ZPR-3 ASSEMBLY 11:
 A CYLINDRICAL ASSEMBLY OF HIGHLY ENRICHED URANIUM AND DEPLETED URANIUM WITH AN AVERAGE ${ }^{235}$ U ENRICHMENT OF 12 ATOM $\%$ AND A DEPLETED URANIUM REFLECTOR

Evaluator
Richard M. Lell
Argonne National Laboratory
Internal Reviewer
Richard D. McKnight
Argonne National Laboratory
Independent Reviewer
Anatoli Tsiboulia and Yevgeniy Rozhikhin Institute of Physics and Power Engineering

ZPR-3 ASSEMBLY 11:
 A CYLINDRICAL ASSEMBLY OF HIGHLY ENRICHED URANIUM AND DEPLETED URANIUM WITH AN AVERAGE ${ }^{235}$ U ENRICHMENT OF 12 ATOM \% AND A DEPLETED URANIUM REFLECTOR

IDENTIFICATION NUMBER: IEU-MET-FAST-016

KEY WORDS: acceptable, assembly, critical experiment, cylinder, depleted uranium, fast, heterogeneous, highly enriched uranium, intermediate enrichment, reflected

1.0 DETAILED DESCRIPTION

1.1 Overview of Experiments

Over a period of 30 years, more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited for nuclear data validation and to form the basis for criticality safety benchmarks. A number of the Argonne ZPR/ZPPR critical assemblies have been evaluated as ICSBEP and IRPhEP benchmarks.

Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was ${ }^{235} \mathrm{U}$ or ${ }^{239} \mathrm{Pu}$. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material.

ZPR-3 Assembly 11 (ZPR-3/11) was designed as a fast reactor physics benchmark experiment with an average core ${ }^{235} \mathrm{U}$ enrichment of approximately $12 \mathrm{at} . \%$ and a depleted uranium reflector. Approximately 79.7% of the total fissions in this assembly occur above 100 keV , approximately 20.3% occur below 100 keV , and essentially none below 0.625 eV - thus the classification as a "fast" assembly. This assembly is Fast Reactor Benchmark No. 8 in the Cross Section Evaluation Working Group (CSEWG) Benchmark Specifications ${ }^{\mathrm{a}}$ and has historically been used as a data validation benchmark assembly.

Loading of ZPR-3 Assembly 11 began in early January 1958, and the Assembly 11 program ended in late January 1958. The core consisted of highly enriched uranium (HEU) plates and depleted uranium plates loaded into stainless steel drawers, which were inserted into the central square stainless steel tubes of a 31 x 31 matrix on a split table machine. The core unit cell consisted of two columns of 0.125 in.-wide (3.175 mm) HEU plates, six columns of 0.125 in .-wide (3.175 mm) depleted uranium plates and one column of 1.0 in .wide (25.4 mm) depleted uranium plates. The length of each column was 10 in . $(254.0 \mathrm{~mm}$) in each half of the core. The axial blanket consisted of 12 in . $(304.8 \mathrm{~mm})$ of depleted uranium behind the core. The

[^0]IEU-MET-FAST-016
thickness of the depleted uranium radial blanket was approximately 14 in . 355.6 mm), and the length of the radial blanket in each half of the matrix was 22 in . $(558.8 \mathrm{~mm})$. The assembly geometry approximated a right circular cylinder as closely as the square matrix tubes allowed.

According to the logbook ${ }^{\text {a }}$ and loading records for ZPR-3/11, the reference critical configuration was loading 10 which was critical on January 21, 1958. Subsequent loadings were very similar but less clean for criticality because there were modifications made to accommodate reactor physics measurements other than criticality. Accordingly, ZPR-3/11 loading 10 was selected as the only configuration for this benchmark. As documented below, it was determined to be acceptable as a criticality safety benchmark experiment.

A very accurate transformation to a simplified model is needed to make any ZPR assembly a practical criticality-safety benchmark. There is simply too much geometric detail in an exact (as-built) model of a ZPR assembly, even a clean core such as ZPR-3/11 loading 10 . The transformation must reduce the detail to a practical level without masking any of the important features of the critical experiment. And it must do this without increasing the total uncertainty far beyond that of the original experiment. Such a transformation is described in Section 3. It was obtained using a pair of continuous-energy Monte Carlo calculations. First, the critical configuration was modeled in full detail - every plate, drawer, matrix tube, and air gap was modeled explicitly. Then the regionwise compositions and volumes from the detailed as-built model were used to construct a homogeneous, two-dimensional (RZ) model of ZPR-3/11 that conserved the mass of each nuclide and volume of each region. The simple cylindrical model is the criticality-safety benchmark model. The difference in the calculated $\mathrm{k}_{\text {eff }}$ values between the as-built three-dimensional model and the homogeneous two-dimensional benchmark model was used to adjust the measured excess reactivity of ZPR-3/11 loading 10 to obtain the $\mathrm{k}_{\text {eff }}$ for the benchmark model. Uncertainties associated with this simplification, which go beyond Monte Carlo statistical uncertainties, were included in the $\mathrm{k}_{\text {eff }}$ uncertainty of the benchmark model. The net difference in $\mathrm{k}_{\text {eff }}$ and each of the effects that contribute to it are small.

1.2 Description of Experimental Configuration

A lot of details must be presented to describe precisely the as-built assembly. Also, it is useful to define some jargon (to be shown in italics) to facilitate the presentation. For those unfamiliar with ZPR assemblies, the task of absorbing this may be tedious if not a bit overwhelming. In fact, the task of modeling the exact plate-by-plate loading would be unreasonable to do by hand. In practice, the information contained in this section was accumulated in an electronic database and processed into models using computer programs. Readers interested only in using the benchmark model need not be concerned with any of these details, since Section 3 contains a complete specification of the criticality-safety benchmark model.
1.2.1 The ZPR-3 Facility - The ZPR-3 fast critical facility was a horizontal split-table type machine consisting of a large, cast-steel bed supporting two tables or carriages, one stationary and the other movable. Details of the ZPR-3 facility are given in the hazard evaluation report for the facility. ${ }^{\text {b }}$ A pictorial view of the ZPR-3 facility is shown in Figure 1. Each table was 100 in . (2.54 m$)^{\mathrm{c}}$ wide and 67 in . (1.70 m) long. Stainless steel square tubes, nominally 2 in . (51 mm) on a side (inside dimension), 0.040 inches (1 mm) thick, and 33.5 in . (851 mm) long, were stacked horizontally on each table to form a 31-row and 31-column square "honeycomb" matrix. Each 31×31 array of matrix tubes was pressed tightly together and clamped in place on its table by steel structural members.

[^1]

Figure 1. View of the ZPR-3 Facility.

The matrix pitch was measured in November 1959. The reported pitch values were 2.1835 in . (55.461 mm) in the horizontal direction and 2.1755 in . $(55.258 \mathrm{~mm})$ in the vertical direction. ${ }^{\text {a }}$

Except during reactor operation, the tables were separated by 5 feet $(1.5 \mathrm{~m})$. For reactor operation, the movable table was driven against the stationary table with a nut and lead screw mechanism, forming a cubical 31×31 matrix array, 67 inches (1.7 m) on a side. ${ }^{\text {b }}$

A matrix position is specified by three parameters: matrix half (S or M), row letter (A-Z and AA-EE starting from the top), and column number (1-31 starting from the left looking from the movable half towards the stationary half). For example, the central position in the movable half is $\mathrm{M}-\mathrm{P} / 16$. Because the column numbers for both halves start from the same side of the machine, the row and column numbers in the stationary and movable tables of the machine align when the tables are brought together. For example, the matrix positions designated as row N , column 15 in the stationary and movable halves ($\mathrm{S}-\mathrm{N} / 15$ and $\mathrm{M}-\mathrm{N} / 15$) are directly aligned when the movable table touches the stationary table.

The stationary and movable matrix halves are sometimes designated as half 1 and half 2, respectively, in ZPR documents. That convention is retained here.

[^2]During startup, a neutron source had to be present in each half of any ZPR-3 loading that did not contain an inherent source in the core (e.g., ${ }^{240} \mathrm{Pu}$). Figure 1 provides a partial view of the movable half's spherical source pig (shielded container) and the source transport tube connecting the pig to matrix row P . The source pig is the light sphere at the lower center of Figure 1. It is between the movable half and the wall and is partially hidden by the movable half. There was a corresponding pig and tube for the stationary half. The safety documents, which were based on uranium fuel, required the presence of drawers in $\mathrm{ZPR}-3 / 11$ that could accommodate a source tube. ${ }^{\text {a }}$ In $\mathrm{ZPR}-3 / 11$, the source was located in $\mathrm{S}-\mathrm{P} / 24$ and $\mathrm{M}-\mathrm{P} / 24 . \mathrm{BF}_{3}$ proportional counters were located in $\mathrm{S}-\mathrm{M} / 10$ and $\mathrm{M}-\mathrm{M} / 10$.

A steel back plate, roughly 30 inches (76 cm) behind the matrix tubes on each table, supported control rod drives. The drives were mounted on the outboard side of the plate and were connected to control rods by steel shafts that projected through holes in the plate.

ZPR-3 had no system to cool the matrix loading when Assembly 11 was in the ZPR-3 matrix. It was not until the mid 1960s, when plutonium fuel containing a substantial fraction of heat-emitting ${ }^{240} \mathrm{Pu}$ came into use, that a rudimentary forced-air cooling system was devised.

A small number of thermocouples were in the ZPR-3 matrix to monitor the core temperature. Before plutonium fuel was used at ZPR-3, there was only one thermocouple per half. Five more thermocouples per half were added when plutonium fuel came into use. Each thermocouple, and its electrical lead, was installed in the small, axial interstitial gap that existed where the rounded corners of four matrix tubes met. ${ }^{\text {b }}$ No record of the axial and radial locations of these thermocouples has been found. The logbook entries for critical configurations include measured temperatures. The logbook entries for critical ZPR-3/11 configurations consistently list only one matrix temperature.

The matrix machine was near (approximately 2 m from) a corner of a large cell (room), approximately 45 feet by 42 feet and 30 feet tall $(14 \times 13 \times 9 \mathrm{~m})$.

The desired average composition was achieved by loading the matrix with drawers containing rectangular plates of different materials such as highly enriched uranium, depleted uranium, graphite, etc. A specific plate-loading pattern in a drawer is called a drawer master. The plates were bare material or had a cladding or, in the case of uranium, may have had a protective coating. Figure 2 shows a matrix tube, drawer and related hardware. Figure 3 shows a typical loaded ZPR drawer although the drawer shown in Figure 3 was not used in ZPR-3/11.

There were usually many plate sizes available for a given material and a limited number of plates of any one size. Consequently, there were often several drawer masters that had essentially the same composition, differing only in the plate sizes used. The number of similar drawer masters was increased by the fact that drawers for the stationary and movable halves had different (opposite, mirror image) drawer masters.

[^3]

Figure 2. Typical ZPR-3 Drawer.

Figure 3. Typical Loaded ZPR Drawer. ${ }^{\text {a }}$

[^4]The specification of which drawer master was in each matrix position is known as a matrix loading map. In ZPR-3/11, as in most ZPR-3 assemblies, a given matrix position had two drawers, a front drawer and a back drawer (the front drawers in the stationary and movable halves were adjacent to the interface between halves). Correspondingly, there are two matrix loading maps for each half, a front map and a back map.

The ZPR-3 drawers themselves can be categorized as either normal drawers or control drawers. Each normal drawer had 2 inch-tall (51 mm) front, back, and side walls, and a 2 inch-wide bottom wall. Most normal drawers had approximately 0.03 -inch-thick $(0.8-\mathrm{mm})$, highly perforated Type 304 stainless steel wall material. The rest of the normal drawers had approximately 0.04 -inch-thick non-perforated aluminum walls. Each normal front drawer had a tab at the front edge of each side wall. There were corresponding notches in the side walls of the matrix tubes. The tabs fit in the notches to provide positive seating of the drawer in the tube, with the front of the drawer flush with the front of the matrix tube. Each normal back drawer had a handle extending from its back wall, which allowed the drawer to be extracted from the back of the matrix tube. In ZPR-3/11, all front and back drawers were stainless steel drawers. The control drawer is described below.

The only type of operational control rod used in ZPR-3 was the dual-purpose (DP) control rod, so-called because it was a drawer that contained a core unit cell that could be driven in and out along a matrix tube to adjust reactivity. For ZPR-3/11, there were five DP rods in each half. Four DP rods per half were designated as safety rods, and the remaining DP rod per half was used as a control rod.

The control drawer itself was basically like a normal drawer but had some special features. Because the DP control drawer had to be strong enough to undergo rapid acceleration and deceleration, it was made of nonperforated Type 304 stainless steel with twice the wall thickness ($0.063 \mathrm{in} .=1.6 \mathrm{~mm}$) of normal-drawer walls. To minimize the possibility of a DP drawer binding in the matrix tube through which it moved, the DP drawer width was made 0.063 in . $(1.6 \mathrm{~mm})$ less than that of a normal drawer. A consequence of these two design features was that the width of the plate loading had to be $1 / 8$ inch $(3.2 \mathrm{~mm})$ less than the normal 2 -inch wide (51 mm) plate loading. To act as a single rigid body, the DP drawer not only had to be thick walled, it had to be at least as long as the combination of a normal front drawer and back drawer. The DP drawer's nominal length was 32 inches (813 mm) which is nearly as long as that of a matrix tube. Finally, the design included a wall at $15 \frac{1}{4} \mathrm{in}$. dividing the drawer into front and back compartments. This helped stiffen the drawer, but more importantly, it allowed the drawer's plate loading to be locked in place more effectively, with springs inserted at the back of each compartment. ${ }^{\text {a }}$

The full details of a ZPR-3 loading are not contained in published reports because of their complexity. Instead, it was usual to give details of a representative drawer master for each region, the matrix loading map in terms of representative drawer masters, and the average composition for each material region. However, the detailed description of ZPR-3/11 was archived in loading records.
1.2.2 The Matrix and Drawer Loading Data - Figures 4 and 5 are general matrix loading diagrams for the stationary half and movable half, respectively, of the reference ZPR-3/11 core. Note that matrix column 1 is on the left side of Figure 4 but on the right side of Figure 5. This implies that the views are looking from the matrix interface towards the half being shown. These are the views fuel handlers had when installing front drawers into the matrix. The nearly cylindrical boundaries of the core and radial blanket regions are shown. In the locations designated as partial core, the drawers contained both core material and radial blanket material in the patterns shown in Figures 4 and 5 to provide a better approximation of a cylindrical core boundary.

[^5]

Figure 4. ZPR-3/11 Loading 10 Core Layout - Half 1 (Stationary Half).

Figure 5. ZPR-3/11 Loading 10 Core Layout - Half 2 (Movable Half).

The position designated N in Figures 4 and 5 contained a BF_{3} proportional counter which replaced the equivalent volume of depleted uranium plates at that position. Some of the matrix locations in row P contained a small penetration in the side walls through which a source tube could pass. In cases where the source tube was required, as in ZPR-3/11, the plate loadings in the source tube locations were adjusted to make space for the source tube. Safety documents required the presence of the source tube drawers even if an external neutron source was not needed. The sources were located in S-P/24 and M-P/24 for ZPR-3/11.

Figure 6 shows a normal core drawer master (11-1), and Figure 7 shows a DP control rod drawer master (11C1) in ZPR-3/11. Figure 7 shows only fifteen columns (1.875 in .) of plates because drawer master 11 C 1 was the DP control drawer in ZPR-3/11. Because of the thicker walls and slightly smaller drawer width in DP drawers, a DP drawer was not wide enough to hold sixteen columns of 0.125 in .-wide plates. Also, Figure 7 shows only the 15 in . of core and axial blanket plates between the drawer front and the divider wall at $15 \frac{1}{4}$ in. in the DP drawers. To complete the axial blanket in the DP drawer, $1 / 8 \times 2 \times 3 \mathrm{in}$. depleted uranium plates and $1 / 8 \times 2 \times 2$ in. depleted uranium plates occupied the seven inches immediately behind the divider wall in the DP drawers. For normal drawers, the last seven inches of the depleted uranium axial blanket was placed in a back drawer positioned behind the front drawer.

Figure 8 shows one of the fourteen different partial core drawer masters that were used at the core boundary of ZPR-3/11 loading 10 to produce a better approximation of a cylindrical core boundary. If the front view of a partial drawer master is divided into quadrants, each partial drawer master consisted of one quadrant, two quadrants or three quadrants containing core material. The remaining quadrants contained the depleted uranium radial blanket. The specific quadrants containing core material in a partial drawer varied according to the position of the partial drawer in the matrix relative to the normal core drawers (right, left, above or below), but the core quadrants were always adjacent to the normal core drawers.

Figures $6-8$ show the drawer masters as they are loaded for the stationary half. When a drawer master is used in the stationary half, the plate loading in the drawer corresponds to Figures $6-8$. When the same drawer master is used in the movable half, the plate loading order in the X-direction is reversed so the drawer master in the movable half is the mirror image of the corresponding drawer master in the stationary half. This is necessary to ensure that like columns of plates align when the halves of the matrix are brought together. Also, this reversal is necessary for partial drawers in the movable half to ensure that core sections of the partial drawers are adjacent to the normal core drawers in the movable half.

The numbers shown in Figures 6, 7 and 8 indicate the dimensions in inches.

Figure 6. Loading Pattern for ZPR-3/11 Normal Core Drawer Master 11-1.

Figure 7. Loading Pattern for ZPR-3/11 DP Control Rod Drawer Master 11C1 ${ }^{\text {a }}$.

[^6]

Figure 8. Loading Pattern for ZPR-3/11 Partial Core Drawer Master 11-2.

Detailed matrix loading maps for the stationary and movable halves of ZPR-3/11 loading 10 are shown in Tables 1-4. More precisely, Tables 1 and 2 show the front- and back-drawer matrix loadings, respectively, for half 1 , the stationary half. Tables 3 and 4 show the front- and back-drawer matrix loadings, respectively, for half 2, the movable half. Note that, unlike the general matrix loading map set, Figures 4 and 5, matrix column 1 is on the left side of all of these tables. This implies that the view in all of these tables is looking from the movable half (half 2) towards the stationary half (half 1).

Since the DP control rod drawer was long enough to accommodate both the core and the axial blanket, there were no actual back drawers behind the DP drawers. The symbol " x " shown in the back-drawer maps for the DP rod positions represent the drive shafts attached to the backs of the DP drawers.

The depleted uranium blocks in the radial blanket were loaded directly into the matrix tubes without drawers. The front drawer maps (Tables 1 and 3) show the drawer masters for the radial blanket, which encompass the full axial height of the radial blanket. The back drawer maps in Tables 2 and 4 show only the actual back drawers behind the 15.25 in. front drawers and the drive shafts of the DP drawers.

A unique one-character symbol is used to represent each drawer master in Tables 1-4. A broad look at these tables reveals large portions dominated by a single symbol, i.e., by one drawer master. In the core, the dominant drawer master is 11-1 (identification symbol A), the only full normal core drawer master. In the radial reflector, almost all of the matrix tubes had the same loading of depleted uranium blocks (identification symbol X). Empty spaces in Tables 1 and 3 represent empty matrix tubes.

Table 5 and Table B. 1 are used to define completely the drawer master represented by each of the symbols. Table 5 gives the correspondence between the one-character symbols in Tables $1-4$ and the multi-character drawer master identifiers that appear on the archived drawer master diagrams. Table 5 also gives the length and type of each drawer, and how many of each drawer master type were in ZPR-3/11 loading 10. Drawers of length 15.25 in . are front drawers, while drawers of length 11.25 in . are back drawers. The "partial" designation in Table 5 indicates that this drawer master contained both core material and radial blanket material in the first ten inches. Partial drawers were used to provide a closer approximation of a cylindrical boundary at the core periphery.

Table 1. ZPR-3/11 Loading 10 - Stationary Half Front Drawer Matrix Map.

\downarrow	
Y	
A	
B	
C	
D	
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
R	0
0	P
W	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	AA
BB	
CC	
DD	
	EE

Table 2. ZPR-3/11 Loading 10 - Stationary Half Back Drawer Matrix Map.

Table 3. ZPR-3/11 Loading 10 - Movable Half Front Drawer Matrix Map.

	\downarrow
Y	
A	
B	
C	
D	
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
R	0
0	P
W	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	AA
	BB
CC	
DD	
	EE

Table 4. ZPR-3/11 Loading 10 - Movable Half Back Drawer Matrix Map.

IEU-MET-FAST-016

Table 5. Drawer Identification and Type Data.

Identification Symbol	Drawer Master Identifier	Role of Drawer	Length (inches)	Number in ZPR-3/11 Loading 10
Core Drawer Masters				
A	11-1	Normal Core	15.25	144
B	11-2	Normal Core/Partial	15.25	2
C	11-3	Normal Core/Partial	15.25	2
D	11-4	Normal Core/Partial	15.25	2
E	11-5	Normal Core/Partial	15.25	2
F	11-6	Normal Core/Partial	15.25	8
G	11-7	Normal Core/Partial	15.25	8
H	11-8	Normal Core/Partial	15.25	4
I	11-9	Normal Core/Partial	15.25	2
L	11-12	Normal Core/Partial	15.25	1
M	11-13	Normal Core/Partial	15.25	1
R	11-18	Normal Core/Partial	15.25	4
S	11-19	Normal Core/Partial	15.25	4
T	11-20	Normal Core/Partial	15.25	4
U	11-21	Normal Core/Partial	15.25	4
Control Rod Drawer Masters				
Z	11C1	DP Safety/Control Rod	32.50	10
X	Drive shaft	DP Drive Shaft	-----	10
Reflector Drawer Masters				
X	238	Radial Blanket	22.00	670
a	11-00	Axial Blanket	11.25	192
Y	bf3	BF_{3} Detector Radial Blanket	22.00	2

Table 6 provides the drawer plate loading description for drawer master 11-1. Table B. 1 in Appendix B provides the drawer plate loading description for each drawer master used in ZPR-3/11 loading 10. The information in Table 6 is provided to accompany the explanation of the drawer plate loading descriptions in Table B.1. All dimensions and locations in Table 6 and Table B. 1 are in inch units.

There is a header row starting the description of each drawer master. The header gives the one-character identification symbol and the multi-character identifier of the drawer master. Each remaining row for the drawer master describes a contiguous block of identical plates. The row gives a) the plate name and nominal dimensions, b) the starting position of the block, c) the number of plates in the block in each direction, and d) a rotation code (spatial orientation) for the block of plates. Table 6 and Table B. 1 do not include the small spring placed in the back of each normal drawer to push the plates toward the front of the drawer.

Most plates were loaded with the standard orientation, designated by rotation code 1. Consider, for example, the $1 / 8 \times 2 \times 3$ in. depleted uranium plate in Table 6 . The standard orientation is that the first plate dimension ($1 / 8 \mathrm{in}$.) is in the X -direction, the second plate dimension (2 in .) is in the Y -direction and the third plate dimension (3 in .) is in the Z -direction. A rotation code of 4 corresponds to rotating the plate 90 degrees about the X -axis. A rotation code of 5 corresponds to rotating the plate 90 degrees about the Z -axis. A rotation code of 6 means the plate is rotated 90 degrees about the Y -axis.

It should be noted that the number of decimal places in the starting locations in Table 6 and Table B. 1 does not mean that those locations were known that accurately. Rather, it reflects the fact that some ZPR plate types had thicknesses of 0.0625 in ., so the code that produces these tables must accommodate more than three decimal places for some assemblies. Thus, despite the displayed precision, the locations shown in Table 6 and Table B. 1 are just nominal locations.

Unless otherwise noted for a specific case, the first dimension for any plate, drawer or other rectangular object is the X -dimension, the second dimension is the Y -dimension and the third dimension is the Z -dimension. For example, for a plate with listed dimensions of $1 / 8 \times 2 \times 3 \mathrm{in} ., 1 / 8 \mathrm{in}$. is the X -dimension, 2 in . is the Y dimension and 3 in . is the Z-dimension. This convention applies throughout this document.

If the drawer master appears in both a stationary-half and a movable-half matrix map (Tables 1-4), then the starting X location of the block must be transformed when the master is used in the movable half. The header row of all such drawer masters includes a warning to that effect. The starting X location can be used directly in all other cases. The transformation is specified where the table is interpreted below.

Table 6. Drawer Plate Loading Description for ZPR-3/11 Drawer Master 11-1 ${ }^{(\mathrm{a})}$.

Plate ID (dimensions in inches)	Starting X Location	Starting Y Location	Starting Z Location	$\overline{\mathrm{X}}$	$\begin{aligned} & \hline \mathbf{Y} \\ & \# \end{aligned}$	$\begin{aligned} & \hline \mathbf{Z} \\ & \# \end{aligned}$	Rotation
Identification Symbol A, Drawer Master 11-1, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	3.0000	3	1	1	1
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	3	1	1	1
U(93) (1/8x2x3)	0.3750	0.0000	0.0000	1	1	1	1
U(93) (1/8x2x2)	0.3750	0.0000	3.0000	1	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 3)$	0.3750	0.0000	5.0000	1	1	1	1
U(93) (1/8x2x2)	0.3750	0.0000	8.0000	1	1	1	1
Depleted Uranium (1x1x5) - APW	0.5000	0.0000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	0.5000	1.0000	0.0000	1	1	2	1
U(93) (1/8x2x3)	1.5000	0.0000	0.0000	1	1	1	1
U(93) (1/8x2x2)	1.5000	0.0000	3.0000	1	1	1	1
U(93) (1/8x2x3)	1.5000	0.0000	5.0000	1	1	1	1
U(93) (1/8x2x2)	1.5000	0.0000	8.0000	1	1	1	1
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	0.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.6250	0.0000	3.0000	3	1	1	1
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.6250	0.0000	8.0000	3	1	1	1
Depleted Uranium (2x2x5) - APW	0.0000	0.0000	10.0000	1	1	1	1

(a) All dimensions and locations are in inch units.

The interpretation of the information given in Table 6 will be illustrated by explaining the first drawer master (11-1) described therein with the aid of the loading pattern diagram in Figure 9 below. Note that Figure 9 is a duplicate of Figure 6 above and is reproduced here for the convenience of the reader. Figure 9 presents an XZ view, i.e., looking down at the top of this drawer master, and shows the columns of plates. (The drawer itself is not shown - only its contents.) The origin of the drawer master coordinate system is at the front lower left corner of the space inside the drawer, which is near the upper left corner of the figure. The X-axis is along the drawer width and is divided in eighth-inch units from zero to two inches (16 eighths). The Z-axis

Figure 9. Loading Pattern for ZPR-3/11 Drawer Master 11-1.
is along the drawer length and goes from zero to 15 inches in inch units. ${ }^{\text {a }}$ The Y -axis is transverse to the page, pointing towards the viewer, and the range encompassing the plate loading is from zero to two inches. The plates displayed in Figure 9 are 2 inches tall.

For each row the plate ID gives an approximate indication of the plate material. A full composition description is given in Section 1.3. The remaining columns of Table 6 give the starting position of the plate within the drawer, the number of contiguous plates in each direction and the rotation parameter.

The drawer master in Table 6 is 11-1, identification symbol A. This is a normal core drawer. In the core region, which extends from 0 to 10 in ., columns $1,2,3,7,8$ and 9 each consist of one $1 / 8 \times 2 \times 3 \mathrm{in}$. depleted uranium (DU) plate, one $1 / 8 \times 2 \times 2 \mathrm{in}$. DU plate, one $1 / 8 \times 2 \times 3 \mathrm{in}$. DU plate and one $1 / 8 \times 2 \times 2 \mathrm{in}$. DU plate. Columns 4 and 6 each consist of one $1 / 8 \times 2 \times 3$ in. HEU plate, one $1 / 8 \times 2 \times 2$ in. HEU plate, one $1 / 8 \times 2 \times 3$ in. HEU plate and one $1 / 8 \times 2 \times 2$ in. HEU plate. Column 5 consists of two $1 \times 1 \times 5 \mathrm{in}$. DU plates at $\mathrm{Y}=0 \mathrm{in}$. and two 1 x 1 x 5 in . DU plates at $\mathrm{Y}=1.0 \mathrm{in}$. The last five inches of the drawer, which extends from 10 in . to 15 in ., is occupied by one $2 \times 2 \times 5$ in. DU block. This block forms the first 5 in . of the axial blanket. Table 6, Table B. 1 and Figure 9 do not show the small retainer spring at the back of the drawer. This spring pushed the plates forward to eliminate any gap between the front of the plates and the front plate of the drawer.

In using these loading data, one must keep in mind the difference between the convention for identifying matrix positions in the two halves and the convention for viewing drawer masters in the two halves. It was noted in Section 1.2.1 that, for both halves, the matrix column number (essentially the X-coordinate) is counted from the left when looking from the movable half towards the stationary half. In contrast, the origin of the drawer master coordinates is at the left edge of the plates when looking from the matrix interface ($\mathrm{Z}=0$) towards the matrix half that contains the drawer. The perspective is the same in both conventions for the stationary half but opposite for the movable half.

ZPR-3/11 was built early enough in the history of the ZPR-3 facility operations that the supervisors and technicians who loaded the drawers were responsible for interpreting drawer masters differently depending on where drawers were to be loaded. At that time, it was allowed to define a single drawer master for use in loading positions in both halves of the matrix, even when the master was asymmetric about the X midplane. In working from such a drawer master, the person loading a drawer destined for the stationary half would follow the drawer master exactly as presented. But, if the drawer based on that master was destined for the movable half, the person would have to load plate columns in opposite order in the X direction to what appeared in the drawer master. A further complication was that this need to reverse the drawer master order of plate columns only applied to drawer masters that were used for both matrix halves; if the drawer master was used only for drawers in the movable half, it was defined to be read as is. Later on in the history of ZPR3 -as well as during the entire history of ZPR-6, ZPR-9 and ZPPR - it was required that different drawer masters be defined for each half (with the possible exception of symmetric drawer masters), presumably because the early system presented an unnecessary risk of a loading error.

A consequence of the effort to be faithful to what the loading records actually show is that the reader here gets to share in the potential confusion created by this early system. As noted in the paragraph immediately preceding Table 6, drawer masters subject to this X-direction-reversal requirement are identified as such in their header row. When using one of these drawer masters to represent a drawer in the movable half, the printed Starting X Location number is transformed as follows: take the tabulated value, add to it the nominal plate width (from the first column) and subtract that sum from 2.0000 . For example, in the second drawer master in Table B.1, 11-2, the starting X location of the $1 / 8 \times 2 \times 1$ HEU plates becomes $2.0000-(0.3750+$ $0.1250)=1.5000$ in the movable half. Consider Figure 8, the drawing of this same drawer master. For insertion into the stationary half, the drawer would be loaded exactly as shown in Figure 8. For a drawer to

[^7]be loaded into the movable half, the order of the plate columns would be reversed; for instance the $1 / 8 \times 2 \times 1$ HEU plates would be loaded to the right of center rather than to the left of center. Reversing the loading order in the drawer for the movable half ensures that like columns of plates align when the two halves of the matrix are brought together.

Although the loading data in this subsection and in Table B. 1 are complete and well suited for processing with a computer, they obviously are cumbersome to interpret by hand. An interpretation of the geometric region implications of the data is offered in the next subsection.
1.2.3 Characteristics of the Assembly Regions - When the early ZPR-3 assemblies were built, analytical capabilities and calculational tools were extremely limited. At that time simple spherical, cylindrical and slab models were the only practical options for analyzing many of the critical assemblies. The partial drawers listed in Tables 5 and B. 1 were used to smooth the core boundary, reduce edge effects and improve the cylindrical approximation.

The core was loaded into the first 10 in . of the 15.25 in. front drawer shown in Figure 6 and the first 10 in . of the DP control drawer shown in Figure 7 above. The first 5 in. of the axial blanket was loaded behind the core in the front drawers. The remaining 7 in . of the axial blanket was loaded into back drawers which were loaded behind the front drawers containing the core. The only exceptions to the front drawer-back drawer pairing were the DP drawers which were long enough to contain the 10 in . core and 12 in . axial blanket. The radial blanket consisted of 22 in . of depleted uranium blocks per half. These blocks were loaded directly into the matrix tubes. The thickness of the radial blanket was approximately 14 in .

ZPR-3/11 had relatively few complications for a ZPR assembly. There were few drawer masters. There were no perturbations to the core and axial reflector except for the small composition deviation in the DP rod locations. There were a small number of minor perturbations in the radial reflector-source tube drawer master and detector drawer master - but all of these were outside the core. The geometry was about as close to cylindrical as possible. The thick depleted uranium radial and axial blankets made room return insignificant.
1.2.4 Measurement Technique and Excess Reactivity - Excess reactivity is the system reactivity when all control elements are in their most reactive positions. Excess reactivities in ZPR-3/11 were measured with a calibrated control rod. No information concerning the method used to calibrate the control rods is available.

The reference critical configuration had DP control drawer \#10, which was in S-T/16, withdrawn 5.885 in. when the reactor was at the reference power level. The other nine DP drawers were fully inserted. The matrix temperature listed in the logbook was $20.9^{\circ} \mathrm{C}$. No measured temperature coefficient for ZPR-3/11 has been found.

No reported excess reactivity has been found for ZPR-3/11 loading 10. Determination of the excess reactivity from the position of DP control drawer \#10 is discussed in Section 2.

1.3 Description of Material Data

Composition data presented here were taken from several sources. Some of the composition data were taken from the electronic plate material library (ADEN library). These data are essentially the same as those in the most recent issue of a ZPR/ZPPR working document referred to informally as the "hot constants memo." That issue was first released in 1983, after all of the other ZPR facilities were shut down, and was updated periodically until the shutdown of ZPPR.

Earlier versions of the hot constants memo-from ZPR-3, from the early period of ZPR-6\&9, and the final (1978) version from ZPR-6\&9-were consulted to resolve ambiguities about material description details, to infer which "lot" of material could have been used in ZPR-3/11 and to supply data missing from the ADEN library. Specifically, it was necessary to consult earlier documents because the depleted uranium plates used in ZPR-3/11 were replaced in 1962. Consequently, the depleted uranium plates used in ZPR-3/11 are not listed in the last ZPPR hot constants memo or the ADEN library. Data for the depleted uranium plates were taken from the earliest available ZPR-3 hot constants memo. Appendix A of the published ZPR-3/48 document ANL-7759 also has relevant composition and geometry details. In the case of ambiguities, preference was given to the data source closest in time to the date of the experiment.

The original documentation on most of the inventory used in ZPR-3/11 has been lost. The hot constants memos (and the ADEN library) give average compositions by batch or lot, which are what are given in the tables below. The memos do not give uncertainties, and the issue of estimating composition uncertainties is addressed in Section 2.

This section also contains material dimensions, some details of which were not presented in Section 1.2. Available data on wall thicknesses of plate cladding and drawers were collected in the 1980s and put into an electronic cladding library. That is the source of such data presented here. Plate outer dimensions given below are the nominal values from the hot constants memos, which are all that are available, except in rare instances. In all tables in this section, dimensions are provided in units of inches.

Most masses and weight percents in the inventory are time invariant, with the only significant exceptions being those for ${ }^{241} \mathrm{Pu}$ and ${ }^{241} \mathrm{Am}$. Since these time-dependent nuclides were not present in ZPR-3/11, there is no decay issue here.

Table 7 shows the mass and composition information for the three types of HEU plates present in the ZPR$3 / 11$ loading 10 core. The number of plates shown in this and similar tables is the number used in loading 10 . The HEU plates were coated with Kel-F, a paint-like protective coating applied to minimize corrosion and material loss during handling. The average mass of Kel-F per plate was 0.083 g for $1 / 8 \times 2 \times 3$ in. plates, 0.057 g for $1 / 8 \times 2 \times 2$ in. plates and 0.030 g for $1 / 8 \times 2 \times 1$ in. plates. Table 8 shows the composition of Kel-F. The mass values for $\mathrm{H}, \mathrm{C}, \mathrm{F}$ and Cl in Table 7 are the average masses of Kel-F per plate listed in the preceding sentence multiplied by the weight percents listed in Table 8. The actual thickness of the Kel-F coating on the plates is not known.

Table 7. Mass and Composition of the HEU Plates.

Plate ID	HEU $(1 / 8 \times 2 \times 3)$	HEU $(1 / 8 \times 2 \times 2)$	HEU $(1 / 8 \times 2 \times 1)$
Nominal Size (in.)	$0.125 \times 2.0 \times 3.0$	$0.125 \times 2.0 \times 2.0$	$0.125 \times 2.0 \times 1.0$
Number of Plates	680	680	130
Element	Mass (g)	Mass (g)	Mass (g)
${ }^{234} \mathrm{U}$	2.0058	1.3031	0.6583
${ }^{235} \mathrm{U}$	206.1900	134.2100	67.2200
${ }^{236} \mathrm{U}$	0.9698	0.6301	0.3183
${ }^{238} \mathrm{U}$	11.9244	7.7468	3.9134
H	0.00042	0.00029	0.00015
C	0.01710	0.01174	0.00618
F	0.04017	0.02759	0.01452
Cl	0.02532	0.01739	0.00915

IEU-MET-FAST-016

Table 8. Kel-F Composition.

Element	Weight Percent
Hydrogen	0.5
Carbon	20.6
Chlorine	30.5
Fluorine	48.4

Table 9 shows the mass and composition information for the four types of depleted uranium plates used in the core and the two types of depleted uranium plates in the axial and radial blankets. The hot constants memos and ADEN library only list a combined mass of ${ }^{234} \mathrm{U}$ and ${ }^{238} \mathrm{U}$ for the depleted uranium plates. No additional information regarding the ${ }^{234} \mathrm{U}$ is available.

The depleted uranium plates were coated with Kel-F. The average mass of Kel-F per plate was 0.083 g for $1 / 8 \times 2 \times 3$ in. plates, 0.057 g for $1 / 8 \times 2 \times 2$ in. plates and 0.030 g for $1 / 8 \times 2 \times 1 \mathrm{in}$. plates in Table 9. The average mass of Kel-F per plate was 0.14 g for $1 \times 1 \times 5$ in. plates, 0.15 g for $2 \times 2 \times 2$ in. plates and 0.30 g for $2 \times 2 \times 5 \mathrm{in}$. plates in Table 9. The mass values for H, C, F and Cl in Table 9 are the average masses of Kel-F per plate listed in the preceding sentences multiplied by the weight percents listed in Table 8.

Table 9. Mass and Composition of the Depleted Uranium Plates.

Plate ID	Depleted U $(1 / 8 \times 2 \times 1)$	Depleted U $(1 / 8 \times 2 \times 2)$	Depleted U $(1 / 8 \times 2 \times 3)$	Depleted U $(1 \times 1 \times 5)$	Depleted U $(2 \times 2 \times 2)$	Depleted U $(2 \times 2 \times 5)$
Nominal Size (in.)	$0.125 \times 2.0 \times 1.0$	$0.125 \times 2.0 \times 2.0$	$0.125 \times 2.0 \times 3.0$	$1.0 \times 1.0 \times 5.0$	$2.0 \times 2.0 \times 2.0$	$2.0 \times 2.0 \times 5.0$
Number of Plates	130	3010	2860	788	864	3072
Element	Mass (g)					
${ }^{235} \mathrm{U}$	0.15	0.30	0.45	3.07	4.92	12.36
${ }^{238} \mathrm{U}$	72.60	147.94	221.46	1528.93	2453.08	6167.64
H	0.00015	0.00029	0.00042	0.00070	0.00075	0.00150
C	0.00618	0.01174	0.01710	0.02884	0.03090	0.06180
F	0.01452	0.02759	0.04017	0.06776	0.07260	0.14520
Cl	0.00915	0.01739	0.02532	0.04270	0.04575	0.09150

Slightly different compositions for the Type 304 stainless steel drawers and matrix tubes are given in different documents. These are shown in Table 10. Only the first composition totals to $100 \mathrm{wt} . \%$. The stainless steel compositions listed in Table 10 differ from current (2010) standard specifications for Type 304 stainless steel and may differ from the standard specifications for this steel in the early 1950s when the drawers and matrix tubes were fabricated. The compositions listed in Table 10 are the values reported by the experimenters and are the values used by ZPR-3 personnel for planning and analysis of experiments.

Table 10. Element Wt\% Data for Type 304 Stainless Steel Drawers and Matrix Tubes

Source	Component	Fe	Cr	Ni	Mn	Si	Total
ANL-7759, Appendix A $^{(\mathrm{ab}}$	plate-drawer-tube average	73.4	17.0	8.4	0.75	0.45	100.0
ZPR-3 Hot Constants ${ }^{(\mathrm{b})}$	plate-drawer-tube average	71.4	17.0	8.4	0.74	0.44	98.0
ZPR-3 Hot Constants $^{(\mathrm{b})}$	matrix tubes	72.0	16.9	7.8	0.7	0.50	97.9
ZPR-3 Hot Constants $^{(\mathrm{b})}$	drawers	70.0	17.4	9.6	1.5	0.36	98.9

(a) A. M. Broomfield et al, "ZPR-3 Assemblies 48, 48A, and 48B: The Study of a Dilute Plutonium-fueled Assembly and Its Variants," Argonne National Laboratory Report ANL-7759, December 1970.
(b) W. P Murphy and R. Rowberry, ZPR-3 Hot Constants Memo, July 14, 1966.

The masses and dimensions of the stainless steel drawer components and of the matrix tubes that are given explicitly in Appendix A of ANL-7759 are shown in Table 11. The ZPR-3 hot constants memos give no drawer component dimensions but give the same masses. Explicit data are not given in either reference for drawer back plates or the DP compartment divider, but values can be inferred. The mass is per inch of length in the Z-direction for the matrix tube and for drawer bottom + sides. The normal drawer components had smaller masses than the DP drawer components because the DP drawer walls were twice as thick and were non-perforated, while the normal drawers were perforated. The first dimension in Table 11 is the Xdimension (width), the second dimension in Table 11 is the Y-dimension (height), and the third dimension in Table 11 is the Z-dimension (thickness or length).

Table 11. Mass and Dimensions of Stainless Steel Drawer and Matrix Components.

Plate ID	DP Front Plate	DP Bottom 2 Sides $^{(\mathrm{a})}$	Normal Front Plate	Bottom + Sides $^{(\mathrm{a})}$	Matrix Tube ${ }^{(\mathrm{a})}$
Outside Dimensions (in.)	$2.001 \times 2.063 \times 0.063$	$2.001 \times 2.063 \times 1$ $(0.063$ wall $)$	$2.064 \times 2.035 \times 0.032$	$2.064 \times 2.035 \times 1$ $(0.032$ wall $)$	$2.1835 \times 2.1755 \times 1$ $(0.040$ wall $)$
Mass (g)	31.00	48.44	9.85	10.36	44.64

(a) Mass per inch of length for bottoms+sides of drawers and for the matrix tube.

The normal drawer front plate, back plate and sides were 0.032 in . (0.8128 mm) thick. ${ }^{\text {a }}$
The retainer springs were made of mild steel. The mass by element for a spring is: $9.862 \mathrm{~g} \mathrm{Fe}, 0.097 \mathrm{~g} \mathrm{C}$. One retainer spring was used at the back of each normal front or back drawer. To prevent any plate shifting under acceleration or deceleration of the DP control rod drawers, as many retainer springs as possible (up to four) were pressed into the gap at the back of each of the two compartments of each DP drawer. ${ }^{\text {b }}$

Each DP drawer is divided into two compartments by a small plate at $\mathrm{Z}=15.25 \mathrm{in}$., and each DP drawer is connected to a control rod drive by a shaft attached to the back of the drawer. No further information has been discovered regarding the dimensions or compositions of these components. The divider plate was

[^8]represented in the as-built ZPR-3/11 model by a $1.75 \times 2.0 \times 0.0625 \mathrm{in}$. steel plate containing 0.006 g C , $0.071 \mathrm{~g} \mathrm{Si}, 5.620 \mathrm{~g} \mathrm{Cr}, 0.440 \mathrm{~g} \mathrm{Mn}, 21.246 \mathrm{~g} \mathrm{Fe}, 3.356 \mathrm{~g} \mathrm{Ni}, 0.012 \mathrm{~g} \mathrm{Cu}$ and 0.003 g Mo . The DP control rod drive shaft was represented in the as-built ZPR- $3 / 11$ model by a column of $0.25 \times 2 \times 1 \mathrm{in}$. steel plates containing $0.030 \mathrm{~g} \mathrm{C}, 0.170 \mathrm{~g} \mathrm{Si}, 11.677 \mathrm{~g} \mathrm{Cr}, 0.954 \mathrm{~g} \mathrm{Mn}, 44.258 \mathrm{~g} \mathrm{Fe}, 5.437 \mathrm{~g} \mathrm{Ni}, 0.130 \mathrm{~g} \mathrm{Cu}$ and 0.260 g Mo per plate.

1.4 Supplemental Experimental Measurements

A list of experiments performed in ZPR-3/11 is given below.

- Criticality.
- Fission rate ratios.
- Rossi alpha.
- Small sample worths.
- Track plate irradiations.

This list was compiled from the loading records and logbook. The only available data for measurements other than criticality are summarized in the Cross Section Evaluation Working Group Benchmark Specifications ${ }^{\text {a }}$. Available information is not sufficient to evaluate any measurements other than criticality.

[^9]
2.0 EVALUATION OF EXPERIMENTAL DATA

The reactivity effects of many of the uncertainties discussed below were quantified using TWODANT ${ }^{\text {a }}$ (twodimensional S_{N} code) RZ models of the benchmark. The radial boundaries preserved the area of each region in the X-Y plane of the X-Y-Z geometry as-built model. Axial boundaries preserved the volumes of the core, radial blanket, lower axial blanket (the portion inside the front drawer), upper axial blanket (inside the back drawer) and the small volume between the lower and upper axial blanket regions which consists of the retainer spring and back plate of the front drawer plus the front plate of the back drawer. The calculations used cross sections derived from ENDF/B-V. 2 data using the Argonne cross section processing codes ETOE-2/MC ${ }^{2}-2 /$ SDX. ${ }^{\text {b }}$ The eigenvalue convergence criterion was 10^{-7}, which allowed any non-negligible effect $\left(>10^{-4} \Delta \mathrm{k}\right)$ to be computed explicitly with a pair of TWODANT calculations. The uncertainties are displayed in units of $\% \Delta \mathrm{k}$ (100 times the change in $\mathrm{k}_{\text {eff }}$). For consistency in accounting, they are displayed to four decimal places, even though that level of precision is not always justified on physical grounds.

The uncertainties affecting criticality have been divided into three broad categories. They are uncertainties associated with 1) measurement technique, 2) geometry, and 3) compositions. Each category is considered in turn and then the combined experimental uncertainty is presented. Two adjustments to the measured excess reactivity are also identified. Each uncertainty estimate is one standard deviation.

2.1 Measurement Technique Uncertainties

Excess reactivities in ZPR-3/11 were measured with calibrated control rods. Details regarding the calibration technique are not available. The reference critical configuration had DP control drawer \#10 withdrawn 5.885 inches when the reactor was at the reference power level. All other DP drawers were fully inserted. The matrix temperature listed in the logbook for the reference reactor startup is $20.9^{\circ} \mathrm{C}$.

No reported excess reactivity has been found for ZPR-3/11, so the excess reactivity was computed by continuous energy Monte Carlo as the difference between $\mathrm{k}_{\text {eff }}$ for the as-built model with all DP rods fully inserted and $\mathrm{k}_{\text {eff }}$ for the as-built model with DP control rod $\# 10$ withdrawn 5.885 inches. The computed excess reactivity for ZPR-3/11 loading 10 is $0.1289 \pm 0.0038 \% \Delta \mathrm{k}$ based on one billion histories for each configuration. For each configuration, ten independent calculations with different seed random numbers were performed. Each calculation consisted of 500 generations with 200,000 particles per generation after skipping the initial 100 generations to converge the source.

The $\pm 0.0038 \% \Delta \mathrm{k}$ uncertainty in the preceding paragraph is just the Monte Carlo statistical uncertainty. Uncertainties in cross section data make an additional contribution. The DP rod withdrawal worth is similar to the central worth of the core composition, which typically can be computed quite accurately by kdifference. The 1σ uncertainty on this quantity is estimated to be no more than 3% of the worth or ± 0.0039 $\% \Delta \mathrm{k}$. The combined uncertainty, then, is $\pm 0.0054 \% \Delta \mathrm{k}$.

There also are a few uncertainty contributions associated with the core temperature. It was acknowledged, in an internal report, ${ }^{\mathrm{c}}$ that the thermocouple average was not the true core average, although it was a reliable parameter to measure changes in true core-average temperature. During the early programs at ZPR-3, there was only one thermocouple in each half of the matrix.

[^10]IEU-MET-FAST-016

The logbook lists a single matrix temperature of $20.9^{\circ} \mathrm{C}$ for the reference reactor startup. Based on the temperature ranges for the reference critical configurations for ZPR-3/6F (see IEU-MET-FAST-015, Section 2.1) and ZPR3/12 (see IEU-COMP-FAST-004, Section 2.1), a value of $1{ }^{\circ} \mathrm{C}$ is taken to represent $\pm 1 \sigma$ of the true core temperature. No measured temperature coefficient has been found for ZPR-3/11, so the Argonne cross section processing codes discussed above were used with the TWODANT model to compute a temperature coefficient for ZPR-3/11. The computed temperature coefficient for ZPR-3/11 was -8.027×10^{-4} $\% \Delta \mathrm{k} /{ }^{\circ} \mathrm{C}$. Using this temperature coefficient with the $1{ }^{\circ} \mathrm{C}$ temperature uncertainty yields a reactivity uncertainty of $\pm 0.0008 \% \Delta \mathrm{k}$.

The uncertainty in the calibration of the TCs, which is a systematic uncertainty, is estimated to be $0.5^{\circ} \mathrm{C}$. This converts to a $\pm 0.0004 \% \Delta \mathrm{k}$ uncertainty in excess reactivity. When added in quadrature with the ± 0.0008 $\% \Delta \mathrm{k}$ averaging uncertainty from above, the combined uncertainty is $\pm 0.0009 \% \Delta \mathrm{k}$. This value is negligible compared to other uncertainties discussed below, so further effort with respect to refining temperature uncertainties is not warranted.

The final core temperature issue is that the temperature distribution in the core changed when the matrix halves closed. It took significant time to establish the new asymptotic distribution and, "in those days," sufficient time was not always allowed. ${ }^{\text {a }}$ According to the logbook, the startup occurred at 8:30 AM, and shutdown occurred at 9:25 AM on January 21, 1958. This was the first startup of the day. The decay heat source in ZPR-3/11 was very small because of the very long half-lives of the uranium isotopes that made up the radioactive components of the core composition. Given the short operating time and the low decay heat source, it does not seem likely that core heating over the duration of the measurement would be a significant issue. For this startup, the asymptotic temperature uncertainty effect is assumed to be less than $0.001 \% \Delta \mathrm{k}$.

Estimates of the configuration reproducibility uncertainty are not available. In ZPR-3/56B (see MIX-COMP-FAST-004, Section 2.1), $\pm 2.5 \mathrm{Ih}^{\mathrm{b}}$ or $\pm 0.0059 \% \Delta \mathrm{k}$ was adopted as a reasonable 1σ estimate of the reproducibility uncertainty based on repeated measurements. The decay heat source in ZPR-3/11 is much smaller than the decay heat source in ZPR-3/56B. It is likely that the ZPR-3/56B results would bound the ZPR-3/11 case. Dividing this bounding value by $\sqrt{ } 3$ yields the 1σ uncertainty $\pm 0.0034 \% \Delta \mathrm{k}$ as the estimated reproducibility uncertainty for $\mathrm{ZPR}-3 / 11$. This uncertainty is small relative to uncertainties related to geometry and composition, so further refinement of the worth of the reproducibility uncertainty is not warranted.

The conversion from the natural measurement units, inhours (Ih), to units of $\mathrm{k}_{\text {eff }}$ requires knowledge of the delayed neutron kinetics parameters, particularly $\beta_{\text {eff }}$. The estimated uncertainty in the reactivity conversion factor was 5% in previous ICSBEP benchmarks for ZPR assemblies. That value will be used here for consistency. This uncertainty is normally applied to the measured excess reactivity which usually was reported in units of inhours for ZPR assemblies.

In the present case no reported excess reactivity was found, so the excess reactivity was computed as the difference in reactivity between the as-built model with all rods fully inserted and the as-built model with DP control rod \#10 withdrawn 5.885 in ., the reported critical rod position. A reported excess reactivity corresponds to the difference between these two configurations. Likewise, no measured temperature coefficient was found, so a temperature coefficient was computed for ZPR-3/11. The calculated excess reactivity and the reactivity uncertainties associated with the temperature uncertainties are in units of $\mathrm{k}_{\text {eff }}$, so there is no need to apply the uncertainty in the reactivity conversion factor to the computed excess reactivity or to the temperature uncertainties.

[^11]If, for simplicity, the 5% uncertainty in the conversion factor is applied to the uncertainty related to reproducibility, the contribution of the uncertainty in the reactivity conversion is approximately $0.0002 \% \Delta \mathrm{k}$. This value is negligible compared to geometry and composition uncertainties, so further refinement of the reactivity conversion uncertainty is not worthwhile.

2.2 Geometry Uncertainties

Because the matrix halves were not perfectly aligned, there was a small gap between the two halves, even at the nominal full closure position. There could also be a small gap because of uncertainty in the actual position of the movable half at full closure relative to the position indicated by the instruments. Typically, the actual physical gap varied from 0 to 30 mils ($0.0-0.8 \mathrm{~mm}$). As-built and benchmark models do not include an interface gap because of its small, non-uniform and imprecisely known size. Consequently, a gap correction is derived here in conjunction with the gap uncertainty analysis, and the correction is applied to the calculated $\mathrm{k}_{\text {eff }}$ in Section 3.5.

No measured gap coefficient of reactivity has been located, so the worth of the gap was computed by continuous energy Monte Carlo as the difference between $\mathrm{k}_{\text {eff }}$ for the as-built model with no gap and $\mathrm{k}_{\text {eff }}$ for the as-built model with a small gap between the halves. The computed gap worth for ZPR-3/11 loading 10 with an average gap of 0.4 mm is $-0.0382 \pm 0.0045 \% \Delta \mathrm{k}$ based on one billion histories for each configuration. The estimated 1σ uncertainty in the gap width is 0.1 mm , making the total uncertainty in both the gap worth and the gap closure correction $\pm 0.0106 \% \Delta \mathrm{k}$.

Besides the interface gap, there are three issues regarding the exact location of materials. One is the possibility that the drawer fronts might not have been flush with the front edge of the matrix tubes. Care was taken to make the drawers flush with the matrix, and the drawer-tab - matrix-tube-notch design feature made that easy for fuel handlers. Another issue is the possibility that the plate columns might not have been all the way forward against the drawer front. This problem was minimized by taking care to do this when loading the plates in drawers, by using springs to hold the plates there, and by inserting the drawer tabs into the matrix tube notches slowly. These two issues are assumed to be covered by the interface gap uncertainty.

The third issue to consider is deviations from nominal dimensions for plates, drawers, and matrix tubes. Deviations in the dimensions that affect the precise X-and Y-positions of materials within the unit cell are too small to impact $\mathrm{k}_{\text {eff }}$ significantly. The dimensions that determine the volumes over which the material masses are distributed can have an effect. The plate lengths, drawer front thickness, and the length of front drawers affect the axial positions of materials, similar to the interface gap effect. It is estimated that the uncertainties in these dimensions collectively have no larger effect than 50% of the interface gap effect; accordingly, an uncertainty of $\pm 0.0191 \% \Delta \mathrm{k}$ was assigned.

A deviation from the nominal average spacing between matrix tubes also would affect the region volumes. At the ZPR-3 facility, measurements were made of the average spacing with the matrix filled. The average pitch was measured in 1959 to be 2.1835 inches wide and 2.1755 inches high. These were reported as typical values, and it was noted that the values may change with assembly loading. ${ }^{\text {a }}$ It is estimated that the error in these measurements is ± 1 mil, i.e., ± 0.001 in. (see ICSBEP benchmark IEU-MET-FAST-012, Section 2.2). The implied change in reactivity was estimated by computing the resulting change in $\mathrm{k}_{\text {eff }}$ using TWODANT calculations of the benchmark model with the nominal matrix pitch and with the matrix pitch increased and decreased by $1 \mathrm{mil}(0.0254 \mathrm{~mm})$. Compositions were adjusted to preserve mass when the matrix pitch was changed. The estimated reactivity effect is $\pm 0.0254 \% \Delta \mathrm{k}$.

[^12]One final consideration with regard to axial positioning uncertainties relates to the actual positions of the DP rods, which were fully inserted for the benchmark configuration. This uncertainty, negligibly small compared to the uncertainty components discussed above, is included in the measurement uncertainties provided in Section 2.1.

An adjustment and an uncertainty are needed for room return of neutrons to the assembly. The assembly description above encompasses only the matrix tubes and their contents. An upper bound for the room return effect was computed by adding 5 cm of steel axially and 15 cm of steel radially to the TWODANT RZ model. The result, $0.0018 \% \Delta \mathrm{k}$, is negligibly small and is treated as a negative adjustment to the benchmark $\mathrm{k}_{\text {eff }}$ (relative to the experimental $\mathrm{k}_{\text {eff }}$). The associated uncertainty, assumed to be 50% of the computed value, i.e., $\pm 0.0009 \% \Delta \mathrm{k}$, will be included in the adjustments discussed in Section 3.5.

2.3 Composition Uncertainties

A bit of history about the materials inventory records is needed to appreciate the extent and limitations of the information available on the compositions used in ZPR-3/11. The material inventory for Argonne's ZPR facilities was accumulated over a period of more than three decades, starting in the mid-1950s. The procurement acceptance process required thorough documentation on dimensions, masses, composition, etc. of the various core components. Information needed for day-to-day operations was extracted and compiled in working documents known informally as "hot constants memos." These memos give batch or lot average values of dimensions, masses, and weight percents of constituents but no uncertainties. The original documentation on most of the inventory used in ZPR-3/11 has been lost, but the hot constants documents are available. Consequently, indirect evidence and estimates were used to quantify many of the composition uncertainties. Compositions given in these hot constants documents are used directly. That is, weight fractions are not adjusted or renormalized to sum to 100%.

The composition uncertainty for a component is treated in two parts, the uncertainty in total mass and the uncertainty in the weight percents of the constituents. Since these two sources of uncertainty are independent, they are added in quadrature. The reactivity effect of the composition uncertainty was determined by computing the change in $\mathrm{k}_{\text {eff }}$ using the TWODANT model of the benchmark. In some cases sensitivity coefficients computed with this model were used and in other cases the specific perturbation was calculated explicitly.

The details of the mass measurements are unknown. For the plates and most of the drawers it is assumed that measurements of masses were within 0.01 g of actual value for plates of up to tens of grams and within 1 g for larger plates weighing kilograms, i.e., the uncertainty in weighing was 0.1%. The working standard used to calibrate the scale is taken to have an uncertainty of 0.05%, which is a systematic uncertainty. The uncertainty in weighing could be statistical, but since no details of the process are available, we assume this to also be a systematic uncertainty, making a total uncertainty in mass of 0.15%. Mass uncertainty assumptions made for other items are specified as needed.

ZPR-3/11 was built using a very limited number of materials. The only materials which could contribute in a significant way to the composition uncertainties are the HEU plates, depleted uranium plates, Kel-F coating on the HEU and depleted uranium plates, stainless steel drawers, and the stainless steel matrix. Masses and compositions for all of these materials are known reasonably well.

There are three sources of evidence currently available regarding the uncertainties in the isotopic weight percents for the enriched uranium. One is a 1982 internal memorandum on the uncertainty in a measurement that used $1 / 16 \times 2 \times 3$ in. plates. These values are shown (rounded to 2 decimal places) in the third column of Table 12 (following the typical wt. $\%$, which are shown in the second column). It quotes an enrichment of
$93.17 \pm 0.02 \mathrm{wt} . \%$ observed in selected Special Materials records. This quoted uncertainty appears reasonable. In fact, it is believed the enrichment for any single fuel fabrication batch may have been known even better. However, because of the large inventory of 93% enriched uranium fuel, it was derived from many fuel batches. The enrichment uncertainty values quoted in these Special Materials records are consistent with the second source, which is a series of recent (1996) mass-spectroscopy measurements on $1 / 16$-inch plates. The quoted uncertainties in measurement of the uranium weight fractions for a single sample were $1 \%, 0.25 \%, 2.5 \%$, and 0.5% for ${ }^{234} \mathrm{U},{ }^{235} \mathrm{U},{ }^{236} \mathrm{U}$, and ${ }^{238} \mathrm{U}$, respectively. The observed consistency among 20 samples is much better than the quoted measurement uncertainties. The fourth column of Table 12 shows estimated uncertainties based on the standard deviation of the distribution of these measured values. Review of a limited number of mass-spectroscopy measurements on $1 / 8$-inch plates indicates a similar consistency of the measured values with the mean enrichment values. Finally, an estimate of the uncertainties in the weight fractions for this enriched uranium can be inferred from the distribution of the enrichment values given in the ZPPR hot constants memo. The ${ }^{235} \mathrm{U}$ weight percent values range from $93.05-93.30$. These values appear to have a normal distribution with approximately 70% of the values within $\pm 0.05 \%$ of their mean value. Estimated uncertainty values based on the distribution of these quoted enrichments, shown in the final column of Table 12, are consistent with the previous values and would appear to cover possible systematic uncertainties without adding unnecessary conservatism. Because the sum of the uranium isotopic fractions should be 100.0%, the uncertainty in the ${ }^{238} \mathrm{U}$ weight fractions is also assumed to be $\pm 0.05 \mathrm{wt} . \%$.

The reactivity effect due to the uncertainty in the enriched uranium isotopic fractions was calculated directly using a TWODANT model of the benchmark. The ${ }^{235} \mathrm{U}$ mass was increased by $0.05 \mathrm{wt} . \%$ of the uranium mass and the ${ }^{238} \mathrm{U}$ mass was reduced correspondingly. This produced an uncertainty of $0.0241 \% \Delta \mathrm{k}$. Although the $0.05 \mathrm{wt} . \%$ uncertainty estimate is itself uncertain, its computed reactivity effect is so small that a reasonable revision of the wt. \% estimate clearly would also yield an unimportant reactivity effect. The component uncertainties of ${ }^{234} \mathrm{U}$ and ${ }^{236} \mathrm{U}$ (also based on corresponding changes in ${ }^{238} \mathrm{U}$ mass) were $0.0013 \% \Delta \mathrm{k}$ and less than $0.0001 \% \Delta \mathrm{k}$, respectively.

Table 12. Enriched-Uranium Uncertainty Data.

Isotope	(Nominal Value) $\mathrm{wt} \%$.	Uncertainty, ${ }^{(\mathrm{a})}$ $\mathrm{wt} \%$.	Uncertainty, ${ }^{(\mathrm{b})}$ $\mathrm{wt} \%$.	Uncertainty, ${ }^{(\mathrm{c})}$ $\mathrm{wt} . \%$
${ }^{234} \mathrm{U}$	(0.91)	± 0.01	± 0.01	± 0.01
${ }^{235} \mathrm{U}$	(93.17)	± 0.02	± 0.02	± 0.05
${ }^{236} \mathrm{U}$	(0.44)	± 0.01	± 0.01	± 0.01
${ }^{238} \mathrm{U}$	(5.48)	± 0.03	± 0.02	± 0.05

(a) Uncertainty values quoted in SPM records.
(b) Uncertainty values estimated from distribution of recent (1996) mass spectroscopy measurements.
(c) Uncertainty values estimated from distribution of enrichments listed in hot constants memo.

The impurity levels in the enriched uranium were estimated from recent chemical analyses of the plate material. Information on the analyses associated with the procurement of the uranium plates is no longer available and the hot constants memos do not list any impurities. However, chemical analysis results are available from a recent process to recover the enriched uranium from fuel plates damaged by corrosion. Analysis reports were obtained for 20 samples, each of which was analyzed for 18 impurities. The 18 analytes do not include the corrosion impurities, oxygen and hydrogen. The analysis reports indicate that, "Less-than values are limits of quantification, which are ten times the minimum detection limit." From an examination of the 20 reports, it was judged that large variations in the quantification limit and a sparsity of values beyond the quantification limit preclude the determination of a reliable weight ppm value for nine of the impurities. An example is cadmium, for which the quantification limit ranges from 10 to 70 ppm over the 20 samples and there is no value beyond the quantification limit. For each of the other nine measured
impurities, there are at least six ppm values beyond the quantification limit and the other quantification limits are consistent. An example is nickel, for which there are 16 values, ranging from 120 to 220 ppm , that are beyond the quantification limit, and there are four reports giving only "less-than values" (quantification limits), which range from 180 to 290 ppm . By averaging the values beyond the quantification limit, the following nine weight ppm estimates were obtained: C 340, Ni 174, Fe 125, Cu 65, Na 63, Ca 40, Si 35, Al 30, Mn 13.

This collection of nine impurity values, which total to 885 weight ppm , was taken to be a reasonable approximation to the initial impurity level in the enriched uranium. On the one hand, it tends to be an underestimate because it does not include any contribution from the nine other analytes or from elements that were not analyzed. On the other hand, it tends to be an overestimate because some of the measured carbon came from the recovery processes, which occurred after the plates were used in the assembly. Apparently, little carbon was introduced by the recovery processes, since the carbon value is typical for enriched uranium. It is assumed that these opposing effects approximately balance and it is estimated that a one-sigma uncertainty of 50% applies to this impurity model.

The reported impurity levels for the Godiva critical assembly provide some evidence that at least the estimated total impurity level in the enriched uranium plates is reasonable. ${ }^{\text {a }}$ Godiva was composed of "virgin material", whose estimated total impurity level is ≈ 400 weight ppm , comprised primarily of C at $160 \mathrm{ppm}, \mathrm{Si}$ at 110 ppm and Fe at 70 ppm . It is further stated in LA-4208 that "recycled material" has impurity levels that are about twice as large. The ZPR enriched uranium apparently was made from recycled material, given the presence of ${ }^{236} \mathrm{U}$, and the adopted 885 ppm impurity estimate is consistent with the $\approx 800 \mathrm{ppm}$ estimate in LA4208.

The effect of the estimated enriched uranium impurities was calculated directly with TWODANT. Since the presence of the impurities was neglected in the reference model, the perturbation consisted of adding the nine impurities and reducing the enriched uranium to preserve mass. The computed effect of including the impurities is $-0.0392 \% \Delta \mathrm{k}$, implying that increasing the benchmark $\mathrm{k}_{\text {eff }}$ (relative to the experimental $\mathrm{k}_{\text {eff }}$) by this amount would compensate for the omission of the impurities from the model. The 50% uncertainty in the impurity level corresponds to $\pm 0.0196 \% \Delta \mathrm{k}$, which must be added in quadrature with the other $\mathrm{k}_{\text {eff }}$ uncertainty components.

The effect of increasing the mass of the enriched uranium by the assumed 0.15% uncertainty was calculated directly with TWODANT. The result is $0.0660 \% \Delta \mathrm{k}$.

The uncertainty for the Kel-F coating on the HEU plates is dominated by the possibility that some flaked off in handling the plates. It is assumed, pessimistically, that 10% of the coating could have been lost. The computed worth of removing 10% of the Kel-F from the HEU plates is $0.0002 \% \Delta \mathrm{k}$. For convenience this is not treated as a one-sided uncertainty.

Adding in quadrature the uranium mass, enrichment, impurity and Kel-F mass uncertainty effects yields a $\mathrm{k}_{\text {eff }}$ uncertainty contribution associated with the HEU plates of $\pm 0.0730 \% \Delta \mathrm{k}$. The net adjustment for the benchmark $\mathrm{k}_{\text {eff }}$ for impurities in the HEU is $0.0392 \% \Delta \mathrm{k}$.

Each unit cell in the core contained six columns of 0.3175 cm depleted uranium plates and one column of 2.54 cm depleted uranium plates. The radial blanket consisted of approximately 35.56 cm of depleted uranium plates, and the axial blanket consisted of approximately 30.5 cm of depleted uranium plates. The

[^13]assumed 0.15% uncertainty in the mass of the depleted uranium plates in the core and blankets was calculated to have a $0.0046 \% \Delta \mathrm{k}$ effect.

The uncertainty in the ${ }^{235} \mathrm{U}$ wt. \% in the depleted uranium plates is taken to be 0.02% (about 10% of the ${ }^{235} \mathrm{U}$ $\mathrm{wt} . \%$) from information given in the hot constants memos. The ${ }^{235} \mathrm{U}$ concentration was increased by this amount, and the ${ }^{238} \mathrm{U}$ concentration was decreased to preserve total uranium mass. The resulting uncertainty in $\mathrm{k}_{\text {eff }}$ is $0.0879 \% \Delta \mathrm{k}$.

There is no information concerning impurities in the depleted uranium plates, so a $0.042 \mathrm{wt} . \%$ contamination of iron was assumed based on an impurity level of $0.042 \mathrm{wt} . \%$ listed in the hot constants memos for depleted $\mathrm{U}_{3} \mathrm{O}_{8}$. The computed uncertainty in $\mathrm{k}_{\text {eff }}$ equivalent to the assumed iron impurity is $0.0022 \% \Delta \mathrm{k}$. The uncertainty for the depleted uranium plates is completely dominated by the uncertainty in the ${ }^{235} \mathrm{U}$ content, so further refinement of the depleted uranium impurity level does not seem to be warranted.

The earliest ZPR-3 hot constants memo is not clear regarding Kel-F coating on depleted uranium plates. Subsequent releases of the ZPR-3 hot constants memo clearly show the presence of Kel-F coating on depleted uranium plates. On the other hand, these memos clearly show a titanium oxide coating on graphite plates, an unspecified coating on boron carbide plates and Kel-F coating on iron plates. If it was deemed necessary to coat common materials such as graphite and iron to prevent oxidation and material loss, it seems likely that the depleted uranium plates would have been coated. It could also be the case that some portion of the depleted uranium inventory was coated.

There does not seem to be a way to determine whether all, some or none of the depleted uranium plates were coated at this late date, so a 100% uncertainty was assumed for the Kel-F coating on the depleted uranium plates. The computed worth of removing 100% of the assumed Kel-F from the depleted uranium plates is $0.0096 \% \Delta \mathrm{k}$. This is a small value compared to the effect of the uncertainty in the ${ }^{235} \mathrm{U}$ content of the depleted uranium plates. The Kel-F uncertainty makes a very small contribution to the total uncertainty for the depleted uranium plates and a negligible contribution to the total uncertainty in Section 2.5. Further effort to refine the Kel-F uncertainty is not warranted.

The quadrature sum of all uncertainties for the depleted uranium plates, i.e., uranium mass, ${ }^{235} \mathrm{Uwt} . \%$, impurities and Kel-F mass, is $0.0886 \% \Delta \mathrm{k}$.

The stainless steel components in this assembly are the front drawers, back drawers and matrix tubes. These components are made of Type 304 stainless steel. Rigorously, the uncertainties for all the components are uncorrelated and therefore should be evaluated separately. The uncertainty effect was computed for each separable assembly component (matrix tubes, front drawers and back drawers) and then those results were added in quadrature. The front 15.25 in . of the DP control rod drawers was included with the normal front drawers. The remainder of the DP control rod drawers was included with the back drawers.

It is estimated that the mass of the matrix tubes is uncertain by 2% and the masses of the other stainless steel components are uncertain by 0.15%. The calculated effect of changing the matrix tube mass by 2% yielded an uncertainty in $\mathrm{k}_{\text {eff }}$ of $0.0011 \% \Delta \mathrm{k}$. The effects of 0.15% mass changes in the front drawers and back drawers are $<0.0001 \% \Delta \mathrm{k}$ for the front drawers and $<0.0001 \% \Delta \mathrm{k}$ for the back drawers.

Table 10 in Section 1.3 shows multiple sets of weight percent data for the stainless steel drawers and matrix tubes. From reading ZPR-3 reports written for later ZPR-3 assemblies, it is clear that stainless steel weight percent differences of the magnitudes shown in Table 10 were not considered significant. It appears that the average composition shown in the first data row of Table 10 was used for all Type 304 stainless steel components in calculations at that time. In contrast, the hot constants compositions for drawers and matrix
tubes were used in the benchmark models presented in Section 3 because these component-specific compositions are believed to be more accurate.

It can be seen that all the other compositions in the table have weight percents that do not account for one to two percent of the composition. Comparing the first two compositions, it can be seen that the only significant difference is a 2 percentage point higher $\mathrm{Fe} \mathrm{wt} . \%$ in the first composition, which is why only the first composition does not have a deficit in total wt. \%. It is not known whether the Fe weight percent was adjusted arbitrarily or for well founded reasons. Consequently, the $\mathrm{Fe} w t . \%$ uncertainties for matrix tubes and drawers are being treated here as Type B, where the range is the difference between the $\mathrm{Fe} \mathrm{wt} . \%$ in the first average composition and the $\mathrm{Fe} w t . \%$ in the matrix or drawer composition. The standard uncertainty is this range divided by $\sqrt{ } 12$, or approximately 1.0%. With the Fe wt. $\%$ adjustment issue covered by this uncertainty, it seems most consistent to compute the Fe contributions to the matrix and drawer composition biases for the asbuilt model using the hot constants average composition (second row of Table 10), which is consistent with the matrix and drawer compositions in having unadjusted Fe.

Table 13 gives the estimated wt. \% uncertainty for each element in the Type 304 stainless steel compositions. To put these values in perspective, representative weight percents, specifically the average composition from ANL-7759, are shown in parentheses. The uncertainty for each of the major elements was taken to be 0.2 $\mathrm{wt} . \%$, and the uncertainty for Mn in the stainless steel was taken to be $0.075 \mathrm{wt} . \%$ (or 10% of the nominal value) for consistency with previous ZPR evaluations. The uncertainty for silicon was assumed to be one half of the last significant figure provided in ANL-7759, due to round-off error.

Table 13. Type 304 Stainless Steel Weight Percent Uncertainty Data.

Element	Wt.\% Uncertainty (ANL-7759 wt.\%)	
Fe	matrix 0.4, drawers 1.0, all else $0.2 \quad(73.4)$	
Cr	0.2	(17.0)
Ni	0.2	(8.4)
Mn	0.075	(0.75)
Si	0.005	(0.45)

The $\mathrm{k}_{\text {eff }}$ uncertainty contributions due to the weight percent uncertainty for the elements comprising the stainless steel were computed by perturbing the reference TWODANT model using the data in Table 13. The results by element and component category are given in Table 14. In all of the perturbations, the reference steel mass in the core was preserved by reducing the atom density of the Fe element in proportion to the modification made to the other element.

Table 14. Contribution from the Stainless Steel wt.\% Uncertainty to the $\mathrm{k}_{\mathrm{eff}}$ Uncertainty $(\% \Delta \mathrm{k})$.

Element	Matrix	Front Drawers	Back Drawers
Fe	0.0001	<0.0001	<0.0001
Cr	0.0002	<0.0001	<0.0001
Ni	0.0003	0.0001	<0.0001
Mn	<0.0001	<0.0001	<0.0001
Si	<0.0001	<0.0001	<0.0001
Quadrature Sum	0.0004	<0.0002	<0.0002

The quadrature sum of the steel mass and composition uncertainties for the matrix is $0.0012 \% \Delta \mathrm{k}$. The quadrature sums for the front drawers and back drawers are $0.0002 \% \Delta \mathrm{k}$ and $<0.0002 \% \Delta \mathrm{k}$, respectively. The quadrature sum of all the steel wt. $\%$ uncertainties is $0.0013 \% \Delta \mathrm{k}$, which is dominated by the uncertainty in the mass of the matrix tubes.

The quadrature sum of all composition uncertainties, i.e., composition uncertainties for HEU plates, depleted uranium plates and the steel in front drawers, back drawers and the matrix tubes, for ZPR-3/11 is 0.1144 $\% \Delta k$.

2.4 Humidity

A very small adjustment and uncertainty due to the presence of humidity in the air was derived for an earlier ZPR assembly. This was done by comparing calculations with the assembly gaps filled by dry air and by saturated air. The calculated effect, $0.0001 \% \Delta \mathrm{k}$, is assumed to apply to this assembly and will be included simply as an (obviously negligible) uncertainty.

2.5 Combined Uncertainties and Final $k_{\text {eff }}$

All of the uncertainties discussed in the previous sections are collected in Table 15. The uncertainties in the measurement technique are not important. The uncertainties in the composition category are an order of magnitude larger than those in the measurement technique category. The main sources of uncertainty were found to be the matrix interface gap, nominal plate and drawer dimensions, matrix tube pitch, HEU plate mass and ${ }^{235} \mathrm{U}$ enrichment in HEU and depleted uranium plates. These uncertainties are not correlated.

After including the total uncertainty from Table 15 , the excess reactivity was $0.1289 \pm 0.1198 \% \Delta \mathrm{k}$, so the experimental $\mathrm{k}_{\text {eff }}$ is 1.001289 ± 0.001198. Note that the estimated uncertainty is comparable to the excess reactivity, yet there is no doubt that the assembly was slightly supercritical. The uncertainty estimates are believed to be reasonable. Treating the uncertainties as if they were 1σ of a normal distribution should be acceptable for the purposes of the benchmark models.

Table 15. Summary of Uncertainties in the Experimental $\mathrm{k}_{\text {eff }}$ for ZPR-3/11 Loading 10.

Source of Uncertainty	Uncertainty in Excess Reactivity, $\mathbf{\%} \Delta \mathbf{k}$
Measurement Technique	
Excess Reactivity	0.0054
Inhour to $\Delta \mathrm{k}$ Conversion	0.0002
Temperature Uncertainty	0.0009
Temperature Distribution	0.0010
Reproducibility	0.0034
Subtotal	$\mathbf{0 . 0 0 6 5}$
Geometry	0.0106
Matrix Interface Gap	0.0191
Nominal Plate, Drawer Dimensions	0.0254
Matrix Tube Pitch	$\mathbf{0 . 0 3 3 5}$
Subtotal	0.0730
Composition	0.0886
HEU Plates	0.0012
Depleted Uranium Plates	0.0003
Steel in Matrix Tubes	0.0001
Steel in Drawers	$\mathbf{0 . 1 1 4 8}$
Humidity	$\mathbf{0 . 1 1 9 8}$
Subtotal	
Total	

ZPR-3/11 loading 10 has been determined to be an acceptable criticality-safety benchmark experiment.

IEU-MET-FAST-016

3.0 BENCHMARK SPECIFICATIONS

3.1 Description of Model

Even the most casual perusal of Section 1 makes it clear that the as-built model of ZPR-3/11 is much too complicated to be a practical criticality-safety benchmark model without a great amount of simplification. Fortunately, it is possible to eliminate virtually all of the complexity, yielding a simple benchmark model, without losing any of the essential physics. Furthermore, this can be done without compromising the high accuracy of the experiment.

This was accomplished by computing the transformation from the detailed as-built experiment model to the simple benchmark model using the VIM continuous-energy Monte Carlo code. ${ }^{a}$ Note that the term "transformation" will be used repeatedly throughout Section 3 and will, in all cases, refer to both the simplification of the model from the as-built platewise heterogeneous experiment model to the homogeneous benchmark model, and also the correction of $\mathrm{k}_{\text {eff }}$ to account for these simplifications. VIM eigenvalue calculations were made for the as-built model and for the benchmark model. The $\mathrm{k}_{\text {eff }}$ correction is simply the difference in $\mathrm{k}_{\text {eff }}$ between the benchmark and as-built models.

The modeling of all the experimental detail was made tractable by the development of the BLDVIM computer code ${ }^{b}$ to generate the VIM input files for the as-built model. BLDVIM reads an electronic database containing a description of the ZPR plate and drawer inventory, the assembly drawer masters, and the matrix loading map. The code and database were rewritten for UNIX-based workstations, at which time the values of Avogadro's number and the atomic masses were made to conform to the values recommended by the ICSBEP. The VIM input for the as-built model of ZPR-3/11 loading 10 is provided in Appendix B.

Development of a practical benchmark model of any ZPR assembly starts from an as-built model. Ideally, every geometric and compositional detail of the experimental configuration would be included as faithfully as possible in the as-built model. In reality, details that are both difficult/cumbersome to model and obviously insignificant to $\mathrm{k}_{\text {eff }}$ are simplified. One example is that perforated drawer walls are replaced with solid walls having the equivalent average density. Another example is that the cladding is smeared into the small clearance gaps between the cladding and the "meat" of a fuel plate for clad plutonium plates.

In addition, the scope of the as-built model is limited to the matrix and its contents, and minor but nonnegligible details within the as-built model scope were omitted. The matrix interface gap and impurities in the HEU were discussed in Section 2. The worths derived in Section 2 for the interface gap and HEU impurities are included in Section 3.5 as adjustments to the benchmark $\mathrm{k}_{\text {eff }}$.

It needs to be kept in mind that, compared to what the as-built model does include, these deficiencies are few and unimportant. The deficiencies were identified here for completeness and should be kept in perspective. The as-built model is extremely detailed; it represents explicitly every plate, every drawer wall and matrix tube wall, etc.

[^14]A benchmark model of ZPR-3/11 loading 10 was generated in exactly the same way as was used for previous ZPR benchmarks. The key features retained in the benchmark model are the region-averaged compositions and region volumes. The geometric model is an RZ model that preserves the areas of the X-Y boundaries of the core, radial blanket and empty matrix tubes in the as-built model. Axial dimensions of each region conserve the region volumes. Note that since axial regions in the as-built model core have been defined at fuel plate boundaries (which may vary between different matrix positions due to differences in thicknesses of drawer fronts of normal and DP drawers), the axial extent which conserves the region volume may be "nonphysical", i.e., it may not correspond exactly to any actual fuel-plate boundary. Masses of the constituents within these regions are then homogenized to produce the region-averaged compositions, thereby conserving material masses within each region. The VIM output edits for the as-built model included the region-average compositions, which were extracted to construct the benchmark model.

The simplification (afforded by the benchmark model) that yielded by far the greatest elimination of detail was the smearing of plates, drawers, and matrix tubes into homogeneous mixtures. The plate heterogeneity effects, which require much effort to capture accurately in effective homogenized cross sections in a deterministic modeling approach, are included in the Monte Carlo-calculated Δk of the transformation.

This transformation process has been used previously with success. Loadings from the ZPPR-21 assembly were transformed into simple benchmarks for the criticality-safety assessment of $\mathrm{Pu}-\mathrm{U}-\mathrm{Zr}$ fuel treatment at Argonne's Fuel Conditioning Facility (FCF). Using sensitivity calculations and generalized-least-squares fitting, it was shown ${ }^{\text {a }}$ that the results from this plate critical assembly are consistent with those from the homogeneous assemblies Jezebel and Godiva.

The homogeneous RZ benchmark model resulting from the transformation of the as-built platewise heterogeneous ZPR-3/11 loading 10 model is defined in the remainder of this section.

3.2 Dimensions

Figure 10 shows the benchmark RZ model for ZPR-3/11 loading 10. The boundary conditions are reflecting along the bottom $(Z=0.0 \mathrm{~cm})$ and left side $(\mathrm{R}=0.0 \mathrm{~cm})$ and vacuum along the top $(Z=85.09 \mathrm{~cm})$ and right side ($\mathrm{R}=96.82257 \mathrm{~cm}$). Table 16 provides the same dimension information. It should be noted that the number of decimal places shown in Figure 10 and Table 16 does not mean that those dimensions were known that accurately. Rather, the values in the figure and table reflect the conversion from units of inches to units of centimeters.

[^15]

Figure 10. ZPR-3/11 Loading 10 Benchmark Model.

Table 16. Benchmark Model Region Dimensions.

Region	Inner Radius (cm)	Outer Radius (cm)	Lower Height (cm)	Upper Height (cm)
Core	0.0	29.34289	0.0	25.48128
Axial Blanket -1	0.0	29.34289	25.48128	38.18128
Drawer Gap	0.0	29.34289	38.18128	38.80722
Axial Blanket -2	0.0	29.34289	38.80722	56.58722
Radial Blanket	29.34289	65.31094	0.0	55.88000
Matrix $^{(\text {a }}$	0.0	96.82257	0.0	85.09000

(a) The matrix fills the remaining space that is not occupied by the core, axial blanket, drawer gap and radial blanket.

IEU-MET-FAST-016

3.3 Material Data

Table 17 contains the region-dependent composition data for the benchmark model of ZPR-3/11 Loading 10.
Table 17. Compositions of the Benchmark Model Regions of ZPR-3/11 Loading 10 (atoms/barn-cm).

Nuclide	Core	Axial Blanket	Radial Blanket	Drawer Gap	Matrix
${ }^{235} \mathrm{U}$	$4.53407 \mathrm{E}-03$	$8.09067 \mathrm{E}-05$	$8.12459 \mathrm{E}-05$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$
${ }^{238} \mathrm{U}$	$3.42487 \mathrm{E}-02$	$3.98361 \mathrm{E}-02$	$4.00215 \mathrm{E}-02$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$
${ }^{234} \mathrm{U}$	$4.35964 \mathrm{E}-05$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$
${ }^{236} \mathrm{U}$	$2.09005 \mathrm{E}-05$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$
Cr	$1.43070 \mathrm{E}-03$	$1.44626 \mathrm{E}-03$	$1.1141 \mathrm{E}-03$	$3.51152 \mathrm{E}-03$	$1.10960 \mathrm{E}-03$
Ni	$6.03862 \mathrm{E}-04$	$6.17031 \mathrm{E}-04$	$4.56291 \mathrm{E}-04$	$1.63391 \mathrm{E}-03$	$4.53554 \mathrm{E}-04$
Fe	$5.74369 \mathrm{E}-03$	$5.81474 \mathrm{E}-03$	$4.54724 \mathrm{E}-03$	$1.94781 \mathrm{E}-02$	$4.52968 \mathrm{E}-03$
C	$3.80965 \mathrm{E}-05$	$1.04630 \mathrm{E}-05$	$8.72693 \mathrm{E}-06$	$2.68742 \mathrm{E}-04$	$0.00000 \mathrm{E}+00$
Mo	$0.000000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$5.56095 \mathrm{E}-08$	$0.00000 \mathrm{E}+00$
${ }^{55} \mathrm{Mn}$	$7.09685 \mathrm{E}-05$	$7.04151 \mathrm{E}-05$	$4.41475 \mathrm{E}-05$	$2.37482 \mathrm{E}-04$	$4.34957 \mathrm{E}-05$
Cu	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	$3.35551 \mathrm{E}-07$	$0.00000 \mathrm{E}+00$
${ }^{1} \mathrm{H}$	$1.11171 \mathrm{E}-05$	$3.03708 \mathrm{E}-06$	$2.49611 \mathrm{E}-06$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$
Si	$7.25666 \mathrm{E}-05$	$7.38710 \mathrm{E}-05$	$6.08317 \mathrm{E}-05$	$1.50111 \mathrm{E}-04$	$6.07700 \mathrm{E}-05$
Cl	$1.91113 \mathrm{E}-05$	$5.24861 \mathrm{E}-06$	$4.32545 \mathrm{E}-06$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$
${ }^{19} \mathrm{~F}$	$5.65882 \mathrm{E}-05$	$1.55418 \mathrm{E}-05$	$1.28088 \mathrm{E}-05$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$

The small amounts of molybdenum and copper shown in Table 17 come from impurities in the materials used to model the divider plates in the DP drawers and control rod drive shafts for the DP drawers.

For the convenience of readers whose computer codes require total atom densities, the total atom densities for the benchmark compositions in Table 17 are:

1) Core - $4.690295 \mathrm{E}-02 \mathrm{at} / \mathrm{b}-\mathrm{cm}$,
2) Axial Blanket - $4.797361 \mathrm{E}-02 \mathrm{at} / \mathrm{b}-\mathrm{cm}$,
3) Radial Blanket -
$4.635372 \mathrm{E}-02 \mathrm{at} / \mathrm{b}-\mathrm{cm}$,
4) Drawer Gap -
$2.528024 \mathrm{E}-02 \mathrm{at} / \mathrm{b}-\mathrm{cm}$,
5) Matrix -
$6.197097 \mathrm{E}-03 \mathrm{at} / \mathrm{b}-\mathrm{cm}$.

3.4 Temperature Data

The matrix temperature of ZPR-3/11 loading 10 during the criticality measurement was $20.9^{\circ} \mathrm{C}$. The temperature coefficient of $-8.027 \times 10^{-4} \% \Delta \mathrm{k} /{ }^{\circ} \mathrm{C}$ was used to normalize the benchmark $\mathrm{k}_{\text {eff }}$ to $300 \mathrm{~K}\left(27^{\circ} \mathrm{C}\right)$. This is a temperature commonly assumed when processing cross sections. The benchmark (relative to the experimental) excess reactivity must be decreased by $0.0048 \% \Delta \mathrm{k}$ for this. The benchmark temperature is $300 \mathrm{~K}\left(27^{\circ} \mathrm{C}\right)$.

3.5 Experimental and Benchmark-Model $k_{\text {eff }}$

Recall from Section 2.1 that the measurement for which we actually have records was establishment of a critical state for the described assembly with DP Rod \#10 withdrawn 5.885 inches and all the other DP (fueled) controls fully inserted. Full insertion of Rod \#10 resulted in a small excess reactivity but no records of the excess reactivity or of the Rod \#10 calibration were found. Consequently, calculations described in Section 2.1 were used to determine that the excess reactivity was $0.1289 \pm 0.0054 \% \Delta k$, where this
uncertainty reflects the total uncertainty for this pair of calculations. This is the first in a series of six adjustments obtained using high fidelity calculations to get from the experimental criticality records we have to an adjusted "experimental $\mathrm{k}_{\text {eff" }}$ that can be used with the benchmark model. The total of all uncertainties in this excess reactivity value, which are summarized in Table 15 , is $0.1198 \% \Delta \mathrm{k}$. Thus, the experimental $\mathrm{k}_{\text {eff }}=$ 1.0013 ± 0.0012.

As described in earlier sections, four small "modeling" adjustments need to be applied to this experimental $\mathrm{k}_{\text {eff }}$ to make the conditions consistent with the as-built model of ZPR-3/12 loading 10. These adjustments consist of: the neglect of structure beyond the matrix tubes and all their contents (i.e., room return, see Section 2.2); the neglect of the matrix interface gap (see Section 2.2); the neglect of the HEU plate impurities (see Section 2.3); and the adjustment of the temperature to 300 K (see Section 3.4). These adjustments acknowledge that the model we call "as-built" actually models some slightly idealized conditions. The $\Delta \mathrm{k}$ for each model idealization and the net $\Delta \mathrm{k}$ are summarized in Table 18. The net adjustment is only $0.07 \% \Delta \mathrm{k}$ and involves little cancellation of effects. Application of this net adjustment to the experimental $\mathrm{k}_{\text {eff }}$ yields a value of 1.0020 ± 0.0012, and is referred to as the as-built model $\mathrm{k}_{\text {eff. }}$. This is basically an experimental result with small calculational adjustments. It is the $\mathrm{k}_{\text {eff }}$ we aspire to reproduce with calculations of the as-built model.

Table 18. Model Biases to Experimental $\mathrm{k}_{\text {eff. }}{ }^{(\mathrm{a}, \mathrm{b})}$

Model Bias	$\% \Delta \mathrm{k}$
Room return neglected	-0.0018 ± 0.0009
No interface gap	$+0.0382 \pm 0.0106^{(\mathrm{c})}$
HEU impurities omitted	$+0.0392 \pm 0.0196^{(\mathrm{c})}$
$20.9^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$	$-0.0048 \pm 0.0024^{(\mathrm{d})}$
Net Bias	0.0708 ± 0.0026

(a) Resulting from experimental features either altered or neglected in the as-built model.
(b) Biases for room return, HEU impurities and temperature were computed with ENDF/B-V. 2 data. The bias for the interface gap was computed with ENDF/B-VII. 0 data.
(c) These uncertainties have been included in the experiment uncertainty (see Table 17). To avoid double counting, they are omitted from the uncertainty in the net bias.
(d) Uncertainty assumed to be 50% of reactivity worth.

The sixth and last adjustment to the measured result is the transformation from the as-built model conditions to the benchmark model conditions. The transformation Δk (bias) from the as-built configuration to the benchmark model that was described in Section 3.1 was calculated using the VIM continuous-energy Monte Carlo code. The individual $\mathrm{k}_{\text {eff }}$ values and the transformation $\Delta \mathrm{k}$ for ZPR-3/11 loading 10 are shown in Table 19. The uncertainties shown are just the statistical standard deviations from VIM using the combined tracklength and analog estimators. There are two sets of results - one based on ENDF/B-V. 2 and the other based on ENDF/B-VII. 0 cross section data.

IEU-MET-FAST-016

Table 19. Eigenvalues for Transformation from As-Built Model to RZ Benchmark Model for ZPR-3/11 Loading 10.

	As-Built-Model $\mathrm{k}_{\text {eff }}$	RZ Benchmark-Model $\mathrm{k}_{\text {eff }}$	Transformation $\Delta \mathrm{k}$ (Bias)
VIM (ENDF/B-V.2)	1.0102 ± 0.0001	1.0053 ± 0.0001	-0.0049 ± 0.0001
VIM (ENDF/B-VII.0)	1.0019 ± 0.0001	0.9973 ± 0.0002	-0.0046 ± 0.0002

An estimate of the total uncertainty in the transformation $\Delta \mathrm{k}$ from the as-built platewise heterogeneous critical-assembly model to the homogeneous spherical model is needed. Since there are no significant geometric approximations in the as-built model and there are no cross section processing approximations associated with either model, the only sources of uncertainty added to the original experimental uncertainty come from Monte Carlo statistical precision and the sensitivity of the calculated $\Delta \mathrm{k}$ values to uncertainties in basic cross section data. The major uncertainties in the assembly arise from fission production and absorption in uranium. Uncertainties in the $\mathrm{k}_{\text {eff }}$ of fast reactor assemblies due to calculations with ENDF/B-V data have been quantified to be in the range of $2 \% \Delta k$. ${ }^{\text {a }}$

Because there is a strong correlation between the heterogeneous-assembly and homogeneous-assembly calculations, the difference in the two calculations can have a much smaller uncertainty than does either individual calculation. That is, the calculations for the transformation $\Delta \mathrm{k}$ value are based on a set of evaluated cross sections applied to two models having identical region-averaged compositions (and therefore having similar neutron energy spectra and similar sensitivities of $\mathrm{k}_{\text {eff }}$ to the cross sections), and are thus highly correlated. The ensuing uncertainty in the transformation $\Delta \mathrm{k}$ is therefore assumed smaller by more than an order of magnitude, or about $\pm 0.1 \% \Delta \mathrm{k}$. Adding in quadrature the estimated $0.1 \% \Delta \mathrm{k}$ uncertainty due to use of ENDF/B-VII. 0 cross sections and the 0.04% uncertainty due to the Monte Carlo statistics yields a total uncertainty in the transformation $\Delta \mathrm{k}$ of $\pm 0.1 \% \Delta \mathrm{k}$.

This uncertainty estimate is believed to be realistic but still sufficiently small for criticality-safety benchmark purposes, i.e., it does not significantly increase the uncertainty in the benchmark representation relative to the actual experiment. For a clean physics benchmark assembly such as ZPR-3/11, the actual correlations between the calculations of the as-built and simplified models are likely higher than the values assumed in deriving the estimated uncertainty in the transformation. The agreement within the small statistical uncertainty between the calculations using two different cross section files lends support for this expectation.

The experimental and benchmark model $\mathrm{k}_{\text {eff }}$ values are summarized in Table 20. The data in Table 20 are in units of $\mathrm{k}_{\text {eff. }}$. The experimental $\mathrm{k}_{\text {eff }}$, shown in the first row, is the value arrived at earlier in this subsection. The adjusted experimental $\mathrm{k}_{\text {eff }}$, shown in the second row, was obtained by adding the experimental $\mathrm{k}_{\text {eff }}$ from the first row and the net bias from Table 18, using the uncertainties for room return and temperature adjustment in Table 18 to avoid double counting two uncertainty components. The third row contains the transformation $\Delta \mathrm{k}$ from Table 19 produced using the most modern cross sections available (ENDF/B-VII.0). The transformation $\Delta \mathrm{k}$ is the difference between the final benchmark model $\mathrm{k}_{\text {eff }}$ and the as-built model $\mathrm{k}_{\text {eff }}$. The transformation $\Delta \mathrm{k}$ includes all of the differences between the benchmark model and the as-built experiment except for those listed in Table 18. Adding the transformation $\Delta \mathrm{k}$ to the adjusted experimental $\mathrm{k}_{\mathrm{eff}}$ yields the benchmark model $\mathrm{k}_{\text {eff }}$ shown in the last row of the table. It is the $\mathrm{k}_{\text {eff }}$ against which $\mathrm{k}_{\text {eff }}$ results calculated using the benchmark model should be compared. The uncertainty in this $\mathrm{k}_{\text {eff }}$ includes contributions from all sources.

[^16]Table 20. Experimental and Benchmark-Model Eigenvalues. ${ }^{(\text {a) }}$

	ZPR-3/11
Experimental $\mathrm{k}_{\text {eff }}$	1.0013 ± 0.0012
As-Built Experimental $\mathrm{k}_{\text {eff }}$	1.0020 ± 0.0012
Monte Carlo Transformation of Model	-0.0046 ± 0.0010
Benchmark-Model $\mathrm{k}_{\text {eff }}$	0.9974 ± 0.0016

(a) Each uncertainty estimate is one standard deviation.

4.0 RESULTS OF SAMPLE CALCULATIONS

Results of sample calculations of the benchmark models are given in Table 21 for ZPR-3/11 loading 10. These results are based on accumulating 500 generations with 20,000 neutrons per generation for a total of $10,000,000$ histories after skipping 100 initial generations to converge the source. More details of the calculations, including input listings, are given in Appendix A.

Table 21. Sample Calculation Results for ZPR-3/11 Loading 10.

Code (Cross Section Set) Case \downarrow	VIM (Continuous Energy ENDF/B-V.2)	VIM (Continuous Energy ENDF/B-VII.0)	MCNP5 (Continuous Energy ENDF/B-VII.0)
ZPR-3/11 Benchmark	1.0053 ± 0.0001	0.9973 ± 0.0002	0.9966 ± 0.0002

Agreement between the benchmark $\mathrm{k}_{\text {eff }}$ value (0.9974 ± 0.0016) and the calculated results is excellent with ENDF/B-VII. 0 data. The difference between the benchmark $\mathrm{k}_{\text {eff }}$ and the $\mathrm{k}_{\text {eff }}$ computed with ENDF/B-V. 2 data and the improvement with ENDF/B-VII. 0 data are consistent with results for previous ZPR benchmarks whose core fissionable material consisted of uranium with intermediate enrichment such as ZPR-9/1 (IEU-MET-FAST-013) and ZPR-9/2 (IEU-MET-FAST-014).

5.0 REFERENCES

There are no published references available for this evaluation.

APPENDIX A: TYPICAL INPUT LISTINGS

A. 1 KENO Input Listings

Calculations for the ZPR-3/11 benchmark have not been performed using SCALE/KENO.

A. 2 MCNP Input Listings

The MCNP5 code was used with the ENDF/B-VII. 0 continuous energy cross sections for all nuclides. The calculation used 10 million histories, with 20,000 neutron histories per generation and 500 active generations after skipping 100 generations.

MCNP5 ENDF/B-VII. O Input Listing, Table 21.

MCNP5 ENDF/B-VII. 0 Input Listing, 21 (Cont'd).
Revision: 0
Date: September 30, 2010

IEU-MET-FAST-016

	26058.70c	1.62813E-05	6000.70c	1.04630E-05
	25055.70c	7.04151E-05		
	1001.70c	3.03708E-06	14028.70c	6.81312E-05
	14029.70c	3.45938E-06	14030.70c	2.28040E-06
	17035.70c	3.97687E-06	17037.70c	1.27174E-06
	9019.70c	1.55418E-05		
m003	92235.70c	8.12459E-05	92238.70c	4.00215E-02
	24050.70c	4.84076E-05	24052.70c	9.33504E-04
	24053.70c	1.05839E-04	24054.70c	2.63485E-05
	28058.70c	3.11510E-04	28060.70c	1.19092E-04
	28061.70c	5.15609E-06	28062.70c	1.63808E-05
	28064.70c	4.15225E-06	26054.70c	2.63740E-04
	26056.70c	4.17073E-03	26057.70c	1.00039E-04
	26058.70c	1.27323E-05	6000.70c	8.72693E-06
	25055.70c	4.41475E-05		
	1001.70c	2.49611E-06	14028.70c	5.61051E-05
	14029.70c	2.84875E-06	14030.70c	$1.87787 \mathrm{E}-06$
	17035.70c	3.27739E-06	17037.70c	1.04806E-06
	9019.70c	1.28088E-05		
m004	24050.70c	1.52576E-04	24052.70c	2.94230E-03
	24053.70c	3.33594E-04	24054.70c	8.30475E-05
	28058.70c	1.11547E-03	28060.70c	4.26451E-04
	28061.70c	1.84632E-05	28062.70c	5.86574E-05
	28064.70c	1.48686E-05	26054.70c	1.12973E-03
	26056.70c	1.78653E-02	26057.70c	4.28518E-04
	26058.70c	5.45387E-05	6000.70c	2.68742E-04
	42100.70c	5.35519E-09	42092.70c	8.25245E-09
	42094.70c	5.14388E-09	42095.70c	8.85303E-09
	42096.70c	9.27567E-09	42097.70c	5.31071E-09
	42098.70c	1.34186E-08	25055.70c	2.37482E-04
	29063.70c	2.32101E-07	29065.70c	1.03450E-07
	14028.70c	1.38447E-04		
	14029.70c	7.02970E-06	14030.70c	4.63393E-06
m005	24050.70c	4.82121E-05	24052.70c	9.29734E-04
	24053.70c	1.05412E-04	24054.70c	2.62420E-05
	28058.70c	3.09641E-04	28060.70c	1.18378E-04
	28061.70c	5.12516E-06	28062.70c	1.62826E-05
	28064.70c	4.12734E-06	26054.70c	2.62721E-04
	26056.70c	4.15462E-03	26057.70c	9.96530E-05
	26058.70c	1.26831E-05		
	25055.70c	4.34957E-05		
	14028.70c	5.60482E-05		
	14029.70c	2.84586E-06	14030.70c	1.87597E-06
totnu ctme	9000. 0			

A. 3 TWODANT Input Listings

Sample input listings for TWODANT are not provided here because none of the TWODANT calculations utilized standard cross section libraries. However, most of the sensitivity results presented in Section 2 are based on TWODANT calculations which use the ANL code sequence $\mathrm{MC}^{2}-2 / \mathrm{SDX}$ to generate 20 broad group cross sections appropriate for the regions of the model. More importantly, only an RZ representation of the ZPR-3 Assembly 11 critical assembly was used for the TWODANT sensitivity calculations.

A. 4 MONK8B Input Listings

Calculations for the ZPR-3 Assembly 11 benchmark have not been performed using the MONK code.

NEA/NSC/DOC(95)03/III

Volume III

IEU-MET-FAST-016

A. 5 VIM Input Listings

This input for the benchmark model was run with Version 5.1 of the VIM code with an ENDF/B-VII. 0 continuous-energy cross section library. All the cross sections correspond to 300 K . The VIM calculation used 10 million histories, with 20,000 neutron histories per generation and 500 active generations after skipping 100 generations.

VIM ENDF/B-VII. 0 Input Listing, Table 21.

30300403006030080300210301210302210303210304220301220303220304220305 220306230301230302230303230304270300280301280302280304280305280306280307
280308290300340301340302350300380305380306380307540301540302570300
30300403006030080300210301210302210303210304220301220303220304220305 220306230301230302230303230304270300280301280302280304280305280306280307 280308290300340301340302350300380305380306380307540301540302570300
30300403006030080300210301210302210303210304220301220303220304220305 220306230301230302230303230304270300280301280302280304280305280306280307 280308290300340301340302350300380305380306380307540301540302570300
30300403006030080300210301210302210303210304220301220303220304220305 220306230301230302230303230304270300280301280302280304280305280306280307
280308290300340301340302350300380305380306380307540301540302570300
30300403006030080300210301210302210303210304220301220303220304220305
220306230301230302230303230304270300280301280302280304280305280306280307
280308290300340301340302350300380305380306380307540301540302570300
4.53407E-03 3.42487E-02 4.35964E-05 2.09005E-05 6.21639E-05 1.19878E-03
$1.35916 \mathrm{E}-04$ 3.38361E-05 4.18401E-04 1.59957E-04 6.92534E-06 2.20017E-05
5.57704E-06 3.33134E-04 5.26811E-03 1.26361E-04 1.60823E-05 3.80965E-05
$1.00000 \mathrm{E}-201.00000 \mathrm{E}-20$ 1.00000E-20 1.00000E-20 1.00000E-20 1.00000E-20
1.00000E-20 7.09685E-05 1.00000E-20 1.00000E-20 1.11171E-05 6.69282E-05
3.39829E-06 2.24013E-06 1.44806E-05 4.63067E-06 5.65882E-05
8.09067E-05 3.98361E-02 1.00000E-20 1.00000E-20 6.28400E-05 1.21182E-03
1.37395E-04 3.42040E-05 4.21247E-04 1.61045E-04 6.97245E-06 2.21514E-05

11

22

33
$4 \quad 4$
$5 \quad 5$

11

22

Revision: 0

NEA/NSC/DOC(95)03/III

Volume III

IEU-MET-FAST-016

VIM ENDF/B-VII.0 Input Listing, Table 21 (Cont'd).								
$5.61498 \mathrm{E}-06$	$3.37255 \mathrm{E}-04$	$5.33328 \mathrm{E}-03$	$1.27924 \mathrm{E}-04$	$1.62813 \mathrm{E}-05$	$1.04630 \mathrm{E}-05$			
$1.00000 \mathrm{E}-20$								
$1.00000 \mathrm{E}-20$	$7.04151 \mathrm{E}-05$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$3.03708 \mathrm{E}-06$	$6.81312 \mathrm{E}-05$			
$3.45938 \mathrm{E}-06$	$2.28040 \mathrm{E}-06$	$3.97687 \mathrm{E}-06$	$1.27174 \mathrm{E}-06$	$1.55418 \mathrm{E}-05$				
$8.12459 \mathrm{E}-05$	$4.00215 \mathrm{E}-02$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$4.84076 \mathrm{E}-05$	$9.33504 \mathrm{E}-04$	3	3	
$1.05839 \mathrm{E}-04$	$2.63485 \mathrm{E}-05$	$3.11510 \mathrm{E}-04$	$1.19092 \mathrm{E}-04$	$5.15609 \mathrm{E}-06$	$1.63808 \mathrm{E}-05$			
$4.15225 \mathrm{E}-06$	$2.63740 \mathrm{E}-04$	$4.17073 \mathrm{E}-03$	$1.00039 \mathrm{E}-04$	$1.27323 \mathrm{E}-05$	$8.72693 \mathrm{E}-06$			
$1.00000 \mathrm{E}-20$								
$1.00000 \mathrm{E}-20$	$4.41475 \mathrm{E}-05$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$2.49611 \mathrm{E}-06$	$5.61051 \mathrm{E}-05$			
$2.84875 \mathrm{E}-06$	$1.87787 \mathrm{E}-06$	$3.27739 \mathrm{E}-06$	$1.04806 \mathrm{E}-06$	$1.28088 \mathrm{E}-05$				
$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$1.52576 \mathrm{E}-04$	$2.94230 \mathrm{E}-03$	4	4	
$3.33594 \mathrm{E}-04$	$8.30475 \mathrm{E}-05$	$1.11547 \mathrm{E}-03$	$4.26451 \mathrm{E}-04$	$1.84632 \mathrm{E}-05$	$5.86574 \mathrm{E}-05$			
$1.48686 \mathrm{E}-05$	$1.12973 \mathrm{E}-03$	$1.78653 \mathrm{E}-02$	$4.28518 \mathrm{E}-04$	$5.45387 \mathrm{E}-05$	$2.68742 \mathrm{E}-04$			
$5.35519 \mathrm{E}-09$	$8.25245 \mathrm{E}-09$	$5.14388 \mathrm{E}-09$	$8.85303 \mathrm{E}-09$	$9.27567 \mathrm{E}-09$	$5.31071 \mathrm{E}-09$			
$1.34186 \mathrm{E}-08$	$2.37482 \mathrm{E}-04$	$2.32101 \mathrm{E}-07$	$1.03450 \mathrm{E}-07$	$1.00000 \mathrm{E}-20$	$1.38447 \mathrm{E}-04$			
$7.02970 \mathrm{E}-06$	$4.63393 \mathrm{E}-06$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$				
$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$4.82121 \mathrm{E}-05$	$9.29734 \mathrm{E}-04$	5	5	
$1.05412 \mathrm{E}-04$	$2.62420 \mathrm{E}-05$	$3.09641 \mathrm{E}-04$	$1.18378 \mathrm{E}-04$	$5.12516 \mathrm{E}-06$	$1.62826 \mathrm{E}-05$			
$4.12734 \mathrm{E}-06$	$2.62721 \mathrm{E}-04$	$4.15462 \mathrm{E}-03$	$9.96530 \mathrm{E}-05$	$1.26831 \mathrm{E}-05$	$1.00000 \mathrm{E}-20$			
$1.00000 \mathrm{E}-20$								
$1.00000 \mathrm{E}-20$	$4.34957 \mathrm{E}-05$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$5.60482 \mathrm{E}-05$			
$2.84586 \mathrm{E}-06$	$1.87597 \mathrm{E}-06$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$	$1.00000 \mathrm{E}-20$				
$1.00000 \mathrm{E}-05$								

IEU-MET-FAST-016

APPENDIX B: Drawer Plate Loading Description for ZPR-3/11 Loading 10

Table B.1. Drawer Plate Loading Description for ZPR-3/11 Loading $10^{(\mathrm{a})}$.

Plate ID (dimensions in inches)	Starting X Location	Starting Y Location	Starting Z Location	X	\mathbf{Y}	$\begin{aligned} & \hline \mathbf{Z} \\ & \# \end{aligned}$	Rotation
Identification Symbol A, Drawer Master 11-1, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	3.0000	3	1	1	
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	3	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 3)$	0.3750	0.0000	0.0000	1	1	1	1
U(93) (1/8x2x2)	0.3750	0.0000	3.0000	1	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 3)$	0.3750	0.0000	5.0000	1	1	1	1
U(93) (1/8x2x2)	0.3750	0.0000	8.0000	1	1	1	1
Depleted Uranium (1x1x5) - APW	0.5000	0.0000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	0.5000	1.0000	0.0000	1	1	2	1
U(93) (1/8x2x3)	1.5000	0.0000	0.0000	1	1	1	1
U(93) (1/8x2x2)	1.5000	0.0000	3.0000	1	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 3)$	1.5000	0.0000	5.0000	1	1	1	1
U (93) (1/8x2x2)	1.5000	0.0000	8.0000	1	1	1	1
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	0.0000	3	1	1	1
Depleted Uranium ($1 / 8 \times 2 \times 2$) - APW	1.6250	0.0000	3.0000	3	1	1	1
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.6250	0.0000	8.0000	3	1	1	1
Depleted Uranium ($2 \times 2 \times 5$) - APW	0.0000	0.0000	10.0000	1	1	1	1
Identification Symbol B, Drawer Master 11-2, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	3.0000	3	1	1	
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	3	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 1)$	0.3750	0.0000	0.0000	1	1	5	4
Depleted Uranium (1/8x2x1) - APW	0.3750	1.0000	0.0000	1	1	5	4
Depleted Uranium (1x1x5) - APW	0.5000	0.0000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	0.5000	1.0000	0.0000	1	1	2	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 3)$	1.5000	0.0000	0.0000	1	1	1	1
$\mathrm{U}(93)$ (1/8x2x2)	1.5000	0.0000	3.0000	1	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 3)$	1.5000	0.0000	5.0000	1	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \mathrm{x} 2)$	1.5000	0.0000	8.0000	1	1	1	1
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	0.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.6250	0.0000	3.0000	3	1	1	1
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.6250	0.0000	8.0000	3	1	1	1
Depleted Uranium (2x2x5) - APW	0.0000	0.0000	10.0000	1	1	1	1

IEU-MET-FAST-016

Table B.1. Drawer Plate Loading Description for ZPR-3/11 Loading $10^{(\text {a) }}$ (Cont'd).

Plate ID (dimensions in inches)	Starting X Location	Starting Y Location	Starting Z Location	$\begin{aligned} & \hline \hline \mathbf{X} \\ & \# \end{aligned}$	$\begin{aligned} & \hline \mathbf{Y} \\ & \# \end{aligned}$	$\begin{aligned} & \hline \mathbf{Z} \\ & \# \end{aligned}$	Rotation
Identification Symbol C, Drawer Master 11-3, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	3.0000	3	1	1	1
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	3	1	1	1
Depleted Uranium (1/8x2x1) - APW	0.3750	0.0000	0.0000	1	1	5	4
U(93) (1/8x2x1)	0.3750	1.0000	0.0000	1	1	5	4
Depleted Uranium (1x1x5) - APW	0.5000	0.0000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	0.5000	1.0000	0.0000	1	1	2	1
U(93) (1/8x2x3)	1.5000	0.0000	0.0000	1	1	1	1
U(93) (1/8x2x2)	1.5000	0.0000	3.0000	1	1	1	1
U(93) (1/8x2x3)	1.5000	0.0000	5.0000	1	1	1	1
U(93) (1/8x2x2)	1.5000	0.0000	8.0000	1	1	1	
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	0.0000	3	1	1	1
Depleted Uranium ($1 / 8 \times 2 \times 2$) - APW	1.6250	0.0000	3.0000	3	1	1	1
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	5.0000	3	1	1	1
Depleted Uranium ($1 / 8 \times 2 \times 2$) - APW	1.6250	0.0000	8.0000	3	1	1	1
Depleted Uranium (2x2x5) - APW	0.0000	0.0000	10.0000	1	1	1	1
Identification Symbol D, Drawer Master 11-4, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	3	1	1	1
Depleted Uranium ($1 / 8 \times 2 \times 2$) - APW	0.0000	0.0000	3.0000	3	1	1	1
Depleted Uranium ($1 / 8 \times 2 \times 3$) - APW	0.0000	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	3	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 3)$	0.3750	0.0000	0.0000	1	1	1	1
U(93) (1/8x2x2)	0.3750	0.0000	3.0000	1	1	1	1
U(93) (1/8x2x3)	0.3750	0.0000	5.0000	1	1	1	1
U(93) (1/8x2x2)	0.3750	0.0000	8.0000	1	1	1	1
Depleted Uranium (1x1x5) - APW	0.5000	0.0000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	0.5000	1.0000	0.0000	1	1	2	1
Depleted Uranium (1/8x2x1) - APW	1.5000	0.0000	0.0000	1	1	5	4
$\mathrm{U}(93)(1 / 8 \times 2 \times 1)$	1.5000	1.0000	0.0000	1	1	5	4
Depleted Uranium ($1 / 8 \times 2 \times 3$) - APW	1.6250	0.0000	0.0000	3	1	1	1
Depleted Uranium ($1 / 8 \times 2 \times 2$) - APW	1.6250	0.0000	3.0000	3	1	1	1
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.6250	0.0000	8.0000	3	1	1	1
Depleted Uranium (2x2x5) - APW	0.0000	0.0000	10.0000	1	1	1	1

IEU-MET-FAST-016

Table B.1. Drawer Plate Loading Description for ZPR-3/11 Loading $10^{(\text {a })}$ (Cont'd).

Plate ID (dimensions in inches)	Starting X Location	Starting Y Location	Starting Z Location	$\begin{aligned} & \hline \hline \mathbf{X} \\ & \# \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{Y} \\ & \# \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{Z} \\ & \# \end{aligned}$	Rotation
Identification Symbol E, Drawer Master 11-5, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	3	1	1	I
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	3.0000	3	1	1	1
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	3	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 3)$	0.3750	0.0000	0.0000	1	1	1	1
U(93) (1/8x2x2)	0.3750	0.0000	3.0000	1	1	1	1
U(93) (1/8x2x3)	0.3750	0.0000	5.0000	1	1	1	1
U (93) (1/8x2x2)	0.3750	0.0000	8.0000	1	1	1	1
Depleted Uranium (1x1x5) - APW	0.5000	0.0000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	0.5000	1.0000	0.0000	1	1	2	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 1)$	1.5000	0.0000	0.0000	1	1	5	4
Depleted Uranium (1/8x2x1) - APW	1.5000	1.0000	0.0000	1	1	5	4
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	0.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.6250	0.0000	3.0000	3	1	1	1
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.6250	0.0000	8.0000	3	1	1	1
Depleted Uranium ($2 \times 2 \times 5$) - APW	0.0000	0.0000	10.0000	1	1	1	1
Identification Symbol F, Drawer Master 11-6, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	4	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	3.0000	4	1	1	
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	4	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	4	1	1	1
Depleted Uranium (1x1x5) - APW	0.5000	0.0000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	0.5000	1.0000	0.0000	1	1	2	1
U(93) (1/8x2x3)	1.5000	0.0000	0.0000	1	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 2)$	1.5000	0.0000	3.0000		1	1	1
U(93) (1/8x2x3)	1.5000	0.0000	5.0000	1	1	1	1
U (93) (1/8x2x2)	1.5000	0.0000	8.0000		1	1	1
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	0.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.6250	0.0000	3.0000	3	1	1	1
Depleted Uranium (1/8x2x3) - APW	1.6250	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8×2×2) - APW	1.6250	0.0000	8.0000	3	1	1	1
Depleted Uranium (2x2x5) - APW	0.0000	0.0000	10.0000	1	1	1	1

IEU-MET-FAST-016

Table B.1. Drawer Plate Loading Description for ZPR-3/11 Loading $10^{(\text {a })}$ (Cont'd).

Plate ID (dimensions in inches)	Starting X Location	Starting Y Location	Starting Z Location	$\overline{\mathrm{X}}$	$\begin{aligned} & \hline \hline \mathbf{Y} \\ & \# \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{Z} \\ & \# \end{aligned}$	Rotation
Identification Symbol G, Drawer Master 11-7, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	3.0000	3	1	1	1
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	3	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 3)$	0.3750	0.0000	0.0000	1	1	1	1
U(93) (1/8x2x2)	0.3750	0.0000	3.0000	1	1	1	1
U(93) (1/8x2x3)	0.3750	0.0000	5.0000	1	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 2)$	0.3750	0.0000	8.0000	1	1	1	1
Depleted Uranium (1x1x5) - APW	0.5000	0.0000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	0.5000	1.0000	0.0000	1	1	2	1
Depleted Uranium (1/8x2x3) - APW	1.5000	0.0000	0.0000	4	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.5000	0.0000	3.0000	4	1	1	1
Depleted Uranium (1/8x2x3) - APW	1.5000	0.0000	5.0000	4	1	1	1
Depleted Uranium (1/8×2x2) - APW	1.5000	0.0000	8.0000	4	1	1	1
Depleted Uranium (2x2x5) - APW	0.0000	0.0000	10.0000	1	1	1	1
Identification Symbol H, Drawer Master 11-8, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	1	4	1	5
Depleted Uranium (1/8×2x2) - APW	0.0000	0.0000	3.0000	1	4	1	5
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	1	4	1	5
Depleted Uranium (1/8×2x2) - APW	0.0000	0.0000	8.0000	1	4	1	5
Depleted Uranium (1x1x5) - APW	0.0000	0.5000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	1.0000	0.5000	0.0000	1	1	2	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 3)$	0.0000	1.5000	0.0000	1	1	1	5
U(93) (1/8x2x2)	0.0000	1.5000	3.0000	1	1	1	5
U(93) (1/8x2x3)	0.0000	1.5000	5.0000	1	1	1	5
U(93) (1/8x2x2)	0.0000	1.5000	8.0000	1	1	1	5
Depleted Uranium (1/8x2x3) - APW	0.0000	1.6250	0.0000	1	3	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	1.6250	3.0000	1	3	1	5
Depleted Uranium (1/8x2x3) - APW	0.0000	1.6250	5.0000	1	3	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	1.6250	8.0000	1	3	1	5
Depleted Uranium ($2 \times 2 \times 5$) - APW	0.0000	0.0000	10.0000	1	1	1	1

IEU-MET-FAST-016

Table B.1. Drawer Plate Loading Description for ZPR-3/11 Loading $10^{(\text {a })}$ (Cont'd).

| Plate ID
 (dimensions in inches) | Starting X
 Location | Starting Y
 Location | Starting Z
 Location | \mathbf{X}
 $\#$ | \mathbf{Y}
 $\#$ | Z
 $\#$ | Rotation |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Identification Symbol I, Drawer Master 11-9, Transform Starting X Location for Movable Half | | | | | | | |$|$

IEU-MET-FAST-016

Table B.1. Drawer Plate Loading Description for ZPR-3/11 Loading $10^{(\text {a) }}$ (Cont'd).

Plate ID (dimensions in inches)	Starting X Location	Starting Y Location	Starting Z Location	$\begin{aligned} & \hline \hline \mathbf{X} \\ & \# \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{Y} \\ & \# \end{aligned}$	$\begin{aligned} & \hline \mathbf{Z} \\ & \# \end{aligned}$	Rotation
Identification Symbol M, Drawer Master 11-13 (only in Half 2)							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	1	3	1	5
Depleted Uranium ($1 / 8 \times 2 \times 2$) - APW	0.0000	0.0000	3.0000	1	3	1	5
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	1	3	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	1	3	1	5
$\mathrm{U}(93)$ ($1 / 8 \times 2 \times 3$)	0.0000	0.3750	0.0000	1	1	1	5
$\mathrm{U}(93)(1 / 8 \times 2 \times 2)$	0.0000	0.3750	3.0000	1	1	1	5
U(93) (1/8x2x3)	0.0000	0.3750	5.0000	1	1	1	5
$\mathrm{U}(93)(1 / 8 \times 2 \times 2)$	0.0000	0.3750	8.0000	1	1	1	5
Depleted Uranium (1x1x5) - APW	0.0000	0.5000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	1.0000	0.5000	0.0000	1	1	2	1
Depleted Uranium (1/8x2x1) - APW	0.0000	1.5000	0.0000	1	1	5	2
$\mathrm{U}(93)(1 / 8 \times 2 \times 1)$	1.0000	1.5000	0.0000	1	1	5	2
Depleted Uranium (1/8x2x3) - APW	0.0000	1.6250	0.0000	1	3	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	1.6250	3.0000	1	3	1	5
Depleted Uranium (1/8x2x3) - APW	0.0000	1.6250	5.0000	1	3	1	5
Depleted Uranium ($1 / 8 \times 2 \times 2$) - APW	0.0000	1.6250	8.0000	1	3	1	5
Depleted Uranium ($2 \times 2 \times 5$) - APW	0.0000	0.0000	10.0000	1	1	1	1
Identification Symbol R, Drawer Master 11-18, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	1	4	1	5
Depleted Uranium ($1 / 8 \times 2 \times 2$) - APW	0.0000	0.0000	3.0000	1	4	1	5
Depleted Uranium ($1 / 8 \times 2 \times 3$) - APW	0.0000	0.0000	5.0000	1	4	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	1	4	1	5
Depleted Uranium (1x1x5) - APW	0.0000	0.5000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	1.0000	0.5000	0.0000	1	1	2	1
Depleted Uranium (1/8x2x1) - APW	0.0000	1.5000	0.0000	1	1	5	2
U(93) (1/8x2x1)	1.0000	1.5000	0.0000	1	1	5	2
Depleted Uranium (1/8x2x3) - APW	0.0000	1.6250	0.0000	1	3	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	1.6250	3.0000	1	3	1	5
Depleted Uranium (1/8x2x3) - APW	0.0000	1.6250	5.0000	1	3	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	1.6250	8.0000	1	3	1	5
Depleted Uranium (2x2x5) - APW	0.0000	0.0000	10.0000	1	1	1	1

IEU-MET-FAST-016

Table B.1. Drawer Plate Loading Description for ZPR-3/11 Loading $10^{(\text {a })}$ (Cont'd).

Plate ID (dimensions in inches)	Starting X Location	Starting Y Location	Starting Z Location	$\begin{aligned} & \hline \hline \mathbf{X} \\ & \# \end{aligned}$	$\begin{aligned} & \hline \mathbf{Y} \\ & \# \end{aligned}$	$\begin{aligned} & \hline \mathbf{Z} \\ & \# \end{aligned}$	Rotation
Identification Symbol S, Drawer Master 11-19, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	1	4	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	3.0000	1	4	1	5
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	1	4	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	1	4	1	5
Depleted Uranium (1x1x5) - APW	0.0000	0.5000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	1.0000	0.5000	0.0000	1	1	2	1
U(93) (1/8x2x1)	0.0000	1.5000	0.0000	1	1	5	2
Depleted Uranium (1/8x2x1) - APW	1.0000	1.5000	0.0000	1	1	5	2
Depleted Uranium (1/8x2x3) - APW	0.0000	1.6250	0.0000	1	3	1	5
Depleted Uranium ($1 / 8 \times 2 \times 2$) - APW	0.0000	1.6250	3.0000	1	3	1	5
Depleted Uranium (1/8x2x3) - APW	0.0000	1.6250	5.0000	1	3	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	1.6250	8.0000	1	3	1	5
Depleted Uranium (2x2x5) - APW	0.0000	0.0000	10.0000	1	1	1	1
Identification Symbol T, Drawer Master 11-20, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	1	,	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	3.0000	1	3	1	5
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	1	3	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	1	3	1	5
$\mathrm{U}(93)(1 / 8 \times 2 \times 1)$	0.0000	0.3750	0.0000	1	1	5	2
Depleted Uranium (1/8x2x1) - APW	1.0000	0.3750	0.0000	1	1	5	2
Depleted Uranium (1x1x5) - APW	0.0000	0.5000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	1.0000	0.5000	0.0000	1	1	2	1
Depleted Uranium (1/8x2x3) - APW	0.0000	1.5000	0.0000	1	4	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	1.5000	3.0000	1	4	1	5
Depleted Uranium (1/8x2x3) - APW	0.0000	1.5000	5.0000	1	4	1	5
Depleted Uranium (1/8×2x2) - APW	0.0000	1.5000	8.0000	1	4	1	5
Depleted Uranium ($2 \times 2 \times 5$) - APW	0.0000	0.0000	10.0000	1	1	1	1
Identification Symbol U, Drawer Master 11-21, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8×2x3) - APW	0.0000	0.0000	0.0000	1	3	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	3.0000	1	3	1	5
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	1	3	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	1	3	1	5
Depleted Uranium (1/8x2x1) - APW	0.0000	0.3750	0.0000	1	1	5	2
$\mathrm{U}(93)(1 / 8 \times 2 \times 1)$	1.0000	0.3750	0.0000	1	1	5	2
Depleted Uranium (1x1x5) - APW	0.0000	0.5000	0.0000	1	1	2	1
Depleted Uranium (1x1x5) - APW	1.0000	0.5000	0.0000	1	1	2	1
Depleted Uranium (1/8x2x3) - APW	0.0000	1.5000	0.0000	1	4	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	1.5000	3.0000	1	4	1	5
Depleted Uranium (1/8x2x3) - APW	0.0000	1.5000	5.0000	1	4	1	5
Depleted Uranium (1/8x2x2) - APW	0.0000	1.5000	8.0000	1	4	1	5
Depleted Uranium (2x2x5) - APW	0.0000	0.0000	10.0000	1	1	1	1

IEU-MET-FAST-016

Table B.1. Drawer Plate Loading Description for ZPR-3/11 Loading $10^{(\text {a })}$ (Cont'd).

Plate ID (dimensions in inches)	Starting X Location	Starting Y Location	Starting Z Location	$\begin{aligned} & \hline \hline \mathbf{X} \\ & \# \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{Y} \\ & \# \end{aligned}$	$\begin{aligned} & \hline \hline \mathbf{Z} \\ & \# \end{aligned}$	Rotation
Identification Symbol Z, Drawer Master 11C1, Transform Starting X Location for Movable Half							
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	0.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	3.0000	3	1	1	1
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	8.0000	3	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 3)$	0.3750	0.0000	0.0000	1	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 2)$	0.3750	0.0000	3.0000	1	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 3)$	0.3750	0.0000	5.0000	1	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 2)$	0.3750	0.0000	8.0000	1	1	1	1
Depleted Uranium (1/8x2x3) - APW	0.5000	0.0000	0.0000	7	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.5000	0.0000	3.0000	7	1	1	1
Depleted Uranium (1/8x2x3) - APW	0.5000	0.0000	5.0000	7	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.5000	0.0000	8.0000	7	1	1	1
U(93) (1/8x2x3)	1.3750	0.0000	0.0000	1	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 2)$	1.3750	0.0000	3.0000	1	1	1	1
U(93) (1/8x2x3)	1.3750	0.0000	5.0000	1	1	1	1
$\mathrm{U}(93)(1 / 8 \times 2 \times 2)$	1.3750	0.0000	8.0000	1	1	1	1
Depleted Uranium (1/8x2x3) - APW	1.5000	0.0000	0.0000	3	1	1	1
Depleted Uranium ($1 / 8 \times 2 \times 2$) - APW	1.5000	0.0000	3.0000	3	1	1	,
Depleted Uranium (1/8x2x3) - APW	1.5000	0.0000	5.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.5000	0.0000	8.0000	3	1	1	
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	10.0000	3	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	13.0000	3	1	1	1
Depleted Uranium (1x1x5) - APW	0.3750	0.0000	10.0000	1	2	1	1
Depleted Uranium (1/8x2x3) - APW	1.3750	0.0000	10.0000	4	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.3750	0.0000	13.0000	4	1	1	1
DP Retainer Spring (1.75x2x1/16)	0.0000	0.0000	15.0000	1	1	1	1
DP Retainer Spring (1.75x2x1/16)	0.0000	0.0000	15.0625	1	1	1	1
DP Drawer Divider Plate (1.75x2x1/16)	0.0000	0.0000	15.1250	1	1	1	1
Depleted Uranium (1/8x2x3) - APW	0.0000	0.0000	15.1875	8	1	,	1
Depleted Uranium (1/8x2x3) - APW	1.0000	0.0000	15.1875	7	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	18.1875	8	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.0000	0.0000	18.1875	7	1	1	1
Depleted Uranium (1/8x2x2) - APW	0.0000	0.0000	20.1875	8	1	1	1
Depleted Uranium (1/8x2x2) - APW	1.0000	0.0000	20.1875	7	1	1	1

Table B.1. Drawer Plate Loading Description for ZPR-3/11 Loading $10^{(\text {a })}$ (Cont'd).

Plate ID (dimensions in inches)	Starting X Location	Starting Y Location	Starting Z Location	$\overline{\mathrm{X}}$	$\overline{\mathbf{Y}}$	$\begin{aligned} & \hline \hline \mathbf{Z} \\ & \# \end{aligned}$	Rotation
Identification Symbol a, Drawer Master 11-00 (Axial Blanket)							
Depleted Uranium (2x2x5) - APW	0.0000	0.0000	0.0000	1	1	1	1
Depleted Uranium (2x2x2) - APW	0.0000	0.0000	5.0000	1	1	1	1
Identification Symbol x, DP CR shaft							
Stainless Steel (1/4×2x1)	0.9225	0.0000	0.0000	1	1	7	1
Identification Symbol X, Drawer Master 238 (Radial Blanket)							
Depleted Uranium (2x2x5) - APW	0.0000	0.0000	0.0000	1	1	4	1
Depleted Uranium ($2 \times 2 \times 2$) - APW	0.0000	0.0000	20.0000	1	1	1	1
Identification Symbol Y, Drawer Master bf3 ($\mathbf{B F}_{3}$ Detector Radial Blanket)							
Depleted Uranium ($2 \times 2 \times 5$) - APW	0.0000	0.0000	2.0000	1	1	4	1
Depleted Uranium ($2 \times 2 \times 2$) - APW	0.0000	0.0000	22.0000	1	1	1	1

(a) all dimensions and locations are in inch units.

NEA/NSC/DOC(95)03/III

Volume III

IEU-MET-FAST-016

APPENDIX C: VIM MODEL OF "AS-BUILT" ZPR-3/11 LOADING 10

This input for the as-built ZPR-3 Assembly 11 critical assembly was run with Version 5.1 of the VIM code with an ENDF/B-VII. 0 continuous energy cross section library. All the cross sections correspond to 300 K . The VIM calculation used 10 million histories, with 20,000 neutron histories per generation and 500 active generations after skipping 100 generations.

Note that the "experimental $\mathrm{k}_{\text {eff }}$ adjusted to correspond to the as-built model" is 1.0020 ± 0.0012.

"As-Built" Model Input Listing									
388474211ZPR-3/11			LOADING 10	01/21/58	- REFERENCE - V7 XS - 01			01	
500	3	0	100	0				02	
20000	50000	10	0	0				03	
0	1	0	050	0				04	
35	23	1	1188650000					05	
1.0000	- $\mathrm{E}+09$	1.00000E-05	2.75000E+02 1.000	$021.00000 \mathrm{E}+001$		00000E-05	$1.99900 \mathrm{E}+07$	06AN	
9.5000	-0E-01	0.00000 E	+00 1.0000	00 0.00000E+00				06BN	
1	0	0	03	0	0	0	10	0	07N
30300	40300	60300803	3002103012	030221030	210304220	301220303	20304220305	08	
2203062	2303012	230302230	30323030427	030028030	280302280	204280305	0306280307	08	
280308290300340301340302350300380305380306380307540301540302570300								08	
								09	
								10	
36	31	31	265	60				13	
0	0	0	200					14	
	54609	5.52	577 85.	9000				15	
	0		2	0	2	0.00000	1.00000	16	
RPP	1	0.00000	5.54609	0.00000	0.10160	0.00000	2.54000	17	
RPP	2	0.00000	5.54609	5.42417	5.52577	0.00000	2.54000	17	
RPP	3	0.00000	0.10160	0.10160	5.42417	0.00000	2.54000	17	
RPP	4	5.44449	5.54609	0.10160	5.42417	0.00000	2.54000	17	
RPP	5	0.00000	5.54609	0.00000	0.10160	2.54000	38.73500	17	
RPP	6	0.00000	5.54609	5.42417	5.52577	2.54000	38.73500	17	
RPP	7	0.00000	0.10160	0.10160	5.42417	2.54000	38.73500	17	
RPP	8	5.44449	5.54609	0.10160	5.42417	2.54000	38.73500	17	
RPP	9	0.14922	5.39687	0.10160	5.34924	0.00000	0.08128	17	
RPP	10	0.14922	5.39687	0.10160	5.34924	38.65372	38.73500	17	
RPP	11	0.14922	0.23050	0.18288	5.34924	0.08128	38.65372	17	
RPP	12	5.31559	5.39687	0.18288	5.34924	0.08128	38.65372	17	
RPP	13	0.14922	5.39687	0.10160	0.18288	0.08128	38.65372	17	
RPP	14	0.23050	5.31051	0.18288	5.26288	25.48128	38.18128	17	
RPP	15	0.23050	1.18301	0.18288	5.26288	0.08128	7.70128	17	
RPP	16	0.23050	1.18301	0.18288	5.26288	7.70128	12.78128	17	
RPP	17	0.23050	1.18301	0.18288	5.26288	12.78128	20.40128	17	
RPP	18	0.23050	1.18301	0.18288	5.26288	20.40128	25.48128	17	
RPP	19	1.18301	1.50050	0.18288	5.26288	0.08128	7.70128	17	
RPP	20	1.18301	1.50050	0.18288	5.26288	7.70128	12.78128	17	
RPP	21	1.18301	1.50050	0.18288	5.26288	12.78128	20.40128	17	
RPP	22	1.18301	1.50050	0.18288	5.26288	20.40128	25.48128	17	
RPP	23	1.50050	4.04051	0.18288	2.72288	0.08128	25.48128	17	
RPP	24	1.50050	4.04051	2.72288	5.26288	0.08128	25.48128	17	
RPP	25	4.04051	4.35801	0.18288	5.26288	0.08128	7.70128	17	
RPP	26	4.04051	4.35801	0.18288	5.26288	7.70128	12.78128	17	
RPP	27	4.04051	4.35801	0.18288	5.26288	12.78128	20.40128	17	
RPP	28	4.04051	4.35801	0.18288	5.26288	20.40128	25.48128	17	
RPP	29	4.35801	5.31051	0.18288	5.26288	0.08128	7.70128	17	
RPP	30	4.35801	5.31051	0.18288	5.26288	7.70128	12.78128	17	
RPP	31	4.35801	5.31051	0.18288	5.26288	12.78128	20.40128	17	
RPP	32	4.35801	5.31051	0.18288	5.26288	20.40128	25.48128	17	
RPP	33	0.23050	5.31051	0.18288	5.26288	38.18128	38.34003	17	
RPP	34	0.10160	0.14922	0.10160	5.34924	2.54000	38.73500	17	
RPP	35	5.39687	5.44449	0.10160	5.34924	2.54000	38.73500	17	
RPP	36	0.10160	5.44449	5.34924	5.42417	0.00000	38.73500	17	
RPP	37	0.23050	5.31559	5.26288	5.34924	0.08128	38.34003	17	
RPP	38	5.31051	5.31559	0.18288	5.26288	20.40128	38.34003	17	
RPP	39	5.31051	5.31559	0.18288	5.26288	0.08128	2.54000	17	
RPP	40	5.39687	5.44449	0.10160	5.34924	0.00000	2.54000	17	
RPP	41	5.31051	5.31559	0.18288	5.26288	12.78128	20.40128	17	

NEA/NSC/DOC(95)03/III

Volume III

IEU-MET-FAST-016

RPP	42	0.10160	0.14922	0.10160	5.34924	0.00000	2.54000	17
RPP	43	5.31051	5.31559	0.18288	5.26288	7.70128	12.78128	17
RPP	44	0.23050	5.31559	0.18288	5.34924	38.34003	38.65372	17
RPP	45	5.31051	5.31559	0.18288	5.26288	2.54000	7.70128	17
RPP	46	0.00000	5.54609	0.00000	0.10160	38.73500	85.09000	17
RPP	47	0.00000	5.54609	5.42417	5.52577	38.73500	85.09000	17
RPP	48	0.00000	0.10160	0.10160	5.42417	38.73500	85.09000	17
RPP	49	5.44449	5.54609	0.10160	5.42417	38.73500	85.09000	17
RPP	50	0.14922	5.39687	0.10160	5.34924	38.73500	38.81628	17
RPP	51	0.14922	5.39687	0.10160	5.34924	67.22872	67.31000	17
RPP	52	0.14922	0.23050	0.18288	5.34924	38.81628	67.22872	17
RPP	53	5.31559	5.39687	0.18288	5.34924	38.81628	67.22872	17
RPP	54	0.14922	5.39687	0.10160	0.18288	38.81628	67.22872	17
RPP	55	0.23050	5.31051	0.18288	5.26288	38.81628	51.51628	17
RPP	56	0.23050	5.31051	0.18288	5.26288	51.51628	56.59628	17
RPP	57	0.23050	5.31051	0.18288	5.26288	56.59628	56.75503	17
RPP	58	0.10160	0.14922	0.10160	5.34924	38.73500	67.31000	17
RPP	59	5.39687	5.44449	0.10160	5.34924	38.73500	67.31000	17
RPP	60	0.10160	5.44449	5.34924	5.42417	38.73500	67.31000	17
RPP	61	0.23050	5.31559	0.18288	5.34924	56.75503	67.22872	17
RPP	62	0.23050	5.31559	5.26288	5.34924	38.81628	56.75503	17
RPP	63	5.31051	5.31559	0.18288	5.26288	38.81628	56.75503	17
RPP	64	0.10160	5.44449	0.10160	5.42417	67.31000	85.09000	17
RPP	65	0.23558	5.31559	0.18288	5.26288	25.48128	38.18128	17
RPP	66	4.36309	5.31559	0.18288	5.26288	0.08128	7.70128	17
RPP	67	4.36309	5.31559	0.18288	5.26288	7.70128	12.78128	17
RPP	68	4.36309	5.31559	0.18288	5.26288	12.78128	20.40128	17
RPP	69	4.36309	5.31559	0.18288	5.26288	20.40128	25.48128	17
RPP	70	4.04558	4.36309	0.18288	5.26288	0.08128	7.70128	17
RPP	71	4.04558	4.36309	0.18288	5.26288	7.70128	12.78128	17
RPP	72	4.04558	4.36309	0.18288	5.26288	12.78128	20.40128	17
RPP	73	4.04558	4.36309	0.18288	5.26288	20.40128	25.48128	17
RPP	74	1.50558	4.04558	0.18288	2.72288	0.08128	25.48128	17
RPP	75	1.50558	4.04558	2.72288	5.26288	0.08128	25.48128	17
RPP	76	1.18809	1.50558	0.18288	5.26288	0.08128	7.70128	17
RPP	77	1.18809	1.50558	0.18288	5.26288	7.70128	12.78128	17
RPP	78	1.18809	1.50558	0.18288	5.26288	12.78128	20.40128	17
RPP	79	1.18809	1.50558	0.18288	5.26288	20.40128	25.48128	17
RPP	80	0.23558	1.18809	0.18288	5.26288	0.08128	7.70128	17
RPP	81	0.23558	1.18809	0.18288	5.26288	7.70128	12.78128	17
RPP	82	0.23558	1.18809	0.18288	5.26288	12.78128	20.40128	17
RPP	83	0.23558	1.18809	0.18288	5.26288	20.40128	25.48128	17
RPP	84	0.23558	5.31559	0.18288	5.26288	38.18128	38.34003	17
RPP	85	0.23050	0.23558	0.18288	5.26288	20.40128	38.34003	17
RPP	86	0.23050	0.23558	0.18288	5.26288	0.08128	2.54000	17
RPP	87	0.23050	0.23558	0.18288	5.26288	12.78128	20.40128	17
RPP	88	0.23050	0.23558	0.18288	5.26288	7.70128	12.78128	17
RPP	89	0.23050	0.23558	0.18288	5.26288	2.54000	7.70128	17
RPP	90	0.23558	5.31559	0.18288	5.26288	38.81628	51.51628	17
RPP	91	0.23558	5.31559	0.18288	5.26288	51.51628	56.59628	17
RPP	92	0.23558	5.31559	0.18288	5.26288	56.59628	56.75503	17
RPP	93	0.23050	0.23558	0.18288	5.26288	38.81628	56.75503	17
RPP	94	0.00000	5.54609	0.00000	0.10160	2.54000	82.55000	17
RPP	95	0.00000	5.54609	5.42417	5.52577	2.54000	82.55000	17
RPP	96	0.00000	0.10160	0.10160	5.42417	2.54000	82.55000	17
RPP	97	5.44449	5.54609	0.10160	5.42417	2.54000	82.55000	17
RPP	98	0.15177	5.39432	0.10160	5.32130	0.00000	0.12573	17
RPP	99	0.15177	5.39432	0.10160	5.32130	82.42427	82.55000	17
RPP	100	0.15177	0.27750	0.22733	5.32130	0.12573	82.42427	17
RPP	101	5.26860	5.39432	0.22733	5.32130	0.12573	82.42427	17
RPP	102	0.15177	5.39432	0.10160	0.22733	0.12573	82.42427	17
RPP	103	1.22999	3.77000	0.22733	5.30733	25.52573	38.22573	17
RPP	104	0.27750	4.72250	0.22733	5.30733	38.54323	38.70198	17
RPP	105	0.27750	1.22999	0.22733	5.30733	0.12573	7.74573	17
RPP	106	0.27750	1.22999	0.22733	5.30733	7.74573	12.82573	17
RPP	107	0.27750	1.22999	0.22733	5.30733	12.82573	20.44573	17
RPP	108	0.27750	1.22999	0.22733	5.30733	20.44573	25.52573	17
RPP	109	1.22999	1.54749	0.22733	5.30733	0.12573	7.74573	17
RPP	110	1.22999	1.54749	0.22733	5.30733	7.74573	12.82573	17
RPP	111	1.22999	1.54749	0.22733	5.30733	12.82573	20.44573	17
RPP	112	1.22999	1.54749	0.22733	5.30733	20.44573	25.52573	17
RPP	113	1.54749	3.77000	0.22733	5.30733	0.12573	7.74573	17

Revision: 0
Date: September 30, 2010

IEU-MET-FAST-016

RPP	114	1.54749	3.77000	0.22733	5.30733	7.74573	12.82573	17
RPP	115	1.54749	3.77000	0.22733	5.30733	12.82573	20.44573	17
RPP	116	1.54749	3.77000	0.22733	5.30733	20.44573	25.52573	17
RPP	117	3.77000	4.08750	0.22733	5.30733	0.12573	7.74573	17
RPP	118	3.77000	4.08750	0.22733	5.30733	7.74573	12.82573	17
RPP	119	3.77000	4.08750	0.22733	5.30733	12.82573	20.44573	17
RPP	120	3.77000	4.08750	0.22733	5.30733	20.44573	25.52573	17
RPP	121	4.08750	5.04000	0.22733	5.30733	0.12573	7.74573	17
RPP	122	4.08750	5.04000	0.22733	5.30733	7.74573	12.82573	17
RPP	123	4.08750	5.04000	0.22733	5.30733	12.82573	20.44573	17
RPP	124	4.08750	5.04000	0.22733	5.30733	20.44573	25.52573	17
RPP	125	0.27750	1.22999	0.22733	5.30733	25.52573	33.14573	17
RPP	126	0.27750	1.22999	0.22733	5.30733	33.14573	38.22573	17
RPP	127	3.77000	5.04000	0.22733	5.30733	25.52573	33.14573	17
RPP	128	3.77000	5.04000	0.22733	5.30733	33.14573	38.22573	17
RPP	129	0.27750	4.72250	0.22733	5.30733	38.22573	38.38448	17
RPP	130	0.27750	4.72250	0.22733	5.30733	38.38448	38.54323	17
RPP	131	0.27750	2.81750	0.22733	5.30733	38.70198	46.32198	17
RPP	132	2.81750	5.04000	0.22733	5.30733	38.70198	46.32198	17
RPP	133	0.27750	2.81750	0.22733	5.30733	46.32198	51.40198	17
RPP	134	2.81750	5.04000	0.22733	5.30733	46.32198	51.40198	17
RPP	135	0.27750	2.81750	0.22733	5.30733	51.40198	56.48198	17
RPP	136	2.81750	5.04000	0.22733	5.30733	51.40198	56.48198	17
RPP	137	0.10160	0.15177	0.10160	5.32130	2.54000	82.55000	17
RPP	138	5.39432	5.44449	0.10160	5.32130	2.54000	82.55000	17
RPP	139	0.10160	5.44449	5.32130	5.42417	0.00000	82.55000	17
RPP	140	0.27750	5.26860	5.30733	5.32130	0.12573	56.48198	17
RPP	141	5.04000	5.26860	0.22733	5.30733	0.12573	38.22573	17
RPP	142	5.39432	5.44449	0.10160	5.32130	0.00000	2.54000	17
RPP	143	0.10160	0.15177	0.10160	5.32130	0.00000	2.54000	17
RPP	144	5.04000	5.26860	0.22733	5.30733	38.70198	56.48198	17
RPP	145	0.27750	5.26860	0.22733	5.32130	56.48198	82.42427	17
RPP	146	4.72250	5.26860	0.22733	5.30733	38.22573	38.70198	17
RPP	147	0.00000	5.54609	0.00000	0.10160	82.55000	85.09000	17
RPP	148	0.00000	5.54609	5.42417	5.52577	82.55000	85.09000	17
RPP	149	0.00000	0.10160	0.10160	5.42417	82.55000	85.09000	17
RPP	150	5.44449	5.54609	0.10160	5.42417	82.55000	85.09000	17
RPP	151	2.44475	3.07975	0.10160	5.18160	82.55000	85.09000	17
RPP	152	0.10160	5.44449	5.18160	5.42417	82.55000	85.09000	17
RPP	153	0.10160	2.44475	0.10160	5.18160	82.55000	85.09000	17
RPP	154	3.07975	5.44449	0.10160	5.18160	82.55000	85.09000	17
RPP	155	1.77610	4.31609	0.22733	5.30733	25.52573	38.22573	17
RPP	156	0.82359	5.26860	0.22733	5.30733	38.54323	38.70198	17
RPP	157	4.31609	5.26860	0.22733	5.30733	0.12573	7.74573	17
RPP	158	4.31609	5.26860	0.22733	5.30733	7.74573	12.82573	17
RPP	159	4.31609	5.26860	0.22733	5.30733	12.82573	20.44573	17
RPP	160	4.31609	5.26860	0.22733	5.30733	20.44573	25.52573	17
RPP	161	3.99859	4.31609	0.22733	5.30733	0.12573	7.74573	17
RPP	162	3.99859	4.31609	0.22733	5.30733	7.74573	12.82573	17
RPP	163	3.99859	4.31609	0.22733	5.30733	12.82573	20.44573	17
RPP	164	3.99859	4.31609	0.22733	5.30733	20.44573	25.52573	17
RPP	165	1.77610	3.99859	0.22733	5.30733	0.12573	7.74573	17
RPP	166	1.77610	3.99859	0.22733	5.30733	7.74573	12.82573	17
RPP	167	1.77610	3.99859	0.22733	5.30733	12.82573	20.44573	17
RPP	168	1.77610	3.99859	0.22733	5.30733	20.44573	25.52573	17
RPP	169	1.45860	1.77610	0.22733	5.30733	0.12573	7.74573	17
RPP	170	1.45860	1.77610	0.22733	5.30733	7.74573	12.82573	17
RPP	171	1.45860	1.77610	0.22733	5.30733	12.82573	20.44573	17
RPP	172	1.45860	1.77610	0.22733	5.30733	20.44573	25.52573	17
RPP	173	0.50610	1.45860	0.22733	5.30733	0.12573	7.74573	17
RPP	174	0.50610	1.45860	0.22733	5.30733	7.74573	12.82573	17
RPP	175	0.50610	1.45860	0.22733	5.30733	12.82573	20.44573	17
RPP	176	0.50610	1.45860	0.22733	5.30733	20.44573	25.52573	17
RPP	177	4.31609	5.26860	0.22733	5.30733	25.52573	33.14573	17
RPP	178	4.31609	5.26860	0.22733	5.30733	33.14573	38.22573	17
RPP	179	0.50610	1.77610	0.22733	5.30733	25.52573	33.14573	17
RPP	180	0.50610	1.77610	0.22733	5.30733	33.14573	38.22573	17
RPP	181	0.82359	5.26860	0.22733	5.30733	38.22573	38.38448	17
RPP	182	0.82359	5.26860	0.22733	5.30733	38.38448	38.54323	17
RPP	183	2.72859	5.26860	0.22733	5.30733	38.70198	46.32198	17
RPP	184	0.50610	2.72859	0.22733	5.30733	38.70198	46.32198	17
RPP	185	2.72859	5.26860	0.22733	5.30733	46.32198	51.40198	17

NEA/NSC/DOC(95)03/III

Volume III

IEU-MET-FAST-016

RPP	186	0.50610	2.72859	0.22733	5.30733	46.32198	51.40198	17
RPP	187	2.72859	5.26860	0.22733	5.30733	51.40198	56.48198	17
RPP	188	0.50610	2.72859	0.22733	5.30733	51.40198	56.48198	17
RPP	189	0.27750	0.50610	0.22733	5.30733	0.12573	38.22573	17
RPP	190	0.27750	0.50610	0.22733	5.30733	38.70198	56.48198	17
RPP	191	0.27750	0.82359	0.22733	5.30733	38.22573	38.70198	17
RPP	192	2.46634	3.10134	0.10160	5.18160	82.55000	85.09000	17
RPP	193	0.10160	2.46634	0.10160	5.18160	82.55000	85.09000	17
RPP	194	3.10134	5.44449	0.10160	5.18160	82.55000	85.09000	17
RPP	195	1.18301	1.50050	0.18288	2.72288	0.08128	25.48128	17
RPP	196	1.18301	1.50050	2.72288	5.26288	0.08128	25.48128	17
RPP	197	5.31051	5.31559	0.18288	5.26288	25.48128	38.34003	17
RPP	198	5.31051	5.31559	2.72288	5.26288	0.08128	25.48128	17
RPP	199	5.31051	5.31559	0.18288	2.72288	0.08128	25.48128	17
RPP	200	4.04051	4.35801	0.18288	2.72288	0.08128	25.48128	17
RPP	201	4.04051	4.35801	2.72288	5.26288	0.08128	25.48128	17
RPP	202	0.23050	1.50050	0.18288	5.26288	0.08128	7.70128	17
RPP	203	0.23050	1.50050	0.18288	5.26288	7.70128	12.78128	17
RPP	204	0.23050	1.50050	0.18288	5.26288	12.78128	20.40128	17
RPP	205	0.23050	1.50050	0.18288	5.26288	20.40128	25.48128	17
RPP	206	4.04051	5.31051	0.18288	5.26288	0.08128	7.70128	17
RPP	207	4.04051	5.31051	0.18288	5.26288	7.70128	12.78128	17
RPP	208	4.04051	5.31051	0.18288	5.26288	12.78128	20.40128	17
RPP	209	4.04051	5.31051	0.18288	5.26288	20.40128	25.48128	17
RPP	210	0.23050	5.31051	0.18288	1.45288	0.08128	7.70128	17
RPP	211	0.23050	5.31051	0.18288	1.45288	7.70128	12.78128	17
RPP	212	0.23050	5.31051	0.18288	1.45288	12.78128	20.40128	17
RPP	213	0.23050	5.31051	0.18288	1.45288	20.40128	25.48128	17
RPP	214	0.23050	2.77051	1.45288	3.99288	0.08128	25.48128	17
RPP	215	2.77051	5.31051	1.45288	3.99288	0.08128	25.48128	17
RPP	216	0.23050	5.31051	3.99288	4.31038	0.08128	7.70128	17
RPP	217	0.23050	5.31051	3.99288	4.31038	7.70128	12.78128	17
RPP	218	0.23050	5.31051	3.99288	4.31038	12.78128	20.40128	17
RPP	219	0.23050	5.31051	3.99288	4.31038	20.40128	25.48128	17
RPP	220	0.23050	5.31051	4.31038	5.26288	0.08128	7.70128	17
RPP	221	0.23050	5.31051	4.31038	5.26288	7.70128	12.78128	17
RPP	222	0.23050	5.31051	4.31038	5.26288	12.78128	20.40128	17
RPP	223	0.23050	5.31051	4.31038	5.26288	20.40128	25.48128	17
RPP	224	0.23050	5.31051	0.18288	1.13538	0.08128	7.70128	17
RPP	225	0.23050	5.31051	0.18288	1.13538	7.70128	12.78128	17
RPP	226	0.23050	5.31051	0.18288	1.13538	12.78128	20.40128	17
RPP	227	0.23050	5.31051	0.18288	1.13538	20.40128	25.48128	17
RPP	228	0.23050	5.31051	1.13538	1.45288	0.08128	7.70128	17
RPP	229	0.23050	5.31051	1.13538	1.45288	7.70128	12.78128	17
RPP	230	0.23050	5.31051	1.13538	1.45288	12.78128	20.40128	17
RPP	231	0.23050	5.31051	1.13538	1.45288	20.40128	25.48128	17
RPP	232	0.23050	5.31051	3.99288	5.26288	0.08128	7.70128	17
RPP	233	0.23050	5.31051	3.99288	5.26288	7.70128	12.78128	17
RPP	234	0.23050	5.31051	3.99288	5.26288	12.78128	20.40128	17
RPP	235	0.23050	5.31051	3.99288	5.26288	20.40128	25.48128	17
RPP	236	0.23050	2.77051	3.99288	4.31038	0.08128	25.48128	17
RPP	237	2.77051	5.31051	3.99288	4.31038	0.08128	25.48128	17
RPP	238	5.31051	5.31559	0.18288	3.99288	20.40128	25.48128	17
RPP	239	5.31051	5.31559	0.18288	3.99288	12.78128	20.40128	17
RPP	240	5.31051	5.31559	3.99288	5.26288	2.54000	25.48128	17
RPP	241	5.31051	5.31559	0.18288	3.99288	2.54000	7.70128	17
RPP	242	5.31051	5.31559	0.18288	3.99288	7.70128	12.78128	17
RPP	243	0.23050	2.77051	1.13538	1.45288	0.08128	25.48128	17
RPP	244	2.77051	5.31051	1.13538	1.45288	0.08128	25.48128	17
RPP	245	5.31051	5.31559	0.18288	3.99288	0.08128	2.54000	17
RPP	246	5.31051	5.31559	0.18288	3.99288	2.54000	25.48128	17
RPP	247	5.31051	5.31559	3.99288	5.26288	0.08128	25.48128	17
RPP	248	4.04558	4.36309	0.18288	2.72288	0.08128	25.48128	17
RPP	249	4.04558	4.36309	2.72288	5.26288	0.08128	25.48128	17
RPP	250	0.23050	0.23558	0.18288	5.26288	25.48128	38.34003	17
RPP	251	0.23050	0.23558	2.72288	5.26288	0.08128	25.48128	17
RPP	252	0.23050	0.23558	0.18288	2.72288	0.08128	25.48128	17
RPP	253	1.18809	1.50558	0.18288	2.72288	0.08128	25.48128	17
RPP	254	1.18809	1.50558	2.72288	5.26288	0.08128	25.48128	17
RPP	255	4.04558	5.31559	0.18288	5.26288	0.08128	7.70128	17
RPP	256	4.04558	5.31559	0.18288	5.26288	7.70128	12.78128	17
RPP	257	4.04558	5.31559	0.18288	5.26288	12.78128	20.40128	17

Revision: 0
Date: September 30, 2010

NEA/NSC/DOC(95)03/III

Volume III

IEU-MET-FAST-016

RPP	258	4.04558	5.31559	0.18288	5.26288	20.40128	25.48128	17
RPP	259	0.23558	1.50558	0.18288	5.26288	0.08128	7.70128	17
RPP	260	0.23558	1.50558	0.18288	5.26288	7.70128	12.78128	17
RPP	261	0.23558	1.50558	0.18288	5.26288	12.78128	20.40128	17
RPP	262	0.23558	1.50558	0.18288	5.26288	20.40128	25.48128	17
RPP	263	0.23558	5.31559	0.18288	1.45288	0.08128	7.70128	17
RPP	264	0.23558	5.31559	0.18288	1.45288	7.70128	12.78128	17
RPP	265	0.23558	5.31559	0.18288	1.45288	12.78128	20.40128	17
RPP	266	0.23558	5.31559	0.18288	1.45288	20.40128	25.48128	17
RPP	267	2.77559	5.31559	1.45288	3.99288	0.08128	25.48128	17
RPP	268	0.23558	2.77559	1.45288	3.99288	0.08128	25.48128	17
RPP	269	0.23558	5.31559	3.99288	4.31038	0.08128	7.70128	17
RPP	270	0.23558	5.31559	3.99288	4.31038	7.70128	12.78128	17
RPP	271	0.23558	5.31559	3.99288	4.31038	12.78128	20.40128	17
RPP	272	0.23558	5.31559	3.99288	4.31038	20.40128	25.48128	17
RPP	273	0.23558	5.31559	4.31038	5.26288	0.08128	7.70128	17
RPP	274	0.23558	5.31559	4.31038	5.26288	7.70128	12.78128	17
RPP	275	0.23558	5.31559	4.31038	5.26288	12.78128	20.40128	17
RPP	276	0.23558	5.31559	4.31038	5.26288	20.40128	25.48128	17
RPP	277	0.23558	5.31559	0.18288	1.13538	0.08128	7.70128	17
RPP	278	0.23558	5.31559	0.18288	1.13538	7.70128	12.78128	17
RPP	279	0.23558	5.31559	0.18288	1.13538	12.78128	20.40128	17
RPP	280	0.23558	5.31559	0.18288	1.13538	20.40128	25.48128	17
RPP	281	0.23558	5.31559	1.13538	1.45288	0.08128	7.70128	17
RPP	282	0.23558	5.31559	1.13538	1.45288	7.70128	12.78128	17
RPP	283	0.23558	5.31559	1.13538	1.45288	12.78128	20.40128	17
RPP	284	0.23558	5.31559	1.13538	1.45288	20.40128	25.48128	17
RPP	285	0.23558	5.31559	3.99288	5.26288	0.08128	7.70128	17
RPP	286	0.23558	5.31559	3.99288	5.26288	7.70128	12.78128	17
RPP	287	0.23558	5.31559	3.99288	5.26288	12.78128	20.40128	17
RPP	288	0.23558	5.31559	3.99288	5.26288	20.40128	25.48128	17
RPP	289	2.77559	5.31559	3.99288	4.31038	0.08128	25.48128	17
RPP	290	0.23558	2.77559	3.99288	4.31038	0.08128	25.48128	17
RPP	291	0.23050	0.23558	0.18288	3.99288	20.40128	25.48128	17
RPP	292	0.23050	0.23558	0.18288	3.99288	12.78128	20.40128	17
RPP	293	0.23050	0.23558	3.99288	5.26288	2.54000	25.48128	17
RPP	294	0.23050	0.23558	0.18288	3.99288	2.54000	7.70128	17
RPP	295	0.23050	0.23558	0.18288	3.99288	7.70128	12.78128	17
RPP	296	2.77559	5.31559	1.13538	1.45288	0.08128	25.48128	17
RPP	297	0.23558	2.77559	1.13538	1.45288	0.08128	25.48128	17
RPP	298	0.23050	0.23558	0.18288	3.99288	0.08128	2.54000	17
RPP	299	0.23050	0.23558	0.18288	3.99288	2.54000	25.48128	17
RPP	300	0.23050	0.23558	3.99288	5.26288	0.08128	25.48128	17
RPP	301	0.00000	5.54609	0.00000	0.10160	2.54000	85.09000	17
RPP	302	0.00000	5.54609	5.42417	5.52577	2.54000	85.09000	17
RPP	303	0.00000	0.10160	0.10160	5.42417	2.54000	85.09000	17
RPP	304	5.44449	5.54609	0.10160	5.42417	2.54000	85.09000	17
RPP	305	0.10160	5.18160	0.10160	5.18160	0.00000	50.80000	17
RPP	306	0.10160	5.18160	0.10160	5.18160	50.80000	55.88000	17
RPP	307	0.10160	5.44449	0.10160	5.42417	55.88000	85.09000	17
RPP	308	0.10160	5.44449	5.18160	5.42417	0.00000	55.88000	17
RPP	309	5.18160	5.44449	0.10160	5.18160	0.00000	55.88000	17
RPP	310	0.10160	5.18160	0.10160	5.18160	5.08000	55.88000	17
RPP	311	0.10160	5.18160	0.10160	5.18160	55.88000	60.96000	17
RPP	312	0.10160	5.44449	0.10160	5.42417	0.00000	5.08000	17
RPP	313	0.10160	5.44449	0.10160	5.42417	60.96000	85.09000	17
RPP	314	0.10160	5.44449	5.18160	5.42417	5.08000	60.96000	17
RPP	315	5.18160	5.44449	0.10160	5.18160	5.08000	60.96000	17
RPP	316	0.36449	5.44449	0.10160	5.18160	0.00000	50.80000	17
RPP	317	0.36449	5.44449	0.10160	5.18160	50.80000	55.88000	17
RPP	318	0.10160	0.36449	0.10160	5.18160	0.00000	55.88000	17
RPP	319	0.36449	5.44449	0.10160	5.18160	5.08000	55.88000	17
RPP	320	0.36449	5.44449	0.10160	5.18160	55.88000	60.96000	17
RPP	321	0.10160	0.36449	0.10160	5.18160	5.08000	60.96000	17
RPP	322	0.10160	5.44449	0.10160	5.42417	0.00000	85.09000	17
END								

$353635363536353635363536353635363536353635363536353635363536353635363536 \quad 18$ 3536353635363536353635363536353635363536353635363536
353635363536353635363536353635363536353635363536353635363536353635363536 3536353635363536353635363536353635363536353635363536
353635363536353635363536353635363536353635363536353635363536353635363536 3536353635363536353635363536353635363536353635363536

NEA/NSC/DOC(95)03/III

Volume III

IEU-MET-FAST-016

35363536353635363536353635363536353635363536353635363536353635363536353618 35363536353635363536353635363536353635363536353635360102172931333133313331333133313331333536353635363536

353635363536353631333133313331333133313331330620010203040102010201020102 0102052131333133313331333133313331333536353635363536
353635363536353631333133313331333133313314280102010201020102010201020304 0102010217293133313331333133313331333536353635363536
353635363536353631333133313331333133313311240102010201020102010201020102 0102010212253133313331333133313331333536353635363536
353635363536353631333133313331333133313301020302010201020102010401020102 0102010201023133313331333133313331333536353635363536 353635363536353631333133313331333133313311240102010201020102010201020102 0102010213263133313331333133313331333536353635363536 353635363536353631333133313331333133313315270102010201020102010201020304 0102010216303133313331333133313331333536353635363536 353635363536353631333133313331333133313331330719010203040102010201020102 0102081831333133313331333133313331333536353635363536
353635363536353631333133313331333133313331331527010201020102010201020102 0102163031333133313331333133313331333536353635363536
353635363536353635363133313331333133313331333133313310221022010210221022 3133313331333133313331333133313335363536353635363536
353635363536353635363133313331333133313331333133313331333133313331333133 3133313331333133313331333133313335363536353635363536
353635363536353635363536313331333133313331333133313331333133313331333133 3133313331333133313331333133353635363536353635363536
353635363536353635363536353631333133313331333133313331333133313331333133 3133313331333133313331333536353635363536353635363536
353635363536353635363536353635363133313331333133313331333133313331333133 3133313331333133313335363536353635363536353635363536 353635363536353635363536353635363536313331333133313331333133313331333133 3133313331333133353635363536353635363536353635363536 353635363536353635363536353635363536353635363133313331333133313331333133 3133313335363536353635363536353635363536353635363536
353635363536353635363536353635363536353635363536353635363536353635363536 3536353635363536353635363536353635363536353635363536 353635363536353635363536353635363536353635363536353635363536353635363536 3536353635363536353635363536353635363536353635363536 353635363536353635363536353635363536353635363536353635363536353635363536 3536353635363536353635363536353635363536353635363536
353635363536353635363536353635363536353635363536353635363536353635363536
3536353635363536353635363536353635363536353635363536

1	100	1	1001	2	100	1	2001	3	100	2	3001	19
4	100	2	4001	5	100	3	5001	6	100	3	6001	19
7	100	4	7001	8	100	4	8001	9	100	5	9001	19
10	100	5	10001	11	100	6	11001	12	100	6	12001	19
13	100	6	13001	14	101	7	14001	15	101	8	15001	19
16	101	9	16001	17	101	8	17001	18	101	9	18001	19
19	101	10	19001	20	101	11	20001	21	101	10	21001	19
22	101	11	22001	23	101	12	23001	24	101	12	24001	19
25	101	10	25001	26	101	11	26001	27	101	10	27001	19
28	101	11	28001	29	101	8	29001	30	101	9	30001	19
31	101	8	31001	32	101	9	32001	33	100	13	33001	19
34	100	0	34001	35	100	0	35001	36	100	0	36001	19
37	100	0	37001	38	100	0	38001	39	100	0	39001	19
40	100	0	40001	41	100	0	41001	42	100	0	42001	19
43	100	0	43001	44	100	0	44001	45	100	0	45001	19
46	100	3	46001	47	100	3	47001	48	100	4	48001	19

Revision: 0
Date: September 30, 2010

NEA/NSC/DOC(95)03/III

Volume III

IEU-MET-FAST-016

49	100	4	49001	50	100	14	50001	51	100	14	51001	19
52	100	15	52001	53	100	15	53001	54	100	15	54001	19
55	101	7	55001	56	101	16	56001	57	100	13	57001	19
58	100	0	58001	59	100	0	59001	60	100	\bigcirc	60001	19
61	100	0	61001	62	100	0	62001	63	100	0	63001	19
64	100	0	64001	65	100	1	1002	66	100	1	2002	19
67	100	2	3002	68	100	2	4002	69	100	3	5002	19
70	100	3	6002	71	100	4	7002	72	100	4	8002	19
73	100	5	9002	74	100	5	10002	75	100	6	12002	19
76	100	6	11002	77	100	6	13002	78	101	7	65002	19
79	101	8	66002	80	101	9	67002	81	101	8	68002	19
82	101	9	69002	83	101	10	70002	84	101	11	71002	19
85	101	10	72002	86	101	11	73002	87	101	12	74002	19
88	101	12	75002	89	101	10	76002	90	101	11	77002	19
91	101	10	78002	92	101	11	79002	93	101	8	80002	19
94	101	9	81002	95	101	8	82002	96	101	9	83002	19
97	100	13	84002	98	100	0	34002	99	100	0	35002	19
100	100	0	36002	101	100	0	37002	102	100	0	85002	19
103	100	0	86002	104	100	0	40002	105	100	0	87002	19
106	100	0	42002	107	100	0	88002	108	100	0	44002	19
109	100	0	89002	110	100	3	46002	111	100	3	47002	19
112	100	4	48002	113	100	4	49002	114	100	14	50002	19
115	100	14	51002	116	100	15	53002	117	100	15	52002	19
118	100	15	54002	119	101	7	90002	120	101	16	91002	19
121	100	13	92002	122	100	0	58002	123	100	0	59002	19
124	100	0	60002	125	100	0	61002	126	100	0	62002	19
127	100	0	93002	128	100	0	64002	129	100	1	1003	19
130	100	1	2003	131	100	2	3003	132	100	2	4003	19
133	100	3	94003	134	100	3	95003	135	100	4	96003	19
136	100	4	97003	137	100	17	98003	138	100	17	99003	19
139	100	18	100003	140	100	18	101003	141	100	18	102003	19
142	101	12	103003	143	100	19	104003	144	101	8	105003	19
145	101	9	106003	146	101	8	107003	147	101	9	108003	19
148	101	10	109003	149	101	11	110003	150	101	10	111003	19
151	101	11	112003	152	101	8	113003	153	101	9	114003	19
154	101	8	115003	155	101	9	116003	156	101	10	117003	19
157	101	11	118003	158	101	10	119003	159	101	11	120003	19
160	101	8	121003	161	101	9	122003	162	101	8	123003	19
163	101	9	124003	164	101	8	125003	165	101	9	126003	19
166	101	8	127003	167	101	9	128003	168	100	20	129003	19
169	100	20	130003	170	101	8	131003	171	101	8	132003	19
172	101	9	133003	173	101	9	134003	174	101	9	135003	19
175	101	9	136003	176	100	0	137003	177	100	0	138003	19
178	100	0	139003	179	100	0	140003	180	100	0	141003	19
181	100	0	142003	182	100	0	143003	183	100	0	144003	19
184	100	0	145003	185	100	0	146003	186	100	3	147003	19
187	100	3	148003	188	100	4	149003	189	100	4	150003	19
190	100	21	151003	191	100	0	152003	192	100	0	153003	19
193	100	0	154003	194	100	1	1004	195	100	1	2004	19
196	100	2	3004	197	100	2	4004	198	100	3	94004	19
199	100	3	95004	200	100	4	96004	201	100	4	97004	19
202	100	17	98004	203	100	17	99004	204	100	18	101004	19
205	100	18	100004	206	100	18	102004	207	101	12	155004	19
208	100	19	156004	209	101	8	157004	210	101	9	158004	19
211	101	8	159004	212	101	9	160004	213	101	10	161004	19
214	101	11	162004	215	101	10	163004	216	101	11	164004	19
217	101	8	165004	218	101	9	166004	219	101	8	167004	19
220	101	9	168004	221	101	10	169004	222	101	11	170004	19
223	101	10	171004	224	101	11	172004	225	101	8	173004	19
226	101	9	174004	227	101	8	175004	228	101	9	176004	19
229	101	8	177004	230	101	9	178004	231	101	8	179004	19
232	101	9	180004	233	100	20	181004	234	100	20	182004	19
235	101	8	183004	236	101	8	184004	237	101	9	185004	19
238	101	9	186004	239	101	9	187004	240	101	9	188004	19
241	100	0	137004	242	100	0	138004	243	100	0	139004	19
244	100	0	140004	245	100	0	189004	246	100	0	142004	19
247	100	0	143004	248	100	0	190004	249	100	0	145004	19
250	100	0	191004	251	100	3	147004	252	100	3	148004	19
253	100	4	149004	254	100	4	150004	255	100	21	192004	19
256	100	0	152004	257	100	0	193004	258	100	0	194004	19
259	100	1	1005	260	100	1	2005	261	100	2	3005	19
262	100	2	4005	263	100	3	5005	264	100	3	6005	19

Volume III

IEU-MET-FAST-016

265	100	4	7005	266	100	4	8005	267	100	5	9005	19
268	100	5	10005	269	100	6	11005	270	100	6	12005	19
271	100	6	13005	272	101	22	195005	273	101	23	196005	19
274	101	7	14005	275	101	8	15005	276	101	9	16005	19
277	101	8	17005	278	101	9	18005	279	101	12	23005	19
280	101	12	24005	281	101	10	25005	282	101	11	26005	19
283	101	10	27005	284	101	11	28005	285	101	8	29005	19
286	101	9	30005	287	101	8	31005	288	101	9	32005	19
289	100	13	33005	290	100	0	34005	291	100	0	35005	19
292	100	0	36005	293	100	0	44005	294	100	0	37005	19
295	100	0	197005	296	100	0	40005	297	100	0	42005	19
298	100	0	198005	299	100	0	199005	300	100	3	46005	19
301	100	3	47005	302	100	4	48005	303	100	4	49005	19
304	100	14	50005	305	100	14	51005	306	100	15	52005	19
307	100	15	53005	308	100	15	54005	309	101	7	55005	19
310	101	16	56005	311	100	13	57005	312	100	0	58005	19
313	100	0	59005	314	100	0	60005	315	100	0	61005	19
316	100	0	62005	317	100	0	63005	318	100	0	64005	19
319	100	1	1006	320	100	1	2006	321	100	2	3006	19
322	100	2	4006	323	100	3	5006	324	100	3	6006	19
325	100	4	7006	326	100	4	8006	327	100	5	9006	19
328	100	5	10006	329	100	6	11006	330	100	6	12006	19
331	100	6	13006	332	101	23	195006	333	101	22	196006	19
334	101	7	14006	335	101	8	15006	336	101	9	16006	19
337	101	8	17006	338	101	9	18006	339	101	12	23006	19
340	101	12	24006	341	101	10	25006	342	101	11	26006	19
343	101	10	27006	344	101	11	28006	345	101	8	29006	19
346	101	9	30006	347	101	8	31006	348	101	9	32006	19
349	100	13	33006	350	100	0	34006	351	100	0	35006	19
352	100	0	36006	353	100	0	44006	354	100	0	37006	19
355	100	0	197006	356	100	0	40006	357	100	0	42006	19
358	100	0	198006	359	100	0	199006	360	100	3	46006	19
361	100	3	47006	362	100	4	48006	363	100	4	49006	19
364	100	14	50006	365	100	14	51006	366	100	15	52006	19
367	100	15	53006	368	100	15	54006	369	101	7	55006	19
370	101	16	56006	371	100	13	57006	372	100	0	58006	19
373	100	0	59006	374	100	0	60006	375	100	0	61006	19
376	100	0	62006	377	100	0	63006	378	100	0	64006	19
379	100	1	1007	380	100	1	2007	381	100	2	3007	19
382	100	2	4007	383	100	3	5007	384	100	3	6007	19
385	100	4	7007	386	100	4	8007	387	100	5	9007	19
388	100	5	10007	389	100	6	11007	390	100	6	12007	19
391	100	6	13007	392	101	23	200007	393	101	22	201007	19
394	101	7	14007	395	101	8	15007	396	101	9	16007	19
397	101	8	17007	398	101	9	18007	399	101	10	19007	19
400	101	11	20007	401	101	10	21007	402	101	11	22007	19
403	101	12	23007	404	101	12	24007	405	101	8	29007	19
406	101	9	30007	407	101	8	31007	408	101	9	32007	19
409	100	13	33007	410	100	0	34007	411	100	0	35007	19
412	100	0	36007	413	100	0	44007	414	100	0	37007	19
415	100	0	197007	416	100	0	40007	417	100	0	42007	19
418	100	0	198007	419	100	0	199007	420	100	3	46007	19
421	100	3	47007	422	100	4	48007	423	100	4	49007	19
424	100	14	50007	425	100	14	51007	426	100	15	52007	19
427	100	15	53007	428	100	15	54007	429	101	7	55007	19
430	101	16	56007	431	100	13	57007	432	100	0	58007	19
433	100	0	59007	434	100	0	60007	435	100	0	61007	19
436	100	0	62007	437	100	0	63007	438	100	0	64007	19
439	100	1	1008	440	100	1	2008	441	100	2	3008	19
442	100	2	4008	443	100	3	5008	444	100	3	6008	19
445	100	4	7008	446	100	4	8008	447	100	5	9008	19
448	100	5	10008	449	100	6	11008	450	100	6	12008	19
451	100	6	13008	452	101	22	200008	453	101	23	201008	19
454	101	7	14008	455	101	8	15008	456	101	9	16008	19
457	101	8	17008	458	101	9	18008	459	101	10	19008	19
460	101	11	20008	461	101	10	21008	462	101	11	22008	19
463	101	12	23008	464	101	12	24008	465	101	8	29008	19
466	101	9	30008	467	101	8	31008	468	101	9	32008	19
469	100	13	33008	470	100	0	34008	471	100	\bigcirc	35008	19
472	100	0	36008	473	100	0	44008	474	100	0	37008	19
475	100	0	197008	476	100	0	40008	477	100	0	42008	19
478	100	0	198008	479	100	0	199008	480	100	3	46008	19

Revision: 0

NEA/NSC/DOC(95)03/III

Volume III

IEU-MET-FAST-016

481	100	3	47008	482	100	4	48008	483	100	4	49008	19
484	100	14	50008	485	100	14	51008	486	100	15	52008	19
487	100	15	53008	488	100	15	54008	489	101	7	55008	19
490	101	16	56008	491	100	13	57008	492	100	0	58008	19
493	100	0	59008	494	100	0	60008	495	100	0	61008	19
496	100	0	62008	497	100	0	63008	498	100	0	64008	19
499	100	1	1009	500	100	1	2009	501	100	2	3009	19
502	100	2	4009	503	100	3	5009	504	100	3	6009	19
505	100	4	7009	506	100	4	8009	507	100	5	9009	19
508	100	5	10009	509	100	6	11009	510	100	6	12009	19
511	100	6	13009	512	101	7	14009	513	101	8	202009	19
514	101	9	203009	515	101	8	204009	516	101	9	205009	19
517	101	12	23009	518	101	12	24009	519	101	10	25009	19
520	101	11	26009	521	101	10	27009	522	101	11	28009	19
523	101	8	29009	524	101	9	30009	525	101	8	31009	19
526	101	9	32009	527	100	13	33009	528	100	0	34009	19
529	100	0	35009	530	100	0	36009	531	100	0	37009	19
532	100	0	38009	533	100	0	39009	534	100	0	40009	19
535	100	0	41009	536	100	0	42009	537	100	0	43009	19
538	100	0	44009	539	100	0	45009	540	100	3	46009	19
541	100	3	47009	542	100	4	48009	543	100	4	49009	19
544	100	14	50009	545	100	14	51009	546	100	15	52009	19
547	100	15	53009	548	100	15	54009	549	101	7	55009	19
550	101	16	56009	551	100	13	57009	552	100	0	58009	19
553	100	0	59009	554	100	0	60009	555	100	0	61009	19
556	100	0	62009	557	100	0	63009	558	100	0	64009	19
559	100	1	1010	560	100	1	2010	561	100	2	3010	19
562	100	2	4010	563	100	3	5010	564	100	3	6010	19
565	100	4	7010	566	100	4	8010	567	100	5	9010	19
568	100	5	10010	569	100	6	11010	570	100	6	12010	19
571	100	6	13010	572	101	7	14010	573	101	8	15010	19
574	101	9	16010	575	101	8	17010	576	101	9	18010	19
577	101	10	19010	578	101	11	20010	579	101	10	21010	19
580	101	11	22010	581	101	12	23010	582	101	12	24010	19
583	101	8	206010	584	101	9	207010	585	101	8	208010	19
586	101	9	209010	587	100	13	33010	588	100	0	34010	19
589	100	0	35010	590	100	0	36010	591	100	0	37010	19
592	100	0	38010	593	100	0	39010	594	100	0	40010	19
595	100	0	41010	596	100	0	42010	597	100	0	43010	19
598	100	0	44010	599	100	0	45010	600	100	3	46010	19
601	100	3	47010	602	100	4	48010	603	100	4	49010	19
604	100	14	50010	605	100	14	51010	606	100	15	52010	19
607	100	15	53010	608	100	15	54010	609	101	7	55010	19
610	101	16	56010	611	100	13	57010	612	100	0	58010	19
613	100	0	59010	614	100	0	60010	615	100	0	61010	19
616	100	0	62010	617	100	0	63010	618	100	0	64010	19
619	100	1	1011	620	100	1	2011	621	100	2	3011	19
622	100	2	4011	623	100	3	5011	624	100	3	6011	19
625	100	4	7011	626	100	4	8011	627	100	5	9011	19
628	100	5	10011	629	100	6	11011	630	100	6	12011	19
631	100	6	13011	632	101	7	14011	633	101	8	210011	19
634	101	9	211011	635	101	8	212011	636	101	9	213011	19
637	101	12	214011	638	101	12	215011	639	101	10	216011	19
640	101	11	217011	641	101	10	218011	642	101	11	219011	19
643	101	8	220011	644	101	9	221011	645	101	8	222011	19
646	101	9	223011	647	100	13	33011	648	100	0	34011	19
649	100	0	35011	650	100	0	36011	651	100	0	37011	19
652	100	0	38011	653	100	0	39011	654	100	0	40011	19
655	100	0	42011	656	100	0	41011	657	100	0	44011	19
658	100	0	45011	659	100	0	43011	660	100	3	46011	19
661	100	3	47011	662	100	4	48011	663	100	4	49011	19
664	100	14	50011	665	100	14	51011	666	100	15	52011	19
667	100	15	53011	668	100	15	54011	669	101	7	55011	19
670	101	16	56011	671	100	13	57011	672	100	0	58011	19
673	100	0	59011	674	100	0	60011	675	100	\bigcirc	61011	19
676	100	0	62011	677	100	0	63011	678	100	0	64011	19
679	100	1	1012	680	100	1	2012	681	100	2	3012	19
682	100	2	4012	683	100	3	5012	684	100	3	6012	19
685	100	4	7012	686	100	4	8012	687	100	5	9012	19
688	100	5	10012	689	100	6	11012	690	100	6	12012	19
691	100	6	13012	692	101	7	14012	693	101	8	224012	19
694	101	9	225012	695	101	8	226012	696	101	9	227012	19

Volume III
IEU-MET-FAST-016

697	101	10	228012	698	101	11	229012	699	101	10	230012	19
700	101	11	231012	701	101	12	214012	702	101	12	215012	19
703	101	8	232012	704	101	9	233012	705	101	8	234012	19
706	101	9	235012	707	100	13	33012	708	100	0	34012	19
709	100	0	35012	710	100	0	36012	711	100	0	37012	19
712	100	0	38012	713	100	0	39012	714	100	0	40012	19
715	100	0	42012	716	100	0	41012	717	100	0	44012	19
718	100	0	45012	719	100	0	43012	720	100	3	46012	19
721	100	3	47012	722	100	4	48012	723	100	4	49012	19
724	100	14	50012	725	100	14	51012	726	100	15	52012	19
727	100	15	53012	728	100	15	54012	729	101	7	55012	19
730	101	16	56012	731	100	13	57012	732	100	0	58012	19
733	100	0	59012	734	100	0	60012	735	100	0	61012	19
736	100	0	62012	737	100	0	63012	738	100	0	64012	19
739	100	1	1013	740	100	1	2013	741	100	2	3013	19
742	100	2	4013	743	100	3	5013	744	100	3	6013	19
745	100	4	7013	746	100	4	8013	747	100	5	9013	19
748	100	5	10013	749	100	6	11013	750	100	6	12013	19
751	100	6	13013	752	101	22	236013	753	101	23	237013	19
754	101	7	14013	755	101	8	224013	756	101	9	225013	19
757	101	8	226013	758	101	9	227013	759	101	10	228013	19
760	101	11	229013	761	101	10	230013	762	101	11	231013	19
763	101	12	214013	764	101	12	215013	765	101	8	220013	19
766	101	9	221013	767	101	8	222013	768	101	9	223013	19
769	100	13	33013	770	100	0	34013	771	100	0	35013	19
772	100	0	36013	773	100	0	44013	774	100	0	37013	19
775	100	0	197013	776	100	0	39013	777	100	0	40013	19
778	100	0	238013	779	100	0	42013	780	100	0	239013	19
781	100	0	240013	782	100	0	241013	783	100	0	242013	19
784	100	3	46013	785	100	3	47013	786	100	4	48013	19
787	100	4	49013	788	100	14	50013	789	100	14	51013	19
790	100	15	52013	791	100	15	53013	792	100	15	54013	19
793	101	7	55013	794	101	16	56013	795	100	13	57013	19
796	100	0	58013	797	100	0	59013	798	100	0	60013	19
799	100	0	61013	800	100	0	62013	801	100	\bigcirc	63013	19
802	100	0	64013	803	100	1	1014	804	100	1	2014	19
805	100	2	3014	806	100	2	4014	807	100	3	5014	19
808	100	3	6014	809	100	4	7014	810	100	4	8014	19
811	100	5	9014	812	100	5	10014	813	100	6	11014	19
814	100	6	12014	815	100	6	13014	816	101	23	236014	19
817	101	22	237014	818	101	7	14014	819	101	8	210014	19
820	101	9	211014	821	101	8	212014	822	101	9	213014	19
823	101	12	214014	824	101	12	215014	825	101	8	220014	19
826	101	9	221014	827	101	8	222014	828	101	9	223014	19
829	100	13	33014	830	100	0	34014	831	100	\bigcirc	35014	19
832	100	0	36014	833	100	0	44014	834	100	0	37014	19
835	100	0	197014	836	100	0	39014	837	100	0	40014	19
838	100	0	238014	839	100	0	42014	840	100	\bigcirc	239014	19
841	100	0	242014	842	100	0	240014	843	100	\bigcirc	241014	19
844	100	3	46014	845	100	3	47014	846	100	4	48014	19
847	100	4	49014	848	100	14	50014	849	100	14	51014	19
850	100	15	52014	851	100	15	53014	852	100	15	54014	19
853	101	7	55014	854	101	16	56014	855	100	13	57014	19
856	100	0	58014	857	100	0	59014	858	100	\bigcirc	60014	19
859	100	0	61014	860	100	0	62014	861	100	\bigcirc	63014	19
862	100	0	64014	863	100	1	1015	864	100	1	2015	19
865	100	2	3015	866	100	2	4015	867	100	3	5015	19
868	100	3	6015	869	100	4	7015	870	100	4	8015	19
871	100	5	9015	872	100	5	10015	873	100	6	11015	19
874	100	6	12015	875	100	6	13015	876	101	22	236015	19
877	101	23	237015	878	101	7	14015	879	101	8	210015	19
880	101	9	211015	881	101	8	212015	882	101	9	213015	19
883	101	12	214015	884	101	12	215015	885	101	8	220015	19
886	101	9	221015	887	101	8	222015	888	101	9	223015	19
889	100	13	33015	890	100	0	34015	891	100	\bigcirc	35015	19
892	100	0	36015	893	100	0	44015	894	100	0	37015	19
895	100	0	197015	896	100	0	39015	897	100	\bigcirc	40015	19
898	100	\bigcirc	238015	899	100	0	42015	900	100	\bigcirc	239015	19
901	100	0	242015	902	100	0	240015	903	100	0	241015	19
904	100	3	46015	905	100	3	47015	906	100	4	48015	19
907	100	4	49015	908	100	14	50015	909	100	14	51015	19
910	100	15	52015	911	100	15	53015	912	100	15	54015	19

Revision: 0

Volume III
IEU-MET-FAST-016

913	101	7	55015	914	101	16	56015	915	100	13	57015	19
916	100	0	58015	917	100	0	59015	918	100	0	60015	19
919	100	0	61015	920	100	0	62015	921	100	0	63015	19
922	100	0	64015	923	100	1	1016	924	100	1	2016	19
925	100	2	3016	926	100	2	4016	927	100	3	5016	19
928	100	3	6016	929	100	4	7016	930	100	4	8016	19
931	100	5	9016	932	100	5	10016	933	100	6	11016	19
934	100	6	12016	935	100	6	13016	936	101	22	243016	19
937	101	23	244016	938	101	7	14016	939	101	8	224016	19
940	101	9	225016	941	101	8	226016	942	101	9	227016	19
943	101	12	214016	944	101	12	215016	945	101	8	232016	19
946	101	9	233016	947	101	8	234016	948	101	9	235016	19
949	100	13	33016	950	100	0	34016	951	100	0	35016	19
952	100	0	36016	953	100	0	44016	954	100	0	37016	19
955	100	0	197016	956	100	0	245016	957	100	0	40016	19
958	100	0	246016	959	100	0	42016	960	100	0	247016	19
961	100	3	46016	962	100	3	47016	963	100	4	48016	19
964	100	4	49016	965	100	14	50016	966	100	14	51016	19
967	100	15	52016	968	100	15	53016	969	100	15	54016	19
970	101	7	55016	971	101	16	56016	972	100	13	57016	19
973	100	0	58016	974	100	0	59016	975	100	0	60016	19
976	100	0	61016	977	100	0	62016	978	100	0	63016	19
979	100	0	64016	980	100	1	1017	981	100	1	2017	19
982	100	2	3017	983	100	2	4017	984	100	3	5017	19
985	100	3	6017	986	100	4	7017	987	100	4	8017	19
988	100	5	9017	989	100	5	10017	990	100	6	11017	19
991	100	6	12017	992	100	6	13017	993	101	23	243017	19
994	101	22	244017	995	101	7	14017	996	101	8	224017	19
997	101	9	225017	998	101	8	226017	999	101	9	227017	19
1000	101	12	214017	1001	101	12	215017	1002	101	8	232017	19
1003	101	9	233017	1004	101	8	234017	1005	101	9	235017	19
1006	100	13	33017	1007	100	0	34017	1008	100	0	35017	19
1009	100	0	36017	1010	100	0	44017	1011	100	0	37017	19
1012	100	0	197017	1013	100	0	245017	1014	100	0	40017	19
1015	100	0	246017	1016	100	0	42017	1017	100	0	247017	19
1018	100	3	46017	1019	100	3	47017	1020	100	4	48017	19
1021	100	4	49017	1022	100	14	50017	1023	100	14	51017	19
1024	100	15	52017	1025	100	15	53017	1026	100	15	54017	19
1027	101	7	55017	1028	101	16	56017	1029	100	13	57017	19
1030	100	0	58017	1031	100	0	59017	1032	100	0	60017	19
1033	100	0	61017	1034	100	0	62017	1035	100	0	63017	19
1036	100	0	64017	1037	100	1	1018	1038	100	1	2018	19
1039	100	2	3018	1040	100	2	4018	1041	100	3	5018	19
1042	100	3	6018	1043	100	4	7018	1044	100	4	8018	19
1045	100	5	9018	1046	100	5	10018	1047	100	6	12018	19
1048	100	6	11018	1049	100	6	13018	1050	101	22	248018	19
1051	101	23	249018	1052	101	7	65018	1053	101	8	66018	19
1054	101	9	67018	1055	101	8	68018	1056	101	9	69018	19
1057	101	12	74018	1058	101	12	75018	1059	101	10	76018	19
1060	101	11	77018	1061	101	10	78018	1062	101	11	79018	19
1063	101	8	80018	1064	101	9	81018	1065	101	8	82018	19
1066	101	9	83018	1067	100	13	84018	1068	100	0	34018	19
1069	100	0	35018	1070	100	0	36018	1071	100	0	44018	19
1072	100	0	37018	1073	100	0	250018	1074	100	0	40018	19
1075	100	0	42018	1076	100	0	251018	1077	100	0	252018	19
1078	100	3	46018	1079	100	3	47018	1080	100	4	48018	19
1081	100	4	49018	1082	100	14	50018	1083	100	14	51018	19
1084	100	15	53018	1085	100	15	52018	1086	100	15	54018	19
1087	101	7	90018	1088	101	16	91018	1089	100	13	92018	19
1090	100	0	58018	1091	100	0	59018	1092	100	0	60018	19
1093	100	0	61018	1094	100	0	62018	1095	100	0	93018	19
1096	100	0	64018	1097	100	1	1019	1098	100	1	2019	19
1099	100	2	3019	1100	100	2	4019	1101	100	3	5019	19
1102	100	3	6019	1103	100	4	7019	1104	100	4	8019	19
1105	100	5	9019	1106	100	5	10019	1107	100	6	12019	19
1108	100	6	11019	1109	100	6	13019	1110	101	23	248019	19
1111	101	22	249019	1112	101	7	65019	1113	101	8	66019	19
1114	101	9	67019	1115	101	8	68019	1116	101	9	69019	19
1117	101	12	74019	1118	101	12	75019	1119	101	10	76019	19
1120	101	11	77019	1121	101	10	78019	1122	101	11	79019	19
1123	101	8	80019	1124	101	9	81019	1125	101	8	82019	19
1126	101	9	83019	1127	100	13	84019	1128	100	0	34019	19

Volume III
IEU-MET-FAST-016

1129	100	0	35019	1130	100	0	36019	1131	100	0	44019	19
1132	100	0	37019	1133	100	0	250019	1134	100	0	40019	19
1135	100	0	42019	1136	100	0	251019	1137	100	0	252019	19
1138	100	3	46019	1139	100	3	47019	1140	100	4	48019	19
1141	100	4	49019	1142	100	14	50019	1143	100	14	51019	19
1144	100	15	53019	1145	100	15	52019	1146	100	15	54019	19
1147	101	7	90019	1148	101	16	91019	1149	100	13	92019	19
1150	100	0	58019	1151	100	0	59019	1152	100	0	60019	19
1153	100	0	61019	1154	100	0	62019	1155	100	0	93019	19
1156	100	0	64019	1157	100	1	1020	1158	100	1	2020	19
1159	100	2	3020	1160	100	2	4020	1161	100	3	5020	19
1162	100	3	6020	1163	100	4	7020	1164	100	4	8020	19
1165	100	5	9020	1166	100	5	10020	1167	100	6	12020	19
1168	100	6	11020	1169	100	6	13020	1170	101	23	253020	19
1171	101	22	254020	1172	101	7	65020	1173	101	8	66020	19
1174	101	9	67020	1175	101	8	68020	1176	101	9	69020	19
1177	101	10	70020	1178	101	11	71020	1179	101	10	72020	19
1180	101	11	73020	1181	101	12	74020	1182	101	12	75020	19
1183	101	8	80020	1184	101	9	81020	1185	101	8	82020	19
1186	101	9	83020	1187	100	13	84020	1188	100	0	34020	19
1189	100	0	35020	1190	100	0	36020	1191	100	0	44020	19
1192	100	0	37020	1193	100	0	250020	1194	100	0	40020	19
1195	100	0	42020	1196	100	0	251020	1197	100	0	252020	19
1198	100	3	46020	1199	100	3	47020	1200	100	4	48020	19
1201	100	4	49020	1202	100	14	50020	1203	100	14	51020	19
1204	100	15	53020	1205	100	15	52020	1206	100	15	54020	19
1207	101	7	90020	1208	101	16	91020	1209	100	13	92020	19
1210	100	0	58020	1211	100	0	59020	1212	100	0	60020	19
1213	100	0	61020	1214	100	0	62020	1215	100	0	93020	19
1216	100	0	64020	1217	100	1	1021	1218	100	1	2021	19
1219	100	2	3021	1220	100	2	4021	1221	100	3	5021	19
1222	100	3	6021	1223	100	4	7021	1224	100	4	8021	19
1225	100	5	9021	1226	100	5	10021	1227	100	6	12021	19
1228	100	6	11021	1229	100	6	13021	1230	101	22	253021	19
1231	101	23	254021	1232	101	7	65021	1233	101	8	66021	19
1234	101	9	67021	1235	101	8	68021	1236	101	9	69021	19
1237	101	10	70021	1238	101	11	71021	1239	101	10	72021	19
1240	101	11	73021	1241	101	12	74021	1242	101	12	75021	19
1243	101	8	80021	1244	101	9	81021	1245	101	8	82021	19
1246	101	9	83021	1247	100	13	84021	1248	100	0	34021	19
1249	100	0	35021	1250	100	0	36021	1251	100	0	44021	19
1252	100	0	37021	1253	100	0	250021	1254	100	0	40021	19
1255	100	0	42021	1256	100	0	251021	1257	100	0	252021	19
1258	100	3	46021	1259	100	3	47021	1260	100	4	48021	19
1261	100	4	49021	1262	100	14	50021	1263	100	14	51021	19
1264	100	15	53021	1265	100	15	52021	1266	100	15	54021	19
1267	101	7	90021	1268	101	16	91021	1269	100	13	92021	19
1270	100	0	58021	1271	100	0	59021	1272	100	0	60021	19
1273	100	0	61021	1274	100	0	62021	1275	100	0	93021	19
1276	100	0	64021	1277	100	1	1022	1278	100	1	2022	19
1279	100	2	3022	1280	100	2	4022	1281	100	3	5022	19
1282	100	3	6022	1283	100	4	7022	1284	100	4	8022	19
1285	100	5	9022	1286	100	5	10022	1287	100	6	12022	19
1288	100	6	11022	1289	100	6	13022	1290	101	7	65022	19
1291	101	8	255022	1292	101	9	256022	1293	101	8	257022	19
1294	101	9	258022	1295	101	12	74022	1296	101	12	75022	19
1297	101	10	76022	1298	101	11	77022	1299	101	10	78022	19
1300	101	11	79022	1301	101	8	80022	1302	101	9	81022	19
1303	101	8	82022	1304	101	9	83022	1305	100	13	84022	19
1306	100	\bigcirc	34022	1307	100	\bigcirc	35022	1308	100	\bigcirc	36022	19
1309	100	0	37022	1310	100	0	85022	1311	100	0	86022	19
1312	100	0	40022	1313	100	0	87022	1314	100	\bigcirc	42022	19
1315	100	0	88022	1316	100	\bigcirc	44022	1317	100	\bigcirc	89022	19
1318	100	3	46022	1319	100	3	47022	1320	100	4	48022	19
1321	100	4	49022	1322	100	14	50022	1323	100	14	51022	19
1324	100	15	53022	1325	100	15	52022	1326	100	15	54022	19
1327	101	7	90022	1328	101	16	91022	1329	100	13	92022	19
1330	100	0	58022	1331	100	\bigcirc	59022	1332	100	\bigcirc	60022	19
1333	100	0	61022	1334	100	0	62022	1335	100	0	93022	19
1336	100	0	64022	1337	100	1	1023	1338	100	1	2023	19
1339	100	2	3023	1340	100	2	4023	1341	100	3	5023	19
1342	100	3	6023	1343	100	4	7023	1344	100	4	8023	19

Revision: 0
Date: September 30, 2010
Page 72 of 77

Volume III
IEU-MET-FAST-016

1345	100	5	9023	1346	100	5	10023	1347	100	6	12023	19
1348	100	6	11023	1349	100	6	13023	1350	101	7	65023	19
1351	101	8	66023	1352	101	9	67023	1353	101	8	68023	19
1354	101	9	69023	1355	101	10	70023	1356	101	11	71023	19
1357	101	10	72023	1358	101	11	73023	1359	101	12	74023	19
1360	101	12	75023	1361	101	8	259023	1362	101	9	260023	19
1363	101	8	261023	1364	101	9	262023	1365	100	13	84023	19
1366	100	0	34023	1367	100	0	35023	1368	100	0	36023	19
1369	100	0	37023	1370	100	0	85023	1371	100	0	86023	19
1372	100	0	40023	1373	100	0	87023	1374	100	0	42023	19
1375	100	0	88023	1376	100	0	44023	1377	100	0	89023	19
1378	100	3	46023	1379	100	3	47023	1380	100	4	48023	19
1381	100	4	49023	1382	100	14	50023	1383	100	14	51023	19
1384	100	15	53023	1385	100	15	52023	1386	100	15	54023	19
1387	101	7	90023	1388	101	16	91023	1389	100	13	92023	19
1390	100	0	58023	1391	100	0	59023	1392	100	0	60023	19
1393	100	0	61023	1394	100	0	62023	1395	100	0	93023	19
1396	100	0	64023	1397	100	1	1024	1398	100	1	2024	19
1399	100	2	3024	1400	100	2	4024	1401	100	3	5024	19
1402	100	3	6024	1403	100	4	7024	1404	100	4	8024	19
1405	100	5	9024	1406	100	5	10024	1407	100	6	12024	19
1408	100	6	11024	1409	100	6	13024	1410	101	7	65024	19
1411	101	8	263024	1412	101	9	264024	1413	101	8	265024	19
1414	101	9	266024	1415	101	12	267024	1416	101	12	268024	19
1417	101	10	269024	1418	101	11	270024	1419	101	10	271024	19
1420	101	11	272024	1421	101	8	273024	1422	101	9	274024	19
1423	101	8	275024	1424	101	9	276024	1425	100	13	84024	19
1426	100	0	34024	1427	100	0	35024	1428	100	0	36024	19
1429	100	0	37024	1430	100	0	85024	1431	100	0	86024	19
1432	100	0	40024	1433	100	0	42024	1434	100	0	87024	19
1435	100	0	44024	1436	100	0	89024	1437	100	0	88024	19
1438	100	3	46024	1439	100	3	47024	1440	100	4	48024	19
1441	100	4	49024	1442	100	14	50024	1443	100	14	51024	19
1444	100	15	53024	1445	100	15	52024	1446	100	15	54024	19
1447	101	7	90024	1448	101	16	91024	1449	100	13	92024	19
1450	100	0	58024	1451	100	0	59024	1452	100	0	60024	19
1453	100	0	61024	1454	100	0	62024	1455	100	0	93024	19
1456	100	0	64024	1457	100	1	1025	1458	100	1	2025	19
1459	100	2	3025	1460	100	2	4025	1461	100	3	5025	19
1462	100	3	6025	1463	100	4	7025	1464	100	4	8025	19
1465	100	5	9025	1466	100	5	10025	1467	100	6	12025	19
1468	100	6	11025	1469	100	6	13025	1470	101	7	65025	19
1471	101	8	277025	1472	101	9	278025	1473	101	8	279025	19
1474	101	9	280025	1475	101	10	281025	1476	101	11	282025	19
1477	101	10	283025	1478	101	11	284025	1479	101	12	267025	19
1480	101	12	268025	1481	101	8	285025	1482	101	9	286025	19
1483	101	8	287025	1484	101	9	288025	1485	100	13	84025	19
1486	100	0	34025	1487	100	0	35025	1488	100	0	36025	19
1489	100	0	37025	1490	100	0	85025	1491	100	0	86025	19
1492	100	0	40025	1493	100	0	42025	1494	100	0	87025	19
1495	100	0	44025	1496	100	0	89025	1497	100	0	88025	19
1498	100	3	46025	1499	100	3	47025	1500	100	4	48025	19
1501	100	4	49025	1502	100	14	50025	1503	100	14	51025	19
1504	100	15	53025	1505	100	15	52025	1506	100	15	54025	19
1507	101	7	90025	1508	101	16	91025	1509	100	13	92025	19
1510	100	0	58025	1511	100	0	59025	1512	100	0	60025	19
1513	100	0	61025	1514	100	0	62025	1515	100	0	93025	19
1516	100	0	64025	1517	100	1	1026	1518	100	1	2026	19
1519	100	2	3026	1520	100	2	4026	1521	100	3	5026	19
1522	100	3	6026	1523	100	4	7026	1524	100	4	8026	19
1525	100	5	9026	1526	100	5	10026	1527	100	6	12026	19
1528	100	6	11026	1529	100	6	13026	1530	101	23	289026	19
1531	101	22	290026	1532	101	7	65026	1533	101	8	277026	19
1534	101	9	278026	1535	101	8	279026	1536	101	9	280026	19
1537	101	10	281026	1538	101	11	282026	1539	101	10	283026	19
1540	101	11	284026	1541	101	12	267026	1542	101	12	268026	19
1543	101	8	273026	1544	101	9	274026	1545	101	8	275026	19
1546	101	9	276026	1547	100	13	84026	1548	100	0	34026	19
1549	100	0	35026	1550	100	0	36026	1551	100	0	44026	19
1552	100	0	37026	1553	100	0	250026	1554	100	0	86026	19
1555	100	0	40026	1556	100	0	291026	1557	100	0	42026	19
1558	100	0	292026	1559	100	0	293026	1560	100	0	294026	19

IEU-MET-FAST-016

1561	100	0	295026	1562	100	3	46026	1563	100	3	47026	19
1564	100	4	48026	1565	100	4	49026	1566	100	14	50026	19
1567	100	14	51026	1568	100	15	53026	1569	100	15	52026	19
1570	100	15	54026	1571	101	7	90026	1572	101	16	91026	19
1573	100	13	92026	1574	100	0	58026	1575	100	0	59026	19
1576	100	0	60026	1577	100	0	61026	1578	100	0	62026	19
1579	100	0	93026	1580	100	0	64026	1581	100	1	1027	19
1582	100	1	2027	1583	100	2	3027	1584	100	2	4027	19
1585	100	3	5027	1586	100	3	6027	1587	100	4	7027	19
1588	100	4	8027	1589	100	5	9027	1590	100	5	10027	19
1591	100	6	12027	1592	100	6	11027	1593	100	6	13027	19
1594	101	23	289027	1595	101	22	290027	1596	101	7	65027	19
1597	101	8	263027	1598	101	9	264027	1599	101	8	265027	19
1600	101	9	266027	1601	101	12	267027	1602	101	12	268027	19
1603	101	8	273027	1604	101	9	274027	1605	101	8	275027	19
1606	101	9	276027	1607	100	13	84027	1608	100	0	34027	19
1609	100	0	35027	1610	100	0	36027	1611	100	0	44027	19
1612	100	0	37027	1613	100	0	250027	1614	100	0	86027	19
1615	100	0	40027	1616	100	0	291027	1617	100	0	42027	19
1618	100	0	292027	1619	100	0	295027	1620	100	0	293027	19
1621	100	0	294027	1622	100	3	46027	1623	100	3	47027	19
1624	100	4	48027	1625	100	4	49027	1626	100	14	50027	19
1627	100	14	51027	1628	100	15	53027	1629	100	15	52027	19
1630	100	15	54027	1631	101	7	90027	1632	101	16	91027	19
1633	100	13	92027	1634	100	0	58027	1635	100	0	59027	19
1636	100	0	60027	1637	100	0	61027	1638	100	0	62027	19
1639	100	0	93027	1640	100	0	64027	1641	100	1	1028	19
1642	100	1	2028	1643	100	2	3028	1644	100	2	4028	19
1645	100	3	5028	1646	100	3	6028	1647	100	4	7028	19
1648	100	4	8028	1649	100	5	9028	1650	100	5	10028	19
1651	100	6	12028	1652	100	6	11028	1653	100	6	13028	19
1654	101	22	289028	1655	101	23	290028	1656	101	7	65028	19
1657	101	8	263028	1658	101	9	264028	1659	101	8	265028	19
1660	101	9	266028	1661	101	12	267028	1662	101	12	268028	19
1663	101	8	273028	1664	101	9	274028	1665	101	8	275028	19
1666	101	9	276028	1667	100	13	84028	1668	100	0	34028	19
1669	100	0	35028	1670	100	0	36028	1671	100	0	44028	19
1672	100	0	37028	1673	100	0	250028	1674	100	0	86028	19
1675	100	0	40028	1676	100	0	291028	1677	100	0	42028	19
1678	100	0	292028	1679	100	0	295028	1680	100	0	293028	19
1681	100	0	294028	1682	100	3	46028	1683	100	3	47028	19
1684	100	4	48028	1685	100	4	49028	1686	100	14	50028	19
1687	100	14	51028	1688	100	15	53028	1689	100	15	52028	19
1690	100	15	54028	1691	101	7	90028	1692	101	16	91028	19
1693	100	13	92028	1694	100	0	58028	1695	100	0	59028	19
1696	100	0	60028	1697	100	0	61028	1698	100	0	62028	19
1699	100	0	93028	1700	100	0	64028	1701	100	1	1029	19
1702	100	1	2029	1703	100	2	3029	1704	100	2	4029	19
1705	100	3	5029	1706	100	3	6029	1707	100	4	7029	19
1708	100	4	8029	1709	100	5	9029	1710	100	5	10029	19
1711	100	6	12029	1712	100	6	11029	1713	100	6	13029	19
1714	101	22	296029	1715	101	23	297029	1716	101	7	65029	19
1717	101	8	277029	1718	101	9	278029	1719	101	8	279029	19
1720	101	9	280029	1721	101	12	267029	1722	101	12	268029	19
1723	101	8	285029	1724	101	9	286029	1725	101	8	287029	19
1726	101	9	288029	1727	100	13	84029	1728	100	0	34029	19
1729	100	0	35029	1730	100	0	36029	1731	100	0	44029	19
1732	100	0	37029	1733	100	0	250029	1734	100	0	298029	19
1735	100	0	40029	1736	100	0	299029	1737	100	0	42029	19
1738	100	0	300029	1739	100	3	46029	1740	100	3	47029	19
1741	100	4	48029	1742	100	4	49029	1743	100	14	50029	19
1744	100	14	51029	1745	100	15	53029	1746	100	15	52029	19
1747	100	15	54029	1748	101	7	90029	1749	101	16	91029	19
1750	100	13	92029	1751	100	0	58029	1752	100	0	59029	19
1753	100	0	60029	1754	100	0	61029	1755	100	0	62029	19
1756	100	0	93029	1757	100	0	64029	1758	100	1	1030	19
1759	100	1	2030	1760	100	2	3030	1761	100	2	4030	19
1762	100	3	5030	1763	100	3	6030	1764	100	4	7030	19
1765	100	4	8030	1766	100	5	9030	1767	100	5	10030	19
1768	100	6	12030	1769	100	6	11030	1770	100	6	13030	19
1771	101	23	296030	1772	101	22	297030	1773	101	7	65030	19
1774	101	8	277030	1775	101	9	278030	1776	101	8	279030	19

Revision: 0
Date: September 30, 2010
Page 74 of 77

IEU-MET-FAST-016

NEA/NSC/DOC(95)03/III

Volume III

IEU-MET-FAST-016

Revision: 0
Date: September 30, 2010
Page 76 of 77

NEA/NSC/DOC(95)03/III

Volume III

IEU-MET-FAST-016

75540E-05							
7.88952E-04	1.52143E-02	1.72498E-03	4.29430E-04	6.05719E-03	2.31570E-03	17	17
1.00258E-04	3.18519E-04	8.07388E-05	4.00889E-03	6.33958E-02	1.52061E-03		
1.93533E-04	1.48150E-03	6.41456E-04	3.25701E-05	2.14700E-05			
8.60732E-04	1.65985E-02	1.88192E-03	4.68499E-04	6.60828E-03	2.52638E-03	18	18
1.09380E-04	3.47498E-04	8.80845E-05	4.37362E-03	6.91636E-02	1.65896E-03		
2.11140E-04	1.61624E-03	6.99718E-04	3.55283E-05	2.34200E-05			
7.88961E-04	1.52145E-02	1.72500E-03	4.29434E-04	6.55599E-03	2.50639E-03	19	19
$1.08514 \mathrm{E}-04$	3.44749E-04	8.73876E-05	3.70684E-03	5.86193E-02	1.40604E-03		
1.78951E-04	8.39210E-05	5.05878E-07	7.79567E-07	4.85916E-07	8.36301E-07		
8.76225E-07	5.01676E-07	1.26759E-06	1.34548E-03	2.19254E-05	9.77243E-06		
3.91632E-04	1.98852E-05	1.31082E-05					
1.72065E-03	2.72099E-02	6.52659E-04	8.30656E-05	1.35672E-03		20	20
7.17181E-04	1.38303E-02	1.56806E-03	3.90365E-04	4.64680E-03	1.77650E-03	21	21
7.69134E-05	2.44353E-04	6.19392E-05	3.37829E-03	5.34235E-02	1.28142E-03		
1.63090E-04	1.83577E-04	1.91812E-05	2.95586E-05	1.84243E-05	3.17098E-05		
3.32236E-05	1.90219E-05	4.80626E-05	1.27630E-03	1.04004E-04	4.63560E-05		
4.10305E-04	2. 08334E-05	1.37332E-05					
4.20393E-02	2.41652E-03	4.13465E-04	1.98220E-04	7.56338E-05	2.18766E-05	22	22
2.87456E-05	9.19238E-06	1.12346E-04					
9.38099E-05	4.48305E-02	7.56338E-05	2.18766E-05	2.87456E-05	9.19238E-06	23	23
1.12346E-04							
1.00000e-05							

[^0]: ${ }^{\text {a }}$ Cross Section Evaluation Working Group Benchmark Specifications, BNL-19302, Vol. II, (ENDF 202) (September 1986).

[^1]: ${ }^{\text {a }}$ Applied Physics Division Experiment Logbook Number 698E, Argonne National Laboratory, 1958.
 ${ }^{\text {b }}$ R. O. Brittan et al, "Hazard Evaluation Report on the Fast Reactor Zero Power Experiment ZPR-III," Argonne National Laboratory Report ANL-6408, October 1961.
 ${ }^{c}$ Almost all of the references give dimensions in English units and some also give metric equivalents. We display the metric equivalent in parentheses when practical, as a courtesy to international readers.

[^2]: ${ }^{\text {a }}$ L. H. Berkes, ZPR-3 Hot Constants Memo, March 31, 1960.
 ${ }^{\mathrm{b}}$ Slight misalignment of the matrix bundles was unavoidable, resulting in a small (approximately 1 mm) gap at the interface when the tables were driven to the closed position.

[^3]: ${ }^{\text {a }}$ J. M. Gasidlo, Private Communication, April 2, 2009.
 J. M. Gasidlo, Private Communication, April 10, 2009.

 Revision: 0

[^4]: ${ }^{\text {a }}$ The plates are elevated above the bottom of the drawer in this photograph.

[^5]: ${ }^{\text {a }}$ J. M. Gasidlo, Private Communication, April 7, 2009.
 Revision: 0

[^6]: ${ }^{\text {a }}$ A DP control rod drawer is narrower than a standard drawer. Only fifteen 0.125 -in. plate columns can be loaded into a DP control rod drawer.

[^7]: ${ }^{\text {a }}$ Note that the coordinate convention for ZPR assemblies is unusual in that the Z direction is horizontal, not vertical.

[^8]: ${ }^{\text {a }}$ W. R. Robinson and K. E. Freese, ZPR-6\&9 Hot Constants Memo, p. 36, 1978.
 ${ }^{\text {b }}$ J. M. Gasidlo, Private Communication, April 9, 2009.

[^9]: ${ }^{\text {a }}$ Cross Section Evaluation Working Group Benchmark Specifications, BNL-19302, Vol. II, (ENDF 202) (September 1986).
 Revision: 0

[^10]: ${ }^{\text {a }}$ R. E. Alcouffe, F. W. Brinkley, D. R. Marr, and R. D. O’Dell, "User's Guide for TWODANT: A Code package for Two-Dimensional, Diffusion-Accelerated, Neutral-Particle Transport," LA-10049-M, Revised February 1, 1990.
 ${ }^{\text {b }}$ B. J. Toppel, H. Henryson II, and C. G. Stenberg, "ETOE-II/MC² $2 /$ SDX Multigroup Cross Section Processing," RSIC Seminar Workshop on Multigroup Cross Sections, ORNL, (March 14, 1978).
 ${ }^{c}$ W. G. Davey and R. L. McVean, Private Communication, March 1969.

[^11]: ${ }^{\text {a }}$ J. M. Gasidlo, Private Communication, April 9, 2009.
 ${ }^{\mathrm{b}}$ An inhour (Ih) is a unit of reactivity and is defined as the amount of positive reactivity corresponding to an asymptotic power rise with a time constant or period of one hour. Reactivity is rarely (if ever) reported in inhours today, but the inhour was a common unit for measuring and reporting reactivity during the period when ZPR-3 operated. Revision: 0
 Date: September 30, 2010

[^12]: ${ }^{\text {a }}$ L. H. Berkes, ZPR-3 Hot Constants Memo, March 31, 1960.

[^13]: ${ }^{\text {a }}$ G. E. Hansen and H. C. Paxton, "Reevaluated Critical Specifications of Some Los Alamos Fast-Neutron Systems," LA-4208, Los Alamos Scientific Laboratory (1969).
 Revision: 0
 Date: September 30, 2010

[^14]: ${ }^{\text {a }}$ R. N. Blomquist, R. M. Lell and E. M. Gelbard, "VIM - A Continuous Energy Monte Carlo Code at ANL," A Review of the Theory and Application of Monte Carlo Methods, Proceedings of a Seminar-Workshop, Oak Ridge, TN, April 21-23, 1980, ORNL/RSIC-44, p. 31, August 1980.
 ${ }^{\mathrm{b}}$ R. W. Schaefer, R. D. McKnight and P. J. Collins, "Lessons Learned from Applying VIM to Fast Reactor Critical Experiments," Proceedings of the Nuclear Criticality Technology Safety Workshop, San Diego, CA, pp. 129136, LA-13439-C (1995).

[^15]: ${ }^{\text {a }}$ D. N. Olsen, P. J. Collins and S. G. Carpenter, "Experiments of IFR Fuel Criticality in ZPPR-21," ICNC '91 International Conference on Criticality Safety, Oxford, UK, September 9-13, 1991.

[^16]: ${ }^{\text {a }}$ Table IV in: D. N. Olsen, P. J. Collins and S. G. Carpenter, "Experiments of IFR Fuel Criticality in ZPPR-21," ICNC '91 International Conference on Criticality Safety, Oxford, UK, September 9-13, 1991.

