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Abstract

In the last five years, gravitational-wave astronomy has gone from a purerly
theoretical field into a thriving experimental science. Several gravitational-
wave signals, emitted by stellar-mass binary black holes and binary neutron
stars, have been detected, and many more are expected in the future as
consequence of the planned upgrades in the gravitational-wave detectors. The
observation of the gravitational-wave signals from these systems, and the
characterization of their sources, heavily relies on the precise models for the
emitted gravitational waveforms. To take full advantage of the increased
detector sensitivity, it is then necessary to also improve the accuracy of the
gravitational-waveform models.

In this work, I present an updated version of the waveform models for
spinning binary black holes within the effective-one-body formalism. This
formalism is based on the notion that the solution to the relativistic two-
body problem varies smoothly with the mass ratio of the binary system,
from the equal-mass regime to the test-particle limit. For this reason, it
provides an elegant method to combine, under a unique framework, the
solution to the relativistic two-body problem in different regimes. The main
two regimes that are combined under the effective-one-body formalism are
the slow-motion, weak field limit (accessible through the post-Newtonian
theory), and the extreme mass-ratio regime (described using the black-hole-
perturbation theory). This formalism is nevertheless flexible enough to
integrate information about the solution to the relativistic two-body problem
obtained using other techniques, such as numerical relativity.

The novelty of the waveform models presented in this work is the inclusion
of beyond-quadupolar terms in the waveforms emitted by spinning binary
black holes. In fact, while the time variation of the source quadupole moment
is the leading contribution to the waveforms emitted by binary black holes
observable by LIGO and Virgo detectors, beyond-quadupolar terms can be
important for binary systems with asymmetric masses, large total mass, or
observed with large inclination angle with respect to the orbital angular
momentum of the binary. For this purpose, I combine the approximate
analytic expressions of these beyond-quadupolar terms, with their calculations
from numerical relativity, to develop an accurate waveform model including
inspiral, merger and ringdown for spinning binary black holes. I first construct
this model in the simplified case of black holes with spins aligned with the
orbital angular momentum of the binary, then I extend it to the case of

IV



generic spin orientations. Finally, I test the accuracy of both these models
against a large number of waveforms obtained from numerical relativity. The
waveform models I present in this work are the state of the art for spinning
binary black holes, without restrictions in the allowed values for the masses
and the spins of the system.

The measurement of the source properties of a binary system emitting
gravitational waves requires to compute O(10” — 10°) different waveforms.
Since the waveform models mentioned before can require O(1 — 10)s to
generate a single waveform, they can be difficult to use in data-analysis
studies given the increasing number of sources observed by the LIGO and
Virgo detectors. To overcome this obstacle, I use the reduced-order-modeling
technique to develop a faster version of the waveform model for black holes
with spins aligned to the orbital angular momentum of the binary. This
version of the model is as accurate as the original and reduces the time for
evaluating a waveform by two orders of magnitude.

The waveform models developed in this thesis have been used by the LIGO
and Virgo collaborations in the inference of the source parameters of the
gravitational-wave signals detected during the second observing run (02),
and first half of the third observing run (O3a) of LIGO and Virgo detectors.
Here, I present a study on the source properties of the signals GW170729
and GW190412, for which I have been directly involved in the analysis. In
addition, these models have been used by the LIGO and Virgo collaborations
to perform tests on General Relativity employing the gravitational-wave
signals detected during O3a, and to analyze the population of the observed
binary black holes.
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1. Introduction

1.1. Introduction to general relativity

General relativity (GR]) was proposed by Albert Einstein in two seminal
papers |7,[8] as an attempt to overcome two fundamental issues in Newtonian
gravity. The first problem dates back to the 19th century, when Urbain Le
Verrier found a discrepancy between the observed motion of Mercury and
the Newtonian prediction [9]. The second problem is theoretical, and arose
when Einstein tried to incorporate Newton’s theory of gravitation into the
framework of special relativity. In fact, Newton’s theory is inconsistent with
special relativity as it implies the instantaneous influence of one body on
another. Both these problems are solved by [GRl From the experimental side,
the equations of motion for Mercury’s orbit include correction terms, with
respect to the Newtonian equations, which resolve the discrepancy with the
observations. In addition to this, other predictions have been confirmed
by multiple experiments [10] over the years. From the theoretical perspective,
is a local theory, hence action at a distance is not possible.

In [GR] spacetime is not a static and absolute entity, as in the case of
the Newtonian theory, but rather deformed by the presence of matter and
energy. In this framework, gravity is not considered as a force between two
massive objects, but as spacetime curvature. The relation between mass-
energy content in a system, and resulting spacetime curvature, is given by
Einstein’s field equations

1

R, — §9WR = SZFTW. (1.1)
The quantities R, and R are the Ricci tensor and scalar respectively; they are
functions of the metric tensor g,,, which describes spacetime geometry. T,
is the energy-momentum tensor, which accounts for the mass-energy content
in a system. A solution to these equations is a metric tensor g, describing
a spacetime geometry, whose curvature depends on the mass-energy content

of the system.
The equations of motion of a point particle in a generic spacetime g,,, can
be found using the equivalence principle, one of the foundational ideas in
From the equivalence principle, there always exists a local inertial frame,
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where the equations of motion of freely falling bodies take the same form
they would take in absence of gravity. Mathematically, this translates into
the equation ,
=zt
o 0, (1.2)
where 7#(7) are the coordinates of a point particle in the locally inertial
frame and 7 is an affine parameter of the worldline. The metric tensor in this
frame is locally flat, namely g, ~ 7., = diag(—1,1,1,1) in the spacetime
region close to the origin of the frame. Starting from this local inertial frame,
one can obtain the equations of motion in any generic frame z¥ = z¥(%"),
by applying the coordinate transformation to Eq. . The result is the
well-known geodesic equation
2 . v
Ca” o ddT (1.3)
dr? Wodr dr
which is the general relavitistic generalization of the Newtonian law of gravi-
tation. The quantities I'* , are called affine connections: they depend on the
derivatives of g, in the new coordinates, and carry the gravitational effects
(as well as other inertial forces).

General relativity predicts a plethora of phenomena that are absent in
Newtonian theory. I will now introduce two of them that are relevant for this
thesis: black holes (BHs) and gravitational waves (GWs).

The first exact and non-trivial solution to Einstein’s field equations was
found by Karl Schwarzschild [11,|12], just one year after the publication of
Einstein’s first article on [GRl This solution describes the gravitational field
outside a spherically-symmetric non-rotating body. An interesting property
of this solution appears when the radius of the body is smaller than a
characteristic length called Schwarzschild radius R, = 2GM/c?, where M
is the mass of the body. In this case the Schwarzschild solution features
an event horizon, which is the defining property of a [BH| the so-called
Schwarzschild [BH. The event horizon is a hypersurface that divides two
regions of the spacetime: the interior and the exterior of the [BHl The
gravity is so strong in the interior that no particles nor radiation can escape
from it. Generalizations to the Schwarzschild [BHl were found by: Hans
Reissner and Gunnar Nordstrom [13}[14] in the case of a non-rotating [BH]
with an electric charge; Roy Kerr in the case of a rotating [BH [15] (Kerr
BH); and finally by Ezra Newman in the case of an electrically-charged
rotating [BHI [16]. Theoretical arguments, usually referred to as “no-hair
conjecture” [17-19], suggest that isolated [BHE are very simple objects that
can be completely characterized by their mass, angular momentum and
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electric charge. This is in stark contrast to regular stars, for which many
more properties need to be given to characterize them, even approximately.
[BHE are also very compact objects, the ratio between their mass M and their
radius R ~ R, is M/R; = ¢*/(2G) =~ 10°M/Rs. There is observational
evidence for two different classes of astrophysical [BHk depending on their
mass: supermassive [20-23] and stellar-mass [BHk [24}{36]. Supermassive [BHk
are approximately in the range 10° < M < 10 M. Their formation remains
an open question, but the most accredited theory suggests that they grow
by accretion and mergers with other [BHk, starting from a “seed” [BHl with
lower mass (see Ref. [37] for a review on the subject). Stellar-mass [BHk have
masses approximately in the range 1 < M < 100M, and are thought to form
as a result of the gravitational collapse of a star (see Refs. [38-40] for more
details). Some theories also predict the existence of a class of BHb that is not
a product of stellar evolution: the so-called primordial [BHk. They are formed
as a result of fluctuations or phase transitions in the early universe (see
Ref. [41-44]). The expected mass spectrum for this class of [BHk is broader
than the other two, but no observations have so far confirmed their existence.
For the work of this thesis, I focus on stellar-mass [BHk, as they are sources
for ground-based detectors. Observations indicate that stellar-mass [BHk
have non-negligible angular momentum, while there are strong theoretical
arguments suggesting that they have negligible electric charge [45}46]. For
this reason, in the rest of the thesis I will consider [BHk as neutral in charge.

The second prediction that is widely used in this thesis are [GWk. They
are perturbations of the gravitational field that propagate as waves far from
the source, and carry both energy and momentum. They were predicted by
Einstein [47,48] one year after the publication of [GRl The first evidence for
the existence of was obtained by Russel Hulse and Joseph Taylor, by
measuring the variation in the time of arrival of radio pulses from binary
pulsars [49]. This variation is consistent with that predicted by [GR] when
the orbit of the system shrinks as a consequence of the energy and angular
momentum lost by the emission of [GWk. The existence of has been
recently confirmed by the LIGO Scientific Collaboration [27], which, using
laser-interferometry techniques, was able to measure the signal passing
through Earth emitted by a binary black-hole merger (see Sec. for more
details on this topic).

The equations for the generation and propagation of can be pertur-
batively derived by linearizing the Einstein’s field equations around the
flat metric nm,ﬂ using the ansatz g, = 7, + h,, + O(h?) with |h, | < 1.

! Linearization about a generic metric tensor is also possible but it requires a more careful
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When written as a function of Buv =h,, — %77”,,7]&6 h.s, and using the Lorenz
gauge (0, h#* = 0), the linearized Einstein equations are

_ 1 _
Oh, - —107C , +O(h?). (1.4)

pv 2 n
The O symbol in the equation above is the d’Alambertian operator in flat
spacetime, and T, is the stress-energy tensor associated with the source of
[GWK. The 10 degrees of freedom of the symmetric tensor h,, are reduced
to 6 in fLW, by imposing the 4 conditions defining the Lorenz gauge. By
computing the coordinate divergence of Eqs. , and using the Lorenz
gauge conditions, it is straightforward to derive the equations

O"T,, =0+ O(h?), (1.5)

namely the conservation of the energy-momentum tensor in the linearized
theory.

In vacuum (7},, = 0), the Lorenz gauge conditions do not fix the gauge
completely. In fact, Eq. and the Lorenz gauge conditions are invariant
under the coordinate transformation z* = z# + (#(x) with OJC* = 0. One
can use this additional freedom to impose other 4 conditions on h ,,, and
reduce the number of degrees of freedom to 2. A very common choice for
these 4 conditions is h*° = 0 and h’; = 0 (i = 0,1,2) that, together with
the 4 conditions of the Lorenz gauge, define the transverse-traceless (or TT)
gauge. The metric tensor pertubation in the TT-gauge A" can be computed

A~

directly from h,,, by using the projection operator A;;x(IN) (see Eq. (1.36)
in Ref. [50] for its definition) where N ==z /7 is the direction of propagation
of the [GWl For example, the metric tensor in the TT-gauge associated with
a propagating in the z direction is

0 0 0 O

TT _ Akl(NT _ 2 ks st |0 hye R 0
hiy = Aj(N = 2)hyy = Ajj(N = 2)hyy = 0 h, _}zr ol (1.6)

0 O 0 0

where h, and h, are the two physical degrees of freedom or polarizations,
usually referred to as plus and cross polarizations respectively. The power
radiated as consequence of the emission can be easily computed in the

treatment (see sections 1.4.1 and 1.4.2 in Ref. [50]). For simplicity here I use the flat
metric as background.
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TT-gauge as (see Sec.1.4.3 in Ref. [50] for the details on the calculation)
dEgw

oY — 327TG /dQ <Z hTThTT> (1.7)

where Dy, is the luminosity distance between source and the observer, the
integral is performed over the solid angle, and the average (-) is computed
over several characteristic periods of the

Using the method of Green’s functions, one can formally write a solution

to Eq. (L.4)) as:
. 4G o, 1
hw(t, x) = o d’x r — Ty (t —

When the observer of the [GW] signal is at a distance Dy, = |x| > d, where
d is the typical size of the source, the term |z — x’| can be expanded
as |t — x’'| = Dy, — a’ - A+ O(d?/Dy). At leading order in d/Dj, the
energy-momentum tensor is then

D R D &y D
Ty (t—L+ z ",:c’) ~ T (t—L,a:’) +2 natT;w (t—L,-’E'>+
C C C

;oA 2
: D
+ (”” C”) 02T, (t— CL;,;) +o (1.9)

where each time derivative of T, carries a factor v/d, with v being the typical
source velocity. The energy-momentum tensor is now a series in v/c. At
leading order in d/Dy, and v/c, and when using the TT-gauge, Eq. (1.8)) is
then

4 D 3
hi TE(t,7) = c4gLAZl n) [/di3 "Th ( _71“ m) —i—@( ) 1—%(’)((}2)

|z — |

,:1:') +0(G?*).  (1.8)

(1.10)
_2G kl»\-ld2 3,/ DL/// v? 2
= C4DLAij(n) _CthQ/d iUTOO (t— 7,33 ) T +O <C> +O<G )
(1.11)
2G s [ DL ’ v\? 2
= iy N (%) dtQle (t ¢ ) o (c) O, (1.12)

where Eq. ((1.11)) is obtained integrating by parts Eq. (1.10)) two times, and
employing the identity 0,7*" = 0. The quantity Qp, used in Eq. (1.12)), is
the quadrupole moment of the source, defined as

Qu = /d?’:c’ﬂ L (1.13)
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For this reason, Eq is called quadrupole formula.

Since Eq. contains a second time-derivative of the quadupole moment,
one should not expect a emission from objects for which the quadupole
moment is constant over time, as for example spherical or axisymmetric
stationary distributions of matter. This consideration already allows one to
exclude isolated stars as source of [GWE, as they are approximately spherically
symmetricﬂ. On the other hand, the quadupole moment of binary systems is
not constant, therefore they are the natural candidate as source.

It is instructive to use the dimensional analysis in Eq. to estimate
the expected amplitude as a function of the parameters of the binary
system. A binary system with total mass M, and typical binary separation
and velocity respectively d and v, has a quadupole moment Q,, o< Md>.
Considering that every time derivative gives a factor v/d, with v? o« GM/d,

one can derive that dimensionally Eq. (1.12)) reads
G* 1 M* (GM) (GM)

prr| o LM GM
Y ‘OC A Dy, d 2Dy, c2d

Since the amplitude is suppressed by the factor G?/c* ~ 1072(Re /My )?,
the only hope to detect is by using compact objects, i.e. systems with
large total mass and small radius, to be able to reach separations d of the
order of GM/c*. As discussed before, [BHk are extremely compact objects,
therefore binary black-hole (BBH) systems are perfect candidates for detecting
[GWk. For a[BBHI system with masses ~ 10 M, located in the Virgo cluster,
(GM/c*Dy,) ~ 10720, Since, for BBHE, (GM/c*d) can reach values close to 1,
also |hT| ~ 1072,

Models for the signal emitted by [BBHl systems are crucial for their
detection and the source characterization. The main goals of the work
summarized in this thesis are (i) improving these models by including the
effect on the waveforms of higher-order corrections to the quadupole formula
and, (ii) testing the consequences of these improvements on the measurement
of BBHE properties.

In the next section of this chapter, I will outline the anatomy of the
gravitational waveforms emitted by BBH]systems and summarize the methods

(1.14)

2Real stars are not exactly spherically symmetric, therefore they are expected to emit
with a magnitude proportional to their deformation [51]. Since the latter is
expected to be small (see Ref. [52] for a review on the mechanism originating the
deformation), the [GW] emission from these systems is difficult to detect. However, there
are good chances to observe such signals in the future, because the sensitivity of
the experiments increases with the observation time, and it will increase even more
with future ground-based detectors, like Einstein Telescope [53] and Cosmic
Explorer [54].
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used for their detection and characterization. Finally, in the remaining two
sections, I will give a comprehensive introduction to the work discussed in
this thesis.

1.2. Binary black-holes as sources of gravitational waves

Binary systems composed of two stellar-mass [BHk are the main sources of
for ground-based detectors, such as LIGO [55] and Virgo [56].
There are two canonical channels typically considered for the formation of
these systems: isolated binary evolution [57] and dynamical formation [58]. In
the first case, the progenitor of the BBHI system is a binary system composed
of two massive stars that collapse into [BHk during the final stage of their
lifetime. In the second formation scenario, the BBH| mergers originate from
the dynamical interactions in globular clusters or nuclear star clusters.

In Sec. I describe the signal emitted by [BBHI systems and discuss
the main techniques used for its computation. In Sec. [I.2.2] I summarize the
experimental methods and data analysis approaches used for the detection of
these signals. Finally, in Sec.[[.2.3] T introduce the methods adopted to
measure the parameters of the [BBH| system from the signal.

1.2.1. Anatomy of the gravitational waveforms

The coalescence of a[BBH|system is conventionally divided into three different
regimes: inspiral, merger and ringdown.

1.2.1.1. Inspiral

The inspiral begins with the two [BHk well separated. Here, I outline their
motion and the emitted in this regime. While in principle the two [BIk
could follow a generic elliptic orbit, it is common to approximate their motion
with a quasi-circular trajectory. This approximation is motivated by the fact
that ground-based detectors are currently only able to observe the latest
stage of the inspiral. This is when the orbital eccentricity has been reduced
as a consequence of the emission during the earlier inspiral phase (see
Sec.4.1.3 in Ref. [50] for the explicit calculation of this effect)’} For this
reason, throughout this thesis, I will restrict my focus on [BBH] systems in
quasi-circular orbits.

3Within the dynamical formation scenario it is possible that 5 — 10% of the [BBH] systems
have non-negligible eccentricity even at the frequencies for which the signal is
observable by ground-base detectors [59%/60].
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I begin by discussing systems in circular orbits, which serve as a baseline for
the generalization to the case of interest of quasi-circular orbits. To describe
the motion of the two [BHk with masses m; and msy and relative distance
and velocity respectively d and v, I use the center of mass frame that I
show in Fig. . This is an inertial frame, whose basis é%g) is aligned with

Ly = Ln/|Ln|, the direction of the Newtonian orbital angular momentum
Ly = pdxv, where pn = myms/(mi+ms) is the reduced mass. The basis éh)

of this frame is conventionally defined as ci(t = tini) = d(t = tini)/|d(t = tini)],

the direction of the separation between the two [BHk at a conventionally

chosen initial time #;,;. The frame is completed by the basis é%2) = éb) X éh)-

In this frame, IV is the direction of an observer, defined by the angles ¢ and
0. Under the assumption of circular orbits, and in the frame defined above,
the equations of motion of the [BBH| system at leading (Newtonian) order are

d
s {cos(worpt), sin(went), 0}, Ty = _m T, (1.15)
mo

r1 =

where M = mq + ma, wop, = /GM/d3 and d = |d|.

At leading order, the signal emitted by the binary during the inspiral
can be calculated by inserting in Eq. the quadrupole moment of the
binary, computed using Eq. H The result is

4 (GMNB (rfaw P 1+ (En - N)? .
hy(t) = oo ( 2 ) ffw ( 2N ) cos (27t faw + 200 + PG
L
(1.16)
4 (GMN\? (T 2 ~
0 =g (%57) (F) B NsinCrtuafow + 260 + o)
L

(1.17)

where M = (m1m2)*°/(my + ms)'/® is the chirp mass, Dy, the luminosity
distance of the source from the observer, t,, = (t — Dy, / ¢) the retarded time
and ®%y, an integration constant. The scalar product Ly - N coincides Wlth
cost. Under the approximations discussed before, the frequency of the [G\

4The conservation of the energy-momentum tensor in Eq. , used to derive Eq. ,
implies that in the linearized theory self-gravitating sources of move following
geodesics in a flat spacetime, i.e. straight lines. To generalize Eq. to self-
gravitating systems moving in Newtonian orbits, one should include, in the derivation
of this equation, the terms O(h2) x O(G?) in Eq. (L5). These terms give corrections
at higher orders in G in the waveform, compared to its leading order expression which
I am considering here. See Sec. 4.2 in Ref. [61] for more details.

w)
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N - | |
€o) = €3 X €

NI 2
€, = d(ty)

Figure 1.1.: The inertial frame, defined by the directions of the Newtonian
orbital angular momentum Ly and separation d(ti,;). In this frame, the
observer is in the direction IN, defined by the angles ¢ and .

signal fow = wew/27m is faw = 2forb, With forn = worn/27m being the orbital
frequency. The [GW] signal predicted by Egs. and implicitly
assumes that the binary remains at a fixed separation d. This is not the
case, since some of the energy of the binary is lost through the emission
of [GWk. Since the energy of the binary, at leading Newtonian order, is
E = —-Gmymy/d, and d®> = G M/w?,, a lost of energy induces the binary
to shrink and the orbital frequency to increase. As a consequence, the
frequency increases too. Its variation can be computed by inserting the

expressions for hy and hy in Eq. (1.7), to obtain the radiated power in [GWk,
then equating the latter with —dFE/dt. The result is

fGW = —T GW > (118)

5 3
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which can be integrated to obtain the frequency time evolution

15 1 \*/GM\*
font) =2 (557 —5) (Ca) 1-19)

with ¢, being the coalescence time. By computing the time derivative of the
orbital energy and using Eq. (1.18]), one can also find the expression for the
relative radial velocity of the two [BHk

7 2 .or
d= _g(worbd)“ b

(1.20)

With worb = wGw/2 = ngw.

Since |hy «| fé@, the emission will increase as a consequence of the
growing frequency, inducing an even larger loss of energy. This process
over a long period of time leads to the coalescence of the system, if one
can assume that the binary is on a circular orbit during every step of this
process, and therefore Eq. holds. This assumption, also called adiabatic
approzimation, is only true if the tangential velocity wq,d of the [BHE is much
larger than their radial velocity d. From Eq. , one can observe that the
condition above is fulfilled as long as e /wiy, ~ O(W°/®) < 1.

Under this approximation, the motion of the binary system can be described
as a sequence of quasi-circular orbits, whose equations of motion are

w1 = o {cos(@oun (1)), sin(@arn (1)), 0} azzz—m—:azl, (1.21)

where

5GM

3

—5/8
) Rt

(1.22)
with ®qp,(t.) being the coalescence phase. Similarly, the explicit expression
of d(t) can be computed by integrating Eq. (1.20).

The signal from this system is obtained, as before, by inserting the
quadrupole moment of the binary in Eq. . The result of this calculation
at leading order in v/c and G is

t t
Ponlt) = [ W (t) = 7 [t filt') = —(

le

4 (GM\P] 5 114 (In - N
0 () ] B o
] . (1.23)
4 (GMNP[ s M
hx (t) :D7L ( 2 ) m LN - N sin (égw(t) + 2@0) s (124)
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1.2. Binary black-holes as sources of gravitational waves

where I redefined the coalescence time as t. — t. + Dy, /c to incorporate the
delay due to the propagation of the wave from the source to the observer.
The phase of the signal, at this order in G and v/c, is simply ®qw(t) =
20, (%), and its instantaneous frequency is fow(t) = 2fomn(t), as before. It is
important to highlight that, at leading order in G and v/c, the phase ®gw ()]
depends on the parameters of the [BBHl system only through the chirp mass
M.

A more accurate description of the signal can be obtained perturba-
tively solving Einstein’s equations for the binary system at higher orders
in the expansion parameters G and v/c. In the case of a binary system, and
in general for any self-gravitating system, these two expansion parameters
coincide, by virtue of the virial theorem. For this reason, one can define
a unique expansion parameter ¢ ~ (GM/c3d)Y? ~ v/c. The signal,
and the two-body dynamics obtained with this procedure are a perturbative
series in €, commonly referred to as post-Newtonian (PN]) expansions. In
the following, I discuss some properties of the [PNl expansion of the
signal that are relevant for this thesis. The interested reader can find more
informations about the [PN| calculations in Ref. [62] and in Sec. 5 of Ref. [50].

The first correction to the phase is proportional to €? relatively to
the leading-order term (also referred to as m correction). This new term
depends on the parameters of the BBH| system through the symmetric mass
ratio v = myma/(my + mg)? [63]. Starting from the term proportional to €
relatively to the leading-order term, the phase of the signal also depends
on the spins of the two [BHk, S; = (Gm?/c?)xi, with |x;| < 1 for Kerr [BHk.
In particular, the 1.5PNl correction to the phase depends on Sj - L [64],
namely the projection of the spins along the orbital angular momentum of
the binary L. Because of this term, and its sign, the coalescence of [BBHI
systems with spins aligned with L has a longer duration compared to systems
with spins of the same magnitude but anti-aligned with L, or in another
generic direction. In fact, when the spins are aligned with L, the total
angular momentum of the binary J = L + S; + S5 has the largest possible
magnitude |J| = |L 4+ Sy + S2| = |L| + |S1| + |S2| and, before the [BBH]
system can merge into a single [BH| it has to lose enough angular momentum
by emitting to allow the spin of the final [BH] to respect the Kerr bound
% Stinal| /(Gm?,,;) < 1. Since, in this case, the binary coalescence has a
longer duration, also the waveform will last longer. It is also interesting to

5The phase of the signal is more relevant than the amplitude in data-analysis
applications because detectors are more sensitive to it. The reason will be clear
when I will introduce detectors in Sec.

5The PNl term corresponds to €™ corrections.

11



1. Introduction

discuss the effect of [BHl spins on the two-body dynamics and the emitted
waveform, in the case where the spins are not aligned nor anti-aligned with L.
In this case, the interaction between L and the [BHl spins induces a precession
of the orbital plane of the system [65-67]. This in turn causes a modulation in
the amplitude and the phase of the waveform. I leave the detailed discussion
of precessional effects to Sec. [[.4.2.4]

Today, relativistic corrections of the two-body dynamics and waveforms are
known to much higher[PN]orders than 1.5PNlfor non-spinning [62//68//69/69-72]
and spinning [64}/67,73-88] binaries. While these [PN] corrections improve
the accuracy of Egs. (1.21]), (1.23) and ([1.24)), the series converges slowly,
and it is inaccurate when approaching the plunge and the merger, where
e — 1 [89,90]. The validity of the signal and [BBH| dynamics obtained
using the [PN] expansion can be extended to larger values of € by using the
effective-one-body (EOB) formalism [91},92]. The [EOB] formalism includes
some non-perturbative strong-field effects in the two-body dynamics, which
are especially relevant during the late stage of the inspiral. Since the waveform
models I describe in this thesis are based on the [EQBl formalism, I will provide
an extensive introduction of this approach in Sec. [1.4.2]

When perturbatively solving the Einstein’s equations at higher orders
in €, one finds that the [PNl corrections to the quadrupole formula Eq.
depend on higher-order multiple moments of the binary. Correction terms
corresponding to different multiple moments of the binary are proportional
to distinct functions of the angles ¢ and ¢y. For this reason, it is useful to
decompose h, and h, into a set of orthonormal bases on a sphere. This sepa-
rates their dependence on ¢ and g from that on the other parameters of the
binary, such as masses and spins. For this purpose, the most commonly used
set of orthonormal bases are the —2-spin-weighted spherical harmonics [93],
which are defined as

B m | (LM =—m)20+1) . 5 /¢
—2Yim(t, po) = (—1) \J (=2 +2)! sin® <2>

142 _ )
« Z (l + 2) ( [—2 ) (_1)l+27r eimPo COth—Q—m <;> )

o r r—2—m
(1.25)

When decomposed in —2-spin-weighted spherical harmonics, the combination
hy —ihy reads

hy(t; A) —ihy (t; X)) = i é Yo (2, 00) hem (t; N), (1.26)

(=2 m=—/

12



1.2. Binary black-holes as sources of gravitational waves

where the functions hyg,(t; A) are the modes, not dependent on ¢ and ¢y,
and A is a vector including all the parameters of the binary, defined as

AE {m17m27X17X17DL7L79007¢79a ¢7tc}- (127)

The angle ¥ included in the definition of A is the polarization angle, which
describes the orientation of the projection of the binary’s orbital momentum
vector L onto the plane on the sky. The angles # and ¢ define the position
in the sky of the source. Before my work, most of the waveform
models used to analyze the signals detected by LIGO and Virgo only
included the modes (¢,|m|) = (2,2), for which leading-order expressions
are in Eqs. and (L.24). The other modes are typically referred to as
higher-order modes (HMs) or higher harmonics, and they are the main topic
of this thesis. In Sec.[I.4.1] I will examine the reasons they were neglected in
the past, and I will provide the motivations to include them for current and
future data-analysis studies with LIGO and Virgo detectors. In Fig. [[.2] I
show the most important modes emitted during the inspiral, as well as
during the other phases of the [BBH| coalescence, which I describe below.

1.2.1.2. Merger

The inspiral phase ends when the relative radial velocity of the two [BHk
becomes comparable to their relative tangential velocity, and the condition
Worb /W2y, ~ O(v° /) < 1 is violated. In this regime, the [BHk plunge into
each other with a non-negligible radial velocity. After the plunge, the two
[BIIk go through the non-linear phase of the binary coalescence called merger.
No analytical techniques are available to compute the BBH| dynamics and the
emitted waveform in this phase. The waveform in this regime can be computed
through solving numerically the fully non-linear Einstein’s equations on a
supercomputer. An entire field, called numerical relativity (N, is devoted to
this goal (see Ref. [94] for an extensive review of this topic). [NRlis based on the
3 4 1 decomposition of spacetime, originally developed in the Arnowitt-Deser-
Misner (ADM]) formalism [95,96]. In this formulation, the Einstein’s equations
are divided in two different sets: 4 constraint equations and 12 evolution
equations. The constraint equations are solved on a spacelike hypersurface
and the evolution equations are used to connect nearby hypersurfaces by
conserving the constraint equations. In practice, [NR] simulations require
a reformulation of the 3 + 1 decomposition such that the equations are a
well-defined initial value problem, that can be solved numerically [97-99].
This was a formidable task and, for this reason, the first BBHI[NR] simulation
including the merger was successfully performed as late as 2005 [97-99]. Since

13
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Figure 1.2.: Real part of the modes ({,m) = (2,2),(3,3),(4,4),(5,5)
for a non-spinning [BBH] system. The vertical line shows the peak of the
amplitude of the mode (¢,m) = (2,2). These modes have been generated
with the waveform model described in Sec. .

then, many simulations contributed to shed light on the merger. During the
merger phase, the amplitude and the instantaneous frequency of each
mode increase, as it is clear from Fig. [I.2] codes currently provide the

14



1.2. Binary black-holes as sources of gravitational waves

“gold standard” solution to the relativistic two-body problem in [GRl They
are now capable to generate more accurate and longer waveforms than in the
past in reasonable timescales (O(months)). There are currently thousands
[NR] simulations of BBH| systems performed in different regions of the binary
parameter space [2,/100H104]. However, waveforms alone cannot be used
in data analysis applications for the LIGO and Virgo detectors, as their
time-duration is still too short, and they cover a limited region of the binary
parameter space.

1.2.1.3. Ringdown

The final product of the [BBH| merger is a perturbed Kerr [BH|, which reaches
the equilibrium state by emitting [GWk. At linear order in the perturbation,
this [BHl can be described by the metric tensor

g =gl R R <, (1.28)

where gf%  is the Kerr metric, and the tensor perturbation A" can be
computed within the [BH| perturbation theory framework, by providing ap-
propriate boundary conditions. The signal emitted as a result of this
process is called ringdown. The signal in this phase is a superposition
of the quasi-normal modes (QNMk) of the [BH remnant [105-107], whose
decomposition in —2-spin-weighted spherical harmonicsﬂ reads

hom(5X) = 3 Agn (A7 V1, (1.29)
n=0

In the equation above, the quantities oy,,,, are the complex frequencies
of the remnant [BHI that depend on its mass and spin. The factors Ay, are
instead complex constants, called excitation coefficients. The latter cannot
be computed within the [BH| perturbation theory framework, because they
depend on the details of the merger of the two [BHk [92,[109}{116]. Each mode
hem(t; A) is a damped sinusoid, as can also be seen in Fig. , oscillating at
the frequency R(cmy), which is the asymptotic frequency the modes approach
at the end of the merger. This prediction of the signal is also confirmed
by [NR] simulations [109].

While different techniques are able to predict the [GW] signal in different
regimes, for data analysis purposes one needs the complete signal for the
entire binary coalescence, as shown in Fig. [T.2l Over the years, three main

"The natural bases for the decomposition of the ringdown signal are the —2-spin-
weighted spheroidal harmonics [108].
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approaches have been developed to produce a smooth signal incorporating
inspiral, merger and ringdown: the [EQB] formalism, the phenomenological
approach, and the [NR] surrogate method. Since the work on this thesis
revolves around the approach based on the [EOB] formalism, I will provide,
in Secs. [1.4.2.1] and [1.4.2.2] an extensive introduction of this method, and
summarize here the other two approaches. In Sec.[I.4] T will also provide a
more extensive description of some waveform models developed within the
other two approches, which I use as comparison with the waveform models I
describe in this thesis.

In the phenomenological approach [117-127], the starting point are hybrid
[GW] modes constructed by smoothly blending [EOB inspiral modes with [NRI
[GW] modes including the late inspiral, merger and ringdown. These hybrid
modes are first converted to frequency domain, and then used to construct
phenomenological fits for the amplitude and phase of each mode.

The surrogate method is based on simulations. The waveform
models developed using this method [128-134], are capable of generating
new waveforms through interpolating available [NR] waveforms. Although in
the last few years these models have been proven capable to produce very
accurate waveforms, they are still limited to regions of the parameter space
where the [NR] waveforms can be generated with reasonable timescales.

1.2.2. Strategy for detection

In this section, I describe the main experimental and data analysis tools used
for the detection of [GWk.

In the proper detector frame, where the coordinates are marked using rigid
rods starting from a conventionally chosen origin, the effect of a traveling
through a region of spacetime can be described as a variation in the proper
distance of two nearby geodesics parametrized by x* and x* + (*, respectively.
In the idealized case, where other gravitational effects and external forces are
absent, the proper distanceﬂ between these two nearby geodesic in this frame
changes according to the equation for the geodesics deviation

(' = thTgﬂ (1.30)
where /" is the metric tensor perturbation associated with the in the

TT-gauge. The goal of a detector is to track the geodesic motion of
freely falling bodies, and observe if their proper distance changes according to

81n the proper detector frame, at leading order, proper distances coincide with coordinate
distances, see Sec.1.3 of Ref. [50] for more details.
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1.2. Binary black-holes as sources of gravitational waves

Eq. . Different experimental methods have been proposed over the years
to achieve this purpose (e.g. resonant mass detectors [135-137], pulsar-timing
array (PTAl) [138140], and atom interferometry [141-143]). T will focus here
on the laser-interferometry technique, which is used in the ground-based
LIGO and Virgo detectors.

A schematic example of a laser-interferometric detector is provided
by the Michelson interferometer. Real detectors are more sophisticated,
see Chapter 9 of Ref. [50] for an extensive review on the topic. In this
schematic example of a detector, a laser beam is divided by a beam-
splitter into two orthogonal beams with equal probability amplitudes. The
two beams travel through the orthogonal interferometer arms until they are
reflected by a mirror placed at the end of each arm. The reflected beams are
finally recombined at the beam-splitter, and the intensity of the recombined
beam is measured by a photodetector. The observed light intensity depends
on the relative phase between the two beams, which is a function of the
difference in their travel path. When a travels through the experimental
apparatus, it changes the length of the intereferometer arms according to
Eq. . This causes a variation in the light intensity which is observed
by the photodetector. The fractional variation of the arm length caused by
an incoming is AL/L ~ h, where h is the amplitude of the signal,
O(107%) for typical sources detectable by ground-based interferometers. The
obstacle for the detection is that, in a real interferometer, there are
other non-astrophysical forces that can cause a change in the arm length
of the interferometer which is much larger than the variation caused by a
[GWl These forces are usually referred to as noise sources. In the case of
LIGO and Virgo interferometers, these noise sources limit the detectors to
be most sensitive only in the frequency range 20 Hz < f < 1kHz. Below 20
Hz the sensitivity of these detectors is limited by the seismic noise caused by
mirrors movements as consequence of ground vibrations. At high frequencies,
starting from ~ 100 Hz, the limiting noise source consists of quantum shot
noise, specifically the statistical uncertainty in the light intensity measured
by the photodetector due to the discrete nature of light. In the intermediate
frequency regime, the most important noise source is the thermal noise due
to the atomic motion in the suspensions that sustain the mirrors of the
interferometer, and on the surface of the mirrors itself. See Refs. [55,{144] for
a detailed discussion of LIGO and Virgo noise sources.

Although LIGO and Virgo interferometers use various techniques to reduce
the effect of these noise sources (see Refs. [55]56,145,|146] for details), the
detector noise is still usually much larger than the typical signals. Never-
theless, it is possible to detect a signal buried in the noise by exploiting
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knowledge of the signal and the noise. Here I provide a basic introduction
to the data analysis techniques used to detect signals. However, more
sophisticated methods are employed in practice, see Ref. [147] for a complete
review on the topic. Since the discussion of these techniques is beyond the
scope of this thesis, I will only outline them and provide the relevant references
for the interested reader.

The detector output in presence of a signal is

s(t) = h(t) + n(t), (1.31)

where n(t) is the detector noise and h(t) is the detector response to the
signal, typically |h(t)| < |n(t)|. The detector response to the signal is
given by h(t) = DYh;;, where h;; is the and DY is the detector tensor,
which depends on the geometry of the interferometer. In the case of LIGO
and Virgo detectors, h(t) is simply h(t) = F(0,¢,¢) hy + Fx(0,0,1) hy,
where F'y (6, ¢, 1) and F\ (0, ¢, 1)) are the so-called antenna patterns [148-150],
which depend on the wave polarization ¢ and the sky-position of the source,
as defined by the angles (0, ¢). The expressions of F\ (6, ¢,v) and F.. (0, ¢, )
are known and also h;; can be predicted for expected sources, as discussed in
the previous section in the case of [BBHl systems. For this reason, one can
use the best available model of h(t) as a filter to extract the true signal from
the detector output. This is a commonly used technique in signal processing,
its name is matched filtering.

A simplified version of this matched filtering procedure can be illustrated
by computing the average value of the detector output s(t) over a time period
T, when filtered by the estimated A(t). Under the assumption that the model
of h(t) exactly matches its true expression in [GR] this is

;/OTdth(t)s(t) _ ;/OTdthz(t)+;/()T dt h(t)n(t). (1.32)

Since, at first approximation, h(t) is an oscillating function with some typical
amplitude hg and characteristic frequency w, for large T the first integral
grows linearly in 7T'. Therefore the first term in the RHS of the equation is
proportional to hZ. The noise n(t) is an oscillating function with a typical
amplitude ny and timescale 79, it is not correlated with the signal h(t), and
it arises from an underlying random process. For this reason, the second
integral grows proportionally to 7/2, and the second term in the RHS of the
equation above scales as T~/2. In summary, the equation above reads

1 /T 0\ 1/2
= dth(t)s(t)~h3+(T) noho, (1.33)
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1.2. Binary black-holes as sources of gravitational waves

and one can conclude whether a signal is present in the detector data if
ho > (10/T)"/?ng, which is possible to fulfill even in the case ng > hy.

In the more realistic case of the LIGO and Virgo detectors, one starts from
the assumption that the noise n(t) is a realization from a stationary Gaussian
random process, therefore it can be completely described by providing its
mean value (n(t)) and its power spectral density (PSD) S, (f). Without loss
of generality, one can assume that (n(¢)) = 0, while the can be estimated
from the data as

S (f) = 2/0:o<n(t)n(t 4 7)) e kT (1.34)

where (n(t) n(t + 7)) is the autocorrelation function. Henceforth, for conve-
nience, I will work in the Fourier domain. Therefore I will consider h(f) and
5(f), the Fourier transform of h(t) and s(t), respectively.

A particular realization of the noise occurs with probability

P(n) = Ne z20lm, (1.35)

where N is a normalization factor and (-|-) is the inner product

(alb) z/_O:Odfd*(f)b(f;;;;(ﬂb*(f) :4%(/{)°°dfa*éizlj’f)f)>. (1.36)

Given a detector output s(t), the detection of a signal consists in a
comparison between the null hypothesis Hy, that s(¢) contains only noise,
with the signal hypothesis #;, for which also a signal is present. Using
Bayes theorem, one can write the probability of the signal hypothesis given a
particular detector output s(t) as

PO = 5T+ (Mo (s Ha) — p(sTHa) Lp(o1#) ZI
where p(s|Ho) (p(s|H1)) is the probability of the detector output s(t) under
the null (signal) hypothesis, and p(Ho) (p(H1)) is the prior probability of the
null (signal) hypothesis. The probability p(#;|s) depends on the detector
output only through the ratio p(s|H1)/p(s|Ho) which, using Egs.(L.31)) and
(1.35)), can be expressed as

p(H1)p(s|H1) p(s|Hy) [p(sml) P(Ho)]l

1 (s—hls—
p(s|Hy) _ e72C7 G wimye
p(sHo) ezl

(1.38)
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The function p(#H1|s) is monotonically increasing in the ratio p(s|H1)/p(s|Ho),
which in turn is a monotonic function of (s|h), because of Eq. (1.38]). Thus,
any choice for the threshold on the probability p(Hi|s) to accept the signal
hypothesis can be directly translated into a threshold in (s|h), or in its
normalized form, the signal-to-noise ratio (SNRI)

(f ))

f)
)

(sh) 49%(/0 éf)(
(

()

For this reason, one can directly use the to establish whether there is
a statistically significative evidence for a signal in a given data stream.
The filtering procedure, introduced for a simplified case in Eq. , appears
clearly in the numerator of the [SNR] where the detector output 3(f) is
filtered using the noise-weighted signal A(f)/S,(f). In signal processing,
the function Wi (f) = h(f)/S.(f) is typically called Wiener filter. With
this choice of the Wiener filter, the SNR] is maximized for 5( f)=h(f). Its
maximum value pop; = (h|h)Y/? is typlcally called optimal[SNEl The function
used for the Wiener filter, A(f), usually referred to as template, depends on
A, the parameters of the binary system, which are unknown at this stage.
Since for the detection purpose, one is interested only in finding the signal
regardless of the binary parameters, the for a given detector output
5(f) is computed against a discrete set of pre-computed templates spanning
the binary parameter space A, typically referred to as a template bank. The
largest obtained in this process, piemplate = p(\template) "ig compared
with the SNR] distribution expected in the case of only noise being present in
the detector output. An threshold p is set such that [SNR] values larger
than the threshold are unlikely to be due to noise. Therefore, a candidate
[GWI signal (or trigger) is recorded if, for a detector output s(f), piemplate jg
larger than the threshold. Because of the discreteness of the template bank,
in practice the pfemPlate value is smaller than the maximum one would obtain
when maximizing over the templates in the continuous binary parameter
space A. The quantity picmPlate ig related to the “true” maximum of the [S

Pmax = P(Amax) through the equation

p (1.39)

template

PPN 2 s [1 = F (RS, Amax), h(F, X)) (1.40)

where the function F' (hi(f), ha(f)) is the so-called faithfulness between two
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1.2. Binary black-holes as sources of gravitational waves

waveforms hi(f) and ha(f), defined as

) (ma()lha(f)
F (hi(f),ha(f)) = max '
(ha(f); ha(f)) = mas (O () (ha(£)lhs(f)

The maximization in the equation above is performed over the time of
coalescence t. and the phase ¢y. The faithfulness function atteins its maximum
value, F' (hi(f), ho(f)) = 1, when the two waveforms are exactly the same,
while its value decreases proportionally to the difference between the two
waveforms. The template banks used for searching signals in the data of
LIGO and Virgo detectors are built to ensure that the minimum faithfulness
between a given waveform and the best matching template in the template
bank is always larger than 0.97 [151H154]. Median faithfulness between
randomly chosen waveforms and best matching templates in the template
bank are as large as 0.99. A reduction in the maximum [SNR] similar to
that decribed above, can also be caused by the inaccuracy of the waveform
models in representing the “true” waveforms. The reduction in the
maximum [SNR]in this case can be quantified using Eq. , and substituting

F (h(f, Amax)’ h(f, )\template)) with F (hmOdel(f, )\model)’ hGR(f, AGR ))’ where

max max max

(1.41)

hmodel( £) and hGR(f) are respectively the approximate and true waveform.
In practice, it is desirable that the decrease in due to the inaccuracy of
the waveforms is negligible with respect to that caused by the discreteness of
the template bank. For this reason, a typical requirement for the accuracy
of the waveform models is that the median faithfulness between them and
the [NR] waveforms (i.e. the best representation of the true waveforms) is
larger than 0.99, which is the median faithfulness between randomly chosen
waveforms and best matching templates in the template bank.

The method for the detection of signals described so far assumes
stationary and Gaussian noise. In reality, the detector noise is non-Gaussian,
therefore values larger than the threshold could be obtained also due to
non-Gaussian noise. Such non-Gaussian artifacts are typically referred to as
glitches, and their effect can be tamed by using more sophisticated strategies
like signal-based vetoes (also known as x*-vetoes), see Refs. [155][156] for
more details. Another powerful tool to detect signals in presence of
non-Gaussian noise consists in the analysis of coincident signals in multiple
(GW] detectors. In fact, while it is possible to have a glitch in one of the
detectors, it is unlikely to have glitches in all detectors appearing with time
delays between detectors compatible with the passage of a [GW]l In the
coincidence analysis, candidates from each detector, identified using the
methods described before, are compared with those from other detectors.
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[GW] candidates are flagged as possible signals, if they are measured
by different detectors with consistent parameters and a separation in time
compatible with that due to the travel time from one detector to another.
The statistical significance of these potential signals is determined by
comparing them with a background distribution of coincidences due to noise.
The latter is obtained using the time-slides method. The first step of this
method consists of time shifting the candidates obtained from single
detectors by an unphysical delay, much larger than the light travel time
between detectors and the duration of the typical signal. The coincidence
analysis is performed on this new list of single-detector candidates and
a new list of triggers is recorded. These triggers cannot originate from
signals, because they are computed using single-detector candidates that
are time shifted by unphysical delays. This procedure is repeated multiple
times using different time delays to time shift the list of single-detector
candidates. All the triggers obtained with this procedure are used as noise
background to estimate the significance of the potential signals. More
details about this method can be found in Refs. [157H160].

The experimental and data analysis tools, outlined in this section, allowed
the detection of signals emitted by 10 [BBHk [27-32] during the first
two LIGO and Virgo observation runs (henceforth O1 and O2, respectively).
During O1 and O2 also a system composed of two neutron stars (NSK) (a
binary neutron star (BNS)) was detected [161]. In addition, another 39 [GW]
signals have been recently detected during the first half of the third LIGO
and Virgo observing run (henceforth O3a) [33-36,/162]. Among these
signals, 36 of them were likely coming from [BBHE [33),34}36], detected up to
a distance of ~ 5Gpc. Among the remaining 3 signals, one of them likely
originated from a merger at a distance of ~ 100 Mpc [162]. The sources
of the other two signals are still unclear [35,[36]. They could either originate
from [BBHE, or from mixed systems composed of a [BH| and a [NS| typically
referred to as neutron star black hole (NSBH]) systems.

1.2.3. Methods for source characterization

After a signal is identified, the next goal is to measure the parameters
of the emitting source. In this section, I will provide a summary of the most
important techniques used for this purpose.

The parameters of the source are measured within a Bayesian framework.
For this purpose, the starting point is the determination of p(A|s, h), the multi-
dimensional posterior probability-density function of the source parameters
A given the detector output s(t), a model M, for the waveform h(\), and
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1.2. Binary black-holes as sources of gravitational waves

the prior probability p(A) for the source parameters A. Using Bayes theorem,
one can write this posterior probability as

p(s|A, My) p(X)
p(s|My)

where p(s|\, My,) is the likelihood function and p(s|My) is the evidence, which
I define below. Under the assumption of stationary and Gaussian noise, the
likelihood can be computed using the expression for the noise probability, in

Eq. (1.35)), and the detector output definition in Eq. (1.31)). The result is

P(Als, My) = (1.42)

p(s|A, M) = Ne—2(s=hN)ls=h(N), (1.43)

where N is a normalization. This likelihood is associated to the data of only
one detector. The generalization to multiple detectors is trivial, since the noise
realizations of different detectors are uncorrelated, and the joint likelihood is
simply the product of the single-detector likelihoods. The evidence p(s|My)
is a normalization factor for the posterior p(Als, My, ), whose expression is

p(s|My) = A p(s|A, Mu)p(A)dA. (1.44)

Within the Bayesian framework, the evidence is often used in the context of
hypothesis testing. In fact, the odds ratio between two hypotheses H; and
H, is defined as

_ p(Hals, My) _ p(H1) p(s|Hi, My)
M T (Hals, My) — p(Ha) p(s[Ha, My)’

(1.45)

where p(Hi|s, My) and p(Hals, My, ) are the probabilities of the hypotheses
Hi and Ho given the detector output s(t), and the model for the waveform
M,. The functions p(#,) and p(#H2) are the prior probabilities of the two
hypotheses H, and Ho, while p(s|H1, My) and p(s|Ha, My,) are their evidence.
The ratio of the two evidence p(s|H1, My)/p(s|Ha, My) is usually referred to
as Bayes factor.

It is instructive to study the behaviour of the posterior p(Als, M;,) around
its maximum Ap.x by computing the Taylor expansion around this point.
Under the assumption that the prior p(A) is approximately constant over the
relevant binary parameter space region (as it is expected in absence of prior
knowledge), the Taylor expansion of the posterior p(s|A, My) will be equal to
the Taylor-expanded likelihood (up to a normalisation factor). The likelihood

peak Apax can be found by imposing the condition %p(spx, Mh)’)\—)\ =0
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which maximizes the likelihood. In the case of the likelihood in Eq. (1.43)),

the condition above reduces to

(5 = M Amax) | 91A(Amax) ) = 0, (1.46)
with 9;h(Amax) = 2o . The Taylor expanded likelihood reads
A:Amaux
p(s|A, My) = Ne_%Fij|>\:>\max(Ai—Afnax)()\j—Aﬂ]ax)(1+0(ﬁ_1)), (1.47)

where I';; = (0;h|0;h) is the Fisher information matrix [163]. The accuracy
of this approximation increases with the [SNRI since the deviations from
Eq. are proportional to p~!, as indicated in the exponent of the formula.
The posterior distribution in Eq. has the form of a multivariate Gaussian

distribution, with a width proportional to \/ﬁ . The latter quantifies the
statistical uncertainty of the measurement and is proportional to p~!. For
this reason, signals with larger allow for more precise measurements of
the binary parameters.

The expression in Eq. implicitly assumes that the waveforms gen-
erated using the waveform model M, are an exact representation of the
true waveforms predicted by [GRL This is typically not the case since, as
discussed in Sec. [I.2.1] waveform models employ various approximations. In
a more realistic case, the maximum likelihood is reached by the approximated
waveform model h™°4l(X) in a point A%l which is different from the point

max )

ASR “that would be reached when using the true waveforms h“R(X). In

max

this case, Eq. (1.46]) becomes
(S . hmodel(kmodel)

max

aihmodel()\model)) = 0. (148)

max

The error introduced in the measured binary parameters, due to this incorrect
representation of the waveform, can be estimated by the bias AN = (Amodel)i_

max

(ASR )i Assuming that |[AN/)\f| < 1, its value can be obtained from Eq.

max

by using the fact that s(t) = n(t)+hS%(t; ASR ), and computing hmedel (\model)

as a Taylor expansion around ASE (see Ref. [164] for the detailed calculation).
The result is
A/\z — (F—l ()\model>> g (a] hmode1<Amodel>

max max

+O(p™). (1.49)

athR<Amodel> . aj hmodel(Amodel)) +

max max

To assess the relevance of this bias, one has to compare it with the statistical
uncertainty, as quantified by the width of the posterior distribution y/I';;".
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1.2. Binary black-holes as sources of gravitational waves

Since \/T;;* o p~t, while the bias in Eq. is independent of the SNR]
there is always a value of p for which this bias is dominant with respect to the
statistical uncertainty. In practice, computing Eq. , to estimate at which
the systematic bias is larger than the statistical uncertainty, is difficult.
In fact, it usually involves the computation and the numerical invertion
of the Fisher matrix I';;, which is not trivial, as it is a 15D matrix [165].
In addition, to compute the Fisher matrix, and also part of Eq. (1.49), it
is necessary to evaluate the derivatives of the waveform with respect to
the parameters of the [BBH| system. For waveform models that are not
entirerly analytical, these derivatives have to be computed numerically, and
this adds additional obstacles to the use of Eq. for the estimation
of the systematic bias. For this reason, other methods are typically used
to estimate for which values of the the systematic bias is larger than
the statistical uncertainty. A very popular method for this purpose is the
so-called Lindblom’s criterium [166-169]. According to Lindblom’s criterium,
a sufficient but not necessary condition such that all the parameters of the
binary have biases smaller than the statistical uncertainty is that

Nintr -1
202

where F(-,-) is the faithfulness function, defined in Eq. (1.41)), and Ny, is
the number of the intrinsic parameters (masses and spins) of the system. For
[BBHI systems with precessing spins this number is 8, while it is just 4 for
[BBHE with non-precessing spins. Given a waveform hSR (typically a
waveform), and a waveform model ™! using Eq. it is possible to
compute the threshold below which the parameter estimation of the
binary system is unbiased. Lindblom’s criterium is easy to use, as it only
requires the computation of a faithfulness, but it has some limitations. First
of all, when the condition in Eq. is violated, it is unknown what is
(or are) the biased binary parameter (or parameters). In addition, being a
sufficient and not necessary condition, it is often too conservative, as discussed
in Ref. [170]. The latter limitation makes Lindblom’s criterium sometimes
too strict for practical applications.

While the approximation of the likelihood function described in Eq.
is useful to qualitatively understand certain properties of the distribution, it
is inappropriate to estimate the parameters on current LIGO-Virgo signals,
for which the is not large enough to successfully use the likelihood
approximation in Eq. . For this reason, one has to compute the posterior
distribution in Eq. numerically. Since this function has a very large
dimensionality (O(15) parameters) and, considering that each evalutation of

(1.50)

max max

1— F (hmodel()\GR ), hGR(}\GR )) <
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the likelihood in Eq. takes O(1ms), it is impractical to compute directly
the posterior distribution. For this reason, stochastic sampling methods are
used as alternative. The first stochastic sampling method I use for the analyses
in this thesis is the Markov Chain Monte Carlo (MCMC) method described
in Ref. [171], and included in the LIGO Algorithm Library (LAL) [172] under
the name LALInference MCMC. As alternative to the MCMC method, I also
use the dynamic nested sampling method dynesty described in [173] and
implemented in the bilby software [174]. The advantages of this method with
respect to the MCMC method is that it provides a more accurate estimate
of the evidence, and it converges faster to the true posterior distribution,
especially when used in its highly parallelized implementation included in the
software parallel bilby [174].

1.3. Research overview

In Secs. and [1.5] T summarize the reaserch work presented in this thesis
that has been published in international peer-reviewed journals. I report
in Chapters [2], 3, f] and [5] the published version of these articles. In the
following, I briefly summarize my contribution to each of these publications.
In addition, I summarize my contribution to some articles published by the
LIGO Scientific and Virgo collaborations.

1. Chapter [2| consists of the paper:
Roberto Cotesta et al. Enriching the Symphony of Gravitational

Waves from Binary Black Holes by Tuning Higher Harmonics. Phys.
Rev. D98(8):084028, 2018.

I was the main developer of the waveform model SEOBNRv4HM for spin-
ning, non-precessing [BBH| systems, which is described in the paper. 1
also: produced all the comparisons between the waveforms computed
with this model and the waveforms; made all the plots of the paper
and wrote the article. In addition, I impletemented the computer code
of the model in the [LAT]software package, such that it could be used by
the members of the LIGO Scientific and Virgo collaborations, and the
rest of the community, as the [LAT]software package is publicly available.
Finally, I led the review of SEOBNRv4HM within the LIGO Scientific and
Virgo collaborations, as it is a requirement to use the model in the
analyses produced by the collaborations. During the review, a set of
tests was performed on the waveform model to ensure that it always
returned sensical waveforms. The computer code of the model was
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inspected to ensure the compatibility with the code standards of the
collaborations, and with other softwares developed by the collabora-
tions. Additional tests were also performed to confirm the accuracy
of the waveform models against the waveforms. All the tests were
performed under the supervision of members of the collaboration with
expertise in waveform modeling, but who were not involved in the
development SEOBNRv4HM.

. Chapter [3| consists of the paper:

Serguei Ossokine, Alessandra Buonanno, Sylvain Marsat, Roberto
Cotesta et al. Multipolar Effective-One-Body Waveforms for Precess-
ing Binary Black Holes: Construction and Validation. Phys. Rev. D,
102(4):044055, 2020.

In this work, I implemented the[HMk in the waveform model SEOBNRv4PHM
for precessing [BBHE systems, which is presented in the paper. In addi-
tion, I performed the parameter-estimation studies in Sec. [3.5] whose
results are shown in Figs. [3.15] and [3.16] of the paper. I also wrote
Secs. and of the paper. In addition, I implemented part of
the computer code of the model in the [LATl software package. Finally,
also for this waveform model, I was one of the three people responsible
for its review, which followed the same procedure described before for
SEOBNRv4HM.

. Chapter {4 consists of the paper:

Roberto Cotesta et al. Frequency domain reduced order model of
aligned-spin effective-one-body waveforms with higher-order modes. Phys.
Rev. D, 101(12):124040, 2020.

I was the main developer of SEOBNRv4HM_ROM, the reduced-order model
of SEOBNRv4HM, which is described in the paper. In Sec. I com-
pared its accuracy and speed against the original waveform model
SEOBNRv4HM. The results of these analyses are summarized in Figs. 4.4]
and [4.8 which T produced. In addition, I performed the parameter-
estimation studies described in Sec. [£.4.3] whose results are summarized
in Figs. [4.10[ and [4.11] I wrote the entire paper, with the exception
of the Secs. {.1J4.3.1)4.3.2)[4.3.3] and [4.5] which were written by my
collaborators. I also produced all the figures, with the exception of
Figs. and which were produced by one of my collaborators.
In addition, also in this case, I implemented the computer code of the
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model in the [LAT] software package. Finally, as for the waveform model
SEOBNRv4HM, also for SEOBNRv4HM_ROM I led its review, which consisted
in a set of tests similar to those performed to SEOBNRv4HM.

4. Chapter [5| consists of the paper:
Katerina Chatziioannou, Roberto Cotesta et al. On the properties
of the massive binary black hole merger GW170729. Phys. Rev. D,
100(10):104015, 2019.

In this work, I performed the parameter-estimation study to estimate
the BBHI parameters of the source of the [GW] signal GW170729, using
the waveform models SEOBNRv4HM and SEOBNRv4_ROM. These studies are
discussed in Sec. of the paper, and the main results are summarized

in Figs. [5.1] and [5.5] In addition, I also contributed to the
writing of Secs. [5.2] and [5.3]

In addition to the publications listed above, I significatively contributed
also to the article published by the LIGO Scientific and Virgo collaborations
that presented the discovery of the signal GW190412

5. R. Abbott,..., Roberto Cotesta et al. GW190412: Observation of a
Binary-Black-Hole Coalescence with Asymmetric Masses. Phys. Rev.
D, 102(4):043015, 2020.

I was one of the five members in the editorial team of the paper.
As member of the editorial team, I was responsible of the parameter-
estimation analyses to measure the BBH| parameters of the source of
the signal, using the waveform models SEOBNRv4_ROM, SEOBNRv4HM_ROM,
SEOBNRv4PHM and NRSurHyb3dg8. The results of these analyses are de-
scribed in Secs. 3 and 4 of the paper, and summarized in Figs. 2, 3, 4,
5 and 6. I also contributed to the writing of Secs. 1, 3, 4 and 7 of the
paper. I summarize my contribution to this article in Sec. of this
thesis.

I also contributed to other articles published by the LIGO Scientific and
Virgo collaborations, describing the sources of the signals detected during
02 and O3a

6. R. Abbott,..., Roberto Cotesta et al. GWTC-1: A Gravitational-
Wave Transient Catalog of Compact Binary Mergers Observed by LIGO

and Virgo during the First and Second Observing Runs. Phys.Rev.X 9
(2019) 3, 031040, 2019.
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In this publication, I contributed to the early studies of the signal
GW170729, by performing the parameter-estimation analysis using the
model SEOBNRv4 _ROM. In addition, I contributed to the writing of Ap-
pendix C3, about the impact of the [HMk on the parameter estimation
of the detected signals. The discussions with other members of
the LIGO Scientific and Virgo collaborations, during the analysis of the
[GW] signal GW170729, led to the publication I report in chapter [5]

.M. Romero-Shaw,..., Roberto Cotesta et al., Bayesian inference
for compact binary coalescences with bilby: wvalidation and applica-

tion to the first LIGO-Virgo gravitational-wave transient catalogue.
Mon.Not.Roy.Astron.Soc. 499 (2020) 3, 3295-3319, (2020)

In this publication, I performed some tests for the LIGO and Virgo
review of the parameter-estimation software bilby. These tests were
necessary to ensure the correctness of this parameter-estimation software
in its parallelized version called parallel bilby.

R. Abbott,..., Roberto Cotesta et al. GW19081}: Gravitational
Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6
Solar Mass Compact Object. Astrophys.J.Lett. 896 (2020) 2, L44, 2020.

In this publication, I contributed to the parameter-estimation study on

the signal by performing the analysis using the model SEOBNRv4HM_ROM.

The results of this study are discussed in Sec. 4.1 and summarized in
Fig. 4. My study contributed to the measurement of the mass of the
lighter object in the binary system, whose nature is still under debate.
In addition, SEOBNRv4PHM was used for measuring the parameters of
this binary system. The results obtained by this analysis were combined
together with those measured by the waveform model IMRPhenomPv3HM,
which I will introduce later, and reported as the official measurements
by the LIGO Scientific and Virgo collaborations.

R. Abbott,..., Roberto Cotesta et al. Properties and Astrophysical
Implications of the 150 My Binary Black Hole Merger GW190521.
Astrophys.J.Lett. 900 (2020) 1, 113, 2020.

R. Abbott et al. GW190521: A Binary Black Hole Merger with a Total
Mass of 150 M. Phys.Rev.Lett. 125 (2020) 10, 101102, 2020.
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11.

12.

30

In the above two publications, I performed some of the early anal-
yses on the signal to measure the [BBH| parameters, using the
waveform models SEOBNRv4_ROM and SEOBNRv4HM_ROM. In addition, the
waveform model SEOBNRv4PHM, which I developed, was used in the
parameter-estimation study of the second publication to measure the
parameters of the [BBH] system.

R. Abbott,..., Roberto Cotesta et al. GWTC-2: Compact Binary
Coalescences Observed by LIGO and Virgo During the First Half of the
Third Observing Run. arXiv:2010.14527

In this publication, I was responsible for the early analyses of the
signal GW190602_ 175927, which I performed using the waveform
model SEOBNRv4 ROM. In addition, SEOBNRv4PHM, the waveform model
I developed, was used for the measurement of the [BBH] parameters for
all the signals discussed in the paper. For many signals, the BBH]
parameters measured with SEOBNRv4PHM were directly reported as the
official measurements by the LIGO Scientific and Virgo collaborations.
In other cases, the results obtained with this waveform model were first
combined with those obtained with the waveform model NRSur7dqg4,
which I will introduce later, and then reported as the official measure-
ments by the collaborations. See Table VIII in the paper for more
details. The [BBH parameters measured from the signals were
later used, by the LIGO Scientific and Virgo collaborations, as input
to analyze the properties of the observed population of BBHk [175]. T
will discuss in Sec. how the improved waveform models used to
analyze the signals also had an impact on this study.

R. Abbott,..., Roberto Cotesta et al. Tests of General Relativity with
Binary Black Holes from the second LIGO-Virgo Gravitational-Wave
Transient Catalog. arXiv:2010.14529

In this publication, the waveform model SEOBNRv4HM was used as a
baseline to measure possible deviations from of the complex part of
the dominant frequency of the [BHl remnant from a [BBH| merger.
The parametrized SEOBNRv4HM model to perform this measurement is
called pSEOBNRv4HM, and it is described in Ref. [176]. The results of this
analysis are decribed in Sec. 7A of the paper. In addition, the waveform
model SEOBNRv4HM_ROM was used as baseline for the Flexible Theory
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Agnostics (ETAk) infrastructure [177], which tested the departure from
the predictions of the [PNl coefficients of the inspiral waveform. The
results of this analysis can be found in Appendix C2 of the paper.

Finally, I served as waveform expert during the LIGO and Virgo reviews
of the waveform models NRHybSur3dq8, NRSur7dg4 and IMRPhenomXHM. |
will describe these models later. For this task, I performed some of the
sanity tests on these waveform models, and I supervised that the other tests
were performed according to the guidelines of the LIGO Scientific and Virgo
collaborations.

1.4. Gravitational waveform models with higher-order
modes for spinning binary black-holes

Accurate waveform models are crucial to detect signals and correctly
measure the parameters of the source, as already discussed in Secs. [1.2.2]
and [[.2.3] T begin this section by introducing, in Sec. [[.4.1] the [HMk of a
signal, and highlighting the importance of including them in waveform
models to improve their accuracy. I introduce then, in Secs.[1.4.2.3|and [1.4.2.5]
respectively, the waveform models I developed within the formalism.
They include these [HMk for spinning [BBHI systems, first in the case of [BHI
spins aligned with the orbital angular momentum of the binary, and then
extended to generic spin directions. Finally, in Sec. [[.4.3] T introduce a
method to reduce the time to generate such waveforms, which is crucial in
data analysis applications (detection and parameter inference).

1.4.1. Motivations for including higher-order modes in gravitational
waveforms

In this section, I describe what are the and why it is important to
include them in waveform models.

As already mentioned in Sec. [I.2.1] the combination of the polariza-
tions hy — thy can be decomposed in —2-spin-weighted spherical harmonics

—2Yim(t, o) as

B (EA) — ih(EA) =3 i Yo (1 00) hum (5 N), (1.51)

(=2 m=—/

where hy,(t; A) are the modes, which are functions of time and the
parameters of the binary system A, while the angles (¢, g), used in the
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—2-spin-weighted spherical harmonics, define the direction of the observer
in the source frame. For simplicity, I restrict the discussion here to [BBHI
systems with spins aligned with the orbital angular momentum. As already
discussed in Sec. [I.2.1} when the [BHl spins are aligned with the orbital angular
momentum of the binary, there is no precession of the orbital plane, and the
direction of the orbital angular momentum stays constant over time. For
this reason, it is convenient to use the frame defined in Sec. for the
harmonic decomposition in Eq. . In this frame, the z-axis is aligned
with the constant direction of the orbital angular momentum of the binary,
and the binary system is invariant under reflection across the orbital plane.
This invariance implies that the modes with negative m are linked to
those with positive m by the simple relation hg, = (—1)'h;_, , therefore I
will only focus on modes with m > 0. All the features I discuss here in
the simplified case of [BHk with non-precessing spins, are straightforward to
generalize for systems with precessing spins by using the appropriate frame
for the harmonic decomposition, described in Sec. [1.4.2.4]

For BBH]systems with comparable masses, as expected in the case of LIGO-
Virgo sources, the leading term in Eq. is the mode (¢, m) = (2,2). The
other modes, usually referred to as [HMb, are one or two order of magnitude
smaller. For this reason, they are typically neglected in waveform models.
This approximation degrades when increasing the mass ratio ¢ = my/mg > 1
of the binary, because in this case the [HMbk become more and more relevant
as the binary evolves toward merger [62,[178-181]. A useful quantity that
illustrates this behaviour is the ratio |gm (thm)|/|hae (toey)|, where t07, is
the time for which the (¢,m) mode reaches its maximum value. In Fig. [1.3]1
show this ratio for the largest [HMk as a function of ¢. The ratio presented
in the figure is computed from [NR] simulations of nonspinning [BBHk. The
figure shows that this ratio is an increasing function of ¢ and, for ¢ 2 2, the
hierarchy of the largest [HMk is (¢, m) = (3,3),(2,1), (4,4), (3,2), (5,5), (4, 3).
When ¢ approaches 1 all the modes with odd m vanish and the only [HMk
contributing to the waveform are (¢,m) = (4,4),(3,2). The hierarchy of
the modes changes, in this case, because when the two [BHk have the same
masses and spins, the system is invariant under the rotation ¢y — ¢¢ + 7,
and the modes with odd m have to vanish as a consequence of this symmetry.
These considerations on the mode hierarchy are roughly the same even when
considering spinning [BBHE (see Sec. for more details).

The contribution of the [HME in the waveform is also more relevant when
increasing the total mass M of the binary. This is easy to explain by looking
at the mode amplitudes in Fourier domain in the frequency range 20 < f < 1
kHz, where the LIGO-Virgo detectors are most sensitive. In the following,
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Figure 1.3.: Amplitude ratio between the (¢, m) mode and the dominant (2, 2)
mode, both evaluated at their peak, as function of the mass ratio. Only
nonspinning NR waveforms are used. The markers represent the [NR] data,
and are connected by a line. Figure taken from Ref. ||

I explain the reason for this effect using the mode (¢, m) = (3,3) but the
same is true for all the [HMk with ¢ > 2. In Fig. I show the frequency
domain amplitude of the modes (¢,m) = (2,2),(3,3) for two values of the
total mass M = 30My and M = 300M, while all the other parameters of
the binary are fixed to be the same. In both cases |haa(f)| > |hss(f)| up to a
cutoff frequency above which the opposite is true. This happens because the
frequency for which the mode amplitude decays is approximately the ringdown
frequency of each mode fiP, which scales roughly as fi2 ~ (£/2) fiP. Since

2D o 1/M, when increasing the total mass of the system a large part of
the signal for which |heo(f)| > |hss(f)| shifts to frequencies lower than 20 Hz,
where the detector is not sensitive. Also the region where |hss(f)| > |haa(f)]
shifts to lower frequencies but still within the bandwidth where the detector
is sensitive. This means that for a larger fraction of the detectable signal
|hss(f)] > |ha2(f)| with respect to the case with lower total mass, hence the
mode (¢,m) = (3,3) is more relevant for larger total masses.

The impact of [HMk on the waveform also depends on the direction of the
observer with respect to the binary system. In fact, in Eq. the [HMk are
multiplied by the —2-spin-weighted spherical harmonics _5Y7,,(¢, ¢0), which
can enhance or decrease the impact of on the signal observed from a
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Figure 1.4.: Amplitude of the modes (¢, m) = (2,2), (3,3) for two different
values of the total mass M = 30My and M = 300M,. All the other
parameters of the binary are fixed to be the same.

particular direction. To better understand in which direction the emission of
is more prominent, it is instructive to look at the functions oY, (¢, ¢o)
when varying the angles (¢, ¢g). Since they are complex functions, to show
their dependece on (¢, pg) it is useful to plot their real and imaginary part.
Since the only complex term in their definition in Eq. is ef™mPoin
practice one only needs to show their real part, because their imaginary part
coincides with the real part rotated by /2 around the z-axis. In Fig. [1.5]
I show the real part of the most important _5Yp, (¢, o) when varying the
angles (¢, o). The real part of each _5Yy,, (¢, o) with a certain m has exactly
m different maxima when varying ¢g, because the functions _5Y,, (¢, ©o)
depend on ¢, only through the term e"#° which real part is cos(mgpy).
The dependence of the functions _5Y%, (¢, @) on the angle ¢ is more relevant
compared to that on ¢ for the importance of the [HMk when varying the
direction of the observer with respect to the binary system. In fact, when
varying ¢ from a face-on (¢ = 0) to an edge-on (¢ = 7/2) orientation, one
finds that the function _5Y22(¢, ) associated with the mode (¢,m) = (2, 2)
has its maximum amplitude for + = 0, while the others have their maximum
close to ¢ = 7/ ﬂ.ThiS means that neglecting the [HMk in the waveform has a

9The situation is analogous when considering the modes with m < 0. The only difference
is that the function _oY7,, (¢, o) associated with them are a reflection about the orbital
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4,4) (615

Figure 1.5.: Real part of the —2-spin-weighted spherical harmonics (¢,m) =
(2,2),(3,3),(4,4),(5,5) as a function of the angles (¢, ¢p).

larger impact if the signal is observed close to an edge-on inclination.

The improvements in the sensitivity of the LIGO and Virgo detectors are
opening the possibility to probe a wider portion of the [BBHI population, and
not just the “tip of the iceberg”, as happened with the first few detections
of signals from systems in the 2015 — 2016 biennium. Since
the waveform models are key ingredients for the detection and the source
characterization of [BBHE, their inaccuracy could cause a loss of interesting
signals or biases in the measured source parameters. For this reason, it is
important that the accuracy of the waveform models improve at the same
pace of the sensitivity of detectors.

From the detection point of view, the authors in Refs. [183-187] showed that
using waveform models without in the template banks employed in the
detection pipeline can cause a loss of 10% of the signals with mass ratio ¢ > 6
(¢ > 4 in the case on nonspinning [BBHE) and total mass M > 100M, [188].

plane of those described in Fig.
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When waveform models without [HMk are used for the parameter estimation
of signals with larger than 25, [BBH systems with mass ratio ¢ > 4, total
mass M > 100 and inclination 7/4 < ¢ < 37w /4 exhibit biases larger than
the statistical uncertainty in the measured parameters [189,|190]. Signals
with a larger yield smaller statistical errors and, at an of 48,
the systematic error from neglecting [HMk can be larger than the statistical
error [191], even for equal-mass systems. Missing the detection of certain
signals from the [BBHI population, or inferring biased measurements of their
parameters, could have the effect of mischaracterizing the [BBH| population,
and obtaining a distorted understanding of the formation scenario of these
[BBHI systems.

Finally, including [HMk in the waveform models allows to perform a wider
set of tests of [GR] using [BBHI systems as laboratories. For example, having
multiple modes in the ringdown part of the signal allows to test the
Kerr nature of the [BHl remnant of the BBHI coalescence, see Refs. [192-199].
In addition, using waveform models with is important to avoid false
deviation from due to the missing of these effects in the waveform used
to perform other tests of [GRI [200].

For these reasons, waveform models including the effect of have
been developed over the years. The first of such models for a complete
[BBHI coalescence covering inspiral, merger and ringdown was developed
within the [EOB] framework in Ref. [201] for nonspinning BBHk. I have
extended and improved this model for spinning non-precessing [182] and
precessing [202] BBHk. In Secs. [1.4.2.3| and [1.4.2.5] T provide an introduction
to this models, while the complete discussion can be found in Chapters 2
and 3. Waveform models including have been also developed within
the phenomenological approach and the surrogate method, outlined in
Sec. [I.2.1] The models in the phenomenological approach are described in
Ref. [203] for nonspinning [BBHE, and in Refs. [124] and [204] for spinning
non-precessing and precessing [BBHE, respectively. The names of the latter
two models are respectively IMRPhenomHM and IMRPhenomPv3HM. For these
two models, the mode (¢,m) = (2,2) is built as described in Sec. [1.2.1]
and the [HMk are constructed by rescaling the mode (¢,m) = (2,2). In
particular, during the inspiral regime the phases of the are obtained
using the approximate leading-order rescaling ¢g, (t) o< (m/2)pea(t) [62].
A similar rescaling is also performed for the ringdown signal. The amplitudes
are built in a similar fashion. New versions of these models that are not
using this approximation have been recently developed for spinning non-
precessing and precessing [BBHK under the names IMRPhenomXHM [126] and
IMRPhenomXPHM [127], respectively. In this case, each mode is built
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separately by constructing phenomenological fits for the amplitude and the
phase of hybrid modes. The latter are assembled by smoothly blending
[EOB] inspiral modes with modes including the late inspiral, merger and
ringdown. The [NRl surrogate models are described in Ref. [132], in the case of
[BBHE with non-precessing spins and, in Refs. [131}|133], for precessing [BBHI
systems. Because of the computational cost of producing waveforms to
construct the surrogate models, these waveform models can be used only in
limited regions of the binary parameter space. In particular, the surrogate
for BBHI binaries with non-precessing spins called NRHybSur3dq8 [132], can
only be used for BBH|with ¢ < 8 and dimensionless spins |x;| < 0.8. While in
general also the time-duration of the waveforms generated by [NR] surrogates
is limited by the duration of the underlying [NR] waveforms, this is not
the case for this waveform model. In fact, in this case, the waveforms
used to construct the surrogate are hybrids between waveforms and
inspiral waveforms. Similar limitations are also present in the [NRI
surrogate for BBHk with precessing spins. In the case of the [NR] surrogate
NRSur7dqg4 [133], the model is limited to binary systems with ¢ < 4 and
dimensionless spins |x;| < 0.8. In this case, also the duration of the waveform
is limited and, for this reason, waveforms starting from a frequency of 20
Hz can only be generated for [BBH| systems with total masses M 2> 50M,.
In Secs. [[.4.2.31.4.2.5) and [I.5] T will compare these waveform models with
built within these other two approaches against the waveform models I
developed. For these comparisons, I will also use two waveform models of the
“previous generation”, which only include the mode (¢, m) = (2,2), and are
limited to spins aligned with the orbital angular momentum. These models
are SEOBNRv4 (and its fast version SEOBNRv4_ROM) [1], belonging to the
family, and IMRPhenomD [122,|123], developed within the phenomenological
approach. I summarize all the waveform models used in this thesis in Table 3.1}

1.4.2. Effective-one-body waveform models with higher-order modes

In this section, after a general introduction on the [BBH| dynamics within the
formalism in Sec. [1.4.2.1] T describe the expression of the modes,
and delineate the construction of the waveform model for spinning
non-precessing [BBHk with [HMk, in Secs. [[.4.2.2) and [.42.3] Finally, in
Secs. [1.4.2.4 and [1.4.2.5] T outline the main features of the waveforms emitted
by [BBHk with precessing spins, and describe the waveform model for
precessing [BBHk with [HMk.
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Model name [HMk Precession Reference
SEOBNRv4 X X 1]
SEOBNRv4_ROM X X [1]
SEOBNRv4HM v X Chapter
SEOBNRv4HM_ROM v X Chapter
SEOBNRv4PHM v v Chapter
IMRPhenomD X X [122[[123]
IMRPhenomHM v X [124]
IMRPhenomXHM v X [126]
IMRPhenomPv3HM v/ v [204]
IMRPhenomXPHM v/ v [127]
NRHybSur3dqg8 v X [132]
NRSur7dqg4 v v [133]

Table 1.1.: The waveform models used in this thesis. I also specify whether
they include the effects of and spin precession. I highlight in boldface
the waveform models I developed.

1.4.2.1. Two-body dynamics

The [EOBI formalism, proposed by Buonanno and Damour in Refs. [91}/92],
reduces the relativistic two-body problem for [BHk with generic masses and
spins, to the problem of an effective body moving in a central potential,
similarly to what is done in the Newtonian case.

The natural starting point for this approach is the relativistic two-body
problem in the test-mass limit, in which a non-spinning test-particle of mass
4 is orbiting in the potential generated by a massive central object of mass
M (M > p) and spin S = |S|. As discussed in Sec. [1.1] the metric tensor
associated with a massive spinning object is the Kerr metric gi.,,, which, in
the Boyer-Lindquist coordinates, is defined by the line element

A A 1 > —2Mr 4Mra
ds? = gt dr,dr, = ———df* + —dr* + =df*+ —— " _d¢? —
§7 = Ien ity = = dt o drt G db o T ey T A

dtdo,

(1.52)
with the Kerr spin a = S/M, A = r*> — 2Mr + a?, ¥ = r? + a®cos? and
A= (r? 4 a?)? — a*Asin? 6.

The dynamics of a non-spinning test-particle with mass p, in this gravi-
tational background, is determined by its Hamiltonian. The latter can be
obtained using the mass-shell constraint

i PuDw = =117, (1.53)
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where p, = (p, = —H"", p,, pg, ps). By solving Eq. (1.53) with respect to
H¥Xer one obtains

HKerr _ HKerr + Hlfiégr’ (154)

even [e]

where HX" is even in a and reads

even

HEST = a5\ 12 4+ 920, 02 + A + Wi}, (1.55)
while HXT the odd in a part, is
HI = 85 py, (1.56)

and

1 AY
o= /=2 (1.57a)
\/ _gfgerr A

gfgserr _ 2aMr

Kerr
= 1.57b
6 g%err A ’ ( )
to to
b _ _¢p IKerrYKerr _ )Y
TKerr =9Kerr — g%err - A sin2 97 (157C)
rr T A
TKerr EgKemv = iu (157d)
1
Vﬁgerr ng(eerr = E (1576)

This Hamiltonian can be generalized for a spinning test-particle, at leading
order in the spin of the test-particle, by substituting p, with P, = p, —
1/2w,apS2 + O(S?) in Eq. (see Refs. |205206]), with the quantities
Whab and S being the Ricci rotation coefficients and the spin tensor in a
local Lorentz frame. The Hamiltonian for a spinning test-particle in a Kerr
background is then

Hé(err — HKerr T Hé(*err’ (158)
with
Kerr -, 99
HKerr — Ft + BKerr 4 Q /YKerrp¢ F¢ X S*
* /qurr
aKerr 00 )
+ K (’yfgerrpTF'f‘ +7Kerrp9F9) ’ S* _'_O(S*)? (159)
q err
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where

HKerr

gen = e, (1.60)

and the explicit expression of the fictitious gravitomagnetic force F), are given
in Eq.(6) of Ref. [207].

In the [EOBI formalism, one assumes that the solution for the relativistic
two-body problem, with generic masses m; and my and spins S; and S,
can be obtained as a deformation of the solution in the test-mass limit,
with the symmetric mass ratio v = mymy/(m; + ms)? as the deformation
parameter. In practice, when v # 0, the solution of the relativistic two-body
problem has to be described by the motion of an effective particle with mass
= p(my,ms) and spin S, = Sy (my, m2, S1,S2), whose orbit is determined
by the Hamiltonian H, associated with an effective metric gf“ff, of a central
object with mass M = M (my, my) and spin Skerr = Skerr(M1, M2, S1, S2).
The first trivial constraint that can be set to determine the functional form of
w(my, ma), Sw(my, mo, S1,S2), M(my,ms), Skerr (M1, ma, S1,S2) and HeT is
obtained by requiring the correct limit in the test-mass limit case (v — 0 or
ma/my — 0)

et Y20 per (1.61a)

M(my,my) =0 my (1.61Db)

p(ma, my) 225 my (1.61c)

Skerr (M1, M2, 81, 82) o S1 (1.61d)
Su(my, my, 81, S2) — o (1.61e)

The correction to these expressions will have to be O(v), to appropriately
recover the test-particle limit. In addition, without loss of generality, one can
assume the functions M (mq,ms) and u(mq, my) to be the total mass M =
my + my and the reduced mass u = myms/(my + my) respectively, as in the
Newtonian case. Finally, to find the expressions for H*, Skerr (M1, M2, S1, S2)
and S, (my,ms, S1,S2), one can use the knowledge of the [PN| Hamiltonian
for the real relativistic two-body problem H™®? at the highest known [PN]
order. For this purpose, it is necessary to find a map H® = f(H™) between
the Hamiltonian H™ and the one of the effective problem H®¥. This map
was found in Ref. [91], in the case of non-spinning black holes, using a H™?!
at order and by demanding an identification, between the real and
the effective problem, of the radial action integral and the orbital angular
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momentum, in the context of the Hamilton-Jacobi framework. The result is
rather simple

\l Heft
H®OB = M1 420 ( - 1). (1.62)
i
Using this map, and the [PNl Hamiltonian H™* up to a certain order, one
can find the expression of H*®, Sker(my, ma, S1,82) and S, (my1, ma, S1,S5)
by demanding that, when expanded as series, the H®OB Hamiltonian
agrees with the H™ Hamiltonian, up to a canonical transformation. The
explicit expressions of the Hamiltonian H** used for the work in this the-
sis can be found in Sec. 2C of Ref. [208]. The expression for the spins
SKerr<m1, mo, Sl, 52) and S*(ml, ma, Sl, 52) is given by

SKerr = Sl + 52, (163&)
_ Ma i 1) 2
S, =—81+—8+A,)+A7, (1.63b)
ma Mo

a*) and A((f*) are spin-orbit terms, explicitly given in Eqs (51) and

(52) of Ref. [208]. In Fig.[L.6] I show a schematic picture of the mapping
between the real and effective two-body problem.

The expression of HPOP can be finally used to compute the dynamics

of the real relativistic two-body problem, by simply employing Hamilton’s

equationﬂ

where Al

dR OHFOB
— = 1.64
dt op (1.642)
dP OHFOB
2z 1.64
i R + F (1.64b)
dS; OHFOB

= i 1.64
o 75, x S (1.64c)

where 1 = 1,2, R = (R, ®,0) are spherical coordinates, P = (Pg, Py, Po)
the conjugate momenta and JF is a dissipative force, to account for radiation-
reaction effects due to the emission of [GWk. The expression for F can be

derived by using its relation with the gravitational-wave energy flux F' (see

Ref. [210]) -

10The spin map is not unique and in Sec.2E of Ref. [208] the authors also explore the
alternative map Skerr = S1 + S2 and S, = S1ma/mq + Samy/ma.

HNote that also the EOB spins are canonical variable [209|, therefore also their evolution
is determined by Hamilton’s equations.
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Figure 1.6.: The [EOB|l mapping between the real two-body problem of two
objects with masses m; and ms and spins S; and Sy, and the effective
problem of an effective particle with mass p and spin S, orbiting around a
central object with mass M and spin S.g. The motion of the real two-body
problem is determined by the Hamiltonian H,e,, while the Hamiltonian for
the effective problem is Hg.

where Q = Ly - (R x R)/R? is the orbital frequency and Ly the Newtonian
angular momentum. The gravitational-wave flux F is available as [PN] series
(e.g. Refs. [62,/67,211H217]). In the [EOB| framework, the flux is used in a
factorized form (see e.g. Ref. [218-223]), to improve its accuracy with the
numerical results, that can be computed in the test-particle limit [90,224]
within the Regge-Wheeler-Zerilli and Teukolsky equations [108}225-227]. The
expression of the factorized gravitational-wave flux is:

2

1eGMQE & LD,
F = ga 03 Z_z; Zlm M h’ﬁm s (166)

where Dy, is the source-observer distance, and hf are the factorized gravitational-
wave modes that I will describe in detail in the next section. Although the
sum over ¢ has to be carried up to infinity, in practice it is limited to the
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maximum value of ¢ for which the modes are known in the [PN] series. Equa-
tions. (1.64al), (1.64b) and can be solved numerically by providing
appropriate initial conditions [210].

The dynamics of the relativistic two-body problem, obtained within the
[EOBI formalism, has been proven to be more accurate than the dynamics,
when compared to[NR]simulations [228-232]. This is not unexpected, since the
Hamiltonian, in Eq. (L.62), includes non-perturbative information about
the relativistic two-body problem in the test-mass limit, in addition to the [PN|
informations. Moreover the [EOB| framework provides flexibility to include
additional information about the relativistic two-body problem computed
using other methods, like [NR] [1},233,234], gravitational self-force [235] and
post-Minkowskian (PM]) expansion [235], to further improve the accuracy
of the two-body dynamics. In particular, the dynamics used for the
work in this thesis, includes calibration parameters at [PNl orders beyond the
ones available, in the effective metric gfg, and in the gyrogravito-functions
entering in the definition of S, [1].

1.4.2.2. Gravitational-waveform modes for non-precessing binary
black-hole systems

In this section, I describe how to compute the modes in the [EOBI
formalism for non-precessing [BBHE. The generalization to precessing systems
will be discussed in Sec. [L4.2.4]

In the [EOB| framework, the modes are obtained by combining their
expressions in the inspiral-plunge and merger-ringdown regimes (as defined

in Sec. |1.2.1))

insp—plun m
h( (t) — hﬁnip P ge(t)’ t S tﬁnatch (1 67)
" e (N

The time ¢, ., at which the transition between the two regimes occurs,

depends on the mode, but typically corresponds to the time of the amplitude

peak of the (¢,m) = (2,2) mode (see Sec. for more details). The conti-
nuity of hgm(t) for t = 47, is guaranteed by the definition of hj "8 FP(¢)

match m

(see Eqs. (2:30) and (.33)).

During the inspiral phase, the emission of by the BBHI system can
be computed as a expansion (see Refs. [6267,211-217]), which provides
the natural starting point to derive h*? P8 Similarly to what is done for
the dynamics, one can think to improve the accuracy of the [PNl expression of
the modes by using results computed in the test-mass limit. For this
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purpose, Refs. [218220] proposed to introduce the factorized form of the
[GWl modes Al . also used in the energy flux in Eq. (1.66]), to improve

m>

the accuracy of the PNI[GW] modes
hgm = hég,e) gé;f) Tfm f@m ei&gm . (168)

The quantity h%’e) is simply the leading-order Newtonian mode, the
function ng) is an effective source, inspired by the source term present in
the right-hand side of the Regge-Wheeler-Zerilli equation [225-227|, that
describes the gravitational radiation in the test-mass limit at linear order
in the perturbation theory. This term naturally reproduces the pole at the
light ring that is observed in the test-particle limit for circular orbits [236].
The function Ty, is a resummation of the leading-order logarithmic
terms in the orbital frequency, due to the back-scattering of the gravitational
waves off the effective potential well. Finally, the functions fs,, and e are
amplitude and phase corrections necessary to recover the known [PN] series
when computing the [PN] expansion of Eq. (1.68). The explicit definition
of each term is given in Sec. [2.4.3] The expression of fy, can be further
resummed to improve the accuracy of hf, against the numerical results in
the test-particle limit. In particular, for the work in this thesis, I use the
resummation proposed in Refs. [219,220]. An alternative has been recently
proposed in Refs. [221-223)].

The underlying assumption for the computation of the modes
is the quasi-circularity of the orbit. Therefore, it is natural to expect that
the accuracy of hj,degrades close to the plunge, when the orbit is no
longer quasi-circular. In the [EOB] framework, the degradation of kY  in this
regime is corrected through a phenomenological function Ny,,, called the
non-quasicircular (NQC) term, that multiplies the factorized expression of
the modes

pipspophmee _ gk (1.69)

The function Ny, is a polynomial in the canonical momentum P, (see
Eq. for its explicit definition), to account for the emission from
the radial motion. The coefficients of the polynomial are tuned to reproduce
the shape of numerical waveforms around the plunge and, by construction,
Ny — 1 far away from this regime.

After the plunge, the BBH] system undergoes the fully non-linear merger
phase, which results in the formation of a perturbed [BH| that relaxes to
an equilibrium state by emitting [GWk. As discussed in Sec. [I.2.1] this
signal can be accurately computed, within the black-hole perturbation theory
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framework, as a linear superposition of [237],

how (£) =3 Agmne 00, (1.70)

n=0

where Ay, are complex functions, depending on the details of the merger,
and, og,, are the complex frequencies, depending on the mass and
spin of the perturbed BHl The latters are typically computed from the
masses and spins of the [BBH] system using fitting formulae derived from [NR]
waveforms [3,238,239]. The expression in Eq. was previously used by
[EOB| waveform models as starting point for building the merger-RD part of
the signal [233234]. In that case, the model included N overtones and the
values of Ay, were computed by requiring continuity conditions between

the function AySP~PM(¢) and A< RP(¢) on a comb for ¢ < t7, .. This

procedure was numerically unstable in certain circumstances. For this reason,
a simpler ansatz for modeling the merger-RD signal was introduced in Ref. [1],
based on the studies in Ref. [240]. The expression of this ansatz is
hznysrger'RD(t) = v Apn(t) ¢iem(®) e’i”‘fm(’(t’tfrﬁtch), (1.71)
where 04,0 is the least damped [QNM] that dominates the signal for ¢ >
tfm. ., while Ay, (t) and e are amplitude and phase corrections (see

match?

Egs. (2.34) and (2.35])), tuned to reproduce the shape of numerical waveforms

for t ~ ttm .. The contribution of the overtones to the signal, which is
relevant for ¢ ~ 07, (see Refs. [241]), is replaced by the phenomenological

functions Ay, (t) and e*?(®) in this simplified version of the model.

1.4.2.3. SEOBNRv4HM: the inspiral-merger-ringdown waveform model
including higher-order modes for binary black holes with
non-precessing spins

Chapter [2| is the publication that describes the waveform model that
I developed, henceforth SEOBNRv4HM, which includes the effect of [HMk for
[BBHE with spins aligned (or anti-aligned) with the orbital angular momentum
of the binary.

SEOBNRv4HM is based on the model described in Ref. 1], henceforth SEOBNRv4,
with which it shares the two-body dynamics (also described in Sec. ,
and the mode (¢,|m|) = (2,2). The novelty in SEOBNRv4HM, compared to
SEOBNRv4, is the inclusion of the [HMk (¢, |m|) = (2,1), (3, 3), (4,4), (5,5). For
these new modes, I included new [PNl terms in the factorized form, as
defined in Eq. , and I tuned the coefficients of the phenomenological
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functions Ny, Ay, and éfm using 157 waveforms produced by the SXS
Collaboration, in the mass ratio and dimensionless spin ranges 1 < ¢ < 10,
—0.99 < x; < 0.99 (see Appendix [F| for more details about these [NR] wave-
forms).

(@=8,x1=05,x2=0,t=7/2, o= 1.2)

0.04

— NR - SEOBNRVAHM SEOBNRv4 E 003 ~
E 0027
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Figure 1.7.: Comparison between NR (solid black), SEOBNRv4HM (dashed
green) and SEOBNRv4 (dotted yellow) waveforms in an edge-on orientation
(t = m/2,9 = 1.2) for the NR simulation SXS:BBH:0065 (¢ = 8, x1 =
0.5, x2 = 0). In the top panel is plotted the real part of the observer-frame’s
gravitational strain h. (¢, @o;t) — @ hy(t, po;t), while in the bottom panel the
dephasing with the NR waveform A¢y. The dotted-dashed red horizontal line
in the bottom panel indicates zero dephasing with the NR waveform. Both
SEOBNRv4 and SEOBNRv4HM waveforms are phase aligned and time shifted at
low frequency using as alignment window ¢;,; = 1000M and tg, = 3000M .
Figure taken from Ref. [182].

In Fig. [I.7, I compare an waveform with waveforms from the models
SEOBNRv4HM and SEOBNRv4, emitted by the same [BBH] system. In particular,
in the upper panel I show the real part of the function h, — ih,, while
in the lower panel I plot the phase difference (or dephasing) between two
waveforms. Both these quantities are shown as a function of time. As it is
clear from the plot in the lower panel, including [HMk in the [EOB] waveform
allows to better track the phase modulations in the inspiral waveform.
In fact, while the dephasing between the and the SEOBNRv4 waveform
(dotted orange line) exhibits a periodic modulation, this effect disappears
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1.4. Gravitational waveform models with higher-order modes for spinning binary black-holes

in the dephasing between the [NR] and the SEOBNRv4HM waveform (dashed
green line). The remaining phase difference between the [NR] and SEOBNRv4HM
waveform is simply due to the residual inaccuracy in the waveform model,
and it is consistent with the inaccuracy between the [NR] and the SEOBNRv4
waveform when they only include the mode (¢, m) = (2,2) (solid black line).
Also the post-merger amplitude of the [NRl waveform (for ¢t = 7500M) is
better tracked by SEOBNRv4HM compared to SEOBNRv4, as it is evident from
the upper panel of the figure. These modulations, in the amplitude and the
phase of the waveform, are caused by the [HMk.

I use the faithfulness function, already defined in Eq. , as a quan-
titative way of measuring the improved accuracy of the [EOB] waveforms,
when including [HMk. In this case, I use a slightly modified version of the
faithfulness defined in Eq. . Its expression is

h h
F(INR, PoNR, ANR) = max Uixw, os) :
le,POEOB KEOB \/(hNR; hNR) (hEOB, hEOB) INR=LEOB
ANR=AEOB
(1.72)

The functions hxg rop are defined as

h EF+<07 qb? Q/’) h+<L, ¥0, ‘DLJ Aa tC’ t) + F>< (97 ¢7 ¢) hX(L7 ¥0, DLJ A? tC) t)
= "4(9’ ¢) {COS "{(97 ¢a ’QD) h+(L7 ©0, DL> >‘7 tc; t)
+sink(0, 0, ¥) hy (1,6, Dy, A, e t)], (1.73)

where F (0, ¢,1) and F\ (0, ¢, 1) are the antenna patterns, already introduced
in Sec. and the explicit definition of A(¢, ¢) and the effective polarization
k(0,¢,1) can be found in Chapter 2, Egs. and respectively. As in
the definition of the faithfulness in Eq. , also in Eq. there is a
maximization over the coalescence time t. and the phase ¢opop. In addition,
in Eq. , there is also the maximization over the effective polarization
krop. The reason for this additional maximization is that the definition of
the faithfulness, in Eq. , is the standard one used in literature, that does
not, consider waveforms with [HMk. In this case, the angle kpop is degenerate
with ¢opop, hence there is no need for the additional maximization over kKgop.
When are included in the waveforms, these two angles are not degenerate
anymore, and the natural extension of the definition of the faithfulness in
Eq. is to also include the maximization over kgog, as done in Eq. .
As in the case of the faithfulness defined in Eq. , also this faithfulness
is 1 when there is perfect agreement between two waveforms, and its value
decreases proportionally to their difference.
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In Fig. [[.8] T show the faithfulness between an [EOBl and an [NR] waveform
with ¢ = 8, M = 200M,, x1 = 0.85, xo = 0.85, as function of binary’s
orientation. As expected from the discussion in Sec. [I.4.1], the inclusion of
Mk in the waveform enhances the accuracy of the [EOB] model especially
when the binary is observed from an edge-on inclination (¢ = 7/2). In fact,
while for SEOBNRv4 the faithfulness decreases from 0.995 to 0.837, when
moving from face-on (¢ = 0) to edge-on, for SEOBNRv4HM it only varies from
0.995 to 0.977.

Finally, I use the unfaithfulness (1 — F) averaged over binary’s orientation,
sky location and waveform polarization

<1 - 'F>LNR74PONR’KNR =
2 21

1 1
l=c= d“NR/ d(cos inr) dponr F(INR, PoNR, FNR) 5
812 Jo —1 0
(1.74)

to assess the accuracy of [EQB| waveforms, when compared to several [NR]
waveforms. In Fig. [I.9] I show an updated version of the plot in Fig.
of Chapter 2 including 91 new waveforms (described in Ref. [133]), in
addition to the 151 already used in Chapter 2 When using SEOBNRv4, that
only includes the waveform mode (¢,m) = (2,2), the unfaithfulness against
[NR] waveforms can be as large as 0.2 (upper panel). In this case, systems
with larger total mass and mass ratio, for which [HMk are more important,
yield the largest unfaithfulness. When using SEOBNRv4HM (lower panel), the
unfaithfulness is smaller than 0.01 for most of the configurations and it is
between 0.01 and 0.015 just for few cases. Since the unfaithfulness of the
waveform model against [NR] waveforms is smaller than 1%, SEOBNRv4HM
is accurate enough to be used in the construction of template banks for
the detection of signals. I will discuss, in Sec. [I.5.1} its suitability for
parameter-estimation studies.
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Figure 1.8.: Faithfulness F(cos(inr), pong, inr = 0) for the configuration
(g =8, M =200M, x1 = 0.85, x2 = 0.85): NR (¢ <5, m # 0) vs SEOBNRv4
(left panel), NR (¢ <5, m # 0) vs SEOBNRv4HM (right panel). Figure taken
from Ref. [182].
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Figure 1.9.: Unfaithfulness (1 — F) averaged over the three angles
(tNR, Ponrs KNR) as a function of the total mass, in the range 20M, < M <
200Ms. Upper panel NR (¢ < 5, m # 0) vs SEOBNRv4, lower panel NR
(¢ <5, m # 0) vs SEOBNRv4HM. The horizontal dotted-dashed black lines
represent the values of 1% and 3% unfaithfulness. This figure is an update of

Fig. in Ref. .
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1.4.2.4. Gravitational-waveform modes for precessing binary systems

The morphology of the modes, for a precessing system, is more com-
plicated with respect to the non-precessing case, because of the modulations
in the modes induced by the precession of the orbital angular momentum of
the binary L, as already mentioned in Sec.

There are two types of precession [65]67,242243|: simple and transitional
precession. In the first case, the vectors L = L/|L|, 8 = (S1+S3)/|S1+ S|
and J = (L+8)/|L+ S| precess on tight cones, with the angle formed by the
J-cone being much smaller with respect to the opening angle of the L-cone.
The vectors L and S precess around J and L precess with an opening angle
growing with time. A condition for the simple precession to occur is that
|L| > |S|. Since at leading (Newtonian) order, |L| < d*/2, where d is the
binary separation, for every precessing system it exists a critical binary
separation d..;; such that for d < d.; the system undergoes simple precession.

The transitional precession regime occurs if, during the coalescence, the
[BHE reach a configuration in which J = L + S =~ 0. When this condition is
satisfied, the precessing dynamics is difficult to treat analytically. Analytical
and numerical analyses [65,67},242-245,245/248] demonstrated that during
transitional precession J may change its direction multiples times. See
Refs. [65,67,242-245]245-248| for more details on the simple and transitional
precession.

It is possible to understand the origin of the modulations on the waveform
induced by precession, starting from the leading-order expressions for h, and
hy in Egs. [1.24] that I write here again for convenience

4 GMNET 5 14 (I N)?
] ' (1.75)
4 GMNBT 5 .
B (1) :DL< 2 ) G| e Wi ew(n) £ 260), (176)

where I remind that Ly is the direction of the Newtonian orbital angular
momentum, orthogonal to the orbital plane, and IV is the direction of the
observer. In an inertial frame, where the direction of the coordinate bases
is constant over time, the direction N is fixed over time, while, in the case
of precession, the direction of Ly is a function of time. For this reason, in
this frame the amplitude of A, (t) and hy(t) is modulated over time by the
variation of the factor Ly - N. Also ®qw(t), the phase of h(t) and hy(t),
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is modulated as a consequence of the precession of the orbital plane, see
e.g. Sec. ITIB in Ref. [65] for an explicit calculation of these modulations at
leading (Newtonian) order.

To simplify the modeling of signals emitted by such systems, it is
useful to find a frame, henceforth co-precessing frame, where the modulations
on the waveform due to precession can be factored out. This co-precessing
frame should ideally “follow” the precession of the orbital plane, such that
the precession effects can be reabsorbed by the frame, instead of appearing
in the waveform, as in the case of the waveform in the inertial frame. In the
co-precessing frame, the waveform should be easier to model and more similar
to that emitted by a non-precessing [BBH| system. In this case, one could
create a model of the waveform in the co-precessing frame, and then perform
an instantenous rotation to compute the waveform in the conventional inertial
frame.

The co-processing frame used for the [EOB| waveform models for [BBHk
with precessing spins [249|250] was defined in Ref. [243]. In Fig. [L.10] I show
the inertial frame, defined according to the convention used by the LIGO
Scientific and Virgo collaborations, together with the co-precessing frame
used in the precessing [EOBl waveform model that I summarize in the next
section. In the inertial frame (red), the basis é{S) is constant in time and

aligned with L, the direction of the Newtonian angular momentum of the
binary, at the time ¢ = t¢;,;, i.e. the initial time of the waveform. The basis
é{l) is also constant in time and it is aligned with ci(t = tini), the direction of
the initial separation of the [BHk. The frame is completed by the third basis
é{Q) = éfg) X é{l). The co-precessing frame (blue) is determined by the basis
VErsors {ég)}. The basis versor é{;)(t) coincides, at each moment in time,

with the orbital angular momentum f/(t) 2l The other two basis versors,

é(1)(t) and &[5 (t), are initially aligned with the corresponding bases in the
inertial frame, and their time evolution is determined by the equation

N
dé () (2)
dt

— Qe X 65)7(2), (177)

with Q, = L(t) x %. In Ref. [243], it is shown that, when this frame is
used, the precessional modulations in both amplitude and phase are removed
in leading-order waveforms.

1211 the original definition of the frame in Ref. [243] the basis éé) (t) coincided with L (t).

52



1.4. Gravitational waveform models with higher-order modes for spinning binary black-holes

AT _ =
€3y = L)

&, = L()

>
N A | Al
€2 = €3 X €

m

AI _ -~
€y = d(ty)

Figure 1.10.: The inertial frame (red), defined by the directions of the ini-
tial orbital angular momentum EN(t = tn) and separation ci(tini), and
co-precessing frame (blue), instantaneously aligned with L(t) and described
by the Euler angles (o, 3,7). Figure adapted from Ref. .
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1.4.2.5. SEOBNRv4PHM: the inspiral-merger-ringdown waveform model
including higher-order modes for binary black holes with
precessing spins

Chapter 3 is the publication that describes the generalization of the waveform
model SEOBNRv4HN, introduced in Sec. [[.4.2.3] to[BBHsystems with precessing
spins, henceforth SEOBNRv4PHM. The [EOB| dynamics, described in Sec. [[.4.2.1]
is generic and it can be used without any modification also for SEOBNRv4PHM.
For the modes in the co-precessing frame, they can be modeled using
their expressions in the aligned-spin limit in Eq. (L.67). The only difference
is that, in the precessing case, the modes are functions of x1(t) - L(t), the
time dependent projection of the dimensionless spins on the orbital angular
momentum, instead of the constant projection X2 - L. Finally, the modes
hE in the co-precessing frame are rotated to the conventional inertial frame,
defined in Fig. [I.10] using the transformation

()= 3 DY o), B(t).~()] hiy (t), (1.78)

m/=—/(

where D,(,?:n is the complex conjugate of the Wigner D-matrix, and («(t), B(t), y(t))
are the Euler angles, as defined in Fig. [1.10]

Also in this case, I use the faithfulness to quantify the agreement of the
SEOBNRv4PHM waveforms against [NR] simulations. In particular, I use the
sky-and-polarization-averaged, SNRFweighted faithfulness defined as

21 27
— , dr 3" depg F3(M, 1, 00, k) p3(1, 00, K
JTSNR(M,L)Ei 0 f027r800 27r( ;00 ) P2(L; o, K)
o dk o deo p*(, o, K)

. (L79)

where F(M, ¢, @o, k) is the faithfulness function defined in Eq. , and p is
the [SNRI defined in Sec. In Fig. [I.I1]T show histograms of the maximum
over total masses of the unfaithfulness 1—Fgxr (M, ¢ = 7/3) between 1404 NR
waveforms and the corresponding SEOBNRv4PHM waveforms, see Chapter 3 for
details on the [NR] waveforms. Including [HMk in SEOBNRv4PHM improves the
accuracy of the model by a factor of 5 with respect to the same model without
[HMk (i.e. only the modes with £ = 2 are included), respectively red and yellow
histograms in the figure. When computing the unfaithfulness, if I restrict
both [NRl and SEOBNRv4PHM waveforms to the £ = 2 modes (black histogram),
the accuracy is the same as in the case in which both waveforms include all
modes up to ¢ = 5 (red histogram). This means that the non-perfect modeling
of [HME is not the limiting factor for the accuracy of the model. Finally, in
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Figure 1.11.: Sky-and-polarization averaged, SNR weighted unfaithfulness for
an inclination ¢« = 7/3 between NR waveforms and SEOBNRv4APHY, including
(red histogram) and omitting (yellow histogram) [HMk. The vertical dashed
lines show the medians. Not including in the model results in high
unfaithfulness. However, when they are included, the unfaithfulness between
SEOBNRv4APHM and NR is essentially at the same level as when only ¢ = 2
modes are compared (black histogram). Figure adapted from Ref. [202].

Fig. [[.L12] T compare the unfaithfulness distribution computed before using
SEOBNRv4PHM, with that obtained when using the model IMRPhenomPv3HM. As
it is clear from the plot, the unfaithfulness computed with SEOBNRvAPHM (red
histogram) are typically smaller than those obtained with IMRPhenomPv3HM
(yellow histogram), therefore SEOBNRvAPHM is more accurate. In particular,
the median of the unfaithfulness distribution obtained with SEOBNRv4PHM is
approximately 1%, while it is around 2% for IMRPhenomPv3HM. In addition,
all the unfaithfulness are lower than 10% for SEOBNRv4PHM, while, in the case
of IMRPhenomPv3HM some, configurations have unfaithfulness larger than 10%.
In Sec. [I.5.2] T will discuss the impact of the different accuracy of the two
waveform models on the measurement of the [BBHI parameters.
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Figure 1.12.: The median of unfaithfulness is around 1% for SEOBNRv4PHM
(red histogram) and 2% for IMRPhenomPv3HM (yellow histogram). Medians
are shown as dashed vertical lines. Note that for SEOBNRv4PHM, the worst
unfaithfulness is below 10% and the distribution is shifted to lower values.
Figure adapted from Ref. [202].

1.4.3. SEOBNRv4HM_ROM: reduced-order-modeling techniques applied to
waveform models with higher-order modes for binary black
holes with non-precessing spins

Data analysis applications of waveform models, such as the construction of
template banks and the Bayesian inference of binary parameters, require to
compute O(107—10%) different waveforms [1711[174251}[252]. Since generating
a single waveform, using the models introduced in Secs. and [1.4.2.5]
takes O(1—10)s, they are difficult to use for these purposes. While it is possible
to directly optimize these waveform models, using analytical approximations
to accelerate the integration of the [EOBI equations of motion [253,254], a
better established method to speed up the waveform computation is the
construction of a reduced-order model (ROM]) [128-131}255-259] of the
original waveform model. The basic idea of a is that, given a large
enough set of waveforms in a chosen region of the binary parameter space,
one can compute new waveforms in the same region as an interpolation of the
waveforms in the set. The method to produce these interpolated waveforms is
called[ROMI Tt is a useful replacement of the original model if the interpolated
waveforms are an accurate representation of those generated with the original
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model, and they are computed faster.

Chapter 4 is the publication that describes the [ROM]| of SEOBNRv4HM,
henceforth referred to as SEOBNRv4HM_ROM. In particular, I costruct a[ROMIfor
each mode, Ay (f), expressed in frequency domain. Then, from the
modes, I obtain the two polatizations i and hy using Eq. (1.51]). Since P (f)
are complex functions, to build the ROMIfor each mode one has to interpolate
two real functions over the binary parameter space. Typically, one chooses the
amplitude Ay, (f) and the phase Wy, (f) of hum (f) = A (f) exp (—iW e (f)).
When the [HMk are included in the waveform model, this choice is not possible
because the amplitude of the modes with odd m vanishes in the limit of
equal masses and [BHI's spins, and the phase is not a well-defined function
in this limit. While using real and imaginary part of hg,,(f) seems a valid
alternative, it is also unfeasible as these are oscillatory functions, difficult
to interpolate in practice. The solution to this problem is based on the fact
that, during the inspiral regime, the time-domain phase ¢y, (t) of each mode
hom(t) = Apn(t) exp (—igem(t)) can be approximated as ¢py, (1) o< Mmoo (t),
where ¢ (t) is the orbital phase of the binary (see e.g. Ref. [62] Eq.(327)).
This means that the phase of all modes, including those with odd m, can be
approximated as a function of ¢q5(t)/2, which is always well defined because
the mode (¢,m) = (2,2) never vanishes. In particular

Gom(t) o< —marg k(t), (1.80)

where k(t) = A(t) exp (—igaa/2) and A(t) is a non-vanishing amplitude whose
expression is irrelevant for this discussion. The expression equivalent to
Eq. (L.80), for the phases Wy, (f) of the modes in frequency domain B (f)
can be obtained by computing analytically the Fourier transform of hyg,, (%)
and k(t), using the stationary phase approximation ([SPA]) method [260]. Its
expression is

U (f) o mUy(f/m), (1.81)

where U, (f) is the phase of k(f), the Fourier transform of k(t). The function
Uy (f) is the first function that I interpolate over the binary parameter
space for the construction of the ROM] but it only provides an approximate
representation of the phase of ilgm< f), and contains no information on the
amplitude of the modes. For this reason, to accurately reconstruct the
functions ﬁgm( f), I also have to interpolate over the binary parameter space
the real and imaginary part of the complex functions kg, (f), defined as

ﬁﬁm(f) = hy, (f)emv f/m) = A, (f)el W(mWi(f/m)=Yem(f)) (1.82)

The functions (hem( )) and (R, (f)) are not as difficult to interpolate as
R(hem (f)) and S(hem(f)), because most of the oscillatory behaviour present in
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B (f) is removed in hS, (f) by virtue of Eq. (L.81). Having the interpolation
over the binary parameter space of Wi (f), ®(hS,,(f)) and S(hS,,(f)) allows
to reconstruct Bgm( f) simply by inverting Eq. (1.82). The interpolation
of these functions over the binary parameter space has to be performed
only on the 3D space of the mass ratio ¢, and the two z-component of the
[BHI spins, x1, and Y2, since the dependence of the modes on all the other
parameters is trivial. To produce the interpolations of Wy(f), R(hS,, (f))
and (R, (f)), 1 first decompose them into their respective single value
decomposition (SVDI) bases, and then I interpolate the projection coefficients
using tensor-product spline interpolation. This is a standard technique already
used in Refs. [1},255,256].

I test the accuracy of this against SEOBNRv4HM with metric given by
the averaged unfaithfulness defined in Eq. . I find that this unfaithful-
ness between SEOBNRv4HM_ROM and SEOBNRv4HM is on average O(0.001%),
when computed for many different values of the masses and the [BH's
spins. Since the same unfaithfulness is O(0.1%) when computed between
SEOBNRv4HM and [NRI waveforms (see Fig. [1.9)), the modeling error added by
the is negligible with respect to the error of the original model against
the simulations.

Finally, I evaluate the speed of the [ROM| with respect to SEOBNRv4HM.
I find that generating SEOBNRv4HM_ROM waveforms is ~ 100 times faster
than generating SEOBNRv4HM waveforms in the total mass and mass ratio
ranges bM, < M < 200M; and 1 < g < 50, and for every value of the
[BHI spins. SEOBNRv4HM ROM is therefore much more efficient to use in data
analysis applications. Also for the waveform model SEOBNRv4PHM, a procedure
similar to the [ROM] technique is being used to produce a faster version of
the model [261].

1.5. Binary black-holes characterization using waveform
models with higher-order modes

In this section, I summarize the results I obtained when using the waveform
models with [HMk, outlined in the previous sections, to measure the parameters
of BBHIsystems. In Secs.[I.5.7]and [1.5.2] I use synthetic[GW]signals to test the
accuracy of the waveform models, in the case for which the parameters of the
binary are already known. Then, in Secs.[I.5.3]and [1.5.4] I extend the analysis
to two real signals, detected by the LIGO and Virgo interferometers,
respectively during O2 and O3a: GW170729 [32] and GW190412 [34]. These
signals are particularly interesting because their sources lie in regions of
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1.5. Binary black-holes characterization using waveform models with higher-order modes

the binary parameter space where the [HMk are expected to be relevant in
the [GWI signal. In addition to the signal GW190412, the waveform models
outlined in the previous sections, were also used for the inference of the [BBHI
parameters of all the other signals detected during O3a [36]. In particular,
they were also used to analyze other signals for which the effect of [HMk was
expected to be important, namely GW190521 [33] and GW190814 [35]. Here,
I restrict my attention to the signals GW170729 and GW190412 because I
directly analyzed them.

1.5.1. Synthetic signal I: the aligned-spins case

In Chapter 4, Sec. I test the accuracy of the waveform model SEOBNRv4HM_ROM,
when used to measure the parameters of a [BBHl system from a synthetic
signal. For this study, I choose to consider a signal measured
by the network composed by the two LIGO detectors: LIGO Hanford,
LIGO Livingston, and the Virgo detector. To construct the synthetic signal
dsyn(t) = Ngyn(t) + heyn(t), it is necessary to specify the detector noise ngyy(t),
and the waveform hgy,(t). For the noise of the three detectors, I choose to
use the mean value (ngy,(t)) = 0. This is a typical choice, when the purpose
of the study is to test the accuracy of a waveform model. In fact, it allows
to avoid biases in the parameter estimation due to a particular realization
of the Gaussian detector noise, when one is interested in the biases due to
the inaccuracy of the waveform model. The noise also enters the parameter-
estimation analysis through the in the likelihood function, see Eq. (1.43)).
For this analysis, I use the of the LIGO and Virgo detectors at design
sensitivity [56},262].

I generate hgyn(t), the waveform for the synthetic signal, using the
surrogate model NRHybSur3dq8 [133] introduced in Sec. . Typically
these studies are performed using [NR] waveforms as synthetic signals, but
the waveforms generated with this model are indistinguishable from [NRI
waveforms at the of this study, which I indicate below.

I choose the parameters of the [BBHI system for the synthetic signal to
enhance the [HMs contribution in the waveform. In particular, for the mass
ratio I choose the value ¢ = 8, and I use a large total mass M = 67.5M,.
Also to enhance the [HMs contribution in the waveform, I set the inclination
angle Oy to m/2. I focus on [BBHI systems with [BH| spins aligned with the
orbital angular momentum of the binary and, for this synthetic signal, I
set their magnitude to |x1| = 0.5 and |x2| = 0.3. The network{SNRI of the
synthetic signal, defined as the the root sum squared of the [SNRE in each
detector, is 21.8. All the other parameters are less relevant for the discussion,
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Model name [GW] modes

SEOBNRv4_ROM (0, Im]) = (2,2)
SEOBNRv4HM_ROM (¢,|m|) =(2,2),(2,1),(3,3), (4,4), (5,5)
IMRPhenomHM (¢, Im]) =(2,2),(2,1),(3,3),(3,2), (4,4), (4,3)
NRHybSur3dq8 <8

Table 1.2.: The waveform models used to analyze the synthetic signal de-
scribed in Sec. [1.5.1} T also specify the [GW]| modes included in each waveform
model.

and can be found in Chapter 4 Sec. [4.4.3]

Finally, I use the waveform model SEOBNRv4HM_ROM to perform the Bayesian
parameter estimation on this synthetic signal, and measure the parameters
of the [BBHI system. As a comparison, I also use other three waveform
models for the same analysis: NRHybSur3dqg8 [133], IMRPhenomHM [124] and
SEOBNRv4_ROM [1], which only includes the mode (¢, |m|) = (2,2). In Table[L.2]
I summarize the waveform models used to analyze this synthetic signal.

The first binary parameters that are interesting to examine are the mass

ratio ¢ and the effective spin [66}/119,209,263]

(mix1 + maxz) & 1 .
= —— L 1.
= N 1+q(QX1+X2) N, (1.83)

Xeff =

where I remind that Ly is the direction of the Newtonian angular momentum
of the binary. The mass ratio ¢ and the effective spin y.g are typically well
measured because they determine t., the time of coalescence of the binary
from a given frequency, which the detectors can measure quite well. In
addition, ¢ and y.g are degenerate because the phase of the inspiral waveform
depends on them at similar orders, respectively 1PNl and 1.5PN[S| In
fact, it can be easily shown that the effect of a smaller mass ratio on the
phase can be compensated by that of a larger effective spin [264-268]. As
a consequence, these two parameters are expected to be correlated in the
parameter estimation of BBH] systems.

In Fig. [1.13] I show, for each waveform model, the 1D and 2D posterior
distributions for ¢ and x.g. The black dot in the plot represents the values
used in the synthetic signal. All waveform models are able to measure, within

131n reality, the phase of the inspiral waveform at IIPN] order is proportional to v = ¢/M,
while at 1.9PNlis proportional to § = 113/12(xeg —761/113xs) with xs = (x14+X2)-In.
Nevertheless, in many applications the parameters g and g are used in substitution
of v and § for simplicity.
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1.5. Binary black-holes characterization using waveform models with higher-order modes

the 90% credible regions, the binary parameters used in the synthetic signal.
There are, however, some differences in the shape of the 90% credible regions
that are worth discussing.

First of all, in the measurement of ¢ and x.g obtained with SEOBNRv4HM_ROM
(cyan curve) these two parameters are less correlated, when compared to
those obtained with SEOBNRv4_ROM (red curves). As a consequence, they are
measured with more precision. This is expected, since the contribution of
[HMk to the waveform increases when the binary system is more asymmetric,
as discussed in Sec. [[.4.1] Therefore having in the signal helps in
measuring the mass ratio of the binary system and, consequently, in breaking
its degeneracy with the effective spin.

The 2D posterior distribution obtained with SEOBNRv4HM_ROM (cyan curve)
has a quite similar size to that computed with NRHybSur3dq8 (blue curve), but
it is less centered around the true values. This shift in the SEOBNRv4AHM_ROM
posterior from the true values is a systematic bias due to the inaccuracy of
the waveform model. In fact, in the case of “small” waveform systematic
errors, the posterior distribution is expected to be shifted with respect to
the true value, as discussed in Sec. [1.2.3] Despite this systematic error, at
the of this synthetic signal SEOBNRv4HM_ROM is still able to measure the
true parameters within the 90% credible interval. This result is consistent
also with the expectation coming from Lindblom’s criterion, discussed in
Sec. [[.2.3] In this case, the unfaithfulness between the SEOBNRv4HM_ROM and
the NRHybSur3dq8 waveform is 0.3%. For this value of the unfaithfulness,
Lindblom’s criterium predicts a bias larger than the statistical uncertainty
in at least one of [BBH| parameters for values of the network{SNR] larger
than ~ 22, which is greater than 21.8 used for this synthetic signal. The
inaccuracy of the model IMRPhenomHM has instead a larger impact on the
posterior distribution obtained with this model (orange curve). In fact,
its shape is very different with respect to that obtained with the model
NRHybSur3dq8, and it even features a bimodality. This is not unexpected
since in IMRPhenomHM the [HMk are modeled approximately without using
any information from [NR] waveforms. Also this result is consistent with the
expectation from Lindblom’s criterium. In fact, the unfaithfulness between
the IMRPhenomHM and the NRHybSur3dq8 waveform is 3.2%, and, according
to Lindblom’s criterium, unbiased measurements of the parameters are only
possible for network{SNREk < 7.

Another two interesting binary parameters to study are, #;y, the angle
between the total angular momentum J and the direction of the observeﬂ,

1415 the case of BBH] systems with non-precessing spins the angles 6y and ¢ coincide.
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Figure 1.13.: 2D and 1D posterior distributions for the mass ratio ¢ and
the effective spin x.x measured from the synthetic BBH signal described
in the text. In the 2D posteriors solid contours represent 90% credible
intervals and the black dot shows the value of the parameters used in the
synthetic signal. In the 1D posteriors they are represented respectively by
dashed lines and black solid lines. The gray shaded regions are the prior
distributions. The parameter estimation is performed with the waveform
models SEOBNRv4_ROM (red), SEOBNRv4HM_ROM (cyan), NRHybSur3dqg8 (blue)
and IMRPhenomHM (orange). Figure adapted from Ref. [269).

and the luminosity distance Dy. As in the case of ¢ and y.g, they are
also correlated when only the dominant mode (¢,|m|) = (2,2) is included
in the waveform. The reason for this correlation can be easily understood
from Eq. expressed for simplicity in the limit of ;5 ~ 0. Under
this approximation, the relevant modes with negative m can be neglected,
as oY (0in — 0,90) — 0. In this limit, and in the case that only the
(¢,|m]) = (2,2) is included in the waveform, Eq. reduces to

—2Y22(0sx, ¢0)

L

It is important to highlight that _5Y22(0)n, o) is a complex function only
because of the term e?%°, while the dependence on fjy is a real function.
Eq. implies that A, and h, depend on 6y and Dy, only through the
combination _5Y29(0n, o)/ Dy, hence they are correlated. In addition, h
and hy depend on fyy and Dy, through a real function, therefore changing
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1.5. Binary black-holes characterization using waveform models with higher-order modes

0yn and Dy, only effects their amplitude. As a consequence, 05y and Dy, are
particularly difficult to measure since LIGO and Virgo detectors are most
sensitive to the phase of h, and hy. When at least one [HM]is included in the
waveform, for example the (¢, |m|) = (3,3) mode, Eq. is modified to

hy —ihy ~ Z;L (—2Ya2 (0N, o) haz(t; A) + —2Y33(0an, o) haz(t; X)) . (1.85)
In this case, there is not a simple correlation between #;y and Dy. In
addition, the phases of Ay and hy are now functions of the phases of the
individual modes hgy and hgs, but also of _5Y59(0in, ¢o) and _2Y33(05n, o).
As a consequence, fyy has an effect on the phases of h, and hy and, for this
reason, it can be better measured by LIGO and Virgo detectors.

N
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Figure 1.14.: 2D and 1D posterior distributions for the angle 85y and the
luminosity distance Dy, measured from the synthetic BBH signal described
in the text. In the 2D posteriors solid contours represent 90% credible
intervals and the black dot shows the value of the parameters used in the
synthetic signal. In the 1D posteriors they are represented respectively by
dashed lines and black solid lines. The gray shaded regions are the prior
distributions. The parameter estimation is performed with the waveform
models SEOBNRv4_ROM (red), SEOBNRv4HM_ROM (cyan), NRHybSur3dq8 (blue)
and IMRPhenomHM (orange). Figure adapted from Ref. [269).

These expectations about the parameters 05y and Dy, are confirmed by
their measurements obtained from the synthetic signal, which I present in
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Fig. [1.14] Here, I show the 1D and 2D posterior distributions for these two
parameters, when measured with the different waveform models listed above.
The degeneracy between 0;x and Dy, is present when using for the parameter
estimation the waveform model SEOBNRv4_ROM (red curve), but it is broken
when the are correctly included in the waveform, as in the case of the
models SEOBNRv4HM_ROM (cyan curve) and NRHybSur3dqg8 (blue curve). As
a result, the measurement of both these parameters are more precise when
obtained with one of these waveform models. As in the case of the ¢ and
Xeff, also here there is a shift between the 2D posterior distribution obtained,
with the model SEOBNRv4HM ROM, and the true values of the parameters.
Also in this case, the explanation for this shift is a systematic bias due
to the inaccuracy in the waveforms calculated with SEOBNRv4HM_ROM. At
the [SNRI of this synthetic signal, the systematic bias is smaller than the
statistical uncertainty and the true values are correctly measured within the
90% credible intervals. On the contrary, the posterior distribution obtained
with the waveform model IMRPhenomHM has a completely different shape
with respect to those obtained with the other two models with [HMk. The
measurement of fyy and Dy, in this case, is similar to that obtained with the
waveform model SEOBNRv4_ROM, which does not include [HMk. As before for
q and e, also this imprecise measurement of 65y and Dy, is likely due to the
approximation used in the construction of the [HMk in this waveform model.

This study confirms that including [HMk in waveform models improves the
measurement of the binary parameters of spinning [BBH systems, as also
found in Refs. [189.,|190,[270]. Most importantly, this analysis demonstrates
that SEOBNRv4HM_ROM can be used for parameter estimation yielding unbiased
measurements, even for signals with moderately high [SNR] and configurations
where the effect of [HMk in the waveform is large.

1.5.2. Synthetic signal Il: the precessing-spins case

In Chapter 3 Sec. [3.5] I extend the study described in the section above to
[BHk with precessing spins. For this purpose, I use SEOBNRv4PHM to measure
the parameters of a[BBH]system from a synthetic signal. Also in this case
I use the three-detectors network, described in Sec. In addition, for the
construction of the synthetic signal I use, as before, the mean value of the noise
(nsyn(t)) = 0. Also here, I use the of the noise of the Advanced LIGO
and Advanced Virgo detectors at design sensitivity. For the waveform, I use
the [NR] waveform SXS:BBH:0165 [2,[102] having mass ratio ¢ = 6 and initial
spin components x1 = (—0.06,0.78, —0.47) and x=2 = (0.08, —0.17, —0.23).
The large mass ratio, and the in-plane spin components of this [BBH system,
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1.5. Binary black-holes characterization using waveform models with higher-order modes

guarantee that the waveform features both a substantial [HMs contribution
and strong precessional effects. For the synthetic signal, I use a large total
mass of the system, M = 76M, and an inclination angle close to edge-on,
Oyn ~ 1.3, also to emphasize the in the waveform. The network{SNRI of
the synthetic signal is 21. All the other parameters for the synthetic signal
are not relevant for this discussion and are reported in Chapter 3 Sec. [3.5

I perform the Bayesian parameter estimation on the signal using the
waveform models SEOBNRv4PHM and IMRPhenomPv3HM [204] for comparison.
In Fig. [I.15] I show the 2D and 1D posterior distributions for the component
masses m, and msg, obtained when using the two models for the analysis.
While with SEOBNRv4PHM the true value is correctly measured within the 90%
credible interval for both masses, this is not the case for IMRPhenomPv3HM.
In fact, with this waveform model, the true value of my is excluded from
the 90% credible interval. This is not unexpected, as the unfaithfulness
between the IMRPhenomPv3HM and the [NRI waveform is 8.8%, while it is
only 4.4% when computed between the SEOBNRv4PHM and the [NR] waveform.
In this case, Lindblom’s criterium predicts a bias larger than the statistical
uncertainty in the measurement of at least one of the BBH] parameter for both
waveform models. In fact, with the unfaithfulness of IMRPhenomPv3HM and
SEOBNRv4PHM, measurements with bias smaller than the statistical uncertainty
are predicted for network{SNRE values smaller than ~ 6 and ~ 9, respectively.
I will show later that also SEOBNRv4PHM provides a measurement with bias
larger than the statistical uncertainty in one of the binary parameters, as
predicted by Lindblom’s criterium.

Regarding the [BHl spins, the parameter Y.g, defined in Eq. , ignores
the spin components perpendicular to Ly. In the case of precessing [BBH] sys-
tems, these spin components are also interesting to measure and, a commonly
used spin parameter to quantify their magnitude is the effective precession
parameter [121]

Xp = max {|x11], k [x21]}, (1.86)

with x;1 = xi — (Xi - In)Ln and k = ¢(4g + 3)/(4 + 3¢). In Fig. [1.16] I
show the 2D and 1D posterior distributions for x.g and x, obtained using
SEOBNRv4PHM and IMRPhenomPv3HM. Also in this case SEOBNRv4PHM, is able
to measure the values of these two spin parameters within the 90% credible
interval, while, with IMRPhenomPv3HM, the true values are excluded at this
level.

Finally, in Fig. [I.17] I show the 2D and 1D posterior distributions for the
inclination angle 65y and the luminosity distance Dy, obtained with the two
waveform models. In this case, the inclination angle #;y measured using
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Figure 1.15.: 2D and 1D posterior distributions for the component masses in
the source frame measured from the synthetic BBH signal described in the
text. In the 2D posteriors solid contours represent 90% credible intervals and
the black dot shows the value of the parameters used in the synthetic signal.
In the 1D posteriors they are represented respectively by dashed lines and
black solid lines. The parameter estimation is performed with the waveform
models SEOBNRv4PHM (blue) and IMRPhenomPv3HM (red). Figure taken from
Ref. [202]

the model SEOBNRv4PHM has a bias larger than the statistical uncertainty, as
the true value of Oy lies outside the 90% credible interval of the posterior
distribution. This confirms the prediction made before, using Lindblom’s
criterium, that at least one of the BBH] parameter measured by SEOBNRv4PHM
would have a bias larger than the statistical uncertainty. On the contrary,
IMRPhenomPv3HM provides a measurement of this parameter within the 90%
credible interval. Both SEOBNRv4PHM and IMRPhenomPv3HM are able to recover
the true value of the luminosity distance within the 90% credible interval.

This study demonstrates that, even for this [BBH configuration with a
large contribution of the and strong precessional effects, the model
SEOBNRv4PHM yields an unbiased measurement for the most relevant binary
parameters (masses, spins and luminosity distance) in the case of a signal
with the moderately high value of the of 21.

In Chapter 3 Sec. [3.5] I also test the ability of SEOBNRv4PHM to provide
unbiased measurements of the binary parameters, in the case of a synthetic
signal with very large[SNR, but for a[BBHlsystem with smaller mass ratio and
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Figure 1.16.: 2D and 1D posterior distributions for the x.s and the x, pa-
rameters measured from the synthetic BBH signal described in the text. In
the 2D posteriors solid contours represent 90% credible intervals and the
black dot shows the value of the parameters used in the synthetic signal.
In the 1D posteriors they are represented respectively by dashed lines and
black solid lines. The parameter estimation is performed with the waveform
models SEOBNRv4PHM (blue) and IMRPhenomPv3HM (red). Figure taken from
Ref. [202]

[BHT's spin magnitudes. Also in this case, the synthetic signal only includes the
waveform and no detector noise. For the signal, I use a waveform generated
from the surrogate model NRSur7dqg4 [133], instead of a waveform,
because they are indistinguishable at the of this study, which I indicate
below. The BBHI system emitting this waveform has mass ratio ¢ = 3, total
mass M = T0My, initial spins x; = (0.3,0.0,0.5) and xo = (0.2,0.0,0.3)
and inclination angle 63y = 0.9. The network{SNR] of the signal, in the same
three-detector network used before, is 50. The other binary parameters are
not relevant for the discussion, and can be found in Chapter 3 Sec. [3.5

I perform the parameter estimation on this signal using the waveform model
NRSur7dqg4, in addition to SEOBNRv4PHM and IMRPhenomPv3HM. In Table , I
summarize the waveform models used in this study and in the study above. In
Fig.[1.18] I show the 2D and 1D posterior distributions for the masses m; and
my. Even for this large SNR], SEOBNRv4APHM (blue curve) is able to correctly
measure the true values of the masses within the 90% credible intervals. In
addition, the posterior distributions for the m; and ms obtained with this
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Figure 1.17.: 2D and 1D posterior distributions for the inclination angle 0;x
and the luminosity distance Dy, measured from the synthetic BBH signal
described in the text. In the 2D posteriors solid contours represent 90%
credible intervals and the black dot shows the value of the parameters used
in the synthetic signal. In the 1D posteriors they are represented respectively
by dashed lines and black solid lines. The parameter estimation is performed
with the waveform models SEOBNRv4PHM (blue) and IMRPhenomPv3HM (red).
Figure taken from Ref. [202]

model agree very well with those obtained using the [NR] surrogate model
(cyan curve). The waveform model IMRPhenomPv3HM (red curve) is also able
to recover the true values of m; and ms within the 90% credible interval.
Both waveform models are also able to measure with bias smaller than the
statistical uncertainty the spin parameters xes and x,, see Chapter 3 Sec.
for the detailed analysis. Finally, in Fig.[1.19} I show the 2D and 1D posterior
distributions for the inclination angle 85y and the luminosity distance Dy,
as measured by the waveform models SEOBNRv4PHM (blue), IMRPhenomPv3HM
(red) and NRSur7dq4 (cyan). Also for these parameters SEOBNRvAPHM pro-
vides unbiased measurements, in excellent agreement with the waveform
model NRSur7dqg4. Conversely, the parameters 0;x and Dy, measured with
IMRPhenomPv3HM have a bias larger than the statistical uncertainty, as their
true values lie outside the 90% credible intervals obtained with this model.
This is in agreement with the expectation from Lindblom’s criterium. In
fact, the unfaithfulness between the NRSur7dq4 and the IMRPhenomPv3HM
waveform is 1%. For this value of the unfaithfulness, Lindblom’s criterium
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Model name [GW] modes in co-precessing frame
SEOBNRv4PHM (¢, ml]) = (2,2),(2,1),(3,3),(4,4), (5,5)
IMRPhenomPv3HM (¢, |m|) = (2,2),(2,1),(3,3),(3,2), (4,4), (4,3)
NRSur7dq4 /<8

Table 1.3.: The waveform models used to analyze the synthetic signals de-
scribed in Sec. [1.5.2] T also specify the modes included in each waveform
model.

predicts a bias larger than the statistical uncertainty in one of the [BBHI
parameter for network{SNR] values larger than 19. Also for SEOBNRv4PHM,
Lindblom’s criterium predicts a bias larger than the statistical uncertainty in
one of the measured [BBH] parameters. In fact, the unfaithfulness between the
SEOBNRv4PHM and the NRSur7dq4 waveform is 0.2%, for which Lindblom’s
criterium predicts bias larger than the statistical uncertainty in at least one
of the [BBH] parameters, for network{SNRk larger than ~ 42. However, for
SEOBNRv4PHM I find that none of the measured parameters have biases larger
than the statistical uncertainty. This confirms that Lindblom’s criterium is
sometimes too conservative, as already observed in Ref. [170].

In conclusion, this analysis shows that using SEOBNRv4PHM for parameter
estimation will also be appropriate to analyze the properties of BBHk detected
by upgraded version of the LIGO and Virgo detectors, when signals
with such a large [SNR] are expected as a consequence of the improvements in
detector sensitivity.
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Figure 1.18.: 2D and 1D posterior distributions for the component masses in
the source frame measured from the synthetic BBH signal described in the
text. In the 2D posteriors solid contours represent 90% credible intervals and
the black dot shows the value of the parameters used in the synthetic signal.
In the 1D posteriors they are represented respectively by dashed lines and
black solid lines. The parameter estimation is performed with the waveform
models SEOBNRv4APHM (blue), IMRPhenomPv3HM (red) and NRSur7dq4 (cyan).
Figure taken from Ref. ||
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Figure 1.19.: 2D and 1D posterior distributions for the inclination angle 0y
and the luminosity distance Dy, measured from the synthetic BBH signal
described in the text. In the 2D posteriors solid contours represent 90%
credible intervals and the black dot shows the value of the parameters used
in the synthetic signal. In the 1D posteriors they are represented respectively
by dashed lines and black solid lines. The parameter estimation is performed
with the waveform models SEOBNRvAPHM (blue), IMRPhenomPv3HM (red) and
NRSur7dg4 (cyan). Figure taken from Ref. ||
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1.5.3. The LIGO-Virgo signal GW170729

Chapter 5 is the publication in which I use the waveform model SEOBNRv4HM
(as its was not available at the time of this study) to analyze the signal
GW170729 [32] detected by the LIGO and Virgo interferometers. This real
signal is interesting to study using waveform models with [HMk, because
its source is likely the most massive one observed during the the first and
second (O1 and O2) LIGO and Virgo observing runs, with a total mass of
~ 85 M.

In this real [GW] signal, the binary parameters that are most affected,
when waveform models with [HME are used for the parameter estimation,
are the mass ratio ¢ and the effective spin xes. In Fig. [[.20] I show the
2D and 1D posterior distributions for these two parameters, obtained from
the Bayesian inference on the signal performed using the waveform models
SEOBNRv4HM and SEOBNRv4_ROM. I also compare these measurements with
those obtained by the waveform models IMRPhenomHM and IMRPhenomD, to
test their robustness against eventual biases, due to the inaccuracy of the
waveform models. See Table for the summary of the waveform models
used for this study. The mass ratio posterior distributions, obtained with
the waveform models SEOBNRv4_ROM and IMRPhenomD, which only include the
mode (¢,|m|) = (2,2), (red and cyan curves) are approximately flat in the
region 1 < ¢ <2, and exclude ¢ 2 2.5 with 95% probability. On the contrary,
the posterior distributions obtained with SEOBNRv4HM and IMRPhenomHM (blue
and orange curves) are both peaked around ¢ ~ 2 and, most importantly,
they exclude with a larger confidence the hypothesis of a merger of
with the same masses. In fact, according to the measurements obtained with
SEOBNRv4HM and IMRPhenomHM, there is a 40% probability that the mass ratio
of the system is ¢ > 2, while this probability is only 20% if one considers
the measurements with SEOBNRv4_ROM and IMRPhenomD. Regarding the yeg
parameter, the measurements obtained with SEOBNRv4_ROM and IMRPhenomD

Model name [GW] modes
SEOBNRv4_ROM (¢,m]) = (2,2)
SEOBNRv4HM_ROM (¢, |m|) = (2,2),(2,1),(3,3),(4,4),(5,5)
IMRPhenomD (¢, \m|) =(2,2)

IMRPhenomHM (£, |m|) = (2,2),(2,1),(3,3), (3,2), (4,4), (4,3)

Table 1.4.: The waveform models used to analyze the real signal
GW170729. T also specify the modes included in each waveform model.
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1.5. Binary black-holes characterization using waveform models with higher-order modes

imply that y.g > 0 with a probability of 99%. Among the signals observed
during O1 and O2, only for this signal and GW151226 [28] a negative value for
Xeft 1S excluded with such large probability. When the waveform models with
[HMk are used for the parameter estimation, the y.g posterior distribution
shift to smaller values, and the probability of a positive x.g is reduced to
94%.
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IMRPhenomHM mmmm= [NV RPhenomD

Figure 1.20.: 2D and 1D posterior distributions for the mass ratio ¢ and the
effective spin x.g measured from the signal GW170729. In the 2D posteriors
solid contours represent 90% credible intervals and the black dot shows the
value of the parameters used in the synthetic signal. In the 1D posteriors
they are represented respectively by dashed lines and black solid lines. The
gray shaded regions are the prior distributions. The parameter estimation
is performed with the waveform models SEOBNRv4_ROM (red), SEOBNRv4HM
(blue), IMRPhenomD (cyan) and IMRPhenomHM (orange). Figure adapted from
Ref. [271].

Using waveform models with [HMk has a smaller impact on the measure-
ments of the inclination angle 05y and the luminosity distance Dy, of this
system. In Fig. [[.21] I show the 2D and 1D posterior distributions of these
two parameters, obtained with the waveform models described before. The
only relevant difference is that both waveform models with [HMk are able to
exclude with larger confidence inclination angles 8y close to 0 and 7. As
consequence of the correlation between 65y and Dy, also larger luminosity
distances are excluded with a greater confidence.
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Figure 1.21.: 2D and 1D posterior distributions for the inclination angle 65
and the luminosity distance Dp, measured from the signal GW170729. In
the 2D posteriors solid contours represent 90% credible intervals and the
black dot shows the value of the parameters used in the synthetic signal.
In the 1D posteriors they are represented respectively by dashed lines and
black solid lines. The gray shaded regions are the prior distributions. The
parameter estimation is performed with the waveform models SEOBNRv4_ROM
(red), SEOBNRv4HM (blue), IMRPhenomD (cyan) and IMRPhenomHM (orange).
Figure adapted from Ref. [271].

The study presented here assumes [BHb spins aligned with the angular
momentum of the binary. In Ref. [204] the authors generalize this analysis by
using the waveform model IMRPhenomPv3HM, which includes the effect of [HIMk
and precessing [BH spins. The results of their analysis are in agreement with
those discussed here. This is not unexpected, since they report a measured
value of the spin parameter x,, consistent with 0, as it should be in the case
of [BHI spins aligned with the angular momentum of the binary.

1.5.4. The LIGO-Virgo signal GW190412

In this section, I summarize the analysis I performed as member of the editorial
team of the publication that reported the discovery of GW190412 [34] by the
LIGO and Virgo detectors. This real signal is particularly interesting
because its source is a [BBHl system with a mass ratio ¢ measured precisely
enough to exclude with large confidence the scenario of a merger between
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1.5. Binary black-holes characterization using waveform models with higher-order modes

Model name modes in co-precessing frame Precession
SEOBNRv4_ROM (¢, |m|) = (2,2) X
SEOBNRv4HM_ROM (¢, |m|) =(2,2),(2,1),(3,3), (4,4),(5,5) X
SEOBNRv4PHM (¢, |m|) = (2,2),(2,1),(3,3), (4,4),(5,5) v
IMRPhenomD (¢,|m]) = (2,2) X
IMRPhenomHM ¢, m|) =(2,2),(2,1),(3,3),(3,2),(4,4), (4,3) X
IMRPhenomXHM ¢, m|) =(2,2),(2,1),(3,3),(3,2), (4,4) X
IMRPhenomPv3HM (¢, |m|) = (2,2),(2,1),(3,3),(3,2), (4,4), (4,3) v
IMRPhenomXPHM (0, |m|) =(2,2),(2,1),(3,3),(3,2),(4,4) v

Table 1.5.: The waveform models used to analyze the real signal
GW190412. T also specify the modes included in each waveform model,
and whether they include the effect of spin precession.

parameter Measurement with SEOBNRv4PHM

my /Mg 31.773°8
my /Mg S-Ofgﬁ?

M /M, 39.7t0§;7‘§6
q 4001_077
Yeff 0.28t§1§§
Xp 0311_015
X1 0~46t8ﬁ§
QJN 0711_021

Table 1.6.: Measured parameters for the signal GW190412 and their
90% credible intervals, obtained using the waveform model SEOBNRv4PHM.

[BHs with equal masses. In fact, the mass ratio of this system lies in the
region 3 < ¢ < 5, while most of the BBHEk observed during O2 and O3a have
mass ratios consistent with 1 (see Fig.5 in Ref. [32] and Fig.6 in Ref. [36]).

In the following, I discuss the most interesting properties of this system,
with particular emphasis on (i) the impact of the improved waveform models
discussed in Sec. on the precise measurement of these properties and (ii)
potential systematic biases in these measurements due to the inaccuracy of
the waveform models. In fact, because of its interesting properties, this
system was analyzed with a large number of waveform models. I summarize
in Table [L.A the waveform models I consider here.

In Table[1.6] T summarize the measurement of the most interesting
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Figure 1.22.: 2D and 1D posterior distributions for the mass ratio ¢ and
the effective spin x.g of the signal GW190412. 90% credible intervals are
represented by solid contours in the 2D posteriors and dashed lines in the 1D
posteriors. The gray shaded regions are the priors. The parameter estimation
is performed with the waveform models SEOBNRv4PHM (blue), SEOBNRv4_ROM
(red) and SEOBNRv4HM_ROM (cyan).

parameters obtained with SEOBNRv4PHM. In the following, I discuss in detail
each of these measurements. I begin this discussion with the mass ratio
measurement, which is the most interesting property of this [BBH] system.
As discussed in Sec. [I.5.1] the mass ratio measurement is expected to be
degenerate with that of the effective spin, therefore it is beneficial to examine
them together. For this purpose, in Fig. [1.22] I show 2D and 1D posterior
distributions for the mass ratio ¢ and the effective spin y.g, obtained by
performing Bayesian parameter estimation on the signal using increasingly
sophisticated waveform models: SEOBNRv4_ROM (no [HMk, [BHE spins aligned
with the binary angular momentum), SEOBNRv4HM_ROM (HMk, [BHE spins
aligned with the binary angular momentum) and SEOBNRv4PHM ([HME, generic
[BHE spins). The largest improvement in the precision of the measurement is
obtained when moving from SEOBNRv4_ROM to SEOBNRv4HM_ROM. In fact, the
size of the 90% credible intervals of the 1D mass ratio posterior distribution
obtained with SEOBNRv4HM_ROM (cyan curve) is ~ 40% smaller with respect
to that obtained with SEOBNRv4_ROM (red curve). This larger precision in
the mass ratio measurement is due to the fact that, including the [HMk in
the waveform model, allows to partially break the degeneracy between ¢ and
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1.5. Binary black-holes characterization using waveform models with higher-order modes

Xer- This is consistent with what I find in Sec. for the synthetic signal.
Because of this broken degeneracy, also the 90% credible interval of the 1D
Xef PoOsterior is ~ 26% tighter when computed using the waveform model
with [HMk. The precision of the measurements improves more modestly when
going from SEOBNRv4HM_ROM (cyan curve) to SEOBNRv4PHM (blue curve). In
this case, the size of the 90% credible interval of the 1D posterior for ¢ and g
decrease respectively by ~ 23% and ~ 14% compared to SEOBNRv4HM_ROM.
The most noticeable difference between the measurements made with these two
waveform models, consists in a shift of the SEOBNRv4PHM posterior distribution
towards smaller ¢ and larger x.g. This shift is likely due to a bias in the
measurement with SEOBNRv4HM_ROM, originating from the fact that this model
neglects precessional effects, while the value of x, measured with SEOBNRv4PHM
is in the range 0.2 < xp < 0.5, indicating a small evidence for precession.

s [N[RPhenomPXHM mmms [N[RPhenomPv3HM s SEOBNRv4PHM

Figure 1.23.: 2D and 1D posterior distributions for the mass ratio ¢ and
the effective spin y.g of th signal GW190412. 90% credible intervals are
represented by solid contours in the 2D posteriors and dashed lines in the 1D
posteriors. The gray shaded regions are the priors. The parameter estimation
is performed with the waveform models SEOBNRv4PHM (blue), IMRPhenomPv3HM
(red) and IMRPhenomXPHM (cyan).

The mass ratio and effective spin measured with the model SEOBNRv4PHM
are respectively ¢ = 47075 and y.g = 0.2875:02, and they are in a small tension
with those measured using the waveform model IMRPhenomPv3HM, which gives
q = 3.227095 and yer = 0.22709. Since the two waveform models include
the same physical effects (i.e. and spin precession), this disagreement
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indicates a potential bias in the measurement obtained with one of the two
models (or both of them) due to their inaccuracy in representing the true
waveforms. A potential source of this disagreement, as already discussed
in Ref. [34], is the fact that the model IMRPhenomPv3HM includes in the
co-precessing frame that are not calibrated to simulations during the
merger and ringdown regime, differently from SEOBNRv4PHM. The authors in
Ref. [272] partially shed light on this disagreement, by performing param-
eter estimation on this signal with their newly developed waveform model
IMRPhenomXPHM [127], for which the in the co-precessing frame are cali-
brated to simulations during the merger and ringdown regimes, similarly
to what is done in SEOBNRv4PHM'] In Fig.[1.23] T compare their measurement
of ¢ and y.g with those obtained with SEOBNRv4PHM and IMRPhenomPv3HM,
by plotting the 2D and 1D posterior distributions for these parameters.
From the plot, it is clear that the tension between the measurements is
partially resolved when using IMRPhenomXPHM instead of IMRPhenomPv3HM for
the comparison with the results obtained using SEOBNRvAPHM. To clarify the
source of the residual difference between the measurements obtained using
IMRPhenomXPHM and SEOBNRv4PHY, it is useful to repeat the same analysis
assuming that the have spins aligned with the orbital angular momentum
of the binary. For this purpose, I use the results obtained with the wave-
form models SEOBNRv4HM_ROM, IMRPhenomXHM (taken from Ref. [272]) and
IMRPhenomHM, which represent respectively SEOBNRv4PHM, IMRPhenomXPHM
and IMRPhenomPv3HM under this assumption. The results of this analysis are
summarized in Fig. [1.24] where I show 2D and 1D posterior distributions for
q and x.g obtained with SEOBNRv4HM_ROM, IMRPhenomXHM and IMRPhenomHM.
In the non-precessing limit, the measurements obtained with IMRPhenomXHM
and SEOBNRv4HM_ROM agree much better than in the generic case of precessing
[BHk. This suggests that the difference in the measurements obtained with
SEOBNRv4APHM and IMRPhenomXPHM originates from the different approaches
used to describe spin precession in the two models.

Additional evidence for this can be found in the fact that the values
of xp, measured by SEOBNRv4PHM and IMRPhenomXPHM, are also in small
tension. To demonstrate this difference in the two measurements, I show, in
Fig.[1.25] the 2D and 1D posterior distributions for x;, and x.s, when measured
with SEOBNRv4PHM, IMRPhenomXPHM and IMRPhenomPv3HM. It is clear that the
posterior distribution obtained with IMRPhenomXPHM favours smaller values

15A similar study has been performed also in Ref. [273], by using the surrogate model
NRSur7dqg4 to analyze this signal. A direct comparison between their results and those
discussed here is not possible, because the posterior distributions obtained as result of
their analysis are not yet publicly available.
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Figure 1.24.: 2D and 1D posterior distributions for the mass ratio ¢ and
the effective spin x.g of the signal GW190412. 90% credible intervals are
represented by solid contours in the 2D posteriors and dashed lines in the
1D posteriors. The gray shaded regions are the priors. The parameter
estimation is performed with the waveform models SEOBNRv4HM_ROM (blue),
IMRPhenomHM (red) and IMRPhenomXHM (cyan).

of xp with respect to those obtained with SEOBNRv4PHM. The Y, posterior
distribution measured using IMRPhenomPv3HM is broader with respect to the
other two and it is in agreement with both of them. Despite these small
differences, the values of x, measured with SEOBNRv4PHM, IMRPhenomPv3HM
and IMRPhenomXPHM, respectively 0.317013, 0.317532 and 0.23%539, are in
good agreement with each other.

The parameters xeg and x, are functions of the spins of the two BHk, x1
and 2, and the mass ratio ¢. When the mass ratio of the BBH| system is
large, the contribution of x2 to Xes and X, is subdominant with respect to the
contribution of 1, as it is clear from the definition of these two parameters
in Eqgs. and , respectively. For this reason, despite the precise
measurements of yes and x,, the BHl spin x2 remains unconstrained for this
system. On the other side, while the orientation of x1 is not well constrained,
its magnitude is one of the best measured among the [BBHI systems detected
by the LIGO and Virgo interferometers during O1, O2 and O3a [32,36]. In
particular, the value of the spin magnitude x; obtained using the waveform
models SEOBNRv4APHM, IMRPhenomPv3HM and IMRPhenomXPHM is respectively
0.461912. 0.4175:2% and 0.397015.
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Figure 1.25.: 2D and 1D posterior distributions for x, and the effective spin
Xet Of the signal GW190412. 90% credible intervals are represented by solid
contours in the 2D posteriors and dashed lines in the 1D posteriors. The
gray shaded regions are the priors. The parameter estimation is performed
with the waveform models SEOBNRv4PHM (blue), IMRPhenomPv3HM (red) and
IMRPhenomXPHM (cyan).

The angle #;n, and the luminosity distance Dy, are other two source param-
eters for which is interesting to study the improvement in their measurement,
when using more sophisticated waveform models, as done before in the case of
q and Y. For this purpose, in Fig. [I.26] I show 2D and 1D posterior distribu-
tions for these parameters obtained using the waveform models SEOBNRv4 _ROM,
SEOBNRv4HM_ROM and SEOBNRv4APHM. As already discussed in Sec. [1.5.1] in-
cluding the [HME in the waveform model partially breaks the degeneracy
between 0y and Dy, allowing to measure them much more precisely. In fact,
when going from SEOBNRv4_ROM (red curve) to SEOBNRv4AHM_ROM (cyan curve),
the size of the 90% credible intervals of the posterior distribution for fyy and
Dy, decrease, respectively by ~ 70% and ~ 33%. Using SEOBNRv4PHM (blue
curve) for the parameter estimation allows to further increase the precision
of the measurement of these two parameters. In particular, the size of the
90% credible interval of the posterior distribution for #;y and Dy, decrease
respectively by ~ 50% and ~ 33%, compared to those obtained using the
model SEOBNRv4HM_ROM. The reason for this increased precision is that the
precession of the orbital plane, caused by the in-plane [BH] spin components,
has a different imprint on the waveform when observed by different 8y angles.
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This allows to put additional constraints on the angle 05y and, consequently,
on the luminosity distance Dy,. Differently from the case of the parameters ¢
and Yeg, for fyn and Dy, the measurements obtained by IMRPhenomPv3HM and
IMRPhenomXPHM are in very good agreement with those obtained when using
SEOBNRv4PHM. This suggests that, for these two parameters, the systematic
errors, due to the waveform model inaccuracies, are negligible with respect
to the statistical uncertainty.
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Figure 1.26.: 2D and 1D posterior distributions for the angle #;x and the
luminosity distance Dy, of the signal GW190412. 90% credible intervals are
represented by solid contours in the 2D posteriors and dashed lines in the 1D
posteriors. The gray shaded regions are the priors. The parameter estimation
is performed with the waveform models SEOBNRv4PHM (blue), SEOBNRv4_ROM
(red) and SEOBNRv4HM_ROM (cyan).

In the case of GW190412, waveform models that include the effect of [HMk
provide more precise measurements for all binary parameters, compared to
waveform models that neglect this effect. This already suggests that [HMk may
be detectable in this signal. To make this concrete, it is useful to compute the
Bayes factor between the hypothesis of the signal including [HMb, against
the hypothesis of the signal only including the dominant mode (¢, |m|) = (2, 2).
This calculation can be performed assuming [BHlspins aligned with the angular
momentum of the binary system, hence computing the Bayes factor using the
posterior distributions obtained with SEOBNRv4 ROM and SEOBNRv4HM_ROM,
or in the case of generic spins, using the posterior distributions computed
with the waveform models SEOBNRv4P and SEOBNRv4PHM. In both cases, the
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Bayes factor in favour of the hypothesis that this signal includes [HMk
is larger than 102, which is considered a strong evidence for this thesis. It
is useful to recall that the Bayes factor does not account for the prior belief
on the hypotheses. In this case, since predicts the existence of [HMk,
and assuming that is correct, the prior probability associated with the
hypothesis of a [GW]signal including only the mode (¢, |m|) = (2,2) would be
0.

The improved measurement of the [BBHl parameters of the source of
GW190412, obtained using the sophisticated waveform models described
in this thesis, also had an impact on our understanding of the population
of BBHK. An interesting property of the [BBH| population is its mass-ratio
distribution. In certain models for the [BBH| population, this quantity is
parametrized as a power law, p(g|m;) oc ¢~ [2747276]. Since all the [BBHk
detected during O1 and O2 had a mass ratio consistent with 1, the measured
B, indicated a preference for 8, > 0 [277]. However, its value was not precisely
constrained by the [BBHk detected during O1 and O2. When using only the
[BBHE detected during O1 and 02, the measured value of 3, was 0 < 5, < 12
at 90% credible interval [277]. Including GW190412 in the [BBH] population
analysis, in addition to the signals detected during O1 and O2, allows to
put a stronger upper bound on the value of 3,, which is constrained to be
By < 2.7 at 90% credible level, see Sec. VI of Ref. [34] for more details.
The analysis of the [BBH| population using all the signals in O3a (including
GW190412), which were also analyzed with the waveform models described
in this thesis, later confirmed the upper bound on f, discussed before. See
Sec. 5.1 in Ref. [175] for the detailed discussion. The precise characterization
of the BBHI population will allow us to understand the formation mechanism
(or mechanisms) that is producing the observed population of BBHk.

16Tn the literature on this subject, the mass-ratio definition is different compared to this
thesis, and correspond to the definition 1/q adopted here. For this reason, in the
literature, the mass-ratio distribution is parametrized as p(q|m;) x ¢ i.e. without
the minus sign in the exponential.
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2. Enriching the Symphony of Gravitational
Waves from Binary Black Holes by Tuning
Higher Harmonics

Authorg’} Roberto Cotesta, Alessandra Buonanno, Alejandro Bohé, An-
drea Taracchini, lan Hinder, Serguei Ossokine

Abstract: For the first time, we construct an inspiral-merger-ringdown
waveform model within the effective-one-body formalism for spinning, non-
precessing binary black holes that includes gravitational modes beyond the
dominant (¢, |m|) = (2, 2) mode, specifically (¢, |m|) = (2,1), (3, 3), (4,4), (5,5).
Our multipolar waveform model incorporates recent (resummed) post-Newtoni-
an results for the inspiral and information from 157 numerical-relativity
simulations, and 13 waveforms from black-hole perturbation theory for the
(plunge-)merger and ringdown. We quantify the improvement in accuracy
when including higher-order modes by computing the faithfulness of the wave-
form model against the numerical-relativity waveforms used to construct the
model. We define the faithfulness as the match maximized over time, phase
of arrival, gravitational-wave polarization and sky position of the waveform
model, and averaged over binary orientation, gravitational-wave polarization
and sky position of the numerical-relativity waveform. When the waveform
model contains only the (2,2) mode, we find that the averaged faithfulness to
numerical-relativity waveforms containing all modes with ¢ < 5 ranges from
90% to 99.9% for binaries with total mass 20 — 200M, (using the Advanced
LIGO’s design noise curve). By contrast, when the (2,1),(3,3), (4,4), (5,5)
modes are also included in the model, the faithfulness improves to 99%
for all but four configurations in the numerical-relativity catalog, for which
the faithfulness is greater than 98.5%. Starting from the complete inspiral-
merger-ringdown model, we develop also a (stand-alone) waveform model
for the merger-ringdown signal, calibrated to numerical-relativity waveforms,
which can be used to measure multiple quasi-normal modes. The multipolar
waveform model can be extended to include spin-precessional effects, and will
be employed in upcoming observing runs of Advanced LIGO and Virgo.

!Originally published as Phys.Rev.D 98 (2018) 8, 084028.
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The Advanced LIGO detectors [55] have reported, so far, the observation of five
gravitational-wave (GW) signals from coalescing binary black holes (BBHs):
GW150914 [27], GW151226 [28], GW170104 [29], GW170608 [30], GW170814
[31] (observed also by the Virgo detector [56]), and one GW signal from a
coalescing binary neutron star (BNS) [161]. The modeled search for GWs from
binary systems and the extraction of binary parameters, such as the masses
and spins, are based on the matched-filtering technique [171,)278-282], which
requires accurate knowledge of the waveform of the incoming signal. During
the first two observing runs (O1 and O2), the Advanced LIGO and Virgo
modeled-search pipelines employed, for binary total masses below 4M,, tem-
plates [151] built within the post-Newtonian (PN) approach [62,260}283,284],
and, for binary total masses in the range 4-200M/,, templates developed using
the effective-one-body (EOB) formalism calibrated to numerical-relativity
(NR) simulations [1,91}92} 234,256} 285-287] (i.e. EOBNR waveforms). For
parameter-estimation analyses [153,|161,171},288] and tests of General Rel-
ativity (GR) [289], PN [260,[283]284], EOBNR [1}234,249,[250] and also
inspiral-merger-ringdown phenomenological (IMRPhenom) waveform mod-
els [120,122,/123] were used.

The -2 spin-weighted spherical harmonics comprise a convenient basis into
which one can decompose the two polarizations of GWs. The spinning, non-
precessing EOBNR waveform model [1] employed in searches and parameter-
estimation studies during the O2 run (henceforth, SEOBNRv4 model), only
used the dominant (¢,|m|) = (2,2) mode to build the gravitational polariza-
tions. This approximation was accurate enough for detecting and inferring
astrophysical information of the sources observed during O2 (and also O1),
as discussed in Refs. [184,|186H188/191},290-293].

Because of the expected increase in sensitivity during the third observing
run (O3), which is planned to start in the Fall of 2018, some GW signals
are expected to have much larger signal-to-noise ratio (SNR) with respect
to the past, and may lie in regions of parameter space so far unexplored
(e.g., more massive and/or higher mass-ratio systems than observed in O1
and 02). This poses an excellent opportunity to improve our knowledge of
astrophysical and gravitational properties of the sources, but it also requires
more accurate waveform models to be able to take full advantage of the
discovery and inference potential. More accurate waveform models would
be useful, as well, from the detection point of view to further increase
the effective volume reached by the search, in particular for regions of the
parameter space where the approximation of restricting to the (2,2) mode
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starts to degrade [184}|187,/188]. Following these motivations, we build here
an improved version of the SEOBNRv4 waveform model that includes the
modes (¢, |m|) = (2,1),(3,3),(4,4),(5,5) beyond the dominant (2,2) mode
(henceforth, SEOBNRv4HM model). Similar work was done for the nonspinning
case for the EOBNR waveform model of Ref. [201] (henceforth, EOBNRv2HM
model), and for the nonspinning and spinning, nonprecessing IMRPhenom
models in Refs. [124,203].

In building the SEOBNRv4HM model we incorporate new informations from
PN calculations [88,294], from NR simulations (produced with the (pseudo)
Spectral Einstein code (SpEC) [6] of the Simulating eXtreme Spacetimes
(SXS) project and the Einstein Toolkit code [295,296]), and also from
merger-ringdown waveforms computed in BH perturbation theory solving
the Teukolsky equation [114}297]. The NR waveforms are described in
Refs. [1}61298,299], and summarized in Appendix They were also employed
to build the SEOBNRv4 waveform model in Ref. [1] (see Sec. III therein).
However, here, we do not use the BAM simulation BAMg8s85s85 [3004301],
because the higher-order modes are not available to us. Thus, for the same
binary configuration, we produce a new NR simulation using the Einstein
Toolkit code and extract higher-order modes (henceforth, ET:AEI:0004).

As by product of the SEOBNRv4HM model, we obtain a (stand-alone) merger-
ringdown model [1},240,[302-305], tuned to the NR and Teukolsky-equation
waveforms, which can be employed to extract multiple quasi-normal modes
from GW signals, and test General Relativity [192-194}306].

The paper is organized as follows. In Sec. we use the NR waveforms
at our disposal to quantify the importance of higher harmonics in presence
of spins. In Sec. [2.3] we determine, taking also into account the error in NR
waveforms, which gravitational modes are crucial to achieve at least ~ 99%
accuracy. In Sec. 2.4 we develop the multipolar EOB waveform model, and
describe how to enhance its performance by including information from NR
simulations and BH perturbation theory. We also highlight the construction
and use of the multipolar (stand-alone) merger-ringdown model. In Sec.
we compare the newly developed SEOBNRv4AHM model to 157 NR waveforms.
In Sec. we summarize our main conclusions, and outline possible future
work. Finally, in Appendices [A] B] and [C] we provide interested readers with
explicit expressions of all quantities entering the higher-order modes of the
SEOBNRv4HM model, and point out the presence of numerical artifacts in the
(4,4) and (5,5) modes of some NR simulations. For convenience, we summarize
in Appendix [F] the NR waveforms used in this paper. In Appendix [G] we also
compare the model SEOBNRv4HM with the nonspinning EOBNRv2HM waveform
model, developed in 2011 [201]. Finally in Appendix [Hl we compare the
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SEOBNRv4HM model with an NR waveform in time domain.
In this paper we adopt the geometric units G = ¢ = 1.

2.2. Motivations to model higher-order modes for binary
black holes
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Figure 2.1.: Amplitude ratio between the (¢, m) mode and the dominant (2, 2)
mode, both evaluated at their peak, as function of the mass ratio. We use
only nonspinning NR waveforms. (Note that the markers represent the NR
data, and we connect them by a line). We note that the importance of a
given higher-order mode with respect to the dominant one is not controlled
only by the amplitude ratio between the two, but also by the -2 spin-weighted
spherical harmonic associated to the mode (see Eq. (2.1))).

In this section we describe the spherical-mode decomposition of the gravi-
tational polarizations and discuss the motivations for building an inspiral-
merger-ringdown waveform model (SEOBNRv4HM) with higher harmonics for
spinning BHs.

Henceforth, we denote the binary’s total mass with M = mj + mo, and
choose the body’s masses m; and ms such that the mass ratio ¢ = my/mg > 1.
Since we consider only spinning, nonprecessing BHs (i.e., spins aligned or
antialigned with the direction perpendicular to the orbital plane ﬁ), we
only have one (dimensionless) spin parameter for each BH, x; 2, defined as
Si2= XLgmiQIAJ, where S; 5 are the BH’s spins (—1 < x32 < 1).
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2.2. Motivations to model higher-order modes for binary black holes

The observer-frame’s gravitational polarizations read

[eS) ¢

hi(t,00it) =i ha(t,00it) =D D 5 Vi, (100) hem(t), (2.1

(=2 m=—/

where we denote with ¢ the inclination angle (computed with respect to the
direction perpendicular to the orbital plane), ¢q the azimuthal direction to
the observer, and _, Yy, (¢, ¢0)’s the -2 spin-weighted spherical harmonics.
For spinning, nonprecessing BHs” we have hy,, = (—1)*h;_,,. Thus, without
loss of generality, we restrict the discussion to (¢,m) modes with m > 0.

As we shall discuss below, for face-on/face-off binary configurations, the
dominant mode is the (¢, m) = (2,2) mode. For generic binary orientations the
modes (¢, m) # (2,2) could be comparable to the (2,2) mode. Nevertheless,
we will loosely refer to (¢,m) # (2,2) as subdominat modes; sometime we
also refer to them as higher-order modes or higher harmonics, even if they
include the (2, 1) mode.

Several authors in the literature have investigated the impact of neglecting
higher-order modes for detection and parameter estimation. From the detec-
tion perspective, Refs. [184-187] showed that neglecting higher-order modes
in nonspinning gravitational waveforms can cause a loss in detection volume
bigger than 10% when the mass ratio ¢ > 4 and total mass M > 100M. To
overcome this issue, Ref. [188] suggested a new method to search for GW
signals with templates that include higher modes, increasing the search sensi-
tivity up to a factor of 2 in volume for high mass-ratio, and high total-mass
binaries. While those works consider only nonspinning systems, the authors
of Ref. [183] show that for spinning systems, the loss in detection volume due
to neglecting higher-order modes is smaller with respect to the nonspinning
case. This happens because the spin parameters provide an additional degree
of freedom that templates with only the dominant (2,2) mode can employ to
better match signals containing higher-order modes.

From the parameter-estimation perspective, as discussed in Ref. [186], for
nonspinning systems with mass ratio ¢ > 4 and total masses M > 150M, the
systematic error due to neglecting higher-order modes is larger than the 1o
statistical error for signals with signal-to-noise ratio (SNR) of 8. Signals with
a larger SNR yield smaller statistical errors and, the constraints discussed
before become more stringent [191]. Indeed even for equal-mass systems,
where the higher-order modes are expected to be negligible, if the signal has
an SNR of 48, the systematic error from neglecting higher-order modes can
be bigger than the statistical error |[191]. (The SNRs above refer to Advanced
LIGO’s “zero-detuned high-power” design sensitivity curve [307]).
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Figure 2.2.: Amplitude ratio between the (¢, m) mode and the dominant (2, 2)
mode, both evaluated at their peak. In the top (bottom) panel we plot these
quantities for mass ratio ¢ = 8 versus the spin of the heavier BH (¢ = 1
versus x4 = (x1 — Xx2)/2 for modes with odd m, and x5 = (x1 + x2)/2 for
modes with even m). The markers represent the NR data, and we connect

them by a line.
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2.2. Motivations to model higher-order modes for binary black holes

Here we briefly review known results, and highlight some features that will
be exploited below when building the SEOBNRv4HM waveform model.

In Fig. 2.1] we show the ratio between the largest subdominant (¢, m)
modes and the (2,2) mode amplitudes, evaluated at their peak, ti7, and
tiiak? respectively, as function of mass ratio for all the nonspinning wave-
forms in our NR catalog. We note that the well-known mode hierarchy
(6,m) =(2,2),(3,3),(2,1),(4,4),(3,2),(5,5), (4,3) changes when approach-
ing the equal-mass (equal-spin) limit (see, e.g., Ref. [181]). Indeed, in this
limit all modes with odd m have to vanish in order to enforce the binary’s
symmetry under rotation ¢y — o + 7. Thus, when v — 1/4 (x1 = x2),
the (3,2) and (4,4) modes become the most important subdominant modes.
In Fig. we show how the modes’ hierarchy in the nonspinning case (see
Fig. changes when BH’s spins are included. In particular, in the left
panel of Fig. we fix the mass ratio to ¢ = 8 and plot the relative amplitude
of the modes as function of the spin of the more massive BH. Note that for
g = 8 all NR waveforms in our catalog (with the exception of ET:AEI: 0004,
qg = 8, x1 = x2 = 0.85) have the spin only on the more massive BH. We
see that the relative amplitude of the modes (3, 3), (4,4), (3,2), (5,5), (4,3)
depends weakly on the spins, except for the (2,1) mode. Indeed, for x; = 0.5,
the (2,1) mode becomes smaller than the (4,4) mode and for x; 2 0.75 is as
small as the modes (3,2), (5,5). On the other side, for x; < —0.25 the mode
(2,1) is larger than the (3,3) mode. We find that for smaller mass ratios the
effect of x5 (i.e., the spin of the lighter BH), becomes more important. In
particular, for a fixed value of x; the amplitude ratio |hem (thr )|/ | P2 (t22.)|
for the modes (3,3), (4,4), (5,5) decreases with increasing x», while the ratio
increases for the modes (2,1), (3,2), (4, 3).

The special case of equal-mass systems, ¢ = 1, is discussed in the right
panel of Fig. Here we show the amplitude ratio between the (¢, m) mode
and the dominant (2,2) mode, both evaluated at their peak, as function of
X4 = (x1 — x2)/2 for modes with odd m and as function of xs = (x1 + x2)/2
for modes with even m. As discussed before, the modes with odd m vanish for
equal-mass, equal-spins configurations (x4 = 0) from symmetry arguments
and, the amplitude ratio grows proportionally to |xa| for these modes. In
particular, we note that in this case the (2,1) mode behaves differently from
the other modes, undergoing a much more significant growth in the amplitude
ratio. Regarding the modes with even m, we notice that whereas the (4,4)
mode is nearly constant as function of yg in the spin range considered, the
(3,2) mode increases as a function of yg in the same range. The amplitude
of the (2,1) mode has a stronger dependence on the spins with respect to
the other modes because in its PN expansion the spin term enters at a lower
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relative order (see Eqgs. (38a)—(381) in Ref. [220]). A similar spin-dependence
was found in Ref. [308] for the amplitudes ratio (A, /Age) of the quasi-normal
mode oscillations.

Finally, it is worth emphasizing that in understanding the relevance of
subdominant modes for the observer, it is important to take into account the
-2 spin-weighted spherical-harmonic factor _,Y,,, (1, pp) that enters Eq. (2.1,
notably its dependence on the angles (¢, ¢g). Indeed, the -2 spin-weighted
spherical harmonic associated to the dominant mode starts from a maximum
in the face-on orientation (¢ = 0) and decreases to a minimum at edge-on
(¢ = m/2). On the other hand, the spherical harmonics favour the higher-order
modes with respect to the dominant one in orientations close to edge-on where
oYy, (0 = 7/2)|/]y Yo (¢ = m/2)| > 1. Furthermore, a direct inspection
of the harmonic factor shows that the modes (3,2),(4,3) are suppressed
(ice., Lo Yy, (0)]/Ly Yoy (¢)] < 1) for a larger region in ¢ than for the modes
(3,3),(2,1),(4,4),(5,5). For this reason the contribution of the former to the
gravitational polarizations is limited to a smaller number of orientations with
respect to the latter.

2.3. Selecting the most-important higher-order modes for
modeling

In this section we first introduce the faithfulness function as a tool to assess
the closeness of two waveforms when higher-order modes are included. Then,
we use it to estimate how many gravitational modes we need to model in
order not to loose more than 10% in event rates when rectricting to the
binary’s configurations in the NR catalog at our disposal. We also determine
the loss in faithfulness of the NR waveforms due to numerical error.

The GW signal measured from a spinning, nonprecessing and noneccentric
BBH is characterized by 11 parameters, namely the masses of the two bodies
my and my, the (constant) projection of the spins in the direction perpendic-
ular to the orbital plane, y; and ys, the angular position of the line of sight
measured in the source’s frame (¢, ¢g) (see Eq. (2.1))), the sky location of the
source in the detector frame (6, ¢), the polarization angle ¢, the luminosity
distance of the source Dy, and the time of arrival t.. The signal measured by
the detector takes the form:

h = F+(87 ¢7 1/)) h+(L7 %0, -DL7 €7 tCa t) + F>< (97 d)a ¢) hX (La ©0, DL7 57 tCa t) )
(2.2)
where for convenience we introduce € = (mj, ma, X1, X2). The functions
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2.3. Selecting the most-important higher-order modes for modeling
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Figure 2.3.: Unfaithfulness (1 — F) for the configurations (¢ = 1.2, x; =
—0.5, xo = —0.5) (top panel) and (¢ = 8, x1 = 0.85, x2 = 0.85) (bottom
panel) in the mass range 20M, < M < 200M. In dashed the results for
the SEOBNRv4 model and in solid the results for the NR waveform containing
only the dominant mode, both against the NR waveform with the modes
(¢ <5, m #0). The minimum of the unfaithfulness (blue curves) correspond
to a face-on orientation. We also show the unfaithfulness averaged over
the three angles (g, Pong, Knr (green curves) and weighted by the cube of
the SNR (orange curves). Finally the minimum of the unfaithfulness (red
curves) which in practice correspond to edge-on and minimized over the other
two angles. The vertical dotted-dashed black line is the smallest mass for
which the (¢,m) = (2,1) mode is entirerly in the Advanced LIGO band. The
(¢,|m’|) mode is entirerly in the Advanced LIGO band starting from a maysg
m’ times the mass associated with the (¢, m) = (2,1) mode. The horizontal
dotted-dashed black lines represent the values of 1% and 3% unfaithfulness.



F (0,¢,v) and Fy (0, ¢,1) are the antenna patterns [151}[309):

F.(0,0,0) = 1—1—(320s@ 0s(2¢) cos(2¢) — cos(f) sin(2¢) sin(2¢), (2.3)
Fy(0,0,1) = L+ cos*(6) cos(2¢) sin(2¢) + cos(f) sin(2¢) cos(2¢). (2.4)

Equation (4.24]) can be rewritten as:

h =A(0,8)| cos k(0, ¢, ¥) he (1,0, D, & tei t)
+sin #(0, ¢, 1) hu(1, 6, Dy, €, 1e; 1)) (2.5)

where (6, ¢, 1) is the effective polarization [187] defined in the region [0, 27)

as: oiR(0.00) _ Fi(0,0,¢) +iF(0,0,v) 26)
V6. 6.0) + F2(0.0.v)
while A(6, ¢) reads:
= VF2(6.6.0) + F2(6,6.0). @7)

We stress that A(6, ¢) does not depend on v despite the fact F, and Fy
depend on it. Henceforth, to simplify the notation we suppress the dependence

of k on (0,¢,7). Given a GW signal hy and a template waveform h;, we
define the faithfulness as [187]310]

hs, h
f(bsa(pOw Ks) = tmax \/< ( )(t) ) ’ (28)
erP04:5 hs> hs h I h Ls=Lt
‘ ‘ 65:£t
where parameters with the subscript “s” (“t”) refer to the signal (template)
waveform. The inner product is defined as [151,[309]:
b
(a,b) = 4 Re (ﬁ(ﬂ(sﬂ, (2.9)
h

where a tilde indicates the Fourier transform, a star the complex conjugate
and S, (f) is the one-sided power spectral density (PSD) of the detector noise,
and we employ the Advanced LIGO’s “zero-detuned high-power” design
sensitivity curve [307]. The integral is evaluated between the frequencies

fi=20Hz and f, = 3kHz.
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2.3. Selecting the most-important higher-order modes for modeling

The maximizations over ¢, and ¢, in Eq. are computed numerically,
while the maximization over x; is done analytically following the procedure
described in Ref. [187] (see Appendix A). When hy does not include higher-
order modes, the maximization over the effective polarization x; in Eq.
becomes degenerate with the maximization over ¢, and we recover the usual
definition of faithfulness.

The faithfulness given in Eq. depends on the signal parameters
(ts, Yo, Ks)- To understand how the faithfulness varies as function of those
parameters, we introduce the minimum, maximum, average and average
weighted with the SNR unfaithfulness [1—F (s, pos, £s)] over these parameters,
namely [187]243}310]:

LS,Iélolsl}Hs(l —F)=1- LSI,B(?;},%S F(ts, ©og, Ks) (2.10)
max (1 —F)=1— min F(ts, pos, Ks) » (2.11)
Ls,P0g,Rs Ls,P0g,Rs
]_ 27 1 27
(1=F)ropone =1——= / dﬁs/ d(cos ty) dpos F(Ls, Pog, Ks) , (2.12)
s 872 Jo 1 0

SNRweighted
<1 B F>LS?SDOS7NS =

s T dkg [ d(cos ) [T dpo. F3(ts, Poss Ks) SNR? (i, 0og, Ks)
N 02” dks Lll d(cos ) 02” dpo, SNR(is, 0og, Ks) ’
(2.13)

where the SNR(is, ©os, Os, ¢s, ks, Dis, €, tes) 1S defined as:

SNR(L57 (10037 957 ¢S> KS? DL57 €s7 tcs) = \/ (hS7 hS) (214)

We note that for the average unfaithfulness weighted with the SNR in
Eq. (2:13), we drop in the SNR the explicit dependence on A(f,$) and
Dy, because they cancel out. It is important to highlight that the unfaith-
fulness weighted with the cube of the SNR is a conservative upper limit of
the fraction of detection volume lost. Indeed, weighting the unfaithfulness
with the SNR takes into account that, at a fixed distance, configurations
closer to an edge-on orientation have a smaller SNR with respect to config-
urations closer to a face-on orientation, therefore they are less likely to be
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observed. The definitions of minimum, maximum and averaged unfaithfulness
in Egs. - are similar to those in Ref. , with the difference that
in the latter they minimize, maximize and average also over the source orien-
tation ts. The average weighted with the SNR in Eq. was introduced
in Ref. and used for a similar purpose also in Ref. [310].

In the following we shall show results where all the averages are computed
assuming an isotropic distribution for the source orientation and sky position.

NR (£,m) = [(2,2),(3,3),(2,1),(4,4),(5,5] vs NR (£ < 5, m # 0)
Tmmm 5<49<10 m 2<g<5 e <2

max
INR>PONR-KNR

_
)
&

[T T[T T [T [T [T [T [T rrT|
20 40 60 80 100 120 140 160 180 200
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Figure 2.4.: Maximum of unfaithfulness (1 — F) over the three angles
(tNR, Pong, FNR) as a function of the total mass, in the range 20My < M <
200M of the NR waveform with (2, 2),(2,1),(3,3), (4,4), (5,5) modes against
NR waveform with (¢ < 5,m # 0) modes. The maximum unfaithfulness is
typically reached for edge-on orientations. The jaggedness of the curves is
caused by the numerical noise present in higher-order modes that are less
resolved in the NR simulations. We find that this feature is not present when
these noisy modes are removed from the calculation of the faithfulness.

Using the aforementioned definitions —, we compute the unfaith-
fulness assuming that the signal is an NR waveform with modes (¢ < 5;m #
0) El, and the template is either an NR waveform or a SEOBNRv4 waveform
with only the (2,2) mode.

In the left panel of Fig. 2.3 we show results for the simulation SXS:BBH: 0610

2Since the nonoscillating m = 0 modes are not well reproduced by NR simulations and
their contribution is small, we do not include them in these calculations. We find that
the contribution of the modes with ¢ > 6 is neglibigle.
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2.3. Selecting the most-important higher-order modes for modeling

having ¢ = 1.2, xy; = —0.5, xo2 = —0.5. Given the small mass ratio, we do
not expect the higher-modes to play an important role. Indeed both the
NR with only the dominant mode and the SEOBNRv4 model have averaged
unfaithfulness < 1% in the mass range 20M, < M < 200M,. In both
cases the unfaithfulness is maximum for an edge-on orientation and is < 3%.
Conversely the minima of the unfaithfulness occur for a face-on configuration
and they are always much smaller than 1%. The situation is very different
in the right panel of Fig. where we consider the simulation ET:AEI:0004
that has larger mass ratio and spins: ¢ = 8, x1 = x2 = 0.85. In this case the
minima of the unfaithfulness correspond to a face-on orientation where the
higher-order modes are negligible and for this reason both NR with only the
dominant mode and the SEOBNRv4 model have unfaithfulness smaller than 1%.
By contrast, the results for the maximum of the unfaithfulness correspond
to an edge-on orientation and they are equally large for the NR with only
the dominant mode and for the SEOBNRv4 model. They have unfaithfulness
in the range [10%, 20%] for masses 20M, < M < 200M,,. In this case also
the averaged unfaithfulness are large, in the range [5%, 15%] and [3%, 8%)|
for the weighted averages.

Thus, for this high mass-ratio configuration the error from neglecting
higher-order modes supersedes the modeling error of the dominant mode
when the orientation is far from face-on/face-off. This is not surprising
because the SEOBNRv4 waveform model was constructed requiring 1% of
maximum unfaithfulness against the NR waveforms when only the (2,2)
mode was included [1].

Only by properly including the largest subdominant modes can one hope
to achieve an unfaithfulness of the waveform model below 1% [l Which sub-
dominnat modes should we include to achieve such an accuracy? To address
this question, we compute the faithfulness between NR waveforms including
the modes (2,2),(2,1),(3,3),(4,4), (5,5) and NR waveforms including only
the (¢ < 5,m # 0) modes. We find that the unfaithfulness averaged over the
three angles (txr, Yongs KNr) Tanges between 0.01% < (1—F) 5 0.5% for the
total mass interval 20M, < M < 200M,. Thus, we conclude that the modes
(2,2),(2,1),(3,3),(4,4), (5,5) are sufficient to model the full GW signal if
we want to achieve an average unfaithfulness smaller than 1%. Furthermore,
we note that these modes are not enough to ensure that the maximum of
the unfaithfulness is smaller than 1%. In fact, for some of the configurations

3We notice that using a waveform model with unfaithfulness smaller than 3% (or 1%
depending on the features of the template bank) is a sufficient condition for a template
bank to have a loss in event rates due to modeling error and discreteness of the template
bank smaller than 10% (e.g., see Ref. [260])
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with higher mass ratio, the unfaithfulness is slightly larger than 1% in the
mass range 20Mg < M < 200M, as it is clear from the plot in Fig. 2.4 The
maximum unfaithfulness decreases, almost reaching the requirement of being
below 1% for all the waveforms in the catalog, if we add also the more sub-
dominant modes (3,2), (4,3). However, given that the overall improvement
in the maximum of unfaithfulness when including also the modes (3,2), (4, 3)
is small (of the order of a few 0.1%) with respect to the results obtained
using only the (2,2),(2,1),(3,3), (4,4), (5,5) modes, it is worth comparing
this improvement with the estimation of the maximum of the unfaithfulness
due to the numerical error of the NR waveforms. The numerical errors we
consider are numerical truncation error [3,|311] and waveform extrapolation
error [3,311,312]. For our NR catalog, we estimate the numerical trunca-
tion error computing the maximum of the unfaithfulness between the same
NR waveforms with the same modes (i.e., (2,2),(2,1),(3,3),(4,4),(5,5)),
but with different resolutions, notably the highest (maximum) resolution
and the second highest. The waveform extrapolation error is estimated in
the same way, but employing different extrapolation orders (i.e., N = 2 and
N = 3). We find that the contribution of each of these errors to the maximum
of the unfaithfulness is in the range [0.1%, 1%] for the total mass interval
20My < M < 200M;, [

Since adding the modes (3,2), (4,3) is a non trivial task because of the
mode mixing between spherical and spheroidal harmonics [109}304}313}314],
and considering that their contribution is at the same level of the numerical
error of the NR waveforms, we decide not to include them in the SEOBNRv4HM
model. The results of the maximum of the unfaithfulness due to the numerical
errors suggest that in order to use NR waveforms to build an EOBNR model
having maximum unfaithfulness against NR smaller than 1% it would be
necessary to have more accurate higher-order modes from NR simulations.

4The unfaithfulness averaged over the three angles (ixRr, Pong, KNR) due to numerical
errors is much smaller than 1%. The reason is that the main contribution to this
average unfaithfulness is the numerical error of the dominant mode. The latter is
much smaller than 1%, as well. This conclusion is in agreement with Ref. [3] where
the authors studied the numerical errors of the dominant mode for a subset of the
waveforms in our NR catalog.
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2.4. Effective-one-body multipolar waveforms for nonprecessing binary black holes

2.4. Effective-one-body multipolar waveforms for
nonprecessing binary black holes

In this section we describe the main ingredients used to build the multipolar
spinning, nonprecessing SEOBNRv4HM waveform model. We start briefly de-
scribing the dynamics in Sec. 2.4.1] and then focus on the structure of the
gravitational modes in Sec. [2.4.2]

In the EOB formalism the real dynamics of two bodies with masses m; » and
spins S7 2 is mapped into the effective dynamics of a test particle with mass
1 and spin S, moving in a deformed Kerr metric with mass M = m; + mo
and spin Sk, (for details see Ref. [208]). As discussed above, here we limit
to nonprecessing spins Sq 2 and introduce the dimensionless spin parameters
X1,2 defined as S; = Xim?f;, with —1 < y; < 1.

2.4.1. Effective-one-body dynamics

The EOB conservative orbital dynamics is obtained from the resummed EOB
Hamiltonian through the energy mapping [91]

H,
HEOB:M\ll+2u< ff—1>, (2.15)
0

where = mymsy/(my + ms) is the reduced mass of the BBH and v = u/M
is the symmetric mass ratio. When spins are nonprecessing the motion is con-
strained to a plane. Thus, the dynamical variables entering the Hamiltionian
are the orbital phase ¢ ﬂ the radial separation r (normalized to M) and their
conjugate momenta p, and p, (normalized to p). The explicit form of Heg
that we adopt here was derived in Refs. [208,287], based on the linear-in-spin
Hamiltonian for spinning test particles of Ref. [205]. The radial potential
entering the 00-component of the EOB deformed metric, which also enters
the effective Hamiltonian H.g, is explicitly given in Egs. (2.2) and (2.3) in
Ref. [1]. The Hamiltonian H.s depends also on the calibration parameters
(K, dso, dss AZ2,,), which were determined in Ref. [1] by requiring agreement
against a large set of NR simulations (see Eqs. (4.12)—(4.15) therein). Here,
we adopt the same values for these calibration parameters.

The dissipative dynamics in the EOB formalism is described by the
radiation-reaction force given in Eq. (2.9) in Ref. [1]. We notice that

5 Abusing notation, we indicate the orbital phase with ¢, which we use to denote the
azimuthal angle describing the sky location of the source in the detector frame. It will
be clear from the context which of the two angles we refer to.
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in this paper we do not change the dissipative and conservative dynamics of
the SEOBNRv4 model, and that the SEOBNRv4HM waveform models share the
same two-body dynamics of SEOBNRv4. Here, we improve the accuracy of the
gravitational modes with (¢,m) # (2,2), and use them in the gravitational
waveform, but we do not employ these more accurate version of the modes
in the radiation-reaction force. Furthermore, we note that the gravitational
modes with (¢,m) # (2,2) are present in the radiation-reaction force, but
they do not include the NQCs corrections (see Eq. ) As discussed also
in Ref. [201], the latter modify the amplitude of the already subdominant
higher-order modes (see Fig. by ~ 10% close to merger, where the effect
of the radiation reaction is not very important for the plunging dynamics.

2.4.2. Effective-one-body gravitational modes

As usual in the EOB formalism [92], the gravitational modes entering Eq. (2.1
are composed of two main parts: inspiral & plunge, and merger & ringdown.
We can write the generic mode as:

hinsp—plunge(t) t < t@m
h m t — /m ) match 216
¢ ( ) {h?;srger_RD(t), ‘> tﬁln;t(:h7 ( )
where t7  is defined as:
122 14 =1(2,2),(3,3),(2,1),(4,4
tfnn;tch — g;aka ( 7m) ( ) )7( ) )v( ) )’( ) ) (2‘17)
tpeak - 1OM7 (67 m) = (57 5)7

with tiiak being the peak of the amplitude of the (2, 2) mode. By construction
the amplitude and phase of hy,(t) are C' at t = ¢, . In the following we
shall discuss in more detail how these two parts of the gravitational modes are
built and why we choose a different matching point for the mode (5,5). We
note again that the mode (2,2) in the SEOBNRv4AHM model is the same as in
the SEOBNRv4 model, and for this reason below we focus on the higher-order

modes (3,3),(2,1),(4,4), (5,5).

2.4.3. Effective-one-body waveform modes: inspiral-plunge

The inspiral-plunge EOB modes are expressed in the following multiplicative
form: .
g P = Ry Nom, (2.18)

where hj,, is the factorized form of the PN GW modes [87}283] for quasi-
circular orbits, aimed at capturing strong-field effects, as discussed in the
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2.4. Effective-one-body multipolar waveforms for nonprecessing binary black holes

test-mass limit [218-220]. The factor Ny, in Eq. is the nonquasi-
circular (NQC) term, which includes possible radial effects that are no longer
negligible during the late inspiral and plunge, and that are not captured by
the rest of the waveform. More explicitly, the factorized term reads:

R = hipe™ S Tom fom €, (2.19)

where € is the parity of the multipolar waveform, defined as

c_ 0, {4+m %s even (2.20)
1, £+ m is odd.
The Newtonian term h%’e) reads:
o_ Mv .
hM = 20Oy () vy ytoemm (W,¢>, (2.21)
Dy 2

where Dy, is the distance from the source, Y"(6, ¢) are the scalar spherical

harmonics and the expression of the functions n,(;?)l and c¢,4.(v) are given in

Appendix . The function V(f is defined as:
V= vé”e) =M Qrq, (2.22)

where

Wi

: (2.23)

o [8HEOB(T7 ¢7p7‘ = O7p¢) -
rqg =
Ipe
Q = d¢/dt being the angular frequency. We also define vg = (M Q)'/3. The
term S’élff) in Eq. (2.19) is an effective source term:

eff — 1

A He )y Py ) = O
off = Do (M Q)3, e=1.

The function T, in (2.19) is a resummation of the leading-order logarithms
of tail effects:

T((+1— 2 iHgop?)
I'(t+1)
x exp[2 i m Q Hgop log(2 m Q rg)], (2.25)

Tory = exp|m m Q Hgog|

where 19 = 2M /\/e.
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The functions fs, and e¥m in Eq. contain terms such that when
expanding in PN order hj,, one recovers hyN (i.e., the PN expansion of the
(¢,m) mode up to the PN order at which ALY is known today). In the
SEOBNRv4HM model the expression for fy,, and d,,, are mostly taken from the
SEOBNRv4 model [1] with the addition of some newly computed PN terms (for
more details and explicit expressions of fy,, and d;, see Appendix . For
the modes (2,1) and (5,5), fum, includes also the calibration term ¢, vo™,
where Sy, denotes the first-order term at which the PN series of hLY is not
known today with its complete dependence on mass ratio and spins (see
Eqgs. (A.11)—(A.12)). The calibration parameter ¢, is evaluated to satisfy
the condition:

‘hém tmatch ’ — ‘héN 6)5(6 T eléemfﬁm(cﬁm)’

)
t=ttm

match

for (¢,m) = (2,1), (5,5), (2.26)

‘ h match)

where ’h match)‘ is the amplitude of the NR modes at the matching point

tim . The latter are given as fitting formulae for every point of the parameter
space (v, x1, X2) in Appendix [Bl We need to include the calibration parameter
Com for the modes (¢,m) = (2,1),(5,5) for reasons that we explain below in
Sec. 2.4.4]

Finally, the term Ny, in Eq. is the NQC correction:

< exp |7 (e P plen P (2.27)
Ly orQ)0 '

which is used to reproduce the shape of the NR modes close to the matching
point £22"  As done in the past [1,234], the 5 constants (ai*", ab™ aktm,
plem, bh“") are fixed by requiring that:

e The amplitude of the EOB modes is the same as that of the NR modes
at the matching point ¢

match*

hmsp plunge

match ’ - ‘h match) (228)

We notice that this condition is different from that in Eq. (2.26)) because
it affects RYSPPUE(¢lm Y and not hE (£ ).
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2.4. Effective-one-body multipolar waveforms for nonprecessing binary black holes

e The first derivative of the amplitude of the EOB modes is the same as
that of the NR modes at the matching point

match*

d

insp-plunge
pinsp-plung (t)‘
dt

d |hR(t)|
- )

; (2.29)

t=ttm

match

t=ttm

match

e The second derivative of the amplitude of the EOB modes is the same
as that of the NR modes at the matching point ‘7

match*

d2

higr;;p—plunge (t) ‘
dt?

R |RR)

2
t= tZ'm dt t= tlm

match match

; (2.30)

e The frequency of the EOB modes is the same as that of the NR modes
at the matching point ¢

match*
insp-plunge
w@mp pme (tmatch) = wﬂm (tmatch)' (231)

e The first derivative of the frequency of the EOB modes is the same as
that of the NR modes at the matching point t‘?

match*

d 1nsp plunge(t) _ dwgf”(t)
dt it dt |, _em ’

match match

(2.32)

where the RHS of Eqgs. — (usually called “input values”), are
given as fitting formulae for every point of the parameter space (v, x1, x2)
in Appendix [B] These fits are produced using the NR catalog and BH-
perturbation-theory waveforms, as described in Appendix [F]

As we discuss in Appendices [B] and [C] we find that for several binary
configurations in the NR catalog, the numerical error is quite large for the
mode (5,5) close to merger. To minimize the impact of the numerical error
on the fits of the input values, we are obliged to choose the matching point
for this mode earlier than for other modes, as indicated in Eq. .

2.4.4. Minima in (2,1), (5,5)-modes’ amplitude and c¢,,’s calibration
parameters

We want now to come back to the motivation of introducing the c¢y,,’s cal-
ibration parameters in Eq. (2.26)) for the modes (2,1) and (5,5). We note
that those parameters are determined and included in the waveform before

101



(q’ Xl)XZ) :(1 ~17 _0'47 _07)

—
9
8}

Ll o

|hém|
s

_
9
1

_
9
b

o
&

-3000 -2500 —2000 —1500 —1000 —500 0

t/M
o (£7m) :(2, 2) T (£7m) :(Sa 5) .......... (e’m) :(47 4)
------- (€m) =(3,3) = (Lm) =(4,3) —— (L,m) =(,2)

Figure 2.5.: Amplitude of the (2,2),(2,1),(3,3),(4,4),(5,5),(3,2),(4,3)
modes versus time for the NR simulation SXS:BBH:1377 with parameters
qg =11, x1 = —0.4, xo = —0.7. We produce such simulation to check if
the analytical prediction that the (2,1)-mode’s amplitude would have a non-
monotonic behaviour toward merger holds. We choose as origin of time the

peak of the (2,2) mode.

applying the NQC conditions f. We introduce the c¢g,,’s to “cure”
the behaviour of the modes (2,1), (5,5) close to the matching point for a
particular region of the parameter space. Indeed, we find that the factorized
expression of the amplitude ‘h?m(t)‘ starts to decrease toward plunge and

merger, approaching minimum values close to zero for t ~ £l when the
binary parameters have ¢ ~ 1 and large |xa| = |(x1 — x2)|/2. Although the
term fy,, in Eq. is responsible of the zeros in the amplitude, we find
that this unexpected behaviour is also present in the PN-expanded form of
the mode, and persist in other mode resummations, like those suggested in
Ref. [220] (see Eq. 2 therein) and in Refs. [221}222].

Quite interestingly, in the case of the (5,5) mode, we do not find such
a non-monotonic behaviour toward merger in the NR simulations at our
disposal, but we do find it for the (2, 1) mode in the same region of parameter
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space predicted by the analytical computation. In particular, we notice
minima toward merger in SXS:BBH:0612 with (¢ = 1.6, x1 = 0.5, xo =
—0.5), SXS:SXS:BBH:0614 (¢ = 2, y1 = 0.75, xo = —0.5), SXS:BBH:0254
(¢ = 2,x1 = 0.6, xo = —0.6). We also produce a new NR simulation
SXS:BBH: 1377 with ¢ = 1.1, x;1 = —0.4, x2 = —0.7 to check the presence of
a minimum in the amplitude mode. Figure [2.5] shows indeed the presence of
such a mimimum in the (2,1) mode amplitude for SXS:BBH: 1377.

The minima (or zeros) of the (2, 1), (5,5) modes can sometime occur at times
t ~ tmatch “that is close to the times where we impose the NQC conditions
f. When that happens, the enforcement of such conditions yield a
waveform which contains unwanted features’] Considering that for the mode
(5,5) the mimima are absent in the NR simulations, thus they are likely an
artefact of the analytical waveform, and that for the mode (2,1) the minima
are present only in the region of parameter space where the (2,1) mode is
much smaller than the other modes (i.e., when ¢ ~ 1 and |xa| = |(x1 — x2)|/2
is large, see also Fig. [2.5)), we decide to remove the minima from the (2, 1) and
(5,5) EOB modes. We achieve this by introducing the calibration parameter

Cem, which enforces the condition that the EOB amplitude at ¢12*! is equal

to the NR amplitude (see Eq. (2.26)). Note that the latter is imposed before
the NQC conditions and removes the minima only when they appear for
t ~ tm . Modeling the minima in the (2, 1) modes could be considered in
the future, when more accurate waveforms would be needed at higher SNRs.

Henceforth, we attempt to describe why the analytical modes (both in
the PN and factorized form) present minima or zeros for the (2,1) and (5, 5)
cases when ¢ ~ 1 and |xa| = |(x1 — x2)|/2 is large. Readers who might not
be interested in this technical discussion, could skip the rest of this section
and move to Sec. 2.4.5

As discussed in Sec. 2.2, because of binary symmetry under rotation
(po = o + m) the modes with odd m vanish for equal-mass and equal-spins
configurations. Thus, the nonspinning terms in those modes are proportional
to 0m = (my — mg)/M while the spinning terms are an antisymmetric
combination of dm, x4 and xs = (x1 + X2)/2 (e.g, xa, xs0m, x40m), see for
example Eqgs.(38a)—(381) in Ref. [220]. In the limit ¢ ~ 1 all the nonspinning
and spinning terms proportional to dm are suppressed, and the leading
spinning terms are proportional to y 4. For large values of x4 and small
values of om (very unequal spins, almost equal mass) a cancellation between

6Since |hMSPTPMMEC(flm |~ 0, imposing the condition in Eq. (228) with

match

| (tlm )| # 0 forces the function |Npy|, hence the amplitude |pinspphunge 4y

match Im
to assume unphysically large values for ¢ < ¢, .
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the leading-order spin correction and the dominant nonspinning PN term
(which despite being of lower PN order is supressed by dm) can occur at some
given frequency. The higher the difference in PN orders between these two
leading spinning and nonspinning contributions, the higher the frequency
at which the cancellation happens. For the (2,1) mode, there is only a half
PN order difference between these terms (see Eq. (38b) in Ref. [220]), so
the cancellation arises at sufficiently low frequencies where this PN analysis
based on two leading terms can be reliable, and, indeed, we do observe these
minima in the NR simulations. In Table we list the configurations in
our NR catalog where the minimum happens and its orbital frequency as
measured in the NR simulation E] and as predicted by PN modeling at 3PN
order [62,87,88|. As expected, the lower the frequency, the more accurate the
PN prediction. We note that the last row shows results of a NR simulation
that we specifically produce to confirm the presence of the minimum in the
mode (see also Fig. [2.5). We note that for the binary’s configuration listed
in the first row of Table 2.I] the NR simulation shows a high-frequency
minimum, which is not reproduced by PN calculations, confirming that this
analysis becomes less reliable in the high-frequency regime.

Lastly, as already pointed out above, for the (5,5) mode we do not observe
any minimum in the NR simulations at our disposal. The most likely expla-
nation is that the cancellation of the leading terms happens at frequencies
high enough that the higher-order PN corrections would change the result
(i.e., they completely remove the minimum or push it at frequency higher
than the merger frequency).

NR name q | x1 | x2 | MR | MQgY

SXS:BBH:0254 | 2 | 0.6 |[-0.6 | 0.17 n/a
SXS:BBH:0614 | 2 | 0.75 | -0.5 | 0.082 | 0.057
SXS:BBH:0612 | 1.6 | 0.5 | -0.5 | 0.068 | 0.047
SXS:BBH:1377 | 1.1 | -0.4 | -0.7 | 0.033 | 0.029

Table 2.1.: For each NR simulation, binary’s parameters and values of the
orbial frequencies MQF® and MQLYN at which the minimum of the (2,1)
mode occurs.

"We estimate the orbital frequency in the NR simulation as half of the gravitational
frequency of the (2,2) mode.
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2.4.5. Effective-one-body waveform modes: merger-ringdown

We build the merger-ringdown EOB waveforms following Refs. [1,240,302,303],
notably the implementation in Ref. [1]. The merger-ringdown mode reads:

R (1) = 1 Agy (1) €0m® emiomolt=tiia), (2.33)

where oy is the (complex) frequency of the least-damped QNM of the
final BH. We denote o}, = S(0mo) < 0 and o}, = —R(04mo). For each
mode (¢, m), we employ the frequency values tabulated in Refs. [193,315]
as functions of the BH’s mass and spin. We compute the remnant-BH’s
mass using the same fitting formula in Ref. [234], which is based on the
phenomenological formula in Ref. [23§], but we replace its equal-mass limit
(see Eq. (11) in Ref. [238]) with the fit in Ref. [239] (see Eq. (9) of Ref. [239)]).
The remnant-BH’s spin is computed using the spin formula in Ref. [316] (see
Eq. (7) in Ref. [316]).
For the two functions Agm(t) and @m(t), we use the ansétze [1]:

Apm(t) = s tanh[c]} (¢ = tiaia) + 7] + 3l (2.34)

]_ _|_ dg”?e ’”}(t tmatch)
1+ dy7 ’

Gem () = Pty — i log (2.35)

where ¢‘™ . is the phase of the inspiral-plunge mode (¢,m) at t = t™, ..
The coefficients dﬁm and sz ﬂ with ¢ = 1,2 are fixed by imposing that

the functions Agm( ) and gbgm( ) in Eq. (2.16) are of class C' at ¢ =

to - Those constraints allow us to express ¢;'7 o

in terms of ¢{™ £ Cofs O
|h1nsp plunge( match)‘ at|h1nsp plunge (tmatch>| as

lm — [y |pizpP gt )
Cl7f

O-Zm|hmsp plunge (tmatch) ” COSh2 (C2 f) (236)

hmsp plunge ¢ 1
ang _ | V ( match)l + — [8{, | hmsp plunge (tmatch) ‘
Lf

— op B PE (el )] cosh (cf3) sinh (c57), (2.37)

8The subscript “c” means “constrained” while “f” stands for “free”.
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and d{? in terms of di"}, dy"}, oy, wyrseplunge gl qq
1+ dy7}
in lun
dﬁz = [wé PP ge(tmatch) O-;m:| dfmd (238)
Lf72
We emphasize again that the values of |y P8¢ (tm, )|, ;| AP Pinee(glm, )|

and wjrsPPmEe(glm Y are fixed by the NQCs conditions in Egs. ( [2-28) 2:29)
([2-31) to be the same as the NR values ‘h (tim )l O bR (¢hm )] and

!
wypsprplunge (ylm Y which are given in Appendix [B| as function of v and a

combination of the spins x; and X2. Thus, we are left with only two free
parameters in the amplitude ¢/ ¥ and in the phase d To obtain those
parameters we first extract them applying a least- square fit in each point
of the parameter space (v, x1,x2) for which we have NR and Teukolsky-
equation—based waveforms. Then, we interpolate those values in the rest of
the parameter space using polynomial fits in ¥ and a combination of y; and
X2, as given explicitly in Appendix [C|

Regarding the accuracy of our merger-ringdown model, for the modes (2,1)
and (3,3) the average fractional difference in the amplitude between the model
and the NR waveform is of the order of percent, while the average phase
difference is < 0.1 radians. For the modes (4,4) and (5,5) we are unable
to determine a similar average error, because those modes are affected by
numerical error at merger and during ringdown, as we discuss in Appendix
We find that the average fractional difference in the amplitude (phase)
between the model and the NR simulation can be in some cases on the order
of 10% (< 0.3 rad), but this can be comparable to the difference between NR
waveforms at different extraction radius (see Fig. in Appendix [C). We
notice that although the errors in those modes are not as small as those of
the modes (2,1) and (3,3), they are still acceptable considering the relatively
small amplitude of the modes (4,4) and (5,5) with respect to the (2,1) and
(3,3).

In summary, given a binary configuration (ms,ms, X1, X2), the merger-
ringdown model that we have developed is uniquely determined by the
following parameters (1, M2, X1, X2, 17 s @ > T Ot ), the latter being
a function of the remnant-BH’s mass and spin determined by the NR fits. It is
possible to use this merger-ringdown model as a stand-alone model (i.e., inde-
pendently from the inspiral-plunge part), if we also provide equations relating

fm . (i.e., the phase of the mode (¢,m) at t™ ) with ¢?2. . Indeed even
if a global tlme and phase shift is possible, the relations between the phases
of different modes are fixed. The latter are given as a fit for every point of the
parameter space (v, x1, x2) in Appendix @ We note that in this stand-alone
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merger-ringdown model, one can also treat o} and of as free parameters
(i.e., we do not compute them from Refs. [193315]). In this case the merger-
ringdown model is a function of (my, Ma, X1, X25 t s Ot Toms Tivs Meinal)
where Mgy, is the remnant-BH’s, which is used only to rescale o}, and o}, .
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SEOBNRVA (¢, v1, x2, M) =(3.0, 0.85, 0.85, 200.0M¢)
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SEOBNRVAHM (g, x1, x2, M) =(3.0, 0.85, 0.85, 200.0M.)
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Figure 2.6.: Faithfulness F(cos(inr), pongr, inr = 0) for the configuration
(g =3, M =200Mg, x1 = 0.85, x2 = 0.85): NR (¢ <5, m # 0) vs SEOBNRv4
(left panel), NR (¢ < 5, m # 0) vs SEOBNRv4HM (right panel). We plot the
faithfulness for a fixed rnxg because we have noted that F(ixr, @ong, ANR) 1S
mildly dependent on this variable.
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2.5. Performance of the multipolar effective-one-body waveform model

2.5. Performance of the multipolar effective-one-body
waveform model

We study the accuracy of the multipolar waveform model SEOBNRv4HM by
computing its faithfulness against waveforms in the NR catalog at our disposal.
In Secs. 2.5.1] and [2.5.2] we perform a detailed comparison against three NR
simulations, notably a moderate—mass-ratio configuration, SXS:BBH:0293
(g = 3, x1 = 0.85, xo = 0.85), and two high—-mass-ratio configurations,
SXS:BBH:0065 (¢ = 8, x1 = 0.5, xo = 0) and ET:AEI:0004 (¢ = 8, x1 =
0.85, x2 = 0.85). We also compare the results above with those obtained
when the (2,2)-waveform-model SEOBNRv4 is employed. Finally, in Sec.
we summarize the agreement of the SEOBRNv4AHM model against the entire NR
catalog composed of 157 simulations.

2.5.1. Moderate mass ratio: SXS:BBH:0293

In the left panel of Fig. we show a contour plot of the faithfulness
F(cos(tNr)s PonRs nNR)’ . between the NR waveform SXS:BBH:0293 with
KNR=

modes (¢ < 5, m # 0), and the waveform generated with SEOBNRv4, for a
total mass of M = 200M. In order to reduce the dimensionality of the
plot, we fix the value of kyg. However, we find that the dependence of the
faithfulness on this variable is mild. We can see that the faithfulness depends
mainly on the inclination angle (xg and degrades when we move from a
face-on {F(cos(tng) = 0) ~ 99%} to an edge-on orientation {F(cos(txr) =
1) ~ 92%}. This situation is different if we include the higher-order modes
in the model (i.e, (3,3),(2,1),(4,4),(5,5)), as can be seen in the right panel
of Fig. where we use the SEOBNRv4HM waveform model. In this case the
faithfulness degrades much less if we go from a face-on (F ~ 99.7%) to an
edge-on (F ~ 98.5%) orientation. The small residual degradation is due to
the fact that the dominant mode is still better modeled than the higher-
order modes and for this reason for a face-on orientation (where the signal is
dominated by the dominant mode) the faithfulness is larger than for an edge-
on orientation where the higher-order modes contribute the most. Another
contribution to the residual degradation in an edge-on orientation stems
from the fact that in the SEOBNRv4HM model we still miss some subdominant
higher-order modes, which instead we have included in the NR waveform.
As done in Sec. 2.3] we summarize the results of the faithfulness calculation
in Fig. 2.7 where we show the minimum and maximum of the unfaithfulness
over the NR orientations, GW polarization and sky position, respectively

indicated as min, g, woxp.eng (1 — F) (blue) and max, ooypenr (1 — F) (ved);

109



the average of the unfaithfulness over these three angles (1 — F), 1 vonnornn
(green), and the average of the unfaithfulness weighted with the cube of the
SNR: (1 — F >§g§g§f£fgg}{ (orange). All the averages are computed assuming
an isotropic distribution for the source orientation, homogeneous distribution
in GW polarization and isotropic distribution in sky position. All these
quantities are shown as a function of the total mass of the system. In
the plots the plain curves are the results of the unfaithfulness between
the NR and SEOBNRv4HM waveforms, while dashed curves are the results of
the unfaithfulness between NR and SEOBNRv4 waveforms. In this case, the
maximum and the averaged values of the unfaithfulness for the SEOBNRv4
model are one order of magnitude larger than the ones with the SEOBNRv4HM
model. The minimum of the unfaithfulness is the same for both models (blue
curves lying on top of each other) because it is reached for a face-on orientation,
where the contribution of the higher-order modes used for SEOBNRv4HM is
zero. Indeed the -2 spin-weighted spherical harmonics associated to these
higher-order modes go to zero for face-on orientations. We note also that
in SEOBNRv4, as expected, the disagreement grows strongly with the total
mass of the system, because higher-order modes are more important toward
merger and ringdown.

2.5.2. High mass ratios: SXS:BBH:0065 and ET:AEI:0004

More striking conclusions about the improvement of the waveform model due
to the inclusion of higher-order modes can be drawn looking at the comparison
with the two NR simulations SXS:BBH:0065 and ET:AEI:0004, for which
higher-order modes are expected to be more important, because of the higher
mass ratio. For the first configuration (¢ = 8, M = 200M, x1 = 0.5, x2 = 0)
we see in Fig. that the faithfulness between the NR (¢ < 5, m # 0)
and the SEOBNRv4 waveforms (left panel) degrades much faster than before
as a function of the inclination angle (ygr, reaching F < 90% already for
values of cos(tnr) ~ 0.7 (ing ~ 45°), being very large for the edge-on
inclination F ~ 80%. Similarly to what happens for the example discussed in
Sec. [2.5.1] the situation is much better if we include in the model the higher
modes, as can be seen in Fig. (right panel). Now, the degradation as a
function of (yr is much weaker and for edge-on orientations the faithfulness
reaches values close to F ~ 98%. Similar conclusions can be drawn by
looking at Fig. 2.9] whch refers to the simulation ET:AEI:0004 (¢ =8, M =
200Me, x1 = 0.85, x2 = 0.85). The only relevant difference with respect to
the aforementioned case is that in this case the faithfulness of the SEOBNRv4HM
waveform is a little bit smaller and it goes down to F ~ 97.7% in the edge-on
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orientations. At a fixed binary orientation, the faithfulness of the (2,2)-
waveform-model SEOBNRv4 against the NR waveform for the configuration
(g =8 M = 200My, x1 = 0.85 = x2 = 0.85) is always larger than that
for the configuration (¢ = 8, M = 200M, x1 = 0.5, x2 = 0). This can be
explained considering that, as discussed in Sec. for a fixed mass ratio
the (2,1) mode is increasingly suppressed when the spin of the heavier BH
grows, while the other higher-order modes are mostly constant as a function
of the spins. Since in the first case 1, that is the spin of the heavier BH,
is larger than in the second case, the (2,1) mode is more suppressed in the
first case than in the second one. For this reason the faithfulness with the
SEOBNRv4 model, including only the dominant mode, is higher for the first
configuration.

As for the previous configuration, in Fig. [2.10] we show the summary of the
faithfulness results as maximum, minimum and averages of the unfaithfulness,
respectively for SXS:BBH:0065 (left panel) and ET:AEI:0004 (right panel).
For these binary configurations, even if the maxima of the unfaithfulness
have larger values with respect to the case discussed in the previous section
( ~ 2% for SXS:BBH:0065 and ~ 2.7% for ET:AEI:0004 at a total mass of
M = 200My,), we still have acceptable values of the unfaithfulness averaged
over the orientations, sky position and polarizations: respectively ~ 1%
and ~ 1.6% for a total mass of M = 200M. This is a big improvement
with respect to the SEOBNRv4 model, which gives averaged values of the
unfaithfulness larger than 10% for both configurations and the same total mass.
For the configuration with ¢ = 8, x1 = 0.85 = x = 0.85, the unfaithfulness
against the NR simulation was also computed for the multipolar waveform
model developed in Ref. [124], and found to be around ~ 5% for s = 7/2,
when averaging over the angles rs and ¢, for a total mass M = 100M. In
our model the maximum of the unfaithfulness (i.e., max,, 4, ., (1 — F)) over
the angles ¢, po, and kg is around 1.5% at M = 100M,. The reason for the
better accuracy of SEOBNRvAHM model with respect to the waveform model
in Ref. [124] for this “extreme” binary configuration might be due to the
fact that the simple scaling argument used there to build the higher-order
modes is not very accurate for high-mass ratio and high-spin binary systems.
We leave to the future a direct, comprehensive comparison between the two
waveform models.

As discussed in Sec. [2.3] an important quantity to assess the improvement
that SEOBNRv4HM could yield for detecting BBHs is the average unfaithfulness
weighted with the cube of the SNR. For this quantity our model yields values
of ~ 0.7% for SXS:BBH:0065 and ~ 1% for ET:AEI:0004 at a total mass of
M = 200M, compared to values around ~ 7% returned by the SEOBNRv4
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model.

2.5.3. Comparison with entire numerical-relativity catalog

Having studied in detail some particular configurations, we can now examine
how the model works over the entire NR waveform catalog at our disposal.
In Fig. we plot the angle-averaged unfaithfulness as a function of the
total mass of the system, computed between the NR waveforms with modes
(¢ < 5,m # 0) and the SEOBNRv4 model (left panel), SEOBNRv4HM model
(right panel). Comparing the two panels, we can see that SEOBNRv4AHM yields
unfaithfulnesses one order of magnitude smaller than those of the SEOBNRv4
model. In the plots different colors correspond to different ranges of mass
ratios, and from the left panel it is visible that in the case of the SEOBNRv4
model, there is a clear hierarchy for which configurations with higher mass ra-
tios have also larger unfaithfulness. This effect is removed in the SEOBNRv4HM
model, as visible in the right panel of the same figure. In general for all of NR
simulations the averaged unfaithfulness against SEOBNRv4HM is always smaller
than 1% in the mass range 20M, < M < 200M, with the exception of few
simulations for which the unfaithfulness reaches values < 1.5% for a total
mass of M = 200M: SXS:BBH:0202 (¢ =7, x1 = 0.6, xo = 0), ET:AEI:0004
(g =8, x1 = 0.85, xo = 0.85), ET:AEI:0001 (¢ = 5, x1 = 0.8, x2 = 0) and
SXS:BBH:0061 (¢ =5, x1 = 0.5, xo = 0). These are the configurations in the
NR catalog having the most extreme values of mass ratio and spins. The
results of this analysis does not change considerably if we include in the NR
waveforms only the modes used in the SEOBNRv4HM model, because, when
looking at averaged unfaithfulness, the error is dominated by the imperfect
modeling of the (2,1),(3,3), (4,4), (5,5) modes, and not by neglecting other
subdominant higher modes, as discussed in Sec. [2.3]

The comparison between the unfaithfulness averaged over the three angles
(tNR, Ponrs KNr) and weighted by the cube of the SNR of two waveform models
against NR waveforms displays similar features, with the only difference of
having overall smaller values of the unfaithfulness (always < 1% for the
SEOBNRv4HM model). This happens because weighting with the SNR favours
orientations closer to face-on for which the best modeled (2,2) mode is
dominant.

Finally, in the right panel of Fig. we show the maximum of the
unfaithfulness over the three angles (tngr, Yong, KNR) between the SEOBNRv4AHM
model and the NR waveforms with the modes (¢ < 5, m # 0). In the
left panel of the same figure we show the same comparison but this time
using the SEOBNRv4 model. Here we see that the SEOBNRv4HM waveforms
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have unfaithfulness smaller than 3% in the mass range considered for all
the NR simulations with the exception of one case, namely SXS:BBH:0621
(g =17, x1 = —0.8, xo = 0) for which the unfaithfulness at M = 200M, is
(1—-F) ~3.1%.

In general, over the NR simulations of our catalog, the maximum of the
unfaithfulness is always smaller than 1% in the total mass range 20M, < M <
200M, for nonspinning configurations up to mass ratio ¢ = 8. Nonspinning
cases with ¢ > 8 and configurations with high spins and mass ratios ¢ > 5 have
maximum unfaithfulness in the range 1% < (1 — F) < 3%. For the former
the unfaithfulness decreases to values smaller than 1% when the comparison
is done including only the modes (2,2),(2,1), (3,3), (4,4), (5,5) in the NR
waveforms (i.e., excluding smaller higher-order modes like (3, 2), (4,3)). This is
not true for high-spin, high-mass-ratio configurations where the unfaithfulness
due to a nonperfect modeling dominates over that due to neglecting smaller
higher-order modes. It is important to stress that, as discussed in Sec. [2.3]
the maximum unfaithfulness due to the numerical error in the NR waveforms
of our catalog is in the range [0.1%, 1%]. This means that when comparing
the NR waveforms with the SEOBNRv4HM model a fraction of the maximum
unfaithfulness as large as 1% could be due to numerical error. Given that
maximum unfaithfulness are reached for edge-on configurations where the
higher-order modes are more relevant, NR waveforms with better resolved
higher-order modes would be needed in order to attempt to build a model
with maximum unfaithfulness smaller than 1%.
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Figure 2.7.: Unfaithfulness (1 — F) for the configuration (¢ = 3, x1 = x2 =
0.85) in the mass range 20M < M < 200M,. Dashed (plain) curves refer to
results for SEOBNRv4 (SEOBNRv4HM). The minima of the unfaithfulness for the
two models (blue curves), lie on top of each other because they are reached
for a face-on orientation, where the higher modes contribution is zero. The
unfaithfulness averaged over the three angles (g, @ong, KNr are obtained
assuming an isotropic distribution for the source orientation, homogeneous
distribution in GW polarization and isotropic distribution in sky position
(green curves and orange curves for the average weighted with the SNR).
The minimum of the unfaithfulness (red curves) in practice correspond to
an edge-on orientation, minimized over the other two angles. The vertical
dotted-dashed black line is the smallest mass at which the (2,1) mode is
entirerly in the Advanced LIGO band. The (¢, m') mode is entirerly in the
Advanced LIGO band starting from a mass m’ times the mass associated
with the (2,1) mode. The horizontal dotted-dashed black lines represent the
values of 1% and 3% unfaithfulness.
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Figure 2.8.: Faithfulness F(cos(tNr), Yong, inr = 0) for the configuration

(¢ =8, M =200M¢s, x1 = 0.5, x2 = 0): NR (¢ <5, m # 0) vs SEOBNRv4
(left panel), NR (¢ <5, m # 0) vs SEOBNRv4HM (right panel).
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Figure 2.9.: Faithfulness F(cos(tNr), Yongr, Knr = 0) for the configuration
(g =8, M =200Mg, x1 = 0.85, x2 = 0.85): NR (¢ <5, m # 0) vs SEOBNRv4
(left panel), NR (¢ < 5, m # 0) vs SEOBNRv4HM (right panel).
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Figure 2.10.: Unfaithfulness (1 — F) in the mass range 20M, < M < 200M,
for the configuration (¢ =8, x1 = 0.5, x2 = 0) (left panel) and (¢ =38, x1 =
0.85, x2 = 0.85) (right panel). Plotted data as in Fig.
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Figure 2.11.: Unfaithfulness (1 — F) averaged over the three angles
(tNR, Ponms KNR) as a function of the total mass, in the range 20M, <
M < 200Mg. Left panel NR (¢ < 5, m # 0) vs SEOBNRv4, right panel
NR (¢ <5, m # 0) vs SEOBNRv4HM. The horizontal dotted-dashed black lines
represent the values of 1% and 3% unfaithfulness.
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Figure 2.12.: Maximum of unfaithfulness (1 — F) over the three angles
(tNR, Pong, FNR) a@s a function of the total mass, in the range 20M, <
M < 200Mg. Left panel NR (¢ < 5, m # 0) vs SEOBNRv4, right panel
NR (¢ <5, m # 0) vs SEOBNRv4HM. The horizontal dotted-dashed black lines
represent the values of 1% and 3% unfaithfulness. The jaggedness of the
curves in the plot (right panel) is caused by the numerical noise present in
the NR higher-order modes, which are not very well resolved. We find that
this feature is not present when these noisy modes are removed from the
calculation of the faithfulness.
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We have worked within the spinning EOB framework and have built a multi-
polar waveform model for BBHs with nonprecessing spins that includes the
higher-order modes (¢,m) = (2,1),(3,3), (4,4), (5,5), besides the dominant
(2,2) mode. In order to improve the agreement with the NR results we
included recently computed PN corrections 88,294, 317] in the resummed
GW modes, and also used nonperturbative informations from NR waveforms
in the NQCs corrections of the higher-order modes, and in the calibration pa-
rameters cg,’s (the latter only for the modes (2, 1), (5,5)). We also extended
to higher-order modes the phenomenological ansatz for the merger-ringdown
signal that was originally proposed in Refs. |1,{240,1302,303] for the dominant
(2,2) mode.

We have found that the unfaithfulness averaged over orientations, polar-
izations and sky positions between the SEOBNR4HM model and NR waveforms
of the catalog at our disposal, is always smaller than 1% with the excep-
tion of four configurations for which the unfaithfulness is smaller than 1.5%.
Moreover, the unfaithfulness are one order of magnitude smaller than those
obtained with the SEOBNRv4 model [1], which only contains the (2,2) mode.
The maximum unfaithfulness over orientations, polarizations and sky po-
sitions between SEOBNR4HM and NR waveforms is always smaller than 3%
with the exception of one configuration for which the faithfulness is smaller
than 3.1%. Also for the maximum unfaithfulness the results are one order
of magnitude smaller than those obtained with the SEOBNRv4 model [1]. We
have also found that, in the nonspinning limit, the SEOBNRv4HM model re-
turns values of the unfaithfulness smaller than its (nonspinning) predecessor
waveform model, that is EOBNRv2HM [201] (see Appendix [G)).

Other studies are needed to fully assess the accuracy of SEOBNRv4HM for GW
astronomy. In particular it will be important to understand if unfaithfulnesses
below 1% can affect the recovery of binary parameters, and if so which
parameters will be mainly biased, for which SNR and in which region of the
parameter space. In particular, we expect that the multipolar SEOBNRv4HM
model will be more precise than the SEOBNRv4 model for recovering the
binary’s inclination angle and the distance from the source. Indeed, those
parameters are degenerate with each other when only the (2,2) mode is
present, and the inclusion of higher-order modes can help in disentagle them
(e.g., see Ref. [318]). We postpone this kind of studies to the future because
for computational reasons, we would need to develop a reduced-order-model
(ROM) [256| version of the SEOBNRv4HM model. Another important test for
the future would be the comparison between SEOBNRv4HM model and other
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multipolar, inspiral-merger-ringdown in the literature, such as the IMRPhenom
models proposed in Refs. [124,1203]. Tt will be relevant to compare those
models especially outside the range of binary configurations where the NR
waveforms are available, in order to identify if there are regions where the
two models predict significantly different waveforms.

We also expect that the multipolar spinning, nonprecessing waveform model
developed here will be a more accurate model to carry out parameterized
tests of General Relativity [289] when BBHs with high mass-ratio, high total
mass and in a non face-on orientation will be detected. Furthermore, the
SEOBNRv4HM model can be employed to search for more than one gravitational
quasi-normal mode in the ringdown portion of the signal, coherently with
multiple detections [192-194,306]. In fact, those studies can also be performed
with our multipolar, stand-alone merger-ringdown model.

The SEOBNRv4HM waveform model employs the same conservative and
dissipative dynamics of the SEOBNRv4 model, which was calibrated to NR
simulations by requiring very good agreement with the NR (2,2) GW mode.
Further improvements of the SEOBNRv4 waveform model could be achieved in
the future by recalibrating the two-body dynamics. Such calibration would
require the production of a new set of NR waveforms (with more accurate
higher-order modes) in the region of high mass-ratios, say ¢ > 4, and high
spins, say X1,2 > 0.6 where few NR simulations are currently available and
where the disagreement between current analytical inspiral-merger-ringdown
waveforms is the worst (e.g., see Figs. 5 and 6 in Ref. [1]). Those NR
waveforms would need to be sufficiently long to make the calibration procedure
sufficiently robust (see Sec.VI, and Fig. 7 and 8 in Ref. [1]).

In the near future our priority is to include the next largest modes in
the SEOBNRHM model, notably the (3,2), (4,3) modes. The work would need
to take into account the mixing between spherical-harmonic and spheroidal
harmonics during the merger-ringdown stage, as observed in Refs. [109}313],
and investigated more recently in Refs. [304,314]. Insights might need to be
gained also from merger-ringdown waveforms in the test-particle limit [319-
321]. However, to develop a more accurate multipolar model, one would
also need to reduce the numerical error in NR waveforms around merger
and during ringdown, in particular for the modes (4,4) and (5,5). Another
important and timely application of this work, is its extension to the spinning,
precessing case, thus improving, the current SEOBNRv3 model [249.1250}322],
which only contains the (2,2) and (2,1) modes.
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3. Multipolar Effective-One-Body Waveforms for
Precessing Binary Black Holes: Construction
and Validation

Author{]: Serguei Ossokine, Alessandra Buonanno, Sylvain Marsat, Rober-
to Cotesta, Stanislav Babak, Tim Dietrich, Roland Haas, Ian Hinder, Harald
P. Pfeiffer, Michael Piirrer, Charles J. Woodford, Michael Boyle, Lawrence E.
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Abstract: As gravitational-wave detectors become more sensitive and
broaden their frequency bandwidth, we will access a greater variety of signals
emitted by compact binary systems, shedding light on their astrophysical
origin and environment. A key physical effect that can distinguish among
different formation scenarios is the misalignment of the spins with the orbital
angular momentum, causing the spins and the binary’s orbital plane to precess.
To accurately model such precessing signals, especially when masses and spins
vary in the wide astrophysical range, it is crucial to include multipoles beyond
the dominant quadrupole. Here, we develop the first multipolar precessing
waveform model in the effective-one-body (EOB) formalism for the entire
coalescence stage (i.e., inspiral, merger and ringdown) of binary black holes:
SEOBNRv4PHM. In the nonprecessing limit, the model reduces to SEOBNRv4HM,
which was calibrated to numerical-relativity (NR) simulations, and waveforms
from black-hole perturbation theory. We validate SEOBNRv4PHM by comparing
it to the public catalog of 1405 precessing NR waveforms of the Simulating
eXtreme Spacetimes (SXS) collaboration, and also to 118 SXS precessing NR
waveforms, produced as part of this project, which span mass ratios 1-4 and
(dimensionless) black-hole’s spins up to 0.9. We stress that SEOBNRv4PHM is
not calibrated to NR simulations in the precessing sector. We compute the
unfaithfulness against the 1523 SXS precessing NR waveforms, and find that,
for 94% (57% ) of the cases, the maximum value, in the total mass range
20-200My, is below 3% (1%). Those numbers change to 83% (20% ) when
using the inspiral-merger-ringdown, multipolar, precessing phenomenological
model IMRPhenomPv3HM. We investigate the impact of such unfaithfulness
values with two Bayesian, parameter-estimation studies on synthetic signals.

!Originally published as Phys.Rev.D 102 (2020) 4, 044055.
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We also compute the unfaithfulness between those waveform models as a
function of the mass and spin parameters to identify in which part of the
parameter space they differ the most. We validate them also against the
multipolar, precessing NR surrogate model NRSur7dg4, and find that the
SEOBNRv4APHM model outperforms IMRPhenomPv3HM.

3.1. Introduction

Since the Laser Interferometer Gravitational wave Observatory (LIGO)
detected a gravitational wave (GWs) from a binary—black-hole (BBH) in
2015 [27], multiple observations of GWs from BBHs have been made with
the LIGO [55] and Virgo [56] detectors [32,34},[153}/323-325]. Two binary
neutron star (BNSs) systems have been observed [161,/162], one of them
both in gravitational and electromagnetic radiation [326},327], opening the
exciting new chapter of multi-messenger GW astronomy. Mergers of compact-
object binaries are expected to be detected at an even higher rate with LIGO
and Virgo ongoing and future, observing runs [328|, and with subsequent
third-generation detectors on the ground, such as the Einstein Telescope and
Cosmic Explorer, and the Laser Interferometer Space Antenna (LISA). In
order to extract the maximum amount of astrophysical and cosmological in-
formation, the accurate modeling of GWs from binary systems is more critical
than ever. Great progress has been made in this direction, both through
the development of analytical methods to solve the two-body problem in
General Relativity (GR), and by ever-more expansive numerical-relativity
(NR) simulations.

One of the key areas of interest is to improve the modeling of systems
where the misalignment of the spins with the orbital angular momentum
causes the spins and the orbital plane to precess [65]. Moreover, when
the binary’s component masses are asymmetric, gravitational radiation is
no longer dominated by the quadrupole moment, and higher multipoles
need to be accurately modeled [62]. Precession and higher multipoles lead
to very rich dynamics, which in turn is imprinted on the GW signal (see
e.g. [65,67,210,[243]244,249.1329-338]). Their measurements will be able to
shed light on the formation mechanism of the observed systems, probe the
astrophysical environment, break degeneracy among parameters, allowing
more accurate measurements of cosmological parameters, masses and spins,
and more sophisticated tests of GR.

Faithful waveform models for precessing compact-object binaries have been
developed within the effective-one-body (EOB) formalism [249,250,319],
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and the phenomenological approach [120,[122}125,|126|,339] through cal-
ibration to NR simulations. Recently, an inspiral-merger-ringdown phe-
nomenological waveform model that tracks precession and includes higher
modes was constructed in Ref. [204] (henceforth, IMRPhenomPv3HM) [| The
model describes the six spin degrees of freedom in the inspiral phase, but
not in the late-inspiral, merger and ringdown stages. In the co-precessing
frame [243]331,[341-343], in which the BBH is viewed face-on at all times
and the GW radiation resembles the nonprecessing one, it includes the modes
(L,m) = (2,£2),(2,%1),(3,£3),(3,£2), (4, £4) and (4, £3). Here, building
on the multipolar aligned-spin EOB waveform model of Ref. [1},/182], which
was calibrated to 157 NR simulations [2,[6], and 13 waveforms from BH
perturbation theory for the (plunge-)merger and ringdown [297], we develop
the first EOB waveform model that includes both spin-precession and higher
modes (henceforth, SEOBNRv4PHM). The model describes the six spin degrees
of freedom throughout the BBH coalescence. It differs from the one of
Refs. [249250], not only because it includes in the co-precessing frame the
(3,£3), (4,£4) and (5,+5) modes, beyond the (2,£2) and (2, £1) modes,
but also because it uses an improved description of the two-body dynamics,
having been calibrated [1] to a large set of NR waveforms [2]. We note that
IMRPhenomPv3HM and SEOBNRv4PHM are not completely independent because
the former is constructed fitting (in frequency domain) hybridized waveforms
obtained by stitching together EOB and NR waveforms. We stress that both
SEOBNRv4HM and IMRPhenomPv3HM are not calibrated to NR simulations in
the precessing sector. Finally, the surrogate approach, which interpolates
NR waveforms, has been used to construct several waveform models that
include higher modes [132] and precession [131]. In this paper, we consider
the state-of-the-art surrogate waveform model with full spin precession and
higher modes [133] (henceforth, NRSur7dq4), developed for binaries with mass
ratios 1-4, (dimensionless) BH’s spins up to 0.8 and binary’s total masses
larger than ~ 60M,,. It includes in the co-precessing frame all modes up to
¢ =4. Table summarizes the waveform models used in this paper.

The best tool at our disposal to validate waveform models built from
approximate solutions of the Einstein equations, such as the ones obtained
from post-Newtonian (PN) theory, BH perturbation theory and the EOB
approach, is their comparison to NR waveforms. So far, NR simulations
of BBHs have been mostly limited to mass ratio < 4 and (dimensionless)

2During the final preparation of this work, a new frequency-domain phenomenological
model with precession and higher modes ( IMRPhenomXPHM [127]), and a time-domain
phenomenological precessing model with the dominant mode ( IMRPhenomTP [340])
were developed. We leave the comparison to these models for future work.
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Model name Modes in the co-precessing frame Reference
SEOBNRv3P (2,42), (2,+1) [249,250]
SEOBNRv4P (2,£2), (2,+1) this work
SEOBNRvAPHM (2,42), (2, £1), (3, +3), (4, +4)

(5,£5) this work
IMRPhenomPv2 (2,+£2) [120]
IMRPhenomPv3 (2,£2) [125]
IMRPhenomPv3HM (2,+2), (2,+£1), (3,£3), (3,£2),

(4, +4), (4, +3) [204]
NRSur7dq4 all with ¢ <4 [133]

Table 3.1.: The waveform models used in this paper. We also specify which
modes are included in the co-precessing frame

spins < 0.8, and length of 15-20 orbital cycles before merger [100-103},344]
(however, see Ref. [345] where simulations with larger spins and mass ratios
were obtained through a synergistic use of NR codes). Here, to test our
newly constructed EOB precessing waveform model, we enhance the NR
parameter-space coverage, while maintaining a manageable computational
cost, and perform 118 new NR simulations with the pseudo spectral Einstein
code (SpEC) of the Simulating eXtreme Spacetimes (SXS) collaboration. The
new NR simulations span BBHs with mass ratios 1-4, and dimensionless
spins in the range 0.3-0.9, and different spins’ orientations. To assess the
accuracy of the different precessing waveform models, we compare them to
the NR waveforms of the public SXS catalogue [102], and to the new 118 NR
waveforms produced for this paper.

The paper is organized as follows. In Sec. we discuss the new NR
simulations of BBHs, and assess their numerical error. In Sec. we develop
the multipolar EOB waveform model for spin-precessing BBHs, SEOBNRv4APHM,
and highlight the improvements with respect to the previous version [249,250],
which was used in LIGO and Virgo inference analyses [29,[32,322]. In
Sec. we validate the accuracy of the multipolar precessing EOB model
by comparing it to NR waveforms. We also compare the performance of
SEOBNRv4PHM against the one of IMRPhenomPv3HM, and study in which region
of the parameter space those models differ the most from NR simulations,
and also from each other. In Sec. we use Bayesian analysis to explore the
impact of the accuracy of the precessing waveform models when extracting
astrophysical information and perform two synthetic NR injections in zero
noise. In Sec. B.6] we summarize our main conclusions and discuss future
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3.2. New numerical-relativity simulations of spinning, precessing binary black holes

work. Finally, in Appendix [ we compare the precessing waveform models to
the NR surrogate NRSur7dqg4, and in Appendix [J| we list the parameters of
the 118 NR simulations done for this paper.

In what follows, we use geometric units G = 1 = c¢ unless otherwise
specified.

3.2. New numerical-relativity simulations of spinning,
precessing binary black holes

Henceforth, we denote with m; 5 the two BH masses (with my > ma), S1
miz X1 o their spins, ¢ = my/ms the mass ratio, M = m; + my the binary
total mass, . = myms/M the reduced mass, and v = /M the symmetric
mass ratio. We indicate with J = L + S the total angular momentum, where
L and § = 8, + S5, are the orbital angular momentum and the total spin,
respectively

Y

n

3.2.1. New 118 precessing numerical-relativity waveforms

The spectral Einstein code (SpEC) ﬂof the Simulating eXtreme Spacetimes
(SXS) collaboration is a multi-domain collocation code designed for the
solution of partial differential equations on domains with simple topologies.
It has been used extensively to study the mergers of compact-object binaries
composed of BH [5,102}338,346-348] and NSs |349-352], including in theories
beyond GR [353-356]. SpEC employs a first-order symmetric-hyperbolic
formulation of Einstein’s equations [357] in the damped harmonic gauge [358,
359]. Dynamically controlled excision boundaries are used to treat spacetime
singularities [5],360] (see Ref. [102] for a recent, detailed overview).
Significant progress has been made in recent years by several NR groups to
improve the coverage of the BBH parameter space [100-103,344,345], mainly
motivated by the calibration of analytical waveform models and surrogate
models used in LIGO and Virgo data analysis. While large strides have been
made for aligned-spin cases, the exploration of precessing waveforms has been
mostly limited to ¢ < 4, x12 = |x12| < 0.8, typically 15-20 orbital cycles
before merger, and a large region of parameter space remains to be explored.
Simulations with high mass ratio (¢ > 4) and high spin (|x;| > 0.5) are
challenging, primarily due to the need to resolve the disparate length scales
in the binary system, which increases the computational cost for a given
level of accuracy. Furthermore, for high spin, the apparent horizons can be

3Www.black—holes.org
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Figure 3.1.: Parameter space coverage in g¢—y; space for SpEC waveforms. For
runs from the SpEC catalog the opacity was changed so that runs with
similar parameters are clearly visible. We indicate with squares precessing
BBH runs performed as part of this paper.

dramatically smaller, which makes it more difficult to control the excision
boundaries, further increasing the computational burden.

Here, we want to improve the parameter-space coverage of the SXS cat-
alog , while maintaining a manageable computational cost, thus we
restrict to simulations in the range of mass ratios ¢ = 1-4 and (dimensionless)
spins 12 = 0.3-0.9, with the spin magnitudes decreasing as the mass ratio
increases. In Fig. we display, in the ¢—y; parameter space, the precessing
and non-precessing waveforms from the published SXS catalogue [102], and
the new precessing waveforms produced as part of this work.

We choose to start all the simulations at the same (angular) orbital fre-
quency, My =~ 0.0157, where the value is not exact as it was modified slightly
during the eccentricity-reduction procedure in SpEC [361]. This corresponds
to a physical GW starting frequency of 20 Hz at 50M, and results in the
number of orbits up to merger varying between 15 and 30 in our new catalog.

We parametrize the directions of the spins by three angles, the angles 0 5
between the spins and the unit vector along the Newtonian orbital angular
momentum, f}N, and the angle A¢ between the projections of the spins in
the orbital plane. Explicitly,

A

0; = arccos(x; - Ln) , (3.1a)
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3.2. New numerical-relativity simulations of spinning, precessing binary black holes

A¢ = arccos (

cos 819 — cos 6y cos 02> (3.1b)

sin 91 sin 02

where cosths = x; - Xo- We make the choice that x; lies in the Ly —n
plane, where n is the unit vector along the binary’s radial separation, at the
start of the simulation. The angles are chosen to be 6, € {60°, O,y }, and
Agg € {0,90°}. Here 0,4, is the angle that maximizes the opening angle of
Ly around the total angular momentum J and is computed assuming that
the two spins are co-linear, giving

CASI . mixatmixe
|Lx| | Lx| ’

COS Oppax = (3.2)
with |Ly| = pM?/3Q~Y3 for circular orbit, being Q the orbital angular
frequency. For each choice of {q, x} we choose 10 different configurations
divided into two categories: 1) x1 = x2 = X, 0i0 € {60°, Omax }, Ao € {0,90°}
giving eight runs, and ii) x1 = x, x2 = 0,610 € {60°, Opax } giving two runs.
The detailed parameters can be found in Appendix [J|

These choices of the spin directions allow us to test the multipolar precessing
model SEOBNRv4PHM in many different regimes, including where the effects
of precession are maximized, and where spin-spin effects are significant or
diminished.

3.2.2. Unfaithfulness for spinning, precessing waveforms

The gravitational signal emitted by non-eccentric BBH systems and observed
by a detector depends on 15 parameters: the component masses m; and
ms (or equivalently the mass ratio ¢ = my/my > 1 and the total mass
M = my + my), the dimensionless spins x,(f) and x,(t), the direction to
observer from the source described by the angles (¢, g), the luminosity
distance dy,, the polarization v, the location in the sky (¢, ¢) and the time of
arrival t.. The gravitational strain can be written as:

h’(t) EF+<97 Qb, ¢) h+<L7 0 dL7 £7 tC; t)
+F><(67 ¢7 ¢) hX<L’ 9007 dL7€7 tC; t)? (3'3)
where to simplify the notation we introduce the function & = (¢, M, x, (1),
X(t)). The functions F.,(0,¢,v) and F\(0,¢,1) are the antenna pat-
terns [151}309:
1 + cos*(0)

F+(97¢7w> = 2

cos(2¢) cos(2¢)) — cos(f) sin(2¢) sin(2¢),
(3.4a)
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1+ cos?(0)

FX(Q,Qb,@/J): 9

cos(2¢) sin(2v) 4 cos(#) sin(2¢) cos(21)).
(3.4Db)

Equation (4.24]) can be rewritten as:
h(t) =A(0,6) | cos k (0, 6,%) hy (1, po, di, & te;t)
+ s k0, 6,1) hu (1, 0,1, €, 15 1)), (3.5)
where k(0, ¢,1) is the effective polarization [187] defined as:
(ir(0.6:6) _ FL(0,0,9) +iFx(0,9,9)

VE2(0,6,0) + F2(0,0,0)
which has support in the region [0, 27), while A(0, ¢) reads:
= \[F2(60,6,0) + F2(0,6,0). (3.7)

Henceforth, to ease the notation we suppress the dependence on (6, ¢, ) in
K.
Let us introduce the inner product between two waveforms a and b [151309]:

_ Jmaxa(f) 0" (f)
(a,b) = 4 Re/m T
where a tilde indicates the Fourier transform, a star the complex conjugate
and S,(f) is the one-sided power spectral density (PSD) of the detector noise.
We employ as PSD the Advanced LIGO’s “zero-detuned high-power” design
sensitivity curve [262]. Here we use fi, = 10Hz and fi,.x = 2kHz, when both
waveforms fill the band. For cases where this is not the case (e.g the NR
waveforms) we set fi, = 1.05 fart, Where fiare is the starting frequency of
the waveform.

To assess the closeness between two waveforms s (e.g., the signal) and
7 (e.g., the template), as observed by a detector, we define the following
faithfulness function [182]:

(3.8)

S, T
‘F<Msv sy P0osg) ’is) = maXx #
(R (s, s) (7, ) =t
£s(tszt03):§7-(t7—=t07_)

(3.9)

While in the equation above we set the inclination angle ¢ of signal and
template waveforms to be the same, the coalescence time t. and the angles
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3.2. New numerical-relativity simulations of spinning, precessing binary black holes

©o, and k, of the template waveform are adjusted to maximize the faith-
fulness. This is a typical choice motivated by the fact these quantities are
not interesting from an astrophysical perspective. The maximizations over ¢,
and ¢, are performed numerically, while the maximization over k. is done
analytically following the procedure described in Ref. [187] (see Appendix A
therein).

The condition &,(ts = to,) = &.(t, = tp,) in Eq. enforces that the
mass ratio ¢, the total mass M and the spins x; 5 of the template waveform
at t =ty (i.e., at the beginning of the waveform) are set to have the same
values of the ones in the signal waveform at its ;. When computing the
faithfulness between NR waveforms with different resolutions this condition
is trivially satisfied by the fact that they are generated using the same initial
data. In the case of the faithfulness between NR and any model from the
SEOBNR family, it is first required to ensure that ¢y has the same physical
meaning for both waveforms. Ideally ¢t = t;_ in the SEOBNR waveform should
be fixed by requesting that the frequency of the SEOBNR (2,2) mode at .
coincides with the NR (2,2) mode frequency at to,. This is in practice not
possible because the NR (2,2) mode frequency may display small oscillations
caused by different effects — for example the persistence of the junk radiation,
some residual orbital eccentricity or spin-spin couplings [361]. Thus, the
frequency of the SEOBNR (2,2) mode at t = t,_ is chosen to guarantee the
same time-domain length of the NR waveform. |7_f] In practice, we require that
the peak of 3y, |hem|®, as elapsed respectively from to, and t,, , occurs at the
same time in NR and SEOBNR. For waveforms from the IMRPhenom family we
adopt a different approach, and following the method outlined in Ref. |125],
also optimize the faithfulness numerically over the reference frequency of the
waveform.

The faithfulness defined in Eq. is still a function of 4 parameters
(i.e., My, s, og, Ks), therefore it does not allow to describe the agreement
between waveforms in a compact form. For this purpose we define the
sky-and-polarization-averaged faithfulness [250] as:

1 27 2
F (M, ) = @/0 dks ; dpos F(Ms, ts, ©og, Ks)- (3.10)

Despite the apparent difference, the sky-and-polarization-averaged faithfulness
F defined above is equivalent to the one given in Eqs. (9) and (B15) of
Ref. [250]. The definition in Eq. (3.10) is less computationally expensive

4The difference between the NR (2,2) mode frequency and the SEOBNRv4PHM (2,2)
frequency chosen at ¢t = t( is never larger than 5%.
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because, thanks to the parametrization of the waveforms in Eq. (3.5)), it
allows one to write the sky-and-polarization-averaged faithfulness as a double
integral instead of the triple integral in Eq. (B15) of Ref. [250]. We also
define the sky-and-polarization-averaged, signal-to-noise (SNR)- weighted
faithfulness as:

02” dksq 02” dpos F3(Ms, ts, ©os, Ks) SNR3(LS,<,005, Ks)
02” dkg 02” dipoy SNRB(LS, ©og, Ks)

?SNR(Msa Ls) = <l

(3.11)
where the SNR(ts, ©og, Os, ¢s, ks, Dis, €, tes) 1S defined as:

SNR(LS, Pog, ‘9S7 ¢s> Rs, DLs7 £s> tcs) = \ (hs; hS) (312)

This is also an interesting metric because weighting the faithfulness with
the SNR takes into account that, at fixed distance, the SNR of the signal
depends on its phase and on the effective polarization (i.e., a combination
of waveform polarization and sky-position). Since the SNR scales with the
luminosity distance, the number of detectable sources scale with the SNR?,
therefore signals with a smaller SNR are less likely to be observed. Finally,
we define the unfaithfulness (or mismatch) as

M=1-F. (3.13)

3.2.3. Accuracy of new numerical-relativity waveforms

To assess the accuracy of the new NR waveforms, we compute the sky-and-
polarization-averaged unfaithfulness defined in Eq. between the highest
and second highest resolutions in the NR simulation.

Figure shows a histogram of the unfaithfulness, evaluated at s = 7/3
maximized over the total mass, between 20 and 200 M. It is apparent
that the unfaithfulness is below 1% for most cases, but there are several
cases with much higher unfaithfulness. This tail to high unfaithfulness has
been observed previously, when evaluating the accuracy of SXS simulations
in Ref. [133]. Therein, it was established that, when the non-astrophysical
junk radiation perturbs the parameters of the simulation sufficiently, the
different resolutions actually correspond to different physical systems. Thus,
taking the difference between adjacent resolutions is no longer an appropriate
estimate of the error.

We also find that the largest unfaithfulness occurs when the difference in
parameters is largest, thus confirming that it is the difference in parameters
that dominates the unfaithfulness.
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Figure 3.2.: The sky-and-polarization-averaged unfaithfulness between the
highest and second highest resolutions in the NR simulation maximized over
the total mass for the new 118 NR precessing waveforms. The inclination
used is /3. The vertical dashed line shows the median.

3.2.4. Effect of mode asymmetries in numerical-relativity waveforms

The gravitational polarizations at time ¢ and location (g, ¢) on the coordinate
sphere from the binary can be decomposed in —2-spin-weighted spherical
harmonics, as follows

m=+¢

h (9007L t) 9007Lat Z Z —2nm $o, L hfm( ) (314)

(=2 m=—{

For nonprecessing binaries, the invariance of the system under reflection across
the orbital plane (taken to be the z—y plane) implies hy,, = (—1)%h;_,,. The
latter is a very convenient relationship — for example it renders unnecessary
to model modes with negative values of m. However, this relationship is no
longer satisfied for precessing binaries.

As investigated in previous NR studies [333],362], we expect the asymmetries
between opposite-m modes to be small as compared to the dominant (2, 2)-
mode emission (at least during the inspiral) in a co-rotating frame that
maximizes emission in the (2,£2) modes, also known as the mazimum-
radiation frame [341,363]. However, while the asymmetries are expected to
be small during the inspiral, the difference in phase and amplitude between
positive and negative m-modes might become non-negligible at merger.

As we discuss in the next section, when building multipolar waveforms
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(SEOBNRv4PHM) for precessing binaries by rotating modes from the co-precessing
[243,3311[341-343| to the inertial frame of the observer, we shall neglect the
mode asymmetries. To quantify the error introduced by this assumption,
we proceed as follows. We first take NR waveforms in the co-precessing
frame and construct symmetrized waveforms. Specifically, we consider the
combination of waveforms in the co-precessing frame defined by (e.g., see
Ref. [133])

hE hb £ hP .

mn 2

Note that if the assumption of conjugate symmetry holds (i.e., if hY =
(—=1)*hL*), then for even (odd) ¢ modes, h/ (h, ) is non-zero while the other
component vanishes. If the assumption does not hold, it is still true that at
given £, one of the components is much larger than the other, as shown in
top panel of Fig. Motivated by this, we define the symmetrized modes
(for m > 0) as [133]

(3.15)

T (3.16)
hy,, if ¢ is odd.

The other modes are constructed as by == hL* for m < 0, and we set
m = 0 modes to zero. The bottom panel of Fig. [3.3] shows an example of
asymmetrized waveform for the case PrecBBHO00078 of the SXS catalogue, in
the co-precessing frame. It is obvious that the asymmetry between the modes
has been removed and that the symmetrized waveform does indeed represent
a reasonable “average” between the original modes. The symmetrized wave-
forms in the inertial frame are obtained by rotating the co-precessing frames
modes back to the inertial frame.

In Fig. 3.4 we show the sky-and-polarization averaged unfaithfulness
between the NR waveforms and the symmetrized waveforms described above,
maximized over the total mass, including all modes available in the NR
simulation, that is up to £ = 8. For the vast majority of the cases, the
unfaithfulness is ~ 0.5%, and all cases have unfaithfulness below 2%. This
demonstrates that the effect of neglecting the asymmetry is likely subdominant
to other sources of error such as the modeling of the waveform phasing,
although the best way of quantifying the effect is to perform a Bayesian
parameter-estimation study, which we leave to future work.
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Figure 3.3.: Top: the behavior of h7, in the NR simulation PrecBBH000078.
Note that especially during the inspiral, |h3,| is much larger than |hy|
while |hg;| is much larger than |hi;|. Bottom: an example of waveform
symmetrization for the same NR case, shown in the co-precessing frame. The
symmetrized waveform obeys the usual conjugation symmetry as expected,
and represents a reasonable average to the behavior of the unsymmetrized
modes.
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Figure 3.4.: The sky-and-polarization-averaged unfaithfulness between NR
and symmetrized NR waveforms, maximized over the total mass for the new
118 NR precessing waveforms. The inclination used is 7/3. The vertical
dashed line shows the median.

3.3. Multipolar EOB waveforms for spinning, precessing
binary black holes

We briefly review the main ideas and building blocks of the EOB approach,
and then describe an improved spinning, precessing EOBNR waveform
model, which, for the first time, also contains multipole moments beyond
the quadrupolar one. The model is already available in the LIGO Algo-
rithm Library [364] under the name of SEOBNRv4PHM. We refer the reader to
Refs. [182,233]234],249,250] for more details of the EOB framework and its
most recent waveform models. Here we closely follow Ref. [250], highlighting
when needed differences with respect to the previous precessing waveform
model developed in Ref. [250] (SEOBNRv3P [)).

3.3.1. Two-body dynamics

The EOB formalism [91])92,209,365] can describe analytically the GW emission
of the entire coalescence process, notably inspiral, merger and ringdown, and
it can be made highly accurate by including information from NR. For the

5We note that whereas in LAL the name of this waveform approximant is SEOBNRv3,
here we add a “P” to indicate “precession”, making the notation uniform with respect
to the most recent developed model SEOBNRv4P [250].

136



3.3. Multipolar EOB waveforms for spinning, precessing binary black holes

two-body conservative dynamics, the EOB approach relies on a Hamiltonian
Hgop, which is constructed through: (i) the Hamiltonian Heg of a spinning
particle of mass p = mymso/(m; + ms) and spin S, = S.(my, ms, S1,Ss)
moving in an effective, deformed Kerr spacetime of mass M = my 4+ my and
spin Skerr = S1+ S [205,208,287], and (ii) an energy map between Hg and
HEOB l91]

HEOBEM$1+2;/ (B;[jﬁ_l> - M, (3.17)
where v = /M is the symmetric mass ratio. The deformation of the effective
Kerr metric is fixed by requiring that at any given PN order, the PN-expanded
Hamiltonian Hgop agrees with the PN Hamiltonian for BBHs [62]. In the
EOB Hamiltonian used in this paper [208,287], the spin-orbit (spin-spin)
couplings are included up to 3.5PN (2PN) order [208,[287], while the non-
spinning dynamics is incorporated through 4PN order [182]. The dynamical
variables in the EOB model are the relative separation r and its canonically
conjugate momentum p, and the spins S 5. The conservative EOB dynamics
is completely general and can naturally accommodate precession [249}250]
and eccentricity [366-368].

When BH spins have generic orientations, both the orbital plane and the
spins undergo precession about the total angular momentum of the binary,
defined as J = L + S; + S5, where L = pur x p. We also introduce the
Newtonian orbital angular momentum Ly = pur X 7, which at any instant of
time is perpendicular to the binary’s orbital plane. Black-hole spin precession
is described by the following equations

dS . _ OHgoB
d 98,

X SLQ . (318)

In the EOB approach, dissipative effects enter in the equations of motion
through a nonconservative radiation-reaction force that is expressed in terms
of the GW energy flux through the waveform multipole moments [210,218-220]
as 8 ¢

_Qp 2 2
F= 167 1L Kzzzm;ém |drhem|? (3.19)
where 2 = |r x 7|/|r|? is the (angular) orbital frequency, dy, is the luminosity
distance of the BBH to the observer, and the hy,,’s are the GW multipole
modes. As discussed in Refs. [1,[182], the hyy, used in the energy flux are
not the same as those used for building the gravitational polarizations in
the inertial frame, since the latter include the nonquasi-circular corrections,
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é() = 7(0)

Figure 3.5.: Frames used in the construction of the SEOBNRv4PHM model:
the observer’s frame (blue), defined by the directions of the initial orbital
angular momentum L(0) and separation r(0), and co-precessing frame (red),
instantaneously aligned with f)(t) and described by the Euler angles (a, 3, 7)
(see text below for details).

which enforce that the SEOBNR waveforms at merger agree with the NR
data, when available.

3.3.2. Inspiral-plunge waveforms

For the inspiral-plunge waveform, the EOB approach uses a factorized, re-
summed version [182,218-220] of the frequency-domain PN formulas of the
modes [283,284]. As today, the factorized resummation has been devel-
oped only for quasicircular, nonprecessing BBHs [219,220], and it has been
shown to improve the accuracy of the PN expressions in the test-particle
limit, where one can compare EOB predictions to numerical solutions of the
Regge-Wheeler-Zerilli and Teukolsky equations [297,319,320,1369].

The radiation-reaction force F in Eq. depends on the amplitude
of the individual GW modes |hy,|, which, in the non-precessing case, are
functions of the constant aligned-spin magnitudes X 5 - L. In the precessing
case, these modes depend on time, as x; ,(t) - f}(t), and they depend on
the generic, precessing orbital dynamics through the radial separation r and
orbital frequency €2, which carry modulations due to spin-spin couplings
whenever precession is present. However, we stress that with this choice
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of the radiation-reaction force and waveform model, not all spin-precession
effects are included, since the PN formulas of the modes [283] also contain
terms that depend on the in-plane spin components.

For data-analysis purposes, we need to compute the GW polarizations in
the inertial-frame of the observer (or simply observer’s frame). We denote
quantities in this frame with the superscript I. The observer’s frame is
defined by the triad {é{i)} (i =1,2,3), where éfl) = 7(0), é(l3) = Ly(0) and

éé) = éfg) X é‘(rl). Moreover, in this frame, the line of sight of the observer

is parametrized as N = (sin ¢ cos ¢, sin e sin ¢, cos ) (see Fig. . We also
introduce the observer’s frame with the polarization basis {&(;), &)} such
that é’("l) = (é(lgl X N)/]éfg) X ]\7| and é’("Q) = N x é’("l), which spans the plane
orthogonal to IN.

To compute the observer’s-frame modes hl = during the inspiral-plunge
stage, it is convenient to introduce a non-inertial reference frame that tracks
the motion of the orbital plane, the so-called co-precessing frame (superscript
P), described by the triad {ég)} (1 =1,2,3). At each instant, its z-axis is
aligned with L ég) = L(t) ﬂ In this frame, the BBH is viewed face-on at all
times, and the GW radiation looks very much nonprecessing [243]331},341-343].
The other two axes lie in the orbital plane and are defined such as they
minimize precessional effects in the precessing-frame modes hl, [243,341].
After introducing the vector €, = L x df/dt, we enforce the minimum-
rotation condition by requiring that dégMQ)/dt = Q. X éﬁ)@) and 65)7(2)(0) =
é(ll)j(g) (see also Fig. . As usual, we parametrize the rotation from the
precessing to the observer’s frame through time-dependent Euler angles
(a(t), B(t),~(t)), which we compute using Eqgs. (A4)-(A6) in Appendix A
of Ref. [250]. We notice that the minimum-rotation condition can also be
expressed through the following differential equation for v: 4 = —dcos
with v(0) = —«(0) = 7/2.

We compute the precessing-frame inspiral-plunge modes just like we do for
the GW flux, namely by evaluating the factorized, resummed nonprecessing
multipolar waveforms along the EOB precessing dynamics, and employing
the time-dependent spin projections x; »(t) - L(t). Finally, the observer’s-
frame inspiral-plunge modes are obtained by rotating the precessing-frame
inspiral-plunge modes using Eq. (A13) in Appendix A of Ref. [250].

Following Ref. [182], where an EOBNR nonprecessing multipolar waveform
model was developed (SEOBNRv4HM), here we include in the precessing frame
of the SEOBNRv4PHM model the (2,42),(2,+1),(3,£3), (4,4+4) and (5, £5)

5Note that in Ref. [250], the z-axis is aligned with Ly instead of L.
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modes, and make the assumption hf”,, = (—1)'a}*. As shown in Sec. [3.2.4]
we expect that inaccuracies due to neglecting mode asymmetries should
remain mild, or at most at the level of other modeling errors.

3.3.3. Merger-ringdown waveforms

The description of a BBH as a system composed of two individual objects
is of course valid only up to the merger. After that point, the EOB model
builds the GW emission (ringdown stage) via a phenomenological model
of the quasinormal modes (QNMs) of the remnant BH, which forms after
the coalescence of the progenitors. The QNM frequencies and decay times
are known (tabulated) functions of the mass My and spin Sy = M7x; of
the remnant BH [193]. Since the QNMs are defined with respect to the
direction of the final spin, the specific form of the ringdown signal, as a linear
combination of QNMs, is formally valid only in an inertial frame whose z-axis
is parallel to x;.

A novel feature of the SEOBNRvAPHM waveform model presented here is
that we attach the merger-ringdown waveform (notably each multipole mode
e RDY divectly in the co-precessing frame, instead of the observer’s frame.
As a consequence, we can employ here the merger-ringdown multipolar model
developed for non-precessing BBHs (SEOBNRv4HM) in Ref. [182] (see Sec. IVE
therein for details). By contrast, in the SEOBNRv3P waveform model [250],
the merger-ringdown waveform was built as a superposition of QNMs in
an inertial frame aligned with the direction of the remnant spin. This
construction was both more complicated to implement and more prone to
numerical instabilities.

To compute the waveform in the observer’s frame, our approach requires
a description of the co-precessing frame Euler angles («, 3, 7) that extends
beyond the merger. To prescribe this, we take advantage of insights from
NR simulations [332]. In particular, it was shown that the co-precessing
frame continues to precess roughly around the direction of the final spin with
a precession frequency approximately equal to the differences between the
lowest overtone of the (2,2) and (2,1) QNM frequencies, while the opening
angle of the precession cone decreases somewhat at merger. We find that this
behavior is qualitatively correct for the NR waveforms used for comparison
in this paper.

To keep our model generic for a wide range of mass ratios and spins, we
need an extension of the behavior noticed in Ref. [332] to the retrograde
case, where the remnant spin is negatively aligned with the orbital angular
momentum at merger. Such configurations can occur for high mass-ratio

140



3.3. Multipolar EOB waveforms for spinning, precessing binary black holes

binaries, when the total angular momentum J is dominated by the spin of
the primary S; instead of the orbital angular momentum L. This regime
is not well explored by NR simulations, and includes in particular systems
presenting transitional precession |65]. In our model we keep imposing simple
precession around the direction of the remnant spin at a rate wpree > 0, but
we distinguish two cases depending on the direction of the final spin x
(approximated by the total angular momentum J = L + S; + S5 at merger)
relative to the final orbital angular momentum L :

. wpp " (xg) — Wit () i X Ly >0
& = Wpree = | N QNM ‘ (3.20)
wir (Xf) —wiy (Xy) i Xy Ly <0
where x; = |xy|, and the zero-overtone QNM frequencies for negative m

are taken on the branch wl(%LNM > 0 that continuously extends the m > 0,

WM~ 0 branch [193] (the QNM refers to zero overtone). In both cases,
& > 0. We do not attempt to model the closing of the opening angle of
the precession cone and simply consider it to be constant during the post-
merger phase, § = const. The third Euler angle ~ is then constructed from
the minimal rotation condition 4 = —cd&cos 5. The integration constants
are determined by matching with the inspiral at merger. We find that the
behavior of Eq. in the case x - Ly < 0 is qualitatively consistent with
an NR simulation investigated by one of us [370]. However, we stress that this
prescription for the retrograde case is much less tested than for the prograde
case.

Furthermore, one crucial aspect of the above construction is the mapping
from the binary’s component masses and spins to the final mass and spin,
which is needed to compute the QNM frequencies of the merger remnant.
Many groups have developed fitting formulae based on a large number of NR
simulations (e.g., see Ref. [371] for an overview). To improve the agreement
of our EOB merger-ringdown model with NR, and to ensure agreement in
the aligned-spin limit with SEOBNRv4 [1] and SEOBNRv4HM [182], we employ
the fits from Hofmann et al. [316]. In Fig. [3.6| we compare the performance of
the fit used in the previous EOB precessing model SEOBNRv3P [234,249,250]
to the fit from Hofmann et al. that we adopt for SEOBNRv4PHM. It is clear
that the new fit reproduces NR data much better. This in turn improves the
correspondence between NR and EOB QNM frequencies.

For the final mass we employ the same fit as in previous EOB models, and
we provide it here since it was not given explicitly anywhere before:

4 = 1-{[1 - Biscola)lv + 16v” [0.00258
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B 0.0773
[@(1+1/92/( + 1)) — 1.6939)
—1(1 _ Elsco(a))” , (3.21)

where a = L - (x; + X2/¢%)/(1+1/¢)%, and Eisco(a) is the binding energy of
the Kerr spacetime at the innermost stable circular orbit [372].

Finally, for precessing binaries, the individual components of the spins vary
with time. Therefore, in applying the fitting formulae to obtain final mass and
spin, one must make a crucial choice in selecting the time during the inspiral
stage at which the spin directions are evaluated. In fact, even if one considers
a given physical configuration, evaluating the final spin formulae with spin
directions from different times yields different final spins and consequently
different waveforms. We choose to evaluate the spins at a time corresponding
to the separation of r = 10M. This choice is guided by two considerations:
by the empirical finding of good agreement with NR (e.g., performing better
than using the time at which the inspiral-plunge waveform is attached to the
merger-ringdown waveform [182]), and by the restriction that the waveform
must start at » > 10.5M in order to have small initial eccentricity [250].
Thus, our choice ensures that a given physical configuration always produces
the same waveform regardless of the initial starting frequency.

To obtain the inspiral-merger-ringdown modes in the inertial frame, h},_,
we rotate the inspiral-merger-ringdown modes h} from the co-precessing
frame to the observer’s frame using the rotation formulas and Euler angles in
Appendix A of Ref. [250]. The inertial frame polarizations then read

h’i—(@Oa L t) - ZhIX (SOOa L3 t) = Z —2}/€m(<1007 L) h’im(t) : (322)

Lm

3.3.4. On the fits of calibration parameters in presence of precession

The SEOBNRv4PHM waveform model inherits the EOB Hamiltonian and GW
energy flux from the aligned-spin model SEOBNRv4 [1], which features higher
(yet unknown) PN-order terms in the dynamics calibrated to NR waveforms.
These calibration parameters were denoted K, dso and dss in Ref. [1], and
were fitted to NR and Teukolsky-equation—based waveforms as polynomials
in v, x where x = Sg.../(1 — 2v) with Sker = S1 + So the spin of the EOB
background spacetime. In contrast to the SEOBNRv3P waveform model, which
used the EOB Hamiltonian and GW energy flux from the aligned-spin model
SEOBNRv2 [234], the fits in Ref. [1] include odd powers of x and thus the sign
of x matters when the BHs precess.
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Figure 3.6.: Comparison of the magnitude of the final spin between the
SEOBNRv3P and SEOBNRv4P models and NR results. For simplicity, the
fits are evaluated using the NR data at the relaxed time. The black line is
the identity. It is obvious that SEOBNRv4P gives final-spin magnitudes much
closer to the NR values.

The most natural way to generalize these fits to the precessing case is to
project Skerr Onto the orbital angular momentum L in the usual spirit of
reducing precessing quantities to corresponding aligned-spin ones. To test the
impact of this prescription, we compute the sky-and-polarization-averaged
unfaithfulness with the set of 118 NR simulations described in Sec. [3.2] and
find that while the majority of the cases have low unfaithfulness (~ 1%),
there are a handful of cases where it is significant(~ 10%), with many of
them having large in-plane spins.

To eliminate the high mismatches, we introduce the augmented spin that
includes contribution of the in-plane spins:

SKerr'L (SlL—i_SQL) : SKerr
1-20 | Sken|(1 - 20)

X = (3.23)
Here 8 =8, — (S;- L)L and « is a positive coefficient to be determined.
Note that the extra term in the definition of the augmented spin > 0 for any
combination of the spins. We set ¥ = 0 when Sk, = 0. Fixing o = 1/2
insures that the augmented spin obeys the Kerr bound. Using the augmented
spin eliminates all mismatches above 6%, and thus greatly improves the
agreement of the model with NR data.
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Figure 3.7.: Time-domain comparison of state-of-the art waveform models to
the NR waveform PrecBBH00078 with mass ratio 4, BH’s spins 0.7 and total
mass M = T0Mg. The source parameters are s = 7/3, ¢s = /4, ks = /4.
The NR waveform includes all modes up to and including ¢ = 4, and extends
for 44 GW cycles before merger. For models that include only ¢ = 2 modes,
the unfaithfulness are several percent 8% for IMRPhenomPv3 and 6% for
SEOBNRv4P. Meanwhile, adding the higher mode content drastically improves
the agreement, with mismatches going down to 2% for IMRPhenomPv3HM and
1% for SEOBNRv4PHM. The agreement is particular good for SEOBNRv4PHM,
which reproduces the higher mode features at merger and ringdown faithfully.
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3.4. Comparison of multipolar precessing models to numerical-relativity waveforms

3.4. Comparison of multipolar precessing models to
numerical-relativity waveforms

To assess the impact of the improvements incorporated in the SEOBNRv4APHM
waveform model, we compare this model and other models publicly available
in LAL (see Table to the set of simulations described in Sec. .2} as well
as to all publicly available precessing SpEC simulations IZI

We start by comparing in Fig.[3.7] the precessing NR waveform PrecBBHO0078
with mass ratio 4, BH’s spin magnitudes 0.7, total mass M = 70M, and
modes ¢ < 4 from the new 118 SXS catalog (see Appendix |J|) to the pre-
cessing waveforms IMRPhenomPv3 and SEOBNRv4P with modes ¢ = 2 (upper
panels), and to the precessing multipolar waveforms IMRPhenomPv3HM and
SEOBNRv4PHM (lower panels). This NR waveform is the most “extreme” con-
figuration from the new set of waveforms and has about 44 GW cycles before
merger, and the plot only shows the last 7 cycles. More specifically, we plot
the detector response function given in Eq. , but we leave out the overall
constant amplitude. We indicate on the panels the unfaithfulness for the
different cases. We note the improvement when including modes beyond
the quadrupole. SEOBNRv4APHM agrees particularly well to this NR waveform,
reproducing accurately the higher-mode features throughout merger and
ringdown.

We now turn to the public precessing SXS NR catalog of 1404 waveforms.
First, to quantify the performance of the new precessing waveform model
SEOBNRv4P with respect to previous precessing models used in LIGO and
Virgo inference studies, we compute the unfaithfulness [f| against the precessing
NR catalog, including only the dominant ¢ = 2 multipoles in the co-precessing
frame. Figure shows the histograms of the largest mismatches when the
binary total mass varies in the range [20,200]M,. Here, we also consider the
precessing waveform models used in the first GW Transient Catalog [32] of
the LIGO and Virgo collaboration (i.e., SEOBNRv3P and IMRPhenomPv2). Two
trends are apparent: firstly, SEOBNRv3P and IMRPhenomPv2 distributions are
broadly consistent, with both models having mismatches which extend beyond
10% , although SEOBNRv3 has more cases at lower unfaithfulness; secondly,
SEOBNRv4P has a distribution which is shifted to much lower values of the
unfaithfulness and does not include outliers with the largest unfaithfulness
below 7%.

"The list of all SXS simulations used can be found in https://arxiv.org/src/1904.
04831v2/anc/sxs_catalog. json

8We always use the sky-and-polarization averaged, SNR-weighted faithfulness or unfaith-
fulness Mgnr unless otherwise stated.
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Figure 3.8.: Sky-and-polarization averaged, SNR weighted unfaithfulness for
an inclination ¢ = 7/3 between NR waveforms with £ = 2 and SEOBNRv4P,
and also SEOBNRv3P and IMRPhenomPv2, which were used in LIGO/Virgo
publications. The vertical dashed lines show the medians. It is evident the
better performance of the newly developed precessing model SEOBNRv4P.
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Figure 3.9.: Sky-and-polarization averaged, SNR weighted unfaithfulness for
an inclination ¢ = 7/3 between NR waveforms and SEOBNRv4PHY, including
and omitting higher modes. The vertical dashed lines show the medians. Not
including higher modes in the model results in high unfaithfulness. However,
when they are included, the unfaithfulness between SEOBNRv4PHM and NR
is essentially at the same level as when only ¢ = 2 modes are compared (see
Fig. 3.8).
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Figure 3.10.: The sky-and-polarization averaged, SNR-weighted unfaithful-
ness as a function of binary’s total mass for inclination ¢ = 7/3, between
IMRPhenomPv3HM and NR (left) and SEOBNRv4PHM and NR (right) for 1404
quasi-circular precessing BBH simulations in the SXS public catalog. The
colored lines highlight the cases with the worst maximum mismatches for both
models. Note that for the majority of cases, both models have unfaithfulness
below 5%, but SEOBNRv4PHM has no outliers beyond 10% and many more
cases at lower unfaithfulness.

Next, we examine the importance of higher modes. To do so, we use
SEOBNRv4PHM with and without the higher modes, while always including
all modes up to £ = 5 in the NR waveforms. As can be seen in Fig. |3.9]
if higher modes are omitted, the unfaithfulness can be very large, with a
significant number of cases having unfaithfulness > 7%, as has been seen in
many past studies. On the other hand, once higher modes are included in
the model, the distribution of mismatches becomes much narrower, with all
mismatches below 9%. Furthermore, the distribution now closely resembles
the distribution of mismatches when only ¢ = 2 modes were included in the
NR waveforms. Thus, we see that higher modes play an important role and
are accurately captured by SEOBNRv4PHM waveform model.

Moreover, in Fig. [3.10] we display, for a specific choice of the inclination, the
unfaithfulness versus the binary’s total mass between the public precessing
SXS NR catalog and SEOBNRv4PHM and IMRPhenomPv3HM. We highlight with
curves in color the NR configurations having worst maximum mismatches
for the two classes of approximants. For the majority of cases, both models
have unfaithfulness below 5%, but SEOBNRv4PHM has no outliers beyond 10%
and many more cases at lower unfaithfulness (< 2 x 107%). We find that
the large values of unfaithfulness above 10% for IMRPhenomPv3HM come from
simulations with ¢ 2 4 and large anti-aligned primary spin, i.e. xj = —0.8. An
examination of the waveforms in this region reveals that unphysical features
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Figure 3.11.: The sky-and-polarization averaged, SNR-weighted unfaithful-
ness as a function of binary’s total mass for inclination ¢« = /3, between
IMRPhenomPv3 and SEOBNRv4P and NR (left), and IMRPhenomPv3HM and
SEOBNRv4PHM and NR (right) for the 118 SXS NR waveforms described in
Appendix [J} The NR data has ¢ = 2 modes for the left panel, while all modes
up to and including ¢ = 4 in the right panel. The unfaithfulness is low using
both waveform families, however, SEOBNRv4P (HM) has fewer cases above 3%,
and the distribution is consistently shifted to lower values of unfaithfulness.

develop in the waveforms, with unusual oscillations both in amplitude and
phase. For lower spin magnitudes these features are milder, and disappear
for spin magnitudes < 0.65. These features are present also in IMRPhenomPv3
and are thus connected to the precession dynamics, a region already known
to potentially pose a challenge when modeling the precession dynamics as
suggested in Ref. , and adopted in Ref. .

We now focus on the comparisons with the 118 SXS NR waveforms produced
in this paper. In Fig. [3.11] we show the unfaithfulness for IMRPhenomPv3 (HM)
and SEOBNRv4P (HM) in the left (right) panels. We compare waveforms without
higher modes, to NR data that has only the ¢ = 2 modes, and the other models
to NR data with ¢ < 4 modes. The performance of both waveform models
on this new NR data set is largely comparable to what was found for the
public catalog. Both families perform well on average, with most cases having
unfaithfulness below 2% for models without higher modes and 3% for models
with higher modes. However, for some configurations IMRPhenomPv3(HM)
reaches unfaithfulness values above 3% for total masses below 125M. Once
again, the overall distribution is shifted to lower unfaithfulness values for
SEOBNRv4P (HM) .

When studying the distribution of unfaithfulness for these 118 cases across
parameter space, it is useful to introduce the widely used effective yeg ,

209,263] and precessing x, [121] spins. These capture the leading order

149



aligned-spin and precession effects respectively, and are defined as

it — TXa ) j (3.24a)
mi1 + Mo
1

- 2
B1m1

Xp max(Bimixi1, Bamaxal), (3.24b)

where with By = 24+ 3my/my, By = 24 3my/my and we indicate with x;, the
projection of the spins on the orbital plane. We find that the unfaithfulness
shows 2 general trends. First, it tends to increase with increasing . and xp.
Secondly, that cases with positive xoq (i.e. aligned with Newtonian orbital
angular momentum) tend to have larger unfaithfulness. This is likely driven
by the fact that inspiral is longer for such cases and the binary merges at
higher frequency. We do not find any other significant trends based on spin
directions. It is interesting to note that the distribution of mismatches from
the 118 cases is quite similar to the distribution from the much larger public
catalog. This suggests that the 118 cases do indeed explore many different
regimes of precession.

To further quantify the results of the comparison between the precessing
multipolar models SEOBNRv4PHM and IMRPhenomPv3HM and the NR waveforms,
we show in Figs. and the median and 95%-percentile of all cases,
and the highest unfaithfulness as function of the total mass, respectively.
These studies also demonstrate the better performance of SEOBNRv4APHM with
respect to IMRPhenomPv3HM.

To summarize the performance against the entire SXS catalog (including the
new 118 precessing waveforms) we find that for SEOBNRv4PHM, out of a total of
1523 NR simulations we have considered, 864 cases (57% ) have a maximum
unfaithfulness less than 1%, and 1435 cases (94% ) have unfaithfulness less
than 3%. Meanwhile for IMRPhenomPv3HM the numbers become 300 cases
(20% ) below 1%, 1256 cases (83% ) below 3% [} The accuracy of the semi-
analytical waveform models can be improved in the future by calibrating
them to the precession sector of the SXS NR waveforms.

An interesting question is to examine the behavior of the precessing models
outside the region in which their underlying aligned-spin waveforms were
calibrated. To this effect we consider 1000 random cases between mass ratios
q € [1,20] and spin magnitudes x12 € [0,0.99] and compute Mgxr between
SEOBNRv4APHM and IMRPhenomPv3HM. Figure|3.14] shows the dependence of the
unfaithfulness on the binary parameters, in particular the mass ratio, and

9Due to technical details of the IMRPhenomPv3HM model, the total number of cases
analyzed for this model is 1507 instead of 1523.
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the effective and precessing spins. We find that for mass ratios ¢ < 8, 50% of
cases have unfaithfulness below 2% and 90% have unfaithfulness below 10%.
The unfaithfulness grows very fast with mass ratio and spin, with the highest
unfaithfulness occurring at the highest mass ratio and precessing spin. This
effect is enhanced due to the fact that we choose to start all the waveforms
at the same frequency and for higher mass ratios, the number of cycles
in band grows as 1/v where v is the symmetric mass ratio. These results
demonstrate the importance of producing long NR simulations for large mass
ratios and spins, which can be used to validate waveform models in this
more extreme region of the parameter space. To design more accurate semi-
analytical models in this particular region, it will be relevant to incorporate
in the models the information from gravitational self-force [235,373,374],
and also test how the choice of the underlying EOB Hamiltonians with spin
effects |375,1376] affects the accuracy.

Finally, in Appendix [[] we quantify the agreement of the precessing multi-
polar waveform models SEOBNRvAPHM and IMRPhenomPv3HM against the NR
surrogate model NRSur7dqg4 |133], which was built for binaries with mass
ratios 1-4, BH’s spins up to 0.8 and binary’s total masses larger than ~ 600 .
We find that the unfaithfulness between the semi-analytic models and the NR
surrogate largely mirrors the results of the comparison in figs. and [3.13]
Notably, as it can be seen in Fig.[3.18} the unfaithfulness is generally below 3%
for both waveform families, but SEOBNRv4PHM outperforms IMRPhenomPv3HM
with the former having a median at 3.3 x 1073, while the latter is at 1.5 x 1072,
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Figure 3.12.: Summary of unfaithfulness as a function of the total mass, for
all NR simulations considered as shown in Fig. and Fig [3.11] The
solid (dotted) line represents the median (95%-percentile) of all cases. For
all total masses, we find that the median mismatch with SEOBNRv4PHM is
lower than 1%, about a factor of 2 lower than IMRPhenomPv3HM. The 95th-
percentile shows a stronger dependence on total mass for SEOBNRv4PHM, with
mismatches lower than IMRPhenomPv3HM at low and medium total masses,
becoming comparable at the highest total masses.

152



3.4. Comparison of multipolar precessing models to numerical-relativity waveforms

[ IMRPhenomPv3HM i :
2501 1 SEOBNRv4PHM : !
i
1
£ 200 H
2] 1
® 1
© 1
3 1501 :
= 1 1
L 1 1
E P
g 1 1
1 1
1 1
901 P
1 1
1 1
1 1
O T :, : . | e T
1073 10_2_ 10! 100

max s MsNr

Figure 3.13.: The highest unfaithfulness over total mass for all cases shown
in Fig.|3.12l The median of unfaithfulness is around 1% for SEOBNRv4PHM
and 2% for IMRPhenomPv3HM (shown as dashed vertical lines). Note that for
SEOBNRvV4PHM, the worst unfaithfulness is below 10% and the distribution is
shifted to lower values.
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Figure 3.14.: Sky-and  polarization-averaged unfaithfulness between
SEOBNRv4PHM and IMRPhenomPv3HM for 1000 random configurations. Notice
that the unfaithfulness grows both with the mass ratio and the spin and can
reach very large values for ¢ ~ 20 and high x,. It’s also clear that for cases
with smaller spins the unfaithfulness remains much lower.
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3.5. Bayesian analysis with multipolar precessing waveform
models

We now study how the accuracy of the waveform model SEOBNRv4PHM (and
also IMRPhenomPv3HM), which we have quantified in the previous section
through the unfaithfulness, affects parameter inference when synthetic signal
injections are performed. To this end, we employ two mock BBH signals and
do not add any detector noise to them (i.e., we work in zero noise), which
is equivalent to average over many different noise realizations. This choice
avoids arbitrary biases introduced by a random-noise realization, and it is
reasonable since the purpose of this analysis is to estimate possible biases in
the binary’s parameters due to inaccuracies in waveform models.

We generate the first precessing-BBH mock signal with the NRSur7dq4
model. It has mass ratio ¢ = 3 and a total source-frame mass of M =
70M. The spins of the two BHs are defined at a frequency of 20 Hz,
and have components x; = (0.30,0.00,0.50) and x, = (0.20,0.00,0.30).
The masses and spins” magnitudes (0.58 and 0.36) of this injection are
compatible with those of BBH systems observed so far with LIGO and Virgo
detectors [32,153323-325]. Although the binary’s parameters are not extreme,
we choose the inclination with respect to the line of sight of the BBH to
be « = m/3, to emphasize the effect of higher modes. The coalescence and
polarization phase, respectively ¢ and 1, are chosen to be 1.2 rad and 0.7
rad. The sky-position is defined by its right ascension of 0.33 rad and its
declination of -0.6 rad at a GPS-time of 1249852257 s. Finally, the distance
to the source is set by requesting a network-SNR of 50 in the three detectors
(LIGO Hanford, LIGO Livingston and Virgo) when using the Advanced LIGO
and Advanced Virgo PSD at design sensitivity [262]. The resulting distance
is 800 Mpc. The unfaithfulness against this injection is 0.2% and 1% for
SEOBNRv4APHM and IMRPhenomPv3HM, respectively. Although the value of the
network-SNR is large for this synthetic signal, it is not excluded that the
Advanced LIGO and Virgo detectors at design sensitivity could detect such
loud BBH. With this study we want to test how our waveform model performs
on a system with moderate precessional effect when detected with a large
SNR value, considering that it has an unfaithfulness of 0.2%.

For the second precessing-BBH mock signal, we use a binary with larger
mass ratio and spin magnitude for the primary BH. We employ the NR
waveform SXS:BBH:0165 from the public SXS catalog having mass ratio
q = 6, and we choose the source-frame total mass M = 76My. The BH’s
spins, defined at a frequency of 20 Hz, have values x; = (—0.06,0.78, —0.47)

154



3.5. Bayesian analysis with multipolar precessing waveform models

and x5, = (0.08,—0.17, —0.23). The BBH system in this simulation has strong
spin-precession effects. We highlight that this NR waveform is one of the
worst cases in term of unfaithfulness against SEOBNRv4PHM, as it is clear from
Fig. [3.10] For this injection we choose the binary’s inclination to be edge-on
at 20 Hz to strongly emphasize higher modes. All the other binary parameters
are the same of the previous injection, with the exception of the luminosity
distance, which in this case is set to be 1.2 Gpc to obtain a network-SNR of
21. The NR waveform used for this mock signal has unfaithfulness of 4.4%
for SEOBNRv4PHM and 8.8% for IMRPhenomPv3HM, thus higher than in the first
injection.

For the parameter-estimation study we use the function pycbc_generate-
_hwinj from the PyCBC software [377] to prepare the mock signals, and we
perform the Bayesian analysis with parallel Bilby [378], a highly paral-
lelized version of the parameter-estimation software Bilby [174]. We choose
a uniform prior in component masses in the range [5, 150] M. Priors on the
dimensionless spin magnitudes are uniform in [0,0.99], while for the spin
directions we use prior isotropically distributed on the unit sphere. The priors
on the other parameters are the standard ones described in Appendix C.1 of

Ref. [32].

We summarize in Fig. the results of the parameter estimation for
the first mock signal for SEOBNRv4PHM (blue), IMRPhenomPv3HM (red) and
NRSur7dqg4 (cyan). We report the marginalized 2D and 1D posteriors for the
component masses m; and my in the source frame (top left), the effective
spin parameters Xes and y, (top right), the spin magnitude of the more
massive BH a; and its tilt angle 0; (bottom left) and finally the angle 6;x
and the luminosity distance (bottom right). In the 2D posteriors, solid
contours represent 90% credible intervals and black dots show the value
of the parameter used in the synthetic signal. In the 1D posteriors, they
are represented respectively by dashed lines and black solid lines. As it is
clear from Fig. when using the waveform models SEOBNRv4PHM and
NRSur7dq4, all the parameters of the synthetic signal are correctly measured
within the statistical uncertainty. Moreover, the shape of the posterior
distributions obtained when using SEOBNRv4PHM are similar to those recovered
with NRSur7dqg4 (the model used to create the synthetic signal). This means
that the systematic error due to a non perfect modeling of the waveforms is
negligible in this case.

For the model IMRPhenomPv3HM while masses and spins are correctly mea-
sured within the statistical uncertainty, the luminosity distance Dy, and the
angle fjy are biased. This is consistent with the prediction obtained using
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Lindblom’s criterion in Refs. [166{169] [ In fact, according to this criterion,
an unfaithfulness of 1% for IMRPhenomPv3HM would be sufficient to produce
biased results at a network-SNR of 19. Thus, it is expected to observe biases
when using IMRPhenomPv3HM at the network-SNR of the injection, which is 50.
In the case of SEOBNRv4PHM the unfaithfulness against the signal waveform is
0.2% and according to Lindblom’s criterion we should also expect biases for
network-SNRs larger than 42, but in practice we do not observe them. We
remind that Lindblom’s criterion is only approximate and it has been shown
in Ref. [170] to be too conservative, therefore the lack of bias that we observe
Is not surprising.

In Fig. we summarize the results of the second mock-signal injection.
The plots are the same as in Fig. with the only exception that we do not
have results for the NRSur7dq4 model since it is not available in this region
of the parameter space. In this case the unfaithfulness between SEOBNRv4PHM
(IMRPhenomPv3HM) and the NR waveform used for the mock signal is 4.4%
(8.8%). According to Lindblom’s criterion, at the network-SNR of this mock
signal we should expect the bias due to non-perfect waveform modeling to
be dominant over the statistical uncertainty for an unfaithfulness = 1%.
Therefore we might expect some biases in inferring parameters for both
models. Lindblom’s criterion does not say which parameters are biased and
by how much. The results in Fig. clearly show that both models have
biases in the measurement of some parameters, but unfaithfulness of 4.4% and
8.8% induce different amount of biases and also on different set of parameters
(intrinsic and extrinsic).

In particular for the component masses (top left panel of Fig. , the 2D
posterior distribution obtained with SEOBNRv4PHM barely include the value
used for the mock signal in the 90% credible region. This measurement looks
better when focusing on the 1D posterior distributions for the individual
masses for which the injection values are well within the 90% credible intervals.
The situation is worst for the IMRPhenomPv3HM model, for which the 2D
posterior distribution barely excludes the injection value at 90% credible level.
In this case also the true value of m; is excluded from the 90% credible interval
of the marginalized 1D posterior distribution. Furthermore, y.g and x, (top
right panel of Fig. are correctly measured with SEOBNRv4PHM while
the measurement with IMRPhenomPv3HM excludes the true value from the 2D

10The criterion says that a sufficient, but not necessary condition for two waveforms to
become distinguishable is that the unfaithfulness > (Niytr — 1)/ (2SNR2)7 where Ny, 18
the number of binary’s intrinsic parameters, which we take to be 8 for a precessing-BBH
system. Note, however, that in practice this factor can be much larger, see discussion
in Ref. [170].
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3.5. Bayesian analysis with multipolar precessing waveform models

90% credible region. From the 1D posterior distributions it is clear that
the source of this inaccuracy is the incorrect measurement of x,,, while x.g
is correctly recovered within the 90% credible interval. A similar situation
is observed in the measurement of a; the spin magnitude of the heavier
BH and 6, its tilt angle (bottom left panel of Fig. [3.16). Also in this case
SEOBNRv4PHM correctly measures the parameters used in the mock signal,
while IMRPhenomPv3HM yields an incorrect measurement due to a bias in the
estimation of a;. Finally, we focus on the measurement of the angle 65y and
the luminosity distance Dy, (bottom right panel of Fig. . In this case the
value of these parameters used in the synthetic signal is just slightly measured
within the 90% credible region of the 2D posterior distribution obtained
with SEOBNRv4PHM. As a consequence the luminosity distance is also barely
measured within the 90% credible interval from the marginalized 1D posterior
distribution and the measured value of 8y results outside the 90% credible
interval of the 1D posterior distribution. The posterior distributions obtained
using IMRPhenomPv3HM are instead correctly measuring the parameters of
the mock signal. We can conclude that even with an unfaithfulness of 4.4%
against the NR waveform used for the mock signal the SEOBNRv4PHM model is
able to correctly measure most of the binary parameters, notably the intrinsic
ones, such as masses and spins.
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Figure 3.15.: 2D and 1D posterior distributions for some relevant parameters
measured from the first synthetic BBH signal with mass ratio ¢ = 3, total
source-frame mass of M = 7T0My,, spins of the two BHs x; = (0.30,0.00, 0.50)
and x, = (0.20,0.00,0.30) defined at a frequency of 20 Hz . The inclination
with respect to the line of sight of the BBH is « = 7/3. The other parameters
are specified in the text. The signal waveform is generated with the waveform
model NRSur7dq4. In the 2D posteriors, solid contours represent 90% credible
intervals and black dots show the value of the parameter used in the synthetic
signal. In the 1D posteriors they are represented respectively by dashed lines
and black solid lines. The parameter estimation is performed with the wave-
form models SEOBNRv4PHM (blue), NRSur7dq4 (cyan) and IMRPhenomPv3HM
(red). Top left: component masses in the source frame, Top right: xeg and
Xp, Bottom left: magnitude and tilt angle of the primary spin, Bottom right:
f;n and luminosity distance.
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Figure 3.16.: 2D and 1D posterior distributions for some relevant parame-
ters measured from the first synthetic BBH signal with mass ratio ¢ = 6,
total source-frame mass of M = T76Mg, spins of the two BHs x; =
(—0.06,0.78,—0.47) and x, = (0.08,—0.17,—0.23) defined at a frequency
of 20 Hz . The inclination with respect to the line of sight of the BBH is
edge-on, i.e., t = /2. The other parameters are specified in the text. The
signal waveform is generated using the NR waveform from the SXS public
catalog SXS:BBH:0165. In the 2D posteriors solid contours represent 90%
credible intervals and black dots show the value of the parameter used in the
synthetic signal. In the 1D posteriors they are represented respectively by
dashed lines and black solid lines. The parameter estimation is performed
with the waveform models SEOBNRv4PHM (blue) and IMRPhenomPv3HM (red).
Top left: component masses in the source frame, Top right: xes and xo,
Bottom left: magnitude and tilt angle of the primary spin, Bottom right: 6jx
and luminosity distance.
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3.6. Conclusions

In this paper we have developed and validated the first inspiral-merger-
ringdown precessing waveform model in the EOB approach, SEOBNRv4PHM,
that includes multipoles beyond the dominant quadrupole.

Following previous precessing SEOBNR models [234},249,250], we have built
such a model twisting up the aligned-spin waveforms of SEOBNRv4HM [1},182]
from the co-precessing [243,331},341-343] to the inertial frame, through the
EOB equations of motion for the spins and orbital angular momentum. With
respect to the previous precessing SEOBNR model, SEOBNRv3P [250], which
has been used in LIGO/Virgo data analysis [29}32322], the new model (i)
employs a more accurate aligned-spin two-body dynamics, since, in the non-
precessing limit, it reduces to SEOBNRv4HM, which was calibrated to 157 SXS
NR simulations [2,6], and 13 waveforms [297] from BH perturbation theory, (ii)
includes in the co-precessing frame the modes (2, £2), (2, £1), (3, £3), (4, £4)
and (5,+5), instead of only (2,£2),(2,+£1), (iii) incorporates the merger-
ringdown signal in the co-precessing frame instead of the inertial frame, (iv)
describes the merger-ringdown stage through a phenomenological fit to NR
waveforms [1,|182], and (v) uses more accurate NR fits for the final spin of
the remnant BH.

The improvement in accuracy between SEOBNRv4 and SEOBNRv3P (i.e., the
models with only the ¢ = 2 modes) is evident from Fig. , where we
have compared those models to the public SXS catalog of 1405 precessing
NR waveforms, and the new 118 SXS NR waveforms produced for this
work. The impact of including higher modes in semi-analytical models
to achieve higher accuracy to multipolar NR waveforms is demonstrated
in Fig. B.9 Figures 3.10] B.11], .12 and [3.14] quantify the comparison of
the multipolar precessing SEOBNRv4PHM and IMRPhenomPv3HM to all SXS
NR precessing waveforms at our disposal. We have found that for the
SEOBNRv4PHM model, 94% (57% ) of the cases have maximum unfaithfulness
value, in the total mass range 20-200M,, below 3% (1%). Those numbers
change to 83% (20% ) when using the IMRPhenomPv3HM. We have found
several cases with large unfaithfulness (> 10%) for IMRPhenomPv3HM, coming
from a region of parameter space with ¢ 2 4 and large (~ 0.8) spins anti-
aligned with the orbital angular momentum, which appear to be connected
to unphysical features in the underlying precession model, and cause unusual
oscillations in the waveform’s amplitude and phase. The better accuracy
of SEOBNRv4PHM with respect to IMRPhenomPv3HM is also confirmed by the
comparisons with the NR surrogate model NRSur7dg4, as shown in Fig. 3.18]
We have investigated in which region of the parameter space the unfaithfulness
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Figure 3.17.: The maximum sky-and-polarization averaged, SNR-weighted
unfaithfulness as a function of binary’s total mass for inclination ¢ = 7/3,
between the models IMRPhenomPv3HM (top) and SEOBNRv4PHM (bottom), and
the NR surrogate, cf. Fig.|3.14. The unfaithfulness is strongly dependent on
the intrinsic parameters, especially the spins.

against NR waveforms and NRSur7dqg4 lies, and have found, not surprisingly,
that it occurs where both mass ratios and spins are large (see Fig. . When
comparing SEOBNRv4PHM and IMRPhenomPv3HM outside the region in which
the aligned-spin underlying model was calibrated, we have also found that the
largest differences reside when mass ratios are larger than 4 and spins larger
than 0.8 (see Fig. . To improve the accuracy of the models in those more
challenging regions, we would need NR simulations, but also more information
from analytical methods, such as the gravitational self-force ,,
and resummed EOB Hamiltonians with spins [375//376].

To quantify how the modeling inaccuracy, estimated by the unfaithful-
ness, impacts the inference of binary’s parameters, we have perfomed two
parameter-estimation studies using Bayesian analysis. Working with the
Advanced LIGO and Virgo network at design sensitivity, we have injected
in zero noise two precessing-BBH mock signals with mass ratio 3 and 6,
having SNR of 50 and 21, with inclination of 7/3 and 7/2 with respect to
the line of sight respectively, and recovered them with SEOBNRv4PHM and
IMRPhenomPv3HM. The unfaithfulness values of those models against the syn-
thetic signals considered (i.e., NRSurd7q4 and SXS:BBH:0165) range from
0.2% to 8.8%. The results are summarized in Figs. and Overall,
we have found that Lindblom’s criterion |[166-170] is too conservative and
predicts visible biases at SNRs lower than what we have obtained through the
Bayesian analysis. In particular, we have found, when doing inference with
SEOBNRv4PHM, that an unfaithfulness of 0.2% may produce no biases up to
SNR of 50, while an unfaithfulness of 2.2% can produce biases only for some
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extrinsic parameters, such as distance and inclination, but not for binary’s
masses and spins at SNR of 21. A more comprehensive Bayesian study will
be needed to quantify, in a more realistic manner, the modeling systematics
of SEOBNRv4PHM, if this model were used during the fourth observation run
of Avanced LIGO and Virgo in 2022 (i.e., the run at design sensitivity).

The newly produced 118 SXS NR waveforms extend the coverage of binary’s
parameter space, spanning mass ratios ¢ = 1-4, (dimensionless) spins x1 2 =
0.3-0.9, and different orientations to maximize the number of precessional
cycles. As we have emphasized, the waveform model SEOBNRv4HM is not
calibrated to NR waveforms in the precessing sector, only the aligned-spin
sector was calibrated in Refs. [1,{182]. Despite this, the accuracy of the model
is very good, and it can be further improved in the future if we calibrate the
model to the 1404 plus 118 SXS NR precessing waveforms at our disposal.
This will be an important goal for the upcoming LIGO and Virgo O4 run
in early 2022. Furthermore, SEOBNRv4HM assumes the following symmetry
among modes hy, = (—1)*h}_, in the co-precessing frame, which however
no longer holds in presence of precession. As discussed in Sec. [3.2.4] forcing
this assumption causes unfaithfulness on the order of a few percent. Thus, to
achieve better accuracy, when calibrating the model to NR waveforms, the
mode-symmetry would need to be relaxed.

Finally, SEOBNRv4HM uses PN-resumed factorized modes that were developed
for aligned-spin BBHs [219,220], thus they neglect the projection of the spins
on the orbital plane. To obtain high-precision waveform models, it will be
relevant to extend the factorized modes to precession. Considering the variety
of GW signals that the improved sensitivity of LIGO and Virgo detectors is
allowing to observe, it will also be important to include in the multipolar
SEOBNR waveform models the more challenging (3,2) and (4, 3) modes,
which are characterized my mode mixing [109,[314,|379]. Their contribution
is no longer negligible for high total-mass and/or large mass-ratio binaries,
especially if observed away from face-on (face-off).

Lastly, being a time-domain waveform model generated by solving ordinary
differential equations, SEOBNRv4HM is not a fast waveform model, especially for
low total-mass binaries. To speed up the waveform generation, a reduced-order
modeling version has been recently developed [380]. Alternative methods that
employ a fast evolution of the EOB Hamilton equations in the post-adiabatic
approximation during the long inspiral phase have been suggested [254], and
we are currently implementing them in the simpler nonprecessing limit in

LAL.
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Figure 3.18.: The summary of the sky-and-polarization averaged, SNR-
weighted unfaithfulness as a function of binary’s total mass for inclina-
tion ¢ = 7/3, among the NRSur7dq4 model and the IMRPhenomPv3HM and
SEOBNRv4PHM models. Left: The solid (dashed) lines show the median (95th
percentile) as a function of total mass, cf Fig. [3.12| Right: maximum un-
faithfulness over all total masses, cf. Fig.[3.13l The unfaithfulness is low
using both waveform families, however, SEOBNRv4P (HM) has lower median
unfaithfulness by a factor of ~ 4.3.
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4. Frequency domain reduced order model of
aligned-spin effective-one-body waveforms
with higher-order modes

Authorsﬂ: Roberto Cotesta, Sylvain Marsat, Michael Piirrer

Abstract:We present a frequency domain reduced order model (ROM)
for the aligned-spin effective-one-body (EOB) model for binary black holes
(BBHs) SEOBNRv4HM that includes the spherical harmonics modes (¢, |m|) =
(2,1),(3,3),(4,4), (5,5) beyond the dominant (¢,|m|) = (2,2) mode. These
higher modes are crucial to accurately represent the waveform emitted from
asymmetric BBHs. We discuss a decomposition of the waveform, extending
other methods in the literature, that allows us to accurately and efficiently
capture the morphology of higher mode waveforms. We show that the ROM
is very accurate with median (maximum) values of the unfaithfulness against
SEOBNRv4HM lower than 0.001%(0.03%) for total masses in [2.8, 100] M. For a
total mass of M = 3000, the median (maximum) value of the unfaithfulness
increases up to 0.004%(0.17%). This is still at least an order of magnitude
lower than the estimated accuracy of SEOBNRv4HM compared to numerical
relativity simulations. The ROM is two orders of magnitude faster in generat-
ing a waveform compared to SEOBNRv4HM. Data analysis applications typically
require O(10° — 10%) waveform evaluations for which SEOBNRv4HM is in
general too slow. The ROM is therefore crucial to allow the SEOBNRv4HM
waveform to be used in searches and Bayesian parameter inference. We
present a targeted parameter estimation study that shows the improvements
in measuring binary parameters when using waveforms that includes higher
modes and compare against three other waveform models.

4.1. Introduction

In the past five years observations [27,[32/153] have opened up a new
window to the Universe. In the first two observing runs of the advanced
LIGO [55] and Virgo [56] detectors ten confident detections of and

LOriginally published as Phys.Rev.D 101 (2020) 12, 124040.

165



one were made [32] and tens of detection candidates [382] have been
identified so far in the third observing run of this network, among them another
confident detection of a binary neutron star system [162]. Both the detection
and inference of binary parameters for these compact binaries rely heavily on
our knowledge of the gravitational waveform emitted in these coalescences as
encapsulated in parametrized models of [GWk. The construction of stochastic
template banks and the Bayesian inference of binary parameters routinely
require tens to hundreds of millions of waveform evaluations [171}174,251,252].
At the same time the phasing of the needs to be tracked to an accuracy
better than a fraction of a wave cycle to avoid missing events or mis-measuring
binary parameters. Therefore, waveform models need to be fast and accurate
to extract the binary properties imprinted in the emitted [GWk.

Inspiral-merger-ringdown models of from coalescing [BH] binaries have
traditionally been constructed in the [EOB] [1,/91,92,182,201},202,209,219}229],
233/234,,249/1250,365,:383,,[384] or phenomenological [120,122(-125/203,204.263],
339,385] approaches, and, more recently, models for NR or EOB waveforms
constructed with surrogate modeling techniques have come to prominence |1}
1281{133],[255/-257]. [EOBI models incorporate physical descriptions of the
inspiral, merger, and ringdown parts of [BBH] coalescences. solutions
for the inspiral are re-summed and connected with an analytic description
of the merger waveform which is tuned to data from [NRI simulations [2]
97-102,[300,386]. [EOBl models are posed as an initial value problem for a
complicated system of ordinary differential equations (ODESs) describing the
approximatedﬂ dynamics of a compact binary. The emitted are then
computed from this orbital dynamics. models have provided accurate
and generic descriptions of the for the signals observed so far by LIGO
and Virgo detectors. However, observations with third generation detector
networks may require much more accurate waveform models [170]. The
integration of the ODEs requires small time steps to obtain an accurate
solution and especially for the long waveforms produced by low mass compact
binaries can take on the order of hours, and thus be too slow for practical
data analysis applications E|

Surrogate or reduced order modeling techniques [128-H131}255-259] provide
established methods for accelerating slow waveforms while retaining very high
accuracy. These techniques have been successfully applied to[EOBI [1,[128]/255-
257) and [129-133] waveforms. They work by decomposing waveforms

2The full dynamics of a binary system is obtained by solving Einstein’s equations which
are partial differential equations (PDEs).

3A faster method has been proposed, restricted to systems with spins aligned with the
orbital angular momentum [254].
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from a training set in orthonormal bases on sparse grids in time or frequency;,
and interpolating or fitting the resulting waveform data pieces over the binary
parameter space. The result is a smooth, accurate (as tested against an
independent validation set), and fast to evaluate (compared to the original
waveform data) model. These surrogate models have proven invaluable
for [GW] data analysis.

In this paper we present a [ROM] for from coalescing binaries with
spins aligned with the orbital angular momentum which include the most
important higher harmonics of the waveform in addition to the dominant
(£.m) = (2,£2) spherical harmonic mode, as described by the SEOBNRv4HM
model [182]. Higher harmonics in the expansion of the gravitational waveform
become important for asymmetric and massive compact binaries [184,/ 186
188,190,291|. The model we construct here, SEOBNRv4HM_ROM, includes the
(4, Im]) = (2,1),(3,3),(4,4),(5,5) modes. We show that SEOBNRv4HM_ROM
has a mismatch less than O(0.1%) with SEOBNRv4HM and that it accelerates
waveform evaluation by a factor 100 — 200.

While SEOBNRv4HM and SEOBNRv4HM_ROM include the contribution of higher
harmonics in the waveform, they lack a description of spin-precession and
eccentricity. In the waveform family the effect of spin-precession has
been taken into account in Refs. [249,250] and only recently in Ref. [202]
for the case of waveforms with higher harmonics. A surrogate for the latter
waveform model is currently under development (see Ref. [387]). For the
phenomenological and the numerical relativity surrogate families similar
models including the effect of precession and higher harmonics have been
described in Refs. [127,/130,|132}/133,204]. Waveforms emitted from binary
systems in an eccentric orbit have not been studied extensively. So far,
only a few inspiral-merger-ringdown eccentric waveform models have been
constructed for non-spinning [388,389] and aligned-spin binaries [368}390].

This paper is organized as follows. In Sec. [£.2] we give a brief description of
the time-domain SEOBNRv4HM model. In Sec. [4.3] we discuss various techniques
we use to build the ROM, notably waveform conditioning in Sec. [£.3.1] We
continue with a summary of the basis construction and decomposition in
Sec. [£.3.2] tensor product interpolation in Sec. [£.3.3] Domain decomposition
in frequency and in parameter space is discussed in Sec. and Sec. [4.3.6]
respectively. We summarize how we connect the ROM with [PN] solutions
at low frequency in Sec. [£.3.5] We present results in Sec. [.4] where we
demonstrate the accuracy of the ROM in Sec [4.4.1] and its computational
efficiency in Sec. [4.4.2 We showcase a parameter estimation application in

Sec. [£.4.3] Finally we conclude in Sec. 1.5
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4.2. The SEOBNRv4HM model

The gravitational wave signal emitted by a coalescing binary black hole is
usually divided into three different regimes: inspiral, merger and ringdown.
During the inspiral the two black holes move at a relative speed v that is
small compared to the speed of light ¢, therefore the solution to the two
body problem can be found using a perturbative expansion in the small
parameter v/c, the so-called [PN] expansion [62]. At some point, during the
evolution of the binary system, the parameter v/c ceases to be small and the
expansion is not valid anymore. This happens roughly at the innermost
stable circular orbit (ISCO) and demarcates the end of the inspiral and
the beginning of the merger regime. The signal in this regime can only be
computed using [NR] simulations that solve Einstein’s equations for a [BBHI
system, fully numerically. Finally, in the ringdown regime, the perturbed
black hole formed after the merger of the binary emits gravitational waves at
frequencies that can be computed within the black hole perturbation theory
formalism [315].

The EOB formalism, first introduced by Buonanno and Damour in Refs. |91}
92|, provides a natural framework to combine these three regimes and produce
a complete waveform with inspiral, merger and ringdown. Within the EOB
formalism the conservative dynamics of a [BBHl system during the inspiral
is resummed in terms of the dynamics of a test particle with an effective
mass and spin around a deformed Kerr metric. This improved conservative
dynamics is combined with a resummed energy flux [220,391},392] to produce
an inspiral waveform that is close to solutions. To improve the agreement
with waveforms the [EQB] conservative dynamics is also calibrated using
information from [NRlsimulations [233//234]. In the EOB waveform the merger
and ringdown part is built using a phenomenological fit produced using
informations from [NR] waveforms and black hole perturbation theory [1,240].
NR-tuned versions of EOB models are usually referred to as EOBNR.

In this paper we focus on the SEOBNRv4HM [182] model, an extension of
SEOBNRv4 [1] that includes the modes (¢, |m|) = (2,1),(3,3), (4,4), (5,5) in
the waveform in addition to the (¢,|m|) = (2,2) mode already present in
SEOBNRv4. This model assumes spins aligned or anti-aligned with the direction
perpendicular to the orbital plane LN, and we define the dimensionless
spin parameter for [BHl ¢ as y; = S, - LN/m where S; are the BH’s spins
and m,; their masses. SEOBNRv4HM has been validated against several NR
waveforms in the mass-ratio - aligned-spin parameter space in the region
q = my/ms € [1,10], x12 € [—1,1] yielding typical mismatches of O(< 1%)
for total masses in the range [20, 200] M.
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4.3. Techniques for building the ROM

In this Section we describe the construction of our ROM, from the preparation
of the waveforms to the reduced basis and interpolation techniques. We
use techniques developed for previous ROM models [1,[255],256], which we
generalized to the higher-harmonics case.

We start with a general discussion of how to prepare and decompose wave-
form data for higher mode waveforms in Sec. [4.3.1] In particular, we discuss
time domain conditioning in Sec. [£.3.1.1] stationary phase approximation
in Sec. the orbital carrier phase in Sec. [4.3.1.3] the introduction of
coorbital modes in Sec. [£.3.1.4] scaling of frequencies in Sec. [£.3.1.5] We

summarize basis construction in Sec. and tensor product interpolation
in Sec. [4.3.3] We also explain how we decompose the model in both frequency
range patches (see Sec. 4.3.4) and parameter space patches (see Sec. 4.3.6)).
Hybridization with inspiral waveforms is discussed in Sec. [£.3.5]

4.3.1. Preparation and decomposition of waveform data

The waveform polarizations h, hy are decomposed in spin-weighted spherical
harmonics as

¢
hy —ihe =Y > oY mhem - (4.1)
>2m=—4
The hy,, are called the harmonics or simply the modes of the gravitational
wave, with hge and hg 5 the dominant harmonics corresponding to quadrupo-
lar radiation. These modes hy,, are affected by convention choices: first,
by the choice of polarization vectors defining h., h,, and secondly by the
definition chosen for the source frame in which the waveform is described.
For non-precessing systems, the z-axis of the source frame is taken to be the
normal to the orbital plane, with a residual freedom in choosing the origin of
phase. One can take two points of view for the definition of phase: either
fix the definition of the source frame (for instance, imposing that the initial
separation vector is along z) and call “phase” the azimuthal angle of the
observer in the source frame, or fix the direction to the observer (for instance
in the plane (z,z)) and call “phase” the binary’s orbital phase at a given
time. We can also consider the definition of the origin of time as part of the
source frame definition.
During the inspiral, the individual harmonics obey a simple overall scaling
with the orbital phase as

hm o exp [—im@or) (4.2)
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but this scaling does not apply post-merger where the modes are driven by
their respective ringdown frequencies.

There are several challenges regarding the conditioning of higher-harmonics
waveforms for the purpose of reduced order modelling. We recall that one
relies on two kinds of interpolation here: one is the interpolation of waveform
pieces along the tracking parameter, either time or frequency, used to compress
data; the other is the interpolation across the parameter space (masses and
spins) used in the internals of the ROM, either of waveform quantities directly
(as in [128-133,257] in the empirical interpolation formalism), or as in our case,
of reduced basis projection coefficients [1,255,256]. Both these interpolations
require smoothness, and discrete jumps can cause significant (and non-local)
eITors.

As a result, zero-crossings in the subdominant harmonics kg, (as noticed in
Refs. [182393]) cause difficulties for the usual amplitude/phase representation:
if the envelope of a mode crosses zero with a positively defined amplitude, the
phase jumps by 7, a discontinuity that will harm the interpolation performed
when reconstructing the waveform. Among other advantages, this is alleviated
by the procedure used in [131}]133] of modelling the waveform in a coorbital
frame where the dominant phasing of Eq. has been scaled out, so that
a more robust real/imaginary representation can be chosen instead; here we
will use the same kind of coorbital quantities, but built in the Fourier domain.

The natural 27 degeneracy in phase also requires care when interpolating
across parameter space. Discrete 2w phase jumps leave the waveforms them-
selves invariant, but can break the interpolation in-between waveforms. This
issue is particularly relevant when dealing with numerical Fourier transforms
of time-domain waveforms: when phase-unwrapping the output of the Discrete
Fourier Transform starting from f = 0, numerical noise causes the 27 interval
to be essentially random. In [1,255,1256] a linear fit of the Fourier-domain
phase was removed. Here we will keep time and phase alignment information
throughout the conditioning procedure, so instead we will impose a given
2 range for the phase at a reference point, corresponding to the time of
alignment.

Other difficulties are caused by the relative alignment of the different
harmonics. Dividing the phase of the dominant hss mode by 2, whether in
time or frequency domain, comes with an ambiguity of © then propagated
as m7 to the other modes. Such an ambiguity is not necessarily a problem
if the phase alignment is done as a last step when generating the waveform
(as is the case in the IMRPhenomHM model [124]); giving up the geometric
interpretation of the source-frame definition, it is sufficient that a [0, 27] range
in the “phase” input by the user corresponds to a [0, 27] range in geometric
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phase. It becomes a problem, however, when we need to interpolate across
parameter space to build a ROM. In particular, when working from the
Fourier domain waveform alone, we do not have access to the orbital phase
(as read from trajectories) to lift these kind of degeneracies. Here we will
make sure that the alignment is performed in the time domain before taking
Fourier transforms, and we will further introduce an artificial carrier signal
to have access to a proxy of the orbital phase in the Fourier domain.

We detail below our conditioning procedure, chosen to circumvent these
issues.

4.3.1.1. Time-domain conditioning

In building this ROM, we will carry along time and phase alignment informa-
tion all the way to the final Fourier-domain waveforms. This is in contrast
to previous Fourier-domain waveform models (SEOBNRv4_ROM, IMRPhenomD)
where the time and phase are adjusted after generating the waveform, as will
be described below.

Individual harmonics are decomposed as an amplitudeﬁ and phase, following

him(t) = aom(t) exp [ (t)] | (4.3)
with the scaling
Qsém = m¢0rb + Agbﬂm ) (44)

In the early inspiral regime, for low frequencies, the phases A¢y,, are approx-
imately constant. We choose the same polarization convention as in [394],
for which we have

Agpyy — 0,
T
Apyr — =,

2
T

Apzs — g
A¢44 — m,

T
Agss — 9 (4.5)

in the low-frequency limit. When getting closer to merger, deviations from
Eq. (4.5) become more important. In the notations of the EOB factorized

4In general, it would be preferable to consider ag,, as a slowly-varying envelope rather than
a positive amplitude, in particular allowing it to change sign, as we expect zero-crossings
of certain subdominant modes like hoq.
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waveforms [201,219], these phase deviations come from the phases e*m and
tail factors Ty, (see Egs. (14) and (21) in [201]), and from non-quasicircular
corrections (NQCs) close to merger (see Eq. (22) in [201]).

We choose the source frame convention for our model by imposing that its
direction z is along the separation vector between the two black holes n(Za1ign),
with an arbitrary time of alignment in the late inspiral taj, = —1000M (with
t = 0 being defined as the amplitude peak of hyy). In practice, rather than
using n(talign) we simply impose

¢22<talign) - 0; (46)

and we use the orbital phase ¢, as read from the EOB dynamics to resolve
the m-ambiguity and impose ¢o1, >~ 0 rather than ¢.1, ~ 7. These align-
ment properties will be reproduced, up to small numerical errors, by the
reconstructed ROM waveforms.

4.3.1.2. Stationary phase approximation

As we will use it to guide our conditioning procedure, we recall here the
Stationary phase approximation (SPA) for waveforms with higher harmonics.
First, we introduce the Fourier transform for a time-domain signal h as

Wf) = / dt IR (1) . (4.7)

Note the sign difference in the exponential with respect to the more usual def-
inition (used in particular in LAL [395]). This choice is made for convenience,
as it will ensure that Fourier-domain modes ﬁgm with m > 0 and m < 0 have
support at positive and negative frequencies respectively. One can come back
to the LAL Fourier convention by the simple map f <> —f, which for real
signals h(t) € R translates as hpar(f) = h*(f).

Let us first consider a generic signal with an amplitude and phase as
h(t) = a(t)e ™®® and define w = ¢. The SPA is applicable under the
assumptions |a/(aw)| < 1, |w/w?| < 1 and |(a/a)?/w| < 1, that are well
verified in the inspiral. Defining a time-to-frequency correspondence t(f)
implicitly by

w(t(f)) =2rf, (4.8)

the Fourier tranform of the signal is then BSPA(f) = Agpa(f)e ¥sealf) with

Aspa(f) = a(t(f)) (4.9a)

w(t(f)’
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sea(f) = (t(f)) = 27 ft(f) + 7 - (4.9)

Applying this to the individual hs,, modes (4.3), treating the Adg, as
constants, defining wp, = ¢pm =~ Mwemn, each mode will have a separate
time-to-frequency correspondence

Wem (tzm(f)) = 27Tf7 (410)

and the phase

T
WA (f) = mom, (£7(f)) = 27 ft () + D + T (4.11)
This is the Fourier-domain equivalent to the time-domain relation (4.4). We
note useful relations between different mode numbers. The various ¢ ( f)

functions are related by

tm (”g) = 122(f), (4.12)

while the phases satisfy
0 =2y, (";f> — MW (f) = 2060 +mAgz — (2—m) 7. (4.13)

This last relation holds regardless of the time and phase alignment of the
waveform: as a phase change 0¢y, = md¢, or a time change W, (f) =
=27 fdt would both leave 2W,,,,(mf/2) — mWas(f) invariant. It is sensitive
however to the quantities A¢y, (that we treat here as constants in the early
inspiral), that depend on the choice of polarization convention.

Finally, we recall that we can build a time-to-frequency correspondence
directly from the Fourier-domain waveform as

1 dVv

t(f) = o (4.14)

Note that this definition of time is strictly speaking only accurate in the
inspiral phase, where the SPA applies and the two definitions (4.14]) and (4.8)

coincide. However, it can be used as a proxy for time everywhere, as we can

evaluate (4.14)) for any frequencyﬂ f.

°The converse is not true: since ¢(f) is not monotonic at high frequencies, building an
unambiguous mapping f(¢) is only possible in the inspiral.
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4.3.1.3. Orbital carrier

In order to carry over information about the alignement of the respective
mode from the time domain to the Fourier domain, we find it convenient to
introduce a fictitious carrier signal k(t), that evolves with the orbital phase
instead of twice the orbital phase as the hoy mode does.

k() = as(t) exp [—ﬂ?;(t)} |

(4.15)

The choice made here of keeping the same amplitude as the hoy mode is quite
arbitrary, but will ensure that it decays in the ringdown, giving us a smooth
Fourier transform for this carrier. Note that this construction is artificial, as
the carrier does not correspond to any physical signal.

As mentioned before, the carrier half-phase ¢99/2 comes with a w-degeneracy.
We can alleviate this by forcing the carrier phase to be within 7 of the orbital
phase, as read from the SEOB dynamics, at the time of alignment. This is,
in fact, our main motivation for building this carrier in the time domain: it
allows us to avoid the issues listed above, with all the conditioning being ulti-
mately tied to the orbital phase, a quantity that is smooth across parameter
space.

The Fourier transform of the carrier signal introduced in (4.15)) is decom-
posed as an amplitude and phase as

F(f) = Aulf) exp [—i0(f)] | (4.16)

where Ay = |k| will be discarded in the rest of the conditioning. When the
SPA applies, we have approximately

U(f) = UFNF) = o (D) = 20 ft8 () + 50 (417)
with t*(f) defined like in as

worn(t*(f)) = 27 f . (4.18)

Since l;;( f) is computed via an FFT, nothing forbids arbitrary jumps of
27 of the phases between different points in parameter space. We use the
relation above to remove this 27-ambiguity in W;. At the frequency faign
such that ¢( falign) = talign, We impose

n
‘\Ijk(falign) - (¢orb(talign) - 27Tfa11gntalign + 4)‘ < T. (419)
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In this way, Wy, is directly tied to ¢, that is smooth in parameter space in
our time-domain conditioning procedure.

We will factor out the Fourier domain phase of the carrier, build a ROM
for the carrier separately, and then factor in the modelled carrier phase when
reconstructing the waveform.

4.3.1.4. Fourier-domain coorbital modes and waveform building blocks

Next, we build coorbital modes by scaling out the Fourier-domain phase of
the carrier following

1 (f) = hom(f) exp [imWy(f /m)] . (4.20)

These modes are built so as to factor out the main contribution to the phase
of the Fourier-domain modes, to leave the coorbital modes A, with an
approximately constant phase in the inspiral regime. Namely, for the inspiral
regime, where the SPA is valid, t*(f) = t*"(mf) and applying and
(4.17) gives

Uy (f) ~ m, (;;) + Aggm + (1 — m)% . (4.21)

Note that our Fourier-domain construction is approximate, and these “coor-
bital” quantities hS, . do not correspond exactly to a coorbital frame defined
in the time domain as in [131}/133].

We stress that these modes are not strictly coorbital, in the sense that
they are not built from a time-domain coorbital frame built from the orbital
phase. Indeed, the definition is rooted in the Fourier domain, and its
physical meaning is unclear in the high-frequency range where the SPA does
not apply anymore.

Thus, the basic building blocks for the ROM will be

o U, =—Arg {l;;}, the Fourier-domain carrier phase;
e Re (ﬁ;m), the real part of the coorbital modes;
e Im (izjm), the imaginary part of the coorbital modes.

Conversely, to rebuild the modes R from these waveform pieces, it is enough
to factor in the carrier phase as in (4.20)).

175



4.3.1.5. Scaling of frequencies using ringdown frequency

One of the prerequisites of our ROM procedure is to represent the waveform
on a common frequency grid. However, the frequency range covered varies
with physical parameters, notably spin. In SEOBNRv4_ROM, this was alleviated
by extending waveforms to higher frequencies. Here, we choose to apply a
scaling to the frequencies of the waveform building blocks, depending on the
ringdown frequency. For every mode (¢, m) and the carrier we define

. 2m
Yem w?nle
4
Uk = ot M | (4.22b)

Wog

Mf, (4.22a)

NM . . . .
where w?m is the quasi-normal mode frequency, and varies for different

waveforms as it depends on the spin of the remnant black hole. We will then
use for all waveforms a common grid of this rescaled parameter y. Given this
scaling, we have to carefully adjust the starting frequency of the waveforms
of our training set so that the frequency range of the carrier phase W, covers
all modes after undoing the scaling. The maximal values of y,,, yx Where
we cut the data are (y55™, y5i™, yss™, ™, yo™) = (1.7,1.7,1.55,1.35,1.25)
and y;'** = 2.5. This technique is only used for building the high-frequency
ROM (see Sec. [£.3.6); for the low-frequency ROM, the ringdown frequency is
irrelevant and the scaling would induce an additional cost in generating the
waveforms of the training set.

4.3.2. SVD decomposition

We decompose all waveform data pieces defined in Sec. into respective
bases and subsequently interpolate the projection coefficients in each
basis over the parameter space, as discussed in Sec. [£.3.3] This method
follows earlier work in [1,[255}256].

We start with a waveform data piece X (f;; 5), given on a discrete grid in
frequency {f;}™,, and on a regular grid of points @ in the three-dimensional
binary parameter space in mass-ratio ¢ and aligned [BH| spins x;, (¢, x1, x2)-
We flatten the parameter grid and arrange the data in matrix form X;; =
X(fi;0;) € R™™, where n is the total number of input waveforms.

We then resample the data in a log-spaced frequency grid of 300 points.
The number of points used for resampling are based on previous studies
(see Ref. [1,256]). We compute the [396,1397] X = VXUT and obtain
an orthonormal basis for the column space of the matrix X in the first
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r = rank(X) columns of V. The provides us with a decomposition of
the range space of X, range(X) = span{vy, ..., v, }, where the v; are the left
singular vectors of X.

Given the basis By = V, we expand the waveform data pieces z;(f;)
that make up the columns of X in this basis and can write the expansion
r; & Y cx(6;) - Bx with projection coefficient matrix cx = B% - X. To
construct a waveform model we need to predict the coefficients cx at a
desired parameter space point #*. To do that we need to fit or interpolate cx
over the parameter space. This is discussed in Sec. [4.3.3]

4.3.3. Tensor-product spline interpolation

In the following we describe how we obtain projection coefficients at arbitrary
parameter space points. In low dimensional spaces we can afford to use dense
grids built from the Cartesian product of one-dimensional sets of points. We
choose cubic splines as the univariate interpolants and obtain a tensor-product
interpolant (TPI) [255259,398] for a three-dimensional coefficient tensor ¢;
which can be written as

Is[d (g, x1,x2) = D ciji (¥ @ U; @ Uy) (g, x1, X2)- (4.23)

ijk

Here, the U are B-spline basis functions [399] of order 3 for the chosen
one dimensional sets of parameter space points in each dimension. We
use “not-a-knot” boundary conditions to avoid having to specify derivatives
at the domain boundaries. We built the model using TPI, a Cython/C
package [398] to provide tensor product spline interpolation in Python, and
later implemented the model in LAL [395].

4.3.4. Patching in geometric frequency

Here we discuss dividing the waveform domain in geometric frequency into
separate sub-domains, where we build a separate ROMs. In Sec. we will
instead discuss how to tackle non-uniform resolution requirements over the
binary parameter space.

In the early inspiral waveforms modes tend to be well approximated by