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Abstract 

Integer lattice gas methods are gaining in popularity due to their speed, their 
inherent lack of computational error, and the possible use of non-floating 
point computer architectures. In this study, we attempt to apply these ad-
vantages to electromagnetic problems. This report will provide an introduc-
tion to lattice gas automata and transmission line matrix methods, then show 

how the two can be combined to simulate electromagnetic wave behaviour. 
Application of the model to the TE modes of a 2-dimensional waveguide will 
be presented and limitations of the model will be discussed. 
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Chapter 1 

6 

Introduction 

1.1 Overview 

Many problems in electromagnetics cannot be solved analytically. We must 
therefore rely on numerical methods to obtain the solutions to Maxwell's 
equations. Currently, finite element [1], finite difference [2] and transmission 
line matrix (TLM) [3] methods are used, all of which are discrete in space 

and time and continuous in dependent variable. 
Improvements are always sought over traditional computational methods, 

and the above are not excepted. The need for a floating point processor 
necessarily introduces error (round-off and truncation) [17], a problem which 
may be eliminated by the use of integer arithmetic, which at the samrtime 
shortens the computation time. • 

The method proposed here to eliminate this need is a combination of the 
traditional TLM method with the entirely discrete Cellular Automata (CA) 
methods [12][13][14][16]. The motivation behind this marriage lies in the 
shared TLM and CA concept of "packets" moving from node to node on a 
lattice and interacting by a set of "rules" . 

In this report it is shown that the future of cellular automata„methods in 
electromagnetic studies is promising. 



1.2 Structure of This Report 

In this report, the results of a study into the application of integer lattice gas 
methods to a simple two-dimensional waveguide are presented. The chapters 
to follow are organized in the following manner. The TLM method is intro-
duced in Chapter 2 and the dispersion relations related to the discretization,„ 

• of the TLM method are derived in Chapter 3. In Chapter 4, cellular au- - 
tomata are defined, followed by a description of lattice.  gas models and their 
usual applications. The TLM method is combined with an integer lattice gas 
model in Chapter 5, where lattice gas collision rules based on the TLM algo-
rithm are presented. The general theory of waveguides is given in Chapter 6 
and an outline of the program in Chapter 7, to provide a basis for the results 
of the study in Chapter 8. 
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Chap-ter 2 

TLM Method for 
Electromagnetics 

Maxwell's equations must in some cases be solved numerically: 

V x H = E.É + uE 
V x E = 
V • E = ple 
V .1/ = 0 

One of the methods applied to solve these problems is the Transmission 
Line Matrix (TLM) Method. This chapter will concentrate on the derieation 
of the TLM method. It will be shown that the TLM method is matheniâti-
cally equivalent to Maxwell's equations. 

2.1 Background 

The TLM method has its roots in the Newtonian idea of a corpuscular form of 
light and in Huygen's Principle [4]: every point on a wavefront ig a spherical 
source. 

These ideas are combined in the TLM method, originally proposed by P. 

B. Johns in 1974 [5]. It can be regarded as a physical model of Huygen's 
principle applied to voltages and currents, where the voltages are thought 
of as moving in packets of energy (or, having the form of an impulse). A 
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• lattice is used for these impulses to travel upon  and  at ea- cl node' the' y--'ai. e‘ 
scattered. ' The impulse then becomes a source for'the sun°.  unàing no-des, 
which in turn become sources propagating through the mesh. This reflects 
Huygen's principle. 

2.2 Derivation of the TLM Algor- ithm 

The circuit shown in Figure 2.1 was used to model Maxwell's equations in 
two dimensions and was known as a "network analyzer" [4] (not to be con-
fused with a network analyzer test setup used in modern microwave reflection 
and transmission measurements). These circuits were built to solve for the 
electromagnetic properties of irregular two-dimensional objects by taking on 
the same boundary shape. 

Figure 2.1: Network analyzer 

The voltage drop across an inductance is given by 

V 

where L is the inductance and i is the current through the inductor. As- 

signing values of LA1 to the inductances and 2CA1 to the capacitances in 
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V(y + Al) — V (y) _,.ei y  
= 	at 

- 

where Vc  is the  voltage a node Ç (similar. ly for A) and A/ is‘the-disiance 
• between nodes. This may also be written as 

V(x A/) V(x) 	Di • = et 

Kirchoff's current law states that the current flowing into a node is equal to 
the current flowing out. In Figure 2.1, the current flowing into the node A is 
iEA+ iDA± iCA+ iBA, and the current flowing out is ic , the current through 

the capacitor. The current through a capacitor is equal to Ce, hence 

iEA iDA iCA iBA = 2C Al at  
Expanding this in terms of current in the x direction (ix ) and y direction 

(iy), 

[i.(x + "1-) — is(x — 	 -t1 )] 	avA 
A 	 A/ 	

= 	(2.4) 
/ 

 

	

(recall that the capacitance is assigned 	a value of 2CA/). Letting A/, At 	0 
in equations (2.1), (2.2) and (2.4), one obtains the set of equations 

	

OV 	ai 

	

ex 	at 

	

DV 	ei — — — -2  

	

ay 	at  
ei 	ai  = 2CDV  — 

	

ex ay 	at  
which are strikingly similar to Maxwell's 2 dimensional TE (Transverse Elec-

tric, i.e. E, = 0) propagation equations [6 

DE, 	eHy  _,.. a 	 
ax 	r Ot 
8E, 	aHx  
ey = [4-07-  

OHy  eHx 	aE, 
ax 	Dy = € Dt 

OVA (2.3) 
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where E and H are the electric and magnetic fields, respectiv'ely.Hence wit 
the-  'substitutions  V < >  E i ' >     2C 
the equations are analogous. 

2.2.1 Transmission Lines 

A transmission line is ideally only meant to introduce a delay into a system - 
without affecting the voltage, j. e. V0  (t)  = I/;,(t --7). It may be represented as ' 

Figure 2.2: A transmission line node. 

shown on the left of Figure 2.2, which is the same as a node on the network 
analyzer. Hence the network analyzer may be thought of as a "transmission 
line matrix" or TLM. The right diagram shows a real transmission line, which 
consists of two lines per node, one of which is grounded. 

.4 • 

2.2.2 TLM for a Square Lattice 
Say an impulse voltage enters a node 
at position 1 on a square lattice, and 
the impedance of each line is the same, 
zo . The total impedance, by Kirchoif's 
Laws [7], is found as three impedances 
in parallel: 

Ziu = Zo 

Zout = Zo Zo Zo 
1 
— 0 
3 z  
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\ 	I 

(2.5) 

2 
3 

zout = 
zout 

The voltage reflection coefficient [6] is then 

Zout Zin 
	.-- 
zout+ Zin 	

: 2  

If we were to normalize the input voltage such that Vi=1, we would get 
Vr=-1/2 and VT2=VT3=VT3=1/2 since the transmission coefficient is given 

lyT=1-1-r. 
A set of equations may be set up in matrix form: 

- -1 	1 	1 	1 - 

	

V2r 	1 	1 —1 	1 	1 
= 2 	1 1 —1 1 

	

\ V4r 	1 	1 	1-1  

This gives the formula for the evolution of a voltage impulse, since all reflected 
and transmitted amplitudes become incident voltages at adjacent nodes at 
the next time step. 

2.2.3 TLM for a Hexagonal Lattice 

For a hexagonal lattice, an impulse voltage 
again enters a node at position 1 with the 
impedance of each line at zo . There are 
5 directions for transmission and one for 
reflection. The total impedance is 

Zin = Zo 

Zout= Zo Zo Zo Zo Zo 
1 

= —
5 

zo 

The reflection coefficient is then 

and the transmission coefficient is 

T:=1-Er= —
3 

(2.6) 
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Thus the Unit impulse will be -reflected with an amplitUde o 
5 transmitted voltages of 1/3. 

In matrix form, 

—2 	1 	1 	1. 
1-2 	11 
1 

 
1-2 1 

1 1 	1 —2 
1 	1 	1 	1 —2 	1 
1 	1 	1 	1 	1  —2] 

Vr  2 

V3r  v4r 

V5r 
 V6r  I 

= -3-  

13 - 

Equation (2.7) is the TLM method applied to one node on the lattice. 
The equation is shnultaneously applied to every node on the lattice in one 

time step. 
The TLM model approximates wave behaviour in the limit of small A/ 

and At. This discretization introduces an error known as the dispersion 
relation, -which can be derived analytically. 

r••nn 

1 
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Chapter 3 

TLM Dispersion Relations 

Numerical dispersion is defined as the variation of a propagating wave's wave-
length with frequency. The dispersion relation describes the fundamental 
manner in which plane waves propagate through a mesh [2]. It illustrates 
the effect of using a lattice approximation by providing an analytical relation-
ship between the wavelength of the simulation in discrete space (dependent 
on A/ and At) and the frequency in real space. Hence it provides a means 
to determine the numerical phase constant which may be compared to the 
exact physical phase constant to determine the amount of velocity error. It 
can be shown [9] that for wavelengths a few multiples of the mesh size, Al, 
the numerical phase velocity is approximately constant in all directionmn a 
hexagonal lattice, whereas it is definitely not so for a rectangular lattice. • 

The following derivation was presented in [8]. In this method, quantum 
mechanical notation for the propagation of waves is used. This derivation 
will use two dimensions only; the first section shows Krumpholz and Russer's 
derivation for the 2D square lattice, while the second section shows the deriva-
tion for a 2D hexagonal lattice. 

Unfortunately, this method cannot be applied to a case such as the one we 
are using, where only a portion of the states can undergo a TIM operation 
(see Chapter 5). In this case the field becomes non-local, j. e. in order to 
determine the field strength at a site, one must know the field strength at all 
other sites on the lattice [10]. 
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3.1 2D Dispersion in Free Space 

The two-dimensional scalar wave equation is given by 
02u  
82t  

= c2 v2,11  . 

where u = u(x, y, t). If the solution for a 2D propagating wave 
, 

fl(X, y, t) = (wt-k cos 95x—k sin q5y) 

is substituted in (3.1), where 0 is the angle which defines the direction of 
propagation, the variation in the wavelength A with it's frequency f can be 
found (or equivalently, the variation of wavenumber k = 27r/A with angular 
frequency w = 27r f). 

(w)2 = c2 (k2 (c0s2 ± sin2 0)) 

co = ±ck 
f 	51/4- 

Thus the wave propagation velocity in 2 dimensions is 
co 

vP = —k = ±c 

f_-  -
A 	

(3.3) 

which is the relationship between wavelength and frequency (dispersial re-
lation) in free space. 

3.2 TLM Dispersion on a 2D Square Lattice 

In discrete time and space, let (m, n) represent the location of a node and k 
represent the time step. Let the incident wave amplitudes be represented by 
the state  a> and the scattered wave amplitudes by the state tb >: 

+00 

E kam,„ k; m, n > 
k,m,n=—co 

+co 

l b>  = 	E 	k; m,n > 
k,m,n=—co 

(3.2) 

la > = 

15 



where x = mA/, y = nA/ and t kAt. 
The instantaneous wave propagation between nodes may be described by 

PI b > (3. 4) 

(3.6) 

where r is the transfer or advection operator. Recall that at any node on a 
. two dimensional lattice, the TLM method starts with incident wave ampli-
tudes and outputs reflected wave amplitudes. This affects the transfer matrix 
by reversing the indices: 

4 	 4 

1 	1 2 	 1 I 	2 kal,rn,n = kb2,m-1,n 

ka2,m,n = kbl,m+1,n 

ka3,rn,n = kb4,m,n-1 

3 	 3 	 kati,m,n = kb3,m,n+1 

For example, an incident wave at position 1 at (m,n) came from a wave 
scattered at position 2 at (m-1,n). 

The transfer matrix operator which satisfies Equations (3.5) is then 

r 0 X 0 
Xt 0 0 0 
0 0 0 Y 
0 0 Yt 0 

where X is the shift operator defined by 

X I k; rn, n > = jk;m+1,n> 
Xt k; m, n > = I k; m — 1,n > 

and similarly for Y. 
The equation 

	

lb >=TSIa> 	 (3.7) 
describes the simultaneous scattering at all mesh nodes. Here  Sis the TLM 
scattering matrix described by Equation (2.5), 

	

—1 	1 	1 	1 

	

1 	1 (3.8) s = 2 	1  1-1 1 

	

1 	1 	1 —1 

(3. 5) 

r = 
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00 

and T is the time increment operator, 

T I k; m, n >= k + 1; m, n > 

Combining (3.4) and (3.7) gives 

(rTs —1) I a >=-- 0 

To calculate the complete field state in the  frequency domain, the base 
vectors 

I SZ >= E eikn  I k > 
k=—oo 

are introduced. Here, I k > and I > are sets of orthonormal basis functions. 
SZ is a normalized frequency, SZ = 27rAtf. Taking the scalar product of 
and I >, one obtains 

00 

I a(0) > = <Ia>= E e-ikn <kia> 
k=—oo 

(3,11) 

Ia > 

00 

= E e 	I a(k) > 
k=—co 

Note that I a(0) > and I a(k) > are connected by a Fourier series. 
Multiplying equation (3.10) by  I S2 >: - 

<S2111TSIa>—<SZIa>= 0 

Only the time operator affects S-2; I' and S operate on positions. 

l'S<OITIa>—<01a> = 0 

rs ( E e—i(k+l)n  k 	I < .., -1-- 1 a> —< 	a>, S-21  
k=—co 

rse(-fn E e—ikn  < k I a >) —<S2Ia> = 0 
k=—co 

(3.12) 

r.a 

The last equation results since k ranges from —oo to +oo. Using the relations 
defined in (3.12), 

rSe—in I a(1) > — I a(S.2) >=-- 0 
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Or 

rs a(S2) >=  e a()>  

which from linear algebra shows the state in frequency space as the eigen-
vector and ein as its corresponding set of eigenvalues. Finding the roots of 
the characteristic polynomial 

f ()  = IA/4 - Fs( = o 

gives the solution of eigenvalues 

Ai  

A2 	C 1/C2  — 1 

A3 7= 1 

A4 = (3.14) 

where C = (X + Xt + Y + Yt). A3 corresponds to the stationary solution, 
= o. A4 corresponds to an oscillating spurious solution with S-2 = 7F. 
Since A 1  and A2 are composed of operators, an expectation value for the 

eigenvalues must be found. At this point the base vectors 
CO 

Ix,77>= E ei(x.-Enn) I m n > 
rn,n=—oo 

(3.15) 

are introduced, where x = Alk x , = LS,/ky  (normalizéd wave vector compo-
nents). Then 	 < • 

CO 

< x, I 42) >= E e-i(ell+")  < m, n I a(S2) > 
m,n=—co 

(3.16) 

again related by Fourier series. Since x, > and I a(S2) > are both represen-
tations of a> in different domains, the expectation value of the eigenvalue 
can be found by using these states. 

< 	118 a(n) >=.< x) 70 I a() >=< x,77 ein  I a(2)> 

First the expectation value of C is calculated: 

< x, 711 c I ag > = 
1 
-
4 

<x,771(X+Xt+Y+Yt)142)> 

18 
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1 +- 
4 m,n=— 

+1 7c° e_j(xm-1-71(n—i)) 

4 m,n=—co 
< m, n - 1 I a(l) > 

00 ' 

(3.17) 

expanding from (3.15). Using (3.16), 

= -
1

(e-ix + eix + e-in 
4 
+ein) < 77 aP) > 
1 

= -2 (cos X + cos 77) < x, I a() > 

It is evident that the expectation value of C is bounded between -1 and +1. 
Since we are interested in the real part of the solution, we can neglect the 
part of the eigenvalues (Equations (3.14)) that are under the square root 
since their expectation values will be complex. Using 

rs ag >.= I a(0) >= ei ez  I a(52) > 

< x, niCi a(SZ) > 

r •••t 

' and 
= cos 5.2 + j  sin 

one obtains the dispersion relation 

cos = -
1 

(cos x + cos ri) 
2 

Using trigonometric identities 

x = Alk s  Alk cos q5 
= A/ky  = A/k sin q5 

27rAtf = wAt (3.18) 
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2  (Ct)3't) 
. 	1 	. 2( k Al 	 2 . 

Si11 	
kA/ 

-2- sin 	cos 	m s 	sm q5)) 
_ 

(3.19) 

To illustrate the relationship given by the above equation, let A/ and At 
approach zero, as in the case of free space: 

2 	= 

(f t) 2  = 

or 

(kA/ 
2 

sin q5
)2) 

where q5 is the angle of wave propagation, and substituting baCk, one obtains , 
the traditional form of the dispersion équation for two dimensional TLM on 
a square lattice [4]: 

2 
1 ( (kAi 

COS 0) ± 

1 

2k 2 ) 

1 (zsav 
VÂ--) 

1 AI f 	— 	 (3.20) 

This matches the dispersion relation for two-dimensional free space as shown 
in (Section 3.1) with c defined as 

• 1 A/ c  
Nfi At 

which is the speed of propagation in a 2D TLM mesh [4]. - 

3.3 TLM Dispersion on a 2D Hexagonal Lat-
tice 

Using the same notation as in the previous section, the instantâneous wave 
propagation between nodes is again described by 

a >= r b > 

where r is the transfer or advection operator. The transfer matrix now takes 
on a different form: 

20 



a 

(3.22) 

kal,m,n = k 1)4,m-1/2,n-Nf§/2 

ka2,m,n = kb5,m-1,n 

5 •  Y 	2 	,ka3,m,n =... kb6,m-1/2,n+N(§/2 
, 	. 	. . 	_ 

ka4,/n,n = kl,m+1/2,n+l//2 

3 	4 	3 	ka6,M,n 	kb3,7n-F:  1/2-,n nf§/2 
For example, a wave scattered from (m-1,n) at position 2 becomes the inci-
dent wave at position 5 at (m,n). Defining the operators 

X 
Xt 

Yit  

Y2 
y2t 

k;m,n > 
k;m,n > = 
k;m,n> = 
k;m,n> = 
k;m,n> 
k;m,n> 

k;m+1,n> 
k;m-1,n> 
k;m+ 1/2,n+ \/-à./2> 
k;m —112,n — V372 > 
k;m +112,n — \/-3-12 > 

one obtains the form of r applicable to the system: 

0 	0 	0 .11.  0 	0 

0 0 0 0 X 0 

0 	0 0 0 0  Y2 - 
- 	t  171 	o 	o oo o 

O  xt o oo o 
o 0 Y2t  0 0 0 

The TLM operator for a hexagonal lattice is given by Equation (2.7): 

r ç3 . 21 ) 

—2 	1 	1 	1 	1 	1 -1 
1 —2 	1 	1 	1 	1 
1 	1 —2 	1 	1 	1 
1 	1 	1 —2 	1 	1 
1 	1 	1 	1 —2 	1 
1 	1 	1 	1 	1-2  

S = 1  
3 

and the time increment operator is as previously defined (3.9). 
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cos SZ = -

3 
cos x + 2 cos -x cos ) 

2 	2 
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Then 

(3.23) 

Following the same Method, the eigenvalue ecinatton remain's as 

rs I a(0) >=•• ein  I ag > • 

for which the eigenvalues 'are 

= C + N/C2  - 1 
- C - .N/C2  - 1 

A3 = 1 

	

with  C =  (X + Xt yi+ 	y2  + y2t 

Once again we can ignore the complex part of the eigenvalue. 
1 

<x,q1Cla(S-2)> = -
6 

<x,7/1(X+Xt+Yi+Yit +Y2+Y2t)la(S2)> 

	

 = 	e-i(x(m+1)+7m) — 	 <m +1,n1a(0) > 
6 

e—j(x(m-1)-Frin)  <m  1, n  
6 m mz;-. 

, E e-i(x(.1-1/2)+7,(n-h/ -42)) <m  + 1/2, n +  /2  l ag > 6 7„,,_00  

1 
+- E e-i(x(m--1/2)+7/(n-v/2))  <m  - 1/2, n - -V-à12 I a()> 

 6 mo,,__„‹, 

+ -

1 	e_xx(m+1./2)+7/(n-J-§/2))  <m  + 1/2, n 	 > 6 m  d_ 
+ 1 	c÷.° e—j(x(m-112)-1-71(n+Vg/2))  <m  — 1/2, n + 	a(S2) > 

6 m,„•L-f..=.„ 
1 	• 	• 	- • /2-i,/§7i/2 	'x/2+3V17/2  -6  (e-3x + e ix + e ix 	-1- e3  
▪e-ix/2+,/l§77/ 2  eix/2-iv' 1/2 )  < x,  77 I a ( ) > 
if 

 (cos x + 2 cos -x cos 	
 2 	

< x, a(S-t) > 
3 	 2  



sin  °)) 

(3.25) 

S = kSTLm + (1 — k)Sstream (3.26) 

sing the identities 

2 cos 01  cos 02  = cos(0i  + 02) + cos 

and 

• 2 	• 2 X 	• 2 X 	.A.-71 	• sin —
2 

+ sin 

or, substituting back for S-2, x and 77 , the dispersion relation for TLM on a 
hexagonal lattice is given by 

2 
wAt 

= sin2 (
kAl 

3 sin  	 cos .0) + sin2 (
kAl 

(

1 

cos — 
2 	 2 	 2 	2 

2  (kAi (1_ 
+ sin —

2 2 
cos 0 + —

2 
sin 0)) 

This agrees with the result obtained in [18]. Again letting A/, At —› 0, one 
obtains the two-dimensional dispersion relation for free space (Section 3.1). • 

3.4 Why a Dispersion Relation Can't Be Found 
for Partial Streaming 

r 

The goal of this theory was to determine the effect of changing the form  of 
the collision operator to be partly a TLM operator and partly an operator 
which leaves a state unaffected (Sst„„„,),  i. e.  

for use with the rules shown in Chapter 5. When the eigenvalues are solved 
for this system, they are large and complicated. On further analysis using 
finite difference techniques, it can be shown that the field becomes non-local 
for this case [10]. A solution has not yet been found. 
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Chapteri4 

Cellular Automata 

By definition, 

A cellular automaton ... is a theoretical model of a parallel com-
puter, subject to various restrictions to make a formal investi-
gation of its computing powers tractable. All versions of the 
model have the following properties: Each is an interconnection 
of identical cells, where a cell is a model of a computer with fi-
nite memory — i.e. a finite-state machine. Each cell computes an 
output from inputs it receives from a finite set of cells forming its 
neighbourhood, and possibly from an external source. 

All cells compute one output simultaneously a rid each cell corn, 
putes an output after each time step. The output of a cell is 
distributed to its neighbourhood and possibly to an external re-
ceiver. [11] 

In other words, cellular automata are dynamic systems that are discrete 
in space, time and dependent variable [12]. This differs from partial differ-
ential equations, which have all variables continuous, and finite difference, 
finite element and TLM schemes, which are discrete in space and time but 
continuous in dependent variable. 

Discretization of space means that a lattice is used and discretization 
of time that the process occurs in time steps (At). Discretization of the 
dependent variable means that it may be represented by a finite number of 
bits at a lattice site. This discretization has the advantage of not introducing 
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4.1 Lattice Gas Models 

round-off error into the calculations, as well as eliMinating the need  for a 
floating point processor, hence speeding up the calcUlations. ' 

The dynamics of a cellular automaton are specified by a "rule" that de-
termines what the state df the system will be at time step t + At based on 
its state and the state of its neighbours at time t. 

Lattice gases are special types of cellular automata (CA) for which there is 
some association between the bits at a site and that site's neighbours on 
the lattice [12]. These bits may be thought of as "parcels" of matter trav-
elling about the lattice. The systems which have been successfully modeled 
using Lattice Gas Automata (LGA) are dissipative systems with conserved 
quantities of the form [12] 

api V. = 0  at 
The Navier-Stokes equation, which is commonly used in fluid dynamics, falls 
into this category: 

—at 	—Vp + vV2'f't 	 (4.1) 

where 77 is the flow velocity, p is the pressure and v is the viscosity. 
In these models, the state at a node may be described in a bit represen.- 

tation: if a node has one of it's directions occupied, the bit for that direction 
is turned "on" (set to 1); if it is unoccupied, that bit is turned "off" (set to 
0). 

Consider a 2-dimensional square lattice. The minimum number of bits 
required to describe the state of a site is 4 (one per direction). If a site has 
a direction occupied, the bit representing that direction is turned on (set to 
1) otherwise it remains off (set to 0). The bits can be thought of,as particles 
travelling about the mesh. In many simulations it is profitable to allow a 
site to have more than one particle travelling in any direction, as well as 
sometimes having rest particles. 
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4.2 Evolution of a Lattice Gas 

A time step is composed of 2 stages. The first is known as the "streaming" 
(or "advection") phase, in which all particles on the lattice-  simultaneously 
move (i.e. a north-bound particle moves one step north). The second phase 
is known as a "collision" phase. It is in this phase that the nature of the „ 
simulation is determined. Collisions between particles are governed by a set-." 
of rules which determine the model. 

- 
-4-  

-0 .- - -- - la  - - - -1 
I 	I 	I 	I 	T 	I 	i. 	I  

-the- - -I - -ode- H -1 
- - - - 	- - - -1 

--r- --r- -1— -T-- 	—I— --E- -1— ---E- 	I 
Collision 	. Advection 
	> 	> 

Figure 4.1: The collision and advection stages for. the HPP model. 

Mass (i. e.  number of particles) and momentum conservation is a  minimum 
 requirement in defining a set of rules (for most systems). 

4.2.1 The HPP Model 

The Hardy, de Pazzis and Pomeau (HPP) model is the simplest case of 
a lattice gas automaton [12]. It takes place on a square lattic,e, therefore 
having four directions of motion, and has a maximum of one particle per 
direction per site on the lattice. 

The collision rules for the HPP model conserve mass and momentum: 
a head-on collision of only two particles results in a configuration at right 
angles to the original travelling away from the center of the site. Figure 4.2 
shows the rule. 
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Figure 4.2: The HPP collision rule. 

4.2.2 The FHP Model 

The FHP (Frisch, Hasslacher and Pomeau) models take place on a hexagonal 
lattice [13]. Each node has 6 neighbours, hence 6 directions to choose from. 
In the simplest of these models, a maximum of one particle is allowed in any 
given direction and any collision conserving mass and momentum is allowed. 

In some versions, rest particles are allowed, which may also be involved 
in collisions. 

4.3 Integer Lattice Gases 

The Integer Lattice Gas Model (ILGA) allows multiple bits to represent the 
number of particles in a given direction. As an example, 	 r••8. 

2\ 	/ 5 	 • 

o 2  

The above state, set on a hexagonal lattice site, has allocated 3 bits to 
represent the number of particles at a site, hence requiring an 18 bit integer 
to store the state at the site. Each direction may hold any number  of  particles 
between 0 and 7: it has 5 particles travelling in direction 1, 2 in direction 

• 2, 1 in direction 3, 3 in direction 4, none in direction 5 and 2 travelling in 
direction 6. The integer representing this state is, in binary with the least 
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significant bit first, ' 
1101101011001110100010101 • 

which has a value of 67157 The maximum integer value that a state can hold 
is given by 26m.  — 1; in this case M=3, which gives 262143 for the completely 
occupied state. A site for this case can take on any value ranging from 0 to 
262143. 

r•n. 



Chapter 5 

(5.1) 

Lattice Gas Collision Rules 

As stated in Section 4.2, the collision stage of ILGA requires a set of "collision 
rules" . The rules are arbitrary as long as the applicable conservation laws are 
satisfied; however, the rules involving transmission line matrix theory make 
more intuitive sense as we are attempting to model an electromagnetic wave 
and the TLM method is already used for electromagnetic problems. 

The sections to follow give the seven rules used in this study to determine 
the validity of the TLM method as an integer lattice gas collision rule. 

5.1 Rule 0 

For any given state, if a collision is to take place it must satisfy mass and 
momentum conservation. This is true for all of the rules; this rule is therefore 
the fundamental rule: 

6 	 6 

E E 
i=1 	i=1 

= 

where Ni  is the number of particles present at a site in direction i and i  is 
the total momentum of the state. For a given inital state, all other states 
are searched and those which satisfy mass and momentum conservation are 
stored. These states then form an "equivalence class" , meaning that if ini-
tially in a state in this group, the outcome is randomly chosen from the same 
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(5.2) 

group. This particular use of an equivalence class .also implies that the colli-
sion rule satisfies semi-detailed balance. The significance of this is explained 
in [12]. 

To use this rule, a set of look-up tables are generated. Groups of states - 
for which their total mass and momentum  are  the same exist, so  when  a itate 
within the group undergoes a collision one of the possible outcomes is chosen  
randomly so as not to bias the outcome. As the states. are written to a file, a 
base index is stored to keep track of which group a state belongs to, as well 
as the number of states in that group. If the number of states in a group is 
1, no collision is possible and only streaming occurs. 

5.2 Rule 1 

This rule enforces the conservation laws for mass, momentum and  "power".  
The mass and momentum conservation laws are the same as for rule O. Power 
conservation is enforced by regarding the particles as packages of voltage and 
using 

With the resistance normalized to 1, power conservation is simply that the 
sums of the number of particles squared must be the same before and after: 

6 	 6 

= 
i=1 	i=1 

6 	 6 

E 	E 2  
i=1 	 i=1 

The look-up tables are generated in the same manner as in Rule 0. Collisions 

for which Equations (5.2) are not exactly satisfied are rejected and the states 

are streamed. 

5.3 Rule 2a 
•. 

Rule 2 makes use of the conventional TLM (transmission line matrix) method 

used for solving electromagnetic fields (Section 2.2). 

V 2  
P = 

R 
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(5.3) 

Due to notational differences bètween .TLM theoïy.  and  the'laittiCe:gas 
model, shown in Figure 5.1, the equations miist be translated to tliè iangUagen 

 of the lattice gas model since TLM notation shows position and LGA notation 
shows direction. 

i 

V ii 	 WI 	 1\1 .3 

V i3 	' 	 . 	V I3 	 InTj' 
, 	 , 	 ... 

4 	  2 	4 	 2 	or 4 	 2 

3 	 3 	 3 

Incident 	Scattered 	 Scattered 
(TLM) 	 (LGA) 

Figure 5.1: Notational difference between TLM and LGA. 

What is defined in TLM as V translates in the language of the lattice gas 
to N3 Vir translates to M, where Ni is the number of particles in direction 
ti, proportional to the voltage in that direction. This results in an equation 
for the lattice gas TLM rule: 

( 	)- 1 	1 —1 	1 	\ 1   

	

1 1 1 — 1 	N2 
M 	2 —1 1 1 1 	N3 

1  —1 	1 	1_ N4 )  
- 

For a hexagonal lattice, the 6-directional lattice gas TLM rule becomes 

I N{ 	- 1 1  1-2  1 1 	N1  \ 

	

1 1 1  1-2  1 	N2 
1 	1 1 1 1 1 —2 	N3 

	

—

3 —2 1 1 1 1 1 	N4 

	

1-2  1 1 1 1 	N5 

j 	1 	1-2 	1 	1 	1 \ N6 

Note that since this is an integer-based model, truncation error must 

be accounted for. To do this, the number of particles in each direction is 
divided by 3, the quotient stored in [Nk and the remainder stored in [NI R . 
The TLM operation is carried out only on those numbers of particles that 

(5.4) 
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CTLM = 

are divisible by 3 (the quotient) and the remainder is added back on after, 
essentially resulting in a streaming operation on the remainder bits. 

= CTLM( -1  [N] t  ) ± Ts [N] iz 
 3 	Q , 

Here Ts  is the identity matrix  16  and CTLm .  iS 

11 	1 —2.1 
1 	1 	1. 	1 —2 	1 
1 	1 	1 	1 	1 —2 

—2 	1 	1 	1 	1 	1 
1 —2 	1 	1 	1 	1 
1 	1 —2 	1 	1 	1 

(5.6) 

Note that conservation of mass must still be obeyed for this method, no 
negative numbers of particles are allowed, and this number must not exceed 
2m -1. If any of these should occur, the transition is rejected and all particles 
are streamed. 

5.4 Rule 2b 

In Rule 2a (5.5), there is a choice in the order of operation on the quotient 
state [N] Q. There, the state was first split into quotient and remainder, 
then the quotient was divided by 3 and operated on by CTLm. R1,11e 2b 
reverses the order of operation by operating CTLm on the complete state, • 
then splitting the output into quotient and remainder, dividing the quotient 
by 3 and streaming the remainder: 

[N]e+1  = —
1

(CTLm[N] e )Q + Ts(CTLivr[N] t )R 	 (5.7) 
3 

This rule only works when (CTLm[N]t)ft  is exactly zero, since conservation 
of mass is violated otherwise. The 1/3 term is a necessary part of the TLM 
operation to satisfy conservation laws. The rule then becomes 

[Nr-  = -1 CTLiter 	 (5.8) 
3 

Again, any final states violating conservation laws or existing outside of the 
range of possible values are rejected and the entire state is streamed instead. 
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5.5 Rule 3a 

Rule 3a is variation of rule 2, with the following alteration: if ,the TLM 
operation fails, the origine state is altered by a fractional amount a and the - 
TLM operator is re-tried. 

[N']  = a[N] 	• a = 
2m - 1 

= [N] [Nt] 

[N1 is then split into its quotient and remainder parts and the final state 
becomes 

[N]t+1  CTI,m(. 1ellej) + Ts[N I ] R +Ts{NT 

If the operation does not satisfy the requirements for any value of a, all 
particles are streamed for that state. 

What this is doing, in essence, can be considered as follows:' if the state 
will not undergo a TLM operation on its quotient part, a small amount is 
shaved off of the number of particles in all directions, increasing the number 
of particles streamed and decreasing the overall number in the quotient. The 
TLM operation is then re-tried. The amount shaved off is increased and the 
process repeated until a portion of the state is transformed, or until the state 
is finally entirely streamed. 

5.6 Rule 3b 

Rule 3b has the same variation on Rule 3a as Rule 2b has on Rule 2a, giving 

[N] t+i  = (CTLm[N"] t)Q + Ts(CTLm[N"] t)ft+Ts[NT 	(5.10) 

As for Rule 2b, the remainder term (CT,Lm[N"])R 
mass conservation. The rule then becomes 

1 pvit+1
3 (CTLm[N"] t)Q Ts[N]t 	 (5.11) 

Any final states violating conservation laws or existing outside of the range 
of possible values are rejected and the entire state is streamed instead. 

must be zer,,o to satisfy 

(5.9) 



5.7 Rule 3c 

This rule maximizes the number of possible TLM transitions by perform-
ing the TLM operation ôn all possible permutations and combinations of 
multiples of 3. 

First these states, containing only multiples of 3, are generated and stored . 
 according to the total number of particles in the state. Then, starting with - 

the group which contains the most particles and woiking down, the TLM 
operation is performed on each state. If no direction of an output state 
exceeds the maximum number of particles allowed, remainder particles are 
added back on sequentially to form both an input state and an output state, 
such that they still satisfy all conservation laws and bounds. For each in-
put/output combination, the transition containing the most particles is the 
one accepted. It should be noted that there may be more than one option 
with the same number of particles involved in the TLM operation; the one 
obtained first is the one accepted. 
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Chapter 6 

Waveguides 

In this chapter the equations of propagation for a 2 dimensional rectangular 
waveguide with perfect conducting boundaries will be presented, as derived 
from Maxwell's equations, yielding the critical values for frequency and wave-
length [6] for the TE mode case. The equations derived here will be used to 
compare to test cases. 

y 

Figure 6.1: Diagram of a rectangular waveguide. 
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(6.2) 

(6 .3) 

The following set of equations applies to the TE case: 

= —7 (CB sin Bx cos Ay)e 
h2  

H = — (C A cos Bx sin Ay)e—"" 
Y 	h2  

(C cos Bx cos Ay)e—l'z 

Es.  = j (C A cos B.  x sin Ay)e-1'. 
h2  

wit 
Ey  = —3 —

h2
(CB sin B x cos Ay) e —7z  

E ---- 0 

6.1 Simulation Expectations 

This section details what results are expected from the simulation for a square 
waveguide with dimensions a x b initialized to a density (field strength) cor-
responding to various TE modes., 

6.1.1 Frequency 

In deriving the TE mode solution, the relationship 11,2  = A2 +132  was defined. 
Equating this to the previous value of h2  = -y2  + co2 ,ae gives the relationship 

M71" 2 	/ nir\ 2  
= a  je  = (—Ft) + 	w21'6  

From this it can be seen that for small co, 7 will be a real number, hence p 
is zero, resulting in no wave propagation in the z direction. For large co, -y 
is purely imaginary and a is zero, allowing the wave to propagate without 
decay. For perfectly conducting walls a is zero for all frequencies above the 
cutoff frequency wc : 

coc  = 	 2 ± rur ) 2 

Nfire 	a y 	b 
The cutoff wavelength is 

= 
v (mict) 2  (n/b) 2  

.4. 

2 
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This  is the wavelength above which wave propagation cannot occur. 
Since wavelength and frequency are related  bÿ f v/A and for' thesê sirn= 

ulations the size of the grid is fixed at a = b and the velocity in 2 dimensions 
is defined as v = A/ffiAt (Section 3.1), the frequency expectèd is a value 
close to ,Vm2 + n2 

fc  2.ViaAt 

with slight variations due to the dispersion (recall that the dispersion can-
not be calculated analytically for most of the collision rules used  in  these 
simulations). 

6.1.2 Viscosity 

When modeling electromagnetic waves with this method, the portion of par-
ticles streamed due to the 1/3 term in the TLM operator introduces an error 
in the form of a damping of the wave amplitude. In fluid dynamics, this 
damping is common and is known to be caused by the presence of viscosity. 
Obviously, this viscosity term should not be present in our calculations and 
we therefore want to minimize it. 

It can be shown [14] that a solution to the Navier-Stokes equation gives 
the variation in density of particles with time as 

5p a sin(wt)eka ut 	 (6.5) 

where v is the average of the shear and bulk viscosities. If the viscosity is 
zero, we obtain perfect wave behaviour. Hence the validity of the model as 
applied to electromagnetics is dependent on showing that the viscosity can 
be eliminated in some manner. 

An analytical value for the viscosity can be obtained [151[16] providing 
that the collision rules obey semi-detailed balance [13]. The TLM-like rules 
used here do not obey semi-detailed balance, hence the results obtained from 
simulation cannot be compared to analytical results. The behavrour remains 
as expected, however, obeying Equation (6.5). 
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Chapter 7 

The Program 

Initialize grid 
to (m,n) mode 

Move all particles 

no yes 

Apply collision rule 
to all internal sites 

Apply reflective 
boundary conditions 

Time for output? 

Output time, density 

time to stop? 

yes 

no 

This chapter contains a description of the algorithm used for an integer lattice 
gas on a hexagonal lattice with reflective boundaries. A flow chart is shown 
in Figure 7.1. 

exit 

Figure 7.1: Flow diagram of the alg.brithm. 
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7.1 The Hexagonal Lattice 

Y 

j EVEN 

j ODD 

For computational purposes, a hexagonal lattice may still use square lattice 
coordinates, as shown in'•Figure 7.2, considering movement from odd and 
even rows as two different cases. - - 

WiWÀYÀYA  
AVI £YÀMAYAY 
VIPAWAVA0AM 
ÀWAÀVS4W  
YAYAWÀY 
.11. MOW 
YAWAVAVAVAVA  

0 	1 	2 	3 	4 	5 	6 	7 

Figure 7.2: The hexagonal lattice. 
r 

'4 • 

7.2 Initialization 
Initially, the lattice is filled with particles in a binomial distribution. As an 
example, consider the case in which we desire the lattice to be 50% filled 
and we have 3 bits per direction to work with. For every bit in the state, a 
random number between 0 and 1 is generated and if this is greater than 0.5, 
the bit is filled. Then for each direction, the probability of any number of 
particles from 0 to 7 is equal at ( )2-) 3  = 

Note that in this case, since we are using reflective boundaries, sites along 
the boundaries must be skipped since some directions are forbidden for those 
sites (see Figure 7.2). This must be accounted for to obtain an accurate 50% 
fill. For M bits per direction on an nx n lattice: 

I 

1 

1 

1 
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• On the top and bottom rows, excluding corner points, 2 of the 6 'di- 
rections are forbidden, allowing a maximum of 2 x 4(n — 2)(2 — 
particles on the top and bottom rows. 

• On the sides, excluding corner points, a maximum of 2 x (3(n/2 — 
1)(2m — 1) + 5(n/2 — 1)(2m — 1)) particles are allowed in total. 

• In the corner points, 2 x 	L  1) + 2(2M — 1)) particles are allowe 

The maximum number of particles a lattice can hold is then the sum of these 
values and the maximum number of particles that the inner sites can hold, 
6(n — 2) 2 (2m — 1), giving the desired 50% fill as (3n — 1)(n — 1)(2 m  — 1) 
particles. The boundary sites of the lattice must be filled separately from 
the inner sites to achieve an accurate 50% fill. 

Since we want to look at wave properties, the initialization scheme changes 
to reflect the mode of the wave desired for study. As shown in Chapter 6, 
the equation of a TE wave in a (m,n) mode is given by 

Hz°  (x, y) = C cos(
772 
	) cos ( ir —

wy
) 	 (7.1) 

1rX 

a 

We want the density of particles at a site to reflect the amplitude of the wave 
at the (x,y) coordinate. To accomplish this, the probability p of filling a bit 
is perturbed by approximately 10% of the amplitude of the initial wave ,  j. e.  
if a uniform random number is larger than 

r•a. 

(
a J

m7rx  cos  ( wry 
p + 0 .1 cos b 

a bit is "turned on". In these simulations, p = 0.5. Note that the model only 
applies for small perturbations. 

7.3 Collision and Advection 

For each node on the lattice, excluding the boundaries, the state after col-
lision is determined. Then the boundary sites are checked to ensure that 
no particles exist in directions that are forbidden. Reflective boundaries are 
enforced. The particles are then moved. This process is repeated for as many 
time steps as desired. 
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At intervals, the average density is calculated by averaging over a small region 
of space, about 10% of the grid, in an area near a maximum at initialization. 
The time step and average density of particles on these sites is output to a 
file. 

Further data which could be obtained at this stage,includes distributions 
of numbers  of  particles per direction per site and spatial  densities. 

r 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
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Results 

8.1 Equilibria 

The equilibrium distributions of the number of particles in any direction were 
found as a function of time, for 3 bits per direction and 100 time steps. To 
justify the shape of each equilibrium distribution, a binning procedure was 
used directly on the rule tables, where loss or gain of particles was recorded. 
For example, if a state originally has 2 directions which contain 5 particles, 
but its final state has only 1 direction which contains 5 particles, bin[5] will 
lose 1. If a state originally has 1 direction with 3 particles but winds up 
with 3 directions with 3 particles, bin[3] will gain 2,.  These statistics give 
an idea of the general trend of the rule relating to this type of distriljetion. 
Figures 8.1 and 8.2 show the equilibrium distribution for each rule (excluding 
Rule 3c) and the binned statistics. 
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Rule 0 	Rule 1 	Rule 2a  
0 	0 	0 	-6570 
1 	0 	0 	. 	618 
2 	0 	0 	12894 
3 	0 	0 	444 
4 	0 	0 	-5706 
5 	0 	0 	-9882 
6 	0 	0 	12918 
7 	0 	0 	-4716 

0. 26  

4*0 
qt. 

o. 0  

— 
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Figure 8.1: The upper right diagram shows the equilibrium distribution of 
particles for Rule 0, the bottom left for Rule 1, and the bottom right for 
Rule 2a. The table shows the statistics of expected particles lost or gained, 
as described in the text. Note how the trends agree. 
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Figure 8.2: The upper right diagram shows the equilibrium distribution of 
particles for Rule 2b, the bottom left for Rule 3a, and the bottom right for 
Rule 3b. The table shows the statistics of expected particles lost or gained, 
as described in the text. Note how the trends agree. 
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8.2 Rule Statistics 

The simulations were carried out using look-up tables for up to 4 bits per 
direction. From these tables, some statistics about each rule were obtained 
and are shown - in Table 8.1. The "table" values quoted are the values av-
eraged over all states in the table. For example, the total change in energy 
(poweroid-powerin ) is averaged over all states and does nOt necessarily reflect 
the change in energy that would occur in a simulation. These s.  tatistics do,- 

 however, show the general trends in the rules. The "actual" values are the 
values averaged over time and space to convergence in a simulation excited to 
a (1,0) mode. "Weighted" values were obtained by weighting the percentage 
not streamed and change in energy with the probability of attaining a state, 
i.e. P(01313161412) = P(0)P(3) 2P(6)P(4)P(2). The individual equilibrium 
probabilities were found in the previous section. 

The weighted values may vary due to fluctuations in the equilibrium dis-
tributions, however minor. It would be beneficial to find an analytic equi-
librium distribution to generate accurate weighted statistics. This may be 
found through a transformation of the statistics of net loss or gain of Par-
ticles. Semi-detailed balance was not calculated for more than 3 bits per 
direction since the trends are consistent and do not justify the computation 
time. 

Rule 3c does not work for more than 3 bits per direction as the lookup 
table generation becomes biased to favour some directions of motion over 
others. Only the results for 2 and 3 bits per direction are presented in‘ this 
report. 

a 
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Rule 	Bits 	% that 	%ns 	%ns -.•-• 	• 	%ns 	dE 	dE 	 SDB _. 
change 	(table) 	(weighied) 	CaCtual 	• 	(table) 	(actual)  

0 	1. 	31.25 	31.25 	17.19..•',. 	12.93±.03 	0 	. 	0 	' 
2 	90.14 - 	.90.14, . 	71.97 ,. 	692.20+.024 	0 ., ,, 	.035±.002 : 
3 	99.19 	99.19 	94.84 	. 	94.73+.01 . 	-.000047 	-.282+.005'.: 

1 	1 	31.25 	31.25 	17.19 	12.93±.03 	0 	0 	 Y 
2 	68.41 	68.41 	42.02 	' 34.99±.04 	0 	-0 	 Y 
3 	86.36 	86.36 	6L95 	57.71±.03 	0 	0 	 Y  

2a 	2 	17.43 	7.74 	7.74 	. 	6.864±.008 	' -.0938, 	-..034+.001 . 	N 
3 	42.38 	30.65 	28.25 	28.44+.02 	-.18 	-.131±.005 	'N 
4 	51.35 	46.91 	36.14 	38.48±.02 	-.41 	-2.01+.02 ' 	- 
5 	54.04 	50.46 	45.50 	41.7±.7 	-.2737 	.0028±..0007'7' 	-  

2b 	2 	18.75 	18.75 	20.88 - 	18.18+.02 	0 	0 
3 	18.46 	18.46 	18.43 	17.48±.02 	0 	0 
4 	18.37 	18.37 	18.70  V 	17.38±.02 	0 	0 	.  V 	V 	- 

3a 	2 	17.43 	7.74 	7.74 	6.864±.008 	-.0938 	-.034±.001 I. 	N 
3 	80.00 	48.70 	55.44 	51.58+:02 	-2.83 	-.351±.005 r 	N 
4 	95.44 	73.23 	83.55 	81.376±.007 	-13.33 	-2.19±.01  
5 	98.49 	98.44 	98.00 	. 	92.62+14 	-9.63 	.0004±.000: 

 2 	47.02 	39.88 	19.31 	18.2±.6 	-.80 	-.000031+.000002 	N 
3 	83.70 	68.82 	23.23 	17.6±.7 	-5.4 	-.00047±.00003 	N 
4 	94.95 	79.47 	26.41 	16.1+.6 	- 	-19.8 	-.0020±.000i •' 	- 

3c 	2 	25.42 	16.25 	- 	- 	-1.44 	
V 	
- 	,. 	N 

3 	84.49 	62.66 	- 	- 	-8.16 	 N 

Table 8.1: Rule table statistics. % that change is the number of stateS that 	' 
undergo a TLM-like collision. %ns is the percentage of particles that undergo . 
a TLM-like collision, table denotes the statistics drawn directly from the 
table. actual denotes statistics taken from within a simulation excited to 
(1,0) mode. weighted denotes a weighted average based on the equilibrium 
distributions shown in the previous section. dE is the average AP. SDB 
shows whether the rule table satisfies semi-detailed balance. The statistics 
for Rule 3c were not completed since the table generator was faulty. 
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For each of the 7 rules, 5 simulations of different seeds for the Numerical 
Recipes "ran3" random number generator [17] were carried out on a 64 x 64 
hexagonal lattice initialized by thé foiir modes (m,n) = (0,1), (1,0), (1,1) and 
(2,1). These were repeated for up to four bits per direction, where memory 
allowed. Figure 8.3 shows the five trials of density versus time step for a (1,0) 
mode using Rule 0 (mass and momentum conservation only) with 3 bits per 
direction. 

Figure 8.3: 5 trials for Rule 0, 3 bits per direction, initialized to a (1,0) mode. 
The y-axis is the average density in the sample space. 

The results are noisy due to the small grid used; an increase in grid 
size to  150x150  smooths out the curves considerably but requires twice the 
computation time. 
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8.4 Curve Fits 
To obtain a viscosity from these curves, an average of the five data sets was 
taken and the result fit td 

y(t) = A sin(cot q5)e -Bt  C 

using the Marquardt-Levenberg subroutines from Numerical ReciPeS [11: 
The error on the each data point was taken as the standard deviation or 0.5, 
whichever was larger. Tables 8.2, 8.3, 8.4 and 8.5 show the fitting parameters 
for each mode, rule and number of bits per direction. 

Rule 	Bits 	A 	 w 	 B 	 C  
0 	1 	0.48 ± 0.08 	0.0402 ± 0.0002 	0.0007 ± 0.0002 	3.24 ± 0.01  

2 	1.58 ± 0.06 	0.04056 ± 0.00002 	0.00029 ± 0.00002 	8.98 ± 0.01 
3 	3.82 ± 0.06 	0.040917 ± 0.000006 	0.000253 ± 0.000006 	20.48 ± 0.01  

1 	2 	1.57 ± 0.08 	0.04116 ± 0.00005 	0.00065 ± 0.00005 	9.51 ± 0.01  
3 	3.62 ± 0.08 	0.04099 ± 0.00002 	0.00052 ± 0.00002 	21.35 ± 0.01  

2a 	2 	1.61 ± 0.08 	0.04108 ± 0.00004 	0.00063 ± 0.00004 	8.738 ± 0.01 
3 	3.78 ± 0.07 	0.04098 ± 0.00001 	0.00038 ± 0.00001 	20.45 + 0.01 
4 	8.21 ± 0.09 	0.041008 ± 0.000007 	0.000501 ± 0.000008 	43.90 ± 0.01  

2b 	2 	1.67 ± 0.09 	0.04108 ± 0.00006 	0.00083 ± 0.00007 	8.74 ± 0.01 
3.8 ± 0.1 	0.04114 ± 0.00006 	0.00121 ± 0.00006 	20.45 + 0.01  

4 	8.0 ± 0.2 	0.04124 ± 0.00005 	0.00138 ± 0.00005 	43.76 ± 0.02  
3a 	2 	1.61 ± 0.08 	0.04108 ± 0.00004 	0.06063 ± 0.00004 	̀'‘ 8.74 ± 0.01  

	

3.77 ± 0.04 	0.040967 ± 0.000002 	0.000063 ± 0.000002 	20.44 ± 0.01  

	

8.37 ± 0.06 	0.040967 ± 0.000001 	0.000030±  0.000001 	43.74 ± 0.02  
3b 	2 	1.65 ± 0.02 	0.040872 ± 0.000005 	0.000381 ± 0.000004 	8.984 ± 0.002  

	

3.75 ± 0.02 	0.040438 ± 0.000005 	0.000533 ± 0.000004 	20.990 ± 0.003  

	

13.63 ± 0.07 	0.040840 ± 0.000002 	0.000464 ± 0.000002 	44.899 ± 0.006 
3e 	2 	1.64 ± 0.07 	0.04104 ± 0.00002 	0.00041 ± 0.00002 	9.07 ± 0.01 

	

3.37 ± 0.04 	0.040217 ± 0.000003 	0.000064 ± 0.000003 	20.41 ± 0.01 

Table 8.2: Fit parameters for all rules for the (0,1) mode. 

The fitted curves (solid lines) for each rule are shown in Figures 8.4-8.10, 
using the (1,0) mode and 3 bits per direction. The raw data shown (dashed 
lines) is the average over the 5 data sets obtained for different random number , 

generator seeds. The fits are reasonably good for most of the rules. Rule 3b 
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Rule 	Bits 	A 	 w 	 B 	 C  
0 	1 	0.42 ± 0.04 	0.03630 ± 0.00002 	0.00007 ± 0.00002 	3.24 ± 0.01 

2 	1.50 ± 0.04 	0.035632 ± 0.000007 	0.000118 ± 0.000007 	9.01 ± 0.01 
3 	3.74 ± 0.05 	0.035060 ± 0.000005 	0.000205 ± 0.000005 	20.46 ± 0.01  

1 	2 	1.39 ± 0.04 	0.035604 ± 0.000009 	0.000161 ± 0.000009 	9.53 ± 0.01 
3 	3.55 ± 0.06 	0.035331 ± 0.000006 	0.000256 ± 0.000006 	21.32 ± 0.01  

2a 	2 	1.60 ± 0.07 	0.03499 ± 0.00003 	0.00048 ± 0.00003 	8.76 ± 0.01  
3 	3.74 ± 0.06 	0.034977 ± 0.000007 	0.000296 ± 0.000007 	20.42 ± 0.01  
4 	7.98 ± 0.07 	0.034969 ± 0.000004 	0.000338 ± 0.000004 	43.89 ± 0.01  

2b 	2 	1.69 ± 0.09 	0.03497 ± 0.00006 	0.00076 ± 0.00006 	8.77 ± 0.01  
3.8 ± 0.1 	0.03495 ± 0.00004 	0.00101 ± 0.00004 	20.42 ± 0.01 

4 	7.8 ± 0.2 	0.03493 ± 0.00004 	0.00107 ± 0.00004 	43.78 ± 0.02  
3a 	2 	1.60 ± 0.07 	0.03499 + 0.00003 	0.00048± 0.00003 	8.76 ± 0.01  

3 	3.72 ± 0.04 	0.034968 ± 0.000002 	0.000049 ± 0.000002 	20.42 ± 0.01 
4 	8.13 ± 0.05 	0.034979 ± 0.000001 	0.000029 ± 0.000001 	43.80 ± 0.02  

3b 	2 	1.48 ± 0.01 	0.035026 ± 0.000004 	0.000296 ± 0.000003 	9.042 ± 0.002 -.. 

	

3.19 ± 0.02 	0.035191 ± 0.000004 	0.000449 ± 0.000004 	21.053 ± 0.003  
4 	12.14 ± 0.07 	0.035129 ± 0.000003 	0.000512 ± 0.000003 	45.266 ± 0.005  

3c 	2 	1.56 ± 0.06 	0.03499 ± 0.00002 	0.00033 ± 0.00002 	9.10 ± 0.01 
3 	3.57 ± 0.04 	0.035253 ± 0.000002 	0.000049 ± 0.000002 	20.38 ± 0.01 

Table 8.3: Fit parameters for all rules for the (1,0) mode. 
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Rule 	Bits 	A 	 co 	 B 	 C  
0 	1 	0.18±  0.08 	0.0538 ± 0.0004 	0.0007 ± 0.0004 	3.23 ± 0.01  

2 	1.23 ± 0.07 	0.05382 ± 0.00004 	0.00046 ± 0.00004 	8.97 ± 0.01  
3 	3.49 ± 0.07 	0.05389 ± 0.00001 	0.00039 ± 0.00001 	20.40 ± 0.02  

1 	2 	0.8 ± 0.1 	0.0543 ± 0.0002 	0.0010 ± 0.0002 	9.50 ± 0.01  
3 	2.7 ± 0.1 	0.05413 ± 0.00004 	0.00081 ± 0.00004 	21.25 ± 0.01  

2a 	2 	1.5 ± 0.1 	0.0539 ± 0.0001 	0.0010 ± 0.0001 	8.73 ± 0.01  
3 	3.49 ± 0.09 	0.05386 ± 0.00002 	0.00057 ± 0.00002 	20.35 ± 0.01  
4 	8.0 ± 0.1 	0.05386 ± 0.00002 	0.00099 ± 0.00002 	43.74 ± 0.01  

2b 	2 	1.4 ± 0.1 	0.0540 ± 0.0001 	0.0013 ± 0.0002 	8.73 ± 0.01  
3 	3.7 ± 0.2 	0.0544 ± 0.0002 	0.0023 ± 0.0002 	20.36 ± 0.01  
4 	8.2 ± 0.3 	0.0541 ± 0.0001 	0.0025 ± 0.0001 	43.62 ± 0.02  

3a 	2 	1.5 ± 0.1 	0.0539 ± 0.0001 	0.0010 ± 0.0001 	8.73 ± 0.01  
3 	3.50 ± 0.04 	0.053860 ± 0.000003 	0.000098 ± 0.000003 	20.36 ± 0.01  
4 	7.71 ± 0.05 	0.053857 ± 0.000001 	0.000027 ± 0.000001 	43.59 ± 0.02  

3b 	2 	1.45 ± 0.02 	0.05386 ± 0.00001 	0.00063 ± 0.00001 	„8.969 ± 0.002 
3 	3.50 ± 0.03 	0.053827 ± 0.000006 	0.000636 ± 0.000005 	20.899 ± 0.003  
4 	10.66 ± 0.08 	0.053761 ± 0.000003 	0.000587 ± 0.000004 	44.795 ± 0.005  

3c 	2 	1.58 ± 0.09 	0.05392 ± 0.00006 	0.00073 ± 0.00006 	9.06 ± 0.01  
3 	3.51 ± 0.04 	0.053663 ± 0.000003 	0.000100 ± 0.000003 	20.33 ± 0.01 

Table 8.4: Fit parameters for the (1,1) mode. 
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Rule 	Bits 	A 	 co 	 B 	 C  
0 	1 	0.35 ± 0.14 	0.081 ± 0.001 	0.002 ± 0.001 	3.23 ± 0.01  

2 	1.2 ± 0.1 	0.0811 ± 0.0002 	0.0012 + 0.0002 	8.96 ± 0.01 
3 	2.4 ± 0.1 	0.08089 ± 0.00006 	0.00092 ± 0.00006 	20.41 ± 0.01  

1 	2 	1.0 ± 0.1 	0.0799 ± 0.0003 	0.0019 ± 0.0004 	9.49 ± 0.01  
3 	2.5 ± 0.2 	0.0806 ± 0.0002 	0.0019 ± 0.0002 	21.25 ± 0.01  

2a 	2 	0.9 ± 0.1 	0.0808 ± 0.0004 	0.0018 ± 0.0004 	8.71 ± 0.01  
3 	2.5 ± 0.1 	0.0805 ± 0.0001 	0.0014 ± 0.0001 	20.37 ± 0.01  
4 	4.7 ± 0.2 	0.08056 ± 0.00007 	0.00155 ± 0.00007 	43.83 ± 0.01  

2b 	2 	1.0 ± 0.2 	0.0816 ± 0.0008 	0.0030 ± 0.0008 	8.71 ± 0.01 
3 	1.9 ± 0.2 	0.0818 ± 0.0006 	0.0037 ± 0.0006 	20.36 ± 0.01  
4 	4.8 ± 0.5 	0.0826 ± 0.0005 	0.0043 ± 0.0005 	43.67 ± 0.02  

3a 	2 	0.9 ± 0.1 	0.0808 ± 0.0004 	0.0018 ± 0.0004 	8.71 ± 0.01  
3 	2.64 ± 0.05 	0.080928 ± 0.000006 	0.000199 ± 0.000006 	20.37 ± 0.01  
4 	6.40 ± 0.06 	0.080940 ± 0.000002 	0.000069 ± 0.000002 	43.66 ± 0.02  

3b 	2 	1.27 ± 0.04 	0.08105 ± 0.00005 	0.00138 ± 0.00005 	8.9560  ± 0.0002  
3 	3.06 ± 0.05 	0.08154 ± 0.00002 	0.00141 ± 0.00002 	20 .928 ± 0.003  
4 	9.5 ± 0.1 	0.08131 ± 0.00002 	0.00125 ± 0.00002 	44.829 ± 0.006  

3c 	2 	0.9 ± 0.1 	0.0809 ± 0.0002 	0.0012 ± 0.0002 	9.05 ± 0.01 
3 	3.06 ± 0.07 	0.08116 ± 0.00002 	0.00048 ± 0.00002 	20.34 ± 0.01 

Table 8.5: Fit parameters for the (2,1) mode. 



does not fit well for it's first 1000 steps, likely due to the relatively ,  long tin-lè 
it takes to reach it's equilibrium distribution. 
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Figure 8.4: Averaged data and fitted curve for Rule 0, 3 bits per direction, 
initialized to a (1,0) mode. 
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Figure 8.6: Averaged data and fitted curve for Rule 2a, 3 bits per direction, 
initialized to a (1,0) mode. 
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Figure 8.5: Averaged data and fitted curve for Rule 1, 3 bits per direction, 
initialized to a (1,0) mode. 
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Figure 8.7: Averaged data and fitted curve for Rule 2b, 3 bits per direction, 
initialized to a (1,0) mode. 
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Figure 8.8: Averaged data and fitted curve for Rule 3a, 3 bits per direction, 
initialized to a (1,0) mode. 
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Figure 8.9: Averaged data and fitted curve for Rule 3b, 3 bits per direction, 
initialized to a (1,0) mode. Note that the y-axis here represents the summed 
density over all sites in the sample space. 
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Figure 8.10: Averaged data and fitted curve for Rule 3c, 3 bits per direction, 
initialized to a (1,0) mode. 

8.5 Modes 

The results shown in Figures 8.11-8.14 are for Rule 3a, 3 bits per direction. 
They contain the averaged raw data and the fitted curve for density versus 
time step. 
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Figure 8.11: Averaged data and fitted curve for Rule 3a, 3 bits per direction, 
initialized to a (0,1) mode. 

Figure 8.12: Averaged data and fitted curve for Rule 3a, 3 bits per direction, 
initialized to a (1,0) mode. 
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Figure 8.13: Averaged data and fitted curve for Rule 3a, 3 bits per direction, 
initialized to a (1,1) mode. 

Figure 8.14: Averaged data and fitted curve for Rule 3a, 3 bits per direction, 
initialized to a (2,1) mode. 
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8.6 Bits 
The 4 plots to follow show the averaged data for Rule 3a in a (1,0) mode for 
2, 3, 4 and 5 bits per direction, Figures 8.15, 8.16, 8.17 and 8.18, respectively. 
As expected from  percent of particles streamed in the table of look-up table - 
statistics (Table 8.1), the damping decreases as the number of bits increases. 

, 
Figure 8.15: Averaged data and fitted curve for Rule 3a, 2 bits per direction, 
initialized to a (1,0) mode. 
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Figure 8.16: Averaged data and fitted curve for Rule 3a, 3 bits per direction, 
initialized to a (1,0) mode. 

Figure 8.17: Averaged data and fitted curve for Rule 3a, 4 bits per direction, 
initialized to a (1,0) mode. 
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Figure 8.18: Averaged data and fitted curve for Rule 3a, 5 bits per direction, 
initialized to a (1,0) mode. 

8.7 Viscosity 

Figures 8.19, 8.20, 8.21 and 8.22 show the viscosities calculated for each 
rule for the (0,1), (1,0), (1,1) and (2,1) modes respectively. The values are 
tabulated in Table 8.6. Note that for all of the mode, Rule 3a consistently 
shows the lowest viscosity and Rule 2b the highest. • 
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Rule 	Bits 	v01 	 vio 	 vii 	 V21  

0 	1 	0.21+0.05 	0.029+0.008 	0.12+0.08 	0.15+0.08 
2 	0.091+0.005 	0.049+0.003 	0.082+0.006 	0.09+0.01 
3 	0.079±0.00 	0.085+0.002 	0.068+0.002 	0.071+0.004  

1 	1 	0.21+0.05 	0.029+0.008 	0.12+0.08 	0.15+0.08 
2 	0.20+0.02 	0.067+0.004 	0.18+0.03 	0.14+0.03 
3 	0.161+0.005 	0.106+0.003 	0.143+ 0.007 	0.14  ± 0.01  

2a 	2 	0.20 + 0.01 	0.20± 0.01 	0.18+ 0.02 	0.14 + 0.03 
3 	0.120 ± 0.003 	0.123+0.003 	0.102+ 0.003 	0.108 ± 0.008 
4 	0.156 + 0.002 	0.140+0.002 	0.175+ 0.004 	0.120 +0.006 
5 	N/A 	 0.1369+0.0022 	N/A 	N/A  

2b 	2 	0.26 ± 0.02 	0.32 ± 0.02 	0.23 ± 0.03 	0.24 ± 0.06 
3 	0.38 ± 0.02 	0.42 ± 0.02 	0.41 ± 0.03 	0.29 ± 0.05 
4 	0.43+0.02 	0.44± 0.02 	0.44 ± 0.02 	0.33 ± 0.04  

3a 	2 	0.20+0.01 	0.20+0.02 	0.18+0.02 	0.14+ 0.03 
3 	0.0197+0.0007 	0.0204+0.0009 	0.0175+0.0005 	0.0154+0.0005 
4 	0.0093+0.0004 	0.0122+0.0005 	0.0048+0.0002 	0.0054+0.0002 
5 	N/A 	 0.0036+0.0002 	N/A 	N/A  

3b 	2 	0.118+0.001 	0.123+0.001 	0.112+0.002 	0.107 +0.004 
3 	0.186 ± 0.005 	0.286+0.009 	0.193+0.007 	0.14 + 0.01 
4 	0.1444 +0.0007 	0.213+0.001 	0.1044+0.0006 	0.097+0.001 

3c 	2 	0.129+0.007 	0.137+0.008 	0.15+0.01 	0.11+0.02 
3 	0.0199+0.0009 	0.0205+0.0009 	0.0208+0.0006 	0.040t0.001 

Table 8.6: Viscosity for all rules and all modes. (N/A FL---  not attempted) 

Results were obtained for Rule 3a, 3 bits per direction for (2,0) and 
(4,2) modes for comparison to the (1,0) and (2,1) modes, respectively, on a 
128x128 lattice. For these cases, v20 = 0.024+0.001 and 1142 = 0.017+0.002, 
showing good agreement with the (1,0) amd (2,1) results of vi0  = 0.0204 ± 
0.0009 and v21 = 0.0174 ± 0.0007. A (3,0) mode gives v30  = 0426 ± 0.007. 
Note that the error increases considerably for higher modes. 

There is some small variation in viscosity with angle of propagation. 
These results show that the viscosity is anisotropic. 
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Figure 8.19: Viscosity as a function of number of bits per direction for the 
seven rules for a (0,1) mode. 
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Figure 8.20: Viscosity as a function of number of bits per direction for the 
seven rules for a (1,0) mode. 
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Figure 8.21: Viscosity as a function of number of bits per direction for the 
seven rules for a (1,1) mode. 
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Figure 8.22: Viscosity as a function of number of bits per direction for the 
seven rules for a (2,1) mode. 
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Chapter 9 

Discussion 

The viscosity curves for all 4 modes, although taking on different numerical 
values, follow the same trends. The best rule for all modes investigated is 
Rule 3a. 

At 5 bits per direction, the viscosity for Rule 3a is (0.0036 ± 0.0002) 
for a (1,0) mode. Comparing the 3 bits per direction Rule 3a result of 
(0.0204±0.0009) to the Rule 0 (mass and momentum conservation only) re-
sult of (0.085±0.002) for the (1,0) mode, it is evident that the viscosity has 
been significantly reduced. 

From these Rule 3a results, it is evident that the viscosity is approaching 
0 as the number of bits increases. The obstacle which, must be overcome to 
achieve even smaller values is that of memory. For the TLM rules, alook-
up table for 4 bits per direction requires 4 x 6 x (224  — 1) bytes, or 67 MB 
of RAM. Increasing to 5 bits per direction, the memory - required becomes 
5 x 6 x (2" — 1) bytes or approximately 32 GB of RAM. This is, of course, 
not feasible. The collision rule for each state was determined within the 
simulation at each step to obtain these results, which significantly slowed the 
simulation. Speed, however, is one of the benefits of using this method, so 
one is not inclined to sacrifice it. Another option is to perform a ‘,collision on 
the remainder part of the state, e.g. apply Rule 0 to the remainder part, to 
reduce viscosity. Further investigation into these possibilities is required. 

To give an idea of the speed of these simulations, 1 trial for a 64x64 grid 
size takes approximately 7 minutes to run 10000 steps on a Sun station with 
512 MB of RAM. 

In Section 8.7, the anisotropy of the viscosity was mentioned. This is 
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an interesting characteristic which will also require further investigation to 
determine its cause. 

To fully validate the model, analytical results for the dispersion relations 
and the viscosity must bè obtained for the low-bit cases for comparison to 
the results of the model. 

In conclusion, we have shown that the viscosity introduced into the sim-
ulation can be drastically reduced by applying the TLM-modified rules to 
integer lattice gas automata when the number of bits per direction is equal 
to 5. The results of this study are promising for the application of cellular 
automata methods to electromagnetic problems. 
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