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Kurzfassung 
 
 
Eine der wichtigsten Komponenten eines Elektrofahrzeugs ist sein Energie-
speicher. Leider hat es sich auch als die teuerste Komponente erwiesen, die die 
Leistung des Fahrzeugs, z. B. die Reichweite oder die Leistungsfähigkeit, bei 
einem bestimmten Kostenziel einschränkt. Eine Verbesserung der Zellqualität 
und einer Reduktion der Streuung der Zellparameter innerhalb des Systems 
führen zu einer Kostensenkung, indem die Anzahl der in der Produktion 
aussortierten Zellen verringert wird. Darüber hinaus ist es insbesondere bei 
großen Speichersystemen, wie z. B. in Elektrofahrzeugen oder bei stationären 
Speicheranwendungen, wichtig, eine lange Nutzbarkeit der Systeme zu 
gewährleisten. Insbesondere bei stationären Anwendungen muss die Lebensdauer 
im Bereich von 10 bis 15 Jahren liegen. Daher müssen die Hersteller für 
langlebige Batteriemodule als kleinste austauschbare Einheiten sorgen. Bisherige 
Analysen zu den Auswirkungen von Variationen in kommerziellen Lithium-
Ionen-Batteriesystemen auf die Alterung haben gezeigt, dass die Streuung der 
Zellparameter der Batterien eine entscheidende Rolle für die Langlebigkeit spielt. 
Diese Arbeit zielt darauf ab, Systemtopologien für individuelle Anwendungen zu 
optimieren, eine Überdimensionierung von Batteriesystemen zu vermeiden und 
Vorhersagen über die Lebensdauer und quantifizierbare Ausfallraten von 
Batterien bei gleichzeitiger Kostenreduzierung zu geben. Es wurde eine 
Simulations-Toolchain entwickelt, um Variabilitäts- und Alterungsraten-
Streuungen in den Systementwurfsprozess einzubeziehen. Im Rahmen des 
Simulationswerkzeugs können Batterietopologien mit unterschiedlichen 
Nutzungsprofilen, Zellparameterspreizungen und verschiedenen Alterungsraten 
simuliert werden. 
Insgesamt vertieft die vorliegende Arbeit das Verständnis und die Quantifizierung 
von Zell-zu-Zell-Variationen und erzielt so Fortschritte in mehreren Aspekten. 
Entscheidend ist das zielgerichtete Testen von Batterien unter Einbeziehung von 
Variationen, um die statistische Sicherheit zu erhöhen, was zu einer Verringerung 
der Kosten und des Aufwands für das Testen durch eine vorgegebene 
Stichprobengröße führt. Darüber hinaus ermöglichen Prognosemodelle mit 
zusätzlichem Konfidenzintervall repräsentative Vorhersagen von Lebensdauer 
und Ausfallszenarien in der Anwendung. 



 

  



  

Abstract 
 
 
One of the essential components of an electric vehicle is its energy storage system. 
Unfortunately, it has also proven to be the most expensive component, limiting 
the vehicle's performance, for example, range or power, for a given cost target. If 
higher spreads and more inferior cell quality can be coped within the system, costs 
can be lowered by decreasing the number of cells rejected in production. In 
addition, it is essential, particularly for large storage systems such as automotive 
or stationary storage applications, to ensure the extended usability of the systems. 
Especially in stationary applications, design lifetimes have to be in the range of 
10 to 15 years. Therefore, the manufacturers need to ensure long-lasting battery 
modules as the smallest exchangeable units. Previous analysis on the impact of 
variations in commercial lithium-ion battery systems on ageing showed the vital 
role of spreads in cell parameters of the batteries. 
The research in this thesis aims to optimise system topologies for individual 
applications to find suitable cells, avoid oversizing battery systems and give 
forecasts of a lifetime and quantifiably failure rates for battery packs while 
decreasing cost. A simulation toolchain was developed to incorporate variability 
and spread of ageing rates in the system design process. In the scope of the 
simulation tool, battery topologies can be simulated with varying usage profiles, 
cell parameter spreads and varying ageing rates. 
Overall, with the deeper understanding and quantification of cell-to-cell variation 
that has been developed within this work, advances in several aspects have been 
achieved. Most relevant is target-oriented testing of batteries incorporating 
variation for enhanced statistical certainty, resulting in decreased cost and testing 
efforts through a predetermined sample size. In addition, lifetime prognosis 
models with additional confidence intervals allow representative predictions of 
lifetime and failure scenarios in the application. 
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1 Introduction 

1.1 Motivation 
Lithium-ion batteries have become ubiquitous in many portable applications 
ranging from wearables and medical devices to e-bikes, electric vehicles, grid 
storage, trains, and ships. First commercialised by Sony in 1991, lithium-ion 
batteries were developed starting in the late 1970s [1] by several teams with 
exceptional contributors Goodenough, Whittingham and Yoshino receiving the 
Nobel Prize in 2019. 
To further increase market penetration, prices need to remain falling. This enables 
new applications, previously non-economical, especially for high power and 
energy demands, as well as frequent charge and discharge cycles [2]. Figure 1.1 
depicts the development of the whole range of lithium-ion batteries, not only for 
automotive applications, over the last 25 years, with an increase in energy density 
of 3 % per year, from 90 Wh/kg to 300 Wh/kg for C-rates up to 3C [3]. At the 
same time, prices decreased by a factor of 80 [4]. 

 

Figure 1.1: Development of price and energy density over time.  

 
By replacing expensive components or cutting down their share in the product, or 
increasing the production volume cells become cheaper. For example, the 
electrolyte was reduced to a level where new cells appear dry when opened, 
compared to several millilitres of excess electrolyte a few years ago [5]. 
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To get a perspective on the decline in prices, an analogy to the photovoltaic 
market is helpful. Figure 1.2 shows the contribution of cost reduction broken 
down into categories by Kavlak et al. [6]. The differences between 1980-2001, 
2001-2012 and overall are shown. Overall, all categories, except other costs, led 
to a decrease in price, but different factors had the leading role in cost decrease 
over time. In the first phase of cost reduction from 1980-2001, efficiency, non-Si 
material cost, silicon price, usage, and wafer size were the most significant 
contributions.  
A key difference in this example is the inherent limit of lithium-ion batteries based 
on the weight of a cell since every charge carrier needs to be a lithium-ion. 
Nevertheless, especially the second part of cost reduction from 2001-2012 was 
heavily driven by plant size and therefore economies of scale. A significant part 
of the economies of scale is also the reducing oversizing of parts and components 
without loss of function. 

 

Figure 1.2: Contributions to cost reduction from Kavlak broke down into categories [6].  po includes 
all other costs (electricity, labour, etc.). 

Overall lithium-ion batteries offer the highest potential for large-scale use of 
energy storage devices but cannot be considered the holy grail since they are still 
too expensive for some applications, especially long-term storage [7]. In addition, 
there are special applications that cannot compromise safety. In those cases, other 
technologies are necessary [8], and they usually have a price. In most cases, 
however, the costs are the decisive criterion. On the other hand, there are 
applications, for example, electric city scooters, where the product is regularly 
collected anyway, and their replacement is straightforward. Therefore, it can be 
cost-effective to allow an increase in variability of the ageing rate to decrease 
manufacturing discards through easy replacement. 
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A significant factor in cost reduction is high volume in scalable, automated 
production. Of course, this only applies if hardly any waste is produced, which is 
a challenge, especially in battery production. Certain variations in product 
properties cannot be avoided, but they affect battery performance and ageing [9]. 
Rigorous process monitoring and rigid quality control reduce fluctuations, but 
they are expensive and increase the scrap rate. An alternative is to allow 
differences in the cell properties and managing them in the application. This 
requires handling the statistical spread of cell-to-cell variation in the initial state 
after production. An even greater challenge is quantifying degradation, which also 
differs strongly. A reliable prediction is difficult even with a large amount of data 
as numerous stress factors have to be considered. 
 
Therefore, quantifiable degradation models, including variations within cells, are 
necessary, as well as an in-depth understanding of cell-to-cell variation. 

1.2 Structure 
As shown in Figure 1.3, following the fundamentals of batteries and battery-
related statistics in Chapter 2, in Chapter 3.1-3.4, a literature review is presented 
covering the origins of cell-to-cell variations and inhomogeneities on a multiscale 
level, their impact on electrochemical performance, and their characterisation and 
tracking methods, ranging from the use of large-scale equipment to in operando 
studies. Finally, the review summarises the state-of-the-art understanding and 
characterisation of cell-to-cell variations and inhomogeneities observed upon 
ageing. They were tackled with a bottom-up approach from materials to battery 
packs and ending on the proposed characterisations. 
Chapter 3.5 establishes the minimum number of cells, which should be tested to 
accurately represent population variability since testing many cells is expensive. 
Derived from various degradation datasets, including new measurements 
performed as part of this work, empirical capacity-versus-time ageing models 
were fitted. While assuming that the model parameters could be drawn from a 
distribution describing a larger population, then, using a hierarchical Bayesian 
approach, the number of cells required to be tested was estimated. 
In Chapter 4.1, battery ageing data from in-house measurements and published 
data were combined into a uniform database; the total dataset size exceeds 
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1000 GB. This is the largest dataset described in the literature and is based on 
developing an evaluation toolchain and automatic data assessment.  
In Chapter 4.2-4.4, lithium-Ion battery lifetimes from cyclic and calendar ageing 
tests of more than 1000 cells were compared employing novel plots termed 
ENPOLITE (energy-power-lifetime-temperature). At a glance, ENPOLITE plots  
inform about the nominal capacity, cell format, cell chemistry, average ageing 
test duration, measurement temperature, specific power employed for testing, 
energy density, and the achieved lifetime for every cell. In addition, a battery 
lifetime coefficient was derived, allowing the comparison of lithium-ion batteries 
with different weights or volumes, capacities, and cell chemistries. The 
combination of multiple parameters in ENPOLITE facilitated a thorough 
comparison of various battery degradation. In addition to the cell-specific 
parameters during cycling, the specific stored energy and the storage temperature 
were depicted in a calendar ENPOLITE plot. 
Based on the evaluated datasets in Chapter 5, different health indicators are 
compared, and the correlation analysed. The measurement difficulty varies 
between health indicators: Some can be extracted from a current pulse or charge, 
whereas others need a well-defined and controlled setting to be recorded.  
Therefore, understanding the correlation of health parameters can lead to a greater 
focus on easy to record parameters to better track ageing trends when high-
resolution data is not available. Health indicators taken into account are, among 
others, impedance measurements of different pulse lengths, capacity values at 
different discharge procedures, check-ups, weight and initial voltage. The work 
is based on five different ageing sets covering variations in cell chemistry (NMC, 
LFP, NCA), cell type (round, prismatic), as well as size and designated 
application (consumer, automotive). 
Based on an impedance-based cell model, in Chapter 6, a modelling framework 
was developed to simulate batteries' electrical and thermal behaviour as well as 
their ageing behaviour in different configurations. With load profiles, usage 
patterns and lifetime requirements, batteries can be simulated multiple times as 
part of a Monte-Carlo simulation with cell properties derived from the ageing rate 
distributions and initial spread distributions. 
The work concludes in Chapter 7 with a summary and outlook. 
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Figure 1.3: Structure of this work. 
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2 Lithium-Ion Batteries 
In this chapter, the fundamentals of lithium-ion batteries and trends to higher 
energy densities are discussed.  

2.1 Fundamentals of lithium-ion batteries 
A lithium-ion battery consists of two electrodes in the purest form, a separator 
electrically insulating the two electrodes and an electrolyte for ion transport 
between the electrodes. Due to the low electric conductivity of most electrodes, 
metallic current collectors are coated with the electrode material. The positive 
electrode (PE) is named as the cathode and the negative (NE) as the anode for 
both the charge and the discharge stage per definition. During charging, lithium-
ions are transported from the cathode to the anode. The process of intercalation 
of lithium-ions is called lithiation. During discharge, the process is reversed, and 
the anode is delithiated while the cathode is lithiated.  
There is a multitude of material combinations considered lithium-ion batteries.  
Possible anode electrodes consist of intercalation, alloying, or conversion 
materials [10], while cathodes consist of conversion, oxide, or polyanionic 
materials [11]. Similarly, cathode materials are primarily based on either different 
variants of nickel-manganese-cobalt oxide (NMC), nickel-manganese-aluminium 
oxide (NCA) or lithium-iron-phosphate (LFP) [1], [11], [12]. For simplification, 
the combination of NMC vs Graphite is considered henceforth, including the 
extreme of only lithium manganese oxide NMC010 and lithium cobalt oxide 
NMC001.  
Today, anodes are dominated by graphite and graphite-based materials with a few 
high power applications based on lithium-titanate [1], [10], [12]. Graphite and 
other carbon blacks consist of layers of graphene [13]. During charging, lithium-
ions flow to the graphite anode and intercalate or migrate within the graphene 
layers. The anode particles are not loaded uniformly but within stages where only 
every other layer is loaded. In Figure 2.2, the distinct stages are shown in the 
schematic with an increasing state of charge or load level from stage III to stage 
I. Those stages also corresponded to specific voltages vs lithium [13], [14]. The 
stages also show distinctive visible colours. Therefore, the discharge and charge 
curve analysis can give information about the stages of the graphite.  
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Figure 2.1: Stage wise intercalation of lithium-ions in graphite. 

2.2 Increasing energy density 
As discussed in Chapter 1.1, the improvement in energy density is one of the main 
drivers for cost reduction. Also, new applications become feasible with higher 
energy densities. To increase the energy density, either the number of 
exchangeable ions within the same volume or mass needs to increase, or the 
nominal voltage per charge transfer must rise. With the volumetric capacity, Ah/l 
and the nominal voltage Vnom the volumetric energy density, Wh/l, can be 
calculated. Many improvements within the battery are indirect. For example, the 
reduction of the separator, current collector and anode makes up more space for 
bigger cathodes that host the cyclable lithium-ions. Consequently, the goal is to 
reduce oversizing and enable the same energy stored with less material and 
volume. 
Since energy density became a key performance indicator for research roadmaps 
and funding, calculations are often nudged in a favourable direction. Values can 
be inflated either by reporting capacities at shallow currents, oversized lithium 
inventory in half-cells, neglecting essential additives or excessive amounts of 
electrolyte. In full cells with realistic usage profiles, the reported energy then 
cannot be achieved [3]. In addition, the reference volume or mass can be chosen 
in favour of a high reported energy density. Compared to the lithiated state, 
electrodes are lighter without the lithium present or also less voluminous. 
Considering the extreme case of an anode-free cell, where lithium is directly 
deposited on the copper foil [15], the delithiated state's gravimetric and 

empty fullLithium intercalation

Stage IStage IIStage III
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volumetric energy density is theoretically infinitely high since there is no host 
material and lithium is directly plated on the copper current collector. 

2.2.1 Decreasing the anode & pre-lithiation 
The most common anode material, graphite, exhibits a gravimetric capacity of 
370 mAhg-1 which is comparatively low but partly compensated by the favourably 
low lithiation and delithiation potential of 0.1 vs Li/Li+ [10]. Another significant 
advantage is the small volume change under 10 % [16]. This makes graphite 
extremely stable and cells with a coulombic efficiency of over 99.995 % and over 
5000 full charge and discharge cycles possible [17]. 
An anode material currently introduced in commercial cells is silicon [18]. Silicon 
exhibits a volume increase of over 300 % during lithiation. Blend materials and 
nano-sized silicon particles are used to mitigate this effect [19], [20]. Nano-sized 
silicon has a high surface area, increasing the number and intensity of side 
reactions and SEI formation rate [21]. But the high surface area to volume ratio 
reduces the effects of the high volume change. Blend materials of silicon and 
graphite also observe more minor volume changes and do not offer pure silicon 
anodes' total theoretical energy density. 
While the anode is larger in electrode area dimensions to prevent lithium-plating 
in the boundary areas, the cathode has a higher capacity [22]. On the one hand, 
the typical cathode materials get unstable when delithiated too much [11]. On the 
other hand, some of the cathode's lithium is consumed within the first cycles. 
Within a full cell, all active lithium is provided by the cathode material. The cell 
is assembled in the discharged state with the anode fully delithiated. The SEI is 
formed within the first cycles, consuming some of the active lithium provided by 
the coulombic oversized cathode. 
In a typical lithium-ion battery, lithium is introduced to the cell through the 
cathode. Pre-lithiation is a technique used to increase the amount of lithium ions 
within the cell via the anode. During formation, some lithium is consumed by side 
reactions and the Solid-Electrolyte-Interface (SEI), decreasing lithium inventory. 
When some lithium is intercalated into the anode material before assembly, the 
total amount of lithium within the cell increased [23]. After the first few cycles of 
initially consuming free lithium-ions, the lithium inventory is equal to the 
maximum lithium usable by anode and cathode.  
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2.3 Mathematical description of battery failure 
Understanding battery ageing analogies to other forms of ageing are helpful. 
Humans also age, lose their function and eventually pass away. On a population 
level, some people die at a very young age, while others show longevity.  
To understand the nature of statistical data, the analogy of a human population 
survival curve for England and Wales shown in Figure 2.2 is helpful. The 
maximum age human beings can reach increased a few years but did not change 
significantly from 1851 to 2011. However, infant mortality has decreased 
extremely over these years, so that the profile of the curves and, in particular, the 
average age reached has undergone a massive change. This comparison shows 
that neither the maximum nor the average lifetime alone is meaningful - neither 
for humans nor for batteries. 
 

 

Figure 2.2: Population survival curves in England and Wales. M. Roser CC-By [24]. 

This analogy can be taken even further when team sports or battery modules and 
packs are considered. Especially in competitive sports, high requirements are 
demanded of the athletes. Once they drop below a threshold, they cannot fulfil 
the requirement anymore, so they cannot participate in the sporting event. For 
example, if one rower from the rowing eight gets tired and does not perform, the 
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other team members have to compensate, but since they are already on the highest 
demand the whole team fails with the decrease in total performance. This also 
applies to batteries that are connected in series or parallel. Thus, the worst cell is 
critical for performance. A gradual loss of a capability can define this kind of 
failure without total loss of all functions. In lithium-ion systems designed with a 
priority on energy, this is often 70 % or 80 % of the initial capacity, directly 
corresponding to range or runtime, and called the end-of-life criterion. For 
systems with priority on power, a 200 % resistance increase is used as the end-of-
life criterion, corresponding to a reduction in power of 50 %. 
On the other hand, a spontaneous total loss can occur when all function is lost at 
once, for example, a short-circuit in a lithium-ion battery. This behaviour is 
considered random since no prediction of a specific spontaneous total loss can be 
made. A total loss failure probability can change over time and is often described 
as a bathtub curve, with early faults, a plateau with low failure probability, and a 
rising probability when the effects of fatigue are dominant. An example of this 
working or not-working behaviour can be valid for current collector busbars. The 
function of conducting current can be fulfilled up to the moment of failure of a 
weld seam. Even if fatigue might be visible within the seam before, the current 
demand can still be fulfilled. 
If multiple systems are considered, failure time data can be evaluated. 
Figure 2.3 a) shows the discrete depiction of failure events over time in blue and 
the cumulated-failure rate as the fraction of systems failed in orange. In this 
example, with four specimens, four individual failures occur, increasing the 
cumulated failure rate with each event.  

 

Figure 2.3: a) discrete cumulated failure rate with four failure events. b) continuous cumulated 
failure rate with a failure rate as a function of time.  

For continuous data, Figure 2.3 b) shows the failure rate or probability density 
function (PDF) in blue and cumulated-failure-rate or cumulative distribution 
function (CDF), the integral of the failurefunction, in orange. Both functions 
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(PDF and CDF) fully specify the distribution and are different representations 
[25].Within a pure series connection, the failure or hitting the end-of-life criterion 
of a single cell renders the battery failed or at the end-of-life criterion as well. 
Comparably, a single cell within a parallel connection can be below the failure 
threshold but be supported by the rest of the parallel connection, so the parallel 
connection can still fulfil the desired demand. Looking at an example of a large 
fleet of electric vehicles with a battery system each, a failure rate can be fitted to 
the distribution of failure events. 

2.3.1 Interference model 
To better visualise failure occurrence over time, the interference model can be 
used [26]. Figure 2.4 a) shows a plot with an arbitrary capability unit on the 
x-axis, which can be replaced by, e.g., range or maximal power. The y-axis shows 
the frequency of samples, and the demand is shown in green, while the capability 
is shown in blue. Each plot depicts a range of samples at one moment in time. In 
Figure 2.4 b), the same interference plot is shown at a later moment. The demand 
is unchanged, but due to ageing, the capability of the samples decreased. 
Therefore, some of the demands cannot be fulfilled by all samples and failures (in 
orange) occur. 

 

Figure 2.4: Interference model for failures, in green the demand probability and blue the capability 
probability is shown a) All demands can be fulfilled by the capabilities b) Some demands cannot be 

met, and failures occur. 

Figure 2.5 a) shows the example of a total loss of function of a sample, where 
none of the demands can be fulfilled by some of the cells. Referring to an example 
of ranges within an electric vehicle fleet, the failure in Figure 2.4 b) shows an 
electric vehicle, which cannot make all trips and Figure 2.5 a) shows an electric 
vehicle without any functionality left. Figure 2.5 b) shows a progressed moment 

demand capability demand capability

failure

aginga) b)
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in time, where ageing made all subsets unable to meet all demands. Within the 
electric vehicle fleet example and the capability range, no electric vehicle has 
enough range to fulfil all demanded trips. 

 

Figure 2.5: Interference model for different failure types. a) loss of all function, capability for a 
small subset, b) loss of all function and partial loss function on all samples. 

 
Compared to Figure 2.4 a), Figure 2.6 a) depicts a higher demand while capability 
remains constant, leading to failures due to excessive stress. This could be an 
electric vehicle fleet with different routes and range demands, which cannot all 
be met. In b) the same demand can be fulfilled with the same average capability 
but less variability. A set with lower variability possesses less underperforming 
cells.  

 

Figure 2.6: Interference model with varying demand leading to a) excessive stress and b) fulfilment 
of demand due to less capability variability. 
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3 Inhomogeneities and lithium-ion 
batteries 

In this chapter, inhomogeneities and cell-to-cell variation in lithium-ion batteries 
are discussed. First, results from the literature are presented, how inhomogeneities 
can be monitored and measured, followed by the root causes. Parts of 3.1-3.3 are 
published in a review article [27] with an equal contribution by the author and 
David Beck. Chapter 3.5 is an extract from [28] with an equal contribution by the 
author and Samuel Greenbank. Here the majority of the data acquisition and 
preparation was performed by the author and the Bayesian approach by Samuel 
Greenbank. 
Inhomogeneities are a significant concern for the reliability and safety of modern 
batteries. While significant effort must be deployed in the production process to 
eliminate them and with tools to identify expected variation already before 
assembling them to battery packs, developing advanced tracking methods to 
anticipate and quantify their impact is crucial. Many ways to track 
inhomogeneities can be found in the literature with different measuring principles 
and varying complexity.  

Figure 3.1: Different scales and complexity for ctcV and inhomogeneities measurements. 

They differ in length scale from sub-particle to pack-to-pack variance tracking, in 
time scales from milliseconds to years and in the complexity of the measurement 
instruments from particle accelerators down to using the onboard battery 
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management system (BMS).In this chapter, a comprehensive set of analytical 
methods for evaluating inhomogeneities and cell-to-cell variation (ctcV) is 
presented. These methods are grouped by measurement complexity into research 
facility scale, laboratory scale and field-scale methods, as depicted in Figure 3.1. 

3.1 Field/usage data 
Data on ageing are clustered into two groups field data and laboratory data. The 
latter is performed by testing facilities and is often an accelerated lifetime test to 
predict lifetime performance for a new cell or performance. On the other hand, 
field data can be recorded by the manufacturer or by self-report by users.  
But real-life field data has disadvantages compared to laboratory data since it 
relies on the State-of-Health-estimator implemented on the BMS to compress the 
data needed to store and transmitted. An additional impairment of self-reported 
data is the user group consisting of primarily electric car enthusiasts and not a 
representative sample. Assumably, they will care more for their car and follow 
the manufactures recommendations, and for example, they do less fast charging 
and avoid unnecessary high SoCs than worst-case users. 
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Figure 3.2: Maximal Range Survey from Tesla Motors Club with reported remaining capacity over 
milage and years [29]. Each orange dot is one entrance, and vehicles have multiple entries within 

their life. The trendline is shown in green, and the 95 % confidence interval is in light blue. 

 
To the author's knowledge, there is no publicly available dataset from 
manufacturers, and evaluations are rarely shown and sparsely [30]. The following 
consumer reports of the state of battery systems, especially for electric vehicles, 
are shown [139–141].  
In the Maximal Range Survey [29] performed by the Tesla Motors Club in the 
Netherlands, participants record several parameters about their private EV, 
including depicted range, mileage and vehicle age. In Figure 3.2, the capacity 
degradation is shown for up to six years and >200.000 km with some individual 
vehicles included at multiple times. A general degradation trend and longevity of 
the battery packs can be seen, but effects from stress as the temperature profile of 
an individual pack are not included. Since consumer reports are voluntary, 
typically, the participants are well informed and highly interested. This bias 
towards well caring consumers may only reflect a sub-portion of users with less 
variability. Another major drawback of consumer reports is the type of data 
collected. 
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Typically, either the State-of-Health value estimated by the BMS depicted on the 
driver’s screen or the range after a full charge is recorded manually along with 
the mileage. In addition, as explained in Figure 3.3, the user typically can only 
see the net capacity and, therefore, only see degradation in the driver's display 
when the reserve is already degraded. 

                              

 

Figure 3.3: User-visible capacity from a battery management system, the reserve is not shown to the 
user, but the State-of-Health remains 100 % even though degradation already happened. 

Range estimators as a measurement for capacity also include the driver’s energy 
efficiency level. Comparing multiple cars reflects not only the different 
degradation levels but also driver-to-driver variability. The depicted range for an 
energy-intensive driver at the fully charged state at the same degradation level is 
lower compared to an energy-efficient driver. Another variability unaffected by 
the battery is the energy needed for cooling in a hot climate included in the energy 
consumption. This granular data, if collected, is not available through consumer 
reports. 
For reducing the amount of data down-sampling, lowering the time resolution, 
and clustering, and lowering the spatial resolution is necessary. The BMS of the 
battery system monitors all cells and temperatures but only reports the critical 
values, as under or overvoltage and higher-order signals like the state-of-charge 
of the entire system. The State-of-Health (SOH) and State-of-Power (SOP) are 
also determined and sent to other vehicle control units or logging stations. For 
fleet data, only a few SOH values per vehicle are reported, and the usage for the 
cars varies.  
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Figure 3.4: Trendline for reported SOH vs age in years for Gen1 and Gen2 Version of Nissan Leaf. 
30 kWh Gen2 vehicle shown before and after firmware update to SOH estimator [31]. 

In addition, the SOH algorithm’s function is unknown to the public and can be 
changed in-between measurements with an update, invalidating data collected 
previously since values are not comparable anymore [32]. In Figure 3.4, the “Flip 
the Fleet” project's reported dataset is shown, with the SOH values derived from 
the BMS over time [31]. The data showed substantial degradation suggesting an 
average life until 70 % SOH of only three years. After a software update to the 
SOH estimator on the vehicles, the values sharply changed. 
Whilst laboratory-scale measurements rely on destructive, ex-situ, or in-situ 
experiments with preselected cells detached from their commercial application, 
field and usage data can be directly utilized in-operando with no need for further 
experimental efforts [33]. A metric for homogeneity commonly tracked from 
large sets of field data is the capacity variation between batteries, either tracked 
within the application or afterwards. This data is highly interesting for assessing 
the real-world degradation behaviour of batteries without accelerated ageing and 
with more variance on the stress factors such as climate or usage profile. Many 
manufacturers log data from their battery systems, but this data is rarely presented 
[30] and not published to the author’s best knowledge. The battery community 
would greatly benefit from the release of large datasets.  
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Usage Data 
In Liaw et al. [34], trip data from 18 vehicles were recorded and analysed for the 
specific use of each vehicle and differences in climate and other stress factors on 
the battery. For in-depth data on inhomogeneities within a battery pack, 
disassembly and measurement of each component are possible. Schuster et al. 
[35] disassembled two vehicle battery packs, tested the capacity of aged 954 cells 
and compared them to 484 new ones. On a smaller scale, 152 notebook batteries 
with a total of 1034 cells were dissembled by Salinas et al. [36], reading the 
capacity, manufacturing date and cycle count for each cell from the BMS chip. 
To the author’s knowledge, system disassembly has only been reported for at 
most a few large-scale battery systems, giving a good inside of cell-to-cell 
variance within the specific pack but not for the variation in between multiple 
packs. 

3.2 Origins of cell-to-cell variation and 
inhomogeneities 

Inhomogeneities can occur in various regimes of the battery pack. The wiring 
resistance can vary at the pack or module level depending on the location within 
the pack and welding process [37]. But the inhomogeneities are linked since local 
defects induce change on the cell level [38], [39] and lead to cell-to-cell variation. 
Within the cell, both electrodes are made from heterogeneous materials with 
different particle sizes, binder compositions, and macrostructures. 
 
From the fabrication of electrodes to the assembly in cells followed by the 
assembly of packs, it is impossible to achieve 100 % consistency with a zero-fault 
design, leading to intra- and inter-cell variations. During material synthesis, 
micro-tolerances or variations, among others, could lead to differences in 
structure, composition, or morphology [40]. Internal non-uniformities, such as 
disparities in architecture, composition or calendering, might affect the initial 
performance of electrodes of which assembly and winding can also induce 
inhomogeneous degradation [41], [42]. At the pack or module level, variations in 
wiring resistance, welding process, connectors, and environmental factors also 
influence the overall performance and degradation [43], [44] by affecting the local 
state of health, temperature, or current distribution. This first chapter presents a 
description and assessment of root causes, mechanisms and effects of 
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inhomogeneities scaling from the materials to the electrodes, then to the cell level 
and battery packs.  

3.2.1 Material and Electrode Level 

Microstructure and Composition 
The electrode composition, microstructure, and architecture play a key role in 
shaping cell performance. Battery electrodes are complex and require active 
materials for capacity, additives for electronic conductivity, binder to maintain 
mechanical integrity, and porosity to allow ionic conductivity. Transport 
parameters such as ion diffusion and ionic and electric conductivity highly depend 
on the different pathways through the electrodes [45]–[48]. Any defects or 
irregularities in the electrode materials can cause local inhomogeneities that 
directly affect the performance, durability and safety. 
The first critical source of these local inhomogeneities stems from the base 
materials themselves. Manufactured electrodes are affected by the characteristics 
and the quality of the precursor materials. This includes, among others, 
inhomogeneities in composition, purity, defects, and morphology. Several 
authors have indirectly investigated the impact of these inhomogeneities on cell 
performance. Harris et al. [41] showed that the structure of the graphite electrode 
from a commercial laptop battery was non-uniform, comprising of high and low 
tortuosity subregions. Low tortuosity regions were suspected to be subjected to 
higher Li+ ions concentration, increasing local current density and leading to local 
overcharging [49]. This could, in turn, cause structural disordering or cracking of 
the electrode and lithium plating [50], [51], but also lead to temperature gradients. 
Vice versa, high tortuosity regions could deter Li+ ions and cause some areas to 
be left delithiated, lowering the battery's capacity [52], [53]. Müller et al. [54] 
found microstructural inhomogeneities between graphite electrodes from 
different manufacturers at different length scales (Figure 3.5). Differences in 
grain size (Figure 3.5a) lead to different porosity (b) and tortuosity (c) values 
between electrodes. In addition, within an electrode, tortuosity also appeared to 
be anisotropic (Figure 3.5c), with higher values in the direction perpendicular to 
the current collector (TP on Figure 3.5c). Samples taken millimetres apart were 
shown to have different overpotentials during lithiation, which can cause the 
potential of the electrode to drop below 0 V vs Li0/Li+, triggering lithium plating. 
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Figure 3.5: Tomogram results of one sample of four different negative electrodes revealing the types 
of graphite particles with porosity and tortuosity. IP1 and IP2 correspond to two in-plane directions 

while TP corresponds to the through-plane direction (modified from CC BY Müller et al. [54]). 

Dubarry et al. [55] and Pavoni et al. [56] showed that grain size distribution could 
also drastically affect the kinetics of the electrochemical response. Yang et al.’s 
[57] in-situ optical observations revealed gas and electrolyte filled defects in the 
electrodes that affected Li+ ion diffusion. Gas-filled defects decelerate Li+ ions 
while electrolyte-filled defects accelerate them. 
This phenomenon also contributes to uneven Li+ ion distribution. Liu et al. [58] 
proposed to predict the occurrence of lithium plating by analysing the shape and 
size of localised inhomogeneities. Results show that, for equal surfaces, areas 
with larger inhomogeneities were more degraded than areas with clusters of 
smaller inhomogeneities. Pouraghajan et al. [59] found a strong dependence 
between ionic/electronic conductivities and cell chemistry. Differences in specific 
areas also affect Li+ ion transport and can lead to inhomogeneous distributions of 
current and eventually to the cell's failure [28,30,31]. 
During cycling, microcracks can also occur in the active material because of the 
volumetric changes associated with Li+ intercalation. Concentration gradients 
within grains leading to localized volumetric changes are believed to be the 
fundamental root cause of the microcracking and the fracturing and cracking of 
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electrodes [60], [61]. This affects electrode tortuosity and electronic resistivity. 
Microcracks were shown to happen on graphite [62], [63], silicon [64]–[66], and 
some positive electrode (PE) materials [33,39,40]. Several studies observed 
increased polarisation and poorer electrical contact between active particles and 
the current collector. However, this electrochemical milling does not always 
result in worsening performances as it could increase the number of accessible 
intercalation sites, decreasing electrode tortuosity by opening pores and creating 
new ionic pathways. Birkl et al. [67] showed that graphite electrodes in 
Graphite//LiCoO2 (LCO)–NiMnCoO2 (NMC) pouch cells that were non-
uniformly lithiated exhibited a higher capacity than the homogeneous cell. 
Dubarry et al. [68] found that electrode cracking could improve the kinetics of an 
LFP electrode by increasing the specific surface area of the grains. 

Electrode Fabrication 
Beyond the materials, proper fabrication of electrodes is also essential to obtain a 
consistent design. As shown in Figure 3.6, the manufacturing process of lithium-
ion battery electrodes involves many steps such as the weighing of active 
materials, the application of the slurry on the current collectors, and the 
calendering process to smoothen and flatten the electrodes [9]. These steps must 
be done with precision to achieve consistent porosity and tortuosity. Improper 
mixing of the electrode slurry can lead to the inhomogeneous distribution of the 
active materials and additives. When coating the electrodes after the desired 
formulation is obtained, Higa et al. [69] reported that active material was more 
uniformly distributed on the electrode when slurry viscosity and heating power 
were higher. In [70], Lenze et al. described the impact of deliberate variations 
within manufacturing parameters on the performance of lithium-ion batteries. 
Four sets of cathode recipes, each with different active mass loading and 
calendering settings, were prepared. The evaluation of the resulting energy and 
power density show influence in order of magnitudes and high sensitivity. With 
similar results, Dreger et al. [71] compared different dispersing procedures and 
their impact on performance. Kenney et al. [72] set out to link the impact of 
variations in the electrode manufacturing process (electrode thickness, electrode 
density and active material) to the capacity of lithium-ion battery modules. Recent 
optimization work from Rynne et al. [73] showed the potential for the design of 
experiments (DOE) in electrode formulation.  
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Figure 3.6: Manufacturing process steps of a lithium-ion pouch cell (CC BY Mauler et al. [74]). 

The group studied almost 100 different electrode formulations and was first to 
report empirical equations linking electrode microstructure to cell behaviour. 
Results indicate that higher cell performance is linked to high active material 
content with a small fraction of conductive additives and minimal binder content. 
Several groups investigated the influence of the calendering process on the pore 
size distribution and particle deformation, like Haselrieder et al. [75], Ngandjong 
et al. [76] and Kang et al. [77]. Schmidt et al. [78] studied highly compressed 
NMC electrodes and found optimum calendering/compression rates necessary to 
obtain high-capacity retention while being able to deliver good power and long-
term performance. Production parameters, therefore, must be tightly controlled to 
ensure consistent quality. 
Although much work has been done in material synthesis and processing, further 
engineering and optimization [73] of the electrode microstructure, especially with 
the help of modelling [79]–[81] and of new machine learning techniques [82], is 
vital to achieving high homogeneity and high transport parameters to minimize 
the effects of inevitable manufacturing tolerances—whether it be large scale or 
laboratory scale manufacturing—on the development of high-performance cells. 
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3.2.2 Cell Level 
A typical commercial cell is far more complex than a simple schematic with two 
electrodes separated by a separator. During cell assembly, process-related 
inaccuracies can also cause the cells to behave inhomogeneously [83]. These 
homogeneities are also influenced by the cell construction -cylindrical, prismatic 
or pouch- because of the variations in the production process between the 
different formats. For the classic cylindrical 18,650 cells, once the electrodes have 
been sized accordingly, the components are assembled into a separator-negative 
electrode-separator-positive electrode stack then wound into a jelly roll. The jelly 
rolls are then inserted in cylindrical cases, and conducting tabs are welded on the 
terminals. Prismatic cells generally consist of long stacks of electrodes similar to 
cylindrical cells but folded and pressed to fit into a hard rectangular casing instead 
of being wound. Pouch cells do not have a rigid enclosure and use stacked 
paralleled electrodes without winding or folding. The negative (NE) and positive 
(PE) electrodes are cut into individual rectangles stacked alternately and separated 
by the separator, sealed in an aluminium pouch. The assembly process of a 
lithium-ion battery is very intricate [74], and Figure 3.6 highlights the high 
number of necessary steps for a pouch cell. 
Tight measures must be put in place to ensure minimal variations. Leithoff et al. 
[83] studied the effect of electrode deposition accuracy during the stacking 
process and found a linear relationship between the nonoverlapping of the 
electrodes and discharge capacity. Results by Paxton et al.’s [84] reveal 
asynchronous discharge behaviour and incomplete electrode utilization. Ziesche 
et al. [85] noticed that new cells already showed cracks on the PE, most definitely 
after-effects of the production process. The cracking is accentuated when moving 
towards the cell centre, where the electrode’s bending radius is higher. 
Slight variations are impossible to avoid, and cells from the same production line 
are usually sold in different grades to account for intra-batch inhomogeneities. 
Ranging from smaller-scale testing [86]–[90] to larger-scale testing [35], [40], 
[90]–[95], many studies reported cell-to-cell variations within batches. Dubarry 
et al. [93] were among the first to conduct systematic campaigns of ctcV 
characterization on new batches of cells. They focused on identifying the origins 
of ctcV and characterized them with three independent attributes: the amount of 
active material, the polarisation resistance, and the rate capability. In [94, p. 1], 
the researchers also investigated the variations in the electrode loading ratio and 



Inhomogeneities and lithium-ion batteries 
 

26 

SEI induced electrode offset. Rumpf et al. [91] addressed the much higher 
variation between batches than within a batch. From the labelling of cells, two 
batches could be identified with production dates one month apart. This could 
already induce ageing before testing. Differences in cell-to-cell variation could 
also be shown over a three-year production cycle in Schindler et al.’s [40], where 
three batches of cells were purchased 14-months apart. Most studies [61,65,66,68] 
showed that discharge capacities tend to follow and keep a normal distribution 
whereas the ones for polarisation are skewed with a larger tail towards higher 
resistances. Higher ctcV are expected for prototype cells and commercial cells 
with low volume production. 

Cycling 
Mechanically induced stress from the cycling can also cause inhomogeneities to 
arise. Through the charging and discharging regimes, Li+ ions intercalation and 
deintercalation are often associated with volume changes, leading to mechanical 
stresses. An advantage of cylindrical cells is high mechanical stability as their 
shape allows the even distribution of internal pressure. However, when the 
pressure build-up is too high, the uniformity of the jelly roll can be compromised. 
Carter et al. [96] investigated mechanical failure in cylindrical cells by comparing 
cells with and without mandrels. At the pristine state, mandrel-less cells show less 
deformation than mandrel cells. However, the jelly roll in mandrel-less cells is 
more prone to mechanical collapse after cycling. Pfrang et al. [97] and Willenberg 
et al. [98] studied the morphology of the jelly roll of cylindrical cells. Pfrang et 
al. [97] noticed that the deformation almost always occurred between the PE tab 
and the inner pin. It was concluded that the inhomogeneous architecture of the 
cells is caused mainly by the PE tab deformation, which is the result of thickness 
variations of the NE and PE during charge/discharge cycles. Postmortem analysis 
showed delamination of the active material in the high-stress area and creating 
gaps between the aluminium current collector and PE coating, which contributed 
to the loss of active material (LAM). Willenberg et al. [98] correlated jelly roll 
deformations to cyclic ageing, stating that there were no signs of deformation at 
the time of delivery. However, Bach et al. [42] noticed that even new cells exhibit 
signs of jelly roll deformation and linked the cause to the positioning of the tabs. 
The slight bulkiness of the tabs deforms the jelly roll and creates low and high-
pressure areas, leading to separator inhomogeneities [99], [100]. Lithium plating 
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was primarily observed in high-pressure areas. Mühlbauer et al. [101] focused on 
electrolyte distribution in cylindrical cells. Systematic results reveal lower lithium 
concentrations at the top and bottom of the aged cells, possibly caused by 
mechanical deformities or inhomogeneous pressure or temperature gradients. 
Lower lithium concentrations were also observed in the outer region of cylindrical 
cells due to the inhomogeneous distribution of the liquid electrolyte [102], [103]. 
The rigid case of prismatic cells helps them withstand high external mechanical 
stress situations; however, the folded sheets in the case experience high levels of 
internal stress, especially at the edges.  

 

Figure 3.7: a) X-ray CT scan of electrode deformation in the prismatic cell; b) missing insulating tape 
on the cathode tabs; c) SEM cross-section of an anode tab weld (CC BY Loveridge et al. [104]). 

Coupled with manufacturing inhomogeneities, such as welding burrs, high 
internal stress can damage electrodes or cause uneven electrolyte distribution that 
can trigger unwanted lithium plating, leading to internal short-circuits and thermal 
runaway. This happened to be the root cause of the well-known fire incident with 
the Samsung Galaxy Note 7 batteries [104], [105] shown in Figure 3.7.  
Several authors investigated temperature gradients across cells. Werner et al. 
[106] compared cell degradation under spatially homogeneous and 
inhomogeneous temperature distributions and observed different ageing 
mechanisms between the two conditions. Uncontrolled inhomogeneous elevated 
temperatures can cause undesired side reactions that can accelerate degradation 
or result in thermal runaway [44]. Osswald et al. [107] used modified commercial 
cylindrical cells to study the influence of temperature on current distribution, 
leading to SOC inhomogeneities at different locations on the electrodes. The 
group recorded larger inhomogeneities for increasing temperatures and C-rates. 
Grandjean et al. [108] support Osswald’s findings that thermal gradients increase 
with increasing C-rate and decreasing temperature. He also noted that the top of 
the pouch cell, where the tabs are located, is not the hottest area. A recent study 
by Carter et al. [109] on interelectrode thermal gradients demonstrated how they 
could induce certain battery degradation mechanisms. The electrochemical 
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reactions within a cell are highly temperature-dependent; therefore, thermal 
gradients can create a capacity mismatch between the PE and NE and accelerate 
electrode degradation. Paarmann et al. [110] add to this claim by stating that the 
same temperature difference has a higher impact on the current at lower 
temperatures. 
During their lifetime, cells can be subject to various cycling—regular or 
abusive—conditions triggering specific degradation mechanisms that reveal 
themselves as inhomogeneities. This repeated process can initiate spatial 
inhomogeneities [111], [112]. Gas formation is known to be a byproduct of 
electrolyte reduction [113]. Michalowski et al. [114] observed lower chemical 
activity in the centre of a pouch cell and attributed it to a gas bubble creating a 
low-pressure zone, reducing Li-ion transport by poor contact. Similarly, in a 
pouch cell study performed by Devie et al. [115], [116] where gas evolution was 
observed, they attributed the simultaneous loss of active material (LAM) on both 
electrodes to the interruption of the ionic conduction pathways between the PE 
and NE. Displacement of the gas bubble to the top of the stack allowed the 
inactive areas to become active again, regaining previously lost capacity. 
All of the above affect the cells, and the impact of these variations is significant. 
In selected cells from the same production batch with little initial cell-to-cell 
variability, tested under the same testing conditions [61,93,94], inhomogeneities 
arise and lead to significant deviations from one another. Baumhöfer et al. [86] 
showed that ageing 48 cells issued from the same production lot using an identical 
protocol resulted in large inhomogeneities, with the worst cell having a cycle life 
25 % shorter than the best cell. In addition, little to no correlation was found 
between initial cell-to-cell variation and later degradation of the cells during 
cycling [117], [118]. For this reason, special attention must be exerted when 
dealing with battery pack assembly and highlights the need for accurate material-
based state-of-health (SOH) estimation techniques [119]. 

3.2.3 Pack Level 
Battery packs are often divided into multiple modules in series or parallel and 
have a battery management system to monitor performance. It is the final shape 
of the battery system that is deployed for the chosen application. Such assemblies 
are necessary to meet rigorous power and energy requirements, and proper cell 
balancing and their appropriate connection are critical factors to monitor to 
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prevent the rise of inhomogeneities. Cylindrical cells are usually welded to one 
another in large quantities allowing for simple construction. While space 
management remains somewhat suboptimal, thermal management in a pack is 
easier due to the spaces between cells. It is one of the cheapest methods for 
producing large lithium-ion battery packs. Prismatic cell battery packs can store 
more energy within their volumes; thus, they offer a higher energy density and 
can be more powerful without using more space. The box-like shaped cases are 
ideal candidates for spatial optimization, making the best use for available space 
but leaving little room for proper thermal management. Pouch cells make the most 
efficient use of space because they do not have any metallic enclosure, but they 
are usually sensitive to external stress factors and require alternative support 
during assembly. 
Inhomogeneities in modules and packs can arise from several factors. Depending 
on the material properties and contact geometry of the battery casing and tabs, 
different welding techniques could be used to ensure proper connection between 
cells and proper assembly of battery packs. Brand et al. [120] presented an 
overview of three main welding techniques: resistance spot welding, ultrasonic 
welding and laser beam welding, with details on their influence on contact 
resistances in various types of batteries and battery casings. In all cases, the heat 
was very localized, which did not affect the health of the cells. Taylor et al. [121] 
discussed the effects of connectors and connections on the resistance of the circuit 
and, although the study was done for characterization experiments, their results 
are applicable and need to be taken into account. If done incorrectly, the 
integration of unmatched cells, poor cell connections or an asymmetric module 
design can lead to inhomogeneous currents flowing through the module [122], 
inducing temperature gradients which lead to inhomogeneous degradation. 
Rumpf et al. [123] studied the influence of ctcV on the inhomogeneity of battery 
modules. The importance of a symmetric module design was highlighted to obtain 
symmetric current distribution. They also observed that an asymmetric design of 
cell connectors could significantly impact inhomogeneous current distribution 
than ctcV. Inhomogeneous current flow due to uneven contacts was also studied 
by Wang et al. [124]. They stated that inhomogeneous current flow through 
parallel cells is induced by the resistance of the intercell connecting plates. This 
caused cells to be discharged unevenly, therefore, lowering the terminal voltage 
of the module, affecting its usability. Offer et al. [125] backs the results of the 
previous studies by showing that uneven current flow in a pack is more likely to 
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come from a defective intercell connection plate resistance than a cell with an 
abnormally high impedance. A pack containing 504 cells in a highly paralleled 
configuration was tested, and it was shown that a single high intercell connection 
resistance was setting off significant SOC variations between the cells in the same 
parallel strip, leading to the premature ageing of the pack. A recent review of SOC 
estimation methods in lithium-ion battery packs summarized the impact of cell 
inconsistencies due to manufacturing and welding processes on pack performance 
and SOC estimation [126]. 
The implementation of ctcV in battery pack models [127]–[129] helped show 
their impact on a multiscale level, and they were found to have a much higher 
impact on cells connected in series rather than in parallel. Experimentally 
validated simulations by Liu et al. [130] placing a cell with a high internal 
impedance closest to the load where the currents are higher provide better cell-to-
cell current distribution because higher internal resistances lead to less current 
through the cell [131]. On the other hand, placing a high internal impedance cell 
furthest from the electrical load, further increasing the wiring resistance, would 
be detrimental to the pack's performance, reducing its capacity as the other lower 
impedance cells would reach the terminal voltage first. Neupert et al. [131] 
studied the current distribution depending on the position of cells with different 
impedances in a parallel configuration. Surprisingly, cell position in the parallel 
strip has a more significant influence than the cell's internal resistance at a specific 
position. Gogoana [88] linked resistance mismatch in parallel connected cells to 
capacity fade, while Grün et al. [43] researched the importance of the cell’s 
internal and contact resistances ratio. 
Liu et al. [130] and Wu et al. [132] observed that inhomogeneous current flow 
drives localized heat generation, especially in cells closer to the load points of the 
pack. Dubarry et al. [133] used data from a deployed grid-scale battery energy 
storage system containing more than 2500 batteries to examine temperature 
gradients between modules and found a maximum temperature variation of 
16.5 °C between modules. Other studies have attempted to correlate capacity loss 
with temperature variations [134], [135]. These thermal gradients could aggravate 
cell degradation and further accelerate the ageing of the concerned cells, 
jeopardizing the performance and safety of the pack. Several other cell sorting 
studies were made to achieve better cell-to-cell consistency and push for longer 
cycle life [136], [137]. Careful arrangement of cells in modules and modules in a 
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pack is primordial in assuring equal current flow throughout the module while 
minimizing thermal gradients, especially when high currents are in play. Cooling 
strategies are often thought of to help mitigate the effect of unwanted thermal 
gradients. Wang et al. [138] discussed multiple heat dissipation module 
configurations for cylindrical cells with and without forced air cooling and 
concluded that cubic structures are the best choice for cooling capability and cost. 
The temperature distribution in the module also depends on the position and 
airflow of the cooling source. Cells nearer to the cooling source are inherently be 
cooler than those farther away. Effective heat dissipation and insulation 
technology are vital to adjust the battery pack's temperature and help them reach 
their optimal operating temperature, reducing inhomogeneities while improving 
electrode kinetics. 
All these variations present the cells within a pack with different ageing 
conditions, which might exacerbate or inhibit specific degradation mechanisms. 
Although path dependence is not considered an inhomogeneity in itself, 
cells/modules following different degradation paths when they are supposed to be 
working homogeneously can be considered inhomogeneous at the pack level. 
Path dependence poses an issue to predict the ageing of cells in a battery pack. 
These issues arise because cells are not subject to similar conditions all the time: 
variations in cell assembly, calendar ageing between cells from different batches, 
thermal gradients, current distribution, etc. Several studies about path dependence 
[139]–[142] have been conducted. Results show that different cycling conditions 
induce different mixes of degradation mechanisms such as loss of lithium 
inventory (LLI), loss of active material at the negative electrode (LAMNE) and 
loss of active material at the positive electrode (LAMPE). The complex interaction 
between the different degrees of these losses will all lead to significantly different 
ageing timelines. It is, therefore, challenging to associate cell constant-current 
laboratory tests to sporadic driving conditions [34], [143]. Path dependence is 
particularly notable when dealing with second-life batteries as they have been 
already degraded over time [144], [145]. Remanufacturing or refurbishing 
processes must ensure pack stability, but it can be challenging when the first life 
is not recorded. 
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3.3 Methods to track inhomogeneities 

3.3.1 Large-scale research facilities 
Large-scale research facilities generally allow for comprehensive investigations 
because they offer much higher brilliance for their spectroscopic measurements, 
a term that describes both the brightness and the angular spread of the beam. 
Synchrotron has brilliance more than a billion times larger than a standard 
laboratory X-ray source. Higher brilliance allows more resolution in 
measurements, penetrates deeper into the matter, studies much smaller features, 
or scans large areas much faster.  

High-energy X-ray 
High-energy X-ray (HEX) with energy levels over 80 keV can be used to 
nondestructively probe bulk probes and perform experiments with large format 
cells in situ and operando [146]. Paxton et al. [143] used a polychromatic 
synchrotron x-ray source to quantify inhomogeneities in situ to perform energy-
dispersive x-ray diffraction (EDXRD). Lithium cannot be tracked with this 
technique, but the lithiation dependent structure of the materials can be 
monitored.  

 
Figure 3.8: a) Location of bulk measurement points and b) spatial inhomogeneity during discharge in 
LFP Pouch Cell. Reproduced with permission from [48] Copyright 2015, Elsevier. c) 3D-
reconstruction of tomographic raw data and segmentation of silicon-graphite anode from a 
transmission X-ray tomographic microscope. Scale bar 15 µm. (CC BY 4.0 Müller et al. [147]). 

In [148], the distribution of the ratio of FePO4 to LiFePO4 at a particular region 
was used to track the local state of charge (SOC). It must be noted that with this 
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technique, all sheets of the cell are measured at once, and an average phase ratio 
is determined. An example of the determined phase ratios from [148] is presented 
in Figure 3.8 a) and b). The inhomogeneous discharge behaviour is visible as 
locations C and F are not at the same SOC as the rest of the electrode. 

X-ray tomography 
X-rays from synchrotrons can also be used for the 3D-reconstruction of electrodes 
as performed by Müller et al. [54] with synchrotron radiation X-ray tomographic 
microscopy (SRXTM). Four commercial graphite anodes were measured on a 
µm-level, and, amongst others, porosity, tortuosity, and particle size distributions 
were evaluated. In addition, this technique was used for determining the structure 
of silicon graphite negative electrodes and their 3D-reconstruction [147]. An 
example of the obtainable reconstructions is presented in Figure 3.8c).   
 

 
Figure 3.9: Lithium distribution as cross-section determined by differences of reflections of LiC6 and 
LiC12 phases in graphite with spatially resolved neutron diffraction. Over cycling, inhomogeneities 
enhance. Reproduced with permission from [149] Copyright 2020, Elsevier. 

Neutron diffraction  
Neutron diffraction offers advantages such as higher resolution for small atoms 
like lithium or the distinction between isotopes. Neutron reflections of the LiC6 
and LiC12 phases of graphite anodes also differ, approximating lithium 
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concentration [150], [103]. Since the measurement can be performed without 
destroying the cell, the lithium distribution can be tracked during cell degradation 
[151]–[153]. With spatial resolution, this technique can be used in situ and 3D, 
for example, to determine lithium distribution in cylindrical 18650 full cells 
[149], [154] as shown in Figure 3.9.  

3.3.2 Laboratory scale tracking 
Compared to the very few research facilities with large instruments, laboratory-
scale devices and methods generally show much more widespread availability 
and can be performed in most battery research laboratories. In this chapter, 
laboratory-scale approaches with a specific focus on identifying and 
characterisation of inhomogeneities are presented. For a more general perspective 
on post-mortem techniques, the reader is referred to Waldmann et al. [155], Lu et 
al. [156] and Harks et al. [157]. 

Cell Modifications 
To investigate local variations in the internal state of a commercial cell, a 
widespread approach is modification and reconfiguration of the cell. The 
modification covers the introduction of sensors and reference electrodes into the 
cell. Fleming et al. placed temperature sensors inside a commercial cell to capture 
temperature gradients [158], while McTurk et al. [159] demonstrated the insertion 
of a wire reference electrode into a commercial pouch cell. Another approach was 
used by Osswald et al. [107], where the current tabs were separated and used to 
measure space-resolved EIS measurements as well as temperature changes during 
cycling [107]. Reconfiguration covers the extraction of single-cell parts from a 
commercial cell, like one of the electrodes or the separator, and the reassembly of 
a new cell of a new format (mostly coin cell format). This allows to evaluate the 
electrochemical behaviour of aged samples whilst using reference compounds for 
all other parts. The new cell can then be evaluated as any other cell. Spatial 
resolution can be achieved by using samples from different regions of the 
commercial cell. In this context, Wang et al. [160] performed cycling tests and 
impedance measurements at coin cells obtained from different regions of a 
commercial 18650 cell that aged inhomogeneous, whereas Sieg et al. [50] created 
coin cells from a commercial pouch cell to evaluate local deviations in the 
differential voltage analysis caused by inhomogeneous lithium distribution and 
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local cell ageing. With the spatial resolution of the measurements ageing maps of 
the electrode sheets were created, showing the location of ageing gradients. 

Spatially resolved bulk measurements 
Some of the measurement methods presented in this chapter can only identify 
bulk values for the whole sample introduced into the measurement, giving no 
opportunity to identify the spatial resolution of inhomogeneity within the sample. 
To apply these measurement methods for the evaluation of inhomogeneity, units 
of interest for inhomogeneity (e.g., an electrode sheet) have to be subdivided into 
a set of samples covering the area of the whole unit. These samples are then 
evaluated by bulk measurements independently. The spatial distribution of the 
samples hereby allows for the determination of the spatial resolution of the 
quantity measured by bulk measurements within the unit of interest.  

 
Figure 3.10: Spatially resolved capacity measurement with coin cells. a) schematic of samples, b) 

location of anode samples, c) Full coin cell capacity map. Reproduced and modified with permission 
from [50] Copyright 2020, Elsevier. 

Sieg et al. [50] used this approach to determine the inhomogeneity of capacity 
distribution within a pouch cell by creating coin cells from an electrode pair and 
evaluating coin cell capacity. Figure 3.10 shows the spatial distribution of the 
samples a), the optical changes on the anode b) and the capacity distribution c) 
for the electrode pair. Further spatially resolved bulk measurements were 
performed by Warnecke [161] by the use of inductively coupled plasma optical 
emission spectroscopy (IPC-OES) on different areas of the anodes to track 
inhomogeneous manganese distribution caused by manganese dissolution at the 
cathode.  
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Visual inspection of post mortem cells 
For qualitative evaluation of inhomogeneities within a cell, visual inspection of 
the electrodes and separator can be used to overview inhomogeneous cell 
behaviour. Since graphite presents different colours depending on the lithiation 
stage, cells with graphite anodes can be inspected visually for inhomogeneous 
lithium distribution [162], [163] an example from Spingler et al. [164] is 
presented in Figure 3.11 a). In addition, lithium plating as an extreme form of 
lithium concentration heterogeneity can be seen in some cases [58], [165].  

 

Figure 3.11: a) Part of the anode of an 18650 cell with coin cell probes taken in different locations of 
the cell. The outer part of the electrode shows a different lithiation than the middle part. (Modified 
from CC BY 4.0 by Spingler et al. [164]) b) optical microscopy of the outer part of an anode showing 
individual particles with different lithiation. (CC BY 4.0 by Käbitz [166]). 

 
Covering layers formation [167], [168], or electrode delamination [98] have also 
been reported. Visual inspection of cell inhomogeneity can be further supported 
using light, as seen in Figure 3.11 b), where Käbitz [166] used laser microscopy 
to allow for higher degrees of magnification. Ecker et al. [46] also applied laser 
microscopy to characterise lithium plating in commercial 40 Ah pouch cells. 

Electron microscopy 
Compared to light microscopy, scanning electron microscopy (SEM) allows for 
higher magnification and can track inhomogeneities on a material level. This 
includes uneven particle sizes, particle cracking, delamination [104] or 
deformation [169]. While SEM cannot penetrate active materials, Focused Ion 



Inhomogeneities and lithium-ion batteries 37 

Beam milling (FIB) can be applied to erode the active material layer by layer and 
thus allows for 3D-imaging of electrode structures using FIB/SEM [147]. 
Furthermore, SEM can be coupled with an energy-dispersive X-ray spectroscopy 
detector (EDX) to allow for spatially resolved determination of elemental 
composition in the active material. Burow et al. [170] applied SEM/EDX to detect 
inhomogeneous lithium plating in automotive cells cycled at low temperatures. 

Computer tomography 
Computer tomography (CT) uses X-rays and moving sample to reconstruct a 3D 
representation of the cell. On the laboratory scale, it can be used with lower 
resolution (up to 100µm resolution) for full cells and parts of a cell with higher 
resolution. The main field of application for CT is the non-destructive geometric 
depiction of the cell. This allows for the spatially resolved identification of 
deformations caused by uneven stress within the battery or by delamination. 
Computer tomography has shown multiple times the deformation of the jelly roll 
in cylindrical cells [96], [98], [168], [169], [171]. A nanoscale CT can also be 
used to see heterogenous particle cracking and covering layer formation [172], 
[173]. Li and Hou also reported a correlation between their capacity 
measurements and CT image data [174]. 

Magnetic Resonance 
Magnetic resonance spectroscopy techniques enable the identification of material 
compositions inside lithium-ion batteries. This allows for the identification of 
phase compositions and active and passive materials degradation due to cell 
ageing. The magnetic susceptibilities of many cathode materials depend upon 
their lithiation state [175]. Ilott et al. used Magnetic Resonance Imaging (MRI) 
on small 600 mAh pouch cells with an induced magnetic field being changed as 
a function of the state of charge [175]. With various magnetic field maps taken at 
different charge levels, inhomogeneous lithium distribution within the cell could 
be found. In addition, defective cells could be identified. While MRI uses the 
intensity of radiation, Nuclear Magnetic Resonance (NMR) analyses the 
frequency of the response signal. Krachkovskiy signatures from stages of graphite 
lithiation can be seen in NMR spectra [176]. Furthermore, NMR can be applied 
for the identification of electrolyte decomposition, as shown by Wiemers-Meyer 
et al. [177] 
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Acoustic measurement 
Acoustic measurements can be used to gain information on the geometric 
structure inside a cell and the composition and lithiation of the active materials. 
The acoustic properties of electrode materials correlate with the state of charge 
due to changes in the density during lithiation. Using this property, differences in 
lithiation during usage were mapped by Robinson et al. in small pouch cells with 
spatially resolved ultrasound measurements coupled with CT measurements 
[112]. Bauermann et al. showed that Scanning Acoustic Microscopy (SAM) could 
visualize defects inside battery cells non-destructively. With characteristic 
acoustic impedances, inhomogeneities are detected and localized. SAM is best 
used on flat and thin battery cells and effects like gas formation with a high 
acoustic pattern sensibility [178]. Acoustic attenuation spectroscopy (AAS) can 
determine the particle size distribution post mortem by dissolving binders in 
electrode samples, thus transforming the active material into a particle suspension 
[56]. 

Electrochemical characterisation 
Unlike many of the aforementioned methods, electrochemical characterization 
can be performed directly on the commercial cells with no need for cell opening 
nor sample extraction to generate bulk information about the full cell. Moreover, 
it can also be performed on electrode cutouts to allow a spatially resolved analysis 
of the electrochemical cell behaviour. Electrochemical measurements allow 
gathering information on the thermodynamic state of the cell as well as its 
kinetics. CtcV is usually characterised during a conditioning test at the beginning 
of testing [179]. In addition, those measurements are part of every ageing study 
and can reveal cell-to-cell variation over the lifetime of a cell [117], [180]. One 
such experiment is shown in Figure 3.12 a) from Baumhöfer et al. with 48 cells 
cycled under identical conditions. This test usually involves the assessment of the 
distribution of capacity, rate capability, and resistance [40], [87]–[91] to assess 
thermodynamic and kinetic variations.  
The cells are usually fully charged for a capacity test and then discharged to the 
end-of-discharge voltage by a defined current. The integral of the discharge 
current over the discharge time is the resulting cell capacity and depends on the 
applied C-rate but converges to the theoretical cell capacity for low C-rates. To 
eliminate most of those influences during a capacity test temperature, current and 
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charge procedure should stay constant. Most manufacturers define a standard 
charge protocol for their cells, which should be followed. But for some high 
energy cells, manufacturers state unreasonably long charge durations to achieve 
the nominal capacity. Therefore, when comparing different cells, the charging 
procedure should be matched, for example, fixing the maximum charge duration. 
In addition, reversible capacity effects, as discussed in 3.4, need to be considered 
while testing and when evaluating the capacity estimations from capacity tests. 
In addition to capacity tests, a second current rate should be used. A low current 
rate, also called quasi-open-circuit-voltage (qOCV), allows tracking changes in 
the qOCV over time. For the current rate and the associated discharge duration, a 
compromise must be found. Small currents and the associated long discharge 
durations are beneficial to decrease over-potentials within the cell and the 
overlapping of different processes within the cell. But measurement errors are 
integrated over the whole discharge duration, and therefore, the test should be as 
short as possible. Also, total test time needs to be considered, where long check-
ups decrease the time available for the ageing conditions. Depending on the 
measurement equipment and cell type, a discharge time between 8-20 h is suitable 
[181]. Especially in chemistries with hysteresis in between charge and discharge 
curve, both charge and discharge should be recorded with small currents [182]. 
Rate capability can be characterized by the Peukert constant or a ratio of two 
different rates [179].  
Another critical indicator considering ageing is the internal resistance as a 
measure of power capability. Like the capacity, pulse resistance is also highly 
influenced by external parameters like temperature, state of charge, or current 
[181]. There are several ways to measure internal resistance, such as 
electrochemical impedance spectroscopy (EIS), charge, or discharge pulses.   
During the electrochemical impedance spectroscopy, an alternating excitation 
current of defined frequency is applied to the battery, and the voltage response 
recorded. The values are transformed into the frequency domain and typically 
depicted in a Nyquist plot. One central application for EIS measurements is the 
creation of battery models of high dynamics [183] (see 6.1), as well as tracking 
the state of health and evolution of model parameters [184]. In addition to single-
frequency EIS measurement, several frequencies can be superimposed in the time 
domain to measure simultaneously [185].  
The pulse resistance describes the linearised resistance. A charge or discharge 
pulse is applied, typically between 10 or 30 seconds, and the resulting voltage 
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drop investigated. Before a pulse is used, the cell should be relaxed to minimize 
the error due to prior testing artefacts. The voltage difference between before and 
during the pulse is divided by the pulse-current to calculate the resistance. From 
a 30 second pulse, several resistances can be calculated; for example, by using 
the voltage after 2, 10, and 30 seconds [186]. Pulses are used to determine the 
available power and state of health concerning power capability. A typical end-
of-life criterion for resistance is 200 % of initial resistance equivalent to 50 % 
remaining power capability. 

 

Figure 3.12: a) 48 cells under identical conditions focusing on inherent production caused cell-to-cell 
variance and capacity degradation over cycles; 80 % and 60 % of initial capacity are marked with 
green dashed lines. Reproduced from Baumhöfer et al.[86]. b) Differential voltage analysis on a 25 
Ah cell to determine changes in the peak heights to quantify the homogeneity of lithium distribution 
(HLD) [126]. 

 
Lastly, the use of electrochemical voltage spectroscopies, differential voltage 
analysis (DVA) [187], and incremental capacity analysis (ICA) [188] were also 
shown to allow the visualization of differences between cells.  
Inhomogeneities are hard to assess at the full cell level because of the bulk nature 
of the measurements. However, DVA and ICA were shown to offer some insight. 
Lewerenz et al. [189] observed some valley broadening using DVA, 
Figure 3.12(b), and associated them with growing inhomogeneities. If parts of the 
electrodes have a higher charge level due to an inhomogeneous lithium 
distribution, those areas show the peaks in the DVA later during a constant 
discharge [189]. As the overall voltage corresponds to all individual voltages, the 
steps in the discharge curve and peaks in the DVA should be less prominent in 
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inhomogeneous cells. ICA and DVA can also be used to visualise differences 
within cells in modules or packs [128], [190]–[193]. 
Another indicator for homogeneity within a cell or packs can be evaluated by 
tracking differences in rate capability over time [188], [194]. For this technique, 
the difference of rate capability, i.e. the extractable capacity at a certain current, 
is monitored for at least two current rates. A substantial increase in both capacities 
infers that parts of the active material are less accessible with high currents [194]. 
When applying this approach, it is necessary to verify that the resulting 
differences in rate capability are not just linked to an increase in resistance and to 
the rising overvoltage of successive discharges in the check-ups of the ageing test 
[179].  

Characterisation of inhomogeneous cell degradation 
As discussed in detail in Chapter 2.2.2, cell inhomogeneity can be strongly related 
to cell ageing and degradation. Thus, inhomogeneity resulting from typical cell 
degradation processes can be quantified by applying localized post-mortem 
methods for inspection of cell ageing phenomena presented in this chapter. 
Electrochemical characterisation methods are best fitted to characterise ctcV with 
further possibilities to investigate internal inhomogeneities by cell modification, 
spatially resolved bulk measurements and DVA/ICA. In contrast, the presented 
methods for visual inspection, spectroscopy and tomography are mainly applied 
to characterise inhomogeneities within a cell, such as lithium distribution and 
local degradation phenomena. Figure 3.13 illustrates the feasibility of detecting 
different degradation phenomena for the established post-mortem measurement 
procedures presented in this chapter. Furthermore, the spatial resolution of the 
measurement referred to as sensitivity is evaluated, indicating whether spatially 
resolved bulk measurements have to be performed to assess inhomogeneity. 
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3.4 Reversible capacity loss 
When evaluating ageing, only the long-term degradation trend should be 
considered. Effects that are reversible within a few months are not of interest for 
long-term trends. But in addition to irreversible capacity loss or resistance 
increase, part of the observable capacity reduction is reversible. One of the 
reasons for the reversible capacity loss is the passive anode effect. The effect was 
shown by Gyenes et al. [195] as a way to understand the abnormal behaviour of 
high coulombic efficiency tests, where efficiencies of over 100 % were measured. 
Figure 3.14 shows an anode and cathode with a red frame marking the active area 
of the full cell bounded by the cathode area. An equal or under-dimensioning of 
the anode in terms of the planar area induces edge lithium-plating at the anode 
due to local potential differences.  

 

Figure 3.14: Sketch of planar anode oversize within a lithium-ion batteries with graphite anode a) 
Anode with marking of cathode size, the outer area is coupled slowly (b) cathode. 

The passive anode is only electrochemically connected but only weakly. Within 
a charge and discharge cycle for capacity estimation, this lithium is not accessible 
and is not shown in measured capacity [196], [197]. This is also true for real 
applications when the passive anode is highly lithiated, the actual driving range 
of an EV is reversibly decreased. When the outer anode-sheets are coated on both 
sides, and one of them has no counter-electrode, lithium-ion movement can still 
be detected after several hundred days [161].  
Figure 3.15 shows several configurations of lithiated and delithiated active areas 
and anode overhangs. In Figure 3.15 a) the overhang is fully lithiated, and the 

(a) (b)
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active area is empty. The cell voltage is low, and no more charge can be 
discharged. The cell spent some time at a high state of charge; the anode overhang 
was lithiated and discharged. If the cell is kept at this level, the overhang is slowly  

 

Figure 3.15: Effects of overhang a) overhang is fully lithiated, active area empty b) active area and 
overhang are fully lithiated, c) active area is lithiated, the overhang is empty. 

delithiated, and the trapped lithium is converted into active lithium. In 
Figure 3.15 b) both the active area as well as the passive area are lithiated. 
Prolonged storage at a high SOC produces this state. In Figure 3.15 c), the 
overhang is not lithiated but the active area. In this state, following prolonged 
storage at a low SOC, more active lithium is available and visible in capacity 
testing. 
In addition to the reversible effects of the overhang, capacity recovery due to re-
homogenisation can be observed. Käbitz found a drastic recovery of measurable 
capacity [198]. The specific cell was part of the ageing matrix in [199] and cycled 
until an end-of-life criterion of 80 %. After a cycle test time of around 220 days, 
the cell was stored for 1120 days and another check-up was performed.  

(a) (b) (c)
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Figure 3.16: Distinction of irreversible and reversible capacity loss during cycling. Recovered 
capacity is determined with the relaxation phase after cycling [200]. 

In this storage period, the capacity recovered from 80 % to 90 % of the initial 
capacity. In addition, the shape and peak heights of the DVA could be restored. 
To further investigate this phenomenon, Lewerenz et al. [200] measured the 
capacity in succession to a cycling test at defined SOCs. Multiple reversible 
effects could be found, on the one hand, depending on the average SOC during 
cycling and subsequent storage time, a significant recovery of the capacity was 
observed as seen in Figure 3.16. 
Similarly, Ebding et al. found a substantial recovery of capacities after rest 
periods with high current rates [201]. The current rates chosen for the experiment 
were above the plating threshold, and plating at 10 °C was experienced. With rest 
periods and the linked homogenisation, significant cycle-life improvements could 
be achieved. To evaluate ageing experiments for long-term trends, these effects 
must be recognised and addressed for accurate results. 

3.5 Sample size for ageing experiments  
In this chapter, a hierarchical Bayesian approach is used on comparably large 
datasets to determine the minimal sample size to estimate the underlying 
distribution.  
For statistical power, a study on cell-to-cell variability ideally needs data from a 
very large number of cells, perhaps thousands. The costs of such large-scale 
testing would be prohibitive, requiring many battery test channels for multiple 
years, and no such datasets are openly available. However, as a compromise, 
some ageing datasets with order 10-100 cells used identically, or very similarly, 
are available and were used for this study. 
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Here five datasets are selected for use based on the requirement of wanting over 
20 cells per dataset. Two of these are open-source; three are from inhouse 
experiments. Each individual dataset used identical commercially available Li-
ion cells, albeit having different manufacturers, chemistries and cell sizes from 
dataset to dataset. All datasets used 18650 cylindrical cells, although the methods 
discussed below can equally be applied to other form factors. Some of the datasets 
featured identical experimental conditions, i.e, each cell was tested in exactly the 
same way, whereas others varied the testing conditions slightly beyond the 
expected uncontrollable experimental variability. The datasets are as follows: 
 

1. Baumhöfer-2014 [86] consists of 48 Sanyo/Panasonic UR18650E 
NMC/graphite 1.85 Ah cells in a cycle ageing test, each under the same operating 
conditions. 

2. Dechent-2020 consists of 22 Samsung INR18650-35E NCA/graphite cells, each 
with a nominal capacity of 3.4 Ah. The cells were cycled with a C/2 constant 
current and a 20 % cycle depth around an average SOC of 50 %. 

3. Dechent-2017 consists of 21 Samsung NR18650-15L1 1.5 Ah NMC/graphite 
cells. Six of the cells were cycled with 1C charge, 6C discharge current between 
3.3 V and 4.1 V (90 % cycle depth), and 15 additional cells were cycled with the 
same voltage range, but current rates varied by up to 15 %. 

4. Severson-2019 [202], an openly available dataset, consists of 124 cells made by 
A123 APR18650M1A with LFP/graphite chemistry, each with a nominal 
capacity of 1.1 Ah. 67 of these cells with similar load profiles but slightly varying 
charging current were chosen as a subset for this work. The cells in this dataset 
re from three different experimental batches so will have been subjected to 
higher variance in testing conditions than the other datasets. 

5. Attia-2020 [203], another openly available dataset, replicates Severson-2019, 
but with a fixed charging window of 10 minutes. There are 45 cells in this set. 

 
Three of these datasets, namely Baumhöfer-2014, Severson-2019 and Attia-2020, 
exhibit an onset of rapid degradation in later life, sometimes called the ‘knee-
point’ [86], [204]. The other two datasets show only linear degradation over 
usage. The behaviour before the knee-point in the Attia-2020 and Severson-2019 
sets was separately extracted to produce two additional linear ageing datasets. 
To accomplish the aim to investigate intrinsic rather than extrinsic variability, 
simple empirical curve fits of health versus time are chosen as the modelling 
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approach. It is examined that the consistency of the resulting model parameters 
as data is added drawn from increasing numbers of cells within each dataset. 

 

Table 3.1: The dataset and empirical model combinations used. 

Dataset Linear-1 Linear-2 LinExp Ref 
Baumhöfer-2014   X [86] 
Dechent-2020 X X   
Dechent-2017 X X   
Severson-2019 X X X [202] 
Attia-2020 X X X [203] 

 
The models and the corresponding datasets that they were fitted to are shown in   
Table 3.1. Here, Linear-1 and Linear-2 refer to the two linear models, having one 
and two parameters respectively. Alternatively, LinExp is a combined linear and 
exponential model that was used to capture the knee-point and later life health 
decay, where this was evident in the data. 
The three models are given by the following expressions, where 𝑡𝑡 is time, 𝐵𝐵 is 
capacity, and all other parameters (𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3,𝐵𝐵0 , 𝑡𝑡𝑓𝑓 , 𝜏𝜏) were fitted to the data: 
Linear-1 (𝐵𝐵(𝑡𝑡) = 100 % + 𝑐𝑐1 × 𝑡𝑡) and Linear-2 (𝐵𝐵(𝑡𝑡) = 𝐵𝐵0 + 𝑐𝑐2 × 𝑡𝑡) differ 
only by the addition of the initial capacity 𝐵𝐵_0 as a fitted parameter in the latter. 
The cell capacities were normalised according to which model was in use. For 
Linear-1 and LinExp, the capacities were normalised relative to the initial 
capacity of each cell. Linear-2 used capacity curves normalised relative to the 
nominal capacity. In the LinExp (𝐵𝐵(𝑡𝑡) = 100 % + 𝑐𝑐3 × 𝑡𝑡 − exp �𝑡𝑡−𝑡𝑡𝑓𝑓

𝜏𝜏
�) model, 

the initial linear capacity decrease is followed by a faster exponential decrease 
with onset time 𝑡𝑡_𝑓𝑓 and time constant 𝜏𝜏, as shown in Figure 3.17. 
To quantify cell-to-cell variability, an approach called multi-level Bayes (MLB) 
was used, also known as hierarchical Bayes, where the parameters of an 
individual cell model are assumed to be drawn from a population distribution.  
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Figure 3.17: Examples of data and fitted curves. Left to right: Linear-1 model on a cell from 
Dechent-2020; Linear-2 model on a cell from Dechent-2020; LinExp model on a cell from 

Severson-2019. 

In this framework, the first level of inference is on the parameters of an individual 
battery cell model, and the second level of inference is on the parameters of the 
underlying population distribution [205]–[207]. Given some data sub-sampled 
from the datasets described above, this approach provides an estimate of the 
individual (𝜃𝜃𝑘𝑘) and the population (𝜇𝜇𝑔𝑔, Σg) parameter values as well as their 
associated uncertainties, as depicted in Figure 3.18 a). 
 

 

Figure 3.18: Hierarchical approach to infer population statistics. a) The relationship between 
population distribution and distributions of individual cells/samples. b) A sub-sample is part of a 

sample, which is part of a population. 

Therefore, one can explore the trade-off between the number of cells' data used 
for fitting the models versus the stability and variance (or standard deviation) of 
the resulting population parameter estimates. As additional data from more cells 
is included in the estimation, the variance of the population mean and variance 
decreases (i.e., certainty of the population model increases). As illustrated in 
Figure 3.19 the population estimates are considered to be stable when the standard 
deviation of the population standard deviation estimate began to steadily decrease 
as a function of sub-sample size ~1/𝑁𝑁. The condition of an acceptable variability 
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is set as being within a threshold, 𝛼𝛼, of the stable decreasing region. The value of 
𝛼𝛼 was set at 10 % as shown by the grey shaded region in Figure 3.19.  
The following conventions are used throughout the remainder of this chapter. 
Figure 3.18 b) shows the definitions of population, sample and subsample used. 
The ‘population’ means the very large (but unavailable) group of all possible 
similar batteries produced in the same manufacturing batch, from which a subset 
was tested in a lab. (Therefore, the population statistics is expected to be different 
for each dataset that was introduced in the previous section.) A ’sample’ refers to 
all the available full data in a specific dataset. Therefore, a sample is drawn from 
a population. Conversely, any time a smaller subset was drawn from a full test 
dataset, it is referred to here as a ’sub-sample’. Summary sample statistics are 
denoted with the Latin alphabet, while population estimates are written using the 
Greek alphabet. For example, mean and variance are (𝑚𝑚, 𝑠𝑠2) and (𝜇𝜇,𝜎𝜎2) 
respectively. The letter 𝑘𝑘 is used to denote value(s) for a specific cell, and 𝐾𝐾 
denotes the total number of cells. Probabilities and distributions are written in 
capitals: P, N. Battery capacities are represented by the letter 𝐵𝐵. 

 

Figure 3.19: Decreasing standard deviation of the population standard deviation estimate as the 
number of sub-samples used for model fitting is increased. A threshold for an acceptable estimate is 

shown (vertical dashed line). Example taken from the 𝑡𝑡𝑓𝑓 parameter for Severson-2019. 

The Multi-Level Bayes approach is described in more detail in [208]. As a 
reminder, the objective is to quantify the number of battery cells that are required 
for a stable fit of a population model, when cells are selected at random from a 
population. In particular, it is wished to infer both the parameters of the capacity 
fade model for each cell, and the parameters of the underlying population, 
including their uncertainties. Now both aspects are examined in succession across 
the various datasets and models.  
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Figure 3.20: Smooth standard deviations are estimated by taking 1,000 random subsamples (with 
replacement), shown here with the Linear-1 model. MLB is Multi-Level-Bayes, SSD is sub-sample 

distribution, over the number of cells in the sub-sample. 

The summary results from 1,000 repeats, with replacement, were much smoother. 
The estimated standard deviation of 𝜎𝜎𝑔𝑔 for the Linear-1 models rapidly dropped 
with increasing numbers of cells in a sub-sample for all datasets as shown in 
Figure 3.20. The SSD approach produced a lower variance at all sub-sample sizes, 
but appears insensitive to small sub-samples.  

 

Figure 3.21: The standard deviations of the population-level standard deviation estimates for the 
Linear-2 model. MLB and SSD results over the number of cells in the sub-sample. 

The results for Linear-2 and LinExp were very similar as shown in Figure 3.21 
and Figure 3.22, although there were distinctly less stable fits for Dechent-2020-
𝐵𝐵0 and Attia-2020-𝜏𝜏. All three models shared a reduced standard deviation of 𝜎𝜎𝑔𝑔 
when using SSD. 
The linear relationship between sub-sample size and the log of the standard 
deviations was deemed to represent a consistent fit. It was subsequently used to 
determine when an ‘effective’ sub-sample size had been reached. A model was 
considered well fit when the standard deviation of 𝜎𝜎𝑔𝑔 was within 𝛼𝛼 = 10 % of 
this stable section, found using a linear extrapolation (as plotted in the figures). 
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Figure 3.22: The standard deviations of the population-level standard deviation estimates for the 
LinExp model. MLB and SSD results over the number of cells in the sub-sample. 

Figure 3.23 shows the relationship between the number of cells required to 
achieve ‘stable’ population estimates vs. the number of model parameters. The 
number is shown for all model, dataset and parameter combinations. The mean 
required sub-sample sizes for a consistent fit were 9, 11 and 13 for the 1, 2 and 3 
parameter models, respectively. 
 

 

Figure 3.23: Testing with order 10 cells is required to achieve stable population estimates, with the 
number increasing as the model complexity increases. (Offset x-axis values were used to show 

identical results.) 

The number of cells required to fit the various models presented here and capture 
a stable estimate of the population variability is of order 10. For the simplest 
model, Linear-1, the number was 9 cells, and for the most complex LinExp model, 
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the number increases to 13. The results understandably suggest that increased 
model complexity leads to an increase in the number of cells required to be tested 
to achieve a stable estimate of the population variability. 
The multi-level Bayesian approach produced consistent parameter estimates from 
sub-samples. Given that cell-to-cell variability is an important phenomenon 
impacting battery performance, the estimated distributions are an invaluable tool 
to use in empirical modelling. Simple sample distribution techniques are limited 
to estimates of spread within the domain of the sample and hence showed less 
sensitivity to sub-sample size here when using random selection. The number of 
cells required to estimate population variability was fairly consistent across the 
datasets investigated here and was a stronger function of the model complexity 
than of the dataset. However, future work could test the robustness of this 
conclusion across a wider range of datasets. 
The standard deviation of 𝜎𝜎𝑔𝑔 estimates reduced as sub-sample sizes were 
increased. In most cases, the SSD and MLB results also approached the same 
values as sub-sample sizes increased because the two techniques will return 
similar results at high sub-sample sizes. At low sub-sample sizes SSD was limited 
to the variability of the sub-sample, whereas MLB was less certain, resulting in 
higher values for both 𝜎𝜎𝑔𝑔 and its standard deviation. In this case, SSD appears to 
have been artificially confident as an estimate of the population distribution. 
The chosen threshold condition for a well fit 𝜎𝜎𝑔𝑔 parameter resulted in consistent 
results. The same consistency was also found when using other threshold values 
of 𝛼𝛼. The hypothesis that sub-sample size increases with model complexity 
appears to be supported. However, it would be useful to explore this in more depth 
using larger datasets. 
In the derivation of the MLB approach, it is assumed that there are correlations 
between parameters in the prior probability distributions. That assumption was 
found to be questionable in two cases here. Future work should explore the impact 
of this on population modelling. 
The results for the Dechent-2020 dataset with the Linear-2 model demonstrated 
the robustness of the MLB approach by fitting a very similar gradient to the 
Linear-1 version, despite an apparently uncertain value of 𝐵𝐵0. The estimate of 
𝜇𝜇𝑔𝑔for 𝐵𝐵0 was 99.7 %, i.e., the resultant population model was very similar to that 
with Linear-1. Our current approach assumes a Gaussian distribution at the 
population level. In the case of a bi-modal (or multi-modal) population 
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distribution, it is expected that the MLB method would respond by estimating a 
wide standard deviation, but this has not been tested. Extending the method 
proposed in this work to other population distributions would be an interesting 
subject for future study. 
Various ageing mechanisms are likely responsible for the degradation datasets 
considered in this work. In the case of the Severson dataset, it is likely that 
degradation was largely caused by lithium plating [202], while on the Dechent-
2020 dataset covering layer formation and jellyroll deformation are key to 
degradation [98]. 
The fact that more complex models required more cells to be tested at each test 
point is challenging for battery lifetime experiments, since it could increase 
greatly the number of test channels and cells required in long term ageing 
experiments.  Even without extrapolating to higher numbers of parameters or to 
other models, it is reasonable to assume that the issues explored here will be 
present in other, more complex cases.  
One challenge with the technique used here is that it relied on limited size samples 
from the population. Future work could explore whether larger sample sizes lead 
to similar results as found here. 
The number of cells required to give a stable population variance estimate was 
found to vary according to the number of parameters in a given model. 
Respectively, 9, 11 and 13 cells are estimated to be required for models with 1, 2 
and 3 parameters. Both sample statistics and population estimates were shown to 
stabilise with under 20 cells in most cases, but this relied on the existing of a 
Gaussian distribution of parameters within the sample, otherwise 20 cells were 
required. 
For capacity curve fitting, perhaps the biggest challenge going forward is the 
selection of appropriate ageing model order and structure. This should be done 
not just by looking at what functions fit the capacity profiles best but which 
functions produce the most reliable parameter distributions when looking at a 
dataset as a whole. 
There was insufficient data here to test these results and conclusions as a function 
of variability caused by differences in usage, but this would be an interesting 
future exploration topic. Also, model selection across larger datasets is a 
challenging problem. For example, some of the battery capacity fade trajectories 
in this study fitted well to a linear degradation stage followed by an exponential 
decay starting from some knee-point. However, some of the resultant sample 
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distributions cannot be confidently used to calculate basic summary statistics, 
such as Dechent-2020-𝐵𝐵0. 

3.6 Chapter Conclusion 
Within the literature review it has been established what are the key aspects of 
cell-to-cell variation. The origins of cell-to-cell variations and inhomogeneities 
on a multiscale level are covered, their impact on electrochemical performance, 
and their characterisation and tracking methods, ranging from the use of large-
scale equipment to in-operando studies. Finally, the review summarises the state-
of-the-art understanding and characterisation of cell-to-cell variations and 
inhomogeneities observed upon ageing. 
In addition, this chapter establishes the minimum number of cells, which should 
be tested to accurately represent population variability since testing many cells is 
expensive. Derived from various degradation datasets, including new 
measurements performed as part of this work, empirical capacity-versus-time 
ageing models were fitted. While assuming that the model parameters could be 
drawn from a distribution describing a larger population, then, using a 
hierarchical Bayesian approach, the number of cells required to be tested was 
estimated. Depending on the complexity, ageing models with 1, 2 or 3 parameters 
respectively required data from at least 9, 11 or 13 cells for a consistent fit. This 
implies researchers will need to test at least these numbers of cells at each test 
point in their experiment to capture manufacturing variability. 
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4 Evaluation of ageing tests 
After establishing the origin of inhomogeneities and cell-to-cell variation in 
Chapter 3, in this chapter the results of an automated evaluation of ageing tests is 
shown and lithium-ion batteries compared on energy, power, lifetime and 
operating temperature. After this step back and the thorough evaluation of cycle 
and calendar data the raw data is accessible in a comparable and uniform database. 
This is the foundation to further look into the data and identify cell-to-cell 
variation within.  
Parts of this chapter are published in a journal article [209] as part of this thesis 
with equal contribution by the author and Alexander Epp.  

4.1 Foundation of comparisons  
Due to their impressive energy density, power density, lifetime, and cost, lithium-
ion batteries have become the most important electrochemical storage system, 
with applications including consumer electronics, electric vehicles, and stationary 
energy storage [210]. However, each application has unique, often conflicting 
product requirements, requiring a balanced overall assessment. The Ragone plot 
[211], shown in Figure 4.1 a) for lithium-ion battery chemistries, is a commonly-
used plot to compare two of these specifications, energy and power; however, 
important parameters including cost, lifetime, and temperature sensitivity are not 
considered. 
A standardised and balanced reporting and visualisation of specifications would 
greatly help an informed cell selection process. Comparisons of energy and power 
density can be made relatively easily via standard test protocols and within a short 
timeframe. However, comparing cells across other dimensions presents some 
practical challenges, particularly in an academic setting. First, even though the 
price is an essential criterion in many applications, it is also the most controversial 
since individual cell prices are not openly shared and depend on nontechnical 
factors such as production volume and operating margin. Second, lifetime 
comparisons of lithium-ion batteries are widely discussed in the literature [212]–
[217], but these comparisons are especially challenging due to the high sensitivity 
of lithium-ion battery lifetime to usage conditions (e.g., fast charge, temperature 
control, cell interconnection, etc.). Additionally, the metrics for lifetime are not 
standardised, and conclusions about lifetime performance are generally 
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dependent on the choice of metrics used (e.g., relative vs absolute capacity or 
energy; see Figure 4.1 b)-c).  
 

 
Figure 4.1: Limitation of existing comparisons a) Ragone plot b) shows relative capacity vs. 

equivalent full cycles, c) shows remaining specific energy vs. specific energy throughput.  

Furthermore, battery degradation is often nonlinear [202], [217], [218]; therefore, 
using a single parameter from a linear fit (e.g., the slope) to represent nonlinear 
ageing trends must be handled with care. Despite these challenges, standardised 
reporting and visualisation of these parameters are still helpful for fundamental 
understanding and practical concerns such as cell selection. To this end, bubble 
plots have been used on the material level to compare lithium metal electrodes on 
four dimensions [219].  
In this chapter, ENPOLITE (energy-power-lifetime-temperature) plots are 
introduced to compare cells across various chemistries, designs, and usage 
conditions, as seen in Figure 4.2. ENPOLITE plots represent multidimensional 
bubble plots derived from a non-logarithmic version of the Ragone diagram [211]. 
Leveraging the increasing number of open-source battery datasets, ENPOLITE 
compares over 1000 battery cells within a single bubble plot derived from a raw  
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Figure 4.2: ENPOLITE plots illustrate energy power lifetime and temperature characteristics of 
lithium-ion cells. 

 
data set exceeding 1000 GB. Over 10000 check-up procedures with multiple data 
points are evaluated.  While this plot makes some simplifications to represent the 
multidimensional dataset, it can be effectively used for cell comparison and 
selection. ENPOLITE plots of ageing-related parameters illustrate differences 
between lifetimes. Although various age-specific variables and metadata are 
contained in each set of ageing data, composed of a dataset of cells, the 
ENPOLITE plots present a simple two-dimensional graph, allowing easy 
comparison of individual battery cell types. A public website (enpolite.org) was 
also created that hosts interactive versions of these plots. 
For this chapter, datasets were named according to the following table: 
 
 
 

Energy Density Power Density
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Capacity
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Origin of 
data 

Identifier Raw data/ 
External 

# Brief description: 
Cell name, nominal 
capacity, format 

Ageing
-Type 

Test-
duration 

Ref, Year 

e-
production 

NMC01 
 

NMC02 

Raw data 
 
Raw data 
 

48 
 

24 

Sanyo UR18650E, 1.85 Ah, 
18650 
Sanyo UF121285, 5 Ah, 
prismatic 

Cyc. 
 

Cyc. 

~170d 
 

~480d 

[220], 2014 

GOELK NMC03 
NMC04 

Raw data 
Raw data 

13 
30 

LiTec 40 Ah, pouch 
LiTec 40 Ah, pouch 

Cyc. 
Cal. 

~550d 
~650d 

[221], 2019 
[221], 2019 

FutureBus LTO01 Raw data 23 Microvast 10 Ah, pouch Cyc. ~230d [222], 2019 

e-
performanc
e 

NMC05 
 

NMC06 

Raw data 
 
Raw data 

65 
 

48 

Sanyo UR18650E, 2.05 Ah, 
18650 
Sanyo UR18650E, 2.05 Ah, 
18650 

Cyc. 
 

Cal. 

~410d 
 

~450d 

[223], 2014 
 

[224], 2014 

HV-Modal LTO02 
 

LTO03 

Raw data 
 
Raw data 

10 
 

16 

Toshiba SCiB 2.9 Ah, 
prismatic 
Toshiba SCiB 2.9 Ah, 
prismatic 

Cyc. 
 

Cal. 

~630d 
 

~590d 

[225], [226], 
2020 

[225], [226], 
2020 

MobilEM NCA01 
 

NCA02 

Raw data 
 
Raw data 

183 
 

60 

Samsung INR18650-35E, 
3.4 Ah, 18650 
Samsung INR18650-35E, 
3.4 Ah, 18650 

Cyc. 
 

Cal. 

~240d 
 

~450d 

[98], 2020 

LiMobility NMC07 Raw data 27 440-Kokam, 40 Ah, pouch Cyc. ~300d [227], 2015 

HiEnd LFP01 Raw data 26 OMLIFE8AHC-HP, 8 Ah, 
cylindrical 

Cyc. ~260d [228], 2016 

DriveBatter
y 

NMC08 
 

NMC09 

Raw data 
 
Raw data 

39 
 

27 

Samsung INR18650-15L, 
1.5 Ah, 18650 
Hitachi 5 Ah, prismatic 

Cyc. 
 

Cyc. 

~250d 
 

~580d 

[229], 2017 
 

[229], 2017 

Severson et 
al. 
Attia et al. 

LFP02 
 

LFP03 

Raw data 
 
Raw data 

124 
 

45 

A123 APR18650M1A, 
1.1 Ah, 18650 
A123 APR18650M1A, 
1.1 Ah, 18650 

Cyc. 
 

Cyc. 

- 
 
- 

[202], 2019 
 

[203],2020 
 

Naumann 
et al. & 
Spingler et 
al. 

LFP04 
 

LFP05 

External 
 
External 

14 
 

17 

Sony US26650FTC1, 3 Ah, 
26650 
Sony US26650FTC1, 3 Ah, 
26650 

Cyc. 
 

Cal. 

~900d 
 

~900d 

[230], [231], 
2020 

 
[232], 2020 
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Harlow et 
al. 

NMC10 
 

NMC11 

External 
 
External 

11 
 

24 

Li-FUN Technology 
0.24 Ah, pouch 
Li-FUN Technology 
0.24 Ah, pouch 

Cyc. 
 

Cal. 

~860d 
 

~580d 

[233], 2019 
 

[233], 2019 

Preger et al. LFP06 
 

NCA03 
 

NMC12 

Raw data 
 
Raw data 
 
Raw data 

28 
 

22 
 

24 

A123 APR18650M1A, 
1.1 Ah, 18650 
Panasonic NCR18650B, 
3.2 Ah, 18650 
LG Chem 18650HG2, 3 Ah, 
18650 

Cyc. 
 

Cyc. 
 

Cyc. 

~640d 
 

~170d 
 

~220d 

[217], 2020 
 

[217], 2020 
 

[217], 2020 

Schmitt et 
al. 

NMC13 External 8 Sony US18650V3, 2.15 Ah, 
18650 

Cal. ~470d [234], 2017 

Schimpe et 
al. 

LFP07 External 10 Sony US26650FTC1, 3 Ah, 
26650 

Cal. ~230d [235], 2018 

Keil et al. NMC14 
 

LFP08 
 

NCA04 

External 
 
External 
 
External 

32 
 

32 
 

32 

Sanyo UR18650E, 2.05 Ah, 
18650 
A12318650M1A, 1.1 Ah, 
18650 
Panasonic NCR18650PD, 
2.8 Ah, 18650 

Cal. 
 

Cal. 
 

Cal. 

~310d 
 

~280d 
 

~290d 

[236], 2016 
 

[236], 2016 
 

[237], 2016 

Devie et al. NMC15 Raw data 15 LG Chem ICR18650C2, 
2.8 Ah, 18650 

Cyc. ~670d [238], 2018 

4.2 Cyclic ENPOLITE plot 
In contrast to the Ragone plot, the ENPOLITE plots do not show the power and 
energy capabilities of a cell but the energy and power density at the respective 
lifetime's operating condition. Therefore, the same cell type is shown at different 
energy and power levels when cycling currents or cycle depths are different. The 
x-axis represents the used specific energy density of the individual battery cell at 
the beginning of life (BOL) within its ageing test and is calculated using Equation 
1. In this work, the calculations are based on battery cell weight, which is less 
controversial yet equally important in many technical applications. 

(1) 
 ∆𝑫𝑫𝑫𝑫𝑫𝑫 ⋅ 𝑪𝑪𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐁𝐁𝐁𝐁𝐁𝐁) ⋅ 𝑼𝑼�𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂

𝒎𝒎𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂
� 
𝐖𝐖𝐖𝐖𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂
𝐤𝐤𝐤𝐤

� 

Here, ∆𝐃𝐃𝐃𝐃𝐃𝐃 represents the cycling depth, 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐥𝐥(𝐁𝐁𝐁𝐁𝐁𝐁) the discharge capacity, 
𝐔𝐔�𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 the mean voltage while cycling, and 𝐦𝐦𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 the cell mass. Thus, the x-axis 
represents the average amount of energy a cell has charged and discharged per kg 
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and per cycle in the completed ageing test and describes the battery cell-specific 
operating point. Although the capacity changes with the cell lifetime, its position 
is not updated within the ENPOLITE plot. If the raw data is available, the cycling 
depth is calculated; if not, the cycling depth is taken from the publication. 
It should be noted that cells used with different cycle depths may have the same 
used specific energy. A cell with an energy density of 200 Wh/kg with a cycle 
depth of 50 % and a cell with 125 Wh/kg and a cycle depth of 80 % have an equal 
used specific energy of 100 Wh/kg. 
The y-axis represents the specific power of the individual battery cells during 
cycling and is calculated using Equation 2: 

(2) 
𝑰𝑰�𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ⋅ 𝑼𝑼�𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂

𝒎𝒎𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂
 �
𝐖𝐖𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂

𝐤𝐤𝐤𝐤
� 

Here, 𝑰𝑰�𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 represents the mean charge current, 𝐔𝐔�𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 the mean cycling voltage, 
and 𝐦𝐦𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 the cell mass. A typical Ragone plot depicts the dischargeable power, 
which can be used to determine the capability of a cell to fulfil an application 
requirement. Since charge currents generally have a more significant influence on 
ageing than discharge currents[214], [239], [240], the y-axis shows the power 
used while charging. Similar to the x-axis, the y-axis in the ENPOLITE plots is 
normalised to the cell weights. It should be noted that cells with different used C-
Rates may have the same used specific power. This can be caused by differences 
in cell chemistry and the average cycle voltage. A cycle ENPOLITE plot relative 
to the cell volume can be found in Figure 4.10 at the end of this chapter. 
The achieved lifetime of the individual cells is also portrayed in the ENPOLITE 
plots. The comparison of lifetime data requires a measure of ageing that 
normalises cell weight or volume and reflects the cell’s realistic usability. It is 
expressed in the graphic as the bubble area. In this work, the used lifetime 
coefficient is a linear ageing model, expressed in energy throughput per 
percentage point of cell capacity lost, normalised to the respective cell weight. 
While the linear model is a simplified description of cell degradation, unable to 
follow nonlinear ageing patterns accurately, it allows a comparison with only one 
value. Other more complex ageing models could be part of further Big-Data 
lithium-ion ageing analysis that can be executed with the datasets used in this 
work. 
The lifetime coefficient (and therefore the area of the bubble) is calculated using 
Equation 3: 
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(3) 
𝑵𝑵𝐅𝐅𝐅𝐅𝐅𝐅(𝐄𝐄𝐄𝐄𝐄𝐄|𝐄𝐄𝐄𝐄𝐄𝐄) ⋅ 𝑪𝑪𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐁𝐁𝐁𝐁𝐋𝐋) ⋅ 𝑼𝑼�𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂

𝒎𝒎𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 ⋅  %𝐂𝐂𝐂𝐂𝐂𝐂.𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋(𝐄𝐄𝐄𝐄𝐄𝐄|𝐄𝐄𝐄𝐄𝐄𝐄)
 �
𝐖𝐖𝐖𝐖𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓
𝐤𝐤𝐤𝐤 ⋅ %𝐂𝐂𝐂𝐂𝐂𝐂.𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋

� 

Here, 𝑁𝑁FCE(EOT|EOL) represents the equivalent full cycles to reach the end-of-life-
criterion (EOL) or the end of the test (EOT), 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐁𝐁𝐁𝐁𝐁𝐁) the discharge capacity,  
𝐔𝐔�𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂  the mean cycling voltage, 𝐦𝐦𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 the cell mass, and %Cap.Loss(EOT|EOL) the 
capacity percentage points lost. If raw data is available, the charge throughput is 
extracted directly. A doubling of the circle area is equivalent to a doubling of the 
lifetime coefficient.  
In line with published literature, the lifetime linearisation was normalised to a 
relative capacity loss of 20 %. If cells did not lose 20 % of their initial capacity 
within their ageing tests, the linearisation was based on their EOT. Generally, 
different EOL criteria can also be used. Unlike most published lifetime 
comparisons, the lifetime coefficient calculated here also considers cell size and 
compares battery cells using the mass-normalised energy throughput. Thus, 
different cell masses, charge throughputs, and cycling voltages, driven by 
different mean DODs and different cell chemistries, can be considered.  
Depending on the data availability, either the actual raw data is used to calculate 
the charge throughput or the throughput is estimated by multiplying the achieved 
equivalent full cycles and the cell rated capacity at the beginning of its ageing 
test. The average cycle voltage is multiplied, and the overall coefficient is 
normalized to the cell mass and percentage point of capacity loss. Therefore, the 
formula above gives a fundamental approach to calculate the normalized energy 
throughput for sparse data availability. 
For the figures given in this chapter, the degradation is fitted to a linear ageing 
model to an EOL of 80 % relative capacity. For this, the first available capacity 
measurement beneath the 80 % relative capacity mark was used. The latest 
available data point was used for cells that did not reach 80 % relative capacity, 
and the capacity degradation was linearized upon that data point. The graphics 
given in the work can be made with other EOL criteria lying above or beyond the 
80 % mark. 
Besides a simple linear approximation of the ageing curves, different approaches 
like a logarithmic or partial linear fitting, which was used for calendar ageing, 
were considered. However, other models did overall not lead to a more accurate  
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approximation for all datasets. Besides, these models have multiple parameters, 
which cannot be put in the one-dimensional circle area. 
Figure 4.3 illustrates the advantages of the lifetime coefficient compared to a 
typical ageing plot. For simplicity, capacity instead of energy was used. It 
compares three theoretical cells with different weights and energy densities, 
illustrating which cells have the same lifetime coefficient. Cell A has five times 
the weight but the same energy density as Cell B; both degrade the same when 
normalized to weight. Cell C is the same weight and has the same ageing gradient 
as Cell B, but the lifetime coefficient is lower with a lower energy density. 
Finally, the cell-specific cycling temperature also plays a decisive role in 
explaining the ageing behaviour of lithium-ion cells. The colour of each bubble 
circumference depicts the cell temperature during cycling, providing vital 
information to explain differences in individual cell lifetimes at similar operation 
points. If available, the mean cycling temperature at the can or pouch of the cell 
is used. If the individual cell temperature is not available, the temperature 
chamber setpoint was used. It should be noted that the temperature within a cell 
and the temperature chamber can vary significantly, especially for high power 
cycling. For cells without extractable cycling temperature, the bubble 
circumference is grey. 
With the values for the x- and y-axis and the lifetime bubble area established, all 
cyclic ageing datasets can be sorted into the ENPOLITE plot. Figure 4.4 shows 
the translation of an initial ageing test result to the ENPOLITE plot for a cell from  
a data set with 2.9 Ah LTO cells. The relevant metadata for the lifetime coefficient  
calculations is given in the lower-left corner. The green area shows the calculation 
for the x-axis; the red area shows the calculation for the y-axis; the blue colour 
shows the calculation for the lifetime coefficient and is reflected in the bubble 
area within the graphic. A higher lifetime coefficient and more normalised energy 
throughput are reflected in a larger bubble area.  
In addition to the metadata (cell chemistry, nominal capacity, cell format, cycling 
time) of the individual datasets, Figure 4.5 depicts an ENPOLITE plot of one 
complete data set of 10 cells. The colour of the bubble circumference, which 
corresponds to the temperature, explains the differences in the lifetime coefficient 
for cells with similar electric operating points. Not surprisingly, cells cycled at 
higher temperatures (i.e., red-coloured bubble edges) are found to also have 
shorter lifetimes (i.e., bubble sizes). 



Evaluation of ageing tests 
 

64 

 

0
0.

5
1

1.
5

2
2.

5

En
er

gy
 T

hr
ou

gh
pu

t i
n 

W
h 

Th
ro

ug
hp

ut
/k

g
10

6

0.
6

0.
7

0.
8

0.
91

Remaining Capacity Ahact/Ahnom

 
 

 
 

 

 

er
gy

 T
hr

ou
gh

pu
t

0
20

40
60

80
10

0
12

0
14

0
16

0
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

 
 

 
 

  

 

𝑁𝑁
∗
𝐶𝐶
∗
𝑈

𝑚𝑚
∗

%
=

38
00

0
∗

3.
16

 A
h
∗

2.
46

 V
0.

15
 k

g 
∗

20
.3

%

≈
𝐓𝐓𝟎
𝟎𝟎
𝟎𝟎

 𝐖𝐖
𝐖𝐖 𝐄𝐄

𝐖𝐖𝐂𝐂
𝐋𝐋𝐓𝐓
𝐤𝐤𝐖𝐖
𝒑𝒖
𝑫𝑫

𝐤𝐤𝐤𝐤
∗

%

 
 

 
 

 
 

 
 

 

Bu
bb

le
si

ze

Fi
gu

re
 4

.4
: C

al
cu

la
tio

n 
of

 a
 si

ng
le

 b
ub

bl
e 

da
ta

 p
oi

nt
 fo

r t
he

 E
N

PO
LI

TE
 p

lo
t. 



Evaluation of ageing tests 65 

 

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0
22

0
24

0
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

20
40

60

Fi
gu

re
 4

.5
: :

 D
at

as
et

 L
TO

02
 w

ith
 1

0 
ce

lls
 il

lu
st

ra
te

d 
in

 th
e 



Evaluation of ageing tests 
 

66 

Figure 4.6 shows the complete ENPOLITE plot for the cyclic ageing tests of 783 
different cells from 19 datasets shown in detail in Table 1. An interactive version 
and detailed description can be found in the Supporting Information and on the 
website (enpolite.org). In total, the ENPOLITE plot in Figure 4.6 displays eight 
critical parameters determining the lifetime behaviour of lithium-ion battery cells: 
i) used energy density, ii) used power density, and iii) energy throughput per 
percentage point, as well as the metadata on the ageing test including iv) cycle 
temperature, v) cycle duration, vi) cell chemistry, vii) cell format, and viii) 
nominal capacity. The plot reflects the general trend that lifetimes tend to decrease 
with higher energy densities and power densities. The dark-yellow-coloured 
dataset with cells from Devie et al. [238] (NMC15|2.8Ah|18650|~670d.) shows 
the highest used specific energy with up to 230 Wh/kg. The high energy cells 
from LG Chem were cycled at 100 % DOD. Only a few cells achieved above-
average lifetimes at either high energy or high power densities, such as the dark-
blue-coloured dataset (NMC10|0.24Ah|pouch|~860d.) from Harlow et al. [233]. 
Furthermore, it was also observed that high power densities were only achieved 
in conjunction with lower energy densities. In most datasets, higher cycling 
temperatures resulted in a reduced lifetime, corroborating the well-known 
behaviour of lithium-ion battery cells. This can also be seen for the above 
mentioned NMC10 cells at 165 Wh/kg and 50 W/kg, for which the circle area 
significantly decreases for cells cycled at higher temperatures within the same 
operating point. Occasionally, tiny data points are also visible, representing cells 
quickly destroyed at their operating point in the ageing test, for example, due to 
lithium plating at low temperatures. The exceptionally high lifetimes of cells with 
Lithium Titanate (LTO) anodes are also well represented; the peach-coloured 
dataset (LTO02|2.9Ah|prismatic|~630d.) of Nemeth and Schröer et al. [225], 
[226] stands out with the highest lifetime observed of any cells in this plot. 
Furthermore, these cells also achieve the highest used specific power with up to 
950 W/kg, corresponding to current rates of up to 20C. Lastly, neighbouring data 
points with a similar circumference colour but strongly differing circle areas 
illustrate cell-to-cell ageing variation within a dataset, with an in-depth evaluation 
in upcoming work. 
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4.3 Calendar ENPOLITE Plot 
An ENPOLITE plot depicting calendar life was created using a similar approach. 
The X-axis for the calendar ENPOLITE plot depicts the state of charge (SOC) of 
the cells in storage, expressed as the usable stored energy in the cell normalized 
to its weight. The used specific storage energy coefficient was calculated using 
Equation 4: 

(4) 
𝑪𝑪𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐁𝐁𝐁𝐁𝐁𝐁) ⋅ 𝑼𝑼𝐧𝐧𝐧𝐧𝐧𝐧 ⋅ 𝑺𝑺𝑺𝑺𝑺𝑺𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒

𝒎𝒎𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 
 �
𝐖𝐖𝐖𝐖𝐒𝐒𝐒𝐒𝐒𝐒
𝐤𝐤𝐤𝐤 

� 

Here, 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐁𝐁𝐁𝐁𝐁𝐁) represents the discharge capacity at the beginning of life, 𝑼𝑼𝐧𝐧𝐧𝐧𝐧𝐧 
the nominal voltage, 𝑺𝑺𝑺𝑺𝑺𝑺𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 the state of charge, and 𝐦𝐦𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 the cell mass. 
The X-axis indicates how much energy per kg was stored by the cell at the 
beginning of life (BOL), and the Y-axis coefficient represents the cell storage 
temperature in degrees Celsius (°C). 
This X-axis describes the stored energy during the ageing normalized to the 
weight of the cell. Ideally the integrated mean storage voltage is used to determine 
the energy contained in the cell during storage, but due to data availability, 𝑼𝑼𝐧𝐧𝐧𝐧𝐧𝐧 
was used instead. Most of the datasets used in the calendar ENPOLITE Plot are 
from extracted ageing diagrams where often just the storage SOC is given. The 
used approximation for the stored specific energy considers differences in cell 
chemistry and the respective storage SOC and could be evaluated for sets with 
incomplete data. Cells with a storage SOC of 0 % are mapped at 0 WhSOC

kg 
 in the 

calendar ENPOLITE Plot. A calendar ENPOLITE plot relative to the cell volume 
can be found in Figure 4.11 at the end of this chapter. 
Figure 4.9 depicts a calendar ENPOLITE diagram, representing 307 calendar-
aged cells in total. In this plot, the typical calendar ageing test matrices are readily 
recognised. Most cells are stored at temperatures of 25°C, 40 °C, or 50 °C. Each 
cell type is typically stored at multiple SOC levels; therefore, multiple points of 
the used specific storage energy are shown. 
Similar to the cyclic ENPOLITE plot, an ageing measure was developed for the 
calendar ageing data, which better reflects the battery cells' actual usability than 
the relative loss of capacity metric often used in literature. The passive anode 
effect [196], [241], commonly seen in calendar tests, was included in the 
evaluation and described in detail in the Supporting Information. The ageing 
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coefficient's bubble area corresponds to the number of days until the cell energy 
density is reduced by 1 Wh/kg due to degrading capacity.  
The lifetime coefficient was calculated using Equation 5: 

(5) 
𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝐓𝐓𝐓𝐓 − 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝐓𝐓𝐓𝐓
(𝑪𝑪𝐓𝐓𝐓𝐓 − 𝑪𝑪𝐓𝐓𝐓𝐓) ⋅ 𝑼𝑼𝐧𝐧𝐧𝐧𝐧𝐧

𝒎𝒎𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂

 �
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃
𝐖𝐖𝐖𝐖𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋
𝐤𝐤𝐤𝐤

� 

Here, 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝐓𝐓𝐓𝐓 − 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝐓𝐓𝐓𝐓 represents the time difference between measurements, 
𝑪𝑪𝐓𝐓𝐓𝐓 and 𝑪𝑪𝐓𝐓𝐓𝐓 the first and second capacity measurements, (𝐶𝐶T1 − 𝐶𝐶T2) the 
capacity lost between measurements, 𝑼𝑼𝐧𝐧𝐧𝐧𝐧𝐧 the nominal voltage, and  𝐦𝐦𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 the 
cell mass. 
The structure and input of each data point with respect to the X- and Y-axis and 
the size of the circle area, represented by the ageing coefficient, are similar to the 
cyclic diagram structure shown in Figure 4.6. For the representation of the 
calendar lifetime data, however, some striking differences have to be considered. 
Particularly in calendar ageing tests, cells sometimes retain over 100 % of their 
initial capacity even after a long ageing period. Examples of this can be found in 
dataset NMC11 from Harlow et al. [233]. It can be seen that individual cells still 
increase in capacity even up to the last capacity measurement published after 580 
days. However, an increase in capacity in the linear part of the ageing process 
leads to a negative value by definition of the used lifetime coefficient according 
to the formula above. For this reason, the value ∞ was inserted into the calendar 
ENPOLITE plot. This value does not imply that the cells last forever but is used 
when the lifetime coefficient cannot be evaluated because the corresponding cell 
capacities are still rising. The size of these bubbles is fixed and does not represent 
an absolute lifetime; they should not be compared with other datapoint sizes. Cell 
data with this exception are illustrated with transparent shading in the calendar 
ENPOLITE plot and may in fact point to excellent durability. 
Figure 4.7 again shows some exemplary cells for calculating the lifetime 
coefficient illustrating the advantages over regular ageing diagrams. It compares 
three theoretical cells with different weights and ageing gradients, illustrating 
which cells have the same lifetime coefficient. Cell A has five times the weight 
and the same ageing gradient as cell B. But cell B loses more capacity per day, 
and 5 cells of type B would still only work for 160 days; the lifetime coefficient 
of cell A is better than B. Cell C is half the weight of cell B and has a slower  
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ageing gradient. Therefore, it has a better ageing coefficient than B and the same 
as A. For simplification reasons, the voltage was considered as constant in this 
scheme. In actual usage, the voltage is another critical parameter in which the cell 
lifetime rating may be distinguished. In contrast to the lifetime coefficient used 
for the cyclical ENPOLITE Plot, a different approach was used for the calendar 
case. A partial linear fitting was used to exclude the common reversible ageing 
phenomena due to the anode overhang [196]. For this, only the best linear fitting 
part of the capacity degradation was calculated. Since the duration in which the 
reversible ageing takes place varies in different circumstances, initially, the first 
90 days of the respective ageing test are not used when calculating the lifetime 
coefficient. Afterwards, various possible linear ageing degradation curves are 
created with the constraint that at least 50 % of the remaining data points are 
included in the linear fit. Afterwards, the fit with the highest coefficient of 
determination is selected. 
If the overall data points without the first 90 days of ageing are less than four for 
a cell, the fit is executed with every remaining data point. Figure 4.8 illustrates an 
example of this procedure.  

 

Figure 4.8: Anode overhang effect often visible in calendar ageing tests. 

Figure 4.9 shows the ENPOLITE plot of calendar lifetime data for a total of 307 
cells from 11 datasets. A reference bubble, equivalent to 100 days to a loss of 1 
Wh/kg, can be found in the bottom-right corner of the diagram for better  
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estimation of the bubble area. In this diagram, a doubling of the circle area also 
doubles the calculated lifetime coefficient. 
Generally, Figure 4.9 illustrates that cells stored at higher energy/charge states 
lose storable energy (and thus capacity) faster than cells stored at low 
energy/charge states. Used specific storage energies range from 0 Wh/kg 
(0 % SOC) up to 225 Wh/kg represented by the dark-red-coloured dataset 
(NCA04|2.8Ah|18650|~290d.) from Keil et al. [237], which were stored at 100 % 
SOC at 25 °C and 50 °C, respectively. Outstanding lifetimes were achieved by 
lithium-nickel-manganese-cobalt-oxide (NMC) cells (NMC11|0.24Ah|pouch 
|~580d.) from Harlow et al. [233], depicted by turquoise dots, even at high used 
specific storage energies. Especially at 20 °C, they outperformed other cells 
without visible ageing after 580 days even at high SOC. The authors attributed 
this to the single-crystal structure of the NMC532 cathode particles and 
electrolyte additives [233]. The influence of the storage temperatures on the 
lifetimes is also clearly visible. In general, within all datasets, higher temperatures 
were associated with shortened lifetime. Few data points were aged below 20 °C 
and none of these belonged to the datasets showing the longest lifetime. No cells 
tested above 60 °C were part of the datasets in the calendar ENPOLITE plot, since 
side reactions prevent valid accelerated ageing tests[242].  

4.4 Chapter conclusion 
Lithium-ion batteries must satisfy multiple requirements for a given application, 
including energy density, power density, and lifetime. However, visualizing the 
trade-offs between these requirements is often challenging; for instance, battery 
ageing data is presented as a line plot with capacity fade versus cycle count, a 
difficult format for viewing multiple datasets. Also, standard lifetime plots can be 
challenging to interpret (e.g., high cycle count with low energy throughput). In 
this work, the ENPOLITE plots are introduced, which can be used to compare 
large datasets of lithium-ion battery cycling and calendar ageing across multiple 
battery chemistries and usage conditions. ENPOLITE plots capture performance 
metrics that are relevant for applications. Similar comprehensive representations 
of large datasets of variable battery ageing data were, to the best of our 
knowledge, never before shown in published literature. ENPOLITE plots (and, 
more generally, multidimensional plotting) may greatly facilitate informed 
decisions on battery technology development. Some of the observations were 
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known before, e.g., that LTO are suitable for high power, or that batteries cannot 
be both high power and high energy density. This commonplace knowledge is 
now substantiated by specific values for energy and power application-specific 
selection. The ENPOLITE plots also reveal exemplary cells across a number of 
dimensions. As the battery community continues to publish data, particularly on 
new chemistries, the ENPOLITE plots enable unbiased comparisons of key 
operating parameters to be added to published battery databases. Finally, it is 
remarkable that with non-uniform data formats being the biggest hurdle for 
inclusion of additional datasets, the battery community would greatly benefit 
from standardized and uniform battery data formats for automated evaluation. 
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5 Correlation of Health Indicators 
To quantify ageing and to describe cell-to-cell variation, different measurements 
may be used. The most frequently employed indicators are the remaining capacity 
and the internal resistance. In principle, however, any measure that continuously 
changes with ageing is suitable as a health indicator. Quantities that can be 
measured reliably and with little effort are beneficial. With regard to 
inhomogeneities, the permanent monitoring of each individual cell is quite 
reasonable, which is only feasible with an extremely simple measurement method 
or when indicators can be extracted from the load profile. Satellites with 
positional motors, for example, are only used every other day, so the cells 
experience a pulse profile and open-circuit voltage (OCV) values that can be 
easily determined but never the full capacity. EVs, in contrast, are usually fully 
charged with a constant voltage (CV) phase, and the relaxed voltage after full 
charge can be tracked. It is also possible to use the frequency response of an 
application with repeating loads (e.g. every second pulsed load for 50ms) to 
calculate an impedance for the battery. Furthermore, the significance of the 
various indicators depends on the application. For example, for high-power 
applications, the resistance is more critical than the capacity. 
While even operating conditions have to be ensured on system-level by, e.g., an 
even temperature distribution, the other two have to be met on cell level or cell 
selection process, respectively. First, high-quality cells have to be used, which 
lead to a minimum spread in cell-to-cell variation throughout the system's 
lifetime. Secondly, measures must be found during the cell selection process to 
grade the cells and exclude cells with a possibly diverging behaviour from the 
good-to-be-used cells.  
In automotive applications, system size is currently limited to a comparatively 
small size below 100 kWh. Yet, as they are mass-produced and cost-saving 
potential shall be addressed on cell as well as on system-level, direct cell-to-pack 
architectures such as the BYD blade are considered [243]. This results in a high 
individual cell capacity. However, as a drawback, no cell-level smoothing 
behaviour of a parallel connection occurs.  
Finally, there are also production-related effects resulting in a diverging ageing 
behaviour on using unmatched cells. These imbalances can be accounted to 
manufacturing tolerances and the formation process, as well as varying conditions 
during shipment and storage. Strictly speaking, the latter is standard calendar 
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ageing under different conditions. Yet, as it takes place before integration in 
modules, it has to be considered as an initial deviation in the new state and 
tracking those variations is necessary. 
In this chapter, different health indicators are compared, and their correlations are 
analysed. Understanding the correlation of health parameters enables a focus on 
easily recordable parameters to better track ageing trends when high-resolution 
data is unavailable. Considered health indicators are, among others, impedance 
measurements of different pulse lengths, capacity values at different discharge 
procedures and check-ups, weight and initial voltage. The following analysis is 
based on the data already used in the previous chapters.  
A comprehensive overview of the cell parameters of the individual datasets 
according to the respective datasheets is provided in Table 5.1. As already 
indicated in the list of datasets, not every analysis is presented for all datasets. 
Therefore, an overview of investigated health indicators can be found in Table 
5.2 

Table 5.1: Analysed cells of the individual test sets used in this chapter. 

  Baumhöfer-2014 Schöneberger-2019 Willenberg-2021 

Manufacturer Sanyo/Panasonic LiTec Samsung 

Cell name UR18650E HEI40 INR18650-35E 

Cell type 18650 pouch 18650 

Cathode material NMC NMC NCA 

Nominal Capacity/Ah 1.85 40 3.35 

Nominal voltage/V 3.6 3.6 3.6 

Min. voltage/V 2.5 3 2.65 

Max. voltage/V 4.2 4.2 4.2 

Max. charge current/A 2.05 80 2 

Max. discharge 
current/A 

6.15 120 8 

Mass/g  45.5 1200  50  
 
The list gives an overview of the main test set boundaries and states the identifier 
used later on in order to distinguish between the different test sets: 



Correlation of Health Indicators 79 

1. Baumhöfer-2014 [86] consists of 48 Sanyo/Panasonic UR18650E 
NMC/carbon 1.85 Ah cells in a cycle ageing test each under the same 
operating conditions.  The dataset is used in the analysis of initial cell 
parameters at delivery. 

2. Schöneberger-2019 [221], LiTec HEI40 40 Ah, pouch Automotive large 
scale pouch cells.  The dataset is used in the analysis of calendar and 
cyclic test conditions. 

3. Willenberg-2021 [98], Samsung INR18650-35E, NCA/Graphite cell 
with a nominal capacity of 3.4Ah cylindrical 18650 type.  The dataset is 
used in the analysis of initial cell parameters at delivery. 

5.1 Health indicators 
As the primary visual element to analyse the correlation of the health indicators, 
a multi-plot with an even number of subplots aligned in x- and y-direction, as 
shown in Figure 5.1, is used and shall be briefly introduced. The health indicators 
such as, e.g., the first capacity and cell weight are pairwise combined by using 
each health indicator once as a column identifier and once as a row identifier.   

 

Figure 5.1: Example of the correlation matrix plot used in this chapter. Scatter plots in the upper 
right corner, KDE plots in the lower left and density plots on the diagonal. The y-axis label does not 

apply for the density plots. 
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As the n-th position in row and column has the same identifier, the identity 
relationship is shown on the diagonal from upper left to lower right. It is depicted 
as a kernel density estimation (KDE) that smooths a Gaussian kernel's observed 
values to a continuous density estimation rather than depicting, e.g., the values 
binned in histograms. The general shape of the KDE allows the identification of 
the individual distribution function of a parameter visually and by a goodness-of-
fit test. The maxima indicate the most likely values. 
In the upper triangle, the discrete measurement points are depicted in a scatter 
plot. By the resulting point cloud, it is likely to identify clusters and linear 
dependencies. A drawback of scatter plots is that the various points can overlap 
and thus become invisible. This is valid, especially for large test sets with 
pronounced data pairs.  
The same combination of health indicators is analysed in the lower triangle but 
with a reversed x- to y-axis allocation. Instead of points within the scatter plot, 
the bivariate KDE contour plot is drawn with each line indicates the region 
containing the value pairs resulting in a density above the line's threshold. Hence, 
significantly pronounced areas of a high density can be identified very easily by 
the plot and the steepness in the different directions around it.  
The health indicators used are described in Table 5.2. 
 

Table 5.2: Description of health indicators 

Indicator Description 
First Capacity Discharge Capacity determined in the first check-up 

procedure 

Second Capacity Discharge Capacity determined in the second check-up 
procedure 

Weight Measured cell weight 

Initial Voltage Cell voltage at delivery 
1 kHz impedance 1 kHz impedance measured at delivery 

Impedance Cell impedance can be determined using a different 
pulse current (in C-Rates), duration (in seconds) and 
observed cell SOC (in %). Example ResCHA1C2sec30 
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is a charge pulse resistance with a current of 1C after 2 
seconds at a state-of-charge of 30 % 

TestTemperature Temperature of the ageing test (cycle, calendar) 

Capacity-CHA-CC Measured Capacity of constant current phase (CC) until 
the upper cell voltage level is reached 

MeanTemp The mean cell temperature within the test 
 

5.2 Correlation of initial health 
Figure 5.2 shows the capacity at the first and second check-up in Ah, the cell 
weight in g, the initial voltage before cycling in V, and a 1 kHz impedance in mΩ 
measured upon arrival from Willenberg-2021. The 18650 cylindrical cells from 
Samsung SA35E were bought in three batches in March 2018 (in blue), 
November 2018 (in orange) and November 2019 (in green). Cells from the first 
batch showed a lower first capacity compared to the latter two. The cells showed 
a higher impedance while being, on average, around 1 g lighter. Cells within the 
batches varied below 1 g while in total, the lightest and heaviest cell differed in 
around 2 g. In the initial voltage at delivery, a batch dependence is also visible. 
This can be caused by material differences or differences in storage time since 
this can reduce the charge within the battery through calendar ageing. Similar 
differences over the production cycle were reported by Schindler et al. [40]. The 
first capacity ranges between 3.3 and 3.4 Ah, with bigger variances observed than 
other single datasets, for example, by Kuntz et al. [244] with a mean discharge 
capacity of 3.328 Ah and a standard deviation of 0.019 Ah. This can be attributed 
to a slightly higher current of 0.3C or on batch dependence with similar 
differences over the production cycle reported by Schindler et al. [40]. Kuntz et 
al. also observed tighter tolerances within the cell weight with a standard variation 
of only 40 mg. The 1kHz impedance varied within the dataset from around 20 to 
24 mΩ, with a strong batch dependence. This resistance is highly temperature-
sensitive, so it needs to be accounted for when checking at delivery, and cells 
need to adjust to the same temperature. 
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Figure 5.2: Correlation of the following initial parameters of dataset Samsung 35E: First Capacity, 
Second Capacity, cell weight, initial voltage and 1 kHz impedance. Capacities are determined within 
the check-up procedure; weight, voltage and impedance are recorded at delivery. Cells were bought 

in 3 batches, batch 1 in blue, 2 in orange and 3 in green. 
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Figure 5.3 depicts the initial parameters for the Baumhöfer-2014 set. Here 
displayed are the capacity at the first and second check-up in Ah, the capacity 
during the constant current charging phase in Ah, the mean temperature in Celsius 
during the check-up, and two discharge pulse resistance values at 1C and 50 % 
state-of-charge at 2 and 10 seconds. For this evaluation, the 1C capacity is used, 
so they are slightly varying from the values depicted in the capacity vs cycles 
plots in Baumhöfer et al. [86]. The first discharge capacity shows values between 
1.76 and 1.79 Ah increasing to a spread of 1.70 to 1.75 Ah in the second check-
up. A correlation is visible between the first and second check-up with higher first 
capacities also trending to higher second capacities. But some of the lowest values 
of the second capacity show comparably high first capacity values. So, the first 
capacity captures the general trend, but higher ageing rates cannot be captured, 
resulting in differences in the second capacity. The capacity from the constant 
current charge shows no clear trend compared to the first or second capacity. A 
small temperature dependence can be seen between test temperature and 
resistance, with higher resistances leading in general to lower resistance values, 
as is expected. The mean temperature of the whole check-up ranges from 26.5 °C 
to 28.5 °C, and the other values do not show an influence of temperature in the 
depicted range. 
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Figure 5.3: Correlation of the following initial parameters of dataset Baumhöfer-2014: First 
Capacity, Second Capacity value, Charge capacity during the constant current phase, Mean 

Temperature during the check-up and 2-sec and 10-sec pulse resistances at 1C, 50 %SOC. All 
values are determined within the check-up procedure. 
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5.3 Correlation of pulse resistance measurements 
To illustrate the content of Figure 5.6, first, a subset of the values is depicted in 
Figure 5.4. Here three different pulse resistance values are shown, and all values 
over the whole lifetime of all cells correlated. The correlation coefficient for each 
pairing is given in the lower-left half as part of the scatter plots. In the next step, 
Figure 5.5 shows the same correlation but as a heat map. Each resistance is shown 
once on the x-axis and on the y-axis, and the correlation coefficient for each 
pairing is given as a colour code at the intersection and a legend at the side.  

 

Figure 5.4: Scatterplot of 3 pulse resistance values at SOCs of 30, 50 and 80% of dataset 
Baumhöfer-2014 over all check-ups with the addition of the correlation coefficient of each pairing. 

A bright value depicts a good correlation between two pulse resistances, a dark 
value shows poor or no correlation. The correlation includes values from each 
check-up over the whole lifetime of all cells of the Baumhöfer-2014 data set. The 
labels are named in the following way: Res is short for resistance, CHA for charge 
pulse and DCH for discharge pulse, next to the current as a C-rate, a leading zero 
indicates a fraction, so 025 indicates 0.25C, afterwards the pulse length either 2 
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or 10 seconds and last the state-of-charge in percent. Concluding 
ResCHA1C2sec30 is a charge pulse resistance with a current of 1C after 2 
seconds at a state-of-charge of 30 %. 

 

Figure 5.5: Heatmap of the same 3 pulse resistances as in Figure 5.4 at SOCs of 30, 50 and 80% of 
dataset Baumhöfer-2014 over all check-ups with the correlation coefficient as the colour of the 

heatmap.  

As shown in Figure 5.6 overall, the correlation of pulse resistances within this 
dataset is very high, with the lowest values still above 0.98. Pulse length, in this 
case, an evaluation after 2 and 10 seconds, correlates more than 0.995 in all 
operating conditions expect the charge pulse resistance at 80% SOC. At an aged 
condition, charge pulses will approach the upper cell voltage limit faster. 
Nevertheless, the correlation is still around 0.99, and it can be assumed that 
differences in pulse length are minimal and, therefore, slightly different pulse 
lengths, for example, 2 and 10 seconds, can be used to compare ageing trends on 
multiple datasets. For significant timescale differences, for example, as part of the 
impedance spectroscopy, low correlations were observed between the timescales 
[245], limiting comparisons to the same order of magnitude. 
The highest and lowest current rates do not correlate as well. One explanation is 
that the voltage response for low current rates is also smaller, leading to a lower 
signal-to-noise ratio. In addition, high currents excite different chemical and 
physical processes, which can develop differently over the lifetime. 
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The state-of-charge levels compared in this dataset set at 30 %, 50 % and 80 % 
highly correlate. To analyse the ageing trend while limiting the time of a check-
up procedure, one of these charge levels would give similar conclusions to 3 
charge levels. But it can also be sensible for a more detailed analysis to include 
other SOCs since resistance also has a SOC dependence, especially at low and 
high SOCs [184]. 
In addition to pulse resistances at a defined state-of-charges, other resistances can 
be calculated without any additional measurements. Each current, either charge 
or discharge, generates a voltage change to determine a resistance value. For 
example, the first 10 seconds of a discharge can be handled as a pulse. Or, as 
Rumberg et al. [246] suggest, the resistance can be calculated after a discharge, 
with the last cell voltage during discharge and the voltage the cell relaxes to. 

 
Figure 5.6: Heatmap of correlation of different pulse resistances from Baumhöfer-2014 dataset. The 

colour of the heatmap shows the correlation coefficient of each pairing in the matrix. 
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Figure 5.7: Correlation of discharge capacity, charge capacity and pulse resistance over cycle 
ageing for dataset Schönberger-2019. Colour represents different test conditions of cycle test with 

lower and upper SOC during cycling shown in the legend. 
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Figure 5.7 shows the influence of different test conditions on the correlation of 
health indicators. For these 3 values, the discharge CapDCH1 capacity, the Ah 
throughput during constant current charge CAPCCCHA1 and one pulse 
resistance value were used. The test conditions all used a current of 1C but were 
cycled with different cycle depth and mean state-of-charge and with one cell each. 
The upper and lower SOC during cycling is shown in the legend. While the 
discharge and charge capacity show a strong correlation, slight differences are 
already visible for the different test conditions. When substituting health 
indicators for ones that are easy to measure, the relation must be independent of 
the history of prior cycling. This, unfortunately, cannot be observed, showing 
different resistance to capacity relations depending on the cycling condition. For 
higher cycling depths, capacity degrades quicker compared to the resistances in 
this data set. Discharge and charge capacity show a high correlation and can likely 
be substituted for an ageing analysis if one is not available. This is not the case 
for the resistance capacity correlation with clear differences visible for the 
different test conditions. For example, cycling from 0-100% shows the highest 
capacity degradation in relation to the resistance measured. At around 35 Ah 
remaining discharge capacity, the pulse resistance is still below 2 mΩ, while cells 
from other test conditions already show a pulse resistance of up to 4 mΩ. When 
the ageing condition triggers different ageing regimes, the correlation will not be 
the same for those conditions. Similar results for different ageing conditions but 
less pronounced are reported by Schuster et al. [247]. 
Not only for cycle tests but calendar aged cells with a path dependency of the 
correlation are shown in Figure 5.8. Three cells were tested for each test condition 
and aged at 40 °C, except for one test at 25 °C and one at 60 °C, both at 66 % 
SOC. At 40 °C, 8 different SOCs were tested, ranging from 10-100 %. Just as the 
cycle aged cell 3 values, the discharge CapDCH1 capacity, the Ah trough put 
during constant current charge CAPCCCHA1 and one pulse resistance value were 
used in the comparison. Similar to cycle ageing, both capacity values strongly 
correlate with the 60 °C cells standing out, showing generally lower constant 
current charge capacities at similar discharge capacity levels. For cells at 60 °C, 
a disproportional increase of resistance can be seen. The highest SOC levels, 90 % 
and 100 %, also have higher capacity loss relative to the resistance increase. 
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Figure 5.8: Correlation of discharge capacity, charge capacity and pulse resistance over calendar 
ageing for dataset Schönberger-2019. Colour represents different test conditions of calendar test 

with SOC shown in legend. Temperature of test is 35 °C if not stated otherwise in legend. 
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6 Stochastic battery ageing model  
 
In this chapter, a stochastic battery ageing model and its implementation is 
described. This includes an electrical model, a thermal model as well as an ageing 
model. In addition, a model library named CXML was developed for all models 
to combine models from different cells to approximate the cell behaviour when 
measurement data is lacking. Parts of the results are published in [248] and [249]. 

 

Figure 6.1: Overview of the stochastic battery ageing model.  
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6.1 Electrical model 
An electrical model seen in Figure 6.2 describes the electrical behaviour of the 
battery, with current or power and temperature as input and voltage, current, SOC 
and power as output. The electrical response of batteries can be modelled with 
various levels of detail, mostly based on electrochemical models based on the 
early work of Newman et al.[250] [251] [252] or equivalent-circuit-models 
(ECM).  
 

 

Figure 6.2: Input and output of an electrical model. 

Depending on the application, simple models with just an equivalent circuit of a 
resistance in series to capacitance might be suitable, allowing very fast computing 
times. The data for parametrising the ECM are obtained with electrochemical 
impedance spectroscopy (EIS) and current pulses. All measurements should be 
performed in a temperature-controlled environment since some parameters are 
highly temperature depended. In [183], Witzenhausen proposed a measurement 
scheme consisting of EIS and current pulses at different charge levels and 
temperatures. With the described measurement scheme, physically motivated 
complex models and simpler ECM models can be parametrised.  
The battery simulation framework for ECM used in work is described in Hust 
[253] and is available online at https://git.rwth-aachen.de/isea/framework. The 
parameters of the electrical model are part of an electric simulation library.  

6.2 Thermal model 
As the temperature has an essential impact on the parameters of the electrical 
simulation, the combination of electrical and thermal simulation is necessary to 
allow greater accuracy, especially at higher currents, which lead to a self-heating 
of the battery. The electric model calculates the heat generated within the cell 
through ohmic losses and side reactions and is used as input for the thermal model 
as seen in Figure 6.3, and temperature is the output. The spatial resolution of the 
thermal model is directly coupled to the computing time, and a trade-off must be 
made. For small cells, for example, a coarse spatial temperature resolution is 
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enough since gradients are low. For big cells, parts of the cell in direct proximity 
to the cooling system are significantly cooler under heavy load, and a finer grid 
should be applied.  

 

Figure 6.3: Input and output for a thermal model in conjunction with an electric model. 

The thermal model is part of the simulation framework described in Hust [253] 
and depends on heat capacity, cell weight density and heat conductivity. Heat 
conductivity is typically anisotropic since heat conductivity is much higher in-
plane due to the copper/aluminium current collectors than through-plane over the 
electrode/separator stack. The parameters of the thermal models used in this work 
are from literature and shown in Table 6.1. When a thermal model was 
unavailable for a given cell, the parameters of the cell closest in form factor were 
used.  

Table 6.1: Thermal parameters of different cell types used in this work. 

Cell 
Heat 

Capacity 
J/kg K 

Heat Conductivity 
(x, y, z or r, z) 

W/mK 

Density 
kg/m³ 

Source 

Prismatic 5 Ah 
LMO:NMC (10:1) -
HardCarbon 

854 30, 30, 0.49 (x, y, z) 1961 [229] 

Cylindrical 4.4 Ah 
LFP - Graphite 

1020 0.4 , - (r, z) 2135 [254] 

Cylindrical 3.1 Ah 
NCA - Graphite 

892 2.17, 31.2 (r, z) 2830 [253] 

Pouch 
LCO – Graphite 

1028 37, 37, 1.63 (x, y, z) 2510 [255] 

Pouch 
LCO – Si:C 

990 32, 32, 1.19 (x, y, z) 2510 [255] 
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6.3 Ageing model 
An ageing model predicts the function and parameters of the battery from specific 
stress factors. Ageing models for lithium-ion batteries vary in their level of 
abstraction. In basic terms of Failure mode and effects analysis (FMEA), those 
levels are classified as effect level, mode level, and mechanism level. As seen in 
Figure 6.4, the highest level, effect level, are the observable states of capacity fade 
and rise of internal resistance or power fade.  

 

Figure 6.4: Influence of degradation modes on capacity and power fade and degradation 
mechanisms and their root causes. CC-BY Birkl et al. [256]. 

 
For more details, capacity fade is subdivided into modes, on the one hand, the 
irreversible loss of lithium inventory and loss of active material [256] and on the 
other hand, reversible modes like homogeneity of lithium distribution or the 
passive anode effect [196]. For even a greater detail level, individual degradation 
mechanisms can be modelled with their cause as input [257].  
In this work, two kinds of ageing models were used: a semi-empirical effect 
ageing model based on Schmalstieg et al. [255] and a degradation mode based 
model from Dubarry et al. [258]. The stress factors are cumulated for both models 
and simulation parameters updated at certain time intervals for a given simulation 
period, as seen in Figure 6.5.  
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More detailed models allow for a better understanding of the failure modes and 
probabilities but depend on characterisation measurements many times more 
granular. For the passive anode overhang, for example, cells must be 
disassembled and the electrode dimensions determined.  

 

Figure 6.5: Combined model with electric, thermal, and ageing submodel. 

 
Ageing processes inform the semi-empirical ageing model within the battery, 
such as the growth of the SEI, but it is not directly modelled. Only the effect level 
capacity and resistance changes of the overall battery are modelled. These 
changes are described as functions of time, temperature, voltage, DoD, and Ah 
throughput [259]. For example, elevated temperatures and high SoCs induce a 
high ageing rate. Figure 6.6 shows a schematic of the model based on Ecker and 
Schmalstieg [214], [259], and it is split into a cycle ageing and a calendar ageing. 
Calendar ageing is independent of the usage but is dependent on the SOC, 
temperature and cell age. Cycle ageing is dependent on the charge throughput, the 
cycle depth and the mean SOC of the battery during operation. 

 

Figure 6.6: Structure of semi-empirical effect ageing model from Schmalstieg et al. [259]. 

To derive the parameters for the ageing model, first, the calendar ageing function 
is determined. For example, Figure 6.7 shows an ageing test from [199], in a) 
degradation curves of all different SOCs at 50 °C are shown, and in b) the 
complete ageing matrix of this dataset. Next, the parameters of the ageing 
equations are fitted to ageing data and then used for the cycle ageing fit. Since all 

Electric model Thermal model Ageing model

Power

Temperature

Stress factors

Parameter
Update

Usage profiles

Usage statistics

Current, Power
Ambient Temperature

Calendar ageing

Cycle ageing

Updated capacity
and resistance

Temperature
Voltage

Mean Voltage
Cycle Depth

Charge Throughput



Stochastic battery ageing model 
 

96 

ageing tests also have a time component, calendar ageing is also present in all 
cycling tests. Therefore, the calendar ageing factor is deducted before the cycle 
ageing influence is determined. 

 

Figure 6.7: a) Calendar ageing test at different SOC at 50°C as part of a more extensive test setup 
from Ecker et al. [199] b) corresponding ageing matrix, blue dots represent tests shown in a), dots 

for tests not shown are grey. 

The other model used in this work is based on degradation modes from Dubarry 
et al. [258]. Instead of modelling the capacity/power fade directly, a physical 
informed intermediate step with degradation mechanisms and modes. Three 
distinct degradation modes are differentiated: First, Loss of Lithium Inventory 
(LLI) describes the amount of lithium lost to side reactions or trapped. Second 
Loss of Active Material at the anode or Negative Electrode (LAMNE) describes 
the amount of active material not available anymore, such as through particle 
cracking and exfoliation leading to a loss of electrical contact. Similarly, the ionic 
contact can be inhibited through covering layers. Both electrical, as well as ionic 
contact, is necessary to charge and discharge. Loss of Active Material at the 
cathode or Negative Electrode is named LAMNE accordingly. 
For example, as seen in Figure 6.3, the degradation mechanism SEI growth leads 
to the degradation mode of loss of lithium inventory, causing the effect of capacity 
loss. On the other hand, the mechanism is caused by the stress factors time, high 
temperatures, high voltages, and current loads, as shown in Figure 6.8.  
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Figure 6.8: Degradation mode based ageing model by Dubarry et al. [258]. 

 

 

Figure 6.9 Voltage vs capacity for full and half-cell slow discharge curves allow tracking the 
electrodes' matching. Dahn et al. [260] Reproduced with permission from IOP Publishing. 

To determine the parameters for this model in a first step, slow discharge rate 
measurements of the full cell and half-cell measurement for both electrodes are 
needed. With either the DVA or ICA technique, the shape of the derivative of the 
discharge curve is used to determine the matching between anode and cathode 
voltage curves to combine to the full cell curve (Figure 6.9). 
For simulations in this work, the model parameters are used from Dubarry et al. 
[261], and the per-cycle degradation modes were extracted to LLI is 0.033 %, 
LAMPE 0.01 % and LAMNE to 0.005 %. This degradation value from literature is 
used since the datasets used for the other models did not contain all the necessary 
measurements to track the modes during ageing. 
This ageing model not only scales the cell voltage response as seen in these 
discharge curves but simulates the underlying electrode combination and the 
electrode specific degradation and their combination. In this example, the battery 
simulation is run for 720 cycles with an update of the ageing model every 60 
cycles. Figure 6.10 a) shows the discharge curves for different ageing conditions 
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relative to the SOC relative to the apparent capacity and b) relative to the nominal 
capacity. 

 

Figure 6.10: Degradation mode based ageing simulation with the model by Dubarry et al. [261]. 

The differences in voltage response are caused by differences in the amount of 
LLI and LAM. With the equal loss of each of the values, the voltage curve would 
keep the same shape. 

6.4 Monte-Carlo Simulation & Input variation 
The Monte-Carlo-Method or Monte-Carlo simulation describes functions or 
algorithms which use random numbers as input. As seen in Figure 6.11, varying 
usage with current profiles, varying parameters of the electric simulation, for 
example, capacity, and varying ageing rates in the battery ageing model are used. 
Part of the Monte-Carlo simulation is the use of random numbers or mostly 
pseudo-random numbers in computing. Since the random values are assigned 
before the ageing simulation, the random number generator can be called in series. 
This addresses the problem of software pseudo-random-number generators in 
parallel computing. Parallel calls of the random functions might produce non-
random numbers due to the same seed values [262].  
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Figure 6.11: Random input parameters for Monte-Carlo simulation. Varying usage through 
current/power profiles, initial parameters of the electric model and ageing rates. 

 
As Figure 6.12 shows, simulating variation with a Monte-Carlo Simulation is as 
follows; first ageing experiments are evaluated as shown in Chapter 4, and an 
ageing model fitted. The fitting error of an ageing rate distribution is derived as a 
Gaussian distribution with the fitting value as mean and with the same standard 
deviation. Within the model library CXML, the distribution of the parameters of 
the ageing model is defined. This ageing rate distribution is an estimation of 
population variability and can now be used to compare different datasets as well 
as be used for further simulations. As seen in Chapter 3.5, the sample size, mostly 
3 cells per the ageing condition, cannot be regarded as a “big enough” sample size 
but is limited by data availability. In future work, if resources are available, more 
extensive ageing tests with around 10 cells per ageing condition would 
significantly increase the accuracy of the population estimation. 

 

Figure 6.12: From ageing experiments, an ageing rate distribution is derived and used to create 
random ageing rates for the Monte-Carlo simulation. The mean of the ageing rate distribution is 

marked in red and also shown as the fit of the curves in the ageing experiment 
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For load profiles in addition to simple constant current cycling, more complex 
profiles, for example, the Worldwide harmonized Light vehicles Test Procedure 
(WLTP), are used. Since the WLTP only defines a target velocity, a real vehicle 
or full vehicle model is necessary to determine the power demand. The model 
used to create power profiles in this work is described in [263]–[265] and uses a 
full vehicle model including a driver model, drive train, aerodynamics, power 
electronics as well as a battery system. 
In [128], [266], Dubarry et al. describe a combined ageing and electrical model 
framework. Based on an electric circuit model, the Dubarry ageing model 
described in 6.3, battery pack models as well as BMS models, the behaviour of 
an aged battery pack can be modelled. The critical difference in the simulation 
presented here is the feedback loop from ageing to the electrical-thermal 
simulation enabling intermediate steps within the ageing model.  

6.5 Stochastic simulation 
In the development, numerous test cases were simulated to test different parts of 
the model framework as well as the evaluation of such simulated data. Over 5.000 
packs, 500.000 cells were simulated with over 20 different electrical models, 5 
thermal models and 2 ageing models generating more than 5 Terabytes of 
simulation data with around 40.000 CPU core hours of computing. As an example 
for the modelling framework in the following, two applications of stochastic 
ageing simulations are shown.  
The first use case is to test the robustness of the battery system towards variations 
in the battery cell properties. If the system is also robust with cells with higher 
variability, manufacturing can be allowed wider tolerances. This can lead to tools 
being used for an extended time in production even if the initial specifications can 
no longer be met. In addition, lithium-ion batteries typically go through a grading 
system where the best cells are sorted into grade A and cells below a certain 
threshold in grade B or C [85]. A system allowing a broader range of cells can 
therefore be cheaper. 
The second use case is optimising the battery topology with a given cell 
variability. In this case, the influence of parallel and serial connections is 
investigated. However, there are limits for the design space depending on the 
application. Connecting all cells in parallel, for example, provides higher 
robustness of the system but lowers the pack voltage to the single-cell voltage, 
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which is not suitable for high-power applications. In electric vehicles, one degree 
of freedom is system voltages between 400 V and 800 V. Here, not only does the 
number of voltage levels to be monitored by the BMS increases with 800 V, and 
also fewer cells are connected in each parallel connection. Since the whole system 
performance depends on the weakest link in a serial connection, weak cells can 
barely be compensated for with fewer parallel cells. 
Before the impact of cell variations is analysed in different topologies in the 
second part of this section, the spread in ageing is evaluated for single cells, but 
different spreads in cell properties. Therefore, the degradation mode model from 
Dubarry is implemented. All three parameters of the model, loss of lithium 
inventory and loss of active material at anode and cathode, are considered. All 
cells are modelled with the same stress profile and only differ in the respective 
ageing model’s parameters assigned from an ageing rate distribution before the 
Monte-Carlo simulation. All simulations were run for the 720 cycles with an 
ageing step every 60 cycles, and the results are shown in Figure 6.13- Figure 6.15.  

 

Figure 6.13: Remaining capacity at the end of the simulation vs Loss of Lithium Inventory for a) a 
low spread and b) a high spread in ageing parameters. 

Figure 6.13 shows the loss of lithium inventory vs the remaining capacity at the 
end of the simulation. The low spread of ageing rates shown with a standard 
deviation of 3 % in a) comprises of 10,000 cells, and the high spread of ageing 
rates with a standard deviation of 10 % in b) of 1,000 and both plots show the 
same mean values of the distribution. Both plots depict the kernel density 
estimation (KDE) instead of a scatter plot to better show data points very close to 
each other. A dark colour indicates a high probability, and lines of equal 
probability are between two different coloured areas. The higher the correlation 
in the KDE plot, the tighter the plot shape gets, so a correlation of 1 would be 

a) low spread b) high spread
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shown as a straight line, and no correlation would be shown as round circles. In 
Figure 6.13, both graphs a) and b) show a correlation between LLI and the 
remaining capacity, but the plane's width covered by the KDE for plot b) is 
significantly increased.  

 

Figure 6.14: Remaining capacity at the end of the simulation vs Loss of Active Material at the 
Positive Electrode a) for low spread b) for high spread. 

In Figure 6.14, similar plots are shown for the Loss of active material on the 
positive electrode. Again, the low spread of ageing rates shown in a) comprises 
10,000 cells, and the high spread of ageing rates in b) of 1,000. Here a small 
correlation is visible so that the outer bound of the KDE for a given LAMPE 
includes a range of the remaining capacity of more than 20%. 

 

Figure 6.15: Remaining capacity at the end of the simulation vs Loss of Active Material at the 
Negative Electrode. a) for low spread b) for high spread. 

The last plot for the two spreads in ageing rate, Figure 6.15, shows the KDE of 
Loss of active material at the negative electrode vs the remaining capacity. Here 
again, a) is for the low spread and b) for the high spread scenario. In this 
representation, LAMNE has a low correlation with the remaining capacity, visible 

a) b)low spread high spread

a) b)low spread high spread
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as high roundness in the KDE plot. The correlation to remaining capacity is 
beneficial if one of the above-mentioned degradation modes is observable while 
capacity is not. In addition, analysed for different cells, it indicates which mode 
is dominating the degradation. 
After the spread in ageing rate and the correlation of the degradation modes are 
evaluated for single cells, the different spreads in cell properties are now analysed 
regarding different topologies. Therefore, a generic battery module consisting of 
100 cells is created for the simulation framework. Each cell has specific start 
parameters, e.g., capacity and specific ageing rates assigned from the ageing rate 
distributions mentioned earlier from the prior ageing model fit. 300 modules were 
simulated using the three topologies 100s1p, 20s5p and 50s2p, meaning that 
30,000 virtual cells were simulated in total.  

 

Figure 6.16: Number of cells reaching end-of-life after x days (blue histogram) for 30,000 cells. In 
orange cumulative of cells already reaching their end-of-life. 

Figure 6.16 illustrates the simulated lifetime distribution of those 30,000 cells 
from Sanyo. The blue histogram depicts the number of cells that reach the end-
of-life criterion, here 80 % remaining capacity, at a certain time in days. This is 
depending on the initial parameters as well as the ageing rates. In orange, the 
cumulative number of cells is shown that have already reached the end-of-life. 
The first cells start to fail at around 300 days, and the last cells die at about 1,200 
days. So, the mean value is around 800 days. Additionally, most cells reach the 
end-of-life criterion at around 800 days.  
Since all cells in this simulation are part of a pack, the serial connection's worst-
performing cell/parallel connection determines the whole pack capacity. 
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Therefore, the distribution of failing packs also changes since there are also packs 
with comparable good cells in the whole pack failing later. This is shown in 
Figure 6.17, where the days until the end-of-life for packs are shown in blue, and 
the cumulative number of packs failed in orange. 

 

Figure 6.17: In the blue histogram of days until end-of-life is reached for 300 packs. In orange 
cumulative of packs already reaching their end-of-life. 

Looking closer into the data, the three topologies can be distinguished as shown 
in Figure 6.18 and Figure 6.19. The 100 cells of each pack are part of three 
different topologies, namely 100s1p in blue, 20s5p in orange and 50s2p in red. In 
100s1p, all cells are in serial, while 20s5p has 5 cells in parallel and 50s2p 2 cells 
in parallel. 
As seen in Figure 6.18, the differences between the topologies on cell level are 
minimal. The differences in the 100s1p configuration can be explained by the 
DOD dependency of the ageing rate in the model. When a cell has a lower 
capacity, the same charge throughput equals a higher relative depth of discharge. 
With the dependency in the ageing rate model of the DOD, the low-capacity cell 
also has a higher ageing rate. This influences the packs with only one cell in 
parallel the most, and they, on average, die the quickest. But the effect has limits, 
so there is no significant difference between two cells in parallel and five cells in 
parallel since the average capacity of the parallel connection is already much 
closer together.  
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Figure 6.18: In the histograms of days until end-of-life is shown for 3 topologies with 10,000 cells 
each. In addition, the cumulative of cells already reaching their end-of-life is shown. 

The most significant effect is shown in Figure 6.19, where the cumulative failure 
rate of packs is shown, and there are significant differences between the 
topologies. 
Since in the serial connection, the worst cell determines the end of life of the pack, 
with the first cells dying at around 300 days also the first packs of the 100s1p 
pack topology start to fail. After that, the 2p topology can be found in the middle, 
with packs dying from 450 to 650 days. The other packs, with the five parallel 
cells, start to die last at around 600 days. 

 

Figure 6.19 In the histograms, the days until end-of-life is shown for 3 topologies for 100 packs 
each. In addition, the cumulative of packs already reaching their end-of-life. 
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6.6 Chapter conclusion 
Based on an impedance-based cell mode, a modelling framework was developed 
to simulate batteries' electrical and thermal behaviour as well as their ageing 
behaviour in different configurations. With load profiles, usage patterns and 
lifetime requirements, batteries can be simulated multiple times as part of a 
Monte-Carlo simulation with cell properties derived from the ageing rate 
distributions and initial spread distributions. Within the framework, the number 
of failed cells, as well as the cumulative amount cells, can be calculated given a 
certain topology and distribution, enabling comparisons on a “fleet-level”. 
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7 Summary and Outlook 

7.1 Summary 
This work deals extensively with the variation of properties of battery cells of one 
type. This includes the analysis of a very large amount of experimental data, the 
development of a system for the evaluation and presentation of performance data 
of batteries in comparison, the development of test procedures with statistical 
relevance and the modelling of ageing taking into account the variance of the 
individual cells. 
Within this work, a framework to simulate battery ageing, including variation in 
ageing rate and initial parameters, is introduced. Derived from various 
degradation datasets, empirical capacity-versus-time ageing models were 
parametrised with data from more than 1,000 cells, with an automated method to 
analyse battery ageing data. 
Overall, with the deeper understanding and quantification of cell-to-cell variation 
developed within this work, advances in several aspects have been achieved. Most 
relevant is target-oriented testing of batteries incorporating variation for enhanced 
statistical certainty, resulting in decreased cost and testing efforts through a 
predetermined sample size. The minimum number of cells, which should be tested 
to accurately represent population variability, was estimated by assuming that the 
model parameters could be drawn from a distribution describing a larger 
population and then using a hierarchical Bayesian approach. Thus, the minimum 
data for each point in the test matrix was determined to be from at least 9, 11 or 
13 cells for a consistent fit depending on the complexity of the ageing model with 
1, 2 or 3 parameters, respectively. 
A thorough evaluation and correlation of the variety of possible health indicators 
proved a possibility to reduce the measurement effort during check-ups. A high 
correlation between two or more indicators reveals that measuring one of them is 
sufficient to quantify ageing reliably. In particular, the resistance measurements 
with pulses showed a high correlation for different pulse lengths, currents and 
states of charge. 
Furthermore, this thesis introduced ENPOLITE, an approach that allows a 
comprehensive comparison and an overall evaluation of lithium-ion batteries by 
modifying the Ragone plot and incorporation lifetime and testing conditions. It 
considers the trade-off between multiple requirements, including energy density, 
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power density, and lifetime. As a result, the critical operating parameters of large 
datasets of lithium-ion battery cycling and calendar ageing across multiple battery 
chemistries and usage conditions can be compared unbiased.  
In addition, lifetime prognosis models with additional confidence intervals allow 
more representative predictions of lifetime and failure scenarios in the application 
considering different topologies. 
The research in this thesis aims to optimise system topologies for individual 
applications to find suitable cells, avoid oversizing battery systems and give 
forecasts of a lifetime and quantifiably failure rates for battery packs while 
decreasing cost. A simulation toolchain was developed to incorporate variability 
and spread of ageing rates in the system design process. In the scope of the 
simulation tool, battery topologies can be simulated with varying usage profiles, 
cell parameter spreads and varying ageing rates. The simulations showed 
increasing robustness against cell failure for different topologies when a larger 
number of cells are connected in parallel. Thus, with the help of the toolchain 
developed in this work, cell-to-cell variations can be accounted for and their 
effects included in the cell selection and design process. The first step towards 
allowing differences in the cell properties and managing them in the application 
is made with this work. The toolchain can handle the statistical spread of cell-to-
cell variation in the initial state after production and even quantifies degradation, 
which differs strongly. Still, a reliable prediction is difficult even with a large 
amount of data as numerous stress factors have to be considered. 

7.2 Outlook 
To really make the expensive rigorous process monitoring and rigid quality 
control dispensable without increasing the scrap rate, more work on this topic is 
necessary. The key lies in collecting as much and valuable data in a given time to 
incorporate the uncertainties experienced in the ageing test into simulation 
models. This will include developing techniques to accelerate ageing as fast as 
possible without triggering additional and unwanted ageing mechanisms. 
Secondly, the measuring techniques need to develop in order to already track 
slight changes and ageing effects, so cells need to be tested for a shorter time to 
predict their ageing behaviour earlier. Lastly, techniques for testing more cells at 
the same time (parallel testing) need to be developed.  
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Additional ageing models can also be implemented, especially on a more detailed 
level of degradation mechanisms. Those models will need even more data, so 
good data availability is key for all future work, including the basis of stochastic 
ageing models.  
Since for batteries, a lot of the associated cost is during investment, good ageing 
prediction enables an informed decision based on the total cost of ownership and 
reduces the premium rates associated with financing uncertainty. Therefore, good 
prediction enables the confidence to make necessary investments early to move 
to a renewable economy. 
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8 List of Abbreviations 
 
BEV        Battery electric vehicle 
BMS        Battery management system 
BOL         Begin of life 
 
CCCV         Constant current constant voltage 
CDF        Cumulative distribution function 
CPU        Central processing unit, main computer processor 
CT        Computer tomography, 3D-Xray 
CTCV         Cell-to-cell variation 
 
DOD        Depth of discharge/cycling depth 
DVA        Differential voltage analysis 
 
ECM         Equivalent circuit model 
EIS         Electrochemical impedance spectroscopy 
ENPOLITE  ENergy-POwer-LIfetime-TEmperature plot 
EOCV         End of charge voltage 
EODV         End of discharge voltage 
EOL         End of life 
EV        Electric vehicle 
 
HLD        Homogeneity of lithium distribution 
 
ICA        Incremental capacity analysis 
 
LAM        Loss of active material 
LFP        Lithium iron phosphate (cathode material) 
LLI        Loss of lithium inventory 
LMO        Lithium manganese oxide (cathode material) 
LTO        Lithium titanate oxide (anode material) 
 
KDE         Kernel density estimation 
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MLB        Multi-level Bayes 
 
NCA        Lithium nickel cobalt aluminium oxide (cathode material) 
NE        Negative electrode 
NMC        Lithium nickel manganese cobalt oxide (cathode material) 
 
OCV        Open circuit voltage 
 
PDF        Probability density function 
PE        Positive electrode 
 
qOCV        Quasi open circuit voltage 
 
RMSE         Root-mean-square error 
 
SEM        Scanning electron microscopy 
SEI        Solid-Electrolyte-Interface 
SOC        State-of-Charge 
SOH        State-of-Health 
SOP        State-of-Power 
SSD        Sub-sample distribution 
STEM        Scanning transmission electron microscopy 
 
WLTP         Worldwide harmonized Light vehicles Test Procedure 
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One of the essential components of an electric vehicle is its en-
ergy storage system. Unfortunately, it has also proven to be the 
most expensive component, limiting the vehicle‘s performance, 
for example, range or power, for a given cost target. If higher 
spreads and more inferior cell quality can be coped within the 
system, costs can be lowered by decreasing the number of cells 
rejected in production. In addition, it is essential, in particular for 
large storage systems such as automotive or stationary storage 
applications, to ensure the extended usability of the systems. 
Especially in stationary applications, design lifetimes have to 
be in the range of 10 to 15 years. Therefore, the manufacturers 
need to ensure long-lasting battery modules as the smallest ex-
changeable units. Previous analysis on the impact of variations 
in commercial lithium-ion battery systems on ageing showed 
the vital role of spreads in cell parameters of the batteries.

The research aims to optimise system topologies for individ-
ual applications to find suitable cells, avoid oversizing battery 
systems and give forecasts of a lifetime and quantifiably failure 
rates for battery packs while decreasing cost. A simulation tool-
chain was developed to incorporate variability and ageing rate 
spreads in the system design process. In the scope of the simu-
lation tool, battery topologies can be simulated with varying us-
age profiles, cell parameter spreads and varying ageing rates.
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