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ABSTRACT

THE (P,N) CHARGE-EXCHANGE REACTION IN INVERSE KINEMATICS AS A
PROBE FOR ISOVECTOR GIANT RESONANCES IN EXOTIC NUCLEI

By

Samuel Israel Lipschutz

Charge-exchange experiments at intermediate (∼100 MeV/u) beam energies have long

been a tool to study isovector giant resonances in nuclei. Since the 1970s, many probes and

techniques have been developed to study and isolate different isovector giant resonances,

which have illuminated the spin-isospin response of nuclei. However, these experiments have

almost solely been restricted to stable nuclei. The advent of rare-isotope beam facilities has

created increased interest in studying these resonances in radioactive nuclei. Such experi-

ments are important for better constraining models that aim to describe the properties of

nuclei and nuclear matter, with important applications in astro and neutrino physics. To

take advantage of these rare-isotope facilities, new techniques in inverse kinematics need to

be developed and validated. This thesis presents a new technique for studying isovector

giant resonances on unstable nuclei in the ∆Tz = −1 direction, through the (p,n) reaction in

inverse kinematics. The technique was validated through the measurement of the absolute

differential cross section in the neutron-rich 16C(p,n)16N* reaction at 100 MeV/u up to ∼20

MeV of excitation energy. From the data, the Gamow-Teller (GT) strength distribution

[B(GT)] and the spin-dipole (SD) differential cross section were extracted. The extracted

B(GT) was compared with shell-model calculations in order to test their reliability in the

neutron-rich, high-excitation energy regime. A total GT strength up to 20 MeV was ex-

tracted and compared to the model-independent sum rule, giving a quenching factor of 73.5

±2.8(st)± 15.5(sys)%. This experiment provided one of the first measurements of isovector



strength in a neutron-rich nucleus and has paved the way for future exploration of isovector

giant resonances in exotic nuclei.



This thesis is dedicated to you, the reader, so that you may feel special.
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Chapter 1

Introduction

1.1 The Atomic Nucleus

Nuclear physics is a unique field of study. While it has had significant impact on the world

from its beginnings, a robust and a comprehensive predictive theory remains elusive. The

most basic goal of nuclear science is to understand the forces that bind the atomic nucleus

together and, with those forces, understand the many phenomena observed in nuclei and their

interactions. Though they are not fundamental particles, the nuclear problem is typically

defined in terms of the nucleon constituents—protons and neutrons—that interact via the

strong nuclear force.

Beginning with Rutherford’s discovery of the nucleus [1], the field has grown to discover

more than 3000 different isotopes out of approximately 7000 predicted to exist [2]. These

different nuclei are organized in a way similar to the periodic table of the elements, called

the chart of the nuclides. This chart is shown in Fig. 1.1, where the number of neutrons is

plotted on the horizontal axis and the number of protons is plotted on the vertical axis.

The vertical and horizontal dashed lines in Fig. 1.1 indicated the “magic numbers” (2,

8, 20, 28, 50, 82, 126). The magic numbers and their meaning were a crucial discovery for

nuclear physics. They correspond to numbers of nucleons that form and designate partic-

ularly stable or strongly bound nuclei. This is a phenomenon that is similar to the noble
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Figure 1.1: Chart of the nuclides showing the number of neutrons on the x axis and the
number of protons on the y axis. The black squares show the stable nuclei, the blue region
shows nuclei that have been observed but are unstable, and the red region shows nuclei that
are predicted to exist but have not been observed experimentally. The dashed lines show
the nuclear magic numbers. Figure taken from Ref. [3].

gases of atomic physics, where a completely filled outer electron shell makes them inert. The

magic numbers were first recognized by Maria Mayer in 1948 [4], and later further explained

by Mayer [5], and Haxel, Jensen, and Suess in 1949 [6]. The insight made independently by

Mayer and Jensen et al. was the necessity of a strong spin-orbit interaction to reproduce

the observed magic numbers. Both Mayer and Jensen were awarded a portion of the Nobel

Prize in Physics in 1963 for creating and explaining the nuclear shell model.

1.2 The Nuclear Shell Model

The nuclear shell model organizes the protons and neutrons of a nucleus into shells that

attempt to reproduce the observed magic numbers. Strictly speaking, the nucleus is a self-

bound system of A nucleons, where the attractive nuclear potential between all the particles
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binds the nucleus. The shell model, however, is a mean-field approximation that describes

the motion of the individual nucleons within an average potential that models the total effect

of the remaining A − 1 nucleons. This marks a significant difference from the atomic case.

For an atom the negatively charged electrons are bound by the Coulomb potential well of

the positively charged nucleus, and not by the collective effect of all other electrons in the

system.

There are two traditional forms of the potential used in the nuclear shell model: a

harmonic-oscillator

V (r) =
1

2
mω2r2, (1.1)

or Woods-Saxon potential

V (r) =
V0

1 + exp[(r −R)/a]
. (1.2)

For the harmonic-oscillator potential, m is the nucleon mass and ω is the oscillator frequency.

For the Woods-Saxon potential, V0 is the depth, R is the radius, and a is the diffuseness of

the potential well. In addition to the potential well described by V (r), a term to model the

spin-orbit interaction between the nucleons is also included. For the spin-orbit potential, it

is important to note that it must vanish at the center of the nucleus [7]. This motivates

using a potential shape that is peaked at the surface. The derivative of a Wood-Saxon is

typically used,

Vso(r) = Vso
1

r

dfso(r)

dr
, (1.3)

where

fso =
1

1 + exp[(r −Rso)/aso]
(1.4)

These potentials are summarized in Fig. 1.2, where the neutron single-particle states of
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Figure 1.2: Neutron single-particle states in 208Pb with three different potential models.
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the running sum. Figure taken from Ref. [7].
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208Pb are shown. Though the harmonic oscillator clearly has the wrong asymptotic behavior

(V(r→ ∞)→ ∞), it reproduces several of the observed magic numbers (2, 8, and 20). The

Woods-Saxon potential, shown in the center of Fig. 1.2, breaks the the l degeneracy by

bringing states with higher l values down in energy, but still fails to reproduce the observed

magic numbers above 20. Adding the spin-orbit term completely breaks the degeneracy of

the states and reproduces the magic numbers as Mayer and Jensen et al. first showed. The

spin-orbit term in the nuclear case is of opposite sign to the atomic case, bringing higher J

states lower in energy. This is shown as the right column in Fig. 1.2.

This basic description of the shell model is referred to as the independent-particle model

and works well for nuclei with one nucleon more or less than a magic number. In these

circumstances the nucleus can be modeled well by an inert “core” and one orbiting nucleon.

There the low-lying excited states of the nucleus can be understood as the valence nucleon

simply moving into higher orbitals of the potential created by the core. However, in the more

common case of several nucleons outside a closed core, the problem becomes more complex,

since the interaction between the valence nucleons must be taken into account.

This is done by solving the the Schrödinger equation,

ĤΨ = EΨ, (1.5)

where Ĥ is the Hamiltonian, Ψ is the wave function, and E is the energy. Unfortunately,

we cannot write down the full expression for Ĥ, since we don’t know the true shape of the

nuclear potential. Following the notation of [7], the Hamiltonian is often modeled as,

H =

(
n∑
k=0

(Tk + Uk)

)
+

 n∑
k<l

Vkl

 = H0 +W, (1.6)
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where Tk is the kinetic energy operator, Uk is the single particle potential, n is the number

of nucleons, and Vkl is a two body interaction that is chosen to reproduce the experimental

data. Using the single particle states from H0 as a basis, the problem is cast into a matrix-

diagonalization problem where the off-diagonal terms come from the interaction. This gives

a series solution of the form,

Ψ =
∞∑
n=0

= cnΦn (1.7)

where Φn is a Slater determinate for each possible arrangement of nucleons among the

different single-particle states and cn is the coefficient from the diagonalization. A clear

problem with equation 1.7 is that the sum goes to infinity, since there are an infinite number

of single-particle states at higher and higher energies. This is clearly impossible to calculate,

so the series must be truncated. This puts the problem into a specific model space where

only certain single-particle levels are used (for example only the 0p shell). This approach is

used in modern shell-model programs such as OXBASH [8], NuShell, and NuShellX [9]

The shell structure and associated magic numbers presented in Fig. 1.2 were developed

and validated with experimental information from stable nuclei. However, in unstable nu-

clei the energies between shells can change and the ordering of the single-particle levels can

change. The large shell gaps that create the familiar magic numbers can vanish and create

new, smaller ones at different proton and neutron numbers. This phenomenon is often re-

ferred to as shell evolution or shell inversion, and understanding its behavior is a significant

goal of nuclear physics (see Ref. [10] and references therein). Light, unstable nuclei where

large neutron-to-proton ratios can be achieved have been used as a fertile testing ground

for nuclear structure models and for understanding the role of shell evolution in nuclei.

Of particular interest to charge-exchange studies is the role that the isovector part of the
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nucleon-nucleon (NN) interaction plays in shell evolution. This role has been investigated

previously and the interested reader is directed to Refs. [11, 12] for more information.

1.3 Giant Resonances

Giant resonances in nuclei occur at high excitation energy, where a large fraction of the

nucleons participate in a collective mode. Historically, they are considered a giant resonance

if they exhaust more than 50% of the associated sum rule (an expression for the total

amount of strength for a given operator, see Section 1.8 for more information) for that

mode. Giant resonances were first observed by Bethe and Gentner in 1937 [13], where they

excited the isovector giant dipole resonance (IVGDR) through photo absorption experiments

on a variety of targets. Systematic study of the IVGDR was enabled in 1947 with the

development of the betatron, which allowed for high-energy γ rays to be produced through

the bremsstrahlung process [14]. This led Baldwin et al. to study the photo-fission and

photo-absorption responses of nuclei in detail from 10-100 MeV [15, 16]. In the early 1970s,

a second giant resonance was observed by Pitthan and Walcher in the (e, e′) reaction at

65 MeV on 208Pb [17]. This was determined to be the isoscalar giant quadruple resonance

(ISGQR). Having found both isovector and isoscalar giant resonances, many experiments

were undertaken to study them in detail using a variety of probes. The interested reader is

referred to Ref. [14] for more information on the historical development of giant resonances.

From a macroscopic perspective, giant resonances can be thought of as resonant oscilla-

tions of a nuclear liquid drop. Some of these modes are depicted in Fig. 1.3, where they are

organized in terms of their orbital angular momentum. Shown in the figure are breathing

modes (∆L = 0), where the protons and neutrons oscillate radial outwards, dipole modes
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(∆L = 1), where the protons and neutrons oscillate against themselves, quadrupole (∆L=2)

and octupole modes (∆L = 3). As depicted in the figure, each of these resonances can occur

with spin and isospin degrees of freedom. When a unit of spin is transferred (∆S = 1), the

spin up (down) protons and neutrons will oscillate out of phase with the spin down (up)

protons and neutrons. Similarly, a unit of isospin (∆T = 1) can be transferred, causing the

protons to oscillate out of phase with the neutrons. For example, the isovector spin giant

dipole resonance (IVSGDR or spin-dipole resonance (SDR)) can be thought of as protons

with spin up oscillating against neutrons with spin down, superimposed with the reverse.

electric mode (∆S = 0) magnetic mode (∆S = 1)

IS (∆T = 0)IS (∆T = 0) IV (∆T = 1) IV (∆T = 1)

∆L = 0

∆L = 1

∆L = 2

∆L = 3

monopole

dipole

quadrupole

octupole

p ↓

p ↓

p ↓

p ↓p ↓p ↑
n ↓

n ↑

n ↑

n ↑

n ↑n ↑

pn

pn

pn

p

p

p

p

n

n

n

n

p↓n↓

p↓n↓

p↓n↓

p↑n↑

p↑n↑

p↑n↑

Figure 1.3: Schematic of the macroscopic depiction of various giant resonances. For each
∆L value, the different possible spin and isospin transfers are shown. Figure taken from Ref.
[18].
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From a microscopic perspective, giant resonances are a coherent superposition of one-

particle, one-hole (1p-1h) excitations. A general expression for the operators that mediate

giant resonances can be written as,

O±JM =
∑
k

rλk [Y∆L ⊗ σ̂k]JM τ̂±k, (1.8)

where Y∆L is a spherical harmonic, σ̂ is the vector spin operator, τ̂± is the isospin ladder

operator, k runs through each nucleon in the target nucleus, λ = 2∆n + ∆L, and n is the

principle quantum number. For example, the isovector (∆T = 1) spin (∆S = 1) giant dipole

(∆L = 1) resonance and can be written as,

SD±JM =
∑
k

rk[Y1 ⊗ σ̂k]JM τ̂±k (1.9)

This picture is especially important for the Gamow-Teller (GT) and the Fermi (F) giant

resonances, which involve only spin and isospin degrees of freedom and therefore have no

macroscopic, oscillatory picture. These resonances can be excited and studied by charge-

exchange reactions and will be discussed in Section 1.4.

In general, giant resonances offer powerful insight into the collective properties of nuclei

and provide a stringent testing ground for nuclear structure models at high excitation energy.

Many studies have investigated isoscalar electric resonances using the (α, α′) reaction to

extract bulk nuclear properties and to test theoretical models [19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29]. In particular, isoscalar monopole resonances can be used to extract the compression

modulus of nuclear matter Knm [30]. This was first done by Youngblood et al. who measured

the ISGMR strength distributions in several nuclei, from which they determined Knm =

9



231 ± 5 MeV [31, 32]. Searches for the isovector giant monopole resonance (IVGMR) have

also been done on several stable nuclei, using nuclear [33, 34, 35] and pion [36] charge-

exchange reactions. Studying the IVGMR resonance gives a fundamental understanding of

the isovector part of the residual nuclear interaction and provides information on isospin-

symmetry breaking and isospin mixing in nuclei [33, 34].

The spin-dipole resonance can be used to give a model-independent measure of neutron

skin thickness through its non-energy-weighted sum rule. This was done recently for the

first time by Yako et al., where 90Zr(p,n) and 90Zr(n,p) were measured at 300 MeV. This

gave a neutron rms radius of
√
〈r2〉n = 4.26 ± 0.04 fm and a neutron skin thickness of

δnp = 0.07±0.04 fm [37]. Neutron skin thickness has also been extracted from studies of the

pygmy dipole resonance in unstable nuclei [38]. Neutron skin thicknesses make constraints

on the neutron equation of state that are important at high density and so are useful for

neutron star properties [39, 40, 41]. Of particular interest to this thesis are the isovector giant

resonances induced by charge-exchange reactions. They have received decades of study from

a variety of probes. The following sections present details about charge-exchange reactions

and their role in the giant resonance arena.

1.4 Nuclear Charge-Exchange Reactions

Nuclear charge-exchange reactions occur when participating nuclei exchange charge. The

nuclei’s proton number changes by one (∆Z = ±1), while its mass number remains the same

(∆A = 0). In terms of isospin formalism, this occurs with ∆Tz = ±1. As an illustrative

example, consider the case of the 12C(p,n)12N reaction. The isospin projection for 12C can
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be easily calculated as,

Tz =
N − Z

2
=

6− 6

2
= 0. (1.10)

The total isospin for the ground state can be taken as the smallest value that can accom-

modate the projection, so 12C must be T = 0, Tz = 0. Following similar arguments, 12N

must be T = 1, Tz = −1. Therefore, charge-exchange reactions must change the isospin by

1, and are thus isovector transitions (∆T = 1). In general, charge-exchange reactions can

transfer any amount of orbital angular momentum (∆L) and can occur with or without a

spin transfer (∆S = 0, 1). This gives charge-exchange reactions access to a wide variety of

spin-isospin responses in nuclei [42].

The simplest reaction meditated by charge-exchange is the Fermi transition, which is

characterized by the quantum numbers ∆T = 1, ∆L = 0, ∆S = 0. Using Equation 1.8 the

operator for the Fermi transition must be,

O(F ) =
∑
k

τ̂±k. (1.11)

Nearly all the Fermi transition strength is located in the so-called isobaric analog state

(IAS). The next simplest excitation is the Gamow-Teller (GT) (∆T = 1, ∆L = 0, ∆S = 1)

transition,

O(GT ) =
∑
k

σ̂k τ̂±k, (1.12)

where the spin-transfer operator has been added. The GT and Fermi transitions, induced

through charge-exchange reactions, have great interest since they connect the same initial

and final states as β decay. It has been shown, as outlined in Sections 1.5 and 2.3, that there

exists a proportionality between charge-exchange cross sections for Fermi and GT transitions
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and their associated β decay matrix elements.

The GT strength is defined as the square of the matrix element between an initial state

i and final state f mediated by the GT operator,

B(GT±) =
|〈f ||∑k σ̂k τ̂±k||i〉|2

2Ji + 1
, (1.13)

where the 〈f ||O||i〉 notation refers to the reduced matrix element and Ji is the total angular

momentum of the initial state. The GT and Fermi strength are directly related to the β

decay ft value (partial half-life times the phase space factor f),

ft =
C

B(F ) + (gA/gV )2B(GT )
, (1.14)

where C is a constant, B(F ) is the Fermi strength, and gA and gV are the axial and vector

coupling constants. Throughout this thesis, the value gA/gV = 1.251± 0.009 as determined

from neutron β decay is used [43]. Further, the convention for B(GT) is that the β decay of

the free neutron has B(GT)=3.

The Fermi strength is concentrated into a single transition to the isobaric analog state

(IAS), where the wave function has only been modified by a neutron becoming a proton or

vice-versa. This means that for transitions to other states, the relation simplifies to,

ft =
C

(gA/gV )2B(GT )
, (1.15)

connecting β decay half-life measurements directly to the GT strength. However, unlike β

decay, charge-exchange reactions are not limited in excitation energy by the β-decay Q-value

window. This gives charge-exchange reactions access to the full isovector response of nuclei,
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up to high excitation energy, and therefore makes them a powerful tool for the investigation

of isovector excitations, including the isovector giant resonances.

1.5 Historical Development of Charge-Exchange Probes

Charge-exchange experiments began in 1958 when a proton beam was impinged on a deu-

terium gas target—the first (p,n) reaction [44]. In 1961, (p,n) measurements were done by

Anderson et al. [45], where the IAS was first measured. In 1962, a measurement by Bowen

et al. [46] saw the GT giant resonance, but it was incorrectly interpreted as the IAS. It was

not until 1975 that Doering et al. [47] first measured and identified the GT giant resonance

in the 90Zr(p,n) reaction at 35 MeV. In 1980, the nature of the proportionality between (p,n)

cross section and GT strength was determined by Goodman et al. [48]. Again studying the

90Zr(p,n) reaction, but at 120 MeV, Goodman et al. observed that the GT giant resonance

was preferentially excited at 0° in the (p,n) charge-exchange cross section and with simple

corrections for distortion effects, proportional to GT strength. These initial experiments

began a long line of (p,n) measurements on a range of stable targets, many of which were

done at the Indiana University Cyclotron Facility (IUCF)[49, 50, 48, 51, 52, 53, 54, 55].

Throughout the 1980s, there was clear empirical evidence for the proportionality between

the (p,n) charge-exchange cross section and GT strength. However, it wasn’t until 1987 that

the theoretical framework for the proportionality was formalized by Taddeucci et al. [56].

The success of (p,n) charge-exchange reactions for understanding the collective spin-isospin

modes in nuclei motivated finding other charge-exchange probes to isolate different isovector

resonances. The (n,p) [57] and (t,3He) [58] reactions were first used in the 1970s to explore

the ∆Tz = +1 direction. Additionally, (d,2He) experiments have been undertaken [59, 60].
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Heavy ion probes such as the (7Li,7Be) were used to add spin flip selectivity [61]. In the

mid 1980s, the resolution of the ∆Tz = −1 direction was improved over (p,n) with the

introduction of the (3He,t) reaction [62]. For all of these probes, similar proportionality

relationships between cross section and B(GT) were established.

The aforementioned probes and techniques have all contributed to a detailed and rich

understanding of giant resonances on stable nuclei. However, with the advent of rare-isotope

beam facilities, studying isovector giant resonances on unstable nuclei has received increased

interest. Measuring the GT giant resonance in unstable, neutron-rich nuclei in the medium-

heavy mass region validates nuclear-structure models needed for calculating electron capture

rates [63, 64]. These rates (particularly in the pf and sdg shells) play an important role in

type II supernovae (see Ref. [65] and reference therein). With unstable neutron-rich nuclei,

increased neutron excesses make charge-exchange studies more sensitive to neutron skin

measurements—which makes more stringent constraints than are possible with stable nuclei.

In general, studying isovector giant resonances in exotic nuclei is useful for understanding

the underlying nuclear structure since the sensitivity of the underlying degrees of freedom is

increased compared to stable nuclei [14].

To perform charge-exchange experiments with rare isotopes, new techniques need to be

developed for experiments in inverse kinematics, where the unstable nucleus of interest is

impinged on the stable probe serving as the target. In the ∆T = +1 direction this has been

done with the (7Li,7Be) reaction with a rare-isotope beam of 34P [66]. For the ∆Tz = −1

direction, a relatively new technique for studying isovector giant resonances (GT and SD

giant resonance) has been developed using the (p,n) reaction in inverse kinematics. The

development and validation of this probe is the focus of this thesis.
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1.6 The (p,n) Probe in Inverse Kinematics

In (p,n) experiments in inverse kinematics, an unstable isotope is impinged on a thick, liquid-

hydrogen target. The energy and angle of the low-energy recoiled neutron is measured.

Missing-mass spectroscopy is used to calculate the center-of-mass (COM) scattering angle

and excitation energy of the ejectile (see Chapter 3 for technical details). This technique has

several advantages:

� The (p,n) probe is the simplest of the charge-exchange probes. It is well established

and provides model independent extractions of GT strength.

� The lower beam rates in rare-isotope experiments can be offset by a thick liquid hy-

drogen target. Since the experiment is performed in inverse kinematics, the excitation

energy resolution is less sensitive to the energy loss of the beam in the target. Further,

the neutron can easily escape the target for detection.

� The simplicity of the missing-mass spectroscopy allows for the extraction of the isovec-

tor response up to high excitation energy of any nucleus. The scattering angle and

excitation energy come from the measurement of the recoiled neutron.

The technique was first used to measure the 56Ni(p,n) and 55Co(p,n) reactions in inverse

kinematics at 110 MeV/u [63, 64]. Other measurements have also been performed, including

12Be(p,n)12B [67] and an invariant-mass measurement of the 14Be(p,n)14B reaction at 69

MeV/u [68]. Instead of probing the isovector response of the nucleus up to high excitation

energies, Ref. [64] focused on benchmarking electron-capture rate calculations needed for

core-collapse supernovae simulations. The next round of experiments utilizing this technique

have since occurred, with 132Sn(p,n)132Sb at RIKEN and 16C(p,n)16N at NSCL (experiment
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number e10003). The 16C(p,n)16N experiment is described in this thesis and seeks to validate

the probe’s ability to explore the isovector response of radioactive nuclei up to high excitation

energies.

16C is a good choice for this goal for the following reasons:

� Since it is a light system the cross section is expected to be relatively high due to

relatively small distortion effects from the nuclear mean field.

� High beam rates are achievable, ensuring that sufficient statistics will be obtained in

the measurement.

� The whole GT resonance region can be covered in the experiment.

� Detailed shell-model calculations are feasible for comparison.

With the full GT response measured, the quenching of the GT strength in an unstable

neutron rich-nucleus can be measured (assuming the β+ strength is zero). Alongside the

full GT giant resonance, a portion of the SD resonance will be measured. This cross section

can be compared to shell-model and reaction code predictions.

The shell-model depiction of the GT and SD resonances are given in Fig. 1.4. The

different 1p-1h contributions to the resonances are shown. 16C is a cross-shell nucleus, with

two neutrons in the sd shell. For the GT transitions, there will be contributions from both

the p and sd shells. In the notation of the OXBASH program, configurations with two

nucleons in the sd shell are called 2h̄ω configurations. This naming is with reference to an

16O core, which is a 0 h̄ω configuration. Since GT transitions are associated with no change

in h̄ω, the final states in 16N will be remain in 2h̄ω configurations. The SD resonance changes

major oscillator shells (h̄ω = 1), so it will have many contributions including transitions into

16



the pf shell. This means that there can be transitions from the 2h̄ω configuration of the

16C ground state to either 1 or 3 h̄ω configurations in 16N. To include all of these different

components the shell-model calculations were done in the full spsdpf model space. The

details and results of shell-model calculations for these resonances are given in Chapter 2.
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Figure 1.4: Shell-model schematic showing the different 1p-1h contributions of the GT and
SD giant resonances in the 16C(p,n)16N reaction.

1.7 β Decay of 16C

Several β-decay studies of 16C have already been performed [69, 70, 71]. From the first

measurement in 1976 by Alburger et al., the low-lying structure of 16N has generated interest

as a testing ground for shell-model interactions. Initial efforts by Snover et al. with the

Millener-Kurath (MK) interaction failed to reproduce the observed GT strength for the

two, strong GT states at 3.3 and 4.3 MeV [72]. Significant improvements were made by

Warburton et al. [73] in 1992 with the use of the WBT interaction. There, the 0p shell part

of the interaction was determined simultaneously with the cross-shell part, which improved

the results. A more recent β-decay study by Grevy et al. identified a new state at 6 MeV
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[71]. Table 1.1 shows a summary of the 1+ states that have been observed in β decay

measurements and the corresponding shell-model results.

Experimental Theory

Ex [MeV] Jπ log(ft) B(GT)

3.353 1+ 3.551 ±0.012 1.104 ± 0.03

4.320 1+ 3.83 ±0.05 0.586 ± 0.07

6.00 1+ 3.86 ±0.1 0.543 ± 0.12

B(GT)MK B(GT)WBT

0.001a 0.84a

0.903a 0.21a

0.36b

Table 1.1: Summary of the results from previous β-decay measurements of 16C and from
theoretical calculations. a taken from Ref. [73]. b taken from Ref. [71].

These β-decay experiments have provided constraints and insights for shell-model theories

for the low-lying states in 16N. With the 16C(p,n)16N measurement, the full GT response of

16N will be probed. This will provide a stringent test for the shell model at higher excitation

energies, which are unavailable to β-decay studies.

1.8 The Gamow-Teller Sum Rule

Many model-independent sum rules exist for the operators that mediate the excitation of

giant resonances. They are categorized into energy-weighted (EW) and non-energy-weighted

(NEW) sum rules (SR). For general information about SRs, the reader is referred to Ref.

[14]. Of interest to this thesis is the NEWSR for the GT and the Fermi operators. The GT

sum rule is,

S− − S+ = 3(N − Z), (1.16)

and the Fermi sum rule is,

S− − S+ = (N − Z). (1.17)
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The S± indicates the total strength in the β+ and β− directions, for the GT and Fermi

operators respectively. Equations 1.16 and 1.17 are simple and model independent—all you

need to know is the N and Z of the initial nucleus. A full derivation of the GT sum rule

is given in Appendix A. For the neutron-rich case of 16C, Equation 1.16 is simplified, since

the transitions in the β+ direction will be Pauli blocked. In this case, Equation 1.16 can be

approximated as,

S− ≈ 3(N − Z). (1.18)

This means that the total summed strength in 16C can be probed by measuring only the β−

direction and then directly comparing the result with the sum rule. This will be done in the

16C(p,n)16N reaction described in this thesis. For the Fermi transition, close to 100% of the

NEWSR is exhausted in the transition to the IAS. For 16C, this would mean that the Fermi

strength in the β− direction would be 4.

1.9 Quenching of Gamow-Teller Strength

A reoccurring feature of charge-exchange and β -decay studies is missing GT strength. In

β-decay experiments, the strength from individual states is compared to shell model pre-

dictions where a systematic reduction is seen. With charge-exchange reactions, the whole

GT response can be probed and the summed strength can be extracted, including the GT

giant resonance. When the total strength is compared to the model-independent sum rule

for the GT operator, a systematic reduction in strength is also observed. This phenomenon

is known as quenching and has been studied for many decades [74, 75]. Consider again the
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form of GT single particle operator,

O(GT ) = gA/gV ~̂στ̂±, (1.19)

where the coupling constants are included. This equation gives the free-nucleon form of the

operator. In the β-decay context, quenching of the nuclear matrix element can be thought

of as a renormalization of the decay of the free-nucleon. Degrees of freedom not included in

the model space of the calculation require a correction to either the value of gA/gV or to the

nuclear matrix element of ~̂στ̂ [76]. Different mechanisms have been proposed for quenching,

such as higher-order nuclear configuration mixing (2p-2h and above) and couplings to nucleon

degrees of freedom (the ∆ isobar) [77, 76, 78]. These mechanism serve to push the missing

strength to higher excitation energies. In charge-exchange experiments, a significant fraction

of the missing strength has been observed at energies above the GT giant resonance. By

measuring both the β+ and β− directions with the 90Zr(p,n) and 90Zr(n,p) reactions, 88±6%

of the sum-rule strength was observed. This was done by looking up to 50 MeV of excitation

energy [79, 80, 81, 82].

The amount of quenching of GT strength has been studied in the p, sd, and pf shells by

using β-decay information and comparing it to shell-model calculations. These results are

summarized in Table 1.2. As mentioned in Section 1.8, the 16C(p,n)16N reaction will measure

the strength in the β− direction and give a measurement of the quenching of summed GT

strength in an unstable neutron-rich nucleus. This value will be compared to the results in

table 1.2.
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Region Quenching Factor

p-shell 1-0.19
(
A
16

)0.35
[77]

sd-shell 0.76 [76]

pf-shell 0.744 [83]

Table 1.2: Quenching factors of GT strength for nuclei occupying the p, sd and pf shells.
The factors presented are the quenching of the GT operator. To find the quenching of GT
strength, the factor must be squared, so in the sd shell it is 0.762 = 0.58.
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Chapter 2

Theoretical Techniques

I demand rigor

A foolish 1st year graduate student

This chapter gives a brief overview of the theoretical tools used in the calculation of

GT strength and charge-exchange cross section. It does not give a rigorous derivation of the

theoretical framework, but instead focuses on the necessary ideas needed for charge-exchange

studies. For a development of nuclear reaction formalism, the reader is referred to Ref. [84].

2.1 Distorted Wave Born Approximation

This section gives a brief overview of the distorted wave born approximation and its rele-

vance to charge-exchange reactions. Here the aim is solve the time-independent Schödinger

equation for the nuclear reaction problem,

ĤΨ = EΨ. (2.1)

In the asymptotic limit (r →∞), the wave function should take the following form,

Ψ = Ψbeam + Ψscatt = C

(
eikiz + f(θ, φ)

e
ikf r

R

)
(2.2)
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where eikiz represents the beam as an incoming plane wave and e
ikf r/r is the outgoing

spherical wave from the scattering. f(θ, φ) is known as the scattering amplitude, which

contains the scattering information of the reaction. The differential cross section is directly

related to the scattering amplitude by,

dσ

dΩ
= |f(θ, φ)|2. (2.3)

In order to calculate the charge-exchange differential cross section, we need to find an

expression for the scattering amplitude f . To do this we return to the Schrödinger equation

but write it more explicitly as,

(
− h̄

2∇2

2µ
+ V

)
Ψ =

h̄2k2

2µ
Ψ, (2.4)

where E has been replaced by E = h̄2k2

2µ and the kinetic part of the Hamiltonian has been

written explicitly. Rearranging this expression yields,

(
∇2 + k2

)
Ψ(~r) =

2µ

h̄2
V (~r)Ψ(~r), (2.5)

where the dependence on the spatial coordinate ~r has been included for clarity. This equation

can be cast into the standard Green’s function problem by setting D̂ =
(
∇2 + k2

)
and

ρ = 2µ

h̄2V (~r)Ψ(~r) yielding,

D̂Ψ = ρ. (2.6)

23



This equation has the solution,

Ψ(~r) = φ(~r) +
2µ

h̄2

∫
G±(~r, ~r′)V (~r′)Ψ(~r′)d~r′ (2.7)

where G±(~r, ~r′) is the Green’s function of the operator D̂ and φ(~r) is the solution to the

homogeneous equation D̂Ψ = 0 . The ± notation in the Green’s function refers to the post

and prior forms of the solution. Both an incoming plane wave with outgoing spherical wave

(prior form) and an outgoing plane wave with an incoming spherical wave (post form) satisfy

the boundary conditions. In the calculations of the charge-exchange cross section, the prior

form is used. It can be shown (see for example Ref. [84]) that the Green’s function takes

the form of,

G±(~r, ~r′) = −e
±ik|~r−~r′|

4π|~r − ~r′| . (2.8)

Substituting the Green’s function into equation 2.7 and applying the approximation |~r−

~r′| =
√
r2 + r′2 − 2~r · ~r′ ≈ r

√
1− 2~r · ~r′/r2 we have,

Ψ(~r)± = φ(~r)± −
2µ

4πh̄2

∫
e±ikr

r
e∓i~k

′~r′V (~r′)Ψ(~r′)d~r′ (2.9)

Ψ(~r)± = φ(~r)± −
2µ

4πh̄2

e±ikr

r

∫
e∓i~k

′~r′V (~r′)Ψ(~r′)d~r′. (2.10)

Comparing Equation 2.10 with Equation 2.2 the scattering amplitude can be identified

as,

f(~k,~k′) = − 2µ

4πh̄2

∫
e∓i~k

′~r′V (~r′)Ψ(~r′)d~r′ (2.11)

So far in the derivation there has only been the well constrained approximation that r >> r′.
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However, the expression for the scattering amplitude in Equation 2.11 contains the total

wave function, which is the unknown we started with. To arrive at a useful result, the

Born Approximation is made where the form of the solution in Equation 2.10 is recursively

inserted into Equation 2.11. This gives a series solution, where each term contains higher

and higher orders of the potential V . Taking just the first term, we have,

f(~k,~k′) ≈ − 2µ

4πh̄2

∫
e∓i~q

′~r′V (~r′)d~r′, (2.12)

where ~q = ~k − ~k′ is the momentum transferred. This gives a clear and explicit way to

calculate the scattering amplitude. This is the first order Plane Wave Born Approximation

(PWBA). This result is often written in terms of the T matrix,

T = 〈φ |V |Ψ〉

T ≈ 〈φ |V |φ〉 ,
(2.13)

where φ are plane waves.

To derive the Distorted Wave Born Approximation (DWBA), it is useful to rewrite Equa-

tion 2.10 in an operator form known as the Lipmann-Schwinger equation,

|Ψ±〉 = |φ〉+G±V |Ψ±〉 , (2.14)

which, under the Born Approximation reduces to,

|Ψ±〉 = |φ〉+G±V |φ±〉 . (2.15)
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In nuclear reactions, the potential is often divided into two parts, V = U + W , where U is

the part of the potential that describes elastic scattering for the system while W contains

the residual interaction that is not included in U . U is chosen such that,

|χ〉 = |φ〉+GU±U |φ〉 , (2.16)

where |χ〉 is referred to as a distorted wave and GU± is the Greens function for the problem

containing only U . For charge-exchange calculations, W contains the interaction responsible

for exciting the spin-isospin degrees of freedom in the target nucleus. The purpose of this

separation becomes clear when you consider the total T matrix with these two potentials,

T = 〈φ |W + U |Ψ〉 . (2.17)

For clarity, the full wave function is used in the above relation. It can be shown that,

T =
〈
φ−
∣∣U ∣∣χ+〉+

〈
χ−
∣∣W ∣∣Ψ〉 (2.18)

Since U only models the average potential of elastic scattering, it cannot connect the initial

to the final states we are interested in for charge-exchange reactions. This leaves only the

second term,

T =
〈
χ−
∣∣W ∣∣Ψ〉 , (2.19)

where the effect of the U potential is incorporated into the determination of the distorted

wave χ−. Reapplying the Born Approximation, we arrive at the T matrix for first order
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DWBA,

TDWBA =
〈
χ−
∣∣W ∣∣χ+〉 (2.20)

So far the internal state of target and residual nucleus has been omitted from the deriva-

tion to focus on the details of the reaction theory. Equation 2.20 is rewritten in terms of a

form factor F (~R),

TDWBA =
〈
χ−
∣∣∣F (~R)

∣∣∣χ+
〉
, (2.21)

where ~R is the spatial distance between the center of the target nucleus and the position of

the incident probe. The form factor is,

F (~R) =

∫
drT drp ρpVeffρT , (2.22)

where the residual interaction has been relabeled as Veff . ρ are the transition densities of

the target and projectile,

ρ =
∑
α

OBTDα 〈φfα ||σ̂τ̂±||φiα〉 . (2.23)

The one-body transition densities (OBTD) are calculated in the shell model between the

initial and final states. The sum over α runs over the contributions from the different 1p-

1h combinations for single particle level transitions φiα to φfα . The single-particle wave

functions are modeled with Woods-Saxon potentials. With the formalism above, the only

remaining unknown is the form of the effective NN interaction that can meditate charge-

exchange reactions.
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2.2 Effective Interaction

In this section, the phenomenological nucleon-nucleon interaction that is used to model

charge-exchange reactions is discussed (Veff ). The long-standing choice for interaction in

the charge-exchange community has been the Love and Franey (LF) N-N interaction [85, 86].

The LF interaction is attractive for charge-exchange studies since it is directly parameterized

in terms of the spin and isospin operators that are of interest for charge-exchange reactions.

The potential between nucleons i and j is structured into central, spin-orbit, and tensor

terms,

Vij = V C(rij) + V LS(rij)~L · ~S + V T (rij)Sij , (2.24)

where Sij is the tensor operator

Sij = 3
(σ̂i · rij)(σ̂j · rij)

r2
ij

− σ̂i · σ̂j (2.25)

The radial dependence of each of these terms is expanded as a sum of Yukawa potentials,

V (r) =
∑
i

ViY (r/Ri), (2.26)

where Y (x) = e−x/x. The parameters Vi and the ranges Ri are fit to nucleon-nucleon

scattering. The result of the work by Love and Franey gave effective nucleon-nucleon T

matrices at a variety of incident beam energies. For the 16C(p,n)16N at 100 MeV/u, the

LF interaction at 140 MeV was used. The 140 MeV interaction was chosen over the 100

MeV interaction because the parameters were better determined from the nucleon-nucleon

scattering data [85, 86]. The GT component of the interaction does not change significantly
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between these energies. However, the magnitude of the τ component of the NN interaction

reduces with increasing energy. This is corrected for by using Equation 2.31. The interaction

is folded over the transition densities of the target and projectile to arrive at the form factor

given in Equation 2.23.

2.3 Proportionality

This section provides a brief overview of proportionality between GT strength and charge-

exchange cross section. The interested reader is referred to [56] for the complete derivation

and a detailed discussion. Taddeucci et al. showed that the form of this relationship is a

simple proportionality, (
dσ

dΩ

)
q→0

= σ̂B(GT ), (2.27)

where the q → 0 indicates that the cross section needs to be extrapolated to zero linear

momentum transfer. The σ̂ is the proportionality constant of the expression and is called

the unit cross section. Within DWBA and under the limits of high beam energy (>∼100

MeV/u) and the Eikonal approximation, Taddeucci et al. showed that the unit cross section

factors into three components,

σ̂ = KND|Jστ |2. (2.28)

K is the kinematic factor,

EiEf

(h̄2c2π2)2

kf
ki
. (2.29)

ND is a distortion factor and Jστ is a volume integral of the relevant interaction (in this case,

the Love Franey interaction). ND can be calculated as the ratio of distorted- and plane-wave

cross sections (see Equation 2.23 of Ref. [56]).
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While the factorization of the proportionality gives insight, the unit cross section is often

determined empirically. When β-decay information for a low-lying state is available, σ̂ can

be found by using the known B(GT) value and the measured charge-exchange cross section.

When such information is not available, the unit cross section can sometimes be estimated

by looking at compiled dependencies between σ̂ and mass number. Fig. 2.1 shows the mass

dependence of the unit cross section over a range of nuclei for the (p,n) reaction at 120 MeV.

The parameterization was determined by Taddeucci et al. [56].

The ratio of GT and Fermi unit cross sections was also investigated by Taddeucci et al.

They defined,

R2 =
σ̂GT (Ep, A)

σ̂F (Ep, A)
(2.30)

The dependence of R2 on incident energy and mass number was investigated experimentally

by measuring R2 for a set of targets at a variety of beam energies. A linear dependence on

Ep was found,

R(Ep) =
Ep

55.0± 0.4 MeV
. (2.31)

Fig. 2.2 shows this dependence for 14C. The deviations below 50 MeV are below the incident

energy region where the proportionality is applicable.

2.4 Technical Details of Calculations

The cross-section calculations for the 16C(p,n)16N reaction at 100 MeV/u were completed

using the DW81 code [87] (see Ref. [88] for a description of the original formalism). The

theoretical GT strengths and one-body transition densities were calculated using OXBASH

[8] in the spsdpf model space using either the WBT or WBP interactions. The optical
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Figure 2.1: Experimental unit σ̂GT and σ̂F as a function of mass number. The dashed and
dotted lines are the result of the parameterization of Taddeucci et al. Figure is reproduced
from Ref. [56].
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Figure 2.2: The square root of the ratio of the GT and Fermi unit cross sections as a function
of incident proton energy. The data points come from reactions on 14C at various energies.
The dashed line is a linear fit to the data above 50 MeV. Figure taken from Ref. [56], see
references therein.

potentials for the proton-16C entrance channel and the neutron-16N exit channel come from

the parameterizations given in Refs. [89, 56]. The parameters used for the 16C(p,n)16N cal-

culation are given in Table 2.1 for convenience. The LF interaction at 140 MeV was used for

the N-N potential. The binding energies of the single-particle wave functions in the initial

and final state were calculated using a Skyrme interaction.
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Potential V r a W r a

p-V 30.68 1.23 0.71 7.12 1.41 0.57

p-SO 3.54 1.00 0.65 -1.07 0.97 0.62

n-V 25.16 1.23 0.71 7.12 1.41 0.57

n-SO 4.01 1.00 0.65 -1.07 0.97 0.62

Table 2.1: Parameters for the optical potentials used in the 16C(p,n)16N cross-section cal-
culations. All parameters are given in MeV and Fermi. V refers to a volume term and SO
a spin-orbit term. The volume terms are Woods-Saxon potentials. The spin-orbit terms are
derivatives of Woods-Saxons. The p and n refer to the potentials for the proton (entrance)
and neutron (exit) channels.

2.5 Shell Model Results

This section presents the results from the shell-model calculations performed with OXBASH.

We start in the
∣∣Jπ = 0+;T = 2

〉
16C ground state. In charge-exchange reactions (∆T = 1),

the final state in 16N can be Ti = 2 ⊗ ∆T = 1 → Tf = 1, 2, 3. If Ti is high, transitions to

higher T states are suppressed by their Clebsch-Gordan coefficients. For the 16C(p,n)16N re-

action, these factors are given in Table 2.2.

Tf Coefficient Factor

T+1 1
(T+1)(2T+1)

0.11

T 1
T+1 0.33

T-1 2T−1
2T+1 1

Table 2.2: Isospin Clebsch-Gordan factors for the Ti = 2 → Tf = 1, 2, 3 transitions. The
factors give in column 3 are normalized to the T − 1 transition.

In terms of angular momentum, the important transitions are Jπf = 1+ (GT transitions),

and Jπf = 0−, 1−, 2− (dipole transitions). Fig. 2.3 shows the GT strength distributions
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for 0+ → 1+ transitions calculated with OXBASH in the spsdpf model space, and the

WBP and WBT interactions. Configurations in both the p and sd shells are included in

the calculation. Transitions to T = 1 and T = 2 finals states are shown. Within this

model space, the full strength of the sum rule is exhausted in the ∆Tz = −1 direction (the

∆Tz = +1 is Pauli blocked), so the sum of all calculated states is ∼121. The T = 3 states

contribute < 0.002 to the total strength and are neglected. Both interactions predict the

majority of the GT strength to be below approximately 12 MeV, with strong states near 10

MeV. The Tf = 2 strength is a small component appearing at higher energies. The shell

model does not give intrinsic widths to these states, which since they occur above particle

separation thresholds are expected to be several MeV wide.

Fig. 2.4 shows the more complicated case of spin-dipole transitions, calculated with the

WBP interaction. Unlike the GT transitions, no simple proportionality between spin-dipole

strength (B(SD)) and charge-exchange cross section has been established. The typical ap-

proach is to directly compare measured cross sections with theoretical cross section calculated

in DWBA. Fig. 2.4 therefore shows the cross section value at the angle where it is maximized

for each shell model state with Jπf = 0−, 1−, 2−. The excitation energy of the states are

aligned such that the first 2− state is at 0 MeV (the ground state of 16N is 2−). The shell

model predicts a 0− ground state with slightly lower energy (∼300 keV), and so appears

negative in Fig. 2.4. This difference is within the error of the calculation and below the

resolution of the experiment. The shell model predicts several strong states at ∼5-10 MeV.

Above ∼12 MeV, substantial strength comes form many states. The resonances is expected

to extend above 20 MeV.

1For 16C, the GT sum rule is: 3(N − Z) = 3(10− 6) = 12
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Figure 2.3: Shell Model calculations of B(GT) for 16C
∣∣0+;T = 2

〉
→16N

∣∣1+;T = 1, 2
〉

tran-
sitions. The WBP (a) and WBT (b) interactions were used in the spsdpf model space.
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Figure 2.4: Shell-model spectrum with the WBP interaction for the SD strength in 16N,
presented as the peak cross-section value for each state. Transitions into final states of 16N
with Jπf = 0−, 1−, 2− are shown. All states have T = 1.

2.6 DWBA Results

Within the shell-model and DWBA theory the proportionality between the charge-exchange

cross section at vanishing momentum transfer and B(GT) can be explored. This is done

by taking many shell-model states and calculating their differential cross sections at q = 0.

Then, a theoretical proportionality constant (σ̂) is found for each state by dividing the cross

section by the B(GT) value from the shell model. This analysis is presented in Fig. 2.5

A consistent proportionality is seen for the stronger states, with a gradual decrease in

quality for the weakest transitions. The spreading in the weaker states comes from the inter-

play between the στ and the tensor-τ portion of the effective NN interaction. The tensor-τ

portion mediates ∆L=2 ∆S=1 transitions that interfere with the desired GT transitions

(see Chapter 6 for more details). Since these proportionality breaking effects occur in weak

transitions, they don’t contribute much to the final GT spectrum. The scatter in the strong
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Figure 2.5: Scatter plot of the shell-model B(GT) for 0+ → 1+ transitions against the
theoretical σ̂ determined from DWBA. The shell-model calculation was done with the WBT
interaction in the spsdpf model space. The red dot indicates the 2nd shell-model state. In
e10003 states with strengths below ∼ 0.05 could not be discerned.

states tends to be evenly distributed giving the average σ̂GT a small error. The red dot indi-

cates the transition to the 2nd 1+ shell model state and is a clear outlier with a significantly

higher predicted σ̂. The detailed properties of this state will be discussed in Chapter 6.

In order to isolate the different orbital angular momentum transfers in the data, a multi-

pole decomposition analysis (MDA) will have to be performed. Details on the procedure for

the MDA is given in Section 5.2. Here the calculations of the characteristic angular distribu-

tions needed for the MDA are shown. Angular distributions with pure ∆L = 0 ∆S = 1 com-

ponents from the 0+ → 1+ transitions were used as a model for the characteristic ∆L = 0

angular distribution. The calculations to 1− final states were used for the characteristic

dipole angular distribution. Transitions to 2+ final states were used for the quadrupole com-

ponent. For each multipole, the first 100 shell-model states were examined with the Q value

in the reaction calculation set to zero. From these angular distributions, a representative
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strong state was chosen as the model for each ∆L transfer. The deviation between these

states was small compared to the overall systematic error of the measurement. These model

angular distributions are shown in Fig. 2.6.
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Figure 2.6: The model angular distributions for ∆L = 0, 1, 2 that are used in the MDA
analysis.
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Chapter 3

Experiment

Nothing works! Everything is broken!

Ancient Proverb

The (p,n) charge-exchange experiment in inverse kinematics involves the detection of low-

energy neutrons in coincidence with fast residues in a magnetic spectrometer. The neutron

laboratory scattering angle and neutron kinetic energy provide event-by-event kinematic

information necessary to reconstruct the excitation energy in 16N and the center-of-mass

(COM) scattering angle. For experiment e10003, the neutrons were detected using two low-

energy neutron-detector arrays: LENDA [90, 91] and VANDLE [92, 93]. The fast residues of

16N were detected by the S800 Spectrograph [94]. The experiment ran in March of 2015 with

the goal of extracting the Gamow-Teller strength distribution up to 20 MeV of excitation

energy in 16N. Details on the experimental equipment and method will be given in the

sections below.

3.1 Experimental Method

Fig. 3.1 shows kinematic correlations between the laboratory neutron kinetic energy and

scattering angle, and the excitation energy in 16N and COM scattering angle for the 16C(p,n)16N

reaction at 100 MeV/u. As Fig. 3.1 shows, to cover the excitation energy regime of interest

(0-20 MeV) and the COM scattering angles of interest (0-15 degrees), a large range of labo-
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ratory neutron scattering angles and low neutron energy must be measured.
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Figure 3.1: Kinematic correlations for the 16C(p,n)16N reaction at 100 MeV/u, in the
plane of the laboratory neutron angle (θn) and neutron kinetic energy (Tn). The blue box
indicates the approximate coverage of the neutron detectors in e10003. Solid lines indicate
the excitation energies in 16N. Dashed lines show the COM scattering angles.

To this end, the centers of the LENDA and VANDLE bars were placed 1 m from the

center of the target so as to cover laboratory scattering angles between approximately 40

and 140 degrees. A schematic of the setup can seen in Fig 3.2. Each array was split in

half and arranged such that one section of LENDA was placed on the opposite side of the

beam line from the corresponding section of VANDLE. The angles of the bars were further

arranged such that the gap in angular coverage between two LENDA bars was filled by the

VANDLE bars on the opposite side of the beam line. The arrangements of different sections

of LENDA and VANDLE allowed both arrays to span the full laboratory angular range being

measured, while also preventing any systematic bias between the two arrays from differences

in the neutron background on either side of the beam line. The choice to arrange the angles
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of the bars to fill the angular gaps in the detectors on the opposite side of the beam line

allowed for continuous laboratory angular coverage and reduced systematic uncertainties in

the estimation of geometrical acceptance. This is because regions of near zero acceptance,

where systematic uncertainties due to slight deviations in detector placement are large, were

avoided. Fig. 3.3 shows a picture of the complete experimental setup.

Beam

South LENDA 

North LENDA North VANDLE

South VANDLE

Figure 3.2: Top-view schematic of the experimental setup for the neutron detectors.
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Figure 3.3: Picture of the complete setup for experiment e10003. In the bottom center of
the picture, the south LENDA bars are visible. The north VANDLE bars can be seen in the
top left. The liquid hydrogen target can be seen in the center of the photograph.
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To isolate events that could be due to charge-exchange reactions, the ejectile was analyzed

in the S800 Spectrograph. Since the experiment aimed to measure up to excitation energies of

20 MeV in 16N, the 1n, 1p, 2n, 1p1n emission thresholds were exceeded. This caused several

different nucleon decay channels to open (16N, 15N, 15C, 14C, 14N), each of which needed

to be measured to find the total charge-exchange cross section. The momentum spread of

these residual ejectiles after the momentum kick from the decayed nucleons can be greater

than the momentum acceptance of the S800 Spectrograph (dpp = 5% [94]) . To account for

this, seven different magnetic-rigidity settings were used to capture a large enough fraction

of the momentum spectrum for each decay channel. The different decay channels and their

associated rigidity settings used during the experiment are shown in Table 3.1.

Ex in 16N Reaction Detected Particle Set Centroid Rigidities

0 → 2.4 MeV 16C(p,n)16N 16N 3.2828, 3.338 Tm

>2.489 MeV 16C(p,n)16N → 15N + n 15N 2.98, 3.1325 Tm

>11.478 MeV 16C(p,n)16N → 15C + p 15C 3.52, 3.6565 Tm

>12.696 MeV 16C(p,n)16N → 14C + p + n 14C 3.2828, 3.38 Tm

>13.322 MeV 16C(p,n)16N → 14N + n + n 14N 2.98, 2.9 Tm

Table 3.1: Table of the different decay channels accessible in the 16C(p,n)16N reaction for
ranges of excitation energy in 16N and their associated magnetic rigidities. The acceptance
of each rigidity setting is ± %5.

With the kinematic information provided by the low-energy recoiled neutron and the mo-

mentum information of the fast ejectile, the differential cross section could be reconstructed

up to 20 MeV of excitation energy in 16N.
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3.2 Experimental Equipment

3.2.1 Beam Creation and Delivery

The 16C(p,n)16N reaction was performed with a beam of radioactive 16C nuclei. Radioactive

ion beams are created at the NSCL through the process of projectile fragmentation, where

an accelerated stable ion beam is impinged on a thick 9Be production target. The impinging

ions are fragmented in flight by the target, creating a wide array of different residual isotopes,

some of which are the unstable, exotic isotopes that are of interest for study. The specific

isotopes of interest are then selected in flight by their magnetic rigidity using the A1900

fragment separator [95], possibly resulting in a nearly pure beam of the isotope of interest.

This beam can be directed to one of several different experimental areas for study.

3.2.2 Ion Source

At the NSCL, there are two options for ion sources: the Superconducting Source for Ions

(SuSI) [96, 97] and the Advanced Room TEMperature Ion Source (ARTEMIS) [98]. Both

take a stable element and ionize it using the Electron Cyclotron Resonance (ECR) method.

In the ECR method, a plasma is confined by a magnetic field while microwave power is

applied at the electron cyclotron frequency,

ωc =
eB

me
, (3.1)

where e is the electron charge, me is the electron mass, and B is the applied magnetic field

strength. The particles are ionized by collisions with the moving electrons. The ions are

then extracted and injected into the K500 cyclotron for acceleration. For e10003, the SuSI
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source was used to produce 18O3+ ions.

3.2.3 Cyclotrons

The coupled cyclotron facility at the NSCL [99, 100] houses two super-conducting cyclotrons,

the K500 and the K1200, where the numeric designations refer to the maximum extraction

energy achievable for protons. The cyclotrons accelerate charged ions by applying a strong

radio-frequency (RF) electric field, while a magnetic field constrains the path of the particles

to a circular orbit. Since the acceleration is more effective with higher charge states, a

stripper foil designed to remove electrons from the ions is placed at the entrance to K1200.

For light and medium-heavy nuclei, this allows for the creation of completely ionized beams.

Fig. 3.4 shows a schematic of the two cyclotrons.

Figure 3.4: Schematic showing the coupled cyclotrons and the A1900 fragment separator.
Figure taken from Ref. [95].

For e10003, the K500 cyclotron accelerated a beam of 18O3+ ions to an energy of 10.91

MeV/u. These ions were extracted and sent through the stripper foil at the entrance to the

K1200 cyclotron, where the completely ionized 18O nuclei were further accelerated to 120

MeV/u. The beam was then impinged on a 846 mg/cm2 target of 9Be for fragmentation.
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The resulting fragments then entered the A1900 fragment separator.

3.2.4 A1900

The A1900 fragment separator [95] consists of four dipole bending magnets and eight quadrupole

triplet focusing magnets. The magnetic field of the dipole magnets serves to disperse the

incoming particles according to their magnetic rigidity,

Bρ = p/q, (3.2)

where B is the magnetic field, ρ is the bending radius, q is the charge and p is the relativistic

momentum. Together, Bρ is called the magnetic rigidity. Further selection is accomplished

by placing a wedge at the intermediate image of the A1900 (see “image 2” in Fig. 3.4).

The wedge causes species of different atomic numbers to lose different amounts of energy,

allowing the particles to be separated by their new magnetic rigidities in the following two

dipole magnets.

For e10003, the magnets were tuned to select 16C. The slits at the first image of the

separator were set such that the momentum acceptance was dp
p = 0.54%. An aluminum

wedge of 240 mg/cm2 was placed at the intermediate image of the A1900 to further remove

contaminants. This resulted in a 97.8% pure beam of 16C, with an intensity of 3.0 · 104

pps

pnA 180
as measured at the focal plane of the A1900. The largest remaining contaminant in

the beam was 14B.

46



3.2.5 S800 Spectrograph

Following the selection of 16C in the A1900, the beam was transported through the transfer

line to the S3 experimental vault. The S3 vault consists of the S3 analysis line and the S800

Spectrograph as can be seen in Fig. 3.5. The spectrograph has a momentum acceptance of

5% and covers a solid angle of 20 msr. The analysis line can operate at maximum rigidity

of 4.9 Tm and is limited to 4 Tm for the spectrograph itself. Since the reconstruction of

the excitation energy and COM scattering angle for the (p,n) reaction in inverse kinematics

comes entirely from the measurement of the recoiled neutron, high resolution of the ejectile

was not needed. Therefore, S800 beam line was operated in achromatic beam-transport

mode.

The fast ejectile particles from the 16C(p,n)16N reaction were bent through the dipoles

of the spectrograph into a series of focal-plane detectors. The purpose of the focal-plane

detectors were to determine the hit position, angle, energy loss, and time-of-flight of the

ions. From these parameters, the momentum, scattering angle, and particle identity (PID)

can be determined. These focal-plane detectors are briefly described below.

Figure 3.5: Schematic of the S800 analysis line and spectrometer. Figure adapted from [94].
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3.2.6 Focal Plane Detectors

The first particle detectors at the S800 focal plane [101] are the Cathode Readout Drift

Chambers (CRDCs). There are two CRDCs separated by 1073 mm allowing for two hor-

izontal and vertical position measurements. Each CRDC is filled with a mixture of 20%

isobutane and 80% carbon tetrafluoride. As the particle passes through the CRDCs, it ion-

izes the gas mixture, causing the freed electrons to drift towards an array of 224 cathode

pads which lie along the dispersive (x) axis. As is illustrated in Fig. 3.6, the dispersive

position can be determined by analyzing the image charge distribution on the pads. The

non-dispersive (y) position is inferred from the drift time of the electrons in the detector.

The drift time is determined from the difference between the S800 DAQ trigger time and

the CRDC anode signal. Calibration details for the CRDCs are given in Chapter 4. From

these two position measurements the dispersive and non-dispersive angles of the particle can

be determined. This yields a total of four values: the dispersive position and angle (xfp and

afp) and the non-dispersive position and angle (yfp and bfp).

After the CRDCs, the particle passes through an ion chamber filled with a gas mixture

(90% argon and 10% methane), where the energy loss of the beam is measured. As in the

CRDCs the particle ionizes the gas mixture, which causes electrons to drift to one of 16

anodes, where the charge is read out. The amount of energy lost in the ion chamber is

proportional to the square of the charge of the particle as given in the Bethe-Bloch formula

[103],

− dE

dx
=

4πe4Z2

m0v2
nabszabs

(
ln

2m0v
2

I
− ln

(
1− v2

c2

)
− v2

c2

)
, (3.3)

where Z is the charge of the incident particle, nabs and zabs are the number density and atomic

number of the absorbing material, m0 is the electron’s rest mass, I is the average ionization

48



Figure 3.6: Schematic of the two cathode readout drift chambers, with an example event
trajectory passing through the detectors. The inset shows an example of a charge distribution
detected by the pads. Figure originally taken from Ref. [101] and modified by Ref. [102]

potential of the absorbing material respectively, and v is the velocity of the incident particle.

Hence, by measuring the energy loss, the square of the atomic number can be determined

after correcting for the difference in velocity across the focal plane.

The final detector at the S800 focal plane was a 5-mm thick plastic scintillator, referred

to as the E1 scintillator. It serves as the trigger for the S800 data acquisition and gives time

and energy readouts from the PMTs attached at each end of the detector. The E1 scintillator

measures the TOF of the outgoing ejectiles in the 16C(p,n)16N reaction with reference to

the object scintillator described below. The TOF from the object scintillator to the focal

plane is proportional to the mass number of the ejectile and is used with the energy-loss

measurement to determine the particle identification at the S800 focal plane.

The object scintillator is a thin plastic scintillator that is placed in the path of the beam

in the object box of the S800 analysis line (see “object” in Fig. 3.5). For e10003, a 1127 µm
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thick object scintillator was used. To ensure high-precision timing measurements could be

made with these detectors and the neutron detectors, the signals from the object and focal

plane scintillators were split and sent into both the S800 DAQ and the LENDA/VANDLE

digital data acquisition system.

3.2.7 Liquid-Hydrogen Target

The reaction target in e10003 was the Ursinus liquid-hydrogen target. It had an average

thickness of approximately 66 mg/cm2 and a radius of 35 mm. The temperature was kept

at approximately 19 K, at a pressure of just above 1 atm. Two 125 µm Kapton foils contain

the liquid in the target. Fig. 3.7 shows the measured phase transition from gas to liquid,

when the target was filled and cooled at the beginning of the experiment. The temperature

and pressure were monitored throughout the experiment and any fluctuations of the density

were corrected for on a run-by-run basis. Details on the target thickness determination are

given in Section 4.5.3.

3.2.8 LENDA and VANDLE

The Low Energy Neutron Detector Array (LENDA) [90, 91] is an array of 24 BC-408 plastic

scintillator bars built by the charge-exchange group at the NSCL. Each bar has dimensions

of 4.5 x 2.5 x 30 cm. It is designed to measure the kinetic energy of neutrons via the time-

of-flight method with kinetic energies from 100 keV-10 MeV and with a neutron kinetic-

energy resolution of approximately 5%. A Hamamastu H6410 photomultiplier tube (PMT)

is attached directly to each end of the LENDA bars to read out the scintillation light. At 1-m

distance, the laboratory scattering-angular coverage of a LENDA bar is 2.58 degrees, and
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Figure 3.7: Pressure-temperature diagram for the liquid hydrogen target showing the phase
transition from gas to liquid. The red line indicates the expected relationship taken from
[104].

its vertical position resolution, determined from the time difference of the top and bottom

PMTs, is 6 cm.

VANDLE, the Versatile Array of Neutron Detectors at Low Energy, is a similar set of

neutron TOF detectors from the University of Tennessee [92, 93]. VANDLE is comprised of

three different sized detectors, 3 x 3 x 60 cm (small) 3 x 6 x 120 cm (medium) and 5 x 5 x 200

cm (large), allowing different experimental layouts to be optimized to the energy resolution

and range needed. For e10003, 24 of the small sized plastic scintillator bars were used.

Similar to LENDA, VANDLE is able to measure low-energy neutrons with comparable energy

resolution and detection efficiency. Both sets of detectors had the signals from each PMT

sent into the Pixie DDAS System. Details about the digital system and the performance of

LENDA are given in Section 3.3.
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3.3 Digital Data Acquisition System

The data acquisition system (DAQ) for LENDA was upgraded prior to the running of this

experiment in order to utilize a digital data acquisition system (DDAS). This upgrade effort

was a significant portion of the work that makes up this thesis. Using a digital system

allowed the VANDLE detectors to be easily integrated with the new DAQ, since adding

more detectors only meant using more DDAS modules. The following sections give a brief

overview of DDAS and describe the capabilities achieved for LENDA with DDAS.

3.3.1 DDAS Overview

The fundamental function of DDAS is to produce a digitized waveform, which is referred to

as the trace. Each signal from the detector system is sent through a Nyquist filter and into

a high-frequency analog to digital converter (ADC), where the analogue voltage is sampled

to produce a digital waveform [105].

LENDA and VANDLE were instrumented with XIA’s Digital Gamma Finder Pixie-16

boards [105]. For each of the 16 channels on the board, 250 megasamples per second (MSPS),

14-bit flash ADCs were used to perform the digitization of the incoming detector signals.

After capturing the waveforms, 4 field-programmable gate arrays (FPGAs) implement on-

board trace-processing routines to extract both time and energy information for each pulse.

The Pixie-16 modules were placed in a PXI/PCI crate, which was controlled by a National

Instruments MXI-4 crate controller connected with fiber-optic cable to a dedicated computer.
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3.3.2 Digital Timing

Unlike an analog system, where timing and energy measurements are performed by two in-

dependent circuits, DDAS extracts this information simultaneously from the trace. This is

accomplished for both time and energy through digital filtering algorithms, either on the

board or in off-line analysis. For the 250-MSPS digitizers (a period of 4 ns between clock

ticks) used in e10003, some form of interpolation scheme is needed to achieve timing reso-

lution below the sampling frequency. This can be accomplished by selecting an appropriate

function for the detector signal of interest and fitting that function to the waveform to ex-

tract a sub-clock tick time for each pulse. Prior to e10003, this method was successfully

implemented for VANDLE where a detector-limited timing resolution of 0.6 ns was achieved

over the full energy range using the fit function,

f(t) = αe−(t−φ)/β(1− e−(t−φ)4/γ). (3.4)

With the highest energy signals, a timing resolution of 0.5 ns was achieved [92]. The fitting

method requires significant computational post processing and the creation of a library

of appropriate functions for each detector signal. An alternate choice—and the one that

was utilized in e10003 for both LENDA and VANDLE—is to use a digital constant fraction

discriminator (CFD) algorithm similar to the one implemented on the Pixie boards [105, 106].

Higher-order interpolations of the CFD are done off line in software that are unavailable on

the board. The implementation for this work is as follows. The trace is processed through
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a symmetric trapezoidal filter,

FF [i] =
i∑

j=i−(Tr−1)

Tr[j]−
i−(Tr+Tg)∑

j=i−(2Tr+Tg−1)

Tr[j] (3.5)

where Tr is referred to as the rise time, Tg the gap time and Tr the trace points. The filtered

trace is used to form a digital CFD,

CFD[i+D] = FF [i+D]− w FF [i] (3.6)

where D is a user specified delay and w is a scaling factor [105, 107]. The units of Tr, Tg, and

D are in clock ticks and w is a unitless scaling factor. The sub clock-tick timing information

is then determined from a linear interpolation of the CFD’s zero crossing (this technique will

be referred to as the Linear Algorithm). In Fig. 3.8, an example of this procedure is shown.

The filled circles are a trace for a gamma ray from a 22Na source generated by one photo

multiplier tube (PMT) of a LENDA bar. The filled squares are its corresponding CFD signal

with filter parameters Tr = 6, Tg = 2, D = 4, w = 5/8.

3.3.3 Intrinsic Timing Resolution of DDAS

One of the significant challenges for high-precision timing with DDAS is the occurrence of

non-linearities in the system’s response to fast scintillator pulses [92, 106]. This behavior

makes it difficult to rely on a simple linear interpolation of the CFD’s zero crossing. This

non-linearity is maximized when the arrival time of a signal places its zero crossing in between

two clock ticks, which for the 250 MHz digitizers used here is a time difference of 2 ns. To

explore this behavior for LENDA, a 22Na source was placed on a LENDA bar where the
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Figure 3.8: Example of digital trace from LENDA (filled circles) with overlaid digital CFD
(filled squares). The thick line is the third-order interpolation function calculated for this
event.

signal from one PMT of the bar was split into DDAS with a 2 ns delay added to one copy

of the signal. Signals from both the 511 and 1275 keV gamma rays from 22Na were used in

the following analysis. The CFD algorithm described above was performed on each signal

with the filter set Tr = 2, Tg = 0, D = 4, and w = 1/8. This parameter set corresponds

to the optimum choice for the Cubic Algorithm (described below) and is one example of

the linear-interpolation algorithm failing in the presence of a non-linear CFD signal. Figure

3.9 shows the time difference between these two signals after correcting for the dependence

of the time difference on signal amplitude (a phenomenon known as “walk”). The walk

correction was done by plotting the pulse height against the time difference and correcting

for any observed correlation of the time difference on the pulse height. The pulse heights in

this data set ranged from approximately 4% to 58% of maximum ADC value. The linear

interpolation with the above parameter set (labeled in the plot as “Unoptimized Linear”)
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introduces systematic biases and fails to achieve good timing resolution.

However, the shape of the digital CFD signal in the neighborhood of the zero crossing is

a function of the CFD filter parameters. By performing an optimization of those parame-

ters, significant improvement can be achieved in the performance of the linear-interpolation

method. As the parameters for the CFD algorithm are discrete, a brute-force approach was

used for the optimization. Each trace in the data was processed with every possible filter

combination in the ranges Tr = 1 − 8, Tg = 0 − 3, D = 1 − 8, w = 1/8 − 7/8 (Tr, Tg, D

were limited to integer values, while w was limited to steps of 1/8). The parameter set that

achieved the best resolution was taken as the optimum set. The result of that optimization

(Tr = 6, Tg = 2, D = 4, and w = 5/8) is shown in Fig. 3.9, where it is labeled as “Optimized

Linear.” Significant improvement is made in the linear method after the optimization, but

as Fig. 3.9 shows, there is still some systematic bias in the distribution.
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Figure 3.9: Time-difference spectra from a split-signal electronics test. The time differences
from the 3 different timing algorithms have been shifted to zero for comparison.

Further improvements can be made through the use of a higher-order interpolation of the
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CFD signal’s zero crossing. Here the two points before the zero crossing and the two points

after are used to calculate a third-order polynomial interpolating function. An example of

this is shown in Fig. 3.8 as a thick red line. Given the clock ticks and corresponding ADC

values, the coefficient for the interpolating function are found by inverting the following

equation, 

(x1)3 (x1)2 (x1)1 (x1)0

(x2)3 (x2)2 (x2)1 (x2)0

(x3)3 (x3)2 (x3)1 (x3)0

(x4)3 (x4)2 (x4)1 (x4)0





c3

c2

c1

c0


=



y1

y2

y3

y4


(3.7)

where x1,2 and y1,2 are the two points before the zero crossing and x3,4 and y3,4 are the two

points after. The same optimization procedure as described above was used for this method

(referred to as the Cubic Algorithm). The result of this optimization (Tr = 2, Tg = 0, D = 4,

and w = 1/8) applied to the same data set as above is also shown in Fig. 3.9, labeled as

“Optimized Cubic.” It is clear that the resolution has improved substantially using the cubic

interpolation scheme and any systematic biases in the time difference spectrum have been

removed.

The intrinsic resolution results using the four points and a third-order polynomial were

much better than the expected resolution of the detector (∼420 ps) Therefore, higher-order

or more complicated interpolating schemes were not pursued.

Fig. 3.10 shows the full-width at half-maximum (FWHM) electronic timing resolution of

DDAS from the same data shown in Fig. 3.9. The width of the time difference distribution

is plotted as a function of pulse height for both the optimized cubic- and linear-interpolation

algorithms. Figure 3.10 shows that the Cubic Algorithm performs significantly better at low

pulse amplitudes, while both techniques provide electronic resolution well below the expected
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performance of a LENDA bar at an appreciable fraction of the ADCs range.
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Figure 3.10: Electronic timing resolution of DDAS as measured with a split signal from a
LENDA bar. The upside down triangles utilize a linear-interpolation method while the filled
circles use a cubic-interpolation method. See text for details.

3.3.4 Timing Resolution of LENDA with DDAS

The timing resolution of LENDA with DDAS was measured using the two correlated 511

keV gamma rays generated after the positron decay of 22Na. Two LENDA bars were placed

on opposing sides of the 22Na source at a distance of 1 m. Events were recorded in a 4-way

coincidence between the PMTs of the two bars. The time difference between the two bars

was calculated as:

Tdiff =
1

2
(T1,top + T1,bottom)− 1

2
(T2,top + T2,bottom) (3.8)

where the numerical subscripts refer to bar 1 and bar 2. The width of the Tdiff distribution,

corrected for walk and divided by
√

2, is taken as the timing resolution of a single LENDA
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bar. In the same way described above, the parameters for this data set were optimized for

the best resolution, yielding Tr = 2, Tg = 2, D = 4, and w = 1/8 for the linear algorithm

and Tr = 2, Tg = 0, D = 2, and w = 1/8 for the cubic algorithm. Fig. 3.11 shows the

measured timing resolution in FWHM of one LENDA bar as a function of pulse amplitude

and energy in keVee for the linear and cubic timing algorithms discussed above. Unlike

the data presented in Section 3.3.3, the signals in this measurement arrive randomly across

all time differences, instead of always at a time difference of 2 ns. Because of the intrinsic

resolution of the detector, the difference in achieved resolution between the cubic and linear

algorithms is less than above. However, an improvement when using the cubic algorithm is

still achieved, reaching about 400 ps at the highest energies. The saturation of the resolution

at approximately 400 ps is a result of the intrinsic properties of the detector, and is not from

the electronics.
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Figure 3.11: Measured timing resolution for LENDA readout with DDAS. Upside down
triangles use a linear-interpolation method, while the filled circles use a cubic-interpolation
method.
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3.3.5 Energy Extraction Methods

There are many algorithms for extracting energy from digitized data, especially for high-

precision spectroscopy (for example, see Ref. [108]). In the case of a plastic scintillator

array, where signal-amplitude resolution is expected to be limited, relatively straightforward

methods can be utilized. With the waveform saved, the energy of the event can be easily

determined from the maximum trace value or, as is done for the e10003 analysis, by integrat-

ing the digitized pulse. In Fig. 3.12, a trace from one PMT in LENDA is shown, taken with

a 22Na source. The beginning 24 clock ticks of the trace is used to determine the average

baseline of the signal, while a window around the maximum point in the trace is used to find

the pulse’s amplitude.
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Figure 3.12: A trace from a PMT of LENDA from a 22Na source. The first integration
region is used to determine the average baseline of the signal, while the second integrates
the pulse and determines the energy of the event.

To determine the resolution, an energy spectrum for 22Na was measured using a LENDA

bar. The source was placed in the center of the bar, and the energy of the event was taken
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as the geometric average of the top and bottom PMT’s pulse integration values,

EBar =
√
ETEB . (3.9)

The top panel in Fig. 3.13 shows the calibrated energy spectrum in keVee obtained from

this measurement. The two Compton edges from the 511 keV and 1274.5 keV gamma rays

are seen at 341 and 1062 keVee, respectively. The Klein-Nishina formula convolved with a

Gaussian [109] was used to fit the two Compton edges in order to extract a FWHM resolution

of 23.5% at 341 keVee and 16% at 1062 keVee. Further, it was found that the position of the

Compton edge was at 63.2 ± 1.9 % of the maximum yield of the Compton spectrum, where

the error was determined from the fitting of the Compton edges.

The bottom panel in Fig. 3.13 shows an energy spectrum from a similar measurement

using a 241Am source. Here, the photo peaks from the low-energy x-rays at 26.3 and 59.5

keVee can be seen. The photo peaks were fit with Gaussians to obtain a FWHM energy

resolution of approximately 42.3%.
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Figure 3.13: Top panel shows a calibrated energy spectrum from 22Na seen in a LENDA
bar. Bottom panel shows a calibrated energy spectrum from a 241Am source.
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3.3.6 KeVee to Tn

The correspondence between keVee and neutron kinetic energy in keV can be measured using

a 252Cf fission source. This measurement was performed with an EJ-301 liquid scintillator

placed next to the 252CF source, which was positioned 1 m from a LENDA bar. The liquid

scintillator served as the start signal for a neutron time-of-flight (TOF) measurement with

the LENDA bar, where a 3-way coincidence between the two PMTs of the LENDA bar and

the PMT of the liquid scintillator was required. Fig. 3.14 shows a result of this measurement,

where light output in keVee from neutrons in LENDA versus their kinetic energy determined

from time-of-flight is presented.
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Figure 3.14: Scatter plot of light output against neutron energy from a 252Cf source measured
with LENDA and a EJ-301 liquid scintillator as the timing reference. The cuts on maximum
light output are applied in this figure.

For high neutron energies (>3 MeV), the relationship between maximum light output

(full energy of the neutron deposited in the bar) and kinetic energy is linear. The relationship
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approximately follows,

Lmax(E) = 518.1 Tn − 499.5, Tn > 3 MeV (3.10a)

where Lmax(E) is the maximum light output in keVee and Tn is the kinetic energy of the

neutron in MeV. This relationship is non-linear at low neutron energies where it follows,

Lmax(E) = 18.53 + 95.08 Tn + 81.58 T 2
n , Tn < 3 MeV. (3.10b)

To remove background events, cuts on the light output of the neutron detectors following

equations 3.10a and 3.10b were made in the analysis of e10003.

3.4 Implementation with the S800

Confident with the internal performance of DDAS, both LENDA and VANDLE were instru-

mented with the Pixie-16 250 MSPS modules for e10003. This section will discuss how the

clock synchronization between the two systems was achieved and provide some details of the

coincident trigger logic.

3.4.1 Clock Synchronization

A 50 MHz clock was taken from the backplane of the DDAS crate, downscaled to 12.5 MHz

and sent into a JTEC XLM72 module in the VME crate of the S800’s DAQ. Since this

clock was from the backplane of the crate, it was a down-scaled version of the internal fast

ADC clocks that perform the digitization of the detector signals and assign the events’ time

stamps. To achieve the synchronization two specialized DDAS modules were used. The first
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was inserted in the front of the crate and served as a breakout module for the clock. It is

shown in the bottom of Fig. 3.15, labeled as clock breakout module. The second was a clock

extraction module connected to the backplane of the crate behind slot 2. Slot 2 contained the

master Pixie module, which distributed the clock to other Pixie modules over the backplane.

The clock extraction module connected to the clock breakout module with a Cat5 cable, as

indicated in Fig. 3.15.

For each event, the scaler from the clock signal was latched and readout into the S800

data stream, allowing for a common time stamp between the two systems at a granularity of

12.5 MHz (80 ns intervals). This level of synchronization is only used for event correlation

between the two systems, so it does not need the precision timing resolution achieved for the

neutron TOF. Prior to the experiment, the setup was tested for stability and was found to

remain synchronized for greater than 12 hours.

Under the firmware available at the time of the e10003 (March 2015), the internal clocks

of each channel would pick up a random 1 clock tick phase each time they were reset (the

default of the readout system at the beginning of each run). Further, reseting the clocks

in DDAS would mean that the clock in the S800 would have to be cleared and the two

systems synchronized again. These issues motivated finding a way to reset these clocks as

infrequently as possible. As will be discussed in Section 3.4.2, this complicated the setup.

3.4.2 Operation Infinity Clock

The goal of Operation Infinity Clock was to allow the internal clocks of each DDAS channel

to count continuously during the whole length of the experiment, without a reset at the

beginning of each run. To achieve this, the DDAS readout program was edited such that the

firmware call to reset the modules was only called once when the first run was started. The
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S800 DAQ software was also modified to allow the scaler which keeps track of the DDAS

clock, to remain uncleared between runs. Therefore, the clocks had to be reset only once

at the beginning of the experiment and any time the DAQ crashed (which unfortunately

occurred several times, requiring new timing offsets to be calculated for every channel).

When the DDAS system was reset, it would take approximately 10 seconds before the

clocks were cleared and the system entered a running state. During this time, it was necessary

to ensure that the S800 system did not receive any triggers or clock cycles, so that only when

the DDAS system reset would the S800 begin processing timestamps and events. This was

accomplished using a specialized module that output a constant signal when DDAS was in

a running state. This module is labeled “DDAS State Module” in the diagram show in Fig.

3.15. This module was connected to the master DDAS module in slot 2 of the crate by a

cat5 cable. This signal was used as a veto for:

1. The clock signal from DDAS (which is output continuously)

2. The LENDA/VANDLE master trigger to the S800

3. The S800 DAQ

When starting the first run, the veto of the clock was necessary since the S800 could not start

counting the clock signals until DDAS reset its internal clocks and switched to a running

state. The veto of the LENDA triggers and the S800 DAQ were necessary to ensure that

no events happened in the S800 DAQ before the clock signal was ready. Reseting the two

systems in this way synchronized the clocks and ensured that no events were triggered until

both systems were ready.

However, since the clocks needed to be free running after they were synchronized in the

first run, the veto for the clock signal needed to be removed during the first run. This way,
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the veto is not reapplied when the DDAS system stops taking data at the end of the run,

and the two systems remain synchronized. To accomplish this, the veto cable for the clock

was patched to the data-U and then back down to the experimental setup. This way, during

the first run, the cable could be unplugged, thereby sending the clock signal to the S800

DAQ regardless of what state the DDAS crate was in. Experimental shift takers were given

detailed instructions about the role of this “magic veto cable” to ensure the clock remained

synchronized during the experiment.

3.4.3 Trigger Logic

In order to select charge-exchange events from the 16C(p,n)16N reaction, both a neutron and

a fast ejectile needed to be detected. To achieve this, the DAQ trigger logic was constructed

to only record coincidence events between the two systems. For LENDA and VANDLE,

the definition of a good trigger occurred whenever any bar had a signal in both the top

and bottom PMT, within a 24-ns coincidence window. This initial check was conveniently

performed internally by the FPGAs on the Pixie boards. The 24-ns coincidence window

was chosen because it was the smallest value where the behavior of internal coincidence was

reliable (at 8 and 16 ns, some coincidences would miss validation). The OR of all of the

top-bottom coincidence in a given Pixie module was output from the Pixie breakout modules

(this happend on the channel labeled o7 ). The breakout modules have lemo connectors for

the available trigger inputs and outputs of the Pixie boards and are labeled as PIXIE 16

Breakout modules in Fig. 3.15. The outputs (o7 ) of all 8 Pixie modules were or-ed together

to form the LENDA and VANDLE master trigger.

This master trigger was sent up to the S800 DAQ where it was input as the secondary

trigger to the S800 trigger box. If a coincidence was found, the S800 DAQ would send a
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live trigger signal back down to LENDA and VANDLE. During the time that the initial

neutron master trigger went up to the S800 DAQ and back down, the Pixie boards buffered

the detector signals (the delay was approximately 1.2 µs). The live trigger was sent back

into the boards external validation input (i4 ) on the breakout modules, which triggered

an internal validation window of 700 ns. The size of this window was chosen to be long

enough to validate low-energy neutron events, while short enough to keep the rate of random

coincidence from overwhelming the DAQ system. Under these conditions, a raw coincident

event rate of approximately 500 per second was written to disk. The S800 singles rate was

approximately 10k.
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Figure 3.15: Detailed diagram of the electronics setup in experiment e10003. The NSCL numbers refer to the NSCL E-Pool
number for the module depicted. Care has been taken to draw the modules with enough detail to make them easily recognizable.
The positions of the switches depicted in the first two modules on the left correspond to their actual setting in the experiment.
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Chapter 4

Data Analysis

Have you tried looking at the traces?

Remco Zegers

The purpose of this chapter is to discuss how the raw data from e10003 was processed and

filtered to arrive at differential cross sections ( dσdΩ). To accomplish this, a ROOT based analy-

sis package was developed to unpack, build, and analyze the experimental data. Throughout

the data, analysis the different “reaction channels” are discussed. This language refers to

the different final ejectile particles that are possible in the 16C(p,n)16N reaction (see Table

3.1). In some of the reaction channels, there is more than one rigidity setting of the S800

spectrograph used in the analysis of that channel. These parts of the data are referred to as

“settings” or “rigidity settings”.

4.1 Calibration

This section describes the details of the calibrations procedures used in e10003 for the neutron

detectors and the focal plane detectors of the S800 spectrograph.

4.1.1 Neutron Detector Timing Calibrations

Since the basis of the (p,n) measurement is the TOF of the neutrons, the calibration of

the timing signals from the neutron detectors is crucial. The first step in the calibration
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procedure is to choose a start time for the neutron TOF. With the digital system, each

signal in the setup has an absolute timestamp, which allows any signal to be chosen as the

reference time for the TOF after the data taking. Originally, the in-beam scintillator located

in the S800 object box was going to be used for this purpose. However, as the analysis

progressed it became clear that this detector suffered significant radiation damage due to

the high incident beam rate. This deteriorated the detector’s timing properties beyond what

was acceptable to achieve the physics goals of the measurement.

Instead, the timing of the beam-like ion measured by the E1 scintillator at the S800

focal plane was used as the reference time for the neutron TOF. This has the advantage

of significantly lowering the incident particle rate (thousands instead of millions per sec-

ond), preventing any radiation damage. However, using the S800 E1 scintillator introduces

dependence of the neutron TOF on the dispersive angle and position in the focal plane.

Figures 4.1 shows the correlation between neutron TOF, and the dispersive angle and

the dispersive position. These events come from the experimental data, where 15N has been

selected in the S800 focal plane (see Section 4.1.3 for details about the particle identification).

The dependencies can be corrected by looking at the events from the γ flash seen prominently

in both figures. Since the γ events must all occur at the same time, the correlation can be

fit and removed. After these corrections are performed the position of the γ flash is used

to calibrate this time difference to reflect the actual TOF from the target to the neutron

detectors. Since the distance from the center of the target to the bars is known to be 1 m,

the time that the γ flash should appear can be easily calculated (1m/c=3.33-ns).
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Figure 4.1: Two dimensional histogram showing the correlation between the neutron TOF,
and dispersive angle (a) and position (b) in the S800 focal plane. The γ flash is seen
prominently in the figures. The neutron events are to the right, but are cut off to clearly
show the γ flash.
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In addition to the corrections for the focal-plane parameters, the neutron TOF must

also be corrected for any walk (dependance of the TOF on the signal height in LENDA or

VANDLE). Fig. 4.2 shows this dependence for events where 15N has been selected in the

S800 focal plane.
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Figure 4.2: Neutron TOF plotted against the calibrated light output from the neutron
detectors. The γ flash can be seen centered around 0. At low energies, a small correlation
can be seen for the γ events.

Combining all of these effects provides the following expression for the neutron TOF,

TOF = Tn − TE1 − a(afp)− b(xfp)− c

Lo
− Toffset, (4.1)

where Tn is the timestamp from LENDA or VANDLE, TE1 is the timestamp from the top

PMT of the S800 focal-plane scintillator, afp is the dispersive angle in the focal plane, xfp is

the dispersive position in the focal plane, Lo is the light output seen in LENDA or VANDLE

in keVee, and a, b and c are correction coefficients.

Fig. 4.3 shows the fully corrected TOF spectrum for the 15N data. The γ events are seen
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cleanly separated from the neutron events by TOF. A FWHM timing resolution of ∼700-ps

is achieved in the experimental data. Similar calibration procedures were used for the other

channels of interest 14N, 15C, 14C, 16N. Their TOF spectra are shown in Fig. 4.4.
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Figure 4.3: Fully Corrected neutron time of flight spectrum for the N15 data (3.1325 Tm
setting). The dashed green line indicates the TOF cut between γ and neutron events. It
corresponds to a neutron kinetic energy of ∼67 MeV, which is far above the energies used
in the analysis.

As can be seen in the Fig. 4.4, the γ flash for the 15C channel has a long tail and what

appears to be poor resolution. Since the target material is hydrogen, the γ rays must come

from some excited state in the ejectile. However, below the neutron emission threshold, 15C

has only 1 known state at 740-keV. Since this state has a long lifetime of 2.61 ns, the γ flash

appears smeared out. The 15C can emit the γ ray later along its flight path, increasing the

total distance it must travel to the neutron detectors. This effect was simulated and included

in the timing calibration of the 15C data.

Fig. 4.4 also shows a sharp peak to the right of the γ flash in the 15C and 14C TOF

spectra. These peaks come from a strong neutron-knockout background that dominates at
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forward lab angles. Details of this background and its subtraction are given in Section 4.4.
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Figure 4.4: Corrected neutron TOF spectra for the 14N (2.9 Tm) (a), 16N (3.38 Tm) (b),
15C (3.6565 Tm) (c), and 14C (3.38 Tm) (d) channels. The 15C and 14C data from the 3.52
Tm and 3.2828 Tm settings are not shown, but have similar TOF spectra.

4.1.2 LENDA and VANDLE Gain Calibrations

Though the light output from the neutron detectors is not directly used in the determination

of the excitation energy and COM scattering angle, it is necessary for setting the neutron

detection threshold. The threshold affects the neutron detection efficiency and therefore the

differential cross section. To accomplish this the light output for each bar is calibrated into
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keVee using γ sources 241Am, 22Na and 137Cs. The specific gamma rays used and their

specifications are summarized in the Table 4.1.

Source Eγ Type EReduced
γ

22Na 1274.5 CE 1061.7

22Na 511 CE 340.7

137Cs 661.7 CE 477.4

241Am 59.5 Ph 59.5

241Am 26.3 Ph 26.3

Table 4.1: Table of the γ-ray calibration sources used for the neutron detector gain calibra-
tion. See text for details.

Eγ is the true energy of the emitted gamma ray, CE refers to compton edge, Ph refers

to photo-absorption and EReduced
γ is the expected energy of the gamma ray in the neutron

detectors. For photo-absorption the expected energy is unchanged, but for compton edges

the energy is reduced (see Appendix B for more details).

The gain for the top and bottom PMT of each bar were matched in software using the

compton edge of 137Cs. The total energy of the bar was then defined as,

E =
√
ETEB , (4.2)

where ET,B are the gain matched energies for the top and bottom PMTs. The energy for the

bar was then calibrated into keVee using the compton edges from 22Na and the photo-peaks

from 241Am,

ECal = g · E + Th, (4.3)
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where g is the gain and Th is the threshold from the fit.
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Figure 4.5: Example light output calibration for south LENDA bar 2. The data points are
described in Table 4.1. The red line is a linear fit to the data.

Fig. 4.5 shows an example of the calibration curve from a LENDA bar (south LENDA

2) using the 4 points from 241Am and 22Na. The neutron detection threshold is set using

this calibrated energy for each bar. The uncertainty in the calibrated energy from fitting

uncertainties and drifts in the gain during the experiment are included in the final systematic

error for the differential cross section.

4.1.3 Particle Identification

Though the experimental conditions are tuned to explore charge-exchange reactions, many

other processes can trigger the DAQ by producing a neutron and an ejectile in the 16C

+ p reaction. To filter away the events from these processes the timing and energy loss

information from the E1 scintillator and the ion chamber in the S800 are used to make a

particle identification plot. This allows only the ejectile of interest (16N, 15N, 14N, 15C, 14C)
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to be included in the data analysis. Fig. 4.6 shows an uncalibrated particle identification

plot for the 3.1325 Tm rigidity setting (the main setting for 15N), where the TOF of the ion

to the S800 focal has been shifted to near zero for convenience.
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Figure 4.6: Uncalibrated Particle Identification for the 3.1325 Tm setting.

While even at this level separation between different particles can be seen, the resolution

of both the TOF and energy loss signals can be improved by correcting for the dependence

on dispersive position and angle in the focal plane. Fig. 4.7 shows these dependencies for the

TOF when the 15N events are selected in the uncalibrated PID spectrum shown in Fig. 4.6.

Similar correlations and corrections exist for the energy loss measured in the ion chamber.

After applying these corrections a particle identification plot is constructed for each

rigidity setting. Fig. 4.8 shows a corrected PID spectrum from 4 of the rigidity settings

measured in the experiment, each of which highlights an exit channel of interest. Elliptical

gates are made on each particle extending out to 2 sigma in TOF and ∆E. The good

events cut away in this process are included in the final normalization of the differential

cross section. These gates are shown as black ellipses in Fig. 4.8.
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Figure 4.7: Correlation between the ejectile TOF and the dispersive angle (a) and position
(b) in the S800 focal plane for 15N events. The artifacts seen in (b) are the result of bad
events in the CRDCs, which are removed in subsequent steps of the analysis.
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(a) (b)

(c) (d)

Figure 4.8: Corrected PID spectra from the 3.1325 Tm (a), 2.9 Tm (b), 3.6565 Tm (c),
and 3.38 Tm (d) settings. The main particles of interest in each setting are indicated. The
remaining two settings 3.52 Tm and 3.2828 Tm are not shown, but are similar to the 3.6565
Tm and 3.38 Tm settings.
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4.1.4 CRDC Calibration

In order to find the particle’s position and angle from the pad distribution and electron drift

time measured by the CRDCs, the detectors must be calibrated. To accomplish this a metal

plate (a “mask”) with a series of known holes and strips is placed 8 cm upstream of each

CRDC for a calibration measurement. The result of these calibration runs are shown in Fig.

4.9, where the mask hole and strip pattern is clearly visible. Taking the measured drift time

and pad position of several of these holes a linear calibration of the form,

X1,2(mm) = sx1,2(mm/pad) ·X(pad) + cx1,2(mm) (4.4)

Y1,2(mm) = s
y
1,2(mm/ns) · Y (ns) + c

y
1,2(mm), (4.5)

can be fit to the data. The s
x,y
1,2 coefficients refer to the slope of the calibration for x and

y of CRDCs 1 and 2. Similarly C
x,y
1,2 are the offsets from these calibrations. Since the x

measurement comes from discrete PADs, the slope for that calibration is just the width of

the pads, 2.54 mm/pad. The constant offset can be found by using any of the holes seen in

Fig. 4.9. For the Y direction, 3 vertical points in the center of the mask pattern were used

in the fit.

To accurately determine the x position from the PAD distribution, the gains of the PADs

must be matched and the resulting distribution fit on an event-by-event basis. If the gains

of some PADs are substantially larger than the others, the fits can be biased towards those

PADs, creating artifacts in the spectrum. Fig. 4.10 shows the effect of this calibration step

for CRDC 1.

Once the positions for both CRDCs are fully calibrated, the dispersive and non-dispersive
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Figure 4.9: The uncalibrated position (x-axis) and time (y-axis) measured by the CRDCs
during the mask runs.
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Figure 4.10: The pad distribution for CRDC 1 before (a) and after (b) the pad-by-pad gain
matching. The data is from one experimental run of the 3.1325 Tm rigidity setting.
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angles can be calculated,

afp = atan((X2 −X1)/1073.0) (4.6)

bfp = atan((Y2 − Y1)/1073.0), (4.7)

where 1073.0 is the distance between the CRDCs in mm. This defines 4 parameters for the

particle’s track in the focal plane.

However, determining the particle’s properties at the target position is often a more

critical piece of information. Specifically for this measurement, the ejectiles momentum dis-

tribution is needed so that the cross section can be corrected for the momentum acceptance

of the spectrometer, and the different rigidity settings can be stitched together. To accom-

plish this the transfer map of the spectrograph is calculated using the ion optics code COSY

infinity [110]. With the inverse map (M−1) calculated by COSY the target parameters can

be derived,



ata

yta

bta

dta


= M−1



xfp

afp

yfp

bfp


. (4.8)

The “ta” (as opposed to “fp”) designation is a common convention to indicate that these

are the values at the target position. Similar to the focal plane parameters ata (bta) is the

dispersive (non-dispersive) angle at the target, yta is the non-dispersive position, and dta

is the deviation of the particles’ energy relative to the energy of the center track through

the spectrometer (E0). The kinetic energy of the ejectile can be determined from dta easily

through,
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E = E0(1 + dta). (4.9)

From the energy and angles, the momentum vector ~p can be determined. The ejectiles kinetic

energy is used to investigate the acceptance of the spectrometer (see Section 4.5.2 for more

information).

With the above calibrations completed, we have the ingredients necessary to calculate

the COM scattering angle and excitation energy for each event. The following sections go

through the major analysis steps needed to extract absolute differential cross sections from

the data.

4.2 Experimental Yield

In order to calculate the COM differential cross section as a function of excitation energy

in 16N, the lab measurements must be transformed into the correct variables. For the

(p,n) reaction in inverse kinematics this is done with missing-mass spectroscopy, where the

excitation energy of 16N can be found with,

Ex =
√

(Mp +M16C
+ T16C

−Mn − Tn)2 − (P 2
16C

+ P 2
n − 2PnP16C

Cos(θn))−M16N
.

(4.10)

Mx, Tx and Px refer to the rest mass, kinetic energy and momentum of particle x in the

lab frame respectively. θn is the lab scattering angle of the neutron. The momentum of the

neutron and 16C are given by,

Px =
√

2MxTx + T 2
x . (4.11)
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To find the center of mass scattering angle the following relation is used,

Θcm = Sin−1

(
P labn

P cmn
Sin(θn)

)
, (4.12)

where the P cmn is found by Lorentz boosting the neutron lab momentum vector into the

COM frame.

The above relations were used to find the excitation energy and COM scattering angle

for each event. The yields in the lab and COM are presented in Fig. 4.11. The plots on the

left show a two dimensional histogram of lab neutron kinetic energy (y-axis) and neutron

scattering angle (x-axis) for the different decay channels. The figures on the right show the

corresponding two dimensional histogram of COM scattering angle (y-axis) and excitation

energy in 16N (x-axis). On the left, the expected kinematic relationships for the 16N, 15N,

and 14N channels are clearly visible. However, for the 15C and 14C channels there is little

apparent structure. Instead the spectra are overwhelmed with forward peaking background

events. These events come from neutron-knockout reactions that have the same outgoing

particles as true charge-exchange reactions. The neutrons from these events scatter off the

downstream quadrapole magnet and hit the neutron detectors, creating false coincidences.

Section 4.4 will discuss this background in more detail.

The data were separated into two-degree bins in COM scattering angle and the excitation

energy histogramed to form the experimental yield. As an illustrative example, Fig. 4.12

shows the experimental yield in the Θcm = 4− 6° bin for the 15N channel. The acceptance

of the neutron detectors is clearly visible in the spectrum, where it creates artificial peak-like

structures. Also evident in the spectrum are background events that need to be subtracted.

The following sections will discuss the neutron acceptance corrections and the background
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Figure 4.11: Two dimensional histogram of lab neutron angle and kinetic energy measure-
ments (a,c,e,g,i), and reconstructed excitation energy in 16N and COM scattering angle
(b,d,f,h,j). In (a,c,e,g,i) the solid lines indicate excitation energy in 16N and the dashed lines
indicate the COM scattering angle.
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Figure 4.11: cont’d

(e) 14C
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subtraction methods used for the different channels.
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Figure 4.12: Experimental yield for the 15N channel (3.1325 Tm) in the Θcm = 4− 6° bin.

4.3 Neutron Detector Efficiency and Acceptance

Of significant importance to determining the absolute cross section for the 16C(p,n)16N re-

action is the intrinsic neutron detector efficiency and geometrical acceptance of the LENDA

and VANDLE bars. As was done in previous work with LENDA, the efficiency for each

bar is determined through a Monte Carlo simulation that has been validated against ex-

perimental measurement [63, 64]. For e10003 this was done using the GEANT4 simulation

toolkit [111] and its associated high-precision neutron physics library [112]. This is the same

approach used by the VANDLE collaboration [93] and the European Low Energy Neutron

Spectrometer (ELENS) [113].

In order to be detected by LENDA or VANDLE the neutron must first interact with

the hydrogen or the carbon nuclei in the plastic scintillator. A cartoon of this process is
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show in Fig. 4.13. In principle the neutron can interact with any combination of hydrogen

and carbon nuclei, however the light output from interactions with the carbon is highly

quenched [113, 93]. These carbon reactions can therefore contribute only a small amount

to the detector’s response in the neutron energy region of interest (< 20 MeV). The elastic

scattering on hydrogen dominates the spectrum.

Fig. 4.14 shows the light output for plastic scintillator in keVee for protons, 12C, and 4He

as a function of incident particle energy (adapted from [114]). The quenching of the carbon’s

light output can be clearly seen–a 1 MeV proton will result in a 177.7 keVee of light output

but a 1 MeV 12C will make only 6.6 keVee. This effect pushes the carbon interactions below

the light-output threshold for all but the most energetic carbon scatterings. The low-energy

tail of the light-output function for protons was modified to better reproduce the measured

neutron response from the 252Cf data presented in Fig. 3.14. This is shown as the dotted

blue line in Fig. 4.14. These light-output curves were used in the simulation of the neutron

detection efficiency.

Fig. 4.15 shows the result of the Geant4 simulation, where neutrons between 0 and 20

MeV were impinged on a single LENDA bar from a point like source. The light output was

determined in the simulation by taking the energy loss from each simulation step inside the

LENDA bar and converting it to a light output using the functions shown in Fig. 4.14.

The light output of all the steps are added together to arrive at a total light output for the

simulated event.

In the previous work with LENDA [63, 64], MCNP was successfully used to simulate the

response of the neutron detectors. Using Geant4 has allowed all aspects of the simulation to

be done in one framework. Within the simulation the beam profile, the bulging of the target

windows, the energy loss of the beam in the target, and the neutron detector response are
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Figure 4.13: A cartoon depicting the interactions of neutrons in a plastic scintillating ma-
terial. In order for the neutron to be detected it must undergo a nuclear reaction with the
hydrogen or carbon nuclei in the material. The angles of the scattering are exaggerated for
artistic purposes. The dominate elastic scattering on hydrogen is shown at the top of the
figure. Elastic (shown at the bottom of the figure) and inelastic (not shown) scattering on
12C are also possible but highly quenched. See text for details.
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Figure 4.14: Light output curves for BC-400 plastic scintillator. Each line shows the expected
light output as a function of incident particle energy. Adapted from [114] see text for details.

Figure 4.15: Two dimensional histogram of light output and incident neutron energy from the
Geant4 simulation. Contributions from elastic scattering on hydrogen and 12C are included
in the simulation. Inelastic channels for carbon scattering are also included and create the
few events above the elastic scattering trend line. These events amount to a tiny portion of
the data (<0.05%).
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all included at the same time.

To obtain at a simulated efficiency for the LENDA bar, a light output threshold must be

applied in the simulation to match the data. The threshold for the data was set at 30 keVee

as determined for each bar following the calibration procedure outlined in Section 4.1.2. An

effective threshold of 25 keVee and a scaling factor of 0.92 was applied to the simulation

since it better reproduced the measured efficiency at low neutron energies. Fig. 4.16 shows

the result of the Geant4 simulation with the measured efficiency overlaid at a threshold of

30 keVee. This efficiency was measured using a 252Cf fission source as described in Ref. [90].
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Figure 4.16: The black points show the measured intrinsic neutron detection efficiency for a
single LENDA bar at a light output threshold of 30 keVee. The blue line is the result of the
Geant4 simulation of the efficiency. Good agreement is seen.

Confident with the simulations ability to reproduce the intrinsic neutron detector effi-

ciency, the simulation was used to calculate the total neutron acceptance as a function of

COM scattering angle and excitation energy for the full experimental setup. The beam was

simulated through the bulged liquid hydrogen target, where it underwent a charge-exchange

reaction. When the scattered neutron hit one of the detectors, the event was recorded. The
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result of this simulation is shown in Fig. 4.17, where the neutron energy and angle have

smeared to match the experimental resolution and transformed into the COM frame.
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Figure 4.17: Two dimensional histogram of Θcm and Ex in 16N from the Geant4 simulation
of the e10003 setup.

The total detection efficiency as a function of COM scattering angle and excitation energy

is obtained by taking projections of Fig. 4.17 onto the x-axis in the same COM scattering

angle binning used in the analysis and dividing by the total number of events simulated

in that bin. Figs. 4.18 shows the simulated efficiency for the most forward (Θcm=4-6°)

and most backward (Θcm=14-16°) angles used in the analysis. The sharp, periodic features

seen in both figures are the result of measuring the lab scattering angle with discrete bars

of differing geometrical acceptance–the VANDLE bars cover approximately twice the solid

angle as the LENDA bars. These simulated curves were used to correct the experimental

yields for the acceptance in each COM scattering angle bin used in the analysis.

The simulation was also used to determine the experimental excitation-energy resolution

of the full setup. This was done by simulating the response of the neutron detectors to
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Figure 4.18: Simulated neutron acceptance and efficiency in the Θcm=4-6 ° (a) and Θcm=14-
16° (b) bin for the e10003 setup.
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events with discrete excitation energies. As was seen in Ref. [64], the resolution worsened

at large COM scattering angles. The resolution varied from σ(5°)FWHM ≈ 750 keV to

σ(15°)FWHM ≈ 2 MeV. The following section describes the background subtraction used in

the analysis.

4.4 Background Subtraction

There are various possible background sources that can contribute to the charge-exchange

spectrum. They can be categorized as:

� Foil background. There may be reactions off of the non-hydrogen nuclei in the Kapton

foils that surround the liquid-hydrogen target.

� Random background. The TOF spectrum may have random coincidences between

neutrons and uncorrelated beam bunches.

� Beam-induced background. Reactions on the hydrogen other than charge exchange

that produce the correct ejectile of interest and a neutron.

The foil induced background was studied by taking data with the empty target at the

conclusion of the experiment. This was done in all of the rigidity settings used in the

experiments. The contribution from these events was found to be vanishingly small (< %0.5)

and could not be determined accurately with the statistic of the background runs. Instead

the thickness of the target was increased to include the hydrogen nuclei in the Kapton foils

and a systematic uncertainty of 0.5% was included. The random background was inspected

by looking at events that occurred at negative TOFs. The rate of random coincidences was

also found to be very small (< 1%). Similar to the foil background, the random background
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shape could not be accurately determined and was included as a systematic error. The

choice to use the S800 E1 scintillator for the neutron TOF made the random rate far less

than in previous experiments when an in beam scintillator was used [63]. See Section 4.7 for

a breakdown of the systematic errors.

The vast majority of the background events came from knockout or fragmentation reac-

tions on the hydrogen in the target that produced the correct ejectile and a neutron. These

reaction types are associated with fast neutron emission at forward scattering angles. These

neutrons can scatter off the surrounding materials and hit a LENDA or VANDLE bar, some-

times creating a false coincidence. In this circumstance the TOF of the neutron is not related

to its energy and creates a complex background. Since modeling the different background

processes and the scattering of the neutrons from different materials in the experimental

vault was a difficult task, a background model built off the experimental data was used.

Different techniques were used for the different reaction channels since the background

shapes and intensity were different. For the 15N and 14N channels, a background model was

based on events that created 11B in the spectrometer. Events that create 11B cannot be

from charge-exchange reactions in the excitation energy range of interest of 0-20 MeV (the

11B channel would open at 42 MeV). Therefore they should give a good representation of

the neutrons from the possible background processes. A similar technique was used in the

first LENDA (p,n) experiment [63, 64]. Fig. 4.19 shows the two dimensional histogram of

neutron energy and scattering angle for 15N gated events and 11B gated events. Even at

the preliminary level the shape of the 11B spectrum seems to reproduce the shape of the

background seen in the 15N data.

A more detailed look at the 11B model for the background reveals that some rescaling

is needed to characterize the background at higher excitation energy. Fig. 4.20 shows the

97



nθ
40 50 60 70 80 90100110120130140

 [M
eV

]
n

T

0

10

20

30

40

50

60

1

10

210

310

(a) 15N

nθ
40 50 60 70 80 90100110120130140

 [M
eV

]
n

T

0

10

20

30

40

50

60

1

10

210

310

(b) 11B

Figure 4.19: Two dimensional histogram of lab neutron scattering angle and neutron kinetic
energy for 15N (a) and 11B (b) gated events. The events from 11B are used to model the
background seen in the 15N channels.

ratio of the 15N and 11B data integrated between neutron kinetic energy of 40 and 60 MeV

as a function of lab scattering angle. The blue points show the region of θn that contains

charge-exchange events, while the black points contain only background. A linear function

was fit to the black points to yield a rescaling function that models the background seen in

the 15N channel.

Using this model yields the background shape in Fig. 4.21, where the forward (Θcm =

4−6°) and backward (Θcm = 14−16°) most angles are shown. The background is normalized

to the data in the unphysical region below the channel’s threshold (2.5 MeV for 15N). The

data presented in Fig. 4.21 still contains the jagged acceptance of the neutron detectors

and so contains periodic structures. Building the background model from the experimental

data reduces systematic error because mistakes in the acceptance of the bars are the same

between the data and the background model. A similar procedure was performed for the 14N

data. The 11B data was again used as the background model, but with a different rescaling

function.
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Figure 4.20: Ratio of the 15N and 11B gated events integrated from 40 to 60 MeV in neutron
kinetic energy as a function of the lab neutron scattering angle. The blue points show
the region of charge-exchange reactions, while the black points indicate regions with only
background. The red line is a linear fit to the black points in the range shown.
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Figure 4.21: Experimental yields with overlaid background shape from the 11B models. The
most forward (Θcm=4-6°) and backward (Θcm=14-16°) COM angles are shown.
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Characterizing the background for the 15C and 14C channels proved to be difficult due to

the large amount of neutron-knockout and fragmentation reactions. After many iterations,

events from the low-energy tail of the ejectiles kinetic energy distribution was used to estimate

the shape of the background. Fig. 4.22 shows the kinetic energy distribution for the 15C

channel. The full distribution is reconstructed from two rigidity settings: 3.52 and 3.6565

Tm. The gray line represent the full distribution after combining the two settings with

corrections for incomplete acceptance. The spectrum contains both charge-exchange and

background events. However, charge-exchange events up to 20 MeV of excitation energy

cannot create the events seen in the low-energy tail of the distribution. This makes these

events a good candidate for a background model.
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Figure 4.22: The kinetic energy spectrum of 15C events detected in the S800 Spectrograph.
The black (blue) hashed region comes from the 3.52 (3.6565) Tm rigidity setting. The
gray line is the full distribution constructed from the two settings. The thin blue line
shows the simulated distribution from charge-exchange reactions. The low-energy tail of the
distribution is energetically inaccessible to charge-exchange reactions and so must come from
background processes.

Fig. 4.23 shows the data and the above background model for the forward and backward
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most scattering angles gated on the 15C and 14C channels. In both cases, the signal to

background is clearly much lower than the 15N case. Both channels have limited yield for

the Θcm = 4− 6° bin with increased strength appearing at backwards angles. The statistics

for the 15C background model are clearly limited. However, this technique was the best

compromise between statistical and systematic error for this channel.
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(c) 14C Θcm = 4− 6°
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(d) 14C Θcm = 14− 16°

Figure 4.23: Experimental yield and background models for the 15C and 14C channels. The
data comes from the 3.6565 Tm and 3.38 Tm rigidity settings respectively. Yield is primarily
seen at backward angles.

The 16N channel does not suffer from a complex background because the PID cut on 16N

ensures that no breakup or fragmentation reaction occurred. A flat background subtraction
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was done based on a linear fit to the data at higher excitation energies where there is no

strength in the 16N channel.

4.5 Absolute Normalization Corrections

The goal of e10003 was to measure absolute cross sections in the 16C(p,n)16N reaction. This

meant measuring the beam rate incident on the liquid-hydrogen target and determining the

efficiencies and acceptances of each detector and analysis step. The neutron acceptance

and efficiency calculation has already been discussed in its own section (see Section 4.3).

This section discusses some of the remaining corrections that were used in final cross-section

normalization.

4.5.1 Incident-Beam Measurement

The scaler readout of the object scintillator was used to monitor in the incoming beam. The

measured rate varied between 2 and 3 MHz throughout the experiment. To determine the

total number of particles incident on the scintillator in each run, the averaged measured

rates were averaged together and multiplied by the length of the run. This gave a run-by-

run tracking of the number of incident beam particles during the experiment. To check the

reliability of this measure, the correlation between the object scintillator rate and primary

beam rate monitors like the A1900 Faraday bar were confirmed.

However, at rates that are an appreciable fraction of the cyclotron’s RF frequency, the

measured rate will diverge from the true incident rate. This occurs because the probability

of finding more than 1 particle in a beam bunch becomes significant. If there are 2 or more

beam particles in a beam bunch the object scintillator’s scaler will only count once and the
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measurement will be incorrect. The measured rate by the object scintillator needs to be

corrected for this effect. Appendix C gives a detailed derivation of this correction, which can

be given as a linear function,

Rcor = 5.6 · 10−8Robject + 0.99, (4.13)

where Robject is the raw scaler measurement. This effect was corrected on a run-by-run basis

and increased the rate by approximately 10-15%.

The energy loss spectrum (∆E) in the object scintillator was also measured. This is

shown in Fig. 4.24, where events with 1 and 2 particles in the beam bunch can be seen.

With the clear separation between these two cases, a separate determination of the incident

rate can be made. As Appendix C shows the average incident beam rate (r) is related to

the ratio of single hits (S1) and multi hits (S>1), and the RF rate (n),

S>1

S1
=
r

n
. (4.14)

This technique confirmed the scaler measurement with the above correction to within 3%.

4.5.2 S800 Acceptance

The S800 Spectrograph has a finite acceptance in both momentum and angle. To extract

a properly normalized cross section this acceptance must be taken into account. Further,

since the measurement of the cross section was broken across different, partially overlapping

rigidity settings these acceptances are key to understanding how to merge the settings to-

gether. Here, the case of 14C, where the largest correction is required, is discussed. The full
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Figure 4.24: Histogram of the energy deposited in the object scintillator in the first run of
the experiment. The peaks correspond to to single- and multi-particle hits in the scintillator.

kinetic energy distribution of 14C is spread across 4 rigidity settings: 3.1325 Tm, 3.2828 Tm,

3.28 Tm, and 3.52 Tm. Fig. 4.25 shows a two-dimensional histogram of the kinetic energy

of the 14C ejectiles and the dispersive angle at the target from the 3.2828 Tm setting. The

acceptance cut of the S800 is clearly visible. There is complete acceptance in the center of

the distribution, but the reduced acceptance in the dispersive angle removes events on both

ends of the distribution. No acceptance cuts were seen in the non-dispersive direction. To

correct for these acceptance effects, the full distribution for 14C was reconstructed.

Fig. 4.26 shows the full kinetic energy distribution of 14C. The distribution from the 3.52

Tm setting was extended into the area of partial acceptance (< 1420 MeV) by correcting

for the evens cut off due to the finite angular acceptance. The same procedure was applied

to the low energy side of the 3.2828 Tm setting. These regions are shown in Fig. 4.26 with

vertical line shading. Between the central two rigidity settings (3.2828 and 3.38 Tm), no

correction for partial acceptance was needed because the areas of full acceptance in the two
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Figure 4.25: A two-dimensional histogram of the kinetic energy and dispersive angle at the
target for the 14C channel as measured in the 3.2828 Tm rigidity setting.

settings overlapped.
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Figure 4.26: Full kinetic energy distribution for 14C ejectiles reconstructed from 4 rigidity
settings. The vertical line shaded regions indicate areas of incomplete acceptance. See text
for details.

With the full distribution reconstructed, acceptance curves can be constructed from the

data by dividing the uncorrected distribution in each setting by the total. This gives the
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acceptance of the S800 as a function of kinetic energy of the ejectile. For the 14C channel

only the two central settings (3.2828 and 3.38 Tm) were used to extract charge-exchange

information. Fig. 4.27 shows the acceptance curve for the 3.2828 Tm setting obtained in

this way. The acceptance on the low-energy side of the distribution has significant statistical

fluctuations since it comes from an area of incomplete acceptance.
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Figure 4.27: Experimentally determined acceptance curve for 14C in the 3.2828 Tm setting.

The width of the ejectile’s kinetic energy distribution from charge-exchange reactions is

a function of excitation energy in 16N. The higher the excitation energy, the more energy is

available for the decaying nucleon(s) to carry away—widening the ejectile’s kinetic energy

distribution. To study this effect, the distribution from charge-exchange reactions needs to

be known, but Fig. 4.26 gives the the distribution for background plus charge-exchange

reactions. For the 15N and 14N channels, the charge-exchange distribution was estimated by

gating around the kinematic relationships seen in Fig. 4.11. From the measured distribution

a model for the neutron decay scheme was built into the Geant4 simulation to calculate

excitation energy dependent acceptances for each channel. For the 15C and 14C channels this
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was not possible since there were no clear kinematic relationships seen in the two channels.

For these cases a decay scheme to the evenly spaced levels in the final nucleus was assumed.

The systematic error associated with this procedure is discussed below.
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Figure 4.28: Efficiency curves from the finite S800 acceptance for each rigidity setting used
in the analysis. Lines of common color show settings centered around the same detected
particle in the CE reaction.

The results of these simulations are shown in Fig. 4.28, where the efficiency from the

finite S800 acceptance is shown for each rigidity setting used in the analysis. The start of

the lines for the higher lying channels indicates the threshold energy. Only for the 15C and

14C channels were there two different settings used in the analysis. For these channels the

cross section was determined for each setting separately, then averaged together to form a

final cross section.

As Fig. 4.28 shows, the acceptance for most of the rigidity settings was quite high in the

excitation-energy regime of interest. Therefore uncertainties in the procedure to determine

these corrections will have a small effect on the final cross section. The exceptions to this

were the corrections for the 3.2828 and 3.52 Tm settings for 14C and 15C respectively. Both
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of these settings corresponded to the low-energy tail of their respective channels where it was

clear that there was less charge-exchange reactions below 20 MeV of excitation energy. Since

this approach corrects each setting into a total cross section, the two results can be checked

against one another for consistency as a measure of the systematic error of the procedure.

In both cases the results were statistically equivalent, and the systematic error was deemed

smaller than the statistical error.

4.5.3 Target Thickness

When filled, the windows of the liquid-hydrogen target bulged beyond the nominal 7 cm

thickness of the frame. This bulging needs to be taken into account in the determination of

target thickness so that the cross section can be properly determined. Originally the thickness

was going to be estimated by looking at the energy loss of the 16C beam going through the

full and empty target into the S800 focal plane. This requires changing the rigidity of the

spectrometer. However, during the analysis it became clear that the high rigidity of the 100

MeV/u 16C beam put the spectrometer too close to its maximum operational rigidity and

saturated the magnets (Bρ=3.94 (empty) and 3.9 (filled) Tm out of a maximum of 4 Tm).

It became impossible to very accurately determine the momenta from the runs with different

Bρ. To alleviate this issue the target thickness was determined by looking at the energy loss

difference between the 16C and the containment 14B. With this approach the systematic

error between the two settings from the saturation of the magnets was reduced.

Fig. 4.29 shows the raw PID spectrum from the run where the beam was tunned through

the spectrometer to the focal plane. Selecting events for 16C and 14B and reconstructing

their energy yields Fig. 4.30, where the measured kinetic energy of the two particles after

traveling through the target is shown. This gives an energy loss difference of 311.7± 0.3
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Figure 4.29: PID spectrum from the run where the 16C was tuned into the focal plane of
the S800. The beam consisted of 16C and a small containment of 14B.
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Figure 4.30: Kinetic energy measured by the s800 Spectrograph for the two beam particles.
The peak from 16C has been scaled down for easy comparison with 14B.

With the measured energy loss difference through the target between 16C and 14B, the

Geant4 simulation was used to determine a relationship between the target thickness and
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energy loss difference. This was done with the full simulation including the bulged surface

of the target and the realistic beam profile determined from the data. A different simulation

was run for both particles for a range of target bulge values. The result of these simulations

is shown in Fig. 4.31, where a clear linear relationship is seen. From this relationship a half

bulge amount of ∼1.0 mm was found, giving a total target thickness of 9.1 ± 0.3 mm.
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Figure 4.31: Relationship between energy loss difference and liquid hydrogen target thickness
determined from simulation. The points are simulated values and the red line is a linear fit.

The curved surface of the target and the finite extent of the beam spot must also be taken

into account. An average thickness over the width of the beam spot (∼3.9 mm FWHM) was

calculated from the amount of bulging and the size of the beam. This reduced the effective

target thickness by an amount substantially less than the 0.3 mm error bar. This corresponds

to an aerial density of 65.8 ± 2.2 mg/cm2.
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4.5.4 Target Density Variations

The temperature and pressure of the liquid hydrogen target were monitored throughout the

experiment so that any changes in the density could be taken into account in the final cross

section normalization. The density was determined from the temperature according to the

following expression,

ρHforLH2
= −0.0008T 4 + 0.0672T 3 − 2.1467T 2 + 29.219T − 65.934, (4.15)

where T is the temperature in Kelvin [104]. Fig. 4.32 shows the density measurements

averaged over each experimental run. The fluctuations are small (< 0.5%) and are corrected

on a run-by-rub basis.
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Figure 4.32: The density derived from the temperature measurement of the liquid hydrogen
target for each experimental run.
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4.6 Cross Section Calculation

In addition to the corrections discussed in the above sections, there are other run-by-run

corrections for various detectors and other overall normalization corrections. These factors

are shown in Equation 4.16 and summarized in Table 4.2. With these many effects, the

absolute differential cross section can be extracted. For e10003 the full definition for the

differential cross section, containing all efficiency factors and corrections is,

dσ

dΩ
=

Ns(1 + α)

∆Ω10−24ρ∗εdaqεndectorsεtof εpidεcrdcεICεnhitεs800TrunεtransRcorNT
[b/sr], (4.16)

where Ns is the number of scattered particles from charge-exchange reactions in a given COM

scattering angle bin, ∆Ω (sr) is the solid angle coverage of that bin, Trun (s) is the length

of the run, εndetectors is the neutron detection efficiency, and Rcor (1/s) is the corrected

incident beam rate described in Section 4.5.1. NT (1/cm2) is the number of target nuclei

from the liquid hydrogen and the small contribution from the hydrogen in the cell’s Kapton

foils given by,

NT =

ρHLH2
tcellNA

MMH
+
ρHkaptontfoilNA

MMH

 , (4.17)

where tcell is the target thickness, tfoil is the thickness of the Kapton foils (250 µm), NA

is Avogadro’s number, MMH is the molar mass of hydrogen, and ρHx is the density of

hydrogen in either liquid hydrogen or kapton. The remaining factors, their descriptions, and

their approximate values are summarized in Table 4.2. The following paragraph gives a brief

explanation of how each of these corrections was obtained.

The DAQ live time (εdaq) was determined from the ratio of the S800’s live and raw

clocks. Though the singles rate in the S800 focal plane was high (∼10k), the coincidence

112



condition with the neutron detectors brought live trigger rate down substantially—decreasing

the overall dead time of the system. The PID TOF efficiency (εtof ) adjusted for the number

of events when the correct beam bucket could not be found in the digitized waveform of the

object scintillator signal. This timing signal was needed for the PID, so events lacking the

signal were discarded. The PID gate efficiency (εpid) was the 2σ radius of the PID gates.

The CRDC efficiency (εcrdc) was determined by comparing the number of hits in the IC to

hits in the CRDCs for a given run. The IC pile up efficiency (εIC) was found by inspecting

the number of events in the high-energy tail of the IC distribution for a given particle. It

was found to be constant across different runs and detected particles. The single neutron hit

efficiency (εnhit) was found by examining the neutron multiplicity spectrum. Only events

in which 1 neutron was detected could be used in the analysis so higher multiplicities were

discarded. The correction was found to be constant across the different rigidity settings. The

beam transmission (εtrans) from the object scintillator to the target position was measured

at the beginning (77.5%) and end (82.3%) of the experiment by tuning the beam into the

S800 focal plane. The increased transmission seen in the second measurement was applied

to runs 631 and above. A jump in the cross section measurement was observed at run 631,

motivating the use of the second transmission measurement. The object pile-up correction

(α) was found by counting the number of multi-hit events in the object scintillator. Only

events that deposited energy consistent with 1 particle in the object scintillator were used

in the analysis. The timing resolution for the multi-particle hits was poor and so were

discarded.
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Factor Description Value

εdaq DAQ live time 90-96%

εtof PID TOF efficiency 90-95%

εpid PID gate efficiency 95%

εcrdc CRDC efficiency 50-70%

εIC IC pileup efficiency 98%

εnhit Single neutron hit efficiency 93%

εtrans Beam transmission to target 77.5,82.3%

α Object pileup correction 8-40%

ρ∗ Target Density Correction ¡0.5%

Table 4.2: Summary of corrections to the cross sections. Parameters with a range in values
indicate that a run-by-run correction was performed. See text for details on how each
correction was determined.

Fig. 4.33 shows charge-exchange differential cross section calculated from Equation 4.16.

The cross section is shown for the Θcm = 4−6° and Θcm = 14−16° bins, with the contribution

from each decay channel shown. From the higher-resolution spectrum at forward angles, it

is clear that the (p,n) reaction in inverse kinematics can give detailed structure information.

The two known states from β decay at 3.3 and 4.3 MeV are resolved and can be identified.

Alongside the low-lying structure information the response up to high excitation energy is

mapped out. The error in the total cross section for excitation energies above ∼12 MeV

increases with the opening of the other decay channels, where the statistical and systematic

uncertainties are increased.
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(a) Θcm =4-6°
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Figure 4.33: Differential cross section for the 16C(p,n)16N reaction showing the contributions
from each reaction channel. Panel (a) shows the cross section at forward angles in 250 keV
bins. In (b) the same angle is shown with a coarser binning to highlight the channels at higher
excitation energy, where the statistics is low. The most backward angle, with the poorest
resolution, is presented in (c). The shaded bans in (b) and (c) indicate the systematic error
estimation from the background subtraction for the 15C and 14C channels. The small vertical
lines on the top of each figure indicate the threshold energies for the 15N, 15C, 14C and 14N
channels. The color of the line matches the color of the data to indicate the channel.
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Figure 4.33: cont’d

(c) Θcm =14-16°
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Fig. 4.34 presents the total cross section for the Θcm = 4− 6° and Θcm = 14− 16° bins.

The systematic error from the background subtraction and uncertainty in the neutron ac-

ceptance is shown as a green band. Section 4.7 gives more details about the systematic error

estimation.

4.7 Systematic Error

No absolute cross-section measurement is complete without an estimate of the systematic

errors. Table 4.3 gives a breakdown of the major systematic errors in experiment e10003.

Systematic error in the extracted differential cross section can either give an overall uncer-

tainty in the normalization, or create a more complex uncertainty, like in the case of the

background subtraction. The systematic error from the background subtraction is not in-

cluded in Table 4.3 since it is treated as a function of COM scattering angle and excitation
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Figure 4.34: Total differential cross section from all decay channels in the 16C(p,n)16N re-
action. The green band shows the systematic error including the systematic error from the
background subtractions in the different channels and the systematic error in the neutron
acceptance determination.
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energy. Details of the estimation technique for each of the systematic errors are given in the

following paragraphs.

Source Estimate

Incident rate determination 15.6%

Background subtraction See text

Neutron Acceptance 5%

Target Thickness 3.3%

Neutron Energy Threshold 1.8%

Random Background < 1%

Empty cell induced background < 0.5%

Total 16.8%

Table 4.3: Summary of the source and estimated size of the major systematic uncertainties in
the 16C(p,n)16N measurement. See text for details on each source of systematic uncertainty

The largest systematic error was in the incident beam rate normalization procedure.

This error was estimated by looking at the total charge-exchange cross section from 0-20

MeV for each 15N experimental run. If the normalization was perfect, each run should give

statistically equivalent values. Therefore, the spread seen between the runs will give an

estimate of the uncertainty in the incident beam rate measurement. These integrated cross

sections are shown in Fig. 4.35. The rigidity setting appropriate for detecting 15N (3.1325

Tm) was measured three times during the experiment, so the large gaps between the points

correspond to the runs when the other rigidity settings were measured. From this plot a

FWHM systematic error of 15.6% for the normalization procedure was estimated.

Unlike the beam normalization, the background subtraction affects the shape of the

extracted cross section. To estimate the uncertainty in the subtraction, the background
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Figure 4.35: The total charge-exchange cross section from 0-20 MeV for each experimental
run for the 15N channel. The spread in the points gives an estimate of the uncertainty in
the beam normalization.

model was varied for each rigidity setting—giving a bin-by-bin estimate of the uncertainty.

For the neutron-decay channels (15N and 14N), this involved varying the integration ranges

used to find the scaling functions shown in Fig. 4.20. This indicated that the error from the

background subtraction in the regions of interest was small (∼ 4%). For the proton-decay

channels (15C and 14C), the uncertainty was higher. A similar procedure was followed to

estimate the uncertainty where the different background models were compared. For 15C

the portion of the low-energy tail of ejectile kinetic energy distribution that was used to

model the background was varied. For 14C a separate background model using events that

created 12C was compared with the technique used above. This gave an uncertainty that

varied from 10-30% depending on angle and excitation energy.

The error in neutron acceptance comes from uncertainty in the exact positions of the

neutron detectors. As Fig. 4.18 showed, the neutron acceptance is not a smooth function, so

small changes to the angles of the neutron detectors can change the acceptance significantly.

119



During the analysis process small adjustments were made to the positions of the neutron bars

to correct for any unphysical discontinuities seen in the excitation energy spectrum. The

size of these adjustments gave a scale to vary the angles in the estimation of this systematic

error. The Geant4 simulation was used to propagate the variations in detector angle to the

simulated yield in each COM bin. This gave a relatively flat change of 5%, except for the bins

in excitation energy from 9-11 MeV at forward angles. There the spectrum is particularly

sensitive to the position of the bars because of the steepness of the kinematic lines. An

additional 8% systematic error was added to these bins.

The error in the target thickness determination was already discussed in Section 4.5.3.

The error comes from the uncertainty in the energy loss difference between 16C and 14B.

This error was estimated by comparing the shape of the measured distribution for the two

nuclei.

The error due to uncertainties in the neutron detection threshold were estimated in a

similar way using the Geant4 simulation. The error in the threshold was determined by

comparing the neutron detector gain calibrations before and after the experiment. The gain

at the end of the experiment had decreased by approximately 9%, lowering the yield. This

error was combined with any fitting uncertainties in the gain calibration and propagated

through the full Geant4 simulation of the setup. This showed a 1.8% change to the neutron

yield.

The systematic error associated with the random and cell backgrounds were already

discussed in Section 4.4 and are placed in Table 4.3 for convenience. As indicated in Table

4.3 these systematic errors combined to give a total systematic error of 16.8%. The final

systematic error bands presented in chapter 5 are a combination of the systematic error from

the background subtraction and the 16.8% error in the overall normalization.
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Chapter 5

Results

The trick is to just look at the question

and write down the answer.

Works every time

This chapter gives the results of the 16C(p,n)16N reaction at 100 MeV/u. The differential

cross section is used to form angular distributions, needed to perform a multiple decompo-

sition analysis (MDA). The MDA isolates the different ∆L components of charge-exchange

cross section so that GT strength and dipole cross sections can be extracted.

5.1 Angular Distributions

Angular distributions (differential cross section ( dσdΩ) as a function of COM scattering angle)

are formed from the experimental cross section data. To make these distributions for each

excitation energy bin, the cross-section data was separated into 2 degree angular bins from

4 to 16 degrees in the COM. The bin from 0-2 degrees was below the neutron detection

threshold. The bin from 2-4 degrees was excluded due to the large amount of low energy

neutron background, which could not be subtracted reliably. Angles beyond 16 degrees in

the COM were not used in the analysis.

As discussed in Section 4.3, the excitation-energy resolution worsens at larger scattering

angles. To correctly form angular distributions, the data at forward scattering angles must
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be smeared to match the excitation-energy resolution at the most backward scattering angle

used in the analysis. Fig. 5.1 shows an example of this smearing procedure. The figure

shows the same data at Θcm = 4− 6 ° as Fig. 4.34, but with additional smearing to match

the excitation energy resolution for the Θcm =14-16° bin.
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Figure 5.1: Differential cross section for the 16C(p,n)16N reaction as a function of excitation
energy. Data is from Θcm =4-6° but smeared to match the resolution at Θcm =14-16°.

5.2 Multipole Decomposition Analysis

A multipole decomposition analysis is used to separate the different angular momentum

transfer components of the cross section. The smeared angular distributions are fit with a

linear combination of theoretical cross sections calculated in DWBA,

(
dσ

dΩ

)
total

= a

(
dσ

dΩ

)
∆L=0

+ b

(
dσ

dΩ

)
∆L=1

+ c

(
dσ

dΩ

)
∆L=2

, (5.1)
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where a, b, and c are the fitting parameters. The fitting was done through χ2 minimization,

where the error bars in the angular points came from a combination of the statical error and

the systematic uncertainty from the neutron detector acceptance. For each ∆L component,

the shape of the angular distribution is represented by a characteristic DWBA calculation.

Section 2.4 gives details on the cross-section calculations and presents the characteristic

angular distributions used in the MDA. The result of the MDA is shown in Fig. 5.2. Angular

distributions in 1 MeV bins of excitation energy were prepared from the smeared excitation

energy distributions and fit according to Equation 5.1. Good agreement between the fits

and the data is seen. Of specific interest is the success of the fits in first bin (0-1 MeV),

where a reduced χ2 of 1.09 is achieved. Between 0 and 1 MeV there are only expected to be

4 negative parity states at 0.0, 120, 298, and 397 keV. Starting from a 16C ground state of

0+, transitions to these states must all be ∆L=1. This is confirmed by the MDA. It is clear

from the remaining fits that much of the data is strongly ∆L = 0 in nature.

It is important to note that the ability of the MDA to distinguish between ∆L=1 and

∆L=2 is limited. Over the angular range used in the analysis the angular distributions for

∆L=1,2 transitions are similar. To explore this sensitivity, decompositions including only

∆L=0,1, and only ∆L=0,2 were compared with the full fit. In both cases, the portion of the

distribution coming from GT type transitions did not change significantly. The fits without

∆L=1 were of a similar quality to the fits without ∆L = 2, yet the full fit strongly prefers

the ∆L=1 component. Given this, all three components were used in the final analysis, but

with the understanding that differentiating ∆L=1 and 2 is difficult.

Fig. 5.3 shows the ∆L components of the cross section in each angular bin as determined

by the MDA. As expected from the theoretical calculations, the dipole component peaks

at the backward angles and appears at high excitation energy. In the 14-16° bin, there is
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Figure 5.2: Measured COM angular distributions in 1 MeV bins from 0-20 MeV in 16N.
The black dots are the experimental data. The red, green, and blue lines are the ∆L=0,1,2
components of each fit determined from the MDA. The dotted line is the sum of the 3 MDA
fit components.
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Figure 5.2: cont’d
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Figure 5.2: cont’d
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Figure 5.2: cont’d
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significant dipole strength above ∼12 MeV. Conversely, the 4-6° bin is dominated by ∆L=0

strength. This motivates directly using the cross section in the 4-6° bin, where the best

excitation energy resolution is available to extract the B(GT) spectrum.

5.3 B(GT) Extraction

Knowing that the cross section is dominated by ∆L=0 transitions in the 4-6° bin, the

B(GT) can be readily extracted. First the cross section must be extrapolated to zero linear

momentum transfer (q → 0). The MDA results are used to extrapolate the cross section to

0 degrees. Then DWBA calculations are used to extrapolate the Q value to 0 for each bin in

excitation energy. With both Θcm → 0 and Q→ 0, the cross section is extrapolated to zero

linear momentum transfer. Fig. 5.4 shows the ∆L=0 cross section after this extrapolation.

The blue histogram seen in Fig. 5.4 is a simulation of the IAS assuming full exhaustion

of the Fermi sum rule. Within the 16N exit channel a peak corresponding to the γ decay

of the IAS was observed with a branching ratio of 0.6 ± 0.2(stat)%. The peak location

was determined from a calculation of the difference in coulomb energy yielding a value of
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Figure 5.3: MDA results. The ∆L components of the cross section is shown as a function
of excitation energy for each angular bin. At forward angles the spectrum is dominated by
∆L = 0 transitions, while at backward angles ∆L = 1 transitions appear at high excitation
energies.
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10.025 MeV. This value was consistent with the peak position seen in the 16N exit channel.

The detectors response to the IAS was determined in the full Geant4 simulation and was

subtracted from the measured cross section.
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Figure 5.4: The differential cross section extrapolated to zero momentum transfer. The
error bars show statistical errors. The blue peak shows the contribution from the IAS to the
spectrum. See text for details.

In order to transform this into a B(GT) spectrum, a suitable σ̂GT must be determined.

This can be done by looking at a low-lying state that is accessible by β decay and using

the known log(ft) value and measured charge-exchange cross section to find σ̂GT . If β

decay data is not available, σ̂GT can be estimated from well-established mass-dependent

systematics [56]. The β decay of 16C has been measured previously [69, 70, 71], but as will

be discussed in Chapter 6, the low-lying states have peculiar structural effects that break

the proportionality. To avoid the uncertainty associated with the two low-lying states, the

unit cross section was determined from nearby (p,n) measurements on 14C [115, 56] and 18O

[116].

For the 14C data, the σ̂F was taken from two measurements at 80 and 120 MeV and

129



averaged to arrive to find σ̂F at 100 MeV. It is well known that the σ̂F varies with incident

beam energy, while the σ̂GT remains nearly constant [56]. From this, σ̂GT was found using

the empirical relationship between σ̂GT and σ̂F ,

σ̂GT
σ̂F

=
Ep

55.0
, (5.2)

where Ep is the incident proton energy [56]. This yielded σ̂GT=5.4 mb/sr. The 18O data

gave σ̂GT=4.2 mb/sr [116]. The average of these two measurements with a systematic error

of 13% was used in the final analysis of 16C: σ̂GT=4.82 ± 0.61 mb/sr.

Fig. 5.5 (a) shows the extracted Gamow-Teller strength distribution in 16N compared

with two shell model calculations using the WBT and WBP interactions in the spsdpf

model space. The shell-model states have been smeared with the experimental resolution.

States with T=1 and 2 are included in the figure. Fig. 5.5 (b) shows the corresponding

sum spectrum for the data and shell model calculations. Chapter 6 will discuss this result

in detail.

5.4 Dipole Strength

The data can also give some insight into dipole (∆L = 1) transitions. Dipole strength seen

at this excitation energy and at this beam energy will predominately come from spin-flip

transitions, so it should correspond to excitations of the isovector spin dipole giant resonance

(SDR). Looking at the most backward angle (where the dipole strength is highest), the

∆L = 1 component of the cross section was extracted from the MDA fits. These results are

presented in Fig. 5.6. Unlike the GT strength, the spin-dipole (SD) strength does not have
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Figure 5.5: Extracted GT strength distribution (a) and summed strength (b) in 16N up to
Ex=20 MeV. The green band shows the total systematic error in both plots. The data is
compared with two shell interactions WBT and WBP, both calculated in the spsdpf model
space.
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a well-established proportionality. Instead direct comparisons of measured cross section and

DWBA based calculations are typically used. The black histogram in Fig. 5.6 shows the

calculated cross section for all the dipole shell-model states discussed in Section 2.5. For each

shell-model transition, the angular distribution is calculated with the program DW81 and

the value at 15° is taken. These states are then smeared with the experimental resolution

and histogramed.

As mentioned above, the sensitivity between ∆L = 1, 2 of the MDA is limited. The

significant error bars seen in the top panel of Fig. 5.6 are a result of this. The bottom panel

shows the result of the MDA if ∆L=2 is excluded from the fits.
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Figure 5.6: The black points show the dipole (∆L = 1) differential cross section determined
from the MDA at 15°. The error bars give the statistical uncertainty from the MDA fits. The
black histogram gives the smeared, DWBA cross sections from the 1,3 h̄ω shell-model calcu-
lation with the WBP interaction in the spsdpf model space. The blue and red histograms
give the results of the calculations when pure 1 and 3 h̄ω contributions are calculated sep-
arately. Panel (a) Shows the result when the full MDA fit is used, while (b) excludes the
∆L=2 component. The 7-8 MeV bin was excluded from (a) since its error bar was too large
to be meaningful and was consistent with zero.

133



Chapter 6

Discussion

Everything works, Nothing is Broken

Samuel Lipschutz

6.1 The (p,n) Probe in Inverse Kinematics

Figs. 5.5 and 5.6 readily show the achievement of the main goal of e10003 and this thesis—to

validate the (p,n) probe in inverse kinematics for the study of isovector giant resonances in

radioactive nuclei. The full GT response and a portion of the spin-dipole resonance have

been measured in a neutron-rich isotope. This technique will allow future experiments to

explore the isovector response of unstable nuclei up to high excitation energy. As Figs. 5.5

and 5.6 shows, it is clearly a powerful probe, providing enough resolution to see the low-lying

structure of 16N, while at the same time capturing a large range of excitation energy.

Higher excitation energies and the remaining portion of the spin-dipole resonance would

have been available if more particle decay channels were measured (13C opens at ∼21 MeV).

Given the finite time of the experiment and the wide momentum distributions of the multi-

nucleon decay channels, a cutoff had to be made. However, for heavier systems this will be

become easier as the change in rigidity from few nucleon decays becomes less severe. This

will simplify the experimental procedure and analysis, since many decay channels can be

fully measured in a single spectrometer setting.
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6.2 Shell Model Comparison

The spectrum in Fig. 5.5 allows us to see the quality of shell-model calculations for the

GT response in neutron-rich nuclei up to high excitation energies for the first time. It is

clear that the details of the spectrum are not well reproduced by either of the interactions.

This is a departure from previous charge-exchange data where shell-model calculations have

achieved better agreement (for example, Refs. [78, 64]). In Fig. 5.5, the positions of many of

the strong states seen in the spectrum are shifted from the data by several MeV. The WBP

interaction does a better job at spreading the strength out in the spectrum, while the WBT

interaction concentrates a large amount in the state at ∼11 MeV. However, it is important

to note that the higher-lying states most likely have large intrinsic widths since the particle-

decay thresholds are exceeded. Such effects are not included in the shell model—only the

experimental resolution is used to smear the shell-model states. In light of this, an exact

match in the shape of the spectrum is not expected. Further, the shell-model spectrum is

unquenched and is expected to over predict what is seen in the data. These limitations

often make the summed strength spectrum a more reliable indicator of the quality of the

calculation.

The spin-dipole spectrum also gives guidance to the validity of the shell model. Presented

in Fig. 5.6 is the measured ∆L=1 differential cross section in the 14-16° bin, overlaid with

the cross section calculated in DWBA. The theoretical cross section is broken down into the

components coming from pure 1 and 3 h̄ω configurations in the final state. The calculations

shows that the ground state comes from the 1 h̄ω component. There is additional 1 h̄ω

strength predicted at ∼6 MeV, where an enhancement in the data is seen, but the strength

is underestimated by the calculation. The 3 h̄ω component opens at ∼4 MeV and vastly over
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predicts the strength in the region. At higher excitation energy (∼12MeV and above) the

calculation does a reasonable job at predicting the location and strength of the resonance.

The full calculation includes both of these components where they mix with each other.

The mixing typically reduces the strength of the states, but in this case does not alleviate

the issues seen in the 3 h̄ω calculation. The full calculation still vastly over predicts the low

lying strength compared to the data. Further investigation and improvements in the model

are needed.

6.3 Quenching

Fig. 5.5 shows the measured, summed GT strength in 16N. As discussed in Section 1.9

this experiment has given one of the first measurement of the quenching of summed GT

strength in a neutron-rich, unstable nucleus. Under the assumption that the strength in β+

direction is small due to fermi blocking, the data shows 73.5% ±2.8(st)± 15.5(sys)% of the

model-independent sum rule up to 20 MeV. Table 6.1 shows a comparison of this result with

the known quenching values in the region from charge-exchange and β decay studies. The

charge-exchange studies shown in Table 6.1 give their quenching values relative to the GT

sum rule, while the β-decay numbers are from comparisons to shell-model calculations.
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Relative to Sum Rule Relative to Shell Model

System Quenching Factor System Quenching Factor

18O 67% [116] p-shell 65.6% [117]

14C 60% [49] 18Ne 62.2±0.2% [76]

16CEx0→20 73.5 ±2.8(st)± 15.5(sys)% sd-shell 57.8% [76]

16CEx0→12 50.7 ±1.2(st)± 10.7(sys)% pf-shell 55.4% [83]

16CEx0→12 61.1 ±1.5(st)± 12.8(sys)%

16CEx0→20 79.0 ±3.0(st)± 16.7(sys)%

Table 6.1: Comparison of the quenching factors of GT strength for 16C, various nearby
nuclei, and adopted values for several nuclear shells. Quenching studies from charge-exchange
reactions and β decay studies are presented. The p-shell factor comes from the empirical
relation given in Ref. [117] with A = 16. See text for details.

The β-decay quenching results come from measurements of individual states. Since they

are restricted by the β-decay Q-value window, they can only probe the properties of the low-

lying strength. To make a fair comparison with the 16C charge-exchange data, the summed

strength up to the end of the main part of the resonance (∼12 MeV) was compared with the

shell model. This yields a quenching factor of 61.1 ±1.5(st)±12.8(sys)%, which is consistent

with the β-decay factors seen in Table 6.1. Though the systematic error is large, the 61.1%

value follows the trend of decreasing quenching between the p and sd shells. As discussed in

Section 1.9, the strength is thought to be pushed to higher excitation energies through several

proposed mechanisms, such as higher-order configuration mixing. The charge-exchange data

confirms this for 16C, where 79.0 ±3.0(st)± 16.7(sys)% is found up to 20 MeV of excitation

energy in 16N. This shows that about a third more strength is found at excitation energies

above the GT giant resonance.
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More insight into this behavior is given in Fig. 6.1, where the quenching factor relative

to the shell model as a function of excitation energy is shown. After the end of the main

resonance at ∼12 MeV the quenching factor steadily increases. This shows that the measured

distribution is “catching up” to the calculation, which has predicted too much strength in

the main portion of the resonance. The calculation does predict strength after the resonance,

going all the way up to ∼ 30 MeV of excitation energy before the sum rule is exhausted.

However, the data increases faster than the calculation in the measured region recovering

a portion of the missing strength. With the (p,n) reaction in inverse kinematics a similar

recovery of strength is seen in the neutron-rich 16C as was seen in the 90Zr experiment

discussed in Section 1.9.

The first half of Table 6.1 compares the quenching in this measurement relative to the

model-independent sum rule with 18O and 14C—the closest measurements where the full

GT spectrum was measured through charge exchange. Here a quenching factor of 73.5

±2.8(st)± 15.5(sys)% up to 20 MeV was found. This is consistent with the measurements

on 18O and 14C. The number is naturally lower than the quenching factor relative to the

shell model since the full sum rule is not exhausted in the shell model at 20 MeV.

6.4 The First Two 1+ States

As alluded to earlier, there are GT proportionality breaking effects in the two low-lying

states of 16N. With the differential cross section and extracted B(GT) spectra shown in

Figs. 5.4 and 5.5 respectively, the cross section and B(GT) values for the first two states can

be determined. These values along with a breakdown of the statistcal and systematic errors

are shown in Table 6.2. Table 6.3 shows a comparison of the B(GT) values from charge-
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Figure 6.1: The amount of quenching between the experimental data and the shell model
(WBP interaction) as a function of excitation energy.

exchange, β decay and the shell model. It is clear that the strengths of the first two states

from charge-exchange and β decay are significantly different. The summed strength, however,

is a near match. The predictions from the WBT interaction also do a good job at predicting

the total strength, but does worse than WBP at properly recreating the individual strengths

seen in β decay. Further, the separation of the two states in the shell-model calculations are

underestimated: 375 keV for the WBP interaction and 625 keV for the WBT interaction

versus 967 keV from the β decay data. In the following analysis the WBT interaction is used

to investigate the two states.

Ex (dσ/dΩ)q→0 [mb/sr] B(GT)CE

3.353 MeV 3.39± 0.19(st)±0.56(sys) 0.70 ± 0.04 (st) ± 0.15(sys)

4.320 MeV 4.62± 0.20(st)±0.76(sys) 0.96 ± 0.04 (st) ± 0.20(sys)

Table 6.2: Charge-exchange differential cross section at zero momentum transfer and ex-
tracted B(GT) for the first two 1+ states in 16N. A breakdown of the statistical and system-
atic error is shown. The systematic error for the B(GT) is increased by the uncertainty in
σ̂GT .
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Ex B(GT)WBT B(GT)WBP B(GT )CE B(GT)β

3.353 MeV 1.34 0.97 0.70 1.104

4.320 MeV 0.27 0.39 0.96 0.586

Sum 1.61 1.36 1.66 1.69

Table 6.3: Comparison of the B(GT) values from charge-exchange, β decay, and the shell
model for the first two 1+ states in 16N.

Proportionality breaking effects in charge-exchange reactions have been seen before [78,

118]. These are often explained by interference from the ∆L = 2 ∆S = 1 transitions

that are mediated by the tensor-τ portion of the NN interaction, which interferes with the

∆L = 0 ∆S = 1 στ portion. This effect is typically seen in states with small B(GT) values.

The calculation of σ̂GT presented in Fig. 2.5 shows this feature in 16C. The spread in the

calculated σ̂GT values increase significantly below B(GT) values of ∼0.1. This spreading can

be largely removed by turning off the tensor portion of the effective NN interaction.

However, the first two states are not weak. Further, the DWBA calculations with and

without the tensor force included in the interaction do not show a large enough sensitivity

to explain the inconsistency in Table 6.3. However, the calculation presented in Fig. 2.5

does show that the expected σ̂GT for the second state is ∼ 52% higher than the average

of the other strong states. If the unit cross section for that state is abnormally high, then

the measured charge-exchange cross section should be enhanced, which is seen in the data.

Since shell-model calculations are available, the details of these two states can be explored.

To do this the transition densities for these two states are examined (see Equation 2.23).

Fig. 6.2 shows a typical transition density (shown as r2ρ), broken down into the signifi-

cant 1p-1h contributions. This transition density comes from the shell-model calculation of

the 4th 1+ state in 16N. As the figure shows the sum of the different 1p-1h components of
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the transition gives a smooth function. This is not the case when looking at the 1st and 2nd

1+ states in 16N.
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Figure 6.2: A typical transition density with its 1p-1h components. This is the calculation
of the transition to the third 1+ state in 16N with the WBT interaction.

Fig. 6.3 shows the transition densities for the first two states. In both cases there is

a node, and in the second state, the transition density switches sign in the interior. In β

decay, the whole transition density is probed and its integral squared proportional to B(GT).

In the case of the second state, the portion of the transition density that is negative will

bring down the strength. However, in the (p,n) charge-exchange case, the proton does not

fully penetrate the target and so only probes a portion of the transition density. Further,

distortion effects bias the integration of the transition density—it enhances the role of the

surface and decreases the effect of the interior. For the 2nd state, this means that the charge-

exchange cross section will increase because the negative portion of the transition density is

suppressed. This increased cross section will give the state a increased unit cross section as

seen in Fig. 2.5.
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Figure 6.3: The transition densities and their 1p-1h components for the first two 1+ states
in 16N, calculated with the WBT interaction. The details of these states create an atypical
transition density that has a significant effect on the unit cross section for these two states.
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The distortion can have this effect only because of the unique and subtle details of the

state. There is not one, or even two, dominate transitions that create this behavior for the

second state. Instead, many things must go “wrong” at the same time. The 1s1/2 → 1s1/2

transition must be strong enough to create the abnormal shape, while the p and d transitions

must have the right amplitudes to keep the shape and bring a portion of the transition density

below 0. While the shell-model calculation predicts this behavior for only the second state,

the B(GT) extracted from the CE data for the first state also is inconsistent with the β

decay value. Given the closeness of the two states in the shell model, some mixing of the

two must be closer to the true states.

Since both of the states likely suffer from these effects, it motivated using the systematics

of the unit cross section to find σ̂GT for 16C. It is interesting to note that the unit cross

section determined from the sum of the two states is consistent with the σ̂GT = 4.83 ±

0.61 mb/sr used in the analysis. The sum is σ1 + σ2 = 8.01 mb/sr, which gives σ̂GT =

8.01/1.69 = 4.74 mb/sr. This consistency gives confidence in the normalization procedure

and the determination of the unit cross section.
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Chapter 7

Conclusion and Outlook

Soon we will all be graduated

Unknown origin

The (p,n) charge-exchange reaction in inverse kinematics has been successfully validated

as a tool for studying isovector giant resonances in neutron-rich nuclei up to high excitation

energy. This was done through the measurement of the absolute, differential cross section

of the 16C(p,n)16N reaction at 100 MeV/u and the subsequent extraction of GT and SD

strength distributions up to 20 MeV of excitation energy. This was one of the first measure-

ments of isovector giant resonances in an unstable, neutron-rich nucleus. Future experiments

utilizing this technique will allow the isovector response of exotic nuclei to be probed up to

high excitation energy.

Key to the success of the measurement was the development of a new digital data ac-

quisition system for LENDA and its integration with the S800 DAQ. E10003 was the first

experiment at the NSCL to combine the Pixie digital system with the analog S800 DAQ—

laying the foundation for future NSCL experiments. The results of the experiment were

compared with detailed shell-model calculations, which gave a measure of their reliability in

the neutron-rich, high-excitation energy regime. With the full GT resonance measured, a

summed GT spectrum was produced, allowing for the quenching of GT strength in a neutron-

rich nucleus to be determined and discussed. Alongside this broad information, there was
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sufficient resolution to analyze the details of the first two 1+ states in 16N, where peculiar

structure effects were found.

There is an exciting future for the (p,n) probe inverse kinematics. The first measurement

of GT strength in a heavy, neutron-rich system (132Sn(p,n)132Sb) has already been performed

at RIKEN and is in its final stages of analysis. The next NSCL experiment has already been

approved, in which the (p,n) probe will be validated on the proton-rich side through the

11C(p,n)11N and 12N(p,n)12O reactions at 100 MeV/u. These initial, proof-of-principle

experiments prepare the charge-exchange group for future (p,n) experiments in the FRIB

era. There increased beam rates and optimized detector systems will allow for ambitious

measurements of isovector strength in highly exotic nuclei.
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Appendix A

Derivation of the Gamow-Teller Sum

Rule

This appendix presents a derivation of the model independent Gamow-Teller (GT) sum rule,

first derived by Ikeda in 1964 [119]. Sum rules exists for the other giant resonances, but

are not disccused here. The interested reader is directed to Ref. [14] for more information.

Beginning with the definition of the total GT strength,

S± =

∣∣∣∣∣∣
∑
µf

〈f |β̂µ±|i〉

∣∣∣∣∣∣
2

, (A.1)

and

β̂µ± =
1

2

A∑
k

σ̂µτ̂±k, (A.2)

where the sum over µ goes through the components of σ̂µ (−1, 0,+1), and sum over f goes

through all possible final states—summing up the total strength. Each σ̂µ is a Pauli matrix

and is related to the spin operator by ŝ = 2σ̂. The expression above can be rewritten as,

S± =
∑
µf

〈f |β̂µ±|i〉
∗ 〈f |β̂µ±|i〉 , (A.3)
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S± =
∑
µf

〈i|β̂†µ±|f〉 〈f |β̂µ±|i〉 , (A.4)

S± =
∑
µ

〈i|β̂†µ±β̂µ±|i〉 . (A.5)

Considering the difference S− − S+ and noting that τ̂
†
± = τ̂∓,

S− − S+ =
1

4

∑
µk

〈i|σ̂†µkσ̂µk τ̂+k τ̂−k − σ̂
†
µkσ̂µk τ̂−k τ̂+k|i〉 . (A.6)

Recognizing that
∑
µ σ̂
†
µσ̂µ = 3, the expression reduces to,

S− − S+ =
3

4

∑
k

〈i|τ̂+k τ̂−k − τ̂−k τ̂+k|i〉 . (A.7)

Using the following values for the τ operators, the above expression can be further sim-

plified: τ̂+ |n〉 = τ̂− |p〉 = 0, τ̂+τ̂− |n〉 = 4 |n〉, and τ̂−τ̂+ |p〉 = 4 |p〉. The first term in A.7 will

count 4 times the number of neutrons, while the second term will count 4 times the number

of protons in the initial state. This gives the resulting sum rule,

S− − S+ = 3(N − Z). (A.8)

For the case of neutron-rich nuclei the strength in the ∆Tz = +1 direction can be small

due to Pauli blocking, resulting in the approximation,

S− ≈ 3(N − Z). (A.9)
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This gives a simple and powerful statement on the total GT strength one can expect to

see for a given initial nucleus.
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Appendix B

Energy of a Compton Edge

This appendix presents a short derivation of the expected energy of a Compton edge in a

detector given a known γ decay energy. It is written down so that future students will not

make the same foolish mistake that I have made. This mistake is indicated below in bold

font. We being with the Compton scattering formula,

λf − λi =
h

mec
(1− cos(θ)) , (B.1)

where λ denotes the wave length, h the plank constant, me the mass of the electron, and θ

the scattering angle. Rewriting this in terms of energy,

1

E
γ
f

− 1

E
γ
i

=
1

mec2
(1− cos(θ)) (B.2)

where it is important to remember that this is the energy of the recoiling γ not

the electron that will deposit energy into the detector. Rearranging,

E
γ
f =

E
γ
i mec

2

(1− cos(θ))Eγi +mec2
. (B.3)
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The Compton edge will occur at the energy where the recoiled electron is maximized, meaning

the final energy of the γ is minimized. Setting cos(θ) = −1 gives,

E
γ
f =

E
γ
i mec

2

2E
γ
i +mec2

. (B.4)

As an example consider the 661 keV γ ray from 137Cs. Equation B.4 gives E
γ
f = 184 keV.

This makes the energy of the scattered electron 661 keV - 184 keV=477 keV. Hence we

expect to see the Compton edge at 477 keV.
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Appendix C

The Number of Beam Particles in a

Beam Bunch

Beam-based nuclear physics experiments performed at incident particle rates that are an

appreciable fraction of the underlying RF frequency of the accelerator require special con-

siderations when determining the true incident beam rate from a direct measurement. This

appendix will discuss some of the difficulties and derive some important relations.

Suppose we have an incident beam rate given by R and a RF frequency given by RF .

This means that in a 1-second period we have a total of RF buckets to place randomly R

particles. The total number of ways that the particles can be arranged where any number

of particles are allowed in a bucket is given by,

nHr =n+r−1 Cr =
(n+ r − 1)!

r!(n− 1)!
, (C.1)

where n is number of buckets, r is the number of particles, and C is a binomial coefficient.

Figure C.1 shows a simple example of the case of 2 particles distributed in 3 possible buckets.

From inspection it is clear that there are 6 possible configurations. For this case we can
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readily confirm the validity of Equation C.1 as

3H2 =
(3 + 2− 1)!

2!(3− 1)!
=

(4)!

2!(2)!
=

(4)!

4
= 6. (C.2)

Bucket 1 Bucket 2 Bucket 3

Arragement 1 

Arragement 2

Arragement 3 

Arragement 4 

Arragement 5 

Arragement 6 

Figure C.1: The figure shows all possible ways to distribute 2 particles into 3 buckets. Each
row in the figure indicates a different arrangement of particles, giving a total of 6 possible
configurations.

The number of instances when a given bucket contains zero particles is given by,

n−1Hr =
(n+ r − 2)!

r!(n− 2)!
. (C.3)

nHr gives the total number of possible arrangements for n buckets and r particles. The

case where there are n + 1 buckets but that extra bucket contains no particles is the same

situation as the number of arrangements where a particular bucket contains zero particles in

the case of n buckets and r particles. This gives an intuitive reason for the n−1 in Equation
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C.3. Utilizing Equation C.3 and comparing it to Fig. C.1, we can confirm that the total

number of arrangements with a given empty bucket should be 3,

3−1H2 =
(3 + 2− 2)!

2!(3− 2)!
=

(3)!

2!
= 3. (C.4)

Generalizing this relation to the number of configurations where a bunch has k particles

in it,

n−1Hr−k =
(n+ r − k − 2)!

(r − k)!(n− 2)!
. (C.5)

To complete the example, we can calculate the number of configurations where a bucket

contains 1 and 2 particles given 3 possible buckets and 2 particles,

3−1H2−1 =
(3 + 2− 1− 2)!

(2− 1)!(3− 2)!
=

2!

1!
= 2, (C.6)

and

3−1H2−2 =
(3 + 2− 2− 2)!

(2− 2)!(3− 2)!
=

1!

1!
= 1. (C.7)

Knowing the total number configurations for each number of particles, the probability to

find a certain number of particles in a bucket can be calculated as,

Pk(n, r) =
n−1Hr−k

nHr
. (C.8)

Using Equations C.1 and C.3, we can calculate the ratio of the number of buckets with
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greater than 1 particle S>1 to the number with just 1 particle S1,

S>1

S1
= n−1Hr−2 +n−1 Hr−3 + . . .n−1H0

n−1Hr−1

=
−n−1Hr +n−1 Hr −n−1 Hr−1 +n−1 Hr−1 +n−1 Hr−2 +n−1 Hr−3 + . . .n−1H0

n−1Hr−1

=
nHr −n−1 Hr −n−1 Hr−1

n−1Hr−1
,

(C.9)

where in the last step, the following was used,

nHr =n−1 Hr−1 +n−1 Hr−2 . . .+n−1 H0. (C.10)

Reducing the expression further,

=
nHr −n−1 Hr −n−1 Hr−1

n−1Hr−1

=
nHr

n−1Hr−1
− n−1Hr

n−1Hr−1
− n−1Hr−1

n−1Hr−1

=
nHr

n−1Hr−1
− n−1Hr

n−1Hr−1
− 1

=
(n+ r − 1)!(r − 1)!(n− 2)!

r!(n− 1)!(n+ r − 3)!
− (n+ r − 2)!(r − 1)!(n− 2)!

r!(n− 2)!(n+ r − 3)!
− 1

=
(n+ r − 1)(n+ r − 2)

r(n− 1)
− (n+ r − 2)

r
− 1

=
r − 1

n− 1
.

(C.11)

This yields a useful relation for incident beam rate,

S>1

S1
=
r − 1

n− 1
, (C.12)
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which for r >> 1 and n >> 1 reduces further to,

S>1

S1
=
r

n
. (C.13)

Given the known number of buckets in a 1 second period (the RF rate) and the ratio of single

particle to multi-particle buckets, the average incident particle rate can be determined.

Correcting an In-Beam Scaler Measurement

If the incoming beam rate is directly measured with an in-beam detector (a plastic scintillator

for example), corrections will have to be made to the measured rate because of multi-particle

buckets. The scaler will count only once if there is a bucket containing more than one beam

particle, therefore the probabilities for each number of particles needs to be calculated. This

can be done using Equation C.8,

P0(n, r) = n−1Hr−0

nHr

=
(n− 2 + r)!r!(n− 1)!

r!(n− 2)!(n+ r − 1)!

=
(n− 1)

(n+ r − 1)
,

(C.14)

P1(n, r) = n−1Hr−1

nHr

=
(n− 3 + r)!r!(n− 1)!

(r − 1)!(n− 2)!(n+ r − 1)!

=
r(n− 1)

(n+ r − 1)(n+ r − 2)
,

(C.15)
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and

P2(n, r) = n−1Hr−2

nHr

=
(n− 4 + r)!r!(n− 1)!

(r − 2)!(n− 2)!(n+ r − 1)!

=
r(r − 1)(n− 1)

(n+ r − 1)(n+ r − 2)(n+ r − 3)
.

(C.16)

Continuing the clear pattern, the following are presented for completeness:

P3(n, r) = n−1Hr−3

nHr

=
r(r − 1)(r − 2)(n− 1)

(n+ r − 1)(n+ r − 2)(n+ r − 3)(n+ r − 4)
,

(C.17)

P4(n, r) = n−1Hr−4

nHr

=
r(r − 1)(r − 2)(r − 3)(n− 1)

(n+ r − 1)(n+ r − 2)(n+ r − 3)(n+ r − 4)(n+ r − 5)
,

(C.18)

P5(n, r) = n−1Hr−5

nHr

=
r(r − 1)(r − 2)(r − 3)(r − 4)(n− 1)

(n+ r − 1)(n+ r − 2)(n+ r − 3)(n+ r − 4)(n+ r − 5)(n+ r − 6)
,

(C.19)

and

P6(n, r) = n−1Hr−6

nHr

=
r(r − 1)(r − 2)(r − 3)(r − 4)(r − 5)(n− 1)

(n+ r − 1)(n+ r − 2)(n+ r − 3)(n+ r − 4)(n+ r − 5)(n+ r − 6)(n+ r − 7)
.

(C.20)
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Taking the RF rate from e10003 of 21.8259 MHz and considering a one second period,

the following table can be generated using Equations C.14 through C.20,

RT N0 N1 N2 ... N6 Rm RT /Rm

5.00E+5 2.13E+07 4.78E+05 1.07E+04 ... 2.69E-03 4.89E+05 1.023

1.00E+6 2.09E+07 9.14E+05 4.01E+04 ... 1.48E-01 9.56E+05 1.046

1.50E+6 2.04E+07 1.31E+06 8.45E+04 ... 1.44E+00 1.40E+06 1.069

2.00E+6 2.00E+07 1.68E+06 1.41E+05 ... 6.99E+00 1.83E+06 1.092

2.50E+6 1.96E+07 2.01E+06 2.07E+05 ... 2.31E+01 2.24E+06 1.115

3.00E+6 1.92E+07 2.32E+06 2.80E+05 ... 5.97E+01 2.64E+06 1.137

3.50E+6 1.88E+07 2.60E+06 3.59E+05 ... 1.31E+02 3.02E+06 1.160

4.00E+6 1.84E+07 2.86E+06 4.42E+05 ... 2.55E+02 3.38E+06 1.183

4.50E+6 1.81E+07 3.09E+06 5.29E+05 ... 4.51E+02 3.73E+06 1.206

5.00E+6 1.78E+07 3.31E+06 6.17E+05 ... 7.45E+02 4.07E+06 1.229

5.50E+6 1.74E+07 3.51E+06 7.06E+05 ... 1.16E+03 4.39E+06 1.252

where RT is the true number of particles, Nx is the number of buckets containing x particles

and Rm is the sum
∑6
x=1Nx. An in beam detector will measure Rm since the scalar will

only count once when there is one or more particles in the bucket. To correct for this the

measured rate only needs to be multiplied by the correction factor seen in the last column

of the table. As the true rate increases, the size of this effect becomes more significant.

It is convenient to express this correction as a linear fit to the points given in the last

column as a function of the measured rate in the object scintillator (Robject),

Rcor = 5.6 · 10−8Robject + 0.99. (C.21)
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This expression is used in the analysis of the experimental data.
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