ANALYSIS OF SELECTED WATER-QUALITY DATA FOR SURFACE WATER IN ST. TAMMANY PARISH, LOUISIANA, APRIL-AUGUST 1995

By Dennis K. Demcheck

U.S. GEOLOGICAL SURVEY Open-File Report 96-345

Prepared in cooperation with
ST. TAMMANY PARISH ENVIRONMENTAL SERVICES COMMISSION

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, SECRETARY

U.S. GEOLOGICAL SURVEY

Gordon P. Eaton, Director

For additional information write to:

District Chief

U.S. Geological Survey

3535 S. Sherwood Forest Blvd., Suite 120
Baton Rouge, LA 70816

Copies of this report can be purchased from:
U.S. Geological Survey

Branch of Information Services
Box 25286, MS 517
Denver, CO 80225

CONTENTS

Abstract 1
Introduction 3
Purpose and Scope 3
Description of Study Area 3
Previous Studies 4
Data Collection 4
Quality Assurance 7
Acknowledgments. 7
Analysis of Selected Surface-Water-Quality Data 7
Hydrologic Conditions During Data Collection 8
Physical and Chemical-Related Properties 8
Inorganic Chemical Constituents 12
Nutrients 12
Bacteria 19
Summary 20
References. 22
Appendixes
A. Statistical summary of U.S. Geological Survey historical surface-water-quality data for St. Tammany Parish, Louisiana, 1943-93 23
B. Graphs of selected surface-water-quality data for St. Tammany Parish, Louisiana, April-August 1995 43
FIGURES

1. Map showing major land uses in St. Tammany Parish, Louisiana 5
2. Map showing location of surface-water-quality sampling sites, St. Tammany Parish, Louisiana, April-August 1995 6

TABLES

1. Physical and chemical-related properties determined for selected surface-water sites in St. Tammany Parish, Louisiana, April-August 1995 9
2. Concentrations of inorganic chemical constituents determined for selected surface-water sites in St. Tammany Parish, Louisiana, April-August 1995 13
3. Nutrients and bacteria concentrations determined for selected surface-water sites in St. Tammany Parish, Louisiana, April-August 1995 16

ANALYSIS OF SELECTED WATER-QUALITY DATA FOR SURFACE WATER IN ST. TAMMANY PARISH, LOUISIANA, APRIL-AUGUST 1995

By Dennis K. Demcheck

Abstract

Physical and chemical-related properties, concentrations of chemical constituents, which included major inorganic ions and nutrients, and concentrations of fecal-coliform bacteria were determined for 17 sites on 11 streams in St. Tammany Parish, Louisiana, during the period April-August 1995. The streams were sampled to assess the effects of different streamflow conditions on the concentrations of water-quality constituents. The water-quality properties and constituents selected for analysis include those that generally are indicative of altered organicmaterial inputs from both point and nonpoint human sources, as well as naturally-occurring sources. The streams included in the study were Tchefuncte River, Bogue Falaya, Abita River, Bayou Chinchouba, Bayou Castine, Cane Bayou, Bayou Lacombe, Bayou Liberty, Bayou Bonfouca, Bogue Chitto, and West Pearl River.

Water-quality samples were collected under several hydrologic conditions. These conditions included a period of wet weather and sustained high river stages; a period of local storms several days apart and river stages typical of that situation; and a period of dry weather and low river stages.

The concentrations of inorganic constituents in streams draining the mixed pine forests generally are lower than in other streams in southern Louisiana. The Abita River, in particular, has very low concentrations of major ions and a low alkalinity that ranged only from 2 to $9 \mathrm{mg} / \mathrm{L}$ (milligrams per liter) at Abita Springs and 2 to $31 \mathrm{mg} / \mathrm{L}$ at U.S. Highway 190. This indicates that the stream has very little buffering capacity. The upper reach of Bayou Lacombe (1 mile north of Interstate-12) similarly has little buffering capacity. This makes these streams particularly susceptible to adverse effects from accidental spills of strong acids or bases.

Nutrient concentrations varied and indicated that degraded water-quality conditions that typically occur during storms persisted less than 1 to 3 days. In general, the larger the drainage basin, the longer it takes for the stream to recover. The dissolved-nitrate concentrations in water from the Bogue Chitto-West Pearl River system ($0.18-0.31 \mathrm{mg} / \mathrm{L}$ in the Bogue Chitto and 0.05 to $0.27 \mathrm{mg} / \mathrm{L}$ in the West Pearl River) could, in combination with the dissolved-phosphorus concentrations ($0.02-0.06 \mathrm{mg} / \mathrm{L}$ in the Bogue Chitto-West Pearl River system), produce eutrophic conditions that result in algal blooms. The fact that algal blooms are rarely observed in this system indicates that other factors are restricting algal growth.

Fecal-coliform bacteria concentrations were highest in April and August and lowest in June. The water samples collected from the Tchefuncte River near Covington in April had a fecal-coliform concentration of $22,000 \mathrm{cols} / 100 \mathrm{~mL}$ (colonies per 100 milliliters). A sample from the Bogue Chitto near Bush had a concentration of $30,000 \mathrm{cols} / 100 \mathrm{~mL}$.

Peak fecal-coliform concentrations in water samples collected 2 days after storms in May were lower than those in samples collected after storms in April. The Tchefuncte River near Covington and the Bogue Chitto near Bush had a fecal-coliform concentration of 1,000 cols $/ 100 \mathrm{~mL}$. This corresponds with the biochemical oxygen demand results that indicated much of the organic matter had been flushed out of the basins in April.

Water samples collected in June had much lower fecal-coliform concentrations at all sites. The lack of rainfall might have reduced sewage inputs. The highest concentration recorded in June was 210 cols $/ 100 \mathrm{~mL}$.

Fecal-coliform concentrations in water samples collected in August varied, which reflected the effects of small, isolated storms in the study area. Bayou Castine, sampled immediately after a storm, had a fecal-coliform concentration of $26,000 \mathrm{cols} / 100 \mathrm{~mL}$. The stream was resampled 24 hours later, and the fecal-coliform concentration had decreased to $1,700 \mathrm{cols} / 100 \mathrm{~mL}$. This is an indication of the rapid water-quality changes that typically occur in small streams.

INTRODUCTION

St. Tammany Parish has undergone extensive growth in the last decade. In 1995, the population growth rate for St. Tammany Parish was first in the State and fifth in the Nation (Richard Hart, St. Tammany Parish Environmental Services Commission, oral commun., 1995). Both public officials and private citizens in the area are concerned about the effects of increased population (and subsequent changes in land use) on the quality of surface water in the parish; the surface waters include many rivers and bayous and part of Lake Pontchartrain. Historically, these surface waters have assimilated naturally occurring organic wastes that primarily were produced by the decomposition of plant material and animal wastes.

Organic wastes are vital nutrients that consist of various forms of nitrogen and phosphorus, which are the base of the food chain in surface water. However, the capability of a riverine system to assimilate increasing amounts of wastes from point sources (such as sewage treatment facilities) and nonpoint sources (such as urban and agricultural land) can become limited. This is particularly true for the generally slow-flowing rivers and bayous in St. Tammany Parish. Exceeding the wastewater-assimilation capacity could result in the degradation of the quality of water in a stream and render it incapable of meeting its designated uses (Louisiana Department of Environmental Quality, 1994).

The U.S. Geological Survey (USGS), in cooperation with St. Tammany Parish Environmental Services Commission, began a study in 1995 to determine selected water-quality constituents in the major rivers and bayous of St. Tammany Parish that may be affected by changes in land use (urbanization). This information will aid managers in planning and making sound decisions regarding wastewater management.

Purpose and Scope

This report presents the results of a water-quality survey of 11 streams in St. Tammany Parish. Samples were collected from 17 sites during the period April-August 1995. The streams were sampled three to four times during this 4 -month period to assess the effects of different streamflow conditions on the concentrations of the water-quality constituents. A review of USGS historical water-quality data was completed to aid in site and constituent selection. The water-quality properties and constituents selected for analysis include those that generally are indicative of altered organic-material inputs from both point and nonpoint human-related sources of contamination, as well as naturally occurring sources. The physical properties and concentrations of constituents reported include major inorganic ions, selected nutrients, and fecal-coliform indicator bacteria. Results of the analyses were used to evaluate the effects of these organic-material inputs on the water quality of the 11 streams.

Description of Study Area

St. Tammany Parish, located in southeastern Louisiana, is a predominantly forested and agricultural area (fig. 1). However, the southern part of the parish is becoming increasingly urbanized. St. Tammany Parish has the largest component of the Louisiana Natural and Scenic Rivers System, with all or part of 11 waterways in the system occurring within the parish. St. Tammany Parish is composed of three ecoregions (Omernik and Gallant, 1987). Most of the parish forms part of the Southeastern Plains ecoregions. The Southeastern Plains consist of low relief, dendritic-drainage, timbered land that primarily is an oak-longleaf pine forest (Kniffen and

Hilliard, 1988). Because of the large number of rare and endangered plant species in the Southeastern Plains ecoregion, St. Tammany Parish has more rare and endangered plant species than any other parish in Louisiana (Richard Martin, The Nature Conservancy of Louisiana, oral commun., 1995).

The southern margin of the parish, bordering Lake Pontchartrain, is part of the Mississippi Alluvial Plain ecoregion. This ecoregion has low relief and slope, with braided channels dominated by bottomland hardwoods and tidally affected streams. This narrow margin, seldom extending more than a few miles from the lake, has fresh-to-intermediate salinity marshes near Madisonville (Chabreck and Linscombe, 1978). The marshes become intermediate-to-brackish in the area from Mandeville to Slidell.

The southeastern corner of the parish is in the Southern Coastal Plain ecoregion. Vegetation consists of bottomland hardwoods, cypress-tupelo gum swamps, low-slope braided streams, and fresh-to-intermediate salinity marshes.

The two major river systems in St. Tammany Parish (fig. 2) are the Bogue Chitto-Pearl River system and the Tchefuncte River-Bogue Falaya-Abita River system. Six bayous (Chinchouba, Castine, Cane, Lacombe, Liberty, and Bonfouca) are tidally affected and flow generally southwestward through areas of the most rapidly expanding population and development.

Previous Studies

Cardwell and others (1967) discussed the surface- and ground-water resources of the Lake Pontchartrain area. Concerning the surface waters of St. Tammany Parish, the study discussed the Pearl River and Tchefuncte River. The principal findings regarding these rivers were that the water quality generally is good, but during periods of low flow, saltwater can intrude upstream as far as U.S. Highway 90 for the Pearl River, and as far as the city of Covington for the Tchefuncte River.

Two of the waterways, Bayou Chinchouba and the Bogue Chitto, are reported by the Louisiana Department of Environmental Quality (1990) as not supporting their designated uses. Bayou Chinchouba has poor water quality due to sewage discharges and urban runoff. The reasons for slight problems with turbidity and pathogen indicators in the Bogue Chitto are more varied, including minor municipal point sources, inflow and infiltration of wastes from dairy and cattle pastureland, forest management, surface mining, and upstream sources. Parts of the Tchefuncte River and Bogue Falaya are reported as partially supporting their designated uses, as a result of contamination from point and nonpoint sewage sources.

An advisory against fish consumption and swimming was issued for Bayou Bonfouca because of the contamination of bottom sediments by surface runoff from an abandoned creosote facility. Primary contact recreation advisories are in effect for the Tchefuncte and Bogue Falaya Rivers, because of contamination by septic tank and animal waste runoff (Louisiana Department of Environmental Quality, 1994).

Data Collection

Based on the results of the analysis of USGS historical data and discussions with St. Tammany Parish officials, 17 sites on 11 streams were selected for water-quality sampling (fig. 2). Two of the sites, Bogue Chitto near Bush and West Pearl River at U.S. Highway 90, reflect the water quality of areas outside the most rapidly developing areas of the parish. The results of those analyses were used for an appraisal of the general water quality in southeastern Louisiana.

Modified from U.S. Geological Survey digital data, 1:100,000 and 1:250,000, 1990
Figure 1. Major land uses in St. Tammany Parish, Louisiana.

Figure 2. Location of surface-water-quality sampling sites, St. Tammany Parish, Louisiana, April-August 1995.

Depth-integrated water-quality samples for inorganic constituents and nutrients were collected from water less than 20 feet deep and having velocities less than $1.5 \mathrm{ft} / \mathrm{s}$ (feet per second), using an epoxy-coated wire-basket sampler containing a narrow-mouth 1-liter glass bottle that had been cleaned and fired at $350^{\circ} \mathrm{C}$ (degrees Celsius) for 6 hours to burn off any organic contaminants. All water samples were preserved and, when required, filtered according to standard USGS methods (Fishman and Friedman, 1989; Britton and Greeson, 1988). All nutrient and inorganic-constituent samples were stored in coolers at $4^{\circ} \mathrm{C}$ immediately upon collection, placed in refrigerators after processing, and shipped in coolers at $4^{\circ} \mathrm{C}$ to a USGS laboratory for analysis.

Samples for analysis of coliform bacteria were collected in sterilized glass bottles and processed within 4 hours of collection. The samples were analyzed using the membrane-filter method described by Britton and Greeson (1988).

Quality Assurance

Water-quality sampling equipment for field measurements was calibrated before and after each use. The analyses were performed at USGS laboratories using procedures approved by the U.S. Environmental Protection Agency (USEPA). Ten percent of all samples were analyzed in duplicate. All analyses were checked and verified by USGS personnel.

Acknowledgments

The author expresses appreciation to Richard Hart, Director, and Aundrea Kloor of St. Tammany Parish Environmental Services Commission, for their assistance provided during the design and preparation of this report.

ANALYSIS OF SELECTED SURFACE-WATER-QUALITY DATA

At the inception of the study, a review of USGS historical water-quality data was undertaken to assist in site selection and data interpretation. The USGS has collected surface-water-quality information from 56 sites in St. Tammany Parish, 6 of which have at least 10 records, considered to be the minimum number sufficient for statistical summary. Those sites and the periods of record are listed below:

Site	Period of record
Tchefuncte River near Covington	Oct. 1958-July 1993
Tchefuncte River near Folsom	Oct. 1943-July 1980
Bogue Chitto near Bush	Sept. 1953-Sept. 1992
Pearl River at Pearl River	Oct. 1963-Sept. 1964
Lake Pontchartrain at mouth of Bayou Lacombe	June 1974-Jan. 1981
Lake Pontchartrain at north shore	Apr. 1974-July 1984

The water-quality data (appendix A) and information related to point-source discharge poirts and land use published by Louisiana Department of Environmental Quality (1994) indicated that the major known water-quality problems in the parish are caused by point and nonpoint nutriert and animal-wastes inputs, especially in the upper reaches of the streams. Most of the historical data consist of inorganic-constituent, nutrient, and fecal-bacteria concentrations. Two of the sites, Bogue Chitto near Bush, and Tchefuncte River near Covington, also have trace-element data. The data at the two sites indicated no trace-element problems. Unfortunately, little information exists on pesticides and other synthetic organic compounds in St. Tammany Parish.

Hydrologic Conditions During Data Collection

The small number of water-quality samples collected during the study and the time period allotted for sample collection necessitated sample collection on a hydrologic-event basis. The events chosen were a period of wet weather and sustained high river stages; a period that included local storms several days apart and river stages typical for the season; and a period of dry weather and low river stages. Sampling during these three major weather categories lessened many of the biases associated with a limited number of samples. For example, sampling only during dry weather may increase the relative importance of isolated inputs, sampling during a storm may reflect high but transient concentrations during the initial runoff (the first-flush effect), and sampling during prolonged wet weather often produces low concentrations because of dilution.

A series of intense storms produced extensive flooding during the spring of 1995. Intense storms moved through St. Tammany Parish on March 7, April 10, and May 8-10. The April 1C storm produced 5-7 inches of rainfall in a 24 -hour period and caused widespread flooding in the towns of Covington and Slidell. Samples representing this hydrologic condition were collected April 12-13. At sites 1-4, 11, and 12 the streams were out-of-bank with a decreasing stage; at all the other sites streams were bank-full. On May 9-10, Slidell recorded 15.75 inches of rainfall in 24 hours, which caused widespread flooding. Because of the high rainfall and flooding, additional wet-weather samples were collected on May 12 . Stream stages at sites $1,3,4,6,7,9,11,12$, and 13 were out-of-bank and decreasing; the others were bank-full.

Stream stages were low and stable during the June 7-9 dry-weather sampling, a result of little or no rainfall the previous 2 weeks. A slight (less than $0.2 \mathrm{ft} / \mathrm{s}$), tidally influenced upstream velocity was noted at Bayou Liberty (site 14).

Scattered thunderstorms throughout southeastern Louisiana in mid-to-late July produced elevated stages of short duration typical of the season. August 1-2 was chosen for sampling because of the lack of extreme hydrologic conditions which characterized the earlier samples. Bayous in small basins, such as Bayou Castine (site 9) and Bayou Chinchouba (sites 6 and 8), were out-of-bank as a result of isolated thunderstorms on July 31. Bayou Lacombe at sites 12 and 13 was out-of-bank due to strong easterly winds July 31 forcing Lake Pontchartrain water into Bayou Lacombe.

Physical and Chemical-Related Properties

Physical and chemical-related properties determined for 17 sites along the streams in St. Tammany Parish, during April-August 1995, are presented in table 1. Properties include specific conductance, pH , water temperature, dissolved oxygen (DO), and the 5-day biochemical oxygen demand (BOD). BOD concentrations also are shown graphically in appendix B. Values of these properties varied among streams, reflecting different land-use categories (fig. 1). For example,

Table 1. Physical and chemical-related properties determined for selected surface-water sites in St. Tammany Parish, Louisiana, April-August 1995
[See figure 2 for site location. --, no data]

Date	Specific conductance, in $\mu \mathrm{S} / \mathrm{cm}$ at 25 degrees Celsius	pH, water, in standard units	Temperature, water, in degrees Celsius	Oxygen, dissolved, in milligrams per liter	Oxygen demand, biochemical, 5 day, in milligrams per liter	Solids, residue at 180 degrees Celsius, dissolved in milligrams per liter
Tchefuncte River near Covington, site 1						
Apr. 12	16	5.2	18.5	7.2	3.0	16
May 12	24	5.5	22.5	6.2	1.7	.-
June 7	35	5.9	23.5	6.9	. 6	46
Aug. 2	39	5.9	25.5	6.7	. 6	42
Bogue Falaya at Covington, site 2						
Apr. 12	17	5.2	18.5	7.2	2.8	--
May 12	24	5.6	22.0	6.7	1.3	--
June 7	36	5.9	24.5	7.5	. 6	38
Aug. 2	47	6.1	25.5	6.7	. 7	36
Abita River at Abita Springs, site 3						
Apr. 12	16	4.7	19.0	6.2	1.7	32
May 12	14	4.5	23.5	4.8	1.6	--
June 7	33	5.6	26.0	6.4	1.3	62
Aug. 2	46	5.8	26.0	6.5	. 7	60
Abita River at U.S. Highway 190 at Covington, site 4						
Apr. 12	16	4.9	19.0	6.5	2.9	32
June 7	43	5.8	25.5	2.2	1.3	58
Aug. 2	112	6.2	26.0	1.4	3.0	88
Tchefuncte River at Madisonville, site 5						
Apr. 12	24	5.7	19.5	6.2	3.4	26
May 12	18	5.5	23.0	5.4	1.7	--
June 7	66	6.2	30.0	9.2	4.3	54
Aug. 2	144	6.2	29.5	6.0	1.9	94
Bayou Chinchouba at Louisiana Highway 59 at Mandeville, site 6						
Apr. 13	28	4.9	17.5	4.6	1.7	60
Bayou Chinchouba at Causeway Access Road near Mandeville, site 7						
Apr. 13	41	5.8	19.0	5.3	3.1	44
May 12	26	5.7	22.5	5.0	2.1	--
Aug. 2	155	6.4	28.5	2.7	2.3	118
Bayou Chinchouba near mouth, site 8						
Aug. 2	--	7.2	30.5	6.2	2.7	124
Bayou Castine at U.S. Highway 190 near Mandeville, site 9						
Apr. 13	41	5.7	18.0	3.7	4.6	62
May 12	13	4.9	23.5	4.8	1.7	--
June 8	56	5.7	27.5	1.2	3.0	72
Aug. 1	90	5.9	26.5	2.0	7.1	86
Cane Bayou at U.S. Highway 190 near Mandeville, site 10						
Apr. 13	24	4.8	19.0	5.7	2.1	44

Table 1. Physical and chemical-related properties determined for selected surface-water sites in St. Tammany Parish, Louisiana, April-August 1995-Continued

Date	Specific conductance, in $\mu \mathrm{S} / \mathrm{cm}$ at 25 degrees Celsius	pH, water, in standard units	Temperature, water, in degrees Celsius	Oxygen, dissolved, in milligrams per liter	Oxygen demand, biochemical, 5 day, in milligrams per liter	Solids, residue at 180 degrees Celsius, dissolve-1. in milligrams per liter
Cane Bayou at U.S. Highway 190 near Mandeville, site 10-Continued						
May 12	21	4.5	23.0	5.0	1.2	--
June 8	182	6.1	30.5	7.2	4.6	134
Aug. 2	653	6.4	27.5	0.9	4.7	378
Bayou Lacombe 1 mile north of Interstate-12 near St. Tammany, site 11						
Apr. 13	18	4.3	19.0	6.2	1.3	28
June 8	37	5.4	24.5	7.6	1.5	50
Aug. 2	41	5.0	27.5	7.9	. 8	62
Bayou Lacombe near Lacombe, site 12						
Apr. 13	17	4.6	20.5	6.0	1.4	28
May 12	13	4.7	24.0	4.8	. 9	--
June 8	103	6.1	30.5	7.1	3.4	80
Aug. 2	506	5.8	28.0	1.7	2.4	300
Bayou Lacombe at mouth, site 13						
Apr. 13	261	5.7	20.5	5.4	1.7	154
June 8	1,030	6.1	28.0	4.6	2.6	602
Aug. 2	7,260	6.3	29.0	4.4	1.0	1,440
Bayou Liberty at Bonfouca, site 14						
Apr. 13	28	5.4	21.0	5.2	2.0	50
May 12	16	5.0	23.5	4.4	1.2	--
June 9	768	7.0	32.5	8.2	3.3	396
Aug. 1	2,620	6.6	29.0	3.6	2.3	1,510
Bayou Bonfouca at Louisiana Highway 433 at Slidell, site 15						
Apr. 13	80	7.2	20.5	5.0	4.1	66
May 12	33	6.0	23.5	4.3	1.6	--
June 9	242	7.6	30.5	4.4	2.5	146
Aug. 1	3,000	6.9	28.5	4.0	1.1	--
Bogue Chitto near Bush, site 16						
Apr. 12	22	5.7	19.0	7.1	3.0	22
May 12	32	5.8	23.5	6.3	1.5	--
June 8	40	6.1	27.0	7.0	1.5	38
Aug. 1	45	6.4	27.0	7.2	. 5	34
West Pearl River at U.S. Highway 90, site 17						
Apr. 13	46	6.2	20.5	6.6	1.9	38
June 9	56	6.2	28.0	5.3	1.3	54
Aug. 1	115	6.2	28.0	4.4	1.5	78

water in the Abita River, which drains mixed pine forests, is characterized by low pH and low specific conductance. During the April and May sampling, the pH of the Abita River at Abita Springs (site 3) was 4.7 and 4.5. This is more acidic than is typical for most streams in southern Louisiana, and reflects the naturally acidic conditions characteristic of extensive pine forests. The upper reach of Bayou Lacombe also drains this mixed pine area, and exhibits a similar low-pH pattern (4.3 at site 11 in April). Also, rainwater is naturally acidic. Rainfall composition is highly variable, not only from place to place, but also from storm to storm, with pH values from 6.4 to 4.9 considered representative (Hem, 1985, p. 36).

Specific conductance is a measure of the ability of water to conduct an electric current, and is an estimate of the total amount of dissolved constituents. The specific conductances measured in streams draining sandy mixed-pine forests, particularly the Abita River (site 3), along with the upper reaches of the Tchefuncte River (site 1), Bogue Falaya (site 2), and Bayou Lacombe (site 11) were low, indicating the very dilute nature of the upper reaches of these streams. Specific conductances at site 3 on the Abita River, for example, ranged from 14 to $46 \mu \mathrm{~S} / \mathrm{cm}$ (microsiemens per centimeter at $25^{\circ} \mathrm{C}$), and at sites 1,2 , and 11 from 16 to $47 \mu \mathrm{~S} / \mathrm{cm}$. In contrast, specific conductances at small bayous such as Cane, Castine, Chinchouba, and Liberty ranged from 13 to $2,620 \mu \mathrm{~S} / \mathrm{cm}$. This reflects the fact that these streams are tidally affected, with brackish water intruding upstream from Lake Pontchartrain. These small bayous also drain wetlands and urban areas, producing a wider range of specific conductances than those streams draining predominantly $!$ mixed pine forests. Bayou Lacombe is a mixture of all these land uses, draining pine forests at the upper reach (site 11), developed areas (site 12) in the mid-reach, and tidally affected wetlands (site 13) near the mouth. Therefore, the range in specific conductances in Bayou Lacombe during the study was the largest, from 13 to $7,260 \mu \mathrm{~S} / \mathrm{cm}$.

DO concentrations during the study generally were at or above the minimum concentrations considered necessary by Louisiana Department of Environmental Quality (1990) for freshwater fish populations ($5.0 \mathrm{mg} / \mathrm{L}$, milligrams per liter) and estuarine fish populations ($4.0 \mathrm{mg} / \mathrm{L}$). The major exceptions are at or near the downstream reaches of small streams such as the Abita River (site 4) and Bayou Chinchouba (site 7), Bayou Castine (site 9), Cane Bayou (site 10), and Bayou Lacombe (site 12). In August, high water temperatures and little or no downstream flow caused typically low DO concentrations such as $1.4 \mathrm{mg} / \mathrm{L}$ at site $4 ; 2.7 \mathrm{mg} / \mathrm{L}$ at site $7 ; 2.0$ at site $9 ; 0.9$ mg / L at site 10 ; and $1.7 \mathrm{mg} / \mathrm{L}$ at site 12 . During the June sampling, DO concentrations indicated that two sites, Tchefuncte River at Madisonville (site 5) and Bayou Liberty at Bonfouca (site 14), were supersaturated with oxygen. Site 5 had 122 percent and site 14 had 114 percent of the maximum oxygen concentration expected at that temperature and barometric pressure. This indicates a high level of photosynthetic activity by phytoplankton that is releasing oxygen into the water faster than it can diffuse. However, this does not indicate a severe algal bloom problem, as percent saturations during bloom conditions often exceed 200-400 percent (C. Fred Bryan, National Biological Service, oral commun., 1995). Additional indication that this was not a severe bloom problem is that the pH values (6.6 at site 5 and 7.0 at site 14) are typically higher during a bloom, with values of 7.8-8.8 occurring as phytoplankton remove carbon dioxide from the water during the day (Goldman and Horne, 1983, p. 98). Carbon dioxide acts as a weak acid, and its removal raises the pH .

BOD is a measurement that estimates the total amount of organic matter in a water sample that can be assimilated by aerobic bacteria. An initial DO concentration is determined, the sample is then incubated at $20^{\circ} \mathrm{C}$ for 5 days, and a second DO measurement is recorded. The difference between the two DO concentrations is the BOD.

The results from the 5-day BOD analysis (table 1) appear to be related primarily to basir size and the time since the last major rainfall, rather than to the degree of urbanization. For the purposes of this report, a major rainfall is defined as one that causes a stream to rise out-of-channe ${ }^{1}$. During the study this occurred on a widespread basis only on April 10-12 and May 9-10. On July 31, isolated thunderstorms caused Bayou Castine to briefly flood. For example, the BOD concentrations were lower in samples collected in May than in those collected in April, probably because the April rains had flushed considerable organic material out of the basins. It should b : emphasized that the peak BOD concentrations were probably higher than those measured, as the samples were collected 1-3 days after the initial rainfall. However, the results indicate that the flushing action in these basins is relatively brief. The duration and magnitude of the peak BOL concentrations are not known, as this requires many samples collected immediately after the inception of rainfall, preferably at hourly intervals throughout the storm and the accompanying rise and fall of the stream. However, it is generally recognized through the efforts of Weibel and others (1964) and the U.S. Environmental Protection Agency National Urban Runoff Program during the 1980's, that elevated concentrations of contaminants are found in the highest concentrations in the initial hours of a storm (the first flush). A high BOD ($7.1 \mathrm{mg} / \mathrm{L}$) in Bayou Castine on August 1 was a result of sampling immediately after a storm that occurred the night of July 31. In this instance, the samples probably indicate the degraded water-quality conditions prevalent during and immediately after a storm. Isolated peaks in BOD concentrations in June, such as $4.3 \mathrm{mg} / \mathrm{L}$ measured at site 5 and $3.3 \mathrm{mg} / \mathrm{L}$ at site 14 , reflect populations of phytoplankton at these downstream sites.

Inorganic Chemical Constituents

Concentrations of inorganic chemical constituents in water samples collected from the study sites are presented in table 2. The concentrations of constituents in streams draining the mixed pine forests, particularly $1,2,3$, and 11 , generally are lower than in other southern Louisiana streams. The Abita River, in particular, has very low concentrations of major ions and a low alkalinity; alkalinity ranged only from 2 to $9 \mathrm{mg} / \mathrm{L}$ at site 3 and from 2 to $31 \mathrm{mg} / \mathrm{L}$ at site 4 . This indicates that the stream has very little buffering capacity. A solution is said to be buffered if its pH is n t greatly altered by the addition of moderate quantities of acid or base (Hem, 1985). The upper reach of Bayou Lacombe (site 11), similarly, has little buffering capacity. This makes these streams particularly susceptible to adverse effects from accidental spills of strong acids or bases.

The inorganic constituent data indicate that the upstream sites are similar in major-ion concentrations and are predominantly sodium chloride (salt) and calcium carbonate- bicarbonate waters. The downstream sites and tidally affected streams have a much stronger sodium chloride component that becomes more predominant, as indicated by the June and August data. These differences in inorganic composition are merely the differences between freshwater and saltwater and do not indicate human-induced water-quality degradation.

Nutrients

Nutrients, as referred to in this report, are defined as the various oxidized and reduced forms of nitrogen and phosphorus. Dissolved nitrate is the form most readily utilized for plant growth (Hem, 1985, p. 124). In low concentrations, nutrients form the base of all aquatic food webs. However, excessive nutrients can cause algal blooms, depressed DO concentrations with resulting fish kills, and a decreased capability of a water body to support diverse forms of aquatic life. In

Table 2. Concentrations of inorganic chemical constituents determined for selected surface-water sites in St. Tammany Parish, Louisiana, April-August 1995
[See figure 2 for site location. <, less than]

Date	Calcium, dissolved, in milligrams per liter as Ca	Magnesium, dissolved, in milligrams per liter as Mg	Sodium, dissolved, in milligrams per liter as Na	Potassium, dissolved, in milligrams per liter as K	Alkalinity, in milligrams per liter as CaCO_{3}	Sulfate, dissolved, in milligrams per liter as SO_{4}	Chloride, dissolved, in milligrams per liter as Cl	Silica, dissolved, in milligrams per liter as SiO_{2}
Tchefuncte River near Covington, site 1								
Apr. 12	0.72	0.36	1.0	1.4	3	1.2	1.4	1.8
June 7	1.6	. 92	3.0	1.4	9	1.5	3.9	9.7
Aug. 2	1.9	. 75	3.2	. 98	9	1.3	3.7	10
Bogue Falaya at Covington, site 2								
Apr. 12	. 81	. 38	1.2	1.1	4	1.4	1.5	2.2
June 7	1.7	. 74	4.2	. 78	10	1.5	4.2	10
Aug. 2	2.0	. 68	4.9	. 81	11	1.8	4.7	12
Abita River at Abita Springs, site 3								
Apr. 12	. 80	. 26	1.3	. 52	2	1.1	1.4	1.9
June 7	. 86	. 40	5.6	. 50	7	1.9	3.6	9.6
Aug. 2	1.5	. 54	6.2	. 74	9	3.1	4.2	10
Abita River at U.S. Highway 190 at Covington, site 4								
Apr. 12	. 74	. 26	1.3	. 50	2	1.1	1.4	1.8
June 7	1.3	. 52	6.3	. 64	9	2.7	4.0	9.0
Aug. 2	2.9	. 72	14	1.8	31	5.8	7.2	14
Tchefuncte River at Madisonville, site 5								
Apr. 12	1.2	. 50	2.0	. 99	5	1.5	2.2	2.0
June 7	1.6	1.2	6.8	1.6	8	2.7	9.2	4.5
Aug. 2	2.9	2.5	18	1.8	18	6.6	27	3.6
Bayou Chinchouba at Louisiana Highway 59 at Mandeville, site 6								
Apr. 13	1.2	. 41	3.3	. 44	2	1.2	3.0	2.4
Bayou Chinchouba at Causeway Access Road near Mandeville, site 7								
Apr. 13	2.4	. 56	4.5	. 69	9	2.1	3.4	3.0
Aug. 2	6.2	1.1	22	2.1	56	6.3	7.7	9.0
Bayou Chinchouba near mouth, site 8								
Aug. 2	6.2	1.7	24	2.3	50	7.6	15	8.1
Bayou Castine at U.S. Highway 190 near Mandeville, site 9								
Apr. 13	3.0	. 80	4.4	. 91	12	1.7	3.2	3.2
June 8	2.3	. 80	10	. 47	16	1.5	5.3	4.3
Aug. 1	6.2	1.4	10	2.9	25	5.2	8.2	5.4
Cane Bayou at U.S. Highway 190 near Mandeville, site 10								
Apr. 13	. 99	. 39	2.2	. 24	2	. 92	2.4	2.3
June 8	3.0	3.2	31	1.0	11	7.5	50	3.3
Aug. 2	10	8.9	100	4.7	50	27	160	5.4

Table 2. Concentrations of inorganic chemical constituents determined for selected surface-water sites in St. Tammany Parish, Louisiana, April-August 1995-Continued

Date	Calcium, dissolved, in milligrams per liter as Ca	Magnesium, dissolved, in milligrams per liter as Mg	Sodium, dissolved, in milligrams per liter as Na	Potassium, dissolved, in milligrams per liter as K	Alkalinity, in milligrams per liter as CaCO_{3}	Sulfate, dissolved, in milligrams per liter as SO_{4}	Chloride, dissolved, in milligrams per liter as Cl	Silica, dissolven. in milligram $=$ per liter as SiO_{2}
Bayou Lacombe 1 mile north of Interstate-12 near St. Tammany, site 11								
Apr. 13	0.49	0.22	1.1	0.28	<1	0.83	1.2	1.6
June 8	1.4	. 72	3.9	. 39	4	5.7	4.2	9.8
Aug. 2	1.6	. 64	3.6	. 47	3	4.8	4.6	9.3
Bayou Lacombe near Lacombe, site 12								
Apr. 13	. 64	. 27	1.4	. 30	1	. 90	1.4	1.6
June 8	2.1	1.4	15	. 67	8	5.9	20	4.9
Aug. 2	5.7	6.8	75	2.7	14	21	120	4.4
Bayou Lacombe at mouth, site 13								
Apr. 13	2.6	4.1	33	1.4	6	8.4	61	1.9
June 8	7.4	20	160	6.8	11	39	300	2.8
Aug. 2	16	46	410	16	9	100	730	3.0
Bayou Liberty at Bonfouca, site 14								
Apr. 13	1.5	. 56	3.4	. 42	5	1.4	3.6	2.0
June 9	6.4	12	120	4.4	23	29	190	3.0
Aug. 1	22	48	430	18	51	110	750	4.6
Bayou Bonfouca at Louisiana Highway 433 at Slidell, site 15								
Apr. 13	9.5	1.1	4.1	. 50	30	3.8	2.5	2.1
June 9	20	2.7	24	1.4	66	16	19	4.3
Aug. 1	51	110	960	37	45	240	1,700	6.6
Bogue Chitto near Bush, site 16								
Apr. 12	1.1	. 46	2.0	1.5	5	1.3	2.2	3.3
June 8	1.8	. 92	3.4	1.4	10	1.5	4.5	11
Aug. 1	1.9	. 84	3.7	1.3	9	1.1	5.5	8.7
West Pearl River at U.S. Highway 90, site 17								
Apr. 13	2.4	. 80	4.6	1.2	11	3.8	3.2	4.3
June 9	2.7	. 88	5.6	2.0	13	5.9	3.9	6.2
Aug. 1	4.4	1.4	13	2.6	25	11	9.3	6.9

general, the USEPA has not recommended restrictive criteria on nitrogen-containing nutrients, based on the fact that concentrations of nitrate or other nutrients that would exhibit toxic effects on fish or wildlife would rarely occur in nature. The maximum contaminant level for total nitrate (as nitrogen) in domestic water supplies is $10 \mathrm{mg} / \mathrm{L}$ (U.S. Environmental Protection Agency, 1986). To control accelerated algal growth, the U.S. Environmental Protection Agency (1986) recommends that total phosphorus $(\mathrm{P}$) should not exceed $0.05 \mathrm{mg} / \mathrm{L}$ in any stream at the point where it enters any lake, nor $0.025 \mathrm{mg} / \mathrm{L}$ within the lake. A desired goal for the prevention of plant nuisances in streams or other flowing waters is $0.1 \mathrm{mg} / \mathrm{L}$ total P .

Concentrations of nutrients in water samples collected from the study sites in the parish are presented in table 3; selected nutrients also are shown graphically in appendix B. The sites in the Bogue Chitto (site 16) and West Pearl River (site 17) were chosen to represent water-quality effects unrelated to urbanization within the parish. These sites generally had higher dissolved-nitrate concentrations ($0.18-0.31 \mathrm{mg} / \mathrm{L}$ at site 16 and $0.05-0.27 \mathrm{mg} / \mathrm{L}$ at site 17) than sites $1-15$. Nitrate is the most oxidized form of nitrogen, and apparently the consistently higher DO concentrations in these large streams enabled nitrifying bacteria to process nutrient inputs into this inorganic form. The fact that dissolved ammonia, a reduced form of nitrogen, is consistently low at these two siter ($0.01-0.07 \mathrm{mg} / \mathrm{L}$) supports this conclusion. The nitrates in the Bogue Chitto-West Pearl River system could, in combination with the phosphorus concentrations $(0.02-0.06 \mathrm{mg} / \mathrm{L}$ dissolved phosphorus), produce eutrophic conditions that result in algal blooms. The fact that algal bloom ${ }^{-}$ are rarely observed in this system indicates that other factors are restricting algal growth. One likely factor is reduced light penetration, due to the turbidity of the water, inhibiting algal growth and reproduction. The nitrate and phosphorus concentrations did not fluctuate as much as in the smaller streams. Apparently, the much larger basin size integrated nutrient inputs, as the relatively slower rises and falls in the river stages produced less extreme nutrient concentrations.

A different nutrient pattern was apparent in the smaller streams. The storms in April and May produced rapid rises and falls in stage. Water-quality samples collected 1-3 days after the heaviest rainfall indicated low nutrient concentrations at streams such as Bayou Castine, Cane Bayou, and Bayou Lacombe. Nutrients available for transport from these small basins had alread.' moved through the system (the first-flush effect) before samples were collected. Samples collected from the Tchefuncte River near Covington (site 1) had relatively high nitrate and phosphorus concentrations for a small drainage area, indicating that the first flush at that site probably consiste τ of, though briefly, much higher concentrations.

The smaller streams, particularly Bayou Chinchouba (sites 6-8), Bayou Castine (site 9), Cane Bayou (site 10), and the downstream part of the Abita River (site 4) exhibited a different proportion of nutrient forms. The slow-flowing nature of some of the smaller streams often produced stagnant areas that resulted in persistent low DO concentrations. This resulted in an increase in ammonia from decomposition of proteins and then a low amount of nitrification (Goldman and Horne, 1983, p. 122). This is supported by the fact that the reduced form of nitrogen, ammonia, is found in the highest concentrations in small streams at the time of year when the concentrations of DO are lowest, such as the Abita River near the mouth ($0.82 \mathrm{mg} / \mathrm{L}$ at site 4), Bayou Chinchouba ($0.74 \mathrm{mg} / \mathrm{L}$ at site 7), and Bayou Bonfouca ($0.22 \mathrm{mg} / \mathrm{L}$ at site 15).

Organic nitrogen concentrations generally are higher in the smaller streams, accompanied by lower nitrate concentrations. Bayou Castine and Cane Bayou had concentrations of dissolved organic nitrogen that ranged from 0.33 to $0.77 \mathrm{mg} / \mathrm{L}$ at site 9 , and 0.43 to $0.68 \mathrm{mg} / \mathrm{L}$ at site 10 . This probably reflects the conversion of nitrates into phytoplankton biomass and their waste products.

The sites on Bayou Lacombe (sites 11-13) had very similar nutrient proportions of low nitrates, low ammonia, and low dissolved organic nitrogen. This probably reflects a system in equilibrium, as nutrients remain relatively stable during different streamflow conditions. Apparently, nutrient assimilation generally is matching nutrients inputs.
Table 3. Nutrients and bacteria concentrations determined for selected surface-water sites in St. Tammany Parish, Louisiana, April-August 1995

Date	Nitrogen, ammonia, total, in mg / L as N	Nitrogen, ammonia, dissolved, in mg / L as N	Nitrogen, organic, total, in mg / L as N	Nitrogen, organic, dissolved, in mg/L as N	Nitrogen, nitrite, total, in mg / L as N	Nitrogen, nitrite, dissolved, in mg/L as N	Nitrogen, nitrate, total, in mg / L as N	Nitrogen, nitrate, dissolved, in mg / L as N	Phosphorus, total, in mg / L as P	Phosphorus, dissolved, in mg / as P	Coliform bacteria, fecal, in cols/100 mL	Streptococci bacteria, fecal, in cols/100 mL
Tchefuncte River near Covington, site 1												
Apr. 12	--	0.03	--	0.31	--	<0.01	--	0.10	--	0.03	22,000	9,100
May 12	0.09	. 09	0.62	. 49	0.01	. 01	0.13	. 13	0.11	. 11	1,000	--
June 7	. 04	. 04	. 26	<20	. 01	< 01	. 30	. 30	. 08	. 04	160	440
Aug. 2	. 03	. 03	. 43	. 32	. 01	. 01	. 18	. 18	. 04	. 02	310	520
Bogue Falaya at Covington, site 2												
Apr. 12	--	. 02	--	. 30	--	< 01	--	< 02	--	. 04	7,400	4,700
May 12	. 04	. 04	. 45	. 36	. 01	. 01	. 04	. 04	. 06	$<.02$	520	--
June 7	. 03	. 02	. 24	<20	<. 01	<. 01	. 10	. 10	. 02	<. 02	140	520
Aug. 2	. 02	. 02	. 24	< 20	. 01	. 01	. 04	. 04	. 04	. 04	1,400	540
Abita River at Abita Springs, site 3												
Apr. 12	--	. 02	--	. 37	--	< 01	--	< 02	--	. 03	3,000	2,200
May 12	--	. 02	--	. 32	--	. 01	--	< 02	--	. 04	K120	--
June 7	. 05	. 04	. 67	. 44	. 01	. 01	. 04	. 04	< 02	<. 02	K90	K130
Aug. 2	. 02	. 02	. 65	. 45	. 01	. 01	. 03	. 02	. 09	. 02	390	730
Abita River at U.S. Highway 190 at Covington, site 4												
Apr. 12	--	. 02	--	. 30	--	< 01	--	< 02	--	<. 02	K4,000	2,500
June 7	. 23	. 21	. 66	. 43	. 02	. 01	. 15	. 15	. 11	. 05	K120	K440
Aug. 2	. 89	. 82	1.0	. 48	. 05	. 04	. 24	. 24	. 39	. 24	220	K190
Tchefuncte River at Madisonville, site 5												
Apr. 12	--	. 04	--	. 30	--	< 01	--	. 06	--	<. 02	7,600	3,400
May 12	. 06	. 05	. 49	. 37	. 01	. 01	. 04	. 04	. 04	. 04	1,100	-
June 7	. 04	. 02	. 69	. 37	. 01	< 01	. 08	. 08	. 09	. 02	K20	K100
Aug. 2	. 07	. 07	. 72	. 33	. 01	. 01	. 02	. 02	. 06	. 06	K94	K15
Bayou Chinchouba at Louisiana Highway 59 at Mandeville, site 6												
Apr. 13	--	. 02	--	. 60	--	. 01	--	< 02	--	<. 02	300	75

Table 3. Nutrients and bacteria concentrations determined for selected surface-water sites in St. Tammany Parish, Louisiana, April-August 1995

Date	Nitrogen, ammonia, total, in mg / L as N	Nitrogen, ammonia, dissolved, in mg / L as N	Nitrogen, organic, total, in mg / L. as N	Nitrogen, organic, dissolved, in mg / L as N	Nitrogen, nitrite, total, in mg/L as N	Nitrogen, nitrite, dissolved, in mg/L as N	Nitrogen, nitrate, total, in mg/L as N	Nitrogen, nitrate, dissolved, in mg/L as N	Phosphorus, total, in mg / L as P	Phosphorus, dissolved, in mg/L as \mathbf{P}	```Coliform bacteria, fecal, in cols/100 mL```	Streptococci bacteria, fecal, in cols/100 mL
Bayou Chinchouba at Causeway Access Road near Mandeville, site 7												
Apr. 13	--	0.25	--	0.48	--	0.01	--	0.06	--	0.05	920	K710
May 12	0.14	. 11	0.64	. 41	0.02	. 01	0.08	. 08	0.08	. 07	5,200	--
Aug. 2	. 77	. 74	1.0	. 56	. 04	. 04	. 05	. 05	. 30	. 22	1,100	510
Bayou Chinchouba near mouth, site 8												
Aug. 2	. 55	. 54	. 85	. 56	. 02	. 02	. 03	. 03	. 28	. 23	K100	K280
Bayou Castine at U.S. Highway 190 near Mandeville, site 9												
Apr. 13	--	. 18	--	. 74	--	. 01	--	$<.02$	--	. 10	K300	K560
May 12	--	. 08	--	. 33	--	. 01	--	<. 02	--	. 03	300	--
June 8	. 16	. 15	. 84	. 53	. 01	. 01	. 06	. 06	. 12	. 03	100	250
Aug. 1	. 05	. 04	1.2	. 77	. 01	. 01	<. 02	<. 02	. 14	. 07	26,000	990
Aug. 2	. 03	. 03	. 97	. 70	. 01	. 01	<. 02	<. 02	. 08	. 04	1,700	--
Cane Bayou at U.S. Highway 190 near Mandeville, site 10												
Apr. 13	--	. 03	--	. 52	--	$<.01$	--	$<.02$	--	. 05	K220	K760
May 12	--	. 03	--	. 43	--	. 01	--	$<.02$	--	. 03	280	--
June 8	. 09	. 01	. 91	. 57	. 01	. 01	<. 02	<. 02	. 09	<. 02	K29	K27
Aug. 2	. 10	. 06	1.0	. 68	. 01	. 01	<. 02	$<.02$. 14	. 06	1,200	250
Bayou Lacombe 1 mile north of Interstate-12 near St. Tammany, site 11												
Apr. 13	--	. 01	--	. 32	--	$<.01$	--	$<.02$	--	<. 02	450	380
June 8	. 03	. 03	. 27	<20	. 01	<. 01	. 04	. 04	$<.02$	$<.02$	K40	200
Aug. 2	. 01	. 01	. 47	. 33	. 01	. 01	<. 02	<. 02	. 03	. 03	120	K120
Bayou Lacombe near Lacombe, site 12												
Apr. 13	--	. 02	--	. 31	--	$<.01$	--	<. 02	--	. 03	580	820
May 12	. 03	. 03	. 37	. 30	. 01	<. 01	<. 02	<. 02	<. 02	<. 02	270	--
June 8	. 02	. 02	. 74	. 33	. 01	. 01	$<.02$	$<.02$. 05	$<.02$	K60	K37
Aug. 2	. 01	. 01	. 60	. 37	. 01	. 01	<.02	<.02	.02	. 02	250	150

Table 3. Nutrients and bacteria concentrations determined for selected surface-water sites in St. Tammany Parish, Louisiana, April-August 1995

Date	Nitrogen, ammonia, total, in mg/L as N	Nitrogen, ammonia, dissolved, in mg / L as N	Nitrogen, organic, total, in mg / L as N	Nitrogen, organic, dissolved, in mg/L as N	Nitrogen, nitrite, total, in mg/L as N	Nitrogen, nitrite, dissolved, in mg/L as N	Nitrogen, nitrate, total, in mg/L as N	Nitrogen, nitrate, dissolved, in mg/L as N	Phosphorus, total, in mg/L as P	Phosphorus, dissolved, in mg/L as P	Coliform bacteria, fecal, in cols/100 mL	Streptococci bacteria, fecal, in cols/100 mL
Bayou Lacombe at mouth, site 13												
Apr. 13	--	0.02	--	0.36	--	<0.01	--	<0.02	--	0.03	640	580
June 8	0.02	. 02	0.57	. 36	<0.01	< 01	0.02	. 02	0.04	<. 02	120	K20
Aug. 2	. 02	. 01	. 52	. 33	. 01	< 01	<. 02	<. 02	. 02	. 02	420	K70
Bayou Liberty at Bonfouca, site 14												
Apr. 13	--	. 01	--	. 46	--	<. 01	--	$<.02$	--	<. 02	820	1,200
May 12	. 14	. 04	1.7	. 28	. 01	<. 01	. 03	<. 02	. 07	. 03	1,000	--
June 9	. 03	. 01	. 75	. 44	. 01	. 01	<. 02	<. 02	. 07	<. 02	210	K20
Aug. 1	. 08	. 06	. 82	. 47	. 01	. 01	. 03	. 03	. 13	. 10	380	K2,400
Bayou Bonfouca at Louisiana Highway 433 at Slidell, site 15												
Apr. 13	--	. 03	--	. 38		< 01		$<.02$	--	0.04	5,500	1,900
May 12	. 07	. 07	. 47	. 45	. 01	. 01	. 02	< 02	. 06	<. 02	4,000	--
June 9	. 12	. 06	. 77	. 34	. 02	. 01	<. 02	<. 02	. 12	. 02	210	57
Aug. 1	. 23	. 22	. 59	. 35	. 02	. 01	. 05	. 05	. 10	. 05	K5,600	K4,100
Bogue Chitto near Bush, site 16												
Apr. 12	--	. 06	--	. 32	--	. 01	--	. 18	--	. 02	30,000	14,000
May 12	--	. 07	--	. 39	--	. 01	--	. 19	--	. 06	1,000	--
June 8	. 02	. 01	. 29	<20	. 01	< 01	. 31	. 31	. 05	<. 02	100	K1,200
Aug. 1	. 02	. 02	. 27	< 20	. 01	. 01	. 19	. 19	. 04	. 02	K50	K980
West Pearl River at U.S. Highway 90, site 17												
Apr. 13	--	. 04	--	. 23	--	<. 01	--	. 11	--	. 05	1,300	620
June 9	. 04	. 03	. 49	. 30	. 01	. 01	. 27	. 27	. 14	. 02	K57	440
Aug. 1	. 05	. 04	. 62	. 28	. 01	. 01	. 05	. 05	. 12	. 02	K130	260

Bacteria

Fecal-coliform bacteria have long been used as indicators of the sanitary condition of water: because they originate from the intestinal tracts of warmblooded animals. The Louisiana Department of Environmental Quality (1994) has established water-quality standards for fecal-coliform bacteria. For primary contact recreation (prolonged contact such as swimming), based on a minimum of not less than five samples taken over not more than a 30-day period, the fecal-coliform content shall not exceed a log mean of $200 \mathrm{cols} / 100 \mathrm{~mL}$. Also, not more than 10 percent of the total samples during any 30-day period, or 25 percent of the monthly samples collected during a year, shall exceed 400 cols $/ 100 \mathrm{~mL}$. For secondary contact recreation (incidental or accidental contact, such as fishing or boating), based on a minimum of not less than five samples taken over not more than a 30-day period, the fecal-coliform content shall not exceed a \log mean of $1,000 \mathrm{cols} / 100 \mathrm{~mL}$, nor shall more than 10 percent of the total samples collected during any 30 -day period equal or exceed $2,000 \mathrm{cols} / 100 \mathrm{~mL}$.

Fecal-streptococcus bacteria also were analyzed as an additional indicator of sewage contamination. Analysis of fecal-streptococcus concentrations can be misleading, however, because of false positives from naturally occurring soil bacteria. The results are presented primarily to supplement the fecal-coliform information as a quality-control check.

Results of bacterial analyses are listed in table 3; fecal-coliform concentrations also are shown graphically in appendix B. During April, the sample from the Tchefuncte River near Covington (site 1) had a fecal-coliform concentration of $22,000 \mathrm{cols} / 100 \mathrm{~mL}$. The sample from the Bogue Chitto had a concentration of $30,000 \mathrm{cols} / 100 \mathrm{~mL}$. The very high fecal-coliform concentrations at these sites indicate that, although the sampling at these sites was conducted 2 days after the heavy rains began, the water quality of the larger streams still was degraded greatly. In contrast, the smaller streams sampled on April 13 (Bayous Chinchouba, Castine, Lacombe, and Liberty, and Cane Bayou) all had concentrations below $1,000 \mathrm{cols} / 100 \mathrm{~mL}$. The fecal-coliform concentrations at Bayou Castine and Cane Bayou were 300 and 220 cols $/ 100 \mathrm{~mL}$, respectively. This is apparently related to the smaller drainage areas of Bayou Castine and Cane Bayou, which were flushed out more quickly.

Peak concentrations of fecal-coliform bacteria were lower 2 days after the May storms than after the April storms. Sites 1 and 16 had a fecal-coliform concentration of 1,000 cols $/ 100 \mathrm{~mL}$. This corresponds with the BOD measurements that indicated much of the organic matter had been flushed out of the basins in April.

Analysis of water samples collected in June indicated much lower fecal-coliform concentrations at all sites. The lack of rainfall apparently reduced nonpoint-source inputs from storm sewers and nonsewered runoff. The highest concentration recorded in June was 210 cols $/ 100 \mathrm{~mL}$ at sites 14 and 15 .

Fecal-coliform bacteria concentrations in samples collected in August varied, which reflect the effects of small, isolated storms in the study area. Bayou Castine, sampled immediately after a storm, had a fecal-coliform concentration of 26,000 cols $/ 100 \mathrm{~mL}$. The stream was resampled 24 hours later, and the fecal-coliform concentration had decreased to $1,700 \mathrm{cols} / 100 \mathrm{~mL}$. This is ar indication of the rapid water-quality changes that typically occur in small streams.

SUMMARY

A water-quality survey of 17 sites on 11 streams in St. Tammany Parish, Louisiana, was conducted April-August 1995 to determine physical and chemical-related properties, concentrations of chemical constituents, which included major inorganic ions and nutrients, and concentrations of fecal-coliform bacteria. The streams were sampled to assess the effects of different streamflow conditions on the concentrations of water-quality constituents. The water-quality properties and constituents selected for analysis include those that generally are indicative of altered organic-material inputs from both point and nonpoint human sources, as well as naturally-occurring sources. Results of the analyses were used to evaluate the effects of there organic-material inputs on the water quality of the 11 streams. The streams included in the study were Tchefuncte River, Bogue Falaya, Abita River, Bayou Chinchouba, Bayou Castine, Cane Bayou, Bayou Lacombe, Bayou Liberty, Bayou Bonfouca, Bogue Chitto, and West Pearl River. Two of the sites, Bogue Chitto near Bush and West Pearl River at U.S. Highway 90, reflect the water quality of streams outside of the most rapidly developing areas of the parish.

The small number of water-quality samples collected during the study and the time period allotted for sample collection necessitated sample collection under several hydrologic conditions: a period of wet weather and sustained high river stages; a period of local storms several days apart and river stages typical of that situation; and a period of dry weather and low river stages. The collection of samples during these three major weather categories lessened many of the biases associated with a limited number of samples.

A series of intense storms produced flooding during the spring of 1995. Intense storms moved through St. Tammany Parish on March 7, April 10, and May 8-10. The April 10 storm produced 5-7 inches of rainfall in a 24 -hour period and caused widespread flooding in the towns of Covington and Slidell. On May 9-10, another storm produced 15.75 inches of rainfall in a 24 -hour period and caused widespread flooding in Slidell.

Dissolved-oxygen concentrations during the study generally were at or above the minimum concentrations considered necessary by the Louisiana Department of Environmental Quality for freshwater fish populations ($5.0 \mathrm{mg} / \mathrm{L}$, milligrams per liter) and estuarine fish populations (4.0 mg / L). The major exceptions are at or near the downstream reaches of small streams such as t - , Abita River at U.S. Highway 190 and Bayou Chinchouba at Causeway Access Road, Bayou Castine at U.S. Highway 190, Cane Bayou at U.S. Highway 190, and Bayou Lacombe near Lacombe. In August, when high water temperatures combined with little or no downstream flow, dissolved-oxygen concentrations were typically low, such as $1.4 \mathrm{mg} / \mathrm{L}$ at Abita River at U.S. Highway 190; $2.7 \mathrm{mg} / \mathrm{L}$ at Bayou Chinchouba at Causeway Access Road; 2.0 at Bayou Castine at U.S. Highway 190; and $0.9 \mathrm{mg} / \mathrm{L}$ at Cane Bayou at U.S. Highway 190. During the June sampling, dissolved-oxygen concentrations indicated that two sites, Tchefuncte River at Madisonville and Bayou Liberty at Bonfouca, were supersaturated with oxygen; the Tchefuncte River site had 122 percent and the Bayou Liberty site had 114 percent of the maximum oxygen concentration expected at that temperature and barometric pressure. This indicated a high level of photosynthetic activity by phytoplankton that is releasing oxygen into the water faster than it can diffuse. The results from the 5-day biochemical oxygen demand analysis indicated that the amount of organic matter present at the sampling sites related more to basin size and the time since the last major rainfall, than to the degree of urbanization.

The concentrations of inorganic constituents in streams draining the mixed pine forests generally are lower than in other streams in southern Louisiana. The Abita River, in particular, has very low concentrations of major ions and a low alkalinity that ranged only from 2 to $9 \mathrm{mg} / \mathrm{L}$ at Abita Springs and 2 to $31 \mathrm{mg} / \mathrm{L}$ at U.S. Highway 190. This indicates that the stream has very little buffering capacity. The upper reach of Bayou Lacombe (1 mile north of Interstate-12) similarly has little buffering capacity. This makes these streams particularly susceptible to adverse effects from accidental spills of strong acids or bases.

Nutrients concentrations varied, and supported bacteria data that indicated degraded water quality that typically occurs during storms is flushed out quickly, from less than 1 day in the smaller streams to less than 3 days in larger streams such as the Bogue Chitto. The larger the drainage basin, the longer it takes for the stream to recover. The dissolved-nitrate concentrations in water from the Bogue Chitto-West Pearl River system ($0.18-0.31 \mathrm{mg} / \mathrm{L}$ in the Bogue Chitto and 0.05-0.27 mg / L in the West Pearl River) could, in combination with the dissolved-phosphorus concentrations ($0.02-0.06 \mathrm{mg} / \mathrm{L}$ in the Bogue Chitto-West Pearl River system), produce eutrophic conditions resulting in algal blooms. The fact that algal blooms are rarely observed in this system indicates that other factors are restricting algal growth. One likely factor is reduced light penetration, due to the turbidity of the water, inhibiting algal growth and reproduction.

A different nutrient pattern was apparent in the smaller streams. The storms in April and May produced rapid rises and falls in stage. Water-quality samples collected 1-3 days after the heaviest rainfall indicated low nutrient concentrations at streams such as Bayou Castine, Cane Bayou, and Bayou Lacombe. Nutrients available for transport from these small basins had alread!! moved through the system (the first-flush effect) before sampling.

Fecal-coliform bacteria concentrations were highest in April and August and lowest in June. During April, the sample from the Tchefuncte River near Covington had a fecal-coliform concentration of $22,000 \mathrm{cols} / 100 \mathrm{~mL}$ (colonies per 100 milliliters). The sample from Bogue Chitto near Bush had a concentration of $30,000 \mathrm{cols} / 100 \mathrm{~mL}$. The very high fecal-coliform concentrations at these sites indicate that, although the sampling was conducted 2 days after the heavy rains began, the water quality of the larger streams still was degraded greatly.

Peak fecal-coliform concentrations were lower 2 days after the May storms than after the April storms. Both Tchefuncte River near Covington and Bogue Chitto near Bush had a fecal-coliform concentration of $1,000 \mathrm{cols} / 100 \mathrm{~mL}$. This corresponds with the biochemical oxygen demand results that indicated much of the organic matter had been flushed out of the basins in April.

The samples collected in June had much lower fecal-coliform concentrations at all sites. The lack of rainfall apparently reduced sewage inputs. The highest concentration recorded in June was 210 cols $/ 100 \mathrm{~mL}$ at Bayou Liberty at Bonfouca and Bayou Bonfouca at Louisiana Highway 433 at Slidell.

Samples collected in August varied, which reflected the effects of small, isolated storms ir the study area. Bayou Castine, sampled immediately after a storm, had a fecal-coliform concentration of $26,000 \mathrm{cols} / 100 \mathrm{~mL}$. The stream was resampled 24 hours later, and the fecal-coliform concentration had decreased to $1,700 \mathrm{cols} / 100 \mathrm{~mL}$. This is an indication of the rapid water-quality changes that typically occur in small streams.

REFERENCES

Britton, L.J., and Greeson, P.E., eds., 1988, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Open-File Report 88-0190, 685 p.

Cardwell, G.T., Forbes, M.J., Jr., and Gaydos, M.W., 1967, Water resources of the Lake Pontchartrain area, Louisiana: Louisiana Department of Conservation, Louisiana Geological Survey, and Louisiana Department of Pubic Works Water Resources Bulletin no. 12, 105 p.
Chabreck, R.H., and Linscombe, Greg, 1978, Vegetative type map of the Louisiana coastal marshes: New Orleans, Louisiana, Louisiana Department of Wildlife and Fisheries, 1 p.
Fishman, M.J., and Friedman, L.C., eds., 1989, Methods for the determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resource Investigations, book 5, chap. A1, 545 p.
Goldman, C.R., and Horne, A.J., 1983, Limnology: U.S.A., McGraw-Hill, Inc., 464 p.
Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water (3d ed.): U.S. Geological Survey Water-Supply Paper 2254, 263 p.

Kniffen, F.B., and Hilliard, S.B., 1988, Louisiana: Its land and people: Baton Rouge, Louisiana, Louisiana State University Press, 213 p.

Louisiana Department of Environmental Quality, 1990, Water quality inventory: Baton Rouge, Louisiana, Louisiana Department of Environmental Quality, Office of Water Resources, Water Pollution Control Division, v. 5, 61 p.
-----1994, State of Louisiana Water Quality Management Plan, Water quality inventory: Baton Rouge, Louisiana, Louisiana Department of Environmental Quality, Office of Water Resources, Water Quality Management Division, v. 5, pt. B.

Omernik, J.M., and Gallant, A.L., 1987, Ecoregions of the South Central States: Corvallis, Oregon, Environmental Research Laboratory, U.S. Environmental Protection Agency, 1 p.
Sloss, Raymond, 1971, Drainage area of Louisiana streams: Louisiana Department of Transportation and Development Basic Records Report no. 6, 117 p.
U.S. Environmental Protection Agency, 1986, Quality criteria for water 1986: Washington, D.C., U.S. Environmental Protection Agency, 440/5-86-00/1.
Weibel, R.L., Anderson, R.J., and Woodward, R.L., 1964, Urban land run-off as a factor in stream pollution: Water Pollution Control Federation, v. 36, no. 7, p. 914-924.

Appendix A

Statistical Summary Of U.S. Geological Survey Historical Surface-Water-Quality Data for St. Tammany Parish, Louisiana

sQ mi
0301010 DRAINAGC NREA: 143 LATITUDE/LOHGITUDE: 302940
тиะ. 1993
STATION NAME: TCILEUNCTE R NR COVINGTON, LA
COUNTY: ST TAMMANY
DESCRIPTTVE STATISTICS $\begin{array}{r}\text { PERCENT OF SAMPLES LN WHICH VALUES } \\ \text { WERE LESS THAN CR EQUAL TO THOSE SHOWN }\end{array}$

hater-quality constituent		
00613	NITROGEN, NITRITE	mg/l as N
00615	nitrogen, mitrite	MG/L As
00618	nitrog.n mitrate	(mg/L AS N)
00623	NITRO AMN \& ORG	(MG/L AS N)
00624	nitrogen suspend	(MG/L As N)
0062.	NITROGEN AMM+ORG	(mG/L As N)
00630	NO2 + NO3 total	(mg/L As N)
00631	NO2 + N03 dissul	(mg/ta as m)
00650	phosphate total	(MG/L As
00660	phosphate ortho.	(mg/l as po
00665	phosphorus total	(Mc / L AS D)
00666	phosphorus diss.	(MG/L As P)
00671	phosphorus ortho	(mg/L As ${ }^{\text {p }}$)
00680	CARDON OhGndic T	(Mg/l as C)
00681	carbon organic d	(MG/t as C)
00689	carion organtc s	(mg/l. as c)
00720	cynnide totai,	(MG/L. As CN)
00900	hardness total.	(mg/l as cao3)
00902	nuncarbowate har	(mg/l as cacos
00915	calcium dissolve	(MG/L AS Ca)
00925	magnesium dissol	(MGG/L, AS MG)
00930	sooitm dissulved	(MG/t, as Na)
00931	sodium nosoretio	(Rarto)
00932	sontum, percent	rercrent
00933	sodium+potasstum	(mg/l as
00935	potasilum dissol	(Mc / L AS K K
00940	cillinue dissolv	(mC/L as CLI
00345	SULFATE DISSOLVE	(MG/L As su
00950	Fllioride dissolv	(mg / L L AS F)
00955	SLlica dissulved	(Mg/l as sio2)
01000	arsentc dissolvf.	(UG/l as as)
01001	arsentc suspfnde	(ug/l as as)
01002	arsente total	($16 / 1 / 2$ as AS)
01003	arsenic bot. mat	ivg/g as as)
01005	hartum dissoivin	(jog/l. As ma)
01006	bartum sujpended	(UG/L AS Da)
02007	barlum total.	(UG/L AS Ba)
01010	beryllium dissol	(UG/L AS be)
01025	Cadmium dissolve	(UG/t, AS CD)
01026	CADMIUM SUSPENDE	(UG/I, AS CD)

容	

[^0]DRAINAGE. AREA: 103 SQ MI

WATLR-QUALITY CONST ITUENT 00010 WATER TEMPERATUK (DEGREES) \qquad

 00935 POTASSIUM DISSOL (MG/I, AS K)
00940 CRLORIDE DISSOLV (MG/L AS CL)

 31675 COLIFORM FECAS, 0 COLS. 1100 ML . 16613 FECAL STRPT KF A COLS. $/ 100$
70.300 KESSDUK. DIS 180 C MG/L. 70301 DIS50LVEU SOLIDS MG/I. -

 71851 NITR. NO3 AS NOS MG/L AS NO3
uralnage: akea: 17.3 sumi
0895350
i.atitude/Longitude: 303743
6661 Ldas

\footnotetext{
pergent of samples in which values
were less than or Loual to those shown

hater-quality constituent			Smple				(midinn)				
			Stite	maximum	minimum	MEAN	$93 *$	751	so		$3:$
00010	watcr templeratur	(degrees)	175	31.500	1.000	20.200	29.100	27.000	20.000	15.000	9.400
00020	air trmperature	degrfes	11	29.000	14.000	21.409	29.000	27.000	21.500	16.000	14.000
00023	air pressure	(nM OF IGG)	48	T10.000	750.000	760.250	770.000	762.750	760.000	758.000	751.150
00060	DISCharge.	CFS	9.3	13700.000	235.000	2010.097	9839.000	1134.000	11.40 .000	872.500	599.00
00061	discharge, inst.	crs	08	30000.000	268.000	2415.489	2014.502.	2.120 .000	1415.000	926.000	63\% 0:\%
00063	cage height	(FEET)	57	99.700	2.960	8.540	36.840	9.125	4.440	3.860	3.714
00970	TURBIDITY	(JCU)	71	60.000	3.000	16.127	47.000	20.000	10.000	7.000	4.000
00075	turbidity (MG/b)	(mG/L As SiO2)	7	29.000	8.000	17.714	29.000	24.000	20.000	9.000	8.000
00076	turbidity	(NTU)	104	${ }^{10.000}$	0.550	13.393	45.000	16.000	0.950	5.600	2.125
00080	color	glatinin-codal	184	120.000	0.000	21.215	70.000	40.000	20.000	10.000	5.000
00095	specific connuct	us/cm ${ }^{\text {a } 25 C}$	176	187.000	19.000	11.222	52.250	16.000	41.000	46.000	32.010
00300	Oxygen nissolved	(MG/L)	156	11.900	6.100	8.366	110.315	9.115	8.200	1.500	6.185
00301	OXYGEN DIS. PERC	: of saturatio	46	114.000	83.000	95152	108.000	38.000	94.500	91.000	85.350
00310	bod s-day at 20	(MG/L)	116	6.800	0.030	1.664	4.130	2.029	1.400	0.900	0.333
00400	Ph, hh, FIELD	(Standard unit	187	7.200	¢. 400	6.477	7.000	5.700	6.100	6.100	¢.700
00403	Ph, hH, Laborito	(standard unit	70	8.100	3.500	6.917	7.805	7.300	6.900	6.500	6.085
00410	nlikainity, wh, re:	(mg/l as cacoz	169	63.000	3.000	8.503	11.000	9.000	8.00n	7.000	5.000
00440	bicarbonate, mit F	(mg/L AS hco3)	109	71.000	4.000	10.563	14.500	11.000	10.000	8.000	6.000
00445	CARBONATE, MI, FET	(mg/t. as cous)	109	0.000		--	--	--	--	--	-
00530	residue tordl	(MG / L) ${ }^{\text {) }}$	1	22.000	--	--	--	-			
00600	nitrogen total	(Mg/i. As N)	133	3.900	0.190	0.819	1.730	0.940	0.110	0.20	0.100
00602	nitrogen dissolv	(MG / L, A S S N)	23	1.700	0.270	0.908	1.670	1.100	0.890	0.705	0.301
00605	nithogin orgnaic	(mg/tics N)	1.35	3.700	0.110	0.512	100	0.590	0.430	0.290	0.148

$\frac{z}{2}$	
Σ	
S	
苞药	

WATER-QUALITY CONSTITUENT		
	Nitrocen org	
00608	mitrogen amponia	(MG/L As n)
00610	nitrogen amponia	(MG/L AS N)
00613	nitrogen, nitritt	mG/L As
0615	NITROGEN, NITR	MG/I
610	Nitrogen nith	(MG)
620	NITROGEN NITR	
623		(MGL As N)
224	natrogen Suspend	(mg/L AS N)
00625	nitrogen mma	(mG/L as N)
630	nO2 + NO3 total	(MG/L A5 N)
631	N02 + NO3 DISSOL	(mg/L As
00650	Phosphnte toi	(MG/t, as
00660	Phosphate ort	
00665	phosphorus to	(m6/L ${ }^{\text {as }}$
665	phosphorus diss	(MG / L as AS)
00671	piospliorus ortho	(mg/l as p)
0	carbon organic	(mg/l AS C)
00681	cambon org	
00689	carlon orgnic	(MG/L AS C)
00900	haroness tota	(h6/L As
00302	Rbown	(me/l as cacos
15	calciom diss	(MG/L as
916	calcium total	(MG/L As
00925	magnestilm diss	(MT / L AS MG)
927	magines fum tot	(MG/L. AS MG)
00929	SODIUM TOTA.	(${ }^{\text {M }}$
230	sodium desoive	(mg/f, $\mathrm{A}^{\text {S }}$
931	SODIUM ADSORPTIO	(ratiol
00932	SOdium, percent	pliacent
933	sodium+potassium	(mG/L as
0935	potasstum dissor.	(MG/L As K)
00937	potasstum tural	(Mg/L AS K)
940	chloride diss	(MGGI. As c
00945	suleate dissolv	(MG/IL As So
00950	Flumkidp: dissolv	(MG/L AS F)
0095	stlica dissolved	(Mg/L As sioz
01000	arsemic diss	(ug/l as
001	arsenic susple	(UG
01002	ARSENIC To	1

$\begin{aligned} & \text { SAMPLLE } \\ & S_{I I Z E} \end{aligned}$	maximim	minimum	me.nn
60	200.000	--	32.510*
14	300.030	0.000	63.000
15	300.630	--	92.170*
37	--	--	--
75	3.000	--	0.502*
20	--	--	--
11	--	--	--
${ }^{69}$	10.000	--	1.132*
29	20.000	--	6.896*
10	\cdots	--	--
30	23.000	--	10.398*
12	3.000	--	1.6.08**
19	4.088	--	1.816*
31	3.000	--	1.563*
7%	18.080	--	$3.3 .36{ }^{\circ}$
77	6.000	0.000	1.667
30	9.000	--	3.025*
19	2000.000	140.000	658.947
41	2100.000	250.000	718.537
71	376.000	20.000	186.87\%
72	7.000	--	1.931^
26	100.000	0.000	r.bas
31	33.000	--	6.510^{*}
30	140.000	0.000	39.900
29	710.000	10.000	91.207
74	170.000	10.000	51.091
41	--	--	--
53	5.000	--	1.619*
9	5.000	n.0nn	2.441
12	5.000	--	$3.019 *$
60	1.000	-	1.000*
15	3.000	0.000	0.267
22	--	--	--
11	28.000	9.000	20.707
41	--	--	--
72	17.000	--	9.357*
28	10.060	0.000	8.619
30	50.003	--	17.711*
${ }_{41}^{41}$	150.000	--	48.159*

hater-qual,ity constituent

 0100S EARIUM DISSOLVED 01006 DARIUM SUSPLEDELO
0007 DARTUM TOTAL
01010 BERYLLIUM DISSOL
01025 CAUMIUM DISSOLVE 01025 CADMIUM DISSOLVE 01027 čuNTIMM TUTAL 010.30 ciliomium dissolv
 01031 chkomive total
01015 COBALT DISSOLVED 01036 codalt suspended

01037 cobalt torat. 01040 COPPER DISSClVED
01041 COPPER SUSPRADED

01012 copper total ologa tron suspended
 01049 LEAD DISSOI.VED
 01054 MANGANF,SE SUSPER
01055 MANGANFSE TOTAI,
 01065 NICKEL DISSOLVED 01065 NICKEL SUSLFRNED 2
2
2
2
2
2
2
2
2
2
2
2
0
0
0
0
 OLO77 STI,VFR TOTAL
OLOBO STRONTTIMM OISSOI.

 01091 ZINC SUSPENDED
01092 ZINC TOTA. 01106 ALUMINUM DISSOLV

descriptive statistics			
SNMPLE	maximum	minimum	mean
72	--	--	--
27	0.000	--	--
31	--	--	--
2	5200.000	1500.000	--
28	8800.000	12.000	781. 893
11 A	38000.000	1.000	1140.407
116	60000.000	2.000	7147.in4
33	11000.000	12.00 c	1202.34
1	1.700	--	--
1	7.800	---	.-
2	5000.000	5000.000	--
6	--	--	--
2	--	--	--
3	--	--	--
2	--	--	--
2	--	--	--
15	--	--	
6	--	--	--
1.5	-	--	--
5	--	--	--
15	--	--	--
${ }^{6}$	--	--	
15	--	--	--
6	--	--	
15	--	--	--
6	-	--	--
15	--	--	--
${ }^{6}$	--	--	--
15	--	--	--
${ }_{6}$	-	--	--
2	--	--	--
${ }^{2}$	--	\cdots	--
15	--	--	--
${ }^{6}$	--	--	--
13	--	--	--
${ }_{4}^{4}$	--	--	--
14	--	--	--
5	--	--	--
15	--	--	--
6	--	--	--

hater-quality constituent

\qquad oliat SELeNIUM TOTAL (UG/L AS SF.) 31501 COLIFORM, TOTAL COLS. $/ 100 \mathrm{ML}$
 1679 FECNL STRPT MF M COLS. 1100 ML 2226 CHLORU- B-PERI-SU MG:/SO
2228 CIILORO-A-PERT-SU MG/SO 2730 Phenols, TOTAL UG/L
9025 SIMAZINE TOTAL-C UG/L 39034 PERTINNE TOTAL UG/I,

 39380 DIELDRTN TOT IWA UG/L
39383 OLELDRIN BTM
UG/KG 393808 ENUOSULFAN I TOT UG/L
39399 ENDOSULFANE BTM UG/KG 3939 ENDHIN UNE REC (UG/L)

water-quality constituent		
39420	nept epox tot ma	UG/L
39423	hept epox bim u	
39480	МЕтНОХYCHLOR T. 1	ui/r.
39481	mthxyclar mim ug/	UG/KG
39504	PCB, Satcl, T (Al	
39507	aroclor	UG/kg
39516	pcb total iwn	
39519	рСВ Btm	UG
39530	malathion tut (ta	
39531	MALATHION BTM	UG
39540	paratilon totma	ug/L
39541	parathion' bita ug	UG/K
39570	Diszinon tot (ha	UG/L
39571	Didrinon bTM U	UG/KG
39600	met partif tot inn	UG/L
39601	MET PARTH BTM U	UG/KG
39630	atrazine unf rec	(UG/L
39631	atrazine btm	UG/KG
39730	2,1-D total (Ha	UG/L
39731	$2,1-1) \mathrm{BTM}$	ú; /кG
39740	2, 1,5-T TOTAL(WA	UG/L
39741	2,4,5-T BTM	UG/K
39755	mirex totar,	OG
39758	MIREX bTM	UG/KG
39760	silvex total (wa	
39761	silmex mim	uG/KG
39786	ETII TRith totima	UG/I,
39707	LTII TRTTH BTM \cup	KG
39790	HET TRITH TOT (KA	UG
39731	met thith bik u	ve/kg
70300	hesidue dis 180 C	MG/L
76301	dissolved solids	HG/L
763.92	dissolved solids	то
7 C 303	residue dis ton/	T/AC-FT
76331	seo-susp-sievi-.	
70507	PIIOS ORTHO tot a	me/t.
71.845	Nitrocer:, na4, t	mg/l as niti
71846	NITR. NHI4 AS NH4	Mg/l. AS NH4
	n , mitrate total	/L AS

			descriptive statistics			
WATER-QUALITY CONGTITULNT			$\begin{aligned} & \text { SAMPLE } \\ & \text { SIZE } \end{aligned}$	MAXIMUM	MINIMUM	MEAN
71851	NITR. NO3 AS NO3	MG/L AS NO3	23	1.700	0.000	0.334
71856	NITR. NOZ AS NOZ	MG/L AS NO2	8	0.030	0.000	0.019
72885	IRON	UG/L AS FE	30	320.000	0.000	66.133
71886	PHOSPHORUS TOT P	MG/L AS yOi	50	1.300	0.030	0.249
71887	NITROGEN, TOTAL	mG/L AS NO3	04	17.000	1.200	3.942
71890	mercury dissor,ve	UG/L AS Hg	G8	0.100	--	0.026^{*}
71895	MERCURY SUSPENDE	dg/L AS Hg	28	0.200	0.000	0.032
71900	mercury, tot.rec	UG/L ns hg	34	0.200	--	$0.076 *$
71999	SAMPT.E, PURPOSE,	PURPOSE CODE	12	20.000	20.000	20.000
72000	ELEV.I.SD (FT.AB.N	FT (NGVD)	260	44.300	14.300	44.300
75038	K10 TOTAL	PCT/t.	6	1.300	0.800	1.067
00154	COnCENTRATION,S.	MG/S,	14%	1210.000	0.000	57.023
80155	DISCHARGE, SUSP.S	T/DAY	145	12100.000	21.000	531.214
80164	SED-BED-SIEVE-. 0	1	1	43.000		
81886	gERTHANE, BOT.MA	UG/KG	2	--	--.	--
82066	Potssstum 10 dis	(PCT/L AS K10)	28	1.900	0.700	1.068
82183	2, 4-DP	UG/L	2	--	--	--
67398	SAMPITINS METHOD	METHOD, CODES	66	8010.000	10.000	7165.758
04161	SAMPLER TYPF, COD	CODE	6	8010.000	8010.000	8010.000
90095	spectific conduct	MICROSIEMFNS/C	90	74.000	30.000	43.100
90410	nlkalinity	mg/l as cacoj	77	14.000	3.000	0.381
95100	CONVERSICN FACTO		60	$6 \% .5610$	1.800	15.4.3.3
95200	TOTAL COUNT	(CELLS/ML)	60	15000.000	47.000	1681.317
95410	ALKALINITY	MG/:, as CaCO3	1	8.000	--	
95902	HARDNESS, NONC.AF	(MG/L AS CACO3	21	1.000	0.000	1.095
99130	Caibonate alxall	MG/1.	42	11.000	3.000	1.643
99410	bicarbonate	MG/L AS HCO3	12	13.000	1.000	9.381
99445	CARbonate	MG/t. AS CO3	6	0.000	--	--
99890	SULFATE, D. UNCO	(MG/L)	4	--	--	--

[^1]station name: pearl river at pearl river, i.a drainage area: bis4 50 mi
08914 : 2
Percent of samples in whici values
NERE less tian or equar. to those shown

descriptive statistics				percent of samples in whicil values WERE LESS TIAN OR EQUAI. TO THOSE SHOWN				
sample						(midian)		
St2F.	maximim	mintmum	menn	951	151	50 :	25 :	51
39	100.000	3.000	25.736	80.000	30.000	15.000	10.000	5.000
37	125.000	15.000	74.513	115.000	81.000	74.000	63.000	43.000
39	1.300	9.600	6.323	6.800	6.500	6.300	6.100	5.600
39	21.000	1.000	:2.513	20.000	15.000	13.000	10.060	5.000
33	0.000	--	--	--	--	--	--	--
39	26.000	R. 000	13.3 AS	22.000	14.000	13.000	11.000	9.000
39	15.000	0.000	3.795	12.000	5.000	3.000	1.000	0.000
19	7.000	2.000	3.377	5.900	4.000	3.100	2.500	2.600
39	2.100	0.400	1.200	1.900	1.500	1.200	0.900	0.500
39	15.000	2.300	8.223	14.000	11.0:00	7.800	6.400	3.000
39	2.100	0.900	1.177	1.800	1.600	1.500	1.300	1.100
39	24.000	3.600	9.446	19.000	11.000	8.900	6.600	3.600
39	$1 \% .000$	3.200	8.390	16.000	9.200	7.600	6.400	4.200
39	0.400	0.000	0.079	0.100	0.100	0.100	0.000	0.000
39	16.000	6.000	10.049	15.000	11.000	10.000	8.600	6.500
37	88.000	47.000	62.405	79.000	60.000	62.000	55.500	18.800
37	1.700	0.100	0.694	1.730	0.800	0.400	0.300	0.130
39	440.000	0.000	91.735	280.000	130.000	20.000	10.000	0.000

	co	
00095	speciric condo	us/cm e 25 C
0040	PH, WII, FIELD	(Standard
00440	bicardonate, wil, f	(mg/l as hc
00445	CARDONATE, Wh, FET	(Mg/l as cos)
00900	harderss total	(mg/L as ca
90	nowcarbunate	(mg/l as cacou
00916	calcium total re	(MG/L AS CA)
27	magnesium to	(MG/L ns mg)
29	sodium total	((MG/L AS Na
233	potassius tot	(MG/t as K)
940	Chlortie dissolv	(MG/L. as Ci,
00945	sulfate dissolve	(mg/L A:
00951	fluoride total	(MG/L AS Fi
00955	stilca dissolved	(mG/L as Si
70300	residue dis lyuc	
71850	N, NITR	ns
		UG/L AS FE

STATION NME: L RONTCHARTRAIN AT MOUTH OF DYU LACOMBE DRAINAGE ARER: -999999 30 MI

$\begin{aligned} & \text { SNMPLE } \\ & \text { SIZE } \end{aligned}$	maximum	minimum	MENS	(MEDIAN)				
				951	751	50	251	31
41	30.500	A. 000	20.739	30.250	25.000	21.250	16.500	10.000
147	70.000	2.000	11.224	30.000	15.000	10.000	5.000	2.000
8	32.000	5.000	19.625	32.000	31.:00	17.500	10.750	5.000
4	5.000	1.000	--	--	--	--	--	--
158	130.003	0.000	26.772	80.000	30.000	20.000	10.000	5.000
158	10100.000	82.000	3510.126	89.36 .996	1880.000	3075000	1441.500	377.100
157	14.200	3.900	B. 270	10.910	9.200	8.100	7.150	5.380
152	7.300	0.000	1.739	4.000	2.200	1.400	0.900	0.100
99	350.000	9.000	50.414	140.000	55.000	35.000	24.000	15.060
159	8.300	6.000	7.344	1.900	7.600	7.400	7.100	6.600
1	9.600	7.500	--	--	--	-	--	--
155	29.000	0.500	3.930	10.000	5.100	2.700	1.900	1.060
13)	170.000	6.000	35.780	54.000	41.000	35.000	28.000	$1 \% .000$
155	96.000	7.000	42.355	66.000	50.000	12.000	34.000	20.000
155	0.000	--	4.35	,	--	--	--	--
1	24.000	--	--	--	--	-	-	-
87	178.000	0.000	18.230	59.600	19.000	12.000	7.000	1.800
8	60.000	0.000	0.750	60.000	3.150	1.000	0.230	0.000
17.1	51.000	0.000	0.929	2.900	0.000	0.000	0.000	0.000
4	2.000	0.340	--	--	--	--	--	\cdots
148	U. 120	--	0.015 -	0.035	90.020	0.010	-0.007	-0.003
2	0.060	0.0 .50	--	--	--	\cdots	--	.-
154	1.580	0.000	0.11 .5	0.697	0.120	0.030	0.010	0.000
107	1.400	0.090	0.562	0.996	4.6.50	0.520	0.130	0.288
3	0.820	0.340	-*	--	--	--	--	--
148	1.600	--	$0.131 *$	*0.765	$10.12{ }^{\prime}$	*0.049	* 0.020	*0.010
$4: 5$	0.250	0.030	0.114	0.210	0.135	0.120	0.090	0.060

PERCENT OF SAMPLES IN WHICH VALUES
WERE LESS THAN OR FQUAT, TO THOSF, SHOWN

[^2]DRAINAGE AREA: -999999 5Q MI
PERCENT OF SAMPLESS IN WHTCH VALUES
WERE LESS THAN OR FQUAL TO THOSE SHOWN

SMAPte				(MEDIAN)				
SI\%r:	maximum	MINIMUM	MF.AN	951	7.	SO	251	$\therefore 1$
21	30.500	6.000	21.619	30.300	27.000	21.500	13.500	6.250
13	50.000	3.000	10.697	50.000	10.000	6.000	4.500	3.000
14	25.000	3.000	11.143	25.000	20.000	6.500	4.000	3.000
27	50.000	5.000	14.815	14.000	70.000	15.000	5.000	5.000
27	14500.000	110.000	5393.111	14099.998	9110.000	3750.000	2680.000	639.600
27	12.300	3.800	8.185	12.2615	9.600	8.100	1.500	5.890
$2 G$	4.100	0.300	1.377	3.645	1.600	1.200	0.875	0.405
11	430.000	10.000	137.429	430.000	205.000	05.500	40.750	10.000
27	8.600	5.700	7.185	8.180	7.700	7.400	7.300	5.860
14	1.800	6.900	7.329	7.800	7.500	7.350	7.100	6.900
12	5.100	0.200	2.183	5.100	4.075	3.150	1.375	0.200
26	75.000	27.000	43.385	71.500	18.100	40.500	35.000	2.7 .350
12	58.000	38.000	42.000	68.000	61.3ア0	51.500	43.000	38.000
13	0.000	--	--	--	--	--	--	--
14	39.000	6.000	17.500	39.1000	26.750	12.000	9.750	6.000
26	--	--	--	--	--	--	\cdots	--
26	0.030	--	0.010^{*}	*0.027	0.012	* 0.010	*0.00s	-0.003
21	0.580	--	0.132*	* 0.560	*0.200	- 0.050	0.013	*0.004
13	0.800	0.200	0.415	9.800	0.600	0.500	0.300	0.200
26	0.600	--	0.124*	*0.527	0.185	0.057	10.035	*0.009
26	0.100	0.010	0.014	0.097	0.050	0.010	0.030	0.013
25	21.000	3.000	7.516	20.700	8. 500	6.500	5.050	3.770
26	-	\cdots	--	--	--	--	--	-
26	2600.000	100.000	599.615	1475.000	1100.000	380.000	287.500	128.000
20	1600.000)	130.000	624.000	1505.000	1100.000	105.000	262.500	132.500
26	110.000	21.000	48.192	106.500	75.250	35.300	2\%.7s0	21.350
26	330.000	10.000	117.377	309.000	220.000	73.000	53.750	17.000

WATER-QUALITY CONSTITUENT

percent of snafles in which values
here less than or equal to those shown

$\begin{aligned} & \text { SAMPLE } \\ & \text { SIZE } \end{aligned}$	maximum	manimim	MENN
14	2700.000	15.000	1326.072
14	29.000	2.000	18.643
19	79.000	17.000	14.429
14	110.000	4.200	48.729
26	5100.000	65.000	172.885
26	650.000	35.000	252.731
26	1.000	--	$1.000 *$
22	1.000	--	$1.000{ }^{\circ}$
26	2.000	--	$1.076{ }^{\text {a }}$
14	--	--	--
2	10.000	0.000	--
14	--	-..	--
26	3.000	--	0.899**
19	3.000	0.000	0.121
26	3.000	--	$1.230 *$
25	--	--	--
26	20.000	--	14.320.
14	11.000	1.000	1.214
13	6.000	0.000	2.385
14	11.000	2.000	6.357
26	140.000	--	$43.178{ }^{\text {4 }}$
26	27.000	--	2.522*
23	29.000	0.000	5.565
26	30.000	--	$7.662{ }^{\circ}$
14	4.000	--	2.487
12	8.000	0.000	2.083
14	10.000	1.000	4.500
3	76.000	2.000	--
26	3 n .000	--	10.A88*
24	280.050	0.000	24.208
25	290.000	--	3).781
14	--	--	--
2	0.000	--	--
14	--	--	-
26	9600.000	--	68.3 .929
13	350.00 C	--	62.760
12	100.00 C		$27.538{ }^{\circ}$
26	6.00 C	--	0.832
14	0.130	--	0.020
14	--	--	--
14	0.200	--	0.0314
11	--	--	--
12	42.000	0.000	16.500
14	25.000	--	5.039
13	0.310	0.060	0.156

hater-quality constituent		
	SODTUM DISSOLVED	
00931	sudtum adsorptia	
00932	sodium, percent	¢e.re
00935	potassium oisso	(MG/L As k)
00940	chloride diss	(MG
00945	sulfate diss	MG/L As
02000	arszalc diss	(10g/L as
01	arsenic su	(UG/t, as as)
0 nco	arsenic tot	(ug/t as as)
01010	beryleium di	10
01011	berpllium	(UG/L AS
01012	derylidum total	(UG / L as dE)
01023	Cadmium diss	(UG/L as CD)
01026	CADMTIMM'SUSPENDE	(ug/L as CD)
01027	cadmium tota	lug/l as
02032	CIIROMIUM	(UG/L AS CR)
34	ciromium tot	luc
02040	COPPER DIS	(UG)
01041	copper suspen	(ug/t as cu)
01042	COPPER TOYAL	(uctic. as cmi)
02046	IRon dissor,ven	vug/
01049	LEAD DISSOIVEI	(UG/L as Pb)
Cl050	lend sustend	yug/l as
01051	t.f.ad total	(10g/t. as pr)
01065	nickei. disso	(ug/t. as nit)
010	NICKEL SUSPE	IUG/L ES
01067	NICxEl. total	(UC/L as
01085	vanidium diss	(UG/L as
01090	zinc. dissolved	(HG / L as La)
do91	zinc suspend	(UG/L AS zN)
01097	2inc. Tot	
01445	seitintum diss	
01146	seifeniom suspen	(ug/t. As
01147	gelenium totar.	(ug/t. as sr.)
31501	colitiorm, total	cols. $/ 100$
31616	COLIFORM, FECAL	COLS. $/ 100$
316	colifolum recal	co
32730	Phenols, total	
39570	dialinon tot ma	U6/L
600	met parth tot (Wa	
39730	2,4-D TOTAL (WX	UG
50086	sfitleable matte	mi./L/
70299	RESIDUE SUSP	
70953	c.h.-x Phy chroma	UG
7100 g	phospuorus tot p	

pehcent of sample.s in wilich values
wf.af. tif.ss than or founl to those shown

951	751	$\begin{aligned} & \text { (MEDINN) } \\ & 50 \end{aligned}$	25	51
*0.565	0.202	-0.095	-0.050	0.022
0.500	0.100	0.000	0.000	0.000
00.565	-0.231	-0.101	00.060	-0.028
--	--	--	--	--
14900.000	10875.000	6400.000	2755.000	438.000
73.000	60.500	40.000	30.750	20.000
1560.000	1300.000	1150.000	903.000	260.000

hater-quality constituent		descriptive statistics			
		$\begin{aligned} & \text { SMMPIE. } \\ & \text { SIZE. } \end{aligned}$	maximim	minimum	MENN
71090	mercury dissoive ug/t as hg	26	0.600	--	0.149.
71895	mercury suspenne dg/l. as hig	17	0.500	0.000	0.053
71900	mercury, tot.rec ug/l as hg	26	0.600	--	0.172^{*}
82068	potsssimm 40 DIS (pCl/f AS K40)	1	43.000	--	--
90095	jpecieic conduct michosiepens/C	14	14900.000	430.000	6080.214
90410	alkalinity mg/l as cacol	11	73.000	20.000	44.643
35902	hardness, nomcar img/l as cacoj	0	1500.000	260.000	1075.000

the values of uata belum the uetection limit

Appendix B

Graphs of Selected Surface-Water-Quality Data for St. Tammany Parish, Louisiana, April-August 1995

[^3]

R-4. Concentrations of fecal-coliform bacteria for selected surface-water sites in St. Tammanv Parish, Louisiana,
April 13, 1995 .

צGLIIT צGd SWVYפITIIN NI ‘UNVWGQ NGפXXO TVDINGHDOIG

B-6. Dissolved nitrate plus nitrite and phosphorus concentrations for selected surface-water
sites in St. Tammany Parish, Louisiana, May 12, 1995 .

S甘GLITITTIN 001 YGd SAINOTOD NI 'VIZGLOVG W甘OHITOD-TVDGH HO SNOLLVYLNGDNOD

 Parish, Louisiana, June 7-9, 1995.

[^4]

B-12. Biochemical oxygen demand for selected surface-water sites in St. Tammany Parish, Louisiana,
August 1-2, 1995.

3-13. Dissolved nitrate plus nitrate and phosphorus concentrations for seiecied suiface-water sites in St. Tammany
Parish, Louisiana, April 1-2, 1995 .

B-14. Concentrations of fecal-coliform bacteria for selected surface-water sites in St. Tammany Parish, Louisiana August 1-2, 1995.

B-15. Concentrations of fecal-coliform bacteria for Bayou Castine in St. Tammany Parish, Louisiana,
August 1 and 2,1995.

SITE NUMBER
B-16. Concentrations of fecal-coliform bacteria for selected surface-water sites in St. Tammany Parish, Louisiana, August 1-2, 1995.

[^0]: * - value. is f.stimated by using a log-phobability regression to tredict

[^1]: -. value is estimated by using a log-probadility regression to predict
 the vaiues of data below the detection limit

[^2]: - value lis esfimated by using a dog-phobability regrejsion ro prejuict
 the values or data belon the oetection imit

[^3]: O-n. Dissolyad nitite plus nitrate and phosphous conezntrations for soloctad surfaco-wator sitos in St. Tammany Parish, Louisiana, April 12-13, 1995.

[^4]: B-10. Dissolved nitrite plus nitrate and organic nitrogen concentrations for selected surface-water sites in
 St. Tammany Parish, Louisiana, June 7-9, 1995 .

