:ctive function, the particular to be included
hmic approach,
for a specific
h facilities the
of "what-if" ies.
edures to access
fining facilities,
res and, most
play and help
; these types of data structures, c and Mondou, of rail tactical t impact on the :ntion a few.
d form formulae
ee continued and ed with accurate and efficiency of e validated by I rail data. More arrival queueing connection delays accuracy of the isson process is

The variability of delays, as a measure of reliability and quality of service, should be integrated into tactical formulations. Additionalśs real-life preoccupations should also be considered in tactical models. Fleet size constraints, for example, are an important planning issue that is not currently included in tactical models. We think that the delay-penalty modeling approach is appropriate for this problem, but the issue should be further investigated.
Increased efficiency could be pursued for the various algorithms that compose the solution procedure. Parallelly, "exact" algorithms should be developed to allow a more rigorous evalutation and validation of the heuristic methods. Postoptimization procedures should also be developed and integrated to the planning system.
Finally, we want to emphasize that recent advances in operations research methods, computer science software and hardware, artificial intelligence and decision support systems open up new and exciting research possibilities for transportation ścience in general and rail tactical planning in particular. So, it is possible now; to build comprehensive interactive-graphic planning systems that rixn on microcomputers and thus, to put impressively powerful computational and planning means within easy financial reach of practically every transportation related organization. Also, the combination of traditional optimization models and algorithms and expert system techniques or interactive optimization methods may yield very interesting results for the development and utilization of tactical planning models for freight rail transportation.

REFERENCES

AAR (1977), Freight car utilization and railroad reliability: case studies, Report No. R-283, Association of American Railroads.
Assad A.A. (1980a), Modeling of rail networks: toward a routing/ makeup model, Transportation Research B, 14B: 101-114.
Assad A.A. (1980b), Models for rail transportation, Transportation Research A, 14A: 205-220.
Belshaw P. (1986), Decision support models in railway operations, in Research for Tomorrow's Transport Requirements, Proceedings of the Fourth world Conference on Transport Research, Vancouver, Canada, Vol. 1: 104-108.
Bullot A. (1985), Une estimation prévisionnelle de la fiabilité des acheminements théoriques, Revue générale des chemins de fer: 309-316.
Burke P.J. (1975), Delays in single-server queues with batch input, Operations Research 23: 830-833.
Crainic T.G. (1982), Un modèle de planification tactique pour le transport ferroviaire des marchandises, Ph.D Thesis, Département d'informatique et recherche opérationnelle, Université de Montréal, Canada.
Crainic T.G. (1984), A comparison of two methods for tactical planning in rail freight transportation, Operational Research'84, J.P. Brans (editor), Elsevier Science Pub. (North-Holland): 707-720.
Crainic T.G. and Gendreau M. (1986), Approximate formulas for the computation of connection delays under...capacity restrictions in rail freight transportation, in Research for Tomorrow's Transport Requirements, Proceedings of the Fourth World Conference on Transport Research, Vancouver, Canada, Vol. 2: 1142-1155.
Crainic T.G. and Mondou J.F. (1986), An interactive graphic planning system for freight transportation networks, ORSA/TIMS Joint National Meeting, Miami, U.S.A.
Crainic T.G. and Nicolle M.C. (1986), Planification tactique du transport ferroviaire des marchandises: quelques aspects de modélisation, Actes du Premier Congrès International en France de Génie Industriel, Ecole Centrale, Paris, France.
Crainic T.G. and Rousseau J.M. (1986), Multicommodity, multimode freight transportation: a general modeling and algorithmic framework for the service network design 'problem, Transportation Research B, 20B: 225-242.
Crainic T.G. and Roy J. (1988), O.R. tools for tactical freight transportation planning, European Journal of Operational Research 33(3): 290-297.
Crainic T.G., Ferland J.-A. and Rosseau J.M. (1984), A tactical planning model for rail freight transportation, Transportation Science

18(2): 165.1
Delorme L., Roy J. planning m Transport F
Elbrond J. and da Ct Operations Operations
Elbrond J. (1978), , single track Railways C
English G.W. (1977) railway cal Travel Supt Université
Folk J.F. (1972a), Studies in R72-40, D Institute of
Folk J.F. (1972b), s -Qperations of Civil E Cambridge,
Frank: O. (1966), Operations
Gendreau M. (1984; l'affectation commun, recherche (
Kleinrock L. (1975) New York.
Payraud R. (1981), modele MA
Petersen E.R. (1971 assembly University,
Petersen E.R. (1 applications CIGGT, Qu
Petersen E.R. (197. railway, T_{1}
Petersen E.R. (197. Managemen
Petersen E.R. (197 tracked rai the Sixtec Forum, Toi
Petersen E.R. (1977 Business ;
reliability: case nerican Railroads. toward a routing/ 4B: 101-114.
on, Transportation
way operations, in Requirements, nce on Transport 18.
la fiabilité des
des chemins de
with batch input,
tactique pour le
i, Ph.D Thesis,
ie opérationnelle,
or tactical planning Research'84, J.P.
(North-Holland):

- formulas for the :apacity restrictions h for Tomorrow's the Fourth World ıver, Canada, Vol.

e graphic planning ORSA/TIMS Joint

sation tactique du uelques aspects de s International en Paris, France. ṇmodity, multimode ig and algorithmic design problem,
for tactical freight tal of. Operational

- A tactical planning insportation Science

18(2): 165-184
Delorme L., Roy J. and Rousseau J.M. (1987), Motor-carrier operation planning models: a state of the art, presented at Freight Transport Planning and Logistics, Bressanone, Italy.
Elbrond J. and da Costa A.E. (1970), Single line rail traffic, Proceedings Operations Research Symposium, Brazilian Society of Operations Research, Sao Paolo, Brazil.
Elbrond J. (1978), A method for the calculation of the capacity of a single track railroad system, Proceedings of the Heavy Haul Railways Conference, Perth, Western Australia.
English G.W. (1977), An analytic model for the analysis of single track railway capacity, presented at International Symposium of Travel Supply Models, Centre de recherche sur les transports, Université de Montréal, Canada.
Folk J.F. (1972a), Models for investigating rail trip time reliability, Studies in Railroad Operations and Economics 5, Report No. R72-40, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, U.S.A.
Folk J.F. (1972b), Some analysis of railroad data, Studies in Railroad Operations and Economics 6, Report No. R72-41, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, U.S.A.
Frank O. (1966), The two-way traffic on a single line of railway, Operations Research 14: 801-811.
Gendreau M. (1984), Etude approfondie d'un modèle d'équtlíbrẹ pour l'affectation des passagers dans. les réseaux de transport en commun, Ph.D. Thesis, Département d'informatique et recherche opérationnelle, Université de Montréal, Canada.
Kleinrock L. (1975), Queueing Systems. Vol. 1: Theory, John Wiley, New York.
Payraud R. (1981), La modélisation du transport des marchandises: le modèle MASUP, Revue générale des chemins de fer: 743-750.
Petersen E.R. (1971a), Bulk service queues: with applications to train assembly times, Working Paper No. 71-2, CIGGT, Queen's University, Kingston, Canada.
Petersen E.R. (1971b), Queues with random batch size with applications to railroad modeling, Working Paper No. 71-77, CIGGT, Queen's University, Kingston, Canada.
Petersen E.R. (1974), Over-the-road transit time for a single track railway, Transportation Science, 8(1): 65-74.
Petersen E.R. (1975a), A primal dual traffic assignment algorithm, Management Science 22: 87-95.
Petersen E.R. (1975b), Interference delays on a partially doubletracked railway with intermediate signalling, Proceedings of the Sixteenth Annual Meeting, Transportation Research Forum, Toronto, Canada.
Petersen E.R. (1977a), Capacity of a single track rail line, School of Business Working Paper No. 77-38, Queen's University,

Kingston, Canada.
Petersen E.R. (1977b), Railyard modeling: Part I. Prediction of put-through time, Transportation Science 11(1): 37-49.
Petersen E.R. (1977c), Railyard modeling: Part II. The effect of yard facilities on congestion, Transportation Science 11(1): 50-59.
Petersen E.R. (1984), Rail analysis interactive language (RAIL): a decision support system, in Transportation Planning Models, M. Florian (Editor), Elsevier Science Publishers B.V. (North Holland): 363-380.
Petersen E.R. and Fullerton H.V. (eds) (1975), The railcar network model, CIGGT Report No. $75-11$, Queen's University, Kingston, Canada.
Petersen E.R. and Taylor A.J. (1982), A structured model for rail line simulation and optimization, Transportation Science 16(2): 192-206.
Powell W.B. (1981), Stochastic delays in transportation terminals: new results in the theory and application of bulk queues, Ph.D. Thesis, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, U.S.A.
Powell W.B. (1986a), Iterative algorithms for bulk arrival, bulk service queues with Poisson and non-Poisson arrivals, Transportation Science 20(2): 65-79.
Powell W.B. (1986b), Analysis of vehicle holding and cancellation strategies in bulk arrival, bulk service queues, Transportation Science: 352-377.
Powell W.B. and Humblet P. (1986), Queue length and waiting time transforms for bulk arrival, bulk service queues with a general control strategy, Operations Research 34(2), 267-275.
Powell W:B. (1986), Approximate, closed form moment formulas for bulk arrival, bulk service queues, Transportation Science 20(1): 13-23.
Reid R.M., O'Doherty J.D., Sussman J.M. and Lang A.S. (1972), The impact of classification yard perfomance on rail trip time reliability, Studies in Railroad Operations and Economics 4, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, U.S.A.
Roy J. (1984), Un modele de planification globale pour le transport routier des marchandises, Ph.D. Thesis, ecole des Hautes Etudes Commerciales, Université de Montréal, Canada.
Roy J. (1985), A tactical planning model for motor carrier operations, ORSA/TIMS Joint National Meeting, Boston, U.S.A.
Schwier C., Ganton T.D. and Macdonald J.A. (1976), A user analyst guide to the Extended Railcar Network Model, CIGGT Report No. 76-3, Queen's University, Kingston, Canada.
Sussman J.M., Marland C.D. and Lang A.S. (1972), Reliability in railroad operations: Executive summary, Studies in Railroad Operations and Economics 9, Report No. R73-4, Department of Civil Engineering, Masssachusetts Institute of Technology,

Cambridge,
Sussman J.M. and Executive Economics Engineerin Cambridge,
Thomet M.A. (197i
IEEE Trar SMC-1, No.
Turnquist M.A. a classificat
Transportat

Cambridge, U.S.A. Executive summary, Studies in Railroad Operations: and Economics 11, Report No. R74-69, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, U.S.A.
Thomet M.A. (1971), A user-oriented freight railroad operating policy, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-1, No. 4: 349-356.
Turnquist M.A. and Daskin M.S. (1982), Queueing models of classification and connection delay in railyards, Transportation Science 16(2): 207-230.
model for rail line in Science 16(2):
ion terminals: new sulk queues, Ph.D. lg, Massachusetts
sulk arrival, bulk -Poisson arrivals,
; and cancellation service queues,
and waiting time e queues with a :h 34(2), 267-275. ment formulas for sportation Science
A.S. (1972), The on rail trip time and Economics 4, usetts Institute of
pour le transport ecole dis Hates il, Canada.
carrier operations, U.S.A.

- user analyst guide T Report No. 76-3,
(2), Reliability in :udies in Railroad 3-4, Department of : of Technology,

DATA NEEDS FOR THE SCAN SYSTEM

Patrick T. Harker

Dejan Jovanovic
Susan F. Hallowell
Decision Sciences Department
The Wharton School
University of Pennsylvania
Philadelphia;-PA 19104-6366
${ }_{\ddagger}^{\$}$
REPORT BN/NSF-87-3-1

FINAL REPORT FOR TASK 3 OF SECOND YEAR STATEMENT OF WORK

January 1988-(revised)

Contents

1 INTRODUCTION 2
1.1 Database Format 3
2 CORRIDOR MASTER FILE 4
3 REPORTING STATION MASTER FILE 5
4 TRACK FILES 7
5 TRAVEL TIMES FILES 10
6 TRAIN MASTER FIIE 15
7 TRAIN SCHEDULE FILES 19
8 PASCAL PROGRAMS FOR DATA PREPARATION 23
8.1 Train Schedules Extracting and Formatting Programs 23
8.2 Program for Creation of SCAN Track and Travel Time Files 36
9 FUTURE DEVELOPMENT NEEDS 49
9.1 Train Performance Simulation Results 49
9.2 Train Schedules 50
9.3 Track Data 50
9.4 Reliability Analysis 50
9.5 Enhancements to the SCAN System 50
9.6 Minor Problem Areas 51
A Track Data File 52
B Train Performance Simulation Report 58
C TPS Train Classifications 61
D The D1260 Schedule File 64
E BN Corridor Timetables 72
F IPS Train Mapping 84
G Time Zone Calculations for Northern Corridor 93

Chapter 1

INTRODUCTION

The Schedule Analysis (SCAN) System is a computer-based tool for the analysis and development of schedules for freight railroad operations. In the final report of Task 2, August 1987 the philosophy and structure of the SCAN system was presented. The purpose of the present report is to describe in detail the data needs for the SCAN system and to discuss the means by which SCAN can be linkeci to the existing databases at Burlington Northern in order to provide easy updating of the data needed by SCAN and/or the schedules in the D1260 file. Thus, this report documents the organization of the databases which "feed" the SCAN system, as well as considering the future data requirements and information systems necessary for the overall system development. Version 1.1 of SCAN provides a solid foundation with which to pursue many attractive research directions and to begin the task of analyzing and updating the schedules on the BN system. However, before such tasks. are realized, SCAN must have ready acccess to a well-organized database. It is the goal of this report to present a framework for consideration at Burlington Northern which will provide such access on an on-going basis. Without such ready access to the data necessary to run SCAN, the impact of SCAN within the organization will be limited at best. Thus, data is the "bottleneck" which must be overcome if SCAN is to achieve its potential at BN .

SCAN's existing database represents the Northern Corridor of Burlington Northern Railroad. Throughout this report, it serves to illustrate file format, naming conventions, data derivation, and developmental considerations. Seven sources of information which are available at BN are identified below. When creating new data sets, it is important to perform calcnlations under the assumptions underlying the SCAN data structures. For example, time travel computations for a new train should have reference to the same time zone as existing trains. Thus, interpretation of these sources (or new sources introduced) should follow a set of consistent, well-defined procedures. The generation of SCAN's input data is presented in later sections.

Data Sources:

1. Track Data File - BN Operating Track Network File (See Appendix A)
2. Train Performance Simulation(TPS) Detailed Report (See Appendix B)
3. Train Idenification Classifications (See Appendix C)
4. D1260.data - The BN Schedule Table (See Appendix D)
5. BN Corridor Timetables (See Appendix E)
6. Train Briefs
7. TPS Train Mapping (See Appendix F)

The database consists of the six file organizations listed below which correspond to unique characterizations of information. Modifying the database (ie., adding, deleting, and updating information) is accomplished by changing existing files and creating new files. After one understands SCAN's file structures, database maintenance is fairly straightforward. This report is divided into sections which separately focus on each of the following file organizationsicontents and their interrelationships. The issues surrounding future needs and software will be presented in the last section.

File Contents:

1. Corridor Master File
2. Reporting Station Master File
3. Track Files
4. Travel Times Files
5. Train Master File
6. Train Schedule Files

1.1 Database Format

SCAN's present database is contained in the same root directory as the SCAN program itself, on the distribution diskette.

Filenames consist of a descriptive name plus a three character extension with the exception of the Train Schedule Master File filename. Some filenames have a fixed length format. In this case, it is important to substitute an underscore, ".", in place of a blank character. For example, two existing filenames are
 ments can appear on any line following the last defined field in a given record. Record comments are preceeded with an asterisk, ${ }^{n * n}$, in examples to emphasize this. However, this is not a requirement. Secondly, some files reserve the first four lines for internal comments, such as a short description or the date of file creation. Lastly, some files require the insertion of internal markers. These markers are not part of the railroad data, rather they are pre-defined character strings having special meaning to SCAN's execution. For example, the end-of-file marker ${ }^{n} 000 \mathrm{END}^{n}$ is interpreted to mean that the last station is encountered. File format specifications are described in later sections using these notations:

- CHAR STRING N - a character string of length N, left justified, blank characters are allowed
- PACKED CHAR STRING N - a packed character string of length N, left justified, blank characters are not allowed, used for filenames, example: cola__sava.trk is PACKED CHAR STRING 10
- INT N - an integer of length N, right justified
- REAL N.M - a real number of length N with M decimal places, right justified, example: 99.99 is a REAL 4.2 which is a five character field.
- ©N - start field at column N

Chapter 2

CORRIDOR MASTER FILE

This file is the main input to the SCAN system. For every corridor in SCAN's database, this file contains its name (as it will appear in the Corridor menu), its Reporting Station Master File filename, and the pathname of its Train Master File. The Corridor Master File's filename is required to be corridor.inp.

File Name: PACKED CHAR STRING 12: "corridor.inp"
Record Format:

> ©1 CorridorName: CHAR STRING 20 ;
> © CorridorMasterFileName: PACKED CHAR STRING $10+{ }^{n} . \mathrm{mst}^{n}$;
> © TrainSchedulePathName: CHAR STRING 32

Example: A listing of corridor.inp is between the dashed lines.

Horthern Corridor	* 1st corridor -name
north_corr.mst	* -reporting station master filename
cicer_seat_tr_filenms	* -file containing all train sehedule filenames
Dumm1 Corridor	* 2nd corridor (test data) ...
dumm1_corr.mst	

Chapter 3

REPORTING STATION MASTER FILE

Each new corridor has a Reporting Station Master File which lists the names of reporting stations' in the corridor from East to West (or South to North) and the names of the Track Files for this corridor. Reporting stations are defined as the stations where alltrains are scheduled. Each Track File contains information about one section of track between two adjacent reporting stations, called a lane. Reporting station numbers are found in the Track Data File. The Master File filename must be 14 characters long: 10 character name plus the extension ".mst". Its name is referenced in the Corridor Master File.

The first four lines of this file are not read by SCAN. They can contain a title or comments. Next, comes the east-most station in the corridor. It has to be a reporting station. Between records corresponding to adjacent reporting stations there must be a string giving the filename containing the data for this lane. The required extension for this file is ".trk" and the convention that is followed is the first five characters are the beginning of the east station name, followed by a " $=$ ", and the first four characters of the west station name. For example, the filename for the lane between Whitefish and Libby is white_libb.trk.

One problem in preparation of schedule data has been the idenification of the set of reporting stations. First, the compilation of this data has turned up inconsistencies with the reporting station numbers. Station number. 502 , which is a yard, is often a reporting station, yet not always. Moreover, there is the difference between the AMTRAK and freight train reporting stations. For example, trains 1007 and 1008 are not scheduled at station 1845 (New Hauser), whereas freight trains are scheduled there. SCAN logic, at least in its present version, requires all trains to be explicitly scheduled at all the reporting stations they are passing. Thus, it is necessary to manually add schedule times. We used linear interpolation to derive an approximation for the time the AMTRAK train passes by the reporting station.

After the west-most reporting station record, the next line must contain the string " 0000000000.000 " and the last line must contain the string ${ }^{n} 0$ END". The number of reporting stations in a corridor can range from 2 to 100.

File Name Format: PACKED CHAR STRING 10 +".mst"
Record Format:
© 1 BNStationNo: INT 5;
e7 StationName CHAR STRING 9;
©1 LaneFileName: PACKED CEAR STRING $10+{ }^{n}$.trk ${ }^{n}$
Example: Northern Corridor Master File north_corr.mst is between the dashed lines.

```
"MASTER FILE" for the Horthern Corridor. Contains all reporting stations from Ciero
                to Everette going sequentially from East to Uest.
            (UPDATED 10/7/87 SFH)
        9 CICERO * Cicero is the yard just vest of Chicago
cicar_eola.try
    33 EOLA
cola__sava.try
    143 SAVAHEA,
savan_lacr.try
savan_lacr.trk
0299 LUCROSSE
    0409 ST CROIX
    st_cr_dayt.trx
    426 DAYTOES B
    426 D\YTORS B
        441 MORTHTOUN
n_tmm_coon,trk
    448 COOM CREE
coon__stap.try
    567 STAPIES
stapl_dilm.try
    673 DILMORTH
dilvo_farg.trk
    679 Flrgo
fargo_mino.trk
    911 צIMOT
minot_vill.try
    1036 WILLISTOM
villi_glas.trk
1192 GLASGOH
glasg_havr.try
1345 HAVRE
harre_shel.trk
    1451 SHELBY
Shalb_rhit.trk 
1601 WHITEFISH
    1718 LIBEY
    libby_troy.trk
    1736 TROY
    troy_sand.trk
    sande_nes_.try
    1845 HEY HUSSE
    ner_h_spok.trk
    ner_h_spok.trk
    1866 SPOKABE
    Bpoka_vena.trk
    2044 vEMATCHEE
    venat_ever.trk
    2166 EVERETT
    0000000000.000 * mark end of file
    O END
    * (also refered to as GNVIN yARD in timetables)
    * completed track data from here down
    1803 SABDPOIHT
```


Chapter 4

TRACK FILES

There is a Track File for each lane ${ }^{1}$ of a corridor. The names of the Track Files must correspond to the names given in the Reporting Station Master File. A Track File filename is 14 characters long; the first five characters are the beginning of the east station name, the sixth character is a " ${ }^{\prime}$ ", followed by the first four characters of the west station name, plus the extension ".trk".

Track Files contain the reporting stations on both ends of the lane, as well as information about the points where trains can meet or pass, called meet-points, given in order from East to West (or South to North). Meet-points include sidings, yards, and beginnings/ends of multiple track sections.

The source data for the Track Files is the Track Data File. Appendix A contains a partial listing of the Track Data File. The following set of rules has been established to create meet-points:

- Treat all multiple track sections as double-track.
- Ignore sidings of length less than 1000 feet:
- Ignore sidings contained in double track sections; double track has precedence. \bar{z}
- Treat double track sections of length less than 3 miles as sidings.
- Yards, which tend to be reporting stations, have a default length of 10,000 feet. SCAN's logic assumes infinite capacity in reporting stations and that no queueing problems arise. Future versions of SCAN may relax this assumption.
- Sometimes there exists no station near (within .5 miles) the beginning/end of a double track section or siding. In this case, it is necessary to create a ${ }^{n}$ dummy" meet-point in order to define the network topology. In the current database, these meet-points are generically assigned names the MEET-PT-A, MEET-PT-B, MEET-PT-C, ..., MEET-PT-N.
- In the current version of SCAN, the graphics routines require that siding length is greater than or equal to 1,100 feet. When it is necessary to create a meet-point, generally to establish the beginning or end of double track sections, assign its "siding" length a symbolic value of 1,100 feet. Version 2.0 will not require the assumption of nonzero siding length.
- When less than 0.1 miles exists between a double track section or a siding followed immediately before or after a double track section, treat this as a continuous case.
The first four lines of each Track File are reserved for comments. Next, comes the meet-points records, starting with the eastern reporting station. Each record contains (1) a serial number, starting with "1", (2) the meet-point type, either ${ }^{n} \mathrm{~S}$ " for siding, ${ }^{n} \mathrm{D}$ " for start of double track, or ${ }^{"} \mathrm{~T}$ " for the end of double track, (3) the meet-point name, and (4) the length in feet of the meet-point. Between fields corresponding to adjacent meet-points is the distance in miles between them. This value is used solely for SCAN's graphics, but should reflect the correct relative distances between meet-points.

[^0]After the last meet-point record (which is also the reporting station at the West end), the next line must contain a zero, ${ }^{n} 0^{n}$, the next line should contain the string " 0 END", and the last line the name of the Travel Time File filename for this lane. This filename is 14 characters long; the name is by convention the same as the the Track File filename but must end with extension ".trv".

```
File Name Format: PACKED %HAR STRING 10 + ".trk"
Record Format:
    O1 SerialNo: INT 2;
    04 Meet-PointType: PACKED CHAR STRING 1 ("S", "D", or "T");
    06 Meet-PointName: CHAR STRING 9;
    016 Length: INT 5;
    01 Distance: REAL 5.1
```

Travel Times Filename: ©1 FileName: PACKED CHAR STRING $10+{ }^{n}$. trv n
Example: Track File for Eola to Savanna lane, cola__sava.trk, is between the dashed lines.

SCAN track data for lane:
EOLA - SAVARNA

1 D EDLA 10000 Fyard and beginning of double track section
5.8

2 T MEET-PT-A 1100
6.0

3 S SUGAR GRO 6442
5.8

4 S BIG ROCX. 8026
4.3

5 S HIMCKLEY 3432
3.5

6 S MORED 6389
4.0

7 S HATERMAN 3379
6.0

8 S SHABBONA 11616
2.7

9 S IEEE 2640
6.2

10 S STEUARD 3749
0.9

11 D ST
7.9

12 I FLAG CENT 1100 end of double track, symbolic length
13 S CHANA 7973
13 S CHAN
5.7

14 S OREGON 4699
9.0

15 S STRATFORD 8184
8.0

16 S CARTEA
7.5

17 S MILLEDGEV 7867
6.0

18 S CHADNICK 7867
8.6

19 S BURKE 7709 4.9

20 S SAVANHA 10000 yard
0
0 ERT
EOLA__SAVA.tIT

Chapter 5

TRAVEL TIMES FILES

Abstract

In order to run SCAN, there must exist a Travel Time File for each lane of a corridor. These travel times are calculated outside of the SCAN system by a Train Performance Simulator (TPS); historical travel times cannot be used due to the fact that they will always contain interaction effects between trains; and thus, are not a true reflection of the running times of trains. Therefore, TPS runs must be made prior to usitit SCAN in order to ascertain the running times for each type of train ${ }^{1}$. The access to the TPS times is the biggest "bottleneck" in providing a smooth flow of data from BN databases to SCAN and will be discussed at length in the conclusion.

The name of the Travel Time File must correspond to the name given in the Track File. It is 14 characters long: the first five characters are the beginning of the east station name, the sixth character is a " $\quad n$, followed by the first four characters of the west station name plus the extension ".trv".

Travel Time Files contain travel times in minutes ${ }^{2}$ between every two adjacent meē̄-points in the lane, in each direction, for each of the TPS train types that are scheduled in the lane. The travel times are found in the detailed TPS Report which contains a list of trains scheduled in a given lane and the travel times every quarter mile. The reference for extracting these times is different for various meet-points. For sidings, use the beginning/end mile post of the siding when travel is in the east/west direction. For yards, the station mile post is used. For multiple track sections, the start/end of the multiple track mile post is used. Consequently, the meet-point distance is the distance from.the start/end of double track in SCAN, not the near-by station which is used in the graphics for the display; i.e., one must be more precise with the meet-point distances for purposes of computing the TPS times than one needs to be for the graphics files..

The first four lines of this file are not read by SCAN, but are reserved for comments. Next, comes the literal uppercase string indicating the direction of travel, either ${ }^{n}$ WESTBOUND" or "EASTBOUND". Westbound travel times must be the first encountered. For each direction and for each TPS train type which is scheduled in this lane, there is a heading record followed by the sequential listing of meet-point serial number and travel times between adjacent meet-points. These meet-points correspond exactly to those in the Track File. Please note, however, that the distances between meet-points found in the track files are used only for display purposes. The heading record contains the train type number, and the train type name. A listing of established train types is presented in Appendix C. Not all the TPS types need be included in all files. But, all the types that appear in the schedule for a given lane should be present in the sequential order of TPS type numbers and meet-point serial numbers.

After the last TPS type for the given direction, the next line on the file must begin with the integer zero, ${ }^{n} 0$ 。

[^1]File Name Format: PACKED CHAR STRING $10+$ ".trv"
Direction: 1 Dir: PACKED CHAR STRING 9, "WESTBOUND" or "EASTBOUND"
Train Heading Record Format:
01 TPSTypeNo: INT 3 ;
05 TPSTypeCode: CHAR STRING 8;
Travel Times Record:
© SerialNo: INT 2 ;
e3 TPSTravelTime: INT 4;
Example: Eola to Savanna lane's Track File, cola__sava.trv, is between the dashed lines.

 \because

5
9
2
10
7
9
10
10
9
6
11
18
4 Intermod
1
2
3
4
5
6
7
8
9

范

13
 0
s.

Chapter 6

TRAIN MASTER FILE

The Train Master File contains pathnames for all Train Schedule Files that are defined on a given corridor. Currently, there exist subdirectories for the Train Schedule Files, such as cicero_seat_trsch.dir. The Train Master File filename can be a string of any length up to 32 characters. However, the filename must correspond to the name given in the Corridor Master File.

As will be discussed in the conclusion, the creation of this file and the detailed schedules for each train is the second "bottleneck" after the TPS times due to the nonunique representation of the schedules vis a vis the given reporting stations and/or the TPS times. Thus, the creation of this file must be automated ifSCAN is to be successfully employed at BN.

Each record in the file is a character string, up to 80 characters long, containing the pathiame and filename of a Train Schedule File. Initial Train Schedule File filenames must end with the extension ${ }^{i}$.org ${ }^{\prime \prime}$, which stands for original, and can have a name up to 32 characters long. Currently, SCAN follows the convention that the filename is five characters; the first characters are idenical to the train idenification code and trailing blanks are substituted with underscores, "-n. Note that trains will appear in the SCAN menus in the same order the corresponding filenames appear in this file. In addition, trains running in an Eastern/Western direction have even/odd numbers. The next section presents the train schedule files in detail.

File Name Format: CHAR STRING 32
Train Schedule Filename Record: ol TrnSchPathname: CHAR STRING 80
Example: A listing of cicer_seat_tr_filenms is between the dashed lines.

Cicer_seat_trsch.dir/107__.0rg Cicer_seat_trsch.dir/108_..0rg Cicer_seat_trsch.dir/111__.0rg Cicer_seat_trsch.dir/112_...org Cicer_seat_trsch.dir/119_..org Cicar_beat_trsch.dir/120_-.0rg Cicer_seat_trsch.dir/121_..org Cicer_seat_trsch.dir/1346..0rg Cicer_seat_trsch.dir/1347..org Cicer_salat_trsch.dir/1348..org Cicer_seat_trsch.dir/143__.org Cicer_seat_trach.dir/144_-..0rg Cicer_seat_trsch.dir/151__.org Cicer_seat_trsch.dir/160__.org Cicer_seat_trsch.dir/161__.org Cicer_seat_trsch.dir/162_..0rg Cicer_seat_trech.dir/1795_.0rg Cicer_seat_trsch.dir/1796_.org Cicer_seat_trsch.dir/1797_.org Cicer_seat_trsch.dir/1798_.0rg Cicer_seat_trsch.dir/195_...07g Cicer_seat_trach.dir/196__.0r8 Cicer_seat_trsch.dir/203_...org Cicer_seat_trsch.dir/204_...0rg Cicer_seat_trsch.dir/206__.07g Cicer_seat_trsch.dir/208_..Org Cicer_seat_trsch.dir/209_...org cicer_seat_trsch.dir/211_...018 Cicer_seat_trsch.dir/212__. org Cicer_seat_trsch.dir/218__.0rg Cicer_seat_trsch.dir/228_.org Cicer_seat_trsch.dir/231_..0rg Cicer_seat_trsch.dir/232_...org Cicer_seat_trsch.dir/241__.org Cicer_seat_trsch.dir/242_..org Cicer_seat_trsch.dir/284_..0rg Cicer_seat_trsch.dir/402__.org Cicer_seat_trsch.dir/403__.0rg Cicer_seat_trsch.dir/600_...org Cicer_seat_trsch.dir/601__.org Cicer_seat_trsch.dir/602_...0rg Cicer_seat_trsch.dir/603__.org Cicer_seat_trseh.dir/627__.0rg Cicer_seat_trsch.dir/631_..org Cicer_seat_trsch.dir/632_..org Cicer_saat_trsch.dir/633__.org Cicer_seat_trsch.dir/634__.org Cicer_seat_4rsch.dir/663_-.0rg Cicer_seat_trsch.dir/664__.org Cicer_seat_trsch.dir/666__.0rg Cicer_seat_trsch.dir/671__.org Cicer_seat_trseh.dir/672_...0rg Cicer_seat_trsch.dir/681_... org Cicer_seat_trsch.dir/682_._.0rg Cicer_seat_trsch.dir/691__.org

Cicer_seat_trsch.dir/692_-.05g Cicer_seat_trsch.dir/693__.05g Cicer_seat_trsch.dir/694__.0rg Cicer_seat_trsch.dir/699__.org Cicer_seat_trsch.dir/807__.org Cicer_sent_trseh.dir/809_-..078 Cicer_seat_trach.dir/810_...0rg Cicer_seat_trsch.dir/835__.org Cicer_seat_trsch.dir/836_..05B Cicer_seat_trseh.dir/837__..0rg
Cicer_seat_trach.dir/838_....0Ig
Cicer_seat_trsch.dir/883_-.0rg
Cicer_seat_trsch.dir/884__. org
Cicar_seat_trsch.dir/897__.org Cicer_seat_trsch.dir/898_....OIE

Chapter 7

TRAIN SCHEDULE FILES

Abstract

Each train scheduled in a given corridor will have a Train Schedule File which contains scheduled arrival and departure times at the reporting stations defined in the Reporting Station Master File. This data is derived from the file D1260. data which contains scheduled running and station dwell times. Changes to train schedules are easy because there is one Train Schedule File per train. Initial Train Schedule File filenames, must end with the extension ".org", which stands for original, and can have a name up to 32 characters long. Currently, SCAN follows the convention that the filename is five characters; the first characters are idenical to the train idenification code and trailing blanks are substituted with underseores, "n. Onlyisain Schedule filenames that appear in the Train Master File will be used by SCAN.

The train heading record consists of (1) Train Identification - the field TRNID in D1260 file, (2) TPS train type name (3) TPS type number (4) Maximum length of the train in feet, (5) BN Train type - the field TERULO in D1260 file and all_trains.ids, (6) the creation date - the field CREDTE in D1260 file, and (7) the effective date - the field EFFDTE in D1260 file. The assignment of TPS train types was performed manually and then the files were edited. Obviously, it would be highly desirable to have an input file which contained a mapping from train ids to train types. In addition, we have used the maximum train lengths from the Train Briefs to derive a very simplified mapping from TPS type to train length; see Appendix C for a table of the train classifications.

Following the train heading record, reporting station records appear in order of travel. Each record contains (1) the reporting station number - see the Reporting Station Master File, (2) exclude flag - " X^{n}, if on, blank otherwise, instructing SCAN to exclude this train from the corridor starting with this reporting station until the gext reporting station which appears in the corridor master file, required only if the train is leaving corridor taking some other route and then returning to it, (3) direction of departure - either " E " for East or "W" for West, (4) number of days since the train departure - all trains have reference starting departure day zero, (5) scheduled arrival time at the meet-point - two digits for the military hour and two digits for the minutes, and (6) scheduled departure time from the meet-point - two digits for the military hour and two digits for the minutes. At present, all times must refer to one time zone. We have arbitrarily selected the Central time zone as our data's reference point. Appendix G contains the peusdocode for a mapping of reporting station number to time zone. In addition, some trains might not explicitly be scheduled at all reporting stations. That is, a train runs through the entire lane between two reporting stations, but is not scheduled at one or both of the reporting stations defining the lane. In this case, we used linear interpolation to calculate an approximate scheduled times. In the future, these times should be determined by some desired rules.

After the last reporting station time record, on the same line following the scheduled departure time, must be the literal string "END OF TRAIN". The last line of the file must begin with the integer zero, " 0 ".

Consider the illustration following the file format specifications. Note, that station number 502 is not a reporting station (as defined in the Reporting Station Master File). But, it may be included in this file without effecting SCAN's execution - SCAN is solely concered with times at reporting stations. Also, it is

not necessary to schedule a train on contiguous track lanes. For example, AMTRAK trains 1007 and 1008 appears east of reporting station number 679 (Fargo) and west of reporting station number 911 (Minot), but not on the lane defined by Fargo to Minot.

File Name Format: CHAR STRING 32, TrainID $+{ }^{n}$.org"
Train Heading Record:
01 TrainID: CHAR STRING 5;
© TPSType: CHAR STRING 8;
014 TPSTypeNo: INT 3;
017 MaxTrainLen: INT 5;
ब23 D1260TrainType: CHAR 1;
e25 CreationDate: PACKED CHAR STRING 6 (YYMMDD);
032 EffectiveDate: PACKED CHAR STRING 6 (YYMMDD)
Reporting Station Time Record:
01 StaNo: INT 5;
07 EXclude: CEAR 1 (either " X " or "n (blank));
-7 Direction: CHAR I (either "E" or "W");
$\bullet 8$ NoDaysSinceDeparture: INT 2;
011 ArrivalTime: PACKED CHAR STRING 4 (HEMM);
016 DepartTime: PACKED CHAR STRING 4 (HHMM)
Example: Listings of cicer_seat_trsch.dir/1007__.org for the Amtrak train 1007 and $\mathbf{z}^{\prime \prime}$
cicer_seat_trsch.dir/001_.org for the intermodal BN train 001, both running at least partially over the Northern Corridor are given between the dashed lines. Data fields 6 and 7 in the reporting station time records are not used by SCAN - they are copied along with the schedule data from the D1260.data file.

```
1007 AMTRAK 1 1000 C 861013 861013
99434 % O 2305 2305 0005 T
    435 W O 2310 2310 0000 0013
    448 Y O 23432343 0000-0154
    567 W 1 0137 0140 0003 0133
    679XH 1 0328 0330 0004 0115 * no amtrak from 679 to 911
    911 W 1 0820 0835 0015 0200
1036 H 1 1035 1040 0005 0219
1192 W 1 1259 1301 0002 0229
1345 W 1 1530 1545 00150285
1601 W 1 2115 2125 0010 0145
1736 | 1 2332 2332 0000 0133
1866 甘 2 0235 0300 00250316
2044 W 2 06160620 00040310
2166 W 2 0930 0930 0000 0035
2182 W 2 1005 1005 0000 0110
2200 E 2 1115 1115 EmD OF TRAIN 1007
0
O01 INTERMOD 4 7000 O 861006. 861006
    9 # O 23302330 0045 C
    33 W 1 0015 0045 0030 0210
    143 W 1 02550255 0000 0325
    299 W 1 0620 0625 0005 0220
    409 W1 0845 0845 0000 0045
    426 W 1 09300930 0000 0035
    441 W 1 1005 1130 01250025
    448 W 1 1155 1155 0000 0100
    502W | 1255 1255 0000 0120
    567 W 1 1415 1420 00050200
    673 W 1 1620 1625 00050010
    679 W 1 1635 1635 0000 0450
    911 W 1 2125 2130 00050245
1036 W 2 00150015 0000 0255
1192 W 2 0310 0315 0005 0250
1345 W 2 0605 0715 0110 0250
1451 W 2 1005 1005 0000 0420
1601 W 2 1425 1430 0005 0155
1718 Y 2 16251625 0000 0045
1736 W 2 1710 1710 0000 0120
```

 441 甘 02323232300000020 * ddded manually approx from TPS
 673 W 10313031300000013 * Added manually from a timetable
 5295 \# 10445045000050112 * this reporting station is not used in SCAY
5383 W 10802080500030215 * this reporting station is not used in SCAR
1451 V 11710171000000245 \# Added manually from a timetable
1718 V 12310231000000022 \# Added manually from a timetable
1803 W 20105010500000065
1845 W 20210021000000025 \# Added mannally proportional to TPS time
$\underset{\sim}{-}$
1803 W $218301830 \quad 00000125$ 1845 स 21955196500000045 1866 甘 22040214001000035 12010 H 22215221500000330 12143 W $301450150 \quad 00050230$ 12289 甘 30420042500050205 12365 W 30630063000000040 12372 甘 $307100710 \quad 0000 \quad 0020$ 12373 E 307300730 EHD OF TRAIH 001 0

Chapter 8

PASCAL PROGRAMS FOR DATA PREPARATION

In order to speed up the preparation of the data base for the Northern Corridor several Pascal programs have been developed: three for the extraction of train schedules from D1260 file and their formatting, and one for the creation of track .trk and TPS travel time .tro files on the lane by lane basis, from 'raw' data" files. Source code of those programs and some comments on their use are given in this chapter.

Please note that the programs were used just as the development tools and thus are far from being finished: many important input items have to be hard- coded, for example. Also, the whole data preparation. process is far from automation. Formatted train schedule files require manual addition of missing reporting stations, setting of Exclude flags, checking of TPS train types, and so on, while extensive manual editing and manipulation of TPS report files and optrinet.data file is required before the data processing program can be applied. However, need for much of the manual work can be reduced by extending the provided programs.

8.1 Train Schedules Extracting and Formatting Progrả̉ms

First task in creation of train schedule files to be used in SCAN is to extract scheduled trains (in this phase; unscheduled ones will be included as well in the later phases), that run over at least the part of the corridor under consideration, from the D1260 schedule file. This is accomplished using pull_trains.pas or pull_trains_stream.pas program. Because of the limitations of Apollo workstations in handling file records longer than 256 characters, special file reading procedures have to be used to read D1260 which has records almost 1500 characters long. Program pull_trains.pas is written in plain Pascal and it reads additional dummy character after every 256 characters read in order to correctly read each record of D1260. However, this program may fail under newer versions of Domain operating system (above 9.35), so more involved pull_trains_stream.pas program was created which uses the operating system stream I/O calls rather than standard Pascal read procedure in order to handle oversize record length.

Except extraction, none of these two programs does any processing of the D1260 data, so that they are written out unchanged, but in a more manageable format to the output file. Note that all the file names are hard-coded.

Listings of pull_trains_.pas and pull_trains_stream.pas are given below:

PROGRM PullTrainsFromD1260;

TYPE
Junk18Type $=$ PACKED ARRAY[$1 . .18]$ OF CHAR
TrainIDStrType = PACKED ARRAY[1..5] OF CBAR;
TimeStrTjpe $=$ PACKED ARRAY[$1 . .4]$ OF CRAR;

StrBType = PACKED ARRMY[$1 . .8$] OF CMAR; Stri3Type = PaCKED ARRAY[$1 . .13$] OF CHAR;

Var e: CBAR; incomat, i,k,s,t, ItainNo, Mats : INTEGER;
TrainIn :
Stathoart : ARRAY[1..62] OF IMTEGER32;
junk15: PACKED ARRAY[F..15] OF CHAR;
junk2: PACKED ARRAY[1..2] OF CHAR:
junti6: PACKED ARRAY[1..16] OF CHAR;
Junt18Atr: ARRAY[1..100] OF Junki8Typa;
(* StatMoList: ARRAY[1..100] of StatHoStrType; *)
SchedTrainsFile, SampleTrainsFile : TEXT;
Ch, Dirch, RegCde,TrTypeCh: CHAR
Perfiype, RunTine, Day, AnTire, DprTine, StaTime : IHTEGER;
TrainID : TrainIDStrType;
TrTypeStr, StatMiane : Str8Type;DatesStr:Str13Type;
StatNo, AbsArrTime, AbsDprTime : Intecer 32;
ArrTimeStr, DprTimeStr, StaTimeStr,RunTimeStr, JunkTimeStr : TimeStrType;
(FUNCTIOK InRange (Aggument: INTEGER32): BOULEAK;
BEGIN
IF (Argument >= 7) AKD (Argument < 1601) (* Whitefish - Seattle *)
THEN InRange := TRUE
ELSE Inrange := FALSE;
END: (* Function *)

BECIN (* Main *)
Open(SchedTrainsFile,'//leviticus/users/bn.dir/schedule.dat', 'orD');
Reset (SchedTrainsFile);
Open(SampleTrainsFile,'Cicer_nhit_all_trns.form', 'UiKHON');
Rerrite (SampleTrainsFile);
Uriteln(SampleTrainsFile,' Cicero-Whitefish;');
Trainlio : $=0$;
FOR $t:=1$ TO 448 DO (For every sched. train (*) BEGIM
writeln(' in for loop')
TrainIn : $=$ FALSE

FOR 1 := 1 TO 5 DO
begin
Read (SchedtrainsFile, TrainID[i]):暗ite (TrainID[i]) and;

Friteln(' after first read
in for loop');
FOR $i=1$ TO 15 DO
Read (SchedtrainsFile, juak15[i]);
rriteln(' after 2nd read
in for loop');
(* FOR i : = 1 TO 5 DO \#)
Read (SehedtrainsFile, StatNodrr [1]);
Uriteln(TrainId, StatNolrr [1]:6);
FOR $i=1$ TO 16 DO

```
    Read( SchedtrainsFile, junk16[i] ]);
If InRange( StatMohrr[ i ]) THEM TrainIn := TRUE;
B := 1; incount := 41;
MHILE StatModtr [ E ] > 0 DO
    BEGIM
        s := s + 1; Read( Schedtrainsplle, StatNoArr[ s ] );
        incount := Incount + 5;
        IF InRange( StatHolur[ s ] ) THER TrainIn := TRUE;
        FOR i:= 1 TO 18 DO
            BEOIH
                Raad( SchedtrainsFile, Jumk18&rr[s,i ] );
                incount := incount + 1;
                IF incount = 256 THEN
            BEGIM
                    Read( SchedtrainsFile, ch );
            incount := 0;
            END; (% II *)
            END; (* For i=...*)
    END; (* While StatNolyr ... *)
Mars := s - 1;
FOR y := s+1 TO 61 DO
    BEGI:
            Read( SchedtrainsFile, StatMoArr[ k ] );
            incount := Incount + 5;
            FOR i := 1 TO 18 DO
            BEGIN
            Read( SchedtrainsFile, Junk18Arr[ y,i j] );
            incount := incount + 1;
            IF incount = 256 THEM
            BEGIM
                Read( SchedtrainsFile, ch );
                incount := 0;
            END; (* II*)
            END; (* For i=...*)
    END; (* For k=...*)
Read( SchedtrainsFile, StatNolur[ 62] );
FOR i := 1 TD 2 DO
    Read( SchedtrainsFile, junk2[ i ] );
Readln( SchedtrainsFile);
IF InRange( StatNohrr[ 62 ] ) THEN TrainTn := TRUE;
IF (TrainID < '001 ') OR (TrainID > '899 ')
    THEN TrainIn := FALSE;
IF TrainIn THER
    BEGIN
    Trainto := Trainlio + 1;
        Writeln( Trainlio:3,' ',TrainID, StatHoNrr[ 1 ]:5,jumak16 );
    Uriteln( SampleTraiosFile, TrainID, junik15 );
    Writeln( SampleTrainsFile, StatNodmr[ 1]:5,junk16);
    FOR s := 2 TO MarS DO
    Hriteln( SampleTrajosFile, StatNodre[g ]:5,
```


Jumk18Lur [s]);
 Mritels(SampleTrainsFile, Stathodrr[62]:5, junk2, , EMD OF TRuIM ',Trainid)
 EMD; (* If TrainIn *)

EHD; (* For t=...*)
 END (* Main *)

```
PROGRUM PuIlTratngFromD1260_Streax;
Kinclude '/sys/ins/base.ins.pas';
trnclude '/sys/ins/error.ins.pas';
Zinclude '/sys/ins/pge.ins.pai';
%include '/ays/ins/streams.ins.pas';
const
    blen =1;
    LF = 10;
    marlen = 256;
    Space = 32;
    Carriage_Return = 13;
    Line_Feed = 10;
    Tab=7;
```

TYPE
Maximum_Train_String = packed array [1..30] of char;
$\ddot{\Rightarrow}$
Train_Header_String_Type $=$ packed array[1..20] of char;
var
SchedTrainsFile, SampleTrainsFile : TEXT;
i : integer;
Train_Header_String : Train_Header_String_Type;
Line_Humber : intager;
j: integer:
but_ptr.
return_ptr : -char;
orappar, tot : integer;
return_lgth : integer32;
butiolgth : 1integer:
statt : status $\$ \mathrm{st}$;
stream_id \quad : status_st;
seck_key : strean_\$SK_t
\pm : tart:

FUNCTION InRange (Argument: INTEGER32): BOOLEAN;
BEGIM

```
        IF (Argument >= 7) AHD (Argument < 1601) (* Cicero - Whitefish *)
            THEN InRange :* TRUE
            EISE Inrange := FALSE;
    END; (* Function *)
```



```
procedure error_check(statt : staitus_$t);
begin
    if statt.all<>status_$0% then begin error_$print(statt); Pgm_Serit; end;
end;
function Get_Long_Integer : integer32;
const
Maximum_Digits_per_Long_Integer = 64;
var
    Current_Long_Integer_Array : array[1..Marimur_Digits_per_Long_Integer] of char:
    Total_Digits_in_Long_Integer : integer;
    Finished_Collecting_Digits_for_Integer : boolean;
    Current_Long_Integer : integer32;
    Index : integer;
begin
    (*
        * Initialize integer digit array to spaces (chr 32).
    *)
    for Index := 1 to Marimum_Digits_per_Long_Integer`co 
        Current_Long_Integer_drray [Index] := chr(Space);
    (*
    * Initialize number of digits to zero.
    *)
    Total_Digits_in_Long_Integer := 0;
    *
        * Get the first character of the digit string.
    *)
    stream_$get_rec(stream_id,
                    addr(buf_ptr),
                    blan,
                    return_ptr,
                    retwri_lgth,
                    seek_key,
                    statt);
    error_check(statt); (* check status of last get char *)
    ohile (Return_Ptr" = chr(Space))
        or (Return_Ptr* = chr(Carriage_Return))
        or (Return_Ptr= = chr(Line_Feed))
        or (Retura_Ptr' =chr(Tab)) do
            *
            * Elininate vhitespace before the digits begin.
            - Should really use sats instead of the or statements
            * in the vhile loop above
            #)
            begin
            stream_Sget_rec(stream_id,
```

```
                addr(buf_ptr),
                    blen,
                    return_ptr,
                    return_lgth,
                seek_key.
                8tatt);
    end;
    (*
    *)We have sonething, should be a digit, so begin processing.
    *)
    for Index := 1 to 5 do
```



```
        * Temporary kludge.
        ***********)
    begin
{
    if (ord(Return_Ptr') >= ord('0')) and (ord(Retum__Ptr`) <= ord('9'))
        then
            begin
            (*
                            Increment the total number of digits.
                    *)
                    Total_Digits_in_Long_Integer := Total_Digits_in_Long_Integer + 1;
                    (*
                    * Store the current digit in the string array.
                    *)
                    Current_Long_Integer_Mrray[Total_Digits_in_Jong_Integer]:= Return_Ptr*;
            end
        else
            begin
                    * Current character is not a digit. Just report the error to the
                    * sereen and ignore it, assuming it mas line noise or extraneous
                    * in some gay. Should really do something more clever here.
                    *)
                    Friteln('Yarning: non-digit encountered in file.');
            end;
}
                    (*
                    * Increment the total number of digits.
                    OotaI_Digits_in_Long_Integer := Total_Digits_in_Long_Integer + 1;
                    (%)
                    * Store the current digit in the string array.
                    *)
                    Current_Iong_Integer_Array[Total_Digits_in__ong_Integer] := Retum_Ptr`;
            (*
            * Get the next character from the input atream.
            *)
            stream_$get_rec(stream_id,
                addr(buf_ptr).
```

```
                    blen,
                    retura_ptr,
                    return_ptr,
                    seek_key,
                    statt);
end;
Current_Long_Integer : \(={ }^{-1} 0\);
for Inder : \(=\) Total_Digits_in_Long_Integer domato 1 do
```


begin

```
Current_Long_Integer := Current_Long_Integer +
(round ( \((\operatorname{ord}\) (Current_Long_Integer_Array[Index]) - ord('0'))
* (exp(ln(10) * (Total_Digits_in_Long_Integer - Index)) ));
qriteln('Current digit is : ', Current_Long_Intager_Array[Inder],
- and ruming total is ', Current_Long-Integer);
end;
vriteln('Final integer vas: ', Gurrent_Long_Integer):
Get_Long_Integer := Gurrent_Long_Integer;
end;
```

procedure Return_String(Number_of_Characters_to_Read : integer): var

Current_String : Maximum_Train_String;
Index : integer:
begin
for Index : $=1$ to 30 do
Currant_String[Index] :m ' ';

begin

Current_String[Index] := Return_Ptr";
(

* Get the next character from the input stream.
*)
stream_\$get_rec (stream_id,
addr(buf_ptr)
blen,
return_ptr,
ceturn_1gth,
seek_ley,
statt);
arror_check(statt); and;

Index := 1;
vaile ord(Current_String[Index]) <= ord('0') do begin

Current String[Inder] : $=$ ', ';
Index : = Index + 1; end;
if Current_String 〈>' ' 'then begin

-riteln(Current_String):

rriteln(SampleTrainsFile, Current_String) end;
end;

BECIN (* Main *)
Line_Number : $=0$;
stream_Sopen('//leviticus/users/bn,dir/schedule.dat', 37, strear_\$read, stream_sunregulated, stream_id, statt);

exror_chect(statt);

Open(SampleTrainsFile,'Cicer_Mit_all_tras.form', 'UnXROW');
Rerrite (SampleTrajasFile) ;
Uriteln(SampleTrainsFile, Cicero - Whitefish;);
for i := 1 to 20 do
Train_Header_String[i] := ';
repeat
FOR I := 1 TO 20 DO
BEGIN
stream_\$get_rec(stream_id, addr(buf_ptr), blen, return_ptr, re*um_lgth, seek_key, statt):
arror_chect(statt);
Train_Header_String [I] : =FETURN_PTR"; END;
(* check if train is int scheduled tr. range: 0???? - 8???? *)
if. (ord(Train_Header_String[1]) $>=$ ord(' 0^{\prime})) and
(ord(Train_Header_String[1]) $<=\operatorname{ord}(18 \prime)$) then begin
Line_Number : = Line_liumber + 1;
ETiteln('Processing line: ', Line_Humber);
Eriteln('Train header: ', Train_Header_String);
rriteln(SampleTrainsFile, Train_Header_String);
Return_String(21);
for $j:=1$ to 60 do
Return_String(23);
vhile Return_Ptr" <> chr (LF) do
begin
stream_\$get_rec (strean_id, addr(buf_ptr), blea, return_pti, return_Igth, seck_key, statt);
error_check(statt);
if Return_Ptr* > chr (IF) then
begin
Exite (SampleTrajnsFile, Return_Ptr"); -IIte (Return_Ptro); end;
end;
Erite(SampleTrainsFile, ' EAD OF TRAIK '):
rite(' END OF TRAIN ');
for $j:=1$ to 5 do
begin

```
                #rite(SampleTrainsFile, Train_Header_String[j]);
                qrite(Train_Header_String[j]);
            end;
        writeln(SampleTrainsFile);
        miteln;
        and (* if *)
    else
        begin
Line_Humber :- Line_Number + 1;
writeln('Processing line:', Line_Humber);
        repeat
            stream_Sget_rec(stream_id, addr(buf_ptr), blen,
                    saturn_ptr, ratum_lgth,
                    sook_key, statt):
        error_check(statt);
        until Return_Ptr= = Chr (LF);
end;
    until (statt.all * stream_Send_of_file);
Writelo('EOF');
    Writeln( SampleTraingFile,'EMD OF FIIE');
    stream_$ciose (stream_id, statt);
    error_check(statt);
END.
```

Second step in the creation of train schedule files consists in processing the origin departure time and subsequent running and dwell times from D1260 to arrive at the absolute arrival and departure times at each reporting station, using the reference time zone. Also, train length and TPS type are assigned to each train at this stage, but those items have to be checked manually. Final output of the second step are schedule files, one for each train, in the format usable by SCAN. Note, however, that final checking of TPS type and train length data, as well as addition of missing reporting stations and setting of Exclude flags have to be done by manual editing of the schedule files.

Second step is accomplished by proc_truin_sched.pas, which reads formatted D1260 data file, produced by the pull_trains.pas program in the previous step. Input file name is hard-coded in the program, as well as the name of the train schedule directory, while schedule file names are assigned by the program.

Note that once the problem of reading the D1260 file by the Apollo workstation is permanently solved, these two steps can be merged using just one schedule files creating program without the intermediary file. Also, the whole process can be automated to great extent by expanding the logic built into these programs.

Listing of proc_train_sched.pas is given below:

Progray ProcessTrainSchedules;
(* Purpose: to read fornatted schedule tile, to daternise scheduled arrit. 2 dprt.
times at reporting atations, for a given train schedule,
and to write that schedule to a fille nsable by SCAN,
for each train in the formatted schedule file
*)
CONST DirPatbStrConst = \scan.dir/Cicer_seat_trsch.dir/' ;
(* 23 to $52=30$ chars *)
FilellameExtConst ='.org';
TYPE

FileNameExtType = PACKED ARRYY[1..4] OF CHAR:
TrainIDStrType = PACKED ARMAY[1..5] OF CHAR;
TimeStrType = PACKED ARRAY[1..4] OF CHAR;
Str8Type = PACKED ARRAY[1..8] OF CHAR;
Stri3Type = PACKED ARRAY[1..13] OF CHAR; VAR

DitPathStr : PACKED ARRAY[1..31] OF CHAR;
FileNamaExt : PACXED ARRAY[1..4] OF CBAR:
TrFileName : PAGKED ARRAY[1..40] OF CHAR;
ch. Dirch, RegCde,TrTypeCh: CHAR
PeriType, RunTine, Day, ArrTine, DprTine, StaTime,
TZoneShift, Length, i, k, z, t : IMTEGER:
TrainID : TrainIDStrType;
IrTypeStr, StatHane : Str8Typei
DatesStr:Str13Tjpe;
StatNo, AbsArrTine, AbsDprTine : InTEGER32
ArrTimeStr, DprTimeStr, StaTimeStr,RunTineStr, JunkTimeStr : TimeStrType;
TrainSchedFile, ProcTrainSchedFile, TrIDFile : TEXT;
Trictron Timevalue (TStr: TimeStrTTpe) : THTEGER
(* Converts time char. string in format hHM to time in minutes *)
VAR Ordo, Value : INTEGER;
BEGIH
Ordo := Ord('0')
TimeValua $:=(\operatorname{Ord}(\operatorname{TStr}[1])-\operatorname{OrdO})=10+\operatorname{Ord}(\operatorname{TStr}[2])=0 r d 0) * 60$
$+($ Ord $(\operatorname{TStr}[3])-\operatorname{OrdO})=10+\operatorname{Ord}(\operatorname{TStr}[4])-\operatorname{OrdO}$;
凸
ERD; (* Function *)

```
(****************************************************************************************)
PROCEDURE TimeStr( Minutes: IHTEGER; VAR TimeString4 : TjmeStrType );
    (* Converts integer no. of minutes into 4 char. time string vith format: *)
    (* Himam
                                    *)
    VAR DrdO, i : IHTEGER;
        time : ARRAY[ 1..4 ] OF INTEGER;
    BEGIM
    DirPatbStr := DirPathStrConst;
    FileNameErt := FilellameErtConst;
    OrdO := Ord('0');
    time[1 ] := Minutes DIV 600; (* BOOR DECADE CIPHER *)
    time[2] := Kinutes DIT 60-10* tine[ 1 ]: (% HOUR CIPGER *)
    time[ 3 ] := ( Minutes KOD 60 )DIV 10; (* MINOIES DECADE CIPHER *)
    time[4] := ( Minutes KOD 60) - 10* tive[ 3 ]; (* MINUIES cipher *)
    FOR 1:= 1 TO 4 DO
        TimeString4[i] := Chr(time['i ] + OrdO )
(*
Mrite( Minutes,' '); FOR i := 1 T0 4 DD Mrite( Time[ i ],' ');
Writeln( TimeString4 )
*)
    END; (* Procedure *)
```

```
    Ordex := 1000; (% One thou. - 4th decade position m)
    RealHo := 0;
    FOR c := 1 TO 7 DO Read( Trackfile, Str7[ c ]);
    FOR e := 1 TO 7 DO IF Str7[ c ] = ' THEN Str7[ c ] := '0';
    FOR c:= 1 TO 7 DD IF Str7[c.] <> '.'THEN
    BEGIK
        RealNo := Realko + Order *(Ord( Str7[[ c ] ) - Ascio );
        Order := Order /10 :
    END;
(*
Mriteln( Str7):
*)
    EHD; (* Procedure *)
(*............................................................................
PROCEDURE ReadSTRRee( VAR TrackFile : TEXT;
            VAR HeetPoint : MeetPointRecType );
VAR e : IHTEGER; ch : CHAR;
BEGIK
    UITH MeetPoint DD
    BEGIH
        ReadReal_7_2_Str( TrackFile, BegMP ):
        ReadReal_7_2_Str( TrackFile, EndMP ):
        ReadReal_7_2_Str( TrackFile, Length);
Uriteln( 'STT', BegMP:8:2, EndMP:8:2, Length:8:2,);
    END; (# Uith *)
    Readin( TrackFile )
END; (* Procedure *)
\(\qquad\)
```

 PROCEDURE ReadSTARec(VAR TrackFile : TEXT;
 VAR CunrStaNo : INTEGER32;
 VAR MeetPoint : MeetPointRecType);
 VAR e : INTEGER; Ch : CHAR; junhtiP : REAL;
 BEGIM
 UITH MeetPoint DO
 BEGIN
 RaadReal_7_2_Str(TrackFile, jumklP);
 (*
Writeln('STA', Jumbrp:7:2);
*)
ReadReal_7_2_Str(TrackFile, junklp)):
ReadReal_7_2_Str(TrackFile, MP);
Read(TrackFile, Stalio);
ReadStr9(TrackFile, Stallame):
CurrStalo := Stallo:
Mriteln('STA', JunkiP:8:2, Jm\&\MP:8:2,MP:8:2, Stalo:6, StaName:10);
END; (* Yith *)
Raadln(TrackFile)
END: (* Procedura *)

```
```

(*..)
PROCEDURE ReadYDJRec(VAR TrackFile : TEXT;
VAR YardJunction : YDRecTjpe);
VAR c : IMtEGER; ch : CHAR; TrackHoStr : String5Type;
BEGIN
YITH YardJunction DD
BEGIM
ReadReal_7 2_Str(TrackFile, MP);
ReadStr5(TrackFile, TracklloStr);
Read(TrackFile, AccessDirCh, ch, YardHo);
Uriteln('YDJ', RP:8:2, TrackNoStr, AceessDirCh, ch, YardMo:6);
END; (* Uith *)
Readln(TrackFile);
ERD; (* Procedure *)
(*-----------m----~------ Main
BEGIN (* Main *)

* PClassHo- \# of train performance classes, PtypeStr- name of the performance class *)
PClassHo := 6; PTypeHo[0] := 1; PTypeNo[1]:= 1; PTypeNo[7] := 7;
PTypeNo[2] := 2; PTypeNo[3]:= 3; PTypeNo[4]:= 4; PTypeNo[5] := 5;
PTypeNo[6] := 6;
PTppeStr[1] := 'mMTRAR ';
PTypeStr[2] := 'ExPEDITE';
PTypeStr[{ 3]:= 'DSTR ';
PTypeStr[4] := 'INTERMOD';
PTypeStr[5] := 'prIfrat ';
PTppeStr[6] := 'SECFRT ,;
PTypeStr[7] := 'reGFRT ';
(*)
vriteln('******enter main program ');
TrackFileName :='tps.dir/ .trk' ;
TravTimeFilelame :='tps.dir/ .trv';
FOR i := 1 TO MarNoOiMeetPoints DD
HeetPoint[i].Length := 0;
OPEM(TrackDatFile, ConsTrackDatafileName,'0ID');
RESET(TrackDatFile);
(* Read through track data file until the beginning stat. line *)
REPEAT
ReadRecID(TrackDatFile, RecIDScalar);
CASE RecIDScalar OF
YRD : Readln(TrackDatFile);
LSY : Readin(TrackDatFile);

```
```

 THK : Raadln(TrackDatFile);
 STX : Readln(TrackDatFile);
 ISJ : Readin(TraciDatFile);
 YDJ : Readln(TrackDatFile);
 STA : ReadSTARec(TrackDatFilo,CurrStaNo, MeetPoint[0]);
 END; (* Case.*)
 UNTII CurrStaNo = BegStaNo;-
 *riteln('\#****found first mtation going to vork...');

```
    MeetPoint[1]:* HeetPoint[0];
    MeetPoint[ 1 ].Langth := BegStaLangth;
    Gurrifptio := 1;
    REPEAT
        ReadRecID (TractDatFile, RecIDScalar );
        CASE RecIDScalar OF
        YRD : Readlo ( TrackDatFile );
        ISN : Readin( TrackDatFile );
        TRK : Readin( TrackDatFile);
        STK :
            BEGIN
            Currifptio := Curriptiko +1 ;
            ReadSTKRec (TrackDatFile, MeatPoint [ CurrHptNo ] );
            ReadRecID ( TrackDatFile, RecIDScalar'):
            ReadSTARec ( TrackDatFile, CurrStalio, MeetPoint [GurifptNo ] );
            EMD; (* STR case *)
        ISJ : Readln( TrackDatFile) i
        STA : ReadSTARec (TrackDatFile, GurstaNo, MeetPoint[0]):
        YDJ:
                Readin( TrackDatFile)
    END: (* Case )
UIITIL CurrStaHo = EndStaHo;
IF MeetPoint[0].Staifo = EndStaHo
    THEN MeetPoint[ Curriptiso ] := MeetPoint[0];


FOR i := 1 TO CurrMptNo DO
    IF KeetPoint [. \(\ddagger\) ].Length \(=0\) THEM
    BECHI
        MeetPoint [ 1 ]. EnduP : : MeetPoint[ 1 ].KP;
        KeetPoint[i] ].Begrip := MeetPoint[ 1 ]. HP ;
    END;

\section*{CLOSE( TrackDatFile)}

```

FOR c := 1 TO 5 DO
IF MeetPoint[1].Stallame[e] <> ,'
THES TrackFileName[c+8] := MeetPoint[1].StaName[c]

```

```

TrackFilellame[6+8] := '_':
FOR e := 1 TO \& DO
IF MeetPoint[CurrMptNo].Stafame[c]<>,
THEN TrackFileName[e+6+8] := MeetPoint[CurrMptNo].StaHame[e]
ELSE TrackFileMame[c+6+8] :m '_';

```
FOR \(e:=1+8\) TO \(10+8\) DO
    TravTinefileliame[c]:=TrackFileName[c];
Writell ( '**

DirStr[ West ] := OutboundStr; DirStr[ East ] := InboundStr;
RoDtMeetPoints := CurrMptHo; ;
Open( TPSRapFile, ConsTPSrapFileliame,'O[D')
Reset ( TPSRamFile):
rriteln('*****opening tpsravFile ', constparainfilename);
    If ARTRAKDATA = 'YES' - ;
    THEN BEGIK
rriteln(' *****opening tpsamtravFile ', constpsamtravijlename);
    Open( TPSAmtRafFile, ConsTPSAmtravFileliame, 'UसKMOHE');
            Reset ( TPSAmtRanfile) ;
    END;
FOR trDir := West TO East DO
BEGIR
CASE tIDIT OF
West:
BEGIM
BFPEAT
    Readin( TPSRarFile):
    Read (TPSRavFile, ch );
    IF ch = '1' THER FOR i := 1 TO 5 DO Readin( IPSRamfile );
    Read (TPSRanFile, MilePost);
                (* here *)
UHTIL ( (MilePost-0.2) <m MeetPoint [ 1.]. EndMP) AHD
                            ( MeetPoint[1].EndrP < ( MilePost+0.2) ) ;
FOR i :m 9 TO 15 DO Read (TPSRavFile, ch);
FOR i := 16 T0 23 DO Read (TPSRamFile, HamesStr[ i - 15]);
Read ( IPSRanFile, juntint,CumSegLengthorr[1],
    jumbint);
(* Write( MilePost:7:2, Name8Str:9, CumSegLengtharr [ 1 ]:6:1); )
FOR k: = 2 TO PCLassHio DO
    Read (TPSRapFile, junkint, TPSRealTimelar [ TrDir, k, 1]);
```

FOR m:= 2 TO HoOHMeetPoints DO
BEGIM
REPEAT
ReadIo(TPSRavFile);
Read(TPSRavFile, ch);
IF ch = '1' THEN FOR i := t/{O 5 DO ReadIn(TPSRamFile);
{\#riteln(''****** mp ', m:2,- '= ', MeetPoint[m].EndMP:7:2,
, current fps mp is ', milepost:7:2);}
Read(TPSRarFile, MilePost);
UHTIL ((MilePost-0.2) <m MeetPoint[m].EndMP) AHD
(MeetPoint[=].EndMP <= (MilePost+0.2)) ;
FOR i := 9 TO 15 DO Read(TPSRavFile, ch);
FOR i ;m 16 TO 23 DO Read(TPSRavFile, Name8Str[i - 15]);
Read(TPSRamFile, jumint, CumSegLengthhrr[m],
junkiat);
{Nrite(MilePost:7:2, Hame8Str:9, CumSegLengthirr [m]:6:1);}
SegLengthltr[m-1]:= ComSegLengthArr[m] - CumSegLengtiulrr[m-1];
FORk:= 2 TO FCLassMo DO
FOR y :
Read(TPSRarFile, junkint, TPSRealTimedrr[TrDir, k, m]);
{Hrite(TPSRealTimelar[TrDir, k, m]:6:1);}
TPSTravelTimeArr[TrDir, k, m-i] := Round (TPSRealTimeArr[.TrDir,
k, m.] - TPSRealTineAIT[TIDir, k, m-1] + 0.19):
END; (* For k :=...*)
Writeln;
END; (* For m=...*)
(* Read Amirak TPS file: *)
F AMTRAKDATA = 'YES'
THEN BEGIM
REPEAT
Readln(TPSAmtRanFile);
Read(TPSAmtRarFile, ch);
IF ch : '1' THEN FOR i := 1 TO 5 DO Readln(TPSAmtRavFile);
Read(TPSAmtRavFile, MilePost);
UNTIL ((MilePost-0.2) <= MeetPoint[1].EndMP) ARD
(MeetPoint[1].EndMP <= (MilePost+0.2)) ;
FOR i := 9 TO 15 DO Read(TPSAmtRamFile, ch);
FOR i := 16 TO 23 DO Read(IPSAmtRavFile, Kame8Str[i - 15]);
Read(TPSAmtRavFile, junkint, CumSegLengthdrr[1].
junkint);
Mrite(MilePost:7:2, Mame8Str:9, CumSegLengthhtr[1]:6:1);
FOR k:= 1 TO 1 DO
Read(TPSAmtRavFile, jumkint,
TPSRealTimeAtr[ITDir, k, 1]);

```
FOR \(x:=1\) TO 1 DO Urite (TPSRealTimeltri[ TrDir, k, 1 ]:6:1);
Writeln;
    FOR m : = 2 TO NoOAMeetPoints DO
    BEGI:

\section*{Uriteln}
```

FOR n :m HoDtMeetPoints - 1 DOMNTD I DO
BEGIM
Rapent
Readln(TPSRamFile);
Read(TPSRavFile, ch);
IF ch = '1'. THEH FOR i :m i T0 5 DO RaadIn(TPSRAvFile);
Read(IPSRamFile, MilePost);
mriteln('eastbound mp = ', MilePost:7:2, ' ', MeetPaint[m].BegMP:7:2);
UNTIL ((Milepost-0.2) <= MeetPoint[[].BeghP) ARD
(MeetPoint[\#].BegiP < (MilePost+0.2));
FOR i := 9 T0 15 DO Read(TPSRasFile, ch);
FOR i := 16 TO 23 DO Rand(TPSRaqFile, DummyeetPointHame[i - 15]);
Read(TPSRayFile, junkint, DummySegLength, junkint);
Hrite(MilePost:7:2, DummyeetPointName:9, DumySagLength:6:1);
FOR k := 2 TO PClasslio DO
BEGIH
Read(TPSRamFile, junkint, TPSRealTimehrr[TrDir, k,`]);
Write(TPSRealTimeArr[TrDir, k, m]:6:1);
TPSTravelTimeArr[TIDir, k; m]:m Round (TPSRealTimeArr [C TIDir,
k, m] - TPSRealTimeArT[TrDir, k, m+1]+0.39);
EMD; (* For k :m...*)
Mriteln;
EMD; (* For mm...*)
(* Read eastbound Amtrak IPS times *)
IF AMTRARDATA = 'VES'
THE\# BEGIZ
REPEAT
Readln(TPSAMTRagFile);
Read(TPSAMTRamFile, ch);
ONTIL Ch m'E';
Uriteln(ch):
REPEIT
Readlo(IPSAITRatFile.);
Read(IPSAKTRamFile, ch);
IF ch = '1' THEN FOR i := 1 T0 5 DO Readln(TPSAMTRavFile);
Read(TPSAMTRagFile, MilePost);
UIIII ((MilePost-0.2) << MeetPoint[MoOMKeetpoints],MP) ARD
(MeetPoint[HoCmfeatpoints].MP <= (MilePost+0.2)) ;
FOR i := 9 T0 15 DO Raad(IPSAMTRavFile, ch);
FOR i := 16 T0 23 DO Read(TPSAMTRamFile, DinuymeetPointHame[i - 15]);
Read(IPSMMTRamFile, junkint, DunxySegLength,
jumkint);
Urite(MilePost:7:2, DummyleqtPointMare:9, DummSegLength:6:1);
FOR k:= 1 TO 1 DO
Read(TPSAMTRavFile, junkint,
TPSRealTimedrr[TrDir, k, HoOfMeetPoints]);

```
```

 #EGIM
 Uriteln(TPSTinesFile, PTypeNo[y]:3, PTypeStr[PTypeNo[, k]]:9);
 FOR m:= 1 TO YoOMMeotPoints - 1 DO
 Uriteln(TPSTimeaFile, m:2,', TPSTravelTimalrr[TrDir, k, m]:3);
 EMD; (* For K=,...*)
 IF PClassho = 6
 thes begit
 Mritela(TPSTinesFile, PTypeHo[7]:3, PTypeStr [PTypeHo[7]]:9);
 FOR m:= 1 TO HoOfHeetPoints - 1 DO
 Yriteln(TPSTimesFile, m:2,' ', TPSTravelTimalrr[TrDir, 6, m]:3)
 EMD;
 Uriteln(TPSTimesFila, 0:3);
 EMD; (* For TrDir=...*)
 Close(TPSTimesFile);
 \#riteln('******** before opening .trk file *********));
{
OPES(ScanTrackFile, TrackFilelame);
RENRITE(ScanTrackFile);
Uritela(ScanTrackfile,' SCAN track data for lane:');
Mriteln(ScanTrackFile, MeetPoint[1].StaHame,' - '.
MeotPoint [CurrlptMo].StaMame);
Writeln(ScanTrackFile);
Mriteln(ScanTrackFile);
FOR m := 1 TO CumTMptHo - 1 DO UITH MeetPoint[m] DO
BEGIM
Mriteln(ScanTrackFile, m:2,' S ',Stalame,' ',Round(Length*5280):5);
(* Uritein(ScamTrackFile, (MeetPoint[m+1],MP - MP):7:2);
Writeln(ScanTrackFile, SegLength\rr[m]:6:1);
END;
WITG MeetPoint[CurryptMO] DO
Vriteln(ScanTrackFile, CurrMptMo:2,' S ',StaName,' ',Roumd(Lengthw5280):5);
Writele(ScanTrackFile, 0:2);
Writeln(ScanTrackFile, '0 ERD');
Yriteln(ScanTrackFile, TravTimeFileHame);
Uriteln(ScanTrackFile, TravTineFilelame);
cLOSE(ScanTrackFile);

```
END. (* MiNI *)
will require a much more powerful software engine than currently exists in SCAN. The users of SCAN must weigh the merits of this detail versus the increased computational and data requirements.

\subsection*{9.2 Train Schedules}

The next major issue in the routine use of SCAN involves the creation of train schedules and the updating of these schedules in the D1260 file. As was stated in the original SCAN report, three phases of analysis are envisioned: Phase I: the analysis of all scheduled traffic moving over a cortidor,
Phase II: Phase I plus the addition of a sample (random or average?) of the unscheduied traffic,
Phase III: Phase II plus the addition of a sample (?) of maintenance work on the corridor.
In all three phases, database software is needed in order to extract ther schedules from the D1260 files or the historical files and to put these schedules into the SCAN format. Also, this software should provide the analyst with the capability to perform scenario analysis \({ }^{3}\) in which new trains are introduced into the analysis. Given the complexity of the databases, this software should reside on the mainframe and simply feed the Apollo systern. At this point, the exact form in which this sacenario analysis will be implemented is unclear due to the "fuzziness". of the user needs. This item should be seriously considered in the final version of SCAN.

Another missing aspect of the schedules involves updating of the D1260 file after a SCAN analysis is performed. The SCAN system currently provides no reports or updates to the schedules due to the fact that it is unclear how these updates should be performed. The SCAN software can easily be updated to provide ".new" scheduie files as opposed to the "org" files which create the schedules used in SCAN. The uploading of these changes to the D126̈́" file remains a major software task before SCAN is to be successfully employed.

\subsection*{9.3 Track Data}

The third issue involves the automation of the track data. Currently, no data exists on yard capacities, the layout of the yards with respect to access (east or west) and availability of tracks for the meeting and passing of trains, and the location of cross-over points. The creation of the track data is in some sense a "one-time" affair except for the analysis of the addition or deletion of sidings, etc., but somie antomation of the track data is wital if SCAN is to be employed for the entire railroad. This automation is complicated by the nonunique naming of points on the railroad and the omission of certain data in the track file. However, this task can be automated to a great extent given a good computerized database of track layout.

\subsection*{9.4 Reliability Analysis}

As described in the original SCAN report, the design of the SCAN system provides for the ability to analyze the relia bility of a given set of schedules. This capability will be included in Version 2.0. In order to provide this capability, the distribution of the TPS times is necessary. That is, one must provide for each train type a probability distribution for the likelihood that the TPS times can be achieved 4. Most likely, this distribution is not known obvectively, but subjectively. Version 2.0 of SCAN will provide the capability for the graphical input of these subjective distribations. A major work item involves the development of a library of these distributions in order to lessen the workload on the analyst. Version 2.0 will contain the software capability to collect and use the distributions, but BN must provide the library (i.e., database) capabilities.

\subsection*{9.5 Enhancements to the SCAN System}

The major emphasis in the seciond year of work on the development of the SCAN system, as outlined in the second year statement of work, entails the following items:
1. The current version of the SCAN system only provides for the westbound overtaling of trains; Version 2.0 will provide the logic for the eastbound overtaling.

\footnotetext{
\({ }^{3}\) per the suggestion of T. Krueger.
\({ }^{1}\) The TPS times are calculated assuming \(100 \%\) iocomotive efficiency and thus, can be considered the "best" achievable times.
}
2. The abiiity to quickly decide which lanes contain the most trouble in order to focus the analyst's energies on the worst lanes in the corridor firs. That is, to derive the probability of finding a feasible meet-pass plan if SCAN were run to completion. Operationally, one would choose a corridor and then ask for corridor feasibility. The result of this request would be a probability ( \(0.0-1.0\) ) for each lane that the schedules over this lane are feasible; these numbers will be displayed on the corridor graphics. The analyst can then select the worst lane and begin the process of schedulpapdating. During the updating process, the probabilities will vary on adjacent lanes and these probability changes will be shown.
3. The ability to find a set of "optimal" schedules given the data. At this time, the very notion of what constitutes "optimal" is unclear; this step is at the basic research stage. The outcome of this research is the capability of the analyst to request that SCAN find a set of feasible and optimal schedules for the corridor under investigation.
4. The consideration of time periods longer than one day. Currently, SCAN only considers one day's traffic over a lane. Technically, the software can handle multiple days but compatational performance will degrade. Basie research focused on the issue of deriving methods which can handle multiple days and are computationally tractable is underway.
5. The ability to deal with data ambiguity. Currently, SCAN uses Boolean logic to decide whether or not a given set of schedules is feasible. However, the data is subject to error and thus, the conclusions may be too strong. We are currently investigating the use of fuzsy logic and fuszy inferrence in order to relax the assumption of "perfect" data. Again, this relaxation will increase the computational complexity of the algorithm and some." compromise must be reached between this complexity and the reality of the model.

\subsection*{9.6 Minor Problem Areas}

In addition to the major issues listed above, several minor points must be addressed before SCAN can be fully operational at BN :
1. Currently, reporting stations are not standardized; i.e., some trains have scheduled times at a particular reporting station and some do not. Reporting stations should be standardized in order for SCAN to be effective.
2. Scheduled times are currently not given at junctions; i.e., junctions are rarely reporting stations. Given the fact that junctions form a major point at which conflicts occur and that they are often at the boundary of dispatchers' territories, these should be considered as reporting stations. This would enable the SCAN system to better schedule traffic and the real-time control models to better control traffic flow in the railroad.
3. Each reporting station should be given a timezone classification in the track database.
4. A method must be devised to handle local traffic \({ }^{3}\). This traffic is currently ignored in SCAN.
5. A better method for defining the train lengths must be devised. We have simply assumed a "maximum" length.

In summary, SCAN is operational at the present, but these future enhancements must be made before it is truly operational on an ongoing basis at Burlington Northern.

\footnotetext{
\({ }^{3}\) defined as traffic which is scheduled strietly between two reporting stations and thus, will not have schedules
}

\section*{Appendix A}

\section*{Track Data File}

In order to create the Track Files and Reporting Station Master File, one must use various sources of information. One main source of information is the Operating Track Network. File. However, one should be careful in using this file due to the discrepancies between it and the Timetables; e.g., one source may list a siding at a particular point and the other source will not list this point. For completeness, a partial listing of the BN Operating Track Network File \({ }_{k}\) referred to as Track Data File in this report, is given below along with the June 16, 1987 memo from R.G. Patton which describes the format of this data:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { YRD } \\
& \text { YRD }
\end{aligned}
\]} & \multicolumn{2}{|l|}{80000006CICERO} & 10000 & 10 \\
\hline & 46300006 & CICERO HJ & 10000 & 20 \\
\hline YRD & 80600033 & EDLA & 8000 & 20 \\
\hline YRD & 80700037 & AUROR & 3000 & 20 \\
\hline YBD & 82100083 & ROCHELLE & 7000 & 2 \\
\hline YBD & 82000098 & DREGOR & 2000 & 1 \\
\hline YRD & 81000143 & Savanna & 8000 & 10 \\
\hline YRD & 81100296 & NLACROSSE & E 8000 & 5 \\
\hline YRD & 54600426 & daytons b & B 10000 & 15 \\
\hline YRD & 21300439 & HORTETOWS & H 10000 & 20 \\
\hline YRD & 55300567 & STAPLES & 10000 & 5 \\
\hline YRD & 56000673 & DIILHORTH & 7000 & 7 \\
\hline YRD & 46800911 & GAVIH YRD & 10000 & 20 \\
\hline YRD & 70001036 & 6TILIISTOM & 10000 & 3 \\
\hline YRD & 70101345 & HAVRE & 10000 & 10 \\
\hline TRD & 65001601 & 1MEITEFISH & [ 10000 & 5 \\
\hline MD & 65101866 & 6YLRDLEY & 10000 & 10 \\
\hline YD & 65201870 & OSPORANE & 2000 & 2 \\
\hline YRD & 65602045 & 5UENATCHEEE & FE 10000 & 20 \\
\hline YRD & 60515005 & 5DELTA & 10000 & 1 \\
\hline YRD & 60402166 & GEVERETT & 10000 & 5 \\
\hline RD & 47002195 & SIMTERBAT & 10000 & 20 \\
\hline LSI & 71 & . 8538.10 & & \\
\hline LSJ & .85AL & L5 000010 & 10 9999 & 0. O0001CUDEP \\
\hline TRE & . 85 & 38.1037 & 37.261 & MAIH \\
\hline TRE & . 85 & \(38.10 \quad 37\) & 37.262 & MLII \\
\hline TRX & 1.68 & 8.016 & 6.203 & MAIN \\
\hline TRX & 1.71 & 6.434 & 4.484 & MaIk \\
\hline STA & 0. & 0.1 & 1.80 & 2CHICAGO H \\
\hline STA & 0. & 0.3 & 3.00 & 3GBICAGO E \\
\hline STA & 0. & 0.3 & 3.83 & 4CHICAGO \\
\hline
\end{tabular}


Overland Park, Kansas
June 16, 1987
To: Professor P.T. Harker
The Whorton School
University of Pennsylvania
Philadelphia, PA
19104-6366
From: R.G. Patton
Manager Operations Planning

Subject: Train Schedual Analyzer;
Tape of Burlington Northern Track Network,
between Chicago Inl. and Seattle Wa.
Note: Confidential and Proprietary Information of Burlington Northern Railroad Co.

The file is a standard flat file with variable records identified with a three character record type code. They are sorted, for the most part, in the mile post order in which they occur on the track. A full description of each record is attached. Differences between actual location in the field and the way they are stored in the file is due to the data base conventions from which this data was collected.

Our data base systems for track information are based on a code we call a Line Segment (LS). The LS is defined as a unique route or yard or building or area that has its own description and is not repeated. We are only concerned with routes and yards here. Routes have dimension and are measured by Mile Posts (MP), and are always stored in the computer in order by low MP. Each LS has a record for the portion of the line required for this study. Main operating tracks, Side tracks, Stations, Line Segment Junction points, and others are identified and will be improved in future versions of the file.

The portions of our railroad this file contains are as follows;
\begin{tabular}{llll} 
Route name & LS & Begin MP End MP \\
Chicago to Aurora & 0071 & 0000.85 & 0038.10 \\
Aurora & 0001 & 0038.11 & 0038.45 \\
Aurora to St Paul & 0003 & 0038.45 & 0450.00 \\
St Paul to Fargo & 0025 & 0000.00 & 0251.10 \\
Fargo to Casselton & 0026 & 0000.00 & 0031.15 \\
Casselton to Nolan & 0024 & 0003.00 & 0024.30 \\
Nolan to Surrey & 0034 & 0040.00 & 0226.30 \\
Surrey to Minot & 0033 & 0196.20 & 0203.30 \\
Minot to Havre & 0035 & .0000 .00 & 0434.00 \\
Havre to Sandpoint & 0036 & 0964.00 & 1403.50 \\
Sandpoint to Spokane & 0045 & 0002.91 & 0071.50 \\
Spokane to SunSetJ & 0046 & 0000.00 & 0001.10
\end{tabular}
\begin{tabular}{clll} 
SunSetJ to Everett & 0037 & 1481.00 & 1785.00 \\
Seattle to Everett & 0050 & 0000.00 & 0032.10
\end{tabular}

Tracks, other physical objects, and locations that are components of the route are related to the LS and MP with their own unique identifiers. For convenience I have called these Line Segment Markers (LSM) as they are individual markers of some physical or important event in tute route. There will be several types of LSM's which are described in the attachment with their attributes.

Main line track is the most important for this study and is identified as a TRE record. Track numbers are controlled by government reporting and historical coding such as S for single main line, \(1,2,3,4\) for multiple mains and numbering from north to south. The beginning, end and length are also given.

Sometimes the track codes are confusing and require additional information to distinguish them such as yards or industry areas. Then a track number is supplemented with a track type that defines the main purpose of that track and frees the track number to be coded with almost anything. For our study the siding have a variety of track numbers but always have a track type 5. Future enhancements to this file will use this to define cross overs, rail road crossings, etc.
Yard LS are another problem due to their nebulus territory. Our data bases store the yards with its own Line Segment number but they have no length or dimension. Each yard required for this study is identified in the file. In order to supply the connections between route LS's and the yards I have put a record in the file called a Yard Junction that describes the point that joins a route-to a yard. They are in mile post sequence with the other Marker records that describe the components and locations along an LS. The other locations that are important to the movement of trains or reporting are also recorded in the file.

The records do have a sequence that requires some explaination. Yard Segments that are used in this study are all given at the top of the file. They are referenced by the Line Segment Markers that will put them in their proper sequence for terminal operations. Track Line Segments are then listed in the order they occur for the trains. LS 71 from Chicago to Aurora III., connects to LS 1 at Aurora, connects to LS 3 at Aurora, etc. The Marker records that follow each Line Segment are then given in mile post order.

If you have trouble with the file and require any explaination feel free to call me at 913-661-4202.

R.G. Patton

Mananger Operations Planning
```

cc: P.L. Westine

```
G.T. Trafton

June 16, 1987
Record Description for Operating Track Network
\begin{tabular}{|c|c|c|c|}
\hline Record Key = YRD & B 1 & "YRD" & Yard Line Segment Record \\
\hline LSNUM & B 4 & I 4 & Line / Yard Segment Number \\
\hline LS.YRD.STA.NUM & B2 & T 5 & Yard Station Number, Compass \\
\hline LS.YRD.STA.NAME. 9 & - 15 & T 9 & Yard Station Name \\
\hline LS.YRD.LENGTH & B 25 & 16 & Yard Length \\
\hline LS.YRD.CAPACITY & B 32 & 16 & Capacity, Max. Number of Trains \\
\hline Record Key = LSN & B 1 & "LSN" & Line Segment Record \\
\hline LSNUM & B 4 & 14 & Line / Yard Segment Number \\
\hline LS.BEG.MP & B 8 & F7,2 & Line Begin Mile Post \\
\hline LS.END.MP & B 15 & F7,2 & Line End Mile Post \\
\hline Record Kèy \(=\) TRK & B1, & "TRK" & Line Segment Marker, Main Operating Track Range \\
\hline LSM.TRK.BEG.MP & B 4, & F7,2 & Track Begin Mile Post ; \\
\hline LSM.TRK.END.MP & B 11, & F7,2 & Track End Mile Post \\
\hline LSM.TRK.LENGTH & B 18, & F7,2 & Track Length \\
\hline LSM.TRK.NUM & B 25 & T 5 & Track Number \\
\hline LSM.TRK.FLAG & B 30 & T5... & ```
Track Flag
    "MAIN" = Main Line or Main
        Operating Track
``` \\
\hline Record Key = STK & B 1 , & "STK" & Line Segment Marker, Side Tracks, Sidings and other tracks \\
\hline LSM.STK.BEG.MP & B4, & F7,2 & Side Track Begin Mile Post \\
\hline LSM.STK.END.MP & B11, & F7,2 & Side Track End Mile Post \\
\hline LSM.STK.LENGTH & B 18, & F7,2 & Track Length \\
\hline LSM.STK.NUM & B 25 & T 5 & Track Number \\
\hline LSM.STK.TYPE & B 30 & T 5 & Track Type \\
\hline
\end{tabular}

\section*{Appendix B}

\section*{Train Performance Simulation Report}

As stated in the body of the report, TPS times between each meet-point in the track file must be provided for each train class. However, the TPS runs, as shown below, generate times between all mileposts. Therefore, a translation between mileposts and points in the track data must oceur before this data can be fised in SCAN. The majority of this translation can be automated. However, there are discrepancies in the naming conventions of points between the track files and the TPS files which forces a substantial amount of manual work in the creation of the train travel time files for SCAN. Below is a partial listing of the detailed TPS report. Note that the figures for AMTRAK trains are contained in different files. In the future it would be advantagous to store all trains TPS times for each \({ }^{-1}\) orridor in one condensed file by major track location rather than by milepost due to the sheer size of the TPS files:
\(\bar{\square}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{MILEPOST MUTBER} & \multicolumn{4}{|l|}{MILEPOST COMPENSATED TOTAL ASPEED} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TRAIM } 1 \\
& \text { "EXPEDITE" }
\end{aligned}
\]} & \multirow[t]{2}{*}{TRAIM "DSTK SPEED} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{TRAIM 3 "IHTERMOD"} & \multicolumn{2}{|l|}{TRAIM 4 "PRIFRT "} & \multicolumn{2}{|l|}{TRAIM 5 "SECFRT "} \\
\hline & name & ELEYATIOH & DISTAMCE & LIFIT & SPEED & TIME & & & SPEED & TIFIE & SPEED & TIME & & TIME \\
\hline 8.20 & CICERO Y & 28 & 0.0 & 40 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 \\
\hline 8.45 & & 34 & 0.25 & 40 & 24 & 1.0 & 22 & 1.2 & 24 & 1.1 & 18 & 1.4 & 18. & 1.4 \\
\hline 8.51 & CLYDE & 37 & 0.31 & 40 & 26 & 1.2 & 23 & 1.3 & 25 & 1.2 & 20 & 1.6 & 20 & 1.6 \\
\hline 8.70 & & 35 & 0.50 & 40 & 30 & 1.6 & 27 & 1.8 & 29 & 1.6 & 23 & 2.1 & 23 & 2.1 \\
\hline 8.95 & & 30 & 0.75 & 40 & 37 & 2.0 & 30 & 2.3 & 33 & 2.1 & 26 & 2.8 & 26 & 2.8 \\
\hline 9.08 & Ih VERGA & 30 & 0.88 & 40 & 39 & 2.2 & 32 & 2.6 & 35 & 2.3 & 27 & 3.1 & 27 & 3.1 \\
\hline 9.19 & EL CHG & 31 & 0.99 & 40 & 40 & 2.4 & 33 & 2.8 & 37 & 2.5 & 28 & 3.3 & 28 & 3.3 \\
\hline 9.20 & & 31 & 1.00 & 40 & 40 & 2.4 & 33 & 2.8 & 37 & 2.5 & 28 & 3.3 & 28 & 3.3 \\
\hline 9.45 & & 32 & 1.25 & 40 & 40 & 2.8 & 35 & 3.2 & 40 & 2.9 & 31 & 3.8 & 31 & 3.8 \\
\hline 9.56 & SPEED & 32 & 1.36 & 45 & 40 & 3.0 & - 36 & 3.4 & 40 & 3.1 & 32 & 4.0 & 32 & 4.0 \\
\hline 9.61 & BERUYK & 32 & 1.41 & 45 & 40 & 3.0 & 36 & 3.5 & 40 & 3.2 & 32 & 4.1 & 32 & 4.1 \\
\hline 9.70 & & 32 & 1.50 & 45 & 40 & 3.2 & 37 & 3.7 & 40 & 3.3 & 33 & 4.3 & 33 & 4.3. \\
\hline 9.95 & & 34 & 1.75 & 45 & 42 & 3.5 & 39 & 4.0 & 40 & 3.7 & 34 & 4.7 & 34 & 4.7 \\
\hline 10.20 & & 35 & 2.00 & 45 & 44 & 3.9 & 40 & 4.4 & 40 & 4.0 & 35 & 5.2 & 35 & 5.2 \\
\hline 10.45 & & 37 & 2.25 & 45 & 45 & 4.2 & 40 & 4.8 & 41 & 4.4 & 36 & 5.6 & '36 & 5.6 \\
\hline 10.70 & & 38 & 2.50 & 45 & 45 & 4.5 & 40 & 5.2 & 42 & 4.8 & 37 & 6.0 & \(37^{\text {* }}\) & 6.0 \\
\hline 10.95 & & 38 & 2.75 & 45 & 45 & 4.9 & 41 & 5.5 & 44 & 5.1 & 38 & 6.4 & 38 & 6.4 \\
\hline 11.20 & & 42 & 3.00 & 45 & 45 & 5.2 & 42 & 5.9 & 45 & 5.5 & 38 & 6.8 & 38 & 6.8 \\
\hline 11.45 & & 49 & 3.25 & 45 & 45 & 5.5 & 42 & 6.3 & 45 & 5.8 & 38 & 7.2 & 38 & 7.2 \\
\hline 11.70 & & 44 & 3.50 & 45 & 45 & 5.9 & 42 & 6.6 & 45 & 6.1 & 38 & 7.6 & 38 & 7.6 \\
\hline 11.95 & & 42 & 3.75 & 45 & 45 & 6.2 & 43 & 7.0 & 45 & 6.5 & 39 & 8.0 & 39 & 8.0 \\
\hline 12.20 & & 43 & 4.00 & 45 & 45 & 6.5 & 44 & 7.3 & 45 & 6.8 & 40 & 8.4 & 40 & 8.4 \\
\hline 12.45 & & 45 & 4.25 & 45 & 45 & 6.9 & 44 & 7.7 & 45 & 7.1 & 41 & 8.7 & 41 & 8.7 \\
\hline 12.70 & & 47 & 4.50 & 45 & 45 & 7.2 & 45 & 8.0 & 45 & 7.5 & 42 & 9.1 & 42 & 9.1 \\
\hline 12.95 & & 53 & 4.75 & 45 & 45 & 7.5 & 45 & 8.3 & 45 & 7.8 & 42 & 9.4 & 42 & 9.4 \\
\hline 13.08 & cohg par & 56 & 4.88 & 45 & 45 & 7.7 & 45 & 8.5 & 45 & 8.0 & 42 & 9.6 & 42 & 9.6 \\
\hline 13.20 & & 58 & 5.00 & 45 & 45 & 7.9 & 45 & 8.7 & 45 & 8.1 & 41 & 9.8 & 41 & 9.8 \\
\hline 13.45 & & 62 & 5.25 & 45 & 45 & 8.2 & 44 & 9.0 & 45 & 8.5 & 41 & 10.2 & 41 & 10.2 \\
\hline 13.70 & & 65 & 5.50 & 45 & 45 & 8.5 & 44 & 9.3 & 45 & 8.8 & 40 & 10.5 & 40 & 10.5 \\
\hline 13.81 & la grang & 65 & 5.61 & 45 & 45 & 8.7 & 44 & 9.5 & 45 & 8.9 & 40 & 10.7 & 40 & 10.7 \\
\hline 13.95 & & 66 & 5.75 & 45 & 45 & 8.9 & 44 & 9.7 & 45 & 9.1 & 39 & 10.9 & 39 & 10.9 \\
\hline 14.20 & & 67 & 6.00 & 45 & 45 & 9.2 & 44 & 10.0 & 45 & 9.5 & 39 & 11.3 & 39 & 11.3 \\
\hline 14.45 & & 73 & 6.25 & 45 & 45 & 9.5 & 44 & 10.4 & 45 & 9.8 & 40 & 11.7 & 40 & 11.7 \\
\hline 14.70 & & 79 & 6.50 & 45 & 45 & 9.9 & 44. & 10.7 & 45 & 10.1 & 39 & 12.1 & 39 & 12.1 \\
\hline 14.95 & & 84 & 6.75 & 45 & 45 & 10.2 & 43 & 11.1 & 45 & 10.5 & 39 & 12.5 & 39 & 12.5 \\
\hline 15.20 & & 89 & 7.00 & 45 & 45 & 10.5 & 43 & 11.4 & 45 & 10.8 & 38 & 12.8 & 38 & 12.8 \\
\hline 15.45 & & 90 & 7.25 & 45 & 45 & 10.9 & 42 & 11.8 & 45 & 11.1 & 37 & 13.2 & 37 & 13.2 \\
\hline 15.70 & & 87 & 7.50 & 45 & 45 & 11.2 & 42 & 12.1 & 45 & 11.5 & 37 & 13.7 & 37 & 13.7 \\
\hline 15.95 & & 87 & 7.75 & 45 & 45 & 11.5 & 43 & 12.5 & 45 & 11.8 & 38 & 14.1 & 38 & 14.1 \\
\hline 16.20 & & 93 & 8.00 & 45 & 45 & 11.9 & 43 & 12.8 & 45 & 12.1 & 39 & 14.5 & 39 & 14.5 \\
\hline 16.45 & & 100 & 8.25 & 45 & 45 & 12.2 & 44 & 13.2 & 46 & 12.5 & 39 & 14.8 & 39 & 14.8 \\
\hline 16.70 & & 107 & 8.50 & 45 & 45 & 12.5 & 43 & 13.5 & 45 & 12.8 & 38 & 15.2 & 38 & 15.2 \\
\hline 16.90 & HIMSDALE & 111 & 8.70 & 45 & 45 & 12.8 & 43 & 13.8 & 45 & 13.1 & 37 & 15.5 & 37 & 15.5 \\
\hline 16.95 & & 112 & 8.75 & 45 & 45 & 12.9 & 43 & 13.9 & 44 & 13.1 & 37. & 15.6 & 37 & 15.6 \\
\hline 17.20 & & 117 & 9.00 & 45 & 45 & 13.2 & 42 & 14.2 & 44 & 13.5 & 36 & 16.0 & 36 & 16.0 \\
\hline 17.45 & & 125 & 9.25 & 45 & 45 & 13.5 & 41 & 14.6 & 44 & 13.8 & 35 & 16.5 & 35 & 16.5 \\
\hline 17.70 & & 132 & 9.50 & 45 & 45 & 13.9 & 40 & 15.0 & 44 & 14.2 & 34 & 16.9 & 34 & 16.9 \\
\hline 17.95 & & 139 & 9.75 & 45 & 45 & 14.2 & 39 & 15.3 & 43 & 14.5 & 32 & 17.3 & 32 & 17.3 \\
\hline 18.20 & & 146 & 10.00 & 45 & 45 & 14.5 & 38 & 15.7 & 43 & 14.8 & 31 & 17.8 & 31 & 17.8 \\
\hline 18.45 & & 152 & 10.25 & 45 & 45 & 14.9 & 37 & 16.1 & 43 & 15.2 & 30 & 18.3 & 30 & 18.3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 18.70 & & 155 & 10.50 & 45 & 45 & 15.2 & 36 & 16.5 & 42 & 15.5 & 29 & 18.8 & 29 & 18.8 \\
\hline 18.95 & & 161 & 10.75 & 45 & 45 & 15.5 & 36 & 16.9 & 43 & 15.9 & 29 & 19.3 & 29 & 19.3 \\
\hline 19.20 & & 168 & 11.00 & 45 & 45 & 15.9 & 36 & 17.4 & 43 & 16.3 & 29 & 19.9 & 29 & 19.9 \\
\hline 19.45 & & 169 & 11.25 & 45 & 45 & 16.2 & 36 & 17.8 & 43 & 16.6 & 29 & 20.4 & 29 & 20.4 \\
\hline 19.70 & & 165 & 11.50 & 45 & 45 & 16.5 & 36 & 18.2 & 44 & 16.9 & 29 & 20.9 & 29 & 20.9 \\
\hline 19.95 & & 161 & 11.75 & 45 & 45 & 16.9 & 38 & 18.6 & 45 & 17.3 & 31 & 21.4 & 31. & 21.4 \\
\hline 20.20 & & 157 & 12.00 & 45 & 45 & 17.2 & 39 & 19.0 & 45 & 17.6 & 34 & 21.9 & 34 & 21.9 \\
\hline 20.45 & & 153 & 12.25 & 45 & 45 & 17.5 & 42 & 19.4 & 45 & 17.9 & 37 & 22.3 & 37 & 22.3 \\
\hline 20.70 & & 149 & 12.50 & 45 & 45 & 17.9 & 44 & 19.7 & 45 & 18.3 & 39 & 22.7 & 39 & 22.7 \\
\hline 20.95 & & 144 & 12.75 & 45 & 45 & 18.2 & 45 & 20.0 & 45 & 18.6 & 42 & 23.1 & 42 & 23.1 \\
\hline 21.18 & DOUNR GR & 140 & 12.98 & 45 & 45 & 18.5 & 45 & 20.4 & 45 & 18.9 & 44 & 23.4 & 44 & 23.4 \\
\hline 21.20 & & 140 & 13.00 & 45 & 45 & 18.5 & 45 & 20.4 & 45 & 18.9 & 44 & 23.4 & 44 & 23.4 \\
\hline 21.45 & & 137 & 13.25 & 45 & 45 & 18.9 & 45 & 20.7 & 45 & 19.3 & 45 & 23.7 & 45 & 23.7 \\
\hline 21.63 & SPEED & 134 & 13.43 & 50 & 45 & 19.1 & 45 & 21.0 & 45 & 19.5 & 45 & 24.0 & 45 & 24.0 \\
\hline 21.70 & & 133 & 13.50 & 50 & 45 & 19.2 & 45 & 21.0 & 45 & 19.6 & 45 & 24.1 & 45 & 24.1 \\
\hline 21.95 & & 131 & 13.75 & 50 & 46 & 19.5 & 45 & 21.4 & 45 & 19.9 & - 45 & 24.4 & 45 & 24.4* \\
\hline 22.20 & & 130 & 14.00 & 50 & 49 & 19.9 & 45 & 21.7 & 45 & 20.3 & 45 & 24.7 & 45 & 24.7 \\
\hline - & & - & - & - & - & - & , & . & - & . & - & - & & - \\
\hline - & & - & - & - & - & - & - & - & - & - & - & - & & \(\cdots\) \\
\hline - & & - & - & - & - & - & - & - & - & - & & & & \(\because\) - \\
\hline
\end{tabular}

\section*{Appendix C}

\section*{TPS Train Classifications}

Bolor is a listing the the chassification of trains ly TPS type: Please note that the current datahase combinins only InN train codes I throngh \(\overline{7}\). The rmaimer of this list is provided to illustrate the overall chassiliration selime. Aso. Hee origonal memo from BN which was used to create whis list is included.
\begin{tabular}{|c|c|c|c|c|c|}
\hline bN CODE & bk train class & TPS TRAIN TYPE NUREER & tps thain tYpe hame & -----Max Train
westbound & LenGTh (fEET) EASTBOUNDE: \\
\hline & - & 1 & amthak & 1000 & 1000 \\
\hline 1 & EXPEDITER & 2 & EXPEDITE & 3240 & 3240 \\
\hline 2 & dauble stacx & 3 & DSTK & 7000 & 6500 \\
\hline 3 & InTEPMODAL & 4 - & INTERMOD & 7000 & 6500 \\
\hline 4 & PRIORITY FREIGHT & 5 & PRIFRT & 7000 & 6500 \\
\hline 5 & 2NDARY FhEIOHT & 6 & SECFRT & 7000 & 6500 \\
\hline 6 & regional freight & 7. & REGHFRT & 7000 & \(\Longrightarrow 6500\) \\
\hline 7 & Local freight & 8 & LOCALFRT & 7000 & 6500 \\
\hline 8 & & 9 & COALLOAD & & \\
\hline 9 & & 10 & COALMTY. & & \\
\hline 10 & & 11 & GRH54L & & \\
\hline 11 & & 12 & gRM108L & & \\
\hline 12 & & 13 & grainids & & \\
\hline 13 & & 14 & grrboe & & \\
\hline 14 & & 15 & cratilis & & \\
\hline
\end{tabular}
```

        PROPRIETARY AND CONFIDENTIALINFORMATION OF THE BURLINGTON NORTHERN
                                    RAILROAD COMPANY
        MRaRK TRAIN CLASS CODES
        CODE TRAIN CLASS
    .1
2
3
4
5
6
7
O
%
, -
*
\prime
GRN80E UNIT GRAIN TRAIN-80 EMPTIES
GRN115E UNIT GRAIN TRAIN-115 EMPTIES
15
* Travel continuity not preserved between segment runs.

```

\section*{SEGMENT/TRAIN CLASS LISTING}

\section*{Appendix D}

\section*{The D1260 Schedule File}

The Di2cil file. known as schedule.dat in Wharton's directory, is the main file for genmrating all of we scherlule fites for the trains ruming over the corridor. Thus, one nust first go through this fike to aserertain whelher or not a Irain travels over the corridor of interest and if so. Hen generate the schedule fite for that 1 rain. Note that this step can be automated to a large extent, athough sonke discromarios surh as me schedulad lime at a reporting station. etc. can occur which require manul resolution. The following pages comain the deseription of the D1260 database from 'I.11. Krueger, April 1. 1981.
\(=\)


```

    @1 TRNID $5. @6 THRULO $1.` C7 CREDTE $6. @14.EFFDTE:$5̄. @21 LOC1 Z5.
    @26 DIR1 $1. @27 ORGTYP 1. @28 DEPART1 $4. ©32 NRUNT1 $4. @36 SRUNT1 $4
    Q40 REGCDE $1.
    @42 LOC2 25. @47 DIR2 $1. @48 STSTA2 $4. @52 NTSTA2 $4. @56 NRUNT2 $4.
    @60 SRUNT2 $4.
    @65 LOC3 Z5. @70 DIR3 $1. @71 STSTA3 $4. @75 NTSTA3 $4. @79 NRUNT3 $4.
    083 SRUNT3 $4.
    @88 LOC4 Z5. @93 DIR4 $1.. @94 STSTA4 $4. ©98 NTSTA4 $4. @102 NRUNT4 $4.
    @106 SRUNT4 $4.
    @111 LOC5 25. @116 DIR5 $1. @117 STSTA5 $4. @121 NTSTA5 $4.
    @125 NRUNT5 $4. @129 SRUNT5 $4.
    @134 LOC6 Z5. @139 DIR6 $1. @140 STSTAG $4. @144 NTSTA6 $4.
    @148 NRUNT6 $4. ©152 SRUNT6 $4.
    @157 LOC7 25. @162 DIR7 $1. @163 STSTA7 $4. @167 NTSTA7 $4.
    @171 NRUNT7 $4. ©175 SRUNT7 $4.
    @180 LOC8 25. @185 OIR8 $1. @186 STSTA8 $4. ©190 NTSTA8 $4. %
    @194 NRUNT8 $4.@198 SRUNT8 $4.
    @203 LOC9 Z5. ©208 DIRG $1. ©209 STSTA9 $4. e213 NTSTA9 $4.
    @217 NRUNT9 $4. @221 SRUNT9 $4.
    @226 LOC10 25. @231 DIR10 $1. @232 STSTA10 $4. @236 NTSTA10 $4.
    ```
 \(;\)

ABOVE STARTS INPUT FILE SPEC FOR DATA PASSED TO TAPE FROM D1260 TRAIN SCHEDULE DATA. TAPE WAS BLOCKED AT 1600 BPI AND CONTAINS ONLY TRAIN SCHEDULE DATA. APPROXIMATELY FIVE HUNDRED (500) RECORDS.

EXPLANATION OF VARIABLES AND FORMATS:
TRNID \(=\) Train Number, 5 bytes. \$(dollar sign)indicates character forma THRULO \(=\) Train Type, 1 byte, character.

CREDTE \(=\) Creation date, 6 bytes character (format yymmdd \(=870101\)).
EFFDTE \(=\) Effective date, 6 bytes character (format yymmdd \(=870101\)).
LOC1 \(=\) Origin station, 5 bytes numeric, zero filled.
. ee bottom of page 2 for continuation of variable labeis and formatsj.
\(\qquad\)

PAGE 2 OF 6 PAGES :
```

@240 NRUNT10 \$4. ©244 SRUNT10 \$4.
@249 LOC11 25.`254 DIR11 \$1. @255 STSTA11 \$4. @259 NTSTA11 \$4%
@263 NRUNT11 \$4. @267 SRUNL11 \$4.
@272 LOC12 25. @277 DIR12 \$1. @278. STSTA12 \$4. @282 NTSTA12 \$4.
@286 NRUNT12 \$4. @290 SRUNT12 \$4.
@295 LOC13 25.@300 DIR13 \$1. @301 STSTA13 \$4., @305 NTSTA13 \$4.
@309 NRUNT13 \$4. @313 SRUNT13 \$4.
@318 LOC14 Z5. @323 DIR14 \$1. @324 STSTA14 \$4: @328 NTSTA14 \$4.
@332 NRUNT14 \$4. @336 SRUNT14 \$4.
@341 LOC15 25. @346 DIR15 \$1. @347 STSTA15 \$4, @351 NTSTA15 \$4.
@355 NRUNT15 \$4. @359 SRUNT15 \$4.
@364 LOC16 Z5. @369 DIR16 \$1. @370 STSTA16 \$4. @374 NTSTA16 \$4.
@378 NRUNT16 \$4..@382 SRUNT16 \$4.
@387 LOC17 Z5.@392 DIR17 \$1. @393 STSTA17 \$4. @397 NTSTA17 \$4.%.*
@401 NRUNT17 \$4.@405 SRUNT17 \$4.
@410 LOC18 75. @415 DIR18 \$1. @416 STSTA18 \$4. @420 NTSTA18 \$4.
@424 NRUNT18 \$4. @428 SRUNT18 \$4.
@433 LOC19 25. @438 DIR19 \$1. @439 STSTA19 \$4..@443 NTSTA19 \$4.
@447 NRUNT19 \$4. @451 SRUNT19 \$4.
@456 LOC20 Z5. @461 DIR20 \$1. @462 STSTA20 \$4. @466 NTSTA2O \$4.
@470 NRUNT2O \$4. @474 SRUNT20 \$4.
@479 LOC21 Z5.@484 DIR21 \$1. @485 STSTA21 \$4. @489 NTSTA21 \$4.

```

CONTINUATION OF YARIABLE LABELS AND FORMATS

OIR1 \(=\) DEPARTS DIRECTION, 1 BYTE, CHARACTER.
ORGTYP = ORIGIN STATION TYPE, 1 BYTE NUMERIC (1=MINOR AREA 2=MAJOR ARE \(3=\) TYE YARD).

DEPARTI = ORIGIN DEPARTURE, 4 BYTES CHARACTER, (HHMM FORMAT).
REGCDE \(=\) ORIGIN STATION REGION CODE, 1 BYTE CHARACTER.
NRUNTI = NORMAL RUN.TIME ORIGIN TO NEXT STATION, 4 BYTES CHARACTER. (HHMM FORMAT \(=\) EXAMPLE \(0244=2\) HOURS 44 MINUTES).

SRUNT1 = SCHEDULED RUN TIME ORIGIN TO NEXT STATION FORMAT SAME AS NRÚ. (see bottom of. page 3 for continuation).

\footnotetext{
\(\because\)
}
```

            PAGE 年0F 6:PAGES:
    @493 NRUNT21. $4-@497 SRUNT2.1 $4
    @502 LOC22 25. @507 DIR2Z $1. @508 STSTÄ22-$4.` @512 NTSTA22.$4
    @516 NRUNT22 $4. @520-SRUNT22 $4.
    @525 LOC23 Z5. @530 DIR23 $1. @531 STSTA23 $4. @535 NTSTA23. $4.
    @539 NRUNT23 $4. @543 SRUNT23 $4.
    @548 LOC24 Z5. @553 DIR24 $1. @554 STSTA24 $4. @558 NTSTA24 $4.
    @562 NRUNT24 $4.@566 SRUNT24 $4.
    @571 LOC25 25. @576 DIR25 $1. @577 STSTA25 $4. @581 NTSTA25 $4.
    @585 NRUNT25 $4. @589 SRUNT25 $4.
    @594 LOC26 25.-@599 DIR26 $1. @600 STSTA26 $4. @604 NTSTA26 $4.
    @608 NRUNT26 $4. @612 SRUNT26 $4.
    @617 LOC27 Z5.@622 OIR27 $1. @623 STSTA27 $4. @627 NTSTA27 $4...
    @631 NRUNT27 $4. @635 SRUNT27 $4.
    @640 LOC28 Z5.@645 OIR28 $1. @646 STSTA28 $4. @650 NTSTA28,$4.
    @654 NRUNT28 $4. @658 SRUNT28 $4.
    @663 LOC29 Z5. ©668 DIR29 $1. @669 STSTA29 $4. @673 NTSTA29 $4.
    @677 NRUNT29 $4. @681 SRUNT29 $4.
    @686 LOC30 25. @691 OIR30 $1. @692 STSTA30 $4. @696 NTSTA30 $4.
    @700 NRUNT30 $4. @704 SRUNT30 $4%
    @709 LOC31 25. @714 DIR31 $1. @715. STSTA31 $4. @719 NTSTA31 $4.
    @723 NRUNT31 $4. @727 SRUNT31 $4.
    @732 LOC32 Z5. @737 DIR32 $1. @738 STSTA32 $4. @742 NTSTA32 $4.
    ```

\section*{CONTINUATION OF VARIABLE LABELS AND FORMATS FROM PAGE 2}

LOC2 THRU LOC61 = INTERMEDIATE STATIONS, 5 BYTES NUMERIC, ZERO FILLED. DIR2 THRU DIR61 = INTERMEDIATE DEPART DIRECTION, 1 BYTE CHARACTER.
STSTA2 THRU STSTAG1 = INTERMEDIATE SCHEDULED TIME IN STATION, 4 BYTES CHARACTER, HHMM FORMAT.
NTSTA2 THRU NTSTA61 = INTERMEDIATE NORMAL TIME IN STATION, 4 bYTES CHARACTER, HHMM FORMAT (EXAMPLE 0113 = 1 HOUR 13 MINUTES).

LOC62 \(=\) DESTINATION STATION, 5 BYTES NUMERIC. ZERO FILLED.
DIR62 = ARRIVES DESTINATION DIRECTION, 1 BYTE CHARACTER.
OSTTYP = DESTINATION STATION TYPE, 1 BYTE NUMERIC (\(1=\) MINOR \(2=\) MAJOR \(3=\) TYE YARD).

END OF SPECIFICATIONS.
```

MMAND ===>
PAGE 4 OF 6 PAGES:
@746 NRUNT32 \$4.@750 SRUNIB2 \$4.
@755 LOC33 25. @760, DIR33 \$1. @761 STSTA33 \$4. @765 NTSTA33 \$4.
@769 NRUNT33 \$4. @773 SRUNT33 \$4.
@778 LOC34 25. @783 DIR34 \$1. @784 STSTA34 \$4. @788 NTSTA34 \$4.
@792 NRUNT34 \$4. @796 SRUNT34 \$4.
@801 LOC35 Z5. @806 DIR35 \$1. @807 STSTA35 \$4. @811 NTSTA35 \$4.
@815 NRUNT35 \$4. @819 SRUNT35 \$4.
@824 LOC36 Z5. @829 DIR36 \$1. @830 STSTA36 \$4. @834 NTSTA36 \$4.
@838 NRUNT36 \$4. @842 SRUNT36 \$4.
@847. LOC37 25. @852 DIR37 \$1. @853 STSTA37 \$4. @857 NTSTA37 \$4.
@861 NRUNT37 \$4. @865 SRUNT37 \$4.
@870 LOC38 Z5. @875 DIR38 \$1. @876. STSTA38 \$4. @880 NTSTA38 \$4.**
@884 NRUNT38.\$4. @888 SRUNT38 \$4.
@893 LOC39 Z5. @898 DIR39 \$1. @899 STSTA39 \$4. @903 NTSTA39 \$4.
@907 NRUNT39 \$4.@911 SRUNT39 \$4.
@916 LOC40 Z5. @921 DIR40 \$1. @922 STSTA40 \$4. @926 NTSTA40 \$4.
@930 NRUNT40 \$4. @934 SRUNT40 \$4.
@939 LOC41 Z5. @944 DIR41 \$1. @945. STSTA41 \$4. @949 NTSTA41 \$4.
@953 NRUNT41 \$4.@957 SRUNT41 \$4.
@962 LOC42 Z5. @967 DIR42 \$1. @968 STSTA42 \$4. @972 NTSTA42 \$4.
@976 NRUNT42 \$4. @980 SRUNT42 \$4.
@985 LOC43 25. @990 OIR43 \$1. @991 STSTA43 \$4. @995 NTSTA43 \$4.

```

```

    PAGE . }5\mathrm{ OE }6\mathrm{ PAGES:=
    @999 NRUNT43 $4. @1003 SRUNT43 $4:
    @1008 LOC44 Z5. @10́13 DIR44 $1. @1014 STSTA44 $4. @1018 NTSTA44 $4.
    @1022 NRUNT44 $4. @1026 SRUNT44 $4.
    @1031 LOC45 25. @1036 DIR45 $1. @1037 STSTA45 $4. @1041 NTSTA45 $4.
    @1045 NRUNT45 $4. @1049 SRUNT45 $4.
    @1054 LOC46 Z5. @1059 DIR46 $1. @1060 STSTA46 $4. @1064 NTSTA46 $4
    @1068 NRUNT46 $4. @1072 SRUNT46 $4.
    @1077 LOC47 Z5. @1082 DIR47 $1. @1083 STSTA47 $4. @1087 NTSTA47 $4.
    @1091 NRUNT47 $4. @1095 SRUNT47 $4.
    @1100 LOC48 Z5. @1105 DIR48 $1. @1106 STSTA48 $4. @1110 NTSTA48 $4
    @1114 NRUNT48 $4. @1118 SRUNT48 $4
    @1123 LOC49 Z5. @1128 DIR49 $1. @1129 STSTA49 $4. @1133 NTSTA49 $4
    @1137 NRUNT4.9 $4: @1141 SRUNT49 $4.
    @1146 LOC50 25. @1151 DIR50 $1. @1152 STSTA50 $4. @1156 NTSTA50:$4
    @1160 NRUNT50 $4. @1164 SRUNT50 $4.
    @1169 LOC51 Z5. @1174 DIR51 $1. @1175 STSTA51 $4. @1179 NTSTA51 $4.
    @1183 NRUNT51 $4. @1187 SRUNT51 $4.
    @1192 LOC52 Z5. @1197 DIR52 $1. @1198 STSTA52 $4. @1202 NTSTA52 $4.
    @1206 NRUNT52 $4. @1210 SRUNT52 $4.
    @1215 LOC53 25. @1220 DIR53 $1. @1221 STSTA53 $4. e1225 NTSTA53 $4.
    @1229 NRUNT53 $4. @1233 SRUNT53 $4.
    @1238 LOC54 Z5. @1243 DIR54 $1; @1244 STSTA54 $4. @1248 NTSTA54 $4.
    ```

```

    MMMAND ===> . SCROLL ===>P
    PAGE 6 OF 6 PAGES OF SPECIFICATIONS:
@1252 NRUNT54 \$4. @1256 SRUNT54 \$4.
@1261 LOC55 Z5. @1266 DIR55 \$1. @1267 STSTA55 \$4. @1271 NTSTA55 \$4
@1275.NRUNT55 \$4. @1279 SRUNT55 \$4.
@1284 LOC56 Z5. @1289 DIR56 \$1. @1290 STSTA56 \$4. @1294 NTSTA56 \$4
@1298 NRUNT56 \$4. @1302 SRUNT56 \$4.
@1307 LOC57 Z5. @1312 DIR57 \$1. @1313 STSTA57 \$4. @1317 NTSTA57 \$4
@1321 NRUNT57 \$4. @1325 SRUNT57 \$4.
@1330 LOC58 Z5. @1335 DIR58 \$1. @1336 STSTA58 \$4. @1340 NTSTA58 \$4.
@1344 NRUNT58 \$4. @1348 SRUNT58 \$4.
@1353 LOC59 Z5. @1358 DIR59 \$1. @1359 STSTA59 \$4. @1363 NTSTA59 \$4
@1367 NRUNT59 \$4. @1371 SRUNT59 \$4.
@1376 LOC60 Z5. @1381 DIR60 \$1. @1382 STSTA60 \$4. @1386 NTSTA60 \$4.
@1390 NRUNT60 \$4. @1394 SRUNT60 \$4.
@1399 LOC61 Z5. @1404 DIR61 \$1. @1405 STSTA61 \$4. @1409 NTSTA゙61 \$4
@1413 NRUNT61 \$4. @1417 SRUNT61 \$4.
@1422 LOC62 Z5. @1427 DIR62 \$1. @1428 DSTTYP 1.
;
END;

```
:. 1

\section*{Appendix E}

\section*{BN Corridor Timetables}

As stated in the discussion of the Track Data File, the timeiables are vian in providing a check on fle validity of datai from the Oparaling lirack Nofwork File. However. the timetables are not comphterized and thas. are spry dillicult to use in any type of automated system. If the timetables are providel in a computeriziol form in the near future, hay may be very wfective in checking the information in the Opreating 'lrack N atwork File. For completeness. the timetables used to construct the current Northern Corrilur thatahase nere induded.

SChEDULES FOR REGULAR SUBUABAN PASSENGER TRAINS ARE SHOWN IN BURUNGTON NORTMERN'S SUBUREAN SERVICE PASSENGER TMETAGLE OPEAATING AS FIRST CLASS TAAINS, AND THES SHOWN THEREIN WILL SUBURBAN TMMETABLE. EMPLOYEES WHOSE DUTES ARE IN ANY WAY AFFETED BY SUBURBAN TRAINS MUST HAVE ACOPY OF THE CUARENT
SUBUREAN TIMETARLE IN THEIR POSSESSION WHILE ON DUTT.

BN Radio Crengel Ma 1 and Mo. 2 In earrice on tha Subdirtalon
See inalde of back cover for routes, umes and station stops for NRPC tralna
1. Speed Restrictions-Zone-Between
Chieago and Aurora
Aurore and West Chieago.
Encept as indicated below

Maximum Speeda Permitted Passenger Freight 65 MPH 50 MPH
20 MPH 20 MPH.
35 MPH.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{Main 1} & \multicolumn{2}{|l|}{Main 2} & \multicolumn{2}{|l|}{Main 3} & \multicolumn{2}{|l|}{Main 4} \\
\hline & & & & \(\bar{P}\) & & \(\bar{P}\) & F & & \\
\hline MP & 0.8-MP 1.4 & 25 & 10 & 25 & 10 & & & & \\
\hline MP & 1.4.MP 2.2 & & & & & & & 10 & 10 \\
\hline MP & 1.4-MP 1.7 & 35 & 15 & 35 & 15 & & & & \\
\hline MP & 1.7. MP 2.1 & 45 & 15 & 45 & 15 & 35 & 15 & & \\
\hline MP & 2.2. MP 6.3 & & & & & & & 40 & 35 \\
\hline MP & 2.1. MP 5.7 & 60 & 25 & 60 & 25 & 60 & 25 & & \\
\hline MP & 5.7. MP 7.2 & 60 & 40 & 60 & 40 & 60 & 40 & & \\
\hline MP & 6.3.MP 6.8 & & & & & & & 25 & 15 \\
\hline MP & 7.2-MP 9.6 & & 40 & & 40 & & 40 & & \\
\hline & 9.6-MP 21.6 & & 45 & & 45 & & 45 & & \\
\hline MP & 21.6-MP 35.1 & & 50 & & 50 & & 50 & & \\
\hline MP & 35.1-MP 37.5 & & 35 & & 35 & & 35 & & \\
\hline MP & 36.5 - MP 37.0 & 45 & & & & & & & \\
\hline MP & 37.1 - MP 37.3 & 50 & & & & & & & \\
\hline MP & 37.3 - MP 38.0 & 35 & 25 & 35 & 25 & 35 & 25 & & \\
\hline MP & 38.0 - MP 38.1 & 50 & 25 & 50 & 25 & 50 & 25 & & \\
\hline & & & & & Ese & ger & & reig & \\
\hline
\end{tabular}

Weat Eola to Eola on running track MP 33.3 to MP 353................. Union Avenue
crossovern:
croseovera: 2 weatward; Main 2 to 1 Meatward, cast of Union Avenue Main 1 to 2 wetward; Main 2 to 1 eastward, Union Avenue \(\ldots\)........
Minin 2 to 3 westward, and Main 3 Main 2 to 3 westward, and Main 3 Track No. 5 between Union Avenue and hmirak connection and on Track No. 5 north wye Union Avenue Kedzic Avenue MP 4.8 crossovers:
Main 3 to 4 westward; Main 4 to 3
eastward in 63
Main 1. to 2; Main 2 to \(1 ;\) Main 2 to
Main Lito 2; Main 2 to 1, Main 2 to.
Main 3 to 4
MP 9.2 crossovers:
Main 1 to 2 eastward; Main 2 to 1 westward; Main 2 to 3 eastward; Main 3 to 2 westward............
Congress Park; Highlands; Congreas Parke Highiands;
Hinsdale; Fairview Avenue;
Downers Grove; Lisle and Downers Grove; Lisle and
Napervile: All crossovers Eoln and West Eola: All croasovers.. Aurora interlocking croasovers
Loaded ore cars MP 35.1 - MP 37.5
\(10 \mathrm{MPH} . \quad 10 \mathrm{MPH}\).
\begin{tabular}{|c|c|}
\hline 25 MPH . & 20 MPH. \\
\hline 25 MPH . & 20 MPH . \\
\hline \(12 \mathrm{MRH}\). & 12 MPH . \\
\hline \[
\begin{aligned}
& 10 \text { MPH. } \\
& \text { S": }
\end{aligned}
\] & 10 MPPH
5 MPH. \\
\hline \%-MPr. & \\
\hline 25 MPH. & 25 MPH. \\
\hline \[
\begin{aligned}
& 35 \mathrm{MPH} . \\
& 25 \mathrm{MPH} .
\end{aligned}
\] & \[
\begin{aligned}
& 35 \mathrm{MPH} . \\
& 25 \mathrm{MPH} .
\end{aligned}
\] \\
\hline
\end{tabular}
\(30 \mathrm{MPH} . \quad 30 \mathrm{MPH}\).
2. Bridge, Engine and Heary Car Restrictions-

Maximum height of any on-rail equipment or shipments to be hardied between Cicero yard and yurements from top of rail at the locs tions and on the tracks designated:
16th and Canal Bridge MP 1.4
Main 1 and 2 16 feet, 6 inches high
South leg of south wye.......................... 19 feet, 6 inches high
CTA overcrossing MP 2.95
Main 1 ... 19 feet 5 inches bigh
Main 3 ... 20 feet 11 inehes high
Main 4 .. 20 feet 8 inches high
CTA overerosaing MP 4.6
Main 1 ... 19 feet 6 inetet high 1 inch higt
Mnin 2 ..et 1 inch higb
Main 4 ... 19 feet 3 inches high

MP 115.0 and MP 115.8
MP 116.8 and MP 117.2
MP 80.4-Through crossovers between main tracks at east end of MP Bdvance track......................... between Main 2 and advance crack Buda-Through crossovers between main tracke 157.7 and \(\mathrm{MP} 1617\). MP 161.7 and MP 161.7 Main 3 MP 161.7 and MP 163.6 Main MP 161.7 and MP 162.6 Main i MP 162.0 and MP 162.5 Main 2 wentward
MP 163.6 and MP 164.0 MP 164.86 bridge between Waterman and West Waterman Bishop-Through tumout Main 3 to
Main 2 Main \(2 \ldots . ~\)
Galesburg other than main track
Waterman and Graham... Graham cut-OIf; eastward \({ }_{\text {between }}^{\text {track }}\) Turnouts at following locations:
MP 165.5 end of two main tracks Graham.................................
Bristol, Zearing, Kewanee, Galva, Wataga: Through all crossovers between

Tswey 8 smp

\(30 \mathrm{MPH} . \quad 30 \mathrm{MPH}\).
\(30 \mathrm{MPH} . \quad 30 \mathrm{MPH}\).
\(\begin{array}{ll}35 \mathrm{MPH} & 30 \mathrm{MPH} . \\ 45 \mathrm{MPH} & 30 \mathrm{MPH} .\end{array}\)
\(10 \mathrm{MPH} \quad 10 MPH.\).
30 MPH . \(\quad 30 \mathrm{MPH}\).
10 MPH . \(\quad 10 \mathrm{MPH}\).
\(10 \mathrm{MPH} . \quad 10 \mathrm{MPH}\). \(59 \mathrm{MPH} . \quad 50 \mathrm{MPH}\). 10 MPH . 10 MPH . \(35 \mathrm{MPH} . \quad 30 \mathrm{MPH}\). Restricted Speed 35 MPH. \({ }^{35} \mathrm{MPH}\). 10 MPH . 10 MPH . \(\begin{array}{ll}35 \mathrm{MPH} . & 35 \mathrm{MPH} . \\ 35 \mathrm{MPH} . & 35 \mathrm{MPH} .\end{array}\)
2. Bridge, Engine and Heavy Car Restrictions-

Locomotives in Groups \(\mathrm{G}, \mathrm{H}\) and I not permitted on the following tracks:
Sandwich.........New Idea Plant
Foundry track- 300 fect beyond clearance \({ }^{\text {. }}\) point
3. Train Register Exceptions-None.
4. Clearance Provisions and Exceptions Rule 82(A)-

Track bulletins are authorized this Subdivision.
Galesburg-Rule 405 applies.
6. Rule 89-When tlagging is required, distance will be 1.5 miles.
3. Kewanee-After stopping at Kewanee Passenger Station, east ward passenger trains on either track must not exceed 5 MPH until
7. Galesburg-Hump Repeater Signals Galesburg Terminal in the following locations:
MP 167.9-Between Quincy Main and the Hump Lead
MP 167.2 -On overhead bridge between Fiaterman and Wiest Witerman
Aspects displayed by these iwo signals will be identical to those displayed by the Hump Signal located at the Hump Crest A green aspect will indicare hump fast, to allow trains to be brought up to humping position at normal yard speed. A yellow aspect will indiente hump siow, to advise hump engipes to recuce to humping speed. A red aspect will be dispieyed to indieate hump stop, advising hump engines on the Hump Lead to stop, and communicate with the Yard mester via radio.
These special signal aspects govern humping operations only, and are not a part of aurogatic block, CTC, or interlocking syrtems ver in mide Foreman rill supersed the indicarion of these Repeater Sirank
8. Galva-Trains and engines have crossing gates down at Cherlu Street, after passing Hwy. Circuit which is located appruximately 900 il east of N.E. Gih Ave.
9. The following Track Side Warning Detectors proteet bridgen, tuanels or other atructuras-
Monteomery-Eastward MP 43.9 main 1 and 2.
Other Track Side Warning Detector Locations-
MP 56.9-Main 1 and 2.
MP 113.0 -Main 1 and 2

Be Radlo Channel No. 1 and No. 2 In tervise on this Subaivision
Tesin Dhapatcher Calla-Minckiey (Vietor)-32, StraHord (Polo)-30, Rochallis.s
\begin{tabular}{|c|c|c|c|}
\hline 1. & Speed Restrictions-Zone-Between & Maximum Spee & \[
\begin{gathered}
\text { Permitt } \\
\text { Freig }
\end{gathered}
\] \\
\hline & Load & & 35 Mr \\
\hline & MP 38.44 and MP 40.0 & & 40 M \\
\hline & MP 64.9 and MP 65.0 & & 40 M \\
\hline & MP 77.3 and MPP 77.8 & & 40 M \\
\hline & MP 81.4 and MP 83.7 & . & 45 M \\
\hline & MP 83.7 and MP 83.9 & & 45 M \\
\hline & MP 83.9 and MP 84.4 & & 45 M \\
\hline & MP 95.8 and MP 102.3 & & 45 \\
\hline & Jct, switeh, South River S & Aurora & 25 \\
\hline & Industinl track from conts & siding Aurora........ & 10 \\
\hline & MP 77.9: Through turno & ain cracts & 35 M \\
\hline & Fhat Cenies Through tu & 0 main tracie & 40 A . \\
\hline & MP 142.3: Through crosso & Plum Rives) & 30 N \\
\hline
\end{tabular}

an Radio Cnannal No. 1 and No. 2 in somples on inia Subdivialon.

Natson (Wabasina)-46. Bay Clity (Red Wing)-47.

See inside of buck cover for routes, times and atation atope for NAPC tralma.

44 DAKOTA DIVISION

an Radio Channel No. 1 In tervice on thla Subdivialon.
BN Radio Channal No. 2 in earvice between MP 0.0 and MP 16.4.
Train Diapatcher Calla-Magnolle-35, Poak-36. Solitiwoode37, Jamestown-38, Cleveland-38, Tapoen-40, sioringod 1, Plerem-42.
Betweon mp 0.0 and Dillworth MP 3.2, employees sere under the
See inside of daek cover for coutaz, times and etation stopa for NRPC traina.
2. Speed Restrictions-

Marimum Speeds Permited Agsinst the current of traffic on double track......... \(\quad 19 \mathrm{MPH}\). Freight traint over 100 Tons/OB between MP 9.1 and MP 38.8-Weatward main trect MP 3.0 and MP 91 bomin track. MP 27.0 and MP 280 , hoth track
MP 64.4 and MP 65.4, Valley City bridge................... Jamestown, both tracks Moorhead-All traina and yard engines stopping on main track between Fourth Street and Fourteenth Street crossing from point where stop is made unti engine passes either Fourth Street or Fourteenth
 Valley City Shoe Fly MP 67.3 to MP 67.5 .
Jamestown-Over spring switch on westward track af west end of yard......
Soo crossing MP 1924 ..
Bismarci-Over street crosings, 3sd to 26 th S................................. including engine or leading end of all traind
Through No. 20 turnouts at following locationss \(\ldots \ldots .\).
West FargoConnecting track switch, MP 12.8 .
West FargoConnecting track switch, MP 12.8.
Between Casselion and Surrey Jet. Switch through turnouts located 1575 feet west of MP 28.0 and 335 feet west of \(1.1 P 31.0\)
Casselton-Through No. 20 turnout (Third Subdiv.) 30 MPH .
Through No. 20 turnouts at following locations holdok............... East and weest siding switehes. Peak................................ East siding switch. Bloom...........TThrough turnout ent siding switch. Eldridge Through turnout end double track. Windsor East and west siding switches. Medina East and west siding swirches. Ladoga East siding switch. Steele............. East and west siding switches.
Driscoli East and west siding switches. Sterling East siding switeh. Burleigh West siding switch. Head end speed retrictions for west bound freight trains:

Up to 100
tons/OB Over 100
tons/OB
Signal 26.5 between Mapleton and
Casselton ….........................
50 MPH .
55 MPH.
Head end speed reatrictions for
eastbound freight trains:
Signal 17.6 between Mapleton and Eastward Home Sigai on Eastward track at MP 28.1 between Surrey track at MiP 28.1 between Surrey

55 MPH

10 MPH.
5 MPH.
30 MPH.
35 MPH. 35 MPH.

30 MPH.

If the desigrated signal display3 a green aspect, the freight train may resume normal speed arter head end passes signal
poth tracins berwen \(00^{\circ}\) and MiO 16.0 between \(M P 93.0\) and APP 96.0 and between MP 97.0 and MP 99.0, east of Jamestown.
2. Bridge, Engine and Heavy Car Restrictions-

Valley City-Locomotives in Groups G. H and I must not use freight lead.
Berea-international Multifoods and Peavey tracks locomocives in Groups G, H and I muse not be used in multiple.
Jamestown-Locomotives in Groups G, Fi and I must not use yard racks 7 chrough 14 or the wye.
Spiritwood-At Ladish Malt Plant. locomotives not permitted on scale or inside building at east end of trackage.
3. Train Register Exceptions-

BN Radio Channel No. 1 in eorvies on thle Subdivilion.
Dlapatehor Redio ealHn code 81 or 82 In sarvice on this Subdivalon.
See inside of baek cover for routes, times and atetion stops for NAPC trains.

Trains of epaginen through No. 20 turnoute at following

Wolf Point (Westward trains or enginea at weat kignal only)
Blair (Weatward.wains or engines at west signal only)
2. Bridge, Engine and Heavy Car Restrictions-None.
3. Train Register Exceptions-

Glasgow-NRPC trains need not register.
Williston-Through freight trains need not register.
4. Clearance Provisions and Exceptions, Rule 82(A)-

Dakoia Division clearance and train orders will govern between Wibliston and Bainville.
Dakota Division clearance received at Havre will apply at Bainville. Muntana Division freight trains which do notichanpl crews at Willis ton and passenger carrying trains will obtain tifieir Morntana Division clearance at Soo Tower which will apply at Bainvilie.
Dakota Division clearance received at Soo Tower will clear the train at Williston.
Incoming enqineers and conductors on passenger crews at Williston must deliver all train orders, clearances and messages personally to relieving engincers and conductors.
Montane Division freight trains originating at Williston will obeair their Montana Division cleararicei at Williston which will apply at Bainsille.
Uniess otherwise provided all trains arriving at Giaspow must deliver ali clearances, train orders and measages to relieving concuuctor, engineer or both.
Glasgow-If a connecting crew is not rested, conductor and engineer will turn their clearances, orders and measares over to an opera neer wil turn their ciearances, orders and messares over to an opera be delivered by the operator to the outgoing train and eagine crew when called.
5. Rule 99-When flagging is required, Alagring distance is 2.0 miles
6. Test Mile Locations-

Trenton- MP 139.4 and 140.4
Nanbus- MP 259.0 and 260.0
Glasgow- MP 269.6 and 270.6
Glasgow- MP 283.1 and 284.1
Glasgow- MP 263.1 and 284.1
Chinook- MP 411.6 and 412.6
7. Rule 350(B)-

Following switches are not equipped with electric locks:
Lakeside
Culbertson-Safilower Spur
Sproie
8. Accoum e electronic seales, cio not exceed 5 NPH over scajes on inciút try tract at Macon and Oswego.

9. Havre-Westward trains muat nos pass signale at Havre Eant MP 427.4 and eastward trains must not pase signale at Have Weat MP 432.0 without permision of Havre fiardmaster.
10. Track Bulletins-Authorized on this subdivision.
11. The Following Track Side Fiarning Detectors Protect Bridges, Tuanels or Other Structures-
\begin{tabular}{|c|c|}
\hline Culbertaon-MP 175.5 & Hinsdale- MP 307.5 \\
\hline Blair- MP 182.1 & Sacom 213 \\
\hline Poplar- MP 203.7 & Malean) MP 340.9 \\
\hline Poplar- MP 210.8 & Malta- MP 346.1 \\
\hline
\end{tabular} Poplar- MP 210.8 Malta- MP 346.1
Other Track Side Warning Detector Locations-
\begin{tabular}{|c|c|}
\hline Trenton- MP 142.8 & Vandalia- MP 293.0 \\
\hline Culbertson- MP 166.1 & Saco- MP 323.0 \\
\hline Sprole- MP 202.5 & Malta- MP 347.0 \\
\hline Wolf Point- MP 234.2 & Dodson- MP 364.0 \\
\hline Kintyre- MP 248.0 & Harlem- MP 383.5 \\
\hline Nashua- MP 269.0 & Chinook- MP 404. \\
\hline
\end{tabular}

BH Rudio Channel No. I in sorvice on this Subdridion
Diapatehor Radio callhn code o1 or 92 In sorrtee on thita Subdivicion,

an Redio Channel No. 1 in eotrice on this Subativition.
Tsain Dispatchor Canle -Edwall-20, Marfington-21, Odegse-24, Wilison Creek-25, Ephrati-28, Womathhae East-27
Sea tiatide of back cover for routes, timas and station atopa for NRPC tralns.
1. Speed Restrictions-

Speed Restrictio
Zone-Between
Latah Jet. and Wenatci.se
Lamona and Bluestem against
current of traffic
Latah Jct, turnout to Portland Fifth Subdivision...
Trains or engines through turnout and on sidings at following
locations: -
\begin{tabular}{ll}
Edwall & Adrian \\
Odessa & Columbia River \\
Gitson & AMalaga \\
Wilson &
\end{tabular}

Wilson Creek Espanola
End of double rack Lamona and Bluestern. \(16 \pm 6.7\).......
16 crossover MP
Trains or engines through turnouts and on sidings at following ocations:
Lyons
Naylor
Quiney
........
Wenatchee-MP 1652.7 and MP 1650 on W.O. main yard track

Wenatchee and Appleyard
Engines of eastward freight trains
passing signal \(1649.4\).

Maximum Speeds Permitted Passenger . Freight 79 MPH.

49 MPH. 40 MPH.
35 MPH .35 MPH.

35 MPH .35 MPH.
\(30 \mathrm{MPH} . \quad 30 \mathrm{MPH}\).
Up to 100
25 MPH. Cp to 100
Tons O/B

Over 100
Tons \(0: B\)
30 MPH.

Engines of westward freight trains Trinidad Absolute Signal 46 W M MïP
1627.0

Trinidad and Columbia River.
1629.9.
163.7.

Malagn Absolve........................... Appleyard A bsolute Signal 41 iW at MP̈p

Bridge, Engine and Heavy Car Restrictions-None
3. Train Register Exceptions-None.
4. Clearance Provisions and Exceptions Rule 82(A)Track warrant received at Spokane or Yardley applies at Latah Jct. Westward trains departing Spokane or Mardley enroute'Lamona, and Eastward trains departing Wenatchee enroute Lamona, will secure a second track warrant which applies as Lamona.
5. Rule 99-When flagging is required. distaniee will be 2.5 miles, except between Bluestem and Lamona when operating against the current of raflic the distance will be 1.5 miles.
6. Between Lamona and Bluestem-

Territory between Spokane (Latah Jct.) and Lamona is under jurisdiction of Boyer West train dispatcher, Seattie.
Territory between Lamona and Wenatchee is under the jurisdiction of Seattle Eest train disparcher, Seartle.
Between Bluestem and Lamonã, trains may proceed without train order or numbered clearance authority over either track in either direction when an aspect to proceed is displayed by signal governing must not be made uniess authorized by the train dispatcher.
Between Bluestem and Lamona, train location lineups will not be issued to maintenance forces. Main track permission must be secured from Boyer West train dispatcher, Seattle, before maintenance foreea or on-track equipment may occupy either main track within these limits. Main track permission will be nbtained in the following form:
"(Name of employee in charge of M/N track car or on-track equipment) way use (track or tracks) between__ and (or at - M until \(\qquad\) M"
When requesting main track permission, give your name, location ol hi-rail vehicle number if applicable anci specify track or tracks to bi used When main track permission is granted, the instructions mus be repeáted to the train dispatcher, who will make a record of it it Track and Time book, along with name of person repeating th instructions. Before issuing main track permission, Boyer West trai and insure there are no conificting train or engine movements withi the limits to be granted and ascertain that the Seattle East trai dispatcier has blocked controling sifeal governing eastrard mov ments on the track or tracics affected a: Lamona at STOP. Boy West train dispatcher will then block centrolling signal governil werward movementr on the :rack or tisiks affected ot Sluesterx STOP.
When main track permission has been granted, the crain cispatci must not authorize train or engine movements into the same ter tory until the employee granted main track permission has repors ciear
Mantenance forces or on-trsck equipment must be ciear of ite tri or work completed and spritises restored to normal position bef expiration of the time specifié, and the train dispatcher so adivs train dispatcher before the previously authorized time expires.
7. Ephratg-On industry track. stop and verify that crossing sigs are working properiy at Disision Street and Southeast Boule before proceeding over crossings.
8. Crossovers on Double Track not otherwise shownTralling PointMP 1534.8 Mohle
8. Wenatchee-Engine whistle must not be sounded except to prevent an accident not otherwise avoidable.
10. Handling 80-Feet or Longer Cars Between Quincy and Wienatchec-
Trains of greater than 5700 trailing tons must handle empty cars, 80 feet and longer, in the rear 5700 tons.
Trains of greater than 8500 trailing tons must handle loaded cars, 80 feet and longer, in the rear 8800 tons except 80 feet end longer cars in excess of 100 gross tons will have no restriction of location in train.
11. Westward freight trains will not use in excess of a fourth throttle setting west of Sunset Jch until all unis are on the Latah Creek bridge, observing posted speed restrictions.
12. Track Bulletias-Authorized on this Subdivision
13. The following Track Side Warning Detectors protect bridges, tunnels or other structures-
Trinidad- MP 16223 Trinidad- MP 16256 Trinidad- MP \({ }_{1623.9}^{162.9} \quad\) Valtage- MP 1638.1
Other Track Side Wiarning Detector Locations-Fairchild-MP \(1495.9 \quad\) Stratford- MP 1580.2 Naylor- MP 1607.9 Odessa- MP \(1855.8 \quad\) Columbia River-MP 1633.6

\section*{Appendix F}

\section*{TPS Train Mapping}

In order to rum SCAN , one must assoriate with each train I.D. a TPS train type in order to cempme the travel times for this train. 'This mapring from train J.D. to 'Tl'S tym is currently not antomatal. la what
 lisled.


```

1l_trains.ids.cont 06/29/8711:09:54 Page 2

```

307053
308054
\(\begin{array}{ll}309 & 055 \\ 310 & 056 \\ 311 & 057\end{array}\)
311057
312060
313062
314063
315065
316091
317092
318095
319096
320100
3211005
3221006
3231007
3241008
325101
3261011
3271014
3281027
3291028
330103
331104.
332106
333107
334108
335111.
336112
337119
338120
339121
\(\left.\begin{array}{llll}340 & 1346 & C 850814 & 850815 \\ 341 & 1347 & C 850814 & 850815\end{array}\right\rangle\) AMTHRN
\(\left.\begin{array}{llll}340 & 1346 & C 850814 & 850815 \\ 341 & 1347 & \text { C850814 } 850815\end{array}\right\rangle\) AMTHANL
\(\begin{array}{ll}\text { J870122 } 870122 \\ \text { J870203 } 870203\end{array}>\) PRIFR
J870203 870203 人 PRIFR
0870227870227
\(\begin{array}{ll}0870213 & 870213 \\ \text { M870112 } 870112\end{array}\) ExPEOTTE
M870112 870112
J 870227870227
J 870205870205
8870205870205
0861104861104 Inarermuache
J861104 861104
0870218870218
\(087022787022 \sqrt{7}\)

M870313 870313 EXPED, ت゙
A870113 870113 PRIFRT-
A870113 870113 PRIFRT
C861104 861104
\(C 861104\)
\(C 861104\)
861104
86104 Ammer
\(\begin{aligned} & \text { C861104 } \\ & \text { C861013 } \\ & 861104 \\ & \text { 861013 }\end{aligned}>\) AmTRAK.
C861014 \(861026 /\) FRAFR
A870204 870204 FRFR
C850403 850428
\(\left.\begin{array}{ll}C 850403 & 850428 \\ \text { C860416 } & 860427\end{array}\right\rangle\) Ampranर
C861013 861013
A870220 870220
A870306 870306
A870227 870227
A870121 870121
A870313 870313
A870219 870219
A861028 861028 PRIFRT
A870203 870203
A870227 870227
A870217 870217
\(\begin{array}{lll}342 & 1348 & C 850814.850815\end{array}\)

```

all_trains.ids.cont 06/29/87 11:09:58 Page 4

```


\section*{Appendix G}

\section*{Time Zone Calculations for Northern Corridor}

In order 10 creata a miform intirpretation of the schedules, each station on the railroad must fur locatril vis a vis its time zone. Brlow is the pendo-code which is used lo gemerate the timezone information for eagh reporting station uspd in SL.dN:
```

IF 1736 < station number < 16166

```
 THEN time_zone = pacific
 ELSE IF \(1036<\) station number \(<1735\)
 THEN time_zone = mourtain
 ELSE IF 30136 < station number < 34007
 THEN time_zone \(=\) mountain
 ELSE time zone = central

The Use of ATCS in Scheduling and Operating Railroads:
Models, Algorithms and Applications
Patrick T. Marker
Decision Sciences Department
The Wharton School
University of Pennsylvania
Philadelphia, PA 19104-6366, U.S.A.
(215) 898-4715

\section*{Abstract}

This paper present an overview of a series of models and algorithms which have been developed for use with ATCS technology on railroads to improve the reliability and costs in operations. After describing the conceptual framework a hiriarchy of control models, examples are used to illustrate the use of the various models at each level of this hierarchy.
\(\because\)
\(5 / 109 / 629417\)
AD

\section*{1 Introduction}

The railroad industry in the United States is currently undergoing a major restructuring in terms of both its technology and management practices. Prior to the deregulation of the industry in 1980 through the Stagger's and Motor Carrier Acts, railroads were dominated by their operating departments; i.e., they were focused mainly on cost reductions at the expense of good marketing techniques (see Keeler (I) for a comprehensive review of the state of the rail industry prior to deregulation). Such a situation of low cost-low quality (as measured by reliability of arrivals, loss and damage of freight, etc.) was very profitable when the U.S. economy was dominated'by bulk commodity production. However, the movement toward the production of high-valued goods and the implementation. of more efficient (e.g., just-in-time) inventory policies created a demand for highly reliable and flexible freight transportation services. As a result, railroads today are reinvesting in technology and restructuring their management practices in order to respond to the market's demand for better transport service.

Recent technological developments in ädvanced train control systems (ATCS) and high-speed computers have provided railroads with a unique opportunity:to automate many functions in rail operations and thus, to restructure their management systems. The Burlington Northern (BN) Railroad is precisely in this situation. The BN is one of the largest railroads in the United States with approximately 25,000 miles of track covering the north-western and central portions of the country. The BN is considered to be a very "progressive" railroad by most in the industry due to its development of many innovative technologies and management practices. For example, the BN has the highest revenue per employee at corporate headquarters (2), indeed making it a "lean and mean" operation.

The BN, however, has the same data problem facing all major railroads. Of the 25,000 miles of track, one-third is "dark territory" in the sense that whenever a train enters this portion of the rail network, the dispatcher knows its position only through voice communication with the train crew. In addition, signal blocks on a railroad like the BN can be long (30 miles) and when a train enters such a block, all other trains are prohibited from using this portion of track. Obviously, such a system does not make maximum use of
the available track capacity. Furthermore, congestion at yards (terminals) which is caused by too many trains arriving within a short time period is a direct result of poor planning of traffic throughout the rail network and leads to sometimes dramatic under-utilization of yard capacity.

In order to overcome the difficulties mentioned above, the BN, in conjunction with Rockwell International, is in the process of developing the Advanced Railroad Electronics System (ARES). As described by Welty (14), ARES uses the NAVSTAR Global Positioning System which is being developed by the U.S. Air Force to provide locational information (plus or minus 50 feet) for each train or maintenance of way vehicle on the system at any point in time (\(750-2,500\) trains). In addition to this location information, ARES includes the EMS locomotive system which provides automated procedures for train handling and energy conservation and the ROCS dispatching system which uses the location information from each train to help the dispatchers do a better job of operating the rail lines. Of course, any fully-implemented ATCS system will provide a similar wealti of information.

Thus, an ATCS like ARES provides a wealth of data heretofore not available to railroad management. However, this "wealth" can be more like a "flood" if the proper models and associated algorithms are not available to use this information effectively. The purpose of this paper is to provide an overview of an on-going research project at the University of Pennsylvania which is attempting to develop such models and algorithms. The next section will give an overview of the series of problems being studied, and Sections 3 and 4 will provide details on two of these models. Section 5 will give a summary of the progress to date as well as an overview of future research.

\section*{2 The Chase for Models}

In order effectively utilize the information generated by an ATCS, a series of models and computational procedures are necessary:
```

                    Schedule Policy Evaluation
                    \(\pi\)
    Tactical Scheduling of Trains
$\downarrow$
Real-Time Scheduling
-trains
-locomotives
-crews
-cars
1
Computer-Aided Dispatching
- 荷
Optimal Train Control

```

In what follows, we will briefly discuss each level of this model hierarchy.
The first question one must ask when implementing an ATCS is whether or not a railroad should run scheduled operations. At first glance, this seems to be a rather odd question, particularly if one is accustomed to European or Japanese railroads. However, substantial cost savings can be achieved if one runs a "tonnage" operation; i.e., trains depart from a yard when sufficient traffic has accumulated. Of course, reliability as measured by the variance of travel time will suffer under such a system as compared with a scheduled operation. In either case, the question of which policy to follow in the scheduling of trains should be made at the long-term planning level by incorporating the tradeoffs of crew and equipment costs, service quality, and the ability to effectively route empty cars and locomotives. The ability to address this long-term question requires the development of detailed simulation and analytical models which incorporate a total view of rail operations, not simply a model which focuses on the movements of loaded trains between two points.

Once an overall schedule policy has been decided, one must implement this policy on a weekly or monthly basis. This tactical scheduling of trains differs from the above strategic question in that all trains at the tactical level will have schedules. Thus, for those trains which must be scheduled (passenger, intermodal, etc.), the tactical scheduling procedure will create a set of feasible schedules; i.e., a set of schedules which are logically consistent in the sense that an operating plan exists which can achieve the times stated in the schedules with high probability given the delays encountered by each train as a result of random occurences (wind, breakdowns, etc.) and interference with other trains. For trains which run on a tonnage basis, scheduled slots would exist. That is, trains would not be permitted to depart at random but rather, must depart within a stated time window if they are to be operated on a given day. Thus, a tactical scheduling system must also have the capability to create such slots and check that they are feasible when considered alone and when combined with the other scheduled traffic.

Given the tactical schedules, the purpose of the real-time models is to develop operating plans which will achieve the stated schedules as best as possible given that events have occured (breakdowns, crew shortages, etc.). which disrupt the plan of operations on which the tactical schedules are based. For trains, one wishes to develop a plan of arrival and departure times at each major yard or, more generally, at each point where the planning of the train operations changes (i.e., a boundary of the dispatchers' territories). For crews, locomotives and cars, one attempts to plan their movements in order to guarantee that sufficient resources are available at each yard in order to achieve the tactical schedule plan.

After defining the arrival and departure times of the trains at the boundaries of the dispatchers' territories (i.e., a planning line), the computer-aided dispatching system attempts to schedule the meets and passes along a rail line along with planned arrival and departure times at intermediate points (sidings, beginnings and ends of double track, etc.) in order to assure compliance with the times passed from the train scheduling model. Several approaches have been proposed for this function (12), but all tend to ignore the fact that significant fuel savings can be achieved by pacing trains; i.e., have the trains travel at less than maximum velocity in order to save fuel. In addition, the planning of meets and passes along with a planned pacing of trains will tend to increase the probability of
arriving at the destination on-time since one is able to speed-up if disturbances do occur; planning at maximum velocity does not provide this flexibility.

Finally, the dispatching systern provides each train with a specific goal in terms of the time and velocity at which it should reach each point on its path. The engineer and the on-board computer system must then calculate a velocity profile (a combination of throttle and dynamic/air brake settings) which will achieve this goal in a safe and fuel efficient manner. Again, the train must solve a pacing problem which is now much more complex due to the nature of train forces and handling techniques.

The above discussion has described the flow of information down the model hierarchy. Of course, the reverse flow is also very important. The train must constantly inform the dispatching model of its location and performance, the dispatching system must inform the network control model of the status of planning lines, and the performance of the network control system (the interline planner) must be monitored in order to assess the long-term viability of various schedule policies.

At present, the research program underway at the University of Pennsylvania is attempting to address all of the issues described above. In what follows, two topics will be discussed: the computer-aided dispatching system and interline planning model, and a new decision-support system for tactical scheduling. Due to length requirements, all of the details of these models cannot be discussed in this paper. However, reference is made to the relevant technical reports which are available from the author.

\section*{3 Tactical Schedule Validation and Creation}

Given the overall policy concerning the frequency of train departures, the tactical scheduling problem is to create schedules for all trains which are logically consistent in the sense that there exist operating plans which can achieve these schedules with high reliability. As described by Assad (1), many simulation and optimization models exist for the analysis of rail operations. However, no model exists which can answer the simple question: is a given set of schedules feasible under the best operating conditions in the sense that there exists a plan of operation which can achieve the scheduled times? If not, what are minimal changes one can make to the schedules in order to make them feasible? If they are feasible under the best circumstances, what is the reliability of achieving these scheduled times when adverse conditions exist? Note that one could develop a large-scale optimization model which would attempt to find optimal schedules given well-defined cost or profit criteria (see, for example, Crainic et al. (3)). However, the definition of suchian objective function is extremely difficult given the tradeoffs of marketing concerns, costs, crew and equipment utilization, etc. Thus, the approach taken in the Schedule Analysis (SCAN) system (6) is to provide a decision-support tool which answers the logical questions of whether of not schedules are feasible, and leaves the marketing/cost-tradeoffs to the analyst: As designed, SCAN is meant to support weekly or bi-monthly updates to the stated schedules.

SCAN is an interactive decision-support system which contains three modules: a database system for the updating of track and train data as well as train schedules, an algorithm for checking whether or not a given set of schedules is feasible, and a MonteCarlo simulation technique for the calculation of the reliability of a given set of schedules. The feasibility algorithm takes as input the train schedules, track topology, and the free (unobstructed) meetpoint-to-meetpoint running times for each train which are calculated by one of many train performance simulators (TEM,TPS, etc.). Given this data, the feasibility algorithm searches for a meet-pass plan which can achieve this given set of schedules. If no plan can be found, the schedules are labeled infeasible and the algorithm presents the plan which would require the minimal change to the schedules in order to become feasible. The details of this integer-programming-based algorithm can be found
in (6). If the analyst desires help in changing the schedules to achieve feasibility, SCAN contains a set of heuristics to attain this goal. However, the analyst is encouraged to make these changes manually dye to the complex tradeoffs mentioned previously.

\section*{[Insert Figure 1]}

Once the schedules have been modified so that they are feasible in the best case, the analyst may wish to know how often feasibility would be maintained under more adverse conditions (adverse weather conditions, breakdowns, etc.). SCAN answers this question through a simulation technique in which probability distributions of the free-running times for the trains are used as input to a Monte-Carlo model. The result of this simulation is the percentage of time one can expect adherence to the schedules under variable operating conditions.

In order to illustrate the working of the SCAN system, consider the example given in Figure 1 ; this picture shows the track topology on the vertical axis, the time of day on the horizontal axis, and the schedules for each train as straight lines connecting the departure and arrival times. Looking quickly at this set of schedules, one would be tempted to conclude that they are feasible given the spacing of the schedule lines. However, the analysis of these schedules with SCAN first uncovers the problem that some trains are scheduled to operate faster than is physically possible (i.e., in time lower than the freerunning time). Once these problems are resolved, SCAN begins to uncover more subtle problems. For example, Figure 2 shows that no plan exists which could have Train 3 and Train 34 both arrive on schedule; in the best case, Train 34 would be late by ten minutes. Thus, one must change the schedule of Train 3 , Train 34 or both in order to become feasible. After many such changes, one achieves a feasible schedule as indicated by the feasible meet-pass plan in Figure 3. Once theses feasible schedules are found, a simulation analysis finds that the schedules are not very reliable in the sense that the schedules were feasible in only \(8 \%\) of the cases in which random delays to the trains were introduced. . Thus, more time must be added to certain train schedules in order to increase this reliability. The details of several other examples which illustrate the various features of SCAN can be found in (6).

\section*{[Insert Figure 2]}

SCAN is currently being used to re-schedule a major U.S. railroad as well as to analyze various capital improvements and/or maintenance policies. The ability to achieve a given set of schedules is obviously inflyenced by the track topology. One should consider carefully the impact of changes in track lay-out on the performance of the train movements; with SCAN, this relationship can be made explicit and seems to be a major use of such a system. For example, consider the situation depicted in Figure 4 which is a portion of double-tracked railroad with two small pieces of single track. In analyzing this situation with SCAN, the problem which is uncovered is not necessarily that single track exists but rather; that the speed limits on the portion of single track between MTPNT_ 2 and MTPNT_ 3 continually create infeasibilities in the schedules (note the shallow slope of the lines in Figure 4 on this portion of the track). Thus, one way to resolve this problem is to upgrade ... the single track to allow higher speed limits and not to go to the expense of adding an additional track at this point.

\author{
[Insert Figure 3] \\ [Insert Figure 4]
}

\section*{4 Real-Time Control of Train Movements}

Once the tactical schedules have been set for the day, the purpose of the real-time scheduling system is to attempt to achieye the times stated in the schedules with a high degree of certainty. In practice,,events (breakdowns, accidents, etc.) will occur which may inhibit the system from attaining the scheduled goals. Thus, the real-time models attempt to minimize the deviations from these goals while at the same time operating the trains in a safe and fuel efficient manner. In this section, two such models will be described along with the results of preliminary empirical studies.

\subsection*{4.1 Network Control of Train Movements: Interline Planning}

The interline planning model attempts to minimize the deviations of arrival/departure times at various points on the rail network for each train from the times stated in the tactical schedules. As described by Harker and Kraay (5), this problem can be formulated as a large-scale mathematical program. This model takes the following general form:
\[
\begin{array}{cl}
\text { minimize } & \begin{array}{l}
\text { Disruptions to Schedule }+ \text { Block Switching Delays } \\
\\
\\
\text { subject to }:
\end{array} \\
& \text { Costs for Work Rule Violations }
\end{array}
\]

The disruptions to schedule can be any metric of the time of arrival/departure at a point (the variables) and of the stated times in the schedule (the data from a SCAN-like system). In particular, these metrics may be weighted since for a given point, it may not be crucial that a particular train arrive on-time but for another train, its on-time arrival is vital. The cost of block switching delays refers to the fact that cars will most likely have to switch trains at least once in their journey from origin to final destination. Blocks of cars are often scheduled to travel on one train and then switch to another train at a
pre-defined yard. Thus, a precedence relationship is defined for the arrivals of trains at a particular yard by these block swapping conditions. Of course, if a block of cars misses a particular out-bound train, it can travel on another departing train but with a possible increase in the total travel time for the cars. The cost of the block swapping reflects this increased cost due to cars missing their planned connection at a yard. Finally, train crews are required by law to work no more than a prespecified number of hours. If the crews reach this limit, various penalties are assessed; these penalties define the last term of the objective function.

The first set of constraints simply state that crews must be changed at prespecified points on the network. The physical constraints of the train assure that each train departs after it arrives from a particular point, that sufficient time is given to the train if it must perform work at a given point (picking up and setting out cars, maintenance, etc.), and other such conditions. The third set of constraints states that the total running time of a train. (arrival at point \(i+1\) minus the departure from point \(i\)) must be greater thï̆ or equal to the free running time of the train plus any interference delays caused by the meeting and passing of other trains on the system. Finally, the logical constraints ensure that if two trains are scheduled to meet or overtake on a specified portion of the network, then this activity will in fact occur at the stated point.

The interference delays used in the third set of constraints merit discussion. There exists a large literature dealing with the delays encountered by trains operating on singleor double-track railways. However, these models all assume that trains depart randomly according to a uniform or Poisson distribution. In reality, the trains which are considered within the planning horizon of the interline planning model will depart at or near the planned departure time. That is, the departures are not purely random but rather, occur with some error around the stated departure time. To correct for this inaccuracy in the literature; Chen and Harker (2) have developed a model of delay for scheduled traffic which is formulated as a system of nonlinear equations. Using the successive approximation algorithm, Chen and Harker show how the mean and variance of travel times and hence, the reliability of on-time arrival, can be efficiently calculated.

The model just described is formulated in Harker and Kraay (5) as a mathematical program with a nonlinear objective function, nonlinear constraints due to the delay
functions, and integer variables arising from the logical constraints. Research is currently underway to develop algorithms for this problem which are suitable for parallel-computing environments. A preliminary discussion of this research can be found in (5).

\subsection*{4.2 Computer-Aided Dispatching: The Pacing Problem}

Once the interline planning model computes the time windows (targets) for the arrival and departures of each train in the network, the goal of a computer-aided dispatching system is to derive a meet-pass plan for the operation of a given planning line (the portion of the rail network between two specified points which comprises a dispatcher's region of authority). There have been many attempts at developing such a system (12,13). All of these methods try to minimize some measure of cost while assuring that the line is . operated safely. Typically, this cost consists of fuel consumption and the cost of arriving early or late at the ends of the planning line. The algorithms are typically simple brancich-and-bound methods which implicitly enumerate all feasible plans.

Two problems exist with the current state-of-the-art in computer-aided dispatching. First, by treating the arrival times as a cost rather than as a hard constraint, the models provide the dispatchers with a great deal of freedom to efficiently operate thëir line. Such freedom typically evolves into a system in which trains are given absolute priorities and some trains are made very late at the expense of others. Furthermore, the dispatchers are often too busy to consider the impacts of late/early arrivals on the performance of the rail network outside their regions of authority. However; it may often be the case that one would like to delay a high priority train in order to expedite the arrival of a late train even if the latter train has a low priority; priorities are therefore endogeneous rather than specified a priori. Also, the minimization of cost along a single planning line many lead to very sub-optimal operating plan for the entire network unless the impaçts outside the planning region are taken into consideration.

The second problem with the current state-of-the-art involves the hurry-up and wait philosophy on which most rail system operate. Consider, for example, Train 007 in Figure 3. At MTPNT_3, this train arrives one and one-half hours earlier than necessary in order to meet the two northbound trains. Since fuel consumption rises as the square of velocity
according to the Davis formulae (10), it is far better to pace this train to MTPNT_3 so that it will travel at a lower speed from STATION_Q to this point. Thus, one can simply slow down a train to arrive on-time at a planded meet. Can one do even better? Consider Trains 103 and 100 on the right-hand side of Figure 3. Note that Train 103 arrives approximately one hour early at MTPNT_2 for its meet with Train 100. Train 100, on the other hand, arrives one and a half hours early at its destination, STATION_Q. Why not simply slow down both trains? If this were done, Train 100 would not make its meet with Train 007 at MTPNT_7, Train 103 would be late for its meets at MTPNT_10 and MTPNT_11, and so forth. The problem with changing the times of Trains 100 and 103 is that we have a priori decided the locations of the meets rather than making this decision simultaneously with the times of arrivals at each meetpoint (and hence, the planned velocity of each train).

The pacing model, as defined by Kraay, Harker and Chen (\(S\)), is a mathematical program which attempts to simultaneously find the meet-pass plan (where trains meet or pass) and velocity profiles for each train (their arrival times at each meet-pass point) which minimizes the cost of operating a-rail line subject to the scheduled time windows while at the same time obeying the various operating policies of the railroad. In addition to conserving fuel, this notion of pacing may increase the reliability of train operations. If one plans in such a way that all trains travel at maximum velocity, then any disruptions can propogate throughout the line, delaying many other trains. By pacing, late trains may have excess power which will permit them to travel faster than planned in order to achieve the stated arrival times if disruptions do occur.

The pacing model selects the locations for each meet and overtake as well as the time of arrival of each train at each intermediate point in the planning line so as to:
minimize Cost of Fuel + Operating Penalties
subject to:
Meeting the scheduled time windows at the ends of the planning line Physical constraints of the trains
Speed restrictions
Logical constraints
The objective function of this model is nonlinear due to the fuel consumption term and
the various forms which the operating penalties can exhibit. The time windows simply state that each train should not be permitted to leave the origin yard before the time defined by the interline planner, and should not arrive early or late to the destination yard. The physical constraint portray the physical capabilities of the train vis-a-vis acceleration and deceleration, and the speed restrictions ensure the safe operation of each train. The logical constraints are used to ensure that siding capacities are not exceeded, headways between following trains are maintained, various priority rules are observed, and that any other "reasonable" conditions such as following trains being permitted to pass one another at most once (i.e., no leapfrogging) are observed. Thus, the pacing model is a large-scale, mixed integer, nonlinear program which must be solved in real-time and with a range of solutions, not just one. This latter condition is essential if the model is to be used effectively since dispatchers may often reject the optimal solution in favor of some other, less optimal solution due to circumstances which the pacing model did with consider.

In Kraay et al. (8), several alternative algorithms were considered. The best solution procedure is a rounding heuristic in which a:velocity profile for each train is computed for each train by not considering the interaction with any other trains. This problem becomes a much smaller nonlinear program which has a very special structure. Once these "unconstrained" velocity profiles (and hence, arrival times for each train at each point) have been computed, one then moves any conflicts which occur at infeasible points (e.g., a meet in the middle of single track) to the nearest siding while at the same time obeying all of the necessary logical constraints. This rounding procedure can be accomplished through a modification of the SCAN feasibility algorithm described in the previous section. Once a feasible meet-pass plan has been found via this rounding procedure (the places where trains are scheduled to interact), a nonlinear program with additional constraints is solved in order to compute the times of arrival. This last step is necessary due to the interactions between all trains as described above in the case of Trains 100 and 103; i.e., the algorithm must attempt to adjust all the times simultaneously in order to avoid infeasibilities. In certain cases, this simple rounding procedure can be proven to produce the optimal solution. In other cases, the experimental work reported in (8) shows that this heuristic is quite good.

Preliminary empirical evidence suggests that significant fuel and delay costs can be achieved through the use of this model. In the analysis of current practice, dispatchers tend to become overburdened when many trains are placed under their control. In such cases, they tend to follow the ver simple practice of dealing first with the highest priority trains, and then progressively moving toward those trains with low priority. The pacing model, by treating all of these decisions simultaneously, often yields significant cost savings. The details of this empirical work will be reported in a subsequent paper. Finally, this notion of pacing extends to many other areas of transportation. For example, the scheduling of barge and ship traffic in a canal (11) fits very well into this paradigm; these topics will also be explored in the future.

\subsection*{4.3 Optimal Control of Train Movements}

The pacing model provides the train with the time which it must reach the next point on its path as well as the velocity at which it should pass this point. The goal of the onboard computer system is to help the engineer achieve this time and velocity constraint in a safe and fuel efficient manner. This problem has been formulated by- Harker and Chen (4) as a nonlinear optimal control problem. In fact, both a deterministic model and a stochastic model which takes into account the random nature of train performance due to engine problems, wind and other weather conditions, etc. have been formulated and analyzed. Research is now underway to develop fast and effective solution procedures for these models.

\section*{5 Summary and Future Research}

The hierarchy of models presented in this paper has one goal in mind: to smooth the flow of traffic in rail networks by effectively using the wealth of information available from an ARES-like positioning system. In order to achieve this goal, a simple principle applies: keep it simple! Major policy tradeoffs are made at the top, the SCAN system attempts to implement these policies through the development of tactical schedules, and the realtime control systems develop operating plans which achieve these goals while optimizing performance. Note that this flow of authority is quite different than what one typically sees in railroad control system in the U.S.; in such systems, it is typically cost which is the driving force. In the schema presented in this paper, the marketing/customer concerns drive the schedules and thus, the entire operating philosophy. Simplicity is achieved by clearly stated goals: dispatchers are to obey time windows, engineers the arrival tifines given by the dispatcher, etc.

The research which is currently underway at the University of Pennsylvania involves the fleshing out of this hierarchy through the development of the necessary models and algorithms. In addition, various cost/benefit studies are being pursued in order to ascertain the ability of such a system to improve the reliability and costs associated with freightrailroading. In addition, extensions of these concepts to other modes of transportation and, in general, manufacturing processes are currently being explored.

\section*{Acknowledgements}

This work was supported by the National Science Foundation Presidential Young Investigator' Award ECE-8552773 and by a grant from the Burlington Northern Railroad. The comments of David Kraay, Dejan Jovanović and the staff at the Burlington Northern Railroad are warmly acknowledged.

\section*{References}
1. Assad, A.A. (1980), "Models for Rail Transportation", Transportation Research, 14A, 205-220.
2. Chen, B. and Harker, P.T. (1988), "Two Moment Estimation of the Delay on SingleTrack Rail Lines with Scheduled Traffic", Transportation Science, forthcoming.
3. Crainic, T., Ferland, J. and Rousseau, J. (1984), "A Tactical Planning Model for Rail Freight Transportation", Transportation Science, 18, 165-184.
4. Harker, P.T. and Chen, B. (1989), "Optimal Control of Train Movements", Working Paper, Decision Sciences Department, The Wharton School, University of Pennsylvania (Philadelphia, Pennsylvania).
5. Harker, P.T. and Kraay, D. (1988), "Real-Time Scheduling for Rail Networks: Moder Description and Proposed Solution Procedures", Working Paper, Decision Sciences Department, The Wharton School, University of Pennsylvania (Philadelphia, Pennsylvania).
6. Jovanović, D. and Harker, P.T. (1988), "Railroad Schedule Validation and Creation: the SCAN I System", Transportation Science, forthcoming.
7. Keeler, T.E. (1983), "Railroads, Freight and Public Policy", The Brookings Institution, Washington, DC.
8. Kraay, D., Harker, P.T. and Chen, B. (1988), "Optimal Pacing of Trains in Freight Railroads: Model Formulation and Solution", Operations Research, forthcoming.
9. Moore, T. (1987), "Goodbye, Corporate Staf", Fortune (December 21), 65-76.
10. Morlok, E.K. (1978), "Introduction to Transportation Engineering and Planning", McGraw-Hill, New York.
11. Petersen, E.R. and Taylor, A.J. (1988), "An Optimal Scheduling System for the Welland Canal", Transportation Science, 22, 173-185:
12. Petersen, E.R., Taylor, A.J. and Martland, C.D. (1986), "An Introduction to ComputerAssisted Train Dispatch", Journal of Advanced Transportation, 20, 63-72.
13. Sauder, R.L. and Westerman, W.M. (1983), "Computer Aided Train Dispatching: Decision Support Through Optimization", Interfaces, 13, 24-37.
14. Welty, G. (1988), "BN and ARES: Control in a New Dimension", Railway Age (May), 24-26.

\section*{Captions for Figures}

- Figure 1: Schedules for the SCAN Example
- Figure 2: Infeasibilities Uncovered by SCAN
- Figure 3: One of Several Feasible Operating Plans
- Figure 4: Double-Track Bottleneck Example

\section*{Computer Aided Train Dispatching: Decision Support Through Optimization}

Norfolk Southern Corporation
125 Spring Street SW
Atlanta, Georgia 30303
Southern Railway Company
2201 First Avenue, North
Birmingham, Alabama 35207

\section*{the holding} is divided is each region eger, conta:
Daily op. division he movement coordinate: tons contr the safe ar: over the di vision disk countable the dispart sistant sur "Chief"; rematcher ar Dispatc manding. train isp. mont of 2 . spanning most case single ra meet at s inge. The "meets" sideratior movers: gangs, si trial swift ton rev The di tact witt nails whir carding vision. 1 nations', statistic aral law tain this

Decern
6 December 83
\(5 / N 7 / 629417\)
\(A E\)

\section*{TRAIN DISPATCHING}
the holding company level. Each railroad is divided into two operating regions, and each region, headed by a general manager, contains five operating divisions.

Daily operations are controlled at the division headquarters level. Although movement of trains between divisions is coordinated through a centralized operations control center, the responsibility for the safe and efficient movement of trains over the division lies principally in the division dispatching office. Directly accountable to the division superintendent, the dispatching office is headed by an assistant superintendent, the "Super Chief"; reporting to him is a chief dispatcher and a staff of train dispatchers.

Dispatching trains is complex and demanding. In a typical eight hour shift, a train dispatcher will control the movement of 20 to 30 trains over territories spanning three to six hundred miles. In most cases, these trains operate over single tracks and opposing trains must meet at strategically placed passing sidings. The dispatcher arranges these "meets" with safety the paramount consideration. He also must safely coordinate movements of roadway maintenance gangs, signal maintenance crews, industrial switch engines, and motor car inspection crews.
The dispatcher is also in constant contact with yard personnel at freight terminals who report essential information regarding trains that will move over the division. Once trains reach their destinations, they report operating and delay statistics for the dispatcher to record. Federal law requires that the dispatcher maintain this "train sheet." Finally, the train
dispatcher interacts and coordinates with other dispatchers, as well as with the chief dispatcher, giving and taking information about the operation of his territory.

Southern Railway's Alabama Division (Figure 1) is a complex operating division. Headquartered at Birmingham, Alabama, its most heavily travelled routes extend from Atlanta through Birmingham to Sheffield, Alabama, near Memphis. It interfaces with other operating divisions at each of these locations. Other major routes extend from Birmingham south to Mobile and from Birmingham southeast to Columbus, Georgia. Altogether, mainline trackage exceeds 800 miles and 80 to 90 trains operate daily. The division employs more than 1,200 persons, mostly in train and engine service.

Two train dispatchers are on duty around the clock at the Birmingham headquarters: One controls the high density Birmingham-Sheffield corridor (the North Alabama District) and the line south to Mobile. The other controls the Birmingham-Atlanta route (the East. End District) and the line into southwest Georgia.

Both the North Alabama and the East End Districts operate under Centralized Traffic Control (CTC). This provides a failsafe system of signals and switches in the field controlled centrally by the dispatcher who monitors all field activity on an electronic display board. The other lines on the division have no signal control. In these "dark" territories, train movement is controlled solely by the dispatcher issuing stringent orders to train crews.

\section*{TRAIN DISPATCHINu}

Until the mid-1970s, the operation of the Alabama Division was not overly complex; in fact, there was no centralized traffic control whatsoever. Then in 1974 with the opening of a large freight yard facility at Sheffield, merchandise traffic levels began to grow steadily, making the North Alabama District a major gateway to and from the Midwest. A coal loading facility near Sheffield was opened in 1977, further congesting the line. Unit trains (trains with up to seven locomotives and 96 loaded coal cars) began operating to key power plants in Georgia and Alabama. These trains operate on 40 hour "cycles," that is, moving loaded to their destination, unloading, and returning empty over the reverse, route for reloading. Up to four such trains operate concurrently.

Management foresaw the need for centralized traffic control to assist dispatchers and began installation in 1976.

The research and development project to provide computer assistance for the dispatcher was in progress independently during this same period. As the CTC installation neared completion and as the R\&D project began to show promise, it became clear that the Alabama Division was a logical location for determining how computer aided dispatching could further improve performance.
Development of the Support System
Southern Railway's operations research staff (which is now the Norfolk Southern Corporation's OR staff) has existed since the mid-1960s. Originally oriented toward computer model development, the operations research group by the early 1970s had become a corporate consulting staff
providing applications support using tested analytical techniques, on one hand, and supporting research and development on the other.

The development staff began to investigate computer aid for the train dispatcher in 1975. Information systems for yard and terminal operations were already in place at many locations on the railroad. Extensions to this system requiring chief dispatchers to report realtime status of key trains were already envisioned. No other division-level systems were then being contemplated.
Concurrently, several signal manufacturers started selling turn-key systems to support CTC operations, providing features such as automatic " \(O S^{\prime \prime}\)-ing (\(\mathrm{Qn}_{n}\); Station reporting of the time a train passed a key location). Some systems permitted automated record keeping. One system even incorporated a rudimentary planning capability, tracing the routes of two opposing trains to determine when they would meet.

Operations research personnel reviewed a number of these systems and rejected them as being too inflexible. They saw the potential for automating the vast amount of division level information being manually recorded and for integrating this with other information systems. With extensive experience using simulation models to analyze line changes, they also foresaw the real possibility of on-line predictive planning aids for the dispatcher. They proposed that a computerized physical simulator be developed to explore these possibilities. Southern's top management computer usage committee approved the R\&D project in late 1976

The mini-computer based simulator, built and thoroughly tested over a threeyear period, emulated a centralized-traffic-control-office environment and permitted designers and dispatchers alike to play and replay real-life scenarios, refining features that could eventually be installed in a division office. The simulator contained a bank of four color CRT's. Two displayed the track layout of the territory being studied. A simulation model was written to emulate movement of trains over the territory and it displayed movement of trains on the two track-layout CRT's based on route decisions interactively keyed by the "dispatcher."

A third CRT served as a work sheet for updating automated train-data files. A specially designed function keyboard permitted screen formats to be displayed which allowed dispatchers to update train sheets, reports of delay, locomotive failures, weather conditions, and many other records, all of which were then kept manually at division offices. The computerized system did not change what was being recorded; it merely changed the manner in

The Norfolk Southern is now the nation's fifth largest and most profitable railway system.
which data was being recorded. A fourth CRT was reserved for displaying how trains should be routed - a capability which was being developed at the same time.

The potential for an on-line planning algorithm lay in considering all feasible future train meets throughout the territory and advising the dispatcher of that combination which would minimize total train delay. This "meet/pass plan," as it was labeled, had to account for all realistic operating conditions: travel times between sidings based on power and tonnage, speed limits, speed restrictions, train length compared with siding length, the ability of a train to start once stopped in a siding; train adherence to schedule, special cargo requiring special handling, work locations, and so forth. It also had to respond to dynamically changing conditions and display its latest recommended plan of action to the dispatcher in a manner he could readily comprehend.
The time-distance graph shown in Figure 2 is a standard method for displaying train meeting points and associated delay. Even in this simplified example involving five sidings and four eastbound and five westbound trains, there are thousands of meet combinations that could occur. The meet-pass plan was designed to reevaluate the combination at any time conditions changed and to display this new plan starting at the current time (8:30 am in the Figure 2 example) and projecting six to eight hours into the future.

Also incorporated was the ability for the dispatcher to override the plan by stating specific meet locations, by taking track out of service and by forcing trains in one direction to be stopped in sidings prior to the arrival of an opposing train. This permitted dispatcher experience and judgment to be reflected in the plan. It

Figure 2. A four and ot meeting fis
also form planning The fir: evaluatec. composit

TRAIN DISPATCHING

Figure 2. A time distance graph displaying train movement through a five siding network in a four and one-half hour time frame. Four eastbound trains move diagonally from left to right meeting five westbound trains where the lines intersect.
also formed the basis for a "what if" planning capability!

The first attempt to model the process evaluated feasible train routes with a decomposition approach incorporating a
shortest path algorithm and a linear programming formulation. Although optimal solutions were obtainable, more often
than not, convergence time was excessive and suboptimal solutions resulted. This
method was subsequently replaced with a branch-and-bound technique enumerating all feasible meet locations and this approach did insure optimal results in a highly responsive fashion. (This model is further described in a technical apperidix.)
The meet/pass plan was integrated into the simulator, and its use for on-line tactical planning was evaluated in detail. Possibly its most significant use was predicting the impact of the system operating in a real environment. During a periodic review of the project's status, the computer

Until the mid-1970s, the operation of the Alabama Division was not overly complex; in fact, there was no centralized traffic control whatsoever.
usage committee directed the operations research group to evaluate the potential of the system on the North Alabama District.

Operation was simulated both with and without computer-aided planning, and the impact on resulting train delay was measured. Train sheets for the North Alabama line were reviewed, and a typically heavy, yet normal, day of operation was selected. Train-meet delay for the first eight-hour shift on that day had amounted to 457 minutes. An Alabama Division dispatcher operated that same shift of operation in the simulator. The session began with train locations shown and information available concerning oncoming trains. The dispatcher worked the entire shift with no planning assistance, and the delay recorded at the conclusion of the session amounted to 455 minutes -
a two minute difference.
with additic
The dispatcher then replayed the shift, this time following meets recommended by the plan. The resulting delay, \(300 \mathrm{~min}-\) utes, reflected a reduction of 34 percent. Reductions in other scenarios subsequently simulated ranged from 22 to 38 percent. When the OR group presented these findings, the committee, perceiving that if even half of these benefits could be realized they would create a significant performance impact, immediately approved the project. The North Alabama pilot project was underway. Implementation and Its Impact

Interfacing the mini-computers and the CTC system was the only significant task: involved in converting from a simulated to an on-line environment. CRT's were added to the North Alabama dispatcher's work station to complement the CTC display board: two "work" CRT's wereinstalled to provide flexibility and backup, and a third CRT was installed solely for meet/pass plan display.

Installation and parallel testing of the North Alabama system began in January 1980. On September 15, 1980, the system was placed in production and the dispatchers' manual train sheets were removed. Six weeks later, instructions were issued to dispatchers to utilize the computer-generated plan.

Earlier in 1980, groundwork had been laid for installing a second, independent system to support the East End Alabama Division dispatcher. In the meantime, Data General Corporation, the minicomputer system manufacturer, announced an advanced operating system that would permit a single minicomputer,
port a large stations sim of such a si: two or mor needing acc

Conversi mid-1981, 1 added to tt 1982. A fin ritories on reality in \(\subseteq\) a system t. patcher ha
- porting all Auditin
system ga it with pri a vital ste computer provemer periment full years ance stati reflecting operating caused b. train she starting \(i\) lar data 1 son.

Forty
these pe compari sary to 1 strike ir were us tation (In the : 40 cont tember

\section*{TRAIN DISPATCHING}
with additional internal memory, to support a large number of users and work stations simultaneously. The desirability of such a single system that could support two or more dispatchers and any others needing access to the system was evident.

Conversion of the system started in mid-1981, with East End operations added to the dispatching system in March 1982. A final system supporting all territories on the Alabama Division became a reality in September. What had begun as a system to support a single train dispatcher had now evolved into one supporting all division operations.

Auditing operating performance as the system gained acceptance and comparing it with prior performance experience was a vital step in measuring the impact of computer-aided dispatching. The improvement predicted in the simulator experiment now had to be verified. For two full years since implementation, performance statistics have been compiled daily reflecting the total numbers of trains operating, train meets, and the total delay caused by these meets. Reviewing manual train sheets for a full year of operation starting in September, 1979, provided similar data for pre-implementation comparison.
Forty weeks of operations in each of these periods were then selected for a comparison study (a choice made necessary to compensate for a ten-week coal strike in 1981). Corresponding weeks were used for the year before implementation (the base period) and the year after. In the second year of operation, the first 40 contiguous weeks, beginning September 15, 1981 were used, thereby
eliminating from consideration a period when business took a sharp downturn during the latter half of 1982.

> Comparing the first year of implementation with the previous year, traffic increased nearly nine percent, yet delay per train operated and delay per meet were both down more than twelve percent.

Stringent guidelines were developed for analyzing delay reports to insure consistent measurement across periods:
(1) Only delay within the limits controlled by the dispatcher was included.
(2) Only delay that the dispatcher's planning would influence was considered.
(3) Days reflecting highly abnormal operation, such as during a derailment, were excluded and replaced with an average for the same day in the four previous weeks. The operating statistics for the three measured periods are summarized in Table 1.

Comparing the first year of implementation with the previous year, traffic increased nearly nine percent, yet delay per train operated and delay per meet were down more than twelve percent. Traffic in the second year of operation returned to pre-implementation levels. The average number of trains operating weekly is nearly identical in the two periods yet delay is more than 25 percent less in the 1981-1982 period.

Of the two measures, delay/train and delay/meet, the latter is more meaningful because division personnel have some

\section*{SAUDER, WESTERMAN}

TRAIN D
control in scheduling trains to avoid meets but have little control over the numbers of trains operating. This ability to plan and control meets is evident in the figures for the second year of operation when delay per meet was reduced 18.8 percent. Overall, combining the 80 weeks of measured operation since computeraided dispatching was placed on line, delay per meet has improved 15.5 percent. In addition, as Figure 3 shows, the operation is more consistent. In the year prior to implementation delay per meet ranged from 31.0 to 44.4 minutes. In the first year after implementation, it ranged from 26.6 to 40.2 and in the second, from 26.2 to 33.7 minutes.

Optimal planning together with information availability has improved performance significantly, and the resulting operation is a more consistent one. Several of the reasons are:

PERIOD A
Year Prior to Implementation Implementation
Average Weekly Meet Delay (Minutes) 8893

Trains Operated (Weekly)
Train Meets
(Weekly)
Meets Per Train
Operated Delay Per Train (Minutes)
Delay Per Meet (Minutes)
(1) A cleaner, neater, more professional operation. Information is mechanically and electronically recorded, replacing handscrawled and often altered massive documents.
(2) A readily accessible information base. Information recorded by the dispatcher is readily available and functional in inquiry form to all division personnel. Train information can also be transferred from one dispatcher's territory to another, reducing manual recording.
(3) An optimal plan clearly reflecting management policy. The meet/pass plan considers management directives regarding key priorities for dispatching trains. The continually updated nature of the plan ensures compliance with this policy under dynamic conditions.
(4) An equitable attitude toward dispatcher responsibility and action. As should be expectëd, dispatchers are severely criticized "
PERIOD B PERIOD C
Second Year Since
Implementation

Table 1. North Alabama district operating statistics for the three-year period starting September 15, 1979.

TRAIN DISPATCHING

Figure 3. Minutes of delay per meet, a three-week moving average.
for delays caused by poor planning or inattention, for example if a high-priority train is delayed because a low-priority opposing train blocks its movement. A common dispatching solution had been to clear the low-priority train into a siding far in advance to minimize the possibility of delaying the hot train. Computer aided dispatching has virtually eliminated this waste. Dispatchers are encouraged to use the plan and are not hauled on the carpet if they follow it even should delay occur.

In addition to freeing the dispatcher from complex, diversionary, timeconsuming calculations and risks, this computerized system has ancillary benefits. For instance, train crews now make their runs in consistently less time, giving them more time at home and substantially improving morale. By the same token, locomotive fuel and equipment requirements are cut, thereby effecting a measurable reduction in mechanical cost.

Reduction in train delay translates directly to cost savings. One hour of train operation equates to more than \(\$ 240\) using
a formula which considers fuel consumption, crew costs, locomotive availability and utilization, freight car ownership costs, revenue producing potential, and a variety of other factors. The more than 15 percent reduction in delay experienced in the 80 measured weeks of performance directly reflects savings of \(\$ 316,000\) in each of the first two years of operation. TA 7 hat are the anticipated division wide savings now that the system does in fact support all operating districts on the division? It is reasonable to expect similar percentage savings on the East End CTC line between Altanta and Birmingham. On the non-CTC portion of the division, some lesser improvement will occur from better planning and train scheduling. On this basis, future savings for the Alabama Division, when traffic returns to pre-1982 levels, are estimated at \(\$ 675,000\) annually. In addition, a proposed new passing siding on the North Alabama line, at a cost of \(\$ 1,500,000\), has been postponed indefinitely as a direct result of the greater dispatching efficiency.

\section*{SAUDER, WESTERMAN}

Another monetary saving which cannot be easily quantified is additional track time for various types of maintenance crews. The dispatcher can now more quickly and efficiently allocate working time, because he can adjust the locations of train delays to accommodate these crews. Using the meet/pass plan's "what if" capability, he can determine the best times to allocate, maximizing on-track working time yet minimizing train delay. Beyond the Basic System

On the same basis that expected division wide savings were estimated for the Alabama Division, implementation of the computer-aided dispatching system on all Southern Railway divisions will produce cost savings of \(\$ 3,000,000\) annually in train delay reduction alone.
On September 27, 1982, a memo sent to the Executive Vice President Administration, Norfolk Southern, from the President of the Southern Railway read in part: ... I am very much interested in extending this system to other divisions. I feel the results on the Alabama Division have been even better than we anticipated, and I believe we should move now to the north end of the Georgia Division between Chattanooga and Atlanta ...

Computer hardware to support the Georgia Division operation was delivered in the last week of December. Starting in early January, operations research analysts, working with Georgia Division personnel, "defined" the division, using interactive file definition programs. On January 27, the Georgia Division support system was put on-line to begin dispatcher training and no computer program changes were required to transfer the existing Alabama Division support system to the Georgia Division.

Training continued through February, and on March 18 manual train sheets for the north end of the Georgia Division, Atlanta to Chattanooga, were removed. The total conversion effort required less than six operations-research man weeks, and less than three Georgia Division man weeks, including system support and training.

As should be expected, dispatchers are severely criticized for delays caused by poor planning or inattention . . . \(\quad\)." step ties
Systems for three additional Southern Railway divisions are budgeted for the remainder of 1983. In January of 1983, the President of Southern Railway convened a task force representing transportation, engineering, operations research, anddata processing to produce an implementation plan that considers real installation costs matched against previously derived benefits. At the present time, it is expected that total installation cost at each division, except for one that requires new building facilities, will be less than \(\$ 300,000\).
The system described to this point is in operation and results have been demonstrated. The need for some new features became evident in working with the implemented system and they will be implemented soon.
First is formal planning assistance for the chief dispatcher. Improved efficiency in his duties has already been achieved through the information processing capabilities of the system. The meet/pass
plans no are tactic on the te. imminer. priately , dividual patching divisionthe chie' schedult avoid u: congest: A sec tion tral step ties puter cs first of : clerical. movem the bas plannir capabil: ly imp: at the: system What optimi. within
block,
dispat.
Conclu
Tod:
dispat strate to exp ritorié has in From. the di forma

\section*{TRAIN DISPATCHING}
plans now used by the train dispatchers are tactical plans that consider trains now on the territory and trains whose arrival is imminent. In a new approach, appze priately dubbed "SUPERPLAN," the individual meet/pass plans for each dispatching territory will provide input to a division-wide planning process and allow the chief dispatcher to adjust train schedules and work assignments to avoid unnecessary train meets and traffic congestion.

A second innovation provides information transfer among division offices. This step ties together each of the divisions through Southern Railway's central computer complex in Atlanta. This feature, first of all, eases the chief dispatcher's clerical effort in reporting key train movements. More important, it provides the basis for "SUPERPLAN-II" - optimal planning among divisions. The ultimate capability, now a potential reality, is vastly improved planning among divisions, at the general manager level and at the system control and coordination level. What was once a blue-sky dream of optimizing system-wide operation is now within reach because the basic building block, the division-level computer-aided dispatching system, works!

\section*{Conclusion}

Today the working computer-aided dispatching system continues to demonstrate significant dollar impact. Direction to expand the application to other territories testifies to the faith management has in the future benefits of the system. From a management scientist's viewpoint, the dispatching system is a marriage of information processing and management
science. It is a distributed system and a decision support system. Proven management science optimization techniques form the basis of the system which around the clock provides dispatchers and managers alike the real time key to improving productivity and expanding profitability.

\section*{Acknowledgement}

The work described in this paper is a product of Southern Railway's operations research staff working together with Alabama Division personnel. We want to express our sincere gratitude to all involved in this effort, and in particular to:; Kenneth W. Gohring (Development Manager), Herbert R. Jones and Roger N. McBrayer (Senior Operations Research Analysts), Paul C. Wright and Gudrun A. Klauss (Operations Research Anaiysts), Thomas D. Pace (Assistant Superintendent), W. Kenneth Bice (Chief Dispatcher), O. D. Prestridge, Susan Price, W. K. Smith, H. D. Stapler (Alabama Division Train Dispatchers), and John T. Braithwaite (Clerk-Operator).

Edward B. Burwell, President, Southern Railway Company commented: "The project has had a significant impact on the North Alabama district. Almost every day, when I would review trouble spots on the railroad, it would be at the top of the list - excessive delays, crews relieved for being on duty too long, and so forth. Then within a matter of weeks after this dispatching system was put in place, those problems went away. I didn't need to see statistics to prove it. The change in performance was obvious.".

\section*{SAUDER, WESTERMAN}

\section*{TECHNICAL APPENDIX: MeetPass} Planning Algorithm

The planning algorithm is a complete enumeration technique which investigates all possible meet solutions to find the least "costly." Any definition of cost as a function of train delay could readily be incorporated.

The cost function that was implemented segregates delay for every train \(i\), into two categories.
1) \(w_{i}=\) delay (beyond minimum origin to destination travel time, \(m_{i}\)) that
would permit train \(i\) to reach its destination within a predefined scheduled run time \(\left(s_{i}\right)\).
2) \(y_{i}=\) delay that exceeds \(s_{i}\)

Thus in any individual solution if we let: \(D_{i}=w_{i}+y_{i}=\) total delay for train \(i\) \(T T_{i}=m_{i}+D_{i}=\) train \(i\) 's projected travel time between origin and destination, then assuming \(s_{i} \geqslant 0, m_{i} \geqslant 0\) we can express the two types of delay as: \(w_{i}=\max \left[0, \min \left[D_{i}, s_{i}-m_{i}\right]\right]\) \(y_{i}=\max \left[0, \min \left[D_{i}, m_{i}+D_{i}-s_{i}\right]\right]\).
To promote adherence to schedule, the cost function multiplies \(y_{i}\) by train \(i\) 's priority (\(p_{i}\)). A loaded unit coal train, for instance, maintains a priority of 10 while a local train serving industry has a priority of 1 . The cost function also discounts the cost for those trains which have not yet arrived on the system. We define a discount factor
\[
\left(T-a_{i}\right) T
\]
where \(T=\) the algorithm's predefined planning horizon (six hours in this instance) and
\(a_{i}=\) interval of time between the current time and train \(i\) 's projected arrival time on the territory.
(Note: \(a_{i}=0\) for trains already on the system.)
Thus, assuming there are \(N\) trains in the problem, the total cost (\(C\)) for an individual solution can be calculated as follows:
\(C=\sum_{i=1}^{N}\left[w_{i}+\left(y_{i} \cdot p_{i}\right)\right]\left[\left(T-a_{i}\right) T\right] . \quad \begin{array}{r}\text { represent } \\ I=\text { tht } \\ I=\text { the }\end{array}\)
The function is repeatedly applied to all possible solutions. Obviously, if we consider all feasible solutions we will identify the optimal, or least cost, solution.
The enumeration of all possible solutions is accomplished as follows: First, all potential conflicts (i.e., meets and passes) are identified and the locations (sidings) where those conflicts might be resolved are identified. Referring to the inverted tree structure, each conflict, \(K\), might be thought of as a level where the nodes on that level are all the potential locations, \(I\), for resolving that conflict. The bottom level represents all possible solutions and their associated costs. In enumerating this tree, the routine considers two restrictions. A solution first must allow all trains to reach their destinations within an extended horizon (20 hours) and, second, must cost less than all previously enumerated solutions. Assume a network involving four sidings and four trains, two eastbound, two westbound.

Further assume, for simplicity, the following potential meets:
\begin{tabular}{cccc}
Train & Can Meet & Siding & Cost \\
1 & 3 & 1 & 40 \\
1 & 3 & 2 & 30 \\
1 & 4 & 3 & 20 \\
1 & 4 & 4 & 60 \\
2 & 4 & 1 & 20
\end{tabular}

The identify siding f to the be calc conflic similar this se be uni the ex locati، ered. solve desti: The \({ }^{\prime}\) of \(m\) with reso now of \(n\) cos 1 con les: In the tree structures below, let: \(\quad\) cor aśs all (i. th th

\section*{TRAIN DISPATCHING}

The algorithm accomplishes this by identifying a meet and choosing a feasible siding for it. Given each train's travel time to the siding, the delay and thus cost can be calculated for both trains. A second conflict is then chosen and resolved in a similar fashion. If the additional delay of this second conflict causes either train to be unable to reach its destination within the extended time horizon, an alternative location for the second conflict is considered. Eventually, all conflicts will be resolved such that each train can reach its destination within the extended horizon. The cost associated with this combination of meets and passes becomes a bound with which the cost of all other conflict resolutions will be compared. We can now backtrack and consider combinations of meets only as long as their cumulative cost is lower than the present bound. If all conflicts can be resolved and the cost is less than the present bound, then the new combination is the better solution, and its associated cost becomes the bound. When all combinations have been considered (i.e., the entire tree has been fathomed), the solution associated with the bound is the optimal solution.

\section*{Llhbe9/4 \(\mathrm{N} / \mathrm{s}\)}
\(\frac{4}{8}\)
'Driver-Assist' - Microprocessor Technology to Aid in the
Scheduling of Trains

\section*{introduction}

Iron ore trains operated in the Pilbara resion of Australia are among
 tonnes. Gross train masses range up to 30000 tonnes and length over 2.5 km .
The trains operate continuously over single track railroads some 400 km
long. A reduction in operating costs has been achieved by operating longer A reduction in operating costs has been acheved by perane tonne of ore.
and heavier trains which have reduced the fuel consumed piler
Whilst this trend will continue, further gains will be realised by increasing
 trains. A system is currently under development that will enabie trains
be scheduled in real time to meet some overall railway objective or strategy. At its simplest, this strategy could lie between the extremes of
the throughput of the railroad. In the case of the mining corpanies this relates
to the demand for ore at the port. If the demand for the ore is high then there is a need to maximise the throughput to ensure that the ore
transported as fast as possible. If the demand for the ore is low, when the With the iron ore trains it has been found that different scheduling
objectives require quite different dirivin tecchiquues. This poose \(a=\)
 driving strategy and cause a broken train. The high in-tran terack profile.
consequunce of the length of these trains in relation to the the
The train may extend over a number of grade changes, allowing different consequence of extend over a number of grade ehanges, allowing different
The train may
parts of the trian to be bin tension or compression. The current driving
strategies have evolved from a long and dirficult learning process which
 has progressively aimed atcontrin is not desirable to vary a driving strategy
system response. Consequenty it
such as occurs when there is is disruption in the sytem. In these such as occurs when there is disruption in ine system. ant in
circumstances it is desirable to be in a position to implement an aternative
driving strategy known to be appropriate. This can now be accomplished

(i) provide an overall operating system which can dynamically

萻
\[
32 \text { ON-LINE SYSTEMS FOR MAINTENANCE AND OPERATIONS }
\] The practical benefits of the Engineering System cannot at
present be assessed in financial terms, it is expected
hewever that the systen when fully developed will yield however, that the systern
the following benefits:
- More efficient utilisation of railway operating

The ability to defin Maintenance Intervals by the
A reduction of the number of trains failing in service, the renewal of such assemblies before A reduction in stockholdings of carponents cormensurate
with deductions on usage and failure rates.

The achievement of more realistic manning levels,
calculateed on accurate workloads and based on reduced
overhaul frequencies.
The ability to provide the Management Accountant with
The ability to provide the Management Accountant with
accurate ostting information for work ocopleteded,
together with a ralistic indication of over/under
sending on Revenue and capital Accounts.
A reduction in the shunting. of trains within polling -quirements.

The benefits in conouting terms have shown that a move from the corporate Mainframe to distributed application specific
processors, working in the 4th Generation ervironment are:

Software produced in \(30 \%\) of the time and at 258 of the cost of tradi

Processor support costs reduced by 308.
A high level of user acceptance.
The ability to adapt quickly to business demands.
\(31 \operatorname{Dec}^{1} 87\)

 Syatem Develorment

 Assist project but provided usferul informanion
Driving Simulator and its usage in such investigations.

In addition, it was necessary to define both the long and short term (i) enable, the display of
enable, the display of the information to the train driver
on-baard the locomotive
(ii). monitor and record the status of the locomotives to provide input
(iii) interface with other systems, such as Centralised Train Control (CTC)

The short term objective is to demonstrate that a 'Driver Assis"'
system can be made to operate as a railway control system. The losger

\section*{CURRENT SYSTEM OVERVIEW}

Development of a prototype system, both hardware and sof tware, has been completed and tested at Hamersley Iron in February March
objective of these essts was tomonstrate that operating information can
ond Driver in real time.

Basing the prototype hardware design around existing technology and experience had a signencantimpact on the thecess to locate the ecisison-making ability at a centrally based computer in the vicinity o display information to the train
enuipment on-board the locomotives would equipmennd monitor the status and performance of the
driver and
Communication between each train and central control is by means of a Communication the esting undertaken at Hamersley Iron used their existing
radio link. The
radio link. A schematic of the hardware configuration is shown in Figure
1.

(iI) amilinuously nudvino llin drlvor of the control nctions raquirad to Atgorillim. backgiround
 records locomotive performance and driver's control actions, Portable Data Yoggers and Transportable Data Recorders for in-train measuremen
recording of forces or brake system pressures. The suite of sophisticated equipment aiso includes the Train Driving Simulator (Blair, Norman,
Fitzgerald, Mamczak (31) which can simulate the response of a train to Fitzgerald, Mamczak
track characteristics and control actions, providing information in real time
on speed, fuel use and in-train forces. However, these devices are used in

 Feasibillty Study

determine which of these control actions make up the best
 and assess the state of the rail system and set goals for each train
(or track machine) so that some overall system objective, such as operating cost, is optimized. Such a controller needs to respond
in real time to any change and reorder the system to meet new
conditions.

毛

\section*{develop the necessary hardware, software and systems to acquire,
process and transfer data and information on which decisions can} process be based.

드트́․菏

134 'DRIVER-ASSIST' - TECHNOLOGY FOR SCHEDULING
accommodating changes in real-time, and still satisfy objectives
relating to time and cost. It is this system which sets goals?for relating to time and cost. It is this system which sets goals for
individual trains by way of the Train Scheduling Algorithm. (ii) continuously advise the driver of the control actions required to
 in-train for
Algorithm. algorithms which determine operating strategies. This has
hours on the Train Driving Simulator to gain an understing of the effects that different conlol were tested on-track at both Hamersley Iron usage. Many man, during which in-train forces and brake system pressures
and Mt Newmation were measured. This not only provided information for use in the Train
Assist projet but provided useful information validating the
In addition, it was necessary to define both the long and short term requin
? information on train performance
(iii) interface with other systems, such as Centralised Train Control
(CTC) The short term objective is to demonstrate that a 'Driver Assist'
system can be made to operate as a raiiway control system. The longer
位 system can be made to operate as a raill follow on-site testing.
term requirements will
CURRENT SYSTEM OVERVIEW
Development of a prototype system, both hardware and sortware, has
completed and tested at Hamersley Iron in February/March 1987. The
 Driver in real time.
Hardware Development
 experience had a significant impact on the design. It was decided very
early in the development process to locate the decision-making ability at a eariy in the
centrally based computer in the vicinity of the Train Controller, while equipment on-board monitor the status and performance of the train.
driver and
Communication between each train and central control is by means of a Communication between each train and central contron used their existing
radio link. The testing undertaken at Hamestey Iron
radio link. A schematic of the hardware configuration is shown in Figure
1.

BACKGROUND

 .ecording of forces or brake system pressures. The suite of sophisticated
equipment also includes the Train Driving Simulator (Blair, Norman, equipment also includes the Train Driving ste response of a train to
Fitzgerald, Mamczak [31) winich can simulate the track characteristics and control actions, providing information in real time
on speed, fuel use and in-train forces. However, these devices are used in an "off-line" mode, in the sense that the data is collected for later analysis.
The intent of 'Driver Assist' is to extend the capabilities of this equipment Feasibillty Study

It was necessary as a first step to investigate the technical and
(i) predict the dynamic perfotmance of a train over a known section driver. determine which of these control actions make up the best
driving strategy to achieve some overall objective for the train.

 operating cost, is optimized. Such a controller needs to respond
in real time to any change and reorder the system to meet new
conditions.
(iv) develop the necessary hardware, software and systems to acquire,

L\&I ONITAGAHDS \&OA גDOTONHDGL-LLSISSV- \&SAI\&G.道
 by the driver.

E

Power Supply: provides 'clean' distributed power to electronic
equipment

With 'Driver Assist', it was necessary to add additional features and

 the locomotive has been developed in rores reaty speeds up the rate of
interfaced to a terminal and disc drives which greal development and testing on-site. Inter face with the exis.
allows information to be transmitted to and from the train.

Prototype hardware has been installed on three locomotives at
Hamersley Iron for the purposes of testing. Central Control

\section*{ㅈ}
The hardware located at Central Control is based around a Hewlet
Packard A900 mini-computer. Allowances aro currontly boing made
 Radlo Link

136 'DRIVER-ASSIST' - TEGHNOLOGY FOR SCHEDULING

Flgure 1 Schematic of Hardware Configuration for the Initial System
Tests

\section*{Locomotlve Based Equipment}
Since the existing 'Locologger' incorporated many of the requirements
needed in the Driver Assist System, it formed the basis of the on-board
equipment. These features include:
(i) \(\quad \begin{aligned} & \text { Data Acquisition System: contains six microprocessor sub-systems } \\ & \text { and gathers analogue and digital signals from transmitters and }\end{aligned}\) system alarms on the locomotive. Digital pulses from other
devices (such as fuel flow meters) are also processed. Track devices (such as fuel flow meters) are also processed. Track
location is monitored by the axle generator, calibrated regularly
by means of track mounted transponders. All signals are (ii) Data Storage Module: stores the data from the Data Acquisition
(iii) Intelligent Display Unit: replaces the conventional locomotive

The current display is a 125 mm monochrome CRT. However,
for use in the Driver Assist application, a 250 mm colour monitor
has been developed since a much greater amount of information has been developed since a much greater amount of
'DRIVER-ASSIST' - TECHNOLOGY FOR SCHEDULING 139

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
ard the train. The primary input to the Short Term Controller is a ication of the journey that the train is expected to follow generated e Long Term Controller. This specification consists of profiles of Term Controller processes this information to produce a set of actions which satisfies the given specification while ensuring that deration is given to the internal dynamics of the train to reduce in forces. \\
Algorithm \\
In practice, the performance of an individual train depends upon \(r\) and dynamic brake efficiencies, rolling resistance and environmental rs, such as a head wind. All of these need to be considered by any . In effect the model is required to go through a learning process, lar to a driver obtaining a 'feel' for the train. This is important for the ation between trains. The computer model is required to compensate
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{Long Term Controller}

The Long Term Controller (LTC) predicts the cost and travel time for
竍 existing system, the entire length of the track, some 400 km , is considered, with the train stopping or not stopping at passing sitings. For tong, her
haul trains, the difference in travel times between a train stopping or not stopping can be sisnificant. The process is unconstrained, except
imposed speed timits, and the resulting strategies are given in terms of
s. imposed speed limits, and the resulting strategies are given in ter
force and velocity profilies. The Train Schenduling Alogoithm determin
actual strategy to be implemented using information from the LTC.

 different driving strategies and establish a relationship between operating
cost and travel time. This relationship, shown schematically in figure 3 ,

\section*{SCHEDULING ALGORITHM}
 The aim orm for a train meet, ising the information calculated by the
location and time form
Long Term Controller. Clearly, this is subject to information input by the Lrain Controller and to conditions existing on track. In effect, hear
 strategies after considering
interaction with other trains.

The ability to determine the time and cost of different train-specific The ability to determine the tume and corsins to achieve a particular
driving strategies allows the scheduling of trains
strategy rather than a timetable. Such strategies might include a need to sriving strategy rather than a timetable. Such strategies might of operating the
maximise system throughput or to minimise the cost of
trains. It offers the ability to alter the schedule in an optimum fashion to

Apart from ore trains, Hamersley Iron and Mt Newman operate

 Algorional is to systematically optimise the train schedule and to determine
train departure times, the timing and location of train meets and. other train departure times, the timing and location of train meets to occupy
travel information, while respecting the need for other vehicles to
the track.

\section*{Compostte Traln Path}

 Scheduling Algorithm after consideration of the poas of the associated travel
on a local decision criteria for that meet. Examples
profiles for a train achieving a minimum time strategy are shown in Figure
5. Similar information and profiles would be determined for a train The Long Term Controller is used to determine this information for The Long Term Controller is used to determine this info
the ore trains, while simpler models are used for other vehicles.

140 'IRIVER-ASSIST-TECHNOLOGY FOR SCHEDULING
 enables the compution of a train's perfor
subsequent predict in the current system. Executive Control Module
\begin{tabular}{l}
The above sections have discussed modules of the Driver Assist \\
\hline
\end{tabular} communication programs and Input/Output programs to interface wince operating personnel and other systems including a minimal amount of these modules exist as part of other equipme function of the Executive
development work was required. The primary form asks or programs at the required times and priorities to enable the overall
aster objective of the system to be met. It contine
status of the system and detects when there is a significant difference
and status of predicted and actual performance. It then schedules the
between pigure 4 gives a simplified,
appropriate task to resolve the difference. Figur

.

142 'DRIVER-ASSIST' - TEGHNOLOGY FOR SCHEDULING
'DRIVER-ASSIST'-TECHNOLOGY FOR SCHEDULING 145

Other situations which frequently occur and can be resolved include:

 eliminingting the need to stop the loaded train. However, analysis
and investigations have demonstrated that each situation needs to and investigations have demensidered on its own merits;

 average speed and coasting to a stop.
(iii) Both trains required to stop at a passing siding.

The Algorithm considers the real time performance of each train
operating on track when determining the train \(\mathbf{y}\) schedula. The difference in
 of a train could also vary in the event that a locomotive fails, or is low on
power. It has also been found that the maximum speed of a train can be power. It has also been found that the maximum speed ead wind. Effects
reduced ty up to \(10 \mathrm{km/h}\) hin the event of a strong head
that speed restrictions have on travel times are considered by the Long that speed restrictions have on travel times are considered by the Long
Term Controller when it generates the cost and travel time information. Whilst the current objective is to implement the Scheduling Algorithm
into a railumy control system, it can also be bsed as a planning too in a
stand-alone mode. In this mode it can be used to evaluate different into a railway control system, it can also be used as a planning 1001 in a
stand-alone mode. In this mode it can be bused to evaluate different
saction Sample Schedule Outputs The process of schedule tree evaluation stops when one of the
following end conditions is reached:
the complete tree has been explored
the number of feasible schedules to be considered has reached a declared maximum
the declared maximum elapsed time for Algorithm operation has

144 'DRIVER-ASSIST'-TECHNOLOGY FOR SCHEDULING A train schedule is actually a composite of the separate, fut related,
, paths for the trains involved. Where two trains meet, their complementary ctual schedule which is chosen depends on the strategy to be achieved. In addition to the travel time and cost information it is is also
cessary to input constraints relating to allowable departure and arrival

 significant impact on the schedule cost. These constraints, and the
bjective to be achieved, may also change with time. Furthermore, it may abjective to be achieved, may also change with time. Furthermore, it may
be neessary to recognise circumstances in which an individual train may
ee required to operate to a strategy which is different from the system be required to operate to a strategy which is different from the system
strategy. For example, while the system objective may be to minimise the
onerating cost, a specific train may be required to operate at the highest operating cost, a specific train may be required to operate at the highest
priority to minimise travel time.

\section*{The Scheduling Algorithm then provides the following:}

\section*{(i) requested journey departure time and the resilting scheduled \\ (ii) the arrival and departure times at intermediate track sidings. (iii) information to enable a train schedule time-distance graph to be
generated for display to the Train Controller who may validate
the schedule beforext is implemented.}
(iv) statistical information that can be archived as required.
information relating to the specified journey for use by the Short
Term Controller.
Beneflts of the Train Schedullag Algorithm
The fundamental reason for developing the 'Driver Assist' System is
to reduce the cost of transporting ore between the minesite and the port.
In the past an attempt was made for trains to follow a fixed schedule,
however this rarely occured due to on-track delays and variabilitities in
train travel times. Generally trains were scheduled at departure, primarily
to satitsy roster requirements, then progressed through the system as
facilities, such as passing sidings, became available.

 is to provide, Drivers with more information and advice to allow them to
do their jobs more effectively it will be necessary to work closely with all
affected groups to obtain maximum benefits.

\section*{Acknowledgement \\ The authors wish to express their gratitude to the management of
Hamersley. Iron Pty Le, Mt Newman Pty Ltd, ACET Limited and
Australian Industrial Research and Development Incentives Board, for} Vanselow R G, Davis D, Duncan I A, 1986, "Driver Assist -
Microprocessor Technology to Aid in the Handling of Long
Trains", Heavy Haul Conference 1986. Idrus N, Kurz R, Malone J P. 1985, "Experiences and Future Idrus N, Kurz R, Malone P. Application of of High-Technology
Development in the Ale. Australia
Instrumentation on Heavy Haul Rairoads Blair J R, Norman R R, Fitzzerald B W, Mamczak J N, 1983, Elgerd O 1, 1, 1967, "Control Systems Theory", McGraw Hill,
New York.

Powell M J D, 1964, *An Efficient Method for finding the Powell M J D, 1964, "An Erficient Method
minimum of a Function of Several Variables Without Calculatin
Derivatives", The Computer Journal, Vol 7, pp 155-162.

146 'DRIVER-ASSIST' - TECHNOLOGY FOR SCHEDULING
Extensive simulations of different trains, priorities and system
jective combinations have been undertaken to determine howit the Scheduling Algorithm functions and interacts with the other modules. One
of the difficulties found has been to validate the algorithm and establish of the difficulties found has been to validate
that it is generating a near-optimum solution.

However, a result of the simulations carried out on one railway has shown that there is up to a \(20 \%\) difference in operating costs, primarily
fuel, between a schedule generated to a minimum time strategy and a schedule generated to a minimum cost strategy. This difference results in
potentially large cost savings by operating trains in the most cost effective

A time-distance train graph consisting of five empty trains and five
loaded trains is shown in Figure 7(a) according to a minimum operating A time-distance train graph consisting of five empty trains and
loaded trains is shown in Figure 7(a) according to a minimum operating
cost objective. Figure ?(b) shows the schedule resulting from scheduling the same trains according to minimum time objective. Comparison between

CONCLUSION
The Driver Assist System presented in this paper refers to a
computer-based system and associated subsystems which operate in real computer-based system and associated subsystems which operate. in real
time to act as a railiway control system. This required the ability to determine all feasible driving strategies for a numbero of traiins operating
simultaneously and continuously on a single track railroad to enable trains

 economic feasibilities of the proposed system. The economic studies
showed that there are potentially large opprational and capacity related
savings to be ora
 technical studies showed that Driver Apsisit was teccmacially fatasible and
subsequent development has resulted in system testing on an operating
heavy haul railway
 development effort concentrated on the software. The ability to determine the cost and associated travel times for all feasible driving strategies has
enabled the development of a dynamic Scheduling Algorithm which can
Timetables for the Zurich S-Bahn
G. Rey
Institute of Transportation-, Traffic, Highway-, and Rail
IVT, Swiss Federal Instilute of Technology, CH-8093 Zui 1. INTRODUCTION Drawing up timetables for the Zurich S-Bahn is a very cot one hand, the S-Bahn runs on a closely kiin newwork
and local passenger rraffic side by side, for which iumeta up by the conventional graphical methoos used in the boun
disproportional effort. On the other hand, the Continually changing or in some cases are not even knowt
rolling-stock, the Rail 2000 concept of the Swiss Federal extensions and links between lines, and so on, are typical
of significance for the Zurich S-Bahn and they mak timetables by conventional methods a very tedious job. The concentration on manual work which occurs
drawn up by the conventional method and the associated

 2. THE ZURICH S-BAHN

- Railroad freight train scheduling A MATHEMATICAL PROGRAMMING FORMULATION:
Edward K. \(\underbrace{\text { Moriok* }}_{\text {and }}\)
Richard B. Peterson**

\(\overline{7}\)
The Transportation Center
and
The Technological Institute
Northwestern University Evanston, Illinois 60204
May , 1970

\section*{TOWNE HE/2311/M67/cop.2}
* Associate Professor of Civil Engineering, The Technological Institute and Assistant Director of Research, The Transportation Center, Northwestern University, Evanston, Illinois.
** Operations Research Analyst, Union Pacific Railroad, Omaha, Nebraska, formerly with the Chicago, Burlington and Quincy Railroad, now Burlington Northern Inc.
- The extensive assistance of persons in various departements of The Chicago,
Burlington and Quincy Railroad, is gratefully acknowledged.

\section*{ABSTRACT}

The problem of schedulingrailroad freight trains is one that is of continual interest to the railroad industry. Presentiy, there is argument as to whether short, fast trains or long, \(\leq\) low trains are the most efficient and profitable way of hauling various traffic in differing geographic and competitive situations. The combinations of train size, speed, power, de\(\therefore\) - parture times, scheduled stops, traffic carried, and other variables make the determination of train schedules for even the most simple networks complicated. It seems appropriate, then, to attempt to develop efficient models for assisting decision-makers in the scheduling of freight trains through a railroad network.

The examination of a specific real-life problem led to the development of a general model, which was then tested on an actual, but simple rail network. The model was first formulated as a mathematical programming problem which turned out to be a solvable mixed-integer linear programming problem. The model is constructed so as to answer four important railroad operating questions: the route and intermediate stops of the trains run, their departure times, the cars per train, and the speed of the trains run. Total cost (train operating cost plus intermediate yard cost plus car-time and service cost) is minimized in the model, while a minimum level of service is provided.

The general model:yields answers in temm of trains (defined by horse-power-to-tonnage ratio, car limit, route, and departure time), cars per train, and total car-hours used. The model is applied to a specific reallife problem, and results are obtained and compared with existing schedules.

Finally, extensions of the model which will allow it to represent much larger networks and represent networks more realistically are described.

\section*{INTRODUCTION}

Background
A railroad system, can be thought of as a network consisting of nodes connected by links. The nodes represent terminals, and the links represent main-Tine track which connects these terminals. Freight traffic enters the system at various nodes, and it is moved by road freight trains over the links until its destination node is reached.

Railroad operations may be defined as (1) inter-nodal and (2) intranodal. \({ }^{7}\) Inter-nodal operations consist mainly of the operation of road trains over the links of the network. Intra-nodal operations include the switching or classification of freight cars, as well as engine servicing, train inspection, changing of crews, and other terminal functions. Classification is the sorting of freight cars into groups with similar destinations or other common characteristics. In most railroad networks, a few important yards perform most of the network's classification function.

In the problem considered in this research, a sub-network of a railroad system is considered, and the freight cars enter this sub-network already classified. The on'y intra-nodal activity considered is at the one intermediate node in the sub-network where, though no classification takes place, road trains may be originated, terminated, or their make-up changed. The model, then, deals mainly with alternatives of the inter-nodal activity of road train operation.

Railroad Freight Train Operating Questions
The scheduling of freight trains is of growing importance in the railroad industry today. Naturally, it is desirable to minimize total operating
cost when moving given traffic. This has often been thought to be accomplished by maximizing the cars per train and minimizing total train miles. But, today there is intense intramodal and intermodal competition for most rail traffic, making necessary the swift and dependable movement of much rail traffic. The cost of new freight cars is increasing, especially with the trend to more specialized equipment. Therefore, the additional operating expense involved in providing faster, more frequent service may sometimes be offset by the decreased cost due to less car time used, and the additional traffic obtained or higher rates allowed.

Various railroad operating questions must be answered in order to determine the optimal train scheduling for a railroad network. Four basic: railroad freight train scheduling questions are considered in this study. They are: (1) the route and intermediate stops of the train, (2) the departure time of the train from its initial node, (3) the cars per train, and (4) the power (or speed) of the train.

By considering these questions, the model will be able to choose between direct, non-stop trains and those which stop at intermediate yards. For both these types of trains, the optimal number of cars per train, and the best of various train departure times can be determined.
Previous Work in the Area of Train Scheduling
A small amount of work has been published in the area of railroad train scheduling. Beckmann, McGuire, and Winsten \({ }^{2}\) include a chapter on train scheduling to minimize accumulation delay in their book. This chapter involves the development of a train scheduling model for a single line and offers some thoughts on scheduling trains for a more complex network.

\section*{吾}

Some railroad network simulation models have been developed. Allman's network simulation evaluated alternatives defined by regularly-scheduled trains, their route and cars, as well as the grouping policy for each of the network's yards. Also, a published network simulation performed within the railroad industry was that of Bellman \({ }^{3}\) of the Frisco Railway.

Mansfield and Wein \({ }^{12}\) attempted to determine the location for a new classification yard by constructing a mathematical model which would choose as optimal the yard location which minimized the total train operating costs and yard construction cost.

B
A linear programming model to schedule trains for a small, triangular network was developed by Charnes and Miller. \({ }^{5}\) Their model assumed that minimizing crew costs would yield the optimal scheduling of trains and crews. There have also been related studies such as Devanney's \({ }^{6}\) dynamic \({ }^{\circ}\) progranming approach to passenger vehicle scheduling, and empty freight car distribution models such as that of Kloer \({ }^{9}\), Boberault and White \({ }^{4}\), and Leddon and Wrathall. \({ }^{11}\)

Reasons for Attempting a Mathematical Programming Formulation
Any attempt to answer rationally the four operating questions described earlier involves at least four steps. These are: (1) the generation of alternative system schedules, consisting of the route, number of cars, departure time, and power (or speed) of each and every train, (2) the prediction of the consequences of each alternative, consisting of costs in this study, (3) the evaluation of each alternative, consisting of a total variable operating cost, and (4) a comparison of alternatives and selection of the best one. :ost. previous and current railroad scheduling research concentrates upon the prediction and evaluation, employing simulation-type models. These models can
- deal effectively with predictions and evaluations with very complex, stochastic interactions. However, each alternative schedule must be generated outside the model, and imput to it; and the prediction and evaluation for each alternetive may be costly due to voluminous data input.' Moreover, there is generally no comparison and selection of alternatives within these models, so that this must also be done separately, usually manually. Thus, these models are not ideally suited to considering a large number of scheduling alternatives and selecting the best one.

The objective of this research was to develop a railroad freight train scheduling model which was efficient in generating, evaluating, and selecting among a wide range of scheduling alternatives. Thus, it would be useful primarily in the search for a good schedule among a very large number of possibie schedules, rather than the analysis of and refinement of a particular schedule. Mathematical programming is a technique developed primarily
< to deal efficiently with such a choice prohlem among hundreds of alternatives. But it imposes restrictions upon relationships, which may reduce realism relative to that of a simulation. This is the price of being able to look more globally at alternatives. Thus, the mathematical programming model is most useful for initial definition of good alternatives, and then these can be analyzed in more detail and refined with a simulation model.

\section*{Study Objectives}

The first objective of this research was to solve a train scheduling problem of a particular railroad. This problem was well defined, and much information about this sub-system was available. The specific problem was ossentially to answer the four railroad operating questions for a sub-system consisting of a small chain of terminals, considering a wide range of possible
alternatives, including slow (drag) and fast (manifest, high power to weight ratio) trains, etc. However, this problem is a particular example of a much more general problem, which is not limited to a small number. of terminals, a simple network configuration, etc. Therefore, a second objective was to formulate this problem in a manner such that the same mathematical model and solution technique could be applied to other situations, such as an entire railroad.

This study will include four major areas. First, in the following section,a general theoretical model is developed and described. Then, this general model is applied to a specific real-life example. This example is the one which motivated the study. In the third section, the results 0 applying the general model to the specific problem are described and analyzed. Finally, conclusions about the efficacy of the model are presented, and extensions that will make the model more realistic are consicered.

\section*{THE GENERAL MODEL}

In this section, a train-scheduling model is developed. In order for it to be applied to a specific problem, this model is a modified form of a more general model. The model described in this section, though, can be easily extended to solve train scheduling problems of much more complexity than the problem solved in this study. The Network

In developing a theoretical freight train scheduling model, the first consideration is the network through which the trains will operate. A rather small real-life network was in mind at the beginning of this study, and for clarity, much of the discussion of the general model will center around this example problem. However, the abstract formulation is such that any network can be considered.

The network of yards and main lines-the fixed network-of the railroad is shown in Figure 1. The nodes are yards or terminals, and the links are the main lines. Cars come into the system at nodes \(A\) and \(B\), and are destined ror node C.

\section*{Choice Variables}

The verious alternatives which are to be considered in this train scheduling problem are defined by the model's choice variables. The four operating questioris mentioned earlier will be answered when the optimal values of the variables are determined.

There are four groups of choice variables in the model, the first group being the train variables, each of which is a train arc. Each train variable, a binary \((0,1)\) variable, corresponds to a specific train-arc
\[
\begin{gathered}
\binom{\text { Node }}{\text { C }}-\text { Trains } \\
\text { Operated } \\
\text { Node } \\
\text { Bigure I. General Model Network }
\end{gathered}
\]
1

and is defined in terms of the train's"route and stops, its departure time from its initial node, and somefimes its speed, horsepower-to-tonnage ratio, and car-limit.

\begin{abstract}
When considering only one type of train in the network described in Figure 1, there are three groups of train-arcs over which these trains may operate. In the western direction, the three groups of train arcs include direct trains from node \(A\) to node \(C\), trains from node \(A\) to node \(E\), and finally trains from node \(B\) to node \(C\). A train from \(A\) to \(C\) stopping at \(B\) is considered equivalent to a separate train from \(A\) to \(B\) and then \(B\) to \(C\), with a corresponding time connection at \(B\). By considering this network wis: three groups of train-arcs, it is possible to compare the total cost of direct train service with service in which cars are delivered from one train to another at an intermediate yard located at node B. Within the three groups of trainmarcs, different departure times from the trains' initial nodes further define the total number of train-arcs.

In the model, one option is to consider trains of only one type, such as manifest trains which have a certain schedule which can be maintained only by furnishing a specified amount of horsepower per unit weight, and by not exceeding a certain car or tonnage limit. The model also allon's trains of more than one type to be considered, the different types of trains differing in their schedules, and corresponding horsepower-to-tonnage ratios and car limits.

The second group of choice variables in the model consists of variables which represent the cars per train. These variables answer the operating question: what is the optimal number of cars per train? There are the same number of cars-per-train variables as train variables, since each
\end{abstract}
cars-per-train variable corresponds to a particular trainarc in the model.
In order to determine the total car time used by the various train scheduling procedures, two groups of choice variables are required in the model. The first group of variables define the number of cars that are still at the car input terminals and are ready to be moved at midnight. In our network, two of these variables are required, one for each of the two input teminals (node \(A\) and node \(B\)). These variables allow the cars that remain to be moved at the end of the scheduling day to be added to the cars available at the start of the day, and allow the correct. car waiting time to be determined.

Secondly, a single choice variable represents the total car-time, less that car-time already computed by variables representing the cars at an input terminal at midnight. The total car-time is the time that each car spends from the time that it is ready to be moved at one of the input terminals, until it has arrived at the destination terminal summed over all the cars that are input into the network on the day considered. Together, the car-time variable and the variable representing the cars to be moved at midnight give the total car-time for the network, and therefore, allow the total car costs of various scheduling procedures to be determined. Costs

The train-scheduling model schedules trains so as to minimize total cost. Total cost includes:all costs that vary with variations in train scheduling. Those railroad operating costs that vary with different train scheduling procedures will now be included in the model, and expressed in terms of the choice variables that have been chosen for this model.

Total train crew and engine crew costs definitely vary when different
numbers of trains are scheduled. The total car costs vary with different train schedules; and locomotive investment, maintenance, and operating costs will vary if trains of different schedules and horsepower-to-tonnage ratios are considered.

Yard costs at intermediate terminals such as node B will vary with alternative scheduling of direct trains or trains which are handled at the intermediate yard. Yard expenses at node A and node \(C\), though, are assumed not to vary, since the same number of cars is handled through each yard no matter what train scheduling procedure is used. This assumes that long trains pose no great hardship on these yards, either in terms of length, of receiving and departure tracks needed, or by causing switching work to be concentrated into short time periods surrounding the arrival or departure of the long trains operated. This assumption tends to favor long trains, as yard costs surely increase as traffic is concentrated. "

Other costs that are assumed not to vary with varying train scheduling procedures are maintenance of way costs, costs of building and maintaining structures, and general expenses not directly related to train operation.

Four groups of costs, then, are assumed to be the only costs that vary significantly with alternative train scheduling procedures. They are:
1. train and engine crew cost
2. intermediate yard cost
3. car-time cost
4. cost of additional horsepower per car

In order to be used:in a mixed-integer programming model, the preceding costs must be expressed as functions of the choice variables of the model. The train and engine crew costs vary with the number of trains run, the total weight of the engines on each train, and the number of cars per train. These costs can be approximated by a linear function varying with the
number of trains and the number of cars per train, since for a given type (speed) of train the ratio of horsepower-to-tonnage, and therefore, the engine-to-car ratio will be constant.

The intermediate yard cost that is dependent on different scheduling procedures appears to vary with the amount of switch-engine time required to handle the yard's traffic, since other yard costs are virtually fixed in the short run. Yard office employees, maintenance employees, and at least one switch engine and crew must be available at this network's intermediate yard to switch local trains and local traffic. The additional cost of handing road trains in the yard will be a function of the increased eperating and maintenance expenses of the switch engine, which vary with the amount of switch-engine time used. The intermediate yard cost is, then, expressed as a linear function of the number of road trains to enter the yard. and the number of cars on each of these trains.

The actual car-time cost is assessed daily. For foreign cars, the railroad on which the freight car is at midnight is charged the daily per diem rate for that car. If the car is a home-road car, naturally no per diem charge is assessed. But, each car has a time-value, no matter whether it is a home or foreign car. In this study, no distinction is made between home and foreign cars; and an hourly time cost is used which equals the average per diem rate divided by 24 hours, plus an hourly value of service cost. The use of an hourly, rate instead of a daily rate has the advantage of rewarding savings of just a few hours, which when accumulated over a car's journey and over a large railroad system increase that railroad's car supply (or reduce car requirements) and reduce the total daily per diem charges as well as car ownership costs.

If trains of different types, that is with different schedules requiring different amounts of horsepower per trailing ton, are considered, train operating costs will vary b̈etween the different types of trains. If trains of only one type are operated, one can neglect locomotive costs, since it is aseumed that whether two locomotives move a 100-car train at a given speed, or each of the locomotives haul a 50-car train at the same speed, the engine costs are the same, since any small difference in wind resistance can be neglected. But, when one train is operated at a faster schedule than another, it requires more horsepower per trailing ton, or a greater engine-to-car ratio; and the added fuel consumed, as well as the \({ }^{\circ}\), i:ivestment and maintenance costs of the added locomstives, make the faster Erain of the same length have a considerably greater engine operating cost. The additional locomotive cost can be expressed as a function of the number of cars on the different types of trains, since there is a constant horsepower-to-tonnage or engine-to-car ratio for each type of train. Sar-Input Functions

Freight cars are input into the network at node \(A\) and node \(B\) and are destined for node \(C\). The numbers of cars that are ready to be moved from each of the two input nodes throughout the day are represented by carminput functions, or plots of cars to be moved versus time. There is one such function for each input node-output node combination. The model requires only that the number of cars ready to be moved at the departure time of each train considered be known, but the more orecise the car-input function, the more accurate will be the determination of the total elapsed car time in the model.

Available data did not break down freight cars by type, and hence all types of freight cars are considered to be represented by an "average freight car," with a daily value equal to the average freight car per diem rate. No distinction is made between loaded cars and empties, between cars loaded with cargos of different values or priorities, between cars in different per diem categories or charged only on a mileage basis, or between home road and foreign road freight cars. If data of this sort were available, then cars could be distinguished by as many categories as desired. A dis. tinct function of cars available to be moved between each origin and destination would have to be developed for each different per diem rate or car class for which some constraint, such as a time constraint at destination, were desired.

Yard classification of freight cars is not dealt with in this model. Alternate classification policies àre not considered, and cars are considered available for input into the model only after they have been classified and are already in their destination's classification track. Also, no local traffic (or cars destined for stations between nodes) is considered. When this type of network model is applied to a real-life problem, all significant traffic-originating or ierminating points must be represented by nodes, and some very low volume traffic generators may be omitted.

Mathematical Formulation for One-Direction Problem
The general model can now be formulated in mathematical terns. This presentation of the model will be for scheduling in a single directicn with all cars bound for a single destination. Thus ignored is the problem of locomotive availability, though trains of more than one type may be considered. These restrictions greatly facilitate the mathematical presentation of the
model, and they result in a model suited to the example application. The model without these restrictions is conceptually not difficult to understand, but it is complex in its mathematical representation. The more general model is presented in the Appendix.

This model can be easily expanded to include train scheduling in both directions, with cars input into the network at any node and destined for any node, with the exception that cars do not originate and terminate at the same node. Also, engines can be included as variables, and car variables can be expanded to include as many freight car categories as one wishes to consider.

In the mathematical formulation with the previously mentioned restrictions, the following notation will be used:
\(A_{i}=\) Cost of running train \(i, \$\)
\(B_{i}=\) Cost per car on train \(i, \$\)
C = Cost per unit of car-time, \$/car-hour
\(D_{i}=\) Time of departure of train \(i\), hours
\(E_{k}=\) Area under car-input function for node \(k\), car-hours
\(F_{i}=\) Running time of train \(i\), hours
\(G_{k j}=\) Cumulative number of cars originating at node \(k\) at time of departure of train \(j\), cars
\(H_{k}=\) The total number of cars available to be moved for the entire day at node \(k\), cars
\(L_{k}=\) Set of designations (i's) of trains leaving node \(k\)
\(R_{i}=\) Limit of the number of cars per train \(i\), cars
\(T_{k}=\) Set of designations (i's) of trains terminating at node \(k\)
\(L_{k j}=\) Set of designations of trains (i's) leaving node \(k\) before departure of train \(j\) leaving node \(k\)

\section*{\(\equiv\)}
\(T_{k j}=\) Set of designations of trains (i's) arriving at node \(k\) in time for cars to be ayailable for departure on train \(j\) leaving node k
\(\mathfrak{i}=\) Train designation, \(\mathfrak{i = 1 , 2 , \ldots , 1}\)
\(j=\) Train designation, \(j=1,2, \ldots, I\)
\(k=\) Node designation, \(k=1,2, \ldots, k\)
I = The total number of train-arcs in the network
\(K=\) The destination terminal's designation
\(z=\) The total variable cost in the problem
\(t_{i}=\) Choice variable for existance of train \(i\), binary (0 or 1):
\(w_{i}=\) Number of cars on train \(i\), cars
\(x_{k}=\) Cars remaining to be moved from node \(k\) at the end of the scheduling period (day); cars
\(y=\) The total car hours in the problem, less the product of (24 hours)(the cars remaining to be moved from all nodes at midnight), car-hours

\section*{Problem Statement}

The freight train scheduling model schedules trains so as to minimize the total cost which will be incurred. This total cost is composed of costs which vary with the number of trains operated, the number of cars per train, the number of cars remaining to be moved at midnight of the scheduling day, and costs that vary with the total elapsed car-hours. Mathematically, the objective of the model is to minimize
\[
z=\sum_{i=1}^{I} A_{i} \cdot t_{i}+\sum_{i=1}^{I} B_{i} \cdot w_{i}+24 C \sum_{k=1}^{K} x_{k}+C y
\]
subject to the following groups of constraints:
1. The following equation determines the value of \(y\), the car-time variable. Shown in Figure 2 is the computation of that part of \(y\) attributable to one example input node, designated node 2.

This example is for the case of one train into node 2 and one train departing node \(2 t_{1}\) and \(t_{2}\) respectively. The value of y can then be obtained by summing the car-time for each node over all the nodes in the network.
\[
\begin{gather*}
y=\sum_{k=1}^{K-1}\left(E_{k}\right)+\sum_{k=1}^{K-1} \text { i in } T_{k}^{\Sigma}\left(24-D_{j}-F_{i}\right)\left(w_{j}\right)- \\
(1) \quad \text { (2) } \tag{1}
\end{gather*}
\]

(4)

The first term in the equation (1) represents the area under. node 2 's input function, and this is designated as \(E_{2}\) or \(\underset{\sim}{A}\) in Figure 2. Added to this is the second term in the equation (2), which is the number of cars \(\left(w_{1}\right)\) brought into node 2 by trains terminating at node 2 multiplied by the time between midnight and the trains' arrival time at node 2 , here \(24-D_{1}-F_{1}\). This area determined by the second term in the equation is designated as \(A_{2}\) in Figure 2. Together, \(A_{1}\) and \(A_{2}\) form the total car-input function at node 2 , \(A_{1}\) being determined by external car inputs, and \(A_{2}\) coming from car inputs from road trains terminating at node 2.

The third term in the equation represents the area formed by the product of the number of cars (\(w_{2}\)) on the trains departing node 2 multiplied by the time between midnight and the trains' departure time \(\left(D_{2}\right)\), and this term is subtracted from the area al-

Figure 2. Car Time Determination
ready computed \(\left(A_{1}+A_{2}\right)\). Finally, the fourth term in the equation equals the product of the number of cars (\(w_{2}\)) on the trains departing node 2 multipilied by the runnina time of the trains (\(F_{2}\)), and this equals \(A_{4}\). After subtracting \(A_{3}\) from the total car input area \(\left(A_{1}+A_{2}\right)\), the addition of \(A_{4}\) yields the total car time for node 2, since the total area formed is equal to: each car's arrival time at the end of its train-arc minus the time the car was ready for movement at node 2, summed over all cars available to be moved at node 2. The value of \(y\) attributable to node 2 in this example is, then \(A_{1}+A_{2}-A_{3}+A_{4}\); and to obtain the total value of \(y\), the above procedure is repeated for all nodes, as indicated by the \(\sum_{k=1}\) summation signs preceding all four terms in the equation.
2. The cars which depart each input node on trains between the start of the schediling day and a given train departure time must be less than or equal to the value of the node's input function at that time, plus the cars that have been delivered to the input terminal by trains terminating at that node since the start of the scheduling day, plus the number of cars that remain to be moved at midnight of the scheduling day, i.e.**

\footnotetext{
* In this model, a one-day time period is used, though a longer one can easily be substituted, if desired. If one assumes that the car--input functions for the day preceding and the day following the scheduling day are the same as that for the scheduling day, then the cars remaining to be moved at the end of the scheduling day will equal the number of cars to be "carried over", and added on to the car-input function at the beginning of the scheduling day.
}
\(G_{k j}+x_{k}+\underset{i \text { in } T_{k j}}{W_{i}-i \operatorname{in} L_{k j} \quad W_{i} \geqslant w_{j} \text { for all } j,(j=1,2, \ldots, I)} \begin{aligned} \text { for all } k,(k=1,2, \ldots, k-1)\end{aligned}\)
3. The total cars which depart each input node for the entire scheduling day must equal the number of cars input into the node for the entire day plus the total cars delivered to the node by trains terminating at that node; i.e.,
\(H_{k}+{ }_{i}{ }^{\Sigma}{ }^{\Sigma} T_{k j} W_{i}-\underset{i}{ }{ }^{\Sigma} L_{k j} W_{i}=W_{j}\) for all \(k,(k=1,2, \ldots, k-1)\)
4. The cars per train must be less than or equal to the corresponding train value (0 or 1) times the limit of cars per train. The actual function of this constraint is to require that a train bé run (\(t_{i}=1\)) if the corresponding \(w_{i}>0\), i.e., \(R_{i} \cdot t_{i} \geqslant w_{i}\) for all \(i,(i=1,2, \ldots, I)\)
5. In actual railroad operation, certain cars must be deliyered to connecting lines before a certain cut-off time. On-time delivery to connecting lines at node \(C\) can be accomplished by requiring that at least one of a certain group of trains that arrive at node \(C\) before a certain cut-off time be run.
6. Constrained Variables. The train variables are restricted to taking on either a value of zero (the train is not run), or a value of one (the train is operated).
\(t_{i}=0\) or 1 for all \(i,(i=1,2, \ldots, 1)\)
!

\section*{APPLICATION OF THE MODEL TO A SPECIFIC PROBLEM}

The theoretical model developed in the previous section will now be applied to a specific actuapexample. Two different formulations will be explained, and designated as problem \(A\) and problem B. Variations of these two formulations, caused by altering certain costs and constraints, will be discussed in the following section dealing with results.

The Network
The network of the theoretical model and this particular example's network are compatible. The actual railroad line considered is 418 miles long, consisting of three crew districts. There is a major yard at each end of the line. At node \(\dot{B}\), a secondary main line joins the network, afd a small yard is located here. The yard is not large enough to do much classification work, but here cars from local trains and from industries can be added to road trains, cars can be taken off road trains, and road trains can be split-up or consolidated. The other intermediate crew-change point is not represented as a node since little traffic originates or terminates there.

The network of this railroad sub-system is shown in Figure 3. Only scheduling in one direction is considered, with cars entering at nodes \(A\) and \(B\) destined for node \(C\). The line between nodes \(A\) and \(B\) is single track equipped with Centralized Traffic Control, while the line from node B to node \(C\) is primarily a double-tracked line. Considering the volume of traffic over these lines, it does not appear that the capacity of the network's links will be a factor that will limit the number of trains which can be run.

Figure 3. Actual Railroad Network of Example

Car Input Functions
Only westward traffic is considered in the model, and the real-life problem is such that westward traffic other than that destined for the gateway city at node C can be ignored, since it represents an insignificant percentage of the total traffic volume. Cars destined for node \(C\), as well as other cars, arrive at nodes \(A\) and \(B\) throughout the day.

Various transfer runs bring cars in to the major yard at node \(A\). These cars are inspected and classified in about two hours, and one hour is considered as the additional time required to build the cars into a road train. A time interval of three hours, then, is added to car arrival data (obtained in two-hour intervals) to construct the car input function in Figure 4. This function describes the number of cars ready to be moved from node \(A\) to node \(C\) versus time for a typical week-day.

Figure 5 dessribes the car input function at node B for a typical week-day. The three car inputs shown in the function come from the arrivals of two local freight trains, and one road freight train off the secondary main line. Two hours switching time is added to each of the locais' arrival times to obtain the times when their cars are ready for movement, while the cars on the road train are all destined for node \(C\), and are considered as immediately ready to be moved beyond to node \(C\).

Problem A
Problem A is addressed to three railroad operating questions. They are: (1) the route and intermediate stops of the trains run, (2) the departure times of these trains from their initial nodes, and (3) the cars per train. Only manifest-type trains are considered.

Figure 4. Car Input Function for Node A

Figure 5. Cor Input Function for Node B

There are 21 train variables, or train-arcs. These include seven direct manifest trains from node \(A\) to node \(C\), seven non-direct manifest trains from node \(A\) to node \(B\), athd seven non-direct manifest trains from node \(B\) to node \(C\), as shown in Figure 6. All manifest trains are defined to have a car limit of 120 cars, allowing them to fit into the 130 -car, CTC-controlled sidings between node A and node B. A horsepower-to-tonnage ratio of 1.67 or equivalently, one engine per 30 cars; will allow these manifests to maintain their schedules over the network links. Running time for direct manifest trains from node A direct to node \(C\) is 11 hours, while between node \(A\) and node \(B\) it is 4 hours, and between node \(B\) and node \(C\) the running time is 7 hours. The overall running time of two non-s. direct trains from node \(A\) to node \(C\) is 12 hours, though, since the model is constructed to allow one hour handring time at the intermediate yard at node 8 .
\(\div\)
The seven departure times of trains from node \(A\) are: 1. a.m., 5 a.m., 7 a.m., 9 a.m., 1 p.m., 5 p.m., and 9 p.m. Departure times for trains which depart node \(B\) are: 2 a.m., 6 a.m., 10 a.m., Noon, 2 p.m., 6 p.m., and \(10 \mathrm{p} . \mathrm{m}\). These departure times were selected as those that appear intuitively to be the best alternatives. Possible train departure times follow closely in time most large car inputs as illustrated in Figure 7.

\footnotetext{
*Assuming an average engine of 2500 horsepower, and an average freight car of 50 tons: 1.67 Horsepower/Ton \(=2500\) Horsepower/Engine (X cars/engine)(50 tons/car)
\(X=30\) cars/Engine
}

Figure 7. Train Departure Times for Problem A

There are 21 cars-per-train variables which correspond to the 21 train variables in the model. Also, since there are two input nodes, there are two variables which represent the number of cars remaining to be moved from these two nodes at midnight of the scheduling day. Finally, there is one variable representing the total car-hours, less that car-time computed by the previous two variables.

Specific cost figures for problem \(A\) can be obtained from the cost functions developed for the general model. These costs are listed in Table l, and were derived from railroad information.

The linear-programming matrix for problem \(A\) is shown in Figure 8. Actual costs and car-input figures are applied to the general model to obtain this matrix. Of the 36 constraint rows (not including the objective. function), one is a group 1 constraint, 12 belong to group 2, two are in group 3, and 21 are group 4 constraints. Problem B

In problem B, four railroad operating questions are considered. These are: (1) the route and intermediate stops of the trains run, (2) the departure times of these trains from their initial nodes, (3) the cars per train and (4) the type (speed) of the trains run.

In problem B, drag trains, as well as manifest trains, are considered. All drags are defined to have a car-limit of 150 cars per train, which is thirty cars longer than the manifest car limit. Drags also have a horsepower-to-tonnage ratio of \(1.0^{\prime}\), requiring one 2500 -horse; \(3 w e r\) engine for each 50 , 50-ton freight cars.

Twenty train variables or train-arcs are used in problem B, allowing four different train departure times for each of five groups of train-arcs.

\section*{Table 1}

\section*{Costs for Problem A}

Train and Engine Crew costs for Manifest trains:
\begin{tabular}{|c|c|c|c|}
\hline From Node & To Node & Cost/Train & Cost/Car on The Train \\
\hline A & C & \$ 652.80 & \$ 0.50 \\
\hline A & B & \$ 188.40 & \$0.12 \\
\hline B & C & \$ 464.40 & \$0.38 \\
\hline
\end{tabular}

Yard Cost at Intermediate Node B (This cost is added to those trains which enter the yard at Node B): \(\$ 10.00 /\) train \(+\$ 0.15 / \mathrm{car}\) on the train

Car-time Cost:
\[
\$ 6.00 / \text { car-day or } \$ 0.25 / \text { car-hour }
\]

Total Costs:
From Node To Node Cost/Train + Cost/Car on The Train Cost/Car-hour
\begin{tabular}{llll}
A & C & \(\$ 652.80\) & \(\$ 0.50\) \\
A & \(B\) & \(\$ 198.40\) & \(\$ 0.27\) \\
B & C & \(\$ 464.40\) & \(\$ 0.38\)
\end{tabular}
\(\$ 0.25\)

Figure 8. Problem A Matrix

There are four direct manifest trains from Node \(A\) to Node \(C\), and there are four direct drags between the same two nodes. Due to problem size limitations, between node \(A\) and node \(B\) only four manifest trains are considered. Four manifest trains from node \(B\) to node \(C\) are considered, as are four drags, also from node \(B\) to node C. See Figure 9.

The added maximum length and reduced power per freight car of drags means that they operate at considerably slower speeds than manifests. The running time for manifests is eleven hours direct from node \(A\) to node \(C\), four hours from node \(A\) to node \(B\), and seven hours from node \(B\) to node \(C\), while drags require 16 hours to go from node \(A\) to node \(C\), and drags take eleven hours to go from node \(B\) to node \(C\). The four departure times of arains which depart from node A are: 5 a.m., 9 a.m., 1 p.m., and 5 p.m. Trains which depart from node \(B\), have departure times of: 10 a.m., 2 p.m., 6 p.m., and 10 p.m. These departure times are shown in Figure 10.

There are twenty cars-per-train variables in this problem, corresponding to the twenty trainj variables. Also, there are two variables representing the cars remaining to be moved from the two input nodes at midnight of the scheduling day, and one total car-hour variable.

Specific cost figures for problem \(B\) are listed in Table 2. Many of these costs are the same as for problem \(A\), though costs for drag trains have been added, and additional engine costs are included, since they are greater for manifests than for drags.

The linear-programing matrix for problem \(B\) is shown in Figure 11. The matrix consists of 32 rows (counting the objective function), 44 columns (including the right-hand-side), and the twenty train variables are restricted to being integers. Of the 31 constraint rows (not counting the

Figure 9. Train Arcs for Problem B

32

名


```

Figure 10. Train Departure Times for Problem B

```

\section*{Table 2}

\section*{Costs for Problem B}

\begin{tabular}{lll}
(Manifests, Node A to Node C) & \(\$ 13.20\) \\
(Drags, Node A to Node C) & \(\$ 11.50\) \\
(Manifests, Node A to Node B) & \(\$ 1.80\) \\
(Manifests, Node B to Node C) & \(\$ 8.40\) \\
(Drags, Node B to Node C) & \(\$ 7.90\)
\end{tabular}

Yard Cost at Intermediate Node B (This cost is added to those trains which enter the yard at Node B)?
\(\$ 10.00 /\) train \(+\$ 0.15 /\) car on the train

Car-time Costs:
\[
\$ 6.00 / \text { car-day or } \$ 0.25 / \text { car-hour }
\]

Total Costs:
\begin{tabular}{lcccc}
& & \begin{tabular}{c}
Cost/Car \\
Cost/Train
\end{tabular} & \begin{tabular}{c}
Cost/ The Train
\end{tabular} & \begin{tabular}{c}
Cost \\
Car-Hour
\end{tabular} \\
(Manifests, Node A to Node C) & \(\$ 652.80\) & \(\$ 13.70\) & \\
(Drags, Node A to Node C) & \(\$ 652.80\) & \(\$ 11.88\) & \\
(Manifests, Node A to Node B) & \(\$ 198.40\) & \(\$ 5.07\) & \\
(Manifest, Node B to Node C) & \(\$ 464.40\) & \(\$ 8.78\) & \\
(Drags, Node B to Node C) & \(\$ 464.40\) & \(\$ 8.18\) & \(\$ 0.25\)
\end{tabular}

objective function), one is a group 1 constraint, eight belong to group 2, two are in group 3, and twenty are group 4 constraints.

\section*{RESULTS}

\section*{Problem A}

The optimal solution of problem \(A\) is given in Table 3. In this optimal solution, two trains are operated directly from node \(A\) to node \(C\), and two are operated from node \(B\) to node \(C\). With a 120 -car limit for these trains, the minimum number of trains that must be run to handle the traffic is two trains departing node \(A\), and two trains departing node \(B\), making four trains operating into node \(C\). In the optimal solution, this minimum number of trains is operated, and the best departure times are chosen for these trains to minimize the total car time.

\section*{Problem B}

In problem B, drag trains are considered, as well as manifest trains, and the solution to this problem is given in Table 4. The inclusion of drags drastically changes the types of trains chosen as optimal. The optimal solution to problem \(B\) consists of a direct drag train from node \(A\) to node \(C\), and a manifest from node \(A\) to node \(B\), whose cars are added to those input at node \(B\) to supply the cars for two drags from node \(B\) to node \(C\). The total car-time for problem B's optimal solution is 7,512 car hours versus 5,102 car hours for problem A, indicating that the level of service provided by problem A's solution is considerably better than that for problem B's solution. But, the cost savings attained by operating one less train from node B to node C (283 train-miles) are greater than the added car cost and node B yard cost, yielding the minimum total cost of \(\$ 7,917\).
*The optimal total cost for problem \(B\) is greater than that for problem \(A\) due to the inclusion of additional engine costs for problem B. Additional engine costs are not included in problem A since only trains of one type are considered and engine operating, maintenance, and investment costs do not vary with different scheduling procedures in problem \(A\).

Table 3

\section*{Problem A Optimal Solution}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Trains Operated & Departure Time & Cars/Train & Train Type & From Node & To Node & \\
\hline \(T_{2}\) & 5 A.M. & 78 & Manifest & A & C & \(\cdots\) \\
\hline \(\mathrm{T}_{5}\) & 1 P.M. & 120 & Manifest & A & 6 & B \\
\hline \({ }^{T} 19\) & 2 P.M. & 116 & Manifest & B & C & \\
\hline \(\mathrm{T}_{21}\) & 10 P.M. & 109 & Manifest & B & C & \\
\hline \multicolumn{7}{|l|}{Total \(\cos t=2=\$ 3,694\)} \\
\hline \multicolumn{7}{|l|}{Total Car Hours \(=5,102\)} \\
\hline \multicolumn{7}{|l|}{\(Y=4,334\) car-hours} \\
\hline \multicolumn{7}{|l|}{\(x_{1}=32 \mathrm{cars}\)} \\
\hline \multicolumn{7}{|l|}{\(x_{2}=0 \mathrm{cars}\)} \\
\hline
\end{tabular}

\section*{Problem B Optimal Solution}

The Effect of Varying Car Costs
For the problem B formulation of the train-scheduling problem, the car costs are varied to determine what effect this will have on the train schedules. Table 5 shows the optimal scheduling procedures for car per diem costs of \(\$ 3.60, \$ 9.60\), and \(\$ 12.00\) per day, as well as the answer previously obtained for problem B using a \(\$ 6.00\) per diem cost. The optimal scheduling of trains for the \(\$ 3.60\) per diem value is the same as that for the \(\$ 6.00\) per diem value. But, by raising, the daily car cost to \(\$ 9.60\), an optimal solution very similar to that for problem \(A\) is obtained. The raising of the per diem value from \(\$ 9.60\) per day to \(\$ 12.00\) per day does not -1ter this solution, though. Therefore, between \(\$ 6.00\) and \(\$ 9.60\) lies the per diem rate which, for this formulation, divides the optimal solutions into two distinct categories.

At a low per diem rate, it is most economical to provide slöw service, in which drags are operated and cars are handled at the yard at node B. At a higher cost level, though, the total cost is minimized by providing much faster service, which is obtained by operating two manifest trains direct between node \(A\) and node \(C\), and two manifests between node \(B\) and node C. Therefore, once the value of car time becomes great enough; it is most economical to operate faster and more frequent trains, since the added cost of this speed and the cost of operating more trains is more than compensated for by savings in car costs at the higher per diem levels.

Existing Schedules
The approximate train schedules used by the railroad operating the network considered in this study are listed in Table 6, and given in terms of the problem \(B\) variables. A manifest is run daily on about the schedule of train \(T_{3}\) departing node \(A\) at 1 p.m. It usually carries only loaded cars,

Table 5
Optimal Solutions of Problem B With Varying Car Costs
1. Car Cost \(=\$ 3.60\) per day

\begin{tabular}{|c|c|c|c|c|c|}
\hline Trains Operated & Departure Time & Cars/Train & Train Type & From Node & To Node \\
\hline T7 & 1 P.M. & 150 & Drag & A & C \\
\hline T12 & 5 P.M. & 48 & Manifest & A & B \\
\hline T18 & 2 P.M. & 123 & Drag & B & C \\
\hline T20 & 10 P.M. & 150 & Drag & B & C \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Trains Gperated & Departure Time & Cars/Train & Train Type & From Node & To Node \\
\hline T1 & 5 A.M. & 85 & Manifest & A & C" \\
\hline T3 & 1 P.M. & 113 & Manifest & A & C \\
\hline T14 & 2 P.M. & 116 & Manifest & B & C \\
\hline T16 & 10 P.M. & 109 & Manifest & B & C \\
\hline Total Cos & \(=Z=\$ 8\) & 1 & tal Car Hour & \(=5,046\) & \\
\hline \(y=4,278\) & car-hours & \(\mathrm{X}_{1}=32 \mathrm{c}\) & \(\mathrm{X}_{2} \mathrm{O}\) & & \\
\hline
\end{tabular}
4. Car Cost \(=\$ 12.00\) per day
\begin{tabular}{|c|c|c|c|c|c|}
\hline Train Operated & Departure Time & Cars/Train & Train Type & From Node & To Node \\
\hline \(\mathrm{T}_{1}\) & 5 A.M. & 85 & Manifest & A & C \\
\hline T3 & 1 P.M. & 113 & Manifest & A & \(\stackrel{C}{C}\) \\
\hline T14 & 2 P.M. & 116 & Manifest & B & C \\
\hline T16 & 10 P.M. & 109 & Manifest & B & C \\
\hline Total Cos \(Y=4,278\) & \begin{tabular}{l}
\[
=Z=\$
\] \\
car-hours
\end{tabular} & \[
\dot{x}_{1}=32
\] & otal Car Hou \(X_{2}=\) & \begin{tabular}{l}
\[
s=5,04 \varepsilon
\] \\
cars
\end{tabular} & \\
\hline
\end{tabular}

Table 6
Approximate Actual Train Schedules
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Trains Operated & Departure Time & Cars/Train & Train Type & From Node & To Node & \\
\hline \(T_{3}\) & 1 P.M. & 100 & Manifest & A & c & \(\cdots\) \\
\hline \(\mathrm{T}_{12}\) & 5 P.M. & -98 & Manifest & A & B & \\
\hline \({ }^{T} 16\) & 10 P.M. & 120 & Manifest & B & c & \\
\hline \({ }^{T} 16\) & 10 P.M. & 120 & Manifest & B & c & \\
\hline \(T_{18}\) & 2 P.M. & 83 & Drag & B & C & \\
\hline Total Cos
\[
Y=6,044
\] & \(=Z=\$ 8\)
car-hours & 08
\[
x_{1}=15
\] & Total Car H cars \(x_{2}\) & \[
\begin{aligned}
& \text { urs }=6,404 \\
& =0 \text { cars }
\end{aligned}
\] & & \\
\hline
\end{tabular}
and it is generally restricted to 100 cars or less. This schedule is based mainly on forwarding important morning deliveries from connecting lines at node \(A\), and meeting two ipportant connections shortly after midnight at node C. Another manifest is run which picks up cars at node B. This train's schedule is approximately that of train \(T_{12}\) departing at 5 p.m. from node \(A\) for node \(B\), and of train \(T_{16}\) departing at 10 p.m. from node \(B\) to node \(C\). This train takes those cars that missed manifest train \(T_{3}\), or were excluded because that train's car-limit was reached, and there are connections with connecting-line trains to be made at node \(C\) early in the morning.

Another manifest enters the network at node \(B\) and runs from node \(B\) to node \(C\) on approximately the schedule of train \(T 16\). This train is scheduled to arrive at node \(C\) to meet approximately the same cut-offs as the other manifest train, \(T 16\). On most days, an extra drag is operated from node \(B\) to node \(C\), leaving node \(B\) at approximately the departure time of train T18, 2 p.m. This train handles cars originating at or destined for intermediate points along its route, as well as some through cars. Some of the other trains mentioned also occasionally stop at locations not included in the model to make important pick-ups or set-outs.

The total car time for the railroad's actual scheduling procedure, with the inputs used in the example, is 6404 car hours. This is significantly less than the total car time for the optimal solution to problem \(B\), though it is more than the car time for the case when the per diem rate was raised to \(\$ 9.60\) per day. But this is achieved by operating one more train than in the optimal sclution to problem B. The 283 additional train-miles associated with this train cause the present railroad schedule to have a cotal cost of \(\$ 8,508\), assuming a \(\$ 6.00\) per diem, which is considerably
higher, about \(8 \%\), that the \(\$ 7,917\) total cost for problem B's optimal solution.

\section*{Addition of Cut-Off Constraints to Problem B}

An extension of the formulation of problem B was made by adding an additional constraint which requires that either \(\operatorname{train} T_{3}\), or \(\operatorname{train} T_{11}\) and train \(T_{15}\), be run to protect the important midnight connections at node C. Also, a constraint is added to require that either train \(T_{16}\) or train \(T_{20}\) be run to allow the cars input at node \(B\) during the day to make the early morning cut-off at node \(C\). These additional constraints resulted in the solution listed in Table 7. In this optimal solution, manifests \(T_{3}\) from node \(A\) to node \(C\), and \(T_{16}\) from node \(B\) to node \(C\) are run, as are à dfaig from node A to node C and another manifest from node B to node C. A total of 5,471 car-hours are used with the additon of these cut-off constraints, while four trains are operated into node \(C\). The connections at node \(C\) are protected, and the car-hours are lowered by 2041 over the optimal solution to problem \(B\), while the total cost is increased by \(\$ 219\). This solution is still superior to that presently operated, which has a cost of \(\$ 8,508\) and 6,404 car-hours, in contrast to this optimal solution with cut-offs of \(\$ 8,136\) and 5,471 car-hours.

\section*{Implications of Reduced Crew Costs}

A reduction in the size of train and engine crews on road freight trains, and the resulting decrease in crew costs, may aiter train-scheduling procedures greatly. Such a possibility for reduced crews exists, as has been shown on foreign railroads. With this in mind, additional runs of problem A were made for different per diem rates with the crew costs halved.

Table 7
Problem B Optimal Solution With Cut-off Constraints Added
\begin{tabular}{|c|c|c|c|c|c|}
\hline Trains Operated & Departure Time & Cars/Train & Train Type & From Node & To Node \\
\hline \(\mathrm{T}_{3}\) & 1 P.M. & 113 & Manifest & A & \\
\hline \(T_{5}\) & 5 A.M. & 85 & Drag & A & C \\
\hline \(\mathrm{T}_{14}\) & 2 P.M. & 116 & Manifest & B & C \\
\hline \({ }^{T} 16\) & 10 P.M. & 109 & Manifest & B & \(\because{ }^{\prime}\) \\
\hline \multicolumn{6}{|l|}{Total Cost \(=\mathrm{Z}=\$ 8,136 \quad\) Totar Car Hours \(=5,471\)} \\
\hline \multicolumn{6}{|l|}{\(Y=4,703\) car-hours . \(X_{1}=32\) cars \(\quad X_{2}=0\) cars} \\
\hline
\end{tabular}

The optimal solutions for these runs are listed in Table 8. The optimal solution with the crew cost halved for a per diem cost of \(\$ 3.60\) is the same as that for the full crew cost and a per diem rate of \(\$ 6.00\). This could be anticipated, because relative costs are almost identical. But, when the per diem rate is increased to \(\$ 6.00\) and \(\$ 9.60\) for the halved crew cost, one train which formerly went directly from node A to node C now stops at node B. The additional yard cost for this train is more than compensated for by a reduction of 90 car-hours at the higher per diem rates. By running a 78-car manifest from node \(A\) to node \(B\), three trains can depart with cars from node \(B\), which allows train departures after each of the three large car-inputs at node \(B\). This scheduling procedure provides the best sérvice of any of the solutions, and has the lowest car hour figure, 5,012 car-hours.

In Table 9 is shown a possible solution to the problem \(A\) formulation of the train-scheduling problem which contains twice as many trains as the model determined to be optimal. When crew costs aro halved, twice as many trains may be run for the same total crew expense. Manual computation of the costs and car-time for four direct manifests from node \(A\) to node \(C\), and four manifests from node \(B\) to node \(C\) were made for a car cost of \(\$ 6.00\) per day. The total cost for this scheduling procedure is considerably greater than that for the optimal solution for a halved crew cost, but it is somewhat less than the total cost of the optimal solution using the full crew cost. Therefore, if co-operation between rail management and rail unions could be obtained, twice as many trains could be run as are presently under existing work-rules, each with half as many crew members. The total crew costs would be approximately the same in both cases, the same total number of trainmen and enginemen would be employed, but the service. would

\section*{Optimal Solutions to Problem A With Varying Crew Costs and Car Costs}
1. Full Crew Cost, Car Cost \(=\$ 6.00\) per day
\begin{tabular}{|c|c|c|c|c|c|}
\hline Trains Operated & Departure
Time & Cars/Train & Train Type & From Node & To Node \\
\hline \multirow[t]{6}{*}{\[
\begin{gathered}
\mathrm{T}_{2} \\
\mathrm{~T}_{5} \\
\mathrm{~T} 19 \\
\mathrm{~T}_{21} \\
\text { Total cos } \\
Y=4,334
\end{gathered}
\]} & 5 A.M. & 78 & Manifest & A & C \\
\hline & 1 P.M. & 120 & Manifest & A & c \\
\hline & 2 P.M. & 116 & Manifest & B & c \\
\hline & 10 P.M. & & Manifest & & c \\
\hline & \(=z=\$ 3\), & & tal Car Hours & 5,102 & \\
\hline & -hours & \(\mathrm{X}_{1}=32\) & \({ }_{2}\) & & \\
\hline
\end{tabular}
2. Crew Cost Halved, Car Cost \(=\$ 3.60\) per day

3. Crew Cost Halved, Car Cost \(=\$ 6.00\) per day
\begin{tabular}{|c|c|c|c|c|c|}
\hline Trains Operated & Departure Time & Cars/Train & Train Type & From Node & To Node \\
\hline T5 & 1 P.M. & 120 & Manifest & A & \(\stackrel{\square}{ }\) \\
\hline T9 & 5 A.M. & 78 & Manifest & A & B \\
\hline T17 & 10 A.M. & 120 & Manifest & B & C \\
\hline T19 & 2 P.M. & 74 & Manifest & B & c \\
\hline T21 & 10 P.M. & 109 & Manifest & B & c \\
\hline \multicolumn{6}{|l|}{Total Cost \(=\mathrm{Z}=\$ 2,484 \quad\) Total Car Hours \(=5,0\)} \\
\hline \(Y=4,224\) & car-hours & \(\mathrm{X}_{1}=32 \mathrm{car}\) & s \(\mathrm{x}_{2}=\) & cars & \\
\hline
\end{tabular}
4. Crew Cost Halved, Car Cost \(=\$ 9.60\) per day
\begin{tabular}{|c|c|c|c|c|c|}
\hline Trains Operated & Departure Time & Cars/Train & Train Type & From Node & To Node \\
\hline T5 & 1 P.M. & 120 & Manifest & A & C \\
\hline T9 & 5 A.M. & 78 & Manifest & A & B \\
\hline \(T 17\) & 10 A.M. & 120 & Manifest & B & C \\
\hline T 19 & 2 P.M. & 74 & Manifest & B & c \\
\hline T 21 & 10 P.M. & 109 & Manifest & B & C \\
\hline Total cost & \(=\mathrm{Z}=\$\) & \[
{ }^{35} x_{1}=32
\] & Total Car Hou & s \(=5,012\) & \\
\hline
\end{tabular}

\section*{Table 9}

Manually-Computed Solution for Eight Manifest Trains with Crew Cost Halved

Crew Cost Halved, Car \(\operatorname{Cos} t=\$ 6.00\) per day
\begin{tabular}{|c|c|c|c|c|c|}
\hline Trains Operated & Departure Time & Cars/Train & Train Type & From Node & To Node \\
\hline \(T_{2}\) & 5 A.M. & 53 & Manifest & A & C \\
\hline \(\mathrm{T}_{4}\) & 9 A.M. & 52 & Manifest & A & C \\
\hline \(T_{5}\) & 1 P.M. & 61 & Manifest & A & C \\
\hline T7 & 9 P.M. & 32 & Manifest & A & c \\
\hline \(T_{17}\) & 10 A.M. & 44 & Manifest & B & c \\
\hline \({ }^{T} 19\) & 2 P.M. & 72 & Manifest & B & c \\
\hline \(\mathrm{T}_{21}\) & 10 P.M. & 50 & . Manifest & B & c \\
\hline \(\mathrm{T}_{21}\) & 10 P.M. & 59 & Manifest & B & c \\
\hline \multicolumn{6}{|l|}{\[
\begin{aligned}
& \text { Total cost }=Z=\$ 3,520 \\
& Y=4,406 \text { car-hours }
\end{aligned}
\]} \\
\hline
\end{tabular}
be vastly improved, as reflected by the total car-hour figure which dropped from 5,102 for the optimal solution of problem \(A\), to 4,406 car hours for the case when twice as many trains are operated resulting in lower total car costs and lower car fleet size requirements. Thus a reduction of crew size which would be matched by a proportionate increase in trains operated would directly benefit both railroads through lower costs and shippers through better service. If rail traffic were to increase, it would probably also benefit rail labor.

\section*{CONCLUSIONS AND RECOMMENDED EXTENSIONS}

Conclusions
The model constructed in this study is intended to aid in decisionmaking involving railroad operating questions. This first generation model was designed to answer four railroad operating questions, and it was applied to a small railroad network. The answers to these questions were obtained without undue computer time and effort, with most answers obtained in less than three minutes of computer time (about \(\$ 20\)) using the solution code BBMIP* and a Control Data Corp. 6400 computer. The size of problem that can be solved with this code is a function of the computer size and the number of rows: columns, and integers in the problem. Both problem \(A\) and problem \(B\) formulations are near the size limit for the BBMIP code using a Control Data Corp. 6400 computer.

The model may be used on a daily basis, to schedule trains for an upcoming 24-hour period, or historical data may be used to establish basically unchanging daily schedules. In order for the model to be used daily as a management decision-making tool, a real-time information system is required which can give, in advance, predictions of the number of cars to be moved between terminals for an upcoming time period. Such real-time information systems are now being installed on many railroads, such as Total Operations Processing System (TOPS) on the Southern Pacific system. Without a real-time

\footnotetext{
*The computer solution code used to solve the mixed-integer programming problems in this study is BBMIP (Branch and Bound Mixed Integer Programing).
}
information system, though, basically unchanging dafly schedules can be established through the use of historical data.

The model developed in this work deals primarily with the inter-nodal railroad operations and onfy small-scale yard operations are considered at one intermediate node. The optimal schedules in this study were determined by minimizing the total cost exclusive of the costs of classification yards at both ends of the network, and the effect of these schedules on these major yards was not considered. By not considering the variable costs associated with alternate classification policies, and the physical layout of the yards, the timing of train arrivals and departures, and other factors of yard operations, the model is slightly biased in favor of long trains.

The relative dependabilities of various lengths and types of trains were not considered in this model, and this may bias the model toward long trains, since they may be less dependable than shorter trains. Also, a constant horsepower-to-tonnage ratio may not always insure a given train speed with added train length, since a shorter train may have advantages of more rapid acceleration and deceleration than a longer train.

The development of the model in this study has demonstrated that railroad train-scheduling problems can be formulated in a mixed-integer programming format. Despite limitations, due mainly to size restrictions, the model can accurately and quickly determine which of the two important factors, train cost or car cost, outweighs the other for a given scheduling situation. With refinements and extensions, the model can be made to yield for actual scheduling problems results that are accurate and attainable without great effort or expense.

\section*{Recommended Extensions}

Other computer codes for solving mixed-integer programming problems besides BBMIP are being developed which will solve, without undue cost, problems with hundreds of integer variables. With codes like these being made available, the model developed in this study can be made more realistic by making certain extensions to \(i t\). The problem matrix can be made larger, and this will allow more possible departure times for each type of train. This will also allow large problems, with larger networks, to be considered, with the inclusion of more nodes, and the accompanying increase in the number of train arcs. More local traffic can be considered, since important-. stops made by local trains can be expressed as nodes with the larger : permissible network. Additional types of trains can be considered by the model. Very fast and short trains, and very long, slave-unit trains can easily be included in the present model formulation by considering their appropriate costs, car-limits, and running times, and includinq \({ }^{\text {n more }}\) arcs in the model for them.

Other extensions that will add realism to the model will require restructuring of the model. Engines per train cañ be added as a grouo of variables, allowing a more accurate representation of costs associated with the number of locomotives. Also, train scheduling can be considered simultaneously in both directions by combining the scheduling problems for each. direction. With engines per train as a variable, and scheduling in both directions considered, constraints which specify the total number of engines available and the number of crews available can be added to the model.

Possibly the most important extension that can be made to the model is
to refine the definitions of freight cars. In the existing model, an "average car" is considered. The classification of freight cars into many groups--by individual cär cost, origin and destination, perhaps priority of shipment, or any other factor--is an extension that will add greatly to the model's realism and usefulness.

If cars are broken down into many groups, based on the value of the car and a value or priority assigned to its, contents, and cut-off times for delivery to connections, then it is possible that the optimal solution to a scheduling problem will have cars of different categories handled on different types of trains, operating at different rates of speed. for expensive freight cars loaded with valuable contents, the value of car-time saved by greater train speed is greater than the cost of providing that speed. On the other hand, for empty freight cars in a low per diem group, the cost of attaining car-time savings by increased running speeds will be more than the value of the car-time saved, and these cars will prodably operate in slow trains, possibly handled at intermediate yards. The model, then, could determine for a given real-life situation the important and unresolved question of where the optimum trade-off is between the value of car-time savings, and the cost of attaining those savings.

Extensions to the model such as those described above are now being explored and developed.

\section*{REFERENCES}
1. Allman, William P., A Nefwork-Simulation Approach to the Railroad Freight Train Scheduling and Car Sorting Problem, Ph.D. Dissertation, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Lllinois, Augu:t, 1966.
2. Beckmann, Martin, McGuire, C. B., and Winsten, Christopher E., Studies in the Economics of Transpo: tation, Yale University Press, New Haven, Connecticut, 1955.
3. Bellman, J. A., "Railroad Network Model,." Bulletin of the International Railway Congress Association, Cybernetics and Elfestronics on the Railways, \(5,(1968), 16-22\).
4. Boberault, Abel M., and White, William W., "Scheduling Empty Box Cars," Research Paper, International Business Machines Corporation, New York Scientific Center, New York.
5. Charnes, A., and Miller, M. H.; "A Model for the Programming of Railway Freight Train Movements, "'Management Science, 3, (1957), 74-92.
6. Devanney, J. W., "Transportation Scheduling Under Multi-Dimensional Demands, "Research Report R67-72, Massachusetts Institute of Technology, Department of Civil Engineering.
7. Eberhardt, Julian S., The Effects of Shorter, More Frequent Trains on Railroad Classification Yards: A Computer Simulation, M. S. Thesis, The Transportation Center at Northwestern University, Derember, 1964.
8. Hadley, G., Einear Programmina, Addison-Wesley Publishing Company, Reading, Massachusetts, 1962.
9. Kloer, Craig D., A Model for Allocating Freioht Cars to Individual Shipments by Car Number, Ph.D. Dissertation, ililinois Institute of Technology, Chicago, Illincis, January, 1968.
10. Kneiling, John G., Integral Train Systems, Kalmbach Publishing Company, Milwaukee, Wisconsin, 1969.
11. Leddon, C. D., and Wrathall, E., "Scheduling Empty Freight Car Fleets on the Louisville and Nashville Railroad," Bulletin of the International Railway Congress Association, Cybernetics and Electronics on the Railways, 5, (1968), 22-26.
12. Mansfield, Edwin, and Wein, Harold H., "A Model for the Location of a Railroad Classification Yard," Management Science, 4, (1958), 292-313.
13. Mansfield, Edwin, and Wein, Harold H., "Linear Decision Rules and Freight Yard Operations," Journal of Industrial Engineerina, 9, (1958).
14. Moody's Transportation Manual, Moody's Investor's Service, Inc., New York, September, 1969.
15. Morlok, E. K., Thomas, E. N., Sen, A. K., and Stopher, P. R., et.al., Northeast Corridor Project Final Report, The Transportation Center at Northwestern University, Evanston, Illinois, 1969.
16. Poole, Ernest C., Costs-A Tool for Railroad Management, Simons-Boardman, New York, 1962.
17. Explanation of Rail Cost Finding Procedures and Principles Relatino to the Use of Costs, Bureau of Accounts, Interstate Commerce Commission, Washington, D. C., Nov., 1963.
18. List of Al1 Railroad Freight Cars in Per Diem Groups 3-4-5-6-7-8-9, Operating-Transportation Division, Association of American Railroads, Washington, D. C., published quarterly.
19. Railroad Motive Power Utilization, Railway Systems and Management Association, Chicago, Illinois, June, 1964.

\section*{APPENDIX}

\section*{Expanded General Model}

Shown below is an expanded formulation of the general train scheduling model. This expanded model is much more comprehensive than the model used in the earlier part of this paper. It explicitly treats car movement in both directions, by car type, as well as locomotive availability.

\section*{Notation.}
\(A_{i}=\) The cost of running train \(i, \$\)
\(8_{i j n}=\) The cost per car on train \(i\), with car-arc \(j\) in cargroup \(\mathrm{n}, \mathrm{\$} / \mathrm{car}\)
\(C_{j n}=\) The cost per unit of car time for cars with car-arc \(j\) and in car-group \(n, \$ /\) car-hour
\(\mathrm{D}_{\mathbf{i}}=\) The departure time of train \(\mathbf{i}\), hour
\(E_{j}=\) The cost per engine on train \(i, \$ / e n g i n e\)
\(F_{i}=\) The running time of train \(i\), hours
\(G_{\text {mjn }}=\) The cumulative number of cars in car-group \(n\) and car-arc \(j\) originating at the origin of train-arc \(m\), at the time of departure of train \(m\), cars
\(H_{j n}=\). The total number of cars in car-group \(n\) and car-are \(j\) originating at the origin of train-are \(m\), for the entire scheduling day, cars
\(L_{k m}=\) The set of designations of trains (i's) leaving node \(k\) before the departure of train \(m\) from node \(k\)
\(P_{i j n}=\) The average weight of a car in car-arc \(j\) and in car-group \(n\), divided by the tonnage-to-engine ratio for train \(i\), engines/car
\(Q_{j}=\) The set of train-arcs which take cars of arc type \(j\) to their final destination (i.e., after a car of type \(j\) is assigned to a train in set \(Q_{j}\), it is definitely taken to \(i\) ts destination)
\(R_{i}=\) The limit of the number of cars per train i, càrs
\(S_{k m}=\) The difference between the number of engines input into node \(k\) from outside the network and the number of engines output of the network at node \(k\) before the departure time of train \(m\), engines
\(T_{k m}=\) The set of designations of trains (i's) terminating at node \(k\) before the departure of train \(m\) from node \(k\)
\(U_{j n}=\) The area under the car input function for one day at the origin of car-arc \(j\) for cars in car-group \(n\), car-hours
\(\mathbf{e}_{\mathbf{j}}=\) The number of engines on train \(i\), engines
\(s_{k}=\) The number of engines at node \(k\) at midnight of the scheduling day, engines
\(t_{i}=\) Choice variable for the existance of train \(i\), binary \((0,1)\)
\(w_{i j n}=\begin{aligned} & \text { The number of cars on train } i \text {, on car-arc } j \text { and in } \\ & \text { car-group } n, ~ c a r s ~\end{aligned}\) car-group \(n\), cars
\(x_{j n}=\) The cars remaining to be moved at the node at the origin of car-arc \(j\) at the end of the scheduling day for cars in car-are \(j\) and in car-group \(n\), cars
\(z=\) The total variable cost in the problem
\(i=\) Train-are designation, \(i=1,2, \ldots, I\)
\(\mathrm{j}=\) Car-arc designation, \(j=1,2, \ldots, 3\) A car-are is defined by the origin and destination of a freight car in the network.
\(k=\) Node designation, \(k=1,2, \ldots, k\)
\(m=\) Train-arc designation, \(m=1,2, \ldots, I\)
\(\mathrm{n}=\) Car-group designation, \(n=1,2, \ldots, N\) A car-group is defined by the car-time cost associated with the car due to car per diem rate, daily value of contents, service costs, etc.

The objective of this train scheduling model is to minimize the total variable cost. In this formulation, the car-time computation is brought into the objective function to reduce the number of problem variables, engine variables are added, and the car variables are expanded
to include all car origin-destination pairs, and as many car-cost groupings as desired. Stated mathematically, the objective is to minimize:
\[
\begin{aligned}
\underline{Z}= & \sum_{i=1}^{I} A_{i} \cdot t_{i}+\sum_{i=1}^{I} E_{i} \cdot e_{i}+\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{n=1}^{N} B_{i j n} \cdot W_{i j n}+ \\
& \sum_{j=1}^{J} \sum_{n=1}^{N} C_{j n}\left(U_{j n}+24 x_{j n}^{-}{ }_{i} \sum_{n} Q_{j}\left(24-D_{i}-F_{i}\right) \cdot W_{i j n}\right)
\end{aligned}
\]
where the terms in the second row compute the total car-time. The minimization problem is subject to the following constraints:
 for all \(m,(m=1,2, \ldots, I-1)\)
for all \(n,(n=1,2, \ldots, N)\)
2. \(\quad H_{j n}+\sum_{i \text { in } T_{k I}}{ }^{W_{i j n}}-\underset{i}{ } \sum_{i n L_{k I}}{ }^{W_{i j n}}=W_{I j n}\)
for all \(j,(j=1,2, \ldots, J)\)
for all \(n\), (\(n=1,2, \ldots, N\))
where I is the final train departure of the scheduling day.
3. This constraint group requires that the number of cars per train not exceed an imposed limit of train length.
\[
R_{i} \cdot t_{i} \geqslant \sum_{j=1}^{J} \sum_{n=1}^{N} w_{i j n} \quad \text { for all } i,(i=1,2, \ldots, I)
\]
4. This constraint group requires that adequate horsepower per train weight be supplied to each train to maintain the train's given schedule.
\[
e_{i} \geqslant \sum_{j=1}^{J} \sum_{n=1}^{N} W_{i j n} \cdot P_{i j n} \quad \text { for all } i,(i=1,2, \ldots, I)
\]

5. This constraint group requires that the number of engines on a train cannot exceed the number of engines available at the train's departure time.
\[
S_{k m}+s_{k}+\underset{i}{ }{ }_{\text {in }}^{\Sigma} T_{k m} e_{i}-\underset{i}{ }{ }_{\text {in }}^{\Sigma} L_{k m} e_{i} \geqslant e_{m} \text { for all m, }(m=1,2, \ldots, I)
\]

The engine variables can easily be expanded to include engines of different types. Also, constraints relating the crews available to the trains run, and train-capacity constraints for various fixed network links in the system can easily be included in this model. No calculation of the number of locomotives required is made in this model, because the railroad costs model assumes that locomotive life is based upon time of operation (hours run), not age. Hence, aside from interest charges, costs are proportional to time of operation. Thus locomotive ownership cost can be included approximately in the terms \(\varepsilon_{i}\), each of which corresponds to a unique train and train running time.

 ortered set of rack nexure. The route of frain / will be represented by a vector

(1)
C
Constrinints (1) express the sequuence in which track sections manst be trav-

 sirciti) in a noos-negative conslant. This is the gencrad case in wifich a turne

5

3.5atolom metad

\(\rightrightarrows\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\
 \\
 \\
 \\
 a womepmulos pupsaud anl
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\
 \\
 \\

\end{tabular}} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular}} \\
\hline \multicolumn{2}{|l|}{(ab)} \\
\hline \multicolumn{2}{|l|}{(bt)} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
 \\

\end{tabular}} \\
\hline \multirow[t]{3}{*}{(c)} & [0] \(\mathrm{m}_{3} \mathrm{Cl}^{\text {(1)}}\) \\
\hline & \\
\hline & punsiampers \\
\hline
\end{tabular}
; 3-20-91; 1:28PM ;
U . PENN \(\rightarrow\)
2155683439;\# 5

of various bodies, it is to the task of finding icceptable to the region isportation alternatives of efficiency with which
ative is usually so costly latives can be explored transport alternatives in ry is true. For example, natives consist solely of
be constructed in any nine periods for analysis \(10)^{20}\)-a number which - more alternatives and ive plans among which
:ferred to as a forwardby which the alternative ne horizon of the study, on of the transportation
plan. Thus, it is only at the end of the process that the final evaluation and selection of plan, alternatives can be made. This model system proceeds forward in time, the state of the altermationd region at any one period unfolding after the consideration of the preceding system and

The proposed transportation planning model system can be described as a backwardseeking model system, in contrast to a forward-seeking model system. The essential difference between this type of model system and the one previously described is that, in this enstem one starts withythe goals for the selection of transportation alternatives and then system stiection of an alternative plan which will best or at least satisfactorily achieve the desired goledis. The significance of this change in posture, with respect to the process of planning, is that it is likely to increase the efficiency with which "good" or optimal alternatives can be found and then selected.
Model systems of this sort have been suggested at least four times in the literature, but, to this author's knowledge, none have ever been implemented. The first explicit reference to this sort of model system appears to be in a recent article by Bruck (1966). Formulations of transportation problems in this way were suggested specifically by Garrison (1960) and Hay et al. (1966) in recent papers dealing with relatively simple decision problems, that is, problems which were much less complex in terms of both criteria and number of entities and relationships than the typical problem considered by most transportation planning studies.

This goal-directed or backward-seeking approach to planning has many characteristics ". in common with the general methodology of mathematical programming. In particular, it is very similar in conception to the general characteristics of dynamic programming. Dynamic programming treats problems as sequential decision problems, in which the search for an optimal solution proceeds from the end stage of the problem back toward thè . initial stage. If these stages correspond to periods of time, then the program proceeds backward in time. The method suggested in this paper involves a merging of the general area of mathematical programming and, in particular, dynamic programming and linear programming, with graph theory, as it is applied to the description and analysis of transportation networks. Therefore, it is first necessary for us to describe our graph theoretic representation of transportation networks and of the general problem of fiselecting transportation network improvement schemes.

> II. TRANSPORTATION NETWORK

We describe a transportation network as a collection of points and lines or, in graph theoretic terminology, a set of vertices and directed arcs. The vertices represent points between which persons and goods flow, that is, points of origin and destination of traffic. Points also represent the places where goods or persons may change mode or change vehicle, that is, transportation terminals. Ares represent the connections between these points.

Figure 2 is an example of the representation of the transportation network in this manner. Both types of nodes or vertices are illustrated in this figure. The arcs shown in this graph represent possible paths of travel for persons and goods between the various nodes. The numbers associated with these arcs are used to represent characteristics of the transportation network which are relevant to the perception of the network, and hence the reaction to the network, by users of the network. Each of the ares connecting two vertices represents a possible mode of travel between those vertices or, more precisely, a possible alternative means of travel between those two vertices. The phrase "possible alternative means of travel" is used to convey the notion of a path which is different from all other such path alternatives. This path alternative is described by such characteristics as travel time, fare,

movement, and in the harged, probability of ant descriptors. It is rrespond to a different es. This arises because f cities which actually

\section*{)}
twork
this case, one would travel times between Therefore, one could ie use of this express al train(s) serving the her characteristics of wo cities would not a set of intermediate ius, the graph is very

Il of the information \(t\) for transportation ind or route through t specific links or via iny pair of terminal scribe the transport
network in terms of the means used to produce transportation. This graph can be considered netw which gives information about how the transport service described in a graph such as Fig. 2 is produced, and is termed the transport processor network.
A graph describing a transport processor network is shown in Fig. 3; this portion is the network of flow channels for vehicles referred to as the fixed plant network. Again, the points or nodes on this graph refer to terminals and places of origin and destination of points ors and goods. In Fig. 3 the ares between these points, however, actually refer to way travel on which vehicles may travel, such as railroad tracks, roadways, sea-lanes and air-lanes. Non-vehicular modes, such as walking or conveyor belts, could also be included, but these are not, for reasons of clatity. An additional set of nodes is also shown. These are intersections of such links which do not occur at places corresponding to terminals, and these are termed "way interchanges" or "intersections".

Air terminal
Fic. 3. Transport processor network: the fixed plant.

A graph can be constructed which represents the characteristics of the fixed plant network. These characteristics can vary considerably by mode or technology used, but in general they would provide such information as capacity, the time required for a vehicle to traverse that link or to pass through the node (by vehicle type, if necessary), etc.
Figure 4 describes the flow of vehicles on the fixed plant network. This is described in terms of both the spatial and the temporal aspects of the motion, and hence the diagram is inherently one involving three dimensions. Two of these refer to two-dimensional physical space, and the network of fixed plant can be placed directly into this plane. The location of vertices and arcs corresponds to their actual location in physical space.

The flow of a vehicle in this three-dimensional space is represented by the movement of a point representing the vehicie in time and location. Two vehicles are shown in Fig. 4. The identification of each vehicie can be achieved by associating an appropriate symbol with the line, and other pertinent information, such as seating capacity, range, etc., can also be so associated.

of each mode can e obtained from it. id the like are not :d from elsewhere. twork is available II the vehicle flow
inals

14 but including all e would have to be as not drawn in the items (points, lines, aprehensible.

ENTS
ust be considered at natically. The second ations which are conrtation improvement. amediately preceding
eifitients, at all levels. : schedules or certain terms of inputs to the tch things as the need
\(\therefore\);
for more fuel, more equipment if it is common carrier, additional labor, and so forth, are the likely input requirement changes. At the next level, one might make improvements to existing links or terminals within the modes which exist. These again are often changes which can be implemented rather rapidly and do not cause very great increases or decreases in inputs to the transportation network. The next level of improvement would be the addition of new links or terminals and associated equipment, fuel, labor and other inputs

ACCESS POINTS
specifies those points to which service is provided, and
thereby the area to be served thereby the area to be served
\[
\downarrow
\]

NETWORK CONFIGURATION
(LINKS. INTERCHANGES)
specifies via what route a vehicle can travel between each
pair of access points
\(\downarrow\)
VEHICLES AND CONTROL SYSTEM
specifies the minimum time required to travel between each pair of access points, link and interchange capacities and speeds
\[
\downarrow
\]

SCHEDULE OR OPERATING SCHEME
specifies actual service which it is planned to provide, as measured by such characteristics as capacity, travel time and frequency, between each pair of access points, and trade-ofis between these

F10. 5. Hierarchy of network property relationships within a mode.
which are necessary, employing a technology or mode which already exists. These would then be considered additions to the network of that mode. The final level of improvement could be considered the addition of an entirely new mode or new modal technology within the region, with its own associated links, terminals, equipment, employees, control system and so forth.

The above discussion clearly indicates that there exists a very wide range of alternatives which might be considered in any transportation improvement program. This is particularly so if the goals to be achieved by the improvements are very broad in nature, so that it is difficult if not impossible to immediately narrow the search to a particular mode, or a particular area of the region in which the improvement should be made. Further complicating the analysis problem, however, is the fact that there exist choices as to when improvements can be made-especially if the time horizon of the study is 20 or 30 years, as is common in transportation planning. Clearly, because of the economies or diseconomies of scale in construction and operation, it is not necessarily optimal to simply make those improvements which are absolutely necessary in order to meet needs which are immediately impending.

The representation of these improvement possibilities in mathematical terms is not a conceptually difficult problem. although the resulting description does in fact cause certain mathematical problems which will be treated later on. Some of the choices, clearly, are binary choices. For example, the choice as to whether to introduce a new are in the network of a particular mode, or the choice to use a particular technology, and the decision to

, are binary choices. variable either taking
n be represented as 1 respect to variables icular set of links and choices refer to such ne for vehicles (of a tween two places, the is, and similar items. ure the transportation eller and freight flow d the particular path 0 date (Quandt and , price and frequency price and measure of vity of travel patterns rariables-time, price network. It is these insible for the impact latterns and especially

Its will be considered shofer in their recent ation plans (Thomas ay good alternatives thich are nevertheiess insportation network
d by a system along e costs can be multience of cost and imextent to which the munity and assumed relate specifically to hey will reflect such onomic development or which the relationshall designate these
the minimum cost set ysis for each level of constrained extremal one example, in the feasible set of transiveness at a minimum
cost, is desired. As can be realized from the discussion in the first few paragraphs of Section III, there in general will exist a very large number (precisely, an infinite number) of transportation improvements which will achieve any given level of effectiveness. The infinity, of course, arises from the fact that some of the choices are continuous choices and that there exist trade-offs between these.

Figure 6 illustrates the general form of the problem, specifying the types of variables included and their relationships. The costs (discounted) which are to be minimized are
\[
\begin{equation*}
\min Z=\min \sum_{i=1}^{\mathrm{Y}} C_{p}{ }_{p}\left(P^{t}, P^{t-1}\right)+C_{0}^{\prime}\left(O^{t}, F^{\prime}\right) \tag{F6-1}
\end{equation*}
\]
subject to.
\[
\begin{align*}
T_{k}^{\prime}\left(P_{k}^{\prime}, O_{k}^{t}, F_{k}^{\prime}\right) & =T_{k}^{\prime} \\
P_{k}^{\prime}\left(P_{k}^{\prime}\right) & =P_{k}^{\prime+1}\left(P_{k}^{t+1}\right) \\
O_{t k^{\prime}}\left(P^{\prime}, O^{\prime}, S^{\prime}\right) & =D_{1 / k^{\prime}} \\
F_{k}^{\prime}\left(D^{\prime}\right) & =F_{k}^{t} \\
S_{g}^{\prime}\left(P^{t}, O^{\prime}\right) & =S_{g}^{t}
\end{align*}
\]
where
\(Z=\) total discounted costs;
\(P^{t}={ }^{\prime}\) vector of binary network plant variables for time period \(t ; P^{t}=\left(P_{1}{ }^{\prime}, \ldots, P_{k}{ }^{\prime}, \ldots, P_{m}{ }^{\prime}\right.\), where \(P_{k}^{\prime}=\) binary plant variables for mode \(k ; P_{k}^{\prime}=\left(p_{k}^{\prime}, \ldots, p_{k n}{ }^{\prime}, \ldots, p_{k n}\right)^{\prime} ;\)
\(O^{\prime}=\) vector of operational variables for time period \(\left.t ; O^{\prime}=\left(O_{1}{ }^{t}, \ldots, O_{k}{ }^{\prime}, \ldots, O_{m}\right)^{\prime}\right)\), where

\(D_{i s k^{\prime}}=\) demand for travel from city \(i\) to city \(J\) via mode \(k\) in time period \(i\);
\(F_{k}^{\prime}=\) vector of flows in links of mode \(k\) in time period \(t\);
\(S^{t}=\) vector of social state descriptors of the SMSA's in the region; \(S^{t}=\left(S_{1}^{t}, \ldots, S_{q}^{t}, \ldots, S_{0}\right)^{t}\), where

The letters with the symbol * are used to designate the associate function.
Fic. 6. Choice of network improvement scheme, given a target level of effectiveness.
functions of the fixed plant of the transport system, the choices made as to system operations at each point in time, and the flows on the network at each point in time. The first of these is represented by the function \(C_{p}^{\prime}\left(P^{1}, P^{l-1}\right)\), in which \(P^{1}\) is a vector, the elements of which represent the existence or non-existence of way links, terminals and interchanges for each mode. The cost at each time period is then a function of both the improvements made from the preceding time period and the plant in existence at the time considered. The other costs are considered only functions of attributes of the system at that moment in time. The variables included are ones describing the operating choices made. \(O^{\prime}\) (such items as schedules, prices and trip capacities) and \(F^{\prime}\), the person flows on the network.

The constraints on the problem include ones imposed by technological considerations, demand relationships and general social state-transportation system relationships. The first of these are represented by equations (F6-2) and (F6-3) in Fig. 6. Equation (F6-2) would include such relationships as those required for internal consistency within the problem, such as the inability to choose a non-zero capacity on a non-existent way link, and those which indicate bounds on the operation of a transport technology, such as limits on speeds. Each of these relationships refers to a single time period, as the superscripts indicate. Equations (F6-3) refers to constraints across time periods, namely those which
16
refer to consistency in the choice of plant improvements. For example, these would preclede making improvements (say, adding lanes) to a non-existent freeway or prevent the selection of two necessarily mutually exclusive plant configurations.

The next set of constraints, represented by equations (F6-4) and (F6-5), refer to demand . relationships. The first states that demand between two places via a particular mode is function of network properties-potentially over the entire network-and of site proper a -the social styte at all places. In this case, undoubtedly only a few of the social stars measures would be relevant, such as population, income, employment, scale of shopping of recreational area and similar items. Equation (F6-5) indicates that flows on individuap elements of the network are a function of these values of the quantity of travel demandel

The final set of constraints includes the relationships between transport system properio and the social state vector. This set includes the usual economic impact relationships, as well as others which deal with non-economic variables. The exact form of these relation. ships, even all the variables, are not known at the present time, as these will (hopefully) emerge from analysis of time series and cross-section data from the Northeast Corridor region from 1940 to 1960.

In addition to the above constraints, certain non-negativity and perhaps other similar constraints will also be present. It should be added that this representation of the relationships is necessarily tentative, because the exact form will emerge from both the theoretial grounds used to generate the above and empirical work.

It is very evident from the descriptions of the problem in Fig. 6 that this problem can be treated as a mixed integer programming problem, that is, a problem in which one is choosing both integer variables and values of variables which lie on a continuutio within an allowable range. The problem is furcher complicated by the fact that the coĭstraints are very likely to be non-linear, and in particular this would be the case with respect to possible new technologies. new arcs and new terminals, where the constraint set which describes continuous variable choices and trade-ofis exists only if the associated integer variable takes on the value of one. It is well known that solutions to this sort of problem are very difficuit to obtain by the use of the methods of convex programming. In fact, the experience with just integer programs, much less mixed integer programs, has been far from satisfactory.

Because of these considerations, a search was made for methodswhich would combine known mathematical techniques which were capabie of solving portions of the problem. For example, dynamic programming is well known for its robustness with respect to handling binary or integer variable problems (Bellman and Dreyfus, 1962). Similary, linear programming has achieved distinction in the area of solving very large, complex mathematical programming problems which are characterized by continuous variables (Charmes and Cooper, 1961). If means can be found to formulate our problem so as to make use of dynamic programming for the choice of binary variable values and of linear or or other very efficient programming methods for the continuous variable values, then a reasonably efficient computational scheme might emerge.
I.V. THE GOAL.DIRECTED FORMULATION

This problem has been formulated as a mathematical programming problem involving the joint use of dynamic programming and linear programming in a manner which makes feasible the efficient solution of the problem using standard methods. This formulation involves the use of dynamic programming in order to make choices regarding the integer variables, and uses the linear programming portion of the problem to make choices regarding the values of continuous variables. The linear program is imbedded within the dynamic program in such a manner that the combination finds the optimal set of integer and continuous variable values.

\footnotetext{

}

號

\footnotetext{

}
-
I
 -
would preclude at the selection
efer to demand. :ular mode is a : site properties :he social state of shopping or on individual ivel demanded. item properties dationships, as these relation vill (hopefully) heast Corridor
s other similar of the relation the theoretical
is problem can 1 which one is uum within an zonstraints are lect to possible hich describes iteger variable sblem are very the experience m satisfactory. rould combine \(\div\) the problem. ith respect to 2). Similarly arge, complex tous variables blem so as to nd of linear or values, then a
blem involving \(r\) which makes \(s\) formulation ng the integer vices regarding 1 the dynamic of integer and

Each stage of the dynamic program corresponds to one time period, in which there exists a certain fixed network for the transportation system. The alternatives to be considered by the dynamic program at each stage correspond to different sets of this transportation fixed plant. For each such fixed network, there exists a large number of choices of service variables and other transport system variables which are continuous in nature, and this choice is made with the use of the linear program. A distinct linear program is run for each transportation fixed plant alternative. This formulation of the problem is described in Fig. 7.

Fig. 7. Relationship of the dy namic programming and linear programming portions of the problem.

In describing the details of this formulation, it is most convenient to begin with the linear programming problem. This portion of the problem takes as given the values of the transportation fixed network variables. Given these variables, certain choices regarding the service to be provided on each are of each mode must be made. These choices relate to such items as frequency of service, price to. be.charged, travel time between terminals or interchanges and capacity level. As shown in Fig. 7, certain constraints involving these variables must be met. Some of these constraints relate the choices of transportation system properties to levels of effectiveness, which are given at the outset of the problem for each time period. Other constraints will typically refer to such things as: capacity equalling or exceeding demand, level of service, the level of transport technology presumed to exist and the usual non-negativity constraints. The cost function refers to the marginal cost, over and above the cost of the fixed plant, which is implied by any choice of the set of continuous variables. Costs are the amounts incurred at each stage, discounted to present values, of course.

The linear program is then run for each alternative fixed plant for each time period, and it selects the optimum characteristics of the transportation system given the constraints of the fixed plant and the effectiveness level to be achieved. If, given the fixed plant, there is no possible feasible combination of transportation system properties which will yield the desired level of effectiveness (that is, satisfy the constraint relationships), then the program will automatically indicate this infeasibility. This linear program will be run for each fixed plant alternative and each stage. The fixed plant alternatives which are deemed feasible by this analysis are then retained.

The results of the preceding analysis are then entered into the dynamic programming problem. For each stage and for each feasible fixed plant alternative. a cost. including the

The cost associated with construction of the fixed plant at each stage of the dynamic program will, of course, be a function of the fixed plant which exists during the precedin stage and which must be upgraded to yield the desired fixed plant at the stage in question. Again, these capital costs will be discounted to present values.

Thus, the costs at any particular stage will depend not only upon the fixed plant and the value of continuous variables chosen at that particular stage, but also upon the nature of the fixed plant at the preceding stage. This relationship is incorporated into the dynamic program by means of the transformation matrix, which gives information on feasible fixed plant alternatives, given any fixed plant existing at the time of entry into the particula stage in question. Given any fixed plant while entering into a particular stage, the costs of additions to that fixed plant. to yield a new fixed plant, are uniquely determined Feasible changes over time are indicated by this transformation matrix, an example of which is given in Fig. 8.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline From & & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline Link \({ }^{*}\) & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
\hline Link 2 & 2 & 0 & & 0 & 1 & 0 & 1 & 1 \\
\hline Link 3 & 3 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
\hline Links 1 and 2 & 4 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline Links 1 and 3 & 5 & 0 & 0 & 0 & 0 & 1 & 0 & , \\
\hline Links 2 and 3 & 6 & 0 & 0 & 0 & 0 & 0 & 1 & I \\
\hline Links 1, 2 and 3 & 7 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline
\end{tabular}
- The state of the network (links in existence) listed in this column is designated by the number to the right.

An entry of unity in a cell \(i\), , indicates that it is feasibie to pass from state \(i\) to state \(j\); a zero indicates that this is not feasible.
Fro. 8. Example of a fixed plant transformation matrix.
This combination of a dynamic program and linear program operates in such a manner as to choose the (cost) optimal set of transportation improvements and operational variables over a period of time in which a number of distinct time periods and their interrelationships are considered. The initial starting point is, of course, given by the existing network and the existing level of service on that network.

Either a single fixed network or a number of possible fixed networks existing at the end of the planning horizon can be considered. These presumably would be chosen in such a manner as to yield a desired level of flexibility with respect to possible future paths of network development.

Different government policies with respect to level of transportation system service can be represented in the problem by changing the level of service constraints in each of the linear programs. As this change is made, the effect of these policy changes upon the selection of network improvements and the cost of network improvements can be readily obtained. This will permit the arraying of various government policies and the consequent costs of the transportation system. In this manner, various levels of government can examine the effectiveness of various transporation programs and the costs of the optimal program to achieve each objective to varying degrees, and thereby make an intelligent policy choice among the effectiveness levels to be achieved.

\section*{A. goal-directed transportation planning model}
ge of the dynamic ring the preceding ¿ stage in question.
fixed plant and the upon the nature of I into the dynamic nation on feasible - into the particular lar stage, the costs iquely determined. rix, an example of
\(s\) in such a manner erational variables r interrelationships isting network and
existing at the end e chosen in such a ble future paths of
system service can ints in each of the i upon the selection - readily obtained. onsequent costs of it can examine the ptimal program to gent policy choice

This arraying of alternatives in a cost-effectiveness framework then enables the analyst to perform his analysis without making the difficult value judgements which can only be made by representatives of society in general. The final decision thus rests with the political leaders, but the analyst has given these governmental leaders the information upon which to base an intelligent decision. In addition, political leaders can be given the opportunities to examine various policies and effectiveness levels which the analyst does not analyse himself, merely by rerunning the goal-directed model for a different policy or set of effectiveness levels. Thus, the political leader can experiment with various policies using this model system.

An important consideration in any predictive endeavor is the consideration of uncertainty regarding the future. This uncertainty exists with respect to human preferences and behavior, with respect to costs of doing various things. with respect to levels of activity in the economy and with respect to the technology which will be available. This uncertainty will continue to exist regardless of how retined our predictive models become, because human preferences and human values seem to continually change over time. Moreover, the environment within which a region of the United States or the United States as a whole exists is continuously changing and changing in a manner which is in itself not wholly predictable.

Therefore; it is desirable to try to accommodate this inevitable uncertainty within the planning process. An important consideration in this regard is the flexibility of any transportation system plans and programs with respect to responding to unforeseen changes in the environment. If such flexibility is built into our plans and programs, then we insure that we are able to respond at least in part to these changing needs of the world. To date, the desire for flexibility has been frequently pointed to in the literature and mentioped in most transportation plänning studies, but to our knowledge it has never been incorporated. into these studies as an operational criterion for the selection of particular plans and programs.

The goal-directed transportation planning model described above lends itself to a definition of flexibility and to an operational measure of the extent to which any particular set of system improvements are in fact fexible. This consideration of fexibility is provided by varying various givens or various parameters which are input to the model system at the outset. For example, with respect to human preferences regarding modal choice, the value of travel time, etc., one can change the parameters of the demand and modal choice model in order to see how varying human values and preferences affect the amount of travel on various modes. This enables one to see how varying values and preferences of these sorts can cause variations in the desired investment program and operating scheme of a particular transportation network.

Certain aspects of the network improvement program involve purchasing items of high costs, which items cannot be diverted or adapted to. alternate uses if the predicted use does not materialize. The most conspicuous examples of this type of item are the elements of the fixed piant. One can see how the optimal network changes with respect to the fixed plant called for as parameters of the model are varied. If there are no changes in the fixed plant, then the optimal network from a cost sense is also a very flexible network, because usually those physical changes which are required change only the items described by continuous variables in the problem (frequency, price, capacity and travel time), which can generally be instituted without difficulty, whereas changes in the fixed plant are very difficult to institute. This results from the fact that the fixed plant is usually, as the name implies, fixed in space and cannot be used for other purposes, or sold, but the changes in the flow network are easily accommodated by selling of equipment. changing the fare level, and similar, relatively readily implemented means.

Other aspects of this uncertainty involve costs, particularly the costs of new technologies and also the availability of various new technologies. This can readily be explored in the model by varying the cost parameters and the parameters invoived in the various techno. logical constraints. It can also be explored by removing from the model system the possibility of instituting a sub-system involving the use of a new technology at some point in the future. One can then rerun the program without the availability of this new technology and examine whether the fixed plant for other technologies would change very much as a result of this change in the constraint set. In this case, it would be hoped that the only changes would be changes involving additions to, but not deletions from, the fixed plant of other modes. If this were the case and if these changes could be instituted withour great cost, then the system leading up to this particular stage would be considered a fiexible one.

Similar changes refiecting uncertainty, represented in the model system by variations in parameters of the model, can be explored. These can be accomplished in a similar manner and the conclusions regarding system flexibility would be similar to those described above.

Of course, in the above discussion we have not defined the value of flexibility; we have merely given an operational definition to it and given an indication of how one would compare various systems with respect to their flexibility properties. At this point in time, it does not appear as though a value of fexibility can be given. In fact, it appears that the value of fexibility is essentially a value derived from the flexibility and cost of one systemrelative to the flexibility and cost of alternatives which might be instituted. It seems that subjective judgements as to the value of fiexibility will have to evoive from the consideration of various alternatives and their properties with respect to fexibility.

> v. CONCLUSIONS

The model system described above is now being developed at the Transportation Center at Northwestern University. It is still in its embryonic stages, but from initial experience in running various programs, it appears that the goals implied by the description above can be achieved. Applications will be made to the problem of selecting alternative transportation investment and operational schemes for the Northeast Corridor.

It is hoped that this model system will represent a step forward in the science of transportation planning. We have attempted to take into account, to the extent possible, real-world considerations and issues, with respect to transportation investment and operational schemes. Our motivation has been primarily one of responsiveness to the realworld problem, not necessarily the development of an elegant mathematical model. With this motivation, we have attempted to take into account the problem of investment in a multi-mode network. the problem of the sequencing of investments or the selection of the time at which investments are to be made and the problem of uncertainty with respect to the future environment in which the transportation system will find itself. The test of whether our efforts are successful will of course come from the application on which we are now working. Comments and suggestions about our approach to transportation planning are welcomed.

REFERENCES
Bellman R. E. and Dreyfus S. E. (1962). Applled Dynamic Programming. Princeton University Press, Princeton, N.J.
bellmore M., Howard G. and Nemhauser G. L. (1966). Dynamic Programming Computer Model 4. The Johns Hopkins University: National Bureau of Standards Project CST-1279. Baltimore, Md
Briuck H. W. (1966). Problems of planning for the future: The marriage of the White Queen and Tiresias. 1966 Niofiunal Transportation Symposium, pp. 79-82. American Society of Mechanical Engineers, New York.
lew technologies explored in the various technoodel system the ;y at some point ; new technology very much as a ad that the only , the fixed plant stituted without be considered a

\section*{by variations in : similar manner lescribed above. iibility; we have how one would point in time, it tppears that the it of one system 1. It seems that ie consideration}
sortation Center ial experience in stion above can e transportation
the science of extent possible, investment and ness to the realal model. With investment in a selection of the th respect to the : test of whether .ich we are now on planning are

University Press,
omputer Model 4. '. Baitimore, Md White Queen and
iy of Mechanical
bruck H. W., Putnam S. H. and Steger W. A. (1966). Evaluation of alternative transportation proposals: The Northeast Corridor. J. Am. Inst. Planning 32, 322-333.
Charnes A. and Cooprr W. W. (1961). Management Models and Industrial Applications of Linear Programming, 2 vois. Wiley, New York
Garrison W. L. (1960). Connectivity of the interstate highway system. Pap. Proc. reg. sci. Assoc. 121-137.
Harrts B. (1967). Urban transportation planning-philosophy of approach. 1966 National Transportation Symposium, pp. 97-103. American Society of Mechanical Engincers, New York.
Hay G. L. Morlox E. K. and Charnes A. (1966). Toward optimal planning of a two-mode urban Hay G. L, Morlok E. K. and Charnes A. (i966). Toward optimal planning of a two-mode transportation system: A inear programming formulation. Allocation Model. Davidson, Talbird and McLiynn, Inc.: prepared for Technical Analysis Division of the National Bureau of Standards McLynn,
Bethesda,
Md.
Manhem M. L. (1966). Transportation, problem-solving, and the effective use of computers. Highw. Ranes. Bd Rec. 148, 49-58.
Mathematica (1967). Studies in the Demand for Freight Transportation, vol. 1, pp. 1-30. Northeast Corridor Transportation Project Contract No. 7-35120. Princeton, N.J.
Quandt R. E. and Baumol W. J. (1966). The .thstract Mhie Mvelel: Theory and Measurement. Studies in Travel Demand, vol. II, pp. 4-31. Mathematica: Northeast Corridor Transportation Project Contract No. C-187-66. Princeton. N.J.
Thomas E. N. and Schofer J. L. (1967). Strategies for the Evaluation of Alternative Transportation Plans. Part 1. The Transportation Center at Northwestern University: NCHR Program Project No. HR-8-4, Evanston, 111.

\section*{A. A. ASSAD}
is a challenging issue that is ciscussad at various points of his paper. A irref overview si the kasic yord and line activitics follows:
Yard Activities. A typical car visits classiancation yards at intermediate points of the trip from its origin to its destination (from the shipper to the consignee). At such an intermediate yard. cars are taken off the train and placed on, receiving tracks of the yard. The main activity at the yard is a sorting or classification activity whereby incoming cars are grouped tosether according to their outbound destinations. Cars in the same group will share some initial leg of their subsequent trips out of the yard lowards their destination. This consolidation of cars into blocks or groups allows railroads to take advantage of the economies associated with full trainloads. The decision as to what cars should be grouped together is called the grouping or blocking policy. Blopcks including cars with diverse destinations have to be broken up at a later yard and reclassified. Thus there is a tradeoff between reclassification costs and delays and the advantages of utilizing trainload economies. Given the highly combinatorial nature of the probiem, the determination of optimal tlocking policy constitutes a complex issue.
Cars in the same group are placed on classification or departure tracks to await the departure of an outbound train. Physically this sorting is accomplished in two ways: \(\cdots\)
(i) In hump yards the cars roll down an incline (or a hump) and are then automatically switched onto the appropriate track allotted for that group.
(ii) In fiat yards cars are moved onto the tracks by a switching engine. Most modern classification yards are utomatic hump yards.
Any outbound train at a yard has a take-list that specifies, in the order of preference, the groups or blocks of cars it may pick up from the classification tracks. We may call this the make-up policy for that train insofar as it determines the composition of the train. Thus, if the number of cars waiting for departure in the most preferred group on the take-list is insufficient to warrant the trip, cars from the next preferred group are added on to the train until an acceptable trainload is achieved.
One may view a classification yard as a service station (or better yet, a collection of servicing facilities) through which a car passes. A car suffers various delays in the reception yard, for the inspection activities, and on the departure tracks. The departure delay has two possible sources: (i) A car may have to wait for the next out bound train to arrive thereby incurring a connection defay, or (ii) If the train's departure is predicted upon the accumulation of a sufficient number of cars, there will be an accumulation delay.
A typical case of this latter delay arises when a yard uses a dispatching rule of the following kind: "Train No. 124 departs at 10:00 a.m. if 100 cars are ready for departure, at 11:00 if 80 cars are ready and so on." Dispatching rules, therefore, involve a tradeoff between trainjoad economies and traffic delay. This problem tas a dynamic component that makes the derivation of optimal policies very hard. especially if one considers the effect
of dalaying a train departure on subsequest y'.ris. C may atso investigate issues of centralized versus dec. traized control according to the extent tixese sule: a: cerived localiy by the yard personnet as opposed io central decision-maker.
Section 3 reviews the literature on yard mede:ling. fie more information on classification yarus the roader ma consult Troup (1575), Beckmann at al. (1956. Chinps. and 8), and Folk (1972).

\section*{Line policies}

Line poicies affect the movement of earriers on th: tracks. As such, they internct with the overall romis decisions that determine the flow of taffic on the re: network. Key line policies include:
Scheduling. Which rouses of the network shouki \(t\) provided with service and with what frequency. We tal: the scheduling problem to include the issuc of spesifyir train itineraries. That assumes major importance in is context of passenger services

Timetabling. A timetable provides arrival and dsp: ture times for each yard (station) inciuded in a strir itinerary. There are two basiçonsiderations in estalishing a timetable: (i) efficient use of trecx capac: and (ii) prompt delivery of traffic along à certain leg oi: journey. The latter issue leads us to examine tradeot between accumulation delay and connection delay. number of other factors may constrain timetables: spection requirements, crew and motive power availat ity, minimum headway considerations, etc.

Track priority rules. If track capacity is limited. priority scheme is necessary to set protocols for mee and passes or right-of-way. These rules will in tura anis the over-the-road delay trains experience. For an en! meration and discussion of line-haul delays, the reai may consult Belovarac and Kneafsey (1972). Li: models are reviewed in Section 4.

Certain decisions, which one may cail network-s' policies, impact the rail network as a whole interaci: with both line and yard policies. A prime example is : routing decision that determines the flow pattern trafic between origin-destination (OD) pairs. Rour models are widely used in other areas of transporta such as airline systems, traffic equilibrium, and vehi routing. When stated in terms of a network these moc share the basic multi-commodity flow structure (Assad, 1978). However, in the case of rail freight tre port it is necessary to consider the sequence of bloc certain shipment enters when travelling from its or towards its destination. Since various classes of tr that share certain legs of their flow paths on the netf may combine to form common blocks, an additi combinatorial complexity enters the routing decision must be fully specified by a network-wide blocking icy. The interaction between this policy and yard w loads becomes important when preblocking is used device to reduce congestion at yards operating near capacity levels. In this option, a yard with extra cap will perform some of the classification work norr performed by another yard further downstream th overloaded to near-capacity levels. Modelling the va

Ban
: oi a given
: of a biven tri: subsysten mean delay or and bottleneck They may atso ain policies on yard resources \(i\) uses of yard iracteristics of to isolate the . of transaction I string of cars not need to be encounters the :h a yard: (a) lassification of Truin Assembly ture Delay. :ak up the yard perations. The ssources of the , among thest above activities example, some zparture tracks. :inned, queueing ide information
ueing theory to yard is viewed \(h\) of the opera. jueueing system rvice function the degree of istems ind to rodelling is ap:her. For simpic tions (such as lable for certain queueing tint. probability of rock, 1975). d s a systematic the yards unde? erations (a) and re be modelled lassification and hibit congestion leues. Here, " \(G\) is a geners mber of servict for which tix Illy tractable a determinista tions of order yard type indi 777a). The cor - MiE \(E_{k} / 1\) (buli that cars arrol
accordity to a Poisson process and are periodicaly pulled cut and assenioled into outtound trains. These truins depart according to an Erlang distribution of order \(k\). The parameter \(k\) may vary between \(k=l\), cor-- responding to completely random train departures, to \(k=\infty\) which impiics a regular pick-up schedule. Such a model provides iniormation acout the waiting time for the pick-up or collection process at a youfd. Detersen compares the predictions of these models with actual data from two hump yards.
In a foilow-up paper. Petersen (1977b) relates the service rates of the classification and train assembly processes to the number and configuration of elassification tracks, the available yard engines, as well as the yard grouping policies and traffic intensities. (We comment on the role of grouping policy on switching delays later.) Petersen's co-workers, Schwier et al. (1976) have prepared codes for the modeis described above, now avaiiable as a user's manual.

Other researchers have used queueing models for specific yard subsystems: Hein (1972a) gives an approximation for a two-stage mode! of the approach side of a marshalling yard: cars are placed on the arrival sidings and are processed through the hump as soon as it becomes available. Thus the cars wait for inspection and also for the sorting process. Let \(m\) be the number of arrival sidings. Then the delay approaching the arrival . sidings decreases as \(m\) increases. Conversely, the delay before the hump increases with \(m\). Hein (1972b) studies - this trade-off analytically to determine the optimum value of \(m\). A similar use of queueing results for yard design is the work of Fotea (1976). He uses an M/M/s queue to calculate the load on a set of reception sidings for a given sorting rate. Specification of a certain range . of acceptability for the load factor determines the required number of sidings.

Brandalik and Kluvanek (1966) analyze the occupancy distribution of reception sidings using an \(M / M / S\) queue. This allows them to determine the required number of sidings graphically. Kluvanek and Brandalik (1966) carry out a similar analysis for the locomotive change sidings which usually form an independent subsystem of the yard. These authors have also studied the car collection process at classification tracks. In Kluvanek and Brandalik (1974), cars follow Poisson arrivals, and two collection policies are studied: (i) Fixed collection periods; (ii) Variable collection periods governed by fixed trainloads. The second policy differs from the first in that trains pull out cars from the track as soon as a given number of cars (corresponding to a desirable trainload) accumulates. Brandalik \& Kluvanek (1976) extends this analysis, under policy (i), to incorporate a fixed departure delay in addition to the collection cycle time (which, in turn, is set by train departure frequencies). The authors study the capacity of classification tracks for the above process and also discuss the time-phasing of train departures within a collection cycle.

\section*{Yard simulation models}
- Yard simulation models simulate the movement of a typical input to the yard as it undergoes various yard operations. The cars move through the yard according to
a set of mathematical or logical rules specified by the r:odeiler or user. Tilere is a large number of possibite rules or input parameters for a typical classification yard-track .assignment, grouping rules, schedules for outbourd movements, car length restrictions. crew assignment and shift procedures, to mention a feiv. The model provides information on the deiays and costs associated with a given set of rules, allowing the modeller to evaluate their feasibility and efficacy. The power of such a model lies in its capacity to capture a large amount of detail. As a result, most railroads now use a yard model to evaluate the yard capacity and resource requirements as a final check before actual adoption of a policy. Yard models are usually used in conjunction with larger rail network modets (discussed in Section 5) where a given yard is linked with other yards in the rail network so that the global impact of a set of policies is not ignored.
The work of the Batelle Memorial Institute on the development of simulation models for railroads is reviewed in Shields (1966a, 1966b) and Koomanoff and Bontadelli (1967). In particular, Shields (1966a) describes two deterministic simulation models at different levels of aggregation. One model deals with the input on a car-tocar basis thereby incorporating great detail. To overcome the siow running time of this model the other model operates on a more aggregate level to simulate a 10 -day period in several minutes of running time. The RSRG Terminal model is described in three papers of RSMA (1966, pp. 169-193) where its use in the Chesapeake and Ohio Railway is also discussed. Nadel and Rover (1967) discuss the simulation model in GPSS used at New York Central Systems (NYC) for a large classification yard. Wunderlich and Wiedenbein (1972) outline a simulation model used for the Berlin yard. We do not wish to enter into the details of yard simulation models and consider the above citations as only representative. We comment further on simulation models when we review network models in Section 5.

Yard production functions
A question of basic interest to the modeller is the nature of a classification yard's production function. By this we mean a certain aggregate measure of the yard's capability to process incoming traffic. This might take the form of an aggregate service function relating the processing time and dollar costs to the volume of traffic the yard handles as in the work of Sotnikov (1974), Alternatively, one may try to calibrate production functions for specific subsystems of the yard as implied in Peterson (1977a). In either case, it is important to note that both queueing and simulation models of a classification yard must rely on such relations to determine the service rates of specific yard operations. Unfortunately this research area has received comparatively little attention in the rail environment.

Since a cut refers to a string of cars that do not require intermediate reclassification or sorting, we expect blocks of cars with a high cut/car ratio to require less classification work. Clearly the more homogeneous a string of cars in terms of its final destinations, the larger the cut/car ratio. Beckmann et ul. (1956, Ch. 8) first used

\(\because\) \(\because \because\)

A. A. A. D
relation of the form \(t=a+b \cdot(n t / n)+c \cdot n\) to estimate the sorting time/cirr t. Here, \(n\) is the number of cars in the string to be sorted and \(m\) is the number of cuts with which it is separated. Beckmann et al. found values for \(a, b\) and \(c\) throuch resression for two classes of data invoiving hump and flat yards fote that this relation is important in deciding the yard grouping policy as this policy determines the numicer of cuts incoming traffic is separated into. Indeed Beckmann et al. (1996, Chap. 10) use a service function based on cuts to set the optimal grouping policy at a hump yard followed by a flat yard. Assad (1978 b , Chap. 5) discusses an extension of this approach dealing with several yards of different productivities. Petersen (1977b) also relates the service for the sorting operations to the grouping policy of the yard.
Not all trains are completely reclassified at a marshalling yard and the volume of cars handled by a typical. yard is substantially larger than the volume of cars actually sorted at that yard. As a result. it is important to determine service rates (barring congestion) for processing trains with a variecy of make-ups at a given yard. The two papers by Alexander (1568) and Shinohara (1963) contain some results and comments in this regard. Finally, we mention that a number of different schemes exist for sorting a given input of traffic. especially when the number of sorting tracks is significantly less than the number of outbound groups formed at that- yard. Bourgeois and Valette (1961) and Siddiqee (1972) have studied the suitability of each scheme.
4. Line módeis

Line models analyze train movements and dispatching activities over the track sections. They investigate the capacity of track sections, identify the related bottlenecks, and evaluate priority rules in meets and overtakes over the line. The capacity of a rail line can be evaluated through the delays encountered by trains under different operating assumptions. Petersen (1977c) provides a very useful survey of the basic issues of line capacity and reviews some of the available literature in this area.
Petersen (1974, 1975) develops analytical models for the prediction of the average interference delay over a single track line and a partially double-tracked line. His study involves priority rules for meets and overtakes for three classes of traffic (way-freight, fast freight and passenger). Based on the assumption that trains within each class are independently and uniformly distributed over the given time period, Petersen computes the expected interference delays. English (1977) refines this approach and develops delay expressions in greater detail. These models are used to predict delay as a function of traffic intensity over the line thus forming a component of the Railcar Network model (see Section 5 below). However, they are appropriate for low to moderate traffic intensities only. As the intensity increases, dispatching delays become predominant with respect to section run-out time and switching delays. This means that trains tend to queue for dispatching at yards waiting for track capacity to become available. In
generad terms, the dispatching decision is similat tis a maciine schsciuling problem where trains corsespond to juos and machines to track sections. Various priority and order restrictions constrain the scheduling decision. As with machine scheduling, it is possible to formulate this; problem as a \(0-1\) integer program with the objective to minimizing total travel time as in the work of Szpigel (1972). However, the resulting programs are hard to solve and must be limited to a very small number of sections. This calls for simpler models of line capacity. Frank's paper (1966) serves as a basis of such a model that captures the essential features of train paths on a single line for periodic schedules. He considers the simplified case of a line with equally-spaced sidings on which all trains travel with same speed. Petersen (1977c) uses Frank's result to show that the availability of double vs single sidings strongly influences line capacity while it has little influence on the number of trains (or cycle tinue) required for different patterns of train movement. He also extends this idealized model to derive the probability distribution of the section track time needed to process the trafic. The extensions incorporatestwitching limes, headway allowances, variable section lërigths and variations in the train patterns. Next he combines thèse ideas with the earlier over-the-road delay model of Petersen (1974) to extend its applicability to high traffic intensities. This means that dispatching delays have a substantial effect on train transit times due to queues buidding up at yards for train dispatches. Dispatching delays depend on train transit timies over the bottleneck track section, the availability of double sidings (as in Frank's analysis), and the pattern of train movements.

As mentioned earlier, the above models function as planning models and are, of necessity, aggregate in scope. For actual operations, railroads simulate line activities in great detail. For instance, Wilson et al. (1963, 1967) describe two simulation models used by Canadian National Railways (CNR): The Train Performance Calculator (TPC) simulates train movement over the track, based on the train's length, horsepower, speed, etc. but neglects interference with other trains. This program actually performs a step-by-step solution of the differential equations governing the train's motion. The Single Track Capacity Analyzer (STCA) simulates the details of meets and passes following a given schedule and priority rule. A. new program SIMTRAC, which later replaced STCA, handles train dispatching over a single track for a period of 10 days. This paper also describes a siding-to-siding simulation of loaded car moves for the purposes of analyzing service time variability, i.e. reliability. The Chessie system used a simulation model of over-the-road operations to prepare train schedules meeting the U.S. federal 12 hours of service law. Another well-known simulation modet is the Peat. Marwick and Mitchell (PMM) model which was used to determine the effect of varying track and signal configuration or train operating policy on line capacity. For a more detailed discussion of line capacity models, we refer the reader to Petersen (1977c) who notes the utility of simulation models in the calibration of analy. tical models described earlier.

similar to a itespond to priority and decision. As rmulate this wbjective to oi Szpigel are hard to number of ine capacity. uch a model paths on a ders the sim1 sidings on arsen (1977c) Tity of double acity while it or cycle time) ovement. He
ive the probne needed to rate switching in lengths and smbines these lay model of to high traffic delays have lue to queues s. Dispatching the bottleneck sidings (as in movements
:Is function as
- aggregate in simulate line Wilson et al odels used by he Train Per rain movemen th, horsepower, th other trains.) \(y\)-step solution train's motion TCA) simulates :s a given scheMTRAC, which patching over a This paper uilso of loaded car rvice time varin used a simula to prepare train hours of service del is the Peat tich was used to ack and signa on line capacity capacity models,). who notes the ration of analy-
. Network modeis integrate line and yard activities to provide a routing of trafic over the rail network as well as an ailocation of work to classification yards and may be classified into two groupsmoptimization models or simulation mocels. Foik's (1972c) early survey of both - these types serves as a useful introduction to rail network modelling.
- Optimizing network models
- Optimizing models search for an optimal routing of traffic through the rail network with respect to some -objective function such as total costs or total delay. The basic input to such models is forecasted \(0-D\) requirements for trafic flow.
: The prime example of this class of models is the Railcar Network Model developed at Queen's University at Kingston and the Canadian Institute of Guided - Ground Transport (CIGGT). This research effort, documented in Petersen and Fullerton (1973a, 1973b, 1975), evolved over a period of five years into a comprehensive - set of models of line and yard operations in the context of Canadian railways. The object of the model is to find ithe optimal routing minimizing total yard and line delays. -in the yards, the delays are the five listed in Section 3 .in our discussion of yard models. The inbound and outbound inspection delays per train are taken to be ©constant. The analytic queueing formulas allow one to express the average delay in the remaining operations as :a function of traffic flow through the yard (nodesthroughput). Similarly, Petersen's over-the-road model \(\therefore\) (see Section 4) provides an average transit time to traverse a given link as a function of link flow. This corresponds to the usual service function, in the language of traffic planners, that incorporates congestion effects due to other trains. If the yard and line delay functions are all convex, then the routing problem assumes the structure of a minimum flow problem with convex costs. This noniinear multi-commodity flow problem is algorithmically equivalent to a traffic assignment problem for which a number of efficient algorithms already exist (see Assad, 1978). Petersen (1975) uses a primal-dual assignment algorithm to solve the Railcar :model. Schwier et al. (1976) document the component :programs and the codes of the Railcar Network model. The work of Thomet (1971a,b) constitutes another optimization approach to freight routing. Here, the objective function is the sum of delay costs and operatung costs that take the cost of providing train services into account explicitly. The model addresses the tradeoff between customer service (or the delay the customer suffers) and operating costs to the railroad in a heuristic - manner: Thomet starts with a schedule that provides direct train service between all O-D pairs with nonzero : demand. Clearly this solution involves a large operating cost but minimizes the triffic delay since no intermediate iclassification is necessary. The heuristic then proceeds to cancel some of these trains. Indeed a train from some Yard \(i\) to yard \(j\) may be, cencelled by moving its traffic to the two trains \(i\) to \(k\) and \(k\) to \(j\) for some intermediate宛
ard \(k\). This canceitation will reduce the operating costs (crew and motive fower requirements) while the deiny and classification costs will increase due to the intermediate switching at yard \(k\) If one calculates a net savings for each cancellation. the train yielding the largest savings is cancelled at ench step of the algorithm. We may readily observe the analogy between Thomet's heuristic and certain "savings" procedures for solving vehicle-routing problems (see Eilon er al., 1971).
Assad (1980) discusses rail network models as planning tools from the viewpoint of hierarchical decision-making by distinguishing between tactical and operational issues. He also provides a critical review of the two models discussed above and suggests a network model that integrates the routing and make-up decisions. This is done by explicitly considering the effect of train composition on the classification delay at a yard. The resulting model has the structure of a multicommodity flow problem "with certain nonlinearities in the objective function.
- Our discussion of blocking models, in Section 7 includes other issues shared by network models. Indeed. a rail network model may be viewed either as a train scheduling problem or as a blocking problem for trafic. depending on whether train movements or car movements are emphasized. For.instance the paper by Ackermann (1969) is very similar to Thomet's work.

\section*{Netwörk simulation models}

Rail network simulation models simulate-tire move\(\dot{m}\) ment of trains and cars through the network taking a given set of train schedules and line or yard policies as input. Thus the user has to input the grouping policy at each yard, a complete set of train itineraries, and the traffic flow requirements, among other data. The output of these models includes operating costs (train haul and classification) and information about the distribution of transit times for traffic. Based on these outputs, the user may evaluate a given policy decision in detail, or search over several policy alternatives by repeated simulation if the running time requirements are not prohibitive.

Allman (1966a, b, c, 1967) initiated much of the work on rail network simulation models in the U.S. His early model (1966a) was used to perform a lo-day simulation of an 11 -yard network with 28 scheduled trains. The inputs include demand data, train schedules, and yard policies, as well as cost information (on hauling, switching, and so forth). The "Frisco" Railway expanded this model to deal with 25 nodes and 51 trains, Bellman (1967). Allman's later papers report a 10 -day simulation of a 20 yard network with 85 trains. The Canadian National Railways (CNR) network model also evolved from Allman's work. Wilson and Hudson (1970) provide a useful synopsis of this model with the results of a run involving 41 nodes and 100 trains. Folk's survey (1972c) gives an overview of other simulation models used by Southern Railway (1970) called SIMTRAN, Southem Pacific, and the AAR model. All these models use the SIMSCRIPT language, except Simtran which is in GPSS. Presently simulation models can handle a large number
\(\begin{aligned} & \text { of nodes and train movements. For examp:e, CONRA.IL } \\ & \text { has used the SRI blocking model fer netveriks with over }\end{aligned}\)
500 nodes (see Hoppe in TRD, 1975).
Simply stated, the blocking problem concerns the
repetitive regrouping of tyific on a rail network in its
movement from the yard of origin to the destination
yard. As mentioned before, there is strong interaction
between the blocking problem (which refers to car
movement) and carrier movement on the rail network. In
particular train formation and make-up plans have to
take blocking or grouping policies into account. This
interaction is especially salient in the context of sche-
duling special direct or long-haul trains whose purpose is
to avoid frequent intermediate reclassification for certain
classes of traffic. The literature in this area varies widely
in the degree of integration attempted between, train
scheduling or make-up and the network-wide blocking
policy. in particular the network models described in
Section 5 operate on an aggrezate level and could pro-
vide rough guideines for blocking strategies. On the
other hand, the models of Bodin et al. (1980) and
Holecek (1971) described below concentrate on the
blocking strategy and abstract away from the scheduling
problem.
The work of Holecek (1971) is one of the earlier
optimization approaches to the blocking problem. He
formulates a linear programming model to minimize the
total routing and classification delays on a rail network.
Each yard in this model services as an outlet for a set of
destinations (e.g. local yards or sidings serviced by that
yard). A grouping is an amalgamation of a subset of such
destinations. Ench yard classifies traffic into a number of
groups that correspond to blocks composed of cuts of
cars for any one of the destinations in the group. Thus,
for example, if a given group has the form \(\{1,4,5,7\}\),
cuts of cars for destinations 1,4,5 and 7 are consolidated
into a single block or group on their outbound journey
from the yard. A group composed of a single destination
reflects a completely classified set of cars. For a class of
traffic to exit the network, such a single destination group
must be formed at the yard serving that destination. The
decision variables, denoted \(x_{\text {spa }}^{\text {sha }}\), refer to the number of
cars with destination \(d\) that arrive at yard \(n\) in a grouping
\(g\) and.depart for another yard \(p\) in the grouping \(h\). Any
car following this course suffers a classification delay,
measured as the time per car to transform from group 8
to group \(h\); and a routing delay involving the running
time from yard \(n\) to.\(p\) plus an average waiting time for
the outbound train at yard \(n\). Flow balances and upper
limits on the total amount of switching time available at
each yard form the constraints of the linear program.
Knowledge of the values of all variables \(x_{n \text { pu }}^{\text {ph }}\) determines
the car movement on the network (routing) as well as the
sequence of groups (or blocks) cars become part of
successively. Clearly, such a formulation leads to a very
large number of variables if all possible groupings at a
given yard are considered. Consequently Holecek reports
computational experience for only two networks with 3
and 4 nodes.

The blocking model of Bodin et al．（1080）is somewhat similar tut inciudes important refinements．In the Holecek model．all conceivable blecks may be formed with no further restrictions．The authors，however，im－ pose upper and lower bounds on the number of cars in a block and define \(0-1\) variables speciiying whether a given block（traversing a given path）should be formed at a yard．This leads to a more realistic model since very short blocks are not economical and are avoided in practice．The continuous variables \(x_{i j k}^{p}\) in the model，give the number of cars shipped from yard．\(i\) to yard \(k\) along path \(p\) which are next reblocked at an intermediate yard \(j\) ．These interact with the \(0-1\) variables \(y\) it that speciiy if a block is formed to go from yard \(i\) to \(j\)（where it＇s next reblocked）along path \(q\) ．As in Holecek（1971），thers is a constraint refecting yard capacity，formulated here in terms of the total number of cars handled at the yard． The total number of blocks formed at any yard \(i\) is also constrained by an upper bound．The model is further complicated by the introduction of some special restric－ tions on the blocking policy dictated by the practice of the particular rairroad under study．Another dififculty is the piecewise lincar form of the delay function giving the waiting time on a given classification track of each yard This requires the introduction of additional variables acting as breakpoint weights in the separable program－ ming approximation to the objective function．The total delay，a sum of accumulation and connection delays， processing time for cars，and over－the－road travel time， forms the objective function to be minimized．The final report by Bodin and Berman（1979）describes the solu－ tion technique．The model Tnvolved 33 yards and was reduced to a mixed integer program with 1500 con－ straints， 1000 binary variables，and 5000 continuous variables and was solved by successive relaxations of the original problem．
The European literature on rail contains a number of other optimization approaches to the blocking problem from the viewpoint of train formation and makeup．Mar－ tens（1967）formulates a joint blocking／rain scheduling problem．Given a skeleton of existing train services，he considers changes in the schedule to accommodate fluc－ tuations in the load pattern．Thus，each train service may be duplicated to carry additional traffic，run as normally scheduled，or cancelled for want of traffic．An integer variable \(y_{1}\) reflects these choices by taking values 0,1 ， and 2 Another set of integer variables determine the assignment of cuts onto the trains thus addressing the blocking／makeup aspect of the problem．Martens enu－ merates all possible assignments of a cut a priori．In addition to the classification costs，the objective function now includes the costs of operating train services expli－ citly（in terms of the \(y\), ＇s）．The paper draws a contrast between the two assumptions of divisible vs indivisible cuts．With the latter，a cut must be assigned to a train in its entirety and cannot be subdivided．In the former case we may divide cuts between different trains and thus obtain a model more like Holecek＇s．One should note that the divisibility assumption influences the com putation of classification or processing costs for cuts．
Achermann（1969）gives a comprehensive report of a train formation program for the Swiss Federal Railways．

we. usual traffic equiiibrium models address. ladeed. it niny prove to be fruiffui to consult the literature on computer communications networis (see, e.g. computer (1977) and investigate its applicability to tail chobiems. The issue of centralized vs decentralized contol (and routing) especially comes to mind, sifice rail management might preier some degree of-decentralized -decision-making at the yards.
The development of rail network optimization models bus been encouraging. Tte work of Fiorian et al. (1976) ind Bodia wt al. (1979) demionstrate that sophisticated mathematical programming models can be solved for finge networks. We expect more progress in this direc. - ion over the coming years. Nevertheless, due to the size id the problems encountered, it is improbable that routing, blocking, and scheduling decisions could all be addesesed by a single monolothic model. Instead, there oens to be a need for an integrated system of models at tarious levels of aggregation for rail planning efforts. "Jous, for example, the information from an aggregate routing problem could feed into and guide a more detailed model handling the blocking problem. Since rail rimulation models are fairly advanced and incorporate anst detailed information, these could be used at the nighicst level of detail to interact with and evaluate the Bolicy recommendations of more aggregate optimizationtased models. We feel that such hybrid optimizaCoialsimulation models hold much promise.
An An altermative approach to very large problems is the tivedopment of heuristic techniques. Even if exact Frodels are computationally tractable, there is still much Elo be said from the practical viewpoint in favor of Ziffictive but simple heuristic rules: these rules can be Tasily understood by rail managers and form valuable gnidelines for decentralized decision-making on a local basis (say, within yards). Unfortunately heuristics have saceived little attention from raii modellers. We feel that the areas of train scheduling and blocking could benefit tom developments in this direction.
:We hope that this paper has communicated the flavor. of rail modelling and the nature of the currently available tools. We would also feel gratified if the discussion has mataged to interest transportation analysts in the area of Yhit so that their combined efforts with rail managers Fould result in increased implementation and use of such models for railroads.
Yeke: referencess
24ikR (1974) Association of American Railroads Committec on Analytical Techniques. Applications Digest. Data Systems Bivision.
\({ }^{7}\) Achermann J. (1969) Model and calculation program relating to T: be optimum formation of trunk haul freight triins. Bull. SRD. A. 6, 181-226.
ADL (1971 1) Economic Impact of Freight Car Shortages. Final Report prepared for DOT, Arthur D. Little, Cambrrdge, Mass. . Llexander N. S. B. (1968) Hump marshalling yard design. Bull.
 Whiman W. P. (1966a) A computer simulation model of railroad Egreight transportation system. In Proc. 4 th Int. Conf. Ops. Res.. Xipp. 339-351. Wiley, New York.
ail network. ;ies that may constitute a from what

Allman iV. P. (1566c) A network model of freight systems operations. RSSMA, pp. \(189-1+0\).
Allman W. P. (t 187) A computer simulation model of ailroad transportation systems. Baill. I.R.C.A., 45-57.
Allman W. P. (1974) An optimization approach to freight car allocation under time-mileage per diem rental rates. Man. Sci. 18. \(567-574\).

Amit I. and Goldfarb D. (1971) The time-labie problem fur ruilways. Developments in Operations Research, Vol. 2. Gordoa and Breach, New York.
Anthony R. N. (1965) Planning and Control Systems: A Framework for Analysis. Haryard, Boston.
Assad A. A. (1977a) Anaiytical models in rail transporation: an annotated bibliography. Cps. Res. Center, MIT Working Paper, OR 066-77.
Assad A. A. (1973a) Multicommodity network fows-a survey. Networks 8, 36-89.
Assad A. A. (1978b) Modelling rail freight management. Unpublished Ph.D. Thesis, Sloan School of Management. M.L.T. Assad A. A. (1979) A chass of rain scheduling problems. Paper tor the ORSA/M. Meeing, New Orteans.
Assad A A. (190) Modeling rail networks-towards a rout.
Avi-lthhak B., Benn B. A. and Powell B. A. (1967) Car pool systems in railrond transportation: mathematical models. Mcn. 694-711.
Bartett (1957) An algorithm for the minimum number of transport units to maintain a fixed schedule. NRLQ 4, 139-149. Beckmann M., McGuire C. B. and Winston C. B. (1956) Studies in the Economics of Transportation. Yale University Press, New Haven.
Beellman J. A. (1967) Ruilfoad network model. PROC., pp. 148-') \(154 . \cdots\)
Bellman R (1957) Formulation of recurrence equations for shutte process and assembly line. NRLQ 4, 321-324.
Belovarac K. and Kneafsy J. T. (1972) Determinants of linê haul reliability. Studies in Railroad Operations and Economics, Yol. 3. Report No. R 72-38, Dept. of Civil Eng. M.I.T.

Bisbee E. F. et al. (1966) Operation Analysis of System Specijications. Part I: Passenger Scheduling. Report No. R66S4, Dept. of Civil Eng. M.I.T.
Bisbee E. F. (1968) Dispatching policies for controlled systems. Proc. 4th Int. Symp. on the Theory of Trafic Flow, Karlsruhe, pp. 255-263.
Black A. (1962) A method for determining the optimal division of express and local rail transit service. Highway Res. Board Bull. 347, 106-120.
Bodin L. D. at al. (1980) A model for the blocking of trains. Transpn Res. 14B, 115-120.
Bodin L. D. and Berman L. J. (1979) A Model for Blocking of Trains, Final Report No. BMGT-FRA-1-79. College of Business and Management. University of Maryland at College Park.
Bourgeois M. and Valette M. (1961) Formation des trains de detail par la methode de la formation simultanee. Rev. Francaise de Rech Operationnelle 4, 56-92.
Brandalik F. and Kluvanek P. (1966) The queues at reception sidings of a marshalling yard. Bull I.R.C.A. 3, 540-541.
Brandalik F. (1976) Copacity problems at the sorting sidings of a marshalling yard. Rail Int. 7, 254-283.
Carstens J. P.. Baster R. C. and Reitman J. (1966) Economic models for rail systems. IEEE Trans. Sys. Sci. Cyber. SSC-2, 128-134.
Cerny J. and Vasicek R. (1977) The GOP-I method and its use in time-table preparations. Rail Int. 8, 97-103.
Chames A. and Miller M. H. (1956) A model for the optimal programming of railway freight train movements. Man. Sci. 3 , 74-92.
Channes A., Raike M. W. and Kirby M. S. L. (1967) Synthesis and analysis of some transport price policies. PROC, pp. I34-142 Crane R. R. (1957) Some recent developments in transportation cesearch. NRLQ 4, 173-179.
Crane R. R., Brown F. B. and Blanchard R. O. (1955) An analysis of a railroad classification yard. Ops. Res. 3, 262-271.

\title{
SCAN: A DECISION SUPPORT SYSTEM FOR RAILROAD SCHEDULING
}

\author{
Dejan, 36 vanovic'c AND Patrick T. Harker \\ Decision Sciences Department, The Wharton School, University of Pennsylvania \\ Philadelphia, Pennsylvania 19104-6366
}

\section*{Abstract}

This paper presents an overview of a decision-support model for the tactical scheduling of railroad traffic which is meant to support the medium-term issues facing a railroad. This initial version of the Schedule Analysis (SCAN) system is based upon notions from both simulation and combinatorial optimization, and is designed to provide schedulers with a tool for scheduling which provides real-time response. After describing the conceptual and algorithmic underpinnings of the SCAN system and its associated user interface, examples taken from a major railroad are used to illustrate the capabilities and limitations of the current system. Preliminary results from the use of this system at a major railroad are also discussed.

\section*{1. Introduction}

Recent years have seen a renaissance of North American railroads, both in terms of economic indicators (ton-miles, revenues) and the development of new "space age" communication, information, navigation, and electronic control systems (\((10,11\})\). Increased traffic volumes, new technologies and stronger competition have put pressure on railway companies to rethink their management strategies and operating practices in order to make use of the wealth of information and control capabilities provided by new systems and, in turn, to increase the level of service offered. It became apparent that decision-makers need new methodologies and tools in order to make better decisions from a system-wide perspective. The model described in this paper is designed to fill the gap in the ares of operations research (OR) models applicable to the problem of medium-term (tactical) scheduling of trains.
1.1 Tactical Rail Scheduling Problem and OR Models

Tactical train scheduling is defined as the determination of planned (scheduled) train arrival and departure times at important points (yards, terminals, junctions) along a train's route; these times are then published in timetables intended both as marketing information for railroad customers and official guidelines (or goals) for the railroad employees. Train routes, carblocking and yard polices are determined at a higher (longer term) planning level, and they are assumed as given inputs to the tactical scheduling process, along with marketing consider-
ations (i.e., the train artival/departure times most attractive to the customers).
The main issue involved in tactical train scheduling is a tradeoff between the train arrival/departure times desired from the marketing point of view, and the relizbility of actual schedule performance (i,e., on-time train arrivals) as influenced by over-the-line and yard delays incurred by trains. Shorter titansit times are more attractive to the customers and can resultit in better equipment utilization; however, these gains can be more than offset by the resulting higher frequency of late train arrivals and the deterioration of the reliability of the transportation service offered. It is hard to overemphasize the importance of on-time shipment arrivals in today's transportation market, and the fact that the trains' schedule performances play a vital role in the overall reliability of railroad services [3]. In practice, train schedulers have almost no means (aside from their past experience) to predict the on-time performance of their new or revised schedules. The adjustments of schedules are usually myopic in nature and dictated by historic train performance; in other words; rather than setting goals, the tactical scheduling function is simply a summary of the actual train operating practices defined by the oftentime uncoordinated actions of train and yard dispatchers and engineers. The methodology embedded in the SCAN system takes a somewhat different perspective; namely, the basis for reliable rail operations are achievable goals set at the tactical scheduling level. The main purpose of SCAN is to enable schedulers to produce schedules which are consistent with the physical constraints of over-the-line train operations or, in other words, to produce robust schedules that contribute to reliable operations.

\subsection*{1.2 Current State-of-the-Art in Railroad Scheduling}

No existing model of rail operations was appropriate for task of tactical rail scheduling; however, we can learn from the shortcomings of the existing models. A large number of models developed to support railroad operations (for comprehensive, though somewhat dated review see (1]) can be categorized as either gool- or action-oriented, borrowing the classification given by [9]. Representative of the goal-oriented models are optimization models which, in the context of rail operations, are either network oriented models (the most recent and successful example is described in [4]), or focus on the real-time operations of a single

CH2749-0/89/0000-0097\$1.00 (C) 1989
railway line. While network optimization models are useful in determining yard and blocking policies and train routes, these modeis do not implicitly deal with schedules; they instead use train frequences. In the real-time calegory, there are few operational models of optimal line operations (or train dispatching) to date (see, for example, the description of the Norfolk Southern Railroad's proprietary dispalching system described in [10]). Even if more such real-time systems were available, the shortterm scope of such a model would make impractical for planning purposes. Another problem with the optimization models, both network- and line-oriented, is that they are usually based on relatively rigid and simplified mathematical formulations of the problem; at present it is a challenge just to understand and define all the intricacies involved in the tactical train scheduling problem, let alone produce a detailed mathematical formulation of the problem.
Action-directed models are usually discrete-event simulation models and are used to assess the impacts of various proposed actions. These models, depending on their scope, can accomodate a great level of detail. Network-oriented simulation models, however, either ignore or use overly simplified representations of over-the-line train interference; this interference is one of the main sources of delays that trains incur and thus, directly influences schedule performance. Simulation models of line operations, on the other hand, are usually stochastic and incorporate train interference - meets and overtakes - in great detail (a somewhat dated review of these models can be found in [2]). Howeverr; be cause of the level of detail incorporated and the large number of iterations required to get a statistically significant sample, these models are too slow and cumbersome to be used interactively; e.g., so as to allow the analyst to make iterative improvements to the alternative plans being evaluated within a reasonably short period of time. An additional shortcoming of most simulation models in the area of rail transportation is that, besides being data intensive, they require extensive preparation and knowledge of the software from their users; the final output must be processed by the technical people with a thorough understanding of the particular simulation package and rail operations before it can be presented to a decision maker.

\section*{2. SCAN System Design}

Although the SCAN decision support system is being devel. oped within the scope of a broader research effort aimed at the optimal control of railroad operations [5], it was designed so that it can serve as a useful stand-alone tool for railroad management, independent from any real-time control systems which may be implemented on the railroad. In order to achieve this goal, several design objectives were chosen:
- Ease of use and user independence. The system was intended to be used directly by the decision-makers, without extensive training requirements and without need for technical consultants, such as programmers and MIS experts, to process system input and output. Both the inputs to and the
outputs from the model should be easily and quickly comprehended by the users. This goal prompted the use of the interactive-graphics and menu oriented user interface.
- The system should be interactive. Closely connected to the ease of use, the realization of this objective is necessary in order to make the system truly useful in supporting the decision-making process. After the invocation of any command, the user should receive a meaningful response from the system in a reasonable amount of time (e.g., before he forgets what he asked from the model). This objective required the use of fist-response algorithms and adequate computational power.
- Modular design. The algorithms used in the model, data input-output to the algorithms, initialization routines and user interface should be designed and coded as relatively independent modules. This goal allows different algorithms to be added or substituted in the model as the research progresses and the users' needs and enviroment change.
The choice of the computing enviroment for the SCAN system was dictated by the above objectives; we needed more computational power than a PC could offer and bettefyraphics and realtime response capabilities than a time-sharing mainframe could offer. Therefore, we chose a graphics-oriented, multiple-window, mouse-controlled Apollo DN 3000 workstation.

\section*{3. SCAN Methodology}

\subsection*{3.1 Model Philosophy, Scope, Assumptions and Data Needs}

As discussed in the introduction, the purpose of this model is to help in the design of robust (reliable) train schedules, not to provide an "optimal" schedule. Accordingly, the model starts with given train schedules and evaluates their feasibility; if a given set of schedules is found to be infeasible, the system offers interactive or automatic procedures to modify the given schedules until they are feasible. Once the set of schedules are proven feasible, their reliability can be estimated. All the remaining objectives (besides reliability) imbedded in the tactical scheduling process are the domain of the user; the scheduler follows these objectives through the proposed initial set of schedules and by controlling the subsequent interactive modification of that set.
Reliability of train schedules is a system-wide issue; i.e., because of interactions among trains, it is not possible to consider the reliability of a single train's schedule while ignoring the schedules of the other trains. Consequently, the SCAN methodology has a system-wide scope. However, in order to ensure the fast model response required for the interactive nature of the SCAN system, the railway network over which the schedules are ana. lyzed was disagregated into basic units of analysis called traffic lanes. A lane is defined as a railway line between two points on the network termed reporting stations (usually yards, terminals and junctions) where trains are scheduled to arrive and/or depart at a certain time.

Figure 1: Station_Q-Station_R schedule diagram.

This methodology incorporates two basic assumptions: (a) all trains are scheduled, and (\(b\)) all the trains going through a reporting station are scheduled at that station. The first assumption is a major one and does not mirror the current practice of North American railroads: there is a substantial number of regional and local trains that are not scheduled at the tactical level. However, the philosophy embedded in the SCAN system maintains that on-time performance is a system-wide issue and thus, in order to improve it, planners at the tactical level should have some control over the operation of unscheduled trains rather than leaving it to the discretion of train dispatchers. A system of scheduled slots, similar to those employed by the airline industry, could be used for this purpose so that unscheduled trains can be incorporated within the SCAN system using the slots allocated to them.
The 24 hour time horizon of the model was chosen as natural for a tactical scheduling model since that represents the practical cycle of most train schedules (viewed from a particular reporting station. not from a train).
The data required by the model can be classified into three basic categories: track description, train travel times, and, of course, proposed train schedules (for a detailed description of all the information required by SCAN I package see [6]). The
track description for a given traffic lane lists all points, termed meetpoints, where trains can meet or pass (i.e., overtake) each other; such points are side tracks, yards, and points at the ends of double-track, sections. Travel time files list freerunning (i.e., without interference from other trains) transit times between adjacent meetpoints for various train types classified according to their performance. Statistical distributions of stochastic input parameters are also needed for the schedule reliability estimation (e.g., variance of free-running times influenced by locomotive health, etc.).

\subsection*{3.2 SCAN Algorithms.}

There are three algorithms incoporated within the SCAN I system: one that evaluates the feasibility of a given set of schedules over a given lane, one that modifies the infeasible schedules until feasibility is achieved, and one that estimates a measure of reliability of a given set of schedules. The schedule feasibility evaluation algorithm attempts to find a feasible meet-pass plan that satisfies given schedules (i.e., that enables all trains to arrive on time to their reporting stations within the lane). A feasible meet-pass plan specifies the time-space coordinates (when and where) of train paths and their interactions in such a way that

Figure 2: Station_Q-Station_R: an infeasible meet-pass plan.
no physical constraints of the train motion and interaction are violated; e.g., two trains travelling in opposite directions cannot meet on a piece of single track, only at a siding, yard or doubletrack section.

The feasible meet-pass plan generation problem can be for mulated as a mixed-integer mathematical programming problem, where the integer binary variables determine the location of train meets and continuous variables represent train arrival and departure times at each meetpoint in the lane. There is no explicit objective function in this problem; i.e., the goal, as described by Jovanović and Harker [\(\dot{8}\)], is to find a feasible solution(s) that meets the schedule. This problem is NP-complete, and in many ways is similar to a job-shop scheduling problem. However, some features of the problem enabled the design of an efficient implicit enumeration algorithm. The special structure of the problem allows. for fixed binary variables, the resulting problem in the continuous variables to be solved trivially. This characteristic allowes for the design of an implicit enumeration-like rather than an LP-based branch-and-bound technique. Node generation is performed using process-interaction simulation techniques to actually move the trains over the lane in a manner which ensures that only feasible nodes are generated. Thanks to the availability
of 32-bit integer variables in the Apollo workstation enviroment, there is no need for floating point operations; in fact, only integer addition and comparison were used in the implementation of the algorithm. Computationally inexpensive node evaluation (200 nodes/sec on Apollo DN 3000), coupled with a strong initial bound (no train can be late) and depth-first search resulted in satisfactory running times for most real-world data sets encountered. Typically, it takes under 10 seconds on the Apollo DN 3000 for the SCAN I system to derive a meet-pass plan that satisfies the schedules or to prove that the given set of schedules is infeasible. However, for some rare test data sets involving a substantial number of overtaking trains, the problem size was so large that it required almost 30 minutes of Apollo DN 3000 CPU time for the algorithm to prove that the schedules are infeasible.
If no feasible meet-pass plan that meets the schedules can be found, the schedule modification module returns the "best" partial meet-pass plan with indication of the unresolved train confiict (cf. Figure 2); the "best" in present version of SCAN is defined as that plan which corresponds to the deepest node generated in the search tree before the schedules were proved to be infeasible. The scheduler may then choose to let the heuristic embedded in the schedule modification algorithm render given schedules fea-

Figure 3: Menu-controlled modification of train's 008 schedule.
sible or he may do it interactively by resolving infeasible train conficts one by one.
Finally, if the set of schedules is feasible, the schedules can invoke the reliability estimation module to obtain a messure of the 'robustness' of the schedules. In SCAN \(L\), this measure is defined to be probability that all trains in the given set will arrive on time. This probability is estimated by a Monte Carlo simulation where each sample point represents one run of the feasibility evaluation routine with different values of the stochastic input parameters. In the present version, the stochastic parameters are limited to freerrunning train travel times.

\section*{4. SCAN User Interface}

The SCAN user interface was designed to be mouse-controiled and menu driven, with some ejements of graphics-oriented direct manipulation [7]. The menu system allows a novice user to start using the system immediately, eliminating syntax errors or the need to memorize the commands, without inhibiting the expert user (due to the relatively small number of commands available in SCAN I). Examples of direct manipulation include the choice of a traffic lane to be analyzed (the user positions the cursor on the desired lane on the railvay line diagram in the left window
shown in Figure 1 and clicks on the mouse button) and the input of statistical distributions for the stochastic parameters (the user positions the cursor at the desired coordinates on the frequency histogram). An illustration of the success of the interface is that when the prototype SCAN system was delivered to a major rail. road for field testing, it was not accompanied by a user manual and none of the users seemed to require one.
For the presentation of output, we continued the railiroad tradition of using time-distance diagrams to represent the movernent of trains. SCAN I uses two types of diagrams: schedule diagram (Figures 1 and 5) in which the scheduied (desired) train departure and arrival times at the reporting stations are connected by a straight line, and the meet-pass plan diagrams (Figures 4 and 6) which represent one possible realization of the schedule or show why it is not possible to achieve the given schedule (Figure 2). All meetpoints on the analyzed traffic lane and their names are displayed on the vertical axis alongside the track schematic. Color is used to differentiate among various types of trains in the diagram, with red reserved for late trains. An important asset of the graphical output of the algorithmic results is that it proved to be an invaluable tool not only for the end users, but also for the algorithm developer during the testing and debugging of the

Figure 4: Station_Q-Station_R: a feasible meet-pass pian.
code.
Coding of the interface was substantially accelerated through the use of Apollo Domain Dialogue user interface management system (UIMS). Dialogue provides a library of menu building and control routines that can be called from a standard procedural language such as Pascal (the entire SCAN system was coded in standard Pascal augmented by the procedures from Dialogue and Domain 2D-graphics libraries).

\section*{5. Examples}

In this section we present examples of the evaluation of the proposed schedules over two traffic lanes. Figure 1 presents a schedule diagram for the Station_Q-Station_S lane; note a straight line connecting these two stations in the left window which indicates which lane is being analyzed. By simply looking at the diagram, one would be tempted to conclude that this set of schedules would be easy to meet since there are several 'holes' in the schedule and the majority of trains seem to meet or pass each other at a meetpoint (i.e., a siding). However, invocation of the feasibility checking option reveals a series of infeasible train conflicts. One such conflict is shown in the Figure 2. The confict can be resolved by the schedule-modification procedure or by manually changing the scheduled arrival or departure time of one of the trains involved
in the meet; manual modification of a train schedule is illustrated in Figure 3. Finally, after the schedules of eight trains have been interactively modified by the analyst, the given set of schedules has been rendered feasible, as illustrated by a feasible meet-pass plan in Figure 4.
The schedule diagram for a second example, the Station_VStation_X lane in Figure 5 , on the other hand, suggests a barely achievable set of schedules since the train paths are dense and interconnected, and many of them do not intersect at a siding or a double track section. The feasibility algorithm, however, discovers over 500 meet-pass plans that can achieve the given set of schedules; one is presented in Figure 6.
The above examples illustrate the type of added information that the SCAN system presents to the decision-maker; simply, collecting data and presenting it in a nice graphical form can often be misleading if it is not accompanied by adequate analysis.

\section*{6. SCAN I IN Practice}

The SCAN I system is currently being used at a major U.S. railroad in order to obtain achievable schedules. SCAN has refocused this railroad's efforts on increasing the level of service offered to their customers by highlighting the role of proper scheduling of trains. As is preached in Operations Research classes but often-

Figure 5: Station_V-Station \(X\) schedule diagram.
time not believed, it was the act of modeling more than the model itself that has made the biggest impact on the railroad: they are beginning to believe in scheduling! In this sense, SCAN has already been a success, given its acceptance by the schedulers. This can be illustrated by quoting one of the SCAN users:
"...calling up the software, running feasibility checks and changing the schedule data... was accomplished with minimal effort and confusion. This is very important as we would like to see 'non-programmer types' able to access the system and use it for analyzing and improving operations. Many non-analysts were eager to 'try it for themselves'. ... The graphic representation of the schedules is a strong asset. Without it, the analysis wouid essentially produce just a bunch of numbers that don't mean anything to me and don't allow me to get any real work done."

As for the quantitative measures of the impact of SCAN 1 , statistics are being collected to provide the numerical evidence of the system's impact on the operations of the railroad as the system is being used to analyze larger and larger portions of the network.

\section*{I. Future Directions}

In order to provide the scheduler with'even greater sophistication in the support of tactical scheduling, several research issues concerning the methodology employed in SCAN I remain to be solved. Among these are the issues of cyclic schedules, introduction of the measure of schedule infeasibility rather than just stating that the given set of schedules is infeasible, and better measures of the reliability of schedules. Improved, faster algorithms are required in order to accomodate these new methodologies and enable the system to be used over larger, aggregated, traffic lanes, while retaining interactive nature of the system.

Besides these algorithmic and methodological issues, one of the challenges for the future development of SCAN system will be to retain the positive features of the existing user interiace while supporting the more sophisticated flow of information between the user and SCAN which will be required by the new methodologies. For example, the user should be given greater control over the feasibility evaluation algorithm in the fashion of the interactive optimization: results of each iteration of the algorithm should be displayed immediately with the user having the option to stop the algorithm, examine the 'best' solution so far, and either accept that one or restart the algorithm with the option

\section*{Figure 6: Station_V-Station_X: a feasible meet-pass plan.}
of directing the algorithm towards better solution. The "Dialog" type of UIMS has the necessary fexibility for the concurrent package architecture where both the algorithm modules and UIMS can concurrently control the display, as opposed to the current SCAN architecture where an external UIMS has control over the display and invokes algorithmic modules as necessary; however, this architecture is not only difficult to implement but may also compromise the modularity of the package. Another challenge lies in increasing the role of direct manipulation as the mode of user interface. An obvious example would be to allow the user to modify schedules directly in the time-distance diagram by moving the path of the train using the mouse.

\section*{References}
[1] Assad A.A. (1980), "Models for rail transportation," Transportation Research 14A, 205-220.
[2] Bongaardt H.L. Jr., E.L. Clausing, G.F. List, S.A. McEvoy, and H.G. Ramp (1980), "Railroad network modelling: recent practical applications," Proceedings of the Transportation Research Forum pp. 499-512.
[3] Bouley, J. (1987), "Just in time," Railway Gazette International 2 (February) 93-95.
[4] Crainic, T. (1984), "A comparison of two methods for tactical planning in rail freight transportation," Operational Research '84: Proceedings of the 10th International Conjerence on OR, Elsevier Publishing Co, NY, pp. 707-720.
[5] Harker, P.T. (1986), "Use of Global Positioning Information for Real-Time Control of The Rail Network", A research proposal submitted to Burlington Northern Railroad, Decision Sciences Department, The Wharton School, University of Pennsylvania, Philadelphia, Penna.
[6] Harker, P.T. (1987), D. Jovanović and S.F. Hallowell, "Data Needs for The SCAN System", Report NSF-87-3-1, Decision Sciences Department, The Wharton School, University of Pennsylvania, Philadelphia, Penna.
[7] Working Paper 87-11-10, Decision Sciences Department, The Wharton School, University of Pennsylvania, Philadelphia, Penna.
[8] Jovanović, D. and P.T. Harker (1988), "Railroad Schedule Validation and Creation: The SCAN I System," Working

Paper 88-03-04. Decision Sciencea Department, The Wharton School, University of Pennsyivania, Philadelphia, Penna.
[9] Morlok E.K. (1970), "A goal-directed transportation planning model," Transportation Research, 4, 199-213.
[10] Sauder, R.L. and W.M. Westerman (1983), "Computer aided train dispatching: decision support through optimization,? Interfaces 13, 24-37.
[1i] Weity, G. (1987), "ATCS: On time, on target," Railway Age 6, (June),39-40.
[12] Welty, G. (1988), "ATCS: Moré than 'train control'," Railway Age 8, (August), 45-49.

Reprint of an article appearing in R. Sharda et al. (eds.), "Impact of Recent Computer Advances in Operations Research", (Norh-Holland, Amsterdam, 1989)

seasonal changes in traffic demand or modifications to the physical lay-out of the network.
from histori the Marketin: on a quarter

Module 1 study. For \(C\) to approxime tion of as small statio about 100 ye tination in up/delivery is reduced :

The thir mand and is lines, may yard capaci

The secc mands for moyed such stage. Tra stations, about the and so on. sults are reports ec
4. THE OP

Our al transport matical

The \(f\) grate th traffic

The first module, Module 0 , is used to generate the traffic forecast data,

planning level. The purpose of the model is not to specify a detailed schedule but rather to generate economically sound global operating strategies ensuring a good level of service, in terms of transport delays and reliability.

A complete description of the formulation may be found in [3]. Here we only present the general molling framework.

The physical network is aggregated following the same general rules as in CANAT. The line capacity-related parameters that we have retained include the line type (single, double), length, number of sidings, plus some train operational parameters such as a minimum headway for each train type. For each yard, one has to define an average service time for the classification operation. Presently, it is estimated from the capacity (maximum number of cars that may be classified during the planning period, usually a week) of the yard as the mean through-time of a car being classified at that yard.

The traffic demand is specified for each traffic-class, defined as an origin-destination-type of commodity combination for which a positive number of cars (or any equivalent measure of tonnage) has to be moved.

Based on the physical network, the service network specifies the set of feasible routes on which train services may be operated. A train service is characterized by its type (defined by a speed-priority combination) and route (origin, destination, intermediate stops) in the physical network. The freguency of the service is defined as the number of trains operated on its route during the planning period and will be determined by the model.

An itinerary completely specifies a feasible journey for the traffic of a given traffic-class : the service path followed in the service network and the sequence of (re)classification yards along this path. The distribution of the traffic of each traffic-class among its itineraries will also be determined by the model.

The frequencies and itineraries are the central elements of the formulation, because fixing the values of the frequencies determine the services to be offered and the level of service, while by selecting for each traffic-class its best traffic distribution (for that level of service) between its itineraries, one solves the traffic routing problem and also determines network-wide classification and make-up strategies.

Schematically the model may be written as follows:

over th ating \(c_{1}\) that th. cost an The mod.
finds "
that mo:
the tra gether : and may
do a tr the fre large a mean sc optimiz. of cour De lost

When
tion ap
more de difficu

CANAT uses no explicit objective whatsoever, neither does it consider congestion or other time related functions. Neither operating costs, nor delay costs are considered and no automatic traffic assignment is performed. The planner has to specify each train and its workload, in this way effectively performing the traffic assignment and establishing the yard classification and make-up policies. He uses his judgment and experience and help from the status reports generated by the systen. In this way, a detafled simulation of operations may be included into the system and the control of the planner over the form of the final results is total and continuous. The systen hovever is unable to suggest new alternatives and the time necessary to build a solution is quite long (of the order of several days) which may limit the number of different strategies that may be examined.

The optimization approach do explicitely consider the delays in yards and
Frequency delays, counting the time cars have to wait at yards until the designated service is available.

The resulting mixed integer, nonlinear, multiflow, multimode problem is solved by a decomposition algorithm working alternatively on the following subproblems :
For a fixed traffic distribution, modify (if possible, stop otherwise) the frequencies to improve the global objective. A method of finite differences is used to determine the frequencies to modify
:For a fixed level of service, determine an optimal traffic distribution. The problem is solved by a decomposition procedure which cyclically considers each traffic-class, all others variables being kept at their present values. For each subproblem, a new itinerary is first generated by shortest-path-1ike echniques, followed by the optimization of the traffic assignment done by descent methods.

The algorithm and its performance are analyzed in more details in [4]. Considering the size and complexity of the problems it proved to be a very effective algorithm. Some figures supporting this claim are also shown in Table 1 in
5. HOW THE METHODS COMPARE

Let's begin by summarizing the..main characteristics of the two methods we just described. Il will help explain the observed differences in the behaviour of the methods and in the results obtained. be

hods we
hods we
haviour:
iy costs.
planner:
-forming
make-up
reports
5 may be
I of the
suggest: :
long (of:
rategies.
ards and ating costs (and some capacity-related penalties) in a global objective. Note that the formulation is flexible enough to allow the replacement of some or all cost and delay models presently fincluded with other, more pertinent formulae. The model generates and evaluates a high number of operating strategies until it finds "the" best over-all "strategy with respect to the general objective. At that moment, one obtains the services to be run, their frequencies and make-up, the traffic routing for each traffic class and the workload for each yard together with its classification policy. The proposed algorithm is quite efficient and may be decomposed into several procedures that may be used individually to do a traffic assignment for example, or to analyze the length of some train or the frequency of some service and so on, of course, this method requires a large amount of data, some of which may not be readily avallable, such as yard mean service times or, especially, delay costs by commodity. Also, being an optimization procedure, an important amount of detail and realism may be lost. of course, details might be included but then the flexibility and rapidity will be lost. Therefore, a compromise has to be found.
When comparing the two methods, it rapidly becomes clear that the optimization approach is much faster but probably less precise. But, the comparison, in more detail of the results generated by. the two methods proved to be a more difficult task.
First, as emphasized by the characteristics ie just mentioned, it is not possible to directily compare the two solutions on the basis of some objective function/economic criteria.
Second, due to technical differences (derived from the differences in the scope and methods of the two systems) in the outputs and the input requirements of the two computer programes, we experienced significant difficulties in transfering the results of one system to the other. In fact, .the only transfer that proved practically possible, was that of the service network generated through the use of CANAT.
We then conducted three types of experiments :
i) Generate the optimal traffic assignment using the CANAT service network and frequencies. We call this the "CANAT solution".
ii) Optimize using the CANAT service network.
ii1) Optimize using a service network that we have generated.
We used two sets of data supplied by C.N. Rail, together with the service
networks obtained by CANAT on then, as well as the passenger trains in operation on the network and estimations for the other parameters.

The first data set contained traffic demand forecasts for the year 1990 for the western part of the f.N. Rail's network. We had 735 traffic-classes (after aggregations and counting only the traffic-classes with at least 10 cars/week; in this way, we had over \(95 \%\) of the total demand) and a network of 71 yards, 36 junctions and 95 links. The CANAT service network had 191 services and we generated a service network of 399 services. The three experiments on this data set will be refered to as Experiment 1, 2 and 3 respectively.

The second data set represented traffic demand forecasts for the year 1991 for the B.C. North Line, a subregion of the previous network on which an extensive study has been conducted at C.N. Rail. We had a network of 18 yards, 6 delivery/pick-up stations, 53 junctions and'41 links and 281 traffic-classes (capturing \(99.32 \%\) of the total traffic demand). The CANAT service network had 47 services, while ours had 44 services. On this data set were conducted the Experiments 4,5 and 6 respectively.

Some typical time-related figures for the resolution of the six problems are. shown in the first table. They are in Cyber 173-equivalent C.P.U. seconds andthe variations are explained by, among others, the size of the networks and of the service networks and the number of traffic-classes.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Exp 1 & Exp 2 & Exp 3 & Exp 4 & Exp 5 & Exp 6 \\
\hline frequency modification procedure & --- & 40 & 133 & --- & 1.1 & 0.9 \\
\hline traffic distribution & 392 & 596 & 2277 & 76 & 105 & 87 \\
\hline itinerary generation & 245 & 266 & 519 & 20 & 22 & 25 \\
\hline optimization & 129 & 277 & 1443 & 37 & 55 & 34 \\
\hline total time & 480 & 774 & 2518 & 91 & 126 & 108 \\
\hline \multicolumn{7}{|l|}{Table 1 : Typical execution times for the various experiments} \\
\hline
\end{tabular}

Table 2 shows the improvements obtained in the values of some perfonmance
parameters b: solutions. \(T\). the service Table 5 show distribution while Table traffic clas
tra
tra:

\(\qquad\)
\begin{tabular}{|l}
\begin{tabular}{l}
type of \\
service
\end{tabular} \\
\hline \begin{tabular}{l}
normal \\
rapid \\
total
\end{tabular} \\
\hline T. \\
\hline
\end{tabular}

\(\qquad\)

\title{
An Optimal Scheduling System for the Welland Canal
}

\author{
E．R．PETERSEN and A．J．TAYLOR
}
Queen＇s Univeraty，Kingston，Ontario，Canada K7L 3N6
The problem of real time scheduling of vessels through the Welland Canal is discussed．A mathematical programming scheduling algorithm is presented．The problem is formulated as a master schedule selection problem and a schedule evaluation subproblem．The schedule evaluation subproblem is a linear programming model，which，due to special structure，can be solved using an efficient dynamic programming algorithm．The schedule selection algorithm is a heuristic that employs optimal dynamic programming submodels for scheduling the individual locks．Sensitivity information from the schedule evaluation model is used in a greedy type of algorithm to fine ture the schedule．An example of a schedule for the Welland Canal is presented．

\section*{1．INTRODUCTION}

St．Lawrence Seaway is a navigable link be－ tween the Atlantic Ocean and the Great Lakes，into the heart of the North American continent．Part of this route，between Lake Ontario and Lake Erie，in－ volves bypassing a major obstacle，the Niagara Falls． The Welland Canal was constructed for this purpose． In the early 1980s it appeared that the Canal would soon reach its capacity limit．Subsequently，lower traffic levels have postponed this problem，but effi－ cient operation of the canal reduces the transit time for the vessels，thereby increasing the competitiveness of the seaway．
The Welland Canal，\({ }^{(1)}\) sketched in Figure 1，is 38 kilometers（ 23.5 miles）long and contains 8 locks which raise（and lower）vessels by 97 meters（ 326 feet）．The first three locks upbound from Lake Ontario are individual locks with stretches of canal，cailed ＂reaches，＂between them．Locks 4， 5 and 6 are com－ bined into a single flight with one lock leading directly into the next one．Each of these locks is twinned to permit simultaneous movement of vessels upbound and downbound．Lock 7 is a very short reach above Lock 6，at the top of the Niagara escarpment，and is considered to be the major bottleneck in the Welland Canal．Finally，the narrow stretch of canal between Lock 7 and Lock 8 ， 5.4 kilometers long，does not permit vessel meets over its length．（The term＂meet＂ refers to two vessels in opposite directions passing each other．）The canal is also crossed by several lift bridges，at which meets are not permitted due to the narrowness of the canal．Limited capacity tie－up walls，
below and above each lock，are used for temporarily mooring vessels as they wait for the lock to accept them．为
There were 4750 transits through the Welland Canal in 1984，with a cargo volume of 14.1 million tonnes upbound and 39.8 million tonnes downbound， over a navigation season from April to December．Bulk čargo accounted for \(92 \%\) of the traffic．Although many vessels pass through both the St．Lawrence and the Welland Canal on＂through＂trips，there is a substan－ tial amount of local traffic，grain and coal，between Great Lakes ports which involves only the Welland Canal．For example，in 1984 the Welland Canal traffic was 8.4 million tonnes greater than that reported for the Montreal－Lake Ontario section．
In normal operations，it is most efficient to have upstream and downstream traffic alternate through a lock，so that the lock contains a vessel every time it fills or empties．This is possible only if the traffic is balanced in each direction，which happens less than \(60 \%\) of the time．When traffic is unbalanced，the locks must be occasionally cycled with no contained vessel． We call such a nonutilized lock cycle a＂turnback．＂
Although vessels arrive at the canal randomly，their expected times of arrival（ETA）are usually known well before arrival and updated as the canal is ap－ proached．Smaller vessels and pleasure craft are grouped together at the canal entrance and move through the canal as a unit，which we will hereafter consider to be one vessel．

Once a vessel enters the canal，it proceeds through the canal in its order of entry，with overtakes occurring only if a vessel encounters mechanical difficulties．

174 / E. R. PETERSEN AND A. J. TAYLOR

Fig. 1. Schematic of Welland Canal Locks (not to scale).

\section*{2. THE VESSEL SCHEDULING PROBLEM}

The Seaway Traffic Control System provides for safe and efficient transit through the canal. The System operates from a central control office, which maintains visual surveillance of the canal via closed circuit television, and issues traffic control instructions to ship captains using a system of lights augmented by radio communications. A traffic control superintendent is in overall charge of the central dispatch office, and is responsible for strategic decisions with respect to traffic flow (in particular, with order-of-turn decisions at locks and control points). To assist him, traffic controllers are responsible for tactial decisions in controlling detailed movements of vessels within subsections. of the canal. According to the Traffic Control Manual, \({ }^{[2]}\) the objective of the system is to maximize the throughput capability of the system (i.e., optimize lock utilization), subject to the maintenance of safe passage.
The current scheduling system has been developed from experience with the canal operation over time, and is summarized in the Traffic Control Manual. In effect, the system consists of rules designed to ensure a supply of vessels at canal bottlenecks, so that the flow of vessels through the canal is maximized. The effectiveness of the system rests to a large degree on the traffic superintendent's experience and capabilities. Although the traffic superintendents are very
able, it is humanly impossible to project all the future vessel movements to ensure that theoptimal dispatch decisions are made. (This is a particular problem on shift changes of traffic superintendents, as differing operating strategies give rise to different vessel movement patterns and delays are incurred during the adjustment period.) A common tool for predicting future vessel movements would help to reduce the vessel delays within the canal system, and so improve its capacity.

Predicting vessel performance in the system requires knowledge of the direction of travel of the vessel, canal characteristics (lockage times, speed restrictions), vessel characteristics (dimensions, acceleration performance, load), and environmental special considerations (time of day, weather). These characteristics are known in advance, knowing the vessel ETA and through the call-in procedure, and are independent of the schedule.

In addition, vessel performance depends on situational factors, such as the type of lock entry or exit to be executed, and the type of meet when vessels encounter one another (for example, in poor weather it may be necessary for one vessel to tie up while the other passes). These variations occur only in adverse weather conditions, and so can be treated as variations from normal performance. The traffic superintendent would adjust the schedule locally to compensate for these changes.

Simulation techniques have been used to study canal operations: DAWson et al. \({ }^{|3,4|}\) and Browne and Liou \({ }^{[5]}\) used simulation effectively to study and improve the dispatch decisions involved in moving vessels in and out of locks. To some degree, simulation could be used to study scheduling rules. However, due to the combinatorial nature of the scheduling problem, the use of a simulation model is limited.

This paper described a vessel traffic scheduling system based on the use of mathematical programming. This system provides the traffic superintendent with:
1. The optimal (or near optimal) schedule (order of turn for each lock and restriction);
2. A measure of the total delay encountered by vessels in the system;
3. The relative sensitivity of each movement, pinpointing the bottleneck moves;
4. Identification of the existence of slack: delays that can occur without affecting the schedule or the performance of the schedule;
5. Identification of how much a schedule can slip and the cost of such slippage;
6. The information necessary to draw string (timedistance) diagrams to display the evolution of movements through the canal.

The scheduling problem is formulated in the next section. Key to obtaining a workable solution is the decomposition of the problem into a master schedule selection programming problem and a schedule evaluation problem. These models are described in the next sections.

\section*{3. THE SCHEDULING MODEL}

The schedule dictates the order-of-turn for vessels for each lock and each stretch of canal where meets are not permitted. We shall refer to the locks and canal restrictions as facilities (which must be scheduled) and number them \(f=1,2, \ldots, F\) in the upbound direction. The flight locks are considered to be a single facility. Facilities are separated by reaches in which vessels in opposite directions can meet.
The movement of traffic through the canal is controlled at a number of control points (cp) in the system. These cp's are located at the entrances to the canal and at the upstream and downstream end of each facility and are numbered, in the upbound direction, \(k=1,2, \ldots, K\) where \(K=2(F+1)\). The downstream cp for any facility \(f\) is numbered \(2 f\), and the upstream cp \(2 f+1\). The downstream canal entrance cp is numbered 1 , and the upstream entrance cp is \(K\).
The scheduling algorithm looks ahead over a spec-
ified scheduling horizon and considers all vessels currently in the canal and those that will arrive at the canal during the horizon. Suppose there are I upbound and \(J\) downbound vessels. The traffic in each direction is ordered in the sequence that the vessels or groups of vessels would normally proceed through the canal (e.g., FIFO) and are numbered \(i=1,2, \ldots, I\) for the upbound traffic and \(i=I+1, I+2, \ldots, I+J\) for the downbound traffic.
For each vessel \(i\), the following information will be available to initialize or update the scheduling model:
\(A_{i}=\) current cp or next cp if vessel is between cp 's or arriving at the canal,
\(B_{i}=\) exit cp (normally 1 or \(K\)),
\(\boldsymbol{t}_{i}=\) current time if at \(\mathrm{cp}=A_{i}\), or expected time of arrival (ETA) at next cp.
Vessel performance along the canal can then be summarized as
\(t_{k, k+1}^{i}=\) time for upbound vessel \(i\) to transmit from \(\mathrm{cp} k\) to \(\mathrm{cp} k+1, i \leqslant I\), and
\(t_{k, k-1}^{i}=\) time for downbound vessel \(i\) to transmit from \(\operatorname{cp} k\) to \(\mathrm{cp} k-1, i>I\).
where the detailed information on vessels and the canal is used to calculate these timing data. In addition, we define the minimum headway permitted between two vessels, due to operational and safety considerations, as
\(h_{i j}^{k}=\) the minimum time that is-required from when the reference point (bow) of vessel \(i\) passes \(\mathrm{cp} k\) before the reference point of vessel \(j\) can proceed past \(\mathrm{cp} k\) when vessels \(i\) and \(j\) meet at \(\mathrm{cp} k\). This includes the time for a vessel to transit its own length plus safety headway before the next can proceed.
Finally, we let \(t_{1}(f)\) and \(t_{2}(f)\) be the time to empty and fill a lock, respectively, when no vessel is present in the lock (i.e., a turnback).
The schedule, which specifies the order in which vessels will be processed at each facility, is subject to a variety of constraints. We describe the schedule by an \(((I+J) \times F)\) matrix \(S\), where element \(s(p, f)\) is the index of the \(p\) th vessel to be processed by facility \(f\).
Feasibility of a schedule requires that if a vessel \(i\) precedes vessel \(j\) at some facility \(f\), then \(i\) must precede \(j\) in the list at all facilities previously visited by \(i\). To formalize, suppose \(s(p, f)=i, s(q, f)=j\) and \(p<q\). Then,
\[
\begin{array}{ll}
\text { for }(i \leqslant I \text { and } m<f) & \text { or }(i>I \text { and } m>f), \\
\text { if } s(r, m)=i & \text { and } s(t, m)=j, \tag{3.1}\\
\text { then } r<t . &
\end{array}
\]

176 / E. R. PETERSEN AND A. J. TAYLOR
Let. \(x_{i, k}\) be the time vessel \(i\) departs control point \(k\). The set of times is constrained by the time required to complete operations, the required separation when vessels follow each other through locks, and by the schedule which dictates the order vessels are processed at each facility. These constraints are:

\subsection*{3.1. Timing Constraints}

These constraints specify the minimum time for a vessel to move from one cp to the next. They require that the earliest departure time from the next cp is the departure time from the previous cp plus the minimum transit time. Thus,
\[
\begin{gather*}
\quad x_{i, A_{i}} \geqslant t_{1} \\
\text { for } i=1,2, \ldots, I+J ; \\
\quad x_{i, k} \geqslant x_{i, k-1}+t_{k-1, k}^{i} \\
\text { for } i \leqslant I \quad \text { and } k=A_{i}+1, \ldots, B_{i} ; \tag{3.2}
\end{gather*}
\]
and
\[
x_{i, k} \geqslant x_{i, k+1}+t_{k+1, k}^{i}
\]
for \(i>I\) and \(k=B_{i}+1, \ldots, A_{i}-1\).

\subsection*{3.2. Following Constraints}

The geometry of one vessel following another through a lock is illustrated in Figure 2. A following vessel can enter a lock only after the vessel ahead has cleared the lock and the lock has been turned back. If the facility is a restricted reach, then vessels can platoon through the reach maintaining a minimum headway or separation between vessels. The following constraints for a reach may be written in the same form as for a lock if we define the turnback time to be the headway minus the transit time for the following vessel, which may be negative in this case. Letting \(g_{u}(f)\) and \(g_{d}(f)\) be the minimum vessel separation in the upbound and downbound direction respectively,

\section*{the constraints are}
\[
\begin{aligned}
& x_{i+1,24} \geqslant x_{i, 2 /+1}+t_{1}(f) \quad \text { for } f=1,2, \ldots, F ; \\
& \quad i=1,2, \ldots, I-1 ; \text { and } A_{1} \leqslant 2 f \leqslant B_{1}
\end{aligned}
\]
where
\[
\begin{aligned}
t_{1}(f) & =\text { time to empty lock } & & \text { if } f \text { is a lock; } \\
& =g_{u}(f)-t_{2,2,2+1}^{+1} & & \text { if } f \text { is a reach. } .
\end{aligned}
\]
or
\(x_{i+1,2+1} \geqslant x_{i, 2 \mu}+t_{2}(f)\)
for \(f=1,2, \ldots, F ; i=I+1, \ldots, I+J-1\);
and \(B_{i} \leqslant 2 f+1 \leqslant A_{i}\),
where
\[
\begin{aligned}
t_{2}(f) & =\text { time to fill lock } & & \text { if } f \text { is a lock; } \\
& =g_{d}(f)-t_{2 f+1,2 f}^{+1} & & \text { if } f \text { is a reach. }
\end{aligned}
\]

\subsection*{3.3. Schedule Constraints}

Figure 3 illustrates the geometry that must hold when opposing vessels are sequenced through a faciity. The resulting constraints, which hold for \(f=\) \(-1,2, \ldots, F\) and for \(m=1,2, \ldots, I+J-1\), are
\[
x_{i(m+1, f), 2 f+1} \geqslant x_{a(m, / l, 2 /+1}+h_{f(m, 1), a(m+1, n)}^{2(1)}
\]
if \(s(m, f) \leqslant I\) and \(s(m+1, f)>I\), and \(\bar{\Xi}\)
\[
x_{f(m+1, f), 21} \geqslant x_{m m, f), 21}+h_{n}^{2}(m, f),(m+1, f)
\]
if \(s(m, f)>I\) and \(s(m+1, f) \leqslant I\).
The objective of minimizing total vessel delays within the canal is equivalent to minimizing the sum of exit times for each vessel.
The scheduling problem is now formulated as a master (combinatorial) problem that selects the schedule, described by the \(((I+J) \times F)\) matrix \(S\), with the objective function evaluated using a linear

Fig. 2. Following contraints at a lock

Fig. 3. Schedule constraints at a facility (f).
programming submodel. That is:
Master Problem
\[
\min _{S} z(S)
\]
subject to (3.1).
Subproblem
\[
\begin{equation*}
z(S)=\min \sum_{i=1}^{S+J} X_{l, B_{i}} \tag{LP}
\end{equation*}
\]
subject to (3.2), (3.3) and (3.4).
Since all the variables are non-negative, the subproblem is a linear programming model. In Section 5 we show that (LP) has a special structure that leads to a very fast algorithm. First we shall illustrate (LP) using a simple example.

\section*{4. A DEMONSTRATION EXAMPLE}

Consider a canal consisting of two locks with three reaches, and two upbound and three downbound vessels are to traverse the entire length. Assume the time to process vessels through each lock is 40 minutes, with transit times of 10,20 and 30 minutes in each direction for the reaches below the first lock, between the locks and above the second lock, respectively. The turnback times are 10 minutes to empty and 20 minutes to fill each lock. A safety headway of 4 minutes is assumed between all vessels. Finally, the two upbound vessels enter the canal at time 0 and 30 minutes, while the downbound vessels enter at time 5,10 and 40 minutes.
Assume we have a feasible (but not necessarily optimal) schedule described by
\[
S=\left(\begin{array}{ll}
1 & 3 \\
3 & 4 \\
2 & 1 \\
4 & 2 \\
5 & 5
\end{array}\right)
\]

The resulting (LP model is given in Table I.
Solving yields \(z(S)=1209\), corresponding to 424 minutes delay in the canal. The primal variables describe the movement of each vessel through the canal. The best way to illustrate these movements is by a time-distance (string-diagram) as shown in Figure 4. Vessel delays appear as non-zero slack variables in the timing constraints. :
; E
The dual variable associated with each timing constraint is the rate of change of the objective function if the time to transit a link is increased by one unit. These have been plotted on each arc of the stringdiagram. For example, observe that upbound vessel 1 can take longer during the first lockage or on reach 1 or 2 without affecting the total gystem performance as the increased operating time only decreases the waiting delay. Also observe that if downbound vessel 3 were to take 1 additional minute to transit reach 2, this would cause a total of 4 minutes delay to the system, as upbound 2 and downbound 4 and 5 are also delayed by 1 minute. Conversely, if the operation can be altered so that downbound vessel 3 takes 1 minute less to transit reach 2 , then a total of 4 minutes of delay will be saved. This pricing or sensitivity information tells the traffic superintendent where to focus attention to expedite a schedule.

In Section 6 the dual variables associated with the meet constraints are used to search for an improved schedule. In the next section we show that the LP subproblem has a special structure that leads to a very fast algorithm for its solution.

\section*{\(\because\) 5. SCHEDULE EVALUATION}

The movement of vessels through the canal can be represented as an acyclic directed graph. Nodes in the graph represent the departure of a vessel from a control point. Each directed arc corresponds to a precedence requirement with a required time for the intervening activity to take place. Figure 5 is the graph for the two lock example of the previous section.

178 / E. R. PETERSEN AND A. J. TAYLOR
table I
Demonstration example
\(\frac{\text { Demonstration ext }}{\text { Min X16 + X26 + X31 + X41 + X51 }}\)
Subject to

The graph is constructed by listing the nodes for ail vessels at each control point. The horizontal arcs correspond to the timing constraints. For example, the first arc represents the relation
\[
x_{12} \geqslant x_{11}+t_{12}^{1} .
\]

The slanted arcs correspond to the lock turnback constraints for following vessels. The first arc of this type, for example, corresponds to the requirement that the second upbound vessel cannot leave control point 2 (entering the lock) until the first has left cp 3 and the lock is turned back:
\[
x_{22} \geqslant x_{13}+t_{1}(1)
\]

Schedule constraints are represented by the vertical arcs in Figure 5. For example in the schedule matrix \(S, s(1,1)=1, s(2,1)=3\) says that the first uphound vessel is processed before the first downbound vessel at lock 1 . This implies that upbound vessel 1 leaves control point 3 before downbound vessel 3 can leave cp 3, or
\[
x_{133} \geqslant x_{13}+h_{13}^{3} .
\]

The resulting graph has a number of nodes equal to the number of variables in (LP), and a number of arcs equal to the number of constraints.
It is easy to demonstrate that the directed graph in Figure 5 is acyclic (otherwise some activity would have to be completed before it could be initiated). Denardo \({ }^{[6]}\) shows that for any acyclic graph, the shortest path can be found using a one-pass dynamic programming algorithm. We extend this to finding the earliest completion times for each vessel. This results in a very efficient two-pass dynamic programming algorithm for solving (LP). The first pass solves for the optimal vessel times, while the second pass solves for the shadow prices.

Consider the acyclic graph \(G(N, E)\) with nodestit= (\(i, k\)) \(\in N\) and arcs \((r, s) \in E\). (Each node is represented. by (\(i, k\)) where \(i\) is the vessel number and \(k\) is the control point.) Let \(c_{r}\) be the time on arc (\(r, s\)). Then - the following algorithm calculates the earliest completion times:

Step 0. Let \(X\) and \(\tilde{X}\) be sets. Set \(X=N ; \bar{X}=\varnothing\) for \(i=1,2, \ldots, I+J\)
label node (\(i, A_{i}\)) with \(x_{i, A_{i}}=t_{i}\) add \(\left(i, A_{i}\right)\) to \(X\) and remove from \(X\).

Step 1. Select a node \(s=(i, k) \in X\) which is not a successor node-to any other node in \(X\). (It is easy to show that if \(X\) is non null that there always exists such an \(s\) is an acyclic graph).
Label this node as
\[
x_{i h}=\max \left(x_{r}+c_{m}\right), \quad \text { for } r \in X
\]

Add node \(s\) to \(X\) and delete \(s\) from \(X\).
If \(X=\varnothing\) stop; otherwise repeat step 1 .
The vessel times \(x_{i k}\) solve (LP).
A similar "backward" algorithm is used to calculate the dual variables in (LP). First, we calculate node numbers using the algorithm:
Step 0. \(X=N, X=\varnothing\)
for \(i=1,2, \ldots, I+J\)
label node \(\left(i, B_{i}\right)\) with \(v_{i, B}=1\)
add (\(i, B_{i}\)) to \(\mathbb{X}\) and remove from \(X\).
dintance

Fig. 4. Vessel movements in the demonstration example.

Step 1. Select a node \(r=(i, k) \in X\) for which all of \(r\) 's successor nodes are in \(X\). (Again it is easy to show that there always is such an \(r\) for \(X \neq \varnothing\) in an acyclic graph). Label this node
\[
v_{r}=\sum v_{s} \text { for }(r, s) \in E \quad \text { and } x_{r}-x_{t}=c_{r}
\]
(Set \(v_{r}=0\) if \(x_{z}-x_{r}>c_{r s}\) for all \((r, s) \in E\))
Add node \(r\) to \(X\) and delete it from \(X\).
If \(X=\varnothing\) stop; otherwise repeat Step 1 .
These labels are the dual variables associated with each node, and each binding arc (\(r, s\)) has a dual price equal to the label of node \(s\). The dual price of the nonbinding arcs is of course zero. Thus the dual solution to (LP) is
\[
\begin{aligned}
y(r, s) & =v_{s,} & & x_{n}-x_{r}=c_{r r i} \\
& =0, & & x_{s}-x_{r}>c_{r r} .
\end{aligned}
\]

This very efficient algorithm, linear in the number of variables, determines the optimal vessel times at
each control point and the dual price associated with each constraint. We now examine the master schedule selection problem.

\section*{6. OPTIMAL SCHEDULING}

Solution of the master problem for an optimal schedule \(S\) is a large integer programming problem. The observation that direct solution of this problem would require exponentially increasing time as the problem size increases suggests a heuristic procedure. This section describes such a procedure, based on optimal submodels, which yields a strategy which is similar in principle to that used by traffic superintendents.
The basic model used in calculating optimal schedules is a dyriamic programming model of a single facility. (Recall that a facility to be scheduled is a lock or canal restriction.) Given the estimated time of arrival for each vessel at the facility, the model

Fig. 5. Network for demonstration example.
determines the order-of-turn for that facility to minimize delays. If the canal had only one lock, this would be the optimal schedule. Even with multiple facilities, this is the key model in calculating a schedule since it determines when a facility should be turned-back.

Given the vessel location information, vessel characteristics, expected demand, canal characteristics and estimated vessel performance, the first step in forming a canal schedule is to determine which facility is contributing the most to vessel delay (i.e., the "bottleneck" facility, the location of which may change with varying loading and traffic patterns). To identify it we successively schedule each facility separately assuming traffic can flow unimpeded to and from the facility. The facility that yields the greatest delay when scheduled is the bottleneck. Delays due to the bottleneck facility also form a lower bound on the optimal solution. An initial order-ofturn for the bottleneck facility will be determined by this procedure.
The second step examines the facility on each side of the bottleneck, with the objective of scheduling these adjacent facilities to minimize any disruption to the schedule determined for the bottleneck. For each adjacent facility, we determine the "ready time" for each vessel, which is the time of arrival of that vessel at the adjacent facility assuming no delays from other vessels except at the bottleneck facility (i.e., vesselsproceeding away from the bottleneck lock may have been delayed by other vessels at the lock). For vessels proceeding toward the bottleneck facility, we com-
pute the "due time," which is the latest departure time from that facility to permit arrival at the bottleneck facility on schedule as determined in step one. If a vessel departs \(x\) minutes after its due time, we say the vessel is tardy by \(x\) minutes. The single lock dynamic programming model is now used to calculate the order-of-turn for the vessel at each adjacent facility so as to minimize the sum of the vessel tardy times.
The procedure is repeated for the next adjacent facilities (upbound and downbound) as we move away from the bottleneck facility, until the ends of the canal are reached. We note.in passing that this procedure has the effect of filling up the reaches to try to keep the bottleneck facility busy, and is similar in purpose to the scheduling strategies currently in use. While we allow vessels to be platooned across the long restricted reach, the over-riding requirement is to keep the locks fully utilized. This tends to keep the number of turnbacks, and hence platooning, to a minimum.
The resulting schedule for each lock and restriction is a good but not necessarily optimal schedule.
The third step improves upon this schedule using a greedy algorithm. Using the sensitivity information obtained from the linear programming submodel, candidate changes to the schedule are identified which could yield an improvement. These are tested and when improvements are found, the schedule is updated, sensitivity information is recalculated and the process continues until no further improvements can be found. This procedure has the effect of "fine tuning" the schedule.
.The next sections describe the details of these submodels.

\subsection*{6.1. Dynamic Programming Model for a Single Lock}

Relax the schedule constraints in (LP) and palculate the vessel times in the canal. The ready times at facility \(f\) are
\[
R_{u}(i)=x_{i, 2}
\]
for the upbound vessels \(i=1, \ldots, I\) and
\[
R_{d}(j)=x_{l+j, 2 \ell+1}
\]
for the downbound vessels \(j=1, \ldots, J\). Facility \(f\) is scheduled to minimize the sum of completion times at the facility.
Formulating as a forward dynamic programming model, we define the stages \(n=1,2, \ldots, I+J\), to be the number of vessels scheduled through the facility. The state of the system is described by the ordered pair \((m, q)\) where \(m\) is the number of upbound vessels processed and \(q\) is the lock position defined as
\(q=0\), lock down and last vessel processed \({ }^{\circ}\)
was downbound,
\(q=1\), lock up and last vessel processed
was upbound.
(The number of downbound vessels processed is \(n-m\).) Now define
\(f_{n}(m, q)=\) the sum of completion times if an optimal path is followed to state (\(m, q\)) stage \(n\),
\(c_{n}(m, q)=\) completion time for last vessel if in state \((m, q)\), with
\[
f_{0}(0,0)=0, \quad c_{0}(0,0)=0,
\]
\[
f_{0}(0,1)=0, \quad c_{0}(0,1)=0
\]

For \(n=1,2, \ldots, I+J\) and \(m=\max (0, n-J), \ldots\), \(\min (n, I)\) :
\(q_{n}=0:\)
if \(m=n\)
\(f_{n}(m, 0)=\infty\)
\(c_{n}(m, 0)=\infty\)
otherwise compute
\[
\begin{aligned}
c_{0}= & \max \left[c_{n-1}(m, 0)+t_{2}(f), R_{d}(n-m)\right] \\
& +t_{21+m, 2}^{n-m+1} \\
c_{1}= & \left.\max \left[c_{n-1}(m, 1)+h, R_{d}(n-m)\right)\right] \\
& +t_{2 /+1,2 /}^{n-m}+
\end{aligned}
\]

SCHEDULING THE WELLAND CANAL / 181
where
\begin{tabular}{rlrl}
\(h\) & \(=0 ;\) & & \(m=0\) \\
& \(=h_{m, n-m+1}^{2 /+1} ;\) & & otherwise
\end{tabular}
with
\[
\begin{aligned}
& \left.f_{n}(m, 0)=\min _{q} \mid f_{n-1}(m, q)+r_{i n}\right\} \\
& c_{n}(m, 0)=c_{n^{*}}
\end{aligned}
\]
where the contribution to the objective function \(r_{q}=c_{q}\), the completion time of the last vessel, and \(q^{*}\) is the optimal predecessor state.
\[
\begin{aligned}
& q_{n}=1: \\
& \quad \text { if } m=0 \\
& \quad f_{n}(m, 1)=\infty \\
& c_{n}(m, 1)=\infty
\end{aligned}
\]
otherwise compute
```

    \(c_{0}=\max \left[c_{n-1}(m-1,0)+h, R_{u}(m)\right]\)
    ```

```

    \(c_{0}=\max \left[c_{n-1}(m-1,1)+t_{1}(f), R_{u}(m \dot{i})\right]\)
            \(+t_{2,2 /+1}^{m}\),
        where
            \(\begin{aligned} h & =0 ; & & n=m \\ & =h_{n-m+1, m}^{2 f} ; & & \text { otherwis }\end{aligned}\)
    with \(\quad f_{n}(m, 1)=\min _{q}\left\{f_{n-1}(m-1, q)+r_{q}\right\}\)
    \(c_{n}(m, 1)=c_{q^{*}}\).
    ```

The optimal predecessor state is recorded for each state. The minimum-time ending state is selected, and the optimal order-of-turn for the facility is found by tracking back through the dynamic programming tables. The resulting schedule constraints for the facility are added to the relaxed (L,P) model. Evaluating this new (LP) model gives a lower bound \(z_{f}\) for the scheduling problem. This is repeated for all facilities. Then
\[
z_{0}=\max _{f} z_{f}=z_{f}^{\circ}
\]
is the best lower bound for the problem, and \(f^{*}\) is the bottleneck facility.
The two-lock example from the previous section is used to demonstrate the model. Table II is the dynamic programming tabulation for lock 2 , the bottleneck lock, giving a lower bound of \(z_{0}=1085\).

The optimal order-of-turn, and entry and exit times at lock 2 are given in Table III. We note that this algorithm has computation time that is quadratic in the total number of vessels, \(I+J\).
/ E. R. PETERSEN AND A. J. TAYLOR
TABLE II
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Lock 2 Optimal Schedule} \\
\hline \multirow[t]{2}{*}{\[
\operatorname{Stage}_{n}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Stute } \\
\hline
\end{gathered}
\]} & \multicolumn{3}{|c|}{\(9=0\) Lock Down} & \multicolumn{3}{|c|}{9-1 lock tip} \\
\hline & & \(h(m, 0)\) & \(\mathrm{Ce}_{0}(\mathrm{~m}, 0)\) & 4i-1 & \(\overline{\ln (m, 1)}\) & \(c_{4}(m, 1)\) & \(4{ }_{4-1}\) \\
\hline \multirow[t]{2}{*}{1} & 0 & 75 & 75 & 0,1 & , \(\infty\) & \(\infty\) & - \\
\hline & 1 & \(\infty\) & \(\infty\) & - & 110 & 110 & 0 \\
\hline \multirow[t]{3}{*}{2} & 0 & 210 & 135 & 0 & \(\infty\) & \(\infty\) & - \\
\hline & 1 & - 264 & 154 & 1 & 194 & 119 & 0 \\
\hline & 2 & \(\infty\) & \(\infty\) & - & 354 & 160 & 1 \\
\hline \multirow[t]{3}{*}{3} & 0 & 405 & 195 & 0 & \(\infty\) & \(\infty\) & - \\
\hline & 1 & 357 & 163 & 1 & 389 & 179 & 0 \\
\hline & 2 & 558 & 204 & 1 & 363 & 169 & 1. \\
\hline \multirow[t]{2}{*}{4} & 1 & 580 & 223 & 0 & 644 & 239 & 0 \\
\hline & 2 & 576 & 213 & 1 & 564 & 207 & 0 \\
\hline 5 & 2 & 815 & 251 & 1 & 847 & 267 & 0 \\
\hline
\end{tabular}

TABLE III
Optimal Order-of.Turn, and Entry and Exit Times at Lock 2
\begin{tabular}{llcc}
\hline \multicolumn{2}{c}{ Veseal } & Entry Time & Exit Tlme \\
\hline Downbound \(j=1\) & 35 & 75 \\
Upbound & \(i=1\) & 79 & 119 \\
Downbound \(j=2\) & 123 & 163 \\
Upbound & \(i=2\) & 167 & 207 \\
Downbound \(j=3\) & 211 & 251 \\
\hline
\end{tabular}

\subsection*{6.2. Multiple Lock Scheduling}

In the previous section we calculated the bottleneck facility and the optimal single facility schedule. The multiple facility scheduling model schedules the adjacent facilities to minimize disruptions to the schedule at the bottleneck. As mentioned previously, this is achieved by calculating the due times at adjacent facilities for each vessel proceeding toward the bottleneck, and minimizing the tardiness, or total amount by which these due times are exceeded.

Suppose we have recursively constructed a schedule for facilities \(f=f_{1}, f_{1}+1, \ldots, f_{2}\). Now we relax the schedule constraints in (LP) at facilities \(k<f_{1}\) and \(k>f_{2}\) and evaluate the schedule. Select an adjacent facility \(f=f_{1}-1\) or \(f=f_{2}+1\) with control points \(2 f\) and \(2 f+1\). Then the due and ready times at the facility are
\[
\begin{aligned}
D_{u}(i) & =x_{i, 2 /+1} \\
R_{u}(i) & =x_{i, 24} \\
R_{d}(j) & =x_{l+j, 2+1} \\
D_{d}(j) & =x_{l+j, 2 f}
\end{aligned}
\]
for every \(i=1,2, \ldots, I\) and \(j=1,2, \ldots, J\).
The single lock dynamic programming algorithm of
the last section minimizes total tardiness if we define:
\[
\begin{aligned}
r_{q} & =\max \left(0, c_{q}-D_{d}(n-m)\right), & & q_{n}=0 ; \\
& =\max \left(0, c_{q}-D_{u}(m)\right), & & q_{n}=1 .
\end{aligned}
\]
\(f_{n}(m, q)\) is now the optimal total tardiness.
To demonstrate this algorithm, we continue with the two lock example. Given the schedule for lock 2 from the previous section the ready and due times at lock -1 are
\[
\begin{array}{ll}
R_{u}(1)=10 & D_{u}(1)=59 \\
R_{u}(2)=40 & D_{u}(2)=147 \\
R_{d}(1)=95 & D_{d}(1)=135 \\
R_{d}(2)=183 & D_{d}(2)=223 \\
R_{d}(3)=271 & D_{d}(3)=311 .
\end{array}
\]

Table IV tabulates the tardiness, completion time and optimal predecessor state for each state. The resulting schedule calls for processing the two upbound vessels first, followed by the three downbound vessels. This schedule has a tardiness of 9 minutes.
This schedule for the two locks has a sum of vessel transit times of 1094 minutes. While not guaranteed to be the optimal schedule for the canal, it is in this example. Note that the schedule evaluated in Section 5 had a value of 1229 minutes, while the lower bound generated using the optimal single lock scheduling model had a value of 1085 minutes.
In the next section we present an algorithm which searches for schedule improvements.

\subsection*{6.3. Solution Improvement}

We cannot guarantee that the multilock schedule will be optimal. However, we now describe a greedy algorithm which examines all potentially beneficial

TABLE IV
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\underset{\substack{\text { Singe } \\ n}}{ }
\]} & \multirow[t]{2}{*}{\[
\underset{m}{\text { Slate }}
\]} & \multicolumn{3}{|c|}{\(9=0\) Lock Down} & \multicolumn{3}{|c|}{\(9=1\) Lock Up} \\
\hline & & P(\(m, 0\)) & \(c_{\text {a }}(m, 0)\) & 9i-1 & \(\ln (m, 11\) & en(m, 1) & \(98+1\) \\
\hline \multirow[t]{2}{*}{1} & 0 & 0 & 135 & 0,1 & \(\infty\) & \(\infty\) & - \\
\hline & 1 & \(\infty\) & \(\infty\) & - & 0 & 50 & 0.1 \\
\hline \multirow[t]{3}{*}{2} & 0 & 0 & 223 & 0 & \(\infty\) & \(\infty\) & - \\
\hline & 1 & 0 & 135 & 1 & 120 & 179 & 0 \\
\hline & 2 & 成 & \(\infty\) & - & 0 & 100 & 1 \\
\hline \multirow[t]{3}{*}{3} & 0 & 0 & 311 & 0 & \(\infty\) & \(\infty\) & - \\
\hline & 1 & 0 & 223 & 0 & 208 & 267 & 0 \\
\hline & 2 & 9 & 144 & 1 & 32 & 179 & 0 \\
\hline \multirow[t]{2}{*}{4} & 1 & 0 & 311 & 0 & 296 & 355 & 0 \\
\hline & 2 & 9 & 223 & 0 & 120 & 267 & 0 \\
\hline 5 & 2 & 9 & 311 & 0 & 208 & 355 & 0 \\
\hline
\end{tabular}
switches in the order-of-turn at each facility. Candidate switches are identified using dual variable information from the schedule evaluation algorithm.

Suppose at facility \(f\) vessel \(i\) precedes vessel \(j\), where \(i\) and \(j\) represent vessels moving in opposite directions through the canal. The resulting schedule of constraints is
\[
x_{j, k} \geqslant x_{i, k}+h_{i j}^{k}
\]
where
\[
\begin{aligned}
k & =2 f, & & i \leqslant I, \\
& =2 f+1, & & i>I,
\end{aligned}
\]
and has a dual variable of, say, \(\lambda_{0}\). If we allow \(j\) to precede \(i, x_{j, h}\) will decrease by some amount \(s_{0}\), until the next most binding constraint is encountered. Then the maximum improvement attainable by advancing vessel \(j\) is \(\lambda_{0} s_{0}\).

As vessel \(j\) is advanced, vessel \(i\) is slowed. Let \(\lambda_{1}\) be the dual variable associated with the timing constraint for vessel \(i\) on the riext reach (upstream from facility \(f\) if \(i \leqslant I\), downstream if \(i>I\)). In addition, define \(T_{1}\) to be the loop time for facility \(f\), which is the time to cycle the facility with vessels \(i\) and \(j\). For example, if \(i \leqslant I\),
\[
T_{l}=t_{k, k+1}^{t}+t_{k+1, k}^{j}+h_{i j}^{k}+h_{i j}^{k+1} .
\]

Then if vessel \(i\) is delayed so it follows vessel \(j\), the minimum decrease in the objective function is
\[
\lambda_{1}\left(T_{f}-s_{0}\right)
\]

Combining the maximum improvement in objective if we switch the order-of-turn so vessel \(i\) follows vessel \(j\) through the facility is
\[
D=\left(\lambda_{0}-\lambda_{1}\right) s_{0}-\lambda_{1} T_{7} .
\]

If \(D>0\), the order-of-turn for the two vessels is
reversed and the new schedule is evaluated in the search for an improved schedule.
This algorithm requires at most \(\left[\min (I, J)^{*} F\right]\) evaluations to determine that no further improvement is possible. If we start with a poor schedule, then the number of improvements could be exponential and the algorithm is poor. However, the dynamicprogramming models generate an optimal or near optimal schedule, and in practice, very few improvements are found using this greedy algorithm.
\begin{tabular}{|c|c|c|}
\hline CP & Description \(>\) & Milegse. \\
\hline 1 & Call in Point 15 & 0 \\
\hline 2 & Lock 1 Downstream LA2 & 1.4. \\
\hline 3 & Lock 1 Upstream LA2 & 1.9 \\
\hline 4 & Lock 2 Downstream LaA2 & 3.0 \\
\hline 5 & Lock 2 Upstream LA2 & 3.4 \\
\hline 6 & Bridge 4 Downstream LA & 4.85 \\
\hline 7 & Bridge 4 Upstream LA & 4.95 \\
\hline 8 & Lock 3 Downstream LA2 & 5.3 \\
\hline 9 & Lock 3 Upstream LA2 & 5.8 \\
\hline 10 & Bridge 5 Downstream LA & 6.05 \\
\hline 11 & Bridge 5 Upstream LA & 6.15 \\
\hline 12 & Lock 4 Downstream LA2 & 6.6 \\
\hline 13 & Lock 6 Upstream LA2 & 7.1 \\
\hline 14 & Lock 7 Downstream LA2 & 7.3 \\
\hline 15 & Lock 7 Upstream LA2 . & 7.7 \\
\hline 16 & Guard Gate Cut Down. stream LA & 8.25 \\
\hline 17 & Guard Gate Cut Upstream LA & 8.35 \\
\hline 18 & Bridge 10 Downstream LA & 9.2 \\
\hline 19 & Bridge 12 Upstream LA & 12.6 \\
\hline 20 & Ramey's Bend & 20.0 \\
\hline 21 & Turning Basin No. 4 & 20.8 \\
\hline 22 & Leck 8 Downstream LA2 & 21.0 \\
\hline 23 & Lock 8 Upstream LA2 & 21.4 \\
\hline 24 & Bridge 20 Downstream LA & 21.9 \\
\hline 25 & Bridge 21 Upstream LA & 22.0 \\
\hline 26 & Call in Point 16 & 23.5 \\
\hline
\end{tabular}

\section*{184 / E. R. PETERSEN AND A. J. TAYLOR}

The other routines are all low-order polynomial time algorithms. The dynamic programming algorithm requires \(2 F(I+J)^{2}\) operations to generate a schedule for the canal. The schedule evaluation algorithm requires \(2(I+J) K\) operations.

\section*{7. WELLAND CANAL EXAMPLE}

In THis section we demonstrate the modet for the Welland Canal. The configuration of control points along the canal is given in Table V. There are 26 control points, numbered from \(k=1\) at Lake Ontario to \(k=26\) at Lake Erie. Although there are 8 locks along the canal, operational practice does not permit vessels to be simultaneously raised and lowered on each side of the twinned lock 5 . The flight locks 4, 5 and 6 can thus be considered to act like a single lock. Meets are not jermitted under bridges, so that bridges behave very much like locks with a short operational
cycle and minimum following headway. The canal between bridge 10 and mile 12.6 allows only one-way passage (unless the combined vessel beam is less than 30 m) as does the reach between Ramey's bend and Turning Basin No. 4. This gives 12 facilities to schedule, 6 representing locks and 6 restrictions along the canal.

Vessel transit times are calculated using models developed by Enstrom, Landry and Wong. \({ }^{[7]}\) For the reaches between locks, average transit times in each direction are used. (In using the model, the traffic superintendent can, at will, modify this average for a specific vessel by adjustment of a "reach transit pegging factor" to reflect experience with that vessel.) For locks, it is difficult to forecast-precisely the nature of the lock entry and exit. That is, if no vessel is in the lock, an entering vessel proceeds directly into the lock (a "fly" entry). With a vessel in the lock, the entering vessel either continues to move toward the

Fig. 6. 'Time-distance diagram for the Welland Canal.
lock (a "passing" entry), moors briefly before the leaving vessel departs (a "modified passing" entry), or remains moored until the leaving vessel is fully clear (a "moored" entry). Under advice from Seaway personnel, we adopt the following convention for lock entry and exit under normal weather conditions:
(a) Lock 1 upbound: moored entry döwnbound: modified passing entry
(b) Locks 2 and 3: modified passing entries, both directions
(c) Locks 4 and 8 : moored entries both directions.

To compute the lockage times, equations based on vessel cross-sectional area are used. These times may also be adjustable through a "lock pegging factor" by the traffic superintendent to reflect experience with any partićular vessel.
Traffic for a typical June day is used to demonstrate the scheduling procedure. Ten vessels are transiting the canal in each direction. Computation of a schedule required 4 seconds on an IBM 4341 computer. Figure 6 shows a typical time-distance diagram for a computed schedule.

\section*{ACKNOWLEDGMENTS}

The authors would like to thank the referees for their helpful suggestions. This research was supported
scheduling the welland canal ! 185 T
by the Natural Sciences and Engińeering Research Council of Canada. We also wish to acknowledge, technical assistance provided by the St.. Lawrence Seaway Authority.

\section*{REFERENCES}
1. The St. Lawrence Seaway Authority, The Seaway Handbook, annual.
2. The St. Lawrence Seaway Authority, Traffic Control Manual, annual.
3. W. Dawson, S. Lakshminarayan, A. Landry and J. B. McLeod, "Keeping Ahead of a \(\$ 2\) Billion Canal," Interfaces 11, 70-83 (1981).
4. W. Dawson, S. Lakshminarayan, A. Landry and I. B. McLeod, "The Acceptance of a Simulation Model for Planning Decisions at the St. Lawrence Seaway Authority, \({ }^{\prime \prime}\) INFOR 20, 16-27 (1982).
5. R. P. Browne and M. Liou, "Ship and Lock Model Studies as an Aid to Increasing Cargo Tonnage Through the Welland Canal," Mar. Technol 15, 381-394 (1978).
6. E. V. Denardo, Dynamic Programming, Prentice-Hall, Englewood Cliffs, N.J., 1982.
7. L. Enstrom, A. A. Landry and S. Wong, "Welland Canal Traffic Control Improvement Program, Standards Development: Format and Equations," Internal document, Corporate Planning Branch, St. Lawrence .Seaway (November), 1983.
(Received, June 1987; revision received Noyember 1987; accepted December 1987)

\title{
Optimal Pacing of Trains In Freight Railroads: \\ Model Formulation and Solution
}

\author{
David Kraay \\ Patrick T. Hanker \\ Bintong Chen \\ Decision Sciences Department \\ The Wharton School \\ University of Pennsylvania \\ Philadelphia, PA 19104-6366, U.S.A.
}

Decision Sciences Working Paper 88-03-03

September 1989 (revised)

\section*{Abstract}
\(\underset{~}{\ddagger}\)
Recent developments in location systems technology for railroads provide a train dispatcher with the capability to improve the operations of a rail line by pacing trains over his territory; i.e., to permit trains to travel at leas than maximum velocity so as to minimize fuel consumption while maintaining a given level of performance. Traditional railroad dispatching models assume that the velocities of the trains moving over a dispatcher's territory are fixed at their maximum value and thus, are incapable of dealing with a pacing situation.

This paper presents a mathematical programming model for the pacing problem and describes alternative solution procedures for this model. Both analytical and numerical evidence are presented which confirm the applicability of a heuristic solution procedure for this problem, as well as providing evidence that a pacing approach versus the traditional dispatching approach is an efficient and potentially cost-effective method for the control of train movements.

Key Words. 581-scheduling of rail traffic. 65.5-hruristic for large-scale, mixed integer convex programs, 835-control of freight railroad traffic.

Per 1449: June 1986
\[
5 / N 1 / 629417
\]

\section*{1 Introduction}

Most of the United States' and the world's rail network consists of single mainline track with passing sidings, although there does exist fair amount of double track and to a lesser degree, multiple mainline trackage. Over such a railroad which is dominated by non-multiple track lines, dispatchers play a vital role in planning and executing the meeting and passing of trains. Effective meet-pass planning is a critical factor in:
- fuel conservation,
- the mechanical reliability of locomotives, trackage and rolling stock,
- the reliability of the arrival times of trains and hence, of the connection of cars to outbound trains,
- customer satisfaction via the reliability of transit time.

In this paper, we present a model which addresses the problem of fuel conservation while maintaining reliability by satisfying time windows on the departure and arrival times of the trains. The major benefit of this technique is the ability to achieve fuel savings while the system performance is being improved through the "smoothing" the traffic over the lines and through the yards. The model developed herein is the first component of an overall modelling system to define system:wide schedules via a method which is similar in spirit to the work by Crainic et al. [7], [8], and then to pace the trains over each dispatchers' territory in accordance with these schedules. It is important to note that the entire model assumes that feasible time windows are chosen, which will require a real-time scheduling system as another component of the overall modelling system [17].

Traditional dispatching practices and models of the meet-pass planning function typically assume that trains will travel at maximum velocity when the dispatcher creates the meet-pass plan. The pacing problem takes a different approach to the problem of the meet-pass planning by allowing velocity to be determined endogeneously; that is, the pacing problem involves finding the meet-pass plan and velocity profile for each train which minimizes some cost measure for the system (e.g., delay, fuel consumption, etc.) while obeying the time windows of departure and arrival for each train. As stated in Eck et al. [9], "... all trains should be operated at the lowest speeds consistent with their required performance levels." Such an operating policy overcomes the hurry up and wait
philosophy embraced by many dispatchers in which trains are moved over the system as quickly as possible so that they become "someone else's problem". However, one cannot simply run trains at their lowest speeds compatible with the time windows ignoring the meet-pass aspects of the problem since the delays caused by the interactions between the trains would most likely force the schedules to be violated.

The ability to even consider a modelling system such as that described above has been made possible by recent technological advances in railroading. New methods of train tracking and control via satellite or ground-based location and communication systems such as the Advanced Railroad Electronics Systems (ARES) [37] being developed at the Burington Northern Railroad and Rockwell International provide a wealth of information to train controliers which heretofore has not been available. Given this wealth of data, how can it be used to increase the productivity of the railroad? This paper, through the consideration of the pacing problem and its solution, is 殔he first component of a control system which effectively and efficiently employs the data from ARES-like technology to operate a railroad [17]. In particular, this paper describes an attempt to develop a tool to aid the dispatchers in grappling with-the complex relationships and conflicts which are evolving on the rail line, and to suggest possible resolutions of these conflicts.

The model and solution heuristic presented in this paper were tested on 16 lanes of a major railroad and produced average fuel savings of \(5 \%\). In addition to the fuel savings is the idea that through the use of time windows, the focus is changed. The dispatcher is no longer trying to get trains across and out of his territory as fast as possible but instead, have the trains meet the time windows and run as efficiently as possible. The time windows need to be decided on a system-wide basis to help smooth traffic across the system. Finally, the pacing concept can increase on-time performance. In the empirical tests on the 16 test lanes, the standard deviation in train arrival times decreased by more than \(19 \%\).

The remainder of this paper is structured as follows. In the next section, the literature dealing with computer-assisted train dispatching will be critically reviewed. Section 3.0 presents the mathematical formulation of the pacing model and discusses its relationship to currently proposed pacing systems. Two solution procedures are described in Section 4.0 along with a performance analysis of one proposed hearistic; numerical results on hypothetical and real-world examples are presented in Section 5.0. The paper ends with a summary of the findings of this study along with
a list of future research directions.

\section*{2 Literature Review}

The modelling of train operations bas a history almost as old as that of operations research itself; Assad [2] provides a comprehensive review of the literature dealing with the mathematical modeling of rail operations. In the particular case of modelling single-line operations, two general approaches have been employed: Monte-Carlo simulation and mixed-integer or pure integer programming. The simulation models attempt to describe the operations of the rail line via a detailed representation of the line and of the random events which could possibly occur on this portion of track; simulation is an action-directed approach as defined in [5]. The. main purpose of the simulation approach is to ascertain the likely outcome of a particular operating policy on the performance of the rail line. One of the first such models is described by Frank [13], and the paper by Petersen and Taylor [30] provides a general modelling framework for use in simulating rail operations. As stated in the Introduction, the purpose of the pacing model is to define a good operating policy for the dispatcher (to be a goal-directed model [5]). In such a situation, pure simulation models are inappropriate since they treat the operating policy as fixed and not as a decision variable; however, these models are essential in the calibration of a goal-directed model.

In terms of previous goal-directed (optimiziation) models for rail line operations, the early works by Brettman [6] and by White and Westerman [38] are integer programming models which seek an optimal operating policy while treating the velocity of each train as fixed. Kraft [22] presents a simulation-based optimization system for the design of operating policies which is capable of incorporating many real-world concerns, although this approach appears to be inapplicable to real-time scheduling due to its computational complexity. Szpigel [35] also presents an integer programming model for this problem and is the first to recognize in print that the planning of meets and passes on a rail line with velocity treated as fixed is a generalization of some well-known job-shop scheduling problems.

The most successful, published optimization model for the planning of meets and passes is the system developed at the Norfolk-Southern Railroad [34]. The Norfolk-Southern computeraided dispatching system has been implemented on a portion of the railroad and estimates place its generated annual savings for the company at \(\$ 3\) million. This model is a simple partial enumeration
scheme for generating an optimal meet-pass schedule for a single-track rail line and evidence suggests it has been very effective in practice. For a more comprehensive review of the literature dealing with computer-assisted dispatching, the reader is referred to the recent review article by Petersen et al. [31].

All of the above simulation and optimization models assume that trains will traverse each track segment at maximum velocity whenever physically possible and thus, no consideration has been given to treating velocity as a decision variable (pacing). With the advent of the type of location systems described in the Introduction, such models must either be extended to include velocity as a variable, or totally new modelling approaches must be generated. One simple extension of the Norfolk-Southern approach is to treat velocity as fixed in order to derive a meet-pass plan (deciding where trains will meet), and then find a velocity profile for each train which minimizes some measure of cost (deciding when the trains will meet) [14]. While this sequential approach is intuitively appealing and simple to implement, Section 3.3 illustrates the conceptual and practical problems which arise with its use.

Thus, no model exists which can truly becalled a pacing model in which the pattern of meets and passes (the where question) and the velocity profile of each train (the when question) are treated simultaneously. In the next section, such a model will be defined.

\section*{3 The Pacing Problem}

In this section the basic pacing model will be defined. We shall start with the simplest track configuration (single track with passing sidings) which will be generalized in Section 4.2. In Section 3.1 the problem will be defined and its relationship to other dispatching models will be considered in Section 3.2. Finally, Section 3.3 contains an analysis of the pacing model and the sequential approach for this problem which was outlined at the end of Section 2.

\subsection*{3.1 Problem Definition and Formulation}

We begin with the case of single track with passing sidings due to the facts that the majority of rail lines are of this type and that these portions of the railroad are where the majority of the difficult dispatching situations arise. However, this assumption will be relaxed in Section 4.2. The following data is assumed to be known by the computer-aided dispatching system:
time windows for the departure and arrival of each train which appears on the dispatcher's territory during the planning horizon
- speed limits for each train on each segment of track which comprises the dispatcher's territory
- objective functions for each train which depend on velocity and arrival times; components of this function might include fuel consumption, deviations from the stated arrival window (delay), etc.
seripriorities of each train in the form of a weight which is assigned to the objective function for that train.

Given this data, the pacing problem is to find the velocity profile (speed over each track segment) for each train and the meet-pass plan for the line which simultaneously minimizes the weighted sum of the objective functions for all trains. Thus, the pacing problem differs from the sequential methodology described at the end of Section 2 by simultaneously solving for the velocities and the meet-pass plan. The fact that the sequential solution of this problem may lead to a poor operating policy in terms of the objective function is illustrated in Section 3.3.

The basic assumptions which underlie the single-track version of the pacing model are:
A-1 The dispatching territory consists of a single track with passing sidings; double track segments are treated as a single track with a long siding.

A-2 Safety concerns are handled via a fixed safety margin in terms of the minimum permissible time between trains; signal blocks are not explicitly considered. This assumption is not perfectly applicable to the current operating environment on railroads (although it is a reasonable approximation), but it will be applicable when an ARES-like system is implemented throughout a railroad due to the fact that the satellite information will permit the implementation of a safety rule which is based on minimum headway.

A-3 At either end of the dispatching territory. infinite track capacity exists.

A-4 On any segment of track with a siding. at most two trains can be present at any point in time.
A. 5 At most one train can occupy any single track segment at any point in time.

The last three assumptions are the most disturbing in terms of their realism. However, assumption A-3 can be removed through a judicious choice of the time windows for each train. For example, the time windows can be defined so that the number of trains which arrive at an endpoint (yard) does not exceed the capacity of that yard. Assumption A-4 can also be relaxed, although the complexity of the mathematicaljprogram will greatly increase (this assumption will be dropped in Section 4.2). Furthermore, violations of this assumption can be handled by the careful definition of the track segments which comprise the dispatching territory. Finally, Assumption A-5 can also be handled through the careful definition of the track segments and will be relaxed in Section 4.2.

Given the above assumptions, let us examine the general form of the pacing model; a detailed description of the model is given in Appendix A. Define:
\(Z \equiv\) the array of time variables which determines when each train crosses each of the \(\boldsymbol{n}\) segments comprising the lane, each row of \(Z\) represents one train's times.. across the lane,
\(D \equiv\) a set of logical variables defining which trains enter which sidings,
\(A, B, C \equiv\) a set of logical variables defining at which sidings the trains meet and overtake.
The pacing model has the following constraints:
\[
\begin{gather*}
l b_{1} \leq Z^{1} \leq u b_{1} \tag{1}\\
l b_{n} \leq Z^{n} \leq u b_{n} \tag{2}\\
\ell(D) \leq E \cdot Z \leq u(D) \tag{3}\\
F \cdot Z \geq b(A, B, C) \tag{4}
\end{gather*}
\]
where \(l b_{1}, l b_{n}, u b_{1}, u b_{n}\) represent the lower and upper bounds at the initial (1) and terminal (\(n\)) reporting stations.

Therefore, the pacing model is defined by the following nonlinear, mixed integer program:
\[
\begin{align*}
& \operatorname{minimize} \quad f(Z)=\sum_{i \in I} \omega_{i} f_{i}\left(Z_{i}\right) \\
& Z, A, B, C, D \tag{5}\\
& \text { subfect to: }
\end{align*}
\]

Constraints (1)-(2) are the departure and arrival time windows. Constraints (3) are the speed limit or travel time constraints for these trains; these limits are a function of \(D\) since sidings may have different speed limits than the main track. The final constraints (4) ensure that a feasible meet-pass plan is followed, with the logical variables \(A, B\), and \(C\) determining which meet-pass plan is chosen. The complete form and description of these constraints is contained is Appendix A. The oniy additional assumption which is required for most solution techniques to converge is that \(f(Z)\). be a convex function. In Appendix B, a description of one possible objective function involving fuel consumption and a linear term induced by the arrival time is defined which meets the convexity criterion.

\subsection*{3.2 Relationship to Alternative Dispatc̣hing Models}

The pacing model described above is capable of simultaneously solving for thé location and the timing of each meet or overtake over the dispatcher's territory during the stated planning period. Traditional dispatching models such as the Norfolk-Southern computer-aided dispatching system treat velocity as fixed in (5) and simply soive for the integer components which describe where various meets will occur. Thus, the pacing model has in some sense generalized the traditional dispatching models to include velocity as a decision variable.

However, the pacing model is more than a simple generalization of the traditional approach due to the introduction and explicit use of time window constraints. The traditional models typically attempt to minimize the weighted delay of the trains and thus, time window constraints are never specified. The pacing model could also remove these constraints and add them to the objective function, but they are kept in the mathematical program for an important reason. If we consider the fact that we will be solving this problem in real-time for each dispatching territory, it would be very difficult to come up with the cost for a train being late. If the time windows are considered a hard constraint chosen by a real-time scheduling model [17], then each of the dispatching problems can be solved independently.

A simple extension of the traditional dispatching model to include pacing is described at the end of Section 2:
- Assume velocities are fixed and solve (5) for the meet-pass plan (for the variables \(A, B, C, D\)). The solution to this step includes the location and time at which each meet or overtake will occur.
- Fixing the location and time of each meet, pace the train which arrives early at each meet point so that it arrives at the meet point just as the train it is to meet also arrives. That is, fix \(A, B, C, D\) and the times corresponding to the "critical train" (the train which arrives last) at each meet point, and solve the resulting nonlinear programming problem. Since the location and time of each meet is specified, this nonlinear program can be solved by simply reducing the speed of the "slack train" (the train which arrives first) at each meet point; i.e., the nonlinear program is trivial to solve.

While this sequential algorithm is simple to implement relative to solving (5) exactly and seems relatively intuitive, the next section illustrates the problems inherent in its usage.

\subsection*{3.3 Benefits of Simultaneity in Meet-Pass Planning}

In order to illustrate the possible benefits of solving the pacing model (5) rather than employing the sequential algorithm described in the previous section, consider the simple example with five track segments depicted in Figure 1 and five trains: the first three trains are eastbound and the remainder move westward. The objective function is simply fuel consumption which we simplify to be a quadratic function of velocity with no constant term:
\[
\psi_{p}^{i}(Z)=\left[\beta_{p}^{i} v_{p}^{i}+\gamma_{p}^{i}\left(v_{p}^{i}\right)^{2}\right] d_{p}
\]

Table 3 in Appendix \(B\) lists the data for this example.
The first point which arises in the analysis of this example is that with the objective function consisting solely of fuel consumption, all feasible meet-pass plans with velocity fixed are optimal due to the fact that the objective is solely a function of velocity. With the velocities set equal to their maximum, the objective function value for this example is equal to 10,840 . The sequential algorithm described previously would choose any feasible meet-pass plan in this case and thus, the
algorithm will not greatly aid the dispatcher in discerning between good and bad meet-pass plans. In reality, some weight on the arrival times will make the objective function vary with the chosen meet-pass plan, but this still does not resolve the problem that fuel consumption is invariant.

To compute the solution obtained by the sequential approach, we chose the meet-pass plan depicted by the solid lines in. Figure 2 and paced the trains to achieve an optimal solution of 10,376-a \(4 \%\) savings from runming the trains at maximum velocity. We then solved the complete pacing model (5) by the approach described in. Section 4.2 and achieved an optimal solution of 5,947-a \(45 \%\) savings. As shown by the dashed lines in Figure 2, the complete pacing model is able to choose a slightly better meet-pass pattern (note the difference in the meet between train 1 and 4) and is able to "stretch" the pattern in order to conserve fuel.

Therefore, this small example illustrates two important points. First, one must be careful in employing a simple sequential algorithm such as that described in the previous section since the fuel consumption component of the objective will be invariant with respect to the chosen meet-pass pattern. Second, the simultaneity of the meet-pass problem and the pacing of trains which is embodied in (5) can theoretically yield significant improvements over the sequential approach. These savings are achieved in the pacing model by taking a "global" versus "local" view in determining the meet-pass plan: the pacing model considers more information than the sequential approach when determining the meet-pass pattern. However, the pacing model is significantly more complicated in terms of its solution; the next section describes various approaches for solving the problem in realistic, large-scale situations.

\section*{4 Solution Procedures}

The pacing model described in the previous section presents a challenge in terms of the development of solution algorithms due to its inherent noniinearity and enormous number of integer variables. Given the complexity of the model, one must resort to some type of heuristic approach. However, the need for an exact procedure was not completely ignored due to the facts that such a procedure provides a benchmark from which to judge the heuristics and a basis for the development of algorithms for parallel/supercomputing environments.

In what follows, an exact cutting plane-like approach will be presented and in Section 4.2, a method based on a set generation approach is detailed. Due to the complexity of the above
two methods, a heuristic is proposed for this nonlinear, mixed integer program and a limited performance analysis is presented in order to provide some insight into its theoretical behavior.

\subsection*{4.1 An Implicit Enumepation Approach}

We will discuss the partial enumeration/cutting-plane approach for the pacing model using the formulation given by (5), the correspondence to the full description in Appendix \(A\) is direct. The basic idea of the partial enumeration scheme is to first assume that no train interaction occurs and that all trains travel over the mainline track (\(A, B, C, D \equiv 0\)). Under these assumptions, an initial solution which is feasible with respect to the time window and velocity constraints is obtained by linearizing \(f(z)\) about some point \(z^{0}\) and solving the linear program:
\[
\begin{array}{cl}
\text { minimize } & \nabla_{z} f\left(z^{0}\right)^{T} x+\text { constant } \tag{6}\\
\text { subject to: } & \text { Constraints }(1)-(3) .
\end{array}
\]

Since there exist no train interactions, problem (6) decomposes by train into simple linear programs which can be solved with a sorting routine and a trivial linesearch procedure [1]. Thus, the initial solution and lower bound for the optimal value of the pacing model (this is a lower bound since \(f(z)\) is convex) is very easy to obtain.

Once (6) is solved, not all meets and overtakes will occur at the sidings or obey the logic encoded into the constraints (3),(4). At this point, one can invoke a branch-and-bound scheme which is similar in spirit to the Norfolk-Southern algorithm [34]. Using the solution from (6), one resolves infeasible meets and overtakes by searching over the finite set of possible points (sidings) at which these meets can be accomplished. This resolution is achieved by iteratively adding the appropriate constraints (cuts) from (3), (4); i.e., by setting the variables \((A, B, C, D)\) in such a way so as to force a meet at a particular siding. Thus, we are not employing a traditional branch-and-bound scheme based on linear programming relaxation due to the enormous size of the resulting linear program but rather, use cutting planes to generate the bounds at each node of the enumeration tree. The linear program which results from the addition of the cuts is:.
\[
\begin{align*}
\text { minimize } & \nabla_{z, y} f\left(z^{0}\right)^{T} I+\text { constant } \\
\text { subject to: } & \text { Constraints (1)-(3) } \tag{7}\\
& \text { A subset of the constraints (3), (4). }
\end{align*}
\]

Again, the convexity of \(f(z)\) ensures that (7) provides a lower bound for a particular node of the enumeration tree; see \{24] for a general discussion of this approach to solving mixed integer mathematical programs.

Obviously, each step of the enumeration tree involves the addition of a set of cuts or constraints to the linear program (6). Thus, the dual simplex method [24], [23] can be used to quickly update and recompute the solution to this linear program when the additional constraints (3), (4) are added.

Once one reaches a node in the enumeration tree which yields a feasible meet-pass plan whose lower bound is less than the current candidate for the optimal solution, the nonlinear program (5) must be solved with fixed values of the integer variables (\(A, B, C, D\)) in order to compute the optimal value for this node. This nonlinear program can be solved with a general-purpose nonlinear programming algorithm such as MINOS [27], or by a specialized algorithm such as simplicial. decomposition [36], [18], [26]. In particular, the restricted simplicial decomposition ailgoaithm by Hearn et al. [18] may prove to be very effective due to the structure of the polyhedral feasible set in (5).
? In summary, the implicit enumeration algorithm described above is very similar to the NorfolkSouthern computer-aided dispatching system [34] in terms of its branching logici however, a linear or nonlinear program must be solved at each node of the enumeration tree for the pacing model due to the fact that velocity is variable rather than fixed at a prespecified value. Given the success of the Norfolk-Southern system, there is some hope that this extension may be compritationally feasible; Section 5 will test this hypothesis.

\subsection*{4.2 A Set Generation Approach}

As stated above, the implicit enumeration algorithm is appealing in that it is based on well-known mathematical programming theory and, given the Norfolk-Southern experience, is potentially efficient. An alternative approach for solving the pacing model is to generate a list of feasible meet-pass plans (i.e., setting the values of \((A, B, C, D)\)) and then evaluate their optimal values through the solution of the nonlinear program (5). At first giance, this approach seems inferior to the implicit enumeration scheme since a very large number of feasible plans may be generated. However, this method has four major advantages over the implicit enumeration scheme:
1. Much more complex logic in terms of the feasible trains movements cari be incorporated into a feasible meet-pass plan generator than can be practically reflected in the constraints of a formal mathematical programming model. Thus, various side-constraints such as dispatcher's work rules, various crew considerations, etc. can be easily incorporated into the set generation logic [19]. Previous experience in the vehicle routing and scheduling area [12], [1i] with a set generation approach provides evidence of the potential flexibility and power which this approach can yield in practice.
2. The set generation component of the dispatching system can be tied together with an expert system or heuristic to filter the meet-pass plans. The heuristic or expert system can be used to "weed out" those plans which either violate certain conventions, or are clearly nonoptimal given the dispatcher's expertise.
3. The set generation approach will not provide a single solution but rather, will provige a rankordered list of meet-pass plans which the dispatcher can then consider for implementation. The provision of a rank-ordered list is a major factor in having the system accepted and used by the dispatchers in day-to-day operations.
4. This approach readily lends itself to a parallel computer architecture due to the decomposibility of the problem by meet-pass plan.

The major disadvantage of the set generation approach is the potential for high computational times. Theoretically, the implicit enumeration scheme is a special case of the set generation approach since it implicitly considers all feasible meet-pass plans. However, the advantages of the former method over set generation is unclear due to the facts that (a) each must solve a series of nonlinear programs, (b) the set generation logic can be efficiently encoded in integer arithmetic whereas the enumeration scheme must work with slower floating point operations, and (c) the evidence from vehicle routing is that this approach can work well. In Section 5, a numerical comparison of the two approaches will be presented in order to address this issue of computational complexity.

The first step in the set generation algorithm is to generate a list of feasible meet-pass plans: Many different methods can be used for this generation step: artificial intelligence, combinatorial optimization, simulation, etc. The approach taken in this paper is to use the logic encoded in the Schedule Analysis (SCAN) system described in Jovanovic and Harker [19]. As described in [19],
the purpose of the SCAN system is to analyze whether or not a given set of schedules is feasible, where feasibility is defined as the ability to find a meet-pass plan which can be used to operate the given schedules. Thus, given a set of schedules (time window constraints), SCAN will generate all feasible meet-pass plans or will conclude that no such plans exist. The injerence engine in SCAN which generates these plans is an implicit enumeration scheme very similar to the Norfolk-Southern system in that it treats velocity as fixed at its maximum value in order to generate feasible (not necessarily optimal) plans, and is capable of handling double as well as single track segments, can deal explicitly with the physical capabilities of trains with respect to their maximum attainable velocity through the use of train performance simulations, and can easily incorporate complex dispatching logic and various dispatching rules/policies which cannot be violated in the meet-pass plan. Thus, assumptions A-4 and A-5 can be dropped in the set generation context due to" the . ability of a SCAN-like algorithms to deal with these situations.

The obvious problem with a SCAN-like set generation approach is that a large number of feasible plans could be generated. The probability of this occurring is a function of the "tightness" or "looseness" of the time window constraints; the more time each train is given in the schedules to traverse a segment of track relative to its minimum travel time, the greater the number of feasible plans. The evidence from the schedules of a major railroad [19] and from Section 5 , however, is that the time windows are typically tight and thus, an exponential number of feasible meet-pass plans are unlikely to be generated in practice.

Once the set of meet-pass plans are generated, one muşt evaluate the optimal velocities for each plan. Thus, one must solve the nonlinear program (5) with the integer variables held fixed. The same algorithms as described in the previous section can be employed for the solution of these nonlinear programs. However, note that in this case, each nonlinear program is independent of the others and thus, they can be solved in parallel. Therefore, the set generation approach is ideally suited for a parallel computing environment. The only linkage between the nonlinear programs will be in the "warm-starting" of the nonlinear programming algorithm with the previous solutions in order to reduce the amount of time necessary to solve each optimization problem.

After the solutions to the nonlinear programs are generated, these solutions are rank-ordered and presented to the dispatcher for selection. Obviously, the dispatcher may not always select the optimal meet-pass plan due to mitigating circumstances. This approach will provide the dispatcher
with the capability to scan the top candidates in order to choose the plan to be implemented; this capability to generate such a rank-ordered list is more difficult with the implicit enumeration scheme.

In order to reduce the number of nonlinear programs which need to be solved and thus, the amount of computational effort? various heuristic schemes can be devised which remove meet-pass plans that appear to be nonoptimal; in the next section, one such heuristic is proposed and analyzed.

\subsection*{4.3 A. Heuristic Rounding Approach}

As discussed above, one needs some heuristic procedures to reduce the computational burden of solving the pacing model (remember, this is a real-time model which must be solved, for example, every fifteen minutes or less). In fact, the heuristic may perform so well in practice that it alone could be used to solve the model. In this section, a "rounding" procedure is defined and a limited performance analysis is presented in order to provide some insight into the potential periormance of this procedure.

\subsection*{4.3.1 Definition}

Let us assume that one has used a SCAN-like procedure to generate a (potentially large) set of feasible meet-pass plans. Cleariy, one does not wish to solve a nonlinear program for each such plan but rather, would like to first filter the plans. A simple rounding procedure may work very well in this context. First, ignore the fact that trains interact with each other over the line and solve for the optimal velocity profile for each train in isolation. That is, solve the following nonlinear prograins for each train \(i\) (where \(D \equiv 0\)):
```

minimize f}\mp@subsup{f}{i}{e}(\mp@subsup{x}{}{i}
x
subject to: Constraints (1), (2), (3).

```

The solution of the above nonlinear programs (which are relatively simple to compute given the generalized network structure of their respective constraint sets) provides an optimal "unconstrained" velocity profile for each train. In fact, this solution will provide a lower bound on (5) due to the fact that this solution is the best each train can periorm independently. However, when these profies are plotted on a time-distance (stringline in railroad parlance) diagram such as Figure 2, they may
intersect at infeasible points; e.g., they may intersect in the middle of a single track segment, at a siding at which each train cannot physically fit, etc. If no such conflicts exist, then this solution must be optimal since each train was paced optimally. Otherwise, this unconstrained solution will provide the basis for filtering the easible meet-pass plans. The intuition is that those feasible plans which are closest in some sense to the unconstrained solution have a greater probability of being feasible than those which are further away. Thus, if one "rounded" the unconstrained solution to the closest feasible plan, the resulting solution should be nearly optimal.

After solving the above nonlinear programs for each train, one then locates all the intersections of the train profiles on the time-distance diagram; i.e., all of the points where the trains meet or overtake any other trains. As discussed above, not all of these points will be located at a valid meet-pass location. One then generates a set of feasible meet-pass plans by the type of SCAN-ike. algorithm described above. Note that one can significantly reduce the amount of comptrational work (the number of plans generated) by first generating those plans which are closest to the unconstrained solution; i.e., begin the set generation algorithm at the point closest to the unconstrained optimum. This reduction in the plan generation phase can be accomplished by altering the rules used in the branch-and-bound algorithms which are used in this step. [20]. Once the plans have been generated, compute the distances of each meet-pass point in a feasible plan to the meet-pass,locations in the unconstrained solution. Note that one can use any measure of closeness, but that it is only the physical distance coordinate that matters since the time dimension will be altered through the solution of the nonlinear program (5) after the appropriate cuts arising from the definition of a specific meet-pass plan have been added. Thas, one computes a metric for the "goodness" of a given meet-pass plan by computing the distance of each meet point in the plan with the corresponding point in the unconstrained solution. Once the distance metrics for each feasible meet-pass plan have been generated, the plans can be rank-ordered in ascending order of this metric and the first \(N\) plans can be solved to completion by computing the solution to the nonlinear program (5), where \(N\) is a prespecified upper limit on the number of nonlinear programs which can be solved in the time available (remember that the pacing model is a real-time control model which implies that one must impose an upper limit on the time needed to obtain a good solution). While this heuristic is not perfect, it should be fairly good at "weeding out" the clearly nonoptimal meet-pass plans and may often uncover the optimal plan as having the lowest value of
the distance metric; the next-section and Section 5 provide, respectively, theoretical and empirical evidence to support this claim.

In order to illustrate the workings of the heuristic procedure, consider the five train example given in Section 3.3 and depictedin Figures 1 and 2. In the first step, we compute the unconstrained solution for each train which yields an objective function value of 4,792 which is \(19.4 \%\) below the optimal value of 5,947 reported in Section 3.3; Figure 3 depicts this solution. As illustrated in Figure 3, several train pairs do not meet at valid points (train pairs 1-4, 1-2, 2-4, 3-4). Thus, this solution is not feasible. The first attempt one could make to resolve these conficts is to round the infeasible meet-pass points to the closest point at which they could occur (either the sidings or the ends of this track segment). Thus, we would round the conflict between trains 1 and 4 to the siding between mileposts 70 and 80 along with the conflict between trains 2 and 4 , the conflict between trains 3 and 4 to milepost 0 , and the confict between trains 1 and 2 to the siding between mileposts 130 and 140. Consider, however, the situation at the siding between mileposts 130 - 140 after such rounding. At this point train 1 is scheduled to meet train 5, train 2 is scheduled to meet train 5 , and train 2 is scheduled to overtake train 1 . Given that the siding capacity allows only two trains to meet or overtake at a time in this example, this situation is infeasible. Thus, the simple rounding procedure will not yield a feasible solution. The problem stems from the fact that the track capacity in this example and the tightness of the schedules will simply not permit train 2 to overtake train 1; there exists no feasible meet-pass plan which permits this overtake to occur. Except for this overtake, the location of the train meets uncovered by the rounding process is identical to the optimal solution represented in Figure 2. By removing the possibility of the overtake from the schedule, the algorithm described above will in fact compute the optimal solution given in Figure 2. Thus, while the rounding procedure may not always find a feasible solution, it should provide a good measure for ranking the set of feasible meet-pass plans. Theoretical evidence is given in the next section which tends to support this claim along with the numerical results of Section 5 .

\subsection*{4.3.2 Performance Analysis of the Heuristic}

In the working paper version of the current study [21]; a detailed analysis of the performance of the rounding heuristic is presented in order to generate some theoretical understanding of how well one can expect this method to work in practice. This analysis assumed (a) no overtaking of trains is
permitted, (b) there exist an equal number of eastbound and westbound trains, (c) the departure and arrival times of these trains are uniformly distributed ovef the planning horizon, (d) the track segment consists of a single track with equally spaced sidings, and (e) the objective is to minimize fuel consumption.

When only one siding is present, the analysis in [21] showed that the rounding heuristic is guaranteed to lead to an optimal solution at least \(75 \%\) of the time. In the case of muitiple sidings, the analysis is more complex. However, this analysis establishes that the heuristic will be optimal more than \(50 \%\) or the time, with the actual percentage being much higher in special cases. Furthermore, as the number of sidings goes to infinity, the probability that the rounding heuristic is optimal goes to one, thus confirming the intuition that for double track lines (an infinite number of sidings), the rounding heuristic will always be optimal.

This theoretical investigation provides evidence that the intuition underiying the rounding heuristic is sound in the sense that it will most likely lead to an optimal or near optimal solution; the numerical investigations in the next section confirm this finding.

\section*{5 Numerical Examples}

In order to empirically test the relative efficiency of the algorithms presented in the previous section for the pacing model as well as to ascertain the potential applicability of the pacing model in realistic situations, the results of a series of numerical tests are reported in this section. The next subsection describes the results of running the implicit enumeration and set generation algorithms on a series of hypothetical examples, and Section 5.2 contains the resuits of applying this model to several portions of a major railroad's operations in order to test the real-world applicability of the model and algorithms.

\subsection*{5.1 Hypothetical Examples}

In this section, three hypothetical examples are analyzed in order to compare the implicit enumeration versus set generation algorithms; Appendix C contains a description of the data for these three examples. The examples use the same track configuration and number of trains but differ in the scheduled times for each train. The three cases-tight, medium, loose-reflect the "tightness" of the schedules with respect to the amount of time a train is given to traverse the track segment
relative to the minimum time in which it can do so given the physical characteristics of the track and train. Intuitively, the "looser" the schedule, the easier it should be to solve the problem since there exists greater flexibility in the schedule set.

The implicit enumeration algorithm was implemented with the XMP software system [23] for the dual simplex pivoting operations and MINOS 5.0 [27] for the solution of the nonlinear programs. The set generation algorithm employs the SCAN generator described above and MINOS 5.0 for the solution of the nonlinear programs. All work was performed on an Apollo DN3000 workstation, which is approximately 100 times slower than an IBM 3090 using only scalar arithmetic [39].

Note that the essential difference in the two solution approaches lies in the generation of the feasible meet-pass plans. As illustrated in Table 1, the SCAN algorithm generates all of the meetpass plans in less than one-tenth of the time for the implicit enumeration algorithm to generate the first such plan. Thus, as in the case of vehicle routing and scheduling, the set generation approach appears to be computationally superior to branch-and-bound schemes. Also note that due to the small differences in the ratio of the maximum to minimum objective function values, theimplicit enumeration scheme must solve essentially the same number of nonlinear programs as does the set generation method. Thus, the set generation method appears to be very effective relative to the implicit enumeration scheme when one considers that the set generation approach also provides the user with the advantages listed in the previous section.

In order to test the rounding heuristic described at the end of Section 4, the solution of all of the nonlinear programs associated with the meet-pass plans for the tight and medium cases were computed in order to yield a rank-ordered list of the optimal objective values for each plan. The heuristic was then run using the sum of the squares of the differences in the distance dimension in the stringline diagram between the unconstrained and feasible operating policies to rank the meet-pass plans. Table 1 presents the results of calculating the correlation of the values of the sum of squared differences obtained by the heuristic and the optimal values of each plan which were obtained by solving the nonlinear program (5) with the fixed values of the integer variables, \(A, B, C, D\). As one can see, the heuristic provides a fairly high correlation with the true ranking. In particular; it appears to be very good at distinguishing the top plans as shown by the last line in Table 1. This result is somewhat striking given the low value of the ratio of the maximum to minimum objective values for these problems; the heuristic appears to be a very promising approach
for quickly locating the optimal meet-pass plan, an empirical result which supports the theoretical discussion in the previous section.
\begin{tabular}{|c|c|c|c|}
\hline & & Problem Case & \\
\hline & Tight & Medium & Loose \\
\hline \begin{tabular}{l}
Implicit Enumeration Algorithm \\
Time to calculate first meet-pass plan \\
(CPU seconds on an Apollo DN3000)
\end{tabular} & 58 & 71 & 55 \\
\hline \begin{tabular}{l}
Set Generation Algorithm \\
Time to calculate all meet-pass plans \\
(CPU seconds on an Apollo DN3000) \\
Number of plans generated \\
Average time per nonlinear program \\
(CPU seconds on an Apollo DN3000) \\
Optimal objective function value \\
Ratio of the max. to min. solution
\end{tabular} & \[
\begin{gathered}
6 \\
56 \\
\ldots \\
\cdots \\
\hline 1.37 \\
1.12
\end{gathered}
\] & \begin{tabular}{c}
5 \\
24 \\
. \\
64 \\
\hline 1.23 \\
1.18
\end{tabular} & \begin{tabular}{cc}
3 \\
270 \\
\\
49 \\
-1.09 \\
1.28 \\
\hline
\end{tabular} \\
\hline \begin{tabular}{l}
Heuristic Rounding Procedure \\
Correlation between heuristic and actual rankings (\(R^{2}\)) \\
Rank order from heuristic
\end{tabular} & \[
\begin{gathered}
0.865 \\
1,2,3,6,5, \ldots
\end{gathered}
\] & \[
\begin{gathered}
0.832 \\
1,2,4,5,3, \ldots
\end{gathered}
\] & not applicable not applicable \\
\hline
\end{tabular}

\subsection*{5.2 Examples from a Major Railroad}

In order to provide a further test of the pacing algorithms, a realistically sized and heavily congested section of a major railroad was analyzed. This lane is 102 miles in length and contains 13 passing sidings. For this analysis, 22 trains were used which collectively have 34 meet-pass conflicts. Thus, this example provides a realistic setting for a computer-aided dispatching system.

Table 2 contains a listing of the results. The first observation is that the implicit enumeration algorithm was unable to generate a single feasible meet-pass plan in 360 times the computational
effort for generating all the meet-pass plans using the SCAN algorithm (note that this example was not solved to completion by the implicit enumeration algorithm due to excessive CPU time). Thus, the implicit enumeration scheme appears to be practically infeasible relative to set generation.

In order to obtain some insight into the performance of the heuristic and the computational feasibility of solving the nonlinear programs resulting from the set generation method, the rounding heuristic was used to rank-order the pians and the top ten plans plus a random sample of the remaining plans were solved to completion. As shown in Table 2, the heuristic does very well at finding a meet-pass plan which is close to the minimum found in the sampie of 33 . Furthermore, the average time of 6.36 minutes on the Apollo workstation transiates into approximately 4 seconds on an IBM 3090 [39]. Thus, this model can be used in near real-time to create a usable and efficient computer-aided dispatching system.

In addition to the above example, several traffic lanes from a major U.S. railroad were analyzed as a part of a study on the benefits which one can expect to achieve from the implementation of computer-aided dispatching. The results of this study suggest that one can expect up to a \(5 \%\) decrease in fuel consumption and up to a \(17 \%\) decrease in train running times using the pacing model. Transiated into dollars using the cost of fuel, the cost of the equipment, and the increased market share due to faster delivery of cars, these results suggest that the pacing model can yield significant improvements in railroad operations.

\subsection*{5.3 Summary of Results}

To summarize the numerical experiments, one can conclude:
- the set generation method with the heuristic filtering procedure appears to be the most promising algorithm for the solution of the pacing model. 'The implicit enumeration algorithm may be improved through the use of more sophisticated logic and solution procedures for the linear/nonlinear programming subproblems. but this research is unlikely to make this approach competitive with set generation. In addition, the set generation approach contains all of the advantages listed in Section 4.2 and thus, appears to be the best way to approach solving the pacing model.
- the CPU time necessary for the computation of a solution to the model, as illustrated in the realistic example, is not excessive. In fact. the solution of the unconstrained problems plus

Table 2: Results of a Real Dispatching Example
\begin{tabular}{||l|l||}
\hline Implicit Enumeration Algorithm & \\
Time to calculate first meet-pass plan & \\
(CPU minutes on an Apollo DN3000) & \(\geq 90\) \\
\hline Set Generation Algorithm & \\
Time to calculate all meet-pass pians & \(\cdots\) \\
(CPU minutes on an Apollo DN3000) & 0.25 \\
Number of plans generated: & 235 \\
Number of plans solved to completion & 33 \\
Average time per nonlinear program & \\
(CPU minutes on an Apollo DN3000) & 6.36 \\
Optimal objective function value & \(8.053297 \times 10^{4}\) \\
\hline Heuristic Rounding Procedure & \\
\hline Optimal solution found by heuristic & \(8.059578 \times 10^{4}\) \\
Percent optimality & \(99.92201 \%\) \\
\hline
\end{tabular}
the top ten meet-pass plans would take only 70 minutes on the Apollo, which transiates into less than 1 minute on an IBM 3090 using only one processor. Given the parallel nature of the set generation approach, multi-processor computing environments would allow one to solve this problem in a fraction of a minute. Therefore, the pacing model can be solved in such a way so as to provide near teal-time response to dispatchers.
- the simple rounding heuristic appears to be very effective both theoretically and empirically; future research should be devoted to a further understanding of this heuristic's performance in other real-world situations.
- the benefits from the use of the pacing model seem to be very large in terms of both fuel savings and the reduction in train travel times.

\section*{6 Summary and Future Research}

This paper has presented a new model of railroad operations which is a direct outgrowth of new technological advances in this industry. Given the ability to locate all trains operating over the railroad, one is provided with a unique opportunity for productivity enhancement through better scheduling of the line operations. Since traditional dispatching models and algorithms were born in an era in which the location and velocity of trains could not be known with a high degree of accuracy, the question of pacing never arose. The model presented in this paper provides a new way of looking at the dispatching of trains. As shown in Section 3.3, this simultaneous consideration of where and when trains should meet is important and, as the empirical results of Section 5.0 suggest, this model can be applied to real-world situations. Finally, this model should prove to be useful in helping the dispatchers in largescale railroads to beccume "system conscious" in order to achieve Eck et al.'s [9] call for dispatchers to become fuel conservers.

Obviously, further research is needed before the pacing model can be put into routine use on a railroad. One needs to develop more efficient algorithms for the solution of this model and, just as important if not more so, one needs to develop the methodology and software to represent the "unquantifiable" constraints which dispatchers face in the scheduling of rail traffic; i.e., future research must be devoted to the development of the necessary filters for the set generation approach. Also, this model must be extended to include an explicit representation of the random events which
occur on the rail line. This research is similar in spirit to the stochastic job-shop scheduling field [32], [33] in that "robust" schedules are the goal. In addition, the current pacing model truncates the set of schedules to be considered on the line by simply not considering the trains which will enter the territory outside the stated planning horizon. The "end effects" caused by this truncation must be dealt with formally, although the techniques will have to be different than those used in [16] due to the way in which the pacing model defines its time horizon through a fixed set of schedules. Finally, the pacing model is simply the first step in an overall development effort of a control system for the entire rail network. For example, how are the time windows at the ends of the dispatching territory defined? Ongoing research is being devoted to the development of methods to smooth the production process throughout the rail network by a judicious choice of these windows [17]; the pacing model is the building block in that it smooths this process over a single line.

\section*{Acknowledgements}

This research was supported by the National Science Foundation under the Presidential Young Investigator Award ECE-8552773 and by matching funds from the Burlington Northern Railroad. The comments and advise of Stavros Zenios, Dionysios Anninos, Dejan Jovanovic, William Weinstein, Ido Millet, Warren Powell, the area editor, referees, and the staff of the Burlington Northern Railroad (Michael Smith, George Hsu, Warren Stockton, etc.) are gratefully acknowledged; any errors remain the responsibility of the authors.

\section*{References}
[1] D. Anninos, Optimal Pacing of Trains on Single Thack Railroads for Better Reliability. M.S.E. thesis, Department of Systems, University of Pennsylvania (Philadelphia, Pennsylvania, 1987).
[2] A.A. Assad, "Models for rail transportation," Transportation Research 14A(1980), 205-220.
[3] M. Avriel, Nonlinear Programming: Analysis and Methods (Prentice-Hall, Englewood Cliffs, New Jersey, 1976).
[4] W.J. Bell, L.M. Dalberto, M.L. Fisher, A.J. Greenfield, R. Jaikumar, P. Kedia, R.G. Mack, and P.J. Prutzman, "Improving the distribution of industrial gases with an on-line computerized routing and scheduling optimizer," Interfaces 18(1983), 4-23.
[5] H.L. Bongaardt Jr., E.L. Clausing, G.F.List, S.A. McEvoy, and H.G. Ramp, "Railroad network modelling: recent practical applications,"• Proceedings of the Transportation Research Forum (1980), 499-512.
[6] E. Brettman, "Computerized fontrol and management of operations on single or double track lines," Rail International (September)(1970), 621-625.
[7] T. Crainic, J.A. Ferland and J.M. Rousseau, "A tactical planning model for rail freight transportation,". Transportation Science 18(1984), 165-184.
[8] T. Crainic, "Rail tactical planning: issues, models and tools," Proceeding of the International Seminar on Freight Transportation Planning and Logistics (Bressanone, Italy, 1987), forthcoming.
[9] H.C. Eck, M. Arakelian, N.W. Luttrell, W.R. McGovern, P.E. Rhine, W.G. Threlfell, and D.R. Yerkes, Fuel Conservation in Train Operations, Report R-506, Association of Aherican Railroads (Chicago, Illinois, 1981).
[10] M.L. Fisher, "Worst-case analysis of heuristic algorithms," Management Science 26(1980), 1-17. \(\div\)
[11] M.L. Fisher, "Interactive optimization," Annals of Operations Research 5(1985/6), 541-556.
[12] M.L. Fisher and R. Jaikumar, "A generalized assignment heuristic for vehicle routing," Networks 11(1981), 109-124.
[13] O. Frank, "Two-way traffic on a single line of railway," Operations Research 14(1965), 801-810.
[14] S. Funk, Private communication, Collins Air Division, Rockwell International (Cedar Rapids, Iowa, 1987).
[15] F. Glover, "Future paths for integer programming and links to artificial intelligence," Computers and Operations Research 18(1986), 533-549.
[16] R.C. Grinold, "Model building techniques for the correction of end effects in multistage convex programs," Operations Research 31(1983); 407-431.
[17] P. T. Harker, "The use of satellite tracking in scheduling and operating railroads: models, algorithms and applications;" Proceeding of the Fifth World Conjerence on Transport ResearchYokohama 1989, forthcoming.
[18] D.W. Hearn. S. Lawphongpanich and J.A. Ventura, "Restricted simplicial decomposition: computation and extensions, ", Wathematioal Programming Study 31(1987), 99-118. *
[19] D. Jovanovic and P.T. Harker, "Railroad schedule validation and creation the SCAN system," Working Paper 88-03-04, Decision Sciences Department, The Wharton School, University of Pennsylvania (Philadelphia, Pennsylvania, 1988).
[20] D. Jovanovic, Improving Railroad On-Time Performance: Models, Algorithms and Applications, unpublished Ph.D. dissertation, Department of Systems, University of Pennsylvania (Philadelphia, Pennsylvania, 1989).
[21] D. Kraay, P.T. Harker and B. Chen, "Optimal pacing of trains in freight railroads: model formulation and solution," Working Paper 88-03-03, Decision Sciences Department, The Wharton School, University of Pennsylvania (Philadelphia, Pennsylvania, 1988).
[22] E.R. Kraft, Optimal Train Dispatching Algorithms for Single Track Rail Lines, M.S.E. thesis, Department of Civil Engineering, University of Pennsylvania (Philadelphia, Pennslyvania, 1983).
[23] R.E. Marsten, "The design of the XMP linear programming library," ACM Transactions on Mathematical Software (1981), 481-497.
[24] M. Minoux, Mathematical Programming: Theory and Algorithms (John Wiley, New York, 1986).
[25] E.K. Morlok, Introduction to Transportation Engineering and Planning (McGraw-Hill, New York, 1978).
[26] J.M. Mulvey, S.A. Zenios and D.P. Ahlfeld. -Simplicial decomposition for convex generalized networks," Report EES-85-8, Department of Civil Engineering, Princeton University (Princeton, New Jersey, 1986).
[27] B.A. Murtagh and M.A. Sauders, MINOS 5.0 User's Guide; Technical Report SOL 83-20, Systems Optimization Laboratory, Department of Operations Research, Stanford University (Stanford, California, 1983).
[28] Norfolk Southern Railroad, Fuel Conservation Through Teamwork, Transportation Planning Department, Southern Railway (Atlanta, Georgia, 1985).
[29] E.R. Petersen, "Over the road transit time for a single track railway," Transportation Science 7(1973), 65-74.
[30] E.R. Petersen and A.J. Taylor, "A structured model for rail line simulation and optimization," Transportation Science 16(1982), 192-230.
[31] E.R. Petersen, A.J. Taylor and C.D. Martland, "An introduction to computer-assisted train dispatching," Journal of Advanced Transportation 20(1986), 63-72.
[32] M. Pinedo, "Minimizing the expected makespan in stochastic flow shops," Operations Res̀earch 3O(1982); 148-162.
[33] M. Pinedo, "Stochastic scheduling with release dates and due dates," Operations Research 31(1983), 559-572.
[34] R.L. Sauder and W.M. Westerman, "Computer aided train dispatching: decision support through optimization," Interfaces 13(1983), 24-37.
[35] B. Szpigel, "Optimal train scheduling on a single track railway," in: M. Ross, ed., Operational Research '72 (North-Holland, Amsterdam, 1973), 343-361.
[36] B. von Hohenbalken, "Simplicial decomposition in nonlinear programming aigorithms," Mathematical Programming 13 (1977), 49-68.
[37] G. Welty, "BN and ARES: control in a new dimension," Railway Age (May 1988), 24-26.
[38] W.W. White and E. Wrathall, "A system for railroad traffic scheduling," IBM Technical Report No. 320-2993 (August 1970).
[39] S. Zenios, "Benchmark Testing with the GENOS Software System", Decision Sciences Department, The Wharton School, University of Pennsylvania (Philadelphia, Pennsylvania, 1987).

\section*{A Mathematical Formulation of the Pacing Model}

In this appendix, we give the complete description of the mathematical model used throughout this work. The only significant changern notation is that the matrix \(Z\) of train variables is separated into a.vector \(x\) for eastbound train times, and \(y\) for westbound times.

Given the assumptions stated in section 3.1, let us define the notation necessary to formulate the pacing model. The territory under consideration is to be decomposed into a set of \(P\) homogeneous track segments (\(n=|P|\)) in which each track segment has essentially the same track configuration (e.g., the same number of tracks, grade, curvature, etc.). Let \(P_{1} \subseteq P\) denote those segments with single track only, and \(P_{2} \subseteq P\) as those segments with passing sidings. Thus, \(P=P_{1} \cup P_{2}\) and \(P_{1} \cap P_{2}=\emptyset\). On each track segment \(p \in P\), let \(d_{p}\) denote the length in miles of the segment. Without loss of generality, we shall assume that the territory is oriented in an east-west fashion.

To describe the trains which move over this territory during the planning period, let \(\bar{I}\) denote the set of eastbound trains and \(J\) the set of trains which travel westward. By convention, the trains will be consecutively numbered with the first \(|I|\) trains being eastbound and the remaining \(|J|\) trains being westbound. For each train \(i \in I\) or \(j \in J\) let us define:
\(\omega_{i}, \omega_{j} \equiv\) the scalar priority weight assigned to each train,
\(\vec{v}_{p}^{j}, \bar{w}_{p}^{j} \equiv\) the upper speed limit for each train \(i, j\) on segment \(p \in P_{1}\) (m.p.h.),
\(y_{p}^{i}, y_{p}^{j} \equiv\) the lower speed limit for each train \(i, j\) on segment \(p \in P_{1}\) (m.p.h.),
and for each segment \(p \in P_{2}\) which contains a siding
\(\vec{v}_{p_{m}}^{\dot{j}}, \bar{w}_{p_{m}}^{j} \equiv\) the upper speed limit for each train \(i, j\) on segment \(p \in P_{2}\)
when the train travels over the mainline track (m.p.h.),
\(\bar{v}_{p_{0}}^{i}, \overline{w_{p,}} \equiv\) the upper speed limit for each train \(i, j\) on segment \(p \in P_{2}\)
when the train travels over the siding (m.p.h.),
\(\nu_{p_{m}}^{i}, w_{p_{m}}^{j} \equiv\) the lower speed limit for each train \(i, j\) on segment \(p \in P_{2}\)
when the train travels over the mainline track (m.p.h.),
\(\nu_{p_{0}, y_{p}}^{i}{ }_{p_{0}}^{j} \equiv\) the lower speed limit for each train \(i, j\) on segment \(p \in P_{2}\)
when the train travels over the siding (m.p.h.).

Thus, different speed limits are provided for each train and for each type of track segment. Finally, let \(p_{0} \in P\) denote the first track segment on which a train travels and \(p_{f} \in P\) be the last segment
in the trip. Since the train leaves the territory at \(p_{f}\), this segment can be considered as a receiving yard, the next track segment in the train's itinerary, or an industrial or switching siding. Note that this model does not assume that all trains must enter and leave the territory at the same points; individual entrance and departure points are defined for each train. These points for each train are simply defined as the reporting,stations over which the time windows (schedules) are defined.

Let us now define the decision variables for the pacing model:
\[
\begin{aligned}
& x_{p}^{i} \equiv \text { the entry time of eastbound train } i \in I \text { into track segment } p \in P ; \\
& \text { i.e., the time that the train arrives at the west end of segment } p \text { (hrs.), } \\
& x^{i} \equiv\left(\ldots, x_{p}^{i}, \ldots\right)^{T}, \\
& x \equiv\left(\ldots, x^{i}, \ldots\right)^{T}, \\
& y_{p}^{j} \equiv \text { the time that the westbound train } j \in J \text { enters track segment } p \in P ; \\
& \text { i.e., the time that the train arrives at the east end of segment } p \text { (hrs.), } \\
& y^{j} \equiv\left(\ldots, y_{p}^{j}, \ldots\right)^{T}, \\
& y \equiv\left(\ldots, y^{i}, \ldots\right)^{T} .
\end{aligned}
\]

The time windows for train movements can be defined in terms of the times \(x, y\) at which the trains depart segments \(p_{o}\) and \(p_{f}\). Defining
\(x_{p_{0}}^{i}, \overrightarrow{x_{p_{0}}} \equiv\) the earliest and latest departure times for eastbound train \(i \in I\) (hrs.),
\(x_{p g}^{i}, \bar{x}_{p g}^{i} \equiv\) the earliest and latest arrival times for eastbound train \(i \in I\) (hrs.),
\(y_{p_{0}}^{j}, \bar{y}_{p_{0}}^{j} \equiv\) the earliest and latest departure times for westbound train \(j \in J\) (hrs.),
\(y_{p f}^{j}, \bar{y}_{p_{f}}^{j} \equiv\) the earliest and latest arrival times for westbound train \(j \in J\) (hrs.),
the time window constraints are
\[
\begin{array}{ll}
x_{p_{0}}^{i} \leq x_{p_{0}}^{i} \leq \overline{x_{p_{0}}} & \forall i \in I, \\
x_{p_{j}}^{i} \leq x_{p_{g}}^{i} \leq \overline{x_{p_{j}}^{i}} & \forall i \in I, \\
x_{p_{0}}^{j} \leq y_{p_{0}}^{j} \leq \bar{y}_{p_{0}}^{j} & \forall j \in J, \\
y_{p_{g}}^{j} \leq y_{p_{j}}^{j} \leq \overline{y_{p_{g}}^{j}} & \forall j \in J . \tag{12}
\end{array}
\]

Note that crew change rules can be enforced by imposing conditions such as \(\bar{x}_{p g}^{i}-x_{p_{0}}^{i} \leq H_{i}\) when defining the time windows; i.e., the maximum time the train may travel with the same crew is limited in the dataset of the mathematical program to some prespecified number of hours \(H_{i}\).

Since \(z_{p}^{i}\) is the time train \(i\) arrives at segment \(p\) and \(x_{p+1}^{i}\) is the time the train arrives at the next segment (which is equivalent to when it leaves segment \(p\)), the average velocity \(v_{p}^{i}\) of train \(i\) over segment \(p\) is given by
\[
v_{p}^{i}=\frac{d_{p}}{x_{p+1}^{i}-x_{p}^{i}} .
\]

In a similar fashion, the velocities of the westbound trains \(w_{p}^{j}\) can be defined as follows:
\[
w_{p}^{j}=\frac{d_{p}}{y_{p}^{j}-y_{p=1}^{j}} .
\]

The velocity constraints for each train depend on whether or not the particular segment contains a siding. For those segments \(p \in P_{1}\) which do not contain sidings, the following constraints are imposed:
\[
\begin{gathered}
w_{p}^{i} \leq v_{p}^{i} \leq \bar{v}_{p}^{i} \\
w_{p}^{i} \leq w_{p}^{i} \leq \bar{w}_{p}^{j}
\end{gathered}
\]
or substituting the definitions of velocity as a function of travel times as given above:
\[
\begin{align*}
& \frac{d_{p}}{v_{p}^{j}} \leq x_{p+1}^{i}-\tilde{x}_{p}^{i} \leq \frac{d_{p}}{v_{p}^{i}} \quad \forall i \in I, p \in P_{1} \tag{13}\\
& \frac{d_{p}}{\tilde{w}_{p}^{j}} \leq y_{p}^{j}-y_{p-1}^{j} \leq \frac{d_{p}}{\frac{y_{p}^{j}}{j}} \quad \forall j \in J, p \in P_{1} \tag{14}
\end{align*}
\]

Note that one will typically have \({\underset{v}{p}}_{i}^{=}{\underset{w}{p}}_{j}^{j}=0\) and thus, the upper bounds on the times given in (13)-(14) will not exist.

For those track segments which contain sidings, the speed limits depend on whether the train travels over the mainline or over the siding. Obviously, the particular situation depends on one's routing choice for that particular train. Therefore, let us define a zero-one decision variable \(D_{i p}^{e}\) to represent this choice
\[
D_{i p}^{\mathrm{e}}= \begin{cases}1 & \text { if eastbound train } i \in I \text { enters the siding on segment } p \in P_{2} \\ 0 & \text { otherwise }\end{cases}
\]
and \(D^{\epsilon}=\left(\ldots, D_{i p}^{\ell}, \ldots\right)^{T}\). Defining \(M\) to be a large positive scalar, the eastbound speed limits for segments with sidings can be represented as:
\[
\begin{equation*}
-M D_{i p}^{e}+\frac{d_{p}}{\vec{v}_{p m}^{i}} \leq x_{p+1}^{i}-x_{p}^{i} \leq \frac{d_{p}}{v_{p m}^{i}}+M D_{i p}^{e} \quad \forall i \in I, p \in P_{2} \tag{15}
\end{equation*}
\]
\[
-M\left(1-D_{i p}^{e}\right)+\frac{d_{p}}{\vec{v}_{p s}} \leq x_{p+1}^{i}-x_{p}^{i} \leq \frac{d_{p}}{x_{p,}^{i}}+M\left(1-D_{i p}^{e}\right) \quad \forall i \in I, p \in P_{2}
\]

The set of constraints for the westbound trains are defined in an analogous manner:
\[
D_{j p}^{\Psi}= \begin{cases}1 & \text { if westbound train } j \in J \text { enters the siding on segment } p \in P_{2} \\ 0 & \text { otherwise }\end{cases}
\]
with \(D^{w}=\left(\ldots, D_{j p}^{w}, \ldots\right)^{T}\), and
\[
\begin{gather*}
-M D_{j p}^{w}+\frac{d_{p}}{\vec{w}_{p m}^{j}} \leq y_{p}^{j}-y_{p-1}^{j} \leq \frac{d_{p}}{w_{p m}^{j}}+M D_{j p}^{w} \quad \forall j \in J, p \in P_{2}, \tag{16}\\
-M\left(1-D_{j p}^{w}\right)+\frac{d_{p}}{\bar{w}_{p,}^{j}} \leq y_{p}^{j}-y_{p-1}^{j} \leq \frac{d_{p}}{w_{p p}^{j}}+M\left(1-D_{j p}^{w}\right) \quad \forall j \in J, p \in \dot{P}_{2} .
\end{gather*}
\]

Finally, various conditions such as siding length, the orientation of the switching equipment at the siding, etc. will limit the access of a particular train to a siding. Defining \(D \equiv\left(D^{e} ; D^{w}\right)\), the set of constraints on the ability to enter sidings can be represented as:
\[
\begin{align*}
\Omega=\{D: & D \text { is a vector of zero-one variables, } \\
& D_{i p}^{e} \equiv 0 \text { for some } i \in I, p \in P_{2} \tag{17}\\
& \left.D_{j p}^{w} \equiv 0 \text { for some } j \in J, p \in P_{2}\right\}
\end{align*}
\]

Constraints (9)-(17) represent the conditions which each individual train must obey in the pacing problem. The next set of constraints deals with the meeting and overtaking of trains. One must first ensure that two trains do not occupy a track segment \(p \in P_{1}\) at the same time in order to avoid collision. Defining:
\(s \equiv\) a time safety margin which is used to ensure that trains leave sufficient time for other trains to clear a track segment before entering this segment. This safety margin could also be defined by segment \(s_{p}\) and/or train pair \(s_{k l}, k, l \in I \cup J\).
\(A_{i j p}= \begin{cases}1 & \text { if eastbound train } i \in I \text { traverses segment } p \in P_{1} \text { before westbound } \operatorname{train} j \in J, \\ 0 & \text { otherwise, }\end{cases}\)
\(B_{k \ell p}^{e}= \begin{cases}1 & \text { if eastbound train } k \in I \text { traverses segment } p \in P_{1} \text { before eastbound train } \ell \in I, \\ 0 & \text { otherwise },\end{cases}\)
\(B_{k \ell p}^{w}= \begin{cases}1 & \text { if westbound train } k \in J \text { traverses segment } p \in P_{1} \text { before westbound train } \ell \in J, \\ 0 & \text { otherwise, }\end{cases}\)
\[
\begin{gathered}
A=\left(\ldots, A_{i j p}, \ldots\right)^{T}, \\
B^{e}=\left(\ldots, B_{k \ell p}^{e}, \ldots\right)^{T}, \\
B^{w}=\left(\ldots, B_{k \ell p}^{w}, \ldots\right)^{T}, \\
B=\left(B^{e} ; B^{w}\right)^{T},
\end{gathered}
\]
the following conditions ensure that the time between trains is sufficient so as to avoid collisions:
\[
\begin{gather*}
s+y_{p-1}^{i} \leq x_{p}^{i}+M A_{i j p} \quad \forall i \in I ; j \in J, p \in P_{1}, \tag{18}\\
s+x_{p+1}^{i} \leq y_{p}^{j}+M\left(1-A_{i j p}\right) \quad \forall i \in I, j \in J, p \in \ddot{P}_{1}, \tag{19}\\
s+x_{p+1}^{\ell} \leq x_{p}^{k}+M B_{k \ell p}^{e} \quad \forall k, \ell \in I, p \in P_{1}, \tag{20}\\
s+x_{p+1}^{k} \leq x_{p}^{\ell}+M\left(1-B_{k \ell p}^{e}\right) \quad \forall k, \ell \in I, p \in P_{1}, \tag{21}\\
s+y_{p-1}^{\ell} \leq y_{p}^{k}+M B_{k \ell p}^{w} \forall k, \ell \in J, p \in P_{1} \tag{-22}\\
s+y_{p-1}^{k} \leq y_{p}^{\ell}+M\left(1-B_{k \ell p}^{v}\right) \quad \forall k, \ell \in J, p \in P_{1} . \tag{23}
\end{gather*}
\]

Conditions (18)-(19) state that if train \(i\) travêrses.segment \(p\) before train \(j\left(A_{i j f}=1\right)\), then train \(j\) must enter segment \(p\) after train \(i\) has cleared this segment (19). Conversely, \(A_{i j p}=0\) implies that train \(j\) must clear the segment of track before train \(i\) enters (18). Conditions (20)-(23) rule out the overtaking of trains on segments without sidings. For example, if train \(k\) traverses a seginent of track before train \(\ell\), then \(B_{k<p}^{e}=1\) and condition (21) states that train \(\ell\) cannot enter this segment until train \(k\) has sufficiently cleared. A similar inteipretation can be provided for the other conditions.

The final set of logical conditions for the pacing model deal with those segments \(p \in P_{2}\) on which meeting and overtaking of trains is permitted. Define:
\[
C_{k \ell p}= \begin{cases}1 & \text { if train } k \in I \cup J \text { completely traverses segment } p \in P_{2} \\ & \text { before train } \ell \in I \cup J \text { enters this segment, } \\ 0 & \text { atherwise, }\end{cases}
\]
and \(C=\left(\ldots, C_{k l_{p}}, \ldots\right)^{T}\). Thus, \(C\) is defined for all combinations of eastbound and westbound trains. The first condition to be ensured is that on a segment with a siding, one of four possibilities must exist for any pair of trains \(k, \ell \in I \cup J\) : either train \(k\) completely clears this segment before
train \(\ell\) enters \(\left(C_{k \ell p}=1\right)\), trains \(\ell\) clears the segment before \(k\left(C_{\ell k p}=1\right)\), train \(k\) enters the siding (\(D_{k p}=1\)), or train \(\ell\) enters the siding (\(D_{\ell p}=1\)). Writing these conditions in a constraint form we have:
\[
\begin{equation*}
\left(1-C_{k \ell p}\right)\left(1-b_{\ell k p}\right)\left(D_{k p}+D_{\ell p}-1\right)=0 \quad \forall k, \ell \in I \cup J, p \in P_{2} . \tag{24}
\end{equation*}
\]

Note that Assumption A-5 is used to limit (24) to pairs of trains; if more than two trains are permitted to fit into a siding, then a condition similar to (24) would have to be derived for all three train combinations, four train combinations, etc. Also, this condition is nonlinear. However, the pacing model cannot be solved by traditional branch-and-bound techniques based on linear programming relaxations due to its size and thus, (24) is more a statement of the model logic than an actual constraint in a mathematical program.

The second set of constraints dealing with train interactions at sidings links the logical prêcedence relationships embodied in \(C\) with the travel times:
\[
\begin{align*}
& s+x_{p+1}^{k} \leq x_{p}^{\ell}+M\left(1-C_{k \ell p}\right) \quad \forall k, \ell \in I, p \in P_{2}, \tag{25}\\
& s+x_{p+1}^{\ell} \leq x_{p}^{k}+M\left(1-C_{\ell k p}\right) \quad \forall k, \ell \in I, p \in P_{2}, \tag{26}\\
& s+y_{p-1}^{k} \leq y_{p}^{\ell}+M\left(1-C_{k \ell p}\right) \quad \forall k, \ell \in J, p \in P_{3}, \tag{27}\\
& s+y_{p-1}^{\ell} \leq y_{p}^{k}+M\left(1-C_{\ell k p}\right) \quad \forall k, \ell \in J, p \in P_{2}, \tag{28}\\
& s+x_{p+1}^{k} \leq y_{p}^{\ell}+M\left(1-C_{k \ell p}\right) \quad \forall k, \ell \in I \cup J, p \in P_{2}, \tag{29}\\
& s+y_{p-1}^{\ell} \leq x_{p}^{k}+M\left(1-C_{\ell k p}\right) \quad \forall k, \ell \in I \cup J, p \in P_{2} \tag{30}
\end{align*}
\]

For example, if train \(k \in I\) completely traverses the segment \(p \in P_{2}\) before train \(\ell \in J\), then \(C_{k \ell p}=1\) in (29) and the time of train \(\ell\) 's arrival must be greater than that of train \(k\) 's departure. Note that it is not the case that \(C_{k<p}=0\) implies \(C_{k k p}=1\); by condition (24) the other possibility is that neither train completely traverses the segment before the other arrives bit rather, one train enters the siding and the other takes the mainline track.

The final constraint needed to fully specify the meet-pass logic simply states that for any segment \(p \in P_{2}\), at most two trains can occupy this segment in accordance with Assumption A-5:
\[
\begin{equation*}
C_{k \ell p}+C_{\ell k p}+C_{k m p}+C_{m k p}+C_{\ell m p}+C_{m \ell p} \geq 1 \quad \forall k, \ell, m \in I \cup J, p \in P_{2} \tag{31}
\end{equation*}
\]

That is, for any three trains, at least one must fully clear the segment before the other train arrives.

As in condition (17), logical relationships concerning which trains can meet or overtake other trains can be encoded into the following set of constraints:
\[
\begin{align*}
\Lambda=\{(A, B, C): & (A, B, C) \text { is a vector of zero-one variables, } \\
& A_{i j p} \equiv 0 \text { for some } i \in I, j \in J, p \in P_{2}, \\
& B_{k \ell p}^{e} \equiv 0 \text { for some } k, \ell \in I, p \in P_{2}, \tag{32}\\
& B_{k \ell p}^{w} \equiv 0 \text { for some } k, \ell \in J, p \in P_{2}, \\
& \left.C_{k \ell p} \equiv 0 \text { for some } k, \ell \in I \cup J, p \in P_{2}\right\} .
\end{align*}
\]

Having defined the constraints (9)-(32) for the pacing model, the final component is the objective function. In general, any convex function \(f(x, y)\) of the vector of travel times (\(x, y\)) can be employed. However, let us consider a specific example of this function for the purpose of discussion. For each \(\operatorname{train} i \in I\) or \(j \in J\), let \(\lambda_{i}^{e} \in[0,1]\) and \(\lambda_{j}^{\psi} \in[0,1]\) denote, respectively, the relative weight:placed on fuel consumption versus delay for an eastbound and westbound train. Let \(\psi_{p}^{i}\left(v_{p}^{i}\right)\) and \(\psi_{p}^{j}\left(w_{p}^{j}\right)\) be the fuel consumption function for an eastbound or westbound train traveling over segment \(p\) which is a function of the velocity over that segment; an example of this function will be provided in the sequel. In general, this function will be nonlinear due to the increased fuel consumption at high velocity. For a particular \(\operatorname{train} i \in I\) or \(j \in J\), the objective function can be represented as:
\[
\begin{align*}
& f_{i}^{e}(x)=\lambda_{i}^{e}\left[\sum_{p \in P} \psi_{p}^{i}\left(d_{p} /\left(x_{p+1}^{i}-x_{p}^{i}\right)\right)\right]+\left(1-\lambda_{i}^{e}\right) x_{p f}^{i} \tag{33}\\
& f_{j}^{w}(y)=\lambda_{j}^{w}\left[\sum_{p \in P} \psi_{p}^{i}\left(d_{p} /\left(y_{p}^{j}-y_{p-1}^{i}\right)\right)\right]+\left(1-\lambda_{j}^{\psi}\right) y_{p f}^{j} . \tag{34}
\end{align*}
\]

Using the priority weights for each train which were defined previousiy, the overall objective function is given by:
\[
\begin{equation*}
f(x, y)=\sum_{i \in I} \omega_{i}^{e} f_{i}^{e}(x)+\sum_{j \in J} \omega_{j}^{\psi} f_{j}^{\omega}(y) \tag{35}
\end{equation*}
\]

Therefore, the pacing model is defined by the following nonlinear, mixed integer program:
\[
\begin{aligned}
& \text { minimize } \quad f(x, y)=\sum_{i \in I} \omega_{i}^{e} f_{i}^{e}(x)+\sum_{j \in J} \omega_{j}^{\psi} f_{j}^{\psi}(y) \\
& x, y, A, B, C, D \\
& \text { subject to: }
\end{aligned}
\]
Constraints (9)-(32).

The solution of problem (36) will yield in a simultaneous manner an optimal meet-pass plan and velocity profile for each train traveling over the specified corridor during the planning period.

The constraint set of (36) is polyhedral in (\(x, y\)) and hence, convex. In order to establish that (36) is a convex program in \((x, y)\), one need only establish the convexity of the objective function. The objective function will be convex if each fuel consumption function \(\psi^{\mathbf{i}}, \psi^{j}\) is convex and monotone since \(f(x, y)\) is simply a convex combination of these functions and the linear term induced by the arrival time. The following proposition establishes a set of sufficient conditions which ensure that \(f(x, y)\) is convex with respect to \((x, y)\) :

Proposition A. 1 Let \(\psi_{p}^{i}\left(v_{p}^{i}\right), \psi_{p}^{j}\left(w_{p}^{j}\right)\) be convex and monotone functions of \(v_{p}^{i}, w_{p}^{j}\) respectively for all \(i \in I, j \in J, p \in P\). Then \(f(x, y)\) is a convex function of \((x, y)\) and hence, (36) is a convex program in \((x, y)\).

Therefore, under reasonable conditions on the fuel consumption functions, problemes (36) is a well-defined convex mathematical program in the continuous variables \((x, y)\).

\section*{B Fuel Consumption Function.}

In order to illustrate the complete mathematical description of the pacing model, let us define a possible instance of the fuel consumption function. In practice, fuel consumption is.directly reatad to the amount of work (lb.ft.) performed in moving the train. In order to find an approximate formula for this work, let us use the well-known Davis formula [25] for the resistance \(R_{p}^{i}\) (lbs.) facing train \(i \in I\) as it traverses segment \(p \in P\) at velocity \(v_{p}^{i}\) (m.p.h.); \(R_{p}^{j}\) is defined in an analogous manner:
\[
\begin{equation*}
R_{p}^{i}=\alpha_{p}^{i}+\beta_{p}^{i} v_{p}^{i}+\gamma_{p}^{i}\left(v_{p}^{i}\right)^{2} \tag{37}
\end{equation*}
\]
where
\(\alpha_{p}^{i} \equiv\) resistance due to grade which is constant with respect to velocity
\(=a+\left(G_{p}+0.8 r_{p}\right) W_{i}\)
\(a \equiv\) a scalar parameter
\(G_{p} \equiv\) grade of segment \(p \in P\) (degrees)
\(r_{p} \equiv\) radius of curvature of segment \(p \in P\) (feet)
\(W_{i} \equiv\) weight of train \(i \in I\) (lbs.)
\(\beta_{p}^{i} \equiv\) resistance due primarily to rail friction
\(=b W_{i}\)
\(b\) = a scalar parameter
\(\gamma_{p}^{i} \equiv\) resistance due primarily to air friction
\(=c A_{i}\)
\(c \equiv\) a scalar parameter commonly called the body coefficient
\(A_{i} \equiv\) effective cross-section of train \(i \in I\) (sq. ft.).
Typical values of the above coefficients for freight trains are: \(a=1.4 W_{i}+16 n_{i}\) where \(n_{i}\) is the number of axles on train \(i, b=0.015, c A_{i}=0.001\) [25]. If \(R_{p}^{i} \leq \tau_{i}\) where \(\tau_{i}\) denôtes the collective idle resistance of the locomotives on train \(i\), then no excess fuel needs to be consumed in order to achieve the velocity \(v_{p}^{i}\); e.g., negative grade resistance is sufficient to overcome the other sources of resistance. Thus, the total work involved in moving train \(i\) over segment \(p\) is given by
\[
\max \left\{\tau_{i} ; R_{p}^{i}\right\} d_{p} .
\]

Other sources of fuel consumption such as changes in the kinetic energy of the train as it accelerates can also be included. The kinetic energy of the train is defined as one-half the mass of the train times the square of velocity. The positive change in kinetic energy is given by
\[
\begin{equation*}
\Delta K E_{p}^{i}=\rho W_{i} \max \left\{0 .\left(\frac{d_{p}}{x_{p+1}^{i}-x_{p}}\right]^{2}-\left[\frac{d_{p}}{x_{p}^{i}-x_{p-1}^{i}}\right]^{2}\right\} \tag{38}
\end{equation*}
\]
where \(\rho\) is a scalar constant (note that this formulation assumes that dynamic braking or negative changes in kinetic energy consumes no energy). This term, besides being a proxy for the energy consumed in acceleration, will tend to smooth the velocities between adjacent track segments in accordance with the advice given [9].

Thus, one (but not the only) possible formulation of the fuel consumption function \(\psi_{p}^{i}\) is given by:
\[
\begin{align*}
\psi_{p}^{i}(x)= & \max \left\{\tau_{i}, \alpha_{p}^{i}+\beta_{p}^{i}\left[\frac{d_{p}}{x_{p+1}^{p}-x_{p}^{i}}\right]+\gamma_{p}^{i}\left[\frac{d_{p}}{r_{p+1}^{i}-x_{p}^{p}}\right]^{2}\right\} d_{p} \\
& =\rho W_{i} \max \left\{0,\left[\frac{d_{p}}{x_{p+1}^{i}-x_{p}^{1}}\right]^{2}-\left[\frac{d_{p}}{x_{p}^{d}-x_{p-1}^{i}}\right]^{2}\right\} . \tag{39}
\end{align*}
\]

Note that this function does not completely satisfy the assumption of Proposition A. 1 since it is not continuously differentiable. However, one approximation to (39) which will satisfy these conditions is to simply ignore the \(\max \{\cdot\}\) functions; another approximation would involve replacing these functions with \(\max \{\cdot\}^{1+c}\) where \(\epsilon>0\) is a small positive constant. The actual function which should be used to model fuel consumption is a matter for future empirical research.

\author{
;
}

\section*{C Data for Numerical Examples}

Table 3: Data for Illustrative Example
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\(\beta_{p}^{i} d_{p}\) or \(\beta_{-p}^{i} d_{p}^{\prime \prime}\)} & \multicolumn{6}{|c|}{\(\boldsymbol{\gamma}_{p}^{i} d_{p}\) or \(\boldsymbol{\gamma}_{p}^{i} d_{p}\)} \\
\hline \multirow[b]{2}{*}{Train} & \multicolumn{5}{|c|}{Track Segment} & \multirow[b]{2}{*}{Train} & \multicolumn{5}{|c|}{Track Segment} \\
\hline & 1 & 2 & 3 & 4 & 5 & & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 4.0 & 3.0 & 3.0 & 3.0 & 2.0 & 1 & 0.100 & 0.020 & 0.020 & 0.020 & 0.010 \\
\hline 2 & 4.0 & 3.0 & 3.0 & 3.0 & 2.0 & 2 & 0.100 & 0.020 & 0.020 & 0.020 & 0.010 \\
\hline 3 & 3.5 & 2.8 & 2.8 & 2.8 & 1.8 & 3 & 0.100 & 0.015 & 0.015 & 0.015 & 0.010 \\
\hline 4 & 2.0 & 3.0 & 3.0 & 3.0 & 3.7 & 4 & 0.010 & 0.020 & 0.020 & 0.020 & 0.080 \\
\hline 5 & 2.0 & 3.0 & 3.0 & 3.0 & 3.7 & 5 & 0.010 & 0.020 & 0.020 & 0.020 & 0.080 \\
\hline
\end{tabular}
\begin{tabular}{||c||c|c|c|c||}
\hline \multicolumn{6}{|c|}{ Time Windows (hours) } \\
\hline \hline Train & Earliest Departure & Latest Departure & Earliest Arrival & Latest Arrival \\
\hline 1 & 0.0 & 1.0 & 3.0 & 5.0 \\
2 & 1.0 & 2.0 & 4.0 & 4.5 \\
3 & 3.0 & 4.0 & 6.0 & 7.0 \\
4 & 0.0 & 0.7 & 3.3 & 4.0 \\
5 & 2.0 & 3.0 & 5.0 & 6.0 \\
\hline
\end{tabular}

The hypothetical examples described in Section 5.1 use the same track profile as above. The three cases are defined by the differences in the time window constraints for each train: tight, medium and loose. The track profile consists of five segments with two passing sidings plus the end sidings (yards). The track is assumed to possess no curvature; the other track data is listed in Table 4. Ten trains operate over this track segment and are classified into either a Type I or Type II train depending on their Davis (resistance) formula [25] coefficients:

\section*{Type I: Weight \(=5000\) tons}

Davis formula \(=5000+4000 v+30 v^{2}\)
Type II: Weight \(=10,000\) tens
Davis formula \(=2000+10000 v+25 v^{2}\)
The objective function employed in these examples is given by (39) with \(\tau_{i}=8000\) for all \(i=\) \(1,2, \ldots, 10\) and \(\rho=0\). Table 5 lists the other necessary data for this example.

Table 4: Track Data for Hypothetical Examples
\begin{tabular}{||c|c|c|c||}
\hline Track Segment \(p\) & Grade \(G_{p}(\%)\) & Length \(d_{p}\) (mi.) & Max. Velocity \(\bar{v}_{p}\) (m.p.h.) \\
\hline 1 & -0.59 & 8 & 50 \\
2 & +0.53 & 9 & 50 \\
3 & 0.00 & 12 & 50 \\
4. & +1.18 & 8 & 50 \\
5 & -1.18 & 8 & 50 \\
\hline
\end{tabular}

3

Table 5: Train Data for Hypothetical Examples
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Train No.} & \multirow[b]{2}{*}{Type} & \multirow[b]{2}{*}{Travel Direction} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\[
\left(x_{p_{p},}^{i}, x_{p_{f}}^{i}\right) \text { or }\left(y_{p_{0},}^{j}, y_{p_{f}}^{j}\right)
\] \\
\begin{tabular}{l|l|l}
Tight Case & Medium Case Loose Caš̃
\end{tabular}
\end{tabular}}} \\
\hline & & & & & \\
\hline 1 & II & west & 1.00, 2.08 & 1:00, 2.35 & 1.00, 2.53 \\
\hline 2 & I & west & 1.40, 2.48 & 1.60, 3.13 & 1.90, 3.25 \\
\hline 3 & II & west & 3.80, 4.79 & 5.00, 6.44 & 5.00, 6.71 \\
\hline 4 & 1 & west & 4.60, 5.87 & 6.30, 7.74 & \({ }_{6} 6.80,8.51\) \\
\hline 5 & II & east & 1.70, 2.96 & 2.40, 3.39 & 2.70, 3.87 \\
\hline 6 & I & east & 2.30, 3.38 & 3.10, 4.18 & 3.50, 4.85 \\
\hline 7 & 1 & east & 2.90, 4.25 & 3.80, 5.24 & 4.00, 5.35 \\
\hline 8 & I & east & 3.20, 4.46 & 4.30, 6.10 & 4.70, 5.96 \\
\hline 9 & I & east & 4.40, 5.75 & 5.80, 7.51 & 6.00, 7.62 \\
\hline 10 & II & east & 5.10, 6.36 & 7.30, 8.38 & 7.40, 8.84 \\
\hline
\end{tabular}

Figure Captions for Kraay, Harker and Chen
- Figure 1: Track Profile for Ilustrative Example
- Figure 2: 'Solutions fór Illustrative Example
- Figure 3: Unconstrained Solution for Illustrative Example

\begin{tabular}{lccccc}
Segment no. & 1 & 2 & 3 & 4 & s \\
\(d_{p}\), miles & 70 & -10 & 50 & 10 & 60 \\
\(\bar{v}_{p}\) or \(\overline{w_{p}}, \mathrm{mph}\) & 100 & 40 & 80 & 20 & 100 \\
\(y_{p}\) or \(\underline{w}_{p}, \mathrm{mph}\) & 10 & 1 & 10 & 1 & 10
\end{tabular}

\title{
ATCS: On time, on target
}

The U.S.-Canadian program to develop advanced train control systems, helped mightily by individual railroad efforts, is starting to point the way to more efficient, less costly operations.

By GUS WELTY, Senior Editor

8\(f\) the absence of nasty surprises is a reasonable measure of a project's success, then the railroad industry's Advanced Train Control Systems project has thus far been a success.

Much remains to be done, before ATCS is a reality. But much has already been done by the cooperating group at the top level and much is being done by a few individual railroads to prove-out ATCS under real-world operating conditions.

It will be at least a few years before significant numbers of trains are operating under an ATCS system, and it's going to be each railroad's decision as to what level of ATCS would be best. But major test programs are
going on, the inevitable glitches are being worked out. Estimated returns from ATCS vary from road to road, but nobody is backing away, including Union Pacific which months ago was estimating that a \(\$ 100\) million investment in ATCS could produce a return of about \(\$ 60\) million annually.
- What comes next. System specifications are being worked on, and these are some of the developments to look for as the joint U.S.-Canadian team continues its effors:
-A number of transponders have been under test at the Association of American Railroads' Transportation Test Center at Pueblo, Colo.. in an attempt to determine optimum standards for frequency and message protocol. Results of these tests are expected to be available by the end of June and decisions could come by the end of July.

Union Pacific, now considering a system-wide transponder-based system, expects a \(60 \%\) annual return on a \(\$ 100\)-million investment.
high-leve! flows have been identified. and there are possibly even more at a lower level.
-Safery is the first order of business, and system designers are also putting together control-flow arrangements to handle the failure of any system or any component. Their job: To determine how safe operation will be maintained if, for example, an onboard computer fails or if a data radio link fails. This is a vital effort te identify fall-back procèdures. in order to preserve safe operation under any conceivable set of circumstances.
-At the same time, system designers are Working on rules and procedures that will govern operations under ATCS. This is not really a rewrite of the code of rules that every operating officer and operat-
-Major work has been underway to put together control flows for the system. Essentially, this is a detailed description of how ATCS would work and of what should be done where. It's a matter of determining the messages and decisions and logic that would be required, and determining how central and onboard and wayside system components should work together. Project design goes from so-called Level 10 up through Level 40 . depending upon the sophistication and complexity of the system desired, and current efforts are looking toward a control-flow determination for Level 30. That should be completed by the end of June. Similar work will then be done for Level 20 and possibly for Level 10 . and that assignment should be done by early autumn. These are no small tasks. Control flows identify, in effect. every function that has to be performed. At Level 30 . sume 60
ing employee is, or should be, familiar with. Rather, it's an attempt to write a set of rules and procedures specifically for operations conducted under ATCS.
-The top level of ATCS, Level 40 , will get attention after flows are determined for Levels 30, 20 and 10, and that's logical. Level 40 of ATCS inyolves integration of ATCS with existing ctc, and that can pose problems. Each is a "control" system, and there can be only one. Functionally, system designers say, Level 40 is similar to Level 30 so far as ATCS itself is concerned. But control flows will have to be developed to determine how the systems can be made to work together.
-In the ongoing work on system and component specifications, designers are trying to determine how tight the specs have to be, how detailed they have to be, to insure that there will be reasonable fit. rea-

June 1987 - RAILWAY AGE

> Burlington Northern, moving fast with its ARES system, has just started a new series of tests designed to improve the accuracy of satellite positioning of land-based vehicles.

sonable interchangeability.
But, will problems develop as the design work continues?
As one participant in the job puts it, "Probably. As we get deeper into design, no doubt there will be questions raised that haven't been answered. questions that maybe weren't foreseen in high-level studies. That's one reason why pilot projects are going to be valuable--so that we can identify problems before they get built into the system."
- The key players. With Burlington Northern going toward a satellite-based control system and with the ATCS project team going toward a ground-based (tran-sponder-interrogator) system, it appears now that the joint project will be relying to a large extent upon tests on Canadian National, CP Rail and Union Pacific.
UP, which had already done extensive ATCS testing on its heavy-traffic North Platte Subdivision, is now into Phase 2 of a new series of tests.

And UP is already seeing positive results from its setting up of the company known as Automated Monitoring and Control International, Inc.
AMCI stared with a tiny staff, but it's grown. AMCI started with UP as the sole "partner," but as of late May it seemed sure to be getting minority participants. Participation by another company had cleared its board of directors and awaited only completion of paperwork, while two other potential partners were scheduled to put the proposition before their directors in May. In the meantime, AMCI had won a contract for a pilot ATCS project from another railroad and it held contracts for a couple of non-rail companies for projects in the communications area.
And assuming that all goes well with the new series of operational tests. UP is looking at the potential for applying ATCS to its entire 21,500 -mile system within the next five years. It has had, in the venture thus far. cooperation from a number of suppliers, among them GRS, Motorola Communications and Electronics. Pulse Electronics and Tandem Computers.
- Positioning by satellte. Meanwhile. BN is moving ahead with satellite-based programs in the Iron Range territory of northern Minnesota.

BN's approach. ARES. for Advanced Railroad Electronics System, is a multi-
system proposition involving Rockwell International technology. But one problem with \({ }^{\text {atellite positioning has been that }}\) while speed can be closely calculated, exact position of a land-based vehicle cannot be.

Late in May, BN began tests that it expected "to improve the accuracy of the track map that will be the base line that ARES will use to provide speed and position information."

BN was working on this with Sercel, a French electronics company represented in the U.S. by Techtrans. on a set of differential global positioning system (GPS) equipment.

BN explained the new tests this way:
"Since GPS provides train position information in terms of longitude, latitude and altitude, determining the exact location-in those terms-of a given segment of rail trackage is essential to establishment of ARES on that trackage.
"The track map forthe Iron Range test of ARES was completed using standard GPS techniques. Those techniques are highly accurate but contain inherent satellite position inconsistencies. Differential GPS is expected to measure and correct for those inconsistencies.
"Differential GPS uses the navigation satellites but in addition it uses a GPS receiver at a fixed-location references station of known position and the position information determined from the satellites is measured to arrive at a correction factor.
"Correcting a moving vehicle's position using this correction factor can result in position accuracy within two feet if data are stored and calculations are made later, and four feet if the correction is done continuously on a realtime basis from the moving vehicle."

The overall ARES test in Iron Range country was to involve about 200 miles of track. The differential GPS test was taking place in a triangle northwest of Duluth and was designed "to match accuracy of the mapping results obtained by differential GPS against those obtained by traditional surveying methods at seven checkpoints to determine whether its accuracy meets the stringent requirements of ARES.:
- What UP's tests showed. Meanwhile. U'P had assessed the operational aspects of its pilot tests on the North Platte Sub. in these terms:
-Use of the location system to monitor train movement. A tracking system was developed and implemented on the Tandem central computer which polied the test locomotives at 60 -second intervals. A track display subsystem was continuously updated with the location data, and so the position of the trains was dynamically plotted on a track display screen as the trains operated in normal service within the test corridor.
-Provision of operating instructions to the locomotive engineer. Simulated movement authorities were transmitted in the format of freeform messages over the data radio from the central point to a display onboard the locomotive.
-Generation of a route profile. Yet aniother subsystem in the central. computer contained a data base of route-pirpile information which, on request. downloaded to the engineer's display unit route-profile data for the next five miles.
-Monitoring of fuel consumption. Here, tests laid the groundwork for realtime monitoring of fuel consumption. A special microprocessor was installed on the locomotive to interface to a prototype electronic fuel gauge, and whenever a location message was sent from the locomotive, fuellevel reading was appended onto it. As a result, UP says, it will be possible to monitor the current fuel level and evaluate fuel consumption under varying operating conditions, such as the pacing of trains, in future phases of ATCS testing.
-Use of a transponder as an "electronic torpedo." This is not something that has been widely heralded as a big factor in ATCS. But it was tested. with the fuel gauge interface microprucessor also used to sense unique coding in special transponders used as torpedoes. When one of these transponders was encountered, the fuel gauge interface micro activated a sound alarm in the locomotive cab. That signal, including the train location, also went to the central computer. The tests worked, but there are a few operational questions remaining to be answered. For example, unlike the conventional exploding torpedo. the electronic one is not destroyed when a train passes over it. and so it will remain active to other trains which pass later.
The next phase of tests on UP is under way, and late this year or early in 1988. data from expanded testing should begin to become available.

RAILWAY AGE © June 1987

31 December 1986

savings add up to greater efficiency and productivity -- which in turn will translate into a brighter future not only for railroads, but for their customers as well.

Deregulation, mergers and unit train operations that avoid yard and classification d́elays make it possible to design trains to serve designated markets.

How does the HPIT differ from the trains you see today? From a distance, not greatly. But a closer look reveals that the HPIT is, indeed, a re-invention of the freight train -- something created from the ground up, with old ideas discarded and only the latest technologies and ideas utilized.

Instead of coupling a number of individual cars together; the integral train could consist of articulated car units, permanently joined but flexible enough to bend around curves. A simple computerized control cab could be at the front, with power units spaced along the train's length. Because they would not need to meet all operating environments, load-carrying units could be made of lighter-weight, yet strong, materials.

It was April 1984 when the AAR invited railroad manufacturers and suppliers to use these and other criteria to come up with ideas for integral trains -- and they did. In less than 18 months, the \(A A R\) had received ten solid, workable, detailed concepts from nine companies or consortiums. Some of the ideas are already being tested; some prototypes could be ready for testing by late 1986.

High productivity trains, using the latest advances in technology, will not only reduce the cost of transporting goods by rail, they will ensure the railroads' ability to increase their share of the changing freight transportation marketplace. SIPPSDE W2

\section*{AAR Research Activity}

The Research and Test (R\&T) Department of the AAR has, for nearly 30 years, served the railroad industry by probing successfuliy for better ways to move America's freight. And, as times change along with the needs of the industry, R\&T not only keeps up, but keeps ahead, by looking to the future.

In 1985, railroads invested more than \(\$ 17\) million in research conducted by R\&T. But the actual value of the research in which R\&T participated was more than \(\$ 40\) million, through contract work, ... complimentary funding and cooperative programs.

The department conducts research in nine program areas with projects and obfectives spelled out in a five-year plan: energy research, environmental research; employee safety, track and structures, vehicle and track interaction, productivit妾, train control techniques, freight equipment management, and freight car and train technology.

\section*{Research Facilities}

In 1982, the AAR took over management and marketing of the U.S. Department of Transportation's'Transportation Test Center (TTC) in Pueblo, colorado.

The Transportation Test Center houses a 4.8-mile loop of track known as FAST (facility for Accelerated Service Testing). This FAST track enables researchers to simulate actual operating conditions Within a concise area, thereby making research accurate and dependable.

The TTC provides the industry and its suppliers with a unique facility capable of conducting proprietary tests on a contract basis
```

-4-
for individual railroads and non-railroad companies, as well as
general research that benefits the entire rail industry.
Along with the FAST track, the Test Center includes a measurement
and maintenance facility for cars; a roster of cars and locomotives
donated by AAR members and suppliers; and a network of systems with
which to analyze data.
Also, a new test track and laboratory to train railroad crews
and emergency workers in handling hazardous material spills were
dedicated at the Test Center in mid-1985.
In Chicago, AAR's Technical Center conducts tests in metallurgy,
vehicle dynamics and for mechanical certification. The Techñical
Center, sitting on four-and-a-half acres on the campus of the
Illinois Institute of Technology, houses several laboratories and
supporting equipment, and focuses on the engineering aspect of
research into components of cars, locomotives and track structures.
The Washington, D.C.-based staff consists of professionals
working in such areas as freight car management, engineering,
economics, energy, safety and environmental research.
The Affiliated Laboratories Program
The academic community is also involved in railroad research.
In 1983, the AAR instituted the Affiliated Laboratories program,
which is designed to utilize the research capabilities of three
institutions to address important problems and issues in freight
railroading.
The institutions involved are: Carnegie-Mellon University
in Pittsburgh, the University of Illinois in Urbana, and the
Massachusetts Institute of Technology in Cambridge. Also, the AAR

```
```

    -5-
    has formalized its relationship with the Illinois Institute of
Technology by establishing a joint laboratory for railroad research.
While the laboratoriegwork on defined problems of mutual
interest, they also draw the attention of the railroad industry to
new areas of significance identified by the academic community.
The Princeton Rail Network Model
Railroad freight cars run empty for some nine billion miles
annually, resulting in an out-of-pocket cost of \$3 billion. Even a
small reduction in the percentage of empty car miles can represent
big savings for the railroads.
To help the railroads reduce empty car miles, R\&T has brought to
the Association the Princeton Rail Network Model, a package of
computer programs and databases that contains a detailed
representation of U.S. and Canadian rail systems.
In 1983, the model was at princeton University, performing a
series of studies funded by the AAR analyzing it's empty car return
rules. These rules provide methods of sending cars back to their
owners by the most efficient routes. By analyzing the economic
impact of empty car miles on railroads, it was learned that the
rules save the railroads }15\mathrm{ to }30\mathrm{ million empty car miles annually,
compared to conventional car service rules.
The model is being used now to simulate the effect of making
those rules even more efficient, or developing alternatives.
The model strings together data from more than 300 North American
railroads, in the form of 22,000 terminals or connections points and
20,000 "links" between those points, whose attributes include the
individual railroads, railroad owners, and distances down to

```

\section*{-6-}
one-tenth of a mile: All this information, from system maps of each railroad to the boundaries of individual counties, is used to simulate various hypothetical situations.

The model keeps up" to date on accidents, traffic patterns, car miles, car days and directional flows. It can print out graphs and pie charts, as well as intricate maps containing any category of information useful to improving railroad operations.

Advanced Train control systems
With 1.5 million freight cars being pulled by 24,000 locomotives on nearly 260,000 miles of track, management of train speed, fiocation and routes is essential. Computers have already been introduced in the railroad industry to make movement smoother and safer (railroads are one of the largest private users of computers in the nation), and research has led to better ways of keeping track of trains.

But the Advanced Train control systems (ATCS) project, now being created by the \(A A R\), the Railway Association of canada and individual members of both groups, promises a future traffic management system that will greatly enhance safety and efficiency. It will also enable railroads to cut down on their fuel bills and schedule trains in a way that achieves improved productivity.

The ATCS would differ from contemporary train control systems in a number of ways. Contemporary train control is accomplished through the use of signals, operating rules and written instructions. ATCS would accomplish greater train capacity and efficiency by enforcing train speeds at levels computed as the most desirable from a system standpoint. In other words, if a train is to be at a particular location at 4 p.m., ATCS would utilize computer data on tirafic

\section*{-7-}
levels, track conditions and speed, to see that the train arrives at or just before the appointed time:

In doing so, wasteful waiting time is eliminated. The train, instead of getting to the location an hour early by traveling 60 miles per hour, would travel at a fuel-saving 40 miles per hour -- and arrive in time to unload without waiting. The results would be not only fuel savings, but labor savings.

ATCS would be generic in nature, but capable of accommodating a variety of configurations of hardware and software, depending on the needs of a certain railroad. In researching ATCS and its possibilities, the \(A A R\) and others are emphasizing that industry-wide..e compatibility is a must.

In other words, ATCS will take the form of a modular system that can be put together much like the components of a home stereo system. The units that make up the system will be standardized for compatibility and flexible enough to accommodate simpFe as well as complex operating needs.

Architecture of ATCS provides for "plug-compatible" modules to accommodate new technologies that would be more flexible than any previous system in their ability to accommodate increasing traffic.

Computers would keep track of all trains -- enforcing speed limits that assure the most efficient fuel use.

Instead of having a number of trains bunching up at a terminal, or at "meets," where one train must stop to let another pass, ATCS would assure that only a manageable number of trains arrives at a given time -- with others still on their way, at fuel-saving speeds that are calculated to get them to the terminal when the terminal is ready for them.
-8-

Such a system would prevent delays, high costs and poor performance that result when some trains are out of their best position from the standpoint of the rail system as a whole.

And, much of the technology needed to create advanced train control systems alreadyexists.

As ATCS General Manager peter Detmold, special consultant to Canadian pacific, says, "When you bear in mind that when North American railroads say 'fill 'er up,' the annual bill is more than \(\$ 3\) billion, that possibly another \(\$ 500\) million is spent in repairing worn-out wheels and brakes, you will have no difficulty in understanding why we should like to coast up to our equivalent of ".* 'traffic lights' and try to time it so that they turn green iust before we get there -- like any good driver on the highway."

\section*{Energy-Saving Research}

While ATCS promises to help railroads save fuel inthe future, research is being done now that could produce tremendous savings in the cost of operating railroad locomotives.

AAR is leading the railroad industry in studying a number of alternatives to the currently used diesel fuel distillate. By mixing that middle distillate diesel with less expensive non-specification fuels, the cost per gallon can be decreased. It's even possible that the days of the coal-fired steam engine could return \(\quad\) though in an updated form, of course. Studies are looking into the feasibility of a new coal-burning steam engine -- not like the old engines that sprayed soot and cinders through the locomotive's chimney, but one that would use the latest in technology to meet emissions, efficiency and maintenance standards equal to or higher than today's diesel locomotives.

\section*{-9-}

Still other potential sources of energy are being studied. Fuel cells, for example, produce electricity through chemical reaction, and can use alcohoi derived from coal as an energy source. Although they are currently too big and heavy for a locomotive, advancing technology could create fuel cells that are suitable for future locomotive use.

Turbines powered by steam and gas have been used by railroads since the 1930 s, with varied degrees of success. In fact, gas turbines are more efficient than diesel engines when operating at full throttle. The problem is, locomotives spend much of their time idling or at partial throttle -- for instance, while unit trains are being loaded -- and, at those times, diesel engines are much more efficient. The R\&T Department of AAR estimates that turbines will not be competitive with diesel engines for railroad use through the Year 2000.

Railroads are also studying how the shape of railrog cars affects the use of energy. Aerodynamic wind. tunnel tests conducted on scale models of railroad cars will help determine the optimum characteristics of future railroad cars.

The tests were done on prototype intermodal cars and container designs, and used to develop mathematical models of aerodynamic drag, which will later be verified by full-scale field tests.

Variables in the tests included whether boxcar doors were closed (efficiency is greater if they are), whether cars were loaded or empty, length and height, crosswinds, and construction characteristics.

Lubrication of railroad tracks -- both curved and straight -has proved to be another energy-saving technique.

At the TTC in pueblo, AAR researchers applied, via a specially
 six-car test train traveling across the lubricated rails consumed 34 percent less power than it had before the same track was lubricated.

\section*{Robots on the Railroad?}

Well, not exactly on the railroad. But robots are becoming increasingly common in the railroad industry, mostly in repair shops where they can be used to free humans to do less routine, more \({ }^{\cdots}\). complicated work.

The Association of American Railroads and the massachusetts Institute of Technology are studying the effectiveness of robots in overhaul shops. Is it profitable to install a robot? can the feasibility of a robot performing work previously performed by a human be documented? These are questions that research will answer.

Robots are not only adept at replacing humans at mundane chores, but they are more flexible than machines. that sometimes are built to handle a particular task.

A robot, which can be relocated and reprogramed, can become a painter one day, a welder the next and a sand blaster later in the day.

Researchers say that the next five years could see robots getting smarter, more capable. and with more potential applications. But they will not suddenly replace people. Rather, they will gradually take the repetitious, routine jobs and free people to do jobs that require, quite simply, the human touch.

Research continues into how effective robots could be under less than optimum conditions -- such as poor light and bad weather. For
```

fueling trains, conducting inspections and other tasks, robots may
well prove themselves to be -- along with the High productivity
Integral Train, Advanced Train Control Systems, and many other
projects now being.researged -- our window into a productive
railroad future.

```
\#

AARb - 022686
 RAll ROADS

Office of Information
and Public Affairs
50 F Street. N.W., Washington, DC 20001 (202) 639-2550

\section*{HIGH TECHNOLOGY RIDES THE RAILS}

Today's railroads are running more efficiently than ever before, with the aid of high technology.

Technology is playing a major role in the operation of railroads, from computerized freight yards . . : to more versatile radio and communications systems . . : to advanced systems for controlling-* train movements. Video display terminals have replaced punch beards and reams of paperwork as a means to record and maintain vital waybill information and issue operating orders. And a new generation of "smart" locomotives irs being built, with on-board computers that monitor acceleration and braking systems and can even detect and diagnose mechanical problems.

Here's an update on how railroads are using high technology to improve the safety and efficiency of their operations.

Advanced Train control Systems
An extremely promising use of high technology currently under development is known as Advanced Train Control systems '(ATCS). ATCS will use electronics, computers and telecommunications to control the flow of traffic across an entire railroad system, resulting in increased operating efficiencies.

The development of ATCS is considered by the rail industry to be essential for improving the safety; productivity and energy
sou 7/629417

\section*{-2-}
efficiency of railroads. Efficiencies produced by ATcS are expected to substantially reduce the cost of operations. In addition, ATCS is estimated to generate a potential market of \(\$ 2\) billion for equipment suppliers.

Operating requirements for the concept were initially developed by a consortium of seven railroads under the sponsorship of the Association of American Railroads (AAR) and the Railway Association of Canada (RAC). Representatives from more than 16 railroads, the AAR and the RAC participate on 11 technical task forces which provide direction to the project.

ATCS will take the form of a modular system that can be pait together much like stereo components. The units that make up the system will be standardized for compatibility and flexible enough to accommodate simple as well as complex operating needs. ATCS will enable railroads to:
- Know where trains are, where they are going and how fast; receive warnings when there are work crews on the track;
- Be aware of track conditions and identify hazards such as broken rails, snow or mud slides, or out of line switches;
- Identify locomotives by their numbers; receive information on the condition of a locomotive's health -- how it is operating, whether an on-board component is likely to fail -- and warn when a trackside sensor spots a defect in a train;
- Monitor the status of the rail network, including how switches are set at sidings to handle trains moving in opposite directions;
- Monitor the location and movements of all trains in the system and transmit this information to dispatchers;
```

- Have a management information system capable of communicating with yard systems, a central data system or other dispatcher territories, to achieve maximum productivity, safety and cost savings.
Much of the technology needed to create advanced train control systems already exists. By early 1986, preliminary specifications will be in place and suppliers will develop prototypes. Testing and evaluation of prototypes will follow.
ATCS Could Use Space-Age Technology
One aspect of ATCS being studied is the possibility of using satellite technology to locate the position of trains along a rail system. These high-tech systems would use locomotive on-board computers linked to satellites to show a train's location within 150 feet. While there is divergent opinion within the industry on their application, some railroads are seriously investigating the feasibility of satellite positioning systems.
In addition to improved dispatching control, the eye-in-the-sky locomotive sensing system would contribute to lower fuel consumption, and -- along with ATCS -- better train handiing by engineers, safer and faster service, and improved communication between trains and dispatch centers. Suppliers say the systems could be built to meet operating requirements for Advanced Train control systems.
Railroads and computers -- A productive partnership
The freight railroad industry is one of the top private-sector users of computers -- and with recent advances in microcircuitry, the industry is making greater use of computers than ever before.

```

\begin{abstract}
-4-

Computer data processing came into widespread use on railroads during the 1950 s, first for payroll processing, then spreading to materials and supply, freight and passenger revenue, and car record information. During the 1960 s , railroads expanded their use of computers to include freight claims, loss and damage, marketing development, and stockholder accounting. significant changes occurred in the 1970 s as data processing was combined with data communications to expand computational abilities and keep track of train movements within outlying areas of a railroad's territory. The increased use of computers was perhaps the most profound change experienced by the railroad industry during the 1970 s.

Today, computers reach into virtually all aspects of railroadd operations -- from yard control and dispatching to information on car movements, inventory controly and electronic waybill exchange.

The increased efficiency and productivity that computers bring to railroad operations is essential for the survival of railroads in the highly competitive transportation marketplace. Computers allow a railroad to track cars and locomotives across its system, aiding equipment utilization. Data is instantaneously available, allowing railroads to respond to market changes and customer needs on an hour-to-hour basis rather than in days -- and sometimes weeks -- as in the past.

The advent of microprocessors has meant further increases in cost and space savings for railroads. Microprocessors perform logic functions, automatically relaying feedback on operating status and making adjustments for component failure. Miniaturization of circuitry has been a boon in areas such as communications and
\end{abstract}

\begin{abstract}
-5-
signaling controls. Today, very few electronic developments for railroads do not involve microprocessors. A prediction was made at the American Association of Railroad Superintendents' l3th winter meeting in Kansas City last year that, by the year 2000 , microprocessors will be the basis for the control of the entire railroad system.

Following is a brief overview of the varied uses of computers by railroads.

\section*{Rail Yard Control}

Computer control of freight yards began in 1964 at a hump* yard in East St. Louis, IL, where a computer was used to help sort and classify some 2,500 freight cars a day. Today, most major ydras on Class I railroads are under computer control.

In an automated rail yard; computer technology is used to control the speed of the cars as they roll down the hump. Computers also control the switches so cars are routed to the proper classifying track for the makeup of outbound trains. In the event the automatic system malfunctions, manual controls are available.

Information on the makeup. -- called the "consist" -- of incoming trains is received by the yard computer. Consist information on outbound trains is generated and sent to the railroad's main computer, which updates car movement records on the system and provides an advance consist to the next yard along the way.
\end{abstract}

\footnotetext{
*A "hump" in a railroad classifying yard is exactly that -- a small hill where freight cars are uncoupled at the crest and then roll down through switches on'to classification tracks.
}

\begin{abstract}
-6-

Railroad officials report improved service and cost savings from computer-controlled freight yards, along with reductions in loss and damage and in the number of cars that need repair. Other advantages are shorter yard times and resulting improved transit times. All this means lower rail costs, which are being translated into lower freight rates.

The "Electronic Horse"
New technology has turned the locomotive into a computerized, rolling data center. Locomotives with on-board computers have been in general use by several railroads since early 1984. They boast* radically better performance because the on-board microcomputers control propulsion and braking, as well as regulating the flow of power to maximize fuel efficiency. The locomotives have built-in diagnostics and self-correction features, and can communicate with a railroad's central computers.

Communications and Signaling
Computer technology and microprocessors have greatly improved the efficiency of railroad communications and signaling, speeding operations and allowing large amounts of data to be handled with ease.

Computerized telephone systems are widely used by railroads for both voice and data transmission. Computer technology is also used to ease communications between dispatchers, field workers and train crews. An increasing number of mobile radios are being centrally controlled by a dispatcher with computer assistance. New multichannel radios that utilize microprocessors are replacing
\end{abstract}
traditional crystal-controlled radios. The new radios are less expensive and easier to use.

In many rail yards, the yardmaster or manager has several communications facilities at his command. Computer technology enables him to communicate with field workers or train crew members, whether they use radios, telephones or intercom systems.

Railroads have used computers to aid dispatchers since the mid-1970s, but recent developments. in microprocessors have spread to
 lockings:" (An "interlocking" is a series of switches and signals within a local area that is locally controlled.) The AAR's Communications and Signal Division recently polled 21 railroads and found that 11 are ușing or plāning to use computer assistance in their signal operations.

Several railroads have installed "solid-state" or micro-processor-based interlocking systems to replace equipment that used electrically operated relays. The microprocessor control systems for interlockings allow faster operating speeds along with improved space savings and data handling capabilities. They also include self-diagnostics for testing, inspection and maintenance.

While the majority of track circuits -- electrical circuits Which use the rails as electrical paths for detecting the presence of trains -- use conventional relays, microprocessor track circuits are now being installed by railroads. The microprocessor systems yield space and maintenance savings.

\section*{Centralized Traffic Control}

A major development in railroad use of computers occurred in 1966 at the Union Railroad in pittsburgh, where more than 55 miles of track were handled ba single dispatcher in a centralized . Trafific Control (CTC) system. A CTC system enables one operator at a central location to control track switches and signals over a long territory comprising.many miles of railroad.
-The first system performed only route control and a minimal amount of data recording. CTC systems today automatically solve conflicts by routing trains according to a predetermined set of \({ }^{\circ}\) priorities. Computers aid the handling of increased traffic densities, automatically "clearing" trains, figuring "meets" and "passes." and executing them, including the movement of switches.

Computer-aided train dispatching is also widely used by railroads: primarily in conjunction with CTC. Some computerized. dispatch systems have an automatic field-clearing feature that goes into operation if communcations fail for any reason. Trains are allowed to line themselves up on a first-come, first-served basis in complete safëty, even if the dispatcher cannot control signals and switches on the line.

CTC increases the capacity of a single-track mainline by up to 60.percent. © CTC and computerized dispatching cut down on running times, saving on fuel, equipment. requirements and maintenance costs. : Nearly 56,000 track miles are now equipped with CTC.

Many railroads are combining former divisional CTC offices into regional control centers. powerful new microprocessor-based CTC systems allow larger territories to be covered while providing a greater degree of control and safety.

\section*{-9-}

Other Applications of Computers
Large-scale, computer-based maintenance-of-way information systems are commonplace on railroads in the l980s. Computerized maintenance scheduling is also performed on items such as shop and track machinery and communications equipment. Systems to plan basic maintenance work as well as a majority of production work allow for maximum efficiency in the scheduling and allocation of resources.

Microprocessor technology has been used in end-of-train telemetry units that monitor brake-pipe pressure, train speed and direction, allowing cabooseless trains to be operated safely.

Many railroads use computers for sophisticated control: of: inventories, with systems for storage, stock, levels, demand adjustments and automatic reordering....Through such systems, railroads can gain better control over inventories and monitor productivity of shop forces.

Computer, programs, can be used for many areas of railroad research. The \(A A R\) is using computers for accident investigations, analysis of freight car components, cost-benefit analyses of fuelsaving strategies, the evaluation of competitive rail and truck operations, and to determine the most efficient methods for railroad workers to perform their jobs. Railroads use computer modeling to evaluate car performance, to determine optimum car movement patterns and for the long-range forecasting of business.

\author{
RAILINC and TRAIN II \\ Although each railroad has always had communication facilities with which to track the location of its fleet within its own territory, the fact that cars move from railroad to railroad through interchanges requires a system of national identification.
}

\begin{abstract}
-10-

RAILINC Corporation, a subsidiary of the AAR, performs this function by managing a national computer information and communications network called TRAIN II (TeleRail Automated Information Network), as well as providing data processing and data communications services to the railroad industry, its customers and the AAR staff. Information maintained and transmitted by RAILINC includes railcar location and registration data, car hire and billing information, and economic, financial and traffic statistics.

Use of the TRAIN II system has grown significantly, especially in the area of message switching, a function that allows computers.. to talk to other computers in fractions of a second. A service, known as SAM; or Shipper Assist Message, uses RAILINC's telecommuncations network to transmit car location messages from more than 20 major railroads to the shippers they serve. SAM reduces shipper costs by eliminating the need for expensivive communication connections with each individual railroad. The RAILINC network can also be used as a two-way system to transmit information from shipper to rail carrier.

RAILINC's network can be used to transmit fleet updates, bills of lading and other information between a shipper and a rail carrier. This same concept is used in the growing area of eléctronic data interchange (EDI) to perform other business functions such as purchase order and invoice transactions between railroads and their suppliers. EDI facilitates freight transportation by streamlining the processing of information transactions between users, resulting in improved productivity and faster communications.
\end{abstract}
-11-
Electronic transmission of waybills, an application of messages switching which began ir 1978, has grown rapidl ariy 90 percent of waybills originated are currently being transmitted electronically.

TRAIN II keeps track of car movement and interchange data for the railroads and maintains the UMLER (Universal Machine Language Equipment Register) data base, which is the official registry of railroad cars.

RAILINC also acts as a clearinghouse for railroads in the exchange of car repair billing information, car hire data, freight loss and damage payments, and interline settlements. Future Directions for High Technology in Railroading

Individual railroad research and development departments, in conjunction with the AAR, are currently investigating the use of high technology in areas such as: computer programs to aid railroads in track analysis and maintenance, systems for automatic vehicle identification, and voice recognition systems for train and crew dispatching.

These examples are just a few of the many systems now under development and testing by North American railroads. The opportunities for the future application of high technology to railroading are almost limitless.

\section*{\#}

Transaction History Date 1991 -05-06
Date information retrieved from USP.TO Patent
Application Information Retrieval (PAIR)
system records at www.uspto.gov

pOtter NO.: UPN-401
Cry LOC \(2 . C\)
\(04 / 24 / 91\) 030
Auchterlopie \(T\) patent

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
patent application of:
Patrick T. Marker and Dejan Jovanovic
Serial No.: \(629,417^{\circ} \quad\) Group No.: 234
Filed: December 18, 1990 Examiner:
For: "A METHOD FOR ANALYZING FEASIBILITY
IN A SCHEDULE ANALYSIS DECISIONRECEVVED SUPPORT SYSTEM"

MAY 091991

GROUP 230
Commissioner of Patents \& Trademarks Washington, DC 20231

Sir:

\section*{PRELIMINARY AMENDMENT TRANSMITTAL LETTER}

Transmitted herewith is a preliminary amendment for the above-identified application.
(X) Small entity status of this application under 37 MFR 1.9 and 1.27 has been established by a verified statement previously submitted.
() A verified statement claiming small entity status under 37 CPR 1.9 and 1.27 is enclosed.
() Statement to Support Filing and Submission of DNA/Amino Acid Sequences in Accordance with 37 CPR, SS 1.821 through 1.825.
() No additional fee is required.

The fee for additional claims presented in this amendment has been calculated as follows:

() Please charge my Deposit Account No. 23-3050 in the amount of \(\$ \ldots\). This sheet is attached in triplicate.
(X) A check in the amount of \(\$ 100\). is attached. Please charge any deficiency or credit any overpayment to Deposit Account No. 23-3050.
(XX) The Commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No. 23-3050. This sheet is attached in triplicate.
(XX) Any additional filing fees required under 37 CFR 1.16 including fees for presentation of extra claims.

Any additional patent application processing fees under 37 CFR 1.17 and under \(37 \mathrm{CFR} 1.20(\mathrm{~d})\).
(XX) The Commissioner is hereby authorized to charge payment of the following fees during the pendency of this application or credit any overpayment to Deposit Account No. 23-3050. This sheet is attached in triplicate.
(XX) Any patent application processing fees under 37 CFR 1.17 and under 37 CFR 1.20(d).
```

( ) The issue fee set in 37 CFR 1.18 at or before mailing of the Notice of Allowance, pursuant to 37 CFR 1.311(b).
(XX)
Any filing fees under 37 CFR 1.16 including fees for presentation of extra claims.
Date: May 2, 1991

```

```

MACKIEWICZ \& NORRTS
One Liberty Place - 46th Floor
Philadelphia, PA 19103
(215) 568-3100


```
F:IWPIFORMSIAMEND.TNS

The fee for additional claims presented in this amendment has been calculated as follows:

() Please charge my Deposit Account No. 23-3050 in the amount of \$ \(\qquad\) - This sheet is attached in triplicate.
(X) A check in the amount. of \(\$ 100\). is attached. Please charge any deficiency or credit any overpayment to Deposit Account No. 23-3050.
(XX) The Commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No. 23-3050. This sheet is attached in triplicate.
(XX) Any additional filing fees required under 37 CFR 1.16 including fees for presentation of extra claims.
(XX) Any additional patent application processing fees under 37 CFR 1.17 and under 37 CFR 1.20.(d).
(XX) The Commissioner is hereby authorized to charge payment of the following fees during the pendency of this application or credit any overpayment to Deposit Account No. 23-3050. This sheet is attached in triplicate.
(XX) Any patent application processing fees under 37 CFR 1.17 and under 37 CFR 1.20(d).
```

( ) The issue fee set in 37 CPR 1.18 at or before mailing of the Notice of Allowance, pursuant to 37 CFR 1.311(b).
Any filing fees under 37 CF 1.16 including fees for presentation of extra claims.
Date: May 2, 1991

```

```

WOODCOCK WASHBURN KURTZ
MACKIEWICZ \& NORRIS
One Liberty Place - 46th Floor
Philadelphia, PA 19103
(215) 568-3100

```

```

$\neq$
F:IWPIFORMSTAMEND.TNS
$5-103-\operatorname{Sp} 234$


RECEIVED
Group Art Unit: 234

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231
Dear Sir:

## PRELIMINARY AMENDMENT

Preliminary to examination of the above-referenced patent application, please amend the application as follows:

IN THE SPECIFICATION:
Page 11, line 36, after "cross-overs" insert -fthese


```
UPN-401
 PATENT
 Page 14, line 30, after "updated", insert --a--;
 Page 15, line 5, after "The", delete "search";
 Page 15, line 5, after "The", insert --algorithm--;
 Page-15, line 5, after "designed", delete "as";
 Page 15, line 5, after "designed", insert --to provide
a--;
 Page 15, lines/ after "depth-first", insert --search--;
 Page 17, line 33, after "at least" delete "at";
 Page 18, line 2% after "caused", delete "deadly";
 Page 18, line 2, after "caused", insert --delay-- ;*
 Page 18, line 3, after "additional", insert --delay--;
 Page 18, line 18, after "if", delete "none";
 Page 18, line 18, 人fter "if", insert --neither--;
 Page 18, line 19, after "to", insert --either--;
 Page 19, line 26-27 after "at step 200", delete "In
this implementation it simply checks";
 Page 19, line 26 after "at step 200" insert --
Specifically the algorithm determines--;
 Page 19, line 31, after "or", delete "with the lower
cost than the best previous one";
 Page 19, line 31, after "or" insert --one with a cost
lower than any, previous solution";
 Page 23, delete lines 9 through 37.
 Page 24, delete lines 1 through 8;
```

```
UPN-401
 Page 26, line 15, after "at", delete "it";
 Page 26, line 15, after "at", insert --its--;
 Page 28, line 10, after "and" delete "beings";
 Page 28, line 10, after "and", insert --begins--;
 Page 28, line 25, before "and" delete "reduction";
 Page 28, line 25, before "and" insert --decrease--;
 Page 28, line 25/, after "minimum" delete "cost
increase";
 Page 28, line 25, after "minimum" insert --additional*..
cost--;
 Page 29, line 17, after "distinct" delete ways--;
 Page 29, line 18, after "cost" delete "increase;
 Page 29, line 18, before'"cost" insert --additional--;
 Page 29, line 19, after "minimum" insert
--additional--;
 Page 29, line 20, delete "increase";
 Page 29, line 30, after "arriving" delete "to";
 Page 29, line 30, after "arriving" insert --at--;
 Page 30, line 8/ after "minimum" insert
--additional--;
 Page 30, line 9, delete "increase";
 Page 30, line 10, /after "meet" insert --o--;
 Page 30, line 10, Fiter "meet" insert --to--;
 Page 30, line 12, after "cost" delete "increase";
```

UPN-401

Page 30, line 12, after "The general meet-shift
minimum, insert --additional---
Page 30, line 13/, after "cost", delete "increase";
Page 30, lined 3 after "minimum" insert
--additional--;
Page 30, line 24, delete "increase";
Page 30, line 25, after "minimum" insert
--additional--;
Page 30, line 25/, aYter "cóst" delete "increase";
Page 30, line 34, after "and" delete "in";
Page 31, line 23, after "minimum" insert :
--additional--;
Page 31, line 23, after "cost" delete "increase";
Page 31, line 26, after "minimum" insert
--additional--;
Page 31, line 26, after "cost" delete "increase";
Page 31, line 36, after' "reductions", delete "other";
Page 32, line 23, after "of" delete "maximum";
Page 32, line 24/, after "meet-shift" insert
-maximum-:
N.F. Page 33, line 11, after "Table" delete "110";
Page 33, line 11, after "from" delete "the";
Page 33, line 19, delete "the";
Page 33, line 25, after "from" delete "the";

```
 PATENT
 Page 33, line 34, after "decrease" delete "if";
 Page 33, line 34, after "decrease" insert --is--;
 Page 34, line"3, delete "minimum";
 Page 34, line 3, after "meet-shift" insert
--minimum--;
 Page 34, line 3/before "cost" insert --additional--;
 Page 34, line 3/after "cost" delete "increase";
 Page 34, line 5, after "positive" delete "minimum
general meet=shift cost increase";
 Page 34, line 5, after "positive" insert --generai %
meet-shift minimum additional cost--;
 Page 34, lines 13,14, after "minimum" delete "cost
increase";
 Page 34, line 13/, after "minimum" insert --additional
cost--;
 Page 34, line 14, after "in" insert --a--;
 Page 34, line 16, after "minimum" delete "cost
increase";
 Page 34, line 16, after "minimum" insert --additional
cost--;
 Page 34, line 25, after "minimum" delete "cost
increase";
 Page 34, line 28, after "minimum" insert --additional
cost";
```

Page 34, line 31, after "with" delete "zero"; Page 34, line 31/ after "with" delete "minimum general meet-shift cost increaseg";

Page 34, line 31-32, after "with" insert --general meet-shift minimum additional costs of zero--;


Page 35, line 8, after "desired" delete --from the--;


Page 36, line 8, after "branch" insert --the--;
Page 36, line 23, after "including" insert --the--;
Page 36 , line 37, after".llevel" delete "and";
Page 36, line 37, after "level" insert --other'wise--;
Page 37, line 1, after "step" delete -- 350
Page 37, line 31, after "that" delete "a";
Page 39, line 6, after "potential" insert --I--;
Page 40, line 6, after "positive" delete ")";
Page 40, line 6, after "positive" insert --(--;


## UPN-401

PATENT

Page 44, line 24, after "nodes" delete "that";
Page 44, line 2A, after "nodes" insert --than--;
Page 45, line 5 , delete "band";
Page 45, line 5, before "method" insert --bound--.

## IN THE DRAHINGS:

Please authorize the proposed amendment to step 550 of Figure 14D shown in red in the attachment hereto.

In particular, it is proposed to substitute the existing text of step 550 with the following language:
"PLAN_LOWER_BOUND [NO_OF_PLANS] = PLAN_LOWER_BOUND [NO_OF_PLANS $]$ - MERGED COST_DECREASE; $\bar{I} F$ PLAN LOWER BOUND [NO OF PLANS]> LOWER_BOUND THEN LOWE $\bar{R}$ _BOUND $=$ PLAN LOTWER_BOUND [NO_OF_PLANS];"

3
Support for this proposed correction can be found in the specification at page 34 , lines 33 through 37 and page 35 , lines 1 through 6. It is respectfully submitted that this correction does not add new matter.

## IN THE CLAIMS:

Please add new claims 2 through 30 as follows.
$-\sqrt{2 \text {. The method according to claim 1, further }}$



(iii) selecting a vehicle pair having a first and second vehicle based upon the order determined in step (i);
(iv) apdating arrival/and departure times for each vehicle of the rehicle pair at each delay point along the vehicle route based upon the data input at/step (d) and physical constraints $\oint f$ vehicle movement;
(v) identifying any xehicle delay as a result of the update of step (iv) of this claim 4;
(vi subtracting the uperated arrival time at the destination from the soneduled arrival time at the destination resulting in a difference for each/ vehicle and defining the difference in time as the slack time for the respective vehicles;
(vii) calcufating a cost of delay based upon the respective vehicle tardiness functions of the first and second vehicles for all identified delays;
(viii) adding the cost of delay, if any; calculated in step (vii) with any preexi/sting cumulative delay cost if any, and

UPN-401 PATENT
identifying the sum as the cumulative delay cost;
(ix) determining, based upon the updated departure and arrival times at/each delay point, if a conflict between the first and second vehicle will occur and if so, identifying at least one delay point where the conflict could be resolved by delaying at least one vehicle at a delay point unteilpthe other vehicle passed. by without coll/ision the delay points'so: identified definipg/gonflict resolution points;
(x) estimating at ieqst one delay time indicative of the time at least one of the vehicles of the vehicle pair would be required to wait at each of the conflict resolution points identifiea in step (ix) for the vehicles to pass without collision therebetween;
(xi) estimating the delay cost resulting from delays if any, at each of the conflict resolytion points;
(xii) selfcting one conflict resolution point based upon one of the following:

- 11 -


```
UPN-401 EATENTS
 identifying the sum ds! the cumulative delay
 cost; and
 (xvii) repeating steps (ii) of this claim 4
 through (xvi) if the cumulative delay cost is
 less than the upper bound.
5. The method of claim 4, wherein steps (ii) through (xvi) of claim 4 are not repeated in step (xvii) if all vehicles have previously been selected in step (ii) of claim 4, the method further comprising the steps of:
xviii) setting the upper bound equal to the cumulative delay cost defining a plan cost;
(xix) defining the arr fal and departure times for each vehicle at each point along the vehicle route as the current plan;
(xx) storing the current plan for future reporting and output to a user interface; and
(xxi) incrementing the plan counter.
6. The method of claim 5, further comprising
(xxii) decfementing the current level to arrive at most previous level and identifying the vehifles in the vehicle pair selected in
```



## UPN-401

PATENT
 in step (xiii), if any, is the vehicle arriving at the conflict resolution point first in time, the deldyed vehicle defining a first vehicle and the other vehicle in the pair defining a second vehicle.
9. The method of claim 6 further comprising the steps of:


- 15. 



UPN-401 PATENT


- 17 -


```
UPN-401
PATENT 13. The method of claim 12 further comprising the step of initializing at least one of the following;
(a) the bottom hevel equal to the current level;
(b) a tenth variable indicative of a minimum plan cost set equal to zero, the tenth variable defining a plan lower bound;
(c) the potential level set equal to empty, and;
(d) an eleventh variable indicative of : vehioles benefitted by reduced delays resupting from the selection of alternate conflict resofution points in step (xii)
set to empth, the eleventh variable
defining a potential vehicle set.
14. The method of claim 13, further comprising the steps of;
```



UPN-401 PATENT


- 20 -

```
UPN-401
PATENT
15. The method of claim 14, wherein steps (xl) through (xlvii) are not repeated if at least one of the following conditions exists;
(a) at least one feasibility plan has been found and a time limit to find a substantfalif optimal plan has expired;
(b) the curfent evel is equal to zero; and
(c) a difference betyeen the upper bound and the 1 ower bound is not greater than the tolenance.
16. The method of claim 14, further comprising the following steps provided the general-meet-shift maximum net benefit is greater than zero:
(xlviii) subtracting the general-meet-shift maximum net benefit from the plan iower bound resulting in a difference and defining the
difference as the plan lower bound if the
```




```
step of:
20. The method of claim 19, further comprising the step of:
(1x) adding the merged maximum net benefit and the general-meet-shift/maximum net benefit if the general-meet-shift maximum net benefit is positive and the general-meet-shift minimum additional cost is positive, the sum defining the merged maximum net benefit;
(lxi) merging the delays associated with the benefitted vehicles identified in step (xli). by computing the absolute delay time of the benefitted venicles in the path, if any, based upon the reduced delay resulting from delaying at least one vehicle at a meetshift resolation point if the general-meetshift maximum nef benefit is positive and the general-mqet-shift minimum additional cost is non-positive;
(lxii) calculating the merged cost decrease;
(lxiii) adding the merged cost decrease to the merged maximum net benefit and defining the sum as the merged maximum net benefit.
```

```
#
```





```
OPN-401 ERTENT

PATENT
(c) a difference between the upper bound and the lower bound is not greater than the tolerance!
\& \(W b^{23}\) 23. In a transportation system having a plurality of origin and a scheduled arrival time at a destination, there being a routing network defined by travel paths between the origin and destination, and delay points along each path for permitting one" vehicle to wait until a second vehicle passes'so as to avoid collision, a method comprising the steps of:
(a) inputting into a computer system at least one of the following data indicative of:
(i) a description of the routing network;
(ii) speed and mobility characteristics of each vehicle;
(iii) proposed transportation schedules for each vehicle specifying at least scheduled departure and arrival times;
(iv) a vehicle tardiness function for each vehicle indicative of an importance of each vehicle arriving at its destination on time; (v) any changes in the routing networks,
(b) initializing at least one of:
(vi) any changes in physical characteristic
of any path in the fouting network; and,
(vi, vehicle status in the routing network; (i) a first varipble indicative of a maximum cost due to vehfcle delays for the proposed transportation schedules input in step (a), the first variable defining an upper bound; ... (ii) a second fariable indicative of the minimum cost due to vehicle delays for the proposed transportation schedules input in step (a), the second variable defining a lower bound.
(c) grouping the vehicles into vehicle pairs having a fifst and second vehicle comprising substantiafly all possible combinations;
(d) determining, based upon the data input in (a), whether a potential conflict exists between the two vehicles of each vehicle pair, apd if so, identifying the vehicle pair as a l\&vel,
(e) identfying substantially all delay points at a fifst level where at least one vehicle in
- 29 -

\section*{UPN-401}

PATENT
(f) selecting one conflict resolution point identified in step (e) for the first level;
(g) determining an amount of time at least one vehicle in the vehicle pair must be delayed at the selected conflict: resolution point. so that the vehicles can pass by without collision therebetween, the amount of time a vehicle is delayed defining a delay time;
(h) updating the vehicles' scheduled departure and arrival times based upon the delay times determined in step (9);
(i) repeating steps (e) through (i) for each level identified in step (d);
(j) calculating a delay cost, based upon each delay time determined in step (\(g\)) and the respective vehicle tardiness functions input in step (a), for each vehicle delayed in step
PN-401
PATENT
(k) calculating a cumulative delay cost by adding together the delay costs dalculated in step (j) and defining the cumulative delay cost as the plan cost when the delay costs for substantially all levels have been added together;
(1) defining the arrival apd departure times for each vehicle at each point along the vehicle's travel path between the origin and. destination as the current plan if the plan cost is less than the upper bound, and setting the upper bound equal to the plan costi
(m) selecting an alternative conflict Fesolution point from the conflict resolution points identified in step (e) but not selected in step (f);
(n) identifying substantially all vehicles whose delays determifned in step (\(g\)) could be reduced by shifting the selected conflict resolution point to the alternate conflict resolution point selected in step (\(m\)), the vehicles so identified defining benefitted wehietes;

(r) redefining the lower bound by subtracting at least one of:
(i) the second maximun net benefit; and (ii) the merged cost decrease
(s) defining the set of donflict resolution points selected in step (f) and (m), the vehicles delayed in step (\(g\)) and their respective delay times, and the cumulative delay cost as a fathomed path if any cumulative delay cost is greater than the upper bound, and fedefining the cumulative delay cost of said path as the upper bound;
(\(t\)) identifying vehicle pairs at levels having both a positive second maximum net"benefit and negative first maximum net benefit, and defining the vehicles of said vehicle pairs so identified as potential vehicles;
(u) repeating steps (h) through (l) based on the alternate conflict resolution point selected in step (m) when at least one of the following occurs:
(i) the level for which the alternate conflict fesolution point has been selected has a positive first maximum net benefit; and

25. The method of claim \(2 \beta\), wherein the selection in step (f) is based upon one of the following:
(a) which of the conflict resolution points results in less delay cost where the delay will result in additional cost, and
(b) which of the conflict resolution points will result in less vehicle delay where the delay. will not produce additional delay cost;
26. The method of cldim 23, wherein the selection in
(i) selecting at least one conflict resolution point idertified in step (e) at the current level by determining which conflict resolution point is both physically located closest to the conflict resolution point selected in step (f) and closest to the location of potential conflict, the conflict resolution point defining a meet-shift resolption point.


``` comprises the following steps:-
(i) determining a reduced delay time compared to the delay tim\& calculated in step ( \(g\) ) which would result if the vehicles delayed at the meet-shift resolution point incurred no previous delay.
\(\ddagger\)
(ii) identifying substantially all further cost reductions of the current plan arising from the reduced delay determined in step (i) of this claim 26 ;
(iii) summing qubstantially all the additional cost reductions of the current plan arising from delays at conflict resolution points which are both later in time than the meetshift'resolution point and physically located in the direction of movement of the delayed
- 37.
```


SERIAL NUMBER	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.
$67+6547$	12/187\%	ER	DFTV-401

steven In FOCC:I
WOODCDCK, WASHBUR, KURTZ, MACKIEWICZ
\& NORFIS
ONE LIREFTY FLACE - 4ETH FLOOR
FHILADELFHIA, FA 19103

ART UNIT	PAPER NUMBER
2304	4
DATE MAILED:	$12 / 11 / 91$

This is a communication from the examiner in charge of your application. COMMISSIONER OF PATENTS AND TRADEMARKS.

Serial No. 07/629417

Paper Ho. 4

1) The title is objected to because it does not convey an inventive feature, i.e., that the invention is directed toward vehicular transportation scheduling.
2) The drawings are objected to.because Figs. 5, 7-9, 12-13, and 15-17 need descriptive titles. Correction.is required. See 37 C.F.R. $551.83(a) \&$ $1.84(\mathrm{~g})$.
3) 35 U.S.C. § 101 reads as follons:
3.1) Whoever invents or discovers any nen and useful process, machine, manufacture, or composition of aatter or any new and useful iaprovement thereof, may obtain a patent therefore, subject to the conditions and requireaents of this title"
4) Claims 1-30, as best understood, are rejected under 35 U.S.C. § 101 because the claimed invention is directed to non-statutory subject matter.
4.1) One analyzes claims for statutory subject matter by using the two-step, Freeman-Walter-Abele test. In re Freeman, 573 F.2d 1237, 197 USPQ 464 (CCPA 197B), as modified by In re Walter, 618 F.2d 758, 205 USPQ 397 (CCPA 1980), and In re Abele, 684 F.2d, 214 USPQ 682 (CCPA 1982). Taking Claim 1 as exemplary, it is clear that a mathematical algorithm is indirectly recited in the claims.
4.2) The equation is recited in a prose format within claim 1.

Specifically, the step of
4.2.1 b) determining based upon at least the
data indicative of (i), (ii), and (iv) entered in step (a) whether the proposed transportation
schedules may be met by the vehicles without
addition of any substantial cost due to delays of
the vehicles at the delay points,
4.2.1.1 [wherein] the
determination of step (b) . . .
2

Serial No. 07/629417
Paper No. 4
[is] a measure the feasibility of the proposed transportation schedules,
represents the algorithm in a prose format. Mathematical algorithms in prose form may be expressed as literal translations of the mathematical algorithm (e.g, substituting the expressis "division" or "taking the ratio" for a division sign) or may be expressed in words which indicate the mathematical algorithm. See Safeflight v. Sunstrand, 706 F. Supp. 1146, 10 USPQEd 1733, 1734 (D. Del. 1989) (subtracting); In re Taner, 214 USPQ 678 (CCPA 1978) (summing); In re Johnson, 589 F.己d 1070, 200 USPQ 199 (CCPA 197B) ("computing connotes the execution of one or a sequence of'mathematical operations"). Thus, the first step of the two-step test is satisfied.
4.3) Proceeding to the second step of the Freeman-Walter-Abele test, one considers the claim as a whole to determine if the algarithm is applied to physical elements or process steps, in any manner, provided that its application is circumscribed by more than a field of use limitation or non-essential post-solution activity. Continuing to focus upon Claim 1 , the step of
$\frac{4.3 .1}{\text { indicative of: } \mathrm{inputting} \text { into a computer system data }}$
; (iv). . . $\cdot(\mathrm{i})$.
is a mere data gathering step for providing the values for the variables that are inherently required by the mathematical algorithms noted above in section 4.2. In re Gelnovatch, 595 F.2d 3e, 201 USPQ 136 (CCPA 1979).
4.4) Aside from the mathematical algorithm and those steps dictated as necessary thereto, if the only limitation is insignificant or non-essential "post-soliution activity," the claimed subject matter is nonstatutory. Parker V. Flook, 437 U.S. 584, 590, 198 USPQ 193, 197 (1978). Here, once the

```
Serial No. 07/629417
solution to the algorithm is obtained, said Claim merely
    4.4.1 c) provid[es] an output indicative of the
    determination of step (b).
This is not significant post-solution activity which could transform an
otherwise non-statutory claim into a statutory one.
```

 4.5) Further, in respect to the preamble of Claim 1 which recites
 4.5.1 in a transportation system having a
 plurality of vehicles, each vehicle having a
 scheduled departure time from an origin and a
 scheduled arrival time at a destination, there being
 a routing network defined by travel paths between
 the origin and destination, and delay points along
 each path for permitting one vehicle to wait until a
 second vehicle passes so as to avoid collision,
 the Supreme Court has held: "A mathematical formula does not suddenly become
patentable subject matter simply by having the applicant acquiesce to limiting
the reach of that formula to a particular technological use." Diamond V.
Diehr, 450 U.S. 175, 209 USPQ 1 (1981). Also, a Jepson preamble has ${ }^{\text {r }}$ not been
held to limit the "subject matter as a whole", 50 as to avoid the 101
rejection. In re Walter, 618 F.2d 758, 205 USPQ 397 (CCPA 1980). (See also
MPEP 2110).
4.6) Physical, structural limitations in method claims are usually not entitled to patentable weight. Gottschalk v. Benson, 175 USPQ 673, 677 (1972). This is especially true in claims which recited the structural limitations within the preamble, e.g., Diamond v. Diehr, 450 U.S. 175, 209 USPQ 1 (1981), but still applies if the structure is recited within the body of the claim. Therefore, in claims 29-30, for example, the claimed
4.6.1 wherein the transportation schedules and the vehicles are trains is not entitled to patentable weight per Benson.
4.7) Also, the claim is not presumed to be statutory simply because it is in apparatus form. An apparatus claim that differs from a method claim only in that the term "means fe" has been inserted before each process step, to convert the step into the "means" for performing it, does not have separate meaning as an apparatus claim. In re Walter, 618 F.2d 758, 205 USPQ 397, 408 (CCPA 1980).
[T]he burden must be placed on the applicant to demonstrate that the claims are truly drawn to specific apparatus distinct from other apparatus capable of performing the identical functions.

If this burden has not been discharged, the apparatus claim will be treated as if it were drawn to the method or process which encompasses all of the claimed means."

In re Walter, 205 USPQ 397, at 408)
4.8) Dther claims, not explicitiy di further limitations which would enable said claims to overcome rejection under 35 USC 5101.
4.9) Applicant is referred to the Patent Dffice position on the patentability of mathematical algorithms and computer programs. 1106 TMOG 2 (5 September 1989).
5) Only for the purpose of making the following rejections are the claims viewed as statutory.
b) Claims 1-30, as best understood, are rejected under 35 U.S.C. 5 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.
6.1) For improved claim language clarity, it is recommended, in all references to aforementioned items and/or steps, that the definite article "the" be replaced with the more definite adjective "said."
6.2) Claims $1-30$ are rejected because it is unclear whether Applicant is claiming a system, i.e., an apparatus, or a method. Exparte Lyell, 17 USPQ2d 154日 (BPAI 1990). Physical structure limitations are usually given little patentable weight in method claims, e.g., claims 29-30.
6.3) Claim 27 fails because it is recited twice.
6.4) Those claims not explicitly discussed are rejected for incorporating the errors of their respective base claim by dependency.
7) The following is a quotation of the appropriate paragraphs of 35 U.S.C. § 102 that forn thetbasis for the rejections under this section ade in this Office action:
7.1) A person shall be entitled to a patent unles5 --
7.2) (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, wore than one year prior to the date of application for patent in the United States.
7.3) (e) the invention was described in a patent granted on an application for patent by another filed in the United States before the invention thereof by the applicant for patent, or on an international application by another who has fulfilled the requirements of paragraphs (1), (2), and (4) of section 371(c) of this title before the invention thereof by the applicant for patent.
8) Claims 1 and 30, as best understood, also are rejected under 35. U.S.C. $\xi 102(b)$ as being anticipated by MORSE ET AL., USPN 4122523. Claim 1, as best understood, is rejected under 35 U.S.C. $5102(e)$ as being anticipated by MINAMI, USPN 5038290.
8.1) As to Claim 1, the cited references teach the claimed method, applicable to a field of use such as
Serial No. $07 / 629417$
8.2 a transportation system having a plurality of vehicles, each vehicle having a scheduled departure time from an origin and a scheduled arrival time at a destination, there being a routing network defined by travel paths between the origin and destination, and delay points along each path for permitting one vehicle to wait until a, sectond vehicle passes so as to avoid collision,
comprising the claimed steps of
8. 3 a) inputting into a computer system data indicative of:
(i) a description of the routing network
(MORSE ET AL. col. 2, 11. 30-34; MINAMI Col. 4, 11. 3-5);
(ii) speed and mobility characteristics of each vehicle (MORSE ET AL. col. 6', 11. 17-20; MINAMI col. 2, ll. 6-12);
(iii) proposed transportation schedules for each vehicle specifying at least one scheduled departure and arrival times (MARSE ET AL. col. 4, 11. 30-34; MINAMI col. 4, 11. 13-26);
(iv) a vehicle tardiness function for each vehicle indicative of an importance of each vehicle arriving at its destination on time (MORSE ET AL. col. 10, 11. 42-61; MINAMI col. 5, 11. 25-30);
8. 4 b) determining based upon at least the data indicative of (i), (ii), and (iv) entered in step (a) whether the proposed transportation schedules may be met by the vehicles without addition of any substantial cost due to delays of the vehicles at the delay points,
8.4.1 [wherein] the determination of step (b)
. . [is] a measure the feasibility of the proposed transportation schedules (MORSE ET AL. єOl. 10, 11. 5-14, col. 13, 11. 32-34; MINAMI col. 4, 11. 45-46, feasibility=possible or feasibility=not-possible); and
Q. 5 C) providing an output indicative of the determination of step (b) (MORSE ET AL. col. 20, 11. 64-65; MINAMI Fig. 2, outputs of decision block \#2).
8.6) As to claim 30, MORSE ET AL. teach the claimed invention
8.6. 1 wherein the transportation schedules and
the vehicles are trains (MDRSE ET AL. abstract).
9) The following is a quotation of 35 U.S.C. 5103 which foras the basis for all obviousness rejections set forth in this Office action:
9.1) A patent ay not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject aatter sought to be patented
and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the wanner in which the invention was made.
9.2) Subject aatter developed by another person, which qualifies as prior art only under subsection (f) or (g) of section 102 of this title, shall not preclude patentability under this section where the subject natter and the clained invention were, at the tine the invention was eade, owned by the same person or subject to an obligation of assignaent to the saae person.
9.3) This applitation currently names joint inventors. In considering patentability of the clains under 35 U.S.C. 103 , the exaininer presumes that the subject matter of the various clains was conanonly owned at the tise any inventions covered therein were eade absent any evidence to the contrary. Applicant is advised of the obligation under 37 C.F.R. 51.56 to point out the inventor and invention dates of each claim that was not commonly ouned at the time a later invention was made in order for the exaniner to consider the applicability of potential 35 U.S.C. 5 102(f) or (g) prior art under 35 U.S.C. § 103.

Claims 2-29, as best understood, also are rejected under 35 U.S.C. 5103
as being unpatentable over MORSE ET AL. in view of TSURUTA ET AL., USPN
4926343.
10.1) As to Claim 2, MORSE ET AL. teach part of the claimed
10.1.1 (d) inputting into the computer system data indicative of:
(vii) vehicle traffic
status in the routing network
(MORSE ET AL. col. B, 11. 37-39);
10.1.2 (e) generating, based upon the data input
in steps (a) and (d), a plurality of feascibility plans for avoiding conflicts between vehicles where at least one vehicle is delayed at a delay point so that a second vehicle may pass by without collision (MORSE ET AL. col. 20, 11. 37-67); and
10.1.3 (f) determining which of the plurality of feasibility plans is substantially optimal based
upon costs resulting from delaying vehicles
according to each conflict resolution (MDRSE ET AL. col. 20, 11. 37-67).
10.2) The teachings of MORSE ET AL. differ from claim 2 by the feature taught by
10.2.1 (d) inputting into the computer system data indicative of:
(v) any changes in the
routing networks (TSURUTA ET AL. col. 8, 11. 33-44); and
(vi) any changes in vehicle travel paths within the routing network (TSURUTA ET AL. col. 8, 11. 33-44).

Claim 2 would have been obvious; one of ordinary skill in the art, at the time the invention was made, would have been motivated to combine the teachings of TSURUTA ET AL. into those of MORSE ET AL. in order to make adapting old schedules to new schedules more efficient (TSURUTA ET AL. col. 2, 11. 11-18).
10.3) As to Claims 3-30, MORSE ET AL. teach conflict resolution based upon a single conflicting pair (MORSE ET AL. col. 7, 1. 45).

```
#
```

11) Claims 1 and 30, as best understood, also are rejected under 35 U.S.C. 5103 as being unpatentable over "Railroad Freight Train Scheduling: A Mathematical Programming Formulation," MORLOK ET AL., The Transportation Ctr. \& Technology Instit., Northwestern Univ., May 1970, in view of "Computer Aided Train Dispatching Decision Support Through Optimization," SAUDER ET AL., Interfaces 13, 6 December 1987).
11.1) As to Claims 1 and 30, MORLOK ET AL. teach part of the claimed method, applicable to a field of use such as
11.2 in a transportation system having a plurality of vehicles, each vehicle having a scheduled departure time from an origin and a scheduled arrival time at a destination, there being a routing network defined by travel paths between the origin and
destination, and delay points along each path for permitting one vehicle to wait until a second vehicle passes so as to avoid collision,
comprising the claimed steps of
11.2.1 a) inputting into a computer system data indicative of:
(i) a description of the
routing network (MORLOK ET AL. P.
6, 11. 1-2);
9

Serial No. 07/629417

Paper No. 4

> (ii) speed and mobility
> characteristics of each vehicle (MORLOK ET AL. p. 6, 11. 2-3); and
> (iii) proposed
> transportation schedules for each vehicle specifying at least one scheduled departure and arrival times (MORLDK ET AL. p. 6, 11. 12);
> 11.2 .2 b) determining based upon at least the data indicative of (i), (ii), and (iv) entered in step (a) whether the proposed transportation schedules may be met by the vehicles without addition of any substantial cost due to delays of the vehicles at the delay points,
> 11.2.2.1 [wherein] the
> determination of step (b) . .
> [is] a measure the feasibil'ity of
> the proposed transportation
> schedules. (MORLOK ET AL. p. 4, 11. 9-14); and
> 11.2.3 c) providing an output indicative of the determination of step (b) (MORLOK ET AL. p. 4, 11. 9-14).

In addition, MDRLOK ET AL. suggest expanding their teachings to include data indicative of the priority of a vehicle (MORLOK ET AL. P. 53, 11. 3-4) for the motivation that it would add greatly to a model's realism and usefulness
(MORLOK ET AL. p. 53, 11. 4-5).
11.3) The teachings of MORLOK ET AL. differ from Claims 1 and 30 by the claimed feature taught by the secondary reference:
$\frac{11.3 .1}{\text { a) inputting into a computer system data }}$
indicative of:
(iv) a vehicle tardiness
function for each vehicle
indicative of an importance of
each vehicle arriving at its
destination on time (SAUDER ET AL. p. 36, 1st col.).

Claims 1 and 30 would have been obvious; given the suggestion and motivation noted above in section 11.2, one of ordinary skill in the art, at the time the invention was made, would have been motivated to combine the teachings of

SAUDER ET AL. into those of MORLOK ET AL. for the additional motivation that
adherence to a schedule is promoted (SAUDER ET AL. p. 36, 1st col.).
12) Claims 1 and 30, as best upperstood, also are rejected under 35 U.S.C.

5103 as being unpatentable over "Tactical Scheduling of Rail Operations: The
SCAN I System," HARKER ET AL., The Wharton School - University of
Pennsylvania, May 1989, in view of SAUDER ET AL.
12.1) As to Claims 1 and 30, HARKER ET AL. teach part of the claimed
method, applicable to a field of use such as
12.2 in a transportation system having a plurality of vehicles; each vehicle having a scheduled departure time from an origin and a scheduled arrival time at a destination, there being a routing network defined by travel paths between the origin and destination, and delay points along each path for permitting one vehicle to wait until a second vehicle passes 50 as to avoid collision,
comprising the claimed steps of シ
12.2.1
indicative of:
(i) a description of the
routing network (HARKER ET AL. p.
7, 1. 11 "track description");
(ii) speed and mobility
characteristics of each vehicle (HARKER ET AL. p. 7, 1. 12 "train travel times");
(iii) proposed
transportation schedules for each
vehicle specifying at least one
scheduled departure and arrival
times (HARKER ET AL. p. 7, 1. 12
"proposed train schedules");
12.2.2 b) determining based upon at least the data indicative of (i), (ii), and (iv) entered in step (a) whether the proposed transportation schedules may be met by the vehicles without addition of any substantial cost due to delays of the vehicles at the delay points,
12.2.2.1 [wherein] the
determination of step (b)
[is] a measure the feasibility of the proposed transportation

```
Serial No. 07/629417
Paper No. 4
schedules (HARKER ET AL. Pp. 7-9); and
12.2.3 c) providing an output indicative of the determination of step (b) (HARKER ET AL. Figs. 2-9 \& p. 35).
HARKER ET AL. explicitly suggest inputting data indicative of a tardiness function for the motivation that it is a measure of "goodness" for a given set of schedules (HARKER ET AL. p. 18, 4 lines from bottom).
```

12.3) The teachings of HARKER ET AL. differ from Claims 1 and 30 by the claimed feature taught by the secondary reference:
12.3.1 a) inputting into a computer system data indicative of:
(iv) a vehicle tardiness
function for each vehicle indicative of an importance of each vehicle arriving at its destination on time (SAUDER ET AL. p. 36, lst col.).

Claims 1 and 30 would have been obvious; given the suggestion and motivation noted above in section 12.2, one of ordinary skill in the art, at the time the invention was made, would have been motivated to combine the teachings of SAUDER ET AL. into those of HARKER ET AL. for the additional motivation that adherence to a schedule is promoted (SAUDER ET AL. p.- 36 , 1st col.).
13) Claims 2-29, as best understood, also are rejected under 35 U.S.C. 5103 as being unpatentable over HARKER ET AL. and SAUDER ET AL. as applied to claim 1 above, and further in view of "The Use of ATES in Scheduling and operating Railroads: Models, Algorithms and Applications," HARKER, The Wharton School University of Pennsylvania, May 1989.
13.1) The teachings of HARKER ET AL. and SAUDER ET AL. differ from Claims 2-29 by the claimed feature taught by HARKER:

```
        13.1.1 (d) inputting into the computer system
        data indicative of:
            (v) any changes in the
        routing networks (HARKER p. 9);
                    (vi) any changes in
    vehicle travel paths within the
        routing network (HARKER p. 9); and
        (vii) vehicle traffic
    status jif the routing network
    (HARKER P. 10, item 4).
Claims \(2-29\) would have been obvious; one of ordinary skill in the art, at the time the invention was made, would have been motivated to combine the teachings of HARKER into those of HARKER ET AL. and SAUDER ET AL. in order to achieve a system that is responsive to unexpected vehicle breakdowns and accidents (HARKER p. 10, item 4).
```

14) The following cited references, although not applied against the claims; have been considered by the examiner as of interest. Applicant is urged to consider the teachings of these references. in view of the claimed invention.
14.1) TAKAHASHI ET AL., USPN 4791571, teach a transit schedule control system.

Serial No. 07/629417

15) In the Preliminary Amendment dated 6 May 1991, the instructions to amend
p. 33, 1. 11, p. 34, 11. 34-35, p. 35,.1. 9, and p. 41, 11. 12-13 were not
sufficiently clear to be executed.
16) Any inquiry concerning this communication or earlier communications from the examiner should be directed to Thomas 5. Auchterlonie whose telephone number is (703) 308-1663. Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 308-0754. If necessary, facsimile transmissions may be directed to the PTO Facsimile Center whose telecopy numbers are (703) 308-3719, -3720 . It is respectfully requested that Applicant alert the Examiner, via courtesy telephone call to the Examiner, that a facsimile transmission has been made.

THOMAS S. AUCHTERLONIE PATENT EXAMINER GROUP 230

Art Unit 2304
2 December 1991

PARSHOTAM S. ALL SUPERVISORY PATENT EXAMMEI

A.are approved
B. \varnothing are objected to under 37 CFR 1.84 for the reason(s) checked below. The examiner will require submission of new, corrected drawings at the appropriate time. Corrected drawings must be submitted according to the instructions listed on the back of this Notice.

1. Paper and ink. 37 CFR 1.84 (a) , copyma cline marks \triangle Sheet(s) 28, obj'
2. Size of Sheet and Margins. 37 CFR 1.84(b)
Acceptable Paper Sizes and Margins

Margin	Paper Size		
	81/2by 14 inches	$81 / 2 \mathrm{by}$ $13 \text { inches }$	$\begin{gathered} \text { DiN size A4 } \\ 21 \text { by } 29.7 \mathrm{~cm} . \end{gathered}$
Top	2 inches	1 inch	2.5 cm .
Lett	1/4inch	$1 / 4$ inch	2.5 cm .
Right	1/4 inch	$1 / 4$ inch	1.5 cm .
Bottom	1/4 inch	$1 / 4$ inch	1.0 cm .

Sheet(s) \qquad 28 .Proper Margins Required. Sheet(s) \qquad
$\square \mathrm{TOP}$RIGHTBOTTOM
Hätching and Shading. 37 CFR 1.84(d)Shade Lines are Required.
Fig(s) \qquadCriss-Cross Hatching Not Allowed. : Fig(s) \qquadouble Line Hatching Not Allowed. Fig(s) \qquadParts in Section Must be Hatched. Fig(s) \qquad
5. Reference Characters. 37 CFR $1.84(f)$

\square Reference Characters Placed Incorrectly. Fig(s) \qquad
6. Views. 37 CFR 1.84 (i) \& (j)Figures Must be Numbered Properily.
3. Character of Lines. 37 CFR 1.84(c)
. Fig(s) \qquad
7.
\square Solid Black Shading Not Allowed. Fig(s) \qquadhotographs Not Approved.
8. \square Other. - All ficy, legends poov
Telephone inquires concerning this review should be directed to the Chief Draftsman at telephone number (703) 557-6404.

Reviewirf Drattsman

\qquad

Transaction History Date 1992 -04-08
Date information retrieved from USPTO Patent
Application Information Retrieval (PAIR)
system records at www.uspto.gov

The fee for additional claims presented in this amendment has been calculated as follows:

				SMASIL	ENSSIT:		OTHER SMALL	THAN ENTITY
	claims Remaining After Amendment	Highest Number Previou"sly paid for	No. Extra	Rate	Fee	OR	Rate	Fee
Total Claims	17 -	$\begin{array}{ll} 28 & = \\ \text { (at least 20) } \end{array}$	0	$\mathbf{x} \$ 10=$	\$0	OR	x\$20=	\$
Indep. Claims	$2-$	$\begin{gathered} 3 \\ \text { (at least } 3) \end{gathered}$	0	x\$36=	\$0	OR	$\mathbf{x} \mathbf{7 2}=$	\$
First Presentation Multiple Dependent Claims			\pm	'\$110=	\$	OR	\$220=	\$
Total fee for added claims:					\$0	\%.		\$

(XX)

Request is hereby made under 37 CFR 1.136 (a) to extend the time for response to the Office Action of December 11. 1991 to and through April 11, 1992, comprising an extension of the shortened period of one (1) month:

	SMALL ENTITY		OTHER THAN ENTITY	SMALL
One Month	XXXX	\$ 55	.	\$ 110
Two Months		\$175		\$ 350
Three Months		\$405		\$ 810
Four Months		\$640		\$1,280
Additional fee for extended response:			\$55.00	

Applicant(s) has/have not been notified that the requested extension will not be permitted. The present application is not involved in an interference declared pursuant to 37 CFR 1.207.

Total fee required
$\$ 55.00$
() Please Charge my Deposit Account No. 23-3050 in the amount of $\$$ \qquad - This sheet is attached in triplicate.
(XX) A check in the amount of $\$ 55.00$ is attached. Please charge any deficiency or credit any overpayment to Deposit Account No. 23-3050.
The Commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No. 23-3050. This sheet is attached in triplicate.
(XX) Any additional filing fees required under 37 FR 1.16 including fees for presentation of extra claims.
(XX) Any additional patent application processing fees under 37 CF 1.17 and under 37 CF $1.20(d)$.
(XX) The Commissioner is hereby authorized to charge payment of the following fees during the pendency of this application or credit any overpayment to Deposit Account No. 23-3050. This sheet is attached in triplicate.
(XX) Any patent application processing fees under 37 CF 1.17 and under 37 CFR 1.20(d).
() The issue fee set in 37 MFR 1.18 at or before mailing of the Notice of Allowance, pursuant to 37 CFR 1.311(b).
(XX) Any filing fees under 37 CR 1.16 including fees for presentation of extra claims.

Date: Opal 6,1992

steven J. Rotci
(Name of Attorney of Record)
Registration No. 30,489
WOODCOCK WASHBURN KURTZ
MACKIEWICZ \& NORRIS
One Liberty Place - 46 th Floor
Philadelphia, PA 19103
(215) 568-3100

In re patent application of:

sir:

AMENDMENT TRANSMITTAL LETTER AND REQUEST FOR EXTENSION OF TIME

Transmitted herewith is an amendment in the aboveidentified application.
(XX) Small entity status of this application under 37 CFR 1.9 and 37 . CFR 1.27 has been established by a verified statement previously submitted.
() A verified statement claiming small entity status under 37 CFR 1.9 and 37 CFR 1.27 is enclosed.
() Statement to Support Filing and Submission of DNA/Amino Acid Sequences in Accordance with 37 CFR S $\$ 1.821$ through 1.825.

The fee for additional claims presented in this amendment has been calculated as follows:

(XX)

Request is hereby made under 37 CFR $1.136(\mathrm{a})$ to extend the time for response to the Office Action of December 11. 1991 to and through April 11, 1992, comprising iän extension of the shortened period of one (1) month:

	SMALC ENTITTY:		OTHER THAN SMALL ENTITY	
One Month	XXXX	\$ 55		110
Two Months		\$175		\$ 350
Three Months		\$405		\$ 810
Four Months		\$640		\$1,280
Additional fee for extended response: -			\$55.00	

Applicant (s) has/have not been notified that the requested extension will not be permitted. The present application is not involved in an interference declared pursuant to 37 CFR 1.207.
Total fee required
$\$ 55.00$

```
( ) Please charge my Deposit Account No. 23-3050 in the
        amount of $_. This sheet is attached in triplicate
(XX) A check in the amount of $55.00 is attached. Please
        charge any deficiency or credit any overpayment to
        Deposit Account/No. 23-3050.
(XX) The Commissioner is hereby authorized to charge payment
        of the following fees associated with this communication
        or credit any overpayment to Deposit Account No. 23-3050.
        This sheet is attached in triplicate.
        (XX) Any additional filing fees required under 37 CFR
        1.16 including fees for presentation of extra
        claims.
        (XX) Any additional patent application processing fees
        under 37 CFR 1.17 and under 37 CFR 1.20(d).
(XX) The Commissioner is hereby authorized to charge payment
        of the following fees during the pendency of this
        application or credit any overpayment to Deposit Account
        NO. 23-3050. This sheet is attached in triplicate.
        (XX) Any patent application processing fees under 37 CFR
        1.17 and under 37 CFR.1.20(d).
            ( ) The issue fee set in 37 CFR 1.18 at or beforore
        mailing of the Notice of Allowance, pursuant to 37
        CFR 1.311(b).
        (XX) Any filing fees under 37 CFR 1.16 including fees for
        presentation of extra claims.
Date:
Opul 6,1992
```



```
steven J. Robed
(Name of Attorney of Record)
Registration No. 30,489
WOODCOCK WASHBURN KURTZ
MACKIEWICZ \& NORRIS
One Liberty Place - 46th Floor
Philadelphia, PA 19103
(215) 568-3100
```

K:IUIFORMSUAM-EXT.TNS

The fee for additional claims presented in this amendment has been calculated as follows:

				$8 \mathrm{M}=\mathrm{L} 1 \mathrm{~S}$	NH2		OTHER SMAIL	HAN NTITY
	claims Remaining After Amendment	Highest Number : Previously paid for	NO. Extra	Rate	Fee	OR	Rate	Fee
Total Claims	17 -	$\begin{array}{ll} 28 & = \\ \text { (at least } & \text { 20) } \end{array}$	0	$\mathbf{x \$ 1 0 =}$	\$0	OR	$\mathbf{x} \mathbf{\$ 2 0}=$	\$
$\begin{aligned} & \text { Indep. } \\ & \text { Claims } \end{aligned}$	2	$\begin{gathered} 3 \\ \text { (at least } 3) \\ \hline \end{gathered}$	0	$\mathbf{x \$ 3 6 =}$	\$0	OR	$\mathbf{x} \$ 72=$	\$
First presentation Multiple Dependent Claims				\$110=	\$		\$220=	\$
Total fee for added claims:					\$0			$\$^{+\cdots}$

(XX)

Request is hereby made under 37 CFR $1.136(a)$ to extend
the time for response to the Office Action of December.
11. 1991 to and through April 11, 1992, comprising an
extension of the shortened period of one (1) month:

Applicant(s) has/have not been notified that the requested extension will not be permitted. The present application is not involved in an interference declared pursuant to 37 CFR 1.207.

Total fee required
$\$ 55.00$

K:IUIFORMSUAM-EXT.TNS

- 2 -

Date:

seven J. Bocci
(Name of Attorney of Record)
Registration No. 30,48.9

```
WOODCOCK WASHBURN KURTZ
    MACKIEWICZ & NORRIS
One Liberty Place - 46th Floor
Philadelphia, PA }1910
(215) 568-3100
```


DOCKET NO.: UPN-401
patent
Serial No.: 629,417
Filed: December 18, 1990
Group Art Unit: 2304 GROUP 230
For: A METHOD FOR ANALYZING FEASIBILITY IN A SCHEDULE ANALYSIS DECISION SUPPORT SYSTEM
Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231
Dear Sir:

AMENDMENT

In response to the Office Action dated December 11, 1991, having a shortened statutory period of response up to and including March 11, 1992, extended herewith up to and including April 11, 1992 please amend the above-identified application as follows.
In The Title:
Please change the title to --METHOD FOR ANALYZING AND GENERATING OPTIMAL TRANSPORTATION SCHEDULES FOR VEHICLES SUCH AS TRAINS AND CONTROLLING THE MOVEMENT OF VEHICLES IN RESPONSE THERETO--

DOCKET NO.: UPN-401
PATENT

In the Drawings:
Authorization is hereby requested to amend Figures 5, 7-9, 12-13 and 15-18 to insert descriptive titles as shown in red on the attached copies of those Figures.

In the specification:
Page 33, line 11, after "Table", deléte "0.4" and substitute therefor --4--.

Page 35, line 9, -after "thus", delete "to decrease" and substitute therefor -- decreases --.

```
In the claims:
```

Please cancel claims $1-22,27$ (second occurrence) and

Please amend claims 23-26 and claim 30 as follows.
923. (Amended) In a transportation system having a plurality of vehicles, each vehicle having a scheduled departure time from an origin and a scheduled arrival time at a destination, there being a routing network defined by travel paths between the origin and destination, and delay points along each path for permitting one vehicle to wait until a second vehicle passes so as to avoid collision, a method comprising the steps of:

> (a) inputting into a computer system at least one of the following data indicative of:

- 2 -

72

	(i) a description of [the] said routing
network;	

76

```
            DOCKET NO.: UPN-401
                                    PATENT
(1) defining the arrival and departure times for each vehicle at each point along the vehicle's travel path between [the] said origin and destination as [the] a current plan if [the] said plan cost is less than [the] said upper bound, and setting [the] said upper bound equal to [the] said plan cost;
(m) selecting an alternative conflict resolution point from [the] said conflict resolution points identified in step (e) but not selected in step (f);
( n ) identifying substantially all vehicles whose delays determined in step ( \(g\) ) could be reduced by shifting [the] said selected conflict resolution point to [the] said alternate conflict resolution point selected in step (m), the vehicles so identified defining benefitted vehicles;
(0) estimating, based on [the] said alternative conflict resolution point, an amount indicative of a potential net cost reduction by computing a difference in potential delay reductions at other levels and any delay
\(77^{-6-}\)
```


- 7 -
(i) [the] said second maximum net benefit; and
(ii) [the] said merged cost decrease
$\gamma^{\prime \prime}$ (s) defining [the] said set of conflict resolution points selected in step (f) and (m), the vehicles delayed in step (g) and their respective delay times, and [the] said cumulative delay cost as a fathomed path if any cumulative delay cost is greater than [the] said upper bound, and redefining the cumulative delay cost of said path as [the] said upper bound;
(t) identifying vehicle pairs at levels having both a positive second maximum net benefit and negative first maximum net benefit, and defining the vehicles of said vehicle pairs so identified as potential vehicles;
(u) repeating steps (h) through (1) based on [the] said alternate conflict resolution point selected in step (m) when at least one of the following occurs:
12
(i) [the] said level for which [the] said alternate conflict resolution point has been

 and said destination is controlled according

10 to said optimal plan. $\quad 9 \quad 9$ (Amended) The method of claim 24 , wherein step
(c) further comprises the steps of:
${ }^{\prime}$ (i) ordering [the] said vehicles chronologically;
if (ii) incrementing [the] said level to a next level and defining [the] said next level as [the] said current level;
i^{\prime} (iii) selecting each vehicle pair based upon [the] said order determined in step (i);
25. (Amended) The method of claim 23, wherein [the] said selection in step (f) is based upon one of the following:
i^{\prime} (a) which of [the] said conflict resolution points results in less delay cost where [the] said delay will result in additional cost, and
(i) (b) which of [the] said conflict resolution points will result in less vehicle delay where [the] said delay will not produce additional delay cost [i].

- 10 -

81

DOCRET NO.: UPN-401
PATENT

of said identified conflict resolution points for each potential conflict for an amount of time such that each potential conflict is resolved without a collision, said initial plan having a delay cost substantially equal to an accumulation of all delay costs resulting from said one vehicle being delayed in each potential conflict, said delay cost defining an upper bound;
d) estimating a maximum cost benefit arising from shifting from said one conflict resolution point used to resolve each respective potential conflict in said initial meet-pass plan to another conflict resolution point, said shifting resulting in a potential alternative plan;
(\%) (e) generating alternative meet-pass plans using the depth-first search bounded by delay costs from said other conflict resolution point in each potential alternative plan where said estimated maximum cost benefit is positive, said alternative meet-pass plan having a delay cost substantially equal to an accumulation of all delay costs resulting

	from said one vehicle being delayed in each potential conflict, and if said delay cost of said alternative meet-pass plan so generated is lower than said upper bound, the step further comprising replacing said upper bound with said delay cost of said alternative meet-pass plan;
fl (f)	identifying one meet-pass having a substantially minimal delay cost among said initial and alternative meet-pass plans so generated by comparing each alternative meetpass plan generated to said upper bound; and
(11) ${ }^{(9)}$	controlling the movement of said vehicles according to said identified meet-pass plan, said vehicles being delayed at said identified conflict resolution points for the amount of time specified by said identified meet-pass plan. The method of claim 32, wherein a

ρ i) said upper bound is zero;

DOCKET NO.: UPN-401

PATENT

```
            ii) said upper bound is less than or equal to a
                                    predetermined value indicative of an
                                    acceptable delay cost;
                    \therefore, iii) a predetermined time has expired for
                                    generating said one identified meet-pass plan
                                    and at least said initial meet-pass plan has
                                    been generated; and
                    M/ iv) substantially all alternative meet-pass plans
                                    according to step (e) have been generated.
                                    34. The method of claim 32, further comprising
the step of:
\(\int(h)\) providing an output indicative of a measure of feasibility of said proposed transportation schedules.
35. The method of claim 32 , wherein the step of estimating a maximum cost benefit further comprises the step of: \(f\) determining a one meet shift maximum net benefit for each potential conflict by shifting said conflict resolution point at which said one vehicle is delayed in said initial meetpass plan to a conflict resolution point at which said other vehicle of said two vehicles is delayed defining an alternate conflict resolution point;
```

7.1

Abstract

Ci said step of generating said alternative meet-pass plan being initiated from each alternate conflict resolution point if said one meet shift maximum net benefit so determined is positive.

36. The method of claim 32, wherein the step of estimating delay costs, further comprises the step of:
determining a general meet shift maximum net benefit for each potential conflict by shifting from the conflict resolution at which the one vehicle is delayed in the initial meet-pass plan to a conflict resolution point at which the other vehicle of the two vehicles is delayed defining an alternate conflict resolution point;
,'/ generating a lower bound indicative of a lowest delay cost arising from any possible meet-pass plan, said lower bound being further indicative of said delay cost of said initial meet-pass plan minus a sum of one or more of said general meet shift maximum net benefits;
, $\%$ said identified meet-pasis plan being determined based on a difference of said upper bound and said lower bound being less than a predetermined tolerance.
 bound is generated after merging said delay costs of each vehicle
having at least one of i) a lower delay cost at said identified conflict resolution point and ii) a lesser amount of time delayed at said alternate conflict resolution point as compared to the amount of time delayed at said identified conflict resolution point.
37. The method of claim 22, wherein said vehicles are trains.
 schedules are revised based upon said identified meet-pass plan. $=$

DOCRET NO.: UPN-401
PATENT

The Examiner has objected to the drawings because Figures $5,7-9,12-13$, and $15-18$ require descriptive titles. Authorization has therefore been requested to amend Figures 5, 79, 12-13, and 15-18 as shown in red on the attached copies of those Figures. Upon approval by the Examiner, the indicated changes will be made in accordance with the current Patent office procedures.

Claims 1-30 have been rejected under 35 U.S.C. $\$ \$ 101$, $102(\mathrm{~b}), 103$ and 112 , second paragraph. However, the Examiner has not cited any reasons for the rejections of claims 23, 24-28 and 30. Therefore, it is submitted that it would be improper for the Examiner to make any next rejection final. 37 CFR $\$ 1.104$ (b); MPEP §707. The Examiner's detailed reasons in support of the rejection of these claims is requested.

Turning now to merits of the instant Office Action, reconsideration is respectfully requested in view of the foregoing amendments and following remarks.

THE INVENTION
The present invention is directed to a method of controlling the movement of vehicles in a transportation system. In general terms, the method of the present invention simulates characteristics of a transportation system such as a railroad system in real time. Then using this simulation as a model, proposed transportation schedules are evaluated to determine when
the vehicles should move from one point to the next in the transportation system so that the vehicles arrive at their scheduled destinations op-time according to the proposed schedules.

Assuming for exemplary purposes that the vehicles are trains, conflicts may arise among the various trains traveling in a particular railroad system, i.e., between trains traveling in opposite directions on the same track at the same time or alternatively trains traveling on the same track at different speeds. To avoid such conflicts, one train must be delayed at a point between its origin and destination to allow a conflictin̆̀̀ train to pass by to avoid a collision between the trains. These points are referred to as "meet-points" and may include side tracks or railway stations for example.'
$;$
Most transportation scheduling allows for some vehicle delay which is known as "slack time". Delaying a train may result in a delay cost if the delayed train does not reach its destination on time, i.e., if the delay time is greater than the train's scheduled slack time. A "tardiness function" based in part on the importance of a train's on-time arrival can be determined for each train. Using a train's tardiness function, a

[^2]"delay cost" can be calculated for any delay of that train resulting from the resolution of a conflict with another train.

The method of the present invention, generates what is referred to as a "meet-pass" plan or a "conflict resolution plan" which specify which trains should be delayed at which points along their respective travel path and for how long the train should be delayed so that all of the trains traveling in the railroad system arrive at their destinations according to the proposed schedules. A meet-pass plan which can provide on-time performance is referred to as a "feasible plan." However, it is not unusual in complex transportation systems such as the railroad system, that there are no feasible plans. Thus the present invention evaluates other possible plans to identify a meet-pass plan having a substantially "minimal delay cost."

As described in detail in the background section of the instant application, numerous schedule analysis methods, as well as techniques for optimizing schedules have been developed and are known in the art. However, none of these prior art techniques can effectively process a set of transportation schedules in real-time for a complex transportation network such as a railroad system. See page 4 , lines $4-5,15-18$, page 6 , lines 23-26.

It is known to generate a meet-pass plan using a "branch-and-bound method." Branching includes determining which

Abstract

DOCRET NO.: UPN-401 PATENT vehicles have conflicting schedules in terms of potential collisions as described above. Then each conflict is evaluated by determining the delay costs and/or the delay time required to resolve each conflict. Typically conflicts are evaluated in terms of delay cost/delay time at two different meet-points for each potential conflict. The two meet-points are selected by first determining the location where, the conflict would occur if it was not otherwise resolved. The meet-points are then selected by choosing one meet-point on each side of that location. In this way one of the trains can be delayed at one meet-point te allow the other train to pass by and alternatively the other train can be delayed at the second meet-point to allow the former train to pass by. These meet-points are referred to ass. "conflict resolution points." The resolution having a lower delay cost/delay time forms what is known as a "node." "Bounding" refers to forming a node based on the resolution determined to have a lower delay cost/delay time.

These steps of the branching method are repeated for each conflict. The result is a sequence of nodes which specify which train is delayed at which meet-point and its corresponding delay cost/delay time. This sequence of nodes forms an "initial meet-pass plan." The delay cost for the plan is calculated. If it is zero, the proposed schedules are feasible by controlling the movement of the trains according to the plan.

When the proposed schedules are not feasible, according to the initial plan, other plans can be evaluated to identify and generate one that is feasible. It is known to retrace up the sequence of nodes, and branch from those conflict resolution points which did not form nodes in the initial plan. Typically this secondary branching will be limited to those resolutions which will not result in a delay cost which exceeds that of the plan it is branching from (the plan delay cost is called the "upper band"). However, to branch from every one of these conflict resolution points in a complex transportation system cannot be accomplished in a computationally practical time. . Therefore, the present invention provides a method for generating a meet-pass plan having a substantially minimal delay cost in a computationally practical time.
\cdots
This feature of the present invention is accomplished by estimating maximum cost benefits which could be achieved from branching from a resolution that did not form a node. Then only those resolutions possibly leading to a plan with a lower delay cost (i.e., positive maximum cost benefit) form nodes from which further branching is performed.

One method of estimating a maximum cost benefit provided by the present invention is called a "one meet-shift local improvement." According to this method, a "one meet-shift maximum net benefit" is determined at each conflict resolution
point which was not a node in the initial branch. By shifting the resolution to these conflict resolution points, one of the trains that was delayed according to the resolution represented by each node will no longer be delayed. Thus, a reduction in delay time to these trains will have a ripple effect on other conflicts the same train would be involved in occurring later in time. To determine the one meet-shift maximum net benefit, a maximum potential cost reduction is estimated based on an accumulation of all the delay costs which could be eliminated by shifting to these conflict resolution points. Of course, there is also' a cost increase corresponding to delaying the other train at the conflict resolution point that was not previously delayed in the resolution resulting in a node in a former plan. Therefore, the maximum net benefit represents the difference in the maximum potential cost reduction and the cost increase after shifting from a node in a former plan to the other conflict resolution point for resolving each conflict.

Additionally, the present invention provides a method to further decrease the time for generating a plan having a minimal delay cost by generating a "lower bound." The.lower bound is an indication of the least possible cost of any plan based on the proposed schedules (i.e., if this value is greater than zero there are no feasible plans so it is desired to find one with the least delay cost in the shortest amount of time).

DOCRET NO.: UPN-401 PATENT

One method of generating a lower bound is by determining a "general meet-shift maximum net benefit." The primary difference between the general meet shift maximum net benefit and the one meet shift maximum net benefit is that the maximum cost reduction for the general meet shift maximum net benefit includes all delay costs prior to the resolution being evaluated, i.e., cost savings which would be obtained if the train that is not delayed at the shifted resolution had not incurred any previous delay. Each positive general meet shift maximum net benefit is then subtracted from the delay cost of the initial plan thereby : forming the lower bound.
since, the cost savings from the same train over the same time intervals may be duplicated in more than one of the maximum cost reductions used in determining each generä̉l meet shift maximum net benefit, the present invention also provides a method of merging these cost reductions so that there is no duplication in generating the lower bound; i.e., increases the value of the lower bound. As the lower bound approaches the delay cost of a former plan, or the upper bound, it indicates that the former plan is substantially optimal in terms of delay costs.

Since not every plan is evaluated by the present invention, the plan generated is not necessarily the absolute optimal plan in terms of delay cost/delay time, but represents an
optimal compromise between generating a plan having a substantially minimal delay cost/delay time and generating that plan in a computationallyeasible time period.

The plan generated by the method of the present invention is used by a dispatcher (or a real time controller, if desired) for controlling the movement of the trains. For instance the dispatcher or controller may set the track switches and signals to implement the plan or they may be automatically set according to the generated plan. In addition, the proposed ${ }^{*}$ schedules may be revised in accordance with the meet-pass plan generated.

NO NEW MATTER HAS BEEN ADDED BY CLATMS 32-39
New claims 32-39 provide no new matter and each element of these new claims is described in detail in the present specification. In particular, the subject matter of new claim 32, is directed to a "method for controlling the movement of vehicles traveling in a transportation system". See Figure 1, block 7 and page 11, lines 15-16; Figure 3, block 80 and page 12, lines 23-30; and Figure 4, block 120, and page 13, lines 18-21.

Similarly the present specification and drawings provide support for each step of claim 32. Step (a) of claim 32 provides:

[^3]specified origin and a time of arrival at a specified destination;

Figure 1 depicts a user interface 3 for facilitating the input of data into a processor designated as CPU 4. The input data includes a description of the routing network and the transportation schedules as shown in Figure 2, block 12, and described on page 11, lines 29-32. Additionally, the routing network includes stations, rail yards, side tracks, etc. described on page 11, line 32 to page 12 , line 2 , as points where vehicles can enter or leave the network, and pass or overtake each other. Each vehicle traveling in the transportation system has one of these points as its origin, one as its destination and perhaps some points in between designating its travel path. See table 1 as an example.

Step (b) of claim 32 provides:
b) identifying potential conflicts between two vehicles ... and a set of conflict resolution points...

This step is described by way of example on page 15, line 31 to page 18, line 22. Likewise, step (c) which provides:
c) generating an initial meet-pass plan using a depth-first search bounded by delay costs arising from delaying said one vehicle at one of said identified conflict resolution points for each potential conflict
is also described in detail in the instant specification and drawings. In particular, see page 13, line 22 to page 14, line 34, and page 18, line 23 to page 19, line 36 , and Figures 7 and

10A. For an example see page 21 , line 8 to page 22 , line 30 , and Figure 8.

The subject matter of steps (d) and (e) are supported in the present specification using the one meet shift local improvement algorithm, the lower bound based pruning algorithms and the accelerated heuristic lower bound-based algorithm as examples of methods to estimate and generate meet-pass plans having a lower delay cost than the initial plan. Specifically, these steps provide:
d) estimating a maximum cost benefit arising from shifting from said one conflict resolution point used to resolve each respective potential conflict in said initial meet-pass plan to another conflict resolution point, ... [and]
e) generating alternative meet-pass plans úsing the depth-first search bounded by delay costs from said other conflict resolution point in each potential alternative plan where said estimated maximum cost benefit is positive, ...

The one meet shift local improvement method is described in detail on page 23, line 9 to page 28, line 11 and flow charted in Figures 11A and 11B. The subject matter of dependent claim 35 is particularly directed to the one meet shift local improvement method. The lower bound based methods for estimating and generating alternative plans having a lower delay cost than the initial plan is described in detail on page 28, line 12 to page 42, line 11 and flow charted in Figures 14A through 14H. Dependent claim 36 is directed to an exact lower
bound method and dependent claim 37 is directed to the use of a global lower bound pruning method specifically described on page 31, line 28 to page 35, line 10. Additionally, steps (d) and (e) may also comprise the accelerated heuristic lower bound method described on page 42 , line 12 to page 44 , line 36 . See also Figure 18.

Step (f) provides for "identifying one meet-pass plan having a substantially minimal delay cost among the initial and alternative meet-pass plans so generated ...". The local improvement and lower bound methods provide practical solutions to finding a plan with a minimal cost in terms of processing time and processing capability. In other words, to minimize the processing requirements, the optimal or identified plan in step (f) may not be one having the lowest delay cost of any possible plan. Identifying an optimal plan in terms of minimal delay cost is described in the specification of the instant application with reference to the drawings. For instance see page 20, lines 13-25 for a description of criteria which can be used to identify an optimal plan and Figures 10C, step 330, and 14 F , step 330. Claim 33 more particularly points out the criteria for identifying the optimal plan having a substantially minimal delay cost.

Step (g), which provides "controlling the movement of said vehicles according to said identified meet-pass plan" is supported by the specification and drawings as described herein
above. In particular, see Figure 1, block 7 and page 11, lines 15-16; Figure 3, block 80 and page 12, lines 23-30; and Figure 4, block 120, and page 13, 1才hes 18-21.

Claim 34 is directed to the method of analyzing the proposed schedules in terms of feasibility. Page 11, lines 2-11 describes how an output is provided to a dispatcher representing how the proposed schedules can be achieved or why the proposed schedules cannot be achieved. Thus, olaim 34 which states:
h) providing an output indicative of a measure of feasibility of said proposed transportation schedules.
is fully supported by the specification.
Similarly, claim 39 is directed to revising the schedules according to an optimal plan generated by a method of the present invention. In this respect, the optimal plan is provided as an output is provided to the dispatcher who can set the track signals and switches to implement the plan (page 13, lines 28-31) or as an output to a scheduler to revise the proposed schedules (see page 10, lines 23-25).

New claim 38 incorporates the limitation of cancelled claim 29.

Therefore, new claims 32-39 provide no new matter and Applicant respectfully requests that the Examiner consider these claims accordingly.

```
DOCRET NO.: UPN-401
PATENT
THE SECTION 101 REJECTION
The Examiner has rejected claims 1-30 under 35 U.S.C. \$101 as being directed to non-statutory subject matter. For the reasons that follow, Applicant submits that all of the pending claims clearly recite statutory subject matter under the law.
The Examiner has correctly noted that the appropriate test for patentability under \(\$ 101\) involves a two-step analysis. The first step requires a determination as to whether the claim directly or indirectly recites a mathematical algorithm. The second step requires a determination as to whether the claim, read as a whole, wholly preempts that mathematical algorithm. However, the second step of the test is reached only if the first determination is affirmative. Ex parte Logan, 20 USPQ \(2 d\) 1465,1469 (Bd.P.App \& Int. 1991).
The Examiner's basis for rejection of claim 1 is
exemplary of the reasons for the \(\$ 101\) rejection:
[I]t is clear that a mathematical algorithm
is indirectly recited in the claims. ... The
equation is cited in prose format within
claim 1. Specifically, the step of [setting
forth step (b) of claim 1] represents the
algorithm in a prose format.
Office Action at pages 2-3. Although the Examiner has stated the proper test for determining statutory subject matter, Applicant respectfully submits that the Examiner's analysis under this test was improper.
```

A mathematical algorithm has been defined by the U.S. Supreme Court as a "procephure for solving a given type of mathematical problem." Gottschalk v. Benson, 409 U.S. 63, 175 USPQ 673, 674 (1972); Diamond V. Diehr, 450 U.S. 175, 209 USPQ 1, 8 (1981). Thus, a claim meeting the first part of the test must have two identifiable aspects: 1) a mathematical problem, and 2) a procedure to solve that problem. A claim which directly or indirectly recites a mathematical computation, formula, equation, etc. cannot be a "mathematical algorithm" unless the claim is drawn to a procedure to solve a mathematical problem. Mere recitation of a mathematical expression within a claim is not sufficient to establish that the claim recites a mathematical algorithm under the Supreme Courts's definition of that tèrm in Benson and Diehr. In re Grams, 12 USPQ 2d 1824, 1827 (Fed. Cir. 1989). Applicant submits that there is simply no mathematical problem in claim 1 for which a procedure to solve that problem is claimed.

Applicant directs the Examiner's attention to a recent case decided by the Board of Patent Appeals and Interferences, Ex parte Logan, 20 USPQ 2d 1465 (Bd.P.App \& Int. 1991). In that case the Board stated:

> [W]e believe a claim should be considered as reciting a mathematical algorithm only if it essentially recites directly or indirectly, a method of computing one or more numbers from a different set of numbers by performing a series of mathematical computations.

```
DOCRET NO.: UPN-401 PATENT
    Consequently, a claim which essentially
    recites another type of method does not
    recite a mathematical algorithm, even though
    it incidently recites, directly or
    indirectly, the performance of some
    mathematical computation.
(emphasis added) Id. at 1468.
    Claim 32 is directed to a method of "controlling the
movement of vehicles traveling in a transportation system,
comprising the steps of:
    a) inputting data ....
    b) identifying potential conflicts ... and a set of
    conflict resolution points ...
    c) generating an initial meet-pass plan...
    d) estimating a maximum cost benefit ...
    e) generating alternate meet-pass plans ...F
    f) identifying one meet-pass plan having a
    substantially minimal delay cost ....; and
    g) controlling the movement of the vehicles according
    to the identified meet-pass plan..."
New claim 32, therefore, recites a method of controlling the
movement of vehicles in a routing network according to a meet-
pass plan generated by the method which specifies the movement of
the vehicles such that the vehicles avoid collision therebetween
and substantially minimizes delay costs. It does not recite a
method of computing one or more numbers from a different set of
numbers by performing a series of mathematical computations.
Therefore, Applicant respectfully submits that even if some of
```

the steps of new claim 32 directly or indirectly recite
mathematical computations, the claim does not recite a
mathematical algorithm according to the Supreme Courts's and
Federal Circuit's definition of that term.
Likewise, claim 23 as amended does not recite a mathematical algorithm. In particular, steps (v) and (w) provide:
(v) repeating step (u) until one of the following events:

- •• : 荌
the step further comprising. identifying said current plan as an optimal plan when one of said events has occurred; and
w) controlling the movement of said vehicles so that the arrival and departure times for each vehicle at each point along the vehícle's respective travel path between said origin and said destination is controlled according to said optimal plan.

Thus the method of claim 23 as amended also is directed to controlling the movement of vehicles in a transportation system based on an optimal plan generated by the method and is not a method of computing numbers.

In Ex parte Logan, The Board of Patent Appeals and Interferences held that the correct approach "places the emphasis on what the claimed method steps do rather than how the steps are performed." (emphasis original) Id. Specifically the Board determined that even though the steps of "establishing a baseline level, establishing a trigger level, and generating inspiration

DOCKET NO.: UPN-401
PATENT
trigger signals," were disclosed as involving a series of mathematical computations, these computations "were merely ancillary to a more encompassing process" directed to detecting the occurrence of events (emphasis added). Id. Therefore, claim 23 must be analyzed for what the claimed steps do rather than how the steps are performed. The steps of claim 23 input and initialize data (see step (a) and (b)), identify potential conflicts (steps (c) and (d)), generate an initial meet-pass plan. (steps (e) through (1)), estimate a maximum cost benefit (steps (m) through (r)), generate alternate meet-pass plans (steps (s) through (u)), identify one meet-pass plan having a substantially minimal delay cost (step (v)) ; and control the movement of the vehicles according to the identified plan (step (w)). The steps recited by the instant claims are merely ancillary to that of controlling the vehicle's movement. Accordingly, Applicant is not claiming merely a method for generating numbers. In view of the foregoing, any steps directly or indirectly reciting a mathematical computation in claim 23 are merely ancillary to the method of controlling the vehicles in a transportation system to avoid collisions therebetween while minimizing delay costs. since, Applicant respectfully submits that a mathematical algorithm is not directly or indirectly recited by either claim 23 as amended or new claim 32 , the first step of the two-part test is not satisfied. Accordingly, it is unnecessary

```
DOCKET NO.: UPN-401 PATENT
```

to consider whether these claims pass muster under the second
step as set forth above. However, in the interest of advancing
prosecution, Applicant proposes the following analysis of claims
23 and 32 under part two of the test.
The Examiner has stated that the only steps not
indirectly reciting a mathematical algorithm in canceled claim 1
are directed to either non-essential post-solution activity or
data gathering, neither of which would render the canceled claim
statutory, Office Action at pages 3-4. Additionally, the
Examiner stated that limiting the technological use of a
mathematical formula in a preamble would not avoid a Section 101
rejection. Office Action at page 4.
The Examiner, citing In re Walter, correctly states
that a Jepson preamble will not limit the subject matter as a
whole to avoid a section 101 rejection. However, claim 23 as
amended provides:
w) controlling the movement of said vehicles so that the arrival and departure times for each vehicle at each point along the vehicle's respective travel path between said origin and said destination is controlled according to said optimal plan.

This step, not the preamble, affirmatively limits the use of any mathematical computations indirectly recited by claim 23 to applications directed to controlling the movement of vehicles in a transportation system.

```
Furthermore, In re Walter held:
```

```
In order to determine whether a mathematical algorithm is 'preempted' by a claim under Freeman, the claim analyzed to establish the relationship between the algorithm and the physical steps or elements of the claim.
209 USPQ 397, 407 (C.C.P.A. 1980). All of the intervening steps of claim 23 likewise affirmatively limit the uses of any mathematical computations indirectly recited by the claim. for example, see step (e):
```

> identifying substantially all delay points at a first level where at least one vehicle in said vehicle pair could be delayed so that the second vehicle in said pair could pass without collision
> therebetween, defining said delay points so identified as conflict resolution poințs.

In other words, although some mathematical computations smay be required to identify the delay points as described in the instant specification, clearly their use is limited by the language of the claim to the physical process step and elements contained therein. Therefore, Applicant respectfully submits that claim 23 as amended provides statutory subject matter. It is not an attempt to patent a mathematical algorithm under the guise of a preamble limiting the technological use of the mathematical algorithm. Stated differently, Applicant has invented and claimed a method of controlling the movement vehicles (which is clearly statutory) rather than a mathematical algorithm.

DOCRET NO.: UPN-401 PATENT

Similarly, new claim 32 provides affirmative steps which limit the technological use to controlling the movement of vehicles based on any computations that may be indirectly recited by the claim. In particular step (g) provides:
(g) controlling the movement of said vehicles according to said identified meet-pass plan, said $\hat{\text { vehicles being delayed at said }}$ identified conflict resolution points for the amount of time specified by said identified meet-pass plan.

For the same reasons set forth above; Applicant respectfully submits that new claim 32 also provides statutory subject matter:-*

Regarding the Examiner's contention that claim 1 (now canceled) did not provide significant post-solution activity transforming an otherwise non-statutory claim into a statutory one, Applicant respectfully submits that the Examiner has overlooked critical features of the claimed invention. "The C.C.P.A. in In re Walter provided some guidelines for determining whether post-solution activity was significant or non-essential.

For instance if the end product of a claimed invention is a pure number, as in Benson and Flook, the invention is nonstatutory regardless of any post-solution activity which makes it available for use by a person or machine for other purposes. If, however, the claimed invention produces a physical thing such as the noiseless seismic trace in In re Johnson, the fact that it is represented in numeric form does not render the claim nonstatutory.
(emphasis original) In re Walter, 205 USPQ at 407. Not only does the step of "controlling the movement of the vehicles" in step
(w) of claim 23 and step (g) in claim 32 provide significant post solution activity, but the steps of generating meet-pass plans provide statutory subject matter as well.' The meet-pass plans generated according to"steps (1), (u), and (v) of claim 23 as amended and steps (c) and (e) of new claim 32 , are not just pure numbers which are made available for other purposes. Rather they are "physical things" in the Walter sense of that term. The fact that the meet-pass plans generated might be represented in numeric form will not render these claims non-statutory. Id.

The Federal Circuit has recently affirmed this position . concerning analogous claims in Arrhythmia Research Technology: Inc., V. Corazonix Corp., No. 91-1091, 1992 U.S.App. LEXIS 4202 (Fed. Cir. March 12, 1992). The claim at issue in Arrhythmia was as follows:

$\bar{\square}$

1. A method for analyzing electrocardiograph signals to determine the presence or absence of a predetermined level of high frequency energy in the late QRS signal, comprising the steps of:
converting a series of QRS signals to time segments,
applying a portion of said time segments in reverse time order to high pass filter means;
determining an arithmetic value of the amplitude of the output of said filter; and
comparing said value with said predetermined level.
The defendant in this case asserted that the end produot of the claim was a pure number which could not be saved by any limitation to its use. The Federal circuit rejected this argument stating:

DOCRET NO.: UPN-401

PATENT

> [T]he number obtained is not a mathematical abstraction; it is a measure in microvolts of a specified heart activity, an indicator of the risk of ventricular tachycardia. That the product is numerical is not a criterion of whether the clajm is directed to statutory subject matter.

Id. at 43. Similarly, it would be improper to conclude that the meet-pass plans generated by the claimed invention for controlling the movement of vehicles is directed to non-statutory subject matter simply because the meet-pass plans are numerical in nature.

In sum, claim 23 as amended and new claim 32 provide statutory. subject matter because neither directly or indirectly recites a mathematical algorithm as defined by the supreme coưrit. Therefore, it is unnecessary to determine whether these claims would wholly preempt the use of a mathematical algorithm. However, even upon further analysis, any mathematical c̈̈mputation indirectly recited by the steps of the claims are explicitly related to the physical steps and elements of the claims. Furthermore, claims 23 and 32 provide significant post solution activity with respect to any mathematical computation indirectly recited by the claims so that the end-product of the claimed invention is not a pure number subject to other uses. For these reasons, Applicant submits that claim 23 as amended and new claim 32 provide statutory subject matter under Section 101.

DOCKET NO.: UPN-401 PATENT

THE EECTION 112 REJECTION

The Examiner has rejected ciaims $1-30$ under 35 U.S.C. §112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which the Applicant regards as the invention. In particular the Examiner has recommended that "the definite article 'the' be replaced with the more definite adjective 'said"". Office Action at page 6. Claims 23-28 and 30 have been amended to overcome the Section 112 rejections by deleting the definite article 'the' and replacing it with the more definite adjective 'said' throughout these claims.

Additionally the Examiner has stated that "it is unclear whether Applicant is claiming a system, i.e., an apparatus or a method." Office Action at 6. Applicant, respectfully points out that claim 23 is expressly directed to a method.

In a transportation system ... a method comprising the steps of:
(emphasis added).
THE BECTION 102 REJECTIONS
The Examiner has rejected claims $1-30$ under 35 U.S.C. $\$ 102(\mathrm{~b})$ as being anticipated by U.S. Patent No. 4, 122,523 issued to Morse, et al. The Examiner has additionally rejected claims 1-30 under 35 U.S.C. $\$ 102(\mathrm{e})$ as being anticipated by U.S. Patent No. 5,038,290 issued to Minami. The Examiner has set forth

```
DOCRET NO.: UPN-401
PATENT
reasons for these rejections only as pertaining to claims I and
claim 29', both of which have now been cancelled. Applicant
submits that none of the pending claims are anticipated by either
reference.
    The Morse patent teaches generating a depth-first
search bounded by delay costs, but in contradistinction to the
claimed invention, it does not teach or disclose any method or
step for identifying an optimal plan'based on substantially
minimal delay costs. The claimed invention expressly provides irr
claim 23 as amended:
(v) ...identifying said current plan as an optimal plan when one of said events has occurred; and
and similarly claim 32 provides:
f) identifying one meet-pass plan having a substantially minimal delay cost among the initial and alternative meet-pass plans so generated ...
Specifically, Morse teaches only manual adjustments or selection of possible plans. See Col. 20, lines 50-59 which state:
If ... no feasible solution was found, ... The operator will be informed of the unsuccessful search and he may manually determine the sequencing or he may simply expand some time windows and allow the system to try again.
```

[^4]In fact, Morse teaches away from the claimed invention in many respects. For instance, if a feasible plan is not found after the depth-first search, Morse teaches examining every conflict. Col. 17, lines 48-53. In contradistinction, the present invention evaluates potential plans and examines only those potential plans which evidence a possibly lower delay cost than any plan generated up to that point. Steps (m) through (u) of claim 23 as amended and steps (d) and (e) of claim 32 recite this advantage over the prior art techniques such as Morse. For example, Step (d) of claim 32 recites:
d) estimating a maximum cost benefit arising from shifting from said one conflict resolution point used to resolve each respective potential conflict in said initial meet-pass plan to another conflict resolution point,
and Step (e) provides;
e) generating alternative meet-pass plans using the depth-first search bounded by delay costs from a point in each potential alternative plan where said estimated maximum cost benefit is positive;...
(Emphasis added). Applicant has found no teaching, direct or indirect, in Morse disclosing either step (d) or (e) as provided by claim 32 or steps (m) through (u) of claim 23. Therefore, Applicant respectfully submits that claims 23-28 and 30-31 and claims 32-39 would not be anticipated by Morse.

Similarly, Minami does not anticipate claims 23-28 and 30-31 or new claims 32-39. . In contradistinction to the claimed invention, Minami does not teach generating any plans for the

```
DOCRET NO.: UPN-401
PATENT
movement of vehicles using the depth-first search technique
claimed by the present jinvention. Minami is directed to a
problem different than the present invention, i.e., finding a
plan for determining the shortest routes based on the fewest
number of diversions from origin to destination. See Col. 5,
lines 48-59..Therefore, Minami does not teach any of the
following steps of the claimed invention; 1) generating an
initial plan using the depth-first search technique, (steps (f)
through (1) of claim 23 and step (c) of claim 32), 2) estimating.
benefits of potential plans possibly having a lower delay cö́st
than other plans generated (steps (m) through (r) of claim 23 and
step (d) of claim 32), 3) generating alternate plans based on the
potential plans having estimated cost benefits over other plans
generated (steps (s) through (u) of claim 23 and step (e) of
claim 32), and 4) identifying a plan having a substantially
minimal delay cost (step (v) of claim 23 and step (f) of claim 32).
THE BECTION 103 REJECTIONS
Claims 2-29 have been rejected under 35 U.S.C. \(\$ 103\) as being unpatentable over Morse et al. in view of U.S. patent No. 4,926,343 issued to Tsuruta et al. The Examiner has further rejected claims 1-30 under 35 U.S.C. § 103 as being unpatentable over the article Railroad Freight Train Scheduling: \(A\) mathematical Programming Formulation, by Morlock et al,
```

(hereinafter "Morlock") in view of Computer Aided Train Dispatching Decision Support Through Optimization, by Sauder et al. (hereinafter "Sauder") Additionally, claims 1-30 have been rejected under 35 .U.S.C. S 103 as being unpatentable over Tactical Scheduling of Rail Operations: The SCAN I System, by Harker et al. (hereinafter "SCAN I"), in view of Sauder. Claims 2-29 have been further rejected under 35 U.S.C. § 103 as being unpatentable over SCAN I and Sauder as, applied to claim 1 and further in view of The ATES in Scheduling and Operating Railroads: Models, Algorithms, and Applications, by Harker (hereinafter "Harker").

Claim 23 as amended and new claim 32 patentably define over the prior art of record because none of the prior art cited by the Examiner teach or suggest the steps of searching for a plan having a substantially minimal delay cost by searching only those potential plans having an estimated maximum cost benefit (indicating that the potential plan may possibly provide a lesser delaysost, than any other plan generated). The Applicant has combed whe weferences of record and has not found even an Hnferences
 potentialfoplans, and identifying a plan having a substantially minimal delay cost.

Abstract

DOCRET NO.: UPN-401 PATENT'

As described in the instant specification all meets are screened but not tested. Thus only those meets which indicate some potential for improvement are tested for optimality. See page 24 of the instant specification. This advantage of the claimed invention elimínates those problems associated with the prior art (e.g., computational time, limited size and complexity of the routing network, etc.). See page 3, line 10 to page 7, line 32.

Although one or more of the prior art references may be modified to arrive at the claimed invention, there must be some suggestion in the prior art as a whole to do so. Applicant has: found no suggestion or inference in any of the prior references which would lead one skilled in the art to combine or modify the prior art to arrive at the claimed..invention. Therefore, claims 23-28, 30, 31 and 32-39 patentably define over the prior"art of record.

For the foregoing reasons, reconsideration of the present Office Action and an early Notice of Allowance are respectfully requested.

Date: Goul6,1992

WOODCOCK WASHBURN KURTZ
MACKIEWICZ \& NORRIS
One Liberty Place - 46 th Floor
Philadelphia, PA 19103
(215) 568-3100

Transaction History Date
1992-04-08
Date information retrieved from USPTO Paten
Application Information Retrieval (PAIR) system records at www.uspto.gov

ARRHYTHMIA RESEARCH TECHNOLOGY, INC., Plaintiff, CORAZONIX CORPORATION, Defendant-

91-1091
UNITED STATES COURT OF APPEALS FOR THE FEDERAL

1992 U.S. App. LEXIS 4202

March 12, 1992, Decided
PRIOR HISTORY: [*1] Appealed from: U.S. District Court for the Northern District of Texas. Judge Tolle. Judge Fish

DISPOSITION: REVERSED AND REMANDED •

```
COUNSEL: John F. Flannery, Fitch, Even, Tabin & Flannery, of
Chicago, Illinois, argued for plaintiff-appellant. With him on
the brief was Robert J. Fox.
Robert W. Turner, Jones, Day, Reavis & Pogue, of Dallas, Texás
argued for defendant-appellee. With him on the brief was John E:
Vick, Jr., Hubbard, Thurman, Tucker & Harris, of Dallas, Texas.
JUDGES: Before NEWMAN, LOURIE, and RADER, Circuit Judges. OPINIONBY: NEWMAN
```

OPINION: NEWMAN, Circuit Judge.
Arrhythmia Research Technology, Inc. appeals the grant of summary judgment by the United States District Court for the Northern District of Texas n1 declaring United States Patent No. 4,422,459 to Michael B. Simson (the ' 459 or Simson patent) invalid for failure to claim statutory subject matter under 35 U.S.C. \& 101. The court did not decide the question of infringement.

- - - - - - - - - - - - - - Footnotes - - - - - - - - -
- - - - - -

n1 Arrhythmia Research Technology, Inc. v. Corazonix Corp., No. CA 3-88-1745-AJ (N.D. Tex. October 3, 1990), reconsid. denied (November 8, 1990) (Order); appeal authorized (November 9, 1990) (Order).

We conclude that the claimed subject matter is statutory in terms of section 101. The judgment of invalidity on this ground is reversed.

The Simson Invention

The invention claimed in the ' 459 patent is directed to the analysis of electrocardiographic signals in order to determine certain characteristics of the heart function. In the hours immediately after a heart attack (myocardial infarction) the victim is particularly, Gulnerable to an acute type of heart arrhythmia known as ventricular tachycardia. Ventricular tachycardia leads

PAGE
3
1992 U.S. App. LEXIS 4202,
*2
quickly to ventricular fibrillation, in which the heart ceases effectively to pump blood through the body. Arrhythmia Research states that $15-25 \%$ of heart attack victims are at high risk for ventricular tachycardia. It can be treated or prevented with certain drugs, but these drugs have undesirable and sometimes dangerous side effects. Dr. Simson, a cardiologist, sought a solution to the problem of determining which heart attack victims are at high risk for ventricular tachycardia, so that these persons can be carefully monitored and appropriately treated. .

Heart activity is monitored by means of an electrocardiograph device, whereby electrodes attached [*3] to the patient's body detect the heart's electrical-signals in accordance with the .various phases of heart activity. The signals can be displayed in wave form on a monitor and/or recorded on a chart. It was known that in patients subject to ventricular tachycardia certain anomalous waves having very low amplitude and high frequency known as "late potentials," appear toward the end of the QRS n2 segment of the electrocardiographic signal, that is, late in the ventricular contraction cycle. Dr. Simson's method of detecting and measuring these late potentials in the QRS complex, and associated apparatus, are the subject of the ' 459 patent.

- _ _ - _ - -

n2 According to Arrhythmia Research, the QRS complex lasts about one tenth of a second and arises from the depolarization of the ventricles prior to contraction.

```
_- - - - - -
```

The ' 459 patent specification describes these procedures.
Certain of the heart attack patient's electrocardiographic signals, those obtained from electrodes designated as X, Y, and Z leads, are converted from analog to digital [*4] values, and a composite digital representation of the QRS segment is obtained by selecting and averaging a large number of the patient's QRS waveforms. The anterior portion of the composite QRS waveform is first isolated, and then processed by a digital high pass filter in reverse time order; that is, backwards. This step of reverse time order filtering is described as the critical feature of the

Simson invention, in that it enables detection of the late potentials by eliminating certain perturbations that obscure these signals. The root mean square of the reverse time filtered output is then calculated, as described in the specification, to determine the average magnitude of the anterior portion of the QRS complex. Comparison of the output, which is measured in microvolts, with a predetermined level of high frequency energy, indicates whether the patient is subject to ventricular tachycardia. That is, if the root mean square magnitude is less than the predetermined level, then low amplitude, high frequency late potentials have been shown to be present, indicating a higher risk of ventricular tachycardia. If the root mean square value is greater than the predetermined level, high [*5] risk for ventricular tachycardia is not indicated.

Certain steps of the invention are described as conducted with the aid of a digital computer, and the patent specification sets forth the mathematical formulae that are used to configure
(program) the computer. The specification states that dedicated, specific purpose equipment or hard wired logic circuitry can also be used.

PAGE 41992 U.S. APP. LEXIS 4202, *5

The district court held that the method and apparatus claims of the simson patent are directed to a mathematical algorithm, and thus do not define statutory subject matter. Claim 1 is the broadest method claim:

1. A method for analyzing electrocardiograph signats to determine the presence or absence of a predetermined level of high frequency energy in the late QRS signal, comprising the steps of:
converting a series of QRS signals to time segments, each segment having a digital value equivalent to the analog value of said signals at said time;
applying a portion of said time segments in reverse time order to high pass filter means;
determining an arithmetic value of the amplitude of the output of said filter; and
comparing said value with said predetermined level.
Claim. 7 is a representative apparatus claim: [*6]
2. Apparatus for analyzing electrocardiograph signals to determine the level of high frequency energy in the late QRS signal comprising:
means for converting X, Y, and Z lead electrocardiographic input signals to digital valued time segments;
means.for examining said X, Y, and Z digital valued time segments and selecting therefrom the QRS waveform portions thereof;
means for signal averaging a multiplicity of said selected QRS waveforms for each of said X, Y, and Z inputs and providing composite, digital X, Y, and Z QRS wave forms;

high pass filter means;

means for applying to said filter means, in reverse time order, the anterior portion of each said digital X, Y, and Z waveform; and
means for comparing the output of said filter means with a predetermined level to obtain an indication of the presence of a high frequency, low level, energy component in the filter output* of said anterior portions.
The Patent and Trademark office had granted the patent withotit questioning that its claims were directed to statutory subject. matter under @ 101.

35 U.S.C. @ 101
Whether a claim is directed to statutory subject matter is a question of law. Although determination of this question may [*7] require findings of underlying facts specific to the particular subject matter and its mode of claiming, in this case there were no disputed facts material to the issue. Thus we give plenary review to the question, with appropriate recognition of the burdens on the challenger of a duly issued United States patent. See 35 U.S.C. e 282 (duly issued. patent is presumed valid); Interconnect Planning Corp. v.

PAGE . 5
1992 U.S. App. LEXIS 4202, *7

Feil, 774 F.2d 1132, 1139, 227 USPQ 543, 548, (Fed. Cir. 1985)
(statutory presumption of validity is based in part on recognition of the expertise of patent examiners).

A new and useful process or apparatus is patentable subject matter, as defined in 35 U.S.C. 101:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.
The Supreme Court has observed that Congress intended section 101 to include "anything under the sun that is made by man." Diamond v. Chakrabarty, 447 U.S. 303, 309, 206 USPQ 193, 197 (1980),

Funk Bros. Seed Co. v. Kalo Inoculant Co., 333 U.S. 127, 134-35 (1948) (Frankfurter, J., concurring). When attempting to enforce a legal standard embodied in broad, vague, nonstatutory terms, the courts have floundered.

- - - - - - -

n1 See, e.g., In re Christensen, 478 F.2d 1392, 1396, 178 USPQ 35 (CCPA 1973) (Rich J., concurring) ("The Supreme Court in Benson appears to have held that claims drafted in such terms are not patentable -- for what reason remaining a mystery."), overruled in part by In re Taner, $681 \mathrm{~F} .2 \mathrm{~d} .787,214$ USPQ 678 (1982); In re Johnston, 502 F.2d $765,773,183$ USPQ 172, 179 (CCPA 1974) (Rich, J, dissenting) ("I am probably as much -- if not more -- confused by the wording of the Benson opinion as many others."); rev'd, Dann v. Johnston, 425 U.S. 219 (1976); In re Chatfield, 545 F.2d 152, 157, 191 USPQ 730, 735 (CCPA 1976) (Nonstatutory claims are "drawn to mathematical problem-solving algorithms or to purely mental steps."), cert. denied, Dann v. Noll, 434 U.S. 875 (1977). [*31]
n2 The Court in Diamond v. Diehr, 450 U.S. 175 (1981), expressly recognized that the term algorithm "is subject tora variety of definitions." 450 U.S. at 186 n.9. Even Benson's*. definition for "algorithm" creates legal problems. For instance; the Benson-Tabbot algorithm worked with numbers, but "solved" a "mathematical problem" only in. a very loose sense. Rather the Benson-Tabbot algorithm translated symbols from one numerical system to another. Cf. In re Töma, 575 F.2d 872,197 USPQ 852 (CCPA 1978) (Using a digital computer to translate technical languages was not an algorithm.); In re Freeman, 573 F.2d 1237, 197 USPQ 464 (CCPA 1978) (Using computer to transcribe alphanumeric characters was not an algorithm.).

Moreover some problems, even if expressed in mathematical terms, are not mathematical problems. Mathematics, like a language, is a form of expression. The operation of a machine, the generation of electricity, the reaction of two chemicals, a baseball batter's swing, a satellite's orbit -- all are within the descriptive power of mathematics. The Court of Customs and patent Appeals recognized this axiomatic point:

However, some mathematical algorithms . . . represent ideas or mental processes and are simply logical vehicles for communicating possible solutions to complex problems.

In re Meyer, 688 F.2d 789, 794, 215 USPQ 193, 197 (CCPA 1982). No wonder the Benson rule is confusing when electrical, chemical, or mechanical processes escape scrutiny when expressed in written language, but become suspect when expressed in the mathematical language. In In re Grams, 888 F.2d 835, 12 USPQ2d 1824 (Fed. Cir. 1989), for instance, a medical diagnostic process was considered an unpatentable "mathematical algorithm" even though it did not present, or propose a solution to, a mathematical problem at all.

By strictly limiting Benson, the Supreme Court signalled a change in the focus for patentability from the algorithm rule to the statutory standards of the Patent Act. The Supreme Court confined Benson to a narrow proposition which certainly does not preclude patentability of the [*41] '459 patent's heart attack risk detection process.

The ' 459 Patent
The ' 459 patent disćloses an apparatus and a method for analyzing electrocardiograph signals to detect heart attack risks. The apparatus is a machine and is covered by the Iwahashi rule. The method converts an analog signal to a digital signal which passes, in reverse time order, through the mathematical equivalent of a filter. The filtered signal's amplitude is then measured and compared with a predetermined value.
ithe $/ 459$ invention manipulates electrocardiogram readings to render a useful result. While many steps in the ' 459 process involve the mathematical manipulation of data, the claims do not describe a law of nature or a natural phenomenon. Furthermore, the claims do not disclose mere abstract ideas, but a practical and potentially life-saving process. Regardless of whether performed by a computer, these steps comprise a "process" withiin the meaning of section 101.

The district court granted summary judgment in favor of Corazonix because "the claims of the ${ }^{459}$ patent are drawn to a non-statutory mathematical algorithm and, as such, are unpatentable pursuant to the provisions of $35 \mathrm{U} . \mathrm{S} . \mathrm{C}$. @ 101." This erroneous [*42] conclusion illustrates the confusion caused by Benson and its progeny.

This conclusion is erroneous for several reasons. First, even if mathematical algorithms are barred from patentability, $n 3$ the 1459 patent as a whole does not present a mathematical algorithm. The ' 459 patent is a method for detecting the risk of a heart attack, not the presentation and proposed solution of a mathematical problem. In Diehr, the Supreme Court viewed the claims as "an industrial process for molding of rubber products," not a mathematical algorithm. $450 \mathrm{U} . \mathrm{S}$. at 186. The '459 patent's claims as a whole disclose a patentable process.

```
- - - - - - - 
```

n3 The Court in Diehr stated: "we concluded that such an algorithm, or mathematical formula, is like a law of nature, which cannot be the subject of a patent." $450 \mathrm{U} . \mathrm{s}$. at 186 (emphasis added). In fact, a mathematical algorithm does not appear in nature at all, but only in human numerical processes.

A law of nature is indeed not patentable, but for reasons unrelated to the meaning of "process." A law of nature, even if a process, is not "new" within the meaning of © 101. Moreover, in
no patentable invention." Flook, 437 U.S. at 594, 198 USPQ at 199 .

In accordance with Flook, the claims were analyzed to determine whether the process itself was new and useful, assuming the mathematical algorithm was "well known". Id. at 592, 198 USPQ at 198. As the jurisprudence developed, inventions that were implemented by the mathematically-directed performance of computers were viewed in the context of the practical application to which the computer-geferated data were put. The court of Customs and Patent Appeals observed in In re Bradley, 600 F.2d 807, 811-112, 202 USPQ 480, 485 (CCPA 1979), aff'd by [*11] an equally divided court, sub nom. Diamond v. Bradley, 450 U.S. 381 (1981):

It is of course true that a modern digital computer manipulates data, usually in binary form, by performing mathematical operations, such as addition, subtraction, multiplication, division, or bit shifting, on the data. But this is only how the computer does what it does. Of importance is the significance of the data and their manipulation in the real world, i.e., what the computer is doing. [Emphases in original]

Thus computers came to be generally recognized as devices capable of performing or implementing process steps, or serving as components of an apparatus, without negating patentability of the process or the apparatus. In Diamond v. Diehr the Court explained that non-statutory status under section 101 derives from the "abstract", rather than the "sweeping", nature of a claim that contains a mathematical algorithm. The court stated:
"While a scientific truth, or the mathematical expressión of it, is not a patentable invention, a novel and useful structure created with the aid of knowledge of scientific truth may be."

Diehr, 450 U.S. at 188, 209 USPQ at 8-9, [*12] quoting Mackay Radio \& Telegraph Co. V. Radio Corp. of America, 306 U.S. 86, 94, 40 USPQ 199, 202 (1939). The mathematical algorithm in Diehr was the known Arrhenius equation, and the court held that when the algorithm was incorporated in a useful process, the subject matter was statutory. The court confirmed the rule that process steps or apparatus functions that entail computer-performed calculations, whether the calculations are described in mathematical symbols or in words, do not of themselves render a claim nonstatutory. Diehr, 450 U .S. at 187, 209 USPQ at 8. The Court clarified its earlier holdings, n4 stating that "it is inappropriate to dissect the claims into old and new elements and then to ignore the presence of the old elements in the [section 101] analysis." Id. at 188, 209 USPQ at 9.

- - - - -

n4 Although commentators have differed in their interpretations of Benson, Flook, and Diehr, it appears to be
quoting S. Rep. No. [*8] 1979, 82d Cong., 2d Sess., 5 (1952); H.R. Rep. No. 1923, 82d Cong., 2d Sess., 6 (1952). There are, however, qualifications to the apparent sweep of this statement. Excluded from patentability is subject matter in the categories of "laws of nature, physical phenomena, and abstract ideas". Diamond v. Diehr, 450 U.S. 175, 185, 209 USPQ 1, 7 (1981). A mathematical formula may describe a law of nature, a scientific truth, or an abstract.idea. As courts have recognized, mathematics may also be used to describe steps of a statutory method or elements of a statutory apparatus. The exceptions to patentable subjéct matter derive from a lengthy jurisprudence, but their meaning was probed anew with the advent of computerrelated inventions.

In Gottschalk v. Benson, 409 U.S. 63, 72, 175 USPQ 673, 676 (1972) the Court held that a patent claim that "wholly pre-empts" a mathematical formula used in a general purpose digital computer is directed solely to a mathematical algorithm, n3 and therefore does not define statutory subject matter under section 101. The Court described the mathematical process claimed in Benson as "so abstract [*9] and sweeping as to cover both known and unknown " uses of the BCD [binary coded decimal] to pure binary conversion", 409 U.S. at 68, 175 USPQ at 675, citing O'Reilly:v. Morse, 56 U.S. (15 How.) 62, 113 (1852) for its holding that the patentee may not claim more than he has actually invented.

```
- - - - - - -
```

n3 A mathematical algorithm was defined in Benson as a procedure or formula for solving a particular mathematical problem. 409 U.S. at 65, 175 USPQ at 674. As discussedin In re 'Iwahashi', 888 F.2d 1370, 1374, 12 USPQ2d 1908, 1911 (Fed. Cir. 1989), however, any step-by-step process, whether mechanical, electrical, biological or chemical, involves an "algorithm" in the broader sense of the term.

- - - - - - - - - - - - - - End Footnotes - - - - - - - - -

- - - - - -

In Parker V. Flook, 437 U.S. 584, 591, 198 USPQ 193, 198 (1978) the Court explained that the criterion for patentability of a claim that requires the use of mathematical procedures is not simply whether [*i0] the claim "wholly pre-empts" a mathematical algorithm, but whether the claim is directed to a new and useful process, independent of whether the mathematical algorithm required for its performance is novel. Applying these criteria the court held nonstatutory a method claim for computercalculating "alarm limits" for use in a catalytic conversion process, on the basis that "once that algorithm is assumed to be within the prior art, the application, considered as a whole, contains

PAGE 6
1992 U.S. App. LEXIS 4202,
generally agreed that these decisions represent evolving views of the court, and that the reasoning in Diehr not only elaborated on, but in part superseded, that of Benson and Flook. See, e.g., R.I. Gable \& J.B. Leaheey, The Strength of Patent Protection for Computer Products, 17 Rutgers Computer \& Tech. L.J. 87 (1991); D. Chisum, The Patentability of Algorithms, 47 U. Pitt. L. Rev. 959 (1986).

```
- - - - - - - [*13]
PAGE 7
1992 U.S. App. LEXIS 4202,
*13
```

The Court thus placed the patentability of computer-aided inventions in the mainstream of the laj. The ensuing mode of analysis of such inventions was summarized in In re Meyer, 688 F.2d 789, 795, 215 USPQ 193, 198 (CCPA 1982):

In considering a claim for compliance with 35 U.S.C. 101, it must be determined whether a scientific principle, law of nature, idea, or mental process, which may be represented by a mathematical algorithm, is included in the subject matter of the claim. If it is, it must then be determined whether such principle, law, idea, or mental process is applied in an invention of a type set forth in 35 U.S.C. 101.

The law crystallized about the principle that claims directed solely to an abstract mathematical formula or equation, including the mathematical expression of scientific truth or a law of nature, whether directly or indirectly stated, are nonstatutory under section 101; whereas claims to a specific process or apparatus that is implemented in accordance with a mathematical algorithm will generally satisfy section 101.

In applying this principle to an invention whose process steps or apparatus elements are described at least [*14] in part in terms of mathematical procedures, the mathematical procedures are considered in the context of the claimed invention as a whole. Diehr, 450 U.S. at 188; 209 USPQ at 9. Determination of statutory subject matter has been conveniently conducted in two stages, following a protocol initiated by the court of Customs and Patent Appeals in In re Freeman, 573 F.2d 1237, 197 USPQ 464 (CCPA 1978); modified after the Court's Flook decision by In re Walter, 618 F.2d 758, 205 USPQ 397 (CCPA 1980); and again after the Court's Diehr decision by In re Abele, 684 F.2d 902,214 USPQ 682 (CCPA 1982).

This analysis has been designated the Freeman-Walter-Abele test for statutory subject matter. It is first determined whether a mathematical algorithm is recited directly or indirectly in the claim. If so, it is next determined whether the claimed invention as a whole is no more than the algorithm itself; that is, whether the claim is directed to a mathematical algorithm that is not applied to or limited by physical elements or process steps. Such
claims are [*15] nonstatutory. However, when the mathematical algorithm is applied in one or more steps of an otherwise statutory process claim, or one or more elements of an otherwise statutory apparatus claim, the requirements of section 101 are met. The court explained in Abele, 684 F.2d at 907,214 USPQ at 686:
Patentable subject matter [is not limited] to claims in which structural relationships or process steps are defined, limited or refined by the application of the algorithm.

Rather, Walter should be read as requiring no more than that the algorithm be "applied in any manner to physical elements or process steps," provided that its application is circumscribed by more than a field of use limitation or non-essential postsolution activity.

As'summarized by the PTO in Ex Parte Logan, 20 USPQ2d 1465, 1468 (PTO Bd. Pat. App. and Interf. 1991), the emphasis is "on what the claimed method steps do rather than how the steps are performed". (Emphases in original)

Although the Freeman-Walter-Abele analysis is not the only test for statutory subject matter, Meyer, 688 F .2 d at 796, 215 USPQ at 198, [*16] and this

PAGE 8
1992 U.S. App. LEXIS 4202 *16
court has stated that failure to meet that test may not always defeat the claim, In re Grams, 888.F.2d 835, 839, 12 USPQ2d 1824, 1827 (Fed. Cir. 1989), this analytic procedure is conveniently applied to the simson invention.
\ddagger

Analysis

Arrhythmia Research states that the district court erred in law, and that the combination of physical, mechanical, and electrical steps that are described and claimed in the ' 459 patent constitutes statutory subject matter. Arrhythmia Research stresses that the claims are directed to a process and apparatus for detecting and analyzing a specific heart activity signal, and do not preempt the mathematical algorithms used in any of the procedures. Arrhythmia Research states that the patentability of such claims is now well established by law, precedent', and practice.

Corazonix states that the claims define no more than a mathematical algorithm that calculates a number. Corazonix states that in simson's process and apparatus claims mathematical algorithms are merely presented and solved, and that simson's designation of a field of use and post-solution activity are not essential to the claims and thus do not cure [*17] this defect. Thus, Corazonix states that the claims are not directed
to statutory subject matter, and that the district court's judgment was correct.

A. The Process Claims

Although mathematical calculations are involved in carrying out the claimed process Arrhythmia Research argues that the claims are directed to a method of detection of a certain heart condition by a novel method of analyzing a portion of the electrocardiographically measured heart cycle. This is accomplished by procedures conducted by means of electronic equipment programmed to perform mathematical computation.

Applying the Freeman-Walter-Abele protocol, we accept for the purposes of this analysis the proposition that a mathematical algorithm is included in the subject matter of the process claims in that some claimed steps are described in the specification by mathematical formulae. See In re Johnson, 589 F .2 d 1070, 1078, 200 USPQ 199, 208 (CCPA 1979) ("Reference to the specification . must be made to determine whether [claimed] terms indirectly recite mathematical calculations, formulae, or equations.") We thus proceed to the second stage of the analysis, to determine whether [*18] the claimed process is otherwise statutory; that is, we determine what the claimed steps do, independent of how they are implemented.

Simson's process is claimed as a "method for analyzing electrocardiograph signals to determine the presence or absence of a predetermined level of high-frequency energy in the late QRS signal". This claim limitation is not ignored in determining whether the subject matter as a whole is statutory, for all of the claim steps are in implementation of this method. The electrocardiograph signals are first transformed from analog form, in which they are obtained, to the corresponding digital signal. These input signals are not abstractions; they are related to the patient's heart function. The anterior portion of the QRS signal is then processed, as the next step, by the procedure known as reverse time order filtration. The digital filter design selected by Dr. Simson for this purpose, known as the Butterworth filter, is one of several known procedures for frequency filtering of digital waveforms. The filtered

PAGE 9
1992 U.S. App. LEXIS 4202, *18
signal is further analyzed to determine its average magnitude, as described in the specification, by the root mean square technique. Comparison of [*19] the resulting output to a predetermined level determines whether late potentials reside in the anterior portion of the QRS segment, thus indicating whether the patient is at high risk for ventricular tachycardia. The resultant output is not an abstract number, but is a signal related to the patient's heart activity.

These claimed steps of "converting", "applying", "determining", and "comparing" are physical process steps that transform one physical, electrical signal into another. The view that "there is nothing necessarily physical about 'signals'" is incorrect. In re Taner, 681 F.2d 787, 790, 214 USPQ 678, 681 (CCPA 1982) (holding statutory claims to a method of seismic exploration including, the mathematically described steps of "summing" and "simulating from"). The Freeman-Walter-Abele standard is met, for the steps of Simson's claimed method comprise an otherwise statutory process whose mathematical procedures are applied to physical process steps.

It was undisputed that the individual mathematical procedures that describe these steps are all known in the abstract. The method claims do not wholly preempt these procedures, but limit their application [*20] to the defined process steps. In answering the question "What did the applicant invent?", Grams, 888 F.2d at 839 , 12 USPQ2d at 1827 , the Simson method is properly viewed as a method of analyzing electrocardiograph signals in order to determine a specified heart activity. Like the court in Abele, which was "faced simply with an improved CAT-scan ; process", 684 F .2 d at 909,214 USPQ at 688 , the simson invention is properly viewed as an electrocardiograph analysis process. The claims do not encompass subject matter transcending what Dr . Simson invented, as in O'Reilly v. Morse, 56 U.S. (15 How.) at 113 (claims covered any use of electric current to transmit characters at a distance); or in Benson, 409 U.S. at 68, 175 USPQ at 675 (use of claimed process could "vary from the operation of a train to verification of driver's licenses to researching the law books for precedents"); or in Grams, 888 F.2d at 840, 12 USPQ2d at 1828 (invention had application to "any complex system, whether it be electrical, mechanical, chemical or biological, or combinations [*21] thereof.")

The Simson claims are analogous to those upheld in Diehr, wherein the Court remarked that the applicants "do not seek to patent a mathematical formula. . . . they seek only to foreclose from others the use of that equation in conjunction with all of the other steps in their claimed process". 450 U.S. at 187, 209 USPQ at 8. Simson's claimed method is similarly limited. The process claims comprise statutory subject matter.

B. The Apparatus Claims

The Simson apparatus for analyzing electrocardiographic signals is claimed in the style of 35 U.S.C. @ 112, paragraph 6, whereby functionally described claim elements are "construed to cover the corresponding structure, material, or acts described in the specification and equivalents thereof". Thus the statutory nature vel non of simson's apparatus claims is determined with reference to the description in the ' 459 patent specification. In re Iwahashi, 888 F.2d 1370, 1375, 12 USPQ2d 1908, 1911-12 (Fed. Cir. 1989).

The apparatus claims require a means for converting the electrocardiograph signals from the analog form in which they are generated into digital form. [*22] This means is described in the specification as a specific electronic

PAGE 10
1992 U.S. App. LEXIS 4202, *22
device, a conventional analog-to-digital converter. A minicomputer, configured as described in the specification, is the means of calculating composite digital time segments of the QRS waveform. The product is stored, as stated in the specification, in the form of electrical signals. The high pass filter means is described in the specification as the minicomputer configured to perform the function of reverse time order filtration of the anterior portion of the QRS waveform. The specification and drawings show a disc memory unit to store the composite QRS signals, and associated connecting leads to the computer's processing unit. The comparing means is the processing unit configured to perform the specified function of root mean square averaging of the anterior portion of the QRS complex, andcomparison of the resulting output with a predetermined level to provide an indication of the presence of late potentials in the electrocardiograph signal.

The simson apparatus claims thus define "a combination of interrelated means! for performing specified functions. Iwahashi, 888. F.2d at 1375, 12 USPQ2d at 1911. [*23] The computerperformed operations transform à particular input signal to a different output signal, in accordance with the internal structure of the computer as configured by electronic" instructions. "The claimed invention . . . converts one physical thing into another physical thing just as any other electrical circuitry would do". In re Sherwood, 613 F.2d 809, 819, 204 USPQ 537, 546 (CCPA 1980), cert. denied, 450 U.S. 994 (1981) (holding statutory claims to an apparatus for analyzing seismic signals including mathematically described means for "sonogramming", "dividing", and "plotting").

The use of mathematical formulae or relationships to describe the electronic structure and operation of an apparatus does not make it nonstatutory. Iwahashi, 888 F.2d at 1375 , 12 USPQ2d at 1911. When mathematical formulae are the standard way of expressing certain functions or apparatus, it is appropriate that mathematical terms be used. See W.L. Gore \& Assoc., Inc. V. Garlock, Inc., 721 F.2d.1540, 1556, 220. USPQ 303, 315 (Fed. Cir. 1983), cert. denied, 469 U.S. 851 (1984) [*24] (patents are directed to those of skill in the art). See also In re Bernhart, 417 F.2d 1395, 1399, 163 USPQ 611, 616 (CCPA 1969) ("all machines function according to the laws of physics which can be mathematically set forth if known.") That Simson's claimed functions could not have been performed effectively without the speed and capability of electronic devices and components does not determine whether the claims are statutory.

Corazonix argues that the final output of the claimed apparatus (and process) is simply a number, and that Benson and Flook support the position that when the end product is a number, the claim is nonstatutory and can not be saved by claim limitations of the use to which this number is put. However, the number obtained is not a mathematical abstraction; it is a measure in microvolts of a specified heart activity, an indicator of the risk of ventricular tachycardia. That the product is numerical is not a criterion of whether the claim is directed to statutory subject matter. See Meyer, 688.F.2d at 796 n. 4,215 USPQ at 198 n. 4 (explaining that so-called "negative rules" of patentability [*25] "were not intended to be separate tests for determining whether a claim positively recites statutory subject matter.")

The Simson apparatus claims satisfy the criteria for statutory subject matter. They are directed to a specific apparatus of practical utility and specified application, and meet the requirements of $35 \mathrm{U} . \mathrm{S} . \mathrm{C}$. e 101.

PAGE 11
1992. U.S. App. LEXIS 4202., *25

Conclusion
The judgment of invalidity on the ground that the claimed method and apparatus do not define statutory subject matter is reversed. The cause is remanded for resolution of remaining issues.

Taxable costs in favor of Arrhythmia Research.
REVERSED AND REMANDED
CONCURBY: RADER
CONCUR: RADER, Circuit Judge, concurring.
Nearly twenty years ago, in Gottschalk v. Benson, 409 U.S. 63 (1972), the Supreme Court dealt with a computer process for conversion of binary coded decimals into pure binary numbers was not patentable subject matter. Benson held this mathematical algorithm ineligible for patent protection. 409 U.S. at 65, 71-72. Because computer programs rely heavily on mathematical algorithms, commentators saw dire implications in the supreme Court's opinion for patent protection of computer [*26] software. For instance, one treatise, citing Benson, stated:
[A] recent Supreme Court decision seemingly eliminated patent protection for computer software.

Donald S. Chisum, Patents @ 1.01 (1991); see also id. at e 1.03[6].

The court upholds the ' 459 patent by applying a permutation of the Benson algorithm rule. In reaching this result, the court adds another cord to the twisted knot of precedent encircling and confining the Benson rule. While fully concurring in the court's result and commending its ability to trace legal strands through the tangle of post-Benson caselaw, I read later Supreme Court opinions to have cut the Gordian knot. The Supreme court cut the knot by strictly limiting Benson.

Relying on the language of the patent statute, the Supreme Court in Diamond v. Diehr, 450 U.S. 175 (1981), turned away from the Benson algorithm rule. Thus, I too conclude that the 1459 patent claims patentable subject matter -- not on the basis of a two-step post-Benson test, but on the basis of the patentable subject matter standards in title 35. Rather than perpetuate a non-statutory standard, I would find that the [*27] subject matter of the ' 459 patent satisfies the statutory standards of the Patent Act.
I.

The questions presented by this case are whether the $/ 459$ patent claims a process and apparatus within the meaning of, 35 U.S.C. © 101 (1988). Section 101 states:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title. According to this language, "any" invention or discovery within the four broad

PAGE 12
1992 U.S. App. LEXIS 4202,
*27
categories of "process, machine, manufacture, or composition of matter" is eligible for patent protection. "Any" is an expansive modifier which broadens the sweep of the categories. See Diamond v. Chakrabarty, 447 U.S. 303, 308-09 (1980). The language of section 101 conveys no implication that the Act extends patent protection to some subcategories of machines or processes and not to others.

The limits on patentable subject matter within section 101 focus not on subcategories of machines or processes, but on characteristics, such as newness and usefulness. Section 101 also specifies that, [*28]. in addition to newness and usefulness, an invention or discovery must satisfy other "conditions and requirements." These other "conditions and requirements" encompass characteristics like nonobviousness under 35 U.S.C. © 103 (1988), or requirements like those in 35 U.S.C. @ 112 (1988). - In other words, the language of the Patent Act does not suggest that the words "machine" or "process" carry limitations outside their ordinary meaning. See Diehr, 450 U.S. at 182 ("Unless
otherwise defined, 'words will be interpreted as taking their ordinary, contemporary, common meaning.'"). Rather the Act, by its terms, extends patent protection to "any" machine or process which satisfies the other conditions of patentability.

II.

In Benson, the Supreme Court encountered the question of whether a method for converting binary-coded decimals, which was useful in programming digital computers, was a patentable "process" under section 101. 409 U.S. at 64. The Court, by reading a limitation not found in the statute into the term "process," determined the method of conversion did not satisfy section 101.

In Parker v. Flook, 437 U.S. 584 (1978), [*29] the court followed Benson. Flook claimed a method for updating alarm limits during catalytic conversion of hydrocarbons. The court found Flook's method involving mathematical calculations -- though applied to a post-solution use -- unpatentable. Flook, $437 \mathrm{U} . \mathrm{S}$.* at 590. Flook clearly limited the Benson rule to mathematical formulae and mathematical algorithms. Id. at 585, 587, 589, 590, 591, 592; 594, 595. By mixing the terms "formula" and "algorithm," 437 U.S. at 585-86, however, Flook further confused the meaning of "mathematical algorithm." As used by Benson, that term meant "a procedure for solving a given type of mathematical problem." 409 U.S. at 65. Thūsr. an "algorithm" required both a mathematical problem and a solution procedure. A "formula" does not present or solve a mathematical problem, but merez \dot{y} expresses a relationship in mathematical terms. A "formula," even under Benson's definition, is not an algorithm.

In the wake of Benson, the Court of Customs and Patent Appeals struggled to implement the algorithm rule. n1 Much of [*30] the difficulty sprang from the obscurity. of the terms invoked to preclude patentability -- terms like "law of nature," "natural phenomena," "formulae," or "algorithm." n2 Benson, 409 U.S. at 65, 67; Flook, $437 \mathrm{U} . \mathrm{S}$. at 593. In the context of a product's subject matter patentability, Justice Frankfurter discussed this analytical difficulty:
It only confuses the issue, however, to introduce such terms as "the work of nature" and the "laws of nature." For these are vague and malleable terms infected with too much ambiguity and equivocation. Everything that happens may be deemed "the work of nature, " and any patentable composite exemplifies in its properties "the laws of nature." Arguments drawn from such terms for

PAGE 13
1992 U.S. App. LEXIS 4202, *30
ascertaining patentability could fairly be employed to challenge almost every patent.

- - - - - - $* 32$]

PAGE 14
1992 U.S. App. LEXIS 4202, *32

At length, in In re Freeman, 573 F.2d 1237, 197 USPQ 464 (CCPA 1978) as modified by In re Walter, 618 F.2d 758, 205 USPQ 397 (CCPA 1980), the Court of Customs and Patent Appeals settled on a two-step test to detect unpatentable algorithms under the Benson rule:

First, the claim is analyzed to determine whether a mathematical algorithm is directly or indirectly recited. Next, if a mathematical algorithm is found, the claim as a whole is further analyzed to determine whether the algorithm is "applied in any manner to physical elements or process steps," and, if it is, it "passes muster under e 101.".

In re Pardo, 684 F.2d 912, 915, 214 USPQ 673, 675-76 (CCPA 1982) (citing In re Abele, 684 F.2d 902, 214 USPQ 682 (CCPA 19;82).). Walter adopted Flook's implicit limitation of the Benson rute to "mathematical algorithms." 618 F.2d at 764-65 n.4. Like Flook; however, Walter confused "mathematical algorithms" with calculations, formulas, and mathematical procedures generally. Id.

Although downstream from Benson, [*33] this Freeman-Walter fork hid some of the same unnavigable cross-currents; In the first place, the term "mathematical algorithm" remained vague. Without a statutory anchor, this term was buffeted by every judicial wind until its course was indiscernible. The obscurity of the term "mathematical algorithm" is evident in two cases. In Pardo, 684 F.2d 912, the court narrowly limited "mathematical algorithm" to the execution of formulas with given data. In the same year, the court in In re Meyer, 688 F. 2d 789, 215 USPQ 193 (CCPA 1982), sweepingly interpreted the same term to include any mental process that can be represented by a mathematical algorithm.

The second part of the test had similar uncertainties. The test did not suggest how many physical steps a claim must take to escape the fatal "mathematical algorithm" category. In Abele, 684 F.2d 902, the court upheld claims applying "a mathematical formula within the context of a process which encompasses significantly more than the algorithm alone." Id. at 909. Thus, the court apparently made compliance with [*34] the two-part test a function of the "significance" of additions to the algorithm -- hardly a predictable standard.

The Court of Customs and Patent Appeals later clarified that the two-part algorithm is not the exclusive test for detecting unpatentable subject matter. Meyer, 688 F .2 d at 796 . Indeed, the
court abandoned the two-step test in In re Taner, 681 F.2d 787, 214.USPQ 678 (CCPA 1982).

With the advent of the Court of Appeals for the Federal circuit, this court continued to grapple with the inherent vagueness of the two-part test for unpatentable algorithms. See In re Grams, 888 F. 2d 835, 12 USPQ2d 1824 (Fed. Cir. 1989) ; In re Iwahashi, 888 F.2d 1370 , 12 USPQ2d 1980 (Fed. Cir. 1989). At one point, this court clarfified that failure to satisfy the second prong of the two-part test "does not necessarily doom the claim." Grams, 888 F.2d at 839. Instead this court recommended asking the broader question of "What did applicants invent?" in the context of the claim and its supporting disclosure. Id. At another point in the $[* 35]$ same opinion, this court put the central question in terms of whether "the claim in essence covers only the algorithm." Id. at 837 .

PAGE 15
1992 U.S. App. LEXIS 4202, *35

Recognizing the obscurity of "algorithm," this court in Iwahashi attempted to "take the mystery out of the term":

We point out once again that every step-by-step process, be it electronic or chemical or mechanical, involves an algorithm in the broad sense of the term. Since \& 101 expressly includes processes as a category of inventions which may be patented and 100 (b) further defines the word "process" as meaning "process, art or method, and includes a new use of a known process, machine, manufacture, composition of matter, or material," it follows that it is no ground for holding a claim is dírected to nonstatutory subject matter to say it includes or is directed to an algorithm. This is why the proscription against patenting has been limited to mathematical algorithms

888 F.2d at 1374 (emphasis in original). Because the Iwahashi claims as a whole described a machine or'a manufacture (which fit within section 101 without regard to the meaning of "process"), this court in [*36] Iwahashi did not have occasion to resolve conflicts over the legal bounds of "mathematical algorithm."

In sum, the two-part test was cast in the crucible of confusion created by Benson. If the Benson algorithm rule was the last and binding word on the meaning of "process" under section 101, this court would be obligated to follow -- regardless of any imprecision or ambiguity. The Supreme Court, however, has already shown another reading of the Patent Act.

III.

In Diehr, the Supreme Court adopted a very useful algorithm for determining patentable subject matter, namely, following the Patent Act itself. Diehr upheld claims to a process for curing synthetic rubber which included use of a mathematical computer
process. After setting forth the procedural history of the case, the Supreme Court stated:

In cases of statutory construction, we begin with the language of the statute.
Diehr, 450 U.S. at 182. Perhaps with an eye to the attempts to apply the Benson rule, the court then noted:

In dealing with the patent laws, we have more than once cautioned that "courts 'should not read into the patent laws limitations and conditions [*37] which the legislature has not expressed.""

Id. (citations omitted). Indeed Congress has never stated that section 101's term "process" excludes certain types of algorithms. Therefore, as Diehr commands, this court should refrain from employing judicially-created tests to limit section 101.

With that introduction, the court proceeded to interpret the word "process" from section 101. In doing so, the court briefly examined the history of patent laws back to 1793. See also Chakrabarty, 447 U.S. at 308-09. The court summed up the legislative intent of the patent laws with this broad admonition:

The Committee Reports accompanying the 1952 Act . . . inform us that Congress intended statutory subject matter to "include anything under the sun that is made by man." S. Rep. No. 1979, 82d Cong., 2d Sess., 5 (1952); H.R. Rep. No.

PAGE 16 1992 U.S. App. LEXIS 4202 , *37

1923, 82d Cong., 2d Sess., 6 (1952).
Diehr, 450 U.s. at 182. This passage underscores the fallacy of creating artificial limits for the words of the 1952 Act.

Courts should give "process" its literal and predictable meaning, without conjecturing about the policy implications of that literal [*38] reading. Cf. Chakrabarty, 447 U.S. at 316-18. If Congress wishes to remove some processes from patent protection, it can enact such an exclusion. Again, in the absence of legislated limits on the meaning of the Act, courts should not presume to construct limits. The supreme court directed this court to follow the Act.

With that preface, the Supreme Court in Diehr specifically limited Benson. In the first place, the court acknowledged the narrow definition of "mathematical algorithm" set forth by Benson. 450 U.S. 186 n.9. Moreover, the Court expressly stated:

Our previous decisions regarding the patentability of "algorithms" are necessarily limited to the more narrow definition employed by the court
Id. Thus, after Diehr, only a mathematical procedure for solution of a specified mathematical problem is suspect subject matter.

The Supreme Court in Diehr also limited Benson to a further narrow proposition. That narrow proposition supports reliance on the statutory language'of the 1952 Act, rather than a nonstatutory algorithm rule.

Citing Benson, the Court in Diehr stated:
This Court has [*39] undoubtedly recognized limits to \& 101 and every discovery is not embraced within the statutory terms. Excluded from such patent protection are laws of nature, natural phenomena, and abstract ideas.

Our recent holdings in Gottschalk v. Benson, supra, and Parker v. Flook, supra, both of which are computer-related, stand for no more than these long-established principles.

450 U.S. at 185. In Taner, 681 F.2d at 791, this court's predecessor said:
In Diehr, the Supreme Court made clear that Benson stands for no more than the long-established principle that laws of nature, natural phenomena, and abstract ideas are excluded from patent protection and that "a claim drawn to subject matter otherwise statutory does not become nonstatutory because it uses a mathematical formula, computer program, or digital computer." [Citations omitted.]

Thus, Diehr limited Benson and its progeny to three classes of unpatentable subject matter -- laws of nature, natural phenomena, and abstract ideas. Indeed, in Chakrabarty, the court also cited Benson for [$* 40$] the proposition that these three categories are unpatentable. 447 U.S. at 309 ; see also Flook, 437 U.S. at 593.

Because the Supreme Court cited Benson, 450 U.S. at 185-86, this court has doubted whether Diehr limited the algorithm rule. Grams, 888 F.2d at 838 . However, In re Taner, clearly interprets Diehr as strictly limiting Benson.

PAGE 17

1992 U.S. App. LEXIS 4202,
*40
681 F.2d at 789, 791. More importantly, the Supreme Court instructed this court to apply the language of the 1952 Act without reading unexpressed limitations into the statute. Diehr, 450 U.S. at 182. Finally, to the extent that the Benson rule applies to mathematical algorithms in the wake of Diehr, the supreme court defined "mathematical algorithm" very narrowly.

Sarker，this court＇s predecessor gave another reason a law of nature cannot satisfy section 101．In re Sarker， 588 F．2d

PAGE 18

1992 U．S．App．LEXIS 4202，
＊42
1330，1333， 200 USPQ 132， 137 （CCPA 1978）．In sum，the Patent Act excludes laws of nature from patent protection even without a strained explanation excluding laws of nature from the meaning of ＂process．＂It is difficult to determine how or why mathematical algorithms are＂like＂laws of nature．

```
- - - - - - -[*43]
```

Second，the＇ 459 patent does not claim a natural law，abstract idea，or natural phenomenon．Diehr limited the Benson rule to these three categories，none of which encompass the＇ 459 patent．

Finally，and most important，Diehr refocused the patentability inquiry on the terms of the Patent Act rather than on non－ statutory，vague classifications．Under the terms of the Act，a ＂process＂deserves patent protection if it satisfies the Actils requirements．The $/ 459$ patent claims a＂process＂within the broad meaning of section 101．Therefore，this court must reverse and remand．

CONCLUSION

When determining whether claims disclosing computer art or any other art describe patentable subject matter，this court must follow the terms of the statute．The Supreme Court has focused this court＇s inquiry on the statute，not on special rules for computer art or mathematical art or any other art．

The claims of the＇ 459 patent define an apparatus and a process．Both are patentable subject matter within the language of section 101．To me，the Supreme Court＇s most recent message is clear：when all else fails（and the algorithm rule clearly has）， consult the statute．On this basis，I，too，would［＊44］reverse and remand．
\qquad
＊＊＊＊ー－ー－ー－ー－－＊＊＊＊

PART I．
1．H This communication is responsive to 8 April 92 Communication fromitpplicant
2．All the claims being allowable，PROSECUTION ON THE MERITS IS ten－REMARINS CLOSED in this application．If not included herewith（or previously mailed），a Notice Of Allowance And Issue Fee Due or other appropriate communication will be sent in due course
3．㳯 The allowed claims ar \qquad
4．The drawings filed on are acceptable．
4．\square Acknowledgment is made of the claim for priority under 35 U．S．C．119．The certified copy has［－］been received．［－］not been received．［－］been filed in parent application Serial No．
6．Note the attached Examiner＇s Amendment．
7．［］Note the attached Examiner Interview Summary Record，PTOL－413．
8．Note the attached Examiner＇s Statement of Reasons for Allowance．
9．［ Note the attached NOTICE OF REFERENCES CITED，PTO－892．
10．Note the attached INFORMATION DISCLOSURE CITATION，PTO－1449．

PART．II．

A SHORTENED STATUTORY PERIOD FOR RESPONSE to comply with the requirements noted below is set to EXPIRE THREE MONTHS FROM THE＂DATE MAILED＂indicated on this form．Failure to timely comply will result in the ABANDONMENG of this application． Extensions of time may be obtained under the provisions of 37 CFR 1．136（a）．

1．\square Note the attached EXAMINER＇S AMENDMENT or NOTICE OF INFORMAL APPLICATION，PTO－152，which discloses that the oath or declaration is deficient．A SUBSTITUTE OATH OR DECLARATION IS REQUIRED．
2．Applicant must make the drawing changes indicated below in the manner set forth on the reverse side OF THIS PAPER．
a．Drawing informalities are indicated on the NOTICE RE PATENT DRAWINGS，PTO－948，attached hereto or to Paper No． -4
\qquad CORRECTION IS REQUIRED．
b．为 The proposed drawing correction filed on 6 May $91 \& 8$ April 92 has been approved by the examiner．CORRECTION is REQUIRED．
c．Approved drawing corrections are described by the examiner in the attached EXAMINER＇S AMENDMENT．CORRECTION IS REQUIRED．
d．身 Formal drawings are now REQUIRED

Any response to this letter should include in the upper right hand corner，the following information from the NOTICE OF ALLOWANCE AND ISSUE FEE DUE：ISSUE BATCH NUMBER，DATE OF THE NOTICE OF ALLOWANCE，AND SERIAL NUMBER．

Attachments：

Examiner＇s Amendment
Examiner Interview Summary Record．PTOL－ 413
－Notice of Informal Application．PTO－152
－Examiner Interview Sur
－Notice re Patent Drawings，PTO－948
Reasons for Allowance
－Listing of Bonded Draftsmen
A Notice of References Cited，PTO－892－Other
Information Disclosure Citation，PTO－1449

Address: Box ISSUE FEE
COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231

STEVEN J. BOCCI
WOODCOCK, WASHBUR, KURTZ; MACKIEWICZ \& NORRIS
ONE LIBERTY PLACE - 46TH FLOOR PHILADELPHIA, PA 19103

NOTICE OF ALLOWANCE AND ISSUE FEE DUE
-] Note attached communication from the Examiner
\square This notice is issued in view of applicants communication fled

TILE OF
INVENTION METHOD FOR ANALYZING AND GENERATING OPTIMAL TRANSPORTATION SCHEDULES FOR VEHICLES SUCH AS TRAINS AND CONTROLLING THE MOVEMENT T OF VEHICLES IN RESPONSE THERETO (AS AMENDED)

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED.
THE ISSUE FEE MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED..

HOW TO RESPOND TO THIS NOTICE:

I. Review the SMALL ENTITY Status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the Status is changed, pay twice the amount of the FEE DUE shown above and notify the Patent and Trademark Office of the change in status, or
B. If the Status is the same, pay the FEE DUE shown above.
II. Part B of this notice should be completed and returned to the Patent and Trademark Office (PTO) with your ISSUE FEE. Even if the ISSUE FEE has already been paid by a charge to deposit account, Part B should be completed and returned. If you are charging the ISSUE FEE to your deposit account, Part C of this notice should also be completed and returned.
III. All communications regarding this application must give series code (or filing date), serial number and batch number. Please direct all communications prior to issuance to Box ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees.

```
12.88(%)Mв Clearance is pending)
12.88 (OMB Clearance is pending)
```

PATENT AND TRADEMARK OFFICE COPY
If the SMALL ENTITY is shown as NO:
A. Pay FEE DUE shown above, or
B. File verified statement of Small Entity Status before, or with, payment of $1 / 2$ the FEE DUE shown above.

Address:

Box ISSUE FEE
COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231

STEVEN I. BOCCI
WOODCOCK; WASHBUR, KURTZ, MACKIEGICZ \& NORRIS
ONE LIBERTY PLACE - 4GTH FLOOR
PHILADELPHIA, PA 19103
\square Note attached communication from the Examiner
\square This notice is issued in view of applicants communication fled

- - --

TMVENTIGMETHOD FOR ANALYZING AND GENERATING OPTIMAL TRANSPORTATION SCHEDULES FOR VEHICLES SUCH AS TRAINS AND CONTROLLING THE MOVEMENT OF VEHICLES IN RESPONSE THERETO (AS AMENDED)

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED.
THE ISSUE FEE MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED.

HOW TO RESPOND TO THIS NOTICE:

I. Review the SMALL ENTITY Status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the Status is changed, pay twice the amount of the FEE DUE shown above and notify the Patent and
Trademark Office of the change in status, or
B. If the Status is the same, pay the FEE DUE shown above.
II. Part B of this notice should be completed and returned to the Patent and Trademark Office (PTO) with.your ISSUE FEE. Even if the ISSUE FEE has already been paid by a charge to deposit account, Part B should be completed and returned. If you are charging the ISSUE FEE to your deposit account, Part C of this notice should also be completed and returned.
III. All communications regarding this application must give series code (or filing date), serial number and batch number. Please direct all communications prior to issuance to Box ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees.

SERIAL NUMBER	FILING DATE	FIRST NAMED APPLICANT		ATTORNEY DOCKET NO.

$$
07 / 16 / 92
$$

notice of allowability

Any response to this letter should include in the upper right hand corner, the following information from the NOTICE OF ALLOWANCE AND ISSUE FEE DUE: ISSUE BATCH NUMBER, DATE OF THE NOTICE OF ALLOWANCE, AND SERIAL NUMBER.

Attachments:

Examiner's Amendment

- Notice of Informal Application, PTO-152
- Examiner's Amendment
- Examiner Interview Summary Record, PTOL-413
- Notice re Patent Drawings, PTO-948
- Reasons for Allowance
- Listing of Bonded Draftsmen

A Notice of references Cited. PTO-892

- Other
-I Information Disclosure Citation, PTO-1449
* This Notice of Allowability supercedes and replaces the previous Notice of Allowability which was inadvertently mailed in error without the Primary Examiner's stamp and signature.

TO SEPARATE, HOLO TOP AND BOTTOM EDGES, SNAP-APART AND f-CARD CARBON

FOREIGN PATENT DOCUMENTS

*		DOCUMENT NO.						DATE	countay	name	cLass	Sub-	$\begin{array}{\|l\|l} \hline \text { PERTII } \\ \text { SHTS. } \end{array}$	$\begin{aligned} & \text { NENT } \\ & \text { Pspec. } \end{aligned}$
	L										-			
	M													
	N													
	0													
	P													
	0													

OTHER REFERENCES (Including Author, Title, Date, Pertinent Pages, Etc.)

* A copy of this reference is not being furnished with this office action. (See Manual of Patent Examining Procedure, section 707.05, lallime

Transaction History Date $199208-10$.
Date information retrieved from USPTO Patent
Application Information Retrieval (PAIR)
system records at www.uspto.gov

In re patent application of:
Patrick T. Harker et al.

Serial No.: 629,417	Group No.: 2304
Filed: December 18, 1990	Examiner: T. Auchterlonie

For: METHOD FOR ANALYZING AND GENERATING OPTIMAL TRANSPORTATION SCHEDULES FOR VEHICLES SUCH AS TRAINS AND CONTROLLING THE MOVEMENT OF VEHICLES IN RESPONSE THERETO

1, Michele K. Herman, Registration No. P35.893 certify thet this .
correspondence is beine deposited with the U.S. Postal Service as Fikerciass moil in an envelope addrassed to the Commissioner of Patents and
Tredemarks, Washington, o.c. 20231.
on $8 / 7 / 1992$
nnaulu 27 newern
Michele K. Herman Req. No. P35.893
Box Issuéfee
Commissioner of Patents \& Trademarks
Washingt σ nis DC 20231
ATTN: Ǿfificial Draftsman
Sir: $\frac{5}{6}$ Gus
IRANSMITTAL LETTER TO OFFICIAL DRAFTSMAN

Please find enclosed 28 sheet(s) of formal drawings
relating to the above-identified patent application.
This Letter, and the enclosed drawings, each bear the
Issue Batch No., the date of the Notice of Allowance and Serial
No. of the application on the front of the respective document. Please charge any comparison fees to our Deposit Account No. 233050.

In view of thepabove, the present application is believed to be in a condition ready for issuance.

Date: August 7, 1992

WOODCOCK WASHBURN KURTZ
MACKIEWICZ \& NORRIS
One Liberty Place - 46 th Floor
Philadelphia, PA, 19103
(2'15) 568-3100

DOCRET NO.: UPN-0401 PATENT

In re patent application of:
Patrick T. Harker et al.
Serial No.: 629,417 Group No.: 2304
Filed: December 18, 1990 Examiner: T. Auchterlonie

FOX: METHOD FOR ANALYZING AND GENERATING OPTIMAL TRANSPORTATION SCHEDULES FOR VEHICLES SUCH AS TRAINS AND CONTROLLING THE MOVEMENT OF VEHICLES IN RESPONSE THERETO

1, Michole K. Hemman, Registration No. P36,893 certify that this
Cortiospondence is being deposited with the U.S. Postal Sorvice as Firct Class
mait in an envelope sodrossed to the Commisaloner of Patents and
D.c. 20231.
on $8 / 7 / 1997$
Michele K. Herman Reg. No. P35,893
Box Issue Fee
Commissioner of Patents \& Trademarks
Washington, DC 20231
ATTN: Official Draftsman
Sir:

TRANSMITTAL LETTER TO OFFICIAL DRAFTSMAN

Please find enclosed 28 sheet(s) of formal drawings relating to the above-identified patent application.

This Letter, and the enclosed drawings, each bear the Issue Batch No., the date of the Notice of Allowance and Serial No. of the application on the front of the respective document. Please charge any comparison fees to our Deposit Account No. 233050.

WOODCOCK WASHBURN KURTZ
MACKIEWICZ \& NORRIS
One Liberty Place - 46th Floor
Philadelphia, PA 19103
(215) 568-3100

DOCKET NO.: UPN-0401 . PATENT

TRANSMITTAL LETTER TO OFFICIAL DRAFTSMAN

Please find enclosed 28 sheet(s) of formal drawings relating to the above-identified patent application.

This Letter, and the enclosed drawings, each bear the Issue Batch No., the date of the Notice of Allowance and Serial No. of the application on the front of the respective document. Please charge any comparison fees to our Deposit Account No. 233050 .

In view of the above, the present application is believed to be in a condition ready for issuance.

Date: August 7, 1992

WOODCOCK WASHBURN KURTZ MACKIEWICZ \& NORRIS
One Liberty Place - 46th Floor Philadelphia, PA 19103 (215) 568-3100

Docket No. UPN-0401 Ser. No.: 629,417 Filed December 18, 1990 Art Unit: 2304 Inventor: Harker et al. Notice of Allowance: 7/13/92 Batch No.: E45 Sheet 1 of 28

FIG. 1

Docket No. UPN-O4O1 Ser. No.: 629,417 Filed:
. December 18, 1990 Art Unit: 2304 Inventor: Harker et al. Notice of Allowance: 7/13/92 Bat. No.: E45 Sheet 2 of 28

FIG. 2

Docket No. UPN-0401 Ser. No.: 629,417 Filed:
December 18, 1990 Art Unit: 2304 Inventor:
Harker et al. Notice of Allowance: 7/13/92 Bati
No.: E45 Sheet 3 of 28

Docket No. UPN-0401 Ser. No.: 629,417 Filed
December 18, 1990 Art Unit: 2304 Inventor:
Harker et al. Notice of Allowance: $7 / 13 / 92$ Bat
No.: E45 Sheet 4 of 28

nocket No. UPN-0401 Ser. No.: 629.417 Filed:
jcember 18, 1990 Art Unit: 2304 Inventor: Harker et al. Notice of Allowance: 7/13/92 Batch No.: E45 Sheet 5 of 28

FIG. 4
 5

FIG. 6

- Docket No. UPN-0401 Ser. No.: 629,417 Filed:

December 18, 1990 Art Unit: 2304 Inventor: Harker et al. Notice of Allowance: 7/13/92 Batu. No.: E45 Sheet 7 of 28

TIME-DISTANCE DIAGRAM OF
INITIAL FEASIBILITY PLAN DEPART
ARRIVE
FIG. 8

FIG. 9
TIME-DISTANCE DIAGRAM OF

FIG. $10 A$

Yocket No. UPN-0401 Ser. No.: 629,417 Filed:
,ecember 18, 1990 Art Unit: 2304 Inventor: Harker et al. Notice of Allowance: 7/13/92 Batch No.: E45 Sheet 11 of 28

FIG. IOB

Docket No. UPN-0401 Ser. No.: 629,417 Filed:
December 18, 1990 Art Unit: 2304 Inventor: Harker et al. Notice of Allowance: 7/13/92 Batch No.: E45 Sheet 12 of 28

FIG. IOC

Docket No. UPN-0401 Ser. No.: 629,417 Filed December 18, 1990 Art Unit: 2304 Inventor: Harker et al. Notice of Allowance: $7 / 13 / 92$ Batch No.: E45 Sheet 13 of 28

FIG. IIA

Docket No. UPN-0401 Ser. No.: 629,417 Filed:
December 18, 1990 Art Unit: 2304 Inventor: Harker et al. Notice of Allowance: 7/13/92 Batch Harker et al. Notice of All 28

FIG. //B

Docket No. UPN-0401 Ser. No.: 629,417 Filed:
December 18, 1990 Art Unit: 2304 Inventor:
Harker et al. Notice of Allowance: 7/13/92 Batch
No.: E45 Sheet 16 of 28

FIG. $14 A$

STEP I: INITIALIZATION

FIG. 14B

-. Docket No. UPN-0401 Ser. No.: 629,417 Filed:
Jecember 18, 1990 Art Unit: 2304 Inventor: Harker et al. Notice of Allowance: 7/13/92 Batc.,
No.: E45 Sheet 19 of 28

Docket No. UPN-0401 Ser. No.: 629,417 Filed: December 18, 1990 Art Unit: 2304 inventor: Harker et al. Notice of Allowance: 7/13/92 Batch No. E45 Sheat 20 of 28

FIG. $14 D$

Docket No. UPN-0401 Ser. No.: 629,417 Filed:
lecember 18, 1990 Art Unit: 2304 Inventor: Harker at al. Notice of Allowance: $7 / 13 / 92$ Batc. No.: E45 Sheet 21 of 28

FIG. $14 E$

Docket No. UPN-0401 Ser. No.: 629,417 Filed December 18, 1990 Art Unit: 2304 Inventor: Harker at al. Notice of Allowance: 7/13/92 Batch No.: E45 Sheet 22 of 28

FIG. 14F

Docket No. UPN-0401 Ser. No.: 629,417 Filed:
December 18, 1990 Art Unit: 2304 Inventor Harker et a!. Notice of Allowance: $7 / 13 / 921$
No.: E45 Sheet 23 of 28

> Docket No. UPN-0401 Ser. No.: 629,417 Filed.
> December 18, 1990 Art Unit: 2304 Inventor: Harker et al. Notice of Alliowance: $7 / 13 / 92$ Batch No.: E45 Sheet 24 of 28

Docket-No. UPN-040.1 Ser. No.: 629,417 Filed:
Dece' 18, 1990 Art Unit: 2304 Inventor:
Harker . al. Notice of Allowance: 7/13/92 Batch
No.: E45 Sheet 25 of 28

Docket No. UPN-0401 Ser. No.: 629,417 Filed:
De toer 18, 1990 Art Unit: 2304 Inventor:
Hs et al. Notice of Allowance: 7/13/92 Batch
No.: E45 Sheet 26 of 28
TIME-DISTANCE DIAGRAM OF
AN INITIAL MEET-PASS PLAN

DEPART
ARRIVE
MEETPNT - 1
MEETPNT -2
MEETPNT -3
MEETPNT -4
MEETPNT - 5
MEETPNT -6
MEETPNT -7
ARRIVE
TIME

Docket No. UPN-0401 Ser. No.: 629,417 Filed:
-ambar 18, 1990 Art Unit: 2304 Inventor:
ir et al. Notice of Allowance: 7/13/92 Batch
No.: E45 Shoot 28 of 28

SHIFT BENEFIT NEGATIVE BUT GENERAL POSITIVE. ADD OUTB. 2 a INB. 2 TO THE POTENTIAL TRAINS SET. RETRACE TO LEVEL ABOVE.

NODES ENUMERATED USING THE BRANCH-AND-BOUND METHOD OF THE ACCELERATED HEURISTIC LOWER-BOUND BASED ALGORITHM

Transaction History Date 1992-09-09.
Date information retrieved from USPTO Patent
Application Information Retrieval (PAIR)
system records at www.uspto.gov

\square The PTO delayed in providing a commercial bonded draftsman with drawings from the above-identified application. The delay prevented the'draftsman from filing corrected drawings within the response period set in the Notice of Allowability mailed \qquad Hence, said response period is hereby vacated. THE SHORTENED STATUTORY PERIOD FOR RESPONSE to comply with the requirement for drawing corrections is set to EXPIRE ONE MONTH FROM THE DATE OF THIS LETTER. Failure to comply will result in the ABANDONMENT of this application. Extensions of time may be obtained under the provisions of 37 CFF: 1.136(a) by filing the appropriate request and fee before the end of the six month statutory period for response.
\triangle Corrected/substituted drawings for the above-identified application, received in the PTO on $8-10-92$ are still considered informal for the reason(s) identified on the attached Form PTO-948.

E Applicant has the time remaining in the response period set in the Notice of Allowability or Notice of Drawing Requirements mailed $10-13-9$ to overcome the objections raised in the attached Form PTO-948. This response period may be extended under the provisions of 37 CFR 1.136 (a) by filing the appropriate request and fee before the end of the six month statutory period for response.
\square The PTO delayed in reviewing the corrected drawings. Applicant is given ONE month time limit from the date of this letter to provide corrected drawings. NO EXTENSION OF THIS TIME LIMIT MAY BE GRANTED UNDER EITHER 37 CFR 1.136(a) or (b). See MPEP 714.03. However, the response period set in the Notice of Allowability or Notice of Drawing Requirements mailed \qquad may be extended under the provisions of 37 CFR 1.136(a) by filing the appropriate request and fee before the end of the six month statutory period for response.
\square Corrected/substituted drawings for the above-identified application received in the PTO on ___ were submitted outside of the period for response set in the Notice of Allowability or Notice of Drawing Requirements mailed \qquad This application will become abandoned unless applicant obtains an extension of time under the provisions of 37 CFR 1.136 (a) by filing the appropriate request and fee before the end of the six month statutory period for response.

- ATTACHMENT: PTO-948

FORM PTOL-455 (5-86)

Please note as follows.
In response to item no. 2 of Pro Form 948 , the enclosed sheets of drawing are believed to have the proper margins.

In response to item no. 5 and the second comment at the bottom of PTO Form 948; applicant notes that the Examiner required the descriptive titles to be placed on the various ones of the sheets of drawings. See Paragraph no. 2 of the Office Action dated December 11, 1991. The drawings originally submitted with this application did not bear such descriptive titles, and it was only in response to the Examinér's requifement that they were placed in this application. The Examiner subsequently approved the proposed drawings bearing such descriptive titles. See the Notice of Allowability dated July 13, 1992.

Regarding first comment at the bottom of PTO Form 948, it is submitted that the new sheets of drawing comply with 37 CFR § $1.84(1)$.

DOCRET NO: UPN-0401

In view of the above, the present application is believed to be in a condition ready for issuance.

Date: September 21, 1992
Respectfully submitted,

WOODCOCK WASHBURN KURTZ
MACKIEWICZ \& NORRIS
One Liberty Place - 46th Floor
Philadelphia, PA 19103
(215) 568-3100

DOCKET NO: UPN-0401 PATENT

Issue Batch No.: E45 Date of Notice
of Allowance : 07/13/92
Serial No. : 629,417

Box Issue Fee
Commissioner of Patents \& Trademarks

ATTN: Official Draftsman
Sir:

TRANSMITTAL LETTER TO OFFICIAL DRAFTSMAN

This is in response to the Notice of Drawing
Requirement and accompanying Notice of Draftsman's patent Drawing Review (PTO Form 948) bearing a "date mailed" stamp of September 9, 1992.

Further to the telephone conference with the Reviewing
Draftsman whose signațure appears on the above papers (Joe Harris) on september 18, 1992, applicant has enclosed herewith 28 sheets of replacement formal drawings relating to the above identified patent application.

Please note as follows.
In response to item no. 2 of PTO Form 948, the enclosed sheets of drawing are believed to have the proper margins.

In response to item no. 5 and the second comment at the bottom of PTO Form 948, applicant notes that the Examiner required the descriptive titles to be placed on the various ones of the sheets of drawings. See Paragraph no. 2 of the Office Action dated December 11, 1991. The drawings originally submitted with this application did not bear such descriptive titles, and it was only in response to the Examiner's requirement. that they were placed in this application. The Examiner subsequently approved the proposed drawings bearing such descriptive titles. See the Notice of Allowability dated July 13, 1992.

Regarding first comment at the bottom of PTO Form 948, it is submitted that the new sheets of drawing comply with 37 CFR § $1.84(1)$.

In view of the above, the present application is
believed to be in a condition ready for issuance.

Date: September 21, 1992
Respectfully submitted,

WOODCOCK WASHBURN KURTZ
MACKIEWICZ \& NORRIS
One Liberty Place - 46 th Floor
Philadelphia, PA 19103
(215) 568-3100


```
Please note as follows.
In response to item no. 2 of PTO Form 948, the enclosed sheets of drawing are believed to have the proper margins.
In response tom no. 5 and the second comment at the bottom of PTO Form 948, applicant notes that the Examiner required the descriptive titles to be placed on the various ones of the sheets of drawings. See Paragraph no. 2 of the Office Action dated December 11, 1991. The drawings originally submitted with this application did, not bear such descriptive titles, and it was only in response to the Examiner's requirement that they were placed in this application. The Examiner subsequently approved the proposed drawings bearing such : descriptive titles. See the Notice of Allowability dated July 13, 1992.
Regarding first comment at the bottom of PTQ-Form 948, it is submitted that the new sheets of drawing comply with 37 CFR § \(1.84(1)\).
```

In view of the above, the present application is
believed to be in a condition ready for issuance.

Date: September 21, 1992

Respectfully submitted,

WOODCOCK WASHBURN KURTZ
MACKIEWICZ \& NORRIS
One Liberty Place - 46 th Floor
Philadelphia, PA 19103
(215) 568-3100

Dockét No. UPN-0401 Ser.No.: 629,417 Filed:
December 18, 1990 Ar Unit: 2304 Inventor:
Harker et al. Notice of Allowance: 7/13/93
Batch No.: E45 Shezt 2 of 28

FIG. 2

FIG.

Docket No. UPN-0401 Ser. No.: 629,417 Filed:
December 18, 1990 Ar Unit: 2304 Inventor:
Harker et al. Notice of Allowance: 7/13/93
Batch No.: E45 Sheel 4 of 28

POTENTIAL MEET-PLANS-
SEARCH TREE REPRESENTATION OF
TRAVEL PATH HAVING 3 MEETPOINTS

Docket No. UPN-0401 Ser.No.: 629,417 Filed: December 18, 1990 Art Unit: 2304 Inventor: Harker et al. Notice of Allowance: 7/13/93 Batch No.: E45 Sheet 6 of 28

FIG. 6

STEP 0

NODES ENUMERATED USING BRANCH-AND-BOUND METHOD OF IMPLICIT ENUMERATION ALGORITHM
FIG. 8 INITIAL FEASIBILITY PLAN

MEETPNT
DEPART
ARRIVE

MEETPNT

MEETPNT MEETPNT

MEETPNT

MEETPNT
MEETPNT
TIME
FIG. 9

Docket No. UPN-0401 Ser.No.: 629,417 Filed:
December 18, 1990 Ar Unit: 2304 Inventor:
Harker et al. Notice of Allowance: 7/13/93
Batch No.: E45 Sheet 10 of 28

FIG. IOA

FIG. IOB

FIG. $10 C$

Docket No. UPN-0401 Ser.No.: 629,417 Filed:
December 18, 1990 An Unit: 2304 Inventor:
Harker et al. Notice of Allowance: 7/13/93
Batch No.: E45 Sheet 13 of 28

FIG. I/A

FIG. I/B

FIG. 12

TIME-DISTANCE DIAGRAM OF
 $\begin{array}{r}\text { DEPART } \\ \text { ARRIVE }\end{array}$
MEETPNT -1
MEETPNT - 2
$\begin{array}{ll}\text { MEETPNT } & -3 \\ \text { MEETPNT } & -4\end{array}$
MEETPNT - 5
MEETPNT - 6
MEETPNT -7
ARRIVE
DEPART
TIME

Docket No. UPN-0401 Ser.No.: 629,417 Filed:
December 18, 1990 Art Unit: 2304 Inventor:
Harker et al. Notice of Allowance: 7/13/93
Batch No.: E45 Sheet 17 of 28

FIG. $14 A$

STEP I: INITIALIZATION

Docket No. UPN-0401 Ser.No.: 629,417 Filed
December 18, 1990 Art Unit: 2304 Inventor:.
Harker el al. Notice of Allowance: 7/13/93
Batch No.: E45' Sheet 18 of 28

FIG. $14 B$

Docket No. UPN-0401 Ser.No.: 629,417 Filed:
December 18, 1990 Art Unit: 2304 Inventor:
Harker et al. Notice of Allowance: 7/13/93
Batch No.: E45 Sheet 19 of 28

Docket No. UPN-0401 Ser.No.: 629,417 Filed:
December 18, 1990 Art Unit: 2304 Inventor: Harker el al. Notice of Allowance: 7/13/93
Batch No.: E45 Sheet 20 of 28

FIG. 140

FIG. I4E

FIG. 14F

NODES ENUMERATED USING THE BRANCH-AND-BOUND METHOD OF THE LOWER-BOUND'EXACT PRUNING ALGORITHM

FIG. 16

Transaction History Date $1992-10-15^{\circ}$
Date information retrieved from USPTO Paten
Application Information Retrieval (PAIR)
system records at www.uspto.gov

PART B-ISSUE FEE TRANSMITTAL
$4585.00-242$
AILING INSTRUCTIONS: This form should 'be used for transmitting the ISSUE FEE. Blocks 2 through 6 should be completed where appropriate. All further correspondence including the Issue Fee Receipt, the Patent, advanced orders and notification of maintenance fees will be mailed to addressee entered in Block 1 unless you direct otherwise, by: (a) specifying a new correspondence address in Block 3 below; or (b) providing the PTO with a separate \qquad "FEEADUHESS" for maintenance fee notifications with the payment of lssueifee or thereafter See reverse for Certificate of Mailing.

*Check enclosed for $\$ 585.00$ in accordance with the fees effective 10/01/92.

UPN-401
Serial No. 629,417

Certificate of Mailing

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to:

Box ISSUE FEE
Commissioner of Patents and Trademarks
Washington, D.C. 20231
October 13, 1992
on
.. ? ..." (Date)
John W. Caldwell Reg.No: 28,937

Note: If this certificate of mailing is used, it can only be used to transmit the Issue Fee. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawings, must have its own certificate: of mailing:

H.

File History Content Report

The following content is missing from the original file history record obtained from the

United States Patent and Trademark Office. No additional information is available.

Document Date - 2005-02-02
Document Title - USPTO Communication Re: Expire Patent

BEST COPY

For Fees Effective Nov. 5, 1990

[^5]

[^0]: ${ }^{1} \mathrm{~A}$ lane is defined as the track between any tro reporting stations; e.g., the Whitefish to Libby lane.

[^1]: ${ }^{1}$ Trains are classified into various categories depending on their relative TPS performance; see Appendix C.
 ${ }^{2}$ Time is rounded up to the nearest minute.

[^2]: 1 Terms of art used in the specification and claims have been quoted.

[^3]: (a) inputting data into a processor indicative of ...
 i) a physical description of a routing network ... and
 ii) a proposed transportation schedule for each vehicle
 ... having at least a time of departure from a

[^4]: 2 Claims 29 and 30 are identical except that claim 29 depends from claim 1 and claim 30 depends from claim 23. Since the Examiner stated the rejection in respect to claim 30 but has made no reference to claim 23, Applicant has regarded the rejection as pertaining to claim 29.

[^5]: Pro/sB/06 (11-90) For Fees Effective Nov. 5, 1990 Patent and Trdemark Office; U.S. DEPARTMENT OF COMMERCE

