UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

MDS-CRIB USER'S MANUAL: USING GIPSY

by
G. J. Orris

Melissa Stoltz

Open-File Report
82-826

This report is preliminary and has not

TABLE OF CONTENTS

Page
INTRODUCTION 1
ACCESSING THE SYSTEM 3
PUBLIC USERS 3
GOVERNMENT ACCESS 3
Batch 3
TSO Retrievals 4
GIPSY COMMANDS 6
FORM 6
SELECT 6
Variable Descriptions 6
Logic Statements 10
Format 12
Term Searches 12
ITERATE 14
BACK 17
SORT 17
COUNT 21
SUM 23
TOTAL 23
PRINT 23
LIST 28
COPY 28
Creating Tables 32
END 36
APPENDIX A
MDS-CRIB Input Form 37
APPENDIX B
Example G. E. Retrieval 42
APPENDIX C-1
Printout of a MDS-CRIB Record 46
APPENDIX C-2
Minimum Printout 50
APPENDIX D
Ordering of Data (Sorting) 52

The Computerized Resources Information Bank (CRIB) is a computerized data file containing detailed mine $\overline{\mathrm{r}}$ al resource information. CRIB provides a central location for storing and organizing a large volume and variety of data. It also provides an environment in which to conduct computerized searches of mineral resource data. CRIB was created by the U.S. Geological Survey's Branch of Resource Analysis in 1972, and has had new information added on a continuous basis since that time. CRIB's main function is to accept, organize, and store detailed geologic information so it can be readily made available to users.

Users and contributors include personnel in the U.S. Geological Survey, other government agencies, state surveys, and private companies. Input to the file, in the form of new records or updates for existing records, is usually provided by government geologists or state geologic agencies under intergovernmental agreements. These reporters submit their data on mineral occurrences, mines, and prospects using standardized forms (Appendix A). The forms contain standard fields with unique labels. New records are each assigned a unique record ID when entered into the system. Data within CRIB can be manipulated and output to produce reports and tables using GIPSY or maps and other graphics using other software packages.

GIPSY is a computerized information storage system used by a variety of data systems within the U.S. Geological Survey and the Department of Interior. The acronym GIPSY stands for General Information Processing SYstem. This software was developed by the University of Oklahoma in the sixties and was put up on the U.S. Geological Survey/Department of Interior computer in 1969. The GIPSY storage system is composed of two major parts: a dictionary that defines the fields and controls the format when records are printed; and the records themselves. In addition, GIPSY allows creation of index files where only the record locations and certain limited field information is stored to allow rapid and economical search of the contained fields.

GIPSY is very flexible - there are no restrictions as to field or record length, character type, or coding except for those restrictions imposed by the data base developers. GIPSY has several utilities that provide for the addition, deletion, and correction of data with minimum effort. The use of system dictionaries allows a large variety of file arrangements and products to be available without user programming. GIPSY is preprogrammed so that an understanding of logic is more important to using the system than is a knowledge of programming or computers. Overall these characteristics make GIPSY one of the most useful systems available for dealing with large amounts of descriptive data.

The following sections discuss how to access GIPSY on U.S. Geological Survey computers, GIPSY commands, retrieval Job Control Language, tricks to making successful retrievals, differences
using GIPSY on the GEISCO (General Electric Information System COmpany) system, and contacts for additional information.

There are presently two systems available to access CRIB data; the General Electric Information Services Company (GEISCO) makes CRIB available to public users through its worldwide MARK 3000 Service using the acroynym MDS (Minerals Data System). Government agencies may access the files directly through the U. S. Geological Survey's AMDAHL computer. Both computers utilize GIPSY for the storage and retrieval of MDS-CRIB data. General information on MDS-CRIB is available from one of the following CRIB Representatives:

Don Huber	Laure Wallace
U.S.G.S., MS 84	U.S.G.S., MS 920
345 Middlefield Rd.	National Center
Menlo Park, CA 94025	Reston, VA 22092
415-323-8111, x2906	$703-860-6455$
FTS 467-2906	FTS 928-6455

PUBLIC USERS

Public users may access the MDS-CRIB file through the General Electric Information Services Company (GEISCO) MARK 3000 Service. More detailed information and user accounts may be obtained for the G. E. system by contacting: University of Oklahoma, Information Systems Programs, P.O. Box 3030, Norman, Oklahoma, 73070. An example G. E. retrieval is contained in Appendix B.

GOVERNMENT ACCESS

U. S. Geological Survey and other government employees have two methods available to access MDS-CRIB. Batch retrievals (sequential processing usually via punched cards) of CRIB information can be made from any of the U. S. Geological Survey's Regional Centers and from some of its Water Resources Division's field offices. User's may also interact "on-line" with the data through a time-sharing operation (TSO).

User ID's and account numbers may be acquired by contacting the MDS-CRIB staff in Reston, Virginia: 703-860-6455 (FTS 9286455), or, MDS-CRIB Staff, USGS, MS 920, National Center, Reston Reston, VA 22092.

Batch

Though the trend is towards online usage of computers, batch retrievals may prove more cost effective for of certain types of requests. The following is a list, in card format, of the Job Control Language (JCL) that must precede the user's GIPSY commands
to retrieve and process a data set:

```
    job card (contact CRIB staff or Computer Center Division for
        details)
    //D EXEC QUESTRAN,DNAME='VG9195J.DICT1.CRIBD1',
    //DUNIT=ONLINE,RNAME='VG9195J.W0001.CRIB1',
    //UNIT=ONLINE,CLOCK=15, SPACE=800, TRACK=90, RGN=300K
    //QUESTRAN.SYSWRKO DD SYSOUT=A
    //QUESTRAN.SYSRDR DD *
        your GIPSY commands (discussed in detail later)
    /*
    //
```


TSO Retrievals

An example of logging onto TSO on the AMDAHL computer is contained in Figure 1. Computer prompts are in italics, user responses are in standard upper case print. Prolonged waits (up to several minutes) may occur in several places:

1. after the procedure name has been entered and before acknowledgement of logon
2. after "special messages" before receiving "READY"
3. after entering "EXEC GIPALL"
4. after entering the TSOSAVE file

The local TYMNET, FTS, and direct dial phone numbers needed to access the AMDAHL computer are available from your nearest MDS-CRIB Representative.

TSO. ACCESS FOR CRIB MAṠTER FILE

```
ENTER WYLBUR/TSO/M204A
TSO
READY TO IBM
LOGON
IK356700A ENTER USERID -
DG0000G
ENTER PASSWORD
?WORD
ENTER PROCEDURE NAME
GIPSY
DGOOOOG LOGON IN PROGRESS AT 11:59:08 ON JUNE 23, 1981
SPECIAL MESSAGES
READY
TERM LINESIZE(120)
READY
EXEC GIPALL
FILE LPRINT NOT FREED, IS NOT ALLOCATED
ENTER THE NAME OF THE FILE TO BE SEARCHED
VG9195J.W0001.CRIB1
ENTER THE NAME OF THE DICTIONARY FILE
VG9195J.DICT1.CRIBD1
enter the name of the tsosave file
DGOOOOG.TSOSAVE (*note user enters her
                                    User ID, followed by a
                                    dot, followed by
                                    ''TSOSAVE')
GIPSY - UNIVERSITY OF OKLAHOMA 12:04 P.M. TUESDAY JUNE 23, 1981
```

?

GIPSY COMMANDS

GIPSY employs a user language composed of commands and modifiers for the commands, called parameters. The 12 user commands (fig. 2) in GIPSY can be divided into 4 types: those that search the file; those that process retrieved information; those that produce specific forms of output; and a set of auxiliary commands. The commands will be discussed roughly in the order they might be used for a GIPSY retrieval.

FORM

"FORM" is an auxiliary command used to signal the name of the dictionary the user wishes to use. This command is always given at the beginning of each GIPSY search/retrieval to specify the dictionary to be used to search CRIB. The name of the dictionary is specified on the following card (batch jobs) or line (TSO retrievals) (fig. 3). A different dictionary may be specified to print the records in a variety of formats. At this time, CRIB records may be printed in two formats. The main dictionary "CRIB" prints out all of the information contained within each CRIB record as shown in Appendix C-1. The "MINIMUM" dictionary prints only required information in a compressed format (Appendix C-2).

SELECT

The "SELECT" command is used to initiate a search. In a single job, "SELECT" may be used once or several times. Two types of condition statements must be used in conjunction with the "SELECT" command; variable descriptions and logic statements.

Variable Descriptions

Variable descriptions provide factors for record selection. For example, the user may wish to see records for gold placers in California. The subset selected from CRIB must reflect three characteristics: the state must be "California", the commodity "gold", and the deposit type "placer".

Variable descriptors are given one at a time and are designated from "A" to "Z" (fig. 4). Only 26 designators can be listed for each use of a "SELECT" or "ITERATE". Descriptors consist of a data label and, optionally, a specific alphanumeric string bound by "<" and ">". Data labels are specified using a unique alphanumeric code. These codes are given in bold-faced type on the CRIB input form (Appendix A). Therefore the data labels and the variable descriptors for our example retrieval of gold placers

BACK Used to return to a previous subset for additional processing (restricted to most recent set of iterations).

COPY Generated fixed field, fixed length records for output.

COUNT For a given field in a data set, will provide counts of the number of times each different data string occurs in that field.

DEFINE (TSO only) Displays names and contents of forms in the dictionary.

DUMP Dumps records in internal GIPSY format to tape or disk.

END (TSO only) Closes out GIPSY operations.

FORM Specifies dictionary to be used to search or print a data set. Must occur at least once at beginning of each retrieval.

ITERATE Allows additional search on a previous subset only.

LIST Prints designated items of records in their entirety.

PRINT Instructs system to print selected records using last named form as printing control.

SELECT Initiates retrieval.

SORT Sorts selected records and reconstructs ouput file in desired ascending or descending sequence.

SUM For a given item/label will sum all values, determine average, and display maximum and minimum values.

TOTAL Provides same information as SUM. TOTAL will also generate a total for up to 20 fields.

Figure 2.

FORM

BATCH
TSO

FORM
?

CRIB
FORM

CRIB

Always specified first in QUESTRAN retrieval before "select".

May specify a different form for printing.

VARIABLE DESCRIPTIONS

A. $B 10$
B. $\mathrm{C} 10<\mathrm{F}>$
C. $\mathrm{B} 20<\mathrm{N}>$
D. GEN < RE>
E. $\mathrm{C} 30<\mathrm{ITE}>$
F. A77<02N> THRU <04N>
G. $M 60<20>$
H. M60 EQ 20
I. M60 GT 20
J. M60 LT 20
K. M60 10 THRU 20
L. D1A EQ D2A

M. D1A LT D2A

N. D1A GT D2A

Figure 4.
in California would be as follows:

A50	(state)	<CA>	(California)
C10	(commodity)	<AU>	(gold)
C40	(deposit type)	<PLACER>	

Data formats used for variable descriptors are shown using the alphanumeric codes of appropriate CRIB labels in Figure 4. The following explanations give the conditions on retrieving data using the formats and options shown in descriptors "A" through "N".
A. Selection is made on the existence (presence) of the label in a record. Example: the user may want to select only those records containing deposit type data.
B. Select any data containing the word " N " (a word is defined as a string of one or more characters or numbers bounded by blanks).
C. Select only on the existence of "N". All words containing "N" will be selected.
D. In this format, the prefix " RE" is selected. Records with the words " REPEAT" and " RESISTANCE" in label A1A will be retrieved, but not those with "SPREADING".
E. This format is used for a suffix search. "CHALCOPYRITE" and "TENNANTITE" will be retrieved but not "NITRITES". F. This setup retrieves on the range of " 02 N " to " $04 \mathrm{~N}^{\mathrm{T}}$ and includes "02N", "02S", "03N", "03S", and "04N", but not "04S". (See Appendix D on GIPSY sorting.)
G. In this example, the character string of " 20 " will be selected. The string "20.0" will not.
H. In this format, the numeric value 20 will be selected be it "20.0", "020", "20", or "20.".
I. Records with a numeric value greater than (GT) 20 will be selected.
J. Records with a numeric value less than (LT) 20 will be selected.
K. This option selects a range of numbers, all
with a values from 10 to 20 , inclusive.
L-N. Numbers under two labels can be compared. In these cases, the numeric values in labels D1A and D2A are compared. ($E Q=$ equal, $L T=$ less than, $G T=$ greater than).

Logic Statements

The variable descriptors are combined in a logic statement to retrieve the desired subset of data. This combination is accomplished using Booleon Logic (fig. 5). Booleon Logic uses 3 operators: AND; OR; and NOT. "AND" requires that both statements on either side of the operator be true. "OR" requires that only one set of conditions need be met. "NOT" selects those records not in the following descriptor. Within GIPSY, the user may use the words "NOT", "AND", or "OR" or may employ the symbols "七",

Booleon Logic

LOGIC A

LOGIC NOT A

LOGIC A OR B ($A+B$)

LOGIC A AND B
($\mathrm{A} * \mathrm{~B}$)

LOGIC NOT A AND B ((NOT A)*B)

Figure 5.
"*", or "+", respectively.
If variable descriptor "A" is given as "A50<UT>" (state = Utah) and variable descriptor "B" is given as "C40<PLACER>" (deposit type $=$ placer), the data selected using the logic statements in Figure 5 would be as follows:
"LOGIC A" would select all records for the state of Utah.
"LOGIC ヶA" would select all the records in CRIB, both US and international, except for those in the state of Utah.
"LOGIC A+B" would select all the records in Utah, plus any other records in CRIB listing "PLACER" as the deposit type.
"LOGIC A*B" would select placer deposits in the state of Utah.
"LOGIC (־A) * B" would select all placer deposits in CRIB except for those in Utah.

Format

In addition to specifying correct variables and employing appropriate logic statements, successful GIPSY retrievals also require certain formats/procedures for batch and TSO retrievals. Figure 6 shows the variable descriptors and logic statements for conducting the same search in batch and TSO modes.

In the batch example each line represents one card. The command "SELECT" always starts in column one. Note that the variable descriptors and logic statement are indented one space. This formatting is necessary to making a batch retrieval work.

In contrast, the TSO retrieval in Figure 6 requires no special spacing and the user is prompted to specify whether the search is to be a "full" ot "term" search, what each of the variables is to be, and what logic is desired. In the example, the computer generated the characters in italicized print, as well as the dashed line following "SELECT". Note that the computer prompted for another variable after one was specified until the user hit the carriage return without keying any characters. GIPSY also prompted for logic statements until just a carriage return was hit.

Term Searches

Term searches are used to search what is called an "index". Indexes for CRIB store 3 labels: commodity (C10), state (A50), and country (A40) information along with the physical location of the complete CRIB record containing this information. TERM searches save computer time and money by searching the small amount of data in the index as a first-cut operation for a Master

SELECT

BATCH TS0
SELECT ?
A. $\mathrm{A} 50<\mathrm{ID}>$
C. A80<112> thru <113> F
LOGIC $A * B * C$
SELECT
B. $\mathrm{A} 70<47>$
FULL OR TERM SEARCH?A. $\mathrm{A} 50<\mathrm{ID}>$
B. $\mathrm{A} 70<47>$C. A80<112> THRU <113>
D. PLOGIC $\mathrm{A} * \mathrm{~B} * \mathrm{C}$SEARCH
LOGIC \downarrow

Selecting for MDS-CRIB records for the Choteau 2° sheet in Idaho: Latitude $470-48^{\circ} \mathrm{N}$, Longitude $112^{\circ}-114^{\circ} \mathrm{W}$.
\star The symbol " २ " is given for a carraige return.

File search where country, state, or commodity can be used to narrow the number of records to be perused.

When using TSO to access CRIB, the user is automatically asked if a full or term search is desired. By responding with a "T" or "TERM", the user is restricted to searching country, state, and commodity information in the index in the first search. The index is able to contain all the necessary information for the Master File in about 4100 "records". The example of a TSO search in Figure 7 shows that the index search selected 16 out of 4092 records as meeting the criteria of state equals "ID".

Unless the result of the index search is negative, the user should respond "YES" to the computer query about creating a file from the index subset. The computer will then ask the user to specify a subset number for the file. Generally, " 1 " is the best subset number to assign, although any integer may be used with the subsequent subsets being assigned numbers incremented by one. At this point, the system will locate the records the index search has selected. In Figure 7, the 16 index records contained the locations of 48 CRIB records with "ID" as the state code.

The user may respond "NO", or " N ", to the computer's query to construct a file from the index subset. This prevents the computer from retrieving the full records from their storage locations. The result is that a "PRINT" command will only produce a listing of the country, state, and commodity labels, not the selected records.

The computer then asks if the user wishes to further narrow the data set by printing "ITERATE?". If the user reponds "YES", or "Y", he is prompted with a designator and can specify labels otherr than those for country, state, or commodity.

The batch process for a term search is essentially like that done using TSO, except that a file is automatically constructed from the index subset and, of course, the user is unable to be prompted. A batch TERM search requires 2 additional cards to be added to the standard QUESTRAN retrieval cards; " TERM" and " INDEX" cards.

In summary, the TERM search method is an efficient initial search step when country, state, or commodity can be used to narrow a data set. This method not only saves user time (a TERM search takes less than $1 / 4$ the waiting time of a full search), but also uses fewer CPU's to select and create a file of the desired records and thus may save the user money.

ITERATE

The ITERATE command works essentially like SELECT, but may search only a previously existing subset. ITERATE is followed by variable descriptors and logic statements as in the SELECT command. Successive use of the ITERATE command produces smaller and smaller subsets as shown in the batch job commands in Figure 8, columns 1 and 2. Unless used in conjunction with a BACK command, ITERATE will search the immdiately preceding subset.

SELECT
 (indexed search)

BATCH
SELECT
TERM
A. A50<ID>

LOGIC A
INDEX
ITERATE
A. $\mathrm{A} 70<47>$
B. A $80<112$ > THRU < 113>

LOGIC A*B

- ISO
?
SELECT
FULL OR TERM SEARCH?
T
A. A50<ID> STATE CODE ...
${ }^{B}$.
LOGIC A SEARCH

LOGIC
15:34:52.1 SEARCH BEGINNING
15:34:57.7 SEARCH COMPLETED
SEARCHED 4092 INDEX
SELECTED 16 SUBSET
VARIABLES SATISFIED
A
16
CONSTRUCT FILE FROM INDEX SUBSET?
YES
SPECIFY SUBSET NO.
1
SUBSET 1 HAS : : $48:$ RECORDS
ITERATE?
YES
A. $\mathrm{A} 70<47$ >
B. A80<112> THRU <113>
$C .2$
LOGIC A*B SEARCH
LOGIC $_{P}$

Figure 7.

Used with the BACK command, ITERATE will search other previously created subsets.

Figure 9 shows the use of ITERATE in TSO mode. After a SELECT or ITERATE step, whether the SELECT is for a full or term search, the user is asked if an iteration on that step's results is required. If the user responds "NO" or "N", the prompt "?" will be given and a new command should be entered. If the user responds "YES" or "Y", the computer will prompt for an additional variable description(s) by printing a designator(s), A-Z. The results of this search will result in another subset with a number designation incremented by one over the previous subset. One may use ITERATE to respond to a "?" at any time following an initial SELECT. When the ITERATE is initiated by the user in response to a "?", the system prompt the user for the subset number the ITERATE operation will operate against.

BACK

The BACK command may be used to return to a previously existing subset for further searching or processing. Use of this command with ITERATE may create new subsets and cause others to be lost. When returning to a previous subset N, those subsets with a number greater than N will be lost.

The batch example in Fig. 8 shows the command BACK followed by the number 4 in column 2. This action returns the user to the last previously existing SUBSET 4. The ITERATE that follows creates a new SUBSET 5 in column 3, the SUBSET 5 in column 2 is lost. The BACK command in column 3 returns the user to SUBSET 1 in column 1, the ITERATE that follows creates a new SUBSET 2 and all previously existing subsets with numbers greater than 2 are lost.

SORT

SORT is a processing command that arranges the records from the preceding SELECT sequence as the user wishes (see Appendix C on GIPSY sorting). There are 2 main specifications to the SORT command: 1) the fields and lengths to be used to order the records; and 2) the direction of ordering.

SORT may be used to arrange records using one field or several fields. In Figure 10, the TSO example shows records being ordered by the CRIB record ID. A "/" is used to indicate that the user has completed his Tisting of SORT fields. Notice that the field codes (A60, A10, B10) are followed by integers. These integers specify the number of characters to be sorted within each field. The CRIB record ID only contains 7 characters, so that "B10 7" will result in a 1 the characters being taken into acoount in the sort. Other fields, such as NAME (A10), are of variable length and frequently too long for all the characters to be used for the SORT. In this case, a number is chosen that

USING ITERATE ON TSO

```
SELECT
FULL OR TERM SEARCH?
F
A. A50< VA >
    STATE CODE .....
B.2
LOGIC A
    SEARCH
LOGIC
10:29:37.4 SEARCH BEGINNING
10:31:37.4 37703 RECORDS SEARCHED 396 RECORDS SELECTED
10:32:49.3 SEARCH COMPLETED
    SEARCHED 51713
    SELECTED 760 SUBSET 1
VARIABLES SATISFIED
    A 760
ITERATE?
YES
A. C10< AU >
    COMMODITIES PRESENT ....
B.*)
    SEARCH
LOGIC
10:49:51.4 SEARCH BEGINNING
10:50:28.2 SEARCH COMPLETED
    SEARCHED 760
    SELECTED 226 SUBSET 2
VARIABLES SATISFIED
            A 226
ITERATE?
NO
?
ITERATE
SPECIFY SUBSET NO.
```

1

Figure 9.

```
A. C10< AG >
    COMMODITIES PRESENT.... .
B.2
LOGIC A
        SEARCH
LOGIC>
10:53:43.0 SEARCH BEGINNING
10:54:17.0 SEARCH COMPLETED
    SEARCHED 760
    SELECTED 32
VARIABLES SATISFIED
    A 32
```

NOTE THAT A COMPUTER PROMPT OF iterate? ALLOWS THE USER TO ITERATE ONLY ON THE IMMEDIATELY PRECEDING SUBSET. TO ITERATE ON AN EARLIER SUBSET, THE USER MUST WAIT FOR A ? PROMPT.

BATCH

SORT
B10 7

OUTPUT would be sorted as:
DC11127
W029567
W029568
W029569

TSO

?

SORT
ASCENDING OR DESCENDING ORDER?
A
B10 7
/

MDS/CRIB records sorted in ascending order by record number.

SORTD
B10 7
?
SORT
ASCENDING OR DESCENDING ORDER?
D
B10 7
OUTPUT would be sorted as:
W029569
W029568
W029567
DC11127

MDS/CRIB records sorted in descending order by record number.

Figure 10.
should order most of the names. This command can sort up to 25 fields and no more than a total of 106 characters.

In Figure 10, "AlO" is sorted for 15 characters. Assuming the 5 mines in Figure 11 are present, sorting for 15 characters will have one of the 2 results shown. The reason is that the Consolidated Mining shafts' names differ by only 1 character and that character is in the thirtieth position. The SORT does not recognize any difference so that either shaft may appear first in the listing. The Consolidated Mining names are in contrast to the Bluebell Cu Occurrence and Mine. For these 2 names, the difference occurs starting with the tenth character and since "C" comes before " M ", the Bluebell Cu Occurrence is listed first.

SORT may also be used to sort numeric fields or mixed alphanumeric fields. In the case of mixed fields, alpha characters come before numbers in an ascending sequence in a mixed field. Examples of computer sorting/ordering are shown in Appendix C. To sort only by numbers in mixed or numeric fields, the following format is used:

```
SORT
FIELD x.y
```

This sort will select the first number in the field to be sorted, sort on "x" digits ($x<8$), and assume a decimal point "y" digits from the right.

SORT may also be used to sort on the existence of a label. For:

```
SORT
FIELD 'YES' 'NO'
```

SORT will assume and sort on "YES" if the field is present and "NO" if the field is not present.

The second specification that needs to be made when using the SORT command besides the field name(s) and length(s), is whether the user wishes to sort the records in ascending or descending order. Ascending order sorts first on alpha characters starting with "A" and then on numbers starting with "0". Figure 9 shows how to specify ascending or descending sorts in both Batch and TSO modes

COUNT

The COUNT command will list the different data strings within a data field or data fields (up to 25), as well as the number of times (frequency) each data string occurs. The possible formats for the COUNT command are:
A. For characters

COUNT

$$
\text { FIELD } x \quad(x \leq 70 \text { TSO }, x \leq 100 \text { Batch })
$$

MINE NAMES - SORT "A10 15"

Bluebell Mine
J. D. Clampett's Claim Consolidated Mining Ezra No. 2 Shaft Consolidated Mining Ezra No. 1 Shaft

Wolf Whistle Creek Placer
Bluebell Cu Occurrence
Sorted in ascending order for 15 spaces, the names would be ordered as follows:

Bluebell Cu Occurrence
Bluebell Mine
Consolidated Mining Ezra No. 2 Shaft Consolidated Mining Ezra No. 1 Shaft
J. D. Clampett's Claim

Wolf Whistle Creek Placer

OR

Bluebell Cu Occurrence
Bluebell Mine
Consolidated Mining Ezra No. 1 Shaft Consolidated Mining Ezra No. 2 Shaft
J. D. Clampett's Claim

Wolf Whistle Creel Placer
B. For numbers COUNT

$$
\text { FIELD } x: y \quad(x \leq 21, y \leq 8)
$$

C. For presence of label COUNT
FIELD 'PRESENT' 'NO'
In formats A and $B, ~ " x$ " defines the number of characters to form the data strings. The data strings are the first "x" characters in the field in format A. In format B, the first number in the field is assumed to have " x " characters with the decimal point " y " digits from the right.

Format C again shows the use of 2 literals "PRESENT" and "NO", respectively, for the presence and absence of that label for a given record. Any word or code up to 10 characters may be used as the literals, but the word or code within the first set of single quotes always will be used if the label is present. The second literal will be output only if the label is not present.

Figure 12 shows the results of a COUNT used for counties in Virginia. The frequency of 30 -character strings in A60 (county) was noted and the sum of the frequencies printed at the bottom.

SUM
The SUM command (fig. 13) will select the first number in a mixed or numeric field and give the following information:

Number of occurrences N
Algebraic sum of all occurrences SUM
Arithmetic mean (SUM/N) AVE
Maximum value MAX
Minimum value MIN
SUM may be used for up to 9 separate items.

TOTAL
TOTAL provides the same information as SUM, but in addition will provide a total of the fields, i.e. the sums of all "N" values and "SUM" values, the arithmetic mean of all the "AVE" values and the maximum and minimum value of the "MAX" and "MIN" values, respectively (fig. 14). TOTAL is generally not appropriate for use with CRIB fields.

PRINT

PRINT (fig. 15) is the least specialized of the output commands. This cormand uses the last specified dictionary (FORM) as

COUNT

BATCH
COUNT
A60 30

TSO
-?
COUNT

```
TERMINAL OR PRINTER?
T
```

A60 30
/

Example of COUNT done for counties in Virginia:

VALUE	FREQUENCY
ALLEGANY	2
AMHERST-APPOMATTOX	1
ANNE ARUNDEL	1
AUGUSTA/ROCKBRIDGE	1
BEDFORD	1
CARROLL	2
CARROLL-GRAYSON	1
CITY OF WASHINGTON	1
FAIRFAX	1
FLOYD	1
FREDERICK	1
GRAYSON-CARROLL	1
HARFORD	2
LEE-WISE	1
LOUISA	5
PRINCE GEORGES	3
ROCKBRIDGE	1
$R O C K I N G H A M ~$	1
RUSSELL	3

SCOTT	1
SHENANDOAH	1
SMYTH-WYTHE-PULASKI	1
STAFFORD	1
OG	2
ISS	1
TOTAL	37

SUM

BATCH	TSO
SUM	$?$
M210	SUM
M25	$\ldots \ldots$
	$M 210$
	$M 25$

Summing temperatures and depths for 40 geothermal wells in Oregon.

LABEL	N		SUM		AUE	
M210 MAX			MIN			
M25		5218	130.45		210	45
	40	7991	199.75	312	90	

TOTAL

BATCH
TOTAL
D1A
D2A
D3A

TSO
?
TOTAL

D1A
D2A
D3A
/

| LABEL | $\underline{(N)}$ | $\underline{S U M}$ | $\underline{A V E}$ | $\underline{M A X}$ | $\underline{M I N}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| D1A | 1231 | $185,466,287$ | $150,663.10885$ | $18,710,000$ | 60 |
| D2A | 1337 | $211,691,809$ | $158,333.43979$ | $35,942,319$ | 35 |
| D3A | 1340 | $193,586,271$ | $144,467.36641$ | $15,920,575$ | 18 |
| $-10 T A L$ | 3908 | $590,744,367$ | $151,162.837$ | $35,942,319$ | 18 |

Figure 14.

PRINT

BATCH TSO

PRINT

?
PRINT

TERMINAL OR PRINTER?
T

DEFAULTS: 1) each record will begin printing on new page.
2) each line will contain 80 characters (GIPSY will allow up to 120).
3) will print all records in selected data set in their entirety.

OVERRIDE PARAMETERS:
NOPAGE -- will not start a new page with each record.
LINESIZE XXX -- width of print line. RECS $=\mathrm{N}$-- maximum number of records to be printed.

EXAMPLES:
PRINT LINESIZE $=120$ NOPAGE
PRINT RECS $=20$
PRINT LINESIZE $=120$ NOPAGE RECS $=100$

Figure 15.
a basis for printing records. When PRINT is used without any override parameters, each record will print in its entirety with 80 characters per line and with each record starting at the top of a new page. Override parameters for PRINT are NOPAGE, RECS, and LINESIZE. The standard CRIB dictionary will print in an optimal manner if 120 characters per line are allowed or "LINESIZE= 120". NOPAGE will save paper by allowing each record to start printing immediately after the preceding record rather than at the top of a new page. RECS allow the user to specify a maximum number of records to be printed. The 3 examples in Figure 12 do the following: 1) "PRINT LINESIZE=120 NOPAGE" allows 120 characters per line with each record printing immediately after the preceding record; 2) "PRINT RECS=20" will print 80 characters per line, each record starting on a new page, and a maximum of 20 records; 3) "PRINT LINESIZE=120 NOPAGE RECS=100" will allow 120 characters per line, with no more than 100 records printing immediately after each other.

When printing entire records at a terminal when using TSO, the computer will pause every 20 lines and print "***". The user may respond with a carriage return and the computer will continue to print the desired data set. Alternatively, the user may respond with "//" and return to the GIPSY command level, i.e. the computer will print "?" and the user may enter another command.

LIST

LIST (fig. 16) allows the user to look at specified fields (up to 99) without having entire records printed out. LIST will print the fields asked for in their entirety. Figure 17 shows the results of the Batch LIST request in Figure 16. LIST will generally print information for all the records selected, however, the RECS override may be used to specify a maximum number of records for which information will be printed.

LIST does not require that each field have a character length specified. The field labels are listed in the desired order, one per line. As with SORT, a "/" follows the last label to be processed. As with the PRINT command, when using TSO the computer will pause every 20 lines to allow the user to discontinue the output. User responses are the same as with the PRINT command.

COPY
COPY is the most versatile of the output commands. It is this command that can be used to generate tables, formatted tapes, and provide standard output for interface between GIPSY and processing systems requiring fixed fields. The parameters for copying information are given by specifying the fields needed and the number of characters to be copied from the fields (fig. 18). The user is limited to 98 field specifications and a total length of 2000 characters for each use of the COPY command.

With the COPY command, the user specifies the maximum number

BATCH

LIST RECS=10
A10
C10
C40
B10
T

List name, commodities, and deposit type for 10 records in MDS/CRIB.

A10
C10
C40
/
TSO
?

LIST

TERMINAL OR PRINTER?
T

List name, commodities, deposit type, and CRIB record-ID.

Figure 16.

EXAMPLE LIST OUTPUT

COMMODITIES PRESENT fumDEPOSIT TYPES: STRATIFIEDRECORD NO............ DCU8423
COMMODITIES PRESENT Fum
DEPOSIT TYPES: STRATIFIED D VOLCANIC
RECORD NO............. DCO8456
COMMODITIES PRESENT PM
DEPOSIT TYPES: VOLCANIC
KECORD NO............ DC08651
COMMODITIES PRESENT CLY3
DEPOSIT TYPES: BEDDED
RECORD NO............ DC 112B5
COMMODITIES PRESENT $A U$
DEPOSIT TYPES: PLACER
RECORD NO. D004041
DEPOSIT NAME
COMMODITIES PRESENT ABBATOUR CLAIM AG
DEPOSIT TYPES: VEIN
RECORD NO W026660
RECORD NO
DEPOSIT NAME ABLE PLACER
COMMODITIES PRESENT. $A U$
DEPOSIT TYPES: PLACER
RECORD NO D004073

- CORD
DEPOSIT NAME ACE PLACERCOMMODITIES PRESENT.$A U$
DEPOSIT TYPES: PLACER
RECORD NO D004047
DEPOSIT NAME
COMMODITIES PRESENT AGNES PROPERTYDEPOSIT TYPES: VEIN
RECORD NO DC08409
DEPOSIT NAME-
COPY
BATCH

COPY ?
COPY
B10 9
A10 25
TERMINAL OR WORKFILE?

C10 20

T

B10 9
A10 25

C10 20

YES 'YES' ' '

1

PARTIAL LISTING OF OUTPUT:

DC00019	ANGELUS, BLACK BEAUTY, BL	UNF				
DC00245	GROVER	FLD	MIC	BE	NB	YES
DC00324	CHRISTIE WARD-LUCKY THIRT	RAE	BE	NB	FLD	YES
DC00456	K-L GREEN RANCH	BE	MON	$2 T Z$	FLD	YES
DC00457	LITTLE ABNER PEGMATITE	BE	RAE	FLD	MON	YES
DC00458	ROSCOE GULCH PEGMATITES	FLD	MIC	BE	MON	
DC00476	BACHMAN RANCH PEGMATITE	BE	FLD	$2 T Z$	MIC	
DC00480	RAMSTETTER KANCH	MO	FLD	$2 T Z$	MIC	YES
DC00631	JOHV REED	FE	AG	All	PB	
DC00663	TURQUOTSE CHIEF, POOR BOY	Cu	U	GEM		YES
DC01104	OPPORTUNITY	MIC	BE	NB	TA	
DC01124	MONZONITE, NEW ANNIVERSAR	BE	NB	TA	GAR	YES
DC01125	WILLOW CREEK	FLD	BE	MIC	NB	
DC01129		BE	MIC	NB	TA	YES
DC01130	BROWN DERBY \#4,5, WHITE S	MIC	BE	GEM	GAR	YES
0C01165	BONUS EXTENSION	BE	NB	TA	MIC	
DC01539	THORIUM MTN., GENERAL IKE	TH	U	RAE	Al	YES
DC01581	BIGGER MICA MINE	BE	MIC	FLD	$N B$	YES
DC01599		FLD	MIC	QTZ	rae	

Figure 18.
of characters to be printed for each field. For example, if one specifies that AlO (name) is to be copied for 30 characters, names that are longer will be cut off past the thirtieth character. This allows several labels to be fit across each line on a page to create tables.

For jobs going to the user's terminal or a printer, the user should limit the COPY string to the 120 character line length for each record. Exceeding the 120 characters will generate additional whole or partial lines of printing. In addition, when COPY command output goes to a terminal or printer, the first space is used for carriage control line spacing. The three choices are:
' b ' \quad single spacing ($(b=b l a n k)$
'0' double spacing
'-' \quad triple spacing

The user's choice should be a COPY command parameter; for double spacing, the copy command would start as follows.
COPY

In Figure 18, the user chose single spacing. Any other characters in this position for printed ouput will produce undesirable results.

Figure 19 lists the possible parameter formats allowed when using the COPY command. Format 1 is the most common, printing the first x characters of the label. Format 2 will find the first number listed in each field and will put it in the standard format of x characters with y decimal places. Format 3 is useful for creating table headings; the character string within the single quotes will be printed for each record in the data set. Format 4 prints the characters in the first set of single quotes if that label is present, and the characters in the second set of single quotes if the label is not present in a record. "NEW RECORD" causes the immediately preceding COPY parameters to output without reading a new input record. As with LIST and SORT, a "/" indicates the end of the user's list of parameters.

Creating Tables

When creating tables using the COPY command, there are a few tricks to achieving a professional product. In Figure 18, literals were used to insert 2 blanks between AlO (name) and ClO (commodities); keeping the 2 fields from running together. The same was done between C10 and YES (production).

Headings can be created for tables when running jobs in the batch mode. This process uses a dummy record to generate headings as in Figure 20.

1. A30 x
2. A30 x. y
3. 'STRING'
in inis format, the first "x" number OF CHARACTERS from A30 Will be printed. blanks are inserted if there are no dATA.

IN THIS FORMAT, THE FIRST NUMBER IN A30 WILL be printed with "x" number of DIGITS AND " Y " NUMBER OF DECIMAL PLACES. THE DECIMAL POINT IS ASSUMMED.

A LITERAL CHARACTER STRING CAN BE INSERTED BY PUTTING THE STRING BETWEEN SINGLE QUOTES, THIS STRING WOULD BE PRINTED FOR EVERY RECORD, MAXIMUM LENGTH $=60$ CHARACTERS.
5. NEW RECORD
4. DATE 'YES' 'NO'

COPY DEFAULTS:
ALL RECORDS IN SUBSET COPIED, MAXIMUM LENGTH 2000 CHARACTERS, MAXIMUM OF 98 PARAMETERS.

COPY OVERRIDES: RECS=N indicates maximum number of records TO BE COPIED.
MPRM $=\mathrm{N}$ indicates maximum number of parameters.
SIZE=N indicates maximum size of. output RECORD.

CREATING HEADINGS FOR TABLES

SELECT
A. B10

LOGIC A
ITERATE
A. $\mathrm{B} 10<\mathrm{D} 000000>$

LOGIC A
COPY
' '
'MINE NAME
' RECORD NUMBER '
' COMMODITIES '
'LAT/LONG '
NEW RECORD
, ,
\qquad -
select all desired records use a known record as a dummy to generate headings

```
space control (single space)
```

headings

Underlining - '
' \qquad -
, \qquad '

BACK
1
COPY
, ,
A10 25
, ,
B10 9

C10 30
,

A70 9
A80 10

Headings may be created for batch run jobs, but this method will not work on TSO.

This command may be entered after a "?" prompt by the user. END will return the user to the AMDAHL command level for logoff and close all GIPSY files.

APPENDIX A MDS-CRIB INPUT FORM

DESCRIPTION OF WORKINGS
GEOLOGY
general comments
PROD (circle if his poge is used)
DH (circie it itis roble is vaed)
ITEM

PRODUCTION TABLES
(commodilios, concentrates, ore, overbunden)
ANNUAL PRODUCTION
.

山
な
RESERVES AND POTENTIAL RESOURCES TABLES
reserves and potential resources
THOUSAND UNITS $\left\lvert\,-\frac{\text { YLAR OF EST }}{}\right.$ (fold olong line) (ヘ)
$\longrightarrow>$
GRADE

[^0]APPENDIX B
EXAMPLE G. E. RETRIEVAL

When accessing the CRIB Data Bank via the G. E. System, the look of the retrieval is different, but the GIPSY commands work the same as on the U. S. G: S. computer. The big difference between the systems is the response time. When retrieving data using TSO on the U. S. G. S. computers, the response time is a matter of minutes. On G. E., after submitting the pertinent commands, the user must disconnect from the system and wait 30 minutes for the retrieval to be finished. The user may then reenter the system and ask for the appropriate job.

The user should contact the University of Oklahoma for a user ID and the logon procedure. Once logged on, the following is an example of a G. E. retrieval (The user's responses are in brackets "[]" here only to distinguish them from the computer prompts):

ENTER FUNCTION: [C] (C stands for create)
CONTROL FILE NAME: [EXAMPLE] (the user may use any name)
ENTER NAME OF DATABASE TO BE USED: [CRIB]
BATCH COMMAND: [FORM]
FORM NAME: [CRIB]
BATCH COMMAND: [SELECT]
FULL OR TERM SEARCH: [F]
CONDITION:
A. : [A40<US>] (your criteria)
B. : [A50< SC >]
C. :

LOGIC [A * B]
BATCH COMMAND:
BEGINIING CHANGES TO CONTROL FILE- EXAMPLE

STANDARD RUN, DEFERRED RUN, OR NO RUN: [S]
JOB 4092 USERID ON INTRDR
ENTER FUNCTION: [S] (ends session)
END OF SESSION

Log back on in approximately one-half hour to get the results.

ENTER FUNCTION: [R] (R stands for retrieval)
ENTER A 4-DIGIT JOB NUMBER
JOB \#: [4092] (This is the same number given you when the file was created)

1 REPORT FILES RETURNED
19 LINES RETURNED
DO YOU WANT TO: (the computer will give you approximately 8 al ternatives)

YOUR CHOICE: [L] (L lists your job)
FORM
CRIB
SELECT
A. A40<US>
B. $A 50<S C>$

LOGIC A * B
SEARCH
SEARCH BEGINNING
SEARCH COMPLETED
SEARCHED 51771
SELECTED 10 SUBSET 1
VARIABLES SATISFIED
A 46422
B 525
CHOOSE: [S] (S stands for stop)
ENTER FUNCTION: [S] (S stands for end of session)
END OF SESSION
READY
[LOGOFF]

This completes the G. E. retrieval process example. For more infomation on the different function, commands, or capabilities of the system, contact the University of Ok1ahoma.

APPENDIX C-1
PRINTOUT OF A CRIB RECORD
Crib mineral kesources file l2

[^1]MAIN COMMOD..... AG
MINOR COMMOD.... CU AU

\[

$$
\begin{aligned}
& \text { LAST CLAIM HOLDERS WERE SONS OF ORIGINAL LOCATOR. }
\end{aligned}
$$
\]

DESCRIPTION UF DEPOSIT

DEPUSIT TYPES:
SHEAR ZONE/VEIN
FORM/SHAPE OF DEPOSIT:
SIZE/OIRECTIONAL DATA
IN

GEOLOGY ANO MINERALOGY
PROOUCTION
NO PROOUCTION
DESCRIPTION OF WORKINGS
UNOERGROUND
LENGTH OF WORKINGS
COMMENTSIDESCRIP. OF WORKINGSI:
WORKINGS CONSIST UF ONE AOIT WITH A 75 FT ORIFT.
PROOUCTION
NO PROOUCTION
COMMENTS (DESCRIPTION OF UEPOSIT):
QUARTZ VEIN IS VUGGY
MAX WIUTH.............. 12.5
STRIKE OF OREBOUY.... N 77 W
DIP OF OREBODY..... 82 S
COMMENTS(DESCRIPTION OF UEPOSIT):
LENGTH OF WORKINGS.
12.5 inch vuggy white atz vein, $0.11 \% \mathrm{Cu}, 0.2 \mathrm{oz} \mathrm{ag}, 0.001 \mathrm{oz} \mathrm{au}$ per.ton
geological oescriptive notes.

page 0003

GEOLOGY (SUPPLEMENTARY INFORMATION)
MAJOR REGIONAL Structures.. nw-plunging anticline to the west! large scale n-trending and w-trenoing faults to
tectonic setting............. belt basin

LOCAL GEOLOGY

NAMES/AGE OF FORMATIONS,UNITS,OR ROCK TYPES
AGE: PREC RAVALLI GROUP (UNDIFFERENTIATED)
FISSURE VEINS in this akea teno to lie parallel to faults. country rock strikes n is oeg w and oips 30 deg e.

1) JOHNS W, 1964 , GEOLOGIC investigations in the kootenal-flathead area, northwest montanat montana bur.
2) JOhns, W. M. 1970 , Geology and mineral oeposits of lincoln an flathead counties, muntanat montana bur. mines
3) CONSV. OIV. COMP. DATE, 12-22-1970

- crib hinimla recoro -			
REC_IU... UCO2351			
	REC_TYPE.	XIM	
NAME..... BIG FUUK FLDSPECT	SULRCE...		
	file link	censv	
DIStillt.	REPDRILR.		OATE. 7403
	updailr.	kDjstaclir, stuart	DAIE. 7905
counthy.. us state: 30 colnty: flathead	land stat		
PHYS_PRUV UG SALISH MTS	gUad....	hallace	SCALE 1: 250000
drainalie. 17 hlst fohk of dayton creek	2nu quad.	pkoctok	SCALE 1: 24000
tohnship. UZGN Latitude. 47-57-53n			
kANGL.... C2Ih LUNGITUDE 114-21-ن゙4			
SECTIUNS. 32			
meriuiald. homtaka			
pujitiun: 2 mi nh of gasin meadows			
cuimuditas: ac lu au	status.. NO PRODUC		
depasit type: jbiear zcue/vein			
UEPUSIT SIZE: SMALL			
hukxings ante lrulfgroutio			
			feclird 00017

APPENDIX D
ORDERING OF DATA (SORTING)

Computers sort or order data from left to right. When invoking a GIPSY sort or selecting a range of values or words (which in effect is dependent upon data ordering), the user specifies the number of spaces to be ordered and the computer will then order the data starting with the first character in each piece of data and working character by character to the right for the number of charracters specified. The hierarchy of sorting (ascending) is as follows:
(blank)

A	
1	
Z	(zero)
0	
1	
9	
Other symbols	

Sorting, or ordering, is best explained through the examples which follow.
I. Sorting by names or words

DATA SET: (N3O) -HASMARK FM
-MADISON LIMESTONE
-RED HILL MARBLE
-HASMARK FM.
-MADISON FM
-BELT SERIES
-MADISON QUARTZITE
-SCHAEFFER FM
GIPSY REQUEST: SORT N30 15

INTERPRETATION: The user wishes to sort formation names in ascending (alphabetical) order using the first 15 characters of each name.
SORTED DATA:
BELT SERIES
HASMARK FM
HASMARK FM.
MADISON FM
MADISON LIMESTONE
MADISON QUARTZITE
RED HILL MARBLE
SCHAEFFER FM
15th char
ALTERNATE GIPSY REQUET:SORTN30 8
SORTED DATA: BELT SERIES
HASMARK FM.)
These may appear in HASMARK FM) any order
MADISON FM)MADISON QUARTZITE) These may appear) in any orderMADISON LIMESTONE)RED HILL MARBLESCHAEFFER FM\mid8th charCOMMENT: The alternate request did not specify a sufficientnumber of sorting characters to insure a unique and repeatableordering of data. Note that when sorting by 15 spaces the "HasmarkFm." with the period follows the "Hasmark Fm" without one, becauseblanks precede letters, numbers, and other characters.
II. SORTING BY NUMBERS (two data sets considered)

DATA SET: (M60)

GIPSY REQUEST:
SORT M60 4

INTERPRETATION: The user wishes to sort this numeric field using 4 characters

SORTED DATA:

A	$\frac{B}{01}$	
00.2		
0.2	01.0	
1	01.0	
13	01.0	
1.	02.0	
2.	02.1	
2.1	13.0	

COMMENT: Note that the data in column "B" which has a set decimal place and occupies 4 spaces sorted by numeric value while the data in column "A" did not.
III. Sorting mixed number and character fields (two data sets considered)

Data Set: (M80)

A	B
N12W	N12W
N 12 W	N12W
N 13 DEG W	N13E
12NW	N12W
EW	N90E
N08W	NO8W
N8W	N08W
N8E	N08E

GIPSY REQUEST:
SORT
M80 10

SORTED DATA:
EW
 N 13 DEG E N08W N08W N12W N12W N12W N8E N12W N8W N13E
COMMENT: Note that the formatted field sorts more attractively than the non-formatted version.
IV. Selecting data by numeric value
Data Set: (M60) 24
03
10.2
G100
24.
0.10
Less than 4.
GIPSY REQUEST: SELECT
A. M60 GT 10 LOGIC A
Data Selected: 24
10.2
G100
24.
Alternate GIPSY REQUEST: SELECT
A. M60<24> LOGIC A
Data Selected: 24
24.
Alternate GIPSY Request: Select
A. M60 3 thru 50 LOGIC A
Selected: 24
03
10.2
24.
Less than 4.
Alternate GIPSY Request: Select A. M60 EQ 24
LOGIC A
Data Selected 2424.
V. Selecting Data by Character Strings

Data Set: (GEN)	$04 N$	Morning Glory
	$04 S$	Zoo Mine
	$03 N$	Happy Trails
	Happy Days	Anteater
	Miller	O2S

GIPSY Request: Select
A. GEN<Animal>thru<Miller>
LOGIC A
Data Selected: Happy Days
Happy Trails
Anteater
Miller
Alternate GIPSY Request: Select
A.GEN<02N>THRU<04N>
LOGIC A
Data Selected: 02S
03N
04N
Alternate GIPSY Request: Select
A. AIA<bAAA>THRU<bHAA>
LOGIC A
Data Selected: Happy Days
Anteater

[^0]: JH (circle if this toble is used)
 POTENTIAL RESOURCES $\left\lvert\, \frac{\text { YEAR Of EST. }}{\text { THOUSAND UNITS }}\right.$ (fold olong line)

 grade
 $\widehat{\mid}$

[^1]: name and location
 DEPUSIT NAME..................... BIG FOUR PROSPECT
 COUVTRY COUE:.................... U
 countar name: UNite States
 STATE CODE............................... MT
 STATE NAME: MONA.
 STATE NAME: MONTANA

 PHYSIOGRAPHIC PROV....... 08 SALISH MTS
 LANU CLASSIFICATION...... OI
 guad no or name
 WALLACE
 PROCTOR
 position from nearest prominent localitys 2 mi nw of basin meadows
 location cumments: west fork or dayton creek, ne bank.

