CHAPTER 11
 METERING PRINCIPLES AND PRACTICES

L. W. MANNING

GENERAL INTRODUCTION

The material which is presented in this chapter is confined to the theory and application of the induction watthour meter, demand meter, instrument transformers applied with these metering equipments, and meter accessories. Due to the number of induction watthour meters required in the electrical industry, considerable space is given to theory of the meters. Also, the theory is of additional importance because of the similarity of induction protective relays to the meters. However, emphasis is placed on application in preference to theory.

The entire revenue of all electrical power plants is derived from the customers served by the individual plant. All customers are billed on energy usage (kilo-watt-hours); while the billing of industrial, commercial, and large residential customers may also include demand charges and power factor penalties. Measurement of the quantities, within the close tolerance established by regulating agencies, at a minimum cost is extremely important to the management of each plant and to the individual customer. The economics may be reflected in the rates charged by the utility management to the customer. Also, an error in a particular meter in excess of the established tolerance may represent a considerable sum of money.
Progress in engineering and research has resulted in the development of metering equipment which has laboratory accuracy under all normal operating conditions. ${ }^{1,2}$ Also, by employing efficient quantity production methods and standardization, reliable watthour meters are produced and sold at remarkably low prices. An example is the comparison of the watthour meter with a wattmeter of comparable accuracy.

I. WATTHOUR METER-GENERAL

1. Requirements of a Walthour Meter

The registration of a watthour meter under all normal operating conditions is important to both the utility and the customer. It would be desirable to both parties for the registration to be 100% correct under all conditions. It is usually required by regulating agencies to be within ± 1.0 per cent of 100% registration under specified tests. Under normal operating conditions, the meter may be subjected to variations in line voltage, frequency (including application of complex wave forms), load, load power factor, and temperature. It may also be subjected to abnormal conditions, such as surges due to lightning and system disturbances, and to vibration. ${ }^{3}$ As a result of its maintained accuracy under both normal
and abnormal conditions, the induction watthour meter may be referred to as a versatile, rugged instrument.

If the registration of a watthour meter is to be correct, the number of revolutions of the rotating disk, or rotor, N, must be proportional to energy, W. Where C_{1} is a constant,

$$
\begin{equation*}
N=C_{1} W \tag{1}
\end{equation*}
$$

Instantaneous power, $p(t)$ at the points of entry of an electric circuit into a region is the rate at which electric energy is being transmitted by the circuit into the region and is given by

$$
\begin{equation*}
p(t)=\frac{d w}{d t} \tag{2a}
\end{equation*}
$$

Conversely, energy is the integral with respect to time of power or

$$
\begin{equation*}
W=\int_{\mathbf{o}}^{\mathrm{t}} p(t) d t \tag{2b}
\end{equation*}
$$

The active power, P, at the points of entry of an electric circuit is the time average of the values of instantaneous power, $p(t)$, when the average is taken over a cycle of alternating current. Hence,

$$
\begin{equation*}
P=\frac{1}{T} \quad \int_{0}^{\mathrm{T}} p(t) d t \tag{3}
\end{equation*}
$$

where T is the period of one cycle of fundamental frequency, the total time of an integral number of cycles of fundamental frequency, or a period of time which is much greater than a period of fundamental frequency.

Generally, energy is proportional to the integral with respect to time of power, $p(t)$, or of active power, $P(t)$, because, in general, active power is time variant. Hence,

$$
\begin{equation*}
W=\int_{0}^{t} P(t) d t \tag{4a}
\end{equation*}
$$

Then, from Equation (1)

$$
\begin{equation*}
N=C_{1} \int_{0}^{\mathrm{t}} P(t) d t \tag{4b}
\end{equation*}
$$

For a steady load or constant active power, P, energy is proportional to time or

$$
\begin{equation*}
W=P t \tag{5a}
\end{equation*}
$$

Then,

$$
\begin{equation*}
N=C_{1} P t \tag{5b}
\end{equation*}
$$

The speed of the rotating disk of a watthour meter is the time rate of change of the revolutions of the disk. Therefore,

$$
\begin{equation*}
s=\frac{d N}{d t}=C_{1} p(t) \tag{6}
\end{equation*}
$$

where s is the speed of the disk.

For correct registration of the meter, the speed of the disk must be directly proportional to power. For repetitive time variant voltage and current, the average power is constant; hence, the average speed must be constant. Also, for a constant average speed, the average retarding torque and average driving torque must be equal and directly proportional to average power. Therefore, for correct registration of a meter, two requirements which must be satisfied are: 1) the speed must be directly proportional to average power, and 2) the retarding torque must be directly proportional to speed. If both requirements are satisfied, the average driving torque and average retarding torque are directly proportional to average power delivered to the load.

2. General Construction of an Induction Watthour Meter

An isometric view of a typical single-phase, induction watthour meter is shown in Fig. 1 to indicate general physical arrangement of the basic components. Four basic and essential mechanisms of a watthour meter are: 1) the driving mechanism, which is the electromagnet, 2) the retarding mechanism, which is two permanent magnets, 3) the register mechanism, which is geared to the rotating disk and registers the energy measurement by totalizing the number of revolutions of the disk, and 4) the rotor or rotating disk common to all mechanisms, which is essentially the coupling between the other mechanisms. All single-phase meters contain one of each of the above mechanisms. Polyphase watthour meters contain one or more of each of the mechanisms.

The electromagnet, which is usually referred to as the stator, consists of the magnetic core, the potential coil, the current coils, and the variable coils. Magnetic cores of modern meters have one potential pole and two current poles, with the potential and current poles located on opposite sides of the disk air gap. The potential and current coils are wound around the respective poles. Adjustable coils are placed in the face of the potential poles piece and around each of the current poles for calibration of the meter.

Fig. 1-Isometric view of single-phase, induction wathour meter.

The rotating element is a thin, stippled aluminum disk which is supported by bearings on the supporting frame and is free to rotate in a plane lying in the air gap between the faces of the potential and current poles. Two very small anti-creep holes are located, one on either side of the spindle. When passing through the potential flux field, the holes prevent the disk from creeping under no load conditions.
The permanent magnets are located on the opposite side of the spindle from the electromagnet and serve to introduce an intentional drag on the rotating disk, which is proportional to the speed of the disk. The permanent magnets are so arranged that poles of unlike polarities are on the same side of the disk and only a portion of the flux passes through the disk. Experience has shown that this arrangement produces the greatest drag because of the shunt paths for the eddy current.

The register mechanism consists of a gear reduction mechanism to which is fixed four or five pointers, and

Fig. 2-Schematic diagram of watthour meter (a) Electromagnet and rotor, (b) Elevation section of disk, showing representations of paths of eddy currents due to potential and current flux, (c) Plan of disk showing inferaction of eddy currents and fluxes.
which has a 10:1 reduction between adjacent pointers. The pointers indicate the cumulative number of revolutions of the rotor or the energy measurement. The registration is indicated in kilowatt-hours. The register mechanism is discussed further under "Meter Constants and Test Data."

II. WATTHOUR METER THEORY 3 ,4,5,6

The approach taken in this analysis of an induction watthour meter seeks to analyze each mechanism in its particular function in the operation of the meter. A single-phase meter is analyzed here; however, the analysis is applicable to polyphase meters by considering each stator independently.

3. Electromagnot

A schematic diagram of the electromagnet (stator) and rotating disk are shown in Fig. 2. A sectional view of the disk is shown twice in Fig. 2(b) to indicate the eddy current paths in the disk due to the potential flux and the current flux. A partial plan view is shown in Fig. 2(c) to indicate the regions of interactions of the disk eddy currents and fluxes which produce driving torques. The positive direction for all quantities is shown by arrows. The positive direction of voltage drop in the potential circuit is shown by an arrow in the direction of voltage drop. A simplified vector diagram applicable to Fig. 2 is shown in Fig. 3.

The following notation is applicable to Figs. 2 and 3.
$V=$ voltage applied to meter potential circuit
$I=$ load current flowing in each meter current winding
$\theta=$ angle by which load current lags the applied voltage
Φ_{1-1} and $\Phi_{1-2}=$ effective flux normal to disk which is due to load current in current windings 1 and 2 , respectively
$\Phi_{\mathrm{p}}=$ effective flux normal to disk which is due to applied voltage, V

Fig. 3-Vector diagram of circuit shown in Fig. 2.
$E_{\Phi_{\mathrm{p}}}=$ voltage induced in disk by change in I_{p}
$E_{\Phi_{\mathrm{I}}}=$ voltage induced in disk by change in Φ_{I}
$I_{\Phi \mathrm{p}}^{\prime}=$ eddy current in disk due to $E_{\Phi_{\mathrm{p}}}$
$I_{\Phi I-1}^{\prime}$ and $I_{\Phi 1-2}^{\prime}=$ eddy current in disk due to $E_{\Phi_{I}}$
$y=$ impedance angle of disk, approximately 18°
$\alpha=$ angle by which $\Phi_{\mathrm{I}-1}$ and $\Phi_{\mathrm{I}-2}$ leads Φ_{p}
$\beta=$ angle by which $I_{\Phi_{\mathrm{p}}}^{\prime}$ lags Φ_{p} and $I_{\Phi \mathrm{I}-1}^{\prime}$ lags $\Phi_{\mathrm{I}-1}$
$\Delta=$ angle by which Φ_{p} lags V
$\gamma=$ angle by which Φ_{I-1} and Φ_{I-2} lag I
As can be seen from Figs. 2(b) and 2(c), three distinct fluxes and three corresponding eddy currents are present in the disk. Four points, A, B, C, and D, exist at which eddy currents flow in a flux other than the flux which causes the eddy currents. A torque is developed at each of the four points, due to the interaction of the eddy current and flux. The four torques developed are as follows:

At point A, I_{p}^{\prime} and $\Phi_{\mathrm{I}-2}$ produce torque $T_{2 \sim 2}$ to the left (clockwise)
At point B, I_{1-2}^{\prime} and Φ_{p} produce torque T_{1-2} to the right (counterclockwise)
At point C, $I_{\mathrm{I}-1}^{\prime}$ and Φ_{p} produce torque T_{1-1} to the right (counterclockwise)
At point $\mathrm{D}, I_{\mathrm{p}}^{\prime}$ and $\Phi_{\mathrm{I}-1}$ produce torque T_{2-1} to the right (clockwise)
An analysis of the interaction of the eddy currents and flux results in positive values of T_{1-1} and T_{1-2} and nega~ tive values of T_{2-1} and T_{2-2}. If symmetry, constant frequency, and sinusoids are assumed, the net average driving torque, T_{N}, is given by

$$
\begin{equation*}
T_{\mathrm{N}}=K \Phi_{\mathrm{p}} \Phi_{\mathrm{I}} \cos y \sin (\Delta-\theta-\gamma) \tag{7}
\end{equation*}
$$

where $K=$ a constant of proportionality. If linear circuits are assumed, Φ_{p} is directly proportional to V and $\Phi_{\mathrm{I}-1}$ and $\Phi_{\mathrm{I}-2}$ are proportional to the load current, I. Then, for a constant frequency

$$
\begin{equation*}
T_{\mathrm{N}}=C V I \sin \beta \sin \alpha \tag{8}
\end{equation*}
$$

where

$$
\alpha=(\Delta-\theta-\gamma)
$$

and

$$
\beta=90^{\circ}+y \text { (constant for a particular meter) }
$$

From Equation 8

$$
\begin{equation*}
T_{\mathrm{N}}=C^{\prime} V I \sin \alpha \tag{9}
\end{equation*}
$$

where

$$
C^{\prime}=C \sin \beta
$$

Since the power delivered to the load is $|V||I| \cos \theta$, the driving torque is proportional to the load only if

$$
\begin{aligned}
& \sin \alpha=\cos \theta \text { or } \\
& \sin (\Delta-\theta-\gamma)=\cos \theta
\end{aligned}
$$

This relationship must hold at all power factors. Also, since $\sin (90-\theta)=\cos \theta,(\Delta-\gamma)$ must equal 90 degrees at all power factors. Due to core losses in both the potential and current circuits, the angle ($\Delta-\gamma$) would be less than 90 degrees unless means are provided for increasing the angle by which Φ_{p} lags V. This is referred to as "lagging the meter" and is provided in all induction watthour meters by placing a closedcircuit coil, which is adjustable radially with respect to
the disk, on the potential pole piece near the disk or in the face of the pole piece. The per cent registration as a function lagging error and power factor is given by

$$
\begin{equation*}
\% R \mathrm{Reg}=\left(\cos \delta+\tan \theta \sin \delta+\frac{1-\cos \delta}{\cos \theta}\right) \times 100 \tag{10}
\end{equation*}
$$

where:
$\delta=$ angle of overlagging
$\theta=$ angle by which the load current lags the line voltage
In the derivation of Equation 10, it was assumed that the meter registers correctly at unity pf. The seriousness of a lagging error is shown in Fig. 4, which is a plot of Equation 10.

An error in lagging which might be negligible near unity pf becomes increasingly serious as the pf departs from unity. This factor is particularly important in reactive metering, because the voltage applied to the reactive meter lags the line voltage by 90 degrees. A high pf load appears as low pf load to the watthour meter used for reactive metering. If θ in Equation 10 is replaced by $\left(90^{\circ}-\theta\right)$, the equation gives the per cent registration of a varhour meter, which is overlagged by δ and which has been calibrated as a watthour meter to register correctly at unity pf.

In testing a watthour meter to be applied as a reactive meter, the meter may be tested as a watthour meter with watthour potentials applied to the meter, or it may be tested as a reactive meter with the phase displacement transformers. This factor is emphasized in polyphase meter applications, because the power factor apparent to each stator may be considerably different from the system power factor. This condition is apt to exist in polyphase watthour and reactive metering applications. Although correct lagging of a watthour meter is particularly important in polyphase and reactive metering applications, it is of little concern in the application of modern meters which are permanently lagged.
A shading coil which is adjustable in a tangential direction with respect to the disk causes a flux which leads the potential mutual flux in time- and spacephase. This results in a rotating field across the disk and a voltage only driving torque in the direction of the shad-

Fig. 4-Registration of watthour as a function of load power factor for various lagging errors. Meter calibrated to register correctly at 1.0 pf .
ing coil from the normal center of the potential flux field. This is the light load adjustment.

Torque Due To Alternating Fields-The retarding torque due to movement of the disk through the alternating flux fields accounts for about four and one-half per cent of the total retarding torque at full load. About four per cent is due to the potential or shunt field. The remaining one-half of one per cent is due to the current or series fields. The torque due to each field is proportional to the speed and to the square of the flux in each respective field, or is proportional to $\left(\phi^{2}{ }_{\mathrm{I}}+\phi_{\mathrm{p}}{ }^{2}\right) S$. The variation in the absolute value of torque due the potential flux is nearly proportional to speed, because the voltage and resulting potential flux do not vary widely. However, torque due to the alternating series (current) fields varies widely and results in low registration of the meter at excessive overloads. The overload range has been extended in modern meters by reducing the normal full load speed of the disk. ${ }^{7}$

Permanent Magnets-The purpose of the permanent magnets is to provide a retarding torque which is directly proportional to the speed of the disk and sufficiently large to overshadow the effects of undesirable characteristics of the unavoidable torques. Let Φ_{R} be the flux from the permanent magnets which cuts the disk and contributes to the retarding torque, and let S be the speed of the disk. The eddy currents induced in the disk are directly proportional to Φ_{\neq}and S. The resulting retarding torque by reaction of those eddy currents and Φ_{R} is directly proportional to $\Phi_{R}{ }^{2} S$. A reduction of one per cent in Φ_{R} results in an increase in S of two per cent for the same retarding torque, and a two per cent increase in registration. It is essential that Φ_{R} remain constant if the retarding torque provided by the permanent magnets is proportional to speed.

The value of Φ_{r} varies inversely with temperature, while the presence of strong fields due to surges has a demagnetizing effect on the permanent magnets. Therefore, means must be provided either to compensate for normal variations in Φ_{R} due to these factors or to protect the magnets from these factors.

Errors in registration due to changes in Φ_{R} caused by temperature changes are referred to as Class I Temperature Errors, or they are non-inductive temperature errors. These errors are independent of the power factor of the load being measured, as contrasted with Class II Temperature Error or inductive temperature errors, which are a function of the power factor of the load. ${ }^{7}$

4. Retarding Torque

In order for a meter to register correctly, the retarding torque must be directly proportional to the speed of the rotating disk. The retarding torque may be segregated into intentional and unavoidable torques.
The unavoidable retarding torque consists of bearing friction, friction in the gear train of the register mechanism, disk windage, and torque due to rotation of the disk in the alternating magnetic flux fields. Not one of these torques meets the necessary requirement of being directly proportional to speed. Consequently, these components are made as small as possible, partially
neutralized by an additional driving torque, or overshadowed in their effort by a large retarding torque of the correct characteristic.

Friction Torque-Friction torque, which is nearly constant, is first made as small as possible. The register gear train and main or lower bearing are the sources of friction, of which the main bearing is the principal source. The friction in the gear train is made small by the use of precision-milled gearing. The three general types of main bearings used in watthour meter designs to reduce the friction at that point are: 1) a polished steel pivot which rotates in a sapphire cup jewel; 2) a polished steel ball which runs between two sapphire cup jewels; and 3) a magnetic suspension bearing in which the rotating disk is held in suspension by two concentric permanent magnets. ${ }^{7}$
The friction retarding torque which remains after careful design of the bearings and gear train is overcompensated for by an additional driving torque developed by shading coil action in the potential circuit of the meter.

Class I Temperature Compensation is provided by a temperature compensating shunt, which is placed on the magnets in such a way as to shunt a portion of the magnet flux from crossing the air gap. The permeability of the shunt varies inversely with temperature, so that as the temperature increases, the proportion of magnet flux which cuts the disk is increased sufficiently to hold the disk flux, Φ_{R}, constant.

Two designs are used in permanent magnets to reduce the demagnetizing effects of surges. There are: 1) the casting of the magnets from one of the new highly coercive magnetic alloys of aluminum, and 2) plating the magnets with a heavy coating of copper. The first design depends upon the magnet to resist demagnetization due to surges. In the second method, the copper plating shields the magnet by the action of the eddy currents induced in the copper plating by the high fields due to surges. A comparison of the relative effectiveness of the two methods is shown in Fig. 5.

5. The Register

The function of the register is to record the energy as measured by the meter. Essentially it indicates the total number of revolutions of the rotating element, each revolution of which is a measure of energy. It consists of a series of dials geared in a convenient relationship to each other and to the shaft of the rotating disk. The register is shown schematically in Fig. 6.

The gear ratio between adjacent dials shafts, 1, 2, 3, and 4 is one to ten, so that the energy measurements indicated by the respective dials are in units, tens, hundreds, and thousands of kilowatt-hours. The measurement of energy is that which is read from the dials for a direct reading meter or from some other convenient multiplier. The multipliers can result from the additional gear ratio between the shaft of the units dial and the shaft of the rotating element and/or the ratio of instrument transformers applied in the particular installation. It is apparent that a definite total gear ratio exists between the shaft of the rotating disk and

Fig. 5-Effectiveness of surge profection of meter permanent magnets.
the shaft of the "units" pointer for a particular meter having a specific dial multiplier.

The register is a complete and detachable unit driven by the shaft of the rotating element " f ". The proper register to be applied with a particular meter depends upon the load being measured, which would determine the desired dial multiplier. Also, it may be required to replace the usual watthour meter register with a demand register, which would also indicate the maximum demand of the load. This is discussed further under section VI, "Demand Metering".

Fig. 6-Schematic view of watthour ineter register.
1 -First pointer shaft
c—Shaft No. 1
2-Second pointer shaft d-Worm gear 3-Third pointer shaft e-Worm
4-Fourth pointer shaft f-Meter rotor shaft
a-Shaft No. 3 g-Meter rotor pinion
b-Shaft No. 2 h-Meter rotor (disk)

The essential difference in register designs of various meter manufacturers is in the selection of the point in the gear train at which the worm gear is applied. The indicating dials rotate in a vertical plane, while the disk rotates in a horizontal plane. Therefore, it is necessary to use a worm gear at some point because of this transition. Some manufacturers apply the worm gear at the first gear reduction, where the disk shaft meshes with the register.

III. METER PERFORMANCE, CHARACTERISTICS, AND RATINGS

6. Performance Under Variations in Service Conditions

Frequency-Deviation from rated frequency produces numerous effects in a watthour meter. This can be resolved into changes in currents and fluxes which produce torque. The effects are dependent upon the load current and the load pf. The resulting changes in absolute values (magnitudes) of torque-producing eddy currents and fluxes tend to balance one another out. Errors result from changes in phase relationships which are not balanced out. However, commercial system frequencies are sufficiently constant that the problem is not serious.

7. Wove Form ${ }^{10,11}$

In the analysis and application of the induction watthour meter, sinusoidal voltages, fluxes, and currents are usually assumed. Under distorted wave forms, which can be broken down into fundamentals and harmonics, the analysis is applicable if it is realized that the final driving torque is the summation of driving torques due to the various harmonics. A particular harmonic in the flux wave reacts only with the same harmonic in the eddy current wave to produce a driving torque. However, it should be realized that all harmonics of the fluxes are effective in the retarding torques, due to the disk's moving through the alternating fields. It should be realized that the applied voltage and the torque producing potential flux are not necessarily of the same wave forms. Also, the disk eddy currents and the flux causing these eddy currents may not be of the same wave form. On commercial systems, the voltage wave forms are usually sufficiently sinusoidal to be considered as such. However, in energy measurements in nonlinear circuits, the current wave form may be sufficiently distorted to be a source of error. This fact should be considered in the measurements in non-linear and rectifier circuits.

Voltage-A deviation in applied voltage affects the saturation and losses of the potential circuits, the lagging of the meter, the driving torque produced by the potential shading coil, and the retarding torque due to movement of the disk in the potential alternating flux. The net effect in meter registration is dependent upon the relative effects on each torque. The retarding torque is proportional to the square of the potential flux, which in turn is proportional to voltage. An increase in voltage results in an increase in losses and a
decrease in lagging. The driving torque due to the shading coil is also proportional to the square of the voltage. A ten per cent change in voltage results in less than 0.8 per cent error in registration, while 2.5 to 30 per cent overvoltages result in less than 1.0 per cent error in registration. Greater than 30 per cent overvoltages may cause serious inaccuracies. However, system voltages do not normally deviate sufficiently from rated voltage to cause serious errors.

The operation of a 240 -volt meter at 277 volts is of particular interest in the metering of services which are fed from $265 / 460$-volt network systems. The full-load registration of a modern 240 -volt meter, when subjected to abnormally wide variations in applied voltage, is shown in Fig. 7. The meter had previously been calibrated to register correctly at the rated voltage of 240 volts. Although the change in registration with applied voltage is greater when metering unity pf loads, registration is within the usual tolerances over a wide range of applied voltage. The characteristics indicate that a meter calibrated at 240 volts can be applied at 277 volts with satisfactory accuracy; however, the meter might creep at the higher voltage and require resetting of the light load adjustment. Other factors might require application of transformer rated meters at the higher voltage.

Temperature-In modern watthour meters, compensation is provided for Class I and Class II temperature errors. ${ }^{8}$ No compensation is provided for variations in disk temperature; however, such variations would have little effect, since the disk is involved in both driving and retarding torques. A modern temperature-compensated watthour meter will usually provide satisfactory registration within required tolerances from $-10^{\circ} \mathrm{F}$ to $125^{\circ} \mathrm{F}$. Ambient temperatures outside this range may justify special consideration.

Summary of Performance Characteristics-Typical performance characteristics of a watthour meter are shown in Fig. 8; however, the characteristic of a particular meter may deviate from those shown.

8. Ratings of Watthour Meters

At the present, two areas of rating watthour meters for application purposes exist. A third area of rating is in the design of meter. The two areas of rating for application purposes are the preferred or available ratings and the standard ratings. The preferred ratings have been established by the needs of the industry, which is

Fig. 7-Registration-voltage characteristic of watthour meter over abnormally wide range of voltage.

Gridco, Inc. v. Varentec, Inc. IPR2017-01134
the basis for standards. However, only the single-phase, detachable, and bottom-connected meters have been standardized. ${ }^{12}$

The usual ratings applied to a meter are voltage, current, and frequency. So for a system frequency, the meters are rated in voltage and current to agree with the load being metered. For design purposes, each stator is also rated in kilowatts. The voltage, current, and kw rating of single stator meters agree with the respective load quantities. However, this does not generally apply to polyphase meters.

Ratings of polyphase meters require special considerations. For a specific polyphase watthour meter, the same voltage and current ratings do not necessarily apply to all stators. However, the kw ratings of all stators are usually equal. This is necessary since the watthour constant, K_{b}, applies to any or all stators. For application purposes, a polyphase meter is given a voltage and current rating. Since the stators are rated equally in kw and equal voltages are not necessarily applied to each stator, the voltage and current rating of a stator may differ from the respective ratings of the meter. This condition exists in the two-stator meters for application on three-phase, four-wire wye systems, and for meters applied to three-phase, four-wire delta systems.

The voltage rating of a meter for a particular application depends upon the type of system from which the load to be metered is served. For self-contained meters applied on a three-phase, three-wire system, the meter is rated at line-to-line voltage. For metering a load served from a three-phase, four-wire wye system, the meter is rated at line-to-neutral voltage. A meter rated at line-to-line voltage is applied on three-phase, fourwire delta systems.
Preferred Ratings-The preferred or available ratings of meters for applications to various systems are shown in Table I.
Standard Ratings--Single-phase, detachable and bot-tom-connected watthour meters are given in AEIC-EEI-NEMA Standards for Watthour Meters.

Standard Voltage and Frequency Ratings-The standard voltage ratings are 120,240 , and 480 volts. The standard frequency rating is 60 cps .

Standard Current Ratings--Two standard current ratings are applicable to each meter. ${ }^{12}$ The Class (CL) designation of a watthour meter denotes the maximum of the load range in amperes. The standard class ratings are 10 (for transformer rated meters), 100, and 200. The Test Current (TA) rating of a meter corresponds with the value of current at which the watthour meter is calibrated for operation over its load range. The TA rating corresponds with the current rating of watthour meters not covered by the existing standards, and the current rating of single-phase meters according to methods applied prior to standardizing the ratings. The standard TA ratings of single-phase, detachable and bottom-connected watthour meters are:

Class 10-2.5 amperes
Class 100-15 amperes
Class 200-50 or 30 amperes.

Other values of current may be recommended as a base test current by a manufacturer.

IV. WATTHOUR METER APPLICATIONS ${ }^{4,5,14,15}$

In this discussion on meter applications, it is assumed that each meter stator has been adjusted to read correctly; i.e., the driving torque is proportional to power delivered to the load, and the speed is always proportional to power. Having made this assumption, it is unnecessary to include "time" in the equation applying to the application.

Also, the scalar or dot product of vectors is used here in preference to trigonometric functions for simplicity in the analysis of the connections of a particular meter and the resulting registration. ${ }^{5}$ The quantities applied to a watthour meter, voltage, and current, can be represented on vector diagrams as co-planor vectors, vectors rotating at a fixed frequency in a common plane, or phasors. The scalar or dot product is equally applicable to phasors.

9. A Scalar or Dot Product of Phasors (Vectors) ${ }^{5,16}$

The dot product of two phasors, V and I, is defined as $V \cdot I$.

$$
V \cdot I \equiv|V||I| \cos \theta
$$

where $|V|=$ the absolute value of the voltage phasor, V
$|I|=$ the absolute value of the current phasor, I
$\theta=$ the angle between the two phasors, V and I
For this analysis of watthour meter applications,
$V=$ the phasor voltage drop in the load in a positive direction. It is also the voltage applied to the potential element of the watthour.
$I=$ the phasor current into the load in a positive direction and through the meter in a positive direction to produce forward torque in the meter.
$|V|=$ the rms or effective value of V
$|I|=$ the rms or effective value of I
$\theta=$ the phase angle by which I lags V
The quantities V and I are assumed to be sinusoidally time variant at the same frequency.
Applicability of Dot Product to Laws of Algebra Commutative Law

$$
\begin{align*}
V \cdot I & =|V||I| \cos \theta \\
V \cdot I & =|I||V| \cos \theta \tag{b}\\
\therefore V \cdot I & =I \cdot V \tag{c}
\end{align*}
$$

(a)

Distributive Law
Assume three phasors V, I_{1}, and I_{2} as shown in Fig. 9

$$
\begin{equation*}
\left(I_{1}+I_{2}\right) \cdot V=(O B) V \tag{a}
\end{equation*}
$$

Since $O B=O A+A B$,

$$
\begin{equation*}
\left(I_{1}+I_{2}\right) \cdot V=(O A+A B) V=(O A) V+(A B) V \tag{b}
\end{equation*}
$$

but
and

$$
\begin{gather*}
I_{1} \cdot V=(O A) V \tag{c}\\
I_{2} \cdot V=(A B) V \tag{d}\\
\therefore\left(I_{1}+I_{2}\right) \cdot V=I_{1} \cdot V+I_{2} \cdot V \tag{e}
\end{gather*}
$$

Fig. 9-Vector diagram for showing applicability of a dot product to the distributive law of algebra.

Assume four phasors V_{1}, V_{2}, I_{1}, and I_{2} as shown in Fig. 10.

By the Commutative Law

$$
\left(V_{1}+V_{2}\right) \cdot\left(I_{1}+I_{2}\right)=\left(I_{1}+I_{2}\right) \cdot\left(V_{1}+V_{2}\right)
$$

By the Distributive Law

$$
\begin{align*}
\left(V_{1}+V_{2}\right) \cdot\left(I_{1}+I_{2}\right) & =\left(V_{1}+V_{2}\right) \cdot I_{1} \tag{b}\\
& +\left(V_{1}+V_{2}\right) \cdot I_{2}
\end{align*}
$$

and

$$
\begin{equation*}
\left(V_{1}+V_{2}\right) \cdot I_{1}=V_{1} \cdot I_{1}+V_{2} \cdot I_{1} \tag{c}
\end{equation*}
$$

Similarly

$$
\begin{align*}
&\left(V_{1}+V_{2}\right) \cdot I_{2}=V_{1} \cdot I_{2}+V_{2} \cdot I_{2} \tag{d}\\
& \therefore\left(V_{1}+V_{2}\right) \cdot\left(I_{1}+I_{2}\right)=V_{1} \cdot I_{1}+V_{1} \cdot I_{2} \\
&+V_{2} \cdot I_{1}+V_{2} \cdot I_{2} \tag{e}
\end{align*}
$$

10. Blondel's Theorem

Blondel's Theorem applies to the measurement of power flowing into a network of any number of wires, with no restrictions on the number of phases or wires or the balance of load distribution among the phases. It is stated as follows: "If energy is supplied to a network through a wire, the total power in the system is

Fig. 10-Vector diagram for showing applicability of a dot product to the cumulative and distributive laws of algebra.
given by the algebraic sum of the readings of n wattmeters, so arranged that each of the n wires contains one current coil, the corresponding potential coil being connected between that wire and a point on the system that is common to all the potential circuits. If this circuit point is on one of the n wires and coincides with the point of attachment of the potential lead to that wire, only $\mathrm{n}-1$ wattmeters are required.
"The receiving and generating circuits may be arranged in any desired manner, and no assumption is made as to the way in which the voltage and currents vary." ${ }^{17}$

Applying this theorem, the minimum number of sin-gle-stator, two-wire meters with which energy delivered to a service on n wires can be accurately measured under general conditions is $\mathrm{n}-1$.

11. Application Data

In the analyses presented here for the various meter connections, $V I$ is defined as and understood to indicate a dot or scalar product of the two phasors, unless it is expressly written as otherwise.

The analyses of connections are given for the general case, or any condition of power factor, voltage balance, or load balance. Generally unbalanced loading is assumed. The condition of generally unbalanced voltages, and the special condition of balanced voltages, are both considered in each case.

(a)

(b)

Fig. 11-Metering a single-phase, three-wire circuit (a) Circuit diagram of connections, (b) Vector diagram.

Gridco, Inc. v. Varentec, Inc. IPR2017-01134 GRIDCO 1004 Part 5 of 5-444/576
Table 1A（cont＇d）—Preferred Ratings of Induction Watthour Meters

$\mathrm{Application}_{\mathrm{A}_{\mathrm{No}}}$	Circuit Application ${ }_{\text {Nominal }}$		$\begin{aligned} & \text { Rating } \\ & \text { of } \\ & \text { Meter } \\ & \text { Typer } \end{aligned}$	$\begin{aligned} & \text { Yoltage } \\ & \text { Rating } \\ & \text { of Meter } \end{aligned}$	Test Cur－ rent Rat－Type		Weatinghouse Designation		$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { of } \\ \text { Statarora } \end{gathered}$	$\begin{aligned} & \text { Typer } \\ & \text { Sytators } \end{aligned}$	$\begin{gathered} \text { Voltage } \\ \text { Rating of } \\ \text { Statore } \end{gathered}$	Yoltage Stators Stato	Remarks
7	Totalizing $1-\phi$ ， 2－wire，and $3-\phi$ ， 3－wire service	$\begin{aligned} & 1-\phi E_{1} \\ & 3_{-\phi} \mathrm{E} \end{aligned}$	sc	$1-\phi{ }^{\text {E }}$／2	15	4	CS－4	CA－4	3	2 －wire	E／2	E／2	
				${ }_{l}^{3-\phi E / 2}$	${ }_{50} 7.5$	4	CS－4	CA－4		${ }_{\text {2－2－wire }}$	${ }_{\text {E }}$	E	
				$3_{3 ¢}{ }^{\text {E }}$ E	25					2－2－wire	E	E	
				${ }^{1-\phi} \mathrm{E}$	15	4	CS－4	CA－4	3	${ }^{2}$－wire	${ }^{\text {E }}$	${ }_{\text {E }}$	
				${ }_{\substack{\text { che }}}^{\substack{-\phi \\ 1-\phi}}$	15 50					${ }_{\text {coser }}^{\text {2－2－wire }}$	${ }_{\text {E }}$	${ }_{\text {E }}$	
				${ }_{3-\phi}^{1-\phi}$	50					2－2－wire	E	E	
			TR		$\stackrel{5}{2.5}$	4	CS－4	CA－4	3	${ }_{2-\text {－wire }}^{2-\text { wire }}$	${ }_{E}^{E / 2}$	${ }_{E}^{\mathrm{E} / 2}$	Uses CT＇s only．Uees tbree－2－wire CT＇s（one for 1ϕ ckt．and two for $3-\phi$ ckta．）．
				${ }_{1-\phi} \mathrm{E}$	5	4	CS4	CA－4	3	2 －wire	E	E	
				${ }_{3-\phi} \mathrm{E}$	5					2－2－wire	E	E	
8	$\begin{aligned} & \text { Totalizing 1-ф, } \\ & 3-\phi, 3 \text {-wire } \end{aligned}$service	$\begin{aligned} & 1-\phi(E / 2) / E \\ & 3-\phi E \end{aligned}$	sc	$\begin{aligned} & 1-\phi(\mathrm{E} / 2) / \mathrm{E} \\ & { }_{3-\phi \mathrm{E}} \end{aligned}$	$\begin{array}{r} 15 \\ \\ \\ \\ \\ 50 \\ 50 \\ 50 \\ \hline \end{array}$	${ }^{8}$	CS－6	CA－6	3	${ }^{3}$－wire	（E／2）／E	E	
							C8－6						
			TR	${\underset{3}{3}-\phi(\mathrm{E} / 2) / \mathrm{E}, ~}_{1-2}$		6	CS－6	CA－	3	3-wire	$\frac{\mathrm{E}}{\mathrm{E} / 2}$	$\underset{E}{E}$	
		$\underset{\substack{1-\phi \\ 3 \rightarrow 2 \mathrm{E} \\ \mathrm{E} / 2) / \mathrm{E} \mathrm{SC} \\ \hline}}{ }$		${ }_{1-\phi(E / 2) / E}$		6	Cs－b	CA－A	3	3 －wire	（E／2）／E	E	two 2 －wire CT＇s．
				$3-¢ 2 \mathrm{E}$	7.5								
					50	6	CS－6	CA－6	3	${ }^{2-2-w i r e}$	${ }_{2 \mathrm{E}}^{(\mathrm{E} / 2) / \mathrm{E}}$	${ }_{2 E}^{\text {E }}$	
			TR	${ }_{3}^{1-\phi(E / 2) / E}$	$\begin{gathered} 25 \\ 5 \\ \hline \end{gathered}$	6	CS－6	CA－6	3	3－wire 2－2－wire	$\begin{aligned} & 2 \mathrm{E} \\ & \stackrel{(\mathrm{E} / 2) / \mathrm{E}}{2 \mathrm{E}} \end{aligned}$		
9	2－¢，5－wire												Each stator is similar to 3 －wire stator ured on $1-\phi(\mathbb{E} / 2) / \mathrm{E}$ system．
					50								Cach tatar is similar to 3 －wire etator used
			TR	E	2.5	10	CS－10	CA－10	2	2－3－wire	E	E	CT＇s only．Used with four 2 －wire CT＇s．A two 2 －wire stator meter similar to（DS－2 or DA－2）can be applied with two 3 －wire CT＇s．

Table 1B－Preferred Voltage Ratings of Induction Watthour Meters

＂윰우N

促层我禹8

E＝Nominal voltage of circuit to which the meter is applied．
SC SNelf－contanined meter．
TR＝Trasformer－rated meter．

It is assumed in each application that in the meter being considered, each stator has been adjusted and registers correctly the dot product of voltage and current applied to each stator. Only voltages and currents available for metering are shown in diagrams. Since the meter stators have been assumed to register correctly, the factor of "time" has been omitted from the analyses for simplicity.
Single-Phase, Two-Wire Meter-No analysis is necessary for this application, because this is the basic stator or meter considered under watthour meter theory. Also, it has been assumed that the stator has been calibrated for correct registration.

Single-Phase, Three-Wire Circuit-For ordinary commercial and residential loads, the single-phase, threewire, self-contained meter is used, although some loads may require transformer-rated meters. The meter is connected as shown in Fig. 11(a). In this meter, the two coils on the individual pole pieces are connected opposing each other for positive direction of currents into the loads. The corresponding vector diagram is shown in Fig. 11(b).
Analysis of measurement obtained in single-stator, three-wire meter:
Power delivered to the load is

$$
\begin{align*}
P_{\mathrm{t}} & =V_{1 \mathrm{~N}} I_{1}+V_{2 \mathrm{~N}} I_{2} \tag{a}\\
& =V_{1 \mathrm{~N}} I_{1}-V_{\mathrm{N} 2} I_{2} \tag{14}
\end{align*}
$$

For balanced voltages

$$
V_{1 \mathrm{~N}}=V_{\mathrm{N} 2}=\frac{V_{12}}{2}
$$

Then,

$$
\begin{align*}
P_{\mathrm{t}} & =V_{1 \mathrm{~N}} I_{1}-V_{1 \mathrm{~N}} I_{2} \tag{a}\\
& =V_{1 \mathrm{~N}}\left(I_{1}-I_{2}\right) \tag{b}\\
& =\frac{V_{12}}{2}\left(I_{1}-I_{2}\right) \tag{c}
\end{align*}
$$

Let the power measured by the meter be P_{m}. Then,

$$
P_{\mathrm{m}}=V_{12}\left(\frac{I_{1}-I_{2}}{2}\right)
$$

Division by "2" and "-" sign are necessary, since the three-wire meter has two half-winding current coils of opposite polarity for positive direction of current into the load.

If the voltages to neutral are balanced, the meter registers correctly regardless of any unbalance in load or difference in load power factors. However, since the possibility of voltage unbalance exists, the error in registration which may occur is of interest. ${ }^{18}$ Let P_{e} be the difference between P_{t}, the true power delivered to the load, and P_{m}, the power as measured by the meter. Then

$$
\begin{align*}
P_{\mathrm{e}} & =P_{\mathrm{t}}-P_{\mathrm{m}} \tag{a}\\
& =1 / 2\left(V_{1 \mathrm{~N}}-V_{\mathrm{N} 2}\right)\left(I_{1}+I_{2}\right) \tag{16}
\end{align*}
$$

P_{e} is one-half the dot product of the phasors ($V_{1 \mathrm{~N}}-V_{\mathrm{N} 2}$) and $I_{1}+I_{2}$). This expression is of limited usefulness because the unbalance phasors and their phase relation-
ship are not generally known. However, an analysis of the fundamental accuracy of the meter shows that its acceptance is well founded and the error is usually negligible. Where the error due to voltage unbalance is objectionable, a two-stator meter or two single-stator twowire meters are required to obtain correct registration. Connections for these applications are shown in Fig. 12(a) and Fig. 12(b).
A three-wire single-phase service which requires current transformers can be metered with either a twowire, single-stator meter or a three-wire single-stator meter. The diagrams of connections for metering a sin-gle-phase, three-wire service which requires current transformation are shown in Fig. 13. A three-wire meter requires two current transformers. A two-wire meter can be applied with two current transformers; however, a special three-winding current transformer, which is usually more economical, is available for metering three-wire, single-phase service with a two-wire meter.

A combination self-contained, two-wire, three-wire, single-phase meter is suitable for application on a 120 volt, two-wire service or on a 240 -volt, three-wire service. The current coils are similar to those in a threewire meter. The potential winding is split into two identical windings, which are connected in parallel for 120 -volt, two-wire service, and in series for 240 -volt, three-wire service. Both current coils are used for threewire metering. For two-wire service, only one current coil is used; the other coil is disconnected and bridged. The meter watthour constant is the same for both the

Fig. 12-Diagrams of connections for metering a singlephase, three-wire service where line-to-neutral voltages are unbalanced. (a) Using a two-stator meter, (b) Using two single-stator meters.

Fig. 13-Diagram of connections of transformer rated singlephase, three-wire meter. (a) Three-wire meter and two two-wire CT's (b) Two-wire meter and two two-wire CT's, (c) Two-wire meter and three-wire CT.

120 -volt and 240 -volt connections, because the potential flux is essentially the same for either connection.

Three-Phase, Three-Wire Circuit-According to Blondel's Theorem, a three-phase, three-wire circuit requires two meters of a two-stator meter for measurement of energy. The circuit diagram for measurement of energy (or power) in either a three-phase, three-wire delta or wye circuit is shown in Fig. 14(a). The load might be any one of these types of circuits. Hence, the delta load is indicated by solid lines; dotted lines indicate alternate loads. The metering shown in Fig. 14(a) may be either a

Fig. 14-Metering a three-phase, three-wire circuit, (a) diagram of connections, (b) vector diagram.
two-stator meter or two single-stator meters. Note that a meter current coil is in each of two-phase conductors, and that the potential coils are connected between the conductor containing the related current coil and the phase conductor which does not contain a current coil. Such a connection is required in order for the energy measurement to be made with $\mathrm{n}-1$ meters or stators.

The vector diagram for Fig. 14(a) is shown in Fig. 14(b). Delta currents, indicated by double subscripts, are not applicable to the wye circuit.

Analysis of the applicability of the circuit represented by the diagram shown in Fig. 14(a) to three-phase, 3wire circuits is as follows: The phasors are as shown on the vector diagrams of Fig. 14(b).
(1) For Delta

$$
\begin{align*}
& I_{1}=I_{12}-I_{31} \tag{a}\\
& I_{2}=I_{23}-I_{12} \tag{b}\\
& I_{3}=I_{31}-I_{23} \tag{c}
\end{align*}
$$

$V_{12}+V_{23}+V_{31}=0$ and $I_{1}+I_{2}+I_{3}=0$

$$
\begin{align*}
& P=V_{12} I_{12}+V_{23} I_{23}+V_{31} I_{31} \tag{a}\\
& P=V_{12} I_{12}-V_{32} I_{23}-\left(V_{12}-V_{32}\right) I_{31} \tag{b}\\
& P=V_{12}\left(I_{12}-I_{31}\right)+V_{32}\left(I_{31}-I_{23}\right) \tag{c}\\
& P=V_{12} I_{1}+V_{32} I_{3}=\text { Meter Registration }
\end{align*}
$$

(2) For Wye

$$
\begin{align*}
P & =V_{1 \mathrm{~N}} I_{1}+V_{2 \mathrm{~N}} I_{2}+V_{3 \mathrm{~N}} I_{3} \tag{a}\\
P & =V_{1 \mathrm{~N}} I_{1}-V_{2 \mathrm{~N}}\left(I_{1}+I_{3}\right)+V_{3 \mathrm{~N}} I_{3} \tag{b}\\
& =\left(V_{1 \mathrm{~N}}-V_{2 \mathrm{~N}}\right) I_{1}+\left(V_{3 \mathrm{~N}}-V_{2 \mathrm{~N}}\right) I_{3} \tag{c}\\
& =V_{12} I_{1}+V_{32} I_{3}
\end{align*}
$$

Two-Phase, Three-Wire Network Circuits-According to Blondel's Theorem, the two-phase, three-wire network service requires either a two-stator meter or two singlestator meters, as shown in Fig. 15(a). The vector diagram is shown in Fig. 15(b). Attention is directed to some peculiarities in the metering of a two-phase, three-wire network service. It has been shown that a two-stator meter registers correctly when applied on a three-wire, three-phase circuit, if line-to-line potentials are applied to the meter. It registers equally well on a two-phase, three-wire neutral service fed from a three-phase, fourwire wye system, if line-to-neutral potentials are applied to the meter. Then each stator measures the load on the respective phase to which it is connected. The analysis of the applicability of the network meter follows:

$$
\begin{align*}
& P_{1}=V_{1 \mathrm{~N}} \cdot I_{1} \text { and } P_{2}=V_{2 \mathrm{~N}} \cdot I_{2} \tag{a}\\
& P=P_{1}+P_{2}=V_{1 N} I_{1}+V_{2 \mathrm{~N}} I_{2} \tag{b}
\end{align*}
$$

For line-to-line loads, the registration on each stator is as follows:

$$
\begin{align*}
& \text { Stator \#1, } P_{1}=V_{1 \mathrm{~N}} \cdot I \tag{a}\\
& \text { Stator \#2, } P_{2}=V_{2 \mathrm{~N}} \cdot I_{2} \tag{21}
\end{align*}
$$

But for line-to-line loads, $I_{2}=-I_{1}$.
Then, $P_{2}=V_{2 N} I_{1}$
The net registration is given by

$$
\begin{align*}
& P=P_{1}+P_{2} \tag{a}\\
& P=\left(V_{1 \mathrm{~N}}-V_{2 \mathrm{~N}}\right) I_{1} \tag{b}\\
& P=V_{12} \cdot I_{1} \tag{22}
\end{align*}
$$

Fig. 15-Metering two-phase, three-wire network circuit, (a) Diagram of connections, (b) Vector diagram, balanced system voltages, unbalanced load, (c) Vector diagram for metering line-to-line loads, balanced system voltages.

Since the true power to the load is $V_{12} \cdot I_{1}$, the two-stator meter also registers correctly on measurement of line-to-line loads.

The essential differences in the standard two-stator, three-phase, three-wire meter and the network meter are in the terminal connections and in the voltage ratings. The standard two-stator meter usually has completely separate potential and current circuits; therefore, it has eight terminals. The network meter is arranged so that the two potential circuits are connected to a common terminal. The other terminal of each potential circuit is common with a terminal of the respective related current coil. A greater difference in the standard two-stator and network meters is in the voltage ratings of each type and meter. The voltage rating for application to three-phase, three-wire circuits is line-to-line voltage. However, the network meter is rated for line-to-neutral voltage. The network meter is applicable to three-phase, three-wire circuits if the nominal circuit line-to-line voltage is equal to the rated voltage of the meter.

Transformer-rated, three-wire meters for two-phase and three-phase circuits are usually the standard twostator meter, because meters having completely separate potential and current circuits would be required. The secondary circuits at the current transformers must be grounded; however, line-to-line potential may be applied to the stators, so that no potential terminal can be grounded. The current transformers cannot be grounded when a network meter is used. For reasons of economy and simplicity, a two-stator network meter is recommended where it is applicable in metering three-phase, three-wire circuits.

Attention is directed to the rather interesting peculiarities in metering of two-phase, three-wire network services. These peculiarities are: 1) the action of a twostator meter when metering line-to-line load on a twophase, three-wire network service by means of a twostator meter, and 2) the accuracies of a single-phase, three-wire meter when applied to two-phase, three-wire network circuits.

The measurement of line-to-line loads in a two-stator meter are considered first. The condition of the measurement of line-to-line load should not be confused with the measurement of identical line-to-neutral loads. The two conditions are entirely different. For equal line-toneutral loads, each load is measured on the proper stator. However, in measurement of line-to-line loads, the torque developed by each stator or the measurement of energy on each stator of a network meter is a function of the phase angle between the phase voltage and the corresponding phase current or line current. The energy consumption in line-to-line loads is a function of the phase angle between line-to-line voltage and phase or line current. This results in a variation in the distribution of driving torque between the meter stators with load power factors. Fig. 15 (c) is the vector diagram for line-to-line loads taken from a two-phase, three-wire neutral service. With the aid of Fig. 15 (c), the variation in driving torque distribution with load pf can be analyzed.

Although a single-stator, three-wire meter correctly

For identical line-to-neutral loads on the two phases, the single-stator, three-wire meter registration is correct only at zero pf and is 75 per cent correct at all other power factors. This can be seen from an analysis of Fig. 18. Balanced line-to-neutral voltages are assumed.

Three-Phase, Four-Wire Wye-According to Blondel's Theorem, a three ($\mathrm{n}-1$) stator meter is required for accurately metering a three-phase, four-wire wye service. However, if the voltages are balanced, the metering is simplified, and the " Z " connection of a two and onehalf stator meter is applicable with equal accuracy. For most applications, the voltages are sufficiently balanced to make this assumption valid. This factor is particular-

Fig. 16 -Diagram of connections for incorrect metering of two-phase, three-wire network circuit with a single-stator, three-wire meter.
registers line-to-line network loads, the meter does not register correctly for line-to-neutral loads. The diagram of the circuit considered here is shown in Fig. 16. The vector diagrams for various line-to-neutral load power factors are shown in Fig. 17. Since neither $V_{1 N}$ nor $V_{N 2}$ is equal to $V_{12} / 2$, and I_{2} is not equal to $-I_{1}$, the singlestator, three-wire meter does not register correctly. As an example, consider the vector diagram shown in Fig. 17 (a), which is for a unity power factor line-to-neutral load on phase " 1 ".

$$
\begin{align*}
\text { True Power } & =V_{1 \mathrm{~N}} \cdot I_{1} \tag{a}\\
& =V_{1 \mathrm{~N}} I_{1} \text { at unity pf. } \tag{b}\\
\text { Meter registers } & =P_{\mathrm{m}}=V_{12} \cdot \frac{I_{1}}{2} \tag{a}\\
P_{\mathrm{m}} & =\frac{V_{12} I_{1} \cos 30^{\circ}}{2} \tag{b}\\
P_{\mathrm{m}} & =\frac{\sqrt{3 V_{1 N} I_{1}}}{2} \frac{\sqrt{3}}{2} \tag{c}\\
P_{\mathrm{m}} & =.75 V_{1 \mathrm{~N}} I_{1} \tag{d}
\end{align*}
$$

The registration on the meter is 75 per cent. A similar reasoning may be applied to the other load power factors and the following results obtained:

		Per Cent of Correct
Load Between	Power Factor	Registration
$1-\mathrm{N}$	100%	75%
$1-\mathrm{N}$	$86.6 \% \mathrm{lag}$	50%
$1-\mathrm{N}$	$50.0 \% \mathrm{lag}$	0
$2-\mathrm{N}$	100%	75%
$2-\mathrm{N}$	$86.6 \% \mathrm{lag}$	100%
$2-\mathrm{N}$	$59.0 \% \mathrm{lag}$	150%

r r
 Rent of Correct
Registration
75%
100%
150%

Fig. 17-Vector diagrams for various load power factors for metering line-to-neutral loads on two-phase, three-wire network circuit with a single-stator, three-wire meter.

(a)

(b)

Fig. 18-Vector diagram for metering identical line-toneutral loads on a two-phase, three-wire network circuit with a single-stator, three-wire meter, (a) Phase sequence 1-2-3, (b) Phase sequence 1-3-2.
True Power $=V_{1 N} I_{1}+V_{2 N} I_{2}$
$=2 V_{1 \mathrm{~N}} I_{1} \operatorname{Cos} \theta$
Measure Power $=1 / 2 V_{12}\left(I_{1}-I_{2}\right)$
$=\frac{\sqrt{3} V_{\text {IN }} \sqrt{3} I_{1} \operatorname{Cos} \theta}{2}$
$\frac{\text { Measure Power }}{\text { True Power }}=.75$
ly important in the measurement of energy on threephase, four-wire wye systems which require potential transformers. If the voltages are balanced, only two potential transformers are required for the energy metering. Although the factor is important when low voltage systems are considered, it becomes increasingly important at the higher voltages, due to the increased cost of the potential transformers. The circuit diagram for metering three-phase, four-wire, wye service by a threestator meter is shown in Fig. 19(a). The circuit diagram for use of the $21 / 2$ stator meter is shown in Fig. 19(b). The vector diagram is shown in Fig. 19(c).

Analysis of measurement of three-phase, four-wire, wye circuit shown in Figure 19 is as follows:

$$
\begin{equation*}
\text { True Power }=P_{\mathrm{T}}=V_{1 \mathrm{~N}} I_{1}+V_{2 \mathrm{~N}} I_{2}+V_{3 \mathrm{~N}} I_{3} \tag{24}
\end{equation*}
$$

if the voltages are balanced,

$$
\begin{align*}
& V_{1 \mathrm{~N}}+V_{2 \mathrm{~N}}+V_{3 \mathrm{~N}}=O \tag{a}\\
& P_{\mathrm{T}}=V_{1 \mathrm{~N}} I_{1}+V_{2 \mathrm{~N}} I_{2}-\left(V_{1 \mathrm{~N}}+V_{2 \mathrm{~N}}\right) I_{3}(\mathrm{a}) \tag{25}\\
&=V_{1 \mathrm{~N}}\left(I_{1}-I_{3}\right)+V_{2 \mathrm{~N}}\left(I_{2}-I_{3}\right) \tag{c}
\end{align*}
$$

The $21 / 2$ stator or " Z "-connected meter is comprised of two single-phase, three-wire stators driving a common shaft. The current coil in each stator is divided evenly into two windings. One current winding on each stator carries the current of the phase, the voltage of which is applied to the potential coil, while the other current winding of that stator carries the negative of the current of the phase in which the potential is not measured.

Since the current windings on each stator are split into two half-windings and are wound with opposite polarity, the power measurement on a " Z "-connected meter is given by

$$
\begin{align*}
P_{\mathrm{M}} & =V_{1 \mathrm{~N}}\left(I_{1}-I_{3}\right)+V_{2 \mathrm{~N}}\left(I_{2}-I_{3}\right) \tag{a}\\
& =V_{1 \mathrm{~N}} I_{1}+V_{2 \mathrm{~N}} I_{2}-\left(V_{1 \mathrm{~N}}+V_{2 \mathrm{~N}}\right) I_{3} \tag{26}
\end{align*}
$$

This measurement is correct for balanced line-toneutral voltages. However, the measurement indicated on the meter is as given by Equation 26, regardless of the voltage unbalance. The true power into a threephase, four-wire, wye circuit is given by Equation 24.

The vector diagram for metering the circuit with a $21 / 2$ stator meter under conditions of generally unbalanced voltages is shown in Fig. 20. The error, P_{e}, in the measurement of power, or the registration of a $21 / 2$ stator meter for a condition of unbalanced line-toneutral voltages is given by

$$
\begin{align*}
& P_{\mathrm{e}}=P_{\mathrm{T}}-P_{\mathrm{M}} \tag{a}\\
& P_{\mathrm{e}}=\left(V_{1 \mathrm{~N}}+V_{2 \mathrm{~N}}+V_{\mathrm{aN}}\right) I_{3} \tag{b}\\
& P_{\mathrm{e}}=V_{\mathrm{R}} I_{\mathrm{B}} \tag{c}
\end{align*}
$$

where

$$
V_{R}=V_{1 N}+V_{2 N}+V_{3 N}
$$

Therefore, no error occurs from application of a $21 / 2$ stator meter on three-phase, four-wire wye system if: (1) the residual voltage to neutral is zero, which occurs if the voltages-to-neutral are unbalanced; (2) the current in the " Z " connected current coils (I_{3} above) is zero; and (3) the residual voltage-to-neutral and the current in the " Z " connected current coils are in quadra-

Fig. 19-Metering of three-phase, four-wire wye circuit, (a) Diagram of connections for using a three-stator meter, (b) Diagram of connections for using a two-stator, " Z " connected meter, (c) Vector diagram.
ture time phase. For applications in which any one of these conditions hold, a $21 / 2$ stator meter registers with the same accuracy obtained with a three-stator meter.
The error in a $21 / 2$ stator meter occurs in the measurement of load on the phase on which the potential is not applied to the meter. The meter registers correctly the loads on the phases of which both potential and current are applied to the meter.
Some effects of unbalanced voltages on the accuracy of a $21 / 2$ stator meter can be seen from Fig. 21. It is assumed that $V_{3 N}$ is not applied to the meter. In Fig. $21(\mathrm{a}),-\left(V_{\text {1N }}+V_{2 \mathrm{~N}}\right)$ is in phase with but not equal to $V_{3 \mathrm{~N}}$. In Fig. 21(b), $-\left(V_{1 \mathrm{~N}}+V_{2 \mathrm{~N}}\right)$ is equal in magnitude only to $V_{3 \mathrm{~N}}$. Observe Fig. 21 (a) and suppose that if, $E_{3 \mathrm{~N}}$, is 1.0 per cent lower than $-\left(V_{1 \mathrm{~N}}+V_{2 \mathrm{~N}}\right)$. Phases "one" and "two" are registered correctly and the measurement on phase "three" will be one per cent high. The

Fig. 20-Vector diagram of circuit for metering a threephase, four-wire wye circuit with two-stator " Z " connected meter under conditions of generally unbalanced voltages showing factors in error of meter.

Fig. 21 -Vector diagram circuit for metering a threephase, four-wire wye circuit with " Z " connected meter for analyzing error under various load conditions, $(a)-\left(V_{1 \mathrm{~N}}+\right.$ $\left.V_{2 N}\right)$ in phase with but not equal to $V_{3 N}$, (b) $-\left(V_{1 N}+V_{2 N}\right)$ equal in absolute value only to $V_{3 N}$.
total error will then depend on the distribution of the load. The meter registration will be (1) 0.3 per cent high if the load is balanced; (2) one per cent high if only phase "three" is loaded; and (3) correct if the load on phase "three" is zero. For $V_{3 \mathrm{~N}}$ equal in magnitude only to $-\left(V_{1 \mathrm{~N}}+V_{2 \mathrm{~N}}\right)$, no appreciable error results for load power factor near unity. For load power factor near 50 per cent, an error of 15 minutes [the angle between $V_{3 \mathrm{~N}}$ and $\left.-\left(V_{1 \mathrm{~N}}+V_{2 \mathrm{~N}}\right)\right]$ will result in the following errors: (1) . 75 per cent if only phase "three" is loaded; (2) .25 per cent if the load is balanced; and (3) no error if the load on phase "three" is zero.

Three-Phase, Four-Wire, Delta-The circuit diagrams showing the metering of a three-phase four-wire delta circuit are shown in Fig. 22. The circuit shown in Fig. 22 (a) uses a two-stator meter, which has one three-wire stator and one two-wire stator. The circuit shown in Fig. 22 (b) uses a meter having three two-wire stators. The circuit is suitable for combined single-phase, three-wire and three-phase, three-wire service. The analysis of metering this type of load is simplified by considering the three-phase and single-phase loads separately, and then superimposing these loads for consideration of the combined load. No assumption is made regarding the balance of load in either the three-phase or single-phase circuits, or the relative magnitudes of the singlephase and total three-phase loads. In order to be generally applicable, unbalanced voltages-to-neutral on

LINE

(a)

(b)

Fig. 22-Diagram of connections for metering a threephase, four-wire delta circuit with a (a) Two-stator meter, (b) Three-stator meter.
the single-phase load is assumed. The accuracy of the metering of the three-phase, three-wire delta loads is not dependent upon balanced line-to-line voltages; however, balanced three-phase voltages are assumed.

The vector diagrams of circuits for metering threephase, four-wire delta loads are shown in Fig. 23(a). This diagram is similar to the diagram shown in Fig. 14(b), for the three-phase, three-wire circuit. The vector diagram for the single-phase, three-wire load is shown in Fig. 23(b),

(a)
(b)

(c)

Fig. 23-Vector diagrams for circuit for metering a threephase, four-wire delta circuit (a) Three-phase load only, (b) Single-phase load only, (c) Combined single- and threephase loads.
which is the same diagram shown in Fig. 11(b) for the single-phase, three-wire meter. The vector diagram for the combined single-phase and three-phase loads is shown in Fig. 23(a). This is a composite diagram in which Fig. 23 (a) is superimposed on Fig. 23(b). Singleprime I's indicate single-phase currents; double-prime I's indicate three-phase currents; and the unprimed, single subscript I's indicate the combined single-phase and three-phase currents.

This type of load can be metered by either a twostator meter, a three-stator meter, or the equivalent of either. A two-stator meter has one two-wire, stator and one three-wire stator driving a common shaft. A three-stator meter has three two-wire stators which drive a common shaft. The choice of the type of meter to use in a particular application depends upon the balance of the voltages on the three-wire (lighting) phase.
The analysis of the single-phase, three-wire meter previously made is equally applicable here. The accuracy in metering only the three-phase loads need be considered here.
Let $P^{\prime \prime}{ }_{\text {т }}=$ power delivered to the three-phase load.

$$
\begin{equation*}
P^{\prime \prime}{ }_{73}=V_{12} I_{1}^{\prime \prime}{ }_{1}+V_{32} I^{\prime \prime}{ }_{3} \tag{a}
\end{equation*}
$$

But

$$
V_{32}=V_{3 \mathrm{~N}}+V_{\mathrm{N} 2}
$$

and

$$
V_{12}=V_{1 \mathrm{~N}}+V_{\mathrm{N} 2}
$$

Then

$$
\begin{align*}
P^{\prime \prime}{ }_{\mathrm{T} 3} & =\left(V_{1 \mathrm{~N}}+V_{\mathrm{N} 2}\right) I_{1}{ }^{\prime \prime}+\left(V_{3 \mathrm{~N}}+V_{\mathrm{N} 2}\right) I^{\prime \prime}{ }_{3}{ }_{3} \tag{b}\\
& =V_{1 \mathrm{~N}} I^{\prime \prime}{ }_{1}+V_{\mathrm{N} 2}\left(I_{1}{ }^{\prime \prime}+I^{\prime \prime}{ }_{3}\right)+V_{\mathrm{3N}} I^{\prime \prime}{ }_{3}
\end{align*}
$$

But

$$
\begin{equation*}
I_{1}^{\prime \prime}+I_{3}^{\prime \prime}=-I_{2}^{\prime \prime} \tag{c}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
P^{\prime \prime}{ }_{\mathrm{T}}^{3}=V_{1 \mathrm{~N}} I^{\prime \prime}{ }_{1}-V_{\mathrm{N} 2} I^{\prime \prime}{ }_{2}+V_{3 \mathrm{~N}} I^{\prime \prime}{ }_{3} \tag{d}
\end{equation*}
$$

If the line-to-neutral voltages are balanced,

$$
\begin{align*}
V_{1 \mathrm{~N}} & =V_{\mathrm{N} 2}=\frac{V_{12}}{2} \\
P^{\prime \prime}{ }_{\text {т } 3} & =\frac{V_{12}}{2}\left(I^{\prime \prime}{ }_{1}-I^{\prime \prime}{ }_{2}\right)+V_{3 \mathrm{~N}} I^{\prime \prime}{ }_{3} \tag{a}\\
& =\frac{\left(V_{1 \mathrm{~N}}+V_{\mathrm{N} 2}\right)}{2}\left(I^{\prime \prime}{ }_{1}-I^{\prime \prime}{ }_{2}\right)+V_{3 \mathrm{~N}} I^{\prime \prime}{ }_{3} \tag{b}
\end{align*}
$$

Let $P^{\prime \prime}{ }_{\mathrm{m}}=$ three-phase power measured on 2-stator, three-phase, four-wire, delta meter.
$P^{\prime \prime}{ }_{\text {т }}=$ true power delivered to three-phase load
$P^{\prime \prime}{ }_{M-3}=$ three-phase power measured on three-wire stator
$P^{\prime \prime}{ }_{\text {M-2 }}=$ three-phase power measured on two-wire stator
$P^{\prime \prime}{ }_{\mathrm{M}-8}=\frac{V_{12}}{2}\left(I_{1}{ }_{1}-I^{\prime \prime}{ }_{2}\right)$, because three-wire stator is composed of two one-half windings of opposing polarities.

$$
P_{M-2}^{\prime \prime}=V_{3 N} I^{\prime \prime}{ }_{3}
$$

Let $P^{\prime \prime}{ }_{0}=P^{\prime \prime}{ }_{\text {т }}-P^{\prime \prime}{ }_{\mathrm{M}}=$ Error in registration of threephase power
Then

$$
\begin{equation*}
P_{0}^{\prime \prime}=\frac{1}{2}\left(V_{1 \mathrm{~N}}-V_{\mathrm{N} 2}\right)\left(I^{\prime \prime}{ }_{1}+I^{\prime \prime}{ }_{2}\right) \tag{30}
\end{equation*}
$$

The error, $P^{\prime \prime}{ }_{\mathrm{e}}$, is one-half the dot product of the voltage difference, $\left(V_{1 \mathrm{~N}}-V_{\mathrm{N}_{2}}\right)$ and the current sum, $\left(I^{\prime \prime}{ }_{1}+I^{\prime \prime}{ }_{2}\right)$ where all quantities, including the difference and sum, are phasors. Reference to Equation 16 shows that the error in measurement of three-phase power is of the same form as the expression for the error in the single-phase, three-wire meter.
The error in the registration of three-phase load expressed in watts, has little meaning itself. The error expressed as percentage of the true value is more significant. It is of interest to consider the phasor ($V_{1 \mathrm{~N}}-V_{\mathrm{N} 2}$) as being either in phase with or 180° out of phase with V_{12} and in quadrature with $V_{3 \mathrm{~N}}$, and expressed as a percentage of normal line-to-line and to consider balanced three-phase loads only are considered. Then, in per unit,

$$
\begin{align*}
& P_{\mathrm{e}}^{\prime \prime}=\frac{P_{\mathrm{e}}{ }^{\prime \prime}}{P_{\mathrm{T} 3}} \tag{a}\\
& P_{\mathrm{e}}^{\prime \prime}=\frac{1}{2} V_{\mathrm{u}} \frac{(-\tan \theta)}{\sqrt{3}} \tag{b}
\end{align*}
$$

where
$V_{\mathrm{u}}=\frac{\left(V_{1 \mathrm{~N}}-V_{\mathrm{N} 2}\right)}{\overline{V_{12}}}$
$V_{u}=$ the voltage unbalance to neutral in per unit of normal line-to-line voltage.
$\theta=$ angle by which phase current lags phase voltage.
The vector diagram for a balanced three-phase load on a three-phase, four-wire delta system is shown in Fig. 24. The variation in error with load power factor can be analyzed with the aid of Fig. 24 and Equation 31. A one per cent unbalance in line-to-neutral voltage results in no error for unity power factor load. As the power factor decreases, $\tan \theta$ increases at an increasing rate. At 50 per cent power factor, a voltage unbalance of one per cent results in an error in registration of one-half of one per cent. As the power factor approaches zero, the phasor ($I^{\prime \prime}{ }_{1}+I^{\prime \prime}{ }_{2}$) approaches in phase with the voltage unbalance. The true power becomes zero and the percentage error in the power registration increases without limit. When the error is objectionable, a three-stator meter is used.

Fig. 24-Vector diagram for balanced three-phase loads at various load power factors for analyzing variation with load power factor of apparent power factor as seen by meter stators.

Two-Phase, Four-Wire-A two-phase, four-wire circuit consists essentially of two single-phase, two-wire systems in which the applied voltages are 90° apart. Such a circuit can, therefore, be metered with a two-stator meter, which is composed of two two-wire stators.

The circuit diagram showing the metering of a twophase, four-wire circuit with a two-stator meter is shown in Fig. 25(a). The vector diagram is also shown in

Fig. 25-(a) Diagram of connections for metering a fwophase, four-wire circuit, (b) Vector diagram of (a), (c) Diagram of connections for metering a two-phase, threewire circuit (b) Vector diagram of (c).

Fig. 25(b). Metering of two-phase, four-wire service is essentially the totalizing of two two-wire services which are fed from separate sources in which the applied voltages are 90 degrees out of phase. The restriction on the circuit shown in Fig. 25(a) for accurate metering is that no load may be connected between the conductors which contain current coils. This restriction can be removed by connecting at both ends the conductors which do not contain current coils. Then it becomes a two-phase, three-wire circuit as shown in Fig. 25(c). The vector diagram for the two-phase three-wire circuit is shown in Fig. 25(d). It is similar to the two-phase three-wire network circuit except that the voltages are 90 degrees, rather than 120 degrees, out of phase.

Analysis of the accuracy of metering a three-phase, three-wire circuit as shown in Fig. 25d is as follows:

$$
\begin{align*}
& \text { (True Power) } P_{\mathrm{T}}=V_{1 \mathrm{~N}} I_{1 \mathrm{~N}}+V_{2 \mathrm{~N}} I_{2 \mathrm{~N}}+V_{12} I_{12} \text { (a) (32) } \\
& P_{\mathrm{T}}=V_{1 \mathrm{~N}}\left(I_{1 \mathrm{~N}}+I_{12}\right)+V_{2 \mathrm{~N}}\left(I_{2 \mathrm{~N}}-I_{12}\right) \quad \text { (b) } \\
& P_{\mathrm{T}}=V_{1 \mathrm{~N}} I_{1}+V_{2 \mathrm{~N}} I_{2} \tag{c}\\
& P_{\mathrm{M}}=V_{1 N} I_{1}+V_{2 N} I_{2} ; \\
& \therefore \text { the meter registers correctly } \tag{d}\\
& \text { Where } P_{T}=\text { True Power }
\end{align*}
$$

$$
P_{\mathrm{M}}=\text { Measured Power }
$$

Two-Phase, Five-Wire-A two-phase, five-wire system is essentially two single-phase, three-wire systems in which the line-to-line applied voltages are 90 degrees out of phase and which have a common neutral. Loads on this type of system can be metered with two single-phase, three-wire meters or four single-phase, two-wire meters, or the multi-stator meter equivalents. The diagram of connections for metering two-phase, five-wire loads by means of two single-phase, three-wire meters is shown in Fig. 26.

The dependency of accuracy upon balanced voltages of a three-wire stator in metering a three-wire, singlephase service is also applicable to metering a two-phase, five-wire circuit. Four two-wire stators will give correct registration, independent of the balance of the line-toneutral voltages. However, usually the voltages are sufficiently balanced that the circuit can be metered with sufficient accuracy by a meter having two three-wire stators.

LINE
LOAD

Fig. 26-Diagram of connections for metering a two-phase, five-wire circuit using two three-wire stators.

Also, all of the various methods of applying transformer rated meters to three-wire single-phase services apply equally well to each stator of a two-stator fivewire meter.

Six-Phase, Six-Wire-A six-phase, six-wire system is essentially three three-wire single-phase systems having a common neutral point which is not brought out, and in which the applied voltages to the respective phases are 120 degrees apart. Each single-phase, three-wire load can be metered by a three-wire stator, with the accuracy dependent upon balanced voltages to the same degree as in the single-phase, three-wire circuit. The diagram of connections used for metering such a system is shown in Fig. 27.

Analysis of the accuracy of the circuit shown in Fig. 27 is as follows:
$P_{\mathrm{T}}=V_{1 \mathrm{~N}} I_{1}+V_{2 \mathrm{~N}} I_{2}+V_{3 \mathrm{~N}} I_{3}+V_{4 \mathrm{~N}} I_{4}+V_{6 \mathrm{~N}} I_{5}+V_{6 \mathrm{~N}} I_{6}$
If the voltages applied to the respective stators are balanced with respect to neutral,

$$
\begin{gather*}
V_{1 \mathrm{~N}}=V_{\mathrm{N} 4}=\frac{V_{14}}{2} ; V_{2 \mathrm{~N}}=V_{\mathrm{N} 6}=\frac{V_{25}}{2} ; V_{3 \mathrm{~N}}=V_{\mathrm{N} 6}=\frac{V_{36}}{2} \\
P_{\mathrm{T}}=\frac{V_{14}}{2}\left(I_{1}-I_{4}\right)+\frac{V_{26}}{2}\left(I_{2}-I_{5}\right)+\frac{V_{36}}{2}\left(I_{3}-I_{6}\right) \tag{34}
\end{gather*}
$$

Where $P_{T}=$ True Power
The three stator, six-wire meter registers this value. The meter connected as shown in Fig. 27, therefore, accurately meters the load, provided the voltages are balanced according to the restriction stated above. Each stator is subject to the same errors due to unbalanced line-to-neutral voltages to which a single-phase, threewire meter would be subjected under the same unbalance.

The metering is essentially the totalizing of three single-phase, three-wire services in which the applied line-to-line voltages are 120 degrees apart.

Totalizing Metering for Single-Phase and Three-Phase Circuits-The combined energy consumption of a singlephase circuit and of a three-phase circuit can be measured on a totalizing meter. The meter consists of the stators which are normally required for metering the single-phase and three-phase circuits independently; however, the stators drive a common shaft. The meter usually applied to totalize a two-wire, single-phase circuit and a three-phase, three-wire circuit has three twowire stators. The meter for totalizing energy measurement on a single-phase, three-wire circuit and on a three-phase, three-wire circuit consists of a three-wire

Fig. 27-Diagram of connections for metering a six-phase, six-wire circuit using three three-wire stators.
Table 2-Watthour Meter Socket Selector Guide

Socket	Wiring Data						Watthour Meter Application ${ }^{\text {* }}$										Demand Meter Application Westinghouse socket-type demand meters (series DSW, DSH, QDS, etc.) employ the same sockets as their correaponding watthour meter
							1 phase, 2 or 3 wire		$\begin{gathered} 1,2,3 \text { phase, } \\ 3 \text { wire } \end{gathered}$		3 phase, 4 wire Y		3 phase, 4 wire \triangle		2 phase, totalizing 5 wire 1-3 phase		
Series	Type	No. of Jaws	Typ	e of Terminals			Self Contained	transformer Type	Self Contained	Transformer type.	Self Contained	Transformer Type"	Self Contained	Transformer Type ${ }^{-1}$	$\begin{aligned} & \text { Self Co } \\ & \text { and } \mathrm{Tra} \\ & \mathrm{Ty} \end{aligned}$	ntained nsformer pe ${ }^{-1}$	
Round Sockets	$\mathrm{SE}_{\text {SE-5 }}$	4	set-s set-s	screw. ${ }_{\text {\#1 }}^{\text {\# }}$	100 100	S	.	S-5	\ldots	\ldots	\ldots	\ldots			
	SE-6	6	set-s	screw..........	. \#1	100	S										types.
		4	bus.		. ${ }^{0}$	100	S	\ldots		.	\cdots	\cdots	\ldots				
	S-5	5	bus((4) screw(1) ..	. \#0	100		S	S-5							Westinghouse bottom-connect-
	S-6	6	bus((4) screw(2)...	. \#0	100	S	(series CAH, KCA, QCA, etc.)
Ring Sockets	S	4	bus	(line side only)	y) $\# 0$	100	S						\ldots			\ldots	require special styles of Trans-A-mount mountings: Indicat-
	S-2	8	set-s	screw.........	. 72	100	S	\ldots	S-2	S-2	.	${ }_{5-3} \mathrm{~S}^{20}$.	S-2.	S-2F	\ldots	ing demand meters (series CA-
	-	13 5	set-s	screw.........	y) ${ }^{42}$	100 100	.	- s		\ldots	S-3, S-8	\ldots	S-7	\cdots	\ldots	W) employ the same Trans-A-
	S-5		bus	(line side only) (line side only)	y) ${ }^{4} 0$	100 100	\ldots	S	S-5	\ldots	\ldots	\ldots	\ldots	\ldots		mount as their equivalent series DA meters.
	-80	7	bus	(screw ${ }^{\text {y }}$	100	\ldots	\ldots	\ldots	\ldots	S-3, S-8	\ldots	S-7, S-9				
	S-9	14	set-s	-screw...........	\cdots. ${ }^{\text {\% }}$	100	.	\ldots	\ldots	S-9		S-4	
	S-10	15	set-s	screw-........	. $\# 2$	100	S-10		Notes
Trough Sockets	ST-2	8	set-s	-screw \#2 ${ }^{4 / 0}$	$\begin{aligned} & 100 \\ & 140 \end{aligned}$											\star For further application infor-
		13	${ }_{\text {semi }}$	i-floating...... screw	.. \#4/0	$\begin{aligned} & 140 \\ & 100 \end{aligned}$	S-2	S-2	\ldots	$\frac{\mathrm{S}-2 \mathrm{t}}{\text { S-3, }}$	\ldots	$\begin{gathered} \text { S-2. } \\ \text { S-7 } \end{gathered}$		mation including wiring diagrams, see Fig. 28, 29, 30,
	ST-5	5	semi	i-floating......	.. \#4/0	140	S-5	and 31.
	ST-8	7	set-s	i-screw........	\cdots. ${ }_{\text {\# }}{ }^{2} / 0$	100 140					S-3, S-8		S-7, S-9				- Maximum current rating
			set-s	screw.........	$\cdots .$.	100								S-9		S-4	based on $55^{\circ} \mathrm{C}$ temperature
	ST-9	14	sem	i-floating. $\# 4 / 0$	140											ent of $35^{\circ} \mathrm{C}$ in current coil of
	ST-10	15	$\begin{aligned} & \text { set-s } \\ & \text { semi } \end{aligned}$	-screw i-floating	$\therefore \quad \# 2$	$\begin{aligned} & 100 \\ & 140 \end{aligned}$		\ldots	\ldots	\ldots	\ldots	\ldots	\ldots		S-10	S-6	meter listed when socket is wired with maximum-size
High- Capacity Sockets																	conductors.
	STL-4	4		vy-duty \#4/0	160	S	S-5	\ldots	\ldots	\ldots	\ldots.	\ldots	\ldots	- All sockets used with instru-
	STL-5	6 4		avy-duty......	.. \#4/0	160 200	S	\ldots	S-5	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots.	ment transformers must have
	STG-5	5		vy-duty \#4/0	200	S	\ldots	S-5	circuit-closing devices.
	STU	4	bea	avy-duty \#4/0	200	S									STS (5 terminal, STS-7 and
	STU-5	5		avy-duty \#4/0	175			S-5							\cdots	STA-7: 400-amp current
	STU-8	7	hea	avy-duty \#4/0	175	S-3, S-8	S-7, S-9		transformers have secondar-
Transockel Sockets			tran	nsformers													serve as one 20053 -wire current transformer.
			no.	rating													WSTS-8 (for S-2): current
		6	2	200 amp . 5	500 mcm	400		8		\ldots	\ldots			\ldots			transformer secondaries are
	STS	5	2	$400 \mathrm{amp}^{+} 5$	500 mcm	400	\ldots	S	\ldots		\ldots	\ldots	\ldots	connected in delta.
	STS-2	8		200 amp 5	500 mcm	400	\ldots	S-2	\ldots		\cdots		\ldots	\cdots	IS-2 transformer-type for 3-
	STS-3	13		$200 \mathrm{amp}+500$	500 mcm	400	\ldots	\cdots	\cdots	S-3	\ldots	S-2	\ldots	\ldots	phase, 4 -wire Y; current
	STS-7	8	${ }_{1}^{2}$	$400 \mathrm{amp}{ }^{+}$ 200 amp	500 mcm	400	\cdots		\ldots	S-2	\ldots		transformer secondaries must be connected in delta.
	STS-8	13	3	200 amp	500 mcm	400	\ldots	\ldots	\ldots	\ldots	\ldots	S-8	\ldots	\ldots	\ldots	\bigcirc-S-2 transformer-type for $3-$
	STS-9	8 14	3 3	$200 \mathrm{ampr} \quad 5$	500 mcm	400	\cdots	\cdots	\ldots	\ldots	\cdots	S-2	\ldots	8-9			phase, 4-wire \triangle : use with one
				200 amp	500 mcm		\ldots	\ldots	.	.	\ldots	.					2-wire and one 3-wire current
Trans-A-Moun Mountings	nt STA	.	2	$200 \mathrm{amp} \quad 50$	500 mcm	400		A						\ldots			transformers.
	STA-2	..	2	200 amp	500 mcm	400		\ldots		A-2						+S-2 for 2 -phase, 5 -wire serv-
	STA-3	..	3	200 amp - 5	500 mcm	400		A-3	A-9	ice: use transiormer type
	STA-7	..	2	$400 \mathrm{amp}^{+}$	500 mcm	400	\ldots	\ldots	\ldots		\ldots	A-2	\ldots	only with two 3 -wire current transformers.
	STA-8	\cdots	3	200 amp	500 mcm	400					\ldots	A-8				
	STA-9	..	3	200 amp	500 mcm	400	\ldots	\ldots	\ldots	\ldots	\ldots	A-7		

sockef: Types S, STU Types S, STU Types S-5, ST-5, STU-5 Type ST-2 Types ST-8, STU-8 Types \$T-8, stU-8

Fig. 28-Circuit Connections for self-contained socket (detachable) type and bottom connected meters.
Continued on next page
stator applied to the single-phase circuit and two twowire stators applied to the three-phase circuit. The accuracy is the same as would be obtained by using separate meters in the single-phase and three-phase circuits.

The energy to the three-phase circuits is metered correctly. However, the accuracy of the metering in the single-phase three-wire circuit is dependent upon the balance of the line-to-neutral voltages in that circuit. The voltage rating of each stator corresponds with voltage at the circuit which it is applied.
Summarizing Watthour Meter Applications-The application of watthour meters to the various types of circuits is summarized in Figs. 28 and 29. The circuit con-
nections for self-contained meters in socket type and bottom connected are shown in Fig. 28. Corresponding circuit connections for transformer rated meters are shown in Fig. 29.

The internal wiring diagrams for socket-type and bottom-connected self-contained and transformer-rated meters are shown in Fig. 30.

12. Installation of Watthour Meters

The specifications for the location and other watthour meter installation requirements are established by the utility or other owner of the meter. However, the safety code provides that certain safety measures be taken in
Totalizing two services

Fig. 28-continued
the installation of circuits to the meter.
Socket and mountings with built-in current transformers for detachable and bottom-connected meters are also available. Westinghouse sockets with current transformers are designated as Transockets. Corresponding mountings for bottom-connected meters are designated as Trans-A-Mounts.

Various available sockets, Transockets or Trans-AMounts for application with the various detachable and transformer-rated, bottom-connected meters are given in Table 2.

The terminals arrangement in detachable (sockettype) and bottom-connected watthour meters have
been standardized. The standard terminal arrangements for these types of meters are shown in Fig. 31. For the terminal arrangement in switchboard meters, reference is made to the manufacturer's literature as may be required.

13. Mefering Reactive Voltampere-Hours ${ }^{13,19,20,21}$

Metering of reactive voltampere-hours is of particular importance to the utility where the rate schedule contains a power factor clause which provides the manner in which load power factor influences the charges for electric service. The manner in which load power factor is included in the rate schedule varies with utilities, but

Meter: Type A (4-terminal)

Fig. 29-Circuit connections for transformer-rated meters.
it generally affects a measurement of quantities necessary for determining the charge. In some rate schedules, the power factor clause is based upon the average monthly power factor. Another manner provides for a reactive voltampere demand charge. Usually, the power
factor clause applies to the larger industrial or power customers. The metering of services to such customers includes both energy (watthour) meters and reactive power (varhour) meters.

The reactive power metering is usually done by a

Fig. 29-continued
watthour meter to which a voltage which is equal to and lagging quadrature with the system voltage is applied to the potential circuits. The speed of the rotating disk of such a meter is proportional to reactive power in the positive direction. The registration of the meter in a
specific time interval is proportional to the average reactive power during that interval. A demand register on such a meter indicates the maximum reactive demand during the period such as the billing period. Similarly, the registration of a watthour meter in a specific

Notes	Standard single-phase meter. Combination 2-3wire self-contained meters come wired for 2-wire, 120 volt, with potential coils in parallel and one current coil disconnetted and bridged. Self-contained o-terminal A (not shown) is like transformer type.	Standard 2-stator meter. S-2 self-contained and transformer-type and A-2 transformer-lype can bo used as wired on 1, 2, or 3 -phase service. A-2 selfcontained must be ordered with 8 terminals for 2 phase, 4-wire.	Standard 3-stator meter. S-3 self-contained and transformer-type and A-3 self-contained hove one side of each potential coil tied together. A-3 trans-former-type has all potential leads brought out separately.	Threo-stator metor for totalizing 3 -phase, 3 -wiro and 1-phase, 2 -wire from separate sources. Two stators for polyphase load have one side of each potential coil tied together except on A-4 transformer type. Third stator for single-phase is separate.	Standard 2-stator 3-wire network meter. Internally similar to S-2 and A-2 meters. Terminal-arrangements similar to singlephase S and A.

Fig. 30-Internal wiring diagrams for socket-type and bottom connected and transformer-rated meters.
Continued on next page

Transformer
Type Type

$\frac{0}{0}$
ì
i

sTs-8 8 for $\mathrm{s}-2$
$3 \varnothing, 4 \mathrm{Y}$

STS for $5(6$ torminal)
$1 \varnothing 0,3 \mathrm{w}$

interval is proportional to the average active power during that interval. Therefore, the average load power factor for the period can be determined from the reactive kilovoltampere-hour and kilowatthour registrations for the period. The average power factor is given by

$$
\left(F_{\mathrm{P}}\right)_{\mathrm{avg}}=\cos \left(\tan ^{-1} \frac{\text { varhours }}{\text { watthours }}\right)
$$

For correct registration of the varhours, the voltage applied to the potential circuit must be equal in absolute value to the voltage applied to the watthour meter, and in lagging quadrature with that voltage. The circuit voltage is shifted by 90 degrees in the lagging direction before it is applied to the varhour meter. The corresponding current coils of the watthour and varhour meters are connected in series. The manner in which the voltage is shifted for reactive metering is dependent upon the type of system. This discussion is restricted to methods of obtaining the required phase shift and the equipment available.

Two-Phase Systems-Reactive metering in a two-phase system is simpler than it is in either the single-phase or three-phase systems. Since the phase voltages are displaced by 90 degrees, no phase shifting equipment is required. The watthour and varhour meters in a twophase service are connected as shown in Fig. 32. This is referred as cross-phasing. The accuracy of the reactive meter is dependent upon the phase voltages being equal and 90 degrees out of phase.

Three-Phase Systems-Shifting of system voltage for reactive metering in a three-phase system is done in phase-shifting transformers. They consist of small autotransformers with taps so arranged that voltages equal to and lagging the line voltage by 90 degrees are obtainable. In order for phase-shifting transformers to be applicable, it is necessary that the meter potential terminals be independent of the current terminals.

The various types of Westinghouse phase-shifting transformers available and the system application and voltage rating of each are shown in Table 3. The accuracy of the transformers may be checked by applying rated voltages from a system of balanced voltages to the transformers and measuring voltage between various tops as shown in Table 4.

The internal wiring diagrams of the various types of transformers and the taps from which quadrature voltages are obtained are shown in Fig. 33. The phase shifts shown result if the applied voltages are from a system of balanced voltages of the sequence 1-2-3. Unbalances in system voltages result in errors in the phase shift.

External and internal wiring diagrams of a Type K-5 transformer for application to various types of systems are shown in Fig. 34. The connections to potential circuits only of the watthour and varhour meters are shown. The corresponding meter current elements are connected in series.

Single-Phase Systems-The 90-degree phase shift necessary for reactive metering.on single-phase services is obtained by connecting a resistor capacitor series network in series with the potential circuit of the watthour (varhour) meter with which it is applied. The resistor is
variable, since the network must be calibrated individually for the meter with which it is to be used. The Westinghouse Type K-1 compensator is a resistor capacitor network for obtaining the 90 -degree phase shift required for single-phase reactive metering.

V. DEMAND METERING

The demand of an installation or system is the load at the receiving terminals averaged over a specified interval of time. Demand is expressed in suitable units of the load commodity. The load may be real power, reactive power, apparent power, or current, and may be expressed in kilowatts, reactive voltamperes, voltamperes, or amperes, respectively. The most common demand intervals used in commercial metering are 15 minutes and 30 minutes, although other intervals such as 5 minutes or 60 minutes have been used in some cases.
Similarly, the maximum demand of an installation is the greatest of all demands which have occurred during a given period of time. The period of time during which the maximum demand is usually desired is the month or the billing period. Of course, the maximum demands for longer periods, such as a year, can be determined from the maximum demands of each of a group of periods, such as a month, which make up the longer period. The maximum demand is determined by measurement, according to specifications, over a definitely prescribed time interval.

14. Types and Classes of Demand Meters

Classes--Demand meters may be classified according to the manner in which demand is measured and according to the presentation of the measurements such as: ${ }^{8,22}$

Class I -curve-drawing or recording demand meters
Class II -integrated- or block interval-demand meters

Class III--lagged-demand meters

Recording Demand Meter-The designation of Class I indicates only the manner of presentation of the measurement and does not indicate the manner of the measurement, i.e., integrated or lagged demand. In the recording meter, a permanent record is made of the demands measured during the period of the record. The demands may be recorded on a paper strip chart, on printed or punched paper tape, or on magnetic tape. Usually, a recording demand meter is considered as a demand meter which uses a strip chart and in which the stylus is advanced across the paper chart at a rate proportional to the watthour. The chart is driven continuously by a clock mechanism. A meter in which the measurement is printed on a tape is usually referred to as a printometer. Magnetic or punched tape recorders are relatively recent developments in which the measured demand is recorded on magnetic or punched tape, from which the data are extracted by auxiliary devices for correlation on data processing machines.

Fig. 32-Diagram of connections for reactive metering on two-phase systems.

Indicating Demand Meter-An indicating demand meter or register is a demand meter which is equipped with a scale over which a friction pointer is advanced to indicate maximum-demand. The indicating demand meters may be of the integrated demand (Class II) or of the lagged demand (Class III).

Cumulative Demand Meter-A cumulative demand meter or register is an indicating demand meter in which the accumulated total of maximum demands during the preceding periods is indicated during the period after the meter has been reset and before it is reset again. The maximum demand for any one period is equal to or proportional to the difference between the accumulated readings before and after reset. The accumulated maximum demands are presented on a group of dials and pointers similar to those on the watthour meter. The cumulative demand meter or register is of the integrated-demand (Class II) type.

Table 3-Application Chart for Westinghouse Phase-Shift Compensators
Phase Shifting Transformers for Varhour Metering

Service	Meter-No. of Elements	Phase Shifting Transformer
	2	K-3
3-phase, 3-wire	2	K-5
3-wire network	2	K-5
3-phase, 4-wire, delta	2	K-7
	2	K-5
3-phase, 4-wire, wye	3	K-9
	3	K-5
	$21 / 2$	K-4
	3	K-5
		K-4

Table 4-Tests for Ascertaining the Accuracy of PhaseShift Compensators of Table 3
120 Volt* Phase-Shifting Transformers

	Apply 100 Volts to Terminal	57.7 Volts should be voltage across	115.5 Volts should be voltage across
Type K-3	1-2	4-2	6-2
	3-2	7-2	5-2
Type K-4	1-0	6-0	\ldots
	2-0	4-0	\ldots
	3-0	5-0	...
Type K-5	1-2	4-2	6-2
	.	8-2	\ldots
	3-2	7-2	5-2
	. \cdot	9-2	...
Type K-7	1-4	\cdots	1-2
	3-6	\ldots	5-6
Type K-9	1-6	\cdots	1-2
	3-0	4-0	5-0

*For 240-Volt transformers double the given voltage values.
Integrated-Demand Meter (Block Interval Demand Meter) -An integrated demand meter is one which indicates or records the demand obtained through integration. The integration is performed over specific demand interval periods. That is, the period during which demands at specific intervals are measured is blocked into discrete periods, the duration of each of which is the prescribed demand interval.

Lagged-Demand Meter (Exponential or Logarithmic Demand Meter)-A lagged-demand meter is one in which the response of the meter element is subject to a characteristic time lag by either mechanical or thermal means. The presentation on such a meter is sometimes referred to as an exponential or logarithmic demand, since the response of the meter as a function of time is an exponential function of the quantity being measured. Usually the lagged-demand meter has a pointer pusher and a maximum-demand pointer which indicates the maximum deflection of the pointer pusher. The pointer pusher indicates the demand over the previous demand interval. Lagged-demand meters are equivalent in their action to an ordinary indicating wattmeter, in which the damping is highly accentuated, resulting in a time lag.

15. Theory and Application of Demand Meters

Integrated-Demand Meters-The integrated-demand principle is applied on both the indicating and cumula-tive-demand meters. The principle difference in the meters is in the presentation of the data. In fact, both meters are usually watthour meters with special registers for measuring both maximum demand and energy consumption. Integrating demand registers are shown in Fig. 35. The indicating demand register has two hands. One hand, the pointer pusher, moves at a rate proportional to the energy consumption; therefore, its total movement in a given interval is proportional to

Fig. 33-Internal wiring diagrams of various types of phase-displacement transformers for reactive metering on three-phase systems showing taps from which quadrature voltages are obtained.
(a) Type K-3, (b) Type K-4, (c) Type K-5, (d) Type K-7, (e) Type K-9.

- omil for 2 stator molers

Fig. 34 —External and internal wiring diagrams for application of a type K-5 phase displacement transformer for reactive metering on various types of systems.
the demand occurring in that interval. It resets to zero at the end of each interval. The second hand, the maximum demand pointer, is moved by the pointer pusher, and indicates the maximum demand which has occurred since the last resetting of the friction pointer to zero.

In the cumulative-demand register, the registration is on a set of dials similar to those on the watthour meter register. The maximum which has occurred since the last resetting of the register is stored within the register. A test dial indicates the approximate maximum demand since the last reset. When the meter is reset, the demand register dials change setting by the value of the maximum demand stored within the register, and the test dial resets to zero. The maximum demand is the difference in the readings of the demand register before and after resetting. The cumulativedemand register can be read to more significant figures than can be read on the indicating demand register. Being a more expensive register, cumulative-demand register is applied on larger loads where the added accuracy can be justified.
Lagged Demand Meter or Register (Thermal Demand) ${ }^{233}{ }^{24,}$ ${ }^{25}$-In an indicating lagged-demand meter, the demand
indicated by the pointer pusher is the demand over the interval just preceding the time at which it is read. The friction pointer then indicates the maximum demand over any interval of a specific duration in the period, rather than over discrete block intervals. Due to this factor, peak splitting is not possible with the lagged demand meter.

Although the demand interval in an integrated demand meter is the period over which the load is integrated to determine the demand or average load during the interval, the demand interval of a thermally lagged meter is not so clearly defined. The demand interval of a thermal demand meter is considered as the time required for a meter to indicate 90 per cent of the full value of a constant load suddenly applied. This definition has been selected, because it provides an indication which is in close agreement with that obtained by an integrated demand meter with an equal demand interval. The interval of most thermal demand meters is 15 or 30 minutes.

The indication vs. time characteristic of a thermally lagged demand meter which has a demand interval of fifteen minutes is shown in Fig. 36. The characteristic

Fig. 35-Integrated or block interval demand registers (a) indicating demand register, (b) cumulative demand register.
shown is the response of the meter when a constant load is suddenly applied. The equation response vs. time characteristic has the form

$$
\begin{equation*}
d=D\left(1-e^{-k t}\right) \tag{63}
\end{equation*}
$$

where
$d=$ deflection at any time after applying the load from a previous no-load state.
$D=$ maximum deflection of the meter
$1 / k=$ the time-constant of the meter; the time required for the meter to reach its final value if it continues to increase at the initial rate; it is also the time for the deflection to reach 63 per cent of its final value.
$t=$ time after suddenly applying load
Either of two principles may be used to damp or lag a meter. These are thermal and mechanical. Only the principle of thermally lagging meters is applied to an appreciable extent in modern lagged-demand meters; therefore, only thermally lagged-demand meters are considered here.

The thermal element is essentially a thermal storage wattmeter which has a thermal (deflection vs. time)

Fig. 36-Response characteristic of thermal demand meter.

characteristic similar to the exponential or heating curve of electrical equipment. However, the characteristic of the meter may not correspond precisely with those of the electrical equipment, due to the variations of the thermal time constants of different types of equipment. The thermal time constants of a thermal-demand meter having a 15 -minute interval approximates the thermal time constant of copper conductors, if there is no appreciable dissipation of heat to the environment of the conductor. For example, a fifteen minute thermal demand meter indicates 63 per cent of its final value in 6.5 minutes after a constant load is suddenly applied, while the copper gradient in an oil-filled distribution transformer will reach its final value in from 5 to 8 minutes if there is no heat dissipation to surrounding oil. However, due to heat absorption of heat by the oil, the time is greater, since the top oil temperature will reach its final value in from 3.5 to 5.5 hours if there is no heat dissipation to surrounding air. The rate of heat absorption by the oil diminishes with time. Therefore, the characteristic of a thermal-demand meter approaches the characteristic of a conductor, but it deviates considerably from the characteristic of an oil-filled transformer.

Thermal Kilowatt Demand Meter- The diagram of the basic circuit of a single-phase, thermal kilowatt demand meter is shown in Fig. 37. The bimetal springs, which are wound in opposite directions, are connected to the shaft which carries the pusher pointer. The torque developed in each bi-metal spring is proportional to the temperature rise above ambient in the spring. The net torque to the shaft is proportional to the differential temperature rise of the two springs. The bi-metal springs may be either directly heated by an electric current passing through the spring or indirectly heated
by resistors with an electric current. The indirectly heated design is considered here.

The heater units are connected in series across a potential transformer; therefore, a current I_{E}, proportional to line voltage, circulates through the heater units in the positive direction shown. Also, a current proportional to load current passes through each heater unit. The positive direction of load current is opposite directions in the heater units. The net current in heater A is $\left(I_{\mathrm{E}}+\frac{I}{2}\right)$. The components of currents in each heater are phasor values. Since power applied to the respective heater units ls proportional to the square of the current in each, the power dissipated in the heaters is given by
$\begin{array}{ll}\text { For Heater } A & I_{\mathrm{E}}^{2} P_{\mathrm{s}}=\left[I_{\mathrm{E}}^{2}+I_{\mathrm{E}} I+\left(\frac{I}{2}\right)^{2}\right] R \\ \text { For Heater } B & I_{\mathrm{E}}^{2} P_{\mathrm{b}}=\left[I_{\mathrm{E}}^{2}-I_{\mathrm{E}} I+\left(\frac{I}{2}\right)^{2}\right] R\end{array}$
The net torque, T_{N}, to the shaft is proportional to the difference in power applied to the respective heater units and is given by

$$
\begin{equation*}
T_{\mathrm{N}}=C_{1}\left(P_{\mathrm{a}}-P_{\mathrm{b}}\right)=C_{2}(E I) \tag{a}
\end{equation*}
$$

where C_{1} and C_{2} are constants and

$$
\begin{equation*}
C_{2} E I \equiv C_{2}|E||I| \cos \theta \tag{36}
\end{equation*}
$$

Therefore, the net torque developed is proportional to the kilowatts delivered to the load being metered.

The polyphase thermal kilowatt demand meters are similar in operation to the single-phase meter, except for the number of elements used. Two heaters and one potential transformer comprise each element. The bimetal coil springs of the elements are ganged to one shaft to indicate the total kilowatt demands of the polyphase circuit. Separate potential and current transformers are used for the thermal units in polyphase meters.

Thermal Ampere Demand Meters ${ }^{26}$ - The thermal ampere demand meter is similar to the kilowatt demand meters, except that it contains only the current bi-metal coil spring. Although the ampere demand meter is operated by current only, it is usually calibrated in kva. The calibration assumes constant voltage at the meter.

A phase-shifting network is applied in polyphase ampere demand meters in order to develop heating in one heater unit which is proportional to the total demand of polyphase circuit. The circuit diagram of a three-phase three-wire ampere-demand meter is shown in Fig. 38(a.) The vector diagram is shown in Fig. 38(b.) The polyphase thermal ampere-demand is dependent upon balanced system voltage for correct indication, but it is not dependent upon balanced currents.

Thermal KVA-Demand Meter ${ }^{25}$, 27.-The thermal kvademand meter which is available only in a polyphase meter is essentially a voltage compensated amperedemand meter. A second heater unit and bi-metal coil spring is added to correct the indication for a variation in system voltage. The basic arrangement of such a meter is shown in Fig. 39. The potential bi-metal spring is coupled through a linkage to the complete current bi-

Fig. 37--Diagram of basic circuit of thermal kw demand meter.
metal assembly to cause recalibration at the meter for changes in applied voltage. The thermal kva demand meter is also dependent upon balanced voltages for current indication. Due to the added expense of the kva demand meter over the ampere demand meter, it is applied only when abnormal variations in voltage levels justify a more accurate and more expensive meter.

Combination Thermal Demand-Watthour Meters-Combination thermal demand and watthour meters are available in which the thermal demand meter and a standard induction watthour meter are assembled as a unit. Internal current transformers are used in all meters. The current transformers may supply the watthour meters electromagnet as well as the thermal elements. For single-phase kilowatt demand meters, the watthour meter electromagnet potential coil also serves as the primary of the potential transformers. Separate current and potential transformers are used for the thermal elements of polyphase thermal demand meters.

A considerable variation in price prevails between the corresponding types of combination thermal-demandwatthour meters. The combination thermal kw demand watthour and thermal ampere-demand-watthour me-

(b)

Fig. 38-Thermal ampere-demand meter, (a) Basic circuit, (b) Vector diagram.
ters are comparable in price. However, the cost of the thermal kva-demand-watthour meter is about twice the cost of corresponding thermal kw or ampere-demandwatthour meters.
The combination thermal demand-watthour meters are interchangeable in external connections with corresponding watthour meters.

Advantages of Thermal Demand Meters-The thermaldemand meter has certain advantages over the inte-grated-demand meter. The principal advantages are simplicity of operation and lower maintenance due to fewer moving parts. The danger of "peak splitting," which is possible with the integrated-demand meter, is eliminated in the thermal meter. This may not be of appreciable importance, since splitting of every peak in a period is unlikely. However, the load peaks are not necessarily repetitive.

Recording Demand Meters-In recording demand meters, the demand of each interval is permanently recorded for future reference. The demand may be recorded on strip charts, printed tape, punched tape, or magnetic tape.

Punched tape and magnetic tape recorders are relatively recent developments for application in load survey recorders. Such recording demand meters are for a special application and are discussed under that topic.

Most recording demand meters make use of strip chart recorders. Usually the recorder is applied with one or more watthour meters as a unit to register kilowatt hours, varhours, or kilovolt-ampere hours, and to record the integrated-demand in units of some quantity which has been integrated. More than one recorder may be applied in a meter where a continuous record of the demand of more than one commodity is desired.

Recording demand meters are available in various combinations of watthour meters, varhour meters, and recorders, from which the arrangement desired can be selected. The various combinations are:

1. Single watthour (or varhours) meters with recorders for recording kilowatt or kilovar reactive demand.

Fig. 39-Basic arrangement of thermal kva-demand meter.
2. Duplex meters comprised of two watthour meters and individual recorders with a common timer and drive mechanism for metering in-out energy and kilowatt demand, metering energy and integral of reactive power (kvah) and recording demand of each.
3. Totalizing metering of two separate circuits, in which the total energy used is registered and the demand of the combined loads is recorded.
4. Duplex, totalizing or two circuits in which the total energy used and energy used in one circuit are registered separately; the demand of the combined circuits is also recorded.
5. Kva recording demand meters composed of a watthour and varhour meter, vector addition mechanism, for obtaining the vector sum of the integrals with respect to time of kilowatts and kilovars.
KVA Demand Meter ${ }^{28}$ —The vector addition kva demand meters are so unusual that they justify special consideration. By means of the fascinating vector addition ball mechanism, the rotation of watthour and varhour meters are added vectorally to provide a rotation, the speed of which is proportional to kva. The ball mechanism also provides the indicated load power factor. The output rotation of the ball mechanism is proportional to the integrated kva. It is totalized to give kvah registration and integrated kva demand. An analysis of the vector addition ball mechanism and the kva demand meter are given in references 14 and 28. The vector addition kva-demand meter is available in both indicating and recording demand meters, which are Westinghouse Types RK and RI, respectively. The Type RK and RI demand meters are shown in Fig. 40.

The measuring devices of the RK and RI meters are very similar. The principal differences are in the data presentation of integrated-kva demand of the quantities registered. Both meters contain a watthour meter and a varhour meter which supply the inputs to the vector addition ball mechanism. The data presented by the Type RK indicating kva-demand meter are (1) maximum integrated-kva demand, either (indicating or cumulative) ; (2) kwh registration; (3) kvah registration; and (4) power factor indication. The data obtained from the Type RI recording kva-demand meter are (1) recorded integrated kva demand; (2) recorded inte-grated-kw demand; (3) kwh registration; (4) kva hour registration; (5) kvar hour registration; and (6) indicated power factor.

Types RK and RI meters are available with both 2 -stator and 3 -stator watthour and varhour meters for application to various three-phase systems. The Type RI is also available with 4 -stator watthour and varhour meters for totalizing two three-phase circuits.

Due to the unusual amount of data obtained from the kva-demand meters and the commensurate additional cost, the kva-demand meters are applied only where the additional data are required.
Relative Expense of Demand Meters-The relative expense for various types of demand meters can be seen from Fig. 41. Each bar represents a particular type or
class of meter, although all types are for metering the same type of circuit. Since the recording meters are available only for polyphase meters, the meters represented by the particular bars are all polyphase meters. The indicating and cumulative demand registers are included for completeness.

VI. METER CONSTANTS AND TEST DATA

16. Meter Constants ${ }^{8,22}$

The principal constants of a watthour meter are: (1) the register constants, $\left(K_{\mathrm{r}}\right)$; (2) the watthour constant (K_{b}) ; (3) Wattsecond constant or test constant (K_{s});

(4) the register ratio (R_{r}); and (5) the gear ratio (R_{g}). The definitions as given here have been extracted from American Standard Definition of Electrical Terms, Group 30, Instruments, Meters, and Meter Testing, ASA 642.30--1957.

Register Constant (K_{τ}) —The register constant is the factor by which the register reading must be multiplied in order to provide proper consideration of the register, or gear ratio and of the instrument transformer ratios to obtain the registration in the desired units.

Watthour Constant (K_{h}) -The watthour constant of a watthour meter is the registration expressed in watthours corresponding to one revolution of the rotor.

Wattsecond Constant (K_{8}) -The wattsecond constant of a watthour meter is the registration in wattseconds corresponding to one revolution of the rotor.

Register Ratio $\left(R_{\mathrm{r}}\right)$-The register ratio is the number of revolutions of the wheel meshing with the worm or pinion on the rotor for one revolution of the first dial.

Gear Ratio (R_{g})-The gear ratio is the number of revolutions of the rotor for one revolution of the first dial.

Relationships Between Meter Constants--The relationships between the watthour meter constants is given by the following:

1) $K_{r}=$ register constant
$=\frac{\text { Measured Kwh }}{\text { Registered Kwh }}$
2) $N=$ Numerical value of one revolution of the first dial pointer (Usually $N=10$)
3) $K_{\mathrm{h}}=$ Watthour Constant
$=\frac{\text { Watthours }}{\text { Rev of rotor }}=\frac{\mathrm{Kwh} \times 1000}{\text { Rev of rotor }}$
$=\frac{1000 \times \mathrm{Kw} \text { (rated full load or load } \mathrm{l}_{\mathrm{x}} \text {) }}{60 \times \text { rotor } \mathrm{rpm} \text { (at rated full load or at load } \text {) }}$

Fig. 40-Vector addition, integrated kva demand meters, (a) Type RK, (b) Type RI.

Fig. 41-Relative cost of demand meters.
4) $K_{\mathrm{a}}=$ Wattsecond constant or test constant
$=\frac{\text { Wattseconds }}{\text { Rev of Rotor }}$
$=3600 K_{h}$
5) $R_{\mathrm{g}}=$ Gear ratio
$=\frac{\text { Rev of rotor }}{\text { Rev of 1st dial pointer }}$
6) $R_{\mathrm{r}}=$ Register Ratio
$=$ The ratio of the number of revolutions meshing with the worm or pinion of the disk shaft to the number of revolutions of the first dial pointer.
7) $K_{\mathrm{r}}=\frac{K_{\mathrm{h}} R_{\mathrm{g}}}{1000 N}=\frac{K_{\mathrm{h}} R_{\mathrm{g}}}{10000} \quad$ (Usually $N=10$)

17. Meter Testing

In order to register correctly the energy and reactive kilovar hours delivered to a load, the number of revolutions of the rotating disk of the meter must be proportional to the quantity being metered, and the number of revolutions of the disk must be accurately registered. Transformer rated meters must be calibrated for application with the particular instrument transformers. Usually transformers of high accuracies are applied, so that transformer errors may be neglected in calibration of the meter. Also, modern instrument transformers are
not subject to changes in accuracy unless the transformer is mechanically injured. Testing of metering equipment, therefore, consists primarily of calibration of the watthour meters.

Testing a watthour meter consists of: (1) calibrating the meter so that the number of revolutions of the rotating disk is correct within the established tolerance for a given amount of energy delivered to the load, or that the speed of the disk is proportional to the load being measured; (2) the number of revolutions of the rotating disk is properly translated to the register, so that the energy delivered to the load is accurately registered on the watthour meter.

Testing of a demand meter consists of: (1) ghecking the interval of a block interval meter; (2) making usual tests on watthour meter with which the demand register is applied, except for lagged demand meters which are independent of the watthour meter; and (3) checking calibration of lagged-demand meters. In addition to the calibration check, testing a meter includes inspection of the meter and required repairs. After the repairs are made, the meter is calibrated.

Watthour meter tests may be classified as to: (1) the place of test, such as the laboratory or shop test or the field test (in customers' premises) ; (2) the time of the test, such as at or near the time of the installation, or periodic (routine); or (3) the reason for the test, as of customers' request, company (utility) request, referee (regulating agency), or test following repairs. ${ }^{8}$

Meter Test Methods ${ }^{14,}$, 29, 30_-Two fundamental methods are used to test meters by a user. First, a meter can be tested by using indicating instruments (watthour, voltmeter, and ammeter) and a stop watch. The energy delivered to a load can be computed if the time is accurately measured and the power transferred is held constant. The time required for a given number of revolutions of the disk is measured, and the watthour constant of meter is computed and compared with the nameplate value. The requirement of holding the load constant is an undesirable condition necessary for this method. The second and more widely used method of testing a watthour meter consists of comparing the responses of the meter under test (test meter) and a standard watthour meter (standard meter) when measuring the same load. Usually the measurements are made on a phantom load. Rated voltage is applied to the potential circuits, and current at a low voltage of a specified value and phase relationship with respect to potential circuit voltage is circulated through the current circuits of the two meters in series.

Two methods are used to compare the response of the standard and test meters. In the first method, known as portable standard meter method, the number of revolutions of the standard meter is compared with the number of revolutions of the test meter. In the second method, known as the stroboscopic method, the respective speeds of the rotating disks of the standard and test meters are compared; the test meter is adjusted until the disks of both meters rotate at the same speed. In order to make "as found" test, the stroboscopic method requires a variation (calibrated in per cent registration)
in the voltage applied to the standard meter in order for both meters to rotate at the same speed.

The equipment required for the portable standard watthour meter method is less expensive than the equipment required for the stroboscopic method. However, the stroboscopic method is faster, since less time is required for comparing the relative speeds of the standard and test meters. The stroboscopic method of meter testing finds application in meter shops which do a large volume of meter testing. It is especially adaptable to gang testing. The method is not restricted to a particular type of meter, except that the marking or slotting of the disk is necessary. Disks of newer types of meters are marked for this purpose.

Meter test procedures are described in detail in literature available from manufacturers of test equipment. The procedure detailed usually applies to a particular test set. However, the procedure for testing of individual meters by use of the standard meter is fairly standard. A brief discussion of these tests is included here.

Individual Meter Test Procedure-As previously stated, the portable watthour meter test method consists essentially of comparing the number of revolutions at the test meter with the number of revolutions of a standard meter. The registration of a given meter is proportional to the number of revolutions. In order for a meter to register correctly, the gear ratio is dependent upon the watthour constant's being the values shown on the nameplate. Therefore, the registration is proportional to the watthour constant and the number of revolutions of the disk. This also applies to the standard meter. If the standard meter registers correctly, the registration of test meter is given by Equation 37

$$
\begin{equation*}
\% \operatorname{Reg}=\frac{k_{\mathrm{b}} r}{K_{\mathrm{b}} R} \times 100 \tag{37}
\end{equation*}
$$

where
$k_{\mathrm{b}}=$ the watthour constant of the meter under test $r=$ the number of revolutions of the meter under test
$K_{\mathrm{h}}=$ the watthour constant of the standard meter
$R=$ the number of revolutions of standard meter
In comparing a test meter and a standard meter which have watthour constants of k_{h} and K_{h}, respectively, a definite ratio R_{0} / r exists for 100 per cent registration of the test meter. The ratio R_{o} / r is the ratio of the number of revolutions of standard meter to the number of revolutions of test meters, respectively. Conversely, for a given r, the standard meter will make R_{\circ} revolutions if the test meter registers correctly. Therefore, the registration of the test meter is given by Equation 38

$$
\begin{equation*}
\% \mathrm{Reg}=\frac{R_{\mathrm{o}}}{R} \times 100 \tag{38}
\end{equation*}
$$

where $R=$ the number of revolutions of standard meter in a test. Since R_{\circ} / R is very near unity, it is couvenient to express the registration by Equation 39.

$$
\begin{equation*}
\% \operatorname{Reg} \approx\left(1+\frac{R_{\mathrm{o}}-R}{R_{\circ}}\right) \times 100 \tag{39}
\end{equation*}
$$

In order to simplify determining the registration of a meter, the standard meters are supplied with accuracy tables or comparison scales from which the registration can be easily determined. Each scale or table is based upon Equation 38 and is applicable for particular values of $K_{\mathrm{h}}, k_{\mathrm{h}}, r$ and R. For an observed R, the registration is read from the table or scale.

Obviously, r must be an integer. It has been found that it is convenient if r for full load test is also a multiple of 5 . Also, it has been the general practice to permit the test meter to rotate a sufficient number of revolutions, so that the standard meter will rotate at least ten revolutions in order to detect inaccuracies of a fraction of a per cent. It is convenient for application of Equation 39 that R_{o} be a multiple of 10 .

Meter Tests ${ }^{8}$ —The usual tests at which a single-phase meter is calibrated are: 1) Full load, unity power factor; 2) Full load, 50 per cent power factor; and 3) Light load (about 10 per cent of full load), unity power factor. For tests which are made on the customer's premises, the power factor test is usually omitted, because threephase power for making the 50 per cent power factor test is not usually available.

Polyphase meters are normally subjected to the same tests made on single-phase meters, because polyphase meters can be conveniently tested as a single-phase meter. Such a test on a polyphase meter can be made, using a single-phase standard meter, by paralleling the potential circuits of the test meter and connecting the current circuits in series or testing each stator separately. However, the polyphase meters are subjected to an additional test to balance out any irregularities in the levels of the driving torque of the individual stators. Details of this test are described in meter test procedures, which are usually available from manufacturers of test equipment.

Testing Demand Meters--The testing of integrateddemand meters consists of measuring the demand interval and the rate of chart travel for a recording meter. The watthour meter is tested in the usual manner of testing that type of meter. The permissible deviations in demand and demand interval are usually the same, which is ordinarily much greater than the percentage error in the watthour meter.

The testing of lagged-demand meters consists of calibrating the meter for accuracy of demand measurements. The demand interval of a lagged-demand meter has been considered to be the time required for a meter to indicate ninety per cent of the full value of a constant load suddenly applied. The demand interval of a thermally lagged-demand meter is determined by the thermal characteristics of the meters which are not adjustable. A thermally lagged-demand meter is usually tested by comparing its response with the response of a previously calibrated meter.

VII. SPECIAL METERING

18. Mefering Off-Peak Water Heater Loads. ${ }^{13}$

The rate schedules of some utilities include special rates for off-peak water heater (o.p.w.h.) loads, which
are lower than the usual rate for the particular classes of load being served. The off-peak rate may be applicable on one or both elements of a two-element heater. In two-element heaters, the respective heater thermostats usually are interlocked so that only one element can be "on" at a time. Both or only the primary (lower or smaller) element may be restricted. Metering offpeak water heater loads applies only to metering the restricted element. Four general methods are employed for metering the o.p.w.h. load. These are as follows.

1) Separate meter and time switch control for the o.p.w.h.
2) Combination single register meter and time switch which meters both the house and o.p.w.h. load and controls the o.p.w.h. only.
3) Combination two-rate register meter and time switch which meters the house load at o.p.w.h. load during off-peak at off-peak rates, controls the o.p.w.h., and meters the house load during onpeak at on-peak rate.
4) Combination two-rate register meter without water heater contacts, in which the water heater is unrestricted, the house and w.h. are metered on the same meter at the same rate, and on-peak and off-peak load consumptions are indicated on separate registers.
The schematic diagrams of connections for the various methods of metering off-peak water loads are shown in Fig. 42.

19. Loss Metering and Compensators ${ }^{31}$

In some metering applications, it is desirable either to determine the energy loss in a transformer or to compensate for the loss. Loads served at primary voltage are applications for the loss compensator. Due to the difference in the costs of the instrument transformers rated at primary service voltage and instrument transformers rated at utilization voltage, it is more economical to do the metering at utilization voltage. However, the connection point (metering point) for services served at primary voltage is on the primary side of the distribution transformer or substation. Such services can be metered at secondary voltage if the transformer losses are metered, or transformer loss compensation is applied to the low-voltage metering.

Compensation of the total transformer losses consists of developing additional driving torques in the low-side metering proportional to the transformer core and copper losses. The core loss is very nearly proportional to the square of the voltage; the copper is proportional to the square of the current. The object of transformer loss compensators is to apply to the normal low-side watthour meter quantities which result in additional driving torques proportional to E^{2} and I^{2}, without altering the driving torque which is proportional to the low side kilowatt load. Analysis of the principles and applications of transformer loss compensators is given in reference 31 .

20. Tofalizing and Remote Mefering. ${ }^{32,33,34}$

Where it is necessary to determine either the total of

Fig. 42-Diagram of various arrangements for metering off-peak water heaters.
metered quantities (kwh, rvarh, or demand quantities) on different circuits, or to indicate the metered value at a point remote from the metering point, totalization or remote metering is required. Totalizing and remote metering are two separate and distinct applications, although a particular application may be either or a combination of both applications. However, totalizing and remote metering are treated independently here.

Although totalization may be applicable to other measurements, this treatment is restricted to demand and energy or other integrated quantities mentioned above. Accepted terms are used to classify totalization in certain respects, while remote metering is a general term. Totalization is classed, according to the proximity of the circuits to be totalized, either as local totalization or remote totalization. Totalization is also classed according to the method of totalizing, as mechanical, electrical, or impulse totalizing. No distinction is made between remote metering and telemetering, although telemetering is usually associated with a particular method of accomplishing the more general requirement of remote metering. Telemetering is usually associated with carrier current transmission channels rather than with wire channels, although the association might be erroneous and misleading. Remote metering is applicable to remote presentation of measurements in general and is not restricted to remote totalization.

Totalization-Local and remote totalization are not clearly defined with regard to areas of application; however, local totalization implies that the metering points and the totalizing equipment are in the same immediate area, such that wire circuits are applicable for data transmission. On the other hand, remote totalization implies the application of telemetering or remote metering and totalization of measurements taken at individual but remote points. Therefore, remote totalization implies that individual metering and totalizing points are separated by several miles. Totalization as used here is restricted to local totalization; however, it may also be applicable to remote totalization in which the remote measurements are totalized at the receiver terminals of carrier current channels.
Methods of totalizing are clearly defined as mechanical, electrical, and impulse totalization, according to the principal method involved.

Mechanical Totalization-Mechanical totalization is the totalizing of mechanical quantities (usually torques or forces) into which electrical measurements have been translated. An example of mechanical totalization is the watthour meter for totalizing energy consumption on a 3 -phase, 3 -wire circuit and a single-phase circuit. The meter has the necessary stators for metering each circuit independently. The disks which are driven by the respective stators are coupled to a common shaft. Therefore, the torques developed by the stators associated with the respective circuits are totalized in the common shaft, which is geared to a common register to indicate the total consumption. The totalizing meter may be subjected to a much wider range of load than that to which an individual meter would be subjected. This may result in errors at extremely light and heavy loads. Economics normally limits to two the number of circuits to be mechanically totalized; however, in special applications, several circuits have been mechanically totalized. An advantage of mechanical totalization is that the circuits to be totalized can be independent with respect to the phase relationship of the voltages of the circuits to be totalized.

Electrical Totalization-Several circuits can be electrically totalized by paralleling the secondaries of the current transformers on corresponding phases of the circuits to be totalized. Electrical totalization is also subject to errors at extremely light and heavy loads, due to the wide range of loading to which the meter might be subjected. Also, electrical totalization is subject to additional errors because of variations in current transformer burdens, which may be due to one or more primary circuits being open or to wide variation in the loads on the individual circuits. These errors can be reduced to a minimum if the burden common to the transformers is kept to a minimum by paralleling the transformer secondary circuits at the meter terminals rather than at the transformer terminals. Errors can result from the additional burden imposed by excessively long transformer secondary leads. If this is the limiting factor of the number of circuits to be electrically totalized, it makes little difference if the current transformer external burdens are paralleled at the transformers or at the meter. One restriction of electrical totalization which does not exist with mechanical totalization is the requirement of correspondence of the phase voltages on the circuits to be totalized. The potentials required for metering can be supplied from one set of potential transformers; however, the potential source must be highly reliable and be available at any time a circuit to be totalized is energized.
A second restriction on electrical totalization is the requirement that the c.t. ratios in all circuits to be totalized must be equal. If the primary c.t. ratios are dissimilar, auxiliary totalizing current transformers must be interposed between the primary transformers and the meter to make the overall c.t. ratios of the circuits equal.

Circuits can also be electrically totalized by using meters with multiple current windings, so that a current winding is provided for each circuit to be totalized. The number of circuits to be totalized by multiple current wrindings or by paralleling current transformer secondaries is usually limited to two or three. Circuit diagrams showing the basic methods of electrical totalization are shown in Fig. 43.

Impulse Totalizing-Impulse totalizing consists essentially of translating the intelligence of measurements taken at the individual metering points into electrical impulses for transmission to totalizing relays or to a totalizing meter to obtain the aggregate of the measurements. By attachment of a contact device which momentarily makes and breaks its contacts for a specific number of revolutions of the disk, a watthour measurement is translated into electrical impulses, each cycle of which is proportional to the "kwh" at the metering point. The contact device momentarily makes and interrupts the circuit between the meter and the totalizing meter or relaying point to alternately energize and de-energize a solenoid. The solenoid advances a register or device for each impulse cycle to register the total number of impulses or kwh measurements received from the metering points. The transmission circuit (the circuit containing the contact devices, solenoids, and the

Fig. 43-Circuit diagrams of basic methods of electrical totalization.
connecting conductors) may be low voltage and either a.c. or d.c. The transmission circuit must be highly reliable, so that voltage is available to the data transmission channel at any time a circuit to be totalized is energized. The number of impulses registered in a given interval is proportional to the aggregate demand of all circuits totalized. The aggregate demand can be either indicated or recorded.

Data Transmission Circuit-Either of two basic types of circuits is used for transmission of the impulses to the totalizing relay or meter circuit. These are the twowire circuit or the three-wire circuit. Either a.c. or d.c. voltages can be applied to both basic circuits. However, a.c. is preferred, because it results in less wear on the contact devices and has the additional advantage of being available for synchronizing the chart or timing mechanism for demand measurements at the metering and totalizing points. Circuit diagrams of the basic types of data transmission channels and variations in 3 -wire transmission channels are shown in Fig. 44. The choice of the data transmission channel and contact devices is influenced by the requirements of the totalization receivers. The manufacturer of the totalization equipment should be consulted for his recommendations and details of requirements.

Impulse-Operated Metering Apparatus-Westinghouse impulse meters are available to correspond with the various watthour meters and block interval demand meters. However, only one type of totalizer is required for each general type of watthour-demand meter, regardless of the types of circuits being totalized. Westing-
house impulse-operated metering apparatus is of the low-rate type, i.e., less than 50 impulses per minute. Contact devices mounted on watthour meters are connected directly to the impulse receivers without the use of auxiliary equipment. Various combinations of contact devices, totalizing relays, and receivers can be made to meet the requirements of particular applications. In impulse totalizing, it is not necessary that the transmitting meters be of the same type as the receivers. However, the transmitting meters must be equipped with suitable contact devices for application with the transmitting channel and receiving equipment. Either the transmitter or the receiver, or neither, may be a recording or indicating demand-watthour meter. Also, the receiver (totalizer) may be only an indicating demand meter.

The type WRA impulse recorder is of the double operating coil type and totalizes the impulses from two

3-wire channel

grounded 2-wire channel

2-wire channel with Rectox rectifier units

Fig. 44-Basic impulse totalization data transmission circuits.
separate contact devices. If more than two circuits are to be totalized, a WT totalizing relay must be used. The type WT impulse totalizing relay adopts the modern concepts of semi-conductor devices and logic elements to combine and retransmit impulses from a number of sources to a single circuit or receiver. It is available in units to totalize from three to seven input circuits, and may be used to totalize two input circuits. Such input impulses may originate from any 3 -wire contact device or single-pole-double-throw impulse device relay. Input-to-output ratios of 1 to 1,2 to 1 , and 4 to 1 are provided. The WRA receives kwh impulses, totalizes kwh, and records totalized kw demand. A duplex WRA meter, consisting of two WRA meters in one case, is available for receiving both kwh and rkvah impulses, totalizing each commodity, registering the total of each, and recording the totalized demand of each.

Auxiliary relays are available for application with the type WT impulse totalizing relay. The type WS impulse storage relay is used when impulses cannot be continuously transmitted because of temporary use of transmission lines for other purposes. This device makes use of a stepping motor as its impulse-actuated driving element, and stores up to approximately 500 impulses. The type WD impulse difference relay is used when a difference between impulses from two sources is to be accomplished and the difference is re-transmitted. The type WD relay makes use of two stepping motors as its operating elements.

The type WRI impulse operated kva receiver is essentially the RI recording watthour demand meters, with the watthour and varhour elements each replaced with a two-circuit (three-wire) totalizing relay. Each relay consists of two pairs of operating coils, with a differential mechanism which totalizes the output. One two-circuit relay totalizes the kwh impulses; the other relay totalizes the rkvah impulses. The outputs of the totalizing relays drive a modified RI register- and ballmechanism, which is described under Recording Kva Demand Meters. The WRI meter registers only the kwh and kvah, whereas the RI also registers the rkvah.

The WRA and WRI impulse totalizing meters require three-wire transmission channels, or the 2 -wire modified channel in which a rectox filter unit is applied. Where direct connection is made between the senders and receivers with a 120 -volt a.c. supply, it is recommended that the resistance of the loop not exceed 1000 ohms. The totalizing relay coils require approximately .080 ampere at 60 cycles for correct operation. This corresponds to a maximum loop distance of approximately 5.6 miles of \#22 twisted pair copper conductors, and approximately 11.25 miles of \#19 twisted pair copper conductors.

Westinghouse impulse operated indicating demand meters are available in the various types of mountings and various types of registers which might be required. The meter is essentially a watthour demand meter in which the meter stators and magnets are replaced by a single coil notching relay which moves a notch for each impulse cycle. The various types of Westinghouse impulse operated demand meters are shown in Table 5.

21. Load Survey Recorders

The load survey recorder is a special meter which was developed principally for the purpose of obtaining load data for use in making rate studies. Therefore, it should be of particular interest to electric utility rate engineers. The object of the development was to produce a recording demand meter which would record the data in such a manner that it could be readily processed on high speed data processing machines.

At present, two types of load survey recorders are available in which the data are recorded differently on each meter. The recorders used on these meters are (1) magnetic tape recorder, and (2) punched tape recorder ${ }^{36},{ }^{36}$. Load survey recorders differ in the manner in which the data is obtained by the meter, i.e., the measurement of the demand is made within the load survey meter, or it is made on an auxiliary watthour meter and translated into impulses by a contact device for application to the recorder. The load survey recorders either measure and record, or only record the integrated or block-interval kilowatt-demand. The function of the meter varies with different manufacturers. Survey recorders have two characteristics in common, which are (1) the quantity recorded is integrated kilowatt-demand and (2) a translator is required for translating the data to punched cards or punched tape for use on data processing machines.

DSLD: Same as DSL except with additional socket for retaining customer's meter for revenue billing.

DSLD-5: Same as DSL-5 except with additional socket for retaining customer's meter for revenue billing.

DAL

Recorder unit in a separate box enclosure with flexible cable for use with other than socket type meters. Also used where impulse meters. Also used where impulse
source is not a watthour meter.

Fig. 45-Various arrangements available in the Westinghouse Load Survey Recorder.

Table 5-Available Westinghouse Impulse Operated Indicating Demand Meters

Application:	Meter Type			
	Kilowatt hours	Indicating Kw Demand	Kilowatt Hours Indicating Kw Demand	Kilowatt Hours Cumulative Kw Demand
dial plate: type of case				
bottom-connected meter case	WA	WA-1	WA-2	WA-3
glass projection switchboard	WB	WB-1	WB-2	WB-3
Flexitest switchboard	WB-F	WB-1F	WB-2F	WB-3F
instrument switchboard	WM	WM-1	WM-2	WM-3

The Westinghouse Load Survey Recorder applies magnetic tape as the recording means. The tape is driven by a synchronous motor, so that in case of interruption of service to a load being recorded, the tape movement stops and the interruption is recorded. Upon restoration of service, the tape resumes its movement. A clock which is driven by the tape-driving motor indicates the total duration of interruptions of service. Tapes are available in either 8-day (150 ft .) or 32-day (600 ft .) reels.

The kilowatt load data is fed to the Load Survey Recorder in the form of impulses from a contact device in the associated watthour meter. The number of impulses recorded in specific given intervals is proportional to the energy consumption and average kilowatt load (demand) in that interval. The source of impulses is dependent upon the particular application of the recorder.

The Westinghouse Load Survey is available for application to a variety of conditions, depending upon the permanent metering which is installed at the point where the load is to be recorded. The recorder is available as a complete unit, type DSL, with watthour meter with contact device and the tape recorder, for socket mounting to replace the customer's meter. In another arrangement, type DSLD, the watthour meter and recorder units are mounted in a trough which contains an additional socket for installation of the existing watthour meter, such as the customer's meter. The recorder is available in type DAL, which includes recording unit and integrating meter with flexible cable connection for use with other than socket-
type meters or where the impulse source is not a watthour meter. The socket-mounted load survey recorders are available for application to single-phase loads (using type DS watthour meter) type DSL or three-phase loads (using DS-5 watthour meter) type DSL-5, 2-stator network meter. Arrangements of the Westinghouse Load Survey Recorder are shown in Fig. 45. The internal circuit diagrams are shown in Fig. 46.

The magnet tape record is processed to translate the data to either punched cards or punched tape. A 600 ft . tape can be translated to punched cards in thirty-two minutes, or to a punched tape in 16 minutes. The translation to punched cards is done in the type WLT-1 translator, used in conjunction with an IBM-526 printing summary punch machine. Translation to punched tape is done in the type WLT-2 translator. Two plans are available for translating the tapes into punched cards. The translator can be purchased, or a rental service is provided for translating the tapes.

The punched card output contains information required for processing the data. The card is designed so that the measured demand is punched in certain columns and other pertinent information is punched in assigned columns. A punched card is shown in Fig. 47 which also shows the addresses of data on the card. The card contains data for the intervals, so that six cards are required for recording 15 -minute demands for a 24 -hour day, or 3 cards are required for recording 30 minute intervals. The identification of the load measured and the time of measurement are among other pertinent data punched on the card.

VIII. INSTRUMENT TRANSFORMERS

This discussion of instrument transformers is general, with the emphasis on the application of transformers to metering and metering outfits.

22. Deflnitions

This definitions have been extracted from "American Standard Requirements, Terminology, and Test Code for Instrument Transformers," C57.13-1954 ${ }^{37}$. Where used in this presentation, the standard definition is intended.

Functional Definitions-
(1) Instrument Transformer. An instrument transformer is a transformer which is intended to reproduce in its secondary circuit, in a definite and known proportion suitable for utilization in measurement, control, or protective devices, the current (or voltage) of its primary circuit, with its phase relations substantially preserved.
(2) Potential (Voltage) Transformer. A potential (voltage) transformer is an instrument transformer which is intended to have its primary winding connected in shunt with a power supply circuit, the voltage of which is to be measured or controlled.
(3) Current Transformer. A current transformer is an instrument transformer intended to have its primary winding connected in series with a power supply circuit carrying the current to be measured or controlled.

Rating-

(1) Burden of an Instrument Transformer. The burden of an instrument transformer is that property
of the circuit connected to its secondary winding which determines the active and reactive power at its secondary terminals. The burden is expressed either as total ohms impedance together with the effective resistance and reactance components of impedance or as the total volt-amperes and power factor of the secondary devices and leads, to a specified value of frequency and current or voltage. The impedance expression is more applicable to current transformers, the volt-ampere power factor to potential transformers.
(2) Accuracy Burden Rating. The accuracy burden rating of an instrument transformer defines a burden which can be carried at a specified accuracy for an unlimited period without causing the established limitations to be exceeded.
(3) Thermal Burden Rating of a Potential Transformer. The thermal burden rating of a potential transformer is the volt-amperes which the potential transformer will carry continuously at rated voltage and frequency without causing the specified temperature limitations to be exceeded.
(4) Quarter Thermal Burden Ambient Temperature for a Potential Transformer. The quarter thermal burden ambient temperature is the maximum ambient temperature at which the transformer can be safely operated when the transformer is energized at rated voltage and frequency and is carrying 25 per cent of its thermal burden rating without exceeding the specified temperature limitations.
(5) Rated Primary Voltage of a Potential Transformer. The rated primary voltage of a potential (voltage) transformer is the voltage selected for the basis of performance specifications.

Fig. 46-Internal circuit diagram of a Westinghouse Load Survey Recorder.

Card Markings	
Column Number	Marking
$\begin{aligned} & 1-16,22-37, \\ & 44-59,65-80 \end{aligned}$	sixteen 15 -minute interval totals (4 columns per interval to permit use of asme card for totalizing)
17	periods of day (1 through 6 for 6 cards per day)
18	day of week
19	month
20,21	date
38	year
39, 40	survey number
41, 42, 43	demand constant
$60,61,62,63$	customer identification
64	intervals per hour

Fig. 47-Punched card obtained for translation of Load Survey Recorder tape showing addresses of data on card.
(6) Rated Primary Voltage of a Current Transformer. The rated primary voltage of a current transformer designates the insulation class of the primary winding.
(7) Rated Primary Current of a Current Transformer. The rated primary current of a current transformer is the current selected for the basis of performance specifications.
(8) Continuous-Thermal-Current-Rating Factor. The continuous-thermal-current rating factor is the factor by which the rated primary current is multiplied to obtain the maximum allowable primary current based on the limiting temperature rise on a continuous basis.
(9) Phase Angle Correction Factor. The phaseangle correction factor is that factor by which the reading of a wattmeter or registration of a watthour meter, operated from the secondary of a current, or a potential transformer, or both, must be multiplied to correct for the effect of phase displacement of secondary current, or voltage, or both, with respect to primary values due to instrument transformer phase angles.
(10) Instrument-Transformer Correction Factor (Transformer Correction Factor). The instrumenttransformer correction factor is the factor by which the reading of a wattmeter or the registration of a watthour meter must be multiplied to correct for the effects of the error in ratio and the phase angle of the instrument transformer. This factor is the product of the ratio and phase-angle correction factors for the existing conditions of operation.

23. Functions of Instrument Transformers

In a particular application, an instrument transformer performs either or both of two principal functions. It may be necessary to transform the electrical quantities (voltage and current) to be measured, relayed, or controlled, individually or as functions of both individual quantities, into quantities which are suitable for application to standard meters and relays, or control devices. Neither the satisfactory operating range nor the insulation class of the instruments, meters, relays, etc. should be exceeded. The transformation may
be necessary because of the magnitude of the system quantities to be measured, or the voltage-to-ground of the point on the system may be such as to require insulating the instruments, meters, etc. from the systerm. The system quantities are referred to as primary quantities.

The transformation must be such that definite and known proportionalities and phase relationships exist between primary and secondary quantities. Measurements made on secondary quantities must be representations of primary measurements with known and acceptable accuracies. The accuracy requirements depend upon the purpose of the measurements. Metering used for billing purposes requires greater accuracy than measurements for protective relaying.

24. Classification of Instrument Transformers.

Instrument transformers are classified according to: 1) the particular function; 2) method of installation;
3) type of major insulation; 4) method of cooling; and 5) mechanical construction as shown in Table 6. ${ }^{37}$ Each instrument transformer may be classified as being of one type listed under each major classification, with the exception of mechanical construction, which is applicable to current transformers only. The specific types in each classification are defined in the American Association Standard C-57.13-1954, from which the definitions in (22) have been extracted.

25. Potential Transformers. ${ }^{38}$

Analysis-The function of a potential transformer is to produce a voltage which is applicable to standard instruments, meters, or relays, and which is a representation of the primary voltage in a known and acceptable proportionality and phase relationship. In general, the secondary voltage of a constant potential transformer is proportional to turns ratio, and in phase with or in phase opposition to the primary voltage (depending upon the reference terminal designation). Such would be the case of an ideal transformer, which has no leakage impedance, losses, or exciting current. However, in the actual constant potential transformer, the energy necessary to magnetize the magnetic circuit of the transformer must be supplied from the primary
lines through the leakage impedance of the primary winding. Also, the presence of load current in the transformer windings causes a voltage drop in the leakage impedance of the primary and secondary windings. Load current and exciting current produce an overall voltage drop in the transformer, which results in a ratio error and a phase angle other than 180° between primary and secondary terminal voltages.

In the usual analysis of an instrument potential transformer, the saturation efferts may be neglected and the assumption of linear, bilateral impedances is valid. Although conditions may exist in which the effects of nonlinearity are not negligible, such are abnormal conditions and are not discussed here. Usually the instrument potential transformer can be analyzed with reasonable accuracy by representing the transformer by the equivalent circuit shown in Fig. 48(a). The vector diagram resulting from sinusoidal applied voltage is shown in Fig. 48(b).

It becomes apparent from an analysis of the vector diagram that the secondary burden (magnitude and power factor) has a pronounced effect on the accuracy with which the secondary voltage represents the applied voltage. For an ideal transformer (without losses or impedance), the secondary voltage would be in-phase (or 180° out of phase) with the applied voltage; and the ratio of primary to secondary voltage would be equal to the turns ratio. However, the actual transformer has impedance and corresponding losses and internal voltage drops. The voltage drops due to exciting current I_{e} and load current I_{2} cause the secondary voltage to be less than (for the usually lagging power factor burdens) and slightly out of phase with the primary voltage. Equations have been developed for calculation of the ratio and phase angle. However, I_{e} is usually so very much smaller than I_{1}, and is very nearly constant, that it can usually be neglected without seriously affecting the accuracy. If I_{e} is neglected, the expressions for the true ratio and phase angle are both sufficiently linear functions of load current at a given voltage and burden power factor.

Fig. 48-(a) An equivalent circuit of an instrument potential transformer, (b) Vector diagram of (a).

Errors in Potential Transformers ${ }^{39,40}$-The ratio correction factor (RCF) of a potential transformer is that factor by which the marked ratio (ratio as indicated on the nameplate) must be multiplied to obtain the true ratio, V_{2} / V_{2}, and is given by Equation 38.

$$
\begin{equation*}
R C F=\frac{V_{1} / V_{2}}{\text { Marked Ratio }} \tag{38}
\end{equation*}
$$

The phase angle (γ) of a potential transformer is the angle between the secondary voltage from the identified

Table 6-Classification of Instrument Transformers

Application		Classes of Instrument Transformers		Mechanical Construction*
Major Function	Method of Installation	Major Insulation	Method of Cooling	
(1) Potential	(1) Indoor	(1) Dry-Type	(1) Dry-Type Self-Cooled	(1) Wound (Wound-Primary) Type
(2) Current	(2) Outdoor	(2) Compound-Filled	(2) Oil-Immersed Self-Cooled	(2) Bar Type
	(3) Protected Outdoor	(3) Liquid Immersed		(3) Window Type (4) Bushing Type (5) Split-Core Type (6) Three-Wire Type

[^0]to the unidentified terminal and the corresponding primary voltage. The angle is considered positive when the secondary voltage leads the primary voltage, or when $-V_{2}$ leads V_{1}.
The phase-angle correction factor ($P A C F$) of a potential transformer is that factor by which the apparent power factor must be multiplied to obtain the true (system) power factor. For positive transformer phase angles, $-V_{2}$ leads V_{1}; therefore for a lagging power factor load, the true power factor angle, θ_{p}, is less than the indicated power factor angle, θ_{s}. Assuming no ratio error exists, the phase angle correction factor for a potential transformer is given by Equation 39.
\[

$$
\begin{aligned}
&(P A C F)= K_{\gamma} \\
&=\frac{\operatorname{Cos} \theta_{\mathrm{p}}}{\operatorname{Cos} \theta_{\mathrm{s}}} \\
& K_{\gamma}=\frac{\operatorname{Cos}\left(\theta_{\mathrm{a}}-\gamma\right)}{\operatorname{Cos} \theta_{\mathrm{s}}} \\
& K_{\gamma}=\frac{\operatorname{Cos} \theta_{\mathrm{p}}}{\operatorname{Cos}\left(\theta_{\mathrm{p}}+\gamma\right)}
\end{aligned}
$$
\]

where $\quad \gamma=$ transformer phase angle
$\operatorname{Cos} \theta_{\mathrm{p}}=$ true or primary system power factor
$\operatorname{Cos} \theta_{\mathrm{B}}=$ apparent system power factor as indicated on secondary side of the transformer
The ($P A C F$) can be expressed in terms of the apparent system power factor angle θ_{a} (as indicated on the secondary side of the transformer), as is given by Equation 39 (b). It can also be expressed in terms of the true system power factor angle θ_{p}, as is given by Equation 39 (c). Since the apparent system power factor is known, some individuals choose to express the ($P A C F$) in terms of θ_{g}. However, in regard to the standard accuracy classifications for metering service which are given in the standards on instrument transformers, the accuracy standards are based on the system power factor.

Since γ is usually very small of the order of minutes, K_{γ} can be given in terms of θ_{s} or θ_{p} with sufficient accuracy by Equations 40 (a) or 40 (b), respectively.

$$
\begin{align*}
& K_{\gamma} \approx 1+\gamma \frac{\tan \theta_{\mathrm{p}}}{3438} \tag{a}\\
& K_{\gamma} \approx 1+\gamma \frac{\tan \theta_{\mathrm{p}}}{3438} \tag{b}
\end{align*}
$$

where γ is expressed in minutes.
The transformer correction factor (TCF) is the factor by which the reading on a wattmeter or registration of a watthour meter must be multiplied to correct for the effects of the error in ratio and phase angle of the potential transformer. It is numerically equal to the product of ($R C F$) and K_{γ}. The ratio of the true system power to the indicated system power (as indicated by a wattmeter, including the marked turns ratio) is given approximately by Equations 41 (d) and 41 (e), respectively.

$$
\begin{align*}
& T C F=\frac{P_{\mathrm{t}}}{P_{\mathrm{m}}}=\frac{V_{1} I_{\mathrm{m}} \operatorname{Cos}\left(\theta_{\mathrm{s}}-\gamma\right)}{\left(\text { Marked Ratio) } V_{2} I_{\mathrm{m}} \operatorname{Cos} \theta_{\mathrm{s}}\right.} \tag{a}\\
& T C F=\frac{V_{1} I_{\mathrm{m}} \operatorname{Cos} \theta_{\mathrm{p}}}{(\text { Marked Ratio }) \times V_{\mathrm{z}} I_{\mathrm{m}} \operatorname{Cos}\left(\theta_{\mathrm{p}}+\gamma\right)} \tag{b}
\end{align*}
$$

$$
\begin{align*}
\text { Marked Ratio } & =\frac{V_{1}}{V_{2} \times(R C F)} \tag{c}\\
\therefore \quad T C F & =(R C F) \times K_{\gamma} \tag{41}\\
T C F & \approx R C F\left(1+\frac{\gamma \tan \theta_{\mathrm{B}}}{3438}\right) \tag{d}\\
T C F & \approx R C F\left(1+\frac{\gamma \tan \theta_{p}}{3438}\right) \tag{e}
\end{align*}
$$

In measurements of voltage only, the ratio error is the only error of importance. However, in the measurement of a quantity which is a function of the product of voltage and current (watt meters and watthour meters), the ratio error and phase angle are both involved. An RCF greater than unity indicates that the true turns ratio is greater than the marked ratio, and results in a low meter reading, based on the marked ratio. Positive phase angle results in low and high meter readings and PACF greater and less than unity for lagging and leading power factor loads, respectively.
Errors in a potential transformer depend upon the transformer burden, transformer impedance, degree of saturation of the core, and the magnetic properties of the core. Standards of accuracy classification at standard burdens have been established for rating a transformer with regard to accuracy when operated at rated voltage and frequency.

Ratings of Potential Transformers ${ }^{37}$ - The rating of a potential transformer includes: 1) rated primary voltage and ratio; 2) insulation class; 3) impulse level in terms of full-wave-test voltage; 4) standard accuracy classes at specified standard burdens, voltage, and frequency; and 5) thermal burden rating.

Standard values of (1), (2), and (3) are shown in Table 7. The rated primary voltage is the voltage used as the basis of performance specifications, which include the insulation requirements as well as its functional performance. Typical primary connections for potential transformers in Groups 1, 2, and 3 of Table 7 are shown in Fig. 49.

Standard accuracy classifications for metering service are shown in Table 8. The accuracy classification corresponds with the transformer correction factor. The standard burdens for potential transformers for accuracy rating purposes are shown in Table 9. Standard burdens are based on a secondary voltage of 120 volts for two winding transformers, and 69.3 volts for the tertiary winding of transformers having such a winding.

The standard accuracy classes for potential transformers for metering service are shown in Table 8. The standards take into account the effect of phase angle by allowing a larger phase angle if the ratio error is such that the error introduced in a product meter reading by the phase angle compensates for the ratio error. The effects of coordination of phase angle and ratio errors can be seen in the parallelograms shown in Fig. 50. The parallelograms indicate the limits of both phase angle and ratio error for the standard accuracy classes. The relationship of $T C F, R C F, \theta_{\mathrm{p}}$, and γ is given by Equation 41(e).

$$
\begin{equation*}
T C F \approx R C F\left(1+\frac{\gamma \tan \theta_{\mathrm{p}}}{3438}\right) \tag{41e}
\end{equation*}
$$

The limits of $T C F$ for various accuracy classes are given in Table 8 for ranges of indicated system power factors of from .6 to 1.0. If the limit of θ_{p} is considered, i.e., $\tan \theta_{\mathrm{p}}$ is considered às ± 1.333, the limits of γ are adequately expressed by Equation 42 . The limits of $R C F$ and phase angle apply within ± 10 per cent of rated voltage at rated frequency and from zero burden to rated burden on a 120 -volt secondary base or 69.3 -volt tertiary base.

$$
\begin{equation*}
\gamma=2600(T C F-R C F) \tag{42}
\end{equation*}
$$

where

$$
\gamma=\text { limit of phase angle, minutes. }
$$

The parallelograms of Fig. 50 are based on Equation 42, rather than the more accurate expression which is given in Equation 41 (b). The exact limits of $R C F$ and phase angle are obtained by applying the limits of system power factor to Equation 41(b). Therefore, for a system power factor of 60 per cent, Equation 41 (b) becomes

$$
\operatorname{Cos}\left(57.13^{\circ}+\gamma\right)=.6 \frac{R C F}{T C F}
$$

Service Conditions Affecting Potential Transformer Errors Burden ${ }^{38}$ - The ratio is approximately linear with burden at constant burden power factor and voltage. Characteristics at various burden power factors meet at zero burden. This factor makes it possible to determine the characteristics of any burden power factor, if the characteristics are known for one power factor. This is discussed under Potential Transformer Application Data.

At a particular burden power factor, the angle of which is equal to the through impedance angle of the transformer, the phase angle is equal to the phase angle at zero burden for the usual range of burdens. However, for the same burden power factor, the rate of change of $R C F$ with burden is maximum. At extremely low and high burden power factors, the effects of ratio and phase angle errors tend to compensate for one another in the measurement of power.

Frequency-Increasing frequency at a fixed voltage has little effect in the potential transformer characteristics, since it increases the voltage drop due to leakage flux and decreases the flux density and the required exciting current. Unless the frequency is more than doubled, the effect on performance is usually small.

Decreasing the frequency results in an increase in flux density and a corresponding increase in exciting current. A potential transformer should not be operated at less than about 95 per cent of rated frequency.

Temperature-The resistance of the windings increases proportionately to the absolutely temperature. Therefore, the resistance drop and the corresponding error increase with temperature. Typical curves are usually based on a temperature of $50^{\circ} \mathrm{C}$, which represents an average operating winding temperature. Measurements made at an ambient temperature of $20^{\circ} \mathrm{C}$ result in a resistance drop, which is low by 12 per cent.

Voltage-The accuracy of a potential transformer at other than rated voltage is influenced by the degree by which the exciting current deviates from the normal value. The accuracy characteristics are unchanged at reduced voltage. At abnormally high voltage, the excit-
ing current is excessive and may result in serious error. Normal voltage variations do not result in serious errors.

26. Current Transformers.

Analysis-The function of a current transformer is to produce a current which is applicable to standard instruments, meters, or relays, and which is a representation of the primary current in known and acceptable

Table 8-Standard Accuracy Classes for Potential Transformers for Metering Service*

Accuracy Class	Limits of Transformer Correction Factor	Limits of Power Factor (Lagging) of Metered Power Load
1.2	$1.012-0.988$	$0.6-1.0$
0.6	$1.006-0.994$	$0.6-1.0$
0.3	$1.003-0.997$	$0.6-1.0$

*ASA Standard C57.13-1954
proportionality and phase relationship. The magnitude of the primary current may be within the range of the standard instruments; however, it may be necessary to use a current transformer to insulate the primary circuit from the instrument circuit, due to the voltage of the primary circuit. Conversely, although the voltage of the supply circuit may be suitable for application to an instrument, the magnitude of the primary current may exceed the ratings of standard instruments. It is then necessary to produce a current for application to the instrument which is smaller than the current in the supply circuit by a known and acceptable proportionality and phase relationship.

An equivalent circuit and the corresponding general vector diagram of a current transformer are shown in

Fig. 50-Limits of ratio correction factors and phase-angle for standard accuracy classes for potential transformers for metering service.

Table 7-Standard Insulation Classes Marked Ratios, Primary Voltage Ratings and Dielectric Tests for Potential Transformers*

Nameplate Marking			UsualCircuitVoltage:Volts.	Permissible Transformer Connection	Standard Dielectric Tests			
	Standard Marked Ratio	Standard Primary Voltage Rating Volts			Standard Low Frequency Test: Kv Rms	Standard Impulse Tests		
Standard						Chopped Wave		$\begin{aligned} & \text { Full } \\ & \text { Wave: Kv } \end{aligned}$
$\underset{\text { Class: }}{\text { Insulation }}$						$\begin{gathered} \text { Crest } \\ \text { Voltage: } \\ \mathrm{Kv} \\ \hline \end{gathered}$	Min. Time to Flashover: \boldsymbol{u} sec	
Group 1: 1.2 to 15 kv , Full Insulation, Y Voltage Limit Equals $\sqrt{3}$ Times \triangle Voliage Limit								
1.2	1:1	120/208Y	120	Δ or Y	10	36	1.0	30
			208	Y only				
	2:1	240/416Y	240	Δ or Y	10	36	1.0	30
			416	Y only				
	4:1	480/832Y	480	Δ or Y	10	36	1.0	30
			832	Y only				
	5:1	600/1040Y	600	Δ or Y	10	36	1.0	30
			1040	Y only				
5.0	$20: 1$	2400/4160Y	$\begin{aligned} & 2400 \\ & 4160 \end{aligned}$	$\Delta \text { or } Y$	19	69	1.5	60
8.7	35-1	4200/7280Y			26	88	1.6	75
		,		Δ or Y	26	8	1.6	75
			7280	Y only				
	40:1	4800/8320Y	4800	Δ or Y	26	88	1.6	75
			8320	Y only				
15L	60:1	7200/12470Y	7200	Δ or Y	34	110	1.8	95
			12470	Y only				
	70:1	8400/14560Y	8400	Δ or Y	34	110	1.8	95
			14560	Y only				
15H	60:1	7200/12470Y	7200	Δ or Y	34	130	2.0	110
			12470	Y only				
	70:1	8400/14560Y	8400	Δ or Y	34	130	2.0	110
			14560					

2.5	20:1	2400/2400Y	2400	Δ or Y	15	54	1.25	45
5.0	40:1	4800/4800Y	4800	Δ or Y	19	69	1.5	60
8.7	60:1	7200/7200Y	7200	Δ or Y	26	88	1.6	75
15L	100:1	12000/12000Y	12000	Δ or Y	34	110	1.8	95
	$120: 1$	14400/14400Y	14400	Δ ог Y	34	110	1.8	95
15 H	$100: 1$	12000/12000Y	12000	Δ ог Y	34	130	2.0	110
	120:1	14400/14400Y	14400	Δ or Y	34	130	2.0	110
25	$200: 1$	24000/24000Y	24000	Δ or Y	50	175	3.0	150
34.5	300:1	$34500 / 34500 \mathrm{Y}$	34500	Δ or Y	70	230	3.0	200
46	400:1	46000/46000Y	46000	Δ or Y	95	290	3.0	250
69	600:1	69000/69000Y	69000	Δ or Y	140	400	3.0	350
92】	800:1	92000/92000Y	92000	Δ or Y	185	520	3.0	450
115	1000:1	115000/115000Y	115000	Δ or Y	230	630	3.0	550
138	1200 :1	138000/138000Y	138000	Δ or Y	275	750	3.0	650
161	1400:1	$161000 / 161000 \mathrm{Y}$	161000	Δ or Y	325	865	3.0	750
1961	1.700:1	196000/196000Y	196000	Δ or Y	395	1035	3.0	900
230	2000:1	230000/230000Y	230000	Δ or Y	460	1210	3.0	1050
2871	2500:1	287000/287000Y	287000	Δ or Y	575	1500	3.0	1300
345	3000:1	$345000 / 345000 \mathrm{Y}$	345000	Δ or Y	690	1785	3.0	1550

[^1]*ASA Standard C57.13-1954. $\quad \dagger$ For insulation class of neutral see per 13-11.541 ASA Standard C57.13-1954.

Nots to Grour 3: The double ratio for the transformers in Group 3 is obtained by a secondary winding and a tertiary winding, to provide the same nominal voltage in the secondary from line to neutral as from line to line.

Fig. 49-Typical potential transformer primary connections for transformers in Groups 1, 2, and 3 of Table 7.

Fig. 51. Although the vector diagram in Fig. 48 for a constant potential transformer may be applicable to an analysis of a current transformer, Fig. 51 is preferable for this purpose, due to the fundamental differences in the transformers. In a potential transformer, the applied voltage, flux density, and exciting current are approximately constant, and the transformer current is determined by the leakage impedance of the transformer. In

Table 9-Standard Burdens for Potential Transformers*

Designation of Burden	Secondary Volt- Amperes	Burden Power Factor
W	12.5	0.10
X	25	0.70
Y	75	0.85
Z	200	0.85
ZZ	400	0.85

Fig. 51-(a) Circuit of an Instrument Current Transformer, (b) An Equivalent circuit of an instrument current transformer, (c) Vector diagram of (a) and (b).
a current transformer, the primary current is determined by the load being metered and is not influenced by the transformer or its burden; the flux density and exciting current are variable and are determined by the secondary circuit impedance and primary current. The vector diagram is restricted to fundamental frequency components and does include any harmonics. This factor should be recognized in analyzing the operation of the current transformer in the regions of non-linearity.

Due to the phase relationships which exist between other quantities and the induced voltage, E_{2}, it is convenient to take E_{2} as the reference vector. The mutual flux is in leading quadrature and proportional to E_{2}. The exciting current, I_{e}, is made up of the power component, I_{h+e}, in leading quadrature with ϕ, and the magnetizing component, I_{m}, in phase with ϕ. The demagnetizing effect of the secondary current, I_{2}, must be balanced out by $\frac{N_{2} I_{2}}{\mathrm{~N}_{1}}=I_{1}^{\prime}$, the transformer load component of primary current, I_{1}. The primary current is determined by the primary load being metered and is independent of the transformer in its burden. However, the primary current is the sum of I_{e} and I_{1}^{\prime}. The flux is variable and is determined by the induced voltage necessary to circulate I_{2} through the total secondary impedance, $Z_{\mathrm{b}}+Z_{2}$. Since ϕ is variable and the manners in which I_{h+e} and I_{m} vary with ϕ are different, the required E_{2} and ϕ have direct bearings on the magnitude and phase angle of I_{0}. The magnitude and phase angle of I_{2} and I_{0} have direct influences on the relative magnitudes and phase angle of I_{1} and I_{1}^{\prime}. This is the only characteristic which is of direct importance. The angle, β, by which I_{1}^{\prime} leads I_{1} is the phase angle of the transformer for that particular burden and saturation. The ratio, I_{1} / I_{2}, is the ratio of the transformer for a particular burden and saturation. If it were not for the exciting current, the total primary ampere-turns would exactly balance out the secondary ampere-turns. No phase displacement between primary and secondary currents would exist and the ratio of I_{1} / I_{2} would be equal to exactly the turns ratio.
For a qualitative analysis of a current transformer, it is necessary to consider the variations in magnitude of $I_{\mathrm{b}+\mathrm{e}}$ and I_{m} with ϕ, and the relation of both components to I_{2} in magnitude and phase. In order to minimize I_{e}, the current transformer is designed to be operated at a low flux density of the order of one kilogouss. In this region, the permeability is much lower than the maximum effective permeability. The ratio of I_{m} to ϕ, E_{2}, or I_{2} for a given burden decreases for increases in ϕ, E_{2}, or I_{2}. In the same region, $I_{\mathrm{h}+\mathrm{e}}$ is approximately proportional to ϕ, E_{2}, or I_{2} for a fixed burden. For a fixed burden, $I_{\mathrm{h}+\mathrm{e}}$ is proportional to I_{2}, and I_{m} increases at a lesser rate than I_{2}. Therefore, as I_{2} increases, I_{0} increases at a lesser rate and leads ϕ by a greater angle.
The magnitude and power factor of the transformer burden have pronounced effects on the ratio and phase angle of a current transformer. For high power factor burdens, the principal influence on the ratio error is $I_{\mathrm{b}+\mathrm{e}}$, but the principal influence on phase angle is I_{m}.

An increase in line current has less effect on the ratio error than it has on the phase angle. However, the phase angle decreases for increases in line current. For low power factor burdens, the principal influence on the per cent ratio error is I_{m}, but the principal influence on phase angle is $I_{\mathrm{h}+\mathrm{e}}$. Since I_{m} does not increase as rapidly as I_{1} or I_{2}, the decrease in per cent ratio error with line current is slightly greater for low power factor burdens than it is for high power factor burdens. Also, the change in phase angle with I_{1} or I_{2} is slightly greater for high power factor burdens. For a given magnitude of Z_{b} and I_{1} or I_{2}, the ratio error increases for decreases in burden power factor, reaches a maximum when I_{e} and I_{1} are in phase, and decreases for further reductions in burden power factor. The phase angle decreases as the burden power factor decreases, becomes zero when I_{0} and I_{1} are in-phase, and becomes negative for further decreases in burden power factor. The per cent ratio error and phase angle are greater at high burdens and low line currents, since I_{e} then represents a large portion of the line current.

For a typical condition, the burden power factor may be of the order of 35 to 65 per cent. In the absence of compensation, the ratio would be greater than $\frac{N_{2}}{N_{1}}$ throughout the range of load currents, and decreasing at a decreasing rate. Since the turns

Table 10-Standard Primary-Current Rating and Standard Ratios for Current Transformers*
(a) Single-Ratio Current Transformers

Standard- Primary Current Rating	Standard				
Ratio	Standard Primary- Curent Rating	Standard Ratio	Standard Primary- Current Rating	Standard Ratio	
10	$2: 1$	100	$20: 1$	800	$160: 1$
15	$3: 1$	150	$30: 1$	1200	$240: 1$
25	$5: 1$	200	$40: 1$	1500	$300: 1$
40	$8: 1$	300	$60: 1$	2000	$400: 1$
50	$10: 1$	400	$80: 1$	3000	$600: 1$
75	$15: 1$	600	$120: 1$	4000	$800: 1$

(b) Double-Ratio Current Transformers

Standard Primary-Current Rating	Standard Ratio	Standard Primary-Current Rating	Standard Ratio
$25 / 50$	$5 / 10: 1$	$200 / 400$	$40 / 80: 1$
$50 / 100$	$10 / 20: 1$	$400 / 800$	$80 / 160: 1$
$100 / 200$	$20 / 40: 1$	$600 / 1200$	$120 / 240: 1$

(c) Multiratio Transformers (Bushing Type)

Standard Primary-Current Rating Maximum	Standard Ratios
600	$120 / 80 / 60 / 40 / 20: 1$
1200	$240 / 160 / 120 / 80 / 40: 1$
2000	$400 / 300 / 240 / 160: 1$
3000	$600 / 400 / 300: 1$
4000	$800 / 600 / 400: 1$

*AgA Standard C57.13-1954, Instrument Tranaformers.
ratio $\frac{N_{2}}{N_{1}}$ is at the designer's selection, the designer usually compensates the transformer by choosing $\frac{N_{2}}{N_{1}}$ less than the desired ratio, such that at about 60 per cent of rated line current, the ratio error is zero.
Errors In Instrument Current Transformers-As has been discussed in the preceding section, the current transformers are subject to ratio errors and a phase angle between primary and secondary values.
The ratio correction factor ($R C F$) of a current transformer is that factor by which the marked ratio (ratio indicated on the nameplate) must be multiplied to obtain the true ratio I_{1} / I_{2}. The RCF of a current transformer is given by Equation 43.

$$
\begin{equation*}
R C F=\frac{I_{1} / I_{2}}{\text { Marked Ratio }} \tag{43}
\end{equation*}
$$

The phase angle (β) of a current transformer is the angle between the current leaving the identified secondary terminal and the current entering the identified primary terminal. The phase angle (β) is considered positive if the secondary current leaving the marked terminal leads the primary current entering the marked terminal.

The phase angle correction factor ($P A C F$) of a current transformer, like the $P A C F$ of a potential transformer, is that factor by which the indicated system power factor on the secondary side of a current transformer must be multiplied to obtain the true system power factor of the load being measured. The PACF of a current transformer is given by

$$
\begin{align*}
P A C F & =K_{\beta}=\frac{\cos \theta_{\mathrm{p}}}{\cos \theta_{\mathrm{s}}} \tag{a}\\
K_{\beta} & =\frac{\cos \left(\theta_{\mathrm{a}}+\beta\right)}{\cos \theta_{\mathrm{a}}} \tag{b}\\
K_{\beta} & =\frac{\cos \theta_{\mathrm{p}}}{\cos \left(\theta_{\mathrm{p}}-\beta\right)} \tag{c}
\end{align*}
$$

where
$\theta_{\mathrm{p}}=$ true system power factor angle
$\theta_{\mathrm{g}}=$ apparent system lagging power factor angle
$\beta=$ current transformer phase angle, minutes
By following a development similar to that used in the analysis of potential transformers, an approximate expression for the PACF is reached. The approximate expression for $P A C F$ is given by Equation 45

$$
\begin{align*}
P A C F= & K_{\beta}
\end{aligned} \begin{aligned}
& \left(1-\frac{\beta \tan \theta_{\beta}}{3438}\right) \tag{a}\\
K_{\beta} & \approx\left(1-\frac{\beta \tan \theta_{\mathrm{p}}}{3438}\right) \tag{b}
\end{align*}
$$

Like the transformer correction factor for a potential transformer, the transformer correction factor for a current transformer is the product of ($P A C F$) and ($R C F$) and is given by Equation 46

$$
\begin{gather*}
T C F=(R C F)(P A C F)=(R C F) K \beta \tag{a}\\
T C F \approx(R C F)\left[1-\frac{\beta \tan \theta_{p}}{3438}\right] \tag{b}
\end{gather*}
$$

Table 11-Standard Burdens for Standard 5-Ampere Secondary-Current Transformers*

Designation of Burden	Standard Burden Characteristics		Standard Secondary-Burden Impedance Ohms and Power Factor and Standard Secondary Volt-Ampere Burdens					
	Resist-	Inductance	For 60-Cycle and 5-Ampere Secondary Current			For 25-Cycle and 5-Ampere Secondary Current		
	Ohms	henrys	Impedance Ohms	Volt Amperes	Power Factor	Impedance Ohms	VoltAmperes	Power Factor
B-0.1	0.09	0.116	0.1	2.5	0.9	0.0918	2.3	0.98
B-0.2	0.18	0.232	0.2	5.0	0.9	0.1836	4.6	0.98
B-0.5	0.45	0.580	0.5	12.5	0.9	0,4590	11.5	0.98
B-1	0.5	2.3	1.0	25	0.5	0.617	15.4	0.81
B-2	1.0	4.6	2.0	50	0.5	1.234	30.8	0.81
B-4	2.0	9.2	4.0	100	0.5	2.468	61.6	0.81
B-8	4.0	18.4	8.0	200	0.5	4.936	123.2	0.81

*ASA Standard C57.13--1954, Instrument Transformers.

In general, the accuracy of a current transformer depends upon the transformer burden, transformer secondary winding impedance, degree of saturation of the core, and the magnetic properties of the core. Standards of accuracy classification of standard burdens have been established for rating a current transformer with regard to accuracy when operated at rated current and frequency. Due to the differences in accuracy requirements for metering and relaying, current transformer accuracy standards have been established for metering and relaying applications.
Ratings of Current Transformers-The definition of an instrument current transformer in terms of its rating includes: 1) primary and secondary currents; 2) ambients; 3) continuous thermal-current rating factor; 4) insulation class; 5) impulse level in terms of full-wave test voltage; 6) frequency; 7) standard accuracy-class at specified standard burden, current, and frequency; and 8) short-time thermal and short-time mechanical current rating.
Standard primary-current rating, and standard ratios for current transformers are shown in Tables 10(a), (b), and (c). The primary current rating of current trans-
formers should be the lowest standard primary current rating which is equal to or greater than the full load current of the circuit or apparatus to which it is applied.

Standard burdens for 5 -ampere secondary, 60 and 25 cycles standard current transformers are expressed in resistance, inductance, impedance, volt-amperes, and power factor. Expressing the burden in terms of impedance rather than in volt-amperes is preferable. The volt-ampere burden is that burden imposed by an impedance Z at rated secondary current or is $I^{2} Z$. Standard burdens are shown in Table 11. Standard burdens for metering service are B-0.1, B-0.2 and B-0.5, which are impedances of 90 per cent power factor at 60 cycles of $0.1,0.2$, and 0.5 ohms, respectively. Standard burdens for relaying service are B-1, B-2, B-4, and B-8 which are impedances at 50 per cent power factor at 60 cycles of $1,2,4$, and 8 ohms, respectively. Standard burdens at all frequencies have the same value of resistance and inductance as shown in Table 11.

Both ratio errors and phase angles may be of importance for metering service. However, such a high degree of accuracy is not required or practicable for relaying

Table 12 -Standard Accuracy Classes and Corresponding Limits of Transformer Correction Factors for Current Transformers for Metering Service*

$\begin{gathered} \text { Accuracy } \\ \text { Class } \end{gathered}$	Limits of Transformer Correction Factor				Limits of Power Factor (Lagging) of Metered Power Load
	100-Percent Rated Current		10-Percent Rated Current		
	Minimum	Maximum	Minimum	Maximum	
1.2	0.988	1.012	0.976	1.024	0.6-1.0
0.6	0.994	1.006	0.988	1.012	0.6-1.0
0.3	0.997	1.003	0.994	1.006	0.6-1.0
0.5	$0.995 \dagger$	$1.005 \dagger$	0.995	1.005	0.6-1.0

[^2]service; therefore, the ratio error, usually being the error of particular interest, is the prime consideration in accuracy classifications for relaying service.
Standard accuracy classes for current transformers and corresponding limits of transformer correction factor (TCF) for metering service are shown in Table 12. The true system power factor θ_{p} is assumed to range from .6 lagging to unity. The standards take into account the effect of phase angle by allowing a larger phase angle when the ratio in error is such that a larger phase angle error may be tolerated to yield the same transformer correction factor. The relationship between

figure 3: Accuracy clama 0.3

figure 4: Accuracy clase 0.6
the limits of ratio correction factor and phase angles for limiting values of transformer correction factors given in Table 12 are shown in Fig. 52. The TCF is given by Equation 46.
\[

$$
\begin{align*}
& T C F=(R C F)(P A C F)=(R C F) K_{\beta} \tag{a}\\
& T C F \approx R C F\left(1-\frac{\beta \tan \theta_{p}}{3438}\right) \tag{b}
\end{align*}
$$
\]

where

$$
\beta=\text { phase angle in minutes }
$$

The accuracy standards apply for all currents from 10 per cent to 100 per cent rated. Therefore, the RCF and β shall be within the outer and inner parallelograms at 100 and 10 per cent rated current, respectively. Since $R C F$ is approximately unity, for any known $R C F$, the positive and negative limiting values of β in minutes can be adequately expressed by Equation 47.

$$
\begin{equation*}
\beta=2600(R C F-T C F) \tag{47}
\end{equation*}
$$

The parallelograms are based on this expression rather than the more accurate expression of Equation 44(c.) The limits of $R C F$ and β are obtained by applying the limits of system power factor to Equation 44(c.) Therefore, application of a system power factor of 60 per cent in Equation 44 (c) results in Equation 48.

$$
\begin{equation*}
\operatorname{Cos}\left(53.13^{\circ}-\beta\right)=.6 \frac{R C F}{T C F} \tag{48}
\end{equation*}
$$

27. Final Instrument Transformer Correction Factor

In metering applications involving both potential and current transformers, the apparent power or energy as indicated or registered on a wattmeter or watthour meter must be multiplied by the final transformer correction factor to give the true power or energy. The

figure 5: Accuracy clasm 1.2

Fig. 52-Limits of ratio correction factor and phase-angle for standard accuracy classes for current transformers for metering service.
final transformer correction factor is the product of the potential and current transformer ratio correction factors and the combined phase angle correction factor, $K_{\text {c }}$. Correction must be made for the combined effects of the phase angle of the wattmeter potential circuit and the potential and current transformers, α, γ, and β respectively. In watthour meter applications, no meter potential circuit phase angle is involved and α is zero. The instrument transformer ratio correction factors have been discussed and require no further remarks. However, the combined phase-angle correction factor requires special consideration.

The combined phase angle correction factor is the factor by which the apparent (indicated by the meter) power factor must be multiplied to obtain the true power factor. The true or primary lagging power factor angle is greater than the apparent lagging power factor angle by $(-\alpha+\beta-\gamma)$. As with the ($P A C F$) for the individual transformers, the combined (PACF) is given by Equation 49.

In the Master Test Code for Electrical Measurements in Power Circuits and the American Standard Code for Electricity Meters, the PACF is expressed in terms of θ_{s}, the apparent power factor of the load as measured on the secondary sides of the transformers involved.

$$
\begin{align*}
P A C F & =K_{\mathrm{c}}=\frac{\cos \theta}{\cos \theta_{2}} \tag{a}\\
& =\frac{\cos \left(\theta_{2}-\alpha+\beta-\gamma\right)}{\cos \theta_{2}} \tag{b}\\
& \approx 1-\frac{(-\alpha+\beta-\gamma) \tan \theta_{\mathrm{s}}}{3438}
\end{align*}
$$

where

$$
\begin{aligned}
\alpha, \beta, \gamma= & \text { phase angle of meter potential circuit, } \\
& \text { current transformer, and potential trans- } \\
& \quad \text { ormers, respectively in minutes } \\
\theta= & \text { true system power factor } \\
\theta_{\mathrm{s}}= & \text { apparent (indicated) system power fac- } \\
& \text { tor angle }
\end{aligned}
$$

The notations θ and θ_{2} of Equation 49 correspond with θ_{p}, the true system power factor angle, and θ_{B}, the apparent or indicated system power factor angle, respectively, which have been adopted elsewhere in this chapter. The expressions given in Equations 49(a) and 49(b) are as given in the Master Test Code and the American Standard Code; however, in the American Standard Code, α, the phase angle of the meter potential circuit is not included, since that code applies to watthour meters only.
The instrument transformer final correction factor is given by

Table 13-Standard Insulation Classes and Standard Dielectric Tests for Current Transformers**

Standard Insulation Class (Name-Plate Rating)	Maximum Line-to-Line Voltage	Standard Dielectric Tests			
		Standard Low-Frequency Tests	Standard Impulse Tests		
			Chopped Wave		Full Wave
			Crest Voltage	Minimum Time to Flashover	
Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6
Kv	Kv	Kv Rms	Kv Crest	μ Second	Ky Crest
0.6	0.6	4	12	1.0	10
1.2	1.2	10	36	1.0	30
2.5	2.5	15	54	1.25	45
5.0	5.0	19	69	1.5	60
8.7	8.66	26	88	1.6	75
15 L	15	34	110	1.8	95
15 H	15	34	130	2.0	110
25	25	50	175	3.0	150
34.5	34.5	70	230	3.0	200
46	46	95	290	3.0	250
69	69	140	400	3.0	350
92*	92	185	520	3.0	450
115	115	230	630	3.0	550
138	138	275	750	3.0	650
161	161	325	865	3.0	750
196*	196	395	1035	3.0	900
230	230	460	1210	3.0	1050
287*	287	575	1500	3.0	1300
345*	345	690	1785	3.0	1550

[^3]where $\quad(T C F)_{\mathrm{f}}=(R C F)_{\mathrm{p}}(R C F)_{\mathrm{I}} K_{\mathrm{c}}$
$(R C F)_{\mathrm{D}},(R C F)_{\mathrm{I}}=$ ratio correction factors of potential and current transformers, respectively.
\[

$$
\begin{aligned}
& K_{\mathrm{c}}=\text { phase angle correction factor } \\
& K_{\mathrm{c}} \approx 1-\frac{(-\alpha+\beta-\gamma) \tan \theta_{\mathrm{B}}}{3438}
\end{aligned}
$$
\]

Since each of the correction factors are usually very near unity, the ($T C F)^{\prime}$) is given with sufficient accuracy by

$$
\begin{equation*}
(T C F)_{\mathrm{f}} \approx(R C F)_{\mathrm{p}}+(R C F)_{\mathrm{I}}+\left(K_{\mathrm{c}}\right)-2 \tag{51}
\end{equation*}
$$

28. Insulation Requirements for Instrument Transformers

Modern lines of instrument transformers are rated at definite impulse voltage levels and are given low frequency dielectric tests in line with ASA Standard C-57. However, the insulation class must be coordinated with system connections to avoid dielectric stresses that may result in reduced life expectancy, radio interference, and corona. The manner in which standard insulation class is coordinated with typical system voltages and power transformer connections should be of prime importance in the selection of instrument transformers.

Standard Insulation Classes, Standard Marked Ratios, Standard Primary-Voltage Ratings and Standard Dielectric Tests for Potential Transformers are shown in Table 7. Typical Primary Connections for Potential Transformers which correspond with the groups of Table 7 are shown in Fig. 49. Standard Insulation Classes and Standard Dielectric Tests for Current Transformers are shown in Table 13.

Transformers shown in Table 7 are segregated into three groups of potential transformers designed for specific connections. Transformers in group 1 are designed for operation line-to-line, line-to-neutral, or line-toground. Those in group 2 are designed for operation for line-to-line only. Those in group 3 are three-winding transformers, and are designed for connection between line and ground only.

Comparison of standard insulation class and circuit voltages in Table 7 and maximum line-to-line voltage in Table 13 shows that the insulation class in kv to always be greater than the circuit voltage. The circuit voltage in Table 7 is the maximum line-to-line, three-phase voltage. These tables indicate that the maximum continuous operating voltage-to-ground should not exceed the insulation class voltage.
discussed in detail with examples in reference 42.
Application of current transformers and potential transformers to some typical system voltages and connections is shown in Table 14. It is by no means complete, but it covers most major applications from 600 volts to 24,000 volts. The table is not extended beyond 24,000 volts, since the examples seem to be typical of the entire range However, lines 6, 22, and 27 are worthy of further mention, because such are special applications for potential transformers. Potential transformers in these applications are principally for ground
fault detection. In case of ground fault, the voltage across the transformer on the faulted phase collapses, and the other two transformers swing into open delta from line-to-line, and have the applied voltages increase by $\sqrt{ } 3$. The potential transformers on lines 6 and 22 are normally applied at reduced voltage, while the transformer in line 27 is a standard design operating at low enough induction to operate continuously at $\sqrt{3}$ times normal voltage.

If a transformer is operated at excessive voltage-toground, failure of the transformer may result in either of two ways: 1) by destruction of the insulation due to corona or dielectric heating; and 2) by lightning. Although the lightning arresters may adequately protect other insulation on a part of the system, they may offer inadequate protection for a transformer in a standard insulation class less than that applied on other related apparatus.

Application of current transformers in the neutral of grounded wye-connected transformers justify special consideration, because reduced insulation may be applicable in the neutral transformer. Minimum Insulation Class for current transformers in the neutral grounding connection is shown in Table 15. Full insulation is required on applications in which the standard insulation class of the line is less than 15 kv .

29. General Application Data for
 Instrument Transformers

Much of the data required for application of instrument transformers has been discussed in connection with the transformer ratings and insulation requirements. Most of the rating data is also general application data. However, the accuracy standards are for rating purposes only and may not be suitable for practical metering application. Also, other topics such as operating limitations, determination of burdens, and polarity identification are of prime importance in applications of instrument transformers.

Accuracies of Instrument Transformers in Metering Appli-cations-The standards burdens and accuracy rating standards of instrument transformers are for rating purposes only. In metering applications, the established tolerances in metering apply equally well to metering involving instrument transformers and self-contained metering. The tolerances include the instrument transformer errors. In calibration of transformer rated meter applications, the watthour meter is calibrated for application with the particular instrument transformer with which it is used. The meter is calibrated at the tests normally given self-contained meters. The final instrument transformer correction factors for the test conditions are determined first. Using the transformer correction factors as a reference, the watthour meter is calibrated so that the overall accuracy of the meter and instrument transformers is within the required tolerance.

Accuracy certificates for a particular instrument transformer at the standard burdens are available from the manufacturer. Typical characteristics are shown in Fig. 53. The variation in accuracy characteristics with burden and burden power factor can be evaluated from

Table 14 -Application of Potential and Current Transformers to Some Typical Operating Circuit Voltages

the accuracy certificates. The variation in the RCF and phase angle with burden and burden power factor may be so small as to be constant. Also, the errors might be negligible. Also, the particular burden may be sufficiently close to a standard burden that the accuracy under the particular burden may be estimated with sufficient accuracy. However, determining the accuracies of a particular burden may be necessary. Since the ratio correction factor (RCF) and phase angle, γ, of potential transformers for a specific burden are linear functions of burden, the characteristics at a particular burden can be determined from the characteristics at a standard burden. However, such is not the case with current transformers. The characteristics of a current transformer at a particular burden and current require
certain tests on the transformer. The potential transformer is considered first. Having determined the particular burden imposed on the potential transformer, the (RCF) and phase angle can be determined from Equation 50.

$$
\begin{align*}
& R_{\mathrm{x}}=R_{\mathrm{b}} \cos \left(\theta_{\mathrm{b}}-\theta_{\mathrm{x}}\right)+\frac{P_{\mathrm{b}}}{3438} \sin \left(\theta_{\mathrm{b}}-\theta_{\mathrm{x}}\right) \tag{a}\\
& P_{\mathrm{x}}=P_{\mathrm{b}} \cos \left(\theta_{\mathrm{b}}-\theta_{\mathrm{x}}\right)-3438 R_{\mathrm{b}} \sin \left(\theta_{\mathrm{b}}-\theta_{\mathrm{x}}\right) \tag{50}
\end{align*}
$$

where
$R_{x}=$ the change in ratio error from zero to 100 per cent secondary burden at the new burden power factor, per unit.
$P_{x}=$ the change in phase angle from zero to 100 per cent secondary burden at the new burden power factor, minutes.
$\theta_{\mathrm{x}}=$ lagging power factor angle of new burden. (The sign of θ_{x} is " + " for lagging power factor burdens.)
$R_{\mathrm{b}}=$ the change in ratio error from zero to 100 per cent secondary burden at the power factor for which the characteristics are given on typical curves, per unit.
$P_{\mathrm{b}}=$ the change in phase angle from zero to 100 per cent secondary burden at the power factor for which the characteristics are given on typical curves, minutes.
$\theta_{\mathrm{b}}=$ lagging power factor angle for burdens represented in typical characteristics curves. (The sign of θ_{b} is "+" for lagging power factor burdens.)
The errors present in a transformer at no load are due to the exciting current drawn. Therefore, all RCF vs. per cent secondary burden curves for all power factors pass through the same point at zero burden. Also, all phase angle vs. per cent secondary burden curves for all power factors pass through the same point at zero burden.
Since the ratio correction factor and phase angle characteristics of a current transformer are not linear, it is not practical to determine these characteristics at a particular burden from the known characteristics at a standard burden. Determining the characteristics for a current transformer requires tests on the transformer

Table 15-Minimum Insulation Class for Current Transformers in the Neutral Grounding Connection*

Winding Insulation Class at Line End	Minimum Insulation Class
	Grounded Solidly or Through Current Transformer
Col. 1	Col. 2
Kv	Kv
$\begin{gathered} 1.2 \\ 2.5 \\ 5.0 \\ 8.66 \\ 15 \end{gathered}$	$\} \begin{gathered}\text { Same as line end } \\ 8.66\end{gathered}$
25	8.66
34.5	8.66
46	15
69	15
92	15
115	15
138	15
161	15
196	15
230	15
287	15
345	15

*ASA Standard C57.13-1954, Instrument Transformers.
at the particular burden. ${ }^{43,44}$ Various methods are applicable to calibrating current transformers; however, most methods require special equipment. A simple method for determining the ratio error and phase angle of a current transformer is discussed in reference 43. This method requires determining the open-circuit voltage as a function of the components of exciting current, the transformer secondary leakage reactance and resistance, and the exact turns ratio. The characteristics derived by this method agree reasonably well for metering purposes with characteristics determined from more expensive tests.

Correction Factors - Phase-angle, $(P A C F)$, ratio ($R C F$), and transformer (TCF) are discussed at length under "Errors . . ." for both potential and current transformers. The discussions are summarized here for reference purposes, in the applications of instrument transformers.

$$
\text { Ratio Correction Factor (} R C F)
$$

$\begin{aligned} \text { for } P T^{\prime} \mathrm{s}(R C F)_{\mathrm{p}} & =\frac{V_{1} / V_{2}}{\text { Marked Ratio }} \\ \text { for } C T^{\prime \prime} \mathrm{s}(R C F)_{\mathrm{I}} & =\frac{I_{1} / I_{0}}{\text { Marked Ratio }}\end{aligned}$
Phase-Angle Correction Factor, ($P A C F$)

$$
\begin{align*}
\text { for } P T^{\prime \prime}(P A C F)_{\mathrm{p}}= & K_{\gamma} \approx\left(1+\frac{\gamma \tan \theta_{\mathrm{s}}}{3438}\right) \tag{40a}\\
& K_{\gamma} \approx\left(1+\frac{\gamma \tan \theta_{\mathrm{p}}}{3438}\right) \tag{40b}\\
\text { for CT's }(P A C F)_{\mathrm{I}}= & K_{\beta} \approx\left(1-\frac{\beta \tan \theta_{\mathrm{o}}}{3438}\right) \tag{45a}\\
& K_{\beta} \approx\left(1-\frac{\beta \tan \theta_{\mathrm{p}}}{3438}\right) \tag{45b}
\end{align*}
$$

for both $P T$'s, CT's and instrument combined

$$
\begin{equation*}
P A C F=K_{\mathrm{c}} \approx 1-\frac{(-\alpha+\beta-\gamma)}{3438} \tan \theta_{\mathrm{s}} \tag{49}
\end{equation*}
$$

where $\alpha=$ phase angle of instrument potential circuit Transformer Correction Factors (TCF)

$$
\begin{align*}
\text { for } P T{ }^{\prime} \mathrm{s} \quad(T C F)_{\mathrm{p}} & =(R C F)_{\mathrm{p}} K_{\gamma} \\
& \approx(R C F)_{\mathrm{p}}\left(1+\frac{\gamma \tan \theta_{\mathrm{s}}}{3438}\right) \tag{41d}\\
& \approx(R C F)_{\mathrm{p}}\left(1+\frac{\gamma \tan \theta_{\mathrm{p}}}{3438}\right) \tag{41e}\\
\text { for } C T \prime \mathrm{~s} \quad(T C F)_{\mathrm{I}} & =(R C F)_{\mathrm{I}} K_{\beta} \\
& \approx(R C F)_{\mathrm{I}}\left(1-\frac{\beta \tan \theta_{\mathrm{s}}}{3438}\right) \tag{45a}\\
& \approx(R C F)_{\mathrm{I}}\left(1-\frac{\beta \tan \theta_{\mathrm{p}}}{3438}\right) \tag{45b}
\end{align*}
$$

Final (TCF $)_{\mathrm{f}}$, combined $P T$'s and $C T$'s

$$
\begin{array}{ll}
& (T C F)_{\mathrm{f}}=(R C F)_{\mathrm{p}}(R C F)_{\mathrm{I}} K_{\mathrm{o}} \\
\text { or } \quad & (T C F)_{\mathrm{f}} \approx(R C F)_{\mathrm{p}}+(R C F)_{\mathrm{I}}+K_{\mathrm{c}}-2 \tag{51}
\end{array}
$$

where $\gamma, \beta=$ phase-angle, minutes of $P T$ and $C T$, respectively
$\theta_{\mathrm{s}}=$ apparent (indicated) lagging load power-factor angle.

Instrument transformer phase-angle correction factors are given in Table 16 for various phase-angles ($-\alpha+\beta-\gamma$) and apparent load power-factors, where α is the phase angle of the instrument potential circuit. For only PT's or CT's, consider only the phase angle of the transformer involved; consider the phase angle of the transformer or instrument not involved as zero. For watthour meters, α is zero. Transformer correction factors for PT's and CT's are shown in Tables 17(a) and 17 (b), respectively. ${ }^{40}$ Table 17 (b) is also applicable to the final $(T C F)_{\mathrm{f}}$ if the $R C F$ is equal to either
$\left[(R C F)_{\mathrm{p}} \times(R C F)_{\mathrm{I}}\right]$ or $\left[(R C F)_{\mathrm{p}}+(R C F)_{\mathrm{I}}-1\right]$ and β which is shown is considered as $(\beta-\gamma)$.

Determining PT Burden The burden on a potential transformer is the total load on the transformer. If the effects of the secondary leads are neglected, the burden on potential transformer is composed of instruments or relays in parallel. Additional burdens are added in parallel. The resulting total burden is most easily calculated by determining the total watts burden and total reactive volt-amperes burden separately, and then determining the resultant burden in volt-amperes by Equation 52.
total burden (volt-amperes)
$=\sqrt{(\text { total watts })^{2}+(\text { total reactive volt-amperes })^{2}}$
power factor of burden

$$
\begin{equation*}
=\frac{\text { total watts }}{\text { total burden (volt-amperes) }} \tag{52}
\end{equation*}
$$

By referring to typical ratio and phase angle curves supplied by the manufacturer for the transformer in question, the performance at the above burden may be determined.

However, if the instruments are located a considerable distance from the transformer, the secondary leads may have sufficient impedance to introduce an additional voltage drop and phase shift in the voltage. If the impedance of the secondary leads are in series with the circuit which is composed of instruments in parallel and the resistance of the secondary leads is greater than .0005 times the resistance of the watt element of the total instrument burden ($R=\frac{E^{2}}{\text { watts }}$), the additional per cent ratio and phase angle applicable to a typical curve should be calculated from application of Equation 53.
Increase in per cent ratio $=\frac{I_{\mathrm{s}}\left(R_{\mathrm{L}} \cos \theta+X_{\mathrm{L}} \sin \theta\right)}{E_{\mathrm{s}}} \times 100$
Increase in phase angle $=\frac{I_{B}\left(R_{\mathrm{L}} \sin \theta-X_{\mathrm{L}} \cos \theta\right)}{E_{\mathrm{B}}}$ $\times 3438$ minutes
Where
$\theta=$ total burden power factor angle
$R_{\mathrm{L}}=$ resistance of secondary leads, ohms
$X_{\mathrm{L}}=$ reactance of secondary lead, ohms
$I_{s}=$ potential transformer secondary current
$E_{\mathrm{s}}=$ potential transformer secondary voltage
The increase in per cent ratio and phase angle as determined from Equation 53 is added algebraically to

Fig. 53-Typical accuracy characteristics from accuracy certificates of instrument transformers (a) Potential transformer, (b) Current transformer.
the respective potential transformer calibration curves to get the actual per cent ratio of primary to burden voltage and the actual phase difference between primary and burden voltages.
The single-phase burdens imposed on potential transformers by typical instruments and meters are shown in Table 18. The devices included in Table 18 are supplied by Westinghouse, but the values are representative for each particular type of device. Where a high degree of accuracy is required, the actual burden imposed by the particular device must be considered.
Polyphase connections are so varied that it is difficult to give specific instructions for calculation of polyphase burdens. Generally, the procedure will be to calculate the phase position and magnitude of the current in each transformer and determine what equivalent singlephase burden would require the same current. The performance is then determined for the equivalent singlephase burden which would require the same current.

Table $16(a)$--Instrument Transformer
CORRECTION FACTORS $\left(\frac{\cos \theta}{\cos \theta_{2}}\right)$ FOR PHASE ANGLES
For Lagging Current When ($-a+\beta-\gamma$) Is Positive
For Leading Current When $(-a+\beta-\gamma)$ Is Negative

Phase-	Apparent Power Factor ($\left.\operatorname{Cos} \theta_{2}\right) \dagger$													
$(-a+\beta-\gamma)$	0.10	0.15	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	0.95	0.99	1.00
$5{ }^{\prime}$	0.9855	0.9904	0.9929	0.9944	0.9954	0.9967	0.9975	0.9981	0.9985	0.9989	0.9993	0.9995	0.9998	1.0000
10^{\prime}	0.9711	0.9808	0.9857	0.9887	0.9907	0.9933	0.9950	0.9961	0.9970	0.9978	0.9986	0.9990	0.9996	1.0000
15^{\prime}	0.9566	0.9712	0.9786	0.9831	0.9861	0.9900	0.9924	0.9942	0.9955	0.9967	0.9979	0.9986	0.9994	1.0000
20^{\prime}	0.9421	0.9616	0.9715	0.9775	0.9815	0.9867	0.9899	0.9922	0.9940	0.9956	0.9972	0.9981	0.9992	1.0000
25^{\prime}	0.9276	0.9520	0.9643	0.9718	0.9768	0.9833	0.9874	0.9903	0.9926	0.9945	0.9965	0.9976	0.9989	1.0000
30^{\prime}	0.9131	0.9424	0.9572	0.9662	0.9722	0.9800	0.9848	0.9883	0.9911	0.9934	0.9957	0.9971	0.9987	1.0000
40^{\prime}	0.8842	0.9232	0.9429	0.9549	0.9629	0.9733	0.9798	0.9844	0.9881	0.9912	0.9943	0.9961	0.9983	0.9999
50^{\prime}	0.8552	0.9040	0.9286	0.9436	0.9536	0.9666	0.9747	0.9805	0.9851	0.9890	0.9929	0.9951	0.9978	0.9999
$1^{\circ} 0^{\prime}$	0.8262	0.8848	0.9143	0.9323	0.9444	0,9599	0.9696	0.9766	0.9820	0.9868	0.9914	0.9941	0.9974	0.9998
10^{\prime}	0.7972	0.8656	0.9000	0.9209	0.9350	\|0.9531	0.9645	0.9726	0.9790	0.9845	0.9899	0.9931	0.9969	0.9998
20^{\prime}	0.7682	0.8464	0.8857	0.9096	0.9257	0.9464	0.9594	0.9687	0.9760	0.9823	0.9885	0.9921	0.9964	0.9997
30^{\prime}	0.7392	0.8271	0.8714	0.8983	0.9164	0.9397	0.9543	0.9648	0.9730	0.9800	0.9870	0.9911	0.9959	0.9997
40^{\prime}	0.7102	0.8079	0.8571	0.8869	0.9071	0.9329	0.9492	0.9608	0.9699	0.9778	0.9855	0.9900	0.9954	0.9996
50^{\prime}	0.6812	0.7886	0.8428	0.8756	0.8978	0.9262	0.9441	0.9568	0.9668	0.9755	0.9840	0.9890	0.9949	0.9995
$2^{\circ} 0^{\prime}$	0.6521	0.7694	0.8284	0.8642	0.8884	0.9194	0.9389	0.9529	0.9638	0.9732	0.9825	0.9879	0.9944	0.9994
10^{\prime}	0.6231	0.7501	0.8141	0.8529	0.8791	0.9127	0.9338	0.9489	0.9607	0.9709	0.9810	0.9869	0.9939	0.9993
20^{\prime}	0.5941	0.7308	0.7997	0.8415	0.8697	0.9059	0.9287	0.9449	0.9576	0.9686	0.9795	0.9858	0.9934	0.9992
30^{\prime}	0.5650	0.7115	0.7854	0.8301	0.8603	0.8991	0.9235	0.9409	0.9545	0.9663	0.9779	0.9847	0.9928	0.9990
40^{\prime}	0.5360	0.6923	0.7710	0.8187	0.8510	0.8923	0.9183	0.9369	0.9515	0.9640	0.9764	0.9836	0.9923	0.9989
$50{ }^{\prime}$	0.5069	0.6730	0.7566	0.8073	0.8416	0.8855	0.9132	0.9329	0.9483	0.9617	0.9748	0.9825	0.9917	0.9988
$3^{\circ} 0^{\prime}$	0.4779	0.6537	0.7422	0.7959	0.8322	0.8787	0.9080	0.9288	0.9452	0.9594	0.9733	0.9814	0.9912	0.9986
10^{\prime}	0.4488	0.6344	0.7279	0.7845	0.8228	0.8719	0.9028	0.9248	0.9421	0.9570	0.9717	0.9803	0.9906	0.9985
20^{\prime}	0.4198	0.6151	0.7135	0.7731	0.8134	0.8651	0.8976	0.9208	0.9390	0.9547	0.9701	0.9792	0.9900	0.9983
30^{\prime}	0.3907	0.5957	0.6991	0.7617	0.8040	0.8583	0.8924	0.9167	0.9359	0.9523	0.9686	0.9781	0.9894	0.9981
40^{\prime}	0.3616	0.5764	0.6847	0.7503	0.7946	0.8514	0.8872	0.9127	0.9327	0.9500	0.9670	0.9769	0.9888	0.9980
50^{\prime}	0.3326	0.5571	0.6702	0.7388	0.7852	0.8446	0.8820	0.9086	0.9296	0.9476	0.9654	0.9758	0.9882	0.9978
$4^{\circ} 0^{\prime}$	0.3035	0.5378	0.6558	0.7274	0.7758	0.8377	0.8767	0.9046	0.9264	0.9452	0.9638	0.9746	0.9876	0.9976
10^{\prime}	0.2744	0.5185	0.6414	0.7160	0.7663	0.8309	0.8715	0.9005	0.9232	0.9429	0.9622	0.9735	0.9870	0.9974
20^{\prime}	0.2453	0.4991	0.6270	0.7045	0.7569	0.8240	0.8663	0.8964	0.9201	0.9405	0.9605	0.9723	0.9864	0.9971
30^{\prime}	0.2163	0.4798	0.6125	0.6930	0.7474	0.8171	0.8610	0.8923	0.9169	0.9881	0.9589	0.9711	0.9857	0.9969
40^{\prime}	0.1872	0.4604	0.5981	0.6816	0.7380	0.8103	0.8558	0.8882	0.9137	0.9357	0.9573	0.9699	0.9851	0.9967
50^{\prime}	0.1581	0.4411	0.5837	0.6701	0.7285	0.8034	0.8505	0.8841	0.9105	0.9333	0.9556	0.9687	0.9844	0.9964
$5^{\circ} 0^{\prime}$	0.1290	0.4217	0.5692	0.6586	0.7191	0.7965	0.8452	0.8800	0.9073	0.9308	0.9540	0.9675	0.9838	0.9962
10^{\prime}	0.0999	0.4024	0.5548	0.6472	0.7096	0.7896	0.8400	0.8759	0.9041	0.9284	0.9523	0.9663	0.9831	0.9959
20^{\prime}	0.0708	0.3830	0.5403	0.6357	0.7001	0.7827	0.8347	0.8717	0.9008	0.9260	0.9507	0.9651	0.9824	0.9957

[^4]Table 16(b) Instrument Transformer
Correction Factors $\left(\frac{\cos \theta}{\cos \theta_{2}}\right)$ For Phase Angles
For Lagging Current When $(-a+\beta-\gamma)$ Is Negative
For Leading Current When ($-\alpha+\beta-\gamma$) Is Positive

$\begin{gathered} \text { Phase- } \\ \text { angle } \\ (-a+\beta-\gamma) \end{gathered}$	Apparent Power Factor ($\left.\operatorname{Cos} \theta_{2}\right) \dagger$													
	0.10	0.15	0.20	0.25	0.30	0.40	0.50	0.60	0.70	0.80	0.90	0.95	0.99	1.00
5^{\prime}	1.0145	1.0096	1.0071	1.0056	1.0046	1.0033	1.0025	1.0019	1.0015	1.0011	1.0007	1.0005	1.0002	1.0000
10^{\prime}	1.0289	1.0192	1.0142	1.0113	1.0092	1.0067	1.0050	1.0039	1.0030	1.0022	1.0014	1.0010	1.0004	1.0000
15^{\prime}	1.0434	1.0288	1.0214	1.0169	1.0139	1.0100	1.0075	1.0058	1.0044	1.0033	1.0021	1.0014	1.0006	1.0000
20^{\prime}	1.0579	1.0383	1.0285	1.0225	1.0185	1.0133	1.0101	1.0077	1.0059	1.0043	1.0028	1.0019	1.0008	1.0000
25^{\prime}	1.0723	1.0479	1.0356	1.0281	1.0231	1.0166	1.0126	1.0097	1.0074	1.0054	1.0035	1.0024	1.0010	1.0000
30^{\prime}	1.0868	1.0575	1.0427	1.0338	1.0277	1.0200	1.0151	1.0116	1.0089	1.0065	1.0042	1.0028	1.0012	1.0000
40^{\prime}	1.1157	1.0766	1.0569	1.0450	1.0369	1.0266	1.0201	1.0154	1.0118	1.0087	1.0056	1.0038	1.0016	0.9999
50^{\prime}	1.1446	1.0958	1.0711	1.0562	1.0461	1.0332	1.0251	1.0193	1.0147	1.0108	1.0069	1.0047	1.0020	0.9999
$1^{\circ} 0^{\prime}$	1.1735	1.1149	1.0553	1.0674	1.0553	1.0398	1.0301	1.0231	1.0177	1.0129	1.0083	1.0056	1.0023	0.9998
10^{\prime}	1.2024	1.1340	1.0995	1.0787	1.0645	1.0464	1.0351	1.0269	1.0206	1.0151	1.0097	1.0065	1.0027	0.9998
20^{\prime}	1.2313	1.1531	1.1137	1.0898	1.0737	1.0530	1.0400	1.0308	1.0235	1.0172	1.0110	1.0074	1.0030	0.9997
30^{\prime}	1.2601	1.1722	1.1279	1.1010	1.0829	. 0596	1.0450	1.0346	1.0264	1.0193	1.0123	1.0083	1.0034	0.9997
40^{\prime}	1.2890	1.1913	1.1421	1.1122	1.0921	1.0662	1.0500	1.0384	1.0292	1.0214	1.0137	1.0091	1.0037	0.9996
$50{ }^{\prime}$	1.3178	1.2104	1.1562	1.1234	1.1012	1.0728	1.0549	1.0421	1.0321	1.0235	1.0150	1.0100	1.0040	0.9995
$2^{\circ} 0^{\prime}$	1.3466	1.2294	1.1704	1.1346	1.1104	1.0794	1.0598	1.0459	1.0350	1.0256	1.0163	1.0109	1.0044	0.9994
10^{\prime}	1.3755	1.2485	1.1845	1.1457	1.1195	1.0859	1.0648	1.0497	1.0379	1.0276	1.0176	1.0117	1.0047	0.9993
20^{\prime}	1.4043	1.2675	1.1986	1.1569	1.1286	1.0925	1.0697	1.0535	1.0407	1.0297	1.0189	1.0126	1.0050	0.9992
30^{\prime}	1.4331	1.2896	1.2127	1.1680	1.1377	1.0990	1.0746	1.0572	1.0435	1.0318	1.0202	1.0134	1.0053	0.9990
40^{\prime}	1.4618	1.3056	1.2268	1.1791	1.1469	1.1055	1.0795	1.0610	1.0464	1.0338	1.0215	1.0142	1.0055	0.9989
$50{ }^{\prime}$	1.4906	1.3246	1.2409	1.1902	1.1560	1.1120	1.0844	1.0647	1.0490	1.0359	1.0227	1.0150	1.0058	0.9988
$3^{\circ} 0^{\prime}$	1.5194	1.3436	1.2550	1.2013	1.1650	1.1185	1.0893	1.0684	1.0520	1.0379	1.0240	1.0158	1.0061	0.9986
10^{\prime}	1.5481	1.3626	1.2691	1.2124	1.1741	1.1250	1.0942	1.0721	1.0548	1.0399	1.0252	1.0166	1.0063	0.9985
20^{\prime}	1.5768	1.3816	1.2832	1.2235	1.1832	1.1315	1.0990	1.0758	1.0576	1.0419	1.0265	1.0174	1.0066	0.9983
30^{\prime}	1.6056	1.4005	1.2972	1.2346	1.1923	1.1380	1.1039	1.0795	1.0604	1.0439	1.0277	1.0182	1.0068	0.9981
40^{\prime}	1.6343	1.4195	1.3113	1.2456	1.2013	1.1445	1.1087	1.0832	1.0632	1.0459	1.0289	1.0190	1.0071	0.9980
50 '	1.6630	1.4384	1.3253	1.2567	1.2103	1.1509	1.1136	1.0869	1.0660	1.0479	1.0301	1.0197	1.0073	0.9978
$4^{\circ} 0^{\prime}$	1.6916	1.4573	1.3393	1.2677	1.2194	1.1574	1.1184	1.0906	1.0687	1.0499	1.0313	1.0205	1.0075	0.9976
10^{\prime}	1.7203	1.4763	1.3533	1.2788	1.2284	1.1638	1.1232	1.0942	1.0715	1.0519	1.0325	1.0212	1.0077	0.9974
20^{\prime}	1.7489	1.4952	1.3673	1.2898	1.2374	1.1703	1.1280	1.0979	1.0742	1.0538	1.0337	1.0220	1.0079	0.9971
30^{\prime}	1.7776	1.5141	1.3813	1.3008	1.2464	1.1767	1.1328	1.1015	1.0770	1.0558	1.0349	1.0227	1.0081	0.9969
40^{\prime}	1.8062	1.5329	1.3953	1.3118	1.2554	1.1831	1.1376	1.1052	1.0797	1.0577	1.0361	1.0234	1.0083	0.9967
50^{\prime}	1.8348	1.5518	1.4092	1.3228	1.2644	1.1895	1.1424	1.1088	1.0824	1.0596	1.0373	1.0241	1.0085	0.9964
$5^{\circ} 0^{\prime}$	1.8634	1.5707	1.4232	1.3337	1.2733	1.1959	1.1472	1.1124	1.0851	1.0616	1.0384	1.0248	1.0086	0.9962
10^{\prime}	1.8920	1.5895	1.4371	1.3447	1.2823	1.2023	1.1519	1.1160	1.0878	1.0635	1.0396	1.0255	1.0088	0.9959
20^{\prime}	1.9205	1.6083	1.4510	1.3557	1.2912	1.2086	1.1567	1.1196	1.0905	1.0654	1.0407	1.0262	1.0089	0.9957

Interpolation for correction factors corresponding to values ($-a+\beta-\gamma$) lying between those given in the table, may be made without error. Interpolation for correction factors corresponding to values of cos θ_{2} lying between those given in the table, may be made without exceeding an error of 0.0010 in the sections of the tables lying between the heavy black lines; outside of these sections, and in all cases where the adjacent values of $\cos \theta_{2}$ are separated by the heavy black lines the maximum error in interpolation will exceed 0.0010 .

according to asa standards:

a is positive when the current in the wattmeter potential circuit leads the voltage.
β is positive when the secondary current leads the primary current.
γ is positive when the secondary voltage leads the primary voltage.
\dagger in the case of polyphase measurements, the meter or element in each phase must be corrected separately, considering θ as the angle between the voltage and corrent on the meter or element being corrected (not the angle represented by the polyphase power factor).

Table 17(a)—Instrument Potential Transformer-Transformer Correction Factors

Ratio Correction Factor (RCF)	Phase Angle $\boldsymbol{\gamma}$	Transformer Correction Factor (TCF)					Ratio Correction Factor (RCF)	Phase Angle γ	Transformer Correction Factor (TCF)				
		Power Factor of Metered Load-Lagging							Power	actor	Mete	d Load	Lagging
		0.6	0.7	0.8	0.9	1.0			0.6	0.7	0.8	0.9	1.0
0.995	-15'	0.9892	0.9905	0.9917	0.9929	0.9950	$\left\|\begin{array}{c} 1.000 \\ \text { continued } \end{array}\right\|$	+5,	1.0019	1.0015	1.0011	1.0007	1.0000
	-10'	0.9911	0.9920	0.9928	0.9936	0.9950		+10 '	1.0039	1.0030	1.0022	1.0014	1. 0000
	-5',	0.9931	0.9935	0.9939	0.9943	0.9950		+15 ${ }^{\prime}$	1.0058	1.0044	1.0033	1.0021	1.0000
	- 2',	0.9942	0.9944	0.9946	0.9947	0.9950		+20,	1.0077	1.0059	1.0043	1.0028	1.0000
	0^{\prime}	0.9950	0.9950	0.9950	0.9950	0.9950		$+30^{\prime}$	1.0116	1.0089	1.0065	1.0042	1.0000
	+ 2',	0.9958	0.9956	0.9954	0.9953	0.9950				1.008	1.006	1.0042	1.0000
	+ 5'	0.9969	0.9965	0.9961	0.9957	0.9950	1.001	-15'	0.9952	0.9965	0.9977	0.9989	1.0010
	+10'	0.9989	0.9980	0.9972	0.9964	0.9950		-10,	0.9971	0.9980	0.9988	0.9996	1.0010
	+15'	1.0008	0.9994	0.9983	0.9971	0.9950		- 5^{\prime}	9.9991	0.9995	0.9999	1.0003	1.0010
	+20'	1.0027	1.0009	0.9993	0.9978	0.9950		- ${ }^{\prime \prime}$	1.0002	1.0004	1.0006	1.0007	1.0010
	$+30^{\prime}$	1.0065	1.0039	1.0015	0.9992	0.9950		0 '	1.0010	1. 0010	1.0010	1.0010	1.0010
								+ 2',	1.0018	1.0016	1. 0014	1.0013	1.0010
0.996	-15 -10^{\prime}	0.9902 0.9921	0.9915 0.8930	0.9927 0.9938	0.9939 0.9946	0.9960 0.9960		+ 5'	1.0029	1.0025	1. 0021	1.0017	1.0010
	-10^{\prime} -5.	0.9921 0.9941	0.9930	0.9938 0.9949	0.9946	0.9960		+10',	1.0049	1. 0040	1.0032	1.0024	1.0010
	-5 -2 -2	0.9941 0.9952	0.9945 0.9954	0.9949	0.9953	0.9960		+15,	1.0068	1.0054	1.0043	1.0031	1.0010
	- ${ }^{\prime \prime}$	0.9952 0.9960	0.9954 0.9960	0.9956 0.9960	0.9957	0. 9960		+20,	1. 0087	1.0069	1.0053	1.0038	1.0010
	$\begin{array}{r}0 \prime \\ +2 \\ \hline\end{array}$	0.9960 0.9968	0.9960 0.9966	0.9960 0.9964	0.9960 0.9963	0.9960 0.9960		+30'	1.0126	1.0099	1.0075	1.0052	1.0010
	$+2^{\prime}$ +5	0.9968 0.9979	0.9966 0.9975	0.9964 0.9971	0.9963 0.9967	0.9960 0.9960							
	+10'	0.9999	0.9990	0.9982	0.9974	0.9960	1.002	-15 -10^{\prime}	0.9962 0.9981	0.9975 0.9990	0.9987 0.9998	0.9999 1.0008	1.0020 1.0020
	+15'	1.0018	1. 0004	0.9993	0.9981	0.9960		-5.	1.0001	1.0005	1.0009	1.0013	1.0020
	+20'	1.0037	1.0019	1.0003	0.9988	0.9960		- 2'	1.0012	1.0014	1.0016	1.0017	1.0020
	$+30^{\prime}$	1.0076	1.0049	1.0025	1.0002	0.9960		0^{\prime}	1.0020	1.0020	1.0020	1.0020	1. 0020
								+ 2^{\prime}	1.0028	1.0026	1.0024	1.0023	1.0020
0.997	-15'	0.9912	0.9925	0.9937	0.9949	0.9970		+ 5^{\prime}	1.0039	1.0035	1.0031	1.0027	1. 0020
	-10'	0.9931	0.9940	0.9948	0.9956	0.9970		+10'	1.0059	1.0050	1.0042	1.0034	1.0020
	- 5',	0.9951	0.9955	0.9959	0.9963	0.9970		+15'	1.0078	1.0064	1.0053	1. 0041	1.0020
	- 2^{\prime}	0.9962	0.9964	0.9966	0.9967	0.9970		+20'	1.0097	1.0079	1.0063	1.0048	1.0020
	0^{\prime}	0.9970	0.9970	0.9970	0.9970	0.9970		+30'	1.0136	1.0109	1.0085	1.0062	1.0020
	+ 2',	0.9978	0.9976	0.9974	0.9973	0.9970							1.002
	+ ${ }^{\text {\% }}$	0.9989	0.9985	0.9981	0.9977	0.9970	1.003	-15'	0.9972	0.9985	0.9997	1.0099	1.0030
	+10'	1.0009	1.0000	0.9992	0.9984	0.9970		-10'	0.9991	1.0000	1.0008	1.0016	1.0030
	+15'	1.0028	1.0014	1.0003	0.9991	0.9970		- 5^{\prime}	1.0011	1.0015	1.0019	1.0023	1.0030
	+30,	1.0047	1. 0029	1.0013	0.9998	0.9970		- 2^{\prime}	1,0022	1.0024	1.0026	1.0027	1.0030
		1.0086	1.0059	1.0035	1.0012	0.9970		0^{\prime}	1.0030	1.0030	1.0030	1.0030	1.0030
								+ 2'	1.0038	1. 0036	1.0034	1.0033	1.0030
0.098	-15',	0.9922	0.9935	0.9947	0.9959	0.9980		+ 5^{\prime}	1.0049	1.0045	1.0041	1.0037	1.0030
	-10',	0.9941	0.9950	0.9958	0.9966	0.9980		+10'	1.0069	1.0060	1.0052	1.0044	1.0030
	- $5^{\prime \prime}$	0.9961	0.9965	0.9969	0.9973	0.9980		+15'	1.0088	1.0074	1.0063	1.0051	1.0030
	- 2^{\prime}	0.9972	0.9974	0.9976	0.9977	0.9980		$+20{ }^{\prime}$	1.0107	1.0089	1.0083	1.0058	1.0030
	0'	0,9980	0.9980	0.9980	0.9980	0.9980		+30'	1.0146	1.0119	1.0095	1.0072	1.0030
	+ 2',	0.9988	0.9986	0.9984	0.9983	0.9980							
	+ 5'	0.9999	0.9995	0.9991	0.9987	0.9980	1.004	-15'	0. 9982	0. 9995	1.0007	1.0019	1.0040
	+10',	1.0019	1. 0010	1.0002	0.9994	0.9980		-10'	1.0001	1.0010	1.0018	1.0026	1.0040
	+15',	1. 0038	1.0024	1.0013	1. 0001	0.9980		- 5',	1.0021	1.0025	1.0029	1.0033	1.0040
	+20'	1.0057	1.0039	1.0023	1.0008	0.9980		- 2',	1.0032	1.0034	1.0036	1.0037	1.0040
	$+30^{\prime}$	1.0096	1.0069	1.0045	1.0022	0.9980		0 '	1.0040	1,0040	1.0040	1.0040	1.0040
								+ 2',	1. 0048	1.0046	1.0044	1.0043	1.0040
0.999	-15',	0.9932	0.9945	0.9957	0.9969	0.9990		+ 5^{\prime}	1.0059	1.0055	1.0051	1.0047	1.0040
	-10',	0.9951	0.9960	0.9968	0.9976	0.9990		+10'	1.0079	1.0070	1.0062	1.0054	1.0040
	- ${ }^{\prime}$,	0.9971	0.9975	0.9979	0.9983	0.9990		+15,	1.0098	1.0084	1.0073	1.0061	1.0040
	- 2',	0.9982	0.9984	0.9986	0. 9988	0.9990		+20'	1.0117	1.0099	1.0083	1.0068	1.0040
	0 + $+\quad 2$	0.9990	0.9990	0.9990	0.9990	0.9990		+30'	1.0156	1.0129	1.0105	1.0082	1.0040
	+2, +5,	0.9998	0.9996	0.9994	0.9993	0.9990							
	+5'	1.0009	1.0005	1.0001	0.9997	0.9990	1.005	-15'	0. 9992	1.0005	1.0017	1.0029	1.0050
	+10',	1.0029	1.0020	1.0012	1. 0004	0.9990		-10'	1. 0011	1.0020	1.0028	1.0036	1.0050
	+15'	1.0048	1.0034	1. 0023	1. 0011	0.9990		- 5'	1. 0031	1.0035	1.0039	1.0043	1.0050
	+20'	1.0067	1.0049	1.0033	1.0018	0.9990		- ${ }^{\prime}$	1. 0042	1. 0044	1.0046	1.0047	1.0050
	$+30^{\prime}$	1.0106	1.0079	1.0055	1.0032	0.9990		0 '	1.0050	1.0050	1.0050	1.0050	1.0050
								+ 2',	1. 0058	1. 0056	1.0054	1.0053	1.0050
1.000		0. 9942	0.9955	0.9967	0.9979	1.0000		+ 5 ${ }^{\prime}$	1.0069	1.0065	1.0061	1.0057	1.0050
	-10',	0.9961	0.9970	0.9978	0.9986	1.0000		+10'	1.0089	1.0080	1.0072	1.0064	1.0050
	- 5',	0.9981	0.9985	0.9989	0.9993	1.0000		+15'	1.0108	1.0094	1.0083	1.0071	1.0050
	- 2',	0.9992	0.9994	O. 9996	0. 9997	1.0000		+20'	1. 0127	1.0109	1.0093	1.0078	1.0050
	0^{\prime} $+2^{\prime}$	10000	1.0000	1.0000	1.0000	1.0000		$+30^{\prime}$	1.0167	1.0139	1.0115	1.0092	1.0050
	+ 2^{\prime}	1.0008	1.0006	1.0004	1.0003	1.0000							

[^5]Table 17(b)—Instrument Current Transformer-Transformer Correction Factors

[^6]Determining CT Burden-When two or more instruments are connected in series, the exact value of the resultant burden in the CT can be calculated from the resistance and reactance of each instrument. The total resistance is the sum of the resistances of the individual instruments. The total reactance is the sum of the reactances of the individual instruments. Usually the burdens imposed by the leads to the instruments are sufficiently large to be appreciable and should be added to the burdens imposed by the instruments. The burdens may be given in volt-amperes rather than in ohms; then the components are given in watts and reactive volt-amperes (vars). Then the total watts and total vars are the sum of the individual values. This is expressed in Equation 54.
Total burden (ohms) $=\sqrt{(\Sigma R)^{2}+\left(\Sigma X_{\mathrm{L}}\right)^{2}}$
Total burden (volt-amperes) $=\sqrt{(\Sigma \text { watts })^{2}}+\left(\overline{\text { vars })^{2}}\right.$

$$
\begin{align*}
& \text { Burden power factor }=\frac{\text { total resistance }}{\text { total ohms }} \tag{54}\\
& \text { Burden power factor }=\frac{\text { total watts }}{\text { total volt-amperes }}
\end{align*}
$$

Typical burdens imposed on current transformers by various instruments are given in Table 19.

Polarity of an Instrument Transformer-When instrument transformers are used with instruments and relays which operate only according to magnitude of voltage or current, the phase relationship is of no consequence. Reversal of connections to the meter gives the same indication on the relay or instrument.

The relative phase positions of two or more quantities applied to devices which depend on the interaction of the quantities for correct operation are of prime importance. Product meters and relays such as wattmeters, watthour meters, power relays, and directional relays are devices in which the phase relationship of the quantities involved, or the phase relationship of each with respect to a common reference, must be known. For correct operation of such devices, it is necessary to know the relative directions of currents in the primary and secondary windings. The polarity markings on the instrument transformer are the identifications used to indicate the relative instantaneous polarities of the primary and secondary currents and voltages.

On potential transformers, during most of each halfcycle in which the identified primary terminal is positive with respect to the unidentified primary terminal; the identified secondary terminal is also positive with respect to the unidentified secondary terminal. The polarity marks are so placed on current transformers that during most of each half-cycle, when the direction of the instantaneous current is into the identified primary terminal, the direction of the instantaneous secondary current is out of the corresponding identified secondary terminal. This convention is in accord with that by which standard terminal markings $\mathrm{H}_{1}, \mathrm{X}_{1}$, are correlated. ${ }^{37}$ This is illustrated in Fig. 54. Various methods of determining the polarity of instrument transformers are described in the Standards.

CURRENT TRANSFORMER

POTENTIAL TRANSFORMER

Fig. 54-Circuit diagrams showing significance of polarity identification and notation of current and potential transformers

30. Operating Limitations of Instrument Transformars

The effects of some variations in normal operating conditions on instrument transformers have been discussed in the section regarding the particular type of transformer. The operation of transformers under some rather abnormal conditions are of prime importance and are discussed here.

Neutral Inversion ${ }^{45,46,47}$ ——Potential transformers connected wye-wye with the high voltage neutral grounded on an otherwise ungrounded system are universally subject to oscillations of the neutral from the third harmonic voltage developed, and are universally subject to inversion of the neutral, under favorable conditions of line capacitance and inductance. Such reference is usually given to the condition when the neutral is displaced to points outside of the delta.

Special designs can be made which will practically preclude inversion except under most unusual conditions, but the best prevention of inversion is a ballasting load on each secondary winding. A resistance load in watts equal to the exciting volt-amperes of the transformer of normal line-to-ground voltage will practically prevent inversion.

Overvoltages-The exciting current and ratio error and phase angle of a potential transformer increase rapidly as the applied voltage exceeds 110 per cent of normal. In general, if the applied voltage exceeds 110 per cent, the errors become excessive. Instrument transformers, according to ASA Standards, shall be capable of operating continuously at 10 per cent above rated voltage.

Momentary overvoltages up to twice normal voltage can usually be absorbed by potential transformers. This usually is important only in the event of a groundfault which results in application of line-to-line voltage to a wye-connected transformer. Unless specifically designed for this contingency, potential transformers will not withstand continuous operation at $\sqrt{3}$ times normal voltage. This has been discussed previously. Under no conditions should the thermal voltampereoutput rating of the transformer be exceeded.

Operation of Current Transformer With Secondary Open-Circuited-If the secondary circuit of a current transformer is opened while current flows in the primary circuit, the demagnetizing effect of the secondary winding mmf , which is usually large, is removed. Normally, the

Table 18 -Burdens Imposed by Instruments and Meters on Potential Transformers

Kind and Type of Instrument	25 Cycles				B0 Cycles				Remarks
	Volt- Am- peres	Watts	Vars	$\left\|\begin{array}{c} \% \\ \text { Power } \\ \text { Factor } \end{array}\right\|$	$\begin{gathered} \text { Volt- } \\ \text { Am- } \\ \text { peres } \end{gathered}$	Watts	Vars	$\begin{gathered} \% \\ \text { Power } \\ \text { Factor } \end{gathered}$	
Voltmeters									
0-150 volts CA, MA, NA, VA.	0.9	0.9	0.0	100.	0.9	0.9	0.0	0.0	
$\mathbf{0 - 1 5 0}$ volts HA, KA, JY-2, LY-2, SY-2, DY-2.	3.51	3.51	0.023	99. +	3.51	. 3.51	0.055	99. +	ext. res. on KA, JY-2, DY-2
0-150 volts DY, LY, SY, JY, WY............	9.5	9.5	0.0	100.	9.5	9.5	0.1	100.	ext.res. used
0-150 volts SM, TM, GM.	11.5	10.9	3.82	94.7	10.3	9.9	1.02	96.	ext. res. used
0-150 volte PY-4. .	. 9	. 9	0.0	100.	. 9	. 9	0.0	100.	
0-150 volts PY-5...............	2.84	2.84	0.0	100.	2.84	2.84	0.0	100.	
$0-300$ volts PY-4. .	. 25	. 25	0.0	100.	. 25	. 25	0.0	100.	
0-300 volts PY-5. .	. 75	. 75	0.0	100.	. 75	. 75	0.0	100.	
0-150 volts PC. .	5.45	5.45	0.0	100.	5.45	5.45	0.0	100.	
	33.8	33.6	4.7	99.	32.5	31.4	8.5	97.	ext. res. used
90-140 volts type A recorder..................	23.4	22.7	3.9	99.	23.4	21.5	9.4	$92 .$	ext. res. used
$90-140$ volts type R recorder.	13.8	13.8	0.05	100.	13.8	13.8	0.1	$100 .$	ext. res. used
$0-150$ volts type R recorder.	11.4	11.4	0.4	100.	11.4	11.4	0.08	100.	ext. res. used
Watimeters									
single phase HY, KY......................	3.27	3.27	0.0	100.	3.27	3.27	0.0		
polyphase HY, KY	2.88	2.88	0.0	100.	2.88	2.88	0.0	$100 .$	ext. res, used on KY
single phase DY, LY, SY, WY.............	11.6	11.6	0.0	100.	11.6	11.6	0.0	100.	ext. res. used
polyphase DX, LY, SY, WY................	8.3	8.3	0.0	100.	8.3	8.3	0.0	$100 .$	ext. res. used
0-75 volts $\}$ PY-4.. .	1.58	1.58	0.0	100.	1.58	1. 58	0.0	100.	
	1.58	1.58	0.0	100.	1.58	1.58	0.0	100.	
	1.21	1.21	0.0	100.	1.21	1.21	0.0	100.	
	5.6	5.6	0.0	100.	5.6	5.6	0.0	100.	
0-150 volts $\}$ PY-5... .	2.12	2.12	0.0	100.	2.12	2.12	0.0	100.	
0-300 volts $\}^{\text {PY }}$-5	2.12	2.12	0.0	100.	2.12	2.12		100.	
$0-150$ volts PC.	5.45	5.45	0.0	100.	5.45	5.45	0.0	100.	
types SM, TM, GM	8.65	7.32	4.58	85.	10.1	9. 16	4.26	91.	ext. res. used
types M, R recorders.	10.7	10.7	0.0	100.	10.7	10.7	0.0	100.	ext. res. used
Watthour Meters									
single phase, OC, OA, CS, DA, DS.		8.7	1.4	8.6	16.	
polyphase C-2, C-3; R-2, R-3; RI-2, RI-3...			\ldots	12.7	2.3	12.4	18.	
polyphase OS-2, CA-2, CB-2..............	8.5	1.7	8.3	20.	
polyphase DSP-2, DAP-2, etc.	6.1	1.4		$23 .$	
demand attachment-additionalonanymeter	2.3	1.5	1.7	65.	
polyphase demand meters C-2, C-3, etc.....				14.6	3. 8	14.1	26.	
reactive VA type RI.					11.0	1.6	10.8	15.	
Power Factor Meters									
single phase DY, LY, SY, HY, KY.......	17.8	13.9	11.1	78.	17.8	13.9	11.1	78.	ext. reactor used
polyphase 50-100-50, DY, LY, SY, WY.....	12.2	12.2	0.0	100.	12.2	12.2	0.0	100.	ext. res. used
polyphase 50-100-50, HY, KY..............	3.7	3.7	0.0	100.	3.7	3. 7	0.0	100.	
polyphase 10-100-80, DY, LY, SY, WY.....	10.	9.8	3.7	93.7	10.5	9.8	3.7	93.7	ext. res. used
polyphase 10-100-80, HY, KY....	3.2	3.2	0.0	100.	3.2	3.2	0.0	100.	
types Sr , T T .	12.0	10.9	4.95	91.	12.0	10.9	4.95	91.	ext. res. used
reactive factor SI, TI .	12.0	10.9	4.95	91.	12.0	10.9	4.95	91.	ext. res. used
PC portable. .	8.7	6.5	5.8	75.	8.7	6.5	5.8	75.	
polyphase recorder, type R.................	10.7	10.7	0.0	100.	10.7	10.7	0.0	100.	
Frequency Meters									
				$100 .$					
resistor-reactor type $S Y, L Y, D Y, W Y \ldots .$.	16.3	13.9	8.5	85.	16.3	13.9	8.5	85.	ext. reactor used
types SD, TD, PD..............................	21.8	16.3	14.4	75.	21.8	16.3	14.4	75.	ext. reactor used
types M, R, reactor.	27.1	23.2	14.1	85.	28.4	24.0	15.2	85.	
type RF recorder. .	30.0	12.0	27.5	40.	30.0	12,0	27.5	40.	
Syachroscopes									
SI, TI bottom circuit running machine. . . .	10.9	10.0	4.25	92.0	10.9	10.0	4.25	92.0	ext. reactor used
SI, TI top circuit incoming machine.	12.2	12.2	. 25	100.	12.2	12.2	\cdots	100.	
HA bottom circuit incoming machine.	3.2	2.1	2.4	65.	3.2	2.1	2.4	65.	
HA top circuit running machine.	2.9	1.8	2.2	63.	2.9	1.8	2.2	63.	ext. reactor used

Table 19-Burdens Imposed by Instruments and Meters on Current Transformers

kind and type of instrument	25 Cycles					60 Cycles				
	$\begin{aligned} & \text { Imped- } \\ & \text { ance: } \\ & \text { Ohms } \end{aligned}$	$\begin{gathered} \text { Resist- } \\ \text { ance: } \\ \text { Ohms } \end{gathered}$	Reactance: Ohms	Volt- Am- peres	$\%$ Power Factor	$\begin{aligned} & \text { Imped- } \\ & \text { ance: } \\ & \text { Ohms } \end{aligned}$	Reslstance: Ohms	Reactance: Ohms	$\begin{aligned} & \text { Volt- } \\ & \text { Am- } \\ & \text { peres } \end{aligned}$	$\%$ Power Factor
Ammeters										
5 amp. CA, MA, NA, PY-4 portable.	. 0108	. 0108	. 00002	0.27	99.8	. 0112	. 0108	. 00212	0.28	99.1
$5 \operatorname{amp} \mathrm{HA}, \mathrm{KA}, \mathrm{SY}-2, \mathrm{LY}-2$, DY-2, JY-2, PY-5 portable. . .	. 0180	. 0172	. 00588	0.45	95.0	.0112 .0216	.0108 .0172	. 0102124	0.28 0.54	99.1 79.0
5 amp. SY, LY, DY, JY, WY..	. 1280	. 1280	. 01840	3.20	99.0	. 1320	. 1240	. 04400	3.30	94.8
5 amp. SM, TM, JM. 2520	. 2400	. 07600	6.30	95.0	. 1128	. 1112	. 03520	2.82	98.5
5 amp. PM portable. 1800	. 1600	. 08000	4.50	89.0	. 1800	. 1600	. 08000	4.50	89.0
5 amp. A recorder. 3760	. 1880	. 32400	9.40	49.7	. 3800	. 0880	.37200	9.50	23.2
5 amp. R recorder. 1512	. 1464	. 03760	3.78	96.3	. 1548	. 1320	. 08120	3.87	85.3
5 amp. U recorder. 2860	. 2180	. 18800	7.15	76.2	. 5760	. 2840	. 50400		49.3
Wattmeters										
5amp. HY, KY, DY, LY, SY, WY	. 0760	. 0760	. 00490	1.90	99.5	. 0760	. 0760	. 01160	1.90	99.0
$4 \operatorname{amp} \mathrm{HY}, \mathrm{KY}, \mathrm{DY}, \mathrm{LY}, \mathrm{SY}, \mathrm{WY}$. 1200	. 1200	. 00800	3.00	90.0	. 1200	. 1200	. 00176	3.00	99.0
$\begin{gathered} 71 / 2 \operatorname{amp} \text { HY, KY, SY, LY, DY } \\ \text { W Y. } \ldots \ldots \end{gathered}$. 0308	. 0308	. 00200	0.77	99.0	. 0312	. 0308	. 00480	0.78	99.0
5 amp. SM, TM, GM.......	. 0420	. 0400	. 01200	1.05	95.8	. 0480	. 0400	. 02760	1.20	82.5
5 amp. PY-4 portable. 0112	. 0108	. 00100	0. 28	99.0	. 0124	. 0108	. 00560	0.31	97.5
5 amp. PY-5 portable. 0324	. 0320	. 00240	0.81	99.0	. 0328	. 0320	. 00600	0.82	98.0
5 amp. PC portable.... 1004	. 0920	. 04000	2.51	92.0	. 1292	. 0920	. 09600	3.23	89.0
5 amp. R recorder. 1728	. 1648	. 05040	4.32	95.5	. 2148	. 1648	. 12480	5.37	77.6

Watthour Meters

single phase OC, CA, CS. ${ }^{\text {a }}$	\cdots 0128	. 0072	. 0106	0.32	56
single phase, DA, DS \dagger						. 0460	. 020	. 0415	1.15	43
$\text { polyphase }\left\{\begin{array}{l} \mathrm{C}-2, \mathrm{C}-3, \text { etc. } \\ \mathrm{R}-2, \text { R-3, etc. } \\ \text { RI-2, RT-3, etc. } \end{array}\right\} \ldots$			-••... 0236	. 0104	. 0212	0.59	44
same with demand attachment or demand meter reactive VA type RI...				. \cdot. 05	. 0352	. 0355	1.25	70
$\text { polyphase }\left\{\begin{array}{l} \mathrm{CS}-2, \mathrm{CS}-3, \text { etc. } \\ \mathrm{CA}-2, \mathrm{CA}-3, \text { etc. } \\ \mathrm{CB}-2, \mathrm{CB}-3, \end{array}\right\} \cdots$ 0118	. 0064	. 0097	0.29	56
RK-2, R K-3, etc. 0238	. 0104	. 0212	0.59	44
polyphase DSP-2, DAP-2, etc.						. 050	. 019	. 0468	1.25	38

Power Factor Meters

5 amp. HY, KY, DY, LY, SY, WY- 100° scale.	. 0160	. 0160	. 04800	1.90	99.5	. 0160	t. 0760	. 11660	1.90	99.0
5 amp. HA-360 ${ }^{\circ}$ scale. 1076	. 1056	. 01880	2.69	98.0	. 1152	. 1056	. 04520	2.88	92,0
5 amp. SI, TI-360 ${ }^{\circ}$ scale. 0656	. 0600	. 02600	1.64	92.0	. 0868	. 0600	. 06240	2.17	69.0
5 amp. PO portable.	. 1004	. 0920	. 04000	2.51	92.0	. 1332	. 0920	. 09600	3.33	69.0
5 amp. R recorder. 1728	. 1648	. 05040	4.32	95.5	. 2148	. 1648	. 12480	5.37	77.6
type TA industrial analyzer....	. 5040	. 5000	. 05600	12.60	99.0	. 5280	. 5240	. 06800	13.20	99.0

exciting current, when the transformer is carrying rated current and maximum rated burden, is of the order of 0.5 per cent primary current. If the secondary circuit is opened when the primary is carrying rated current, the primary current becomes the exciting current and is a value of about 200 times normal. This results in a very high core flux density and correspondingly high induced voltage in the transformer winding. The abnormally high flux density will cause excessive core loss, which if sustained for a sufficiently long period of time, may result in destructive heating in the core. It may also leave a high residual flux in the core, which can
subsequently result in a change in the ratio error and phase angle of the transformer. The voltage induced in the secondary winding under open-circuit conditions may be sufficiently high to constitute a hazard to the operator and the transformer insulation.

If the secondary circuit is accidentally opened, possible high residual flux can be removed by either of two methods: 1) short circuit the secondary through a 30 ohm resistor and gradually increase the primary alternating current to full rated value after which it is gradually reduced to zero; 2) with the primary open, gradually increase the alternating current through the sec-
ondary to rated value after which it is gradually reduced to zero.

Although current transformers are not intended to be operated with the secondary open-circulated, they are capable of operating in this manner for short times under emergency conditions, provided the open circuit (secondary induced voltage) does not exceed 3500 -volts crest. Since the induced voltage is a function of the primary current and wave shape, overvoltage protection should be considered on its own merits in the particular application. Also, since the flux is proportional to the integral with respect to time of the induced voltage, the wave form of the induced voltage has a pronounced effect on the degree of saturation in the core. The voltage of 3500 -volts crest across a closed secondary circuit may be exceeded if the rate of change of the primary current is sufficiently rapid, such as would be the case in the initial charge or discharge current of a large capacitor installation flowing through the primary winding.
Inverted Operation of Current Transformers-Although application of a current transformer as a "step-up" transformer to obtain larger currents either for metering or testing may appear reasonable, such an application can lead to serious error. Such an application may be that of using instruments of unusually high range in the measurement of very small currents. In such a case, the high-range instrument is connected in series (across) with the high-current winding and the current being measured is passed through the low-current winding: Since the impedances are reflected from the high-current (low-voltage) side to the low-current (high-voltage) side approximately as the square of the turns ratio, a very small impedance on the high-current side may represent a high impedance on the base of the low-current winding, if the turns ratio is appreciable. Such an impedance referred to the low-current winding may exceed the rated maximum burden of the transformer. Such a condition results in abnormally high transformer winding induced voltages, saturation of the core, large exciting current, and an intolerable ratio error. The highcurrent side impedance must be extremely low to avoid this condition.
Somewhat similar results may occur when attempting to invert a current transformer to obtain large alternating currents for test or other purpose. A load impedance referred to the high-current winding must be kept extremely low if currents of the order of the high-current rating are to be obtained. Any metering applied on the high-current winding contributes to the impedance. If saturation results, serious error can result from metering on the low-current side. Therefore, it is very difficult to obtain a high degree of accuracy when inverting a current transformer. The induced voltage referred to the low-current winding necessary for saturation may be of the order of 30 to 300 volts, the exact value depending upon the type of transformer involved.

31. Metering Outflts

The necessary instrument transformers for outdoor primary metering installations in standard insulation
classes from 2.5 kv through 161 kv are available as packaged units in metering outfits. The packaged units are available for single-phase, two-wire, three-phase, threewire and three-phase, four-wire applications.

The single-phase outfits consist of one current transformer and one potential transformer connected to one or two high-voltage bushings and a neutral grounding bushing or grounding terminal.

The metering outfits for use on three-phase, threewire circuits consist of two current transformers and two potential transformers connected to three highvoltage bushings. Outfits for use on three-phase, fourwire circuits consist of three current transformers and either two or three potential transformers connected to three high-voltage bushings and a neutral grounding bushing or grounding terminal.

REFERENCES

1. Development of Watthour Meters, Thomas D. Barnes, Westinghouse Engineer, Vol. 10, November 1950, pp. 226-32.
2. Progress in the Art of Metering Electric Energy, Pts. I, II, III, and IV, Electrical Engineering, Vol. 61, 1941, pp. 421-7, pp. 469-78 pp. 540-6, and pp. 581-9.
3. Lightning Protection of Domestic Watthour Meters, A. M. Opsahl, Westinghouse Engineer, Vol. II, May 1942, p. 38.
4. Electrical Measurements (book), Frank A. Laws, McGrawHill Book Company, 1938.
5. Measurement of Allernate Current Energy (book), Donald T. Canfield, McGraw-Hill Book Company, 1940.
6. Handbook for Electrical Metermen, 1923 Edition, (book), National Electric Light Association, 1923.
7. Design Considerations for the Life-Time Meter, Warren Schmidt and Ray Forrest, Westinghouse Engineer, Vol. 15, September 1955, pp. 166-9.
8. American Standard Code for Electricity Meters, ASA C12-1941, Edison Electric Institute, 1941.
9. Watt-Hour Meter Bearings, I. F. Kinnard and J. H. Goss, AIEE Transactions, Vol. 56, 1937, pp. 129-37.
10. Effects of Harmonics on Watthour Meter Accuracy, M. A. Faucett and C. A. Keener, Electrical World, October 27, 1945, pp. 82-4.
11. Watt-Hour Meter Performance with Power Rectifiers, C. T. Weller, H. E. Trekell, and F. O. Stebbins, AIEE Transactions, Vol. 59, 1940, pp. 449-56.
12. AEIC-EEI-NEMA Standards for Watthour Meters, EEI Pub. No. MSF-10, NEMA Pub. No. EI-20, February 1958.
13. Electrical Metermen's Handbook, Sixth Edition, (book), Edison Electric Institute, 1950.
14. Westinghouse Watthour and Demand Meter Handbook, Fifth Edition, Westinghouse Electric Corp., Meter Division.
15. Polyphase-Meter Applications, Paul MacGahan, The Electric Journal, Vol. 33, October 1936, pp. 453-8.
16. Applied Mathematics for Engineers and Physicists, Second Edition, (book), Louis Albert Pipes, McGraw-Hill Book Company, 1958.
17. Measurements of the Energy of Polyphase Currents, A. Blondell, Proc. Internat. Elec. Cong., Chicago, 1893, p. 12.
18. The Fundamental Accuracy of Single-Phase, Three-Wire Metering, E. C. Wentz and A. J. Petzinger, AIEE Transactions, Vol. 71, Pt. I, September 1952, pp. 295-302.
19. Reactive Metering, V. B. Shah, Electrical Review, Vol. 140, June 13, 1947; pp. 979-83.
20. Autotransformer Connections for Varhour Metering, E. J. Boland, General Electric Review, Vol. 43, July 1940, pp. 298-301.
21. Metering Reactive Loads, A. L. Carvill, Electric Light and Power, Vol. 36, August 1, 1958, pp. 55-60, 71-2.
22. American Standard Definitions of Electrical Terms, Group 30, ASA C42.30, 1957.
23. The Character of Thermal Storage Demand Meters, P. M. Lincoln, AIEE Transactions, February 1918, pp. 189-210.
24. An Improved Electrothermic Instrument, P. M. Lincoln, AIEE Transactions, Vol. 54, 1935, pp. 474-81.
25. New Thermal Volt-Ampere Demand Meter, M. E. Douglass and W. H. Morong, AIEE Transactions, Vol. 68, Pt. I, 1949, pp. 79-83.
26. A Polyphase Thermal Ampere-Demand Meter, A. J. Petzinger, AIEE Transactions, Vol. 66, 1947, pp. 167-74.
27. A Polyphase Thermal Kilovolt-Ampere Demand Meter, A. J. Petzinger, AIEE Transactions, Vol. 70, Pt. II, 1951, pp. 1774-7.
28. Recent Developments in Kilovolt-Ampere Metering, B. H. Smith and A. R. Ritter, AIEE Transactions, Vol. 43, 1924, pp. 297-301.
29. Improvement in Modern Meter-Testing Technique, Edward E. Lynch and Mark A. Princi, AIEE Transactions, Vol. 61, 1942, pp. 218-33.
30. Stroboscopic Method of Testing Watthour Meters, H. P. Sparkes, AIEE Transactions, Vol. 46, 1927, pp. 405-8.
31. Metering with Transformer Loss Compensators, G. B. Schleicher, AIEE Transactions, Vol. 66, 1947, pp. 851-61.
32. Demand Totalization Using Simplified Impulse Telemetering System, A. R. Rutter and P. MacGahan, Electrical Journal, Vol. 32, 1935, pp. 151-2.
33. A Report on Telemetering, Supervisory Control and Associated Communication Circuits, Joint Subcommittee of the AIEE, Electrical Engineering, Vol. 51, September 1932, pp. 613-20.
34. Load Totalization Pts. I, II, III, IV, E. J. Boland, General Electric Review, Vol. 41, 1938, pp. 194-9, 238-43, 282-7, and 326-9.
35. Load Survey Data Recorded on Tape, T. D. Barnes, Electrical World, Vol. 146, No. 9, August 20, 1956, pp. 125 and 128.
36. Demand Meter Produces Punched-Tape Record Fast, Electrical World, Vol. 146, No. 20, November 12, 1956, pp. 137-40.
37. Standard Requirements, Terminology and Test Code for Instrument Transformers, ASA C57.13, 1954, American Standards Association.
38. Instrument Transformers (book), B. Hague, Sir Isaac Pifman and Son, 1936.
39. Accuracy of the Formulas for the Ratio, Regulation and Angle of Transformers, P. G. Agnew and F. B. Silsbee, Scientific Papers of the Bureau of Standards, No. 211, Reprinted from Bulletin of Bureau of Standards, Vol. 10.
40. Master Test Code for Electrical Measurements in Power Circuits, AIEE Standard 552, November 1955.
41. A Study of the Current Transformer with Particular Reference to Iron Loss, P. G. Agnew, No. 164, Bulletin of the Bureau of Standards, Vol. 7, 1911.
42. Insulation Level is Criterion for Instrument Transformer Application, J. H. Chiles, Jr., Electric Light and Power, Vol. 25, March 1947, pp. 68-9, 72.
43. A Simple Method for Determination of Ratio Error and Phase Angle Error in Current Transformers, E. C. Wentz, AIEE Transactions, Vol. 60, 1941, pp. 949-54.
44. A Proposed Method of Determination of Current Transformer Errors, G. Camilli and R. L. Tenbrock, AIEE Transactions, Vol. 59, 1940, pp. 547-50.
45. Physical Nature of Neutral Instability, A. Boyajian and O. P. McCarty, ATEE Transactions, Vol. 50, 1931, pp. 317-27.
46. Experiences with Grounded-Neutral, Y-Connected Potential Transformers on Ungrounded Systems, C. T. Weller, AIEE Transactions, Vol. 50, 1931, pp. 299-316.
47. Ferroresonance of Grounded Potential Transformers on Ungrounded Power Systems, R. F. Karlicek and E. R. Taylor, Jr., AIEE Transactions, Paper No. 59-97.

CHAPTER 12 STREET LIGHTING

ROBERT A. ZIMMERMAN

The basic purpose of street lighting is to promote safety and convenience on the streets at night through adequate visibility, and to promote civic progress. Statistics show that good street-lighting installations bring about material reductions in traffic accidents, act as a deterrent to crime, and promote more business in commercial areas.

I. GENERAL

1. Hisfory ${ }^{\prime}$

Oil lamps were the first artificial sources of light used for systematic illumination of streets in the United States. No records exist as to when and where the first of these installations was made. The use of gas lamps followed the oil lamps. As early as 1816, the Gas Light Company of Baltimore was founded to manufacture gas for street-lighting purposes. The first electric streetlighting systems came into existence in the late 1870's, with the open carbon-arc lamp and the carbonizedbamboo filament lamp appearing at about the same time. The open carbon-arc lamp, which required daily trimming, was followed in 1893 by the enclosed carbonarc lamp that required only weekly trimming. The initial efficiency of the enclosed carbon-arc lamp was about four to seven lumens per watt. The flaming-arc lamps and the magnetite, or luminous-arc lamps, were a big improvement over their arc lamp predecessors. Efficiencies up to 19 lumens per watt and a lamp life of 100 hours were possible with the enclosed flaming-arc lamp, and 20 lumens per watt and a 350 -hour life were possible with the magnetite lamp.

The carbonized-bamboo filament lamp of 1879 had an efficiency of 2 lumens per watt. The carbonized-cellulose filament of 1891 produced 3 lumens per watt. In 1905, the first of the metallic-filament lamps appeared. Improvements in this lamp have led to the modern, gas-filled lamps having efficiencies up to 21 lumens per watt and a service life up to 3000 hours.

Mercury lamps were first used for street lighting in 1936. The first mercury lamps had an efficiency of about 13 lumens per watt. Modern mercury lamps provide between 50 and 60 lumens per watt and have a rated service life of 6000 to 10,000 hours.

Sodium lamps, first used in 1934, have efficiencies as high as 56 lumens per watt and a service life of approximately 4000 hours.

Fluorescent lamps, which have just recently entered the street-lighting picture, produce approximately 52 lumens per watt and have a rated service life of 7500 hours.

It has been estimated that there are approximately five million street lights in service in the United States today. Of this total number, it is estimated that approximately 90 per cent of these units are filament lamps. The great majority of the remaining 10 per cent are mercury-vapor units. It has been estimated that by 1966, when the total number of street lights in the country should reach ten million, that approximately half of the lumens provided for street lighting will be from either mercury or fluorescent lamps.

2. Illumination Levels

Definitions ${ }^{2}$-The standard unit of luminous intensity in a given direction is the International Candle. An ordinary wax candle has a luminous intensity, in a horizontal direction, of approximately one candle. The International Candle is the basic quantity in all measurements of light. The luminous intensity of a light source expressed in candles is its candlepower. Candlepower is always a property of a source of light and gives information regarding luminous flux at its origin.

The unit of luminous flux is the lumen. A lumen is defined as the light flux falling on a surface one square foot in area, with every point on the surface of the area one foot away from a uniform point source of one candle. The lumen differs from the candle in that it is a measure of light flux irrespective of direction.

Illumination refers to the density of luminous flux on a surface. The unit of illumination is the foot-candle. A foot-candle is defined as the illumination at a point on a surface that is one foot from, and perpendicular to, a uniform point source of one candle. From the definition of a lumen, it is obvious that one lumen uniformly distributed over one square foot of surface produces an illumination of one foot-candle.

Brightness is the luminous intensity in a given direction per unit of projected area. A surface, or an object, has brightness by reason of light emitted, reflected, or transmitted. Brightness is ordinarily independent of distance of observation. Brightness is expressed in two ways: in candles per unit area, or in lumens per unit area. By definition, a surface emitting or reflecting light in a given direction, at the rate of one candle per square inch of projected area, has a brightness in that direction of one candle per square inch. A surface which has a brightness equal to the uniform brightness of a perfectly diffusing surface emitting or reflecting one lumen per square foot has a brightness of one footlambert. The footlambert is also the average brightness of any surface emitting or reflecting one lumen per square foot.

The following terms are commonly used in street and
highway lighting and merit definition here to avoid confusion.
The term lamp refers to the light source employed. The efficiency of a lamp, expressed in lumens per watt, is the ratio of the total luminous flux to the total power input.

A luminaire is a complete lighting device consisting of a light source together with its direct appurtenances, such as globe, reflector, refractor, housing, and such support as is integral with the housing. The pole, post, or bracket is not considered a part of the luminaire. A lighting unit is the complete assembly of pole or post with bracket and luminaire.

The absorption factor is defined as the ratio of light flux absorbed by an object or surface to the light flux incident upon it. The reflection factor, or reflectance, is defined as the ratio of light reflected by a surface to the light incident upon it.

Application Requirements-There are a number of factors that contribute to the illumination level required in street-lighting installations. An important factor, common to all street and highway safety considerations, is the volume of vehicular and pedestrian traffic. As traffic volume increases, traffic interference and exposure to accidents also increase. Good visibility is more difficult to achieve in the confusion of moving vehicles and pedestrians, for it is against this background that the accident hazard must be discerned.

In order to make logical recommendations as to illumination levels required in street-lighting applications, it is necessary to classify streets with respect to vehicular and pedestrian traffic. Table 1^{3} and Table 2^{3} give classifications of vehicular and pedestrian traffic, respectively.

Table 1-Classification of Vehicular Traffic for Roadway Lighting Purposes

Volume of Vehicular Traffic
(Maximum Night Hour
Classification Both Directions)
Very light traffic
Under 150
Light traffic
150-500
Medium traffic 500-1200
Heavy traffic 1200-2400
Very heavy traffic . . . 2400-4000
Heaviest traffic. Over 4000

The reflection factor, or reflectance, of the street surface has a definite effect on the effectiveness of a streetlighting installation. Consequently, the reflectance of the street and roadway surfaces should be evaluated.

Table 3-Current Recommended Average Horizontal Footcandles*
(Lumens per Square Foot)

Pedestrian Traffic	Vehicular Traffic Classification (Table 1)			
	Very Light (Under150)	Light $(150-500)$	Medium $(500-1200)$	Heavy to Heaviest (1200 andup)
	0.9	1.2	1.5	1.8
Medium	0.6	0.9	1.2	1.5
Light or None	0.3	0.6	0.9	1.2

*The recommended illumination values are for roadway surfaces having reflectances of the order of three per cent. These values should be treated as minimums after proper consideration has been given to both lamp and luminaire depreciation during operation, irrespective of the method employed in maintaining the lighting system and also to provide for probable pavement reflection characteristics.

Table 3^{3}, which gives recommended illumination levels for street lighting, takes reflectance into account.

The foot-candle values given in Table 3 are current recommended minimum practice for average illumination on the traffic-used pavement between curb lines. The lowest foot-candle value at any point should not be less than one-fourth the average value given in Table 3, except in cases of very light vehicular traffic where the lowest foot-candle value at any point may be as low as one-tenth of that value.

Pavement brightness, for the achievement of satisfactory visibility by silhouette discernment, is depend-ent upon the light reflection characteristics of the pavement surface. The values in Table 3 are based on rather poor pavement reflectance in the order of three per cent. For streets and traffic conditions in which silhouette discernment is important, due allowance must be made for pavement reflectances which vary from the conditions assumed above. When reflectance is favorable (in the order of ten per cent), the illumination recommended may be reduced by 33 per cent. When reflectance is unusually high (20 per cent or more), the recommended values of Table 3 may be decreased by 50 per cent. In general, these corrections will apply more specifically to streets carrying a light traffic volume where the illumination recommended is less than 0.8 footcandle. On streets carrying a heavy traffic volume, and where 1.0 foot-candle or more is recoum mended, visibility is more apt to depend upon discern:ment by surface detail; hence, corrections for pavement reflectance becomes less important.
Intersections require higher illumination than that recommended in Table 3 for the approaching streets. The illumination at an intersection should be at least equal to the sum of the illumination values provided on the streets which form the intersection.
The color of light usually does not affect the level of illumination to be provided. Studies have shown that the visibility of objects on or near the roadway js substantially the same throughout the differences in colo: of light from sodium, mercury, fluorescent, and filament
lamps, when the comparison is on the basis of equal amount of light and similar distribution.

3. Sources of Light

The primary purpose of a light source is the production of light, and the efficiency with which a source fulfills this purpose is expressed in terms of lumens emitted per watt of power consumed. If a source could be developed that would radiate all the input energy as monochromatic yellow-green light in the region of maximum sensitivity of the eye (5550 Angstroms), it would produce approximately 650 lumens per watt. A theoretical source of white light of maximum efficiency, emitting only visible energy without infrared or ultraviolet, would produce about 200 lumens per watt. Compared with these figures, the best available lamp efficiencies of today seem disappointingly low.
Incandescent or Filament Lamps-The filament lamp produces light by virtue of heating a wire, or filament, to incandescence by passing an electric current through it. An incandescent filament must operate in either a vacuum or an atmosphere of inert gas to prevent rapid disintegration due to oxidation.

The efficiency of filament lamps, while low compared to the theoretical values given above, has been vastly improved in the last 50 years by changing from carbon to tungsten as a filament material, by changing from vacuum to gas-filled construction, and by replacing straight filament wire with coiled, and then using coiledcoil filaments. However, the filament lamp has certain characteristics which make it inherently inefficient as a source of light, and although it is probable that efficiencies will still be raised slightly by further refinements in manufacturing processes, the maximum possible values have already been approached.
The most efficient incandescent lamps available for street-lighting purposes today have efficiencies in the order of 21 lumens per watt.
Both the life of a filament lamp and its light output are determined by its filament temperature. The higher the temperature for a given lamp, the greater the efficiency and the shorter the life. Hence, light output and life are interdependent. A lamp can be designed for long life at the expense of light output, or for high light output at the expense of life. In practice, the life for which a lamp is designed is an economic balance between the two factors, determined on the basis of the purpose for which the lamp is to be used.

Published data on lamp life refer to the average life of a group of lamps under specified test conditions, and are not intended as a guarantee of the performance of any individual lamp. As shown by the mortality curve of Fig. 1, in any large group of lamps, some will fail relatively early in life, whereas others will still continue to operate long after the end of rated life.

As a general rule, lamps should be operated at rated voltage. Overvoltage operation results in higher wattage, higher efficiency, and higher light output, but also in shorter lamp life. Undervoltage operation, while increasing lamp life, causes a reduction in wattage, in efficiency, and in light output. For example, operation of

Fig. 1-Typical mortality curve for incandescent lamps.
a lamp at 95 per cent of rated voltage results in a loss of light amounting to more than 16 per cent, with a saving in wattage of only 8 per cent. Since lamp cost is almost always compared with the cost of the power to operate the lamp, the increased lamp life which accompanies reduced voltage does not begin to compensate economically for the loss in light output. Maintenance of proper voltage is therefore an important factor in obtaining good performance from lamps operated on multiple systems. Characteristic curves for filament lamps operated on multiple circuits are shown in Fig. 2.

As an incandescent lamp burns, the filament gradually evaporates, or sublimates, thus decreasing the diameter of the filament. The normal end of life is reached when the wire breaks or burns through at its thinnest spot. A reduction in light output results from the absorption of light by the sublimated tungsten which collects as a black deposit on the inner surface of the bulb. The lumen maintenance of series lamps (operated at constant current) is better than that of lamps operated on multiple circuits, because the wattage of the multiple lamps (which are held at a constant voltage) gradually decreases throughout life, whereas the wattage of a lamp held at constant current increases with life. This is because the resistance of the filament wire increases as its diameter decreases due to evaporation. At constant voltage, increased resistance results in a

Fig. 2-Characteristic curves for incandescent lamps operated on a multiple circuit.
decrease in amperes, and accordingly, in watts. At constant current, increased resistance results in increased voltage, and a corresponding increase in watts which materially offsets the reduction in light output due to blackening of the bulb. Characteristic curves for series filament lamps are given in Fig. 3.

Fig. 4 shows two standard street-lighting luminaires that are commonly used with incandescent lamps.

Fig. 3-Characteristic curves for incandescent lamps operated on a series circuit.

Fig. 4-Street-lighting luminaires designed for use with incandescent lamps, series or multiple, as well as type C-H5, F-H1, or E-H 1 mercury lamps. (a) Type AK-10 for use with 2500- to 10,000-lumen incandescent lamps. (b) Heavy-duty type AK-14 for use with 10,000- and 15,000-lumen incandescent lamps.

Mercury Lamps-Mercury lamps belong to the general classification known as electric-discharge lamps. In this type of lamp, light is produced by the passage of an electric current through a vapor or gas rather than through a tungsten wire. The application of an electric potential ionizes the gas and permits current to flow between two electrodes located at opposite ends of the lamp. The electrons, which comprise the current stream or "arc discharge", are accelerated at tremendous speeds. When they collide with the atoms of the gas, or vapor, they temporarily alter the atomic structure. Light results from the energy given off as the disturbed atoms return to their normal state.

In mercury lamps, the "gas" utilized is vaporized mercury. Since mercury is a liquid at room temperature, a small amount of more readily ionized argon gas is introduced into mercury-vapor lamps to facilitate starting. The original are is struck through the ionization of this argon gas. Once the are strikes, the heat generated vaporizes the mercury. The electrodes used in mercury lamps are either of the activated type, with barium oxide as the electron-emissive material coated on a coil of tungsten wire, or of the non-activated thorium metal type. The impact of the arc heats the emissive material which supplies electrons to maintain the arc. The electrodes also act as terminals for the arc.

Mercury lamps are constructed with two bulbs: an inner bulb, or are tube, which contains the arc, and an outer bulb which shields the are tube from changes in temperature, and in some cases acts as a filter to remove certain wavelengths of the are radiation. The outer bulb also carries the phosphor coating in fluorescent-mercury lamps. The arc tube is made of quartz in most lamps and of hard glass in a few of the older types. Quartz permits a more concentrated source of higher efficiency and also transmits the abundant ultraviolet radiation necessary for the fluorescent-mercury lamp. The outer bulb is of glass, the exact type determined by the application for which the lamp is designed, and the portion of the are spectrum which it is desired to transmit. The space between the two bulbs is generally filled with inert gas.

Fig. 5 shows a number of mercury and fluorescentmercury lamps designed for use in street-lighting luminaires.

The negative resistance characteristic of electricdischarge lamps makes it necessary to use a currentlimiting device with these lamps. The device, or ballast, must provide the proper voltage to start the lamp and then limit the current through the lamp to the proper value.

Each ballast must be designed for the specific voltage, frequency, and lamp with which it will be used. An important advantage of mercury lamps is their ability to operate well over the range of input voltages for which the ballast was designed. Operation with input voltages above or below the ballast voltage range is not recommended. If the supply voltage is unusually low, the lamp may not start, or may require a longer time to warm up. When the supply voltage is too high, excessive lamp wattage may result. Fig. 6 shows the relationship of voltage, current, power, and light output for 400 -watt E-H1 mercury lamps operated on typical ballasts.

The two-electrode type of mercury lamps requires starting voltages between 800 and 1200 volts to ionize the argon gas and permit the arc to strike. The more commonly used three-electrode type of lamp utilizes one electrode as a starting electrode. This starting electrode is placed close to the main electrode nearest the base of the lamp and makes it possible to start the lamp at a much lower voltage. The electrical field set up between these two electrodes causes an emission of electrons which develop a local glow and ionize the starting gas. The arc then starts between the two main elec-

Fig. 5-Mercury and fluorescent-mercury lamps designed for use in street-lighting luminaires.

Fig. 6-Operating characteristics of 400-watt E-H1 mercury lamps with typical ballasts.
trodes, and the mercury gradually vaporizes and carries an increasing portion of the current. During this process, the arc stream changes from the diffuse bluish glow characteristic of the argon arc to the blue-green of mercury, increasing greatly in brilliance and becoming concentrated in the center of the tube. At the instant the arc strikes, the current is high and the voltage is low. Normal operating values are reached after a warm-up period of several minutes, during which time the current drops and the voltage rises until the are attains a point of stabilization in vapor pressure.

An interruption in the power supply, or a sudden voltage dip of more than 15 to 30 per cent, may extinguish the arc. Before the lamp will re-light, it must cool sufficiently to reduce the vapor pressure to a point where the arc will restrike. During this time that the lamp is cooling, the ballast open-circuit or starting velt age is impressed on the lamp. The same condition exists when a lamp has failed or has been removed from the socket, except that a lamp replacement is necessary in
correct the condition. This is termed open-circuit operation of the ballast, and the line current drawn by the ballast is termed the open-circuit line current. This operating condition does not harm the ballast.

The lumen output of a new mercury or fluorescentmercury lamp is abnormally high. During the first 100 hours of operation, the output drops about 5 to 10 per cent. The drop during the remaining life of the lamp is gradual, as shown in Fig. 7, for the 400 -watt and 250watt lamps. Published values for initial lumens are the values obtained after 100 hours of operation. The deterioration that occurs after the 100 -hour point is chiefly due to a gradual blackening of the inside of the are tube throughout its life.
The higher initial efficiency and higher intrinsic brilliance obtained with the quartz type of Iamp is the result of the smaller size arc, which has higher loading in terms of wattage per square inch of are tube. The larger arc-chamber used in glass lamps results in a somewhat slower drop in lumen output over the life of the lamp.

With the barium-oxide type of electrode used in the glass arc-tube lamps, both life and lumen maintenance of the lamp are affected by the number of times the lamp is started. Each time the arc is struck, some of emission material is removed from the electrodes and is deposited on the inner surface of the glass arc-tube. This process results in eventual exhaustion of the emission material and blackening of the arc-tube.

The thorium electrodes used in the quartz arc-tube lamps are so little affected by lamp starting that the same average rated life and lumen maintenance apply for operating cycles of either 5 or 10 hours per start.

Fig. 8 shows two luminaires designed for use with mercury lamps.
Fluorescent-Mercury Lamps-When an electric current is passed through vaporized mercury, the familiar blue-

Fig. 7-Approximate lumen maintenance curves for several 400-watt mercury and fluorescent-mercury lamps.

Curve 1-Lifeguard lamps type E-H1-LG, P-H1-LG, P-H1/SW-LG, and P-H1/X-LG.
Curve 2-Lifeguard lamps type J-H1-LG, J-HI/SW-LG, J-H1/X-LG, K-H1-LG, and L-H1-LG.
Curve 3-Standard lamps type E-H1, E-H1-WD, P-H1, and P-HI/SW.
Curve 4-Standard lamps type J-H1, J-H1-WD, J-H1/ SW, J-H1/SW-WD, K-H1, and L-HI.

Fig. 8-Luminaires designed for use with mercury lamps. (a) Type OV-10 for 100-, 175-, and 250-watt mercury lamps. (b) Type OV- 25 with built-in ballast for use with 400-watt, E-H1.
green-white light of the mercury are is produced, together with a wealth of ultraviolet rays. The mercury arc can be controlled and made to produce a variety of bands of radiation. At low vapor pressures, the rays emitted consist almost entirely of the resonance line at 2537 Angstroms. An example of this is the bactericidal ray found in the Westinghouse STERILAMP which operates with a low vapor pressure of only a few microns. Westinghouse fluorescent lamps also operate at this low vapor pressure and use this radiation to excite the phosphor coating.

At medium vapor pressures, the radiations of longer wave lengths are strengthened, the energy emitted per inch of arc steam rises, and the increased energy in the visible lines results in high luminous efficiency. At higher vapor pressures, the color of the light becomes whiter, and the intensity of radiations emitted per inch of are length rises so that these sources become invaluable where optical light control is required, such as in searchlight or projection service.
In the fluorescent-mercury lamp the medium pressure is used. This produces high luminous efficiency plus large amounts of ultraviolet energy. The ultraviolet is utilized to cause the phosphor coating (magnesium fluorogermanate) on the inside of the outer bulb to fluoresce red. This red light, added to the natural blue-green-white of the mercury arc, produces a goldenwhite color of light. The color of this light is approximately the same as that obtained with a mixture of
equal wattages of mercury and incandescent lamps. Therefore, the use of a combination of mercury lamps and incandescent lamps to obtain white light is no longer necessary, and generally a system of fluorescentmercury lamps is preferable.

Sodium Lamps-Sodium lamps are similar to mercury lamps in general principle, except that the arc is carried through vaporized sodium and the starting gas is neon. The vapor pressure at which the sodium arc operates is low, and the arc-tube must be enclosed in a vacuum flask to maintain the proper operating temperature. The starting time to full light output is 15 to 20 minutes, but the lamp will restart immediately after interruption of power supply.

The light produced by the sodium arc is almost monochromatic, consisting merely of a double line in the yellow region of the spectrum at 5890-96 Angstroms. Because all the energy emitted is so near the maximum of the eye sensitivity curve, efficiencies as high as 55 lumens per watt are obtained. The disadvantage of the limited spectrum is that all objects appear as yellow, or shades of yellow under the sodium lamp light. In addition, the large size and low brightness of the are make accurate light control rather difficult.

The use of sodium lamps for street-lighting purposes never did gain great popularity in this country. Mercury and fluorescent lamps have practically eliminated the sodium lamp as a light source for street lighting. Sodium lamps are no longer stocked by any manufacturer and are available only on special orders of relatively large quantities.

Fluorescent Lamps-The fluorescent lamp is essentially an electric-discharge source. It consists of a tubular bulb with electrodes sealed into each end, and contains mercury vapor at low pressure with a small amount of argon for starting. The inner walls of the bulb are coated with fluorescent powders which give off light when activated by ultraviolet energy. When the proper voltage is impressed across the electrodes, a flow of electrons is driven from one electrode and attracted or pulled to the other. As the electrons move between the electrodes, they collide with the mercury atoms, causing a state of excitation which produces short-wave ultraviolet radiation (2537 Angstroms). The fluorescent powders, commonly known as phosphors, absorb this invisible energy and radiate visible light.

The type of electrode employed in most fluorescent lamps is the coated coiled-coil of tungsten wire. The coiled-tungsten-wire is coated with an emission material of barium and strontium oxide, which gives off emission because the electrons are emitted more as a result of the heat developed, than of the voltage applied. A hot spot is created on the cathode at the point where the mercury are strikes, and a continuous stream of electrons is produced. This type of operation is characteristic of what is known as the "hot-cathode" lamp. As originally developed, it required a preheating of the cathodes to produce the necessary electrons to strike the arc. If a higher open-circuit voltage is applied to the lamp, the preheating of the cathode may be shortened as in the rapid-start type of lamp. If a still higher open-
circuit voltage is applied to the lamp, the lamp can be made to start instantly without preheating.

Like all electric-discharge lamps, fluorescent lamps must have a ballast to limit the current and, in most cases, provide the necessary starting voltage. Each lamp requires a ballast specifically designed for its characteristics and for the service voltage on which it is to be operated. The chief differences among ballasts lie in the open-circuit voltages supplied to the lamp. Lamps with preheat cathodes require relatively low starting voltages, not over 200 volts. Instant-start lamps require from 450 to 750 volts, and rapid-start types require from 450 to 550 volts.
The life of a fluorescent lamp is affected by the voltage, the current, and the number of times it is started. Electron emission material is lost from the electrodes continuously during the operation of the lamp, and in larger quantities each time the lamp starts. Since the end of life is reached when the emission material is completely consumed for one of the electrodes, the greater the number of burning hours per start, the longer the life of the lamp. When the emission material is exhausted, lamps on a preheat type of circuit will blink on and off as the electrodes heat but the arc fails to strike. Lamps designed for instant or rapid starting will simply fail to operate. Blinking lamps should be removed from the circuit promptly to protect both the starter and the ballast from overheating.

The light output of a new fluorescent lamp drops off about five per cent during the first 100 hours of operation. Since the depreciation after this initial drop is much more gradual, fluorescent lamps are rated at the end of the 100 hour period. A typical lumen maintenance curve for a fluorescent lamp is shown in Fig. 9. The depreciation in light output is due chiefly to a gradual deterioration of the phosphor powders, and a blackening of the inside of the tube. The blackening of the tube is produced by the electrode material deposited on the inner surface of the tube, and is therefore more pronounced at the ends of the lamp.
The voltage at the luminaire should be kept well

Fig. 9-Typical lumen maintenance curve of Westinghouse type HO and SHO fluorescent lamps normally used for streetlighting applications.
Curve 1-Medium loading of approximatety 800 milliamperes.
Curve 2-Heavy loading of 1000 to 1500 milliamperes.
within the normal operating range for the ballast. Low voltage, as well as high voltage, reduces efficiency and shortens lamp life. This is in contrast with filament lamps, where low voltage reduces efficiency but prolongs the life of the lamp. Low voltage may also cause instability in the arc, and starting difficulty.

On voltages above the specified range, the operating current becomes excessive and may not only overheat the ballast, but may also cause premature end-blackening and early lamp failure. Voltages below the specified range may lower the preheat current to a point where the electrodes fail to emit a sufficient number of electrons to permit starting the lamp. If the lamps do start, the emission material may waste away too rapidly, with consequent shortening of lamp life.

Fig. 10 shows a four-tube fluorescent luminaire, with cover cutaway, that is used in applications where relatively high illumination levels are required. This unit is normally mounted perpendicular to the axis of the roadway. The luminaire shown in Fig. 11 is also used for high illumination levels, but this unit is mounted parallel to the axis of the roadway.

Fig. 10-Type 4FSL-72 fluorescent luminaire which uses four six-foot, 5300-lumen fluorescent lamps.

Fig. 11-Type 2HUS-72 "Mainstreeter" fluorescent Juminaire which uses two six-foot, 5300 -lumen fluorescent lamps.

II. SERIES SYSTEM

4. Description of Series System

As the name implies, all of the lamps in a series street-lighting system are connected in series in the lighting circuit. A constant current is maintained in the circuit, and consequently through all of the lamps, by means of a constant-current transformer.

Method of Supply-Two supply circuits are required for a series street-lighting system. One supply circuit is the high-voltage circuit for the constant-current transformer, and the other is the low-voltage circuit for the control circuit. The high-voltage supply is usually a single-phase tap from a primary feeder that exists in the area to be lighted. The low-voltage supply for the con-

(a)

(b)

Fig. 12-Several possible series circuit arrangements to serve a given area. (a) Minimum conductor length-most difficult to test for open-circuit condition. (b) Maximum practical conductor length-easiest to test for open-circuit condition. (c) Compromise between conductor length and ease of open-circuit testing.
trol circuit is taken from a nearby $120 / 240$-volt secondary circuit. If no secondary circuit exists close to the constant-current transformer location, a source of lowvoltage supply for the control can be established through the installation of an instrument transformer or a distribution transformer having a relatively low kva rating.

Layout-Several simplified series street-lighting circuits are shown in Fig. 12. These different circuit arrangements illustrate the compromise that is made between circuit length and ease of testing under opencircuit conditions. Fig. 12(a) shows an arrangement that provides minimum conductor length but is very difficult to test for an open-circuit condition. Fig. 12(b) shows the other extreme, where testing is greatly simplified, but conductor length is at a maximum. Fig. 12 (c) is a compromise between (a) and (b), in which the conductor length is greater than in (a), but less than in (b); and the ease of testing is better than in (a), but poorer than in (b).

The voltage drop across each lamp must be the rated voltage of the lamp in order to obtain rated lumen output. The voltage applied to the circuit must then equal the sum of the voltage drops across each of the lamps and the voltage drop in the circuit conductors. Consequently, the source voltage must be variable to permit variations in the number of lamps and in the length of the circuit. The voltage impressed upon the circuit by the constant-current transformers may vary from a few hundred volts to approximately 4500 volts, depending upon the number of lamps and the length of the circuit. However, when an open-circuit condition exists, the voltage can reach 6000 volts. The transformer automatically adjusts itself to maintain the desired current through the circuit for load conditions within its rated capacity. Changes in the impedance of the circuit due to lamp burnout, or extension of the circuit, are automatically compensated for by the constant-current transformer.

Where Applicable-The main area of application of series street-lighting systems is where illumination level requirements are relatively low and luminaires are relatively far apart. For the most part, this is brought about by the savings that can be made through the use of small conductors at the high voltage. Series systems are used almost exclusively in areas where secondary distribution circuits are not available, such as on parkways, highways, and in rural areas. Series street-lighting applications also predominate in residential areas.

The use of a series system is more attractive to operating companies if they are operating series systems and do not have to change the inventory of street-lighting equipment maintained in stock. Significant savings are available if local regulations and code do not require that insulating transformers be used with each luminaire. Another factor that indicates that series circuits probably sbould be used in expanding street lighting is that a considerable amount of constant-current transformer capacity is available. Having personnel available that are qualified to operate and maintain the highvoltage series systems is also important.

Limitations-Series street-lighting circuits are generally not used in commercial areas where secondary circuits exist at almost all points where a luminaire might be installed. This is particularly true in areas where secondary-network systems exist.

The main disadvantage of the series street-lighting circuit is that high voltages are present in the case of an open-circuit condition unless a series transformer is used. In addition to presenting a safety hazard to maintenance personnel, this results in increased investment in equipment that must withstand these high voltages.

5. Selection of Current Rating

Current Ratings Available-Series street-lighting circuits have constant-current ratings of $3.3,6.6,7.5,15$, and 20 amperes. The most commonly used of all of these constant-current ratings are the 6.6 -ampere and the 20 -ampere ratings.

The 6.6 -ampere rating is a carry-over from the days of the magnetic-are lamps. The 6.6 -ampere constantcurrent transformers used for the arc lamps were standard equipment, and filament lamps were designed for use with these transformers.

The 7.5 -ampere rating is also a carry-over from the days of the arc lamp. However, the 7.5 -ampere rating makes up only a very small percentage of all installations.

The 15 -ampere and 20 -ampere ratings came into use through several advantages that they offer over the 6.6ampere rating. First of all, in most cases the size of the circuit conductors in a series circuit is determined by the mechanical strength of the conductor. This means that the current-carrying capacity of the conductor used for a 6.6-ampere circuit is considerably in excess of the current that it has to carry. The 15- and 20 -ampere circuits permit taking better advantage of the currentcarrying capacity that is available in the conductor. Another advantage of the higher amperage circuits is that the circuit voltage is reduced to approximately one-third that of a 6.6-ampere circuit. Or, looking at it another way, for the same maximum voltage at either 6.6 amperes or 20 amperes, the number of lamps in a 20 ampere circuit may be approximately three times the number on a 6.6-ampere circuit.

The 3.3 -ampere rating has come into use with mercury lamps. The 6.6 - and 20 -ampere rating had been very nearly standardized upon by the time that the mercury lamps were introduced. Since each mercury lamp type required a different operating current, it became common to restrict the open-circuit voltage at the luminaire through the use of a two-winding current transformer with an air gap in the core. The one type of mercury lamp that predominates among the mercury installations requires 3.3 amperes. Since this condition has come about, a 3.3 -ampere constant-current system has been developed to use these lamps. This system eliminates the use of a small current transformer or series-mercury transformer at each lamp, but requires the use of a non-standard constant-current transformer for the lighting circuit.

There are a number of factors that influence the decision as to which of the current ratings is to be used in a
new installation. Established practice is usually the determining factor. However, when future planning is taken into account, the continuation of existing practice may not be the most economical answer.

Local codes, safety to maintenance personnel, and local rates for street lighting also influence the choice of current rating for a series circuit.

6. Description of Equipment for Series System

Fig. 13 shows in detail the equipment used in a series street-lighting circuit. At the left of the figure are the two sources of supply that serve the system. The primary feeder tap supplies power for the lights, and the 120 -volt tap supplies power to the control circuit.

Constant-Current Transformers-To obtain full or rated lumen output from the lamps in a series street-lighting circuit, the current fiowing through the lamps must not be lower than the rated current of the lamps. To avoid serious reduction in lamp life, the current must not be allowed to increase above the rated value. Therefore, it is desirable that a current equal to the rated current of the lamps flow in the circuit, regardless of the number of lamps on the circuit or the length of the circuit.

Since electric energy is generated at constant potential, these series systems require an intermediate device to transform the energy from a constant potential to a constant current. The device which is economical and most desirable, because it gives the closest current regulation for all loads, is the moving-coil constant-current transformer. These transformers are designed to convert a constant-potential value (ranging from 2.4 kv to 13.2 kv) to a constant-current value of $3.3,6.6,7.5,15$ or 20 amperes.

The early constant-current transformers were all of
the air-cooled, open-construction design for indoor applications. Since most of the early street-lighting circuits originated at an attended station, the constantcurrent transformer could conveniently be installed indoors. Increased use of street lighting made it necessary to develop oil-insulated, pole-type, and subwaytype units that could be installed throughout the system. Present day pole-type units are available with added built-in features for complete protection against lightning, against faults in the primary winding, and against open-circuit conditions on the lighting circuit.

The discussion given below describes the theory and principles of operation of constant-current transformers. In particular, this discussion refers to the open stationtype unit. While the construction of the pole- and sub-way-types of constant-current transformer are slightly different, the same theory of operation applies to each type.

The constant-current transformer is a two-winding transformer with one coil which is movable with respect to the other. The movable coil is balanced by a counterweight, and its position is determined by the electromagnetic force between the coils.

In Fig. 14(a) and (b), P is the primary coil, S is the secondary coil, W is the wheel or lever arrangement used to suspend the moving coil, and C is the counterweight. Assume that a voltage is applied to P while the circuit of S is open. An exciting current will flow and a magnetic flux will be induced through the primary coil and up the middle leg of the iron to the top. Here the total flux will divide, and one-half will return down each of the outer legs to the primary coil. The amount of flux through P is determined from the transformer formula, $E=(k)(f)(A)(N)(B)$; where $E=$ voltage, $k=a$ con-

Fig. 13-Schematic diagram of a series street-lighting circuit.

Fig. 14-Magnetic circuit and flux path of a movable-coil constant-current transformer. (a) With secondary open. (b) With secondary closed through load circuit. (c) Vector diagram of primary and secondary voltages and flux with secondary closed through load circuit.
stant, $A=$ area of core, $N=$ number of turns, $B=$ flux density, and $f=$ the frequency in cycles per second.

The flux in the iron induces a voltage in the secondary coil, and, if the circuit is completed, a current will flow. The current in S sets up a magneto-motive force opposed to that of P, and a part of the magnetic flux through P will be forced across the opening between P and S, instead of following the iron circuit. This has two results. First, the voltage in S will be reduced because of the reduced flux which links it; and second, there will be an electromagnetic force on P tending to raise it. This force is caused by the reaction of the leakage flux on the current in S. The counterweight is normally adjusted so that the weight of the coil is just equal to the counterweight plus the electromagnetic force when the coil is carrying the desired current.
If a part of the load is suddenly short-circuited, there will be an instantaneous rise in the secondary current, and consequently in the leakage flux. This results in an increased force between coils, and the primary coil moves upward. The leakage space between the coils is thus increased, and the secondary voltage is diminished to a point where it will again send only the desired current through the circuit.

The relation of the various quantities is shown by the vector diagram, Fig. 14(c). For the sake of simplicity, the losses in the transformer are neglected, and it is assumed that the secondary load has a power factor of 100 per cent. If $O E_{\mathrm{p}}$ is the voltage applied to the primary coil, $O F$ will be the flux which links this coil. $O E_{\mathrm{s}}$, exactly opposite to $O E_{\mathrm{p}}$, would be the voltage induced in the secondary if there were no magnetic leak-age-that is, if the secondary coil were open circuited. At full load on the secondary, there will be a normal leakage between the primary and the secondary amounting to 45 per cent of the primary flux, more or less; and since this leakage flux is in phase with the secondary current, it will be perpendicular to the flux through the secondary coil, which produces the secondary voltage. Therefore, on $O F$ as a hypotenuse,
construct a right triangle with one side equal to 45 per cent of $O F$, and the other side equal to $\sqrt{100^{2}-45^{2}}=$ 89.3 per cent of $O F . O F_{s}$ is the flux which induces the secondary voltage, and it leads the secondary voltage by 90 degrees. The secondary voltage at the load is $O E_{2}$, and the secondary current will be in phase with $O E_{2}$, since the load power factor is 100 per cent.
If a part of the load is short-circuited, the coils will move apart as explained above. This will cause the vectors to take the position shown by the dotted lines, increasing the leakage flux and decreasing the flux through the secondary coil, with a consequent reduction of the secondary voltage. The secondary current is thus brought back to its normal value. Constant-current transformers are usually designed so that, with normal voltage and frequency on the primary, and with the secondary short-circuited, normal secondary current will not quite cause full separation of the coils.
It is interesting to trace the effect of a change in the primary voltage or frequency when the secondary load is not changed. An increase in the primary voltage will cause an increase in the primary flux. Since the secondary flux remains the same for the same load, the coils move apart so as to increase the per cent leakage. This lowers the primary power factor. It may also cause an increase in the short-circuit current of the secondary coil if the moving coil reaches the top of the opening.

An increase in the primary frequency, without a corresponding change in voltage, decreases the primary flux. The secondary flux decreases in the same proportion. The leakage flux also decreases in the same proportion, and the coils therefore must move closer together. The frequency can be varied only within rather narrow limits without changing the voltage. If it becomes too low, the magnetic density in the iron becomes too high. If the frequency is too high, the per cent leakage becomes high and the transformer has reduced capacity and poor power factor.
The primary windings of constant-current transformers are usually provided with taps, and, from what
has gone before, it will be easy to see the effect of using the taps. If 2200 volts is applied to the 2400 -volt connection on the transformer, the volts-per-turn, and consequently the flux through the primary coil, is decreased. For any given output therefore, the coils are closer together, the leakage is less, and the power factor is higher. If 2600 volts is applied to the 2400 -volt connection, the effect is the reverse. For a given output, the coils are farther apart, and, if the secondary is short circuited, there may be a rise of current because the coils may not be able to move far enough apart.
The current regulation of a constant-current transformer is quite accurate. The moving parts are supported on ball bearings and, if the transformer is mounted reasonably level so that the coil travels freely, the current should not vary more than one per cent from its rated value.

This type of transformer cannot be overloaded, because the secondary current will decrease if the load capacity of the regulator is exceeded. The no-load condition corresponds to a short-circuit on the secondary load terminals and, under this condition, the position of the movable coil approaches that of maximum separation. At full load, the coils are at nearly minimum separation. If the load is increased beyond the full-load value, the coil separation is further decreased until the bumper-stop is reached. Beyond this point, any increase in load will result in a corresponding decrease in secondary current.

Because of the constant-current characteristic, the $I^{2} \mathbf{R}$ loss in this type of transformer remains constant for all load values, but the stray loss increases with a decrease in load. Consequently, the total loss increases with decrease in load and is maximum at no-load. The operating temperature is therefore lower when operating at nearly full load than when operating at only a fraction of the full-load rating.

The constant-current transformer will operate correctly as long as the variation in the primary supply voltage is not greater than five per cent above or below the rated tap voltage, and provided the secondary is not loaded above the rated load for the particular transformer. For example, the 4800 -volt tap accommodates voltages ranging from 4560 volts to 5040 volts. A $4320-$ volt tap on the transformer provides for voltages ranging from 4100 volts to 4540 volts.

There are two basic types of pole-type constant-current transformers and one subway-type which are manufactured by Westinghouse. These units are available in standard kw ratings of $10,15,20,25$, and 30 kw with single-voltage primaries for 2400,4800 , or 7200 volts, and dual-voltage primaries for either 2400 or 4800 volts. The standard rated current for the secondary windings of constant-current transformers are 6.6 or 20 amperes. These units are designed in accordance with AIEE, ASA, and EEI-NEMA Standards, and, in line with these standards, deliver rated output at secondary terminals to a $991 / 2$ per cent power-factor load at 95 per cent of rated primary voltage. Temperature rise in the windings does not exceed 55 C above a 40 C ambient temperature when operated at 50 per cent of rated load
for eight hours. These transformers have 48 per cent minimum inherent impedance to prevent excessive current inrush to the lamps when the circuit is energized. The transformers are subjected to the dielectric tests given in Table 4.

Table 4-Constant-Current Transformer Dielectric Tests

Rated Circuit	Impulse Test Voltage Full Wave	60 Cycle Test-Kv
$2400 / 4160 \mathrm{Y}$	Crest-Kv	
$4800 / 8320 \mathrm{Y}$	60	19
$4800 / 2400$	75	26
$7200 / 12470 Y$	75	26
	95	34

The pole-type CPH constant-current transformer shown in Figs. 15 and 16 has the operating characteristics outlined above. The type CPH transformer with cover-mounted bushings is available with primary voltages from 7200 volts through 13.2 kv . It is not available with primary voltages below 7200 volts, nor with lightning arresters. The type CPH transformer with wallmounted bushings and de-ion arresters provides protection against lightning surges between the primary and core or tank, between the secondary and core or tank, and between the primary and secondary windings.

The pole-type CSPH constant-current transformer is a self-contained "package unit" that includes an oil switch, a type PC protective relay, de-ion arresters,

Fig. 15-Westinghouse pole-type CPH constant-current transformer for series street-lighting circuits.

Fig. 16-Core and coil assembly of Westinghouse poletype CPH constant-current transformer.
fusible protective links, and the core and coil assembly, housed in one tank.
The type CSPH transformer is also available with shunt capacitors mounted externally on the tank to correct the normal power factor to a high power factor for all conditions of load within the capacity and rating of the unit. This unit is designated as type CSPH-C.

The type CSPH-K differs from the CSPH unit in
that it includes a series-cascade controlled oil switch and protective relay. This unit is designed specifically for series-cascade installations.

The subway-type constant-current transformer, designated type CMH, is a waterproof unit designed for operations in vaults and manholes.

Table 5 gives the electrical characteristics and performance data for all of the pole-type constant-current transformers described above, with the exception of the CSPH-C unit. The same type of information for the CSPH-C unit is given in Table 6.

Circuit Switch and Controls-Lamps on series streetlighting circuits are turned on and off through the action of a switch in the high-voltage circuit that supplies the constant-current transformer. The switching operation may be initiated by any one of several types of controls available. The type of control used will depend upon the location of the street-lighting circuit, the specific purpose of the lights, the time cycle of operation for the lights, etc. Among the most common control methods are manual control, time switches, and photoelectric cells. A discussion of the characteristic and operation of these controls appears elsewhere in this chapter.

The switch used to energize or de-energize the con-stant-current transformer can be almost any type of air or oil circuit breaker, as long as the switch selected has the necessary voltage, current, and interrupting ratings. This is particularly true if the street-lighting circuits terminate at an attended substation and the circuit is switched manually. Most circuits, however, are remote from an attended substation and remote switching is necessary.

The most common type of switch for remote operation is a pole-mounted, two-pole, oil-filled switch.

Schematic diagrams of the type RCOC oil switch are shown in Fig. 17. The diagram in Fig. 17(a) has a shunt operating coil rated at 120 volts at 60 cycles. This coil is energized from the low-voltage supply circuit through the circuit control. The diagram in Fig. 17(b) is for a switch used in a series-cascade circuit arrangement. Instead of a 120 -volt coil, this switch has a 6.6 -ampere constant-current coil which is energized from a 6.6ampere series street-lighting circuit.

Fig. 17-Schematic diagram of two types of RCOC oil switches. (a) Switch with control circuit energized from 120volt circuit. (b) Switch with control circuit energized from 6.6 -ampere series street-lighting circuit for cascade operation.

Table 5-Electrical and Performance Data For All Westinghouse Pole-Type Constant-Current Transformers Except Type CSPH-C

Kw	Approx. Primary Amps. at All Loads	Approx. Kv-a Input	Secondary Open	Secondary Normal	Approx. Max.Output	Efficiency ${ }^{\text {a }}$				Primary Power Factor (\%)			
Rating		at All Loads	Circuit Voltage	Load Voltage	$\left\|\begin{array}{c} \text { at Unity } \\ \text { Pf-Kw }_{w} \end{array}\right\|$	$\begin{aligned} & \text { Full } \\ & \text { Load } \end{aligned}$	$\begin{gathered} 3 / 4 \\ \text { Load } \end{gathered}$	$\left\|\begin{array}{c} 1 / 2 \\ \text { Load } \end{array}\right\|$	1/4 Load	Full Load	$3 / 4$ Load	$\begin{gathered} 1 / 2 \\ \text { Load } \end{gathered}$	$1 / 4$ Load
2400 Volts Primary - 6.6 Amperes Secondary													
10	5.87	14.1	2090	1515	11.30	95.1	93.5	90.4	82.2	75	56	38	20
15	8.75	21.0	3090	2270	16.95	95.8	94.3	91.7	84.3	75	56	38	20
20	11.6	27.8	4090	3030	22.6	96.2	95.0	92.5	85.9	75	56	38	20
25	14.4	34.6	5110	3790	28.3	97.0	95.9	93.7	87.5	75	56	38	20
30	17.3	41.5	6130	4550	33.9	97.0	96.0	93.9	88.5	75	56	38	20
2400 Volits Primary - 20 Amperes Secondary													
10	5.87	14.1	690	500	11.30	95.1	93.5	90.4	82.2	75	56	38	20
15	8.75	21.0	1020	750	16.95	95.8	94.3	91.7	84.3	75	56	38	20
20	11.6	27.8	1350	1000	22.6	96.2	95.0	92.5	85.9	75	56	38	20
25	14.4	34.6	1690	1250	28.3	97.0	95.9	93.7	87.5	75	56	38	20
30	17.3	41.5	2020	1500	33.9	97.0	96.0	93.9	88.5	75	56	38	20
4800 Volts Primary - 6.6 Amperes Secondary													
10	2.93	14.1	2090	1515	11.30	95.1	93.5	90.4	82.2	75	56	38	20
15	4.37	21.0	3090	2270	16.95	95.8	94.3	91.7	84.3	75	56	38	20
20	5.80	27.8	4090	3030	22.6	96.2	95.0	92.5	85.9	75	56	38	20
25	7.20	34.6	5110	3790	28.3	97.0	95.9	93.7	87.5	75	56	38	20
30	8.65	41.5	6130	4550	33.9	97.0	96.0	93.9	88.5	75	56	38	20
4800/2400 Volts Primary - 6.6 Amperes Secondary													
	$4800 \mid 2400$												
	Volts Volts												
10	$\underline{2.93} 5$	14.1	2090	1515	11.30	95.1	93.5	90.4	82.2	75	56	38	20
15	$4.37 \quad 8.75$	21.0	3090	2270	16.95	95.8	94.3	91.7	84.3	75	56	38	20
20	5.8011 .6	27.8	4090	3030	22.6	96.2	95.0	92.5	85.9	75	56	38	20
25	7.2014 .4	34.6	5110	3790	28.3	97.0	95.9	93.7	87.5	75	56	38	20
30	8.65117 .3	41.5	6130	4550	33.9	97.0	96.0	93.9	88.5	75	56	38	20
7200 Volits Primary - 6.6 Amperes Secondary													
10	1.96	14.1	2090	1515	11.30	95.1	93.5	90.4	82.2	75	56	38	20
15	2.92	21.0	3090	2270	16.95	95.8	94.3	91.7	84.3	75	56	38	20
20	3.86	27.8	4090	3030	22.6	96.2	95.0	92.5	85.9	75	56	38	20
25	4.80	34.6	5110	3790	28.3	97.0	95.9	93.7	87.5	75	56	38	20
30	5.77	41.5	6130	4550	33.9	97.0	96.0	93.9	88.5	75	56	38	20

AConventional efficiency based on $I^{*} R$ loss at $75^{\circ} \mathrm{C}$ and measured core loss at normal primary voltage with secondary open.

Table 6-Electrical and Performance Data For Westinghouse Pole-Type CSPH-C Constant-Current Transformers

Kw	Approx. Primary	Approx. Primary	Secondary Open	Secondary Normal	Approx. Max.	Efficiency (\%)				Primary Power Factor (\%)			
Rating	at Full Load	put at Full Load	Circuit Voltage	Load Voltage	at Unity Pf-Kw	Full Load	3/4 Load	$\begin{gathered} 1 / 2 \\ \text { Load } \end{gathered}$	$\begin{gathered} 1 / 4 \\ \text { Load } \end{gathered}$	Full Load	$\begin{gathered} 3 / 4 \\ \text { Load } \end{gathered}$	$\left\lvert\, \begin{gathered} 1 / 2 \\ \text { Load } \end{gathered}\right.$	$\begin{gathered} 1 / 4 \\ \text { Load } \end{gathered}$
2400 Volt Primary - 6.6 Amperes Primary													
15	6.58	15.8	3090	2270	16.95	95.8	94.3	91.7	84.3	100	98	89	64
20	9.13	21.9	4090	3030	22.6	96.2	95.0	92.5	85.9	-97	100	99	92
25	10.8	26.0	5110	3790	28.3	97.0	95.9	93.7	87.5	100	98	89	64
30	13.0	31.1	6130	4550	33.9	97.0	96.0	93.9	88.5	100	98	89	64
4800 Volt Primary - 6.6 Amperes Secondary													
15	3.29	15.8	3090	2270	16.95	95.8	94.3	91.7	84.3	100	98	89	64
20	4.56	21.9	4090	3030	22.6	96.2	95.0	92.5	85.9	-97	100	99	92
25	5.40	26.0	5110	3790	28.3	97.0	95.9	33.7	87.5	100	98	89	64
30	6.50	31.1	6130	4550	33.9	97.0	96.0	93.9	88.5	100	98	89	64

[^7]

Fig. 18-Series street-lighting installation showing a type AN oil switch, a constant-current iransformer, and a type PC protective relay.

A typical pole-type installation of an oil switch, a constant-current transformer, and a protective relay are shown in Fig. 18.

Standard oil switches have interrupting ratings of 50 amperes at 2500 volts, 35 amperes at 5000 volts, and 15 amperes at 7500 volts line-to-line, for use on 5.0/8.66kv systems, and for line-to-neutral supply of an 8.66/15kv wye class system. Other ratings are available, but the above ratings are the most commonly used. All units have auxiliary hand levers for manual operation.

In the case of the type CSPH constant-current transformers, the switch is included as an integral part of the packaged unit and is located in the same tank with the transformer. A wiring diagram of these packaged units is shown in Fig. 19 for both the 120-volt control and the series-cascade control.

Film Cutouts-Film cutouts are used with individual lamps in series circuits to insure continuity of the circuit after a lamp failure. The film cutout is inserted between the series socket prongs of the series luminaire. This puts the cutout in parallel with the lamp. At volt-
ages somewhat higher than the normal lamp voltage, the cutout acts as an insulator. Upon failure of the lamp, it breaks down at a value below the open-circuit voltage of the line.
Film cutouts are an important connecting link in the system, and their failure to operate properly may cause expensive and serious lamp outages, possible damage to equipment, and both radio and telephone interference due to harmonic voltages.
For correct operation, the film cutout must function in the following manner:

1. It shall break down immediately upon failure of the lamp filament (due to burnout or mechanical darnage), and insure continuity of the circuit by short circuiting the socket prongs.
2. The short-circuit established by the film cutout shall be positive and permanent. Its current-carrying capacity should be sufficient to avoid excessive voltage drop, thus eliminating unnecessary line losses, radio and telephone interference, and overheating of the socket and receptacle.

There are three different film cutouts that are used in series circuits. They are designated as low-voltage, intermediate-voltage, and medium-voltage film cutouts. The low-voltage and intermediate-voltage cutouts consist of two thin aluminum dises, three-quarters of an inch in diameter, which are separated by means of a thin asbestos washer. The hole in the center of the asbestos washer is filled with finely divided aluminum powder. The aluminum dises and the asbestos washer are firmly cemented together.

The medium-voltage film cutout consists of two aluminum discs coated on the inside with a mixture of graphite and aluminum powder. The discs are firmly cemented to an asbestos washer, which acts as a heatresisting spacer.
Table 7 gives the area of application of these three types of film cutouts.

Conductors-Weather-proof conductors are normally used on overhead series street-lighting circuits. Bare conductors may be used where local codes permit, and where sufficient spacings between street-lighting circuits and primary feeder circuits are practical to avoid

(a)

(b)

Fig. 19-Schematic diagram of two types of packaged unit constont-current transformers. (a) Type CSPH constantcurrent transformer with 120 -volt control circuit. (b) Type CSPH-K constant-current transformer with control circuit that is directly in series with a series lighting circuit supplied from another transformer.

Table 7-Application of Film Cutouts for incandescent Lamps Used With or Without Insulating Transformers

Film Cutout Designation	Breakdown Voltage In Volts			Lamp Rating	
	Min.	Max.	Avg.	Lumens	Amperes
Low (L)	40	100	60	1000	6.6
				1000	7.5
				2500	15.0
				4000	15.0
				4000	20.0
				6000	20.0
Intermediate (B)	75	150	100	2500	6.6
				2500	7.5
				4000	6.6
				4000	7.5
				10000	20
				15000	20
Medium	100	400	250	6000	6.6
				6000	7.5
				25000	20

contact between the conductors. Since the current flowing in a series circuit is relatively low, the conductor size is usually determined by mechanical strength. In most cases, No. 8 or No. 6 copper conductors are used.

The selection of conductors for use in underground lighting circuits is somewhat complicated by the fact that these conductors may be installed in duct banks with distribution circuits, in separate ducts, or directly buried in the earth.

In the downtown areas of large cities, the distribution system is normally underground with the cables installed in multiple duct banks. In many cases, there are spare ducts available that can be used solely for street-lighting circuits. Practice over the years has been to install varnished-cambric, paper, or rubber-insulated cable with lead sheath in these ducts. The grounding of the sheath and the wiping of all splices and terminations have given this type of cable an excellent operating record. In recent years there has been an increase in the use of synthetic materials in this type of application, with rubber-insulated neoprene-jacketed cables also giving excellent performance.

A survey of utility practice, where separate conduits are used for street-lighting circuits, shows that the large majority of companies prefers rubber or rubber-like insulation covered by a neoprene jacket. Single-conductor No. 8 or No. 6 with 5 -kv insulation is usually used.

Direct burial of cables for street-lighting service presents a few problems that are not present when ducts are used. The cables are usually more exposed to mechanical damage, plus the fact that when a fault occurs it usually costs more to locate and eliminate the trouble. For these reasons, many companies use leadcovered cables or parkway-type cables to minimize troubles. In many cases, the use of rubber-neoprene cables with or without some mechanical protection above the cable is believed to be adequate for this type
of installation. Single-conductor No. 8 or No. 6 copper cables are normally used for directly-buried circuits.

7. Cascading

Description-Series-cascading of street-lighting circuits is accomplished by inserting the control relay of one constant-current transformer into the load circuit of another constant-current transformer. When the parent circuit is energized, the control in the load circuit closes and energizes the cascaded circuit. A third circuit can be controlled by putting its control in the load circuit of the first cascaded circuit. Theoretically, any number of circuits could be controlled in this manner by inserting the control of each circuit in the load circuit of the adjacent cascaded circuit.
Application-This type of street-lighting control is used primarily where economy can be achieved through elimination of time-clock or photo-electric control for the new circuits.
Cascading has a definite disadvantage in that each cascaded circuit is dependent upon all of the circuits between it and the parent control. If there were a fault in any of these circuits, or if any control relay failed to close, then all of the cascaded circuits beyond the trouble spot would not be energized.

Constant-Current Transformers-The type CSPH-K constant-current transformer is designed for installations where it is preferable to use an existing, conveniently located series-lighting circuit to control the operation of the primary oil switch in order to obtain an identical switching schedule for the new series circuit.
Fig. 19(b) shows the schematic wiring diagram of the CSPH-K constant-current transformer. The series control circuit of the CSPH-K is inserted in the load circuit of the controlled series circuit. When the controlled series circuit is energized, the series control in the CSPH-K causes the series-cascade controlled type AN oil switch to operate to close the primary circuit of the constant-current transformer.

8. Protection

Open-Circuit Protection-It is necessary to provide protection against the hazards of open-circuit voltage on a series-lighting circuit. The type PC series open-circuit relay provides this protection. The constant-current transformer regulates the voltage across the secondary terminals to give rated constant current in the connected series lamp circuit. Should a conductor break, or a film cutout fail to breakdown upon lamp failure, full open-circuit voltage is established across the break or across the lamp, as the case may be. The value of the open-circuit voltage is proportional to the transformer constant-current and kw rating. (See tables 5 and 6.) The type PC protective relay operates to de-energize the operating coil of the normally-open remote control oil switch and thus disconnects the primary of the con-stant-current transformer when open-circuit conditions exist in the series lamp circuit.
The type PC protective relay has internal connections as shown in Figs. 20 and 21. Under normal circuit conditions, the air dashpot delays action of the control

Fig. 20-Connections for type PC-6.6-6.6 protective relay with 6.6-ampere series control circuit rating and a 6.6ampere series protected circuit rating.
circuit element for one-half second. This delay permits the series-protected circuit element to actuate contacts to de-energize the coil of the control circuit element. Normal operation requires only 40 volt-amperes continuous power to the series-protected circuit coil. An open-circuit fault de-energizes the series-protected circuit relay coil, which actuates contacts to energize the coil of the control circuit element. The control circuit element de-energizes the primary oil switch operating coil to disconnect the connected load. The type PC protective relay series-circuit operating coils are insulated for series-lighting circuits on which the opencircuit voltages do not exceed 8000 volts.

Lightning Protection-Series street-lighting circuits in most areas are generally well shielded by buildings, structures, and other electrical circuits, and as a result are not subject to much trouble caused by lightning strokes. For this reason, there is not much operating experience with lightning arresters applied to series street-lighting circuits. Practice with respect to lightning protection of street-lighting circuits trends toward minimum protection, unless operating experience indicates otherwise.

When a direct stroke hits a series street-lighting cir-

Fig. 21-Connections for type PC-120-3.8/6.6 protective relay with 120 -volt, 60 -cycle control circuit rating and $3.8 / 6.6$-ampere series protected circuit rating.
cuit, there generally is a flashover at one of the insulators or at the porcelain socket of one of the lamps. Therefore, the surge current usually travels for only a short distance along the circuit. It is possible that, if a flashover occurs at a luminaire socket, the lamp involved will burn out.

When direct strokes to the street-lighting circuit do occur frequently, as indicated by excessive lamp failures or breakdown of film cutouts, there are several steps that can be taken. The most effective protection for exposed series circuits is to run a grounded shield wire over the entire length of the circuit. This protects all lamps in event of a direct stroke, but is more expensive than applying a few lightning arresters to confine outages to four or five lamps. On these exposed circuits, it is recommended that standard type LV lightning arresters be placed on the lines at a distance of approximately 1500 feet from the regulator. If lamp or film cutout failures are excessive, additional lightning arresters can be added along the line.

Constant-current transformers of the CSP type are equipped with type LXT lightning arresters. For con-stant-current transformers that are not of the CSP type, it is recommended that either type LXT or LVT arresters be applied.
Transformers with a single-circuit secondary require two arresters for the secondary. An arrester should be applied to each line on the primary side of the regulator. These arresters should be located on the source side of the oil switch and the power-factor correcting capacitor, if one is used. In selecting the proper voltage rating of arresters for the primary circuit, consideration should be given to the circuit voltage and normal arrester application procedure should be followed. Under certain conditions on grounded-neutral systems, it is desirable to apply grounded-neutral arresters having an 80 per cent rating, since these arresters will provide a greater margin of protection.

The recommended ratings for lightning arresters applied to the secondary circuits of constant-current transformers are based on the open-circuit voltage. Recommended arrester ratings for 6.6 -ampere and 20 -ampere series circuits are given in Table 8.

9. Grounding

The high voltages used in series street-lighting circuits present a possible hazard to the public and maintenance personnel in the case of failure of insulation somewhere on the system. For this reason, it is recommended that all equipment cases, tanks, housings, metallic poles, and conduits be effectively grounded. The frame and one of the secondary conductors of an insulating transformer should also be grounded, if the secondary is to be treated as a low-voltage circuit.

Since the current is limited in a series street-lighting circuit, grounding conductors generally are not subjected to a current flow of more than about 20 amperes. Therefore, the mechanical strength of the conductor becomes the determining factor, and conductor sizes ranging from No. 8 to No. 4 copper are normally used.

Table 8-Recommended Lightning Arrester Ratings for 6.6-Ampere and 20-Ampere Series Street Lighting Circuits

KW Rating of Regulator	Arrester Maximum Rating In Kv	
	6.6-Ampere	20-Ampere Secondary
2	0.50	0.50
3	0.75	0.50
5	3.0	0.50
$71 / 2$	3.0	0.75
10	3.0	0.75
15	3.0	3.0
20	6.0	3.0
25	6.0	3.0
30	6.0	3.0
40	9.0	3.0
50	12.0	6.0
60	12.0	6.0
70	15.0	6.0

In many cases where series circuits are underground, an intentional ground is established at the electrical midpoint of the circuit. This effectively reduces the normal stress on the insulation to one-half of the normal load voltage of the constant-current transformer. If an open-circuit condition occurs on a circuit grounded in this manner, the cable on the ungrounded side of the open point is subjected to full open-circuit voltage to ground. If an open-circuit protective relay is used with the transformer, the duration of the overvoltage is in the order of less than a second. If the protective relay is not used, the cable is subjected to the open-circuit voltage until the situation is recognized and corrected. This may be a matter of hours, or even days.

Some companies place an intentional ground on the circuit at or near one of the transformer terminals. This has the advantage of making it convenient to remove the ground for test purposes, but, at the same time, it increases the normal stress on the conductor insulation near the other terminal of the transformer.

When an accidental ground occurs on a series circuit on which an intentional ground exists, the portion of the circuit between the two grounds is essentially shorted out, and the lamps go out or burn dimly. This condition gives an excellent indication as to the location of the accidental ground point.

While a large number of series circuits are operated with intentional grounds, probably the majority of the series circuits are ungrounded. This is true of both overhead and underground circuits. The ungrounded circuit will continue to operate with one accidental ground.

III. MULTIPLE SYSTEM

10. Description of System

Voltages-In a multiple street-lighting system, the lamps are served over low-voltage circuits, as opposed to the high-voltage circuits used in the series system. The most common multiple system voltages are 120/240 volts, single-phase, three-wire, or 120 volts, single-
phase, two-wire. Systems operating at 120/208 volts, three-phase, four-wire are used in some commercial areas and 480 -volt systems are becoming popular.

Layout-The multiple system may take several forms. Because low-voltage secondary circuits exist in the great majority of the areas where street lights are installed, individual multiple lamps can be supplied directly from the existing secondaries. When this type of system is used, each lamp requires an individual control. In another form of the multiple system, a separate secondary circuit is installed for the sole purpose of serving multiple street lights. The power supply to this secondary circuit is accomplished by one of two methods. See Fig. 22. Both methods utilize standard, pole-type distribution transformers and may use the same type of control for switching intelligence.
The difference between the two methods lies in the actual switching. In one method, the primary of the distribution transformer is directly connected to the available primary circuit, and the switching operation is performed by a multiple relay that is located between the secondary terminals of the transformer and the multiple circuit. In the other method, the secondary of the distribution transformer is directly connected to the multiple circuit, and the switching is performed by an oil switch on the primary side of the transformer.
Advantages-Multiple street-lighting applications are increasing, due to a number of advantages that they offer. In new areas where street lighting has not existed, the individually controlled multiple units eliminate the need for a separate system in addition to the distribution circuits. The fact that the lamps operate at low-voltage makes them safer to maintain and does not require maintenance personnel who are qualified to work on high-voltage circuits. The equipment used for the multiple system is essentially the same as used on other distribution circuits. All of these factors usually add up to a cost advantage over series street-lighting circuits.
Limitations-Multiple street lighting also has some disadvantages that should not be overlooked. The main disadvantage of multiple circuits which are separate from the low-voltage distribution circuits is that large conductors must be used when long circuit runs or large loads are involved. The installed cost of these conductors becomes an important factor in the overall economics.

11. Description of Equipment for Multiple Systems

Transformers-One of the big advantages of the multiple system is that standard pole-type distribution transformers are used. This makes it possible and practical to install a multiple lamp or lamps on existing lowvoltage secondary circuits without having to install additional transformer capacity, in the great majority of cases. However, since there will be a number of days during the year when the street lights will be on at time of peak load on the distribution transformers in some areas, the street-lighting load must be taken into account in determining the necessary distribution transformer capacity.

Another advantage of the use of standard pole-type

Fig. 22-Two different methods of serving multiple street lighting circuits, in one method the switching is accomplished on the high-voltage side of the distribution transformer, and in the other the switching is performed at low voltage.
distribution transformers and the multiple system concerns the starting requirements of mercury lamps. In series systems it is sometimes necessary to install the constant-current transformer on the basis of the starting requirements of the mercury lamps, rather than on normal operation requirements. This results in two disadvantages. One is the relatively high investment in constant-current transformer capacity. The other is the resulting low power factor operation of the transformer, due to the fact that under normal operation the load on the transformer is well below its rated output. This usually indicates that the installation of shunt capacitors on the primary side of the constant-current transformer is necessary.

The thermal capabilities of standard distribution transformers are such that the high starting currents drawn by the mercury lamps usually do not present a problem. At least, in the majority of cases, the starting requirements of mercury-vapor lamps on multiple systems do not necessitate more transformer capacity than needed for normal operation.

The fact that standard pole-type distribution transformers are used for multiple systems somewhat simpli-
fies the problems of planning, ordering, and stocking transformers to serve street-lighting systems.

Circuit Switch-When the switching of multiple circuits is accomplished by switching the primary supply to the transformers, the type R-C-O-C oil switch is normally used. Automatic switching with this device is accomplished by energizing the control circuit to the 120 -volt, 60 -cycle, shunt operating coils of the switch with a low-voltage time switch or photoelectric control.
The operating characteristics of R-C-O-C oil switches for multiple system applications are given in Table 9, and the interrupting ratings are given in Table 10.

All of the switches listed in these two tables have an auxiliary hand lever on the tank, with the exception of the type CP oil switch. This lever permits manual or automatic operation of the switch. When the hand lever is set in the AUTO position, energizing the control circuit either opens or closes the switch load contacts, as indicated in Table 10.

When multiple circuit switching is accomplished by switching the circuit on the low-voltage side of the supply transformer, the type MR multiple relay is used. The load contacts of the multiple relay are actuated by

Table 9-Operating Characteristics of R-C-O-C Oil Switches For Multiple Street Lighting Applications						
R-C-O-C	Coil Rating	Pull- In Voltage in Volts	Maxi- mum Drop- Out Volt- age in Volts	Inrush Amрегеs	$\left\|\begin{array}{c}\text { Contin- } \\ \text { uous } \\ \text { Cur- } \\ \text { rent } \\ \text { Rating } \\ \text { in Am- } \\ \text { peres }\end{array}\right\|$	Volt- age Rating in Volts
AN	120-vol t, 60-cycle	90	65	5.0	1.5	120
ANH	120 -volt, 60 -cycle	90	65	5.0	1.5	120
ANR	120-volt, 60 -cycle	95	65	7.3	3.7	120
CP	120-volt, 60-cycle	90	70	12.0	1.4	120
CPM	120-volt, 60-cycle	90	70	12.0	1.4	120

energizing the control circuit to the relay operating coil. The operating characteristics of the multiple relays are given in Table 11. The load contacts of the type MR multiple relay are normally open with the operating coil de-energized. The type MRR multiple relay contacts are normally closed with the operating coil de-energized. This relay is usually specified for applications requiring positive control of the 'ON' schedule, as a fault in the control circuit will de-energize the relay operating coil and close the load contacts.

In areas where there are a number of multiple circuits using low-voltage switching, a single time clock or photo-electric control can be used to energize a large number of type MR multiple relays.

Ballasts-A ballast is required to start and operate a mercury lamp on a multiple street-lighting system. The ballast is used to provide the higher voltages re-

Table 10 -Interrupting Ratings of the Type R-C-O-C Oil Switches for Multiple Street Lighting Applications

$\begin{gathered} \text { R-C-O-C } \\ \text { Type } \end{gathered}$	$\begin{array}{\|c\|} \text { R-C-O-C } \\ \text { Specification } \\ \text { Number } \end{array}$	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Poles } \end{aligned}$	Amperes at Line-to-Line Voltage			
			15000	7500	5000	2500
			Volts	Volts	Volts	Volts

Contacts Normally Open with 120-Volt, 60-Cfcle Coil De-energized

AN-1-120	6120^{+}	1	-	15	35	50
AN-1-120	$6122{ }^{+}$	1	-	15	35	50
AN-2-120	$6121{ }^{+}$	2	-	15	35	50
AN-2-120	6123^{+}	2	-	15	35	50
Contacts Normally Closed with 120-Volt, 60-Cycle Coil De-energized						
ANR-1-120	6130*	1	-	-	35	50
ANR-2-120	6131*	2	-	-	35	50

Contacts Normally Open with 120-Volt, 60-Cycle Coil De-energized

CP-2-120	6091^{++}	2	10	20	30	60
CP-3-120	6059^{+}	3	-	20	30	60
CPM-2-120	6092^{++}	2	10	20	30	60
CPM-3-120	$6069-$ A $^{+}$	3	-	20	30	60
CPM-3-120	$6075-$ A $^{+}$	3	-	20	30	60

[^8]Table 11-Operating Characteristics of R-C-O-C Multiple Relays with 120-Volt, 60-Cycle Coils

$\mathrm{R}-\mathrm{C}-\mathrm{O}-\mathrm{C}$ Type	Num- ber of Poles	Load Rating in Amperes	Pull-In Voltage in Volts	Maxi- mum Drop- Out Voltage in Volts	Inrush Am- pere Rating	Continuous Power	
						Current Rating in Amperes	Watts
MR	1	15	75	65	. 140	. 055	4
MR	1	30	85	70	. 310	. 080	6
MR	1	60	85	70	. 800	. 160	12
MR	2	30	85	70	. 620	. 160	12
MRR	1	15	75	65	. 115	. 055	4
MRR	1	30	80	65	. 285	. 080	6
MRR	1	60	80	65	. 850	. 160	12
MRR	2	30	80	65	. 570	. 160	12

quired for starting, and to limit the current flow once the arc has been established.

The "reactor" type of ballast may be used to limit the flow of current in the lamp. This type of ballast, which is a simple inductance, is used where the voltage of the multiple circuit is correct for starting the lamp.

Where the circuit voltage is not correct for starting the lamp, an autotransformer is included in the ballast to provide the proper voltage. This type of ballast is called a "high-reactance" ballast.

The reactor type and high-reactance type of ballasts are recommended for use on multiple circuits where the line voltage available at the ballast does not vary more than ± 5 per cent from the rated top voltage. Where the ballast will be subject to greater voltage variations, the "regulated-output" ballast should be used. This ballast is of recent design and is a variation of the high-reactance type of ballast. It incorporates a saturable iron element and will operate the lamp over a 12 or 13 per cent voltage variation on multiple circuits. Another advantage of this regulated-output type of ballast is that there are no voltage taps to complicate their installation on the system.

While it is not essential for proper operation, most reactor and high-reactance ballasts contain a capacitor to correct the input power factor to 90 per cent or more. The normal power factor for an uncorrected ballast is approximately 50 to 60 per cent. All regulated-output ballasts have a power factor of 95 per cent or above, since a capacitor is an essential part of their design.

The starting and operating characteristics of mercury lamps are quite different from those of incandescent lamps. The line starting current for each type of lamp and ballast will vary in maximum value as well as in duration. It may vary from less than normal to 75 per cent greater than normal for different lamp-ballast combinations.

In general, the higher the ratio of secondary shortcircuit current to lamp operating current, the shorter is the lamp starting time for a given type of lamp. The high-pressure, short-are lamps usually reach stable operating conditions faster than the longer-arc lamps.

Conductors-When multiple street lighting is used in overhead distribution areas, existing secondary circuits may be used as the source of power supply to the lamps. In the great majority of cases where existing secondaries are utilized, the lengths of the secondaries are usually only three or four pole spans long. This limits the number of lamps per secondary to a small number, due to physical spacing of the lamps. As a result, the fact that the lamps are supplied directly from the secondary has little or no influence in the determination of secondary conductor size.
When separate circuits are used for multiple street lighting, it is to be expected that the conductor runs will be relatively long, taking transformer-secondary combination economics into account. Voltage drop normally determines the conductor size for a given circuit length and number of lamps.

There is a definite trend to the use of rubber or rub-ber-like insulation with neoprene or comparable jacket in multiple circuits that are installed underground. The cable normally used for multiple circuits has insulation rated for 600 volts and below.

In the downtown areas of cities, these cables are normally installed in available ducts. These cables should not be in the same duct with high-voltage cables.

In residential areas, underground multiple circuits are normally buried directly in the ground without the use of duct or mechanical protection. Burial depth varies between one and two feet. Ducts are normally used with direct-buried installations where the cables pass under streets and sidewalks.

The conductors used in underground circuits normally range from No. 8 to No. 2 copper.

12. Profection

The problem of providing protection for multiple street-lighting circuits is simpler than for series circuits. The main reason for this is that the low-voltage multiple circuits are not exposed to as much possible trouble as series circuits are. The multiple circuits are not on the same crossarm with primary distribution circuits, and consequently are not subject to contact with those conductors due to wind and trees. The fact that the multiple conductors are installed below the primary circuits affords them shielding from lightning strokes.

If CSP distribution transformers are used to supply multiple circuits, overload and fault protection are provided by the secondary breakers in the transformers. The lightning arrester on the transformer provides protection against surges on the primary circuit which might get into the secondary. If conventional distribution transformers are used, the same degree of protection cannot be provided as with the CSP transformer. Lightning arresters and primary fuse cutouts are normally installed with the conventional transformers.

IV. SERIES-MULTIPLE SYSTEM

13. Description of Series-Multiple System

Where Applicable-In cases where a new group of street lights are necessary in an area served by series

Fig. 23-A series-multiple street-lighting system using a type SR-1-6.6 series-multiple relay to switch the multiple lamps, and a type MR multiple relay to switch additional multiple lamp groups.
street-lighting circuits, a series-multiple system arrangement may be used. The decision to use the series-multiple system may be based on one or more of several reasons. Most series-multiple systems are used because the existing series circuits do not have sufficient capacity to handle the additional load. Assuming that the lighting schedule for the series circuit is satisfactory for the multiple circuit, a series-multiple relay is inserted in the series circuit to control the multiple lamps. When the series circuit is energized, the series-multiple relay operates to actuate a contactor, or pilot-wire control, to energize the multiple lamps. The supply circuit to the multiple lamps may be a tap off of an existing secondary circuit, or may be a separate circuit with its own distribution transformer.

The decision to use the series-multiple arrangement may also stem from the fact that the use of high-voltage circuits is undesirable in the new installation. It may also be used to eliminate the cost of control in a multiple system, or to eliminate the cost of a constant-current transformer in a series system.
Layout-Two possible circuit arrangements for seriesmultiple systems are shown in Fig. 23 and Fig. 24. In Fig. 23, the type SR series-multiple relay closes its nor-mally-open contacts when the 6.6 -ampere series circuit

Fig. 24-A series-multiple street-lighting system using a type SRR-1-6.6 series-multiple relay to initiate pilot wire switching through the use of a type MRR multiple relay.
is energized. When the relay contacts close, the multiple circuit is energized from the 120 -volt supply circuit. Other multiple circuits may also be controlled from the one series-multiple relay through the use of type MR multiple relays as shown. In Fig. 24, the type SRR series-multiple relay opens its normally-closed contacts when the 6.6 -ampere series circuit is energized. This operation de-energizes the pilot-wire circuit and causes the type MRR relay to close its contacts and thereby energize the multiple lamps.

Limitations-The series-multiple system has the same major disadvantage of the series-cascade system, in that a failure in the series system or in the series system control will prevent energization of the multiple lamps.

14. Description of Equipment for Series-Multiple System

The series-multiple system provides a convenient means of using a series-lighting circuit to control a multiple lighting circuit requiring an identical lighting schedule. With the exception of the series-multiple relay used to tie the series system to the multiple system, the equipment used in the series system and the multiple system is the same as used in other series and multiple systems.

Series-Multiple Relays-Series-multiple relays are basically a solenoid-actuated contactor. They may be single or two pole devices, and may be either normally open or normally closed with the coil de-energized. Series-multiple relays are available with either 6.6ampere or 20 -ampere coil ratings and either 125 - or 250 volt load ratings. Table 12 gives the designation and ratings of series-multiple relays.

Table 12—Series-Multiple Relay Ratings

$\begin{gathered} \text { R-C-O-C } \\ \text { Type } \end{gathered}$	Number of Poles	Coil Rating in Amperes	Normal Contact Position	Load Rating Per Pole	
				Amperes	Volts
SR-1-6.6	1	6.6	Open	40	125
SR-1-20	1	20	Open	40	125
SR-2-6.6	2	6.6	Open	20	250
SR-2-20	2	20	Open	20	250
SRR-1-6.6	1	6.6	Closed	40	125
SRR-1-20	1	20	Closed	40	125

V. STREET-LIGHTING CONTROL

15. Manual Controls

Street lights are turned on and off through the use of several types of controls. The oldest, and simplest, control scheme employs manual control. Manual control dates back to the early days of electric street lighting when all lighting circuits originated at attended stations. Circuits are still switched manually today at attended substations. However, the extensive street-lighting systems of today have made remote controls necessary and, for the most part, have eliminated manual controls. The relatively low cost and the reliability of modern remote controls make it difficult to justify manual switching in some attended stations where streetlighting circuits originate.

16. Photo-electric or Light-sensitive Controls

There are three general types of light-sensitive devices used to control street lights. One type utilizes a photo-tube, an amplifier tube, a time-delay network, a power tube, and a relay or contactor. A second type employs a self-generating, or photo-voltaic, photocell of the barrier-layer cell type, a relay, a small motor, and a sealed mercury switch. The third type has as its primary features a broad-area cadmium sulfide photoconductive cell and a special full-wave rectifier type relay.
The phototube type requires from 3.5 to 11 watts during the daytime and from 1.5 to 7 watts during the night. The barrier-layer cell type draws no current between turn-on and turn-off operations. Each complete on-off cycle of operation requires only 4 watts for one minute, generally once a day. The cadmium sulfide type of control requires a maximum of 0.9 watt in the daytime and a maximum of 0.6 watt at night.

The phototube type of control is available in two ratings with respect to the contacts. Contact ratings are 575 watts and 3000 watts. The 575 -watt rating is used for single-lamp control, or for control of a pilot-wire control circuit. The 3000 -watt rating is used to control a group of lamps. The mercury switch in the barrierlayer cell type of control is rated 30 amperes at 120 volts. The cadmium sulfide control is rated for a maximum direct lamp load of 1000 watts.

These controls are normally aimed to the north, and are preset to turn on and off based on the illumination of the north sky. The control can be adjusted to turn the lights on over a range of 0.5 to 5.0 foot-candles.

Care must be exercised in the installation of these light-sensitive devices so that artificial light of an intensity above the turn-on value will not strike the lightsensitive cell. This would prevent the desired operation of the control.

The phototube type of control has a time-delay circuit which provides a four to six second delay at turnoff. This prevents false operation of the control due to transient lights, such as from the headlamps of passing automobiles.

From the standpoint of having street lights turned on when they are needed, the light-sensitive type of control provides the best operation. The curve in Fig. 25 shows the turn-on and turn-off characteristics of photoelectric lighting controls.

When light-sensitive controls are used to control mer-cury- or sodium-vapor lamps, it is recommended that the turn-on setting be increased by 4.0 or 5.0 footcandles. This will cause the lamps to be energized about 7 or 8 minutes earlier, thus insuring that the lamps will be up to full brilliance when natural daylight has dropped to one foot-candle.

The greatly increased use of multiple circuits has also increased the use of photoelectric type controls. The economics of using this type of control, along with the economics and flexibility of the multiple system, have made it practical for some operating companies to standardize on the use of multiple circuits with an individual control for each lamp.

Fig. 25-Approximate relationship between the operating points of a photo-electric lighting control in foot-candles and either the turn-on in minutes after sunset or the turn-off in minutes after sunrise on a clear day.

17. Time-Clock Controls

Time-clock controls offer one of the least expensive methods of controlling street lights. The basic timeclock unit consists of an astronomical-dial clock driven by a synchronous motor, and a set of contacts. This type of clock automatically adjusts the contact operations to meet the day-to-day variations in sunrise and sunset.

One major disadvantage of this type of control is that outages on the circuit supplying power to the clock will cause the clock, and consequently the street light operation, to be off schedule. This problem can be avoided, at least for outages of short duration, through the addition of a mechanical timer that will continue to operate the clock until electric power is restored. The addition of the mechanical timer makes the control more complex and of course increases the cost, but, it does eliminate the necessity of having to reset time clocks following an extended service outage.

Time clock controls can be used for either series or multiple circuits to good advantage.

18. Pilot-Wire Control Systems

One of the most common methods of controlling street lights has been accomplished through the use of an a-c pilot-wire system. As the name pilot wire implies, a wire is run from a master control to each lamp or group of lamps to be operated from the master control. The master control can be a time clock, a light-sensitive device, or manual control. The pilot wire itself is usually
a No. 8 or No. 6 conductor. A relay is installed at each lamp, or group of lamps, to be operated. The relays may be operated in one of two ways. The most popular operation is to energize the pilot wire and the relays in the daytime. De-energization of the pilot wire and the relays causes the lamps to be connected to the power supply. The other method of operation is to energize the pilot wire and relays when the lights should be turned on.
The former of the two methods offers the advantage that should there be a failure in the master control, the pilot-wire circuit, or any relay, the lights will come on. The fact that the lights are on day and night will indicate a control failure, but, will provide light when it is needed. The latter method does not operate any of the lamps when a failure occurs, and no lighting is provided until the necessary maintenance is performed.
The pilot-wire system of control is applicable to both series and multiple circuits, but is used more on the multiple systems.

VI. SELECTION OF SYSTEM

19. General Discussion of Series and Multiple Sysiems

There are many factors that should be considered in the planning of any street-lighting installation. The desired level of illumination can be achieved through the use of many combinations of lamps, luminaires, luminaire spacings, light distribution patterns, and circuit arrangements. The final decision as to the installation is usually based on initial costs and annual operating costs, with the exception of cases where appearance of the installation is of particular importance.

In many cases, existing equipment and circuits will greatly influence what combination of equipment and circuits will be used. This is particularly true of the circuits. However, if a completely new installation is to be made, including a new circuit to be used only for street-lighting purposes, then the advantages and disadvantages of a number of possible combinations of systems and equipment should be considered.

If a series circuit is to be used, the equipment necestsary consists of a constant-current transformer, a primary remote-control oil switch, control equipment, film cutouts, and surge and short-circuit protection. Other equipment that might be used are capacitors for power-factor correction, a protective relay to cause the oil switch to operate to de-energize the circuit in the event of an open-circuit condition, and series-mercury transformers.
In some cases, where safety and local codes require it, insulating transformers are used to insulate the luminaire from the high voltage of the series circuit. When insulating transformers are used, the primary of the transformer is inserted in the series loop and the lamps are operated from the secondary of the transformer. The voltage at the luminaire is limited by the air gap in the insulating transformer.
Until recently, mercury lamps could not be operated from a series circuit without using a series-mercury transformer. The series-mercury transformer trans-
forms the current from the normal 6.6 or 20 amperes supplied by the constant-current transformer to the 3.3 amperes required by the lamp. It is essentially a current transformer, but does have a slight air gap to limit the peak open-circuit voltage developed to a value sufficiently low enough to prevent internal arc-over in the lamp. In order to operate mercury lamps without using series-mercury transformers, a 3.3 -ampere series circuit was developed to operate type E-H1 mercury lamps. As another approach to the elimination of the series transformer, a 6.6 -ampere mercury lamp was developed.

When mercury lamps are operated on a series circuit without the use of series-mercury transformers, the equipment previously mentioned is necessary, plus a film cutout for each lamp, a potential transformer, and a time-delay relay. This additional equipment is required so that in case of a power dip or outage, which extinguishes the lamps, the circuit will be de-energized for a sufficient length of time to permit the lamps to cool and then restrike in the normal manner. If this is not done, the arc in the lamps will not restrike and the film cutouts will break down, the same as if the lamps had failed.

The 3.3 -ampere system requires a special constantcurrent transformer, but uses standard type E-H1 mercury lamps. The 6.6 -ampere system uses a conventional constant-current transformer, but requires the type A-H24 mercury lamp which has a 6.6 -ampere rating.

If multiple street lighting is to be used, existing secondary circuits can be used without the need of a separate street-lighting circuit. The lamps served from the existing secondaries can be controlled individually by photoelectric cells, or by a pilot-wire relay scheme.

If a separate circuit is to be used for the multiple system, then the equipment necessary for such a circuit is a standard pole-type distribution transformer, a remotecontrolled primary oil switch, or a multiple relay, and some device to provide switching intelligence to the primary switch or multiple relay.

Mercury and fluorescent lamps operated from a multiple circuit require a ballast in order to provide proper voltage to start the lamp, and then to limit the current to a proper value once conduction has started.

Advantages and Disadvantages of Each System-The advantages of each type of system are both tangible and intangible. Local conditions will determine how much weight is given to each of the advantages and disadvantages.

The series circuit permits better control of light due to the smaller light source in a series incandescent lamp. The lamps are more efficient and maintain close to initial lumen output over a relatively long period of the life of the lamp. As a rule, the lamps are more rugged than the incandescent lamps used on multiple circuits.

Series-circuit control equipment is less complicated than corresponding multiple control equipment, and series circuits are more adaptable to simple methods of control.

Outages on the distribution circuits serving the area will not affect the separate series street-lighting circuits.

In rural areas, along arterials and highways, where long circuit runs may be required, the series circuit permits the use of more economical conductor sizes.

The multiple system offers the advantage of having a relatively low voltage at the luminaire. This permits the use of lower cost lamps, and makes it safer to replace lamps or to perform maintenance work on the luminaire. The constant-potential multiple system eliminates the need for special equipment such as the constant-current transformer, the type PC relay, and film cutouts.

Since the multiple system does not operate at primary voltages, the conductors need not be installed on crossarms. This somewhat simplifies the operating and maintenance problems. Since multiple system conductors need not be on the same crossarm with primary circuits, the problem of the street-lighting circuit conductors swinging into primary circuit conductors is eliminated. However, a broken primary conductor could fall into the multiple circuits which are installed below them. With the present trend to distribution voltages in the $15-\mathrm{kv}$ class, if the street-lighting conductors are installed on the same crossarm with the primary circuit, the crossarm must be made longer. Consequently, the tree trimming problem may become more severe in some areas. Multiple circuits avoid complicating these problems.

The multiple system does not require power-factor correction in most cases, as contrasted to the series system with its relatively low power factor.

The main disadvantage of the multiple system is that it requires relatively large conductors to serve large loads or long runs. However, the use of a 480 -volt multiple system permits the use of smaller conductors for these large loads, or long runs than could be used with the more commonly used $120 / 240$-volt multiple system.

20. Calculation of Constant-Current Transformer Loading

The rating of a constant-current transformer is expressed in kw output at the secondary terminals at rated voltage and frequency, and with rated secondary current and power factor. In accordance with ASA standards, constant-current transformers are designed to deliver rated kw output at 95 percent of rated primary voltage, with a load power factor of 99.5 percent.
To determine the required rating of a constantcurrent transformer for a given installation it is necessary to know: the type and number of lamps to be served; the characteristics of any insulating transformers or series-mercury transformers; conductor size, length, and spacing; ampere rating of protective relay; and the lowest ambient temperature expected.

Incandescent Lamp Load-Straight series operation of incandescent lamps approaches the condition of a 99.5 percent power factor load. The total load kw seen by the constant-current transformer is the lamp load plus the kw losses in the circuit. This total kw must not exceed the kw rating of the constantcurrent transformer as shown by the loading curves of Figs. 26 and 27. These curves are based on 95 percent

Fig. 26-Relationship of kilowatt and kilovar loading of types CPH, CSPH, and CMH constant-current transformers with 95 per cent of rated primary voltage applied.
and 100 percent of rated primary voltage, respectively. Table 13 shows the kw required by incandescent lamps.

Table 13-Data for incandescent Lamps

Lamp Rating	2000-Hour Lamps				3000-Hour Lamps			
	Straight Series		Insulating Current Transformers		Straight Series		Insulating Current Transformers	
mens peres	Kw	kvar	kw*	kvar	kw	kvar	kw *	kvar
10006.6	0.065	0	0.077	**	0.0695	0	0.082	**
$2500 \quad 6.6$	0.150	0	0.167	**	0.160	0	0.178	**
40006.6	0.220	0	-		0.231	0	-	
400015	-	-	0.236	**	-	-	0.248	**
400020	0.221	0	-		0.231	0	-	
60006.6	0.325	0	-		0.343	0	-	
600020	0.310	0	0.345	**	0.326	0	0.360	**
100006.6	0.570	0	-		0.620	0	-	
1000020	0.510	0	0.550	**	0.530	0	0.570	**
1500020	0.750	0	0.798	**	-	--	-	
2500020	1.275\|	0	11.34	**				

*Add the Kw loss in the cable from the insulating current transformer to the
lamp to the Kw loss in the insulating current transformer to obtain the total
$K w$ loss for the lamp and transformer.
as explained above. To this value add the Kvar of the cable frome the trans former to the lamp to obtain the total Kvar for the lamp and transformer.

Fig. 27-Relationship of kilowatt and kilovar loading of types CPH, CSPH, and CMH constant-current transformers with 100 per cent of rated primary voltage applied.

Table 14 gives the kw losses in the circuit conductors. The kvar losses in the circuit are given in Table 15.

Table 14 -Kilowatt Losses per 1000 Feet of Non-Magnetic Sheathed Copper Cable Buried Directly in Earth

Conductor Size	Ampere Rating of Series Circuit			
A.W.G.	6.6	7.5	15	20
4	0.012	0.016	0.063	0.110
6	0.019	0.025	0.100	0.177
8	0.031	0.040	0.158	0.281
10	0.051	0.066	0.263	0.470

Table 15-Approximate Kilovar Losses per 1000 Feet of \#4, \#6, and \#8 Non-Magnetic Sheathed Copper Cable Buried Directly in Earth

Spacing between	Ampere Rating of Series Circuit			
	6.6	7.5	15	20
80 Feet	0.01	0.013	0.05	0.09
3 Feet*	0.006	0.008	0.03	0.06

The use of insulating current transformers on a series circuit results in a load power factor which may be considerably less than 99.5 percent. In determining the required constant-current transformer capacity when insulating current transformers are used, it is necessary to consider the kvars as well as the kw of the load circuits. Table 13 also gives the kvars to be included in the determination of constant-current transformer rating required. The values given in this table assume the normal condition of the lamp in service. Allowances for lamp depreciation and transformer losses are included.
The values in Table 13 are based on the assumption that film cutouts are used on the secondary of the insulating current transformers. If no film cutout were used, and the lamp failed, the secondary of the insulating current transformer would be open circuited. Under the open-circuited condition, the kw losses in the insulating current transformer are negligible but the kvar losses may be in the order of five times the normal maximum kw rating of the transformer. When film-cutout protection is provided, a lamp failure produces a kw load on the series circuit equal to the internal losses of the insulating current transformer. Therefore, only the kw and kvar values for normal operation need be considered for constant-current transformer loading.

In_some cases, series-to-multiple transformers will be used and their effect on the series-circuit load should be determined. Where the single-lamp type is used, the following kw and kvar values should be used:

Lamp Watts	kw	kvar
500	0.560	0.080
1000	1.098	0.160

Using these values, the method for calculating loading is identical to that for insulating current transformers. Film cutout protection is recommended.

Series-to-multiple transformers designed to serve two or more multiple lamps have an internal air gap to limit the secondary voltage. A film cutout is not recommended for use with this type of transformer since it would have no purpose in the circuit. The kw and kvar values for series-to-multiple transformer designed to serve two or more multiple lamps are as follows:

Lamp Watts	kw	kvar
$0-350$	0.380	0.64
$350-750$	0.790	1.30

It is recommended that not more than one of the series-to-multiple transformers, for lamps up to 350 watts, be used for each 2.5 kw of constant-current transformer capacity. At least 5 kw of constant-current transformer capacity should be available for each of the transformers designed for 350 to 700 -watt lamps. The reason for these limitations is the reactance reflected into the series circuit by the internal air gap in the series-to-multiple transformer.

Electric-Discharge Lamp Load--In determining the load placed on a constant-current transformer by mercury and fluorescent lamps, three considerations are necessary:

1. The constant-current transformer capacity required for normal operation of the lamps.
2. The constant-current transformer capacity required to start the lamps at the lowest ambient temperature anticipated.
3. The constant-current transformer capacity required to prevent operation of the protective relay during the starting and warm-up period of the lamps.
It is possible for all three requirements to be different. The conditions of application will determine which requirement is the greatest, and thus will determine the constant-current transformer capacity necessary.

Electric-discharge lamps have negative temperatureresistance characteristics. It is therefore necessary to limit the flow of current through the lamps. The con-stant-current transformer controls the circuit current to a fixed value. An additional transformer is used with each electric-discharge lamp to match the lamp characteristics to the series circuit by providing the proper starting voltage for the lamps and by transforming the constant current in the series circuit to the proper operating current required by the lamp. Since this matching transformer limits the starting voltage at the lamp, the use of a film cutout can serve no purpose.

Under normal operating conditions, the load on the constant-current transformer is made up of the kw and kvars required by the various lamps and series transformers and the losses in the circuit conductors. Table 16 gives load values for both electric-discharge lamps and series transformers. The circuit losses may be obtained from Tables 14 and 15. When the total kwr aud kvars have been determined, the values should be

Table 16-Constant-Current Transformer Capacity Required for Operation of Mercury and Fluorescent Lamps

	$\begin{aligned} & \text { A-H22 } \\ & \text { 175W. } \\ & \text { Merc. } \end{aligned}$	$\begin{aligned} & \text { C-H5 } \\ & 250 \mathrm{~W} \\ & \text { Merc. } \end{aligned}$	E-H1, 400W, Merc.		$\begin{aligned} & \text { A-H18 } \\ & \text { 700W. } \\ & \text { Merc. } \end{aligned}$	A-H15 1000W. Merc.	Two F72T12/ HO 1.0 amp . Fluor.	Two F72T12/ SHO 1.5 amp . Fluor.	Two F48T12/ SHO 1.5 amp . Fluor.
			Std. Trans.	U.A.T. Trans.					
Normal Operation Kw	0.190	0.280	0.428	0.435	0.737	1.050	0.220	0.340	0.231
Kvar	0.127	0.185	0.278	0.194	0.483	0.700	0.165	0.274	0.175
Open-Circuit Kw	0.018	0.040	0.028	0.044	0.075	0.100	0.050	0.050	0.050
Secondary Kvar	0.550	0.700	1.190	1.135	1.940	2.770	0.850	0.850	0.850

Note: 1. These values do not contain any allowance for line losses and are based on nominal lamp and transformer values. 2. The two sets of values for the E-H1, 400 -watt, mercury lamp are for the
tank series-mercury transformer,
3. If the circuit is to serve as a parent circuit to cascade control the operstion of a second circuit, 0.53 Kvar must be allowed for the Type AN-2-6.6 (or equal) series-operated oil switch.
plotted on either Fig. 26 or Fig. 27 to find the constantcurrent transformer capacity required for normal operation.

It should be noted that an open-circuit condition exists on the secondary of a series transformer when the lamp fails. This places a high reactive load on the series circuit and can seriously affect the number of lamps that can be operated on the circuit. This stresses the need for a good maintenance program.

At the moment a series circuit is energized, all of the series transformers on the circuit have an open-circuited secondary. A high impedance is reflected into the series circuit. If adequate constant-current transformer capacity is not provided, the voltage across the lamps may not be sufficient for proper starting. The voltage required by a mercury or fluorescent lamp for proper starting is a function of the lamp design and the ambient temperature. The available starting voltage per lamp is a function of the series transformer design and the primary voltage applied to the constant-current transformer. These factors have been taken into account in Table 17.
During the starting cycle of mercury and fluorescent lamps, the high impedance caused by the open-circuit condition of the series transformers can cause a lower than normal current to flow in the series circuit. If the current is too low, the protective relay will operate and de-energize the circuit. Should this occur, it will be impossible to obtain full normal operation of the lamps. This is most important for a "hot restart" of mercury lamps.

T'able 18 gives the recommended maximum number of series-mercury transformers for given constant-current transformer ratings to assure proper "hold-in" operation of the protective relay. There are so many factors involved (including setting, tolerances, and condition of the protective relay) that it is almost impossible to give the absolute maximum number of lamps that can be started without causing the protective relay contacts to "drop-out." Experience indicates the recommended maximums given in the Table are practical values.

Mixed Load-It is possible to use incandescent, mercury, and fluorescent lamps in any combination on a series street-lighting circuit as long as the constantcurrent transformer capacity is not exceeded. Since the filaments of the incandescent lamps have very little resistance when cold, virtually all of the constant-current transformer capacity is available to start mercury or fluorescent lamps. Under proper conditions, it is possible to install incandescent lamps on a circuit that is loaded to capacity with electric-discharge lamps.
The method for calculating constant-current transformer capacity for mixed incandescent and electricdischarge lamp loads is as follows:

1. The total kw and kvars on the circuit should be determined and plotted on the curve of either Fig. 26 or Fig. 27.
2. The number of mercury or fluorescent lamps on the circuit must not exceed the number of lamps that can be started as given in Table 17.
3. The number of mercury or fluorescent lamps must be checked against Table 18 to make sure that the protective relay will not prevent starting.
The following procedure can be used to determine the constant-current transformer capacity required in a circuit, regardless of the type or types of lamps to be served.
4. Calculate the total circuit kw requirements with all lamps operating. (Tables 13, 14, 16 and 17)
5. Calculate the total circuit kvar requirements with all lamps operating. (Tables 13, 15 and 16)
6. Determine the maximum number of lamps that can be expected to be inoperative at any given time. This will depend upon the maintenance of the system. If only incandescent lamps are used, omit steps 4 and 5 .
7. Subtract the normal operating kw and kvar for the number of inoperative lamps (as determined

Table 17-Constant-Current Transformer Capacity in KW Required for Reliable Starting of Mercury and Fluorescent Lamps

Ambient Temp. in Degrees Fahrenheit	Percent of Rated Primary Voltage	A-H22 175W. Merc.	$\begin{aligned} & \text { C-H5 } \\ & 250 \mathrm{~W} . \\ & \text { Merc. } \end{aligned}$	E-H1, 400 W., Merc.				A-H18 700W. Merc.	A-H15 1000 W Merc.	Two F72T12/ HO 1.0 amp . Fluor.	TwoF72T12/SHO1.5 amp.Fluor.	Two F48T12/ SHO 1.5 amp. Fluor.
				Std. Trans.		U.A.T. trans.						
				Std. lamp	Lifeguard	Std. lamp	Lifeguard					
-20	100	0.415	0.465	0.760	. 710	0.620	0.535	1.15	1.55	0.545	0.715	0.620
	95	0.435	0.490	0.800	. 750	0.650	0.560	1.20	1.60	0.575	0.835	0.650
0	100	0.320	0.420	0.620	. 580	0.530	0.495	1.15	1.55	0.450	0.630	0.550
	95	0.335	0.440	0.650	. 610	0.560	0.510	1.20	1.60	0.470	0.770	0.580
+20 or above	100	0.320	0.420	0.580	. 580	0.485	0.485	1.15	1.55			
	95	0.335	0.440	0.610	. 610	0.510	0.510	1.20	1.60			
+50 or above	100									0.425	0.525	0.420
	95									0.445	0.650	0.440

Note: 1. All values based on nominal lamp and series-mercury or fluorescent transformers.
2. These values do not consider the use of a protective relay in the circuit which may operate to de-energize the circuit due to low current at the instant of starting.
3. Four values are shown for the E-H1, 400 watt, mercury lamp: the former (standard) transformer, the new (universal aluminum tank) transformer, the standerd mercury lamp, and the new "Lifeguard" mercury lamp.

Table 18-Recommended Maximum Number of Series-Mercury Transformers per Constant-Current Transformer for Proper Operation of the Protective Relay

Constant-Current Transformer		$\begin{aligned} & \text { A-H22 } \\ & \text { 175W. } \\ & \text { Merc. } \end{aligned}$	C-H5 250W. Merc.	E-H1, 400W., Merc.		$\begin{aligned} & \text { A-H18 } \\ & \text { 700W. } \\ & \text { Merc. } \end{aligned}$	A-H15 1000W. Merc.	Two 6' HO 1.0 amp . Fluor.	Two 6' SHO 1.5 amp . Fluor.	Two 4' SHO 1.5 amp. Fluor.
Rating in Kw	Percent of Rated Primary Voltage			Std. trans.	U.A.T. trans.					

With Standard PC-120-3.8/6.6 (or Equal) Protective Relay

10	$\begin{array}{r} 100 \\ 95 \end{array}$	$\begin{aligned} & 26 \\ & 24 \end{aligned}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	8	5	$\begin{aligned} & 18 \\ & 17 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \end{aligned}$
15	$\begin{array}{r} 100 \\ 95 \end{array}$	$\begin{aligned} & 40 \\ & 38 \end{aligned}$		$\begin{aligned} & 17 \\ & 16 \end{aligned}$	$\begin{aligned} & 22 \\ & 21 \end{aligned}$		8		25 23	25 23
20	$\begin{array}{r} 100 \\ 95 \end{array}$	$\begin{aligned} & 53 \\ & 50 \end{aligned}$						36	$\begin{aligned} & 33 \\ & 31 \end{aligned}$	$\begin{aligned} & 33 \\ & 31 \end{aligned}$
25	$\begin{array}{r} 100 \\ 95 \end{array}$	$\begin{aligned} & 66 \\ & 69 \end{aligned}$	$\begin{aligned} & 47 \\ & 45 \end{aligned}$		$\begin{aligned} & 37 \\ & 35 \end{aligned}$				$\begin{aligned} & 41 \\ & 39 \end{aligned}$	$\begin{aligned} & 41 \\ & 39 \end{aligned}$
30	$\begin{array}{r} 100 \\ 95 \end{array}$	$\begin{aligned} & 80 \\ & 76 \end{aligned}$	$\begin{aligned} & 57 \\ & 54 \end{aligned}$		$\begin{aligned} & 44 \\ & 42 \end{aligned}$	24 23				

10	100	33	25	15			7	28		
	95	35	24	14	17	10	7	27	24	24
15	100	50	38	22	26	15	10	42	38	38
	95	52	36	21	25	14	10	40	36	36
20	100	67	52	29	36	20	14	56	51	51
	95	70	49	28	34	19	13	53	49	49
25	100	83	64	37	44	25	17	70	64	64
	95	87	61	35	42	24	17	67	61	61
30	100	105	77	44	53	30	21	84	77	77
	95	100	73	42	51	29	20	80	73	73

Note: 1. All values based on nominal lamp and beries-mercury or fluorescent
2. The two sets of values for the E-H1, 400 watt, mercury lamp are
in step 3) from the total circuit kw and kvar. (Table 16)
5. To the kw and kvar determined in step 4, add the kw and kvar for the number of series-mercury or fluorescent transformers operating with opencircuited secondaries (as determined in step 3). (Table 16)
6. Determine whether the voltage at the primary of the constant-current transformer will be 95 per cent or 100 per cent of rated voltage.
7. Using the appropriate curves of either Fig. 26 or Fig. 27, locate the total circuit kw on the ordinate and the total circuit kvar on the abcissa. Plot the point representing the intersection of these two valves. The constant-current transformer rating curve immediately above the plotted point is the required rating for operating the circuit once the lamps have started. In the case where only incandescent lamps are used, the indicated constant-current transformer capacity is all that is required. In the case of mercury or fluorescent lamps, additional con-stant-current transformer capacity may be required.
8. Determine the lowest ambient temperature at which the circuit will be energized. From Table

17, determine the constant-current transformer capacity required to start one lamp. The number of lamps multiplied by this value will give the minimum constant-current transformer rating for starting the lamps.
9. If a protective relay is us $3 d$, check Table 18 to see what constant-current transformer capacity is required to start the lamps without causing the protective relay to drop-out and de-energize the circuit. The larger of the two constant-current transformer ratings determined in steps 8 and 9 is required for starting purposes.
10. Compare the constant-current transformer ratings determined in steps 7, 8 and 9 . The largest rating determined is that required for reliable starting and operation.
The following example is given to illustrate the manner in which the required rating of a constant-current transformer is determined. Assume a 6.6 -ampere series circuit serving fourteen type E-H1 mercury lamps and fifteen 10,000-lumen, 2000-hour life incandescent lamps. Standard mercury lamps are used with series-mercury transformers and the incandescent lamps are operated from the 20 -ampere secondary of $6.6 / 20$-ampere insulating current transformers. A standard 3.8/6.6-ampere protective relay is used. Assume that a maximum of
two mercury lamps are inoperative before circuit maintenance is performed. The 3700 -foot primary circuit is underground and consists of direct-buried \#6 copper cable. The circuit is run on opposite sides of the street and the separation between conductors is approximately 80 feet. Assume approximately 72 feet of \#10 cable are used per lamp from the pole base to the lamp. The lowest ambient temperature to consider is -20 C . The voltage at the primary terminals of the constant-current transformer is 95 per cent of rated voltage at time of lamp turn-on.

From Table 14:

> kw loss in 72 feet of $\# 10$ cable $=\frac{(72)}{(1000)}(0.470)=$ 0.034 kw per lamp

From Table 15:

$$
\begin{aligned}
& \text { kvar loss in } 72 \text { feet of } \# 10 \text { cable }=\frac{(72)}{(1000)}(0.06)= \\
& 0.004 \text { kvar per lamp }
\end{aligned}
$$

From Table 13:
kw loss in one insulating current transformer= 0.550 kw
kw loss of one insulating current transformer plus secondary leads $=0.550+0.034=0.584 \mathrm{kw}$
kvar loss per insulating current transformer $=0$ (0.19) $(0.584)=0.111$ kvar

From Table 14:
kw loss in \#6 primary cable $=\frac{(3700)}{(1000)}(0.019)=0.07 \mathrm{kw}$
From Table 15:
kvar loss in \#6 primary cable $=\frac{(3700)}{(1000)}(0.01)=$ 0.04 kvar

Since two mercury lamps can be expected to be inoperative at any time, open-circuited secondary conditions are assumed for two series-mercury transformers.

From Table 16:
kw loss in one series-mercury transformer (normal operation) $=0.428 \mathrm{kw}$
kvar loss in one series-mercury transformer (normal operation) $=0.278 \mathrm{kvar}$
kw loss in one series-mercury transformer (open circuited secondary) $=0.028 \mathrm{kw}$
kvar loss in one series-mercury transformer (opencircuited secondary) $=1.190$ kvar
Total kw:
Insulating current transformers plus secondary
leads $\quad=(15)(0.584) \quad=8.75 \mathrm{kw}$
Series-mercury
transformers $=(12)(0.428)+(2)(0.028)=5.19 \mathrm{~kW}$
Primary cable $\quad=\frac{0.07 \mathrm{~kW}}{14.01 \mathrm{kw}}$

Total kvar:
Insulating current trans-

former $=(15)(0.111)$	$=1.67 \mathrm{kvar}$
Secondary leads	$=(15)(0.004)$
Series-mercury transformers $=(12)(0.278)+(2)(1.190)$	$=5.72 \mathrm{kvar}$
Primary cable	
	$\underline{0.04 \mathrm{kvar}}$

Plotting the Total kw and Total kvar values on the coordinates of Fig. 26 gives a point that falls just below the curve for a $20-\mathrm{kw}$ constant-current transformer. This, then, is the rating necessary to satisfy operating conditions.
Table 17 shows that 0.80 kw of rated constant-current transformer capacity must be provided to start each E-H1 mercury lamp under the stated conditions. Thus, (14) (0.80) $=11.2 \mathrm{kw}$ of constant-current transformer capacity is required to start the mercury lamps.

Table 18 should be checked to make sure the protective relay will not operate to de-energize the circuit when attempting to start the mercury lamps. The information in this table indicates that a $15-\mathrm{kw}$ constantcurrent transformer is required.
The highest requirement for constant-current transformer capacity is determined by operating conditions in this case. Therefore, a $20-\mathrm{kw}$ constant-current transformer should be used.
In some cases, a given constant-current transformer is available and it is desired to find how many lamps can be served from that transformer. The following example illustrates this type of a calculation.

Assume a 6.6-ampere series circuit to be served from a 30 -kw constant-current transformer. There is to be 100 feet of \#6 cable per lamp in the underground primary circuit. The circuit is run on opposite sides of the street and the separation between conductors is approximately 80 feet. The lowest anticipated ambient temperature at time of lamp turn-on is 20 F . The voltage at the primary terminals of the constant-current transformer is 100 per cent of rated voltage at time of lamp turn-on. A standard 3.8/6.6-ampere protective relay is used.

The problem is to determine the maximum number of E-H1 mercury lamps that can be operated on the circuit using standard lamps and series-mercury transformers. Assume no lamp outages.

From Table 14:
kw loss in 100 feet of \#6 primary cable=

$$
\frac{(100)}{(1000)}(0.019)=0.0019 \mathrm{kw}
$$

From Table 15:

kvar loss in 100 feet of \#6 primary cable= $\frac{(100)}{(1000)}(0.01)=0.001 \mathrm{kvar}$

From Table 16:
kw loss in one series-mercury transformer= 0.428 kw
kvar loss in one series-mercury transformer $=$ 0.278 kvar

Total kw per lamp:

$$
\begin{array}{ll}
\text { Primary Cable } & =0.0019 \mathrm{kw} \\
\text { Series-mercury transformer } & =\frac{0.428 \mathrm{kw}}{0.43} \mathrm{kw}
\end{array}
$$

Total kvar per lamp:

Primary cable	$=0.001 \mathrm{kvar}$
Series-mercury transformer	$=0.278 \mathrm{kvar}$
	0.28 kvar

For ease of plotting these values on the curves of Fig. 27, multiply both the kw and kvars by ten. Using 4.3 kw as the ordinate and 2.8 kvar as the abcissa, plot the one point. Next, draw a straight line through this point and the origin and extend the line so that it interests the load curve for a $30-\mathrm{kw}$ constant-current transformer. This intersection shows that 21.1 kw is available to operate the mercury lamps. At 0.43 kw per lamp, the number of mercury lamps that can be operated is:

$$
\frac{(21.1)}{(0.43)}=49 \mathrm{lamps}
$$

Table 17 shows that 0.58 kw of constant-current transformer capacity is required to start each mercury lamp. Therefore the number of lamps that can be started is:

$$
\frac{(30)}{(0.58)}=51 \text { lamps. }
$$

Table 18 indicates that no more than $35 \mathrm{E}-\mathrm{H} 1$ lamps can be started on the circuit without causing the protective relay to drop-out and de-energize the circuit. Thus, the protective relay is the limiting factor in this application. A maximum of 35 lamps is the limit for this circuit under the specified conditions.

More lamps could be installed on the circuit if the new universal aluminum tank series-mercury transformer were used to operate LIFEGUARD E-H1 mercury lamps. Assuming all other conditions to be the same, an analysis similar to that above shows a maximum of 56 lamps can be operated, 62 can be started, and 44 can be started without causing the protective relay to de-energize the circuit. The protective relay is still the limiting factor, but 44 lamps can be installed instead of 35 as in the previous case.

If the protective relay were changed from the 3.8/6.6ampere relay to the $2.5 / 6.6$-ampere relay, the maximum number of lamps that could be started without causing the relay to drop-out would be 53 .

The procedure outlined above for determining con-stant-current transformer loading is realistic. Using this procedure will result in the most efficient use of constant-current transformer capacity while assuring dependable operation of the lamps for all reasonable anticipated conditions.

There are a number of existing installations in which the number of mercury lamps exceeds the recommendations determined from this procedure. This has been done as an economy measure in most cases to minimize the number of constant-current transformers and associated equipments on the system. Although some savings can be realized by loading a transformer beyond the recommended value, these savings may be made at the expense of more lamp outages, and possible poor lumer maintenance and lower light output.

21. Maintenance

Dirt on lamps, reflectors, and enclosing glassware is the largest contributor to lighting depreciation. In some checks of street lighting installations, depreciation factors as high as 60 per cent have been found. The lighting becomes completely inadequate if allowed to depreciate to such an extent. Luminaires should be cleaned regularly according to a definite prearranged schedule.

The cleaning schedule should be set up on an annual basis in such a way that under normal operating conditions the lighting depreciation due to the accumulation of dirt will not exceed 15 per cent. Cleaning every two or three months will accomplish this result under average dirt conditions, but in very dirty locations, cleaning may be necessary every few weeks.

Lamp replacements should always be made as promptly as possible, since adequate lighting at a given location is largely dependent on the light output of a single luminaire. If one lamp is out, a serious traffic hazard may exist. Lamps may be replaced individually, as they burn out, or on a group replacement plan.

Individual Lamp Replacement-A plan is particularly desirable where lamp breakage is high or where lamps are near maintenance headquarters. Patrol crews handle outages and answer outage complaints.

Group Lamp Replacement-Group replacement, the periodic replacement of all lamps on the system, is preferred by some street lighting maintenance organizations for several reasons:

1. There is always a time lag between a lamp failure and its replacement; so a reduction in the total number of outages, by periodic replacement, results in fewer hours of darkness and danger caused by the dead lamps.
2. Group replacement automatically eliminates the dim lamps on series circuits.
3. Fewer replacements are required while the circuits are energized and during hours of darkness. Both factors contribute to the safety of the crews.
4. Complaints of outages are minimized. The basis for this group replacement lies in the uniformity of lamp life achieved through close control of manufacture. Premature outages can be held to approximately 10 per cent if group replacement is made before the lamp has burned a sufficient time to be approaching the accelerated point on the mortality curve. Of course, the few lamp outages which do occur should be replaced promptly.

Regulation of Voltage or Current--The nominal life of an incandescent lamp has been chosen with the intent of maintaining a reasonable balance between operating efficiency and cost of lamp replacement for the average installation.

Voltage changes are quite common on multiple circuits, and it is recommended that the voltage throughout the system be checked at least once a year to obtain a true picture of operating conditions.

The constant-current transformer maintains close control over the secondary current; as a result, series circuits are relatively free from trouble due to variations in current. Constant-current transformers require very little maintenance. However, at least once a year the following checks should be made:

1. Secondary current value. Weight or position of counterweight should be adjusted to correct any deviation from correct value.
2. Sensitivity should be checked by checking movement of mechanism. Poor sensitivity can be caused by misalignment of parts or foreign materials in the bearings.
3. Oil should be tested for moisture or contamination by a dielectric test.

The oil switches should be given standard switch tests and inspections.

Relays and Switches-The air-insulated relays used in street-lighting service are of rugged construction to assure long life without frequent inspection. However, inspection once each year will often disclose conditions which can be easily corrected to assure longer life without rebuilding. Factory adjustments of the mechanism should not be changed unless faulty operation clearly indicates that adjustments are necessary.

Time switches should be given the same care as any other high-grade time-keeping mechanism.

Corrective Measures-The difference in the maintenance on series and multiple circuits, other than the checks given above, can best be given by a brief review of some of the troubles and causes of these troubles on each type of system.

On a multiple system, the following troubles and causes may be expected when incandescent lamps are used:

Indication of Trouble
5. All lamps out

Probable Cause or Causes
Transformer primary fuse open CSP transformer secondary breakег ореп
Failure in multiple relay
Failure in primary switch
Failure of control
On series circuits, the following might be expected:

Indication of Trouble

1. Lamp out, but apparently O.K.
2. One lamp burns dimly
3. All lamps burn dimly
4. Portion of circuit out
5. All lamps out
6. Short lamp life
7. Lamp breakage
8. Burned sockets and receptacles

Probable Cause or Causes
Lamp loose in socket
Loose or broken connections
Film cutout punctured
Partial failure of film cutout
Incorrect lamp
Filament broken and rewelded
Low current-constant current transformer jammed.
Low current-constant current transformer out of adjustment
Low current-low primary voltage
Low current-constant current transformer overloaded.
Film cutouts punc-tured-incorrect cutouts
Film cutouts punc-tured-lightning
Film cutouts punc-tured-power surges
Circuit grounded at two or more points
Feeder power off
Control power off
Series circuit open
Primary switch failure
High current-constant current transformer jammed
High current-constant current transformer out of adjustment
Mechanical damage
Incorrect lamp
Excessive vibration
Water contacting lamp bulb
Lamp touches luminaire
Improper film cutout
continued on next page

Abstract

Indication of Trouble Probable Cause or Causes 9. Radio and telephone interference

Overhead circuit contacts trees Inadequate insulation on high voltage circuits Open-circuited isolating transformers

22. Cost Comparisons

In order to provide a true picture of the relative costs of different systems, a cost analysis should include not only labor and material costs for the original installation, but also all maintenance, operation, and amortizing costs. Taxes, interest, and insurance should be included when amortizing the cost of the installation.
As labor costs and local practices vary throughout the country, it is impossible to make a cost comparison that is exact for all cases. However, for purpose of illustration, a cost study is presented which uses an average of costs for various parts of the country. While the study is not exact for any one locality or installation, it will provide an indication as to the relative costs of the various systems compared. In the cost studies, the actual mounting height is used rather than the "nominal" mounting height of 25 feet or 30 feet. As there is a difference in luminaire mounting height for transformerbase or anchor-base poles, this then results in a different coefficient of utilization for any particular unit when using different types of standards.
Table 19 presents a cost comparison of various types of luminaires and distribution systems that may be employed to provide illumination levels used in downtown business districts today. The systems utilizing colorcorrected mercury lamps are included to show the relative cost between the 400 -watt clear, and 400 -watt color-corrected mercury lamps, and also to provide an indication of relative cost of higher wattage lamps. As the 400 -watt clear mercury lamp is a more familiar lamp than the color-corrected or higher wattage lamps, this lamp was chosen as the mercury lamp to be used in all of the cost studies, even though the trend is toward the use of color-corrected lamps for new installations. The 425 -watt A-H17 high-voltage lamp using a reactor ballast becomes unstable at approximately 90 per cent of rated lamp open-circuit voltage. Consequently, this lamp was not used as the 100 per cent base, as this characteristic would eliminate it from consideration for many installations. The least expensive system (excluding the high-voltage mercury lamp) is the E-H1 mercury lamp with the high-reactance ballast when served from a 480 -volt distribution system. This system was used as the 100 per cent base.
Table 20 presents a cost comparison of various luminaires that might be used to provide illumination levels used on many high density traffic roadways and secondary business streets.

Table 21 is a cost study of installations for expressway type roads. This study also shows a comparison between the cost of mounting the luminaires along the sides of the road or mounting them in the medial strip.

The form used for the cost studies is the one officially recognized by the Illuminating Engineering Society. Most items are self-explanatory, but Line 14, "Net luminaire cost (each)," Line 15, "Net additional accessory costs per luminaire," and Line 16, "Estimated wiring and installation cost per luminaire," should be explained.
Line 14 includes the cost of the luminaire, standard, and ballast or series transformer. Using System I of Table 19 as an example, the cost is as follows:

Luminaire	$=\$ 73.76$
Standard	$=135.74$
$6.6-20$ amp. series transformer	$=65.45$
Total	$=\$ 274.95$

Line 15 includes the cost of the wire, transformer, and control equipment. Although the cost study is for a onemile section of roadway, this figure was obtained on the basis of the total installation being much longer. A $30-$ kw constant-current transformer was loaded as indicated in the cost study, and the cost for this complete circuit was pro-rated among the number of units on the circuit to obtain the cost per luminaire. Again using system I of Table 19, the cost is obtained as follows:
$30-\mathrm{Kw}$ "package type," self-protecting

constant-current transformer	$=\$ 1782.55$	
	$=$	12.65
Hanger iron	$=$	39.00
Photo-control		
$2700 \mathrm{ft} \# 8 \mathrm{l} / \mathrm{c} 6000$-volt direct-buried		
cable	$=$	94.50
$2400 \mathrm{ft} \# 10 \mathrm{R}$ WRH wire		$\$ 2498.46$

Total cost for the one circuit $\$ 2498.46$

$$
\text { Cost per luminaire }=\frac{\$ 2498.46}{34}=\$ 73
$$

Line 16 includes the labor costs for installing and connecting all equipment. Again, this cost per luminaire was figured on the total cost of one circuit, and then this cost was pro-rated among the number of luminaires on the circuit to obtain the cost per luminaire. Continuing using System I of Table 19, the cost is obtained as follows:

Install transformer base standard complete— $\$ 50.00$ (each) $\quad=\$ 1700.00$
Install and connect luminaire- $\$ 7.00$ (each) $=238.00$
Install and connect 6.6-20 ampere series transformer $\$ 6.00$ (each) $=204.00$
Install and connect package type self protecting constant-current transformer $=110.00$
Install and connect photo control $=7.00$
Install cable in pole and bracket- $1 / \mathrm{c}$ $\$ 10.00$ (each) $=340.00$
Install 100 ft . underground cable-2 cables $\$ 42.00 / 100 \mathrm{ft}$. (each) $=42.00$

Install 2200 ft . underground cable-1 | cable $\$ 40.00 / 100 \mathrm{ft}$. (each) | $=880.00$ |
| :--- | :--- |
| Total Cost for the one circuit | $=\$ 3521.00$ | Cost per luminaire $=\frac{\$ 3521.00}{34}=\$ 104$

Table 19-Cost Comparison* of Eighteen Systems

Lighting ststem number	6.6 Am					ST. SERIES ${ }^{2}$		120/200 ${ }^{\text {n }}$		240/480 VOLP			480 VOLT			480 VOLP		
	34 Units/Cir 50 Unit/Clir 32 Units/Cir 4 Units/Clr 32 Unita/Cir					$\begin{array}{cc} \mathrm{VI}_{1} & \mathrm{VIIs}_{1 \mathrm{~s}} \\ 52 \text { Unit/Cir } & \text { Unit/Cir } \end{array}$		VIII IX		$\stackrel{x}{x_{\text {Hilch Rext }}}$	${ }_{\text {Ros. Output }}^{x_{1}}$			$\underset{\text { Reg. Oulput }}{\text { xiv }}$	$\operatorname{Roaxcor}_{\mathrm{xV}}$	$\begin{aligned} & \mathrm{XY}_{1} \\ & \text { Hidi React } \end{aligned}$	$\begin{gathered} \text { XVIIt } \\ \text { Resctor } \end{gathered}$	$\text { Resillor }_{\text {Rust }}$
1. Typo of ismp (Fil., merc., It	Filament	Filament	Mercury	Mercury	Flioresecent	Filume	Mercury	Flument	Flument	Mercury	Mercury	Fluerescont	Mercury	Morrury	Mercury	coler Corrested Merc		
20\% 2. Lamp description	$\begin{gathered} 15,000 \mathrm{~L} \\ \substack{\text { PS-52 } \\ 715} \end{gathered}$	$\begin{array}{r} 10,000 \mathrm{~L} \\ \text { PS-40 } \end{array}$	${ }_{400}^{\text {E.H1 }}$	${ }_{400}^{\mathrm{E}-\mathrm{H1}}$	${ }^{72712 / 85}$			$\underset{\substack{\text { P5S-52 } \\ 800}}{15,000 \mathrm{~L}}$	$\begin{gathered} 10,000 \\ \substack{15-40 \\ 505} \end{gathered}$	${ }_{400}^{\text {E. }} 10$	${ }_{400}^{\mathrm{E}-\mathrm{H1}}$	$7_{95} 7 T_{95}^{12 / 8 s}$	${ }_{400}^{\text {E-H1 }}$	${ }_{\text {E-H0 }}^{\text {E/ }}$		${ }_{400}^{\text {J-H1 }}$	${ }_{700}^{\text {日-418 }}$	${ }_{\substack{\text { B-H15 } \\ 1000}}$
2. ${ }^{\text {3 }}$	Pendent	Pendant	Horizontal	Horizontal Mercury		Pendant	Horizontal Mercury	Pendant	Pendant	Horizontal Mercury	Horizonts Mercury	Tilted Fluorescan	Horizontal Mercury	Morizontal Mercury	Horizontal Mercury	Horizontal Marcury	Horizontal Mercury	Herizental mercury
迺ㅈㅓㅢ 4. Number of lamps per fuminaire	1	1	1	1	4	1	1	1	1	1	1	4	1	1	1	1	1	1
5. Rated initial lamp lumens per lumin	15,000	10,000	21,000	21,000	20,400	10,000	20.000	15,000	10,000	21,000	21,000	23,400	21,000	21,000	21,000	20,000	34,000	52,000
6. Lamplise...	1,700	1,700	1,000	1,000	7,500	1,700	6,000	1,350	1,350	7,000	7,000	7.500	7,000	7,000	1,000	7,000	7,000	7,000
7. Watts per luminaire (incluoling auxiliary) +10 per cent line loss	825	589	484	484	484	59	473	880	632	505	512	504	505	510	195	505	809	1,14
8. Coefficient of utiliration.	. 398	. 464	. 516	. 516	281	. 40	. 199	374	. 40	516	. 516	230	. 516	. 516	. 516	. 163	404	365
9. Maintenance Iactor,		$\overline{0}$	$\overline{88}$			216	96	170	$\overline{216}$	8	88	140	8	8	88	102	69	50
\% ${ }^{10}$. Number ol luminites	${ }_{65} 60 \mathrm{pp}$	${ }_{51}{ }^{206}$	120 Opp	120 Opp	73 Opp	490 pp	1110 pp	620 pp	49 Opp	120 Opp	120 Opp	75 Opp	120 Opp	120 Opp	120 Opp	103 Dpp	7 Stas	106 Stay
11. Averase foolcandies Initial.	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
12. Enerry rate (5 per KWH).,	s.01	3.01	5.01	s.01	s.01	3.01	s. 01	s.01	\$.01	s.01	5.01	5.01	s.01	3.01	\$.01	5.01	\$.01	5.01
13. Estimated burning hours per year	4,000	4,000	1,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4.000	4,000	4,000	4,000
14. Net luminalre eost (bach) 6 5 15. Net additional accessory cost per luminaire? 8) 16. Estimated wiring and instailation cost per luminaire. . 17. Net inital lamp cost each (list less 30 per cent). 12. Net initial lamp cost per Juminaird (4×17). 19. Total hitial cost per luminaire $(14+15+16+18)$. 20. TOTAL INITIAL COST (10×19).	\$ 275.-	$231 .-$	13.-	243.-	439.-	167.-	173.-	186.-	160.-	$245 .-$	$245 .-$	361.	250.-	250.-	232	263	250	${ }^{324 .-}$
	; 73.-	53.-	-	71.-	79.-	63.-	95.-	n.-	62.-							$53 .-$	57.	n.-
	5 104.-	97.-	124.-	124,-	110.-	85.-	110.-	93.-	86.-	${ }^{126 .-}$	126.1	100.-	125.-	125.-	125.-	${ }^{118 .-}$	139.-	$162-$
	\$ 2.10	1.75	14.00	14.00	2.63	1.74	19.25	2.70	1.02	14.00	14.00	2.63	14.00	14.00	14.18	36.10	34.65	${ }_{3}^{38.15}$
	\$ 2.10	1.75	14.00	14.00	10.52	1.74	19.25	270	1.02	14.00	14.00	10.52	14.00	14.00	14.18	16.10	34.65	38.15
	5 154.-	383.-	469.-	452.-	633.-	317.-	397.-	359.-	309.-	$41 .-$	44.1	$512-$	432.-	432.-	414.-	450.-	491.-	601.-
	\$72,600.-	78,898.-	41,272.-	39,776.-	91,872.-	68,472.-	38,122-	61,080.-	66,74.-	30,808.	38,008.	71,680.	38,016.-	38,016.	36,432	45,900.	30,879.	30,050.
:롱 21 . Inlitial cost per luminaire less lampa $(14+15+16)$. 22. Total Initine cost less lamps $(10 \times 21) \ldots$ 23. ANNUAL FIXED CHARGES (15 per cent of 22)	452-	$381 .-$	455.-	138.-	628.-	315.-	378.-	356.-	308.-	427.-	127	502	-	418.-	400.-	434.-	156	-
	\$72,320.-	78,186.-	40,040.-	38,54, -	90,432.-	68,040.-	36,288.-	60,520.	66,528.-	37,576.-	37,576.	70,280.-	36,784,	36,784	35,200.	44,268.	31,466.	38,150.-
	\$10,848.-	11,73.-	5,006,-	5,782.-	13,565.-	10,206.-	5,43,	9,078.-	9,979.-	5,636.-	5,636.-	10,512.-	5,519.	5,512.	5,280.	5,640.	4,720.	4,272
24. Annual no. lamp replacement $(4 \times 10 \times 13+6)$ 25. Annual cost of replacerment lamps (17×24) 5. 26. Annual cost of replacement parts ${ }^{4}$ 27. Total annuai maintenanee material cost $(25+26)$ 28. Estimated labor cost to replace one lamp 29. Total labor costs to replace lamps (24×28). 30. Ettimated cleaning cost per luminairo. 31. Number of cleanings per year	376	485	50	50	307	508	6	504	508	50	50	298	50	50	50	58	${ }^{39}$	29
	(790,-	849.-	700.-	700.-	807.-	884,-	1,232.-	1,361.-	518.-	700.-	700.-	780.-	700.-	700.-	709.	934.-	1,351.-	1,106.-
	($723 .-$	785.-	400.-	${ }^{3155 .}$	904.-	680.-	$363 .-$	$605 .-$	665.-	376.-	376.-	703.-	${ }^{368 .}$ -	$368 .-$	352.	43.-	315.-	$282-$
	\$ 1,513.-	1,634.-	1,100.-	1,005.-	1,711.-	1.564.-	1,595.-	1,866.-	1,189.-	1,076.-	1,076-	1.489.-	1,068.-	1,068.-	1,061.-	1,377.-	1,666.-	1,388.-
	3 1.-	1.-	1.-	1.-	1.-	1.-	1.-	$1 .-$	1.-	1.-	1,-	1.-	1.-	1.-	1.-	1.-	1.-	1.-
	(376.-	485.-	50.-	$50 .-$	307.-	508.-	6.-	504.-	508.	50.-	50.-	299.-	50.-	50.-	50.	58.-	39.-	29
	; 1.-	1.-	1.-	1.-	$2 .-$	1.-	1.-	1.-	1.-	1.-	1.-	$2-$	1.-	$1 .-$	1.-	${ }^{1 .-}$	${ }^{1 .-}$	${ }^{1 .-}$
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
132. Annual cleanning cost ($10 \times 30 \times 31$)	; 320.-	$412 .-$	176.-	176.-	576.-	432.-	192.-	$340 .-$	432.-	176.-	176.-	560.	176.	176.	${ }^{176}$	204.	138.	$100 .-$
33. Totai annual meintemance labor cost ($29+32$).	\$ 696.-	897.-	226.-	226.-	$889 .-$	990.	256.	s4.-	940.	226.-	226.-	$859 .-$	226.-	226.-	${ }^{226 .-}$	$262 .-$	17.-	1297-
\geq 23. Total Annual Mointenence Cost $(27+33)$,	\% 2,20s.-	2,531.-	1,326.-	1,311.-	2,544-	2.504.-	1,851.-	2,710.-	2,123.-	1,302.-	1,302.-	2,348.-	1,29.-	1,294.-	1,287.-	1,639.-	1,843.	1.517.-
35. Annual Enerry Cost $(7 \times 10 \times 12 \times 13+1000)$	\$ 5,280, -	4,804.-	1,704.-	1,704.-	2,788.-	5,132--	1,816.-	5,976-	5,460.-	1,7\%8.-	1,802.-	2,822.-	1,778.-	1,795.-	1,742.-	2,060.-	2,233.-	2,280.-
36. TOTAL ANNUAL OPERATING COSt $(34+35)$.	\$ 7,489.-	1,335.-	3,030.-	3,015.-	5,382-	7,636.-	3,667.-	8,885.-	1,583-	3,080, -	3,104-	5,170.-	3,022-	3,089.-	3,029.-	3,699.-	4,076.-	3,005.-
-5 5 37. TOTAL ANNUAL COST $(23+36)$ - 59. Annual Cost per Footcandle (3) +11) 40. Relative Annual Cost per Footcandie	[18,337-7	19,108,-	9,035.-	8,797,-	18,947.-	17,842.-	9,110.-	17,764.-	17,562.-	8,716.-				8,507.-		10,399.-	8,796.-	027.--
	- 213%	222\%	105\%	102\%	220\%	208\%	106\%	207\%	204\%	101\%	102\%	183\%	100\%	100\%	97\%	120\%	102\%	93\%
	5 5,112.-	6,369.-	3,012-	2,932.-	6,316.-	5,947.-	3,037.-	5,921.-	5,854.-	2,905.-	2.913.-	5.237.-	$2.863 .-$	2,869,-	2,70.-	3,46.-	2.932.-	2,676.-
	- 213%	222\%	105\%	102\%	220\%	208\%	106\%	207\%	204%	101\%	102\%	189\%	100\%	100\%	97\%	120\%	102\%	93\%

[^9]Table 20-Cost Comparison* of Six Systems

LIGHTING SYSTEM NUMBER	120/240 ${ }^{1}$		480 Volt ${ }^{1}$			240/4801
	I	II	III High Reactance	IV Reactor	v High Reactance	vI
1. Type of lamp (Fil., merc., fluor., etc.). 2. Lamp description (Type) (Watts per lamp only) \qquad 3. Type of luminaire \qquad 4. Number of lamps per luminaire.	$\begin{gathered} \text { Filament } \\ \text { 15,000 L } \\ \text { PS-52 } \\ 800 \end{gathered}$ Pendant One	$\begin{gathered} \text { Filament } \\ 10,000 \mathrm{~L} \\ \text { PS-40 } \\ 575 \end{gathered}$ Pendant One	$\begin{gathered} \text { Mercury } \\ \text { E-H1 } \\ 400 \\ \text { Horizontal } \\ \text { Mercury } \\ \text { One } \end{gathered}$	Mercury A-H17 425 Horizontal Mercury One	Color Corr. Mercury J-H1 400 Horizontal Mercury One	Fluorescent F72T12/RS 95 Tilted Fluorescent Four
5. Rated initial lamp lumens per luminaire. 6. Lamp life. 7. Watte per luminaire (including auxiliary) +10 per cent line loss. 8. Coefficient of utilization 9. Maintenance factor. 10. Number of luminaires. Spacing. 11. Average footcandles initial. 12. Energy rate ($\$$ per KWH) 13. Estimated burning hours per year.	$\begin{array}{r} 15,000 \\ 1,350 \\ \\ 880 \\ .378 \\ - \\ 112 \\ 950 \mathrm{Opp} \\ 2.0 \\ \$.01 \\ 4,000 \end{array}$	$\begin{array}{r} 10,000 \\ 1,350 \\ 632 \\ .466 \\ - \\ 136 \\ 78 \text { Opp } \\ 2.0 \\ .01 \\ 4,000 \end{array}$	$\begin{array}{r} 21,000 \\ 7,000 \\ \\ 505 \\ .503 \\ - \\ 60 \\ 88 \text { Stag } \\ 2.0 \\ .01 \\ 4,000 \end{array}$	$\begin{array}{r} 21,000 \\ 7,000 \\ \\ 495 \\ .503 \\ - \\ 60 \\ 88 \text { Stag } \\ 2.0 \\ .01 \\ 4,000 \end{array}$	20,000 7,000 505 .453 - 70 76 Stag 2.0 .01 4,000	$\begin{array}{r} 23,400 \\ 7,500 \\ \\ 504 \\ .294 \\ - \\ 92 \\ 1150 \mathrm{pp} \\ 2.0 \\ .01 \\ 4,000 \end{array}$
14. Net luminaire cost (each) ${ }^{2}$ 15. Net additional accesaory cost per luminaire ${ }^{2}$. \qquad 16. Estimated wiring and installation cost per luminaire 17. Net initial lamp cost each (list less 30 per cent). \qquad 18. Net initial lamp cost per luminaire (4×17). \qquad 10. Total initial cost per luminaire $(14+15+16+18)$. 20. TOTAL INITIAL COST (10×19).	\$ 142.00 $\$$ 70.00 $\$$ 67.00 $\$$ 2.70 $\$$ 2.70 $\$$ 282.00 $\$ 31,584.00$	$\begin{array}{r} 116.00 \\ 58.00 \\ 64.00 \\ 1.02 \\ 1.02 \\ 239.00 \\ 32,504.00 \end{array}$	185.00 26.00 76.00 14.00 14.00 301.00 $18,060.00$	166.00 26.00 76.00 14.18 14.18 282.00 16.820 .00	$\begin{array}{r} 198.00 \\ 25.00 \\ 75.00 \\ 16.10 \\ 16.10 \\ 314.00 \\ 21,980.00 \end{array}$	$\begin{array}{r} 293.00 \\ 25.00 \\ 71.00 \\ 2.63 \\ 10.52 \\ 400.00 \\ 36,800.00 \end{array}$
21. Initial cost per luminaire less lamps ($14+15+16$). . 22. Total initial cost less lamps (10×21) \qquad 23. ANNUAL FIXED CHARGES (15 per cent of 22)...	$\begin{aligned} & \$ 279.00 \\ & \$ 31,248.00 \\ & \$ 4,687.00 \end{aligned}$	$\begin{array}{r} 238.00 \\ 32,368.00 \\ 4,855.00 \end{array}$	$\begin{array}{r} 278.00 \\ 17,220.00 \\ 2,583.00 \end{array}$	$\begin{array}{r} 268.00 \\ 16,080.00 \\ 2,412.00 \end{array}$	298.00 $20,860.00$ $3,129.00$	$\begin{array}{r} 389.00 \\ 35,788.00 \\ 5,368.00 \end{array}$
24. Annual no. lamp replacements ($4 \times 10 \times 13 \div 6$) ... 25. Annual cost of replacement lamps (17×24). 26. Annual cost of replacement parts 4 27. Total annual maintenance material cost $(25+26)$. 28. Estimated labor cost to replace one lamp. 29. Total labor costs to replace lamps (24×28). 30. Estimsted cleaning cost per luminaire. 31. Number of cleaninge per year 32. Annual cleaning cost ($10 \times 30 \times 31$). 33. Total annual maintenance labor cost $(29+32)$. 34. Total Annual Maintenance Cost ($27+33$) 35. Annual Energy Cost ($7 \times 10 \times 12 \times 13 \div 1000$) \ldots 36. TOTAL ANNUAL OPERATING COST $(34+35)$.	332 $\$$ 896.00 $\$$ 312.00 $\$$ $1,208.00$ $\$$ 1.00 $\$$ 332.00 $\$$ 1.00 2 $\$$ 224.00 $\$$ 556.00 $\$ 1,764.00$ $\$ 3,942.00$ $\$ 5,706.00$		$\begin{gathered} 34 \\ 476.00 \\ 172.00 \\ 648.00 \\ 1.00 \\ 34.00 \\ 1.00 \\ 2 \\ 120.00 \\ 154.00 \\ 802.00 \\ 1,212.00 \\ 2,014.00 \end{gathered}$		40 644.00 209.00 853.00 1.00 40.00 1.00 2 140.00 180.00 $1,033.00$ $1,414.00$ $2,447.00$	196 515.00 358.00 873.00 1.00 196.00 2.00 2 368.00 564.00 1.437 .00 $1,855.00$ 3.292 .00
37. TOTAL ANNUAL COST $(23+36)$. 38. Relative Annual Cost. 39. Annual Cost per Footcandle ($37 \div 11$). \qquad 40. Relative Annual Coat per Footcandle. \qquad	$\begin{array}{r} \$ 10,393.00 \\ 226 \% \\ \$ 5,196.00 \\ 226 \% \end{array}$	$\begin{gathered} 9,703.00 \\ 211 \% \\ 4,852.00 \\ 211 \% \end{gathered}$	$\begin{gathered} 4,597.00 \\ 100 \% \\ 2,298.00 \\ 100 \% \end{gathered}$	$\begin{gathered} 4,397.00 \\ 96 \% \\ 2.198 .00 \\ 96 \% \end{gathered}$	$\begin{gathered} 5,576.00 \\ 121 \% \\ 2,788.00 \\ 121 \% \end{gathered}$	$\begin{gathered} 8,660.00 \\ 188 \% \\ 4,330.00 \\ 188 \% \end{gathered}$

Table 21-Cost Comparison* of Six Systems

*Comparison sssumes one mile section of divided roadway, $30-20-30$ feet, overhead circuits, steel poles, approx, 30 -foot mounting height, average of 2.0 footcandles provided initially. Distribution system is independent of existing
systems. Minimum temperature at turn-on time assumed to be O F.
LLoading based on the use of a completely self-protecting Class A transformer

[^10]It is not practical to include a complete list of all material and labor costs used in these comparisons. However, the above costs are typical of those used throughout the cost studies. It is not expected that the costs shown above agree exactly with the costs for any particular installation, as explained previously. Although these costs may be judged to be high or low in regard to a specific installation, the importance of these cost studies does not lie in the actual costs (although this should not be a large difference when compared to a specific case), but in the relative costs. As long as the same costs are used in all cases, the relative cost will be unaffected.
The cost study comparing incandescent, fluorescent, and mercury luminaires served by series or multiple circuits (Table 19) shows that the type of distribution system will make little if any difference in either the initial or annual operating cost. This can be expected for all cases except where very long runs are to be made, such as along residential or secondary traffic streets. In this case, the series distribution system will tend to be more economical.
The use of wood poles and overhead wiring (Table 20) results in a considerable savings in the cost per luminaire. When the total annual cost is considered, however, the savings are not as great as might be expected. The savings show a range of only 20 per cent to 30 per cent, depending upon the system being considered.

Although some economy can be realized by using twin-bracket poles mounted in a medial strip, the savings are not as great as might at first be expected. (See Table 21.) This is due almost entirely to the fact that more units are required, because the coefficient of utilization is lower. This, then, means more equipment to purchase, install, operate, and maintain. Also, the additional bracket tends to off-set some of the difference. This is especially true in view of the fact that more luminaires are required. Hence, the number of twin-bracket poles for medial strip mounting is more than half the number of single-bracket poles for mounting at the side of the road. While the Total Initial Cost is approximately 20 per cent to 25 per cent less for the medial strip mounting systems, the annual cost is approximately the same for incandescent and only about 15 per cent less for the mercury and fluorescent systems. It is felt by some authorities that mounting poles in the medial strip presents a much more dangerous traffic hazard than mounting them at the sides of the road. In view of this, the small savings made possible by the method may not be justified.
The cost of any particular installation will depend upon many factors, and will vary greatly depending
upon the specific conditions encountered for each installation. For the particular set of conditions for these cost studies, the approximate cost for a system using underground wiring and steel poles is $\$ 400$ per unit for incandescent, $\$ 550$ per unit for fluorescent, and $\$ 4.50$ per unit for mercury. If wood poles and overhead wiring are used, the cost per unit is approximately $\$ 250$ for incandescent, $\$ 400$ for fluorescent, and $\$ 300$ for mercury. To obtain more accurate costs for any given installation, the cost studies presented here should be followed through in detail, and the exact costs for the conditions involved substituted for the values shown. However, for most cases the figures given above will provide a fair approximation.
Although the incandescent systems have the lowest cost per unit, more units are required, to provide a given illumination level than are required with mercury because of the lower lumen output and utilization. The systems with the fluorescent lamp, which is the most efficient light source today, also require more units than are required with mercury, because of the low coefficient of utilization. When all factors are taken into consideration, a given illumination level can be obtained more economically by using mercury than by using incandescent or fluorescent units. As pointed out previously, the least expensive method of obtaining a given illumination level is not always the most desirable method. Mercury, while being the least expensive method, detracts from the brilliance of colors predominantly in the red end of the spectrum. In many cases, a more expensive installation will be justified from the standpoint of color rendition alone. Depending upon the color rendition desired, the new Silver-White colored mercury or the fluorescent-mercury lamps can be used to obtain better color rendition and still retain the inherent economy of the mercury source. Such factors as this, and many others from an appearance or aesthetic viewpoint, may have such a strong influence as to relegate cost to a position of secondary importance. These factors must be taken into account for each installation and, although they do not show up in a cost study, they may very definitely have a monetary value, even though the exact amount cannot be determined.

REFERENCES

1. Street Lighting-Then and Now, Illuminating Engineering, Vol. 51, January, 1956, pp. 86-96.
2. Westinghouse Lighting Handbook, April, 1958 revision. Westinghouse Electric Corporation, Lamp Division, Bloomfield, New Jersey.
3. American Standard Practice for Street and Highway Lighting, A.S.A. Standard D12.1-1953, UDC 628.971.

APPENDIX

THIS APPENDIX includes a number of tables of application data collected from numerous sources. These tables are included as an aid to the user of this book in solving distribution system problems.

Tables 1 through 11 are tables of conductor impedance and physical characteristics. Included are data for overhead, open-wire lines; overhead self-supporting cable; and cables for underground circuits.

Table 12 is included to facilitate derivation of equivalent circuits for power and distribution transformers from the impedance data usually furnished by the manufacturer.

Table 14 on residential underground distribution system design practices is included because of the many different practices by the various companies and because of the increasing application of underground systems in residential areas. This table has been abstracted from the article "Residential Distribution Adaptable" by Mr. F. E. Andrews which appeared in the December 12, 1955 issue of Electrical World.

The subject of lightning protection is to be included in Volume II. However, for quick reference on lightning arrester selection Table 15 is included.

[^11]Table 2-Characteristics of Aluminum Conductors, Hard Drawn, 61 Per Cent Conductivity
(Aluminum Company of America.)

Size of Conductor	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Strands } \end{gathered}$	Dismeter of Individual Strands Inches	Outside Diameter Inches	Ultimate Strength Pounds	Weight Pounds Per Mile	Geometric Mean Radius at 60 Cycles Feet	Approx. Current Carrying Capacity Amps	$\underset{\text { Ohms Per }$$r_{\mathbf{a}}$ Resistance Conductor Per Mile $}{ }$								$\begin{gathered} x_{\mathrm{a}} \\ \text { Inductive Reactance } \\ \text { Ohnas per Conductor } \\ \text { Per Mile } \\ \text { At 1 Pt. Spacing } \end{gathered}$			Shunt Capacitive Reactance Megohms Per Conductor Per Mile At 1 Ft . Spacing		
Circular Mils								$25^{\circ} \mathrm{C} .\left(77^{\circ} \mathrm{F}\right.$.)				$50^{\circ} \mathrm{C}$. (122 $\left.{ }^{\circ} \mathrm{F}.\right)$									
								d-s	$\begin{array}{c\|} 25 \\ \text { cycles } \end{array}$	$\begin{gathered} 50 \\ \text { cycles } \end{gathered}$	$\begin{gathered} 60 \\ \text { cycles } \end{gathered}$	d-c	$\stackrel{25}{25} \text { cycles }$	$\begin{gathered} 50 \\ \text { cycles } \end{gathered}$	$\begin{gathered} 60 \\ \text { cycles } \end{gathered}$	$\begin{gathered} 25 \\ \text { cycles } \end{gathered}$	$\left\lvert\, \begin{array}{c\|} 50 \\ \text { cycles } \end{array}\right.$	$\begin{gathered} 60 \\ \text { cycles } \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 25 \\ \text { cycles } \end{array} \right\rvert\,$	$\left\|\begin{array}{c} 50 \\ \text { cycles } \end{array}\right\|$	$\begin{gathered} 60 \\ \text { cyclea } \end{gathered}$
6	7	0.0812	0.184	528	130	0.00558	100	3.56	3.56	3.56	3.56	3.91	3.91	3.91	3.91	0.2626	0.5251	0.6301	0.34680	0.1734	0.1445
4	7	0.0772	0.232	826	207	0.00700	134	2.24	2.24	2.24	2.24	2.46	2.46	2.46	2.46	0.2509	0.5017	0. 6201	0.3302	0.1651	0.1376
3	7	0.0867	0.260	1022	261	0.00787	155	1.77	1.77	1.77	1.77	1.85	1.95	1.95	1.05	0.2450	0.4899	0.5879	0.32210	0.16100	0.1342
2	7	0.0974	0.292	1266	329	0.00883	180	1.41	1.41	1.41	1.41	1.55	1.55	1.65	1.55	0.2391	0.4782	0.5739	0.3138	0.1570)	0.1308
1	7	0.1094	0.328	1537	414	0.00992	209	1,12	1.12	1. 12	1.12	1.23	1.23	1.23	1.23	0.2333	0.4685	0.5598	0.3055	0.1528	0.1273
1/0	7	0.1228	0.368	1865	523	0.01113	242	0.885	0.8851	0.8853	0.885	0.973	0.9731	0.9732	0. 973	0.2264	0.4528	0.5434	0.2976	0.14880	0. 1240
1/0	19	0.0745	0.373	2090	523	0.01177	244	0.885	0.8851	0.8853	0.885	0.973	0.9731	0.9732	0.973	0.2246	0.4492	0.5391	0.2964	0.14820	0. 1235
2/0	7	0.1379	0.414	2350	659	0.01251	282	0.702	0.7021	0.7024	0.702	0.771	0.7711	0.7713	0.771	0.2216	0.4431	0.5317	0.2800	0.14450	0, 1204
$2 / 0$	19	0.0837	0.419	2586	659	0.01321	283	0.702	0.7021	0.7024	0.702	0.771	0.7711	0.7713	0.771	0.2188	0.4376	0.5251	0.2882	0.14410	0.1201
3/0	7	0.1548	0.464	2845	832	0.01404	327	0.557	0.5571	0.5574	0.658	0.612	0.6121	0.6124	0.613	0.2157	0.4314	0.5177	0.2810	0.14050	0.1171
$3 / 0$	19	0.0940	0.470	3200	832	0.01483	328	0.557	0.5571	. 555	0. 558	0. 612	0.6121	0.6124	0.613	0.2129	0.4258	0.5110	0.2801	0.14000	0.1167
4/0	7	0.1739	0.522	3590	1048	0.01577	380	0.441	0.4411	0.4415	0.442	0.485	0.4851	0.4855	0.486	0.2099	0.4196	0.5036	0.2726	0.13630	0.1136
4/0	19	0.1055	0.528	3890	1048	0.01666	381	0.441	0.4411	0.4415	0.442	0.485	0.4851	0.4855	0.486	0.2071	0.4141	0.4969	0.2717	0.1358	0.1132
250000	37	0,0822	0.575	4860	1239	0.01841	425	0.374	0.3741	0.3746	0.375	0.411	0.4111	0.4115	0.412	0.2020	0.4040	0.4848	0,2657	0.1328	0.1107
266800	7	0.1853	0.586	4525	1322	0.01771	441	0.350	0.3502	0.3506	0.351	0.385	0.3852	0.3855	0.386	0.2040	0.4079	0.4895	0.2642	0.1321	0.1101
268800	37	0.0849	0.594	5180	1322	0.01802	443	0.350	0.3502	0.3506		0.385	0.3852			0.2004	0.4007		0.2833		
300000	19	0.1257	0.620	5300	1487	0.01983	478	0.311	0.3112	0.3117	0.312	0.342	0.3422	0.3426	0.343	0.1983	0.3965	0.4758	0.2592	0.1296	0.1080
300000	37	0.0900	0.630	5830	1487	0.02017	478	0.311	0.3112	0.3117	0.312	0.342	0.3422	0.3426	0.343	0.1974	0.3947	0.4737	0.2592	0.1296	0. 1080
338400	19	0.1331	0.666	5940	1067	0.02100	614	0.278	0.2782	0.2788	0.279	0.306	0.3002	0.3067	0.307	0.1953	0.3907	0.4688	0.2551	0.1276	0. 1063
338400	37	0.0954	0.668	6400	1067	0.02135	514	0.278	0.2782	0.2788	0.279	0.306	0.3062	. 3067	0.307	0.1945	0.3890	0.4668	0.2549	0.1274	0.1062
350000	37	0.0973	0.681	6680	1735	0.02178	528	0.267	0.2672	0.2678	0.268	0.294	0.2942	0.2947	0.295	0.1935	0.3870	0.4644	0.2537	0.1268	0.1057
397500	19	0.1447	0.724	6880	1907	0.02283	675	0.235	0.2352	0.2359	0.236	0.258	0.2582	0.2589	0.259	0.19110	0.3822	0.4587	0.24910	0.1246	0.1038
477000	19	0.1585	0.793	8080	2364	0.02501	646	0.196	0.1063	0. 1971	0. 198	0.215	0.2153	0.2160	0.216	0.1865	0.3730	0.4476	0.2429	0.1214	0.1012
500000	19	0.1623	0.812	8475	2478	0.02560	664	0.187	0.1873	0.1882	0.180	0.206	0.2062	0.2070	0.208	0.1853	0.3707	0.4448	0.2412	0.1206	0.1005
500000	37	0.1162	0.813	9010	2478	0.02603	664	0.187	0.1873	0.1882	0. 189	0.206	0.2062	0.2070		0.1845			0.2410		
556500	19	0.1711	0.856	9440	2758	0.02701	710	0.168	0.1683	0.1693	0.170	0.185	0.1853	0.1862	0.187	0.1826	0.3652	0.4383	0.2374	0.11870	0. 0989
636000	37	0.1311	0.918	11240	3152	0.02036	776	0.147	0.1474	0.1484	0.149	0.162	0.1623	0.1633	0. 164	0.1785	0.3569	0.4283	0.2323	0.11620	0.0968
715500	37	0.1391	0.974	12640	3546	0.03114	817	0.137	0.1314	0.1326	0.133	0.144	0.1444	0.1455	0.146	0.1754	0.3508	0.4210	0.2282	0.11410	0.0951
750000	37	0.1424	0.997	12980	3717	0.03188	804	0. 125	0.1254	0.12670	0,127	0.137	0.1374	0.1385	0.139	0.17430	0.3485	0.4182	0.2266	0.1133	0.0944
750000	61	0.1109	0.998	13510	3717	0.03211	864	0.125	0.1254	0.1267	0.127	0.137	0.1374	0.1385	0.139	0.1739	0.3477	0.4173	0.22630	0.1132	0.0943
795000	37	0.1466	1.026	13770	3940	0.03283	897	0.117	0.1175	0.1188	0.120	0.129	0.1294		0, 131	0.1728		0.4146	0.2244	0.1122	O. 0835
874500	37	0.1538	1.077	14830	4334	0.03443	949	0.107	0.1075	0,1089	0.110	0.118	0.1185	0.1198	0.121	0.1703	0.3407	0.4088	0.2210	0.11050	0. 0921
954000	37	0.1606	1.024	16180	4728	0.03596	1000	0.0079	0.0985	0.1002	0.100	0.108	0.1085	0.1100	0.111	0.1682	0.3363	0.4036	0.2179	0. 1090	0.0908
1000000	61	0.1280	1.152	17670	4956	0.03707	1030	0.0934	0.0940	0.0956	0.0966	0.103	0.1035	0.1050	0.106	0.1666	0.3332	0.3998	0.2162	0.1081	0.0801
1000000	91	0.1048	1.153	18380	4956	0.03720	1030	0.0834	0.0940	0.0956	0.0266	0.103	0.1035	0.1050	0.106	0.1664	0.3328	0.3994	0.2160	0.1080	0.0900
1033500	37	0.1672	1.170	18260	5122	0.03743	1050	0.0904	0. 0910							0.1661	0.3322	0.3987	0.2150	0. 1075	0.0896
1113000	61	0.1351	1.216	19660	5517	0.03910	1110	0.0839	0.0845	0.0864	0.087	0.0922	0.0928	0.0945	0.0954	0.1639	0.3278	0.3934	0.2124	0.1062	0.0885
1192500	61	0.1398	1.258	21000	5908	0.04048	1160	0.0783	0.07900	0.0810	0.0821	0.0860	0.0866	0.0884	0.0895	0.1622	0.3243	0.3892	0.2100	0.1050	0,0875
1192500	91	0.1145	1.259	21400	5908	0.04062	1160	0.0783	0.0790	0.0810	0.0821	0.0860	0.0866	0.0884	0.0895	0.1620	0.3240	0.3888	0.2098	0.10491	0.0874
1272000	61	0.1444	1.300	22000	6298	0.04180	1210	0.0734	0.0741		0.0774					0.16060			0.2076	0.10380	
1351500	61	0.1489	1.340	23400	6700	0.04309	1250	0.0691	0.0699	0.0721	0.0733	0.0760	0.0767	0.0787	0.0798	0.15900	0.3180	0.3816	0.2054	0.1027	0.0856
1431000	61	0.1532	1.379	24300	7091	0.04434	1300	0.0653	0.0661	0.0685	0.0697	0.0718	0.0725	0.0747	0.0758	0.1576	0.3152	0.3782	0.2033	0,10160	0.0847
1510500	61	0.1574	1.417	25800	7487	0.04556	1320	0.0618	0.0627	0.0651	0.0665	0.0679	0.0687	0.0710	0.0722	0.15620	0.3123	0.3748	0.2014	0.10070	0.0838
1590000	61	0.1615	1.454	27000	7883	0.04674	1380	0.0597	0.05960	0.0622	0.0636	0.0545	0.0853	0.0677	0.0690	0.1549	0.3098	0.3718	0.1997	0.0998	0.0832
1590000	91	0.1322	1.454	28100	7883	0.04691	1380	0.0587	0.0596	0.0622	0.0636	0.0645	0.0653	0.0677	0.0690	0.1547	0.3094	0.3713	0.1997	0.0998	0.0832

*For conductor at $75^{\circ} \mathrm{C}$, wind 1.4 miles per hour ($2 \mathrm{ft} / \mathrm{sec}$), frequency $=60$ cycles.
(Aluminum Company of America)

*Based on copper 97 per cent, aluminum 61 per cent conductivity.
\dagger For conductor at $75^{\circ} \mathrm{C}$, air at $25^{\circ} \mathrm{C}$, wind 14 miles
$\ddagger^{\prime \prime}$ Current Approx. 75% Capacity" is 75% of the "Approx. Current Carrying Capacity in Amps.' and is approximately the eurrent which will produce $50^{\circ} \mathrm{C}$. conductor temp. ($25^{\circ} \mathrm{C}$. rise) with $25^{\circ} \mathrm{C}$. air temp., wind 1.4 miles per hour.

Table 4-A-Characteristics of Copperweld-Copper Conductors

${ }^{4}$ Resistances at $50^{\circ} \mathrm{C}$. total temperature, based on an ambient of $25^{\circ} \mathrm{C}$. plus $25^{\circ} \mathrm{C}$. rise due to heating effect of current. The approximate magnitude of current necessary to produce the

Table 4-B-Characteristics of Copperweld Conductors
(Copperweld Steel Company)

Nominal Conductor Size	Number and Size of Wires	Outside Diameter Inches	Area of Conductor Circular Mils	Rated Breaking Load Pounds		Weigh Pound per Mile	GeometricMeanRadiusat 60 cyclesandAverageCurrentsFeet	Approx.CurrentCarryingCapacity*Ampsat60 Cycles	r_{a}ResistanceOhms per Conductorper Milest $25^{\circ} \mathrm{C} .\left(77^{\circ} \mathrm{F}.\right)$Small Currents				r_{a} Resistance Ohms per Conductor per Mile at $75^{\circ} \mathrm{C}$. ($167^{\circ} \mathrm{F}$.) Current Approx. 75% of Capaeity**				x_{a} Inductive Reactance Ohms per Conductor per Mile One Ft. Spacing Average Currents			$\begin{gathered} x_{\mathrm{a}}{ }^{\prime} \\ \text { Capacitive } \\ \text { Reactance Megohms } \\ \text { per Conductor } \\ \text { per Mile } \\ \text { One Ft. Spacing } \end{gathered}$		
				High	Extra				d d	$\left\lvert\, \begin{gathered}25 \\ \text { cycles }\end{gathered}\right.$	$\begin{gathered} 50 \\ \text { cycles } \end{gathered}$	$\begin{gathered} 60 \\ \text { cycles } \end{gathered}$	$d-c$	25 cycles	$\stackrel{50}{\text { cycles }}$	60 cy cles	${ }_{\text {cy }}^{25}$	50 cycles	60 cycles	cy 25	50 cy cles	${ }_{\substack{60 \\ \text { cycles }}}$

7/8*	19 No. 5	0.910	628900	55570	66910	9344	0.00758
13/16 ${ }^{\text {* }}$	10 No. 6	0.810	498800	45830	55530	7410	0.00675
23/32 ${ }^{\text {F }}$	10 No. 7	0.721	395500	37740	45850	5877	0.00601
21/32	19 No. 8	0.642	313700	31040	37690	4660	0.00535
9/16 ${ }^{\prime \prime}$	19 No. 8	0.572	248800	25500	30610	3696	0.00477
5/8 ${ }^{\circ}$	7 No. 4	0.613	292200	24780	29430	4324	0.00511
9/16 ${ }^{\circ}$	7 No. 5	0.546	231700	20470	24650	3429	0.00455
1/2 ${ }^{\text {² }}$	7 No. 6	0.486	183800	16890	20460	2719	0.00405
7/10 ${ }^{*}$	7 No. 7	0.433	145700	13910	16890	2157	0.00361
3/8 ${ }^{\text {F }}$	7 No. 8	0.385	115600	11440	13890	1710	0.00321
11/32	7 No. 9	0.343	91650	9393	11280	1356	0.00286
$5 / 10^{7}$	7 No. 10	0.306	72680	7758	9196	1076	0.00255
3 No. 5	3 No. 5	0.392	99310	9262	11860	1467	0.00457
3 No. 6	3 No. 6	0.349	78750	7639	9754	1163	0.00407
3 No. 7	3 No. 7	0.311	62450	6291	7922	922.4	0.00363
3 No. 8	3 No. 8	0.277	49530	5174	6282	731.5	0.00323
3 No. 9	3 No. 9	0.247	39280	4250	5129	580.1	0.00288
8 No. 10	3 No. 10	0.220	31150	3509	4160	460.0	0.00257

620	0.306	0.316	0.326	0.331	0.363	0.419	0.476	0.499	0.261	0.493	0.592	0.233	0.1165	0.0971
540	0.386	0.395	0.406	0.411	0.458	0.518	0.580	0.605	0.267	0.505	0.606	0.241	0.1206	0.1005
470	0.486	0.490	0.506	0.511	0.577	0.643	0.710	0.737	0.273	0.517	0.621	0.250	0.1248	0.1040
410	0.613	0.623	0.633	0.638	0.728	0.799	0.872	0.902	0.279	0.529	0.695	0.258	0.1289	0.1074
360	0.773	0.783	0.793	0.798	0.917	0.995	I. 075	1.106	0.285	0.541	0.649	0.266	0.1330	0.1109
410	0.656	0.664	0.672	0.676	0.778	0.824	0.870	0.887	0.281	0.533	0.640	0.261	0.1306	0.1088
360	0.82	0.835	0.843	0.847	0.981	1.030	1.080	1.099	0.287	0.545	0.654	0.269	0.1347	0.1122
310	1.042	1.050	1.058	1.062	1.237	1.290	1.343	1.364	0.293	0.557	0.668	0.278	0.1388	0.1157
270	1.315	1.323	1.331	1.335	1.560	1.617	1.675	1.697	0.299	0.569	0.683	0.286	0.1429	0.1191
230	1.658	1.666	1.674	1.678	1.967	2.03	2.09	2.12	0.305	0.581	0.697	0.294	0.1471	0.1226
200	2.09	2.10	2.11	2.11	2.48	2.55	2.61	2.64	0.311	0.592	0.711	0.303	0.1512	0.1260
170	2.64	2.64	2.65	2.66	3.13	3.20	3.27	3.30	0.316	0.604	0.725	0.311	0.1553	0.1294
220	1.926	1.931	1.936	1.938	2.29	2.31	2.34	2.35	0.289	0.545	0.654	0.293	0.1465	0.1221
190	3.43	2.43	2.44	2.44	2.88	2.91	2.94	2.85	0.395	0.556	0.668	0.301	0.1506	0.1255
160	3.06	3.07	3.07	3.07	3.63	3.66	3.70	3.71	0.301	0.568	0.682	0.310	0.1547	0.1289
140	3.86	3.87	3.87	3.87	4.58	4.61	4.65	4.66	0.307	0.580	0.686	0.318	0.1589	0.1324
120	4.87	4.87	4.88	4.88	5.78	5.81	5.85	5.86	0.313	0.591	0.710	0.326	0.1629	0.1358
110	6.14	6.14	6.15	6.15	7.28	7.32	7.36	7.38	0.318	0.603	0.724	0.334	0.1671	0.1392

40% Conductivity

${ }^{\circ}$ Based on conductor temperature of $125^{\circ} \mathrm{C}$. and an ambient of $25^{\circ} \mathrm{C}$.
${ }^{\circ}$ Resistance at $75^{\circ} \mathrm{C}$. total temperature, based on an ambient of $25^{\circ} \mathrm{C}$. plus $50^{\circ} \mathrm{C}$. rise due to heating effect of current.
The approximate magnitude of current accessary to produce the $50^{\circ} \mathrm{C}$. rise is 75% of the "Approximate Current Carrying Capacity at 80 Cycles."

Table 5－60－Cycle Characteristics of Three－Conductor Belted Paper－Insulated Cables

\begin{tabular}{|c|}
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
\& \text { 畐䍖 } \\
\& 0
\end{aligned}
\]} \& \multicolumn{2}{|l|}{（ \begin{tabular}{c}
Insulataion \\
Thickness \\
\hline
\end{tabular}} \& \multirow[b]{3}{*}{} \& \multicolumn{2}{|l|}{POSITIVE \＆ NEGATIVE
SEQUENCE} \& \multirow[b]{3}{*}{} \& \multicolumn{4}{|c|}{zero sequence} \& \multicolumn{2}{|l|}{SHEATH} \\
\hline \& \multirow[b]{2}{*}{\[
\begin{array}{|l|l}
\text { 喏 } \\
\text { d } \\
\hline 8
\end{array}
\]} \& \& \& \& \& \& \& \& \& \& \& \& \& \& eice \& \& \& \& \\
\hline \& \& ¢ \& \& \& \& \& \& \& \& \& \& \& \& 㪯咟 \& \[
\begin{aligned}
\& 4 \\
\& 0.0 \\
\& 0 \\
\& \hline
\end{aligned}
\] \& \& \& \& \\
\hline \multirow{12}{*}{} \& 55
55 \& \& 4 \& \& 1290 \& 1460
1760 \& \({ }_{\text {．}}^{232}\) ． 81 \& 4．13 \& \({ }_{2}^{2.52} 1.58\) \& 0.067
0.084
0.08 \& 0.181
0.170 \& \& 0.180
0.212 \& 47 \& \({ }_{8}^{10}\) \& 311
298 \& 11,3 \& 30 \& \({ }_{2}{ }^{2} .72\) \\
\hline \& \({ }_{55}^{55}\) \& \({ }^{35}\) \& \({ }_{2}^{4}\) \& CR \& 1880 \& 2310 \& －292 \& 2．64 \& \({ }_{1}^{1.58}\) \& 0.084
0.106 \& 0．170 \& \& 0.212
0.258 \& \({ }_{7} 9.76\) \& \({ }_{7}^{8.13}\) \& － 274 \& 10，700 \& \({ }_{90}^{90}\) \& 2．\({ }_{\text {2 }}^{2.32}\) \\
\hline \& \({ }_{5} 5\) \& \({ }_{35}\) \& 1 \& CR \& 2180 \& 2720 \& ：332 \& 1.29 \& 0.800 \& \({ }_{0} .126\) \& \({ }_{0} .152\) \& \({ }_{4200}^{4500}\) \& 0.291 \& \({ }_{6.66}\) \& 6.17 \& \({ }_{256}^{224}\) \& 8.000 \& 95 \& \({ }_{1} 1.78\) \\
\hline \& 55
55 \& 35
35
35 \& 00 \& CR \& \({ }_{2460}^{2400}\) \& \begin{tabular}{l}
3090 \\
3120 \\
\hline
\end{tabular} \& \({ }_{-323}^{373}\) \& 1.03
0.816 \& 0.638
0.511 \& \begin{tabular}{l}
0.142 \\
0.151 \\
\hline
\end{tabular} \& －\({ }_{0}^{0.148}\) \& 3400 \& \begin{tabular}{l}
0.322 \\
0.270 \\
\hline
\end{tabular} \& 6.01
6.41 \& 5.62
6.09
6.09 \& \({ }^{2} 271\) \& 7,700
4700 \& \({ }_{95}^{95}\) \& 1．66 \\
\hline \& 55 \& \[
\begin{aligned}
\& 35 \\
\& 35
\end{aligned}
\] \& 000 \& \({ }_{\text {CS }}\) \& \({ }_{2}^{22650}\) \& \({ }_{3610}^{3120}\) \& \({ }_{\text {－}}^{\text {－}}\) 364 \& 0.816
0.650 \& 0.511
0.410 \& \& \& 2400 \& \& ¢． \(\begin{gathered}6.41 \\ 5.81\end{gathered}\) \& － \(\begin{aligned} \& 6.09 \\ \& 5.57\end{aligned}\) \& \({ }_{265}^{271}\) \& \({ }_{4}^{4,300}\) \& \({ }_{95}^{95}\) \& 1．86 \\
\hline \& 55 \& \({ }^{35}\) \& 0000 \& Cs \& 2960 \& \({ }_{430}^{320}\) \& \({ }^{\text {\％}} 417\) \& 0.518 \& 0.328 \& 0.191 \& \({ }_{0} 0.130\) \& 1900 \& 0.331 \& 5.02 \& 4.83 \& ． 255 \& \({ }_{3,900}^{4.200}\) \& 200 \& 1.50 \\
\hline \& 55 \& 35 \& 250 \& CS \& 3220 \& 4840 \& ． 455 \& 0.443 \& 0．280 \& 0.210 \& 0．127 \& 1700 \& 0.356 \& 4.78 \& 4.54 \& ． 248 \& 3.500 \& 100 \& 1.42 \\
\hline \& 55 \& \({ }_{35}^{35}\) \& 350 \& CS \& 3650 \& 56840 \& ． 4939 \& （0．368 \& 0.236
0.204 \& （ \begin{tabular}{l}
0.230 \\
0.249 \\
\hline
\end{tabular} \& 0.126
0.125 \& （1500 \& － \(\begin{aligned} \& 0.383 \\ \& 0.410\end{aligned}\) \& \({ }_{3}^{4.188}\) \& 4.04
3.77 \& ． 2424 \& 3， \(\begin{aligned} \& 3,200 \\ \& 2,900\end{aligned}\) \& 105 \& 1．27 \\
\hline \& 55 \& 35 \& 400 \& CS \& 4240 \& 6830 \& ． 572 \& 0.282 \& 0.182 \& 0.265 \& \({ }^{0.123}\) \& 1300 \& 0.432 \& 3.73 \& \({ }_{3.63}\) \& 236 \& 2，700 \& \& 1．15 \\
\hline \& 55
65 \& 35
40 \& \({ }_{600}^{500}\) \& \({ }_{\text {CS }}\) \& \({ }_{5850}^{4970}\) \& 8220
9750 \& \({ }^{\text {．}} 780\) \& 0. \& 0．150 \& 0. \& 0. \& 1200
1200 \& \({ }_{0}^{0.477}\) \& － \(\begin{aligned} \& 3.23 \\ \& 2.82 \\ \& 2\end{aligned}\) \& 5 \& \({ }_{231}^{233}\) \& 2,400
2,500 \& 10 \& \({ }_{0}^{1.00}\) \\
\hline \& \({ }_{65}^{65}\) \& \({ }_{40}^{40}\) \& \& CS \& 65 \& 11100 \& ． 754 \& \& 0.1 \& \& 0. \& 1100 \& \& 2.55 \& \& \({ }_{229}\) \& 2，200 \& 20 \& \({ }^{0.875} 0\) \\
\hline \& 65 \& 40 \& 750 \& CS \& 6900 \& 11750 \& ． 780 \& 0.162 \& 0.107 \& 0.368 \& 0.120 \& 1100 \& 0.578 \& \({ }_{2}^{2.47}\) \& 2.42 \& ：228 \& 1，900 \& 120 \& 0.770 \\
\hline \multirow{12}{*}{} \& 70
70 \& 40
40 \& \({ }_{4}\) \& CR \& 1500
1740 \& \({ }_{2010}^{167}\) \& \({ }_{232}^{184}\) \& \({ }_{4}^{4.13}\) \& 58 \& 0.087
0.084
0.0 \& 0.192
0.181
0.181 \& 6700
5800 \& 0.192
0.227 \& 11．30 \& \begin{tabular}{l}
9.69 \\
8.06 \\
\hline 8.
\end{tabular} \& 0.322
0.298 \& 12,500
11,200 \& 0 \& \({ }_{2}^{2.39}\) \\
\hline \& 70 \& \({ }^{40}\) \& 2 \& CR \& \({ }_{2230}^{231}\) \& \({ }_{2}^{2560}\) \& ． 292 \& 1.64 \& 1.01 \& 0.106 \& 0.171 \& 5100 \& 0.271 \& 7.04 \& \begin{tabular}{l}
8． \\
\hline 6.41 \\
\hline
\end{tabular} \& 0.280 \& 9，800 \& 95 \& 1． 80 \\
\hline \& 70 \& 40 \& 1 \& CR \& 2340 \& 2880 \& ． 332 \& 1.29 \& 0.800 \& 0.126 \& 0.161 \& 4700 \& 0.304 \& 6.33 \& 5.84 \& 0.263 \& 9，200 \& 95 \& 1.68 \\
\hline \& 70 \& \({ }_{40}^{40}\) \& 00 \& CR \& \({ }_{2440}^{2670}\) \& \(\begin{array}{r}3360 \\ 3300 \\ \hline 30\end{array}\) \& ． 323 \& \({ }_{\text {1．03 }}^{1.0}\) \& － 0.638 \& － \(\begin{aligned} \& 0.142 \\ \& 0.151 \\ \& 0.151\end{aligned}\) \& 0. \& 4400 \& － \(\begin{aligned} \& 0.335 \\ \& 0.285 \\ \& 0\end{aligned}\) \& 47 \& 5.08
5.70 \& \({ }_{0}^{0.256}\) \& \begin{tabular}{l}
8,600 \\
6,700 \\
\hline
\end{tabular} \& 100 \& 1．48 \\
\hline \& 70 \& 40 \& 000 \& \({ }_{\text {CS }}\) \& \({ }_{2690}\) \& 3780 \& ． 364 \& \({ }_{0.650}\) \& 0.410 \& \({ }_{0}^{0.171}\) \& 0．133 \& \({ }_{2700}^{3700}\) \& \({ }_{0}^{0.312}\) \& 5.54 \& 5.30 \& \({ }_{0}^{0.266}\) \& 5，100 \& 95 \& \({ }_{1.63}\) \\
\hline \& 70 \& 40 \& 0000 \& CS \& 3050 \& 4420 \& ． 417 \& 0.518 \& 0.328 \& 0.191 \& 0.135 \& 2400 \& 0.347 \& 4.78 \& 4.59 \& 0.258 \& 4，600 \& 100 \& 1.42 \\
\hline \& 70 \& 40 \& 250 \& CS \& \begin{tabular}{l}
3350 \\
3860 \\
\hline 1
\end{tabular} \& 5150
5810 \& \({ }^{455}\) \& \({ }_{0}^{0.443}\) \& \({ }_{0}^{0.280}\) \& 0.210
0
0 \& －． 132 \& \({ }^{2100}\) \& 372 \& \({ }_{3}^{4.95}\) \& \({ }_{\text {4．}}^{4.84}\) \& －\({ }^{0.254}\) \& ¢， \& 105 \& 1．27 \\
\hline \& 70 \& \({ }_{40}^{40}\) \& \({ }_{350}^{300}\) \& \(\mathrm{CS}^{\text {CS }}\) \& \({ }_{\text {4180 }}\) \& \({ }_{8450}^{5810}\) \& ． 5397 \& 0.368
0.318 \& （ \& （ \& 0.130
0.129 \& \begin{tabular}{l}
1980 \\
1800 \\
\hline
\end{tabular} \& ¢ \& \(3{ }^{3} .74\) \& \(\underset{\substack{3.84 \\ 3.62}}{\substack{\text { a }}}\) \& （ \({ }_{0}^{0.252}\) \& cisi， \& 105 \& 1．20 \\
\hline \& 70 \& 40 \& 400 \& CS \& 4640 \& 7230 \& ． 572 \& 0.282 \& 0．182 \& 0.265 \& 0.128 \& 1700 \& 0.448 \& 3.43 \& \({ }^{3.33}\) \& 0.242 \& 3，400 \& 110 \& 1.05 \\
\hline \& 70 \& 40
40 \& 500
600 \& \({ }_{C S}^{C 8}\) \& 5350
5990 \& \({ }_{90}^{00}\) \& \({ }^{642} 8\) \& \({ }_{0}^{0.230}\) \& 0.150
0.128
0 \& \({ }_{0}^{0.297} 0\) \& － \(\begin{aligned} \& 0.126 \\ \& 0.125 \\ \& 0.125\end{aligned}\) \& 1500
1400 \& \({ }_{\substack{0.493 \\ 0.537}}^{0.4}\) \& \({ }_{2}^{2.76}\) \& \({ }_{2.69}^{2.90}\) \& \({ }_{0}^{0.238}\) \& 3，8000 \& 115 \& 0.918
0.855 \\
\hline \& 75 \& \({ }_{40}\) \& \({ }_{700}\) \& \(\mathrm{CS}^{\text {CS }}\) \& \& 11300 \& ． 754 \& \({ }_{0}^{0.170}\) \& 0．128 \& \({ }_{0}^{0.327}\) \& （e．123 \& 1300 \& \& \({ }_{2}^{2.49}\) \& \& \({ }_{0}^{0.230}\) \& ci，600 \& 120 \& \({ }_{0}^{0.855}\) \\
\hline \& 75 \& 40 \& 750 \& Cs \& 7050 \& 11900 \& ． 780 \& 0.182 \& 0． 107 \& 0.366 \& 0.123 \& 1300 \& 0.588 \& 2.44 \& 2.38 \& 0.229 \& 2，500 \& 120 \& 0.758 \\
\hline \multirow{11}{*}{} \& 85
85 \& \({ }_{45}^{45}\) \& \& CR
CR
CR

R \& 1630
2130

2130 \& | 1800 |
| :--- |
| 2400 | \& － 183 \& ${ }_{2}^{4.13}$ \& ${ }^{2.52}$ \& 0.067

0.084 \& 0． 203
0.190
0 \& 7500
6600 \& 0.196
0.238
0 \& ${ }^{10.79} 8$ \& 9．18 \& 0.342
0.308

0 \& | 13,400 |
| :--- |
| 12,100 | \& ${ }_{90}^{90}$ \& ${ }_{2}^{2.22}$

\hline \& 85 \& ${ }_{45}^{45}$ \& 1 \& CR \& ${ }_{2580}^{2380}$ \& ${ }_{3120}^{2810}$ \& ： 332 \& ${ }_{1}^{1.64} 1.29$ \& ${ }_{0}^{1.01}$ \& （ $\begin{aligned} & \text { 0．} 106 \\ & 0.126 \\ & 0\end{aligned}$ \& 0.178
0.168
0. \& 碞5800 \& － \& ${ }_{8}^{8.71}$ \& 6.08
5.30 \& 0.287
0.270 \& 10,700
10,000 \& ${ }_{100}^{95}$ \& 1.69
1.50

\hline \& 88 \& 45 \& ${ }^{\circ}$ \& $\mathrm{CR}^{\mathrm{CR}}$ \& 2880

2590 \& | 3550 |
| :--- |
| 3450 | \& ${ }^{373}$ \& ${ }_{0}^{1.03}$ \& 0.638 \& ${ }^{0} 142$ \& 0．160 \& 5000 \& 0.347 \& ${ }_{5}^{5.26}$ \& 87 \& 0.260 \& 9，300 \& 100 \& 1.41

\hline \& 885 \& ${ }_{45}^{45}$ \& 00

000 \& \& ${ }_{2950}^{2590}$ \& | 3450 |
| :--- |
| 4040 | \& $\overbrace{364}$ \& ${ }_{0}^{0.816} 0$ \& 0.511

0.410 \& － $\begin{aligned} & 0.151 \\ & 0.171\end{aligned}$ \& （ $\begin{aligned} & 0.148 \\ & 0.143\end{aligned}$ \& 边3600 \& ${ }_{0}^{0.399}$ \& 5.00 \& 5.43
4.76 \& ${ }_{0}^{0.279}$ \& ¢ \& 95
100 \& ${ }_{1}^{1.64}$

\hline \& 85 \& 45 \& 0000 \& CS \& 3300 \& 4670 \& ． 417 \& 0.518 \& 0.328 \& 0.191 \& 0.1 \& 2800 \& 0．362 \& 4.54 \& 4.35 \& 0.260 \& 5，600 \& 100 \& 1.34

\hline \& \& 45 \& 250 \& CS \& 3700 \& 5320 \& ． 455 \& 0.443 \& 0． 280 \& 0.210 \& 0.138 \& 2600 \& 0． 388 \& \& 3.91 \& 0.258 \& 5，200 \& 105 \& 1.21

\hline \& 85
85 \& ${ }_{45}^{45}$ \& ${ }_{350}$ \& CS \& ${ }_{4}^{4010} 4$ \& 5960
6760

6 \& ． 497 \& ${ }_{0}^{0} .318$ \& － $\begin{aligned} & 0.236 \\ & 0.204 \\ & 0\end{aligned}$ \& ${ }^{0} .230$ \& － $\begin{aligned} & 0.135 \\ & 0.133\end{aligned}$ \& 2200 ${ }_{2200}^{200}$ \& （0．414 \& ¢ \& （3． 69 \& ${ }_{0}^{0.252}$ \& ¢， | 4，600 |
| :--- |
| 4.200 | \& 1105 \& 1．15

\hline \& 85 \& 45 \& 400 \& CS \& 4820 \& 7410 \& ：572 \& ${ }_{0}^{0.282}$ \& 0.182 \& 0.265 \& 0．131 \& 200 \& ${ }_{0}^{0.485}$ \& ${ }_{3}{ }^{3.28}$ \& 3.18 \& ${ }_{0}^{0.244}$ \& 4， \& 110 \& 1.00

\hline \& ${ }_{85}^{85}$ \& ${ }_{45}^{45}$ \& ${ }_{500}^{500}$ \& \& ${ }_{5}^{5330}$ \& 8780
10200 \& ． 6042 \& 0.230
0.195 \& 0.150
0.128
0 \& 0．297 \& \& 1800

1600 \& | 0.510 |
| :--- |
| 0.548 | \& \& 2.80

2.52 \& 0.238

0.236 \& | 3,500 |
| :--- |
| 3,200 | \& 115 \&

\hline \& ${ }_{85}^{85}$ \& $$
\begin{aligned}
& 45 \\
& 45
\end{aligned}
$$ \& 600

700 \& CS \& ${ }^{6300}$ \& 10200 \& ． 7500 \& O． $\begin{aligned} & 0.195 \\ & 0 \\ & 0 \\ & 0\end{aligned} 170$ \& 0．128 \& ${ }_{0}^{0.327} 0$ \& 0．128 \& \& 0.548
0.583
0.58 \& 2．59 \& － \& ${ }_{0}^{0.236}$ \& － \& \& ${ }_{0}^{0.798}$

\hline \& 85 \& ${ }_{45}^{45}$ \& 750 \& ${ }_{\text {cs }}$ \& ${ }_{7300} 68$ \& ${ }_{12150}^{1400}$ \& ：754 \& － 0 \& 0． 1107 \& ${ }_{0}^{0.356}$ \& 0.125 \& 1500 \& 0．600 \& 2． 28 \& 2.22 \& ${ }_{0}^{0.232}$ \& 2，700 \& 125 \& ${ }_{0}^{0.707}$

\hline \multirow{12}{*}{} \& ${ }_{105}^{105}$ \& \& \& CR \& 1930
2200 \& ${ }_{2170}^{2100}$ \& 184
.232 \& 4．13 \& ${ }^{2.52}$ \& 0.067
0.084
0.0 \& 0.216
0.201
0.217 \& 8500
7400 \& 0.211
0.254
0.2 \& 7.77 \& 8.19
6.77 \& －${ }_{0}^{0.354}$ \& 14，900 \& ${ }_{95}^{95}$ \& ． 89

\hline \& 105 \& 55 \& 2 \& CR \& 2690 \& 3120 \& ． 292 \& 1．64 \& 1.01 \& 0.106 \& 0．189 \& 6500 \& 0.299 \& 6.08 \& 5.45 \& 0． 296 \& 12，000 \& 100 \& 1．48

\hline \& 105 \& 55 \& 1 \& CR \& 2840 \& 3380 \& ${ }^{332}$ \& 1.29 \& 0.800 \& 0.126 \& 0．177 \& 6000 \& 0.333 \& 5.48 \& 4.97 \& 0． 282 \& 11，200 \& 100 \& 1．38

\hline \& ${ }_{105}^{105}$ \& 55
55
5 \& 0 \& CR \& 3200
2930 \& 3890
3790 \& － 323 \& 1.03

0.816 \& 0．638 \& 0．142 \& － | 0.169 |
| :--- |
| 0.158 |
| 0.158 | \& 5600

4300 \& － $\begin{aligned} & 0.384 \\ & 0.320 \\ & 0\end{aligned}$ \& \& 4.36
4.80 \& 0.272
0.285
0 \& ${ }_{8}^{10,500}$ \& 105 \& ${ }^{24}$

\hline \& 105 \& 55 \& 000 \& CS \& ${ }_{3220}^{2330}$ \& ${ }_{4310}^{340}$ \& －364 \& 0.816
0.650 \& ${ }_{0}^{0.410}$ \& ${ }_{0}^{0.171}$ \& ${ }^{0} .151$ \& ${ }_{3800}$ \& 0．348 \& 4，67 \& 4.43 \& ${ }^{0.277}$ \& 7，400 \& 100 \& 1．34

\hline \& 105 \& 55 \& 0000 \& CS \& 3680 \& 5050 \& －417 \& 0.518 \& 0.328 \& 0.191 \& 0.147 \& 3500 \& ${ }_{0} .383$ \& 4.07 \& 3.90 \& ${ }^{0.270}$ \& 6，600 \& 105 \& 1.19

\hline \& 105 \& 55
55 \& 250
300 \& $\mathrm{CS}_{\mathrm{CS}}$ \& ${ }_{4460}^{400}$ \& 5620

6410 \& －455 \& | 0.443 |
| :--- |
| 0.368 | \& 0．280 \& 0.210

0.230 \& 0.144
0.141
0 \& 3200

2900 \& | 0.407 |
| :--- |
| 0.434 | \& ¢ ${ }_{3}^{3.83}$ \& \& 0.285

0.260
0.2 \& ${ }_{\substack{8,100 \\ 5,600}}^{\text {a }}$ \& 1105 \& 1．13

\hline \& 105 \& ${ }_{55}^{55}$ \& ${ }_{350}^{300}$ \& CS \& 47880
4270 \& ${ }_{7050}^{6050}$ \& － 539 \& ${ }_{0}^{0.318}$ \& 0.204 \& ${ }_{0}^{0.249}$ \& ${ }^{0} .14189$ \& 2700 \& ${ }_{0}^{0.463}$ \& － \& 3．14 \& 0.254 \& 5．200 \& 110 \& ${ }^{1.938}$

\hline \& 105 \& 55 \& 400 \& \& 5270 \& 7860 \& ． 572 \& 0.282 \& 0.182 \& 0.265 \& 0． 137 \& 2500 \& 0.486 \& 2.98 \& 2.88 \& 0.250 \& 4，900 \& \&

\hline \& 105 \& 55
55 \& ${ }_{600}^{500}$ \& $\mathrm{CS}_{\mathrm{CS}}$ \& ${ }_{6}^{6040} 6$ \& 9290
10500 \& ： 700 \& 0.230
0.195
0.15 \& 0.150
0.128
0 \& ${ }_{0}^{0.297}$ \& － $\begin{aligned} & 0.135 \\ & 0.132 \\ & 0\end{aligned}$ \& ${ }_{2000}^{2200}$ \& 0.529
0.569 \& ${ }_{2.47}^{2.63}$ \& 2．55 ${ }_{\text {2．} 40}$ \& 0246024 \& \& ${ }_{120}^{120}$ \& 0.800
0.758

\hline \& 105 \& 55 \& 700 \& CS \& 7400 \& 11950 \& ． 754 \& 0.170 \& 0.112 \& 0．353 \& 0．130 \& 1900 \& ${ }^{0.605}$ \& － \& ${ }_{2}^{2.18}$ \& 0．237 \& 3．600 \& ${ }_{125}^{125}$ \& 0．691

\hline \& 105 \& 55 \& 750 \& Cs \& 7700 \& 12550 \& ． 780 \& 0.162 \& 0.107 \& 0.366 \& 0.129 \& 1800 \& 0.621 \& 2.18 \& 2.13 \& 0.235 \& 3，500 \& 125 \&

\hline
\end{tabular}

Table 5－60－Cycle Characteristics of Three－Conductor Belted Paper－Insulated Cables（Concluded）

	Insulation Thickness		$\begin{aligned} & \text { के } \\ & \text { ens } \\ & 0= \\ & 4 \% \end{aligned}$								POSITIVE \＆ NEGATIVE SEQUENCE			ZERO SEQUENCE				$\begin{aligned} & \text { LEAD } \\ & \text { SHEATH } \end{aligned}$	
	\％													$\underset{\substack{\mathrm{Sesig} \\ \mathrm{Oh}}}{ }$	ce (4) Mile	今od			
	$\begin{aligned} & \text { 节 } \\ & \text { す } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{\omega}} \\ & \dot{\oplus} \end{aligned}$												槵					
	105	105	6	CR	2170	2340	． 184	4.13	2.52	0.087	0.216	9000	0.211	9.32	7.71	0.384	17．600	95	1.73
	105	105	4	CR	2690	2960	． 232	2.58	1.58	0.084	0.201	7900	0.254	7.14	6.14	0.348	15,900	100	1.52
	105	105	2	CR	2720	－ 3150	． 292	1.64	1.01	0.106	0.189	6900	0.299	5.78	5.15	0.322	14，100	100	1.38
	105	105	1	GR	3340	3880	． 332	1.29	0.800	0.126	0.177	6400	0.333	4.98	4.49	0.308	13，200	105	1.23
	105	105	0	CR	3590	4280	． 373	1.03	0.638	0.142	0.169	6000	0.364	4.36	3.97	0.294	12，500	105	1.11
	105	105	00	CS	3330	4190	． 323	0.816	0.511	0.151	0.156	5000	0.320	4.61	4.29	0.312	10，300	105	1.26
	105	105	000	CS	3620	4710	． 364	0.650	0.410	0．171	0.151	4500	0.348	4.22	3.98	0.302	9，500	105	1.19
	105	105	0000	CS	4120	5490	． 417	0.518	0.328	0.191	0.147	4100	0.383	3.70	3.51	0.292	8，700	110	1.06
	105	105	250	CS	4410	6030	． 455	0.443	0.280	0.210	0.144	3800	0.407	3.47	3.31	0.286	8，000	110	1.01
	105	105	300	CS	4920	6870	． 497	0.368	0.236	0.230	0.141	3500	0.434	3.15	3.02	0.280	7，400	115	0.928
	105	105	350	CS	5270	7540	． 539	0.318	0.204	0.249	0.139	3300	0.463	2.97	2.86	0.274	7，000	115	0.884
	105	105	400	CS	5610	8200	． 572	0.282	0.182	0.265	0.137	3100	0.486	2.85	2.75	0.268	6，600	115	0.850
	105	105	500	CS	6390	9640	． 042	0.230	0.150	0.297	0.135	2800	0.529	2.52	2.44	0.264	6，000	120	0.764
	105	105	600	CS	7150	11050	． 700	0.195	0.128	0.327	0.132	2600	0.569	2.28	2.21	0.258	5，400	125	0.694
	105	105	700	CS	7750	12300	． 754	0.170	0.112	0.353	0.130	2300	0.605	2.15	2.09	0.254	5，000	125	0.660
	105	105	750	CS	8280	13150	． 780	0.162	0.107	0.366	0.129	2200	0.621	2.02	1.97	0.252	4，600	130	0.620
	170	75	4	CR	3010	3280	． 232	2.58	1.58	0.084	0.232	9600	0.302	6.27	5.27	0.348	16，400	105	1.23
	170	75	2	CR	3270	3700	． 292	1.64	1.01	0.106	0.216	8400	0.349	5.06	4.43	0.318	14，700	105	1.14
	170	75	1	CR	3920	4460	． 332	1.29	0.800	0.126	0.202	7700	0.384	4.38	3.89	0.304	13，900	110	1.03
	155	75	0	CR	4200	4890	． 373	1.03	0.638	0.142	0.188	6900	$0.40 \bar{\square}$	4.09	3.70	0.289	12，700	110	1.02
	155	75	00	CR	4630	5490	.419	0.816	0.511	0.159	0.185	6500	0.439	3.57	3.20	0.280	12，000	115	0.918
	155	75	000	CR	4830	5920	． 470	0.650	0.410	0.178	0．180	6100	0.476	3.25	3.01	0.272	11，300	115	0． 867
	155	75	0000	CS	4580	5950	． 417	0.518	0.328	0.191	0.161	4800	0.430	3.44	3.25	0.283	11,000 9,000	110	0.973
	155	75	250	CS	5040	6660	． 455	0.443	0.280	0.210	0.155	4500	0.457	3.11	2.95	0.276	8.200	115	0，890
	155	75	300	CS	5400	7350	． 497	0.368°	0.236	0.230	0.153	4200	0.484	2.93	2.80	0.271	7，900	115	0.855
	155	75	350	CS	5900	8170	． 539	0.318	0.204	0.249	0.150	4000	0.512	2.67	2.56	0.267	7.200	120	0.784
	155	75	400	CS	6260	8850	． 572	0.282	0.182	0.265	0.146	3700	0.536	2． 56	2.46	0.262	6，900	120	0.758
	155	75	500	CS	7110	10350	． 642	0.230	0.150	0.297	0.144	3300	0.580	2.27	2.19	0.258	6，200	125	0.680
	155	75	600	CS	7900	11800	． 700	0.195	0.128	0.327	0.141	3000	0.620	2.06	1.99	0.253	5，700	130	0.620
	155	75	700	CS	8500	13050	． 754	0.170	0.112	0.353	0.139	2700	0.657	1.94	1．88	0.249	5,400	130	0.591
	155	75	750	CS	9090	13950	． 780	0.162	0.107	0.366	0.138	2600	0.681	1.84	1.78	0.243	5，100	135	0.558
	170	155	4	CR	3610	3880	． 232	2.58	1.58	0.084	0.232	10300	0.302	5.76	4.76	0.378	18，900	110	
	170	155	2	CR	4010	4280	． 292	1.64	1.01	0.106	0.216	9000	0.349	4.61	3.98	0.353	17，200	110	0.990
	170	155	1	CR	4580	5120	． 332	1.29	0.800	0.126	0.202	8400	0.384	3.99	3.50	0.336	16，400	115	0.900
	155	155	0	CR	4730	5420	． 373	1.03	0.638	0.142	0.188	7600	0.405	3.70	3.31	0.320	15，300	115	0.890
	155	155	00	CR	4990	5850	． 419	0.816	0.511	0.159	0.185	7000	0.439	3.36	3.05	0.310	14，400	115	0.846
	155	155	000	CR	5550	6640	． 470	0.650	0.410	0.178	0.180	6600	0.476	2.95	2.71	0.300	13，600	120	0.768
	155	155	0000	CS	5000	6370	． 417	0.518	0.328	0.191	0.161	5600	0.430	3.08	2.89	0.314	11，600	115	0.855
	155	155	250	CS	5730	7350	． 455	0.443	0.280	0.210	0.155	5200	0.457	2.80	2.64	0.307	10，800	120	0.786
	155	155	300	CS	6120	8070	． 497	0.368	0.236	0.230	0.153	4900	0.484	2.63	2.50	0.301	10，200	120	0.755
	155	155	350	CS	6870	8940	． 539	0.318	0.204	0.249	0.150	4600	0.512	2.41	2.30	0.294	－9，500	125	0.698
	155	155	400 500	CS	7050	9640	． 572	0.282	0.182	0.265	0.146	4300	0.536	2.31	2.21	0.288	9，000	125	0.676
	155	155	500	CS	7910	11150	． 642	0.230	0.150	0.297	0.144	3900	0.580	2.06	1.98	0.283	8，200	130	0.611
	155	155	600	CS	8750	12850	． 700	0.195	0.128	0.327	0.141	3600	0.620	1.87	1.80	0.277	7，500	135	0.558
	155	155	700	CS	9400	13950	． 754	0.170	0.112	0.353	0.139	3400	0.657	1.78	1.71	0.272	7，200	135	0.535
	155	155	750	CS	9760	14600	． 780	0.162	0.107	0.366	0.138	3300	0.681	1.74	1.68	0.266	6，800	135	0.525

（1）A－C resistance based on $65^{\circ} \mathrm{C}$ ．With allowance for stranding，skin effect and proximity effect．Copper 0.15328 ohm（meter，gram）；aluminum 0.076397 （2）GMR
（2）GMR of sector shaped conductors is an approximate figure close enough
for most practical applications．
（3）Dielectric constant assumed 3.7
（4）Zero－sequence impedances besed on all return current in the sheath； （5）The ground．
（5）The following symbols are used to designate the conductor type－CR
concentric round；CS－compact sector．

Table 6-60-Cycle Characteristics of Three-Conductor Shielded Paper-Insulated Cables

Table 7-60-Cycle Characteristics of Single-Conductor Concentric-Strand Paper-Insulated Cables

Table 7 continued on next page

Table 7－60－Cycle Characteristics of Single－Conductor Concentric－Strand Paper－Insulated Cables（Continued）

							x_{0}	x_{0}	$\begin{aligned} & r_{\mathrm{A}} \\ & \mathrm{CU} \end{aligned}$	$\begin{gathered} r_{\mathrm{a}} \\ \mathrm{AL} \\ \hline \end{gathered}$	r		
	130 130 115 115	8 4 4 2 1	825 930 9380 1220	$\begin{array}{r}770 \\ 840 \\ 940 \\ \hline 9040\end{array}$	0.184 0.232 0.292 0.332	0.067 0.084 0.108 0.126	0.830 0.602 0.574 0.653	0.452 0.442 0.436 0.428	2.504 1.572 0.993 0.786	4.132 2.599 1.637 1.293	4.310 3.968 3.788 3.571	7103. 6031. 4684. 4244.	80 80 80 80
	115 115 115 115	$1 / 0$ $2 / 0$ $3 / 0$ $4 / 0$	1350 1500 1730 1980	1120 1240 1370 1530	0.373 0.418 0.470 0.528	0.141 0.159 0.178 0.200	0.539 0.525 0.511 0.497	0.421 0.413 0.406 0.398	0.821 0.494 0.392 0.311	1.030 0.816 0.644 0.513	3.158 2.960 2.785 2.600	3878. 3873. 3282. 3915. 2915.	85 85 85 85
	115 115 115 115	250 300 350 400	2190 2480 2740 3020	1660 1840 1909 2160	0.588 0.630 0.638 0.681 0.728	0.221 0.242 0.262 0.280	0.485 0.474 0.464 0.456	0.391 0.384 0.378 0.373	0.264 0.221 0.189 0.166	0.435 0.363 0.311 0.372	2.315 2.200 2.096 2.002	2713. 2759. 236. 2214.	90 90 90 80
	115 115 115	500 600 750	3430 3930 4700 5880	2350 2640 3090 3710	0.814 0.893 0.998 1.152	0.312 0.345 0.385 0.445	0.443 0.431 0.417 0.400	0.364 0.356 0.346 0.333	0.134 0.132 0.091 0.070	0.219 0.183 0.147 0.111	1.762 1.651 1.439 1.233	2008. 188. 1672. 1688	95 95 95 100 105
	115	1000	5860	3710	1.152	0.445	0.400	0.333	0.070	0.111	1.233	1468.	
	115 115 115	1250 1500 1750	$\begin{array}{r}7060 \\ 8160 \\ 9250 \\ \hline 1020\end{array}$	4370 4940 5490 5900	1.289 1.412 1.5126 1.822	0.499 0.546 0.592 0.832	0.388 0.375 0.365 0.357	0.322 0.314 0.305 0.309	0.058 0.058 0.054 0.044 0.040	0.091 0.091 0.077 0.067 0.060	1.238 1.076 1.005 0.899 0.855	1324. 1217. 1132. 1063.	110 110 115 115
				5950	1.632	0.633	0.357	0.299	0.040	0.060	0.855	1083.	
	155 155 140 140	6 4 2 1	910 1010 1110 1300	850 920 1000 1120	0.184 0.232 0.292 0.332	0.067 0.084 0.106 0.126	0.630 0.602 0.574 0.553	0.442 0.432 0.427 0.420	2.504 11.572 0.993 0.786	4.132 2.599 1.637 1.293	3.968 3.676 3.621 3.116	7963. 8842. 5422. 4931.	80 80 80 85
	140 140 140 140	$1 / 0$ $2 / 10$ $3 / 0$ $4 / 0$	1430 1620 1880 2090	1200 1330 1510 1640	0.373 0.418 0.470 0.528	0.141 0.159 0.178 0.200	0.539 0.525 0.511 0.497	0.413 0.406 0.399 0.391	0.621 0.494 0.392 0.311	1.030 0.816 0.644 0.513	2.960 2.785 2.629 2.315	4515. 4127. 3768. 3431.	85 85 85 85 90
	140 140 140 140	250 300 350 400	2320 2820 2890 3170	1780 1980 2140 2310	0.575 0.630 0.681 0.728	0.221 0.242 0.262 0.280	0.485 0.474 0.464 0.456	0.384 0.378 0.372 0.367	0.264 0.221 0.189 0.168	0.435 0.363 0.311 0.312	2.200 2.096 1.888 1.807	3199. 2965. 2777. 2624.	90 90 90 95 95
	140 140 140 140	500 600 750 1000	3670 4170 4970 6120	2600 2880 3360 3970	0.814 0.893 0.998 1.152	0.312 0.345 0.385 0.445	0.443 0.431 0.417 0.400	0.359 0.359 0.351 0.341 0.329	0.134 0.112 0.091 0.070	0.219 0.183 0.147 0.111	1.891 1.504 1.389 1.194	2386. 2199. 11994. 1754.	95 100 100 105
	140 140 140 140	1250 1509 1750 2000	7210 8380 9540 10590	4530 5160 5780 6290	1.289 1.412 1.526 1.632	0.499 0.546 0.592 0.633	0.386 0.375 0.365 0.357	0.318 0.310 0.302 0.298	0.058 0.058 0.044 0.040	0.091 0.077 0.067 0.060	1.045 .978 .876 .797	1585. 1459. 1358. 1277.	110 110 115 120
$\begin{gathered} \text { 苟苞 } \\ \text { 品 } \\ \text { 岛 } \end{gathered}$	190 190 175 175	4 2 1 $1 / 0$	1220 1378 1480 1610	1120 1230 1300 1380	0.232 0.292 0.332 0.373	0.084 0.106 0.126 0.141	0.602 0.574 0.553 0.539	0.420 0.410 0.409 0.403	1.572 0.993 0.786 0.621	2.599 1.637 1.293 1.030	3.116 2.887 2.852 2.720	7821. 8721. 5885． 5336.	85 85 85 85
	175 175 175 175	$2 / 0$ $3 / 0$ $4 / 0$ 250	1770 1980 2250 2480	1480 1620 1800 1840	0.418 0.470 0.528 0.575	0.159 0.178 0.200 0.221	0.525 0.511 0.497 0.485	0.396 0.389 0.382 0.376	0.494 0.392 0.311 0.364	0.816 0.644 0.513 0.435	2.572 2.292 2.157 2.058 2.058	4896. 4888. 4100. 3833.	85 90 90 90
	175 175 175 175	300 350 400 500	2770 3080 3380 3900	2130 2330 2520 2825	0.630 0.681 0.728 0.814	0.242 0.262 0.280 0.312	0.474 0.464 0.456 0.443	0.370 0.365 0.360 0.352	0.221 0.189 0.168 0.134 0.1	0.363 0.311 0.272 0.219	1.855 1.777 1.7705 1.515	3563. 3344. 3165. 2887.	95 95 95 95 100
	175 175 175 175	600 750 1000 1250	4380 5150 6300 7490	3090 3540 4150 4800	0.893 0.998 1.152 1.289	0.345 0.385 0.445 0.499	0.431 0.417 0.400 0.380	0.345 0.335 0.324 0.314	0.112 0.091 0.070 0.058	0.183 0.147 0.111 0.091	1.429 1.257 1.144 1.005	2666. 2644 2139. 1937.	100 105 105 110
	$\begin{aligned} & 175 \\ & 175 \\ & 175 \end{aligned}$	1500 1750 2000	$\begin{array}{r} 8600 \\ 9820 \\ 10900 \end{array}$	$\begin{aligned} & 5380 \\ & 6060 \\ & 6630 \end{aligned}$	1.412 1.526 1.832	0.546 0.592 0.633	0.375 0.365 0.357	0.305 0.298 0.292	0.050 0.044 0.040	0.077 0.067 0.060	0.899 0.846 0.772	1786. 1666. 1567.	115 115 120

Table 7 continued on next page

Table 7-60-Cycle Characteristics of Single-Conductor Concentric-Strand Paper-Insulated Cables (Continued)

Table 7 concluded on next page

Table 7－60－Cycle Characteristics of Single－Conductor Concentric－Strand Paper－Insulated Cables（Concluded）

							x^{*}	x_{1}	$\begin{aligned} & r_{\mathrm{a}} \\ & \mathrm{CU} \end{aligned}$	$\begin{gathered} r_{\mathbf{a}} \\ \mathrm{AL} \\ \hline \end{gathered}$	$r_{.}$		
	345 345 345 345	$2 / 0$ $3 / 0$ $4 / 0$ 250	2690 2910 3190 3430	2400 2550 2740 2890	0.418 0.470 0.528 0.575	0.159 0.178 0.200 0.221	0.525 0.511 0.497 0.485 0.474	0.357 0.352 0.346 0.342	0.494 0.392 0.311 0.264 0	0.816 0.644 0.513 0.435	1.664 1.515 1.449 1.399	7848. 7885. 7740 6357.	95 100 100 100
	345	300	3770	3130	0.630	0.242	0.474	0.338	0.221	0.363	1.351	5964.	100
	345 345	350 400	4100 4430	3350 3570	0.681 0.728	0.262 0.280	0.464 0.456	0.334 0.330	0.189 0.166	0.311 0.272	${ }_{1}^{1.202}$	5842. 5376.	105
	345 345	400 500	4430 5020	${ }_{3950}^{3570}$	0.814	0.312	0.443	0.324	0.134	0.219	1.144	4955.	105
	345	000	5610	4320	0.893	0.345	0.431	0.318	0.112	0.183	1.039	4616.	110
	345	750	6460	4850 5550	0．998	0.385 0.445	0.417 0.400	0.310 0.301	${ }_{0}^{0.091}$	0.147 0.111	0.978 0.863	－ 37884.	115
	345 345	1000 1250	7700 8950	5550 6260	1.152 1.289	0.445 0.499	0.400 0.386	${ }_{0.292}^{0.301}$	0.070 0.058	${ }_{0}^{0.091}$	0.863 0.772	${ }_{3457}^{378 .}$	120
	345 345 345	1500 1750 2000	10150 11450 12600	6930 7690 8290	1.412 1.526 1.632	0.546 0.592 0.633	0.375 0.365 0.357	0.285 0.279 0.273	0.050 0.044 0.040	0.077 0.067 0.060	0.697 0.665 0.611	3208. 3008. 2843.	125 125 130
	345	2000											
	455	2／0	3490	3200	0.418	0.159	0.525	${ }_{0}^{0.337}$	0.494 0.392	${ }_{0}^{0.816}$	1.274	9307. 8885.	105 105
	455	$3 / 0$ $4 / 0$	3710 3990	3350 $\mathbf{3 5 4 0}$	0.470 0.528	0.178 0.200	0.511	${ }_{0} 0.328$	${ }_{0}^{0.311}$	${ }_{0}^{0.513}$	${ }_{1}^{1.187}$	8078.	105
	455 455	4200	3950 4290	3540 3710	${ }_{0}^{0.575}$	0.221	0.485	0.324	0.264	0.435	1.151	7650.	105
	455	300	4580	3940	0.630	0.242	0.474	${ }_{0}^{0.320}$	${ }_{0}^{0.221}$	${ }_{0}^{0.363}$	1.063	${ }_{6842} 720$.	110
	455 455	350 400	4910 5250	4160 4390	0.681 0.788	0.262 0.280	0.464 0.456	0.317 0.314	0.189 0.166	${ }_{0}^{0.272}$	${ }^{1.033}$	${ }^{6839 .}$	110
	${ }_{455}^{455}$	$\stackrel{400}{ }$	5860	4790	0.814	0.312	0.443	0.308	0.134	0.219	0.918	6056.	115
	455	600	6470	5180	0.893	0.345	0.431	0.303	0.112	0.183	0.881	5665.	115
	455	750	7360	5750	${ }^{0} 0.998$	0.385 0.445	0.417 0.400	0.296 0.288	${ }_{0}^{0.091}$	0.147 0.111	0.797 0.744	${ }_{4694}^{5265 .}$	120.
	455 455	1000 1250	8680 9940	6510 7260	1.152 1.289	$\stackrel{0.499}{ }$	${ }_{0}^{0.386}$	0．280	0.058	0.091	0.668	4307.	125
			11200	7980	1.412	0.548	0.375	0.273	0.050	${ }_{0}^{0.077}$	0.611 0.560	4011. 3771.	130 135
	455 455	1750 2000	12450 13700	8690 9420	1.528 1.632	0.592 0.633	0.365 0.357	0.268 0.263	0.044 0.040	0.067 0.060		${ }_{3573}^{377}$ ．	
	445	4／0	3940	3490	0.528	0.200	0.497	0.330	${ }_{0}^{0.311}$	${ }_{0}^{0.513}$	${ }_{1}^{1.202}$	7966. 7541.	105
	445	250 300	4220 4550	3680 3910	0.575 0.630	0.221 0.242	0.485 0.474	${ }_{0}^{0.326}$	0.264 0.221	0.435 0.363	${ }_{1}^{1.076}$	7102.	110
	445 445	300 350	${ }_{4830}$	4080	${ }_{0.681}$	0.262	0.464	0.318	0.189	0.311	1.045	6740.	110
				4360	0.728	0.280	0.456	0.315	0.166	0.272	${ }^{1.016}$	6440.	110
	445	500	5830	4760	0.814	${ }^{0.312}$	0.443 0.431	0.309 0.304	${ }_{0}^{0.134}$	0.219 0.183	0.928 0.890	${ }_{5575} 596$.	115
	445 445	600 750	6400 7310	5110 5700	0.893 0.998	0.345 0.385	0.431 0.417	0.304 0.297	${ }_{0}^{0.112}$	0.147	${ }_{0}^{0.805}$	5140.	120
						0.445	0.400	0.289	0.070	0.111	0.751	4616.	
	445	1000 1250	8660 8870	6510 7180	1.152 1.289	0.445 0.499	${ }_{0}^{0.386}$	${ }_{0}^{0.281}$	${ }_{0.058}$	0.091	0.677	4233.	125
	445	1500	11000	7780	1.412	0.546	0.375	0.274	0.050	${ }_{0}^{0.077}$	0.615 0.587	${ }_{3705}^{3941 .}$	130 130
	445	1750	12250	8490	1.526	0.592	0.365	0.269	0.044	0.067	0.587	3705.	130
	445	2000	13650	9330	1.632	0.633	0.357	0.283	0.040	0.060	0.542	3509.	135
		500	7660	6590	0.814	0.312	0.443	0.284	0.134	0.219	0.694	7701.	${ }_{125}^{125}$
	650 650	600 750	8250	6960 7610	0.893 0.998	0.345 0.385	0.431 0.417	0.280 0.274	${ }_{0.091}^{0.134}$	${ }_{0}^{0.147}$	0.615	6725.	130
	650 650	750 1000	10650	8500	1.152	0.445	0.400	0.267	0.070	0.111	0.556	6091.	135
		1250		9420	1.289	0.499	0.386	0.260	0.058	0.091	${ }_{0}^{0.528}$	5623. 5263.	135 140
	${ }^{650}$	1500 1750	13400 14700	${ }_{10950}^{10150}$	1.412 1.526	0.546 0.592	0.375 0.365	${ }_{0}^{0.250}$	${ }_{0}^{0.044}$	0.067	0.451	4969.	145
	650	2000	15950	11650	1.632	0.633	0.357	0.246	0.040	0.060	0.436	4724.	145

Table 8－60－Cycle Characteristics of Self－Supporting Aerial Cable Rubber－Insulated，Neoprene－Jacketed

$\begin{aligned} & \text { 昆 } \\ & \text { 品 } \\ & \text { B } \\ & 0 \end{aligned}$											POSITIVE SEQUENCE B0～AC OHMS／MI．				ZERO SEQUENCE（3） 60～AC OHMS／MI				
								80			Resistance（1）		Reactance		Resistance（1）		Reactance		
								法管									Series I	duotive	
											$\begin{aligned} & \text { H. } \\ & 00.0 \\ & 00 \end{aligned}$	$\begin{aligned} & \text { 苞 } \\ & \text { 昆 } \end{aligned}$			$\begin{aligned} & \text { む. } \\ & 0.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \text { 最 } \\ & \frac{a}{3} \end{aligned}$	怠		
	6	7	${ }^{10} 104$	No	3	0.59	5／4\％ $30 \% \mathrm{CCS}$	1020	${ }^{5} 50430 \%$ CCS	854	2.52	4.13	0.258		3.592	5.082	3.712	3.712	
	4	7		$\xrightarrow{\text { No }}$	号㐌	0.67 0.73	30＂30\％CCS	1230	5／4．30\％CCS	956 1100	1.58 1.00	${ }^{2.58}$	0.246 0.229		2．632	3.572	3.662 3.615	3.662 3 3	
	1	19	$10^{4} / 4$	No	3／4	0.77	㕩 ${ }^{\prime \prime} 30 \%$ CCS	1780	${ }^{50}{ }^{\circ}{ }^{30 \%}$ CCS	1250	${ }_{0}^{1.791}$	1.64	0.211		2.825 1.815	2.605 2.275	${ }_{3}^{3.5152}$	3.615 3.582	
	1／0	19	10，4	No	3	0.81	\％${ }^{\text {\％}}$ 30\％CCS	2070	56\％ $30 \% \mathrm{CCS}$	1390	0.635	1.03	0.207		1.644	2.015	3.555	3.555	
	2／0	19	10	No	通	0.85	8\％ 30% CCS	2510	5＂\％ $30 \% \mathrm{CCS}$	1530	0.501	0.816	0.200		1.622	1.803	3．162	3.526	
	4／0	19	10	No	淮	${ }_{0}^{0.91}$	告＂ 30% CCS	${ }_{3570}^{2890}$		1690	0.402 0.318	0.644 0.518	0.194 0.191		1.517 1.401	1.637	${ }_{2}^{3.1865}$	3.499 3.459	
	250	37	11／4	No	14	1.08	1／7． 30%	4080	5／6＂${ }^{\text {a }}$	2160	0.269	0.437	0.189		1.351	1.430	2.635	3.429	
	300 350	${ }_{37}^{37}$	114	No	㑕	${ }_{1}^{1.13}$	疗 $30 \% \mathrm{CCS}$	4620 5290	\％${ }^{*} 30 \%$ CCS	2500 2780	${ }^{0.228}$	0.366	0.184		1.308	1.465	2.612	3.042	
	350 400	${ }_{37}^{37}$	$11 / 4$	No		${ }_{1}^{1.18}$	告＂${ }^{\text {² }} 30 \%$ CCS	5290 5800	疗＂ 30% CCS	${ }^{2780}$	0.197 0.172	0.316 0.276	0.180 0.176		${ }_{1}^{1.252}$	1.415	${ }_{2}^{2.591}$	3.021 3.006	
	500	37	$11 / 4$	No	$1 / 4$	1.32	$1 / 2 * 30 \%$ CCS	0860	$11 /{ }^{\prime \prime} 30 \% \mathrm{CCs}$	3850	0.141	0.223	0.172		1.219	1.290	2.543	2.543	
				$Y_{e s}$		0.74				1140	2.52	4.13	0.292	4970					
	4	7	104	$\mathbf{Y}_{\text {Yes }}$	淮	0.79 0.88	源＂${ }^{30 \%}$ CCS	1540	$5 /{ }^{\prime \prime} 30 \% \mathrm{CCS}$ $\mathrm{s}^{\prime \prime} 30 \% \mathrm{CCS}$	1270	1.58 1.00	${ }_{1}^{2.58}$	0.272 0.257	4320 3630					
	1	18	$1{ }^{10}$	Yea	先	0.92	$5 / 6^{\circ} 30 \% \mathrm{CCS}$	2180	${ }^{5} 0^{\prime \prime}{ }^{*} 30 \% \mathrm{CCS}$	1640	0.791	1.29	0.241	${ }_{330}^{3630}$					
	1／0	19	${ }_{10}^{10}$	Yes	s，	0.96	${ }^{5}$ 倁＂${ }^{3} 30 \%$ CCS	${ }^{2450}$	${ }^{3} 10{ }^{\prime \prime} 30 \% \mathrm{CCS}$	1770	0.855	1.03	0.233	3080					
	$3 / 0$	19	10\％	${ }_{\text {Yes }}$	5	1.00		${ }_{3320}^{2910}$		${ }_{2120}^{1930}$	0.501 0.402	0.816 0.644	0.223 0.215	2858					
	4／0	18	10\％	Yes	5／4	1.11	8／30\％CCS	4030	${ }^{5 / 6}{ }^{*} 30 \% \mathrm{CCS}$	2350	0.318	0.518	0.207	2380					
	250	${ }_{37}^{37}$	114	Yee	544	1.20	3＂30\％CCS	4570	\％ $30 \% \mathrm{CCS}$	2770	0.269	0.437	0.206	2380					
	$\begin{array}{r}300 \\ 350 \\ \hline\end{array}$	$\begin{aligned} & 37 \\ & 37 \end{aligned}$	$11 /$	$\mathrm{Y}^{\mathrm{Y} e 8}$	\％	1.29	年＂${ }^{3} 30 \%$ CCS	5840	\％${ }^{3 \prime \prime}{ }^{30 \%}$ CCS	3140 3380	${ }_{0}^{0.228}$	${ }_{0}^{0.366}$	0.203 0.199	${ }_{2090}^{2280}$					
	400	37	11／4	${ }_{\text {Yes }}$	6	1.39	法 ${ }^{30 \%}$ CCS	8380	源＂ $30 \% \mathrm{CCS}$	3610	0.172	0.276	0.194	1890					
	500	37	11／6	Yea	9／4	1.47	1／2＂30\％CCS	7470	1／2＂ 30% CCS	4240	0.141	0.223	0.187	1740					
				Yes		1.05	5 50\％ $30 \% \mathrm{CCS}$	2090	$510{ }^{\prime \prime} 30$	1920	2.52	4.13	0.326	7150	3.846	5.346	3.396	3.396	
	4	19	119	Yes	5／4	1.10	${ }^{3} 0^{\prime \prime} 30 \% \mathrm{CCS}$	2350	5，${ }^{\prime \prime}{ }^{30 \%}$ CCS	2080	1.58	2.58	0.302	6260	2.901	3.831	3.364	3.364	6260
	2	${ }_{19}^{19}$	${ }^{19}$	${ }_{\text {Yes }}$	5／4．4	1.16 1.20	源＂ 30% CCS	2860 3120	鱼＂30\％CCS	2430 2580	${ }_{0.791}^{1.00}$	1.64 1.29	0.279 0.268	${ }_{5110}^{5480}$	2．459	${ }_{2}^{3.039}$	2.851 2.837	${ }_{2.837}^{2.851}$	5460 5110
	1／0	19	10	Yes	\％	1.27	＂10\％ $30 \% \mathrm{CCS}$	3560	8／8＂ 30% CCS	2880	0.655	1.03	0.260	4720	2.052	2.426	2.825	2.825	4720
	3／0	19	19	${ }_{\text {Y }}^{\text {Yes }}$	\％	1.37	为＂30\％CCS	4120	\％${ }^{\prime \prime \prime}$＂30\％CCS	${ }_{3510}^{3070}$	0.501	0.816	0.249	${ }_{4120}^{4370}$	1.896	2.214	2.251	2.801	${ }_{41270}$
	4／0	19	1094	Yes	㐍	1.43	洼＂30\％CCS	5150	揗 ${ }^{30 \%}$ CCS	3790	0.318	0.518	0.231	3770	1.681	1.864	2.235	2.235	3770
	250	37	104	Yes	\％	1.47	1／2\％ $30 \% \mathrm{CCS}$	5590	132＂ $30 \% \mathrm{CCS}$	3980	0.269	0.437	0.223	3570	1.630	1.782	2.227	2.227	3570
	300 350					1.53		6260				0.368	0.217	3330	L． 578	1.701	2.226	2.226	3330
	350 400	$\begin{aligned} & \mathbf{3 7} \\ & \mathbf{3 7} \end{aligned}$	$\begin{aligned} & 10 \% \\ & 1004 \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yees } \end{aligned}$	\％\％	1.53		${ }_{7450}^{8870}$	少＂${ }^{30 \%}$ CCS	4600 4860	0.197 0.172	0.316 0.276	0.212 0.208	3130 2980	1.536 1.500	${ }_{1.592}^{1.640}$	2.226	${ }_{2.216}^{2.226}$	3130 2980
	500	37	${ }^{19} 4$	Yea	7／4	1.75	1／2＂ 30% CCS	8970	卭 ${ }^{3} 30 \% \mathrm{CCs}$	5580	0.141	0.223	0.204	2830	1.454	1.524	2.198	2.198	2830

（1）AC resistance based on $65^{\circ} \mathrm{C}$ with allowance for stranding，akin effect and （2）Dielectric constant asaumed 6．0．
（3）Zero－sequence impedance based on return current both in the messenger and in 100 meter－ohm earth．

Table 9-60-Cycle Characteristics of Rubber-Insulated Neoprene-Jacketed Cables in Ducts

(1) A-C resistance basedron $65^{\circ} \mathrm{C}$. with allowance for stranding, akin effect and (2) Dielectric constant assumed 6.0.
(4) Duct size assumed so that three cables fill not more than 40% of duct cros section. Random apacing assumed within duct.

Table 10-Inductive Reactance Spacing Factor (\mathbf{x}_{d}) Ohms per Conductor per Mile

Table 11 --Shunt Capacitive Reactance Spacing Factor $\left(\boldsymbol{x}_{\mathrm{d}}{ }^{\prime}\right)$ Megohms per Conductor per Mile

TRANSFORMER EQUIVALENT CIRCUITS

The procedure to be followed in calculating the impedance values for a transformer equivalent circuit depends on the form of the original data, and whether the final values are to be expressed in ohms or per cent. Procedure I, below, is convenient for the simpler cases when the original impedances are expressed in per cent on a circuit base and the final values are to be expressed in per cent. Procedure II is generally recommended for the more complicated cases, particularly for the ones involving neutral impedances or series transformers.
Procedure I. The impedances of two- and three-winding transformers are normally given in per cent on a circuit kva base. With the basic data in this form it is convenient to calculate the equivalent-circuit impedance values directly in per cent. The equivalent circuits and equations for calculating the sequence quantities are given in Table 12 for 13 of the more common transformer connections. The following notation is employed in the table:

1. Terminal designations.

Circuit 4-abc terminals.
Circuit $5-a^{\prime} b^{\prime} c^{\prime}$ terminals.
Circuit 6-a" $\mathrm{a}^{\prime \prime} \mathrm{b}^{\prime \prime}$ terminals.
2. Impedances.
$Z_{45} \%$-impedance circuit 4 to circuit 5 in per cent on 3-phase rated kva of circuit 4.
$Z_{46} \%$-impedance circuit 4 to circuit 6 in per cent on 3-phase rated kva of circuit 4.
$Z_{56} \%$-impedance circuit 5 to circuit 6 in per cent on 3-phase rated kva of circuit 5 .
$Z_{1} \%, Z_{0} \%, Z_{\mathrm{H} 1} \%, Z_{\mathrm{M} 1} \%, Z_{\mathrm{L}} \%, Z_{\mathrm{H} 0} \%, Z_{\mathrm{M} 0} \%$, and $Z_{\mathrm{L} 0} \%$ are all in per cent on the 3-phase rated kva of circuit 4.
U_{4}, U_{5}, and U_{6} designate the 3 -phase kva ratings of circuits 4, 5 and 6 , respectively.
The impedances can be converted from one base to another by the relations,

$$
\begin{aligned}
& Z_{46} \%=\frac{U_{4}}{U_{6}} Z_{64} \% . \\
& Z_{66} \%=\frac{U_{5}}{U_{6}} Z_{65} \% . \\
& Z_{45} \%=\frac{U_{4}}{U_{6}} Z_{54} \% .
\end{aligned}
$$

Procedure II. In many cases, particularly the ones involving neutral impedances or series transformers, less confusion results if the equivalent-circuit impedance values are calculated in ohms, rather than in per cent. However, as the basic data are normally in per cent, it is first necessary to convert to ohms using the following relations:

$$
\begin{aligned}
& Z_{45}=\frac{10 Z_{45} \% E_{4}{ }^{2}}{U_{4}} \\
& Z_{46}=\frac{10 Z_{45} \% E_{4}{ }^{2}}{U_{4}} \\
& Z_{56}=\frac{10 Z_{56} \%_{0} E_{5}{ }^{2}}{U_{5}}, \text { where }
\end{aligned}
$$

$Z_{45} \%, Z_{46} \%, Z_{56} \%$ are as defined in I.
E_{4}, E_{5} and $E_{6}=$ line-to-line voltages, in kv , in circuits 4,5 and 6 , respectively.
U_{4}, U_{5} and $U_{6}=3$-phase kva ratings of circuits 4,5 and 6 , respectively.
$Z_{45}=$ impedance between circuits 4 and 5 in ohms on circuit 4 voltage base.
$Z_{46}=$ impedance between circuits 4 and 6 in ohms on circuit 4 voltage base.
$Z_{56}=$ impedance between circuits 5 and 6 in ohms on circuit 5 voltage base.

Table 12—Transformer Equivalent Circuirs Used in Procedure I

TWO-CIRCUIT TRANSFORMERS			
DESCRIPTION	DIAGRAM OF CONNECTIONS	POSITIVE-SEQUENC.E EQUIVALENT CIRCUIT	ZERO-SEOUENCE EQUIVALENT CIRCUIT
A-I STAB/STAR SOLIDEY GROUNDED NEUTRALS (NOT FOR 3 PHASE CORE TYPE			
A-4 star/star neutrals CONNECTEDBUT ungrounded inot for 3 Prase CORE TYPE		SAME AS A-I	
$\begin{aligned} & \text { A-5 } \\ & \text { STAR/DELTA } \\ & \text { SOLIOLY } \\ & \text { GROUNDED } \\ & \text { NEUTRAL } \end{aligned}$			
$\begin{aligned} & \text { A-6 } \\ & \text { DELTAFTAR } \\ & \text { SOLIDLY } \\ & \text { GROUNDED } \\ & \text { NEUTRAL } \end{aligned}$		SAME AS A-S	
$\underset{\text { DELTA-DELTA }}{\text { A-7 }}$		SAME AS A-I	SAME AS A-4
TWO-CIRCUIT AUTOTRANSFORMERS			
8-I STAR/STAR SOLIDLY grounded neutral (NOT FOR 3 PHASE CORE TYPE J		SAME AS A-I	SAME AS A-I
$\begin{aligned} & \text { B-3 } \\ & \text { STAR/STAR } \\ & \text { UNGROUNDED } \\ & \text { NEUTRAL } \\ & \text { NOT FRR3PHASE } \\ & \text { CORE TYPEI } \end{aligned}$		SAME AS A-I	SAME AS A-4
THREE-CIRCUIT TRANSFORMER			
$\begin{aligned} & \text { C-I } \\ & \text { STAR/STAR/ } \\ & \text { STAR } \\ & \text { SOLIOLY } \\ & \text { GROUNOED } \\ & \text { NEUTRALS } \end{aligned}$		$\begin{aligned} & Z_{W 1} \%_{=}=\frac{1}{2}\left[Z_{45} \%+Z_{46} \%-\frac{U_{4}}{U_{5}} Z_{96} \%\right] \\ & Z_{11} \%_{6}=\frac{1}{2}\left[Z_{46} \%+\frac{U_{4}}{U_{5}} Z_{56} \%-Z_{45} \%_{6}\right] \\ & Z_{H 1} \%=\frac{1}{2}\left[\frac{U_{4}}{U_{5}} Z_{56} \%+Z_{45} \%-Z_{46} \%\right] \end{aligned}$	$\begin{aligned} & Z_{\mathrm{MO}} \%=Z_{\mathrm{M} 1} \% \\ & Z_{\mathrm{LO}} \%=Z_{\mathrm{LI}} \% \\ & Z_{\mathrm{HO}} \%=Z_{\mathrm{HI}} \% \end{aligned}$

Concluded on next page

Table 12-Transformer Equivalent Circuits Used in Procedure 1 (Concluded)

THREE-CIRCUIT TRANSFORMERS(CONT'D.)			
DESCRIPTION	diagram of connections	Positive-sequence equivalent circuit	zero seouence equivalent circuit
$\begin{aligned} & \quad \begin{array}{l} \text { C-3 } \\ \text { STAR/STAR/ } \\ \text { DELTA } \\ \text { SOLIDLY } \\ \text { GROUNDED } \\ \text { NEUTRALS } \end{array} \end{aligned}$			$\begin{aligned} & z_{\mathrm{MO}} \%=z_{\mathrm{M} 1} \% \\ & z_{\text {Lo }} \%=z_{\mathrm{L}} \% \\ & z_{\text {H0 }} \%=z_{\mathrm{H} 1} \% \end{aligned}$
C-6 DELTA/STAR/ DELTA SOLIOLY GROUNDED NEUTRAL		$\begin{aligned} & z_{M 1} \%=\frac{1}{2}\left[z_{45} \%+z_{46} \%-\frac{U_{4}}{U_{5}} z_{96} \%\right] \\ & z_{L 1} \%=\frac{1}{2}\left[z_{46} z_{4}+\frac{U_{4}}{U_{5}} z_{56} \%-z_{45} \%\right] \\ & z_{\text {W1 }} \%=\frac{1}{2}\left[\frac{U_{4}}{U_{5}} z_{36} \%+z_{45} \%-z_{46} \%\right] \end{aligned}$	$\begin{aligned} & z_{\text {Mo }} \%=z_{M 1} \% \\ & z_{\text {Lo }} \%=z_{\text {L }} \% \\ & z_{\text {но }} \%=z_{\text {H }} \% \end{aligned}$
$\begin{gathered} \text { CETA } \\ \substack{\text { DELTAA } \\ \text { DELTAÁ }} \end{gathered}$		SAMEAS c-i	$\begin{aligned} & z_{\text {Ho } \%}=z_{\mathrm{M}_{1}} \% \\ & z_{\text {Lo }} \%=z_{\text {LI }} \% \\ & z_{\text {Ho }} \%=z_{\mathrm{H}_{1}} \% \end{aligned}$
THREE-CIRCUIT AUTOTRANSFORMERS			
$\begin{aligned} & \quad \text { D-1 } \\ & \text { STAR/STAR/ } \\ & \text { DELTA } \\ & \text { SOLIDLY } \\ & \text { GROUNDEO } \\ & \text { NEUTRAL } \end{aligned}$			$\begin{aligned} & z_{\text {No }} \% \cdot z_{W 1} \% \\ & z_{\text {Lo }} \% \cdot z_{\text {LI }} \% \\ & z_{\text {Ho }} \% \cdot z_{{ }_{\text {N }}} \% \end{aligned}$
		SAMEAS D-I	$\begin{gathered} N^{\prime}=\frac{E_{9}}{E_{4}} \\ Z_{0} \%=N^{\prime}\left(N^{\prime}-1\right)\left[\frac{U_{4}}{U_{5}} z_{96} \%-\frac{z_{46} \%}{N^{\prime} \%}+\frac{z_{45} \%}{N^{\prime}-1}\right] \end{gathered}$

Table 13-Trigonometric Functions

Table 13--Trigonometric Functions-Concluded

Table 14-Residential Underground Distribution Design Practice of 28 Electric Light and Power Companies*

COMPANY	Appalachian	Boston Edison	Callior ${ }_{\text {Pwr }}$	Public Service Dlv. Commonwealth	Public Sorvice Dik. Commonwoalth	Consumers Pwr	Dallas Pwr \& Light	Pwr ${ }_{\text {Pay }}^{\text {Dayht }}$	Datroit Edison	Company "X"
Type of area.	Residential, slngle	Residential	Deluxi residential	3,000 unit devel'm'ts	Residantlal, single	Detuxe singler resid's	Deluxe single resid's	Deluxe singte resic's	Deluxe residentiol	Resici'I single; group
Primary Voltage, kr. Duct or buriad. Depth, Inaphes Cover.............. Leention Manhole or handhole. Type system.... Sect onallizing.	7.2/12.5 Buried, screened soil 42 Creo board over sec. Sice of street None Radial None]	$2.4 / 4.16$ Duct 36 Concrets; arth Street Manholes Radia! None	4.8 and 4.16 3-in. non-met duet No concrete 30 Min . Earth; concrets at crossings Street Pri junct box, concrete Radial Positect cutouts In manholes; tsi enclo	2.4/4.16 Dir burial 36-42 Sail Streat, inside eurb None Combin. 100p; throwover Porcelain discon in tsf enclo	2.4/4.16 Dir burial 36-42 Soil Usually parkways None Radial taps from $O M$ Porcelain diseon In tal enclo	2.4/4.16 Dir burial 30 Sand; concrete blocks Public drives Nons Loop	7.62/13.2 Dir burial 30 Screened earth; slab Rear lot None Radial UG pri sect'llz'd manualiy at tsf bank	4 Conduit; manhole \qquad Parkway; lot Manholes Radial Usually mone	4.8 open delta Dir burial 36 Crown tile Rear lot None Primary ilng Discon pothead in kiosk	4.16 Duct 42 Min. Streat Manholes Radial Yes, with emerg trensfer on primary
Cable Description Sizo \& conductor Insulation...... Jacket. \qquad Naut cond....... Llghtning Cable termination.	No. 6 Cu 11/64 ozone resist, shielded 5/64 Neoprene Separate common At OH connect only R1 cable connect at oil cutout in tif enclo cutout in tst encelo	No. 4 Cu 5/64 0zone; resist 5/64 Shesth neut At OH connect only sleevo	1/c 2/0; No. 2; 6 10/64 syn 5 -kv st'dded 4/64; 5/64 Neoprene No. 2; 4 bero At OH connect only Shield stripped back; grinded	2/c conc No. 6; $1 / 0 \mathrm{Cu}$ 9/64: 10/64 corona resist rubber 3/64 Neoprene 7. No. 14: 20 No. 14 bare At $\mathrm{OH} \&$ tsi connect. Cable ena left clear	2/c conc No. 6; 1/0 Cu 9/64 corona resist rubber 3/64 Neoprane cancen over jacket 7 No. 14 bare Cu at OH conneet; ;st Cable end left clear	No. 6 Cu 3/64 corona resist 3/64 Neoprene 7 No. 14 tinned Cu ar mor wires, spiral At OH connec only Armor stripped back; grounded grounded	$\begin{aligned} & \text { No. } 6 \text { Cu } \\ & \text { Part VC Iead shaath; } \\ & \text { part fubber } \\ & \text { Steal; ;ute, Neoprene } \\ & \text { No. boare medium HD } \\ & \text { common } \\ & \text { At OH connec only } \\ & \text { With stress cone at ist } \\ & \text { terminnel } \end{aligned}$	1/c No. 2 Cu 16/64 VC 15 kv Lead No. 2 WP common At OH connec anly Wiping sleeve in ts! or oil cutout	3/c No. 2 7/64 vc 5/64 lead; Neoprene None At Isf Directly to ts	2/c; 4/c No. 6 Cu Paper; lead None At OH connec only Potheads at term pole Wiping sleoves at ts
Secondary Malna Voltage......... Duot of burled. Depth, inches . Locatlon........ In primary trench...	120/240, 3-w Dir burled, screened soil, board cover 36 Side of street Yes	120/240 Fiber pipe In fine dirt: hed with emmp'nes, Dank cover 30 Streat Some	120/240 2-in. duct 30 Street Sorne	120/240 Dir burial 36 or 6 above prl Street Yes, if on same route	120/240 Dir burial 36 or 6 above prl Straet Yes, if on same route	120/240 Dir burial 30 Separate trench No	No secondaries $120 / 240$ v $3-\phi 4$-w services tram ts \qquad \qquad \qquad	120/240 Duet Duet bank with pri Duct bank with pri Yes	120/240 3- ϕ Dit burial 36 Rear lot tines Yes	120/240 3- ϕ Ducts 42 min Street Same duct bank with pri and street light
Cable Deseription Size \& oonductor Insulation...... Jackat. Nout cond. \qquad	4/0 Cu 5/64 RHRW 4/64 Neoprene 2/0 bere	$1 / 0$ to $4 / 0 \mathrm{Cu}$ 5/64 Rubber Double braid $\mathrm{No}. \mathrm{4-1/0} \mathrm{bare} \mathrm{tinned}_{\mathrm{Cu}}$	4/64 thermo-plastic or RWRH Neoprene No. 4 bare Cu	No. 2 Cu 4/64 RH 3/64 Neoprene No. 2 bare Cu	2/0 Cu 4/54 RH 3/64 Neoprene No. 2 bare Cu	1/0 Cu 5/64 RHRW 3/64 Neoprene	\qquad \qquad Common nout	No. 1/0; 300 MCM Cu RHRW Neoprene jacket Neoprene IPCEA Common	$4 / 64 / 0 ; 4 / 61 / 0$ 3/64 RHRW 3/64 Neoprane Neoprene 4/0; 1/0 rubber:	2.1/c 250 MCM, 2-1/c 500 MCM Paper; lead Sep'te neut 4/0 bare
Servioen Slze \& differences from Owned by customer Conneotion arrang'm't	No. 7 Min . Yes Grab joint In 30-in. concrete handhale	2 No. 6 In iron plpe R\&L; No. 6 bare Cu Yos To main in buried wood box filled with comp.	As required by load 2/3 Dir from tsf sec bus; bur'd see serv box	2 No, B insula; jecket same Yes Dir. No box; pedesta	3-w No. 2 recom. insula; jacket same Yes Dir. No box; pedeste!	Yes To Cusad terminal in junction box	120/240-v 3-\$ 4-w Yas Enter top of tsf housing conn to sec bus	Similar Yes in manholas	Installad by customer Yes Through fusas at serv pedestal	Conduit cust owned Jointed in manholes
Transformers Type Slee, kva Enclosure Soctionalizing At tes. \qquad \qquad	OH conv, sealed tank 25-371/2 48 in bur'd conc pipe None	Subway 25-50 Manhoie None	OH CSP, no arrester 5-50 Corrugated steel an cone basa; semi-bur'd Sac. switching	OH CSP 15-50 Conc tile above of part abave grd Usually	OH CSP usually 371/2 Max Conc tile above or part above grd If needed	Conv \qquad Semi-bur'd conc box Galv cover Isolating links	CSP OH type Max. 3-ph bank 1-25 Semi-buried vault Pr! manually sect'lized at tsí bank	Usually subway 25-50 Manholes None, Prl manually sect'lized at tsf bank	SP OH type 5-50 Kiosk Sec fuses only	Subway 25-100 Manholes Oll cutout at isf
Street Lighting...	Control cable in trench with sec	In spilit fiber duct with sec	Same trench	Independent	Independent	Nono	None	Separate	(edestal to light via	(enties cir In duct bank
Telephone Cable.		Independent		Independent	indopendent			Adjacent	Same trench	Soparate
	3.2:1	2.5 to 5:1	2 or 3:1	3.5 to 5.5:1	3.5:1	2.s:1		2.5 to 5:1	Depends on conditions

Table 14-Residential Underground Distribution Design Practice of 28 Electric Light and Power Companies*-Continued

COMPANY	Hawalion Elootrio	lowa Elootrio Lesp					Long Isiend lighting	Los Angelep Dopt.	Now Oriosne P S	Northarn Prw $_{\text {States }}$
Type of e	Deluxe single resid's	Apartments	SIngle residences	Single residences	Doluxe single resta's	Single restd rench	Doluxe single resid's	Single restidences	Deluxe singio resid's	Doluxe single resid's
Primary Voltage, kv Duot or burled. Depth, Inches Cover. l. oontlon. Nonhole or handhole Type system. Sectionallzing	2.4/4.16 Dir burlal multiple cables 24 Screened soil: slab Inside of sidewalk None Loop; transfar manual Discon at tal	2.4/4.16 Dir burial 30 4-in. sand; creo plank Vaults in rear Vaults in rear Radial None	2.4/4.16 2-in. Transite 30 Old croasarms Parkway next curb Nans Redial tap from OH None	7.2/12.5 Oir burial 24-30 Old crossarms Parkway next eurb None Loop Discon poth'd in vautt	2.4/4.16 Dir burial 36 Soll Rear lot For tsf anly Loop	2.4/4.16 Dir burlal 36 Soll Rear lot None Loop	7.62/13 2.4/4.16 2.3 delto Conc duct 24 Soll-send Rear lot; parkways Tsf veult …........ Sect'iizlns switches	4. 8 Trunalte 30 Soil Rear lot Nons Racial Nons	13.8 Duct; manhole system 36 Soil Btn sldawa ik seurb Yes Open loop Load break swltch	2.4/4.16 Ducts; dir burlal 24-36 Soil; croo planks Rear lot; street Both Radial Yes
Cable Description Slie \& oonductor Insulation...... Jaoket........... Neut oond. Lighting protection. Cable \qquad \qquad termination.	 Noopreane No. 4-4/64; MCM $6 / 6$ Bara common. 1/2 size of largest pri or $3 e c$ At OH connec only Stress cone	No. 6 Cu 5 kv GE-Super coronal 10/64 insulation 4/64 in jecket No. 6 WP At OH connect only	No. 3 Cu 10/64 rubber 5 kv hon-shielded 3/64 in Neoprene No. 4 bare same duct At OH connect only Dir tapa connect	No. 4 Cu 19/64 rubber 15 kv shielded 5/64 in Neoprene No. 4 bate same trench At OH connect only Potheads at tsf	2/6 No. 2 Class 1120-11 In. 10/64 in rubbet; tape. Trenchlay 1/0, 7 strand bare Cu common neut At OH eonnect only	$1 / \mathrm{c}$ No. 8 8/64 Polyethlyene 4/64 in PVC Common neut At OH connect only	$132 \mathrm{kv} 1 / \mathrm{c}$ No. 4 $4.16 \mathrm{kv} \mathrm{1/c}$ No. 2 Cu $13.2 \mathrm{kv}-220 \mathrm{mil}$ paper Neaprena \qquad At OH connect anly 1/c potheads	3/c No. 6 Paper Lesd \qquad None Pothead at pole	No. 2 Cu Rubber-D-574 shielded Neoprene \qquad Neut common with sec On OH connect only Connected to discon	PILC \qquad \qquad At OH connect only
Seoondary Malns Voltage. . Duet or buried. Depth, inehes Location. In primary trench..	120/240 Dir burial; slab 24 Same as prl Yes. 1 ft from prl	120/240 Dir burial 30 Separate trench	120/240 Dir burial 24 Parkway Yes	120/240 No \sec \qquad * *** * * * *	115/230 Dir burial With pri	115/230 Dir burial With pr	115/230 Dir buria: 24 Same trench as pr Yes	120/240 Transito duct 30 Rear lot Yes	$\begin{aligned} & 120 / 240-3 \text { ph } \\ & \text { Duct } \\ & 30-36 \\ & \text { Parkway with prl } \\ & \text { Yes } \end{aligned}$	120/240 Dir burlai \qquad \qquad
Cable Dencrlption Size \& aonductor Insulation....... Jaoket Neut cond \qquad	$1 / \mathrm{c} \mathrm{No}. \mathrm{4/0} \mathrm{Cu}$ $5 / 64$ rubber 600 v 4/64 Neoprene Bare common. 1/2 slze of largest pri or sec	No. 2 to 250 MCM GE Versatol Geoprene 600 V 4/64 to $6 / 54$ in 3/64; 5/64-In. jacket	1/0 Cu $600 \times$ Okonito 3/64-in. Neoprene No. 4 bare Cu		$3 / \mathrm{c} 1 / 0$ to 300 MCM \qquad \qquad \qquad	Neoprene \qquad \qquad \qquad	 4/64-in.; $5 / 64$ in. fub 3/64 in. Nooprene , . * *	$2-1 / 0600 v$ Rubberlike \qquad $1-1 / 0600 v$ Rubberlike	4/0 Cu 5/64-In. rub 4/64-\|n. Neoprene Sepenate $4 / 04 / 64-\mathrm{In}$. Neoprene	Systom purchased Values unknown \qquad \qquad
Services Slxe diffor ences from maln. Owned by customer arrang'm't. arrang'm't.	$3 / \mathrm{c}$ No. 4 RINJ $600-\mathrm{v}$. 4/64 Insul and 7/64 jacket Yes Moles in concrete box	Utility owned Connect at tsf terminal	1/0; No. 3 Cu same insul jacket as sec No 8-in. tile junct box in. below surface	Services dif from vault Meters on wall of vauli Yes In meter socket	Yes Junct box	Yes Junct box	Owner's chaice Yes	Rubberllke No Busbar on pedesta on pad	Owner's choice Yes In manhole at curb Moles; 100-amp fuses	SImilar Yes Burled
Transformera Type............ Size, kva Enclosure Sectionalizing and witehing	OH convent 100-Max Steelcy linder \& concrete Dipe base $2 / 3$ buried 2 pore cutouts in transfet arrangement	csp Semi-buriad conc tile 26-in. dia. 26-in. high None	OH CSP less arresters 50-max $36-$ in. conc tile somi-buried None	OH CSP less arresters 50 max 36 -in. conc tile semi-buried Potheads at tsf	Subway Manhole Transfer switch	CSP Semi-butiod No-load switching	OH CSP less arresters Mostly 10 kva Somi-buried vault: None	Overhead CSP 25 kva Inverted metal container on pad None	OH convent 1-167: 2-100 kva Brick house above grd Open disc each way	Most convent on poles; subway in manhoies Some manholes Som
Stroot Lighting.	Independent	No	None as yet	None as yet	No	No	None as yet	No	Cable in duct bank	No
Telephone Cable..	Same trench, sep cond't	No	Reas property	Generally separate			Same tronch. 12.in. sep	Same trench. 12-in. sop	Soparato
	2.5 to 6:1	1.5 to 3:1	3:1	3:1	2.27:1	2:1 to 5:1	2:1 to 4:1	10:1 to 12:1

Table 14-Residential Underground Distribution Design Practice of 28 Electric Light and Power Companies*-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline COMPANY \& Pacifo G \& E \& Pennaylvania PRat. \& Philadelphia \& Pugat Sound \& So. Callfornia \& Union Elootrlo \& Utah P \& L \& The Public Utilities Comm Landon, Ontario \& Hydro Electrio Power Comm of Ontarlo \& \({ }_{\text {city of }}^{\text {Calberta }}\) Cary \\
\hline Type of area... \& Deluxe residonces \& Deluxe residences \& Apartm's \& Resid \({ }^{\prime}\)) \& Resid'I subdiv \& Resid \& Doluse singie rosid's \& dense \& \& Now \\
\hline \begin{tabular}{l}
Primary \\
Voltage, kv \\
Duct or burlod., \\
Depth, inches Cover. \\
Locatlon Menhole or hand hole. Typesyotem.. Soctionblizing.
\end{tabular} \& \begin{tabular}{l}
2.4/4.16 \\
3 in. non-met. No cone \\
30 \\
Soil \\
Street: rear lot \\
Precast conc serv box Loop; radial \\
Pore box discon OH
\end{tabular} \& \begin{tabular}{l}
2.4/4.16 \\
Fiber in cone; dir burial \\
30 \\
Street \\
Street \\
Manholes; handholes Radial \\
Several sect each tsf from diff OH point
\end{tabular} \& \begin{tabular}{l}
2.4/4.16 \\
3-in. fiber, no cone \(\qquad\) * \\
In sidewalk \\
None \\
Sectionalized redial \\
Oif fuse CO
\end{tabular} \& \begin{tabular}{l}
2.4/4.16 \\
Min 2 in nan mat \\
duet; conduit \\
24 \\
Sand; treated plank \\
Rear lot \(\qquad\) Redial from OH Looped through vt
\end{tabular} \& \begin{tabular}{l}
2.4/4.16 \\
3 -in. fiber duct; In conc \\
\(24 \mathrm{~m} / \mathrm{n}\) \\
Soil; conc envelope under streets \\
Rear lot \\
\(4 \times 21 / 2 \times 3\)-ft. pull box \(\qquad\)
\end{tabular} \& \begin{tabular}{l}
2.4/4.16 \\
Transite duct; no conc \\
24 \\
Soil \\
Parkway \\
Manholes \\
Radial \\
Nons
\end{tabular} \& \begin{tabular}{l}
7.2/12.47 \\
Fiber In canc \\
30 \\
Soil \\
Rear lot \\
Semi-buried tof house Radial \\
At tsl vt
\end{tabular} \& \begin{tabular}{l}
2.3 \\
2 in fiber In conc \\
30 \\
Earth \\
Behind curb \\
Mandholes at turns \\
1-ph loops from OH \\
At each tsf
\end{tabular} \& \begin{tabular}{l}
4.16 \\
Transita duct \\
9 \\
Sidewalk \\
Under street adge \\
Hendholes at crossing Radial \\
No
\end{tabular} \& \begin{tabular}{l}
2.4/4.16 \\
Translte \(\qquad\) Earth \(\qquad\) Klosk \\
Yes
\end{tabular} \\
\hline \begin{tabular}{l}
Cable Desorlption Size \& cond uctor Inaulation...... \\
Jacket.......... Nout cond...... \\
Lightning Cable termination.
\end{tabular} \& \begin{tabular}{l}
1/c No. 6 to 1/c No. 2 \\
011 base; ozone reslst comp. \({ }^{5}\)-kv shield
IPCEA Neoprene IPCEA specs Bare. Same size, same conduit as instil phasa \\
None \\
Stress cones
\end{tabular} \& \begin{tabular}{l}
1/c No. 6 to 1/c 1/0 VC-P'r or rub LC5 kr \\
Lead \\
Bare \\
At OH connect only G \& W oil fused CO wiping sleoves
\end{tabular} \& \begin{tabular}{l}
Rub-5 kv \\
Lead \\
Bara Cu separato \(\qquad\) Connected to oll fuse CO or LC tsf lead
\end{tabular} \& \begin{tabular}{l}
1/c No. 4 Cu min \\
Syn, RI IPCEA \\
Syn rubber \\
No. 4 WP min \\
None \\
In porc box CO
\end{tabular} \& \begin{tabular}{l}
3/c No. 2 Cu mains Rubber like \\
Neoprane \\
No. 4 WP Cu for malns No. 6 WP Cu for taps \(\qquad\)
\end{tabular} \& \begin{tabular}{l}
No. 6 Cu \\
11/6A-in. oil basa rub \\
4/64-In. Neoprene \\
6 No. 14 tinned Cu \\
spiral wound \\
At OH eonnect only \\
In pore bax CO
\end{tabular} \& \begin{tabular}{l}
No. 4 Cu \\
19/64-in. rubberllka \\
Shielded Cu tape. \\
5/64-in. Neoprene \(\qquad\) At OH cannact only
\end{tabular} \& \begin{tabular}{l}
1/c No. 6 \\
Polyathylene \\
No jackot \\
No. 6 bare \\
At OH connect only \\
Dir into parc CO
\end{tabular} \& \begin{tabular}{l}
1/c No. 6; No. 2 Palyathylene \\
No jacket \\
No. 6 WP or larger \\
At OH connect only \\
-•.........
\end{tabular} \& \begin{tabular}{l}
1/6 No. 6 \\
Polyathylene \\
No Jackat \\
No. 4 WP \(\qquad\)
\end{tabular} \\
\hline Secondary Malns Voltage........ . Duet or burled. Depth, Inohes Location. In prlmary trench. \& \begin{tabular}{l}
120/240 \\
3-In. non-met \\
30 \\
Same as prl Yes
\end{tabular} \& \begin{tabular}{l}
120/240 \\
Duct \\
30 \\
Strents \\
Same duct
\end{tabular} \& Sec mains not used; Serv alir from tri. \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) \& \begin{tabular}{l}
120/240 \\
Nons \\
24 in. mln. \(\qquad\)
\end{tabular} \& \begin{tabular}{l}
120/240 \\
Fiber duct \\
Above pri ducts Lot \\
Same duct
\end{tabular} \& \begin{tabular}{l}
120/240 \\
Transite duct \\
24 in. \\
Parhway \\
Same duct
\end{tabular} \& \begin{tabular}{l}
No sec \\
Customars bring sary to tsi \(\qquad\)
\(\qquad\)
\(\qquad\)
\end{tabular} \& \begin{tabular}{l}
115/230 \\
DIr burial; coverad with concr blocks 36 \\
Rear of building Generally not
\end{tabular} \& \begin{tabular}{l}
Buried-closed loops from each tsf \\
6 to 9 \\
Under sldawalk adge. \(\qquad\)
\end{tabular} \& \begin{tabular}{l}
Dir burlal \\
36 \\
Yes
\end{tabular} \\
\hline \begin{tabular}{l}
Cable Desartption Size \& conduotor \\
Insulation. \\
Jaokot. \\
Neut cond.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\end{tabular} \& \begin{tabular}{l}
1/c 1/0; 250 MCM \\
Oll base; ozone resist comp 600 v-IPCEA Neoprene IPCEA Cu; 1/0 Separato
Cu.
Cu: \(1 / 0\)
2
\end{tabular} \& \begin{tabular}{l}
\(1 / \mathrm{c} ; 2 / \mathrm{c} 600 \mathrm{~V}\) \\
LSR: Rub 4 Neoprene \\
Bare common
\end{tabular} \& Nan-leaded rub \& \& \(21 / 0 \mathrm{Cu} \min\) to 250 MCM and \(2 / U\) neut Rubberlike Neoprene No .2 Cu for \(1 / 0 \mathrm{ph}\)
No 2 Cu for 250 MCM \& \begin{tabular}{l}
1/0 \\
5/64-in, rubber \\
3/64-in. Neoprene
\end{tabular} \& \& \begin{tabular}{l}
1/c No. 2 \\
Polyvynlchloride \\
No jacket \\
No, 2 bare
\end{tabular} \& \begin{tabular}{l}
1/0 \\
Polyyynichloride \\
No jucket \\
Common with pri
\end{tabular} \& \begin{tabular}{l}
No. 2 \\
Polyyynlechloride \\
No jacket \\
Bare neut
\end{tabular} \\
\hline \begin{tabular}{l}
Services \\
Size \& differences from Owned by oustomer Conneotion arrang'm't.
\end{tabular} \& \begin{tabular}{l}
Customer specifies \\
Yes \\
Various. Spilit-bolt con usual
\end{tabular} \& \begin{tabular}{l}
Dir burlal \\
Yos \\
Bugged \& taped; or soldered
\end{tabular} \& Yes Bus at taf \& \begin{tabular}{l}
No. 2 min dir burial \\
Yes \\
Bus at tsf
\end{tabular} \& \begin{tabular}{l}
1/c No. 4, rubberllke insul 3/e twisted \\
spit-balt or indent ype con't'r at term box
\end{tabular} \& \begin{tabular}{l}
No. 2; 4/0 dir burial \\
Yes to property Inne Split bott in handhole
taped
\end{tabular} \& \begin{tabular}{l}
Suppilad by customer \\
Yos Junct box
\end{tabular} \& \begin{tabular}{l}
Same trench as sec \\
No. 4; No. 6 PVC \\
No \\
Connect box on basement wall outside
\end{tabular} \& \begin{tabular}{l}
2 No. 4 PVC; \\
1-No. 6 bare nout \\
No \\
Solderi Bess-tapad: \\
in asphatt filled box
\end{tabular} \& 2-No. 2 PVC
1-No. 4 WP \(\qquad\) \\
\hline \begin{tabular}{l}
Traneformers \\
Typo. \\
Size, kva
\(\qquad\) Enclosure \\
Sectlonalizing and switehing
\end{tabular} \& OH
\(\ldots \ldots \ldots . . .\).
\(3 \times 5 \times 4\) ft. shet steel

Yes. At tsl as above \& \begin{tabular}{l}
Convent; submarsible

Manhales

None

 \&

OH

25-75

Cona block; brick below surface Yes

 \&

OH

50 kva max

Recent 42 In. conc tile semi-buried

No

 \&

CP

15-25 of coner blocks

Somi-buried tsf vault

 \&

CSP lass arresters

15-100

Precast coner sawer tile

For multiple tsf

 \&

OH CP

...........

Semi-buried vauit

S\&C Positect fuses

 \&

Standard OH

25

Rectangular klosks.

Reinforced concr

Yes. Connect to CO

 \& Convent'l or CSP OH Up to 100 Rectangular kiosks, semi-buried concr Fused pore box co \&

CSP

Sami-buriod conc sower tile. Conical steel covor
\end{tabular}

\hline Stroot Lighting... \& Independent \& Yes \& Csble buried with pri \& None yet \& \& Separate system \& None as yet. \& Yos \& Yes, with sec \& Yes. With soc

\hline Talophona Cablo.. \& Same trench often \& Adjacent ducts \& \& Same trench 12 ln sep \& Sama duct lina \& Separate trench \& Same duct run \& No \& No \& Yes. With se

\hline Cost Retio. \& Was 2:17 is $4: 1$ to $5: 1$ \& \& \& 3:1 \& 3 to 5:1 \& \& 4:1 \& 1.25:1 (1947) \& 1.22:1 \& 3:1

\hline
\end{tabular}

Table 15－Application Data For Lightning Arresters＊＊
Classification of Systems

This table，based on calculation and experience，is a guide for quick selection of lightning arresters．For the purpose of selecting the proper lightning arrester voltage rating，three－phase systems may be classified as Type A，Type B，etc．，on the basis of the magnitudes of the ratios X_{0} / X_{1} and R_{0} / X_{1} ．

Type A neutral grounded systems are usually well grounded and have a reactance and resistance ratio less than for the Type B systems．The system constants are not known with sufficient detail to establish the limiting ratios．These systems are specifically the grounded Y－distribution systems using distribution－ type arresters，for which the application practice has been established by experience．

Type B neutral grounded systems have a reactance ratio X_{0} / X_{1} which is positive and less than 3 and a resistance ratio R_{0} / X_{1} which is positive and is less than 1．These limits correspond to the usually accepted definition of an＂effectively grounded＂system．

Type C neutral grounded systems have either the reactance ratio greater than plus 3 or the resistance greater than plus 1 ，or both；systems using ground fault neutralizers are included in this class．

Type D isolated neutral systems are the usual un－ grounded systems for which the zero sequence reactance is capacitive，and the ratio X_{0} / X_{1} is negative and lies between minus 40 and minus infinity．

The values of maximum system voltages in the column for Type D systems are those recommended if the risk of abnormal voltages in excess of the arrester rating is to be avoided．However，it has been the general practice to use the same values for Type D isolated neutral systems as used for the Type C neutral ground－ ed systems．

Type E isolated neutral systems are those unground－ ed neutral systems that have a reactance ratio X_{0} / X_{1} that is negative and is between 0 and minus 40 ，over which range partial resonance may occur so that each case must be analyzed and treated upon its own merits．

Example：A 12，000－volt system has a maximum
voltage of 12,500 volts．From the table，a Type A system would require a 9,000 －volt arrester；a 12，000－volt arrester is required for a Type B system；and if the system is either a Type C or Type D a 15,000 －volt arrester is required．

Lightning Arrester Rating	Maximum three－phase system voltage on which arrester should be used				
	Systems with neutrals grounded			Systems with neutrals isolated	
	Type A	Type B	Type C	Type D	Type E
Volts rms					
175	130／260＊	130／260＊	．．．．．．	．．．．．．	
175	260	220	．．．．．	\ldots	
650	650	650	650	650	
1，000	1，000	1，000	1，000	1，000	
3，000	4，500	3，750	3，000	2，700	
6，000	9，000	7，500	6，000	5，500	家
9，000	12，800	11，250	9，000	8，200	
12，000	15，000	15，000	12，000	11，000	．
15，000	18，000	18，000	15，000	13，000	\％
Kv rms					\％
20		25	20	18	㰤
25		30	25	23	$\stackrel{\text { H }}{ }$
30	$\stackrel{\square}{\circ}$	37	30	27	跔
37	－	46	37	34	－
40	0	50	40	36	近
50	\％${ }_{\text {\％}}^{\text {\％}}$	60	50	45	
60	豊	73	60	55	
73	\％	90	73	66	
97	发	121	97	88	
109	榙皿	136	109	99	
121	《．	150	121	110	
145	${ }_{0}$	180	145	132	
169	号	200	169	．．	
195		245	195	．\cdot	
242		300	242	．\cdot	

＊Single－phase，three－wire．
＊＊This Table is reproduced in part from EEI Publication No．R－6 or NEMA Publication No．117，May 1949.

INDEX

Booster Transformers. 223
Boric Acid Power
Fuses. 377, 378, 379, 398, 399
Brightness. 495
Bulk Power Stations.
Burden, Instrument Transformers
. . 470, 472, 473, 477, 479, 485, 490, 491
Burning Clear Secondary Faults
Banked
Secondaries.138, 139, 406, 407
Overhead Networks. 182
Underground Networks. . 151 to 153
Bus Regulation............. . . 122, 271, 272
Cable
Aerial \qquad 130,183
Characteristics
of. 537 to 543, 545 Current Capacity of 600v Cable. 174 Secondary Network.151, 174 Service, Self Supporting..... 135, 136 Street Lighting. 510 Underground, Residential. 145
Candle Power. 495
Capability
Distribution Substation. 72
Subtransmission Line. 91
Capacitors (See Series and
Shunl Capacitors)
(See Power Capacilors)
Cascade Arrangement-Circuit
Breakers. 425, 426
Cascading-Banked Secondary 406
Cascading-Street Lighting 510
Application. 510
Transformers. 510
Circuit Breakers
Cascade Arrangement. 425, 426
Characteristics of 388
Clearing Time.......... 384, 386, 387
Control Voltage. 389
Coordination-
DB Breaker with Fuses. 418
CSP Transformer. 397, 400
Definition. 370
De-ion Arc Chamber. 384
Draw-out Type. 48
Duty Cycle. 388
Feeder.............................. . . 48
Interrupting Current. 384, 388
Loop Radial Primary. 112
Loop Tie..... 112
Low Voltage Air
Application. 420, 421, 422
Coordination with Fuses. . . . 418
Rating. 384, 389
Tripping Characteristics390, 391
Main Secondary 425
Mid-Tie . 114
Molded Case
(AB De-Ion). 383, 384, 385
Operating Current. 389
Power. 389

Circuit Breakers (continued)	
Primary Net	
Selective Tripping. 417 to 423	
Cascading. 426	
Example. 419 to 423	
One-Line Diagram. 418	
Time-Current Characteristics418	
Short-Time Current. 388	
Trip-Free Control. 383 Tripping, Reverse-Current 388	
Unlatching Time. 384, 386, 387	
Circuit Connections, Watthour Meters	
Self-Contained.	8, 449
Transformer Rated. 450,451	
Circuit Reclosers, Automatic.	. .380, 381
Control Schemes................ 381	
Cooling Effect. 410	
Coordination with	
	414 to 417
Ground Trip Device......... . . . 381	
Interrupting Current Rating of . . 381	
Loop Radial Primary. 113, 124	
Sequence of Operation. 381	
Coincidence Factor	
Application.	to 38
Copper Loss Calcu	246
Definition.	
Infinite Number of Load. 42, 43	
Load Estimation. 42, 43	
Coincident Demand. 3, 23	
Compensators	
Line-Drop. \qquad 465	
Transformer Loss	287 to 294
Condensers- (See Synchronous Condensers)	
Conductor Burndown. .367, 368, 369, 371	
ACSR (annealing).............. . 371	
Aluminum (annealing). 371	
Solid Copper 368, 369 Stranded Copper 369, 370	
Conductor Size	
Series Street Lighting. 509, 510	
Constant Current Transformers 504 to 507	
Capacity Calculations	
Electric-Discharge Lamp	
Load. 520 to 524	
Examples. 522 to 524	
General Procedure . . . 521 to 522	
Incandescent Lamp	
Kw Required for Starting. . . 521	
Mixed Load. 512 to 524	
Number of Series-Mercury	
Transformers per C.C.	
Transformer..........521, 522	
Construction. 504, 505	
CSPH. 506, 507	
Current Regulation. 506	
Dielectric Test. 506	
Impedance. 506	

3

3 8 8

\square

 6

[^12]

[^13]
\qquad

[^14]\qquad

[^15]\square

Cost (continued)Spot Network System. 195, 197
Spot Network Unit 195, 197
Step-Type Feeder Regulator.526 to 530
Street Lighting. 526 to 530
Substation VoltageRegulators.273, 274, 275
Subtransmission 103 to 107
Transformer Copper Loss. 246
TransmissionSyderground
System...... 142, 143, 553 to 555
CSP Distribution
Transformers
Breaker Load Time
Curve. 244, 245, 400
Connection 239, 240
Coordination. 127, 397, 408
Cost. 1, 222
Development 24
Loading 244
Protective Link 27, 397, 400Operating Band. 129, 130
CSP Power Transformers. 49, 263 49, 263
LTC.51
Schematic Diagram. 52
Standard 51
Tap Selection. 51
Function.406, 407 Function 203CSPH Constant Curent
Transformers.
Transformers.
Cumulative Dena Mote 506, 507 506, 507Current Carrying Capacity, Conductors
ACSR. 534
Aluminum. 533
Copper.
535
Copper Welded 535
Current-Limiting Power
Fuses.Current Protected Transformer 203
Current Transformers
Accuracy Characteristics. ... 482, 485
Application 483
Burden. 479
Classification 471
Continuous-Thermal-Current-
Rating Factor 471
Definition. 470
Determining Burden 490, 492
Dielectric Test 481, 482
Equivalent Circuit 477
Errors
Phase Displacement....477, 478
Ratio Errors. 477, 478
Function. 474
Impulse Level 481, 482
Inverted Operation 493
Metering Outfits. 493
.484
Minimum Insulation Class
Phase-Angle Correction
Factor.471, 478, 480, 484, 485, 489
Polarity 490
Rated Current. 471, 478
Rated Voltage.471
Ratio Correction
Factor..... 478, 480, 484, 485, 489
Secondary
open-Ciraited.
tandard Accuracy
Classes 478, 479, 480

Current Transformers (continued)
Transformer Correction Factor. . \qquad
Cutouts, Distribution
Characteristics of 370
Dropout-Type. 376 , 377
Expulsion-Type. 370
Fibre-Tube370, 372, 373, 375
Film
Fuse-Link Characteristic
Curves. 411, 412, 413
Fuse-Link Standards. 372 to 376
K Type. 373, 374
т туре...................... 373,374
Liquid Filled. 376
Open-Link Rating. 372
Repeater Fuse. 376
D.C. Network . 149

D-C Network Calculator
Banked Secondary Planning. 140
Load Flow Studies. 175 to 179
Load Growth Studies...... . . 178, 179
Secondary Network
Planning. 169, 175
Short-Circuit Studies. 175, 176
De-Ion Arc Quencher. 384
Demand. 22
Coincident...... 23, 27, 34
Definition. 22, 455
Diversified................... . . 23, 27, 34
Intervals of . 455
Maximum (See Also
Maximum Demand) 23, 33
Non-Coincident. 23
Recording Demand Meters. 40
Demand Factor........................ . . 24
Demand Meters
Advantage of Thermal Type..... 461
Combination Thermal Demand-
Watthour Type. 460
Cost. 461, 462, 463
Cumulative Type. 456
Impulse Operated, Indicating. . . . 469
Indicating Type. 456
Integrated (Block Interval)
Type. 455, 456
Cumulative -
Demand Register. . . 456, 459
Indicating-
Demand Register456, 459
KVA Type
Type RI...... 461, 462
Type RK................ . 461, 462
Lagged (Exponential or Log-
arithmic) Type. 455, 456
Demand Interval. 458
Mechanical Element......... . . 459
Response
Characteristics. 458, 459
Thermal Element. 459
Recording Type. 455, 461
Magnetic Tape 461
Punched Tape. 461
Test. 463, 464
Thermal Ampere Type............ 460
Basic Circuit. 460
Vector Diagram...... 460
Thermal Kilowatt Type
Basic Circuit Diagram...... . 460
Polyphase Use. 460
Theory. 460
Thermal KVA Type. 460, 461

Distribution System
Subtransmission (continued)
Types

$$
\text { Network } 5
$$

Radial. 4, 5
Underground...... 15, 16, 142 to 146
Voltages.
Distribution Transformers (See
Transformers)
Diversified Demand. 3, 4, 23, 27, 41
Diversity Factor
Application 35 to 38
Definition. 25
Load Estimation. 42, 43
Dry-Type, Network Transformer
Sealed
$\ldots . .156$
Ventilated. 155 , 158
Duplex Transformer............. . . 230, 231
Economics
Banked Secondary. 133, 134
Capacitors-General.309, 310
Capacitors, Primary vs.
Secondary 318, 319
Capacitors, Secondary Network. 320
Distribution System.
Distribution Transformer
Loading. 128, 129
Distribution TranaformerSecondary Combination..... . . . 130
Higher Secondary
Voltage. 125, 136, 188 to 190
Network Transformer Rating and Spacing.
.193
Primary Network 117
Secondary Circuit. 130
Secondary Network
System 188 to 190
Street Lighting 526 to 530
Subtransmission. 103 to 107
Underground Distribution System. 143
Eddy Current. 429
Electric Furnace
Power Supply Oscillograme. 351
Voltage Flicker 350
Electric Welders
Types . 355
Voltage Flicker. 355
Electromagnet, Watthour
Meter..................428, 429, 430
Electronic Equipment-
Voltage Effect. 253
Enclosure, Substation 67, 69
Equivalent Circuita
Autotransformer. 549, 550
Balanced Three-Phase Transformer
Negative Sequence.224, 225 Positive

Sequence. . .224, 225, 549, 550
Zero Sequence.224, 225, 549, 550
Current Transformers 447
Potential Transformers. 472
Single-Phase Transformers
Schematic
Representation. 210, 211
Serie -Multiple
Secondaries222, 223
Three-Multiple
Secondaries. 222, 223
Two-Winding 222, 223
Errors, Metering
Current Transformers 478 to 480
Potential Transformers.472, 473
Express Primary Feeders.110, 111
Expulsion Type Devices page
Cutouts.. 370
Power Fuses. 377
Fault Current
Banked Secondaries.... 138, 406, 407
Definition. 365Secondary Network Mains. 151 to 153
Studies by D-C Board...... 177
Shunt Capacitor Banks. 329
Fault Protection
BankedSecondaries. 138, 139, 406, 407Distribution Transformers...393, 397
Primary Feeders. 109, 112, 123Primary Network.113, 114, 116Primary Shunt Capacitors. 317Secondary Network. . . 151, 153, 188Secondary Shunt Capacitors.... . . 319
Series Capacitors 339, 340Street Lighting. 510, 511, 515
Substation Bus. 56
Underground, Residential 144

Faults
Burning Clear in Banked
Secondaries. . . . 138, 139, 406, 407
Burning Clear in Secondary
Networks. 151 to 153, 182
Causes. 366
Conductor Burndown. 367 to 368, 371
Data
Nature
Non-Persistent
(Temporary) 123, 367
Persistent (Permanent). 123, 367
Rates.367
Services 135
Types. 366

System
Feeder Breakers
(See Also Circuit Breakers)
Loop Radial Primary. 112
Primary Network. 114
Tie.... 112
Feeder Losses (See Losses)
Ferroresonance
$.341,342,358$
Field Measurements. \qquad
Maximum Demand Test...... 39, 40
Recorded Demand. 40
Spot Check. 39
Filament Lamps (See Incandescent
Lamp)
Film Cutout, Street Lighting. 509
Fixed Charges, Annual:
Street Lighting 527, 528, 529
Fixed Shunt Capacitors
Coordination with
Regulators 295 to 297
(See Also Shunt Capacitors)
Flexibility for Load Growth
Banked Secondaries. 139
Primary Network 116
Secondary Network. 178, 179
Underground System. 143
Flicker-Chapter 9
Crusher Motors-Series
Capacitor Application. . . .357, 358
Cyclic Loads. 353
Effect of Momentary
Interruptions on
Induction Motors.362, 363
Synchronous Motors. 363

Flicker (continued)
Effect of Voltage Dips on Mercury Lamp. Motor Contactor.
Effect Upon Utilization
Equipment. \qquaddipr
. 361 to 363
Electric Furnace 350
Current Swing. 352
Electrical Characteristics. ... 352
Graphic Charts. 351
Impedance Distribution..... 352
Mutual Drop Coefficient.352, 353
Oscillograms at Starting. . . . 351
Electric Shovels. 355 to 357
Improved Excitation. . 355,356
Mag-A-Stat Regulator. 357
Mathematical
Analysis. 355 to 357
Regulator Application. 356
Supplying System. 355
Synchronous Condenser
Application. .
Electric Welders.
Furnace Transformer. 353
Intermittent Loads. 350
Light-Commercial Area.... 133, 134
Motor Starting. 133, 348, 350
Permissible Limits. 345 to 347
Comparison Among Utilities. 347
Survey of Limit.
Tungsten Filament
Lamp
. .345, 346
Reciprocating Loads. 350
Reduction by Series
Capacitors. 338, 339, 350, 354, 357
Remedial Measures
Comparison Chart. 361
Electronic Voltage
Regulator... 356
Series Capacitors. 354, 357
Synchronous Condensers.... 354
Residential Area. 133
Rolling Mills. 358 to 361
Four-Stand Tandem Cold
Mills. 360
Hot-Strip Mills. 359, 360
Load Characteristics. . . 358, 359
Plate and Blooming
Mills. 359,360
Plate Mills.............. 359, 360
Transient Electrical Swings. . 360
System Impedance. 354
Fluorescent Lamps
Ballast. 501,514
Ballast. 501
Construction 5014
Cost Study 526 to 530
Electrode. 501
Life. 501, 514
Lumen Maintenance Curve...... 501
Required Transformer
Capacity..........
.520, 521
Voltage Effects. 252,502
Fluorescent-Mercury Lamps.500, 501
Foot Candle
General. 495
Recommended Values. 496
Footlambert. 495
Fuse Links
Melting Current. 374
Standards 372 to 376
Time-Curreat
Characteristics..376, 411, 412, 413
Fuse, Power
Boric Acid. . . 377, 378, 379, 398, 399
PAGEFuse, Power (continued)
Characteristics ofClassification of372
Current Limiting
(BAL) 378, 379, 380, 393, 397
Definition. $.369,370$
E Rated.377
Expulsion. 377
Fibre Tube. 377
Liquid-Filled. 380
Ratings. 377
Super Surge 397, 402, 403
Fuses, Application
Banked Secondary. 406, 407Capacitor.....327, 328, 397, 401,404 to 406
Group Fusing. 404, 405
Individual Fusing.
.392, 409 Coordination. 392, 409Current Rating Considerati
Distribution Transformers
393, 397 to $399,402,403$Fusing Ratio 397
39Indoor.
Interrupting Capacity
Determination.... 392
Network Protectors. 167
Outdoor. 393
Potential Transfo 397, 401
Primary Feeder
Sectionalizing. . .113, 123, 407, 408
Protected Fuses. 407, 408, 409
Protecting Fuses.407, 408, 409 407, 408, 409
Shunt Capacitors
Substations. 393
Time Current
Characteristics. 394 to 396
Generator Voltage Regulators 263
Graded Insulation. 239
Grid
Secondary Network 150, 174
Subtransmission 88
Grounding-Series Street
lighting. $.511,512$
Grounding Switch 393
Harmonic Voltage--Shunt
Capacitor Applications. 334
Higher Primary Voltage. 117, 260Higher Secondary Voltage. 125, 136Economical Stuy
Secondary Network
Secondary Network.... 188 to 190
Secondary Network.... 188 to 190
Typical Services 137
High-Voltage Switch 156, 182
High Voltage Switching-- 48
Impedance
Conversion of Ohms
to Percent.$.175,214,548$
Constant Cu
DistributionNetwork Transformer
Overhead
Underground. 216, 217
pulse Strength
Bushing, Transformer. 210, 211
Current Transformers...... . 481, 482
Distribution Transformers...... . . 210
Potential Transformers.473, 475, 482
Impulse Totalizing, Metering. . 466 to 468
Incandescent Lamp (Filament Lamp)Page
Characteristic Curve 497, 498
Cost Study 526 to 530
Efficiency.530
Life. 497
Maintenance 525, 526
Required KW Data. 519
251,Indicating Demand Meters............. 456Induction Motors
Momentary Service
Interruption
\qquad 362, 363
Shunt Capacitor Application. . . . 322Sub-Synchronous Resonance. 340,341
Voltage Effect...............253, 254
Induction Regulators............. . 267,268 267, 268
Band Width.
281
Control Circuit. 268
Single-Core Type 268
Triplex Type. 268
Inductive Reactance Spacing Factor.. 546Industrial Feeders--Voltage Drop..256, 257
Industrial Shunt Capacitor
Application. . 320 to 322Inrush Current
Motors . 363
shunt Capacitors 331 to 334
Instantaneous Power. 20
Instrument Transformer Correction
486, 487
Current. 478, 479
Potential.471, 473, 474
Instrument Transformers
Accuracy Burden Rating 470
Burden. 470
Classification. $.471,472$
Correction
Factor. . . . 471, 480, 485, 486, 487
Definition. 487
Functions. 471
Metering Outfits 493
Transformers-
Current, (See CurrentTransformers)Potential (See PotentialTransformers)
Insulation Coordination
Basic Impulse Level 210
Reduced Insulation Level. . .210, 211
Integrated Demand Meters.455, 456, 459Interlacing of Network Feeders. 169
Interlocking, Substation Breakers.... 48 48
International Candle
Interrupting Duty. 384
Circuit Breakers 384, 388
Circuit Reclosers 381
KWHR Meters-Chapter 11
KVA Demand Meters.......461, 462, 463
Lagged Demand Meters 455, 456, 458, 459Lamp Flicker (See Flicker)
Lamp Life
Fluorescent Lamps. 501
Incandescent Lamps 497

PAGE	Pagm
Lightning Protection (continued)	Load Growth on
CSP Transformer 201	Banked Secondaries. 139
CSPB Transformer. 202	Distribution Substations. 72
Distribution 'Transformer 127	Distribution Transformers....... 129
Network Transformers. 156	Secondary Networks.178, 179
Secondary Circuit. 130	Spot Loads. 188, 189
Semi-buried Type	Load Survey Recorders. 468 to 471
Transformers.144, 145	Load Tap Changer
Series Street Lighting 511	(L T C) 48, 257, 258, 263
Line Drop Compensation. 287 to 294	CSP Transformer. 51, 263
Setting, General. 288	Sequence of Operation. 264
Example. 288 to 290	URS 263,264
Settings	Loading on
Bus Regulators. 293	Constant Current Transformers. . 506
Overcompensation.293, 294	Distribution Substations. 84, 85
Three-Phase Regulators.... . 290	Distribution
Three, Single-Phase,	Transformers. 127, 128, 241
Closed-Delta 292	Duplex Transformers. 231
Three, Single-Phase,	Network Transformers. 170, 173
Wye. 290 to 292	Primary Feeders. 120, 121
Two, Single-Phase,	Secondary Banking. 140
Open-Delta. 290	Spot Network
Theory. 287	Transformers........ 184, 194, 195
Line Drop Compensator. . . .263, 281, 287	Loads
Line Sectionalizer, Automatic.... 382, 383	Balanced.... 29
Application. . . 113, 114, 122, 123, 417	Characteristics (See Load
Ratings. 383	Characteristics)
Sequence-of Operation 382	Classification. 2, 19, 20
Line Sectionalizing. 122 to 124	Density. 3, 4, 29
(See Also Line Sectionalizer)	Estimating. 40 to 43
Limitera-Secondary	Spot......... 177
Network.152, 153, 173, 177, 182	Lroop-Type Primary Feeder 112, 113
Load Characteristics, Application to	(See Also Primary Distribution
System Design. 33 to 38	System)
Diversity Factor. 35 to 38	Loop-Type Subtransmission
General. 33	Circuits.... 87, 88
Loss Evaluation. 38	Loss
Maximum Demand. 33, 34	Cable, Street Lighting 519
Maximum Diversified Demand.34,35	Constant Current Transformers. . 506
Load Characteristics,	Core. 216,217
Determination. 38 to 43	Evaluation. 38
Estimation-	Load. 214, 215, 216
Coincidence Factor. 42, 43	Metering. 465
Conversion Factor 42	Reduction by Shunt
Diversified Demand Method. 41	Capacitors. 310,315 to 317
Diversity Factor.42, 43	Transformer... 245
Maximum Demand and	Loss Factor. 27, 38, 245
KWH. 41 to 43	Curves. 28
Transformer Loading. 41	Definition.. 27
Field Measurements. 39	Equivalent Hours. 28
Maximurn Demand Test. .39, 40	Loss Ratio, Transformer. 218
Recorded Demand. 40	Losses in Primary Networks. 116
Spot Check. 39	Losses in Subtransmission
Quantities Required. 39	Circuits.... 95 to 98
Load Density	Lumen...... 495
Area Coverage. 30	
Banked Secondary Applications. . 138	MAGAMP, Regulator Control...... . 282
Linear Coverage. 30	Main Secondary Breakers. 425
Measurement................... . 3	Maintenance
Range of... 4	Primary System 119, 120
Secondary Network Applications. 182	Street Lighting 524 to 526
Load Diversity	Master Relay, Network
Definition...... 25	Protector. 160 to 164
Hourly Variation Factors. 37	Maximum Demand. 23, 33, 455
Load Diversion-Secondary	Application. 33,34
Network. 175, 186	Equation. 34
Load Factor	Measurement. 24
Distribution Transformer 128	Relationship with KWHR
General. 24, 25	Consumption. 41
Load Growth 31,32	Test. 39 , 40
Load Growth-Graphs	Time Period. 455
Energy Sales. 2	Maximum Diversified Demand. 34
Number of Customers. 2	Application. 34, 35
Revenue....................... . 3	Basic Characteristics. 35

Measurements (Se Field Measurements)
Mercury Lamp
Ballasts.
Characteristics. 499
Cost Study 526 to 530
Lumen Maintenance Curve . . 500
Required Transformer
.
Voltage Effect. 252, 362, 499
Metering Outfits. 493
Metering, Principles \& Practices-
Chapter 11. 427
etering, Special Compensators 465
mpulse Operated Demand Meter 469
Data Transmission Circuit. . 467
WA Totalizing Ri............... 468
WD Impulse Difference
WRA Impulse Recorder 467,468
WRI Kva Receiver. 468
WS Impulse Storage Relay . . 468
ad Survey Recorders
Arangementa.
Magnetic Tape Record 469
unched Card.
Off-Peak Water Heater 464, 465
Telemetering 467
Totalizing
Electrical Totalization. 466, 467 Meaning of................... 466

Mid-Tie Breaker. 114
Mobile Substation. 7, 57
Application.......................... 57
Standards. 57
Transformers 57
Weight \& Dimensions 57,58
Motor Contactors-Voltage Dip. 362
Motor Hunting, Series Capacitor..... 342
Banked Secondary Systems....... 141
Starting Characteristics 349
Starting Currents. 43 , 44
Motor Starting -Sub-Synchronous
Resonance. 340, 341
Negative Sequence Circuit,
Transformer.
Articulated Primary Unit
Substations. 59, 60, 61
Burs, Distribut.
apacitor Case Rupture
Curve.
328
tor Switching Device. 322
Substations.63, 64
Distribution Cutouts. 375
Duplex Substation.
62

Substations.....
Low-Voltage Selective Substations 61
Meter Ratings.................... . . . 434NEMA Standards (continued)
Molded-Case Circuit Breakers. . . 383
Power Fuses 377
Power Switching Equipment. 63
Primary Network Substation 61
Radial Primary Substation. 59
Rating, Distribution
Transformers . . 210, 212, 213, 214Secondary Network Protectors 159,160
Secondary Network Transformer. 154
Secondary Voltage LevelsShort Circuit Capability,Transformer.205, 206
Spot Network Substation. 61
Voltage Ranges. 249
Network Calculator, Planning a
Secondary Network. 175
Network Protectors
Material. 160
Continuous-Current Rating 162
Coordination of Master and
Phasing Relay 165,166
De-Sensitizing Relay 167
Dielectric Teat Voltage. 161
Functions. 156 to 159
Fuses. 167
Master Relay
Adjustments 160
Closing Characteristics. .160, 163OpeningCharacteristics. . 162, 163, 164
Overhead Applications. . 182, 184, 185
Phasing Relay. 164, 165
Pumping Action. 166, 167
Rating, Current 160
Standard Ratings. 162
Standards, NEMA 159, 160
Temperature-Rise Limit. 162
Network Transformer. .154, 171, 173, 204
Askarel Filled. 155, 205
Comparison Between Conventionaland Space-Miser Design 157
Impedance. 216, 217
Lightning Protection.
170, 173
Loading. 170, 173
Oil-Filled $154,157,205$
OverheadApplications. . . . 182, 184, 185, 186
Sealed-Dry Type 156, 159, 205
Underground Applications...153, 154Ventilated Dry Type...155, 158, 205Networks. 5
D-C.
Heavy-Duty. 183, 184
Light-Duty. 184 to 188
Medium-Duty 183, 184
Overhead
Secondary (See Secondary Network)
Primary. 10, 113 to 117
(See Also Primary Network)
ndary..13
(See Also Secondary Network)
Spot.
See Also Spot Network)
UndergroundSecondary (See Secondary Network)
Neutral Inversion. $235,236,490$
Noise, Substation 69
No-Load Losses, Transformer . . 216, 217Non-Coincident Demand. 23
Off-Peak Water Heater Load Metering. $.464,465$

Oil Switches,
Street Lighting 507, 509, 513
Operating Cost, Annual
Distribution Transformers...... . . 128
Street Lighting. 527, 528, 529
Outages, Secondary Network Feeders. 179
Overcompensation, L.D.C. 293, 294
Overcurrent Condition, Definition.... 365 Overhead Secondary Network
(See Secondary Network)
Overload Characteristics,
Transformer. 241
Overvoltage Protection, Shunt
Capacitors. 329 to 331
Parallel Conductors in Secondary
Network. 152
Parallel Operation, Transformers.... . . 224
Permanent Magnet, Watthour Meter. 430
Permissible Limits
Flicker 345 to 347
Voltage247, 250
Phase-Angle Correction Factor
Current Transformers...471, 478, $480,484,485,489$
Potential
Transformers. . . 473, 484, 485, 488
Phase Power.
Phase-Shifting
Transformers. 455, 456, 457 Accuracy Tests. 456
Application Chart. 456
Type K-1 . 455
Type K-5. 455, 458
Wiring Diagrams. 457, 458
Phasing Relay. 164, 165
Phasors, Scalar or Dot Product,
Watthour Meter. 434, 435
Planning the
Banked Secondary
System 140 to 142
Distribution Substations. . . . 72 to 85
Light-Duty Secondary Network. 185
Secondary Network. 171 to 181
Positive Sequence Circuit,
Transformer 224, 225
Potential Transformers
Accuracy Characteristics. ... 482, 485
Accuracy Classes, Standard. 473, 474
Application......................... . . 483
Burden. 472, 473, 477
Classification. 471
Definition. 470
Determining Burden. 485, 491
Dielectric Tests.......... . . . 475, 482
Equivalent Circuit. 472
Errors. 472, 473
Impulse Level. 473, 475, 482
Limit of Ratio Correction Factors
and Phase-Angle. 473, 474
Marked Ratio, Standard. 475
Metering Outfits. 493
Neutral Inversion. 490
Overvoltages. 490
Phase-Angle Correction
Factor. 473, 484, 485, 488
Polarity . 490
Primary Connections. 473, 476
Protection. 397
Quarter Thermal Burden
Ambient Temperature. 470
Rated Voltage......... . 470, 473, 475
Ratio Correction
Factor. . . . 472, 483, 484, 485, 488

PAGE
Potential Transformers (continued)
Service Conditions, Affecting Errors
Burden. 474
Frequency. 474
Temperature. 474
Voltage. 474
Standard Burden. 473, 477
Thermal Burden Rating. 470
Transformer Correction
Factor. 471, 473, 474
Vector Diagram. 472
Power................................... 20
Active. 21
Apparent. 20, 21
Average Phasor. 22
Instantaneous. 20
Phase. 22
Reactive. 22
Power Capacitors. (See Shunt and Series Capacitors)
Construction. 303
Dielectric Test. 304
Overvoltage Limit. 304
Rating 303, 304
Standards. 303, 304
Transient Voltage and
Current Limit. 304
Power Circuit Breakers. 389
(See Also Circuil Breakers)
Power Factor
Average. 455
Definition. 28
Primary Feeder 122
Power Fuse (See Fuse)
Power System Components,
One-Line Diagram.
Primary Distribution System
Area Coverage Principle. 119
Balancing Load. 258
Circuit Mileage 120
Cost . 120, 121
Design..... 78
Fault Protection 123
Feeder Circuit Patterns. 72
For Secondary Network,
Overhead. 183, 185, 188
For Secondary Network,
Underground.168, $171,172,174$,
256, 257
Fuse Application....................... 407
Hot-Line Maintenance. 119
Industrial Feeders. 256, 257
Loading. 120, 121
Loop-Radial Circuit.......9, 112, 113
Breaker Coordination....... . 112
Fuses . 113
Loop-Tie Breaker. 112
Protective Devices. 112
Reclosers. . 113, 380, 381, 410,
414 to 417
Sectionalizers113, 382, 383
Voltage Regulation.......... . 112
Primary Network
(See Primary Network)
Sectionalizing.122, 123, 407, 408
Series Capacitor Application 337, 338
Service Reliability.
Shunt Capacitor Use. 122
Straight-Radial Circuit 8, 9, 109 to
Express Feeders9, 110, 111
Fault Isolation. 109, 110
Phase-Area Plan. 111

Index

Regulation (continued)
Design Voltage Limi

\qquad 14, 250
Distribution Transformer 218
Effect on Watthour Meter 122, 273
Methods of Improvement. 257 to 262
Primary Feeders $.14,111,112$
Secondary System 48, 271
Substation.... 278
Regulators (See Voltage Regulators)
Reignition, Capacitor Switchin 322
Relay
MR Multiple. . . . $513,514,515,516$
Overcurrent.48
PC Protective,
Street Lighting 510, 511
Reclosing Relay. 23
Secondary Network Relays
De-Sensitizing Relay. 167
Master Relay. 160 to 164
Phasing Relay.......... 164, 165Time Delay 283 to 285Voltage Regulating,Relaying
Primary Network. 114, 116Secondary Network. 160 to 168
(See Also Network Protectors)Series Capacitors Applications. . . 340
Remote Metering 466 to 468
Repeater Fuses. 376
Residential Feeders, Voltage... 254 to 256(See Also Primary Distribution System)
Resonant Effects,
Shunt Capacitors .334 to 336
Restrike, Capacitor Switching. 322
Rural Feeders, Voltage Drop. . 255 to 257(See Also Primary Distribution System)
Secondary Distribution System
Aerial Cable. 130
Banking. 137
(See Banked Secondary System)
Distribution Transformers (SeeTransformer)
Flicker
In Commercial Area....133, 134
In Residential Area. 133
Function of 1, 125
Higher Voltage 125, 136
(Seeage)
Lightning Protection 130
Meter, KWH 136
Motor Starting Voltage Drop.... 13
Network (See Secondary Network)
One-Line Diagram. 125
Secondary Racks. .$134,135,136$
(See Also Services)
Transformer-Secondary
Combination 130Voltage. 125, 126, 151
Voltage Drop Permissible. 255, 256
Voltage Drop, Permissible.. .255, 256Voltage Regulation. . . . 130 to 132,134, 255, 256
Secondary Faults, Burning Clear
Banked Secondaries.138, 139,

Secondary Mains
Interconnected Grid......... 150, 151
Limiters. 152, 153, 173, 182
Parallel Conductors. 152
Secondary Networks
Overhead. 182, 184, 186
Underground. 151, 174
Voltage Drop................ 151, 255
Secondary Networks, Overhead
Aerial Cable Application. 183
Burning Clear. 182
Correlation of Transformers and
Secondary Mains.
. . . 184
Heavy-Duty 183, 184
High-Voltage Switch. 182
Light-Duty 184 to 188
Limiters. 182
Load Density Range. 182
Load Determination.............. . . . 185
Load Division. 186
Medium-Duty 183, 184
Network Protectors. . . . 182, 184, 185
Planning (See Also
Network Protectors). 171
(See Also Planning, Secondary
Networks U.G.)
Primary Feeders........ 183, 185, 188
Secondary Mains. 182, 184, 186
Spot Loads (See Spot Networks)
Transformers.......... . . 182, 184, 185
Connections. 187, 188
Impedances. 187
Protection. 188
Rating. 185, 186
Spacing.................... . 185, 186
Voltage Level. 187
Secondary Network Underground (See
Also Spot Network)
Application Factor. 168 to 171
Burning Faults Clear..... 151 to 153
Cables, Current Carrying
Capacity \qquad
Capacitor Application319, 320
Contingency. 179 to 181
Costs.......................... . 190, 191
D-C. . 149
D-C Calculator
Combining Loads. 173
Contingency Studies. . 179 to 181
Impedance Conversion...... . 175
Load-FIow Studies . . . 175 to 179
Load-Growth Studies. . . 178, 179
Short-Circuit Studies. . .175, 176
System Representation. . . . 175
Description, General. 12, 150
Early Systems. 149
Feeder Outage Probability 179 to 181
High-Voltage Switch. 156
Higher Secondary
Voltages. 188 to 190
Interlacing of Supply Circuits. 169, 170
Limiters. 151, 153, 173, 182
Load to Transformers,
Capacity Ratio .173
Modern Trends. 188
Network Unit. 153
Parallel Conductors Per Phase 151,
152
Planning. 171 to $181,189,190$ Data Required for. 172 Economical System.. . 189 to 191 Feeder Outage -

Contingency....... . 179 to 181
Secondary Network, Underground
Planning (continued) Load Estimation
Power Source 172
Preliminary Design.......... . 173
Preliminary Design.......... . 173
Primary Feeders.
Primary Feeders. 172, 174
Transformer Rating and
Transformer Rating and
Spacing. 193
Primary Feeders.
Primary Feeders. 190 to 193
Costs
Costs 192 192
Interlacing. 168 to 171, 193
Interlacing. 168 to 171, 193
Planning
Planning $172,174,189$ $172,174,189$
Voltage Contro
Voltage Contro 299 299PAGE
Protective Device
Coordination. 168, 169
Protectors (See Network Protectors)Relaying.160 to 168Secondary Grid or Mains 150, 151, 174
Burning Faults Clear... 151, 152
Cable, Types. 151
Conductor Sizes 151
Current Carrying Capacity
of Cable. 174
Limiters. 152
Parallel Conductors PerPhase. 151, 152
Voltage Regulation. 151
Spot Loads. 177, 189
(See Also Spot Networks)
Transformer Rating and Spacing 193
Transformers. . . 153 to 157, 171, 173
(See Also Network Transformers)
Voltage Control,
Network Feeders. 299
Voltage Levels 190
Secondary Racks. 129
Sectionalizer (See Line Sectionalizer)
Self-Supporting Cable. 135,136
Semi-buried Type Transformer
Installations.Series Capacitors
Application
Subtransmission. 336, 337
Primary Feeder 337, 338
Application Consideration...335, 336
Arc Furnace Correction. 354
Cost Comparison. 269
Crusher Motor Correction......... 358
Ferroresonance. 341, 342, 358
Lamp Flicker. 338, 339 338, 339
Motors Hunting
Protection
Dielectric Failure. 340
Line Fault 339
Overload. 339
Rating, Determination
Distribution System 338
Transmission System 337
Relaying. 340
Sub-Synchronous Resonance. . 340,341, 358
Voltage Improvement. 262, 269Service Reliability
Banked Secondaries. 138
Primary Feeders. 109
Primary Network. 116
Service Requirements 32
Services.. 134
Cable, Self-Supporting...... 135, 136
Conductor Capacity. 134, 135
Faults. 135

Services (continued)	Page
Function.	1
Higher Secondary Voltage.	137
Underground, Residential.	146
Voltage Drop	
Permissible.	135
Residential Area.	255
Rural Area.	, 256

Shunt Capacitors (continued)
Voltage Rise.261, 306, 307, 310Spot-Check, Load Measurement. . . . 39Spot Loads. 177, 188, 189Spot Networks
Advantages. 183
Cost. $190,194,195,197$
General Description. 14,183
Shunt Capacitive Reactance

Loading Transformer Curves,Spacing Factor547
Shunt Capacitors
Construction 327 to 329
Coordination with Voltage
Regulators. 295 to 297Economic benefits, Evaluation. . 311
Factory Tests. 304
Failure ProbabilityFault Currents in
Large Banks.314, 315
Function. 304, 305
Harmonic Voltages. 334
High-Voltage Applications 312 to 315Fault Currents. 314, 315Overvoltage During Faults. . 314Protection..................... . . 313Switching Devices... 322
Induction Motor Applications. . . 322Location. 320, 321Rates, Effect of.........321, 322
Inrush Current. 331 to 334Loss Reduction by Use of 306,310 ,315 to 317
Network, Secondary.............. . 319Overvoltage Limit . 304
Primary Feeder Application. . .122,Bank Ratings. 315
Fault Protection 317
Location, Two-Thirds Rule. 316, 317
Loss Reduction. 315 to 317Switched Banks. 268, 317
Protection. 327 to 331
Delta-Connected Banks...... 40Fused. 327, 328, 397,401, 404 to 406Group Fusing. 404, 405Individual Fusing. 404, 405Individual Unit. 329Overcurrent. 329Overvoltage 329 to 331Surge. 329Wye-Connected Banks. .404, 405
Ratings. 303, 304Released KVA Capacity. 309Resonant Effects. 334, 335Secondary Circuit Application 262,318 to 320
Economics. 318, 319Fault Protection. 319Network. 319
Standards.................. . . . 303, 304
Surge Protection.262, 311
Switched (See Switched Capacitors)
Switching Devices. 322 to 324
System KVAR Supply 308
Telephone Interference 334
Transient Voltage and Current.. . 304
Voltage on Banks with Faulty
Capacitors. 314, 315
Permissible. 196Mutual Support of
Adjacent.195, 197
Network Unit Cost 195, 197
Primary Feeder Supply 195, 197
Spot Network/
199Substatial
Spot Network/Radial System.
Cost. 190, 197
Description. 198
Economics. 198,199Standards (See Also NEMA Standards)IPCEA (Insulated Power Cable
Engineer's Association) 145Power Capacitors. 303, 304
Service Continuity. 32
Substation. 59 to 62
Voltage Rating 32
Starting Current, Motor
Central Air Conditioner 44Appliances.
Applances. 43
Residential Heat Pumps 44
Room Air Conditioners. 44Power Demand................358, 359
Step-Type Regulator. 264 to 267
Band Width. 282, 283 282, 283
Characteristics.
Control Circuit 268
.281
Coordination with Regulator
and Shunt Capacitors.. . 295 to 298
Cost.
Distribution Type. 266
chematic Diagram 267
Standard Rating. 274
Station Type. 265
Survey, Time Delay. 284
Tap Changer Connection. 265

Fluorescent (continued)
Fluorescent Lamps)
(1) Lamps 500, 501

Candle 495
History 495
Incandescent Lamp (See
Incandescent Lamp)
International Candle. 495
Luminaire 496
Maintenance 524 to 526 Secondary Current Check. . 525 Voltage Check

512 to 515
Advantages
Ballast......................... . 514
Circuit-Arrangement. . . 512, 513
Characteristics.... 513, 514
Interrupting Rating 513, 514
Conductors.................. . . . 515
Eimitations.......
Protection of 515
Transformers............512, 513
Mercury Lamps (See
Incandescent Lamps)
Pedestrian Traffic, Classification. 496
Reflection Factor.
Group. 524
Series Multiple System
Circuit Arrangement
.515
Corrective Measures of Limitations 516 MR Multiple Relay. ... 515, 516 Multiple Relay 515, 516 Application. 503 Cables. 510 Cirading507,510 Circuit Switch........ . . 507, 509 Control Circuit. 507

Conductors 509, 510 Corrective Measures of Current Ratings. 503 Film Cutout. 509, 510 Lightning Protection. . .511, 512 Limitations. 503 -Circuit Protection 510, 51 PC Protective Relay . . . 510,511
Schematic Diagram. 504 Transformers, Constant

Current.......... . . . 504 to 507 (See Also Constant Current Transformers) Voltage. 503
Sodium Lamps. . 517, 518
ransformers Capacity Calcula Transformers)

Street Lighting (continued)
Vehicular Traffic, Classification. . 496
Sub-Synchronous Resonance. 358
Substation Voltage Regulation....... . 271
Bus. 271
Cost. 273, 274, 275
Dissimilar Feeders. 273, 274, 275
Individual Feeder. 273
Line Drop Compensator Sellings. 293
Regulation Range. 276 to 278
Schematic Diagram of.271, 272
Subtransmission Substations......... 88
Bus Arrangements. 88 to 91
Subtransmission System Chapter 8
Area Coverage. 98 to 103 Application to System. 99 to 103 General Principle.98, 99 Physical Arrangement. 102
Capability. 91 to 95
Cost, Estimating
Circuit Breakers, Outdoor Oil. 106 Circuit, per Mile
Substation Structure
Cost, Factors Affecting. 103
Cost Study . 104
Method, Calculating Cost. . . 105
Results, Cost Analysis. . 106, 107
Circuit KVA Rating
92 93
Design, Basic Principles 92, 93
Economics. 103 to 107
Function of 1
Line Losses 95 to 98 Thermally-Loaded Lines. . . 95,

96,97

Voltage Drop--

.97, 98
Series Capacitor Applications 336, 337
Substation. 88 to 91 (See Subtransmission Substations)
Types, Basic 5, 6 Grid. 88 Loop. 87, 88
Radial. 87, 88
Ring. 87,88
Tapped-Tie.
88
Underground. 66
Voltage Drop..... 93, 94
Voltage Levels. 86, 87
Supplementary Regulators...... 260, 261
Regulation Range. 278
Surge Protection
Distribution Transformers. . 127, 201
Meters.
431
Secondary Circuits. 130
Shunt Capacitors 329
Street Lighting 511
Underground Systems,
Residential. 145
Switched Capacitors.....261, 268, 269, 276, 317
Controls.........286, 317, 324 to 327
(See Also Shunt Capacitors and
Power Capacitors)
Current 325
Temperature 327
Time-Switch.286, 317, 324
Voltage.286, 287, 317, 325
Voltage-Current. 326
Voltage-Time............... . 32
Coordination with Voltage
Regulators. 297, 298
High Voltage Application....312, 313
Network. 320

Switched Capacitors (continued)
Primary Feeder Application... 261,
269, 276, 315 to 318
Resistor Switching Device.. .323, 324
Switching Devices. . . 313, 322 to 324
Reignition. 322
Resistor. 323, 324
Restrike. 322, 323
Transient Current,
High Frequency 323
Substation Application. .. 268, 269,
271, 312
Switching Device, Capacitor.... .313,
322 to 324
Synchronous Condensers,
Flicker Reduction.308, 354, 355
Synchronous Motors
Service Interruption Momentary . 363
Sub-Synchronous Resonance 340, 341
Voltage Effect.
.253
Tap Changing Mechanism URL.

267
URS
264
Tap Changing Underload....................... 267
Tap Selection, Transformer . . . 218 to 221
Tapped-Tie Subtransmission.7, 88
Telemetering . 466
Telephone Interference 239, 241
Shunt Capacitor 334
Temperature Rise,
Distribution Transformers.......... . 205
Terminal Arrangement,
Watthour Meters. 454
Testing, Meters
Demand Meter. 464
Methods . 463
Procedure. 464
Watthour Meter 464
Thermal Ampere Demand Meters. . . . 460
Thermal KW Demand Meters. 460
Third Harmonic Exciting Current.... 235
Tie-Circuits, Primary System. 109
Time Delay Relay. 283
Characteristic Curve. 283
Time Delay Survey 283
Time-Switch Control,
Shunt Capacitors. 286, 324
Torque, Watthour Meters
Driving........................... . 428
Due to Alternating Fields. 430
Friction. 431
Retarding. 428, 430, 431
Totalizing Metering. 466 to 468
Trans-A-Sockets, Meter 447, 449, 454
Transformer Breaker,
Primary Network Unit. 113
Transformer Capacity,
Ratio of Load to.
Transformer Connections
Delta-Delta.............225, 226, 237 Delta Secondary,
Mid-tap Grounded. 232, 233
Open-Delta. 229, 237, 238
Open-Wye 229, 239
Phase Shift. 233
T-T. 231, 233
Wye-Delta. 238,239
Wye-Wye..... 226 to 228, 235 to 237
Transformers
Aging of Insulation. 242, 243 Aging Time, Equivalent. 243
Air-Cooled. 201
Application Chart. 218 to 222

Transformers (continued)
Losses
Load...............214, 215, 216
No-Load (Core).......216, 217
Losses, Evaluation.245, 246
Copper (Load) 245, 246
Core (No-load). 245
Exciting Current............ 245
Network (See Network Transformers)
Neutral Inversion...........235, 236
Oil-filled. 201
Overload Characteristics......... 241
Parallel Operation................ . 224
Phase-Shift,
Different Connections. 233
Phase Shifting (See Phase-Shifting
Transformers)
Polarity 207, 208, 209
Potential (See
Potential Transformers)
Primary Network. 113
Ratings. 125, 210, 212, 213, 214
Voltage................. 206, 207
Regulation........................ 218
Formula..................... 218
With Single-Phase
Loaids. 235, 236
Semi-buried
Application 144, 145, 204
Semi-buried Type
Housings.......144, 145, 204, 205
Short-Time Overload............ 241
Standards
Short-Circuit. 205
Temperature. 205
Street Lighting,
Multiple System. 512, 513
Subway-Type..................... . 203
Surge Protection. 127
Tap Selection............. 218 to 221
Terminal Marking.206, 207, 208, 209
Third Harmonic Exciting
Current
Unequal Size Banks,
Three-Phase Connection. 230
Voltage Drop...................... 131
Residential Area
Applications. 255
Rural Area
Applications255, 256
Voltage Rating.206, 207
Zero Sequence Impedance,
Three-phase Banks.......226, 227
Transockets, Meter.447, 449, 454
Trench, Underground System....145, 146
Trigonometric Functions........551, 552
Trip-Free Control, Circuit Breakers. . 383
Tungsten Filament Lamp, Flicker 345, 346
Underground, Residential. 15, 16,
142 to 146
Advantage. 142
Cables................145, 553 to 555
Cost. 142, 143, 553 to 555
Design Practice,
28 Companies 553 to 555
Fault Protection. 144
Flexibility, Load Growth......... 143
Loop Primary Sectionalizing...113,
144,553 to 555
Primary Feeder Arrangement. . . . 144
Primary Voltage 553 to 555
Secondary Circuits,
Design Practice. 553 to 555

Underground Residential (continued) PAGE Secondary Network Semi-buried Transformer
Housings. 145 Service Connection... 146, 553 to 555 Street Lighting. 553 to 555 Telephone Cable. 553 to 555 Transformers. . . 144, 145, 553 to 555 Trenching . 145
Underground Secondary Network (See
Secondary Network)
Unit Substation. 48, 61, 62
Unlatching Time,
Circuit Breakers.......... 384, 386, 387
Utilization Factor............ 24
Utilization Voltage 248 to 253
Design Voltage for Equipment. . . 251
Effect of Voltage Spread on
Electronic Equipment. 253
Fluorescent Lamps. 252
Incandescent Lamps......... . 251
Induction Motors.253, 254
Mercury Lamps....... 252
Resistance Heating
Devices. 252, 253
Synchronous Motors......... 253
Extreme Zone. 251
Favorable Zone. 249
Tolerable Zone. 249
Voltage Spread. 247, 248
Varhour Metering. 449 to 458
Average Power Factor. 455
Single Phase System.............. . . 455 Type K K I Compensator. 455
Three-Phase System. 455
Phase Shifting Transformers 455, 456 Internal Wiring........ 455, 457 Test........ 455, 456
Type K-5 Phase Shifting
Transformer.............. . 455, 458
Two-Phase System. 455
Connection Diagram. 456
Voltage
Balanced. 29, 30, 31
Base...... 248
Distribution Transformers. . 206, 207
Higher Primary. 260
Higher Secondary. 125, 135
Maximum . 247
Multiple Street Lighting 512
Nominal . 247
Potential Transformers.470, 473, 475
Primary Feeder 8, 117, 118
Primary Networks.11, 113, 115
Rated. 247
Regulation, Definition. 248
Secondary Network Feeders. 171
Secondary Networks
Overhead. 186
Underground. 151
Secondary System. 125, 126, 151
Series Street Lighting. 503
Service. 24 . 24
Substation 250
Subtransmission......... . 86, 87, 250
Systems. 14, 250
Utilization. 122, 248 to 253
Voltage Dip (See Also Utilization Voltage)
Due to Motor Starting 133
Effect on Utilization
Equipment. 361, 362 (See Also Flicker)
In Banked Secondarie日.138, 141

Index

The following terms, which appear in this book, are Trademarks of the Westinghouse Electric Corporation and its Subsidiaries: Autotrol, CSP, CSPB, De-ion, Inerteen, Life-Guard, Mag-A-Stat, Mainstreeter, Quicklag, Space-Miser, Sterilamp, Trans-A-Mount, Transocket, Tri-Pac

[^0]: 1) Metering and Relaying
 (2) Relaying
 *Applies to Current Trensformers Only.
[^1]: TThese system voltages are not in the EEL-NEMA Preferred Voltage Ratings for A-C Sustems and Equipment report (EEI R-6, NEMA 117).
 \#ASA Standard C57.13-1954.
 †For insulation class of neutral see per 13-11.541 ASA Standard C57.13-1954,

[^2]: \dagger These values also apply to 150 -percent rated current.
 *ASA Standard C57.13-1954, Instrument Transformers.

[^3]: *These system voltages are not in the EEI-NEMA Preferred Voltage Ratings for A-C Systems and Equipment report (EEI R-6, NEMA 117).
 **ASA Standard C57.13-1954, Instrument Transformers.

[^4]: Interpolation for correction factors corresponding to values $(-\alpha+\beta-\gamma)$ lying between those given in the table, may be made without error. Interpolation for correction factors corresponding to values of $\cos \theta_{2}$ lying between those given in the table, may be made without exceeding an error of 0.0010 in the sections of the tables lying between the heavy black lines; outside of these sections, and in all cases where the adjacent values of $\cos \theta_{2}$ are separated by the heavy black lines the maximum error in interpolation will exceed 0.0010 .
 according to asa standards:
 a is positive when the current in the wattmeter potential circuit leads the voltage.
 β is positive when the secondary current leads the primary current.
 γ is positive when the secondary voltage leads the primary voltage.
 \dagger in the case of polyphase measurements, the meter or element in each phase most be corregted separately, considering θ as the angle between the voltage and current on the meter or element being corrected (not the angle represented by the polyphase power factor).

[^5]: Note: Interpolation between pointa may be made for intermediate values of ratio correction factor, phase angle or line power factor.

[^6]: Note: Interpolation between points may be made for intermediate valuea of ratio correction factor, phase angle or line power factor

[^7]: 4 Conventional efficiency based on $I^{8} R$ loss at $75^{\circ} \mathrm{C}$ and measured core loss at normal primary voltage with secondary open.
 \triangle As corrected with capacitors.

[^8]: ${ }^{+}$Recommended for phase-to-neutral awitching applications on an 8.66/15$K \nabla$ system.
 K $\boldsymbol{*}$ 日ystem.
 *Recommended for phase-to-neutral switching applications on a $5.0 / 8.66-\mathrm{Kv}$ system.
 ${ }^{++}$Recommended for use on an $8.66 / 15-\mathrm{Kv}$ system.

[^9]:

[^10]: with tapa, losded up to 125 por cent of rated capacity.
 ${ }^{2}$ Luminaire + pole + ballast
 ${ }^{2}$ Luminaire + pole + ballast.
 One per cent of total initial cost less lampa (Line 22).

[^11]: ${ }^{*}$ For conductor at $75^{\circ} \mathrm{C}$., air at $25^{\circ} \mathrm{C}$., wiad 1.4 miles per hour ($2 \mathrm{ft} / \mathrm{sec}$), frequency $=80$ cyclee.

[^12]:[^13]: \qquad

[^14]:
 \qquad

[^15]:

