Statistical Summary of Selected Physical, Chemical, and Microbial Characteristics, and Estimates of Constituent Loads in Urban Stormwater, Maricopa County, Arizona

By THOMAS J. LOPES, KENNETH D. FOSSUM, JEFFREY V. PHILLIPS, and JIM E. MONICAL

U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 94—4240

Prepared in cooperation with the FLOOD CONTROL DISTRICT OF MARICOPA COUNTY

Tucson, Arizona 1995

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not constitute endorsement by the U.S. Government.

For additional information write to:

District Chief U.S. Geological Survey Water Resources Division 375 South Euclid Avenue Tucson, AZ 85719-6644 Copies of this report can be purchased from:

U.S. Geological Survey Open-File Section Box 25286, MS 517 Denver Federal Center Denver, CO 80225

CONTENTS

Page

Abstract	1
Introduction	2
Purpose and scope	2
Approach	2
Acknowledgments	4
Description of the study area	4
Data-collection methods	7
Precipitation	7
Stream discharge	7
Stormwater and streamflow samples	8
Selected physical, chemical, and microbial characteristics	9
Physical characteristics	9
Chemical characteristics	12
Microbial characteristics	19
Estimates of constituent loads and event-mean constituent concentrations	20
Constituent loads	21
Adjustment of regional-regression equations	21
Load estimates for Phoenix, surrounding municipalities, and major drainage basins	25
Event-mean constituent concentrations	44
Summary	45
References cited	50
Selected water-quality data for flow-weighted composite and instantaneous samples	
of stormwater and streamflow	52

FIGURES

Page

1.	Map showing study area and stormwater-monitoring stations, Maricopa County,	
	Arizona	3
23.	Graphs showing:	
	2. Specific conductance of stormwater as a function	
	of time during a storm, Maricopa County, Arizona	12
	3. Event-mean concentrations of total recoverable trace metals	
	in stormwater as a function of suspended-solids concentrations	
	and suspended-solids concentrations as a function of	
	percentage of impervious area, Maricopa County, Arizona	14
4.	Boxplots showing ranges in selected event-mean constituent concentrations	
	in stormwater as a function of land use, Maricopa County, Arizona	16
5.	Graphs showing observed loads of total recoverable cadmium in stormwater	
	and volume of runoff as a function of predicted load and volume,	
	Maricopa County, Arizona	23

CONTENTS—Continued

FIGURES-	-Continued	Page
610.	Maps showing:	
	6. Distribution of unit-constituent loads in stormwater	
	for the City of Chandler	43
	7. Distribution of unit-constituent loads in stormwater	
	for the City of Mesa	44
	8. Distribution of unit-constituent loads in stormwater	
	for the City of Paradise Valley	45
	9. Distribution of unit-constituent loads in stormwater	
	for the City of Peoria	46
1	0. The major drainage basins in the Phoenix area	47

TABLES

1.	Mean monthly precipitation and mean monthly maximum and minimum temperatures,	
	Sky Harbor Airport, Phoenix, Arizona	4
2.	Characteristics of seasonal storms with greater than 0.1 inches of precipitation	
	in the Phoenix area	6
3.	Drainage area, land use, and impervious area for urban drainage-basin sites and Salt River	
	monitoring sites, Maricopa County, Arizona	6
4.	Constituents that were not detected in samples of stormwater, Maricopa County,	
	Arizona	10
5.	Correlations of percentage of impervious area, total recoverable trace metals, and total	
	nutrients to event-mean concentrations of suspended solids, Maricopa County,	
	Arizona	13
6.	Summary statistics for selected properties and event-mean constituent concentrations	
	measured in stormwater from urban drainage basins monitored by the	
_	USGS and City of Phoenix, Maricopa County, Arizona	15
7.	Summary statistics for selected event-mean constituent concentrations measured in	
•	stormwater and streamflow, Maricopa County, Arizona	17
8.	Comparison of predicted constituent loads with observed constituent loads	
	in stormwater and comparison of predicted volume of storm runoff with	
•	observed volume of storm runoff, Maricopa County, Arizona	22
9.	Calibration-error statistics for adjusting regional-regression equations with local data,	~
• •	Maricopa County, Arizona.	24
10.	Explanatory variables that were correlated with observed constituent loads and	• -
	volume of storm runoff at a level of 15 percent, Maricopa County, Arizona	25
11.	Summary of regression equations selected for estimating storm-runoff constituent	•
	loads and volumes for Phoenix and surrounding municipalities	26
12.	Summary statistics of regression equations for estimating storm-runoff	a -
	constituent loads and volumes for the Phoenix and surrounding municipalities	27

CONTENTS—Continued

TABLES—Continued

13.	Estimated constituent loads of a mean summer storm for Phoenix and surrounding municipalities	30
14.	Estimated constituent loads of a mean winter storm for Phoenix and surrounding municipalities	31
15.	Estimated mean summer constituent loads for Phoenix and surrounding municipalities	33
16.	Estimated mean winter constituent loads for Phoenix and surrounding municipalities	34
17.	Estimated constituent loads of a mean spring storm for Phoenix and surrounding municipalities	36
18.	Estimated mean spring constituent loads for Phoenix and surrounding municipalities	37
19.	Estimated mean annual constituent loads for Phoenix and surrounding municipalities	39
20.	Estimated volume of runoff for a mean storm and mean seasonal volumes	40
21.	Estimated mean annual volume of runoff for Phoenix	42
22.	and surrounding municipalities Estimated mean annual constituent loads for major drainage basins in	43
	Phoenix and surrounding municipalities	48
23.	Ranking of the major drainage basins in the Phoenix area by unit-constituent loads	50

CONVERSION FACTORS

Multiply	Ву	To obtain
inch (in.)	25.40	millimeter
inch (in.)	2.540	centimeter
foot (ft)	0.305	meter
square mile (mi ²)	2.590	square kilometer
cubic foot per second (ft^3/s)	0.0283	cubic meter per second
pound (lb)	0.907	megagram

In this report, temperature is reported in degrees Fahrenheit (°F), which can be converted to degrees Celsius (°C) by the following equation:

$$^{\circ}C = (^{\circ}F - 32)/1.8$$

ABBREVIATED WATER-QUALITY UNITS

Chemical concentrations are given only in metric units. Chemical concentration in water is given in milligrams per liter (mg/L) or micrograms per liter (μ g/L). Milligrams per liter is a unit expressing the solute mass per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. For concentrations less than 7,000 milligrams per liter, the numerical value is about the same as for concentrations in parts per million (ppm). Specific conductance is given in microsiemens per centimeter (μ S/cm) at 25°C.

Page

VERTICAL DATUM

Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929—A geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called "Sea Level Datum of 1929."

ABBREVIATIONS AND ACRONYMS

- **BOD** 5-day biological oxygen demand, in storm-runoff load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- CD Total recoverable cadmium in storm-runoff load, in pounds, or in storm-runoff mean concentration, in micrograms per liter.
- COD Chemical oxygen demand in storm-runoff load, in pounds, or in storm-runoff mean concentration, in micrograms per liter.
- CU Total recoverable copper in storm-runoff load, in pounds, or in storm-runoff mean concentration, in micrograms per liter.
- DA Total contributing drainage area.
- DDE Dichlorodiphenyldichloroethylene.
- **DDT** Dichlorodiphenyltrichloroethane.
- **DP** Dissolved phosphorus in storm-runoff load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- **DRN** Duration of each storm, in minutes, for storm-runoff load and mean concentration models.
- **DS** Dissolved solids in storm-runoff load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- FCDMC Flood Control District of Maricopa County.
- GIS Geographic-information system.
- IA Impervious area, as a percentage of total contributing drainage area.
- LUC Commercial land use, as a percentage of total contributing drainage area.
- LUI Industrial land use, as a percentage of total contributing drainage area.
- LUN Undeveloped land use, as a percentage of total contributing drainage area.
- LUR Residential land use, as a percentage of total contributing drainage area.
- MAP Model-adjustment procedure.
- **NPDES** National Pollution Discharge Elimination System.
- **PB** Total recoverable lead in storm-runoff load, in pounds, or in storm-runoff mean concentration, in micrograms per liter.
- RUN Storm-runoff volume, in cubic feet.
- SS Suspended solids in storm-runoff load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- TKN Total ammonia plus organic nitrogen as nitrogen in storm-runoff load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- TN Total nitrogen in storm-runoff load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- **TP** Total phosphorus in storm-runoff load, in pounds, or in storm-runoff mean concentration, in milligrams per liter.
- **TRN** Total storm rainfall, in inches.
- **ZN** Total recoverable zinc in storm-runoff load, in pounds, or in storm-runoff mean concentration, in micrograms per liter.

Statistical Summary of Selected Physical, Chemical, and Microbial Characteristics, and Estimates of Constituent Loads in Urban Stormwater, Maricopa County, Arizona

By Thomas J. Lopes, Kenneth D. Fossum, Jeffrey V. Phillips, and Jim E. Monical

Abstract

Stormwater and streamflow were monitored to describe the physical, chemical, and microbial characteristics of stormwater from areas having different land uses, to describe the characteristics of streamflow in a river that receives urban stormwater, and to estimate constituent loads in stormwater from unmonitored areas in Maricopa County. Spearman rank correlations indicate that certain constituents are associated with suspended solids and that the concentration of suspended solids decreases with increasing percentages of impervious area. Land use affects urban stormwater chemistry mostly because the percentage of impervious area varies with the type of land use. The percentage of impervious area is typically largest for commercial and industrial areas and smallest for residential areas. Urban activities also seem to concentrate cadmium, lead, and zinc in sediments. Urban stormwater, streamflow, and stormwater from a drainage basin with undeveloped land use had similar ranges in most other constituent concentrations. The concentration of dissolved solids in urban stormwater was less than in streamflow from the Salt River and the stormwater would dilute most constituent concentrations. Urban stormwater, however, had larger concentrations of chemical oxygen demand and biological oxygen demand, oil and grease, and higher counts of fecal bacteria. These constituents could degrade the quality of streamflow when the Salt River flows.

Organochlorine pesticides, semivolatile compounds, and volatile organic compounds were seldom detected in urban stormwater and were not detected in streamflow or stormwater from the drainage basin with undeveloped land use. Dichlorodiphenyldichloroethylene (commonly referred to as DDE) was the most commonly detected pesticide and was measured in concentrations of 0.04 to 1.1 micrograms per liter at most urban drainage basins. DDE is a degradation product of dichlorodiphenyltrichloroethane (commonly referred to as DDT) and may be a residue from the 1950's and 1960's when most of the land in the metropolitan Phoenix area was used for agriculture.

Loads for a mean storm, mean seasonal loads, and mean annual loads of 12 constituents and volumes of runoff were estimated for municipalities in the Phoenix area by adjusting regional-regression equations of loads for an individual storm. Most of the adjusted equations require three explanatory variables (total rainfall, drainage area, and percentage of impervious area) to estimate constituent loads and had standard errors that ranged from 65 to 266 percent. Localized areas in the cities of Chandler, Mesa, Paradise Valley, and Peoria seem to contribute a large proportion of the constituent loads. These localized areas typically have 40 percent or more impervious area and are associated with industrial, commercial, and high-density residential land use. Constituent loads seem to be evenly distributed in other municipalities. Regional-regression equations for estimating event-mean constituent concentrations for an individual storm also were adjusted. However, the equations did not estimate constituent concentrations accurately; therefore, the use of the mean value of the event-mean constituent concentrations measured in stormwater may be the best way of estimating constituent concentrations.

INTRODUCTION

The U.S. Environmental Protection Agency, under section 402(p) of the Water Quality Act of 1987, has required municipalities with populations of more than 100,000 to obtain National Pollution Discharge Elimination System (NPDES) permits for urban stormwater discharge. This regulation is intended to minimize pollutant loadings from urbanized areas and preserve the quality of streams that receive stormwater. To apply for a NPDES permit, a municipality must monitor the chemistry of stormwater from areas having residential, commercial, and industrial land uses and estimate storm- and annual-pollutant loads and event-mean concentrations of 12 selected constituents discharged in stormwater. These estimates will be used by the municipalities to evaluate the magnitude of pollutant loadings and the efficiency of management strategies that are intended to reduce pollutant loads.

Phoenix, Mesa, Tempe, Scottsdale, Glendale, and unincorporated Maricopa County (fig. 1) each have populations of more than 100,000. These municipalities and other contiguous municipalities with populations less than 100,000 constitute the metropolitan Phoenix area. Most stormwater in the Phoenix area is routed into drainage channels, which are tributary to ephemeral streams including the Gila, Salt, New, and Agua Fria Rivers. Data on the types and amounts of constituents discharged in stormwater were needed by water-management agencies to design stormwater-management strategies and to assess the effects of stormwater on the water resources of Maricopa County. The U.S. Geological Survey (USGS), in cooperation with the Flood Control District of Maricopa County (FCDMC), monitored stormwater in three of the municipalities affected by NPDES regulations from October 1991 to October 1993. Stormwater was monitored to (1) characterize the chemistry of stormwater from drainage basins with urban land uses, (2) characterize the chemistry of streamflow from an ephemeral stream that receives urban stormwater, and (3) estimate the loads and concentrations of constituents in stormwater that discharges from urbanized Maricopa County.

Purpose and Scope

This report presents physical, chemical, and microbial characteristics of stormwater from drainage basins with residential, commercial, light industrial, heavy industrial, and undeveloped land uses, and characteristics of streamflow from the Salt River. Constituent loads, volumes of runoff, and event-mean constituent concentrations for a mean storm, mean seasonal rainfall, and mean annual rainfall were estimated for municipalities and major drainage basins in the Phoenix area.

Estimates constituent of loads and concentrations are reported for chemical oxygen biological oxygen demand, demand, 5-day suspended solids, dissolved solids, total nitrogen, total ammonia plus organic nitrogen, total dissolved phosphorus, phosphorus, total recoverable cadmium, total recoverable copper, total recoverable lead, and total recoverable zinc. The report includes data collected from August 1992 through February 1993 for the Salt River, and from October 1991 to October 1993 from five drainage basins with areas of residential, commercial, light industrial, heavy industrial, or undeveloped land use.

Approach

Drainage basins with a predominant land use were monitored so that stormwater from areas with different land uses could be characterized. The duration of storm flow typically is short and makes sampling difficult. Streamflow-gaging stations were instrumented with equipment that allowed remote monitoring of rainfall and stream discharge so that field crews could collect manual grab samples before storm flow stopped. Streamflowgaging stations were instrumented with automatic samplers to collect samples during the entire storm and to reduce the personnel requirements for the study. Only five drainage basins could be monitored because of the costs of instrumenting sites and limited personnel. A consultant for the City of Phoenix monitored seven drainage basins using a similar approach. Two of these drainage basins, however, were of mixed land use.

Estimates were made by adjusting regional regression equations (Driver and Tasker, 1990) for

Figure 1. Study area and stormwater-monitoring stations, Maricopa County, Arizona.

local application. Land-use data and a geographicinformation system (GIS) were used with the adjusted equations to estimate constituent loads and volume of runoff from each municipality, to evaluate the areal distribution of constituent loads, and to identify areas that are contributing a large proportion of the total loads.

Monitoring stations were installed in drainage basins with residential, commercial, light industrial, heavy industrial, and undeveloped land use. Drainage basins with a predominant land use were selected so that stormwater from different land uses could be characterized. Additional criteria for the selection of drainage basins included (1) an outfall at which a stage-discharge rating could be developed so that stream discharge could be computed, (2) definite drainage-basin boundaries so that drainage-basin characteristics could be quantified, and (3) a contributing area of less than 1,920 acres so that data would be consistent with data used to develop regional-regression equations (Driver and Tasker, 1990, table 4).

Acknowledgments

Roland Wass and Catesby Moore, Flood Control District of Maricopa County (FCDMC), and David Phillips, formerly with FCDMC, provided support and cooperation throughout the study. Carol Davis, formerly with FCDMC, obtained permits to install the monitoring stations. Jess and Sons allowed access through their property at 27th Avenue. Gary Tasker, research hydrologist, USGS, assisted in statistical analyses of constituent loads.

DESCRIPTION OF THE STUDY AREA

The Phoenix area is in a broad, flat basin in south-central Arizona (fig. 1). The basin is about 1,000 to 1,300 ft above sea level and slopes downward from east to west. The highest peak in the surrounding mountains is about 2,700 ft above sea level in South Mountain Park. The study area is about 957 mi² and includes the cities of Chandler, Gilbert, Glendale, Guadalupe, Mesa, Paradise Valley, Peoria, Phoenix, Scottsdale, Tempe, Tolleson, and Youngtown. The combined population of municipalities included in this study is 2,036,845 (Maricopa Association of Governments, 1993), which is about 89 percent of the total population of Maricopa County. Residential and open spaces are the most abundant land-use types and constitute about 62 and 18 percent of the Phoenix area, respectively (Maricopa Association of Governments, 1989). The remaining 20 percent includes other land uses such as commercial and industrial land use, parks, and schools.

Maricopa County is in the northern Sonoran Desert climatic zone. Mean monthly maximum temperatures are 105°F during summer and mean monthly minimum temperatures are 40°F during winter (National Oceanic and Atmospheric Administration, 1990; table 1, this report).

Table 1. Mean monthly precipitation and mean monthlymaximum and minimum temperatures, Sky HarborAirport, Phoenix, Arizona

[Precipitation values are given in inches; temperature values are given in degrees Fahrenheit. Data from National Oceanic and Atmospheric Administration, 1990]

	Climatic variable						
Month	Mean monthly	Mean monthly temperature, In degrees Fahrenhei					
	taticn, in inches	Maxi- mum	Mini- mum				
January	0.73	65.2	39.4				
February	.59	69.7	42.5				
March	.81	74.5	46.7				
April	.27	83.1	53.0				
May	.14	92.4	61.5				
June	.17	102	70.6				
July	.74	105	79.5				
August	1.02	102	77.5				
September	.64	98	70.9				
October	.63	87	59.1				
November	.54	74.3	46.9				
December	.83	66.4	40.2				
Annual	7.11	85.1	57.3				

Mean annual rainfall at Sky Harbor International Airport is 7.11 in. Most of the annual rainfall occurs from two weather patterns that have distinct characteristics (table 2). About 40 percent of the annual rainfall occurs between July and October from subtropical monsoons that originate from the Gulf of Mexico and Gulf of California and typically are short duration, high-intensity thunderstorms. About 50 percent of the annual rainfall occurs between November and March from cold fronts that originate in the Gulf of Alaska and typically are long duration, low-intensity storms. The remaining 10 percent of the annual rainfall occurs between April and June and could be the result of either type of weather pattern.

Stormwater from a drainage basin with residential land use was monitored near the intersection of Oregon and Peoria Avenues in Youngtown (USGS streamflow-gaging station 09513700; table 3). This site is an open channel that is tributary to the Agua Fria River and was monitored for streamflow by the USGS from 1961 to 1968. About 50 percent of the homes in the basin have desert landscaping and about 50 percent have irrigated lawns. Commercial areas in the northern part of the drainage basin consist of two small shopping malls with parking lots, a gas station, and an automobile-repair shop.

Stormwater from a drainage basin with commercial land use was monitored at the northwest corner of Peoria and 43rd Avenues in Phoenix (09513885). Runoff at this site flows through a weir and into the Arizona Canal Diversion Channel, which is a stormwater conveyance that discharges into the New River. About 50 percent of the pervious area is undeveloped, and about 50 percent has desert landscaping with some irrigation. Commercial businesses include a restaurant and retail stores. Resurfacing of the parking lot in March 1993 may have influenced the chemistry of the stormwater samples collected on March 26 and August 24, 1993.

Stormwater from a drainage basin with light industrial land use was monitored at a 120-inchwide box culvert in Tempe near the intersection of 48th Street and the 48th Street drain (09512184). The box culvert discharges into the 48th Street drain, which is a stormwater conveyance that discharges to the Salt River. Most of the pervious area has irrigated landscaping. Light industrial businesses include offices, warehouses, small manufacturing shops, and heavy equipment rental. Commercial land use includes a hotel and a restaurant.

Stormwater from a drainage basin with heavy industrial land use was monitored at a 96-inchdiameter culvert at the intersection of 27th Avenue and the left bank of the Salt River in Phoenix, streamflow-gaging station 09512403. Most businesses are automobile recycling and repair shops that operate on unpaved lots. A precast concrete-product plant, a chemical storage facility, and a mobile-home park also are in the drainage basin.

Stormwater from a drainage basin with undeveloped land was monitored in an open channel at South Mountain Park (09512200), where continuous stream-discharge records have been collected since 1961. The drainage basin is tributary to the Salt River; however, a retention pond was constructed downstream from the streamflowgaging station in 1979 and reduces the amount of streamflow that reaches the river. The drainage basin was designated as a mountain preserve in 1973 and is used as an outdoor recreation area.

Urban stormwater also was monitored at seven drainage basins by the City of Phoenix from January to August 1992. These data were combined with data from the five drainage basins monitored by the USGS. The combined data, which represent a wide range in basin and storm characteristics, were used in statistical analyses of stormwater characteristics and estimates of constituent loads and concentrations. Drainage basins were 77 to 1,582 acres and consisted of homogenous and mixed land uses (table 3). The percentage of impervious area was not measured, but was estimated using percentages that represent each land use (Flood Control District of Maricopa County, 1993)-very low-density residential, 15 percent; low-density residential, 25 percent; medium-density residential, 45 percent; multiplefamily residential, 65 percent; industrial, 75 percent; and commercial, 90 percent. Comparison of these percentages with the percentage of impervious areas measured at drainage basins monitored by the USGS indicates that these estimated values are accurate.

Table 2. Characteristics of seasonal storms with greater than 0.1 inches of precipitation in the Phoenix area

[Values were calculated using data from Sky Harbor Airport, 1954–90. Storm separation is the criterion used to differentiate separate storms. Storms were considered separate when the number of hours without rainfall was equal to or greater than the storm separation]

Type of atorm	Months of season	Storm separ- ation,	Sto rainfr inct	orm all, in N es ¹	Mean atorm rainfail, in	Stand- ard devia- tion in	Sto durati hou	orm Ion, in Ira ¹	Mean storm dura-	Numb atori	er of ns ¹	Mean num- ber of
		houra	From	То	Inches	inches	From	То	houra	From	То	atorma
Summer monsoon	July-October	6	0.44	0.46	0.46	0.43	4.36	5.82	5.06	7	6	7
Winter cold front	November-March	12	.41	.47	.46	.39	10.6	17.06	14.1	8	7	7
Either cold front or monsoon	April-June	9	.32	.38	.36	.32	5.44	10.10	8.56	2	2	2

¹Values are ranges when storm separation is varied by 50 percent.

Table 3. Drainage area, land use, and impervious area for urban drainage-basin sites and Sait River monitoring sites, Maricopa County, Arizona

[South Mountain drainage area has about 1 percent roads, which were not categorized into a particular land use. Station numbers with a 0951-prefix were monitored by the U.S. Geological Survey; station numbers with a 33-prefix were monitored by the City of Phoenix. NA, not available]

Otation	l!	Area of drainage baain, in acrea	Area of Land use, in percent					imper-
number	identifier		Resi- dential	Light induatry	Heavy induatry	Com- merciai	Unde- veloped	area, in percent
		Urban drai	nage-basin	sites				
09512184	48th Street	39	0	85	0	8	7	80
09512200	South Mountain	1,120	0	0	0	0	99	1
09512403	27th Avenue	45	6	0	94	0	0	15
09513885	Peoria	3.4	0	0	0	97	3	94
09513700	Youngtown	81	90	0	0	10	0	33
333416112072701	AC-05	77	7	0	0	62	31	58
333557111594201	IB-08	609	78	0	0	11	11	37
333431111573501	IB-11	1,582	84	0	0	2	14	32
332333112080301	SR-03	1,363	21	24	18	18	19	54
332525112011001	SR-21	631	0	0	0	77	23	57
332501112042201	SR-33	989	47	6	14	16	17	49
332409111594101	SR-45	120	0	0	100	0	0	74
Salt River monitoring sites								
09512165	Salt River at Priest Drive	8,565,000	NA	NA	NA	NA	NA	NA
09512190	Salt River at 24th Street	8,570,000	NA	NA	NA	NA	NA	NA

6 Description of the Study Area

The Salt River was sampled at the streamflowgaging stations, Salt River at 24th Street, at Phoenix, Arizona (09512190), and Salt River at Priest Drive, at Phoenix, Arizona (09512165). These gaging stations are in the central part of the Phoenix area, and less than about 5 percent of the drainage areas are urbanized. The Salt River is ephemeral and typically flows only during large storms in the Phoenix area or when dams upstream from Maricopa County release water. Most streamflow samples were collected during the flood of 1993 when water was released from dams on the Verde and Salt Rivers and streamflow reached a maximum of 129,000 ft³/s on January 8, 1993. Streamflow was sampled near the 24th Street streamflow-gaging station when water was released from a dam on the Verde River. Runoff from urban areas was not significant at the time that the samples were collected.

DATA-COLLECTION METHODS

Runoff and precipitation data were collected by the USGS from October 1991 to October 1993 using the following equipment:

- Campbell Scientific Instruments, Inc., CR10 datalogger and SM192 storage module
- Sierra-Misco Environment Ltd., model 2500 tipping-bucket rain gage
- Druck PDCR 940 pressure transducer
- Conoflow and pressure-regulator system
- Isco, Inc., Model 3700 automatic-pumping sampler

Motorola MC310 cellular telephone

Measurement of stage and precipitation and activation of the automatic-pumping sampler were controlled by the datalogger. The datalogger was programmed to record instrument readings, calculate stream discharge, and activate the automatic-pumping sampler when a specified volume of water had been discharged from the drainage basin. The datalogger also initiated a telephone call to a hydrologist when precipitation or discharge was measured so that the hydrologist could make manual discharge measurements and collect grab samples during runoff. Data were recorded at 1-minute intervals when either rainfall or stream discharge was measured. Data were recorded once a day (at midnight) if dry conditions persisted.

Precipitation

Precipitation was measured at all monitoring sites with a tipping-bucket rain gage calibrated to tip when 0.01 in. was collected. A pulse was transmitted to the datalogger each time 0.01 in. of rainfall was collected. The number of pulses in each minute was recorded to measure rainfall intensity. Rainfall during each successive minute was recorded and summed to obtain accumulated rainfall.

Stream Discharge

Gage height was measured at urban drainage basins and South Mountain using a Conoflow and pressure-regulator system. The Conoflow and pressure regulator maintain a constant rate of nitrogen flowing through a tube that extends from the gaging station to an orifice at the bottom of the channel or culvert. Greater pressure is required to maintain a constant-flow rate through the tube as stage increases. Pressure in the tube was measured by the pressure transducer, which was calibrated to within 0.02 ft and, except for the 27th Avenue streamflow-gaging station, placed 3 to 5 ft underground to reduce effects of temperature on measurements. At 27th Avenue, the transducer was placed in the culvert and insulated. Temperature of the pressure transducer varied by about $4^{\circ}F/d$; temperature corrections were not necessary. Gage height was measured by a float at Salt River at 24th Street, at Phoenix, Arizona (09512190), and by a wire-weight gage at Salt River at Priest Drive, at Phoenix, Arizona (09512165).

Stage-discharge ratings for all urban drainage basins were developed on the basis of channel geometry and slope using the slope-conveyance method (Kennedy, 1984). A stage-discharge rating based on manual-discharge measurements was used at the South Mountain site, and instantaneous discharge measurements were made when streamflow samples were collected from the Salt River. Stream-discharge measurements were made at all streamflow-gaging stations using either a pygmy meter or Price AA meter and the 0.6-depth or 0.2- and 0.8-depth wading method or a calibrated bucket (Rantz and others, 1982). Stream-discharge measurements compared well with stage-discharge ratings.

Instantaneous discharge rates at urban drainage basins and South Mountain were computed by programming the datalogger with a log-normal regression equation that was fit to the stagedischarge rating of each site (Kolb, 1983). The log-normal equations compared well with all stagedischarge ratings (correlation coefficients were 0.99 or greater). Stream-discharge volumes were computed by multiplying the mean of two consecutive discharge-rate measurements by 60 seconds to obtain the mean volume of stream discharge during that 1-minute interval. The mean volumes were summed to obtain the total volume of runoff.

Stormwater and Streamflow Samples

Stormwater samples were collected from drainage basins by automatic-pumping samplers and by manually collecting grab samples. Streamflow samples were collected from the Salt River using the equal-width-increment method and by collecting grab samples. For the equal-widthincrement method, samples are collected at equal distances perpendicular to the direction of river flow. Samples are then composited to obtain a single sample that is representative of the stream at a specific time. The automatic-pumping sampler is a portable, nonrefrigerated unit calibrated to pump a specified volume of stormwater. Twenty-four 1-liter, teflon-lined, polyethylene bottles were used to hold discrete samples that were pumped when a specified volume of water had discharged from the drainage basin. Samples were placed on ice and transported to the field office for processing. The samples were poured into a teflon-lined, stainlesssteel churn splitter to split the flow-weighted composite sample into the bottles required for each chemical analysis. Samples for dissolved-chemical analysis were filtered using a 0.45-micron effective pore-size cellulose filter. Preservatives were then added to sample bottles as required. All components of the sampling equipment that came into contact with sample water were constructed of Manual grab samples for cyanide, oil and grease, volatile organic compounds, phenols, and fecal bacteria counts were collected by depth integration at the deepest and swiftest part of flow to represent the largest volume of discharge in the cross section. Samples were preserved and placed on ice during transport to the field office. Field measurements of dissolved-oxygen concentration, pH, specific conductance, and temperature were measured at the point where grab samples were collected. A Corning Checkmate 90 meter was used for all field measurements and was calibrated with standard solutions before each measurement.

Quality-assurance procedures were followed throughout the study to identify potential problems in data collection caused by sampling methods or equipment contamination. These procedures included the use of trip-blank, duplicate, fieldspike, and equipment-blank samples. Trip-blank samples were prepared by the USGS National Water Quality Laboratory and were used to check for contamination of volatile-organic compound samples during transport from the field to the laboratory. Trip blanks were transported in the same containers as bottles containing sample water. Results of trip-blank analyses indicate that contamination did not occur. Duplicate samples were used to check the precision of laboratory analyses and the sample-splitting process. Analyses from duplicate samples indicated that laboratory analyses and the sample-splitting process were producing consistent results. A field-spike sample was used to evaluate sample degradation and constituent recovery by the laboratory. Results of spike-sample analysis indicated that the degradation of certain constituents may have occurred during sample shipment. Equipmentblank samples were collected by pumping and processing inorganic-free and organic-free water in the same manner as sample water. Analyses from equipment blanks indicated that the cleaning procedure was efficient and minimal cross contamination occurred between sampled storms.

The representativeness of samples collected with the automatic-pumping sampler was evaluated by collecting manual, depth-integrated samples simultaneously with automatically collected samples. Samples were analyzed for nutrients, selected metals, and suspended-solids concentrations. Results indicated that flow in shallow, swift channels is well mixed and can be accurately represented by samples collected at a single point.

All chemical analyses, except 5-day biological oxygen demand (BOD), were done by the USGS National Water Quality Laboratory. BOD was analyzed by a laboratory contracted by FCDMC. Alkalinity and fecal-bacteria counts were measured in the Tempe office of the USGS.

SELECTED PHYSICAL, CHEMICAL, AND MICROBIAL CHARACTERISTICS

A total of 35 stormwater and streamflow samples were collected from October 1991 to August 1993 to characterize stormwater from the five drainage basins monitored by the USGS and streamflow from the Salt River. Concentrations measured in flow-weighted composite samples are the mean concentrations for a storm (event-mean concentration), whereas, concentrations measured in equal-width increments and manual-grab samples are concentrations at a specific time of the hydrograph (instantaneous concentrations). Unless stated otherwise, concentrations referred to in this report are event-mean concentrations. Of the 35 samples, 5 samples were analyzed for a reduced number of properties and constituents because the volumes of water collected were insufficient to analyze all constituents. Of the 210 properties and constituents analyzed, 127 were not detected in any of the 35 samples (table 4). Quality-assurance data are not presented in this report, but are available upon request from the Tucson office of the USGS. Twenty-six samples were collected from seven sites by the City of Phoenix and analyzed for selected constituents; data on specific conductance, temperature, alkalinity, and dissolved-oxygen and dissolved-constituent concentrations were not available for these samples. Data collected by the City of Phoenix were used in all statistical and

regression analyses and can be requested from the City of Phoenix.

Physical Characteristics

Stormwater and streamflow temperatures ranged from 46° to 86°F, and the initial runoff from Youngtown, Peoria, and 48th Street typically was black in color. The black color could have been from oil and grease, particulates from ground-up tires, or other sources. Event-mean specificconductance values from urban and undeveloped drainage basins ranged from 52 to 894 µS/cm and instantaneous specific-conductance values of samples from the Salt River 309 to 880 µS/cm. In general, specific conductance decreased during storms, indicating that most soluble constituents were washed from exposed surfaces during the initial part of a storm or were diluted (fig. 2). Specific conductance increased during some storms at 48th Street and 27th Avenue. The increase could be due to runoff from areas in the drainage basin arriving at the streamflow-gaging station at different times.

Dissolved-solids concentrations from urban drainage basins and South Mountain seem lognormally distributed and ranged from 33 to 660 mg/L; about 90 percent of samples had less than 150 mg/L. These low concentrations indicate that the drainage basins have few soluble solids, that stormwater had little time to dissolve solids from exposed surfaces, or that soluble solids were diluted. Instantaneous dissolved-solids concentrations of streamflow from the Salt River at 24th Street and Priest Drive ranged from 180 to 491 mg/L. Instantaneous dissolved-solids concentrations ranged from 287 to 855 mg/L for all samples collected at the streamflow-gaging station, Salt River below Stewart Mountain Dam, Arizona (09502000) during 1960 to 1993, which is about 20 miles northeast of Mesa. The dissolved-solids concentrations indicate that streamflow would be diluted by urban runoff.

Suspended-solids concentrations in urban runoff seem log-normally distributed, ranged from less than 1 to 1,480 mg/L, and were inversely correlated with percentage of impervious area (rank correlation was -0.44; table 5, fig. 3). The rank correlation refers to the Spearman rank correlation,

Watstore code	Constituent	Watstore code	Constituent
01012	Beryllium, total	34596	Dinoctyl phthalate, total
01030	Chromium, dissolved	34601	2,4-Dichlorophenol, total
01035	Cobalt, dissolved	34606	2,4,Dimethylphenol, total
01059	Thallium, total	34611	2,4-Dinitrotoluene, total
30217	Dibromomethane, recoverable	34616	2,4-Dinitrophenol, total
32101	Dichlorobromomethane, total	34621	2,4,6-Trichlorophenol, total
32102	Carbontetrachloride, total	34626	2,6-Dinitrotoluene, total
32103	1,2-Dichloroethane, total	34631	3,3'-Dichlorobenzidine, total
32104	Bromoform, total	34636	4-Bromophenylphenylether, total
32105	Chlorodibromomethane, total	34641	4-Chlorophenylphenylether, total
32106	Chloroform, total	34646	4-Nitrophenol, total
34030	Benzene, total	34657	4,6-Dinitroorthocresol, total
34200	Acenapthylene, total	34668	Dichlorodifluoromethane, total
34205	Acenaphthene, total	34671	Aroclor 1016 pcb, total
34210	Acrolein, total	34696	Naphthalene, total
34215	Acrylomitrile, total	34699	Trans-1,3-dichloropropene, total
34220	Anthracene, total	34704	Cis-1,3-dichloropropene, total
34242	Benzo K fluoranthene, total	39032	Pentachlorophenol, total
34247	Benzo A pyrene, total	39062	Chlordane, cis isomer, total
34259	Delta benzene hexachloride, total	39065	Chlordane, trans isomer, total
34273	Bis 2-chloroethyl ether, total	39 110	Dinbutylphthalate, total
34278	Bis (2-chloroethoxy) methane, total	39120	Benzidine, total
34283	Bis (2-chloroisopropyl) ether, total	39175	Vinylchloride, total
34292	n-Butylbenzyl phthalate, total	3918 0	Trichloroethylene, total
34301	Chlorobenzene, total	39310	P,P' DDD, total
34311	Chloroethane, total	39330	Aldrin, total
34336	Diethyl phthalate, total	39337	Alpha bhc, total
34341	Dimethyl phthalate, total	39338	Beta benzene hexachloride, total
34351	Endosulfan sulfate, total	39340	Lindane, total
34356	Endosulfan beta, total	39350	Chlordane, total
34361	Endosulfan i, recoverable	39390	Endrin, recoverable
34366	Endrin aldehyde total	39400	Toxaphene, total

Table 4. Constituents that were not detected in samples of stormwater, Maricopa County, Arizona

Watstore code	Constituent	Watatore code	Conatituent
34371	Ethylbenzene, total	39410	Heptachlor, total
34381	Fluorene, total	39420	Heptachlor epoxide, total
34386	Hexachlorocyclopentadiene, total	39488	Aroclor 1221 pcb, total
34396	Hexachloroethane, total	39492	Aroclor 1232 pcb, total
34408	Isophorone, total	39496	Aroclor 1242 pcb, total
34413	Methylbromide, total	39500	Aroclor 1248 pcb, total
34418	Methylchloride, total	39508	Aroclor 1260 pcb, total
34428	n-Nitrosodi-n-propylamine, total	39700	Hexachlorobenzene, total
34433	n-Nitrosodiphenylamine, total	39702	Hexachlorobutadiene, total
34438	n-Nitrosodimethylamine, total	77093	Cis-1,2-dichloroethene, total
34447	Nitrobenzene, total	77168	1,1-Dichloropropene, total
34452	Parachlorometa cresol, total	77170	2,2-Dichloropropane, total,
34461	Phenanthrene, total	77173	Propane, 1,3-dichloro-, total
34475	Tetrachloroethylene, total	77223	Benzene, isopropyl-, recoverable
34488	Trichlorofluoromethane, total	77224	Benzene, n-propyl-, recoverable
34496	1,1-Dichloroethane, total	77226	Mesitylene, total
34501	1,1-Dichloroethylene, total	77275	O-Chlorotoluene, total
34506	1,1,1-Trichloroethane, total	77277	Toluene, p-chloro-, recoverable
34511	1,1,2-Trichloroethane, total	77 29 7	Methane, bromochloro-, recoverable
34516	Ethane, 1,1,2,2-tetrachloro-, recoverable	77342	Benzene, n-butyl-, recoverable
34526	Benzo(a)anthracene1, 2-benzanthracene, total	77350	Benzene, sec-butyl-, recoverable
34536	Benzene, o-chloro-, recoverable	77353	Benzene, tert-butyl-, recoverable
34541	1,2-Dichloropropane, total	77443	1,2,3-Trichloropropane, total,
34546	1,2-Transdichloroethene, total	77562	Ethane, 1,1,1,2-tetrachloro-, recoverable
34551	Benzene, 1,2,4-trichloro-, recoverable	77613	Benzene, 1,2,3-trichloro-, recoverable
34556	1,2,5,6-Dibenzanthracene, total	77651	1,2-Dibromoethane, total
34566	Benzene, 1,3-dichloro-, recoverable	77652	Freon 113, recoverable
34571	Benzene, 1,4-dichloro-, recoverable	81555	Bromobenzene, total
34576	2-Chloroethylvinylether, total	82625	Dibromochloropropane, recoverable
34581	2-Chloronaphthalene, total	82626	1,2-Diphenylhydrazine, recoverable
34586	2-Chlorophenol, total	99897	Antimony, total recoverable
3459 1	2-Nitrophenol, total		

Table 4. Constituents that were not detected in samples of stormwater, Maricopa County, Arizona-Continued

Figure 2. Specific conductance of stormwater as a function of time during a storm, Maricopa County, Arizona. Time refers to Mountain Standard Time and is given according to the 24-hour clock. U.S. Geological Survey stormwater-monitoring station number is in italics.

which correlates two variables using their relative ranking rather than using absolute values and gives outliers less weight in the correlation. The largest suspended-solids concentration (3,390 mg/L) was from South Mountain. Instantaneous suspendedsolids concentrations from the Salt River were from 3 to 720 mg/L, and correlated strongly and directly with stream discharge (rank correlation was 0.77).

Chemical Characteristics

Values of each physical property and constituent concentration commonly varied by an order of magnitude among the drainage basins and seem log-normally distributed, with the exception of nutrients. Summary statistics for the urban drainage basins (table 6) were computed using the logprobability regression method (Helsel and Cohn, 1988). This method does not assume a log-normal distribution in the data and uses censored data (lessthan values) to more accurately estimate means and standard deviations.

Stormwater and streamflow had pH values from 6.3 to 9.0, which are typical values for most river waters (Hem, 1985, p. 64). Dissolved- and whole-water alkalinity values ranged from 10 to 150 and 10 to 228 mg/L as calcium carbonate, respectively. For all samples, alkalinity values were larger in whole water or about equal to filtered samples because the surface of sediments can neutralize acids. Dissolved-oxygen concentrations ranged from 3.8 to 10.2 mg/L, and about 75 percent of samples were saturated 80 percent or more with atmospheric oxygen (Hem, 1985, p. 155). Low dissolved-oxygen concentrations occurred in **Table 5.** Correlations of percentage of impervious area, total recoverable trace metals, and total nutrients to event-mean concentrations of suspended solids, Maricopa County, Arizona

[Data from South Mountain and the Salt River are not included. Significance is the probability that the two variables are independent. Data from USGS and City of Phoenix were used in statistical analyses]

Variable	Spear- man rank ccrre- iaticn tc sua- pended sclids	Sig- nifi- cance	Number of aamplea
Chemical oxygen demand, in milligrams per liter	0.50	0.00	41
5-day biological oxygen demand, in milligrams per liter	.32	.04	41
Total nitrogen, in milligrams per liter	.42	.00	35
Total ammonia plus organic nitrogen, in milligrams per liter	.30	.05	40
Total phosphorus, in milligrams per liter	.57	.00	40
Cadmium, total recoverable, in micrograms per liter	.71	.00	27
Copper, total recoverable, in micrograms per liter	.57	.00	38
Lead, total recoverable, in micrograms per liter	.76	.00	45
Zinc, total recoverable, in micrograms per liter	.76	.00	44
Fecal coliform, in colonies per 100 milliliters	.18	.28	38
Fecal streptococci, in colonies per 100 milliliters	.29	.08	38
Impervious area, in percent	44	.00	46

samples that were black in color. Calcium and bicarbonate were the predominant dissolved ions in samples from urban drainage basins and South Mountain; sodium and chloride were the predominant dissolved ions in samples from the Salt River.

Ranges in total recoverable trace-metal concentrations for all land uses were similar, except for heavy industrial land use (fig. 4, table 7). Large trace-metal concentrations for heavy industrial land use are mostly due to the large suspended-solids concentrations from 27th Avenue, which has only 15 percent impervious area. Heavy industrial land use typically has about 75 percent impervious area and likely contributes less suspended solids to stormwater runoff. Naturally occurring trace metals adsorb onto sediments and probably account for most concentrations in stormwater; however, activities industrial could increase the concentration of certain trace metals. Concentrations of selected constituents were compared by grouping data by land use as follows: Youngtown, 1B-08, and 1B-11 represent residential land use; Peoria and SR-21 represent commercial land use; 27th Avenue and SR-45 represent heavy industrial land use; and 48th Street represents light industrial land use. AC-05, SR-03, and SR-33 represent mixed land use in figure 4; however, statistics of constituent concentrations for mixed land use were not computed.

Data from South Mountain and the Salt River were combined to represent nonurban sources. Concentrations of most constituents from South Mountain and the Salt River were within the range of concentrations from urbanized drainage basins (table 6). Total recoverable trace-metal concentrations from South Mountain and the Salt River varied and directly correlated with discharge and suspended-solids concentrations. The sample of January 12, 1992, at South Mountain was collected during low discharge near the end of the storm and was a manual-grab sample. Concentrations for all total recoverable trace metals were consistently smaller in this sample than in the sample of February 7, 1992, which was a flow-weighted composite sample.

Comparison of total recoverable to dissolved trace-metal concentrations and correlations between suspended-solids and total recoverable trace-metal concentrations indicate that most trace metals are in the solid phase. Dissolved trace-metal concentrations were typically less than detection limits or, when detected, less than 20 percent of the

Figure 3. Event-mean concentrations of total recoverable trace metals in stormwater as a function of suspendedsolids concentrations and suspended-solids concentrations as a function of percentage of impervious area, Maricopa County, Arizona.

total recoverable concentrations. About half the samples from Peoria, however, had dissolvedcopper and dissolved-zinc concentrations that were greater than 50 percent of the total recoverable concentration. Rank correlations between concentrations of suspended solids and total recoverable trace metals ranged from 0.57 to 0.76 (table 5). Five discrete samples were collected at 48th Street on May 20, 1992, and rank correlations between instantaneous concentrations of suspended solids and total recoverable trace metals ranged from 0.89 to 0.97. These correlations indicate that trace metals are associated with the suspended solids.

Data form a linear trend when selected constituent concentrations measured in urban

Table 6. Summary statistics for selected properties and event-mean constituent concentrations measured in stormwater from urban drainage basins monitored by the USGS and City of Phoenix, Maricopa County, Arizona

[Data from South Mountain and the Salt River are not included. Samples were collected between October 1991 and October 1993. Mean values were calculated using the log probability method. <, less than; NA, not analyzed. Dashes indicate no data]

				.		Num- ber	Detecti	cn limit
Property or constituent	Maxi- mum	Mini- mum	Mean	Stan- dard devia- tion	Number of samples	less than detec- tion iimit	USGS	City cf Phoenix
Chemical oxygen demand, in milligrams per liter	4,300	<10	239	645	43	1	10	1
Biological oxygen demand, in milligrams per liter	3,600	3	109	528	46	3	5	1
Suspended solids, in milligrams per liter	1,480	<1	227	381	46	1	1	10
Dissolved solids, in milligrams per liter	660	33	102	93.6	45	0	1	10
Nitrogen, total, in milligrams per liter	7.3	1.3	3.26	1.39	40	0	.1	
Nitrogen, ammonia plus organic, total, in milligrams per liter	4.9	.6	2.1	1.0	41	0	.2	
Phosphorus, total, in milligrams per liter	1.7	.11	.41	.32	41	0	.01	.05
Phosphorus, dissolved, in milligrams per liter	.63	.03	.17	.14	25	0	.01	NA
Cadmium, total recoverable, in micrograms per liter	6	<0.2	.99	1.17	50	19	1	.2
Copper, total recoverable, in micrograms per liter	320	5	47.0	· 63.4	42	0	1	1
Lead, total recoverable, in micrograms per liter	620	3	71.6	125	49	0	1	1
Zinc, total recoverable, in micrograms per liter	980	<5	204	204	49	1	10	1
Fecal coliform, in colonies per 100 milliliters	1,600,000	130	44,400	240,000	44	0	1	2
Fecal streptococci, in colonies per 100 milliliters	160,000	130	17,400	27,300	45	0	1	2

Figure 4. Ranges in selected event-mean constituent concentrations in stormwater as a function of land use, Maricopa County, Arizona.

stormwater are plotted as a function of suspendedsolids concentrations (fig. 3). Data from South Mountain and the Salt River also form a linear trend, but the slopes and intercepts for total recoverable zinc and total recoverable lead seem to be lower. These trends indicate that urbanization may have elevated the concentration of certain constituents in urban sediments and that sediments from different land uses have roughly equal constituent concentrations. If sediments from different land uses had different constituent concentrations, then the combined urban data would not form a linear trend. Cadmium was detected in only one nonurban sample, but was detected in 31 urban samples. Urban activities also seem to have elevated the concentration of cadmium and may have elevated the concentration of other constituents. **Table 7.** Summary statistics for selected event-mean constituent concentrations measured in stormwater and streamflow, Maricopa County, Arizona

[Data for South Mountain and Salt River were combined to represent nonurban sources and include event-mean and instantaneous concentrations. Data from drainage basins with mixed land use were not grouped into any land-use category. <, less than. Dashes indicate that statistics could not be computed]

		Number of	C	concentrat	lon		Detect	ion limit
Constituent	Num- ber of aam- plea	samplea containing concentra- tion lesa than the detection limit	Maxi- mum	Mini- mum	Mean	Stan- dard devia- tion	U.S. Geo- iogical Survey	City of Phoenix
		Res	idential					
Chemical oxygen demand, in milligrams per liter	13	1	200	<10	100	50	10	1
Suspended solids, in milligrams per liter	14	1	910	<1	180	230	1	10
Cadmium, total recoverable, in micrograms per liter	14	5	3	<.2	.8	.7	1	.2
Copper, total recoverable, in micrograms per liter	11	0	45	5	23	5	1	1
Lead, total recoverable, in micrograms per liter	14	0	99	5	32	28	1	1
		Com	mercial					
Chemical oxygen demand, in milligrams per liter	8	0	330	60	150	90	10	1
Suspended solids, in milligrams per liter	8	0	337	20	120	1 2 0	1	10
Cadmium, total recoverable, in micrograms per liter	9	6	.9	.6	.7	.2	1	.2
Copper, total recoverable, in micrograms per liter	9	0	64	8	20	17	1	1
Lead, total recoverable, in micrograms per liter	9	0	27	3	12	7.7	1	1
		Heavy	industry					
Chemical oxygen demand, in milligrams per liter	9	0	4,300	110	72 0	90	10	1
Suspended solids, in milligrams per liter	9	0	1,480	84	79 0	530	1	10
Cadmium, total recoverable, in micrograms per liter	10	1	6	.9	2.5	1.7	1	.2
Copper, total recoverable, in micrograms per liter	8	0	320	50	140	9 0	1	1
Lead, total recoverable, in micrograms per liter	10	0	620	31	250	180	1	1

 Table 7. Summary statistics for selected event-mean constituent concentrations measured in stormwater and streamflow, Maricopa County, Arizona—Continued

		Number of	C	oncentrat	ion	· · · · · · · · · · · · · · · · · · ·	Detect	lon ilmit
Constituent	Num- ber of sam- ples	containing concentra- tion less than the detection limit	Maxi- mum	Mini- mum	Mean	Stan- dard devia- tion	U.S. Geo- logicai Survey	City of Phoenix
		Ligt	nt industry					
Chemical oxygen demand, in milligrams per liter	6	0	300	53	120	1,360	10	1
Suspended solids, in milligrams per liter	7	0	680	10	250	260	1	10
Cadmium, total recoverable, in micrograms per liter	7	4	2	<1	.8	.8	1	.2
Copper, total recoverable, in micrograms per liter	5	0	72	10	43	24	1	1
Lead, total recoverable, in micrograms per liter	7	0	130	11	38	43	1	1
		South Moun	tain and Sal	t River				
Chemical oxygen demand, in milligrams per liter	8	0	21,000	12	2,650	7,420	10	1
Suspended solids, in milligrams per liter	8	0	3,390	3	620	1,140	1	10
Cadmium, total recoverable, in micrograms per liter	8	7	2	<1			1	.2
Copper, total recoverable, in micrograms per liter	8	0	300	2	70	120	1	1
Lead, total recoverable, in micrograms per liter	8	2	150	<1	28	50	1	1

The difference in the slopes and intercepts between urban and nonurban data could be due to differences in the grain size of suspended solids. Trace metals concentrate on fine-grained materials, which tend to have a greater capacity for adsorbing metals than coarse-grained material (Horowitz and Elrick, 1987). Suspended solids in runoff from urban drainage basins generally were about fine sand or less in size. Coarse sand was observed in samples from South Mountain and the Salt River, which could account for the lower trace-metal concentrations per mass of suspended solids. Total recoverable copper, however, formed a linear trend with suspended solids, and the slope and intercept for urban and nonurban data do not appear to be different. The similarity indicates that lead and zinc could be released by urban activities and become concentrated in sediments. Additional data on sediments of equal grain size are needed to assess the effects of urbanization on sediment chemistry.

Nutrient concentrations for all stormwater samples seem normally distributed and were significantly and positively correlated with suspendedsolids concentrations (table 5). Total organic nitrogen plus ammonia concentrations comprised a mean 64 percent of the total-nitrogen concentra-

tions with a standard deviation of 16 percent. Total organic nitrogen concentrations were larger than the ammonia concentrations in all but six samples from Youngtown, Peoria, SR-03, and 48th Street. The large proportion of ammonia in these six samples could be from fertilizers applied to landscaped areas in these drainage basins. Dissolved phosphorus constituted a mean 47 percent of the total phosphorus concentration with a standard deviation of 27 percent. The significant correlation of total phosphorus concentrations with suspendedsolids concentrations indicates that phosphorus in stormwater is associated with the solid phase (table 5). Phosphorus has a low solubility and may be present as a precipitate with the suspended solids (Hem, 1985, p. 126).

BOD and chemical oxygen demand (COD) seem log-normally distributed and ranged from less than 5 to 3,600 mg/L and from less than 10 to 21,000 mg/L, respectively. About 25 percent of samples from urban drainage basins exceeded the maximum allowable BOD limit of 30 mg/L for secondary treated effluent from publicly owned treatment works (State of Arizona, 1989). The rank correlation between BOD and total organic carbon was not significantly correlated (rank correlation of 0.21). The rank correlation between COD and total organic carbon was 0.94 and was significant at a level of 1 percent. BOD and COD are different measures of the amount of oxidizable material in stormwater. The large difference in correlations could be due to the differences in analyzing for oxidizable material and preservation techniques. Samples for BOD are preserved by chilling and are analyzed within 48 hours of sample collection. BOD analysis measures only the amount of readily oxidizable material. Samples for COD are chemically preserved and analyzed for all oxidizable material. The high correlation between COD and total organic carbon indicates that most of the oxygen demand is due to organic carbon. The low correlation between BOD and total organic carbon indicates that either most of the organic carbon is not readily oxidizable or that significant oxidation occurs before BOD is analyzed. The maximum BOD concentration (3,600 mg/L) from 27th Avenue probably is due to the large total organic carbon concentration (1,100 mg/L). The cause of the large COD concentration (21,000 mg/L) from South Mountain, however, is

unknown and cannot be due to the low total organic carbon concentration (210 mg/L).

Oil and grease were detected in about 80 percent of urban stormwater samples and concentrations ranged from less than 1 to 9 mg/L. The strainer for the automatic-pumping sampler at Youngtown and Peoria was coated with oil and grease after most storms. Oil and grease were not detected in samples from the Salt River or South Mountain. Total phenols were detected in about 55 percent of urban stormwater samples and concentrations ranged from less than 1 to 1,900 μ g/L. Total phenols were detected in about 50 percent of samples from the Salt River and concentrations ranged from less than 1 to 2 μ g/L.

Organochlorine pesticides, semivolatile compounds, and volatile organic compounds were seldom detected in stormwater and were not detected in streamflow. Dichlorodiphenyldichloroethylene (DDE) was the most commonly detected pesticide, and concentrations ranged from 0.04 to 1.1 µg/L in stormwater from Youngtown, Peoria, and 27th Avenue. Dichlorodiphenyltrichloroethane (DDT) and arochlor 1254 were detected at 27th Avenue at concentrations from 0.1 to 0.3 μ g/L. Dieldrin was detected in one sample from Youngtown at a concentration of 0.04 μ g/L. DDT and its degradation product, DDE, could be residual insecticides from the 1950's and 1960's when most of the land in the metropolitan Phoenix area was used for agriculture (Hanks, 1988) or are byproducts in the manufacturing of other organochlorine pesticides that are still in use. Organochlorine pesticides were not detected in samples from 48th Street, South Mountain, or the Salt River.

Semivolatile compounds and volatile organic compounds were detected in only three samples from 48th Street and four samples from Peoria and were near detection levels. Detected compounds included polyaromatic hydrocarbons, plasticizers, and gasoline additives. Chemical analyses indicate that these compounds were not significant in stormwater.

Microbial Characteristics

Fecal coliform and fecal streptococci counts seem log-normally distributed (table 6), and in some samples, counts were estimated because the colonies were too numerous to count accurately. Total fecal-bacteria counts (fecal coliform plus fecal streptococci) were not significantly correlated with suspended-solids concentrations at a level of 5 percent. The largest counts of fecal coliform and fecal streptococci were measured in samples from SR-03 (1,600,000 and greater than 160,000 col/100 mL, respectively) and could be due to sewer overflows diluted with runoff. Total fecal-bacteria counts were lowest in samples from the Salt River.

ESTIMATES OF CONSTITUENT LOADS AND EVENT-MEAN CONSTITUENT CONCENTRATIONS

Estimates of constituent loads and concentrations discharged in stormwater from each municipality were needed by the FCDMC in anticipation of NPDES permit requirements. Estimates of constituent loads discharged from major drainage basins were needed to quantify the effect of urban stormwater on the receiving ephemeral streams. A statistical approach was used to estimate constituent loads and concentrations from unmonitored drainage basins in the Phoenix area.

Drainage-basin and storm characteristics for basins and storms monitored by the USGS and City of Phoenix were used with regional-regression equations (Driver and Tasker, 1990) to predict constituent loads and concentrations. These predictions were compared with measured values to evaluate the accuracy of the regional-regression equations, and then the equations were adjusted for application to unmonitored basins in the Phoenix area. The adjustments are regressions that combine the regional-regression equations and local data. Therefore, the adjusted equations are based on a large data set that includes local and regional data. This reduces the amount of local data needed to estimate constituent loads and concentrations but maintains the statistical strength of the equations.

Procedures for adjusting the regionalregression equations (model adjustment procedures, MAP's) are described by Hoos and Sisolak (1993). In this report, the term, prediction (P_{μ}) , refers to a value computed from the regionalregression equations that has a corresponding measured (observed) value. The term, estimate, refers to a value computed from a regression equation at an unmonitored drainage basin. Drainage basin, land use, and precipitation data from Sky Harbor Airport were used with the adjusted regression equations to estimate constituent loads and mean concentrations for each municipality and major drainage in the Phoenix area.

The regional-regression equations consist of two sets of equations that apply to regions that were delineated on the basis of mean annual precipitation (Driver and Tasker, 1990). One set of equations uses subsets of 13 explanatory variables to estimate constituent loads, concentrations, and volume of runoff (RUN) from urban drainage basins. The subsets were determined using a stepwise multipleregression analysis and are referred to in this report as the stepwise equations. The explanatory variables include storm, drainage basin, and climatic characteristics. The second set of equations uses only total rainfall (TRN), drainage area (DA), and percentage of impervious area (IA) as the independent variables for estimating constituent loads. Regressions were developed using log (base 10) transformations of the response and explanatory variables. The general form of the detransformed regional-regression equation is:

$$P_{u} = \beta_{o} \times \chi_{1}^{\beta_{1}} \times \chi_{2}^{\beta_{2}} \dots \chi_{n}^{\beta_{n}} \times BCF \qquad (1)$$

where

- P_{μ} = unadjusted storm-runoff load or volume (response variable) computed using regionalregression equation;
- $\beta_o, \beta_1, \beta_2, \beta_n =$ regression coefficients;
 - $\chi_1, \chi_2, \chi_n =$ explanatory variables such as physical, land-use, and climatic characteristics; and

20 Estimates of Constituent Loads and Event-Mean Constituent Concentrations

BCF = bias-correction factor that corrects for systematic biases that occur during the detransformation of the explanatory variables.

The stepwise and three-variable equations were used to predict the loads and concentrations of 11 constituents and RUN for storms that were sampled by the USGS and the City of Phoenix. The 11 constituents were chemical oxygen demand (COD), suspended solids (SS), dissolved solids (DS), total nitrogen (TN), total ammonia plus organic nitrogen (TKN), total phosphorus (TP), dissolved phosphorus (DP), total recoverable cadmium (CD), total recoverable copper (CU), total recoverable lead (PB), and total recoverable zinc (ZN). Regional-regression equations for BOD were not developed.

Constituent Loads

Observed loads were computed by multiplying the volume of runoff from a storm, in cubic feet, by the concentration of constituents in the flowweighted composite, in milligrams or micrograms per liter. The product was then multiplied by a conversion factor to obtain units in pounds. Dissolved phosphorus was not analyzed by the City of Phoenix, so there were no observed values from seven drainage basins to compare with predictions using either the stepwise or three-variable equations. Some spurious observed values were noted (COD from 27th Avenue on December 10, 1991; SS from Youngtown on December 10, 1991; TKN for all samples from AC-05; CD from IB-08 on January 3, 1992). These data were included in all statistical analyses to reflect the large variability and error in estimating stormwater chemistry. Observed loads from Peoria had to be estimated because of errors in measuring the volume of runoff from the basin. The measured volume of runoff for all storms, except for the storm of October 6, 1993, was about 1.2 to 3.9 times larger than the volume of rainfall that fell within the drainage basin indicating that either the rating was not properly defined or the bubbler system did not accurately measure stage. The volume of runoff and observed constituent loads were estimated by using a runoff coefficient of 0.80, which is reasonable for drainage basins with about 90 percent impervious area and flat slopes (Sabol and others, 1990).

Adjustment of Regional-Regression Equations

Rank correlations, using log-transformed values of predicted and observed constituent loads, were significant at a level of 1 percent or less, except for dissolved phosphorus, and were about equal for the stepwise and three-variable equations (table 8). Both the stepwise and three-variable equations overestimated (positive bias) most constituent loads or had no bias. The stepwise equation, however, underestimated suspendedsolids loads (negative bias), and the three-variable equation underestimated dissolved-solids loads. In general, the three-variable equations had less error in predicting the constituent loads than the thirteen-variable equations; however, errors were unacceptably high to apply the regional-regression equations directly to the Phoenix area. The positive correlation between predicted and observed values and bias of the predictions can be used to adjust the regional-regression equations for local application.

The MAP's use a log (base 10) transformation of the observed, predicted, and explanatory variables before correlations and regressions are computed. Explanatory variables are factors that correlate with observed loads; only those variables that were not used in the regional-regression equations can be used in the adjustment procedure. A strong linear relation exists between the untransformed values of observed and predicted loads for certain constituents (fig. 5). An alternative procedure of adjusting the regional-regression equations without the log transformation could improve the estimation of pollutant loads in the Phoenix area. A standard statistical method for comparing accuracy between regression equations using transformed and untransformed values was not available; therefore, regressions of untransformed values were not performed. Local regression equations, using only data from the Phoenix area, were developed for BOD because it was not included in the regional-regression equations. Local regression equations for other constituents also could be developed with the available data. Hoos and Sisolak (1993), however,

Table 8. Comparison of predicted constituent loads with observed constituent loads in stormwater and comparison of predicted volume of storm runoff with observed volume of storm runoff, Maricopa County, Arizona

[Constituent loads are in pounds, and storm runoff is in cubic feet. Plus sign (+), equations overestimate loads; minus sign (-), equations underestimate loads. NA, not applicable. Significance, probability that predicted and observed constituent loads are independent]

	Number	S	tepwise eq	ustion		Thre	e -variable	equation	
Variabie	of data pairs uaed in computa- tiona	Root mean aquare error, in percent	Spear- man rank correia- tion	Signi- ficance	Blaa	Root mean square error, in percent	Spear- man rank correla- tion	Signi- ficance	Blaa
Chemical oxygen demand	39	616	0.69	0.00	+	131	0.69	0.00	+
Suspended solids	42	16, 846	.74	.00	-	535	.62	.00	+
Dissolved solids	42	150	.93	.00	None	161	.91	.00	-
Nitrogen, total	31	1,896	.74	.00	+	135	.69	.00	+
Nitrogen, ammonia plus organic, total	39	174	.76	.00	None	201	.76	.00	+
Phosphorus, total	39	18 ,399	.54	.00	+	260	.78	.00	+
Phosphorus, dissolved	25	747,200	.38	.06	+	566	.42	.03	+
Cadmium, total recoverable	27	156	.84	.00	+	195	.86	.00	None
Copper, total recoverable	38	275	.83	.00	+	152	.82	.00	None
Lead, total recoverable	45	52,785	.62	.00	+	2,370	.64	.00	+
Zinc, total recoverable	44	948	.76	.00	+	189	.72	.00	+
Storm runoff	47	206	.93	.00	+ .	NA	NA	NA	NA

showed that even though local regression equations may provide a better fit to observed values, the equations may not have the smallest root mean squared error.

The MAP used to adjust each regionalregression equation was selected according to the guidelines described by Hoos and Sisolak (1993). The guidelines are a series of conditional statements that lead to either (1) a regression (designated R-P) that uses only predicted constituent loads if predicted and observed constituent loads are positively correlated and biased or (2) a regression (designated R-P+nV)that uses predicted constituent loads and explanatory variables if a correlation and (or) bias do not exist. The n in the R-P+nV regression equals the number of explanatory variables used in the regression. Hoos and Sisolak showed that minimizing the standard

error of estimate was not a valid criterion for selecting the best regression technique.

The selected MAP's were applied to predictions from both the stepwise and three-variable equations (table 9). The general forms of the detransformed MAP equations are for the R-P:

$$P_{ai} = \beta'_{o} \times P_{ui}^{\beta'_{u}} \times BCF'$$
(2)

and for the R-P+nV:

$$P_{ai} = \beta'_{o} \times P_{ui}^{\beta'_{u}} \times (\chi_{1}')^{\beta'_{1}}$$

$$\times (\chi_{2}')^{\beta'_{2}} \dots (\chi_{n}')^{\beta'_{n}} \times BCF'$$
(3)

22 Eatimatea of Conatituent Loads and Event-Mean Constituent Concentrations

Figure 5. Observed load of total recoverable cadmium in stormwater and volume of runoff as a function of predicted load and volume, Maricopa County, Arizona. Loads and volumes were predicted using the stepwise equation of Driver and Tasker (1990).

where

$$P_{ai}$$
 = the adjusted storm-runoff load
or volume at unmonitored site
i;

 P_{ui} = the unadjusted storm-runoff load or volume;

$$\chi_1, \chi_2, \chi_n$$
 = explanatory variables used in
the adjusted regression
equations;

 $\hat{\beta_o}, \hat{\beta_u}, \hat{\beta_1}, \hat{\beta_2}, \hat{\beta_n} =$ regression coefficients for the adjusted regression equations;

BCF = bias-correction factor for the adjusted regression equations.

Correlations were computed between loads and the following explanatory variables: TRN, DA, IA, residential land use (LUR), commercial land use (LUC), industrial land use (LUI), undeveloped land use (LUN), storm duration (DRN), antecedent dry days (ANT) and maximum 5-minute rainfall intensity (MAX5). ANT and MAX5 were not used in the regional-regression equations. ANT and MAX5 correlated with DS, TKN, or CD at a level of 15 percent (table 10) and could account for some Table 9. Calibration-error statistics for adjusting regional-regression equations with local data, Maricopa County, Arizona

[Constituent loads are in pounds, and storm runoff is in cubic feet per second. R-P, regression of observed against predicted value; R-P+nV, regression of observed against predicted value and explanatory variables. Simple, model-adjustment procedure is inappropriate, therefore a simple estimation technique should be used. NA, not applicable]

	S	stepwise equa	ation		Thre	e-variabie eq	uation	
Varlable	Model- adjust- ment pro- cedure	Standard error of estimate, in iog unita	Standard error of estimate, in percent	Adjusted correla- tion coeffi- cient	Modei- adjuat- ment pro- cedure	Standard error of eatimate, In iog units	Standard error of estimate, in percent	Adjusted correla- tion coeffi- cient
Chemical oxygen demand	R-P	0.437	132	0.48	R-P	0.399	115	0.57
Suspended solids	R-P	.611	250	.47	R-P	.627	266	.44
Dissolved solids	R-P+nV	.279	71	.69	R-P	.296	77	.85
Nitrogen, total	R-P	.430	130	.50	R-P	.340	92	.69
Nitrogen, ammonia plus organic, total	R-P+nV	.310	82	.59	R-P	.362	100	.72
Phosphorus, total	R-P	.577	220	.37	R-P	.416	122	.67
Phosphorus, dissolved	R-P	.405	118	.16	R-P	.418	124	.10
Cadmium, total recover- able	R-P	.278	71	.75	R-P+nV	.214	52	.63
Copper, total recoverable	R-P	.452	140	.70	Simple	NA	NA	NA
Lead, total recoverable	R-P	.671	314	.32	R-P	.619	258	.42
Zinc, total recoverable	R-P	.415	122	.61	R-P	.430	129	.58
Storm runoff	R-P	.259	65	.88	NA	NA	NA	NA

of the differences between observed and predicted loads. A level of 15 percent was used because of the small amount of local data available for correlation analysis. The R-P+nV regressions for DS, TKN, and CD were computed using only data from drainage basins monitored by the USGS because data on ANT and MAX5 were not available from the City of Phoenix.

Urban land uses did not correlate strongly with constituent loads (table 10). This lack of correlation is consistent with the observations that most constituents in stormwater are not significantly different between various urban land uses. DA and LUN were the most common variables that correlated with constituent loads. The lack of correlation of TRN with most constituent loads was unexpected, because runoff and constituent loads depend on rainfall. Additional data may show the physical significance of TRN, even though the available data indicates that this explanatory variable generally is not significant.

Explanatory variables that were significantly correlated at a level of 15 percent were used in developing a local regression equation for BOD. The local regression equation for BOD was computed using a stepwise regression analysis of the log-transformed observed loads, DA, and LUN. The best regression, using Mallows' Cp (Helsel and Hirsch, 1992) as the criterion, used only DA as the explanatory variable.

The MAP's greatly reduced the standard errors of the regional-regression equations (compare columns 3 and 7 of table 8 with columns 4 and 8 of table 9). The decision to use either the adjusted stepwise or adjusted three-variable equations for each constituent generally was made on the basis of **Table 10.** Explanatory variables that were correlated with observed constituent loads and volume of storm runoff at a level of 15 percent, Maricopa County, Arizona

[Constituent loads are in pounds, and storm runoff is in cubic feet. ANT, antecedent dry days; DA, drainage area, in square miles; Land use and impervious area, in percent; IA, impervious area; LUC, commercial land use; LUN, undeveloped land use; LUR, residential land use; LUI, industrial land use; MAX5, maximum 5-minute rainfall intensity, in inches per hour; TRN, total storm rainfall. Numbers in parentheses indicate number of samples used in correlations with ANT and MAX5]

Variable	Explanatory variables	Number of sampies
Chemical oxygen demand	ANT, DA, IA, LUC, LUN	39 (24)
5-day biological oxygen demand	ANT, DA, LUN	40 (22)
Suspended solids	ANT, DA, IA, LUC, LUN, LUR, MAX5	42 (25)
Dissolved solids	ANT, DA, LUN	42 (25)
Nitrogen, total	. ANT, DA, LUC, LUN	31 (23)
Nitrogen, ammonia plus organic, total	. ANT, DA, LUN	39 (25)
Phosphorus, total	. ANT, DA, IA,LUN	39 (25)
Phosphorus, dissolved	. DA, LUN	25 (25)
Cadmium, total recoverable	DA, DRN, IA, LUC, LUI, . LUN, MAX5	27 (12)
Copper, total recoverable	. DA, IA, LUC, LUN	38 (20)
Lead, total recoverable	DA, IA, LUC, LUN, . LUR, MAX5, TRN	45 (27)
Zinc, total recoverable	ANT, DA, LUN, MAX5, . TRN	44 (27)
Storm runoff	. DA, DRN, LUN, TRN	47 (27)

simplicity. Adjustments of the three-variable equations were selected to estimate most constituent loads because they require only TRN, DA, and IA as explanatory variables to compute P_u and commonly used the R-P regression. Adjustments of the three-variable equations had

smaller or about equal standard errors than the more complicated stepwise equations. Adjustment of the stepwise equation using the R-P regression for CD was selected because adjustment of the threevariable equation required the more complicated R-P+nV method and was computed using a smaller range in basin characteristics and smaller data set. Adjustments of the stepwise equations using the R-P regression for CU and RUN were used because adjustments of the three-variable equations were not possible. The selected adjusted equations for estimating constituent loads are listed in table 11. The standard error of the adjusted equations was higher (from 65 to 266 percent, table 12) for most constituents than the standard error reported by Driver and Tasker (1990, table 2).

Load Estimates for Phoenix, Surrounding Municipalities, and Major Drainage Basins

The equations in table 11, land-use data, and municipality and drainage-basin boundaries were used to estimate constituent loads for each municipality and major drainage basin. The landuse and boundary data were obtained from the FCDMC and stored in a geographic-information system (GIS). A GIS is a data-base management system that can be used to store map information and to analyze and quantify relations between different maps. Each municipality and major drainage basin was subdivided into sections of 640 acres or less so that equations could be applied to each section. This area was selected because 640 acres is about equal to the area of two drainage basins monitored by the City of Phoenix and the mean area of drainage basins used in the adjustment procedures.

Each land-use type was assumed to be represented by a specific percentage of impervious area (Flood Control District of Maricopa County, 1993). The amount of each land use and impervious area in each of the sections was quantified using GIS. Noncontributing areas, such as lakes and canals, areas with agricultural land use, and areas within a municipality but not part of the municipality were excluded from all computations. The Phoenix area has many dry wells and retention basins; however, data on their locations and contributing areas are not available. Constituent Table 11. Summary of regression equations selected for estimating storm-runoff constituent loads and volumes for Phoenix and surrounding municipalities

1

--(*

[Equation: ((Bo χ (TRN^{B1}) χ (DA^{B2})... χ BCF)^{B10}) χ (Bo adjusted) χ (BCF adjusted). Constituent values are in pounds, and storm runoff is in cubic feet. Bo, regression coefficient that is the intercept of the regression model; B10, the regression model; BCF, bias correction factor in the stepwise or three-variable regression model; B0 adjusted, the regression coefficient that is the intercept of the adjusted regression model; B10, the

		Total	Drsinage	Imper-	Land	use, In perc	ænt	Storm	Mean				
Varisbie	Bo	storm rainfall, in Inches (TRN)	ares, in squsre miles (DA)	vicus ares ¹ In percent (IA)	Industrisi ¹ (LUI)	Commer- clal ¹ (LUC)	Unde- veloped ¹ (LUN)	Intensity, in Inch es (INT)	annus rainfail, In Inches (MAR)	BCF	B10	Bo sdjusted	BCF sdjusted
Chemical oxygen demand	407	0.626	0.710	0.379						1.518	0.826	1.881	1.670
5-day biological oxygen demand	117.5		.382			8				3.042	8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
Suspended solids	1,778	.867	.728	.157					**	2.367	.950	.431	1.967
Dissolved solids	20.7	.637	1.311	1.180						1.249	.688	7.326	1.220
Nitrogen, total	20.2	.825	1.070	479		L 4 6 8				1.258	619.	1.197	1.255
Nitrogen, ammonia plus organic, total	13.9	.722	.781	.328			8			1.722	.947	.421	1.304
Phosphorus, total	1.725	.884	.826	.467				6 6 8 8 8 8		2.130	.931	352	1.377
Phosphorus, dissolved	.540	.976	.795	.573				1 4 5 1 4		2.464	.435	.127	1.446
Cadmium, total recoverable	.039	.845	.753	8	0.138	0.248	-0.374	**		1.244	1.144	.781	1.201
Copper, total recoverable	.141	.807	.590		.424	.274	061	0.928		1.502	1.237	.536	1.562
Lead, total recoverable	.162	.839	808.	.744						1.791	.815	.110	2.244
Zinc, total recoverable	.320	.811	867.	.627	8 8 8 8	*****				1.639	.800	442	1.421
Storm runoff	1,123,052	1.016	.916	.677		4 9 9 9			-1.312	1.299	.963	.491	1.154
¹ Add 1 to the value for	impervious area, ii	ndustrial land	l use, and con	mercial land	use for use in	the equation;	add 2 to the v	alue for unde	veloped land	use.			

26 Estimates of Constituent Losds and Event-Mean Constituent Concentrations

Table 12. Summary statistics of regression equations for estimating storm-runoff constituent loads and volumes for Phoenix and surrounding municipalities

Variable	Num- ber of sam- pies	Adjus- ted corre- iation coeffi- cient	Standard error of estimate, in percent	Method
Chemical oxygen demand	39	0.57	115	R-P 3-variable
5-day biological oxygen demand	40	.20	241	Local
Suspended solids	42	.44	266	R-P 3-variable
Dissolved solids	42	.85	77	R-P 3-variable
Nitrogen, total	31	.69	92	R-P 3-variable
Nitrogen, ammonia plus organic, total	39	.72	100	R-P 3-variable
Phosphorus, total	39	.67	122	R-P 3-variable
Phosphorus, dissolved	25	.10	124	R-P 3-variable
Cadmium, total recoverable	27	.75	71	R-P 13-variable
Copper, total recoverable	38	.70	140	R-P 13-variable
Lead, total recoverable	45	.42	258	R-P 3-variable
Zinc, total recoverable	44	.58	129	R-P 3-variable
Storm runoff	47	.88	65	R-P 13-variable

loads presented in this report therefore could be overestimated.

Confidence intervals measure the accuracy of constituent-load estimates. The confidence intervals represent the probability that the true (but unknown) mean of each constituent load is within a certain range and is represented by:

 $(\frac{1}{\tau}) P_{ai} < Y_i < (T) P_{ai}$ (4)

where

 Y_i = true (but unknown) value of the response variable at unmonitored site *i*:

T is calculated as follows:

$$\log (T) = t_{(\frac{\alpha}{2}, n-p)} \times SEP_i$$
 (5)

where

t

$$t_{(\frac{\alpha}{2}, n-p)}$$
 = critical value of the t-
distribution for n-p degrees of freedom:

- number of observations in the = n calibration data set;
- = number of explanatory variables р plus 1; and
- standard error of prediction, $SEP_i =$ expressed in log units, for adjusted estimate.

For the R-P regression:

$$SEP_{i} = \sqrt{SE_{R-P}^{2} (1 + u_{i} (U_{i}^{\prime}U_{i})^{-1}u_{i}^{\prime})}$$
(6)

where

- standard error of estimate (in SE_{R-P} log units) for the R-P regression equation;
 - a (1×2) row vector containing 1 = U; as the first element, and the value for the single explanatory variable, P_{ui} , evaluated (in log units) for unmonitored site i, augmented by a 1 as the first element; and

 U_i = a (n x 2) matrix containing 1 as the first column, and the values for the single explanatory variable, P_u , evaluated (in log units) for all n sites in the R-P calibration set, in the second column.

For any storm, the constituent load for a municipality is equal to the sum of estimates of all sections that comprise the municipality. The confidence interval for the sum is computed by summing the variance of estimates, in real units, and taking the square root to obtain the SEP (Gary Tasker, research hydrologist, USGS, written commun., May 1994). The steps for summing variances are described in the following equations:

$$VAR_{i} = (2.306 \times SEP_{i})^{2}$$
 (7)

$$CV_i = \sqrt{e^{var_i} - 1} \tag{8}$$

$$VAR_{i, real} = (CV_i \times P_{ai})^2$$
 (9)

$$VAR_{sum} = \sum_{i=1}^{n} VAR_{i, real}$$
(10)

$$SEP_{sum} = \sqrt{VAR_{sum}}$$
 (11)

$$T = t_{(\frac{\alpha}{2}, n-p)} \times SEP_{sum}$$
(12)

where

 VAR_i = variance of estimate, in log (base e) units, at unmonitored site *i*;

$$CV_i$$
 = coefficient of variation;

$$SEP_{sum}$$
 = standard error of estimate for the sum.

The procedure for computing constituent loads, confidence intervals, and confidence intervals of a sum, described by equations 1 through 12, apply to an individual storm with a fixed TRN value. The constituent loads for a mean summer, winter, or spring storm are estimated from mean TRN values, which have standard deviations that need to be taken into consideration. The constituent loads of mean summer, winter, and spring storms were estimated using rainfall statistics for 1954 to 1990 and procedures described by Gilroy and others (1990). Mean seasonal and mean annual constituent loads also were estimated. The steps for using mean TRN values with the R-P adjustment to estimate loads for a mean storm, mean seasonal loads, and mean annual loads at an unmonitored site are described by the following equations:

$$\log (P_{ai}) = se^{2}/2 + B_{o} + B_{1} \times \log (P_{ui})$$

$$+ (B_{1}^{2} \times (C_{1} \times rsd)^{2})/2$$
(13)

$$Load_{i, total} = N_{storms} \times e^{(\log (P_{ai}))}$$
 (14)

$$Load_{i,mean} = (Load_{i,total}) / N_{years}$$
 (15)

where

- log (P_{ai}) = adjusted constituent load for an individual storm, in log (base e) units, estimated using a mean TRN value at unmonitored site *i*;
 - se = standard deviation of residuals from the R-P regression, in log (base e) units;
 - $B_o =$ intercept of the R-P regression;
 - B_1 = slope of the R-P regression;
 - C_1 = regression coefficient for TRN from the regional-regression equations;

28 Estimates of Constituent Loads and Event-Mean Constituent Concentrations

$$rsd$$
 = standard deviation, in log (base
e) units, of mean TRN value;
 $Load_{i, total}$ = total constituent load for the
period of record;

$$N_{storms}$$
 = total number of storms for a season or year for the period of record;

$$Load_{i,mean}$$
 = mean seasonal or annual constituent load.

The steps for computing the standard error and variance of the mean-constituent loads at an unmonitored site are described as follows:

$$\Phi = (C_1 \times rsd)^2 \times (sdbl)^2/2 \qquad (16)$$

$$\Lambda = (B_1 + (P_{ui} - xbar))$$

$$/ (C_1 \times rsd)^2)^2 / (sdbl)^2$$
(17)

$$\Omega = (1 - (se^2) / (m - 2))^{m - 2}$$

$$\times (1 - 2 \times (se^2) / (m - 2))^{-(m - 2)/2}$$
(18)

$$\rho = \Omega (1 - 2 \times \Phi) \times (1 - 4 \times \Phi)^{-0.5}$$
(19)

$$MSE_{i} = \rho \times e^{((se^{2})/m + 4 \times \Phi^{2})}$$

(20)
$$/((1-4\times\Phi)\times(1-2\times\Phi)))$$

$$VAR_{P_{ai}} = (e^{\log (P_{ai})})^2 \times (MSE_i - 1)$$
 (21)

$$VAR_{i, mean} = (Load_{i, mean})^2 \times (MSE_i-1)$$
 (22)

$$RMSE_i = 100 \times \sqrt{(MSE_i - 1)}$$
(23)

where

- xbar = mean of unadjusted predictions used in R-P regression;
 - m = number of observed values used in R-P regression;
- MSE_i = mean standard error of estimate at unmonitored site *i*;

$$VAR_{P_{ai}} =$$
variance of event-mean constituent load;

- $VAR_{i, mean}$ = variance of seasonal or annual constituent load; and
 - $RMSE_i$ = root mean square error, in percent.

Equations 13 through 23 and mean TRN values were used to estimate mean storm, mean seasonal, and mean annual loads and variances for each constituent, except BOD, for each section in a municipality (tables 13 through 19). Constituent loads for each section were summed, and equations 10, 11, and 12 were used to compute confidence intervals for these sums. The equation for estimating BOD load is similar to the R-P regression except that DA is the independent variable instead of the unadjusted load from the regional-regression equations. The BOD regression (table 11) and equations 4 through 12 were used to estimate loads for the municipalities because BOD load depends on DA, a fixed value, and not a mean TRN. Storm-frequency data (table 2) were used to estimate mean seasonal and annual BOD loads. BOD loads are the same for each season because the same number of storms occur in each season.

Runoff from summer monsoons and winter cold fronts contribute to the annual constituent loads in Phoenix and the surrounding areas. Both types of storms have a mean TRN value of 0.46 in., but monsoons have a larger standard deviation (table 2). Either type of storm can occur during spring (April through June); storms during this period have a mean storm TRN value of 0.36 in. Mean TRN values and standard deviations were

Se
iii i
i <u>g</u>
nic
mu
p
dir
DUL
nrn
_s L
an
ix
Э
Ę
o
Ē
tori
r s
me
E S
U SI
eai
E
ofa
ls C
oac
Ħ
uel
stit
ğ
ğ
ate
<u>Ë</u>
ES
ຕ່
ble
1a

[Units for all estimates are in pounds]

	Chemic	al oxygen dem	bnsi	Sue	pended solid:	0	Ъ.	solved solids		10	tal nitrogen	
Cliy	Upper 95-percent confidence level	Lower 95-percent confidence level	Mesn	Upper 95-percent confidence level	Lower 95-percent confidence levei	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean
Chandler	33,500	29,400	31,400	217,000	168,000	192,000	11,500	10,500	11,000	766	871	934
Gilbert	15,700	13,200	14,400	107,000	74,900	91,000	4,520	3,940	4,230	455	378	416
Glendale	39,200	34,100	36,600	272,000	210,000	241,000	14,600	13,100	13,900	1,220	1,060	1,140
Guadalupe	1,210	631	919	9,370	2,070	5,720	323	213	268	35.0	18.4	26.7
Mesa	95,300	87,200	91,200	663,000	565,000	614,000	36,300	33,700	35,000	2,980	2,730	2,850
Paradise Valley	13,900	11,500	12,700	107,000	72,200	89,800	3,670	3,230	3,450	430	354	392
Peoria	35,600	28,500	32,000	260,000	170,000	215,000	16,100	13,100	14,600	1,180	914	1,050
Phoenix	302,000	287,000	295,000	2,220,000	2,030,000	2,120,000	112,000	107,000	109,000	9,730	9,240	9,480
Scottsdale	98,500	91,900	95,200	882,000	780,000	831,000	23,800	22,100	23,000	3,100	2,890	3,000
Tempe	39,600	34,100	36,900	264,000	198,000	231,000	16,900	15,100	16,000	1,260	1,090	1,180
Tolleson	3,500	2,560	3,030	22,800	12,000	17,400	968	779	873	95.6	70.6	83.0
Youngtown	1,730	1,030	1,380	12,300	4,030	8,180	511	366	439	49.4	29.9	39.6
Table 13. Estim	lated constitu	lent loads of a	i mean sui	mmer storm fi	or Phoenix ar	nd surround	ling municipe	alities-Contir	penu			
	Total organi	c nitrogen plu	s ammonia	Ĕ	otai phosphor	ŝ	Diss	olved phosph	orus	Total re	coverabie ca	lmium
City	Upper 95-percent confidence	Lower 95-percent confidence	Mean	Upper 95-percent confidence	Lower 95-percent confidence	Mean	Upper 95-percent confidence	Lower 1 95-percent confidence	Meen	Upper 95-percent confidence	Lower 95-percent confidence	Mean
	level	levei		level	level		level	level		level	level	
Chandler	1,330	1,170	1,250	334	293	318	0.69	49.4	59.2	0.504	0.412	0.458
Gilbert	609	510	560	152	122	137	36.1	24.2	30.2	.164	.131	.148
Glendale	1,640	1,430	1,540	421	354	388	77.4	53.4	65.4	.826	.648	.737
Guadalupe	46.6	25.1	35.8	12.0	5.60	8.82	3.14	.392	1.77	.00935	.00580	.00758
Mesa	4,020	3,700	3,860	1,020	917	970	176	138	157	1.73	1.48	1.60
Paradise Valley	582	483	533	140	111	125	28.2	17.4	22.8	.190	0.148	.169
Peoria	1,590	1,250	1,420	423	312	368	69.5	40.7	55.1	.626	.436	.531
Phoenix	13,200	12,600	12,900	3,270	3,070	3,170	517	449	483	6.04	5.49	5.76
Scottsdale	4,270	4,010	4,140	929	850	889	184	155	170	1.44	1.26	1.35
Tempe	1,690	1,470	1,580	452	378	415	72.7	46.7	59.7	.932	.735	.833
Tolleson	126	94.4	110	32.6	22.6	27.6	8.93	4.24	6.58	.0457	.0294	.0375
Youngtown	83.5	48.1	65.8	17.2	9.46	13.4	4.44	.963	2.70	.0207	.0123	.0165

30 Estimates of Constituent Losds and Event-Mean Constituent Concentrations

	Total rec	coverable copi	per	Total	recoverable lea	- P	Total r	ecoverable zir	3 2	Bioiogic	al oxygen dem	and
City	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence ievel	Lower 95-percent confidence level	Mean	Upper 95-percent confidence ievel	Lower 95-percent confidence ievei	Mean	Upper 95-percent confidence level	Lower 95-percent confidence ievel	Mean
Chandler	31.0	24.5	27.7	71.9	57.4	64.7	102	88.8	95.7	25,100	5,310	15,200
Gilbert	10.3	7.28	8.79	36.9	26.8	31.8	45.1	37.2	41.1	15,300	1,400	8,350
Glendale	34.6	24.6	29.6	6.66	76.7	88.3	119	102	110	30,500	7,340	18,900
Guadalupe	.407	.203	0.305	3.18	0.969	2.07	3.54	1.80	2.67	2,180	-1,250	467
Mesa	77.6	64.2	70.9	239	201.7	220	289	261	275	65,700	28,100	46,900
Paradise Valley	4.71	3.70	4.20	30.1	21.7	25.9	38.1	31.2	34.6	14,100	-314	6,910
Peoria	30.2	19.3	24.8	97.9	63.9	80.9	112	86.9	7.66	27,500	5,160	16,300
Phoenix	269	239	254	716	649	682	890	839	864	94,700	46,500	70,600
Scottsdale	56.3	48.0	52.2	180	154	167	241	220	231	98,500	48,600	73,500
Tempe	52.9	41.4	47.2	110	84.1	97.0	128	109	118	25,900	3,960	14,900
Tolleson	4.05	2.27	3.16	9.00	5.10	7.05	10.4	7.47	8.94	4,510	-1,270	1,620
Youngtown	.680	.397	.538	4.79	1.87	3.33	5.29	3.07	4.18	2,670	-1,340	667
Table 14. Estima	ted constituen	t loads of a m	ean winte	er storm for P	hoenix and su	rrounding	municipalitie	Ś				
[[]nits for all estimate	s are in pounds]											
	Frank in an a											
			•	(i					

.

Ē	
Q.	
Y.	
Š	
E.	
<u> </u>	
ğ	
۰¥	
· 💆	
5	
Ē	
-	
g	
<u>.</u>	
2	
5	
Q	
3	
2	
a	
8	
÷	
æ	
õ	
ج	
Z	
4	
ε	
Ξ	
5	
S	
Ĭ	
č	
Ξ	
C C C C C C C C C C C C C C C C C C C	
6	
an s	
ean s	
mean s	
a mean s	
a mean s	
of a mean s	
s of a mean s	
ids of a mean s	
oads of a mean s	
loads of a mean s	
nt loads of a mean s	
ent loads of a mean s	
uent loads of a mean s	
tituent loads of a mean s	
nstituent loads of a mean s	
onstituent loads of a mean s	
constituent loads of a mean s	
d constituent loads of a mean s	
ed constituent loads of a mean s	
ated constituent loads of a mean s	
nated constituent loads of a mean s	
timated constituent loads of a mean s	
stimated constituent loads of a mean s	
Estimated constituent loads of a mean s	
 Estimated constituent loads of a mean s 	
 Estimated constituent loads of a mean s 	
13. Estimated constituent loads of a mean s	

Estimates of Constituent Loads and Event-Mesn Constituent Concentrations 31

	Chemic	el oxygen dem	and	Sue	pended solid	۲	Dis	solved solids		ž	otal nitrogen	
City	Upper 15-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence ievel	Mean
Chandler	34,300	30,000	32,200	231,000	177,000	204,000	11,700	10,600	11,200	1,020	894	096
Gilbert	16,100	13,400	14,800	114,000	78,900	96,500	4,600	4,010	4,300	468	388	428
Glendale	40,200	34,800	37,500	290,000	221,000	256,000	14,900	13,300	14,100	1,250	1,080	1,170
Guadalupe	1,240	641	941	10,100	2,060	6,070	329	217	273	36.2	18.8	27.5
Mesa	009'16	89,200	93,400	706,000	598,000	652,000	36,900	34,300	35,600	3,070	2,800	2,930
Paradise Valley	14,300	11,800	13,000	115,000	75,900	95,300	3,730	3,280	3,510	443	363	403
Peoria	36,500	29,100	32,800	278,000	179,000	228,000	16,400	13,400	14,900	1,220	937	1,080
Phoenix	310,000	294,000	302,000	2,360,000	2,150,000	2,250,000	114,000	109,000	111,000	10,000	9,490	9,750
Scottsdale	101,000	94,100	97,500	938,000	826,000	882,000	24,200	22,500	23,400	3,190	2,970	3,080
Tempe	40,700	34,800	37,700	281,000	209,000	245,000	17,200	15,400	16,300	1,300	1,110	1,210
Tolleson	3,590	2,620	3,100	24,300	12,600	18,500	985	792	888	98.5	72.3	85.4
Youngtown	1,780	1,050	1,420	13,200	4,120	8,680	521	372	4 1 6	50.9	30.5	40.7

	Total organic	nitrogen piua	ammonia	Tot	ai phosphoru		Disso	ived phosphor	na	Total re	coverable cad	mium
City	Upper 95-percent confidence level	Lower 95-percent confidence tevel	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean
Chandler	1,390	1,220	1,300	366	310	338	70.6	49.7	60.1	0.550	0.444	0.497
Gilbert	636	530	583	162	128	145	36.9	24.3	30.6	.180	.141	.160
Glendale	1,710	1,490	1,600	448	375	412	79.2	53.7	66.4	.902	697.	.800
Guadalupe	48.9	25.8	37.4	12.9	5.82	9.36	3.26	327	1.80	.0103	.00618	.00822
Mesa	4,190	3,840	4,020	1,090	971	1,030	180	139	159	1.88	1.60	1.74
Paradise Valley	608	502	555	149	117	133	28.9	17.4	23.1	.208	.158	.183
Peoria	1,660	1,300	1,480	451	329	390	71.3	40.7	56.0	.685	.468	577
Phoenix	13,800	13,100	13,400	3,470	3,250	3,360	527	454	491	6.57	5.94	6.25
Scottsdale	4,450	4,170	4,310	687	006	944	188	157	172	1.56	1.36	1.46
Tempe	1,770	1,530	1,650	481	400	440	74.5	46.8	60.6	1.02	.792	904
Tolleson	132	6.79	115	34.8	23.8	29.3	9.19	4.18	69.9	.0502	.0312	.0407
Youngtown	87.5	49.6	68.5	18.4	9.88	14.2	4.60	0.889	2.74	.0228	.0130	.0179

Table 14. Estimated constituent loads of a mean winter storm for Phoenix and surrounding municipalities-Continued

Table 14. Estimated constituent loads of a mean winter storm for Phoenix and surrounding municipalities—Continued

	Total re	coverable cop	Der	Total	recoverable lea	p	Total n	ecoverable zi	2	Blologi	cai oxygen dei	nand
City	Upper 95-percent confidence ievel	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-peroent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean
Chandler	34.0	26.6	30.3	75.1	59.6	67.4	106	92.0	99.3	25,100	5,310	15,200
Gilbert	11.3	7.87	9.59	38.6	27.7	33.2	46.8	38.5	42.7	15,300	1,400	8,350
Glendale	38.1	26.6	32.3	104	79.6	92.0	124	105	115	30,500	7,340	18,900
Guadalupe	.446	.219	.333	3.33	.985	2.16	3.69	1.85	2.77	2,180	-1,250	467
Mesa	85.0	69.7	77.4	250	210	230	301	271	286	65,700	28,100	46,900
Paradise Valley	5.16	4.01	4.58	31.4	22.6	27.0	39.6	32.3	35.9	14,100	-314	6,910
Peona	33.2	20.8	27.0	102	66.1	84.3	117	89.8	103	27,500	5,160	16,300
Phoenix	294	261	278	747	675	711	924	870	897	94,700	46,500	70,600
Scottsdale	61.7	52.2	56.9	188	160	174	250	229	239	98,500	48,600	73,500
Tempe	58.1	44.8	51.4	115	87.2	101	133	112	123	25,900	3,960	14,900
Tolleson	4.47	2.43	3.45	9.42	5.27	7.34	10.8	7.71	9.28	4,510	-1,270	1,620
Youngtown	.745	429	-587	5.02	1.92	3.47	5.52	3.16	4.34	2,670	-1,340	667

32 Estimates of Constituent Loads and Event-Mean Constituent Concentrations

nunicipalities
surrounding n
oenix and
ads for Ph
constituent lo
an summer
Estimated me
Table 15. [

[spunod
.9
are
estimates
I
for
[Units

	Chemk	cel oxygen den	nand	ß	ispended solid	ls	D	ssolved aolida		Ľ	otal nitrogen	
City	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean
Chandler	220,000	193,000	206,000	1,420,000	1,100,000	1,260,000	75,800	68,700	72,300	6,550	5,720	6,130
Gilbert	103,000	86,400	94,700	703,000	492,000	59,7000	29,700	25,900	27,800	2,990	2,480	2,730
Glendale	258,000	224,000	241,000	1,790,000	1,380,000	1,580,000	96,100	86,100	91,100	8,010	6,940	7,480
Guadalupe	7,930	4,150	6,040	61,500	13,600	37,600	2,120	1,400	1,760	230	121	175
Mesa	626,000	572,000	599,000	4,360,000	3,710,000	4,030,000	238,000	221,000	230,000	19,600	17,900	18,700
Paradise Valley	91,500	75,600	83,500	706,000	474,000	590,000	24,100	21,200	22,600	2,820	2,320	2,570
Peoria	234,000	187,000	210,000	1,710,000	1,120,000	1,410,000	106,000	86,300	96,100	7,760	6,000	6,880
Phoenix	1,980,000	1,890,000	1,940,000	14,600,000	13,300,000	14,000,000	734,000	705,000	719,000	63,900	60,700	62,300
Scottsdale	647,000	604,000	625,000	5,790,000	5,120,000	5,460,000	156,000	145,000	151,000	20,300	19,000	19,700
Tempe	260,000	224,000	242,000	1,730,000	1,300,000	1,520,000	111,000	99,400	105,000	8,300	7,130	7,720
Tolleson	23,000	16,800	19,900	149,000	79,100	114,000	6,360	5,120	5,740	628	463	545
Youngtown	11,400	6,790	9,080	81,000	26,400	53,700	3,360	2,400	2,880	324	196	260
Table 15. Estim	lated mean s	ummer constit	tuent loads	for Phoenix	and surround	ing municip	alitiesCont	inued				
	Total organic	: nitrogen plua	ammonla	Tota	il phoaphorua		Dissol	ved phoaphor	BL	Total rec	overable cadr	ntum
City	Upper 95-percent confidence level	Lower 95-percent confidence levei	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 5-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean
Chandler	8,750	7,700	8,220	2,260	1,920	2,090	453	324	389	3.31	2.70	3.01
Gilbert	4,000	3,350	3,680	866	800	668	237	159	198	1.08	.862	.971
Glendale	10,800	9,410	10,100	2,770	2,330	2,550	508	351	430	5.42	4.26	4.84
Guadalupe	306	165	236	79.1	36.8	57.9	20.6	2.58	11.6	.0614	.0381	.0498
Mesa	26,400	24,300	25,300	6,720	6,020	6,370	1,150	906	1,030	11.3	9.73	10.5
Paradise Valley	3,820	3,170	3,500	917	731	824	185	114	150	1.25	696.	1.11
Peoria	10,400	8,230	9,320	2,780	2,050	2,420	456	268	362	4.11	2.87	3.49
Phoenix	86,700	82,700	84,700	21,500	20,200	20,800	3,400	2,950	3,172	39.6	36.0	37.8
Scottsdale	28,000	26,300	27,200	6,100	5,580	5,840	1,210	1,020	1,110	9.44	8.28	8.86
Tempe	11,100	9,650	10,400	2,970	2,480	2,720	478	307	392	6.12	4.83	5.47
Tolleson	832	620	726	214	148	181	58.6	27.8	43.2	300	.193	.246
Youngtown	548	316	432	113	62.1	87.7	29.1	6.32	17.7	.136	.0806	.108

Estimstes of Constituent Losds and Event-Mean Constituent Concentrations 33

	Total re	scoverable cop	ber	Total	recoverable le	ba	Total	ecoverable zi	nc	Biologi	al oxygen de	mand
City	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confiden ce level	Lower 95-percent confidence ievel	Mean	Upper 95percent confidence levei	Lower 95-percent confidence ievel	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean
Chandler	204	161	182	204	161	182	204	161	182	204	161	182
Gilbert	67.7	47.8	57.8	67.7	47.8	57.8	67.7	47.8	57.8	67.7	47.8	57.8
Glendale	228	162	195	228	162	195	228	162	195	228	162	195
Guadalupe	3.33	1.64	2.48	3.33	1.64	2.48	3.33	1.64	2.48	3.33	1.64	2.48
Mesa	510	422	466	510	422	466	510	422	466	510	422	466
Paradise Valley	30.9	24.3	27.6	30.9	24.3	27.6	30.9	24.3	27.6	30.9	24.3	27.6
Peoria	198	127	163	198	127	163	198	127	163	198	127	163
Phoenix	1,770	1,580	1,670	1,770	1,580	1,670	1,770	1,580	1,670	1,770	1,580	1,670
Scottsdale	370	315	343	370	315	343	370	315	343	370	315	343
Tempe	433	334	384	433	334	384	433	334	384	433	334	384
Tolleson	26.6	14.9	20.8	26.6	14.9	20.8	26.6	14.9	20.8	26.6	14.9	20.8
Youngtown	4.46	2.61	3.54	4.46	2.61	3.54	4.46	2.61	3.54	4.46	2.61	3.54
Table 16. Estin	lated mean w	inter constitue	nt loads fo	yr Phoenix an	d surrounding	municipali	ties					

[Units for all estimates are in pounds]

	Chemic	cal oxygen den	puer	Su	spended solid	s	Dis	solved aolids		Ÿ	otai nitrogen	
City	Upper 95-percent confidence level	Lower 95-percent confidence ievel	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean
Chandler	256,000	224,000	240,000	1,720,000	1,320,000	1,520,000	87,600	79,300	83,500	7,650	6,670	7,160
Gilbert	120,000	100,000	110,000	85,1000	589,000	720,000	34,300	29,900	32,100	3,490	2,890	3,190
Glendale	300,000	260,000	280,000	2,160,000	1,650,000	1,910,000	111,000	99,400	105,000	9,370	8,090	8,730
Guadalupe	9,250	4,780	7,020	75,200	15,300	45,300	2,450	1,620	2,040	270	140	205
Mesa	728,000	665,000	697,000	5,260,000	4,460,000	4,860,000	275,000	256,000	266,000	22,900	20,900	21,900
Paradise Valley	106,000	87,700	97,100	856,000	566,000	711,000	27,800	24,500	26,200	3,300	2,710	3,000
Peonia	272,000	217,000	245,000	2,080,000	1,330,000	1,700,000	122,000	609 ,600	111,000	9,070	6,990	8,030
Phoenix	2,310,000	2,190,000	2,250,000	17,600,000	16,000,000	16,800,000	848,000	814,000	831,000	74,600	70,800	72,700
Scottsdale	752,000	702,000	727,000	7,000,000	6,160,000	6,580,000	180,000	168,000	174,000	23,800	22,200	23,000
Tempe	303,000	260,000	282,000	2,100,000	1,560,000	1,830,000	128,000	115,000	121,000	9,710	8,310	9,010
Tolleson	26,700	19,500	23,100	182,000	94,000	138,000	7,350	5,900	6,630	734	539	637
Youngtown	13,300	7,850	10,600	98,800	30,800	64,800	3,890	2,770	3,330	380	228	304

34 Estimates of Constituent Losds and Event-Mean Constituent Concentrations

Table 15. Estimated mean summer constituent loads for Phoenix and surrounding municipalities---Continued

	Total organic	nitrogen plus	emmonia	Tot	al phoaphorus		Disso	Ived phosphoi	su'	Totai re	coverable cat	\$mium
City	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-per cent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence levei	Lower 95-percent confidence ievei	Mean
Chandler	10,400	6,090	9,730	2,730	2,310	2,520	526	371	449	4.10	3.31	3.71
Gilbert	4,740	3,960	4,350	1,210	959	1,080	276	182	228	1.34	1.05	1.20
Glendale	12,800	11,100	11,900	3,350	2,800	3,070	590	401	496	6.73	5.20	5.96
Guadalupe	364	193	279	96.3	43.4	69.8	24.4	2.44	13.4	.0766	.0461	.0613
Mesa	31,300	28,700	30,000	8,110	7,240	7,680	1,340	1,040	1,190	14.0	11.9	13.0
Paradise Valley	4,540	3,740	4,140	1,110	877	993	216	130	173	1.55	1.18	1.37
Peoria	12,400	9,700	11,000	3,360	2,460	2,910	532	304	418	5.11	3.49	4.30
Phoenix	103,000	97,800	100,000	25,900	24,300	25,100	3,930	3,390	3,660	49.0	44.3	46.6
Scottsdale	33,200	31,100	32,200	7,360	6,710	7,040	1,400	1,170	1,290	11.7	10.2	10.9
Tempe	13,200	11,400	12,300	3,590	2,980	3,280	556	349	452	7.59	5.90	6.75
Tolleson	986	730	859	260	177	218	68.6	31.2	49.9	.374	.233	304
Youngtown	653	370	511	138	73.7	106	34.3	6.63	20.5	.170	8960.	.134

Table 16. Estimated mean winter constituent loads for Phoenix and surrounding municipalities--Continued

	Total re	covereble cop	per	Total 1	ecoverable let	p	Total n	ecoverable zi	2	Biołogie	al oxygen dei	nand
City	Upper 95-percent confidence level	Lower 95-percent confidence ievel	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence ievel	Lower 95-percent confidence level	Mean	Upper 95-percent confidence ievel	Lower 95-percent confidence level	Mean
Chandler	253	198	226	560	445	502	795	686	740	133,000	80,400	106,000
Gilbert	84.5	58.7	71.6	288	207	247	350	287	318	76,900	40,100	58,500
Glendale	284	198	241	778	594	686	925	786	856	163,000	102,000	132,000
Guadalupe	3.33	1.64	2.48	24.9	7.35	16.1	23.2	11.8	17.5	7,800	-1,270	3,270
Mesa	634	520	577	1,860	1,560	1,710	2,240	2,020	2,130	378,000	279,000	328,000
Paradise Valley	38.5	29.9	34.2	234	168	201	295	241	268	67,500	29,300	48,400
Peoria	248	155	202	764	493	629	873	670	171	144,000	84,800	114,000
Phoenix	2,200	1,950	2,070	5,570	5,040	5,300	6,890	6,490	6,690	558,000	430,000	494,000
Scottsdale	460	389	424	1,400	1,200	1,300	1,870	1,700	1,790	581,000	449,000	515,000
Tempe	433	334	384	857	651	754	994	840	917	134,000	75,500	104,000
Tolleson	33.3	18.1	25.7	70.3	39.3	54.8	80.9	57.5	69.2	19,000	3,690	11,300
Youngtown	5.56	3.20	438	37.4	14.3	25.9	41.1	23.6	32.4	9,980	-634	4,670

Estimates of Constituent Loads and Event-Mean Constituent Concentrations 35

Table 17. Estimated constituent loads of a mean spring storm for Phoenix and surrounding municipalities

[Units for all estimates are in pounds]

	Chemik	cai oxygen den	nand	ิภิ	spended solid	8	ā	ssolved aolids		P	otal nitrogen	
City	Upper 95-percent confidence level	Lower 95-percent confidence jevel	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean
Chandler	31,900	28,000	30,000	218,000	166,000	192,000	11,000	9,940	10,400	954	832	893
Gilbert	15,000	12,500	13,700	108,000	73,700	90,700	4,300	3,750	4,020	435	361	398
Glendale	37,400	32,400	34,900	274,000	207,000	240,000	13,900	12,400	13,200	1,170	1,010	1,090
Guadalupe	1,150	598	876	9,580	1,830	5,700	307	203	255	33.6	17.5	25.5
Mesa	90,800	83,000	86,900	665,000	560,000	612,000	34,500	32,000	33,300	2,850	2,600	2,730
Paradise Valley	13,300	10,900	12,100	108,000	70,800	89,600	3,490	3,070	3,280	412	338	375
Peoria	34,000	27,100	30,500	263,000	166,000	215,000	15,300	12,500	13,900	1,130	871	1,000
Phoenix	288,000	274,000	281,000	2,220,000	2,020,000	2,120,000	106,000	102,000	104,000	9,300	8,830	9,060
Scottsdale	93,900	87,600	90,700	883,000	774,000	829,000	22,600	21,000	21,800	2,960	2,760	2,860
Tempe	37,800	32,400	35,100	266,000	196,000	230,000	16,000	14,400	15,200	1,210	1,040	1,120
Tolleson	3,340	2,440	2,890	23,000	11,700	17,400	920	740	830	91.6	67.2	79.4
Youngtown	1,650	981	1,320	12,600	3,760	8,160	486	348	417	47.3	28.4	37.9
Table 17. Estim	nated constitu	ient loads of a	mean sprir	ng storm for I	Phoenix and s	surrounding	1 municipaliti	es-Continue	73			
	Total organic	: nitrogen pius	emmonia	Tota	il phoaphorua		Disso	ved phosphoru	SL SL	Total rec	overable cad	nium
į	Upper	Lower		Upper	Lower		Upper	Lower		Upper	Lower	
City	95-percent confidence level	95-percent confidence levei	Mean	95-percent confidence level	95-percent confidence level	Mean	95-percent confidence level	95-percent confidence level	Mean	95-percent confidence levei	95-percent confidence level	Mean
Chandler	1,300	1,130	1,210	34	290	317	66.1	46.4	56.2	0.529	0.421	0.475
Gilbert	592	494	543	152	120	136	34.6	22.7	28.6	.173	.134	.153
Glendale	1,590	1,390	1,490	422	351	387	74.2	50.1	62.1	902	697.	800
Guadalupe	45.6	24.0	34.8	12.2	5.38	8.80	3.06	.304	1.68	2 6600.	.00578	.00787
Mesa	3,910	3,580	3,740	1,020	911	67	168	130	149	1.81	1.52	1.67
Paradise Valley	567	467	517	140	110	125	27.0	16.2	21.6	.201	.150	.175
Peoria	1,540	1,210	1,380	426	308	367	6.99	37.8	2.35	.661	.442	.552
Phoenix	12,800	12,200	12,500	3,260	3,050	3,160	493	425	459	6.30	5.66	5.98
Scottsdale	4,150	3,880	4,020	929	845	887	176	147	161	1.50	1.30	1.40
Tempe	1,650	1,420	1,530	453	374	414	69.8	43.6	56.7	979.	.751	.865
Tolleson	123	91.0	107	32.8	22.2	27.5	8.60	3.91	6.25	.0486	.0293	0390
Youngtown	64.0	38.7	51.3	17.4	9.18	13.3	4.30	.828	2.57	.0222	.0121	.0171

36 Estimstes of Constituent Losds and Event-Mean Constituent Concentrations

	Total re	coverable cop	per	Total	recoverabie lee	D.	Total n	ecoverable zi	ຍ	Blologic	ai oxygen den	and
City	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence ievel	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence ievei	Mean	Upper 95-percent confidence levei	Lower 95-percent confidence level	Mean
Chandler	32.8	25.4	29.1	83.2	65.1	74.2	99.2	85.5	92.4	25,100	5,310	15,200
Gilbert	11.0	7.48	9.22	36.0	25.8	30.9	43.6	35.8	39.7	15,300	1,400	8,350
Glendale	36.9	25.3	31.1	97.3	74.0	85.7	115	98.0	107	30,500	7,340	18,900
Guadalupe	.432	.208	.320	3.11	906.	2.01	3.44	1.71	2.58	2,180	-1,250	467
Mesa	82.1	66.7	74.4	233	195	214	280	252	266	65,700	28,100	46,900
Paradise Valley	4.98	3.84	4.41	29.3	21.0	25.1	36.8	30.0	33.4	14,100	-314	6,910
Peoria	32.2	19.7	26.0	95.7	61.3	78.5	109	83.4	96.2	27,500	5,160	16,300
Phoenix	284	250	267	696	628	662	860	809	834	94,700	46,500	70,600
Scottsdale	59.5	49.9	54.7	176	149	162	233	213	223	98,500	48,600	73,500
Tempe	56.1	42.8	49.5	107	81.1	94.1	124	105	114	25,900	3,960	14,900
Tolleson	4.34	2.28	3.32	8.79	4.89	6.84	10.1	7.17	8.63	4,510	-1,270	1,620
Youngtown	.721	.408	.565	4.69	1.77	3.23	5.14	2.93	4.04	2,670	-1,340	667

1.1. 1 II Inits for all estim

	Chemic	cal oxygen den	nand	nS 	spended solid		Ď	soived solida		Ţ	otal nitrogen	
City	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence fevel	Mean	Upper 95-percent confidence level	Lower 95-percent confidence ievel	Mean	Upper 95-percent confidence level	Lower 95-percent confidence levei	Mean
Chandler	35,400	31,000	33,200	242,000	184,000	212,000	12,200	11,000	11,600	1,060	922	686
Gilbert	16,600	13,900	15,200	119,000	81,600	100,000	4,760	4,150	4,460	482	400	441
Glendale	41,400	35,900	38,700	303,000	229,000	266,000	15,400	13,800	14,600	1,290	1,120	1,200
Guadalupe	1,280	663	971	10,600	2,020	6,320	340	225	282	37.2	19.4	28.3
Mesa	101,000	92,000	96,300	737,000	621,000	679,000	38,200	35,500	36,900	3,160	2,880	3,020
Paradise Valley	14,700	12,100	13,400	120,000	78,400	99,200	3,860	3,400	3,630	456	374	415
Peoria	37,600	30,000	33,800	291,000	184,000	238,000	17,000	13,800	15,400	1,250	965	1,110
Phoenix	319,000	303,000	311,000	2,460,000	2,230,000	2,350,000	118,000	113,000	115,000	10,300	9,780	10,000
Scottsdale	104,000	900,76	100,000	977,000	858,000	918,000	25,000	23,300	24,200	3,280	3,060	3,170
Tempe	41,900	36,000	38,900	294,000	217,000	256,000	17,800	15,900	16,800	1,340	1,150	1,240
Tolleson	3,700	2,700	3,200	25,500	13,000	19,200	1,020	820	920	101	74.5	88.0
Youngtown	1,830	1,090	1,460	13,900	4,160	9,040	539	385	462	52.5	31.4	42.0

Estimates of Constituent Loads and Event-Mean Constituent Concentrations 37

	Total organic	nitrogen plus	ammonia	Tot	al phosphorus		Disso	ved phosphor	\$N	Total rev	coverable cad	mium
City	Upper 95-percent confidence ievel	Lower 95-percent confidence level	Mean	Upper 95-percent confidence ievei	Lower 95-percent confidence ievel	Mean	Upper 95percent confidence level	Lower 95-percent confidence ievel	Mean	Upper 95-percent confidence levei	Lower 95-percent confidence level	Mean
Chandler	1,440	1,260	1,350	382	322	352	73.2	51.4	62.3	0.587	0.467	0.527
Gilbert	657	547	602	169	133	151	38.3	25.2	31.8	.192	.148	.170
Glendale	1,770	1,540	1,650	468	389	429	82.2	55.5	68.9	.962	.733	.848
Guadalupe	50.5	26.6	38.5	13.5	5.96	9.75	3.39	.337	1.86	.0110	.00641	.00872
Mesa	4,330	3,970	4,150	1,130	1,010	1,070	186	144	165	2.00	1.69	1.85
Paradise Valley	628	517	573	155	122	139	30.0	18.0	24.0	.222	.166	.194
Реогіа	1,710	1,340	1,520	472	341	406	74.2	41.9	58.0	.732	.490	.611
Phoenix	14,200	13,500	13,900	3,620	3,380	3,500	547	470	509	6.98	6.27	6.63
Scottsdale	4,600	4,300	4,450	1,030	936	983	195	163	178.	1.66	1.44	1.55
Tempe	1,820	1,570	1,700	502	415	458	77.4	48.4	62.9	1.08	.832	.959
Tolleson	137	101	119	36.4	24.6	30.5	9.53	4.33	6.93	.0539	.0324	.0432
Youngtown	70.9	42.8	56.9	19.3	10.2	14.8	4.77	.918	2.84	.0246	.0134	0.0190

IaDIE 10. ESUMA	uea mean sprif	10 constituent	IDAUS TOF 1	FIOERIX AND S	introunding mi	unicipaliti		D				
	Total re	scoverable cop	per	Total	recoverable ies	pa	Total	ecoverabie zi	nc	Biologic	al oxygen de	nand
City	Upper 95-percent confidence level	Lower 95-percent confidence ievel	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence ievei	Lower 95-percent confidence level	Mean
Chandler	36.4	28.1	32.2	92.2	72.2	82.2	110	94.8	102	44,500	16,400	30,400
Gilbert	12.2	8.29	10.2	39.8	28.6	34.2	48.3	39.6	44.0	26,500	6,870	16,700
Glendale	40.8	28.1	34.4	108	82.0	94.9	128	108	118	54,200	21,500	37,800
Guadalupe	.479	.230	355	3.45	1.00	2.23	3.81	1.90	2.85	3,360	-1,490	933
Mesa	91.0	73.9	82.4	258	216	237	310	279	294	120,000	67,300	93,800
Paradise Valley	5.52	4.25	4.88	32.5	23.2	27.9	40.8	33.3	37.0	24,000	3,600	13,800
Реопіа	35.7	21.8	28.8	106	619	87.0	121	92.4	106	48,500	16,900	32,700
Phoenix	314	277	296	171	696	734	953	896	925	175,000	107,000	141,000
Scottsdale	66.0	55.3	9.09	194	165	180	258	235	247	182,000	112,000	147,000
Tempe	62.2	47.4	54.8	119	8.68	104	137	116	127	45,400	14,300	29,900
Tolleson	4.81	2.53	3.67	9.74	5.42	7.58	11.2	7.94	9.57	7,330	-848	3,240
Youngtown	.799	.452	.626	5.19	1.96	3.58	5.69	3.25	4.47	4,170	-1,500	1,340

38 Estimates of Constituent Losds and Event-Mean Constituent Concentrations

ounding municipalities	
s for Phoenix and surr	
nual constituent load	
Estimated mean an	
Table 19.	

[spunod
.5
аге
estimates
all
for
[Units

	Chemi	cal oxygen der	nand	ns N	ispended aolid	la	Ō	aaolved solid:		ľ	otal nitrogen	
City	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence ievel	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean
Chandler	501,000	459,000	480,000	3,260,000	2,740,000	3,000,000	173,000	162,000	167,000	14,900	13,600	14,300
Gilbert	233,000	207,000	220,000	1,590,000	1,250,000	1,420,000	67,300	61,500	64,400	6,760	5,980	6,370
Glendale	585,000	533,000	559,000	4,090,000	3,430,000	3,760,000	219,000	203,000	210,000	18,200	16,600	17,400
Guadalupe	17,000	11,100	14,000	128,000	50,600	89,100	4,630	3,530	4,080	494	323	409
Mesa	1,430,000	1,350,000	1,390,000	10,100,000	9,050,000	9,570,000	545,000	519,000	532,000	45,000	42,300	43,700
Paradise Valley	206,000	182,000	194,000	1,590,000	1,210,000	1,400,000	54,700	50,200	52,500	6,380	5,600	5,990
Peoria	525,000	452,000	489,000	3,830,000	2,880,000	3,360,000	238,000	207,000	222,000	17,400	14,600	16,000
Phoenix	4,580,000	4,420,000	4,500,000	34,100,000	32,100,000	33,100,000	1,690,000	1,640,000	1,660,000	148,000	142,000	145,000
Scottsdale	1,490,000	1,420,000	1,450,000	13,500,000	12,400,000	13,000,000	358,000	341,000	349,000	46,900	44,800	45,800
Tempe	591,000	534,000	563,000	3,950,000	3,260,000	3,600,000	252,000	234,000	243,000	18,900	17,100	18,000
Tolleson	51,000	41,500	46,200	328,000	215,000	271,000	14,200	12,300	13,300	1,400	1,140	1,270
Youngtown	24,700	17,500	21,100	171,000	83,600	128,000	7,410	5,930	6,670	206	506	909
Table 19. Estim	nated mean a	innual constitu	ient loads fi	or Phoenix a	nd surroundin	lg municipa	litiesContir	pent				
	Total organic	s nitrogen plua	ammonia	Tota	ai phoaphorus		Diasol	ved phoaphor	ua	Total rec	overable cadr	nium
City	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean
Chandler	20,100	18,500	19,300	5,230	4,690	4,960	1,000	798	006	7.74	6.74	7.24
Gilbert	9,140	8,120	8,630	2,290	1,970	2,130	520	397	458	2.52	2.16	2.34
Glendale	24,800	22,600	23,700	6,400	5,690	6,050	1,120	870	994	12.6	10.7	11.6
Guadalupe	664	441	553	172	103	138	41.2	12.6	26.9	.139	.100	.120
Mesa	61,200	57,800	59,500	15,700	14,600	15,100	2,580	2,190	2,380	26.7	24.0	25.4
Paradise Valley	8,730	7,700	8,210	2,100	1,800	1,960	402	290	346	2.91	2.44	2.67
Peoria	23,600	20,200	21,900	6,320	5,140	5,730	986	688	838	9.43	7.37	8.40
Phoenix	202,000	196,000	199,000	50,400	48,400	49,400	7,700	6,990	7,340	94.1	88.1	91.1
Scottsdale	65,200	62,400	63,800	14,300	13,400	13,900	2,730	2,430	2,580	22.3	20.4	21.3
Tempe	25,500	23,200	24,400	6,860	6,080	6,470	1,040	773	907	14.2	12.1	13.2
Tolleson	1,870	1,540	1,700	483	377	430	124	75.7	100	.683	0.504	.593
Youngtown	1,180	817	1,000	249	167	208	59.1	23.0	41.0	.307	.214	.261

Estimstes of Constituent Loads and Event-Mean Constituent Concentrations 39

City Deper Deper LowerUpper Deper DevelLower DepercentLower DepercentUpper DeperUpper DeperUpper DeperUpper DeperUpper DeperUpper DepercentUpper DeperUpper DepercentUpper DeperUpper DeperUpper DeperUpper DeperUpper DeperUpper DeperUpper DeperUpper DepercentUpper DeperUpper DeperUpper DeperUpper DeperUpper DepercentUppe		Totai r	ecoverable co	pper	Total	recoverable le	pa	Total r	scoverable zir	2	Biologi	cal oxygen de	mand
Chandler 475 405 440 1,080 934 1,010 1,540 1,470 283,000 Gilbert 156 123 140 543 438 490 673 591 632 161,000 Gilbert 525 416 470 1,480 1,240 1,790 1,610 1,770 349,000 Glandalupe 5.93 3.75 4.84 43.4 20.5 32.0 50.0 32.1 41.0 14,300 Mesa 1,200 1,050 1,120 3,600 3,200 3,400 4,380 4,97 533 140,000 Mesa 1,200 1,050 1,120 3,600 3,200 3,21 4,10 14,300 Mesa 1,200 1,050 1,420 1,070 1,250 14,000 14,300 Mesa 452 3380 4,040 10,900 10,200 1,250 1,400 1530 1220,000 Phoeniix 4,230 3,828 </th <th>City</th> <th>Upper 95-percent confidence level</th> <th>Lower 95-percent confidence level</th> <th>Mean</th> <th>Upper 95-percent confidence level</th> <th>Lower 95-percent confidence level</th> <th>Mean</th> <th>Upper 95-percent confidence level</th> <th>Lower 95-percent confidence level</th> <th>Mean</th> <th>Upper 95-percent confidence level</th> <th>Lower 95-percent confidence ievel</th> <th>Mean</th>	City	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence ievel	Mean
Gilbert 156 123 140 543 438 490 673 591 632 161,00 Glendale 525 416 470 1,480 1,240 1,360 1,790 1,610 1,700 349,000 Guadalupe 5.93 3.75 4.84 43.4 20.5 32.0 50.0 32.1 41.0 14,300 Mesa 1,200 1,050 1,120 3,600 3,200 3,400 4,380 4,090 4,230 826,000 Mesa 1,200 1,050 1,120 3,600 3,200 3,400 4,37 533 140,000 Paradise Valley 72.1 61.2 66.7 443 356 399 568 497 533 140,000 Paradise Valley 72.1 61.2 1,420 1,070 1,250 1,660 1,400 1530 306,000 Promix 4,200 3,880 4,040 10,900 1,020 1,250 1,400	Chandler	475	405	440	1,080	934	1,010	1,540	1,400	1,470	283,000	204,000	244,000
Glendale 525 416 470 1,480 1,240 1,360 1,790 1,610 1,700 349,000 Guadalupe 5.93 3.75 4.84 43.4 20.5 32.0 50.0 32.1 41.0 14,300 Mesa 1,200 1,050 1,120 3,600 3,200 3,400 4,380 4,090 4,230 826,000 Mesa 1,200 1,050 1,120 3,600 3,200 3,400 4,380 4,090 4,390 826,000 Paradise Valley 72.1 61.2 66.7 443 356 399 568 497 533 140,000 Pooria 4,52 334 393 1,420 1,070 1,250 1,660 1,400 1530 306,000 Phoenix 4,200 3,880 4,040 10,900 10,200 10,500 13,600 13,300 1,220,000 1,230,000 Phoenix 4,200 3,828 2,720 2,440	Gilbert	156	123	140	543	438	490	673	591	632	161,000	106,000	134,000
Guadalupe5.933.754.8443.420.532.050.032.141.014,300Mesa1,2001,0501,1203,6003,2003,4004,3804,0904,230826,000Paradise Valley72.161.266.7443356399568497533140,000Paradise Valley72.161.266.7443356399568497533140,000Paradise Valley72.161.266.7443356399568497533140,000Paradise Valley72.161.266.7443356399568497533140,000Pooria4523343931,4201,0701,2501,6601,4001530306,0001,Phoemix4,2003,8804,04010,90010,20010,20010,25013,60013,3001,220,0001,Phoemix4,2003,8804,0550.2129088.4108.715301,220,0001,Phoemix59.840.550.2129013,6001,7201820283,0001,Phoemix59.840.550.2129088.4108.715317201820283,000Phoemix50.840.550.2129013,6001,7201,820283,0001,72018,70013,22013,700Colleson50.840.550.2 <td>Glendale</td> <td>525</td> <td>416</td> <td>470</td> <td>1,480</td> <td>1,240</td> <td>1,360</td> <td>1,790</td> <td>1,610</td> <td>1,700</td> <td>349,000</td> <td>256,000</td> <td>302,000</td>	Glendale	525	416	470	1,480	1,240	1,360	1,790	1,610	1,700	349,000	256,000	302,000
Mesa 1,200 1,050 1,120 3,600 3,200 3,400 4,380 4,090 4,230 826,000 Paradise Valley 72.1 61.2 66.7 443 356 399 568 497 533 140,000 Peoria 452 334 393 1,420 1,070 1,250 1,660 1,400 1530 306,000 1,220,000 1, Phoenix 4,200 3,880 4,040 10,900 10,200 10,500 13,600 13,300 1,220,000 1,220,000 1, Scottsdate 873 783 828 2,720 2,440 2,580 3,650 13,300 1,230,000 1,220,000 1, Tempe 811 686 748 1,630 1,500 1,720 1,820 283,000 1,720 1,820 283,000 1,750 1,820 283,000 1,750 1,83,700 1,750 1,83,700 1,750 1,83,700 1,750 1,83,700 1,750	Guadalupe	5.93	3.75	4.84	43.4	20.5	32.0	50.0	32.1	41.0	14,300	613	7,470
Paradise Valley 72.1 61.2 66.7 443 356 399 568 497 533 140,000 Peoria 452 334 393 1,420 1,070 1,250 1,660 1,400 1530 306,000 1,220,000 1, Phoemix 4,200 3,880 4,040 10,900 10,200 10,500 13,600 13,300 1,220,000 1, Scottsdate 873 783 828 2,720 2,440 2,580 3,650 3,440 3,550 1,280,000 1, Tempe 811 686 748 1,630 1,500 1,720 1,820 283,000 1, Tempe 811 686 748 1,630 1,500 1,720 1,820 283,000 1, Tempe 59.8 40.5 50.2 120 1,660 1,720 1,820 283,000 1, Tempe 59.8 40.5 55.2 50.2 136.40 1,	Mesa	1,200	1,050	1,120	3,600	3,200	3,400	4,380	4,090	4,230	826,000	675,000	751,000
Peoria 452 334 393 1,420 1,070 1,250 1,660 1,400 1530 306,000 1, Phoenix 4,200 3,880 4,040 10,900 10,200 10,500 13,600 13,000 13,300 1,220,000 1, Phoenix 4,200 3,880 4,040 10,900 10,200 10,500 13,600 13,000 13,300 1,220,000 1, Scottsdale 873 783 828 2,720 2,440 2,580 3,650 3,440 3,550 1,280,000 1, Tempe 811 686 748 1,630 1,500 1,920 1,720 1,820 283,000 Tolleson 59.8 40.5 50.2 122 138 37,500 Youngtown 10.0 7.03 8.54 56.3 51.3 75.8 64.3 18,700	Paradise Valley	72.1	61.2	66.7	443	356	399	568	497	533	140,000	81,700	111,000
Phoenix 4,200 3,880 4,040 10,900 10,200 13,600 13,000 13,300 1,220,000 1, Scottsdale 873 783 828 2,720 2,440 2,580 3,650 3,440 3,550 1,280,000 1, Tempe 811 686 748 1,630 1,360 1,920 1,720 1,820 283,000 1, Tempe 811 686 748 1,630 1,360 1,920 1,720 1,820 283,000 1, Tolleson 59.8 40.5 50.2 129 88.4 108.7 153 122 138 37,500 Youngtown 10.0 7.03 8.54 66.4 36.2 51.3 75.8 64.3 18,700	Peoria	452	334	393	1,420	1,070	1,250	1,660	1,400	1530	306,000	217,000	262,000
Scottsdale 873 783 828 2,720 2,440 2,580 3,650 3,440 3,550 1,280,000 1, Tempe 811 686 748 1,630 1,360 1,500 1,720 1,820 283,000 1, Tempe 811 686 748 1,630 1,360 1,500 1,720 1,820 283,000 Tolleson 59.8 40.5 50.2 129 88.4 108.7 153 122 138 37,500 Youngtown 10.0 7.03 8.54 66.4 36.2 51.3 75.8 64.3 18,700	Phoenix	4,200	3,880	4,040	10,900	10,200	10,500	13,600	13,000	13,300	1,220,000	1,030,000	1,130,000
Tempe 811 686 748 1,630 1,360 1,500 1,920 1,720 1,820 283,000 Tolleson 59.8 40.5 50.2 129 88.4 108.7 153 122 138 37,500 Youngtown 10.0 7.03 8.54 66.4 36.2 51.3 75.8 64.3 18,700	Scottsdale	873	783	828	2,720	2,440	2,580	3,650	3,440	3,550	1,280,000	1,080,000	1,180,000
Tolleson 59.8 40.5 50.2 129 88.4 108.7 153 122 138 37,500 Youngtown 10.0 7.03 8.54 66.4 36.2 51.3 75.8 64.3 18,700	Tempe	811	686	748	1,630	1,360	1,500	1,920	1,720	1,820	283,000	195,000	239,000
Youngtown 10.0 7.03 8.54 66.4 36.2 51.3 75.8 52.8 64.3 18,700	Tolleson	59.8	40.5	50.2	129	88.4	108.7	153	122	138	37,500	14,400	25,900
	Youngtown	10.0	7.03	8.54	66.4	36.2	51.3	75.8	52.8	64.3	18,700	2,660	10,700

 Table 19. Estimated mean annual constituent loads for Phoenix and surrounding municipalities
 Continued

calculated by using log-transformed rainfall data from Sky Harbor Airport from 1954 to 1990 and by specifying the number of hours without rainfall to differentiate storms. Varying the time between storms by 50 percent had little effect on the mean TRN and storm frequency. Varying the time between storms had a large effect on storm duration; however, storm duration is not used in the regression equations. The maximum 24-hour intensity that has a 2-year recurrence interval (INT) is 1.44 in. (Sabol and others, 1990) and the mean annual rainfall is 7.11 in. (National Oceanic and Atmospheric Administration, 1990; table 1, this report). INT and MAR are required to estimate CU and RUN.

Loads for a mean storm and mean seasonal loads for summer and winter (tables 13, 14, 15, and 16) differ because, although cold fronts and monsoons have the same mean TRN, summer monsoons have a larger standard deviation. Loads for a mean storm and mean seasonal loads for spring storms were estimated using the mean TRN value of 0.36 in. (tables 17 and 18). Mean annual constituent loads were estimated by summing mean seasonal constituent loads (table 19).

Volumes of runoff for a mean storm, mean seasonal, and mean annual volumes of runoff also were estimated (tables 20 and 21). Estimates were made by assuming that rainfall at Sky Harbor Airport represents the entire Phoenix area. The eastern part of Phoenix, however, seemed to get more rainfall than other areas during this study. Orographic effects of the surrounding mountains could be a significant factor influencing the areal distribution of storm characteristics, mean annual rainfall, and constituent loads.

Localized areas seem to contribute a large proportion of the constituent loads and were identified in several municipalities by analyzing the distribution of constituent loads per unit area (unitconstituent load). The unit-constituent loads were calculated by dividing constituent loads for a mean storm by section area to normalize load estimates; the unit-constituent load depends primarily on percentage of impervious area. The relative proportion of constituent loads from areas within a city was determined by associating the unitconstituent load of a section with a quartile and by analyzing the areal distribution of quartiles (figs. 6–9). Quartiles are the percentage of values equal to or less than the indicated values: the 0 to 25th quartile is the smallest 25 percent of the values; 25th to 50th quartile means 50 percent of the values are larger and 25 percent are smaller; 50th to 75th quartile means 25 percent of the values are larger and 50 percent are smaller; and 75th to 100th quartile is the largest 25 percent of the values. Sections that are associated with the same quartile indicate areas that contribute about the same amount of constituent loads per unit area.

Sections assigned to the 50th to 75th quartile and 75th to 100th quartile that are contiguous indicate localized areas that contribute a large proportion of constituent loads, and may require special consideration in managing urban stormwater. The cities of Chandler, Mesa, Paradise Valley, and Peoria had the most distinct areas where sections with large unit-constituent loads are contiguous. These localized areas typically are associated with sections that have about 40 percent or more impervious area and have industrial, commercial, and high-density residential land use. The other municipalities either are too small for analysis to be meaningful (Guadalupe and Youngtown) or had sections in the 50th to 75th and 75th to 100th quartile that were small and (or) were not contiguous. The lack of large, contiguous areas in the 50th to 75th and 75th to 100th quartiles indicates that constituent loads are, in general, uniformly distributed in Gilbert, Glendale, Phoenix, Scottsdale, Tempe, and Tolleson.

Annual constituent loads also were estimated for major drainage basins in the study area (fig. 10, table 22) to determine which drainage basins discharge the most constituents to rivers in the Phoenix area and to identify the drainage basins that are most affected by urban stormwater. Constituent-load estimates for major drainage basins were made assuming that the adjusted regression equations apply to sections that are undeveloped and that there is no storage within a drainage basin. Comparisons of constituent concentrations between different land uses (fig. 4; table 7) and accuracy of the RUN equation for drainage basins with a small percentage of impervious area indicates that the equations can be used in undeveloped parts of the study area.

Urbanized drainage basins have the largest estimated unit-constituent loads of the major drainage basins in the study area. The large

	Volume of runo	ff for a mean ato	rm, in oubio feet	Mean season	al voiume of runc	off, in cubio feet
City	Upper 95percent confidence ievel	Lower 95-percent confidence jevel	Mean	Upper 95-percent confidence jevel	Lower 95-percent confidence ievel	Mean
			Summer storms			
Chandler	12,800,000	11,700,000	12,200,000	84,000,000	76,600,000	80,300,000
Gilbert	5,220,000	4,600,000	4,910,000	34,300,000	30,200,000	32,200,000
Glendale	16,100,000	14,500,000	15,300,000	106,000,000	95,500,000	101,000,000
Guadalupe	375,000	252,000	314,000	2,460,000	1,650,000	2,060,000
Mesa	39,700,000	37,100,000	38,400,000	260,000,000	244,000,000	252,000,000
Paradise Valley	4,540,000	4,010,000	4,270,000	29,800,000	26,400,000	28,100,000
Peoria	17,200,000	14,300,000	15,800,000	113,000,000	93,900,000	103,000,000
Phoenix	125,000,000	121,000,000	123,000,000	822,000,000	792,000,000	807,000,000
Scottsdale	29,300,000	27,600,000	28,400,000	192,000,000	181,000,000	187,000,000
Tempe	18,100,000	16,400,000	17,300,000	191,000,000	108,000,000	113,000,000
Tolleson	1,090,000	889,000	989,000	7,150,000	5,840,000	6,490,000
Youngtown	571,000	415,000	493,000	3,750,000	2,730,000	3,240,000
			Winter storms			
Chandler	14,000,000	12,700,000	13,400,000	104,000,000	94,800,000	99,600,000
Gilbert	5,720,000	5,000,000	5,360,000	42,700,000	37,300,000	40,000,000
Glendale	17,600,000	15,800,000	16,700,000	106,000,000	95,500,000	101,000,000
Guadalupe	413,000	272,000	332,000	2,460,000	1,650,000	2,060,000
Mesa	43,400,000	40,500,000	41,900,000	324,000,000	302,000,000	313,000,000
Paradise Valley	4,540,000	4,010,000	4,270,000	37,100,000	32,600,000	34,800,000
Peoria	18,900,000	15,500,000	17,200,000	141,000,000	116,000,000	128,000,000
Phoenix	137,000,000	132,000,000	134,000,000	1,020,000,000	981,000,000	1,000,000,000
Scottsdale	32,000,000	30,000,000	31,000,000	239,000,000	224,000,000	232,000,000
Tempe	19,800,000	17,800,000	18,800,000	148,000,000	133,000,000	141,000,000
Tolleson	1,190,000	965,000	1,080,000	8,910,000	7,200,000	8,050,000
Youngtown	628,000	449,000	538,000	4,690,000	3,350,000	4,020,000
			Spring storms			
Chandler	13,600,000	12.300.000	12.900.000	15,100,000	13,600,000	14.300.000
Gilbert	5,560,000	4,820,000	5,190,000	6,160,000	5,350,000	5,750,000
Glendale	17,100,000	15,300,000	16,200,000	19.000.000	17.000.000	18.000.000
Guadalupe	404,000	259,000	332.000	447.000	287.000	367.000
Mesa	42,100,000	39,100,000	40.600.000	46.600.000	43,400,000	45.000.000
Paradise Valley	4.830.000	4.210.000	4,520,000	5.350.000	4.670.000	5.010.000
Peoria	18,300.000	15.000.000	16.600.000	20.300.000	16.600.000	18.400.000
Phoenix	132.000.000	127.000.000	130.000.000	147.000.000	141.000.000	144.000.000
Scottsdale	31.000.000	29.000.000	30.000.000	34.400.000	32.200.000	33.300.000
Tempe	19.300 000	17.200.000	18,200,000	21,400,000	19,100,000	20 200.000
Tolleson	1,160,000	929 000	1.040.000	1 290 000	1 030 000	1 160 000
Youngtown	613.000	430,000	521.000	679.000	476.000	578.000

Table 20. Estimated volume of runoff for a mean storm and mean seasonal volumes of runoff for Phoenix and surrounding municipalities

42 Estimatea of Constituent Loads and Event-Mean Constituent Concentrationa

	Mean annual	volume of runof	f, in cubic feet		Mean annual	volume of runot	if, in cubic feet
City	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	City	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean
Chandler	200,000,000	188,000,000	194,000,000	Peoria	266,000,000	234,000,000	250,000,000
Gilbert	81,400,000	74,600,000	78,000,000	Phoenix	1,980,000,000	1,930,000,000	1,950,000,000
Glendale	252,000,000	235,000,000	243,000,000	Scottsdale	461,000,000	442,000,000	451,000,000
Guadalupe	5,650,000	4,310,000	4,980,000	Tempe	284,000,000	265,000,000	274,000,000
Mesa	624,000,000	596,000,000	610,000,000	Tolleson	16,800,000	14,600,000	15,700,000
Paradise Valley	70,800,000	65,000,000	67,900,000	Youngtown	8,680,000	6,980,000	7,830,000

Table 21. Estimated mean annual volume of runoff for Phoenix and surrounding municipalities

Figure 6. Distribution of unit-constituent loads in stormwater for the City of Chandler. Unit-constituent loads (constituent load per unit area) were calculated for each section, and each section was associated with quartiles between the minimum (0 to 25 quartile) and maximum (greater than 75 to 100 quartile) unit load.

Figure 7. Distribution of unit-constituent loads in stormwater for the City of Mesa. Unit-constituent loads (constituent load per unit area) were calculated for each section, and each section was associated with quartiles between the minimum (0 to 25 quartile) and maximum (greater than 75 to 100 quartile) unit load.

unit-constituent loads of urbanized drainage basins are due mostly to the large volumes of runoff from impervious areas. The major drainage basins were ranked by the unit loads of each constituent, and the mean ranking was used to compare constituent loads from the basins (table 23). The drainage basins with the largest unit-constituent loads are mostly urbanized and are adjacent to the Salt, New, and Agua Fria Rivers. The proximity of these drainage basins to the Salt, New and Agua Fria Rivers indicates that these rivers could be receiving larger constituent loads than would have occurred before urbanization.

Event-Mean Constituent Concentrations

Driver and Tasker (1990) developed regionalregression equations for event-mean constituent concentrations using the same independent variables as in the stepwise equations for constituent loads. Driver and Tasker did not develop a set of regression equations using three variables for constituent concentrations. Logtransformed values of predicted and observed event-mean constituent concentrations were significantly and positively correlated at a level of

Figure 8. Distribution of unit-constituent loads in stormwater for the City of Paradise Valley. Unit-constituent loads (constituent load per unit area) were calculated for each section, and each section was associated with quartiles between the minimum (0 to 25 quartile) and maximum (greater than 75 to 100 quartile) unit load.

5 percent for only four of the constituents. In addition, there was a poor linear relation between untransformed observed and predicted values in contrast to constituent-load values. In general, the regional-regression equations overestimated eventmean constituent concentrations and had standard errors that were unacceptably high for direct application to the study area.

The MAP's of Hoos and Sisolak (1993) were used to modify the regional-regression equations for event-mean constituent concentrations. The MAP's that provided the least error in predicting constituent concentrations were either the R-P or R-P+nV adjustments. The MAP's reduced the standard error of estimate by about 20 to 3,300 percent. The regression residuals, however, were not homoscedastic. Lack of homoscedasticity and the poor linear relation between predicted and observed values violates the underlying assumptions of linear regression; therefore, the best estimators for event-mean constituent concentrations in the study area probably are the mean values (table 6).

SUMMARY

From October 1991 to October 1993, stormwater was sampled in the metropolitan Phoenix area from five drainage basins with residential, light industrial, heavy industrial, commercial, and undeveloped land uses;

Figure 9. Distribution of unit-constituent loads in stormwater for the City of Peoria. Unit-constituent loads (constituent load per unit area) were calculated for each section, and each section was associated with quartiles between the minimum (0 to 25 quartile) and maximum (greater than 75 to 100 quartile) unit load.

streamflow was sampled from the Salt River. Stormwater also was sampled from seven drainage basins with residential, industrial, commercial, and mixed land use in 1992 by the City of Phoenix. Initial runoff from several sites typically was black in color from oil and grease, particulates from

conductance values commonly decreased during storms; the decreasing values indicated that most soluble constituents were washed from exposed surfaces in the initial runoff or that constituents were diluted. Event-mean concentrations of most constituents measured in stormwater generally were log-normally distributed, commonly varied by an order of magnitude, and were similar for most land uses. The largest event-mean concentrations of constituents were from the drainage basin with heavy industrial land use; this basin also had the largest event-mean concentration of suspended solids of the urban drainage basins studied. Most event-mean constituent concentrations were positively correlated with suspended-solids concentrations; percent impervious area was correlated with negatively suspended-solids concentrations. The dependence of constituent concentrations on suspended-solids concentrations makes it difficult to separate the effects of land use on urban stormwater chemistry from percentage of impervious area. Instantaneous concentrations of most constituents measured in streamflow from the Salt River were within the range of concentrations measured in stormwater from urban drainage basins. Event-mean concentrations of chemical oxygen demand and biological oxygen demand, oil and grease, and counts of fecal bacteria were greater in urban stormwater than in streamflow. Organochlorine pesticides, semivolatile com-

ground-up tires, or other sources. Specific-

pounds, and volatile organic compounds were seldom detected in urban stormwater and were not detected in streamflow or stormwater from the drainage basin with undeveloped land use. The insecticides DDT and DDE were measured in stormwater samples from the drainage basins with heavy industrial, residential, and commercial land use at concentrations of 0.04 to $1.1 \,\mu$ g/L. DDT and its degradation product DDE could be from insecticides applied in the 1950's and 1960's when most of the land in the metropolitan Phoenix area was used for agriculture or could be present as byproducts from the manufacturing of other pesticides. Semivolatile organochlorine and volatile organic compounds were detected in 7 of 30 samples and were detected in samples from the light industrial and commercial drainage basins, which indicates that these compounds were not significant in stormwater.

Figure 10. The major drainage basins in the Phoenix area.

Table 22. Estimated mean annual constituent loads for major drainage basins in Phoenix and surrounding municipalities

Ē
anne
đ
ersion
<u>D</u>
mal
Ű
Arizona
ວິ
ē
Υ.
pounds
н.
are
ates
estim
all
for
nits
5

	Chen	nical oxygen den	pusu	(J)	Suspended solid			Dissolved solids	
Drainage bssin	Upper Af nevent	Lower 05. nervent		Upper of nervent	Lower of nement		Upper of nervent	Lower	
(from figure 10)	so-percent confidence level	so-percent confidence level	Mean	so-percent confidence level	so percent confidence level	Mean	so percent confidence level	so-percent confidence level	Mean
Upper New River	700,000	670,000	685,000	8,140,000	7,400,000	7,770,000	64,400	61,800	63,100
Upper ACDC	2,700,000	2,600,000	2,650,000	23,900,000	22,400,000	23,200,000	703,000	678,000	690,000
Lower Verde	2,520,000	2,470,000	2,500,000	30,000,000	28,600,000	29,300,000	223,000	218,000	220,000
Skunk Creek	770,000	734,000	752,000	7,880,000	7,120,000	7,500,000	110,000	105,000	108,000
Lower Agua Fria	940,000	896,000	918,000	8,780,000	8,020,000	8,400,000	180,000	170,000	175,000
Upper Indian Bend	1,420,000	1,340,000	1,380,000	12,400,000	11,300,000	11,800,000	369,000	352,000	360,000
Lower New River	427,000	389,000	408,000	3,330,000	2,800,000	3,060,000	126,000	117,000	122,000
Lower ACDC	2,410,000	2,290,000	2,350,000	15,600,000	14,100,000	14,900,000	1,090,000	1,050,000	1,070,000
Evergreen	162,000	150,000	156,000	2,020,000	1,680,000	1,850,000	11,000	10,300	10,700
Lower Indian Bend	1,070,000	816,000	943,000	3,020,000	2,470,000	2,750,000	172,000	158,000	165,000
Lower East Maricopa Flood	2,670,000	2,590,000	2,630,000	26,200,000	24,700,000	25,400,000	519,000	499,000	509,000
Upper East Maricopa Flood	2,380,000	2,280,000	2,330,000	17,800,000	16,400,000	17,100,000	792,000	764,000	778,000
South Mountain	1,700,000	1,630,000	1,660,000	14,800,000	13,600,000	14,200,000	438,000	419,000	428,000
		Total nitrogen		Total organ	ic nitrogen plus	smmonls	Ĩ	otal phosphorus	
Drsinsge basin	95-percent confidence	95-percent confidence	Mean	opper 95-percent confidence	95-percent confidence	Mesn	upper 95-percent confidence	<u>95-percent</u> confidence	Mean
	ievei	ievel		level	level		level	level	
Upper New River	21,900	21,000	21,400	31,200	29,900	30,600	5,530	5,260	5,390
Upper ACDC	86,900	83,700	85,300	121,000	117,000	119,000	27,100	25,800	26,400
Lower Verde	79,800	78,100	79,000	114,000	112,000	113,000	19,900	19,400	19,600
Skunk Creek	24,100	22,900	23,500	33,900	32,300	33,100	6,660	6,270	6,460
Lower Agua Fria	28,400	27,100	27,700	39,600	37,800	38,700	8,270	7,750	8,010
Upper Indian Bend	45,400	43,100	44,300	63,000	60,000	61,500	14,200	13,340	13,800
Lower New River	13,100	11,900	12,500	18,000	16,400	17,200	4,320	3,840	4,080
Lower ACDC	77,200	73,300	75,200	104,000	99,400	102,000	28,200	26,500	27,400
Evergreen	4,990	4,630	4,810	7,160	6,640	6,900	1,200	1,100	1,160
Lower Indian Bend	13,800	12,300	13,000	18,600	16,800	17,700	490	4,280	4,590
Lower East Maricopa Flood	84,300	81,600	83,000	118,000	115,000	116,000	24,300	23,300	23,800
Upper East Manicopa Flood	73,700	70,600	72,100	101,000	96,800	98,800	24,700	23,400	24,100
South Mountain	53,300	50,900	52,100	73,800	70,700	72,200	16,600	15,600	16,100

48 Summary

	Diss	olved phosphon	8	Total	recoverable cad	mium	10	tal recoverable co	pper
Drainage basin	Upper 95-percent confidence levei	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean	Upper 95-percent confidence level	Lower 95-percent confidence level	Mean
Upper New River	1,370	1,270	1,320	6.93	69.9	6.81	317	301	309
Upper ACDC	4,730	4,300	4,520	37.6	35.2	36.4	1,550	1,420	1,490
Lower Verde	4,810	4,620	4,720	25.9	25.5	25.7	1,160	1,120	1,140
Skunk Creek	1,480	1,340	1,410	7.05	6.77	6.91	296	280	288
Lower Agua Fria	1,900	1,710	1,800	9.96	9.32	9.64	571	510	540
Upper Indian Bend	2,520	2,200	2,360	18.4	17.1	17.8	715	653	684
Lower New River	832	655	743	7.28	6.00	6.64	223	186	205
Lower ACDC	4,070	3,500	3,780	69.1	63.2	66.2	3,060	2,730	2,890
Evergreen	332	296	314	1.64	1.54	1.59	74.0	67.2	70.6
Lower Indian Bend	840	625	733	10.8	8.69	9.75	385	312	348
Lower East Maricopa Flood	5,000	4,640	4,820	27.2	26.2	26.7	1,340	1,260	1,300
Upper East Maricopa Flood	4,380	3,910	4,140	42.0	38.9	40.5	1,900	1,740	1,820
South Mountain	3,160	2,820	2,990	22.4	20.7	21.6	1,310	1,180	1,250
	Tota	il recoverable iea	P	Total r	recoverable zinc		Volume	of runoff, In cubic	feet
	Upper	lower		Upper	Lower		Upper	Lower	
Drainage basin	95-percent confidence	95-percent confidence	Mean	95-percent confidence	95-percent confidence	Mean	95-percent confidence	95-percent confidence	Mean
	evel	level		evel	level		level	evel	
Upper New River	739	676	707	1,230	1,170	1,200	118,000,000	114,000,000	116,000,000
Upper ACDC	5,100	4,710	4,900	6,840	6,530	6,680	904,000,000	876,000,000	890,000,008
Lower Verde	2,540	2,420	2,480	4,330	4,220	4,270	415,000,000	407,000,000	411,000,000
Skunk Creek	1,060	926	1,010	1,590	1,500	1,550	171,000,000	165,000,000	168,000,000
Lower Agua Fria	1,550	1,380	1,470	2,150	2,020	2,090	242,000,000	231,000,000	237,000,000
Upper Indian Bend	2,710	2,440	2,570	3,610	3,400	3,500	476,000,000	457,000,000	466,000,000
Lower New River	943	781	862	1,180	1,060	11,240	153,000,000	142,000,000	148,000,000
Lower ACDC	6,700	6,100	6,400	7,950	7,510	7,730	1,210,000,000	1,160,000,000	1,180,000,000
Evergreen	150	129	139	261	240	250	22,400,000	21,500,000	21,900,000
Lower Indian Bend	1,170	954	1,060	1,390	1,230	1,310	183,000,000	168,000,000	176,000,000
Lower East Maricopa Flood	4,200	3,880	4,040	5,980	5,730	5,850	714,000,000	692,000,000	703,000,000
Upper East Maricopa Flood	5,440	4,990	5,220	6,830	6,490	6,660	933,000,000	902,000,000	917,000,000
South Mountain	3,260	2,950	3,110	4,320	4,090	4,200	554,000,000	533,000,000	543,000,000

Table 22. Estimated mean annual constituent loads for major drainage basins in Phoenix and surrounding municipalities-Continued

Table 23. Ranking of the major drainage basins in the

 Phoenix area by unit-constituent loads

[Rankings are listed in ascending order. Ranks were computed for each constituent, and the mean rank was computed for the drainage basin. ACDC, Arizona Canal Diversion Channel]

Drainage baain	Drainage area, in square miles	Mean rank
Upper New River	126.3	3
Upper ACDC	313	7
Lower Verde	506.4	1
Skunk Creek	110	4
Lower Agua Fria	115	6
Upper Indian Bend	154.6	8
Lower New River	33.6	10
Lower ACDC	137	13
Evergreen	30.8	2
Lower Indian Bend	25	12
Lower East Maricopa Flood	371.2	5
Upper East Maricopa Flood	187	11
South Mountain	183.3	9

Loads for a mean storm, mean seasonal, and mean annual loads of 12 constituents and volumes of runoff were estimated for municipalities in the study area. Constituent loads were estimated by using data collected in the study area to adjust regional-regression equations for local application. Most of the adjusted equations required three explanatory variables (total rainfall, drainage area, and percentage of impervious area) to estimate constituent loads and had standard errors that were from 65 to 266 percent. Land-use data and a geographic-information system were used with the adjusted equations to estimate constituent loads and volume of runoff from each municipality, to evaluate the areal distribution of constituent loads, and to identify areas that are contributing a large proportion of the total loads. The distribution of pollutant loads in the municipalities of Chandler, Mesa, Paradise Valley, and Peoria indicates that there are localized areas contributing a large proportion of the annual constituent loads.

Constituent loads seem to be evenly distributed in other municipalities.

Regional-regression equations for estimating event-mean constituent concentrations also were adjusted. The equations, however, were not linear and residuals were not homoscedastic; therefore, the best estimates of the event-mean constituent concentrations measured in stormwater probably are the mean values.

REFERENCES CITED

- Driver, N.E., and Tasker, G.D., 1990, Techniques for estimation of storm-runoff loads, volumes, and selected constituent concentrations in urban watersheds in the United States: U.S. Geological Survey Water-Supply Paper 2363, p. 44.
- Flood Control District of Maricopa County, 1993, Gilbert-Chandler area drainage master study— Volume 1, Current conditions hydrology, Final report, July 1993: Phoenix, Arizona, Flood Control District of Maricopa County report, v.p.
- Gilroy, E.J., Hirsch, R.M., and Cohn, T.A., 1990, Mean square error of regression-based constituent transport estimates: American Geophysical Union, Water Resources Research, v. 26, no. 9, p. 2069–2077.
- Hanks, Kenneth, 1988, DDT use in the bollworm eradication program of 1958–60: Arizona Department of Environmental Quality report, p. 9.
- Helsel, D.R., and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality data: American Geophysical Union, Water Resources Research, v. 24, no. 12, p. 1997–2004.
- Helsel, D.R., and Hirsch, R.M., 1992, Statistical methods in water resources: New York, Elsevier Science Publishers, 522 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hoos, A.B., and Sisolak, J.K., 1993, Procedures for adjusting regional regression models of urbanrunoff quality using local data: U.S. Geological Survey Open-File Report 93–39, 39 p.
- Horowitz, A.J., and Elrick, K.A., 1987, The relation of stream sediment surface area, grain size and composition to trace metal chemistry: Applied Geochemistry, v. 2, p. 437–451.
- Kennedy, E.J., 1984, Discharge ratings at gaging stations: U.S. Geological Survey Techniques of

Water-Resources Investigations, book 3, chap. A10, 59 p.

- Kolb, W.M., 1983, Curve fitting for programmable calculators: Bowie, Maryland, IMTEC, p. 94.
- Maricopa Association of Governments, 1989, 1989 MAG regional development summary—A report on population, employment, housing and commerce in Maricopa County: Phoenix, Arizona, Maricopa Association of Governments report, 58 p.
- 1993, Update of the population and socioeconomic data base for Maricopa County: Phoenix, Arizona, Maricopa Association of Governments report, 257 p.
- National Oceanic and Atmospheric Administration, 1990, Local climatological data—Annual summary with comparative data, Phoenix, Arizona: U.S.

Department of Commerce, National Oceanic and Atmospheric Administration report, ISSN 0198-0572, 8 p.

- Rantz, S.E., and others, 1982, Measurement and computation of streamflow---Volume 1. Measurement of stage and discharge: U.S. Geological Survey Water-Supply Paper 2175, 284 p.
- Sabol, G.V., Rumann, J.M., Khalili, D., and Waters, S.D., 1990, Hydrologic design manual for Maricopa County, Arizona: Phoenix, Arizona, Flood Control District of Maricopa County report, v.p.
- State of Arizona, 1989, Arizona administrative code: Phoenix, Arizona, State of Arizona Code of Regulations, Title 18, chap. 9, article 7, R18–9–701.

SELECTED WATER-QUALITY DATA FOR FLOW-WEIGHTED COMPOSITE AND INSTANTANEOUS SAMPLES OF STORMWATER AND STREAMFLOW

52 Selected Water-Quality Data

[Mgal/d, million gallons per day; µS/cm, microsiemens per centimeter at 25 °Celsius; °C, degrees Celsius; mm, millimeters; mg/L, milligrams per liter; cols./100 mL, colonies per 100 milliliters; µg/L, micrograms per liter; dashes indicate no data; <, less than; >, greater than; K, based on non-ideal colony count]

			Dis-			Maximum	· · · · · · · · · · · · · · · · · · ·	Drv dsvs	Number	Spe-	Specific
			chsrge,		Precipi-	5-minute	Elapsed	before	of	cific	con-
			Inst.	Storm	tation	precipi-	time	precipi-	sam-	con-	duct-
			(cubic	water	totai	tation	cf	tation	pling	duct-	snce
Station	D	These	feet per	flow	Inches/	Intensity	sterms	event (down)	points (count)		iab (uS/om)
number	Date	lime	second)	(Mgai/d)	sicim	(Inches)	(nours)	(oays)	(count)	(µ3/cm)	(µs/cm)
09512165	12-31-92	0005	10		*			*****	1	880	880
	01-04-93	1630	8,600		*****	# ****			27	607	620
	01-12-93	1910	47,800		*****				5	500	496
	02-11-93	0900	25,500						10	309	299
09512184	11-10-91	1957	7.7	0.22	0.48	0.05	2.3	13.0	1	80	97
	12-10-91	2036	16	0.17	0.46	0.19	10.0	29.0	1	*****	178
	12-18-01	0546	0 07	0.13	0.10	0.02	8.8	7.0	1	109	81
	03-08-02	0716	21	0.15	0.35	0.04	5.6	1.0	1	194	139
	03-00-92	0600	2.1	0.15	0.55	0.03	5.8	18.0	1	97	87
	05-27-92	13.41	<i>L</i> . 1	0.52	0.51	0.05		10.0			
	UJ-20-92	1541									
	05-20-92	1348	5.0	0.29	0.28	0.09	2.7	1.0	1	128	164
	05-20-92	1350				*****					
	05-20-92	1412		·							
	05-20-92	1424				*****					
	05-20-92	1436			****	*****		*			
	08-05-92	0841	32	0.30	0.44	0.16	2.7	6.0	1	93	90
09512190	08-24-92	1430	16,500						15	406	384
	09-02-92	1055	1,140						8	761	774
09512200	01-12-92	0032	163	1.4	0.60	0.15	3.0	6.0	1	75	88
	02-07-92	1524	128	0.77	0.41	0.10	19.8	3.0	1		
09512403	12-10-91	2113	3.0	0.08	0.60	0.08	11.0	11.0	1	163	170
	12-18-91	0733	1.2	0.10	0.25	0.01	12.0	7.0	1	177	185
	02-07-92	0445	0.28	0.01	0.18	0.02	5.5	17.0	1		
	03-02-92	1327	1.8	0.05	0.23	0.08	17.6	18.0	1	266	258
	03-08-92	1439	0.63	0.05	0.41	0.02	13.0	1.0	1	159	200
	03-27- 92	0400	********						1	215	
	07-11-92	0105	2.0	0.09	0.53	0.03	3.3	4.0	1	169	223
	08-22-92	0926	2.3	0.04	0.37	0.13	2.1	14.0	1	150	188
	12-08-92	0713	2.7	0.13	0.88	0.05	6 .7	41.0	1	129	
09513700	10-27-91	0909	1.7	0.07	0.52	0.13	3.1	57.0	1	87	73
								_			
	11-29-91	2332	0.33	0.03	0.34	0.05	10.2	15.0	1	99	138
	12-10-91	1817	18	0.40	0.72	0.28	7.8	11.0	1	76	70
	02-07-92	0320	0.83	0.08	0.38	0.02	8.9	47.0	1	52	55
	03 -27-92	0333	0.65	0.06	0.34	0.02	8.0	50.0	1	76	87
	08-22-92	2221	0.96	0.05	0.40	0.11	21.9	17.0	1	175	92
							•••		-	~ -	
09513885	12-04-92	0523	1.2	0.05	0.68	0.02	12.7	36.0	1	82	47
	01 -06-93	2103	0.82	0.03	0.44	0.02	24.1	3.0	1	99	44
	02-08-93	1941	1.7	0.06	0.76	0.02	19.5	18.0	1	130	49
	03-26-93	1557	2.0	0.02	0.22	0.09	4.5	45.0	1	894	170
	08-24-93	2343	2.1	0.02	0.29	0.07	2.0	16.0	1	104	121
				Å & *	~ ^ ^	0.07		66 6	•	00	100
	10-06-93	1231	1.2	0.03	0.39	0.06	11.7	22.0	1	80	133

Station	Date	pH water whole field (stand- ard units)	pH water whoie lab (stand- ard units)	Tem- pera- ture water (°C)	Baro- metric pres- sure (mm of Ha)	Oxygen, dis- soived (mg/l)	Oxygen, dia- scived (per- cent satur- ation)	Oxygen demand, chem- ical (high levei) (mg/l)	Oxygen demand, blo- chem- ical, 5-day (mg/L)	Coli- form, fecal, 0.7 um-mf (ccls./ 100 ml.)	Strep- tococci fecai, kf agar (cois./ 100 ml)
00610166	10.01.00	<u> </u>	0.5	12.0		(8/	4.10117	((8,/		
09512105	12-31-92	8.9	8.5	13.0	700		100	25		*********	 E 4 0
	01-04-93	1.9	8.1	13.0	720	10.2	103	17	/.U		540
	01-12-93	8.2	8.0	12.0	730	8.1	79	39	<0.0	290	1,300
	02-11-93	8.0	8.1	11.0	725	8.7	83	13	<0.0	100	230
09512184	11-10-91	7.5	0.8	18.0	729	8.2	91	69	0.0	5,700	8,800
	12-10-91		7.6								
	12-18-91	7.6	6.6	15.0	731	8.3	86	300	200	4,500	K12,000
	03-08-92	8.0	8.0	16.5	727	8.9	96	53	< <u>5</u> .0	5,000	4,400
	03-27-92	7.0	7.6	17.5	725	7.9	87	87	60	2,500	5,500
	05-20-92			ain din aik aik aik	*****						
	05-20-92	6.5	6.7		724	6.9	96	120	18	1,400	27,000
	05-20-92										*********
	05-20-92										
	05-20-92	a. 4. 30			*****	dan din sik yar gerapa		*****			
	05-20-92									*********	
	08-05-92	8.0	7.6	26.0	731	7.2	93	93	100	>6,000	K11,000
09512190	08-24-92	7.3	7. 9		732	5.6		33	10	3,000	3,400
	09-02-92	8.1	8.3	25.5	730	5.9	76	12	30	450	48
09512200	01-12-92	8.3	7. 5	7.5	720	7.3	64	59	20	2,500	9,800
	02-07-92		8.1			سادة عد به دومو		21,000			
09512403	12-10-91	8.4	7.9	17.5	727	7.3	80	4,300	3,600	3,100	K22,000
	12-18-91	7.8	7.2	16.0	730	9.0	95	520	270	K11,000	K26,000
	02-07-92										
	03-02-92	9.0	7.8	17.0	730	8.5	92	340	8.5	5,500	6,500
	03-08-92	8.7	7.9	17.0	731	7.6	82	590	31	5,800	6,600
	03-27-92	7.9		17.5	730	8.5	93			K9.500	8,500
	07-11-92	8.4	7.5	28.0	732	7.1	95	180	33	4.500	9,800
	08-22-92	8.8	7.8	27.5	732	5.9	78	180	21	5,800	4,200
	12-08-92	7.8		12.5	730	10.2	100	110	12	4,500	K15.000
09513700	10-27-91	7.2	7.8	25.0	723	6.5	83	140	12	4,600	1,000
	11-29-91	73	7.5	10.0	724	10.0	93	150	55	5 800	1 700
	12-10-91	7.9	7.6	15.0	727	9.8	102	<10	30	2,600	K12 000
	02-07-02	7.5	74	14.5	727	2.0 8.7	80	60	<u>~50</u>	2,000 070	2 600
	02 07 72	70	74	16.5	725	8.8	05	120	65	2700	2,000 8,500
	03-27-92	7.9	68	30.0	720	57	70	120	18	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1 000
	08-22-92	1.4	0.8	50.0	129	5.7	19	150	10	>0,000	1,900
09513885	12-04-92	6.9	7.2	14.5	730	10.0	102	97	16	K8,000	6,700
	01-06-93	6.8	6.8	12.0	725	8.6	84	97	66	2,700	K12,000
	02-08-93	6.3	6.5	16.0	730	8.2	87	180	9.0	2,300	5,200
	03-26-93	6.5	6.7	22.0	725	5.6	67	330	63	K41,000	K21,000
	08-24-93	6.5	6.6	27.0	730			160	30		K130
	10-06-93	7.0	6.4	25 .0	732			210	33	K400	K6 70

54 Selected Water-Quality Data

Station	Data	Caiclum dis- aoived (mg/L	Magne- alum, dia- solved (mg/L	Sodium, dia- soived (mg/L	Potas- sium, dis- aoived (mg/L	Bicar- bonate water Wh it field (mg/L aa	Bicar- bonate water Dis it field (mg/L sa	Car- bonate water Wh it field (mg/L aa	Car- bonate water Dis it field (mg/L aa	Aika- linity Wat Wh Tot it field (mg/L aa	Aika- iinity Wat Dis Tot it field (mg/L aa
number		as caj	as my)	as naj	85 K)	ncog		CO3)	CO ₃)		Caco ₃
09512165	12-31-92	43	20	100							150
	01-04-93	37	12	63	3.0	150	130	0	0	123	107
	01-12-93	29	8,3	54	2.8	128	109	0	0	105	89
	02-11-93	27	8.6	19	2.0		116		0		95
09512184	11-10-91	9.1	1.2	4.7	2.0	20	20	0	0	17	16
	12-10-91				******						
	12-18-91	8.6	1.0	4.0	1.5	25		0		21	
	03-08-92	13	1,5	8.2	2.1	41	32	0	0	34	27
	03-27-92	8.1	0.90	3.5	1.6	29	23	0	0	24	19
	05-20-92		*-****	*******	****	****				بت الله من عد	
	05-20-92	13	1.8	12	3.4	29	24	0	0	24	19
	05-20-92										
	05-20-92				******						*
	05-20-92										
	05-20-92	*****									
	08-05-92	8.7	1.0	3.9	1.6	48	25	0	0	39	21
09512190	08-24-92	32	11	29	2.8	179		0		147	
	09-02-92	40	11	87	3.6	139	138	0	0	114	113
09512200	01-12-92	11	0.85	0.90	4.3	40		0		33	
	02-07-92										
09512403	12-10-91	13	1.5	8.9	3.3						
	12-18-91	16	1.9	9.3	3.5	78	46	0	0	64	38
	02-07-92										****
	03-02-92	23	3.0	15	5.3	278	39	0	0	228	32
	03-08-92	16	2.1	11	4.3	261	49	0	0	214	40
	03-27-92					-				****	
	07-11-92	18	2.2	11	6.7	105	38	0	0	86	31
	08-22-92	16	1.7	8.2	4.5	229	34	0	0	188	28
	12-08-92	12	2.0	7.5	2.9	127		0		104	-
09513700	10-27-91	9.3	0.78	1.8	1.7	46	22	0	0	38	18
	11-29-91	14	1.6	7.1	2.0	34	36	0	0	28	29
	12-10-91	7.6	0.80	1.5	1.2	156	23	0	0	128	19
	02-07-92	6.7	0.63	2.2	1.0	22	23	0	0	18	19
	03-27-92	12	0.97	2.3	1.6	34	26	0	0	28	22
	08-22-92	13	0.96	2.1	1.4	30	30	0	0	24	24
09513885	12-04-92	4.6	0.54	1.4	0.90	13	12	0	0	11	10
	01-06-93	4.9	0.53	1.5	0.70	16	16	0	0	13	13
	02-08-93	4.9	0.66	1.7	0.70	12	12	0	0	10	10
	03-26-93	15	1.7	12	1.7	59	32	0	0	48	26
	08-24-93	11	1.4	5.7	1.5	26	17	0	0	21	14
	10-06-93	13	2.0	8.4	1.7	29	26	0	0	24	21

Ststion number	Dste	Alka- Ilnity Isb (mg/L aa CsCO ₃)	Sulfate, dis- solved (mg/L ss SO4)	Chlo- ride, dis- solved (mg/L ss Ci)	Silica, dis- solved (mg/L as Si0 ₂)	Solids, residue st 180°C dis- solved (mg/L)	Residue totsi at 105°C sus- pended (mg/L)	Nitro- gen, nitrite total (mg/L ss N)	Nitro- gen, NO ₂ +NO ₃ total (mg/L as N)	Nitro- gen, sm- monia total (mg/L as N)	Nitro- gen, am- monis + organic total (mg/L as N)
09512165	12-31-92	Page	72	150	7.1	491	9				
	01-04-93	132	38	92	16	347	47		****		0.30
	01-12-93	92	26	83	15	292	318	<0.050		0.390	0.60
	02-11-93	98	20	21	15	180	149	<0.050		<0.100	0.30
09512184	11-10-91	25	8.3	6.6	1.7	57	57	0.050	0.770	0.770	1.9
	12-10-91		*****			*****	680				
	12-18-91	26	6.3	4.5	2.2	92	10	0.080	0.690	0.380	1.0
	03-08-92	31	13	10	2.1	89	142	0.060	1.60	0.220	0.60
	03-27-92	28	4.0	5.2	1.4	44	108	0.080	0.460	0.610	1.1
	05-20-92						438				
	05-20-92	36	10	17	2.1	116	167	0.080	0.950	1.10	2.4
	05-20-92						200				
	05-20-92		******				208				
	05-20-92 05-20-92		******				140				
	08-05-92	49	4.4	5.3	1.6	63	564	0.040	0.810	0.380	1.4
09512190	08-24-92	34			17	225	720	0.020	0.150	0.030	0.30
	09-02-92	120	41	140	15	445	3	<0.010	<0.050	0.030	<0.20
09512200	01-12-92	40	7.2	1.6	2.0	35	365	0.110	1.40	0.230	2.0
	02-07-92	38			******	****	3,390	0.030	0.590	0.070	1.6
09512403	12-10-91	79	12	13	******	110	925	0.200	1.70	0.250	2.3
	12-18-91 02-07-92	79	9.7	10	3.3	122	316	0.080	2.00	0.140	1.7
	03-02-92	42	20	27	3.0	158	1 120	0.070	4 70	0.410	2.6
	03-08-92	64	11	14	4.5	112	1,480	0.110	1.70	0.070	3.0
	03-27-92					*****					
	07-11-92	74	9.2	17	4.5	138	586	0.050	2.60	0.750	3.8
	08-22-92	75	9.1	13	4.2	121	1,430	0.040	2.10	0.390	2.2
	12-08-92	95	5.3	9.1	3.4	70	1,030	0.120	1.80	0.130	1.0
09513700	10-27-91	49	3.2	2.8	1.4	59	<1	0.080	0.720	0.630	2.3
	11-29-91	41	7.3	12	3.9	100	92	0.060	1.50	0.890	1.7
	12-10-91	120	3.0	2.3	1.9	51	910	0.080	0.620	0.170	2.2
	02-07-92	21	2.0	1.0	2.6	46	3	0.040	0.420	0.480	0.90
	03-27-92	32	3.6	2.5	2.4	64	117	0.060	0.650	0.520	1.2
	08-22-92	2.7	6.8	2.1	3.2	105	118	0.040	1.00	0.980	1.9
09513885	12-04-92	11	3.2	1.7	1.0	46	22	0.060	0.550	1.70	2.6
	01-06-93	15	3.0	1.1	1.8	33	240				1.3
	02-08-93	14	4.6	1.6	1.1	38	144			*******	1.6
	03-26-93	32	<0.10	8.1	1.4	164	337				4.7
	08-24-93	23	12	5.8	1.1	126	42	0.020	0.780	1.20	3.4
	10-06-93	23	17	8.1	1.4	165	40	0.030	1.10	1.00	4.9

56 Selected Water-Quality Data

Station	Data	Phoa- phorus, total (mg/L	Phos- phorus, dis- solved (mg/L	Phos- phorua, ortho total (mg/L	Arsenic, totai (μg/L aa	Barlum, dis- aolved (μg/L aa	Beryi- lium, dis- solved (µg/L	Cad- mium, total recover- able (µg/L aa	Cad- mium, dis- solved (µg/L as	Chro- mium, total recover- able (µg/L as	Copper, total recover- able (μg/L as
number		aa P)	88 P)	as P)		Da)					
09512165	12-31-92			*******	7	50	<0.5	<1	<1.0	8	3
	01-04-93	0.090	0.030		8	40	<0.5	<1	<1.0	8	6
	01-12-93	0.430	0.060		9	27	<0.5	<l< td=""><td><1.0</td><td>15</td><td>25</td></l<>	<1.0	15	25
	02-11-93	0.200	0.060		8	24	<0.5	<1	<1.0	6	13
09512184	11-10-91	0.330	0.210		3	23	1	<1	<1.0	5	30
	12-10-91		hiệt các tân đác đư qua cap	****	8			2		44	
	12-18-91	0.190	0.110		3	35	<0.5	<1	<1.0	3	
	03-08-92	0.150	0.070		4	25	<0.5	<1	<1.0	7	10
	03-27-92	0.140	0.110	*****	2	19	<0.5	<1	<1.0	4	72
	05-20-92	****		****				2		17	90
	05-20-92	0.260	0.210	***-***	4	35	0.7	1	<1.0	8	50
	05-20-92							1		7	50
	05-20-92							<1		7	47
	05-20-92							<1		7	49
	05-20-92						40 40 40 40 40 m	<1		5	44
	08-05-92	0.260	0.130		6	13	<0.5	1	<1.0	15	55
09512190	08-24-92	0.080			13			<1		25	300
	09-02-92	0.030	0.010	******	1	44	<0.5	<1	<1.0	1	2
09512200	01-12-92	0.760	0.180	-	4	11	<0.5	<1	<1.0	14	27
	02-07-92	0.530			7			2	هله الله على علم حله	120	210
09512403	12-10-91	0.960	0.110	*	10		****	2		47	
	12-18-91	0.720	0.100		8	21	<0.5	1	<1.0	20	
	02-07-92				21			6		89	320
	03-02-92	0,850	0.140		16	34	<0.5	4	<1.0	25	200
	03-08-92	1.70	0.090	******	16	14	0.6	4	<1.0	3	200
	03-27-92		*****				~~ * * * *				* = * #
	07-11-92	1.10	0.230	*****	2	28	<0.5	2	<1.0	25	50
	08-22-92	0.650	0.180		14	24	<0.5	3	<1.0	52	160
	12-08-92	0.510	0.170		11	15	<0.5	<2	2.0	34	100
09513700	10-27-91	0.430	0.180		5	11	<0.5	1	<1.0	12	33
	11-29-91	0.190	0.120		4	15	<0.5	<1	<1.0	10	
	12-10-91	0.680	0.100		14	10	<0.5	1	<1.0	<1	
	02-07-92	0.110	0.080		3	6	<0.5	<1	<1.0	4	7
	03-27-92	0.150	0.120		3	14	0.8	<1	<1.0	6	
	08-22-92	0.140	0.030		2	16	<0.5	<1	<1.0	8	14
09513885	12-04-92	0.220	0.200		2	6	0.8	<1	<1.0	3	9
	01-06-03	0.160	0.050		- 3	6	<0.5	<1	<1.0	4	8
	02-08-93	0.180	0.070	*****	1	7	<0.5	<1	30	11	13
	03-26-03	0 380	0.240		- 4	21	<n 5<="" td=""><td><1</td><td>_1 0</td><td>11</td><td>26</td></n>	<1	_1 0	11	26
	08-24-03	0.800	0.580	0.390	2	10	0.6	<1	<1.0	3	13
		0.000	0.200	0.070	2	10	5.5	~	7110	.7	÷ •7
	10-06-93	0.750	0.630	0.370	2	16	<0.5	<1	<1.0	2	17

Station		Copper, dis- solved (μg/L	Iron, totai recov- erabie (μg/L	lron, dia- solved (µg/Ľ	Lead, total recov- erable (µg/L	Lead, dis- solved (µg/L	Lithium dis- solved (µg/L	Manga- nese, dia- solved (µg/L	Mercury totai recov- erable (µg/L	Molyb- denum, dis- solved (µg/L	Nickel, total recov- erable (µg/L
number	Date	ss Cu)	ss Fe)	as Fe)	ss Pb)	as Pb)	88 LI)	as Mn	as Hg)	as Mo)	as Ni)
09512165	12-31-92	<10	******	3	<1	<10	61	1	<0.10	10	2
	01-04-93	<10		9	3	<10	42	2	<0.10	<10	4
	01-12-93	<10		58	22	<10	35	2	<0.10	<10	21
	02-11-93	<10		70	7	<10	13	4	<0.10	<10	10
09512184	11-10-91	10		38	18	<10	5	45	0.10	<10	13
	12-10-91	****			130				0.20		63
	12-18-91	<10	****	39	15	<10	<4	24	<0.10	<10	5
	03-08-92	<10		15	12	<10	7	17	<0.10	<10	9
	03-27-92	10		23	11	<10	<4	26	<0.10	<10	6
	05-20-92		9,200		71						38
	05-20-92	20		80	33	<10	9	70	0.10	<10	20
	05-20-92	~~~~	4,500	**-*	41		***				22
	05-20-92		3,200		32				adr yer alrida any iya da		17
	05-20-92		3,300		32						17
	05-20-92		2,900		28	****					13
	08-05-92	<10	45 YU YU YU 45 47 YU	67	50	<10	4	17	0.10	<10	33
09512190	08-24-92	*****			27				<0.10		49
	09-02-92	<10		4	<1	<10	55	<1	<0.10	<10	2
09512200	01-12-92	<10		11	10	<10	<4	<1	<0.10	<10	12
	02-07-92				150				<0.10	*******	100
09512403	12-10-91				230				<0.10		58
	12-18-91	10		20	120	<10	4	11	<0.10	<10	23
	02-07-92				620	*		***	<0.10		120
	03-02-92	20		32	430	<10	8	21	<0.10	<10	53
	03-08-92	10		81	380	10	10	17	<0.10	<10	95
	03-27-92	B -9-7-7-7									
	07-11-92	20		140	210	<10	7	34	<0,10	<10	40
	08-22-92	20	******	140	300	<10	7	15	0.20	<10	68
	12-08-92	<10	*******	170	170	<10	5	13	<0.10	<10	68
09513700	10-27-91	<10		35	51	<10	<4	34	<0.10	<10	17
	11-29-91	<10		32	23	<10	<4	43	<0.10	<10	11
	12-10-91	<10		36	99	<10	<4	6	<0.10	<10	35
	02-07-92	<10	*******	31	8	<10	<4	20	<0.10	<10	4
	03-27-92	<10		19	19	<10	<4	29	<0.10	<10	8
	08-22-92	<10	******	66	28	10	<4	46	<0.10	<10	10
09513885	12-04-92	<10		41	3	<10	<4	57	<0.10	10	5
	01-06-93	<10	******	27	- 8	<10	<4	28	<0.10	<10	5
	02-08-93	<10		27	12	<10	<4	47	<0.10	<10	13
	03-26-93	10		110	27	<10	<4	140	<0.10	<10	23
	08-24-03	10		150		<10	~4	140	<0.10	<10	7
	50 <u>2</u> 1'7J	10		150	Ŧ	~10	T	+ TV	20.10	~10	•
	10-06-93	10		210	8	<10	<4	160	<0.10	<10	9

		Nickei, dia-	Sele- nium,	Silver, totai recov-	Silver, total recov-	Silver, dia-	Stron- tlum, dia-	Vana- dium, dia-	Zinc, totai recov-	Zinc, dis-	Carbon, organic
Station number	Date	(μg/L as Ni)	(μg/L as Se)	(μg/L as Ag)	(μg/L as Ag)	(μg/L as Ag)	(μg/L as Sr)	(μg/L as V)	(μg/L as Zn)	(μg/L as Zn)	(mg/L as C)
09512165	12-31-92	<10	2	<1		2.0	600	7	<10	ও	7.3
	01-04-93	<10	<2	<1	<0.500	<1.0	370	<6	<10	3	4.8
	01-12-93	<10	<2	<1	<0.500	<1.0	230	<6	50	3	13
	02-11-93	<10	4	<1	<0.500	<1.0	220	<6	<10	ଓ	6.7
09512184	11-10-91	<10	<1	<1	<1.00	<1.0	55	<6	120	37	18
	12-10-91		4	<1	<5.00				560		
	12-18-91	<10	4	<1	<2.00	<1.0	120	<6	110	22	63
	03-08-92	<10	4	<1	<1.00	<1.0	88	<6	80	9	12
	03-27-92	<10	4	<1	<1.00	<1.0	44	<6	100	19	20
	05-20-92								600		
	05-20-92	<10	4	<1	<1.00	<1.0	85	6	270	59	54
	05-20-92								440		
	05-20-92								300		
	05-20-92						عز و کرند		320		
	05-20-92				*******				290		
	08-05-92	<10	1	<1	<0.500	<1.0	50	<6	290	7	20
09512190	08-24-92		2	<1	2.50				120		9.5
	09-02-92	<10	2	<1	<0.500	<1.0	310	<6	<10	3	4.9
09512200	01-12-92	<10	4	<1	<10.0	<1.0	50	<6	60	3	17
	02-07-92		4	3					390		210
09512403	12-10-91		4	<1			****		450		1,100
	12-18-91	<10	4	<1	<2.00	<1.0	170	<6	230	5	120
	02-07-92		4	<1					980		
	03-02-92	<10	4	<1	<1.00	<1.0	210	6	690	3	65
	03-08-92	<10	2	<1	<1.00	<1.0	140	6	720	7	130
	03-27-92						***-*				
	07-11-92	<10	4	<l< td=""><td><1.00</td><td><1.0</td><td>140</td><td>10</td><td>310</td><td>8</td><td>52</td></l<>	<1.00	<1.0	140	10	310	8	52
	08-22- 9 2	<10	<l< td=""><td><1</td><td><0.500</td><td><1.0</td><td>120</td><td>9</td><td>680</td><td>4</td><td>74</td></l<>	<1	<0.500	<1.0	120	9	680	4	74
	12-08-92	<10	4	<1	<0.500	<1.0	82	<6	340	く	21
09513700	10-27-91	<10	<1	<1	<1.00	<1.0	47	<6	170	12	34
	11-29-91	<10	2	<1	<2.00	1.0	73	<6	110	15	36
	12-10-91	<10	4	<1	<2.00	<1.0	55	<6	250	8	46
	02-07-92	<10	<2	<1	<0.500	<1.0	32	<6	30	8	14
	03-27-92	<10	<2	<1	<1.00	1.0	53	<6	80	12	36
	08-22-92	<10	2	<1	<0.500	<1.0	49	8	100	18	48
09513885	12-04-92	<10	2	<1	<0.500	<1.0	27	<6	90	59	26
	01-06-93	<10	4	<1	<1.00	<1.0	28	<6	90	25	21
	02-08-93	<10	4	<1	<0.500	<1.0	31	<6	110	27	29
	03-26-93	10	2	<1	<1.00	<1.0	91	11	270	56	96
	08-24-93	<10	<1	<1	<0.500	<1.0	63	9	180	140	47
	10-06-93	<10	1	<1	<0.500	<1.0	83	10	280	260	76

					Oil and grease,		• • • • • • • •			
Station number	Date	Cyanide, totai (mg/L as Cn)	Cyanide, totai (mg/L aa Cn)	Phenola, total (µg/L)	recover- abie gravimetric (mg/L)	Aidrin, totai (µg/Ľ)	Arocior, 1254 PCB total (μg/L)	P, P' DDE, totai (μg/L)	Ρ, Ρ' DDT, total (μg/L	Dieidrin, totai (µg/L)
09512165	12-31-92				<1	*******				
	01-04-93	<0.010	<0.010	<1	<1	<0.040	<0.1	<0.04	<0.10	<0.020
	01-12-93	<0.010	<0.010	1	<1	<0.040	<0.1	<0.04	<0.10	<0.020
	02-11-93	<0.010	<0.010	1	<1	<0.040	<0.1	<0.04	<0.10	<0.020
09512184	11-10-91	<0.010	<0.010	4	3	<0.040	<0.1	<0.04	<0.10	<0.020
	12-10-91	لعي هند چيه خان وي جي چيه ويه ويه	الد جذاك ود عنه مناهد ود نو					****		
	12-18-91	<0.010	<0.010	14	3	<0.040	<0.1	<0.04	<0.10	<0.020
	03-08-92	<0.010	<0.010	4	<1	<0.040	<0.1	<0.04	<0.10	<0.020
	03-27-92	<0.010	<0.010	7	<1	<0.040	<0.1	<0.04	<0.10	<0.020
	05-20-92	*****								
	05-20-92	<0.010	<0.010	10	2	<0.040	<0.1	<0.04	<0.10	<0.020
	05-20-92	فيد في الله ويه سيدينه بي مي شي						******	*****	
	05-20-92	****								
	05-20-92						******	******		
	05-20-92									
	08-05-92	<0.010	<10.0	16	6	<0.040	<0.1	<0.04	⊲0.10	<0.020
09512190	08-24-92	<0.010	<0.010	2	<1	<0.040	<0.1	<0.04	<0.10	<0.020
	09-02-92	<0.010	0.012	<1	<1	<0.040	<0.1	<0.04	<0.10	<0.020
09512200	01-12-92	<0.010	<0.010	<1	<1	<0.040	<0.1	<0.04	<0.10	<0.020
	02-07-92									
09512403	12-10-91	<0.010		5	<1		*****			
	12-18-91	<0.010	<0.010	<1	<1	<0.040	<0.1	0.14	<0.10	<0.020
	02-07-92	<0.010		8	<1	****				
	03-02-92	<0.010	<0.010	1,900	2	<0.040	0.3	0.67	0.10	<0.020
	03-08-92	<0.010	<0.010	8	2	<0.040	0.3	1.1	<0.10	<0.020
	03-27- 92					******		*****		
	07-11-92	<0.010	<10.0	6	6	<0.040	<0.1	0.35	<0.10	<0.020
	08-22-92	<0.010	<0.010	9	1	<0.040	<0.1	<0.04	<0.10	<0.020
	12-08-92	<0.010	<0.010	8	2	<0.040	<0.1	0.40	0.10	<0.020
09513700	10-27-91	<0.010	<0.010	7	8	<0.040	<0.1	0.07	<0.10	<0.020
	11-29-91	<0.010	<0.010	5	2	<0.040	<0.1	<0.04	<0.10	<0.020
	12-10-91	<0.010	<0.010	2	3	<0.040	<0.1	0.50	<0.10	0.040
	02-07-92	<0.010	<0.010	<1	<1	<0.040	<0.1	<0.04	<0.10	<0.020
	03-27-92	<0.010	<0.010	6	1	<0.040	<0.1	0.04	<0.10	<0.020
	08-22-92	<0.010	<0.010	12	9	<0.040	<0.1	<0.04	<0.10	<0.20
09513885	12-04-92	0.020	<0.010	33	2	<0.040	<0.1	<0.04	<0.10	<0.020
	01-06-93	<0.010	<0.010		5	<0.040	<0.1	<0.04	<0.10	<0.020
	02-08-93	<0.010	<0.010	12	5	<0.040	<0.1	0.05	<0.10	<0.020
	03-26-93	0.010	<0.010	21	5	<0.040	<0.1	0.15	<0.10	<0.020
	08-24-93			7	2	<0.040	⊲0.1	<0.04	<0.10	<0.20
	10-06-93	0.010	<0.010	29	1				******	<i></i>

60 Selected Water-Quality Data

Station number	Date	Benzo (B) fluor- sn- thene, total (µg/L)	Benzo (g,h,l) peryl- ens, total (µg/L)	Chry- sene, total (µg/L)	Diethyl Phthal- ate, total (µg/L)	Bis (2- ethyl- hexyl) phthal- ate, total (μg/L)	Fluor- anthene, total (µg/L)	Indeno (1,2, 3-cd) pyrene, totai (µg/L)	Methyl- ene chio- ride, totai (µg/L)	Phenol, total (µg/L)
09512165	12-31-92									
0,010100	01-04-93	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0		<5.0
	01-12-93	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0		5 .0
	02-11-93	<10.0	<10.0	<10.0	5.0	<5.0	5.0	<10.0		5.0
09512184	11-10-91	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0	<0.2	<5.0
0,012104	11 10 71	41010	10.0	1010	2,0	-2.0	2.0	410.0		
	12-10-91		******			 7				*-**
	12-18-91	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0	<0.2	<5.0
	03-08-92	<10.0	<10.0	<10.0	<5.0	<5.0	⊲5.0	<10.0	<0.2	ර.0
	03-27-92	<10.0	<10.0	<10.0	<5.0	<5:0	⊲5.0	<10.0	<0.2	<5.0
	05-20-92		i i i i i i i i i i i i i i i i i i i	~~~~=						مل خل الله جه عل عب
	05-20-92	<10.0	<10.0	<10.0	<5.0	9.0	7.0	27.0	<0.2	<5.0
	05-20-92				****		*			
	05-20-92						**-*			
	05-20-92		******		~~~~~		******			
	05-20-92								*****	
	08-05-92	<10.0	16.0	<10.0	<5.0	5.0	⊲5.0	17.0	<0.2	<5.0
09512190	08-24-92	******							*****	
	09-02-92	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0		ব্র.0
09512200	01-12-92	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0	<0.2	<5.0
	02-07-92								40 ers en en	
09512403	12-10-91	***		******				******	<0.2	
	12-18-91	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0	<0.2	<5.0
	02-07-92			***			*****		<0.2	
	03-02-92	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0	<0.2	<5.0
	03-08-92	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0	0.2	<5.0
	03-27-92		±			**				
	07-11- 92	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0	<0.2	<5.0
	08-22-92	<10.0	<10.0	<10.0	<5.0	5.0	<5.0	<10.0	<0.2	5 .0
	12-08-92	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0	<0.2	⊲5.0
09513700	10-27-91	<10.0	<10.0	<10.0	<5.0	ব.0	<5.0	<10.0	<0.2	<5.0
	11-29-91	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0	<0.2	<5.0
	12-10-91	<10.0	<10.0	<10.0	<5.0	ර.0	<5.0	<10.0	<0.2	⊲5.0
	02-07-92	<10.0	<10.0	<10.0	<5.0	්.0	<5.0	<10.0	<0.2	<5.0
	03-27-92	<10.0	<10.0	<10.0	<5.0	්.0	<5.0	<10.0	<0.2	<5.0
	08-22-92	<10.0	<10.0	<10.0	⊲5.0	<5.0	<5.0	<10.0	<0.2	5 ,0
09513885	12-04-92	<10.0	<10.0	<10.0	<5.0	<5.0	<5.0	<10.0	<0.2	7.0
	01-06-93	<10.0	<10.0	<10.0	<5.0	<5.0	5.0	<10.0	<0.2	ර.0
	02-08-93	14.0	<10.0	13.0	<5.0	8.0	13.0	<10.0	<20	<5.0
	03-26-93	16.0	<10.0	17.0	<5.0	8.0	18.0	<10.0	<20	<5.0
	08-24-93	19.0	<10.0	14.0	<5.0	<5.0	16.0	<10.0	<1.0	<5.0
	10-06-93								<5.0	

Station	Dete	p-iso- propyi- toluene wster whole rec	Methyi ether tert- butyl Wat Unf rec	Pyrene, totsi	Toiuene, totai	Pseudo- cumene wster unfiltered rec	Styrene, total	Xyiene water unfilt ered rec	Quality assur- ance data indi- cator	Sam- pilng method
number	Date	(μg/ኒ)	(µg/L)	(µg/L)	(µ g /L)	(µ g /r.)	(µg/L)	(µ g /L)	code	codes
09512165	12-31-92									30
	01-04-93	#94.000 <i>#</i>	******	<5.0		*****				10
	01-12-93			<5.0						10
	02-11-93			<5.0						10
09512184	11-10-91	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20	10	30
	12-10-91									
	12-18-91	<0.20	1.2	<5.0	0.3	<0.20	0.5	0.20		30
	03-08-92	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20		30
	03-27-92	<0.20	<1.0	<5.0	<0,2	<0.20	<0.2	<0.20	40	30
	05-20-92	****	***	****					****	
	05-20-92	0.70	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20		30
	05-20-92			ang ana sin an ap						
	05-20-92									
	05-20-92									
	05-20-92					******				
	08-05-92	<0.20	<1.0	11.0	<0.2	<0.20	<0.2	<0.20		30
09512190	08-24-92					****				10
	09-02-92			<5.0						10
09512200	01-12-92	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20		30
	02-07-92									
09512403	12-10-91	<0.20	1.0		<0.2	<0.20	<0.2	<0.20		30
	12-18-91	<0.20	1.0	<5.0	<0.2	<0.20	<0.2	<0.20	30	30
	02-07-92	<0,20	<1.0		<0.2	<0.20	<0.2	<0.20		
	03-02-92	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20	30	30
	03-08-92	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20		30
	03-27-92	*								30
	07-11-92	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20		30
	08-22-92	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	0.20		30
	12-08-92	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20		30
09513700	10-27-91	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20	30	30
	11-29-91	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20	10	30
	12-10-91	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20	10	30
	02-07-92	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20		30
	03-27-92	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20	10	30
	08-22-92	<0.20	<1.0	<5.0	<0.2	<0.20	<0.2	<0.20		30
09513885	12-04-92	<0.20	2.5	<5.0	0.2	0.30	<0.2	0.30		30
	01-06-93	<0.20	1.0	<5.0	0.2	<0.20	<0.2	0.20		30
	02-08-93	<20	<100	10.0	<20	<20	<20	<20	10	30
	03-26-93	<20	<100	13.0	<20	<20	<20	<20		30
	08-24-93	<1.0	<5.0	11.0	<1.0	<1.0	<1.0	<1.0	40	30
	10-06-93	<5.0	<25		<5.0	<5.0	<5.0	<5.0		30

62 Selected Water-Quality Data