
Universität Potsdam

Institut für Physik und Astronomie

Multipolar gravitational waveforms for
spinning binary black holes and their impact

on source characterization

Dissertation

zur Erlangung des wissenschaftlichen Grades
doctor rerum naturalium

(Dr. rer. nat.)

Kandidat: Roberto Cotesta
Gutachterin: Prof. Dr. Alessandra Buonanno



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published online on the 
Publication Server of the University of Potsdam: 
https://doi.org/10.25932/publishup-50823 
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-508236 



Acknowledgements

First and foremost, I would like to thank my supervisor, Alessandra Buonanno,
for her guidance and patience during the course of my PhD. Thanks to her
encouragement and her attention to details I have been able to produce my
highest-quality work. This thesis would not have been possible without her
support.
I would also like to thank my collaborators: Stanislav Babak, Alejandro

Bohé, Alessandra Buonanno, Juan Calderón Bustillo, Katerina Chatziioannou,
Sudarshan Ghonge, Ian Harry, Ian Hinder, Jacob Lange, Lionel London,
Sylvain Marsat, Ken K.-Y. Ng, Frank Ohme, Serguei Ossokine, Harald
Pfeiffer, Michael Pürrer, Andrea Taracchini and Salvatore Vitale. I would
also like to thank the members of the LIGO Scientific and Virgo collaboration
for the interesting discussions during meetings and teleconferences.
A special thanks goes to the wondeful members of the Astrophysical and

Cosmological Relativity division of the Albert Einstein Institute (AEI) during
my PhD studies. They are too many for me to list them here. Although
I have learned a lot from each of them, my gratitude goes particularly to
Alejandro Bohé, Sylvain Marsat, Serguei Ossokine, Michael Pürrer and Andrea
Taracchini for helping me to understand the exciting field of gravitational-
waveform modeling; and Ian Harry, Jonathan Gair, Serguei Ossokine, Harald
Pfeiffer, Michael Pürrer and Vivien Raymond for helping me to understand
the details of the data-analysis techniques used to analyze the data from
LIGO and Virgo detectors.

I would like to thank my friend at the AEI: Andrea, Cristián, Hugo, Lorenzo
C., Lorenzo S., Luca, Matteo, Mohammed, Nils, Niko, Noah, Ollie, Riccardo,
Serena, Stefano and Valentino. My PhD would have been much less fun
without them. A special thanks also to Darya for her invaluable help.

I am also grateful to my friends: Assunta, Ciro, Danio, Emanuele, Fabrizio,
Gianmarco, Giuseppe, Graziano, Leonardo, Lorenzo, Marco, Matteo, Mirko,
Oliviero, Raffaele, Roberto, Sommo and Stefano. My life would have been
much less fun without them. Among my friends, a special thanks goes to
Lorenzo C., Ollie and Marco who spend their time reading this thesis.
Last but not least, I would like to thank my parents, my family and my

partner for all their unconditional support during my PhD, and in general
during my entire life.

This thesis is dedicated to my grandmother Erasmina and my uncle Pietro
who passed away during my PhD.



Abstract

In the last five years, gravitational-wave astronomy has gone from a purerly
theoretical field into a thriving experimental science. Several gravitational-
wave signals, emitted by stellar-mass binary black holes and binary neutron
stars, have been detected, and many more are expected in the future as
consequence of the planned upgrades in the gravitational-wave detectors. The
observation of the gravitational-wave signals from these systems, and the
characterization of their sources, heavily relies on the precise models for the
emitted gravitational waveforms. To take full advantage of the increased
detector sensitivity, it is then necessary to also improve the accuracy of the
gravitational-waveform models.
In this work, I present an updated version of the waveform models for

spinning binary black holes within the effective-one-body formalism. This
formalism is based on the notion that the solution to the relativistic two-
body problem varies smoothly with the mass ratio of the binary system,
from the equal-mass regime to the test-particle limit. For this reason, it
provides an elegant method to combine, under a unique framework, the
solution to the relativistic two-body problem in different regimes. The main
two regimes that are combined under the effective-one-body formalism are
the slow-motion, weak field limit (accessible through the post-Newtonian
theory), and the extreme mass-ratio regime (described using the black-hole-
perturbation theory). This formalism is nevertheless flexible enough to
integrate information about the solution to the relativistic two-body problem
obtained using other techniques, such as numerical relativity.

The novelty of the waveform models presented in this work is the inclusion
of beyond-quadupolar terms in the waveforms emitted by spinning binary
black holes. In fact, while the time variation of the source quadupole moment
is the leading contribution to the waveforms emitted by binary black holes
observable by LIGO and Virgo detectors, beyond-quadupolar terms can be
important for binary systems with asymmetric masses, large total mass, or
observed with large inclination angle with respect to the orbital angular
momentum of the binary. For this purpose, I combine the approximate
analytic expressions of these beyond-quadupolar terms, with their calculations
from numerical relativity, to develop an accurate waveform model including
inspiral, merger and ringdown for spinning binary black holes. I first construct
this model in the simplified case of black holes with spins aligned with the
orbital angular momentum of the binary, then I extend it to the case of
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generic spin orientations. Finally, I test the accuracy of both these models
against a large number of waveforms obtained from numerical relativity. The
waveform models I present in this work are the state of the art for spinning
binary black holes, without restrictions in the allowed values for the masses
and the spins of the system.
The measurement of the source properties of a binary system emitting

gravitational waves requires to compute O(107 − 109) different waveforms.
Since the waveform models mentioned before can require O(1 − 10)s to
generate a single waveform, they can be difficult to use in data-analysis
studies given the increasing number of sources observed by the LIGO and
Virgo detectors. To overcome this obstacle, I use the reduced-order-modeling
technique to develop a faster version of the waveform model for black holes
with spins aligned to the orbital angular momentum of the binary. This
version of the model is as accurate as the original and reduces the time for
evaluating a waveform by two orders of magnitude.

The waveform models developed in this thesis have been used by the LIGO
and Virgo collaborations in the inference of the source parameters of the
gravitational-wave signals detected during the second observing run (O2),
and first half of the third observing run (O3a) of LIGO and Virgo detectors.
Here, I present a study on the source properties of the signals GW170729
and GW190412, for which I have been directly involved in the analysis. In
addition, these models have been used by the LIGO and Virgo collaborations
to perform tests on General Relativity employing the gravitational-wave
signals detected during O3a, and to analyze the population of the observed
binary black holes.
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1. Introduction

1.1. Introduction to general relativity

General relativity (GR) was proposed by Albert Einstein in two seminal
papers [7,8] as an attempt to overcome two fundamental issues in Newtonian
gravity. The first problem dates back to the 19th century, when Urbain Le
Verrier found a discrepancy between the observed motion of Mercury and
the Newtonian prediction [9]. The second problem is theoretical, and arose
when Einstein tried to incorporate Newton’s theory of gravitation into the
framework of special relativity. In fact, Newton’s theory is inconsistent with
special relativity as it implies the instantaneous influence of one body on
another. Both these problems are solved by GR. From the experimental side,
the equations of motion for Mercury’s orbit include correction terms, with
respect to the Newtonian equations, which resolve the discrepancy with the
observations. In addition to this, other GR predictions have been confirmed
by multiple experiments [10] over the years. From the theoretical perspective,
GR is a local theory, hence action at a distance is not possible.
In GR, spacetime is not a static and absolute entity, as in the case of

the Newtonian theory, but rather deformed by the presence of matter and
energy. In this framework, gravity is not considered as a force between two
massive objects, but as spacetime curvature. The relation between mass-
energy content in a system, and resulting spacetime curvature, is given by
Einstein’s field equations

Rµν −
1
2gµνR = 8πG

c4 Tµν . (1.1)

The quantities Rµν and R are the Ricci tensor and scalar respectively; they are
functions of the metric tensor gµν , which describes spacetime geometry. Tµν
is the energy-momentum tensor, which accounts for the mass-energy content
in a system. A solution to these equations is a metric tensor gµν , describing
a spacetime geometry, whose curvature depends on the mass-energy content
of the system.

The equations of motion of a point particle in a generic spacetime gµν can
be found using the equivalence principle, one of the foundational ideas in
GR. From the equivalence principle, there always exists a local inertial frame,
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1. Introduction

where the equations of motion of freely falling bodies take the same form
they would take in absence of gravity. Mathematically, this translates into
the equation

d2x̃µ

dτ 2 = 0, (1.2)

where x̃µ(τ) are the coordinates of a point particle in the locally inertial
frame and τ is an affine parameter of the worldline. The metric tensor in this
frame is locally flat, namely gµν ≈ ηµν = diag(−1, 1, 1, 1) in the spacetime
region close to the origin of the frame. Starting from this local inertial frame,
one can obtain the equations of motion in any generic frame xν = xν(x̃ν),
by applying the coordinate transformation to Eq. (1.2). The result is the
well-known geodesic equation

d2xα

dτ 2 + Γαµν
dxµ

dτ

dxν

dτ
= 0, (1.3)

which is the general relavitistic generalization of the Newtonian law of gravi-
tation. The quantities Γαµν are called affine connections: they depend on the
derivatives of gµν in the new coordinates, and carry the gravitational effects
(as well as other inertial forces).

General relativity predicts a plethora of phenomena that are absent in
Newtonian theory. I will now introduce two of them that are relevant for this
thesis: black holes (BHs) and gravitational waves (GWs).
The first exact and non-trivial solution to Einstein’s field equations was

found by Karl Schwarzschild [11,12], just one year after the publication of
Einstein’s first article on GR. This solution describes the gravitational field
outside a spherically-symmetric non-rotating body. An interesting property
of this solution appears when the radius of the body is smaller than a
characteristic length called Schwarzschild radius Rs = 2GM/c2, where M
is the mass of the body. In this case the Schwarzschild solution features
an event horizon, which is the defining property of a BH, the so-called
Schwarzschild BH. The event horizon is a hypersurface that divides two
regions of the spacetime: the interior and the exterior of the BH. The
gravity is so strong in the interior that no particles nor radiation can escape
from it. Generalizations to the Schwarzschild BH were found by: Hans
Reissner and Gunnar Nordström [13, 14] in the case of a non-rotating BH
with an electric charge; Roy Kerr in the case of a rotating BH [15] (Kerr
BH); and finally by Ezra Newman in the case of an electrically-charged
rotating BH [16]. Theoretical arguments, usually referred to as “no-hair
conjecture” [17–19], suggest that isolated BHs are very simple objects that
can be completely characterized by their mass, angular momentum and
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1.1. Introduction to general relativity

electric charge. This is in stark contrast to regular stars, for which many
more properties need to be given to characterize them, even approximately.
BHs are also very compact objects, the ratio between their mass M and their
radius R ≈ Rs is M/Rs = c2/(2G) ≈ 106M�/R�. There is observational
evidence for two different classes of astrophysical BHs depending on their
mass: supermassive [20–23] and stellar-mass BHs [24–36]. Supermassive BHs
are approximately in the range 105 .M . 109M�. Their formation remains
an open question, but the most accredited theory suggests that they grow
by accretion and mergers with other BHs, starting from a “seed” BH with
lower mass (see Ref. [37] for a review on the subject). Stellar-mass BHs have
masses approximately in the range 1 .M . 100M�, and are thought to form
as a result of the gravitational collapse of a star (see Refs. [38–40] for more
details). Some theories also predict the existence of a class of BHs that is not
a product of stellar evolution: the so-called primordial BHs. They are formed
as a result of fluctuations or phase transitions in the early universe (see
Ref. [41–44]). The expected mass spectrum for this class of BHs is broader
than the other two, but no observations have so far confirmed their existence.
For the work of this thesis, I focus on stellar-mass BHs, as they are sources
for ground-based GW detectors. Observations indicate that stellar-mass BHs
have non-negligible angular momentum, while there are strong theoretical
arguments suggesting that they have negligible electric charge [45,46]. For
this reason, in the rest of the thesis I will consider BHs as neutral in charge.

The second GR prediction that is widely used in this thesis are GWs. They
are perturbations of the gravitational field that propagate as waves far from
the source, and carry both energy and momentum. They were predicted by
Einstein [47,48] one year after the publication of GR. The first evidence for
the existence of GWs was obtained by Russel Hulse and Joseph Taylor, by
measuring the variation in the time of arrival of radio pulses from binary
pulsars [49]. This variation is consistent with that predicted by GR when
the orbit of the system shrinks as a consequence of the energy and angular
momentum lost by the emission of GWs. The existence of GWs has been
recently confirmed by the LIGO Scientific Collaboration [27], which, using
laser-interferometry techniques, was able to measure the GW signal passing
through Earth emitted by a binary black-hole merger (see Sec. 1.2.2 for more
details on this topic).
The equations for the generation and propagation of GWs can be pertur-

batively derived by linearizing the Einstein’s field equations (1.1) around the
flat metric ηµν ,1 using the ansatz gµν = ηµν + hµν + O(h2) with |hµν | � 1.

1Linearization about a generic metric tensor is also possible but it requires a more careful

3



1. Introduction

When written as a function of h̄µν ≡ hµν − 1
2ηµνη

αβhαβ, and using the Lorenz
gauge (∂µ h̄µν = 0), the linearized Einstein equations are

�h̄µν = −16πG
c2 Tµν +O(h̄2). (1.4)

The � symbol in the equation above is the d’Alambertian operator in flat
spacetime, and Tµν is the stress-energy tensor associated with the source of
GWs. The 10 degrees of freedom of the symmetric tensor hµν are reduced
to 6 in h̄µν , by imposing the 4 conditions defining the Lorenz gauge. By
computing the coordinate divergence of Eqs. (1.4), and using the Lorenz
gauge conditions, it is straightforward to derive the equations

∂µTµν = 0 +O(h̄2), (1.5)

namely the conservation of the energy-momentum tensor in the linearized
theory.
In vacuum (Tµν = 0), the Lorenz gauge conditions do not fix the gauge

completely. In fact, Eq. (1.4) and the Lorenz gauge conditions are invariant
under the coordinate transformation x′µ = xµ + ζµ(x) with �ζµ = 0. One
can use this additional freedom to impose other 4 conditions on hµν , and
reduce the number of degrees of freedom to 2. A very common choice for
these 4 conditions is hµ0 = 0 and hii = 0 (i = 0, 1, 2) that, together with
the 4 conditions of the Lorenz gauge, define the transverse-traceless (or TT)
gauge. The metric tensor pertubation in the TT-gauge hTT

ij can be computed
directly from hµν by using the projection operator Λij,kl(N̂) (see Eq. (1.36)
in Ref. [50] for its definition) where N̂ = x/r is the direction of propagation
of the GW. For example, the metric tensor in the TT-gauge associated with
a GW propagating in the z direction is

hTT
ij = Λkl

ij (N̂ = ẑ)hkl = Λkl
ij (N̂ = ẑ)h̄kl =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (1.6)

where h+ and h× are the two physical degrees of freedom or GW polarizations,
usually referred to as plus and cross polarizations respectively. The power
radiated as consequence of the GW emission can be easily computed in the

treatment (see sections 1.4.1 and 1.4.2 in Ref. [50]). For simplicity here I use the flat
metric as background.
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1.1. Introduction to general relativity

TT-gauge as (see Sec.1.4.3 in Ref. [50] for the details on the calculation)
dEGW

dt
= D2

Lc
3

32πG

∫
dΩ

〈∑
i,j

ḣTT
ij ḣ

TT
ij

〉
, (1.7)

where DL is the luminosity distance between source and the observer, the
integral is performed over the solid angle, and the average 〈·〉 is computed
over several characteristic periods of the GW.
Using the method of Green’s functions, one can formally write a solution

to Eq. (1.4) as:

h̄µν(t,x) = 4G
c4

∫
d3x′

1
|x− x′|

Tµν

(
t− |x− x′|

c
,x′

)
+O(G2). (1.8)

When the observer of the GW signal is at a distance DL ≡ |x| � d, where
d is the typical size of the GW source, the term |x− x′| can be expanded
as |x − x′| = DL − x′ · n̂ + O(d2/DL). At leading order in d/DL the
energy-momentum tensor is then

Tµν

(
t− DL

c
+ x′ · n̂

c
,x′

)
≈ Tµν

(
t− DL

c
,x′

)
+ x′ · n̂

c
∂tTµν

(
t− DL

c
,x′

)
+

+
(
x′ · n̂
c

)2

∂2
t Tµν

(
t− DL

c
,x′

)
+ ... (1.9)

where each time derivative of Tµν carries a factor v/d, with v being the typical
source velocity. The energy-momentum tensor is now a series in v/c. At
leading order in d/DL and v/c, and when using the TT-gauge, Eq. (1.8) is
then

hij
TT(t, r) = 4G

c4DL
Λkl
ij (n̂)

[∫
d3x′Tkl

(
t− DL

c
,x′

)
+O

(
v

c

)3
]

+O(G2)

(1.10)

= 2G
c4DL

Λkl
ij (n̂)

[
1
c2
d2

dt2

∫
d3x′T00

(
t− DL

c
,x′

)
x′kx

′
l +O

(
v

c

)3
]

+O(G2)

(1.11)

= 2G
c4DL

Λkl
ij (n̂)

[
d2

dt2
Qkl

(
t− DL

c
,x′

)
+O

(
v

c

)3
]

+O(G2), (1.12)

where Eq. (1.11) is obtained integrating by parts Eq. (1.10) two times, and
employing the identity ∂µT µν = 0. The quantity Qkl, used in Eq. (1.12), is
the quadrupole moment of the source, defined as

Qkl =
∫
d3x′

T00

c2 x
′
kx
′
l. (1.13)
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1. Introduction

For this reason, Eq (1.12) is called quadrupole formula.
Since Eq. (1.12) contains a second time-derivative of the quadupole moment,

one should not expect a GW emission from objects for which the quadupole
moment is constant over time, as for example spherical or axisymmetric
stationary distributions of matter. This consideration already allows one to
exclude isolated stars as source of GWs, as they are approximately spherically
symmetric2. On the other hand, the quadupole moment of binary systems is
not constant, therefore they are the natural candidate as GW source.
It is instructive to use the dimensional analysis in Eq. (1.12) to estimate

the expected GW amplitude as a function of the parameters of the binary
system. A binary system with total mass M , and typical binary separation
and velocity respectively d and v, has a quadupole moment Qµν ∝ Md2.
Considering that every time derivative gives a factor v/d, with v2 ∝ GM/d,
one can derive that dimensionally Eq. (1.12) reads∣∣∣hTT

ij

∣∣∣ ∝ G2

c4
1
DL

M2

d
=
(
GM

c2DL

)(
GM

c2d

)
. (1.14)

Since the GW amplitude is suppressed by the factor G2/c4 ≈ 10−12(R�/M�)2,
the only hope to detect GWs is by using compact objects, i.e. systems with
large total mass and small radius, to be able to reach separations d of the
order of GM/c2. As discussed before, BHs are extremely compact objects,
therefore binary black-hole (BBH) systems are perfect candidates for detecting
GWs. For a BBH system with masses ∼ 10M� located in the Virgo cluster,
(GM/c2DL) ∼ 10−20. Since, for BBHs, (GM/c2d) can reach values close to 1,
also |hTT

ij | ∼ 10−20.
Models for the GW signal emitted by BBH systems are crucial for their

detection and the source characterization. The main goals of the work
summarized in this thesis are (i) improving these models by including the
effect on the waveforms of higher-order corrections to the quadupole formula
and, (ii) testing the consequences of these improvements on the measurement
of BBHs properties.
In the next section of this chapter, I will outline the anatomy of the

gravitational waveforms emitted by BBH systems and summarize the methods
2Real stars are not exactly spherically symmetric, therefore they are expected to emit
GWs with a magnitude proportional to their deformation [51]. Since the latter is
expected to be small (see Ref. [52] for a review on the mechanism originating the
deformation), the GW emission from these systems is difficult to detect. However, there
are good chances to observe such GW signals in the future, because the sensitivity of
the experiments increases with the observation time, and it will increase even more
with future ground-based GW detectors, like Einstein Telescope [53] and Cosmic
Explorer [54].
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1.2. Binary black-holes as sources of gravitational waves

used for their detection and characterization. Finally, in the remaining two
sections, I will give a comprehensive introduction to the work discussed in
this thesis.

1.2. Binary black-holes as sources of gravitational waves

Binary systems composed of two stellar-mass BHs are the main sources of
GWs for ground-based GW detectors, such as LIGO [55] and Virgo [56].
There are two canonical channels typically considered for the formation of
these systems: isolated binary evolution [57] and dynamical formation [58]. In
the first case, the progenitor of the BBH system is a binary system composed
of two massive stars that collapse into BHs during the final stage of their
lifetime. In the second formation scenario, the BBH mergers originate from
the dynamical interactions in globular clusters or nuclear star clusters.

In Sec. 1.2.1, I describe the GW signal emitted by BBH systems and discuss
the main techniques used for its computation. In Sec. 1.2.2, I summarize the
experimental methods and data analysis approaches used for the detection of
these GW signals. Finally, in Sec. 1.2.3, I introduce the methods adopted to
measure the parameters of the BBH system from the GW signal.

1.2.1. Anatomy of the gravitational waveforms

The coalescence of a BBH system is conventionally divided into three different
regimes: inspiral, merger and ringdown.

1.2.1.1. Inspiral

The inspiral begins with the two BHs well separated. Here, I outline their
motion and the emitted GWs in this regime. While in principle the two BHs
could follow a generic elliptic orbit, it is common to approximate their motion
with a quasi-circular trajectory. This approximation is motivated by the fact
that ground-based detectors are currently only able to observe the latest
stage of the inspiral. This is when the orbital eccentricity has been reduced
as a consequence of the GW emission during the earlier inspiral phase (see
Sec.4.1.3 in Ref. [50] for the explicit calculation of this effect)3. For this
reason, throughout this thesis, I will restrict my focus on BBH systems in
quasi-circular orbits.

3Within the dynamical formation scenario it is possible that 5− 10% of the BBH systems
have non-negligible eccentricity even at the frequencies for which the GW signal is
observable by ground-base detectors [59,60].

7



1. Introduction

I begin by discussing systems in circular orbits, which serve as a baseline for
the generalization to the case of interest of quasi-circular orbits. To describe
the motion of the two BHs with masses m1 and m2 and relative distance
and velocity respectively d and v, I use the center of mass frame that I
show in Fig. 1.1. This is an inertial frame, whose basis êI

(3) is aligned with
L̂N ≡ LN/|LN|, the direction of the Newtonian orbital angular momentum
LN ≡ µd×v, where µ ≡ m1m2/(m1+m2) is the reduced mass. The basis êI

(1)

of this frame is conventionally defined as d̂(t = tini) ≡ d(t = tini)/|d(t = tini)|,
the direction of the separation between the two BHs at a conventionally
chosen initial time tini. The frame is completed by the basis êI

(2) = êI
(3)× êI

(1).
In this frame, N̂ is the direction of an observer, defined by the angles ι and
ϕ0. Under the assumption of circular orbits, and in the frame defined above,
the equations of motion of the BBH system at leading (Newtonian) order are

x1 = m2 d

M
{cos(ωorbt), sin(ωorbt), 0} , x2 = −m1

m2
x1, (1.15)

where M = m1 +m2, ωorb =
√
GM/d3 and d = |d|.

At leading order, the GW signal emitted by the binary during the inspiral
can be calculated by inserting in Eq. (1.12) the quadrupole moment of the
binary, computed using Eq. (1.13)4. The result is

h+(t) = 4
DL

(
GM
c2

)5/3 (πfGW

c

)2/3 1 + (L̂N · N̂ )2

2 cos (2πtretfGW + 2ϕ0 + Φc
GW)

(1.16)

h×(t) = 4
DL

(
GM
c2

)5/3 (πfGW

c

)2/3

L̂N · N̂ sin (2πtretfGW + 2ϕ0 + Φc
GW)

(1.17)

whereM ≡ (m1m2)3/5/(m1 + m2)1/5 is the chirp mass, DL the luminosity
distance of the source from the observer, tret ≡ (t−DL/c) the retarded time
and Φc

GW an integration constant. The scalar product L̂N · N̂ coincides with
cos ι. Under the approximations discussed before, the frequency of the GW

4The conservation of the energy-momentum tensor in Eq. (1.5), used to derive Eq. (1.12),
implies that in the linearized theory self-gravitating sources of GWs move following
geodesics in a flat spacetime, i.e. straight lines. To generalize Eq. (1.12) to self-
gravitating systems moving in Newtonian orbits, one should include, in the derivation
of this equation, the terms O(ĥ2) ∝ O(G2) in Eq. (1.5). These terms give corrections
at higher orders in G in the waveform, compared to its leading order expression which
I am considering here. See Sec. 4.2 in Ref. [61] for more details.
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1.2. Binary black-holes as sources of gravitational waves

̂eI(3) = L̂N

N̂

ι

φ0
m1

m2

̂eI(2) = ̂eI(3) × ̂eI(1)

̂eI(1) = ̂d(tini)
Figure 1.1.: The inertial frame, defined by the directions of the Newtonian
orbital angular momentum L̂N and separation d̂(tini). In this frame, the
observer is in the direction N̂ , defined by the angles ι and ϕ0.

signal fGW ≡ ωGW/2π is fGW = 2forb, with forb ≡ ωorb/2π being the orbital
frequency. The GW signal predicted by Eqs. (1.16) and (1.17) implicitly
assumes that the binary remains at a fixed separation d. This is not the
case, since some of the energy of the binary is lost through the emission
of GWs. Since the energy of the binary, at leading Newtonian order, is
E = −Gm1m2/d, and d3 = GM/ω2

orb, a lost of energy induces the binary
to shrink and the orbital frequency to increase. As a consequence, the GW
frequency increases too. Its variation can be computed by inserting the
expressions for h+ and h× in Eq. (1.7), to obtain the radiated power in GWs,
then equating the latter with −dE/dt. The result is

ḟGW = 96
5 π

8/3
(
GM
c3

)5/3
f

11/3
GW , (1.18)
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1. Introduction

which can be integrated to obtain the GW frequency time evolution

fGW(t) = 1
π

( 5
256

1
tc − t

)3/8 (GM
c3

)−5/8
, (1.19)

with tc being the coalescence time. By computing the time derivative of the
orbital energy and using Eq. (1.18), one can also find the expression for the
relative radial velocity of the two BHs

ḋ = −2
3(ωorbd) ω̇orb

ω2
orb
, (1.20)

with ω̇orb = ω̇GW/2 = πḟGW.
Since |h+,×| ∝ f

2/3
GW, the GW emission will increase as a consequence of the

growing GW frequency, inducing an even larger loss of energy. This process
over a long period of time leads to the coalescence of the system, if one
can assume that the binary is on a circular orbit during every step of this
process, and therefore Eq. (1.15) holds. This assumption, also called adiabatic
approximation, is only true if the tangential velocity ωorbd of the BHs is much
larger than their radial velocity ḋ. From Eq. (1.20), one can observe that the
condition above is fulfilled as long as ω̇orb/ω

2
orb ∼ O(v5/c5)� 1.

Under this approximation, the motion of the binary system can be described
as a sequence of quasi-circular orbits, whose equations of motion are

x1 = m2 d(t)
M

{cos(Φorb(t)), sin(Φorb(t)), 0} , x2 = −m1

m2
x1, (1.21)

where

Φorb(t) =
∫ t

tc
dt′ωorb(t′) = π

∫ t

tc
dt′fgw(t′) = −

(5GM
c3

)−5/8
(tc−t)5/8+Φorb(tc),

(1.22)
with Φorb(tc) being the coalescence phase. Similarly, the explicit expression
of d(t) can be computed by integrating Eq. (1.20).
The GW signal from this system is obtained, as before, by inserting the

quadrupole moment of the binary in Eq. (1.12). The result of this calculation
at leading order in v/c and G is

h+(t) = 4
DL

(
GM
c2

)5/3 [ 5
c(tc − t)

]1/4 1 + (LN · N̂ )2

2 cos (ΦGW(t) + 2ϕ0)

(1.23)

h×(t) = 4
DL

(
GM
c2

)5/3 [ 5
c(tc − t)

]1/4

LN · N̂ sin (ΦGW(t) + 2ϕ0) , (1.24)
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1.2. Binary black-holes as sources of gravitational waves

where I redefined the coalescence time as tc → tc +DL/c to incorporate the
delay due to the propagation of the wave from the source to the observer.
The phase of the GW signal, at this order in G and v/c, is simply ΦGW(t) =
2Φorb(t), and its instantaneous frequency is fGW(t) = 2forb(t), as before. It is
important to highlight that, at leading order in G and v/c, the phase ΦGW(t)5
depends on the parameters of the BBH system only through the chirp mass
M.
A more accurate description of the GW signal can be obtained perturba-

tively solving Einstein’s equations (1.1) for the binary system at higher orders
in the expansion parameters G and v/c. In the case of a binary system, and
in general for any self-gravitating system, these two expansion parameters
coincide, by virtue of the virial theorem. For this reason, one can define
a unique expansion parameter ε ∼ (GM/c3d)1/2 ∼ v/c. The GW signal,
and the two-body dynamics obtained with this procedure are a perturbative
series in ε, commonly referred to as post-Newtonian (PN) expansions. In
the following, I discuss some properties of the PN expansion of the GW
signal that are relevant for this thesis. The interested reader can find more
informations about the PN calculations in Ref. [62] and in Sec. 5 of Ref. [50].

The first PN correction to the GW phase is proportional to ε2 relatively to
the leading-order term (also referred to as 1PN6 correction). This new term
depends on the parameters of the BBH system through the symmetric mass
ratio ν ≡ m1m2/(m1 +m2)2 [63]. Starting from the term proportional to ε3
relatively to the leading-order term, the phase of the GW signal also depends
on the spins of the two BHs, Si ≡ (Gm2

i /c
2)χi, with |χi| < 1 for Kerr BHs.

In particular, the 1.5PN correction to the GW phase depends on Si ·L [64],
namely the projection of the spins along the orbital angular momentum of
the binary L. Because of this term, and its sign, the coalescence of BBH
systems with spins aligned with L has a longer duration compared to systems
with spins of the same magnitude but anti-aligned with L, or in another
generic direction. In fact, when the spins are aligned with L, the total
angular momentum of the binary J ≡ L+ S1 + S2 has the largest possible
magnitude |J | = |L + S1 + S2| = |L| + |S1| + |S2| and, before the BBH
system can merge into a single BH, it has to lose enough angular momentum
by emitting GWs to allow the spin of the final BH to respect the Kerr bound
c2|Sfinal|/(Gm2

final) ≤ 1. Since, in this case, the binary coalescence has a
longer duration, also the waveform will last longer. It is also interesting to

5The phase of the GW signal is more relevant than the amplitude in data-analysis
applications because GW detectors are more sensitive to it. The reason will be clear
when I will introduce GW detectors in Sec. 1.2.2.

6The nPN term corresponds to ε2n corrections.
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discuss the effect of BH spins on the two-body dynamics and the emitted
waveform, in the case where the spins are not aligned nor anti-aligned with L.
In this case, the interaction between L and the BH spins induces a precession
of the orbital plane of the system [65–67]. This in turn causes a modulation in
the amplitude and the phase of the waveform. I leave the detailed discussion
of precessional effects to Sec. 1.4.2.4.

Today, relativistic corrections of the two-body dynamics and waveforms are
known to much higher PN orders than 1.5PN for non-spinning [62,68,69,69–72]
and spinning [64, 67, 73–88] binaries. While these PN corrections improve
the accuracy of Eqs. (1.21), (1.23) and (1.24), the PN series converges slowly,
and it is inaccurate when approaching the plunge and the merger, where
ε→ 1 [89,90]. The validity of the GW signal and BBH dynamics obtained
using the PN expansion can be extended to larger values of ε by using the
effective-one-body (EOB) formalism [91, 92]. The EOB formalism includes
some non-perturbative strong-field effects in the two-body dynamics, which
are especially relevant during the late stage of the inspiral. Since the waveform
models I describe in this thesis are based on the EOB formalism, I will provide
an extensive introduction of this approach in Sec. 1.4.2.

When perturbatively solving the Einstein’s equations (1.1) at higher orders
in ε, one finds that the PN corrections to the quadrupole formula Eq. (1.12)
depend on higher-order multiple moments of the binary. Correction terms
corresponding to different multiple moments of the binary are proportional
to distinct functions of the angles ι and ϕ0. For this reason, it is useful to
decompose h+ and h× into a set of orthonormal bases on a sphere. This sepa-
rates their dependence on ι and ϕ0 from that on the other parameters of the
binary, such as masses and spins. For this purpose, the most commonly used
set of orthonormal bases are the −2-spin-weighted spherical harmonics [93],
which are defined as

−2Ylm(ι, ϕ0) = (−1)m
√√√√(l +m)!(l −m)!(2l + 1)

4π(l − 2)!(l + 2)! sin2l
(
ι

2

)

×
l+2∑
r=0

(
l + 2
r

)(
l − 2

r − 2−m

)
(−1)l+2−r eimϕ0 cot2r−2−m

(
ι

2

)
.

(1.25)

When decomposed in −2-spin-weighted spherical harmonics, the combination
h+ − ih× reads

h+(t;λ)− ih×(t;λ) =
∞∑
`=2

∑̀
m=−`

−2Y`m(ι, ϕ0)h`m(t;λ), (1.26)
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1.2. Binary black-holes as sources of gravitational waves

where the functions h`m(t;λ) are the GW modes, not dependent on ι and ϕ0,
and λ is a vector including all the parameters of the binary, defined as

λ ≡ {m1,m2,χ1,χ1, DL, ι, ϕ0, ψ, θ, φ, tc} . (1.27)

The angle ψ included in the definition of λ is the polarization angle, which
describes the orientation of the projection of the binary’s orbital momentum
vector L onto the plane on the sky. The angles θ and φ define the position
in the sky of the GW source. Before my work, most of the waveform
models used to analyze the GW signals detected by LIGO and Virgo only
included the modes (`, |m|) = (2, 2), for which leading-order expressions
are in Eqs. (1.23) and (1.24). The other modes are typically referred to as
higher-order modes (HMs) or higher harmonics, and they are the main topic
of this thesis. In Sec. 1.4.1, I will examine the reasons they were neglected in
the past, and I will provide the motivations to include them for current and
future data-analysis studies with LIGO and Virgo detectors. In Fig. 1.2, I
show the most important GW modes emitted during the inspiral, as well as
during the other phases of the BBH coalescence, which I describe below.

1.2.1.2. Merger

The inspiral phase ends when the relative radial velocity of the two BHs
becomes comparable to their relative tangential velocity, and the condition
ω̇orb/ω

2
orb ∼ O(v5/c5) � 1 is violated. In this regime, the BHs plunge into

each other with a non-negligible radial velocity. After the plunge, the two
BHs go through the non-linear phase of the binary coalescence called merger.
No analytical techniques are available to compute the BBH dynamics and the
emitted waveform in this phase. The waveform in this regime can be computed
through solving numerically the fully non-linear Einstein’s equations (1.1) on a
supercomputer. An entire field, called numerical relativity (NR), is devoted to
this goal (see Ref. [94] for an extensive review of this topic). NR is based on the
3 + 1 decomposition of spacetime, originally developed in the Arnowitt-Deser-
Misner (ADM) formalism [95,96]. In this formulation, the Einstein’s equations
are divided in two different sets: 4 constraint equations and 12 evolution
equations. The constraint equations are solved on a spacelike hypersurface
and the evolution equations are used to connect nearby hypersurfaces by
conserving the constraint equations. In practice, NR simulations require
a reformulation of the 3 + 1 decomposition such that the equations are a
well-defined initial value problem, that can be solved numerically [97–99].
This was a formidable task and, for this reason, the first BBH NR simulation
including the merger was successfully performed as late as 2005 [97–99]. Since

13



1. Introduction

�1.0

�0.5

0.0

0.5

1.0

<(
h

22
(t

))
⇥

10
21

�1.0

�0.5

0.0

0.5

1.0

<(
h

33
(t

))
⇥

10
21

�1.0

�0.5

0.0

0.5

1.0

<(
h

44
(t

))
⇥

10
21

�0.05 �0.04 �0.03 �0.02 �0.01 0.00 0.01 0.02 0.03
t[s]

�1.0

�0.5

0.0

0.5

1.0

<(
h

55
(t

))
⇥

10
21

inspiral plunge merger ringdown

Figure 1.2.: Real part of the GW modes (`,m) = (2, 2), (3, 3), (4, 4), (5, 5)
for a non-spinning BBH system. The vertical line shows the peak of the
amplitude of the mode (`,m) = (2, 2). These GW modes have been generated
with the waveform model described in Sec. 1.4.2.3.

then, many simulations contributed to shed light on the merger. During the
merger phase, the amplitude and the instantaneous frequency of each GW
mode increase, as it is clear from Fig. 1.2. NR codes currently provide the
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1.2. Binary black-holes as sources of gravitational waves

“gold standard” solution to the relativistic two-body problem in GR. They
are now capable to generate more accurate and longer waveforms than in the
past in reasonable timescales (O(months)). There are currently thousands
NR simulations of BBH systems performed in different regions of the binary
parameter space [2, 100–104]. However, NR waveforms alone cannot be used
in data analysis applications for the LIGO and Virgo detectors, as their
time-duration is still too short, and they cover a limited region of the binary
parameter space.

1.2.1.3. Ringdown

The final product of the BBH merger is a perturbed Kerr BH, which reaches
the equilibrium state by emitting GWs. At linear order in the perturbation,
this BH can be described by the metric tensor

gµν = gµνKerr + hµν , |hµν | � 1, (1.28)

where gµνKerr is the Kerr metric, and the tensor perturbation hµν can be
computed within the BH perturbation theory framework, by providing ap-
propriate boundary conditions. The GW signal emitted as a result of this
process is called ringdown. The GW signal in this phase is a superposition
of the quasi-normal modes (QNMs) of the BH remnant [105–107], whose
decomposition in −2-spin-weighted spherical harmonics7 reads

h`m(t;λ) =
∞∑
n=0

A`mn(λ)e−iσ`mn(λ)t. (1.29)

In the equation above, the quantities σ`mn are the complex QNM frequencies
of the remnant BH that depend on its mass and spin. The factors A`mn are
instead complex constants, called excitation coefficients. The latter cannot
be computed within the BH perturbation theory framework, because they
depend on the details of the merger of the two BHs [92,109–116]. Each mode
h`m(t;λ) is a damped sinusoid, as can also be seen in Fig. 1.2, oscillating at
the frequency <(σ`mn), which is the asymptotic frequency the modes approach
at the end of the merger. This prediction of the GW signal is also confirmed
by NR simulations [109].
While different techniques are able to predict the GW signal in different

regimes, for data analysis purposes one needs the complete signal for the
entire binary coalescence, as shown in Fig. 1.2. Over the years, three main

7The natural bases for the decomposition of the ringdown GW signal are the −2-spin-
weighted spheroidal harmonics [108].
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approaches have been developed to produce a smooth signal incorporating
inspiral, merger and ringdown: the EOB formalism, the phenomenological
approach, and the NR surrogate method. Since the work on this thesis
revolves around the approach based on the EOB formalism, I will provide,
in Secs. 1.4.2.1 and 1.4.2.2, an extensive introduction of this method, and
summarize here the other two approaches. In Sec. 1.4, I will also provide a
more extensive description of some waveform models developed within the
other two approches, which I use as comparison with the waveform models I
describe in this thesis.

In the phenomenological approach [117–127], the starting point are hybrid
GW modes constructed by smoothly blending EOB inspiral modes with NR
GW modes including the late inspiral, merger and ringdown. These hybrid
modes are first converted to frequency domain, and then used to construct
phenomenological fits for the amplitude and phase of each mode.
The NR surrogate method is based on NR simulations. The waveform

models developed using this method [128–134], are capable of generating
new waveforms through interpolating available NR waveforms. Although in
the last few years these models have been proven capable to produce very
accurate waveforms, they are still limited to regions of the parameter space
where the NR waveforms can be generated with reasonable timescales.

1.2.2. Strategy for detection

In this section, I describe the main experimental and data analysis tools used
for the detection of GWs.

In the proper detector frame, where the coordinates are marked using rigid
rods starting from a conventionally chosen origin, the effect of a GW traveling
through a region of spacetime can be described as a variation in the proper
distance of two nearby geodesics parametrized by xµ and xµ+ ζµ, respectively.
In the idealized case, where other gravitational effects and external forces are
absent, the proper distance8 between these two nearby geodesic in this frame
changes according to the equation for the geodesics deviation

ζ̈ i = 1
2 ḧ

TT
ij ζ

j, (1.30)

where hTTij is the metric tensor perturbation associated with the GW in the
TT-gauge. The goal of a GW detector is to track the geodesic motion of
freely falling bodies, and observe if their proper distance changes according to

8In the proper detector frame, at leading order, proper distances coincide with coordinate
distances, see Sec.1.3 of Ref. [50] for more details.
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1.2. Binary black-holes as sources of gravitational waves

Eq. (1.30). Different experimental methods have been proposed over the years
to achieve this purpose (e.g. resonant mass detectors [135–137], pulsar-timing
array (PTA) [138–140], and atom interferometry [141–143]). I will focus here
on the laser-interferometry technique, which is used in the ground-based
LIGO and Virgo detectors.
A schematic example of a laser-interferometric GW detector is provided

by the Michelson interferometer. Real GW detectors are more sophisticated,
see Chapter 9 of Ref. [50] for an extensive review on the topic. In this
schematic example of a GW detector, a laser beam is divided by a beam-
splitter into two orthogonal beams with equal probability amplitudes. The
two beams travel through the orthogonal interferometer arms until they are
reflected by a mirror placed at the end of each arm. The reflected beams are
finally recombined at the beam-splitter, and the intensity of the recombined
beam is measured by a photodetector. The observed light intensity depends
on the relative phase between the two beams, which is a function of the
difference in their travel path. When a GW travels through the experimental
apparatus, it changes the length of the intereferometer arms according to
Eq. (1.30). This causes a variation in the light intensity which is observed
by the photodetector. The fractional variation of the arm length caused by
an incoming GW is ∆L/L ∼ h, where h is the amplitude of the GW signal,
O(10−20) for typical sources detectable by ground-based interferometers. The
obstacle for the GW detection is that, in a real interferometer, there are
other non-astrophysical forces that can cause a change in the arm length
of the interferometer which is much larger than the variation caused by a
GW. These forces are usually referred to as noise sources. In the case of
LIGO and Virgo interferometers, these noise sources limit the detectors to
be most sensitive only in the frequency range 20 Hz . f . 1 kHz. Below 20
Hz the sensitivity of these detectors is limited by the seismic noise caused by
mirrors movements as consequence of ground vibrations. At high frequencies,
starting from ∼ 100 Hz, the limiting noise source consists of quantum shot
noise, specifically the statistical uncertainty in the light intensity measured
by the photodetector due to the discrete nature of light. In the intermediate
frequency regime, the most important noise source is the thermal noise due
to the atomic motion in the suspensions that sustain the mirrors of the
interferometer, and on the surface of the mirrors itself. See Refs. [55, 144] for
a detailed discussion of LIGO and Virgo noise sources.

Although LIGO and Virgo interferometers use various techniques to reduce
the effect of these noise sources (see Refs. [55, 56, 145, 146] for details), the
detector noise is still usually much larger than the typical GW signals. Never-
theless, it is possible to detect a GW signal buried in the noise by exploiting
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knowledge of the signal and the noise. Here I provide a basic introduction
to the data analysis techniques used to detect GW signals. However, more
sophisticated methods are employed in practice, see Ref. [147] for a complete
review on the topic. Since the discussion of these techniques is beyond the
scope of this thesis, I will only outline them and provide the relevant references
for the interested reader.
The detector output in presence of a GW signal is

s(t) = h(t) + n(t), (1.31)

where n(t) is the detector noise and h(t) is the detector response to the GW
signal, typically |h(t)| � |n(t)|. The detector response to the GW signal is
given by h(t) = Dijhij, where hij is the GW and Dij is the detector tensor,
which depends on the geometry of the interferometer. In the case of LIGO
and Virgo detectors, h(t) is simply h(t) ≡ F+(θ, φ, ψ)h+ + F×(θ, φ, ψ)h×,
where F+(θ, φ, ψ) and F×(θ, φ, ψ) are the so-called antenna patterns [148–150],
which depend on the wave polarization ψ and the sky-position of the source,
as defined by the angles (θ, φ). The expressions of F×(θ, φ, ψ) and F+(θ, φ, ψ)
are known and also hij can be predicted for expected sources, as discussed in
the previous section in the case of BBH systems. For this reason, one can
use the best available model of h(t) as a filter to extract the true signal from
the detector output. This is a commonly used technique in signal processing,
its name is matched filtering.
A simplified version of this matched filtering procedure can be illustrated

by computing the average value of the detector output s(t) over a time period
T , when filtered by the estimated h(t). Under the assumption that the model
of h(t) exactly matches its true expression in GR, this is

1
T

∫ T

0
dt h(t)s(t) = 1

T

∫ T

0
dt h2(t) + 1

T

∫ T

0
dt h(t)n(t). (1.32)

Since, at first approximation, h(t) is an oscillating function with some typical
amplitude h0 and characteristic frequency ω, for large T the first integral
grows linearly in T . Therefore the first term in the RHS of the equation is
proportional to h2

0. The noise n(t) is an oscillating function with a typical
amplitude n0 and timescale τ0, it is not correlated with the signal h(t), and
it arises from an underlying random process. For this reason, the second
integral grows proportionally to T 1/2, and the second term in the RHS of the
equation above scales as T−1/2. In summary, the equation above reads

1
T

∫ T

0
dt h(t)s(t) ∼ h2

0 +
(
τ0

T

)1/2
n0h0, (1.33)

18



1.2. Binary black-holes as sources of gravitational waves

and one can conclude whether a GW signal is present in the detector data if
h0 > (τ0/T )1/2n0, which is possible to fulfill even in the case n0 � h0.

In the more realistic case of the LIGO and Virgo detectors, one starts from
the assumption that the noise n(t) is a realization from a stationary Gaussian
random process, therefore it can be completely described by providing its
mean value 〈n(t)〉 and its power spectral density (PSD) Sn(f). Without loss
of generality, one can assume that 〈n(t)〉 = 0, while the PSD can be estimated
from the data as

Sn(f) = 2
∫ ∞
−∞
〈n(t)n(t+ τ)〉 e−2iπfτ , (1.34)

where 〈n(t)n(t+ τ)〉 is the autocorrelation function. Henceforth, for conve-
nience, I will work in the Fourier domain. Therefore I will consider h̃(f) and
s̃(f), the Fourier transform of h(t) and s(t), respectively.
A particular realization of the noise occurs with probability

P (n) = Ne−
1
2 (n|n), (1.35)

where N is a normalization factor and (·|·) is the inner product

(a|b) ≡
∫ ∞
−∞

df
ã∗(f)b̃(f) + ã(f)b̃∗(f)

Sn(f) = 4<
(∫ ∞

0
df
ã∗(f)b̃(f)
Sn(f)

)
. (1.36)

Given a detector output s(t), the detection of a GW signal consists in a
comparison between the null hypothesis H0, that s(t) contains only noise,
with the signal hypothesis H1, for which also a GW signal is present. Using
Bayes theorem, one can write the probability of the signal hypothesis given a
particular detector output s(t) as

p(H1|s) = p(H1)p(s|H1)
p(H1)p(s|H1) + p(H0)p(s|H0) = p(s|H1)

p(s|H0)

[
p(s|H1)
p(s|H0) + p(H0)

p(H1)

]−1

,

(1.37)
where p(s|H0) (p(s|H1)) is the probability of the detector output s(t) under
the null (signal) hypothesis, and p(H0) (p(H1)) is the prior probability of the
null (signal) hypothesis. The probability p(H1|s) depends on the detector
output only through the ratio p(s|H1)/p(s|H0) which, using Eqs.(1.31) and
(1.35), can be expressed as

p(s|H1)
p(s|H0) = e−

1
2 (s−h|s−h)

e−
1
2 (n|n)

= e(s|h)e−(h|h)/2. (1.38)
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The function p(H1|s) is monotonically increasing in the ratio p(s|H1)/p(s|H0),
which in turn is a monotonic function of (s|h), because of Eq. (1.38). Thus,
any choice for the threshold on the probability p(H1|s) to accept the signal
hypothesis can be directly translated into a threshold in (s|h), or in its
normalized form, the signal-to-noise ratio (SNR)

ρ ≡ (s|h)
(h|h)1/2 =

4<
(∫ ∞

0

s̃∗(f)h̃(f)
Sn(f)

)
√√√√4<

(∫ ∞
0

|h(f)|2
Sn(f)

) . (1.39)

For this reason, one can directly use the SNR to establish whether there is
a statistically significative evidence for a GW signal in a given data stream.
The filtering procedure, introduced for a simplified case in Eq. (1.32), appears
clearly in the numerator of the SNR, where the detector output s̃(f) is
filtered using the noise-weighted GW signal h̃(f)/Sn(f). In signal processing,
the function W̃h(f) ≡ h̃(f)/Sn(f) is typically called Wiener filter. With
this choice of the Wiener filter, the SNR is maximized for s̃(f) = h̃(f). Its
maximum value ρopt ≡ (h|h)1/2 is typically called optimal SNR. The function
used for the Wiener filter, h̃(f), usually referred to as template, depends on
λ, the parameters of the binary system, which are unknown at this stage.
Since for the detection purpose, one is interested only in finding the signal
regardless of the binary parameters, the SNR for a given detector output
s̃(f) is computed against a discrete set of pre-computed templates spanning
the binary parameter space λ, typically referred to as a template bank. The
largest SNR obtained in this process, ρtemplate

max ≡ ρ(λtemplate
max ), is compared

with the SNR distribution expected in the case of only noise being present in
the detector output. An SNR threshold ρ̂ is set such that SNR values larger
than the threshold are unlikely to be due to noise. Therefore, a candidate
GW signal (or trigger) is recorded if, for a detector output s(f), ρtemplate

max is
larger than the threshold. Because of the discreteness of the template bank,
in practice the ρtemplate

max value is smaller than the maximum one would obtain
when maximizing over the templates in the continuous binary parameter
space λ. The quantity ρtemplate

max is related to the “true” maximum of the SNR
ρmax ≡ ρ(λmax) through the equation

ρtemplate
max ≈ ρmax

[
1− F

(
h(f,λmax), h(f,λtemplate

max )
)]
, (1.40)

where the function F (h1(f), h2(f)) is the so-called faithfulness between two
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waveforms h1(f) and h2(f), defined as

F (h1(f), h2(f)) ≡ max
tc,ϕ0

(h1(f)|h2(f))√
(h1(f)|h1(f))(h2(f)|h2(f))

. (1.41)

The maximization in the equation above is performed over the time of
coalescence tc and the phase ϕ0. The faithfulness function atteins its maximum
value, F (h1(f), h2(f)) = 1, when the two waveforms are exactly the same,
while its value decreases proportionally to the difference between the two
waveforms. The template banks used for searching GW signals in the data of
LIGO and Virgo detectors are built to ensure that the minimum faithfulness
between a given waveform and the best matching template in the template
bank is always larger than 0.97 [151–154]. Median faithfulness between
randomly chosen waveforms and best matching templates in the template
bank are as large as 0.99. A reduction in the maximum SNR, similar to
that decribed above, can also be caused by the inaccuracy of the waveform
models in representing the “true” GR waveforms. The reduction in the
maximum SNR in this case can be quantified using Eq. (1.40), and substituting
F
(
h(f,λmax), h(f,λtemplate

max )
)
with F

(
hmodel(f,λmodel

max ), hGR(f,λGR
max)

)
, where

hmodel(f) and hGR(f) are respectively the approximate and true waveform.
In practice, it is desirable that the decrease in SNR due to the inaccuracy of
the waveforms is negligible with respect to that caused by the discreteness of
the template bank. For this reason, a typical requirement for the accuracy
of the waveform models is that the median faithfulness between them and
the NR waveforms (i.e. the best representation of the true GR waveforms) is
larger than 0.99, which is the median faithfulness between randomly chosen
waveforms and best matching templates in the template bank.

The method for the detection of GW signals described so far assumes
stationary and Gaussian noise. In reality, the detector noise is non-Gaussian,
therefore SNR values larger than the threshold could be obtained also due to
non-Gaussian noise. Such non-Gaussian artifacts are typically referred to as
glitches, and their effect can be tamed by using more sophisticated strategies
like signal-based vetoes (also known as χ2-vetoes), see Refs. [155, 156] for
more details. Another powerful tool to detect GW signals in presence of
non-Gaussian noise consists in the analysis of coincident signals in multiple
GW detectors. In fact, while it is possible to have a glitch in one of the
detectors, it is unlikely to have glitches in all detectors appearing with time
delays between detectors compatible with the passage of a GW. In the
coincidence analysis, GW candidates from each detector, identified using the
methods described before, are compared with those from other detectors.
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GW candidates are flagged as possible GW signals, if they are measured
by different detectors with consistent parameters and a separation in time
compatible with that due to the travel time from one detector to another.
The statistical significance of these potential GW signals is determined by
comparing them with a background distribution of coincidences due to noise.
The latter is obtained using the time-slides method. The first step of this
method consists of time shifting the GW candidates obtained from single
detectors by an unphysical delay, much larger than the light travel time
between detectors and the duration of the typical signal. The coincidence
analysis is performed on this new list of single-detector GW candidates and
a new list of triggers is recorded. These triggers cannot originate from GW
signals, because they are computed using single-detector GW candidates that
are time shifted by unphysical delays. This procedure is repeated multiple
times using different time delays to time shift the list of single-detector GW
candidates. All the triggers obtained with this procedure are used as noise
background to estimate the significance of the potential GW signals. More
details about this method can be found in Refs. [157–160].

The experimental and data analysis tools, outlined in this section, allowed
the detection of GW signals emitted by 10 BBHs [27–32] during the first
two LIGO and Virgo observation runs (henceforth O1 and O2, respectively).
During O1 and O2 also a system composed of two neutron stars (NSs) (a
binary neutron star (BNS)) was detected [161]. In addition, another 39 GW
signals have been recently detected during the first half of the third LIGO
and Virgo observing run (henceforth O3a) [33–36, 162]. Among these GW
signals, 36 of them were likely coming from BBHs [33,34, 36], detected up to
a distance of ∼ 5 Gpc. Among the remaining 3 signals, one of them likely
originated from a BNS merger at a distance of ∼ 100 Mpc [162]. The sources
of the other two signals are still unclear [35, 36]. They could either originate
from BBHs, or from mixed systems composed of a BH and a NS, typically
referred to as neutron star black hole (NSBH) systems.

1.2.3. Methods for source characterization

After a GW signal is identified, the next goal is to measure the parameters
of the emitting source. In this section, I will provide a summary of the most
important techniques used for this purpose.
The parameters of the source are measured within a Bayesian framework.

For this purpose, the starting point is the determination of p(λ|s, h), the multi-
dimensional posterior probability-density function of the source parameters
λ given the detector output s(t), a model Mh for the waveform h(λ), and
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the prior probability p(λ) for the source parameters λ. Using Bayes theorem,
one can write this posterior probability as

p(λ|s,Mh) = p(s|λ,Mh) p(λ)
p(s|Mh) , (1.42)

where p(s|λ,Mh) is the likelihood function and p(s|Mh) is the evidence, which
I define below. Under the assumption of stationary and Gaussian noise, the
likelihood can be computed using the expression for the noise probability, in
Eq. (1.35), and the detector output definition in Eq. (1.31). The result is

p(s|λ,Mh) = Ne−
1
2 (s−h(λ)|s−h(λ)), (1.43)

where N is a normalization. This likelihood is associated to the data of only
one detector. The generalization to multiple detectors is trivial, since the noise
realizations of different detectors are uncorrelated, and the joint likelihood is
simply the product of the single-detector likelihoods. The evidence p(s|Mh)
is a normalization factor for the posterior p(λ|s,Mh), whose expression is

p(s|Mh) =
∫
λ
p(s|λ,Mh)p(λ)dλ. (1.44)

Within the Bayesian framework, the evidence is often used in the context of
hypothesis testing. In fact, the odds ratio between two hypotheses H1 and
H2 is defined as

OH1,H2 ≡
p(H1|s,Mh)
p(H2|s,Mh) = p(H1)

p(H2)
p(s|H1,Mh)
p(s|H2,Mh) , (1.45)

where p(H1|s,Mh) and p(H2|s,Mh) are the probabilities of the hypotheses
H1 and H2 given the detector output s(t), and the model for the waveform
Mh. The functions p(H1) and p(H2) are the prior probabilities of the two
hypotheses H1 and H2, while p(s|H1,Mh) and p(s|H2,Mh) are their evidence.
The ratio of the two evidence p(s|H1,Mh)/p(s|H2,Mh) is usually referred to
as Bayes factor.

It is instructive to study the behaviour of the posterior p(λ|s,Mh) around
its maximum λmax by computing the Taylor expansion around this point.
Under the assumption that the prior p(λ) is approximately constant over the
relevant binary parameter space region (as it is expected in absence of prior
knowledge), the Taylor expansion of the posterior p(s|λ,Mh) will be equal to
the Taylor-expanded likelihood (up to a normalisation factor). The likelihood
peak λmax can be found by imposing the condition ∂

∂λi
p(s|λ,Mh)

∣∣∣
λ=λmax

= 0
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which maximizes the likelihood. In the case of the likelihood in Eq. (1.43),
the condition above reduces to(

s− h(λmax)
∣∣∣∂ih(λmax)

)
= 0, (1.46)

with ∂ih(λmax) = ∂h(λ)
∂λi

∣∣∣∣∣
λ=λmax

. The Taylor expanded likelihood reads

p(s|λ,Mh) = Ne−
1
2 Γij |λ=λmax (λi−λimax)(λj−λjmax)(1+O(ρ−1)), (1.47)

where Γij ≡ (∂ih|∂jh) is the Fisher information matrix [163]. The accuracy
of this approximation increases with the SNR, since the deviations from
Eq. (1.47) are proportional to ρ−1, as indicated in the exponent of the formula.
The posterior distribution in Eq. (1.47) has the form of a multivariate Gaussian
distribution, with a width proportional to

√
Γ−1
ii . The latter quantifies the

statistical uncertainty of the measurement and is proportional to ρ−1. For
this reason, signals with larger SNR allow for more precise measurements of
the binary parameters.
The expression in Eq. (1.47) implicitly assumes that the waveforms gen-

erated using the waveform model Mh are an exact representation of the
true waveforms predicted by GR. This is typically not the case since, as
discussed in Sec. 1.2.1, waveform models employ various approximations. In
a more realistic case, the maximum likelihood is reached by the approximated
waveform model hmodel(λ) in a point λmodel

max , which is different from the point
λGR

max that would be reached when using the true GR waveforms hGR(λ). In
this case, Eq. (1.46) becomes(

s− hmodel(λmodel
max )

∣∣∣∂ihmodel(λmodel
max )

)
= 0. (1.48)

The error introduced in the measured binary parameters, due to this incorrect
representation of the waveform, can be estimated by the bias ∆λi ≡ (λmodel

max )i−
(λGR

max)i. Assuming that |∆λi/λi| � 1, its value can be obtained from Eq. 1.48
by using the fact that s(t) = n(t)+hGR(t;λGR

max), and computing hmodel(λmodel
max )

as a Taylor expansion around λGR
max (see Ref. [164] for the detailed calculation).

The result is

∆λi =
(
Γ−1(λmodel

max )
)ij (

∂jh
model(λmodel

max )
∣∣∣∂jhGR(λmodel

max )− ∂jhmodel(λmodel
max )

)
+

+O(ρ−1). (1.49)

To assess the relevance of this bias, one has to compare it with the statistical
uncertainty, as quantified by the width of the posterior distribution

√
Γ−1
ii .
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Since
√

Γ−1
ii ∝ ρ−1, while the bias in Eq. (1.49) is independent of the SNR,

there is always a value of ρ for which this bias is dominant with respect to the
statistical uncertainty. In practice, computing Eq. (1.49), to estimate at which
SNR the systematic bias is larger than the statistical uncertainty, is difficult.
In fact, it usually involves the computation and the numerical invertion
of the Fisher matrix Γij, which is not trivial, as it is a 15D matrix [165].
In addition, to compute the Fisher matrix, and also part of Eq. (1.49), it
is necessary to evaluate the derivatives of the waveform with respect to
the parameters of the BBH system. For waveform models that are not
entirerly analytical, these derivatives have to be computed numerically, and
this adds additional obstacles to the use of Eq. (1.49) for the estimation
of the systematic bias. For this reason, other methods are typically used
to estimate for which values of the SNR the systematic bias is larger than
the statistical uncertainty. A very popular method for this purpose is the
so-called Lindblom’s criterium [166–169]. According to Lindblom’s criterium,
a sufficient but not necessary condition such that all the parameters of the
binary have biases smaller than the statistical uncertainty is that

1− F
(
hmodel(λGR

max), hGR(λGR
max)

)
≤ Nintr − 1

2ρ2 , (1.50)

where F (·, ·) is the faithfulness function, defined in Eq. (1.41), and Nintr is
the number of the intrinsic parameters (masses and spins) of the system. For
BBH systems with precessing spins this number is 8, while it is just 4 for
BBHs with non-precessing spins. Given a GR waveform hGR (typically a NR
waveform), and a waveform model hmodel, using Eq. (1.50) it is possible to
compute the SNR threshold below which the parameter estimation of the
binary system is unbiased. Lindblom’s criterium is easy to use, as it only
requires the computation of a faithfulness, but it has some limitations. First
of all, when the condition in Eq. (1.50) is violated, it is unknown what is
(or are) the biased binary parameter (or parameters). In addition, being a
sufficient and not necessary condition, it is often too conservative, as discussed
in Ref. [170]. The latter limitation makes Lindblom’s criterium sometimes
too strict for practical applications.

While the approximation of the likelihood function described in Eq. (1.47)
is useful to qualitatively understand certain properties of the distribution, it
is inappropriate to estimate the parameters on current LIGO-Virgo signals,
for which the SNR is not large enough to successfully use the likelihood
approximation in Eq. (1.47). For this reason, one has to compute the posterior
distribution in Eq. (1.42) numerically. Since this function has a very large
dimensionality (O(15) parameters) and, considering that each evalutation of
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the likelihood in Eq. (1.43) takes O(1 ms), it is impractical to compute directly
the posterior distribution. For this reason, stochastic sampling methods are
used as alternative. The first stochastic sampling method I use for the analyses
in this thesis is the Markov Chain Monte Carlo (MCMC) method described
in Ref. [171], and included in the LIGO Algorithm Library (LAL) [172] under
the name LALInference MCMC. As alternative to the MCMC method, I also
use the dynamic nested sampling method dynesty described in [173] and
implemented in the bilby software [174]. The advantages of this method with
respect to the MCMC method is that it provides a more accurate estimate
of the evidence, and it converges faster to the true posterior distribution,
especially when used in its highly parallelized implementation included in the
software parallel bilby [174].

1.3. Research overview

In Secs. 1.4 and 1.5, I summarize the reaserch work presented in this thesis
that has been published in international peer-reviewed journals. I report
in Chapters 2, 3, 4 and 5 the published version of these articles. In the
following, I briefly summarize my contribution to each of these publications.
In addition, I summarize my contribution to some articles published by the
LIGO Scientific and Virgo collaborations.

1. Chapter 2 consists of the paper:
Roberto Cotesta et al. Enriching the Symphony of Gravitational
Waves from Binary Black Holes by Tuning Higher Harmonics. Phys.
Rev. D98(8):084028, 2018.

I was the main developer of the waveform model SEOBNRv4HM for spin-
ning, non-precessing BBH systems, which is described in the paper. I
also: produced all the comparisons between the waveforms computed
with this model and the NR waveforms; made all the plots of the paper
and wrote the article. In addition, I impletemented the computer code
of the model in the LAL software package, such that it could be used by
the members of the LIGO Scientific and Virgo collaborations, and the
rest of the community, as the LAL software package is publicly available.
Finally, I led the review of SEOBNRv4HM within the LIGO Scientific and
Virgo collaborations, as it is a requirement to use the model in the
analyses produced by the collaborations. During the review, a set of
tests was performed on the waveform model to ensure that it always
returned sensical waveforms. The computer code of the model was
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inspected to ensure the compatibility with the code standards of the
collaborations, and with other softwares developed by the collabora-
tions. Additional tests were also performed to confirm the accuracy
of the waveform models against the NR waveforms. All the tests were
performed under the supervision of members of the collaboration with
expertise in waveform modeling, but who were not involved in the
development SEOBNRv4HM.

2. Chapter 3 consists of the paper:
Serguei Ossokine, Alessandra Buonanno, Sylvain Marsat, Roberto
Cotesta et al. Multipolar Effective-One-Body Waveforms for Precess-
ing Binary Black Holes: Construction and Validation. Phys. Rev. D,
102(4):044055, 2020.

In this work, I implemented the HMs in the waveform model SEOBNRv4PHM
for precessing BBHs systems, which is presented in the paper. In addi-
tion, I performed the parameter-estimation studies in Sec. 3.5, whose
results are shown in Figs. 3.15 and 3.16 of the paper. I also wrote
Secs. 3.2.2 and 3.5 of the paper. In addition, I implemented part of
the computer code of the model in the LAL software package. Finally,
also for this waveform model, I was one of the three people responsible
for its review, which followed the same procedure described before for
SEOBNRv4HM.

3. Chapter 4 consists of the paper:
Roberto Cotesta et al. Frequency domain reduced order model of
aligned-spin effective-one-body waveforms with higher-order modes. Phys.
Rev. D, 101(12):124040, 2020.

I was the main developer of SEOBNRv4HM_ROM, the reduced-order model
of SEOBNRv4HM, which is described in the paper. In Sec. 4.4, I com-
pared its accuracy and speed against the original waveform model
SEOBNRv4HM. The results of these analyses are summarized in Figs. 4.4
and 4.8, which I produced. In addition, I performed the parameter-
estimation studies described in Sec. 4.4.3, whose results are summarized
in Figs. 4.10 and 4.11. I wrote the entire paper, with the exception
of the Secs. 4.1,4.3.1,4.3.2,4.3.3 and 4.5, which were written by my
collaborators. I also produced all the figures, with the exception of
Figs. 4.10 and 4.11, which were produced by one of my collaborators.
In addition, also in this case, I implemented the computer code of the
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model in the LAL software package. Finally, as for the waveform model
SEOBNRv4HM, also for SEOBNRv4HM_ROM I led its review, which consisted
in a set of tests similar to those performed to SEOBNRv4HM.

4. Chapter 5 consists of the paper:
Katerina Chatziioannou, Roberto Cotesta et al. On the properties
of the massive binary black hole merger GW170729. Phys. Rev. D,
100(10):104015, 2019.

In this work, I performed the parameter-estimation study to estimate
the BBH parameters of the source of the GW signal GW170729, using
the waveform models SEOBNRv4HM and SEOBNRv4_ROM. These studies are
discussed in Sec. 5.3 of the paper, and the main results are summarized
in Figs. 5.1, 5.2, 5.4 and 5.5. In addition, I also contributed to the
writing of Secs. 5.2 and 5.3.

In addition to the publications listed above, I significatively contributed
also to the article published by the LIGO Scientific and Virgo collaborations
that presented the discovery of the GW signal GW190412

5. R. Abbott,..., Roberto Cotesta et al. GW190412: Observation of a
Binary-Black-Hole Coalescence with Asymmetric Masses. Phys. Rev.
D, 102(4):043015, 2020.

I was one of the five members in the editorial team of the paper.
As member of the editorial team, I was responsible of the parameter-
estimation analyses to measure the BBH parameters of the source of
the signal, using the waveform models SEOBNRv4_ROM, SEOBNRv4HM_ROM,
SEOBNRv4PHM and NRSurHyb3dq8. The results of these analyses are de-
scribed in Secs. 3 and 4 of the paper, and summarized in Figs. 2, 3, 4,
5 and 6. I also contributed to the writing of Secs. 1, 3, 4 and 7 of the
paper. I summarize my contribution to this article in Sec. 1.5.4 of this
thesis.

I also contributed to other articles published by the LIGO Scientific and
Virgo collaborations, describing the sources of the GW signals detected during
O2 and O3a

6. R. Abbott,..., Roberto Cotesta et al. GWTC-1: A Gravitational-
Wave Transient Catalog of Compact Binary Mergers Observed by LIGO
and Virgo during the First and Second Observing Runs. Phys.Rev.X 9
(2019) 3, 031040, 2019.
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In this publication, I contributed to the early studies of the GW signal
GW170729, by performing the parameter-estimation analysis using the
model SEOBNRv4_ROM. In addition, I contributed to the writing of Ap-
pendix C3, about the impact of the HMs on the parameter estimation
of the detected GW signals. The discussions with other members of
the LIGO Scientific and Virgo collaborations, during the analysis of the
GW signal GW170729, led to the publication I report in chapter 5.

7. I.M. Romero-Shaw,..., Roberto Cotesta et al., Bayesian inference
for compact binary coalescences with bilby: validation and applica-
tion to the first LIGO–Virgo gravitational-wave transient catalogue.
Mon.Not.Roy.Astron.Soc. 499 (2020) 3, 3295-3319, (2020)

In this publication, I performed some tests for the LIGO and Virgo
review of the parameter-estimation software bilby. These tests were
necessary to ensure the correctness of this parameter-estimation software
in its parallelized version called parallel bilby.

8. R. Abbott,..., Roberto Cotesta et al. GW190814: Gravitational
Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6
Solar Mass Compact Object. Astrophys.J.Lett. 896 (2020) 2, L44, 2020.

In this publication, I contributed to the parameter-estimation study on
the GW signal by performing the analysis using the model SEOBNRv4HM_ROM.
The results of this study are discussed in Sec. 4.1 and summarized in
Fig. 4. My study contributed to the measurement of the mass of the
lighter object in the binary system, whose nature is still under debate.
In addition, SEOBNRv4PHM was used for measuring the parameters of
this binary system. The results obtained by this analysis were combined
together with those measured by the waveform model IMRPhenomPv3HM,
which I will introduce later, and reported as the official measurements
by the LIGO Scientific and Virgo collaborations.

9. R. Abbott,..., Roberto Cotesta et al. Properties and Astrophysical
Implications of the 150 M� Binary Black Hole Merger GW190521.
Astrophys.J.Lett. 900 (2020) 1, L13, 2020.

10. R. Abbott et al. GW190521: A Binary Black Hole Merger with a Total
Mass of 150 M�. Phys.Rev.Lett. 125 (2020) 10, 101102, 2020.
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In the above two publications, I performed some of the early anal-
yses on the GW signal to measure the BBH parameters, using the
waveform models SEOBNRv4_ROM and SEOBNRv4HM_ROM. In addition, the
waveform model SEOBNRv4PHM, which I developed, was used in the
parameter-estimation study of the second publication to measure the
parameters of the BBH system.

11. R. Abbott,..., Roberto Cotesta et al. GWTC-2: Compact Binary
Coalescences Observed by LIGO and Virgo During the First Half of the
Third Observing Run. arXiv:2010.14527

In this publication, I was responsible for the early analyses of the
GW signal GW190602_175927, which I performed using the waveform
model SEOBNRv4_ROM. In addition, SEOBNRv4PHM, the waveform model
I developed, was used for the measurement of the BBH parameters for
all the GW signals discussed in the paper. For many signals, the BBH
parameters measured with SEOBNRv4PHM were directly reported as the
official measurements by the LIGO Scientific and Virgo collaborations.
In other cases, the results obtained with this waveform model were first
combined with those obtained with the waveform model NRSur7dq4,
which I will introduce later, and then reported as the official measure-
ments by the collaborations. See Table VIII in the paper for more
details. The BBH parameters measured from the GW signals were
later used, by the LIGO Scientific and Virgo collaborations, as input
to analyze the properties of the observed population of BBHs [175]. I
will discuss in Sec. 1.5.4 how the improved waveform models used to
analyze the GW signals also had an impact on this study.

12. R. Abbott,..., Roberto Cotesta et al. Tests of General Relativity with
Binary Black Holes from the second LIGO-Virgo Gravitational-Wave
Transient Catalog. arXiv:2010.14529

In this publication, the waveform model SEOBNRv4HM was used as a
baseline to measure possible deviations from GR of the complex part of
the dominant QNM frequency of the BH remnant from a BBH merger.
The parametrized SEOBNRv4HM model to perform this measurement is
called pSEOBNRv4HM, and it is described in Ref. [176]. The results of this
analysis are decribed in Sec. 7A of the paper. In addition, the waveform
model SEOBNRv4HM_ROM was used as baseline for the Flexible Theory
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Agnostics (FTAs) infrastructure [177], which tested the departure from
the GR predictions of the PN coefficients of the inspiral waveform. The
results of this analysis can be found in Appendix C2 of the paper.

Finally, I served as waveform expert during the LIGO and Virgo reviews
of the waveform models NRHybSur3dq8, NRSur7dq4 and IMRPhenomXHM. I
will describe these models later. For this task, I performed some of the
sanity tests on these waveform models, and I supervised that the other tests
were performed according to the guidelines of the LIGO Scientific and Virgo
collaborations.

1.4. Gravitational waveform models with higher-order
modes for spinning binary black-holes

Accurate waveform models are crucial to detect GW signals and correctly
measure the parameters of the source, as already discussed in Secs. 1.2.2
and 1.2.3. I begin this section by introducing, in Sec. 1.4.1, the HMs of a
GW signal, and highlighting the importance of including them in waveform
models to improve their accuracy. I introduce then, in Secs. 1.4.2.3 and 1.4.2.5
respectively, the waveform models I developed within the EOB formalism.
They include these HMs for spinning BBH systems, first in the case of BH
spins aligned with the orbital angular momentum of the binary, and then
extended to generic spin directions. Finally, in Sec. 1.4.3, I introduce a
method to reduce the time to generate such waveforms, which is crucial in
data analysis applications (detection and parameter inference).

1.4.1. Motivations for including higher-order modes in gravitational
waveforms

In this section, I describe what are the HMs and why it is important to
include them in waveform models.
As already mentioned in Sec. 1.2.1, the combination of the GW polariza-

tions h+ − ih× can be decomposed in −2-spin-weighted spherical harmonics
−2Y`m(ι, ϕ0) as

h+(t;λ)− ih×(t;λ) =
∞∑
`=2

∑̀
m=−`

−2Y`m(ι, ϕ0)h`m(t;λ), (1.51)

where h`m(t;λ) are the GW modes, which are functions of time and the
parameters of the binary system λ, while the angles (ι, ϕ0), used in the
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−2-spin-weighted spherical harmonics, define the direction of the observer
in the source frame. For simplicity, I restrict the discussion here to BBH
systems with spins aligned with the orbital angular momentum. As already
discussed in Sec. 1.2.1, when the BH spins are aligned with the orbital angular
momentum of the binary, there is no precession of the orbital plane, and the
direction of the orbital angular momentum stays constant over time. For
this reason, it is convenient to use the frame defined in Sec. 1.2.1 for the
harmonic decomposition in Eq. (1.51). In this frame, the z-axis is aligned
with the constant direction of the orbital angular momentum of the binary,
and the binary system is invariant under reflection across the orbital plane.
This invariance implies that the GW modes with negative m are linked to
those with positive m by the simple relation h`m = (−1)lh∗`−m, therefore I
will only focus on modes with m > 0. All the features I discuss here in
the simplified case of BHs with non-precessing spins, are straightforward to
generalize for systems with precessing spins by using the appropriate frame
for the harmonic decomposition, described in Sec. 1.4.2.4.

For BBH systems with comparable masses, as expected in the case of LIGO-
Virgo sources, the leading term in Eq. (1.51) is the mode (`,m) = (2, 2). The
other modes, usually referred to as HMs, are one or two order of magnitude
smaller. For this reason, they are typically neglected in waveform models.
This approximation degrades when increasing the mass ratio q ≡ m1/m2 ≥ 1
of the binary, because in this case the HMs become more and more relevant
as the binary evolves toward merger [62, 178–181]. A useful quantity that
illustrates this behaviour is the ratio |h`m(t`mpeak)|/|h22(t22

peak)|, where t`mpeak is
the time for which the (`,m) mode reaches its maximum value. In Fig. 1.3 I
show this ratio for the largest HMs as a function of q. The ratio presented
in the figure is computed from NR simulations of nonspinning BBHs. The
figure shows that this ratio is an increasing function of q and, for q & 2, the
hierarchy of the largest HMs is (`,m) = (3, 3), (2, 1), (4, 4), (3, 2), (5, 5), (4, 3).
When q approaches 1 all the modes with odd m vanish and the only HMs
contributing to the waveform are (`,m) = (4, 4), (3, 2). The hierarchy of
the modes changes, in this case, because when the two BHs have the same
masses and spins, the system is invariant under the rotation ϕ0 → ϕ0 + π,
and the modes with odd m have to vanish as a consequence of this symmetry.
These considerations on the mode hierarchy are roughly the same even when
considering spinning BBHs (see Sec. 1.4.2.3 for more details).
The contribution of the HMs in the waveform is also more relevant when

increasing the total mass M of the binary. This is easy to explain by looking
at the mode amplitudes in Fourier domain in the frequency range 20 . f . 1
kHz, where the LIGO-Virgo detectors are most sensitive. In the following,
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Figure 1.3.: Amplitude ratio between the (`,m) mode and the dominant (2, 2)
mode, both evaluated at their peak, as function of the mass ratio. Only
nonspinning NR waveforms are used. The markers represent the NR data,
and are connected by a line. Figure taken from Ref. [182]

I explain the reason for this effect using the mode (`,m) = (3, 3) but the
same is true for all the HMs with ` > 2. In Fig. 1.4, I show the frequency
domain amplitude of the modes (`,m) = (2, 2), (3, 3) for two values of the
total mass M = 30M� and M = 300M�, while all the other parameters of
the binary are fixed to be the same. In both cases |h22(f)| > |h33(f)| up to a
cutoff frequency above which the opposite is true. This happens because the
frequency for which the mode amplitude decays is approximately the ringdown
frequency of each mode fRD

`m , which scales roughly as fRD
`m ∼ (`/2)fRD

22 . Since
fRD
`m ∝ 1/M , when increasing the total mass of the system a large part of

the signal for which |h22(f)| > |h33(f)| shifts to frequencies lower than 20 Hz,
where the detector is not sensitive. Also the region where |h33(f)| > |h22(f)|
shifts to lower frequencies but still within the bandwidth where the detector
is sensitive. This means that for a larger fraction of the detectable signal
|h33(f)| > |h22(f)| with respect to the case with lower total mass, hence the
mode (`,m) = (3, 3) is more relevant for larger total masses.

The impact of HMs on the waveform also depends on the direction of the
observer with respect to the binary system. In fact, in Eq. (1.51) the HMs are
multiplied by the −2-spin-weighted spherical harmonics −2Y`m(ι, ϕ0), which
can enhance or decrease the impact of HMs on the signal observed from a
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Figure 1.4.: Amplitude of the modes (`,m) = (2, 2), (3, 3) for two different
values of the total mass M = 30M� and M = 300M�. All the other
parameters of the binary are fixed to be the same.

particular direction. To better understand in which direction the emission of
HMs is more prominent, it is instructive to look at the functions −2Y`m(ι, ϕ0)
when varying the angles (ι, ϕ0). Since they are complex functions, to show
their dependece on (ι, ϕ0) it is useful to plot their real and imaginary part.
Since the only complex term in their definition in Eq. (1.25) is eimϕ0 , in
practice one only needs to show their real part, because their imaginary part
coincides with the real part rotated by π/2 around the z-axis. In Fig. 1.5,
I show the real part of the most important −2Y`m(ι, ϕ0) when varying the
angles (ι, ϕ0). The real part of each −2Y`m(ι, ϕ0) with a certain m has exactly
m different maxima when varying ϕ0, because the functions −2Y`m(ι, ϕ0)
depend on ϕ0 only through the term eimϕ0 , which real part is cos(mϕ0).
The dependence of the functions −2Y`m(ι, ϕ0) on the angle ι is more relevant
compared to that on ϕ0 for the importance of the HMs when varying the
direction of the observer with respect to the binary system. In fact, when
varying ι from a face-on (ι = 0) to an edge-on (ι = π/2) orientation, one
finds that the function −2Y22(ι, ϕ0) associated with the mode (`,m) = (2, 2)
has its maximum amplitude for ι = 0, while the others have their maximum
close to ι = π/29.This means that neglecting the HMs in the waveform has a

9The situation is analogous when considering the modes with m < 0. The only difference
is that the function −2Y`m(ι, ϕ0) associated with them are a reflection about the orbital
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Figure 1.5.: Real part of the −2-spin-weighted spherical harmonics (`,m) =
(2, 2), (3, 3), (4, 4), (5, 5) as a function of the angles (ι, ϕ0).

larger impact if the signal is observed close to an edge-on inclination.
The improvements in the sensitivity of the LIGO and Virgo detectors are

opening the possibility to probe a wider portion of the BBH population, and
not just the “tip of the iceberg”, as happened with the first few detections
of GW signals from BBH systems in the 2015 − 2016 biennium. Since
the waveform models are key ingredients for the detection and the source
characterization of BBHs, their inaccuracy could cause a loss of interesting
signals or biases in the measured source parameters. For this reason, it is
important that the accuracy of the waveform models improve at the same
pace of the sensitivity of GW detectors.

From the detection point of view, the authors in Refs. [183–187] showed that
using waveform models without HMs in the template banks employed in the
detection pipeline can cause a loss of 10% of the signals with mass ratio q ≥ 6
(q ≥ 4 in the case on nonspinning BBHs) and total mass M ≥ 100M� [188].

plane of those described in Fig. 1.5.
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When waveform models without HMs are used for the parameter estimation
of signals with SNR larger than 25, BBH systems with mass ratio q ≥ 4, total
mass M ≥ 100 and inclination π/4 ≤ ι ≤ 3π/4 exhibit biases larger than
the statistical uncertainty in the measured parameters [189, 190]. Signals
with a larger SNR yield smaller statistical errors and, at an SNR of 48,
the systematic error from neglecting HMs can be larger than the statistical
error [191], even for equal-mass systems. Missing the detection of certain GW
signals from the BBH population, or inferring biased measurements of their
parameters, could have the effect of mischaracterizing the BBH population,
and obtaining a distorted understanding of the formation scenario of these
BBH systems.

Finally, including HMs in the waveform models allows to perform a wider
set of tests of GR, using BBH systems as laboratories. For example, having
multiple GW modes in the ringdown part of the signal allows to test the
Kerr nature of the BH remnant of the BBH coalescence, see Refs. [192–199].
In addition, using waveform models with HMs is important to avoid false
deviation from GR due to the missing of these effects in the waveform used
to perform other tests of GR [200].
For these reasons, waveform models including the effect of HMs have

been developed over the years. The first of such models for a complete
BBH coalescence covering inspiral, merger and ringdown was developed
within the EOB framework in Ref. [201] for nonspinning BBHs. I have
extended and improved this model for spinning non-precessing [182] and
precessing [202] BBHs. In Secs. 1.4.2.3 and 1.4.2.5, I provide an introduction
to this models, while the complete discussion can be found in Chapters 2
and 3. Waveform models including HMs have been also developed within
the phenomenological approach and the NR surrogate method, outlined in
Sec. 1.2.1. The models in the phenomenological approach are described in
Ref. [203] for nonspinning BBHs, and in Refs. [124] and [204] for spinning
non-precessing and precessing BBHs, respectively. The names of the latter
two models are respectively IMRPhenomHM and IMRPhenomPv3HM. For these
two models, the mode (`,m) = (2, 2) is built as described in Sec. 1.2.1,
and the HMs are constructed by rescaling the mode (`,m) = (2, 2). In
particular, during the inspiral regime the phases of the HMs are obtained
using the approximate leading-order PN rescaling φ`m(t) ∝ (m/2)φ22(t) [62].
A similar rescaling is also performed for the ringdown signal. The amplitudes
are built in a similar fashion. New versions of these models that are not
using this approximation have been recently developed for spinning non-
precessing and precessing BBHs under the names IMRPhenomXHM [126] and
IMRPhenomXPHM [127], respectively. In this case, each GW mode is built
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separately by constructing phenomenological fits for the amplitude and the
phase of hybrid GW modes. The latter are assembled by smoothly blending
EOB inspiral modes with NR modes including the late inspiral, merger and
ringdown. The NR surrogate models are described in Ref. [132], in the case of
BBHs with non-precessing spins and, in Refs. [131,133], for precessing BBH
systems. Because of the computational cost of producing NR waveforms to
construct the surrogate models, these waveform models can be used only in
limited regions of the binary parameter space. In particular, the NR surrogate
for BBH binaries with non-precessing spins called NRHybSur3dq8 [132], can
only be used for BBH with q ≤ 8 and dimensionless spins |χi| ≤ 0.8. While in
general also the time-duration of the waveforms generated by NR surrogates
is limited by the duration of the underlying NR waveforms, this is not
the case for this waveform model. In fact, in this case, the waveforms
used to construct the surrogate are hybrids between NR waveforms and
EOB inspiral waveforms. Similar limitations are also present in the NR
surrogate for BBHs with precessing spins. In the case of the NR surrogate
NRSur7dq4 [133], the model is limited to binary systems with q ≤ 4 and
dimensionless spins |χi| ≤ 0.8. In this case, also the duration of the waveform
is limited and, for this reason, waveforms starting from a frequency of 20
Hz can only be generated for BBH systems with total masses M & 50M�.
In Secs. 1.4.2.3,1.4.2.5 and 1.5, I will compare these waveform models with
HMs built within these other two approaches against the waveform models I
developed. For these comparisons, I will also use two waveform models of the
“previous generation”, which only include the mode (`,m) = (2, 2), and are
limited to spins aligned with the orbital angular momentum. These models
are SEOBNRv4 (and its fast version SEOBNRv4_ROM) [1], belonging to the EOB
family, and IMRPhenomD [122,123], developed within the phenomenological
approach. I summarize all the waveform models used in this thesis in Table 3.1.

1.4.2. Effective-one-body waveform models with higher-order modes

In this section, after a general introduction on the BBH dynamics within the
EOB formalism in Sec. 1.4.2.1, I describe the expression of the GW modes,
and delineate the construction of the EOB waveform model for spinning
non-precessing BBHs with HMs, in Secs. 1.4.2.2 and 1.4.2.3. Finally, in
Secs. 1.4.2.4 and 1.4.2.5, I outline the main features of the waveforms emitted
by BBHs with precessing spins, and describe the EOB waveform model for
precessing BBHs with HMs.
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Model name HMs Precession Reference
SEOBNRv4 × × [1]
SEOBNRv4_ROM × × [1]
SEOBNRv4HM X × Chapter 2
SEOBNRv4HM_ROM X × Chapter 4
SEOBNRv4PHM X X Chapter 3
IMRPhenomD × × [122,123]
IMRPhenomHM X × [124]
IMRPhenomXHM X × [126]
IMRPhenomPv3HM X X [204]
IMRPhenomXPHM X X [127]
NRHybSur3dq8 X × [132]
NRSur7dq4 X X [133]

Table 1.1.: The waveform models used in this thesis. I also specify whether
they include the effects of HMs and spin precession. I highlight in boldface
the waveform models I developed.

1.4.2.1. Two-body dynamics

The EOB formalism, proposed by Buonanno and Damour in Refs. [91, 92],
reduces the relativistic two-body problem for BHs with generic masses and
spins, to the problem of an effective body moving in a central potential,
similarly to what is done in the Newtonian case.
The natural starting point for this approach is the relativistic two-body

problem in the test-mass limit, in which a non-spinning test-particle of mass
µ is orbiting in the potential generated by a massive central object of mass
M (M � µ) and spin S = |S|. As discussed in Sec. 1.1, the metric tensor
associated with a massive spinning object is the Kerr metric gµνKerr, which, in
the Boyer-Lindquist coordinates, is defined by the line element

ds2 = gµνKerrdxµdxν = − Λ
∆Σdt

2 + ∆
Σ dr

2 + 1
Σdθ

2 + Σ− 2Mr

Σ∆ sin2(θ)dφ
2− 4Mra

Σ∆ dtdφ,

(1.52)
with the Kerr spin a ≡ S/M , ∆ ≡ r2 − 2Mr + a2, Σ ≡ r2 + a2 cos2 θ and
Λ ≡ (r2 + a2)2 − a2∆ sin2 θ.

The dynamics of a non-spinning test-particle with mass µ, in this gravi-
tational background, is determined by its Hamiltonian. The latter can be
obtained using the mass-shell constraint

gµνKerrpµpν = −µ2, (1.53)
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where pµ = (pt ≡ −HKerr, pr, pθ, pφ). By solving Eq. (1.53) with respect to
HKerr, one obtains

HKerr = HKerr
even +HKerr

odd , (1.54)

where HKerr
even is even in a and reads

HKerr
even = αKerr

√
µ2 + γφφKerrp

2
φ + γrrKerrp

2
r + γθθKerrp

2
θ, (1.55)

while HKerr
odd , the odd in a part, is

HKerr
odd = βKerrpφ, (1.56)

and

αKerr ≡ 1√
−gttKerr

=
√

∆Σ
Λ , (1.57a)

βKerr ≡g
tφ
Kerr
gttKerr

= 2aMr

Λ , (1.57b)

γφφKerr ≡g
φφ
Kerr −

gtφKerrg
tφ
Kerr

gttKerr
= Σ

Λ sin2 θ
, (1.57c)

γrrKerr ≡grrKerr = ∆
Σ , (1.57d)

γθθKerr ≡gθθKerr = 1
Σ . (1.57e)

This Hamiltonian can be generalized for a spinning test-particle, at leading
order in the spin of the test-particle, by substituting pµ with Pµ ≡ pµ −
1/2ωµabSab∗ +O(S2

∗) in Eq. (1.53) (see Refs. [205,206]), with the quantities
ωµab and Sab∗ being the Ricci rotation coefficients and the spin tensor in a
local Lorentz frame. The Hamiltonian for a spinning test-particle in a Kerr
background is then

HKerr
S = HKerr +HKerr

S∗ , (1.58)

with

HKerr
S∗ =

Ft +
βKerr + αKerrγφφKerrpφ√

qKerr

Fφ
 · S∗

+ αKerr√
qKerr

(γrrKerrprFr + γθθKerrpθFθ) · S∗ +O(S2
∗), (1.59)
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where √
qKerr ≡ HKerr

even
αKerr , (1.60)

and the explicit expression of the fictitious gravitomagnetic force Fµ are given
in Eq.(6) of Ref. [207].
In the EOB formalism, one assumes that the solution for the relativistic

two-body problem, with generic masses m1 and m2 and spins S1 and S2,
can be obtained as a deformation of the solution in the test-mass limit,
with the symmetric mass ratio ν = m1m2/(m1 + m2)2 as the deformation
parameter. In practice, when ν 6= 0, the solution of the relativistic two-body
problem has to be described by the motion of an effective particle with mass
µ = µ(m1,m2) and spin S∗ = S∗(m1,m2,S1,S2), whose orbit is determined
by the Hamiltonian Heff , associated with an effective metric geff

µν , of a central
object with mass M = M(m1,m2) and spin SKerr = SKerr(m1,m2,S1,S2).
The first trivial constraint that can be set to determine the functional form of
µ(m1,m2), S∗(m1,m2,S1,S2), M(m1,m2), SKerr(m1,m2,S1,S2) and Heff is
obtained by requiring the correct limit in the test-mass limit case (ν → 0 or
m2/m1 → 0)

Heff ν→0−−→ HKerr
S (1.61a)

M(m1,m2) ν→0−−→ m1 (1.61b)
µ(m1,m2) ν→0−−→ m2 (1.61c)

SKerr(m1,m2,S1,S2) ν→0−−→ S1 (1.61d)
S∗(m1,m2,S1,S2) ν→0−−→ S2. (1.61e)

The correction to these expressions will have to be O(ν), to appropriately
recover the test-particle limit. In addition, without loss of generality, one can
assume the functions M(m1,m2) and µ(m1,m2) to be the total mass M =
m1 +m2 and the reduced mass µ = m1m2/(m1 +m2) respectively, as in the
Newtonian case. Finally, to find the expressions forHeff , SKerr(m1,m2,S1,S2)
and S∗(m1,m2,S1,S2), one can use the knowledge of the PN Hamiltonian
for the real relativistic two-body problem Hreal, at the highest known PN
order. For this purpose, it is necessary to find a map Heff = f(Hreal) between
the Hamiltonian Hreal and the one of the effective problem Heff . This map
was found in Ref. [91], in the case of non-spinning black holes, using a Hreal

at 2PN order and by demanding an identification, between the real and
the effective problem, of the radial action integral and the orbital angular
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momentum, in the context of the Hamilton-Jacobi framework. The result is
rather simple

HEOB = M

√√√√1 + 2ν
(
Heff

µ
− 1

)
. (1.62)

Using this map, and the PN Hamiltonian Hreal up to a certain order, one
can find the expression of Heff , SKerr(m1,m2,S1,S2) and S∗(m1,m2,S1,S2)
by demanding that, when expanded as PN series, the HEOB Hamiltonian
agrees with the Hreal Hamiltonian, up to a canonical transformation. The
explicit expressions of the Hamiltonian Hreal used for the work in this the-
sis can be found in Sec. 2C of Ref. [208]. The expression for the spins
SKerr(m1,m2,S1,S2) and S∗(m1,m2,S1,S2) is given by

SKerr = S1 + S2, (1.63a)

S∗ = m2

m1
S1 + m1

m2
S2 + ∆

(1)
σ∗ + ∆

(2)
σ∗ , (1.63b)

where ∆
(1)
σ∗ and ∆

(2)
σ∗

10 are spin-orbit terms, explicitly given in Eqs (51) and
(52) of Ref. [208]. In Fig. 1.6, I show a schematic picture of the EOB mapping
between the real and effective two-body problem.
The expression of HEOB can be finally used to compute the dynamics

of the real relativistic two-body problem, by simply employing Hamilton’s
equations11

dR

dt
=∂H

EOB

∂p
(1.64a)

dP

dt
=− ∂HEOB

∂R
+ F (1.64b)

dSi
dt

=∂H
EOB

∂Si
× Si, (1.64c)

where i = 1, 2, R = (R,Φ,Θ) are spherical coordinates, P = (PR, PΦ, PΘ)
the conjugate momenta and F is a dissipative force, to account for radiation-
reaction effects due to the emission of GWs. The expression for F can be
derived by using its relation with the gravitational-wave energy flux F (see
Ref. [210])

F = F

Ω|R× P |P , (1.65)

10The spin map is not unique and in Sec.2E of Ref. [208] the authors also explore the
alternative map SKerr = S1 + S2 and S∗ = S1m2/m1 + S2m1/m2.

11Note that also the EOB spins are canonical variable [209], therefore also their evolution
is determined by Hamilton’s equations.
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m1
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S1

S2
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μ
M

SKerr

S*

Hreal Heff

Figure 1.6.: The EOB mapping between the real two-body problem of two
objects with masses m1 and m2 and spins S1 and S2, and the effective
problem of an effective particle with mass µ and spin S∗ orbiting around a
central object with mass M and spin Seff . The motion of the real two-body
problem is determined by the Hamiltonian Hreal, while the Hamiltonian for
the effective problem is Heff .

where Ω ≡ LN · (R× Ṙ)/R2 is the orbital frequency and LN the Newtonian
angular momentum. The gravitational-wave flux F is available as PN series
(e.g. Refs. [62, 67, 211–217]). In the EOB framework, the flux is used in a
factorized form (see e.g. Ref. [218–223]), to improve its accuracy with the
numerical results, that can be computed in the test-particle limit [90, 224]
within the Regge-Wheeler-Zerilli and Teukolsky equations [108,225–227]. The
expression of the factorized gravitational-wave flux is:

F = 1
8π

c5

G

GMΩ
c3

∞∑
`=2

∑̀
m=1

m2
∣∣∣∣∣DLc

2

GM
hF`m

∣∣∣∣∣
2

, (1.66)

whereDL is the source-observer distance, and hF`m are the factorized gravitational-
wave modes that I will describe in detail in the next section. Although the
sum over ` has to be carried up to infinity, in practice it is limited to the
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maximum value of ` for which the modes are known in the PN series. Equa-
tions. (1.64a), (1.64b) and (1.64c) can be solved numerically by providing
appropriate initial conditions [210].
The dynamics of the relativistic two-body problem, obtained within the

EOB formalism, has been proven to be more accurate than the PN dynamics,
when compared to NR simulations [228–232]. This is not unexpected, since the
EOB Hamiltonian, in Eq. (1.62), includes non-perturbative information about
the relativistic two-body problem in the test-mass limit, in addition to the PN
informations. Moreover the EOB framework provides flexibility to include
additional information about the relativistic two-body problem computed
using other methods, like NR [1,233,234], gravitational self-force [235] and
post-Minkowskian (PM) expansion [235], to further improve the accuracy
of the two-body dynamics. In particular, the EOB dynamics used for the
work in this thesis, includes calibration parameters at PN orders beyond the
ones available, in the effective metric geff

µν , and in the gyrogravito-functions
entering in the definition of S∗ [1].

1.4.2.2. Gravitational-waveform modes for non-precessing binary
black-hole systems

In this section, I describe how to compute the GW modes in the EOB
formalism for non-precessing BBHs. The generalization to precessing systems
will be discussed in Sec. 1.4.2.4.

In the EOB framework, the GW modes are obtained by combining their
expressions in the inspiral-plunge and merger-ringdown regimes (as defined
in Sec. 1.2.1)

h`m(t) =

h
insp−plunge
`m (t), t ≤ t`mmatch

hmerger−RD
`m (t), t > t`mmatch.

(1.67)

The time t`mmatch, at which the transition between the two regimes occurs,
depends on the mode, but typically corresponds to the time of the amplitude
peak of the (`,m) = (2, 2) mode (see Sec. 2.4.3 for more details). The conti-
nuity of h`m(t) for t = t`mmatch is guaranteed by the definition of hmerger−RD

`m (t)
(see Eqs. (2.36) and (2.38)).

During the inspiral phase, the emission of GWs by the BBH system can
be computed as a PN expansion (see Refs. [62, 67, 211–217]), which provides
the natural starting point to derive hinsp−plunge

`m . Similarly to what is done for
the dynamics, one can think to improve the accuracy of the PN expression of
the GW modes by using results computed in the test-mass limit. For this
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purpose, Refs. [218–220] proposed to introduce the factorized form of the PN
GW modes hF`m, also used in the GW energy flux in Eq. (1.66), to improve
the accuracy of the PN GW modes

hF`m = h
(N,ε)
`m Ŝ

(ε)
eff T`m f`m e

iδ`m . (1.68)

The quantity h(N,ε)
`m is simply the leading-order Newtonian GW mode, the

function Ŝ(ε)
eff is an effective source, inspired by the source term present in

the right-hand side of the Regge-Wheeler-Zerilli equation [225–227], that
describes the gravitational radiation in the test-mass limit at linear order
in the perturbation theory. This term naturally reproduces the pole at the
light ring that is observed in the test-particle limit for circular orbits [236].
The function T`m is a resummation of the PN leading-order logarithmic
terms in the orbital frequency, due to the back-scattering of the gravitational
waves off the effective potential well. Finally, the functions f`m and eiδ`m are
amplitude and phase corrections necessary to recover the known PN series
when computing the PN expansion of Eq. (1.68). The explicit definition
of each term is given in Sec. 2.4.3. The expression of f`m can be further
resummed to improve the accuracy of hF`m against the numerical results in
the test-particle limit. In particular, for the work in this thesis, I use the
resummation proposed in Refs. [219,220]. An alternative has been recently
proposed in Refs. [221–223].
The underlying assumption for the PN computation of the GW modes

is the quasi-circularity of the orbit. Therefore, it is natural to expect that
the accuracy of hF`m degrades close to the plunge, when the orbit is no
longer quasi-circular. In the EOB framework, the degradation of hF`m in this
regime is corrected through a phenomenological function N`m, called the
non-quasicircular (NQC) term, that multiplies the factorized expression of
the modes

hinsp−plunge
`m = N`m h

F
`m. (1.69)

The function N`m is a polynomial in the canonical momentum Pr (see
Eq. (2.27) for its explicit definition), to account for the GW emission from
the radial motion. The coefficients of the polynomial are tuned to reproduce
the shape of numerical waveforms around the plunge and, by construction,
N`m → 1 far away from this regime.
After the plunge, the BBH system undergoes the fully non-linear merger

phase, which results in the formation of a perturbed BH, that relaxes to
an equilibrium state by emitting GWs. As discussed in Sec. 1.2.1, this GW
signal can be accurately computed, within the black-hole perturbation theory
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framework, as a linear superposition of QNMs [237],

hRD
`m (t) =

∞∑
n=0

A`mne
−iσ`mnt, (1.70)

where A`mn are complex functions, depending on the details of the merger,
and, σ`mn are the complex QNM frequencies, depending on the mass and
spin of the perturbed BH. The latters are typically computed from the
masses and spins of the BBH system using fitting formulae derived from NR
waveforms [3, 238,239]. The expression in Eq. (1.70) was previously used by
EOB waveform models as starting point for building the merger-RD part of
the signal [233,234]. In that case, the model included N overtones and the
values of A`mn were computed by requiring continuity conditions between
the function hinsp−plunge

`m (t) and hmerger−RD
`m (t) on a comb for t < t`mmatch. This

procedure was numerically unstable in certain circumstances. For this reason,
a simpler ansatz for modeling the merger-RD signal was introduced in Ref. [1],
based on the studies in Ref. [240]. The expression of this ansatz is

hmerger-RD
`m (t) = ν Ã`m(t) eiφ̃`m(t) e−iσ`m0(t−t`mmatch), (1.71)

where σ`m0 is the least damped QNM, that dominates the signal for t �
t`mmatch, while Ã`m(t) and eiφ̃`m(t) are amplitude and phase corrections (see
Eqs. (2.34) and (2.35)), tuned to reproduce the shape of numerical waveforms
for t ∼ t`mmatch. The contribution of the overtones to the signal, which is
relevant for t ∼ t`mmatch (see Refs. [241]), is replaced by the phenomenological
functions Ã`m(t) and eiφ̃`m(t) in this simplified version of the model.

1.4.2.3. SEOBNRv4HM: the inspiral-merger-ringdown waveform model
including higher-order modes for binary black holes with
non-precessing spins

Chapter 2 is the publication that describes the EOB waveform model that
I developed, henceforth SEOBNRv4HM, which includes the effect of HMs for
BBHs with spins aligned (or anti-aligned) with the orbital angular momentum
of the binary.

SEOBNRv4HM is based on the model described in Ref. [1], henceforth SEOBNRv4,
with which it shares the two-body dynamics (also described in Sec. 1.4.2.1),
and the mode (`, |m|) = (2, 2). The novelty in SEOBNRv4HM, compared to
SEOBNRv4, is the inclusion of the HMs (`, |m|) = (2, 1), (3, 3), (4, 4), (5, 5). For
these new GW modes, I included new PN terms in the factorized form, as
defined in Eq. (1.68), and I tuned the coefficients of the phenomenological
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functions N`m, Ã`m and φ̃`m using 157 NR waveforms produced by the SXS
Collaboration, in the mass ratio and dimensionless spin ranges 1 ≤ q ≤ 10,
−0.99 ≤ χi ≤ 0.99 (see Appendix F for more details about these NR wave-
forms).
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NR (`,m) = (2, 2) vs SEOBNRv4
NR (`,m) = (2, 2), (3, 3), (2, 1), (4, 4), (5, 5) vs SEOBNRv4
NR (`,m) = (2, 2), (3, 3), (2, 1), (4, 4), (5, 5) vs SEOBNRv4HM

Figure 1.7.: Comparison between NR (solid black), SEOBNRv4HM (dashed
green) and SEOBNRv4 (dotted yellow) waveforms in an edge-on orientation
(ι = π/2, ϕ0 = 1.2) for the NR simulation SXS:BBH:0065 (q = 8, χ1 =
0.5, χ2 = 0). In the top panel is plotted the real part of the observer-frame’s
gravitational strain h+(ι, ϕ0; t)− i hx(ι, ϕ0; t), while in the bottom panel the
dephasing with the NR waveform ∆φh. The dotted-dashed red horizontal line
in the bottom panel indicates zero dephasing with the NR waveform. Both
SEOBNRv4 and SEOBNRv4HM waveforms are phase aligned and time shifted at
low frequency using as alignment window tini = 1000M and tfin = 3000M .
Figure taken from Ref. [182].

In Fig. 1.7, I compare an NR waveform with waveforms from the models
SEOBNRv4HM and SEOBNRv4, emitted by the same BBH system. In particular,
in the upper panel I show the real part of the function h+ − ih×, while
in the lower panel I plot the phase difference (or dephasing) between two
waveforms. Both these quantities are shown as a function of time. As it is
clear from the plot in the lower panel, including HMs in the EOB waveform
allows to better track the phase modulations in the inspiral NR waveform.
In fact, while the dephasing between the NR and the SEOBNRv4 waveform
(dotted orange line) exhibits a periodic modulation, this effect disappears
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in the dephasing between the NR and the SEOBNRv4HM waveform (dashed
green line). The remaining phase difference between the NR and SEOBNRv4HM
waveform is simply due to the residual inaccuracy in the waveform model,
and it is consistent with the inaccuracy between the NR and the SEOBNRv4
waveform when they only include the mode (`,m) = (2, 2) (solid black line).
Also the post-merger amplitude of the NR waveform (for t & 7500M) is
better tracked by SEOBNRv4HM compared to SEOBNRv4, as it is evident from
the upper panel of the figure. These modulations, in the amplitude and the
phase of the waveform, are caused by the HMs.
I use the faithfulness function, already defined in Eq. (1.41), as a quan-

titative way of measuring the improved accuracy of the EOB waveforms,
when including HMs. In this case, I use a slightly modified version of the
faithfulness defined in Eq. (1.41). Its expression is

F(ιNR, ϕ0NR, κNR) ≡ max
tc,ϕ0EOB,κEOB

(hNR, hEOB)√
(hNR, hNR) (hEOB, hEOB)

∣∣∣∣∣∣ ιNR=ιEOB
λNR=λEOB

.

(1.72)
The functions hNR,EOB are defined as

h ≡F+(θ, φ, ψ) h+(ι, ϕ0, DL,λ, tc; t) + F×(θ, φ, ψ) h×(ι, ϕ0, DL,λ, tc; t)
= A(θ, φ)

[
cosκ(θ, φ, ψ) h+(ι, ϕ0, DL,λ, tc; t)

+ sin κ(θ, φ, ψ) h×(ι, φ,DL,λ, tc; t)
]
, (1.73)

where F+(θ, φ, ψ) and F×(θ, φ, ψ) are the antenna patterns, already introduced
in Sec. 1.2.2, and the explicit definition ofA(θ, φ) and the effective polarization
κ(θ, φ, ψ) can be found in Chapter 2, Eqs. (2.7) and (2.6) respectively. As in
the definition of the faithfulness in Eq. (1.41), also in Eq. (4.28) there is a
maximization over the coalescence time tc and the phase ϕ0EOB. In addition,
in Eq. (4.28), there is also the maximization over the effective polarization
κEOB. The reason for this additional maximization is that the definition of
the faithfulness, in Eq. (1.41), is the standard one used in literature, that does
not consider waveforms with HMs. In this case, the angle κEOB is degenerate
with ϕ0EOB, hence there is no need for the additional maximization over κEOB.
When HMs are included in the waveforms, these two angles are not degenerate
anymore, and the natural extension of the definition of the faithfulness in
Eq. (1.41) is to also include the maximization over κEOB, as done in Eq. (4.28).
As in the case of the faithfulness defined in Eq. (1.41), also this faithfulness
is 1 when there is perfect agreement between two waveforms, and its value
decreases proportionally to their difference.
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In Fig. 1.8, I show the faithfulness between an EOB and an NR waveform
with q = 8, M = 200M�, χ1 = 0.85, χ2 = 0.85, as function of binary’s
orientation. As expected from the discussion in Sec. 1.4.1, the inclusion of
HMs in the waveform enhances the accuracy of the EOB model especially
when the binary is observed from an edge-on inclination (ι = π/2). In fact,
while for SEOBNRv4 the faithfulness decreases from 0.995 to 0.837, when
moving from face-on (ι = 0) to edge-on, for SEOBNRv4HM it only varies from
0.995 to 0.977.

Finally, I use the unfaithfulness (1−F) averaged over binary’s orientation,
sky location and waveform polarization

〈1−F〉ιNR,ϕ0NR,κNR ≡

1− 1
8π2

∫ 2π

0
dκNR

∫ 1

−1
d(cos ιNR)

∫ 2π

0
dϕ0NR F(ιNR, ϕ0NR, κNR) ,

(1.74)

to assess the accuracy of EOB waveforms, when compared to several NR
waveforms. In Fig. 1.9, I show an updated version of the plot in Fig. 4.5
of Chapter 2, including 91 new NR waveforms (described in Ref. [133]), in
addition to the 151 already used in Chapter 2. When using SEOBNRv4, that
only includes the waveform mode (`,m) = (2, 2), the unfaithfulness against
NR waveforms can be as large as 0.2 (upper panel). In this case, systems
with larger total mass and mass ratio, for which HMs are more important,
yield the largest unfaithfulness. When using SEOBNRv4HM (lower panel), the
unfaithfulness is smaller than 0.01 for most of the configurations and it is
between 0.01 and 0.015 just for few cases. Since the unfaithfulness of the
waveform model against NR waveforms is smaller than 1%, SEOBNRv4HM
is accurate enough to be used in the construction of template banks for
the detection of GW signals. I will discuss, in Sec. 1.5.1, its suitability for
parameter-estimation studies.
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Figure 1.8.: Faithfulness F(cos(ιNR), ϕ0NR, κNR = 0) for the configuration
(q = 8, M = 200M�, χ1 = 0.85, χ2 = 0.85): NR (` ≤ 5, m 6= 0) vs SEOBNRv4
(left panel), NR (` ≤ 5, m 6= 0) vs SEOBNRv4HM (right panel). Figure taken
from Ref. [182].
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Figure 1.9.: Unfaithfulness (1 − F) averaged over the three angles
(ιNR, ϕ0NR, κNR) as a function of the total mass, in the range 20M� ≤M ≤
200M�. Upper panel NR (` ≤ 5, m 6= 0) vs SEOBNRv4, lower panel NR
(` ≤ 5, m 6= 0) vs SEOBNRv4HM. The horizontal dotted-dashed black lines
represent the values of 1% and 3% unfaithfulness. This figure is an update of
Fig. 4.5 in Ref. [182].
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1.4.2.4. Gravitational-waveform modes for precessing binary systems

The morphology of the GW modes, for a precessing BBH system, is more com-
plicated with respect to the non-precessing case, because of the modulations
in the modes induced by the precession of the orbital angular momentum of
the binary L, as already mentioned in Sec. 1.2.1.

There are two types of precession [65, 67, 242, 243]: simple and transitional
precession. In the first case, the vectors L̂ ≡ L/|L|, Ŝ ≡ (S1 +S2)/|S1 +S2|
and Ĵ ≡ (L+S)/|L+S| precess on tight cones, with the angle formed by the
Ĵ -cone being much smaller with respect to the opening angle of the L̂-cone.
The vectors L̂ and Ŝ precess around Ĵ , and L̂ precess with an opening angle
growing with time. A condition for the simple precession to occur is that
|L| � |S|. Since at leading (Newtonian) order, |L| ∝ d1/2, where d is the
binary separation, for every precessing BBH system it exists a critical binary
separation dcrit such that for d < dcrit the system undergoes simple precession.

The transitional precession regime occurs if, during the coalescence, the
BHs reach a configuration in which J = L+ S ≈ 0. When this condition is
satisfied, the precessing dynamics is difficult to treat analytically. Analytical
and numerical analyses [65,67,242–245,245–248] demonstrated that during
transitional precession J may change its direction multiples times. See
Refs. [65,67,242–245,245–248] for more details on the simple and transitional
precession.

It is possible to understand the origin of the modulations on the waveform
induced by precession, starting from the leading-order expressions for h+ and
h× in Eqs. 1.24, that I write here again for convenience

h+(t) = 4
DL

(
GM
c2

)5/3 [ 5
c(tc − t)

]1/4 1 + (LN · N̂ )2

2 cos (ΦGW(t) + 2ϕ0)

(1.75)

h×(t) = 4
DL

(
GM
c2

)5/3 [ 5
c(tc − t)

]1/4

LN · N̂ sin (ΦGW(t) + 2ϕ0) , (1.76)

where I remind that L̂N is the direction of the Newtonian orbital angular
momentum, orthogonal to the orbital plane, and N̂ is the direction of the
observer. In an inertial frame, where the direction of the coordinate bases
is constant over time, the direction N̂ is fixed over time, while, in the case
of precession, the direction of L̂N is a function of time. For this reason, in
this frame the amplitude of h+(t) and h×(t) is modulated over time by the
variation of the factor L̂N · N̂ . Also ΦGW(t), the phase of h+(t) and h×(t),
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is modulated as a consequence of the precession of the orbital plane, see
e.g. Sec. IIIB in Ref. [65] for an explicit calculation of these modulations at
leading (Newtonian) order.
To simplify the modeling of GW signals emitted by such systems, it is

useful to find a frame, henceforth co-precessing frame, where the modulations
on the waveform due to precession can be factored out. This co-precessing
frame should ideally “follow” the precession of the orbital plane, such that
the precession effects can be reabsorbed by the frame, instead of appearing
in the waveform, as in the case of the waveform in the inertial frame. In the
co-precessing frame, the waveform should be easier to model and more similar
to that emitted by a non-precessing BBH system. In this case, one could
create a model of the waveform in the co-precessing frame, and then perform
an instantenous rotation to compute the waveform in the conventional inertial
frame.
The co-processing frame used for the EOB waveform models for BBHs

with precessing spins [249, 250] was defined in Ref. [243]. In Fig. 1.10, I show
the inertial frame, defined according to the convention used by the LIGO
Scientific and Virgo collaborations, together with the co-precessing frame
used in the precessing EOB waveform model that I summarize in the next
section. In the inertial frame (red), the basis êI(3) is constant in time and
aligned with L̂N, the direction of the Newtonian angular momentum of the
binary, at the time t = tini, i.e. the initial time of the waveform. The basis
êI(1) is also constant in time and it is aligned with d̂(t = tini), the direction of
the initial separation of the BHs. The frame is completed by the third basis
êI(2) = êI(3) × êI(1). The co-precessing frame (blue) is determined by the basis
versors {êP(i)}. The basis versor êP(3)(t) coincides, at each moment in time,
with the orbital angular momentum L̂(t) 12. The other two basis versors,
êP(1)(t) and êP(2)(t), are initially aligned with the corresponding bases in the
inertial frame, and their time evolution is determined by the equation

dêP(1),(2)

dt
= Ωe × êP(1),(2), (1.77)

with Ωe ≡ L̂(t) × dL̂(t)
dt

. In Ref. [243], it is shown that, when this frame is
used, the precessional modulations in both amplitude and phase are removed
in leading-order PN waveforms.

12In the original definition of the frame in Ref. [243] the basis êP(3)(t) coincided with L̂N(t).
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Figure 1.10.: The inertial frame (red), defined by the directions of the ini-
tial orbital angular momentum L̂N(t = tini) and separation d̂(tini), and
co-precessing frame (blue), instantaneously aligned with L̂(t) and described
by the Euler angles (α, β, γ). Figure adapted from Ref. [202].
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1.4.2.5. SEOBNRv4PHM: the inspiral-merger-ringdown waveform model
including higher-order modes for binary black holes with
precessing spins

Chapter 3 is the publication that describes the generalization of the waveform
model SEOBNRv4HM, introduced in Sec. 1.4.2.3, to BBH systems with precessing
spins, henceforth SEOBNRv4PHM. The EOB dynamics, described in Sec. 1.4.2.1,
is generic and it can be used without any modification also for SEOBNRv4PHM.
For the GW modes in the co-precessing frame, they can be modeled using
their expressions in the aligned-spin limit in Eq. (1.67). The only difference
is that, in the precessing case, the modes are functions of χ1,2(t) · L̂(t), the
time dependent projection of the dimensionless spins on the orbital angular
momentum, instead of the constant projection χ1,2 · L̂. Finally, the modes
hP`m in the co-precessing frame are rotated to the conventional inertial frame,
defined in Fig. 1.10, using the transformation

hI`m(t) =
∑̀

m′=−`
D

(`)∗
m′m[α(t), β(t), γ(t)]hP`m′(t), (1.78)

whereD(`)∗
m′m is the complex conjugate of the Wigner D-matrix, and (α(t), β(t), γ(t))

are the Euler angles, as defined in Fig. 1.10.
Also in this case, I use the faithfulness to quantify the agreement of the

SEOBNRv4PHM waveforms against NR simulations. In particular, I use the
sky-and-polarization-averaged, SNR-weighted faithfulness defined as

FSNR(M, ι) ≡ 3

√√√√∫ 2π
0 dκ

∫ 2π
0 dϕ0 F3(M, ι, ϕ0, κ) ρ3(ι, ϕ0, κ)∫ 2π

0 dκ
∫ 2π

0 dϕ0 ρ3(ι, ϕ0, κ)
, (1.79)

where F(M, ι, ϕ0, κ) is the faithfulness function defined in Eq. (4.28), and ρ is
the SNR defined in Sec. 1.2.2. In Fig. 1.11 I show histograms of the maximum
over total masses of the unfaithfulness 1−FSNR(M, ι = π/3) between 1404 NR
waveforms and the corresponding SEOBNRv4PHM waveforms, see Chapter 3 for
details on the NR waveforms. Including HMs in SEOBNRv4PHM improves the
accuracy of the model by a factor of 5 with respect to the same model without
HMs (i.e. only the modes with ` = 2 are included), respectively red and yellow
histograms in the figure. When computing the unfaithfulness, if I restrict
both NR and SEOBNRv4PHM waveforms to the ` = 2 modes (black histogram),
the accuracy is the same as in the case in which both waveforms include all
modes up to ` = 5 (red histogram). This means that the non-perfect modeling
of HMs is not the limiting factor for the accuracy of the model. Finally, in

54



1.4. Gravitational waveform models with higher-order modes for spinning binary black-holes

10−4 10−3 10−2 10−1

maxM

[
1−FSNR(M, ι = π/3)

]
0

50

100

150

200
nu

m
b

er
of

ca
se

s

` = 2 NR vs ` = 2 SEOBNRv4PHM

` = 5 NR vs ` = 2 SEOBNRv4PHM

` = 5 NR vs ` = 5 SEOBNRv4PHM

Figure 1.11.: Sky-and-polarization averaged, SNR weighted unfaithfulness for
an inclination ι = π/3 between NR waveforms and SEOBNRv4PHM, including
(red histogram) and omitting (yellow histogram) HMs. The vertical dashed
lines show the medians. Not including HMs in the model results in high
unfaithfulness. However, when they are included, the unfaithfulness between
SEOBNRv4PHM and NR is essentially at the same level as when only ` = 2
modes are compared (black histogram). Figure adapted from Ref. [202].

Fig. 1.12 I compare the unfaithfulness distribution computed before using
SEOBNRv4PHM, with that obtained when using the model IMRPhenomPv3HM. As
it is clear from the plot, the unfaithfulness computed with SEOBNRv4PHM (red
histogram) are typically smaller than those obtained with IMRPhenomPv3HM
(yellow histogram), therefore SEOBNRv4PHM is more accurate. In particular,
the median of the unfaithfulness distribution obtained with SEOBNRv4PHM is
approximately 1%, while it is around 2% for IMRPhenomPv3HM. In addition,
all the unfaithfulness are lower than 10% for SEOBNRv4PHM, while, in the case
of IMRPhenomPv3HM some, configurations have unfaithfulness larger than 10%.
In Sec. 1.5.2, I will discuss the impact of the different accuracy of the two
waveform models on the measurement of the BBH parameters.
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Figure 1.12.: The median of unfaithfulness is around 1% for SEOBNRv4PHM
(red histogram) and 2% for IMRPhenomPv3HM (yellow histogram). Medians
are shown as dashed vertical lines. Note that for SEOBNRv4PHM, the worst
unfaithfulness is below 10% and the distribution is shifted to lower values.
Figure adapted from Ref. [202].

1.4.3. SEOBNRv4HM_ROM: reduced-order-modeling techniques applied to
waveform models with higher-order modes for binary black
holes with non-precessing spins

Data analysis applications of waveform models, such as the construction of
template banks and the Bayesian inference of binary parameters, require to
compute O(107−108) different waveforms [171,174,251,252]. Since generating
a single waveform, using the models introduced in Secs. 1.4.2.3 and 1.4.2.5,
takesO(1−10)s, they are difficult to use for these purposes. While it is possible
to directly optimize these waveform models, using analytical approximations
to accelerate the integration of the EOB equations of motion [253, 254], a
better established method to speed up the waveform computation is the
construction of a reduced-order model (ROM) [128–131, 255–259] of the
original waveform model. The basic idea of a ROM is that, given a large
enough set of waveforms in a chosen region of the binary parameter space,
one can compute new waveforms in the same region as an interpolation of the
waveforms in the set. The method to produce these interpolated waveforms is
called ROM. It is a useful replacement of the original model if the interpolated
waveforms are an accurate representation of those generated with the original
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model, and they are computed faster.
Chapter 4 is the publication that describes the ROM of SEOBNRv4HM,

henceforth referred to as SEOBNRv4HM_ROM. In particular, I costruct a ROM for
each GW mode, h̃`m(f), expressed in frequency domain. Then, from the GW
modes, I obtain the two polatizations h+ and h× using Eq. (1.51). Since h̃`m(f)
are complex functions, to build the ROM for each mode one has to interpolate
two real functions over the binary parameter space. Typically, one chooses the
amplitude Ã`m(f) and the phase Ψ`m(f) of h̃`m(f) = Ã`m(f) exp (−iΨ`m(f)).
When the HMs are included in the waveform model, this choice is not possible
because the amplitude of the modes with odd m vanishes in the limit of
equal masses and BH’s spins, and the phase is not a well-defined function
in this limit. While using real and imaginary part of h̃`m(f) seems a valid
alternative, it is also unfeasible as these are oscillatory functions, difficult
to interpolate in practice. The solution to this problem is based on the fact
that, during the inspiral regime, the time-domain phase φ`m(t) of each mode
h`m(t) = A`m(t) exp (−iφ`m(t)) can be approximated as φ`m(t) ∝ mφorb(t),
where φorb(t) is the orbital phase of the binary (see e.g. Ref. [62] Eq.(327)).
This means that the phase of all modes, including those with odd m, can be
approximated as a function of φ22(t)/2, which is always well defined because
the mode (`,m) = (2, 2) never vanishes. In particular

φ`m(t) ∝ −m arg k(t), (1.80)
where k(t) = A(t) exp (−iφ22/2) and A(t) is a non-vanishing amplitude whose
expression is irrelevant for this discussion. The expression equivalent to
Eq. (1.80), for the phases Ψ`m(f) of the modes in frequency domain h̃`m(f)
can be obtained by computing analytically the Fourier transform of h`m(t)
and k(t), using the stationary phase approximation (SPA) method [260]. Its
expression is

Ψ`m(f) ∝ mΨk(f/m), (1.81)
where Ψk(f) is the phase of k̃(f), the Fourier transform of k(t). The function
Ψk(f) is the first function that I interpolate over the binary parameter
space for the construction of the ROM, but it only provides an approximate
representation of the phase of h̃`m(f), and contains no information on the
amplitude of the modes. For this reason, to accurately reconstruct the
functions h̃`m(f), I also have to interpolate over the binary parameter space
the real and imaginary part of the complex functions h̃c`m(f), defined as

h̃c`m(f) ≡ h̃`m(f)eimΨk(f/m) = Ã`m(f)ei(mΨk(f/m)−Ψ`m(f)). (1.82)
The functions <(h̃c`m(f)) and =(h̃c`m(f)) are not as difficult to interpolate as
<(h̃`m(f)) and =(h̃`m(f)), because most of the oscillatory behaviour present in
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h̃`m(f) is removed in h̃c`m(f) by virtue of Eq. (1.81). Having the interpolation
over the binary parameter space of Ψk(f), <(h̃c`m(f)) and =(h̃c`m(f)) allows
to reconstruct h̃`m(f) simply by inverting Eq. (1.82). The interpolation
of these functions over the binary parameter space has to be performed
only on the 3D space of the mass ratio q, and the two z-component of the
BH spins, χ1z and χ2z, since the dependence of the modes on all the other
parameters is trivial. To produce the interpolations of Ψk(f), <(h̃c`m(f))
and =(h̃c`m(f)), I first decompose them into their respective single value
decomposition (SVD) bases, and then I interpolate the projection coefficients
using tensor-product spline interpolation. This is a standard technique already
used in Refs. [1, 255,256].

I test the accuracy of this ROM against SEOBNRv4HM with metric given by
the averaged unfaithfulness defined in Eq. (1.74). I find that this unfaithful-
ness between SEOBNRv4HM_ROM and SEOBNRv4HM is on average O(0.001%),
when computed for many different values of the masses and the BH’s
spins. Since the same unfaithfulness is O(0.1%) when computed between
SEOBNRv4HM and NR waveforms (see Fig. 1.9), the modeling error added by
the ROM is negligible with respect to the error of the original model against
the NR simulations.
Finally, I evaluate the speed of the ROM with respect to SEOBNRv4HM.

I find that generating SEOBNRv4HM_ROM waveforms is ∼ 100 times faster
than generating SEOBNRv4HM waveforms in the total mass and mass ratio
ranges 5M� ≤ M ≤ 200M� and 1 ≤ q ≤ 50, and for every value of the
BH spins. SEOBNRv4HM_ROM is therefore much more efficient to use in data
analysis applications. Also for the waveform model SEOBNRv4PHM, a procedure
similar to the ROM technique is being used to produce a faster version of
the model [261].

1.5. Binary black-holes characterization using waveform
models with higher-order modes

In this section, I summarize the results I obtained when using the waveform
models with HMs, outlined in the previous sections, to measure the parameters
of BBH systems. In Secs. 1.5.1 and 1.5.2, I use synthetic GW signals to test the
accuracy of the waveform models, in the case for which the parameters of the
binary are already known. Then, in Secs. 1.5.3 and 1.5.4, I extend the analysis
to two real GW signals, detected by the LIGO and Virgo interferometers,
respectively during O2 and O3a: GW170729 [32] and GW190412 [34]. These
GW signals are particularly interesting because their sources lie in regions of
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the binary parameter space where the HMs are expected to be relevant in
the GW signal. In addition to the signal GW190412, the waveform models
outlined in the previous sections, were also used for the inference of the BBH
parameters of all the other GW signals detected during O3a [36]. In particular,
they were also used to analyze other signals for which the effect of HMs was
expected to be important, namely GW190521 [33] and GW190814 [35]. Here,
I restrict my attention to the signals GW170729 and GW190412 because I
directly analyzed them.

1.5.1. Synthetic signal I: the aligned-spins case

In Chapter 4, Sec. 4.4.3, I test the accuracy of the waveform model SEOBNRv4HM_ROM,
when used to measure the parameters of a BBH system from a synthetic
GW signal. For this study, I choose to consider a GW signal measured
by the network composed by the two LIGO detectors: LIGO Hanford,
LIGO Livingston, and the Virgo detector. To construct the synthetic signal
dsyn(t) = nsyn(t) + hsyn(t), it is necessary to specify the detector noise nsyn(t),
and the waveform hsyn(t). For the noise of the three detectors, I choose to
use the mean value 〈nsyn(t)〉 = 0. This is a typical choice, when the purpose
of the study is to test the accuracy of a waveform model. In fact, it allows
to avoid biases in the parameter estimation due to a particular realization
of the Gaussian detector noise, when one is interested in the biases due to
the inaccuracy of the waveform model. The noise also enters the parameter-
estimation analysis through the PSD in the likelihood function, see Eq. (1.43).
For this analysis, I use the PSDs of the LIGO and Virgo detectors at design
sensitivity [56,262].
I generate hsyn(t), the waveform for the synthetic signal, using the NR

surrogate model NRHybSur3dq8 [133] introduced in Sec. 1.4.1. Typically
these studies are performed using NR waveforms as synthetic signals, but
the waveforms generated with this model are indistinguishable from NR
waveforms at the SNR of this study, which I indicate below.

I choose the parameters of the BBH system for the synthetic signal to
enhance the HMs contribution in the waveform. In particular, for the mass
ratio I choose the value q = 8, and I use a large total mass M = 67.5M�.
Also to enhance the HMs contribution in the waveform, I set the inclination
angle θJN to π/2. I focus on BBH systems with BH spins aligned with the
orbital angular momentum of the binary and, for this synthetic signal, I
set their magnitude to |χ1| = 0.5 and |χ2| = 0.3. The network-SNR of the
synthetic signal, defined as the the root sum squared of the SNRs in each
detector, is 21.8. All the other parameters are less relevant for the discussion,
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Model name GW modes
SEOBNRv4_ROM (`, |m|) = (2, 2)
SEOBNRv4HM_ROM (`, |m|) = (2, 2), (2, 1), (3, 3), (4, 4), (5, 5)
IMRPhenomHM (`, |m|) = (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3)
NRHybSur3dq8 ` ≤ 8

Table 1.2.: The waveform models used to analyze the synthetic signal de-
scribed in Sec. 1.5.1. I also specify the GW modes included in each waveform
model.

and can be found in Chapter 4 Sec. 4.4.3.
Finally, I use the waveform model SEOBNRv4HM_ROM to perform the Bayesian

parameter estimation on this synthetic signal, and measure the parameters
of the BBH system. As a comparison, I also use other three waveform
models for the same analysis: NRHybSur3dq8 [133], IMRPhenomHM [124] and
SEOBNRv4_ROM [1], which only includes the mode (`, |m|) = (2, 2). In Table 1.2,
I summarize the waveform models used to analyze this synthetic signal.
The first binary parameters that are interesting to examine are the mass

ratio q and the effective spin [66,119,209,263]

χeff ≡
(m1χ1 +m2χ2)

M
· L̂N = 1

1 + q
(qχ1 + χ2) · L̂N, (1.83)

where I remind that L̂N is the direction of the Newtonian angular momentum
of the binary. The mass ratio q and the effective spin χeff are typically well
measured because they determine tc, the time of coalescence of the binary
from a given frequency, which the GW detectors can measure quite well. In
addition, q and χeff are degenerate because the phase of the inspiral waveform
depends on them at similar PN orders, respectively 1PN and 1.5PN13. In
fact, it can be easily shown that the effect of a smaller mass ratio on the
phase can be compensated by that of a larger effective spin [264–268]. As
a consequence, these two parameters are expected to be correlated in the
parameter estimation of BBH systems.
In Fig. 1.13, I show, for each waveform model, the 1D and 2D posterior

distributions for q and χeff . The black dot in the plot represents the values
used in the synthetic signal. All waveform models are able to measure, within
13In reality, the phase of the inspiral waveform at 1PN order is proportional to ν = q/M ,

while at 1.5PN is proportional to β ≡ 113/12(χeff−76ν/113χs) with χs ≡ (χ1+χ2)·L̂N.
Nevertheless, in many applications the parameters q and χeff are used in substitution
of ν and β for simplicity.
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the 90% credible regions, the binary parameters used in the synthetic signal.
There are, however, some differences in the shape of the 90% credible regions
that are worth discussing.

First of all, in the measurement of q and χeff obtained with SEOBNRv4HM_ROM
(cyan curve) these two parameters are less correlated, when compared to
those obtained with SEOBNRv4_ROM (red curves). As a consequence, they are
measured with more precision. This is expected, since the contribution of
HMs to the waveform increases when the binary system is more asymmetric,
as discussed in Sec. 1.4.1. Therefore having HMs in the signal helps in
measuring the mass ratio of the binary system and, consequently, in breaking
its degeneracy with the effective spin.

The 2D posterior distribution obtained with SEOBNRv4HM_ROM (cyan curve)
has a quite similar size to that computed with NRHybSur3dq8 (blue curve), but
it is less centered around the true values. This shift in the SEOBNRv4HM_ROM
posterior from the true values is a systematic bias due to the inaccuracy of
the waveform model. In fact, in the case of “small” waveform systematic
errors, the posterior distribution is expected to be shifted with respect to
the true value, as discussed in Sec. 1.2.3. Despite this systematic error, at
the SNR of this synthetic signal SEOBNRv4HM_ROM is still able to measure the
true parameters within the 90% credible interval. This result is consistent
also with the expectation coming from Lindblom’s criterion, discussed in
Sec. 1.2.3. In this case, the unfaithfulness between the SEOBNRv4HM_ROM and
the NRHybSur3dq8 waveform is 0.3%. For this value of the unfaithfulness,
Lindblom’s criterium predicts a bias larger than the statistical uncertainty
in at least one of BBH parameters for values of the network-SNR larger
than ∼ 22, which is greater than 21.8 used for this synthetic signal. The
inaccuracy of the model IMRPhenomHM has instead a larger impact on the
posterior distribution obtained with this model (orange curve). In fact,
its shape is very different with respect to that obtained with the model
NRHybSur3dq8, and it even features a bimodality. This is not unexpected
since in IMRPhenomHM the HMs are modeled approximately without using
any information from NR waveforms. Also this result is consistent with the
expectation from Lindblom’s criterium. In fact, the unfaithfulness between
the IMRPhenomHM and the NRHybSur3dq8 waveform is 3.2%, and, according
to Lindblom’s criterium, unbiased measurements of the parameters are only
possible for network-SNRs . 7.
Another two interesting binary parameters to study are, θJN, the angle

between the total angular momentum J and the direction of the observer14,

14In the case of BBH systems with non-precessing spins the angles θJN and ι coincide.
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Figure 1.13.: 2D and 1D posterior distributions for the mass ratio q and
the effective spin χeff measured from the synthetic BBH signal described
in the text. In the 2D posteriors solid contours represent 90% credible
intervals and the black dot shows the value of the parameters used in the
synthetic signal. In the 1D posteriors they are represented respectively by
dashed lines and black solid lines. The gray shaded regions are the prior
distributions. The parameter estimation is performed with the waveform
models SEOBNRv4_ROM (red), SEOBNRv4HM_ROM (cyan), NRHybSur3dq8 (blue)
and IMRPhenomHM (orange). Figure adapted from Ref. [269].

and the luminosity distance DL. As in the case of q and χeff , they are
also correlated when only the dominant mode (`, |m|) = (2, 2) is included
in the waveform. The reason for this correlation can be easily understood
from Eq. (1.51) expressed for simplicity in the limit of θJN ≈ 0. Under
this approximation, the relevant modes with negative m can be neglected,
as −2Y`m(θJN → 0, ϕ0) → 0. In this limit, and in the case that only the
(`, |m|) = (2, 2) is included in the waveform, Eq. (1.51) reduces to

h+ − ih× ≈ −2Y22(θJN, ϕ0)
DL

h22(t;λ). (1.84)

It is important to highlight that −2Y22(θJN, ϕ0) is a complex function only
because of the term e2iϕ0 , while the dependence on θJN is a real function.
Eq. (1.84) implies that h+ and h× depend on θJN and DL only through the
combination −2Y22(θJN, ϕ0)/DL, hence they are correlated. In addition, h+
and h× depend on θJN and DL through a real function, therefore changing
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θJN and DL only effects their amplitude. As a consequence, θJN and DL are
particularly difficult to measure since LIGO and Virgo detectors are most
sensitive to the phase of h+ and h×. When at least one HM is included in the
waveform, for example the (`, |m|) = (3, 3) mode, Eq. (1.84) is modified to

h+ − ih× ≈
1
DL

(−2Y22(θJN, ϕ0)h22(t;λ) + −2Y33(θJN, ϕ0)h33(t;λ)) . (1.85)

In this case, there is not a simple correlation between θJN and DL. In
addition, the phases of h+ and h× are now functions of the phases of the
individual modes h22 and h33, but also of −2Y22(θJN, ϕ0) and −2Y33(θJN, ϕ0).
As a consequence, θJN has an effect on the phases of h+ and h× and, for this
reason, it can be better measured by LIGO and Virgo detectors.
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Figure 1.14.: 2D and 1D posterior distributions for the angle θJN and the
luminosity distance DL measured from the synthetic BBH signal described
in the text. In the 2D posteriors solid contours represent 90% credible
intervals and the black dot shows the value of the parameters used in the
synthetic signal. In the 1D posteriors they are represented respectively by
dashed lines and black solid lines. The gray shaded regions are the prior
distributions. The parameter estimation is performed with the waveform
models SEOBNRv4_ROM (red), SEOBNRv4HM_ROM (cyan), NRHybSur3dq8 (blue)
and IMRPhenomHM (orange). Figure adapted from Ref. [269].

These expectations about the parameters θJN and DL are confirmed by
their measurements obtained from the synthetic signal, which I present in
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Fig. 1.14. Here, I show the 1D and 2D posterior distributions for these two
parameters, when measured with the different waveform models listed above.
The degeneracy between θJN and DL is present when using for the parameter
estimation the waveform model SEOBNRv4_ROM (red curve), but it is broken
when the HMs are correctly included in the waveform, as in the case of the
models SEOBNRv4HM_ROM (cyan curve) and NRHybSur3dq8 (blue curve). As
a result, the measurement of both these parameters are more precise when
obtained with one of these waveform models. As in the case of the q and
χeff , also here there is a shift between the 2D posterior distribution obtained,
with the model SEOBNRv4HM_ROM, and the true values of the parameters.
Also in this case, the explanation for this shift is a systematic bias due
to the inaccuracy in the waveforms calculated with SEOBNRv4HM_ROM. At
the SNR of this synthetic signal, the systematic bias is smaller than the
statistical uncertainty and the true values are correctly measured within the
90% credible intervals. On the contrary, the posterior distribution obtained
with the waveform model IMRPhenomHM has a completely different shape
with respect to those obtained with the other two models with HMs. The
measurement of θJN and DL, in this case, is similar to that obtained with the
waveform model SEOBNRv4_ROM, which does not include HMs. As before for
q and χeff , also this imprecise measurement of θJN and DL is likely due to the
approximation used in the construction of the HMs in this waveform model.

This study confirms that including HMs in waveform models improves the
measurement of the binary parameters of spinning BBH systems, as also
found in Refs. [189,190,270]. Most importantly, this analysis demonstrates
that SEOBNRv4HM_ROM can be used for parameter estimation yielding unbiased
measurements, even for signals with moderately high SNR and configurations
where the effect of HMs in the waveform is large.

1.5.2. Synthetic signal II: the precessing-spins case

In Chapter 3 Sec. 3.5, I extend the study described in the section above to
BHs with precessing spins. For this purpose, I use SEOBNRv4PHM to measure
the parameters of a BBH system from a synthetic GW signal. Also in this case
I use the three-detectors network, described in Sec. 1.5.1. In addition, for the
construction of the synthetic signal I use, as before, the mean value of the noise
〈nsyn(t)〉 = 0. Also here, I use the PSDs of the noise of the Advanced LIGO
and Advanced Virgo detectors at design sensitivity. For the waveform, I use
the NR waveform SXS:BBH:0165 [2, 102] having mass ratio q = 6 and initial
spin components χ1 = (−0.06, 0.78,−0.47) and χ2 = (0.08,−0.17,−0.23).
The large mass ratio, and the in-plane spin components of this BBH system,
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guarantee that the waveform features both a substantial HMs contribution
and strong precessional effects. For the synthetic signal, I use a large total
mass of the system, M = 76M�, and an inclination angle close to edge-on,
θJN ≈ 1.3, also to emphasize the HMs in the waveform. The network-SNR of
the synthetic signal is 21. All the other parameters for the synthetic signal
are not relevant for this discussion and are reported in Chapter 3 Sec. 3.5.
I perform the Bayesian parameter estimation on the signal using the

waveform models SEOBNRv4PHM and IMRPhenomPv3HM [204] for comparison.
In Fig. 1.15, I show the 2D and 1D posterior distributions for the component
masses m1 and m2, obtained when using the two models for the analysis.
While with SEOBNRv4PHM the true value is correctly measured within the 90%
credible interval for both masses, this is not the case for IMRPhenomPv3HM.
In fact, with this waveform model, the true value of m1 is excluded from
the 90% credible interval. This is not unexpected, as the unfaithfulness
between the IMRPhenomPv3HM and the NR waveform is 8.8%, while it is
only 4.4% when computed between the SEOBNRv4PHM and the NR waveform.
In this case, Lindblom’s criterium predicts a bias larger than the statistical
uncertainty in the measurement of at least one of the BBH parameter for both
waveform models. In fact, with the unfaithfulness of IMRPhenomPv3HM and
SEOBNRv4PHM, measurements with bias smaller than the statistical uncertainty
are predicted for network-SNRs values smaller than ∼ 6 and ∼ 9, respectively.
I will show later that also SEOBNRv4PHM provides a measurement with bias
larger than the statistical uncertainty in one of the binary parameters, as
predicted by Lindblom’s criterium.

Regarding the BH spins, the parameter χeff , defined in Eq. (1.83), ignores
the spin components perpendicular to L̂N. In the case of precessing BBH sys-
tems, these spin components are also interesting to measure and, a commonly
used spin parameter to quantify their magnitude is the effective precession
parameter [121]

χp = max {|χ1⊥|, k |χ2⊥|}, (1.86)

with χi⊥ = χi − (χi · L̂N)L̂N and k = q(4q + 3)/(4 + 3q). In Fig. 1.16, I
show the 2D and 1D posterior distributions for χeff and χp obtained using
SEOBNRv4PHM and IMRPhenomPv3HM. Also in this case SEOBNRv4PHM, is able
to measure the values of these two spin parameters within the 90% credible
interval, while, with IMRPhenomPv3HM, the true values are excluded at this
level.

Finally, in Fig. 1.17, I show the 2D and 1D posterior distributions for the
inclination angle θJN and the luminosity distance DL, obtained with the two
waveform models. In this case, the inclination angle θJN measured using
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Figure 1.15.: 2D and 1D posterior distributions for the component masses in
the source frame measured from the synthetic BBH signal described in the
text. In the 2D posteriors solid contours represent 90% credible intervals and
the black dot shows the value of the parameters used in the synthetic signal.
In the 1D posteriors they are represented respectively by dashed lines and
black solid lines. The parameter estimation is performed with the waveform
models SEOBNRv4PHM (blue) and IMRPhenomPv3HM (red). Figure taken from
Ref. [202]

the model SEOBNRv4PHM has a bias larger than the statistical uncertainty, as
the true value of θJN lies outside the 90% credible interval of the posterior
distribution. This confirms the prediction made before, using Lindblom’s
criterium, that at least one of the BBH parameter measured by SEOBNRv4PHM
would have a bias larger than the statistical uncertainty. On the contrary,
IMRPhenomPv3HM provides a measurement of this parameter within the 90%
credible interval. Both SEOBNRv4PHM and IMRPhenomPv3HM are able to recover
the true value of the luminosity distance within the 90% credible interval.
This study demonstrates that, even for this BBH configuration with a

large contribution of the HMs and strong precessional effects, the model
SEOBNRv4PHM yields an unbiased measurement for the most relevant binary
parameters (masses, spins and luminosity distance) in the case of a signal
with the moderately high value of the SNR of 21.

In Chapter 3 Sec. 3.5, I also test the ability of SEOBNRv4PHM to provide
unbiased measurements of the binary parameters, in the case of a synthetic
signal with very large SNR, but for a BBH system with smaller mass ratio and
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Figure 1.16.: 2D and 1D posterior distributions for the χeff and the χp pa-
rameters measured from the synthetic BBH signal described in the text. In
the 2D posteriors solid contours represent 90% credible intervals and the
black dot shows the value of the parameters used in the synthetic signal.
In the 1D posteriors they are represented respectively by dashed lines and
black solid lines. The parameter estimation is performed with the waveform
models SEOBNRv4PHM (blue) and IMRPhenomPv3HM (red). Figure taken from
Ref. [202]

BH’s spin magnitudes. Also in this case, the synthetic signal only includes the
waveform and no detector noise. For the signal, I use a waveform generated
from the NR surrogate model NRSur7dq4 [133], instead of a NR waveform,
because they are indistinguishable at the SNR of this study, which I indicate
below. The BBH system emitting this waveform has mass ratio q = 3, total
mass M = 70M�, initial spins χ1 = (0.3, 0.0, 0.5) and χ2 = (0.2, 0.0, 0.3)
and inclination angle θJN ≈ 0.9. The network-SNR of the signal, in the same
three-detector network used before, is 50. The other binary parameters are
not relevant for the discussion, and can be found in Chapter 3 Sec. 3.5.

I perform the parameter estimation on this signal using the waveform model
NRSur7dq4, in addition to SEOBNRv4PHM and IMRPhenomPv3HM. In Table 1.3, I
summarize the waveform models used in this study and in the study above. In
Fig. 1.18, I show the 2D and 1D posterior distributions for the masses m1 and
m2. Even for this large SNR, SEOBNRv4PHM (blue curve) is able to correctly
measure the true values of the masses within the 90% credible intervals. In
addition, the posterior distributions for the m1 and m2 obtained with this
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Figure 1.17.: 2D and 1D posterior distributions for the inclination angle θJN
and the luminosity distance DL measured from the synthetic BBH signal
described in the text. In the 2D posteriors solid contours represent 90%
credible intervals and the black dot shows the value of the parameters used
in the synthetic signal. In the 1D posteriors they are represented respectively
by dashed lines and black solid lines. The parameter estimation is performed
with the waveform models SEOBNRv4PHM (blue) and IMRPhenomPv3HM (red).
Figure taken from Ref. [202]

model agree very well with those obtained using the NR surrogate model
(cyan curve). The waveform model IMRPhenomPv3HM (red curve) is also able
to recover the true values of m1 and m2 within the 90% credible interval.
Both waveform models are also able to measure with bias smaller than the
statistical uncertainty the spin parameters χeff and χp, see Chapter 3 Sec. 3.5
for the detailed analysis. Finally, in Fig. 1.19, I show the 2D and 1D posterior
distributions for the inclination angle θJN and the luminosity distance DL,
as measured by the waveform models SEOBNRv4PHM (blue), IMRPhenomPv3HM
(red) and NRSur7dq4 (cyan). Also for these parameters SEOBNRv4PHM pro-
vides unbiased measurements, in excellent agreement with the NR waveform
model NRSur7dq4. Conversely, the parameters θJN and DL measured with
IMRPhenomPv3HM have a bias larger than the statistical uncertainty, as their
true values lie outside the 90% credible intervals obtained with this model.
This is in agreement with the expectation from Lindblom’s criterium. In
fact, the unfaithfulness between the NRSur7dq4 and the IMRPhenomPv3HM
waveform is 1%. For this value of the unfaithfulness, Lindblom’s criterium
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Model name GW modes in co-precessing frame
SEOBNRv4PHM (`, |m|) = (2, 2), (2, 1), (3, 3), (4, 4), (5, 5)
IMRPhenomPv3HM (`, |m|) = (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3)
NRSur7dq4 ` ≤ 8

Table 1.3.: The waveform models used to analyze the synthetic signals de-
scribed in Sec. 1.5.2. I also specify the GW modes included in each waveform
model.

predicts a bias larger than the statistical uncertainty in one of the BBH
parameter for network-SNR values larger than 19. Also for SEOBNRv4PHM,
Lindblom’s criterium predicts a bias larger than the statistical uncertainty in
one of the measured BBH parameters. In fact, the unfaithfulness between the
SEOBNRv4PHM and the NRSur7dq4 waveform is 0.2%, for which Lindblom’s
criterium predicts bias larger than the statistical uncertainty in at least one
of the BBH parameters, for network-SNRs larger than ∼ 42. However, for
SEOBNRv4PHM I find that none of the measured parameters have biases larger
than the statistical uncertainty. This confirms that Lindblom’s criterium is
sometimes too conservative, as already observed in Ref. [170].
In conclusion, this analysis shows that using SEOBNRv4PHM for parameter

estimation will also be appropriate to analyze the properties of BBHs detected
by upgraded version of the LIGO and Virgo detectors, when GW signals
with such a large SNR are expected as a consequence of the improvements in
detector sensitivity.
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Figure 1.18.: 2D and 1D posterior distributions for the component masses in
the source frame measured from the synthetic BBH signal described in the
text. In the 2D posteriors solid contours represent 90% credible intervals and
the black dot shows the value of the parameters used in the synthetic signal.
In the 1D posteriors they are represented respectively by dashed lines and
black solid lines. The parameter estimation is performed with the waveform
models SEOBNRv4PHM (blue), IMRPhenomPv3HM (red) and NRSur7dq4 (cyan).
Figure taken from Ref. [202]
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Figure 1.19.: 2D and 1D posterior distributions for the inclination angle θJN
and the luminosity distance DL measured from the synthetic BBH signal
described in the text. In the 2D posteriors solid contours represent 90%
credible intervals and the black dot shows the value of the parameters used
in the synthetic signal. In the 1D posteriors they are represented respectively
by dashed lines and black solid lines. The parameter estimation is performed
with the waveform models SEOBNRv4PHM (blue), IMRPhenomPv3HM (red) and
NRSur7dq4 (cyan). Figure taken from Ref. [202]
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1.5.3. The LIGO-Virgo signal GW170729

Chapter 5 is the publication in which I use the waveform model SEOBNRv4HM
(as its ROM was not available at the time of this study) to analyze the signal
GW170729 [32] detected by the LIGO and Virgo interferometers. This real
GW signal is interesting to study using waveform models with HMs, because
its source is likely the most massive one observed during the the first and
second (O1 and O2) LIGO and Virgo observing runs, with a total mass of
∼ 85M�.
In this real GW signal, the binary parameters that are most affected,

when waveform models with HMs are used for the parameter estimation,
are the mass ratio q and the effective spin χeff . In Fig. 1.20, I show the
2D and 1D posterior distributions for these two parameters, obtained from
the Bayesian inference on the signal performed using the waveform models
SEOBNRv4HM and SEOBNRv4_ROM. I also compare these measurements with
those obtained by the waveform models IMRPhenomHM and IMRPhenomD, to
test their robustness against eventual biases, due to the inaccuracy of the
waveform models. See Table 1.4 for the summary of the waveform models
used for this study. The mass ratio posterior distributions, obtained with
the waveform models SEOBNRv4_ROM and IMRPhenomD, which only include the
mode (`, |m|) = (2, 2), (red and cyan curves) are approximately flat in the
region 1 . q . 2, and exclude q & 2.5 with 95% probability. On the contrary,
the posterior distributions obtained with SEOBNRv4HM and IMRPhenomHM (blue
and orange curves) are both peaked around q ≈ 2 and, most importantly,
they exclude with a larger confidence the hypothesis of a merger of BHs
with the same masses. In fact, according to the measurements obtained with
SEOBNRv4HM and IMRPhenomHM, there is a 40% probability that the mass ratio
of the system is q ≥ 2, while this probability is only 20% if one considers
the measurements with SEOBNRv4_ROM and IMRPhenomD. Regarding the χeff
parameter, the measurements obtained with SEOBNRv4_ROM and IMRPhenomD

Model name GW modes
SEOBNRv4_ROM (`, |m|) = (2, 2)
SEOBNRv4HM_ROM (`, |m|) = (2, 2), (2, 1), (3, 3), (4, 4), (5, 5)
IMRPhenomD (`, |m|) = (2, 2)
IMRPhenomHM (`, |m|) = (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3)

Table 1.4.: The waveform models used to analyze the real GW signal
GW170729. I also specify the GW modes included in each waveform model.
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imply that χeff > 0 with a probability of 99%. Among the signals observed
during O1 and O2, only for this signal and GW151226 [28] a negative value for
χeff is excluded with such large probability. When the waveform models with
HMs are used for the parameter estimation, the χeff posterior distribution
shift to smaller values, and the probability of a positive χeff is reduced to
94%.
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Figure 1.20.: 2D and 1D posterior distributions for the mass ratio q and the
effective spin χeff measured from the signal GW170729. In the 2D posteriors
solid contours represent 90% credible intervals and the black dot shows the
value of the parameters used in the synthetic signal. In the 1D posteriors
they are represented respectively by dashed lines and black solid lines. The
gray shaded regions are the prior distributions. The parameter estimation
is performed with the waveform models SEOBNRv4_ROM (red), SEOBNRv4HM
(blue), IMRPhenomD (cyan) and IMRPhenomHM (orange). Figure adapted from
Ref. [271].

Using waveform models with HMs has a smaller impact on the measure-
ments of the inclination angle θJN and the luminosity distance DL of this
system. In Fig. 1.21, I show the 2D and 1D posterior distributions of these
two parameters, obtained with the waveform models described before. The
only relevant difference is that both waveform models with HMs are able to
exclude with larger confidence inclination angles θJN close to 0 and π. As
consequence of the correlation between θJN and DL, also larger luminosity
distances are excluded with a greater confidence.
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Figure 1.21.: 2D and 1D posterior distributions for the inclination angle θJN
and the luminosity distance DL measured from the signal GW170729. In
the 2D posteriors solid contours represent 90% credible intervals and the
black dot shows the value of the parameters used in the synthetic signal.
In the 1D posteriors they are represented respectively by dashed lines and
black solid lines. The gray shaded regions are the prior distributions. The
parameter estimation is performed with the waveform models SEOBNRv4_ROM
(red), SEOBNRv4HM (blue), IMRPhenomD (cyan) and IMRPhenomHM (orange).
Figure adapted from Ref. [271].

The study presented here assumes BHs spins aligned with the angular
momentum of the binary. In Ref. [204] the authors generalize this analysis by
using the waveform model IMRPhenomPv3HM, which includes the effect of HMs
and precessing BH spins. The results of their analysis are in agreement with
those discussed here. This is not unexpected, since they report a measured
value of the spin parameter χp consistent with 0, as it should be in the case
of BH spins aligned with the angular momentum of the binary.

1.5.4. The LIGO-Virgo signal GW190412

In this section, I summarize the analysis I performed as member of the editorial
team of the publication that reported the discovery of GW190412 [34] by the
LIGO and Virgo detectors. This real GW signal is particularly interesting
because its source is a BBH system with a mass ratio q measured precisely
enough to exclude with large confidence the scenario of a merger between
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Model name GW modes in co-precessing frame Precession
SEOBNRv4_ROM (`, |m|) = (2, 2) ×
SEOBNRv4HM_ROM (`, |m|) = (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) ×
SEOBNRv4PHM (`, |m|) = (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) X
IMRPhenomD (`, |m|) = (2, 2) ×
IMRPhenomHM (`, |m|) = (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3) ×
IMRPhenomXHM (`, |m|) = (2, 2), (2, 1), (3, 3), (3, 2), (4, 4) ×
IMRPhenomPv3HM (`, |m|) = (2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3) X
IMRPhenomXPHM (`, |m|) = (2, 2), (2, 1), (3, 3), (3, 2), (4, 4) X

Table 1.5.: The waveform models used to analyze the real GW signal
GW190412. I also specify the GW modes included in each waveform model,
and whether they include the effect of spin precession.

parameter Measurement with SEOBNRv4PHM
m1/M� 31.7+3.6

−3.5
m2/M� 8.0+0.9

−0.7
M/M� 39.7+3.0

−2.8
q 4.00+0.76

−0.77
χeff 0.28+0.06

−0.08
χp 0.31+0.14

−0.15
χ1 0.46+0.12

−0.15
DL/Mpc 740120

−130
θJN 0.71+0.23

−0.21

Table 1.6.: Measured parameters for the GW signal GW190412 and their
90% credible intervals, obtained using the waveform model SEOBNRv4PHM.

BHs with equal masses. In fact, the mass ratio of this BBH system lies in the
region 3 . q . 5, while most of the BBHs observed during O2 and O3a have
mass ratios consistent with 1 (see Fig.5 in Ref. [32] and Fig.6 in Ref. [36]).
In the following, I discuss the most interesting properties of this system,

with particular emphasis on (i) the impact of the improved waveform models
discussed in Sec. 1.4 on the precise measurement of these properties and (ii)
potential systematic biases in these measurements due to the inaccuracy of
the waveform models. In fact, because of its interesting properties, this BBH
system was analyzed with a large number of waveform models. I summarize
in Table 1.5 the waveform models I consider here.
In Table 1.6, I summarize the measurement of the most interesting BBH
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Figure 1.22.: 2D and 1D posterior distributions for the mass ratio q and
the effective spin χeff of the signal GW190412. 90% credible intervals are
represented by solid contours in the 2D posteriors and dashed lines in the 1D
posteriors. The gray shaded regions are the priors. The parameter estimation
is performed with the waveform models SEOBNRv4PHM (blue), SEOBNRv4_ROM
(red) and SEOBNRv4HM_ROM (cyan).

parameters obtained with SEOBNRv4PHM. In the following, I discuss in detail
each of these measurements. I begin this discussion with the mass ratio
measurement, which is the most interesting property of this BBH system.
As discussed in Sec. 1.5.1, the mass ratio measurement is expected to be
degenerate with that of the effective spin, therefore it is beneficial to examine
them together. For this purpose, in Fig. 1.22 I show 2D and 1D posterior
distributions for the mass ratio q and the effective spin χeff , obtained by
performing Bayesian parameter estimation on the signal using increasingly
sophisticated waveform models: SEOBNRv4_ROM (no HMs, BHs spins aligned
with the binary angular momentum), SEOBNRv4HM_ROM (HMs, BHs spins
aligned with the binary angular momentum) and SEOBNRv4PHM (HMs, generic
BHs spins). The largest improvement in the precision of the measurement is
obtained when moving from SEOBNRv4_ROM to SEOBNRv4HM_ROM. In fact, the
size of the 90% credible intervals of the 1D mass ratio posterior distribution
obtained with SEOBNRv4HM_ROM (cyan curve) is ∼ 40% smaller with respect
to that obtained with SEOBNRv4_ROM (red curve). This larger precision in
the mass ratio measurement is due to the fact that, including the HMs in
the waveform model, allows to partially break the degeneracy between q and

76



1.5. Binary black-holes characterization using waveform models with higher-order modes

χeff . This is consistent with what I find in Sec. 1.5.1 for the synthetic signal.
Because of this broken degeneracy, also the 90% credible interval of the 1D
χeff posterior is ∼ 26% tighter when computed using the waveform model
with HMs. The precision of the measurements improves more modestly when
going from SEOBNRv4HM_ROM (cyan curve) to SEOBNRv4PHM (blue curve). In
this case, the size of the 90% credible interval of the 1D posterior for q and χeff
decrease respectively by ∼ 23% and ∼ 14% compared to SEOBNRv4HM_ROM.
The most noticeable difference between the measurements made with these two
waveform models, consists in a shift of the SEOBNRv4PHM posterior distribution
towards smaller q and larger χeff . This shift is likely due to a bias in the
measurement with SEOBNRv4HM_ROM, originating from the fact that this model
neglects precessional effects, while the value of χp measured with SEOBNRv4PHM
is in the range 0.2 . χp . 0.5, indicating a small evidence for precession.
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Figure 1.23.: 2D and 1D posterior distributions for the mass ratio q and
the effective spin χeff of th signal GW190412. 90% credible intervals are
represented by solid contours in the 2D posteriors and dashed lines in the 1D
posteriors. The gray shaded regions are the priors. The parameter estimation
is performed with the waveform models SEOBNRv4PHM (blue), IMRPhenomPv3HM
(red) and IMRPhenomXPHM (cyan).

The mass ratio and effective spin measured with the model SEOBNRv4PHM
are respectively q = 4+0.76

−0.77 and χeff = 0.28+0.06
−0.08, and they are in a small tension

with those measured using the waveform model IMRPhenomPv3HM, which gives
q = 3.22+0.95

−0.90 and χeff = 0.22+0.08
−0.11. Since the two waveform models include

the same physical effects (i.e. HMs and spin precession), this disagreement
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indicates a potential bias in the measurement obtained with one of the two
models (or both of them) due to their inaccuracy in representing the true
GR waveforms. A potential source of this disagreement, as already discussed
in Ref. [34], is the fact that the model IMRPhenomPv3HM includes HMs in the
co-precessing frame that are not calibrated to NR simulations during the
merger and ringdown regime, differently from SEOBNRv4PHM. The authors in
Ref. [272] partially shed light on this disagreement, by performing param-
eter estimation on this signal with their newly developed waveform model
IMRPhenomXPHM [127], for which the HMs in the co-precessing frame are cali-
brated to NR simulations during the merger and ringdown regimes, similarly
to what is done in SEOBNRv4PHM15. In Fig. 1.23, I compare their measurement
of q and χeff with those obtained with SEOBNRv4PHM and IMRPhenomPv3HM,
by plotting the 2D and 1D posterior distributions for these parameters.
From the plot, it is clear that the tension between the measurements is
partially resolved when using IMRPhenomXPHM instead of IMRPhenomPv3HM for
the comparison with the results obtained using SEOBNRv4PHM. To clarify the
source of the residual difference between the measurements obtained using
IMRPhenomXPHM and SEOBNRv4PHM, it is useful to repeat the same analysis
assuming that the BHs have spins aligned with the orbital angular momentum
of the binary. For this purpose, I use the results obtained with the wave-
form models SEOBNRv4HM_ROM, IMRPhenomXHM (taken from Ref. [272]) and
IMRPhenomHM, which represent respectively SEOBNRv4PHM, IMRPhenomXPHM
and IMRPhenomPv3HM under this assumption. The results of this analysis are
summarized in Fig. 1.24, where I show 2D and 1D posterior distributions for
q and χeff obtained with SEOBNRv4HM_ROM, IMRPhenomXHM and IMRPhenomHM.
In the non-precessing limit, the measurements obtained with IMRPhenomXHM
and SEOBNRv4HM_ROM agree much better than in the generic case of precessing
BHs. This suggests that the difference in the measurements obtained with
SEOBNRv4PHM and IMRPhenomXPHM originates from the different approaches
used to describe spin precession in the two models.
Additional evidence for this can be found in the fact that the values

of χp, measured by SEOBNRv4PHM and IMRPhenomXPHM, are also in small
tension. To demonstrate this difference in the two measurements, I show, in
Fig. 1.25, the 2D and 1D posterior distributions for χp and χeff , when measured
with SEOBNRv4PHM, IMRPhenomXPHM and IMRPhenomPv3HM. It is clear that the
posterior distribution obtained with IMRPhenomXPHM favours smaller values
15A similar study has been performed also in Ref. [273], by using the NR surrogate model

NRSur7dq4 to analyze this signal. A direct comparison between their results and those
discussed here is not possible, because the posterior distributions obtained as result of
their analysis are not yet publicly available.
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Figure 1.24.: 2D and 1D posterior distributions for the mass ratio q and
the effective spin χeff of the signal GW190412. 90% credible intervals are
represented by solid contours in the 2D posteriors and dashed lines in the
1D posteriors. The gray shaded regions are the priors. The parameter
estimation is performed with the waveform models SEOBNRv4HM_ROM (blue),
IMRPhenomHM (red) and IMRPhenomXHM (cyan).

of χp with respect to those obtained with SEOBNRv4PHM. The χp posterior
distribution measured using IMRPhenomPv3HM is broader with respect to the
other two and it is in agreement with both of them. Despite these small
differences, the values of χp measured with SEOBNRv4PHM, IMRPhenomPv3HM
and IMRPhenomXPHM, respectively 0.31+0.14

−0.15, 0.31+0.24
−0.17 and 0.23+0.20

−0.13, are in
good agreement with each other.
The parameters χeff and χp are functions of the spins of the two BHs, χ1

and χ2, and the mass ratio q. When the mass ratio of the BBH system is
large, the contribution of χ2 to χeff and χp is subdominant with respect to the
contribution of χ1, as it is clear from the definition of these two parameters
in Eqs. (1.83) and (1.86), respectively. For this reason, despite the precise
measurements of χeff and χp, the BH spin χ2 remains unconstrained for this
system. On the other side, while the orientation of χ1 is not well constrained,
its magnitude is one of the best measured among the BBH systems detected
by the LIGO and Virgo interferometers during O1, O2 and O3a [32,36]. In
particular, the value of the spin magnitude χ1 obtained using the waveform
models SEOBNRv4PHM, IMRPhenomPv3HM and IMRPhenomXPHM is respectively
0.46+0.12

−0.15, 0.41+0.22
−0.24 and 0.39+0.16

−0.17.
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Figure 1.25.: 2D and 1D posterior distributions for χp and the effective spin
χeff of the signal GW190412. 90% credible intervals are represented by solid
contours in the 2D posteriors and dashed lines in the 1D posteriors. The
gray shaded regions are the priors. The parameter estimation is performed
with the waveform models SEOBNRv4PHM (blue), IMRPhenomPv3HM (red) and
IMRPhenomXPHM (cyan).

The angle θJN, and the luminosity distance DL, are other two source param-
eters for which is interesting to study the improvement in their measurement,
when using more sophisticated waveform models, as done before in the case of
q and χeff . For this purpose, in Fig. 1.26, I show 2D and 1D posterior distribu-
tions for these parameters obtained using the waveform models SEOBNRv4_ROM,
SEOBNRv4HM_ROM and SEOBNRv4PHM. As already discussed in Sec. 1.5.1, in-
cluding the HMs in the waveform model partially breaks the degeneracy
between θJN and DL, allowing to measure them much more precisely. In fact,
when going from SEOBNRv4_ROM (red curve) to SEOBNRv4HM_ROM (cyan curve),
the size of the 90% credible intervals of the posterior distribution for θJN and
DL decrease, respectively by ∼ 70% and ∼ 33%. Using SEOBNRv4PHM (blue
curve) for the parameter estimation allows to further increase the precision
of the measurement of these two parameters. In particular, the size of the
90% credible interval of the posterior distribution for θJN and DL decrease
respectively by ∼ 50% and ∼ 33%, compared to those obtained using the
model SEOBNRv4HM_ROM. The reason for this increased precision is that the
precession of the orbital plane, caused by the in-plane BH spin components,
has a different imprint on the waveform when observed by different θJN angles.
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This allows to put additional constraints on the angle θJN and, consequently,
on the luminosity distance DL. Differently from the case of the parameters q
and χeff , for θJN and DL, the measurements obtained by IMRPhenomPv3HM and
IMRPhenomXPHM are in very good agreement with those obtained when using
SEOBNRv4PHM. This suggests that, for these two parameters, the systematic
errors, due to the waveform model inaccuracies, are negligible with respect
to the statistical uncertainty.
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Figure 1.26.: 2D and 1D posterior distributions for the angle θJN and the
luminosity distance DL of the signal GW190412. 90% credible intervals are
represented by solid contours in the 2D posteriors and dashed lines in the 1D
posteriors. The gray shaded regions are the priors. The parameter estimation
is performed with the waveform models SEOBNRv4PHM (blue), SEOBNRv4_ROM
(red) and SEOBNRv4HM_ROM (cyan).

In the case of GW190412, waveform models that include the effect of HMs
provide more precise measurements for all binary parameters, compared to
waveform models that neglect this effect. This already suggests that HMs may
be detectable in this signal. To make this concrete, it is useful to compute the
Bayes factor between the hypothesis of the GW signal including HMs, against
the hypothesis of the signal only including the dominant mode (`, |m|) = (2, 2).
This calculation can be performed assuming BH spins aligned with the angular
momentum of the binary system, hence computing the Bayes factor using the
posterior distributions obtained with SEOBNRv4_ROM and SEOBNRv4HM_ROM,
or in the case of generic spins, using the posterior distributions computed
with the waveform models SEOBNRv4P and SEOBNRv4PHM. In both cases, the
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Bayes factor in favour of the hypothesis that this GW signal includes HMs
is larger than 103, which is considered a strong evidence for this thesis. It
is useful to recall that the Bayes factor does not account for the prior belief
on the hypotheses. In this case, since GR predicts the existence of HMs,
and assuming that GR is correct, the prior probability associated with the
hypothesis of a GW signal including only the mode (`, |m|) = (2, 2) would be
0.
The improved measurement of the BBH parameters of the source of

GW190412, obtained using the sophisticated waveform models described
in this thesis, also had an impact on our understanding of the population
of BBHs. An interesting property of the BBH population is its mass-ratio
distribution. In certain models for the BBH population, this quantity is
parametrized as a power law, p(q|m1) ∝ q−βq [274–276]16. Since all the BBHs
detected during O1 and O2 had a mass ratio consistent with 1, the measured
βq indicated a preference for βq > 0 [277]. However, its value was not precisely
constrained by the BBHs detected during O1 and O2. When using only the
BBHs detected during O1 and O2, the measured value of βq was 0 . βq . 12
at 90% credible interval [277]. Including GW190412 in the BBH population
analysis, in addition to the signals detected during O1 and O2, allows to
put a stronger upper bound on the value of βq, which is constrained to be
βq < 2.7 at 90% credible level, see Sec. VI of Ref. [34] for more details.
The analysis of the BBH population using all the signals in O3a (including
GW190412), which were also analyzed with the waveform models described
in this thesis, later confirmed the upper bound on βq discussed before. See
Sec. 5.1 in Ref. [175] for the detailed discussion. The precise characterization
of the BBH population will allow us to understand the formation mechanism
(or mechanisms) that is producing the observed population of BBHs.

16In the literature on this subject, the mass-ratio definition is different compared to this
thesis, and correspond to the definition 1/q adopted here. For this reason, in the
literature, the mass-ratio distribution is parametrized as p(q|m1) ∝ qβq i.e. without
the minus sign in the exponential.
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2. Enriching the Symphony of Gravitational
Waves from Binary Black Holes by Tuning
Higher Harmonics

Authors1: Roberto Cotesta, Alessandra Buonanno, Alejandro Bohé, An-
drea Taracchini, Ian Hinder, Serguei Ossokine

Abstract: For the first time, we construct an inspiral-merger-ringdown
waveform model within the effective-one-body formalism for spinning, non-
precessing binary black holes that includes gravitational modes beyond the
dominant (`, |m|) = (2, 2) mode, specifically (`, |m|) = (2, 1), (3, 3), (4, 4), (5, 5).
Our multipolar waveform model incorporates recent (resummed) post-Newtoni-
an results for the inspiral and information from 157 numerical-relativity
simulations, and 13 waveforms from black-hole perturbation theory for the
(plunge-)merger and ringdown. We quantify the improvement in accuracy
when including higher-order modes by computing the faithfulness of the wave-
form model against the numerical-relativity waveforms used to construct the
model. We define the faithfulness as the match maximized over time, phase
of arrival, gravitational-wave polarization and sky position of the waveform
model, and averaged over binary orientation, gravitational-wave polarization
and sky position of the numerical-relativity waveform. When the waveform
model contains only the (2, 2) mode, we find that the averaged faithfulness to
numerical-relativity waveforms containing all modes with ` ≤ 5 ranges from
90% to 99.9% for binaries with total mass 20− 200M� (using the Advanced
LIGO’s design noise curve). By contrast, when the (2, 1), (3, 3), (4, 4), (5, 5)
modes are also included in the model, the faithfulness improves to 99%
for all but four configurations in the numerical-relativity catalog, for which
the faithfulness is greater than 98.5%. Starting from the complete inspiral-
merger-ringdown model, we develop also a (stand-alone) waveform model
for the merger-ringdown signal, calibrated to numerical-relativity waveforms,
which can be used to measure multiple quasi-normal modes. The multipolar
waveform model can be extended to include spin-precessional effects, and will
be employed in upcoming observing runs of Advanced LIGO and Virgo.

1Originally published as Phys.Rev.D 98 (2018) 8, 084028.
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2.1. Introduction

The Advanced LIGO detectors [55] have reported, so far, the observation of five
gravitational-wave (GW) signals from coalescing binary black holes (BBHs):
GW150914 [27], GW151226 [28], GW170104 [29], GW170608 [30], GW170814
[31] (observed also by the Virgo detector [56]), and one GW signal from a
coalescing binary neutron star (BNS) [161]. The modeled search for GWs from
binary systems and the extraction of binary parameters, such as the masses
and spins, are based on the matched-filtering technique [171,278–282], which
requires accurate knowledge of the waveform of the incoming signal. During
the first two observing runs (O1 and O2), the Advanced LIGO and Virgo
modeled-search pipelines employed, for binary total masses below 4M�, tem-
plates [151] built within the post-Newtonian (PN) approach [62,260,283,284],
and, for binary total masses in the range 4–200M�, templates developed using
the effective-one-body (EOB) formalism calibrated to numerical-relativity
(NR) simulations [1, 91,92,234,256,285–287] (i.e. EOBNR waveforms). For
parameter-estimation analyses [153,161,171,288] and tests of General Rel-
ativity (GR) [289], PN [260, 283, 284], EOBNR [1, 234, 249, 250] and also
inspiral-merger-ringdown phenomenological (IMRPhenom) waveform mod-
els [120,122,123] were used.

The -2 spin-weighted spherical harmonics comprise a convenient basis into
which one can decompose the two polarizations of GWs. The spinning, non-
precessing EOBNR waveform model [1] employed in searches and parameter-
estimation studies during the O2 run (henceforth, SEOBNRv4 model), only
used the dominant (`, |m|) = (2, 2) mode to build the gravitational polariza-
tions. This approximation was accurate enough for detecting and inferring
astrophysical information of the sources observed during O2 (and also O1),
as discussed in Refs. [184,186–188,191,290–293].
Because of the expected increase in sensitivity during the third observing

run (O3), which is planned to start in the Fall of 2018, some GW signals
are expected to have much larger signal-to-noise ratio (SNR) with respect
to the past, and may lie in regions of parameter space so far unexplored
(e.g., more massive and/or higher mass-ratio systems than observed in O1
and O2). This poses an excellent opportunity to improve our knowledge of
astrophysical and gravitational properties of the sources, but it also requires
more accurate waveform models to be able to take full advantage of the
discovery and inference potential. More accurate waveform models would
be useful, as well, from the detection point of view to further increase
the effective volume reached by the search, in particular for regions of the
parameter space where the approximation of restricting to the (2,2) mode
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starts to degrade [184,187,188]. Following these motivations, we build here
an improved version of the SEOBNRv4 waveform model that includes the
modes (`, |m|) = (2, 1), (3, 3), (4, 4), (5, 5) beyond the dominant (2, 2) mode
(henceforth, SEOBNRv4HM model). Similar work was done for the nonspinning
case for the EOBNR waveform model of Ref. [201] (henceforth, EOBNRv2HM
model), and for the nonspinning and spinning, nonprecessing IMRPhenom
models in Refs. [124,203].
In building the SEOBNRv4HM model we incorporate new informations from

PN calculations [88, 294], from NR simulations (produced with the (pseudo)
Spectral Einstein code (SpEC) [6] of the Simulating eXtreme Spacetimes
(SXS) project and the Einstein Toolkit code [295, 296]), and also from
merger-ringdown waveforms computed in BH perturbation theory solving
the Teukolsky equation [114, 297]. The NR waveforms are described in
Refs. [1–6,298,299], and summarized in Appendix F. They were also employed
to build the SEOBNRv4 waveform model in Ref. [1] (see Sec. III therein).
However, here, we do not use the BAM simulation BAMq8s85s85 [300,301],
because the higher-order modes are not available to us. Thus, for the same
binary configuration, we produce a new NR simulation using the Einstein
Toolkit code and extract higher-order modes (henceforth, ET:AEI:0004).

As by product of the SEOBNRv4HM model, we obtain a (stand-alone) merger-
ringdown model [1, 240,302–305], tuned to the NR and Teukolsky-equation
waveforms, which can be employed to extract multiple quasi-normal modes
from GW signals, and test General Relativity [192–194,306].
The paper is organized as follows. In Sec. 2.2 we use the NR waveforms

at our disposal to quantify the importance of higher harmonics in presence
of spins. In Sec. 2.3 we determine, taking also into account the error in NR
waveforms, which gravitational modes are crucial to achieve at least ∼ 99%
accuracy. In Sec. 2.4 we develop the multipolar EOB waveform model, and
describe how to enhance its performance by including information from NR
simulations and BH perturbation theory. We also highlight the construction
and use of the multipolar (stand-alone) merger-ringdown model. In Sec. 2.5
we compare the newly developed SEOBNRv4HM model to 157 NR waveforms.
In Sec. 3.6 we summarize our main conclusions, and outline possible future
work. Finally, in Appendices A, B and C we provide interested readers with
explicit expressions of all quantities entering the higher-order modes of the
SEOBNRv4HM model, and point out the presence of numerical artifacts in the
(4,4) and (5,5) modes of some NR simulations. For convenience, we summarize
in Appendix F the NR waveforms used in this paper. In Appendix G we also
compare the model SEOBNRv4HM with the nonspinning EOBNRv2HM waveform
model, developed in 2011 [201]. Finally in Appendix H we compare the
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SEOBNRv4HM model with an NR waveform in time domain.
In this paper we adopt the geometric units G = c = 1.

2.2. Motivations to model higher-order modes for binary
black holes
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Figure 2.1.: Amplitude ratio between the (`,m) mode and the dominant (2, 2)
mode, both evaluated at their peak, as function of the mass ratio. We use
only nonspinning NR waveforms. (Note that the markers represent the NR
data, and we connect them by a line). We note that the importance of a
given higher-order mode with respect to the dominant one is not controlled
only by the amplitude ratio between the two, but also by the -2 spin-weighted
spherical harmonic associated to the mode (see Eq. (2.1)).

In this section we describe the spherical-mode decomposition of the gravi-
tational polarizations and discuss the motivations for building an inspiral-
merger-ringdown waveform model (SEOBNRv4HM) with higher harmonics for
spinning BHs.
Henceforth, we denote the binary’s total mass with M = m1 + m2, and

choose the body’s masses m1 and m2 such that the mass ratio q = m1/m2 ≥ 1.
Since we consider only spinning, nonprecessing BHs (i.e., spins aligned or
antialigned with the direction perpendicular to the orbital plane L̂), we
only have one (dimensionless) spin parameter for each BH, χ1,2, defined as
S1,2 = χ1,2m

2
1,2L̂, where S1,2 are the BH’s spins (−1 ≤ χ1,2 ≤ 1).
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The observer-frame’s gravitational polarizations read

h+(ι, ϕ0; t)− i hx(ι, ϕ0; t) =
∞∑
`=2

∑̀
m=−`

Y−2 `m (ι, ϕ0) h`m(t), (2.1)

where we denote with ι the inclination angle (computed with respect to the
direction perpendicular to the orbital plane), ϕ0 the azimuthal direction to
the observer, and Y−2 `m (ι, ϕ0)’s the -2 spin-weighted spherical harmonics.
For spinning, nonprecessing BHs’ we have h`m = (−1)`h∗`−m. Thus, without
loss of generality, we restrict the discussion to (`,m) modes with m > 0.
As we shall discuss below, for face-on/face-off binary configurations, the

dominant mode is the (`,m) = (2, 2) mode. For generic binary orientations the
modes (`,m) 6= (2, 2) could be comparable to the (2, 2) mode. Nevertheless,
we will loosely refer to (`,m) 6= (2, 2) as subdominat modes; sometime we
also refer to them as higher-order modes or higher harmonics, even if they
include the (2, 1) mode.

Several authors in the literature have investigated the impact of neglecting
higher-order modes for detection and parameter estimation. From the detec-
tion perspective, Refs. [184–187] showed that neglecting higher-order modes
in nonspinning gravitational waveforms can cause a loss in detection volume
bigger than 10% when the mass ratio q ≥ 4 and total mass M ≥ 100M�. To
overcome this issue, Ref. [188] suggested a new method to search for GW
signals with templates that include higher modes, increasing the search sensi-
tivity up to a factor of 2 in volume for high mass-ratio, and high total-mass
binaries. While those works consider only nonspinning systems, the authors
of Ref. [183] show that for spinning systems, the loss in detection volume due
to neglecting higher-order modes is smaller with respect to the nonspinning
case. This happens because the spin parameters provide an additional degree
of freedom that templates with only the dominant (2, 2) mode can employ to
better match signals containing higher-order modes.

From the parameter-estimation perspective, as discussed in Ref. [186], for
nonspinning systems with mass ratio q ≥ 4 and total masses M ≥ 150M� the
systematic error due to neglecting higher-order modes is larger than the 1σ
statistical error for signals with signal-to-noise ratio (SNR) of 8. Signals with
a larger SNR yield smaller statistical errors and, the constraints discussed
before become more stringent [191]. Indeed even for equal-mass systems,
where the higher-order modes are expected to be negligible, if the signal has
an SNR of 48, the systematic error from neglecting higher-order modes can
be bigger than the statistical error [191]. (The SNRs above refer to Advanced
LIGO’s “zero-detuned high-power” design sensitivity curve [307]).
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Figure 2.2.: Amplitude ratio between the (`,m) mode and the dominant (2, 2)
mode, both evaluated at their peak. In the top (bottom) panel we plot these
quantities for mass ratio q = 8 versus the spin of the heavier BH (q = 1
versus χA = (χ1 − χ2)/2 for modes with odd m, and χS = (χ1 + χ2)/2 for
modes with even m). The markers represent the NR data, and we connect
them by a line.
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2.2. Motivations to model higher-order modes for binary black holes

Here we briefly review known results, and highlight some features that will
be exploited below when building the SEOBNRv4HM waveform model.
In Fig. 2.1 we show the ratio between the largest subdominant (`,m)

modes and the (2, 2) mode amplitudes, evaluated at their peak, t`mpeak and
t22
peak, respectively, as function of mass ratio for all the nonspinning wave-
forms in our NR catalog. We note that the well-known mode hierarchy
(`,m) = (2, 2), (3, 3), (2, 1), (4, 4), (3, 2), (5, 5), (4, 3) changes when approach-
ing the equal-mass (equal-spin) limit (see, e.g., Ref. [181]). Indeed, in this
limit all modes with odd m have to vanish in order to enforce the binary’s
symmetry under rotation ϕ0 → ϕ0 + π. Thus, when ν → 1/4 (χ1 = χ2),
the (3, 2) and (4, 4) modes become the most important subdominant modes.
In Fig. 2.2 we show how the modes’ hierarchy in the nonspinning case (see
Fig. 2.1) changes when BH’s spins are included. In particular, in the left
panel of Fig. 2.2 we fix the mass ratio to q = 8 and plot the relative amplitude
of the modes as function of the spin of the more massive BH. Note that for
q = 8 all NR waveforms in our catalog (with the exception of ET:AEI:0004,
q = 8, χ1 = χ2 = 0.85) have the spin only on the more massive BH. We
see that the relative amplitude of the modes (3, 3), (4, 4), (3, 2), (5, 5), (4, 3)
depends weakly on the spins, except for the (2, 1) mode. Indeed, for χ1 & 0.5,
the (2, 1) mode becomes smaller than the (4, 4) mode and for χ1 & 0.75 is as
small as the modes (3, 2), (5, 5). On the other side, for χ1 . −0.25 the mode
(2, 1) is larger than the (3, 3) mode. We find that for smaller mass ratios the
effect of χ2 (i.e., the spin of the lighter BH), becomes more important. In
particular, for a fixed value of χ1 the amplitude ratio |h`m(t`mpeak)|/|h22(t22

peak)|
for the modes (3, 3), (4, 4), (5, 5) decreases with increasing χ2, while the ratio
increases for the modes (2, 1), (3, 2), (4, 3).
The special case of equal-mass systems, q = 1, is discussed in the right

panel of Fig. 2.2. Here we show the amplitude ratio between the (`,m) mode
and the dominant (2, 2) mode, both evaluated at their peak, as function of
χA = (χ1− χ2)/2 for modes with odd m and as function of χS = (χ1 + χ2)/2
for modes with even m. As discussed before, the modes with odd m vanish for
equal-mass, equal-spins configurations (χA = 0) from symmetry arguments
and, the amplitude ratio grows proportionally to |χA| for these modes. In
particular, we note that in this case the (2, 1) mode behaves differently from
the other modes, undergoing a much more significant growth in the amplitude
ratio. Regarding the modes with even m, we notice that whereas the (4, 4)
mode is nearly constant as function of χS in the spin range considered, the
(3, 2) mode increases as a function of χS in the same range. The amplitude
of the (2, 1) mode has a stronger dependence on the spins with respect to
the other modes because in its PN expansion the spin term enters at a lower
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relative order (see Eqs. (38a)–(38i) in Ref. [220]). A similar spin-dependence
was found in Ref. [308] for the amplitudes ratio (A`m/A22) of the quasi-normal
mode oscillations.
Finally, it is worth emphasizing that in understanding the relevance of

subdominant modes for the observer, it is important to take into account the
-2 spin-weighted spherical-harmonic factor Y−2 `m (ι, ϕ0) that enters Eq. (2.1),
notably its dependence on the angles (ι, ϕ0). Indeed, the -2 spin-weighted
spherical harmonic associated to the dominant mode starts from a maximum
in the face-on orientation (ι = 0) and decreases to a minimum at edge-on
(ι = π/2). On the other hand, the spherical harmonics favour the higher-order
modes with respect to the dominant one in orientations close to edge-on where
| Y−2 `m (ι→ π/2)|/| Y−2 22 (ι→ π/2)| > 1. Furthermore, a direct inspection
of the harmonic factor shows that the modes (3, 2), (4, 3) are suppressed
(i.e., | Y−2 `m (ι)|/| Y−2 22 (ι)| < 1) for a larger region in ι than for the modes
(3, 3), (2, 1), (4, 4), (5, 5). For this reason the contribution of the former to the
gravitational polarizations is limited to a smaller number of orientations with
respect to the latter.

2.3. Selecting the most-important higher-order modes for
modeling

In this section we first introduce the faithfulness function as a tool to assess
the closeness of two waveforms when higher-order modes are included. Then,
we use it to estimate how many gravitational modes we need to model in
order not to loose more than 10% in event rates when rectricting to the
binary’s configurations in the NR catalog at our disposal. We also determine
the loss in faithfulness of the NR waveforms due to numerical error.

The GW signal measured from a spinning, nonprecessing and noneccentric
BBH is characterized by 11 parameters, namely the masses of the two bodies
m1 and m2, the (constant) projection of the spins in the direction perpendic-
ular to the orbital plane, χ1 and χ2, the angular position of the line of sight
measured in the source’s frame (ι, ϕ0) (see Eq. (2.1)), the sky location of the
source in the detector frame (θ, φ), the polarization angle ψ, the luminosity
distance of the source DL and the time of arrival tc. The signal measured by
the detector takes the form:

h ≡ F+(θ, φ, ψ) h+(ι, ϕ0, DL, ξ, tc; t) + F×(θ, φ, ψ) h×(ι, ϕ0, DL, ξ, tc; t) ,
(2.2)

where for convenience we introduce ξ ≡ (m1,m2, χ1, χ2). The functions

90



2.3. Selecting the most-important higher-order modes for modeling

20 40 60 80 100 120 140 160 180 200
M/M�

10−4

10−3

10−2

10−1

100

1
−F

Dashed: NR w/HM vs SEOBNRv4
Solid: NR w/HM vs NR w/o HM

(q, χ1, χ2)= (1.20,-0.50,-0.50)

min
ιNR,ϕ0NR,κNR

1 − F

〈1 − F 〉SNR weighted
ιNR,ϕ0NR,κNR

〈1 − F 〉ιNR,ϕ0NR,κNR

max
ιNR,ϕ0NR,κNR

1 − F

20 40 60 80 100 120 140 160 180 200
M/M�

10−4

10−3

10−2

10−1

100

1
−F

Dashed: NR w/HM vs SEOBNRv4
Solid: NR w/HM vs NR w/o HM

(q, χ1, χ2)= (8.00,0.85,0.85)

min
ιNR,ϕ0NR,κNR

1 − F

〈1 − F 〉SNR weighted
ιNR,ϕ0NR,κNR

〈1 − F 〉ιNR,ϕ0NR,κNR

max
ιNR,ϕ0NR,κNR

1 − F

Figure 2.3.: Unfaithfulness (1 − F) for the configurations (q = 1.2, χ1 =
−0.5, χ2 = −0.5) (top panel) and (q = 8, χ1 = 0.85, χ2 = 0.85) (bottom
panel) in the mass range 20M� ≤ M ≤ 200M�. In dashed the results for
the SEOBNRv4 model and in solid the results for the NR waveform containing
only the dominant mode, both against the NR waveform with the modes
(` ≤ 5, m 6= 0). The minimum of the unfaithfulness (blue curves) correspond
to a face-on orientation. We also show the unfaithfulness averaged over
the three angles ιNR, φ0NR, κNR (green curves) and weighted by the cube of
the SNR (orange curves). Finally the minimum of the unfaithfulness (red
curves) which in practice correspond to edge-on and minimized over the other
two angles. The vertical dotted-dashed black line is the smallest mass for
which the (`,m) = (2, 1) mode is entirerly in the Advanced LIGO band. The
(`, |m′|) mode is entirerly in the Advanced LIGO band starting from a mass
m′ times the mass associated with the (`,m) = (2, 1) mode. The horizontal
dotted-dashed black lines represent the values of 1% and 3% unfaithfulness.
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F+(θ, φ, ψ) and F×(θ, φ, ψ) are the antenna patterns [151,309]:

F+(θ, φ, ψ) = 1 + cos2(θ)
2 cos(2φ) cos(2ψ)− cos(θ) sin(2φ) sin(2ψ), (2.3)

F×(θ, φ, ψ) = 1 + cos2(θ)
2 cos(2φ) sin(2ψ) + cos(θ) sin(2φ) cos(2ψ). (2.4)

Equation (4.24) can be rewritten as:

h ≡A(θ, φ)
[

cosκ(θ, φ, ψ) h+(ι, ϕ0, DL, ξ, tc; t)

+ sin κ(θ, φ, ψ) h×(ι, φ,DL, ξ, tc; t)
]
, (2.5)

where κ(θ, φ, ψ) is the effective polarization [187] defined in the region [0, 2π)
as:

eiκ(θ,φ,ψ) = F+(θ, φ, ψ) + iF×(θ, φ, ψ)√
F 2

+(θ, φ, ψ) + F 2
×(θ, φ, ψ)

, (2.6)

while A(θ, φ) reads:

A(θ, φ) =
√
F 2

+(θ, φ, ψ) + F 2
×(θ, φ, ψ) . (2.7)

We stress that A(θ, φ) does not depend on ψ despite the fact F+ and F×
depend on it. Henceforth, to simplify the notation we suppress the dependence
of κ on (θ, φ, ψ). Given a GW signal hs and a template waveform ht, we
define the faithfulness as [187,310]

F(ιs, ϕ0s, κs) ≡ max
tc,ϕ0t,κt

 (hs, ht)√
(hs, hs) (ht, ht)

∣∣∣∣∣∣ ιs=ιt
ξs=ξt

 , (2.8)

where parameters with the subscript “s” (“t”) refer to the signal (template)
waveform. The inner product is defined as [151,309]:

(a, b) ≡ 4 Re
∫ fh

fl
df
ã(f) b̃∗(f)
Sn(f) , (2.9)

where a tilde indicates the Fourier transform, a star the complex conjugate
and Sn(f) is the one-sided power spectral density (PSD) of the detector noise,
and we employ the Advanced LIGO’s “zero-detuned high-power” design
sensitivity curve [307]. The integral is evaluated between the frequencies
fl = 20Hz and fh = 3kHz.
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The maximizations over tc and ϕ0t in Eq. (4.28) are computed numerically,
while the maximization over κt is done analytically following the procedure
described in Ref. [187] (see Appendix A). When ht does not include higher-
order modes, the maximization over the effective polarization κt in Eq. (4.28)
becomes degenerate with the maximization over ϕ0t and we recover the usual
definition of faithfulness.
The faithfulness given in Eq. (4.28) depends on the signal parameters

(ιs, ϕ0s, κs). To understand how the faithfulness varies as function of those
parameters, we introduce the minimum, maximum, average and average
weighted with the SNR unfaithfulness [1−F(ιs, ϕ0s, κs)] over these parameters,
namely [187,243,310]:

min
ιs,ϕ0s,κs

(1−F) ≡1− max
ιs,ϕ0s,κs

F(ιs, ϕ0s, κs) , (2.10)

max
ιs,ϕ0s,κs

(1−F) ≡1− min
ιs,ϕ0s,κs

F(ιs, ϕ0s, κs) , (2.11)

〈1−F〉ιs,ϕ0s,κs ≡ 1− 1
8π2

∫ 2π

0
dκs

∫ 1

−1
d(cos ιs)

∫ 2π

0
dϕ0s F(ιs, ϕ0s, κs) , (2.12)

〈1−F〉SNRweighted
ιs,ϕ0s,κs ≡

≡ 1− 3

√√√√∫ 2π
0 dκs

∫ 1
−1 d(cos ιs)

∫ 2π
0 dϕ0s F3(ιs, ϕ0s, κs) SNR3(ιs, ϕ0s, κs)∫ 2π

0 dκs
∫ 1
−1 d(cos ιs)

∫ 2π
0 dϕ0s SNR3(ιs, ϕ0s, κs)

,

(2.13)

where the SNR(ιs, ϕ0s, θs, φs, κs, DLs, ξs, tcs) is defined as:

SNR(ιs, ϕ0s, θs, φs, κs, DLs, ξs, tcs) ≡
√

(hs, hs). (2.14)

We note that for the average unfaithfulness weighted with the SNR in
Eq. (2.13), we drop in the SNR the explicit dependence on A(θ, φ) and
DL, because they cancel out. It is important to highlight that the unfaith-
fulness weighted with the cube of the SNR is a conservative upper limit of
the fraction of detection volume lost. Indeed, weighting the unfaithfulness
with the SNR takes into account that, at a fixed distance, configurations
closer to an edge-on orientation have a smaller SNR with respect to config-
urations closer to a face-on orientation, therefore they are less likely to be
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observed. The definitions of minimum, maximum and averaged unfaithfulness
in Eqs. (2.10)-(4.31) are similar to those in Ref. [250], with the difference that
in the latter they minimize, maximize and average also over the source orien-
tation ιs. The average weighted with the SNR in Eq. (2.13) was introduced
in Ref. [243] and used for a similar purpose also in Ref. [310].

In the following we shall show results where all the averages are computed
assuming an isotropic distribution for the source orientation and sky position.
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m
ax

ι N
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,κ

N
R

1
−F

NR (`,m) = [(2, 2), (3, 3), (2, 1), (4, 4), (5, 5)] vs NR (` ≤ 5, m , 0)
5 < q ≤ 10 2 ≤ q ≤ 5 q < 2

Figure 2.4.: Maximum of unfaithfulness (1 − F) over the three angles
(ιNR, ϕ0NR, κNR) as a function of the total mass, in the range 20M� ≤M ≤
200M� of the NR waveform with (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) modes against
NR waveform with (` ≤ 5,m 6= 0) modes. The maximum unfaithfulness is
typically reached for edge-on orientations. The jaggedness of the curves is
caused by the numerical noise present in higher-order modes that are less
resolved in the NR simulations. We find that this feature is not present when
these noisy modes are removed from the calculation of the faithfulness.

Using the aforementioned definitions (2.10)–(2.13), we compute the unfaith-
fulness assuming that the signal is an NR waveform with modes (` ≤ 5,m 6=
0) 2, and the template is either an NR waveform or a SEOBNRv4 waveform
with only the (2, 2) mode.

In the left panel of Fig. 2.3 we show results for the simulation SXS:BBH:0610

2Since the nonoscillating m = 0 modes are not well reproduced by NR simulations and
their contribution is small, we do not include them in these calculations. We find that
the contribution of the modes with ` ≥ 6 is neglibigle.
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having q = 1.2, χ1 = −0.5, χ2 = −0.5. Given the small mass ratio, we do
not expect the higher-modes to play an important role. Indeed both the
NR with only the dominant mode and the SEOBNRv4 model have averaged
unfaithfulness < 1% in the mass range 20M� ≤ M ≤ 200M�. In both
cases the unfaithfulness is maximum for an edge-on orientation and is < 3%.
Conversely the minima of the unfaithfulness occur for a face-on configuration
and they are always much smaller than 1%. The situation is very different
in the right panel of Fig. 2.3 where we consider the simulation ET:AEI:0004
that has larger mass ratio and spins: q = 8, χ1 = χ2 = 0.85. In this case the
minima of the unfaithfulness correspond to a face-on orientation where the
higher-order modes are negligible and for this reason both NR with only the
dominant mode and the SEOBNRv4 model have unfaithfulness smaller than 1%.
By contrast, the results for the maximum of the unfaithfulness correspond
to an edge-on orientation and they are equally large for the NR with only
the dominant mode and for the SEOBNRv4 model. They have unfaithfulness
in the range [10%, 20%] for masses 20M� ≤M ≤ 200M�. In this case also
the averaged unfaithfulness are large, in the range [5%, 15%] and [3%, 8%]
for the weighted averages.
Thus, for this high mass-ratio configuration the error from neglecting

higher-order modes supersedes the modeling error of the dominant mode
when the orientation is far from face-on/face-off. This is not surprising
because the SEOBNRv4 waveform model was constructed requiring 1% of
maximum unfaithfulness against the NR waveforms when only the (2, 2)
mode was included [1].
Only by properly including the largest subdominant modes can one hope

to achieve an unfaithfulness of the waveform model below 1% 3. Which sub-
dominnat modes should we include to achieve such an accuracy? To address
this question, we compute the faithfulness between NR waveforms including
the modes (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) and NR waveforms including only
the (` ≤ 5,m 6= 0) modes. We find that the unfaithfulness averaged over the
three angles (ιNR, ϕ0NR, κNR) ranges between 0.01% / (1−F) / 0.5% for the
total mass interval 20M� ≤M ≤ 200M�. Thus, we conclude that the modes
(2, 2), (2, 1), (3, 3), (4, 4), (5, 5) are sufficient to model the full GW signal if
we want to achieve an average unfaithfulness smaller than 1%. Furthermore,
we note that these modes are not enough to ensure that the maximum of
the unfaithfulness is smaller than 1%. In fact, for some of the configurations

3We notice that using a waveform model with unfaithfulness smaller than 3% (or 1%
depending on the features of the template bank) is a sufficient condition for a template
bank to have a loss in event rates due to modeling error and discreteness of the template
bank smaller than 10% (e.g., see Ref. [260])
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with higher mass ratio, the unfaithfulness is slightly larger than 1% in the
mass range 20M� ≤M ≤ 200M�, as it is clear from the plot in Fig. 2.4. The
maximum unfaithfulness decreases, almost reaching the requirement of being
below 1% for all the waveforms in the catalog, if we add also the more sub-
dominant modes (3, 2), (4, 3). However, given that the overall improvement
in the maximum of unfaithfulness when including also the modes (3, 2), (4, 3)
is small (of the order of a few 0.1%) with respect to the results obtained
using only the (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) modes, it is worth comparing
this improvement with the estimation of the maximum of the unfaithfulness
due to the numerical error of the NR waveforms. The numerical errors we
consider are numerical truncation error [3, 311] and waveform extrapolation
error [3, 311, 312]. For our NR catalog, we estimate the numerical trunca-
tion error computing the maximum of the unfaithfulness between the same
NR waveforms with the same modes (i.e., (2, 2), (2, 1), (3, 3), (4, 4), (5, 5)),
but with different resolutions, notably the highest (maximum) resolution
and the second highest. The waveform extrapolation error is estimated in
the same way, but employing different extrapolation orders (i.e., N = 2 and
N = 3). We find that the contribution of each of these errors to the maximum
of the unfaithfulness is in the range [0.1%, 1%] for the total mass interval
20M� ≤M ≤ 200M� 4.

Since adding the modes (3, 2), (4, 3) is a non trivial task because of the
mode mixing between spherical and spheroidal harmonics [109,304,313,314],
and considering that their contribution is at the same level of the numerical
error of the NR waveforms, we decide not to include them in the SEOBNRv4HM
model. The results of the maximum of the unfaithfulness due to the numerical
errors suggest that in order to use NR waveforms to build an EOBNR model
having maximum unfaithfulness against NR smaller than 1% it would be
necessary to have more accurate higher-order modes from NR simulations.

4The unfaithfulness averaged over the three angles (ιNR, ϕ0NR, κNR) due to numerical
errors is much smaller than 1%. The reason is that the main contribution to this
average unfaithfulness is the numerical error of the dominant mode. The latter is
much smaller than 1%, as well. This conclusion is in agreement with Ref. [3] where
the authors studied the numerical errors of the dominant mode for a subset of the
waveforms in our NR catalog.
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2.4. Effective-one-body multipolar waveforms for
nonprecessing binary black holes

In this section we describe the main ingredients used to build the multipolar
spinning, nonprecessing SEOBNRv4HM waveform model. We start briefly de-
scribing the dynamics in Sec. 2.4.1, and then focus on the structure of the
gravitational modes in Sec. 2.4.2.

In the EOB formalism the real dynamics of two bodies with massesm1,2 and
spins S1,2 is mapped into the effective dynamics of a test particle with mass
µ and spin S∗ moving in a deformed Kerr metric with mass M = m1 +m2
and spin SKerr (for details see Ref. [208]). As discussed above, here we limit
to nonprecessing spins S1,2 and introduce the dimensionless spin parameters
χ1,2 defined as Si = χim

2
i L̂, with −1 ≤ χi ≤ 1.

2.4.1. Effective-one-body dynamics

The EOB conservative orbital dynamics is obtained from the resummed EOB
Hamiltonian through the energy mapping [91]

HEOB = M

√√√√1 + 2ν
(
Heff

µ
− 1

)
, (2.15)

where µ = m1m2/(m1 +m2) is the reduced mass of the BBH and ν = µ/M
is the symmetric mass ratio. When spins are nonprecessing the motion is con-
strained to a plane. Thus, the dynamical variables entering the Hamiltionian
are the orbital phase φ 5, the radial separation r (normalized to M) and their
conjugate momenta pφ and pr (normalized to µ). The explicit form of Heff
that we adopt here was derived in Refs. [208,287], based on the linear-in-spin
Hamiltonian for spinning test particles of Ref. [205]. The radial potential
entering the 00-component of the EOB deformed metric, which also enters
the effective Hamiltonian Heff, is explicitly given in Eqs. (2.2) and (2.3) in
Ref. [1]. The Hamiltonian Heff depends also on the calibration parameters
(K, dSO, dSS ∆22

peak), which were determined in Ref. [1] by requiring agreement
against a large set of NR simulations (see Eqs. (4.12)–(4.15) therein). Here,
we adopt the same values for these calibration parameters.

The dissipative dynamics in the EOB formalism is described by the
radiation-reaction force given in Eq. (2.9) in Ref. [1]. We notice that

5Abusing notation, we indicate the orbital phase with φ, which we use to denote the
azimuthal angle describing the sky location of the source in the detector frame. It will
be clear from the context which of the two angles we refer to.
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in this paper we do not change the dissipative and conservative dynamics of
the SEOBNRv4 model, and that the SEOBNRv4HM waveform models share the
same two-body dynamics of SEOBNRv4. Here, we improve the accuracy of the
gravitational modes with (`,m) 6= (2, 2), and use them in the gravitational
waveform, but we do not employ these more accurate version of the modes
in the radiation-reaction force. Furthermore, we note that the gravitational
modes with (`,m) 6= (2, 2) are present in the radiation-reaction force, but
they do not include the NQCs corrections (see Eq. (2.27)). As discussed also
in Ref. [201], the latter modify the amplitude of the already subdominant
higher-order modes (see Fig. 2.1) by ∼ 10% close to merger, where the effect
of the radiation reaction is not very important for the plunging dynamics.

2.4.2. Effective-one-body gravitational modes

As usual in the EOB formalism [92], the gravitational modes entering Eq. (2.1)
are composed of two main parts: inspiral & plunge, and merger & ringdown.
We can write the generic mode as:

h`m(t) =

h
insp−plunge
`m (t), t < t`mmatch

hmerger−RD
`m (t), t > t`mmatch,

(2.16)

where t`mmatch is defined as:

t`mmatch =

t22
peak, (`,m) = (2, 2), (3, 3), (2, 1), (4, 4)
t22
peak − 10M, (`,m) = (5, 5),

(2.17)

with t22
peak being the peak of the amplitude of the (2, 2) mode. By construction

the amplitude and phase of h`m(t) are C1 at t = t`mmatch. In the following we
shall discuss in more detail how these two parts of the gravitational modes are
built and why we choose a different matching point for the mode (5, 5). We
note again that the mode (2, 2) in the SEOBNRv4HM model is the same as in
the SEOBNRv4 model, and for this reason below we focus on the higher-order
modes (3, 3), (2, 1), (4, 4), (5, 5).

2.4.3. Effective-one-body waveform modes: inspiral-plunge

The inspiral-plunge EOB modes are expressed in the following multiplicative
form:

hinsp-plunge`m = hF`mN`m, (2.18)
where hF`m is the factorized form of the PN GW modes [87, 283] for quasi-
circular orbits, aimed at capturing strong-field effects, as discussed in the
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test-mass limit [218–220]. The factor N`m in Eq. (2.18) is the nonquasi-
circular (NQC) term, which includes possible radial effects that are no longer
negligible during the late inspiral and plunge, and that are not captured by
the rest of the waveform. More explicitly, the factorized term reads:

hF`m = h
(N,ε)
`m Ŝ

(ε)
eff T`m f`m e

iδ`m , (2.19)

where ε is the parity of the multipolar waveform, defined as

ε =

0, `+m is even
1, `+m is odd.

(2.20)

The Newtonian term h
(N,ε)
`m reads:

h
(N,ε)
`m = Mν

DL

n
(ε)
`m c`+ε(ν) V `

φ Y
`−ε,−m

(
π

2 , φ
)
, (2.21)

where DL is the distance from the source, Y `m(θ, φ) are the scalar spherical
harmonics and the expression of the functions n(ε)

`m and c`+ε(ν) are given in
Appendix A. The function V `

φ is defined as:

V `
φ ≡ v

(`+ε)
φ ≡M Ω rΩ, (2.22)

where

rΩ =
[
∂HEOB(r, φ, pr = 0, pφ)

∂pφ

]− 2
3

, (2.23)

Ω = dφ/dt being the angular frequency. We also define vΩ = (M Ω)1/3. The
term Ŝ

(ε)
eff in Eq. (2.19) is an effective source term:

Ŝ
(ε)
eff =

Heff(r, pr∗ , pφ), ε = 0
Leff = pφ (M Ω) 1

3 , ε = 1.
(2.24)

The function T`m in (2.19) is a resummation of the leading-order logarithms
of tail effects:

T`m = Γ(`+ 1− 2 iHEOBΩ)
Γ(`+ 1) exp[π m Ω HEOB]

× exp[2 i m Ω HEOB log(2 m Ω r0)], (2.25)

where r0 = 2M/
√
e.
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The functions f`m and eδ`m in Eq. (2.19) contain terms such that when
expanding in PN order hF

`m one recovers hPN
`m (i.e., the PN expansion of the

(`,m) mode up to the PN order at which hPN
`m is known today). In the

SEOBNRv4HM model the expression for f`m and δ`m are mostly taken from the
SEOBNRv4 model [1] with the addition of some newly computed PN terms (for
more details and explicit expressions of f`m and δ`m see Appendix A). For
the modes (2, 1) and (5, 5), f`m includes also the calibration term c`m vβ`mΩ ,
where β`m denotes the first-order term at which the PN series of hPN

`m is not
known today with its complete dependence on mass ratio and spins (see
Eqs. (A.11)–(A.12)). The calibration parameter c`m is evaluated to satisfy
the condition:

∣∣∣hF`m(t`mmatch)
∣∣∣ ≡ ∣∣∣h(N,ε)

`m Ŝ
(ε)
eff T`me

iδ`mf`m(c`m)
∣∣∣ ∣∣∣∣∣
t=t`mmatch

,

=
∣∣∣hNR`m (t`mmatch)

∣∣∣ , for (`,m) = (2, 1), (5, 5), (2.26)

where
∣∣∣hNR`m (t`mmatch)

∣∣∣ is the amplitude of the NR modes at the matching point
t`mmatch. The latter are given as fitting formulae for every point of the parameter
space (ν, χ1, χ2) in Appendix B. We need to include the calibration parameter
c`m for the modes (`,m) = (2, 1), (5, 5) for reasons that we explain below in
Sec. 2.4.4.
Finally, the term N`m in Eq. (2.18) is the NQC correction:

N`m =
[
1 + p2

r∗

(r Ω)2

(
ah`m1 + ah`m2

r
+ ah`m3
r3/2

)]

× exp
[
i

(
bh`m1

pr∗

r Ω + bh`m2
p3
r∗

r Ω

)]
, (2.27)

which is used to reproduce the shape of the NR modes close to the matching
point tmatch

`m . As done in the past [1, 234], the 5 constants (ah`m1 , ah`m2 , ah`m3 ,
bh`m1 , bh`m2 ) are fixed by requiring that:

• The amplitude of the EOB modes is the same as that of the NR modes
at the matching point t`mmatch:∣∣∣hinsp-plunge`m (t`mmatch)

∣∣∣ =
∣∣∣hNR`m (t`mmatch)

∣∣∣ ; (2.28)

We notice that this condition is different from that in Eq. (2.26) because
it affects hinsp-plunge`m (t`mmatch) and not hF`m(t`mmatch).
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• The first derivative of the amplitude of the EOB modes is the same as
that of the NR modes at the matching point t`mmatch:

d
∣∣∣hinsp-plunge`m (t)

∣∣∣
dt

∣∣∣∣∣∣
t=t`mmatch

=
d
∣∣∣hNR`m (t)

∣∣∣
dt

∣∣∣∣∣∣
t=t`mmatch

; (2.29)

• The second derivative of the amplitude of the EOB modes is the same
as that of the NR modes at the matching point t`mmatch:

d2
∣∣∣hinsp-plunge`m (t)

∣∣∣
dt2

∣∣∣∣∣∣
t=t`mmatch

=
d2
∣∣∣hNR`m (t)

∣∣∣
dt2

∣∣∣∣∣∣
t=t`mmatch

; (2.30)

• The frequency of the EOB modes is the same as that of the NR modes
at the matching point t`mmatch:

ωinsp-plunge
`m (t`mmatch) = ωNR

`m (t`mmatch); (2.31)

• The first derivative of the frequency of the EOB modes is the same as
that of the NR modes at the matching point t`mmatch:

dωinsp-plunge
`m (t)

dt

∣∣∣∣∣
t=t`mmatch

= dωNR
`m (t)
dt

∣∣∣∣∣
t=t`mmatch

, (2.32)

where the RHS of Eqs. (2.28)–(2.32) (usually called “input values”), are
given as fitting formulae for every point of the parameter space (ν, χ1, χ2)
in Appendix B. These fits are produced using the NR catalog and BH-
perturbation-theory waveforms, as described in Appendix F.
As we discuss in Appendices B and C, we find that for several binary

configurations in the NR catalog, the numerical error is quite large for the
mode (5, 5) close to merger. To minimize the impact of the numerical error
on the fits of the input values, we are obliged to choose the matching point
for this mode earlier than for other modes, as indicated in Eq. (2.17).

2.4.4. Minima in (2, 1), (5, 5)-modes’ amplitude and c`m’s calibration
parameters

We want now to come back to the motivation of introducing the c`m’s cal-
ibration parameters in Eq. (2.26) for the modes (2, 1) and (5, 5). We note
that those parameters are determined and included in the waveform before
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Figure 2.5.: Amplitude of the (2, 2), (2, 1), (3, 3), (4, 4), (5, 5),(3, 2), (4, 3)
modes versus time for the NR simulation SXS:BBH:1377 with parameters
q = 1.1, χ1 = −0.4, χ2 = −0.7. We produce such simulation to check if
the analytical prediction that the (2, 1)-mode’s amplitude would have a non-
monotonic behaviour toward merger holds. We choose as origin of time the
peak of the (2, 2) mode.

applying the NQC conditions (2.28)–(2.32). We introduce the c`m’s to “cure”
the behaviour of the modes (2, 1), (5, 5) close to the matching point for a
particular region of the parameter space. Indeed, we find that the factorized
expression of the amplitude

∣∣∣hF`m(t)
∣∣∣ starts to decrease toward plunge and

merger, approaching minimum values close to zero for t ∼ tmatch
`m when the

binary parameters have q ∼ 1 and large |χA| = |(χ1 − χ2)|/2. Although the
term f`m in Eq. (2.19) is responsible of the zeros in the amplitude, we find
that this unexpected behaviour is also present in the PN-expanded form of
the mode, and persist in other mode resummations, like those suggested in
Ref. [220] (see Eq. 2 therein) and in Refs. [221,222].
Quite interestingly, in the case of the (5, 5) mode, we do not find such

a non-monotonic behaviour toward merger in the NR simulations at our
disposal, but we do find it for the (2, 1) mode in the same region of parameter
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space predicted by the analytical computation. In particular, we notice
minima toward merger in SXS:BBH:0612 with (q = 1.6, χ1 = 0.5, χ2 =
−0.5), SXS:SXS:BBH:0614 (q = 2, χ1 = 0.75, χ2 = −0.5), SXS:BBH:0254
(q = 2, χ1 = 0.6, χ2 = −0.6). We also produce a new NR simulation
SXS:BBH:1377 with q = 1.1, χ1 = −0.4, χ2 = −0.7 to check the presence of
a minimum in the amplitude mode. Figure 2.5 shows indeed the presence of
such a mimimum in the (2, 1) mode amplitude for SXS:BBH:1377.

The minima (or zeros) of the (2, 1), (5, 5) modes can sometime occur at times
t ∼ tmatch

`m , that is close to the times where we impose the NQC conditions
(2.28)–(2.32). When that happens, the enforcement of such conditions yield a
waveform which contains unwanted features6. Considering that for the mode
(5, 5) the mimima are absent in the NR simulations, thus they are likely an
artefact of the analytical waveform, and that for the mode (2, 1) the minima
are present only in the region of parameter space where the (2, 1) mode is
much smaller than the other modes (i.e., when q ∼ 1 and |χA| = |(χ1−χ2)|/2
is large, see also Fig. 2.5), we decide to remove the minima from the (2, 1) and
(5, 5) EOB modes. We achieve this by introducing the calibration parameter
c`m, which enforces the condition that the EOB amplitude at tmatch

`m is equal
to the NR amplitude (see Eq. (2.26)). Note that the latter is imposed before
the NQC conditions and removes the minima only when they appear for
t ∼ t`mmatch. Modeling the minima in the (2, 1) modes could be considered in
the future, when more accurate waveforms would be needed at higher SNRs.
Henceforth, we attempt to describe why the analytical modes (both in

the PN and factorized form) present minima or zeros for the (2, 1) and (5, 5)
cases when q ∼ 1 and |χA| = |(χ1 − χ2)|/2 is large. Readers who might not
be interested in this technical discussion, could skip the rest of this section
and move to Sec. 2.4.5.
As discussed in Sec. 2.2, because of binary symmetry under rotation

(ϕ0 → ϕ0 + π) the modes with odd m vanish for equal-mass and equal-spins
configurations. Thus, the nonspinning terms in those modes are proportional
to δm = (m1 − m2)/M while the spinning terms are an antisymmetric
combination of δm, χA and χS = (χ1 +χ2)/2 (e.g, χA, χSδm, χ2

Aδm), see for
example Eqs.(38a)–(38i) in Ref. [220]. In the limit q ∼ 1 all the nonspinning
and spinning terms proportional to δm are suppressed, and the leading
spinning terms are proportional to χA. For large values of χA and small
values of δm (very unequal spins, almost equal mass) a cancellation between

6Since |hinsp−plunge
`m (t`mmatch)| ∼ 0, imposing the condition in Eq. (2.28) with∣∣hNR

`m (t`mmatch)
∣∣ 6= 0 forces the function |N`m|, hence the amplitude |hinsp−plunge

`m (t)|,
to assume unphysically large values for t < t`mmatch.
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the leading-order spin correction and the dominant nonspinning PN term
(which despite being of lower PN order is supressed by δm) can occur at some
given frequency. The higher the difference in PN orders between these two
leading spinning and nonspinning contributions, the higher the frequency
at which the cancellation happens. For the (2, 1) mode, there is only a half
PN order difference between these terms (see Eq. (38b) in Ref. [220]), so
the cancellation arises at sufficiently low frequencies where this PN analysis
based on two leading terms can be reliable, and, indeed, we do observe these
minima in the NR simulations. In Table 2.1 we list the configurations in
our NR catalog where the minimum happens and its orbital frequency as
measured in the NR simulation 7 and as predicted by PN modeling at 3PN
order [62,87,88]. As expected, the lower the frequency, the more accurate the
PN prediction. We note that the last row shows results of a NR simulation
that we specifically produce to confirm the presence of the minimum in the
mode (see also Fig. 2.5). We note that for the binary’s configuration listed
in the first row of Table 2.1, the NR simulation shows a high-frequency
minimum, which is not reproduced by PN calculations, confirming that this
analysis becomes less reliable in the high-frequency regime.

Lastly, as already pointed out above, for the (5, 5) mode we do not observe
any minimum in the NR simulations at our disposal. The most likely expla-
nation is that the cancellation of the leading terms happens at frequencies
high enough that the higher-order PN corrections would change the result
(i.e., they completely remove the minimum or push it at frequency higher
than the merger frequency).

NR name q χ1 χ2 MΩNR
0 MΩPN

0

SXS:BBH:0254 2 0.6 -0.6 0.17 n/a
SXS:BBH:0614 2 0.75 -0.5 0.082 0.057
SXS:BBH:0612 1.6 0.5 -0.5 0.068 0.047
SXS:BBH:1377 1.1 -0.4 -0.7 0.033 0.029

Table 2.1.: For each NR simulation, binary’s parameters and values of the
orbial frequencies MΩNR

0 and MΩPN
0 at which the minimum of the (2, 1)

mode occurs.

7We estimate the orbital frequency in the NR simulation as half of the gravitational
frequency of the (2, 2) mode.
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2.4.5. Effective-one-body waveform modes: merger-ringdown

We build the merger-ringdown EOB waveforms following Refs. [1,240,302,303],
notably the implementation in Ref. [1]. The merger-ringdown mode reads:

hmerger-RD
`m (t) = ν Ã`m(t) eiφ̃`m(t) e−iσ`m0(t−t`mmatch), (2.33)

where σ`m0 is the (complex) frequency of the least-damped QNM of the
final BH. We denote σR`m ≡ =(σ`m0) < 0 and σI`m ≡ −<(σ`m0). For each
mode (`,m), we employ the frequency values tabulated in Refs. [193, 315]
as functions of the BH’s mass and spin. We compute the remnant-BH’s
mass using the same fitting formula in Ref. [234], which is based on the
phenomenological formula in Ref. [238], but we replace its equal-mass limit
(see Eq. (11) in Ref. [238]) with the fit in Ref. [239] (see Eq. (9) of Ref. [239]).
The remnant-BH’s spin is computed using the spin formula in Ref. [316] (see
Eq. (7) in Ref. [316]).
For the two functions Ã`m(t) and φ̃`m(t), we use the ansätze [1]:

Ã`m(t) = c`m1,c tanh[c`m1,f (t− t`mmatch) + c`m2,f ] + c`m2,c , (2.34)

φ̃`m(t) = φ`mmatch − d`m1,c log
1 + d`m2,fe

−d`m1,f (t−t`mmatch)

1 + d`m2,f

 , (2.35)

where φ`mmatch is the phase of the inspiral-plunge mode (`,m) at t = t`mmatch.
The coefficients d`m1,c and c`mi,c

8 with i = 1, 2 are fixed by imposing that
the functions Ã`m(t) and φ̃`m(t) in Eq. (2.16) are of class C1 at t =
t`mmatch. Those constraints allow us to express c`mi,c in terms of c`m1,f , c`m2,f , σR`m,
|hinsp-plunge`m (t`mmatch)|, ∂t|hinsp-plunge`m (t`mmatch)| as

c`m1,c = 1
c`m1,fν

[
∂t|hinsp-plunge`m (t`mmatch)|

− σR`m|h
insp-plunge
`m (t`mmatch)|

]
cosh2 (c`m2,f ), (2.36)

c`m2,c = −|h
insp-plunge
`m (t`mmatch)|

ν
+ 1
c`m1,fν

[
∂t|hinsp-plunge`m (t`mmatch)|

− σR`m|h
insp-plunge
`m (t`mmatch)|

]
cosh (c`m2,f ) sinh (c`m2,f ), (2.37)

8The subscript “c” means “constrained” while “f” stands for “free”.
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and d`m1,c in terms of d`m1,f , d`m2,f , σI`m, ω
insp-plunge
`m (t`mmatch) as

d`m1,c =
[
ωinsp-plunge
`m (t`mmatch)− σI`m

] 1 + d`m2,f
d`m1,fd

`m
2,f
. (2.38)

We emphasize again that the values of |hinsp-plunge`m (t`mmatch)|, ∂t|hinsp-plunge`m (t`mmatch)|
and ωinsp-plunge

`m (t`mmatch) are fixed by the NQCs conditions in Eqs. (2.28) (2.29)
(2.31) to be the same as the NR values

∣∣∣hNR`m (t`mmatch)
∣∣∣ , ∂t|hNR`m (t`mmatch)| and

ωinsp-plunge
`m (t`mmatch) which are given in Appendix B as function of ν and a

combination of the spins χ1 and χ2. Thus, we are left with only two free
parameters in the amplitude c`mi,f and in the phase d`mi,f . To obtain those
parameters we first extract them applying a least-square fit in each point
of the parameter space (ν, χ1, χ2) for which we have NR and Teukolsky-
equation–based waveforms. Then, we interpolate those values in the rest of
the parameter space using polynomial fits in ν and a combination of χ1 and
χ2, as given explicitly in Appendix C.

Regarding the accuracy of our merger-ringdown model, for the modes (2,1)
and (3,3) the average fractional difference in the amplitude between the model
and the NR waveform is of the order of percent, while the average phase
difference is . 0.1 radians. For the modes (4,4) and (5,5) we are unable
to determine a similar average error, because those modes are affected by
numerical error at merger and during ringdown, as we discuss in Appendix
C. We find that the average fractional difference in the amplitude (phase)
between the model and the NR simulation can be in some cases on the order
of 10% (. 0.3 rad), but this can be comparable to the difference between NR
waveforms at different extraction radius (see Fig. C.1 in Appendix C). We
notice that although the errors in those modes are not as small as those of
the modes (2,1) and (3,3), they are still acceptable considering the relatively
small amplitude of the modes (4,4) and (5,5) with respect to the (2,1) and
(3,3).

In summary, given a binary configuration (m1,m2, χ1, χ2), the merger-
ringdown model that we have developed is uniquely determined by the
following parameters (m1,m2, χ1, χ2, t

`m
match, φ

`m
match, σ

I
`m, σ

R
`m), the latter being

a function of the remnant-BH’s mass and spin determined by the NR fits. It is
possible to use this merger-ringdown model as a stand-alone model (i.e., inde-
pendently from the inspiral-plunge part), if we also provide equations relating
φ`mmatch (i.e., the phase of the mode (`,m) at t`mmatch) with φ22

match. Indeed even
if a global time and phase shift is possible, the relations between the phases
of different modes are fixed. The latter are given as a fit for every point of the
parameter space (ν, χ1, χ2) in Appendix D. We note that in this stand-alone
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merger-ringdown model, one can also treat σI`m and σR`m as free parameters
(i.e., we do not compute them from Refs. [193, 315]). In this case the merger-
ringdown model is a function of (m1,m2, χ1, χ2, t

`m
match, φ

`m
match, σ

I
`m, σ

R
`m,Mfinal)

where Mfinal is the remnant-BH’s, which is used only to rescale σI`m and σR`m.
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Figure 2.6.: Faithfulness F(cos(ιNR), ϕ0NR, κNR = 0) for the configuration
(q = 3, M = 200M�, χ1 = 0.85, χ2 = 0.85): NR (` ≤ 5, m 6= 0) vs SEOBNRv4
(left panel), NR (` ≤ 5, m 6= 0) vs SEOBNRv4HM (right panel). We plot the
faithfulness for a fixed κNR because we have noted that F(ιNR, ϕ0NR, κNR) is
mildly dependent on this variable.
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2.5. Performance of the multipolar effective-one-body
waveform model

We study the accuracy of the multipolar waveform model SEOBNRv4HM by
computing its faithfulness against waveforms in the NR catalog at our disposal.
In Secs. 2.5.1 and 2.5.2, we perform a detailed comparison against three NR
simulations, notably a moderate–mass-ratio configuration, SXS:BBH:0293
(q = 3, χ1 = 0.85, χ2 = 0.85), and two high–mass-ratio configurations,
SXS:BBH:0065 (q = 8, χ1 = 0.5, χ2 = 0) and ET:AEI:0004 (q = 8, χ1 =
0.85, χ2 = 0.85). We also compare the results above with those obtained
when the (2,2)–waveform-model SEOBNRv4 is employed. Finally, in Sec. 2.5.3
we summarize the agreement of the SEOBRNv4HM model against the entire NR
catalog composed of 157 simulations.

2.5.1. Moderate mass ratio: SXS:BBH:0293

In the left panel of Fig. 2.6 we show a contour plot of the faithfulness
F(cos(ιNR), ϕ0NR, κNR)

∣∣∣
κNR=0

between the NR waveform SXS:BBH:0293 with
modes (` ≤ 5, m 6= 0), and the waveform generated with SEOBNRv4, for a
total mass of M = 200M�. In order to reduce the dimensionality of the
plot, we fix the value of κNR. However, we find that the dependence of the
faithfulness on this variable is mild. We can see that the faithfulness depends
mainly on the inclination angle ιNR and degrades when we move from a
face-on {F(cos(ιNR) = 0) ∼ 99%} to an edge-on orientation {F(cos(ιNR) =
1) ∼ 92%}. This situation is different if we include the higher-order modes
in the model (i.e, (3, 3), (2, 1), (4, 4), (5, 5)), as can be seen in the right panel
of Fig. 2.6 where we use the SEOBNRv4HM waveform model. In this case the
faithfulness degrades much less if we go from a face-on (F ∼ 99.7%) to an
edge-on (F ∼ 98.5%) orientation. The small residual degradation is due to
the fact that the dominant mode is still better modeled than the higher-
order modes and for this reason for a face-on orientation (where the signal is
dominated by the dominant mode) the faithfulness is larger than for an edge-
on orientation where the higher-order modes contribute the most. Another
contribution to the residual degradation in an edge-on orientation stems
from the fact that in the SEOBNRv4HM model we still miss some subdominant
higher-order modes, which instead we have included in the NR waveform.

As done in Sec. 2.3 we summarize the results of the faithfulness calculation
in Fig. 2.7, where we show the minimum and maximum of the unfaithfulness
over the NR orientations, GW polarization and sky position, respectively
indicated as minιNR,ϕ0NR,κNR(1−F) (blue) and maxιNR,ϕ0NR,κNR(1−F) (red);
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the average of the unfaithfulness over these three angles 〈1−F〉ιNR,ϕ0NR,κNR

(green), and the average of the unfaithfulness weighted with the cube of the
SNR: 〈1−F〉SNRweighted

ιNR,ϕ0NR,κNR
(orange). All the averages are computed assuming

an isotropic distribution for the source orientation, homogeneous distribution
in GW polarization and isotropic distribution in sky position. All these
quantities are shown as a function of the total mass of the system. In
the plots the plain curves are the results of the unfaithfulness between
the NR and SEOBNRv4HM waveforms, while dashed curves are the results of
the unfaithfulness between NR and SEOBNRv4 waveforms. In this case, the
maximum and the averaged values of the unfaithfulness for the SEOBNRv4
model are one order of magnitude larger than the ones with the SEOBNRv4HM
model. The minimum of the unfaithfulness is the same for both models (blue
curves lying on top of each other) because it is reached for a face-on orientation,
where the contribution of the higher-order modes used for SEOBNRv4HM is
zero. Indeed the -2 spin-weighted spherical harmonics associated to these
higher-order modes go to zero for face-on orientations. We note also that
in SEOBNRv4, as expected, the disagreement grows strongly with the total
mass of the system, because higher-order modes are more important toward
merger and ringdown.

2.5.2. High mass ratios: SXS:BBH:0065 and ET:AEI:0004

More striking conclusions about the improvement of the waveform model due
to the inclusion of higher-order modes can be drawn looking at the comparison
with the two NR simulations SXS:BBH:0065 and ET:AEI:0004, for which
higher-order modes are expected to be more important, because of the higher
mass ratio. For the first configuration (q = 8, M = 200M�, χ1 = 0.5, χ2 = 0)
we see in Fig. 2.8 that the faithfulness between the NR (` ≤ 5, m 6= 0)
and the SEOBNRv4 waveforms (left panel) degrades much faster than before
as a function of the inclination angle ιNR, reaching F . 90% already for
values of cos(ιNR) ∼ 0.7 (ιNR ∼ 45◦), being very large for the edge-on
inclination F ∼ 80%. Similarly to what happens for the example discussed in
Sec. 2.5.1, the situation is much better if we include in the model the higher
modes, as can be seen in Fig. 2.8 (right panel). Now, the degradation as a
function of ιNR is much weaker and for edge-on orientations the faithfulness
reaches values close to F ∼ 98%. Similar conclusions can be drawn by
looking at Fig. 2.9, whch refers to the simulation ET:AEI:0004 (q = 8, M =
200M�, χ1 = 0.85, χ2 = 0.85). The only relevant difference with respect to
the aforementioned case is that in this case the faithfulness of the SEOBNRv4HM
waveform is a little bit smaller and it goes down to F ∼ 97.7% in the edge-on
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orientations. At a fixed binary orientation, the faithfulness of the (2,2)–
waveform-model SEOBNRv4 against the NR waveform for the configuration
(q = 8, M = 200M�, χ1 = 0.85 = χ2 = 0.85) is always larger than that
for the configuration (q = 8, M = 200M�, χ1 = 0.5, χ2 = 0). This can be
explained considering that, as discussed in Sec. 2.2, for a fixed mass ratio
the (2, 1) mode is increasingly suppressed when the spin of the heavier BH
grows, while the other higher-order modes are mostly constant as a function
of the spins. Since in the first case χ1, that is the spin of the heavier BH,
is larger than in the second case, the (2, 1) mode is more suppressed in the
first case than in the second one. For this reason the faithfulness with the
SEOBNRv4 model, including only the dominant mode, is higher for the first
configuration.

As for the previous configuration, in Fig. 2.10, we show the summary of the
faithfulness results as maximum, minimum and averages of the unfaithfulness,
respectively for SXS:BBH:0065 (left panel) and ET:AEI:0004 (right panel).
For these binary configurations, even if the maxima of the unfaithfulness
have larger values with respect to the case discussed in the previous section
( ∼ 2% for SXS:BBH:0065 and ∼ 2.7% for ET:AEI:0004 at a total mass of
M = 200M�), we still have acceptable values of the unfaithfulness averaged
over the orientations, sky position and polarizations: respectively ∼ 1%
and ∼ 1.6% for a total mass of M = 200M�. This is a big improvement
with respect to the SEOBNRv4 model, which gives averaged values of the
unfaithfulness larger than 10% for both configurations and the same total mass.
For the configuration with q = 8, χ1 = 0.85 = χ2 = 0.85, the unfaithfulness
against the NR simulation was also computed for the multipolar waveform
model developed in Ref. [124], and found to be around ∼ 5% for ιs = π/2,
when averaging over the angles κs and ϕ0s for a total mass M = 100M�. In
our model the maximum of the unfaithfulness (i.e., maxιs,ϕ0s,κs(1−F)) over
the angles ιs, ϕ0s and κs is around 1.5% at M = 100M�. The reason for the
better accuracy of SEOBNRv4HM model with respect to the waveform model
in Ref. [124] for this “extreme” binary configuration might be due to the
fact that the simple scaling argument used there to build the higher-order
modes is not very accurate for high-mass ratio and high-spin binary systems.
We leave to the future a direct, comprehensive comparison between the two
waveform models.

As discussed in Sec. 2.3, an important quantity to assess the improvement
that SEOBNRv4HM could yield for detecting BBHs is the average unfaithfulness
weighted with the cube of the SNR. For this quantity our model yields values
of ∼ 0.7% for SXS:BBH:0065 and ∼ 1% for ET:AEI:0004 at a total mass of
M = 200M� compared to values around ∼ 7% returned by the SEOBNRv4
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model.

2.5.3. Comparison with entire numerical-relativity catalog

Having studied in detail some particular configurations, we can now examine
how the model works over the entire NR waveform catalog at our disposal.
In Fig. 4.5 we plot the angle-averaged unfaithfulness as a function of the
total mass of the system, computed between the NR waveforms with modes
(` ≤ 5,m 6= 0) and the SEOBNRv4 model (left panel), SEOBNRv4HM model
(right panel). Comparing the two panels, we can see that SEOBNRv4HM yields
unfaithfulnesses one order of magnitude smaller than those of the SEOBNRv4
model. In the plots different colors correspond to different ranges of mass
ratios, and from the left panel it is visible that in the case of the SEOBNRv4
model, there is a clear hierarchy for which configurations with higher mass ra-
tios have also larger unfaithfulness. This effect is removed in the SEOBNRv4HM
model, as visible in the right panel of the same figure. In general for all of NR
simulations the averaged unfaithfulness against SEOBNRv4HM is always smaller
than 1% in the mass range 20M� ≤M ≤ 200M� with the exception of few
simulations for which the unfaithfulness reaches values ≤ 1.5% for a total
mass ofM = 200M�: SXS:BBH:0202 (q = 7, χ1 = 0.6, χ2 = 0), ET:AEI:0004
(q = 8, χ1 = 0.85, χ2 = 0.85), ET:AEI:0001 (q = 5, χ1 = 0.8, χ2 = 0) and
SXS:BBH:0061 (q = 5, χ1 = 0.5, χ2 = 0). These are the configurations in the
NR catalog having the most extreme values of mass ratio and spins. The
results of this analysis does not change considerably if we include in the NR
waveforms only the modes used in the SEOBNRv4HM model, because, when
looking at averaged unfaithfulness, the error is dominated by the imperfect
modeling of the (2, 1), (3, 3), (4, 4), (5, 5) modes, and not by neglecting other
subdominant higher modes, as discussed in Sec. 2.3.

The comparison between the unfaithfulness averaged over the three angles
(ιNR, ϕ0NR, κNR) and weighted by the cube of the SNR of two waveform models
against NR waveforms displays similar features, with the only difference of
having overall smaller values of the unfaithfulness (always ≤ 1% for the
SEOBNRv4HM model). This happens because weighting with the SNR favours
orientations closer to face-on for which the best modeled (2, 2) mode is
dominant.
Finally, in the right panel of Fig. 2.12 we show the maximum of the

unfaithfulness over the three angles (ιNR, ϕ0NR, κNR) between the SEOBNRv4HM
model and the NR waveforms with the modes (` ≤ 5, m 6= 0). In the
left panel of the same figure we show the same comparison but this time
using the SEOBNRv4 model. Here we see that the SEOBNRv4HM waveforms
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have unfaithfulness smaller than 3% in the mass range considered for all
the NR simulations with the exception of one case, namely SXS:BBH:0621
(q = 7, χ1 = −0.8, χ2 = 0) for which the unfaithfulness at M = 200M� is
(1−F) ∼ 3.1%.

In general, over the NR simulations of our catalog, the maximum of the
unfaithfulness is always smaller than 1% in the total mass range 20M� ≤M ≤
200M� for nonspinning configurations up to mass ratio q = 8. Nonspinning
cases with q ≥ 8 and configurations with high spins and mass ratios q ≥ 5 have
maximum unfaithfulness in the range 1% ≤ (1− F) ≤ 3%. For the former
the unfaithfulness decreases to values smaller than 1% when the comparison
is done including only the modes (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) in the NR
waveforms (i.e., excluding smaller higher-order modes like (3, 2), (4, 3)). This is
not true for high-spin, high–mass-ratio configurations where the unfaithfulness
due to a nonperfect modeling dominates over that due to neglecting smaller
higher-order modes. It is important to stress that, as discussed in Sec. 2.3,
the maximum unfaithfulness due to the numerical error in the NR waveforms
of our catalog is in the range [0.1%, 1%]. This means that when comparing
the NR waveforms with the SEOBNRv4HM model a fraction of the maximum
unfaithfulness as large as 1% could be due to numerical error. Given that
maximum unfaithfulness are reached for edge-on configurations where the
higher-order modes are more relevant, NR waveforms with better resolved
higher-order modes would be needed in order to attempt to build a model
with maximum unfaithfulness smaller than 1%.
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Figure 2.7.: Unfaithfulness (1−F) for the configuration (q = 3, χ1 = χ2 =
0.85) in the mass range 20M� ≤M ≤ 200M�. Dashed (plain) curves refer to
results for SEOBNRv4 (SEOBNRv4HM). The minima of the unfaithfulness for the
two models (blue curves), lie on top of each other because they are reached
for a face-on orientation, where the higher modes contribution is zero. The
unfaithfulness averaged over the three angles ιNR, ϕ0NR, κNR are obtained
assuming an isotropic distribution for the source orientation, homogeneous
distribution in GW polarization and isotropic distribution in sky position
(green curves and orange curves for the average weighted with the SNR).
The minimum of the unfaithfulness (red curves) in practice correspond to
an edge-on orientation, minimized over the other two angles. The vertical
dotted-dashed black line is the smallest mass at which the (2, 1) mode is
entirerly in the Advanced LIGO band. The (`,m′) mode is entirerly in the
Advanced LIGO band starting from a mass m′ times the mass associated
with the (2, 1) mode. The horizontal dotted-dashed black lines represent the
values of 1% and 3% unfaithfulness.
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Figure 2.8.: Faithfulness F(cos(ιNR), ϕ0NR, κNR = 0) for the configuration
(q = 8, M = 200M�, χ1 = 0.5, χ2 = 0): NR (` ≤ 5, m 6= 0) vs SEOBNRv4
(left panel), NR (` ≤ 5, m 6= 0) vs SEOBNRv4HM (right panel).
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(q = 8, M = 200M�, χ1 = 0.85, χ2 = 0.85): NR (` ≤ 5, m 6= 0) vs SEOBNRv4
(left panel), NR (` ≤ 5, m 6= 0) vs SEOBNRv4HM (right panel).
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Figure 2.10.: Unfaithfulness (1−F) in the mass range 20M� ≤M ≤ 200M�
for the configuration (q = 8, χ1 = 0.5, χ2 = 0) (left panel) and (q = 8, χ1 =
0.85, χ2 = 0.85) (right panel). Plotted data as in Fig. 2.7
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Figure 2.11.: Unfaithfulness (1 − F) averaged over the three angles
(ιNR, ϕ0NR, κNR) as a function of the total mass, in the range 20M� ≤
M ≤ 200M�. Left panel NR (` ≤ 5, m 6= 0) vs SEOBNRv4, right panel
NR (` ≤ 5, m 6= 0) vs SEOBNRv4HM. The horizontal dotted-dashed black lines
represent the values of 1% and 3% unfaithfulness.
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Figure 2.12.: Maximum of unfaithfulness (1 − F) over the three angles
(ιNR, ϕ0NR, κNR) as a function of the total mass, in the range 20M� ≤
M ≤ 200M�. Left panel NR (` ≤ 5, m 6= 0) vs SEOBNRv4, right panel
NR (` ≤ 5, m 6= 0) vs SEOBNRv4HM. The horizontal dotted-dashed black lines
represent the values of 1% and 3% unfaithfulness. The jaggedness of the
curves in the plot (right panel) is caused by the numerical noise present in
the NR higher-order modes, which are not very well resolved. We find that
this feature is not present when these noisy modes are removed from the
calculation of the faithfulness.
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2.6. Conclusions

We have worked within the spinning EOB framework and have built a multi-
polar waveform model for BBHs with nonprecessing spins that includes the
higher-order modes (`,m) = (2, 1), (3, 3), (4, 4), (5, 5), besides the dominant
(2, 2) mode. In order to improve the agreement with the NR results we
included recently computed PN corrections [88, 294, 317] in the resummed
GW modes, and also used nonperturbative informations from NR waveforms
in the NQCs corrections of the higher-order modes, and in the calibration pa-
rameters c`m’s (the latter only for the modes (2, 1), (5, 5)). We also extended
to higher-order modes the phenomenological ansatz for the merger-ringdown
signal that was originally proposed in Refs. [1, 240,302,303] for the dominant
(2, 2) mode.

We have found that the unfaithfulness averaged over orientations, polar-
izations and sky positions between the SEOBNR4HM model and NR waveforms
of the catalog at our disposal, is always smaller than 1% with the excep-
tion of four configurations for which the unfaithfulness is smaller than 1.5%.
Moreover, the unfaithfulness are one order of magnitude smaller than those
obtained with the SEOBNRv4 model [1], which only contains the (2, 2) mode.
The maximum unfaithfulness over orientations, polarizations and sky po-
sitions between SEOBNR4HM and NR waveforms is always smaller than 3%
with the exception of one configuration for which the faithfulness is smaller
than 3.1%. Also for the maximum unfaithfulness the results are one order
of magnitude smaller than those obtained with the SEOBNRv4 model [1]. We
have also found that, in the nonspinning limit, the SEOBNRv4HM model re-
turns values of the unfaithfulness smaller than its (nonspinning) predecessor
waveform model, that is EOBNRv2HM [201] (see Appendix G).

Other studies are needed to fully assess the accuracy of SEOBNRv4HM for GW
astronomy. In particular it will be important to understand if unfaithfulnesses
below 1% can affect the recovery of binary parameters, and if so which
parameters will be mainly biased, for which SNR and in which region of the
parameter space. In particular, we expect that the multipolar SEOBNRv4HM
model will be more precise than the SEOBNRv4 model for recovering the
binary’s inclination angle and the distance from the source. Indeed, those
parameters are degenerate with each other when only the (2, 2) mode is
present, and the inclusion of higher-order modes can help in disentagle them
(e.g., see Ref. [318]). We postpone this kind of studies to the future because
for computational reasons, we would need to develop a reduced-order-model
(ROM) [256] version of the SEOBNRv4HM model. Another important test for
the future would be the comparison between SEOBNRv4HM model and other
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multipolar, inspiral-merger-ringdown in the literature, such as the IMRPhenom
models proposed in Refs. [124, 203]. It will be relevant to compare those
models especially outside the range of binary configurations where the NR
waveforms are available, in order to identify if there are regions where the
two models predict significantly different waveforms.

We also expect that the multipolar spinning, nonprecessing waveform model
developed here will be a more accurate model to carry out parameterized
tests of General Relativity [289] when BBHs with high mass-ratio, high total
mass and in a non face-on orientation will be detected. Furthermore, the
SEOBNRv4HM model can be employed to search for more than one gravitational
quasi-normal mode in the ringdown portion of the signal, coherently with
multiple detections [192–194,306]. In fact, those studies can also be performed
with our multipolar, stand-alone merger-ringdown model.

The SEOBNRv4HM waveform model employs the same conservative and
dissipative dynamics of the SEOBNRv4 model, which was calibrated to NR
simulations by requiring very good agreement with the NR (2, 2) GW mode.
Further improvements of the SEOBNRv4 waveform model could be achieved in
the future by recalibrating the two-body dynamics. Such calibration would
require the production of a new set of NR waveforms (with more accurate
higher-order modes) in the region of high mass-ratios, say q ≥ 4, and high
spins, say χ1,2 ≥ 0.6 where few NR simulations are currently available and
where the disagreement between current analytical inspiral-merger-ringdown
waveforms is the worst (e.g., see Figs. 5 and 6 in Ref. [1]). Those NR
waveforms would need to be sufficiently long to make the calibration procedure
sufficiently robust (see Sec.VI, and Fig. 7 and 8 in Ref. [1]).

In the near future our priority is to include the next largest modes in
the SEOBNRHM model, notably the (3, 2), (4, 3) modes. The work would need
to take into account the mixing between spherical-harmonic and spheroidal
harmonics during the merger-ringdown stage, as observed in Refs. [109,313],
and investigated more recently in Refs. [304,314]. Insights might need to be
gained also from merger-ringdown waveforms in the test-particle limit [319–
321]. However, to develop a more accurate multipolar model, one would
also need to reduce the numerical error in NR waveforms around merger
and during ringdown, in particular for the modes (4,4) and (5,5). Another
important and timely application of this work, is its extension to the spinning,
precessing case, thus improving, the current SEOBNRv3 model [249,250,322],
which only contains the (2, 2) and (2, 1) modes.
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Abstract: As gravitational-wave detectors become more sensitive and
broaden their frequency bandwidth, we will access a greater variety of signals
emitted by compact binary systems, shedding light on their astrophysical
origin and environment. A key physical effect that can distinguish among
different formation scenarios is the misalignment of the spins with the orbital
angular momentum, causing the spins and the binary’s orbital plane to precess.
To accurately model such precessing signals, especially when masses and spins
vary in the wide astrophysical range, it is crucial to include multipoles beyond
the dominant quadrupole. Here, we develop the first multipolar precessing
waveform model in the effective-one-body (EOB) formalism for the entire
coalescence stage (i.e., inspiral, merger and ringdown) of binary black holes:
SEOBNRv4PHM. In the nonprecessing limit, the model reduces to SEOBNRv4HM,
which was calibrated to numerical-relativity (NR) simulations, and waveforms
from black-hole perturbation theory. We validate SEOBNRv4PHM by comparing
it to the public catalog of 1405 precessing NR waveforms of the Simulating
eXtreme Spacetimes (SXS) collaboration, and also to 118 SXS precessing NR
waveforms, produced as part of this project, which span mass ratios 1-4 and
(dimensionless) black-hole’s spins up to 0.9. We stress that SEOBNRv4PHM is
not calibrated to NR simulations in the precessing sector. We compute the
unfaithfulness against the 1523 SXS precessing NR waveforms, and find that,
for 94% (57% ) of the cases, the maximum value, in the total mass range
20–200M�, is below 3% (1%). Those numbers change to 83% (20% ) when
using the inspiral-merger-ringdown, multipolar, precessing phenomenological
model IMRPhenomPv3HM. We investigate the impact of such unfaithfulness
values with two Bayesian, parameter-estimation studies on synthetic signals.

1Originally published as Phys.Rev.D 102 (2020) 4, 044055.
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We also compute the unfaithfulness between those waveform models as a
function of the mass and spin parameters to identify in which part of the
parameter space they differ the most. We validate them also against the
multipolar, precessing NR surrogate model NRSur7dq4, and find that the
SEOBNRv4PHM model outperforms IMRPhenomPv3HM.

3.1. Introduction

Since the Laser Interferometer Gravitational wave Observatory (LIGO)
detected a gravitational wave (GWs) from a binary–black-hole (BBH) in
2015 [27], multiple observations of GWs from BBHs have been made with
the LIGO [55] and Virgo [56] detectors [32, 34, 153, 323–325]. Two binary
neutron star (BNSs) systems have been observed [161, 162], one of them
both in gravitational and electromagnetic radiation [326,327], opening the
exciting new chapter of multi-messenger GW astronomy. Mergers of compact-
object binaries are expected to be detected at an even higher rate with LIGO
and Virgo ongoing and future, observing runs [328], and with subsequent
third-generation detectors on the ground, such as the Einstein Telescope and
Cosmic Explorer, and the Laser Interferometer Space Antenna (LISA). In
order to extract the maximum amount of astrophysical and cosmological in-
formation, the accurate modeling of GWs from binary systems is more critical
than ever. Great progress has been made in this direction, both through
the development of analytical methods to solve the two-body problem in
General Relativity (GR), and by ever-more expansive numerical-relativity
(NR) simulations.

One of the key areas of interest is to improve the modeling of systems
where the misalignment of the spins with the orbital angular momentum
causes the spins and the orbital plane to precess [65]. Moreover, when
the binary’s component masses are asymmetric, gravitational radiation is
no longer dominated by the quadrupole moment, and higher multipoles
need to be accurately modeled [62]. Precession and higher multipoles lead
to very rich dynamics, which in turn is imprinted on the GW signal (see
e.g. [65,67,210,243,244,249,329–338]). Their measurements will be able to
shed light on the formation mechanism of the observed systems, probe the
astrophysical environment, break degeneracy among parameters, allowing
more accurate measurements of cosmological parameters, masses and spins,
and more sophisticated tests of GR.

Faithful waveform models for precessing compact-object binaries have been
developed within the effective-one-body (EOB) formalism [249, 250, 319],
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and the phenomenological approach [120, 122, 125, 126, 339] through cal-
ibration to NR simulations. Recently, an inspiral-merger-ringdown phe-
nomenological waveform model that tracks precession and includes higher
modes was constructed in Ref. [204] (henceforth, IMRPhenomPv3HM) 2 The
model describes the six spin degrees of freedom in the inspiral phase, but
not in the late-inspiral, merger and ringdown stages. In the co-precessing
frame [243, 331, 341–343], in which the BBH is viewed face-on at all times
and the GW radiation resembles the nonprecessing one, it includes the modes
(`,m) = (2,±2), (2,±1), (3,±3), (3,±2), (4,±4) and (4,±3). Here, building
on the multipolar aligned-spin EOB waveform model of Ref. [1, 182], which
was calibrated to 157 NR simulations [2, 6], and 13 waveforms from BH
perturbation theory for the (plunge-)merger and ringdown [297], we develop
the first EOB waveform model that includes both spin-precession and higher
modes (henceforth, SEOBNRv4PHM). The model describes the six spin degrees
of freedom throughout the BBH coalescence. It differs from the one of
Refs. [249,250], not only because it includes in the co-precessing frame the
(3,±3), (4,±4) and (5,±5) modes, beyond the (2,±2) and (2,±1) modes,
but also because it uses an improved description of the two-body dynamics,
having been calibrated [1] to a large set of NR waveforms [2]. We note that
IMRPhenomPv3HM and SEOBNRv4PHM are not completely independent because
the former is constructed fitting (in frequency domain) hybridized waveforms
obtained by stitching together EOB and NR waveforms. We stress that both
SEOBNRv4HM and IMRPhenomPv3HM are not calibrated to NR simulations in
the precessing sector. Finally, the surrogate approach, which interpolates
NR waveforms, has been used to construct several waveform models that
include higher modes [132] and precession [131]. In this paper, we consider
the state-of-the-art surrogate waveform model with full spin precession and
higher modes [133] (henceforth, NRSur7dq4), developed for binaries with mass
ratios 1-4, (dimensionless) BH’s spins up to 0.8 and binary’s total masses
larger than ∼ 60M�. It includes in the co-precessing frame all modes up to
` = 4. Table 3.1 summarizes the waveform models used in this paper.
The best tool at our disposal to validate waveform models built from

approximate solutions of the Einstein equations, such as the ones obtained
from post-Newtonian (PN) theory, BH perturbation theory and the EOB
approach, is their comparison to NR waveforms. So far, NR simulations
of BBHs have been mostly limited to mass ratio ≤ 4 and (dimensionless)

2During the final preparation of this work, a new frequency-domain phenomenological
model with precession and higher modes ( IMRPhenomXPHM [127]), and a time-domain
phenomenological precessing model with the dominant mode ( IMRPhenomTP [340])
were developed. We leave the comparison to these models for future work.
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Model name Modes in the co-precessing frame Reference
SEOBNRv3P (2,±2), (2,±1) [249,250]
SEOBNRv4P (2,±2), (2,±1) this work
SEOBNRv4PHM (2,±2), (2,±1), (3,±3), (4,±4)

(5,±5) this work
IMRPhenomPv2 (2,±2) [120]
IMRPhenomPv3 (2,±2) [125]
IMRPhenomPv3HM (2,±2), (2,±1), (3,±3), (3,±2),

(4,±4), (4,±3) [204]
NRSur7dq4 all with ` ≤ 4 [133]

Table 3.1.: The waveform models used in this paper. We also specify which
modes are included in the co-precessing frame

spins ≤ 0.8, and length of 15–20 orbital cycles before merger [100–103,344]
(however, see Ref. [345] where simulations with larger spins and mass ratios
were obtained through a synergistic use of NR codes). Here, to test our
newly constructed EOB precessing waveform model, we enhance the NR
parameter-space coverage, while maintaining a manageable computational
cost, and perform 118 new NR simulations with the pseudo spectral Einstein
code (SpEC) of the Simulating eXtreme Spacetimes (SXS) collaboration. The
new NR simulations span BBHs with mass ratios 1–4, and dimensionless
spins in the range 0.3–0.9, and different spins’ orientations. To assess the
accuracy of the different precessing waveform models, we compare them to
the NR waveforms of the public SXS catalogue [102], and to the new 118 NR
waveforms produced for this paper.

The paper is organized as follows. In Sec. 3.2 we discuss the new NR
simulations of BBHs, and assess their numerical error. In Sec. 3.3 we develop
the multipolar EOB waveform model for spin-precessing BBHs, SEOBNRv4PHM,
and highlight the improvements with respect to the previous version [249,250],
which was used in LIGO and Virgo inference analyses [29, 32, 322]. In
Sec. 3.4 we validate the accuracy of the multipolar precessing EOB model
by comparing it to NR waveforms. We also compare the performance of
SEOBNRv4PHM against the one of IMRPhenomPv3HM, and study in which region
of the parameter space those models differ the most from NR simulations,
and also from each other. In Sec. 3.5 we use Bayesian analysis to explore the
impact of the accuracy of the precessing waveform models when extracting
astrophysical information and perform two synthetic NR injections in zero
noise. In Sec. 3.6 we summarize our main conclusions and discuss future
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work. Finally, in Appendix I we compare the precessing waveform models to
the NR surrogate NRSur7dq4, and in Appendix J we list the parameters of
the 118 NR simulations done for this paper.
In what follows, we use geometric units G = 1 = c unless otherwise

specified.

3.2. New numerical-relativity simulations of spinning,
precessing binary black holes

Henceforth, we denote with m1,2 the two BH masses (with m1 ≥ m2), S1,2 ≡
m2

1,2χ1,2 their spins, q = m1/m2 the mass ratio, M = m1 +m2 the binary’s
total mass, µ = m1m2/M the reduced mass, and ν = µ/M the symmetric
mass ratio. We indicate with J = L+S the total angular momentum, where
L and S = S1 + S2, are the orbital angular momentum and the total spin,
respectively

3.2.1. New 118 precessing numerical-relativity waveforms

The spectral Einstein code (SpEC) 3 of the Simulating eXtreme Spacetimes
(SXS) collaboration is a multi-domain collocation code designed for the
solution of partial differential equations on domains with simple topologies.
It has been used extensively to study the mergers of compact-object binaries
composed of BH [5,102,338,346–348] and NSs [349–352], including in theories
beyond GR [353–356]. SpEC employs a first-order symmetric-hyperbolic
formulation of Einstein’s equations [357] in the damped harmonic gauge [358,
359]. Dynamically controlled excision boundaries are used to treat spacetime
singularities [5, 360] (see Ref. [102] for a recent, detailed overview).

Significant progress has been made in recent years by several NR groups to
improve the coverage of the BBH parameter space [100–103,344,345], mainly
motivated by the calibration of analytical waveform models and surrogate
models used in LIGO and Virgo data analysis. While large strides have been
made for aligned-spin cases, the exploration of precessing waveforms has been
mostly limited to q ≤ 4, χ1,2 ≡ |χ1,2| ≤ 0.8, typically 15–20 orbital cycles
before merger, and a large region of parameter space remains to be explored.
Simulations with high mass ratio (q ≥ 4) and high spin (|χ1| > 0.5) are
challenging, primarily due to the need to resolve the disparate length scales
in the binary system, which increases the computational cost for a given
level of accuracy. Furthermore, for high spin, the apparent horizons can be
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Figure 3.1.: Parameter space coverage in q–χ1 space for SpEC waveforms. For
runs from the SpEC catalog [102] the opacity was changed so that runs with
similar parameters are clearly visible. We indicate with squares precessing
BBH runs performed as part of this paper.

dramatically smaller, which makes it more difficult to control the excision
boundaries, further increasing the computational burden.
Here, we want to improve the parameter-space coverage of the SXS cat-

alog [102], while maintaining a manageable computational cost, thus we
restrict to simulations in the range of mass ratios q = 1–4 and (dimensionless)
spins χ1,2 = 0.3–0.9, with the spin magnitudes decreasing as the mass ratio
increases. In Fig. 3.1 we display, in the q–χ1 parameter space, the precessing
and non-precessing waveforms from the published SXS catalogue [102], and
the new precessing waveforms produced as part of this work.
We choose to start all the simulations at the same (angular) orbital fre-

quency,MΩ0 ≈ 0.0157, where the value is not exact as it was modified slightly
during the eccentricity-reduction procedure in SpEC [361]. This corresponds
to a physical GW starting frequency of 20 Hz at 50M� and results in the
number of orbits up to merger varying between 15 and 30 in our new catalog.

We parametrize the directions of the spins by three angles, the angles θ1,2
between the spins and the unit vector along the Newtonian orbital angular
momentum, L̂N, and the angle ∆φ between the projections of the spins in
the orbital plane. Explicitly,

θi = arccos(χi · L̂N) , (3.1a)
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3.2. New numerical-relativity simulations of spinning, precessing binary black holes

∆φ = arccos
(

cos θ12 − cos θ1 cos θ2

sin θ1 sin θ2

)
, (3.1b)

where cos θ12 = χ1 · χ2. We make the choice that χ1 lies in the L̂N − n
plane, where n is the unit vector along the binary’s radial separation, at the
start of the simulation. The angles are chosen to be θi,0 ∈ {60◦, θmax}, and
∆φ0 ∈ {0, 90◦}. Here θmax is the angle that maximizes the opening angle of
LN around the total angular momentum J and is computed assuming that
the two spins are co-linear, giving

cos θmax = − |S|
|LN|

= −m
2
1 χ1 +m2

2 χ2

|LN|
, (3.2)

with |LN| = µM2/3Ω−1/3 for circular orbit, being Ω the orbital angular
frequency. For each choice of {q, χ} we choose 10 different configurations
divided into two categories: i) χ1 = χ2 = χ, θi,0 ∈ {60◦, θmax}, ∆φ0 ∈ {0, 90◦}
giving eight runs, and ii) χ1 = χ, χ2 = 0, θ1,0 ∈ {60◦, θmax} giving two runs.
The detailed parameters can be found in Appendix J.

These choices of the spin directions allow us to test the multipolar precessing
model SEOBNRv4PHM in many different regimes, including where the effects
of precession are maximized, and where spin-spin effects are significant or
diminished.

3.2.2. Unfaithfulness for spinning, precessing waveforms

The gravitational signal emitted by non-eccentric BBH systems and observed
by a detector depends on 15 parameters: the component masses m1 and
m2 (or equivalently the mass ratio q = m1/m2 ≥ 1 and the total mass
M = m1 + m2), the dimensionless spins χ1(t) and χ2(t), the direction to
observer from the source described by the angles (ι, ϕ0), the luminosity
distance dL, the polarization ψ, the location in the sky (θ, φ) and the time of
arrival tc. The gravitational strain can be written as:

h(t) ≡F+(θ, φ, ψ) h+(ι, ϕ0, dL, ξ, tc; t)
+ F×(θ, φ, ψ) h×(ι, ϕ0, dL, ξ, tc; t) , (3.3)

where to simplify the notation we introduce the function ξ ≡ (q, M , χ1(t),
χ2(t)). The functions F+(θ, φ, ψ) and F×(θ, φ, ψ) are the antenna pat-
terns [151,309]:

F+(θ, φ, ψ) = 1 + cos2(θ)
2 cos(2φ) cos(2ψ)− cos(θ) sin(2φ) sin(2ψ),

(3.4a)
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F×(θ, φ, ψ) = 1 + cos2(θ)
2 cos(2φ) sin(2ψ) + cos(θ) sin(2φ) cos(2ψ).

(3.4b)

Equation (4.24) can be rewritten as:

h(t) ≡A(θ, φ)
[

cosκ(θ, φ, ψ) h+(ι, ϕ0, dL, ξ, tc; t)

+ sin κ(θ, φ, ψ) h×(ι, ϕ0, dL, ξ, tc; t)
]
, (3.5)

where κ(θ, φ, ψ) is the effective polarization [187] defined as:

eiκ(θ,φ,ψ) = F+(θ, φ, ψ) + iF×(θ, φ, ψ)√
F 2

+(θ, φ, ψ) + F 2
×(θ, φ, ψ)

, (3.6)

which has support in the region [0, 2π), while A(θ, φ) reads:

A(θ, φ) =
√
F 2

+(θ, φ, ψ) + F 2
×(θ, φ, ψ) . (3.7)

Henceforth, to ease the notation we suppress the dependence on (θ, φ, ψ) in
κ.

Let us introduce the inner product between two waveforms a and b [151,309]:

(a, b) ≡ 4 Re
∫ fmax

fin
df
ã(f) b̃∗(f)
Sn(f) , (3.8)

where a tilde indicates the Fourier transform, a star the complex conjugate
and Sn(f) is the one-sided power spectral density (PSD) of the detector noise.
We employ as PSD the Advanced LIGO’s “zero-detuned high-power” design
sensitivity curve [262]. Here we use fin = 10Hz and fmax = 2kHz, when both
waveforms fill the band. For cases where this is not the case (e.g the NR
waveforms) we set fin = 1.05fstart, where fstart is the starting frequency of
the waveform.
To assess the closeness between two waveforms s (e.g., the signal) and

τ (e.g., the template), as observed by a detector, we define the following
faithfulness function [182]:

F(Ms, ιs, ϕ0s, κs) ≡ max
tc,ϕ0τ ,κτ

 (s, τ)√
(s, s) (τ, τ)

∣∣∣∣∣∣ ιs=ιτ
ξs(ts=t0s )=ξτ (tτ=t0τ )

 . (3.9)

While in the equation above we set the inclination angle ι of signal and
template waveforms to be the same, the coalescence time tc and the angles
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ϕ0τ and κτ of the template waveform are adjusted to maximize the faith-
fulness. This is a typical choice motivated by the fact these quantities are
not interesting from an astrophysical perspective. The maximizations over tc
and ϕ0τ are performed numerically, while the maximization over κτ is done
analytically following the procedure described in Ref. [187] (see Appendix A
therein).
The condition ξs(ts = t0s) = ξτ (tτ = t0τ ) in Eq. (4.28) enforces that the

mass ratio q, the total mass M and the spins χ1,2 of the template waveform
at t = t0 (i.e., at the beginning of the waveform) are set to have the same
values of the ones in the signal waveform at its t0. When computing the
faithfulness between NR waveforms with different resolutions this condition
is trivially satisfied by the fact that they are generated using the same initial
data. In the case of the faithfulness between NR and any model from the
SEOBNR family, it is first required to ensure that t0 has the same physical
meaning for both waveforms. Ideally t = t0τ in the SEOBNR waveform should
be fixed by requesting that the frequency of the SEOBNR (2, 2) mode at t0τ
coincides with the NR (2,2) mode frequency at t0s . This is in practice not
possible because the NR (2,2) mode frequency may display small oscillations
caused by different effects — for example the persistence of the junk radiation,
some residual orbital eccentricity or spin-spin couplings [361]. Thus, the
frequency of the SEOBNR (2, 2) mode at t = t0τ is chosen to guarantee the
same time-domain length of the NR waveform. 4. In practice, we require that
the peak of ∑`,m |h`m|2, as elapsed respectively from t0s and t0τ , occurs at the
same time in NR and SEOBNR. For waveforms from the IMRPhenom family we
adopt a different approach, and following the method outlined in Ref. [125],
also optimize the faithfulness numerically over the reference frequency of the
waveform.

The faithfulness defined in Eq. (4.28) is still a function of 4 parameters
(i.e., Ms, ιs, ϕ0s, κs), therefore it does not allow to describe the agreement
between waveforms in a compact form. For this purpose we define the
sky-and-polarization-averaged faithfulness [250] as:

F(Ms, ιs) ≡
1

8π2

∫ 2π

0
dκs

∫ 2π

0
dϕ0s F(Ms, ιs, ϕ0s, κs). (3.10)

Despite the apparent difference, the sky-and-polarization-averaged faithfulness
F defined above is equivalent to the one given in Eqs. (9) and (B15) of
Ref. [250]. The definition in Eq. (3.10) is less computationally expensive

4The difference between the NR (2,2) mode frequency and the SEOBNRv4PHM (2,2)
frequency chosen at t = t0 is never larger than 5%.
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because, thanks to the parametrization of the waveforms in Eq. (3.5), it
allows one to write the sky-and-polarization-averaged faithfulness as a double
integral instead of the triple integral in Eq. (B15) of Ref. [250]. We also
define the sky-and-polarization-averaged, signal-to-noise (SNR)- weighted
faithfulness as:

FSNR(Ms, ιs) ≡ 3

√√√√∫ 2π
0 dκs

∫ 2π
0 dϕ0s F3(Ms, ιs, ϕ0s, κs) SNR3(ιs, ϕ0s, κs)∫ 2π

0 dκs
∫ 2π
0 dϕ0s SNR3(ιs, ϕ0s, κs)

.

(3.11)
where the SNR(ιs, ϕ0s, θs, φs, κs, DLs, ξs, tcs) is defined as:

SNR(ιs, ϕ0s, θs, φs, κs, DLs, ξs, tcs) ≡
√

(hs, hs). (3.12)

This is also an interesting metric because weighting the faithfulness with
the SNR takes into account that, at fixed distance, the SNR of the signal
depends on its phase and on the effective polarization (i.e., a combination
of waveform polarization and sky-position). Since the SNR scales with the
luminosity distance, the number of detectable sources scale with the SNR3,
therefore signals with a smaller SNR are less likely to be observed. Finally,
we define the unfaithfulness (or mismatch) as

M = 1−F . (3.13)

3.2.3. Accuracy of new numerical-relativity waveforms

To assess the accuracy of the new NR waveforms, we compute the sky-and-
polarization-averaged unfaithfulness defined in Eq. (3.10) between the highest
and second highest resolutions in the NR simulation.
Figure 3.2 shows a histogram of the unfaithfulness, evaluated at ιs = π/3

maximized over the total mass, between 20 and 200 M�. It is apparent
that the unfaithfulness is below 1% for most cases, but there are several
cases with much higher unfaithfulness. This tail to high unfaithfulness has
been observed previously, when evaluating the accuracy of SXS simulations
in Ref. [133]. Therein, it was established that, when the non-astrophysical
junk radiation perturbs the parameters of the simulation sufficiently, the
different resolutions actually correspond to different physical systems. Thus,
taking the difference between adjacent resolutions is no longer an appropriate
estimate of the error.
We also find that the largest unfaithfulness occurs when the difference in

parameters is largest, thus confirming that it is the difference in parameters
that dominates the unfaithfulness.
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Figure 3.2.: The sky-and-polarization-averaged unfaithfulness between the
highest and second highest resolutions in the NR simulation maximized over
the total mass for the new 118 NR precessing waveforms. The inclination
used is π/3. The vertical dashed line shows the median.

3.2.4. Effect of mode asymmetries in numerical-relativity waveforms

The gravitational polarizations at time t and location (ϕ0, ι) on the coordinate
sphere from the binary can be decomposed in −2–spin-weighted spherical
harmonics, as follows

h+(ϕ0, ι; t)− ih×(ϕ0, ι; t) =
∑
`=2

m=+`∑
m=−`

−2Y`m(ϕ0, ι)h`m(t) . (3.14)

For nonprecessing binaries, the invariance of the system under reflection across
the orbital plane (taken to be the x–y plane) implies h`m = (−1)`h∗`−m. The
latter is a very convenient relationship — for example it renders unnecessary
to model modes with negative values of m. However, this relationship is no
longer satisfied for precessing binaries.

As investigated in previous NR studies [333,362], we expect the asymmetries
between opposite-m modes to be small as compared to the dominant (2, 2)-
mode emission (at least during the inspiral) in a co-rotating frame that
maximizes emission in the (2,±2) modes, also known as the maximum-
radiation frame [341,363]. However, while the asymmetries are expected to
be small during the inspiral, the difference in phase and amplitude between
positive and negative m-modes might become non-negligible at merger.
As we discuss in the next section, when building multipolar waveforms
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(SEOBNRv4PHM) for precessing binaries by rotating modes from the co-precessing
[243,331,341–343] to the inertial frame of the observer, we shall neglect the
mode asymmetries. To quantify the error introduced by this assumption,
we proceed as follows. We first take NR waveforms in the co-precessing
frame and construct symmetrized waveforms. Specifically, we consider the
combination of waveforms in the co-precessing frame defined by (e.g., see
Ref. [133])

h±`m = hP`m ± hP∗`−m
2 . (3.15)

Note that if the assumption of conjugate symmetry holds (i.e., if hP`−m =
(−1)`hP∗`m), then for even (odd) ` modes, h+

`m (h−`m) is non-zero while the other
component vanishes. If the assumption does not hold, it is still true that at
given `, one of the components is much larger than the other, as shown in
top panel of Fig. 3.3. Motivated by this, we define the symmetrized modes
(for m > 0) as [133]

hP`m =

h
+
`m if ` is even ,
h−`m if ` is odd .

(3.16)

The other modes are constructed as hP`−m = hP∗`m for m < 0, and we set
m = 0 modes to zero. The bottom panel of Fig. 3.3 shows an example of
asymmetrized waveform for the case PrecBBH000078 of the SXS catalogue, in
the co-precessing frame. It is obvious that the asymmetry between the modes
has been removed and that the symmetrized waveform does indeed represent
a reasonable “average” between the original modes. The symmetrized wave-
forms in the inertial frame are obtained by rotating the co-precessing frames
modes back to the inertial frame.
In Fig. 3.4, we show the sky-and-polarization averaged unfaithfulness

between the NR waveforms and the symmetrized waveforms described above,
maximized over the total mass, including all modes available in the NR
simulation, that is up to ` = 8. For the vast majority of the cases, the
unfaithfulness is ∼ 0.5%, and all cases have unfaithfulness below 2%. This
demonstrates that the effect of neglecting the asymmetry is likely subdominant
to other sources of error such as the modeling of the waveform phasing,
although the best way of quantifying the effect is to perform a Bayesian
parameter-estimation study, which we leave to future work.
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Figure 3.3.: Top: the behavior of h±`m in the NR simulation PrecBBH000078.
Note that especially during the inspiral, |h+

22| is much larger than |h−22|
while |h−33| is much larger than |h+

33|. Bottom: an example of waveform
symmetrization for the same NR case, shown in the co-precessing frame. The
symmetrized waveform obeys the usual conjugation symmetry as expected,
and represents a reasonable average to the behavior of the unsymmetrized
modes.
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Figure 3.4.: The sky-and-polarization-averaged unfaithfulness between NR
and symmetrized NR waveforms, maximized over the total mass for the new
118 NR precessing waveforms. The inclination used is π/3. The vertical
dashed line shows the median.

3.3. Multipolar EOB waveforms for spinning, precessing
binary black holes

We briefly review the main ideas and building blocks of the EOB approach,
and then describe an improved spinning, precessing EOBNR waveform
model, which, for the first time, also contains multipole moments beyond
the quadrupolar one. The model is already available in the LIGO Algo-
rithm Library [364] under the name of SEOBNRv4PHM. We refer the reader to
Refs. [182,233,234,249,250] for more details of the EOB framework and its
most recent waveform models. Here we closely follow Ref. [250], highlighting
when needed differences with respect to the previous precessing waveform
model developed in Ref. [250] (SEOBNRv3P 5).

3.3.1. Two-body dynamics

The EOB formalism [91,92,209,365] can describe analytically the GW emission
of the entire coalescence process, notably inspiral, merger and ringdown, and
it can be made highly accurate by including information from NR. For the

5We note that whereas in LAL the name of this waveform approximant is SEOBNRv3,
here we add a “P” to indicate “precession”, making the notation uniform with respect
to the most recent developed model SEOBNRv4P [250].
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two-body conservative dynamics, the EOB approach relies on a Hamiltonian
HEOB, which is constructed through: (i) the Hamiltonian Heff of a spinning
particle of mass µ ≡ m1m2/(m1 + m2) and spin S∗ ≡ S∗(m1,m2,S1,S2)
moving in an effective, deformed Kerr spacetime of mass M ≡ m1 +m2 and
spin SKerr ≡ S1 +S2 [205,208,287], and (ii) an energy map between Heff and
HEOB [91]

HEOB ≡M

√√√√1 + 2ν
(
Heff

µ
− 1

)
−M , (3.17)

where ν = µ/M is the symmetric mass ratio. The deformation of the effective
Kerr metric is fixed by requiring that at any given PN order, the PN-expanded
Hamiltonian HEOB agrees with the PN Hamiltonian for BBHs [62]. In the
EOB Hamiltonian used in this paper [208, 287], the spin-orbit (spin-spin)
couplings are included up to 3.5PN (2PN) order [208, 287], while the non-
spinning dynamics is incorporated through 4PN order [182]. The dynamical
variables in the EOB model are the relative separation r and its canonically
conjugate momentum p, and the spins S1,2. The conservative EOB dynamics
is completely general and can naturally accommodate precession [249,250]
and eccentricity [366–368].
When BH spins have generic orientations, both the orbital plane and the

spins undergo precession about the total angular momentum of the binary,
defined as J ≡ L + S1 + S2, where L ≡ µ r × p. We also introduce the
Newtonian orbital angular momentum LN ≡ µ r× ṙ, which at any instant of
time is perpendicular to the binary’s orbital plane. Black-hole spin precession
is described by the following equations

dS1,2

dt = ∂HEOB

∂S1,2
× S1,2 . (3.18)

In the EOB approach, dissipative effects enter in the equations of motion
through a nonconservative radiation-reaction force that is expressed in terms
of the GW energy flux through the waveform multipole moments [210,218–220]
as

F ≡ Ω
16π

p

|L|

8∑
`=2

∑̀
m=−`

m2|dLh`m|2 , (3.19)

where Ω ≡ |r× ṙ|/|r|2 is the (angular) orbital frequency, dL is the luminosity
distance of the BBH to the observer, and the h`m’s are the GW multipole
modes. As discussed in Refs. [1, 182], the h`m used in the energy flux are
not the same as those used for building the gravitational polarizations in
the inertial frame, since the latter include the nonquasi-circular corrections,
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Figure 3.5.: Frames used in the construction of the SEOBNRv4PHM model:
the observer’s frame (blue), defined by the directions of the initial orbital
angular momentum L̂(0) and separation r(0), and co-precessing frame (red),
instantaneously aligned with L̂(t) and described by the Euler angles (α, β, γ)
(see text below for details).

which enforce that the SEOBNR waveforms at merger agree with the NR
data, when available.

3.3.2. Inspiral-plunge waveforms

For the inspiral-plunge waveform, the EOB approach uses a factorized, re-
summed version [182,218–220] of the frequency-domain PN formulas of the
modes [283, 284]. As today, the factorized resummation has been devel-
oped only for quasicircular, nonprecessing BBHs [219,220], and it has been
shown to improve the accuracy of the PN expressions in the test-particle
limit, where one can compare EOB predictions to numerical solutions of the
Regge-Wheeler-Zerilli and Teukolsky equations [297,319,320,369].
The radiation-reaction force F in Eq. (3.19) depends on the amplitude

of the individual GW modes |h`m|, which, in the non-precessing case, are
functions of the constant aligned-spin magnitudes χ1,2 · L̂. In the precessing
case, these modes depend on time, as χ1,2(t) · L̂(t), and they depend on
the generic, precessing orbital dynamics through the radial separation r and
orbital frequency Ω, which carry modulations due to spin-spin couplings
whenever precession is present. However, we stress that with this choice
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of the radiation-reaction force and waveform model, not all spin-precession
effects are included, since the PN formulas of the modes [283] also contain
terms that depend on the in-plane spin components.
For data-analysis purposes, we need to compute the GW polarizations in

the inertial-frame of the observer (or simply observer’s frame). We denote
quantities in this frame with the superscript I. The observer’s frame is
defined by the triad {êI(i)} (i = 1, 2, 3), where êI(1) ≡ r̂(0), êI(3) ≡ L̂N(0) and
êI(2) ≡ ê

I
(3) × ê

I
(1). Moreover, in this frame, the line of sight of the observer

is parametrized as N̂ ≡ (sin ι cosφo, sin ι sinφo, cos ι) (see Fig. 3.5). We also
introduce the observer’s frame with the polarization basis {êr(1), ê

r
(2)} such

that êr(1) ≡ (êI(3)× N̂ )/|êI(3)× N̂ | and êr(2) ≡ N̂ × ê
r
(1), which spans the plane

orthogonal to N̂ .
To compute the observer’s-frame modes hI`m during the inspiral-plunge

stage, it is convenient to introduce a non-inertial reference frame that tracks
the motion of the orbital plane, the so-called co-precessing frame (superscript
P ), described by the triad {êP(i)} (i = 1, 2, 3). At each instant, its z-axis is
aligned with L̂: êP(3) ≡ L̂(t) 6. In this frame, the BBH is viewed face-on at all
times, and the GW radiation looks very much nonprecessing [243,331,341–343].
The other two axes lie in the orbital plane and are defined such as they
minimize precessional effects in the precessing-frame modes hP`m [243, 341].
After introducing the vector Ωe ≡ L̂ × dL̂/dt, we enforce the minimum-
rotation condition by requiring that dêP(1),(2)/dt = Ωe×êP(1),(2) and êP(1),(2)(0) =
êI(1),(2) (see also Fig. 3.5). As usual, we parametrize the rotation from the
precessing to the observer’s frame through time-dependent Euler angles
(α(t), β(t), γ(t)), which we compute using Eqs. (A4)–(A6) in Appendix A
of Ref. [250]. We notice that the minimum-rotation condition can also be
expressed through the following differential equation for γ: γ̇ = −α̇ cos β
with γ(0) = −α(0) = π/2.

We compute the precessing-frame inspiral-plunge modes just like we do for
the GW flux, namely by evaluating the factorized, resummed nonprecessing
multipolar waveforms along the EOB precessing dynamics, and employing
the time-dependent spin projections χ1,2(t) · L̂(t). Finally, the observer’s-
frame inspiral-plunge modes are obtained by rotating the precessing-frame
inspiral-plunge modes using Eq. (A13) in Appendix A of Ref. [250].

Following Ref. [182], where an EOBNR nonprecessing multipolar waveform
model was developed (SEOBNRv4HM), here we include in the precessing frame
of the SEOBNRv4PHM model the (2,±2), (2,±1), (3,±3), (4,±4) and (5,±5)

6Note that in Ref. [250], the z-axis is aligned with L̂N instead of L̂.
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modes, and make the assumption hPl−m = (−1)lhP∗lm . As shown in Sec. 3.2.4,
we expect that inaccuracies due to neglecting mode asymmetries should
remain mild, or at most at the level of other modeling errors.

3.3.3. Merger-ringdown waveforms

The description of a BBH as a system composed of two individual objects
is of course valid only up to the merger. After that point, the EOB model
builds the GW emission (ringdown stage) via a phenomenological model
of the quasinormal modes (QNMs) of the remnant BH, which forms after
the coalescence of the progenitors. The QNM frequencies and decay times
are known (tabulated) functions of the mass Mf and spin Sf ≡ M2

fχf of
the remnant BH [193]. Since the QNMs are defined with respect to the
direction of the final spin, the specific form of the ringdown signal, as a linear
combination of QNMs, is formally valid only in an inertial frame whose z-axis
is parallel to χf .
A novel feature of the SEOBNRv4PHM waveform model presented here is

that we attach the merger-ringdown waveform (notably each multipole mode
hmergr−RD
`m ) directly in the co-precessing frame, instead of the observer’s frame.

As a consequence, we can employ here the merger-ringdown multipolar model
developed for non-precessing BBHs (SEOBNRv4HM) in Ref. [182] (see Sec. IVE
therein for details). By contrast, in the SEOBNRv3P waveform model [250],
the merger-ringdown waveform was built as a superposition of QNMs in
an inertial frame aligned with the direction of the remnant spin. This
construction was both more complicated to implement and more prone to
numerical instabilities.
To compute the waveform in the observer’s frame, our approach requires

a description of the co-precessing frame Euler angles (α, β, γ) that extends
beyond the merger. To prescribe this, we take advantage of insights from
NR simulations [332]. In particular, it was shown that the co-precessing
frame continues to precess roughly around the direction of the final spin with
a precession frequency approximately equal to the differences between the
lowest overtone of the (2,2) and (2,1) QNM frequencies, while the opening
angle of the precession cone decreases somewhat at merger. We find that this
behavior is qualitatively correct for the NR waveforms used for comparison
in this paper.
To keep our model generic for a wide range of mass ratios and spins, we

need an extension of the behavior noticed in Ref. [332] to the retrograde
case, where the remnant spin is negatively aligned with the orbital angular
momentum at merger. Such configurations can occur for high mass-ratio
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binaries, when the total angular momentum J is dominated by the spin of
the primary S1 instead of the orbital angular momentum L. This regime
is not well explored by NR simulations, and includes in particular systems
presenting transitional precession [65]. In our model we keep imposing simple
precession around the direction of the remnant spin at a rate ωprec ≥ 0, but
we distinguish two cases depending on the direction of the final spin χf
(approximated by the total angular momentum J = L+ S1 + S2 at merger)
relative to the final orbital angular momentum Lf :

α̇ = ωprec =

ω
QNM
22 (χf )− ωQNM

21 (χf ) if χf ·Lf > 0
ωQNM

2−1 (χf )− ωQNM
2−2 (χf ) if χf ·Lf < 0

(3.20)

where χf = |χf |, and the zero-overtone QNM frequencies for negative m
are taken on the branch ωQNM

lm > 0 that continuously extends the m > 0,
ωQNM
lm > 0 branch [193] (the QNM refers to zero overtone). In both cases,
α̇ ≥ 0. We do not attempt to model the closing of the opening angle of
the precession cone and simply consider it to be constant during the post-
merger phase, β = const. The third Euler angle γ is then constructed from
the minimal rotation condition γ̇ = −α̇ cos β. The integration constants
are determined by matching with the inspiral at merger. We find that the
behavior of Eq. (3.20) in the case χf ·Lf < 0 is qualitatively consistent with
an NR simulation investigated by one of us [370]. However, we stress that this
prescription for the retrograde case is much less tested than for the prograde
case.

Furthermore, one crucial aspect of the above construction is the mapping
from the binary’s component masses and spins to the final mass and spin,
which is needed to compute the QNM frequencies of the merger remnant.
Many groups have developed fitting formulae based on a large number of NR
simulations (e.g., see Ref. [371] for an overview). To improve the agreement
of our EOB merger-ringdown model with NR, and to ensure agreement in
the aligned-spin limit with SEOBNRv4 [1] and SEOBNRv4HM [182], we employ
the fits from Hofmann et al. [316]. In Fig. 3.6 we compare the performance of
the fit used in the previous EOB precessing model SEOBNRv3P [234,249,250]
to the fit from Hofmann et al. that we adopt for SEOBNRv4PHM. It is clear
that the new fit reproduces NR data much better. This in turn improves the
correspondence between NR and EOB QNM frequencies.

For the final mass we employ the same fit as in previous EOB models, and
we provide it here since it was not given explicitly anywhere before:

Mf

M
= 1−

{
[1− EISCO(a)]ν + 16ν2 [0.00258
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− 0.0773
[a (1 + 1/q)2/(1 + 1/q2)− 1.6939]

−1
4(1− EISCO(a))

]}
, (3.21)

where a = L̂ · (χ1 +χ2/q
2)/(1 + 1/q)2, and EISCO(a) is the binding energy of

the Kerr spacetime at the innermost stable circular orbit [372].
Finally, for precessing binaries, the individual components of the spins vary

with time. Therefore, in applying the fitting formulae to obtain final mass and
spin, one must make a crucial choice in selecting the time during the inspiral
stage at which the spin directions are evaluated. In fact, even if one considers
a given physical configuration, evaluating the final spin formulae with spin
directions from different times yields different final spins and consequently
different waveforms. We choose to evaluate the spins at a time corresponding
to the separation of r = 10M . This choice is guided by two considerations:
by the empirical finding of good agreement with NR (e.g., performing better
than using the time at which the inspiral-plunge waveform is attached to the
merger-ringdown waveform [182]), and by the restriction that the waveform
must start at r > 10.5M in order to have small initial eccentricity [250].
Thus, our choice ensures that a given physical configuration always produces
the same waveform regardless of the initial starting frequency.
To obtain the inspiral-merger-ringdown modes in the inertial frame, hI

`m,
we rotate the inspiral-merger-ringdown modes hP

`m from the co-precessing
frame to the observer’s frame using the rotation formulas and Euler angles in
Appendix A of Ref. [250]. The inertial frame polarizations then read

hI
+(ϕ0, ι; t)− ihI

×(ϕ0, ι; t) =
∑
`,m

−2Y`m(ϕ0, ι)hI
`m(t) . (3.22)

3.3.4. On the fits of calibration parameters in presence of precession

The SEOBNRv4PHM waveform model inherits the EOB Hamiltonian and GW
energy flux from the aligned-spin model SEOBNRv4 [1], which features higher
(yet unknown) PN-order terms in the dynamics calibrated to NR waveforms.
These calibration parameters were denoted K, dSO and dSS in Ref. [1], and
were fitted to NR and Teukolsky-equation–based waveforms as polynomials
in ν, χ where χ ≡ SzKerr/(1− 2ν) with SKerr = S1 + S2 the spin of the EOB
background spacetime. In contrast to the SEOBNRv3P waveform model, which
used the EOB Hamiltonian and GW energy flux from the aligned-spin model
SEOBNRv2 [234], the fits in Ref. [1] include odd powers of χ and thus the sign
of χ matters when the BHs precess.

142



3.3. Multipolar EOB waveforms for spinning, precessing binary black holes

0.0 0.2 0.4 0.6 0.8 1.0
χNR

0.0

0.2

0.4

0.6

0.8

1.0

χ
fi

t

SEOBNRv3P

SEOBNRv4P

Figure 3.6.: Comparison of the magnitude of the final spin between the
SEOBNRv3P and SEOBNRv4P models and NR results. For simplicity, the
fits are evaluated using the NR data at the relaxed time. The black line is
the identity. It is obvious that SEOBNRv4P gives final-spin magnitudes much
closer to the NR values.

The most natural way to generalize these fits to the precessing case is to
project SKerr onto the orbital angular momentum L̂ in the usual spirit of
reducing precessing quantities to corresponding aligned-spin ones. To test the
impact of this prescription, we compute the sky-and-polarization-averaged
unfaithfulness with the set of 118 NR simulations described in Sec. 3.2, and
find that while the majority of the cases have low unfaithfulness (∼ 1%),
there are a handful of cases where it is significant(∼ 10%), with many of
them having large in-plane spins.
To eliminate the high mismatches, we introduce the augmented spin that

includes contribution of the in-plane spins:

χ̃ = SKerr ·L
1− 2ν + α

(S⊥1 + S⊥2 ) · SKerr

|SKerr|(1− 2ν) . (3.23)

Here S⊥i ≡ Si − (Si · L)L and α is a positive coefficient to be determined.
Note that the extra term in the definition of the augmented spin ≥ 0 for any
combination of the spins. We set χ̃ = 0 when SKerr = 0. Fixing α = 1/2
insures that the augmented spin obeys the Kerr bound. Using the augmented
spin eliminates all mismatches above 6%, and thus greatly improves the
agreement of the model with NR data.
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Figure 3.7.: Time-domain comparison of state-of-the art waveform models to
the NR waveform PrecBBH00078 with mass ratio 4, BH’s spins 0.7 and total
mass M = 70M�. The source parameters are ιs = π/3, φs = π/4, κs = π/4.
The NR waveform includes all modes up to and including ` = 4, and extends
for 44 GW cycles before merger. For models that include only ` = 2 modes,
the unfaithfulness are several percent 8% for IMRPhenomPv3 and 6% for
SEOBNRv4P. Meanwhile, adding the higher mode content drastically improves
the agreement, with mismatches going down to 2% for IMRPhenomPv3HM and
1% for SEOBNRv4PHM. The agreement is particular good for SEOBNRv4PHM,
which reproduces the higher mode features at merger and ringdown faithfully.
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3.4. Comparison of multipolar precessing models to
numerical-relativity waveforms

To assess the impact of the improvements incorporated in the SEOBNRv4PHM
waveform model, we compare this model and other models publicly available
in LAL (see Table 3.1) to the set of simulations described in Sec. 3.2, as well
as to all publicly available precessing SpEC simulations 7.

We start by comparing in Fig. 3.7, the precessing NR waveform PrecBBH00078
with mass ratio 4, BH’s spin magnitudes 0.7, total mass M = 70M� and
modes ` ≤ 4 from the new 118 SXS catalog (see Appendix J) to the pre-
cessing waveforms IMRPhenomPv3 and SEOBNRv4P with modes ` = 2 (upper
panels), and to the precessing multipolar waveforms IMRPhenomPv3HM and
SEOBNRv4PHM (lower panels). This NR waveform is the most “extreme” con-
figuration from the new set of waveforms and has about 44 GW cycles before
merger, and the plot only shows the last 7 cycles. More specifically, we plot
the detector response function given in Eq. (3.5), but we leave out the overall
constant amplitude. We indicate on the panels the unfaithfulness for the
different cases. We note the improvement when including modes beyond
the quadrupole. SEOBNRv4PHM agrees particularly well to this NR waveform,
reproducing accurately the higher-mode features throughout merger and
ringdown.

We now turn to the public precessing SXS NR catalog of 1404 waveforms.
First, to quantify the performance of the new precessing waveform model
SEOBNRv4P with respect to previous precessing models used in LIGO and
Virgo inference studies, we compute the unfaithfulness 8 against the precessing
NR catalog, including only the dominant ` = 2 multipoles in the co-precessing
frame. Figure 3.8 shows the histograms of the largest mismatches when the
binary total mass varies in the range [20, 200]M�. Here, we also consider the
precessing waveform models used in the first GW Transient Catalog [32] of
the LIGO and Virgo collaboration (i.e., SEOBNRv3P and IMRPhenomPv2). Two
trends are apparent: firstly, SEOBNRv3P and IMRPhenomPv2 distributions are
broadly consistent, with both models having mismatches which extend beyond
10% , although SEOBNRv3 has more cases at lower unfaithfulness; secondly,
SEOBNRv4P has a distribution which is shifted to much lower values of the
unfaithfulness and does not include outliers with the largest unfaithfulness
below 7%.

7The list of all SXS simulations used can be found in https://arxiv.org/src/1904.
04831v2/anc/sxs_catalog.json

8We always use the sky-and-polarization averaged, SNR-weighted faithfulness or unfaith-
fulnessMSNR unless otherwise stated.
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Figure 3.8.: Sky-and-polarization averaged, SNR weighted unfaithfulness for
an inclination ι = π/3 between NR waveforms with ` = 2 and SEOBNRv4P,
and also SEOBNRv3P and IMRPhenomPv2, which were used in LIGO/Virgo
publications. The vertical dashed lines show the medians. It is evident the
better performance of the newly developed precessing model SEOBNRv4P.
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Figure 3.9.: Sky-and-polarization averaged, SNR weighted unfaithfulness for
an inclination ι = π/3 between NR waveforms and SEOBNRv4PHM, including
and omitting higher modes. The vertical dashed lines show the medians. Not
including higher modes in the model results in high unfaithfulness. However,
when they are included, the unfaithfulness between SEOBNRv4PHM and NR
is essentially at the same level as when only ` = 2 modes are compared (see
Fig. 3.8).
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Figure 3.10.: The sky-and-polarization averaged, SNR-weighted unfaithful-
ness as a function of binary’s total mass for inclination ι = π/3, between
IMRPhenomPv3HM and NR (left) and SEOBNRv4PHM and NR (right) for 1404
quasi-circular precessing BBH simulations in the SXS public catalog. The
colored lines highlight the cases with the worst maximum mismatches for both
models. Note that for the majority of cases, both models have unfaithfulness
below 5%, but SEOBNRv4PHM has no outliers beyond 10% and many more
cases at lower unfaithfulness.

Next, we examine the importance of higher modes. To do so, we use
SEOBNRv4PHM with and without the higher modes, while always including
all modes up to ` = 5 in the NR waveforms. As can be seen in Fig. 3.9,
if higher modes are omitted, the unfaithfulness can be very large, with a
significant number of cases having unfaithfulness > 7%, as has been seen in
many past studies. On the other hand, once higher modes are included in
the model, the distribution of mismatches becomes much narrower, with all
mismatches below 9%. Furthermore, the distribution now closely resembles
the distribution of mismatches when only ` = 2 modes were included in the
NR waveforms. Thus, we see that higher modes play an important role and
are accurately captured by SEOBNRv4PHM waveform model.

Moreover, in Fig. 3.10 we display, for a specific choice of the inclination, the
unfaithfulness versus the binary’s total mass between the public precessing
SXS NR catalog and SEOBNRv4PHM and IMRPhenomPv3HM. We highlight with
curves in color the NR configurations having worst maximum mismatches
for the two classes of approximants. For the majority of cases, both models
have unfaithfulness below 5%, but SEOBNRv4PHM has no outliers beyond 10%
and many more cases at lower unfaithfulness (< 2 × 10−3). We find that
the large values of unfaithfulness above 10% for IMRPhenomPv3HM come from
simulations with q & 4 and large anti-aligned primary spin, i.e. χz1 = −0.8. An
examination of the waveforms in this region reveals that unphysical features
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Figure 3.11.: The sky-and-polarization averaged, SNR-weighted unfaithful-
ness as a function of binary’s total mass for inclination ι = π/3, between
IMRPhenomPv3 and SEOBNRv4P and NR (left), and IMRPhenomPv3HM and
SEOBNRv4PHM and NR (right) for the 118 SXS NR waveforms described in
Appendix J. The NR data has ` = 2 modes for the left panel, while all modes
up to and including ` = 4 in the right panel. The unfaithfulness is low using
both waveform families, however, SEOBNRv4P(HM) has fewer cases above 3%,
and the distribution is consistently shifted to lower values of unfaithfulness.

develop in the waveforms, with unusual oscillations both in amplitude and
phase. For lower spin magnitudes these features are milder, and disappear
for spin magnitudes . 0.65. These features are present also in IMRPhenomPv3
and are thus connected to the precession dynamics, a region already known
to potentially pose a challenge when modeling the precession dynamics as
suggested in Ref. [169], and adopted in Ref. [204].

We now focus on the comparisons with the 118 SXS NR waveforms produced
in this paper. In Fig. 3.11 we show the unfaithfulness for IMRPhenomPv3(HM)
and SEOBNRv4P(HM) in the left (right) panels. We compare waveforms without
higher modes, to NR data that has only the ` = 2 modes, and the other models
to NR data with ` ≤ 4 modes. The performance of both waveform models
on this new NR data set is largely comparable to what was found for the
public catalog. Both families perform well on average, with most cases having
unfaithfulness below 2% for models without higher modes and 3% for models
with higher modes. However, for some configurations IMRPhenomPv3(HM)
reaches unfaithfulness values above 3% for total masses below 125M�. Once
again, the overall distribution is shifted to lower unfaithfulness values for
SEOBNRv4P(HM).

When studying the distribution of unfaithfulness for these 118 cases across
parameter space, it is useful to introduce the widely used effective χeff [66,
209, 263] and precessing χp [121] spins. These capture the leading order
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aligned-spin and precession effects respectively, and are defined as

χeff = (m1χ1 +m2χ2)
m1 +m2

· L̂N , (3.24a)

χp = 1
B1m2

1
max(B1m

2
1χ1⊥, B2m

2
2χ2⊥) , (3.24b)

where with B1 = 2+3m2/m1, B2 = 2+3m1/m2 and we indicate with χi⊥ the
projection of the spins on the orbital plane. We find that the unfaithfulness
shows 2 general trends. First, it tends to increase with increasing χeff and χp.
Secondly, that cases with positive χeff (i.e. aligned with Newtonian orbital
angular momentum) tend to have larger unfaithfulness. This is likely driven
by the fact that inspiral is longer for such cases and the binary merges at
higher frequency. We do not find any other significant trends based on spin
directions. It is interesting to note that the distribution of mismatches from
the 118 cases is quite similar to the distribution from the much larger public
catalog. This suggests that the 118 cases do indeed explore many different
regimes of precession.
To further quantify the results of the comparison between the precessing

multipolar models SEOBNRv4PHM and IMRPhenomPv3HM and the NR waveforms,
we show in Figs. 3.12 and 3.13 the median and 95%-percentile of all cases,
and the highest unfaithfulness as function of the total mass, respectively.
These studies also demonstrate the better performance of SEOBNRv4PHM with
respect to IMRPhenomPv3HM.

To summarize the performance against the entire SXS catalog (including the
new 118 precessing waveforms) we find that for SEOBNRv4PHM, out of a total of
1523 NR simulations we have considered, 864 cases (57% ) have a maximum
unfaithfulness less than 1%, and 1435 cases (94% ) have unfaithfulness less
than 3%. Meanwhile for IMRPhenomPv3HM the numbers become 300 cases
(20% ) below 1%, 1256 cases (83% ) below 3% 9. The accuracy of the semi-
analytical waveform models can be improved in the future by calibrating
them to the precession sector of the SXS NR waveforms.

An interesting question is to examine the behavior of the precessing models
outside the region in which their underlying aligned-spin waveforms were
calibrated. To this effect we consider 1000 random cases between mass ratios
q ∈ [1, 20] and spin magnitudes χ1,2 ∈ [0, 0.99] and computeMSNR between
SEOBNRv4PHM and IMRPhenomPv3HM. Figure 3.14 shows the dependence of the
unfaithfulness on the binary parameters, in particular the mass ratio, and

9Due to technical details of the IMRPhenomPv3HM model, the total number of cases
analyzed for this model is 1507 instead of 1523.
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the effective and precessing spins. We find that for mass ratios q < 8, 50% of
cases have unfaithfulness below 2% and 90% have unfaithfulness below 10%.
The unfaithfulness grows very fast with mass ratio and spin, with the highest
unfaithfulness occurring at the highest mass ratio and precessing spin. This
effect is enhanced due to the fact that we choose to start all the waveforms
at the same frequency and for higher mass ratios, the number of cycles
in band grows as 1/ν where ν is the symmetric mass ratio. These results
demonstrate the importance of producing long NR simulations for large mass
ratios and spins, which can be used to validate waveform models in this
more extreme region of the parameter space. To design more accurate semi-
analytical models in this particular region, it will be relevant to incorporate
in the models the information from gravitational self-force [235, 373, 374],
and also test how the choice of the underlying EOB Hamiltonians with spin
effects [375,376] affects the accuracy.
Finally, in Appendix I we quantify the agreement of the precessing multi-

polar waveform models SEOBNRv4PHM and IMRPhenomPv3HM against the NR
surrogate model NRSur7dq4 [133], which was built for binaries with mass
ratios 1–4, BH’s spins up to 0.8 and binary’s total masses larger than ∼ 60M�.
We find that the unfaithfulness between the semi-analytic models and the NR
surrogate largely mirrors the results of the comparison in figs. 3.12 and 3.13.
Notably, as it can be seen in Fig. 3.18, the unfaithfulness is generally below 3%
for both waveform families, but SEOBNRv4PHM outperforms IMRPhenomPv3HM
with the former having a median at 3.3×10−3, while the latter is at 1.5×10−2.
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Figure 3.12.: Summary of unfaithfulness as a function of the total mass, for
all NR simulations considered as shown in Fig. 3.10 and Fig 3.11. The
solid (dotted) line represents the median (95%-percentile) of all cases. For
all total masses, we find that the median mismatch with SEOBNRv4PHM is
lower than 1%, about a factor of 2 lower than IMRPhenomPv3HM. The 95th-
percentile shows a stronger dependence on total mass for SEOBNRv4PHM, with
mismatches lower than IMRPhenomPv3HM at low and medium total masses,
becoming comparable at the highest total masses.
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Figure 3.13.: The highest unfaithfulness over total mass for all cases shown
in Fig. 3.12. The median of unfaithfulness is around 1% for SEOBNRv4PHM
and 2% for IMRPhenomPv3HM (shown as dashed vertical lines). Note that for
SEOBNRv4PHM, the worst unfaithfulness is below 10% and the distribution is
shifted to lower values.
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Figure 3.14.: Sky-and polarization-averaged unfaithfulness between
SEOBNRv4PHM and IMRPhenomPv3HM for 1000 random configurations. Notice
that the unfaithfulness grows both with the mass ratio and the spin and can
reach very large values for q ≈ 20 and high χp. It’s also clear that for cases
with smaller spins the unfaithfulness remains much lower.
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3.5. Bayesian analysis with multipolar precessing waveform
models

We now study how the accuracy of the waveform model SEOBNRv4PHM (and
also IMRPhenomPv3HM), which we have quantified in the previous section
through the unfaithfulness, affects parameter inference when synthetic signal
injections are performed. To this end, we employ two mock BBH signals and
do not add any detector noise to them (i.e., we work in zero noise), which
is equivalent to average over many different noise realizations. This choice
avoids arbitrary biases introduced by a random-noise realization, and it is
reasonable since the purpose of this analysis is to estimate possible biases in
the binary’s parameters due to inaccuracies in waveform models.
We generate the first precessing-BBH mock signal with the NRSur7dq4

model. It has mass ratio q = 3 and a total source-frame mass of M =
70M�. The spins of the two BHs are defined at a frequency of 20 Hz,
and have components χ1 = (0.30, 0.00, 0.50) and χ2 = (0.20, 0.00, 0.30).
The masses and spins” magnitudes (0.58 and 0.36) of this injection are
compatible with those of BBH systems observed so far with LIGO and Virgo
detectors [32,153,323–325]. Although the binary’s parameters are not extreme,
we choose the inclination with respect to the line of sight of the BBH to
be ι = π/3, to emphasize the effect of higher modes. The coalescence and
polarization phase, respectively φ and ψ, are chosen to be 1.2 rad and 0.7
rad. The sky-position is defined by its right ascension of 0.33 rad and its
declination of -0.6 rad at a GPS-time of 1249852257 s. Finally, the distance
to the source is set by requesting a network-SNR of 50 in the three detectors
(LIGO Hanford, LIGO Livingston and Virgo) when using the Advanced LIGO
and Advanced Virgo PSD at design sensitivity [262]. The resulting distance
is 800 Mpc. The unfaithfulness against this injection is 0.2% and 1% for
SEOBNRv4PHM and IMRPhenomPv3HM, respectively. Although the value of the
network-SNR is large for this synthetic signal, it is not excluded that the
Advanced LIGO and Virgo detectors at design sensitivity could detect such
loud BBH. With this study we want to test how our waveform model performs
on a system with moderate precessional effect when detected with a large
SNR value, considering that it has an unfaithfulness of 0.2%.
For the second precessing-BBH mock signal, we use a binary with larger

mass ratio and spin magnitude for the primary BH. We employ the NR
waveform SXS:BBH:0165 from the public SXS catalog having mass ratio
q = 6, and we choose the source-frame total mass M = 76M�. The BH’s
spins, defined at a frequency of 20 Hz, have values χ1 = (−0.06, 0.78,−0.47)
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3.5. Bayesian analysis with multipolar precessing waveform models

and χ2 = (0.08,−0.17,−0.23). The BBH system in this simulation has strong
spin-precession effects. We highlight that this NR waveform is one of the
worst cases in term of unfaithfulness against SEOBNRv4PHM, as it is clear from
Fig. 3.10. For this injection we choose the binary’s inclination to be edge-on
at 20 Hz to strongly emphasize higher modes. All the other binary parameters
are the same of the previous injection, with the exception of the luminosity
distance, which in this case is set to be 1.2 Gpc to obtain a network-SNR of
21. The NR waveform used for this mock signal has unfaithfulness of 4.4%
for SEOBNRv4PHM and 8.8% for IMRPhenomPv3HM, thus higher than in the first
injection.

For the parameter-estimation study we use the function pycbc_generate-
_hwinj from the PyCBC software [377] to prepare the mock signals, and we
perform the Bayesian analysis with parallel Bilby [378], a highly paral-
lelized version of the parameter-estimation software Bilby [174]. We choose
a uniform prior in component masses in the range [5, 150]M�. Priors on the
dimensionless spin magnitudes are uniform in [0, 0.99], while for the spin
directions we use prior isotropically distributed on the unit sphere. The priors
on the other parameters are the standard ones described in Appendix C.1 of
Ref. [32].
We summarize in Fig. 3.15 the results of the parameter estimation for

the first mock signal for SEOBNRv4PHM (blue), IMRPhenomPv3HM (red) and
NRSur7dq4 (cyan). We report the marginalized 2D and 1D posteriors for the
component masses m1 and m2 in the source frame (top left), the effective
spin parameters χeff and χp (top right), the spin magnitude of the more
massive BH a1 and its tilt angle θ1 (bottom left) and finally the angle θJN
and the luminosity distance (bottom right). In the 2D posteriors, solid
contours represent 90% credible intervals and black dots show the value
of the parameter used in the synthetic signal. In the 1D posteriors, they
are represented respectively by dashed lines and black solid lines. As it is
clear from Fig. 3.15, when using the waveform models SEOBNRv4PHM and
NRSur7dq4, all the parameters of the synthetic signal are correctly measured
within the statistical uncertainty. Moreover, the shape of the posterior
distributions obtained when using SEOBNRv4PHM are similar to those recovered
with NRSur7dq4 (the model used to create the synthetic signal). This means
that the systematic error due to a non perfect modeling of the waveforms is
negligible in this case.

For the model IMRPhenomPv3HM while masses and spins are correctly mea-
sured within the statistical uncertainty, the luminosity distance DL and the
angle θJN are biased. This is consistent with the prediction obtained using
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Lindblom’s criterion in Refs. [166–169] 10. In fact, according to this criterion,
an unfaithfulness of 1% for IMRPhenomPv3HM would be sufficient to produce
biased results at a network-SNR of 19. Thus, it is expected to observe biases
when using IMRPhenomPv3HM at the network-SNR of the injection, which is 50.
In the case of SEOBNRv4PHM the unfaithfulness against the signal waveform is
0.2% and according to Lindblom’s criterion we should also expect biases for
network-SNRs larger than 42, but in practice we do not observe them. We
remind that Lindblom’s criterion is only approximate and it has been shown
in Ref. [170] to be too conservative, therefore the lack of bias that we observe
is not surprising.

In Fig. 3.16 we summarize the results of the second mock-signal injection.
The plots are the same as in Fig. 3.15 with the only exception that we do not
have results for the NRSur7dq4 model since it is not available in this region
of the parameter space. In this case the unfaithfulness between SEOBNRv4PHM
(IMRPhenomPv3HM) and the NR waveform used for the mock signal is 4.4%
(8.8%). According to Lindblom’s criterion, at the network-SNR of this mock
signal we should expect the bias due to non-perfect waveform modeling to
be dominant over the statistical uncertainty for an unfaithfulness & 1%.
Therefore we might expect some biases in inferring parameters for both
models. Lindblom’s criterion does not say which parameters are biased and
by how much. The results in Fig. 3.16 clearly show that both models have
biases in the measurement of some parameters, but unfaithfulness of 4.4% and
8.8% induce different amount of biases and also on different set of parameters
(intrinsic and extrinsic).

In particular for the component masses (top left panel of Fig. 3.16), the 2D
posterior distribution obtained with SEOBNRv4PHM barely include the value
used for the mock signal in the 90% credible region. This measurement looks
better when focusing on the 1D posterior distributions for the individual
masses for which the injection values are well within the 90% credible intervals.
The situation is worst for the IMRPhenomPv3HM model, for which the 2D
posterior distribution barely excludes the injection value at 90% credible level.
In this case also the true value ofm1 is excluded from the 90% credible interval
of the marginalized 1D posterior distribution. Furthermore, χeff and χp (top
right panel of Fig. 3.16) are correctly measured with SEOBNRv4PHM while
the measurement with IMRPhenomPv3HM excludes the true value from the 2D
10The criterion says that a sufficient, but not necessary condition for two waveforms to

become distinguishable is that the unfaithfulness ≥ (Nintr− 1)/(2SNR2), where Nintr is
the number of binary’s intrinsic parameters, which we take to be 8 for a precessing-BBH
system. Note, however, that in practice this factor can be much larger, see discussion
in Ref. [170].
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90% credible region. From the 1D posterior distributions it is clear that
the source of this inaccuracy is the incorrect measurement of χp, while χeff
is correctly recovered within the 90% credible interval. A similar situation
is observed in the measurement of a1 the spin magnitude of the heavier
BH and θ1 its tilt angle (bottom left panel of Fig. 3.16). Also in this case
SEOBNRv4PHM correctly measures the parameters used in the mock signal,
while IMRPhenomPv3HM yields an incorrect measurement due to a bias in the
estimation of a1. Finally, we focus on the measurement of the angle θJN and
the luminosity distance DL (bottom right panel of Fig. 3.16). In this case the
value of these parameters used in the synthetic signal is just slightly measured
within the 90% credible region of the 2D posterior distribution obtained
with SEOBNRv4PHM. As a consequence the luminosity distance is also barely
measured within the 90% credible interval from the marginalized 1D posterior
distribution and the measured value of θJN results outside the 90% credible
interval of the 1D posterior distribution. The posterior distributions obtained
using IMRPhenomPv3HM are instead correctly measuring the parameters of
the mock signal. We can conclude that even with an unfaithfulness of 4.4%
against the NR waveform used for the mock signal the SEOBNRv4PHM model is
able to correctly measure most of the binary parameters, notably the intrinsic
ones, such as masses and spins.
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Figure 3.15.: 2D and 1D posterior distributions for some relevant parameters
measured from the first synthetic BBH signal with mass ratio q = 3, total
source-frame mass of M = 70M�, spins of the two BHs χ1 = (0.30, 0.00, 0.50)
and χ2 = (0.20, 0.00, 0.30) defined at a frequency of 20 Hz . The inclination
with respect to the line of sight of the BBH is ι = π/3. The other parameters
are specified in the text. The signal waveform is generated with the waveform
model NRSur7dq4. In the 2D posteriors, solid contours represent 90% credible
intervals and black dots show the value of the parameter used in the synthetic
signal. In the 1D posteriors they are represented respectively by dashed lines
and black solid lines. The parameter estimation is performed with the wave-
form models SEOBNRv4PHM (blue), NRSur7dq4 (cyan) and IMRPhenomPv3HM
(red). Top left: component masses in the source frame, Top right: χeff and
χp, Bottom left: magnitude and tilt angle of the primary spin, Bottom right:
θJN and luminosity distance.
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Figure 3.16.: 2D and 1D posterior distributions for some relevant parame-
ters measured from the first synthetic BBH signal with mass ratio q = 6,
total source-frame mass of M = 76M�, spins of the two BHs χ1 =
(−0.06, 0.78,−0.47) and χ2 = (0.08,−0.17,−0.23) defined at a frequency
of 20 Hz . The inclination with respect to the line of sight of the BBH is
edge-on, i.e., ι = π/2. The other parameters are specified in the text. The
signal waveform is generated using the NR waveform from the SXS public
catalog SXS:BBH:0165. In the 2D posteriors solid contours represent 90%
credible intervals and black dots show the value of the parameter used in the
synthetic signal. In the 1D posteriors they are represented respectively by
dashed lines and black solid lines. The parameter estimation is performed
with the waveform models SEOBNRv4PHM (blue) and IMRPhenomPv3HM (red).
Top left: component masses in the source frame, Top right: χeff and χp,
Bottom left: magnitude and tilt angle of the primary spin, Bottom right: θJN
and luminosity distance.
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3.6. Conclusions

In this paper we have developed and validated the first inspiral-merger-
ringdown precessing waveform model in the EOB approach, SEOBNRv4PHM,
that includes multipoles beyond the dominant quadrupole.

Following previous precessing SEOBNR models [234,249,250], we have built
such a model twisting up the aligned-spin waveforms of SEOBNRv4HM [1, 182]
from the co-precessing [243,331,341–343] to the inertial frame, through the
EOB equations of motion for the spins and orbital angular momentum. With
respect to the previous precessing SEOBNR model, SEOBNRv3P [250], which
has been used in LIGO/Virgo data analysis [29,32,322], the new model (i)
employs a more accurate aligned-spin two-body dynamics, since, in the non-
precessing limit, it reduces to SEOBNRv4HM, which was calibrated to 157 SXS
NR simulations [2,6], and 13 waveforms [297] from BH perturbation theory, (ii)
includes in the co-precessing frame the modes (2,±2), (2,±1), (3,±3), (4,±4)
and (5,±5), instead of only (2,±2), (2,±1), (iii) incorporates the merger-
ringdown signal in the co-precessing frame instead of the inertial frame, (iv)
describes the merger-ringdown stage through a phenomenological fit to NR
waveforms [1, 182], and (v) uses more accurate NR fits for the final spin of
the remnant BH.

The improvement in accuracy between SEOBNRv4 and SEOBNRv3P (i.e., the
models with only the ` = 2 modes) is evident from Fig. 3.8, where we
have compared those models to the public SXS catalog of 1405 precessing
NR waveforms, and the new 118 SXS NR waveforms produced for this
work. The impact of including higher modes in semi-analytical models
to achieve higher accuracy to multipolar NR waveforms is demonstrated
in Fig. 3.9. Figures 3.10, 3.11, 3.12 and 3.14 quantify the comparison of
the multipolar precessing SEOBNRv4PHM and IMRPhenomPv3HM to all SXS
NR precessing waveforms at our disposal. We have found that for the
SEOBNRv4PHM model, 94% (57% ) of the cases have maximum unfaithfulness
value, in the total mass range 20–200M�, below 3% (1%). Those numbers
change to 83% (20% ) when using the IMRPhenomPv3HM. We have found
several cases with large unfaithfulness (> 10%) for IMRPhenomPv3HM, coming
from a region of parameter space with q & 4 and large (' 0.8) spins anti-
aligned with the orbital angular momentum, which appear to be connected
to unphysical features in the underlying precession model, and cause unusual
oscillations in the waveform’s amplitude and phase. The better accuracy
of SEOBNRv4PHM with respect to IMRPhenomPv3HM is also confirmed by the
comparisons with the NR surrogate model NRSur7dq4, as shown in Fig. 3.18.
We have investigated in which region of the parameter space the unfaithfulness
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Figure 3.17.: The maximum sky-and-polarization averaged, SNR-weighted
unfaithfulness as a function of binary’s total mass for inclination ι = π/3,
between the models IMRPhenomPv3HM (top) and SEOBNRv4PHM (bottom), and
the NR surrogate, cf. Fig. 3.14. The unfaithfulness is strongly dependent on
the intrinsic parameters, especially the spins.

against NR waveforms and NRSur7dq4 lies, and have found, not surprisingly,
that it occurs where both mass ratios and spins are large (see Fig. 3.17). When
comparing SEOBNRv4PHM and IMRPhenomPv3HM outside the region in which
the aligned-spin underlying model was calibrated, we have also found that the
largest differences reside when mass ratios are larger than 4 and spins larger
than 0.8 (see Fig. 3.14). To improve the accuracy of the models in those more
challenging regions, we would need NR simulations, but also more information
from analytical methods, such as the gravitational self-force [235,373,374],
and resummed EOB Hamiltonians with spins [375,376].
To quantify how the modeling inaccuracy, estimated by the unfaithful-

ness, impacts the inference of binary’s parameters, we have perfomed two
parameter-estimation studies using Bayesian analysis. Working with the
Advanced LIGO and Virgo network at design sensitivity, we have injected
in zero noise two precessing-BBH mock signals with mass ratio 3 and 6,
having SNR of 50 and 21, with inclination of π/3 and π/2 with respect to
the line of sight respectively, and recovered them with SEOBNRv4PHM and
IMRPhenomPv3HM. The unfaithfulness values of those models against the syn-
thetic signals considered (i.e., NRSurd7q4 and SXS:BBH:0165) range from
0.2% to 8.8%. The results are summarized in Figs. 3.15 and 3.16. Overall,
we have found that Lindblom’s criterion [166–170] is too conservative and
predicts visible biases at SNRs lower than what we have obtained through the
Bayesian analysis. In particular, we have found, when doing inference with
SEOBNRv4PHM, that an unfaithfulness of 0.2% may produce no biases up to
SNR of 50, while an unfaithfulness of 2.2% can produce biases only for some
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extrinsic parameters, such as distance and inclination, but not for binary’s
masses and spins at SNR of 21. A more comprehensive Bayesian study will
be needed to quantify, in a more realistic manner, the modeling systematics
of SEOBNRv4PHM, if this model were used during the fourth observation run
of Avanced LIGO and Virgo in 2022 (i.e., the run at design sensitivity).

The newly produced 118 SXS NR waveforms extend the coverage of binary’s
parameter space, spanning mass ratios q = 1–4, (dimensionless) spins χ1,2 =
0.3–0.9, and different orientations to maximize the number of precessional
cycles. As we have emphasized, the waveform model SEOBNRv4HM is not
calibrated to NR waveforms in the precessing sector, only the aligned-spin
sector was calibrated in Refs. [1,182]. Despite this, the accuracy of the model
is very good, and it can be further improved in the future if we calibrate the
model to the 1404 plus 118 SXS NR precessing waveforms at our disposal.
This will be an important goal for the upcoming LIGO and Virgo O4 run
in early 2022. Furthermore, SEOBNRv4HM assumes the following symmetry
among modes h`m = (−1)`h∗`−m in the co-precessing frame, which however
no longer holds in presence of precession. As discussed in Sec. 3.2.4, forcing
this assumption causes unfaithfulness on the order of a few percent. Thus, to
achieve better accuracy, when calibrating the model to NR waveforms, the
mode-symmetry would need to be relaxed.

Finally, SEOBNRv4HM uses PN-resumed factorized modes that were developed
for aligned-spin BBHs [219,220], thus they neglect the projection of the spins
on the orbital plane. To obtain high-precision waveform models, it will be
relevant to extend the factorized modes to precession. Considering the variety
of GW signals that the improved sensitivity of LIGO and Virgo detectors is
allowing to observe, it will also be important to include in the multipolar
SEOBNR waveform models the more challenging (3, 2) and (4, 3) modes,
which are characterized my mode mixing [109,314,379]. Their contribution
is no longer negligible for high total-mass and/or large mass-ratio binaries,
especially if observed away from face-on (face-off).

Lastly, being a time-domain waveform model generated by solving ordinary
differential equations, SEOBNRv4HM is not a fast waveform model, especially for
low total-mass binaries. To speed up the waveform generation, a reduced-order
modeling version has been recently developed [380]. Alternative methods that
employ a fast evolution of the EOB Hamilton equations in the post-adiabatic
approximation during the long inspiral phase have been suggested [254], and
we are currently implementing them in the simpler nonprecessing limit in
LAL.

162



3.6. Conclusions

25 50 75 100 125 150 175 200
Total mass [M�]

10−3

10−2

10−1

M
S

N
R

IMRPhenomPv3HM

SEOBNRv4PHM

10−3 10−2 10−1 100

maxMMSNR

0

50

100

150

200

250

300

n
u

m
b

er
of

ca
se

s

IMRPhenomPv3HM

SEOBNRv4PHM

Figure 3.18.: The summary of the sky-and-polarization averaged, SNR-
weighted unfaithfulness as a function of binary’s total mass for inclina-
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SEOBNRv4PHM models. Left: The solid (dashed) lines show the median (95th
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using both waveform families, however, SEOBNRv4P(HM) has lower median
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163



3.

Acknowledgments

It is our pleasure to thank Andrew Matas for providing us with the scripts
to make the parameter-estimation plots, and Sebastian Khan for useful
discussions on the faithfulness calculation. We would also like to thank the
SXS collaboration for help and support with the SpEC code in producing
the new NR simulations presented in this paper, and for making the large
catalog of BBH simulations publicly available. RH acknowledges support
through OAC-1550514. The new 118 SXS NR simulations were produced
using the high-performance compute (HPC) cluster Minerva at the Max
Planck Institute for Gravitational Physics in Potsdam, on the Hydra cluster
at the Max Planck Society at the Garching facility, and on the SciNet
cluster at the University of Toronto. The data-analysis studies were obtained
with the HPC clusters Hypatia and Minerva at the Max Planck Institute
for Gravitational Physics. The transformation and manipulation of waveforms
were done using the GWFrames package [363,381].

164



4. Frequency domain reduced order model of
aligned-spin effective-one-body waveforms
with higher-order modes
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Abstract:We present a frequency domain reduced order model (ROM)
for the aligned-spin effective-one-body (EOB) model for binary black holes
(BBHs) SEOBNRv4HM that includes the spherical harmonics modes (`, |m|) =
(2, 1), (3, 3), (4, 4), (5, 5) beyond the dominant (`, |m|) = (2, 2) mode. These
higher modes are crucial to accurately represent the waveform emitted from
asymmetric BBHs. We discuss a decomposition of the waveform, extending
other methods in the literature, that allows us to accurately and efficiently
capture the morphology of higher mode waveforms. We show that the ROM
is very accurate with median (maximum) values of the unfaithfulness against
SEOBNRv4HM lower than 0.001%(0.03%) for total masses in [2.8, 100]M�. For a
total mass of M = 300M� the median (maximum) value of the unfaithfulness
increases up to 0.004%(0.17%). This is still at least an order of magnitude
lower than the estimated accuracy of SEOBNRv4HM compared to numerical
relativity simulations. The ROM is two orders of magnitude faster in generat-
ing a waveform compared to SEOBNRv4HM. Data analysis applications typically
require O(106 − 108) waveform evaluations for which SEOBNRv4HM is in
general too slow. The ROM is therefore crucial to allow the SEOBNRv4HM
waveform to be used in searches and Bayesian parameter inference. We
present a targeted parameter estimation study that shows the improvements
in measuring binary parameters when using waveforms that includes higher
modes and compare against three other waveform models.

4.1. Introduction

In the past five years GW observations [27, 32, 153] have opened up a new
window to the Universe. In the first two observing runs of the advanced
LIGO [55] and Virgo [56] detectors ten confident detections of BBHs and

1Originally published as Phys.Rev.D 101 (2020) 12, 124040.
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one BNS were made [32] and tens of detection candidates [382] have been
identified so far in the third observing run of this network, among them another
confident detection of a binary neutron star system [162]. Both the detection
and inference of binary parameters for these compact binaries rely heavily on
our knowledge of the gravitational waveform emitted in these coalescences as
encapsulated in parametrized models of GWs. The construction of stochastic
template banks and the Bayesian inference of binary parameters routinely
require tens to hundreds of millions of waveform evaluations [171,174,251,252].
At the same time the phasing of the GWs needs to be tracked to an accuracy
better than a fraction of a wave cycle to avoid missing events or mis-measuring
binary parameters. Therefore, waveform models need to be fast and accurate
to extract the binary properties imprinted in the emitted GWs.

Inspiral-merger-ringdown models of GWs from coalescing BH binaries have
traditionally been constructed in the EOB [1,91,92,182,201,202,209,219,229,
233,234,249,250,365,383,384] or phenomenological [120,122–125,203,204,263,
339,385] approaches, and, more recently, models for NR or EOB waveforms
constructed with surrogate modeling techniques have come to prominence [1,
128–133, 255–257]. EOB models incorporate physical descriptions of the
inspiral, merger, and ringdown parts of BBH coalescences. PN solutions
for the inspiral are re-summed and connected with an analytic description
of the merger waveform which is tuned to data from NR simulations [2,
97–102, 300, 386]. EOB models are posed as an initial value problem for a
complicated system of ordinary differential equations (ODEs) describing the
approximated2 dynamics of a compact binary. The emitted GWs are then
computed from this orbital dynamics. EOB models have provided accurate
and generic descriptions of the GWs for the signals observed so far by LIGO
and Virgo detectors. However, observations with third generation detector
networks may require much more accurate waveform models [170]. The
integration of the ODEs requires small time steps to obtain an accurate
solution and especially for the long waveforms produced by low mass compact
binaries can take on the order of hours, and thus be too slow for practical
data analysis applications 3.

Surrogate or reduced order modeling techniques [128–131,255–259] provide
established methods for accelerating slow waveforms while retaining very high
accuracy. These techniques have been successfully applied to EOB [1,128,255–
257] and NR [129–133] waveforms. They work by decomposing waveforms

2The full dynamics of a binary system is obtained by solving Einstein’s equations which
are partial differential equations (PDEs).

3A faster method has been proposed, restricted to systems with spins aligned with the
orbital angular momentum [254].
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from a training set in orthonormal bases on sparse grids in time or frequency,
and interpolating or fitting the resulting waveform data pieces over the binary
parameter space. The result is a smooth, accurate (as tested against an
independent validation set), and fast to evaluate (compared to the original
waveform data) GW model. These surrogate models have proven invaluable
for GW data analysis.
In this paper we present a ROM for GWs from coalescing binaries with

spins aligned with the orbital angular momentum which include the most
important higher harmonics of the waveform in addition to the dominant
(`.m) = (2,±2) spherical harmonic mode, as described by the SEOBNRv4HM
model [182]. Higher harmonics in the expansion of the gravitational waveform
become important for asymmetric and massive compact binaries [184,186–
188,190,291]. The model we construct here, SEOBNRv4HM_ROM, includes the
(`, |m|) = (2, 1), (3, 3), (4, 4), (5, 5) modes. We show that SEOBNRv4HM_ROM
has a mismatch less than O(0.1%) with SEOBNRv4HM and that it accelerates
waveform evaluation by a factor 100 – 200.

While SEOBNRv4HM and SEOBNRv4HM_ROM include the contribution of higher
harmonics in the waveform, they lack a description of spin-precession and
eccentricity. In the EOB waveform family the effect of spin-precession has
been taken into account in Refs. [249, 250] and only recently in Ref. [202]
for the case of waveforms with higher harmonics. A surrogate for the latter
waveform model is currently under development (see Ref. [387]). For the
phenomenological and the numerical relativity surrogate families similar
models including the effect of precession and higher harmonics have been
described in Refs. [127, 130,132, 133, 204]. Waveforms emitted from binary
systems in an eccentric orbit have not been studied extensively. So far,
only a few inspiral-merger-ringdown eccentric waveform models have been
constructed for non-spinning [388,389] and aligned-spin binaries [368,390].

This paper is organized as follows. In Sec. 4.2 we give a brief description of
the time-domain SEOBNRv4HM model. In Sec. 4.3 we discuss various techniques
we use to build the ROM, notably waveform conditioning in Sec. 4.3.1. We
continue with a summary of the basis construction and decomposition in
Sec. 4.3.2, tensor product interpolation in Sec. 4.3.3. Domain decomposition
in frequency and in parameter space is discussed in Sec. 4.3.4 and Sec. 4.3.6,
respectively. We summarize how we connect the ROM with PN solutions
at low frequency in Sec. 4.3.5. We present results in Sec. 4.4 where we
demonstrate the accuracy of the ROM in Sec 4.4.1, and its computational
efficiency in Sec. 4.4.2. We showcase a parameter estimation application in
Sec. 4.4.3. Finally we conclude in Sec. 4.5.
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4.2. The SEOBNRv4HM model

The gravitational wave signal emitted by a coalescing binary black hole is
usually divided into three different regimes: inspiral, merger and ringdown.
During the inspiral the two black holes move at a relative speed v that is
small compared to the speed of light c, therefore the solution to the two
body problem can be found using a perturbative expansion in the small
parameter v/c, the so-called PN expansion [62]. At some point, during the
evolution of the binary system, the parameter v/c ceases to be small and the
PN expansion is not valid anymore. This happens roughly at the innermost
stable circular orbit (ISCO) and demarcates the end of the inspiral and
the beginning of the merger regime. The signal in this regime can only be
computed using NR simulations that solve Einstein’s equations for a BBH
system, fully numerically. Finally, in the ringdown regime, the perturbed
black hole formed after the merger of the binary emits gravitational waves at
frequencies that can be computed within the black hole perturbation theory
formalism [315].

The EOB formalism, first introduced by Buonanno and Damour in Refs. [91,
92], provides a natural framework to combine these three regimes and produce
a complete waveform with inspiral, merger and ringdown. Within the EOB
formalism the PN conservative dynamics of a BBH system during the inspiral
is resummed in terms of the dynamics of a test particle with an effective
mass and spin around a deformed Kerr metric. This improved conservative
dynamics is combined with a resummed energy flux [220,391,392] to produce
an inspiral waveform that is close to NR solutions. To improve the agreement
with NR waveforms the EOB conservative dynamics is also calibrated using
information from NR simulations [233,234]. In the EOB waveform the merger
and ringdown part is built using a phenomenological fit produced using
informations from NR waveforms and black hole perturbation theory [1, 240].
NR-tuned versions of EOB models are usually referred to as EOBNR.
In this paper we focus on the SEOBNRv4HM [182] model, an extension of

SEOBNRv4 [1] that includes the modes (`, |m|) = (2, 1), (3, 3), (4, 4), (5, 5) in
the waveform in addition to the (`, |m|) = (2, 2) mode already present in
SEOBNRv4. This model assumes spins aligned or anti-aligned with the direction
perpendicular to the orbital plane L̂N , and we define the dimensionless
spin parameter for BH i as χi = ~Si · L̂N/m2

i , where ~Si are the BH’s spins
and mi their masses. SEOBNRv4HM has been validated against several NR
waveforms in the mass-ratio - aligned-spin parameter space in the region
q ≡ m1/m2 ∈ [1, 10], χ1,2 ∈ [−1, 1] yielding typical mismatches of O(≤ 1%)
for total masses in the range [20, 200]M�.
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4.3. Techniques for building the ROM

In this Section we describe the construction of our ROM, from the preparation
of the waveforms to the reduced basis and interpolation techniques. We
use techniques developed for previous ROM models [1, 255, 256], which we
generalized to the higher-harmonics case.

We start with a general discussion of how to prepare and decompose wave-
form data for higher mode waveforms in Sec. 4.3.1. In particular, we discuss
time domain conditioning in Sec. 4.3.1.1, stationary phase approximation
in Sec. 4.3.1.2, the orbital carrier phase in Sec. 4.3.1.3, the introduction of
coorbital modes in Sec. 4.3.1.4, scaling of frequencies in Sec. 4.3.1.5. We
summarize basis construction in Sec. 4.3.2 and tensor product interpolation
in Sec. 4.3.3. We also explain how we decompose the model in both frequency
range patches (see Sec. 4.3.4) and parameter space patches (see Sec. 4.3.6).
Hybridization with inspiral waveforms is discussed in Sec. 4.3.5.

4.3.1. Preparation and decomposition of waveform data

The waveform polarizations h+, h× are decomposed in spin-weighted spherical
harmonics as

h+ − ih× =
∑
`≥2

∑̀
m=−`

−2Y`,mh`m . (4.1)

The h`m are called the harmonics or simply the modes of the gravitational
wave, with h22 and h2,−2 the dominant harmonics corresponding to quadrupo-
lar radiation. These modes h`m are affected by convention choices: first,
by the choice of polarization vectors defining h+, h×, and secondly by the
definition chosen for the source frame in which the waveform is described.
For non-precessing systems, the z-axis of the source frame is taken to be the
normal to the orbital plane, with a residual freedom in choosing the origin of
phase. One can take two points of view for the definition of phase: either
fix the definition of the source frame (for instance, imposing that the initial
separation vector is along x) and call “phase” the azimuthal angle of the
observer in the source frame, or fix the direction to the observer (for instance
in the plane (x, z)) and call “phase” the binary’s orbital phase at a given
time. We can also consider the definition of the origin of time as part of the
source frame definition.

During the inspiral, the individual harmonics obey a simple overall scaling
with the orbital phase as

h`m ∝ exp [−imφorb] (4.2)
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but this scaling does not apply post-merger where the modes are driven by
their respective ringdown frequencies.

There are several challenges regarding the conditioning of higher-harmonics
waveforms for the purpose of reduced order modelling. We recall that one
relies on two kinds of interpolation here: one is the interpolation of waveform
pieces along the tracking parameter, either time or frequency, used to compress
data; the other is the interpolation across the parameter space (masses and
spins) used in the internals of the ROM, either of waveform quantities directly
(as in [128–133,257] in the empirical interpolation formalism), or as in our case,
of reduced basis projection coefficients [1, 255,256]. Both these interpolations
require smoothness, and discrete jumps can cause significant (and non-local)
errors.

As a result, zero-crossings in the subdominant harmonics h`m (as noticed in
Refs. [182,393]) cause difficulties for the usual amplitude/phase representation:
if the envelope of a mode crosses zero with a positively defined amplitude, the
phase jumps by π, a discontinuity that will harm the interpolation performed
when reconstructing the waveform. Among other advantages, this is alleviated
by the procedure used in [131,133] of modelling the waveform in a coorbital
frame where the dominant phasing of Eq. (4.2) has been scaled out, so that
a more robust real/imaginary representation can be chosen instead; here we
will use the same kind of coorbital quantities, but built in the Fourier domain.

The natural 2π degeneracy in phase also requires care when interpolating
across parameter space. Discrete 2π phase jumps leave the waveforms them-
selves invariant, but can break the interpolation in-between waveforms. This
issue is particularly relevant when dealing with numerical Fourier transforms
of time-domain waveforms: when phase-unwrapping the output of the Discrete
Fourier Transform starting from f = 0, numerical noise causes the 2π interval
to be essentially random. In [1, 255, 256] a linear fit of the Fourier-domain
phase was removed. Here we will keep time and phase alignment information
throughout the conditioning procedure, so instead we will impose a given
2π range for the phase at a reference point, corresponding to the time of
alignment.
Other difficulties are caused by the relative alignment of the different

harmonics. Dividing the phase of the dominant h22 mode by 2, whether in
time or frequency domain, comes with an ambiguity of π then propagated
as mπ to the other modes. Such an ambiguity is not necessarily a problem
if the phase alignment is done as a last step when generating the waveform
(as is the case in the IMRPhenomHM model [124]); giving up the geometric
interpretation of the source-frame definition, it is sufficient that a [0, 2π] range
in the “phase” input by the user corresponds to a [0, 2π] range in geometric
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phase. It becomes a problem, however, when we need to interpolate across
parameter space to build a ROM. In particular, when working from the
Fourier domain waveform alone, we do not have access to the orbital phase
(as read from trajectories) to lift these kind of degeneracies. Here we will
make sure that the alignment is performed in the time domain before taking
Fourier transforms, and we will further introduce an artificial carrier signal
to have access to a proxy of the orbital phase in the Fourier domain.
We detail below our conditioning procedure, chosen to circumvent these

issues.

4.3.1.1. Time-domain conditioning

In building this ROM, we will carry along time and phase alignment informa-
tion all the way to the final Fourier-domain waveforms. This is in contrast
to previous Fourier-domain waveform models (SEOBNRv4_ROM, IMRPhenomD)
where the time and phase are adjusted after generating the waveform, as will
be described below.

Individual harmonics are decomposed as an amplitude4 and phase, following

h`m(t) = a`m(t) exp [−iφ`m(t)] , (4.3)

with the scaling
φ`m = mφorb + ∆φ`m , (4.4)

In the early inspiral regime, for low frequencies, the phases ∆φ`m are approx-
imately constant. We choose the same polarization convention as in [394],
for which we have

∆φ22 → 0 ,

∆φ21 →
π

2 ,

∆φ33 → −
π

2 ,

∆φ44 → π ,

∆φ55 →
π

2 , (4.5)

in the low-frequency limit. When getting closer to merger, deviations from
Eq. (4.5) become more important. In the notations of the EOB factorized

4In general, it would be preferable to consider a`m as a slowly-varying envelope rather than
a positive amplitude, in particular allowing it to change sign, as we expect zero-crossings
of certain subdominant modes like h21.
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waveforms [201,219], these phase deviations come from the phases eiδ`m and
tail factors T`m (see Eqs. (14) and (21) in [201]), and from non-quasicircular
corrections (NQCs) close to merger (see Eq. (22) in [201]).

We choose the source frame convention for our model by imposing that its
direction x is along the separation vector between the two black holes n(talign),
with an arbitrary time of alignment in the late inspiral talign = −1000M (with
t = 0 being defined as the amplitude peak of h22). In practice, rather than
using n(talign) we simply impose

φ22(talign) = 0 , (4.6)

and we use the orbital phase φorb as read from the EOB dynamics to resolve
the π-ambiguity and impose φorb ' 0 rather than φorb ' π. These align-
ment properties will be reproduced, up to small numerical errors, by the
reconstructed ROM waveforms.

4.3.1.2. Stationary phase approximation

As we will use it to guide our conditioning procedure, we recall here the
Stationary phase approximation (SPA) for waveforms with higher harmonics.
First, we introduce the Fourier transform for a time-domain signal h as

h̃(f) =
∫
dt e2iπfth(t) . (4.7)

Note the sign difference in the exponential with respect to the more usual def-
inition (used in particular in LAL [395]). This choice is made for convenience,
as it will ensure that Fourier-domain modes h̃`m with m > 0 and m < 0 have
support at positive and negative frequencies respectively. One can come back
to the LAL Fourier convention by the simple map f ↔ −f , which for real
signals h(t) ∈ R translates as h̃LAL(f) = h̃∗(f).
Let us first consider a generic signal with an amplitude and phase as

h(t) = a(t)e−iφ(t) and define ω ≡ φ̇. The SPA is applicable under the
assumptions |ȧ/(aω)| � 1, |ω̇/ω2| � 1 and |(ȧ/a)2/ω̇| � 1, that are well
verified in the inspiral. Defining a time-to-frequency correspondence t(f)
implicitly by

ω(t(f)) = 2πf , (4.8)

the Fourier tranform of the signal is then h̃SPA(f) = ASPA(f)e−iΨSPA(f) with

ASPA(f) = a(t(f))
√

2π
ω̇(t(f)) , (4.9a)

172



4.3. Techniques for building the ROM

ΨSPA(f) = φ(t(f))− 2πft(f) + π

4 . (4.9b)

Applying this to the individual h`m modes (4.3), treating the ∆φ`m as
constants, defining ω`m = φ̇`m ' mωorb, each mode will have a separate
time-to-frequency correspondence

ω`m
(
t`m(f)

)
= 2πf , (4.10)

and the phase

ΨSPA
`m (f) = mφorb

(
t`m(f)

)
− 2πft`m(f) + ∆φ`m + π

4 . (4.11)

This is the Fourier-domain equivalent to the time-domain relation (4.4). We
note useful relations between different mode numbers. The various t`m(f)
functions are related by

t`m
(
mf

2

)
= t22(f) , (4.12)

while the phases satisfy

0 = 2Ψ`m

(
mf

2

)
−mΨ22 (f)− 2∆φ`m +m∆φ22 − (2−m) π4 . (4.13)

This last relation holds regardless of the time and phase alignment of the
waveform: as a phase change δφ`m = mδφ, or a time change δΨ`m(f) =
−2πfδt would both leave 2Ψ`m(mf/2)−mΨ22(f) invariant. It is sensitive
however to the quantities ∆φ`m (that we treat here as constants in the early
inspiral), that depend on the choice of polarization convention.
Finally, we recall that we can build a time-to-frequency correspondence

directly from the Fourier-domain waveform as

t(f) ≡ − 1
2π

dΨ
df
. (4.14)

Note that this definition of time is strictly speaking only accurate in the
inspiral phase, where the SPA applies and the two definitions (4.14) and (4.8)
coincide. However, it can be used as a proxy for time everywhere, as we can
evaluate (4.14) for any frequency5 f .

5The converse is not true: since t(f) is not monotonic at high frequencies, building an
unambiguous mapping f(t) is only possible in the inspiral.
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4.3.1.3. Orbital carrier

In order to carry over information about the alignement of the respective
mode from the time domain to the Fourier domain, we find it convenient to
introduce a fictitious carrier signal k(t), that evolves with the orbital phase
instead of twice the orbital phase as the h22 mode does.

k(t) ≡ a22(t) exp
[
−iφ22(t)

2

]
. (4.15)

The choice made here of keeping the same amplitude as the h22 mode is quite
arbitrary, but will ensure that it decays in the ringdown, giving us a smooth
Fourier transform for this carrier. Note that this construction is artificial, as
the carrier does not correspond to any physical signal.

As mentioned before, the carrier half-phase φ22/2 comes with a π-degeneracy.
We can alleviate this by forcing the carrier phase to be within π of the orbital
phase, as read from the SEOB dynamics, at the time of alignment. This is,
in fact, our main motivation for building this carrier in the time domain: it
allows us to avoid the issues listed above, with all the conditioning being ulti-
mately tied to the orbital phase, a quantity that is smooth across parameter
space.
The Fourier transform of the carrier signal introduced in (4.15) is decom-

posed as an amplitude and phase as

k̃(f) = Ak(f) exp [−iΨk(f)] , (4.16)

where Ak = |k̃| will be discarded in the rest of the conditioning. When the
SPA applies, we have approximately

Ψk(f) ' ΨSPA
k (f) = φorb(tk(f))− 2πftk(f) + π

4 , (4.17)

with tk(f) defined like in (4.8) as

ωorb(tk(f)) = 2πf . (4.18)

Since k̃(f) is computed via an FFT, nothing forbids arbitrary jumps of
2π of the phases between different points in parameter space. We use the
relation above to remove this 2π-ambiguity in Ψk. At the frequency falign
such that t(falign) = talign, we impose∣∣∣∣Ψk(falign)−

(
φorb(talign)− 2πfaligntalign + π

4

)∣∣∣∣ < π . (4.19)
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In this way, Ψk is directly tied to φorb that is smooth in parameter space in
our time-domain conditioning procedure.
We will factor out the Fourier domain phase of the carrier, build a ROM

for the carrier separately, and then factor in the modelled carrier phase when
reconstructing the waveform.

4.3.1.4. Fourier-domain coorbital modes and waveform building blocks

Next, we build coorbital modes by scaling out the Fourier-domain phase of
the carrier following

h̃c`m(f) = h̃`m(f) exp [imΨk(f/m)] . (4.20)

These modes are built so as to factor out the main contribution to the phase
of the Fourier-domain modes, to leave the coorbital modes h̃c`m with an
approximately constant phase in the inspiral regime. Namely, for the inspiral
regime, where the SPA is valid, tk(f) = t`m(mf) and applying (4.11) and
(4.17) gives

Ψ`m(f) ' mΨk

(
f

m

)
+ ∆φ`m + (1−m)π4 . (4.21)

Note that our Fourier-domain construction is approximate, and these “coor-
bital” quantities h̃c`m do not correspond exactly to a coorbital frame defined
in the time domain as in [131,133].
We stress that these modes are not strictly coorbital, in the sense that

they are not built from a time-domain coorbital frame built from the orbital
phase. Indeed, the definition (4.20) is rooted in the Fourier domain, and its
physical meaning is unclear in the high-frequency range where the SPA does
not apply anymore.
Thus, the basic building blocks for the ROM will be

• Ψk = −Arg
[
k̃
]
, the Fourier-domain carrier phase;

• Re
(
h̃c`m

)
, the real part of the coorbital modes;

• Im
(
h̃c`m

)
, the imaginary part of the coorbital modes.

Conversely, to rebuild the modes h̃`m from these waveform pieces, it is enough
to factor in the carrier phase as in (4.20).

175



4.

4.3.1.5. Scaling of frequencies using ringdown frequency

One of the prerequisites of our ROM procedure is to represent the waveform
on a common frequency grid. However, the frequency range covered varies
with physical parameters, notably spin. In SEOBNRv4_ROM, this was alleviated
by extending waveforms to higher frequencies. Here, we choose to apply a
scaling to the frequencies of the waveform building blocks, depending on the
ringdown frequency. For every mode (`,m) and the carrier we define

y`m = 2π
ωQNM
`m

Mf , (4.22a)

yk = 4π
ωQNM

22
Mf , (4.22b)

where ωQNM
`m is the quasi-normal mode frequency, and varies for different

waveforms as it depends on the spin of the remnant black hole. We will then
use for all waveforms a common grid of this rescaled parameter y. Given this
scaling, we have to carefully adjust the starting frequency of the waveforms
of our training set so that the frequency range of the carrier phase Ψk covers
all modes after undoing the scaling. The maximal values of y`m, yk where
we cut the data are (ymax

22 , ymax
21 , ymax

33 , ymax
44 , ymax

55 ) = (1.7, 1.7, 1.55, 1.35, 1.25)
and ymax

k = 2.5. This technique is only used for building the high-frequency
ROM (see Sec. 4.3.6); for the low-frequency ROM, the ringdown frequency is
irrelevant and the scaling would induce an additional cost in generating the
waveforms of the training set.

4.3.2. SVD decomposition

We decompose all waveform data pieces defined in Sec. 4.3.1.4 into respective
SVD bases and subsequently interpolate the projection coefficients in each
SVD basis over the parameter space, as discussed in Sec. 4.3.3. This method
follows earlier work in [1, 255,256].
We start with a waveform data piece X(fi; ~θ), given on a discrete grid in

frequency {fi}mi=1, and on a regular grid of points ~θ in the three-dimensional
binary parameter space in mass-ratio q and aligned BH spins χi, (q, χ1, χ2).
We flatten the parameter grid and arrange the data in matrix form Xij =
X(fi; θj) ∈ Rm×n, where n is the total number of input waveforms.
We then resample the data in a log-spaced frequency grid of 300 points.

The number of points used for resampling are based on previous studies
(see Ref. [1, 256]). We compute the SVD [396, 397] X = V ΣUT and obtain
an orthonormal basis for the column space of the matrix X in the first
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r = rank(X) columns of V . The SVD provides us with a decomposition of
the range space of X, range(X) = span{v1, . . . , vr}, where the vj are the left
singular vectors of X.

Given the basis BX = V , we expand the waveform data pieces xj(fi)
that make up the columns of X in this basis and can write the expansion
xj ≈

∑
cX(θj) · BX with projection coefficient matrix cX = BTX · X. To

construct a waveform model we need to predict the coefficients cX at a
desired parameter space point θ∗. To do that we need to fit or interpolate cX
over the parameter space. This is discussed in Sec. 4.3.3.

4.3.3. Tensor-product spline interpolation

In the following we describe how we obtain projection coefficients at arbitrary
parameter space points. In low dimensional spaces we can afford to use dense
grids built from the Cartesian product of one-dimensional sets of points. We
choose cubic splines as the univariate interpolants and obtain a tensor-product
interpolant (TPI) [255,259,398] for a three-dimensional coefficient tensor cijk
which can be written as

I⊗[c](q, χ1, χ2) =
∑
ijk

cijk (Ψi ⊗Ψj ⊗Ψk) (q, χ1, χ2). (4.23)

Here, the Ψ are B-spline basis functions [399] of order 3 for the chosen
one dimensional sets of parameter space points in each dimension. We
use “not-a-knot” boundary conditions to avoid having to specify derivatives
at the domain boundaries. We built the model using TPI, a Cython/C
package [398] to provide tensor product spline interpolation in Python, and
later implemented the model in LAL [395].

4.3.4. Patching in geometric frequency

Here we discuss dividing the waveform domain in geometric frequency into
separate sub-domains, where we build a separate ROMs. In Sec. 4.3.6 we will
instead discuss how to tackle non-uniform resolution requirements over the
binary parameter space.
In the early inspiral waveforms modes tend to be well approximated by

the PN expansion and an accurate ROM can be built from a relatively small
training set. In contrast, the high geometric frequency part of the waveform
modes encapsulates the late inspiral, merger and ringdown part of the signal
which is more complex and non-linear, and this is also the regime where
EOB waveforms are tuned against NR where they are available. Building an
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accurate ROM for the high geometric frequency part of the waveform modes
consequently requires a higher density of training set waveforms.

Therefore, it is natural to treat the low and high geometric frequency part
of the waveform separately, following the construction of previous ROMs [256].
This allows us to make the training set for the low geometric frequency part
of the waveforms significantly smaller and reduce the computational cost of
the training. Waveforms for low mass binaries are the most costly waveforms
to generate. The cost is exacerbated due to the presence of higher modes
with |m| > 2, since they require a lower starting orbital frequency to cover
the same gravitational wave frequency range as the dominant mode.

10−3 10−2 10−1

Mf/m

10−6

10−5

10−4
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D
L
|h̃
`m
|/M
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(2,1)

(3,3)

(4,4)
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Figure 4.1.: The complete ROM for each waveform mode is build by hy-
bridizing a low and high frequency ROM. The x-axis shows the geometric
frequency rescaled for each mode (`,m) as Mf/m, following the natural
inspiral scaling of the frequency of the waveform modes with m. The low
frequency sub-domain (black shaded region) starts at a geometric frequency
of Mf/m = 0.00025, and transitions to the high frequency sub-domain at
Mf/m = 0.003.

In Fig. 4.1 we show the sub-division into low and high geometric frequency
sub-domains. The low frequency sub-domain is connected with PN waveforms
modes in the early inspiral, as discussed in Sec. 4.3.5. We generated the
SEOBNRv4HM waveforms at a sufficiently low frequency (at 15 Hz and a total
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mass of 5M� to allow for some tapering) to have the complete set of higher
harmonics included in SEOBNRv4HM present at a frequency Mf = 0.0005 ∗
5/2 ≈ 0.0012, where the low geometric frequency sub-domain starts. We
choose the geometric transition frequency between the low and high frequency
sub-domains to be Mf = 0.003 ∗ m, using the natural inspiral scaling of
the frequency of the waveform modes with m.. For the high frequency
sub-domain we generated waveforms choosing the starting frequency as
described in Sec. 4.3.1.5, ensuring the generated waveforms after undoing the
scaling (4.22a) will cover this transition frequency. The complete waveform
modes are then generated by blending together the low and high frequency
parts at the frequency using a variant of the Planck taper function described
in Ref. [345].

4.3.5. Hybridization with TaylorF2

Here we describe how we carry out the hybridization of the ROM waveform
with the TaylorF2 inspiral waveform.

After evaluating the ROM waveform for all modes, we generate the
TaylorF2 amplitude and phase for the (2, 2) mode from the lowest frequency
necessary to be able to start all inspiral modes at a user specified frequency.
We blend the TaylorF2 and ROM amplitude and phase for the (2, 2) mode
using the same Planck taper function used to connect high and low frequency
ROM. We can obtain the higher mode PN inspiral waveforms by rescaling the
(2, 2) amplitude and phase. For the phase we follow Eq. (4.21) and Eq. (4.5)
to compute the carrier phase from the TaylorF2 (2,2) phase and rescale it to
obtain the phase for each mode. We then align the inspiral phase with the
ROM phase for each mode and blend them together on a common frequency
grid. For the amplitude we rescale the TaylorF2 (2,2) amplitude according
to the PN amplitudes given in Ref. [284] Eqs.(12a-12t).

4.3.6. Patching in parameter space

As already noted for the previous ROMs of EOBNR waveforms (see Refs. [1,
255,256]) model features often require more resolution in particular parts of
the parameter space. However, regular grids do not allow for local refinement
in (q, χ1, χ2). Therefore, we partition the binary parameter space into sub-
domains on which resolution requirements can be satisfied with a particular
regular grid choice.
The low frequency ROM does not need any special treatment and was

built using waveforms placed on a Cartesian grid with 64 points in q and 12
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Patch Intervals in (q, χ1, χ2) Points per interval
Patch 1 [1, 3] ∪ [−1, 0.8] ∪ [−1, 1] 24× 24× 24
Patch 2 [1, 3] ∪ (0.8, 1] ∪ [−1, 1] 24× 17× 24
Patch 3 [3, 50] ∪ [−1, 0.8] ∪ [−1, 1] 31× 24× 24
Patch 4 [3, 50] ∪ [0.8, 1] ∪ [−1, 1] 30× 19× 24

Table 4.1.: The grids for the high frequency ROMs on the four patches in
parameter space shown in Fig. 4.3. The physical domain covered by each
patch is defined by a Cartesian product of intervals in binary parameters
(q, χ1, χ2). We also indicate the number of grid points in each parameter per
patch.

points in χ1,2 as shown in Fig. 4.2. Here, the 1D grids in χ1 and χ2 were
chosen to be identical. The grids for q and χ1,2 are the same as the ones used
for SEOBNRv4_ROM (see Sec.VII in Ref. [1]), except that we limit the grid to
q = 50.

On the other hand, as already noted in Refs. [1,256], modeling the non-linear
merger and ringdown part of the waveform in the high geometric frequency
ROM requires a higher resolution when approaching large positive values of
the primary spin. Therefore, we build two different high frequency ROMs
based on the value of the primary’s spin, with one ROM having a finer grid in
the region of high χ1. The inclusion of higher modes in the SEOBNRv4HM_ROM
model also requires additional resolution near equal mass. The modes with
odd m vanish by symmetry on the line q = 1 and χ1 = χ2 and their behavior
in the vicinity is non-trivial to model (see Refs. [182, 393]). Therefore, we
build two different high geometric frequency ROMs in mass-ratio, one of
which is covering the region q → 1 with a finer grid. In total we then have
four high frequency ROMs to correctly model the merger and ringdown part
of the signal.
The 2D projection of the grid in (q, χ1) for these four ROMs is shown in

Fig. 4.3. Since no special choice is made for the grid in χ2 we have omitted
plotting the grid in this dimension. We set domain boundaries at q = 3 and
χ1 = 0.8 for these four ROMs. In Table 4.1 we collect information on how
the four patches are placed in parameter space and the number of gridpoints
in each dimension.
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4.3. Techniques for building the ROM

Figure 4.2.: Location in parameter space (q, χ1, χ2) of the waveforms used to
build the inspiral ROM. For this ROM both spin components use the same
grid.

Figure 4.3.: Location in the parameter space (q, χ1) of the waveforms used
to build the high-frequency ROM. The dashed red lines in the plot are the
boundaries of the different patches, at χ1 = 0.8 and q = 3.
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4.4. Results

In this section we discuss the accuracy and the increase in efficiency of
SEOBNRv4HM_ROM compared to SEOBNRv4HM. Finally we also perform a param-
eter estimation study to demonstrate the potential of this model in data
analysis applications.

4.4.1. Accuracy of the model

We start by defining the faithfulness function, used to assess the closeness
between two waveforms when higher-order modes are included. We then use
this faithfulness measure to determine how accurately the ROM reproduces
SEOBNRv4HM waveforms.

4.4.1.1. Definition of faithfulness

A GW signal emitted by a spinning, non-precessing and non-eccentric BBH
is characterized by 11 parameters in the detector frame. These parameters
are the BH masses m1 and m2, the (constant) projection of the spins in the
direction perpendicular to the orbital plane χ1 and χ2, the angular position
of the line of sight measured in the source’s frame (ι, ϕ0), the sky location of
the source in the detector frame (θ, φ), the luminosity distance DL, the time
of arrival tc of the signal and finally the polarization angle ψ. The detector
response can be written as:

h ≡ F+(θ, φ, ψ) h+(ι, ϕ0, DL, ξ, tc; t) + F×(θ, φ, ψ) h×(ι, ϕ0, DL, ξ, tc; t) ,
(4.24)

where masses and spins are combined in the vector ξ ≡ (m1,m2, χ1, χ2), and
the functions F+(θ, φ, ψ) and F×(θ, φ, ψ) are the antenna patterns [151,309].
This equation can be rewritten as:

h =A(θ, φ)
[

cosκ(θ, φ, ψ) h+(ι, ϕ0, DL, ξ, tc; t)

+ sin κ(θ, φ, ψ) h×(ι, φ,DL, ξ, tc; t)
]
, (4.25)

with κ(θ, φ, ψ) being the effective polarization [187] defined in the range [0, 2π)
as:

eiκ(θ,φ,ψ) = F+(θ, φ, ψ) + iF×(θ, φ, ψ)√
F 2

+(θ, φ, ψ) + F 2
×(θ, φ, ψ)

, (4.26)

where the function A(θ, φ) is an overall amplitude and is defined as:

A(θ, φ) =
√
F 2

+(θ, φ, ψ) + F 2
×(θ, φ, ψ) . (4.27)
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Given a GW signal hs (SEOBNRv4HM in our case) and a template waveform
ht (SEOBNRv4HM_ROM in this context), we define the faithfulness (or match)
as [182,187,310]:

F(ιs, ϕ0s, κs) ≡ max
tc,ϕ0t,κt

 (hs, ht)√
(hs, hs) (ht, ht)

∣∣∣∣∣∣ ιs=ιt
ξs=ξt

 , (4.28)

where parameters with the subscript “s” (“t”) refer to the signal (template)
waveform. The expression above does not depend on A(θ, φ), therefore the
only dependance on (θ, φ, ψ) is encoded in κ(θ, φ, ψ). For the faithfulness
calculation we optimize over the phases ϕ0t and κt and the time of arrival
tc because they are not interesting from an astrophysical perspective. We
use the standard definition of the inner product between two waveforms
(see [151,309]):

(a, b) ≡ 4 Re
∫ fhigh

flow
df
ã(f) b̃∗(f)
Sn(f) , (4.29)

where ~ denotes the Fourier transform, * indicates the complex conjugate
and Sn(f) is the one-sided power spectral density (PSD) of the detector
noise. For this computation we use the Advanced LIGO “zero-detuned high-
power” design sensitivity curve [262]. The integral is computed between
the frequencies flow = 20Hz and fhigh = 3kHz. The same definition of
faithfulness has been used to determine the agreement between SEOBNRv4HM
and numerical relativity waveforms (see [182])6. Since the faithfulness given
in Eq. (4.28) depends on the signal parameters (ιs, ϕ0s, κs), we will summarize
the results using the maximum and the average unfaithfulness (or mismatch)
[1−F(ιs, ϕ0s, κs)] over these parameters, namely [187,243,310]:

Umax ≡ max
ιs,ϕ0s,κs

(1−F) ≡ 1− min
ιs,ϕ0s,κs

F(ιs, ϕ0s, κs) , (4.30)

Ū ≡ 〈1−F〉ιs,ϕ0s,κs ≡ 1− 1
8π2

∫ 2π

0
dκs

∫ 1

−1
d(cos ιs)

∫ 2π

0
dϕ0s F(ιs, ϕ0s, κs) .

(4.31)
6In Ref. [182] we used an old version of the Advanced LIGO “zero-detuned high-power”
design sensitivity curve (in Ref. [307]). We have checked that the difference in the
faithfulness calculation when using the new version of the sensitivity curve was negligible.
For this reason here we report the calculations performed with the new curve described
in Ref. [262].
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4.4.1.2. Faithfulness against SEOBNRv4HM

In order to avoid biases in data analysis applications when using the ROM
instead of SEOBNRv4HM, it is important to verify that the additional modeling
error introduced in the construction of the ROM is negligible compared to the
inaccuracy of the SEOBNRv4HM waveforms with respect to the NR simulations.
Since the typical unfaithfulness between SEOBNRv4HM and NR waveforms
is O(1%) (see Figs. (11) and (12) in Ref. [182]), it is therefore natural to
require the unfaithfulness between SEOBNRv4HM and SEOBNRv4HM_ROM to be
O(0.1%) or less. To that end we have generated 10000 SEOBNRv4HM waveforms
with random (uniformly distributed) values of (q, χ1, χ2) and computed their
match against the same waveforms produced with SEOBNRv4HM_ROM.

We summarize these results in Fig. 4.4 where we show a histogram with the
unfaithfulness Ū computed between the ROM and SEOBNRv4HM waveforms for
different values of the total mass. For each total mass we report in Tab. 4.2
the median and maximum values of these unfaithfulness distributions.
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Ū [%]

0.00

0.02

0.04

0.06

0.08

P
ro

ba
bi

lit
y

20M�
50M�
100M�
300M�

Figure 4.4.: Histograms of the unfaithfulness Ū (in percent) between
SEOBNRv4HM and ROM waveforms for different values of the total mass.

The median of these mismatch distributions is weakly dependent on the
total mass and it is always ≤ 0.002% while their maximum value is always
≤ 0.08%. In Fig. 4.5 we display the distribution of mismatches shown in
Fig. 4.4 as a function of (q, χ1) and for different values of the total mass.
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Total mass [M�] 20 50 100 300
med

(q,χ1,χ2)
Ū [%] 0.001 0.001 0.001 0.002

max
(q,χ1,χ2)

Ū [%] 0.01 0.02 0.01 0.08

Table 4.2.: Median and maximum values of the Ū distributions in Fig. 4.4
for different values of the total mass.

Total mass [M�] 20 50 100 300
med

(q,χ1,χ2)
Umax[%] 0.001 0.001 0.001 0.004

max
(q,χ1,χ2)

Umax[%] 0.01 0.02 0.03 0.17

Table 4.3.: Median and maximum values of the Umax distributions for different
values of the total mass.

The largest mismatches between the ROM and SEOBNRv4HM are obtained
for M = 300.0M� and large negative χ1, as it is clear from Fig. 4.4 and
Fig. 4.5 (bottom right panel). ROM GW modes are generated up to a
maximum frequency (in geometric units) that scales with the inverse of the
total mass of the system. For large total masses the lack of signal above
this maximum frequency is the main source of inaccuracy of the ROM. This
maximum frequency for each mode is proportional to its least damped quasi-
normal mode frequency as described in Eq. 4.22a. The mismatch is larger for
large negative spins because the least damped quasi-normal mode frequency
decreases in this region of the parameter space. We highlight that in this
region the ROM waveforms still have mismatches . 0.1% against SEOBNRv4HM
waveforms as demanded at the beginning of this section. The results described
above do not change substantially when considering the distribution of Umax
instead of Ū . In Tab. 4.3 we report the median and maximum values of these
distributions.

For total masses M ≤ 20M� it is more convenient to summarize the results
of the faithfulness calculations as an histogram with a fixed m2 instead of the
total mass. In Fig. 4.6 we show the Ū distribution when fixing m2 = 1.4M�
and varying m1 in the interval 1.4M� ≤ m1 ≤ 18.6M� such that the total
mass of the system is always M ≤ 20M�. The median of this distribution is
0.0003% while its maximum is 0.01%. In Fig. 4.7 we report the Ū distribution
in Fig. 4.6 as a function of (m1, χ1). The accuracy of the ROM in this case
degrades for large values of m1 and large positive spins but it is still well
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Figure 4.5.: Unfaithfulness Ū between the ROM and SEOBNRv4HM as a function
of (q, χ1) and for different values of the total mass. For M = 20M� there
are no data in the region q > 19 because for these system m2 would have an
unphysical subsolar mass.
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within the requirements. Also in this case the results are not very different
when looking at the Umax distribution for which the median is still 0.0003%
while the maximum increases to 0.02%.

These analyses demonstrate that the modeling error introduced by the
ROM is negligible with respect to the difference between SEOBNRv4HM and
NR waveforms. For this reason the mismatch of the ROM against the NR
waveforms is essentially the same as SEOBNRv4HM (see Figs.11-12 in Ref [182]
and Fig.6 in Ref. [132]7).
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Figure 4.6.: Histogram of the unfaithfulness Ū between the ROM and
SEOBNRv4HM. The SEOBNRv4HM waveforms used in the match calculations
have m2 fixed to 1.4M� and m1 uniformly distributed in the range 1.4M� ≤
m1 ≤ 18.6M�.

4.4.2. Computational performance

In this section we discuss the computational performance of the ROM in
terms of walltime for generating a waveform. We first compare the ROM to

7The NR surrogate NRHybSur3dq8 has a typical unfaithfulness against the NR simulations
of O(10−3%), that is neglibigle with respect to the unfaithfulness between the NR
simulations and the model SEOBNRv4HM (that is of O(1%)). Therefore in this case we
can consider the NRHybSur3dq8 waveform equivalent to an NR waveform. We make
the same assumption in the parameter estimation study in Sec. 4.4.3.
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Figure 4.7.: Unfaithfulness Ū between the ROM and SEOBNRv4HM as a
function of (m1, χ1) and with m2 = 1.4M�.

SEOBNRv4HM and then to other waveform models that include higher-order
modes.

4.4.2.1. Speedup with respect to SEOBNRv4HM

The speedup of the ROM with respect to SEOBNRv4HM is computed by the
ratio of the walltimes of the two models for generating a frequency domain
waveform at the same parameters. Since SEOBNRv4HM is a time domain model,
we first generate the waveform in the time domain at a sample rate of 16384
Hz and then compute its Fourier transform. The ROM waveform is already
in the frequency domain and it is generated using the sampling interval set
to 1/T where T is the duration in seconds of the associated time domain
waveform. The maximum frequency of the SEOBNRv4HM_ROM waveform is set
to 8192 Hz.
In Fig. 4.8 we show this speedup as a function of the total mass and for

different values of the mass ratio. The speedup is of order 100. It increases
with mass ratio and decreases with total mass. The maximum speedup is
found around a total mass of 50M�. Since the spins have only a limited effect
on the waveform duration, the speedup depends only weakly on them.
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Figure 4.8.: Speedup of waveform generation of the ROM with respect to
SEOBNRv4HM as a function of the total mass and for different values of mass
ratio.

4.4.2.2. Walltime comparison

We now perform a comparison of the walltime for generating a waveform
between SEOBNRv4HM_ROM and two waveform models that also include higher-
order modes, namely IMRPhenomHM [124] and NRHybSur3dq8 [132]. As in
Sec. 4.4.2.1 we define walltime as the time to produce a frequency domain
waveform at the same parameters. Since NRHybSur3dq8 is a time domain
model, we first generate the waveform in the time domain at a sample rate of
16384 Hz and then we compute its Fourier transform. For IMRPhenomHM
and SEOBNRv4HM_ROM the waveforms are generated in the frequency domain
with a maximum frequency of 8192 Hz and a sampling interval of 1/T
where T is the duration in seconds of the associated time domain waveform.
The waveform models SEOBNRv4HM_ROM, IMRPhenomHM and NRHybSur3dq8
include a different numbers of modes in the waveform, respectively five
[(`, |m|) = (2, 2), (2, 1), (3, 3), (4, 4), (5, 5)], six [(`, |m|) = (2, 2), (2, 1), (3, 3),
(3, 2), (4, 4), (4, 3)] and eleven [(`, |m|) = (2, 2), (2, 1), (2, 0), (3, 3), (3, 2), (3, 1),
(3, 0), (4, 4), (4, 3), (4, 2), (5, 5)] modes. Since the total walltime is an increasing
function of the number of modes, we also compute walltimes normalized by
the number of modes to factor out this effect. In Fig. 4.9 we show the walltime
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Figure 4.9.: Walltime comparison between different spin-aligned waveform
models with higher-order modes as a function of the total mass and for q = 8.
The dashed lines indicate the walltime normalized by the number of modes
included in the model respectively 5 fo SEOBNRv4HM_ROM, 6 for IMRPhenomHM
and 11 for NRHybSur3dq8.
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for generating a waveform with the different models as a function of the total
mass for q = 8. SEOBNRv4HM_ROM has walltimes of O(10) ms and is roughly
10 times faster than IMRPhenomHM or NRHybSur3dq8. When normalizing the
walltime to the number of modes SEOBNRv4HM_ROM is still about 10 times
faster than IMRPhenomHM, but only ∼ 3 times faster than NRHybSur3dq8.

4.4.3. Parameter estimation study

In this section we use the SEOBNRv4HM_ROM model in a parameter esti-
mation application. For this purpose we create two mock signals (or in-
jections) with the same binary parameters, using either SEOBNRv4HM or
NRHybSur3dq8 to generate the waveform. We then use SEOBNRv4HM_ROM,
SEOBNRv4_ROM, and, as a comparison between waveform models for the sec-
ond case, IMRPhenomHM [124]8 and NRHybSur3dq8 to compute posterior dis-
tributions from the mock signals. The analysis of the first mock signal will
demonstrate the improvements in measuring binary parameters when using
a model with higher harmonics with respect to a model including only the
dominant (`, |m|) = (2, 2) mode. The analysis of the second mock signal
will give us a sense of possible biases due to modeling errors in the original
SEOBNRv4HM model with respect to NR-surrogate waveforms, which are close
to NR simulations. In creating the mock signals we do not add detector
noise. This choice is made to avoid additional uncertainty and bias introduced
by a random noise realization. It is the natural choice given that the goal
of this parameter estimation analysis is to check for possible biases due to
inaccuracies in waveform models.

4.4.3.1. Setup

We choose parameters for the mock signals in order to emphasize the effect of
higher-modes in the waveform. Since the contribution of higher-order modes
in the emitted GWs increases with the mass ratio, we use for the mock signals
q = 8, the largest mass ratio available for the model NRHybSur3dq8. For the
total mass we use M = 67.5M� such that the values of the component masses
m1 = 60M� and m2 = 7.5M� are consistent with the masses of BBH systems
observed during O1 and O2 (see [32] and [277]). The waveform models are
restricted to non-precessing spins and we pick χ1z = 0.5 and χ2z = 0.3.
To maximize the effect of the higher-modes we inject the signal at edge-on

8A new version of the IMRPhenom waveform model with higher-order modes became
only very recently available (see Refs. [126,339]), therefore we have not been able to
include it in our study. We defer comparisons with this model to future analysis.
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inclination (ι = π/2) with respect to the observer. The coalescence phase φc
is chosen to be 1.2 rad, while the polarization phase ψ is set to 0.7 rad. The
signal has been injected at gps-time 1249852257 s with a sky-position defined
by its right ascension of 0.33 rad and its declination of -0.6 rad. Finally the
distance of the mock signal is chosen by demanding a network-SNR of 21.8 in
the three detectors (LIGO Hanford, LIGO Livingston and Virgo) when using
the Advanced LIGO and Advanced Virgo PSD at design sensitivity [262]. The
resulting distance is 627 Mpc. We used PyCBC’s pycbc_generate_hwinj [377]
to prepare the mock signal. To carry out Bayesian parameter estimation
we used the Markov chain Monte Carlo code LALInferenceMCMC [171,400].
We choose a uniform prior in component masses in the range [3, 100]M�.
Aligned component spins are assumed to be uniform in [−1, 1]. The priors
on the other parameters are the standard ones described in Appendix C.1 of
Ref. [32].

4.4.3.2. Results

Let us first focus on the case in which the mock signal is generated with
SEOBNRv4HM. In Fig. 4.10 we summarize the results of the parameter esti-
mation analysis for some relevant binary parameters. The top left panel
shows the marginalized 2D posterior for the component source-frame masses,
and the top right panel the marginalized 2D posterior for the mass ratio q
and the spin parameter χeff = (m1χ1 + m2χ2)/(m1 + m2). In the bottom
left panel we present the marginalized 2D posterior with inclination ι and
luminosity distance dL and, finally, in the bottom right panel, we report
the matched filter SNR. The star in the plots corresponds to the true value
used for the mock signal, while the 2D contours of the posterior distributions
represent 90% credible regions. The waveform templates used to infer binary
parameters are SEOBNRv4_ROM (blue curve) and SEOBNRv4HM_ROM (red curve).
It is clear from the plots that all the parameters reported in Fig. 4.10 are more
precisely measured when using SEOBNRv4HM_ROM instead of SEOBNRv4_ROM.
The posterior volume represents the degeneracy of the gravitational wave
signal, and, in the absence of detector noise, this degeneracy is intrinsic to the
waveforms. The inclusion of higher harmonics in SEOBNRv4HM_ROM breaks the
degeneracy between the parameters q−χeff and ι−DL and allows to measure
them more precisely. These results are consistent with what was previously
found in the literature [189, 190, 290]. As expected SEOBNRv4HM_ROM also
measures a larger matched filter SNR.
Let us now consider the case in which the mock signal is represented by

NRHybSur3dq8. In Fig. 4.11 we show the marginalized 2D posterior for the
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Figure 4.10.: 90% credible regions and histograms of posterior distributions
for a q = 8 BBH. The signal waveform is SEOBNRv4HM_ROM and the stars
represent binary parameters used for the signal. The mock signals are re-
covered with SEOBNRv4_ROM and SEOBNRv4HM_ROM waveform models. Top
Left: component masses in the source frame Top Right: mass-ratio and effec-
tive aligned spin parameter. Bottom Left: inclination angle and luminosity
distance. Bottom Right: matched filter SNR

mass ratio q and the spin parameter χeff (left panel) and the marginalized 2D
posterior with inclination ι and luminosity distance dL (right panel) as mea-
sured by the waveform models SEOBNRv4HM_ROM (red curve), SEOBNRv4_ROM
(blue curve), IMRPhenomHM (green curve), and NRHybSur3dq8 (orange curve).
As before the star in the plots corresponds to the true value used for the
mock signal, while the 2D contours of the posterior distributions represent
90% credible regions. From the plots in Fig. 4.11 it is clear that, as be-
fore, SEOBNRv4HM_ROM recovers the binary parameters more precisely than
SEOBNRv4_ROM. It is important to highlight that with SEOBNRv4HM_ROM the
binary parameters are recovered inside the 90% credible regions. This means
that for this quite asymmetric system at a moderately high SNR of ∼ 20 the
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Figure 4.11.: 90% credible regions and histograms of posterior distributions
for a q = 8 BBH. The signal waveform is NRHybSur3dq and the stars represent
binary parameters used for the signal. The mock signals are recovered with
SEOBNRv4_ROM, SEOBNRv4HM_ROM, IMRPhenomHM, and NRHybSur3dq8 wave-
form models. Left: mass-ratio and effective aligned spin parameter. Right:
inclination angle and luminosity distance.

bias due to modeling errors in the original SEOBNRv4HM model compared to NR
waveforms is negligible with respect to the statistical uncertainty. In contrast,
the marginal posterior distributions recovered for IMRPhenomHM are in general
broader compared to the ones recovered by SEOBNRv4HM_ROM, are notably
bimodal in mass-ratio and effective spin, and extend a lot further along the
line of q - χeff degeneracy. In distance and inclination the IMRPhenomHM pos-
terior shows little improvement over SEOBNRv4_ROM which does not include
higher harmonics. Finally, the marginal posteriors for NRHybSur3dq8 are
quite similar in size to those for SEOBNRv4HM_ROM, but better centered around
the true parameter values. This is as expected since the likelihood should
peak at the true parameter values when the signal and template use the same
waveform. The mock signal is also sufficiently loud for the posteriors to be
likelihood- rather than prior-dominated, resulting in an unbiased parameter
recovery.

This study shows that using SEOBNRv4HM_ROM for parameter estimation
yields unbiased measurements of the binary parameters at moderately high
SNR even in a configuration where the effect of higher harmonics in the
waveform is large. We defer a more comprehensive analysis to future studies.
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4.5. Conclusion

In this paper we have presented a fast and accurate ROM or surrogate model
for the time domain SEOBNRv4HM EOB waveform [182]. This model assumes
spins aligned with the orbital angular momentum of the binary and includes
the (`, |m|) = (2, 1), (3, 3), (4, 4), (5, 5) spherical harmonic modes beyond the
dominant (`, |m|) = (2, 2) mode.

While the construction of this Fourier domain ROM broadly follows previ-
ous work [255,256] we have introduced the following new features to accurately
represent the higher harmonics and make the model more flexible (see Sec. 4.3).
While previous models used an amplitude / phase decomposition of the Fourier
domain waveform, we here define a carrier signal (see Eq. (4.15)) based on
the time domain orbital phase. Subsequently we extract the carrier phasing
from each Fourier domain waveform mode (see Eq. (4.20)). This essentially
makes the phase of modes almost constant in the inspiral, defining what we
here call “coorbital modes”. This choice allows us to avoid zero-crossings in
the subdominant harmonics which could spoil the smoothness of the training
data and make accurate interpolation of the waveform data over parameter
space very difficult. We perform alignment in the time domain to keep track
of the time of coalescence of the training set waveforms and this information
is preserved in the ROM. We use here an alternative approach to dealing
with the fact that the ringdown frequency varies over the parameter space,
but waveform data needs to be given on a common frequency grid to build a
ROM. We rescale the geometric frequency parameter so that the ringdown
is reached before a fixed termination frequency which demarcates the end
of the frequency grid. We use the inverse rescaling during the evaluation of
the ROM. We extend the ROM to arbitrarily low frequencies by splicing it
together with multipolar PN waveforms. Therefore, it can in principle be
used for arbitrarily light compact binary systems. We decompose waveform
input data in orthonormal bases using the SVD, and build a model by con-
structing a tensor product spline over the 3-dimensional parameter space of
mass-ratio and the two aligned spins of a binary. To increase model accuracy
and efficiency we use domain decomposition in frequency and in parameter
space.

In Sec. 4.4.1 we demonstrate that the ROM has a very high faithfulness (or
match) with SEOBNRv4HM. Maximizing over inclination, reference phase and
effective polarization of the source waveform (see Eq. (4.30)) the maximum
mismatch over the remaining source parameters is below 0.03% for binaries
with a total mass below 100M� and below 0.2% for binaries at 300M� (see
Table 4.3). Even for this very conservative choice the mismatch is at least an
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order of magnitude lower than the unfaithfulness of SEOBNRv4HM against NR
simulations. Therefore the additional modeling error introduced in building
the ROM is strongly subdominant and the ROM very accurately represents the
SEOBNRv4HM waveform model. In Sec. 4.4.2 we show that our ROM accelerates
waveform evaluation by a factor 100 – 200 compared to SEOBNRv4HM and
favorably compares against other higher mode waveform models for BBH
systems, being about an order of magnitude faster. We showcase in Sec. 4.4.3
(see Figs. 4.10, and 4.11) that our ROM can recover component masses and
spins, and especially distance and inclination angle for a quite asymmetric
and spinning BBH with increased precision compared to the SEOBNRv4_ROM
waveform which only models the dominant mode. In addition we show that
the ROM accurately recovers binary parameters, irrespective of whether the
source is represented by a SEOBNRv4HM or a NRHybSur3dq8 waveform. Our
ROM gives a significantly more accurate parameter recovery compared to the
phenomenological IMRPhenomHM waveform and is close to the NRHybSur3dq
NR-surrogate model, while being more versatile and covering a significantly
larger parameter space.

This ROM should prove a very useful tool for GW data analysis to describe
systems where the contribution of higher harmonics is important in terms of
additional signal-to-noise-ratio and discriminating power for detection and
parameter inference. We stress that the ROM is very fast and reproduces the
SEOBNRv4HM model with a great accuracy over the widest range in parameter
space of all inspiral-merger-ringdown higher mode models available to date,
from mass-ratio 1 to 1:50 where aligned spins can take values in the full range
allowed for Kerr BHs, up to extremal spins.
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Abstract:We present a detailed investigation into the properties of GW170729,
the gravitational wave with the most massive and distant source confirmed
to date. We employ an extensive set of waveform models, including new
improved models that incorporate the effect of higher-order waveform modes
which are particularly important for massive systems. We find no indication
of spin-precession, but the inclusion of higher-order modes in the models
results in an improved estimate for the mass ratio of (0.3− 0.8) at the 90%
credible level. Our updated measurement excludes equal masses at that level.
We also find that models with higher-order modes lead to the data being
more consistent with a smaller effective spin, with the probability that the
effective spin is greater than zero being reduced from 99% to 94%. The
90% credible interval for the effective spin parameter is now (−0.01− 0.50).
Additionally, the recovered signal-to-noise ratio increases by ∼ 0.3 units
compared to analyses without higher-order modes; the overall Bayes Factor
in favor of the presence of higher-order modes in the data is 5.1:1. We study
the effect of common spin priors on the derived spin and mass measurements,
and observe small shifts in the spins, while the masses remain unaffected.

1Originally published in Phys.Rev.D 100 (2019) 10, 104015.
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We argue that our conclusions are robust against systematic errors in the
waveform models. We also compare the above waveform-based analysis which
employs compact-binary waveform models to a more flexible wavelet- and
chirplet-based analysis. We find consistency between the two, with overlaps
of ∼ 0.9, typical of what is expected from simulations of signals similar to
GW170729, confirming that the data are well-described by the existing wave-
form models. Finally, we study the possibility that the primary component
of GW170729 was the remnant of a past merger of two black holes and find
this scenario to be indistinguishable from the standard formation scenario.

5.1. Introduction

GW170729 was observed on July 29, 2017 by the Advanced LIGO [55] twin
detectors. Its detection was announced in [32] as part of GWTC-1, the
gravitational-wave (GW) transient catalog of compact binary coalescences
(CBCs) [401]. As reported in [32], GW170729 was emitted during the coales-
cence of two stellar-mass black holes (BH). It was observed during the offline
analysis of the detection pipelines GstLAL [402] and PyCBC [279,403], that
search for signals from CBC events, as well as cWB [404], a pipeline tuned to
search for transient signals whose frequency increases with time.
A number of reasons make GW170729 unique among the binary BHs

(BBHs) presented in GWTC-1. At a measured source-frame total mass of
∼ 85M� and a distance of ∼ 3Gpc (median values), it is likely the most
massive and distant BBH. Additionally, it is one of only two GW events that
show evidence for nonzero spins with an effective spin of (0.11 − 0.58) at
the 90% credible level [32]. Finally, it is the only event for which the more
flexible, non-CBC-specific cWB search returns a lower false alarm rate than
the CBC-specific GstLAL and PyCBC template-based searches. In spite of
these, Ref. [277] concludes that GW170729 is consistent with the population
of the other BBH detections 2.

The fact that GW170729 is the most massive BBH found so far makes it a
good candidate to observe the effects of higher-order waveform modes. The
GW emission from BBHs can be described as a superposition of GW modes
h`,m as h ≡ h+− ih× = ∑

`,m Y
−2
`,m(ι, ϕ)h`,m(t, ~θ) [93]. Here h+ and h× are the

two GW polarizations, Y −2
`,m denote spin-2 weighted spherical harmonics [405],

which depend on the location (ι, ϕ) of the observer around the binary, while
the modes h`,m depend on the masses and spins of the binary, denoted by

2An additional candidate claimed in [323], if confirmed, would also correspond to a binary
with a non zero effective spin.
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~θ. During most of the inspiral stage, h is dominated by the quadrupole
modes, (`,m) = (2,±2). The rest, known as higher-order modes, grow in
strength during the merger and ringdown stages, their impact being larger
for highly asymmetric and nearly edge-on binaries [183,185,186,201,290–292].
Finally, for more massive BBH systems the inspiral emission moves out of the
sensitive band of advanced detectors, while sensitivity to the merger-ringdown
increases and so does the impact of higher-order modes [183,290,406].
Standard detection and parameter estimation of BBH events is usually

performed using GW templates without the higher-order mode content of
the signals [32,153,154,407]. Reference [32] studied the fact that the event is
recovered with higher significance by the flexible unmodeled, but less sensitive,
search than the template-based searches [408]. By performing injections of
signals without higher-order modes or spin-precession, it was argued that the
difference in the measured significances is in fact not unlikely. It was shown
that ∼ 4% of the injected signals were recovered with a higher significance
from cWB than PyCBC.
At the same time, the presence of strong higher-order modes in the GW

signal can potentially lead to biased parameter estimation if they are omitted
in the waveform templates [183,191,290,291,291]. So far all reported events
are consistent with nearly equal-mass, face-on BBHs, a fact that has prevented
such biases, as shown in [270, 293, 409] for the case of events observed during
the first observation run of Advanced LIGO. Even in this case, usage of
models with higher-order modes can improve the accuracy of parameter
estimation [124,191,290,410]. Consequently, a reanalysis of GW150914 and
GW170104 events using models with higher-order modes obtains modestly
tighter parameter constraints with respect to previous analyses [270].
In this paper we present a detailed investigation into the properties of

GW170729. We carry out a parameter estimation analysis similar to the one
in [32] in order to study the effect of spin-precession, higher-order modes, and
spin priors on inferences drawn about GW170729. We make use of a more
extended set of CBC waveform models belonging to three distinct waveform
model families: phenomenological [117,119,120,122–124,263], effective-one-
body [1, 182,201,234,249,250], and numerical relativity [411–416]. This set
includes two new improved spin-aligned waveform models that include the
effect of higher-order waveform modes. We gauge the importance of a physical
phenomenon, namely spin-precession and higher-order modes, by comparing
posterior densities for various source parameters obtained through analyses
using waveform models with and without that physical phenomenon included.

While we find no indication of spin-precession, higher-order modes have a
distinct impact on the posterior density for various source parameters. We
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find that CBC waveform models that include higher-order modes result in
posterior distributions for the mass ratio of the binary that are shifted away
from unity, resulting in more support for unequal masses than originally
concluded in [32]. In particular, we find a highest probability density (HPD)
interval of the mass ratio of (0.3− 0.8) at the 90% credible level, while the
corresponding upper limit of the HPD interval on the mass ratio without
higher-order modes is ∼ 0.96. This improved measurement, obtained using
waveform models that include more physical effects, shows that GW170729
is not consistent with the merger of two equal-mass BHs at the 90% level.
At the same time, models with higher-order modes lead to marginally less
support for positive effective spin χeff

3 and binary orientations where the
orbital angular momentum points along or away from the line of sight. In
particular, we find that the probability that the effective spin is positive is
reduced from 99% when higher-order modes are omitted to 94% when they
are included in the waveform models. We obtain consistent results when
we use various CBC waveform models from different waveform families to
describe the data. We thus argue that our conclusions are robust against
systematic errors in the waveform models.

As the source-frame mass of the more massive BH is close to the proposed
mass upper limit due to pair instability4 [419] and the posterior for the binary
mass ratio favors unequal masses, we further investigate the possibility of
second generation (2g) merger [275,420]. In a 2g merger scenario, the primary
BH is the remnant of an earlier BBH merger. As such, it is expected to be
more massive than its companion in GW170729 resulting in unequal binary
masses, and to have a relatively large spin magnitude. We contrast this
scenario to a first generation (1g) merger scenario which favors comparable
component masses. We reanalyze the data using two different priors tailored
to 1g and 2g mergers and calculate the Bayes Factor (BF) of the 2g versus
the 1g hypotheses. We find a BF of 4.7:1(1.4:1) in favor of the 2g scenario
when using waveforms with (without) higher-order modes. This value favors
the 2g model, but not decisively so, in agreement with the results of [277].
This question has been earlier and independently addressed by Kimball et
al. [421] and our results are in agreement with their results.

Finally, we compare the signal reconstruction obtained with CBC waveform

3The effective spin parameter is defined as the sum of the mass-weighted projections of
the component spins along the orbital angular momentum and it is conserved to at
least the second post-Newtonian order [66].

4It has been suggested that pulsational pair instability supernovae will result in no BH
remnants with masses above ∼ 50M� as the remnant is disrupted during the explosion,
e.g. [417,418].
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models to a morphology-independent reconstruction [422]. We quantify the
consistency between the CBC and the generic reconstruction by computing
the noise-weighted overlap between the two. We find broad consistency
between the two with overlap values typical of what is expected for this mass
range and signal strength [423]. This result is only minimally affected by the
inclusion of higher-order modes.
Posterior samples from all our analyses are available in [424]. The rest

of the paper presents our analysis and conclusions in detail. Section 5.2
describes the analysis we carry out including the CBC waveform models, the
priors, and the generic analysis. Section 5.3 presents results derived under
the CBC waveform models and posterior densities for the source parameters.
Section 5.4 gives the results of the generic analysis and how they compare to
the CBC-specific analysis. Finally, Sec. 5.5 presents our main conclusions.

5.2. Analysis

In this section we describe the details of the analysis we perform including
the data, waveform models, and inference approaches we use. Our analysis
follows closely and builds off of the work originally presented in [32]. We
employ two complementary approaches: one is based on waveform models
constructed specifically to describe compact binary coalescences, while the
other uses a more flexible waveform model that can capture unexpected signal
morphology. We describe both analyses in the following.

5.2.1. Data and setup

We use the publicly available LIGO and VIRGO strain data for GW170729
from the Gravitational Wave Open Science Center [425,426]. The LIGO strain
data have been post-processed to subtract several sources of instrumental
noise [427,428] and calibrated as described in [32]. In particular we analyze
4s of strain data centered at the GW170729 trigger time. The analysis
covers a bandwidth from flow = 20 Hz with the upper frequency cutoff set
to fhigh = 1024 Hz for waveform models without higher-order modes and
fhigh = 2048 Hz when higher-order modes are included. For masses typical of
GW170729 (a detector-frame total mass of 120M� and mass ratio of 0.5) this
upper frequency cutoff ensures that the analysis includes up to at least the
` = 5 ringdown harmonic of a compact binary merger, the highest frequency
mode available in the waveform models we use.

We assume that the noise in the three detectors is Gaussian and stationary.
The power spectral density (PSD) of the noise is obtained from the same 4s
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of on-source data with the technique described in [429]. Specifically, a model
consisting of a cubic spline and a number of Lorenzians is used to obtain
posterior samples for the PSD from which a median PSD value is computed
separately for each frequency bin. This median PSD is used in the estimation
of the likelihood function in LALInference, RIFT, and BayesWave and
we use the same PSD as [32] that is publicly available in [430].

5.2.2. CBC waveform models
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5.

The top half of Table 5.1 lists the CBC waveform models we use; these
models describe the inspiral, merger, and ringdown signal from the coalescence
of two BHs as predicted by General Relativity (GR). All CBC waveforms we
use can be divided into three main families: (i) phenomenological models (
IMRPhenom), effective-one-body models ( SEOBNR), and numerical relativity
(NR). The first family is based on results of post-Newtonian theory [434] to
compute the inspiral phase and a phenomenological approach to describe the
merger, aided by calibration to EOB-NR hybrid waveforms [120, 122, 123].
The second family uses the effective-one-body approach [91,92], which is based
on a resummation of post-Newtonian results to describe the inspiral, and uses
calibration to NR simulations for the late-inspiral and merger [4,295,296,411].
Both families describe the ringdown employing results of BH perturbation
theory [114, 297]. The NR waveforms are obtained by solving the full non-
linear Einstein equations and are subject only to numerical errors [435].

Besides the waveform family, models also differ on whether they include the
effect of spin-precession [65,67] and higher-order modes, as indicated in Ta-
ble 5.1. From the IMRPhenom and SEOBNR families we use one aligned-spin
and one spin-precessing model without higher-order modes as well as a spin-
aligned model with higher-order modes. None of the models from these two
waveform families currently include both precessing spins and higher-order
modes. In particular, from the IMRPhenom family, we use: the spin-precessing
IMRPhenomPv2 [120] and the spin-aligned IMRPhenomD [122,123] models. From
the SEOBNR family we use: the spin-precessing SEOBNRv35 [431, 432] and the
spin-aligned SEOBNRv46 [1] models. As far as higher-order modes are con-
cerned, we use IMRPhenomHM [124], a spin-aligned model of the IMRPhenom
family that includes the (`, |m|) = [(2, 2), (2, 1), (3, 3), (3, 2), (4, 4), (4, 3)]
higher-order modes and SEOBNRv4HM [182], a spin-aligned model of the
SEOBNR family that includes the (`, |m|) = [(2, 1), (3, 3), (4, 4), (5, 5)] higher-
order modes. Posterior samples obtained with IMRPhenomPv2 and SEOBNRv3
have already been made publicly available by the LIGO-Virgo Collaborations
and we use them directly [436].
The NR simulations we use include a total of 763 spin-aligned and 625

spin-precessing simulations [411–413]. We optionally augment the list of
NR simulations with waveforms computed using NRSur7dq2 [414–416], a
surrogate model directly based on NR. The surrogate model we use is valid

5SEOBNRv3 includes the modes (`, |m|) = (2, 2), (2, 1) in the coprecessing frame, the
coordinate system for which the z-axis is instantaneously aligned with the Newtonian
angular momentum, see [243].

6In particular, we use the reduced order model implementation of SEOBNRv4 which is
computationally less expensive [255,256].
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for mass ratio 0.5 ≤ q ≤ 1 and dimensionless spin magnitude χ ≤ 0.8;
however, the analysis performed results in a full posterior due to the inclusion
of the NR waveforms that cover the remaining region. For both NR-related
analyses, we include results with higher-order modes (` ≤ 4, |m| ≤ `) and
with only the (` = 2, |m| ≤ `) modes. When using the NR simulations we
also assume that the spins remain aligned to the orbital angular momentum
(no spin-precession).

5.2.3. Priors

Our analysis employs the following priors for the source parameters. The
detector-frame component masses m1,m2 are assumed to be uniform between
10M� and 200M� withm1 > m2, while the mass ratio q ≡ m2/m1 is restricted
to be above 0.125. The sky location and orientation of the binary, as well
as the directions of the component spins are uniform on the unit sphere.
The distance is uniform in volume with a maximum cut off of 7Gpc, while
the time and phase of arrival are uniform. We have verified that the mass
and distance prior ranges encompass the entire region where the posterior
distribution has non-negligible support.

For the magnitude of the dimensionless component spins χi, i ∈ {1, 2}, we
make different choices in order to investigate how this affects the posterior.
The first prior is uniform-in-χ up to 0.99 for both spin-aligned and spin-
precessing waveform models. The second prior is uniform-in-χz, where χz is
the spin projection along the axis perpendicular to the orbital plane, with
the restriction that the spin magnitude is below 1. For spin-precessing model,
the in-plane χx and χy components are also uniform; in that case this prior
is sometimes referred to as ‘volumetric’ prior as it corresponds to the spin
vector being uniformly distributed within the unit sphere.

Finally, we also use priors targeted toward CBCs where the primary com-
ponent is the product of a past merger. We study two cases. The 1g case
uses a spin prior that is uniform-in-χ for both component spins and a mass
ratio prior that favors equal masses

p1g(q) ∝ {1 + exp [−k (q − q0)]}−1 , (5.1)

where k = 20 and q0 = 0.8. This prior choice was motivated in [437]. In the
case of a 2g merger, the primary is expected to be more massive than the
secondary binary component. We use a Gaussian mass ratio prior with a
mean of 0.5 and a standard deviation of 0.2, motivated by Fig. 2 of [420]. In
the 2g case, the primary is also expected to be spinning more rapidly. We
therefore use a prior where χ1 is distributed according to a Gaussian centered
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at 0.7 with a width of 0.1 [275,420]. The priors of secondary spin magnitude
and both spin directions are uniform.

5.2.4. LALInference and RIFT

Given a waveform model and a set of prior choices, we compute the joint
multidimensional posterior distribution of the source parameters. For fast-
to-evaluate waveform models we use the publicly available software library
LALInference [171,438] to directly sample the posterior distribution. This
approach computes the likelihood exactly at various points of the parameter
space, but in order to obtain enough independent samples, millions of likeli-
hood evaluation are required. This is prohibitive for models that are slow to
evaluate, such as NR.
In these cases we use RIFT [439, 440]. RIFT’s three-stage algorithm

first evaluates the likelihood on a dense grid; then approximates it via
interpolation; and then uses Monte Carlo integration to produce the full
posterior distribution. The number of grid points used for this particular
NR-only analysis is 63,000, and the number of added surrogate points for
the NR/NRSur7dq2 grid was 40,000; this brought the total number of points
for the NR/NRSur7dq2 to 103,000. For context, RIFT in general calculates
the marginalized likelihood on thousands grid points in parallel. For each
marginalized likelihood, which has fixed intrinsic parameters, we evaluate the
likelihood at ≈ 106 different extrinsic parameters. Even though the number
of evaluations are orders of magnitude larger than for LALInference, the
overall wallclock time is considerably lower because the likelihood evaluations
are faster and done in parallel, see [441] for details. However, due to grid
limitations (discreteness and limited range), RIFT does not sample both
extrinsic and intrinsic parameters jointly from the full posterior distribution.
Instead it marginalizes over all extrinsic parameters to calculate the likelihood
and posterior for just the intrinsic parameters.
All results obtained using LALInference marginalize over the same de-

tector calibration amplitude and phase uncertainty as in [32] and publicly
available in [442] using the method described in [288,443]. All RIFT results
assume perfect calibration; this choice was shown to not affect the intrinsic
binary parameters [444].

5.2.5. BayesWave

Finally, we also use a minimal-assumptions analysis that does not make use of
CBC-specific waveform models. We use BayesWave [422], a publicly-available
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algorithm [445] that does not explicitly assume that the signal is a CBC7,
and instead models it through a linear combination of basis functions, either
sine Gaussian (known as Morlet Gabor) wavelets, or “chirplets” [433], as
listed in the bottom half of Table 5.1. The latter are sine Gaussians modified
with a linearly evolving frequency. BayesWave relies on a transdimensional
sampler [446] to explore the multidimensional posterior of the parameters of
the wavelets/chirplets (frequency, time, phase, amplitude, quality factor, and
possibly the frequency derivative) as well as the number of wavelets/chirplets
in the linear combination.

We then compare the signal reconstruction obtained with the morphology-
independent models of BayesWave and with CBC waveform models. Broad
agreement between the wavelet reconstruction and IMRPhenomPv2 was es-
tablished in [32] and we here perform the same test for waveform models
that include higher-order modes. We also quantify the level of consistency
through the detector network overlap [447], defined as

ON ≡
(h1, h2)N√

(h1, h1)N(h2, h2)N
(5.2)

where (h1, h2)N denotes the inner product over the network defined by

(h1, h2)N =
n∑
i

(hi1, hi2) (5.3)

where i sums over all the detectors in the network, and (hi1, hi2) is the inner
product in an individual detector defined by

(hi1, hi2) ≡ 4<
∫ ∞

0

h̃i1(f)h̃i∗2 (f)
Sin(f) df. (5.4)

In the above, h̃i1(f) denotes a signal reconstruction sample computed with
CBC models and h̃i2(f) is a reconstruction sample computed with BayesWave.
Finally, Sin(f) denotes the PSD of the detector. The superscipt i denotes the
quantities as they appear in the the ith detector.

5.3. CBC-model-based analysis

In this section we present results on inference with CBC waveform models.
We study how the posteriors for the various source parameters are affected by

7While BayesWave does not assume an explicit signal morphology, it does assume that
the signal is elliptically polarized, that it propagates at the speed of light, and that
there is no phase decoherence during the propagation.
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the inclusion of spin-precession and higher-order modes in the waveforms. We
also study the effect of spin priors and waveform systematics on the validity
of our conclusions.

5.3.1. Higher-order modes

The importance of higher-order modes on a GW signal observed in the
detectors depends on both extrinsic parameters, such as the inclination of the
binary, and intrinsic parameters, such as the mass ratio. In general, signals
from edge-on and asymmetric binaries include more power in higher-order
modes. To study the effect of higher-order modes on GW170729 we analyze
the data with waveform models both with and without higher-order modes.
Table 5.2 gives the median and 90% symmetric credible interval and/or
HPD (highest probability density interval) for various source parameters from
multiple waveform models and the two spin priors.
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5.

We start by discussing the binary intrinsic parameters, in particular masses
and spins. In Fig. 5.1 we show multi-dimensional corner plots for the posterior
densities of the source-frame total mass M , the mass ratio q and the effective
spin parameter χeff with waveform models of the IMRPhenom (left) and the
SEOBNR family (right). For these figures and all the figures of this subsection
we show results with the uniform-in-χ spin prior. Within each family, the
spin-precessing model is given with a solid line, the spin-aligned model with
a dashed line and the spin-aligned model with higher-order modes with a
dotted line.

In all cases we find that the inclusion of higher-order modes does not have
a large effect on the total mass measurement. The mass ratio of the system
and the effective spin posteriors are both shifted. In particular we find that
waveforms with higher-order modes consistently provide more support for
unequal-mass systems and smaller effective spins. For the mass ratio we
find that the 90% HPD interval is (0.31− 0.78)[(0.34− 0.85)] with higher-
order modes and (0.42− 0.97)[(0.41− 0.96)] without them when using the
spin-aligned IMRPhenomHM [ SEOBNRv4HM] and IMRPhenomD [ SEOBNRv4]
models respectively. We conclude that GW170729 is not consistent with an
equal-mass merger at the 90% level at least.
The combination of unchanged total mass but lower mass ratio means

that the primary mass of GW170729 is inferred to be larger than previously
measured. Reference [277] studied the population of the 10 detected BBHs
and concluded that no more than 1% of BHs in BBHs are expected to be
above 45M�. We find that our updated primary mass measurement is not at
odds with this conclusion. In particular, we find that the probability that
m1 is lower than 45M� is 17% using IMRPhenomPv2 and reduced to 6%
with IMRPhenomHM. Given that we have detected 10 BBHs, it is not unlikely
that the true m1 of one of them is at the sixth posterior percentile. A more
detailed population analysis in needed to quantify this statement, but this is
beyond the scope of this paper.
We also find that higher-order modes result in less support for a positive

effective spin in GW170729. Reference [32] reported that for GW170729
χeff ∼ (0.11 − 0.58) at the 90% credible level using combined posterior
samples between IMRPhenomPv2 and SEOBNRv3. Interestingly, this credible
interval does not include zero, suggesting that at the 90% level GW170729
has a nonzero effective spin. The inclusion of higher-order modes slightly
changes this picture as we now find that the corresponding 90% credible
intervals no longer exclude zero: χeff ∼ (−0.01−0.49) with IMRPhenomHM and
χeff ∼ (−0.02− 0.50) with SEOBNRv4HM. The effective spin parameter is still
probably positive with the probability of χeff > 0 being 94% with higher-order
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Figure 5.1.: Corner plots for the posterior densities of the total binary mass
in the source frame, the mass ratio, and the effective spin parameter for the
different waveform families. We show results obtained with CBC waveforms
of the IMRPhenom family (left) and the SEOBNR family (right). Results
from both waveform families suggest that the inclusion of higher-order modes
in the models results in evidence for more unequal-mass binaries and less
support for nonzero effective spin. The total mass of the binary remains
unchanged.

211



5.

modes, which is slightly reduced from the corresponding probability of 99%
when higher-order modes are not taken into account. Overall higher-order
modes cause the 95% lower limit for χeff to shift by −0.10 for the IMRPhenom
family, −0.13 for the SEOBNR family.
Despite the broad consistency between results obtained with different

waveform families, it is still possible that our results are partly affected by
systematic uncertainties in the waveform models. To address this in Fig. 5.2
we plot again the mass ratio (left) and effective spin (right) posterior densities
for the IMRPhenom and SEOBNR waveform models with (dashed lines) and
without (dotted lines) higher-order modes. We find very small differences
between both all the dotted and all the dashed lines and in particular between
the new waveform models IMRPhenomHM and SEOBNRv4HM that include
higher-order modes. More importantly, we find a clear separation between
the dotted lines, i.e. the posteriors that include higher-order modes, and the
dashed lines, i.e. the posteriors that do not include higher-order modes.

As a further test, in Fig. 5.3 we compare posteriors for q and χeff computed
with SEOBNRv4HM (red line) with NR waveforms (magenta lines), as well as
with NR/NRSur7dq2 (green lines). Compared to Fig. 5.1 we omit the total
mass posterior as RIFT did not compute source-frame quantities. In order
to perform a fair comparison, all posteriors have been computed with RIFT,
while for technical reasons we cannot use IMRPhenomHM with RIFT. We find
excellent agreement between NR with higher-order modes, NR/NRSur7dq2
with higher-order modes, and SEOBNRv4HM. This shows that SEOBNRv4HM
is as accurate as NR waveforms in describing GW170729. Moreover, the
agreement between SEOBNRv4HM and IMRPhenomHM in Fig. 5.2 suggests that
the latter IMRPhenom waveform is also highly accurate for the event studied
here. While these posteriors are broadly consistent with those obtained in
Fig. 5.2, we find a disagreement in results obtained with LALInference
and RIFT with the same waveform model for the mass ratio at the 7%
level. The nature of this difference and further numerical estimates are
described in Appendix K. Overall, Figures 5.2 and 5.3 suggest that despite
minor differences between the waveform models considered here, our main
conclusions are robust.
We now turn to the binary extrinsic parameters. Figure 5.4 shows the

matched-filter network signal-to-noise ratio (SNR) posterior density on the
top and the two-dimensional posterior density for the luminosity distance
and the inclination on the bottom. The network SNR is defined as the square
root of the squared sums of the matched-filter SNR in each interferometer,
calculated as ρ = (h, d)/

√
(h, h), where d is the data and h the signal model.
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Figure 5.2.: Effect of waveform systematics. We show the mass ratio posterior
(left) and the effective spin posterior (right) computed with different CBC
waveform models that include higher-order modes (dotted lines) and models
that do not include higher-order modes (dashed). Small differences between
the posteriors from different waveform approximants are present, but these
differences are much smaller than the effect of higher-order modes for both
parameters.
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and without (green lines) NRSur7dq2 and SEOBNRv4HM (red line) computed
with RIFT. As before, we use dashed (dotted) lines for posteriors with
(without) higher order modes. We observe excellent agreement between NR
and NR/NRSur7dq2, confirming the high accuracy of the NR surrogate model.
Additionally, we find very good agreement between the NR analysis and
SEOBNRv4HM when both are used with the same inference code, RIFT.
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the IMRPhenom and the SEOBNR waveform families, the waveform model
that includes higher-order modes returns the highest value of matched-filter
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215



5.

The inclination is defined as the angle between the total angular momentum
vector of the binary, whose direction we treat as fixed, and the line of sight.
We present results for waveform models of the IMRPhenom (blue) and the
SEOBNR (red) families.
The SNR depends on both the intrinsic loudness of the data and the

agreement between the signal and the template h. Since the data are common
for all analyses, a larger SNR indicates a better agreement/overlap between
the data and the template. While we find that within both families spin-
precession has a minimal impact on the SNR, waveforms with higher-order
modes report slightly larger SNR values, see the top panel of Fig. 5.4. This
suggests that their inclusion leads to a marginally better fit of the data. The
data, though, include both the GW170729 signal and a random realization
of Gaussian noise, so a better fit of the data does not necessarily imply that
waveforms with higher-order modes recover a larger fraction of the GW signal.

We quantify the impact of higher-order modes on GW170729 by computing
the Bayes Factor in favor of IMRPhenomHM compared to IMRPhenomD. We
find a BF of 5.1:1. While it favors the model with HM, this BF is consistent
with the fact that the HM waveforms are able to extract marginally more
SNR from the data8. Moreover, we emphasize that the BF is not the same as
the odds ratio in favor of higher-order modes, which quantifies our degree of
belief that higher-order modes are present in the signal. The odds ratio is the
BF times the prior odds in favor of the presence of higher-order modes. The
latter is formally infinite within GR, as the theory of gravity unequivocally
predicts that higher-order modes are present in all CBC signals. The BF
presented here only quantifies if higher-order modes are a necessary feature
of the models in order to describe the data, and not whether we believe that
they exist in general.
Regarding the bottom panel of Fig. 5.4, we find that waveforms with

higher-order modes result in less support for face-on/off binary orientations.
This observation, coupled to the fact that we see more support for unequal
masses and lower spins, see Fig. 5.1, suggests that higher-order modes lead
to more support for sources that are intrinsically of lower amplitude9. This
in turn leads to a posterior distribution for the luminosity distance that is

8The BF is related to the SNR through log BF ∝ 1/2 SNR2. Therefore an SNR increase
of ∼ 0.2 compared to ∼ 10.8 (see Table 5.2) would result in a BF of ∼ 8. This suggests
that the measured BF of 5 is consistent with the SNR increase due to HM.

9We have also verified this by computing the posterior of the intrinsic loudness (defined
as the product of the SNR and the distance) with and without higher-order modes. We
find that higher-order modes lead to larger probability for intrinsically quieter sources
than the quadrupole templates.
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shifted to lower values, as compared to analyses without higher-order modes,
as also seen in the bottom panel of Fig 5.4.

Overall, we find that the inclusion of higher-order modes induces small but
noticeable shifts in the parameter posteriors. Specifically, the matched-filter
SNR increases, the mass ratio posterior obtains more support for unequal
masses, and the effective spin parameter is more consistent with lower values;
parameter measurements are given in Table 5.2. The general consistency
between the waveform model families we study here shows that our conclusions
are robust against waveform systematics.

5.3.2. Spin prior

Besides the CBC waveform models, posterior measurements are also affected
by prior choices, in particular the spin prior [437]. To test the effect of the
spin prior, we reanalyze the data this time assuming a uniform-in-χz prior,
where χz is the spin component perpendicular to the orbital plane. The
results are presented in Fig. 5.5 for the mass ratio (left) and the effective spin
(right) and for waveforms of the IMRPhenom family. We have verified that we
obtain qualitatively similar results when using SEOBNR and NR waveforms
models. Due to computational constraints we have only checked results with
SEOBNRv3 and the uniform-in-χ prior, as computed in [32].

We find that the spin prior has a minimal effect on the mass ratio posterior.
This is expected as the correlation between mass ratio and effective spin is
mostly present in the inspiral phase of a CBC. High-mass systems, such as
GW170729 are instead dominated by the merger and ringdown in the LIGO
sensitive frequency band. In this case little correlation exists between mass
ratio and effective spin [449], and changing the spin prior doesnt affect the
mass ratio posterior. The effective spin parameter, on the contrary, is directly
affected by the choice of the spin prior, and clear differences are visible.
The uniform-in-χz prior favors larger spin magnitudes than the uniform-in-χ
prior. As a result, the effective spin posterior is shifted to larger values. The
median and 90% credible interval for the effective spin is 0.41+0.21

−0.21 under
the uniform-in-χz prior and 0.35+0.22

−0.23 under the uniform-in-χ prior using the
IMRPhenomPv2 waveform model. Additional spin measurements for other
waveform models are presented in Table 5.2.

5.3.3. Second generation merger

Finally, we study the possibility of a 2g merger. In that scenario, GW170729
is created in a dense environment such as a nuclear or a globular cluster and
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Figure 5.5.: Effect of spin prior on the mass ratio and effective spin of
GW170729. As expected, we find that the mass ratio is minimally affected
by the spin prior. The effective spin, however, is shifted to larger values with
the uniform-in-χz prior, resulting in increased evidence for nonzero spins. We
show results obtained with IMRPhenom waveform models, but obtain similar
results with SEOBNR and NR waveform models as well.
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its primary mass is the product of a previous merger of two BHs [275,420,450].
In that case, the mass ratio of the system is expected to be closer to 2:1 (as
we find when we use waveform models with HM) and the spin magnitude of
the primary should be close to 0.7 (the typical spin of the remnant BH after
the merger of two equal-mass, nonspinning BHs) [178,451–454] 10.
We repeat our analysis with two more priors tailored to the cases of a 1g

and a 2g merger scenario. Table 5.3 gives the median and 90% symmetric
credible interval and/or HPD for various source parameters obtained with the
1g and 2g priors. Figure 5.6 shows the effect of this 2g prior on the mass ratio
(left) and the effective spin (right) of the binary when using IMRPhenomD
and IMRPhenomHM. We have verified that we obtain similar results with
SEOBNR and NR waveform models. As expected from the priors we have
selected, 2g runs show strong support for unequal masses. This support is
even more evident for waveforms with higher-order modes, as anticipated
from the results of the previous section. The effective spin parameter is
similar, with 1g runs showing more support for nonzero binary components.
To further quantify the prior effect, we calculate the Kullback-Leibler

(KL) divergence of posterior against prior [456]. We find a KL divergence
for the mass ratio in the 1g case that is ∼ 10 times smaller than the KL
divergence in 2g or default prior scenarios, implying that we do not extract
much information by applying the 1g mass ratio prior. For the effective spin,
we find that the KL divergence in both priors are comparable as expected
because the prior on the effective spin does not change as drastically as the
prior on the mass ratio.

We also compute the 2g-vs-1g BF. We find 4.7:1 (1.4:1) for waveforms with
(without) higher-order modes. We conclude that there is not enough support
for the hypothesis that the GW170729 primary needs to be the product of a
past merger in order to explain the data’s properties. Note that both 2g and
1g models have the same number of parameters, but different distributions in
mass ratio and primary spin. The resulting BFs are therefore only affected
by how well each model fits the data.

10Though a 2g merger scenario provides a simple way to produce a highly spinning BH,
such systems could also be produced in certain astrophysical scenarios, e.g [455].
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5.

5.4. Morphology-Independent analysis

The studies presented in the previous section relied on specific waveform
models for the signal emitted during a CBC as predicted by GR. We here
follow a more generic approach and analyze GW170729 in a morphology-
independent way that does not explicitly assume it is a CBC described by the
currently available waveform models. We use BayesWave to reconstruct the
signal and then compare this reconstruction to the one obtained with CBC
models. The comparison is shown in Fig. 5.7, where we plot the whitened
strain as a function of time. At each time, the shaded region denotes the 90%
credible interval of the reconstruction using CBC waveform models (blue)
and BayesWave (orange). The left panel is obtained with the wavelets, while
the right panel is obtained with chirplets. The top row is made with the CBC
waveform model IMRPhenomPv2 which includes the effect of spin precession,
but not higher-order modes. The bottom row uses IMRPhenomHM which
assumes that the spins remain aligned with the orbital angular momentum,
but includes higher-order modes.

As discussed in [32], BayesWave can sometimes reconstruct features that
are not present in the CBC reconstructions as can be seen in the right hand
side panels of Fig. 5.7, for example around t=0.27s on the right panel. Unlike
CBC model waveforms, wavelet-based models are not limited to a physically
motivated waveform morphology. As a result, the BayesWave sampler can
sometimes pick up random coherence between nearby noise samples. However,
these outlying wavelets do not point to any potential additional features in
the waveform. In fact, they are absent in the 50% credible intervals of the
reconstruction, implying that they have a low significance. Similar outliers
were observed in BayesWave analyses applied to simulated signals added to
real data.

We find broad agreement between the CBC reconstruction and the BayesWave
reconstruction in all cases. In particular, the 90% credible intervals obtained
with the two methods overlap for all waveform models and BayesWave basis
functions. The agreement suggests that the omission of higher-order modes
does not degrade the reconstruction enough to leave a coherent residual de-
tectable by BayesWave. This conclusion is in agreement with the results of
the previous section, as well as the corresponding reconstruction plot in [32].

In order to make this statement quantitative, we draw 1000 samples from
the BayesWave posterior and compute their overlap with the maximum
likelihood (ML) CBC waveform from the analyses using IMRPhenomPv2 and
IMRPhenomHM. The posterior distribution for the overlap is given in Fig. 5.8
for wavelets (left) and chirplets (right). We find overlaps typically between
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Figure 5.7.: Signal reconstruction comparison for GW170729. We plot the
90% credible interval of the whitened strain data as a function of time for
each of the LIGO detectors computed with CBC waveform models (blue)
and BayesWave (orange). The top plots show IMRPhenomPv2 while the
bottom plots show IMRPhenomHM. The left plots use the wavelet model of
BayesWave, while the right plots use the chirplet model. The x axis represents
the time in seconds from the nearest integer GPS time before the event. The
y axis represents the strain amplitude whitened using a filter which is the
inverse Amplitude Spectral Density (ASD) of the noise in the detector. The
units are in multiples of the standard deviation of the noise. The generic
signal reconstruction is consistent with the CBC signal reconstruction both
when the latter includes higher-order modes and when it does not.
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Figure 5.8.: Overlap between the BayesWave and the CBC reconstruction for
GW170729. We plot the overlap histogram between 1000 random BayesWave
waveform samples and the ML CBC waveform obtained with IMRPhenomPv2
(blue) and IMRPhenomHM (green). The left panel uses BayesWave’s wavelet
model, while the right panel uses the chirplet model. The solid and dashed
vertical lines represent the overlap of the MBW reconstruction with the ML
CBC waveform, with the blue dashed and solid green lines representing the
overlaps computed using IMRPhenomPv2 and IMRPhenomHM respectively. As
is described in the text, we expect these overlaps to be higher than those
computed using individual BayesWave samples.

224



5.4. Morphology-Independent analysis

Wavelets Chirplets
IMRPhenomPv2 0.88 0.90
IMRPhenomD 0.87 0.89
IMRPhenomHM 0.89 0.90
SEOBNRv4 0.87 0.90
SEOBNRv4HM 0.88 0.89

Table 5.4.: Overlaps between the median BayesWave reconstruction and the
maximum likelihood CBC waveform with different waveform models.

0.6−0.9. This large spread in the overlaps is a result of the inherent flexibility
in wavelet-based analyses causing a large variance in the reconstructed signal
morphology. Therefore, unlike CBC waveform samples which are motivated by
a physical theory, a single BayesWave sample is not constrained by physical
reconstruction considerations, other than propagation at the speed of light.
Instead, the median BayesWave waveform (MBW), defined as being the
median across the sample waveforms at each time or frequency step, represents
a collective estimate across samples, assumed to represent “the wisdom of
the crowd". The MBW is a stable estimate of the reconstruction as it is
relatively immune to the stochastic fluctuations in the variable dimensional
sampler. Each of the four vertical lines in Fig. 5.8 represent the overlap
values between the MBW and the ML CBC waveform. They are summarized
in Table 5.4 where we also show results obtained using SEOBNR waveform
models. The ML CBC waveform has in general a higher agreement with the
MBW waveform than with each of the individual samples.

We find that waveforms both with and without higher-order modes achieve
large overlaps with the MBW reconstruction, in the range of 0.87 − 0.9,
consistent with expectations. In fact, Ref. [423] showed that for masses and
SNRs typical of GW170729 the expected overlap between simulated signals
and their median reconstructions is in the 0.85− 0.9 range at the 1-σ level,
similar to what we obtain here. The small remaining disagreement between
the ML CBC reconstruction and the MBW reconstruction is due to the fact
that, unlike modeled analyses, BayesWave is only sensitive to excess signal
that stands out and above the detector noise. This means that it is less
sensitive than CBC analyses in the lower frequencies, < 40 Hz. We find
that if we increase the low frequency cut off in the overlap calculation to 40
Hz, the overlaps improve by ∼ 0.07 for each pair of BayesWave and CBC
waveforms.

Besides the good reconstruction, we find that waveforms with higher-
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order modes lead to similar overlaps with the BayesWave reconstruction to
waveforms without higher-order modes. We perform the Kolmogorov–Smirnov
test for the two overlap distributions for each panel of Fig. 5.8 and find only
0.048 and 0.017, which implies that both IMRPhenomPv2 and IMRPhenomHM
reconstruct the data comparably well. This confirms that GW170729 is
consistent with a CBC and that the higher-order modes are not strong
enough to lead to a degradation of the signal reconstruction if neglected.

5.5. Conclusions

We analyze the publicly available strain data for GW170729, the highest mass
and most distant confirmed GW detection by the LIGO and Virgo detectors.
In particular we investigate the effect of higher-order modes and spin priors on
the inference of the source parameters. We find that higher-order modes leave
small but noticeable effects, while spin priors affect the spin measurements
as anticipated.
We find that the inclusion of higher-order modes in the models leads

to changes in the estimates for the mass ratio, the effective spin, and the
SNR. Our updated parameter measurements imply decreased support for
equal binary component masses and nonzero effective spin. In particular we
conclude that the mass ratio is (0.3− 0.8) at the 90% credible level, a value
that excludes equal masses. We also find that the 90% credible interval for
the effective spin parameter has changed from (0.11−0.58) as reported in [32]
to (−0.01 − 0.50), which now marginally includes zero. The effective spin
parameter still has a 94% probability of being positive.

Consistent with these findings, we compute the BF in favor of the presence
of higher-order modes, and find it to be 5.1:1. Moreover, their omission does
not dramatically change the measured parameters, which would happen if
they were strong [183,290,291]. This conclusion is also consistent with the
fact that current matched-filter searches for CBCs have a reduced efficiency
toward signals with strong higher harmonics [187, 188] and this event was
indeed observed in both the GstLAL and PyCBC searches.
We argue that the observed changes in parameter measurements are not

due to systematic errors in the CBC waveform models. We compare results
obtained with different waveform models with and without higher-order
modes, including waveforms computed with NR. That leads us to believe that
both the increased support for unequal masses and the decreased support for
nonzero spin are robust conclusions.
We emphasize that the fact that the evidence for higher-order modes is
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weak does not contradict the fact that waveforms with higher-order modes
lead to improved parameter measurements. In fact, accurate modeling of
relevant physical effects can improve parameter measurements. This can be
because said physical effect is present even if it is too weak to unequivocally
detect, or because it helps exclude regions of the parameter space for which
that effect would be larger than what we observe. Similar shifts in the
posteriors (though in the opposite direction for the distance and inclination)
where in fact observed in [270] when reanalyzing GW150914 with waveforms
that include higher-order modes.

We augment the analysis using CBC waveform models with a morphology-
independent analysis using BayesWave. We find broad agreement between
the CBC analysis and the generic analyses regardless of whether the CBC
model uses higher-order modes or not. We quantify this conclusion in terms
of the overlap between the CBC and the generic reconstruction, which we
find to be ∼ 0.9, consistent with expectations for signals of this mass and
SNR [423].
Posterior samples from all analyses are available at [424].
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6. Conclusions and future work

The work I have presented in this thesis aimed at improving the models for
the GW signals emitted by coalescing BBHs with spins. The accuracy of these
waveform models is crucial, because they are key components for both the
detection and the source characterization of GW signals. For this reason, and
considering that GW detectors are costantly improving their sensitivity, it is
important that also the accuracy of waveform models progresses in tandem.
This thesis focuses on the effect of HMs in the waveforms emitted by

coalescing BBHs with spins. Their contribution is especially relevant when
the total mass of the system is large, there is a big difference between the
value of the masses of the two BHs, or the binary system is observed from a
direction orthogonal to its orbital angular momentum (edge-on).
In Chapters 2 and 3, I developed, within the EOB formalism, inspiral-

merger-ringdown waveform models for spinning BBHs which include HMs.
The waveform model described in Chapter 2, SEOBNRv4HM, is limited to
BHs with spins aligned with the orbital angular momentum of the binary,
and served as a foundation for SEOBNRv4PHM, its generalization to BHs with
generic spin orientations, described in Chapter 3. I tested the accuracy of
the waveforms generated with these models by computing the unfaithfulness
against about 1700 NR simulations (∼ 200 for the first model and ∼ 1500
for the second one). In the total mass range 20− 200M�, SEOBNRv4HM yields
average unfaithfulness values smaller than 1% for almost all cases, with few
exceptions for which the value is slightly above 1%. SEOBNRv4PHM is also
very accurate and, for 94% (57%) of the cases, its unfaithfulness against NR
waveforms is below 3% (1%) in the same mass range, even without being
calibrated to NR waveforms in the precessing sector. The great accuracy
reached by these models is also confirmed by the parameter estimation studies
I performed, using them to analyze synthetic GW signals generated with
NR waveforms. Both models managed to measure the most relevant binary
parameters, such as masses and spins, with negligible bias compared to the
statistical uncertainty, in binary systems with asymmetric masses, strong
precessional effects (in the case of SEOBNRv4PHM) and moderately large values
of the SNR. SEOBNRv4PHM was even able to recover with trivial bias the
parameters of a synthetic BBH system for a less extreme binary configuration,
but at an SNR of 50.
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The number of observed GW signals steadily increased in the past years
up to 46 confirmed detections of BBHs, and it is expected to rise even more
in the next decade, as consequence of the upgrades in the GW detectors.
Consequently, waveform models have to be not only accurate, but also fast
to analyze the increasing number of detected signals on reasonable timescales.
For this reason, in Chapter 3 I developed SEOBNRv4HM_ROM, a ROM version of
SEOBNRv4HM, which accelerate the generation of the waveforms by two orders
of magnitude, with negligible loss in the accuracy.

The models I developed in this thesis have been already used in the analysis
of GW signals detected by the LIGO and Virgo interferometers. In Chapter
4, I presented an investigation on the GW signal GW170729 performed
with waveform models with HMs, including SEOBNRv4HM. This signal was
particularly interesting to study with these waveform models, because it
was likely originating from the most massive BBH system observed during
O2. When using SEOBNRv4HM to analyze this signal, I obtained improved
measurements of the mass ratio and the effective-spin parameter. In particular,
the mass ratio measurement allowed to exclude with large confidence that
the signal was emitted from a BBH with similar masses. In fact, the study
with SEOBNRv4HM revealed that with 40% probability the signal was emitted
by a BBH where the mass of the most massive BH in the binary was larger
than the mass of the other BH by more than a factor of two. This probability
was only about 20% when the properties of this signal were measured with
waveform models without HMs.

As a member of the LIGO Scientific Collaboration, I led the parameter
estimation analysis of the GW signal GW190412 [34] observed during O3a.
This signal was interesting to study for the asymmetric masses of its source.
In Chapter 1, I summarize the analysis I performed on this system with the
waveform models described in the thesis. This investigation confirmed, with
large confidence, that the signal was emitted by a BBH with very asymmetric
masses. In fact, the median value of q for this system was between 3 and
5, and q ≥ 2 with a probability of 99%. This precise measurement of the
mass ratio allowed to obtain also a tight constraint on the dimensionless spin
magnitude of the most massive BH in the binary, which value is between 0.22
and 0.60 at 90% probability. The luminosity distance was also very precisely
measured in this system because the effect of HMs and spin precession were
present in the waveform models used for the analysis. In fact, the bounds
on the luminosity distance was ∼ 60% tighter compared to those obtained
by waveform models without these effects. A precise measurement of the
luminosity distance can be very useful when trying to measure the Hubble
constant H0 using GW signals [459–463], and employing waveform models
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with HMs has been proven to be useful for this purpose [464].
Furthermore, the waveform models described in this thesis have been also

used to analyze all the GW signals emitted by BBHs systems detected during
the O3a [33,36,465]. Employing these waveform models for this purpose is
very important, because their precise measurement of the binary parameters
allows a better understanding of the observed population of BBHs, and their
formation mechanism. In particular, using these accurate waveform models
allowed us to determine more precisely the mass ratio distribution of the
observed BBH population [466]. In addition, these waveform models were
also employed in the study of the signal GW190814 [35]. In this case, the
nature of the lighter compact object in the binary is unclear. In fact, its
measured mass seems to be too large for a neutron star and too light for a
BH. The peculiar nature of the source of this signal was only revealed thanks
to the precise measurement of the masses obtained with the waveform models
described in this thesis. Finally, these improved waveform models were also
used as baseline for some tests of GR, performed using BBHs as laboratories,
on the GW signals detected during O3a [465].
There are at least two orthogonal future directions that the work of this

thesis could follow. The first one involves the development of even better
waveform models. A possible path for improvements is to overcome the
limitation of the current models to BBH systems in quasi-circular orbit.
While there are good theoretical arguments in favour of the hypothesis that
the majority of these systems feature a negligible eccentricity close to the
merger, using a waveform models that allows for BBHs in generic eccentric
orbits would be useful to experimentally test this hypothesis. The same is
true for the BH electric charge.
The other possible direction for the future, is to take advantage of the

improved accuracy of the waveform models developed in this thesis for some
practical applications. For example, one could exploit the more precise
determination of the luminosity distance, obtained with waveform models
with HMs, in the context of the measurement of the Hubble constant H0
in binary systems composed by a neutron star and a BH. In fact, in this
case the difference between the masses of the two objects is expected to be
large, and the contribution of the HMs should therefore be important. I am
currently undertaking this study.
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A. Explicit expressions of higher-order factorized
modes

Here we list expressions needed to build the h`m’s of the SEOBNRv4HM model.
The functions n(ε)

`m and c`+ε(ν) used in Eq. (2.21) are defined as (see
Ref. [233]):

n
(0)
`m = (im)` 8π

(2`+ 1)!!

√√√√(`+ 1)(`+ 2)
`(`− 1) , (A.1)

n
(0)
`m = −(im)` 16πi

(2`+ 1)!!

√√√√(2`+ 1)(`+ 2)(`2 −m2)
(2`− 1)(`+ 1)`(`− 1) , (A.2)

and

c`+ε(ν) =
(1

2 −
1
2
√

1− 4ν
)`+ε−1

+ (−1)`+ε
(1

2 + 1
2
√

1− 4ν
)`+ε−1

. (A.3)

We define also the function

eulerlog (m, vΩ) ≡ γ + log(2mvΩ), (A.4)

which is used in the expression of the factorized modes. Here γ is the Euler
constant.
The quantity f`m in Eq. (2.19) is:

f`m =

ρ``m, ` is even,
(ρNS
`m)` + fS

`m, ` is odd.
(A.5)

The functions ρ`m, ρNS
`m, fS

`m are defined below; the superscript “NS” stands
for nonspinning, and the superscript “S” indicates spinning. Below, we also
list the phase terms δ`m.
The quantities f`m and δ`m for the SEOBNRv4HM model are mostly taken

from the SEOBNRv4 model in Ref. [1] with the additions of several new terms:

• 3PN nonspinning terms in ρNS
33 from Ref. [317];

• 5PN test-mass, nonspinning terms in ρNS
33 from Ref. [294];
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A. Explicit expressions of higher-order factorized modes

• 5PN test-mass, nonspinning terms in ρNS
21 from Ref. [294];

• 2PN and 2.5PN spinning terms in ρ44 from Ref. [88];

• 3PN, 4PN and 5PN test-mass, nonspinning terms in ρNS
55 from Ref. [294];

• 2PN, 2.5PN and 3PN spinning terms in fS
33 from Ref. [88];

• 2PN, 2.5PN and 3PN spinning terms in fS
21 from Ref. [88];

• 1.5PN and 2PN spinning terms in fS
55 from Ref. [88];

• 3PN and 4.5PN test-mass, nonspinning terms in δ55 from Ref. [294].

Furthermore, we find that resummations of the f`m function for the (3, 3), (2, 1), (4, 4), (5, 5)
modes of the kind proposed in Refs. [221, 222] (see Eq. (47) and Eq. (48)
in the latter) do not always improve the agreement with the NR waveforms
of our catalog. For this reason we decide not to implement those resum-
mations when building the SEOBNRv4HM model. It is worth to mention that
whereas in our model the resummed expressions are computed as a function
of vΩ = (MΩ)1/3, in Refs. [221, 222] they are expressed as a function of vφ
defined in Eq. (69) of Ref. [383]. While the two variables are very similar
at low frequency, they can differ toward merger where the aforementioned
resummation may be more effective.

234



ρ
N

S
33

=
1

+
( −7 6

+
2ν 3

) v
2 Ω

+
( −

67
19

39
60
−

18
61
ν

99
0

+
14

9ν
2

33
0

) v
4 Ω

+
[ 32

03
10

15
67

22
70

26
80

0
+
( −

12
95

09
25

74
0

+
41
π

2

19
2

) ν
−

27
46

21
ν

2

15
44

40
+

12
01

1ν
3

46
33

2
−

26 7
eu
le
rlo

g(
3,
v Ω

)] v
6 Ω

+
( −57

56
65

72
15

7
85

62
15

36
00

+
13 3

eu
le
rlo

g(
3,
v Ω

)) v
8 Ω

+
( −

90
38

23
14

84
17

32
7

30
56

68
88

35
20

00
+

87
34

7e
ul
er
lo
g(

3,
v Ω

)
13

86
0

) v
10 Ω
,

(A
.6
)

ρ
N

S
21

=
1

+
( −59 56

+
23
ν

84

) v
2 Ω

+
( −

47
00

9
56

44
8
−

10
99

3ν
14

11
2

+
61

7ν
2

47
04

) v
4 Ω

+
( 76

13
18

49
41

26
07

89
76

00
−

10
7

10
5eu

le
rlo

g(
1,
v Ω

)) v
6 Ω

+
( −

11
68

61
74

63
88

3
91

13
03

73
73

44
+

63
13
eu
le
rlo

g(
1,
v Ω

)
58

80

) v
8 Ω

+
(−

63
73

58
73

77
14

63
+

14
06

13
62

16
57

60
eu
le
rlo

g(
1,
v Ω

))
v

10 Ω
16

56
91

58
86

08
00

,

(A
.7
)

ρ
44

=
1

+
( 16

14
−

58
70
ν

+
26

25
ν

2

13
20

(−
1

+
3ν

)

) v
2 Ω

+
 (

2
3(
−

1
+

3ν
)
−

41
ν

15
(−

1
+

3ν
)

+
14
ν

2

5(
−

1
+

3ν
)) χ

S

+
δm

(
2

3(
−

1
+

3ν
)
−

13
ν

5(
−

1
+

3ν
)) χ

A

  v3 Ω
+
  −

14
21

03
77

88
08

80
0(

1
−

3ν
)2

+
32

48
53

57
ν

44
04

40
0(

1
−

3ν
)2
−

14
01

14
9ν

2

14
15

70
0(

1
−

3ν
)2

−
80

15
65
ν

3

37
75

2(
1
−

3ν
)2

+
39

76
39

3ν
4

10
06

72
0(

1
−

3ν
)2

+
χ

2 A 2
−

2ν
χ

2 A
+
δm

χ
A
χ
S

+
χ

2 S 2

  v4 Ω

+
 ( −

69
55

(1
−

3ν
)2

+
16

57
1ν

16
50

(1
−

3ν
)2
−

26
73
ν

2

10
0(

1
−

3ν
)2

+
85

39
ν

3

44
0(

1
−

3ν
)2

+
59

1ν
4

44
(1
−

3ν
)2

) χ
S

235



A. Explicit expressions of higher-order factorized modes

+
δm

( −
69

55
(1
−

3ν
)2

+
10

67
9ν

16
50

(1
−

3ν
)2
−

19
33
ν

2

22
0(

1
−

3ν
)2

+
59

7ν
3

44
0(

1
−

3ν
)2

) χ
A

  v5 Ω

+
( 16

60
09

39
33

27
93

10
98

80
97

12
00

0
−

12
56

8e
ul
er
lo
g(

4,
v Ω

)
34

65

) v
6 Ω

+
( −

17
20

66
91

01
36

20
22

71
19

42
69

55
70

81
60

00
0

+
84

51
98
eu
le
rlo

g(
4,
v Ω

)
19

05
75

) v
8 Ω

+
( −

17
15

44
85

65
32

13
71

34
19

35
7

56
84

32
72

40
20

76
16

00
00

0
+

22
32

45
02

26
7e
ul
er
lo
g(

4,
v Ω

)
38

15
31

15
00

) v
10 Ω
,

(A
.8
)

ρ
N

S
55

=
1

+
(

48
7

39
0(
−

1
+

2ν
)
−

64
9ν

19
5(
−

1
+

2ν
)

+
25

6ν
2

19
5(
−

1
+

2ν
)) v

2 Ω
−

33
53

74
7v

4 Ω
21

29
40

0

+
( 19

06
06

53
79

99
24

7
11

95
78

79
93

40
00
−

15
46

42
9
eu
le
rlo

g(
5,
v Ω

)) v
6 Ω

+
( −

12
13

64
19

59
94

92
91

43
7

11
81

43
85

37
47

92
00

00
+

37
64

51
eu
le
rlo

g(
5,
v Ω

)
83

65
5

) v
8 Ω

+
( −

15
00

82
61

64
49

72
60

42
20

12
61

48
37

99
08

10
97

73
24

00
00

00
+

25
92

44
64

31
eu
le
rlo

g(
5,
v Ω

)
45

67
56

30
0

) v
10 Ω
,

(A
.9
)

f
S 33

=
[( −

2
+

19
ν 2

) χ
A

δm
+
( −2

+
5ν 2

) χ
S

] v
3 Ω

+
[ ( 3 2

−
6ν
) χ

2 A
+

(3
−

12
ν

)χ
A

δm
χ
S

+
3χ

2 S 2

] v
4 Ω

+
[( 2 3

−
59

3ν 60
+

40
7ν

2

30

) χ
A

δm
+
( 2 3

+
11
ν

20
+

24
1ν

2

30

) χ
S

] v
5 Ω

+
[( −

7 4
+

11
ν 2
−

12
ν

2) χ
2 A

+
( −7 2

−
ν

+
44
ν

2) χ
A

δm
χ
S

+
( −7 4

−
27
ν 2

+
6ν

2) χ
2 S

] v
6 Ω

+
[( −

81 20
+

73
39
ν

54
0

) χ
A

δm
+
( −81 20

+
59

3ν
10

8

) χ
S

] i(
H

E
O

B
Ω

)2
,

(A
.1
0)

f
S 21

=
( −3 2χ

S
−

3χ
A

2δ
m

) v Ω
+
[( 61 12

+
79
ν

84

) χ
S

+
( 61 12

+
13

1ν 84

) χ
A

δm

] v
3 Ω

+
[ (−

3
−

2ν
)χ

2 A
+
( −3

+
ν 2) χ

2 S
+
( −6

+
21
ν 2

) χ
S
χ
A

δm

] v
4 Ω

+
{ (

3 4δ
m
−

3ν δm

) χ
3 A

+
[ −

81 16
+

17
09
ν

10
08

+
61

3ν
2

10
08

+
( 9 4
−

3ν
) χ

2 A

] χ
S
+

236



+
3χ

3 S 4
+
[ −

81 16
−

70
3ν

2

11
2

+
87

97
ν

10
08

+
( 9 4
−

6ν
) χ

2 S

] χ A δm

} v
5 Ω

+
[( 41

63
25

2
−

92
87
ν

10
08
−

85
ν

2

11
2

) χ
2 A

+
( 41

63
25

2
−

26
33
ν

10
08

+
46

1ν
2

10
08

) χ
2 S

+
( 41

63
12

6
−

16
36
ν

21
+

10
88
ν

2

63

) χ
S
χ
A

δm

] v
6 Ω

+
c 2

1v
7 Ω
,

(A
.1
1)

f
S 55

=
[( −

70
ν

3(
−

1
+

2ν
)

+
11

0ν
2

3(
−

1
+

2ν
)

+
10

3(
−

1
+

2ν
)) χ

A

δm
+
(

10
3(
−

1
+

2ν
)
−

10
ν

−
1

+
2ν

+
10
ν

2

−
1

+
2ν

) χ
S

] v
3 Ω

+
[ 5 2δ

m
2 χ

2 A
+

5δ
m
χ
A
χ
S

+
5χ

2 S 2

] v
4 Ω

+
c 5

5v
5 Ω
.

(A
.1
2)

237



A. Explicit expressions of higher-order factorized modes

δ33 =13
10(HEOBΩ) + 39π

7 (HEOBΩ)2 +
(
−227827

3000 + 78π2

7

)
(HEOBΩ)3+

− 80897ν
2430 v5

Ω , (A.13)

δ21 =2
3(ΩHEOB) + 107

105π(ΩHEOB)2 +
(
−272

81 + 214π2

315

)
Ω3H3

EOB −
493
42 νv

5
Ω ,

(A.14)

δ44 =(112 + 219ν)
120(1− 3ν) (ΩHEOB) + 25136π

3465 (ΩHEOB)2|

+
(201088

10395 π
2 − 55144

375

)
(ΩHEOB)3 , (A.15)

δ55 =(96875 + 857528ν)
131250(1− 2ν) (ΩHEOB) + 3865π

429 (ΩHEOB)2

+ −7686949127 + 954500400π2

31783752 (ΩHEOB)3 . (A.16)

We notice that fS33 is a complex quantity because it contains an imaginary
term recently computed in PN theory [88]

iδS
33 ≡

[(
−81

20 + 7339ν
540

)
χA
δm

+
(
−81

20 + 593ν
108

)
χS

]
i(HEOBΩ)2, (A.17)

where with the superscript “S” we indicate the spin dependence. The term
proportional to χA/δm seems to diverge when δm→ 0, but this divergence is
apparent because, as it happens for all the functions fS

`m, it is removed by the
factor δm that appears in the function c`+ε(ν) (see Eq.(A.3)) at Newtonian
order (see Eq.(2.21)). If one includes the term δS

33 in the resummation with
the complex exponential, one obtains the expression ei(δ33+δS

33) which is not
well-behaved in the limit δm→ 0. For this reason we do not include this new
PN term in the resummation f33e

i(δ33+δS
33), but, instead, we compute the latter

quantity excluding this term (i.e., f33e
iδ33) and we then add the new complex

term to the real amplitude f33. We can do so because eiδ33iδS
33 = iδS

33 +O(Ω3),
where the latter is a PN correction at higher order with respect to the order
at which we currently know PN terms.
We remember also that the modes (2, 1), (5, 5) contain the calibration

parameters c21 and c55 computed imposing the condition in Eq. (2.26).
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B. Fits of nonquasi-circular input values

We build the fits of the nonquasi-circular (NQC) input values using NR
waveforms with the highest level of resolution available and the extrapolation
order N = 2. Depending on the mode, the fits use a different number of NR
waveforms, because for some binary configurations the large numerical error
prevents us to use some NR modes. For each mode, in order to choose which
NR simulations to use for the fits, we first remove all the NR simulations
showing clearly unphysical features (e.g., strong oscillations in the post-merger
stage that are not consistent among waveforms at different resolution and
extrapolation order). For the modes (3,3) and (2,1) all the NR waveforms
pass this selection, while for the modes (4,4) and (5,5) we remove respectively
10 and 42 NR simulations. For each NQC input value (i.e., amplitude and its
first and second derivative, and frequency and its first derivative) we weight
the value extracted by a given NR simulation with the inverse of the NR error.
The latter is estimated as

√
(δNQC

res )2 + (δNQC
extr )2, where δNQC

res is the difference
between the NQC input values extracted from the NR waveform with the
same extrapolation order (N = 2) and different resolutions (i.e., the highest
and second highest resolution). The quantity δNQC

extr is instead the difference
between the NQC input values extracted from the NR waveform with the
same resolution level (the highest) and different extrapolation order (i.e.,
N = 2 and N = 3).
We find it convenient to define a few variables that enter the fits below:

χ33 = χSδm+ χA , (B.1)

χ21A = χS
1− 1.3ν δm+ χA , (B.2)

χ44A = (1− 5ν)χS + χAδm , (B.3)

χ21D = χS
1− 2ν δm+ χA , (B.4)

χ44D = (1− 7ν)χS + χAδm , (B.5)

χ = χS + χA
δm

1− 2ν . (B.6)

We notice that the variables χ33, χ21A , χ21D are by definition zero in the
equal-mass, equal-spin limit. They are used for the fits of the amplitude (and
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B. Fits of nonquasi-circular input values

its derivative) to guarantee that in this limit the modes with m odd vanish,
since they have to satisfy the symmetry under rotation ϕ0 → ϕ0 + π.

B.0.1. Amplitude’s fits
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B. Fits of nonquasi-circular input values

B.0.2. Amplitude–first-derivative’s fits
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B. Fits of nonquasi-circular input values

B.0.3. Amplitude–second-derivative’s fits
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B. Fits of nonquasi-circular input values

B.0.4. Frequency and frequency-derivative fits

ωNR
33 (t33

match) =0.397395 + 0.164193χ+ 0.163553χ2 + 0.0614016χ3+
+ (0.699506 − 0.362674χ− 0.977547χ2)ν
+ (−0.345533 + 0.319523χ+ 1.93342χ2)ν2 , (B.19)

ωNR
21 (t21

match) =0.174319 + 0.0535087χ+ 0.0302288χ2+
+ (0.193894 − 0.184602χ− 0.112222χ2)ν
+ (0.167006 + 0.218731χ)ν2 , (B.20)

ωNR
44 (t44

match) =0.538936 + 0.166352χ+ 0.207539χ2 + 0.152681χ3

+
(
0.76174 + 0.00958786χ− 1.3023χ2 − 0.556275χ3

)
ν+

+
(
0.967515 − 0.220593χ+ 2.6781χ2

)
ν2

− 4.89538ν3 , (B.21)
ωNR

55 (t55
match) =0.643755 + 0.223155χ+ 0.295689χ2 + 0.173278χ3

+
(
−0.470178− 0.392901χ− 2.26534χ2 − 0.5513χ3

)
ν+

+
(
2.31148 + 0.882934χ+ 5.8176χ2

)
ν2 . (B.22)

ω̇NR
33 (t33

match) =0.0103372 − 0.00530678χ2 − 0.00508793χ3

+
(
0.0277356 + 0.0188642χ+ 0.0217545χ2 + 0.0178548χ3

)
ν+

+ (0.0180842 − 0.0820427χ)ν2, (B.23)
ω̇NR

21 (t21
match) =0.00709874 − 0.00177519χ− 0.00356273χ2 − 0.0019021χ3

+ (0.0248168 + 0.00424406χ+ 0.0147181χ2)ν+
+ (−0.050429− 0.0319965χ)ν2 , (B.24)

ω̇NR
44 (t44

match) =0.0139979 − 0.00511782χ− 0.00738743χ2+
+
(
0.0528489 + 0.016323χ+ 0.0253907χ2

)
ν

+ (−0.0652999 + 0.0578289χ)ν2 , (B.25)
ω̇NR

55 (t55
match) =0.0176343 − 0.000249257χ− 0.0092404χ2 − 0.00790783χ3

+
(
−0.13660 + 0.0561378χ+ 0.164063χ2 + 0.0773623χ3

)
ν+

+
(
0.987589 − 0.313921χ− 0.592615χ2

)
ν2

− 1.694335ν3 . (B.26)
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C. Fits for amplitude and phase of
merger-ringdown model

For these fits we apply the same selection of the NR waveforms discussed
for the fits of the input values for the NQC. In particular, in performing the
fits for the amplitude (phase) of the merger-ringdown signal, we weigh the
contribution of the values extracted from every NR waveform with the same
weight used for the NQC input value of the amplitude (frequency). It should
be noted that in some cases, especially in the ringdown, the NR error in the
(4,4) and (5,5) modes limits our ability to accurately model this part of the
waveform (see Fig. C.1).

0 10 20 30 40 50

(t − t55
match)/M

0.000

0.002

0.004

0.006

0.008

0.010

0.012

|h 5
5|

Fit
NR (Res = max, N = 2)
NR (Res = max, N = 3)
NR (Res = max-1, N = 2)

Figure C.1.: Amplitudes of the (5,5) NR mode of the simulation
SXS:BBH:0065 (q = 8, χ1 = 0.5, χ2 = 0) for extraction order N = 2 and
highest resolution (dashed orange), extraction order N = 3 and highest
resolution (dotted-dashed blue), extraction order N = 2 and second highest
resolution (dotted green). In solid black we show the result of the fit of the
merger-ringdown signal used in the SEOBNRv4HM model.

c33
1,f =0.0763873 + 0.254345ν − 1.08927ν2 − 0.0309934χ
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C. Fits for amplitude and phase of merger-ringdown model

+ 0.251688νχ− 0.798091ν2χ , (C.1)
c33

2,f =− 0.832529 + 2.76799ν − 7.02815ν2 − 0.59888χ
+ 5.90437νχ− 18.2326ν2χ , (C.2)

c21
1,f =0.0778033 + 0.24091ν − 0.745633ν2 − 0.0507064χ

+ 0.385826νχ− 0.969553ν2χ , (C.3)
c21

2,f =− 1.24519 + 6.1342ν − 14.6725ν2 − 1.19579χ
+ 15.667νχ− 44.4198ν2χ , (C.4)

c44
1,f =− 0.0639271 + 0.345195ν − 1.76435ν2 − 0.0364617χ

+ 1.27774νχ− 14.8253ν2χ+ 40.6714ν3χ , (C.5)
c44

2,f =0.781328 − 5.1869ν + 14.0264ν2 + 0.809471χ
− 5.38343νχ+ 0.105163ν2χ+ 46.9784ν3χ , (C.6)

c55
1,f =− 0.0670461− 0.247549ν + 0.758804ν2 + 0.0219059χ

− 0.0943771νχ+ 0.435777ν2χ , (C.7)
c55

2,f =1.67634 − 5.60456ν + 16.7513ν2 + 0.49257χ
− 6.2091νχ+ 16.7785ν2χ . (C.8)

d33
1,f =0.110853 + 0.99998ν − 3.39833ν2 + 0.0189591χ

− 0.72915νχ+ 2.5192ν2χ , (C.9)
d33

2,f =2.78252 − 7.84474ν + 27.181ν2 + 2.87968χ
− 34.767νχ+ 127.139ν2χ , (C.10)

d21
1,f =0.156014 + 0.0233469ν + 0.153266ν2 + 0.1022χ

− 0.943531νχ+ 1.79791ν2χ , (C.11)
d21

2,f =2.78863 − 0.814541ν + 5.54934ν2 + 4.2929χ
− 15.938νχ+ 12.6498ν2χ , (C.12)

d44
1,f =0.11499 + 1.61265ν − 6.2559ν2 + 0.00838952χ

− 0.806998νχ+ 7.59565ν2χ− 19.3237ν3χ , (C.13)
d44

2,f =3.11182 + 15.8853ν − 79.6493ν2 + 5.39934χ
− 87.9242νχ+ 657.716ν2χ− 1555.3ν3χ , (C.14)

d55
1,f =0.164654 − 0.191845ν + 0.333284ν2 − 0.0265748χ

− 0.0551962νχ+ 0.319427ν2χ , (C.15)
d55

2,f =11.1024 − 58.6058ν + 176.606ν2 + 6.01511χ
− 81.6803νχ+ 266.473ν2χ . (C.16)
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D. Fits for the phase difference between
higher-order modes and (2,2) mode at the
matching point t`mmatch

The relations between φ`mmatch (i.e., the phase of the (`,m) modes computed
at t`mmatch) and φ22

match are

∆φ33
match ≡ φ33

match −
3
2(φ22

match − π) (mod π) , (D.1)

∆φ21
match ≡ φ21

match −
1
2(φ22

match − π) (mod π) , (D.2)

∆φ44
match ≡ φ44

match − (2φ22
match − π) (mod 2π) , (D.3)

∆φ55
match ≡ φ55

match −
1
2(5φ22

match − π) (mod π), (D.4)

where the RHS is the scaling of the phase at leading PN order, and the LHS
is the deviation from the latter, computed at t`mmatch. The term ∆φ`mmatch is
extracted from each NR and Teukolsky–equation-based waveforms in our
catalog and then fitted as a function of (ν, χ). We find

∆φ33
match =3.20275 − 1.47295

√
δm+ 1.21021δm− 0.203442χ

+ δm2(−0.0284949− 0.217949χ)χ (mod π) , (D.5)
∆φ21

match =2.28855 + 0.200895δm− 0.0403123χ
+ δm2

(
−0.0331133− 0.0424056χ− 0.0244154χ2

)
(mod π) , (D.6)

∆φ44
match =5.89306 + ν2(−36.7321− 21.9229χ)

− 0.499652χ− 0.292006χ2

+ ν3(160.102 + 67.0793χ)
+ ν

(
2.48143 + 3.26618χ+ 1.38065χ2

)
(mod 2π) , (D.7)

∆φ55
match =3.61933 − 1.52671δm− 0.172907χ

+ δm2
(
0.72564 − 0.44462χ− 0.528597χ2

)
(mod π) . (D.8)
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D. Fits for the phase difference between higher-order modes and (2,2) mode at the matching point t`mmatch

The error on the phase of each mode caused by the fit of ∆φ`mmatch is on average
of the order of 0.05 rad.
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E. Fits for time difference between modes’
amplitude peaks

As originally observed in Refs. [201,297], gravitational modes peak at different
times (t`mpeak) with respect to the dominant (2, 2) mode. Using the NR catalog
at our disposal, we fit the times shifts ∆t`m ≡ t`mpeak − t22

peak as function of ν
and χeff = (m1χ1 +m2χ2)/M . We find

∆t33 =4.20646 + 4.215χeff + 2.12487χ2
eff

+ (−10.9615 + 5.20758a)ν + (53.3674 − 65.0849a)ν2 , (E.1)
∆t21 =12.892 + 1.14433χeff + 1.12146χ2

eff

+
(
−61.1508− 96.0301χeff − 85.4386χ2

eff

)
ν

+
(
144.497 + 366.374χeff + 322.06χ2

eff

)
ν2 , (E.2)

∆t44 =7.49641 + 6.7245χeff + 3.11618χ2
eff

+
(
−48.5578− 78.8077χeff − 92.1608χ2

eff

)
ν

+
(
91.483 + 231.917χeff + 388.074χ2

eff

)
ν2 , (E.3)

∆t55 =10.031 + 5.80884χeff + (−103.252− 75.8935χeff)ν
+ (366.57 + 282.552χeff)ν2 . (E.4)

The above expressions could be employed in building phenomenological
models for the ringdown signal when multipole modes are present [304]. We
notice that these fits are not used for building SEOBNRv4HM waveforms, whose
merger-ringdown model is constructed through Eqs. (2.33)–(2.35), starting
from t`mmatch in Eq. (2.17). The merger-ringdown SEOBNRv4HM waveforms
reproduce the time shifts ∆t`m between the NR modes’ amplitude peaks by
construction, as it can be seen in Fig. E.1 for a particular binary configuration.

We emphasize that while in the EOBNRv2HM model [201] the merger-ringdown
attachment was done at each modes’ peak time, in SEOBNRv4HM we do it at
the (2, 2) mode’s peak for all modes except the (5, 5) mode. We make this
change here because typically ∆t`m = t`mpeak − t22

peak > 0, and at these late
times we find that for some binary configurations either the EOB dynamics
becomes unreliable or the error in the NR waveforms is too large and prevents
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E. Fits for time difference between modes’ amplitude peaks

−100 −75 −50 −25 0 25 50 75 100

(t− t22
peak)/M
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Figure E.1.: Amplitudes of different modes for the SEOBNRv4HM (dashed) and
NR (solid) waveforms with (q = 8, χ1 = −0.5, χ2 = 0) (SXS:BBH:0064)
versus time. The time origin corresponds to the (2, 2) mode’s peak.

us to accurately extract the input values for the NQC conditions (i.e., Eqs.
(2.28) –(2.32)).
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F. Numerical-relativity catalog

In the tables below we list the binary configurations of the NR simulations used
to build and test the SEOBNRv4HM waveform model. The NR waveforms were
produced with the (pseudo) Spectral Einstein code (SpEC) of the Simulating
eXtreme Spacetimes (SXS) project and the Einstein Toolkit (ET) code.
In particular, we list the mass ratio q, the dimensionless spins χ1,2, the
eccentricity e, the initial frequency ω22 of the dominant (`,m) = (2, 2) mode
and the number of orbits Norb up to the waveform peak.
In Fig. F.1 we show the coverage of NR and BH-perturbation-theory

waveforms when projected on the binary’s parameters ν and χeff = (χ1m1 +
χ2m2)/M . We highlight four regions. In the first region 1 ≤ q ≤ 3 there is
a large number of configurations with both BHs carrying spin. The spins
magnitude are as high as χ1,2 = 0.99 in the equal-mass limit, while they are
limited to χ1,2 = 0.85 for q = 3. The second region is between 3 < q ≤ 8, and
most of the simulations have spins only on the heavier BH. The values of
the spin of the heavier BH span in the region −0.8 ≤ χ1 ≤ 0.85. The third
region is between 8 < q ≤ 10 and it includes only nonspinning waveforms.
Finally, the fourth region covers 13 waveforms computed solving the Teukolsky
equation in the framework of BH pertubation theory [114,297]. They have
q = 103 and dimensionless spins values in the range −0.99 ≤ χ ≤ 0.99.

F.0.1. SXS and ET waveform produced for testing SEOBNRv4 (Ref. [1])

ID q χ1 χ2 e Mω22 Norb
SXS:BBH:0610 1.2 −0.50 −0.50 7.4× 10−5 0.01872 12.1
SXS:BBH:0611 1.4 −0.50 +0.50 6.0× 10−4 0.02033 12.5
SXS:BBH:0612 1.6 +0.50 −0.50 3.7× 10−4 0.02156 12.8
SXS:BBH:0613 1.8 +0.50 +0.50 1.8× 10−4 0.02383 13.1
SXS:BBH:0614 2.0 +0.75 −0.50 6.7× 10−4 0.02355 13.1
SXS:BBH:0615 2.0 +0.75 +0.00 7.0× 10−4 0.02401 13.3
SXS:BBH:0616 2.0 +0.75 +0.50 8.0× 10−4 0.02475 13.3
SXS:BBH:0617 2.0 +0.50 +0.75 7.8× 10−4 0.02342 13.1
SXS:BBH:0618 2.0 +0.80 +0.80 5.9× 10−4 0.02578 13.4
SXS:BBH:0620 5.0 −0.80 +0.00 3.4× 10−3 0.02527 8.2
SXS:BBH:0621 7.0 −0.80 +0.00 3.2× 10−3 0.02784 7.1
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F. Numerical-relativity catalog

SXS:BBH:0619 2.0 +0.90 +0.90 2.9× 10−4 0.02520 13.5
ET:AEI:0001 5.0 +0.80 +0.00 9.2× 10−4 0.03077 10.5
ET:AEI:0002 7.0 +0.80 +0.00 6.1× 10−4 0.03503 10.4
ET:AEI:0004 8.0 +0.85 +0.85 3.0× 10−3 0.04368 7.4

F.0.2. SXS waveforms from Ref. [2]

ID q χ1 χ2 e Mω22 Norb
SXS:BBH:0004 1.0 −0.50 +0.00 3.7× 10−4 0.01151 30.2
SXS:BBH:0005 1.0 +0.50 +0.00 2.5× 10−4 0.01227 30.2
SXS:BBH:0007 1.5 +0.00 +0.00 4.2× 10−4 0.01229 29.1
SXS:BBH:0013 1.5 +0.50 +0.00 1.4× 10−4 0.01444 23.8
SXS:BBH:0016 1.5 −0.50 +0.00 4.2× 10−4 0.01149 30.7
SXS:BBH:0019 1.5 −0.50 +0.50 7.6× 10−5 0.01460 20.4
SXS:BBH:0025 1.5 +0.50 −0.50 7.6× 10−5 0.01456 22.4
SXS:BBH:0030 3.0 +0.00 +0.00 2.0× 10−3 0.01775 18.2
SXS:BBH:0036 3.0 −0.50 +0.00 5.1× 10−4 0.01226 31.7
SXS:BBH:0045 3.0 +0.50 −0.50 6.4× 10−4 0.01748 21.0
SXS:BBH:0046 3.0 −0.50 −0.50 2.6× 10−4 0.01771 14.4
SXS:BBH:0047 3.0 +0.50 +0.50 4.7× 10−4 0.01743 22.7
SXS:BBH:0056 5.0 +0.00 +0.00 4.9× 10−4 0.01589 28.8
SXS:BBH:0060 5.0 −0.50 +0.00 3.4× 10−3 0.01608 23.2
SXS:BBH:0061 5.0 +0.50 +0.00 4.2× 10−3 0.01578 34.5
SXS:BBH:0063 8.0 +0.00 +0.00 2.8× 10−4 0.01938 25.8
SXS:BBH:0064 8.0 −0.50 +0.00 4.9× 10−4 0.01968 19.2
SXS:BBH:0065 8.0 +0.50 +0.00 3.7× 10−3 0.01887 34.0
SXS:BBH:0148 1.0 −0.44 −0.44 2.0× 10−5 0.01634 15.5
SXS:BBH:0149 1.0 −0.20 −0.20 1.8× 10−4 0.01614 17.1
SXS:BBH:0150 1.0 +0.20 +0.20 2.9× 10−4 0.01591 19.8
SXS:BBH:0151 1.0 −0.60 −0.60 2.5× 10−4 0.01575 14.5
SXS:BBH:0152 1.0 +0.60 +0.60 4.3× 10−4 0.01553 22.6
SXS:BBH:0153 1.0 +0.85 +0.85 8.3× 10−4 0.01539 24.5
SXS:BBH:0154 1.0 −0.80 −0.80 3.3× 10−4 0.01605 13.2
SXS:BBH:0155 1.0 +0.80 +0.80 4.7× 10−4 0.01543 24.1
SXS:BBH:0156 1.0 −0.95 −0.95 5.4× 10−4 0.01643 12.4
SXS:BBH:0157 1.0 +0.95 +0.95 1.4× 10−4 0.01535 25.2
SXS:BBH:0158 1.0 +0.97 +0.97 7.9× 10−4 0.01565 25.3
SXS:BBH:0159 1.0 −0.90 −0.90 5.6× 10−4 0.01588 12.7
SXS:BBH:0160 1.0 +0.90 +0.90 4.2× 10−4 0.01538 24.8
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SXS:BBH:0166 6.0 +0.00 +0.00 4.4× 10−5 0.01940 21.6
SXS:BBH:0167 4.0 +0.00 +0.00 9.9× 10−5 0.02054 15.6
SXS:BBH:0169 2.0 +0.00 +0.00 1.2× 10−4 0.01799 15.7
SXS:BBH:0170 1.0 +0.44 +0.44 1.3× 10−4 0.00842 15.5
SXS:BBH:0172 1.0 +0.98 +0.98 7.8× 10−4 0.01540 25.4
SXS:BBH:0174 3.0 +0.50 +0.00 2.9× 10−4 0.01337 35.5
SXS:BBH:0180 1.0 +0.00 +0.00 5.1× 10−5 0.01227 28.2

F.0.3. SXS waveforms from Ref. [3–5]

ID q χ1 χ2 e Mω22 Norb
SXS:BBH:0177 1.0 +0.99 +0.99 1.3× 10−3 0.01543 25.4
SXS:BBH:0178 1.0 +0.99 +0.99 8.6× 10−4 0.01570 25.4
SXS:BBH:0202 7.0 +0.60 +0.00 9.0× 10−5 0.01324 62.1
SXS:BBH:0203 7.0 +0.40 +0.00 1.4× 10−5 0.01322 58.5
SXS:BBH:0204 7.0 +0.40 +0.00 1.7× 10−4 0.01044 88.4
SXS:BBH:0205 7.0 −0.40 +0.00 7.0× 10−5 0.01325 44.9
SXS:BBH:0206 7.0 −0.40 +0.00 1.6× 10−4 0.01037 73.2
SXS:BBH:0207 7.0 −0.60 +0.00 1.7× 10−4 0.01423 36.1
SXS:BBH:0306 1.3 +0.96 −0.90 1.5× 10−3 0.02098 12.6

F.0.4. SXS waveforms from Ref. [6]

ID q χ1 χ2 e Mω22 Norb
SXS:BBH:0290 3.0 +0.60 +0.40 9.0× 10−5 0.01758 24.2
SXS:BBH:0291 3.0 +0.60 +0.60 5.0× 10−5 0.01764 24.5
SXS:BBH:0289 3.0 +0.60 +0.00 2.3× 10−4 0.01711 23.8
SXS:BBH:0285 3.0 +0.40 +0.60 1.6× 10−4 0.01732 23.8
SXS:BBH:0261 3.0 −0.73 +0.85 1.0× 10−4 0.01490 21.5
SXS:BBH:0293 3.0 +0.85 +0.85 9.0× 10−5 0.01813 25.6
SXS:BBH:0280 3.0 +0.27 +0.85 9.7× 10−5 0.01707 23.6
SXS:BBH:0257 2.0 +0.85 +0.85 1.1× 10−4 0.01633 24.8
SXS:BBH:0279 3.0 +0.23 −0.85 6.0× 10−5 0.01629 22.6
SXS:BBH:0274 3.0 −0.23 +0.85 1.6× 10−4 0.01603 22.4
SXS:BBH:0258 2.0 +0.87 −0.85 1.8× 10−4 0.01612 22.8
SXS:BBH:0248 2.0 +0.13 +0.85 7.0× 10−5 0.01552 23.2
SXS:BBH:0232 1.0 +0.90 +0.50 2.8× 10−4 0.01558 23.9
SXS:BBH:0229 1.0 +0.65 +0.25 3.1× 10−4 0.01488 23.1
SXS:BBH:0231 1.0 +0.90 +0.00 1.0× 10−4 0.01487 23.1
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F. Numerical-relativity catalog

ID q χ1 χ2 e Mω22 Norb
SXS:BBH:0239 2.0 −0.37 +0.85 9.1× 10−5 0.01478 22.2
SXS:BBH:0252 2.0 +0.37 −0.85 3.8× 10−4 0.01488 22.5
SXS:BBH:0219 1.0 −0.50 +0.90 3.3× 10−4 0.01484 22.4
SXS:BBH:0211 1.0 −0.90 +0.90 2.6× 10−4 0.01411 22.3
SXS:BBH:0233 2.0 −0.87 +0.85 6.0× 10−5 0.01423 22.0
SXS:BBH:0243 2.0 −0.13 −0.85 1.8× 10−4 0.01378 23.3
SXS:BBH:0214 1.0 −0.62 −0.25 1.9× 10−4 0.01264 24.4
SXS:BBH:0209 1.0 −0.90 −0.50 1.7× 10−4 0.01137 27.0
SXS:BBH:0226 1.0 +0.50 −0.90 2.4× 10−4 0.01340 22.9
SXS:BBH:0286 3.0 +0.50 +0.50 8.0× 10−5 0.01693 24.1
SXS:BBH:0253 2.0 +0.50 +0.50 6.7× 10−5 0.01397 28.8
SXS:BBH:0267 3.0 −0.50 −0.50 5.6× 10−5 0.01410 23.4
SXS:BBH:0218 1.0 −0.50 +0.50 7.8× 10−5 0.01217 29.1
SXS:BBH:0238 2.0 −0.50 −0.50 6.9× 10−5 0.01126 32.0
SXS:BBH:0288 3.0 +0.60 −0.40 1.9× 10−4 0.01729 23.5
SXS:BBH:0287 3.0 +0.60 −0.60 7.0× 10−5 0.01684 23.5
SXS:BBH:0283 3.0 +0.30 +0.30 7.6× 10−5 0.01646 23.5
SXS:BBH:0282 3.0 +0.30 +0.00 7.5× 10−5 0.01629 23.3
SXS:BBH:0281 3.0 +0.30 −0.30 6.7× 10−5 0.01618 23.2
SXS:BBH:0277 3.0 +0.00 +0.30 7.0× 10−5 0.01595 22.9
SXS:BBH:0284 3.0 +0.40 −0.60 1.5× 10−4 0.01656 22.8
SXS:BBH:0278 3.0 +0.00 +0.60 2.1× 10−4 0.01623 22.8
SXS:BBH:0256 2.0 +0.60 +0.60 7.8× 10−5 0.01598 23.9
SXS:BBH:0230 1.0 +0.80 +0.80 1.3× 10−4 0.01542 24.2
SXS:BBH:0255 2.0 +0.60 +0.00 4.0× 10−5 0.01580 23.3
SXS:BBH:0276 3.0 +0.00 −0.30 6.7× 10−5 0.01559 23.0
SXS:BBH:0251 2.0 +0.30 +0.30 7.5× 10−5 0.01514 23.5
SXS:BBH:0250 2.0 +0.30 +0.00 7.5× 10−5 0.01503 23.2
SXS:BBH:0271 3.0 −0.30 +0.00 6.3× 10−5 0.01508 22.5
SXS:BBH:0249 2.0 +0.30 −0.30 7.2× 10−5 0.01478 23.2
SXS:BBH:0275 3.0 +0.00 −0.60 1.2× 10−4 0.01569 22.6
SXS:BBH:0254 2.0 +0.60 −0.60 6.0× 10−5 0.01541 22.9
SXS:BBH:0269 3.0 −0.40 +0.60 1.2× 10−4 0.01563 22.3
SXS:BBH:0225 1.0 +0.40 +0.80 3.5× 10−4 0.01536 23.5
SXS:BBH:0270 3.0 −0.30 −0.30 6.2× 10−5 0.01482 22.8
SXS:BBH:0245 2.0 +0.00 −0.30 6.8× 10−5 0.01441 23.0
SXS:BBH:0242 2.0 −0.30 +0.30 6.7× 10−5 0.01417 23.1
SXS:BBH:0223 1.0 +0.30 +0.00 6.7× 10−5 0.01402 23.3
SXS:BBH:0241 2.0 −0.30 +0.00 6.6× 10−5 0.01394 23.1
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ID q χ1 χ2 e Mω22 Norb
SXS:BBH:0240 2.0 −0.30 −0.30 6.4× 10−5 0.01359 23.5
SXS:BBH:0222 1.0 −0.30 +0.00 7.4× 10−5 0.01324 23.6
SXS:BBH:0228 1.0 +0.60 +0.60 3.2× 10−4 0.01543 23.5
SXS:BBH:0247 2.0 +0.00 +0.60 1.0× 10−4 0.01530 22.6
SXS:BBH:0263 3.0 −0.60 +0.60 1.9× 10−4 0.01526 22.0
SXS:BBH:0266 3.0 −0.60 +0.40 1.8× 10−4 0.01488 22.0
SXS:BBH:0227 1.0 +0.60 +0.00 3.1× 10−4 0.01452 23.1
SXS:BBH:0221 1.0 −0.40 +0.80 2.7× 10−4 0.01440 22.7
SXS:BBH:0237 2.0 −0.60 +0.60 6.1× 10−5 0.01433 22.6
SXS:BBH:0244 2.0 +0.00 −0.60 7.5× 10−5 0.01422 23.2
SXS:BBH:0217 1.0 −0.60 +0.60 1.5× 10−4 0.01421 22.7
SXS:BBH:0215 1.0 −0.60 −0.60 1.8× 10−4 0.01189 25.8
SXS:BBH:0262 3.0 −0.60 +0.00 2.0× 10−4 0.01473 22.5
SXS:BBH:0213 1.0 −0.80 +0.80 1.4× 10−4 0.01435 22.3
SXS:BBH:0265 3.0 −0.60 −0.40 9.0× 10−5 0.01422 23.4
SXS:BBH:0264 3.0 −0.60 −0.60 2.8× 10−4 0.01410 23.4
SXS:BBH:0224 1.0 +0.40 −0.80 2.5× 10−4 0.01361 22.9
SXS:BBH:0236 2.0 −0.60 +0.00 1.2× 10−4 0.01361 23.4
SXS:BBH:0216 1.0 −0.60 +0.00 2.6× 10−4 0.01300 23.6
SXS:BBH:0235 2.0 −0.60 −0.60 6.1× 10−5 0.01274 25.1
SXS:BBH:0220 1.0 −0.40 −0.80 1.0× 10−4 0.01195 25.7
SXS:BBH:0212 1.0 −0.80 −0.80 2.4× 10−4 0.01087 28.6
SXS:BBH:0303 10.0 +0.00 +0.00 5.1× 10−5 0.02395 19.3
SXS:BBH:0300 8.5 +0.00 +0.00 5.7× 10−5 0.02311 18.7
SXS:BBH:0299 7.5 +0.00 +0.00 5.9× 10−5 0.02152 20.1
SXS:BBH:0298 7.0 +0.00 +0.00 6.1× 10−5 0.02130 19.7
SXS:BBH:0297 6.5 +0.00 +0.00 6.4× 10−5 0.02082 19.7
SXS:BBH:0296 5.5 +0.00 +0.00 5.2× 10−5 0.01668 27.9
SXS:BBH:0295 4.5 +0.00 +0.00 5.2× 10−5 0.01577 27.8
SXS:BBH:0259 2.5 +0.00 +0.00 5.9× 10−5 0.01346 28.6
SXS:BBH:0292 3.0 +0.73 −0.85 1.8× 10−4 0.01749 23.9
SXS:BBH:0268 3.0 −0.40 −0.60 1.7× 10−4 0.01473 22.9
SXS:BBH:0234 2.0 −0.85 −0.85 1.4× 10−4 0.01147 27.8
SXS:BBH:0273 3.0 −0.27 −0.85 2.0× 10−4 0.01487 22.9
SXS:BBH:0210 1.0 −0.90 +0.00 1.8× 10−4 0.01248 24.3
SXS:BBH:0260 3.0 −0.85 −0.85 3.5× 10−4 0.01285 25.8
SXS:BBH:0302 9.5 +0.00 +0.00 6.0× 10−5 0.02366 19.1
SXS:BBH:0301 9.0 +0.00 +0.00 5.5× 10−5 0.02338 18.9
SXS:BBH:0272 3.0 −0.30 +0.30 6.4× 10−5 0.01521 22.7
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F. Numerical-relativity catalog

ID q χ1 χ2 e Mω22 Norb
SXS:BBH:0246 2.0 +0.00 +0.30 7.2× 10−5 0.01514 22.9
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Figure F.1.: 2D projection of the 3D parameter space of the NR and BH-
perturbation-theory waveforms used to build the SEOBNRv4HM model. The
x-axis is ν and the y-axis is the effective spin χeff = (χ1m1 + χ2m2)/M . In
the legend we highlight four different regions of coverage, as discussed in the
text.
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G. Comparing the nonspinning SEOBNRv4HM and
EOBNRv2HM models
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Figure G.1.: Unfaithfulness (1−F) in the mass range 20M� ≤M ≤ 200M�
for the configuration (q = 6, χ1 = χ2 = 0). Dashed (plain) curves refer to
results for EOBNRv2HM (SEOBNRv4HM). Plotted data as in Fig. 2.7.

Here we compare the nonspinning limit of SEOBNRv4HM to its predecessor,
the EOBNRv2HM model developed in 2011 [201], which is available in the LIGO
Algorithm Library (LAL) and it has been used in Refs. [187,290,310] to assess
the importance of higher-order modes in Advanced LIGO searches and param-
eter estimation. The model EOBNRv2HM was also used to search for intermedi-
ate binary black holes [467–470]). The EOBNRv2HM model includes the same
higher-order modes as SEOBNRv4HM, that is (2, 2), (2, 1), (3, 3), (4, 4), (5, 5).
Given that the EOBNRv2HM model was calibrated against NR waveforms up
to mass ratio q = 6, we decide to compare first the two models for a con-
figuration with this mass ratio (SXS:BBH:0166). In Fig. G.1 we show the
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G. Comparing the nonspinning SEOBNRv4HM and EOBNRv2HM models

unfaithfulness results for maximum, minimum, average and SNR-weighted
average with respect to the angles ιNR, ϕ0NR, κNR of the models against NR
waveforms with the modes (` ≤ 5, m 6= 0). The unfaithfulness is shown as
a function of total mass. The dashed (solid) lines represent the results for
EOBNRv2HM (SEOBNRv4HM). The minimum of the unfaithfulness, reached for
a face-on orientation, is different for the two models and it is smaller for
the SEOBNRv4HM model. Since, for a face-on orientation, all the higher-order
modes included in the two models are exactly zero because of the spherical
harmonics, this difference is only due to a better modeling of the dominant
(`,m) = (2, 2) mode. This difference is very small and both models yield a
minimum of the unfaithfulness much smaller than 1% in the total mass range
20M� ≤M ≤ 200M�. The most important quantity to compare is the maxi-
mum of the unfaithfulness which is reached for an edge-on orientation, where
the higher-order modes are more relevant. Also in this case the SEOBNRv4HM
model has a lower unfaithfulness against the NR waveform with respect to the
EOBNRv2HM model. In particular at a total mass of M = 200M� EOBNRv2HM
returns a maximum unfaithfulness (1 − F) ∼ 2%, while the SEOBNRv4HM
model only (1− F) ∼ 0.6%. This means that also the higher-order modes
are better modeled in SEOBNRv4HM with respect to EOBNRv2HM.
We find that the model SEOBNRv4HM returns smaller values of the un-

faithfulness against the NR waveforms than the EOBNRv2HM model for every
nonspinning configuration in our NR catalog with q ≤ 6. A comparison
between the two models for mass ratio higher than q = 6 is unfair because
EOBNRv2HM is not calibrated in this region. However it is worth mention-
ing that for the numerical simulation with the largest mass ratio at our
disposal (q = 10) the average unfaithfulness of EOBNRv2HM is larger than
that of SEOBNRv4HM, but still smaller than 1% in the mass range considered.
For this configuration the value of the maximum of the unfaithfulness is
(1 − F) ∼ 3.5% for EOBNRv2HM at M = 200M�, while is (1 − F) ∼ 2% for
SEOBNRv4HM.
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H. Comparing SEOBNRv4HM and
numerical-relativity waveforms in time
domain

The improvement in waveform modeling obtained by including higher-order
modes, can also be seen from a direct comparison of NR waveforms to
SEOBNRv4 and SEOBNRv4HM waveforms in time domain. We present this
comparison in Fig. H.1 for the simulation SXS:BBH:0065. We show the
NR waveform with (2, 2), (2, 1), (3, 3), (4, 4), (5, 5) modes (solid black), the
SEOBNRv4HM (dashed green) and SEOBNRv4 (dotted yellow) waveforms in an
edge-on orientation. The effect of neglecting higher-order modes results in
an oscillatory phase difference (dotted yellow curve of the bottom panel in
Fig. H.1) around the mean dephasing due to the dominant (2, 2) mode (solid
black curve of the same panel). These oscillations in the dephasing are almost
totally removed up to merger when we include higher-order modes (dashed
green of the bottom panel in Fig. H.1) where now the phase difference with
the NR waveform is dominated again by the discrepancy of the (2, 2) mode.
The residual oscillations of the dashed green curve around the dephasing
of the dominant (2, 2) mode is due to the superposition of the different
dephasing of the various higher-order modes. The effect of the inclusion of
higher-order modes can be seen also in the amplitude of the waveform, in
particular in the last five cycle of the waveform there is an evident amplitude
difference between SEOBNRv4 and NR waveforms, which is not present when
the SEOBNRv4HM waveform is used.
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H. Comparing SEOBNRv4HM and numerical-relativity waveforms in time domain
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Figure H.1.: Comparison between NR (solid black), SEOBNRv4HM (dashed
green) and SEOBNRv4 (dotted yellow) waveforms in an edge-on orientation
(ι = π/2, ϕ0 = 1.2) for the NR simulation SXS:BBH:0065 (q = 8, χ1 =
0.5, χ2 = 0). In the top panel is plotted the real part of the observer-frame’s
gravitational strain h+(ι, ϕ0; t)− i hx(ι, ϕ0; t), while in the bottom panel the
dephasing with the NR waveform ∆φh.The dotted-dashed red horizontal line
in the bottom panel indicates zero dephasing with the NR waveform. Both
SEOBNRv4 and SEOBNRv4HM waveforms are phase aligned and time shifted at
low frequency using as alignment window tini = 1000M and tfin = 3000M .
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I. Comparison of multipolar precessing models
to numerical-relativity surrogate waveforms

In this appendix we compare directly SEOBNRv4PHM and IMRPhenomPv3HM
to the NR surrogate model NRSur7dq4. We choose a starting frequency
corresponding to 20 Hz at 70 M� (this is essentially the limit of the length for
NR surrogate waveforms). We generate 1000 random configurations, uniform
in mass ratio q ∈ [1, 4] and in spin magnitudes ∈ [0, 0.8], and with random
directions uniform on the unit sphere. The left panel of Fig. 3.18 shows
the summary of the unfaithfulness as a function of total mass for all the
cases considered, for IMRPhenomPv3HM and SEOBNRv4PHM. We see that the
median and 95th percentile values for both models are close to the values
in Fig. 3.12, with SEOBNRv4PHM having a median unfaithfulness below 1%
and IMRPhenomPv3HM about a factor of 3 larger. The right panel of Fig. 3.18
shows the maximum unfaithfulness distribution and the same trends are also
observed. SEOBNRv4PHM outperforms IMRPhenomPv3HM, with the median of
the former being 4 times smaller than the one of the latter. Finally, to gain
further insight into the behavior of the waveform models across the parameter
space, we show in Fig. 3.17 the maximum unfaithfulness as a function of
mass ratio and the effective spin.
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J. Parameters of the new 118 NR simulations

267



J. Parameters of the new 118 NR simulations
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J. Parameters of the new 118 NR simulations
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K. Differences between LALInference and
RIFT

In Sec. 5.3.1 we discuss how higher-order modes affect the posterior distribu-
tions for the various source properties of GW170729. We argue that waveform
systematics are small since results with IMRPhenomHM and SEOBNRv4HM
agree well with each other, and the latter agrees well with NR waveform
models. The investigation of waveform systematics, though, also reveals that
there is a residual small disagreement between results with SEOBNRv4HM
obtained with LALInference and RIFT. We have performed extensive in-
vestigations into the nature of this disagreement and have been ultimately
unable to pinpoint its origin.

LALInference and RIFT are independently-implemented codes with dif-
ferences in data-handling, likelihood estimation, algorithm, etc. Despite
these differences, in this work we have found good agreement between re-
sults obtained by the two algorithms for waveform approximants that do
not include higher-order modes, see Tables 5.2 and K.1. However, for wave-
forms with higher-order modes and in particular the direct comparison using
SEOBNRv4HM, we find that the two codes produce results that differ for the
mass ratio at the 7% level. We also find that the two codes produce consistent
results for the effective spin and the detector-frame total mass of GW170729,
though we are unable to check the source-frame total mass which RIFT did
not compute. See Table K.1 for more estimates.
We performed a number of reanalyses of the data in order to test the

effects of various differences between the two algorithms. On the RIFT side
these tests include: the NR grid, the specific choice of fitting coordinates,
the noise PSD calculation, the data handling, the sampling rate, the lower
frequency cut-off, the Monte-Carlo integration, the likelihood evaluation, the
summation of higher-order modes to get the waveform, and the time window
of the analysis. More technical details about these tests are presented in [472].
We also performed LALInference runs ignoring the detector calibration
uncertainty. We found that none of these tests could account for the shift in
the mass ratio posteriors.

Given that and the long history of testing and usage of LALInference, in
this paper we also follow previous studies by the LIGO/Virgo Collaborations,
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K. Differences between LALInference and RIFT

Parameter q χeff
SEOBNRv4HM (χ) 0.59+0.34

−0.24 0.29+0.25
−0.30

NR/NRSur7dq2 (χ) 0.64+0.32
−0.24 0.33+0.22

−0.26
NR/NRSur7dq2 (χz) 0.67+0.30

−0.24 0.40+0.22
−0.24

NR/NRSur7dq2 HM (χ) 0.58+0.34
−0.24 0.29+0.23

−0.28
NR/NRSur7dq2 HM (χz) 0.62+0.32

−0.23 0.37+0.25
−0.24

NR/NRSur7dq2 (1g) 0.91+0.08
−0.12 0.38+0.20

−0.25
NR/NRSur7dq2 (2g) 0.58+0.23

−0.20 0.34+0.19
−0.22

NR/NRSur7dq2 HM (1g) 0.91+0.09
−0.12 0.38+0.21

−0.23
NR/NRSur7dq2 HM (2g) 0.55+0.21

−0.19 0.31+0.21
−0.23

Table K.1.: Estimates for the parameters of GW170729 obtained with RIFT
using various priors and waveform models. We quote median values and 90%
credible intervals for the the effective spin and HPD for the mass ratio. We
follow similar notation as Tables 5.2 and 5.3.

for example [32, 473], and use LALInference for our main results. We do
note, though, that RIFT results are qualitatively consistent and quantitatively
close to LALInference and the discrepancy is only noticeable when higher-
order modes are taken into account. The small residual disagreement will be
the focus of future investigations.
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