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ABSTRACT

The Andalshatten batholith (322 km2, 
>700 km3) is a predominantly granodioritic 
high-K, calc-alkaline igneous body that 
was assembled in the mid-crust across four 
lithologically distinct nappes within the 
Helge land Nappe Complex, central Norway. 
Extensive vertical and horizontal exposures 
of metamorphic screens and xenoliths within 
the batholith provide an unparalleled view 
of the nature of magma emplacement, host 
rock displacement, and batholith assembly, 
i.e., batholith tectonics. The mapped intru-
sion consists of at least fi ve distinct litho-
logic phases, including schlieren-banded 
to gneissic granodiorite (11% of batholith 
area), coarse-crystalline to K-feldspar mega-
crystic granodiorite (69%), amphibole-bear-
ing diorite (11%), tonalite (2%), and minor 
leucogranite. Contacts between phases are 
both sharp and/or gradational and are inter-
preted to refl ect comagmatic behavior over 
the duration of crystallization of the phases 
separated by a given contact. New chemical 
abrasion–thermal ionization mass spectrom-
etry 206Pb/238U zircon weighted mean ages of 
442.67 ± 0.14 Ma and 441.53 ± 0.40 Ma for 
2 samples of the voluminous megacrystic 
granodiorite from disparate localities indi-
cate distinct periods of zircon crystallization 
separated by ~1 Ma; titanite ages for these 
samples are 441.30 ± 0.21 Ma and 436.10 ± 
2.80 Ma, respectively. No observable contacts 
were identifi ed between these two lithologi-
cally similar localities.

Of the mapped intrusion area, ~8% 
(>24 km2) comprises screens (kilometer 
scale) and xenoliths (subkilometer scale) 
of metamorphic rocks that refl ect the skel-
etal framework of the host rock nappes into 
which the granodioritic magmas intruded. 
This ghost stratigraphy maintains broad 
continuity with host rock lithology and struc-
tural trends. The largest screens show no 
evidence of internal, emplacement-related 
ductile deformation, but appear to be rigidly 
rotated into subparallelism with the western 
host rock contact, presumably during sub-
sequent magma injection into the batholith. 
In contrast, xenoliths underwent rotation, 
translation, and internal deformation in the 
magma. The scale dependence of synmag-
matic deformation of screens and xenoliths is 
likely the result of smaller blocks becoming 
thermally equilibrated with the surrounding 
magma and thus deforming by ductile mech-
anisms in a magma with increasing yield 
strength due to crystallization.

We interpret the Andalshatten batholith 
to have been assembled by at least fi ve spa-
tially distinct, elongate batches of magma 
over a minimum duration 600 ka to 1.7 Ma, 
including signifi cant recharge events involv-
ing dioritic magmas. Local space for batho-
lith assembly was accommodated by brittle 
and ductile deformation, including viscous 
fl ow of host rocks in a dynamothermal con-
tact aureole. Viscous fl ow was facilitated by 
reactivation of existing structures (e.g., tight-
ening of interlimb fold angles), recrystalliza-
tion, and penetrative foliation development, 
resulting in near-fi eld lateral and downward-
directed displacement of host rocks along the 
western margin during batholith expansion 
and growth. Emplacement of dioritic mag-
mas added heat and mass to the growing 
reservoir, enabling signifi cant magnitudes of 
internal, hypersolidus fl ow, magmatic folia-

tion development, mechanical mingling, and 
screen deformation. These observations and 
data sets are consistent with the hypothesis of 
multiple recharge events in a magma cham-
ber that was partially molten over reasonably 
large spatial scales, thereby allowing screens 
and xenoliths to be incorporated and dis-
placed and/or deformed.

INTRODUCTION

Batholiths and their enclosing host rocks pro-
vide a composite view of the time- and space-
integrated physical and chemical processes that 
result in the focused collection of magma in the 
crust. However, the preserved record as exposed 
in exhumed paleoarcs is incomplete, leading to a 
variety of disparate and often confl icting models 
to account for how magmas are emplaced and 
batholiths are assembled. The study of large vol-
ume magmatic arc terranes sensu lato has pro-
duced a myriad of observations (Bateman, 1992; 
Ciavarella and Wyld, 2008), measurements 
(Ague and Brimhall, 1988; McCaffrey and 
Petford, 1997; de Saint Blanquat et al., 2006), 
geophysical images (Paulatto et al., 2012), and 
hypotheses (Tikoff and Teyssier, 1992; Tobisch 
et al., 1995; Petford, 1996; Bartley et al., 2008) 
that explain our current understanding of how 
magmas intrude the crust to form plutons and 
batholiths. Yet, a very contentious debate con-
tinues to thread the literature and professional 
conferences on magma emplacement stud-
ies (for a historical perspective, see Gilluly, 
1948; Krauskopf, 1968; Glazner and Bartley, 
2006, 2008; Clarke and Erdmann, 2008; Pater-
son et al., 2008; Yoshinobu and Barnes, 2008; 
Glazner et al., 2010).

Two related foci of study that have generated 
recent debate include (1) the mechanisms of 
magma emplacement and local space creation, 
i.e., the so-called plutonic “room problem,” and 
(2) whether large batholiths were ever entirely 
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partially molten or, instead, assembled by 
incremental emplacement of numerous magma 
batches that cycled across their solidi depend-
ing on the rate of replenishment (e.g., Daly, 
1903a, 1903b; Marsh, 1982; Hutton, 1996; Pet-
ford, 1996; Glazner et al., 2004; Cruden, 2006; 
Glazner and Bartley, 2006; Schoene et al., 2012).

Prompted by early geochronological stud-
ies (e.g., Stern et al., 1981; Chen and Moore, 
1982) that inferred that batholiths may crystal-
lize over millions of years, thermal models have 
demonstrated that a single mapped intrusion 
may record a protracted duration of crystalli-
zation and that portions of the growing pluton 
may be fully crystallized while other portions 
may be partially molten (Hardee, 1982; Han-
son and Glazner, 1995; Yoshinobu et al., 1998; 
Nabelek et al., 2012). Recent high-precision 
U-Pb studies (e.g., Coleman et al., 2004; Matzel 
et al., 2006; Schaltegger et al., 2009; Schoene 
et al., 2012) have verifi ed these simulations and 
demonstrate that mapped intrusion geometries 
may be the result of multiple events of magma 
emplacement, crystallization, and solidifi ca-
tion, even where contacts between two units 
are gradational or not observed (e.g., Memeti 
et al., 2010). If a single mapped intrusion is 
constructed by multiple batches of solidifying 
magma over some duration, then it is probable 
that processes such as magma mixing, assimi-
lation, fractional crystallization, and melt-rock 
reaction, as well as structural processes such 
as foliation development, may occur at a much 
fi ner spatial and temporal scale within the intru-
sion (i.e., over the time and length scales of indi-
vidual batch emplacement). Furthermore, the 
mechanical evolution of the system may cycle 
through oscillating episodes of viscous and brit-
tle deformation over the duration of batholith 
assembly (e.g., Huber et al., 2011). Therefore, 
it becomes critical to attempt to (1) evaluate the 
spatial dimensions of magma batches that feed a 
growing intrusion, (2) assess the relative contri-
bution of deformation mechanisms that accom-
pany magma emplacement into preexisting 
rocks and magmas (i.e., the space problem), and 
(3) assess the scale of geochemical and textural 
variation within a mapped intrusion that may be 
due to in situ versus in transit or source-related 
geological phenomena.

This study presents new fi eld, structural, and 
geochronological data from the mid-crustal 
Andalshatten batholith, central Norwegian 
Caledo nides, a relatively large volume of magma 
added to the middle crust ca. 442 Ma. The batho-
lith intruded four nappes, each with distinctive 
lithologies, and pre-emplacement metamorphic 
and structural histories. It is important that the 
batholith preserves numerous screens and xeno-
liths ranging from the kilometer  to millimeter 

scale in superbly exposed, glacially cut three-
dimensional outcrops and vertical cliff faces. 
Such exposures provide an unprecedented range 
of scales of observation to study the processes 
attending batholith assembly. This research will 
evaluate the following: (1) the mechanisms of 
magma emplacement and possible durations 
of magma crystallization; (2) the processes by 
which xenoliths and screens are incorporated 
into the batholith; and (3) the spatial scales of 
potential magma batches and magmatic fl ow, 
and the implications for the size of the active 
or partially molten magma chambers in arc 
settings.

GEOLOGIC SETTING OF THE 
ANDALSHATTEN BATHOLITH

Host Rock Framework of the Andalshatten 
Batholith, Helgeland Nappe Complex

From west to east (structurally lowest to 
highest), the Andalshatten batholith intruded the 
Sauren-Torghatten, Lower, Middle, and Upper 
Nappes of the Helgeland Nappe Complex 
(Fig. 1; Thorsnes and Løseth, 1991; Nordgulen 
et al., 1993; Yoshinobu et al., 2002). The nappes 
are distinct in lithology, detrital zircon popula-
tions, metamorphic grade, and structural history 
(Kollung, 1967; Myrland, 1972; Gustavson, 
1978; Barnes et al., 2007; Thorsnes and Løseth, 
1991). The structurally lowest unit is the Sauren-
Torghatten Nappe, which consists of lower to 
middle amphibolite-grade pelitic and psammitic 
schists, conglomerates, and calc-silicate rocks 
that unconformably overlie fragmented ultra-
mafi c bodies (Heldal, 1987, 2001; Heldal and 
Hjelmeland, 1988; Yoshinobu et al., 2002). The 
age of deposition of this unit is determined to 
be Ordovician based on a detrital zircon date of 
481.7 ± 2.5 Ma from a metasandstone (Barnes 
et al., 2007) and crosscutting relationships with 
the Andalshatten batholith (see following Geo-
chronology discussion). Rocks of the Lower 
Nappe consist of migmatite, quartzofeldspathic 
gneiss, calcareous schist, marble, and calc-
silicate rocks. Metamorphic grade ranges from 
amphibolite to granulite facies. Pure calcite 
marbles with distinctive Sr and C isotopic signa-
tures indicate deposition during Neoproterozoic 
time (Trønnes, 1994; Trønnes and Sundvoll , 
1995; Sandøy, 2003; see Melezhik et al., 2005, 
for discussion of the methodology). Ultra-
mafi c rocks are characteristic of the Middle 
Nappe, but greenschist to lower amphibolite-
grade clastic metasedimentary and calcareous 
psammitic rocks are the dominate rock types 
(Thorsnes and Løseth, 1991). Rocks of the 
Upper Nappe include late Cambrian to Ordovi-
cian calcareous psammites, pelitic schists, and 

migmatitic quartzofeldspathic to calc-silicate 
gneisses metamorphosed under upper amphibo-
lite to granulite facies metamorphic conditions 
(Barnes et al., 2007, 2011).

Each of the broadly north-trending nappes has 
an aerial extent of tens to hundreds of kilome ters; 
widths in map view range from 4 km to >50 km. 
Individual stratigraphic packages within each 
nappe extend several kilometers along strike, 
and range in thickness from tens of meters to 
several kilometers (Myrland, 1972; Dumond et 
al., 2005). Nappes are bounded by east-dipping 
shear zones with complex structural histories 
(Fig. 1; Yoshinobu et al., 2002).

Andalshatten Batholith

The Helgeland Nappe Complex was intruded 
by the Ordovician–Silurian Bindal Batholith 
(Fig. 1). The Bindal Batholith is the largest 
Caledonian-aged batholith in Norway, and con-
sists of a mosaic of more than 50 major intru-
sions spanning ages from ca. 480 to 425 Ma. 
The amalgamation of nappes within the Helge-
land Nappe Complex and Bindal magmatism 
are the result of collision of arc terranes within 
the Iapetus Ocean during the early phases of 
the Ordovician–Silurian Caledonian orogeny 
(Yoshinobu et al., 2002; Roberts et al., 2002; 
Barnes et al., 2007). The Andalshatten batholith 
represents one of the last large additions to the 
crust in the Velfjord region (Fig. 1). Crystalliza-
tion of magmas of the Andalshatten and other 
spatially and temporally related intrusions (e.g., 
Barnes and Prestvik, 2000) occurred at pres-
sures between 600 and 800 MPa (Al-in-horn-
blende geobarometry; Yoshinobu et al., 2002).

The Andalshatten batholith (Fig. 2) is a large 
(322 km2 map area, >700 km3 in volume) high-
potassium calc-alkaline (Nordgulen, 1993) 
composite intrusion and is composed of at least 
fi ve distinctive mapped rock types (oldest to 
youngest based on crosscutting relationships): 
(1) schlieren -banded to gneissic granodiorite 
(~36 km2, ~11% batholith area); (2) coarse-crys-
talline to mega crystic K-feldspar granodiorite 
(~221 km2, ~69% of batholith area); (3) amphi-
bole-bearing diorite (35 km2, 11% batholith 
area); (4) hornblende biotite granite and minor 
two-mica leucogranite; and (5) tonalite  (6 km2, 
2% of batholith area; area measurements of 
lithologies made at 1:12,000 scale using ArcGIS ; 
http://www.esri.com/software/arcgis; Fig. 2). 
Metamorphic screens and xenoliths underlie 
24.3 km2, or 8% of the batholith area. The tonalite  
unit is an aerially extensive tabular body located 
in the southern portion of the batholith (Fig. 2) 
and is interpreted to be synmagmatic with the 
megacrystic granodiorite (Nordgulen et al., 
1992). This body was not mapped during this 
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Andalshatten batholith intrudes 
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study and so is not described further. Published 
major and selected trace element data indicate 
that the batholith exhibits a northeast to south-
west smooth variation from 58% SiO2 to 70% 
SiO2 (Nordgulen, 1993; Nordgulen et al., 1993). 
However, initial Sr and εNd isotopic data across 
these values of SiO2 cluster around 0.70855 and 
–4 to –5, respectively (Nordgulen and Sundvoll, 
1992; Nordgulen, 1993; Nordgulen et al., 1993). 
Based on map data from Figure 2 as well as 
detailed geologic mapping and outcrop studies 
presented in the following, fi ve geologic cross 
sections across the batholith are shown in Fig-
ure 3 and display the general shape and nature 
of contacts in the subsurface and the orientation 
of structures within the contact aureole . Figure 
4 displays four annotated panorama images of 
the outcrop nature and geometry of the batho-
lith, including the northeastern apophasis, 
interlayered mafi c and felsic bodies within the 
central portion of the batholith, and some of 
the  kilometer -scale metamorphic screens.

Schlieren-banded to gneissic granodiorite 
occurs along the eastern margin of the batho-
lith and is characterized by a hypidiomorphic, 
nonequigranular fabric that is commonly over-
printed by a gneissic (i.e., subsolidus) fabric. 

This lithology is in sharp contact with deformed 
migmatite and pelitic schist of the Upper Nappe, 
along a north-south–trending, steeply dipping, 
and locally sheared intrusive contact (Figs. 2 
and 3). The schlieren-banded to gneissic grano-
diorite unit contains felsic and mafi c composi-
tional layering defi ned by biotite-rich bands and 
is medium crystalline (1–5 mm) to porphyritic 
(Figs. 5A–5C). Sparse megacrysts of K-feldspar 
are observed within an equigranular matrix (e.g., 
Figs. 5B, 5C). Biotite-rich compositional band-
ing and K-feldspar megacrysts defi ne a folia-
tion that is locally folded about steeply dipping, 
north-trending axial planes (Fig. 5B). Elsewhere 
along the eastern contact, this fabric is defi ned by 
recrystallized tails of feldspar, quartz, and bio-
tite that overprint a probable magmatic foliation 
defi ned by aligned K-feldspar megacrysts (our 
data; Nordgulen et al., 1992). The overprinting 
crystal-plastic fabric displays pluton-up, host 
rock–down shearing, and cuts hypersolidus (i.e., 
magmatic) shear bands that exhibit similar kine-
matics (red arrows in Figs. 5A, 5C).

Coarse-crystalline to megacrystic K-feldspar 
granodiorite is the most abundant rock type and 
underlies >69% of the exposed area (Figs. 2 and 
5D–5F). Along the eastern side of the pluton, 

megacrystic granodiorite is in sharp, sheeted, and 
gradational contact with the schlieren-banded to 
gneissic granodiorite. Along the western pluton 
margin, megacrystic granodiorite discordantly 
cuts calc-silicate host rocks along a moderate to 
steeply east dipping curviplanar contact (Figs. 
2, 3, and 4). A moderate to well-developed 
magmatic foliation is defi ned by subparallel 
megacrysts of K-feldspar and hornblende. The 
magmatic foliation is locally overprinted by a 
subparallel crystal-plastic metamorphic fabric 
within a few meters of xenoliths in the western 
portions of the pluton (see following).

Amphibole-bearing diorite crops out as 
massive  kilometer-scale intrusions within the 
porphyritic granodiorite and meter to sub-
meter-scale microgranitoid enclaves and enclave 
swarms (Fig. 6). The largest of the dioritic bodies 
is ~35 km2 and is located within the southwest-
ern part of the pluton (Figs. 2, 3, and 4). Along 
the southwestern margin of the diorite, contacts 
show a nonuniform gradation from megacrystic 
granodiorite to diorite. Lobate and undulating 
contacts between the diorite and the granodio-
rite are common (Fig. 6A). Along the western 
contact of the large diorite body (Fig. 2), several-
meters-thick, east-dipping sheets of diorite and 
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granodiorite are sandwiched together. Evidence 
of larger scale granodiorite and/or diorite sheet-
ing is shown in Figure 4. Flame-type structures 
and pipe-like tubes of granodiorite that appear 
to have intruded perpendicular to the base of 
the overlying diorite sheets indicate a paleo-
up direction (Fig. 6A; e.g., Wiebe and Collins, 
1998). Centimeter-scale discontinuous sheeting 
or banding of these rock types is also observed 
within the interior of the massive diorite. Similar 
contact relations are observed for smaller diorite 
bodies in the central and northern part of the map 
area (Fig. 2). The basal layers of diorite gener-
ally dip shallowly to steeply east; the western 
contact of the large diorite body in Figure 2 has a 
variable dip from ~45° east at the highest expo-
sures (e.g., Fig. 4D) to subvertical at sea level 
(Fig. 2), indicative of an anvil-shaped intrusion 
in cross section (e.g., Fig. 3B).

Fine- to medium-crystalline microgranitoid 
enclaves of dioritic composition are commonly 
observed in outcrop-scale swarms within close 
proximity to massive dioritic bodies and meta-
morphic screens, but are also unevenly distrib-
uted within the pluton. Figure 6B displays a 
spectacular cliff-face exposure of a microgran-
itoid enclave swarm located on the structural top 
of a large calc-silicate screen. This ~8-m-thick 
swarm has a strike length of >50 m, and occurs 
over the jagged intrusive contact of the screen. 
Long axes of individual enclaves are subparallel 
to the contact with the underlying screen. Where 
not observed adjacent to large metamorphic 
screens, individual enclaves are generally elon-
gate subparallel to the magmatic foliation of the 
megacrystic granodiorite (Fig. 6C). K-feldspar 
phenocrysts may be entirely enclosed (e.g., 
Fig. 6D) or partially entrained in the enclaves 
(e.g., Fig. 6E). Enclave swarms sometimes are 
strongly fl attened in the plane of the swarm 
with individual enclave axial ratios >4:1. These 
enclaves display evidence for physical mingling 
of mafi c magmas and entrained K-feldspar 
pheno crysts presumably from the host grano-
dioritic magma (Figs. 6E, 6F). Both massive 
diorite units shown in Figure 2 are interpreted to 
be comagmatic with the granodiorite based on 
these relationships.

Hornblende biotite granite crops out as dikes, 
sills, and meter-scale pods at and near the con-
tacts of calc-silicate metasedimentary rocks and 
granodiorite. These fi ne-grained, equigranular 
intrusions range from 1 to 3 m wide and cut 
across xenoliths and screens. Magmatic fabric 
development within the granite is absent or par-
allel to the fabric within the adjacent granodio-
rite. Angular blocks of hornblende biotite gran-
ite are locally preserved as cognate xenoliths 
within the granodioritic phase of the pluton (see 
following).

Geochronology

Chemical abrasion–thermal ionization mass 
spectrometry (CA-TIMS) U-Pb zircon and 
titanite ages of two granodioritic samples were 
determined for this study, including sample 
AND-12, from the northwestern tip of the plu-
ton, and sample NAY06–05, from the interior 
of the pluton (Fig. 2). For the methodology 
and other analytical details, including images 
of the analyzed zircons (Figs. A1, A2) and 
concordia plots (Figs. A3, A4), see the Supple-
mental File1.

Sample AND-12 is a megacrystic granodio-
rite containing quartz, plagioclase, K-feldspar, 
and biotite, with lesser amounts of epidote, 
muscovite, and titanite. A weak magmatic fabric 
within this sample is defi ned by sparse K-feld-
spar megacrysts. Crystal-plastic deformation 
overprints the magmatic fabric and is defi ned 
by grain boundary migration recrystallization 
of quartz and minor recrystallization (subgrain 
development) of feldspar. In thin section, a 
seriate crystal size distribution is observed 
along with K-feldspar megacrysts, recrystal-
lized quartz aggregates, and interstitial biotite. 
Zircons separated from this sample were uni-
formly euhedral and yellow, and ranged in size 
from 50 µm in length to >350 µm (Fig. A1 in 
the Supplemental File [see footnote 1]). Many 
grains appeared cracked and therefore were not 
analyzed. The clearest grains were selected for 
analysis to minimize inclusion of even minor 
inherited components. The grains were mechan-
ically abraded to remove metamict rims and 
any possible metamorphic overgrowths, then 
annealed and dissolved in steps following the 
chemical abrasion method of Mattinson (2005). 
Titanite crystals within this sample were both 
dark and pale.

Sample NAY06–05 is a porphyritic granodio-
rite containing quartz, plagioclase, K-feldspar, 
and biotite with lesser amounts of hornblende, 
epidote, and titanite. In outcrop, the magmatic 
fabric is recognized by sparse elongate crystals 
of feldspar. The primary fabric is more clearly 
observed in thin section and is defi ned by blocky 
and elongate crystals of feldspar and elongate 
quartz. Zircons separated from this sample were 
euhedral and yellow, with almost all zircon 
grains containing cracks and internal defects, 
although no older cores were visible. Grains 
ranged in length from 50 µm to >350 µm. All 
but two of the analyzed grains were mechani-
cally abraded to remove metamict rims and any 

possible metamorphic overgrowths. Seven large 
single grains and two multigrain fractions were 
analyzed for sample NAY06–05. Figure A2 in 
the Supplemental File (see footnote 1) displays 
representative zircon grain images for sample 
NAY06–05.

The CA-TIMS method of zircon analysis 
works to remove domains within the zircon 
grain that have undergone Pb loss, yielding 
more accurate and less discordant dates (Mat-
tinson, 2005) by dissolving metamict high-U 
domains and nonmetamict low-U domains 
separately (e.g., Schoene et al., 2006) (see the 
Supplemental File [see footnote 1] for details). 
The weighted mean 206Pb/238U date for sample 
AND-12 is 442.67 ± 0.14 Ma, whereas the date 
for sample NAY06–05 is 441.53 ± 0.40 Ma. 
Titanite analyses yielded dates of 441.30 ± 
0.21 Ma for sample AND-12 and 436.10 ± 
2.80 Ma for sample  NAY06–5. Analytical 
results are reported in Table 1 and shown on 
concordia diagrams (Figs. A3 and A4 in the 
Supplemental File [see footnote 1]).

CA-TIMS zircon dates yield a resolvable 
difference between the magmatic ages of 
the two samples. Comparisons between the 
206Pb/238U weighted average dates of 442.67 ± 
0.14 Ma and 441.53 ± 0.40 Ma are interpreted 
to indicate a difference in magmatic ages of 
between 0.6 and 1.68 Ma at 95% confi dence 
limits. These dates are interpreted to refl ect dis-
crete pulses of magmatism very close in time 
within the granodioritic unit of the Andal shatten 
batholith. The titanite ages are <1 to ~6 Ma 
younger than the zircon ages and are discussed 
in the following.

Host Rock Geology and Structure

The Andalshatten batholith truncates discor-
dantly the four nappes of the Helgeland Nappe 
Complex along the inferred southern contact 
(Figs. 1 and 2). Along its western margin, the 
batholith intrudes the Sauren-Torghatten Nappe, 
whereas the eastern contact juxtaposes the 
batholith with the Upper Nappe (Figs. 1 and 2). 
To the north of the batholith, host rock tec-
tonostratigraphy is dominated by pelitic migma-
tite and calcareous rocks tentatively correlated 
with the Upper Nappe (Nordgulen et al., 1992; 
Yoshinobu et al., 2002; this study; Figs. 2 and 3). 
Therefore, the batholith was assembled across a 
structural culmination of the four nappes within 
the Helgeland Nappe Complex. The various 
lithologies that compose the four nappes in the 
hot rocks can be traced along strike into the 
batholith, where they occur as xenoliths and 
screens that defi ne a ghost stratigraphy (Fig. 1). 
The ghost stratigraphy is discussed further in the 
following sections.

1Supplemental File. Word file of geochronol-
ogy methods. If you are viewing the PDF of this 
paper or reading it offl ine, please visit http://dx.doi
.org/10.1130/GES00824.S1 or the full-text article on 
www.gsapubs.org to view the Supplemental File.
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Outside of the 1-km-wide contact aureole 
to the west, the dominant macroscopic planar 
structure in the host rocks is a relict sedimentary 
bedding-parallel foliation, Sb, and transposed 
regional foliation, ST, developed within rocks of 
the Sauren-Torghatten Nappe (terminology fol-
lowing Tobisch and Paterson, 1988; Nordgulen 
et al., 1992). Equivalent structures in the Vega 

archipelago to the west and south (Fig. 1) were 
described in Marko (2012), Marko et al. (2005), 
Oalmann et al. (2011), and Anderson et al. (2005). 
Within the Horn peninsula to the southwest (see 
Fig. 2), metamorphic foliations developed in 
calc-silicate schists and marbles display variable 
orientations, with strikes ranging from east-west 
to north-south and less variable dip angles from 

50° to 75° east (Fig. 2). These metamorphic folia-
tions defi ne a tight map-scale fold with an axial 
plane that is oblique and discordant to the west-
ern margin of the Andalshatten batholith (Fig. 2).

Two sets of pre-emplacement folds occur 
within the host rocks to the west and south of the 
batholith. The fi rst, and older set, include intra-
folial, centimeter-scale isoclinal folds. These 
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folds and the Sb foliations are folded about 
meter- to outcrop-scale broad to isoclinal simi-
lar folds. Axial planes to these outcrop-scale 
folds and isoclinal fold limbs strike broadly 
north-northeast and dip moderately eastward. 
The axial planes and limbs of the outcrop-scale 
folds are broadly subparallel to the transposed 
foliation (ST). Because of the discordant nature 
of the trends of metamorphic foliations within 
the Horn peninsula and the intrusive contact 

(see Fig. 2), it is likely that these rocks are not 
within the contact aureole. Foliations within 
the host rocks, screens, and xenoliths are gen-
erally north-northeast striking with steep east 
dips, whereas linear structures show a broad 
spectrum of northeast and south-plunging atti-
tudes (Fig. 7). Linear features within the screens 
and xenoliths form a tighter distribution with 
broadly north and south trends, but are domi-
nantly north-plunging (Fig. 7B).

Contact Aureole

A contact aureole (to 1 km wide) surrounding 
the batholith may be defi ned along the western 
margin based on a change in morphology and 
geometry of preexisting structures and a gen-
eral increase in the degree of deformation in 
calc-silicate rocks. Lesser amounts of marble 
and minor psammitic rocks occur within the 
structural aureole. Metamorphic index miner-

A

F

B

view to north

C

view to east

view to north

E
cs

gd

D

C

view to northeast

view to east

view to north

Figure 5. Felsic lithologies of the Andal-
shatten batholith. (A) Schlieren-banded 
to gneissic granodiorite. Red arrows indi-
cate top-to-the-east magmatic shear band. 
(B) Folded schlieren banding in porphyritic 
to K-feldspar megacrystic (white arrow) 
granodiorite. Pencil for scale (red arrow). 
(C) Down-to-the-east magmatic shear band 
(red arrows) cutting schlieren-banded and 
gneissic granodiorite and elongated mafi c 
magmatic enclaves (green arrow); pencil for 
scale. (D) Contact of porphyritic and K-feld-
spar megacrystic granodiorite (gd) and west-
ern calc-silicate (cs) host rocks (white bold 
line). Bedding in host rocks is decorated with 
white dashed lines. Note contact-bedding 
cut-offs (yellow arrows). Disc-shaped mafi c 
magmatic enclaves (10 cm; blue arrows) are 
subparallel to magmatic foliation defi ned by 
K-feldspar megacrysts. Red arrows point to 
truncation surfaces of convex schlieren  
bands that bow toward the contact. 
(E) K-feldspar megacrystic granodiorite. 
Note variable amounts of megacrysts and 
increased mafi c component in upper half of 
outcrop. Megacrysts defi ne a strongly devel-
oped magmatic foliation subparallel to the 
long dimension of the image. (F) K-feldspar 
megacrystic granodiorite with magmatic 
foliation trending from lower right to upper 
left (white arrow). The black arrow denotes 
a fi ne-crystalline K-feldspar porphyritic 
dike with diffuse boundaries that crosscuts 
the granodiorite.
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als are not well developed in the host rocks; the 
local presence of garnet, sillimanite, and horn-
blende in appropriate lithologies is consistent 
with amphibolite facies conditions attending 
dynamo thermal contact metamorphism. The 
width of the contact aureole along the eastern 
margin is not well established. This is due in 
part to the relatively high metamorphic grade 
of the host rocks (sillimanite-bearing, regional 
pelitic migmatite) into which the batholith 
intruded (Nordgulen et al., 1992).

Within the western contact aureole, regional 
planar and linear structures are steep and 
aligned subparallel to the arcuate batholith con-

tact (Figs. 2 and 3). Pre-emplacement fold axes 
and lineations defi ne two weak maxima in the 
northeastern and southern portions of a stereonet 
projection (Fig. 7B). Folds concentrated in the 
north-plunging domain are mainly found along 
the southwestern pluton margin, whereas folds 
concentrated in the south-plunging domain are 
dominantly found along the northwestern plu-
ton margin. Along the northwest contact of the 
batholith at Vistnesodden (Fig. 2), west-directed 
protomylonitic fabrics, including S-C fabrics, 
overprint east-dipping magmatic foliations. 
These rocks display asymmetric, recrystallized 
feldspar mantles surrounding cores of K-feld-

spar, indicative of moderately high temperature 
subgrain-rotation recrystallization (e.g., Vernon , 
2004). This deformation is consistent with 
batholith-up, host rock–down kinematics, and 
is similar to the structural sequence and kine-
matics described previously for the eastern con-
tact, i.e., batholith-up, host rock–down shearing 
during emplacement, solidifi cation, and cooling 
(see Fig. 5).

Along the southwestern contact, a zone of 
spectacular emplacement-related deforma-
tion is characterized by preexisting fold and 
foliation reactivation and intrusion of dikes of 
granodiorite (see also Yoshinobu et al., 2009). 

possible 

protruding 

pipes

E

C

A

D

di

di

di

F

cs 

gd

cs 

cs 

~ 8 meters

gd

enclave swarm

B

Figure 6. Diorite of the Andalshatten batho-
lith. (A) Lobate contact of pyroxene diorite 
and underlying granodiorite with pipes of 
granodiorite protruding into diorite (di). 
(B) Swarm of disc-shaped microgranitoid 
enclaves ~8 m thick in matrix of porphyritic 
granodiorite resting above the structural 
top of calc-silicate screen (cs) (V screen; see 
text for details). Red arrow points to jag-
ged contact. White arrows and dotted lines 
indicate approximate boundary of swarm, 
above which is porphyritic granodiorite 
(gd) with a few conspicuous microgranitoid 
enclaves (red triangles). (C) Enclave swarm 
in granodiorite. (D) Mingling of diorite and 
granodiorite and preservation of K-feldspar 
megacryst in enclave. (E) Enclave with 
K-feldspar phenocrysts dispersed through-
out the enclave and along contact with 
granodiorite. (F) Mingle zone of deformed 
enclaves and granodiorite; such outcrops 
preserve physical evidence for the mechani-
cal mingling of K-feldspar megacrysts and 
mafi c magmas.
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Figure 8 displays outcrop-scale geologic maps 
of the complex deformation that characterizes 
the contact aureole in this region. In Figure 
8A, a decreasing strain gradient exists in which 
preexisting upright folds of the transposed ST 
fabric are tight to isoclinal within 1–2 m of the 
pluton contact and become tight to open fur-
ther west of the contact, away from the batho-
lith margin. Similarly, several hundred meters 
to the north (e.g., Figs. 8B, 8C), axial planes 
of the ST fold generation are refolded with 
tight interlimb angles and anastomosing axial 
planes. These refolded structures are observed 
everywhere along the western pluton margin 
and are generally oriented subparallel to the 
bow-shaped western contact of the batholith 
(Fig. 2). However, the anastomosing axial 
planes and attenuated fold limbs adjacent to 
the batholith margin are both concordant and 
discordant along strike with intrusive contacts 
(Fig. 8C). Granite and granodioritic dikes are 
folded and have undergone boudinage within 
the plane of the reactivated axial planar (ST) 
foliation (e.g., Figs. 8A, 8B). These features 
are only observed in the innermost aureole 
within 10–80 m of the batholith contact and 
are interpreted to be the result of synkinematic 
intrusion of dikes during aureole deformation. 
Although the reactivated metamorphic folia-
tion and axial planes and limbs of folds within 
the contact aureole are broadly subparallel to 
the batholith contact, local truncations indi-
cate that emplacement-related ductile strains 
and brittle elastic deformation occurred during 
dynamothermal contact metamorphism (Fig. 8; 
see following).

Xenoliths and Screens Within the 
Andalshatten Batholith

The Andalshatten batholith is replete with 
metamorphic xenoliths and screens that under-
lie ~24 km2, or 8% of the total batholith area 
(Fig. 2). In this report, xenoliths are defi ned 
as fragments of metamorphic rock contained 
within an intrusion; such rocks may be related 
to the currently exposed host rocks. Cognate 
xenoliths (or autoliths; e.g., Balk, 1937; Shane 
et al., 2012) represent fragments of related, ear-
lier crystallized igneous rock now incorporated 
into the intrusion. Xenoliths, however, are dis-
tinguished from microgranitoid enclaves (e.g., 
Vernon et al., 1988; Didier and Barbarin, 1991) 
in that microgranitoid enclaves are interpreted 
to be comagmatic dioritic magmas that mingled 
with the host magma. Xenocrysts represent frag-
ments of mineral phases that have been incorpo-
rated into the host igneous rock and may have 
originated from the metamorphic host rocks or 
from earlier, crystallized portions of the igne-
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ous host rock. Screens represent kilometer-scale 
xenoliths that may be attached to the host rocks 
in the third dimension. Xenoliths and screens 
were mapped at scales ranging from 1:50,000 
to 1:300 (i.e., outcrop scale) and comprise 
lithologies that are similar to the surrounding 
host rocks, including in decreasing abundance, 
calc-silicate rocks, marble, calcareous schist, 
calcareous conglomerate, psammitic schists and 
gneisses, migmatitic schist, serpentinized dunite 
and/or ultramafi c rocks (Fig. 9; see also Nord-
gulen et al., 1992). Screens and associated xeno-
lith swarms are generally clustered by rock type 
and are found within north-south–trending to 
arcuate swarms (Fig. 2). For example, marble 
bodies dominate the central portion of the batho-
lith but are scarce to nonexistent westward. How-
ever, disparate lithologies of xenoliths commonly 
occur within xenolith swarms (e.g., Fig. 9F).

Calc-silicate xenoliths and screens are abun-
dant in the western part of the batholith and 
likely correlate to the Sauren-Torghatten Nappe. 
Marble and ultramafi c bodies are recognized 
within the interior of the pluton and prob-
ably correlate to the Lower or Middle Nappes. 
Xenoliths and screens of sillimanite-bearing 
quartzofeldspathic gneiss and pelitic migma-
titic composition are dominantly found within 
the easternmost parts of the pluton, although 
pelitic xenoliths are scarce (Nordgulen et al., 
1992). These rocks are correlated with the 

Upper Nappe based on lithologic and structural 
similarities. Despite the abundance and preva-
lence of xenoliths and screens that are indicative 
of the various Helgeland complex nappes, few 
xenoliths and/or screens of pelitic composition 
are found, even though pelitic rock types are 
represented within each nappe unit (e.g., Myr-
land, 1972).

The dimensions of xenoliths and screens 
within the Andalshatten batholith range from 
millimeters to 12 km long and range in area 
from square millimeters to almost 17 km2. 
Xenolith and/or screen translation and rotation 
in the magma are recognized where the internal 
xenolith and/or screen structure (e.g., foliations, 
bedding) is discordant to equivalent structures in 
adjacent xenoliths and/or screens or host rocks. 
Xenoliths ranging in area from 100 to 0.001 m2 
are commonly found in more diverse orienta-
tions and mingle with xenoliths of different 
lithology (e.g., Figs. 9E, 9F). The orientations of 
mapped xenoliths and screens larger than 20 m2 
were determined by measuring the major axis of 
the rock body relative to north and are plotted 
in Figure 10A. Screens within the central and 
eastern parts of the batholith are elongate in the 
north-south direction; a signifi cant population 
is oriented around N5°W (Fig. 10A). Screens 
within the western part of the batholith have 
long dimensions oriented parallel to the arcuate 
host rock contact (Fig. 2). Xenolith long axes 

are generally subparallel to the magmatic fab-
ric in the batholith (Figs. 10A, 10B). Magmatic 
foliations exhibit little to no defl ection around 
xenoliths and screens.

The contacts between host igneous rock 
and metamorphic xenoliths and/or screens 
are highly variable across all lithologies and 
display a range of concordant to discordant 
orientations with respect to internal structure 
(e.g., bedding, foliation). Figure 11 displays 
the complete range of contact types and orien-
tations observed within the batholith. Contacts 
may be distinguished based on a range of cut-off 
angles between internal structures and the con-
tact, where a 90° cut-off between internal planar 
structure (e.g., bedding , foliation) is discordant 
and a 0° cut-off is concordant (Fig. 11F). Con-
tact-bedding cut-offs ranging from 0° to >50° 
occur along single, subplanar contacts (e.g., 
Fig. 11D). Sharp, highly discordant contacts are 
commonly found along kilometer-scale screens, 
but are also present at the edges of meter-scale 
bodies. Cuspate xenolith margins display centi-
meter- to meter-scale lobes of granodiorite that 
typically bow into the xenolith margin (e.g., 
Figs. 11D, 11E). Screens and xenoliths <100 m2 
tend to show internal ductile deformation, reac-
tivation, and boudinage in the plane of the mag-
matic foliation that occurs in the host igneous 
rock. Restoration of ductilely deformed xeno-
liths provides a glimpse of the initial xenolith-
magma geometry. Assuming two-dimensional 
plane strain, folded layers and the xenolith con-
tact-magma cut-offs may be restored (Fig. 11F). 
This analysis indicates that the xenolith margins 
may have originated as jagged and planar con-
tacts reminiscent of a dike contact.

Screens >0.5 km2 display a variety of features 
that bear on the nature of magma emplacement. 
Contacts are generally discordant, planar, and 
stepped. Annotated photomosaic images of two 
screens are shown in Figures 12 and 13. Figure 
12 illustrates a north-trending tabular screen 
(termed the “V” screen) that occurs in coarse-
crystalline granodiorite (see Fig. 2 for location). 
Here, a vertical, west-northwest–facing cliff 
displays a tight antiform-synform pair, with an 
amplitude >90 m and wavelength ~20 m, devel-
oped in layered calc-silicate rocks (Figs. 12A, 
12B). These folds are similar in morphology and 
orientation to those found in the southwestern 
aureole shown in Figure 8. The axial planes of 
the folds trend north-south. The screen is trun-
cated along its top (east-facing side) by a jag-
ged (1–3 m amplitude) intrusive contact, above 
which is an ~8-m-thick swarm of discoid-shaped 
mafi c magmatic enclaves (Figs. 12B–12D; see 
also Fig. 6B). Similarly, Figure 13 illustrates 
the geometry and nature of a calc-silicate screen 
(termed the “Pirate’s Galleon” screen) contained 

n = 551

A  Planar structures in host rocks 

and xenoliths/screens

B  Fold axes/lineations in host rocks and 

xenoliths/screens

Poles to foliations in host rocks
Poles to foliations in xenoliths/screens

n = 347

Fold axes/lineations in xenoliths/screens
Fold axes/lineations in host rocks

Figure 7. Equal-area, lower hemisphere stereonets displaying planar and linear data for the 
host rocks of the Andalshatten batholith. (A) Poles to metamorphic foliations in host rocks 
(red triangles) and xenoliths and/or screens (black triangles). Contours include all planar 
data. (B) Fold axes and lineations developed within calc-silicate host rocks along the western 
margin of the batholith (red open circles) and xenoliths and/or screens (black dots). Con-
tours in B refl ect maxima for host rock structures only, not xenoliths and/or screens (i.e., red 
open circles); 1% area contours, contour interval = 2.0%/1% area.
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within the diorite phase of the batholith. In map 
view, the Pirate’s Galleon screen is ~300 m wide 
and tapers to ~30 m wide to the north (Fig. 2). 
In these exposures, an ~300-m-long discordant 
base of an internally folded calc-silicate screen is 
preserved along a steep, south-facing cliff (Figs. 
13A, 13B). This relationship occurs along a west-
trending ridge and can be observed from both the 
southern (Fig. 13B) and northern directions (Fig. 
13C), providing a superb three-dimensional 
view of the base of a screen contained within 
the batholith. The base of the screen is intruded 
by diorite; upright, tight fold limbs are truncated 
along this contact. To the north, the same screen 
(Fig. 13C) is intruded by dikes near its base and 
calc-silicate xenoliths rotated within the host 
diorite while the diorite was partially molten. 
Based on the available exposure, it is not known 
whether such screens were attached to the host 
rocks in the third dimension. For example, the 
Pirate’s Galleon screen may form a downward-
projecting keel of metamorphic roof rock, akin 
to a stalactite in a cave.

DISCUSSION

The relevant observational, structural, and 
geochronologic data sets described herein are 
summarized in schematic form in Figure 14. 
We discuss these data sets in the context of 
the following: (1) constraints on the duration 
and nature of magma emplacement as batches; 
(2) screen and xenolith incorporation and defor-
mation during batholith assembly and the nature 
of the plutonic space problem; and (3) evidence 
for mobility of magma and incorporated host 
rock material within a paleo–magma chamber.

Duration and Sequence of Assembly Based 
on Field Data and Geochronology

The current data are consistent with batholith 
assembly via early emplacement of porphy-
ritic schlieren-banded to gneissic granodiorite, 
emplacement and sequential crystallization of 
porphyritic granodioritic magmas, and recharge 
by comagmatic dioritic magmas. Although zir-
con crystallization ages are not available for the 
schlieren-banded to gneissic granodiorite unit, 
these rocks are hypothesized to be early, but 
comagmatic with the main porphyritic grano-
diorite unit. Contacts between the porphyritic 
granodiorite unit and the schlieren-banded to 
gneissic granodiorite unit are sharp, implying 
that the porphyritic granodiorite is younger, and 
gradational, implying that the two were rheo-
logically similar during emplacement and broadly 
synmagmatic. Furthermore, published major 
element data sets displaying smooth variations 
across the different units from northeast to south-
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Figure 9. Field photographs of xenoliths and screens in the Andalshatten batholith. (A) North 
view of calc-silicate screens in granodiorite (gd) along western margin of intrusion. Red 
arrow points to contact shown in B. (B) Base of screen is discordant to sedimentary layering 
and dips moderately east; geologist on ridge for scale. (C) Migmatitic argillaceous calc-sili-
cate xenolith within granodiorite near western margin. Fish-shaped xenolith is surrounded 
by leucosome (red arrow). (D) Pelitic schist and gneiss xenoliths in various orientations in 
granodiorite of the central part of batholith. Note elongate microgranitoid enclave (white 
arrow). (E) Autoliths of hornblende granite (hgr) with angular margins contained within 
the megacrystic phase of the granodiorite. (F) Calc-silicate (cs) xenolith captured in swarm 
of microgranitoid enclaves (me) in megacrystic granodiorite.
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west (e.g., Nordgulen, 1993; Nordgulen et al., 
1993) are consistent with the interpretation that 
the schlieren-banded to gneissic granodiorite 
observed along the eastern margin is related to 
the main porphyritic phase of the Andal shatten 
batholith. Therefore, the gneissic portions of 
this unit are most likely early batches of the 
(mostly?) solidifi ed K-feldspar megacrystic por-
phyritic phase that were subsequently deformed 
during recharge of the growing batholith.

The new CA-TIMS ages indicate two distinct 
zircon crystallization ages and cooling intervals 
for the porphyritic granodioritic magmas that 
do not overlap in uncertainty. Crystallization 
of granodioritic magmas in the northwestern 
margin of the batholith occurred at 442.67 ± 
0.14 Ma, whereas crystallization of zircons in 
the central region of the batholith, east of the 
swarm of large screens of calc-silicate rocks, 
occurred at 441.53 ± 0.40 Ma (Fig. 14). Given 
the uncertainties in the ages, crystallization of 
the two samples may have been separated by 
~1 Ma. Detailed west-to-east mapping traverses 
did not identify internal contacts between these 
two chronologically distinct, but composition-
ally similar batches. However, the two samples 
are broadly separated by a number of kilometer-
scale, discontinuous screens of metamorphic 
rocks (Figs. 2 and 14). The distribution of these 
screens in the context of the ages and batholith 
assembly is discussed in the following.

The new titanite ages are interpreted to refl ect 
the closure temperature of titanite to Pb diffu-
sion (e.g., Mattinson, 1978; Heaman and Par-
rish, 1991; Mezger et al., 1991, 1993; Spear and 
Parrish, 1996; Scott and St. Onge, 1995; Pid-
geon et al., 1996; Frost et al., 2001), and thus 
provide preliminary constraints on the nature 
of cooling of the dated samples. The titanite 
dates of 441.30 ± 0.21 Ma (sample AND-12) 
and 436.1 ± 2.8 Ma (NAY-06–05) imply that 
the two granodioritic pulses of magma cooled 
through titanite closure (~650–700 °C, i.e., near 
the solidus) from margin to interior, and pos-
sibly at different rates (Fig. 15). We speculate 
that the variation in cooling rates refl ects faster 
cooling in the northern portion of the batholith 
(sample AND-12) where, because of the tri-
angular shape of the contact in map view, the 
surface area/volume ratio of the magma body 
is greater than the interior (sample NAY06–05; 
Fig. 14). However, additional geochronological 
studies should be conducted to defi ne more pre-
cisely the crystallization and cooling history of 
the batholith.

Emplacement of dioritic magmas occurred 
in at least two distinct events while the porphy-
ritic granodiorite was partially molten. Aligned 
swarms and conspicuous, dispersed microgran-
itoid enclaves indicate early dioritic input into 

the granodiorite followed by mingling and local 
mechanical mixing (e.g., Fig. 6). Subsequent 
injection of a voluminous batch of dioritic 
magmas into the central region of the batholith 
occurred while at least portions of the porphy-
ritic granodiorite were above the solidus, as indi-
cated by the presence of lobate-cuspate contacts 
and local pipe and fl ame structures of granodio-
rite that intruded overlying diorite (e.g., Fig. 6). 
It is plausible that the delayed titanite cooling 
in sample NAY06–05 (ca. 436.1 ± 2.8 Ma) may 
be the result of this heat addition in the central 
region of the batholith. However, the uncer-
tainties in the titanite age for this sample are 
rather large.

Screen and Xenolith Incorporation 
and Deformation

During assembly of the Andalshatten batho-
lith, large coherent screens of marble, perido-
tite, and calc-silicate masses were isolated 
and incorporated by magma intrusion. These 
screens and xenolith swarms represent frag-
ments of the Helge land Nappe Complex and 
preserve relict host rock stratigraphy or ghost 
stratigraphy within the batholith (e.g., Pitcher, 
1970). The largest screens (e.g., Figs. 12, 13, 
and 14) maintain lithologic continuity with 
the host rocks exposed along strike to the west 
and south, implying that these bodies were 
isolated relatively in situ by magma injection. 
The jagged and sharply discordant contacts of 
 kilometer-scale screens (e.g., Figs. 12 and 13) 
are most consistent with formation by brittle 
failure via diking. These screens generally 
appear internally unaffected by incorporation 
into the magma, displaying no evidence for 
emplacement-related ductile deformation (e.g., 
synmagmatic boudinage, refolding, attenua-
tion, bulbous contact relations). The hornblende 
biotite granite is only found cutting calc-silicate 
xenoliths and/or adjacent to the large screens; 
we speculate that this lithology may be the 
result of local anatexis of the more argillaceous 
horizons (e.g., Fig. 9C) within the calc-silicate 
screens and local migration of these leucocratic 
magmas as dikes into and along the calc-sili-
cate screens.

The large swarm of kilometer-scale calc-
silicate screens in the western region of the 
batholith defi nes an arcuate outcrop pattern that 
parallels the intrusive contact (Fig. 2). Individ-
ual screens have high axial ratios with the long 
axis subparallel to the intrusive contact. Internal 
planar structures within these screens mimic 
this arcuate trend over the outcrop area of the 
swarm. Together these observations are con-
sistent with rigid rotation of the largest screens 
into subparallelism with the host rock contact 

during the addition of porphyritic granodioritic 
and dioritic magmas and westward expansion 
of the entire batholith. Rotation of some of the 
screens may have been ~30°–45° counterclock-
wise (in map view) in the southern portions of 
the batholith. Magmatic fabric trends defi ne 
a similar arcuate orientation and may record 
emplacement-related, west-vergent fl attening 
with or without shear within the crystallizing 
intrusion (cf. Grocott et al., 1999; Cruden, 2006) 
(Fig. 16). If this interpretation is correct, then a 
signifi cant volume of the batholith was able to 
undergo viscous fl ow and deformation at condi-
tions above the solidus in order to translate and 
rotate the large screens yet still preserve mag-
matic foliations.

In contrast, screens and xenoliths <~500 m 
long display evidence for synmagmatic inter-

 n = 103

N

EW

B

A 

Magmatic lineations, n = 15

Poles to magmatic foliations, n = 234

N

Figure 10. Structural data for xenoliths and 
screens and fabrics within the Andalshatten 
batholith. (A) Rose diagram showing the ori-
entations of elongate xenoliths and screens 
within the Andal shatten pluton that have 
areas >20 m2. Xenoliths and screens have 
long axes that trend broadly north-south, 
with a population trending toward N5°W. 
(B) Lower hemisphere, equal-area stereonet 
displaying poles to magmatic foliations and 
magmatic lineations within the batholith.
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Figure 11. Images of contact relations and internal deformation of xenoliths and screens. (A) East margin and top 
of a tabular calc-silicate (cs) screen in a vertical cliff face (gd—granodiorite). Note discordant margin and stepped 
upper intrusive contact. White arrows point to contacts parallel to internal bedding. (B) Centimeter-scale inter-
fi ngering intrusive contact between calc-silicate xenolith and hornblende granite. (C) Rotated and/or translated 
calc-silicate xenolith subparallel to intrusive contact along western margin of batholith. Bedding (dashed white 
lines) within the calc-silicate rock is parallel to the long dimension of the image. Note elliptical microgranitoid 
enclave (black arrow). Coin in center of image is ~20 mm in diameter. (D) Attenuated, ductilely deformed calc-
silicate xenoliths within hornblende granite. Contact-bedding cut-off angles (see text) vary from 0° (black arrow) 
to >50° (yellow arrow). (E) Ductilely deformed calc-silicate “taffy screen” in granodiorite, deformed like a piece 
of stretched taffy (see Fig. 8 for location). Note discordant intrusive cut-off between granodiorite and bedding 
(yellow arrow) and defl ected bedding around protrusion of granodiorite into calc-silicate rock (red arrow; see 
Yoshinobu et al., 2009 for additional images). (F) Original and restored two-dimensional section (assuming plane 
strain) of a xenolith-granodiorite contact displaying initial jagged contact geometry that is subsequently ductilely 
deformed.
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nal deformation and diverse orientations with 
respect to the host rock reference frame. These 
smaller blocks commonly display internal struc-
tures that are discordant to the same structures 
in the adjacent host rocks and/or xenoliths. In 
some instances, translation and/or rotation 
of the xenolith restores the pre-emplacement 
host rock stratigraphy. However, where perva-
sive synmagmatic folding and/or boudinage or 
intermixing of xenoliths of differing rock type 
occurs (e.g., Fig. 9), host rock stratigraphy 
and/or structural continuity cannot be restored. 
Such synmagmatic strains and displacements of 

xenoliths are interpreted to indicate deformation 
of xenoliths while they were entrained in the 
magma (see also Yoshinobu et al., 2009).

Tectonic Model for the 
Andalshatten Batholith

We use the phrase batholith tectonics to defi ne 
the modes and nature of magma emplacement 
and assembly (i.e., building) of intrusions in 
the crust. A tectonic model for the Andalshatten 
batholith that invokes both multistage emplace-
ment of magma into a growing crystal-laden 

reservoir (but not completely solidifi ed?) as well 
as time-space variations in host rock rheology 
seems most consistent with the available data. 
Such a model should allow for some degree of 
mechanical and probably chemical interactions 
between sequentially crystallizing magmas 
above the solidus to explain the evidence for 
screen displacement and deformation within the 
voluminous granodiorite phase as well as both 
the concentration and dispersement of micro-
granitoid enclaves throughout the porphyritic 
granodiorite.

We envision a hybrid magmatic crack-seal 
cum metamorphic viscoelastic model of batho-
lith tectonics for the Andalshatten intrusion 
(Fig. 17). This model is based on the concepts 
of incremental emplacement of magma batches 
(e.g., Richey, 1927; Lagarde et al., 1990; Glazner 
et al., 2004; Bartley et al., 2008, 2012; Miller 
et al., 2011) but takes into account the abundant 
evidence for both brittle and ductile deformation 
in the host rocks and xenoliths (cf. Rubin, 1993; 
Miller and Paterson, 1999), as well as magma 
and xenolith and/or screen mobility in the evolv-
ing and growing intrusion. The model may be 
tested with additional high-precision CA-TIMS 
analyses coupled with trace element micro-
analysis of accessory phases, hornblende, and 
feldspars to assess the magnitude of in situ ver-
sus in transit and source-related chemical effects 
(e.g., Schoene et al., 2010, 2012).

Assembly of the Andalshatten batholith initi-
ated with the intrusion of north-trending tabu-
lar sheets of granodioritic and tonalitic magma 
into pelitic migmatites of the Upper Nappe (Fig. 
17A). During magma intrusion, kilometer-scale 
screens of calc-silicate gneiss, marble, and minor 
pelitic migmatite were stranded between suc-
cessive sheets and incorporated into the grow-
ing batholith. The earliest granodioritic magmas 
formed the northeastern apophasis (Figs. 4 and 
17A). Continued emplacement of porphyritic 
granodiorite to the west as kilometer-scale 
north-trending elongate batches occurred across 
the Sauren-Torghatten and Upper Nappe frame-
work, forming the eventual central and west-
ern regions of the batholith (Fig. 17A). Zircon 
in the northwesternmost body crystallized ca. 
442 Ma and titanite in the same sample cooled 
through its closure temperature to Pb loss ~1 Ma 
later. During or soon after zircon crystallization 
ca. 442 Ma, porphyritic granodioritic magmas 
were emplaced to the east of these magmas 
(Fig. 17B). These contemporaneous or younger 
magmas crystallized zircon ca. 441 Ma. Dis-
continuous screens of calc-silicate metamor-
phic rocks separated the two zones of magma 
accumulation but did not impede hypersolidus 
interaction between the two regions in the form 
of recharge of the porphyritic granodiorite by 

cs

B

cs

cs

microgranitoid enclave swarm deposited 

along structural top of screen (see Fig. 6 (B)).

DC

A

Fig. (C)

Fig. (D)

~ 300 meters

~ 90 m

cs

cs

cs

Perspective of Fig. 6 (B)

V screen
Fig. (B)

gd

gd

gd

Figure 12. The V screen (see Fig. 2 for location; see text for details). (A) Geological context 
of north-trending calc-silicate (cs) screen, ~500 m long and >100 m tall (gd—granodiorite). 
(B) Detailed photomosaic of upright, tight folds in the screen and the upper, jagged discor-
dant contact. Semitransparent magenta zone illustrates a microgranitoid enclave swarm 
(depicted in Fig. 6B). (C, D) Telephoto images of the jagged contact and overlying disc-
shaped microgranitoid enclaves (red arrows). Images were digitally colored enhanced to 
distinguish calc-silicate rocks and enclaves.
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dioritic magmas, mechanical mingling of the 
two (e.g., Fig. 6), and diachronous magmatic 
foliation formation. Westward expansion of 
the batholith by the input of additional grano-
dioritic magma into the central region continued 
and included voluminous dioritic magmas dur-
ing and/or soon after zircon crystallization ca. 
441 Ma, but prior to reaching the porphyritic 
granodiorite solidus. Calc-silicate lithologies 
and lesser amounts of calcareous conglomerate 
of the Sauren-Torghatten Nappe were the prin-
cipal rock types entrained during this stage of 
emplacement (Fig. 17C).

Recharge of the porphyritic granodiorite in 
the central region by intrusion of the diorite 
produced (1) the conspicuous microgranitoid 
enclave swarms aligned within the magmatic 
foliation and along the eastern (upper) contact of 
the V screen (e.g., Figs. 6B and 12), (2) nested 
mafi c-felsic sills in the structurally higher 
regions of exposure (Fig. 4D), and (3) additional 
heat and mass to stall cooling of the batholith. 
As the dioritic magmas were emplaced as sheets 
into the growing intrusion (e.g., Figs. 4C and 
17C), eastward tilting of the western portions 
of the intrusion occurred about a subhorizontal 
axis. This resulted in the steepening of contacts 

between mafi c and felsic intrusions (e.g., Fig. 
6A), magmatic foliations, and the overall east-
ern dip of the western batholith–host rock con-
tact. Continued upward and outward (i.e., to the 
west) emplacement of granodioritic and dioritic 
magmas contributed to this west-directed infl a-
tion of the batholith (Fig. 17C).

Multiple space-making processes were opera-
tive during the assembly of the Andal shatten 
batholith. The numerous mapped dikes of grano-
diorite (e.g., Fig. 8) along the western margin as 
well as the regional discordance of the batholith 
with respect to the north-trending nappes within 
the Helgeland Nappe Complex (e.g., Fig. 1) indi-
cate that the host rocks periodically deformed by 
brittle failure during magma emplacement. How-
ever, elongate screens and xenoliths, presumably 
formed by propagation of pressurized magmatic 
sheets and cracking of the host rocks during earlier 
episodes of magma emplacement, were involved 
in viscous deformation near the margins of the 
magma chamber as well as translation and/or 
rotation during subsequent magma emplacement 
and the turgid growth of the batholith. Depression 
of the fl oor of the batholith occurred during the 
infl ux of later magma pulses such as the diorite. 
The deformation mechanism that facilitated fl oor 

downdrop adjacent to the growing intrusion was 
likely viscous fl ow including high-temperature 
creep, as observed in the western contact aure-
ole (cf. Cruden and McCaffrey, 2001; Dumond 
et al., 2005). Roof exposures were eroded away 
and so it is not possible to place constraints on the 
complete three-dimensional displacement fi eld 
attending batholith assembly. However, we sug-
gest that mechanisms such as roof uplift as envi-
sioned for laccoliths are inconsequential at litho-
static loads appropriate for the middle crust (e.g., 
Cruden, 2006). Given the evidence for magma-
up, host rock–down displacement along both 
the vertical eastern margin and arcuate, steep to 
east-dipping western margin, we suggest that 
one vector of host rock displacement was down 
and outward, yielding a quasi-lopolith shape to 
the batholith in cross section (Figs. 3, 14, and 17; 
Fig. 2 in Grout, 1918).

Compared to other mapped intrusions of 
equivalent size in the Bindal Batholith (e.g., 
Gustavson, 1981) as well as other terranes 
(e.g., Bateman, 1992), the Andalshatten is rich 
in its spatial extent (8% of batholith area) and 
diversity of metamorphic screens and xeno-
liths. In the Cretaceous Sierra Nevada batho-
lith, California, Saleeby (1990) noted how the 
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Figure 13. The Pirate’s Galleon screen (see Fig. 2 for location). (A) Photomosaic of the south side of Stortinden ridge showing location of the 
“Pirate screen” (see text) (decorated with orange) within diorite. Diorite crops out as tabular to bulbous intrusions within the granodiorite 
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discordant base and xenoliths of calc-silicate in various orientations in the host diorite.
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in the central and eastern portions of the batholith maintain the colors of Figure 2. To highlight geometry and distribution of ghost stratig-
raphy, the calc-silicate host rocks of the Sauren-Torghatten Nappe and equivalent calc-silicate screens in the western part of the batholith 
are shown in dark green (as in Fig. 1).
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open rectangle is sample NAY06–05 (central 
portion of batholith, Fig. 2). Age uncertain-
ties are illustrated with bold lines. Zircon 
and titanite closure temperatures (T ) to Pb 
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respectively (Cherniak and Watson, 2001; 
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Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/9/3/667/3345882/667.pdf
by guest
on 23 April 2024



Anderson et al.

686 Geosphere, June 2013

metamorphic framework rocks that host 
the various plutons were preserved within and 
between plutons with zircon ages between ca. 
115 and 85 Ma. (Fig. 1 in Saleeby, 1990; cf. 
Fig. 7 in Dickinson, 2008). Such interpluton 
wall rock screens have been variously inter-
preted as forming by megastoping (e.g., Bartley 
and Glazner, 1998) and/or crustal-scale return 
fl ow (e.g., Tobisch et al., 1986; Saleeby, 1990). 
Regardless, the Sierran examples of interplu-
ton screens represent the intrusive boundaries 
between distinct, mappable igneous phases 
with diverse crystallization ages and petrologic 
histories. We hypothesize that the intrabatho-
lith screens within the Andalshatten intrusion 
may reflect a similar history of sequential 
magma emplacement and host rock displace-
ment, but over a signifi cantly shorter duration, 
i.e., the temporal scale of emplacement of all 
of the magma batches that eventually coalesced 
to form the Andalshatten batholith. As such, 
the broad trend of screens and xenolith swarms 
may grossly refl ect the discontinuously pre-
served boundaries of former elongate magma 
batches. Likewise, the width of preserved 
intrusive rock between screens represents the 
approximate maximum width of individual 
magma batches. It is plausi ble that even smaller 
magma batches may have coalesced to form 
the expansive regions of granodiorite between 
screens. However, no evidence of these smaller 
batches has been observed.

According to our interpretation, the screens 
within the western margin are arcuate, owing in 
part to their outward rotation during subsequent 
magma injection. Therefore, disruption of the 
batches and their ephemeral contacts may be 
due partly to continued emplacement of magma 
within the growing chamber. Given the negative 
buoyancy of calc-silicate and other metamor-
phic rock types in granodioritic magmas, the 
preservation of the large screens and xenoliths 
implies that the magmas of the Andalshatten 
batholith had suffi cient yield strength to sus-
pend the largest blocks. We hypothesize that the 
large screens are held fl oating in their position 
because of the increase in magma strength due 
to crystallization driven by cooling adjacent to 
the largest screens. Thus, it seems likely that 
the swath of calc-silicate screens in the western 
exposures of the batholith refl ects a disrupted 
paleo–contact zone between two batches of par-
tially molten granodioritic magma.

The fact that screens are discontinuous in out-
crop from the southern to northern contact and 
porphyritic granodiorite occurs on either side of 
the screens (e.g., Figs. 2 and 3) has two inter-
esting implications. First, some proportion of 
the preintrusive metamorphic rocks now occu-
pied by the batholith has been removed from 

the map plane; otherwise it should be possible 
to reconstruct the host rock tectonostratigraphy 
by removing the mapped intrusion and restoring 
the host rock tectonostratigraphy (e.g., Marko 
and Yoshinobu, 2011). Second, if our interpreta-
tion of the screens as both the incomplete rem-
nant boundaries of individual batches as well as 
rigid passive markers that record displacement 
in a magma is correct, then it is plausible that 
the boundaries that existed between adjacent 
batches were porous and allowed mechanical 
and chemical interactions to occur between 
batches. Therefore, the partially molten por-
tions of the Andalshatten batholith may have 

been aerially extensive, i.e., on the scale of 
the outcrop extent of the porphyritic granodio-
rite phase.

SUMMARY AND CONCLUSIONS

We interpret the Andalshatten batholith to 
have been assembled via multistage emplace-
ment of tonalite, granodiorite, and diorite 
magma batches that intruded across the north-
trending Helgeland Nappe Complex in the 
middle crust of an Ordovician arc. At present, 
the distinction of magma batches can only be 
made based on the mapped lithologic and tex-
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tural variations described herein. Based on the 
uncertainties in zircon crystallization from the 
CA-TIMS analyses, the minimum duration of 
zircon crystallization is ~1 Ma for the porphy-
ritic granodiorite unit exposed in the northwest 
and central regions of the batholith. Field rela-
tions and published major element and isotopic 
data support the notion that all of the major 
compositional units within the 322 km2 batho-
lith were comagmatic. However, it is unknown 
whether the entire mapped batholith was above 
the solidus for some duration of crystallization 
and magma emplacement at the same time. 
Additional high-precision U-Pb ages obtained 
for samples from the eastern regions of the 
batholith coupled with trace element and iso-
topic analyses of accessory phases are required 
to evaluate the absolute duration of zircon crys-
tallization in the entire batholith and the extent 
or existence of in situ differentiation across vari-
ous lithologies.

We envision hypersolidus regions within 
the growing magma chamber to be spatially 
and temporally transient, refl ecting the local 
rate and duration of recharge into the reservoir. 
Periodic or continuous input of new magma in 
different regions of the magma chamber added 
heat and mass, allowing ambient near-solidus 
or hypersolidus temperatures to be maintained. 
We suggest that the partially molten regions 
of the Andalshatten magma chamber were at 
least as large as, if not larger than, the width of 
the granodiorite that currently crops out between 
the western contact and the extensive swarm of 
calc-silicate screens.

Local space for batholith assembly was 
accommodated by brittle deformation (i.e., dik-
ing, stoping) and viscous fl ow of host rocks 
in a dynamothermal contact aureole. Viscous 
fl ow was facilitated by reactivation of existing 
structures, penetrative foliation development, 
and lateral and downward-directed displace-
ment of host rocks along the western mar-
gin during batholith expansion and growth. 
 Kilometer-scale screens were incorporated dur-
ing emplacement of magma batches and form a 
ghost stratigraphy that preserves the gross host 
rock framework prior to batholith emplacement. 
These screens were internally rigid but rotated 
and translated into an arcuate orientation dur-
ing subsequent magma emplacement into the 
turgid batholith. In contrast, subkilometer xeno-
liths were deformed viscously at hypersolidus 
conditions during subsequent growth of the 
turgid batholith. The scale dependence of syn-
magmatic deformation of screens and xenoliths 
is likely the result of smaller blocks becoming 
thermally equilibrated with the surrounding 
magma and thus deforming by ductile mecha-
nisms. Given the lack of penetrative solid-state 

deformation and the widespread presence of 
magmatic foliations, it is plausible that a magma 
chamber of signifi cant volume existed and was 
capable of undergoing mechanical and chemi-
cal changes at hypersolidus conditions during 
batholith assembly.
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