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1.1 Definition of the agent

The agent under evaluation is “occupational 
exposure as a firefighter”. Firefighters’ occupa-
tional exposures are complex and involve a highly 
heterogeneous mix of chemical, physical, biolog-
ical, and psychosocial hazards resulting from 
fires, and from activities for training, controlling 
fires, and protecting life and property during 
emergencies (NFPA, 2021a; US BLS, 2021). The 
present monograph applies to any firefighter 
(career or volunteer) who has prepared for and 
participated in activities aimed at controlling 
fires (whether structure, vehicle, vegetation, or 
other types of fire), while acknowledging that 
firefighters are involved in numerous other occu-
pational activities.

The occupation of firefighting can involve 
various roles and responsibilities, training 
requirements, and employer types. This variety 
may have an impact on the magnitude and char-
acter of occupational exposures. Firefighters 
respond to different types of fire and other 
emergency events (e.g. vehicle accidents, 
medical incidents, hazardous material releases, 
and building collapses). They also participate in 
non-emergency events, such as building inspec-
tions, training, and maintenance of the station or 
apparatus (engine) (Kales et al., 2007; Guia das 
Profissões, 2020; Pravaler, 2020; Fire and Rescue 
New South Wales, 2021a; United Kingdom 

National Careers Service, 2021; US  BLS, 2021; 
Canadian Centre for Occupational Health and 
Safety, 2022). Specific types of firefighter may be 
characterized by the types of fire for which they 
are trained and that they are likely to encounter 
(e.g. structure, industrial, aircraft, marine, and 
wildland). Firefighters may also be defined by 
their employer (e.g. municipal, federal, mili-
tary, tribal, or private), their employment status 
(e.g. full-time, part-time, volunteer, on-call, or 
seasonal), or their primary duties (e.g. investi-
gator, instructor, engineer/pump operator, and 
hazardous materials specialist) (Hwang et al., 
2019a, b; United Kingdom Home Office, 2020; 
US BLS, 2021; Miami Dade College, 2022). Note 
that fire investigators, hazardous materials 
specialists, or others who have not fought fires 
at any point in their tenure are not included 
in the definition of the agent (i.e. occupational 
exposure as a firefighter) in the present mono-
graph. [The Working Group noted that, although 
terminology varies throughout the world, these 
general categories or types of firefighter exist 
in many regions. However, specialization in a 
particular area of firefighting may be less likely 
in low- and middle-income countries.]

Firefighters’ tasks vary with their job assign-
ments, rank or seniority, and location. For 
example, municipal firefighters in large cities 
may respond to more structure fires than do 
firefighters in rural areas, whereas firefighters 

1. EXPOSURE CHARACTERIZATION 
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near major roads or highways may respond to 
more vehicle fires than structure fires (Kales 
et al., 2007; US Fire Administration, 2018; NFPA, 
2020b, 2021b). Wildland firefighting requires a 
different skillset to that required for munic-
ipal firefighting and has its own subspecialities  
(USDA Forest Service, 2021a; Forest Fire 
Management Victoria, 2022). Responsibilities 
change as firefighters advance or are promoted 
within the fire service. For example, a fire chief or 
commissioner is involved in management activ-
ities and is less likely to be directly engaged in 
fire suppression or rescue operations (Fleming & 
Zhu, 2009) (see Section 1.2 for more details about 
the occupation of firefighting). [The Working 
Group noted that there is a paucity of data with 
respect to promotional systems and advance-
ment among firefighters in low- and middle-in-
come countries.]

Firefighters can be exposed to a very wide 
range of airborne chemical exposures. The most 
common exposures are to combustion products 
from fires and exhaust from diesel or petrol 
engines. The chemical composition and airborne 
concentrations of combustion products depend 
on the materials being burned, the duration of the 
fire, and the ventilation conditions (Stec, 2017). 
Combustion products may include (but are not 
limited to) fine and ultrafine particulates; oxides 
of carbon, nitrogen, and sulfur; hydrocarbons, 
aromatic hydrocarbons, and polycyclic aromatic 
hydrocarbons (PAHs) with or without functional 
groups such as amine, thiol, alcohol, or carbonyl 
groups; halogenated compounds including acid 
gases; and metals and metal oxides (Austin 
et al., 2001a; Baxter et al., 2010; Blomqvist et al., 
2014; Fent et al., 2018; Keir et al., 2020) (see 
Sections 1.3.1 and 1.4 for more information on 
the composition of fire smoke). Firefighters may 
also be exposed to silica (Reinhardt & Broyles, 
2019) and building materials affected by struc-
ture fires, such as asbestos and synthetic fibres 
(Bendix, 1979; Bolstad-Johnson et al., 2000; 
Lioy et al., 2002; Stec et al., 2019). Chemical 

flame retardants added to furnishings and other 
products may be released into the environment 
unaltered (Hewitt et al., 2017; Fent et al., 2020a). 
Firefighters may also be exposed to chemicals 
they use during firefighting, such as per- and 
polyfluoroalkyl substances (PFAS) contained 
in some aqueous film-forming foams (AFFF) 
(Khalil et al., 2020; Leary et al., 2020) (see 
Section 1.5.1 for more information on exposures 
other than fire smoke). Depending on the prop-
erties of compounds released, use of personal 
protective equipment (PPE), contamination of 
skin, and decontamination measures, firefighters 
can potentially inhale, ingest, and/or dermally 
absorb a variety of chemicals during or after fire 
responses (Fent et al., 2017, 2020b; Stec et al., 
2018; Burgess et al., 2020) (see Sections 1.4.5 and 
1.6 for more information on routes of exposure 
and control methods).

Wildfires predominantly involve the combus-
tion of timber, brush, and other vegetation but 
can also produce many of the same combustion 
products as structure fires (e.g. aromatic hydro-
carbons, aldehydes, and particulates) (Adetona 
et al., 2016; Cherry et al., 2021a). As wildfires 
encroach on urban areas (known as the wild-
land–urban interface, or WUI), firefighters 
– both wildland and municipal – have increas-
ingly been simultaneously fighting structure 
and vegetation fires (Radeloff et al., 2018) (see 
Section 1.4.2 for more information about expo-
sures during wildfires).

Firefighters who rarely respond to emergency 
fires or other chemical incidents (e.g. airport fire-
fighters) may still have exposures from live-fire 
training, use of chemicals (e.g. AFFF), or from 
contamination of previously used protective 
equipment or workplace surfaces (Fent et al., 
2017, 2019a; Engelsman et al., 2019; Leary et al., 
2020). Most fire departments have diesel-fuelled 
vehicles and equipment, so firefighters can also 
be exposed to diesel engine exhaust (Bott et al.,  
2017) (see Section 1.5.1(d)). There are also non- 
chemical carcinogenic hazards to which many 
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firefighters may be exposed. These include night 
shift work, infectious agents, and ultraviolet 
(UV) radiation from working outdoors (Mahale 
et al., 2016; Jang et al., 2020) (see Sections 1.5.2(a), 
1.5.2(b), and 1.5.1(f)).

The PPE worn by firefighters around the 
world shares many similarities. The turnout 
gear of municipal firefighters typically includes 
self-contained breathing apparatus (SCBA), 
helmet, hood, gloves, and insulating clothing 
consisting of multiple layers of protective fabric 
(NFPA, 2018; CEN, 2020), although there can be 
notable differences in the design of each of these 
components according to geographical location. 
Wildland firefighters, in comparison, wear much 
lighter protective clothing and may not wear any 
respiratory protection (Carballo-Leyenda et al., 
2018; Navarro et al., 2019a) (see Section 1.6 for 
more details on PPE).

Firefighters may have second jobs in occupa-
tions within or outside the fire service discipline 
(Beaton & Murphy, 1993; Murphy et al., 1999; 
Baikovitz et al., 2019; Pedersen et al., 2019, 2020). 
For example, it is not uncommon for a firefighter 
to be assigned to a municipal fire department 
as a full-time municipal firefighter/paramedic 
and also work part-time as a fire instructor or in 
another industry, such as construction or land-
scaping. Second jobs are possible because fire-
fighters often work extended shifts, sometimes 
in excess of 24 hours, but with several rest days 
between shifts (Billings & Focht, 2016). [Career 
firefighters may also serve as volunteer fire-
fighters in their community. Second jobs outside 
of the fire service discipline are not included as 
part of the agent under evaluation (i.e. occupa-
tional exposure as a firefighter). The proportion 
of firefighters with second jobs probably varies 
throughout the world.]

The present monograph will consider studies 
spanning firefighting activities from 1915 to 
the present. The occupation of firefighting has 
changed over this period, and advances in PPE 
and other control technologies may have reduced 

firefighters’ exposures; however, the introduction 
of synthetic materials (e.g. foams, plastics, and 
glues in engineered wood products) has resulted 
in fire smoke that contains additional and more 
abundant hazardous chemicals and fires that 
propagate more rapidly (Kerber, 2012; Pedersen 
et al., 2019) (see Section 1.2 for more information 
on how the fire service has changed over time). 
Chemicals (e.g. PFAS) added to materials and 
equipment used by firefighters may also add to 
their potentially harmful exposures. The present 
evaluation was focused primarily on exposures 
(e.g. combustion products including particulates 
and metals, PAHs, volatile organic compounds 
(VOCs), semi-volatile organic compounds 
(sVOCs), PFAS, flame retardants, diesel exhaust, 
heat, UV and other radiation, and shift work) 
that commonly apply across the firefighting 
occupation and could potentially have an impact 
on carcinogenesis (see Table  1.1 for potential 
firefighter exposures classified by IARC). Highly 
specific exposures that would be rare for the rest 
of the firefighting discipline (e.g. ionizing radi-
ation from nuclear accidents) or other known 
hazards that are unlikely to be directly associated 
with carcinogenesis (e.g. noise and psychosocial 
factors) are only briefly reviewed here.

1.2 Qualitative information about 
firefighting

1.2.1 Types of firefighter and firefighting 
activity

A firefighter is an individual who has been 
educated and trained in the prevention and 
suppression of fires that threaten life, property, 
and the environment. The fire service can be 
made up of different firefighter occupational 
subgroups and specializations, such as municipal 
firefighters, volunteer firefighters, fire trainers, 
wildland firefighters, WUI firefighters, fire cause 
investigators, and industrial, airport, or military 
firefighters. In some countries, firefighters may be 
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Table 1.1 Potential exposures in firefighting that have been evaluated by IARC

Exposure Overall 
evaluation

Volume Year Evaluation for cancer in humans

(IARC 
Group)a

Cancer sites with sufficient evidence in 
humans

Cancer sites with limited evidence in humans

Acetaldehyde 2B 71 1999   
Acrolein 2A 128 2021   
Acrylonitrile 2B 71 1999   
Arsenic and inorganic arsenic 
compounds

1 100C 2012 Lung, urinary bladder, skin Liver, bile duct, prostate, kidney

Asbestos (all forms) 1 100C 2012 Larynx, lung, mesothelium, ovary Pharynx, stomach, colon, rectum
Benz[a]anthracene 2B 92 2010   
Benzene 1 120 2018 AML, other acute non-lymphocytic 

leukaemia
Lung, childhood AML, chronic myeloid 
leukaemia, chronic lymphocytic leukaemia, NHL 
(all combined), multiple myeloma

Benzo[b]fluoranthene 2B 92 2010   
Benzo[j]fluoranthene 2B 92 2010   
Benzo[k]fluoranthene 2B 92 2010   
Benzofuran (coumarone) 2B 63 1995   
Benzo[a]pyrene 1 100F 2012   
Bromochloroacetic acid 2B 101 2013   
1-Bromopropane 2B 115 2018   
1-Bromo-3-chloropropane 2B 125 2020   
1,3-Butadiene 1 100F 2012 Leukaemia (all combined), lymphoma 

(all combined), multiple myeloma or 
haematolymphatic organs

 

Cadmium and cadmium 
compounds

1 100C 2012 Lung Prostate, kidney

Carbon black (total) 2B 93 2010   
Carbon nanotubes, multiwalled 
MWCNT-7

2B 111 2017   

2-Chloronitrobenzene 2B 123 2020   
4-Chloronitrobenzene 2B 123 2020   
Chromium(VI) compounds 1 100C 2012 Lung Nasal cavity and paranasal sinus
Chrysene 2B 92 2010   
Cobalt(II) oxide 2B 131 2023   
Crotonaldehyde 2B 128 2021   
Dibenz[a,h]anthracene 2A 92 2010   



51

O
ccupational exposure as a firefighter

Exposure Overall 
evaluation

Volume Year Evaluation for cancer in humans

(IARC 
Group)a

Cancer sites with sufficient evidence in 
humans

Cancer sites with limited evidence in humans

Dibenzo[a,i]pyrene 2A 92 2010   
Dibromoacetic acid 2B 101 2013   
1,3-Dichloro-2-propanol 2B 101 2013   
Dichloroacetic acid 2B 106 2014   
Dichloromethane (methylene 
chloride)

2A 110 2017  Bile duct, NHL (all combined)

2,4-Dichloro-1-nitrobenzene 2B 123 2020   
1,4-Dichloro-2-nitrobenzene 2B 123 2020   
1,2-Dichloropropane 1 110 2017 Biliary tract (cholangiocarcinoma)  
Diethanolamine 2B 101 2013   
N,N-Dimethylformamide 2A 115 2018  Testis
Engine exhaust, diesel 1 105 2014 Lung Urinary bladder
Engine exhaust, gasoline 2B 105 2014   
Ethyl acrylate 2B 122 2019   
Ethylbenzene 2B 77 2000   
Ethylene oxide 1 100F 2012  Breast, chronic lymphocytic leukaemia, NHL (all 

combined), multiple myeloma
Formaldehyde 1 100F 2012 Nasopharynx, AML, other acute non-

lymphocytic leukaemia, chronic myeloid 
leukaemia

Nasal cavity and paranasal sinus

Furan 2B 63 1995   
Hepatitis B virus 1 59 1994 Liver Bile duct, NHL (all combined)
Hepatitis C virus 1 59 1994 Liver, NHL (all combined) Bile duct
HIV type 1 1   Anus, uterine cervix, endothelium 

(Kaposi sarcoma), eye, Hodgkin 
lymphoma, NHL (all combined)

Liver, skin (malignant non-melanoma), vulva, 
vagina, penis

Hydrazine 2A 115 2018  Lung
Indeno-1,2,3-[cd]pyrene 2B 92 2010   
Isoprene 2B 71 1999   
Lead compounds, inorganic 2A 87 2006  Stomach
Molybdenum trioxide 2B 118 2018   
3-Monochloro-1,2-propanediol 2B 101 2013   
Naphthalene 2B 82 2002   

Table 1.1   (continued)
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Exposure Overall 
evaluation

Volume Year Evaluation for cancer in humans

(IARC 
Group)a

Cancer sites with sufficient evidence in 
humans

Cancer sites with limited evidence in humans

Nickel compounds 1 100C 2012 Lung, nasal cavity, paranasal sinuses  
Night shift work 2A 124 2020  Breast, prostate, colon, rectum
2-Nitroanisole (ortho-nitroanisole) 2A 127 2021   
Perfluorooctanoic acid (PFOA) 2B 110 2017  Testis, kidney
Polybrominated biphenyls 2A 107 2016   
Polychlorophenols 2B 71 1999   
2,3,4,7,8-Pentachlorodibenzofuran 1 100F 2012 All cancers combined  
3,4,5,3′,4′-Pentachlorobiphenyl 
(PCB-126)

1 100F 2012   

Pentachlorophenol 1 117 2019 NHL  
2,4,6-Trichlorophenol 2B 117
Polychlorinated biphenyls 1 107 2016 Malignant melanoma  
Pyridine 2B 119 2019   
Radioactivity (γ activity) 1 100D 2012 All sites combined  
Radionuclides (α-particle-
emitting)

1 100D 2012 All sites combined  

Radionuclides (β-particle-
emitting)

1 100D 2012 All sites combined  

Silica (crystalline: quartz or 
cristobalite)

1 100C 2012 Lung  

Styrene 2A 121 2019  Leukaemia (all combined), lymphoma (all 
combined), multiple myeloma

Styrene-7,8-oxide 2A 121 2019   
Sulfuric acidb 1 100F 2012 Larynx  
Tetrabromobisphenol A 2A 115 2018   
2,3,7,8-Tetrachloro dibenzo-para-
dioxin (2,3,7,8-TCDD)

1 100F 2012 All cancer sites combined Lung, soft tissue, NHL

Tetrachloroethylene 
(perchloroethylene)

2A 106 2014  Urinary bladder

1,1,1-Trichloroethane 2A 130 2022  Multiple myeloma
Toluene diisocyanates 2B 71 1999   
Trichloroethylene 1 106 2014 Kidney Liver, bile duct, NHL (all combined)
Trichloromethane (chloroform) 2B 73 1999   

Table 1.1   (continued)
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Exposure Overall 
evaluation

Volume Year Evaluation for cancer in humans

(IARC 
Group)a

Cancer sites with sufficient evidence in 
humans

Cancer sites with limited evidence in humans

Trivalent antimony 2A 131 2023  Lung
Ultraviolet radiation 1 100D 2012 Cutaneous malignant melanoma, 

squamous cell carcinoma of the skin, 
basal cell carcinoma of the skin

 

Vinyl chloride 1 100F 2012 Angiosarcoma of the liver, hepatocellular 
carcinoma

 

Vinylidene chloride 2B 119 2019   
AML, acute myeloid leukaemia; HIV, human immunodeficiency virus; NHL, non-Hodgkin lymphoma.
a Group 1, carcinogenic to humans; Group 2A, probably carcinogenic to humans; Group 2B, possibly carcinogenic to humans. 
b Strong inorganic acid mists.

Table 1.1   (continued)
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trained to serve in many of these subgroups (i.e. 
wildland, municipal, investigation, etc.), whereas 
in other countries, a fire department (also known 
as a fire brigade) may have a workforce with fire-
fighters working solely in one subgroup. [The 
Working Group noted that the tasks carried out 
by firefighters have changed over time, which 
may influence exposures. In particular, medical 
emergency call responses have been an increasing 
responsibility for firefighters in some countries.]

(a) Employment status of firefighters

The International Association of Fire and 
Rescue Services reported that there are more 
than 15 million firefighters (including 1.49 
million career firefighters) in 57 countries, 
including most high-income countries and 
some low- and middle-income countries, such 
as China (CTIF, 2021; see Table S1.2, Annex 1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615). In the USA, two 
thirds of firefighters are volunteers or part-time 
paid per call (which includes paid on-call or paid 
per call) (Fahy et al., 2021). In England, about one 
third of firefighters are retained (i.e. paid on-call) 
(United Kingdom Home Office, 2021a). Higher 
proportions of all firefighters were reported to 
be volunteers in the Netherlands (80%), Canada 
(83%), and Australia (89%) (Haynes & Stein, 
2018; Australian Government Productivity Com - 
mission, 2022; CBS, 2022). Career and volun-
teer firefighters perform the same basic jobs and 
tasks, but career firefighters usually work more 
hours and may have more advanced training 
than do volunteers (Hwang et al., 2019a; Fahy 
et al., 2021; NFPA, 2022). Volunteer firefighters 
are likely to attend fewer fires on average than do 
career firefighters (Monash University, 2014), but 
this is not always the case (Fig. 1.1).

[The Working Group noted that payment 
structures and employment status vary by 
country and that some fire departments may 
contain both volunteer and career firefighters.] 

Volunteer firefighters may not have the same 
resources as career firefighters. For example, 
in some geographical locations in the USA, 
volunteer firefighters are less likely than career 
firefighters to be equipped with turnout gear, 
helmets, and even SCBA that are compliant 
with the recommendations of the National Fire 
Protection Association (NFPA). Volunteers also 
tend to be firefighters in smaller departments, 
in more rural communities, and may lack the 
resources or finances to properly maintain or 
decontaminate their equipment or safety gear 
(Hwang et al., 2019a; NFPA, 2022). [The Working 
Group noted that it is not well understood how 
these organizational factors impact volunteer 
firefighters’ exposures.]

(b) Minority and under-represented groups 

Traditionally, the firefighter workforce has 
been a male-dominated profession. Women are 
under-represented in firefighting (see Table S1.2, 
Annex 1, Supplementary material for Section 1, 
Exposure Characterization, online only, available 
from: https://publications.iarc.fr/615). Among 
career firefighters, the proportion of women in the 
workforce reported ranged from 2% (Germany) 
and 4% (USA, Canada) up to 8% (New Zealand) 
(Statistics Canada, 2018; Fire and Emergency 
New Zealand, 2021; German Network of Female 
Firefighters, 2022). In an Australian cohort study 
covering employment from pre-1970 to 1995 and 
later, 4% of the full-time career firefighters and 
8% of part-time career firefighters were women 
(Monash University, 2014). Among volunteer 
firefighters, 10% were women in the USA and 
Germany (Fahy et al., 2021; German Network 
of Female Firefighters, 2022). In Australia, this 
was 19% (Monash University, 2014). Among all 
firefighters in Portugal, 13% were reported to be 
women (Lam, 2009).

Minority groups (e.g. racial and/or ethnic 
groups that make up a small proportion of the 
regional or national population being studied) 
are also often under-represented in firefighting. 

https://publications.iarc.fr/615
https://publications.iarc.fr/615
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In the USA, the Bureau of Labor Statistics docu-
mented that in 2015 more than 1.2 million people 
were employed as firefighters and other first 
responders; the majority were White, non-His-
panic men, and aged between 25  and 54  years 
(Schafer et al., 2015). In England in 2020, 93% of 
firefighters were men and only 4% were members 
of an ethnic minority group (United Kingdom 
Home Office, 2021b). [The Working Group has 

identified a lack of information on firefighter 
exposures by race, ethnicity, and sex.]

(c) Municipal firefighters

Municipal (also referred to in the litera-
ture as “structural” or “urban”) firefighters are 
an occupational subgroup of firefighters who 
engage in activities of fire suppression, rescue, 
and property conservation in buildings and 

Fig. 1.1 Distribution of the number of incidents attended by individual firefighters (career full-
time and part-time and volunteer)
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Fig. 1.1 shows that most career full-time firefighters attended more incidents than did part-time firefighters, and the volunteer firefighters 
attended fewer incidents than did part-time firefighters. For career full-time, volunteer, and part-time firefighters, respectively, 47%, 53%, and 
78% of incidents attended were fires.
From Monash University (2014), with permission.
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enclosed structures that are involved in a fire or 
emergency situation. These firefighters may work 
for urban, suburban, or rural fire departments 
or agencies, and may have complex and variable 
work histories and exposures because of their 
changing occupational roles and fire responses 
(Fahy et al., 2021).

Potential assignments for firefighters at a 
structure fire incident include attack, search and 
rescue, outside ventilation, overhaul, backup or 
rapid intervention, engineer or pump operation, 
rehabilitation, and incident command (US Fire 
Administration, 2008; Fent et al., 2017) (Fig. 1.2, 
Fig. 1.3). Attack involves advancing a hose line and 
suppressing all active fire. Search and rescue may 
involve forcible entry into the structure and then 
a search for any victims. Outside ventilation typi-
cally involves creating openings at the windows 
and roof for horizontal and vertical ventilation 
of smoke and gases. Backup teams often set up 
a second hose line and are available for addi-
tional suppression or support as needed. Rapid 
intervention teams typically set up just outside 
the structure and are available for emergency 
rescue or support services as needed. Overhaul is 
performed after the fire has been suppressed and 
involves the active search for and suppression of 
any residual flames or smouldering items that 
could reignite the fire. Rehabilitation is a compo-
nent of incident response in which firefighters are 
typically checked after an interior fire response 
and hydrated to prevent more serious conditions 
such as heat exhaustion or heat stroke. The engi-
neer (also known as a vehicle/pump operator or 
chauffeur) is responsible for operating the pump 
and ensuring that hose lines are charged, and the 
incident commander directs the response activ-
ities (US Fire Administration, 2008; Horn et al., 
2018; Engel, 2020).

Other job assignments are possible depend- 
ing on the size and height of the structure and 
spread of the fire, the capabilities and resources 
of the responding fire companies, and inci-
dent management at the scene. A structure fire 

response may be very different in low- and 
middle-income countries where resources and 
technology are limited. For example, interior 
fire attack and search and rescue are mainly 
possible where firefighters have the appropriate 
PPE, such as coat, trousers, gloves, boots, helmet, 
and SCBA. [The Working Group noted that little 
research on job assignments and fire structures 
in low- and middle-income countries, including 
detailed information on safety gear and PPE, 
was available in the literature.] In addition to 
responding to structure fires, firefighters can 
respond to other emergencies, e.g. vehicle and 
waste container (dumpster) fires, building 
collapse, and medical emergencies (Kinsey & 
Ahrens, 2016), and have other specialities within 
their department, including emergency medical 
technician, paramedic, urban search and rescue, 
and hazardous materials (“hazmat”) specialist 
(Miami Dade College, 2022).

(d) Life at the fire station

Municipal firefighters are typically assigned 
to a fire hall or station that mimics a residen-
tial home and includes a kitchen, living room, 
shower facilities, and sleeping quarters (Kitt, 
2009; Markham et al., 2016). Typically, fire-
fighters will start their shift conducting daily 
equipment checks, preparing their PPE and 
equipment, and liaising with the outgoing shift. 
During their shift, firefighters may perform 
station duties (cleaning, maintenance, cooking), 
engage in physical activity, participate in training 
activities, and have free time, depending on the 
number of emergency events received during 
their shift. Firefighters often work extended 
shifts (Section 1.5.2), so some departments allow 
firefighters to sleep during shifts (Firefighter 
Connection, 2022).

(e) Wildland firefighters

Wildland firefighters are tasked with combat-
ting and preventing wildfires in wildlands and at 
the WUI (Theobald et al., 2007; Mell et al., 2010). 
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Fig. 1.2 Municipal firefighters during exterior attack of a structure fire

Fighting structure fires involves suppressing active fires and advancing a hose line.
From © Scott Stilborn/Ottawa Fire Services.
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They may be career or volunteer firefighters and 
are often seasonal workers. Deployments of thou-
sands of wildland firefighting personnel to wild-
fires have been reported within a single country 
across a fire season (e.g. 7373 firefighters during 
the 2019–2020 Australian bushfires) (Parliament 
of Australia, 2020) or on single days (e.g. in the 
USA) (NIFC, 2022a). [Data on the number of 
wildland firefighters are not systematically docu-
mented in most countries. In the USA, estimates 
of the number of wildland firefighters employed 
by federal agencies are around the tens of thou-
sands (Butler et al., 2017; Broyles et al., 2019).] 

Factors that may have an impact on exposure, 
including fire behaviour, release of fire effluents, 

and firefighting technique, may vary across wild-
fires, since wildfires occur in wildlands with 
varying vegetation types (e.g. peat forest, conifer 
forest, grassland) and sometimes in the WUI, 
with structures and vehicles that also contain 
synthetic materials (HomChaudhuri et al., 2010; 
Caton et al., 2017; Cruz et al., 2018; Kganyago 
& Shikwambana, 2020). In addition to wildfire 
suppression, wildland firefighters carry out fire 
prevention by performing prescribed burns, 
which are controlled fires that are intentionally 
set to achieve resource management objectives, 
including fuel reduction and ecological purposes 
(Navarro et al., 2019a). [It is likely that the cumu-
lative occupational smoke exposure of wildland 

Fig. 1.3 Firefighter performing overhaul

Overhaul involves the suppression of any remaining flames or smouldering items after the main fire has been suppressed.
From Professor Anna A. Stec, Centre for Fire and Hazards Sciences, University of Central Lancashire, UK.
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firefighters has been increasing since the annual 
acreage of wildfire burns (NIFC, 2022a), number 
of workdays spent at wildfires per year (Navarro 
et al., 2019a), and/or the total area of land 
managed by prescribed burns (NIFC, 2022a) 
have probably increased, as trends in the USA 
indicate. Similar trends have also been observed 
in other countries (see Section 1.2.2).]

Job assignments during wildland fire 
responses differ substantially from structure fire 
responses (Semmens et al., 2016; Belval et al., 
2017). However, municipal firefighters in areas 
where wildfires are common (e.g. western USA 
and parts of rural Australia) may be trained 
and involved in wildfire response activities, and 
86% of the 26 000 local (municipal) fire depart-
ments in the USA in 2010 were estimated to have 
wildland firefighting duties (Butler et al., 2017). 
Wildland firefighters working at wildfires and 
prescribed burns are typically assigned to hand 
crews or engine crews (Department of Interior, 
2022). Hand crews are responsible for clearing 
brush and other burnable vegetation along the 
expected pathway of the fire to construct a fire 
line or linear fire barrier. Hand crews often use 
gasoline-powered chainsaws, shovels, and other 
hand tools to construct the fire line; this is stren-
uous, time-consuming work and may involve 
hiking long distances (Reinhardt & Ottmar, 
2004; Williamson et al., 2016). After a fireline has 
been secured, mop-up can proceed; this involves 
the extinction of any burning or smouldering 
vegetation, usually by covering the material with 
soil. Mop-up may also involve the removal of 
partially burned vegetation, including the felling 
of standing dead trees (USDA Forest Service, 
2021b). Wildland firefighters may also use hand 
drip torches fuelled by a mixture of gasoline and 
diesel for backfiring (burning out unburned 
fuels between an active wildfire and a defensible 
perimeter) during wildfire suppression or for 
lighting vegetation during prescribed burns or 
backburns (Reinhardt & Ottmar, 2004; Adetona 
et al., 2019; McCormick & May, 2021).

Engine crews work with diesel-powered fire 
engines that carry water or foam and are used 
to suppress active fires where access is possible 
(USDA Forest Service, 2021c). There are other 
speciality disciplines in wildland firefighting, 
such as smoke jumpers and helitack crews, who 
parachute, rappel, or land near the wildfires to 
provide more targeted interventions (USDA 
Forest Service, 2021d). [Numerous other tasks 
beyond those discussed here may also be carried 
out to control the spread of wildfires or manage 
prescribed burns.] 

Wildland firefighters usually carry their 
equipment with them in backpacks and wear 
light protective clothing, such as long-sleeved 
fire-resistant shirts, trousers, and gloves, moun-
taineering boots, and hard hats. Respiratory 
protection is not commonly used (see Fig. 1.4). 
However, the type of protective gear worn and 
the way in which wildfires are managed may 
differ between countries. 

Studies have shown that wildland firefighters 
are exposed to high physiological workloads, 
extended work hours, and dangerous environ-
mental weather extremes (Carballo-Leyenda et  
al., 2017; Vincent et al., 2017; Hemmatjo et al., 
2018). During a wildfire, these fire crews must 
provide around-the-clock fire suppression to 
protect life and property, which may last days, 
weeks, or months. For example, there is a 
standard 14-day wildfire assignment for feder-
ally employed wildland firefighters in the USA, 
but this may be extended up to 30 days (with a 
2-day break in the middle of the period) under 
certain circumstances (NWCG, 2004). These 
extended response times in remote locations 
not only increase exposure duration, but also 
make it difficult to clean protective clothing and 
skin (Cherry et al., 2019). Wildland firefighters 
are temporarily housed at base camps in the 
proximity of wildfires during fire suppression 
deployments (McNamara et al., 2012). They may 
experience additional exposures at these base 
camps because of the transport of wildfire smoke 
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plume over the camps, vehicle and power gener-
ator exhausts, and road dust (McNamara et al., 
2012).

(f) Fire instructors

Fire instructors play a critical role in the 
development and training of firefighters (Reeder 
& Joos, 2019). When the firefighter recruit 
begins training, their first experience with live 
or simulated fire is led by an instructor. In many 
countries, a fire instructor is required to possess 
certification as a fire service instructor and/or 
subject matter expertise in subject areas of fire 

science demanded by fire departments and 
organizations. Fire service instructors teach in 
both classroom and laboratory settings (training 
grounds) from prepared lesson plans and under 
the direct supervision of or in collaboration with 
another senior fire service instructor (IFSTA, 
2022). Fire instructors can be involved in multiple 
fire-training exercises on a given day.

Live-fire training may involve different types 
of fuel. Live-fire training environments in which 
an unconfined open flame or device propagates 
fire to the building or structure are designed to 
simulate the operational fire environment, but 

Fig. 1.4 Wildland firefighter during a controlled forest fire in northern Portugal

It is common for wildland firefighters not to wear self-contained breathing apparatus, despite proximity to fire effluents.
From Marta Oliveira (4FirHealth Research Team).
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the specific chemical exposures to instructors 
may be quite different from those of real-world 
fires (Kirk & Logan, 2015a). For example, using 
plywood and chipboard as the fuel in training 
fires produces more pollutants than do pure 
pine or spruce, whereas the exposures measured 
during propane-burning training fires are lowest 
(Laitinen et al., 2010). A different study found 
that training exercises burning a certain type 
of oriented strand board (as well as pallet and 
straw) produced higher concentrations of certain 
chemicals (some of those already classified by 
IARC as carcinogenic to humans, Group 1) than 
did training exercises burning pallet and straw 
alone (Fent et al., 2019a).

Fire instructors may also experience cumu-
lative exposure to air contaminants that far 
exceeds that of firefighters in operational fire 
environments (Kirk & Logan, 2015a; Fent et al., 
2019a). Additionally, the behaviours and role of 
fire instructors in the training environment are 
different from those at an active fire scene. The 
non-emergency situation may not elicit the same 
work rate and physiological response, therefore 
increasing the length of exposure to chemicals 
(Kirk & Logan, 2015a). [The Working Group 
noted that evaluating the difference between 
air contaminant concentrations in the training 
environment and those in the microenvironment 
inside the instructor’s firefighting ensemble, 
from which the majority of dermal uptake would 
occur, has received little research attention.]

(g) Fire cause investigators

A smaller subgroup of the firefighter work-
force comprises fire cause investigators, who have 
responsibility for investigating and analysing 
incidents involving fires and explosions (NFPA, 
2021c). They conduct root cause analysis of fire 
incidents and render an expert opinion as to 
the origin, cause, responsibility for, or preven-
tion of fire incidents. Fire cause investigators are 
educated and trained in several topics, including 
fire science, fire chemistry, thermodynamics, 

thermometry, fire dynamics, explosion dynamics, 
computer fire modelling, and fire investigation 
and analysis (IAAI, 2018). 

Fire cause investigators may work in either 
the public or private sector. Typically, those in 
the public sector are employed by municipal-
ities, such as fire or police departments, or by 
state or federal agencies. Those working in the 
private sector may be employed by insurance 
companies, lawyers, or private firms. Many fire 
investigators come up through the firefighter 
ranks, starting out as municipal firefighters, 
and gaining experience in various aspects of fire 
behaviour before specializing in fire cause inves-
tigations. Some may begin in law enforcement 
and gain experience or training in arson inves-
tigations but do not necessarily have any direct 
firefighting experience (Belfiglio, 2022). Only 
fire cause investigators who have worked as or 
are working as firefighters are considered in the 
present monograph.

Although fire cause investigators usually 
report to the fire scene to conduct their analysis 
immediately after either the fire suppression and 
overhaul phases of a fire incident response, their 
attendance and investigation can be delayed hours 
or days post-fire suppression (Horn et al., 2022). 
A fire investigation can take from a few days up 
to a few months (Firefighter Insider, 2022). Fire 
cause investigators will use scientific methods to 
systematically review the fire scene, determine 
the circumstances as to the cause of the fire, and 
issue a determination, such as natural, deliberate, 
accidental incendiary, or undetermined cause 
(Daeid, 2005). Depending on the jurisdiction 
and standard operating procedures for the fire 
department, a fire investigator may use different 
approaches to conduct the investigation. Fire 
cause investigators generally attend more fire 
scenes than do most firefighters; however, they 
typically wear less PPE than firefighters, despite 
potentially harmful exposures at the investi-
gation scene well after the fire is extinguished. 
[The Working Group noted that little research on 
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exposure of fire cause investigators in high-in-
come countries or in low- and middle-income 
countries (including the use of safety gear and 
PPE) was available in the literature.]

(h) Other subspecialities in the fire service

Firefighters can be employed in other work 
settings, including airports, military envi-
ronments, and industrial complexes. Aviation 
rescue and firefighting is a type of firefighting 
that involves the emergency response, mitiga-
tion, evacuation, and rescue of passengers, crew, 
and property from aircraft involved in aviation 
accidents and fire incidents (Braithwaite, 2001; 
Smith et al., 2018). Although variations across 
countries can occur, airports with scheduled 
passenger flights are required to have firefighters 
and firefighting apparatus at the airport ready to 
respond at any time to an aircraft fire incident 
(Blocker, 2020). Airports may have regulatory 
oversight by an arm of their individual national 
governments or voluntarily under standards of 
the International Civil Aviation Organization 
(National Academies of Sciences, Engineering, 
and Medicine, 2011). Military firefighters are first 
responders in emergencies and may be required 
to perform fire suppression activities, rescue 
operations during a fire or other emergencies, 
or respond to hazardous spills in the military 
environment or war theatre (Moore et al., 2022). 
Industrial firefighters are specially trained fire-
fighters who serve at manufacturing facilities, 
petrochemical plants, and refineries, among 
other industrial settings (Shelley et al., 2007; 
Ghasemi et al., 2021). They encounter unique 
challenges not commonly encountered by munic-
ipal firefighters, such as site-specific hazards, 
access areas, equipment, business priorities, and 
personnel, that will impact their fire suppression 
approach and tools at the industrial fire.

Firefighters at airports use AFFFs to extin-
guish class B fires, which are fires that arise 
from petroleum products or flammable liquids 
or gases, such as oil, gasoline, jet fuel, and other 

fuels (Rotander et al., 2015b; Milley et al., 2018; 
Environmental Litigation Group PC, 2020) (see 
Fig.  1.5). Until 2021, airports in the USA were 
required to use AFFF that contains fluorinated 
surfactants (Andrews et al., 2021; Shepardson, 
2021). Additional information on PFAS use is 
included in Section  1.5.1(b). All United States 
(US) military branches were required to use 
fluorinated firefighting foams at bases located in 
the USA. Fluorinated AFFFs have also been used 
in other countries, such as Germany, Sweden, 
and the United Kingdom (UK) (Hu et al., 2016; 
Allcorn et al., 2018; Nordic Council of Ministers, 
2019). Local municipalities also use and store 
AFFF. In the USA, almost 75% of AFFF is used 
by the military, and the remaining 25% is used 
by organizations such as refineries, fuel tank 
farms, municipal airports, and other industries 
(Andrews et al., 2021; Environmental Litigation 
Group PC, 2020). See Section 1.7 for regulations 
on use of firefighting foams.

1.2.2 Changes in frequency and intensity of 
fires

[Global trends in structure fires are diffi-
cult to ascertain because fire statistics are not 
available in all countries. These statistics do 
not include training fires or chemical incidents, 
which may also contribute to firefighters’ expo-
sures.] In the USA, there were 4.2 fires per 1000 
population in 2020, which is about the same rate 
as in 2010, but more than 60% lower than the 
rate in 1980. Of those fires, approximately 35% 
were structure fires, 15% were vehicle fires, and 
50% were outdoor or vegetation fires (Ahrens & 
Evarts, 2021). In England, firefighters responded 
to more than 151  000 fires in the year ending 
March 2021, which is a 34% decrease compared 
with 10 years previously. More than 40% of those 
fires occurred in a building, vehicle, or outdoor 
structure, or involved a fatality or casualty 
(Government of the United Kingdom, 2021). In 
Australia, there was a trend towards increased 
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frequency of bushfires between 2011 and 2016 
(Bushfire and Natural Hazards CRC, 2019). In 
Asia, Tishi & Islam (2018) reported that of all 
the fires in Bangladesh in the years 2010–2013, 
the fire incidence in Dhaka Metropolitan Area 
corresponded to the mean of [16.5%], and the 
highest frequency (36%) occurred in residen-
tial areas. The highest density of fire incidents 
occurred in areas of commercial and mixed use 
(38% and 26%, respectively). For other regions, 
e.g. Latin America and Africa, no information 
was available.

[Wildfire statistics are presented both on 
area burned and number of fires, and these 
may appear contradictory.] In southern Europe 
(Portugal, Spain, France, Italy, and Greece), the 

annual area burnt in forest fires has decreased 
from around 600 000 hectares in the 1980s to less 
than 400 000 hectares in the 2010s (San-Miguel-
Ayanz et al., 2022). From the 1950s to the 2000s, 
the average annual area burnt in forest fires 
in Finland has decreased from 5760  hectares 
to 643  hectares (Suokas, 2015). According to 
one analysis, the global area burned by wild-
fires appears to have declined overall over past 
decades; however, the probability and severity 
of wildland fire is increasing in some regions of 
Europe (Doerr & Santín, 2016; Fernandez-Anez 
et al., 2021; San-Miguel-Ayanz et al., 2022). 

Other analyses also suggest that the 
frequency of wildfires is increasing in some 
parts of the world. In the UK, peat, grass, and 

Fig. 1.5 Firefighters using fire suppression foam on a class B fire at an airport

From Rich/Adobe Stock.
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wildfires are becoming increasingly common, 
reflecting the changing weather patterns that are 
making the UK hotter and drier (Belcher et al., 
2021). According to the European Forest Fire 
Information System, there is wide variation in 
the number of wildfires and the area burned each 
year (San-Miguel-Ayanz et al., 2022). Spatial and 
temporal trends in the incidence and severity of 
wildfires in Canada is tracked by the Canadian 
National Fire Database (Government of Canada, 
2021); more than 8000  fires per year burn an 
average of more than 2.1 million hectares. Recent 
research suggests that climate change is respon-
sible for noteworthy increases (i.e. 1.5- to 6-fold) 
in the frequency of extreme burning conditions 
and, by extension, the incidence and severity of 
wildfires in Canada (Coogan et al., 2020).

During the last decade, the USA has expe-
rienced exceptionally large fires, California 
being one of the most affected regions (Keeley & 
Syphard, 2021; State of California, 2021). During 
the 2017 wildfire season, a total of 71 499 wildfires 
was reported in the USA (National Interagency 
Coordination Center, 2017). These wildfires 
consumed 10 026 086 acres [4 057 413 hectares] 
of land (153% of the 10-year average) nationally 
and a total of 12 306 structures were destroyed, 
meaning that the 2017 wildfire season was the 
worst on record in terms of total structures 
lost. In Australia, the length and severity of the 
wildfire season are also increasing across much 
of the country, as measured by annual indices 
of the Forest Fire Danger Index (AFAC, 2021). 
Regarding Latin America, some studies suggest 
that there has been an increase in the frequency 
and length of wildfires over the last decade 
(González et al., 2018; Urrutia-Jalabert et al., 
2018; Barni et al., 2021).

WUI fires are similarly becoming more 
common (Mell et al., 2010; Stein et al., 2013; 
Ribeiro et al., 2020). In the USA, significantly 
destructive WUI fires occurred in Florida in 
1998, and in California in 2003, 2007, and, most 
recently, 2017. WUI fires have also had an impact 

in Europe, particularly in Portugal, France, 
Spain, and Greece. This has resulted in large 
losses of property and numerous human casu-
alties (Ferreira-Leite et al., 2013; Darques, 2015; 
Tedim et al., 2015; Cardoso Castro Rego et al., 
2018; Oliveira et al., 2020a).

1.2.3 Temporal changes in personal 
protective equipment

The types of respiratory and dermal protec-
tion worn by municipal firefighters have changed 
over time. A major advancement in respiratory 
protection occurred around the 1960s when 
compressed-air demand-type SCBA was adapted 
for use by municipal firefighters, although it took 
another decade or longer for these respirators 
to gain widespread acceptance and use among 
fire departments (Spelce et al., 2018; Pedersen 
et al., 2019; London Fire Brigade, 2022). Many 
firefighters now wear SCBA during overhaul, but 
this was not common practice before the 2000s 
(Jakobsen et al., 2020) (see Fig. 1.6 for work-related 
trends observed in fire departments in Norway). 
[The Working Group noted that variability in 
this practice probably exists in fire departments 
throughout the world.]

Personal protective clothing has also changed 
from long rubber trench coats and three-quarter 
length rubber boots to the first iterations of 
modern turnout gear consisting of full-length 
trousers and jacket made of multiple layers of 
protective textiles capable of meeting heat-re-
sistance and other performance specifications in 
the early 1970s (with broad adoption and stan-
dardization occurring over the next 10–20 years) 
(British Standards Institution, 2006, 2019b, 2020; 
Hasenmeier, 2008; NFPA, 2018). [Before the late 
1970s, it is possible that asbestos was used in 
firefighter PPE; there are reports of asbestos in 
helmet covers (Lumley, 1971), respirators, and 
protective clothing.]

Fire departments began adding protective 
hoods to the turnout gear ensemble in the 1990s 
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(Prezant et al., 2001). In the late 2010s, PFAS were 
identified as constituents in the manufacture of 
firefighting turnout gear in the USA (Peaslee 
et al., 2020).

Greater awareness of contamination of 
turnout gear resulting from firefighting activities 
developed in the 2010s. New policies and proce-
dures on turnout-gear cleaning after firefighting 
activities soon followed. According to a survey 
of fire departments in Norway, since the 1990s 
every department (n  =  16) has responded that 
turnout gear should be washed after it has been 
used in a contaminated environment (Jakobsen 
et al., 2020). [However, variability in this practice 

probably exists in fire companies throughout the 
world. In addition, some firefighters perform 
on-scene gross decontamination of their gear, 
some launder their gear, and some do both after 
use in a contaminated environment. Having a 
second set of turnout gear and onsite extraction 
washers is also helpful for allowing this practice, 
which is not common in under-resourced fire 
departments.] See Section 1.6 for more informa-
tion on PPE cleaning practices.

Fig. 1.6 Changes in work conditions for firefighters from the 1950s until 2010 in Norway

From 1960s: Diesel vehicles 

From 1960s: Live fire training 
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2007  
Ban on 
PFOS 

From 1980s: Posi�ve pressure SCBA 

From 1980s: Exhaust removal systems 

From 1990s: SCBA during knockdown 

From 1980s: Chemical diving 

2008 
Par�cle 
filters in 

diesel 
vehicles 

From 1990s: Ven�la�ng fans 

From 2010s: 
Cleaning of 

gear 

From 2010s: SCBA 
during overhaul 

From 1980s: PFOS-containing firefigh�ng foam 

Ongoing trends, posi�ve 

Ongoing trends, nega�ve 

Na�onal regula�ons 

Discon�nued trends, 
nega�ve 

Legend 

From 1990s: PFOS-containing 
water repellents 

PFOS, perfluorooctane sulfonate; SCBA, self-contained breathing apparatus.
Timeline of changes in policies, standards, or practices that have probably had an impact on carcinogenic exposures for firefighters in Norway. 
Many of these changes have also been undertaken for firefighters in other countries over similar periods. Chemical diving is part of the clean-up 
under water after chemical spills or accidents and firefighters/hazardous materials specialists wear special protective equipment.
© 2020 Occupational Safety and Health Research Institute, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-
ND license (Jakobsen et al., 2020).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.2.4 Other temporal changes that could 
affect firefighters’ exposures

Building materials and the items within 
buildings have also changed over time (Stec & 
Hull, 2008; Stec et al., 2019; Jones et al., 2021; 
Peck et al., 2021). Once built and furnished with 
natural materials, like wood, clay, cotton, wool, 
and minerals (including asbestos), residential 
and commercial structures today commonly 
include laminated or engineered wood products 
(e.g. containing glues and resins), polymeric 
cladding, and numerous other synthetic mate-
rials, such as plastics and foams. These synthetic 
materials, along with open floor plans, can cause 
the fires to propagate, consume oxygen, and 
produce toxic gases at much faster rates than 
in the past (Stec & Hull, 2011; Kerber, 2012; 
McKenna et al., 2019; Stec et al., 2019). Some of 
these synthetic materials also contain chemical 
additives to provide certain desirable properties, 
such as plasticizers (e.g. phthalates), stain-re-
sistant coatings (e.g. PFAS), and flame retar- 
dants (e.g. organophosphorus compounds). These 
substances may present their own unique expo-
sure hazards. Foam insulation used within or 
outside the building envelope can also contribute 
to fire spread (e.g. the Grenfell Tower in London, 
UK) (Grenfell Tower Inquiry, 2019; McKenna 
et al., 2019; Jones et al., 2021; Peck et al., 2021). 
[Although asbestos is no longer used as an insu-
lating material, and lead is no longer used in paint 
(having been banned for more than four decades 
in most countries), these compounds are likely 
to be present in many older homes and buildings 
and could still be released during structure fires.]

Diesel engines were largely introduced in 
the 1960s, hence diesel exhaust exposure has 
been prevalent in the fire service since that time. 
However, fire departments began installing 
diesel-exhaust capture systems in the 1980s to 
control these exposures in the apparatus bays 
(see Fig.  1.7). [The Working Group noted that 
the implementation of diesel-exhaust capture 

systems in fire stations has taken time and varies 
between and within geographical locations. Fire 
stations in low- and middle-income countries 
are unlikely to have these systems, and even 
some stations in high-income countries (espe-
cially in under-resourced departments) may 
not have them. The efficacy of these systems is 
highly dependent on proper use and mainte-
nance (Chung et al., 2020).] More recently (in the 
mid-2000s), diesel-engine emission controls (e.g. 
diesel particulate filters) became available in the 
marketplace (IARC, 2013; Jakobsen et al., 2020). 
Battery electric vehicles (BEV) are now available, 
including BEV or hybrid-electric fire trucks, 
which may also reduce diesel exhaust exposure 
for fire personnel. Additional controls that have 
been implemented include general exhaust venti-
lation, diesel fuel additives, separations between 
the vehicle bay and living quarters, and various 
administrative policies, such as idling restric-
tions. See Section 1.5.1(d) for more information 
on diesel exhaust.

BEVs and hybrid-electric vehicles are growing 
in popularity and, like combustion engine vehi-
cles, occasionally catch fire. Battery storage 
facilities can also catch fire (Gilbert, 2021). The 
lithium-ion batteries in these vehicles and storage 
facilities may produce very hot fires that require 
tremendous amounts of water and time to fully 
extinguish (Wang et al., 2012). [These types of 
fire may become more common as the popula-
tion transitions to BEVs and back-up battery 
power.] See Section 1.5.1(h) for more information 
on lithium-ion battery fires and other emerging 
concerns in the fire service.

1.2.5 Health and health behaviours

Health behaviours can have an important 
impact on health status and cancer risk (Klein 
et al., 2014). Risky health behaviours, such 
as smoking, drinking alcohol, and sedentary 
behaviour, have been documented in firefighters. 
Studies have investigated obesity and overall 
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health in firefighters. In a survey of 677 male 
firefighters from the midwestern USA, the prev-
alence of obesity (body mass index, BMI ≥ 30) 
was 32.6% and 38.5% for career and volunteer 
firefighters, respectively, compared with the age-
standardized prevalence in US adults (33.8%) at 
the time of the survey (Poston et al., 2011). Munir 
et al. (2012) surveyed 735 male firefighters from 
the UK and discovered that 53% were over-
weight and 13% were obese; these were higher 
percentages than in the general population in 
England. In contrast, a survey of female career 
(n = 2398) and volunteer (n = 781) firefighters in 
the USA and Canada found an age-standard-
ized prevalence of obesity in both career (17.2%) 

and volunteer (32.8%) firefighters that was lower 
than in women in the general population (41.1%) 
(Jahnke et al., 2022). A pilot study using actig-
raphy to objectively measure occupational and 
non-occupational physical activity among paid 
career firefighters found varying levels of phys-
ical activity during a typical work week, and these 
levels varied according to firefighter weight status 
categories (Kling et al., 2020). The study found 
that healthy-weight firefighters spent more time 
engaged in light and moderate physical activity 
than did overweight and obese firefighters, 
whereas overweight and obese firefighters spent 
more time engaged in vigorous physical activity 
than did their healthy-weight counterparts.

Fig. 1.7 Fire station in Chicago, USA, with diesel-exhaust capture system attached to a fire truck

The diesel exhaust extractor can be seen in yellow.
From Beatrice Prève/Adobe Stock.
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Firefighters have also been reported to expe-
rience workplace stress, have poor sleep quality, 
and have high levels of comorbidities. A survey of 
1244 US firefighters (> 94% volunteers) revealed 
important statistics regarding health determi-
nants and conditions (NVFC, 2010). For example, 
54% of respondents said they experienced some 
or a lot of stress, 26% reported having trouble 
falling asleep, 28% reported having trouble 
staying asleep, 37% reported having high blood 
pressure, and 34% reported having high blood 
cholesterol.

Studies have also evaluated tobacco use and 
alcohol consumption among firefighters. A study 
of tobacco use among 677 male firefighters in 
the central USA found that career and volunteer 
firefighters had current cigarette smoking rates 
(13.6% and 17.4%, respectively) that were below 
national unadjusted averages between 2008 and 
2010 (23.4% for adult men). However, rates for use 
of smokeless tobacco (18.4% and 16.8%, respec-
tively) were above national unadjusted averages 
(7.0% for adult men) (Haddock et al., 2011). In the 
NVFC (2010) survey of mostly volunteer US fire-
fighters, only 10% of respondents were current 
smokers, but 12% were current users of smoke-
less tobacco. Phan et al. (2022) examined trends 
in current smoking and smokeless tobacco use 
among US firefighters and law enforcement 
personnel and compared smoking and smoke-
less tobacco use prevalence in firefighters and 
law enforcement personnel to that in US adults 
in non‐first‐responder occupations. During 
the study observation period (1992–2019), the 
authors noted that smoking prevalence declined 
overall and was highest for individuals in other 
occupations, and that use of smokeless tobacco 
was higher among firefighters and law enforce-
ment personnel (Phan et al., 2022). Among 1712 
female career firefighters surveyed in 2015, the 
unadjusted rate for smoking was 5.1%, and the 
unadjusted rate for smokeless tobacco use was 
1.2%; the age standardized smoking rates were 
lower than that of US adult women, which at the 

time of the study was estimated at 13.5% (Jamal 
et al., 2018; Jitnarin et al., 2019).

Firefighters, like individuals with other occu-
pations, may engage in risky or binge drinking. 
Haddock et al. (2017) surveyed 1913 female fire-
fighters in the USA and found that nearly 40% 
reported binge drinking in the past 30 days, well 
above rates reported nationally among women 
at the time (12–15%). Binge drinking for men 
was defined as five or more drinks on an occa-
sion in this survey, and 56% of career firefighters 
and 45% of volunteer firefighters reported binge 
drinking one or more times in the past 30 days 
(Haddock et al., 2012), about twice the national 
average for adult men at the time (Kanny et al., 
2013).

Some of the unhealthy behaviours reported 
among firefighters may be related to occupational 
stressors and/or peer pressure. Jitnarin et al. 
(2017) surveyed 1474 career male firefighters in 
the USA and found that nearly 16% of current 
users of smokeless tobacco initiated use after 
joining the fire service, which is substantially 
higher than expected compared with rates in the 
general population (i.e. 0.8% late initiation for 
adult males). Haddock et al. (2017) conducted a 
survey of 1913 US female firefighters and reported 
that those who screened positive for problem 
drinking (16.5% of those who drank alcohol) 
were 2.5  times as likely as the general popula-
tion to have been diagnosed with depression or 
have post-traumatic stress disorder symptoms, 
and were 40% more likely to have experienced 
an occupational injury in the past year. Some of 
these adverse health behaviours (e.g. smoking, 
binge drinking, and caloric intake from alcohol 
– i.e. higher amounts of carbohydrates and lower 
amounts of fibre and vitamins) have been associ-
ated with night shift work in other worker popu-
lations (Bøggild & Knutsson, 1999; Lowden et al., 
2010; Bae et al., 2017; Richter et al., 2021). See 
Section 1.5.2(a) for more details on shift work.

[The Working Group noted that the infor-
mation on modifiable risk factors was limited, 
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with nearly all available information stemming 
from a small number of cross-sectional surveys 
published since 2011. The representativeness of 
these studies was low given that the study popu-
lations were few (mainly USA) and sample sizes 
were relatively small. Moreover, longitudinal 
information was not available (with the excep-
tion of tobacco use in the USA, where data from 
a series of cross-sectional studies were available), 
although temporal trends probably varied given 
changes in firefighter behaviours and fire depart-
ment policies over time.]

1.3 Detection and quantification 

1.3.1 Composition of fire smoke

Combustion products are dependent on the 
chemical composition of the fuel that is burnt 
and ventilation conditions (temperature and 
oxygen availability) (Stec, 2017). Combustible 
materials vary across different types of fire, such 
as residential, industrial, vehicle, agricultural, 
and wildland fires, and any fire that is a combi-
nation of these (i.e. WUI). The fuel composition 
ranges from mostly lignocellulosic vegetative 
biomass in wildland and agricultural fires to 
various mixes of solid natural materials, solid 
synthetic materials including plastics, and liquid 
petrochemical fuels (Yang et al., 2007; Hess-
Kosa, 2016). Common fire effluents in different 
types of fire are presented in Table 1.3.

Vegetation contains mostly carbon, oxygen, 
and hydrogen, and various types of vegetative 
biomass including wood have been measured  
and/or estimated to contain 36.2–58.4%, 
31.4–49.5%, and 4.4–10.2% of these elements, 
respectively, by dry or dry ash-free weight 
(Parikh et al., 2007; Vassilev et al., 2010). 
Vegetative biomass also contains minor amounts 
of other elements, including 0.1–3.4% nitrogen 
and 0.01–0.60% sulfur. [Since vegetative biomass 
is mostly composed of carbon, hydrogen, and 
oxygen, the emissions from wildland fires are 

dominated by carbon monoxide (CO), hydro-
carbons, and oxygenated carbon compounds 
(Yi & Bao, 2016; Liu et al., 2017; Hu et al., 2018). 
A major difference between wildland fires and 
other types of fire, including structure, vehicle, 
and WUI fires, is the presence and number of 
synthetic materials. Little is known about the 
chemical composition of consumer products 
used, for example, in buildings or cars. A non-tar-
geted analysis by Phillips et al. (2018) measured 
numerous compounds in consumer products, of 
which 88% were not listed in a database of chem-
icals known to be used or present in consumer 
products.]

Fires traverse different stages and commonly 
evolve from non-flaming oxidative pyrolysis, to 
early well-ventilated flaming, through to fully 
developed under-ventilated flaming (Purser & 
Maynard, 2015; Stec, 2017). Oxidative pyrolysis 
generates low concentrations of partially oxidized 
organic species (e.g. carbonyl compounds and 
organic acids). [These may be significant in the 
case of fuels with a higher moisture content 
(for example, in peat fires).] Similarly, well-ven-
tilated fires are generally small, and with an 
increase in temperature and decrease in oxygen 
concentration can turn into ventilation-con-
trolled (under-ventilated) fires that exhibit much 
higher concentrations of the released fire efflu-
ents (Stec et al., 2007). It has been demonstrated 
that the yield of combustion products such as 
CO, hydrogen cyanide (HCN), and other smoke 
components increases by a factor of between 10 
and 50 as the fire changes from well-ventilated 
to under-ventilated (Stec et al., 2007; Stec, 2017). 
The impact of ventilation conditions on the 
yields of major gases emitted by fires is presented 
in Table 1.4.

Combustion of most aliphatic materials 
(consisting only of carbon and hydrogen), such 
as polyethylene and polypropylene, follows the 
trend whereby CO concentration increases from 
a low value in well-ventilated conditions, to a 
much higher value in under-ventilated flaming. 
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Partially oxidized organic compounds such as 
carbonyl compounds, organic acids, and PAHs 
are also present in the smoke from combustion 
of such materials. Higher yields of aromatic 
compounds are released in smoke from the 
combustion of polystyrene, which is an aromatic 
hydrocarbon polymer (Purser & Maynard, 2015).

A wider range of products are formed when 
materials containing oxygen or other elements 
are combusted (Purser & Maynard, 2015). More-
oxidized combustion products, such as nitrogen 
oxides and ammonia, are released in higher 
concentrations than HCN when nitrogen-con-
taining polymeric materials, e.g. polyurethane 

and polyisocyanurate foams, are combusted 
under well-ventilated fire conditions (Stec & Hull, 
2008). Much higher concentrations of CO and 
HCN are observed for under-ventilated condi-
tions of these materials (following the patterns 
for products that only contain hydrocarbons) 
(Stec & Hull, 2011). Also, gaseous mono-isocy-
anates were observed in studies of under-venti-
lated, fully developed enclosure fires of materials 
including polyurethane foam (Blomqvist et al., 
2010, 2014; Stec & Hull, 2011; McKenna et al., 
2019, Peck et al., 2021).

Materials containing chlorine (e.g. polyvinyl 
chloride, PVC) release CO and hydrogen chloride 

Table 1.3 Common fire effluents produced by different types of fire

Fire effluent(s) Type of fire

Structurea Wildlandb Wastec Vehicled

Acrolein ✓ ✓  ✓
Ammonia ✓ ✓ ✓ ✓
Asbestos ✓    
Carbon monoxide ✓ ✓ ✓ ✓
Formaldehyde ✓ ✓ ✓ ✓
Hydrogen bromide ✓  ✓  
Hydrogen chloride ✓  ✓ ✓
Hydrogen cyanide ✓ ✓ ✓ ✓
Hydrogen fluoride ✓  ✓  
Isocyanates ✓   ✓
Metals ✓ ✓ ✓ ✓
Nitrogen oxides ✓ ✓ ✓ ✓
Particulate matter ✓ ✓ ✓ ✓
Per-fluorinated chemicals ✓   ✓
Polybrominated and polychlorinated dibenzo-para-dioxins and 
furans (PBCD/Fs and PCCD/Fs)

✓  ✓ ✓

Polychlorinated biphenyls (PCBs) ✓  ✓  
Polybrominated diphenyl ethers (PBDEs) ✓  ✓  
Polycyclic aromatic hydrocarbons (PAHs) ✓ ✓ ✓ ✓
Semi- and volatile organic compounds (sVOCs and VOCs) ✓ ✓ ✓ ✓
Sulfur dioxide ✓ ✓ ✓ ✓
Synthetic vitreous fibres ✓    

a Brandt-Rauf et al. (1988); Persson & Simonson (1998); Lioy et al. (2002); Landrigan et al. (2004); Stec & Hull (2008); Organtini et al. (2015); Fent 
et al. (2018, 2020a); Stec et al. (2018); Alharbi et al. (2021).
b Urbanski et al. (2008); Hu et al. (2018).
c Nammari et al. (2004); Lönnermark & Blomqvist (2006); National Air Quality Modelling & Assessment Unit (2009); Pivnenko et al. (2017); Cai 
et al. (2020); Hadden & Switzer (2020).
d Lönnermark & Blomqvist (2006); NIOSH (2010); Fent & Evans (2011); Caban-Martinez et al. (2018).
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(HCl). The fire gas pattern is very different from 
that for all other polymers, since the yields of 
CO and HCl are independent of the fire scenario 
(Molyneux et al., 2014), and relatively low carbon 
dioxide (CO2) yields and high yields of CO, 
particulates, and organics, and significant resi-
dues are observed in well-ventilated combustion 
conditions (Stec & Hull, 2008; Molyneux et al., 
2014). Most of the chlorine contained in the 
material is released as HCl, but a small propor-
tion of it is released as other chlorine-containing 
gas or vapour species, such as chloro-aliphatic 
and chloro-aromatic hydrocarbons. Formation 
of carcinogenic polychlorinated dibenzo-para- 
dioxins and polychlorinated dibenzofurans 
(PCDD/Fs) in residential fires commonly occurs 
when halogenated materials that are widely used 
in building construction (e.g. in pipes, siding, 
flooring, and wire insulation) are combusted 
(Ruokojärvi et al., 2000; Katami et al., 2002; 
Lavric et al., 2004; Zhang et al., 2015). In addi-
tion, the presence of specific metals increases the 
yields of polychlorinated dibenzo-para-dioxins 
and dibenzofurans (PCDD/Fs). This occurs 
with construction wood that is impregnated 
with legacy preservatives (e.g. chromated copper 
arsenate and pentachlorophenol) and newer 
preservatives (e.g. alkaline copper quaternary 
and copper azole) (Wang et al., 2002; Tame et al., 
2009; Rabajczyk et al., 2020). The production 
of polychlorinated biphenyls (PCBs) has been 
banned since 1979 in the USA and since 1981 in 
the UK, and an international agreement in 1986 
banned most uses; however, combustion of PCBs 

in existing electrical equipment and electric fires 
might result in emission of PCDD/Fs (Buser, 
1985; Hutzinger et al., 1985).

Another fire-derived combustion product is 
sulfur dioxide (e.g. from phenolic foam) (Stec & 
Hull, 2011). Aliphatic and aromatic hydrocarbons 
(e.g. benzene and 1,3-butadiene), oxygenated 
organic compounds (e.g. formaldehyde, acetal-
dehyde, and acrolein), PAHs, and soot particles 
are found in almost all fires, and their concen-
trations are increased when combustion is venti-
lation-limited (Austin et al., 2001b; IARC, 2010; 
Purser et al., 2010; Hewitt et al., 2017; Bralewska 
& Rakowska, 2020).

Concentrations of released combustion prod - 
ucts may change when the fuel contains fire 
retardants. Fire retardants that act in the gas 
phase and interfere with flame reactions (i.e. 
flame retardants) are frequently applied to insu- 
lation foams, electrical equipment, and uphol-
stered furniture (Blomqvist et al., 2004a, b; 
Stec & Hull, 2011; McKenna et al., 2019). When 
burning PVC, a similar gas-phase inhibitory 
effect is observed. In terms of fire emissions, 
gas-phase halogenated flame retardants (e.g. 
organophosphate flame retardants, OPFRs) will 
release hydrogen bromide (HBr) or HCl, and 
considerable quantities of CO, HCN, smoke, 
and other products of incomplete combustion 
(e.g. acrolein and formaldehyde), as well as 
larger cyclic molecules such as PAHs and soot 
particulates (Molyneux et al., 2014; McKenna 
et al., 2019). Brominated flame retardants have 
been banned in the USA since 2004 and in the 

Table 1.4 The main fire gases and their dependence on ventilation conditions

Yield largely independent of fire 
conditions

Yield decreases as ventilation  
decreases

Yield increases as ventilation 
decreases

Hydrogen fluoride (HF) Carbon dioxide (CO2) Carbon monoxide (CO)
Hydrogen chloride (HCl) Nitrogen dioxide (NO2) Hydrogen cyanide (HCN)
Hydrogen bromide (HBr) Sulfur dioxide (SO2) Acrolein (C3H4O)

Formaldehyde (CH2O)
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European Union since 2003 (e.g. polybrominated 
diphenyl ethers, PBDEs), and those currently on 
the market (e.g. tetrabromobisphenol A, TBBPA; 
and other brominated phenols) are known to 
enhance concentrations of mixed polybromi-
nated dibenzo-para-dioxins and furans (PBDD/
Fs) (Weber & Kuch, 2003; Ortuño et al., 2014; 
Organtini et al., 2015; Zhang et al., 2016).

Additionally, emission of fine and polydis-
perse particles that are mostly smaller than PM2.5 
and generally in the nanometre to submicron 
range has been reported for wildfires, labora-
tory combustion testing of wood, and laboratory 
building and automobile compartment tests 
simulating overhaul conditions of firefighting 
(Lachocki et al., 1988; Jankovic et al., 1993; 
Leonard et al., 2000, 2007; Shemwell & Levendis, 
2000; Fine et al., 2001; Valavanidis et al., 2008; 
Baxter et al., 2010; IARC, 2010; Carrico et al., 
2016; Kleinman et al., 2020). Smoke, soot, and 
particulate emissions vary greatly according to 
fuel composition and fire conditions (Shemwell 
& Levendis, 2000; Valavanidis et al., 2008; 
Blomqvist et al., 2010). However, it is recognized 
that more and larger-sized particles tend to be 
generated by fires with less ventilation or oxygen 
(Shemwell & Levendis, 2000; Blomqvist et al., 
2010; Carrico et al., 2016). This effect is enhanced 
in the presence of halogens, which tend to 
increase the distribution and concentrations of 
particulate matter and other volatiles (Blomqvist 
et al., 2010).

Various metals (e.g. cadmium, cobalt, chro-
mium, copper, nickel, lead, antimony, thallium, 
and zinc) and persistent free radicals are also 
found in the particulate soot and ash residues 
resulting from wildland, structure, or vehicle fires 
(Smith et al., 1982; O’Keefe et al., 1985; Jankovic 
et al., 1993; Leonard et al., 2000, 2007; Dellinger 
et al., 2007; Valavanidis et al., 2008; Organtini 
et al., 2015). Carbon- and oxygen-centred radi-
cals in the particles and ash residue persist for 
up to 6  months, with electron paramagnetic 
resonance signals in the samples remaining the 

same across the period. Persistence has also been 
attributed to trapping within and adsorption to 
the polymeric carbonaceous matrix (Valavanidis 
et al., 2008).

Various types and quantities of gaseous 
species are also often found to be attached to 
particulates. This includes, for example, acid 
gases (HCl, HBr), isocyanates, and various metals 
(Blomqvist et al., 2010, 2014; Stec et al., 2013).

Vehicle fires, in addition to having an 
increased yield of released metals, can release acid 
gases (HCl and HF), carbonyl fluoride (COF2), 
and phosphoryl fluoride (POF3); however, the 
fire composition may change depending on the 
type of battery in the vehicle (Lönnermark & 
Blomqvist, 2006; Larsson et al., 2017; Sturk et al., 
2019).

[Although emissions from diesel engine 
exhaust are not fire smoke components, gases 
such as nitrogen oxides (NOx) and particulate 
matter are released by a combustion process in 
equipment (the fire engine) that is essential to 
firefighting operations; these gases are hazards 
both in firefighting environments and at fire 
stations, if not captured through local exhaust 
ventilation (e.g. an exhaust capture system).]

1.3.2 Air sampling and analytical methods 
for fire effluents

The choice of sampling and analytical method 
used to characterize airborne contaminants at 
a fire incident depends on the contaminant(s) 
of interest, the physical nature of the airborne 
samples (i.e. vapour and/or aerosol), the esti-
mated concentrations of contaminants, and any 
potential interactions with or interferences from 
other contaminants (Ronnee & O’Connor, 2020). 
The choice of sampling and analytical method is 
also strongly influenced by the activities of fire-
fighters at the scene, e.g. whether they are engaged 
in attack or overhaul activity; the extinguishing 
agents used; the method of extinguishing agent 
application; and physical placement, which will 
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have an effect on both the concentration and state 
of airborne contaminants, as well as the practi-
cality of sampling device placement (Materna 
et al., 1992; Fent et al., 2018; Alharbi et al., 2021; 
Banks et al., 2021a).

[While tremendous advances in analytical 
chemistry have been observed over the past 
30  years, little progress has been made in the 
detailed analysis of combustion chemicals. The 
major limiting factors to such progress are access 
to real (accidental) fires, and the complexity 
involved in sampling and measuring fire efflu-
ents, leading to significant difficulties in assessing 
firefighters’ chemical exposures while attending 
a fire incident.]

Analysis of fire smoke at a particular inci-
dent involves prior identification of which of 
these (pre-defined) chemicals are considered to 
be the most significant or major components 
of the smoke (e.g. based on knowledge of fuel 
sources, specific fire conditions, etc.). The choice 
of specific gases or chemicals to monitor is based 
on the availability of methods that reliably collect 
and analyse air-contaminant samples in the fire 
environment (Caban-Martinez et al., 2018; Fent 
et al., 2018; Sjöström et al., 2019b). The most 
common methods are listed in Table 1.5.

Ambient or personal-monitoring air samples 
can be collected either actively or passively. In 
active sampling, a pumping device actively draws 
air into a container or through a medium such 
as a filter, solid adsorbent, denuder, solution, or 
reagent, and determination of the total volume of 
air sampled is required (NIOSH, 1994a; Bolstad-
Johnson et al., 2000; Fent et al., 2019b). In passive 
sampling, molecular diffusion and gravity are 
exploited to collect analytes onto a medium or 
adsorbent, and no pump is required (Mayer et al., 
2022).

Samples can also be classified as integrated, 
continuous, or grab samples. For integrated 
samples, the analyte is collected over time (e.g. 
15 minutes, 8 hours, full shift, or task) and the 
average concentration is calculated over the 

whole measurement period. This does not allow 
for observations of peaks or troughs in the expo-
sure over time. Continuous samples are collected 
using a direct reading instrument (i.e. real-time 
monitor) that provides exposure measurements 
at set time intervals (e.g. 10 seconds, 1 minute), 
indicating changes in exposure over the measure-
ment period, such as peaks (Jankovic et al., 1991; 
Fabian et al., 2014; Evans & Fent, 2015). Grab 
samples are collected in a bag or container (e.g. 
evacuated canister) at a specific point in time 
(Treitman et al., 1980; Reinhardt et al., 2000; 
Booze et al., 2004; Dills & Beaudreau, 2008). 
They are a representative sample of the environ-
ment from which they are drawn, usually over 
short periods (e.g. less than 5 minutes), although 
samples can be collected over longer periods (i.e. 
hours).

Air samples can be collected over different 
time periods – a few seconds (e.g. peak measure-
ments), several minutes (e.g. 15–30 minutes, task-
based sampling), or longer (e.g. several hours, 
work-shift sampling). A series of samples or 
continuous measurements can also be collected 
and then integrated (i.e. integrated sampling) 
to calculate a time-weighted average (Bolstad-
Johnson et al., 2000; Slaughter et al., 2004; Fabian 
et al., 2010; Adetona et al., 2013a; Wu et al., 2021).

The choice of analytical method will vary 
according to the sampling method and sample 
type (Ronnee & O’Connor, 2020). Selectivity of 
the analytical method (i.e. avoiding matrix effects 
and/or interference from other fire species), limit 
of detection (LOD) and limit of quantification 
(LOQ), and levels of sensitivity and accuracy 
between different methodologies also need to 
be carefully considered when selecting from 
the large number of analytical methodologies 
currently available for characterizing fire efflu-
ents (NIOSH 1992a, b; Bolstad-Johnson et al., 
2000; Fabian et al., 2010; Fent et al., 2020a) These 
methods are summarized in Table  1.5, which 
highlights types of fire effluent identified and 
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Table 1.5 Air sampling and analytical methods available for characterizing firefighters’ exposure to fire effluents

Fire effluent(s) Sampling method(s) Analytical method(s)  
(LOD and LOQa)

Selected reference(s)

Aldehydes •  Impregnated sieves 
•  Gas collection tubes 
•  Sorbent tubes 
•  XAD-2 tube/ORBO23 sorbent tube 
impregnated with 2-(hydroxymethyl)
piperidine 
•  DNPH sorbent tubes, C-18 silica 
gel Sep-Paks 
•  UMEX 100 passive sampling 
badges 
•  XAD-2 sorbent tubes 
(2-hydroxymethyl piperidine) 
•  Direct gas (multigas) detector

•  GC desorption (chromotropic acid) 
•  Infrared spectroscopy 
•  NIOSH Method 2016 formaldehyde  
(LOD, 0.07 µg/sample), NIOSH Method 2539 
aldehydes (LOD, 2 µg aldehyde/sample), 
NIOSH Method 2541 formaldehyde  
(LOD, 1 µg/sample) 
•  EPA TO-11 (acrolein LOD, 0.017 ppm, 
formaldehyde LOD, 0.033 ppm); (acrolein LOD, 
3 ppb, 2 hours, formaldehyde LOD, 6 ppb, 
2 hours), 
•  OSHA 52 formaldehyde  
(LOD, 482 ng/sample) and acrolein  
(LOD, 291 ng/sample) 
•  EPA IP-6 A (active sampling) C (passive 
sampling) formaldehyde and other aldehydes 
(LOD, 0.03 µg/sample)

Treitman et al. (1980); Lowry et al. (1985); NIOSH 
(1992a, b; 1994a; 2010); Materna et al. (1992); 
Bolstad-Johnson et al. (2000); Reinhardt et al. 
(2000); Booze et al. (2004); Reinhardt & Ottmar 
(2004); Slaughter et al. (2004); Reisen et al. (2006); 
Dills & Beaudreau (2008); Reisen & Brown (2009); 
Fabian et al. (2010); Reisen et al. (2011); Fent & 
Evans (2011); Fent et al. (2019b)

Ammonia •  Direct gas detector •  Infrared spectroscopy: FTIR Fabian et al. (2010); Caban-Martinez et al. (2018); 
Alharbi et al. (2021)

Asbestos •  Mixed cellulose ester filters •  NIOSH Method 7400 (LOD, 7 fibres/mm2 
filter area)

Bolstad-Johnson et al. (2000)

Carbon monoxide •  Gas sampling (Tedlar) collection 
bags 
•  Gas collection tubes 
•  Diffusion tubes 
•  Direct gas detector

•  Infrared spectroscopy: NDIR, FTIR 
analysers

Gold et al. (1978); Treitman et al. (1980); Lowry 
et al. (1985); NIOSH (1992a, b; 1994a); Reinhardt 
et al. (2000); Booze et al. (2004); Reinhardt & 
Ottmar (2004); Slaughter et al. (2004); Naeher et al. 
(2006); Reisen et al. (2006, 2011); Dills & Beaudreau 
(2008); Reisen & Brown (2009); Fabian et al. (2010); 
Adetona et al. (2013a); Alharbi et al. (2021); Wu 
et al. (2021)

Carbon dioxide •  Gas sampling (Tedlar) collection 
bags 
•  Direct gas detector

•  Direct analyser (LOD, 7.6 ppm, 2 hours) Gold et al. (1978); Treitman et al. (1980); Reinhardt 
et al. (2000); Reinhardt & Ottmar (2004); Dills & 
Beaudreau (2008); Caban-Martinez et al. (2018)

Flame retardants •  Glass fibre filter with XAD-2 
sorbent tubes

•  UPLC-APPI, 
•  EPA 23A PBDEs and NPBFRs (LOD depends 
on the substance, sampling conditions and 
analytical procedures)

Fent et al. (2020a)
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Fire effluent(s) Sampling method(s) Analytical method(s)  
(LOD and LOQa)

Selected reference(s)

Hydrogen cyanide •  Gas collection tubes 
•  Disposable syringes 
•  Gas sampling (Tedlar) collection 
bag 
•  Soda lime sorbent tubes 
•  Multiple colorimetric detectors 
•  Direct gas (multigas) detector

•  Colorimetric method (pyridine) 
•  Infrared spectroscopy: UV-VIS 
spectrophotometric method, FTIR 
•  NIOSH Method 6010 (LOD, 1 µg/sample), 
NIOSH Method 7904 (LOD, 2.5 µg)

Gold et al. (1978); Treitman et al. (1980); Lowry 
et al. (1985); Caban-Martinez et al. (2018); Bolstad-
Johnson et al. (2000); Dills & Beaudreau (2008); 
Fabian et al. (2010); Fent et al. (2018, 2019b); Alharbi 
et al. (2021)

Hydrogen sulfide •  Direct gas (multigas) detector  Fabian et al. (2010); Alharbi et al. (2021)
Inorganic acids 
(HCl)

•  Multiple colorimetric detectors 
•  ORBO53 tube 
•  Direct gas (multigas) detector

•  Mercuric thiocyanate method 
•  Zall colorimetric method 
•  NIOSH 7903 (LOD, 0.6–2 µg/sample)

Gold et al. (1978); Treitman et al. (1980); NIOSH 
(1994a); Bolstad-Johnson et al. (2000); Dills & 
Beaudreau (2008); Fent et al. (2018, 2019b); Alharbi 
et al. (2021)

Isocyanates •  Denuder attached to polypropylene 
cassette impregnated with a 
dibutyl-n-amine filter (glass fibre, 
impregnated); or 
•  Impinger; or impinger + filter

•  ISO 17734-(2013) 
•  NIOSH Method 5525 (0.2 nmol NCO per 
species/sample (0.2 nmol NCO equals 0.017 µg 
HDI/sample)

NIOSH (2010); Fent & Evans (2011); Fent et al. 
(2019b)

Metals •  PVC and cellulose ester filters 
•  Teflon filter 
•  Hyder tube (mercury) 
•  XAD-2 sorbent tube between PUF 
disks

•  NIOSH Method 7300 ICP-AES (Cd LOD, 
0.3 ng/mL; Cr LOD, 0.8 ng/mL; Pb LOD, 
2.5 ng/mL) 
•  Airborne mercury: NIOSH Method 6009 
(LOD, 0.03 µg/sample) 
•  ICP-MS (LOD, 0.027 µg/g for Sb to 51.62 µg/g 
for K)

Bolstad-Johnson et al. (2000); Fabian et al. (2010); 
Wu et al. (2021)

Nitrogen oxides •  Molecular sieve coated with 
triethanolamine sorbent tubes 
•  Diffusion tubes 
•  Direct gas (multigas) detector

•  Saltzmann method 
•  Infrared spectroscopy: FTIR analyser 
•  NIOSH Method 6014 (1 µg NO2/sample)

Gold et al. (1978); Treitman et al. (1980); NIOSH 
(1994a); Dills & Beaudreau (2008); Fabian et al. 
(2010); Caban-Martinez et al. (2018)

Table 1.5   (continued)
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Fire effluent(s) Sampling method(s) Analytical method(s)  
(LOD and LOQa)

Selected reference(s)

Particulate matter •  Glass fibres, PTFE or PVC filters 
•  Aluminium cyclone 
•  Cyclone with PVC or Teflon filters 
•  Filter-cassette with a nylon cyclone 
•  Cyclone with PTFE filters 
•  Cascade Impactor with PVC filters 
•  Cascade Impactor with aluminium 
foil substrates and glass fibre filter 
•  HEPA and/or quartz fibre filters 
•  Electrical low-pressure impactor

•  NIOSH Method 0500 (LOD, 
0.03 mg/sample), 
•  NIOSH Method 0600 (LOD, 0.03 mg/sample) 
•  Gravimetric measurements (LOD, 
10–100 µg) 
•  Condensation particle counter 
•  Environmental β attenuation monitor 
•  Personal aerosol monitor 
•  Particle size spectrometer 
•  Particle counter 
•  Aerosol sensor 
•  Diffusion charger 
•  Photoelectric aerosol sensor

Gold et al. (1978); Treitman et al. (1980); NIOSH 
(1992a, 1994a, 2010, 2013a); Materna et al. (1992); 
Reinhardt et al. (2000); Booze et al. (2004); 
Reinhardt & Ottmar (2004); Slaughter et al. (2004); 
Naeher et al. (2006); Reisen et al. (2006, 2011); 
Reisen & Brown (2009); Baxter et al. (2010); Fabian 
et al. (2010); Fent et al. (2018, 2019b); Adetona et al. 
(2013a); Evans & Fent (2015); Navarro et al. (2019b); 
Sjöström et al. (2019b); Nelson et al. (2021); Wu 
et al. (2021)

Polycyclic aromatic 
hydrocarbons 
(PAHs)

•  Evacuated canister 
•  Teflon or quartz filter 
•  PUF cartridge 
•  PTFE filter and sorbent tube 
(XAD-2 resin/ORBO43 sorbent tube) 
•  Teflon filter with XAD-2 sorbent 
tube 
•  Aluminium cyclone and XAD-2 
sorbent tube 
•  XAD-2 sorbent tubes with glass 
fibre filter 
•  XAD-2 sorbent tube with quartz 
fibre filters and XAD-4 sorbent tube 
•  XAD-7 sorbent tube

•  NIOSH Method 5023 various organic-
soluble compounds (LOD, 0.05 mg/sample), 
NIOSH Method 5506 LOD depends on 
the substance (e.g. naphthalene LOD, 
0.20–0.80 µg/sample), NIOSH Method 5515 
(LOD, 0.3–0.5 µg/sample), NIOSH Method 
5528 (LOD 0.08–0.2 µg/sample, 
•  EPA 1625 (LOD depends on the substance) 
•  GC-MS (LOD, 1.71–7.14 ng/m3; LOQ, 
1.0−5.3 ng/m3) 
•  HRGC-MS 
•  GC-TQMS

Materna et al. (1992); NIOSH (1992b, 1994a, 2013a); 
Bolstad-Johnson et al. (2000); Dills & Beaudreau 
(2008); Fabian et al. (2010); Keir et al. (2017); 
Navarro et al. (2017); Fent et al. (2018, 2019b); 
Navarro et al. (2019b); Sjöström et al. (2019b); Banks 
et al. (2021a)

Polychlorinated, 
polybrominated 
dibenzo-para-
dioxins and furans 
(PCDD/Fs and 
PBDD/Fs)

•  Fire debris 
•  Glass fibre filter with XAD-2 
sorbent tubes

•  APGC-MS/MS: Ontario Ministry of 
Environment E3418 (LOD, 0.15–1.4 pg/g for 
tetra- through octa- halogenated dioxins and 
furans) 
•  EPA 23A

Organtini et al. (2015)

Table 1.5   (continued)
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Fire effluent(s) Sampling method(s) Analytical method(s)  
(LOD and LOQa)

Selected reference(s)

Semi-volatile and 
volatile organic 
compounds (sVOCs 
and VOCs)

•  Tedlar bag 
•  Evacuated canister 
•  Cylindrical PUF 
•  Pressurized vacuum canisters 
•  Evacuated glass bottles 
•  Charcoal sorbent tubes 
•  Carbotrap 317 tubes 
•  Catecholamine-treated charcoal 
tube 
•  Thermal desorption tubes 
(qualitative, Carbopack Y/Carbopack 
B/Carboxen), charcoal tubes 
•  Adsorbent Carbopack X 60/80 
tubes 
•  Sorbent tubes (Carbograph 1TD/
Carboxen 1000) 
•  Direct gas (multigas) detector

•  Thermal desorption GC-MS 
•  GC-MS, GC-FID 
•  NIOSH Method 1003 (LOD depends on the 
substance), NIOSH 1500 (LOD depends on 
the substance), NIOSH Method 1501 (LOD 
depends on the substance), NIOSH Method 
2549 volatile organic compounds (LOD, 
100 ng/tube) 
•  EPA TO-15 (LOD depends on the substance) 
•  GC-MS (benzene LOD, 0.1 µg; styrene LOD, 
1.2 µg; VOCs and sVOCs LOD, 1−5 ppm)

Treitman et al. (1980); Lowry et al. (1985); NIOSH 
(1992b, 1994a, 2010, 2013a); Materna et al. (1992); 
Bolstad-Johnson et al. (2000); Reinhardt et al. 
(2000); Booze et al. (2004); Reinhardt & Ottmar 
(2004); Reisen et al. (2006, 2011); Dills & Beaudreau 
(2008); Reisen & Brown (2009); Fabian et al. (2010); 
Fent & Evans (2011); Caban-Martinez et al. (2018); 
Fent et al. (2018, 2019b); Sjöström et al. (2019b); 
Alharbi et al. (2021)

Silica •  Cyclone with PVC filters •  NIOSH Method 7500 (LOD, 0.005 mg SiO2/
sample)

Materna et al. (1992); NIOSH (1992a, b)

Sulfur dioxide •  Diffusion tubes, 
•  Filter with mixed-cellulose ester 
with sodium carbonate 
•  Direct gas (multigas) detector

•  NIOSH Method 6004 (LOD, 3 µg SO2/
sample) 
•  Infrared spectroscopy: FTIR

NIOSH (1992a, b, 1994a); Dills & Beaudreau (2008); 
Fabian et al. (2010); Caban-Martinez et al. (2018); 
Alharbi et al. (2021)

AES, atomic emission spectrometry; APGC-MS/MS, atmospheric pressure gas chromatography-tandem mass spectrometry; Cd, cadmium; Cr, chromium; DNPH, 2,4-dinitrophenyl-
hydrazine; EPA, US Environmental Protection Agency; FID, flame ionization detector; FTIR, Fourier transform infrared spectroscopy; GC-FID, gas chromatography-flame ionization 
detector; GC-MS, gas chromatography-mass spectrometry; GC-TQMS, gas chromatography-triple quadrupole mass spectrometry; HEPA, high-efficiency particulate air filter; 
HRGC-MS, high-resolution gas chromatography-mass spectrometry; ICP-AES, inductively coupled plasma-atomic emission spectroscopy; ICP-MS, inductively coupled plasma-mass 
spectrometry; ISO, International Organization for Standardization; K, potassium; LOD, limit of detection; LOQ, limit of quantification; MS, mass spectrometry; MS/MS, tandem mass 
spectrometry; NCO, isocyanate; NDIR, non-dispersive infra-red spectroscopy; NIOSH, National Institute for Occupational Safety and Health; NO2, nitrogen dioxide;  
NPBFR, non-PBDE brominated flame retardant; OSHA, Occupational Safety and Health Administration; Pb, lead; PBDE, polybrominated diphenyl ether; ppb, parts per billion;  
ppm, parts per million; PTFE, polytetrafluoroethylene; PUF, polyurethane foam; PVC, polyvinyl chloride; Sb, antimony; SiO2, silicon dioxide; SO2, sulfur dioxide; sVOC, semi-volatile 
organic compound; UPLC-APPI, ultra-performance liquid chromatography-atmospheric pressure photoionization; UV-VIS, ultraviolet visible spectroscopy; VOC, volatile organic 
compound.
a Only included when available.

Table 1.5   (continued)
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measured, sampling methods, analytical tech-
niques, and LOD/LOQ, when available.

In the 1980s, sampling and analytical meth-
odologies were refined for several different 
gases, such as CO, HCN, and aldehydes, using 
colorimetric or charcoal sorbent tubes followed 
by infrared spectroscopy, and gas chromatog-
raphy (gas chromatography-mass spectrometry, 
GC-MS, and/or gas chromatography-flame ioni-
zation detection, GC-FID) (Gold et al., 1978; 
Treitman et al., 1980; Lowry et al., 1985; Reisen 
et al., 2006; Navarro et al., 2017, 2019b). Methods 
for the collection and analysis of particulate 
matter have been developed continuously, with 
the implementation of different sampling media 
(e.g. different types of filter), particle collection 
devices (e.g. cyclones or cascade impactors) 
for investigating particle size distribution, and 
more reliable and robust analytical methodol-
ogies (NIOSH, 1992a, 1994a, 2013a, 2019; Fent 
& Evans, 2011; Evans & Fent, 2015; Fent et al., 
2019b). Research in the 1990s was dominated by 
the characterization of firefighters’ exposures in 
forest or wildland fire settings and subsequently 
by increasing interest in the characterization and 
effects of diesel exhaust emissions (at fire stations) 
and the effectiveness of SCBA (Jankovic et al., 
1991; NIOSH, 1994a, 1998b; Than et al., 1995). 
A wealth of research has also been published 
on simulated residential fires (NIOSH, 1992a, 
b, 1994a; Materna et al., 1992). Sampling and 
analytical methodologies included the use of 
sampling bags, charcoal tubes for the monitoring 
of VOCs and PAHs (analysis by chromatography, 
e.g. GC-MS or GC-FID), silica gel tubes for 
acid gases (high-pressure ion chromatography, 
HPIC), soda lime tubes for HCN (spectros-
copy), or polymer tubes for aldehydes (GC-FID), 
or high-performance liquid chromatography 
(HPLC) coupled with UV or diode-array detec-
tion (HPLC-UV-DAD). Analysis of particu-
late matter was also enhanced using cyclones 
or cascade impactors for investigating particle 
size distribution. During this time, long-term 

diffusion tubes (colorimetric tubes) were used 
together with continuous direct reading sensors 
or multigas analysers (for CO, CO2, and methane, 
CH4) (NIOSH, 1992a, b, 1994a; Materna et al., 
1992; Naeher et al., 2006).

The implementation of more sophisticated 
analytical methods, principally spectroscopic 
and chromatographic methodologies (e.g. gas- 
phase Fourier transform infrared spectroscopy, 
FTIR; gas chromatography-nitrogen–phospho- 
rus detection, GC-NPD; high-resolution gas 
chromatography-high-resolution mass spec-
trometry, HRGC-HRMS, atmospheric pressure 
gas chromatography-tandem mass spectrometry, 
APGC-MS/MS; and high-performance liquid 
chromatography with ultraviolet or fluorescence 
detection, HPLC-UV, HPLC-FL) allowed the 
quantification of standard pollutants with higher 
sensitivity (lower LODs/LOQs) and accuracy, 
thus extending analytical capacity to detect and 
quantify the presence of pollutants that could 
not previously be determined (e.g. PCBs, PBDEs, 
OPFRs, PCDD/Fs, etc.) (Organtini et al., 2015; 
Fent et al., 2020a). More recently, on-site, and 
real-time determination of the concentrations 
of airborne gaseous and particulate pollutants 
present in fire smoke has been achieved using 
portable, low-cost screening devices and sensors 
(e.g. multigas sensors and particle counting 
devices) with increasing selectivity and accuracy 
(Caban-Martinez et al., 2018; Alharbi et al., 2021; 
Nelson et al., 2021).

The use of sensor-based devices has been 
reported for a wide variety of air pollutants 
that can be detected at concentrations ranging 
from parts per million (ppm) to parts per billion 
(ppb). They include optical particle counters for 
measuring the size distribution of particles and 
electrochemical sensors used for quantitative 
determination of gases and vapours (CO, HCl, 
HCN, NO2, SO2, etc.) (Baxter et al., 2010; Reisen 
et al., 2011; Caban-Martinez et al., 2018; Alharbi 
et al., 2021; Nelson et al., 2021).
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[The use of these sensor devices has been an 
important breakthrough in the monitoring of 
firefighters’ occupational exposure to health-rel-
evant pollutants during firefighting. Moreover, 
on-site and real-time portable sensors can be used 
in firefighters’ health surveillance programmes. 
However, these devices have several limitations 
that need to be considered, including cross 
sensitivity and interference from environmental 
factors (e.g. temperature, humidity, wind, and 
rain).]

1.3.3 Dermal sampling and analytical 
methods 

Skin exposure to fire effluents can occur via 
contaminated PPE (Stull et al., 1996; Kirk & 
Logan, 2015b; Fent et al., 2017). This may happen 
during donning, doffing, or other handling of 
contaminated PPE, or if contaminants are trans-
ferred from PPE or other equipment to surfaces 
(e.g. fire apparatus) that subsequently come into 
contact with the firefighter’s skin. In addition, 
dermal exposure is possible via permeation or 
penetration of contaminants through or around 
the protective barriers of the turnout gear (see 
Section 1.6 for more information). In the available 
literature, dermal exposure samples were mostly 
collected using wipes or simulant patches from 
the face, hand, neck, forehead, wrist, or scrotum 
of firefighters and analysed mostly for PAHs using 
GC-MS standard analytical methods (NIOSH, 
2013a; Baxter et al., 2014; Keir et al., 2017; Stec 
et al., 2018). Recently, tape stripping has been 
used and validated for collecting organic chem-
icals (PAHs) from firefighters’ skin (Strandberg 
et al., 2018; Sjöström et al., 2019a, b). Sampling 
of the air under turnout gear has also been 
conducted as a way of measuring dermal expo-
sure potential, as well as the attenuation provided 
by protective clothing, for PAHs or VOCs (Kirk 
& Logan, 2015b; Wingfors et al., 2018; Mayer 
et al., 2022). Table 1.6 provides further detail on 
the current body of research characterizing the 

measurement of contaminants on firefighters’ 
skin.

 1.3.4 Sampling and analytical methods 
for contaminants in fire stations

The analytical methods for the measurement 
of fire effluents described in Section  1.3.2 are 
applicable to the measurement of exposures in 
fire stations. No direct measurement of diesel 
engine exhaust as such (i.e. from fire vehicles or 
apparatus) was available, therefore measurement 
relies on the measurement of individual exhaust 
components (e.g. elemental carbon, CO, nitrogen 
oxides, sulfur dioxide, aldehydes, PAHs, and 
soot). Chemical species (e.g. sVOCs and VOCs, 
PAHs, flame retardants, and perfluorinated 
chemicals) detected and the corresponding 
sampling and analytical methods are reported in 
Table 1.7 (Froines et al., 1987; Than et al., 1995; 
NIOSH, 1994b, 1998b, 2001; Oliveira et al., 2017a; 
Sparer et al., 2017; Shen et al., 2018; Stec et al., 
2018; Banks et al., 2020; Hall et al., 2020).

Early methods to measure the particulate 
fraction of diesel engine exhaust relied on gravi-
metric approaches; however, these methods were 
not specific to diesel particulate (Birch, 2002). 
Later methods focused on the carbonaceous frac-
tion (i.e. elemental and organic carbon). Whereas 
many potential sources of organic carbon exist 
(e.g. tobacco smoke and cooking), there are few 
sources of elemental carbon, making this the 
better surrogate for exposure to diesel engine 
exhaust (Birch, 2002; NIOSH, 2016a). For more 
detailed information on firefighters’ exposure to 
diesel exhaust, see Section 1.5.1(d).

1.3.5 Other sampling and analytical methods

(a) Protective clothing

Different types of firefighter PPE and its 
use are described in Section  1.6. Few studies 
(summarized in Table  1.8) have characterized 
the extent of contamination of firefighter PPE. 
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Table 1.6 Most common dermal sampling and analytical methods

Fire effluents Fire location or activity Sampling method Analytical method Reference

Polycyclic 
aromatic 
hydrocarbons 
(PAHs)

•  Controlled building fire 
•  Simulated/controlled 
residential room (structure) 
fires 
•  Fire suppression activities 
•  Smoke diving and fire 
extinguishing training events 
•  Fire training events 
•  Firefighters’ work 
environment

•  Sunflower oil wiped with cellulose 
ester towels 
•  Skin simulant patches 
•  Wipes (isopropyl alcohol, polyester) 
•  Wipe samples saturated with corn oil 
•  Glass fibre filter wetted with acetone 
•  Semipermeable low-density 
polyethylene membranes and three tape-
stripping 
•  Tape stripping (three consecutive 
tapes)

•  GC-MS: EPA TO-13A 
•  GC-FID: NIOSH 5515 
•  HPLC (fluorescence/UV 
detection): NIOSH 5506 
•  HRGC-MS 
•  GC-MS/MS 
•  GC-TQMS 
•  GPC: EPA 3640A

Laitinen et al. (2010); Kirk et al. 
(2011); NIOSH (2013a); Fent et al. 
(2014, 2017); Baxter et al. (2014); 
Keir et al. (2017); Stec et al. (2018); 
Strandberg et al. (2018); Wingfors 
et al. (2018); Sjöström et al. (2019a, 
b); Beitel et al. (2020); Keir et al. 
(2020); Banks et al. (2021a)

Methoxyphenols •  Burn houses (training) •  Wipes (isopropanol) •  GC-MS MDL Fernando et al. (2016)
EPA, US Environmental Protection Agency; GC-FID, gas chromatography-flame ionization detector; GC-MS, gas chromatography-mass spectrometry; GC-MS/MS, gas 
chromatography-tandem mass spectrometry; GC-TQMS, gas chromatography-triple quadrupole mass spectrometry; GPC, gel permeation chromatography; HPLC, high-performance 
liquid chromatography; HRGC-MS, high-resolution gas chromatography-mass spectrometry; MDL, method detection limit; NIOSH, National Institute for Occupational Safety and 
Health; UV, ultraviolet.
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Table 1.7 Sampling and analytical methods for fire effluents identified at fire stations

Fire effluents Sampler or sampling method Analytical method Reference

Flame retardants •  Vacuum cleaner 
•  PUF with glass fibre filter

•  GC-MS: EPA TO-13A 
•  GC-HRMS 
•  HRGC-MS 
•  GC-MS/MS 
•  GC-HRMS-EI 
•  HPLC-MS/MS 
•  GC-TQMS

Brown et al. (2014); Park et al. (2015); Shen 
et al. (2015, 2018); Bott et al. (2017); Gill 
et al. (2020b); Young et al. (2021)

Nitrogen oxides •  Triethanolamine treated molecular sieve 
sorbent tube

•  Visible absorption 
spectrophotometry: NIOSH 6014

NIOSH (1994b, 1998b, 2001)

Particulate matter •  Teflon glass fibre filters 
•  Quartz fibre filters 
•  Single stage impactor with PTFE disks

•  Gravimetry 
•  Thermal optical analysis (FID): 
NIOSH 5040 
•  Model 227B laser particle counter 
•  PM2.5, personal modular impactor 
•  SidePak aerosol monitor AM510

Froines et al. (1987); NIOSH (1994b, 2001); 
Baxter et al. (2014); Bott et al. (2017); 
Oliveira et al. (2017a, b); Sparer et al. 
(2017)

Per-fluorinated compounds •  Vacuum cleaner •  HPLC-ESI-MS/MS 
•  GC-MS-EI

Hall et al. (2020)

Polycyclic aromatic 
hydrocarbons (PAHs)

•  Teflon filter followed by XAD-2 sorbent 
tube, 
•  Vacuum cleaner 
•  Glass tubes with Tenax between two PUF 
•  PTFE disks 
•  XAD-2 sorbent tubes 
•  Wipe sampling with isopropyl alcohol 
•  PUF with glass-fibre filter

•  GC-MS 
•  GC-FID: NIOSH 5515 
•  GC-MS-EI 
•  LC-PAD-FLD 
•  Ecochem PAS 2000CE

Baxter et al. (2014); Shen et al. (2015); 
Oliveira et al. (2017a, b); Sparer et al. 
(2017); Stec et al. (2018); Banks et al. (2020)

Semi-volatile and volatile 
organic compounds (sVOCs 
and VOCs)

•  Thermal desorption tubes (Carbopack Y, 
Carbopack B, and Carboxen 1003) 
•  Charcoal tubes

•  GC-FID: NIOSH 1501 
•  Thermal desorption GC-MS:  
NIOSH 2549

NIOSH (1998b, 2001)

Sulfur dioxide •  Grab samples •  Sensidyne colorimetric detector tubes NIOSH (2001)
Elemental/organic carbon •  Quartz fibre filters •  Thermal-optical analysis; flame 

ionization detector (FID): NIOSH 5040
NIOSH (2016a)

Respirable combustible dust •  Cyclone with silver membrane filter 
(with/without impactor)

•  Gravimetry Grenier et al. (2001)

EPA, US Environmental Protection Agency; GC-FID, gas chromatography-flame ionization detector; GC-HRMS, gas chromatography-high-resolution mass spectrometry;  
GC-HRMS-EI, gas chromatography-high-resolution mass spectrometry-electron ionization; GC-MS, gas chromatography-mass spectrometry; GC-MS-EI, gas chromatography-mass 
spectrometry-electron ionization; GC-MS/MS, gas chromatography-tandem mass spectrometry; GC-TQMS, gas chromatography-triple quadrupole mass spectrometry;  
HPLC-ESI-MS/MS, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry; HPLC-MS/MS, high-performance liquid chromatography-tandem 
mass spectrometry; HRGC-MS, high-resolution gas chromatography-mass spectrometry; LC-PAD-FLD, liquid chromatography-photodiode array-fluorescence detector;  
NIOSH, National Institute for Occupational Safety and Health; PM2.5, fine particulate matter of 2.5 μm or less in diameter; PTFE, polytetrafluoroethylene; PUF, polyurethane foam.
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Table 1.8 Sampling and analytical methods for contaminants in firefighters’ PPE

Fire effluents 
analysed

Surfaces analysed Sampling method Analytical method Reference

Acid gases •  SCBA mask 
•  Respirator 
cartridges 
•  Clothing

•  Silica gel tube 
•  Glass sorbent tubes packed 
with silica gel

•  HPIC: NIOSH Method 7903 Jankovic et al. (1991); Kirk et al. (2011); Kirk & 
Logan (2015b)

Aldehydes •  SCBA mask 
•  Clothing 
•  Respirator 
cartridges

•  Treated porous polymer 
tube 
•  Formaldehyde filter 
•  Glass sorbent tubes 
•  DNPH sorbent tube with 
silica gel

•  HPLC (UV): EPA TO-11 and 
TO-11A

Jankovic et al. (1991); De Vos et al. (2006); 
Anthony et al. (2007); Kirk et al. (2011); NIOSH 
(2013b); Kirk & Logan (2015b)

Carbon monoxide •  SCBA mask •  Direct gas monitor •  FTIR spectrometer Jankovic et al. (1991); Austin et al. (1997)
Fibres  •  Cellulose ester filter •  Phase-contrast microscopy Jankovic et al. (1991)
Flame retardants •  Clothing •  Swab samples 

•  Cotton wipes (hexane and 
cotton gauze pads) 
•  XAD-2 sorbent tubes 
•  Wipe sampling 
(isopropanol)

•  GC-HRMS 
•  GC-MS: EPA 8270D 
•  UPLC-APPI 
•  GC-TQMS 
•  HPLC-MS/MS

Stull et al. (1996); Kelly et al. (2002); Park et al. 
(2015); Alexander & Baxter (2016); Easter et al. 
(2016); Mayer et al. (2019); Fent et al. (2020a); 
Banks et al. (2021b, c); Young et al. (2021)

Hydrogen cyanide •  SCBA mask 
•  Clothing

•  Soda lime tube 
•  Glass sorbent tubes with 
soda lime

•  Spectrophotometry (visible 
absorption): NIOSH 6010

Jankovic et al. (1991); Kirk et al. (2011); Kirk & 
Logan (2015b)

Metals •  Clothing •  PUF and quartz filters •  AAS: EPA 245.1 
•  ICP-AES: OSHA ID-125G, 
NIOSH Method 730,  
NIOSH 7303 
•  ICP-MS: US EPA 305B

Stull et al. (1996); Fabian et al. (2014); Keir et al. 
(2020)

Nitrogen oxides •  SCBA mask •  Silica gel tube •  HPIC Jankovic et al. (1991)
Particulate matter •  Half face-piece 

masks 
•  Respirator 
cartridges 
•  Half-mask 
respirators

•  Cascade impactor 
•  Cyclones 
•  Filter in a cassette and a 
carbonyl compound sorption 
tube 
•  PVC filters and cellulose 
backup 
•  P100 pancake-shaped filters 
•  Battery-operated scanning 
mobility spectrometer 
•  Real-time monitoring 

•  Gravimetric NIOSH Method 
0500/0600

Jankovic et al. (1991); De Vos et al. (2006); 
Anthony et al. (2007); Dietrich et al. (2015)
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Fire effluents 
analysed

Surfaces analysed Sampling method Analytical method Reference

Per-fluorinated 
chemicals

•  Turnout gear and 
fabric swatches

 •  HPLC-MS/MS Peaslee et al. (2020)

Phthalates •  Clothing  •  GC-MS: EPA 8270 
•  Headspace GC-MS

Alexander & Baxter (2016); Easter et al. (2016); 
Shinde & Ormond (2020)

Polychlorinated 
and 
polybrominated 
dibenzo-para-
dioxins and furans 
(PCDD/Fs and 
PBCD/Fs)

•  Clothing •  Swab samples 
•  Glass fibre paper saturated 
with acetone 
•  Cellulose wipes 
•  Cotton twill wipes (hexane) 
and cotton gauze pads

•  HRGC-HRMS: EPA 1613B 
and 8290A, Ontario Ministry of 
Environment Method E3418 
•  GC × GC-TOFMS

Kelly et al. (2002); Hsu et al. (2011); Organtini 
et al. (2014); Fent et al. (2020a)

Polycyclic 
aromatic 
hydrocarbons 
(PAHs)

•  SCBA mask 
•  Respirator 
cartridges 
•  Clothing 
•  Turnout gear 
fabrics

•  Cloth samples 
•  Wipe samples (heptane) 
•  Wipe samples (isopropyl 
alcohol) 
•  PTFE filter 
•  PUF glass tubes with glass 
fibre filter 
•  XAD-7 sorbent tubes 
•  Glass sorbent tubes with 
PUF and glass fibre filter 
•  XAD-2 sorbent tubes 
•  XAD-2 sorbent tube 
between PUF disks 
•  PUF and quartz filters

•  GC-MS: EPA TO-13A, NIOSH 
Method 5528 
•  GC-FID 
•  HPLC (fluorescence/UV): 
NIOSH Method 5506 
•  Headspace GC-MS 
•  GC-TQMS

Jankovic et al. (1991); Anthony et al. (2007); Kirk 
et al. (2011); Fabian et al. (2014); Kirk & Logan 
(2015b); Easter et al. (2016); Abrard et al. (2019); 
Fent et al. (2017); Wingfors et al. (2018); Stec et al. 
(2018); Mayer et al. (2019); Shinde & Ormond 
(2020); Banks et al. (2021b, c); Corbally et al. 
(2021); Alexander & Baxter (2016); Mayer et al. 
(2020); Keir et al. (2020)

Semi-volatile and 
volatile organic 
compounds 
(sVOCs and 
VOCs)

•  SCBA mask 
•  Clothing 
•  Turnout gear 
fabrics

•  Evacuated canisters 
•  Charcoal tubes 
•  Tenax/Carboxen 569 tubes 
•  Wipe samples (isopropanol, 
benzalkonium chloride)

•  GC-MS: EPA TO1/TO2,  
TO-15, 8270 
•  Thermal desorption GC-MS: 
EPA TO-17 
•  Headspace GC-MS 
•  GC-FID

Jankovic et al. (1991); Stull et al. (1996); Anthony 
et al. (2007); Kirk et al. (2011); NIOSH (2013b); 
Fent et al. (2015, 2017); Kirk & Logan (2015b); 
Shinde & Ormond (2020); Corbally et al. (2021); 
Mayer et al. (2020)

AAS, atomic absorption spectroscopy; DNPH, 2,4-dinitrophenylhydrazine; EPA, US Environmental Protection Agency; FTIR, Fourier transform infrared spectroscopy; GC-FID, gas 
chromatography-flame ionization detector; GC-HRMS, gas chromatography-high-resolution mass spectrometry; GC-MS, gas chromatography-mass spectrometry; GC-TOFMS, gas 
chromatography-time-of-flight mass spectrometry; GC-TQMS, gas chromatography-triple quadrupole mass spectrometer; HPIC, high-pressure ion chromatography; HPLC, high-
performance liquid chromatography; HPLC-MS/MS, high-performance liquid chromatography-tandem mass spectrometry; HRGC-HRMS, high-resolution gas chromatography-high-
resolution mass spectrometry; ICP-AES, inductively coupled plasma-atomic emission spectroscopy; ICP-MS inductively coupled plasma-mass spectrometry; NIOSH, National Institute 
for Occupational Safety and Health; OSHA, Occupational Safety and Health Administration; PPE, personal protective equipment; PTFE, polytetrafluoroethylene; PUF, polyurethane 
foam; PVC, polyvinyl chloride; SCBA, self-contained breathing apparatus; UPLC-APPI, ultra-performance liquid chromatography-atmospheric pressure photoionization;  
UV, ultraviolet.

Table 1.8   (continued)
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Sample collection in these studies, for both new 
and used (“soiled” or contaminated) PPE, mostly 
involved exposures to simulated structure fires. 
The locations from which samples were collected 
included: (i) the outer layer of turnout gear (Hsu 
et al., 2011; Kirk et al., 2011; Stec et al., 2018); 
(ii) the inner liner of turnout gear (Alexander & 
Baxter, 2016; Easter et al., 2016; Kesler et al., 2021); 
(iii) clothing or surfaces under turnout gear (Keir 
et al., 2020; Mayer et al., 2020); and (iv) air space 
around turnout gear to measure off-gassing of 
contaminants (Kirk & Logan, 2015b; Fent et al., 
2017; Banks et al., 2021b).

A variety of contaminants were measured 
in these samples (e.g. PAHs, VOCs, HCN, alde-
hydes, acid gases, OPFRs, PCDD/Fs, PBDD/Fs, 
metals), and these are summarized in Table 1.8, 

together with the specific sampling media and 
analytical techniques used.

[Although PPE usage histories are usually not 
reported, some findings suggested that contami-
nation of firefighter protective clothing increases 
with longer periods of use (Stec et al., 2018). 
Variations in reported results may arise not 
only from the sampling and analytical methods 
used, but also from different firefighting activi-
ties, exposure to various chemicals, and PPE age 
and decontamination or storage practices (Stec 
et al., 2018; Fent et al., 2020a; Banks et al., 2021b) 
(Fig. 1.8).]

Fig. 1.8 Wipe sampling of contaminants from a firefighter’s helmet

From Professor Anna A. Stec, Centre for Fire and Hazards Sciences, University of Central Lancashire, UK.
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(b) Wristbands

Recently, silicone wristbands (or dog tags) 
have been proposed and validated for collecting 
fire effluents while the firefighter is at work 
(Strandberg et al., 2018; Sjöström et al., 2019a, b; 
Baum et al., 2020; Caban Martinez et al., 2020; 
Levasseur et al., 2022). Silicone wristbands are 
a type of passive sampler that collect unbound 
VOCs and sVOCs in air, sediment, or water by 
diffusion into lipophilic polymers (Dixon et al., 
2019). These studies are summarized in Table 1.9.

[Little information is available on the limita-
tions of these sampling techniques, for example, 
information on collection efficiency or diffusion 
rates for various types of chemical and how the 
samples relate to standardized exposure moni-
toring methods.]

1.3.6 Biomonitoring methods

(a) Fire smoke components 

Numerous studies have employed biomoni-
toring to assess firefighters’ exposures to chem-
icals of concern. Biomonitoring, which has 
become a critical tool in occupational exposure 
assessment, involves measurement of the pres-
ence and levels of chemicals (or their metabolites) 

in human tissues (including hair and nails), 
bodily fluids (e.g. blood, sputum, saliva, breast 
milk), excreta (e.g. urine, faeces), or exhaled 
breath (Angerer et al., 2006, 2007; Manno et al., 
2010; Scheepers et al., 2011; Arnold et al., 2013; 
Decker et al., 2013; Bader et al., 2021). Samples 
can be collected before and/or after suppression 
of various types of fires including, for example, 
intentionally set training fires, municipal 
structure fires, industrial fires, and wildfires. 
Subsequent sample analyses can examine the 
effect of fire suppression on the levels of selected 
chemicals, and/or their metabolites, in the afore-
mentioned biological matrices (e.g. Kales et al., 
1994; Dunn et al., 2009; Miranda et al., 2012; 
Fent et al., 2014; Waldman et al., 2016; Jackson 
& Logue, 2017; Keir et al., 2017, 2020; Andersen 
et al., 2018b; Santos et al., 2019; Grashow et al., 
2020; Allonneau et al., 2021; Mayer et al., 2021). 

Biomonitoring data reflect exposures from all 
sources (e.g. firefighting, indoor and outdoor air, 
drinking-water, and consumer products), and 
exposures via all routes of entry into the body (e.g. 
inhalation, oral ingestion, and dermal absorp-
tion) (Angerer et al., 2006, 2007; Laitinen et al., 
2012; Arnold et al., 2013). Assessing the levels of 
chemicals or chemical metabolites in biomon-
itoring samples does not necessarily permit 

Table 1.9 Other sampling and analytical methods

Fire effluents Exposure scenario Sampling method Analytical method Reference

Perfluorinated chemicals Off-duty and on-duty 
firefighters

Wrist: silicone-
based wristbands

LC-MS/MS Levasseur et al. 
(2022)

Polychlorinated biphenyls (PCBs); 
phthalates, brominated flame 
retardants, organophosphate esters, 
polycyclic aromatic hydrocarbons 
(PAHs); semi-volatile organic 
compounds (sVOCs)

Off-duty and on-duty 
firefighters

Wrist: silicone-
based wristbands

GC hybrid 
quadrupole-Orbitrap 
GC-MS/MS system

 

Polycyclic aromatic hydrocarbons 
(PAHs)

Firefighters work 
environment 
During 24-hour shift 
Fire training events

Wrist: silicone-
based wristbands

GC-MS Baum et al. 
(2020); Caban-
Martinez et al. 
(2020); Bakali 
et al. (2021)

GC-MS, gas chromatography-mass spectrometry; LC-MS/MS, liquid chromatography-tandem mass spectrometry.
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identification of the source(s) and/or route(s) of 
exposure. Moreover, the presence of a substance 
in a biological matrix does not necessarily mean 
it is causing harm, nor does the absence of a 
substance indicate that an individual was not 
exposed (Angerer et al., 2006, 2007; Arnold et al., 
2013; Government of Canada, 2022).

As noted in Section  1.3.1, as well as 
Sections  1.4.1 through 1.4.4, firefighters are 
exposed to complex mixtures that can include 
an array of chemicals, including gases (e.g. CO 
and NO2), VOCs, particulate matter, sVOCs, and 
fibres. Exposures to these chemicals can occur 
during the various phases of fire suppression 
(e.g. attack, knockdown, overhaul) and in the 
firefighters’ workplace, such as the fire station 
(see Sections  1.1, 1.2, and 1.3.4(b)). Although 
firefighter PPE restricts contact with combus-
tion-derived chemicals, exposures can occur via 
gear penetration, contact with exposed areas of 
the face, neck, and wrist, and/or contact with 
contaminated gear (NIOSH, 2013a; Fent et al., 
2014, 2015, 2017; Andersen et al., 2018b; Wallace 
et al., 2019a; Beitel et al., 2020; Keir et al., 2020; 
Peaslee et al., 2020) (see Section 1.6).

Biomonitoring to assess firefighter exposures 
to gases, VOCs, and sVOCs generally involves 
measurement of analytes in the blood (e.g. serum), 
urine, or exhaled breath (e.g. Fernando et al., 
2016; Wallace et al., 2017, 2019a; Andersen et al., 
2018b; Wingfors et al., 2018; Cherry et al., 2019; 
Grashow et al., 2020). The biomonitoring strategy 
employed (i.e. strategy for sample collection, 
handling, and analysis), and the instrumentation 
employed to detect and quantify the chemicals 
or chemical metabolites, depends on the proper-
ties of the analyte, the analytical approach (e.g. 
targeted or non-targeted), and the parameters of 
absorption, distribution, metabolism, and excre-
tion of the analyte (see Section 1.4.5). Table 1.10 
provides a brief overview of analytical techniques 
that have been employed for biomonitoring of 
firefighters’ exposures to selected chemicals.

Assessment of exposures to combustion-de-
rived gases (e.g. CO, NO2) generally involves 
direct analysis of exhaled breath or blood (e.g. 
Stewart et al., 1976; Kales et al., 1994; Dunn et al., 
2009; Miranda et al., 2012; Table 1.10). 

Assessment of exposures to VOCs (e.g. 
benzene) generally involves extraction of 
analytes from exhaled breath or urine using a 
solid adsorbent; thermally desorbed analytes 
are generally detected and quantified using gas 
chromatography or high-performance liquid 
chromatography coupled with tandem mass 
spectrometry (GC-MS/MS or HPLC-MS/MS) 
(e.g. Bader et al., 2014; Wallace et al., 2017, 2019a, 
b; Rosting & Olsen, 2020; Kim et al., 2021; 
Table  1.10). Biomonitoring of sVOCs generally 
involves examination of analytes in the serum 
or urine (Table  1.10); urine (e.g. spot sample, 
morning sample, 24-hour void) is sometimes 
preferred since collection is not invasive. In most 
cases, extraction and concentration of samples 
(e.g. via solid-phase or solvent extraction) is 
followed by detection and quantification using 
GC-MS/MS or HPLC-MS/MS (e.g. Moen & 
Øvrebø, 1997; Naeher et al., 2013; Oliveira et al., 
2016; Keir et al., 2017; Gill et al., 2019, 2020a; 
Jayatilaka et al., 2019). It is also possible to assess 
exposures to some sVOCs using analyses of saliva 
or exhaled breath (e.g. Wallace et al., 2017, 2019a, 
b; Santos et al., 2019). Although targeted analyses 
are predominant, non-targeted approaches are 
becoming increasingly popular (Wallace et al., 
2017, 2019b).

To determine whether firefighter biomon-
itoring data indicate exposure levels that differ 
from those of other individuals or populations, 
the levels of chemicals and/or their metabolites 
can be compared with those of control groups 
(e.g. fire service office workers), published popu-
lation reference values, or the general population 
(e.g. Edelman et al., 2003; Dobraca et al., 2015; 
Keir et al., 2017; Grashow et al., 2020; Khalil et al., 
2020; CDC, 2022; HBM4EU, 2022). Additionally, 
levels of chemicals or chemical metabolites 
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Table 1.10 Biomonitoring methods used to assess firefighter exposures to selected chemicals

Chemical 
component or 
agent

Biomarker and sample 
processing

Instrumentation (LOD and/or LOQ) Comments and other relevant information Reference

Benzene Urinary trans,trans-muconic 
acid, acidification, and solvent 
extraction

HPLC with UV detection  
(LOQ, 0.02 mg/L)

Modified procedure of Angerer et al. (1997) Bader et al. 
(2014)

Benzene Urinary SPMA, acidification, and 
solvent extraction

HPLC with MS detection  
(LOD, 0.3 µg/L)

Modified procedure of Müller et al. (1997) Bader et al. 
(2014)

Benzene Unmetabolized urinary benzene GC-MS headspace analysis  
(LOD, 10 ng/L)

Modified procedure of Angerer et al. (1994) Bader et al. 
(2014)

Benzene and 
toluene

Urinary SPMA and 
S-benzylmercapturic acid, direct 
analysis

UPLC-MS, selected reaction 
monitoring (LOQ, 0.2 ng/mL)

 Rosting & 
Olsen (2020)

Carbon 
monoxide 

Blood carboxyhaemoglobin as 
carbon monoxide in exhaled 
breath after holding breath for set 
period of time

Exhaled breath monitor, 
electrochemical detection  
(LOD not reported)

Carboxyhaemoglobin level based on research 
conducted by Jarvis et al. (1986)

Stewart et al. 
(1976); Dunn 
et al. (2009)

Carbon 
monoxide 

Carboxyhaemoglobin in diluted 
whole blood

Carbon monoxide-oximetry or manual 
spectrophotometry (LOD not reported)

Based on method described by Rodkey et al. 
(1979)

Kales et al. 
(1994)

Respiratory 
toxicants, carbon 
monoxide 

TcDTPA, carboxyhaemoglobin 
and methaemoglobin in blood

Scintillation detection of 99mTc in 
the thigh, carboxyhaemoglobin and 
methaemoglobin by carbon monoxide-
oximetry (LODs not reported)

99mTc-based method measures transfer of 
inhaled TcDTPA to blood and tissues

Minty et al. 
(1985)

Cyanide Thiocyanate in blood serum Spectrophotometric analysis of 
thiocyanate (LOD not reported)

Based on thiocyanate analysis method 
described by Bowler (1944)

Levine & 
Radford (1978)

Formaldehyde Derivatized urinary thiazolidine-
4-carboxylic acid, solvent 
extraction

GC-MS with SIM (details and LOD not 
reported)

Based on method of Shin et al. (2007) 
(MDL, 1 µg/L)

Kim et al. 
(2021)

Nitrogen dioxide Exhaled breath nitric oxide (eNO) 
using portable hand-held NO 
analyser

NIOX MINO® electrochemical 
NO analyser, (details and LOD not 
reported)

Instrument designed and manufactured by 
Aerocine, Solna, Sweden

Miranda et al. 
(2012)

para-
Chloroaniline 

Urinary para-chloroaniline, 
alkaline hydrolysis and solvent 
extraction

HPLC with ECD (LOD, 2 µg/L) Modified procedure of Lewalter et al. (1994) Bader et al. 
(2014)

PAHs PAHs in saliva, solvent extraction Programmed temperature vaporizer 
GC-MS, synchronous SIM/scan mode 
(LOD ≤ 0.057 µg/L)

Measurement of 16 PAHs Santos et al. 
(2019)

PAHs Exhaled breath PAHs collected 
using dual-bed thermal desorption 
tubes

GC-MS following thermal desorption, 
SIM (LOD not reported)

Synchronous SIM/scan mode used for 
analyses of targeted analytes. PAH results not 
reported

Wallace et al. 
(2017, 2019a)
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Chemical 
component or 
agent

Biomarker and sample 
processing

Instrumentation (LOD and/or LOQ) Comments and other relevant information Reference

PAHs Urinary 1-OHP, enzymatic 
deconjugation and solvent 
extraction

LC-MS/MS, negative ion mode with 
multiple reaction monitoring  
(LOD, 10 ng/L)

Inter-laboratory comparison of two analytical 
methods

Gill et al. 
(2019)

PAHs Urinary 1-OHP, enzymatic 
deconjugation, SPE, and 
derivatization

GC-HRMS with APCI  
(LOD, 0.64 ng/L)

Inter-laboratory comparison of two analytical 
methods

Gill et al. 
(2019)

PAHs Urinary 1-OHP, acidification, 
enzymatic deconjugation, and SPE

HPLC with fluorescence detection 
(LOD not reported)

Based on method of Jongeneelen et al. (1987) Moen & 
Øvrebø (1997)

PAHs Urinary 1-OHP glucuronide, 
acidification and solvent 
extraction

MSI-CE-MS/MS, negative ion mode 
with multiple reaction monitoring 
(LOD, ≈7 ng/L)

Good agreement with 1-OHP determined 
using GC-MS

Gill et al. 
(2020a)

PAHs Urinary hydroxylated PAHs, 
enzymatic deconjugation, solvent 
extraction and derivatization

GC-MS/MS with multiple reaction 
monitoring (LOD, 0.0007–0.04 µg/L)

Analyses of 19 hydroxylated PAH metabolites; 
method of Gaudreau et al. (2016)

Keir et al. 
(2017)

PAHs Urinary hydroxylated PAHs, 
enzymatic deconjugation and 
solvent extraction

HPLC with fluorescence detection 
(LOD, 0.8 ng/L to 0.195 µg/L)

Analyses of six hydroxylated PAH metabolites Oliveira et al. 
(2016)

PAHs Urinary PAHs, enzymatic 
deconjugation and solvent 
extraction

PAH-CALUX assay, luminescence 
detection (LOD not reported)

Results expressed as B[a]P equivalents Beitel et al. 
(2020)

Phenolic 
compounds

Urinary concentrations of 
seven phenolic compounds, 
deconjugated and concentrated 
by SPE

LC-MS/MS with SIM  
(LOD, 0.2–2.3 µg/L)

FOX (Firefighters Occupational Exposures) 
study

Waldman et al. 
(2016)

Non-targeted 
sVOCs

Blood serum sVOCs, concentrated 
via SPE

LC-MS/MS, non-targeted general 
suspect screen

WFBC (Women Firefighters Biomonitoring 
Collaborative) study. General suspect screen 
to identify chemicals of interest; tentatively 
identified chemicals subjected to confirmation

Grashow et al. 
(2020)

Non-targeted 
VOCs and sVOCs

Exhaled breath VOCs and sVOCs 
collected using dual-bed thermal 
desorption tubes

GC-MS following automated thermal 
desorption, SIM (LOD not reported)

Scan chromatograms used for analyses of non-
target analytes

Wallace et al. 
(2017, 2019b)

Targeted VOCs VOCs or VOC metabolites in 
urine, headspace analysis of 
parent compounds, SPE of selected 
metabolites

GC-MS or LC-MS/MS, depending on 
compound or metabolite (details and 
LOD not reported)

Based on NIOSH Method 8321 (NIOSH, 
2016c) or NHANES 2011–2012 Laboratory 
Method (CDC, 2012)

Kim et al. 
(2021)

Table 1.10   (continued)
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Chemical 
component or 
agent

Biomarker and sample 
processing

Instrumentation (LOD and/or LOQ) Comments and other relevant information Reference

Targeted VOCs Exhaled breath VOCs collected 
using dual-bed thermal desorption 
tubes

GC-MS after automated thermal 
desorption, SIM for VOCs of interest 
(LOD not reported)

Synchronous SIM/scan mode used for 
analyses of targeted analytes, measurement of 
8 targeted VOCs

Wallace et al. 
(2017, 2019a)

Wood smoke Urinary levoglucosan, solvent 
extraction and derivatization

GC-MS/MS with multiple reaction 
monitoring (LOD, 10 ng/mL)

 Naeher et al. 
(2013)

Wood smoke 22 methoxyphenols in 
acid-hydrolysed urine, SPE 
concentration

GC-MS with SIM  
(LODs, ≈ 0.004 µg/mL)

Based on methods of Dills et al. (2001) and 
Dills et al. (2006)

Neitzel et al. 
(2009)

APCI, atmospheric-pressure chemical ionization; B[a]P, benzo[a]pyrene; CE, capillary electrophoresis; CO, carbon monoxide; ECD, electron capture detection; GC-HRMS, gas 
chromatography-high-resolution mass spectrometry; GC-MS, gas chromatography-mass spectrometry; HPLC, high-performance liquid chromatography; LC-MS/MS, liquid 
chromatography-tandem mass spectrometry; LOD, limit of detection; LOQ, limit of quantification; MDL, method detection limit; MSI-CE-MS/MS, multi-segment injection-capillary 
electrophoresis-tandem mass spectrometry; NHANES, National Health and Nutrition Examination Survey; NIOSH, National Institute for Occupational Safety and Health; NO, nitric 
oxide; 1-OHP, 1-hydroxypyrene; PAH, polycyclic aromatic hydrocarbon; SIM, selected ion monitoring; SPE, solid-phase extraction; SPMA, S-phenyl mercapturic acid; TcDTPA, 99mTc 
diethylene triamine penta-acetate; sVOC, semi-volatile organic compound; UPLC-MS, ultra-performance liquid chromatography-mass spectrometry; UV, ultraviolet; VOC, volatile 
organic compound.

Table 1.10   (continued)
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can be toxicologically evaluated via compar-
isons with reference values such as biological 
exposure indices (BEIs), binding biological 
limit values (BBLVs), or biological limit values 
(BLVs) (Morgan, 1997; Viegas et al., 2020) (see 
Section 1.7(b)).

(b) Other chemical and physical agents 

Published biomonitoring methods for chem-
ical and physical agents excluding fire smoke 
components are listed in Table S1.11 (Annex 1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615). This list is illus-
trative and not comprehensive. Biomonitoring 
for exposures to diesel exhaust typically use 
urinary PAH metabolites, which are described 
in Section 1.4.5(d).

Biomonitoring for asbestos exposure is 
generally not conducted in firefighters, although 
bronchial lavage fluid analysis for macrophage 
asbestos fibres has been reported in a firefighter 
responder to the World Trade Center (WTC) 
disaster in New York City, USA, in 2001 (Rom 
et al., 2002).

PBDEs and PCBs can be measured in serum 
using gas chromatography-high-resolution mass 
spectrometry (GC-HRMS) (Park et al., 2015) and 
are generally expressed in units of ng/g of lipid, 
given their high lipid solubility. Although less 
commonly studied, PCBs can also be measured 
in urine (Haga et al., 2018). PCDD/Fs and PBDD/
Fs (as well as PBDEs) have been measured by gas 
chromatography-isotope dilution-high-resolu-
tion mass spectrometry (GC-HRMS) (Mayer et al., 
2021). PBDEs can also be measured in sweat but 
are more difficult to detect than in urine (Genuis 
et al., 2017). Non-PBDE flame retardants, such as 
2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH- 
TBB) metabolized to 2,3,4,5-tetrabromobenzoic 
acid (TBBA), have been measured using 
HPLC-MS/MS in the urine of firefighters 
(Jayatilaka et al., 2017, 2019). These, together 
with chlorinated alkyl and non-chlorinated aryl 

OPFRs were introduced after PBDEs were phased 
out. In addition, dialkylphosphate metabolites 
of organophosphate pesticides have also been 
measured in firefighters’ urine using the same 
method (Jayatilaka et al., 2017, 2019).

PFAS have been measured using liquid 
chromatography-tandem mass spectrom-
etry (LC-MS/MS) (Trowbridge et al., 2020). 
In another study using quadrupole time-of-
flight tandem mass spectrometry (QTOF-MS/
MS), both targeted and untargeted PFAS were 
measured; the LODs and LOQs for PFOS were 
0.02 and 0.06 ng/mL, respectively, and for PFHxS 
were 0.07 and 0.35 ng/mL respectively (Rotander 
et al., 2015a). Targeted serum PFAS levels have 
been measured in 50 µL of sample using ultra-per-
formance liquid chromatography-tandem mass 
spectrometry (UPLC-MS/MS) with an LOD of 
0.05–0.04 ng/mL (Mottaleb et al., 2020).

Inductively coupled plasma-mass spectrom-
etry (ICP-MS) has been used to measure serum 
total mercury, manganese, cadmium, and lead in 
firefighters, resulting in LODs of 0.02–0.54 ng/mL 
(Dobraca et al., 2015). Metals have also been 
measured using atomic absorption spectropho-
tometry (AAS) for lead, cadmium, and antimony, 
and the atomic absorption spectrophotome-
try-hydride vapour generator method (AAS-HG) 
for serum arsenic and mercury (Al-Malki, 2009). 
LODs using AAS varied according to instrument, 
but typical values were 1–100 ng/mL. Metals can 
also be measured in urine by the same methods 
(Wolfe et al., 2004).

1.4 Exposure to fire effluents, 
according to type of fire and 
level of exposure

Published data on exposures during fire-
fighting activities identified by the Working 
Group derived primarily from studies performed 
in the USA (58%), Canada (9%), and Australia 
(9%). Limited data were also available for the 

https://publications.iarc.fr/615


91

Occupational exposure as a firefighter

UK and some other countries in Europe (e.g. 
Denmark, Finland, France, the Netherlands, 
Poland, Portugal, Spain, and Sweden) and Asia 
(e.g. China, Kuwait, and Saudi Arabia), but not 
for Central and South America. One study was 
available from the Caribbean region and none 
from Africa (Table S1.12, Table S1.13, Table S1.14, 
and Table S1.15, Annex 1, Supplementary mate-
rial for Section  1, Exposure Characterization, 
online only, available from: https://publications.
iarc.fr/615). Most of the available information 
characterized the presence of different fire 
effluents, including particulates, VOCs, sVOCs, 
CO, and PAHs in the breathable air (ambient 
or personal) during structure and forest fires 
(Fig.  1.9(a)). The available information demon-
strated a high degree of variability in the chem-
ical composition of fire smoke and in the levels of 
exposure in different firefighting scenarios and 

sample types (Fig. 1.9 and Fig. 1.10). Information 
retrieved from the literature suggested the 
presence of higher concentrations of total and 
respirable particulate matter, VOCs and sVOCs 
(including benzene, toluene, ethylbenzene, and 
xylene, a group known as “BTEX”), and CO 
in structure fires than in wildfires, prescribed 
burns, and other types of fire (e.g. vehicles, ware-
houses, diesel oil, and experimental fires). Studies 
report considerable variability in the concen-
trations of PAHs in different types of fire, with 
the lowest levels being found during wildfires 
and prescribed burns (Fig.  1.11(a)). [There are 
several environmental factors, as well as fuel and 
fire conditions, firefighters’ tasks on scene, and 
duration of exposure/shift that affect exposure 
during different firefighting activities.] [The data 
in Fig. 1.11, Fig. 1.12, Fig. 1.13, and Fig. 1.14 shown 
in this section are from studies that reported 

Fig. 1.9 Number of publications that report measurements of fire smoke components in 
firefighting context by (A) type of firefighting; and (B) sample matrix

A B

NR, type of firefighting not specified; PPE, personal protective equipment; RPE, respiratory protective equipment. [The Working Group 
compiled information from all studies identified on PubMed until May 2022 that provided measurement data on firefighters’ exposure.]
Created by the Working Group.

https://publications.iarc.fr/615
https://publications.iarc.fr/615
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mean or median values (range values were not 
included). The figures do not differentiate by 
time period of the sample; for detailed infor-
mation, consider Tables S1.12–S1.15 (Annex  1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615).]

Approaches using biomonitoring to charac-
terize firefighters’ exposure to fire effluents are 
described in Section 1.4.5. 

1.4.1 Structure fires

Table 1.16 presents the available studies that 
assessed concentrations of particulates, VOCs, 
sVOCs, CO, and PAHs in structure fires by 
sample type; detailed information is presented 
in Table S1.12 (Annex 1, Supplementary material 
for Section 1, Exposure Characterization, online 

only, available from: https://publications.iarc.
fr/615). 

(a) Particulate matter

Measurement of environmental contami-
nation with particulates, expressed as concen-
tration of total particulate matter, ranged from 
0.137  mg/m3 during training fires (Sjöström 
et al., 2019b) to 560 mg/m3 at the knockdown of 
training and/or urban fires involving the burning 
of wood, paper, kerosene, PVC plastic, stuffed 
furniture, tenement, and rubbish, among other 
materials (Jankovic et al., 1991). The maximum 
reported single measurement was 15 000 mg/m3 
(Burgess & Crutchfield, 1995). Ambient concen-
trations of respirable particulate matter varied 
from <  0.10  mg/m3 in burned houses (with 
different fire origins) furnished with typical 
household materials during fire training exer-
cises (NIOSH, 1998a) to 484 mg/m3 (maximum 

Fig. 1.10 Number of publications that reported measurements of VOCs, sVOCs, CO, particulate 
matter, and PAHs in the firefighting context by (A) type of firefighting; and (B) type of sample

Master – for checking 

. .

CO, carbon monoxide; PAH, polycyclic aromatic hydrocarbon; PM, particulate matter; PPE, personal protective equipment; sVOC, semi-volatile 
organic compound; VOC, volatile organic compound. [The Working Group compiled information from all studies identified on PubMed until 
May 2022 that provided measurement data on firefighters’ exposure.]
Created by the Working Group.

https://publications.iarc.fr/615
https://publications.iarc.fr/615
https://publications.iarc.fr/615
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single measurement increasing up to 715 mg/m3) 
during controlled residential fires inside living 
rooms with modern furnishings (Fent et al., 2018). 
Regarding total particle count, median levels 
ranged from 93 152 particles per cm3 during the 
overhaul phase of live fires (Baxter et al., 2014) to 
1 580 000 (range, 102 700–2 970 000) particles 
per cm3 during controlled residential fires (Fent 
et al., 2018). Only one study (Baxter et al., 2014) 
evaluated environmental contamination with 
particulate matter with a diameter of 2.5 µm or 
less (PM2.5), measuring average concentrations 
of 0.253–17.53 mg/m3 during firefighting at live 
overhaul events.

(b) Volatile organic compounds

Structure fires release several VOCs. 
Concentrations of total VOCs ranging between 
0.10  and 107  ppm have been reported during 
experimental fires burning various materials 

frequently present in structure fires (Fig. 1.12(a); 
Table S1.12, Annex  1, Supplementary mate-
rial for Section  1, Exposure Characterization, 
online only, available from: https://publications.
iarc.fr/615). A study performed in Saudi Arabia 
demonstrated that firefighters’ personal air 
contained VOCs, including BTEX and CO, at 
levels that were predominantly higher during 
firefighting at residential fires than during fire-
fighting at industrial fires (Alharbi et al., 2021; 
Table S1.12, Annex  1, Supplementary material 
for Section 1, Exposure Characterization, online 
only, available from: https://publications.iarc.
fr/615). Ambient air concentrations of BTEX 
and formaldehyde ranged between 0.018  and 
797 mg/m3 for benzene (maximum single value 
of 1027  mg/m3 at residential fires); 0.173  and 
640  mg/m3 for toluene; 0.0044  and 125  mg/m3 
for ethylbenzene; 0.0044  and 80.5  mg/m3 for 
isomers of xylene; and 0.020  and 35.2  mg/m3 

Fig. 1.11 Concentrations of total PAHs (A) in breathable air (ambient and personal) during 
different types of firefighting; and (B) on different skin locations of firefighters after municipal 
firefighting

arith, arithmetic; geom, geometric; PAH, polycyclic aromatic hydrocarbon.
[The Working Group compiled information from all studies identified on PubMed until May 2022 that provided measurement data on 
firefighters’ exposure.] Only the mean or median values are plotted in the figures. No data on other firefighting activities were available for skin 
exposure. Values are presented in a logarithmic scale. [Prescribed burns are usually performed under controlled conditions and so wildland fire 
exposure data might underestimate the real extent of exposure. See text for more information.]
Created by the Working Group.

https://publications.iarc.fr/615
https://publications.iarc.fr/615
https://publications.iarc.fr/615
https://publications.iarc.fr/615
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for formaldehyde (Fig. 1.12(b–f) or Table S1.12, 
Annex 1, Supplementary material for Section 1, 
Exposure Characterization, online only, available 
from: https://publications.iarc.fr/615). Increased 
levels of acetaldehyde (up to 291 mg/m3), benzene 
(up to 101.1 mg/m3), acrolein (up to 60.6 mg/m3), 
and formaldehyde (up to 35.2  mg/m3) were 
reported during training exercises burning 
different fuel packaging materials, including 
oriented strand board, pallet, and straw, to simu-
late residential fires (Fent et al., 2019b). 

(c) Carbon monoxide

Regarding CO, reported mean values for 
breathable air (ambient or personal) in struc-
ture fire environments were compiled and are 
presented in Fig.  1.13. Overall reported ranges 
reached 15 000 ppm [17 250 mg/m3] during live 
residential fires (Lowry et al., 1985): maximum 
levels reached 31  050  mg/m3 during structure 
fires (Burgess & Crutchfield, 1995) (Table S1.12, 
Annex 1, Supplementary material for Section 1, 

Fig. 1.12 Concentrations of total VOCs, and benzene, toluene, ethylbenzene, xylene, and 
formaldehyde in the breathable air (ambient or personal) by type of firefighting activity reported 
in the literature

arith, arithmetic; geom, geometric; VOC, volatile organic compound.
[The Working Group compiled information from all studies identified on PubMed until May 2022 that provided measurement data on 
firefighters’ exposure.] Only the mean or median values are plotted in the figure. Values are presented in a logarithmic scale.
Created by the Working Group.

https://publications.iarc.fr/615
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Exposure Characterization, online only, avail-
able from: https://publications.iarc.fr/615). 
Alharbi et al. (2021) found higher concentrations 
of CO in the personal air of firefighters attending 
industrial fires than in those working on residen-
tial fires (16.43–384.2 versus 7.89–291.9 mg/m3). 
Several authors reported high concentrations of 
CO (> 1000 mg/m3) in the ambient and breath-
ing-zone air of firefighters during firefighting at 
different structure fires (Table S1.12, Annex  1, 

Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615). In emissions 
from structure fires, the presence of CO was 
demonstrated at levels that exceeded, for instance, 
the National Institute for Occupational Safety 
and Health (NIOSH) recommended exposure 
limit (8-hour time-weighted average, TWA) of 
40 mg/m3 (Fig. 1.13).

Fig. 1.13 Carbon monoxide concentrations in breathable air (ambient or personal) measured in 
the context of different firefighting activities

arith, arithmetic; CO, carbon monoxide; geom, geometric; NIOSH REL TWA, National Institute for Occupational Safety and Health 
recommended exposure limit (8-hour time-weighted average).
[The Working Group compiled information from all studies identified on PubMed until May 2022 that provided measurement data on 
firefighters’ exposure.] Only the mean or median values are plotted in the figure. The NIOSH recommended exposure limit is indicated to allow 
the reader to put the values into context. 
Created by the Working Group.

https://publications.iarc.fr/615
https://publications.iarc.fr/615
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(d) Polycyclic aromatic hydrocarbons

The available literature highlighted struc-
ture fires as an important source of exposure to 
PAHs through inhalation and dermal contact 
(Fig. 1.11(a) and Fig. 1.11(b)). Firefighters’ exposure 
to total PAHs through breathable air (ambient or 
personal) varied between 3.6  µg/m3 (geometric 
mean; training exercises; Sjöström et al., 2019b) 
and 23.8 mg/m3 (median; maximum single values 
reached 78.2 mg/m3) during fire combat on resi-
dential buildings (Fent et al., 2018; Fig. 1.11(a)). 
For benzo[a]pyrene (IARC Group 1, carcinogenic 

to humans; Table 1.1), personal exposure varied 
from 8.67 ng/m3 (geometric mean; Sjöström et al., 
2019b) to 700 µg/m3 (arithmetic mean; Feunekes 
et al., 1997) during training firefighting exercises, 
the latter using heating oil. For PAHs classified 
by IARC in Group  2B, possibly carcinogenic to 
humans (Table 1.1), the range of exposure values 
was 1.811300 µg/m3 for naphthalene (maximum 
up to 15  916  µg/m3), 0.0026–46  µg/m3 for 
benz[a]anthracene (maximum, 236.05  µg/m3), 
0.005–23.8  µg/m3 for benzo[k]fluoranthene 
(maximum, 79.2 µg/m3), 0.0108–22.3 µg/m3 for 

Fig. 1.14 Concentrations of PM2.5 in breathable air (ambient and personal) measured in the 
context of wildland firefighting activities
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arith, arithmetic; geom, geometric; PM2.5, particulate matter with a diameter of 2.5 µm or less.
[The Working Group compiled information from all studies identified on PubMed until May 2022 that provided measurement data on 
firefighters’ exposure.] Only the mean/median values are plotted in the figure.
Created by the Working Group.



97

O
ccupational exposure as a firefighter

Table 1.16 Summary of analytes monitored at structure fires, by sample type

Analyte Sample type References

Carbon monoxide Ambient air Barnard & Weber (1979); Musk et al. (1979); Lowry et al. (1985); Jankovic et al. (1991); Burgess & Crutchfield (1995); 
Austin et al. (2001a, b); Burgess et al. (2001); Anthony et al. (2007); Cone et al. (2008); Caban-Martinez et al. (2018)

Personal air Gold et al. (1978); Brandt-Rauf et al. (1988, 1989); Jankovic et al. (1991); Pośniak (2000); Burgess et al. (2002); Slaughter 
et al. (2004); Kirkham et al. (2011); Alharbi et al. (2021)

Polycyclic aromatic 
hydrocarbons 
(PAHs)

Ambient air Jankovic et al. (1991); NIOSH (1998a); Austin et al. (2001a, b); Anthony et al. (2007); Kirk & Logan (2015a); Akhtar et al. 
(2016); Fent et al. (2018); Banks et al. (2021a)

Personal air Feunekes et al. (1997); Baxter et al. (2014); Fernando et al. (2016); Fent et al. (2018, 2019b); Sjöström et al. (2019b); Keir 
et al. (2020); Poutasse et al. (2020)

Skin Bolstad-Johnson et al. (2000); Laitinen et al. (2010); Baxter et al. (2014); Fernando et al. (2016); Fent et al. (2014, 2017); 
Wingfors et al. (2018); Strandberg et al. (2018); Andersen et al. (2018a, b); Sjöström et al. (2019b); Keir et al. (2020); Caban-
Martinez et al. (2020); Banks et al. (2021a)

Particulate matter Ambient air Musk et al. (1979); Jankovic et al. (1991); Burgess & Crutchfield (1995); NIOSH (1998a); Burgess et al. (2001); Anthony 
et al. (2007); Baxter et al. (2010, 2014); Fent et al. (2018)

Personal air Gold et al. (1978); Brandt-Rauf et al. (1988); Burgess et al. (2002); Sjöström et al. (2019b)
Volatile organic 
compounds and 
semi-volatile 
organic compounds 
(VOCs and sVOCs)

Ambient air Lowry et al. (1985); Jankovic et al. (1991); Burgess & Crutchfield (1995); NIOSH (1998a); Austin et al. (2001a, b); Anthony 
et al. (2007); Caban-Martinez et al. (2018); Fent et al. (2018, 2019b); Kirk & Logan (2019)

Personal air Brandt-Rauf et al. (1988); Jankovic et al. (1991); Bolstad-Johnson et al. (2000); Pośniak (2000); Burgess et al. (2001, 2002); 
Slaughter et al. (2004); Fernando et al. (2016); Fent et al. (2018, 2019b); Sjöström et al. (2019b); Alharbi et al. (2021)
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benzo[b]fluoranthene (maximum, 218.59 µg/m3), 
0.0158–18  µg/m3 for indeno[1,2,3-c,d]pyrene 
(maximum, 146.36 µg/m3), 0.00 457–12.9 µg/m3 
for chrysene (maximum, 1062.72  µg/m3), and 
0.2–7.0  µg/m3 for benzo[j]fluoranthene (Table 
S1.12, Annex  1, Supplementary material for 
Section  1, Exposure Characterization, online 
only, available from: https://publications.iarc.
fr/615). Firefighters involved in fire combat at 
structure fires were also exposed to the PAH 
dibenz[a,h]anthracene (IARC Group 2A, prob-
ably carcinogenic to humans) (Table 1.1) at levels 
ranging between non-detected and 68  µg/m3 
during the overhaul phase of firefighting activ-
ities on residential and commercial buildings 
(Bolstad-Johnson et al., 2000). Over the last few 
decades, information has slowly emerged related 
to the contamination of firefighters’ skin with 
PAHs as a result of exposure to fire emissions 
(Fig.  1.11(b)). Despite being limited in number, 
all the studies reported increased levels of pollut-
ants on the neck/collarbone, wrists, hands/
fingers, face/forehead, back, and scrotum of fire-
fighters after fire combat (Table S1.12, Annex 1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615).

(e) Job assignments

[The Working Group highlighted that evi- 
dence dedicated to firefighters’ exposures based 
on job assignments is limited.] Caban-Martinez 
et al. (2018) recorded a reading of 1.5 ppm for total 
VOCs in firefighters who were fully involved in 
an arson investigation into a vehicle fire and who 
were approximately 10 feet [3 m] from the vehicle; 
the reading persisted throughout the investiga-
tion. Moreover, arson investigators may re-aero-
solize particulate and experience inhalation and 
dermal exposures to a variety of contaminants 
when moving debris during their investigations. 
Recently, Horn et al. (2022) reported concen-
trations of different particulate matter fractions 
(including submicron particles) at increased 

levels (based on the air quality index) during a 
60-minute post-fire investigation of controlled 
residential fires containing furnishings currently 
used in the bedroom, kitchen, and living 
room. Those authors registered median PM2.5 
concentrations exceeding 0.100  mg/m3 (range, 
0.016–0.498 mg/m3), with peak transient values 
reaching 23.7  mg/m3 (median, 1.090  mg/m3). 
Similar findings were observed for airborne 
aldehyde concentrations, with those for 
formaldehyde (median, 0.356  mg/m3; range, 
0.140–0.775 mg/m3) exceeding the NIOSH limit 
(Horn et al., 2022).

1.4.2 Wildland fires

The available information on levels of 
exposure during wildland fires is presented in 
Table 1.17. Most of the available studies charac-
terized prescribed burns and only some reports 
described participation at live wildfires or 
experimental/simulated wildfires (Table S1.13, 
Annex 1, Supplementary material for Section 1, 
Exposure Characterization, online only, avail-
able from: https://publications.iarc.fr/615). [The 
Working Group noted that prescribed burns are 
usually performed under controlled conditions; 
exposure might be higher and much longer in 
large wildfire incidents. The wildfire exposure 
scenario presents challenges that make personal 
sampling complicated. Hence, wildland fire 
exposure data in the literature might underesti-
mate the real extent of exposure.]

(a) Particulate matter

Studies reported that firefighters were exposed 
to increased levels of total (0.10–47.6  mg/m3) 
and respirable (0.02–154  mg/m3) particulate 
matter during wildland firefighting compared 
with background levels (overall range of back-
ground levels reported: total particulate matter, 
0.022–0.63  mg/m3; maximum peak value, 
6.9  mg/m3; and respirable particulate matter, 
1.39–1.47  mg/m3; maximum peak value, 

https://publications.iarc.fr/615
https://publications.iarc.fr/615
https://publications.iarc.fr/615
https://publications.iarc.fr/615
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Table 1.17 Summary of analytes monitored at wildfires, by sample type

Analyte Sample type References

Carbon monoxide Ambient air Cone et al. (2005)
Personal air NIOSH (1991; 1992b, c, 1994a); McMahon & Bush (1992); Materna et al. (1992); Reinhardt et al. (2000); Reinhardt 

& Ottmar (2004); Edwards et al. (2005); Reisen et al. (2006, 2011); Swiston et al. (2008); De Vos et al. (2009b); Dunn 
et al. (2009); Neitzel et al. (2009); Reisen & Brown (2009); Carballo-Leyenda et al. (2010); Miranda et al. (2010, 2012); 
Adetona et al. (2011, 2013a, b, 2017b, 2019); Hejl et al. (2013); Dunn et al. (2013); Gaughan et al. (2014c); Ferguson et al. 
(2017); Reinhardt & Broyles (2019); Henn et al. (2019); MacSween et al. (2020); Wu et al. (2021)

Polycyclic aromatic 
hydrocarbons (PAHs)

Ambient air Navarro et al. (2019a)
Personal air Materna et al. (1992); NIOSH (1992b, c, 1994a); Robinson et al. (2008); Navarro et al. (2017); Cherry et al. (2021a)

Particulate matter Ambient air NIOSH (1992c); Robinson et al. (2008); Cherry et al. (2019); Navarro et al. (2019a)
Personal air NIOSH (1991, 1992b, 1994a); McMahon & Bush (1992); Materna et al. (1992); Reinhardt & Ottmar (2000, 2004); 

Reinhardt et al. (2000); Slaughter et al. (2004); Edwards et al. (2005); De Vos et al. (2006, 2009b); Naeher et al. (2006); 
Reisen et al. (2006, 2011); Robinson et al. (2008); Neitzel et al. (2009); Reisen & Brown (2009); Miranda et al. (2010); 
Adetona et al. (2011, 2013a, b, 2017b, 2019); McNamara et al. (2012); Hejl et al. (2013); Naeher et al. (2013); Gaughan 
et al. (2014b); Ferguson et al. (2017); Reinhardt & Broyles (2019); Navarro et al. (2021); Wu et al. (2021)

Volatile organic 
compounds and 
semi-volatile organic 
compounds (VOCs 
and sVOCs)

Ambient air Toussaint et al. (2010)
Personal air NIOSH (1991, 1992b, c, 1994a); Materna et al. (1992); Reinhardt et al. (2000); Reinhardt & Ottmar (2000, 2004); De 

Vos et al. (2006, 2009a, b); Reisen et al. (2006, 2011); Reisen & Brown (2009); Miranda et al. (2010, 2012); Navarro 
et al. (2021)
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4.38 mg/m3) (Table S1.13, Annex 1, Supplementary 
material for Section  1, Exposure Characteriza - 
tion, online only, available from: https://publica-
tions.iarc.fr/615). However, only few studies 
included the monitoring of background levels of 
exposure to particulate matter during the overall 
work shift of firefighters (Reinhardt et al., 2000; 
Reinhardt & Ottmar, 2004). Among respirable 
particulates, PM2.5 is the most commonly reported 
fraction, with ambient values ranging between 
0.029 and 435.0 mg/m3; maximum values were 
found in the personal air of firefighters working 
on prescribed burns (Fig. 1.14). Moreover, some 
authors demonstrated that firefighters’ personal 
exposure to particulate matter was higher during 
wildland firefighting than during the regular 
work shift (Reinhardt et al., 2000; Reinhardt & 
Ottmar, 2000, 2004; Booze et al., 2004).

Some studies demonstrated undesirable, 
unhealthy, or even hazardous levels of exposure 
to airborne PM2.5 based on the United States 
Environmental Protection Agency (US  EPA) 
ambient air quality index near the fire perim-
eter of USA wildfire incidents where firefighters 
camp and rest between work shifts (McNamara 
et al., 2012; Navarro & Vaidyanathan, 2020).

(b) Volatile organic compounds

Measurements of firefighters’ personal levels 
of total VOCs during wildfires varied between 
0.1 and 4.0 ppm (maximum peak level of 88 ppm 
during an experimental forest fire; Miranda et al., 
2010) and from 0.415 to 5.30 mg/m3 (maximum 
peak level of 7.50 mg/m3 during prescribed and 
experimental forest burns; Reisen & Brown, 
2009) (Fig.  1.12(a); Table S1.13, Annex  1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615). Among indi-
vidual VOCs, toluene (0.038–78 mg/m3), ethylben-
zene (0.027–62 mg/m3), benzene (0.01–54 mg/m3), 
xylene (0.018–54  mg/m3), and formaldehyde 
(0.010–11 mg/m3) were found at higher concen-
trations in ambient or breathing-zone air of 

firefighters (Fig. 1.12(b–f)); Table S1.13, Annex 1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615).

(c) Carbon monoxide

Wildland firefighting activities also expose 
firefighters to CO at personal levels ranging 
from 0.92 to 345  mg/m3 during wildfires and 
prescribed burns (Fig. 1.13); maximum ambient 
air peak values reached 1483 mg/m3 during the 
fire episode in training forest-fire exercises (Cone 
et al., 2005). Concentrations of CO were mostly 
higher during fire attack than during overhaul 
(Booze et al., 2004; Reinhardt & Ottmar, 2004; 
Cone et al., 2005; Dunn et al., 2013).

(d) Polycyclic aromatic hydrocarbons

Levels of total PAHs in the ambient air during 
wildfires and prescribed burns ranged from 56 
to 9103 ng/m3 (Fig. 1.11(a)), with benzo[a]pyrene 
concentrations in the breathing (personal) air of 
firefighters varying between 0.012 and 7 ng/m3 
(maximum peak values of up to 140 ng/m3 during 
live wildfires; Navarro et al., 2017) (Table S1.13, 
Annex 1, Supplementary material for Section 1, 
Exposure Characterization, online only, available 
from: https://publications.iarc.fr/615). Exposures 
to naphthalene (range, 467–6170  ng/m3; 
maximum peak value, 35  900  ng/m3), benz[a]
anthracene (range, 8–18  ng/m3; maximum 
peak value, 192  ng/m3), benzo[b]fluoranthene 
(range, 5–28  ng/m3; maximum peak value, 
1700 ng/m3), benzo[k]fluoranthene (range, 
4–7  ng/m3; maximum peak value, 79  ng/m3), 
chrysene (range, 11–31  ng/m3; maximum peak 
value, 250  ng/m3), indeno[1,2,3-c,d]pyrene 
(range, 3–21  ng/m3; maximum peak value, 
103  ng/m3), and dibenz[a,h]anthracene (range, 
4–10 ng/m3; maximum peak value, 50 ng/m3) were 
also reported in the breathing air of firefighters 
during firefighting at wildfires and prescribed 
burns (Materna et al., 1992; NIOSH, 1992b, c, 
1994a; Booze et al., 2004; Robinson et al., 2008; 

https://publications.iarc.fr/615
https://publications.iarc.fr/615
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Navarro et al., 2017, 2019b; Cherry et al., 2021a; 
Table S1.13, Annex  1, Supplementary material 
for Section 1, Exposure Characterization, online 
only, available from: https://publications.iarc.
fr/615).

[The measured levels of some airborne 
contaminants during wildfires may appear 
lower than those observed during structure fires. 
However, the types of activity sampled, temporal 
and spatial variability in contamination levels 
outdoors, duration of the sampling period, 
the total exposure period, and the type of PPE 
used need to be taken into consideration when 
assessing wildland firefighters’ exposure.]

1.4.3 Vehicle fires

Vehicle fires occur at very low rates in some 
countries (e.g. in Liechtenstein and the Russian 
Federation) but account for up to 13–23% of all 
fires or incidents in countries such as Australia, 
France, Japan, New Zealand, Sweden, and the 
USA (Monash University, 2014; CTIF, 2021). 
There is a paucity of information on firefighters’ 
exposure to emissions from these fires (Fig. 1.9(a) 
and Fig. 1.10(a); Table 1.18). Only five studies, all 
performed in the USA, characterized the levels 
of pollutants released from these brief fire events 
during training activities (Table S1.14, Annex 1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615). Other authors 

have also characterized vehicle fire emissions 
during experimental tests (Lönnermark & 
Blomqvist, 2006; Caliendo et al., 2013; Krüger 
et al., 2016; Truchot et al., 2018; Sjöström et al., 
2019b). Overall, respirable particle concentra-
tions and counts monitored in the condensed gas 
phase in the breathing air of firefighting forces 
were higher during fire combat on passenger 
cabins fires than on engine area fires (averages, 
2.7 versus 0.36  mg/m3 and 204  ×  103 versus 
54  ×  103 particles per cm3); maximum levels 
reached 170  mg/m3 and 12  100  ×  103 particles 
per cm3, respectively (Evans & Fent, 2015). These 
values were determined during firefighting 
training activities performed on three salvaged 
vehicles; fires were suppressed with water. Evans 
& Fent (2015) and Baxter et al. (2010) highlighted 
the predominance of ultrafine particles during 
vehicle fire events (principally during overhaul), 
which may be associated with the complex 
mixture of materials burned in the vehicle (e.g. 
rubber, tyres, oil, batteries, foam, steel, electronic 
devices, fuel).

Ambient levels of some VOCs, including 
xylene, ethylbenzene, and naphthalene, were 
predominantly higher in engine fires than 
in passenger cabin fires (0.35–9.1 versus 
0.45–2.7 mg/m3, 0.15–2.2 versus 0.12–1.4 mg/m3, 
and 0.930–2.4 versus 0.170–1.2  mg/m3, respec-
tively), whereas benzene concentrations 
were higher in passenger cabin fires (1.6–11 
versus 0.38–60  mg/m3) (Table S1.14, Annex  1, 

Table 1.18 Summary of analytes monitored at vehicle fires, by sample type

Analyte Sample type References

Carbon monoxide Ambient air Caban-Martinez et al. (2018)
Polycyclic aromatic hydrocarbons (PAHs) Personal air Fent & Evans (2011)
Particulate matter Ambient air Borgerson et al. (2011)

Personal air Baxter et al. (2010); Evans & Fent (2015)
Volatile organic compounds and semi-
volatile organic compounds (VOCs and 
sVOCs)

Ambient air Borgerson et al. (2011); Caban-Martinez et al. (2018)
Personal air Fent & Evans (2011)
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Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615). [The Working 
Group noted that differences between VOC and 
sVOC concentrations may be attributed to the 
different materials burned in each compartment 
of the vehicles.]

The literature on the contribution of vehicle 
fire emissions to environmental levels of CO (up 
to 4.6  mg/m3) and PAHs (170–2400  µg/m3 for 
naphthalene) remains very limited (Fent & Evans, 
2011; Caban-Martinez et al., 2018) (Table S1.14, 
Annex 1, Supplementary material for Section 1, 
Exposure Characterization, online only, avail-
able from: https://publications.iarc.fr/615).

1.4.4 Other types of fire 

Table  1.19 presents the information avail-
able in the literature on other types of fire, 
including warehouse and training fires. Among 
VOCs and sVOCs, BTEX were the most char-
acterized pollutants; concentrations ranged 
from 0.0091–466  mg/m3, 0.0231–2.09  mg/m3, 
0.0179–1.66  mg/m3, and 0.016–2.07  mg/m3 for 
benzene, toluene, ethylbenzene, and xylenes, 
respectively (Fig. 1.12(b–e); Table S1.15, Annex 1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615). The highest 
ambient values for BTEX were reported during 
a large warehouse PVC fire (Markowitz et al., 

1989) and a diesel-oil firefighting training exer-
cise (Hill et al., 1972). For formaldehyde, ambient 
levels varied between 0.22 and 11 mg/m3 during 
firefighting training exercises at diving simu-
lators and house fires (NIOSH, 1998a; Laitinen 
et al., 2010) (Table S1.15, Annex 1, Supplementary 
material for Section  1, Exposure Characteriza- 
tion, online only, available from: https://publica- 
tions.iarc.fr/615). Also, the following compounds 
were found at concentrations higher than 2 mg/m3 
during fire combat training in a diesel oil fire: 
acetylene/ethylene, C11 aromatics, diethylben-
zene, ethylstyrene, toluene, ortho-xylene, and 
styrene (Hill et al., 1972).

Firefighters’ exposure to CO ranged from 
115  mg/m3 during training exercises (Minty 
et al., 1985) to 10 695 mg/m3 at a warehouse fire 
(Markowitz et al., 1989) (Table S1.15, Annex  1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615).

Regarding ambient levels of PAHs, exposures 
to gaseous total PAHs reached 470 mg/m3 during 
simulated firefighting activities at apartment 
fires with pieces of chipboard and old furni-
ture (e.g. armchair, sofas, PVC plastics, etc.) 
being used as fire load (Ruokojärvi et al., 2000). 
Ambient concentrations of benzo[a]pyrene 
isomers (0.0045–5200  µg/m3), naphthalene 
(1.00–54  000  µg/m3), benzofluorene isomers 
(0.0025–1500  µg/m3), indeno[1,2,3-c,d]pyrene 

Table 1.19 Summary of analytes monitored at other fire types, by sampling type

Analyte Sample type References

Carbon monoxide Ambient air Minty et al. (1985); Markowitz et al. (1989); Sebastião et al. 
(2021)

Polycyclic aromatic hydrocarbons (PAHs) Ambient air Hill et al. (1972); Ruokojärvi et al. (2000); NIOSH (1998a); 
Banks et al. (2021a)

Personal air Strandberg et al. (2018)
Particulate matter Personal air Dietrich et al. (2015); Andersen et al. (2017)
Volatile organic compounds and semi-volatile 
organic compounds (VOCs and sVOCs)

Ambient air Hill et al. (1972); Markowitz et al. (1989); Etzel & Ashley 
(1994); NIOSH (1998a); Laitinen et al. (2010, 2012)

  

https://publications.iarc.fr/615
https://publications.iarc.fr/615
https://publications.iarc.fr/615
https://publications.iarc.fr/615
https://publications.iarc.fr/615
https://publications.iarc.fr/615
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(0.0052–2000  µg/m3), and benz[a]anthracene 
plus chrysene (13–390  µg/m3) were also found 
in the literature; higher values were reported 
during simulated controlled compartment fires 
consisting of a diesel pan fire and a particleboard 
fire (Banks et al., 2021a; Table S1.15, Annex  1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615).

Ruokojärvi et al. (2000) reported ambient 
levels of gaseous chlorinated pollutants, including 
polychlorinated phenols (14–300 µg/m3), biphe- 
nyls (2.8–56 µg/m3), chlorobenzenes (0.5–18 µg/m3), 
dioxins (12–83 ng/m3), and furans (21–160 ng/m3) 
during training exercises on simulated apart-
ment fires. Some authors reported increased 
exposures at firefighting “safe zones”, where 
individuals ease or even remove part of their PPE 
(e.g. SCBA), because they feel safer and need to 
relieve thermal and physical discomfort (Burgess 
et al., 2001; Andersen et al., 2017).

1.4.5 Biomarkers of exposure and 
considerations regarding absorption, 
distribution, metabolism, and excretion

Firefighters are exposed to complex mixtures 
at the fire suppression scene. Personal exposures 
to these chemicals can take place via dermal 
contact, inhalation, and non-dietary ingestion; 
biomonitoring can be used to assess the internal 
dose of combustion-derived chemicals, and/or 
their metabolites (see Section  1.3.4(a)) (WHO, 
2015). Table 1.20 provides a summary of expo-
sure biomarkers that have been employed to 
assess firefighters’ exposures to noteworthy fire 
effluents, and a listing of studies that employed a 
variety of biomarkers.

The informativeness of biomonitoring values 
depends on factors such as the physical and 
chemical properties of the substance, the route 
of chemical exposure (i.e. dermal contact, inha-
lation, and non-dietary ingestion), as well as 
factors that influence absorption, distribution, 

metabolism, and excretion processes. These 
processes collectively control delivery of the 
chemical or its metabolite to the site of toxic 
action (Bessems & Geraets, 2013). In addition, 
such considerations influence the selection of an 
appropriate biomarker, the biological matrix to 
sample, the timing of sample collection, and the 
appropriate analytical method (OECD, 2022).

(a) Absorption

Absorption, which mechanistically controls 
bioavailability and internal dose, refers to 
processes that collectively move chemicals 
from the site of first contact (e.g. respiratory 
tract, dermal surface, gastrointestinal tract) to 
the bloodstream (Derendorf & Schmidt, 2019; 
Saghir, 2019).

Chemical absorption is affected by the expo-
sure context (e.g. training versus emergency fire 
suppression), PPE use and post-use handling 
and storage, PPE design and efficiency (e.g. flash 
hood textile and design), site of contact (e.g. skin, 
respiratory tract, gastrointestinal tract), chemical 
form (e.g. vapour, particulate matter-adsorbed 
sVOCs), and firefighter duties (e.g. attack and 
knockdown, command and control).

Many researchers have underscored the 
importance of dermal absorption of substances 
such as PAHs and VOCs, including absorption 
when using turnout gear and SCBA (Feunekes 
et al., 1997; Laitinen et al., 2010; Baxter et al., 
2014; Fent et al., 2014, 2017, 2020b; Pleil et al., 
2014; Fernando et al., 2016; Oliveira et al., 2016; 
Andersen et al., 2017; Andersen et al., 2018a; 
Stec et al., 2018; Wingfors et al., 2018; Cherry 
et al., 2019, 2021a; Wallace et al., 2019a; Burgess 
et al., 2020; Keir et al., 2020; Banks et al., 2021a). 
Absorption of dermally deposited chemicals 
encountered during fire suppression, including 
VOC vapours and sVOCs adsorbed to airborne 
particulate matter, depends on PPE design and 
use, location and thickness of exposed skin (e.g. 
face, neck, wrist, forehead), physical exertion 
and movement, and environmental temperature 

https://publications.iarc.fr/615
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Table 1.20 Biomarkers commonly used to assess firefighters’ exposures to selected fire effluents

Biomarker Fire effluent Selected references

Urinary biomarkers   
Urinary 2MHA Xylenes Fent et al. (2022)
Urinary 3HPMA Acrolein Fent et al. (2022)
Urinary 3MHA + 4MHA Xylenes Fent et al. (2022)
Urinary 4HBeMA 1,3-Butadiene Fent et al. (2022)
Urinary BzMA Toluene or benzyl alcohol Fent et al. (2022)
Urinary hydroxylated PAHs Selected PAHs Feunekes et al. (1997); Moen & Øvrebø (1997); Caux 

et al. (2002); Edelman et al. (2003); Robinson et al. 
(2008); Laitinen et al. (2010, 2012); NIOSH (2013a); 
Fent et al. (2014, 2019a, 2020b); Fernando et al. (2016); 
Oliveira et al. (2016, 2017a, b, 2020b); Pierrard (2016); 
Adetona et al. (2017a, 2019); Andersen et al. (2017, 
2018a, b); Keir et al. (2017); Hoppe-Jones et al. (2018); 
Wingfors et al. (2018); Allonneau et al. (2019); Cherry 
et al. (2019, 2021a); Gill et al. (2019, 2020a); Beitel 
et al. (2020); Burgess et al. (2020); Kim et al. (2020b); 
Rossbach et al. (2020); Bader et al. (2021); Banks et al. 
(2021a); Hoppe-Jones et al. (2021)

Urinary levoglucosan Levoglucosan Naeher et al. (2013)
Urinary MADA Styrene Fent et al. (2022)
Urinary methoxyphenols Methoxyphenols (e.g. guaiacol, 

methylsyringol)
Neitzel et al. (2009); Fernando et al. (2016)

Urinary para-chloroaniline para-Chloroaniline Bader et al. (2014)
Urinary PHEMA Styrene Kim et al. (2021)
Urinary phenolic compounds Phenolic compounds (e.g. 

bisphenol A, benzophenone-3)
Waldman et al. (2016); Bader et al. (2021)

Urinary PhMA Benzene Fent et al. (2022)
Urinary S-benzylmercapturic acid Toluene Rosting & Olsen (2020); Kim et al. (2021)
Urinary S-phenylmercapturic acid Benzene NIOSH (2013a); Fent et al. (2014); Bader et al. (2014, 

2021); Rosting & Olsen (2020); Kim et al. (2021)
Urinary TZCA Formaldehyde Kim et al. (2021)
Urinary trans,trans-muconic acid Benzene Caux et al. (2002); Laitinen et al. (2010); Bader et al. 

(2014, 2021); Fent et al. (2022)
Urinary VOCs BTEX Bader et al. (2014); Heibati et al. (2018); Allonneau 

et al. (2019); Bader et al. (2021); Kim et al. (2021)
Haematological biomarkers   
Carboxyhaemoglobin in blood Carbon monoxide Levy et al. (1976); Loke et al. (1976); Radford & Levine 

(1976); NIOSH (1992c); Kales et al. (1994)
Blood cyanide Cyanide Jackson & Logue (2017); Edelman et al. (2003)
Blood methanol Methanol Aufderheide et al. (1993)
Thiocyanate in serum Cyanide Levine & Radford (1978)
Blood sVOCs Selected sVOC, non-targeted 

approach
Grashow et al. (2020)

Blood VOCs Selected VOCs (e.g. xylenes, 
dichlorobenzene)

Edelman et al. (2003)
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and humidity (Wester et al., 1990; WHO, 2006; 
Laitinen et al., 2010; NIOSH, 2013a; Baxter et al., 
2014; Fent et al., 2014, 2017, 2020b; Andersen 
et al., 2018a; Stec et al., 2018; Sjöström et al., 
2019b; Beitel et al., 2020; Keir et al., 2020; Rosting 
& Olsen, 2020).

Pulmonary absorption of inhaled chemicals, 
including VOCs (e.g. BTEX, methanol), sVOCs 
(e.g. PAHs with low molecular weight) and toxic 
gases (e.g. CO, NO2) can also occur despite the 
use of PPE such as SCBA (Aufderheide et al., 
1993; Fent et al., 2014, 2015, 2020b; Wallace 
et al., 2019a). Specifically, pulmonary contact and 
absorption can occur in situations in which SCBA 
is less likely to be used (e.g. during overhaul), 
before donning SCBA, if the SCBA is improperly 
used, and/or if the SCBA is prematurely doffed 
(Bolstad-Johnson et al., 2000; Austin et al., 
2001c; Burgess et al., 2001; Fent et al., 2014, 2015; 
Wallace et al., 2019a; Beitel et al., 2020; Burgess 
et al., 2020; Rosting & Olsen, 2020). Additionally, 
secondary inhalation exposure can occur via 
contact with soiled turnout gear (Baxter et al., 
2014; Fent et al., 2014, 2015; Pleil et al., 2014; 

Burgess et al., 2020). With respect to particulate 
matter and substances adsorbed to particulate 
matter, absorption is governed by aerodynamic 
diameter. Large particles (i.e. ≥ 10 µm) are gener-
ally retained by the nasopharyngeal system, i.e. 
they do not enter the lungs. Particulate matter in 
the 5–10 µm range is generally removed by alve-
olar macrophages (Geiser, 2010). These particles 
can also be inadvertently ingested after mucocil-
iary clearance and swallowing, with subsequent 
absorption in the gastrointestinal tract followed 
by first-pass hepatic metabolism (Ramesh et al., 
2004; Pambianchi et al., 2021). Importantly, small 
particles (i.e. PM2.5) can penetrate the deeper 
regions of the pulmonary system. Particulate 
matter in the 1–2.5 µm range can interact with 
terminal bronchioles; those < 1 µm can readily 
gain access to alveoli (Schraufnagel, 2020). 
Particles < 0.1 µm have been shown to readily cross 
alveolar epithelia, thereby accessing the blood 
stream and systemic circulation (Schraufnagel, 
2020). In comparison with transdermal absorp-
tion, pulmonary absorption can be rapid; thus, 
temporal patterns of excreted metabolites can be 

Biomarker Fire effluent Selected references

Exhaled breath biomarkers   
Carbon monoxide in exhaled 
breath

Carbon monoxide Stewart et al. (1976); Brotherhood et al. (1990); Cone 
et al. (2005); Dunn et al. (2009)

Nitric oxide (NO) in exhaled breath Nitrogen dioxide (NO2) Miranda et al. (2012)
PAHs in exhaled breath PAHs Fent et al. (2014); Pleil et al. (2014); Wallace et al. (2017, 

2019a, b)
VOCs (e.g. BTEXS) in exhaled 
breath

VOCs (e.g. BTEXS) NIOSH (2013a); Fent et al. (2015, 2019a, 2020b); Pleil 
et al. (2014); Wallace et al. (2017, 2019a); Kim et al. 
(2021); Mayer et al. (2022)

VOCs and sVOCs in exhaled breath Selected VOCs and sVOCs, 
non-targeted approach

Wallace et al. (2017, 2019b)

Saliva biomarkers   
PAHs in saliva Selected PAHs Santos et al. (2019)
2MHA, 2-methylhippuric acid; 3HPMA, N-acetyl-S-(3-hydroxypropyl)-l-cysteine; 3MHA + 4MHA, 3-methylhippuric acid + 4-methylhippuric 
acid; 4HBeMA, N-acetyl-S-(4-hydroxy-2-buten-1-yl)-l-cysteine; BTEX, benzene, toluene, ethylbenzene, and xylene; BTEXS, benzene, toluene, 
ethylbenzene, xylene, and styrene; BzMA, N-acetyl-S-(benzyl)-l-cysteine; MADA, mandelic acid; NO, nitric oxide; PAH, polycyclic aromatic 
hydrocarbon; PHEMA, N-acetyl-S-(2-phenyl-2-hydroxyethyl)-l-cysteine; PhMA, N-acetyl-S-(phenyl)-l-cysteine; sVOCs, semi-volatile organic 
compounds; TZCA, thiazolidine-4-carboxylic acid; VOCs, volatile organic compounds. 

Table 1.20   (continued)
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used to determine the relative influence of the 
different exposure routes (Feunekes et al., 1997; 
Caux et al., 2002; Laitinen et al., 2012; Pierrard, 
2016; Cherry et al., 2019).

(b) Distribution

Distribution refers to the reversible movement 
of an absorbed chemical from the site of contact 
(Taveli & Bellera, 2018). Effective distribution 
is required to permit the use of haematological 
and urinary biomarkers of exposure (e.g. urinary 
PAH and benzene metabolites); substances that 
are absorbed via dermal or pulmonary contact 
can be rapidly distributed to the sites of metabo-
lism or toxic action. Generally speaking, parent 
compounds can be detected in the blood; biomon-
itoring is commonly conducted using serum 
analyses (e.g. brominated flame retardants and 
PFAS, see Section 1.5.1(i)) (e.g. Shaw et al., 2013; 
Rotander et al., 2015a; Trowbridge et al., 2020; 
Mayer et al., 2021). Metabolites are commonly 
detected in the urine (for example, metabo-
lites of PAHs and benzene) (see Table 1.20, e.g. 
Caux et al., 2002; NIOSH, 2013a; Adetona et al., 
2017a; Keir et al., 2017; Rosting & Olsen, 2020; 
Bader et al., 2021; Cherry et al., 2021a). Levels of 
systemically distributed chemicals can also be 
monitored via collection and analysis of exhaled 
breath; particularly for short-term exposures (see 
Table 1.20, e.g. Pleil et al., 2014; Fent et al., 2015; 
Wallace et al., 2017; Mayer et al., 2022).

(c) Metabolism and excretion

Metabolism and excretion are controlled by a 
complex series of dynamic processes influenced 
by factors such as genotype, sex, age, diet, drug 
and alcohol consumption, co-exposures to thera-
peutic products and other chemicals, and disease 
(Johnson et al., 2012).

The rates of metabolism and excretion (i.e. 
metabolite terminal half-life) are critically 
important for determining the appropriate 
time interval between an exposure event and 
biomarker sample collection (Bader et al., 2021). 

Since terminal excretion half-lives of combus-
tion-derived chemicals (e.g. benzene, PAHs, 
environmental phenols) are generally in the range 
of 4–16 hours, several research groups have high-
lighted the importance of rapid post-exposure 
collection of firefighter biomonitoring samples 
(Caux et al., 2002; Fent et al., 2015; Waldman 
et al., 2016; Bader et al., 2021). It can be difficult 
to evaluate the results of urine samples collected 
long after the exposure (Caux et al., 2002; Keir 
et al., 2017; Bader et al., 2021). For example, 
benzene is rapidly metabolized and cleared 
from the blood, permitting rapid appearance of 
metabolites in the urine (Rosting & Olsen, 2020); 
the terminal half-life of the benzene metabo-
lite S-phenylmercapturic acid is only 9  hours 
(Bader et al., 2021). Similarly, urinary elimina-
tion half-lives for hydroxylated metabolites of 
phenanthrene, fluorene, and naphthalene are 
in the range of 3–8 hours (Oliveira et al., 2016; 
Keir et al., 2017). This is consistent with time-
course analyses conducted by Rossbach et al. 
(2020), who reported post-training concentra-
tions of urinary PAH metabolites with half-lives 
of 3.5–9.3  hours. Consequently, timely collec-
tion of biomonitoring samples is of paramount 
importance (Caux et al., 2002; Keir et al., 2017; 
Cherry et al., 2019, 2021a; Fent et al., 2020b; Bader 
et al., 2021). Urine analyses are not commonly 
used for biomonitoring of exposures to PAHs of 
higher molecular weight (e.g. benzo[a]pyrene), 
because these substances are primarily excreted 
via the bile and faeces (Motorykin et al., 2015) 
and are largely undetectable in the urine (Keir 
et al., 2017, 2021; Wingfors et al., 2018; Allonneau 
et al., 2019). Recently, new biomarkers have been 
used that can provide information on exposure 
to benzo[a]pyrene, such as 3-hydroxybenzo[a]-
pyrene (3-OH-BaP), the main urinary metabo-
lite of benzo[a]pyrene (Alhamdow et al., 2019). 
However, this requires particularly sensitive 
analytical procedures, because the pathway for 
urinary excretion of this metabolite is much less 
significant than that for faecal excretion; this 
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permits use of 3-OH-BaP only in settings with 
high exposures, such as occupational exposure 
of firefighters (Oliveira et al., 2017c). 

A recent published review on biomonitoring 
in firefighters indicated that the half-lives of 
noteworthy chemicals range from hours (e.g. 
PAH, VOC metabolites), to months or even 
years (e.g. PFAS, chemical flame retardants, see 
Section  1.5.1(i)) (Engelsman et al., 2020). There 
is considerable variability or uncertainty in 
published values for chemical half-lives, and by 
extension, determination of optimal timing for 
sample collection (Feunekes et al., 1997; Oliveira 
et al., 2016; Cherry et al., 2019). [The Working 
Group noted that there is a paucity of toxicoki-
netic data for many combustion-derived chemi-
cals. Such data would facilitate interpretation of 
biomonitoring results in a firefighting context (Li 
et al., 2012; Oliveira et al., 2016, 2020b; Cherry 
et al., 2019; Engelsman et al., 2020). In particular, 
there is a need to critically examine how half-life 
values vary with different routes of exposure (i.e. 
transdermal, inhalation, and ingestion) (Li et al., 
2012; Oliveira et al., 2016, 2020b).]

(d) Biomarkers of exposure 

The studies listed in Table  1.20 collectively 
generated a large amount of biomarker data, 
particularly for urinary PAH metabolites. 
Although an extensive analysis of the available 
data was outside the scope of this section, some 
data patterns and deficiencies are highlighted 
here. Values for commonly used exposure 
biomarkers, e.g. 1-hydroxypyrene in urine and 
benzene in exhaled breath, were available from 
67 studies. With respect to the predominant 
sources of the data, the majority of the studies 
were conducted in the USA (63%), followed by 
Canada (14%). Most of the studies (83%) involved 
career firefighters, and roughly half of the 
studies investigated structure fires. Almost 60% 
of the studies considered urinary biomarkers 
and nearly all the remaining studies examined 
exhaled breath (16%) or blood (18%).

Fig.  1.15 shows post-exposure changes in 
urinary 1-hydroxypyrene (µg/g creatinine); 
all the studies included in the analyses noted 
post-suppression increases (i.e. a fold-change of 
> 1.0). Seven studies noted relatively small fold-
change increases (i.e. < 2) (Feunekes et al., 1997; 
Moen & Øvrebø, 1997; Adetona et al., 2017a, 
2019; Andersen et al., 2017, 2018a; Cherry et al., 
2021a); of those, three examined wildland fire-
fighters (Adetona et al., 2017a, 2019; Cherry et al., 
2021a). None of the studies that examined wild-
land firefighters noted fold-changes of > 2. Five 
studies noted fold-change increases of > 5 (Caux 
et al., 2002; Wingfors et al., 2018; Fent et al., 
2019a, 2020b; Rossbach et al., 2020); all examined 
structural firefighters. The majority of studies 
that noted fold-change values of >  5 measured 
urinary hydroxypyrene levels in samples 
collected 3–12 hours post-exposure. This obser-
vation is well aligned with the aforementioned 
half-life range (i.e. 3–9.3 hours) for PAHs of low 
molecular weight (Oliveira et al., 2016; Keir et al., 
2017; Rossbach et al., 2020). Fig. 1.16 shows the 
distribution of urinary 1-hydroxypyrene levels 
in firefighters before and after firefighting. The 
data indicated that, on average, levels post-ex-
posure are 3.3-fold those pre-exposure; pre- and 
post-exposure levels are significantly different at 
P < 0.0001.

Fig. 1.17 shows post-exposure changes in the 
level of benzene in exhaled breath. Post-exposure 
fold-change values (i.e. post- versus pre-expo-
sure) varied from 0.82 to 23.08 µg/m3; 22 of the 26 
values reflect a post-exposure increase (i.e. fold-
change > 1.0). Twelve of the 26 values presented 
indicated a fold-change (i.e. post- versus pre-ex-
posure) > 2; more than half of these (i.e. 7 out 
of 12) are associated with a sampling time point 
<  1  hour post-exposure (NIOSH, 2013a; Fent 
et al., 2020b; Pleil et al., 2014; Mayer et al., 2022). 
Indeed, all fold-change values for post-exposure 
sampling < 1 hour are > 1.0 (i.e. post-exposure 
increase in benzene in exhaled breath), with an 
average of 7.1 ± 2.3 µg/m3 (n = 12). The sampling 
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time-point effect was significant at P < 0.03. This 
is consistent with the rapid absorption, distribu-
tion, and exhalation of VOCs such as benzene 
(US EPA, 1998).

[The Working Group noted that although it 
is clear that biomonitoring is a valuable tool for 
assessment of firefighters’ exposure to combus-
tion-derived chemicals, it is also clear that 
numerous factors need to be carefully considered 
when designing an effective biomonitoring study 
and when interpreting biomarker measurements 
in a fire suppression context. Factors that need 

to be considered when evaluating biomarker 
responses include sex, hydration level, primary 
route of exposure, type of fire, and the partic-
ipant’s role in fire suppression, as well as the 
substance’s physical and chemical properties, 
environmental fate, and biological half-life.]

Fig. 1.15 Urinary concentrations of 1-hydroxypyrene in firefighters before and after suppression 
of naval, structural, or wildland fires

IARC Monographs 
Vol 132 – Occupational Exposure as a Firefighter 

Section 1.4.5 Figures 
2nd draft - CONFIDENTIAL 

Plenary draft - REVISED 

4B – R1 

Fig. 1A Firefighter urinary 1-hydroxypyrene levels before and after fire suppression 
Values are stratified by post-suppression sampling time and fire type. The median NHANES value for non-smokers is provided
for comparison (NHANES, 2018). Median values for European non-smokers vary from 0.046 to 0.16 µg/g (HBM4EU, 
2022). Average Canadian non-smoker values are in the 0.1 µg/g range (Keir et al., 2021). All values are reported as 
creatinine-adjusted concentrations; the Y-axis is presented on a log10 scale.

Created by the Working Group.
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Canadian non-smoker values are in the 0.1 µg/g range (Keir et al., 2021). All values are reported as creatinine-adjusted concentrations.
Created by the Working Group.
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1.5 Exposures other than fire 
effluents and polycyclic aromatic 
hydrocarbons

1.5.1 Chemicals and physical factors

(a) Asbestos and other minerals and fibres

Asbestos (IARC Group  1, carcinogenic to 
humans) is a mineral fibre used for its insulating 
properties in homes, businesses, and other struc-
tures that were mostly built before the 1980s. 
Because asbestos is ubiquitous in so many older 
structures, it may be encountered by firefighters 

during fires or other emergency incidents 
during which building materials are disturbed 
(see Table 1.21). Fire and high temperature can 
break down composite materials and liberate the 
asbestos fibres that they contain. Asbestos fibres 
directly exposed to high temperatures (> 400 °C) 
may also break down, resulting in shorter aspect 
ratios and less pathogenicity (Hoskins & Brown, 
1994; Jeyaratnam & West, 1994).

Table S1.22 (Annex 1, Supplementary mate-
rial for Section  1, Exposure Characterization, 
online only, available from: https://publications.
iarc.fr/615) provides measures of asbestos in air 

Fig. 1.16 Distribution of urinary concentrations of 1-hydroxypyrene in firefighters before and 
after fire suppression
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All values are reported as creatinine-adjusted concentrations; values extracted from 11 studies (i.e. Adetona et al., 2017a, 2019; Allonneau et al., 
2019; Bader et al., 2021; Cherry et al., 2019, 2021a; Fent et al., 2019a, 2020b; Gill et al., 2019; Keir et al., 2017; Rossbach et al., 2020). All values are 
arithmetic means, except those from Bader et al. (2021), Cherry et al. (2019), Keir et al. (2017) and Allonneau et al. (2019), Adetona et al. (2017a), 
which are geometric means. Values are presented in a logarithmic scale. Pre-exposure values (n = 14) range from 0.060 to 0.031, with mean and 
median values of 0.14 and 0.11, respectively. Post-exposure values (n = 32) range from 0.050 to 3.2, with mean and median values of 0.46 and 
0.28, respectively. Post-exposure values include a variety of sampling times and analytical methods. The sampling time effect (i.e. pre-exposure 
versus post-exposure) on urinary 1-hydroxypyrene concentrations is statistically significant at P < 0.0001 [figure and calculations by the 
Working Group].
Created by the Working Group.
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and on surfaces associated with firefighting. 
During overhaul, firefighters will commonly tear 
down walls, ceilings, flooring, and other mate-
rials, which could disturb materials containing 
asbestos. In an evaluation of firefighter exposures 
during overhaul of structure fires in Arizona, 
USA, asbestos fibres were detected in 15 of 46 
air samples, with an average of 0.073 fibres per 
cm3, suggesting that firefighters who were not 
wearing respiratory protection during overhaul 
could inhale asbestos fibres (Bolstad Johnson 
et al., 2000). Asbestos may also be used in roofing 
materials. A factory fire in England released into 

the atmosphere chrysotile fibres (contained in 
asbestos bitumen paper covering the roof), which 
were later detected on firefighters’ clothing and 
in the surrounding environment (Bridgman, 
2001). Another study attempted to measure 
asbestiform fibres on used firefighter turnout 
gear from Kentucky, USA, and found evidence 
of actinolite and chrysotile in four of 29 surface 
samples, although only one sample quantified 
asbestos fibres (chrysotile) above the LOD for the 
method (1570 fibre structures per cm2) (Hwang 
et al., 2019b). [Asbestos on firefighting gear could 

Fig. 1.17 Changes in benzene concentrations in exhaled breath of firefighters before and before 
fire suppression

Study 
Fent et al. (2019) 

Fent et al. (2020) 

Fent et al.(2013) 

Mayer et al. (2022) 

Pleil et al. (2014) 

Wallace et al. (2019) 

．．．．．．

 

． 
直． 

... 

． 
statistic 

arith mean 

geom mean 

median 

... 
． 
． 

... 

<1 h post >1 h post
fire fire

Sampling time 

． 

nu

 

﹝
C
3」
＠』
早
ω」
a
h
ω
。
丘
。
由
C
何
Z
Oa
豆
。』﹞

ZH
mw
φ」
血
。
。一
個
主
×
φ
c一
ω
c
ω
N
C
ω
且

3 

arith, arithmetic; geom, geometric. 
[The Working Group compiled information from all studies identified on PubMed until May 2022 that provided biomonitoring data on 
firefighters’ exposures.] Values are stratified by post-suppression sampling time point and presented as fold-change (i.e. post- versus pre-
exposure). The average fold-change for a post-exposure sampling time of < 1 hour is 7.1 ± 2.3 (n = 12); the average for sampling time > 1 hour is 
2.3 ± 0.59 (n = 14). The sampling time effect is significant at P < 0.03. The y-axis is presented on a log 10 scale.
Created by the Working Group.
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pose an inhalation hazard if the contamination 
were to be agitated and become airborne.]

[The Working Group noted that microscopy 
methods used to measure asbestiform fibres on 
air filters are vulnerable to interference from other 
substances that may also have been collected on 
the filter, which is likely to occur during many 
firefighting activities.]

Asbestos can also contaminate outdoor sites 
or soils. A NIOSH evaluation assessed wildland 
firefighters’ exposures to asbestiform fibres in 
Libby, Montana, USA (a former site for vermicu-
lite mines), and found task-based concentrations 
of 0.0013–0.13  fibres per cm3 (NIOSH, 2019). 
[Contamination of soils with naturally occurring 
asbestos fibres is not expected to be common in 
most regions of the world.]

In addition to asbestos, firefighters can be 
exposed to other minerals, including crystal-
line silica (see Table 1.21). [The Working Group 
noted the paucity of literature on silica exposure 
in municipal firefighters but acknowledges the 
potential for silica exposure.] A study of wild-
land firefighters’ exposures during prescribed 
burns and naturally occurring fires found that 
fire personnel were exposed to respirable quartz 
at concentrations that frequently exceeded the 
Occupational Safety and Health Administration 
(OSHA) permissible exposure limit of 
0.05 mg/m3, especially after adjusting for longer 
shifts (Reinhardt & Broyles, 2019). Firefighters 
can also be exposed to man-made vitreous fibres, 
which are fibrous inorganic materials made 
from rock, slag, clay, or glass (IARC, 2002). Dust 
samples collected from the areas surrounding the 
WTC disaster and from the Grenfell Tower fire 
contained man-made vitreous fibres (ATSDR, 
2002; Lioy et al., 2002; Stec et al., 2019).

(b) Per- and polyfluoroalkyl substances 

PFAS are a class of synthetic chemicals that 
have been used in commercial and industrial 
products and processes for nearly a century 
(US EPA, 2021a). By the 1960s, PFAS were integral 

in the development of a firefighting foam known 
as AFFF and soon after were incorporated as 
waterproofing agents into textiles (ITRC, 2020).

AFFFs are often used on fires involving flam-
mable liquids or vapours (known as “class B” 
fires), such as jet fuel. The PFAS surfactants in 
AFFFs are designed to lower the surface tension, 
allowing the foam to quickly spread across and 
smother the burning liquid. AFFFs are more 
effective at suppressing liquid fires than is water, 
and they have the added benefits of reducing 
the water requirements and runoff potential 
(Magrabi et al., 2002).

In the past two decades, specific compounds 
used in the production of AFFFs have shifted 
from longer carbon chain formulae, such as 
perfluorooctanesulfonic acid (PFOS), to shorter 
and alternative formulae, such as perfluorobu-
tane sulfonic acid (PFBS) and hexafluoropro-
pylene oxide-dimer acid (HFPO-DA), because 
of emerging toxicity data and concerns over the 
bioaccumulation of longer-chain PFAS (Brase 
et al., 2021).

Although the contribution of specific path-
ways to a firefighter’s absorbed dose is not fully 
understood, PFAS exposure could result from 
dust and products of combustion present at a fire 
scene; contact with firefighting foam, and PPE 
in which PFAS is an intentionally added compo-
nent; or contaminated fire station dust (Tao et al., 
2008; Shaw et al., 2013; Leary et al., 2020; Peaslee 
et al., 2020; Young et al., 2021). There is also the 
potential for firefighters to be exposed through 
local contamination of water with AFFF. For 
example, use of AFFF at fire stations, including 
those at airports, military bases, and training 
facilities, has contributed to PFAS contamina-
tion in groundwater, soil, and other surfaces (de 
Solla et al., 2012; Backe et al., 2013; Baduel et al., 
2015; Hansen et al., 2016; Hu et al., 2016).

For many firefighters, AFFF may be the 
most significant source of exposure to PFAS, 
as supported by several biomonitoring studies 
in firefighters (Laitinen et al., 2014; Rotander 
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et al., 2015b; Leary et al., 2020). A few studies 
have suggested a positive association between 
biological levels of PFAS and years of fire-
fighting (Rotander et al., 2015b; Graber et al., 
2021). However, because long-chain PFAS are 
being removed from AFFF formulations, biolog-
ical levels of PFAS in firefighters who use class 
B foams may begin to decline (Rotander et al., 
2015b). See Section  1.5.1(i) for more details on 
biomonitoring studies of firefighters using AFFF.

Because PFAS has been used in various 
commercial products, including stain-resistant 
carpeting and furniture, structure fires may also 

be associated with exposure to and contamina-
tion with PFAS. Many of the studies that have 
evaluated municipal firefighters’ exposure to 
PFAS have involved biological monitoring (Tao 
et al., 2008; Jin et al., 2011; Shaw et al., 2013; Leary 
et al., 2020; Trowbridge et al., 2020; Clarity et al., 
2021), and a few of these studies found associ-
ations between recent fire events or duration 
of exposure and specific types of PFAS in the 
blood (Tao et al., 2008; Shaw et al., 2013). See 
Section 1.5.1(i) for more information on biolog-
ical levels of PFAS in firefighters.

Table 1.21 Studies in which exposure monitoring was performed for compounds other than fire 
smokea

Chemical agent or class Sample type References

Asbestos Area air Bolstad-Johnson et al. (2000)
 Personal air NIOSH (2019)
 Surface (PPE) Bridgman (2001)
 Surface (work surfaces) Hwang et al. (2019b)
Silica Personal air Reinhardt & Broyles (2019)
Man-made vitreous fibres Surface (ambient dust) ATSDR (2002); Lioy et al. (2002); Stec et al. (2019)
Per- and polyfluoroalkyl substances Surface (PPE) Peaslee et al. (2020)
 Surface (work surfaces) Young et al. (2021)
PBDEs and other brominated flame 
retardants

Area air Fent et al. (2020a)

 Surface (PPE) Easter et al. (2016); Mayer et al. (2019); Fent et al. 
(2020a); Banks et al. (2021c)

 Surface (work surfaces) Shen et al. (2018); Gill et al. (2020b)
Organophosphate flame retardants (OPFRs) Area air Fent et al. (2020a)
 Surface (PPE) Mayer et al. (2019); Fent et al. (2020a); Banks et al. 

(2021c)
 Surface (work surfaces) Shen et al. (2018); Gill et al. (2020b)
Diesel exhaust (elemental carbon or total 
particulates)

Area air NIOSH (2016b); Bott et al. (2017); Chung et al. (2020)

 Personal air Froines et al. (1987)
Heavy metals (e.g. cadmium, arsenic, lead) Personal air Keir et al. (2020)
 Surface (PPE) Easter et al. (2016); Engelsman et al. (2019)
 Surface (work surfaces) Engelsman et al. (2019)
PCDD/Fs Surface (PPE) Hsu et al. (2011); Fent et al. (2020a)
PBDD/Fs Surface (PPE) Fent et al. (2020a)
PBDD/Fs, polybrominated dibenzo-para-dioxins/dibenzofurans; PBDEs, polybrominated diphenyl ethers; PCDD/Fs, polychlorinated dibenzo-
para-dioxins/dibenzofurans; PPE, personal protective equipment.
a Exposure results are provided in Supplementary Table S1.22 (Annex 1, Supplementary material for Section 1, Exposure Characterization, 
online only, available from: https://publications.iarc.fr/615).

https://publications.iarc.fr/615
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PFAS could also be present in firefighting 
textiles either as part of the manufacturing 
process or as contamination acquired during 
firefighting. Evaluation of PFAS in turnout gear 
confirmed measurable levels of several types of 
PFAS in textiles. The highest levels of PFAS were 
found in the outer shell and moisture barriers, 
with evidence of migration across the protective 
layers in used turnout gear (Peaslee et al., 2020). 
Studies have also detected PFAS in dust collected 
from turnout-gear storage areas in fire stations, 
with some types of PFAS being present in higher 
concentrations than in dust from living areas of 
those fire stations (Peaslee et al., 2020; Young 
et al., 2021) (see Table  1.21, and Table S1.22, 
Annex 1, Supplementary material for Section 1, 
Exposure Characterization, online only, avail-
able from: https://publications.iarc.fr/615).

(c) Chemical flame retardants

Furnishings and other items containing 
foams, plastics, and other synthetic materials 
can be highly flammable. One way the furni-
ture, textile, and electronics industries have 
addressed this flammability issue is by adding 
chemical flame retardants to their products. 
PBDEs were one of the first classes of chemical 
flame retardant to be used, starting in the 1970s 
(Barbauskas, 1983; McKenna et al., 2018). Use 
has dwindled and even been banned completely 
in some countries because of their persistence, 
ability to accumulate in the body, and toxico-
logical effects. The Stockholm Convention on 
Persistent Organic Pollutants classified several 
congeners as persistent organic pollutants in 
2009 and decabromodiphenyl ether (BDE-209) in 
2017 (Secretariat of the Stockholm Convention, 
2019b). Other brominated flame retardants listed 
for elimination in the Stockholm Convention are 
hexabromobiphenyl and hexabromocyclodode-
cane (HBCDD). Several countries (e.g. China, 
India, Japan, and the USA) are making signifi-
cant strides towards eliminating the use of these 
compounds. The European Union has almost 

completely banned the use of PBDEs, hexabro-
mobiphenyl, and HBCDD (Sharkey et al., 2020). 
However, other chemical flame retardants are still 
being used globally, including OPFRs and other 
chlorinated and brominated flame retardants, 
in products such as foam insulation for build-
ings (Lee et al., 2016; Chupeau et al., 2020; Estill 
et al., 2020). The estimated global consumption 
of flame retardants in Asia, Europe, and the USA 
was 2.8 million tonnes in 2018 (Yasin et al., 2016).

Table  1.21 provides a summary of flame 
retardant measurements in area air and on 
surfaces associated with firefighting (see also 
Table S1.22, Annex  1, Supplementary material 
for Section 1, Exposure Characterization, online 
only, available from: https://publications.iarc.
fr/615). Firefighters can potentially be exposed 
to all classes of flame retardant if the fires they 
respond involve furnishings and other items 
containing these compounds (such as building 
insulation), which will depend in part on the 
rules and regulations of the country where the 
firefighters work (Sharkey et al., 2020). Fent 
et al. (2020a) measured a variety of PBDEs, other 
brominated flame retardants, and OPFRs in 
the air during the live-fire portion of controlled 
residential fires containing modern furnishings 
in the USA; results included BDE-209 (median, 
15.6  µg/m3), 2-ethylhexyl-2,3,4,5-tetrabromo-
benzoate (EH-TBB; median, 7.71  µg/m3), and 
triphenyl phosphate (median, 408 µg/m3). These 
substances were also detected in almost every 
wipe sample collected from the turnout jackets 
and gloves worn by the responding firefighters. 
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) 
was also detected with high frequency on turnout 
jackets and gloves (Fent et al., 2020a).

Other studies have measured flame-retardant 
contaminants on firefighting clothing from the 
USA and Australia (Alexander & Baxter, 2016; 
Easter et al., 2016; Mayer et al., 2019; Banks 
et al., 2021c). Studies have also measured flame 
retardants in dust collected in fire stations from 
Australia, Canada, and the USA (Brown et al., 

https://publications.iarc.fr/615
https://publications.iarc.fr/615
https://publications.iarc.fr/615
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2014; Shen et al., 2015; Banks et al., 2020; Gill 
et al., 2020b); some of these studies found higher 
levels of certain flame retardants (e.g. BDE-209 
and TDCPP) than in dust collected from other 
occupational settings (Shen et al., 2015; Gill et al., 
2020b).

Firefighters’ turnout gear could also contain 
flame retardants added during manufacture. 
Alexander & Baxter (2016) measured BDE-209 
from unused gloves and a knit hood available 
at that time in the USA (<  1  µg/g per sample). 
In 2019, investigators analysed new knit hoods 
in the USA and found that they contained no 
detectable flame retardants (Mayer et al., 2019). 
More recently, new turnout gear from South 
Africa was found to contain PBDEs at > 200 µg/g 
and HBCDD at < 0.1 µg/g (Mokoana et al., 2021). 
[The Working Group noted that manufacture 
of turnout gear with textiles containing flame 
retardants may have been more common in the 
past than today. However, the study from South 
Africa suggested that manufacturers may still be 
producing turnout gear using textiles containing 
flame retardants in certain regions of the world.]

Biomonitoring has also been used to assess 
firefighters’ exposure to flame retardants. Cross-
sectional biomonitoring studies of firefighters 
in the USA have found elevated serum concen-
trations of certain PBDEs (e.g. BDE-99 and 
BDE-209) and elevated urinary concentrations 
of certain OPFRs (e.g. metabolites of triphenyl 
phosphate and TDCPP) compared with the 
general population (Shaw et al., 2013; Park et al., 
2015; Jayatilaka et al., 2017). In the study by Fent 
et al. (2020a), firefighters experienced signif-
icant increases in urinary concentrations of 
metabolites of triphenyl phosphate, TDCPP, and 
tris(2-chloroethyl) phosphate after firefighting 
(Mayer et al., 2021). See Section 1.5.1(i) for more 
information on biological levels of flame retar-
dants measured in firefighters.

(d) Diesel engine exhaust

Firefighters can be exposed to diesel exhaust 
(IARC Group 1, carcinogenic to humans) at the 
fire station, when fire engines (or apparatus) are 
started in the bays or return to the bays after a 
response, and at incidents where fire engines 
commonly idle. Diesel exhaust is composed 
of particulate matter, PAHs, inorganic parti-
cles, and oxides of carbon, nitrogen, and sulfur 
(Pronk et al., 2009). The magnitude and compo-
sition of diesel exhaust exposures will depend 
on several factors, including the age and main-
tenance of the engines, the quality of diesel fuel 
(e.g. sulfur content), whether the engine includes 
any filtration systems, the workload or number 
of runs, whether the engine is running cold or 
warm, whether diesel-exhaust capture systems 
are available and being used in the bays, and if 
not, whether the bays include natural ventilation 
(e.g. drive-through bays with doors on the front 
and back) (Chung et al., 2020). Another impor-
tant factor for living quarters of the station that 
are attached to the bay is whether they are under 
positive pressure relative to the bay [if not, there 
is the potential for diesel exhaust to migrate into 
the living areas] (NIOSH, 2016b).

Recent studies have quantified diesel exhaust 
in fire stations by measuring airborne elemental 
carbon (see Table 1.21, and Table S1.22, Annex 1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615). Work-shift con - 
centrations measured in fire stations have varied 
considerably and are generally higher in engine 
bays than in other areas of the fire station. One 
evaluation at fire stations in the USA measured 
elemental carbon concentrations in the engine 
bays at <  1–13  µg/m3, with concentrations in 
the living areas ranging from 1.2 to 2.7  µg/m3 
(NIOSH, 2016b). A study in Canada measured 
elemental carbon in vehicle bays at concentra-
tions ranging from <  0.5 to 2.7  µg/m3 (Chung 
et al., 2020). A study in Australia measured 

https://publications.iarc.fr/615
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elemental carbon at concentrations ranging 
from 1 to 26 µg/m3 in vehicle bays, with much 
lower levels in the dormitories (< 2 µg/m3). The 
same study quantified total PAHs (predomi-
nantly naphthalene) at concentrations ranging 
from ~0.05 to ~1.8  µg/m3 in the engine bays 
(Bott et al., 2017). No studies have specifically 
quantified diesel exhaust exposure at emergency 
incidents, but one study involving controlled 
residential fires measured particulate matter at 
> 100 000 particles/m3 before fire ignition, which 
the investigators attributed to the idling fire 
apparatus (engine) at the scene (Fent et al., 2018).

(e) Heavy metals

Firefighters can be exposed to heavy metals 
(some of which are classified as IARC Group 1, 
carcinogenic to humans; see Table 1.1). For 
example, vehicle fires would be expected to 
include a variety of heavy metals (present in 
the engine, battery, frame, and body parts), but 
metals could also be present in many other fires, 
especially fires involving older homes with lead 
paint or pipes or structures containing metal 
trusses or electronics. Airborne metal partic-
ulates or fumes produced during fires may be 
inhaled.

Table  1.21 provides a summary of air and 
surface measurements of metals associated 
with firefighting (see also Table S1.22, Annex 1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615). Keir et al. (2020) 
measured air concentrations of lead and found 
levels above the adjusted occupational exposure 
limit (OEL; 46.9 µg/m3) during two emergency 
fires in Ottawa, Canada; they also found signif-
icant increases in lead and antimony contami-
nation on used turnout gear. Easter et al. (2016) 
measured metals in used firefighting hoods 
compared with new hoods in Philadelphia, USA, 
and found elevated concentrations of numerous 
metals, including arsenic, cadmium, chromium, 
and lead. Engelsman et al. (2019) measured 

metals on surfaces in Australian fire stations 
and found levels of chromium, lead, copper, zinc, 
nickel, and manganese that were higher than 
levels measured in homes or offices.

The presence of metals on firefighter gear 
and other surfaces does not necessarily mean 
that firefighters will absorb those contaminants; 
most metals have relatively low skin permeation 
coefficients (Kp, 0.001 cm/hour or less). However, 
there are numerous factors that can impact the 
permeability of metals through skin, including 
the valence state, the type of counter ion, and the 
nature of the chemical bond (organic versus inor-
ganic) and polarity (Hostynek, 2003). [Metals 
and other contaminants on gear or surfaces 
could also become aerosolized and inhaled, or 
transfer to hands and be ingested, depending on 
hand hygiene practices after firefighting.]

Biomonitoring has also been used to assess 
firefighters’ exposure to metals including lead, 
e.g. during the WTC disaster and the Notre 
Dame Cathedral fire, in Paris, France (see Section 
1.5.1(i)).

(f) Physical factors

Physical exertion and heat stress are common 
among municipal and wildland firefighters 
(Cheung et al., 2010; Bourlai et al., 2012; Lui et al., 
2014; Horn et al., 2018). Municipal firefighting 
ensembles, which are designed to protect fire-
fighters from heat, will also trap metabolic heat 
energy produced during work and may result in 
increased core body temperatures (Smith et al., 
2013a; Horn et al., 2018; Ghiyasi et al., 2020). 
Strenuous work under high-stress situations, 
together with increased body temperature and 
dehydration, may affect the sympathetic nervous 
system and result in cardiovascular strain (Shen 
& Zipes, 2014; Smith et al., 2019). How these 
physical stressors could impact carcinogenesis 
is not well understood; however, increased body 
and skin temperatures may result in increased 
dermal absorption of toxicants (Chang & Riviere, 
1991; Chang et al., 1994), and dehydration can 

https://publications.iarc.fr/615
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concentrate hazardous substances in the body 
and may place additional strain on the kidneys 
(Baetjer et al., 1960; Baetjer, 1969). In addition, 
thermoregulatory processes in the body that are 
part of the immune response against toxicolog-
ical insults may also be affected by heat strain 
(Leon, 2008).

[Although the Working Group was unable to 
identify studies describing firefighters’ UV expo-
sure, firefighters working outdoors or working 
in areas with a high UV index are also likely to 
be exposed to UV radiation (classified in IARC 
Group 1) (Peters et al., 2012; Carey et al., 2014; 
Boniol et al., 2015).] PAHs and UV exposure may 
have synergistic toxic effects through photoac-
tivation (Ekunwe et al., 2005; Toyooka & Ibuki, 
2007). [Wildland firefighters will commonly 
spend an entire work shift (8  hours or longer) 
under the sun. Although their arms and legs 
are typically covered by protective clothing, 
their necks and faces may be exposed. With 
the growing wildfire season in various parts of 
the world, cumulative UV exposure is likely to 
worsen for wildland firefighters.]

Firefighters are also exposed to radiofre-
quency electromagnetic fields (IARC Group 2B, 
probably carcinogenic to humans) from the use 
of hand radios. [The Working Group noted that 
hand radios are not typically held close to the 
head, and the effects of radiofrequencies on the 
human body (e.g. increased skin temperature) 
drop with increasing distance (Foster & Glaser, 
2007).]

In relatively rare situations, firefighters 
respond to radiological events, such as a dirty 
bomb, in which their roles could include triage, 
life support, and decontamination, and during 
which they could be exposed to ionizing radi-
ation (Rebmann et al., 2019). One of the most 
well-known radiological disasters was the 
Chernobyl nuclear power plant disaster in pres-
ent-day Ukraine in 1986. Numerous studies have 
documented radiation health effects among fire-
fighters and other workers who responded to the 

Chernobyl disaster (Junk et al., 1999; Antoniv 
et al., 2017; Belyi et al., 2019). Fallout from the 
disaster resulted in radionuclide contamina-
tion in the exclusion zone, which presents an 
additional hazard for wildland firefighters 
(Yoschenko et al., 2006). Wildland firefighters 
who responded to a forest fire in the Chernobyl 
exclusion zone in April–May 2020 were reported 
to have effective internal dose maximum values 
of 3.5, 5.1, and 11.8 µSv, depending on the region 
in which they worked (Bazyka et al., 2020). 
Radionuclides also occur naturally in soil and 
vegetation. Carvalho et al. (2014) measured polo-
nium-210 activity in wildfire smoke in Portugal; 
the average concentration was 70 mBq/m3, which 
could theoretically result in a radiation dose for 
wildland firefighters of ~2.1  µSv per 10-hour 
workday. However, Viner et al. (2018) conducted 
modelling of cumulative dose for firefighters in 
areas of natural and anthropogenic contamina-
tion (i.e. Savannah River Site, South Carolina, 
USA) and found that even under worst-case 
conditions, the cumulative dose for firefighters 
exposed to potential fires would not exceed 
3% of the annual guidance limit set by the US 
Department of Energy (0.25 mSv).

Firefighters are also commonly exposed 
to loud noise from alarms, sirens, personal 
alert safety systems, and heavy equipment 
and machinery (Tubbs, 1995; Hong & Samo, 
2007; Kirkham et al., 2011; Neitzel et al., 2013). 
Wildland firefighters may use chainsaws, chip-
pers, and even bulldozers, which can easily 
exceed OELs for noise (e.g. the NIOSH recom-
mended exposure limit of 85 dB) (Broyles et al., 
2017). Wildland firefighters are expected to wear 
hearing protection when performing tasks using 
this equipment; however, training on proper use 
and maintenance of hearing protection may vary 
throughout the fire service (Broyles et al., 2019).
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(g) Building collapse and other catastrophic 
events

There were few studies reporting on the 
non-fire exposures received by firefighters at 
other major natural or man-made disasters. 
These publications are summarized in Table 1.23. 
The incidents reported in these studies include: 
earthquakes (where predominant exposures 
are assumed to be dust and particulates from 
collapsed buildings, or release of radioisotopes, 
e.g. Fukushima, Japan) (Chang et al., 2003; 
Fushimi, 2012; Caban-Martinez et al., 2021; Ory 
et al., 2021); explosions (encompassing exposures 
to dust, particulates, and debris in addition to 
products of combustion) (Slottje et al., 2005, 
2006, 2007, 2008; Witteveen et al., 2007; De Soir 
et al., 2015); severe weather events, e.g. hurri-
canes (covering exposure to biologically contam-
inated floodwater, debris, etc.) (Tak et al., 2007); 
radiological events (Ory et al., 2021); chemical 
terrorism (e.g. the sarin nerve-agent attack in the 
Tokyo subway, Japan, in 1995) (Li et al., 2004); 
and chemical spills (encompassing exposure to 
specific chemical agents) (Cho et al., 2013).

Many publications (e.g. Witteveen et al., 
2007; Fushimi, 2012) on non-fire exposures in 
firefighters have also solely focused on assessing 
firefighters’ response to trauma by following the 
mental health outcomes of those attending the 
incident. 

[The Working Group noted that there was 
lack of data on exposure during catastrophic 
events. For the site of the WTC disaster, none 
of the samples were collected in the immediate 
aftermath.]

The majority of studies on firefighters’ chem-
ical and physical exposures and their health 
outcomes were focused on the WTC terrorist 
attack (Claudio, 2001; Landrigan, 2001; Guidotti 
et al., 2011). Firefighters who responded to the 
WTC disaster had substantial and repeated 
exposures to dense, aerosolized dust and smoke 
(Nordgren et al., 2002). They were exposed 

to the plume created from the initial fire and 
building collapses, to ongoing fires that lasted 
at least 3  months, and to particles that were 
resuspended during the clean-up and transport 
of debris. The destruction of the WTC complex 
pulverized ~1.2  million  tonnes of construc-
tion material (Klitzman & Freudenberg, 2003; 
Rom et al., 2010). This material was primarily 
composed of gypsum and contained calcium 
carbonate, silicate, and sulfate, as well as various 
metals. Half of the South Tower had been insu-
lated with chrysotile asbestos (which was found 
in the rubble) and millions of tonnes of fibrous 
glass. Collapse of the twin towers (WTC 1 and 
WTC 2), and then of a third building (WTC 7), 
produced an enormous dust cloud containing 
coarse and fine particulate matter (Lioy et al., 
2002; Rom et al., 2010).

The predominant sources of toxic gases to 
which firefighters were exposed included by- 
products of combustion or pyrolysis from 
burning jet fuel. The secondary reactions of these 
combustion products, and of those produced 
from the burning, vaporization, and pulveriza-
tion of materials within the towers, produced 
an array of irritant gases, fumes, and vapours 
(Landrigan et al., 2004). Specific fire effluent 
gases measured included VOCs, HCl, PAHs, 
PCBs, PBDEs, PCDD/Fs), phthalate esters, etc. 
(Lioy et al., 2002; Litten et al., 2003; McGee et al., 
2003; Offenberg et al., 2003; Landrigan et al., 
2004; Dahlgren et al., 2007; Guidotti et al., 2011).

Environmental data have shown that partic-
ulate matter originating from the WTC disaster 
differed in composition to ambient particu-
late matter, being mainly composed of debris 
from construction buildings and therefore 
containing concrete, pulverized glass, calcium 
sulfate (gypsum) and silicates, mineral glass 
fibres, alkaline metals, wood, paper, cotton, and 
components of jet fuel (Landrigan, 2001; Lioy 
et al., 2002; McKinney et al., 2002; Banauch et al., 
2003; Landrigan et al., 2004; Lippmann et al., 
2015).
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Table 1.23 Examples of firefighters’ exposures during catastrophic non-fire events

Catastrophe, location, date Exposed population Exposures and description of event Reference

Explosion of reactor at nuclear 
power plant, Chernobyl, 
Ukraine, 1986

Firefighters, public Release of radioisotopes into the atmosphere Ory et al. (2021)

Amsterdam air disaster, 
Netherlands, 1992

Firefighters No specific details on chemicals released 
Cargo aircraft crashed into apartment buildings; 
firefighters and police officers assisted with rescue 
work

Slottje et al. (2005, 2006, 2007, 2008); Huizink 
et al. (2006); Witteveen et al. (2007)

Earthquake, Taiwan, China, 
1999

Firefighters No specific details on chemicals released 
The 12-story Tunghsing building collapsed 
immediately after the earthquake; more than 1500 
emergency responders (including firefighters) were 
involved

Chang et al. (2003)

World Trade Center terrorist 
attack, USA, 2001

Firefighters Structural collapse; release of chrysotile asbestos, 
MMVFs, particulate matter, VOCs, sVOCs, 
hydrochloric acid, PAHs, PCBs, PBDEs, PCDD/Fs, 
fire retardants, phthalate esters, and metals

Clark et al. (2001); Claudio (2001); Lioy et al. (2002); 
McKinney et al. (2002); Banauch et al. (2003); 
Edelman et al. (2003); Litten et al. (2003); McGee 
et al. (2003); Offenberg et al. (2003); Landrigan et al. 
(2004); Moline et al. (2006); Dahlgren et al. (2007); 
Rom et al. (2010); Guidotti et al. (2011); Lippmann 
et al. (2015); Weiden et al. (2015)

Ghislenghien gas explosion, 
Belgium, 2004

Survivors (including 
firefighters) 
Public

Debris from gas pipe and buildings projected up 
to 6 km away from the epicentre; air vibrations 
registered. 
Large explosion that instantly killed 24 people; only 
two firefighters from the first crew survived the 
initial blast and 132 people were wounded

De Soir et al. (2015)

Tokyo subway disaster, Japan, 
1995

Firefighters Terrorist attack with release of sarin nerve gas Li et al. (2004)

Hurricanes Katrina and Rita, 
Louisiana, USA, 2005

Firefighters Floodwater exposure associated with physical health 
symptoms 12 weeks after Hurricane Katrina 
Career firefighters involved in rescue and recovery 
activities while maintaining normal fire-suppression 
duties

Tak et al. (2007)

The Great East Japan 
earthquake, 2011

Firefighters No specific details on chemicals released Fushimi (2012)

Fukushima nuclear power 
plant, north-east Japan, 2011

Plant workers, public Release radioisotopes into the atmosphere Ory et al. (2021)
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Catastrophe, location, date Exposed population Exposures and description of event Reference

Hydrogen fluoride spill 
accident, Republic of Korea, 
2012

Firefighters Exposure to hydrogen fluoride [assumed, no 
measurement/quantification of exposure]

Cho et al. (2013)

Surfside building collapse, 
Florida, USA, 2021

Firefighters Exposure to PAHs (from around the building pile) Caban-Martinez et al. (2021)

MMVFs, man-made vitreous fibres; PAHs, polycyclic aromatic hydrocarbons; PBDEs, polybrominated diphenyl ethers; PCBs, polychlorinated biphenyls; PCDD/Fs, polychlorinated 
dibenzo-para-dioxins/dibenzofurans; sVOCs, semi-volatile organic compounds; VOCs, volatile organic compounds.

Table 1.23   (continued)
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In data on ambient air pollution reported by 
nearby regional monitoring stations, airborne 
particulate matter mass concentrations were 
measured in only one or two size bands: PM2.5 
(diameter, ≤  2.5  µm) and/or PM10 (diameter, 
≤  10  µm) (McGee et al., 2003; Guidotti et al., 
2011). Concentrations of a mixture of airborne, 
respirable particulate matter were between 1 and 
100 mg/m3 (Weiden et al., 2015).

Additionally, more than 95% of the mass of 
WTC dust particles were found to be larger than 
10 µm in diameter. The high content of pulverized 
cement made the dust highly caustic, with a pH 
in the range of 9 to 11 (Lioy et al., 2002; Banauch 
et al., 2003; Landrigan et al., 2004). In addition 
to fibrous and alkaline materials, samples of 
larger WTC particulate matter also contained 
various metals (Landrigan et al., 2004; Moline 
et al., 2006). Samples of smaller particular matter 
(i.e. PM2.5) predominantly contained calcium 
(or calcium carbonate/bicarbonate), chlorine, 
and sulfuric oxide compounds originating from 
construction materials such as cement, concrete 
aggregate, ceiling tiles, and wallboards (Clark 
et al., 2001; Edelman et al., 2003; Gavett, 2003).

One study of the building collapse in June 
2021 in Surfside, Florida, USA, deployed sili-
cone-based wristbands to measure ambient 
PAHs around the building pile. Wristbands were 
placed on the southern, western, and northern 
perimeters of the building collapse before the 
controlled demolition. A total of 29 wristbands 
were deployed for ambient sampling around the 
collapse, and the PAHs found at highest concen-
trations were phenanthrene, fluoranthene, and 
pyrene. Wristbands were found to be a useful 
passive sampling device to document levels of 
various PAHs in the immediate environment 
of the building collapse where urban search 
and rescue firefighters were working (Caban-
Martinez et al., 2021).

(h) Other exposures

Hundreds of combustion by-products may 
be produced during fires, especially fires that 
contain various materials and chemistries. This 
section has covered some of the most common 
combustion by-products likely to be encountered 
by firefighters, but there are certainly others that 
could pose long-term health risks. The loca-
tions where firefighters work may result in other 
occupational exposures. For example, airport 
firefighters may have additional exposures from 
aircraft (i.e. jet engines), which are known to 
produce ultrafine particulate matter and other 
pollutants (Stacey, 2019).

One area of ongoing research is firefighters’ 
exposure to dioxins and furans. PCDD/Fs and 
PBDD/Fs may be produced when burning certain 
types of material, including halogenated poly-
mers and electronics. For example, Organtini 
et al. (2015) measured several mixed halogenated 
dibenzofurans (PXDFs) and PBDFs in fire debris 
(at levels of parts per million) from simulated 
household fires (which included furnishing and 
electronics). Electronics may also contain PCBs 
(some classified in IARC Group  1), which are 
another class of hazardous compounds to which 
firefighters may be exposed. See Section  1.3.1 
for more information on the possible sources of 
these compounds during firefighting.

Only a few studies have evaluated fire-
fighters’ exposures to PCDD/Fs, PBDD/Fs, 
and PCBs (see Table  1.21, and Table S1.22, 
Annex 1, Supplementary material for Section 1, 
Exposure Characterization, online only, avail - 
able from: https://publications.iarc.fr/615), and 
most involved biological moni toring. 
1,2,3,4,6,7,8-Heptachlorodibenzo-para-dioxin 
(HpCDD) has been detected on firefighting 
equipment and clothing (Hsu et al., 2011) and 
measured in serum samples from firefighters in 
California, USA, and fire investigators in Taiwan, 
China, at concentrations above those for the 
referent general population (Hsu et al., 2011; Shaw 

https://publications.iarc.fr/615
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et al., 2013). Serum concentrations of HpCDD 
were significantly related to firefighting activity 
in WTC responders (Edelman et al., 2003). These 
and other biomonitoring studies evaluating fire-
fighters’ exposure to PCDD/Fs, PBDD/Fs, and 
PCBs are discussed in Section 1.5.1(i).

Other areas of ongoing research pertain 
to firefighters’ exposures from fires involving 
new technologies or materials, including lith-
ium-ion batteries, nanomaterials, and other 
new compounds or chemicals. Fires involving 
lithium-ion batteries, for example, are intense 
and require tremendous amounts of water and 
extended time to fully extinguish (Wang et al., 
2012; Larsson et al., 2014; US EPA, 2021b). [The 
Working Group noted that the composition of 
effluents from these types of fire are not fully 
understood. The extended response times for 
these fires may increase firefighters’ exposures.]

(i) Biomarkers of exposure

A summary of biomarkers of exposure to 
agents other than fire smoke and PAHs is provid- 
ed in the text below and summarized in Table 1.24. 
Additional details are provided in Table S1.25 
(Annex 1, Supplementary material for Section 1, 
Exposure Characterization, online only, avail-
able from: https://publications.iarc.fr/615). Gen - 
eral considerations on absorption, distribution, 
metabolism, and excretion are described in 
Section  1.4.2(e). Most of these studies involved 
career firefighters in the USA, with municipal 
firefighters being the most frequently studied 
when the type of firefighter was listed; these 
studies reported mainly on serum measure-
ments, followed by blood and urine.

Inhalation is the major route for asbestos 
exposure, and asbestos fibres are distributed 
predominantly into the lungs and pleura. [No 
studies on biomarkers of asbestos exposure 
in firefighters were identified by the Working 
Group, but specific pulmonary abnormalities 
can indicate exposure. In a study of 212 New 
York City firefighters (mean age, 57 years), 42 had 

pleural thickening and/or parenchymal abnor-
malities on chest radiograph and/or computed 
tomography, including 20 firefighters without 
reported prior exposure to asbestos (Markowitz 
et al., 1991).]

The major exposure route for PBDEs in the 
general population is ingestion, followed by 
dermal exposure and inhalation (Lorber, 2008). 
PBDEs are distributed into lipophilic tissues, 
and overall metabolism rates are slow; 40% of 
BDE-47, 16% of BDE-99, 6% of BDE-100, and 2% 
of BDE-153 is excreted in the urine in mice by 
5 days after administration (Staskal et al., 2006). 
In 12 firefighters in San Francisco, USA, who had 
responded to a fire within the previous 24 hours, 
the sum of serum concentrations of PBDE was 
two- to threefold that reported for the general 
US population (Shaw et al., 2013). In 101 fire-
fighters in southern California, USA, in 2010–
2011, serum concentrations of BDE-28, BDE-47, 
BDE-100, and BDE-153 were significantly higher 
than in participants representative of the general 
US population in the 2003–2004 National Health 
and Nutrition Examination Survey (NHANES). 
Lower serum PBDE levels in firefighters were 
associated with turnout gear cleaning and 
storage in open rooms after fires (Park et al., 
2015). In 36 US firefighters assessed before and 
after responding to controlled residential fires 
in 2015, only BDE-209 (out of 12 PBDEs quan-
tified) pre- and post-fire serum concentrations 
were higher than those in the 2018 NHANES 
comparison population; the pre- to post-fire 
change was not significant (Mayer et al., 2021). 
In 92 male firefighters from Busan, Republic of 
Korea, compared with 70 male non-firefighters 
from the same area, the summed concentration 
of 27 PBDEs was higher in firefighters than in 
the general population, and there was a positive 
correlation between PBDE levels and duration of 
service for firefighters (Ekpe et al., 2021).

PCDD/Fs and PBDD/Fs are generated during 
combustion. PCDDs and PCDFs distribute 
predominantly to the liver and adipose tissue; 

https://publications.iarc.fr/615
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Table 1.24 Biomarkers used to assess firefighters’ exposures to agents other than smoke

Analyte Sample 
type

Concentration References

Minimum Maximum

Polybrominated diphenyl ethers (PBDEs)     
BDE-28, BDE-47, BDE-99, BDE-100,  
BDE-153, BDE-197, BDE-207, BDE-209

Serum 0.1 ng/g lipid 253 ng/g lipid Shaw et al. (2013); Park et al. (2015)

BDE-28, BDE-47, BDE-99, BDE-100,  
BDE-153, BDE-209

Blood NR NR Mayer et al. (2021)

PBDEs (sum of 27) Serum 1.58 ng/g lipid 95.2 ng/g lipid Ekpe et al. (2021)
Polychlorinated dibenzo-para-dioxins and dibenzofurans (PCDD/Fs)
1,2,3,6,7,8-HxCDD, 1,2,3,4,6,7,8-HpCDD, 
1,2,3,4,6,7,8-HpCDF

Serum ND 674 pg/g lipid Shaw et al. (2013)

2,3,4,7,8-PeCDF, 1,2,3,4,7,8-HxCDF, 
1,2,3,6,7,8-HxCDF, 2,3,4,6,7,8-HxCDF

Serum 2.24 pg/g lipid NR Mayer et al. (2021)

PCDD/Fs (sum of 17) Serum 6.3 pg (TEQ)/g lipid 18 pg (TEQ)/g lipid Hsu et al. (2011)
Polychlorinated biphenyls (PCBs)     
PCB-66, PCB-74, PCB-99, PCB-118, 
PCB-138, PCB-153, PCB-156, PCB-170, 
PCB-180, PCB-183, PCB-187, PCB-194, 
PCB-203

Serum 1.09 ng/g lipid 15.4 ng/g lipid Park et al. (2015)

PCB-105, PCB-118, PCB-157, PCB-167 Serum 1.02 ng/g lipid 105.76 ng/g lipid Chernyak et al. (2012)
PCBs (sum of 38) Serum 36 ng/g lipid 317 ng/g lipid Shaw et al. (2013)
Organophosphate and other flame retardants   
BCEtP, BDCPP, DPCP, DBuP, TBBPA Serum NR  NR Clarity et al. (2021)
BCEtP, BCPP, BDCPP, DEP, DETP, 
DEDTP, DMP, DMTP, DMDTP, DBuP, 
DPhP, IPPPP, TBBA, TBPPP

Urine < LOD 300 ng/mL Jayatilaka et al. (2019)

Per- and polyfluoroalkyl substances     
PFHxS Serum 0.22 ng/mL 326 ng/mL Jin et al. (2011); Shaw et al. (2013); Laitinen et al. (2014); 

Dobraca et al. (2015); Rotander et al. (2015a, b); Khalil 
et al. (2020); Leary et al. (2020); Trowbridge et al. (2020); 
Clarity et al. (2021); Goodrich et al. (2021); Graber et al. 
(2021)

PFOS Serum < LOD  391 ng/mL Jin et al. (2011); Shaw et al. (2013); Laitinen et al. (2014); 
Dobraca et al. (2015); Rotander et al. (2015a, b); Khalil 
et al. (2020); Leary et al. (2020); Trowbridge et al. (2020); 
Clarity et al. (2021); Goodrich et al. (2021); Graber et al. 
(2021)

PFDS Serum ND 0.1 ng/mL Shaw et al. (2013)
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Analyte Sample 
type

Concentration References

Minimum Maximum

PFHpA Serum < LOD  1 ng/mL Shaw et al. (2013); Dobraca et al. (2015); Rotander et al. 
(2015b); Trowbridge et al. (2020)

PFOA Serum 0.25 ng/mL 7535 ng/mL Jin et al. (2011); Shaw et al. (2013); Laitinen et al. (2014); 
Dobraca et al. (2015); Rotander et al. (2015b); Khalil 
et al. (2020); Leary et al. (2020); Trowbridge et al. (2020); 
Clarity et al. (2021); Graber et al. (2021); Goodrich et al. 
(2021)

PFNA Serum < 0.06 ng/mL 17.95 ng/mL Jin et al. (2011); Shaw et al. (2013); Laitinen et al. (2014); 
Dobraca et al. (2015); Rotander et al. (2015b); Khalil 
et al. (2020); Leary et al. (2020); Trowbridge et al. (2020); 
Clarity et al. (2021); Goodrich et al. (2021); Graber et al. 
(2021)

PFDA Serum < LOD 20.7 ng/mL Shaw et al. (2013); Dobraca et al. (2015); Rotander et al. 
(2015b); Khalil et al. (2020); Trowbridge et al. (2020); 
Graber et al. (2021); Clarity et al. (2021); Goodrich et al. 
(2021)

PFUnDA Serum 0.1 ng/mL 10.85 ng/mL Shaw et al. (2013); Dobraca et al. (2015); Khalil et al. 
(2020); Trowbridge et al. (2020); Clarity et al. (2021); 
Graber et al. (2021); Goodrich et al. (2021)

PFBS Serum < LOD 0.4 ng/mL Dobraca et al. (2015); Rotander et al. (2015b); Trowbridge 
et al. (2020); Clarity et al. (2021)

PFOSA Serum NR 0.4 ng/mL Dobraca et al. (2015)
Me-FOSAA Serum NR  3.80 ng/mL Dobraca et al. (2015); Khalil et al. (2020); Goodrich et al. 

(2021); Graber et al. (2021)
Et-FOSAA Serum NR 1.00 ng/mL Dobraca et al. (2015)
PFTrDA Serum < 0.06 ng/mL 28.5 ng/mL Dobraca et al. (2015); Rotander et al. (2015b)
PFDoA Serum 0.13 ng/mL 0.15 ng/mL Dobraca et al. (2015); Graber et al. (2021)
PFBA Serum < LOD 0.99 ng/mL Rotander et al. (2015b); Trowbridge et al. (2020)
PFHxA Serum < LOD < LOD Trowbridge et al. (2020)
Sb-PFOA Serum ND ND Goodrich et al. (2021)
Sm-PFOS Serum 1.91 ng/mL 2.23 ng/mL Goodrich et al. (2021)
Heavy metals    
Antimony Serum NR NR Salama & Bashawri (2017)
Arsenic Serum NR NR Al-Malki (2009)
Cadmium Blood 0.18 µg/L 0.21 µg/L Dobraca et al. (2015)
Cadmium Serum NR NR Al-Malki (2009); Salama & Bashawri (2017)

Table 1.24   (continued)
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Analyte Sample 
type

Concentration References

Minimum Maximum

Lead Blood 0.87 µg/dL 64.7 µg/L Edelman et al. (2003); Dobraca et al. (2015); Kim et al. 
(2020b)a; Allonneau et al. (2021)

Lead Serum NR NR Al-Malki (2009); Salama & Bashawri (2017)
Mercury Blood 2.36 µg/L 3.30 µg/L Dobraca et al. (2015)
Mercury Serum < LOD 16 µg/L Al-Malki (2009); Smith et al. (2013b); Salama & Bashawri 

(2017)
Uranium Urine NR NR Edelman et al. (2003)

a [The blood lead levels reported in Kim et al. (2020b) probably have a unit error, as they are reported as mg/dL (not µg/dL), which would exceed reported fatal levels.]
BCPP, bis(1-chloro-2-propyl) phosphate; BCEtP, bis(2-chloroethyl) phosphate; BDCPP, bis(1,3-dichloro-2-propyl) phosphate; BDE, brominated diphenyl ether; DBuP, dibutyl-n-
phosphate; DEDTP, diethyl dithiophosphate; DEP, diethyl phosphate; DETP, diethyl thiophosphate; DMDTP, dimethyl dithiophosphate; DMP, dimethyl phosphate; DMTP, dimethyl 
thiophosphate; DpCP, di-para-cresyl phosphate; DPhP, diphenyl phosphate; Et-FOSAA, 2-(N-ethyl-perfluorooctanesulfonamido) acetic acid; HpCDD, heptachlorodibenzo-para-
dioxins; HpCDF, 1,2,3,4,6,8,9-heptachlorodibenzofuran; HxCDD, 1,2,3,7,8,9-hexachlorodibenzo-para-dioxin; HxCDF, 1,2,4,6,8,9-hexachlorodibenzofuran; IPPPP, 2-((isopropyl)
phenyl)phenyl phosphate; LOD, limit of detection; Me-FOSAA, 2-(N-methyl-perfluorooctanesulfonamido) acetic acid; ND, not determined; NR, not reported; PFBA, perfluorobutanoic 
acid; PFBS, perfluorobutane sulfonic acid; PFDA, perfluorodecanoic acid; PFDoA, perfluorododecanoic acid; PFDS, perfluorodecane sulfonate; PFHpA, perfluoroheptanoic acid; 
PFHxA, perfluorohexanoic acid; PFHxS, perfluorohexanesulfonic acid; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonate; PFOSA, 
perfluorooctane sulfonamide; PFTrDA, perfluorotridecanoic acid; PFUnDA, perfluoroundecanoic acid; Sb-PFOA, branched PFOA isomers; Sm-PFOS, perfluoromethylheptane sulfonate 
isomers; TBBA, 2,3,4,5-tetrabromobenzoic acid; TBBPA, tetrabromobisphenol A; TBPPP, 4-((tert-butyl)phenyl)phenyl phosphate; TEQ, toxic equivalent quantity.

Table 1.24   (continued)
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the 2,3,7,8-substituted PCDDs and PCDFs are 
highly retained in tissues and body, resulting 
in elimination half-lives of 1–7  years (Van den 
Berg et al., 1994). PBDD/Fs are also present 
as contaminants in brominated flame retar-
dants, and their toxicokinetics are generally 
similar to those of PCDD/Fs (van den Berg 
et al., 2013). Serum PCDD/F concentrations in 
16 male firefighters from Taiwan, China, were 
not significantly different from those in the 
male general population, but PCDD/F levels in 
four fire-scene investigators were higher than 
those in the general population (Hsu et al., 
2011). Comparing 13 current male firefighters, 
17 former firefighters, and 10 non-firefighters in 
eastern Siberia, Russian Federation, serum levels 
of HpCDD and 1,2,3,7,8,9-hexachlorodibenzo-
furan (HxCDF) levels were higher in current 
firefighters than in non-firefighters, and serum 
levels of octachlorodibenzofuran (OCDF) were 
higher in current firefighters than in former 
firefighters and non-firefighters (Chernyak et al., 
2012). In 12 firefighters in San Francisco after a 
fire exposure, serum concentrations of HpCDD 
exceeded those found in the general population 
of the USA (Shaw et al., 2013). In 36 US fire-
fighters exposed to controlled structure fires, 
pre-fire serum concentrations of 2,3,4,7,8-penta-
chlorodibenzofuran (PeCDF) (IARC Group 1, 
carcinogenic to humans) were significantly above 
those in the general population, as were pre- and 
post-fire serum concentrations of 1,2,3,4,7,8-
HxCDF, 1,2,3,6,7,8-HxCDF, and 2,3,4,6,7,8-
HxCDF (Mayer et al., 2021).

PCBs are distributed into lipophilic tissues. 
The rate of metabolism varies by congener; metab-
olism is required before clearance, and elimi-
nation is generally slow (Matthews & Dedrick, 
1984). After a single dose in humans, measured 
elimination half-lives for PCB-138, PCB-153, and 
PCB-180 were 321, 338, and 124 days respectively 
(Bühler et al., 1988). In current firefighters from 
eastern Siberia, Russian Federation, previously 
exposed to the 1992 cable factory fire in the city 

of Shelekhov involving more than 1000  tonnes 
of PVC, polyethylene, and other plastics, serum 
concentrations of PCB-105 and PCB-118 were 
higher than in non-firefighters, and concen-
trations of PCB-157 and PCB-167 were higher 
in both current and former firefighters than in 
non-firefighters (Chernyak et al., 2012). In 12 
firefighters in San Francisco 24 hours after a fire 
event in 2009, the sum of PCB serum concen-
trations was lower than that reported for the 
general population of the USA in 2003–2004 
(Shaw et al., 2013). In 101 firefighters in southern 
California, serum PCB concentrations measured 
in 2010–2011 were lower than in the 2003−2004 
NHANES comparison group (Park et al., 2015). 
[The Working Group noted that comparison of 
serum PCB levels in firefighters with those of 
the general population sampled in a different 
time-period can introduce a temporal bias.]

Inhalation, dermal contact, and ingestion 
from the diet are all important routes of expo-
sure to OPFRs (Hou et al., 2016). OPFRs are 
more rapidly metabolized than PBDEs (Geyer 
et al., 2004; Hou et al., 2016). In the USA, urine 
samples collected from firefighters 20  minutes 
or 3  hours after performing firefighting on 
controlled structure  fires in 2010–2011 were 
compared with those collected from members 
of the general population in Atlanta in 2015. 
Urinary metabolites including bis(2-chloro-
ethyl) phosphate (BCEtP), bis(1-chloro-2-propyl) 
phosphate, bis(1,3-dichloro-2-propyl) phos-
phate, di-n-butyl phosphate, diphenyl phos-
phate (DPhP), 2,3,4,5-tetrabromobenzoic acid 
(TBBA), 2-((isopropyl)phenyl)phenyl phosphate, 
and 4-((tert-butyl)phenyl)phenyl phosphate, 
and metabolites including dimethyl phosphate, 
dimethyl thiophosphate, dimethyl dithiophos-
phate, diethyl phosphate, diethyl thiophosphate, 
and diethyl dithiophosphate were measured at 
higher concentrations in the firefighters than in 
the general population (Jayatilaka et al., 2019). 
In 36 US firefighters exposed to controlled struc-
ture fires, urinary concentrations of BCEtP and 
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DPhP measured before the fire were found to 
be significantly increased 3  hours after the fire 
(Mayer et al., 2021).

PFAS generally have the highest absorption 
through ingestion, with lower rates of absorption 
reported through inhalation or dermal exposure 
(Pizzurro et al., 2019). The elimination half-lives 
of PFAS vary, with a range of 44 days to 2.93 years 
in a study involving AFFF-contaminated drink-
ing-water (Xu et al., 2020). In 12 firefighters in 
San Francisco after a fire event in 2009, perfluoro-
octanoic acid (PFOA) and perfluorononanoic 
acid (PFNA) concentrations in serum were twice, 
and perfluorooctanesulfonic acid (PFOS) and 
perfluorohexanesulfonic acid (PFHxS) concen-
trations were half those in the US general popu-
lation in the NHANES survey in 2003–2004 
(Shaw et al., 2013). 

Comparing 38 firefighters in Arizona, USA, 
and matched NHANES participants, fire-
fighters had elevated PFHxS and lower PFNA 
and perfluoroundecanoic acid serum concen-
trations (Khalil et al., 2020). In eight airport 
firefighters training with AFFF in Finland, 
PFHxS and PFNA levels increased after three 
consecutive training sessions despite relatively 
low levels of these PFAS in the AFFF (Laitinen 
et al., 2014). In 37 firefighters in Ohio and West 
Virginia, USA, compared with the general popu-
lation from the same area (selected as part of a 
PFAS-exposure related lawsuit), serum levels 
of PFHxS were elevated (Jin et al., 2011). In 101 
firefighters in southern California examined in 
2010–2011 compared with participants in the 
2009 NHANES, perfluorodecanoic acid (PFDA) 
serum concentrations were three times as high 
in the firefighters, and perfluoroheptanoic acid 
(PFHpA) concentrations increased with use of 
class A firefighting foam (Dobraca et al., 2015). 
[The Working Group noted that levels of most 
legacy PFAS are decreasing in the general popu-
lation of the USA, so levels in 2009 are lower 
than those measured in 2003–2004.] In samples 
collected in 2013 from 20 firefighters with AFFF 

exposure in Queensland, Australia, compared 
with samples collected in 2011–2012 from 
20 non-firefighters, serum PFOS and PFHxS 
levels were markedly elevated in the firefighters 
(Rotander et al., 2015a). In 149 firefighters in 
Australia with AFFF exposure collected in 2013 
compared with the general Australian popula-
tion, serum concentrations of PFOS and PFHxS 
were positively associated with years of jobs 
with AFFF contact; study participants who had 
worked for ≤ 10 years had PFOS levels similar to 
those of the general population (Rotander et al., 
2015b). In 86 female firefighters in San Francisco, 
USA, compared with female office workers, fire-
fighters had higher serum concentrations of 
PFHxS, perfluoroundecanoic acid, and PFNA 
(Trowbridge et al., 2020). In 36 airport and nine 
suburban firefighters in Ohio, USA, enrolled in 
2018–2019 compared with participants in the 
2015–2016 NHANES, serum concentrations 
of PFHxS were elevated in the firefighters, and 
concentrations of PFOS were higher in airport 
firefighters than in suburban firefighters (Leary 
et al., 2020). In 116 volunteer firefighters from 
New Jersey, USA, in 2019 compared with partici-
pants in the 2015–2018 NHANES, serum concen-
trations of perfluorododecanoic acid (PFDoA), 
PFNA, and PFDA were elevated among the fire-
fighters, and concentrations of both PFDoA and 
PFDA were positively associated with years of 
firefighting (Graber et al., 2021).

[The Working Group noted that for recent 
fire-suppression events, biomonitoring of fire-
fighters for some organic chemicals with a long 
elimination half-life (e.g. PFAS or PBDEs) is 
extremely challenging, particularly since non-oc-
cupational exposure can be extensive (Rotander 
et al., 2015b; Trowbridge et al., 2020).]

The toxicokinetics of metals vary among the 
individual metals; ingestion and inhalation are 
generally the most important routes of expo-
sure, but some metals bioaccumulate more than 
others (Elder et al., 2015). In 49 firefighters in 
Jeddah and Yanbu cities, Saudi Arabia, compared 
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with 23 non-firefighters, there were no signifi-
cant differences in concentrations of any of the 
metals (i.e. antimony, arsenic, cadmium, lead, 
and mercury) measured in serum (Al-Malki, 
2009). In 66 wildland firefighters compared with 
39 non-firefighters in the western USA in 2007–
2009, no significant difference in whole-blood 
mercury concentrations was found (Smith et al., 
2013b). In 101 firefighters in southern California, 
whole-blood mercury concentrations exceeded 
values for participants in NHANES 2009–2010; 
higher cadmium concentrations were associ-
ated with washing hands less frequently, and 
higher mercury concentrations with responding 
to brush fires in the last year (Dobraca et al., 
2015). In 100 male firefighters from Dammam 
and Khobar cities, Saudi Arabia, compared with 
50 non-firefighters, there were no differences in 
whole-blood metal concentrations (Salama & 
Bashawri, 2017). In a study of 168 firefighters 
who responded to the Notre Dame cathedral 
fire in Paris, France, only one quarter had blood 
lead concentrations above the 95th percentile of 
the general population of France, and blood lead 
concentrations had dropped at the 1-month and 
6-month follow-up evaluations (Allonneau et al., 
2021). Edelman et al. reported increased blood 
concentrations of lead in firefighters responding 
to the WTC fire and collapse compared with 
control firefighters (Edelman et al., 2003) 

1.5.2 Organizational and psychosocial 
factors, and infectious agents

(a) Shift work

Shift work is a schedule of work that includes 
working hours other than traditional daytime 
hours (i.e. Monday to Friday from 08:00 to 16:00). 
Night shift work has been classified by IARC as 
Group 2A, probably carcinogenic to humans (see 
Section 1.1, Table 1.1). Other associated effects on 
lifestyle factors (e.g. smoking behaviour, amount 
of physical activity during leisure time, eating 
behaviour, and consumption of alcohol (Bøggild 

& Knutsson, 1999; Bushnell et al., 2010; Pepłońska 
et al., 2014) have been described in more detail in 
IARC Monographs Volume 124 (IARC, 2020).

Municipal firefighters may work 10-hour day 
shifts and 14-hour night shifts, 24-hour shifts 
or 48-hour shifts; thus, firefighters are exposed 
to night shift work. [There is no internation-
ally standard shift work pattern or rotation for 
firefighters. Some examples from the literature 
are provided in this section (Table  1.26; EPSU, 
2006).]

Firefighters in the Republic of Korea typically 
experience 3-, 6-, 9-, or 21-day cycles (Kwak et al., 
2020). The 3-day cycle is 24 hours on, 48 hours 
off. The 6-day cycle consists of two day shifts, 
two night shifts, and two  rest days (days off). 
The 9-day cycle consists of three day shifts and 
three night shifts; each night shift is succeeded 
by one rest day. In the 21-day cycle, the first week 
consists of five day shifts, followed by two  rest 
days. The second week consists of 12-hour night 
shifts alternating with a rest day until day 14, 
which is a 24-hour shift. The third week starts 
with a rest day, followed by two 12-hour night 
shifts (each succeeded by one rest day). On day 
20, the firefighter works a 24-hour shift. The last 
day is a rest day (Jeong et al., 2019).

The 1974 Salaries and Working Conditions 
Survey indicated that 58% of US municipal 
firefighters work a 24-hour shift, 41% work a 
10–14-hour or 9–15-hour shift, and <  1% work 
a 8–12-hour or 48-hour shift (NIOSH, 1977). 
[The Working Group noted that schedules have 
changed over time. Although many schedules 
exist among firefighters, nowadays almost all 
US fire departments operate a 24-hour rotation. 
Typical work schedules are 24 hours on/48 hours 
off, 48 hours on/96 hours off, and the “Kelly shift” 
schedule (24  hours on/24  hours off/24  hours 
on/24 hours off/24 hours on/96 hours off).] In a 
recent cross-sectional study, 80% of female career 
firefighters reported schedules that involved 
working ≥ 24 hours per shift (Jung et al., 2021a).
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Table 1.26 Examples of reported standard work shift patterns for firefighters, by countrya

Country Work shift pattern and other remarks Reference

Austria 24 h on/24 h off EPSU (2006)
Australia and some Canadian provinces 10/14 rotating shift schedule: two consecutive 10-h day shifts followed by two 

consecutive 14-h night shifts, then 4 days off
Bonnell et al. (2017)

Belgium 8–12-h shifts EPSU (2006)
Czechia, Denmark 24-h shifts EPSU (2006)
Estonia, Finland 24 h on/72 h off EPSU (2006)
France 24-, 12- and 8-h shifts all possible EPSU (2006)
Germany, Netherlands, Poland, Slovakia, 
Türkiye

24 h on, 48 h off EPSU (2006); Demiralp & Özel 
(2021)

Ireland 9-h days and 15-h nights – with 2 days and 1 night followed by 2 nights and 
1 day, followed by 3 days off

EPSU (2006)

Italy, Luxembourg, Slovenia 12-h day/24 h off/12-h night/48 h off EPSU (2006)
Norway 4–7 and 7–4 shifts Monday to Friday with 24- or 48-h shifts at weekends EPSU (2006)
Portugal 12-h shifts EPSU (2006)
Republic of Korea 3-, 6-, 9-, or 21-day cycles Kwak et al. (2020)
United Kingdom 2 days, 2 nights, and 3 days off EPSU (2006)
USA and some Canadian provinces [24-h rotation] NIOSH (1977); Jung et al. (2021a)
EPSU, European Public Service Union.
a Reported standard shift patterns may not apply to wildland firefighters.
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[Volunteer, retained, and on-call firefighters 
may not have a set shift schedule.]

In contrast to those of municipal firefighters, 
the work schedules of wildland firefighters vary 
greatly depending on the severity of the fire 
season. For Canadian and US wildland fire-
fighters, for example, these schedules can go up 
to 14 consecutive days (up to 16 hours of service 
per day), with 2 or 3 days of travel at either end, 
before a minimum of 2 days of rest is mandated 
(National Multiagency Coordination Group, 
2002; McGillis et al., 2017). Incidentally, assign-
ments may be extended up to 30  days (NIFC, 
2022b). In Australia, wildland firefighters are 
typically rostered for a 12-hour day or night shift, 
but this can go up to 16 hours for 3–5 consecutive 
days, depending on fire severity and available 
personnel (Vincent et al., 2016).

Shift work is inevitable in firefighting, and 
most firefighters work rotating or extended shifts. 
Firefighters may sleep during the night, unless 
called out to an emergency event (Pukkala et al., 
2014). [However, the opportunity for and quality 
of sleep during the night may vary by location 
and employer.] For example, the self-reported 
sleeping duration of wildland firefighters varies 
between 3 and 7 hours (Vincent et al., 2018). In 
a study among 109 US career firefighters, 73% 
reported poor sleep quality, and sleep distur-
bance was largest for the Kelly schedule (Billings 
& Focht, 2016).

(b) Psychosocial factors 

The firefighter work environment can be 
characterized as high stress, high risk, and with 
low control over job-related tasks and activi-
ties (Lourel et al., 2008). Adverse psycholog-
ical effects of working as a firefighter may arise 
from working in unsafe physical conditions 
and witnessing traumatic incidents, and other 
inherent characteristics of the job (Smith et al., 
2001; Brown et al., 2002; Duran et al., 2018). 
Firefighter working conditions include long 
periods of inactivity followed by periods of high 

activity, working night shifts, and organizational 
issues, including the adequacy of organizational 
policies, programmes, and practices, and the 
degree of management and co-worker support.

Research on the psychological impact of 
firefighting has largely focused on estimating 
the prevalence of post-traumatic stress disorder, 
depression, and other psychological illness (i.e. 
mood and substance-abuse disorders) (Saijo 
et al., 2012; Armstrong et al., 2014; Fraess-Phillips 
et al., 2017; Schnell et al., 2020). Prevalence varies 
substantially depending on the specific group 
of firefighters studied and the measures used 
to determine the prevalence of post-traumatic 
stress disorder. Psychological stressors are asso-
ciated with an increase in alcohol, tobacco, and 
drug use (Kimbrel et al., 2011; Smith et al., 2011; 
Meyer et al., 2012; Gulliver et al., 2018; Lebeaut 
et al., 2020). Chronic stress can also cause 
corresponding changes in the body’s immune 
function and inflammatory response; this is 
significant because a long-term inflammatory 
response and the decline of the body’s immune 
surveillance capabilities are two out of several 
potential mechanisms implicated in tumorigen-
esis (Murphy et al., 1999; Huang et al., 2010b; 
Huang & Acevedo, 2011).

(c) Exposure to infectious agents 

Emergency medical-response duties also put 
firefighters at risk of exposure to infectious agents, 
including hepatitis B virus (HBV), hepatitis C 
virus (HCV), and human immunodeficiency 
virus (HIV), all of which are classified in IARC 
Group 1, carcinogenic to humans (see Table 1.1) 
(Baker et al., 2020). In the USA, approximately 
52% of protective service occupations (i.e. police 
officers, firefighters, transportation security 
screeners) are exposed at least once per month 
to infections in their work environment (Baker 
et al., 2020). Exposure to infectious agents occurs 
through either direct or indirect contact (Valdez 
et al., 2015). Through direct transmission, a 
pathogen (an agent that causes disease, such as 



130

IARC MONOGRAPHS – 132

a virus, bacterium, or fungus) is transmitted 
directly from an infected patient or victim to the 
firefighter. Indirect transmission occurs when 
an inanimate object (e.g. pen, clipboard, dispos-
able resuscitator bag valve mask, etc.) serves as a 
temporary reservoir for the infectious agent.

A report from the US Centers for Disease 
Control and Prevention documented that first 
responders (including firefighters) were not more 
likely to be exposed to HCV than was the general 
population (CDC, 2000). The investigators were 
not able to exclude the possibility that some first 
responders had acquired HCV infection from 
job-related exposures. A literature review by Boal 
et al. also concluded that firefighters and emer-
gency medical services personnel do not have an 
elevated seroprevalence of HCV compared with 
the general population (Boal et al., 2005). [The 
Working Group identified a paucity of scientific 
articles providing surveillance data on exposure 
to infectious agents among firefighters.]

1.6 Factors that modify or mediate 
effects of exposure

1.6.1 Personal protective equipment and 
other control measures

(a) Hierarchy of controls

The hierarchy of controls is a framework that 
supports decision-making around implementing 
feasible and effective control solutions in occupa-
tional settings (NIOSH, 2015). Under this hier-
archy, control measures are prioritized according 
to their potential effectiveness. For example, 
elimination and substitution of occupational 
hazards are ranked higher than engineering 
controls (e.g. diesel-exhaust capture), adminis-
trative controls (e.g. decontamination of gear or 
skin), and PPE. PPE is considered to be the least 
effective type of control measure, mainly because 
it relies heavily on individuals to properly wear 
and maintain it. Nevertheless, PPE is a critically 

important control measure for emergency situa-
tions in which other types of controls are diffi-
cult to employ and unlikely to eliminate the 
hazard. Hence, firefighters rely heavily upon PPE 
(respiratory and dermal protection) to control 
their exposures to particulate matter, chemicals, 
and thermal hazards.

(b) Use of personal protective equipment 

Variations in firefighting PPE exist across 
the globe and by job assignment or speci-
ality area. For example, firefighting helmets in 
Europe differ from those in the USA and Japan 
in that European helmets are designed to inte-
grate with a SCBA facepiece and do not have a 
large brim (Lee et al., 2014; Hartin, 2019). The 
types of PPE worn by fire-cause investigators 
(IAAI, 2020), industrial firefighters, hazardous 
material specialists, and other subspecialities 
of the fire service also differ. Unlike municipal 
firefighters, wildland firefighters typically wear 
light protective clothing, such as long-sleeved 
fire-resistant shirts, trousers, gloves, mid-calf 
leather boots, and hard hats, but often do not 
wear respiratory protection (Homeland Security, 
2014; Carballo-Leyenda et al., 2018; Navarro 
et al., 2019a; Koopmans et al., 2022). Some wild-
land firefighters in certain geographical regions 
may wear particulate-filtering respirators (NSW 
Rural Fire Service, 2022); however, these types 
of respirator are not effective against gases and 
vapours, including acrolein, formaldehyde, and 
carbon monoxide (De Vos et al., 2009a), and do 
not supply oxygen.

(c) Respiratory protection

Firefighters at an incident who do not wear 
respiratory protection are susceptible to a variety 
of airborne exposures. However, municipal fire-
fighters will often be wearing pressure-demand 
SCBA when battling fires, which has an assigned 
protection factor (APF) of 10 000 (OSHA, 2009) 
(see Fig. 1.18). An APF is the level of protection 
that a respirator should provide to employees 
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when the employer implements a comprehen-
sive respiratory protection programme (OSHA, 
2009). An APF of 10 000 means the respirator will 
reduce the exposure to one ten-thousandth of the 
concentration outside the SCBA. Atmosphere-
supplying respirators (including SCBA) are the 
only types permitted for immediately dangerous 
to life or health (IDLH) environments (OSHA, 
2009). On the basis of an analytical model using 
empirical data, Campbell et al. (1994) estimated 
that 95% of pressure-demand SCBA wearers 
would maintain a protection factor two orders 

of magnitude greater than 10  000. However, 
another study suggested that firefighters can 
over-breathe their SCBA during strenuous activ-
ities, highlighting the importance of fit-testing 
(Burgess & Crutchfield, 2015).

SCBA may not always be worn during 
fire emergencies. Austin et al. (2001c) tracked 
compressed air usage among firefighters in 
Montreal, Canada, and estimated that SCBA was 
worn 50% of the time at structure fires and only 
6% of the time at all types of fire. Burgess et al. 
(2003) found that SCBA was used by firefighters 

Fig. 1.18 Firefighters wearing self-contained breathing apparatus and other personal protective 
equipment

From Professor Anna A. Stec, Centre for Fire and Hazards Sciences, University of Central Lancashire, UK.
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in Arizona, USA, an average of 98%, 80%, 42%, 
and 15% of the time during extinguishment, 
entry/ventilation, overhaul, and support/standby 
functions, respectively. These studies are older, 
however, and SCBA usage has probably increased 
across the fire service (Burgess et al., 2020). Still, in 
some jurisdictions, SCBA may not be commonly 
worn by structural [municipal] firefighters during 
specific activities like vehicle fire suppression, 
overhaul, fire investigations, command/pump 
operations, or when conducting horizontal or 
vertical ventilation (Maglio et al., 2016; Jakobsen 
et al., 2020). As previously mentioned, wildland 
firefighters typically do not wear respiratory 
protection (Navarro, 2020).

Burgess et al. (2020) evaluated the impact of 
control interventions on exposures for different 
types of firefighter, including among engineers 
who typically set up away from the fire and 
often do not wear respiratory protection. When 
the engineers wore SCBA in the presence of 
smoke, they had ~40% lower PAH exposures 
(urinary metabolites) than they did before the 
intervention.

Other types of control measures in the hier-
archy of controls can be implemented during 
emergency situations to reduce inhalation expo-
sures for firefighters. For example, engineers, 
incident commanders, and support personnel 
may be able to approach and position them-
selves upwind of the fire and take advantage of 
natural ventilation (CFRA, 2012). Use of water as 
a means of controlling dust after a fire or collapse 
can help control the spread of airborne particles, 
including asbestos fibres (Kim et al., 2020a). 
Using fluorine-free foam as a suppression agent 
instead of AFFFs containing perfluoroalkyl 
acids can reduce firefighters’ exposure to PFAS 
(EC/ECHA, 2020). Firefighting tactics may also 
impact exposure levels. For example, tactics that 
involve exterior suppression as a first step before 
transitioning to interior attack have been shown 
to result in less exposure for firefighters than 
those involving interior attack alone (Fent et al., 

2020b). [The Working Group estimated that 
implementing these control measures together 
with the use of SCBA and other PPE should help 
to reduce the overall burden on the protective 
barriers of the PPE and provide greater protec-
tion to the firefighter.]

Even more control options may be avail-
able in non-emergency situations. At training 
academies, fire instructors can rotate positions 
to minimize their time within burn structures. 
Fuel packages can be selected to achieve training 
objectives while minimizing exposures. For 
example, simulated smoke and digital flames 
can be used instead of live fire for some types of 
training (Fent et al., 2019a, b). At fire stations, 
engineering controls, such as exhaust capture 
systems in vehicle bays, can be used to reduce 
firefighters’ exposure to diesel exhaust (Chung 
et al., 2020).

Another source of inhalation exposure is the 
off-gassing of contaminated turnout gear (Fent 
et al., 2015, 2017; Kirk & Logan, 2015b; Banks 
et al., 2021b). This source of exposure can be 
minimized by quickly removing the gear, reha-
bilitating away from the gear, bagging or trans-
porting the gear in a compartment other than 
the passenger cabin of the apparatus (engine) or 
personal vehicle, laundering the gear after fire-
fighting, and storing the gear in areas outside 
living quarters of the fire station.

(d) Dermal protection

In addition to the inhalation route, firefighters 
can ingest particulate matter captured through 
the mucociliary escalator of the respiratory sys- 
tem (Lippmann et al., 1980) or directly through 
the oral route from hand-to-mouth transfer of 
contamination (depending on hygiene practices). 
Firefighters can also absorb hazardous chemicals 
via the dermal route (see Section 1.4.5 for more 
information on the different routes of absorp-
tion). Firefighters’ skin can pick up contami-
nation when doffing or handling contaminated 
gear or equipment (Kesler et al., 2021). Some 
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contaminants may penetrate the protective 
barriers of the turnout gear and contact skin 
during the firefight. Studies have shown ingress of 
benzene, naphthalene, and other PAHs through 
openings in the turnout gear and have measured 
PAH contamination on skin, especially on the 
neck, wrist, and hands (Fent et al., 2014, 2017; 
Kirk & Logan, 2015b; Keir et al., 2017; Wingfors 
et al., 2018; Mayer et al., 2020; Banks et al., 2021a). 
Some chemical vapours may condense on skin as 
they cool under turnout gear. Compounds with 
low vapour pressures that contact skin are more 
likely to be absorbed, although the specific prop-
erties of the compounds, such as octanol/water 
partition coefficient, also play an important 
role (Frasch, 2002; Rauma et al., 2013). Dermal 
absorption is generally faster on areas of the body 
with thinner skin and a high cutaneous blood 
flow rate, such as the neck (VanRooij et al., 1993; 
McCarley & Bunge, 2001).

Turnout gear is often designed for the male 
anatomy, which can have an impact on its fit for 
female firefighters, leading to larger air spaces 
under the gear for females and influencing 
its thermal and vapour resistance (Nawaz & 
Troynikov, 2018; Jo et al., 2022). [The Working 
Group concluded that lack of properly fitting 
turnout gear is likely among female firefighters 
in general and could result in greater contami-
nant ingress and dermal exposure.] Tightening 
the interfaces around the neck, wrists, waist, 
and boots, and wearing particle-blocking hoods 
may impede the penetration of some PAH 
compounds (Ormond et al., 2019; Kesler et al., 
2021). However, there is concern that these inter-
ventions could also increase the thermal strain 
for firefighters by trapping metabolic heat energy 
(Kesler et al., 2021). The micro-environment 
created under turnout gear (e.g. higher temper-
ature and humidity levels) may facilitate the 
dermal absorption rate of compounds that pene-
trate the protective barriers of the gear (Franz, 
1984; US EPA, 1992; VanRooij et al., 1993).

Most control interventions aimed at reducing 
dermal exposure have focused on measures that 
can be taken after firefighting. These interven-
tions include gross decontamination of turnout 
gear and other equipment, use of skin-cleansing 
wipes or washing skin with soap and water at the 
incident, bagging and laundering of turnout gear 
and hoods before wearing them again, and show-
ering as soon as possible after returning to the fire 
station. Fent et al. (2017) found that gross decon-
tamination using water, dish soap, and scrub-
bing was able to remove a median of 85% of PAH 
contamination on the exterior of turnout jackets, 
and that use of skin-cleansing wipes removed a 
median of 54% of PAH contamination from the 
skin. Mayer et al. (2019) found a mean reduction 
in PAH contamination in used knit hoods of 76% 
after a single laundering; however, results were 
mixed for removal of PBDEs and OPFRs. Banks 
et al. (2021c) found that laundering and water-
only decontamination did not significantly 
remove PAHs, PBDEs, or OPFRs contaminating 
turnout gear, with a few exceptions. Burgess et al. 
(2020) found that implementing several of these 
interventions (gross decontamination and segre-
gation of contaminated gear with subsequent 
laundering, skin cleaning, and showering as soon 
as possible at the station) resulted in ~36% lower 
PAH exposures (measured as urinary metabo-
lites) for firefighters compared with before the 
interventions were implemented.

While many departments have implemented 
PPE decontamination measures, such as gross 
on-scene decontamination and laundering of 
turnout gear that has been worn for a fire re- 
sponse, within the last 10  years (Horn et al., 
2021), many fire departments continue to launder 
turnout gear infrequently (e.g. once or twice 
per year) as per current minimum standards or 
because of resource limitations (NFPA, 2020a). 
SCBAs are also commonly decontaminated after 
firefighting, but this practice is likely to vary 
across the fire service (Park et al., 2022). In the 
USA, wildland firefighters commonly wear the 



134

IARC MONOGRAPHS – 132

same protective clothing over weeks and launder 
these items at home (McQuerry & Easter, 2022).

1.6.2 Other factors, including health 
behaviours

Inter-individual variability in how chemicals 
are absorbed, metabolized, and excreted may be 
related to sex or genetic differences. However, 
these factors are complex, difficult to study, and 
are largely beyond the control of the individual. 
Personal factors that may modify or mediate the 
effect of exposure that individuals have control 
over include personal hygiene, use of sunscreen 
and limiting sun exposure, nutrition, exercise, 
sleep, limiting alcohol consumption, and not 
using tobacco.

(a) Personal hygiene factors

Washing or cleaning skin after firefighting 
will help remove contaminants before they are 
absorbed into the dermis or deeper layers of skin 
where blood perfusion occurs. However, skin-
cleansing wipes, which are commonly used after 
firefighting, will not remove all contaminants 
from the skin (Fent et al., 2017). The longer chemi-
cals stay on the skin (contact time), the more likely 
they are to be absorbed (Frasch et al., 2014). [The 
Working Group agreed that showering as soon 
as possible is critical to remove any residual skin 
contamination. Washing hands before eating 
will also help reduce hand-to-mouth ingestion 
of chemical or biological contaminants. Use of 
sunscreen, especially by firefighters who spend 
substantial time outdoors, will help reduce their 
exposure to harmful UV radiation. Wearing 
long-brim hats and long-sleeved shirts during 
extended times outdoors can further minimize 
UV exposure.]

(b) Health behaviours

Eating nutritious foods, exercising, and 
maintaining a healthy BMI, while important 
for overall health, may also help lessen the 

effects of exposure. Having a strong cardio-
vascular and respiratory system can lower an 
individual’s breathing rate, which can extend 
the use of SCBA during operations and reduce 
the biological uptake of airborne contaminants 
through the lungs when respiratory protection 
is not worn (US  EPA, 2011). Many hazardous 
chemicals are lipid-soluble, and increased levels 
of body fat can act as a reservoir to store these 
compounds for longer periods (Milbrath et al., 
2009). Eating foods that are high in antioxidants, 
vitamins, and minerals can support the body’s 
natural defences against xenobiotics and oxida-
tive stress (Flora, 2009). Nutrition is especially 
important for wildland firefighters to provide the 
necessary calories to support their arduous work, 
while also providing adequate nutrients for their 
overall health (Brooks et al., 2021).

Not using tobacco products is also important 
to maintain the body’s normal defence mecha-
nisms against toxicants. Exposure to tobacco 
smoke has been shown to cause damage to the 
mucociliary escalator of the respiratory system 
and lessen the body’s ability to clear particles 
inhaled into the lungs (Xavier et al., 2013).

The human body has several mechanisms 
in place to repair cellular and DNA damage, 
regardless of the cause. These mechanisms are 
especially active during sleep. Hence, getting 
adequate and consistent sleep, including unin-
terrupted deep sleep, is important for mitigating 
the effects of occupational and non-occupational 
exposures (Atrooz & Salim, 2020; Williams & 
Naidoo, 2020).

1.7 Regulations and guidelines

1.7.1 Occupational exposure limits

OELs for some fire effluents are presented 
in Table  1.27. Both the American Conference 
of Governmental Industrial Hygienists and the 
European Union (previously via the Scientific 
Committee on Occupational Exposure Limit 
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Table 1.27 Examples of occupational exposure limits for some fire effluentsa

Fire effluents Units TLV-TWA STEL

ACGIH EUc ACGIH EUc

Acetaldehydeb mg/m3  5 (LV)  45 (LV)
Arsenic mg/m3 0.01 0.01 (IP, BV)   
Asbestos fibres/

cm3
0.1 0.1 (BV)   

Benzened (on NIC) mg/m3 0.066e 0.66 (BV) 0.33e  
1,3-Butadiene mg/m3 4.4e 2.2 (BV)   
Cadmiumc mg/m3 0.01 TP 0.001 (IP, BV)   

0.002 R
Carbon black mg/m3 3 IP 3 (LV)   
Carbon monoxide mg/m3 29e 23 (BV)  117 (BV)
Dichloromethane (methylene chloride) mg/m3 174e 353 (IOELV)  706 (IOELV) 
Ethylbenzene mg/m3 88e 442 (IOELV) 551e 884 

(IOELV)
Formaldehyde mg/m3 0.12e 0.37 (BV) 0.37e 0.74 (BV)
Tetrahydrofuran mg/m3 150e 150 (IOELV) 590e 300 

(IOELV)
Isoprene mg/m3  8.4 (LV)  67.2 (LV)
Leadd mg/m3 0.05 0.15 (BV) 0.0005  
Lead chromate mg/m3 0.0002 (IP) 0.04 (LV)
Naphthalene mg/m3 50e 2 (LV)  8 (LV)
Particulate matter (respirable) mg/m3 No TLV but should be < 3 0.3 (LV)  2.4 (LV)
Particulate matter (total) mg/m3 No TLV but should be 

< 10
   

Pentachlorophenol mg/m3 0.5 0.05 (LV) 1 0.1 (LV)
Polychlorinated biphenyls (PCBs)  
(42% chlorine) 
(54% chlorine)

mg/m3  
1 

0.5

  1.5 (IOELV)

Polycyclic aromatic hydrocarbons 
(PAHs)d 
(benz[a]anthracene, benzo[b]
fluoranthene, chrysene, anthracene, 
benzo[a]pyrene, phenanthrene, 
acridine, or pyrene)

mg/m3 0.2 0.0005507 (LV)

Styrene mg/m3 43e 10 (LV) 86e 30 (LV)
Sulfuric acid mg/m3 0.2 TPM 0.05 TPM (IOELV)   
Tetrachloroethylene 
(perchloroethylene)

mg/m3 170e 138 (IOELV) 685e 275 (IOELV)

Trichloroethylene mg/m3 54e 54.7 (BV) 135e 164.1 (BV)
Trichloromethane (chloroform) mg/m3 49e 10 (IOELV)  5 (LV) 
ACGIH, American Conference of Governmental Industrial Hygienists; EU, European Union; IP, inhalable particulate; LV, lowest value; ppm, 
parts per million; R, respirable; STEL, short-term exposure limits; TLV, threshold limit values; TP, total particulate; TPM, thoracic particulate 
mass; TWA, time-weighted average.
a Adopted from IFA (2022).
b Acetaldehyde – ceiling value available: ACGIH (25 ppm); EU (25 ppm, LV).
c When a TLV-TWA was not available, an EU binding value (BV) (Directive 2004/37/EC – carcinogens, mutagens or reprotoxic substances at 
work) the lowest value (LV) in place in a Member State was used or the indicative occupational exposure limit value (IOELV), when available.
d Substances with a biological exposure index (BEI) or EU biological limit value (BLV).
e Data were converted from ppm to mg/m3.
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Values and now via the Committee for Risk 
Assessment of the European Chemicals Agency, 
ECHA) provide OELs. [These are both health-
based limits but may not have been based on a 
cancer end-point.] Many countries have lists 
of OELs to be applied nationally (Schenk et al., 
2008). The GESTIS website lists OELs from 
around the world (IFA, 2022).

[The Working Group noted that only some 
of the individual components of fire smoke (i.e. 
aldehydes, acid gases, sulfur dioxide, nitrogen 
oxides, PAHs, benzene, toluene, styrene, metals, 
and dioxins) have OELs, and many agents to 
which firefighters are commonly exposed have 
no OELs. There is no recommended way of 
adjusting for the complex and partly unknown 
mixtures present in fire effluents, some of which 
are probably composed of agents that act on the 
same organ and/or have the same effect, e.g. 
irritancy. Furthermore, OELs are typically set 
for a work week of 40 hours (8 hours per day for 
5 days per week), so may not provide sufficient 
protection for workers with longer shifts. Some 
OELs can be arithmetically reduced for longer 
shifts, perhaps up to 12 hours, so that the total 
permitted exposure is equivalent. However, for 
longer shifts, depending on the agent, this may 
not allow sufficient recovery time between expo-
sure periods. Firefighters often have very intense 
short-term exposures, during which short-term 
exposure limits (STELs) or ceiling limits may 
well be exceeded. In addition, OELs do not 
consider increased respiratory rates. Some more 
specific guidance on firefighters’ exposure has 
been provided in Canada, the UK, and Australia 
(AFAC, 2019a; Government of Ontario, 2022; 
Government of the United Kingdom, 2022).]

1.7.2 Regulations on use of personal 
protective equipment 

PPE including devices and garments, such as 
respirators, turnout gear, gloves, blankets, and 
SCBA are designed to protect firefighters from 

serious injuries or illnesses resulting from contact 
with fire and hazardous materials (Smith et al., 
2020; McQuerry & Easter, 2022). Regulations on 
the use of PPE can vary worldwide. Regulation on 
cleaning, maintenance, and repair of PPE follows 
BS 8617 in the UK (British Standards Institution, 
2019a). Firefighters in the UK should use munic-
ipal firefighting PPE as the common default 
position for fire and rescue activities initially; 
the PPE is modified by the incident commander 
based on a joint understanding of risk and infor-
mation available from other responder agencies 
(Daniels, 2019). In Australia, PPE must comply 
with relevant international/Australian standards 
(AFAC, 2019b).

In the USA, National Fire Protection 
Association Standard 1971 (NFPA 1971), 
Standard on Protective Ensembles for Structural 
Fire Fighting and Proximity Fire Fighting 
establishes minimum levels of protection from 
thermal, physical, environmental, and blood-
borne pathogen hazards encountered during 
structural [municipal] and proximity fire-
fighting operations (American Public Health 
Association, 2001; NFPA, 2018). There are several 
other US NFPA standards that address firefighter 
PPE, including NFPA 1500 Standard on Fire 
Department Occupational Safety and Health 
Program (Loflin, 1989), NFPA 1851 Standard on 
Selection, Care, and Maintenance of Protective 
Ensembles for Structural Fire Fighting and 
Proximity Fire Fighting (NFPA, 2001), NFPA 
1951 Standard on Protective Ensembles for 
Technical Rescue Incidents (NFPA, 2001), 
NFPA 1975 Station/Work Uniforms for Fire and 
Emergency Services (NFPA, 2002), NFPA 1977 
Standard on Protective Clothing and Equipment 
for Wildland Fire Fighting (NFPA, 2015), NFPA 
1991 Standard on Vapour-Protective Ensembles 
for Hazardous Materials Emergencies (NFPA, 
2005, 2012), NFPA 1992 Standard on Liquid 
Splash-Protective Clothing for Hazardous 
Materials Emergencies, NFPA 1994 Standard 
on Protective Ensembles for First Responders 
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to CBRN Terrorism Incidents, NFPA 1999 
Standard on Protective Clothing for Emergency 
Medical Operations (EMS), and OSHA Rule 29 
CFR 1910.1030 Final rule on Protecting Health 
Care Workers from Occupational Exposure to 
Bloodborne Pathogens (Denault & Gardner, 
2022).

The use of PPE in Portugal is mandatory 
for firefighting emergency calls (Moraes et al., 
2019a, b); however, different safety gear, devices, 
and equipment are available based on the fire 
scenario. There is still limited literature on and 
systematic investigation of the overall regulatory 
state of PPE (Kim et al., 2022). In the Republic 
of Korea, there are no comprehensive regula-
tions governing firefighting PPE, PPE mainte-
nance, and replacement, similar to NFPA 1851 
in the USA. In Canada, the Canada Labour Code 
and Occupational Health and Safety Regulation 
(Regulation) Part 31: Firefighting, stipulate 
general PPE requirements, together with protec-
tive coats, trousers and hoods, station wear, and 
personal garments (Frost et al., 2016; Ramsden 
et al., 2018). [Despite the general use of PPE 
among firefighters worldwide, there is a need to 
study the impact of the makeup and design of the 
various types of PPE, repeated use and exposure 
to heat and chemicals, maintenance, and cleaning 
on the protective capabilities of the PPE.]

1.7.3 Regulations on firefighting foams

The use of PFAS in AFFF has been regulated 
in the European Union since 2006 (Banzhaf 
et al., 2017), and the Stockholm Convention listed 
PFAS (i.e. PFOA, its salts, and PFOA-related 
compounds; PFHxS, its salts, and PFHxS-related 
compounds, and long-chain perfluorocarbox-
ylic acids, their salts and related compounds) 
as persistent organic pollutants that are to be 
phased out in 185 countries (Secretariat of the 
Stockholm Convention, 2019a; Pinas et al., 2020).

In the European Union, the ECHA has 
brought forward a restriction proposal for a 

European Union-wide ban on both the use and 
production of PFAS. In 2022, ECHA’s scientific 
Committee for Risk Assessment and Committee 
for Socioeconomic Analysis are assessing the 
proposed restriction options (ECHA, 2022a). 
When adopted, the restriction could reduce 
PFAS emissions into the environment by more 
than 13 000 tonnes over 30 years (ECHA, 2022b). 

1.7.4 Minimum age of firefighters

Requirements and regulations to work as 
a firefighter vary across countries, but many 
countries require an individual to be aged at least 
18  years (Sluiter & Frings-Dresen, 2007; Evarts 
& Stein, 2020; Euroinnova, 2022). In Australia, 
there are no general age requirements; however, 
the Country Fire Authority, Victoria, has a 
minimum age of 16 years (16- and 17-year-olds 
need parental consent) for volunteer firefighters, 
and some brigades also run a junior programme 
for 11–15-year-olds (Fire Recruitment Australia, 
2015; Fire and Rescue New South Wales, 2021b).

1.7.5 Regulations on maximum worker hours

The majority of US fire departments work 
a rotating schedule of 24-hour shifts guided by 
the Fair Labor Standards Act (Cohen & Plecas, 
2013). In Canada, firefighters work a minimum 
of 48  hours per week and become eligible for 
overtime after working about 56  hours in a 
week (Ontario Association of Fire Chiefs, 2022). 
In Australia, working hours are a matter for 
trade union agreement; working hours average 
38 hours per week and shifts vary over an 8-week 
cycle (ACT Government, 2020).

In the European Union, the Working Time 
Directive was introduced in 1993 to set rules 
on maximum weekly working time and other 
requirements in terms of rest breaks, daily rest 
periods, and shift work (Rønning, 2002; Sol 
& Martín, 2015; Risak, 2019). However, there 
are many differences regarding working time 
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between and within countries (EPSU, 2006). 
Working time is negotiated nationally in Den- 
mark, Finland, Slovakia, and the UK, while in 
other countries there is a combination of national 
and local negotiation (EPSU, 2006). Furthermore, 
hours are calculated on an annual basis in 
Belgium, Denmark, France, Slovak Republic and 
Spain, while they are weekly in Czechia, Finland, 
Ireland, Italy, Norway, Sweden and the UK. In 
the Netherlands, the weekly maximum number 
of hours is calculated over a 26-week period. The 
monthly calculation in Estonia is averaged over 
a 3-month period (EPSU, 2006).

The basic work week – the hours set out in 
collective agreements or statutes for which fire-
fighters are paid at a basic rate – ranges from 
36 hours in Italy and the Netherlands to 42 hours 
in Sweden and the UK (EPSU, 2006). However, 
these hours do not necessarily correspond to 
actual hours normally worked; for example, 
actual working time averaged 54 hours per week 
among Dutch firefighters (EPSU, 2006).

There have been a few changes to working time 
in recent years. In Norway, there has been a new 
national agreement that allows for 48-hour shifts 
over weekends and 24-hour shifts during the 
week (EPSU, 2006). In North Rhine-Westphalia, 
the biggest region in Germany, firefighters nego-
tiated a reduction in the working week from 54 to 
48 hours from 1 January 2007 (EPSU, 2006). The 
regional government agreed to bring the service 
into line with the Working Time Directive after 
pressure from the trade union.

1.8 Quality of exposure assessment 
in key epidemiological studies of 
cancer and mechanistic studies 
in humans

1.8.1 Epidemiological studies of cancer in 
humans 

This section reviews the exposure assess-
ment methods and exposure assessment quality 
of the epidemiological studies of firefighters. The 
findings are summarized in Table S1.28, and 
the criteria for the exposure quality rating are 
included in Table S1.29 (Annex 1, Supplementary 
material for Section  1, Exposure Characteri- 
zation, online only, available from: https://
publications.iarc.fr/615).

As described in Section 1.2, Section  1.4, 
and Section  1.5, firefighters are exposed to a 
range of physical and chemical hazards that 
vary from day to day and have changed over 
time. Quantitative characterization of all these 
exposures is not feasible in studies of cancer in 
humans. The definition of exposure provided by 
most epidemiological studies is simply having 
worked as a firefighter. This definition may 
be refined in a variety of ways to better reflect 
the extent or intensity of firefighting activities. 
For example, those with the occupational title 
of firefighter but who do not actually attend to 
fires may be excluded. Additionally, the dura-
tion of firefighting service (e.g. < 10 years versus 
≥ 10 years) may be used under the assumption 
that longer service will lead to more time spent in 
direct exposure to fires and related hazards (e.g. 
Aronson et al., 1994; Ahn & Jeong, 2015; Bigert 
et al., 2020).

Other exposure assessment metrics have 
been used to group firefighters by measures of 
the extent or intensity of exposure and reduce 
misclassification. For example, individual esti-
mates of firefighting activities including number 
and/or types of fire (e.g. house, vehicle, etc.), 
probably better reflect the actual chemical and 

https://publications.iarc.fr/615
https://publications.iarc.fr/615
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physical exposure burdens (e.g. Dahm et al., 
2015) than does the simple duration of work. 
Other studies grouped or selected firefighters by 
job title or role (active or frontline) (e.g. Demers 
et al., 1994) and/or provided a measure of busy-
ness, intensity, or type of firefighting role (e.g. 
Guidotti, 1993; Tornling et al., 1994; Daniels 
et al., 2015; Glass et al., 2016a).

To assess the quality of the exposure assess-
ment and the extent of misclassification in the 
epidemiology studies, the following data elements 
were examined: (i) the study design, location, 
and era, or exposure period; (ii) ascertainment 
of firefighter status and years of engagement as 
a firefighter; (iii) exposure metrics for use in 
analyses such as a measure of intensity of fire-
fighting work; (iv) timing of exposure relative 
to the outcome; (v) co-exposures to carcino-
gens; and (vi) potential for differential exposure 
misclassification (see also Table S1.28, Annex 1, 
Supplementary material for Section 1, Exposure 
Characterization, online only, available from: 
https://publications.iarc.fr/615).

Based on these criteria, an evaluation of 
the exposure quality of each study is presented 
in Sections 2.1 to 2.6 and in the accompanying 
tables in Section 2 and supplementary tables in 
Annex 2 (Supplementary material for Section 2, 
Cancer in Humans, online only, available from: 
https://publications.iarc.fr/615).

(a) Critical review of exposure assessment 
methods

The 40 cohort studies reviewed all came 
from high-income countries, including the 
Republic of Korea (n = 2) (Ahn et al., 2012; Ahn 
& Jeong, 2015); Canada (n = 5) (Mastromatteo, 
1959; Guidotti, 1993; Aronson et al., 1994; Harris 
et al., 2018; Sritharan et al., 2022); the USA 
(n = 16) (Musk et al., 1978; Feuer & Rosenman, 
1986; Vena & Fiedler, 1987; Grimes et al., 1991; 
Demers et al., 1992, 1994; Burnett et al., 1994; 
Ma et al., 2005, 2006; Zeig-Owens et al., 2011; 
Daniels et al., 2014, 2015; Moir et al., 2016; 

Colbeth et al., 2020a; Pinkerton et al., 2020; 
Webber et al., 2021); Oceania (n = 7), (Eliopulos 
et al., 1984; Giles et al., 1993; Bates et al., 2001; 
Glass et al., 2016a, b, 2017, 2019); Nordic coun-
tries (n = 7) (Tornling et al., 1994; Pukkala et al., 
2014; Kullberg et al., 2018; Petersen et al., 2018a, 
b; Bigert et al., 2020; Marjerrison et al., 2022); and 
other European countries (n  =  3) (Deschamps 
et al., 1995; Amadeo et al., 2015; Zhao et al., 
2020). The case–control studies are also mainly 
from high-income countries: Europe (n  =  1) 
(Stang et al., 2003); North America (n = 9) (Sama 
et al., 1990; Muscat & Wynder, 1995; Ma et al., 
1998; Kang et al., 2008; Tsai et al., 2015; Muegge 
et al., 2018; Langevin et al., 2020; Lee et al., 2020; 
McClure et al., 2021); and one international study 
that included data from China, Europe, North 
America, and Oceania (Bigert et al., 2016).

Most cohort studies identified career fire-
fighters from employment records, including 
general municipal employment records, e.g. 
Vena & Fiedler (1987). Other reliable sources 
of employment information used in firefighter 
epidemiology are professional certification 
data (Ma et al., 2005, 2006), superannuation 
(pension contributions), compensation data 
(Mastromatteo, 1959; Sritharan et al., 2022), and 
retirement records (Feuer & Rosenman, 1986; 
Ide, 1998). Studies identifying firefighters from 
census data rely on self-reported employment 
information. They may collect data at one point 
in time, e.g. Zhao et al. (2020) and Harris et al. 
(2018), or from more than one census, which 
allows an estimate of employment duration (e.g. 
Bigert et al., 2020). Mortality studies that use 
death certificate data on “usual occupation,” as 
reported to the certifying health professional 
often by the next of kin (for example, Burnett 
et al., 1994), are probably less reliable than those 
with employment records, for example. [The limi-
tations of these data as a proxy for occupational 
exposure are well documented, e.g. Steenland 
& Beaumont, 1984; Schade & Swanson, 1988; 
Bidulescu et al., 2007.]

https://publications.iarc.fr/615
https://publications.iarc.fr/615
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In some case–control studies, firefighters 
were largely identified from interviews or ques-
tionnaires coded to standardized occupational 
codes and categorized as ever/never firefighters 
(e.g. Stang et al., 2003; Tsai et al., 2015; Bigert 
et al., 2016; Langevin et al., 2020). Other sources 
of information on occupation for case–control 
studies were cancer registry records (e.g. Tsai 
et al., 2015), death certificates (e.g. Ma et al., 1998; 
Muegge et al., 2018), and linkage between cancer 
registry and census or employment records (e.g. 
McClure et al., 2021). [Occupational information 
from cancer and death registries is often incom-
plete, and there was evidence from at least one 
registry that the missingness was differentially 
distributed (McClure et al., 2021). There may also 
be selection bias in these studies.]

Most employment-based cohorts are from 
urban areas (e.g. Pinkerton et al., 2020; Webber 
et al., 2021), whereas other cohorts (e.g. those 
based on census records) are country-wide and 
therefore probably include both urban and 
rural firefighters (e.g. Pukkala et al., 2014; Bigert 
et al., 2020). [The exposures of rural and urban 
firefighters differ in type and pattern of expo-
sure. Rural firefighters mainly fight wildland 
(sometimes called “landscape”) fires, whereas 
municipal firefighters are more likely to attend 
structure and vehicle fires, hazardous material 
incidents, and false alarms. Unlike most struc-
ture fires, wildland fires can take days or even 
weeks to extinguish, which means that wild-
land firefighters may have extended firefighting 
periods away from home. Their equipment, such 
as fire trucks, clothing, and respiratory protec-
tive equipment may differ from that of municipal 
firefighters. Wildland firefighters probably use a 
different mix of fire suppression techniques, such 
as back burning and aerial spraying of water or 
flame retardants, and are less likely to use respira-
tory protective equipment. Section 1.2 provides 
further information on differences in exposure 
between different groups of firefighters and types 
of fire.]

Most cohort studies are of career firefighters, 
but some also included volunteers (Guidotti, 
1993; Bates et al., 2001; and Petersen et al., 2018b). 
One study included only volunteer firefighters 
(Glass et al., 2017). Glass et al. (2019) included 
a relatively small number of career female fire-
fighters; most of the analyses focused on volun-
teer female firefighters. [Assessing quality of the 
exposure assessment requires that firefighters 
be accurately identified. For career firefighters, 
employment records are an accurate way to 
identify firefighters, but similar documenta-
tion for volunteer or wildland firefighters may 
be unavailable in many countries. Volunteer 
records may not be a reliable source of duration 
of active firefighting, since volunteer rolls may 
not be updated, and volunteers may remain in 
the organization but not actively fight fires.]

Employment duration was often captured 
from employment records and used as a proxy 
for exposure (e.g. Petersen et al., 2018a; Glass 
et al., 2019; Marjerrison et al., 2022). Employment 
duration inferred from periodic census data is 
probably less reliable than that from employment 
records (e.g. Bigert et al., 2020). In many other 
studies, employment was characterized quali-
tatively as ever/never a firefighter, and in some 
cases the status was known only at a specific time 
point (e.g. Amadeo et al., 2015). An improvement 
on employment duration used by several authors 
(e.g. Demers et al., 1994; Ahn & Jeong, 2015; 
Petersen et al., 2018a) was to count only years of 
service in direct firefighting roles.

A few studies specified a minimum period of 
service as a firefighter: 1 day (Daniels et al., 2014), 
1 month (Ahn & Jeong, 2015), 3 months (Glass 
et al., 2016b), and 1  year (Demers et al., 1992; 
Tornling et al., 1994; Bates et al., 2001; Kullberg 
et al., 2018). [This could mean that firefighters 
with a relatively short duration of service were 
included in analyses together with those with 
longer service, and studies were included that did 
not report duration of employment.]



141

Occupational exposure as a firefighter

Among the strongest exposure assessments 
were studies that used various sources of infor-
mation to improve upon duration of service, 
including indicators of likelihood of high expo-
sures from actual firefighting activities. These 
included Guidotti (1993), who used an exposure 
opportunity matrix to weigh the duration of 
work by proximity to the fire for various job cate-
gories. Glass et al. (2016b, 2017, 2019) grouped 
firefighters by the recorded number of incidents 
and type of fire attended (although records were 
incomplete and were estimated for early years). 
Tornling et al. (1994) grouped firefighters by the 
estimated number of fires they had fought. One 
of the exposure assessments of the highest quality 
was conducted for an epidemiological study of 
firefighters in three cities in the USA. The inves-
tigators developed a job-exposure matrix linked 
to participants’ work history records to calcu-
late several proxy exposure measures, including 
duration of exposure (cumulative time classified 
by exposed job title and assignment), fire-runs 
(cumulative events of potential fire exposure) 
and time at fire (cumulative hours of potential 
fire exposure) (Dahm et al., 2015; Daniels et al., 
2015; Pinkerton et al., 2020), or specific expo-
sures (e.g. Baris et al., 2001) assessed on diesel 
engine emissions.

The earliest cohort studies reviewed here 
included firefighters who were employed before 
1930 (Musk et al., 1978; Guidotti, 1993), and the 
most recent studies included firefighters working 
in 2014 (Petersen et al., 2018a, b). A preponder-
ance of studies examined cancer rates among 
firefighters working between 1980 and 2000. 
Analysis by era of employment may help to inves-
tigate changes in exposure over time (Glass et al., 
2016a, 2017, 2019). [The wide range of eras indi-
cated that there would have been differences in 
exposures between cohorts, for example, changes 
in the number of vehicle fires and extent of expo-
sure to burning plastics, shift-work patterns, use 
of firefighting foams, and type of PPE availability 

and use (see Section  1.2 and Section  1.5(b) for 
further information.]

Information on PPE use was mentioned in 
only few studies. Tornling et al. (1994) included 
the use of SCBA in their exposure index. Wolfe 
et al. (2012) considered clothing in a case report of 
non-melanoma skin cancers. The quality and use 
of PPE, including respiratory protective equip-
ment, has varied over time and so may affect the 
extent of exposure of individuals (Austin et al., 
2001c; Austin, 2008).

Some studies examined the risk of cancer 
among firefighters who attended the aftermath 
of the WTC disaster in 2001 and were employed 
by the Fire Department of New York City 
(FDNY) (e.g. Colbeth et al., 2020a), or firefighters 
employed by other cities (Webber et al., 2021). 
Zeig-Owens et al. (2011), Colbeth et al. (2020a), 
and Webber et al. (2021) used earlier-developed 
ordinal exposure categories based on period of 
arrival at the scene: (1) (highest) arrived on the 
morning of 11 September 2001; (2) arrived after-
noon of 11 September 2001; (3) arrived on 12 
September 2001; (4) arrived between 13 and 24 
September 2001; and (5) (lowest) arrived between 
25 September 2001 and 25 July 2002. [None of 
these studies considered firefighting exposure 
that preceded the WTC response.]

The case reports and case series reviewed 
included limited information on exposure and 
are not discussed further here (Bates & Lane, 
1995; Cucchi, 2003; Wolfe et al., 2012; Cormack, 
2013; Schrey et al., 2013; Sugi et al., 2013; Antoniv 
et al., 2017; Landgren et al., 2018; Geiger et al., 
2020).

(b) Other occupational exposures to 
carcinogens 

Both career firefighters and volunteers are 
likely to hold or have held other jobs, either 
different positions within the fire service, or 
entirely separate occupations (Ma et al., 2006; 
Glass et al., 2017). For example, in a cohort of 
Danish paid [career] and volunteer firefighters 
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(Petersen et al., 2018a), more than 10% of fire-
fighters had held jobs potentially exposing them 
to additional hazardous exposures in construc-
tion-related jobs, laundry or dry cleaning, the 
automobile industry, and rubber and plastic 
production. Compared with full-time fire-
fighters, part-time or volunteer firefighters had 
more frequently been employed in the machine 
industry, fabricated metal production, the wood 
and furniture industry, and farming (Elbaek 
Pedersen et al., 2020). In a survey of career fire-
fighters in Florida, USA, 29.7% had a second job; 
the most frequently reported second jobs were 
in education, health care, and sales (Baikovitz 
et al., 2019). [Most seasonal wildland firefighters 
also hold other jobs. These other jobs may result 
in exposure to other occupational carcinogens, 
e.g. asbestos or paint during construction work, 
or pesticides or solar UV in farming or forestry. 
Data on exposures in other jobs were not adjusted 
for in any cohort studies identified in the present 
monograph.]

1.8.2 Mechanistic studies in humans

This section reviews the exposure assess-
ment methods used in and exposure assessment 
quality of the mechanistic studies of firefighters. 
The findings are summarized in Table S1.30 
(Annex 1, Supplementary material for Section 1, 
Exposure Characterization, online only, avail-
able from: https://publications.iarc.fr/615).

There is no single best method for assessing 
exposure of firefighters for the study of key char-
acteristics of carcinogens (Smith et al., 2016) in 
humans. Assessment of the quality and infor-
mativeness of the exposure assessment requires 
understanding the research question, the study 
design, and the temporal characteristics of 
markers of exposure and effect. To be useful, 
the assessment should be unbiased, temporally 
appropriate, sufficiently quantitatively precise 
to allow demonstration of a dose–response rela-
tionship, and produce a summary measure of 

exposure that is credibly associated with the key 
characteristic of interest.

The studies of firefighters selected for 
assessing the key characteristics of carcinogens 
can largely be grouped into four different study 
types: cross-sectional (with a single measure-
ment), repeated measurements (without a pre- 
exposure measurement), pre/post comparisons, 
and pre/post trials (where comparisons were 
done on exposures in a controlled setting), each 
with different strengths and limitations.

Many of the key characteristics studies used 
cross-sectional designs in which exposure was 
measured at a single point in time, and reflect all 
previous exposures, both recent and in the distant 
past. These studies usually involve an expo-
sure contrast between exposed and unexposed 
groups, for example, comparing firefighters and 
non-firefighters. A major challenge to validity in 
this approach is that there are likely to be many 
differences in health-related characteristics of 
the compared groups, such that the fact that one 
is “exposed” and the other “not exposed” may be 
only one of many reasons why the two groups 
experience different health outcomes.

The cross-sectional design may also be used 
to compare different groups of firefighters with 
varying amounts of exposure, for example, 
different numbers of years of employment, or 
time spent at fires. This is an improvement, but 
there are still important limitations. One of 
the challenges of these designs is that it is often 
difficult to explicitly consider exposures that 
have occurred at different times in the past. If 
the outcome measure is thought to be affected 
only by very recent exposures, then there may 
be substantial misclassification of exposure if 
a long-term measure of exposure such as the 
number of years of employment is used. In an 
attempt to avoid this problem, participants may 
be asked about their recent exposures, but these 
reports may be subject to recall bias, particularly 
if participants are aware that the hypothesis is 
that their recent exposures are hazardous.

https://publications.iarc.fr/615
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Comparing groups of firefighters with vary- 
ing amounts of exposure is nearly always a retro-
spective exercise, and it is usually not possible to 
estimate with any confidence the long-term or 
cumulative exposures to specific agents that are 
expected to be proportional to chronic biological 
effects. Even good administrative records, when 
they are available, will rarely provide informa-
tion on PPE (what was used and how effectively). 
Additionally, the number of years employed as a 
firefighter is usually strongly correlated with age, 
making it difficult to disentangle exposure and 
age effects.

Cross-sectional designs are often used in 
studies of high exposures under extreme condi-
tions after firefighters have participated in cata-
strophic events, such as the collapse of the WTC 
or certain out-of-control wildfires. These are, of 
necessity, post hoc, effectively prohibiting direct 
measurement of pre-exposure effect markers 
and, to a large degree (such as at the WTC), 
excluding contemporary measures of exposure. 
Moreover, the exposure experienced may have 
little relevance to the day-to-day exposures of the 
great majority of firefighters.

Studies with a repeated-measurement design 
examine the contrast between exposures for 
individuals across time. These studies have 
many names, but the term “repeated measure-
ments design” will be used here for studies with 
two or more measurements for the same person 
but without a measurement before the exposure. 
In contrast, the term “pre/post” will be used 
here for studies that contrast a measurement 
before exposure with one or more measure-
ments after exposure. The pre/post time interval 
between samples may be a work shift (8 hours, 
for example), but may also be many weeks or 
months. It is important that the exposure time 
window defined by the two or more time points is 
appropriately matched to the temporal dynamics 
of the outcome measure. Considerations include 
the half-life of circulating cells or biomarkers 
and any latency between exposure and response 

that arises from the biological mechanism of the 
key characteristic. The pre/post design has the 
strong advantage that each participant “serves as 
his/her own control”, because it is the change in 
exposure over time that is studied for its associ-
ation with the change in outcome, reducing risk 
of confounding.

An example of a good application of the  
pre/post design, used mainly with wildland fire-
fighters, is the monitoring of pollutants (parti-
cles from smoke) in the breathing zone during a 
work shift, relating these measures to biomarkers 
of exposure (such as urinary 1-hydroxypyrene, 
reflecting PAH exposure) and to effect markers 
that appear rapidly (within at most 24 hours) and 
may have some long-term relevance to the key 
characteristic of interest. While in principle this 
design could also be used in the urban setting, 
it is logistically challenging, because municipal 
firefighters respond to fire calls only infrequently 
and, of course, not on a predictable schedule that 
would allow setting up the sampling equipment. 
Such a design may not take account of prior expo-
sures over months or years of firefighting. Better 
studies concentrate on changes in measured 
biomarkers between the beginning and end 
of shift; although relatively straightforward to 
design, the importance and interpretation of 
changes in transient effect biomarkers may be 
less obvious in these studies.

The fourth type of study is the “pre/post 
trial”; again, a measurement before exposure 
is compared with one or more measurements 
after exposure, but in these studies the investi-
gators assign exposures or interventions rather 
than simply observing whatever exposures their 
study participants experience. Such trials have 
the strong advantage of minimizing the risk of 
most biases since the exposure is well defined 
and assigned, but they are limited in their appli-
cability, because many of the exposures of fire-
fighters cannot ethically be delivered to human 
subjects. Trials have most often been conducted 
to evaluate effects of exposures other than 
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breathing smoke and other combustion prod-
ucts, and include such factors as sleep restriction, 
heat exposure, physical exercise, and nutrition. 
Although these potentially important risk factors 
for cancer among firefighters can be studied in a 
controlled setting, findings must be interpreted 
cautiously, because the trial conditions may not 
correspond well to the actual exposures experi-
enced by firefighters on the job.

(a) Is genotoxic

The most common approach to exposure 
assessment in studies of genotoxicity end-points 
in firefighters was to identify firefighters by 
employment records, sometimes supplemented 
with information on the duration of expo-
sure (e.g. Ray et al., 2005). These studies are of 
limited use because of lack of information on the 
frequency or recency of firefighting activities, the 
timing and intensity of exposures to toxic chemi-
cals, and the use of protective equipment.

Three studies with genotoxicity end-points 
involved special populations with unique expo-
sures that are of limited relevance to the hazards 
of typical firefighters, and included teams who 
were brought to Kuwait to fight oil fires after the 
first Gulf War (“Operation Desert Storm”) in 
1990–1991 (Darcey et al., 1992), responders to a 
chemical plant explosion in Germany (Hengstler 
et al., 1995), and emergency technicians who 
responded to the sarin gas attack in the Tokyo 
subway, Japan (Li et al., 2004). Min et al. (2020) 
conducted a study of several mechanistic 
end-points among a population of firefighters 
on different work shifts. The hypotheses investi-
gated were about the effects of shift work, and no 
other exposure information was gathered.

Higher-quality exposure assessments gath-
ered information on the frequency or intensity 
of firefighting activities. Rothman et al. (1993, 
1995) studied a cohort of California wildland 
firefighters twice, 2  months apart. Information 
was collected from self-reports on total hours of 
firefighting activity in the recent past, number 

of previous seasons of firefighting activity, and 
duration of daily exposure to diesel exhaust. 
Information on potential confounding exposures 
(including consumption of charcoal-broiled 
meat) was also collected by questionnaire. Self-
reports of mask-wearing were also gathered. Liou 
et al. (1989) gathered self-reported information 
from firefighters on the frequency of firefighting 
activities in an effort to improve upon the basic 
firefighter/non-firefighter comparison used in 
the primary analyses in their papers.

(b) Induces epigenetic alterations

Four studies assessing the associations 
between measures of DNA methylation and fire-
fighters’ exposures used cross-sectional designs 
(Ouyang et al., 2012; Kuan et al., 2019; Zhou et al., 
2019; Goodrich et al., 2021). There were varia-
tions in exposure assessment methods that may 
affect study quality. Ouyang et al. (2012) used 
the simplest approach, comparing firefighters to 
non-firefighters. Zhou et al. (2019) improved upon 
this simple contrast by comparing new recruits 
to incumbent firefighters (14 years of service, on 
average), and comparing incumbents by duration 
of service. Goodrich et al. (2021) studied only 
active-duty firefighting. The principle exposure 
contrast was created using serum concentrations 
of PFAS compounds, rather than any measure of 
firefighting experience. This approach to expo-
sure assessment avoided problems of selection 
or recall bias, and even inaccuracies of official 
records that are found in most of the studies 
on firefighters. In the fourth cross-sectional 
study of epigenetic alterations, Kuan et al. (2019) 
constructed an innovative exposure metric, the 
exposure-ranking index, to summarize many 
dimensions of the exposure histories of WTC first 
responders. The exposure-ranking index incor-
porated information on the duration of expo-
sures, as well as exposure-related tasks and use of 
PPE on 11 September 2001 and in the subsequent 
months. The information was gathered from 
detailed exposure questionnaires completed 
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by firefighters and other first responders some 
time after the event, at enrolment into the WTC 
cohort. The index does not include quantitative 
data on specific airborne substances but should 
represent the inhaled burden of pollutants from 
the WTC event.

Among the strongest of the exposure assess-
ments was the study of both incumbent (previ-
ously employed) and newly hired firefighters in 
Tucson, Arizona, USA (by Jeong et al., 2018; Zhou 
et al., 2019; Jung et al., 2021b; Goodrich et al., 
2022). The newly-hired firefighters were followed 
for 2 years, and data were gathered from depart-
ment records documenting for each participant 
the cumulative fire-hours, fire-runs (number of 
fires to which a participant responds), and days 
since the last fire call. These data were also strat-
ified by type of fire, to attempt to distinguish 
different broad types of fire smoke.

(c) Induces oxidative stress

One set of studies adopted a pre/post cross-
shift design, with measurement of exposure 
during a single work shift. Several of these came 
from one group (Adetona et al., 2013b, 2019; Wu 
et al., 2020a, b) and used data on US wildland 
firefighters at prescribed burns. Personal expo-
sure to PM2.5 was measured in the breathing 
zone, and exposure was also characterized by 
type of activity during the prescribed burn  
and/or by urinary markers of exposure. The expo-
sure assessment for these was of good quality but 
was limited by the inclusion of only exposures 
during a single shift. Studies of municipal fire-
fighters, using call-out to fire activities rather 
than prescribed burns, have been carried out in 
Denmark (Andersen et al., 2018a) and Canada 
(Keir et al., 2017) using a similar design but over 
three to five shifts. Again, particulate exposures 
were measured and urinary biomarkers of expo-
sure (1-hydroxypyrene) were analysed, together 
with skin-wipe samples. 

A second set of studies used a cross-sec-
tional design in which exposure information 
was limited to being currently employed as a 
firefighter (Al-Malki et al., 2008; Gündüzöz, 
et al., 2018), or using self-reported duration of 
employment (Abreu et al., 2017). Such studies 
included wildland firefighters (Abreu et al., 2017) 
and firefighters carrying out more general duties 
(Al-Malki et al., 2008), using comparison data 
from non-exposed volunteers (Oliveira et al., 
2020b). Gaughan et al. (2014a) studied firefighters 
cross-sectionally but used individual urinary 
levoglucosan concentrations as a measure of 
smoke exposure. Another group of studies used a 
pre/post trial design to assess the effect on oxida-
tive stress markers of PPE-wearing (Park et al., 
2016), heat exposure (McAllister et al., 2018), 
training (Gurney et al., 2021), physical fitness 
test (Macedo et al., 2015), or woodsmoke expo-
sure among apparent non-firefighter subjects 
(Ferguson et al., 2016; Peters et al., 2018).

(d) Induces chronic inflammation 

Pre/post trials were used for the assessment 
of physical and psychological stress (Huang et al., 
2010a; Webb et al., 2011), heat exposure (Wright-
Beatty et al., 2014; Walker et al., 2015, 2017; 
Wolkow et al., 2017; Kim et al., 2018; Watkins 
et al., 2019a, b), and sleep restriction (Wolkow 
et al., 2015a, b, 2016a, b), as well as interventions 
on time-restricted feeding (McAllister et al., 
2020, 2021). [The settings were controlled, so the 
impact of potential confounding was limited in 
these studies.]

Another common design for studies evalu-
ating chronic inflammation used measurements 
of an outcome pre- and post-exposure, but these 
were observational studies, not trials, and the 
investigators could not control or manipulate 
the exposures occurring between the two time 
points. This design was used in eight studies 
(Burgess et al., 2001, 2002; Swiston et al., 2008; 
Hejl et al., 2013; Main et al., 2013, 2020; Andersen 
et al., 2018a; Wu et al., 2020a).
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There were several studies carried out during 
and after specific incidents: four studies on fire-
fighters attending the WTC-site in New York 
after the collapse on 11 September 2001 (Fireman 
et al., 2004; Cho et al., 2014; Tsukiji et al., 2014; 
Loupasakis et al., 2015; Aldrich et al., 2016; Hena 
et al., 2018; Singh et al., 2018; Cleven et al., 2019; 
Lam et al., 2020; Goldfarb et al., 2021; Weiden 
et al., 2021); firefighters attending the “Black 
Saturday” natural disaster involving bush fires 
that destroyed more than 450  000  hectares in 
south-eastern Australia in 2009 (Main et al., 
2020); and a study after the Fort McMurray fire 
that destroyed almost 600 000 hectares in Alber- 
ta, Canada, in 2016 (Cherry et al., 2021b; Adu 
et al., 2022). For the WTC studies, either pres-
ence or time of arrival was used as the measure of 
exposure. No further information was collected, 
and exposures may have varied widely. In the 
Black Saturday event, no further information 
on individual exposure was collected. In the 
Canadian study, environmental monitoring data 
were considered for PM2.5, although these were 
only informative at the group level and did not 
allow for differentiation between workers. [For 
all these specific incident studies, events before 
and after the incident that were unmeasured may 
also have been of influence.]

The exposure assessment in many cross-sec-
tional studies was simply based on being a 
firefighter (Orris et al., 1986; Kern et al., 1993; 
Bergström et al., 1997; Almeida et al., 2007; 
Josyula et al., 2007; Yucesoy et al., 2008; Gaughan 
et al., 2014b; Gianniou et al., 2016, 2018). [These 
studies were of limited use regarding exposure 
assessment, because no information was included 
on specific firefighting activities, or the timing 
and intensity of exposures experienced.] Other 
cross-sectional studies were based on self-re-
ported exposures to heat (Watkins et al., 2021) 
and fire smoke (Greven et al., 2011, 2012). Self-
reported exposures are prone to bias and misclas-
sification, particularly with regard to identifying 
frequency (e.g. number of fires fought). [Among 

the strongest assessments of exposure were those 
that employed quantitative (individual) exposure 
measurements (Burgess et al., 2002; Swiston 
et al., 2008; Hejl et al., 2013; Ferguson et al., 2016; 
Adetona et al., 2017b; Andersen et al., 2018a, b).]

(e) Is immunosuppressive

Pre/post approaches were used to assess the 
immunosuppressive effects of engagement in 
firefighting (Smith et al., 2004, 2005) and expo-
sure to specific firefighting-associated hazards, 
including heat (Walker et al., 2015, 2017), phys-
ical stress (Santos et al., 2020), and physical 
stress in combination with psychological stress 
(Huang et al., 2010a, b). The impact of potential 
confounding firefighting and non-firefighting 
exposures on the results of these studies is 
limited, because conditions were well-controlled 
in trials. The exposure–response relationships 
were assessed only on the basis of the presence 
or absence of the hazard(s). Watt et al. (2016) had 
high quality data on heat exposure obtained by 
collecting the rectal temperatures of the study 
participants, but these data were not used in 
quantitative exposure–response analyses of the 
study outcomes. 

Potential confounding by smoking or other 
non-workplace exposures was not assessed in 
other cross-sectional studies (Bodienkova & 
Ivanskaia, 2003; Kudaeva & Budarina, 2005, 
2007; Borges et al., 2021; Ricaud et al., 2021) or 
in the repeated measurement design (Montague 
et al., 2021). Finally, the methods used to collect 
exposure information and/or the metric used for 
quantifying exposure were not specified in three 
cross-sectional studies (Bodienkova & Ivanskaia, 
2003; Kudaeva & Budarina, 2005, 2007).

(f) Modulates receptor-mediated effects

Exposure was limited to firefighting activity 
in an observational pre/post comparison study 
conducted by Christison et al. (2021). Qualitative 
categorization was used to assess the impact of 
job rotation (Kazemi et al., 2018; Lim et al., 2020), 
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a semiquantitative questionnaire-based index 
score was used to assess repeated exposures to 
psychological stress, and biological monitoring 
was used to assess the effects of exposure to 
components of smoke in other observational 
studies (Beitel et al., 2020; Chernyak & Grassman, 
2020). The potential impact of confounders was 
reduced in these studies by the employment of 
the pre/post comparison or repeated measure-
ment study design across work-shift periods or 
by controlling for confounders in the analyses. 
However, residual confounding from non-fire-
fighting exposures (e.g. diet) in the intervening 
period (17–18  years) between the exposure of 
interest and the measurement of effects was likely 
in the study that assessed the impact of expo-
sures to PCDD/Fs and PCBs at a cable factory 
fire (Chernyak & Grassman, 2020). Moreover, 
information about the relationship between 
serum concentrations of the contaminants and 
exposures of the firefighters to smoke during the 
event of interest was apparently not obtained. 
The impact of physical stress alone (Diaz-Castro 
et al., 2020a) and physical stress in combination 
with psychological stress (Webb et al., 2011) 
was investigated in a randomized control trial 
of nutritional supplements and a pre/post trial, 
respectively, with exposures to equal quantities of 
the hazard(s) of interest under controlled condi-
tions. Although the exposure–response relation-
ships were assessed only on the basis of changes 
across specified exposures to the hazard(s) in 
these cases, confounding was minimized, as the 
participants served as their own controls.

(g) Causes immortalization, and alters cell 
proliferation, cell death, or nutrient supply

Quantitative assessment of exposure to con- 
stituents of smoke, including PFAS and PBDEs 
by biomonitoring was conducted in a cross-sec-
tional study with appropriate control for poten- 
tial confounders (Clarity et al., 2021). The 
biomarkers were considered appropriate for 
assessing the relationship between firefighting- 

related exposures and telomere length in the 
study because of the relatively long half-lives of 
the compounds of interest and the minimum 
career length of 5  years for the firefighters in 
the study (Clarity et al., 2021). Occupation and 
organophosphate flame-retardant concentration 
in spot urine samples were used to assess expo-
sure in another cross-sectional study but without 
control for potential non-workplace expo-
sures to products containing these chemicals 
(Trowbridge et al., 2022). No firefighting expo-
sures were considered in another cross-sectional 
study that was available (Ranadive et al., 2021). A 
combination of equal exposures to physical and 
psychological stress under controlled conditions 
was investigated in a randomized control trial 
of a nutritional supplement (Diaz-Castro et al., 
2020b). Confounding in this study was mini-
mized since the participants served as their own 
controls.
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