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Abstract

Recent contrastive methods show significant improvement in self-supervised learning in
several domains. In particular, contrastive methods are most effective where data augmen-
tation can be easily constructed e.g. in computer vision. However, they are less successful
in domains without established data transformations such as time series data. In this
paper, we propose a novel self-supervised learning framework that combines contrastive
learning with neural processes. It relies on recent advances in neural processes to perform
time series forecasting. This allows to generate augmented versions of data by employing
a set of various sampling functions and, hence, avoid manually designed augmentations.
We extend conventional neural processes and propose a new contrastive loss to learn times
series representations in a self-supervised setup. Therefore, unlike previous self-supervised
methods, our augmentation pipeline is task-agnostic, enabling our method to perform well
across various applications. In particular, a ResNet with a linear classifier trained using our
approach is able to outperform state-of-the-art techniques across industrial, medical and
audio datasets improving accuracy over 10% in ECG periodic data. We further demonstrate
that our self-supervised representations are more efficient in the latent space, improving
multiple clustering indexes and that fine-tuning our method on 10% of labels achieves
results competitive to fully-supervised learning.

Keywords: Unsupervised learning, Semi-supervised learning, Latent variable models,
Multi-objective learning, Deep learning Architectures, Deep learning theory

1. Introduction

Self-supervised learning enables the learning of effective task-agnostic representations that
generalize to a wide range of downstream applications without labels (Chen et al., 2020a).
In particular, current self-supervised methods provide results competitive to supervised
learning while using a fraction of labels for finetuning in the field of computer vision (Grill
et al., 2020; Chen et al., 2020b). This is achieved using a contrastive loss function from
earlier works in contrastive learning (Gutmann and Hyvärinen, 2010; Chopra et al., 2005)
and strong augmentation pipelines (Bachman et al., 2019; He et al., 2020) which improve
regularization in low-label settings (Newell and Deng, 2020). While it is relatively easy to
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Figure 1: (a) Downstream classification accuracy of ContrNP (Contrastive Neural Pro-
cesses) compared with self-supervised and supervised learning baselines for dif-
ferent label percentages of the Atrial Fibrillation dataset (AFDB) using a linear
classifier. Our method is shown to outperform other unsupervised approaches
and benefit more at low label percentages. (b) Contrastive Neural Process pre-
dicting a sinusoidal function with only 40 context samples, showing that our loss
function is able to predict not only contrastive but also forecasting elements.

construct such augmentation pipelines in the image data domain using geometric transfor-
mations (Caron et al., 2020; Asano et al., 2020), it is difficult to design augmentations in
other domains e.g. for time series data.

Time series models have many practical applications in manufacturing (Zhao et al., 2020;
Kang et al., 2015), financial forecasting (Kim, 2003) and healthcare (Kiyasseh et al., 2020),
where data tends to be multivariate and highly imbalanced. Also, such models usually
predict long data sequences using unlabeled or sparsely labeled datasets (Grabocka and
Schmidt-Thieme, 2014). Recent self-supervised methods for time series data (Franceschi
et al., 2019; van den Oord et al., 2018; Tonekaboni et al., 2021) learn representations using
forecasting or distance-based metrics in order to employ conventional contrastive loss func-
tions. Similarly, newer methods with established augmentation pipelines in the field of audio
processing, attempt to use various signal transformations in the contrastive loss (Wang and
van den Oord, 2021; Huh et al., 2020). However, these advances cannot easily translate to
every time series model, as each application benefits from a different set of augmentations.
To address this issue, we propose an approach that relies on contrastive neural processes.

Neural Processes (NPs) are able to generate different agnostic representations by sam-
pling a function multiple times. NPs first create separate embeddings for each observation
and then aggregate them to a latent variable (Garnelo et al., 2018b). This general repre-
sentation is then used to predict unobserved points from a target set, in order to model a
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distribution over regression functions (Garnelo et al., 2018a; Kim et al., 2019). Our solu-
tion leverages the regression of the NPs as a supervised signal for unsupervised learning.
More specifically, we can generate multiple observations of the same data point by applying
different sampling functions. Each set of observations can be considered as different view
of the same data point similar to an augmentation (Gondal et al., 2021). This enables the
use of any contrastive self-supervised loss to train our model.

Our method, Contrastive Neural Processes (ContrNP), employs the forecasting element
of neural processes as a signal to extract better representations. We train the neural pro-
cesses with a modified loss function that includes a contrastive term and a regression term
allowing our method to distinguish the representations more efficiently in the latent space.
ContrNP can be implemented with any type of data, but because of the lack of established
augmentations and range of applications, time series provide a good benchmark. It follows
methods like Contrastive Predictive Coding (CPC) (van den Oord et al., 2018), which use
an auto-regressive model to optimise the representation on an unsupervised prediction task,
but in our case the autoregressive model is replaced by a neural process. One of the latest
iterations in NPs is the convolutional conditional neural processes (Gordon et al., 2020),
which model translation equivariance and significantly boost forecasting performance on
time series. This version of NPs is able to predict time series accurately which is combined
with a contrastive learning loss to extract improved representations in the latent space. Our
main findings and contributions can be summarized as follows:

• We propose a new technique to perform self-supervised learning that uses neural
processes as a forecasting model and contrastive learning to outperform current state-
of-the-art models for non-stationary multivariate time series data.

• We further demonstrate that our method is able to achieve competitive results to
supervised learning while requiring only a handful of labels and not requiring any
specific augmentation techniques.

2. Related Work

2.1. Self-Supervised Learning

Self-supervised learning (SSL) uses an auxiliary task combined with an objective function
to learn useful data representations (Newell and Deng, 2020). The contrastive predictive
coding (CPC) approach (van den Oord et al., 2018) introduces an InfoNCE contrastive loss
objective and uses an autoregressive model to bring predictions closer to the actual value
of the input in the latent space. Such SSL methods using contrastive loss quickly become
state-of-the-art in computer vision (Henaff, 2020). Their analysis shows that strong data
augmentation pipelines are a crucial aspect to achieve optimal results (Chen et al., 2020b).
For example, the most advanced methods combine multiple augmentation steps for each
input (Bachman et al., 2019) to further enhance data regularization.

Moreover, SimCLR (Chen et al., 2020a) uses a loss where the input x is passed through
the pipeline that generates two augmented versions of the same input image (xi, xj). Then
that positive pair passes through an encoder and a projection head, which are trained to
maximize agreement between them. The rest of a mini-batch is used as negative examples
and the distance to the pair is maximized. MoCo (He et al., 2020) maintains a dictionary
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Figure 2: (a) Out of context sampling for a time series D showing the range DCk,m for
the context set (up) and the range Dk,m for the target set (down), where
Dk,m = DL

k,m ∪DC
k,m ∪DR

k,m. The reduced sampling range used in the context set
improves generalization. (b) Our ContrNP approach for a segment Dk which has
M context sets that pass through the neural process encoder and aggregate to an
Rcm representation, and are finally used to compute the contrastive loss term Lc.
NPs also decode the representations Rc1, R

c
m with the target set to perform fore-

casting and compute the negative log likelihood loss. Both metrics are combined
to produce the final loss function used for training.

of negative samples that is used to increase disagreement and to be less dependent on mini-
batch size. BYOL (Grill et al., 2020) is able to utilize a loss function that does not directly
employ contrastive learning, but uses batch normalization layers that operate as implicit
negative samples.

2.2. Representation Learning for Time Series

Recent successes in time series methods depend on the property of continuity, meaning that
in a sequence nearby values are more related compared to values further away. The T-loss
model (Franceschi et al., 2019) uses a triplet loss, which maximizes the distance between
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negative examples that are chosen independently at random while minimizing the distance
between the reference sequence and its subsets. This follows the success of word2vec, where
similar sequences must also have close representations and randomly sampled sequences
must differ (Goldberg and Levy, 2014). The temporal neighborhood coding (TNC) (Tonek-
aboni et al., 2021) maps the proximity of sequences in a “neighborhood” and transfers them
to the encoding space while maximizing the distance of sequences far away. Following ideas
from positive-unlabeled learning (Elkan and Noto, 2008), specific weights are assigned for
each sample according to its location. Nearby samples have a unit weight and are considered
positive. Unlabeled examples have probability (1 − w) of being negative and w of being
positive. Some time series methods (Kiyasseh et al., 2020) have also attempted to use some
limited augmentations for medical applications (Goldberger et al., 2000) by extending the
NCE loss to include multiple positive representations of the same patient.

In speech recognition, augmentations also play a key role in self-supervised learning.
Significant improvements in speaker verification (Nagrani et al., 2017) were achieved by
augmentation adversarial training (Huh et al., 2020), which uses augmentations to train
a channel-invariant pretext task. Furthermore, conventional time masking and frequency
shift (Park et al., 2019) transformations are widely used augmentations in audio classifica-
tion (Gemmeke et al., 2017). Wang and van den Oord (2021) propose a contrastive learning
framework, where the agreement objective is achieved between different formats of the same
audio i.e. between a raw waveform and the corresponding spectrogram, respectively. The
goal of designing methods with generalized data transformations (GDT) for audio classifi-
cation has also been explored by Patrick et al. (2020). GDT is a framework that combines
transformations with a contrastive loss to ensure an augmentation is invariant and the
choice of sample is distinctive.

2.3. Neural Processes

Conditional Neural Processes (CNPs) was the first to introduce a method to combine neu-
ral networks and stochastic processes to approximate a distribution over functions (Garnelo
et al., 2018a). This is achieved by encoding a context set of observations into an aggre-
gated representation that is then decoded to foreca st the function’s target set. A recent
approach called Neural Processes (NP) sample a random, latent variable that represents
the global uncertainty to create a stochastic process, instead of using the representation
directly (Garnelo et al., 2018b). Convolutional CNPs (Gordon et al., 2020) embed the time
or spatial input (distance between two inputs) to a function space directly, instead of a fi-
nite vector space and hence provides translation equivariance. Finally, the concept of using
functions for contrastive learning has been implemented by FCRL (Gondal et al., 2021).
The authors sample different sets of observations and use a contrastive loss function similar
to NT-Xent (Chen et al., 2020a), that brings representations from the same function closer
and from other functions further apart. The key difference with our approach is that FCRL
do not combine their method with the existing regression techniques in NPs that are able
to extract a better representation of the data, but rather only optimize an encoder model
at train time.
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3. Proposed Method

We introduce a framework for learning task agnostic representations using neural processes
to bypass the augmentation step (Figure 2). In our explanation we concentrate on a typical
time series D = {Dt}Tt=1 = {xt, yt}Tt=1, where xt is time stamp and yt is the output that
corresponds to xt. Our objective is to learn a time-dependent representation Rt = ψθ(Dt)
that best represents the input-output relationships F : X → Y in the latent space. Note
that ψθ is an encoder with model parameters θ. In order to represent the input time series
D that changes over time, we split D into K segments as D → {D1,D2, . . . ,Dk, . . . ,DK}.
Then, we assume input-output relationships within each segment Dk can be characterized
by an individual function fk. Furthermore, for each Dk, we randomly sample the data into
M ∈ Z+ groups as {Dk,m}Mm=1. The above mentioned data arrangement means that two
different subsets Dk,m and Dk′,m′ assuming k = k′ both represent a unique version of the
same underlying function and for k 6= k′ different functions.

NPs sample two sets of observations, for the context Dck,m and target Dtk,m sets. The
context set is used to generate the representations and the target set to verify the predic-
tions of the decoder. Our objective is to learn the underlying representation R that best
represents the input in the latent space. Our approach works with any framework from
the Neural Process family and any type of input. NPs aim to learn a distribution over
functions such as fk and approximate them using out of context sampling in the target
set. For our specific implementation we use the convolutional conditional neural processes
(ConvCNP) (Gordon et al., 2020) because of its advantages when extracting time series
representations. Compared to its predecessors (Garnelo et al., 2018a,b), convolutional CNP
is able to initially map the inputs xt individually from yt to a functional representation that
corresponds to the difference between two inputs, which guarantees translational equivari-
ance (Gordon et al., 2020). Then the signal is discretized and passed into a CNN that is
used to extract a latent space representation R. The motivation behind using a convolu-
tional neural process is twofold. Firstly, time series tend to have a periodicity and secondly,
we are predicting samples that are outside of the context range which makes translational
equivariance a useful property that allows robust predictions outside of the normal range.

This is achieved with out of context sampling (Figure 2). NP sample a set of observations
for the context Dc and target sets Dt. The context set is used to generate the representations
and the target set to verify the predictions of the decoder. We make the logical assumption
similar to other time series approaches (Franceschi et al., 2019; Tonekaboni et al., 2021)
that in the input D the smaller the distance (in time) is between two points Dt and Dt′ ,

the more related they are. This means that for a subset Dk,m = {xi, yi}
Nk,m

i=1 that has a
total of Nk,m samples, we only use a limited range of samples for the context set. More
specifically, first, we split Dk,m in to three parts as DL

k,m = {{xi′ , yi′} ∈ Dk,m | xi′ ≤ a},
DC
k,m = {{xi′ , yi′} ∈ Dk,m | a < xi′ < b}, and DR

k,m = {{xi′ , yi′} ∈ Dk,m | b ≤ xi′}, where a

and b are thresholds. Then only DC
k,m is used for context set. Thus, the thresholds a, b

are typically chosen so that context set include intended number of examples. While the
entire range Dk,m = DL

k,m ∪ DC
k,m ∪ DR

k,m for the target set. This allows the context set
observations Dc

k,m to represent the function fk, but because we exclude a large part of the

range DL
k,m,DR

k,m we are predicting on, there is higher regularization which is equivalent to
using a stronger (larger) augmentation. This follows with conventional theory that states
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stronger data augmentations are able to further improve generalization and the performance
of a self-supervised learning framework (Chen et al., 2020a). Our method thus allows data
agnostic augmentations by taking advantage of sampling.

After extracting the main representation Rk,m of the function fk by passing the context
points Dc

k,m in the encoder of the neural process, we also repeat the step for the second
version Dc

k,m′ of the function fk and extract Rk,m′ where m 6= m′. The two representations
Rk,m and Rk,m′ can be used for the contrastive term of the loss function as the anchor and
positive example respectively. Similarly, all the other representations in the batch Rk′,·
where k 6= k′ are the negative examples. Equation 1 is the alternate version of the NT-Xent
loss used in the SimCLR paper (Chen et al., 2020a), but using sampling functions instead
of augmentations (Gondal et al., 2021). For an encoder ψθ, the anchor representation
Rk,m = ψθ (Dk,m). The equation minimizes the distance between the anchor Rk,m and a
positive example Rk,m′ , and maximizes the distance of the anchor Rk,m and all negative
examples Rk′,· in the batch. More specifically, we define our contrastive loss as:

LC(θ,D1:K) =

K∑
k=1

M∑
m=1

M∑
m′=1

I[m 6=m′] log

 Sim(Rk,m, Rk,m′)/τ
K∑
k′=1

M∑
m′′=1

I[k′ 6=k]Sim(Rk,m, Rk′,m′′)/τ

 (1)

where Sim(·, ·) is cosine similarity, τ is temperature parameter (Chen et al., 2020a) and
I[·] is indicator function that returns 1 if given condition holds and 0 otherwise.

After extracting the context representation Rk,m, we use the neural process decoder φθ(·)
to predict the mean and standard deviation of yk,m given xk,m. We compute the loss using
Equation 2, where we combine the negative log likelihood loss together with the contrastive
term LC(θ,D1:K) computed from the representations. The initial part of Equation 2 is
weighted by λ which determines the ratio between the first term which is trained to perform
interpolation within the function and the second which is used to distinguish between the
different functions. The output of the decoder is compared to the theoretical value of yk,m
to extract better representations.

L(θ) = −λ
K∑
k=1

M∑
m=1

logP (yk,m |φθ(Rk,m),xk,m) + LC(θ,D1:K)︸ ︷︷ ︸
contrastive term

(2)

In summary, for our implementation we use the off-grid ConvCNP algorithm for signal
interpolation. During the computation of the loss function we add a contrastive term that
brings the representations from the same function closer while distancing the ones from
other functions. In addition to the contrastive learning, our method also takes advantage of
the advances in neural processes to learn the within characteristics of the signal and create
efficient representations in the latent space. In order to compare our model in downstream
tasks such as classification against supervised learning, we run it at test time and extract
representations from the encoder which we aggregate into a single one Rk = 1

M

∑M
m=1Rk,m

for each function fk. The representations are then fed into a ssingle layer classifier that is
trained independently.
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4. Experiments

To illustrate the advantages of contrastive neural processes we consider two different experi-
mental setups involving noisy and complex time series from medical and industrial domains
to examine their performance on real-world datasets. The experiments cover a variety of
applications and metrics that show the adaptability of our agnostic approach. The first
experiment is a downstream classification task with a linear classifier which evaluates the
model’s performance on the AFDB, IMS Bearings and Urban8K datasets. For the second
experiment we assess the representations directly using Silhouette score and Davies–Bouldin
index (DBI) similar to (Tonekaboni et al., 2021). All models are implemented in PyTorch
(version 1:3:1) and trained on Tesla P100-16GB GPUs.The code corresponding to these
experiments can be found in the supplementary material. For each implementation we
trained in an unsupervised way with the entire train set. For evaluation, we used 80% of
the train labels to finetune a decoder and the remaining labels were are used in the valida-
tion set to select the results with the best validation accuracy. Below we describe each of
our experiments in more detail.

MIT-BIH Atrial Fibrillation (AFDB) 1 is a collection of 25 electrocardiogram (ECG)
recordings where each recording has a duration of approximately 10 hours (Moody, 1983).
The recordings have two ECG signal types sampled at 250 Hz. The dataset includes 4
classes: (1) Atrial fibrillation, (2) Atrial flutter, (3) AV junctional rhythm and (4) all other
rhythms. The dataset was chosen due to its long duration and changing properties as time
progresses (alternating classes). Moreover, it is highly imbalanced, for instance, class 3 only
appears in 0.1% of the data-points (Tonekaboni et al., 2021).

IMS Bearing 2 is a dataset that was collected from a run-to-failure experiment on 4
bearings rotating with 2000 rpm on a loaded shaft 6000 lbs (Qiu et al., 2006). A similar
setup to (Zhao et al., 2020) was followed, using only the third bearing in our experiments.
The data was split into 5 classes where each indicated the health state (eg. early, normal,
imminent failure) of the bearing. The experiment included two high precision accelerometers
(x-axis, y-axis). The dataset was selected to examine the performance of the methods across
a long and noisy industrial time series.

Urban8K 3 is a dataset that contains 8,732 urban sound clips of varying size (<=
4s) (Salamon et al., 2014). It consists of 10 classes such as children playing, car horn, dog
bark and street music. The files were taken from field recordings and were presorted into
10 folds. Each evaluation metric was calculated by averaging the 10-fold cross-validation
performed using the preexisting folds.

4.1. Downstream Classification

For the first experiment we compared the accuracy and AUCPRC using a CNN encoder
architecture. Our method significantly outperformed existing methodologies by more than
10% in the AFDB dataset, containing periodic time signals. One of the strengths of our
approach, is the ability to learn using a forecasting objective similar to Convolutional CNPs,
which perform well on periodic time signals due to their translation equivariance (Gordon

1. https://physionet.org/content/afdb/1.0.0/
2. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
3. https://https://urbansounddataset.weebly.com/urbansound8k

https://physionet.org/content/afdb/1.0.0/
https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
https://https://urbansounddataset.weebly.com/urbansound8k


Contrastive Neural Processes

et al., 2020). This is further demonstrated in Appendix A.1 where we display the regression
output of our model. Similarly, for the IMS and Urban8K datasets, our model was able to
outperform other unsupervised baselines. Our experiments found that SimCLR achieved
the lowest accuracy, 41.5% as seen in Table 1, in the IMS dataset, due to its augmentation
pipeline. The standard augmentations of Time-warp and Frequency Shift proved to be
insufficient and the score can be improved by experimenting with a different augmentations
(Appendix A.2). Even though contrastive neural processes have a similar loss function to
SimCLR they achieved the highest performance without any need for augmentations.

Table 1: Classification test accuracy and AUC for AFDB, IMS Bearing and Urban8K
datasets, each one indicates the average of 5, 5 and 10 runs respectively µ±σ%.
Self-supervised experiments are trained on the entire train set and then for the
downstream classification task 80% of the labels are used for fine-tuning.

AFDB IMS Bearing Urban8K

Method Accuracy AUPRC Accuracy AUPRC Accuracy AUPRC

CPC 71.6±0.2 62.6±0.4 72.4±0.1 84.4±0.0 83.3±0.1 94.5±0.1

Tloss 74.8±0.1 59.8±0.5 73.2±0.2 87.6±0.1 81.5±0.4 93.8±0.3

TNC 74.5±0.4 56.3±0.4 70.3±0.3 86.3±0.1 80.7±0.1 93.9±0.4

SimCLR 82.3±0.1 71.5±0.1 41.5±0.2 70.7±0.1 82.8±0.2 94.1±0.1

ContrNP (ours) 94.2±0.4 89.1±0.9 73.6±0.1 89.3±0.2 84.2±0.5 95.4±0.4

Fully supervised 98.4±0.0 81.6±0.2 86.3±0.0 94.8±0.1 99.9±0.0 99.9±0.0

4.2. Clustering

For the second experiment we examined the clusterability of multivariate time series datasets
using self-supervised baselines and supervised learning. The metrics we employed evaluated
the quality of the representations extracted from unsupervised models in a task agnostic
way without the use of a downstream task.

We employed the Silhouette score that measures the proximity of points within the
same cluster and the distance to points in neighbouring clusters. The values range between
[−1,+1], with higher values implying better clustering. The Davies–Bouldin index (DBI)
is the average ratio of within cluster similarity over the similarity of its most similar clus-
ter (Tonekaboni et al., 2021). A smaller value indicates a low intra-cluster scatter and a high
inter-cluster difference and signifies better separation of the representations. Figure 3 shows
the TSNE encodings of CPC, Tloss and our approach respectively. The CPC encoding was
able to distinguish some basic characteristics of the classes but failed to separate them well.
It can be seen that even though our approach outperformed Tloss by a small margin in
terms of accuracy, its encoding res presentations were better separated. This also aligns
with the results from Table 2 where ContrNP outperformed Tloss in both clustering met-
rics. This is likely due to our dual objective function that learns to separate representations
of different classes and also the within class characteristics.
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Figure 3: TSNE 2D Encoding Representations extracted for the IMS dataset using unsuper-
vised training with the CPC (left), Tloss(middle) and ContrNP (right) methods.

Table 2: Silhouette score and Davies–Bouldin index (DBI) were used to measure the clus-
ter performance on the test set encodings of AFDB, IMS Bearing and Urban8K
datasets with a 80% train and 20% test split, measured for 5, 5 and 10 total runs
respectively µ±σ. A high silhouette score indicates good representations. It shows
a small distance between the points in the same clusters and a high distance to
other clusters. DBI measures the within similarity of cluster over the similarity
with the closest one and improves as value decreases.

AFDB IMS Bearing Urban8K

Method Silhouette ↑ DBI ↓ Silhouette ↑ DBI ↓ Silhouette ↑ DBI ↓

CPC 0.22±0.02 1.74±0.10 0.12±0.01 2.20±0.05 0.24±0.04 1.64±0.25

Tloss 0.14±0.03 2.04±0.07 0.17±0.01 1.79±0.15 0.26±0.03 1.30±0.08

TNC 0.24±0.03 1.44±0.22 0.31±0.07 0.94±0.16 0.36±0.05 0.72±0.08

SimCLR 0.34±0.02 1.49±0.20 0.24±0.04 1.47±0.20 0.35±0.05 1.13±0.12

ContrNP (ours) 0.36±0.07 1.35±0.16 0.38±0.06 0.91±0.14 0.42±0.06 0.89±0.15

Fully supervised 0.43±0.04 0.83±0.1 0.47±0.02 0.77±0.04 0.49±0.02 0.80±0.05

5. Conclusion

This paper presents a novel method for self-supervised learning that does not require aug-
mentation engineering. Time series present an ideal area to test our approach because of
its lack of established augmentations and variety of different applications. Our objective
function uses the forecasting objective of the neural process as a supervision signal and
combines it with a contrastive loss that minimizes the distance between two representations
of the same input and maximizes distance with the batch. We also propose out of context
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sampling to increase regularization in the model and improve the quality of augmentations.
Finally, we show that our method is able to produce state of the art results across a wide
range of difficult, real-world applications and reach the performance of supervised learning
in some with only a fraction of the labels.
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Appendix A.

A.1. ContrNP regression

Contrastive neural processes use a dual learning objective. The contrastive loss ensures the
class representations are separable and the Negative Log Likelihood (NLL) loss is used to
decrease the within cluster distance (improve clusterability). Figure 4 demonstrates that
our method learns successfully to forecast time series. Contrastive neural processes are also
able to predict datasets such as the IMS bearing which have a complicated, noisy structure.

Figure 4: ContrNP regression on the IMS (left) and AFDB (right) datasets. The ground
truth represents the original signal and the predicted signal is the output of the
regression using contrastive neural processes.

A.2. Detailed Experiment Settings

Our approach is based on the convolutional neural processes 4 implementation from (Gor-
don et al., 2020). For the AFDB dataset we follow the same pre-processing steps as in
(Tonekaboni et al., 2021). We further separate the ECG signals into 5 parts each, nor-
malize and shuffle. In the IMS bearing dataset we only use the third bearing in the first
test (Zhao et al., 2020). The Urban8k dataset is split into 10 individual folds and has 10
classes. For each class we extract a sound sequence of size 100,000 and perform 10-fold
cross validation. All of the experiments where conducted with an encoding size of 128
and a window size 2500. SimCLR is implemented with Time Stretch and Frequency Mask
augmentations. After experimentation, ”Gain” (multiplying the amplitude) and ”Shifting”
(shift audio backwards/forwards) are able to perform better on the IMS dataset and achieve
an accuracy of 69.1%. On the other hand, our approach does not require any augmentations
to achieve an accuracy of 73.6%.

4. http://yanndubs.github.io/Neural-Process-Family

http://yanndubs.github.io/Neural-Process-Family
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A.3. Selecting the correct hyperparameter λ

The hyperparameter λ is the most important parameter in our ContrNP approach. It
operates similar to regularization by controlling the objective of the loss function. A higher
value will correspond to a stronger forecasting objective and cause our model to operate
similar to CPC. On the other hand, a small value for λ indicates a more contrastive approach
and the model operates closer to SimCLR. The target is to select a value that will benefit
from both objectives and ensure a better generalization for the model. Experimentally, a
good value is typically 0.01 which emphasizes contrastive learning for faster optimization
but also produces a good regression output. Event though a value of 0.01 and 0.001 is a
10× difference, the forecasting in Figure 5 is not greatly affected. On the other hand, the
performance improves greatly for higher values of lamdba as seen from the encodings.

Figure 5: ContrNP regression on the Urban8K dataset (left) and 2D TSNE encoding rep-
resentations (right) for different values of λ. Experiments were conducted using
the first fold as a test set and the remaining for training.

A.4. ContrNP Pseudocode
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Algorithm 1 PyTorch pseudocode of ContrNP for a function f(t) where m = 2.

# oc, ot: context and target observation sets

# a, r : sampling range of the context set and representations

# g, d : encoder and decoder parts of any neural process

for e in epochs:

oc1 , oc2 = sample(f([:a])), sample(f([:a])) # m=2 augmentations

ot1 , ot2 = sample(f), sample(f)

rc1 ,rc2 = encode(oc1),encode(oc2)

rt1 ,rt2 = induce(rc1 ,ot1),induce(rc2 ,ot2)

p_y = d(xt ,rt)

loss = sumlogprob(p_y) + sim(rc1 ,rc2)/sum(sim(rc ,R))

loss.backward ()

def encode(o):

for x,y in o:

r.append(g(x,y)) # encode each x,y pair

return mean(r) # aggregate representations

A.5. Additional Experiments

Using different NPs as a base method, the largest performance drop occurs on the AFDB
experiments. The new models achieve 74.7% using CNP and 72.3% with NP. This is signifi-
cantly lower than ConvCNP with a 94.2% accuracy and can be attributed to the periodicity
of the dataset which greatly benefits from the property of translational equivariance. More
importantly, even though the regression function performs poorly (Figure 6), especially con-
sidering our original implementation (Figure 4), the accuracy of our method remains high
when compared to the state of the art, due to our dual learning objective. We also perform
experiments on images by basing our implementation on the on-grid ConvCNP with full
translation equivariance setting (Gordon et al., 2020). We achieve a CIFAR-10 accuracy
of 82.2% using a ResNet with just over 1M parameters. This shows the flexibility of our
approach that is data agnostic and does not need specialized augmentation pipelines.

Figure 6: Predicted regression signal on AFDB using CNP (left) and NP (right).
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