENCE PLANES

MIDDLE OF BAND 1

Related Commands: RRP

ROL Enter reflective device offset length

CALIBRATION (Ch 5)

Syntax: ROL

Val 1: 00.000 to +10.000

Units: MMT, CMT, MTR, MM, CM, M

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\OFFSET

LENGTH OF TRM REFLECTION

RPC Repeat previous calibration

CALIBRATION (Ch 5)

Syntax: RPC

Remarks: Performs exactly the same as the BEG command EXCEPT it

uses existing calibration setup. This command is useful after

recalling a saved calibration.

Front Panel Key: Begin Cal\REPEAT PREVIOUS CAL

Related Commands: BEG, KEC, TC1, TC2, NCS

RPO Enter rear panel dc voltage value

REAR PANEL OUTPUT (Ch 9)

Syntax: RPO

Val 1: 00.000 to +10.000

Units: VLT

RPO? Output rear panel dc voltage value

REAR PANEL OUTPUT (Ch 9)

Syntax: RPO?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

RRP Select reference plane at reflection plane

CALIBRATION (Ch 5)

Syntax: RRP

Remarks: Selects reference plane to be at the reflection plane for the LRL

calibration.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LRL/LRM PARAMETERS\LOCATION OF REFERENCE PLANES

END OF LINE 1 (REF)

RST Instrument reset (same as *RST)

SYSTEM STATE (Ch 8)

SYSTEM STATE (Ch 8)

Syntax: RST

Remarks: Resets the 37XXX to default state with all user programmable

parameters set to their default values. Default state settings are listed in Chapter 12. This command does not affect the Output Queue, Status or Parallel Poll Registers, or the VNA GPIB

address setting.

Related Commands: *RST, RST0, RST1

RST0 Reset instrument front panel memories and

reserved parameters

Syntax: RST0

10-228 37XXXC PM

Remarks: Resets the VNA settings to their default values. Default state

settings are listed in Chapter 12. Additionally, front panel stored setups are cleared and the reserved parameters are set to their default values. This command does not effect the Output Queue, Status, Parallel Poll Registers, or the GPIB address. Reserved parameters are those parameters which are initialized at factory turn-on. They are also initialized after a battery-backed RAM

failure occurs.

Related Commands: *RST, RST, RST1

RST1 Reset instrument and front panel memories

SYSTEM STATE (Ch 8)

Syntax: RST1

Remarks: Resets the VNA to the default state with all user programmable

parameters set to their default values. Default state settings are listed in Chapter 12. Additionally, front panel stored setups are cleared. This command does not effect the Output Queue, Status, Parallel Poll Registers, or the GPIB address.

Related Commands: *RST, RST, RST0

RSTCOL Reset color configuration to default

SYSTEM STATE (Ch 8)

Syntax: RSTCOL

Front Panel Key: Utility Menu\COLOR CONFIGURATION\RESET COLORS

RSTGC Reset gain compression parameters to default

GAIN COMPRESSION (Ch 9)

Syntax: RSTGC

Remarks: This is not an instrument reset

Front Panel Key: Utility Menu\COLOR CONFIGURATION\RESET COLORS

RT0 Turn retrace rf off

MEASUREMENT (Ch 4)

Syntax: RT0

Front Panel Key: Option Menu\RF OFF DURING RETRACE

Related Commands: RT1, RTX?

RT1 Turn retrace rf on MEASUREMENT (Ch 4)

Syntax: RT1

Front Panel Key: Option Menu\RF ON DURING RETRACE

Related Commands: RT0, RTX?

RTL Return to local SYSTEM STATE (Ch 8)

Syntax: RTL

Remarks: This command performs the same function as the RETURN TO

LOCAL key. It has no effect if the VNA is in the local lockout

mode.

RTX? Output retrace rf on/off status MEASUREMENT (Ch 4)

Syntax: RTX?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3) as

follows: "1" for TRUE, "O" for FALSE.

Front Panel Key: Option Menu\RF ON/OFF DURING RETRACE

RV0 Turn rear panel output voltage off REAR PANEL OUTPUT (Ch 9)

Syntax: RV0

Front Panel Key: Options Menu\REAR PANEL OUTPUT\OUTPUT OFF

RV1 Turn rear panel output voltage on REAR PANEL OUTPUT (Ch 9)

Syntax: RV1

Front Panel Key: Options Menu\REAR PANEL OUTPUT\OUTPUT ON

RV1? Output rear panel output voltage on/off status REAR PANEL OUTPUT (Ch 9)

Syntax: RV1?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Options Menu\REAR PANEL OUTPUT\OUTPUT

10-230 37XXXC PM

RVD Set rear panel output mode to dc value REAR PANEL OUTPUT (Ch 9)

Syntax: RVD

Related Commands: RVH, RVV, RVL, RVX?

RVH Set rear panel output mode to horizontal REAR PANEL OUTPUT (Ch 9)

Syntax: RVH

Front Panel Key: Options Menu\REAR PANEL OUTPUT\SELECT

MODE\HORIZONTAL

Related Commands: RVD, RVV, RVL, RVX?

RVL Set rear panel output mode to lock direction REAR PANEL OUTPUT (Ch 9)

Syntax: RVL

Related Commands: RVH, RVV, RVD, RVX?

RVV Set rear panel output mode to vertical REAR PANEL OUTPUT (Ch 9)

Syntax: RVV

Front Panel Key: Options Menu\REAR PANEL OUTPUT\SELECT

MODE\VERTICAL

Related Commands: RVH, RVD, RVL, RVX?

RVX? Output rear panel output mode REAR PANEL OUTPUT (Ch 9)

Syntax: RVX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "1" for horizontal, "2" for vertical, "3" for lock dir, "4" for

dc output.

Front Panel Key: Options Menu\REAR PANEL OUTPUT\SELECT

MODE\VERTICLE/HORIZONTAL

S Suffix sets time data type DATA ENTRY SUFFIXES (Ch 4)

Syntax: S

S11 Measure S11 on active channel

MEASUREMENT (Ch 4)

Syntax: S11

Remarks: Measures the forward reflection parameter, S11, on the active

channel. Forward reflection is the value of the signal leaving port 1 vs the value of the signal being reflected back into port 1. Any channel that is displaying the user parameter USR2 will

now display S11.

Front Panel Key: S Params\S21, FWD REFL

Related Commands: S12, S21, S22, CH1-CH4

S12 Measure S12 on active channel

MEASUREMENT (Ch 4)

Syntax: S12

Remarks: Measures the reverse transmission parameter, S12, on the

active channel. Reverse transmission is the value of the signal leaving port 2 vs the value of the signal being received at port 1. Any channel that is displaying the user parameter USR3 will

now display S12.

Front Panel Key: S Params\S21, REV TRANS

Related Commands: S11, S21, S22, CH1-CH4

S21 Measure S21 on active channel

MEASUREMENT (Ch 4)

Syntax: S21

Remarks: Measures the forward transmission parameter, S21, on the

active channel. Forward transmission is the value of the signal leaving port 1 vs the value of the signal being received at port 2. Any channel that is displaying the user parameter USR1 will

now display S21.

Front Panel Key: S Params\S21, FWD TRANS

Related Commands: S11, S12, S22, CH1-CH4

S22 Measure S22 on active channel

MEASUREMENT (Ch 4)

Syntax: S22

10-232 37XXXC PM

Remarks: Measures the reverse reflection parameter, S22, on the active

channel. Reverse reflection is the value of the signal leaving port 2 vs the value of the signal being reflected back into port 2. Any channel that is displaying the user parameter USR4 will now

display S22.

Front Panel Key: S Params\S21, REV REFL

Related Commands: S11, S12, S21, CH1-CH4

SA1 Enter port 1 source attenuator value

MEASUREMENT (Ch 4)

Syntax: SA1

Val 1: 0 to 70 dB, in 10 dB steps

Units: DB, DBL, DBM, XX1, XX3, XM3

Remarks: Attenuates the signal output from Port 1.

Front Panel Key: Setup Menu\TEST SIGNALS\PORT 1 ATTN

Related Commands: PWR, P1P?, TA2

SA1? Output port 1 source attenuator value

MEASUREMENT (Ch 4)

Syntax: SA1?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3).

Front Panel Key: Setup Menu\TEST SIGNALS\PORT 1 ATTN

SA1MAX? Output port 1 source attenuator max value

MEASUREMENT (Ch 4)

Syntax: SA1MAX?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3)

Related Commands: SA1?, TA2MAX?

SAMP2 Use 2 samplers for measurements

MEASUREMENT (Ch 4)

Syntax: SAMP2

Remarks: This configuration provides greater dynamic range but only

allows 1 parameter measurements

Front Panel Key: Avg/Smooth Menu\SAMPLERS USED PER SWEEP

Related Commands: SAMP?,SAMP3

SAMP3 Use 3 samplers for measurements

MEASUREMENT (Ch 4)

Syntax: SAMP3

Remarks: This configuration is the normal sampler configuration. Since 3

samplers are used, can measure 2 parameters simultaneously however the dynamic range may be degraded do to interaction

between samplers.

Front Panel Key: Avg/Smooth Menu\SAMPLERS USED PER SWEEP

Related Commands: SAMP?,SAMP2

SAMP? Output the number of samplers used for

MEASUREMENT (Ch 4)

measurements

Syntax: SAMP?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3). 2 -

means low noise 2 sampler measurement, 3 - means normal 3

sampler measurement

Front Panel Key: Avg/Smooth Menu\SAMPLERS USED PER SWEEP

Related Commands: SAMP2,SAMP3

SAVE Save a data file to disk

DISK FUNCTION (Ch 8)

Syntax: SAVE

Val 1: filename is the name of the file to which the data is stored. May

include a drive letter, and path. The file name defines the type of

data which is to be saved.

Remarks: The following are the types of data and associated file names

which can be saved: front panel and calibration data (*.CAL), normalization data (*.NRM), tabular data (*.DAT). S2P format data (*.S2P), text format data (*.TXT), hpgl plot data (*.HGL), black and white windows bit map of screen (*.BMB), color windows bit map of screen (*.BMC), service log data (*.LOG), error list data (*.ELG), hardware calibration files (HW_CAL.*)

Front Panel Key: Hard Copy Menu**DISK FILE OPTIONS\FORMAT TEXT** or

Utility Menu\AUTOCAL UTILITIES\SAVE TO HARD DISK

(or SAVE TO FLOPPY DISK)

10-234 37XXXC PM

Related Commands: RECALL

SAVEGC Save text format gain compression data to

DISK FUNCTION (Ch 8)

disk

Syntax: SAVEGC

Val 1: filename is the name of the file to which the data is stored. May

include a drive letter, and path. The extention must be .TXT

Remarks: The data items are separated with tabs (ASCII value 9) in order

to be compatible with Microsoft Excel.

Related Commands: SAVE, SPGCA, MFGCT, OGCTXT

SBD Enter substrate dielectric for microstrip

CALIBRATION (Ch 5)

calibration

Syntax: SBD

Val 1: 1.0 to 9999.99 Units: XX1, XX3, XM3

Status Reporting: SBT

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\MICROSTRIP

PARAMETERS\USER DEFINED\SUBSTRATE

DIELECTRIC

SBT Enter substrate thickness for microstrip

calibration

CALIBRATION (Ch 5)

DISPLAY (Ch 4)

Syntax: SBT

Val 1: 0.001 mm to 1.0 m

Units: M, MTR, MM, MMT, CM, CMT

Status Reporting: SBD

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\MICROSTRIP

PARAMETERS\USER DEFINED\THICKNESS OF

SUBSTRATE

SCL Enter Scale Resolution for top graph of active

channel

Syntax: SCL

Val 1: Depends on graph type: Mag Resolution: 0.001-50, Phase

Resolution: 0.01-90, Polar Resolution: E-9-999.99, Mag

Resolution: 200 max, Smith/Inverted Smith: -30, 10, 20, 30

Units: Depends on graph type; refer to Table 11-2 at the end of this

chapter.

Front Panel Key: Set Scale \ LOG MAG RESOLUTION

Related Commands: OFF, REF, ISE, ISC, SME, SMC

SCL2 Enter Scale Resolution for bottom graph of

DISPLAY (Ch 4)

active channel

Syntax: SCL2

Val 1: Depends on graph type: Mag Resolution: 0.001-50, Phase

Resolution: 0.01-90, Polar Resolution: E-9-999.99, Mag

Resolution: 200 max, Smith/Inverted Smith: -30, 10, 20, 30

Units: Depends on graph type; refer to Table 11-2 at the end of this

chapter.

Front Panel Key: Set Scale\LOG MAG RESOLUTION

Related Commands: OFF2, REF2

SCL2? Output Scale Resolution for bottom graph of

DISPLAY (Ch 4)

active channel

Syntax: SCL2?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Set Scale LOG MAG RESOLUTION

Related Commands: SCL2

SCL? Output Scale Resolution for top graph of

DISPLAY (Ch 4)

active channel

Syntax: SCL?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Set Scale\LOG MAG RESOLUTION

SCM Select standard calibration method

CALIBRATION (Ch 5)

Syntax: SCM

10-236 37XXXC PM

Front Panel Key: Begin Cal\CHANGE CAL METHOD AND LINE

TYPE\STANDARD (NOT USED FOR WAVEGUIDE)

Related Commands: LCM, OCM

SDG Start diagnostics mode

DIAGNOSTICS (Ch 8)

Syntax: SDG

Remarks: For service use only.

SDR Select standard receiver mode

DIAGNOSTICS (Ch 8)

Syntax: SDR

Remarks: For service use only.

Front Panel Key: Option Menu\RECEIVER MODE\STANDARD

SDR? Output receiver mode

RECEIVER MODE (Ch 9)

Syntax: SDR?

Data I/O: The receiver mode is output in ASCII <NR1> formate

(paragraph 10-3 as follows:,"0" for standard, "1" for source lock with GPIB control off, "2" for source lock with GPIB control on, "3" for tracking with GPIB control off, "4" for tracking with GPIB control on, "5" for set on mode with GPIB

off.

Front Panel Key: Option Menu\RECEIVER MODE\STANDARD

Related Commands: SDR, SL1, ST1, TK1

SELBB Select Broadband test set operation

MILLIMETER WAVE (Ch 9)

Syntax: SELBB

Front Panel Key: Option Menu\TEST SET CONFIG\BROADBAND

SELINT Select Internal (normal) test set operation

MILLIMETER WAVE (Ch 9)

Syntax: SELINT

Front Panel Key: Option Menu\TEST SET CONFIG\INTERNAL

Related Commands: SELMM, SELFP, SELBB, SELXX?

SELMM Select Millimeter Wave test set operation

MILLIMETER WAVE (Ch 9)

Syntax: SELMM

Front Panel Key: Option Menu\TEST SET CONFIG\MILLIMETER WAVE

Related Commands: SELINT, SELSP, SELBB, SELXX?

SELSP Select S-Parameter test set operation

MEASUREMENT (Ch 4)

Syntax: SELSP

Front Panel Key: Option Menu\TEST SET CONFIG\S-PARAMETER

Related Commands: SELXX?, SELINT, SELMM, SELBB

SELXX? Output the test set selection

MILLIMETER WAVE (Ch 9)

MMWave/Internal

Syntax: SELXX?

Data I/O: Returns a value in ASCII <NR1> format (paragraph 10-3) as

follows: (0=internal,1=millimeterwave)

Front Panel Key: Option Menu\TEST SET CONFIG

Related Commands: SELINT, SELMM, SELSP, SELBB

SETUP Display setup menu

DISPLAY (Ch 4)

Syntax: SETUP

SFC Perform flat test port calibration

CALIBRATION (Ch 5)

GAIN COMPRESSION (Ch 9)

Syntax: SFC

Front Panel Key: Setup Menu\TEST SIGNALS\CALIBRATE FOR

FLATNESS\START FLAT POWER CALIBRATION

SFGCA Select swept frequency gain compression

application

Syntax: SFGCA

10-238 37XXXC PM

Related Commands: SPGCA, UNDOGC

SFGCT Start swept frequency gain compression test

GAIN COMPRESSION (Ch 9)

Syntax: SFGCT

Remarks: Begin testing gain compression over the current frequency range

and at the current power level setting.

Related Commands: SFGCA

SH1 Set offset short 1 or 2 offset length for offset

CALIBRATION (Ch 5)

short calibration

Syntax: SH1

Val 1: -999.999 to +999.999

Units: M, MTR, MM, MMT, CM, CMT

Status Reporting: OCM, WSH1, WSH2

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\OFFSET LENGTH OF SHORTS\PORT 1 SHORTS SHORT 1

SH2 Set offset short 1 or 2 offset length for offset

CALIBRATION (Ch 5)

short calibration

Syntax: SH2

Val 1: -999.999 to +999.999

Units: M, MTR, MM, MMT, CM, CMT

Status Reporting: OCM, WSH1, WSH2

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\OFFSET LENGTH OF SHORTS\PORT 1 SHORTS SHORT 2

SL1 Select source lock mode

RECEIVER MODE (Ch 9)

Syntax: SL1

Remarks: For service use only.

Front Panel Key: Option Menu\RECEIVER MODE\USER

DEFINED\SOURCE LOCK

SLC Clear all segmented limits definitions

LIMITS (Ch 6)

Syntax: SLC

Front Panel Key: Limits\SEGMENTED LIMITS\CLEAR ALL

SLD Select sliding load for calibration

CALIBRATION (Ch 5)

Syntax: SLD

Remarks: During calibration the data-taking process for the load includes

six slide positions. If any calibration frequencies are below 2

GHz, you must also use a broadband load.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\LOAD

TYPE\SLIDING LOAD

Related Commands: BBL

SLH Enter segmented limits horizontal offset

LIMITS (Ch 6)

Syntax: SLH

Val 1: Frequency, time, or distance in current sweep range

Units: XM3, XX1, XX3

Front Panel Key: Limits\SEGMENTED LIMITS\SEGMENTED OFFSETS

HORIZONTAL

Related Commands: SLV

SLH? Output segmented limits horizontal offset

LIMITS (Ch 6)

Syntax: SLH?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Limits\SEGMENTED LIMITS\SEGMENTED OFFSETS

HORIZONTAL

SLL0 Turn lower segmented limits display off

LIMITS (Ch 6)

Syntax: SLL0

Front Panel Key: Limits\SEGMENTED LIMITS\LOWER LIMIT OFF

10-240 37XXXC PM

Related Commands: LON, LOF, SLL1

SLL1 Turn lower segmented limits display on

LIMITS (Ch 6)

Syntax: SLL1

Front Panel Key: Limits\SEGMENTED LIMITS\LOWER LIMIT ON

Related Commands: LON, LOF, SLL0

SLLX? Output lower segmented limits display on/off

LIMITS (Ch 6)

status

Syntax: SLLX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Limits\SEGMENTED LIMITS\LOWER LIMIT

SLT Perform SLT internal calibration

DIAGNOSTICS (Ch 8)

Syntax: SLT

Remarks: For service use only.

SLU0 Turn upper segmented limits display off

LIMITS (Ch 6)

Syntax: SLU0

Front Panel Key: Limits\SEGMENTED LIMITS\UPPER LIMIT OFF

Related Commands: LON, LOF, SLU1

SLU1 Turn upper segmented limits display on

LIMITS (Ch 6)

Syntax: SLU1

Front Panel Key: Limits\SEGMENTED LIMITS\UPPER LIMIT ON

Related Commands: LON, LOF, SLL, SLU0

SLUX? Output upper segmented limits display on/off

status

LMITS (Ch 7)

Syntax: SLUX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Limits\SEGMENTED LIMITS\UPPER LIMIT

SLV Enter segmented limits vertical offset

LIMITS (Ch 6)

Syntax: SLV

Val 1: Depends on graph type(see DISPLAY group)

Units: Depends on graph type (see Table 11-2 at the end of this

chapter).

Front Panel Key: Limits\SEGMENTED LIMITS\SEGMENTED OFFSETS

VERTICAL

Related Commands: SLH

SLV? Output segmented limits vertical offset

LIMITS (Ch 6)

Syntax: SLV?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Limits\SEGMENTED LIMITS\SEGMENTED OFFSETS

VERTICAL

SMC Enter scale and select compressed Smith

DISPLAY (Ch 4)

DISPLAY (Ch 4)

Chart display

Syntax: SMC

Remarks: Selects the compressed Smith Chart for display on the active

channel.

Front Panel Key: Graph Type\SMITH CHART (IMPEDANCE)

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, MPH, PCP,

PCS, PHX?, PHA, PLG, POW, PLR, REL, SMI, SME, SMI, SWR

SME Enter scale and select expanded Smith Chart

display

Syntax: SME

Val 1: 10, 20, 30

10-242 37XXXC PM

Units: DBL, XX1

Front Panel Key: Graph Type\SMITH CHART (IMPEDANCE)

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, MPH, PCP,

PCS, PHX?, PHA, PLG, POW, PLR, REL, SMC, SME, SMI, SWR

SMI Select normal Smith Chart for active channel

DISPLAY (Ch 4)

Syntax: SMI

Front Panel Key: Graph Type\SMITH CHART (IMPEDANCE)

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, MPH, PCP,

PCS, PHX?, PHA, PLG, POW, PLR, REL, RIM, SMC, SME,

SWR

SMKR Select marker search marker mode

MARKERS (Ch 6)

Syntax: SMKR

Related Commands: AMKR, FMKR, NMKR, XMKR?

SOF Turn off smoothing

ENHANCEMENT (Ch 4)

Syntax: SOF

Front Panel Key: Avg Smooth Menu\SMOOTHING X.X PERCENT OF SWEEP

Related Commands: SON

SOF? Output smoothing on/off status

ENHANCEMENT (Ch 4)

Syntax: SOF?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Avg Smooth Menu\SMOOTHING X.X PERCENT OF SWEEP

SOFTCO Activate color configuration Soft

SYSTEM STATE (Ch 8)

Syntax: SOFTCO

Front Panel Key: Utility Menu\COLOR CONFIGURATION\COLOR

SCHEMES\SOFT COLORS

Related Commands: BRILL, CLASS, INVER, NEWCO, STOCO, RSTCOL

SON Enter smoothing value and turn on

ENHANCEMENT (Ch 4)

Syntax: SON Val 1: 0 - 20

Units: XX1, XX3, XM3

Front Panel Key: Avg Smooth Menu\SMOOTHING X.X PERCENT OF SWEEP

Related Commands: SOF

SON? Output smoothing value

ENHANCEMENT (Ch 4)

Syntax: SON?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Avg Smooth Menu\SMOOTHING X.X PERCENT OF SWEEP

SPAMPMT Start swept power gain compression AM/PM

GAIN COMPRESSION (Ch 9)

test

Syntax: SPAMPMT

Remarks: Begins the automated sequence which finds the gaim

compression target at one of the specified frequency points.

Phase and magnitude vs input power are displayed.

Front Panel Key: Appl\SWEPT POWER GAIN

COMPRESSION\MORE\AM/PM

Related Commands: SFGCA, SPGCA, UNDOGC

SPAN Enter frequency span

MEASUREMENT (Ch 4)

Syntax: SPAN

Val 1: Can be any frequency span up to the high frequency limit minus

the low frequency limit of the 37XXX

Units: HZ, KHZ, MHZ, GHZ

10-244 37XXXC PM

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\SET CENTER/SPAN\SPANor

Setup Menu\SET CENTER/SPAN\SPAN

Related Commands: CNTR, CNTR?, SPAN?, SRT, SRT?, STP, STP?

SPAN? Output frequency span

MEASUREMENT (Ch 4)

Syntax: SPAN?

Data I/O: Outputs a value in ASCII <NR3> format (paragraph 10-3).

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\SET CENTER/SPAN\SPANor Setup Menu\SET CENTER/SPAN\SPAN (Frequency)

Related Commands: CNTR, CNTR?, SPAN, SRT, SRT?, STP, STP?

SPD Enter pen speed percentage

HARD COPY (Ch 8)

Syntax: SPD Val 1: 10 - 100

Units: XX1, XX3, XM3

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PEN COLORS\PEN

SPEED 100 PERCENT OF MAXIMUM

SPGCA Select swept power gain compression

application

Syntax: SPGCA

Related Commands: SFGCA, UNDOGC

SPGCT Start swept power gain compression test

GAIN COMPRESSION (Ch 9)

GAIN COMPRESSION (Ch 9)

Syntax: SPGCT

Remarks: Begins the automated sequence which finds the gain

compression target at one of the specified frequency points.

Related Commands: SPGCA, MFGCT

SPH Enter active segmented limit horizontal stop

position

LIMITS (Ch 6)

Syntax: SPH

Val 1: Frequency, time, or distance in current sweep range

Units: XX1, XX3, XM3

Related Commands: LS01-LS010, US01-US10

SPH? Output active segmented limit horizontal stop

LIMITS (Ch 6)

position

Syntax: SPH?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

SPLN Select normal source lock polarity

ENHANCEMENT (Ch 4)

Syntax: SPLN

Related Commands: SPLR, SPLX?

SPLR Select reverse source lock polarity

ENHANCEMENT (Ch 4)

Syntax: SPLR

Related Commands: SPLN, SPLX?

SPLX? Output source lock polarity normal/reverse

ENHANCEMENT (Ch 4)

status

Syntax: SPLX?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3) as

follows: "1" for REVERSE, "O" for NORMAL.

Related Commands: SPLN, SPLR

SPR0 Turn spur reduction off

ENHANCEMENT (Ch 4)

Syntax: SPR0

Front Panel Key: Option Menu\RECEIVER MODE\SPUR REDUCTION OFF

Related Commands: SPR1, SPRX?

SPR1 Turn spur reduction on

ENHANCEMENT (Ch 4)

10-246 37XXXC PM

Syntax: SPR1

Front Panel Key: Option Menu\RECEIVER MODE\SPUR REDUCTION ON

Related Commands: SPR0, SPRX?

SPRX? Output spur reduction on/off status

ENHANCEMENT (Ch 4)

Syntax: SPRX?

Data I/O: Outputs a value using ASCII <NR1> format (paragraph 10-3) as

follows: "1" for ON, "O" for OFF.

Front Panel Key: Option Menu\RECEIVER MODE\SPUR REDUCTION

SPV Enter active segmented limit vertical stop

LIMITS (Ch 6)

position

Syntax: SPV

Val 1: Depends on graph type(see DISPLAY group)

Units: Depends on graph type (see Table 11-2 at the end of this

chapter).

Related Commands: LS01-LS010, US01-US10

SPV? Output active segmented limit vertical stop

LIMITS (Ch 6)

position

Syntax: SPV?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

SRC1 Select source linearity voltage testing

DIAGNOSTICS (Ch 8)

Syntax: SRC1

Remarks: For service use only.

SRC1? Output external source 1 existence

MULTIPLE SOURCE CONTROL (Ch 9)

information

Syntax: SRC1?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10.3), 0 -

means external source 1 does not exist, 1 - means external

source 1 does exists

Related Commands: SRC2?

SRC1AC Select source 1 as active MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC1AC

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 1 ACTIVE

Related Commands: SRC1NA, SRC1AC?

SRC1AC? Output source 1 active/inactive status MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC1AC?

Data I/O: Outputs the status in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for inactive or "1" for active.

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 1

ACTIVE/INACTIVE

Related Commands: SRC1AC, SRC1NA

SRC1ADD Enter external source 1 GPIB address MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC1ADD

Val 1: 1-30

Units: XX1

Data I/O: Data is input in ASCII <NRf> format (paragraph 10-3)

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 1 GPIB

ADDRESS or Utility Menu\GPIB ADDRESSES\EXTERNAL

SOURCE 1

Related Commands: SRC1ADD?,ADDFC,ADDPM,ADDPLT,SRC2ADD

SRC1ADD? Output external source 1 GPIB address ADDRESSING (Ch 8)

Syntax: SRC1ADD?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3),

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 1 GPIB

ADDRESS or Utility Menu\GPIB ADDRESSES\EXTERNAL

SOURCE 1

10-248 37XXXC PM

Related Commands: SRC1ADD,ADDFC?,ADDPM?,ADDPLT?,SRC2ADD?

SRC1EX Select source 1 as external MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC1EX

Related Commands: SRC1NT,SRC1EX?

SRC1EX? Output source 1 external/internal status MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC1EX?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3), 0 -

means the source is internal, 1 - means the source is external

Related Commands: SRC1EX,SRC1NT

SRC1G0 Turn source 1 GPIB control off MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC1G0

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 1 GPIB

CONTROL OFF

Related Commands: SRC1G1,SRC1GX?

SRC1G1 Turn source 1 GPIB control on MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC1G1

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 1 GPIB

CONTROL ON

Related Commands: SRC1G0,SRC1GX?

SRC1GX? Output source 1 GPIB control on/off status MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC1GX?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3), "0" for

OFF or "1" for ON.

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 1 GPIB

CONTROL

Related Commands: SRC1G0,SRC1G1

SRC1MOD? Output external source 1 model/version string MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC1MOD?

Data I/O: Outputs string in <Arbitrary ASCII> format (paragraph 10-3),

Related Commands: SRC2MOD?

SRC1NA Select source 1 as not active MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC1NA

Related Commands: SRC1AC, SRC1AC?

SRC1NT Select source 1 as internal MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC1NT

Related Commands: SRC1EX,SRC1EX?

SRC2 Select source power voltage testing MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC2

Remarks: For service use only.

SRC2? Output external source 2 existence MEASUREMENT (Ch 4)

information

Syntax: SRC2?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3), 0 -

means external source 2 does not exist, 1 - means external

source 2 does exist.

Related Commands: SRC1?

SRC2AC Select source 2 as active MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC2AC

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 2 ACTIVE

10-250 37XXXC PM

Related Commands: SRC2NA, SRC2AC?

SRC2AC? Output source 2 active/inactive status MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC2AC?

Data I/O: Outputs the status in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for inactive or "1" for active.

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 2

ACTIVE/INACTIVE

Related Commands: SRC2AC, SRC2NA

SRC2ADD Enter external source 2 GPIB address MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC2ADD

Val 1: 1-30

Units: XX1

Data I/O: The value is input in ASCII (NRf> format (paragraph 10-3)

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 2 GPIB

ADDRESS or Utility Menu\GPIB ADDRESSES\EXTERNAL

SOURCE 2

Related Commands: SRC2ADD?,ADDFC,ADDPLT,ADDPM,SRC1ADD

SRC2ADD? Output external source 2 GPIB address MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC2ADD?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3),

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 2 GPIB

ADDRESS or Utility Menu\GPIB ADDRESSES\EXTERNAL

SOURCE 2

Related Commands: SRC2ADD,ADDFC?,ADDPLT?,ADDPM?,SRC1ADD?

SRC2G0 Turn source 2 GPIB control off MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC2G0

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 2 GPIB

CONTROL OFF

Related Commands: SRC2G1, SRC2GX?

SRC2G1 Turn source 2 GPIB control on MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC2G1

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 2 GPIB

CONTROL ON

Related Commands: SRC2G0, SRC2GX?

SRC2GX? Output source 2 GPIB control on/off status MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC2GX?

Data I/O: Outputs the status in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Option Menu\SOURCE CONFIG\SOURCE 2 GPIB

CONTROL

Related Commands: SRC2G0, SRC2G1

SRC2MOD? Output external Source 2 model/version string MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC2MOD?

Data I/O: Outputs string in <Arbitrary ASCII> format (paragraph 10-3)

Related Commands: SRC1MOD?

SRC2NA Select source 2 as not active MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SRC2NA

Related Commands: SRC2AC, SRC2AC?

SRCH Enter marker search value MARKERS (Ch 6)

Syntax: SRCH

Val 1: Depends on graph type Units: Depend on graph type

Front Panel Key: Marker Menu\MARKER READOUT FUNCTIONS\SEARCH

10-252 37XXXC PM

Related Commands: MKSL, MKSR, SMKR, SRCH?

SRCH? Output marker search value

MARKERS (Ch 6)

Syntax: SRCH?

Data I/O: Outputs the search value in ASCII <NR3> format (paragraph

10-3).

Front Panel Key: Marker Menu\MARKER READOUT FUNCTIONS\SEARCH

Related Commands: MKSL, MKSR, SMKR, SRCH

SRT Enter start frequency

MEASUREMENT (Ch 4)

Syntax: SRT

Val 1: Can be any frequency from low frequency limit of 37XXX to

current sweep stop frequency

Units: HZ, KHZ, MHZ, GHZ

Remarks: If a calibration is in place, the lower limit is the calibration start

frequency.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\START FREQUENCY\SET START

or Setup Menu\START\SET START

Related Commands: STP, CWF

SRT? Output start frequency

MEASUREMENT (Ch 4)

Syntax: SRT?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\START FREQUENCYlor Setup

Menu\START (Frequency)

Related Commands: STP, CWF

ST1 Select set on mode

RECEIVER MODE (Ch 9)

Syntax: ST1

Remarks: For service use only.

Front Panel Key: Option Menu\RECEIVER MODE\USER DEFINED\SET ON

STD Store trace to memory on active channel

DISPLAY (Ch 4)

Syntax: STD

Remarks: Stores the active channel's trace data in memory.

Front Panel Key: Trace Memory\STORE DATA TO MEMORY

Related Commands: MEM, DNM, DTM, CH1-CH4

STH Enter active segmented limit horizontal start

LIMITS (Ch 6)

position

Syntax: STH

Val 1: Frequency, time, or distance

Units: XX1, XX3, XM3

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\START

POSITION HORIZONTAL

Related Commands: STV, LS01-LS010, US01-US10

STH? Output active segmented limit horizontal

LIMITS (Ch 6)

start position

Syntax: STH?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\START

POSITION HORIZONTAL

STOCO Store the current color configuration as Reset

SYSTEM STATE (Ch 8)

Syntax: STOCO

Front Panel Key: Utility Menu\COLOR CONFIGURATION\COLOR

SCHEMES\STORE COLOR CONFIG AS RESET

(DEFAULT) COLORS

Related Commands: BRILL, CLASS, INVER, NEWCO, SOFTCO, RSTCOL

STP Enter stop frequency

MEASUREMENT (Ch 4)

10-254 37XXXC PM

Syntax: STP

Val 1: Can be any frequency from current start-sweep frequency to

maximum 37XXX frequency

Units: HZ, KHZ, MHZ, GHZ

Remarks: Upper frequency limit is reduced to the maximum calibrated

frequency if a calibration is in place.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\SET CENTER/SPAN/SET STOP

Related Commands: SRT, CWF

STP? Output stop frequency

MEASUREMENT (Ch 4)

Syntax: STP?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\STOP FREQUENCYlor Setup

Menu\STOP (Frequency)

STV Enter active segmented limit vertical start

position

Syntax: STV

Val 1: Depends on graph type (see DISPLAY group)

Units: Depends on graph type (see Table 11-2 at the end of this

chapter).

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\START

POSITION VERTICAL

Related Commands: STH, LS01-LS010, US01-US10

STV? Output active segmented limit vertical start

LIMITS (Ch 6)

LIMITS (Ch 6)

position

Syntax: STV?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\START

POSITION VERTICAL

SV1 Save front panel setup number 1 to memory SAVE/RECALL (Ch 8)

Syntax: SV1

Front Panel Key: Save/Recall Menu\SAVE\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 1

Related Commands: RC1-RC10

SV10 Save front panel setup number 10 to memory SAVE/RECALL (Ch 8)

Syntax: SV10

Front Panel Key: Save/Recall Menu\SAVE\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 10

Related Commands: RC1-RC10

SV2 Save front panel setup number 2 to memory SAVE/RECALL (Ch 8)

Syntax: SV2

Front Panel Key: Save/Recall Menu\SAVE\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 2

Related Commands: RC1-RC10

SV3 Save front panel setup number 3 to memory SAVE/RECALL (Ch 8)

Syntax: SV3

Front Panel Key: Save/Recall Menu\SAVE\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 3

Related Commands: RC1-RC10

SV4 Save front panel setup number 4 to memory SAVE/RECALL (Ch 8)

Syntax: SV4

Front Panel Key: Save/Recall Menu\SAVE\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 4

Related Commands: RC1-RC10

10-256 37XXXC PM

SV5 Save front panel setup number 5 to memory SAVE/RECALL (Ch 8)

Syntax: SV5

Front Panel Key: Save/Recall Menu\SAVE\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 5

Related Commands: RC1-RC10

SV6 Save front panel setup number 6 to memory SAVE/RECALL (Ch 8)

Syntax: SV6

Front Panel Key: Save/Recall Menu\SAVE\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 6

Related Commands: RC1-RC10

SV7 Save front panel setup number 7 to memory SAVE/RECALL (Ch 8)

Syntax: SV7

Front Panel Key: Save/Recall Menu\SAVE\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 7

Related Commands: RC1-RC10

SV8 Save front panel setup number 8 to memory SAVE/RECALL (Ch 8)

Syntax: SV8

Front Panel Key: Save/Recall Menu\SAVE\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 8

Related Commands: RC1-RC10

Sv9 Save front panel setup number 9 to memory SAVE/RECALL (Ch 8)

Syntax: SV9

Front Panel Key: Save/Recall Menu\SAVE\FRONT PANEL SETUP IN

INTERNAL MEMORY\MEMORY 9

Related Commands: RC1-RC10

SVB Save current band definitions

MULTIPLE SOURCE CONTROL (Ch 9)

Syntax: SVB

Remarks: See command's functional group

Related Commands: BD-BD5, CLB

SVBMM Save and activate the new Millimeter Wave

MILLIMETER WAVE (Ch 9)

band definitions

Syntax: SVBMM

Remarks: Note that this does not require MSD to actuate the equations

Related Commands: BSP, BST, ED1, ED2, EDR, EDV, EML, EOS, BDMM, CLBMM

SWP Return to normal sweep mode

MEASUREMENT (Ch 4)

Syntax: SWP

Remarks: Use this command to return to sweep mode from CW.

Front Panel Key: Setup Menu\C.W. MODE ON (OFF)

Related Commands: CWF

SWP? Output sweep mode

MEASUREMENT (Ch 4)

Syntax: SWP?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "1" for CW, "2" for discrete fill, "3" for normal sweep, "4"

for harmonic time domain.

Front Panel Key: Setup Menu\C.W. MODE (ON/OFF)

SWPDIR? Output instantaneous sweep direction

MEASUREMENT (Ch 4)

forward/reverse

Syntax: SWPDIR?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "1" for forward or "2" for reverse.

Related Commands: HLD, CTN

10-258 37XXXC PM

SWR Select SWR display for active channel

DISPLAY (Ch 4)

Syntax: SWR

Front Panel Key: Graph Type\SWR

Related Commands: DLA, CH1-CH4, IMG, ISC, ISE, ISM, LIN, MAG, MPH, PCP,

PCS, PHX?, PHA, PLG, POW, PLR, REL, SMC, SME, SMI

SXX? Output s parameter or user defined parameter

MEASUREMENT (Ch 4)

of active channel

Syntax: SXX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "11" for S11, "21" for S21, "22" for S22, "12" for S12.

T13 Select overlaid channel 1 and 3 display

CHANNELS (Ch 4)

Syntax: T13

Remarks: Restarts the sweep.

Front Panel Key: Channels Menu\OVERLAY DUAL CHANNELS 1&3

Related Commands: WFS, D13

T24 Select overlaid channel 2 and 4 display

CHANNELS (Ch 4)

Syntax: T24

Remarks: Restarts the sweep.

Front Panel Key: Channels Menu\OVERLAY DUAL CHANNELS 2&4

Related Commands: WFS, D24

TA2 Enter port 2 test attenuator value

MEASUREMENT (Ch 4)

Syntax: TA2

Val 1: 0 to 40 in 10 dB steps

Units: DBL, DBM, XX1, XX3, XM3

Remarks: Attenuates the signal coming into port 2 (Option 6).

Front Panel Key: Setup Menu\TEST SIGNALS\PORT 2 ATTN

TA2? Output port 2 test attenuator value

MEASUREMENT (Ch 4)

Syntax: TA2?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0", "10", "20", "30", "40".

Front Panel Key: Setup Menu\TEST SIGNALS\PORT 2 ATTN

TA2MAX? Output port 2 test attenuator max value

MEASUREMENT (Ch 4)

Syntax: TA2MAX?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3)

Related Commands: SA1MAX?, TA2?

TACD Take AutoCal data

AUTOCAL (Ch 5)

Syntax: TACD

Related Commands: BEGAC, BEGCH, BEGTU

TBP Select time bandpass mode for active channel

TIME DOMAIN (Ch 9)

Syntax: TBP

Remarks: Selects time bandpass mode for the active channel.

Front Panel Key: Domain\TIME BANDPASS MODE

Related Commands: CH1-CH4

TC1 Take calibration data for port 1

CALIBRATION (Ch 5)

Syntax: TC1

Related Commands: TC2, NCS, TCD

TC2 Take calibration data for port 2

CALIBRATION (Ch 5)

Syntax: TC2

Related Commands: TC1, NCS, TCD

10-260 37XXXC PM

COMMAN DICTIONARY

TCD Take calibration data on one or both ports as

CALIBRATION (Ch 5)

necessary

Syntax: TCD

Related Commands: NC1, NC2, NCS

TCM Select the TRM calibration method

CALIBRATION (Ch 5)

Syntax: TCM

Front Panel Key: Begin Cal\CHANGE CAL METHOD AND LINE TYPE\TRM

Related Commands: LCM,OCM,SCM,CMX?

TDC Select time domain harmonic frequency

CALIBRATION (Ch 5)

calibration data points

Syntax: TDC

Remarks: Required for low pass time/distance domain measurements. The

resulting frequency sweep will consist of harmonic multiples of the start frequency. The Stop frequency is the start frequency times the number of data points selected up to the maximum

instrument frequency.

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\TIME DOMAIN (HARMONIC)

Related Commands: NOC, DFC

TDDIST Set time domain parameter to distance for

active channel

Syntax: TDDIST

Front Panel Key: Domain\DISPLAY DISTANCE

Related Commands: TDDIST?

TDDIST? Output active channel time domain parameter

distance or time

TIME DOMAIN (Ch 9)

TIME DOMAIN (Ch 9)

Syntax: TDDIST?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3) as

follows: "1" for time or "2" for distance.

Front Panel Key: Domain\DISPLAY TIME/DISTANCE

Related Commands: TDDIST, TDTIME

TDPIO Turn phasor impulse response off for active

TIME DOMAIN (Ch 9)

channel

Syntax: TDPI0

Front Panel Key: Domain\SET RANGE\PHASER IMPULSE OFF

Related Commands: TDPI1

TDPI1 Turn phasor impulse response on for active

TIME DOMAIN (Ch 9)

channel

Syntax: TDPI1

Front Panel Key: Domain\SET RANGE\PHASER IMPULSE ON

Related Commands: TDPI0

TDPIX? Output phasor impulse on/off status for active

TIME DOMAIN (Ch 9)

channel

Syntax: TDPIX?

Data I/O: Outputs value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for off or "1" for on.

Front Panel Key: Domain\SET RANGE\PHASER IMPULSE

Related Commands: TDPI0, TDPI1

TDTIME Set time domain parameter to time for active

TIME DOMAIN (Ch 9)

channel

Syntax: TDTIME

Front Panel Key: Domain\DISPLAY TIME

Related Commands: TDDIST, TDDIST?

TDX? Output domain mode for active channel TIME DOMAIN (Ch 9)

Syntax: TDX?

10-262 37XXXC PM

Data I/O: Ouputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for frequency, "1" for frequency w/Gate, "2" for LP Impulse, "3" for LP Step, "4" for BP, "5" for BP Phasor Impulse.

Front Panel Key: Domain\TIME BANDPASS MODE

TEB Select external trigger executes *DDT

TRIGGERS (Ch 7)

definition

Syntax: TEB

Remarks: The instrument otherwise behaves as if in the internal

triggering mode.

Related Commands: TIB, TIN, TEX, TXX?

TEX Select external measurement triggering

MEASUREMENT (Ch 4)

Syntax: TEX

Front Panel Key: Options Menu\TRIGGERS\EXTERNAL

Related Commands: TIN

TIB Select GPIB measurement triggering

TRIGGERS (Ch 7)

Syntax: TIB

Remarks: Receipt of a GPIB Group Execute Trigger causes the instrument

to go to the next frequency and take a measurement. This is similar to the action taken when the trigger mode is external

and an external trigger is received.

Status Reporting: Sets the missed trigger bit (MGT) in the Limits Event Status

Register if a Group Execute Trigger is received before

completion of the previous trigger action.

Related Commands: TIN, TEB, TEX, TXX?

TIME Enter the system time

SYSTEM STATE (Ch 8)

Syntax: TIME

Val 1: val1 and val2 are in ASCII <NRF> format (paragraph 10-3)

Remarks: Val1 is the hour (1 - 24) and val2 is the minute (0 - 59). Notice

the comma separator. This modifies the system time stored on

the processor board.

Front Panel Key: Utility Menu\SET DATE/TIME\MINUTE/HOUR

Related Commands: DATE, DATE?, TIME?

TIME? Output the system time

SYSTEM STATE (Ch 8)

Syntax: TIME?

Data I/O: The date is output as two ASCII <NR1> format (paragraph 10-3)

numbers separated by a comma. The first is the hour (1 - 24)

and the second is the minute (0 - 59).

Front Panel Key: Utility Menu\SET DATE/TIME\MINUTE/HOUR (Current)

Related Commands: DATE, DATE?, TIME

TIN Select internal measurement triggering

MEASUREMENT (Ch 4)

Syntax: TIN

Front Panel Key: Options Menu\TRIGGERS\INTERNAL

Related Commands: TEX

TK1 Select tracking mode

RECEIVER MODE (Ch 9)

Syntax: TK1

Remarks: For service use only.

Front Panel Key: Option Menu\RECEIVER MODE\USER

DEFINED\TRACKING

TLP Select time lowpass mode for active channel

TIME DOMAIN (Ch 9)

Syntax: TLP

Front Panel Key: Domain\TIME LOWPASS MODE

Related Commands: TDC, CH1-CH4

10-264 37XXXC PM

TLZ Enter through line impedance for calibration

CALIBRATION (Ch 5)

Syntax: TLZ

Val 1: 1.0 to 9999.99

Units: XX1, XX3, XM3, OHM

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL

STEP\THROUGHLINE PARAMETERS\THROUGHLINE

IMPEDANCE

TOL Enter through offset length for calibration

CALIBRATION (Ch 5)

Syntax: TOL

Val 1: -999.9999 to +999.9999

Units: M, MTR, MM, MMT, CM, CMT

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\OFFSET

LENGTH OF TRM REFLECTION

TPI Select time phasor impulse mode for active

TIME DOMAIN (Ch 9)

channel

Syntax: TPI

Related Commands: CH1-CH4

TPN Enter pen number for trace overlay data

HARD COPY (Ch 8)

Syntax: TPN
Val 1: 1 to 8
Units: XX1

Front Panel Key: Hard Copy Menu\PLOT OPTIONS\PEN COLORS\DATA

TRACE OVERLAY PEN

TPN? Output pen number for trace overlay data

HARD COPY (Ch 8)

Syntax: TPN?

Data I/O: Outputs value in ASCII <NR1 > format (paragraph 10-3).

Front Panel Key: Hard Copy Menu\Plot Options\Pen Colors\Overlay Data Pen

Hard Copy Menu\PLOT OPTIONS\PEN

COLORS\OVERLAY DATA PEN

Related Commands: TPN, DPN?, GPN?, HPN?, MPN?

TRCCOL Enter the color number for memory data

SYSTEM STATE (Ch 8)

Syntax: TRCCOL Val 1: 0 - 47

Remarks: Color palette numbers are listed in Table 10-3 at the end of this

chapter.

Front Panel Key: Utility Menu\COLOR CONFIGURATION\MEMORY DATA

Related Commands: ANNCOL, DATCOL, GRTCOL, LAYCOL, MKRCOL, MNUCOL,

TRCCOL?

TRCCOL? Output the color number for memory data

SYSTEM STATE (Ch 8)

Syntax: TRCCOL?

Data I/O: Outputs the color palette number in ASCII <NR1> format.

Front Panel Key: Utility Menu\COLOR CONFIGURATION\MEMORY DATA

(Color)

Related Commands: ANNCOL?, DATCOL?, GRTCOL?, LAYCOL?, MKRCOL?,

MNUCOL?, TRCCOL

TRS Trigger/restart sweep

MEASUREMENT (Ch 4)

IEEE 488.2 (Ch 7)

Syntax: TRS

Remarks: Restarts the sweep (continuous sweep mode) or triggers a single

sweep (in hold mode).

Front Panel Key: Setup Menu\HOLD BUTTON FUNCTION\SINGLE SWEEP

AND HOLD (Restart)

Related Commands: WFS, HLD, CTN

TST Perform self test and output status (same as

*TST?)

Syntax: TST

Remarks: Causes the VNA to perform an extensive, fully automated

internal circuits self test. Detailed error messages indicating self

10-266 37XXXC PM

test failures, if any, are placed in the service log in the order they occur. The query returns a "1" if any part of the self test failed, or a "0" when passed.

NOTE: When commands TST or *TST? are sent to the 37XXX,

the VNA output power is momentarily set to the

model-dependent Rated Power level during the self test. Ensure that any equipment connected to Port 1 or Port 2 will not be

damaged by this power level.

Data I/O: Returns a value in ASCII format (paragraph 10-3).

Front Panel Key: Option Menu\DIAGNOSTICS\START SELF TEST

Related Commands: ONE, OEL, OSL, PSL, *TST?

TXX? Output trigger source

MEASUREMENT (Ch 4)

Syntax: TXX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "1" for internal, "2" for external, "3" for GPIB.

Front Panel Key: Options Menu\TRIGGERS\INTERNAL/EXTERNAL

Related Commands: TIN, TEX

U10 Select 10 mil UTF calibration kit

CALIBRATION (Ch 5)

Syntax: U10

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\MICROSTRIP

PARAMETERS\10 MIL KIT

Related Commands: U15, U25

U15 Select 15 mil UTF calibration kit

CALIBRATION (Ch 5)

Syntax: U15

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\MICROSTRIP

PARAMETERS\15 MIL KIT

Related Commands: U10, U25

U25 Select 25 mil UTF calibration kit

CALIBRATION (Ch 5)

Syntax: U25

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\MICROSTRIP

PARAMETERS\25 MIL KIT

Related Commands: U10, U15

UNDOGC Exit gain compression and undo changes

GAIN COMPRESSION (Ch 9)

Syntax: UNDOGC

Remarks: Returns to the normal S parameter measurement state

Related Commands: SFGCA, SPGCA

UPLO Turn upper limit off

LIMITS (Ch 6)

Syntax: UPL0

Front Panel Key: Limits\SINGLE LIMITS\UPPER LIMIT OFF

Related Commands: UPL1, LUP, LON, LOF

UPL1 Turn upper limit on at current value

LIMITS (Ch 6)

Syntax: UPL1

Front Panel Key: Limits\SINGLE LIMITS\UPPER LIMIT ON

Related Commands: UPL0, LUP, LON, LOF

UPL20 Turn upper limit off for bottom graph

LIMITS (Ch 6)

LIMITS (Ch 6)

Syntax: UPL20

Related Commands: UPL21, LUP2, LON, LOF

UPL21 Turn upper limit on at current value for

bottom graph

Syntax: UPL21

10-268 37XXXC PM

Related Commands: UPL20, LUP2, LON, LOF

UPL2X? Output upper limit on/off status for bottom

LIMITS (Ch 6)

graph

Syntax: UPL2X?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Related Commands: UPL20, UPL21

UPLX? Output upper limit on/off status

LIMITS (Ch 6)

Syntax: UPLX?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for OFF or "1" for ON.

Front Panel Key: Limits\SINGLE LIMITS\UPPER LIMIT

US Suffix sets time data type and scales by 1E-6

DATA ENTRY SUFFIXES (Ch 4)

Syntax: US

US1 Select upper segmented limit 1 as the active

LIMITS (Ch 6)

segment

Syntax: US1

Remarks: Makes USx the active segmented upper limit.

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\SEGMENT

1 ON

Related Commands: CH1-CH4, LS1-LS10, LSx?

US10 Select upper segmented limit 10 as the active

LIMITS (Ch 6)

segment

Syntax: US10

Remarks: Makes USx the active segmented upper limit.

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\SEGMENT

10 ON

Related Commands: CH1-CH4, LS1-LS10, LSx?

US2 Select upper segmented limit 2 as the active

LIMITS (Ch 6)

segment

Syntax: US2

Remarks: Makes USx the active segmented upper limit.

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\SEGMENT

2 ON

Related Commands: CH1-CH4, LS1-LS10, LSx?

US3 Select upper segmented limit 3 as the active

LIMITS (Ch 6)

segment

Syntax: US3

Remarks: Makes USx the active segmented upper limit.

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\SEGMENT

3 ON

Related Commands: CH1-CH4, LS1-LS10, LSx?

US4 Select upper segmented limit 4 as the active

LIMITS (Ch 6)

segment

Syntax: US4

Remarks: Makes USx the active segmented upper limit.

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\SEGMENT

4 ON

Related Commands: CH1-CH4, LS1-LS10, LSx?

US5 Select upper segmented limit 5 as the active

LIMITS (Ch 6)

segment

Syntax: US5

Remarks: Makes USx the active segmented upper limit.

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\SEGMENT

5 ON

10-270 37XXXC PM

Related Commands: CH1-CH4, LS1-LS10, LSx?

US6 Select upper segmented limit 6 as the active

LIMITS (Ch 6)

segment

Syntax: US6

Remarks: Makes USx the active segmented upper limit.

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\SEGMENT

6 ON

Related Commands: CH1-CH4, LS1-LS10, LSx?

US7 Select upper segmented limit 7 as the active

LIMITS (Ch 6)

segment

Syntax: US7

Remarks: Makes USx the active segmented upper limit.

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\SEGMENT

7 ON

Related Commands: CH1-CH4, LS1-LS10, LSx?

US8 Select upper segmented limit 8 as the active

LIMITS (Ch 6)

segment

Syntax: US8

Remarks: Makes USx the active segmented upper limit.

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\SEGMENT

8 ON

Related Commands: CH1-CH4, LS1-LS10, LSx?

US9 Select upper segmented limit 9 as the active

LIMITS (Ch 6)

segment

Syntax: US9

Remarks: Makes USx the active segmented upper limit.

Front Panel Key: Limits\SEGMENTED LIMITS\DEFINE UPPER\SEGMENT

9 ON

CALIBRATION (Ch 5)

Related Commands: CH1-CH4, LS1-LS10, LSx?

USC Suffix sets time data type and scales by 1E-6 DATA ENTRY SUFFIXES (Ch 4)

Syntax: USC

USE Enter effective dielectric for microstrip

calibration

Syntax: USE

Val 1: 1.0 to 9999.99 Units: XX1, ,X3, M3

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\MICROSTRIP

PARAMETERS\USER DEFINED\EFFECTIVE

DIELECTRIC

Related Commands: USW, USZ

USL Enter label string for user parameter being USER DEFINED PARAMETERS (Ch 9)

defined

Syntax: USL

Val 1: Label string is a maximum of five characters. Displays on the

screen.

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\USER LABEL

Related Commands: USL?

USL? Output label string for user parameter being USER DEFINED PARAMETERS (Ch 9)

defined

Syntax: USL?

Data I/O: String is output in <Arbitrary ASCII> format (paragraph 10-3)

Block Size: 5 bytes maximum

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\USER LABEL

Related Commands: USL

10-272 37XXXC PM

USR1 Measure user parameter 1 on active channel USER DEFINED PARAMETERS (Ch 9)

Syntax: USR1

Remarks: USR1 takes the place of S21. Any channel displaying S21 will

now display USR1.

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\Sxx/USER 1

Related Commands: USR2, USR3, USR4, S11, S21, S12, S22

USR2 Measure user parameter 2 on active channel USER DEFINED PARAMETERS (Ch 9)

Syntax: USR2

Remarks: USR2 takes the place of S11. Any channel displaying S11 will

now display USR2.

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\Sxx/USER 2

Related Commands: USR1, USR3, USR4, S11, S21, S12, S22

USR3 Measure user parameter 3 on active channel USER DEFINED PARAMETERS (Ch 9)

Syntax: USR3

Remarks: USR3 takes the place of S12. Any channel displaying S12 will

now display USR3.

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\Sxx/USER 3

Related Commands: USR1, USR2, USR4, S11, S21, S12, S22

USR4 Measure user parameter 4 on active channel USER DEFINED PARAMETERS (Ch 9)

Syntax: USR4

Remarks: USR4 takes the place of S22. Any channel displaying S22 will

now display USR4.

Front Panel Key: S Params\PRESS <1> TO REDEFINE SELECTED

PARAMETER\Sxx/USER 4

Related Commands: USR1, USR2, USR3, S11, S21, S12, S22

USW Enter microstrip width for microstrip

CALIBRATION (Ch 5)

calibration

Syntax: USW

Val 1: 0.001 mm to 1.0 m

Units: M, MTR, MM, MMT, CM, CMT

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\MICROSTRIP PARAMETERS\USER DEFINED\WIDTH OF STRIP

Related Commands: USE, USZ

USZ Enter microstrip impedance for microstrip

CALIBRATION (Ch 5)

calibration

Syntax: USZ

Val 1: 1.0 to 9999.99

Units: XX1, XX3, XM3, OHM

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\MICROSTRIP

PARAMETERS\USER DEFINED\ZC

Related Commands: USE, USW

V Suffix sets voltage data type DATA ENTRY SUFFIXES (Ch 4)

Syntax: V

V15 Set Millimeter Wave Band to V Band (WR-15) MILLIMETER WAVE (Ch 9)

Syntax: V15

VLT Suffix sets voltage data type DATA ENTRY SUFFIXES (Ch 4)

Syntax: VLT

VSP Enter rear panel stop voltage value REAR PANEL OUTPUT (Ch 9)

Syntax: VSP

Val 1: 00.000 to +10.000 volts

Units: V, VLT

Front Panel Key: Options Menu\REAR PANEL OUTPUT\STOP LOCK

10-274 37XXXC PM

Related Commands: VST

VSP? Output rear panel stop voltage value

REAR PANEL OUTPUT (Ch 9)

Syntax: VSP?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Options Menu\REAR PANEL OUTPUT\STOP LOCK

VST Enter rear panel start voltage value

REAR PANEL OUTPUT (Ch 9)

Syntax: VST

Val 1: 00.000 to +10.000 volts

Units: V, VLT

Front Panel Key: Options Menu\REAR PANEL OUTPUT\START LOCK

Related Commands: VSP

VST? Output rear panel start voltage value

REAR PANEL OUTPUT (Ch 9)

Syntax: VST?

Data I/O: Outputs a value in ASCII <NR3 > format (paragraph 10-3).

Front Panel Key: Options Menu\REAR PANEL OUTPUT\START LOCK

W10 Set Millimeter Wave Band to W Band (WR-10)

MILLIMETER WAVE (Ch 9)

Syntax: W10

W10E Set Millimeter Wave Band to extended W

MILLIMETER WAVE (Ch 9)

Band (WR-10E)

Syntax: W10E

WCO Enter waveguide cutoff frequency for user

CALIBRATION (Ch 5)

defined kit

Syntax: WCO

Val 1: 0 to current start frequency Units: HZ, KHZ, MHZ, GHZ

WFS Wait full sweep until all display data is valid

MEASUREMENT (Ch 4)

Syntax: WFS

Remarks: This command is useful before autoscaling, normalizing, or

finding the minimum/maximum values (with markers). It is required when outputting data from the 37XXX to ensure that all data points in the sweep are valid. WFS is effective for dual sweeps containing forward and reverse parameters and also for

insuring time domain processing is complete.

Status Reporting: Sets bit 4 in the Extended Event Status Register when complete.

Related Commands: TRS, HLD

WIDE Use entire display width for graphs SYSTEM STATE (Ch 8)

Syntax: WIDE

WKD Select user defined waveguide calibration kit CALIBRATION (Ch 5)

Syntax: WKD

Related Commands: WKI

WKI Select installed waveguide calibration kit CALIBRATION (Ch 5)

Syntax: WKI

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\WAVEGUIDE PARAMETERS\USE INSTALLED WAVEGUIDE KIT

Related Commands: WKD

WLS Select low sidelobe window shape TIME DOMAIN (Ch 9)

Syntax: WLS

Front Panel Key: Domain\SET GATE\SET SHAPE\LOW SIDELOBE

Related Commands: WMS, WNM, WRT, CH1-CH4

WMS Select minimum sidelobe window shape TIME DOMAIN (Ch 9)

10-276 37XXXC PM

Syntax: WMS

Front Panel Key: Domain\SET GATE\SET SHAPE\MIN SIDELOBE

Related Commands: WLS, WMS, WRT, CH1-CH4

WNM Select nominal window shape

TIME DOMAIN (Ch 9)

Syntax: WNM

Front Panel Key: Domain\SET GATE\SET SHAPE\NOMIINAL

Related Commands: WLS, WMS, WRT, CH1-CH4

WRT Select rectangular window shape

TIME DOMAIN (Ch 9)

Syntax: WRT

Front Panel Key: Domain\SET GATE\SET SHAPE\RECTANGULAR

Related Commands: WLS, WMS, WRT, CH1-CH4

WSH1 Enter waveguide short offset 1 for user

CALIBRATION (Ch 5)

defined kit

Syntax: WSH1

Units: -999.999 to +999.999

Remarks: M, CM, MM

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\WAVEGUIDE PARAMETERS\USER DEFINED\OFFSET LENGTH OF

SHORT 1

WSH2 Enter waveguide short offset 2 for user

CALIBRATION (Ch 5)

defined kit

Syntax: WSH2

Val 1: -999.999 to +999.999

Units: M, CM, MM

Front Panel Key: Begin Cal\NEXT CAL STEP\FULL 12-TERM\INCLUDE

ISOLATION\NORMAL\NEXT CAL STEP\WAVEGUIDE PARAMETERS\USER DEFINED\OFFSET LENGTH OF

SHORT 2

Related Commands: WSH1

WSX? Output window shape

TIME DOMAIN (Ch 9)

Syntax: WSX?

Remarks: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "1" for rectangular, "2" for nominal, "3" low sidelobe, "4"

for minimum sidelobe.

XM3 Suffix sets unitless data type and scales by

DATA ENTRY SUFFIXES (Ch 4)

1E-3

Syntax: XM3

XMKR? Output marker mode

MARKERS (Ch 6)

Syntax: XMKR?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for Markers on active channel mode, "1" for Active

marker all channels mode, "2" for Filter parameter

measurement Mode, "3" for Marker search marker mode.

Related Commands: AMKR, FMKR, NMKR, SMKR

XSB? Output byte order for output data LSB or

DATA TRANSFER (Ch 7)

MSB

Syntax: XSB?

Data I/O: Outputs a value in ASCII <NR1> format (paragraph 10-3) as

follows: "0" for LSB or "1" for MSB.

Related Commands: LSB, MSB

XX1 Suffix sets unitless data type DATA E

DATA ENTRY SUFFIXES (Ch 4)

Syntax: XX1

XX3 Suffix sets unitless data type and scales by

DATA ENTRY SUFFIXES (Ch 4)

1E3

Syntax: XX3

10-278 37XXXC PM

Related Commands: DIA, DIT, DIM, DIP, DIE, DIX?, TDDIST?, ZSN, ZSP, ZCT, MRR

ZCT Enter zoom range center value time or

TIME DOMAIN (Ch 9)

distance

Syntax: ZCT

Val 1: -999.999 to +999.999

Units: PSC, NSC, USC, PS, NS, MS, S, MMT, CMT, MTR, MM, CM, M

Remarks: The val1 limits listed above are for time only. To derive distance

limits, use the equation:

distance=time limit x 299792458 x10 /SQROOT of dielectric constant

Use the query command DIX? to output the value for dielectric constant. If the time domain parameter is time, val1 is assumed to be a time value. If the time domain parameter is distance,

val1 is assumed to be a distance value.

Use the query command TDDIST? to get the time domain

parameter.

Front Panel Key: Domain\SET RANGE\CENTER

Related Commands: DIA, DIT, DIM, DIP, DIE, DIX?, TDDIST?, ZSN, ZSP, ZST,

MRR, ZCT?

ZCT? Output zoom range center value

TIME DOMAIN (Ch 9)

Syntax: ZCT?

Data I/O: Outputs value in ASCII <NR3> format.

Front Panel Key: Domain\SET RANGE\CENTER

Related Commands: ZCT

ZSN Enter zoom range span value time or distance

TIME DOMAIN (Ch 9)

Syntax: ZSN

Val 1: 0 to 999.999

Units: PSC, NSC, S, US, USC, PS, NS, MS, MMT, CMT, MTR, MM,

CM.M

Remarks: The val1 limits listed above are for time only. To derive distance

limits, use the equation:

distance=time limit x 299792458 x10 /SQROOT of dielectric constant

Use the query command DIX? to output the value for dielectric constant. If the time domain parameter is time, val1 is assumed to be a time value. If the time domain parameter is distance, val1 is assumed to be a distance value.

Use the query command TDDIST? to get the time domain

parameter.

Front Panel Key: Domain\SET RANGE\SPAN

Related Commands: DIA, DIT, DIM, DIP, DIE, DIX?, TDDIST?, ZCT, ZSP, ZST, ZSN?

ZSN? Output zoom range span value

TIME DOMAIN (Ch 9)

Syntax: ZSN?

Data I/O: Outputs value in ASCII <NR3> format.

Front Panel Key: Domain\SET RANGE\SPAN

Related Commands: ZSN

ZSP Enter zoom range stop value time or distance

TIME DOMAIN (Ch 9)

Syntax: ZSP

Val 1: -999.999 to +999.999

Units: PSC, NSC, S, US, USC, PS, NS, MS, MMT, CMT, MTR, MM,

CM ,M

Remarks: The val1 limits listed above are for time only. To derive distance

limits, use the equation:

distance=time limit x 299792458 x10 /SQROOT of dielectric constant

Use the query command DIX? to output the value for dielectric constant. If the time domain parameter is time, val1 is assumed to be a time value. If the time domain parameter is distance,

val1 is assumed to be a distance value.

Use the query command TDDIST? to get the time domain

parameter.

Front Panel Key: Domain\SET RANGE\STOP

Related Commands: DIA, DIT, DIM, DIP, DIE, DIX?, TDDIST?, ZSN, ZCT, ZST,

MRR, ZSP?

10-280 37XXXC PM

ZSP? Output zoom range stop value

TIME DOMAIN (Ch 9)

Syntax: ZSP?

Data I/O: Outputs value in ASCII <NR3> format.

Front Panel Key: Domain\SET RANGE\STOP

Related Commands: ZSP

ZST Enter zoom range start value time or distance

TIME DOMAIN (Ch 9)

Syntax: ZST

Val 1: -999.999 to +999.999

Units: PSC, NSC, S, US, USC, PS, NS, MS, MMT, CMT, MTR, MM,

CM,M

Remarks: The val1 limits listed above are for time only. To derive distance

limits, use the equation:

distance=time limit x 299792458 x10 /SQROOT of dielectric constant

Use the query command DIX? to output the value for dielectric constant. If the time domain parameter is time, val1 is assumed to be a time value. If the time domain parameter is distance,

val1 is assumed to be a distance value.

Use the query command TDDIST? to get the time domain

parameter.

Front Panel Key: Domain\SET RANGE\START

ZST? Output zoom range start value

TIME DOMAIN (Ch 9)

Syntax: ZST?

Data I/O: Outputs value in ASCII <NR3> format.

Front Panel Key: Domain\SET RANGE\START

Related Commands: ZST

Table 10-1. Calibration Coefficient (Error Term) Input/Output Ordering by Calibration Type

Calibration	Calibration Coefficient (Error Term)*											
(Related Commands)**	1	2	3	4	5	6	7	8	9	10	11	12
12-Term (C12, A12)	EDF	ESF	ERF	ETF	ELF	EXF	EDR	ESR	ERR	ETR	ELR	EXR
1 Path 2 Port FWD (C8T, A8T)	EDF	ESF	ERF	ETF	EXF							
1 Path 2 Port REV (C8R, A8R	EDR	ESR	ERR	ETR	EXR							
Reflection Only Port 1 (CRF, ARF)	EDF	ESF	ERF									
Reflection Only Port 2 (CRR, ARR)	EDR	ESR	ERR									
Reflection Only Both Ports (CRB, ARB)	EDF	ESF	ERF	EDR	ESR	ERR						
Transmission Frequency Response FWD (CFT, AFT)	ETF	EXF										
Transmission Frequency Response REV (CRT, ART)	ETR	EXR										
Transmission Frequency Response FWD&REV (CBT, ABT)	ETF	EXF	ETR	EXR								

^{*} See OCx and ICx Series commands.

10-282 37XXX PM

^{**} The commands listed in parenthesis are used to set and/or simulate calibration process (refer to Chapter 5, Calibration).

 Table 10-2.
 Output Values and Graph Display Types

Graph Display Type (OFF Command)	Units per Division	Reference Value	Related Suffix Units*
Log magnitude	0.001–50	-999.999 to +999.999	DB
Phase	0.01–45	-999.999 to +999.999	
-360 to +360	DEG, RAD		
Log mag & phase	0.001–50,		
0.01–45	-999.999 to +999.999		
-360 to +360	DB,		
DEG, RAD			
Linear magnitude	1E12 to -999.999	-999.999 to +999.999	V, XX1, XX3, XM3
Linear mag & phase	1E12 to -999.999		
0.01–454	-999.999 to +999.999		
-360 to +360	V, XX1, XX3, XM3		
DEG, RAD			
Smith chart	-3, 0, 10, 20, 30	N/A	DB
Inverted Smith	-3, 0, 10, 20, 30	N/A	DB
Group delay	1E15 to 999.999 sec	999.999 sec	SEC, MS, US, NS, PS
Log polar	0.001–50,		
-360 to +360	0.001–50,		
-999.999 to -999.99	DB		
DEG, RAD			
Linear polar	1E-12 to 200,		
-360 to +360	5E-12 to 200,		

 Table 10-3
 Color Palette Numbers to be used with Model 37XXX

Palette No.	Color	Palette No.	Color	Palette No.	Color
0	Black	16	Goldenrod	32	Cyan
1	Dim Grey	17	Med. Goldenrod	33	Cadet Blue
2	Light Grey	18	Wheat	34	Sky Blue
3	Grey	19	Khaki	35	Steel Blue
4	Salmon	20	Yellow Green	36	Slate Blue
5	Firebrick	21	Green Yellow	37	Blue
6	Brown	22	Pale Green	38	Medium Blue
7	Pink	23	Lime Green	39	Blue Violet
8	Orange red	24	Green	40	Medium Orchid
9	Orange	25	Spring Green	41	Thistle
10	Red	26	Forest Green	42	Plum
11	Coral	27	Sea Green	43	Magenta
12	Gold	28	Aquamarine	44	Purple
13	Sienna	29	Med. Aquamarine	45	Maroon
14	Tan	30	Turquoise	46	Violet red
15	Yellow	31	Dark Turquoise	47	White

Chapter 11 Instrument Data

Table of Contents

11-1	INTRODUCTION	11-3
11-2	GPIB RESET CONFIGURATION	11-3
11-3	CALIBRATION COEFFICIENTS	11-5
11-4	NUMERIC DATA SUFFIX	11-6
11-5	OUTPUT VALUES/DISPLAY TYPES	11-7
11-6	COLOR PALETTE NUMBERS	11_8

Chapter 11 Instrument Data

11-1 INTRODUCTION

This chapter provides general tabular information for the Model 37XXX VNA. Much of this information is presented in previous chapters, but is repeated here for easy access. The subject of each table in this chapter is listed on the chapter Contents page.

11-2 GPIB RESET CONFIGURATION

The 37XXX will be set to the default front panel setup conditions listed in Table 11-1 upon receipt of the RST common command. Additionally, GPIB Remote-Only functions are set or cleared as listed in Table 11-2.

Table 11-1. Default Front Panel Settings (1 of 2)

Function	Default Setting
Active Menu	Sweep Setup
Measurement	Maximum Sweep Range: Model Dependent Source Power: Model Dependent Data Points: Normal (401 points) Measurement: Sweep Mode, restarted Hold: Hold/Continue, RF and bias off in hold mode
Channel	Quad (four-channel) display Channel 1 active
Display	Channel 1: S11, 1:1 Smith Chart Channel 2: S12, Log Magnitude and Phase Channel 3: S21, Log Magnitude and Phase Channel 4: S22, 1:1 Smith Chart Scale: 10 dB/Division or 90 /Division Offset: 0.000dB or 0.00 degree Reference Position: Midscale Electrical Delay: 0.00 seconds Dielectric: Air (1.000649) Normalization: Off Normalized Trace Data: Erased
Enhancement	Video IF Bandwidth: Normal Averaging: Off, 1 average Smoothing: Off, 0%
Calibration	Correction: Off and Calibration erased Trace Mode: Off Connector: Model dependent Load: Broadband

 Table 11-1.
 Default Front Panel Settings (2 of 2)

Function	Default Setting
Markers/Limits	Markers On/Off: All off Markers Enabled/Disabled: All enabled Marker Frequency: All set to the start-sweep frequency (or start -time distance Reference: Off Limits: All set to reference position value
System State and Save/Recall	Identification and Options Data: Unchanged GPIB Addresses: Unchanged Frequency Blanking: Disengaged, Internal Memory Saved: Unchanged Installed Cal Coefficients: Unchanged
Output	Output Type: Printer (full screen, clear headers) Marker and Sweep Data: Enabled Printout: Every point Headers: Cleared and disabled
Diagnostics	Service Log/Error Messages: Unchanged Internal Hardware Calibrations Data: Unchanged Troubleshooting: Recovered from (that is, turned off)
Triggering	Mode: Internal Automatic I.F. Cal: On

Table 11-2. GPIB Remote-Only Functions Status

Memories Saved:	Memories Cleared/Changed:
Information reported via the *IDN? and *OPT? query commands. SRQ Standard Event Status Extended Event Status Limits Pass/Fail Status Enable Registers Standard, Extended, And Limits GPIB Input and Output Buffers	Trigger action for *TRG and Group Execute Trigger is set to null. Operation Complete State: Idle Data Transfer Format Defaults: FMA, MSB, DPR0

11-4 37XXXC PM

11-3 CALIBRATION COEFFICIENTS

Table 11-3 lists the calibration coefficients that are generated during the 37XXX calibration process using the Calibration Coefficients Commands (OCx - 1Cx). Refer to Chapter 7, "Calibration Coefficients Data Transfer."

Table 11-3. Calibration Coefficient (Error Term) Input/Output Ordering by Calibration Type

Calibration (Related Com- mands)**	Calibration Coefficient (Error Term)*											
	1	2	3	4	5	6	7	8	9	10	11	12
12-Term (C12, A12)	EDF	ESF	ERF	ETF	ELF	EXF	EDR	ESR	ERR	ETR	ELR	EXR
1 Path 2 Port FWD (C8T, A8T)	EDF	ESF	ERF	ETF	EXF							
1 Path 2 Port REV (C8R, A8R	EDR	ESR	ERR	ETR	EXR							
Reflection Only Port 1 (CRF, ARF)	EDF	ESF	ERF									
Reflection Only Port 2 (CRR, ARR)	EDR	ESR	ERR									
Reflection Only Both Ports (CRB, ARB)	EDF	ESF	ERF	EDR	ESR	ERR						
Transmission Frequency Response FWD (CFT, AFT)	ETF	EXF										
Transmission Frequency Response REV (CRT, ART)	ETR	EXR										
Transmission Frequency Response FWD&REV (CBT, ABT)	ETF	EXF	ETR	EXR								

^{*} See OCx and ICx Series commands.

^{**} The commands listed in parenthesis are used to set and/or simulate calibration process (refer to Chapter 5, Calibration).

11-4 NUMERIC DATA SUFFIX

Table 11-4 lists the numeric data suffix mnemonics for the Model 37XXX VNA. These mnemonics are used when entering numeric data with GPIB commands (usage of these codes is optional). Refer to Chapter 4, "Data Entry Suffix Codes".

Table 11-4. Numeric Data Suffix Mnemonics

Code	Parameter Type	Weighting Factor	Code	Parameter Type	Weighting Factor
DB, DBL, DBM	Power	1.0	NS, NSC	Time	10E-9
DEG	Phase	1.0	PS, PSC	Time	10E-12
RAD	Phase	180/	M, MTR	Distance	1.0
HZ	Frequency	1.0	CM, CMT	Distance	10E-2
KHZ	Frequency	10E+3	MM, MMT	Distance	10E-3
MHZ	Frequency	10E+6	ОНМ	Impedance	1.0
GHZ	Frequency	10E+9	V, VLT	Voltage	1.0
REU	Real	1.0	MV	Voltage	10E-3
IMU	Imaginary	1.0	XM3	Unitless	10E-3
S	Time	1.0	XX1	Unitless	1.0
MS	Time	10E-3	XX3	Unitless	10E+3
US, USC	Time	10E-6			

11-6 37XXXC PM

11-5 OUTPUT VALUES/DISPLAY TYPES

Table 11-5 lists the various characteristics that are related to the different graph types used by the 37XXX screen displays. This information relates to various input commands described throughout Chapters 4 through 9.

Table 11-5. Graph Display Type Related Data

Graph Display Type	Units per Division	Reference Value (OFF Command)	Related Suffix Units*
Log magnitude	0.001–50	-999.999 to +999.999	DB
Phase	0.01–45	-999.999 to +999.999 -360 to +360	DEG, RAD
Log mag & phase	0.001–50, 0.01–45	-999.999 to +999.999 -360 to +360	DB, DEG, RAD
Linear magnitude	1E ¹² to -999.999	-999.999 to +999.999	V, XX1, XX3, XM3
Linear mag & phase	1E ¹² to -999.999 0.01-454	-999.999 to +999.999 -360 to +360	V, XX1, XX3, XM3 DEG, RAD
Smith chart	-3, 0, 10, 20, 30	N/A	DB
Inverted Smith	-3, 0, 10, 20, 30	N/A	DB
Group delay	1E ¹⁵ to 999.999 sec	999.999 sec	SEC, MS, US, NS, PS
Log polar	0.001–50, –360 to +360	0.001–50, –999.999 to –999.99	DB DEG, RAD
Linear polar	1E ⁻¹² to 200, -360 to +360	5E ⁻¹² to 200, -360 to +360	V, XX1, XX3, XM3 DEG, RAD
Real	1E ⁻¹² to +999.999	-999.999 to +999.999	REU
Imaginary	1E ⁻¹² to +999.999	-999.999 to +999.999	IMU
Real & Imaginary	1E ⁻¹² to +999.999	-999.999 to +999.999	REU IMU
SWR	1E ⁻¹² to +999.999	0 to 1E ⁶	XX1, XX3, XM3

Suffixes may be used for data input commands, i.e. scale or limit line setting commands. RAD suffix equates to 180/ degrees

11-6 COLOR PALETTE NUMBERS

Table 11-6 lists the Color Palette numbers (codes) that are used with the GPIB commands that control data graph and menu colors for 37XXX screen displays. Refer to Chapter 8, System State, Colorization.

Table 11-6 Color Palette Numbers to be used with Model 37XXX

Palette No.	Color	Palette Number	Color	Palette No.	Color
0	Black	16	Goldenrod	32	Cyan
1	Dim Grey	17	Med. Goldenrod	33	Cadet Blue
2	Light Grey	18	Wheat	34	Sky Blue
3	Grey	19	Khaki	35	Steel Blue
4	Salmon	20	Yellow Green	36	Slate Blue
5	Firebrick	21	Green Yellow	37	Blue
6	Brown	22	Pale Green	38	Medium Blue
7	Pink	23	Lime Green	39	Blue Violet
8	Orange red	24	Green	40	Medium Orchid
9	Orange	25	Spring Green	41	Thistle
10	Red	26	Forest Green	42	Plum
11	Coral	27	Sea Green	43	Magenta
12	Gold	28	Aquamarine	44	Purple
13	Sienna	29	Med. Aquamarine	45	Maroon
14	Tan	30	Turquoise	46	Violet red
15	Yellow	31	Dark Turquoise	47	White

11-8 37XXXC PM

Chapter 12 Error Messages

Table of Contents

12-1	INTRODUCTION
12-2	OPERATIONAL ERROR MESSAGES 12-3
12-3	DISK RELATED ERROR MESSAGES 12-3
12-4	GPIB RELATED ERROR MESSAGES 12-3
12-5	SERVICE LOG ERROR MESSAGES 12-3

Chapter 12 Error Messages

<i>12-1</i>	INTRODUCTION	This chapter provides a listing of error messages that appear on the 37XXX display or that are written to the internal software Service Log.
12-2	OPERATIONAL ERROR MESSAGES	Table 12-1 provides a listing and description of the operational error messages. For the most part, these errors are displayed only on the 37XXX display and are caused by incorrectly operating the 37XXX.
<i>12-3</i>	DISK RELATED ERROR MESSAGES	Table 12-2 provides a listing and description of the disk-related-error messages. The numbered errors in this group are also written to the Service Log, since they may indicate system problems.
12-4	GPIB RELATED ERROR MESSAGES	Table 12-3 provides a listing and description of GPIB-related error messages. These errors are entered in the Service Log and output as part of the response of OGE/OGL commands.
12-5	SERVICE LOG ERROR MESSAGES	Table 12-4 provides a listing of the error messages that are written to the internal system service log. These messages are mostly hardware related. Because they may warn of system problems, you should refer to the 37XXX Maintenance Manual for further action by a qualified service engineer. Some of these messages may occur as a result of in-

related. Because they may warn of system problems, you should refer to the 37XXX Maintenance Manual for further action by a qualified service engineer. Some of these messages may occur as a result of incorrectly programming the 37XXX. This includes the GPIB errors, 7204–7207, and errors in the 5000 range, RF Power. The RF Power errors may be triggered when setting the 37XXX power to a value greater than its reset level. This feature of the 37XXX lets you take advantage of all available power; however, accuracy cannot be guaranteed when power is unleveled.

 Table 12-1.
 Operational Error Messages (1 of 2)

Error Message	Description	Corrective Action
ATTENUATOR UNAVAILABLE	Option 6 Port 2 Test Step Attenuator is not installed.	Install Option 6 Step Attenuator,
DIFFERENT H/W SETUP. RECALL ABORTED	Model and/or options is (are) different from the recalled setup.	Reconfigure system to duplicate the hardware setup that was used to store the saved data.
DIFFERENT S/W VERSION, RECALL ABORTED	Saved state not compatible with software version or options.	Load compatible software (S/W) version and retry.
FREQUENCIES HAVE REACHED UPPER LIMIT	Frequencies being defined in Multiple Source mode have reached upper limits of Sources.	Redefine frequencies to not exceed limits of Sources.
MEMORY LOCATION CORRUPTED	Requested memory location is corrupted.	None. If problem reoccurs after storing a new setup, contact WILTRON Customer Service.
NO BANDS ARE STORED	No frequency bands have been defined and stored.	Define and store frequency bands to turn on Multiple Source mode.
NO STORED MEMORY DATA	No data is stored in memory for display or trace math.	Store or re-save measurement data.
OPTION NOT INSTALLED	Selected an option that is not installed.	None.
OUT OF CAL RANGE	Entered values out of the selected calibration range.	Change calibration range or re-enter values that are within the current range.
OUT OF H/W RANGE	Entered value is out of the instrument's hardware range.	Re-enter values that are within range.
OUT OF RANGE	Entered value is out of range.	Re-enter values that are within range.
RECEIVER OUT OF RANGE BY EQUATION	Equation defined in Multiple Source mode places receiver frequency out of range when attempting to store band.	Redefine frequency.
SOURCE 1 OUT OF RANGE BY EQUATION	Equation defined in Multiple Source mode places Source 1 frequency out of range when attempting to store band.	Redefine frequency.
SOURCE 2 OUT OF RANGE BY EQUATION	Equation defined in Multiple Source mode places Source 2 frequency out of range when attempting to store band.	Redefine frequency.

12-4 37XXXC PM

Table 12-1.Operational Error Messages (2 of 2)

Error Message	Description	Corrective Action
STANDARD CAL NOT VALID FOR WAVEGUIDE	Cannot use the standard method when calibrating with waveguide.	Use the Offset Short method with waveguide.
START F FOLLOWS PREVIOUS STOP F	Start frequency of current band immediately follows stop frequency of previous band. Cannot be modified.	None.
START MUST BE LESS THAN STOP	Entered start frequency is greater than the stop frequency.	Re-enter frequency values such that the start frequency is lower than the stop frequency.
STEP IS TOO LARGE	Entered harmonic frequency extends the stop out of range.	Re-enter so that harmonic frequency is within range.
STOP IS OVER RANGE	Entered value exceeds the instrument's stop frequency.	Re-enter stop frequency.
SYSTEM NOT CALIBRATED	37XXX is uncalibrated for the selected measurement values.	Perform a measurement calibration.
TOO FEW POINTS, 2 MINIMUM	Entered too few discrete fill points, 2 is minimum.	Re-enter data points.
TOO MANY POINTS, 1601 MAXI- MUM	Entered too many discrete fill points, 1601 points are the maximum allowed.	Re-enter data points.
UNDEFINED DIVIDE BY ZERO	Denominator cannot be zero in equation.	Make denominator a value other than zero.
WINDOW TOO SMALL	Attempted to set time domain range smaller than allowed	Re-enter larger time range.
OUT OF WINDOW RANGE	Attempted to set time domain range larger than allowed	Re-enter values within allowed range.

ERROR MESSAGES

 Table 12-2.
 Disk-Related-Error Messages (1 of 1)

Error Message	Description	Corrective Action
7140 GENERAL FLOPPY DRIVE FAIL	Invalid disk media or format.	Use 1.44 MB diskette and/or format in the 37XXX.
7142 FLOPPY DISK READ ERROR	Read error when accessing disk file.	Use 1.44 MB diskette and/or format in the 37XXX.
7143: FLOPPY DISK WRITE ERROR	Error in writing to disk file.	Use 1.44 MB diskette and/or format in the 37XXX.
7147 FLOPPY DISK UNAVAILABLE	Floppy disk is not available.	Install floppy diskette and/or check floppy disk drive.
7170: GENERAL HARD DISK FAIL	General error in accessing hard disk.	Retry and if still fails, reformat the hard disk drive and/or check floppy disk drive.
7172: HARD DISK READ ERROR	Read error when accessing disk file.	Retry and if still fails, reformat the hard disk drive and/or check floppy disk drive.
7173: HARD DISK WRITE ERROR	Error in writing to disk file.	Retry and if still fails, reformat the hard disk drive and/or check floppy disk drive.
7177: HARD DISK UNAVAILABLE	Hard disk is not available.	Install hard disk drive and/or check operation of hard disk.
8140: GENERAL DISK BUFFER ER- ROR	Out of RAM.	Press the System State, Default Program key, and retry. This will reset the 37XXX to the factory default state.
FILE NOT FOUND	Disk file not found.	None.
FLOPPY DISK HAS NO ROOM FOR FILE	Floppy diskette is full.	Delete files or install new diskette.
FLOPPY DISK NOT READY	Floppy disk is not ready (or not installed.).	Install diskette in floppy drive.
FLOPPY DISK WRITE PROTECTED	Write protect tab in place on floppy diskette.	Remove write-protect tab.
HARD DISK HAS NO ROOM FOR FILE, DELETE EXISTING FILES(S) TO CREATE SPACE	Hard disk is full.	Delete unneeded files.

12-6 37XXXC PM

Table 12-3. GPIB-Related Error Messages (1 of 8)

Error Message	Description
---------------	-------------

These errors are entered in the Service Log and output as part of the response of OGE/OGL commands for GPIB commands. The list is subdivided into the type of GPIB error: 7204..., 7205..., 7206..., and 7207.

7204 GPIB COMMAND ERROR DESCRIPTIONS		
Faulty program mnemonic syntax	Generated when the program mnemonic found was not one of the currently defined program mnemonics for the 37XXX.	
Faulty suffix mnemonic syntax	Generated when the suffix mnemonic found was not one of the currently defined suffix mnemonics for the 37XXX.	
Faulty mnemonic syntax	Generated when the mnemonic found was not one of the currently defined program or suffix mnemonics for the 37XXX.	
Missing Program Message Separator	Generated when the required semicolon preceding the next program mnemonic was not found.	
Expected NRf data	Generated when a mnemonic is used that requires a trailing NRf numeric data element. The data element was either missing or the first character of the data element was not one of the acceptable NRf characters.	
NRf mantissa too long	The maximum allowable number of characters in the NRf numeric element mantissa is 255.	
Exponent magnitude too large	The maximum allowable exponent magnitude in an NRf element is +/— 32000.	
Faulty NRf syntax	Can be any number of syntactical errors such as more than one decimal point, inclusion of a decimal point in the exponent field, an invalid character imbedded in the numeric or no exponent value following the 'E'.	
Expected String Program Data	Generated when a mnemonic is used that requires a trailing string data element. The date element was either missing or no open quote character was found.	
Missing close quote character	Generated when a mnemonic is used that requires a trailing string data element. The open quote character was found, but the close quote character was not.	
Expected Arbitrary Block data	Generated when a mnemonic is used that requires a trailing arbitrary block data element and the trailing element was not an arbitrary block data element. Or in some cases, the arbitrary block was empty.	
Faulty Arbitrary Block	Generated when a defined length arbitrary block data element is terminated early with an EOI or an indefinite length arbitrary block data element is not properly terminated.	
Missing Program Data Separator	Two data elements of a program mnemonic that requires multiple program data elements, are not properly separated from each other by a comma.	
GET received during PM reception	Generated when the GPIB Command 'Group Execute Trigger' is received during the reception of a program message but before its proper termination with the end message. The partial program message up to but not including the 'Group Execute Trigger' will be executed. Execution of the Group Execute Trigger and any subsequent program message elements received before the end message will be skipped.	

Table 12-3. GPIB-Related Error Messages (2 of 8)

Error Message	Description	
7205 GPIB EXECUTION ERROR DESCRIPTIONS		
Not permitted in a DDT com- mand sequence	When executing a defined device trigger command sequence, a forbidden command was detected.	
Too much Arbitrary Block data	The arbitrary block supplied contained more data than was necessary for the currently defined 37XXX state. This can occur when graph types, start/stop frequencies or data points are changed.	
Insufficient Arbitrary Block data	The arbitrary block supplied did not have enough data for the currently defined 37XXX state. This can occur when graph types, start/stop frequencies or data points are changed.	
Invalid parameter for current graph type	An attempt was made to program a non-existent parameter for the current graph type. For instance, a Smith chart does not have a reference or reference line position (mnemonics OFF and REF).	
Parameter out of range	An attempt was made to program an out of integer range value for a parameter. This error is detected by the GPIB MANAGER when converting and rounding to the appropriate integral size (signed/unsigned char/short or long).	
Parameter value not permitted	A parameter value was not found in the list of permissible values for that parameter.	
CW marker sweep not permitted in time domain	The mnemonics M1C, M2C, M3C, M4C, M5C and M6C are forbidden in time domain.	
Parameter unavailable in frequency domain	The mnemonic ODV and OTV are forbidden in frequency domain.	
Port 2 Test Attenuator (OPT 6) not installed	The mnemonic TA2 is forbidden when the attenuator is not installed.	
Time Domain (OPT 2) not installed	An attempt was made to use one of the time domain mnemonics when the option is not installed.	
Return to Local not permitted in Local Lockout	The mnemonic RTL failed due to being in the Local Lockout mode.	
Calibration does not exist	An attempt was made to turn on flat power correction or vector error correction when the corresponding calibration does not exist.	
Cal term not available	An attempt was made to get a calibration term which does not exist for the current calibration type.	
Invalid cal term for calibration type	An attempt was made to program a calibration term which does not exist for the current calibration type.	
Front panel setup not valid	An attempt was made to get a front panel setup that did not contain a correct/valid state.	

12-8 37XXXC PM

 Table 12-3.
 GPIB-Related Error Messages (3 of 8)

Error Message	Description
Normalization data not valid	An attempt was made to reference normalization data when there was no normalization data currently stored.
Command sequence too long	An attempt was made to define a device trigger command sequence which had more than 255 characters.
Unable to display menu	An attempt was made to display a menu which could not be displayed for the current 37XXX state.
String too long	An attempt was made to enter a string for the following mnemonics which exceeded the specified maximum length.
	LID, LMS and LNM - maximum length is 15 characters.
	LOC - maximum length is 79 characters.
Must specify a calibration type first	In order to perform a calibration, the calibration type must be specified by the use of one of the Cxx mnemonics (i.e. C12, C8T, etc.) PRIOR to the issuance of the mnemonics CWC, TDC or BEG.
Parameter value unchanged	An attempt was made to change a start/stop frequency or number of data points to a value outside of the current calibrated range with correction turned on.
Parameter change not permitted	An attempt was made to perform an illegal state change or action based on the current 37XXX state. This includes attempting to store an undefined band definition. Or certain changes from the calibration state or the calibration define state when defining discrete frequencies.
Parameter value out of range Parameter out of hardware range	An attempt was made to set a parameter to a value outside of the permissible range of values for the parameter.
Standard cal method not valid for waveguide	In a waveguide type of calibration, the standard (OSL) cal method is forbidden.
Out of calibrated range	An attempt was made to change a parameter not permitted to be changed with correction on.
Start must be must be less than stop	An attempt was made to set a new start frequency, distance or time greater than or equal to the current stop frequency, distance or time. Or to set a new stop frequency, distance or time less than or equal to the current start frequency, distance or time.
Tune mode requires a 12 term calibration	Perform a 12 term calibration prior to turning on tune mode.
Current and cal frequencies different	The flat power calibration setup does not match the current setup.
Stored data is invalid	An attempt was made to reference normalized data when normalized data was invalid.

Table 12-3. GPIB-Related Error Messages (4 of 8)

Error Message	Description	
Parameter change not permitted on current state	An attempt was made to change a parameter while IF cal was active. It is not expected that this message will ever be seen. If you see this message, notify the factory.	
Calibration may not be valid	An attempt was made to repeat the previous calibration when there was no record of a previous calibration.	
Calibration does not exist	An attempt was made to turn on flat power correction or vector error correction when the corresponding calibration does not exist.	
Current calibration is erased	When turning on Multiple Source Mode with vector error correction on, the calibration is destroyed. Not really an error. Message is issued as a warning.	
Time Domain and CW mode not permitted	An attempt was made to turn on a time domain mode in CW. This is not permitted.	
Not permitted in Time Domain	An attempt was made to select a group delay display or CW mode when in time domain mode or to select a dual overlay display with a frequency/time domain mismatch.	
Time Domain not allowed	An attempt was made to turn on a time domain mode but the current 37XXX state does not permit it.	
Permitted only in diagnostic mode	Must put the 37XXX into the diagnostics mode via the SDG command before using this mnemonic.	
Graph types not appropriate for dual overlay	While in dual overlay mode, and attempt was made to change one of the active graph types to a type which conflicts with dual overlay, or to change one of the active channels into or out of time domain which sets up a dual overlay conflict. Or an attempt was made to select dual overlay mode when there would be a graph type conflict for a frequency/time domain conflict.	
New Discrete Fill not allowed in current state	Cannot set up a new discrete fill definition while performing a calibration or when correction is turned on. Also cannot do this when group delay is the graph type on the active channel.	
Low Pass mode requires a har- monic sweep	Perform a TD harmonic sweep calibration prior to using this mnemonic.	
Receiver out of range by equation	Problems with the internal source, external source or receiver equations in multiple source mode.	
New start less than previous stop	An attempt was made to set the start frequency for the new multiple source mode band definition to a frequency less than the stop frequency of the previous band.	
Bad filename	The supplied filename was bad. The filename can have 8 characters maximum. No extensions. The filename must start with and alpha type character (A thru Z). After that the allowable characters are alpha, numeric (0 thru 9) and underscore (_).	
Conflict with rotary knob	You should not be using the rotary knob and the GPIB at the same time.	

12-10 37XXXC PM

 Table 12-3.
 GPIB-Related Error Messages (5 of 8)

Error Message	Description
Too many data points for exter- nal source	A 6700B series external source can handle 501 data points. A 68000 series external source can handle 999 data points.
Recalled setup corrupted Hardware mismatch in recalled setup Software mismatch in recalled setup	These are problems with the recalled setup.
Too many data points for Discrete Fill	The maximum number of data points in discrete fill is 1601.
Not enough data points for Discrete Fill	The minimum number or data points in discrete fill is 2.
Discrete Fill end frequency out of range	The number of points for discrete fill puts the end frequency out of range.
Step is too large	When setting up a time domain harmonic sweep, cannot get 2 data points because the start frequency is too high for the approximate stop frequency. In a group delay display, the delay aperture percent of sweep is less than one step size.
Range too small	An attempt was made to set a distance or time span value too small. This can also be done via inappropriate values for start and stop.
Start or stop out of range	An attempt was made to set a distance or time start or stop value out of range. This can also be done via inappropriate values for center and span.
No bands defined	An attempt was made to turn on multiple source mode with no band definitions.
Out of frequencies for new band definition Source out of range by equation External source out of range by equation	The current set of multiple source mode bands use up all the frequency range of the 37XXX. Therefore, no more bands can be defined.
File is read only	An attempt was made to write to a write protected file.
File not found	An attempt was made to access a non-existent file.
Floppy drive not ready	An attempt was made to access the floppy drive with no floppy disk installed.
Floppy disk full Hard disk full	An attempt was made to write to a floppy disk or the hard disk when no space was left on the disk.
Floppy disk write protected	An attempt was made to write to a write protected floppy disk.
Recalled setup or data file corrupt	An attempt to recall a setup from internal memory, the GPIB or disk failed due to software revision or hardware mismatch or checksum error.

37XXXC PM 12-11

 Table 12-3.
 GPIB-Related Error Messages (6 of 8)

Error Message	Description	
New frequency list not allowed in current state	Cannot set up a new discrete fill definition while performing a calibration or when correction is turned on. Also, cannot do this when group delay is the graph type on the active channel.	
State change not permitted	An attempt was made to perform an illegal state change or action based on the current instrument state. This includes attempting to store (1) an undefined band definition, (2) certain changes from the calibration state, or (3) the cal define state when defining discrete frequencies.	
Faulty label or file name	The label or file name associated with the current mnemonic is faulty.	
Illegal characters in filename	The first character in a filename must be an alpha type. The remaining characters can be alpha, numeric, or underscores. An extension is not permitted.	
Filename too long	The maximum ledngth for filenames is 8 characters. An extension is not permitted.	
Floppy disk read error Floppy disk write error Hard disk read error Hard disk write error	Read or write error(s) occurred while attempting to access the indicated disk.	
Floppy disk not found Hard disk not found General disk buffer error General floppy drive failure Floppy disk init failure General hard disk failure Hard disk control failure Hard disk init failure Unknown disk error	Other error messages which suggest that the indicated drive is in need of service.	
205 GPIB QUERY ERROR DESC	RIPTIONS	
No Response data available	Generated if the controller attempts to read response data from the 37XXX and none is available.	
No Response data after PM completion	This is the same as the 'no response data available' case above except that a program message was currently being parsed and executed when the controller attempted to read data. Detection of this error was deferred until the parser/execution block was finished with the current program message and it was observed that no response data was generated.	
Response after Indefinite Response discarded	This error is generated when the 37XXX's output queue has already received an Arbitrary ASCII response data element and an attempt is made to place another response data element of any kind into the queue. The new response data element is discarded.	
Interrupted - Response data discarded	This error is detected when the output queue contains unread response data and the controller sends a new program message. The response data is discarded.	

12-12 37XXXC PM

 Table 12-3.
 GPIB-Related Error Messages (7 of 8)

Error Message	Description
Unterminated - Partial PM will be executed	This error is detected when the 37XXX's input queue is currently receiving a program message but has not yet received the end message, and the controller attempts to read response data from the 37XXX. The partial program message in the input queue is executed as if it were properly terminated.
Deadlock - Response data discarded	This error is detected when both of the 37XXX's input and output queues are full and the controller attempts to send another data byte. In order to prevent bus deadlock, the contents of the output queue are discarded.
7205 GPIB DEVICE DEPENDENT E	ERROR DESCRIPTIONS
Q_SEND failure in [a procedure	An unsuccessful attempt was made to send a message to a task.
name]	The procedure name is the place in the software where the error was detected.
Q_RECEIVE failure in [a proce-	A failure was detected while waiting for the reception of a message from a task.
dure name]	The procedure name is the place in the software where the error was detected.
Unable to allocate memory in [a procedure name]	An attempt was made to allocate some temporary memory in order to accomplish a task directed in the program message.
	The procedure name is the place in the software where the error was detected.
Unable to release memory in [a procedure name]	An attempt was made to return some temporary memory within a task and the return failed for some reason.
	The procedure name is the place in the software where the error was detected.
Unable to get service/error log	An unsuccessful attempt was made to get a copy of the service or error log.
Unable to get calibration term	An unsuccessful attempt was made to get a calibration term.
Unable to get raw or corrected data	An unsuccessful attempt was made to get raw or corrected data.
Unable to get final data	An unsuccessful attempt was made to get final data.
Unable to get setup or data	An unsuccessful attempt was made to get the frequency list from the database.
Unable to get setup	An unsuccessful attempt was made to get a front panel setup.
Unable to store setup	An unsuccessful attempt was made to save a front panel setup.
Unable to get frequency list	An unsuccessful attempt was made to get setup, trace, or tabular datat from the database.
Unable to store label	An unsuccessful attempt was made to store a label in the database.

37XXXC PM 12-13

 Table 12-3.
 GPIB-Related Error Messages (8 of 8)

Error Message	Description
Calibration step failure	An error occurred while waiting for completion of a data collection sequence in calibration.

12-14 37XXXC PM

 Table 12-4.
 Service Log Error Messages (1 of 3)

Error Message	Error Message
0000 – 0099 Status Messages or Pass/Fail Result	0412 REF IF 10V REF FAIL
of a Peripheral or Self Test	0413 REF IF LEV STATUS FAIL
0000 INFORMATIONAL MESSAGE	0414 REF PHS CONTROL FAIL
0000 SELF TEST INFO MESSAGE	0500 A TO D CONVERSION FAIL
0094 PRNT INTERFACE TEST PASSED	0511 A TO D COMM FAIL
0095 PRNT INTERFACE TEST FAILED	0512 A TO D 8 BIT D TO A FAIL
0096 GPIB INTERFACE TEST PASSED	0513 A TO D 12 BIT A TO D FAIL
0097 GPIB INTERFACE TEST FAILED	0514 A TO D STEERING DAC FAIL
0098 SELF TEST PASSED	0515 A TO D CONV ACCURACY FAIL
0099 SELF TEST FAILED	0516 A TO D SAMPL HOLD FAIL
0100 – 3999 Primarily Indicate a Self Test Failure	0517 IF SYNC FAIL
0111 LO1 COMM FAIL	0518 PWR SUPPLY SYNC FAIL
0112 LO1 PRE TUNE DAC FAIL	0519 A TO D EXT ANAL OUTP FAIL
0113 LO1 PHS LCK IND FAIL	0520 PWR SUPPLY +5V FAIL
0114 PHS LCK ERR VOL OUT OF TOL	0521 PWR SUPPLY +9V FAIL
0115 LO1 LCK TIME FAIL	0522 PWR SUPPLY +12V FAIL
0211 LO2 COMM FAIL	0524 PWR SUPPLY +18V FAIL
0212 LO2 MAIN PREST DAC FAIL	0525 PWR SUPPLY -18V FAIL
0213 LO2 OFFS PREST DAC FAIL	0526 PWR SUPPLY +27V FAIL
0214 MAIN PHS LCK ERR VOL FAIL	0527 PWR SUPPLY -27V FAIL
0215 OFFST PHS LCK ERR VOL FAIL	0611 TB IF COMM FAIL
0216 DDS PHS LCK ERR VOL FAIL	0612 TB IF 10V REF FAIL
0217 MAIN PHS LCK IND FAIL	0613 TB IF LEVEL STATUS FAIL
0218 OFFST PHS LCK IND FAIL	0614 TB PHS CONTROL FAIL
0219 DDS PHS LCK IND FAIL	0711 LO3 COMM FAIL
0220 LO2 LCK TIME FAIL	0712 LO3 REF OSC FAIL
0221 LO2 SRC TRACKING FAIL	0713 LO3 48.4 LCK IND FAIL
0311 TA IF COMM FAIL	0714 LO3 48.4 LCK ERR VOL FAIL
0312 TA IF 10V REF FAIL	0715 LO3 CAL REF PHS FAIL
0313 TA IF LEVEL STATUS FAIL	0811 SL SIG SEP COMM FAIL
0314 TA PHS CONTROL FAIL	0812 DAC ADJUSTMENT FAIL
	UO LZ DAG ADJUSTIVIENT FAII

37XXXC PM 12-15

 Table 12-4.
 Service Log Error Messages (2 of 3)

Error Message	Error Message
0814 SRC LCK POL CONTROL FAIL	2121 SRC F TUNE PATH BND7 FAIL
0815 DIRECT MODE ATTEN FAIL	2122 SRC F TUNE PATH BND8 FAIL
0911 A9 VME BUS INTERFACE FAIL	2123 SRC F TUNE PATH BND9 FAIL
0912 BBRAM CHECK FAIL	2124 SRC F TUNE PATH BND10 FAIL
0913 SRAM CHECK FAIL	2125 SRC PWR LEVEL DAC FAIL
0914 SCSI DEVICE FAIL	2126 SRC DETECTOR ZERO CAL FAIL
0915 MCCHIP FAIL	2127 SRC ALC CAL BND1 FAIL
0915 MCCHIP TIMER 1 FAIL	2128 SRC ALC CAL BND2 FAIL
0916 MCCHIP TIMER 2 FAIL	2129 SRC ALC CAL BND3 FAIL
0917 MCCHIP TIMER 3 FAIL	2130 SRC ALC CAL BND4 FAIL
0918 MCCHIP TIMER 4 FAIL	2131 SRC ALC CAL BND5 FAIL
0919 CLOCK NOT RUNNING	2132 SRC ALC CAL BND6 FAIL
1311 A13 VME BUS INTERFACE FAIL	2133 SRC ALC CAL BND7 FAIL
1312 EXT KEYBD CNTRL FAIL	2134 SRC ALC CAL BND8 FAIL
1313 FLOPPY DISK CNTRL FAIL	2135 SRC ALC CAL BND9 FAIL
1411 A14 VME BUS INTERFACE FAIL	2136 SRC ALC CAL BND10 FAIL
1511 A15 VME BUS INTERFACE FAIL	2137 SRC A1 FM PATH TUNE FAIL
1512 VRAM CHECK FAIL	2138 SRC A2 FM PATH TUNE FAIL
1611 HARD DISK CONTROL FAIL	4100 LO1 CAL FAIL
1811 AUXILLARY IO FAIL	4200 LO2 CAL FAIL
1912 FRONT PANEL CNTRL FAIL	4301 SRC FREQ CAL MEAS UNSTABLE
1913 ROTARY KNOB FAIL	4302 SRC FREQ FM MAIN CAL FAIL
2111 SRC COMM FAIL	4303 SRC FREQ FM SENS CAL FAIL
2112 SRC FTUNE DAC FAIL	4304 SRC FREQ CAL VERIFY FAIL
2113 SRC STATE MACHINE DAC FAIL	4401 SRC ALC LOG AMP CAL FAIL
2114 SRC FM CAL FAIL	4402 SRC ALC CAL VERIFY FAIL
2115 SRC F TUNE PATH BND1 FAIL	4500 IF CAL FAIL
2116 SRC F TUNE PATH BND2 FAIL	4600 GAIN RANGING ERROR
2117 SRC F TUNE PATH BND3 FAIL	4700 STATE MACHINE FAIL
2118 SRC F TUNE PATH BND4 FAIL	5000 – 5999 Indicate Run-Time RF Power
2119 SRC F TUNE PATH BND5 FAIL	Problems
2120 SRC F TUNE PATH BND6 FAIL	5110 RF PWR UNLEVELED

12-16 37XXXC PM

 Table 12-4.
 Service Log Error Messages (3 of 3)

Error Message	Error Message
5210 REF A CHAN RF OVERLOAD	7206 GPIB DEVICE SPECIFIC ERROR
5220 REF B CHAN RF OVERLOAD	7207 GPIB QUERY ERROR
5230 TA CHAN RF OVERLOAD	7210 DEDICATED GPIB BUS ERROR
5240 TB CHAN RF OVERLOAD	7220 PLOTTER NOT RESPONDING
6000 – 6999 Indicate Phase Lock Problems	7221 PLOTTER NOT READY
6001 - 6128 PHASE LOCK FAILURE	7222 PLOTTER OUT OF PAPER
7000 – 7999 Indicate Run-Time Digital Section	7223 PLOTTER PEN UP
Problems	7230 POWER METER NOT RESPONDING
7100 FILE MARKED READ ONLY	7240 FRQ COUNTER NOT RESPONDING
7140 GENERAL FLOPPY DRIVE FAIL	7250 EXT SOURCE NOT RESPONDING
7142 FLOPPY DISK READ ERROR	7310 PRINTER NOT RESPONDING
7143 FLOPPY DISK WRITE ERROR	7311 PRINTER NOT READY
7146 FLOPPY DISK CHANGED	7312 PRINTER OUT OF PAPER
7147 FLOPPY DISK UNAVAILABLE	7320 AUX I/O PORT ERROR
7169 FLOPPY INIT FAIL	7330 SERIAL PORT ERROR
7170 GENERAL HARD DISK FAIL	7340 ETHERNET PORT ERROR
7172 HARD DISK READ ERROR	7350 EXT TRIG RATE TOO FAST
7173 HARD DISK WRITE ERROR	7410 EXT KYBD ERROR
7177 HARD DISK UNAVAILABLE	8000 – 8999 Indicate Run-Time Processing Sys-
7199 HARD DISK INIT FAIL	tem Problems
7200 IEEE 488.2 GPIB BUS ERROR	8100 PWR FAIL
7201 ABORTED MESSAGES	8110 GENERAL VME BUS FAIL
7202 NOTHING TO SAY	8120 GENERAL MEMORY FAIL
7203 NO LISTENER ON BUS	8121 NON-VOLATILE MEMORY FAIL
7204 GPIB COMMAND ERROR	8130 PROCESSING FAIL
7205 GPIB EXECUTION ERROR	8140 GENERAL DISK BUFFER ERR

37XXXC PM 12-17/12-18

Part 4 Supplemental Data

This part consists of four appendices that provide supplemental data that will aid in understanding the 37XXXC programming material.

Appendix A – contains a primer for the IEEE 488 GPIB. This primer is intended to assist new users in understanding GPIB basics.

Appendix B – provides a quick reference to all 37XXXC GPIB commands. Each reference lists the command name, a brief description of the command function, and a reference to the pertinent Chapter in this manual.

Appendix A Introduction to the IEEE 488 Bus

Table of Contents

A-1	INTRODUCTION
A-2	IEEE 488.2 STANDARD
A-3	OVERVIEW
A-4	FUNCTIONAL ELEMENTSA-4TalkerA-4ListenerA-4ControllerA-4System ControllerA-4
A-5	BUS STRUCTURE
A-6	DATA BUS DESCRIPTION
A-7	DATA BYTE TRANSFER CONTROL
A-8	MANAGEMENT BUS A-8 ATN A-8 EOI A-8 IFC A-8 REN A-8 SRQ A-8

Appendix A Introduction to the IEEE 488 Bus

A-1 INTRODUCTION

This appendix contains general descriptions of the IEEE 488 Bus, generally known as the General Purpose Interface Bus (GPIB).

A-2 IEEE 488.2 STANDARD

The IEEE 488.2 Standard specifies the use of protocols, formats, and certain common commands for use with the GPIB. The applicable information regarding IEEE 488.2 usage for the 37XXXC is documented throughout the 37XXXC Programming Manual where used.

A-3 OVERVIEW

The IEEE-488 General Purpose Interface Bus (GPIB) is an instrumentation interface for integrating instruments, computers, printers, plotters, and other measurement devices into systems. The GPIB uses 16 signal lines to effect transfer of information between all devices connected on the bus.

The following requirements and restrictions apply to the GPIB.

- □ No more than 15 devices can be interconnected by one contiguous bus; however, an instrumentation system may contain more than one interface bus.
- ☐ The maximum total cumulative cable length for one interface bus may not exceed twice the number of devices connected (in meters), or 20 meters whichever is less.
- □ A maximum data rate of 1 Mb/s across the interface on any signal line.
- □ Each device on the interface bus must have a unique address, ranging from 00 to 30.

The devices on the GPIB are connected in parallel, as shown in Figure A-1. The interface consists of 16 signal lines and 8 ground lines in a shielded cable. Eight of the signal lines are the data lines, DIO 1 thru DIO 8. These data lines carry messages (data and commands), one byte at a time, among the GPIB devices. Three of the remaining lines are the handshake lines that control the transfer of message bytes between devices. The five remaining signal lines are referred to as interface management lines.

The following paragraphs provide an overview of the GPIB including a description of the functional elements, bus structure, bus data transfer

37XXXC PM A-3

process, interface management bus, device interface function requirements, and message types.

A-4 FUNCTIONAL ELEMENTS

Effective communications between devices on the GPIB requires three functional elements; a talker, a listener, and a controller. Each device on the GPIB is categorized as one of these elements depending on its current interface function and capabilities.

Talker

A talker is a device capable of sending device-dependent data to another device on the bus when addressed to talk. Only one GPIB device at a time can be an active talker.

Listener

A listener is a device capable of receiving device-dependent data from another device on the bus when addressed to listen. Any number of GPIB devices can be listeners simultaneously.

Controller

A controller is a device, usually a computer, capable of managing the operation of the GPIB. Only one GPIB device at a time can be an active controller. The active controller manages the transfer of device-dependent data between GPIB devices by designating who will talk and who will listen.

System Controller

The system controller is the device that always retains ultimate control of the GPIB. When the system is first powered-up, the system controller is the active controller and manages the GPIB. The system controller can pass control to a device, making it the new active controller. The new active controller, in turn, may pass control on to yet another device. Even if it is not the active controller, the system controller maintains control of the Interface Clear (IFC) and Remote Enable (REN) interface management lines and can thus take control of the GPIB at anytime.

A-5 BUS STRUCTURE

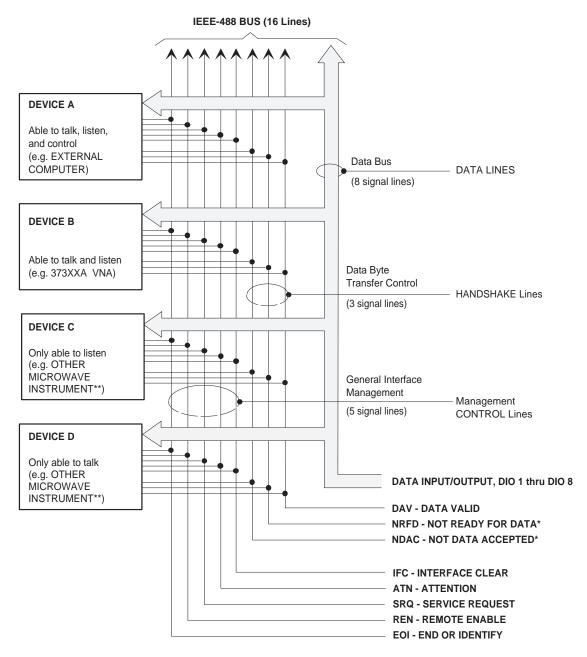
The GPIB uses 16 signal lines to carry data and commands between the devices connected to the bus. The interface signal lines are organized into three functional groups.

- □ Data Bus (8 lines)
- □ Data Byte Transfer Control Bus (3 lines)
- ☐ General Interface Management Bus (5 lines)

The signal lines in each of the three groups are designated according to function. Table A-1 lists these designations.

A-4 37XXXC PM

Bus Type	Signal Line Name	Function
Data Bus	DIO1-DIO8	Data Input/Output, 1 thru 8
Data Byte Trans- fer and Control	DAV NRFD NDAC	Data Available Not Ready For Data Not Data Accepted
General Interface Control	ATN IFC SRQ REN EOI	Attention Interface Clear Service Request Remote Enable End Or Identify


 Table A-1.
 Interface Bus Signal Line Designations

A-6 DATA BUS DESCRIPTION

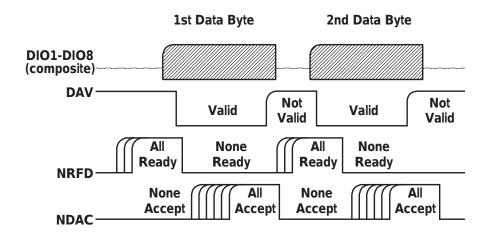
The data bus is the conduit for the transfer of data and commands between the devices on the GPIB. It contains eight bi-directional, active-low signal lines—DIO 1 thru DIO 8. Data and commands are transferred over the data bus in byte-serial, bit-parallel form. This means that one byte of data (eight bits) is transferred over the bus at a time. DIO 1 represents the least-significant bit (LSB) in this byte and DIO 8 represents the most-significant bit (MSB). Bytes of data are normally formatted in seven-bit ASCII (American Standard Code for Information Interchange) code. The eighth (parity) bit is not used.

Each byte placed on the data bus represents either a command or a data byte. If the Attention (ATN) interface management line is TRUE while the data is transferred, then the data bus is carrying a bus command which is to be received by every GPIB device. If ATN is FALSE, then a data byte is being transferred and only the active listeners will receive that byte.

37XXXC PM A-5

- * Negation is represented by low state on these two lines
- ** The configuration shown in this diagram depicts an external computer connected via GPIB to a 373XXA Vector Network Analyzer and other microwave instruments (if used).

Figure A-1. Interface Connections and Bus Structure


A-6 37XXXC PM

A-7 DATA BYTE TRANSFER CONTROL

Control of the transfer of each byte of data on the data bus is accomplished by a technique called the three-wire handshake, which involves the three signal lines of the Data Byte Transfer Control Bus. This technique forces data transfers at the speed of the slowest listener, which ensures data integrity in multiple listener transfers. One line (DAV) is controlled by the talker, while the other two (NRFD and NDAC) are wired-OR lines shared by all active listeners. The handshake lines, like the other GPIB lines, are active low. The technique is described briefly in the following paragraphs and is depicted in Figure A-2. For further information, refer to ANSI/IEEE Std 488.1.

DAV Data Valid

This line is controlled by the active talker. Before sending any data, the talker verifies that NDAC is TRUE (active low) which indicates that all listeners have accepted the previous data byte. The talker then places a byte on the data lines and waits until NRFD is FALSE (high), which indicates that all addressed listeners are ready to accept the information. When both NRFD and NDAC are in the proper state, the talker sets the DAV line TRUE (active low) to indicate that the data on the bus is valid (stable).

Figure A-2. Typical GPIB Handshake Operation

NRFD Not Ready For Data

This line is used by the listeners to inform the talker when they are ready to accept new data. The talker must wait for each listener to set

37XXXC PM A-7

the NRFD line FALSE (high), which they will do at their own rate. This assures that all devices that are to accept the data are ready to receive it.

NDAC Not Data Accepted

This line is also controlled by the listeners and is used to inform the talker that each device addressed to listen has accepted the data. Each device releases NDAC at its own rate, but NDAC will not go FALSE (high) until the slowest listener has accepted the data byte.

A-8 MANAGEMENT BUS

The general interface management bus is a group of five signal lines used to manage the flow of information across the GPIB. A description of the function of each of the individual control lines is provided below.

ATN Attention

The active controller uses the ATN line to define whether the information on the data bus is a command or is data. When ATN is TRUE (low), the bus is in the command mode and the data lines carry bus commands. When ATN is FALSE (high), the bus is in the data mode and the data lines carry device-dependent instructions or data.

EOI End or Identify

The EOI line is used to indicate the last byte of a multibyte data transfer. The talker sets the EOI line TRUE during the last data byte.

The active controller also uses the EOI line in conjunction with the ATN line to initiate a parallel poll sequence.

IFC Interface Clear

Only the system controller uses this line. When IFC is TRUE (low), all devices on the bus are placed in a known, quiescent state (unaddressed to talk, unaddressed to listen, and service request idle).

REN Remote Enable

Only the system controller uses this line. When REN is set TRUE (low), the bus is in the remote mode and devices are addressed either to listen or to talk. When the bus is in remote and a device is addressed, it receives instructions from the GPIB rather than from its front panel. When REN is set FALSE (high), the bus and all devices return to local operation.

SRQ Service Request

The SRQ line is set TRUE (low) by any device requesting service by the active controller.

A-8 37XXXC PM

37XXXC Series Vector Network Analyzer

GPIB QUICK REFERENCE GUIDE

This manual supplements the 37XXXC Series Vector Network Analyzer Programming Manual. Insert it behind the tab marked Appendix B, GPIB Quick Reference Guide in that manual.

WARRANTY

The ANRITSU product(s) listed on the title page is (are) warranted against defects in materials and workmanship for one year from the date of shipment.

ANRITSU's obligation covers repairing or replacing products which prove to be defective during the warranty period. Buyers shall prepay transportation charges for equipment returned to ANRITSU for warranty repairs. Obligation is limited to the original purchaser. ANRITSU is not liable for consequential damages.

LIMITATION OF WARRANTY

The foregoing warranty does not apply to ANRITSU connectors that have failed due to normal wear. Also, the warranty does not apply to defects resulting from improper or inadequate maintenance by the Buyer, unauthorized modification or misuse, or operation outside of the environmental specifications of the product. No other warranty is expressed or implied, and the remedies provided herein are the Buyer's sole and exclusive remedies.

TRADEMARK ACKNOWLEDGEMENTS

V Connector and K Connector are registered trademarks of ANRITSU Company. ANACAT is a registered trademark of EEsof, Inc.
Ink Jet and Think Jet are registered trademarks of Hewlett-Packard Co.
MS-DOS is a registered trademark of Microsoft Corporation.
Excel is a registered trademark of Microsoft Corporation.

NOTICE

ANRITSU Company has prepared this manual for use by ANRITSU Company personnel and customers as a guide for the proper installation, operation and maintenance of ANRITSU Company equipment and computer programs. The drawings, specifications, and information contained herein are the property of ANRITSU Company, and any unauthorized use or disclosure of these drawings, specifications, and information is prohibited; they shall not be

37XXXC VNA GPIB Quick Reference Guide

Table of Contents

1.	INTRODUCTION	3
9	CENERAI	9

37XXXC VNA GPIB Quick Reference Guide

1. INTRODUCTION This appendix provides a quick reference to the 37XXXC GPIB Programming commands.

2. GENERAL This guide is divided into two listings: alphabetical and functional. The alphabetical listing begins on page 5 and the functional listing on page 38.

All of these commands are described in detail in Chapters 10 of the 37XXXC Programming Manual.

37XXXC GPIB UG 3/4

Command	Description
*CLS	Clear status bytes and structures
*DDT	Enter the 488.2 Define Device Trigger command string
*DDT?	Output the 488.2 Define Device Trigger command string
*ESE	Enter the 488.2 Standard Event Status Enable mask
*ESE?	Output the 488.2 Standard Event Status Enable mask
*ESR?	Output the 488.2 Standard Event Status Register value
*IDN?	Output the 488.2 instrument identification string
*IST?	Output the value of the ist message
*OPC	Initiate the 488.2 Operation Complete sequence
*OPC?	Initiate the 488.2 Operation Complete Query sequence
*OPT?	Output the 488.2 options installed string
*PRE	Enter the 488.2 Parallel Poll Register Enable mask
*PRE?	Output the 488.2 Parallel Poll Register Enable mask
*RST	Instrument reset
*SRE	Enter the 488.2 Service Request Enable mask
*SRE?	Output the 488.2 Service Request Enable mask
*STB?	Output the 488.2 Status Byte value
*TRG	Initiate a Group Execute Trigger sequence
*TST?	Perform self test and output status
*WAI	Wait to continue
A12	Simulate 12-term calibration
A8R	Simulate 1-path 2-port calibration reverse path
A8T	Simulate 1-path 2-port calibration forward path
ABORTCAL	Abort calibration in progress and keep existing calibration data
ABT	Simulate trans freq response calibration forward and reverse
ACAA	Set AutoCal standard to assurance
ACADPL	Enter AutoCal adapter length
ACADPL?	Output AutoCal adapter length
ACADR	Set AutoCal type to adapter removal
ACAL1R2	Set adapter removal port configuration to ADAPT & L=1 and R=2
ACAR1L2	Set adapter removal port configuration to ADAPT & R=1 and L=2
ACARP?	Output AutoCal adapter removal port configuration
ACDEF	Select default AutoCal isolation averaging factor
ACF2P?	Output AutoCal full 2 port configuration
ACF2TC	Set AutoCal 2 port thru type to calibrator
ACF2TT	Set AutoCal 2 port thru type to true thru
ACF2TX?	Output AutoCal 2 port thru type selection
ACHFD	Save AutoCal characterization data to floppy disk

Command	Description
ACHHD	Save AutoCal characterization data to hard disk
ACIAF	Enter user AutoCal isolation averaging factor
ACIAF?	Output user AutoCal isolation averaging factor
ACIAX?	Output AutoCal isolation averaging factor omit/default/user selection
ACISO	Enter AutoCal isolation averaging number
ACISO?	Output AutoCal isolation averaging number
ACL1AR2	Set adapter removal port configuration to L=1 and ADAPT & R=2
ACL1R2	Set AutoCal full 2 port configuration to L=1 and R=2
ACLO	Enter AutoCal load averaging number
ACLO?	Output AutoCal load averaging number
ACLOAD	Set AutoCal standard to load
ACOMIT	Omit using AutoCal isolation averaging factor
ACOPEN	Set AutoCal standard to open
ACP1?	Output AutoCal S11 port configuration
ACP1L	Set AutoCal S11 port configuration to left
ACP1R	Set AutoCal S11 port configuration to right
ACP2?	Output AutoCal S22 port configuration
ACP2L	Set AutoCal S22 port configuration to left
ACP2R	Set AutoCal S22 port configuration to right
ACPL	Set AutoCal S11 port configuration to left
ACPR	Set AutoCal S11 port configuration to right
ACR1AL2	Set adapter removal port configuration to R=1 and ADAPT & L=2
ACR1L2	Set AutoCal full 2 port configuration to R=1 and L=2
ACRFL	Enter AutoCal reflection averaging number
ACRFL?	Output AutoCal reflection averaging number
ACS11	Set AutoCal type to S11
ACS22	Set AutoCal type to S22
ACSF2P	Set AutoCal type to full 2 port
ACSHORT	Set AutoCal standard to short
ACSTD?	Output AutoCal standard
ACSW	Enter AutoCal switch averaging number
ACSW?	Output AutoCal switch averaging number
ACTHRU	Set AutoCal standard to thru
ACTU	Enter AutoCal thru averaging number
ACTU?	Output AutoCal thru averaging number
ACTUAVG	Enter AutoCal thru update averaging number
ACTUAVG?	Output AutoCal thru update averaging number

Command	Description
ACTULS	Apply last thru update cal setup
ACX?	Output AutoCal type
ADD	Select addition as trace math for active channel
ADDFC	Enter frequency counter GPIB address
ADDFC?	Output frequency counter GPIB address
ADDPLT	Enter plotter GPIB address
ADDPLT?	Output plotter GPIB address
ADDPM	Enter power meter GPIB address
ADDPM?	Output power meter GPIB address
ADPL	Enter electrical length for adapter removal
ADPL?	Output electrical length for adapter removal
ADRIVE	Select the floppy drive as the default drive
AFT	Simulate transmission frequency response calibration forward path
AH0	Turn automatic DUT protection off
AH1	Turn automatic DUT protection on
AHX?	Output automatic DUT protection on/off status
ALC	Perform ALC loop internal calibration
AMKR	Select active marker on all channels marker mode
ANNCOL	Enter the color number for annotation and menu text
ANNCOL?	Output the color number for annotation and menu text
AOF	Turn averaging off
AOF?	Output averaging on/off status
AON	Turn averaging on
APR	Enter group delay aperture setting on active channel
APR?	Output group delay aperture setting on active channel
ARB	Simulate reflection only calibration both ports
ARF	Simulate reflection only calibration port 1
ARR	Simulate reflection only calibration port 2
ART	Simulate trans freq response calibration reverse path
ASC	Autoscale the active channel display
ASP	Enter polar stop sweep position angle
ASP?	Output polar stop sweep position angle
AST	Enter polar start sweep position angle
AST?	Output polar start sweep position angle
ATTN	Attach next segment and make the active segment
AVG	Enter averaging count and turn on
AVG?	Output averaging count
BBL	Select broadband load for calibration

Command	Description
BBZ	Enter broadband load impedance for calibration
BBZL	Enter broadband load inductance for calibration
BC0	Turn CRT display off (disabled)
BC1	Turn CRT display on (disabled)
BCKCOL	Enter the color number for background
BCKCOL?	Output the color number for background
BCX?	Output CRT display on/off status
BD1	Select band 1 for definition
BD2	Select band 2 for definition
BD3	Select band 3 for definition
BD4	Select band 4 for definition
BD5	Select band 5 for definition
BDMM	Define Millimeter Wave band equations
BEEP0	Disable the instrument beeper on GPIB errors
BEEP1	Enable the instrument beeper on GPIB errors
BEEPX?	Output GPIB beep on error enable/disable status
BEG	Begin taking calibration data
BEGAC	Start AutoCal
BEGCH	Start AutoCal characterization
BEGN	Begin next segment and make it the active segment
BEGTU	Start AutoCal thru update
BH0	Turn bias off while in hold
BH1	Turn bias on while in hold
BHX?	Output bias on/off during hold status
ВМРВ	Select Black on White as bitmap type
BMPC	Select Color on White as bitmap type
BMPT	Select true color as bitmap type
BPF	Enter break point frequency for 3 line LRL calibration
BRILL	Activate color configuration Brilliant
BSP	Enter band stop frequency
BSP?	Output band stop frequency
BST	Enter band start frequency
BST?	Output band start frequency
BWL3	Set bandwidth loss value to 3 dB
BWLS	Enter bandwidth loss value
BWLS?	Output bandwidth loss value
C12	
-	Select 12 term calibration

Command	Description
C8T	Select 1-path 2-port calibration forward path
CALR	Perform receiver cal for gain compression testing
CAS	Clear active segmented limit vertical/horizontal definitions
CBT	Select trans freq response calibration forward and reverse
CC0	Enter capacitance coefficient 0 for open
CC1	Enter capacitance coefficient 1 for open
CC2	Enter capacitance coefficient 2 for open
CC3	Enter capacitance coefficient 3 for open
CCD	Collect corrected data in an internal buffer
CD	Change default directory
CDRIVE	Select the hard disk as the default drive
CF2	Select female 2.4mm connector for current port
CF3	Select female GPC-3.5 connector for current port
CFC	Select female TNC connector for current port
CFD	Collect final data in an internal buffer
CFK	Select female K connector for current port
CFN	Select female Type N connector for current port
CFN75	Select Female type N 75-ohm connector for current port
CFS	Select female SMA connector for current port
CFSP	Select Special Female connector for current port
CFT	Select trans freq response calibration forward path
CFV	Select female V connector for current port
CH1	Make channel 1 the active channel
CH2	Make channel 2 the active channel
CH3	Make channel 3 the active channel
CH4	Make channel 4 the active channel
CHX?	Output active channel number
CLO	Enter inductive coefficient 0 for short
CL1	Enter inductive coefficient 1 for short
CL2	Enter inductive coefficient 2 for short
CL3	Enter inductive coefficient 3 for short
CLASS	Activate color configuration Classic
CLB	Clear all multiple source band definitions
CLBMM	Clear the new Millimeter Wave band definitions
CM	Suffix sets distance data type and scales by 1E-2
CM2	Select male 2.4mm connector for current port
CM3	Select male GPC-3.5 connector for current port
CMC	Select male TNC connector for current port

Command	Description
CMK	Select male K connector for current port
CMN	Select male N connector for current port
CMN75	Select Male type N 75-Ohm connector for current port
CMS	Select male SMA connector for current port
CMSP	Select Special Male connector for current port
CMT	Suffix sets distance data type and scales by 1E-2
CMV	Select male V connector for current port
CMX?	Output calibration method
CND	Select user specified connector for current port
CNG	Select GPC-7 connector for current port
CNTR	Enter center frequency
CNTR?	Output center frequency
COF	Turn error correction off
CON	Turn error correction on
CON?	Output error correction on/off status
C00	Enter offset for open for user specified connector (Standard Calibration)
COPY	Copy a files contents to another file
cos	Enter offset for short for user specified connector
CRB	Select reflection only calibration both ports
CRD	Collect raw data in an internal buffer
CRF	Select reflection only calibration port 1
CRR	Select reflection only calibration port 2
CRT	Select trans freq response calibration reverse path
CSB	Clear status bytes and structures (same as *CLS)
CSF?	Output cal start frequency
CSL	Clear service log
CTF?	Output cal stop frequency
CTN	Continue sweeping from current point
cwc	Select CW frequency calibration data points
CWD?	Output current working directory string
CWDEC	Subtract 1 from the current CW index
CWF	Enter CW frequency and turn CW on
CWF?	Output CW frequency
CWI	Enter index for CW frequency and turn CW on
CWI2F?	Output frequency for index given
CWI?	Output current index number
CWINC	Add 1 to the current CW index

Command	Description
CWN2I	Add N to the current CW index
CWON	Turn CW on at current CW frequency
CWON?	Output CW on/off status
CWP	Enter number of points drawn in CW
CWP?	Output number of points drawn in CW
CWSRT	Set CW frequency to the start frequency
CWSTP	Set CW frequency to the stop frequency
CXD?	Output internal buffer data collection mode
CXX?	Output calibration type
D13	Display channels 1 & 3
D14	Display all four channels
D24	Select dual channel display with channels 2 & 4
DA1	Select a1 = Ra as denominator for parameter being defined
DA2	Select a2 = Rb as denominator for parameter being defined
DAT	Display data only on active channel
DAT?	Output trace memory display mode
DATCOL	Enter the color number for data
DATCOL?	Output the color number for data
DATE	Enter the system date
DATE?	Output the system date
DB	Suffix sets power data type
DB1	Select b1 = Ta as denominator for parameter being defined
DB2	Select b2 = Tb as denominator for parameter being defined
DBL	Suffix sets power data type
DBM	Suffix sets power data type
DBP	Select distance bandpass mode for active channel
DC1	Display channel 1 and 2 operating parameters
DC3	Display channel 3 and 4 operating parameters
DCA	Select automatic DC term calculation for lowpass
DCCTN	Resume internal buffer data collection
DCCTN?	Output internal buffer data collection resume/suspend status
DCHLD	Suspend internal buffer data collection
DCMRK	Inserts the mark value into the internal buffer
DCO	Select open for DC term for lowpass
DCOFF	Turn internal buffer data collection mode off
DCP	Display calibration parameters 1st page
DCP1	Display calibration parameters 1st page
DCP2	Display calibration parameters 2nd page

Command	Description
DCPCUR?	Outputs the current point count in the collect buffer
DCPMAX?	Outputs the maximum number of points that can be collected in the collect buffer
DCS	Select short for DC term for lowpass
DCV	Enter value for DC term for lowpass
DCV?	Output lowpass DC term value
DCX?	Output lowpass DC term selection
DCZ	Select line impedance for DC term for lowpass
DD0	Turn data drawing off
DD1	Turn data drawing on
DD1?	Output data drawing on/off status
DDX?	Output active channel domain parameter frequency distance or time
DE1	Select unity as denominator for parameter being defined
DEG	Suffix sets phase data type
DEL	Delete a file from disk
DEN?	Output denominator selection for parameter being defined
DF2	Display 2.4mm female connector information
DF3	Display GPC-3.5 female connector information
DFC	Select discrete frequency calibration data points
DFD	Done specifying discrete frequency ranges
DFK	Display K female connector information
DFN	Display N female connector information
DFN75	Display N Female 75-Ohm connector information
DFP	Display Front panel instrument state
DFQ	Enter single discrete frequency
DFS	Display SMA female connector information
DFSP	Display Special Female connector information
DFT	Display TNC female connector information
DFV	Display V female connector information
DG7	Display GPC-7 Male connector information
DGS	Display GPIB status information
DGT	Display 1st CRT test pattern
DGT1	Display 1st CRT test pattern
DGT2	Display 2nd CRT test pattern
DGT3	Display 3rd CRT test pattern
DIA	Select air as active dielectric
DIE	Enter a dielectric value

Command	Description
DIM	Select microporous teflon as active dielectric
DIP	Select polyethylene as active dielectric
DIR	Output a directory listing to the GPIB
DIS	Display active segmented limit
DIS?	Output active segmented limit on/off status
DISKRD	Output disk file data to the GPIB
DISKWR	Write GPIB data to a disk file
DIT	Select Teflon as active dielectric
DIV	Select division as trace math for active channel
DIX?	Output dielectric constant
DLA	Select group delay display for active channel
DLP	Select distance lowpass mode for active channel
DM2	Display 2.4mm male connector information
DM3	Display GPC-3.5 male connector information
DMK	Display K male connector information
DMN	Display N male connector information
DMN75	Display N Male 75-Ohm connector information
DMS	Display SMA male connector information
DMSP	Display Special Male connector information
DMT	Display TNC male connector information
DMV	Display V male connector information
DNM	Display data normalized to trace memory on active channel
DPI	Select distance phasor impulse mode for active channel
DPN	Enter pen number for data
DPN?	Output pen number for data
DPR0	Visible data only OFD format
DPR1	Data pair always OFD format
DPRX?	Output data pair mode visible only or pair always
DR1	Select Marker 1 as Delta Reference Marker
DR2	Select Marker 2 as Delta Reference Marker
DR3	Select Marker 3 as Delta Reference Marker
DR4	Select Marker 4 as Delta Reference Marker
DR5	Select Marker 5 as Delta Reference Marker
DR6	Select Marker 6 as Delta Reference Marker
DRF	Turn delta reference mode on
DRL	Diagnostic read latch
DRO	Turn delta reference mode off
DRO?	Output delta reference mode on/off status

Command	Description
DRX?	Output delta reference marker number
DSF0	Disable filter shape factor calculation
DSF1	Enable filter shape factor calculation
DSFX?	Output filter shape factor calculation enable/disable status
DSP	Select single channel display
DSP?	Output channel display mode
DSPS21	Select Gain Compression bottom graph displays S21
DSPS21?	Output Gain Compression bottom graph selection Normalized/S2
DSQ0	Disable filter Q calculation
DSQ1	Enable filter Q calculation
DSQX?	Output filter Q calculation enable/disable status
DTM	Display measurement data and trace memory on active channel
DVM	Enter DVM channel number
DWG	Display waveguide parameters
DWL	Diagnostic write latch
E12	Set Millimeter Wave band to E band (WR-12)
E12E	Set Millimeter Wave band to E band (WR-12)
EANAIN	Measure External Analog In on active channel
ECW	Select CW operation for component being edited
ED1	Edit source 1 equation
ED2	Edit source 2 equation
EDG	End diagnostics mode
EDR	Edit receiver equation
EDV	Enter divisor value for equation being edited
EDV?	Output divisor value for equation being edited
EKT	Select external keyboard testing
EML	Enter multiplier value for equation being edited
EML?	Output multiplier value for equation being edited
EOS	Enter offset frequency for equation being edited
EOS?	Output offset frequency for equation being edited
ESW	Select sweep operation for component being edited
EX1RF0	Turn external source 1 rf off
EX1RF1	Turn external source 1 rf on
EX2RF0	Turn external source 2 rf off
EX2RF1	Turn external source 2 rf on
EXD	Display external A/D input
EXISTD?	Output directory existence information
EXISTF?	Output file existence information

Command	Description
EXW?	Output multiple source sweep flag for equation being edited
F08	Set Millimeter Wave Band to F Band (WR-8)
FCW0	Turn fast CW measurement mode off
FCW1	Turn fast CW measurement mode on
FCW2	Turn Fast CW mode 2 on
FCWX?	Output fast CW measurement mode on/off status
FDE0	Disable Output Data End Message
FDE1	Enable Output Data End Message
FDEX?	Output Output Data End Message enable/disable status
FDH0	Select variable length arbitrary block headers
FDH1	Select fixed length arbitrary block headers
FDH2	Select zero length arbitrary block headers
FDHX?	Output arbitrary block header length selection
FFD	Send form feed to printer and stop print/plot
FGT	Select frequency with time gate for active channel
FHI	Set data points to 1601
FIL	Fill defined discrete frequency range
FLC	Source frequency linearity internal calibration
FLO	Set data points to 101
FLTBW?	Output filter bandwidth
FLTC?	Output filter center frequency
FLTL?	Output filter loss at reference value
FLTQ?	Output filter Q
FLTS?	Output filter shape factor
FMA	Select ASCII data transfer format
FMB	Select IEEE754 64 bit data transfer format
FMC	Select IEEE754 32 bit data transfer format
FME	Set data points to 401
FMKR	Select filter parameters marker mode
FMT0	Select normal ascii data element delimiting
FMT1	Select enhanced ascii data element delimiting
FMTX?	Output ascii data element delimiting mode
FMX?	Output data output mode FMA FMB or FMC
FOF	Blank frequency information
FON	Display frequency information
FOX?	Output frequency information on/off status
FP0	Turn flat power correction off
FP1	Turn flat power correction on

Command	Description
FPT	Select front panel keypad testing
FPX?	Output flat power correction on/off status
FQD	Select frequency domain for active channel
FRC	Clear all defined discrete frequency ranges
FRI	Enter Discrete Fill increment frequency
FRP	Enter Discrete Fill number of points
FRS	Enter Discrete Fill start frequency
GCMP	Enter gain compression point search value
GCMP?	Output gain compression point search value
GCT	Enter gate center value distance or time
GCT?	Output gate center value
GDS	Gate symbols displayed on active channel
GHZ	Suffix sets frequency data type and scales by 1E9
GLS	Select low sidelobe gate shape
GMS	Select minimum sidelobe gate shape
GNM	Select nominal gate shape
GOF	Turn off gating on active channel
GOF?	Output gating mode on active channel
GON	Turn on gating on active channel
GPN	Enter pen number for graticule
GPN?	Output pen number for graticule
GRF?	Output graph type for active channel
GRT	Select Rectangular gate shape
GRTCOL	Enter the color number for the graticule
GRTCOL?	Output the color number for the graticule
GSN	Enter gate span value distance or time
GSN?	Output gate span value
GSP	Enter gate stop value distance or time
GSP?	Output gate stop value
GST	Enter gate start value distance or time
GST?	Output gate start value
GSX?	Output gate shape
HC0	Disable internal IF calibration
HC1	Enable internal IF calibration and trigger an IF calibration
НСТ	Trigger an IF calibration
HCX?	Output internal IF calibration enable/disable status
HD0	Turn off tabular data headers and page formatting
HD1	Turn on tabular data headers and page formatting

Command	Description
HID	Hide active segmented limit
HIST0	Turns off GPIB history writing to disk
HIST1	Turns on GPIB history writing to disk
HISTX?	Outputs the history writes to hard disk enable/disable status
HLD	Put sweep into hold mode
HLD?	Output the sweep hold status
HPN	Enter pen number for header
HPN?	Output pen number for header
HZ	Suffix sets frequency data type
IACCHAR	Input AutoCal characterization data from the GPIB
IARF	Enter adapter removal files from GPIB and calibrate
IC1	Enter calibration coefficient 1
IC10	Enter calibration coefficient 10
IC11	Enter calibration coefficient 11
IC12	Enter calibration coefficient 12
IC2	Input Calibration Coefficient 2
IC3	Enter calibration coefficient 3
IC4	Enter calibration coefficient 4
IC5	Enter calibration coefficient 5
IC6	Enter calibration coefficient 6
IC7	Enter calibration coefficient 7
IC8	Enter calibration coefficient 8
IC9	Enter calibration coefficient 9
ICA	Enter calibration coefficient 10
ICB	Enter calibration coefficient 11
ICC	Enter calibration coefficient 12
ICD	Enter corrected data for active channel parameter
ICF	Enter front panel setup and calibration data
ICL	Enter all applicable calibration coefficients for cal type
IEM	Enter extended status byte mask
IF1	Select 10 Hz IF bandwidth
IF2	Select 100 Hz IF bandwidth
IF3	Select 1 KHz IF bandwidth
IF4	Select 10 KHz IF bandwidth
IFA	Select 30 KHz IF bandwidth
IFB	Select 1st IF bandpass testing
IFD	Enter final data for active channel parameter
IFM	Select 10 Hz IF bandwidth

Command	Description
IFN	Select 1 KHz IF bandwidth
IFP	Enter current front panel setup
IFPC	Enter flat power coefficients
IFR	Select 100 Hz IF bandwidth
IFV	Enter frequency values
IFX?	Output IF bandwidth
IHDW	Enter hardware cal data from GPIB
IKIT	Enter calkit data from GPIB
ILM	Enter limits status byte mask
IMG	Select imaginary display for active channel
IMU	Suffix sets imaginary data type
IND	Input Normalization data
INRM	Enter normalization data from GPIB
INT	Initialize (format) floppy disk
INVER	Activate color configuration Inverse
IPM	Enter the 488.2 Service Request Enable mask
IPSC	Enter power sweep linearity calibration coefficients
IS1	Enter front panel setup 1
IS10	Enter front panel setup 10
IS2	Enter front panel setup 2
IS3	Enter front panel setup 3
IS4	Enter front panel setup 4
IS5	Enter front panel setup 5
IS6	Enter front panel setup 6
IS7	Enter front panel setup 7
IS8	Enter front panel setup 8
IS9	Enter front panel setup 9
ISC	Enter scale and select inverted compressed Smith Chart display
ISE	Enter scale and select inverted expanded Smith Chart display
ISF	Exclude isolation
ISM	Select normal inverted Smith Chart for active channel
ISN	Include isolation
KEC	Keep existing calibration data
KHZ	Suffix sets frequency data type and scales by 1E3
L1C	Perform LO1 internal calibration
L2C	Perform LO2 internal calibration
LA1	Select a1 = Ra as phase lock for parameter being defined
LA2	Select a2 = Rb as phase lock for parameter being defined

Command	Description
LAND	Select landscape mode for output plot
LAX?	Output phase lock selection for parameter being defined
LAYCOL	Enter the color number for overlay data
LAYCOL?	Output the color number for overlay data
LB0	Turn limits testing beep on failure off
LB1	Turn limits testing beep on failure on
LBX?	Output limits testing beeper enable status
LCM	Select LRL calibration method
LDARF	Load adapter removal files from disk and calibrate
LDT0	Disable printing date/time
LDT1	Enable printing date/time
LFD	Enter limit frequency readout delta value
LFD2	Enter limit frequency readout delta value for bottom graph
LFD2?	Output limit frequency readout delta value for bottom graph
LFD?	Output limit frequency readout delta value
LFP	Select limit frequency readout for phase displays
LFR	Select limit frequency readout for active channel
LID	Enter string for DUT identity
LID?	Output string for DUT identity
LIN	Select linear magnitude display for active channel
LKS0	Disable lock search mode
LKS1	Enable lock search mode
LKT	Load calibration kit information from floppy disk
LL1	Enter length of line 1 for LRL calibration
LL2	Enter length of line 2 for LRL calibration
LL3	Enter length of line 3 for LRL calibration
LLM?	Output limit line display mode single or segmented
LLO	Enter lower limit value for top graph on active channel
LLO2	Enter lower limit value for bottom graph on active channel
LLO2?	Output lower limit value for bottom graph on active channel
LLO?	Output lower limit value for top graph on active channel
LLZ	Enter line impedance for LRL calibration
LM2	Select a match for the second device during a LRM type calibration
LM3	Select a match for the third device during a LRM type calibration
LMS	Enter string for DUT model/serial number
LMS?	Output string for DUT model/serial number
LNM	Enter string for operator name
LNM?	Output string for operator name

Command	Description
LO11	Select LO1 phase lock voltage testing
LO12	Select LO1 D/A voltage testing
LO21	Select LO2 main phase lock voltage testing
LO22	Select LO2 offset phase lock voltage testing
LO23	Select LO2 DDS phase lock voltage testing
LO24	Select LO2 main D/A voltage testing
LO25	Select LO2 offset D/A voltage testing
LOC	Enter string for operator comment
LOC?	Output string for operator comment
LOF	Limits display off
LOGO0	Turn hard copy logo off
LOGO1	Turn hard copy logo on
LOGO?	Output hard copy logo selection standard/user defined
LOGOS	Select standard hard copy logo
LOGOU	Select user defined hard copy logo
LOGOX?	Output hard copy logo on/off status
LOL0	Turn lower limit off
LOL1	Turn lower limit on at current value
LOL20	Turn lower limit off for bottom graph
LOL21	Turn lower limit on at current value for bottom graph
LOL2X?	Output lower limit on/off status for bottom graph
LOLX?	Output lower limit on/off status
LON	Limits display on
LON?	Output limits display on/off status
LPF1?	Output limit test failure status on channel 1
LPF2?	Output limit test failure status on channel 2
LPF3?	Output limit test failure status on channel 3
LPF4?	Output limit test failure status on channel 4
LPF?	Output limit test failure status all channels
LPH	Select linear magnitude and phase display for active channel
LPI	Select lowpass impulse response for active channel
LPS	Select lowpass step response for active channel
LPSX?	Output lowpass response for active channel impulse or step
LR2	Specify 2 line LRL calibration
LR3	Specify 3 line LRL calibration
LS1	Set lower segmented limit 100 as the active segment
LS10	Select lower segmented limit 10 as the active segment
LS2	Select lower segmented limit 2 as the active segment

Command	Description
LS3	Select lower segmented limit 3 as the active segment
LS4	Select lower segmented limit 4 as the active segment
LS5	Select lower segmented limit 5 as the active segment
LS6	Select lower segmented limit 6 as the active segment
LS7	Select lower segmented limit 7 as the active segment
LS8	Select lower segmented limit 8 as the active segment
LS9	Select lower segmented limit 9 as the active segment
LSB	Select least significant byte first binary transfer
LSEG	Select segmented limit line display mode
LSNG	Select single limit line display mode
LSX?	Output active segmented limit
LTO	Turn limits testing off
LT1	Turn limits testing on
LT1?	Output limits testing enable status
LTC	Select coaxial transmission line for calibration
LTRD	Output response data from the dedicated GPIB bus
LTST	Display the limits testing menu
LTU	Select microstrip transmission line for calibration
LTW	Select waveguide transmission line for calibration
LTWRT	Send program data to the dedicated GPIB bus
LTX?	Output line type
LUP	Enter upper limit value for top graph on active channel
LUP2	Enter upper limit value for bottom graph on active channel
LUP2?	Output upper limit value for bottom graph on active channel
LUP?	Output upper limit value for top graph on active channel
LVH	Select high as limits testing TTL level
LVL	Select low as limits testing TTL level
LVX?	Output limits testing ttl level status
M	Suffix sets distance data type
M1C	Set CW mode at marker 1 frequency
M1E	Set sweep/zoom end to marker 1 frequency distance or time
M1S	Set sweep/zoom start to marker 1 frequency distance or time
M2C	Set CW mode at marker 2 frequency
M2E	Set sweep/zoom end to marker 2 frequency distance or time
M2S	Set sweep/zoom start to marker 2 frequency distance or time
M3C	Set CW mode at marker 3 frequency
M3E	Set sweep/zoom end to marker 3 frequency distance or time
M3S	Set sweep/zoom start to marker 3 frequency distance or time

Command	Description
M4C	Set CW mode at marker 4 frequency
M4E	Set sweep/zoom end to marker 4 frequency distance or time
M4S	Set sweep/zoom start to marker 4 frequency distance or time
M5C	Set CW mode at marker 5 frequency
M5E	Set sweep/zoom end to marker 5 frequency distance or time
M5S	Set sweep/zoom start to marker 5 frequency distance or time
M6C	Set CW mode at marker 6 frequency
M6E	Set sweep/zoom end to marker 6 frequency distance or time
M6S	Set sweep/zoom start to marker 6 frequency distance or time
MAG	Select log magnitude display for active channel
MAT	Select matched reflective devices during cal
MD	Create a new disk directory
MEM	Display trace memory on active channel
MFGCT	Start multiple frequency swept power gain compression test
MHZ	Suffix sets frequency data type and scales by 1E6
MIN	Select subtraction as trace math for active channel
MIX	Select mixed reflective devices during calibration
MK1	Enter marker 1 frequency distance or time and turn on
MK1?	Output marker 1 frequency distance or time
MK2	Enter marker 2 frequency distance or time and turn on
MK2?	Output marker 2 frequency distance or time
MK3	Enter marker 3 frequency distance or time and turn on
MK3?	Output marker 3 frequency distance or time
MK4	Enter marker 4 frequency distance or time and turn on
MK4?	Output marker 4 frequency distance or time
MK5	Enter marker 5 frequency distance or time and turn on
MK5?	Output marker 5 frequency distance or time
MK6	Enter marker 6 frequency distance or time and turn on
MK6?	Output marker 6 frequency distance or time
MKRC	Select interpolated marker functionality
MKRCOL	Enter the color number for the markers
MKRCOL?	Output the color number for the markers
MKRD	Select discrete marker functionality
MKRX?	Output interpolated/discrete marker functionality
MKSL	Marker search left
MKSR	Marker search right
MKT0	Turn marker tracking off
MKT1	Turn marker tracking on

Command	Description
MKTX?	Output marker tracking on/off status
MM	Suffix sets distance data type and scales by 1E-3
MMBX?	Output Millimeter Wave band selection
MMN	Move active marker to minimum trace value
MMT	Suffix sets distance data type and scales by 1E-3
MMX	Move active marker to maximum trace value
MNUCOL	Enter the color number for the menu headers
MNUCOL?	Output the color number for the menu headers
MO1	Turn off marker 1
MO2	Turn off marker 2
MO3	Turn off marker 3
MO4	Turn off marker 4
MO5	Turn off marker 5
MO6	Turn off marker 6
MOF	Turn marker display off
MON	Turn marker display on
MON?	Output marker display on/off status
MOSET	Enter constant offset log magnitude for active channel
MOSET?	Output constant offset log magnitude for active channel
MPH	Select log magnitude and phase display for active channel
MPN	Enter pen number for markers and limits
MPN?	Output pen number for markers and limits
MR1	Turn marker 1 on and make it the active marker
MR1?	Output marker 1 on/off status
MR2	Turn marker 2 on and make it the active marker
MR2?	Output marker 2 on/off status
MR3	Turn marker 3 on and make it the active marker
MR3?	Output marker 3 on/off status
MR4	Turn marker 4 on and make it the active marker
MR4?	Output marker 4 on/off status
MR5	Turn marker 5 on and make it the active marker
MR5?	Output marker 5 on/off status
MR6	Turn marker 6 on and make it the active marker
MR6?	Output marker 6 on/off status
MRM	Display the Marker Readout menu
MRR	Restore original marker range
MRX?	Output active marker number
MS	Suffix sets time data type and scales by 1E-3

Command	Description
MS0	Turn multiple source mode off
MS1	Turn multiple source mode on
MSB	Select most significant byte first binary transfer
MSD	Select multiple source define mode
MSFH	Enter high loss value for shape factor calculation
MSFH?	Output high loss value for shape factor calculation
MSFL	Enter low loss value for shape factor calculation
MSFL?	Output low loss value for shape factor calculation
MSR0	Select 0 as reference for marker search and bandwidth calculation
MSRD	Select delta reference marker as reference for marker search and bandwidth calculation
MSRM	Select maximum as reference for marker search and bandwidth calculation
MSRX?	Output reference selection for marker search and bandwidth calculation
MSX?	Output multiple source mode on/off/define
MTH?	Output trace math math type
MTR	Suffix sets distance data type
MUL	Select multiplication as trace math for active channel
MV	Suffix sets voltage data type and scales by 1E-3
NA1	Select a1 as numerator for parameter being defined
NA2	Select a2 as numerator for parameter being defined
NB1	Select b1 as numerator for parameter being defined
NB2	Select b2 as numerator for parameter being defined
NCS	Go to next calibration step
NEWCO	Activate color configuration New
NMKR	Select normal markers on active channel marker mode
NOC	Select normal calibration data points
NOFST	Enter nominal offset value for external gain
NOFST?	Output nominal offset value for external gain
NP101	Set data points to 101
NP1601	Set data points to 1601
NP201	Set data points to 201
NP401	Set data points to 401
NP51	Set data points to 51
NP801	Set data points to 801
NRD	Display non-ratioed parameters on 4 channels
NRMS	Normalize S21 for gain compression testing
NRMS21	Select Gain Compression bottom graph displays Normalized S21

Command	Description
NS	Suffix sets time data type and scales by 1E-9
NSC	Suffix sets time data type and scales by 1E-9
NU1	Select unity as numerator for parameter being defined
NUM?	Output numerator selection for parameter being defined
OACCHAR	Output AutoCal characterization data to the GPIB
OACSER	Output auto-cal box serial number
OACTYPE	Output auto-cal box type
OAM1	Output channel 1 active marker value
OAM2	Output channel 2 active marker value
OAM3	Output channel 3 active marker value
OAM4	Output channel 4 active marker value
OBMP	Output the display as a bitmap
OC1	Output calibration coefficients 1
OC10	Output calibration coefficients 10
OC11	Output calibration coefficients 11
OC12	Output calibration coefficients 12
OC2	Output calibration coefficients 2
OC3	Output calibration coefficients 3
OC4	Output calibration coefficients 4
OC5	Output calibration coefficients 5
OC6	Output calibration coefficients 6
OC7	Output calibration coefficients 7
OC8	Output calibration coefficients 8
OC9	Output calibration coefficients 9
OCA	Output calibration coefficient A
OCB	Output calibration coefficient B
occ	Output calibration coefficient C
OCD	Output corrected data for active channel parameter
OCF	Output front panel setup and calibration data
OCL	Output all applicable calibration coefficients for cal type
OCM	Select offset short calibration method
ocs	Output internal buffer collected data
ODAT	Output hard copy tabular data to GPIB
ODR	Output directory listing of the floppy drive
ODRH	Output directory listing of the hard drive
ODV	Output distance values for time domain
OEB	Output extended status byte
OEL	Output error list

Command	Description
OEM	Output extended status byte mask
OFD	Output final data for active channel parameter
OFF	Enter offset value for top graph of active channel
OFF2	Enter offset value for bottom graph of active channel
OFF2?	Output offset value for bottom graph of active channel
OFF?	Output offset value for top graph of active channel
OFP	Output current front panel setup
OFPC	Output flat power coefficients
OFV	Output frequency values
OGCFD	Output gain compression final data to GPIB
OGCFV	Output gain compression frequency values to GPIB
OGCTXT	Output text format gain compression data to GPIB
OGE	Output extended description of current GPIB error
OGL	Output extended description of previous GPIB error
OHDR	Output hard copy header information to GPIB
OHDW	Output hardware cal data to GPIB
OHGL	Output HPGL format data to GPIB
ОНМ	Suffix sets impedance data type
OID	Output instrument identification string
OLB	Output limits status byte
OLM	Output limits status byte mask
OM1	Output marker 1 value
OM2	Output marker 2 value
OM3	Output marker 3 value
OM4	Output marker 4 value
OM5	Output marker 5 value
OM6	Output marker 6 value
ONCP	Output number of points for current calibration
ONCT	Output number of cal terms for current calibration
OND	Output Normalization data
ONDF	Output number of discrete frequencies
ONE	Output number of lines in the error list
ONP	Output number of points currently being measured
ONPV	Output the number of power sweep power values
ONRM	Output stored normalization data to GPIB
ОРВ	Output the 488.2 Status Byte value (same as *STB?)
OPSC	Output power sweep linearity calibration coefficients
OPSV	Output power sweep power values

Command	Description
ORD	Output raw data for active channel parameter
OS1	Output front panel setup number 1
OS10	Output front panel setup number 10
OS11C	Output corrected S11 data
OS11R	Output raw S11 data
OS12C	Output corrected S12 data
OS12R	Output raw S12 data
OS2	Output front panel setup number 2
OS21C	Output corrected S21 data
OS21R	Output raw S21 data
OS22C	Output corrected S22 data
OS22R	Output raw S22 data
OS2P	Output S2P format data to GPIB
OS3	Output front panel setup number 3
OS4	Output front panel setup number 4
OS5	Output front panel setup number 5
OS6	Output front panel setup number 6
OS7	Output front panel setup number 7
OS8	Output front panel setup number 8
OS9	Output front panel setup number 9
OSL	Output service log
OTV	Output time values for time domain
OTXT	Output text format data to GPIB
P1C	Select port 1 for connector specification
P1C?	Output port 1 connector type
P1MMA	Set Port 1 Millimeter Wave Head to Amplified (3742)
P1MMN	Set Port 1 Millimeter Wave Head to None
P1MMR	Set Port 1 Millimeter Wave Head to Receiver (3741)
P1MMT	Set Port 1 Millimeter Wave Head to Transmit/Receiver (3740)
P1MMX?	Output Port 1 Millimeter Wave Head type
P1P?	Output approximate power level at port 1
P2ALC	Perform Port 2 ALC loop internal calibration
P2C	Select port 2 for connector specification
P2C?	Output port 2 connector type
P2MMA	Set Port 2 Millimeter Wave Head to Amplified (3742)
P2MMN	Set Port 2 Millimeter Wave Head to none
P2MMR	Set Port 2 Millimeter Wave Head to Receiver (3741)
P2MMT	Set Port 2 Millimeter Wave Head to Transmit/Receiver (3740)

Command	Description
P2MMX?	Output Port 2 Millimeter Wave Head type
PBL	Select 1/4 size plot bottom left corner
PBR	Select 1/4 size plot bottom right corner
PCP	Select measurement phase polar chart mode
PCS	Select sweep position polar chart mode
PCX?	Output polar chart mode
PDR	Print directory listing of the floppy drive
PDRH	Print directory listing of the hard drive
PEL	Print the error list
PFL	Select full-size plot
PFS	Print full screen image
PFSC	Configure for printing entire screen graphic image
PGR	Print graph area screen image
PGRC	Configure for printing data area graphic image
PGT	Plot graticule
PGTC	Configure for plotting graticule
РНА	Select phase display for active channel
PHO	Enter phase offset for display channel
PHO?	Output phase offset for display channel
PLD	Plot data area only
PLDC	Configure for plotting data area
PLG	Select log polar display for active channel
PLH	Plot header
PLHC	Configure for plotting header
PLM	Plot markers and limits
PLMC	Configure for plotting markers and limits
PLO?	Output plot mode portrait or landscape
PLR	Select linear polar display for active channel
PLS	Plot entire screen
PLSC	Configure for plotting entire screen
PLT	Plot data traces only
PLTC	Configure for plotting data traces
PMK	Print tabular data for Markers
PMKC	Configure for printing tabular data for markers
PMN	Plot menu
PMNC	Configure for plotting menu
PMT	Print tabular data for traces and markers
PMTC	Configure for printing tabular data for traces and markers

Command	Description
PORT	Select portrait mode for output plot
POSET	Enter constant offset phase for active channel
POSET?	Output constant offset phase for active channel
POW	Select power out display for active channel
PRT?	Perform printer test and output status
PS	Suffix sets time data type and scales by 1E02
PSC	Suffix sets time data type and scales by 1E02
PSCNFRQ?	Output the power sweep linearity cal number of frequency poi
PSCNPWR?	Output the power sweep linearity cal number of power points
PSCSTEP?	Output the power sweep linearity cal power step size
PSL	Print the service log
PSP	Enter number of power sweeps for flat power correction (obsolete)
PSP?	Output number of power sweeps for flat power correction (obsolete)
PSPWR	Enter power sweep off power level
PSPWR?	Output power sweep off power level
PST	Stop print/plot
PSTEP	Enter power sweep step size
PSTEP?	Output power sweep step size
PSTOP	Enter power sweep stop power
PSTOP?	Output power sweep stop power
PSTRT	Enter power sweep start power
PSTRT?	Output power sweep start power
PSWC	Perform power sweep linearity calibration
PSWC0	Turn power sweep linearity calibration off
PSWC1	Turn power sweep linearity calibration on
PSWCX?	Output power sweep linearity calibration on/off status
PSWP0	Turn power sweep off
PSWP1	Turn power sweep on
PSWPX?	Output power sweep on/off status
PT0	Set tabular printout points skipped to 0
PT1	Set tabular printout points skipped to 1
PT2	Set tabular printout points skipped to 2
PT3	Set tabular printout points skipped to 3
PT4	Set tabular printout points skipped to 4
PT5	Set tabular printout points skipped to 5
PT6	Set tabular printout points skipped to 6
PT7	Set tabular printout points skipped to 7
PT8	Set tabular printout points skipped to 8

Command	Description
PT9	Set tabular printout points skipped to 9
PTB	Print tabular data for Traces
PTBC	Configure for printing tabular data for traces
PTL	Select 1/4 size plot top left corner
PTP	Enter the target power for flat power correction
PTP?	Output the target power for flat power correction
PTR	Select 1/4 size plot top right corner
PTS	Enter number of points to be skipped during flat power correction
PTS?	Output number of points to be skipped during flat power correction
PW1	Enter external source 1 power level
PW1?	Output external source 1 power level
PW2	Enter external source power level
PW2?	Output external source power level
PWR	Enter internal source power level
PWR?	Output internal source power level
Q22	Set Millimeter Wave Band to Q Band (WR-22)
RAD	Suffix sets phase data type and scales by 180/pi
RC1	Recall front panel setup number 1 from memory
RC10	Recall front panel setup number 10 from memory
RC2	Recall front panel setup number 2 from memory
RC3	Recall front panel setup number 3 from memory
RC4	Recall front panel setup number 4 from memory
RC5	Recall front panel setup number 5 from memory
RC6	Recall front panel setup number 6 from memory
RC7	Recall front panel setup number 7 from memory
RC8	Recall front panel setup number 8 from memory
RC9	Recall front panel setup number 9 from memory
RD	Remove a disk directory
RDA	Select automatic reference delay calculation
RDD	Enter reference delay in distance for active channel
RDD?	Output reference delay in distance for active channel
RDT	Enter reference delay in time for active channel
RDT?	Output reference delay in time for active channel
RECALL	Recall a data file from disk to a task
REF	Enter reference line for top graph of active channel
REF2	Enter reference line for bottom graph of active channel
REF2?	Output reference line for bottom graph of active channel
REF?	Output reference line for top graph of active channel

Command	Description
REL	Select real display for active channel
REU	Suffix sets real data type
RGZ	Select reflective device greater than Z0
RH0	Select RF off in hold mode
RH1	Select RF on in hold
RHX?	Output RF on/off during hold status
RIM	Select real and imaginary display for active channel
RLZ	Select reflective device less than Z0
RM1	Select reference plane at line 1 midpoint
ROL	Enter reflective device offset length
RPC	Repeat previous calibration
RPO	Enter rear panel dc voltage value
RPO?	Output rear panel dc voltage value
RRP	Select reference plane at reflection plane
RST	Instrument reset (same as *RST)
RST0	Reset instrument front panel memories and reserved parameters
RST1	Reset instrument and front panel memories
RSTCOL	Reset color configuration to default
RSTGC	Reset gain compression parameters to default
RT0	Turn retrace rf off
RT1	Turn retrace rf on
RTL	Return to local
RTX?	Output retrace rf on/off status
RV0	Turn rear panel output voltage off
RV1	Turn rear panel output voltage on
RV1?	Output rear panel output voltage on/off status
RVD	Set rear panel output mode to dc value
RVH	Set rear panel output mode to horizontal
RVL	Set rear panel output mode to lock direction
RVV	Set rear panel output mode to vertical
RVX?	Output rear panel output mode
S	Suffix sets time data type
S11	Measure S11 on active channel
S12	Measure S12 on active channel
S21	Measure S21 on active channel
S22	Measure S22 on active channel
SA1	Enter port 1 source attenuator value
SA1?	Output port 1 source attenuator value

Command	Description
SA1MAX?	Output port 1 source attenuator max value
SAMP2	Use 2 samplers for measurements
SAMP3	Use 3 samplers for measurements
SAMP?	Output the number of samplers used for measurements
SAVE	Save a data file to disk
SAVEGC	Save text format gain compression data to disk
SBD	Enter substrate dielectric for microstrip calibration
SBT	Enter substrate thickness for microstrip calibration
SCL	Enter Scale Resolution for top graph of active channel
SCL2	Enter Scale Resolution for bottom graph of active channel
SCL2?	Output Scale Resolution for bottom graph of active channel
SCL?	Output Scale Resolution for top graph of active channel
SCM	Select standard calibration method
SDG	Start diagnostics mode
SDR	Select standard receiver mode
SDR?	Output receiver mode
SELBB	Select Broadband test set operation
SELINT	Select Internal (normal) test set operation
SELMM	Select Millimeter Wave test set operation
SELSP	Select S-Parameter test set operation
SELXX?	Output the test set selection MMWave/Internal
SETUP	Display setup menu
SFC	Perform flat test port calibration
SFGCA	Select swept frequency gain compression application
SFGCT	Start swept frequency gain compression test
SH1	Set offset short 1 or 2 offset length for offset short calibration
SH2	Set offset short 1 or 2 offset length for offset short calibration
SL1	Select source lock mode
SLC	Clear all segmented limits definitions
SLD	Select sliding load for calibration
SLH	Enter segmented limits horizontal offset
SLH?	Output segmented limits horizontal offset
SLL0	Turn lower segmented limits display off
SLL1	Turn lower segmented limits display on
SLLX?	Output lower segmented limits display on/off status
SLT	Perform SLT internal calibration
SLU0	Turn upper segmented limits display off
SLU1	Turn upper segmented limits display on

Command	Description
SLUX?	Output upper segmented limits display on/off status
SLV	Enter segmented limits vertical offset
SLV?	Output segmented limits vertical offset
SMC	Enter scale and select compressed Smith Chart display
SME	Enter scale and select expanded Smith Chart display
SMI	Select normal Smith Chart for active channel
SMKR	Select marker search marker mode
SOF	Turn off smoothing
SOF?	Output smoothing on/off status
SOFTCO	Activate color configuration Soft
SON	Enter smoothing value and turn on
SON?	Output smoothing value
SPAMPMT	Start swept power gain compression AM/PM test
SPAN	Enter frequency span
SPAN?	Output frequency span
SPD	Enter pen speed percentage
SPGCA	Select swept power gain compression application
SPGCT	Start swept power gain compression test
SPH	Enter active segmented limit horizontal stop position
SPH?	Output active segmented limit horizontal stop position
SPLN	Select normal source lock polarity
SPLR	Select reverse source lock polarity
SPLX?	Output source lock polarity normal/reverse status
SPR0	Turn spur reduction off
SPR1	Turn spur reduction on
SPRX?	Output spur reduction on/off status
SPV	Enter active segmented limit vertical stop position
SPV?	Output active segmented limit vertical stop position
SRC1	Select source linearity voltage testing
SRC1?	Output external source 1 existence information
SRC1AC	Select source 1 as active
SRC1AC?	Output source 1 active/inactive status
SRC1ADD	Enter external source 1 GPIB address
SRC1ADD?	Output external source 1 GPIB address
SRC1EX	Select source 1 as external
SRC1EX?	Output source 1 external/internal status
SRC1G0	Turn source 1 GPIB control off
SRC1G1	Turn source 1 GPIB control on

Command	Description	
SRC1GX?	Output source 1 GPIB control on/off status	
SRC1MOD?	Output external source 1 model/version string	
SRC1NA	Select source 1 as not active	
SRC1NT	Select source 1 as internal	
SRC2	Select source power voltage testing	
SRC2?	Output external source 2 existence information	
SRC2AC	Select source 2 as active	
SRC2AC?	Output source 2 active/inactive status	
SRC2ADD	Enter external source 2 GPIB address	
SRC2ADD?	Output external source 2 GPIB address	
SRC2G0	Turn source 2 GPIB control off	
SRC2G1	Turn source 2 GPIB control on	
SRC2GX?	Output source 2 GPIB control on/off status	
SRC2MOD?	Output external Source 2 model/version string	
SRC2NA	Select source 2 as not active	
SRCH	Enter marker search value	
SRCH?	Output marker search value	
SRT	Enter start frequency	
SRT?	Output start frequency	
ST1	Select set on mode	
STD	Store trace to memory on active channel	
STH	Enter active segmented limit horizontal start position	
STH?	Output active segmented limit horizontal start position	
STOCO	Store the current color configuration as Reset	
STP	Enter stop frequency	
STP?	Output stop frequency	
STV	Enter active segmented limit vertical start position	
STV?	Output active segmented limit vertical start position	
SV1	Save front panel setup number 1 to memory	
SV10	Save front panel setup number 10 to memory	
SV2	Save front panel setup number 2 to memory	
SV3	Save front panel setup number 3 to memory	
SV4	Save front panel setup number 4 to memory	
SV5	Save front panel setup number 5 to memory	
SV6	Save front panel setup number 6 to memory	
SV7	Save front panel setup number 7 to memory	
SV8	Save front panel setup number 8 to memory	
SV9	Save front panel setup number 9 to memory	

Command	Description	
SVB	Save current band definitions	
SVBMM	Save and activate the new Millimeter Wave band definitions	
SWP	Return to normal sweep mode	
SWP?	Output sweep mode	
SWPDIR?	Output instantaneous sweep direction forward/reverse	
SWR	Select SWR display for active channel	
SXX?	Output s parameter or user defined parameter of active channel	
T13	Select overlaid channel 1 and 3 display	
T24	Select overlaid channel 2 and 4 display	
TA2	Enter port 2 test attenuator value	
TA2?	Output port 2 test attenuator value	
TA2MAX?	Output port 2 test attenuator max value	
TACD	Take AutoCal data	
TBP	Select time bandpass mode for active channel	
TC1	Take calibration data for port 1	
TC2	Take calibration data for port 2	
TCD	Take calibration data on one or both ports as necessary	
TCM	Select the TRM calibration method	
TDC	Select time domain harmonic frequency calibration data points	
TDDIST	Set time domain parameter to distance for active channel	
TDDIST?	Output active channel time domain parameter distance or time	
TDPI0	Turn phasor impulse response off for active channel	
TDPI1	Turn phasor impulse response on for active channel	
TDPIX?	Output phasor impulse on/off status for active channel	
TDTIME	Set time domain parameter to time for active channel	
TDX?	Output domain mode for active channel	
TEB	Select external trigger executes *DDT definition	
TEX	Select external measurement triggering	
TIB	Select GPIB measurement triggering	
TIME	Enter the system time	
TIME?	Output the system time	
TIN	Select internal measurement triggering	
TK1	Select tracking mode	
TLP	Select time lowpass mode for active channel	
TLZ	Enter through line impedance for calibration	
TOL	Enter through offset length for calibration	
TPI	Select time phasor impulse mode for active channel	
TPN	Enter pen number for trace overlay data	

Command	Description	
TPN?	Output pen number for trace overlay data	
TRCCOL	Enter the color number for memory data	
TRCCOL?	Output the color number for memory data	
TRS	Trigger/restart sweep	
TST	Perform self test and output status (same as *TST?)	
TXX?	Output trigger source	
U10	Select 10 mil UTF calibration kit	
U15	Select 15 mil UTF calibration kit	
U25	Select 25 mil UTF calibration kit	
UNDOGC	Exit gain compression and undo changes	
UPL0	Turn upper limit off	
UPL1	Turn upper limit on at current value	
UPL20	Turn upper limit off for bottom graph	
UPL21	Turn upper limit on at current value for bottom graph	
UPL2X?	Output upper limit on/off status for bottom graph	
UPLX?	Output upper limit on/off status	
US	Suffix sets time data type and scales by 1E-6	
US1	Select upper segmented limit 1 as the active segment	
US10	Select upper segmented limit 10 as the active segment	
US2	Select upper segmented limit 2 as the active segment	
US3	Select upper segmented limit 3 as the active segment	
US4	Select upper segmented limit 4 as the active segment	
US5	Select upper segmented limit 5 as the active segment	
US6	Select upper segmented limit 6 as the active segment	
US7	Select upper segmented limit 7 as the active segment	
US8	Select upper segmented limit 8 as the active segment	
US9	Select upper segmented limit 9 as the active segment	
USC	Suffix sets time data type and scales by 1E-6	
USE	Enter effective dielectric for microstrip calibration	
USL	Enter label string for user parameter being defined	
USL?	Output label string for user parameter being defined	
USR1	Measure user parameter 1 on active channel	
USR2	Measure user parameter 2 on active channel	
USR3	Measure user parameter 3 on active channel	
USR4	Measure user parameter 4 on active channel	
USW	Enter microstrip width for microstrip calibration	
USZ	Enter microstrip impedance for microstrip calibration	
V	Suffix sets voltage data type	

Command	Description	
V15	Set Millimeter Wave Band to V Band (WR-15)	
VLT	Suffix sets voltage data type	
VSP	Enter rear panel stop voltage value	
VSP?	Output rear panel stop voltage value	
VST	Enter rear panel start voltage value	
VST?	Output rear panel start voltage value	
W10	Set Millimeter Wave Band to W Band (WR-10)	
W10E	Set Millimeter Wave Band to extended W Band (WR-10E)	
wco	Enter waveguide cutoff frequency for user defined kit	
WFS	Wait full sweep until all display data is valid	
WIDE	Use entire display width for graphs	
WKD	Select user defined waveguide calibration kit	
WKI	Select installed waveguide calibration kit	
WLS	Select low sidelobe window shape	
WMS	Select minimum sidelobe window shape	
WNM	Select nominal window shape	
WRT	Select rectangular window shape	
WSH1	Enter waveguide short offset 1 for user defined kit	
WSH2	Enter waveguide short offset 2 for user defined kit	
WSX?	Output window shape	
XM3	Suffix sets unitless data type and scales by 1E-3	
XMKR?	Output marker mode	
XSB?	Output byte order for output data LSB or MSB	
XX1	Suffix sets unitless data type	
XX3	Suffix sets unitless data type and scales by 1E3	
ZCT	Enter zoom range center value time or distance	
ZCT?	Output zoom range center value	
ZSN	Enter zoom range span value time or distance	
ZSN?	Output zoom range span value	
ZSP	Enter zoom range stop value time or distance	
ZSP?	Output zoom range stop value	
ZST	Enter zoom range start value time or distance	
ZST?	Output zoom range start value	

Command	Description	Group
*CLS	Clear status bytes and structures	IEEE 488.2 (Ch 7)
*DDT	Enter the 488.2 Define Device Trigger command string	IEEE 488.2 (Ch 7)
*DDT?	Output the 488.2 Define Device Trigger command string	IEEE 488.2 (Ch 7)
*ESE	Enter the 488.2 Standard Event Status Enable mask	IEEE 488.2 (Ch 7)
*ESE?	Output the 488.2 Standard Event Status Enable mask	IEEE 488.2 (Ch 7)
*ESR?	Output the 488.2 Standard Event Status Register value	IEEE 488.2 (Ch 7)
*IDN?	Output the 488.2 instrument identification string	IEEE 488.2 (Ch 7)
*IST?	Output the value of the ist message	IEEE 488.2 (Ch 7)
*OPC	Initiate the 488.2 Operation Complete sequence	IEEE 488.2 (Ch 7)
*OPC?	Initiate the 488.2 Operation Complete Query sequence	IEEE 488.2 (Ch 7)
*OPT?	Output the 488.2 options installed string	SERVICE LOG (Ch 8)
*PRE	Enter the 488.2 Parallel Poll Register Enable mask	IEEE 488.2 (Ch 7)
*PRE?	Output the 488.2 Parallel Poll Register Enable mask	IEEE 488.2 (Ch 7)
*RST	Instrument reset	IEEE 488.2 (Ch 7)
*SRE	Enter the 488.2 Service Request Enable mask	IEEE 488.2 (Ch 7)
*SRE?	Output the 488.2 Service Request Enable mask	IEEE 488.2 (Ch 7)
*STB?	Output the 488.2 Status Byte value	IEEE 488.2 (Ch 7)
*TRG	Initiate a Group Execute Trigger sequence	IEEE 488.2 (Ch 7)
*TST?	Perform self test and output status	IEEE 488.2 (Ch 7)
*WAI	Wait to continue	IEEE 488.2 (Ch 7)
A12	Simulate 12-term calibration	CALIBRATION (Ch 5)
A8R	Simulate 1-path 2-port calibration reverse path	CALIBRATION (Ch 5)
A8T	Simulate 1-path 2-port calibration forward path	CALIBRATION (Ch 5)
ABORTCAL	Abort calibration in progress and keep existing calibration data	AUTOCAL (Ch 5)
ABT	Simulate trans freq response calibration forward and reverse	CALIBRATION (Ch 5)
ACAA	Set AutoCal standard to assurance	AUTOCAL (Ch 5)
ACADPL	Enter AutoCal adapter length	AUTOCAL (Ch 5)
ACADPL?	Output AutoCal adapter length	AUTOCAL (Ch 5)

Command	Description	Group
ACADR	Set AutoCal type to adapter removal	AUTOCAL (Ch 5)
ACAL1R2	Set adapter removal port configuration to ADAPT & L=1 and R=2	AUTOCAL (Ch 5)
ACAR1L2	Set adapter removal port configuration to ADAPT & R=1 and L=2	AUTOCAL (Ch 5)
ACARP?	Output AutoCal adapter removal port configuration	AUTOCAL (Ch 5)
ACDEF	Select default AutoCal isolation averaging factor	AUTOCAL (Ch 5)
ACF2P?	Output AutoCal full 2 port configuration	AUTOCAL (Ch 5)
ACF2TC	Set AutoCal 2 port thru type to calibrator	AUTOCAL (Ch 5)
ACF2TT	Set AutoCal 2 port thru type to true thru	AUTOCAL (Ch 5)
ACF2TX?	Output AutoCal 2 port thru type selection	AUTOCAL (Ch 5)
ACHFD	Save AutoCal characterization data to floppy disk	AUTOCAL (Ch 5)
ACHHD	Save AutoCal characterization data to hard disk	AUTOCAL (Ch 5)
ACIAF	Enter user AutoCal isolation averaging factor	AUTOCAL (Ch 5)
ACIAF?	Output user AutoCal isolation averaging factor	AUTOCAL (Ch 5)
ACIAX?	Output AutoCal isolation averaging factor omit/default/user selection	AUTOCAL (Ch 5)
ACISO	Enter AutoCal isolation averaging number	AUTOCAL (Ch 5)
ACISO?	Output AutoCal isolation averaging number	AUTOCAL (Ch 5)
ACL1AR2	Set adapter removal port configuration to L=1 and ADAPT & R=2	AUTOCAL (Ch 5)
ACL1R2	Set AutoCal full 2 port configuration to L=1 and R=2	AUTOCAL (Ch 5)
ACLO	Enter AutoCal load averaging number	AUTOCAL (Ch 5)
ACLO?	Output AutoCal load averaging number	AUTOCAL (Ch 5)
ACLOAD	Set AutoCal standard to load	AUTOCAL (Ch 5)
ACOMIT	Omit using AutoCal isolation averaging factor	AUTOCAL (Ch 5)
ACOPEN	Set AutoCal standard to open	AUTOCAL (Ch 5)
ACP1?	Output AutoCal S11 port configuration	AUTOCAL (Ch 5)
ACP1L	Set AutoCal S11 port configuration to left	AUTOCAL (Ch 5)
ACP1R	Set AutoCal S11 port configuration to right	AUTOCAL (Ch 5)
ACP2?	Output AutoCal S22 port configuration	AUTOCAL (Ch 5)
ACP2L	Set AutoCal S22 port configuration to left	AUTOCAL (Ch 5)
ACP2R	Set AutoCal S22 port configuration to right	AUTOCAL (Ch 5)
ACPL	Set AutoCal S11 port configuration to left	AUTOCAL (Ch 5)

Command	Description	Group
ACPR	Set AutoCal S11 port configuration to right	AUTOCAL (Ch 5)
ACR1AL2	Set adapter removal port configuration to R=1 and ADAPT & L=2	AUTOCAL (Ch 5)
ACR1L2	Set AutoCal full 2 port configuration to R=1 and L=2	AUTOCAL (Ch 5)
ACRFL	Enter AutoCal reflection averaging number	AUTOCAL (Ch 5)
ACRFL?	Output AutoCal reflection averaging number	AUTOCAL (Ch 5)
ACS11	Set AutoCal type to S11	AUTOCAL (Ch 5)
ACS22	Set AutoCal type to S22	AUTOCAL (Ch 5)
ACSF2P	Set AutoCal type to full 2 port	AUTOCAL (Ch 5)
ACSHORT	Set AutoCal standard to short	AUTOCAL (Ch 5)
ACSTD?	Output AutoCal standard	AUTOCAL (Ch 5)
ACSW	Enter AutoCal switch averaging number	AUTOCAL (Ch 5)
ACSW?	Output AutoCal switch averaging number	AUTOCAL (Ch 5)
ACTHRU	Set AutoCal standard to thru	AUTOCAL (Ch 5)
ACTU	Enter AutoCal thru averaging number	AUTOCAL (Ch 5)
ACTU?	Output AutoCal thru averaging number	AUTOCAL (Ch 5)
ACTUAVG	Enter AutoCal thru update averaging number	AUTOCAL (Ch 5)
ACTUAVG?	Output AutoCal thru update averaging number	AUTOCAL (Ch 5)
ACTULS	Apply last thru update cal setup	AUTOCAL (Ch 5)
ACX?	Output AutoCal type	AUTOCAL (Ch 5)
ADD	Select addition as trace math for active channel	DISPLAY (Ch 4)
ADDFC	Enter frequency counter GPIB address	ADDRESSING (Ch 8)
ADDFC?	Output frequency counter GPIB address	ADDRESSING (Ch 8)
ADDPLT	Enter plotter GPIB address	ADDRESSING (Ch 8)
ADDPLT?	Output plotter GPIB address	ADDRESSING (Ch 8)
ADDPM	Enter power meter GPIB address	ADDRESSING (Ch 8)
ADDPM?	Output power meter GPIB address	ADDRESSING (Ch 8)
ADPL	Enter electrical length for adapter removal	ADAPTER REMOVAL (Ch 9)
ADPL?	Output electrical length for adapter removal	ADAPTER REMOVAL (Ch 9)
ADRIVE	Select the floppy drive as the default drive	DISK FUNCTION (Ch 8)
AFT	Simulate transmission frequency response calibration forward path	CALIBRATION (Ch 5)
AH0	Turn automatic DUT protection off	MEASUREMENT (Ch 4)
AH1	Turn automatic DUT protection on	MEASUREMENT (Ch 4)
AHX?	Output automatic DUT protection on/off status	MEASUREMENT (Ch 4)

Command	Description	Group
ALC	Perform ALC loop internal calibration	DIAGNOSTICS (Ch 8)
AMKR	Select active marker on all channels marker mode	MARKERS (Ch 6)
ANNCOL	Enter the color number for annotation and menu text	SYSTEM STATE (Ch 8)
ANNCOL?	Output the color number for annotation and menu text	SYSTEM STATE (Ch 8)
AOF	Turn averaging off	ENHANCEMENT (Ch 4)
AOF?	Output averaging on/off status	ENHANCEMENT (Ch 4)
AON	Turn averaging on	ENHANCEMENT (Ch 4)
APR	Enter group delay aperture setting on active channel	DISPLAY (Ch 4)
APR?	Output group delay aperture setting on active channel	DISPLAY (Ch 4)
ARB	Simulate reflection only calibration both ports	CALIBRATION (Ch 5)
ARF	Simulate reflection only calibration port 1	CALIBRATION (Ch 5)
ARR	Simulate reflection only calibration port 2	CALIBRATION (Ch 5)
ART	Simulate trans freq response calibration reverse path	CALIBRATION (Ch 5)
ASC	Autoscale the active channel display	DISPLAY (Ch 4)
ASP	Enter polar stop sweep position angle	DISPLAY (Ch 4)
ASP?	Output polar stop sweep position angle	DISPLAY (Ch 4)
AST	Enter polar start sweep position angle	DISPLAY (Ch 4)
AST?	Output polar start sweep position angle	DISPLAY (Ch 4)
ATTN	Attach next segment and make the active segment	LIMITS (Ch 6)
AVG	Enter averaging count and turn on	ENHANCEMENT (Ch 4)
AVG?	Output averaging count	ENHANCEMENT (Ch 4)
BBL	Select broadband load for calibration	CALIBRATION (Ch 5)
BBZ	Enter broadband load impedance for calibration	CALIBRATION (Ch 5)
BBZL	Enter broadband load inductance for calibration	CALIBRATION (Ch 5)
BC0	Turn CRT display off (disabled)	SYSTEM STATE (Ch 8)
BC1	Turn CRT display on (disabled)	SYSTEM STATE (Ch 8)
BCKCOL	Enter the color number for background	SYSTEM STATE (Ch 8)
BCKCOL?	Output the color number for background	SYSTEM STATE (Ch 8)
BCX?	Output CRT display on/off status	SYSTEM STATE (Ch 8)
BD1	Select band 1 for definition	MULTIPLE SOURCE CONTROL (Ch 9)
BD2	Select band 2 for definition	MULTIPLE SOURCE CONTROL (Ch 9)

Command	Description	Group
BD3	Select band 3 for definition	MULTIPLE SOURCE CONTROL (Ch 9)
BD4	Select band 4 for definition	MULTIPLE SOURCE CONTROL (Ch 9)
BD5	Select band 5 for definition	MULTIPLE SOURCE CONTROL (Ch 9)
BDMM	Define Millimeter Wave band equations	MILLIMETER WAVE (Ch 9)
BEEP0	Disable the instrument beeper on GPIB errors	SYSTEM STATE (Ch 8)
BEEP1	Enable the instrument beeper on GPIB errors	SYSTEM STATE (Ch 8)
BEEPX?	Output GPIB beep on error enable/disable status	SYSTEM STATE (Ch 8)
BEG	Begin taking calibration data	CALIBRATION (Ch 5)
BEGAC	Start AutoCal	AUTOCAL (Ch 5)
BEGCH	Start AutoCal characterization	AUTOCAL (Ch 5)
BEGN	Begin next segment and make it the active segment	LIMITS (Ch 6)
BEGTU	Start AutoCal thru update	AUTOCAL (Ch 5)
ВН0	Turn bias off while in hold	MEASUREMENT (Ch 4)
BH1	Turn bias on while in hold	MEASUREMENT (Ch 4)
BHX?	Output bias on/off during hold status	MEASUREMENT (Ch 4)
ВМРВ	Select Black on White as bitmap type	HARD COPY (Ch 8)
BMPC	Select Color on White as bitmap type	HARD COPY (Ch 8)
BMPT	Select true color as bitmap type	HARD COPY (Ch 8)
BPF	Enter break point frequency for 3 line LRL calibration	CALIBRATION (Ch 5)
BRILL	Activate color configuration Brilliant	SYSTEM STATE (Ch 8)
BSP	Enter band stop frequency	MULTIPLE SOURCE CONTROL (Ch 9)
BSP?	Output band stop frequency	MULTIPLE SOURCE CONTROL (Ch 9)
BST	Enter band start frequency	MULTIPLE SOURCE CONTROL (Ch 9)
BST?	Output band start frequency	MULTIPLE SOURCE CONTROL (Ch 9)
BWL3	Set bandwidth loss value to 3 dB	MARKERS (Ch 6)
BWLS	Enter bandwidth loss value	MARKERS (Ch 6)
BWLS?	Output bandwidth loss value	MARKERS (Ch 6)
C12	Select 12 term calibration	CALIBRATION (Ch 5)
C8R	Select 1-path 2-port calibration reverse path	CALIBRATION (Ch 5)
C8T	Select 1-path 2-port calibration forward path	CALIBRATION (Ch 5)
CALR	Perform receiver cal for gain compression testing	GAIN COMPRESSION (Ch 9)
CAS	Clear active segmented limit vertical/horizontal definitions	LIMITS (Ch 6)
СВТ	Select trans freq response calibration forward and reverse	CALIBRATION (Ch 5)

Command	Description	Group
CC0	Enter capacitance coefficient 0 for open	CALIBRATION (Ch 5)
CC1	Enter capacitance coefficient 1 for open	CALIBRATION (Ch 5)
CC2	Enter capacitance coefficient 2 for open	CALIBRATION (Ch 5)
CC3	Enter capacitance coefficient 3 for open	CALIBRATION (Ch 5)
CCD	Collect corrected data in an internal buffer	INT. BUFFER DATA COLL. (Ch 7)
CD	Change default directory	DISK FUNCTION (Ch 8)
CDRIVE	Select the hard disk as the default drive	DISK FUNCTION (Ch 8)
CF2	Select female 2.4mm connector for current port	CALIBRATION (Ch 5)
CF3	Select female GPC-3.5 connector for current port	CALIBRATION (Ch 5)
CFC	Select female TNC connector for current port	CALIBRATION (Ch 5)
CFD	Collect final data in an internal buffer	INT. BUFFER DATA COLL. (Ch 7)
CFK	Select female K connector for current port	CALIBRATION (Ch 5)
CFN	Select female Type N connector for current port	CALIBRATION (Ch 5)
CFN75	Select Female type N 75-ohm connector for current port	CALIBRATION (Ch 5)
CFS	Select female SMA connector for current port	CALIBRATION (Ch 5)
CFSP	Select Special Female connector for current port	CALIBRATION (Ch 5)
CFT	Select trans freq response calibration forward path	CALIBRATION (Ch 5)
CFV	Select female V connector for current port	CALIBRATION (Ch 5)
CH1	Make channel 1 the active channel	CHANNELS (Ch 4)
CH2	Make channel 2 the active channel	CHANNELS (Ch 4)
CH3	Make channel 3 the active channel	CHANNELS (Ch 4)
CH4	Make channel 4 the active channel	CHANNELS (Ch 4)
CHX?	Output active channel number	CHANNELS (Ch 4)
CL0	Enter inductive coefficient 0 for short	CALIBRATION (Ch 5)
CL1	Enter inductive coefficient 1 for short	CALIBRATION (Ch 5)
CL2	Enter inductive coefficient 2 for short	CALIBRATION (Ch 5)
CL3	Enter inductive coefficient 3 for short	CALIBRATION (Ch 5)
CLASS	Activate color configuration Classic	SYSTEM STATE (Ch 8)
CLB	Clear all multiple source band definitions	MULTIPLE SOURCE CONTROL (Ch 9)
CLBMM	Clear the new Millimeter Wave band definitions	MILLIMETER WAVE (Ch 9)
CM	Suffix sets distance data type and scales by 1E-2	DATA ENTRY SUFFIXES (Ch 4)

Command	Description	Group
CM2	Select male 2.4mm connector for current port	CALIBRATION (Ch 5)
CM3	Select male GPC-3.5 connector for current port	CALIBRATION (Ch 5)
CMC	Select male TNC connector for current port	CALIBRATION (Ch 5)
СМК	Select male K connector for current port	CALIBRATION (Ch 5)
CMN	Select male N connector for current port	CALIBRATION (Ch 5)
CMN75	Select Male type N 75-Ohm connector for current port	CALIBRATION (Ch 5)
CMS	Select male SMA connector for current port	CALIBRATION (Ch 5)
CMSP	Select Special Male connector for current port	CALIBRATION (Ch 5)
CMT	Suffix sets distance data type and scales by 1E-2	DATA ENTRY SUFFIXES (Ch 4)
CMV	Select male V connector for current port	CALIBRATION (Ch 5)
CMX?	Output calibration method	CALIBRATION (Ch 5)
CND	Select user specified connector for current port	CALIBRATION (Ch 5)
CNG	Select GPC-7 connector for current port	CALIBRATION (Ch 5)
CNTR	Enter center frequency	MEASUREMENT (Ch 4)
CNTR?	Output center frequency	MEASUREMENT (Ch 4)
COF	Turn error correction off	CALIBRATION (Ch 5)
CON	Turn error correction on	CALIBRATION (Ch 5)
CON?	Output error correction on/off status	CALIBRATION (Ch 5)
C00	Enter offset for open for user specified connector (Standard Calibration)	CALIBRATION (Ch 5)
COPY	Copy a files contents to another file	DISK FUNCTION (Ch 8)
COS	Enter offset for short for user specified connector	CALIBRATION (Ch 5)
CRB	Select reflection only calibration both ports	CALIBRATION (Ch 5)
CRD	Collect raw data in an internal buffer	INT. BUFFER DATA COLL. (Ch 7)
CRF	Select reflection only calibration port 1	CALIBRATION (Ch 5)
CRR	Select reflection only calibration port 2	CALIBRATION (Ch 5)
CRT	Select trans freq response calibration reverse path	CALIBRATION (Ch 5)
CSB	Clear status bytes and structures (same as *CLS)	STATUS REPORTING (Ch 7)
CSF?	Output cal start frequency	CALIBRATION (Ch 5)
CSL	Clear service log	SERVICE LOG (Ch 8)
CTF?	Output cal stop frequency	CALIBRATION (Ch 5)
CTN	Continue sweeping from current point	MEASUREMENT (Ch 4)

Command	Description	Group
CWC	Select CW frequency calibration data points	CALIBRATION (Ch 5)
CWD?	Output current working directory string	DISK FUNCTION (Ch 8)
CWF	Enter CW frequency and turn CW on	MEASUREMENT (Ch 4)
CWF?	Output CW frequency	MEASUREMENT (Ch 4)
CWON	Turn CW on at current CW frequency	MEASUREMENT (Ch 4)
CWON?	Output CW on/off status	MEASUREMENT (Ch 4)
CWP	Enter number of points drawn in CW	MEASUREMENT (Ch 4)
CWP?	Output number of points drawn in CW	MEASUREMENT (Ch 4)
CXD?	Output internal buffer data collection mode	INT. BUFFER DATA COLL. (Ch 7)
CXX?	Output calibration type	CALIBRATION (Ch 5)
D13	Display channels 1 & 3	CHANNELS (Ch 4)
D14	Display all four channels	CHANNELS (Ch 4)
D24	Select dual channel display with channels 2 & 4	CHANNELS (Ch 4)
DA1	Select a1 = Ra as denominator for parameter being defined	USER DEFINED PARAMETERS (Ch 9)
DA2	Select a2 = Rb as denominator for parameter being defined	USER DEFINED PARAMETERS (Ch 9)
DAT	Display data only on active channel	DISPLAY (Ch 4)
DAT?	Output trace memory display mode	DISPLAY (Ch 4)
DATCOL	Enter the color number for data	SYSTEM STATE (Ch 8)
DATCOL?	Output the color number for data	SYSTEM STATE (Ch 8)
DATE	Enter the system date	SYSTEM STATE (Ch 8)
DATE?	Output the system date	SYSTEM STATE (Ch 8)
DB	Suffix sets power data type	DATA ENTRY SUFFIXES (Ch 4)
DB1	Select b1 = Ta as denominator for parameter being defined	USER DEFINED PARAMETERS (Ch 9)
DB2	Select b2 = Tb as denominator for parameter being defined	USER DEFINED PARAMETERS (Ch 9)
DBL	Suffix sets power data type	DATA ENTRY SUFFIXES (Ch 4)
DBM	Suffix sets power data type	DATA ENTRY SUFFIXES (Ch 4)
DBP	Select distance bandpass mode for active channel	DIAGNOSTICS (Ch 8)
DC1	Display channel 1 and 2 operating parameters	SYSTEM STATE (Ch 8)
DC3	Display channel 3 and 4 operating parameters	SYSTEM STATE (Ch 8)
DCA	Select automatic DC term calculation for lowpass	DIAGNOSTICS (Ch 8)
DCCTN	Resume internal buffer data collection	INT. BUFFER DATA COLL. (Ch 7)

Command	Description	Group
DCCTN?	Output internal buffer data collection resume/suspend status	INT. BUFFER DATA COLL. (Ch 7)
DCHLD	Suspend internal buffer data collection	INT. BUFFER DATA COLL. (Ch 7)
DCMRK	Inserts the mark value into the internal buffer	INT. BUFFER DATA COLL. (Ch 7)
DCO	Select open for DC term for lowpass	DIAGNOSTICS (Ch 8)
DCOFF	Turn internal buffer data collection mode off	INT. BUFFER DATA COLL. (Ch 7)
DCP	Display calibration parameters 1st page	SYSTEM STATE (Ch 8)
DCP1	Display calibration parameters 1st page	SYSTEM STATE (Ch 8)
DCP2	Display calibration parameters 2nd page	SYSTEM STATE (Ch 8)
DCPCUR?	Outputs the current point count in the collect buffer	INT. BUFFER DATA COLL. (Ch 7)
DCPMAX?	Outputs the maximum number of points that can be collected in the collect buffer	INT. BUFFER DATA COLL. (Ch 7)
DCS	Select short for DC term for lowpass	TIME DOMAIN (Ch 9)
DCV	Enter value for DC term for lowpass	TIME DOMAIN (Ch 9)
DCV?	Output lowpass DC term value	TIME DOMAIN (Ch 9)
DCX?	Output lowpass DC term selection	TIME DOMAIN (Ch 9)
DCZ	Select line impedance for DC term for lowpass	TIME DOMAIN (Ch 9)
DD0	Turn data drawing off	SYSTEM STATE (Ch 8)
DD1	Turn data drawing on	SYSTEM STATE (Ch 8)
DD1?	Output data drawing on/off status	SYSTEM STATE (Ch 8)
DDX?	Output active channel domain parameter frequency distance or time	TIME DOMAIN (Ch 9)
DE1	Select unity as denominator for parameter being defined	USER DEFINED PARAMETERS (Ch 9)
DEG	Suffix sets phase data type	DATA ENTRY SUFFIXES (Ch 4)
DEL	Delete a file from disk	DISK FUNCTION (Ch 8)
DEN?	Output denominator selection for parameter being defined	USER DEFINED PARAMETERS (Ch 9)
DF2	Display 2.4mm female connector information	SYSTEM STATE (Ch 8)
DF3	Display GPC-3.5 female connector information	SYSTEM STATE (Ch 8)
DFC	Select discrete frequency calibration data points	CALIBRATION (Ch 5)
DFD	Done specifying discrete frequency ranges	CALIBRATION (Ch 5)
DFK	Display K female connector information	SYSTEM STATE (Ch 8)
DFN	Display N female connector information	SYSTEM STATE (Ch 8)
DFN75	Display N Female 75-Ohm connector information	SYSTEM STATE (Ch 8)

Command	Description	Group
DFP	Display Front panel instrument state	SYSTEM STATE (Ch 8)
DFQ	Enter single discrete frequency	CALIBRATION (Ch 5)
DFS	Display SMA female connector information	SYSTEM STATE (Ch 8)
DFSP	Display Special Female connector information	SYSTEM STATE (Ch 8)
DFT	Display TNC female connector information	SYSTEM STATE (Ch 8)
DFV	Display V female connector information	SYSTEM STATE (Ch 8)
DG7	Display GPC-7 Male connector information	SYSTEM STATE (Ch 8)
DGS	Display GPIB status information	SYSTEM STATE (Ch 8)
DGT	Display 1st CRT test pattern	PERIPHERAL TESTS (Ch 8)
DGT1	Display 1st CRT test pattern	PERIPHERAL TESTS (Ch 8)
DGT2	Display 2nd CRT test pattern	PERIPHERAL TESTS (Ch 8)
DGT3	Display 3rd CRT test pattern	PERIPHERAL TESTS (Ch 8)
DIA	Select air as active dielectric	DISPLAY (Ch 4)
DIE	Enter a dielectric value	DISPLAY (Ch 4)
DIM	Select microporous teflon as active dielectric	DISPLAY (Ch 4)
DIP	Select polyethylene as active dielectric	DISPLAY (Ch 4)
DIR	Output a directory listing to the GPIB	DISK FUNCTION (Ch 8)
DIS	Display active segmented limit	LIMITS (Ch 6)
DIS?	Output active segmented limit on/off status	LIMITS (Ch 6)
DISKRD	Output disk file data to the GPIB	DISK FUNCTION (Ch 8)
DISKWR	Write GPIB data to a disk file	DISK FUNCTION (Ch 8)
DIT	Select Teflon as active dielectric	DISPLAY (Ch 4)
DIV	Select division as trace math for active channel	DISPLAY (Ch 4)
DIX?	Output dielectric constant	DISPLAY (Ch 4)
DLA	Select group delay display for active chan- nel	DISPLAY (Ch 4)
DLP	Select distance lowpass mode for active channel	DIAGNOSTICS (Ch 8)
DM2	Display 2.4mm male connector information	SYSTEM STATE (Ch 8)
DM3	Display GPC-3.5 male connector information	SYSTEM STATE (Ch 8)
DMK	Display K male connector information	SYSTEM STATE (Ch 8)
DMN	Display N male connector information	SYSTEM STATE (Ch 8)
DMN75	Display N Male 75-Ohm connector information	SYSTEM STATE (Ch 8)
DMS	Display SMA male connector information	SYSTEM STATE (Ch 8)
DMSP	Display Special Male connector information	SYSTEM STATE (Ch 8)

Command	Description	Group
DMT	Display TNC male connector information	SYSTEM STATE (Ch 8)
DMV	Display V male connector information	SYSTEM STATE (Ch 8)
DNM	Display data normalized to trace memory on active channel	DISPLAY (Ch 4)
DPI	Select distance phasor impulse mode for active channel	TIME DOMAIN (Ch 9)
DPN	Enter pen number for data	HARD COPY (Ch 8)
DPR0	Visible data only OFD format	DATA TRANSFER (Ch 7)
DPR1	Data pair always OFD format	DATA TRANSFER (Ch 7)
DPRX?	Output data pair mode visible only or pair always	MEASUREMENT DATA (Ch 7)
DR1	Select Marker 1 as Delta Reference Marker	MARKERS (Ch 6)
DR2	Select Marker 2 as Delta Reference Marker	MARKERS (Ch 6)
DR3	Select Marker 3 as Delta Reference Marker	MARKERS (Ch 6)
DR4	Select Marker 4 as Delta Reference Marker	MARKERS (Ch 6)
DR5	Select Marker 5 as Delta Reference Marker	MARKERS (Ch 6)
DR6	Select Marker 6 as Delta Reference Marker	MARKERS (Ch 6)
DRF	Turn delta reference mode on	MARKERS (Ch 6)
DRL	Diagnostic read latch	DIAGNOSTICS (Ch 8)
DRO	Turn delta reference mode off	MARKERS (Ch 6)
DRO?	Output delta reference mode on/off status	MARKERS (Ch 6)
DRX?	Output delta reference marker number	MARKERS (Ch 6)
DSF0	Disable filter shape factor calculation	MARKERS (Ch 6)
DSF1	Enable filter shape factor calculation	MARKERS (Ch 6)
DSFX?	Output filter shape factor calculation enable/disable status	MARKERS (Ch 6)
DSP	Select single channel display	CHANNELS (Ch 4)
DSP?	Output channel display mode	CHANNELS (Ch 4)
DSPS21	Select Gain Compression bottom graph displays S21	GAIN COMPRESSION (Ch 9)
DSPS21?	Output Gain Compression bottom graph selection Normalized/S2	GAIN COMPRESSION (Ch 9)
DSQ0	Disable filter Q calculation	MARKERS (Ch 6)
DSQ1	Enable filter Q calculation	MARKERS (Ch 6)
DSQX?	Output filter Q calculation enable/disable status	MARKERS (Ch 6)
DTM	Display measurement data and trace memory on active channel	DISPLAY (Ch 4)
DVM	Enter DVM channel number	DIAGNOSTICS (Ch 8)
DWG	Display waveguide parameters	SYSTEM STATE (Ch 8)
DWL	Diagnostic write latch	DIAGNOSTICS (Ch 8)

Command	Description	Group
E12	Set Millimeter Wave band to E band (WR-12)	MILLIMETER WAVE (Ch 9)
E12E	Set Millimeter Wave band to E band (WR-12)	MILLIMETER WAVE (Ch 9)
ECW	Select CW operation for component being edited	MULTIPLE SOURCE CONTROL (Ch 9)
ED1	Edit source 1 equation	MULTIPLE SOURCE CONTROL (Ch 9)
ED2	Edit source 2 equation	MULTIPLE SOURCE CONTROL (Ch 9)
EDG	End diagnostics mode	DIAGNOSTICS (Ch 8)
EDR	Edit receiver equation	MULTIPLE SOURCE CONTROL (Ch 9)
EDV	Enter divisor value for equation being edited	MULTIPLE SOURCE CONTROL (Ch 9)
EDV?	Output divisor value for equation being edited	MULTIPLE SOURCE CONTROL (Ch 9)
EKT	Select external keyboard testing	PERIPHERAL TESTS (Ch 8)
EML	Enter multiplier value for equation being edited	MULTIPLE SOURCE CONTROL (Ch 9)
EML?	Output multiplier value for equation being edited	MULTIPLE SOURCE CONTROL (Ch 9)
EOS	Enter offset frequency for equation being edited	MULTIPLE SOURCE CONTROL (Ch 9)
EOS?	Output offset frequency for equation being edited	MULTIPLE SOURCE CONTROL (Ch 9)
ESW	Select sweep operation for component being edited	MULTIPLE SOURCE CONTROL (Ch 9)
EX1RF0	Turn external source 1 rf off	MULTIPLE SOURCE CONTROL (Ch 9)
EX1RF1	Turn external source 1 rf on	MULTIPLE SOURCE CONTROL (Ch 9)
EX2RF0	Turn external source 2 rf off	MULTIPLE SOURCE CONTROL (Ch 9)
EX2RF1	Turn external source 2 rf on	MULTIPLE SOURCE CONTROL (Ch 9)
EXD	Display external A/D input	DIAGNOSTICS (Ch 8)
EXISTD?	Output directory existence information	DISK FUNCTION (Ch 8)
EXISTF?	Output file existence information	DISK FUNCTION (Ch 8)
EXW?	Output multiple source sweep flag for equation being edited	MULTIPLE SOURCE CONTROL (Ch 9)
F08	Set Millimeter Wave Band to F Band (WR-8)	MILLIMETER WAVE (Ch 9)
FCW0	Turn fast CW measurement mode off	FAST CW (Ch 7)
FCW1	Turn fast CW measurement mode on	FAST CW (Ch 7)
FCW2	Turn Fast CW mode 2 on	FAST CW (Ch 7)
FCWX?	Output fast CW measurement mode on/off status	FAST CW (Ch 7)
FDE0	Disable Output Data End Message	DATA TRANSFER (Ch 7)
FDE1	Enable Output Data End Message	DATA TRANSFER (Ch 7)

Command	Description	Group
FDEX?	Output Output Data End Message enable/disable status	DATA TRANSFER (Ch 7)
FDH0	Select variable length arbitrary block headers	TRANSMISSION METHODS (Ch 7)
FDH1	Select fixed length arbitrary block headers	TRANSMISSION METHODS (Ch 7)
FDH2	Select zero length arbitrary block headers	TRANSMISSION METHODS (Ch 7)
FDHX?	Output arbitrary block header length selection	TRANSMISSION METHODS (Ch 7)
FFD	Send form feed to printer and stop print/plot	HARD COPY (Ch 8)
FGT	Select frequency with time gate for active channel	TIME DOMAIN (Ch 9)
FHI	Set data points to 1601	MEASUREMENT (Ch 4)
FIL	Fill defined discrete frequency range	MEASUREMENT (Ch 4)
FLC	Source frequency linearity internal calibration	DIAGNOSTICS (Ch 8)
FLO	Set data points to 101	MEASUREMENT (Ch 4)
FLTBW?	Output filter bandwidth	MARKERS (Ch 6)
FLTC?	Output filter center frequency	MARKERS (Ch 6)
FLTL?	Output filter loss at reference value	MARKERS (Ch 6)
FLTQ?	Output filter Q	MARKERS (Ch 6)
FLTS?	Output filter shape factor	MARKERS (Ch 6)
FMA	Select ASCII data transfer format	DATA TRANSFER (Ch 7)
FMB	Select IEEE754 64 bit data transfer format	DATA TRANSFER (Ch 7)
FMC	Select IEEE754 32 bit data transfer format	DATA TRANSFER (Ch 7)
FME	Set data points to 401	MEASUREMENT (Ch 4)
FMKR	Select filter parameters marker mode	MARKERS (Ch 6)
FMT0	Select normal ascii data element delimiting	TRANSMISSION METHODS (Ch 7)
FMT1	Select enhanced ascii data element delimiting	TRANSMISSION METHODS (Ch 7)
FMTX?	Output ascii data element delimiting mode	TRANSMISSION METHODS (Ch 7)
FMX?	Output data output mode FMA FMB or FMC	DATA TRANSFER (Ch 7)
FOF	Blank frequency information	SYSTEM STATE (Ch 8)
FON	Display frequency information	SYSTEM STATE (Ch 8)
FOX?	Output frequency information on/off status	SYSTEM STATE (Ch 8)
FP0	Turn flat power correction off	MEASUREMENT (Ch 4)
FP1	Turn flat power correction on	MEASUREMENT (Ch 4)
FPT	Select front panel keypad testing	PERIPHERAL TESTS (Ch 8)
FPX?	Output flat power correction on/off status	DIAGNOSTICS (Ch 8)
FQD	Select frequency domain for active channel	TIME DOMAIN (Ch 9)
FRC	Clear all defined discrete frequency ranges	MEASUREMENT (Ch 4)

Command	Description	Group
FRI	Enter Discrete Fill increment frequency	MEASUREMENT (Ch 4)
FRP	Enter Discrete Fill number of points	MEASUREMENT (Ch 4)
FRS	Enter Discrete Fill start frequency	MEASUREMENT (Ch 4)
GCMP	Enter gain compression point search value	GAIN COMPRESSION (Ch 9)
GCMP?	Output gain compression point search value	GAIN COMPRESSION (Ch 9)
GCT	Enter gate center value distance or time	TIME DOMAIN (Ch 9)
GCT?	Output gate center value	TIME DOMAIN (Ch 9)
GDS	Gate symbols displayed on active channel	TIME DOMAIN (Ch 9)
GHZ	Suffix sets frequency data type and scales by 1E9	DATA ENTRY SUFFIXES (Ch 4)
GLS	Select low sidelobe gate shape	TIME DOMAIN (Ch 9)
GMS	Select minimum sidelobe gate shape	TIME DOMAIN (Ch 9)
GNM	Select nominal gate shape	TIME DOMAIN (Ch 9)
GOF	Turn off gating on active channel	TIME DOMAIN (Ch 9)
GOF?	Output gating mode on active channel	TIME DOMAIN (Ch 9)
GON	Turn on gating on active channel	TIME DOMAIN (Ch 9)
GPN	Enter pen number for graticule	HARD COPY (Ch 8)
GRF?	Output graph type for active channel	DISPLAY (Ch 4)
GRT	Select Rectangular gate shape	TIME DOMAIN (Ch 9)
GRTCOL	Enter the color number for the graticule	SYSTEM STATE (Ch 8)
GRTCOL?	Output the color number for the graticule	SYSTEM STATE (Ch 8)
GSN	Enter gate span value distance or time	TIME DOMAIN (Ch 9)
GSN?	Output gate span value	TIME DOMAIN (Ch 9)
GSP	Enter gate stop value distance or time	TIME DOMAIN (Ch 9)
GSP?	Output gate stop value	TIME DOMAIN (Ch 9)
GST	Enter gate start value distance or time	TIME DOMAIN (Ch 9)
GST?	Output gate start value	TIME DOMAIN (Ch 9)
GSX?	Output gate shape	TIME DOMAIN (Ch 9)
HC0	Disable internal IF calibration	MEASUREMENT (Ch 4)
HC1	Enable internal IF calibration and trigger an IF calibration	MEASUREMENT (Ch 4)
НСТ	Trigger an IF calibration	MEASUREMENT (Ch 4)
HCX?	Output internal IF calibration enable/disable status	MEASUREMENT (Ch 4)
HD0	Turn off tabular data headers and page formatting	HARD COPY (Ch 8)
HD1	Turn on tabular data headers and page formatting	HARD COPY (Ch 8)
HID	Hide active segmented limit	LIMITS (Ch 6)

Command	Description	Group
HIST0	Turns off GPIB history writing to disk	HARD COPY (Ch 8)
HIST1	Turns on GPIB history writing to disk	HARD COPY (Ch 8)
HISTX?	Outputs the history writes to hard disk enable/disable status	HARD COPY (Ch 8)
HLD	Put sweep into hold mode	MEASUREMENT (Ch 4)
HLD?	Output the sweep hold status	MEASUREMENT (Ch 4)
HPN	Enter pen number for header	HARD COPY (Ch 8)
HZ	Suffix sets frequency data type	DATA ENTRY SUFFIXES (Ch 4)
IACCHAR	Input AutoCal characterization data from the GPIB	AUTOCAL (Ch 5)
IARF	Enter adapter removal files from GPIB and calibrate	ADAPTER REMOVAL (Ch 9)
IC1	Enter calibration coefficient 1	DATA TRANSFER (Ch 7)
IC10	Enter calibration coefficient 10	DATA TRANSFER (Ch 7)
IC11	Enter calibration coefficient 11	DATA TRANSFER (Ch 7)
IC12	Enter calibration coefficient 12	DATA TRANSFER (Ch 7)
IC2	Input Calibration Coefficient 2	CALIBRATION (Ch 5)
IC3	Enter calibration coefficient 3	CALIBRATION (Ch 5)
IC4	Enter calibration coefficient 4	CALIBRATION (Ch 5)
IC5	Enter calibration coefficient 5	CALIBRATION (Ch 5)
IC6	Enter calibration coefficient 6	CALIBRATION (Ch 5)
IC7	Enter calibration coefficient 7	CALIBRATION (Ch 5)
IC8	Enter calibration coefficient 8	CALIBRATION (Ch 5)
IC9	Enter calibration coefficient 9	CALIBRATION (Ch 5)
ICA	Enter calibration coefficient 10	CALIBRATION (Ch 5)
ICB	Enter calibration coefficient 11	CALIBRATION (Ch 5)
ICC	Enter calibration coefficient 12	CALIBRATION (Ch 5)
ICD	Enter corrected data for active channel parameter	CALIBRATION (Ch 5)
ICF	Enter front panel setup and calibration data	CALIBRATION (Ch 5)
ICL	Enter all applicable calibration coefficients for cal type	CALIBRATION (Ch 5)
IEM	Enter extended status byte mask	STATUS BYTE (Ch 8)
IF1	Select 10 Hz IF bandwidth	ENHANCEMENT (Ch 4)
IF2	Select 100 Hz IF bandwidth	ENHANCEMENT (Ch 4)
IF3	Select 1 KHz IF bandwidth	ENHANCEMENT (Ch 4)
IF4	Select 10 KHz IF bandwidth	ENHANCEMENT (Ch 4)
IFA	Select 30 KHz IF bandwidth	ENHANCEMENT (Ch 4)
IFB	Select 1st IF bandpass testing	DIAGNOSTICS (Ch 8)

Command	Description	Group
IFD	Enter final data for active channel parameter	CALIBRATION (Ch 5)
IFM	Select 10 Hz IF bandwidth	ENHANCEMENT (Ch 4)
IFN	Select 1 KHz IF bandwidth	ENHANCEMENT (Ch 4)
IFP	Enter current front panel setup	MEASUREMENT (Ch 4)
IFPC	Enter flat power coefficients	DATA TRANSFER (Ch 7)
IFR	Select 100 Hz IF bandwidth	ENHANCEMENT (Ch 4)
IFV	Enter frequency values	MEASUREMENT (Ch 4)
IFX?	Output IF bandwidth	ENHANCEMENT (Ch 4)
IHDW	Enter hardware cal data from GPIB	MISCELLANEOUS (Ch 7)
IKIT	Enter calkit data from GPIB	MISCELLANEOUS (Ch 7)
ILM	Enter limits status byte mask	STATUS BYTE (Ch 7)
IMG	Select imaginary display for active channel	DISPLAY (Ch 4)
IMU	Suffix sets imaginary data type	DATA ENTRY SUFFIXES (Ch 4)
INRM	Enter normalization data from GPIB	MISCELLANEOUS (Ch 7)
INT	Initialize (format) floppy disk	DISK FUNCTION (Ch 8)
INVER	Activate color configuration Inverse	SYSTEM STATE (Ch 8)
IPM	Enter the 488.2 Service Request Enable mask	STATUS BYTE (Ch 7)
IPSC	Enter power sweep linearity calibration co- efficients	GAIN COMPRESSION (Ch 9)
IS1	Enter front panel setup 1	MEASUREMENT (Ch 4)
IS10	Enter front panel setup 10	MEASUREMENT (Ch 4)
IS2	Enter front panel setup 2	MEASUREMENT (Ch 4)
IS3	Enter front panel setup 3	MEASUREMENT (Ch 4)
IS4	Enter front panel setup 4	MEASUREMENT (Ch 4)
IS5	Enter front panel setup 5	MEASUREMENT (Ch 4)
IS6	Enter front panel setup 6	MEASUREMENT (Ch 4)
IS7	Enter front panel setup 7	MEASUREMENT (Ch 4)
IS8	Enter front panel setup 8	MEASUREMENT (Ch 4)
IS9	Enter front panel setup 9	MEASUREMENT (Ch 4)
ISC	Enter scale and select inverted compressed Smith Chart display	DISPLAY (Ch 4)
ISE	Enter scale and select inverted expanded Smith Chart display	DISPLAY (Ch 4)
ISF	Exclude isolation	CALIBRATION (Ch 5)
ISM	Select normal inverted Smith Chart for active channel	DISPLAY (Ch 4)
ISN	Include isolation	CALIBRATION (Ch 5)
KEC	Keep existing calibration data	CALIBRATION (Ch 5)

Command	Description	Group
KHZ	Suffix sets frequency data type and scales by 1E3	DATA ENTRY SUFFIXES (Ch 4)
L1C	Perform LO1 internal calibration	DIAGNOSTICS (Ch 8)
L2C	Perform LO2 internal calibration	DIAGNOSTICS (Ch 8)
LA1	Select a1 = Ra as phase lock for parameter being defined	MEASUREMENT (Ch 4)
LA2	Select a2 = Rb as phase lock for parameter being defined	MEASUREMENT (Ch 4)
LAND	Select landscape mode for output plot	HARD COPY (Ch 8)
LAX?	Output phase lock selection for parameter being defined	MEASUREMENT (Ch 4)
LAYCOL	Enter the color number for overlay data	SYSTEM STATE (Ch 8)
LAYCOL?	Output the color number for overlay data	SYSTEM STATE (Ch 8)
LB0	Turn limits testing beep on failure off	LIMITS (Ch 6)
LB1	Turn limits testing beep on failure on	LIMITS (Ch 6)
LBX?	Output limits testing beeper enable status	LIMITS (Ch 6)
LCM	Select LRL calibration method	CALIBRATION (Ch 5)
LDARF	Load adapter removal files from disk and calibrate	DISK FUNCTION (Ch 8)
LDT0	Disable printing date/time	HARD COPY (Ch 8)
LDT1	Enable printing date/time	HARD COPY (Ch 8)
LFD	Enter limit frequency readout delta value	LIMITS (Ch 6)
LFD2	Enter limit frequency readout delta value for bottom graph	LIMITS (Ch 6)
LFD2?	Output limit frequency readout delta value for bottom graph	LIMITS (Ch 6)
LFD?	Output limit frequency readout delta value	LIMITS (Ch 6)
LFP	Select limit frequency readout for phase displays	LIMITS (Ch 6)
LFR	Select limit frequency readout for active channel	LIMITS (Ch 6)
LID	Enter string for DUT identity	MISCELLANEOUS (Ch 7)
LID?	Output string for DUT identity	MISCELLANEOUS (Ch 7)
LIN	Select linear magnitude display for active channel	DISPLAY (Ch 4)
LKS0	Disable lock search mode	DIAGNOSTICS (Ch 8)
LKS1	Enable lock search mode	DIAGNOSTICS (Ch 8)
LKT	Load calibration kit information from floppy disk	DISK FUNCTION (Ch 8)
LL1	Enter length of line 1 for LRL calibration	CALIBRATION (Ch 5)
LL2	Enter length of line 2 for LRL calibration	CALIBRATION (Ch 5)
LL3	Enter length of line 3 for LRL calibration	CALIBRATION (Ch 5)

Command	Description	Group
LLM?	Output limit line display mode single or segmented	LIMITS (Ch 6)
LLO	Enter lower limit value for top graph on active channel	LIMITS (Ch 6)
LLO2	Enter lower limit value for bottom graph on active channel	LIMITS (Ch 6)
LLO2?	Output lower limit value for bottom graph on active channel	LIMITS (Ch 6)
LLO?	Output lower limit value for top graph on active channel	LIMITS (Ch 6)
LLZ	Enter line impedance for LRL calibration	CALIBRATION (Ch 5)
LM2	Select a match for the second device during a LRM type calibration	CALIBRATION (Ch 5)
LM3	Select a match for the third device during a LRM type calibration	CALIBRATION (Ch 5)
LMS	Enter string for DUT model/serial number	HARD COPY (Ch 8)
LMS?	Output string for DUT model/serial number	HARD COPY (Ch 8)
LNM	Enter string for operator name	HARD COPY (Ch 8)
LNM?	Output string for operator name	HARD COPY (Ch 8)
LO11	Select LO1 phase lock voltage testing	DIAGNOSTICS (Ch 8)
LO12	Select LO1 D/A voltage testing	DIAGNOSTICS (Ch 8)
LO21	Select LO2 main phase lock voltage testing	DIAGNOSTICS (Ch 8)
LO22	Select LO2 offset phase lock voltage testing	DIAGNOSTICS (Ch 8)
LO23	Select LO2 DDS phase lock voltage testing	DIAGNOSTICS (Ch 8)
LO24	Select LO2 main D/A voltage testing	DIAGNOSTICS (Ch 8)
LO25	Select LO2 offset D/A voltage testing	DIAGNOSTICS (Ch 8)
LOC	Enter string for operator comment	HARD COPY (Ch 8)
LOC?	Output string for operator comment	HARD COPY (Ch 8)
LOF	Limits display off	LIMITS (Ch 6)
LOGO0	Turn hard copy logo off	HARD COPY (Ch 8)
LOGO1	Turn hard copy logo on	HARD COPY (Ch 8)
LOGO?	Output hard copy logo selection stan- dard/user defined	HARD COPY (Ch 8)
LOGOS	Select standard hard copy logo	HARD COPY (Ch 8)
LOGOU	Select user defined hard copy logo	HARD COPY (Ch 8)
LOGOX?	Output hard copy logo on/off status	HARD COPY (Ch 8)
LOL0	Turn lower limit off	LIMITS (Ch 6)
LOL1	Turn lower limit on at current value	LIMITS (Ch 6)
LOL20	Turn lower limit off for bottom graph	LIMITS (Ch 6)
LOL21	Turn lower limit on at current value for bottom graph	LIMITS (Ch 6)

Command	Description	Group
LOL2X?	Output lower limit on/off status for bottom graph	LIMITS (Ch 6)
LOLX?	Output lower limit on/off status	LIMITS (Ch 6)
LON	Limits display on	LIMITS (Ch 6)
LON?	Output limits display on/off status	LIMITS (Ch 6)
LPF1?	Output limit test failure status on channel 1	LIMITS (Ch 6)
LPF2?	Output limit test failure status on channel 2	LIMITS (Ch 6)
LPF3?	Output limit test failure status on channel 3	LIMITS (Ch 6)
LPF4?	Output limit test failure status on channel 4	LIMITS (Ch 6)
LPF?	Output limit test failure status all channels	LIMITS (Ch 6)
LPH	Select linear magnitude and phase display for active channel	DISPLAY (Ch 4)
LPI	Select lowpass impulse response for active channel	TIME DOMAIN (Ch 9)
LPS	Select lowpass step response for active channel	TIME DOMAIN (Ch 9)
LPSX?	Output lowpass response for active channel impulse or step	TIME DOMAIN (Ch 9)
LR2	Specify 2 line LRL calibration	CALIBRATION (Ch 5)
LR3	Specify 3 line LRL calibration	CALIBRATION (Ch 5)
LS1	Set lower segmented limit 100 as the active segment	LIMITS (Ch 6)
LS10	Select lower segmented limit 10 as the active segment	LIMITS (Ch 6)
LS2	Select lower segmented limit 2 as the active segment	LIMITS (Ch 6)
LS3	Select lower segmented limit 3 as the active segment	LIMITS (Ch 6)
LS4	Select lower segmented limit 4 as the active segment	LIMITS (Ch 6)
LS5	Select lower segmented limit 5 as the active segment	LIMITS (Ch 6)
LS6	Select lower segmented limit 6 as the active segment	LIMITS (Ch 6)
LS7	Select lower segmented limit 7 as the active segment	LIMITS (Ch 6)
LS8	Select lower segmented limit 8 as the active segment	LIMITS (Ch 6)
LS9	Select lower segmented limit 9 as the active segment	LIMITS (Ch 6)
LSB	Select least significant byte first binary transfer	DATA TRANSFER (Ch 7)
LSEG	Select segmented limit line display mode	LIMITS (Ch 6)
LSNG	Select single limit line display mode	LIMITS (Ch 6)

Command	Description	Group
LSX?	Output active segmented limit	LIMITS (Ch 6)
LT0	Turn limits testing off	LIMITS (Ch 6)
LT1	Turn limits testing on	LIMITS (Ch 6)
LT1?	Output limits testing enable status	LIMITS (Ch 6)
LTC	Select coaxial transmission line for calibration	CALIBRATION (Ch 5)
LTRD	Output response data from the dedicated GPIB bus	MULTIPLE SOURCE CONTROL (Ch 9)
LTST	Display the limits testing menu	LIMITS (Ch 6)
LTU	Select microstrip transmission line for calibration	CALIBRATION (Ch 5)
LTW	Select waveguide transmission line for calibration	CALIBRATION (Ch 5)
LTWRT	Send program data to the dedicated GPIB bus	MULTIPLE SOURCE CONTROL (Ch 9)
LTX?	Output line type	CALIBRATION (Ch 5)
LUP	Enter upper limit value for top graph on active channel	LIMITS (Ch 6)
LUP2	Enter upper limit value for bottom graph on active channel	LIMITS (Ch 6)
LUP2?	Output upper limit value for bottom graph on active channel	LIMITS (Ch 6)
LUP?	Output upper limit value for top graph on active channel	LIMITS (Ch 6)
LVH	Select high as limits testing TTL level	LIMITS (Ch 6)
LVL	Select low as limits testing TTL level	LIMITS (Ch 6)
LVX?	Output limits testing ttl level status	LIMITS (Ch 6)
M	Suffix sets distance data type	DATA ENTRY SUFFIXES (Ch 4)
M1C	Set CW mode at marker 1 frequency	MARKERS (Ch 6)
M1E	Set sweep/zoom end to marker 1 frequency distance or time	MARKERS (Ch 6)
M1S	Set sweep/zoom start to marker 1 frequency distance or time	MARKERS (Ch 6)
M2C	Set CW mode at marker 2 frequency	MARKERS (Ch 6)
M2E	Set sweep/zoom end to marker 2 frequency distance or time	MARKERS (Ch 6)
M2S	Set sweep/zoom start to marker 2 frequency distance or time	MARKERS (Ch 6)
M3C	Set CW mode at marker 3 frequency	MARKERS (Ch 6)
МЗЕ	Set sweep/zoom end to marker 3 frequency distance or time	MARKERS (Ch 6)
M3S	Set sweep/zoom start to marker 3 frequency distance or time	MARKERS (Ch 6)

Command	Description	Group
M4C	Set CW mode at marker 4 frequency	MARKERS (Ch 6)
M4E	Set sweep/zoom end to marker 4 frequency distance or time	MARKERS (Ch 6)
M4S	Set sweep/zoom start to marker 4 frequency distance or time	MARKERS (Ch 6)
M5C	Set CW mode at marker 5 frequency	MARKERS (Ch 6)
M5E	Set sweep/zoom end to marker 5 frequency distance or time	MARKERS (Ch 6)
M5S	Set sweep/zoom start to marker 5 frequency distance or time	MARKERS (Ch 6)
M6C	Set CW mode at marker 6 frequency	MARKERS (Ch 6)
M6E	Set sweep/zoom end to marker 6 frequency distance or time	MARKERS (Ch 6)
M6S	Set sweep/zoom start to marker 6 frequency distance or time	MARKERS (Ch 6)
MAG	Select log magnitude display for active channel	DISPLAY (Ch 4)
MAT	Select matched reflective devices during cal	CALIBRATION (Ch 5)
MD	Create a new disk directory	DISK FUNCTION (Ch 8)
MEM	Display trace memory on active channel	DISPLAY (Ch 4)
MFGCT	Start multiple frequency swept power gain compression test	GAIN COMPRESSION (Ch 9)
MHZ	Suffix sets frequency data type and scales by 1E6	DATA ENTRY SUFFIXES (Ch 4)
MIN	Select subtraction as trace math for active channel	DISPLAY (Ch 4)
MIX	Select mixed reflective devices during calibration	CALIBRATION (Ch 5)
MK1	Enter marker 1 frequency distance or time and turn on	MARKERS (Ch 6)
MK1?	Output marker 1 frequency distance or time	MARKERS (Ch 6)
MK2	Enter marker 2 frequency distance or time and turn on	MARKERS (Ch 6)
MK2?	Output marker 2 frequency distance or time	MARKERS (Ch 6)
MK3	Enter marker 3 frequency distance or time and turn on	MARKERS (Ch 6)
MK3?	Output marker 3 frequency distance or time	MARKERS (Ch 6)
MK4	Enter marker 4 frequency distance or time and turn on	MARKERS (Ch 6)
MK4?	Output marker 4 frequency distance or time	MARKERS (Ch 6)
MK5	Enter marker 5 frequency distance or time and turn on	MARKERS (Ch 6)
MK5?	Output marker 5 frequency distance or time	MARKERS (Ch 6)

Command	Description	Group
MK6	Enter marker 6 frequency distance or time and turn on	MARKERS (Ch 6)
MK6?	Output marker 6 frequency distance or time	MARKERS (Ch 6)
MKRC	Select interpolated marker functionality	MARKERS (Ch 6)
MKRCOL	Enter the color number for the markers	SYSTEM STATE (Ch 8)
MKRCOL?	Output the color number for the markers	SYSTEM STATE (Ch 8)
MKRD	Select discrete marker functionality	MARKERS (Ch 6)
MKRX?	Output interpolated/discrete marker functionality	MARKERS (Ch 6)
MKSL	Marker search left	MARKERS (Ch 6)
MKSR	Marker search right	MARKERS (Ch 6)
MKT0	Turn marker tracking off	MARKERS (Ch 6)
MKT1	Turn marker tracking on	MARKERS (Ch 6)
MKTX?	Output marker tracking on/off status	MARKERS (Ch 6)
MM	Suffix sets distance data type and scales by 1E-3	DATA ENTRY SUFFIXES (Ch 4)
MMBX?	Output Millimeter Wave band selection	MILLIMETER WAVE (Ch 9)
MMN	Move active marker to minimum trace value	MARKERS (Ch 6)
MMT	Suffix sets distance data type and scales by 1E-3	DATA ENTRY SUFFIXES (Ch 4)
MMX	Move active marker to maximum trace value	MARKERS (Ch 6)
MNUCOL	Enter the color number for the menu headers	SYSTEM STATE (Ch 8)
MNUCOL?	Output the color number for the menu headers	SYSTEM STATE (Ch 8)
MO1	Turn off marker 1	MARKERS (Ch 6)
MO2	Turn off marker 2	MARKERS (Ch 6)
MO3	Turn off marker 3	MARKERS (Ch 6)
MO4	Turn off marker 4	MARKERS (Ch 6)
MO5	Turn off marker 5	MARKERS (Ch 6)
MO6	Turn off marker 6	MARKERS (Ch 6)
MOF	Turn marker display off	MARKERS (Ch 6)
MON	Turn marker display on	MARKERS (Ch 6)
MON?	Output marker display on/off status	MARKERS (Ch 6)
MPH	Select log magnitude and phase display for active channel	DISPLAY (Ch 4)
MPN	Enter pen number for markers and limits	HARD COPY (Ch 8)
MR1	Turn marker 1 on and make it the active marker	MARKERS (Ch 6)
MR1?	Output marker 1 on/off status	MARKERS (Ch 6)

Command	Description	Group
MR2	Turn marker 2 on and make it the active marker	MARKERS (Ch 6)
MR2?	Output marker 2 on/off status	MARKERS (Ch 6)
MR3	Turn marker 3 on and make it the active marker	MARKERS (Ch 6)
MR3?	Output marker 3 on/off status	MARKERS (Ch 6)
MR4	Turn marker 4 on and make it the active marker	MARKERS (Ch 6)
MR4?	Output marker 4 on/off status	MARKERS (Ch 6)
MR5	Turn marker 5 on and make it the active marker	MARKERS (Ch 6)
MR5?	Output marker 5 on/off status	MARKERS (Ch 6)
MR6	Turn marker 6 on and make it the active marker	MARKERS (Ch 6)
MR6?	Output marker 6 on/off status	MARKERS (Ch 6)
MRM	Display the Marker Readout menu	MARKERS (Ch 6)
MRR	Restore original marker range	TIME DOMAIN (Ch 9)
MRX?	Output active marker number	MARKERS (Ch 6)
MS	Suffix sets time data type and scales by 1E-3	DATA ENTRY SUFFIXES (Ch 4)
MS0	Turn multiple source mode off	MULTIPLE SOURCE CONTROL (Ch 9)
MS1	Turn multiple source mode on	MULTIPLE SOURCE CONTROL (Ch 9)
MSB	Select most significant byte first binary transfer	DATA TRANSFER (Ch 7)
MSD	Select multiple source define mode	MULTIPLE SOURCE CONTROL (Ch 9)
MSFH	Enter high loss value for shape factor calculation	MARKERS (Ch 6)
MSFH?	Output high loss value for shape factor cal- culation	MARKERS (Ch 6)
MSFL	Enter low loss value for shape factor calculation	MARKERS (Ch 6)
MSFL?	Output low loss value for shape factor cal- culation	MARKERS (Ch 6)
MSR0	Select 0 as reference for marker search and bandwidth calculation	MARKERS (Ch 6)
MSRD	Select delta reference marker as reference for marker search and bandwidth calculation	MARKERS (Ch 6)
MSRM	Select maximum as reference for marker search and bandwidth calculation	MARKERS (Ch 6)
MSRX?	Output reference selection for marker search and bandwidth calculation	MARKERS (Ch 6)
MSX?	Output multiple source mode on/off/define	MULTIPLE SOURCE CONTROL (Ch 9)
MTH?	Output trace math math type	DISPLAY (Ch 4)

Command	Description	Group
MTR	Suffix sets distance data type	DATA ENTRY SUFFIXES (Ch 4)
MUL	Select multiplication as trace math for active channel	DISPLAY (Ch 4)
MV	Suffix sets voltage data type and scales by 1E-3	DATA ENTRY SUFFIXES (Ch 4)
NA1	Select a1 as numerator for parameter being defined	USER DEFINED PARAMETERS (Ch 9)
NA2	Select a2 as numerator for parameter being defined	USER DEFINED PARAMETERS (Ch 9)
NB1	Select b1 as numerator for parameter being defined	USER DEFINED PARAMETERS (Ch 9)
NB2	Select b2 as numerator for parameter being defined	USER DEFINED PARAMETERS (Ch 9)
NCS	Go to next calibration step	CALIBRATION (Ch 5)
NEWCO	Activate color configuration New	SYSTEM STATE (Ch 8)
NMKR	Select normal markers on active channel marker mode	MARKERS (Ch 6)
NOC	Select normal calibration data points	CALIBRATION (Ch 5)
NOFST	Enter nominal offset value for external gain	GAIN COMPRESSION (Ch 9)
NOFST?	Output nominal offset value for external gain	GAIN COMPRESSION (Ch 9)
NP101	Set data points to 101	MEASUREMENT (Ch 4)
NP1601	Set data points to 1601	MEASUREMENT (Ch 4)
NP201	Set data points to 201	MEASUREMENT (Ch 4)
NP401	Set data points to 401	MEASUREMENT (Ch 4)
NP51	Set data points to 51	MEASUREMENT (Ch 4)
NP801	Set data points to 801	MEASUREMENT (Ch 4)
NRD	Display non-ratioed parameters on 4 channels	DIAGNOSTICS (Ch 8)
NRMS	Normalize S21 for gain compression testing	GAIN COMPRESSION (Ch 9)
NRMS21	Select Gain Compression bottom graph displays Normalized S21	GAIN COMPRESSION (Ch 9)
NS	Suffix sets time data type and scales by 1E-9	DATA ENTRY SUFFIXES (Ch 4)
NSC	Suffix sets time data type and scales by 1E-9	DATA ENTRY SUFFIXES (Ch 4)
NU1	Select unity as numerator for parameter being defined	USER DEFINED PARAMETERS (Ch 9)
NUM?	Output numerator selection for parameter being defined	USER DEFINED PARAMETERS (Ch 9)
OACCHAR	Output AutoCal characterization data to the GPIB	AUTOCAL (Ch 5)
OACSER	Output auto-cal box serial number	AUTOCAL (Ch 5)

Command	Description	Group
OACTYPE	Output auto-cal box type	AUTOCAL (Ch 5)
OAM1	Output channel 1 active marker value	DATA TRANSFER (Ch 7)
OAM2	Output channel 2 active marker value	DATA TRANSFER (Ch 7)
OAM3	Output channel 3 active marker value	DATA TRANSFER (Ch 7)
OAM4	Output channel 4 active marker value	DATA TRANSFER (Ch 7)
ОВМР	Output the display as a bitmap	HARD COPY (Ch 8)
OC1	Output calibration coefficients 1	DATA TRANSFER (Ch 7)
OC10	Output calibration coefficients 10	DATA TRANSFER (Ch 7)
OC11	Output calibration coefficients 11	DATA TRANSFER (Ch 7)
OC12	Output calibration coefficients 12	DATA TRANSFER (Ch 7)
OC2	Output calibration coefficients 2	DATA TRANSFER (Ch 7)
OC3	Output calibration coefficients 3	DATA TRANSFER (Ch 7)
OC4	Output calibration coefficients 4	DATA TRANSFER (Ch 7)
OC5	Output calibration coefficients 5	DATA TRANSFER (Ch 7)
OC6	Output calibration coefficients 6	DATA TRANSFER (Ch 7)
OC7	Output calibration coefficients 7	DATA TRANSFER (Ch 7)
OC8	Output calibration coefficients 8	DATA TRANSFER (Ch 7)
OC9	Output calibration coefficients 9	DATA TRANSFER (Ch 7)
OCA	Output calibration coefficient A	DATA TRANSFER (Ch 7)
OCB	Output calibration coefficient B	DATA TRANSFER (Ch 7)
occ	Output calibration coefficient C	DATA TRANSFER (Ch 7)
OCD	Output corrected data for active channel parameter	DATA TRANSFER (Ch 7)
OCF	Output front panel setup and calibration data	DATA TRANSFER (Ch 7)
OCL	Output all applicable calibration coefficients for cal type	DATA TRANSFER (Ch 7)
OCM	Select offset short calibration method	CALIBRATION (Ch 5)
ocs	Output internal buffer collected data	INT. BUFFER DATA COLL. (Ch 7)
ODAT	Output hard copy tabular data to GPIB	HARD COPY (Ch 8)
ODR	Output directory listing of the floppy drive	DATA TRANSFER (Ch 7)
ODRH	Output directory listing of the hard drive	DATA TRANSFER (Ch 7)
ODV	Output distance values for time domain	DATA TRANSFER (Ch 7)
OEB	Output extended status byte	STATUS REPORTING (Ch 7)
OEL	Output error list	DATA TRANSFER (Ch 7)
OEM	Output extended status byte mask	STATUS REPORTING (Ch 7)
OFD	Output final data for active channel parameter	DATA TRANSFER (Ch 7)

Command	Description	Group
OFF	Enter offset value for top graph of active channel	DISPLAY (Ch 4)
OFF2	Enter offset value for bottom graph of active channel	DISPLAY (Ch 4)
OFF2?	Output offset value for bottom graph of active channel	DISPLAY (Ch 4)
OFF?	Output offset value for top graph of active channel	DISPLAY (Ch 4)
OFP	Output current front panel setup	DATA TRANSFER (Ch 7)
OFPC	Output flat power coefficients	DATA TRANSFER (Ch 7)
OFV	Output frequency values	DATA TRANSFER (Ch 7)
OGCFD	Output gain compression final data to GPIB	MEASUREMENT DATA (Ch 7)
OGCFV	Output gain compression frequency values to GPIB	MEASUREMENT DATA (Ch 7)
OGCTXT	Output text format gain compression data to GPIB	HARD COPY (Ch 8)
OGE	Output extended description of current GPIB error	DATA TRANSFER (Ch 7)
OGL	Output extended description of previous GPIB error	DATA TRANSFER (Ch 7)
OHDR	Output hard copy header information to GPIB	HARD COPY (Ch 8)
OHDW	Output hardware cal data to GPIB	MISCELLANEOUS (Ch 7)
OHGL	Output HPGL format data to GPIB	HARD COPY (Ch 8)
ОНМ	Suffix sets impedance data type	DATA ENTRY SUFFIXES (Ch 4)
OID	Output instrument identification string	DATA TRANSFER (Ch 7)
OLB	Output limits status byte	STATUS REPORTING (Ch 7)
OLM	Output limits status byte mask	DATA TRANSFER (Ch 7)
OM1	Output marker 1 value	DATA TRANSFER (Ch 7)
OM2	Output marker 2 value	DATA TRANSFER (Ch 7)
OM3	Output marker 3 value	DATA TRANSFER (Ch 7)
OM4	Output marker 4 value	DATA TRANSFER (Ch 7)
OM5	Output marker 5 value	DATA TRANSFER (Ch 7)
OM6	Output marker 6 value	DATA TRANSFER (Ch 7)
ONCP	Output number of points for current calibration	DATA TRANSFER (Ch 7)
ONCT	Output number of cal terms for current calibration	CALIBRATION (Ch 5)
ONDF	Output number of discrete frequencies	MEASUREMENT (Ch 4)
ONE	Output number of lines in the error list	DATA TRANSFER (Ch 7)
ONP	Output number of points currently being measured	MEASUREMENT DATA (Ch 7)

Command	Description	Group
ONPV	Output the number of power sweep power values	MEASUREMENT DATA (Ch 7)
ONRM	Output stored normalization data to GPIB	MISCELLANEOUS (Ch 7)
ОРВ	Output the 488.2 Status Byte value (same as *STB?)	IEEE 488.2 (Ch 7)
OPSC	Output power sweep linearity calibration co- efficients	GAIN COMPRESSION (Ch 9)
OPSV	Output power sweep power values	MEASUREMENT DATA (Ch 7)
ORD	Output raw data for active channel parameter	DATA TRANSFER (Ch 7)
OS1	Output front panel setup number 1	DATA TRANSFER (Ch 7)
OS10	Output front panel setup number 10	DATA TRANSFER (Ch 7)
OS11C	Output corrected S11 data	MEASUREMENT DATA (Ch 7)
OS11R	Output raw S11 data	MEASUREMENT DATA (Ch 7)
OS12C	Output corrected S12 data	MEASUREMENT DATA (Ch 7)
OS12R	Output raw S12 data	MEASUREMENT DATA (Ch 7)
OS2	Output front panel setup number 2	DATA TRANSFER (Ch 7)
OS21C	Output corrected S21 data	MEASUREMENT DATA (Ch 7)
OS21R	Output raw S21 data	MEASUREMENT DATA (Ch 7)
OS22C	Output corrected S22 data	MEASUREMENT DATA (Ch 7)
OS22R	Output raw S22 data	MEASUREMENT DATA (Ch 7)
OS2P	Output S2P format data to GPIB	HARD COPY (Ch 8)
OS3	Output front panel setup number 3	DATA TRANSFER (Ch 7)
OS4	Output front panel setup number 4	DATA TRANSFER (Ch 7)
OS5	Output front panel setup number 5	DATA TRANSFER (Ch 7)
OS6	Output front panel setup number 6	DATA TRANSFER (Ch 7)
OS7	Output front panel setup number 7	DATA TRANSFER (Ch 7)
OS8	Output front panel setup number 8	DATA TRANSFER (Ch 7)
OS9	Output front panel setup number 9	DATA TRANSFER (Ch 7)
OSL	Output service log	DATA TRANSFER (Ch 7)
OTV	Output time values for time domain	MEASUREMENT DATA (Ch 7)
OTXT	Output text format data to GPIB	HARD COPY (Ch 8)
P1C	Select port 1 for connector specification	CALIBRATION (Ch 5)
P1C?	Output port 1 connector type	CALIBRATION (Ch 5)
P1MMA	Set Port 1 Millimeter Wave Head to Amplified (3742)	MILLIMETER WAVE (Ch 9)
P1MMN	Set Port 1 Millimeter Wave Head to None	MILLIMETER WAVE (Ch 9)
P1MMR	Set Port 1 Millimeter Wave Head to Receiver (3741)	MILLIMETER WAVE (Ch 9)

Command	Description	Group
P1MMT	Set Port 1 Millimeter Wave Head to Transmit/Receiver (3740)	MILLIMETER WAVE (Ch 9)
P1MMX?	Output Port 1 Millimeter Wave Head type	MILLIMETER WAVE (Ch 9)
P1P?	Output approximate power level at port 1	CALIBRATION (Ch 5)
P2ALCTA2	Perform a Port 2 ALC loop internal calibration	DIAGNOSTICS (Ch 8)
P2C	Select port 2 for connector specification	CALIBRATION (Ch 5)
P2C?	Output port 2 connector type	CALIBRATION (Ch 5)
P2MMA	Set Port 2 Millimeter Wave Head to Amplified (3742)	MILLIMETER WAVE (Ch 9)
P2MMN	Set Port 2 Millimeter Wave Head to none	MILLIMETER WAVE (Ch 9)
P2MMR	Set Port 2 Millimeter Wave Head to Receiver (3741)	MILLIMETER WAVE (Ch 9)
P2MMT	Set Port 2 Millimeter Wave Head to Transmit/Receiver (3740)	MILLIMETER WAVE (Ch 9)
P2MMX?	Output Port 2 Millimeter Wave Head type	MILLIMETER WAVE (Ch 9)
PBL	Select 1/4 size plot bottom left corner	HARD COPY (Ch 8)
PBR	Select 1/4 size plot bottom right corner	HARD COPY (Ch 8)
PCP	Select measurement phase polar chart mode	DISPLAY (Ch 4)
PCS	Select sweep position polar chart mode	DISPLAY (Ch 4)
PCX?	Output polar chart mode	DISPLAY (Ch 4)
PDR	Print directory listing of the floppy drive	DISK FUNCTION (Ch 8)
PDRH	Print directory listing of the hard drive	DISK FUNCTION (Ch 8)
PEL	Print the error list	SERVICE LOG (Ch 8)
PFL	Select full-size plot	HARD COPY (Ch 8)
PFS	Print full screen image	HARD COPY (Ch 8)
PFSC	Configure for printing entire screen graphic image	HARD COPY (Ch 8)
PGR	Print graph area screen image	HARD COPY (Ch 8)
PGRC	Configure for printing data area graphic image	HARD COPY (Ch 8)
PGT	Plot graticule	DISK FUNCTION (Ch 8)
PGTC	Configure for plotting graticule	HARD COPY (Ch 8)
PHA	Select phase display for active channel	DISPLAY (Ch 4)
РНО	Enter phase offset for display channel	DISPLAY (Ch 4)
PHO?	Output phase offset for display channel	DISPLAY (Ch 4)
PLD	Plot data area only	HARD COPY (Ch 8)
PLDC	Configure for plotting data area	HARD COPY (Ch 8)
PLG	Select log polar display for active channel	DISPLAY (Ch 4)
PLH	Plot header	HARD COPY (Ch 8)

Command	Description	Group
PLHC	Configure for plotting header	HARD COPY (Ch 8)
PLM	Plot markers and limits	HARD COPY (Ch 8)
PLMC	Configure for plotting markers and limits	HARD COPY (Ch 8)
PLO?	Output plot mode portrait or landscape	HARD COPY (Ch 8)
PLR	Select linear polar display for active channel	DISPLAY (Ch 4)
PLS	Plot entire screen	HARD COPY (Ch 8)
PLSC	Configure for plotting entire screen	HARD COPY (Ch 8)
PLT	Plot data traces only	HARD COPY (Ch 8)
PLTC	Configure for plotting data traces	HARD COPY (Ch 8)
PMK	Print tabular data for Markers	HARD COPY (Ch 8)
PMKC	Configure for printing tabular data for markers	HARD COPY (Ch 8)
PMN	Plot menu	HARD COPY (Ch 8)
PMNC	Configure for plotting menu	HARD COPY (Ch 8)
PMT	Print tabular data for traces and markers	HARD COPY (Ch 8)
PMTC	Configure for printing tabular data for traces and markers	HARD COPY (Ch 8)
PORT	Select portrait mode for output plot	HARD COPY (Ch 8)
POW	Select power out display for active channel	DISPLAY (Ch 4)
PRT?	Perform printer test and output status	PERIPHERAL TESTS (Ch 8)
PS	Suffix sets time data type and scales by 1E02	DATA ENTRY SUFFIXES (Ch 4)
PSC	Suffix sets time data type and scales by 1E02	DATA ENTRY SUFFIXES (Ch 4)
PSCNFRQ?	Output the power sweep linearity cal number of frequency poi	GAIN COMPRESSION (Ch 9)
PSCNPWR?	Output the power sweep linearity cal number of power points	GAIN COMPRESSION (Ch 9)
PSCSTEP?	Output the power sweep linearity cal power step size	GAIN COMPRESSION (Ch 9)
PSL	Print the service log	DIAGNOSTICS (Ch 8)
PSP	Enter number of power sweeps for flat power correction (obsolete)	CALIBRATION (Ch 5)
PSP?	Output number of power sweeps for flat power correction (obsolete)	CALIBRATION (Ch 5)
PST	Stop print/plot	HARD COPY (Ch 8)
PSTEP	Enter power sweep step size	GAIN COMPRESSION (Ch 9)
PSTEP?	Output power sweep step size	GAIN COMPRESSION (Ch 9)
PSTOP	Enter power sweep stop power	GAIN COMPRESSION (Ch 9)
PSTOP?	Output power sweep stop power	GAIN COMPRESSION (Ch 9)
PSTRT	Enter power sweep start power	GAIN COMPRESSION (Ch 9)

Command	Description	Group
PSTRT?	Output power sweep start power	GAIN COMPRESSION (Ch 9)
PSWC	Perform power sweep linearity calibration	GAIN COMPRESSION (Ch 9)
PSWC0	Turn power sweep linearity calibration off	GAIN COMPRESSION (Ch 9)
PSWC1	Turn power sweep linearity calibration on	GAIN COMPRESSION (Ch 9)
PSWCX?	Output power sweep linearity calibration on/off status	GAIN COMPRESSION (Ch 9)
PSWP0	Turn power sweep off	GAIN COMPRESSION (Ch 9)
PSWP1	Turn power sweep on	GAIN COMPRESSION (Ch 9)
PSWPX?	Output power sweep on/off status	GAIN COMPRESSION (Ch 9)
PT0	Set tabular printout points skipped to 0	HARD COPY (Ch 8)
PT1	Set tabular printout points skipped to 1	HARD COPY (Ch 8)
PT2	Set tabular printout points skipped to 2	HARD COPY (Ch 8)
PT3	Set tabular printout points skipped to 3	HARD COPY (Ch 8)
PT4	Set tabular printout points skipped to 4	HARD COPY (Ch 8)
PT5	Set tabular printout points skipped to 5	HARD COPY (Ch 8)
PT6	Set tabular printout points skipped to 6	HARD COPY (Ch 8)
PT7	Set tabular printout points skipped to 7	HARD COPY (Ch 8)
PT8	Set tabular printout points skipped to 8	HARD COPY (Ch 8)
PT9	Set tabular printout points skipped to 9	HARD COPY (Ch 8)
PTB	Print tabular data for Traces	HARD COPY (Ch 8)
PTBC	Configure for printing tabular data for traces	HARD COPY (Ch 8)
PTL	Select 1/4 size plot top left corner	HARD COPY (Ch 8)
РТР	Enter the target power for flat power correction	MEASUREMENT (Ch 4)
PTP?	Output the target power for flat power correction	MEASUREMENT (Ch 4)
PTR	Select 1/4 size plot top right corner	HARD COPY (Ch 8)
PTS	Enter number of points to be skipped during flat power correction	CALIBRATION (Ch 5)
PTS?	Output number of points to be skipped during flat power correction	CALIBRATION (Ch 5)
PW2	Enter external source power level	MEASUREMENT (Ch 4)
PW2?	Output external source power level	MEASUREMENT (Ch 4)
PWR	Enter internal source power level	MEASUREMENT (Ch 4)
PWR?	Output internal source power level	MEASUREMENT (Ch 4)
Q22	Set Millimeter Wave Band to Q Band (WR-22)	MILLIMETER WAVE (Ch 9)
RAD	Suffix sets phase data type and scales by 180/pi	DATA ENTRY SUFFIXES (Ch 4)
RC1	Recall front panel setup number 1 from memory	SAVE/RECALL (Ch 8)

Command	Description	Group
RC10	Recall front panel setup number 10 from memory	SAVE/RECALL (Ch 8)
RC2	Recall front panel setup number 2 from memory	SAVE/RECALL (Ch 8)
RC3	Recall front panel setup number 3 from memory	SAVE/RECALL (Ch 8)
RC4	Recall front panel setup number 4 from memory	SAVE/RECALL (Ch 8)
RC5	Recall front panel setup number 5 from memory	SAVE/RECALL (Ch 8)
RC6	Recall front panel setup number 6 from memory	SAVE/RECALL (Ch 8)
RC7	Recall front panel setup number 7 from memory	SAVE/RECALL (Ch 8)
RC8	Recall front panel setup number 8 from memory	SAVE/RECALL (Ch 8)
RC9	Recall front panel setup number 9 from memory	SAVE/RECALL (Ch 8)
RD	Remove a disk directory	DISK FUNCTION (Ch 8)
RDA	Select automatic reference delay calculation	DISPLAY (Ch 4)
RDD	Enter reference delay in distance for active channel	DISPLAY (Ch 4)
RDD?	Output reference delay in distance for active channel	DISPLAY (Ch 4)
RDT	Enter reference delay in time for active channel	DISPLAY (Ch 4)
RDT?	Output reference delay in time for active channel	DISPLAY (Ch 4)
RECALL	Recall a data file from disk to a task	DISK FUNCTION (Ch 8)
REF	Enter reference line for top graph of active channel	DISPLAY (Ch 4)
REF2	Enter reference line for bottom graph of active channel	DISPLAY (Ch 4)
REF2?	Output reference line for bottom graph of active channel	DISPLAY (Ch 4)
REF?	Output reference line for top graph of active channel	DISPLAY (Ch 4)
REL	Select real display for active channel	DISPLAY (Ch 4)
REU	Suffix sets real data type	DATA ENTRY SUFFIXES (Ch 4)
RGZ	Select reflective device greater than Z0	CALIBRATION (Ch 5)
RH0	Select RF off in hold mode	MEASUREMENT (Ch 4)
RH1	Select RF on in hold	MEASUREMENT (Ch 4)
RHX?	Output RF on/off during hold status	MEASUREMENT (Ch 4)

Command	Description	Group
RIM	Select real and imaginary display for active channel	DISPLAY (Ch 4)
RLZ	Select reflective device less than Z0	CALIBRATION (Ch 5)
RM1	Select reference plane at line 1 midpoint	CALIBRATION (Ch 5)
ROL	Enter reflective device offset length	CALIBRATION (Ch 5)
RPC	Repeat previous calibration	CALIBRATION (Ch 5)
RPO	Enter rear panel dc voltage value	REAR PANEL OUTPUT (Ch 9)
RPO?	Output rear panel dc voltage value	REAR PANEL OUTPUT (Ch 9)
RRP	Select reference plane at reflection plane	CALIBRATION (Ch 5)
RST	Instrument reset (same as *RST)	SYSTEM STATE (Ch 8)
RST0	Reset instrument front panel memories and reserved parameters	SYSTEM STATE (Ch 8)
RST1	Reset instrument and front panel memories	SYSTEM STATE (Ch 8)
RSTCOL	Reset color configuration to default	SYSTEM STATE (Ch 8)
RSTGC	Reset gain compression parameters to default	GAIN COMPRESSION (Ch 9)
RT0	Turn retrace rf off	MEASUREMENT (Ch 4)
RT1	Turn retrace rf on	MEASUREMENT (Ch 4)
RTL	Return to local	SYSTEM STATE (Ch 8)
RTX?	Output retrace rf on/off status	MEASUREMENT (Ch 4)
RV0	Turn rear panel output voltage off	REAR PANEL OUTPUT (Ch 9)
RV1	Turn rear panel output voltage on	REAR PANEL OUTPUT (Ch 9)
RV1?	Output rear panel output voltage on/off status	REAR PANEL OUTPUT (Ch 9)
RVD	Set rear panel output mode to dc value	REAR PANEL OUTPUT (Ch 9)
RVH	Set rear panel output mode to horizontal	REAR PANEL OUTPUT (Ch 9)
RVL	Set rear panel output mode to lock direction	REAR PANEL OUTPUT (Ch 9)
RVV	Set rear panel output mode to vertical	REAR PANEL OUTPUT (Ch 9)
RVX?	Output rear panel output mode	REAR PANEL OUTPUT (Ch 9)
S	Suffix sets time data type	DATA ENTRY SUFFIXES (Ch 4)
S11	Measure S11 on active channel	MEASUREMENT (Ch 4)
S12	Measure S12 on active channel	MEASUREMENT (Ch 4)
S21	Measure S21 on active channel	MEASUREMENT (Ch 4)
S22	Measure S22 on active channel	MEASUREMENT (Ch 4)
SA1	Enter port 1 source attenuator value	MEASUREMENT (Ch 4)
SA1?	Output port 1 source attenuator value	MEASUREMENT (Ch 4)
SA1MAX?	Output port 1 source attenuator max value	MEASUREMENT (Ch 4)
SAMP2	Use 2 samplers for measurements	MEASUREMENT (Ch 4)
SAMP3	Use 3 samplers for measurements	MEASUREMENT (Ch 4)

Command	Description	Group
SAMP?	Output the number of samplers used for measurements	MEASUREMENT (Ch 4)
SAVE	Save a data file to disk	DISK FUNCTION (Ch 8)
SAVEGC	Save text format gain compression data to disk	DISK FUNCTION (Ch 8)
SBD	Enter substrate dielectric for microstrip calibration	CALIBRATION (Ch 5)
SBT	Enter substrate thickness for microstrip calibration	CALIBRATION (Ch 5)
SCL	Enter Scale Resolution for top graph of active channel	DISPLAY (Ch 4)
SCL2	Enter Scale Resolution for bottom graph of active channel	DISPLAY (Ch 4)
SCL2?	Output Scale Resolution for bottom graph of active channel	DISPLAY (Ch 4)
SCL?	Output Scale Resolution for top graph of active channel	DISPLAY (Ch 4)
SCM	Select standard calibration method	CALIBRATION (Ch 5)
SDG	Start diagnostics mode	DIAGNOSTICS (Ch 8)
SDR	Select standard receiver mode	DIAGNOSTICS (Ch 8)
SDR?	Output receiver mode	RECEIVER MODE (Ch 9)
SELINT	Select Internal (normal) test set operation	MILLIMETER WAVE (Ch 9)
SELMM	Select Millimeter Wave test set operation	MILLIMETER WAVE (Ch 9)
SELSP	Select S-Parameter test set operation	MEASUREMENT (Ch 4)
SELXX?	Output the test set selection MMWave/Internal	MILLIMETER WAVE (Ch 9)
SETUP	Display setup menu	DISPLAY (Ch 4)
SFC	Perform flat test port calibration	CALIBRATION (Ch 5)
SFGCA	Select swept frequency gain compression application	GAIN COMPRESSION (Ch 9)
SFGCT	Start swept frequency gain compression test	GAIN COMPRESSION (Ch 9)
SH1	Set offset short 1 or 2 offset length for offset short calibration	CALIBRATION (Ch 5)
SH2	Set offset short 1 or 2 offset length for offset short calibration	CALIBRATION (Ch 5)
SL1	Select source lock mode	RECEIVER MODE (Ch 9)
SLC	Clear all segmented limits definitions	LIMITS (Ch 6)
SLD	Select sliding load for calibration	CALIBRATION (Ch 5)
SLH	Enter segmented limits horizontal offset	LIMITS (Ch 6)
SLH?	Output segmented limits horizontal offset	LIMITS (Ch 6)
SLL0	Turn lower segmented limits display off	LIMITS (Ch 6)

Command	Description	Group
SLL1	Turn lower segmented limits display on	LIMITS (Ch 6)
SLLX?	Output lower segmented limits display on/off status	LIMITS (Ch 6)
SLT	Perform SLT internal calibration	DIAGNOSTICS (Ch 8)
SLU0	Turn upper segmented limits display off	LIMITS (Ch 6)
SLU1	Turn upper segmented limits display on	LIMITS (Ch 6)
SLUX?	Output upper segmented limits display on/off status	LMITS (Ch 7)
SLV	Enter segmented limits vertical offset	LIMITS (Ch 6)
SLV?	Output segmented limits vertical offset	LIMITS (Ch 6)
SMC	Enter scale and select compressed Smith Chart display	DISPLAY (Ch 4)
SME	Enter scale and select expanded Smith Chart display	DISPLAY (Ch 4)
SMI	Select normal Smith Chart for active channel	DISPLAY (Ch 4)
SMKR	Select marker search marker mode	MARKERS (Ch 6)
SOF	Turn off smoothing	ENHANCEMENT (Ch 4)
SOF?	Output smoothing on/off status	ENHANCEMENT (Ch 4)
SOFTCO	Activate color configuration Soft	SYSTEM STATE (Ch 8)
SON	Enter smoothing value and turn on	ENHANCEMENT (Ch 4)
SON?	Output smoothing value	ENHANCEMENT (Ch 4)
SPAMPMT	Start swept power gain compression AM/PM test	GAIN COMPRESSION (Ch 9)
SPAN	Enter frequency span	MEASUREMENT (Ch 4)
SPAN?	Output frequency span	MEASUREMENT (Ch 4)
SPD	Enter pen speed percentage	HARD COPY (Ch 8)
SPGCA	Select swept power gain compression application	GAIN COMPRESSION (Ch 9)
SPGCT	Start swept power gain compression test	GAIN COMPRESSION (Ch 9)
SPH	Enter active segmented limit horizontal stop position	LIMITS (Ch 6)
SPH?	Output active segmented limit horizontal stop position	LIMITS (Ch 6)
SPLN	Select normal source lock polarity	ENHANCEMENT (Ch 4)
SPLR	Select reverse source lock polarity	ENHANCEMENT (Ch 4)
SPLX?	Output source lock polarity normal/reverse status	ENHANCEMENT (Ch 4)
SPR0	Turn spur reduction off	ENHANCEMENT (Ch 4)
SPR1	Turn spur reduction on	ENHANCEMENT (Ch 4)
SPRX?	Output spur reduction on/off status	ENHANCEMENT (Ch 4)

Command	Description	Group
SPV	Enter active segmented limit vertical stop position	LIMITS (Ch 6)
SPV?	Output active segmented limit vertical stop position	LIMITS (Ch 6)
SRC1	Select source linearity voltage testing	DIAGNOSTICS (Ch 8)
SRC1?	Output external source 1 existence information	MULTIPLE SOURCE CONTROL (Ch 9)
SRC1AC	Select source 1 as active	MULTIPLE SOURCE CONTROL (Ch 9)
SRC1AC?	Output source 1 active/inactive status	MULTIPLE SOURCE CONTROL (Ch 9)
SRC1ADD	Enter external source 1 GPIB address	MULTIPLE SOURCE CONTROL (Ch 9)
SRC1ADD?	Output external source 1 GPIB address	ADDRESSING (Ch 8)
SRC1EX	Select source 1 as external	MULTIPLE SOURCE CONTROL (Ch 9)
SRC1EX?	Output source 1 external/internal status	MULTIPLE SOURCE CONTROL (Ch 9)
SRC1G0	Turn source 1 GPIB control off	MULTIPLE SOURCE CONTROL (Ch 9)
SRC1G1	Turn source 1 GPIB control on	MULTIPLE SOURCE CONTROL (Ch 9)
SRC1GX?	Output source 1 GPIB control on/off status	MULTIPLE SOURCE CONTROL (Ch 9)
SRC1MOD?	Output external source 1 model/version string	MULTIPLE SOURCE CONTROL (Ch 9)
SRC1NA	Select source 1 as not active	MULTIPLE SOURCE CONTROL (Ch 9)
SRC1NT	Select source 1 as internal	MULTIPLE SOURCE CONTROL (Ch 9)
SRC2	Select source power voltage testing	MULTIPLE SOURCE CONTROL (Ch 9)
SRC2?	Output external source 2 existence information	MEASUREMENT (Ch 4)
SRC2AC	Select source 2 as active	MULTIPLE SOURCE CONTROL (Ch 9)
SRC2AC?	Output source 2 active/inactive status	MULTIPLE SOURCE CONTROL (Ch 9)
SRC2ADD	Enter external source 2 GPIB address	MULTIPLE SOURCE CONTROL (Ch 9)
SRC2ADD?	Output external source 2 GPIB address	MULTIPLE SOURCE CONTROL (Ch 9)
SRC2G0	Turn source 2 GPIB control off	MULTIPLE SOURCE CONTROL (Ch 9)
SRC2G1	Turn source 2 GPIB control on	MULTIPLE SOURCE CONTROL (Ch 9)
SRC2GX?	Output source 2 GPIB control on/off status	MULTIPLE SOURCE CONTROL (Ch 9)
SRC2MOD?	Output external Source 2 model/version string	MULTIPLE SOURCE CONTROL (Ch 9)
SRC2NA	Select source 2 as not active	MULTIPLE SOURCE CONTROL (Ch 9)
SRCH	Enter marker search value	MARKERS (Ch 6)
SRCH?	Output marker search value	MARKERS (Ch 6)
SRT	Enter start frequency	MEASUREMENT (Ch 4)
SRT?	Output start frequency	MEASUREMENT (Ch 4)
ST1	Select set on mode	RECEIVER MODE (Ch 9)
STD	Store trace to memory on active channel	DISPLAY (Ch 4)

Command	Description	Group
STH	Enter active segmented limit horizontal start position	LIMITS (Ch 6)
STH?	Output active segmented limit horizontal start position	LIMITS (Ch 6)
STP	Enter stop frequency	MEASUREMENT (Ch 4)
STP?	Output stop frequency	MEASUREMENT (Ch 4)
STV	Enter active segmented limit vertical start position	LIMITS (Ch 6)
STV?	Output active segmented limit vertical start position	LIMITS (Ch 6)
SV1	Save front panel setup number 1 to memory	SAVE/RECALL (Ch 8)
SV10	Save front panel setup number 10 to memory	SAVE/RECALL (Ch 8)
SV2	Save front panel setup number 2 to memory	SAVE/RECALL (Ch 8)
SV3	Save front panel setup number 3 to memory	SAVE/RECALL (Ch 8)
SV4	Save front panel setup number 4 to memory	SAVE/RECALL (Ch 8)
SV5	Save front panel setup number 5 to memory	SAVE/RECALL (Ch 8)
SV6	Save front panel setup number 6 to memory	SAVE/RECALL (Ch 8)
SV7	Save front panel setup number 7 to memory	SAVE/RECALL (Ch 8)
SV8	Save front panel setup number 8 to memory	SAVE/RECALL (Ch 8)
SV9	Save front panel setup number 9 to memory	SAVE/RECALL (Ch 8)
SVB	Save current band definitions	MULTIPLE SOURCE CONTROL (Ch 9)
SVBMM	Save and activate the new Millimeter Wave band definitions	MILLIMETER WAVE (Ch 9)
SWP	Return to normal sweep mode	MEASUREMENT (Ch 4)
SWP?	Output sweep mode	MEASUREMENT (Ch 4)
SWPDIR?	Output instantaneous sweep direction forward/reverse	MEASUREMENT (Ch 4)
SWR	Select SWR display for active channel	DISPLAY (Ch 4)
SXX?	Output s parameter or user defined parameter of active channel	MEASUREMENT (Ch 4)
T13	Select overlaid channel 1 and 3 display	CHANNELS (Ch 4)
T24	Select overlaid channel 2 and 4 display	CHANNELS (Ch 4)
TA2	Enter port 2 test attenuator value	MEASUREMENT (Ch 4)
TA2?	Output port 2 test attenuator value	MEASUREMENT (Ch 4)
TA2MAX?	Output port 2 test attenuator max value	MEASUREMENT (Ch 4)
TACD	Take AutoCal data	AUTOCAL (Ch 5)
ТВР	Select time bandpass mode for active channel	TIME DOMAIN (Ch 9)
TC1	Take calibration data for port 1	CALIBRATION (Ch 5)
TC2	Take calibration data for port 2	CALIBRATION (Ch 5)

Command	Description	Group
TCD	Take calibration data on one or both ports as necessary	CALIBRATION (Ch 5)
TCM	Select the TRM calibration method	CALIBRATION (Ch 5)
TDC	Select time domain harmonic frequency calibration data points	CALIBRATION (Ch 5)
TDDIST	Set time domain parameter to distance for active channel	TIME DOMAIN (Ch 9)
TDDIST?	Output active channel time domain parameter distance or time	TIME DOMAIN (Ch 9)
TDPI0	Turn phasor impulse response off for active channel	TIME DOMAIN (Ch 9)
TDPI1	Turn phasor impulse response on for active channel	TIME DOMAIN (Ch 9)
TDPIX?	Output phasor impulse on/off status for active channel	TIME DOMAIN (Ch 9)
TDTIME	Set time domain parameter to time for active channel	TIME DOMAIN (Ch 9)
TDX?	Output domain mode for active channel	TIME DOMAIN (Ch 9)
TEB	Select external trigger executes *DDT defi- nition	TRIGGERS (Ch 7)
TEX	Select external measurement triggering	MEASUREMENT (Ch 4)
TIB	Select GPIB measurement triggering	TRIGGERS (Ch 7)
TIME	Enter the system time	SYSTEM STATE (Ch 8)
TIME?	Output the system time	SYSTEM STATE (Ch 8)
TIN	Select internal measurement triggering	MEASUREMENT (Ch 4)
TK1	Select tracking mode	RECEIVER MODE (Ch 9)
TLP	Select time lowpass mode for active chan- nel	TIME DOMAIN (Ch 9)
TLZ	Enter through line impedance for calibration	CALIBRATION (Ch 5)
TOL	Enter through offset length for calibration	CALIBRATION (Ch 5)
TPI	Select time phasor impulse mode for active channel	TIME DOMAIN (Ch 9)
TPN	Enter pen number for trace overlay data	HARD COPY (Ch 8)
TRCCOL	Enter the color number for memory data	SYSTEM STATE (Ch 8)
TRCCOL?	Output the color number for memory data	SYSTEM STATE (Ch 8)
TRS	Trigger/restart sweep	MEASUREMENT (Ch 4)
TST	Perform self test and output status (same as *TST?)	IEEE 488.2 (Ch 7)
TXX?	Output trigger source	MEASUREMENT (Ch 4)
U10	Select 10 mil UTF calibration kit	CALIBRATION (Ch 5)
U15	Select 15 mil UTF calibration kit	CALIBRATION (Ch 5)
U25	Select 25 mil UTF calibration kit	CALIBRATION (Ch 5)

Command	Description	Group
UNDOGC	Exit gain compression and undo changes	GAIN COMPRESSION (Ch 9)
UPL0	Turn upper limit off	LIMITS (Ch 6)
UPL1	Turn upper limit on at current value	LIMITS (Ch 6)
UPL20	Turn upper limit off for bottom graph	LIMITS (Ch 6)
UPL21	Turn upper limit on at current value for bottom graph	LIMITS (Ch 6)
UPL2X?	Output upper limit on/off status for bottom graph	LIMITS (Ch 6)
UPLX?	Output upper limit on/off status	LIMITS (Ch 6)
US	Suffix sets time data type and scales by 1E-6	DATA ENTRY SUFFIXES (Ch 4)
US1	Select upper segmented limit 1 as the active segment	LIMITS (Ch 6)
US10	Select upper segmented limit 10 as the active segment	LIMITS (Ch 6)
US2	Select upper segmented limit 2 as the active segment	LIMITS (Ch 6)
US3	Select upper segmented limit 3 as the active segment	LIMITS (Ch 6)
US4	Select upper segmented limit 4 as the active segment	LIMITS (Ch 6)
US5	Select upper segmented limit 5 as the active segment	LIMITS (Ch 6)
US6	Select upper segmented limit 6 as the active segment	LIMITS (Ch 6)
US7	Select upper segmented limit 7 as the active segment	LIMITS (Ch 6)
US8	Select upper segmented limit 8 as the active segment	LIMITS (Ch 6)
US9	Select upper segmented limit 9 as the active segment	LIMITS (Ch 6)
USC	Suffix sets time data type and scales by 1E-6	DATA ENTRY SUFFIXES (Ch 4)
USE	Enter effective dielectric for microstrip calibration	CALIBRATION (Ch 5)
USL	Enter label string for user parameter being defined	USER DEFINED PARAMETERS (Ch 9)
USL?	Output label string for user parameter being defined	USER DEFINED PARAMETERS (Ch 9)
USR1	Measure user parameter 1 on active chan- nel	USER DEFINED PARAMETERS (Ch 9)
USR2	Measure user parameter 2 on active chan- nel	USER DEFINED PARAMETERS (Ch 9)
USR3	Measure user parameter 3 on active channel	USER DEFINED PARAMETERS (Ch 9)

Command	Description	Group
USR4	Measure user parameter 4 on active channel	USER DEFINED PARAMETERS (Ch 9)
USW	Enter microstrip width for microstrip calibration	CALIBRATION (Ch 5)
USZ	Enter microstrip impedance for microstrip calibration	CALIBRATION (Ch 5)
V	Suffix sets voltage data type	DATA ENTRY SUFFIXES (Ch 4)
V15	Set Millimeter Wave Band to V Band (WR-15)	MILLIMETER WAVE (Ch 9)
VLT	Suffix sets voltage data type	DATA ENTRY SUFFIXES (Ch 4)
VSP	Enter rear panel stop voltage value	REAR PANEL OUTPUT (Ch 9)
VSP?	Output rear panel stop voltage value	REAR PANEL OUTPUT (Ch 9)
VST	Enter rear panel start voltage value	REAR PANEL OUTPUT (Ch 9)
VST?	Output rear panel start voltage value	REAR PANEL OUTPUT (Ch 9)
W10	Set Millimeter Wave Band to W Band (WR-10)	MILLIMETER WAVE (Ch 9)
W10E	Set Millimeter Wave Band to extended W Band (WR-10E)	MILLIMETER WAVE (Ch 9)
WCO	Enter waveguide cutoff frequency for user defined kit	CALIBRATION (Ch 5)
WFS	Wait full sweep until all display data is valid	MEASUREMENT (Ch 4)
WIDE	Use entire display width for graphs	SYSTEM STATE (Ch 8)
WKD	Select user defined waveguide calibration kit	CALIBRATION (Ch 5)
WKI	Select installed waveguide calibration kit	CALIBRATION (Ch 5)
WLS	Select low sidelobe window shape	TIME DOMAIN (Ch 9)
WMS	Select minimum sidelobe window shape	TIME DOMAIN (Ch 9)
WNM	Select nominal window shape	TIME DOMAIN (Ch 9)
WRT	Select rectangular window shape	TIME DOMAIN (Ch 9)
WSH1	Enter waveguide short offset 1 for user defined kit	CALIBRATION (Ch 5)
WSH2	Enter waveguide short offset 2 for user defined kit	CALIBRATION (Ch 5)
WSX?	Output window shape	TIME DOMAIN (Ch 9)
XM3	Suffix sets unitless data type and scales by 1E-3	DATA ENTRY SUFFIXES (Ch 4)
XMKR?	Output marker mode	MARKERS (Ch 6)
XSB?	Output byte order for output data LSB or MSB	DATA TRANSFER (Ch 7)
XX1	Suffix sets unitless data type	DATA ENTRY SUFFIXES (Ch 4)
XX3	Suffix sets unitless data type and scales by 1E3	DATA ENTRY SUFFIXES (Ch 4)

Command	Description	Group
ZCT	Enter zoom range center value time or distance	TIME DOMAIN (Ch 9)
ZCT?	Output zoom range center value	TIME DOMAIN (Ch 9)
ZSN	Enter zoom range span value time or distance	TIME DOMAIN (Ch 9)
ZSN?	Output zoom range span value	TIME DOMAIN (Ch 9)
ZSP	Enter zoom range stop value time or distance	TIME DOMAIN (Ch 9)
ZSP?	Output zoom range stop value	TIME DOMAIN (Ch 9)
ZST	Enter zoom range start value time or distance	TIME DOMAIN (Ch 9)
ZST?	Output zoom range start value	TIME DOMAIN (Ch 9)

/Inritsu