
The Annals of Probability
2021, Vol. 49, No. 1, 157–179
https://doi.org/10.1214/20-AOP1447
© Institute of Mathematical Statistics, 2021

FREENESS OVER THE DIAGONAL FOR LARGE RANDOM MATRICES

BY BENSON AU1, GUILLAUME CÉBRON2, ANTOINE DAHLQVIST3, FRANCK GABRIEL4

AND CAMILLE MALE5

1Department of Mathematics, University of California, San Diego, bau@ucsd.edu
2IMT; UMR 5219, Université de Toulouse; CNRS, guillaume.cebron@math.univ-toulouse.fr

3Department of Mathematics, University of Sussex, a.dahlqvist@sussex.ac.uk
4EPFL-SB-MATH-CSFT, franck.gabriel@epfl.ch

5Institut de Mathématiques de Bordeaux, Université de Bordeaux, camille.male@math.u-bordeaux.fr

We prove that independent families of permutation invariant random ma-
trices are asymptotically free with amalgamation over the diagonal, both in
expectation and in probability, under a uniform boundedness assumption on
the operator norm. We can relax the operator norm assumption to an estimate
on sums associated to graphs of matrices, further extending the range of ap-
plications (e.g., to Wigner matrices with exploding moments and the sparse
regime of the Erdős–Rényi model). The result still holds even if the matri-
ces are multiplied entrywise by random variables satisfying a certain growth
condition (e.g., as in the case of matrices with a variance profile and percola-
tion models). Our analysis relies on a modified method of moments based on
graph observables.

1. Introduction. Noncommutative (NC) probability is a generalization of classical
probability that extends the probabilistic perspective to noncommuting random variables.
Following the seminal work of Voiculescu [26], this setting provides a unifying framework
for the spectral analysis of random multimatrix models in the large N limit. We outline the
basic approach of this program as follows:

1. In the NC framework Voiculescu’s free independence plays the role of classical inde-
pendence. This simple parallel yields a surprisingly rich theory with free analogues of many
classical concepts (e.g., the free CLT, free cumulants, free entropy and conditional expec-
tations). The scope of free probability further benefits from a robust analytic framework,
allowing for a notion of free harmonic analysis [28].

2. Free independence describes the large N limit behavior of classically independent ran-
dom matrices in many generic situations, notably unitarily invariant ensembles [26]. The free
probability machinery then allows for tractable computations of many practical quantities of
interest. In particular, one can compute the limiting spectral distribution of rational functions
in such matrices [16].

At the same time, many natural random matrix models lie beyond the scope of free probabil-
ity. One can hope to accommodate such models by defining a suitable new framework. This
is the perspective of traffic probability [2, 10, 13–15, 18–20]:

1. The traffic framework adjoins the standard NC probability framework with an operadic
structure based on graph observables. The notion of a traffic distribution enriches that of a
usual distribution. This additional structure admits a new notion of independence, one that
encodes the familiar notions of NC independence.

Received September 2019; revised March 2020.
MSC2020 subject classifications. Primary 15B52, 46L54; secondary 46L53, 60B20.
Key words and phrases. Random matrices, freeness with amalgamation, permutation invariance, traffic proba-

bility.

157

https://imstat.org/journals-and-publications/annals-of-probability/
https://doi.org/10.1214/20-AOP1447
http://www.imstat.org
mailto:bau@ucsd.edu
mailto:guillaume.cebron@math.univ-toulouse.fr
mailto:a.dahlqvist@sussex.ac.uk
mailto:franck.gabriel@epfl.ch
mailto:camille.male@math.u-bordeaux.fr
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


158 B. AU ET AL.

2. Permutation invariant random matrices provide a canonical model of traffic indepen-
dence in the large N limit.

The assumption of a strong continuous distributional symmetry, such as unitary invariance,
ensures that our matrices can be rotated into a so-called “generic position” relative to each
other. Free independence then translates this condition into a precise universal rule for cal-
culating the joint asymptotic spectral distribution from the marginals. Naturally, permutation
invariance fails to produce the same genericity: for this reason, despite their ubiquity, per-
mutation invariant models traditionally lie outside of the domain of free probability. In what
sense then, if any, does permutation invariance determine such a rule?

Surprisingly, contrary to the prevailing intuition, we show that this question can still be
answered entirely in terms of the familiar free probability machinery. In this article we show
that Voiculescu’s notion of a conditional expectation in the context of operator-valued free
probability provides an analytic framework for traffic independence in the case of large per-
mutation invariant random matrices. Notably, our main result generalizes Voiculescu’s cel-
ebrated asymptotic freeness theorem for unitarily invariant random matrices to permutation
invariant random matrices in the form of freeness with amalgamation over the diagonal.

1.1. Background. We begin by recalling the basic framework of operator-valued free
probability [27].

DEFINITION 1.1. An operator-valued probability space is a triple (A,B,E) consisting
of a unital algebra A over C, a unital subalgebra B ⊂ A and a conditional expectation E :
A → B. By a conditional expectation we mean a unital linear B − B bimodule map (i.e.,
E(b1ab2) = b1E(a)b2 for any a ∈ A and b1, b2 ∈ B).

Let K be an arbitrary index set. We write B〈Xk : k ∈ K〉 for the free NC algebra generated
by B and the noncommuting indeterminates (Xk)k∈K . We call an element of B〈Xk : k ∈ K〉
a B-valued polynomial. In the case of a monomial M = b0Xk1b1Xk2 · · ·Xknbn ∈ B〈Xk : k ∈
K〉, we define its degree deg(M) = n and its coefficients (b0, . . . , bn). The length of a B-
valued polynomial P = ∑t

i=1 Mi is the number of monomials t appearing in the finite linear
combination defining P . The operator-valued distribution (or E-distribution for short) of a
family A = (A(k))k∈K ⊂ A is the linear map of operator-valued moments

EA : B〈Xk : k ∈ K〉 → B, P �→ E
[
P(A)

]
.

We say that the families A1 = (A
(k)
1 )k∈K, . . . ,AL = (A

(k)
L )k∈K ⊂ A are free with amalga-

mation over B (or free over B for short) if

E
[(

P1(A�1) − E
[
P1(A�1)

]) · · · (Pn(A�n) − E
[
Pn(A�n)

])] = 0

for any polynomials P1, . . . ,Pn ∈ B〈Xk : k ∈ K〉 whenever �1 �= �2 �= · · · �= �n.

Note that ordinary freeness is simply the special case of freeness over B = C. The operator-
valued extension retains many of the same properties: for example, the freeness with amalga-
mation of the families A1, . . . ,AL uniquely determines the joint operator-valued distribution
EA1	···	AL

from the marginal operator-valued distributions (EA�
)L�=1.

EXAMPLE 1.2. Let MN denote the algebra of complex N × N matrices. We define the
diagonal map � : MN → DN onto the subalgebra DN of diagonal matrices by

�(A) = (
δi,jA(i, j)

)
i,j∈[N] ∀A = (

A(i, j)
)
i,j∈[N] ∈MN.

Then, (MN,DN,�) is an operator-valued probability space.
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For random matrices, freeness with amalgamation over the diagonal first appeared in the
work of Shlyakhtenko on Gaussian Wigner matrices with a variance profile [24]. Our moti-
vation for considering this question for permutation invariant random matrices comes from
a recent work of Boedihardjo and Dykema [8] which proved that random Vandermonde ma-
trices constructed from i.i.d. random variables uniformly distributed on the unit circle are
asymptotically R-diagonal over the diagonal matrices. Such matrices are invariant under left
multiplication by permutation matrices: if instead this symmetry were with respect to all uni-
tary matrices, then one would obtain convergence to an ordinary scalar-valued R-diagonal
element [23], Theorem 15.10. This juxtaposition suggests a link between permutation invari-
ance and freeness with amalgamation over the diagonal.

1.2. Asymptotic freeness with amalgamation over the diagonal. In the sequel, when we
speak of a family AN of random N × N matrices, we implicitly refer to an entire sequence
(AN)N∈N of families AN = (A

(k)
N )k∈K of random N ×N matrices, where K does not depend

on N . We say that a family AN is permutation invariant if for any permutation σ ∈ SN , we
have the equality in (joint) distribution of the random variables(

A
(k)
N (i, j)

)
i,j∈[N],k∈K

d= (
A

(k)
N

(
σ(i), σ (j)

))
i,j∈[N],k∈K;

or, equivalently, for any N × N permutation matrix SN ,(
A

(k)
N

)
k∈K

d= (
SNA

(k)
N S∗

N

)
k∈K.

By a uniform operator norm bound we mean that sup(N,k)∈N×K ‖A(k)
N ‖ is essentially

bounded. We say that a sequence of polynomials (PN)N∈N such that PN ∈ DN 〈Xk : k ∈ K〉
satisfies the uniformly bounded length, degree and coefficient property (or LDC for short) if
the lengths of the polynomials are uniformly bounded with uniformly bounded degree for the
monomials appearing in the linear combination defining PN and uniformly bounded operator
norms for the coefficients appearing in the monomials. We can now state a simplified version
of our main result (Theorem 2.3).

THEOREM 1.3. Let AN,1 = (A
(k)
N,1)k∈K, . . . ,AN,L = (A

(k)
N,L)k∈K be independent fami-

lies of permutation invariant random matrices satisfying a uniform operator norm bound.
Then, the families AN,1, . . . ,AN,L are asymptotically free with amalgamation over DN in
the following sense: for any polynomials PN,1, . . . ,PN,n ∈ DN 〈Xk : k ∈ K〉 such that the
sequences (PN,i)N∈N,i∈[n] satisfy the LDC property, the matrix

εN = �
[(

PN,1(AN,�1) − �
(
PN,1(AN,�1)

)) · · · (PN,n(AN,�n) − �
(
PN,n(AN,�n)

))]
converges to zero in (normalized) Schatten p-norm for any p ∈ [1,+∞) whenever �1 �= �2 �=
· · · �= �n, namely,

(1) lim
N→∞E

[
1

N
Tr

[(
εNε∗

N

)p
2
]] = 0.

Note that the convergence in (1) implies the convergence of the Schatten p-norms
‖εN‖p → 0 in probability as N → ∞. Thus, independent permutation invariant random ma-
trices are asymptotically free over the diagonal in probability in (MN,DN,�): for a typical
realization of AN,1, . . . ,AN,L, the operator-valued distribution of AN,1 	 · · · 	 AN,L will be
close to the operator-valued distribution of ÃN,1 	· · ·	 ÃN,L, where the (ÃN,�)

L
�=1 are copies

of (AN,�)
N
�=1 taken to be free with amalgamation over DN .

In Theorem 2.3 we strengthen this result to the operator-valued probability space gener-
ated by AN,1 	· · ·	AN,�. The remainder of Section 2 is then devoted to generalizations: first,
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relaxing the operator norm assumption to an estimate on sums associated to certain graphs
(Proposition 2.4); and second, weakening the invariance assumption by allowing the entry-
wise multiplication of our matrices by random variables satisfying a certain growth condition
(Proposition 2.5).

1.3. Numerical simulations. Theorem 2.3 allows us to use the analytic machinery of
the operator-valued theory to gain new insight into the spectral analysis of large random
matrices. In particular, one can use the operator-valued subordination result of Belinschi,
Mai, and Speicher [4] to calculate the limiting spectral distribution of rational functions in
our matrices [16].

We illustrate our result by numerically computing the limiting spectral distribution of the
sum of two independent Hermitian matrices from various ensembles: GUE matrices with a
variance profile; adjacency matrices of sparse Erdős–Rényi graphs; adjacency matrices of
percolation on the cycle; and diagonal matrices conjugated by the discrete Fourier transform
matrix or unitary Brownian motion.

Organization of the article. We state our main results in Section 2, namely, Theorem 2.3
and its generalizations. In Section 3 we give an algorithm for approximating the operator-
valued free convolution over the diagonal and apply it to various matrix models. Finally,
Section 4 contains the proofs of the different results stated in Section 2.

2. Statement of results.

2.1. Freeness with amalgamation for large random matrices. We work in the natu-
ral extension of Example 1.2 to the random setting. In particular, we write (MN(L∞−),

DN(L∞−),�) for the operator-valued probability space of random N × N matrices whose
entries have finite moments of all orders. Note that the coefficients of a DN(L∞−)-valued
polynomial are random diagonal matrices. In contrast, the papers [8, 24] consider the
operator-valued probability space (MN(L∞−),DN,E ◦ �). The minimal setting required
to formalize Theorem 1.3 in (MN(L∞−),DN(L∞−),�) motivates the following definition.

DEFINITION 2.1. Let AN be a family of random matrices in MN(L∞−). We define
AN ⊂ MN(L∞−) to be the smallest unital subalgebra containing AN that is closed under the
diagonal map �. We denote the image of AN under the diagonal map by BN = �(AN) ⊂
AN .

Note that AN = BN 〈AN 〉. Furthermore, BN is the smallest subalgebra of DN(L∞−) such
that �(BN 〈AN 〉) ⊂ BN , and the triple (AN,BN,�) is an operator-valued probability space.
In order to formulate a notion of asymptotic freeness over BN , the coefficients of the BN -
valued polynomials should somehow be consistent as the dimension N grows. We can encode
the coefficients independently of the dimension by using the following notion of a graph
monomial from traffic probability [18].

DEFINITION 2.2. A graph monomial g = (G,η, γ ) is a finite connected birooted multi-
digraph G = (V ,E, src, tar, vin, vout) together with edge labels η : E → [L] and γ : E → K .
The maps src, tar : E → V specify the source src(e) and target tar(e) of each edge e ∈ E.
We refer to the roots (vin, vout) ∈ V 2 as the input and the output, respectively, though they
need not be distinct (in which case we specify that g is a diagonal graph monomial). For a
graph monomial g we define �(g) as the diagonal graph monomial obtained from g by iden-
tifying vin ∼ vout. When convenient, we omit the maps src, tar from the notation and simply
abbreviate a multidigraph G = (V ,E). See Figure 1 for an illustration.
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FIG. 1. A graph monomial with some edge labels indicated.

For an L-tuple of families AN,1 = (A
(k)
N,1)k∈K, . . . ,AN,L = (A

(k)
N,L)k∈K of random N × N

matrices, the edge labels η and γ of a graph monomial determine an assignment of each
edge e ∈ E to a matrix A

(γ (e))
N,η(e) ∈ AN = AN,1 	 · · · 	 AN,L. This allows us to evaluate a

graph monomial g in the family AN to obtain a random N × N matrix g(AN) given by the
coordinate formula

g(AN)(i, j) = ∑
φ:V →[N]

φ(vout)=i,φ(vin)=j

∏
e∈E

A
(γ (e))
N,η(e)

(
φ

(
tar(e)

)
, φ

(
src(e)

))
.

For convenience, we abbreviate (φ(tar(e)), φ(src(e))) = (φ(e)). Of course, if AN ⊂
MN(L∞−), then g(AN) ∈MN(L∞−).

Note that the action of a diagonal graph monomial produces a diagonal matrix. More
generally, we have the identity �(g(AN)) = �(g)(AN). In particular, if g is the unique graph
monomial whose underlying graph consists of a single isolated vertex (with no loops), then
g(AN) = IN .

In Lemma 4.3 we prove that BN is spanned by the matrices g(AN) obtained by evaluating
AN in the so-called planted cactus-type monomials, that is, diagonal graph monomials whose
underlying graph G is an oriented cactus (see Definition 4.1). This implies that a generic BN -
valued monomial takes the form

gN,0(AN)XkN(1)gN,1(AN) · · ·XkN(d)gN,dN
(AN)

for some planted cactus-type monomials gN,j (say with edge set Ej ). We define the full

degree of such a monomial as the sum dN + ∑dN

j=0 |Ej | of the usual degree and the total
number of edges appearing in the cacti.

We say that a sequence of polynomials (PN)N∈N such that PN ∈ BN 〈Xk : k ∈ K〉 satisfies
the uniformly bounded length and full degree property (or LFD for short) if the lengths of the
polynomials are uniformly bounded with uniformly bounded full degree for the monomials
appearing in the linear combination defining PN . This notion is the appropriate generalization
of the earlier LDC property to graph monomials and allows us to formulate our main result.

THEOREM 2.3. Let AN,1 = (A
(k)
N,1)k∈K, . . . ,AN,L = (A

(k)
N,L)k∈K be independent fami-

lies of random matrices satisfying a uniform operator norm bound. Assume that each family,
except possibly one, is permutation invariant. As before, we write AN = AN,1 	 · · · 	 AN,L.
Then, AN,1, . . . ,AN,L are asymptotically free with amalgamation in (AN,BN,�) in the fol-
lowing sense: for any polynomials PN,1, . . . ,PN,n ∈ BN 〈Xk : k ∈ K〉 such that the sequences
(PN,i)N∈N,i∈[n] satisfy the LFD property, the matrix

εN = �
[(

PN,1(AN,�1) − �
(
PN,1(AN,�1)

)) · · · (PN,n(AN,�n) − �
(
PN,n(AN,�n)

))]
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converges to zero in Schatten p-norm for any p ∈ [1,+∞) whenever �1 �= · · · �= �n, namely,

lim
N→∞E

[
1

N
Tr

[(
εNε∗

N

)p
2
]] = 0.

Note that we do not assume the convergence of our matrices AN in any sense, much as in
the context of deterministic equivalents [22], Chapter 10.

2.2. Generalizations. For starters, we can relax the operator norm assumption to an
asymptotic on graph observables.

PROPOSITION 2.4. The conclusion of Theorem 2.3 still holds if the operator norm bound
is replaced by the following weaker assumption: for any � ∈ [L] and any diagonal graph
monomials g1, . . . , gn, there exists a constant C ≥ 0 such that

(2)

∣∣∣∣∣E
[

n∏
i=1

Tr
[
gi(AN,�)

]]∣∣∣∣∣ ≤ CN
∑n

i=1 f(gi)/2,

where f(gi) ≥ 2 is determined by the forest Fi of two-edge connected components of the
underlying unlabeled undirected graph Gi of gi (see Definition 4.13) and C only depends on
(Gi)

n
i=1.

The assumption in Proposition 2.4 follows from the stronger asymptotic

(3) E

[
n∏

i=1

Tr
[
gi(AN,�)

]] = O
(
Nn)

which is simply the boundedness of the so-called traffic distribution [18]. For example, the
bound in (3) holds for Wigner matrices with exploding moments and the sparse regime of
the Erdős–Rényi model [19], Proposition 4.1, both of which do not satisfy the operator norm
assumption [29], Proposition 12. The relevance of the quantity f(g) owes to Mingo and Spe-
icher [21], who proved that the bound in (2) holds if the matrices AN,1, . . . ,AN,L satisfy a
uniform operator norm bound (see Section 4.4).

Our second generalization allows for the entrywise multiplication of our matrices by
random variables satisfying a certain growth condition. We will need the notion of a test
graph T = (G,η, γ ), where G = (V ,E, src, tar) is a finite multidigraph with edge labels
η : E → [L] and γ : E → K . In contrast to graph monomials, we do not specify any roots for
test graphs.

PROPOSITION 2.5. Let AN,1, . . . ,AN,L be independent families of permutation invari-
ant random matrices satisfying the asymptotic (2). Suppose that

�N = �N,1 	 · · · 	 �N,L = (



(k)
N,1

)
k∈K 	 · · · 	 (



(k)
N,L

)
k∈K

is a family of random matrices, independent of AN , such that

(4)
∣∣∣∣E[

(N − |V |)!
N !

∑
φ:V ↪→[N]

∏
e∈E



(γ (e))
N,η(e)

(
φ(e)

)]∣∣∣∣ ≤ C

for any test graph T = (G,η, γ ) with G = (V ,E), where φ : V ↪→ [N ] denotes an injective
map and C only depends on G. Then, the conclusions of Theorems 1.3 and 2.3 still hold for
the families ÃN,1, . . . , ÃN,L, where

ÃN,� = (
A

(k)
N,� ◦ 


(k)
N,�

)
k∈K

and ◦ denotes the entrywise product.
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Of course, (N−|V |)!
N ! is simply the number of maps φ : V ↪→ [N ], so the quantity under

consideration in (4) can be written as∣∣∣∣E[∏
e∈E



(γ (e))
N,η(e)

(
�(e)

)]∣∣∣∣
for � : V ↪→ [N ] a uniformly random injective map independent of �N . In particular, this
quantity is bounded if the entries of �N are bounded.

We emphasize that the families �N,1, . . . ,�N,L are not assumed to be independent nor
permutation invariant, which subsequently extends to the families ÃN,1, . . . , ÃN,L. For ex-
ample, Proposition 2.5 applies to Wigner matrices with a variance profile [24].

3. Examples and numerical simulations. In this section we consider pairs of indepen-
dent random matrices XN and YN sampled from various ensembles covered by our results.
For a single realization of our matrices, we compute the empirical spectral distribution of
the sum XN + YN . For comparison, we use the fixed point algorithm of Belinschi, Mai,
and Speicher [4] to compute the spectral density of the free convolution with amalgamation
�XN

��YN
. Our main result guarantees that the difference between these two computations

becomes negligible in the limit, both in expectation and in probability: the simulations pro-
vide a visual representation of this convergence in action. The close agreement between the
two computations can already be seen from just a single realization of our matrices (as op-
posed to the average of a large number of simulations) which follows from the convergence
in probability form of our result (as opposed to just in expectation).

3.1. Amalgamated subordination. To explain the fixed point algorithm, we will need to
introduce more of the operator-valued framework.

DEFINITION 3.1. Let (A,D,�) be a C∗-operator-valued probability space, that is, we
further assume that A is a C∗-algebra, D is a C∗-subalgebra and � is completely positive.
The operator-valued Cauchy transform of a selfadjoint operator-valued random variable X ∈
A is the function

GX : D+ → D−, Z �→ �
[
(Z − X)−1]

,

where D± = {Z ∈D : ±�(Z) = ±Z−Z∗
2i

> 0}. We define the corresponding H transform

HX : D+ → D+, Z �→ GX(Z)−1 − Z.

For random matrices the operator-valued Cauchy transform simply corresponds to the di-
agonal of the matrix resolvent, an important object in random matrix theory. For example, this
object has been used to study the adjacency matrices of weighted random graphs [17], CLTs
for linear statistics of heavy-tailed random matrices [6] and universality for general Wigner-
type matrices [1]. The operator-valued extension further satisfies an analytic subordination
property.

THEOREM 3.2 ([4], Theorem 2.7). Let X and Y be selfadjoint operator-valued random
variables in a C∗-operator-valued probability space (A,D,�). If X and Y are free over D,
then they satisfy the following subordination property:

GX+Y (Z) = GX

(
(Z)

) ∀Z ∈ D+,

where  :D+ → D+ is the unique solution of the fixed point equation

(Z) = FZ

(
(Z)

)
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for the function

FZ : D+ → D+, ω �→ HY

(
HX(ω) + Z

) + Z.

Moreover,  can be computed as the iteration

(Z) = lim
n→∞n(Z)

for n+1(Z) = FZ(n(Z)) and arbitrary initialization 0(Z) ∈D+.

We implement this subordination result to compute an approximation to the operator-
valued free convolution. For random matrices XN and YN , the following algorithm generates
an approximation to the density g(x) of the operator-valued free convolution �XN

��YN
at

the values x ∈ R where such a density exists:

1. Simulate a realization of XN and YN .
2. Set 0(Z) = (x + iε)IN ∈ DN for a small value of ε > 0. Compute the terms of the

sequence (n(Z))n∈N,

n+1(Z) = FZ

(
n(Z)

) = HYN

(
HXN

(
n(Z)

) + Z
) + Z,

until the norm ‖n+1(Z) − n(Z)‖ is less than a prescribed threshold for some value of
n = n0.

3. The value of the density g(x) can then be approximated by

− 1

π
�

(
1

N
Tr

[(
n0(Z) − XN

)−1])
,

provided ε is sufficiently small and the distribution admits a density at x.

REMARK 3.3. We mention two possible extensions of this algorithm:

1. The operator-valued R-transform of Y is the map RY : D+ → D+ uniquely determined
by the relation GY (Z) = (Z − RY (GY (Z)))−1. In fact, the function (Z) in Theorem 3.2
equals Z − RY (GX+Y (Z)). Knowledge of the operator-valued R-transform of either XN or
YN provides faster algorithms that do not require the simulation of the matrices XN and YN

[22], Theorem 11 of Chapter 9.
2. The fixed point algorithm described by Belinschi, Mai, and Speicher [4] can also be

used to compute the distribution of NC rational functions in X and Y through an appropriate
linearization [16].

3.2. Matrix models. We now define the various matrix models in our simulations:

1. We write GUEvp(N,η) for the random matrix with block variance profile√
8

5η + 3

(√
ηX1,1 X1,2
X2,1

√
ηX2,2

)
,

where η > 0 is a parameter; X1,1 and X2,2 are square matrices of order N/4 and 3N/4,
respectively; and (

X1,1 X1,2
X2,1 X2,2

)
is a normalized GUE matrix of order N ∈ 4N.
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2. We write ER(N,d) for the standardized adjacency matrix of a sparse Erdős–Rényi
graph, namely,

ER(N,d) = YN(d) − d
N−1(JN − IN)√

d(1 − d(N − 1)−1)
,

where YN(d) is a random real symmetric N × N matrix with zeros on the diagonal and i.i.d.
Bernoulli random variables with parameter d

N−1 otherwise (up to the symmetry constraint);
JN is the all-ones matrix of order N ; IN is the identity matrix of order N , and d > 0 is a
parameter.

3. We write Perm(N) for the random real symmetric N × N matrix

1√
2

(
VN + V ∗

N − 2JN

)
,

where VN is a uniformly distributed permutation matrix of order N . We further write 
(N,p)

for the random real symmetric N × N matrix with zeros on the diagonal and i.i.d. Bernoulli
random variables with parameter p otherwise (up to the symmetry constraint), where 
(N,p)

and Perm(N) are independent. This allows us to define the percolated model

Perm(N,p) = 1√
p


(N,p) ◦ Perm(N).

4. We define the N × N diagonal matrices

DN,1 = diag(1,−1,1,−1, . . . ,1,−1);
DN,2 = diag(−1, . . . ,−1︸ ︷︷ ︸

N/2

,1, . . . ,1︸ ︷︷ ︸
N/2

);

DN,3 =
√

3

14
diag

(
−2 + 2

N
,−2 + 4

N
, . . . ,−1︸ ︷︷ ︸

N/2

,1 + 2

N
,1 + 4

N
, . . . ,2︸ ︷︷ ︸

N/2

)
,

where we assume that N ∈ 2N.
5. For a given N ×N diagonal matrix DN , we write FFTDN

(N,p) for the random N ×N

matrix
1√
p


(N,p) ◦ (
VNUNDNU∗

NV ∗
N

)
,

where 
(N,p) and VN are as before and UN is the N × N discrete Fourier transform matrix

UN(j, k) = 1√
N

e−2πi(j−1)(k−1).

We refer the reader to [12] for earlier work and the motivation behind this model.
6. For a given N ×N diagonal matrix DN , we write UBMDN

(N,p) for the random N ×N

matrix

UN,tDNU∗
N,t ,

where UN,t is a unitary Brownian motion on the unitary group of order N at time t . We refer
the reader to [7] for the definition of unitary Brownian motion and the associated notion of
t-freeness.

REMARK 3.4. Heavy-tailed models also fit within our framework under a suitable trun-
cation. We refer the reader to the works [5, 9, 11] for further reading and particularly [3] for
an instance of such an operator-valued convolution.
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FIG. 2. Results of the numerical simulations.

3.3. Simulation parameters. Figure 2 reports the results of our simulations for the vari-
ous models of XN and YN indicated in the captions. In each case, we record:

• in light blue, the histogram of eigenvalues for one realization of the sum 1√
2
(XN +YN) for

N = 1000 (we omit the parameter N in the captions);
• in blue, the density of the operator-valued free convolution �XN

��YN
over the diagonal;
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FIG. 3. An oriented cactus with seven simple directed cycles.

• in red, the density of the free convolution μXN
�μYN

.

In the algorithm we choose the small parameter ε = 0.001. We also stop the fixed point
iteration at the threshold ‖n+1(Z) − n(Z)‖ ≤ 0.001.

The prediction by freeness over the diagonal accurately fits the histogram in each of the
situations we considered. In cases (a)–(d) we see that the deviation between freeness and
freeness with amalgamation is mainly at the center of the spectrum. In cases (e)–(h) the time
of the unitary Brownian motion is quite small, and so the difference between freeness and
freeness with amalgamation is more substantial.

4. Proofs of the main results.

4.1. Graph polynomial algebras. We first define the notion of a cactus graph.

DEFINITION 4.1. We say that a finite connected multidigraph G is a cactus if every edge
belongs to a unique simple cycle. In the case that each such cycle is directed, then we further
specify that G is an oriented cactus. See Figure 3 for an illustration.

We write C for the set of all planted cactus-type monomials, that is, diagonal graph mono-
mials whose underlying graph is an oriented cactus. We consider the action of these graph
monomials on our matrices AN : in particular, we write CN for the vector space generated by
(g(AN))g∈C . More generally, we define F to be the set of all graph monomials obtained by
starting with a directed path

·
out

← · ← · · · · · ← · ← ·
in

and attaching oriented cacti to the vertices of this path

∨·
out

← ∨· ← ∨· · · · ∨· ← ∨· ← ∨·
in
.

Similarly, we write FN for the vector space generated by (g(AN))g∈F . Note that C ⊂ F ,
and so CN ⊂ FN . Furthermore, FN = CN 〈AN 〉, namely, FN is the vector space generated by
elements of the form

(5) P = g0(AN)A
(k1)
N,�1

g1(AN) · · ·A(kd)
N,�d

gd(AN), gi ∈ C.

Indeed, this follows from the fact that such an element P can be written as g(AN) for the
graph monomial g ∈ F given by

(6) g =
g0∨·
out

(�1,k1)←−−−−
g1∨· (�2,k2)←−−−−

g2∨· · · ·
gd−1∨· (�d ,kd )←−−−−

gd∨·
in
.

LEMMA 4.2. The vector spaces CN and FN are unital algebras with �(FN) = CN .
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FIG. 4. An example of factoring when vout �= vin.

PROOF. For any graph monomials g1 and g2, the product g1(AN)g2(AN) of matrices
equals g(AN) for the graph monomial g obtained from g1 and g2 by concatenation. In partic-
ular, one obtains g from the disjoint union of g1 and g2 by identifying the input of g1 with the
output of g2 and forgetting their distinguished roles. It follows that both CN and FN are alge-
bras. Moreover, recall that the action of the trivial graph monomial g = ·in/out ∈ C produces
the identity matrix g(AN) = IN .

For the second statement, recall that �(g(AN)) = �(g)(AN). The result then follows from
the simple fact that �(F) = C. �

Lemma 4.2 allows us to characterize the algebras appearing in Definition 2.1.

LEMMA 4.3. We have the equality FN = AN (and hence CN = BN ).

PROOF. Recall that AN is the smallest unital subalgebra containing AN that is closed
under the diagonal map �, and BN = �(AN). By Lemma 4.2 it suffices to prove that FN =
AN . Note that one direction is immediate: by construction, AN ⊂ FN and �(FN) ⊂ FN ,
whence AN ⊂ FN .

We prove the reverse inclusion by induction on the number of edges of a graph monomial
g ∈ F . If g has a single edge, then g(AN) ∈ AN ∪ �(AN) ⊂AN . Now, assume that for some
n ≥ 2, every graph monomial g ∈ F with fewer than n edges produces a matrix g(AN) ∈ AN .
Consider an h ∈ F with exactly n edges: if the input and the output of h are not equal or if
they are equal but belong to more than one cycle, then we can factor h(AN) = h1(AN)h2(AN)

for some graph monomials h1, h2 ∈ F with fewer than n edges (Figure 4). Since AN is an
algebra, it follows that h(AN) ∈ AN .

If instead h is a diagonal graph monomial such that the common root v belongs to a unique
cycle, then we can split the vertex v into two vertices v′

out �= v′
in (Figure 5). This allows

us to construct a product P of the form (5) such that �(P ) = h(AN). We can then factor
P = h1(AN)h2(AN) as before, where h1(AN),h2(AN) ∈ AN by the induction hypothesis.
We conclude that h(AN) = �(h1(AN)h2(AN)) ∈AN . �

4.2. Some preliminary lemmas. Recall that a sequence of polynomials (PN)N∈N such
that PN ∈ BN 〈Xk : k ∈ K〉 satisfies the LFD property if the lengths of the polynomials PN

are uniformly bounded with uniformly full degree for the monomials appearing in the linear

FIG. 5. An example of splitting when vout = vin belongs to a unique cycle.
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combination defining PN . Thus, to prove Theorem 2.3 and its generalizations, it suffices to
consider the case of monomials PN,1, . . . ,PN,n of uniformly bounded full degree. Indeed,
our uniform bound on the lengths allows us to use multilinearity to extend the result to the
general case. Furthermore, the uniform boundedness of the full degree for our BN -valued
monomials

PN,i = gN,i,0(AN)XkN,i (1)gN,i,1(AN) · · ·XkN,i(dN,i )gN,i,dN,i
(AN)

ensures that the number of underlying unlabeled undirected graphs GN,i,j appearing in
(gN,i,j )N∈N,i∈[n],j∈[dN,i ] is finite. The uniformity of our asymptotic (2) then allows us to
further restrict to the case of fixed monomials PN,i in the sense that dN,i ≡ di and GN,i,j do
not depend on N .

We start by considering arbitrary families of random matrices AN,1, . . . ,AN,L. We can
assume that the families are each closed under the adjoint by enlarging them if necessary.
Our first lemma reduces the even case p = 2q ∈ 2N of our main theorem to a single limit.

LEMMA 4.4. In the notation of Theorem 2.3, if

lim
N→∞E

[
1

N
Tr(εN)

]
= 0

whenever

εN = �
[(

PN,1(AN,�1) − �
(
PN,1(AN,�1)

)) · · · (PN,n(AN,�n) − �
(
PN,n(AN,�n)

))]
for some �1 �= �2 �= · · · �= �n and

PN,i = gN,i,0(AN)XkN,i(1)gN,i,1(AN) · · ·XkN,i(di )gN,i,di
(AN), gN,i,j ∈ C,

with uniformly bounded full degree, then

lim
N→∞E

[
1

N
Tr

[(
εNε∗

N

)q]] = 0

for any such εN and q ∈ N as well.

PROOF. Note that (εNε∗
N)q = εNε∗

N(εNε∗
N)q−1 can be written as

�
[(

PN,1(AN,�1) − �
(
PN,1(AN,�1)

)) · · · (PN,n(AN,�n) − �
(
PN,n(AN,�n)

))]
ε∗
N

(
εNε∗

N

)q−1
,

where ε∗
N(εNε∗

N)q−1 ∈ BN . Lemma 4.3 then implies that

ε∗
N

(
εNε∗

N

)q−1 =
tN∑
l=1

cN,lhN,�(AN)

for some coefficients cN,l ∈ C and graph monomials hN,l ∈ C (say with edge set EN,l). At
the same time, the bound on the full degree guarantees that

sup
N∈N

tN < ∞ and sup
N∈N

tN∑
l=1

|EN,l | < ∞.

So, it suffices to prove that

lim
N→∞E

[
1

N
Tr

[
εNhN(AN)

]] = 0

for any sequence hN ∈ C with edge set EN such that supN∈N |EN | < ∞.



170 B. AU ET AL.

Now, since � is a conditional expectation, we know that

�
(
PN,n(AN,�n)

)
hN(AN) = �

(
PN,n(AN,�n)hN(AN)

)
.

We can then modify the last coefficient of the monomial PN,n to include the factor of
hN(AN). In particular, we can replace

PN,n = gN,n,0(AN)XkN,n(1)gN,n,1(AN) · · ·XkN,n(dn)gN,n,dn(AN)

with the monomial

P̃N,n = gN,n,0(AN)XkN,n(1)gN,n,1(AN) · · ·XkN,n(dn)g̃N,n,dn(AN),

where g̃N,n,dn(AN) = gN,n,dn(AN)hN(AN). This new sequence (P̃N,n)N∈N still has uni-
formly bounded full degree since the number of edges we are adding via hN is uniformly
bounded. In particular, we can apply the assumption in the statement of the lemma to

ε̃N = �
[(

PN,1(AN,�1) − �
(
PN,1(AN,�1)

)) · · · (P̃N,n(AN,�n) − �
(
P̃N,n(AN,�n)

))]
which shows that limN→∞E[ 1

N
Tr(̃εN)] = 0. The result then follows from the observation

that ε̃N = εNhN(AN). �

Furthermore, the even case of our main theorem implies the general case.

LEMMA 4.5. In the notation of Theorem 2.3, if

lim
N→∞E

[
1

N
Tr

[(
εNε∗

N

)p
2
]] = 0

for any p ∈ 2N, then the result also holds for any p ∈ [1,+∞).

PROOF. By construction, εN is a diagonal random matrix. In particular, Theorem 2.3 for
p = 2q ∈ 2N can be rephrased as

(7) E
[
Tr

[(
εNε∗

N

)q]] = E

[
N∑

i=1

∣∣εN(i, i)
∣∣p]

= ‖εN‖p
p = o(N),

where ‖ · ‖p denotes the p-norm of a random vector in CN .
Let us consider r ∈ [1,+∞). For any p ∈ 2N such that p ≥ r , Hölder’s inequality and

equation (7) imply that

‖εN‖r
r = E

[
N∑

i=1

∣∣εN(i, i)
∣∣r] ≤

(
E

[
N∑

i=1

(∣∣εN(i, i)
∣∣r)p

r

]) r
p
(

N∑
i=1

|1| p
p−r

)p−r
p

= (‖εN‖p
p

) r
p N

1− r
p = o

(
N

r
p
)
N

1− r
p = o(N). �

For any i ∈ [n], let PN,i ∈ BN 〈Xk : k ∈ K〉 be a BN -valued monomial. We write MN,i =
PN,i(AN,�i

) and
◦

MN,i = MN,i −�(MN,i), where we recall that �1 �= �2 �= · · · �= �n. To com-

pute the trace E[ 1
N

Tr(
◦

MN,1 · · · ◦
MN,n)], we will need a method of moments adapted to graph

observables, which we introduce now.
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DEFINITION 4.6. Recall that a test graph T = (G,η, γ ) is a finite multidigraph G =
(V ,E, src, tar) with edge labels η : E → [L] and γ : E → K . For a test graph T we define
the quantities:

τN [T ] = E

[
1

Nc(T )

∑
φ:V →[N]

∏
e∈E

A
(γ (e))
N,η(e)

(
φ(e)

)];(8)

τ 0
N [T ] = E

[
1

Nc(T )

∑
φ:V ↪→[N]

∏
e∈E

A
(γ (e))
N,η(e)

(
φ(e)

)]
,(9)

where c(T ) counts the number of connected components of T , φ : V ↪→ [N ] denotes an
injective map and (φ(e)) = (φ(tar(e)), φ(src(e))).

For any partition π ∈ P(V ), let βπ : V → π be the map that sends each vertex in V to its
block in π . We define T π = (Gπ,ηπ , γ π) as the test graph obtained from T by identifying
the vertices in each block of π . Formally, V π = π ; Eπ = E; srcπ = βπ ◦ src; tarπ = βπ ◦ tar;
ηπ = η; and γ π = γ . We say that T π is a quotient of T . One can then relate the quantities
(8) and (9) by [18], Lemma 2.6:

τN [T ] = ∑
π∈P(V )

Nc(T π )−c(T )τ 0
N

[
T π ];(10)

τ 0
N [T ] = ∑

π∈P(V )

Nc(T π )−c(T )τN

[
T π ]

M öb(0V ,π),(11)

where 0V is the singleton partition and Möb(0V ,π) = ∏
B∈π(−1)|B|−1(|B| − 1)! is the

Möbius function on the poset of partitions [25], Example 3.10.4.

REMARK 4.7. We allow our test graphs to be disconnected in this article, in contrast to
the convention in [18]. The general case follows much as in the usual situation.

The expansion

MN,i = PN,i(AN,�i
) = gN,i,0(AN)A

(kN,i (1))

N,�i
gN,i,1(AN) · · ·A(kN,i (di ))

N,�i
gN,i,di

(AN)

determines a graph monomial tN,i ∈ F such that tN,i(AN) = MN,i , namely,

(12) tN,i =
gN,i,0∨·

out

(
�i ,kN,i (1)

)
←−−−−−−−

gN,i,1∨·
(
�i ,kN,i (2)

)
←−−−−−−−

gN,i,2∨· · · ·
gN,i,di−1∨·

(
�i ,kN,i (di )

)
←−−−−−−−

gN,i,di∨·
in

.

Formally, ti consists of a directed path of length di starting from the right at the in-
put and terminating at the left at the output with: edges labeled in decreasing order
(�i, kN,i(di)), . . . , (�i, kN,i(0)) along the direction of this path; and planted cactus-type
monomials attached to the vertices of this path by gluing the common root of gN,i,di−j+1
to the j th vertex along this path.

Let TN = (GN,ηN, γN) be the test graph obtained by identifying the output of tN,i with
the input of tN,i−1 for i ∈ [n] with the convention that tN,0 = tN,n. In particular, TN inherits
the edge labels from each tN,i . Note that TN = �(tN,1 · · · tN,n) as unrooted graphs. One can
easily verify that E[ 1

N
Tr(MN,1 · · ·MN,n)] = τN [TN ].

For each i ∈ [n], we can view tN,i as a subgraph of TN . Note that the underlying graph
GN = (V ,E) of GN does not depend on N since di is constant and the underlying graphs
GN,i,j of the gN,i,j do not depend on N . So, we can write vN,i ≡ vi for the vertex in TN

corresponding to the input of tN,i with the convention that v0 = vn. The following lemma
describes the cancellations in equation (10) when one replaces MN,i with

◦
MN,i = MN,i −

�(MN,i).
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LEMMA 4.8. With the notation above for the test graph TN , we have the equality

(13) E

[
1

N
Tr(

◦
MN,1 · · · ◦

MN,n)

]
= ∑

π∈P(V ) s.t.
vi�πvi−1 ∀i∈[n]

τ 0
N

[
T π

N

]
.

PROOF. For any I ⊂ [n], let TN,I denote the test graph obtained from TN by identifying
the input of tN,i with the output of tN,i for each i ∈ I . Then, by definition of the

◦
MN,i ,

E

[
1

N
Tr(

◦
MN,1 · · · ◦

MN,n)

]
= ∑

I⊂[n]
(−1)|I |τN [TN,I ].

Using equation (10), we can rewrite this as

E

[
1

N
Tr(

◦
MN,1 · · · ◦

MN,n)

]
= ∑

I⊂[n]
(−1)|I | ∑

π∈P(V ) s.t.
vi∼πvi−1 ∀i∈I

τ 0
N

[
T π

N

]
.

For any π ∈P(V ), let Jπ = {i ∈ [n] : vi ∼π vi−1}. Interchanging the order of the summation,
we obtain

E

[
1

N
Tr(

◦
MN,1 · · · ◦

MN,n)

]
= ∑

π∈P(V )

( ∑
I⊂Jπ

(−1)|I |
)
τ 0
N

[
T π

N

]
.

The result then follows from the fact that the sum in the parentheses vanishes whenever
Jπ �=∅. �

Our analysis of each of the remaining terms τ 0
N [T π

N ] in Lemma 4.8 relies on the geometry
of a graph that we introduce now.

DEFINITION 4.9. A colored component of a test graph T = (V ,E,η, γ ) is a connected
component in the subtest graph T{�}×K obtained from T by only keeping the edges e with
label (η(e), γ (e)) ∈ {�} × K , where � ∈ [L]. In particular, evaluating τN [C] for a colored
component C, say of color {�} × K , only involves the matrices in the family AN,� ⊂ AN =
AN,1 	 · · · 	 AN,L. We write CC(T ) for the set of colored components of T .

We define the graph of colored components GCC(T ) = (V,E) as the simple bipartite graph
with vertex set V = CC(T )	V and edges determined by inclusion: v ∼E C if v ∈ V is a vertex
of the colored component C ∈ CC(T ).

REMARK 4.10. Our definition of the graph of colored components slightly differs from
the original one in [18], Definition 2.10, where one discards the trivial colored components
in CC(T ) consisting of an isolated vertex and only considers the vertices in V that belong to
more than one of the remaining colored components.

We return to the test graph TN = (GN,ηN, γN) considered in Lemma 4.8.

LEMMA 4.11. None of the partitions π in (13) result in a tree for the graph of colored
components GCC(T π

N ) = (VN,π ,EN,π ).

PROOF. Suppose, for a contradiction, that there exists a partition π ∈ P(V ) such that
vi �π vi−1 for all i ∈ [n] with GCC(T π

N ) a tree. Let cN be the simple directed cycle subgraph
in TN defined by traversing the edges of the directed paths at the base of each tN,i ; see
(12). Similarly, we define CN,i ∈ CC(T π

N ) as the colored component containing the edges of
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FIG. 6. An example of GCC(T π ) in the case �n = �1 and vn−1
π∼ v1. For simplicity, we omit the trivial colored

components consisting of a single isolated vertex.

the directed path of tN,i . Note that the alternating condition �1 �= �2 �= · · · �= �n implies that
CN,i �= CN,i−1 for each i ≥ 2.

First, assume that �n �= �1 so that

(14) CN,1 �= CN,2 �= · · · �= CN,n �= CN,1.

Note that the cycle cN induces a cycle cπ
N in GCC(T π

N ), namely,

cπ
N = (

βπ(vn),CN,n, βπ(vn−1),CN,n−1, . . . , βπ(v2),CN,2, βπ(v1),CN,1, βπ(vn)
)
.

Since GCC(T π
N ) is a tree, cπ

N cannot be simple and must backtrack at some point, that is, there
exists an i ∈ [n] such that

CN,i = CN,i−1 or βπ(vi) = βπ(vi−1);
however, the first case contradicts (14), while the second case implies vi ∼π vi−1.

If instead �n = �1, then CN,n = CN,1, and we obtain the cycle

cπ
N = (

CN,n,βπ(vn−1),CN,n−1, . . . , βπ(v2),CN,2, βπ(v1),CN,1
)
.

The only new case in the backtracking argument is

βπ(vn−1) = βπ(v1)

which would imply a shorter cycle(
βπ(vn−1),CN,n−1, . . . , βπ(v2),CN,2, βπ(v1)

)
.

One can then proceed inductively. See Figure 6 for an illustration. �

Thus, it only remains to prove that limN→∞ τ 0
N [T π

N ] = 0 for the test graph TN in
Lemma 4.8 and any partition π ∈ P(V ) such that GCC(T π

N ) is not a tree.

4.3. Proof of Proposition 2.4. Carrying forward the notation from the previous section,
we assume hereafter that the families AN,1, . . . ,AN,L satisfy the assumptions of Proposi-
tion 2.4. In particular, assume that the families AN,2, . . . ,AN,L are each permutation in-
variant. Without loss of generality, we can also assume that AN,1 is permutation invariant.
Indeed, by Lemma 4.3 the quantity E[ 1

N
Tr(εN)] is a linear combination of terms of the form

E[ 1
N

Tr[g(AN)]] for some graph monomials g ∈ C. Let UN be a uniform permutation matrix
of order N independent of AN . By [18], Lemma 1.4, we know that

E

[
1

N
Tr

[
g(AN)

]] = E

[
1

N
Tr

[
g
(
UNANU∗

N

)]]
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for any graph monomial g. Moreover, since the families AN,1, . . . ,AN,L, {UN } are indepen-
dent, we have the equality in (joint) distribution(

UNAN,1U
∗
N,UNAN,2U

∗
N, . . . ,UNAN,LU∗

N

) d= (
UNAN,1U

∗
N,AN,2, . . . ,AN,L

)
which proves that we can replace AN,1 with the permutation invariant family UNAN,1U

∗
N in

our calculations without consequence. We now prove the statement at the end of the previous
section which will complete the proof of Proposition 2.4.

LEMMA 4.12. For any partition π ∈ P(V ) such that GCC(T π
N ) is not a tree, we have the

asymptotic τ 0
N [T π

N ] = O(N−1).

PROOF. Let φ be an arbitrary injective function from V π to [N ]. By [18], Lemma 2.18,
the permutation invariance of AN implies that

(15) τ 0
N

[
T π

N

] = 1

N

N !
(N − |V π |)!E

[∏
e∈E

A
(γN(e))
N,ηN (e)

(
φ(e)

)]
.

For any � ∈ [L], let T π
N,� = (V π

N,�,E
π
N,�) denote the test graph composed of the colored com-

ponents of T π
N in the color {�} × K . The independence of the families AN,1, . . . ,AN,L then

implies that

E

[∏
e∈E

A
(γN(e))
N,ηN (e)

(
φ(e)

)] =
L∏

�=1

E

[ ∏
e∈Eπ

N,�

A
(γN(e))
N,�

(
φ(e)

)]
.

Inverting the relationship (15) for each T π
N,�, we obtain the expansion

τ 0
N

[
T π

N

] = 1

N

N !
(N − |V π |)!

(
L∏

�=1

(N − |V π
N,�|)!

N !
)
N |CC(T π

N )|
(

L∏
�=1

τ 0
N

[
T π

N,�

])

= N
−1+|Vπ |−∑L

�=1 |V π
N,�|+|CC(T π

N )|(1 + O
(
N−1)) L∏

�=1

τ 0
N

[
T π

N,�

]
,

(16)

where the asymptotic is uniform since |V π
N,�| ≤ |V π | does not depend on N . Furthermore,

recall that the graph of colored components GCC(T π
N ) = (VN,π ,EN,π) satisfies |VN,π | =

|CC(T π
N )| + |Vπ | and |EN,π | = ∑L

�=1 |V π
N,�|. We can then rewrite (16) as

(17) τ 0
N

[
T π

N

] = N |VN,π |−1−|EN,π |(1 + O
(
N−1)) L∏

�=1

τ 0
N

[
T π

N,�

]
.

We control the terms in the product above using the asymptotic (2) which requires the fol-
lowing definition.

DEFINITION 4.13. A cut edge of a finite graph is an edge whose deletion increases the
number of connected components. We say that a finite connected graph is two-edge connected
if it does not have any cut edges. Similarly, a two-edge connected component is a maximal
two-edge connected subgraph.

For a finite graph G, we write F(G) for its forest of two-edge connected components: the
vertices of F(G) are the two-edge connected components of G; the edges of F(G) are the
cut edges of G; and an edge connects the pair of two-edge connected components containing
its adjacent vertices in G. In other words, one obtains F(G) from G by contracting every
two-edge connected component to a single vertex. One can easily verify that F(G) is indeed
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a forest. Finally, we define f(G) to be the number of leaves in F(G) with the convention that
any trivial tree in F(G) contributes two leaves to the count.

We can now prove an intermediate bound.

LEMMA 4.14. The product in (17) satisfies the asymptotic

L∏
�=1

τ 0
N

[
T π

N,�

] = O
(
N

∑L
�=1 f(T

π
N,�)/2−|CC(T π

N )|)
.

PROOF OF LEMMA 4.14. Let T̂ = (V̂ , Ê) be a test graph. We use equation (11) to write

τ 0
N [T̂ ] = ∑

σ∈P(V̂ )

Nc(T̂ σ )−c(T̂ )τN

[
T̂ σ ]

M öb(0V , σ ).

The asymptotic (2) in the assumption of Proposition 2.4 implies that

τN

[
T̂ σ ] = O

(
N f(T̂ σ )/2−c(T̂ σ )).

Furthermore, note that f(T̂ σ ) ≤ f(T̂ ). Indeed, one can define the natural map fσ : V
F(T̂ )

→
V

F(T̂ σ )
from the two-edge connected components of T̂ to the two-edge connected compo-

nents of the quotient T̂ σ which is clearly surjective. Moreover, if C is a leaf in F(T̂ σ ), then
the fiber f −1

σ (C) necessarily contains a leaf in F(T̂ ) which proves the inequality. Thus, we
arrive at the asymptotics

τN

[
T̂ σ ] = O

(
N f(T̂ )/2−c(T̂ σ ));

τ 0
N [T̂ ] = O

(
N f(T̂ )/2−c(T̂ )).(18)

Applying (18) to each of the test graphs T̂ = T π
N,�, we obtain the stated result. In particular,

there are only a finite number of possibilities for the underlying unlabeled undirected graph
T π

N,� of T π
N,� since the underlying unlabeled undirected graph GN of TN does not depend on

N (see the paragraph before Lemma 4.8) which guarantees the uniformity of our asymptotic.
�

Returning to our original task, we use Lemma 4.14 to rewrite (17) as

(19) τ 0
N

[
T π

N

] = O
(
N

|VN,π |−1−|EN,π |+∑L
�=1 f(T

π
N,�)/2−|CC(T π

N )|)
.

Recall that, for a finite undirected graph G = (V ,E), we have the identity

|E| − |V | = ∑
v∈V

(
degG(v)

2
− 1

)
.

We use this for our nontree GCC(T π
N ) = (VN,π ,EN,π) as follows. Let G̃N,π = (ṼN,π , ẼN,π )

be the graph obtained by pruning GCC(T π
N ): we remove the leaves of GCC(T π

N ) and their
adjacent edges, iterating the procedure on the resulting graphs until no leaves remain. Since
GCC(T π

N ) is not a tree, the pruned graph G̃N,π is nontrivial. For example, any simple cycle in
GCC(T π

N ) will still remain in its entirety in G̃N,π . Let ṼN,1 and ṼN,2 denote the vertices of
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CC(T π
N ) and V π , respectively, that remain in G̃N,π . The exponent in (19) then becomes

|VN,π | − 1 − |EN,π | +
L∑

�=1

f(T π
N,�)

2
− ∣∣CC(

T π
N

)∣∣
= −1 − (|ẼN,π | − |ṼN,π |) + ∑

C∈CC(T π
N )

(
f(C)

2
− 1

)

= −1 − ∑
C∈ṼN,1

(degG̃N,π
(C)

2
− 1

)
− ∑

v∈ṼN,2

(degG̃N,π
(v)

2
− 1

)

+ ∑
C∈CC(T π

N )

(
f(C)

2
− 1

)
.

(20)

We claim that a colored component C ∈ CC(T π
N ) gets removed during the pruning procedure

only if its forest of two-edge connected components F(C) is the trivial tree. Indeed, for
starters, note that F(C) is always a tree since C is connected. If F(C) is not the trivial tree,
then it has at least two leaves L1 �= L2. At the same time, we know that T π

N is two-edge
connected since it is the quotient of a two-edge connected graph TN . This means that there
are vertices v1 and v2 of the two-edge connected components L1 and L2, respectively, that
are also connected by edges in T π

N entirely outside of C. It follows that C belongs to a cycle
in GCC(T π

N ) and hence does not get pruned. In particular,{
C ∈ CC

(
T π

N

) : f(C) > 2
} ⊂ ṼN,1.

Moreover, since one can follow this argument for any two leaves of F(C), we immediately
obtain the inequality f(C) ≤ degG̃N,π

(C) for any C ∈ ṼN,1. Applying all of this to (20), we
get

|VN,π | − 1 − |EN,π | +
L∑

�=1

f(T π
N,�)

2
− ∣∣CC(

T π
N

)∣∣
≤ −1 − ∑

v∈ṼN,2

(degG̃N,π
(v)

2
− 1

)
≤ −1,

where the last inequality follows by construction since degG̃N,π
(v) ≥ 2. Altogether, we con-

clude that

τ 0
N

[
T π

N

] = O
(
N−1)

. �

4.4. Proof of Theorem 2.3. Theorem 6 in [21] ensures that

(21) Tr
[
g(AN)

] ≤ N f(g)/2
∏
e∈E

∥∥A(γ (e))
N,η(e)

∥∥
for any diagonal graph monomial g. The uniform operator norm bound on our matrices then
implies the asymptotic (2) of Proposition 2.4, and the result follows.

4.5. Proof of Theorem 1.3. Let AN,1, . . . ,AN,L and εN be as in Theorem 1.3. Without
loss of generality, the LDC property allows us to restrict to the case of monomials (PN,i)i∈[n]
in our matrix εN . By enlarging the index set K , if necessary, we write AN,L+1 for the family
of coefficients (DN,i,j )i∈[n],j∈{0,...,deg(PN,i )} coming from the monomials (PN,i)i∈[n]. We can
then apply Theorem 2.3 to the families AN,1, . . . ,AN,L+1 and the monomials

P̃N,i = DN,i,0XkN,i(1)DN,i,1 · · ·XkN,i(dN,i )DN,i,dN,i
,
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where each DN,i,j can be written as gN,i,j (AN) for the graph monomial gN,i,j consisting of
a single loop labeled by the matrix DN,i,j ∈ AN,L+1 ⊂ AN = ⊔L+1

�=1 AN,�. Indeed, the LDC
property implies that supN∈N,i∈[n] deg(PN,i) < ∞. Since the full degree of P̃N,i is bounded
by 2 deg(PN,i) + 1, this guarantees the LFD property for the sequences (P̃N,i)N∈N,i∈[n].

4.6. Proof of Proposition 2.5. We now consider the families ÃN,1, . . . , ÃN,L, where

ÃN,� = (
A

(k)
N,� ◦ 


(k)
N,�

)
k∈K

and �N = (

(k)
N,�)k∈K,�∈[L] is a family of random matrices, independent of AN , satisfying the

asymptotic (4).
We first prove that the conclusion of Theorem 2.3 holds for (ÃN,�)

L
�=1. We need only to

prove the analogue of Lemma 4.12 for

ÃN = ÃN,1 	 · · · 	 ÃN,L,

namely,

τ 0
N

[
T π

N (ÃN)
] = O

(
N−1)

for any nontree GCC(T π
N ). Here, we use the notation T π

N (ÃN) to indicate that the edge labels
ηN : E → [L] and γN : E → K correspond to an assignment of matrices in the family ÃN , as
opposed to AN . The construction of the graph of colored components remains the same (in
particular, the matrices �N do not constitute another color). Recalling (15), the permutation
invariance of AN and the independence of AN and �N then imply that

τ 0
N

[
T π

N (ÃN)
] = 1

N

∑
φ:V π ↪→[N]

E

[∏
e∈E

A
(γN(e))
N,ηN (e)

(
φ(e)

)



(γN(e))
N,ηN (e)

(
φ(e)

)]

= 1

N

∑
φ:V π ↪→[N]

(
E

[∏
e∈E

A
(γN(e))
N,ηN (e)

(
φ(e)

)]
E

[∏
e∈E



(γN(e))
N,ηN (e)

(
φ(e)

)])

= τ 0
N

[
T π

N (AN)
](N − |V π |)!

N !
∑

φ:V π ↪→[N]
E

[∏
e∈E



(γN(e))
N,ηN (e)

(
φ(e)

)]

= O
(
N−1)

O(1) = O
(
N−1)

,

as was to be shown. Note that the last line follows from Lemma 4.12 and the assumption (4)
on �N .

To finish, we prove the conclusion of Theorem 1.3 in the setting of Proposition 2.5. We
reason as in Section 4.5. Let AN,L+1 denote the family of coefficients DN,i,j of the mono-
mials PN,i defining εN . We would like to apply the previous method of proof to the families
AN,1, . . . ,AN,L+1; however, the family AN,L+1 is not necessarily permutation invariant. To
get around this, we define �N,L+1 to be the family of coefficients DN,i,j instead. We replace

our previous definition of AN,L+1 = (A
(k)
N,L+1)k∈K , where now A

(k)
N,L+1 = IN is the identity

matrix for every k ∈ K . Note that AN,L+1 is clearly permutation invariant, independent of
AN,1 	 · · · 	 AN,L and uniformly bounded in operator norm.

We claim that the extended family �N 	 �N,L+1 still satisfies the asymptotic

δ0
N

[
T (�N 	 �N,L+1)

] := E

[∏
e∈E



(γ (e))
N,η(e)

(
�(e)

)] = O(1)
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for any test graph T with edge labels η : E → [L + 1] and γ : E → K , where the asymptotic
only depends on the underlying unlabeled undirected graph T of T . Indeed, for E = E1 	
E2 = η−1([L]) 	 η−1(L + 1), we know that∣∣δ0

N

[
T (�N,�N,L+1)

]∣∣ =
∣∣∣∣E[∏

e∈E



(γ (e))
N,η(e)

(
�(e)

)]∣∣∣∣
≤ E

[ ∏
e∈E1

∣∣
(γ (e))
N,η(e)

(
�(e)

)∣∣ ∏
e∈E2

∣∣
(γ (e))
N,L+1

(
�(e)

)∣∣]

= E

[ ∏
e∈E1

∣∣
(γ (e))
N,η(e)

(
�(e)

)∣∣]O(1)

since the coefficients DN,i,j satisfy a uniform operator norm bound. Note that the asymptotic
is uniform since |E2| ≤ |E| is fixed by T . Applying the Cauchy–Schwarz inequality, we can
control the remaining term

E

[ ∏
e∈E1

∣∣
(γ (e))
N,η(e)

(
�(e)

)∣∣] ≤ E

[ ∏
e∈E1

∣∣
(γ (e))
N,η(e)

(
�(e)

)∣∣2] 1
2 = δ0

N

[
S(�N)

] 1
2 ,

where S is the test graph obtained from T = (V ,E, src, tar, η, γ ) by adding an additional
edge e′ for every edge e in E in the opposite direction src(e′) = tar(e) and tar(e′) = src(e);
the same η(e′) = η(e) label; and γ (e′) corresponding to the adjoint (recall that we assumed
our families are closed under the adjoint ·∗):

A(γ (e′))
N,η(e′) = (

A(γ (e))
N,η(e)

)∗
.

We use the asymptotic (4) for the test graph S to conclude that

δ0
N

[
T (�N,�N,L+1)

] ≤ δ0
N

[
S(�N)

] 1
2 O(1) = O(1),

as was to be shown. Again, the asymptotic is uniform since there are only finitely many
possibilities for S given that T is fixed. Our work in the previous case then gives us the
conclusion of Theorem 2.3 for the families ÃN,1, . . . , ÃN,L+1 which proves the conclusion
of Theorem 1.3 for the families ÃN,1, . . . , ÃN,L.
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