

P NE: 201.684.0055 F 201.684.0066

November 27, 2023

Members of the Siting Council Connecticut Siting Council 10 Franklin Square New Britain, CT 06051

RE: Notice of Exempt Modification

125 Mile Creek Road, Old Lyme, CT 06371

Latitude: 41.30553942 Longitude: -72.29733538

T-Mobile Site#: CTNL802A - Anchor

Dear Ms. Bachman:

T-Mobile currently maintains nine (9) antennas at the 171-foot level of the existing 185-foot Monopole at 125 Mile Creek Road in Old Lyme, CT. The 185-foot monopole is owned by American Tower. The property is owned and operated by Leete Associates, Inc. T-Mobile now intends to remove and replace six (6) antennas at the 171-foot level of the existing tower. The antennas support 5G services. T-Mobile will be installing the associated ground equipment within their existing ground space.

Planned Modifications:

Tower:

Install New:

- (3) AIR 6419 B41 Antennas
- (3) VV-65A-R1 Antennas
- (3) Radio 4460 B25 B66
- (3) 6x24 Hybrid Cables

To Be Removed:

- (12) 1 5/8" Coax Cables
- (3) AIR21 B2A B4P Antennas
- (3) AIR21 B4A B2P Antennas

To Be Relocated:

- (3) APXVAARR24 43-U-NA20 Antennas
- (3) Radio 4449 B71 B85
- (3) 6x24 Hybrid Cables

Ground:

Install New:

(1) 6160 Power Enclosure and (1) B160 Battery Cabinet.

This facility was approved by the Connecticut Siting Council in Docket 202 dated September 12, 2001, then extended by means of a petition No. 877 on January 8, 2009. This project does not violate any of the conditions of this approval.

Please accept this letter as notification pursuant to Regulations of Connecticut State Agencies§ 16- SOj-73, for construction that constitutes an exempt modification pursuant to R.C.S.A. § 16-50j-72(b)(2). In accordance with R.C.SA. § 16-SOj-73, a copy of this letter is being sent to First Selectman Timothy Griswold, Elected Official, and Eric Knapp, Land Use Coordinator, as well as the tower and property owner.

The planned modifications to the facility fall squarely within those activities explicitly provided for in R.C.S;A. § 16-50j-72(b)(2).

- 1. The proposed modifications will not result in an increase in the height of the existing structure.
- 2. The proposed modifications will not require the extension of the site boundary.
- 3. The proposed modifications will not increase noise levels at the facility by six decibels or more, or to levels that exceed state and local criteria.
- 4. The operation of the replacement antennas will not increase radio frequency emissions at the facility to a level at or above the Federal Communications Commission safety standard.
- 5. The proposed modifications will not cause a change or alteration in the physical or environmental characteristics of the site.
- 6. The existing structure and its foundation can support the proposed loading.

For the foregoing reasons, T-Mobile respectfully submits that the proposed modifications to the above referenced telecommunications facility constitute an exempt modification under R.C.S.A. § 16-50j-72(b)(2).

Sincerely,

Eric Breun

Transcend Wireless Cell: 201-658-7728

Email: ebreun@transcendwireless.com

Attachments

cc: Timothy Griswold - First Selectman of Old Lyme Eric Knapp - Land Use Coordinator American Tower - Tower Owner Todd and Rebecca Machnik - Property Owner

Hello, your package has been delivered.

Delivery Date: Wednesday, 11/22/2023

Delivery Time: 10:48 AM

Signed by: DONNA

Ship To:

TRANSCEND WIRELESS

Tracking Number: <u>1ZV257420390076985</u>

AMERICAN TOWER CORPORATION

10 PRESIDENTIAL WAY

WOBURN, MA 01801

US

Number of Packages: 1

UPS Service: UPS Ground

Package Weight: 1.0 LBS

Reference Number: CTNL802A

Hello, your package has been delivered.

Delivery Date: Wednesday, 11/22/2023

Delivery Time: 11:41 AM

Signed by: HAYES

TRANSCEND WIRELESS

Tracking Number: <u>1ZV257420399420434</u>

TIMOTHY GRISWOLD

52 LYME STREET

Ship To: OLD LYME, CT 06371

US

Number of Packages: 1

UPS Service: UPS Ground

Package Weight: 1.0 LBS

Reference Number: CTNL802A

Hello, your package has been delivered.

Delivery Date: Wednesday, 11/22/2023

Delivery Time: 11:41 AM

Signed by: HAYES

TRANSCEND WIRELESS

Tracking Number: <u>1ZV257420390874998</u>

ERIC KNAPP

Ship To: 52 LYME STREET

OLD LYME, CT 06371

US

Number of Packages: 1

UPS Service: UPS Ground

Package Weight: 1.0 LBS

Reference Number: CTNL802A

Hello, your package has been delivered.

Delivery Date: Saturday, 11/25/2023

Delivery Time: 2:41 PM **Left At:** OTHER-RELEAS

Experience UPS My Choice® Premium Today

Be in total control of how, when and where your packages are delivered.

Upgrade to Premium Now

Set Delivery Instructions

Manage Preferences

TRANSCEND WIRELESS

Ship To:

Tracking Number: <u>1ZV257420398550420</u>

TODD + REBECCA MACHNIK 126 MILE CREEK ROAD

OLD LYME, CT 06371

US

Number of Packages: 1

UPS Service: UPS Ground
Package Weight: 1.0 LBS
Reference Number: CTNL802A

125 MILE CREEK RD

Q Sales A Print Q Map It

Location 125 MILE CREEK RD Mblu 13//93//

Acct# 00044800 Owner MACHNIK TODD & REBECCA L

Q/C/S

Assessment \$422,400 Appraisal \$835,600

PID 474 Building Count 3

Current Value

Appraisal					
Valuation Year Improvements Land Total					
2022	\$391,000	\$444,600	\$835,600		
	Assessment				
Valuation Year	Improvements	Land	Total		
2022	\$273,700	\$148,700	\$422,400		

Certificate

Owner of Record

Owner MACHNIK TODD & REBECCA L Q/C/S Sale Price \$0

Co-Owner

 Address
 126 MILE CREEK RD
 Book & Page
 0309/0432

 OLD LYME, CT 08371
 Sale Date
 01/06/2004

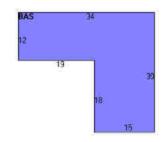
Ownership History

Ownership History					
Owner	Sale Price	Certificate	Book & Page	Sale Date	
MACHNIK TODD & REBECCA L Q/C/S	\$0		0309/0432	01/06/2004	
MACHNIK LEON & TODD H & REBECCCA L Q/	\$0		0291/0852	01/06/2003	
MACHNIK LEON & TODD & REBECCA Q/C/S T	\$0		0284/0764	07/22/2002	
MACHNIK LEON & Q/C/S	\$0		0267/0227	01/02/2001	
MACHNIK LEON ET AL	\$0		0261/0299	01/19/2000	

Building Information

Building 1 : Section 1

Year Built: 1975 Living Area: Replacement Cost: 678 \$82,146 Building Percent Good: 71


Replacement Cost

Less Depreciation: \$58,300			
Buil	ding Attributes		
Field	Description		
Style:	Commercial		
Model	Commercial		
Grade	Average		
Stories:	1		
Occupancy	1.00		
Exterior Wall 1	Vinyl Siding		
Exterior Wall 2			
Roof Structure	Gable/Hip		
Roof Cover	Asph/F Gls/Cmp		
Interior Wall 1	Drywall/Sheet		
Interior Wall 2			
Interior Floor 1	Inlaid Sht Gds		
Interior Floor 2			
Heating Fuel	Oil		
Heating Type	Forced Air-Duc		
AC Type	None		
Struct Class			
Bldg Use	OFFICE BLD MDL-94		
Total Rooms			
Total Bedrms	00		
Total Baths	0		
1st Floor Use:	3400		
Heat/AC	NONE		
Frame Type	MASONRY		
Baths/Plumbing	AVERAGE		

Building Photo

Building Layout

Building Sub-Areas (sq ft)			Legend
Code Description Gross Area		Living Area	
BAS	First Floor	678	678
		678	678

Building 2 : Section 1

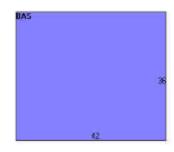
 Year Built:
 1994

 Living Area:
 1,512

 Replacement Cost:
 \$66,230

 Building Percent Good:
 84

Replacement Cost


Less Depreciation: \$55,800

Field Description Style: Pre-Eng Gar Model Ind/Comm Grade Below Average Stories: 1 Occupancy 0.00 Exterior Wall 1 Pre-finsh Metl Exterior Wall 2 Gable/Hip Roof Structure Gable/Hip Roof Cover Metal/Tin Interior Wall 1 Minim/Masonry Interior Wall 2 Interior Floor 1 Interior Floor 2 Oil Heating Fuel Oil Heating Type Hot Air-no Duc AC Type None Struct Class Struct Class Bldg Use COM WHS/GAR Total Rooms O Total Bedrms 0 Total Baths 0 1st Floor Use: 316I Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prins AVERAGE	Less Depreciation: \$55,800 Building Attributes: Bldg 2 of 3			
Model Ind/Comm Grade Below Average Stories: 1 Occupancy 0.00 Exterior Wall 1 Pre-finsh Metl Exterior Wall 2 Roof Structure Gable/Hip Roof Cover Metal/Tin Interior Wall 1 Minim/Masonry Interior Wall 2 Interior Floor 1 Concr-Finished Interior Floor 2 Heating Fuel Oil Heating Type Hot Air-no Duc AC Type None Struct Class Bldg Use COM WHS/GAR Total Rooms Total Bedrms 00 Total Baths 0 1st Floor Use: 3161 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	Fleid	Description		
Stories: 1 Occupancy 0.00 Exterior Wall 1 Pre-finsh Metl Exterior Wall 2 Roof Structure Gable/Hip Roof Cover Metal/Tin Interior Wall 1 Minim/Masonry Interior Wall 2 Interior Floor 1 Concr-Finished Interior Floor 2 Heating Fuel Oil Heating Type Hot Air-no Duc AC Type None Struct Class Bidg Use COM WHS/GAR Total Rooms Total Bedrms 00 Total Baths 0 1st Floor Use: 3161 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	Style:	Pre-Eng Gar		
Stories: 1	Model	Ind/Comm		
Occupancy 0.00 Exterior Wall 1 Pre-finsh Metl Exterior Wall 2 Roof Structure Gable/Hip Roof Cover Metal/Tin Interior Wall 1 Minim/Masonry Interior Wall 2 Interior Floor 1 Concr-Finished Interior Floor 2 Heating Fuel Oil Heating Type Hot Air-no Duc AC Type None Struct Class Bidg Use COM WHS/GAR Total Rooms Total Bedrms 00 1st Floor Use: 316I Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	Grade	Below Average		
Exterior Wall 1 Exterior Wall 2 Roof Structure Roof Cover Metal/Tin Interior Wall 1 Interior Wall 2 Interior Floor 1 Interior Floor 2 Heating Fuel Heating Type AC Type None Struct Class Bldg Use COM WHS/GAR Total Rooms Total Baths 0 1st Floor Use: 3161 Heat/AC NONE Frame Type Baths/Plumbing Rooms/Prtns Pre-finsh Metl Atland Gable/Hip None Sable/Hip None AVERAGE	Stories:	1		
Exterior Wall 2 Roof Structure Roof Cover Metal/Tin Interior Wall 1 Interior Wall 2 Interior Floor 1 Interior Floor 2 Heating Fuel Heating Type AC Type None Struct Class Bidg Use Total Rooms Total Baths 0 1st Floor Use: Heating Type STEEL Baths/Plumbing Rooms/Prtns AVERAGE	Occupancy	0.00		
Roof Structure Gable/Hip Roof Cover Metal/Tin Interior Wall 1 Minim/Masonry Interior Wall 2 Concr-Finished Interior Floor 1 Concr-Finished Interior Floor 2 Oil Heating Fuel Oil Heating Type Hot Air-no Duc AC Type None Struct Class Bldg Use COM WHS/GAR Total Rooms Total Bedrms O0 Total Baths 0 1st Floor Use: 3161 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	Exterior Wall 1	Pre-finsh Metl		
Roof Cover Metal/Tin Interior Wall 1 Minim/Masonry Interior Wall 2 Interior Floor 1 Concr-Finished Interior Floor 2 Heating Fuel Oil Heating Type Hot Air-no Duc AC Type None Struct Class Bldg Use COM WHS/GAR Total Rooms Total Bedrms Oil 1st Floor Use: 3161 Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Rooms/Prtns AVERAGE	Exterior Wall 2			
Interior Wall 1	Roof Structure	Gable/Hip		
Interior Wall 2 Interior Floor 1 Interior Floor 2 Heating Fuel Heating Type Hot Air-no Duc AC Type None Struct Class Bidg Use COM WHS/GAR Total Rooms Total Bedrms 00 Total Baths 0 1st Floor Use: 3161 Heat/AC NONE Frame Type Baths/Plumbing NONE Rooms/Prtns AVERAGE	Roof Cover	Metal/Tin		
Interior Floor 1 Concr-Finished Interior Floor 2 Oil Heating Fuel Oil Heating Type Hot Air-no Duc AC Type None Struct Class COM WHS/GAR Total Rooms 0 Total Bedrms 00 Total Baths 0 1st Floor Use: 316I Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	Interior Wall 1	Minim/Masonry		
Interior Floor 2	Interior Wall 2			
Heating Fuel Oil Heating Type Hot Air-no Duc AC Type None Struct Class COM WHS/GAR Bidg Use COM WHS/GAR Total Rooms 0 Total Bedrms 00 Total Baths 0 1st Floor Use: 316I Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	Interior Floor 1	Concr-Finished		
Heating Type	Interior Floor 2			
AC Type None Struct Class COM WHS/GAR Bidg Use COM WHS/GAR Total Rooms 0 Total Bedrms 00 Total Baths 0 1st Floor Use: 316I Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	Heating Fuel	Oil		
Struct Class COM WHS/GAR Total Rooms 00 Total Bedrms 00 Total Baths 0 1st Floor Use: 318I Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	Heating Type	Hot Air-no Duc		
COM WHS/GAR	AC Type	None		
Total Rooms 00 Total Bedrms 00 Total Baths 0 1st Floor Use: 318I Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prins AVERAGE	Struct Class			
Total Bedrms 00 Total Baths 0 1st Floor Use: 316I Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	Bldg Use	COM WHS/GAR		
Total Baths 0 1st Floor Use: 316I Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	Total Rooms			
1st Floor Use: 316I Heat/AC NONE Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	Total Bedrms	00		
Heat/AC	Total Baths	0		
Frame Type STEEL Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	1st Floor Use:	3161		
Baths/Plumbing NONE Ceiling/Wall NONE Rooms/Prtns AVERAGE	Heat/AC	NONE		
Ceiling/Wall NONE Rooms/Prtns AVERAGE	Frame Type	STEEL		
Rooms/Prins AVERAGE	Baths/Plumbing	NONE		
	Ceiling/Wall	NONE		
Wall Height 12.00	Rooms/Prins	AVERAGE		
	Wall Height	12.00		

Building Photo

Building Layout

Building Sub-Areas (sq ft)			<u>Legend</u>
Code Description Gross Area			Living Area
BAS	First Floor	1,512	1,512
		1,512	1,512

Building 3: Section 1

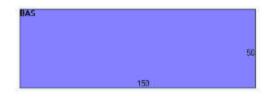
 Year Built:
 1975

 Living Area:
 7,500

 Replacement Cost:
 \$323,700

 Building Percent Good:
 71

Replacement Cost


Less Depreciation: \$229,800

Building Attrib	utes : Bldg 3 of 3
Fleid	Description
Style:	Pre-Eng Gar
Model	Ind/Comm
Grade	Average
Stories:	1
Occupancy	1.00
Exterior Wall 1	Pre-finsh Metl
Exterior Wall 2	
Roof Structure	Gable/Hip
Roof Cover	Metal/Tin
Interior Wall 1	Minim/Masonry
Interior Wall 2	
Interior Floor 1	Concr-Finished
Interior Floor 2	
Heating Fuel	Oil
Heating Type	Forced Air-Duc
AC Type	None
Struct Class	
Bldg Use	AUTO REPR
Total Rooms	
Total Bedrms	00
Total Baths	0
1st Floor Use:	3320
Heat/AC	HEAT/AC SPLIT
Frame Type	STEEL
Baths/Plumbing	LIGHT
Ceiling/Wall	NONE
Rooms/Prins	AVERAGE

Building Photo

Building Layout

Building Sub-Areas (sq ft)			Legend
Code Description		Gross Area	Living Area
BAS	First Floor	7,500	7,500
		7,500	7,500

Extra Features

Extra Features Leger				
Code Description Size Value Bidg				Bldg #
GEN	GENERATOR	0.00 UNITS	\$0	1

Land

Land Use Land Line Valuation Use Code 3400 Size (Acres) 62.00 Frontage Description OFFICE BLD MDL-94 0 0 Zone RU40 Depth Neighborhood 0080 Assessed Value \$148,700 Alt Land Appr No Appraised Value \$444,600 Category

Outbuildings

Outbuildings				Legend		
Code	Description	Sub Code	Sub Description	Size	Value	Bldg #
FGR2	GARAGE-GOOD			864.00 S.F.	\$13,000	1
PAV1	PAVING-ASPHALT			1008.00 S.F.	\$1,300	2
PAV1	PAVING-ASPHALT			792.00 S.F.	\$800	3
BRN8	POLE BARN			1092.00 S.F.	\$11,500	3
BRN8	POLE BARN			792.00 S.F.	\$5,900	2
SHD2	W/LIGHTS ETC			600.00 S.F.	\$6,300	1
SHD1	SHED FRAME			100.00 S.F.	\$900	3
SHD2	W/LIGHTS ETC			572.00 S.F.	\$6,000	1
PAV1	PAVING-ASPHALT			262.00 S.F.	\$300	3
LNT	LEAN-TO			300.00 S.F.	\$1,200	3
MSC19	TOWER			50.00 UNIT	\$0	3
MSC14	GENERATOR			80.00 UNIT	\$100	3

Valuation History

Appraisal				
Valuation Year	Improvements	Land	Total	
2021	\$420,000	\$444,600	\$864,600	
2020	\$420,000	\$444,600	\$864,600	
2019	\$402,800	\$410,600	\$813,400	

Assessment				
Valuation Year	Improvements	Land	Total	
2021	\$294,000	\$148,700	\$442,700	
2020	\$294,000	\$148,700	\$442,700	
2019	\$282,100	\$124,900	\$407,000	

Petition No. 877 Omnipoint Communications (T-Mobile) Old Lyme, Connecticut Staff Report January 8, 2009

On November 25, 2008, Omnipoint Communications (T-Mobile) filed a petition for a declaratory ruling that no Certificate of Environmental Compatibility and Public Need is required for the extension of an existing telecommunications tower in Old Lyme, Connecticut. Connecticut Siting Council member Phil Ashton and Council staff member David Martin conducted a field review of the proposed modifications on December 10, 2008. Jennifer Gaudet represented T-Mobile at the field review.

T-Mobile proposes to add a ten-foot extension to an existing 160-foot monopole tower located at 125 Mile Creek Road in Old Lyme. The existing tower is owned by Verizon Wireless and was certificated by the Council in Docket 202, which was approved on June 3, 2002. In this docket, Verizon, and its co-applicant Crown, originally proposed a 190-foot tower. The Council approved a 160-foot tower but allowed for the tower and foundation to be built to accommodate extensions up to 190 feet.

From this location, T-Mobile is seeking to cover an area south of the tower that encompasses a section of the Amtrak rail line that is currently without coverage. T-Mobile's RF engineers have determined that antennas placed at the highest, existing available height of 130 feet would not cover the target area. Consequently, T-Mobile is seeking the extension in order to place its antennas at the 170-foot level to be able to achieve its coverage objectives.

The tower is located on a 62-acre parcel used for the storage of construction and agricultural equipment. The surrounding area consists of sparse single-family residential development. There is a short section on Mile Creek Road where the tower is very clearly visible because the land has been cleared for agricultural and residential purposes. Most of the surrounding area, however, is shielded from views of the tower by existing, mature deciduous trees. The proposed ten-foot extension will not appreciably increase the visible footprint of the existing tower.

The addition of T-Mobile's antennas would bring the cumulative power density of the antenna systems on the tower to 16.6% of the FCC limit.

The tower compound is enclosed by a stockade fence. At the time of the field review, the gate of the fence was open and in poor condition. Council representatives pointed this out to T-Mobile's representative and asked that a request to repair the fence be passed on to the tower owner.

Council representatives also noted that ospreys had built a nest on the tower's highest antenna platform. T-Mobile's representative stated that the proposed modifications could be done at a time when they would not disturb the nesting birds.

Petition 877: Old Lyme Staff Report Page 2

Based upon observations made during the field review, T-Mobile's proposed modifications should not create any significant adverse environmental impacts. Staff recommends approval of this petition with the conditions that: 1) the tower owner repair the fence as needed and 2) any work related to the extension of the tower and installation of T-Mobile's antennas be undertaken at a time when it will not disturb any actively nesting ospreys.

Partnership d/b/a Cellco Wireless application for a Certificate of Environmental Compatibility and Public Need for the construction, } maintenance, and operation of a cellular telecommunications facility off of Buttonball Road, located approximately 1,000 feet south of the } intersection of Buttonball Road and the Amtrak railroad right-of-way, Old Lyme; or at 125 Mile Creek Road, Old Lyme, Connecticut.

Findings of Fact

Introduction

- 1. Crown Atlantic Company LLC (Crown) and Cellco Partnership (Cellco) d/b/a Verizon Wireless in accordance with provisions of Connecticut General Statutes (C.G.S.) §§ 16-50g through 16-50aa applied to the Connecticut Siting Council (Council) on April 13, 2001, for the construction, operation, and maintenance of a cellular telecommunications facility in Old Lyme, Connecticut, to provide cellular coverage within the New London County, New England County Metropolitan Area (NECMA). (Crown/Cellco 1, pp. 1, 2, 7, 8; Crown/Cellco 1, Sec. 7)
- 2. Parties and intervenors in this proceeding include the applicant, the Town of Old Lyme Zoning Commission, John P. and Judith A. McCarthy, and James B. Blair. (Transcript, June 21, 2001, 3:00 p.m., (Tr. 1), p. 5; Transcript, June 21, 2001, 7:00 p.m., (Tr. 1.1), p. 5)
- 3. On May 16, 2001, the applicant submitted a supplement to the application for an alternative tower site (alternative #2) at 71 Buttonball Road, in Old Lyme, Connecticut. On June 5, 2001, the applicant withdrew the proposed Alternate #2 site from future consideration. (Crown/Cellco 8; Crown/Cellco 11; Tr. 1, pp. 12, 13)
- 4. Pursuant to C.G.S. § 16-50m, the Council, after giving due notice thereof, held a public hearing on June 21, 2001, beginning at 3:00 p.m. and continuing at 7:00 p.m. in the Community Room of the Old Lyme Public Library, 2 Library Lane, Old Lyme, Connecticut. (Council's Hearing Notice dated May 25, 2001; Tr. 1, p. 3)
- 5. The Council and its staff made an inspection of the proposed prime and alternate sites on June 21, 2001. During the field inspection, the applicant flew balloons at the proposed sites to simulate the height of the proposed towers. The applicant also flew balloons at the proposed sites on June 9, 2001, from 10:00 a.m. to 3:00 p.m. to simulate the height of the proposed towers. (Crown/Cellco 1, p. 14; Tr. 1, pp. 13, 14, 47; Tr. 1.1, pp. 74, 75)
- 6. Pursuant to C.G.S. § 16-50l(e), on January 19, 2001, the applicant met with and provided copies of the Technical Report to the Town of Old Lyme's First Selectman and Town Planner for the development of a cell site in the Town of Old Lyme. Following the 60-day consultation period, the Town of Old Lyme requested that the applicant consider the alternative #2 tower site, located at 71 Buttonball Road in Old Lyme, Connecticut. (Crown/Cellco 1, p. 19; Crown/Cellco 8, pp. 1, 3)
- 7. There are no adjoining municipal boundaries within 2,500 feet of the proposed prime or alternate site. (Crown/Cellco 1, Sec. 3, p. 2; Crown/Cellco 1, Sec. 4, p. 2)

- 8. The applicant certified that copies of the application for a Certificate were sent via certified mail, return receipt requested, to municipal, regional, state, and federal officials, pursuant to C.G.S. § 16-50l(b). Notice of the application was published in The Day on April 11, 2001 and April 12, 2001. Notice of the filing of the supplement to the application was published in The Day on May 14, 2001 and May 15, 2001. The applicant certified that notice of the application, and the supplement to the application was sent to each owner of property which abut the proposed prime or alternate site, pursuant to C.G.S. § 16-50l(b). (Crown/Cellco 1, pp. 5, 6; Crown/Cellco 1, Sec. 6; Crown/Cellco 1, Sec. 8; Crown/Cellco 2; Crown/Cellco 3; Crown/Cellco 7; Letter from Kenneth C. Baldwin to Joel M. Rinebold dated April 18, 2001; Crown/Cellco 8, pp. 2, 3; Crown/Cellco 8, Sec. 5)
- 9. The Town of Old Lyme Zoning Commission has directed previous applicants for a telecommunications tower be responsible for its removal if and when it becomes obsolete and unused. The Zoning Commission requests that the Council consider a similar requirement for the removal of obsolete or unused towers. The Zoning Commission would also prefer a single equipment building with suitable architectural treatment and landscaping. (Crown/Cellco 1b, Zoning Regulations, p. 22-10; Town of Old Lyme Zoning Commission 1; Tr. 1.1, pp. 64, 65)

Cellular Service Design

- 10. In 1981, the Federal Communications Commission (FCC) recognized a public need for technical improvement, wide-area coverage, high-quality service, and competition in the provision of mobile telephone service. This included the issuance of two licenses for the provision of cellular service at the wholesale level in each market area. (Crown/Cellco 1, p. 6)
- 11. In 1996, the United States Congress recognized a nationwide need for high quality wireless telecommunications services, including cellular telephone service. The Federal Telecommunications Act of 1996 seeks to promote competition, encourage technical innovations, and foster lower prices for telecommunications services. Furthermore, the Federal government has preempted the determination of public need for wireless service by the states, and has established design standards to ensure technical integrity and nationwide compatibility among all systems. (Crown/Cellco 1, pp. 6, 7)
- 12. Cellco is licensed by the Federal Communications Commission (FCC) to operate a cellular system. Cellco's cellular system design provides for frequency reuse and handoff, is capable of orderly expansion, is compatible with other cellular systems, and is in conformity with Code of Federal Regulations 47 C.F.R. Part 22, Subpart K. (Crown/Cellco 1, pp. 4, 7, 8, 9)
- 13. Cellco would only provide digital cellular service from the proposed Old Lyme sites. Adjacent Cellco facilities located in Old Saybrook and Old Lyme currently provide both analog and digital cellular service. A Cellco subscriber with an analog only phone would not notice any improvement in service by the additional coverage provided by the proposed facilities. (Crown/Cellco 5, RPHQ #5; Tr. 1, p. 24)
- 14. The minimal signal level threshold required by Cellco to provide acceptable service in and around the Old Lyme area is -85 dBm. The minimal signal level threshold is determined by several factors including the amount of interference in the area, the projected traffic usage, and the extent of development of the area. The level of interference in the Old Lyme area is considered higher than normal because of the proximity of the Long Island "A" band cellular system. (Crown/Cellco 5, RPHO #6; Tr. 1, pp. 53, 54)

Need

- 15. The primary purpose of this application is to provide cellular coverage to existing gaps in coverage along Interstate 95 (I-95), Route 156, the Amtrak railroad right-of-way (ROW), and local roads in the Old Lyme area; and to provide additional traffic handling capacity in the Old Lyme area. (Crown/Cellco 1, pp. 2, 8; Crown/Cellco 1, Sec. 1, pp. 1 to 4; Crown/Cellco 1, Sec. 2, p. 2; Tr. 1, p. 42)
- 16. Existing cellular coverage in the Old Lyme area is provided by facilities at 38 Hatchetts Hill Road in Old Lyme, and 2 Ferry Place in Old Saybrook. Cellco's existing cellular coverage along I-95, Route 156, and the Amtrak ROW, within a two mile radius of the intersection of the Amtrak ROW and Buttonball Road at a signal level threshold greater than -85 dBm, is as follows:

Existing Coverage

	Coverage (miles) ≥ -85 dBm	Total Road <u>Miles</u>
I-95	1.8	2.2
Route 156	1.5	4.4
Amtrak ROW	0.8	4.0

(Crown/Cellco 1, p. 8; Crown/Cellco 1, Sec. 1, pp. 1, 2; Crown/Cellco 5, RPHQ #9)

Cellco

17. Cellco's existing and proposed coverage on the proposed prime tower at 150, 130, and 110 feet above ground level (AGL) within a two mile radius of the intersection of the Amtrak ROW and Buttonball Road, would be as follows:

Coverage from the Proposed Prime Site Tower

	Coverage (miles)* ≥ -85 dBm at 150 ft AGL	Coverage (miles) ≥ -85 dBm at 130 ft AGL	Coverage (miles) ≥ -85 dBm at 110 ft AGL	Total Road <u>Miles</u>
I-95	2.0	1.8	1.7	2.2
Route 156	4.0	3.9	3.3	4.4
Amtrak ROW	3.5	3.1	2.7	4.0

(Crown/Cellco 1, Sec. 1, p. 3; Crown/Cellco 5, RPHQ #10, Attachment D; Crown/Cellco 10, RPHQ #34, Attachment 6; Crown/Cellco 10, RPHQ #35, Attachment 7)

^{*}See Appendix A

^{*}See Appendix B

18. Cellco's existing and proposed coverage on the proposed alternate tower at 160, 150, and 140 feet AGL within a two mile radius of the intersection of the Amtrak ROW and Buttonball Road, would be as follows:

Coverage from the Proposed Alternate Site Tower

	Coverage (miles)* ≥ -85 dBm at 160 ft AGL	Coverage (miles) ≥ -85 dBm at 150 ft AGL	Coverage (miles) ≥ -85 dBm at 140 ft AGL	Total Road <u>Miles</u>
I-95	2.0	1.9	1.9	2.2
Route 156	4.4	4.3	3.9	4.4
Amtrak ROW	4.0	3.6	3.3	4.0

(Crown/Cellco 1, Sec. 1, p. 4; Crown/Cellco 5, RPHQ #10, Attachment D; Crown/Cellco 12, RPHQ #38, Attachment 1; Crown/Cellco 12, RPHQ #39, Attachment 2)

- 19. A coverage gap located along I-95, west of the proposed sites, could prevent the successful hand-off of a call between Cellco's existing sites in Old Saybrook and Old Lyme, even if a telecommunications facility was developed at either proposed site. Cellco has initiated a new search for another tower west of the proposed sites (Old Lyme West site) to provide service to the coverage gaps along I-95. Cellco has also initiated a new search for another tower located southeast of the proposed sites (Rocky Neck site) to provide service to the coverage gaps south of I-95 and to the east. (Crown/Cellco 5, RPHQ #11, RPHQ #12; Crown/Cellco 10, RPHQ #36; Tr. 1, pp. 31, 32, 34, 35, 83)
- 20. Cellco would seek to place their antennas at the 120-foot level on the tower to be developed at the Old Lyme West site, and at the 70-foot level on the tower to be developed at the Rocky Neck site, depending on the selected site elevation above mean sea level (AMSL). If Cellco's proposed antennas at the Old Lyme West site and the Rocky Neck site were raised in height, antennas on the proposed towers could be lowered in height. (Tr. 1, pp. 35, 65)
- 21. Sprint PCS indicated that they may seek to co-locate on either of the proposed towers; however, Sprint PCS was not a party or intervenor to this proceeding, did not commit to co-locate on either of the proposed towers, did not submit radio-frequency propagation plots to demonstrate need for co-locating on the proposed facilities, and could not definitively indicate an antenna height that would satisfy their coverage requirements. (Tr. 1, pp. 10, 11, 22, 28, 29, 46; Tr. 1.1, pp. 84, 85)
- 22. The proposed tower would be designed, and made available to accommodate at least three additional wireless telecommunications providers. The applicant would also make space available on either of the proposed towers for the Town of Old Lyme's public safety entities. No other telecommunications entity has committed to sharing either of the proposed towers. Space is available on the proposed towers for the placement of antennas for up to five telecommunications providers below Cellco's proposed antennas. (Crown/Cellco 1, pp. 2, 11, 12, 18; Crown/Cellco 1, Sec. 3, p. 9; Crown/Cellco 1, Sec. 4, p. 9; Crown/Cellco 10, RPHQ #20; Tr. 1, pp. 28, 30, 38, 40, 41, 69)

^{*}See Appendix C

Site Search

- 23. Cellco identified four existing telecommunications towers located within approximately three miles of the site search area including: a 90-foot tower, owned by Machnik Construction Co., located at 125 Mile Creek Road, Old Lyme; a 190-foot tower, owned by the Omnipoint Communications, located at 38 Hatchetts Hill Road, Old Lyme; a 180-foot tower, owned by Sprint, located at 30 Short Hills Road, Old Lyme; and a 115-foot smokestack serving as a Verizon Wireless facility, located at 2 Ferry Place, Old Saybrook. Existing towers and facilities would not provide adequate service to coverage gaps in the Old Lyme area because they are located too far from existing coverage gaps, would provide duplicate coverage as existing facilities, or do not offer adequate height. (Crown/Cellco 1, Sec. 2, pp. 1, 2; Crown/Cellco 5, RPHQ #9; Crown/Cellco 10, RPHQ #18, Attachment 1; Crown/Cellco 10, RPHQ #19, Attachment 2)
- 24. The existing 90-foot tall tower, owned by Machnik Construction Co., located at 125 Mile Creek Road could be increased in height by 15 feet in compliance with the Town of Old Lyme's Zoning Regulations. (Town of Old Lyme Zoning Commission 1; Tr. 1.1, pp. 68, 69, 70)
- 25. Cellco identified and investigated seven potential sites near the site search area located at the intersection of Buttonball Road and the Amtrak ROW, in Old Lyme. Five sites were rejected due to topography, proximity to a new residential subdivision, and the landowners' reluctance to sell or lease property. Two of the sites were proposed as the proposed prime and alternate sites. (Crown/Cellco 1, Sec. 2, pp. 2, 3, 4)

Proposed Equipment

- 26. Crown/Cellco would lease a 100-foot by 100-foot parcel on which Crown would develop a 190-foot tall steel monopole tower, and a 12-foot by 30-foot equipment building on either the proposed prime or alternate site. The proposed compound would be enclosed by an 8-foot high security fence and gate. (Crown/Cellco 1, pp. 2, 3, 12, 18; Crown/Cellco 1, Sec. 3, pp. 1, 6, 8, 9; Crown/Cellco 1, Sec. 4, pp. 1, 6, 8, 9)
- 27. A single equipment building could be constructed at either proposed site to accommodate the telecommunications equipment for at least three other telecommunications providers. (Tr. 1, pp. 15, 71, 72)
- 28. Cellco proposes to attach twelve approximately four-foot tall cellular panel antennas on a triangular platform at approximately 150 feet AGL at the proposed prime site, or at approximately 160 feet AGL at the proposed alternate #1 site. A global positioning system (GPS) antenna would be attached at approximately 70 feet AGL on either the proposed prime or alternate towers. (Crown/Cellco 1, pp. 12; Crown/Cellco 1, Sec. 3, p. 8, 9; Crown/Cellco 1, Sec. 4, pp. 8, 9; Tr. 1, pp. 37, 38)
- 29. The proposed 190-foot tall monopole tower at either the proposed prime or alternate #1 site would be approximately six feet in diameter at the base and three feet in diameter at the top, and designed to withstand pressures equivalent to a 90 miles per hour wind load with one-half inch solid ice accumulation in accordance with Electronic Industries Association Standard EIA/TIA 222-E, Structural Standards for Steel Antenna Towers and Support Structures. (Crown/Cellco 1, Sec. 3, p. 8 Crown/Cellco 1, Sec. 4, p. 8)

- 30. Cellco could utilize a stealth flagpole tower; however, Cellco may need to occupy multiple mounting locations within the flagpole structure to provide adequate capacity for Cellco's projected level of service. (Tr. 1, pp. 19, 20, 23)
- 31. The applicant could design and construct a tower base and foundation capable of being extended from 150 feet AGL to 190 feet AGL. (Tr. 1, pp. 38, 39)
- 32. The applicant could install netting at the top of the proposed tower to deter the nesting of Osprey and other birds on the proposed tower. The nesting of Osprey or other birds on the proposed tower would prohibit maintenance work or the addition of antennas, until the nests are vacated. (Tr. 1, pp. 15, 56, 84, 85)
- 33. The proposed equipment building would house Cellco's radio equipment, automatic heating and cooling equipment, and a 40-kilowatt diesel-fueled emergency generator. The proposed generator would run only during the interruption of electrical service and for maintenance. The proposed generator would have a 275-gallon belly tank that would be double-walled and equipped with leak detection alarms. Cellco would need to obtain a permit from the Connecticut Department of Environmental Protection (DEP) for the operation of the proposed generator. (Crown/Cellco 1, pp. 2, 3, 12; Crown/Cellco 1, Sec. 3, pp. 1, 10; Crown/Cellco 1, Sec. 4, pp. 1, 10; Crown/Cellco 1, Sec. 10; Crown/Cellco 5, RPHQ #13)

Proposed Prime/Alternate Site

- 34. The proposed prime site would be located on an approximately 32-acre parcel, owned by the Black Hall Club, Inc., off of Buttonball Road, approximately 1,000 feet south of the Amtrak ROW in Old Lyme. The parcel is located north of a former quarry operation, west of the Black Hall Golf Club, and north and east of low density residential development. The proposed lease area is located at 41°-17'-37.9" North and 72°-18'-16.8' West, and has an elevation of approximately 10 feet AMSL. The lease parcel at the proposed prime site is generally level, and would require minimal clearing and grading for the development of the prime access road and site compound. Vehicular access to the proposed prime site compound would extend westerly from Buttonball Road along an existing driveway a distance of approximately 410 feet. The proposed access driveway would be approximately 12 feet wide. (Crown/Cellco 1, pp. 2, 17; Crown/Cellco 1, Sec. 3, pp. 1, 2, 4, 6, 7, 10; Tr. 1, pp. 14, 15)
- 35. There are approximately eleven homes within a 1,000-foot radius of the proposed prime site. The nearest residential structure is located approximately 340 feet east of the proposed tower. (Crown/Cellco 1, p. 14; Crown/Cellco 1, Sec. 3, p. 11; Crown/Cellco 5, RPHQ #1, Attachment A Prime Site; Crown/Cellco 5, RPHQ #14)
- 36. The fall zone of the proposed 190-foot tall tower would encroach upon two properties located approximately 90 feet north of the proposed prime site lease area boundary. The fall zone of a tower constructed 150 feet tall or less, located in the southern portion of the proposed prime site lease area, would not encroach upon other nearby properties. Alternatively, the proposed prime site compound could be relocated approximately 165 feet south of its current location; however, the proposed prime site compound would be closer to on-site wetland areas. (Crown/Cellco 5, RPHQ #2, Attachment B, Flood Zone Exhibit Prime Site; Crown/Cellco 10, RPHQ #22)
- 37. The proposed alternate #1 site would be located on an approximately 62-acre parcel located at 125 Mile Creek Road in Old Lyme, owned by Leon Machnik, Todd J. and Rebecca L. Machnik. The 62-acre parcel is used as the base of operations for the Machnik Construction Company. Low density

residential development is located to the east, west, and north of the proposed alternative #1 site. The proposed lease area is located at 41°-18'-20.0" North and 72°-17'-50.5" West, and has an elevation of approximately 49 feet AMSL. The lease parcel at the proposed alternate site slopes gently up from the north to the south toward the alternate site compound. Minimal clearing and grading would be required for the use of the proposed alternate access road and site compound. Vehicular access to the proposed alternate site compound would extend southerly from Mile Creek Road along an existing driveway a distance of approximately 450 feet. (Crown/Cellco 1, pp. 2, 3, 17; Crown/Cellco 1, Sec. 4, pp. 1, 2, 4, 6, 7, 10; Tr. 1, p. 23)

- 38. There are approximately five homes within a 1,000-foot radius of the proposed alternate #1 site. The nearest residence is located approximately 550 feet north of the proposed alternate #1 site. (Crown/Cellco 1, p. 14; Crown/Cellco 1, Sec. 4, p. 11; Crown/Cellco 5, RPHQ #1, Attachment A, Proposed Alternate Site Plan)
- 39. The fall zone of the proposed tower at the proposed alternate #1 site would not extend beyond the boundaries of the proposed alternate #1 site. (Crown/Cellco 5, RPHQ #1, Attachment A, Proposed Alternate Site Plan)
- 40. A private airstrip, which is owned by the proposed lessors, is located on the proposed alternate #1 site. The proposed tower on the proposed alternate #1 site would not require marking and lighting because the airstrip is private. (Crown/Cellco 6; Tr. 1, pp. 48, 57)
- 41. The proposed prime and alternate sites are located within a residential RU-40 zone. According to the Town of Old Lyme Zoning Regulations, telecommunications facilities are permitted by special exception in Light Industry (LI-80S) zones only. The only LI-80S zone in the Town of Old Lyme is located in the eastern portion of the Town immediately south of Interstate 95, a distance of between 2.3 miles and 1.6 miles from the proposed prime and alternate sites, respectively. Cellco already shares an existing telecommunications facility within the LI-80S zone at 38 Hatchells Hill Road. (Crown/Cellco 1, p. 2, 18; Crown/Cellco 1, Sec. 3, p. 6; Crown/Cellco 1, Sec. 4, p. 6; Crown/Cellco 1b, Zoning Map revised 8-1-96; Crown/Cellco 1b, Zoning Regulations of the Town of Old Lyme)
- 42. According to the Old Lyme Zoning Regulations, telecommunications towers shall be limited to a maximum height of 199 feet AGL; designed to accommodate tower sharing; preferred as a monopole tower with a galvanized or painted finish; prohibited to support signage; and set back at least 500 feet from any existing residential structure, and at least 75 feet from a property line. Telecommunications equipment shelters shall not exceed a gross floor area of 750 square feet; be designed to be compatible with other buildings in the area; arranged in a cluster around the proposed tower; and setback 50 feet from a street line and 35 feet from the property line. The maximum building or structure height in an RU-40 zone is 35 feet. (Crown/Cellco 1b, Zoning Regulations of the Town of Old Lyme, Schedule A-2, pp. 22-7 to 22-10)
- 43. According to the Old Lyme Plan of Conservation & Development adopted August 10, 2000, the proposed prime and alternate sites are located in areas that are designated for Rural Residential land use. The area immediately north and west of the proposed prime site has been designated as an area of Conservation Interest. The State of Connecticut Conservation and Development Policies Plan identifies the proposed prime and alternate sites as being Rural land near Conservation Areas. (Crown/Cellco 1, p. 18; Crown/Cellco 1a; Connecticut Conservation and Development Policies Plan 1998-2003)

- 44. According to the Town of Old Lyme Wetlands and Water Courses Regulations, a Regulated Activity is any activity taking place in, or within 100 feet of a wetland or watercourse involving the removal or deposition of any materials; the placement or construction of any structure or building; or any activity that may be detrimental to wetlands or watercourses. (Crown/Cellco 1c, Wetlands and Water Courses Regulations, p. 2)
- 45. According to the Federal Emergency Management Agency Flood Insurance Rate Map, the proposed prime site is located within Flood Zone C, characterized as areas of minimal flooding. (Crown/Cellco 1, p. 19; Crown/Cellco 5, RPHQ #2, Attachment B; Crown/Cellco 5, RPHQ #3)
- 46. The approximate cost of construction for the development of the proposed prime and alternate sites is estimated to be approximately \$1,010,000, and \$1,020,000 respectively, as follows:

	Prime	Alternate #1
Cell site radio equipment	650,000	650,000
Tower and antennas	100,000	100,000
Power Systems	45,000	45,000
Building Costs	65,000	65,000
Miscellaneous Costs (including		
site preparation and installation)	<u>150,000</u>	<u>160,000</u>
Total Costs (Crown/Cellco 1, pp. 21, 22)	\$1,010,000	\$1,020,000
(C10 Will CCIICO 1, pp. 21, 22)		

47. Crown believes that the proposed alternate #1 site would be preferable to the proposed prime site because the proposed telecommunications facility at the proposed alternate #1 site would be less visible, and would have the least environmental effect, given the nature of the development and current uses of the property. (Tr. 1, pp. 54, 55, 101; Tr. 1.1, p. 86)

Environmental Considerations

- 48. According to the Connecticut DEP, neither the proposed prime or alternate #1 site contain known extant populations of Federal or State Endangered, Threatened or Special Concern Species. (Crown/Cellco 1, pp. 15, 20; Crown/Cellco 1, Sec. 5)
- 49. No wetlands or watercourses exist within the proposed compound or proposed access road at the proposed sites. The proposed prime site compound and access road would be located approximately 100 feet and 42 feet north of a large pond, respectively. (Crown/Cellco 1, Sec. 3, pp. 6, 10; Crown/Cellco 1, Sec. 4, pp. 6, 10; Crown/Cellco 5, RPHQ #2, Attachment A, Proposed Site Plan; Crown/Cellco 10, RPHQ #21; Tr. 1, pp. 98, 99)
- 50. The trees in the vicinity of the proposed sites are predominantly deciduous and approximately 75 feet in height. (Connecticut DEP Comments dated June 15, 2001; Tr. 1, pp. 41, 97)
- 51. The State Historic Preservation Office (SHPO) has determined that construction of the proposed prime or alternate #1 site would have no effect on historic, architectural, or archaeological resources listed on or eligible for the National Register of Historic Places. The SHPO's review is conditioned upon all construction related activities, including trenching for the proposed access drive at 125 Mile Creek Road, being located to its western extent in order to avoid physical impact to the J. Brown

- historical archaeological site. (Crown/Cellco 1, pp. 15, 21; Crown/Cellco 1, Sec. 5, Letter from Dawn Maddox to Rachel A. Mayo dated February 14, 2001; Crown/Cellco 1e; Crown/Cellco 10, RPHQ #24)
- 52. Crown would install soil erosion and sedimentation control measures throughout the proposed construction period in accordance with the Connecticut Guidelines for Soil Erosion and Sediment Control. (Crown/Cellco 1, p. 19)
- 53. The applicant did not determine if subsurface blasting would be required for the construction of the proposed tower foundation at the proposed sites. (Crown/Cellco 10, RPHQ #23)
- 54. Crown uses an airspace program to determine if the proposed towers would be a hazard to air navigation. No obstruction or notice standards were exceeded in this analysis; therefore, notification to the Federal Aviation Administration is not required. Neither the prime or alternate tower would require marking or lighting. (Crown/Cellco 1, pp. 18, 20; Crown/Cellco 6)
- 55. The electromagnetic radiofrequency power densities, calculated using the FCC Office of Engineering and Technology Bulletin 65, August 1997, using conservative worst-case approximation of radiofrequency power density levels at the base of each tower would be 5.2 percent of the American National Standards Institute (ANSI) Standard for the proposed prime site, or 4.6 percent of the applicable ANSI standard for the proposed alternate #1 site. An antenna height of 130 feet AGL would produce a worst-case of radiofrequency power density level at the base of the tower of 6.9 percent of the applicable ANSI standard. (Crown/Cellco 1, p. 16; Crown/Cellco 1, Sec. 3, p. 11; Crown/Cellco 1, Sec. 4, p. 11; Crown/Cellco 10, RPHQ #32)
- 56. Neither proposed facility would generate noise, except for the operation of the heating and air conditioning systems, and the emergency back-up generator. (Crown/Cellco 1, Sec. 3, p. 10; Crown/Cellco 1, Sec. 4, p. 10)

Visibility

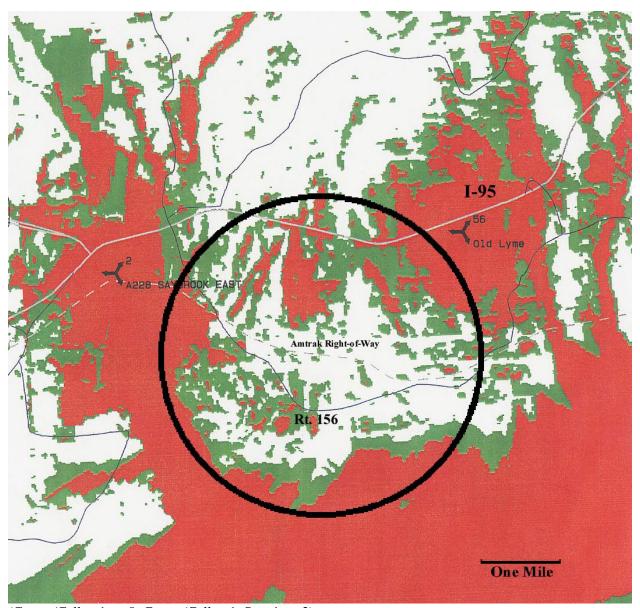
57. The visibility of the proposed prime site tower from various locations in the area would be as follows:

Visibility of Proposed Prime Tower

<u>Location</u>	<u>190 ft</u> Visible	Distance and Direction
		<u>To Tower</u>
South End of Tinker Pond	No	3,600 feet north
Flat Rock Hill Rd at Mile Creek Rd	No	5,500 feet northeast
Mile Creek Rd. 4,000 feet south of	No	5,000 feet east-northeast
Flat Rock Hill Rd.		
Route 156 at Dogwood Drive	Yes	4,600 feet southwest
Route 156 at Buttonball Rd.	No	2,800 feet south
Route 156 at Pine Rd.	Yes	3,200 feet west
Buttonball Rd	Yes	1,000 feet north and south
Amtrak ROW	Yes	2,400 feet east-northeast
5 Strawberry Lane cul-de-sac	Yes	2,500 feet southwest
Homestead Circle	Yes	2,100 feet southwest

(Crown/Cellco 1, Sec. 3, pp. 11-19; Tr. 1.1, p. 82)

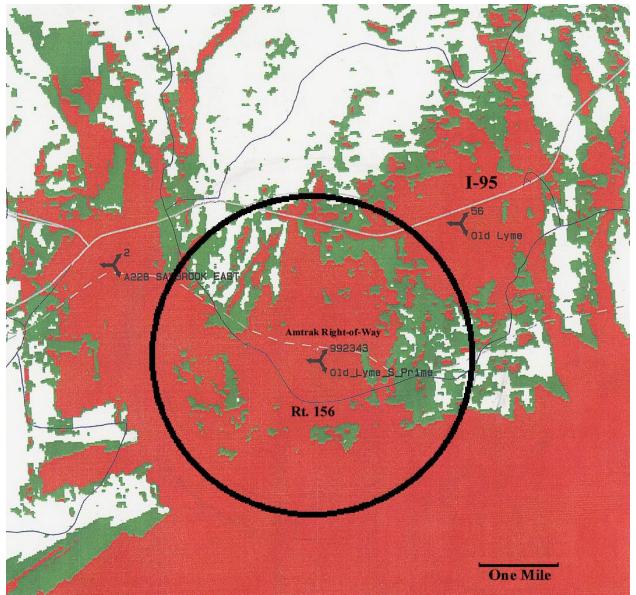
58. The visibility of the proposed alternate tower from various locations in the area would be as follows:


Visibility of Proposed Alternate #1 Tower

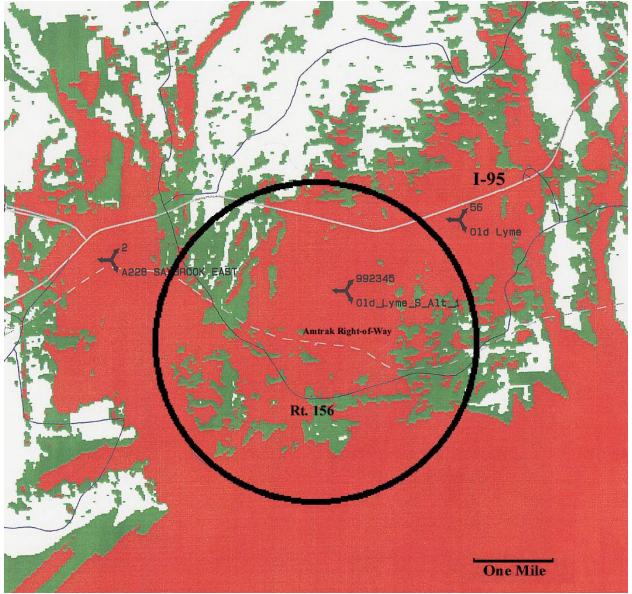
Location	190-foot Visible	Distance and Direction
		<u>to Tower</u>
Interstate 95 (I-95) at Whippoorwill Rd.	Yes	4,800 feet northwest
Rowland Rd. 600 feet south of I-95	No	2,800 feet north
Flat Rock Hill Rd. at Browns Lane	No	3,000 feet east
Mile Creek Rd. at Waite Cemetery	No	5,100 feet southeast
Amtrak ROW at Buttonball Rd.	No	4,000 feet southwest
Buttonball Rd. at Mile Creek Rd.	No	2,300 feet west
Mile Creek Rd. at Whippoorwill Rd.	Yes	3,600 feet west
Rowland Rd. at Flat Rock Hill Rd.	Yes	1,050 feet northwest

(Crown/Cellco 1, Sec. 4, pp. 11-21)

APPENDIX A


Existing Coverage (≥ -85 dBm)

(Crown/Cellco 1, p. 8; Crown/Cellco 1, Sec. 1, p. 2)


<u>APPENDIX B</u>

Coverage from the Proposed Prime Site Tower (\ge -85 dBm)

(Crown/Cellco 5, RPHQ #10, Attach. D; Crown/Cellco 10, RPHQ #34, Attachment 6; Crown/Cellco 10, RPHQ #35, Attachment 7)

<u>APPENDIX C</u>
Coverage from the Proposed Alternate Site Tower (\geq -85 dBm)

(Crown/Cellco 5, RPHQ #10, Attach. D; Crown/Cellco 10, RPHQ #34, Attachment 6; Crown/Cellco 10, RPHQ #35, Attachment 7)

COMPLIANCE CODE

ATC SITE NAME: OLD LYME SOUTH CT

ATC SITE NUMBER: 411178

T-MOBILE SITE NAME: AMTRAK OLD LYME VERIZON

T-MOBILE SITE NUMBER: CTNL802A SITE ADDRESS: 125 MILE CREEK ROAD OLD LYME, CT 06371

SITE CLASS: MONOPOLE

PROJECT SUMMARY

LOCATION MAP

SHEET INDEX

T-MOBILE ANCHOR AMENDMENT PLAN 67D5D998E 6160 CONFIGURATION

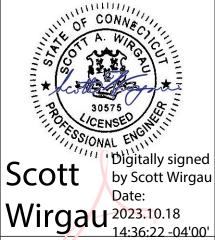
PROJECT DESCRIPTION

ALL WORK SHALL BE PERFORMED AND MATERIALS INSTALLED IN ACCORDANCE WITH THE CURRENT EDITIONS OF THE	SITE ADDRESS:	THE PROPOSED PROJECT INCLUDES MODIFYING GROUND BASED AND TOWER MOUNTED EQUIPMENT AS INDICATED PER BELOW:	SHEET NO:	DESCRIPTION:	REV:	DATE:	BY:	
FOLLOWING CODES AS ADOPTED BY THE LOCAL GOVERNMENT AUTHORITIES. NOTHING IN THESE PLANS IS	125 MILE CREEK ROAD OLD LYME, CT 06371	TOWER WORK:	G-001	TITLE SHEET	0	10/17/23	JLR	
TO BE CONSTRUED TO PERMIT WORK NOT CONFORMING TO THESE CODES.	COUNTY: NEW LONDON	REMOVE (3) T-ARM SECTOR FRAME(s), (3) TIE-BACK(s), (6) ANTENNA(S), (3) TTA(S), AND (12) 1-5/8" COAX / (1) 9X18 HCS	G-002	GENERAL NOTES	0	10/17/23	JLR	
1. 2020 NFPA 70, NATIONAL ELECTRIC CODE (NEC)	GEOGRAPHIC COORDINATES:	CABLE(S) INSTALL (1) PLATFORM(s), (6) ANTENNA(S), (3) RRU(S), AND (3)	C-101	DETAILED SITE PLAN	0	10/17/23	JLR	
2. 2022 CONNECTICUT STATE BUILDING CODE 3. 2021 INTERNATIONAL BUILDING CODE (IBC)	LATITUDE: 41.30553942 LONGITUDE: -72.29733538	HYBRID TRUNK 6/24 4AWG CABLE(S) EXISTING (3) ANTENNA(S), (3) RRU(S), AND (3) 6X12 HCS CABLE(S)	C-102	DETAILED EQUIPMENT PLAN	0	10/17/23	JLR	
DESIGN CRITERIA FROM TOWER STRUCTUAL ANALYSIS: BASIC WIND SPEED: 126 MPH (3-SECOND GUST)	GROUND ELEVATION: 40' AMSL	TO REMAIN	C-201	TOWER ELEVATION	0	10/17/23	JLR	
BASIC WIND SPEED W/ ICE: 50 MPH (3-SECOND GUST) W/		GROUND WORK: REMOVE (1) CABINET(s), (6) RU22, AND (2) DUW30	C-401	ANTENNA INFORMATION & SCHEDULE	0	10/17/23	JLR	Ш
CONCURRENT CODE(S): ANSI/TIA-222-H / 2021 IBC /		INSTALL (1) 6160 CABINET, (1) RP 6651, (1) CSR IXReV2, AND (1) B160 BATTERY CABINET	C-501	CONSTRUCTION DETAILS	0	10/17/23	JLR	Ш
2022 CONNECTICUT STATE BUILDING CODE		EXISTING (1) BATTERY CABINET, (1) RBS 6131 CABINET, (2) BB 6630, AND (1) DUG20 TO REMAIN	E-501	GROUNDING DETAILS	0	10/17/23	JLR	Ш
EXPOSURE CATEGORY: B RISK CATEGORY: II		PROJECT NOTES	R-601	SUPPLEMENTAL				Ш
TOPO FACTOR PROCEDURE: METHOD 1 TOPOGRAPHIC CATEGORY: 1	PROJECT TEAM	1. THE FACILITY IS UNMANNED.	R-602	SUPPLEMENTAL				
SPECTRAL RESPONSE: S _s =0.20, S ₁ =0.05 SITE CLASS: D - STIFF SOIL - DEFAULT	TOWER OWNER: APPLICANT:	A TECHNICIAN WILL VISIT THE SITE APPROXIMATELY ONCE A MONTH FOR ROUTINE INSPECTION AND MAINTENANCE.	R-603	SUPPLEMENTAL				\prod
INFORMATION TAKEN FROM STRUCTURAL ANALYSIS	AMERICAN TOWER T-MOBILE	THE PROJECT WILL NOT RESULT IN ANY SIGNIFICANT LAND DISTURBANCE OR EFFECT OF STORM WATER DRAINAGE.	R-604	SUPPLEMENTAL]] '
COMPLETED BY A.T. ENGINEERING SERVICES LLC, DATED 09/15/2023.	10 PRESIDENTIAL WAY WOBURN, MA 01801	NO SANITARY SEWER, POTABLE WATER OR TRASH DISPOSAL IS REQUIRED.	R-605	SUPPLEMENTAL				J L
63.10/2020.	ENGINEER:	HANDICAP ACCESS IS NOT REQUIRED. THE PROJECT DEPICTED IN THESE PLANS QUALIFIES AS AN	R-606	SUPPLEMENTAL				Ш
	ATC TOWER SERVICES, LLC	ELIGIBLE FACILITIES REQUEST ENTITLED TO EXPEDITED REVIEW UNDER 47 U.S.C. § 1455(A) AS A MODIFICATION OF AN	R-607	SUPPLEMENTAL				Ш
UTILITY COMPANIES	3500 REGENCY PKWY STE 100 CARY, NC 27518	EXISTING WIRELESS TOWER THAT INVOLVES THE COLLOCATION, REMOVAL, AND/OR REPLACEMENT OF	R-608	SUPPLEMENTAL]
POWER COMPANY: EVERSOURCE	PROPERTY OWNER:	TRANSMISSION EQUIPMENT THAT IS NOT A SUBSTANTIAL CHANGE UNDER CFR § 1.61000 (B)(7).	R-609	SUPPLEMENTAL				
PHONE: (888) 783-6617	TODD J MACHNIK	PROJECT LOCATION DIRECTIONS	R-610	SUPPLEMENTAL				
TELEPHONE COMPANY: AT&T PHONE: (866) 593-1383	125 MILE CREEK ROAD OLD LYME, CT 06371							11
Know where below. Call before you dig.		FROM WALLINGFORD: TAKE I-91 N TOWARD HARTFORD. GO TO RT. 9 S TO RT. 9 S TO TO EXIT 70. TURN RIGHT AT END OF EXIT. TAKE 3RD LEFT ONTO MILL CREEK RD. GO UNDER RAILROAD BRIDGE TO #125 MILE CREEK RD. (1.5 MILES TOTAL) MAIL BOX IS ON LEFT SIDE OF ROAD. TAKE RIGHT INTO THE CONSTRUCTION CO./FARM AND FOLLOW AROUND TO THE BACK.						 - -

SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 PEC.0001553 THE USE AND PUBLICATION OF THESE DRAWINGS SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OR THE SPECIFIED CARRIER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION.

A.T. ENGINEERING SERVICES LLC 3500 REGENCY PARKWAY

ATC SITE NUMBER:
411178
ATC SITE NAME:


OLD LYME SOUTH CT

T-MOBILE SITE NAME:

AMTRAK OLD LYME VERIZON

SITE ADDRESS: 125 MILE CREEK ROAD OLD LYME. CT 06371

SEAL:

T·Mobile

ATC PROJ. #:	14529806_G0
CUST. ID:	AMTRAK OLD LYME VERIZON
CUST. #:	CTNL802A

TITLE SHEET

SHEET NUMBER

G-001

GENERAL CONSTRUCTION NOTES:

- OWNER FURNISHED MATERIALS, T-MOBILE "THE COMPANY" WILL PROVIDE AND THE CONTRACTOR WILL INSTALL
 - A. BTS EQUIPMENT FRAME (PLATFORM) AND ICEBRIDGE SHELTER (GROUND BUILD/CO-LOCATE ONLY)
 - AC/TELCO INTERFACE BOX (PPC)

 - D. TOWERS, MONOPOLES
 - TOWER LIGHTING
 - GENERATORS & LIQUID PROPANE TANK
 - ANTENNA STANDARD BRACKETS, FRAMES AND PIPES FOR MOUNTING
 - ANTENNAS (INSTALLED BY OTHERS)
 - TRANSMISSION LINE
 - TRANSMISSION LINE JUMPERS
 - TRANSMISSION LINE CONNECTORS WITH WEATHERPROOFING KITS
 - TRANSMISSION LINE GROUND KITS
 - HANGERS
 - HOISTING GRIPS
 - O. BTS EQUIPMENT
- THE CONTRACTOR IS RESPONSIBLE TO PROVIDE ALL OTHER MATERIALS FOR THE COMPLETE INSTALLATION OF THE SITE INCLUDING, BUT NOT LIMITED TO, SUCH MATERIALS AS FENCING, STRUCTURAL STEEL SUPPORTING SUB-FRAME FOR PLATFORM, ROOFING LABOR AND MATERIALS GROUNDING RINGS GROUNDING WIRES COPPER-CLAD OR XIT CHEMICAL GROUND ROD(S), BUSS BARS, TRANSFORMERS AND DISCONNECT SWITCHES WHERE APPLICABLE, TEMPORARY ELECTRICAL POWER, CONDUIT, LANDSCAPING COMPOUND STONE, CRANES, CORE DRILLING, SLEEPERS AND RUBBER MATTING, REBAR, CONCRETE CAISSONS, PADS AND/OR AUGER MOUNTS, MISCELLANEOUS FASTENERS, CABLE TRAYS, NON-STANDARD ANTENNA FRAMES AND ALL OTHER MATERIAL AND LABOR REQUIRED TO COMPLETE THE JOB ACCORDING TO THE DRAWINGS AND SPECIFICATIONS. IT IS THE POSITION OF T-MOBILE TO APPLY FOR PERMITTING AND CONTRACTOR RESPONSIBLE FOR PICKUP AND PAYMENT OF REQUIRED
- ALL WORK SHALL CONFORM TO ALL CURRENT APPLICABLE FEDERAL, STATE, AND LOCAL CODES, INCLUDING ANSI/EIA/TIA-222, AND COMPLY WITH ATC CONSTRUCTION
- CONTRACTOR SHALL CONTACT LOCAL 811 FOR IDENTIFICATION OF UNDERGROUND
- CONTRACTOR SHALL BE RESPONSIBLE FOR COORDINATING ALL REQUIRED INSPECTIONS.
- ALL DIMENSIONS TO, OF, AND ON EXISTING BUILDINGS, DRAINAGE STRUCTURES, AND SITE IMPROVEMENTS SHALL BE VERIFIED IN FIELD BY CONTRACTOR WITH ALL DISCREPANCIES REPORTED TO THE ENGINEER.
- DO NOT CHANGE SIZE OR SPACING OF STRUCTURAL ELEMENTS
- DETAILS SHOWN ARE TYPICAL: SIMILAR DETAILS APPLY TO SIMILAR CONDITIONS UNLESS
- THESE DRAWINGS DO NOT INCLUDE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY WHICH SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR
- CONTRACTOR SHALL BRACE STRUCTURES UNTIL ALL STRUCTURAL ELEMENTS NEEDED FOR STABILITY ARE INSTALLED. THESE ELEMENTS ARE AS FOLLOWS: LATERAL BRACING, 34.
- CONTRACTOR SHALL DETERMINE EXACT LOCATION OF EXISTING UTILITIES, GROUNDS DRAINS, DRAIN PIPES, VENTS, ETC, BEFORE COMMENCING WORK
- INCORRECTLY FABRICATED, DAMAGED, OR OTHERWISE MISFITTING OR NONCONFORMING MATERIALS OR CONDITIONS SHALL BE REPORTED TO THE T-MOBILE REP PRIOR TO REMEDIAL OR CORRECTIVE ACTION, ANY SUCH REMEDIAL ACTION SHALL REQUIRE WRITTEN APPROVAL BY THE T-MOBILE REP PRIOR TO PROCEEDING.
- EACH CONTRACTOR SHALL COOPERATE WITH THE T-MOBILE REP, AND COORDINATE HIS WORK WITH THE WORK OF OTHERS.
- CONTRACTOR SHALL REPAIR ANY DAMAGE CAUSED BY CONSTRUCTION OF THIS PROJECT TO MATCH EXISTING PRE-CONSTRUCTION CONDITIONS TO THE SATISFACTION
- ALL CABLE/CONDUIT ENTRY/EXIT PORTS SHALL BE WEATHERPROOFED DURING 15. INSTALLATION LISING A SILICONE SEALANT
- WHERE EXISTING CONDITIONS DO NOT MATCH THOSE SHOWN IN THIS PLAN SET. CONTRACTOR SHALL NOTIFY THE T-MOBILE REP AND ENGINEER OF RECORD
- CONTRACTOR SHALL ENSURE ALL SUBCONTRACTORS ARE PROVIDED WITH A COMPLETE AND CURRENT SET OF DRAWINGS AND SPECIFICATIONS FOR THIS PROJECT
- CONTRACTOR SHALL REMOVE ALL RUBBISH AND DEBRIS FROM THE SITE AT THE END OF
- CONTRACTOR SHALL COORDINATE WORK SCHEDULE WITH AMERICAN TOWER CORPORATION (ATC) AND TAKE PRECAUTIONS TO MINIMIZE IMPACT AND DISRUPTION OF OTHER OCCUPANTS OF THE FACILITY.
- CONTRACTOR SHALL FURNISH T-MOBILE AND AMERICAN TOWER CORPORATION (ATC) ITH A PDF MARKED UP AS-BUILT SET OF DRAWINGS UPON COMPLETION OF WOR
- PRIOR TO SUBMISSION OF BID. CONTRACTOR SHALL COORDINATE WITH T-MOBILE REP 2. TO DETERMINE WHAT, IF ANY, ITEMS WILL BE PROVIDED. ALL ITEMS NOT PROVIDED SHALL BE PROVIDED AND INSTALLED BY THE CONTRACTOR. CONTRACTOR WILL INSTALL

- 22. PRIOR TO SUBMISSION OF BID. CONTRACTOR SHALL COORDINATE WITH T-MORII F REP TO DETERMINE IF ANY PERMITS WILL BE OBTAINED BY CONTRACTOR. ALL REQUIRED PERMITS NOT OBTAINED BY T-MOBILE MUST BE OBTAINED. AND PAID FOR, BY THE
- CONTRACTOR SHALL INSTALL ALL SITE SIGNAGE IN ACCORDANCE WITH T-MOBILE SPECIFICATIONS AND REQUIREMENTS.
- ICE BRIDGE (CABLE TRAY WITH COVER) (GROUND BUILD/CO-LOCATE ONLY, GC
 TO FURNISH AND INSTALL FOR ROOFTOP INSTALLATION)

 24. CONTRACTOR SHALL SUBMIT ALL SHOP DRAWINGS TO T-MOBILE FOR REVIEW AND APPROVAL PRIOR TO FABRICATION.
 - ALL EQUIPMENT SHALL BE INSTALLED ACCORDING TO MANUFACTURER'S SPECIFICATIONS AND LOCATED ACCORDING TO T-MOBILE SPECIFICATIONS, AND AS
 - 26. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE PROJECT DESCRIBED HEREIN THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR ALL THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING ALL PORTIONS OF THE WORK UNDER THE CONTRACT.
 - CONTRACTOR SHALL NOTIFY T-MOBILE REP A MINIMUM OF 48 HOURS IN ADVANCE OF POURING CONCRETE OR BACKFILLING ANY UNDERGROUND UTILITIES, FOUNDATIONS OR SEALING ANY WALL, FLOOR OR ROOF PENETRATIONS FOR ENGINEERING REVIEW AND
 - WHEN THE PROJECT SCOPE REQUIRES THE USE OF THE SAFETY CLIMB, THE GENERAL CONTRACTOR SHALL ENSURE THE SAFETY CLIMB IS FREE OF OBSTRUCTIONS, NOT RUBBING ON OR TRAPPED BY ANY INSTALLED CUSTOMER EQUIPMENT, IS VISUALLY AUT, MEETS MANUFACTURER INSTALLATION SPECIFICATIONS, AND IS FIRMLY SECURED AT ALL CABLE GUIDE LOCATIONS UPON PROJECT COMPLETION
 - COMPLETION OF PROJECT SHALL NOT OBSTRUCT TRAP LOOSEN OR OTHERWISE CAUSE FAILURE TO MEET MANUFACTURER INSTALLATION REQUIREMENTS FOR THE SAFETY CLIMB.
 - CONTRACTOR SHALL BE RESPONSIBLE FOR SITE SAFETY INCLUDING COMPLIANCE WITH ALL APPLICABLE OSHA STANDARDS AND RECOMMENDATIONS AND SHALL PROVIDE ALL NECESSARY SAFETY DEVICES INCLUDING PPE AND PPM AND CONSTRUCTION DEVICES SUCH AS WELDING AND FIRE PREVENTION, TEMPORARY SHORING, SCAFFOLDING, TRENCH BOXES/SLOPING, BARRIERS, ETC.
 - THE CONTRACTOR SHALL PROTECT AT HIS OWN EXPENSE. ALL EXISTING FACILITIES AND SUCH OF HIS NEW WORK LIABLE TO INJURY DURING THE CONSTRUCTION PERIOD. ANY DAMAGE CAUSED BY NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, OR BY THE ELEMENTS DUE TO NEGLECT ON THE PART OF THIS CONTRACTOR OR HIS REPRESENTATIVES, EITHER TO THE EXISTING WORK, OR TO HIS WORK OR THE WORK OF ANY OTHER CONTRACTOR, SHALL BE REPAIRED AT HIS EXPENSE TO THE OWNER'S SATISFACTION.
 - ALL WORK SHALL BE INSTALLED IN A FIRST CLASS, NEAT AND WORKMANLIKE MANNER BY MECHANICS SKILLED IN THE TRADE INVOLVED. THE QUALITY OF WORKMANSHIP SHALL BE SUBJECT TO THE APPROVAL OF THE T-MOBILE REP. ANY WORK FOUND BY THE T-MOBILE REP TO BE OF INFERIOR QUALITY AND/OR WORKMANSHIP SHALL BE REPLACED AND/OR REWORKED AT CONTRACTOR EXPENSE UNTIL APPROVAL IS
 - IN ORDER TO ESTABLISH STANDARDS OF QUALITY AND PERFORMANCE, ALL TYPES OF MATERIALS LISTED HEREINAFTER BY MANUFACTURER'S NAMES AND/OR MANUFACTURER'S CATALOG NUMBER SHALL BE PROVIDED BY THESE MANUFACTURERS
 - T-MOBILE FURNISHED EQUIPMENT SHALL BE PICKED-UP AT THE T-MOBILE WAREHOUSE, NO LATER THAN 48HR AFTER BEING NOTIFIED INSURED, STORED, UNCRATE, PROTECTED AND INSTALLED BY THE CONTRACTOR WITH ALL APPLIETENANCES REQUIRED TO PLACE THE EQUIPMENT IN OPERATION, READY FOR USE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE EQUIPMENT AFTER PICKING IT UP.
 - 35. T-MOBILE OR HIS ARCHITECT/ENGINEER RESERVES THE RIGHT TO REJECT ANY EQUIPMENT OR MATERIALS WHICH, IN HIS OWN OPINION ARE NOT IN COMPLIANCE WITH THE CONTRACT DOCUMENTS, EITHER BEFORE OR AFTER INSTALLATION AND THE EQUIPMENT SHALL BE REPLACED WITH EQUIPMENT CONFORMING TO THE REQUIREMENTS OF THE CONTRACT DOCUMENTS BY THE CONTRACTOR AT NO COST TO

SPECIAL CONSTRUCTION ANTENNA INSTALLATION NOTES:

- WORK INCLUDED:
 - ANTENNA AND COAXIAL/HYBRID CABLES ARE FURNISHED BY T-MOBILE UNDER A SEPARATE CONTRACT. THE CONTRACTOR SHALL ASSIST ANTENNA INSTALLATION CONTRACTOR IN TERMS OF COORDINATION AND SITE ACCESS. ERECTION SUBCONTRACTOR SHALL BE RESPONSIBLE FOR THE PROTECTION OF
 - B. INSTALL ANTENNAS AS INDICATED ON DRAWINGS AND T-MOBILE
 - C. INSTALL GALVANIZED STEEL ANTENNA MOUNTS AS INDICATED ON DRAWINGS.
 - D. INSTALL FURNISHED GALVANIZED STEEL OR ALUMINUM WAVEGUIDE
 - INSTALL COAXIAL/HYBRID CABLES AND TERMINATING BETWEEN ANTENNAS AND EQUIPMENT PER MANUFACTURER'S RECOMMENDATIONS. WEATHERPROOF ALL CONNECTIONS BETWEEN THE ANTENNA AND EQUIPMENT PER MANUFACTURER'S REQUIREMENTS. TERMINATE ALL COAXIAL/HYBRID CABLE THREE (3) FEET IN EXCESS OF ENTRY PORT LOCATION UNLESS OTHERWISE STATED
- ANTENNA AND COAXIAL/HYBRID CABLE GROUNDING:
 - A. ALL EXTERIOR #6 GREEN GROUND WIRE "DAISY CHAIN" CONNECTIONS ARE TO BE WEATHER SEALED WITH RFS CONNECTORS/SPLICE WEATHERPROOFING KIT

ALL COAXIAL/HYBRID CABLE GROUNDING KITS ARE TO BE INSTALLED ON STRAIGHT RUNS OF COAXIAL/HYBRID CABLE (NOT WITHIN BENDS)

> ALL DISCREPANCIES FROM WHAT IS SHOWN ON THESE CONSTRUCTION DRAWINGS SHALL BE COMMUNICATED TO ATC ENGINEERING IMMEDIATELY FOR CORRECTION OR RE-DESIGN. FAILURE TO COMMUNICATE DIRECTLY WITH ATC ENGINEERING OR ANY CHANGES FROM THE DESIGN CONDUCTED WITHOUT PRIOR APPROVAL FROM ATC ENGINEERING SHALL BE THE SOLE RESPONSIBILITY OF THE GENERAL CONTRACTOR.

A.T. ENGINEERING SERVICES LLC 3500 REGENCY PARKWAY

SUITE 100 **CARY, NC 27518** PHONE: (919) 468-0112 PEC.0001553

THE USE AND PUBLICATION OF THESE DRAWINGS SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIEV ALL DIMENSIONS AND ADVISE AMERICAN TOWER OR THE SPECIFIED CARRIER OF ANY DISCREPANCIES, ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION.

REV.	DESCRIPTION	BY	DATE
\triangle _	FOR CONSTRUCTION	JLR_	10/17/23
\wedge			
$\overline{\wedge}$			
$\overline{\wedge}$			
\bigcap			
\longrightarrow			

ATC SITE NUMBER: 411178 ATC SITE NAME:

OLD LYME SOUTH CT

T-MOBILE SITE NAME:

AMTRAK OLD LYME VERIZON

SITE ADDRESS: 125 MILE CREEK ROAD OLD LYME, CT 06371

SEAL

Digitally Signed: 2023-10-18

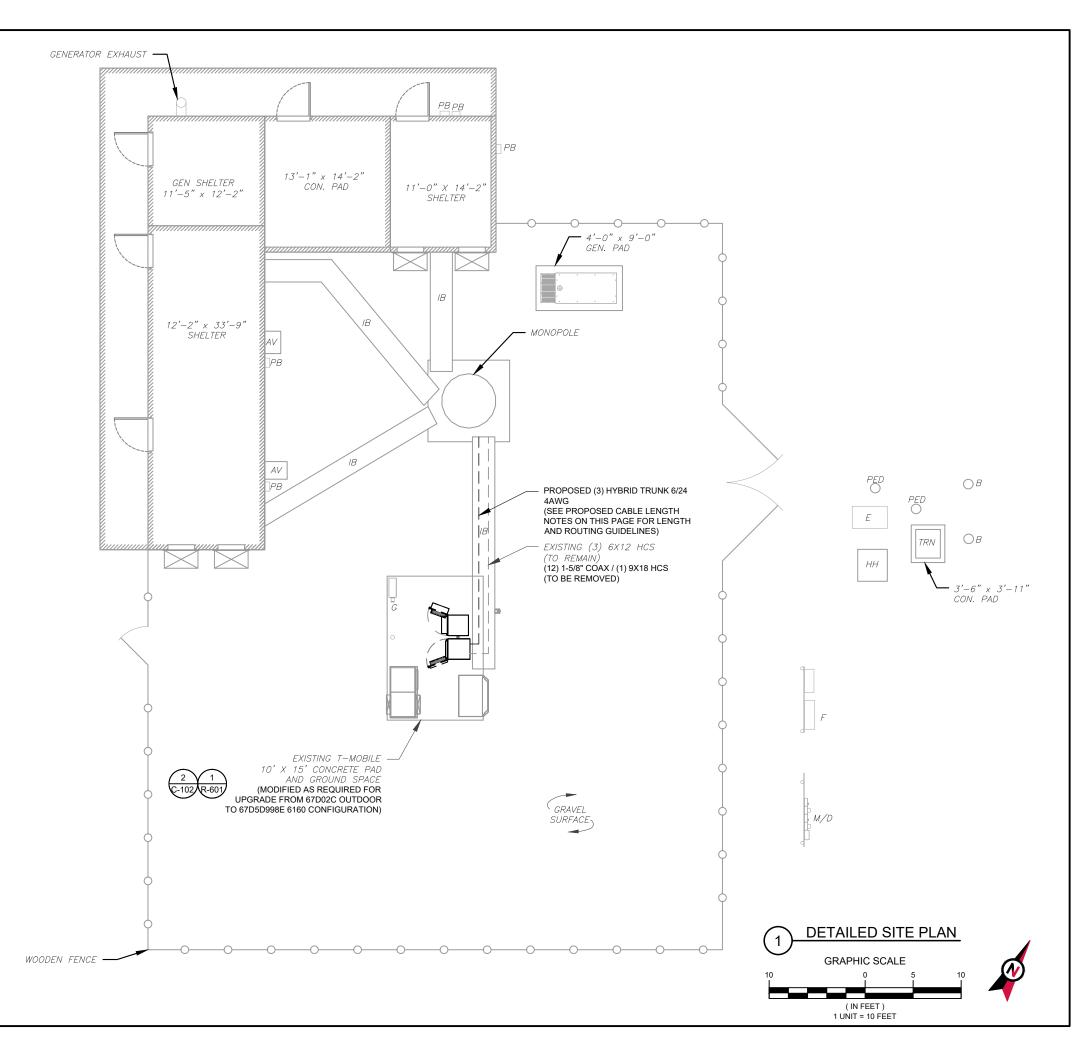
T·Mobile

ATC PROJ. #: 14529806_G0 CUST ID: AMTRAK OLD LYME VERIZON CTNL802A CUST. #:

GENERAL NOTES

SHEET NUMBER:

G-002


SITE PLAN NOTES:

- THIS SITE PLAN REPRESENTS THE BEST PRESENT KNOWLEDGE AVAILABLE TO THE ENGINEER AT THE TIME OF THIS DESIGN. THE CONTRACTOR SHALL VISIT THE SITE PRIOR TO CONSTRUCTION AND VERIFY ALL EXISTING CONDITIONS RELATED TO THE SCOPE OF WORK FOR THIS PROJECT.
- 2. ICE BRIDGE, CABLE LADDER, COAX PORT, AND COAX CABLE ARE SHOWN FOR REFERENCE ONLY. CONTRACTOR SHALL CONFIRM THE EXACT LOCATION OF ALL PROPOSED AND EXISTING EQUIPMENT AND STRUCTURES DEPICTED ON THIS PLAN. BEFORE UTILIZING EXISTING CABLE SUPPORTS, COAX PORTS, INSTALLING NEW PORTS OR ANY OTHER EQUIPMENT, CONTRACTOR SHALL VERIFY ALL ASPECTS OF THE COMPONENTS MEET THE ATC SPECIFICATIONS.
- 3. NO ELECTRICAL SCOPE IS INCLUDED IN THIS PROJECT.

LEGEND GROUNDING TEST WELL AUTOMATIC TRANSFER SWITCH ATS BOLLARD CSC CELL SITE CABINET DISCONNECT ELECTRICAL FIBER GEN **GENERATOR** GENERATOR RECEPTACLE HH, V HAND HOLE, VAULT ICE BRIDGE KENTROX BOX LIGHTING CONTROL METER PULL BOX POWER POLE TELCO TRN TRANSFORMER CHAINLINK FENCE

PROPOSED CABLE NOTES:

- 1. ESTIMATED LENGTH OF PROPOSED CABLE IS <u>225'</u>.
 ESTIMATED LENGTH OF CABLE WAS PROVIDED BY
 CUSTOMER OR CALCULATED BY ADDING THE RAD
 CENTER AND THE DISTANCE FROM THE SHELTER
 ENTRY PLATE TO THE TOWER (ALONG THE ICE
 BRIDGE) AND A SAFETY FACTOR MEASUREMENT OF
 15% (OF THE TWO PREVIOUS VALUES), CDS DEFER
 TO GREATEST CABLE LENGTH.
- 2. ROUTE PROPOSED CABLES ALONG SAME PATH AS EXISTING CABLES AND IN ACCORDANCE WITH STRUCTURAL ANALYSIS. IF ADEQUATE SPACE EXISTS, ROUTE CABLES THROUGH ENTRY PORT HOLE, UP INSIDE OF MONOPOLE, AND THROUGH EXIT PORT HOLE. IF ROUTING OUTSIDE THE MONOPOLE, ATTACH CABLES USING STAND-OFF ADAPTERS MOUNTED TO TOWER USING STAINLESS STEEL BANDING. ADEQUATELY SECURE CABLES USING EITHER APPROPRIATELY SIZED STAINLESS STEEL SNAP-INS OR MOUNTING HARDWARE AND BRACKETS AS SPECIFIED BY CABLE MANUFACTURER.

A.T. ENGINEERING SERVICES LLC 3500 REGENCY PARKWAY SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112

PEC.0001553

THE USE AND PUBLICATION OF THESE DRAWINGS SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OR THE SPECIFIED CARRIER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION.

REV.	DESCRIPTION	BY	DATE
<u> </u>	FOR CONSTRUCTION	JLR	10/17/23
\triangle _			
\wedge			
$ \overline{\wedge} $			
$\overline{\wedge}$			
-			

ATC SITE NUMBER:
411178
ATC SITE NAME:

OLD LYME SOUTH CT

T-MOBILE SITE NAME:

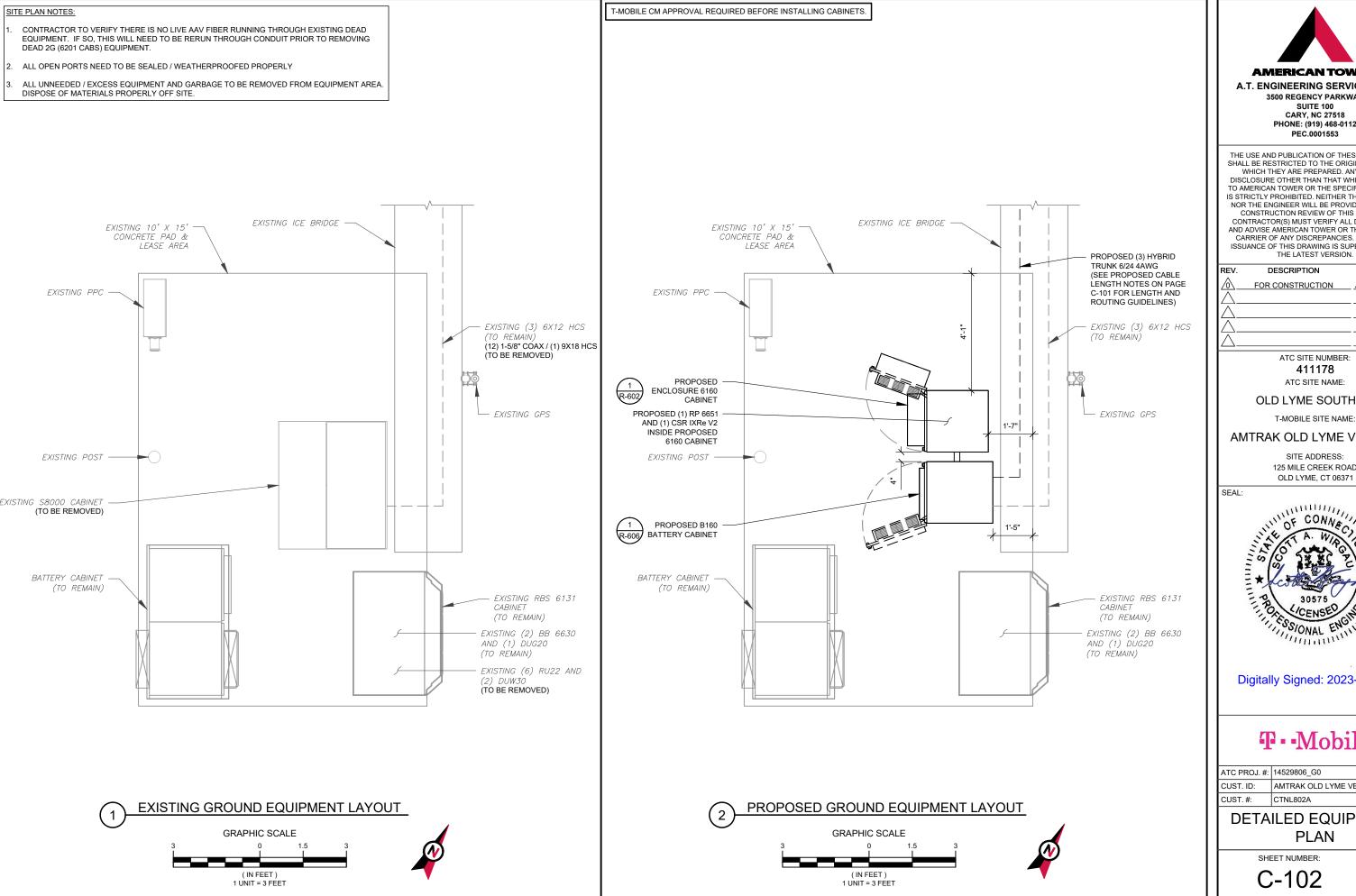
AMTRAK OLD LYME VERIZON

SITE ADDRESS: 125 MILE CREEK ROAD OLD LYME, CT 06371

SEAL:

Digitally Signed: 2023-10-18

T·Mobile


ATC PROJ. #:	14529806_G0
CUST. ID:	AMTRAK OLD LYME VERIZON
CUST. #:	CTNL802A

DETAILED SITE PLAN

SHEET NUMBER:

C-101

0

A.T. ENGINEERING SERVICES LLC 3500 REGENCY PARKWAY

SUITE 100 **CARY, NC 27518** PHONE: (919) 468-0112 PEC.0001553

THE USE AND PUBLICATION OF THESE DRAWINGS SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OR THE SPECIFIED CARRIER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY

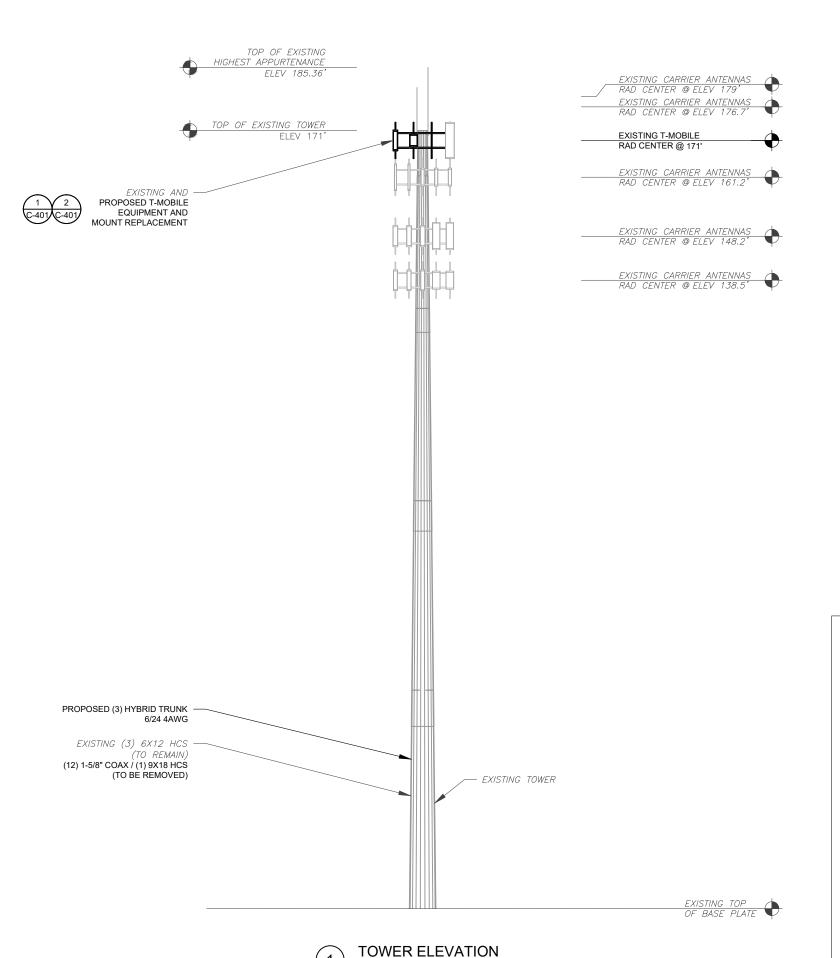
REV.	DESCRIPTION	BY	DATE
△_	FOR CONSTRUCTION	JLR_	10/17/23
\wedge_{-}			
$\overline{\wedge}$			
$\overline{\wedge}$			
$\overline{\wedge}$			

411178 ATC SITE NAME:

OLD LYME SOUTH CT

AMTRAK OLD LYME VERIZON

125 MILE CREEK ROAD OLD LYME, CT 06371



Digitally Signed: 2023-10-18

T·Mobile

ATC PROJ. #:	14529806_G0		
CUST. ID:	AMTRAK OLD LYME VERIZON		
CUST. #:	CTNL802A		

DETAILED EQUIPMENT

SCALE: N.T.S.

PER MOUNT ANALYSIS COMPLETED BY A.T. ENGINEERING SERVICE, PLLC, DATED 09/14/2023, THE PROPOSED MOUNT CAN ADEQUATELY SUPPORT THE PROPOSED LOADING.

- IT IS THE CONTRACTOR'S RESPONSIBILITY TO CONFIRM WITH THE PROJECT MANAGER THAT THEY HAVE THE MOST RECENT VERSION OF THE STRUCTURAL ANALYSIS BEFORE COMMENCING WORK. EXISTING AND PROPOSED TOWER APPURTENANCES, MOUNTS, AND ANTENNAS ARE SHOWN BASED ON THE STRUCTURAL ANALYSIS.
- 2. WHERE APPLICABLE, ALL NEW ANTENNAS, EQUIPMENT, MOUNTS, CABLING, ETC. SHALL BE PAINTED/SOCKED TO MATCH EXISTING EQUIPMENT IN ACCORDANCE WITH FAA, JURISDICTION, AND/OR OTHER LOCAL REQUIREMENTS.
- 3. ROUTE PROPOSED CABLES ALONG SAME PATH AS EXISTING CABLES AND IN ACCORDANCE WITH STRUCTURAL ANALYSIS. IF ADEQUATE SPACE EXISTS, ROUTE CABLES THROUGH ENTRY PORT HOLE, UP INSIDE OF MONOPOLE, AND THROUGH EXIT PORT HOLE IF ROUTING OUTSIDE THE MONOPOLE, ATTACH CABLES USING STAND-OFF ADAPTERS MOUNTED TO TOWER USING STAINLESS STEEL BANDING. ADEQUATELY SECURE CABLES USING EITHER APPROPRIATELY SIZED STAINLESS STEEL SNAP-INS OR MOUNTING HARDWARE AND BRACKETS AS SPECIFIED BY CABLE
- MANUFACTURER.
 TOWER ELEVATIONS ARE MEASURED FROM TOP OF BASE PLATE TO MATCH STRUCTURAL ANALYSIS. ELEVATIONS DO NOT REFLECT TRUE ABOVE GROUND LEVEL (A.G.L.)
- TOWER ELEVATION DEPICTION MAY NOT REFLECT ALL EQUIPMENT INCLUDED IN STRUCTURAL ANALYSIS. REFER TO STRUCTURAL ANALYSIS FOR FULL TOWER LOADING.

A.T. ENGINEERING SERVICES LLC 3500 REGENCY PARKWAY

SUITE 100 **CARY, NC 27518** PHONE: (919) 468-0112 PEC.0001553

THE USE AND PUBLICATION OF THESE DRAWINGS SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OR THE SPECIFIED CARRIER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION.

REV.	DESCRIPTION	BY	DATE
\wedge	FOR CONSTRUCTION	JLR	10/17/23
$\overline{\wedge}$			
$\overline{\wedge}$			
$\overline{\wedge}^-$			
$\overline{\wedge}$			

ATC SITE NUMBER: 411178 ATC SITE NAME:

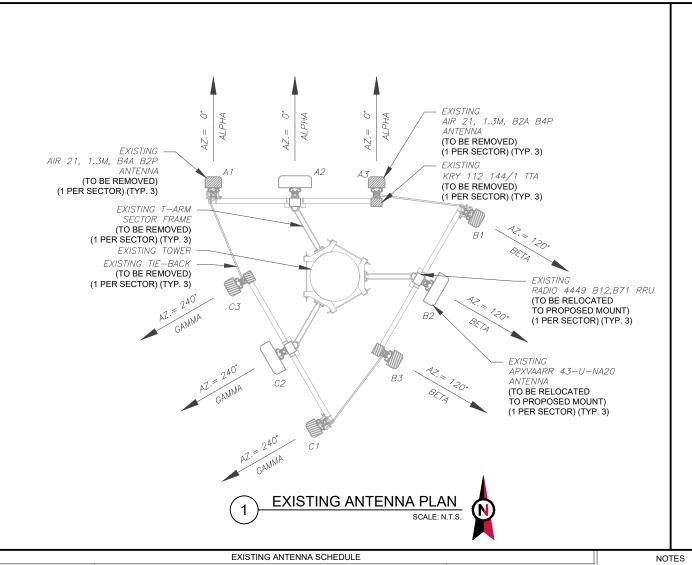
OLD LYME SOUTH CT

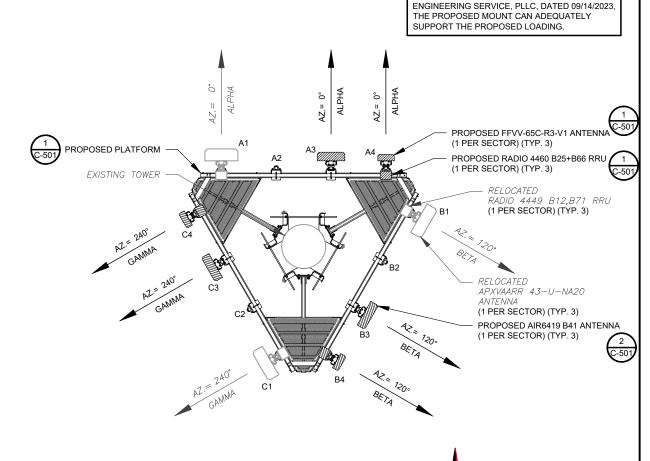
T-MOBILE SITE NAME:

AMTRAK OLD LYME VERIZON

SITE ADDRESS: 125 MILE CREEK ROAD OLD LYME, CT 06371

Digitally Signed: 2023-10-18


T·Mobile


١	ATC PROJ. #:	14529806_G0
	CUST. ID:	AMTRAK OLD LYME VERIZON
١	CUST. #:	CTNL802A

TOWER ELEVATION

SHEET NUMBER:

C-201

PER MOUNT ANALYSIS COMPLETED BY A.T.

	EXISTING ANTENNA SCHEDULE									П
LOC	CATION			ANTEN	NA SUMMARY			NON ANTENNA SUMM	IARY	1.
SECTOR	RAD	AZ	POS	ANTENNA	BAND	MECH/ELEC D-TILT	STATUS	ADDITIONAL TOWER MOUNTED EQUIPMENT	STATUS	
			A1	AIR 21, 1.3M, B4A B2P	L2100	0°/2°	RMV	_	-	il
ALPHA	171'	0°	A2	APXVAARR24 43-U-NA20	L700/L600/N600	0°/2°	REL	RADIO 4449 B12,B71	REL	2.
			A3	AIR 21, 1.3M, B2A B4P	G1900/U1900	0°/2°	RMV	KRY 112 144/1	RMV	
			B1	AIR 21, 1.3M, B4A B2P	L2100	0°/2°	RMV	_	-	
BETA	171'	120°	B2	APXVAARR24 43-U-NA20	L700/L600/N600	0°/2°	REL	RADIO 4449 B12,B71	REL	jL
			B3	AIR 21, 1.3M, B2A B4P	G1900/U1900	0°/2°	RMV	KRY 112 144/1	RMV	<u> </u>
			C1	AIR 21, 1.3M, B4A B2P	L2100	0°/2°	RMV	_	_	
GAMMA	171'	240°	C2	APXVAARR24 43-U-NA20	L700/L600/N600	0°/2°	REL	RADIO 4449 B12,B71	REL	
			C3	AIR 21, 1.3M, B2A B4P	G1900/U1900	0°/2°	RMV	KRY 112 144/1	RMV	

CONFIRM WITH T-MOBILE REP FOR APPLICABLE UPDATES/REVISIONS AND MOST RECENT RFDS FOR NSN CONFIGURATION (CONFIG), GC TO CAP ALL UNUSED PORTS. . CONFIRM SPACING OF PROPOSED EQUIP DOES NOT CAUSE TOWER CONFLICTS NOR IMPEDE TOWER CLIMBING PEGS. STATUS ABBREVIATIONS

RMV: TO BE REMOVED

REL: TO BE RELOCATED

RMN: TO REMAIN

ADD: TO BE ADDED

CABLE LENGTHS FOR JUMPERS
JUNCTION BOX TO RRU: 15' RRU TO ANTENNA: 10'

ABLE LENGTHS FOR JUMPERS
JUNCTION BOX TO RRU: 15' RRU TO ANTENNA: 10'

FINAL FIBER DISTRIBUTION / OVE	P BOX	FINAL CABLING SUMMARY		
MODEL NUMBER	STATUS	CABLE QTY, SIZE, TYPE	STATUS	
-	-	(3) 6X12 HCS	RMN	
-	-	(3) HYBRID TRUNK 6/24 4AWG	ADD	

FINAL ANTENNA PLAN SCALE: N.T.S. FINAL ANTENNA SCHEDULE LOCATION ANTENNA SUMMARY NON ANTENNA SUMMARY MECH/ELEC | STATUS ADDITIONAL TOWER SECTOR RAD AZ POS ANTENNA STATUS MOUNTED EQUIPMENT D-TILT APXVAARR24 L700/L600/N600 0./0. REL RADIO 4449 B12,B71 REL 43-U-NA20 A2 ALPHA 171' 0° A3 AIR 6419 B41 N2500/L2500 0°/0° ADD G1900/L2100/L1900/ A4 VV-65A-R1B 0°/0° ADD RADIO 4460 B25+B66 ADD N1900 APXVAARR24 В1 L700/L600/N600 0°/0° REL RADIO 4449 B12.B71 REL 43-U-NA20 B2 171' 120° В3 AIR 6419 B41 N2500/L2500 0°/0° ADD G1900/L2100/L1900/ VV-65A-R1B 0°/0° ADD RADIO 4460 B25+B66 ADD N1900 APXVAARR24 L700/L600/N600 0./0. REL RADIO 4449 B12,B71 REL 43-U-NA20 GAMMA 171' 240° C3 AIR 6419 B41 N2500/L2500 0°/0° ADD G1900/L2100/L1900/ C4 VV-65A-R1B 0°/0° ADD RADIO 4460 B25+B66 ADD N1900

A.T. ENGINEERING SERVICES LLC 3500 REGENCY PARKWAY SUITE 100

CARY, NC 27518 PHONE: (919) 468-0112 PEC.0001553

THE USE AND PUBLICATION OF THESE DRAWINGS SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OR THE SPECIFIED CARRIER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION.

ı	REV.	DESCRIPTION	BY	DATE
ı	\triangle_{-}	FOR CONSTRUCTION	JLR	10/17/23
I	\wedge_{-}			
I	$\overline{\wedge}$			
ı	$\overline{\wedge}$			
ì	\triangle			

411178 ATC SITE NAME:

OLD LYME SOUTH CT

ATC SITE NUMBER:

T-MOBILE SITE NAME:

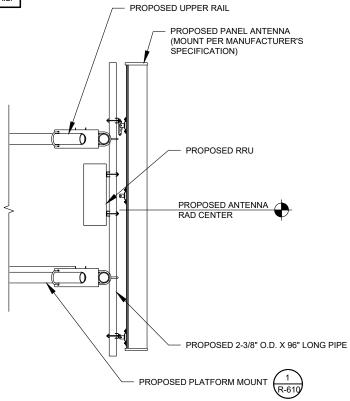
AMTRAK OLD LYME VERIZON

SITE ADDRESS: 125 MILE CREEK ROAD OLD LYME, CT 06371

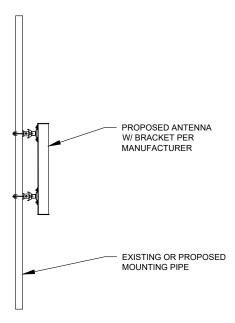
Digitally Signed: 2023-10-18

T·Mobile

ATC PROJ. #:	14529806_G0
CUST. ID:	AMTRAK OLD LYME VERIZON
CUST. #:	CTNL802A


ANTENNA INFORMATION & SCHEDULE

SHEET NUMBER: C-401 REVISION: 0


EXISTING FIBER DISTRIBUTION/OVP BOX **EXISTING CABLING SUMMARY** CABLE QTY, SIZE, TYPE STATUS MODEL NUMBER STATUS (3) 6X12 HCS (12) 1-5/8" COAX / (1) 9X18 HCS RMV

EQUIPMENT SCHEDULES

EXISTING/PROPOSED MOUNTS AND/OR MOUNT MODIFICATIONS NOT SHOWN FOR CLARITY. REFER TO ANTENNA PLANS, MOUNT ANALYSES AND/OR MOUNT MODIFICATION DOCUMENTS FOR ADDITIONAL DETAIL.

PROPOSED ANTENNA MOUNTING DETAIL (ELEVATION)

PROPOSED 5G ANTENNA MOUNTING DETAIL - TYPICAL

AMERICAN TOWER®

A.T. ENGINEERING SERVICES LLC 3500 REGENCY PARKWAY SUITE 100

SUITE 100 CARY, NC 27518 PHONE: (919) 468-0112 PEC.0001553

THE USE AND PUBLICATION OF THESE DRAWINGS SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OR THE SPECIFIED CARRIER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION.

REV.	DESCRIPTION	BY	DATE
△_	FOR CONSTRUCTION	JLR	10/17/23
\triangle _			
\wedge			
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER:
411178
ATC SITE NAME:


OLD LYME SOUTH CT

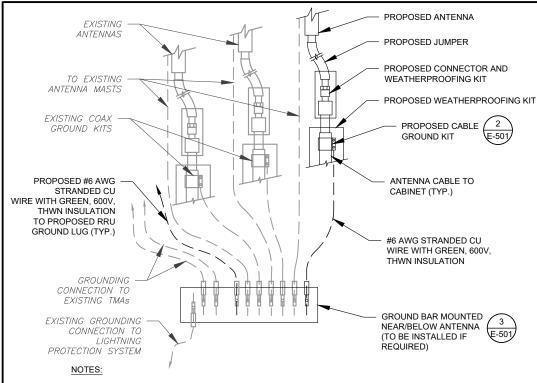
T-MOBILE SITE NAME:

AMTRAK OLD LYME VERIZON

SITE ADDRESS: 125 MILE CREEK ROAD OLD LYME, CT 06371

SEA

Digitally Signed: 2023-10-18

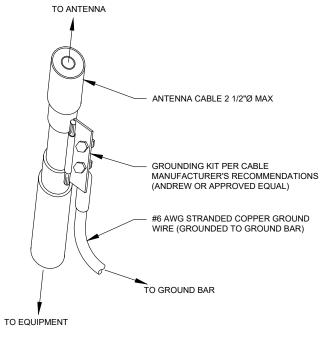

T··Mobile·

	ATC PROJ. #:	14529806_G0
	CUST. ID:	AMTRAK OLD LYME VERIZON
	CUST. #:	CTNL802A

CONSTRUCTION DETAILS

SHEET NUMBER:

C-501


1. THIS DETAIL IS INTENDED TO SHOW THE GENERAL GROUNDING REQUIREMENTS. SLIGHT ADJUSTMENTS MAY BE REQUIRED BASED ON EXISTING SITE CONDITIONS. THE CONTRACTOR SHALL MAKE FIELD ADJUSTMENTS AS NEEDED AND INFORM THE CONSTRUCTION MANAGER OF ANY CONFLICTS.

2. SITE GROUNDING SHALL COMPLY WITH T-MOBILE GROUNDING STANDARDS, LATEST EDITION, AND COMPLY WITH T-MOBILE GROUNDING CHECKLIST, LATEST VERSION. WHEN NATIONAL AND LOCAL GROUNDING CODES ARE MORE STRINGENT THEY SHALL GOVERN.

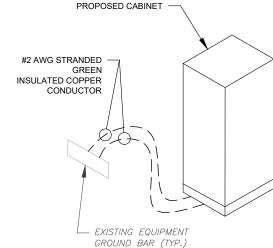
TYPICAL ANTENNA GROUNDING DIAGRAM

GROUND

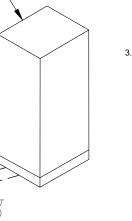
LENC

GROUND RING TO MGB OR SSC

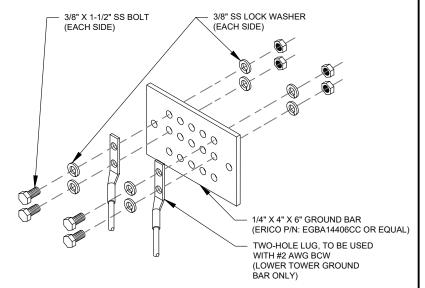
- <u>GROUND KIT NOTES:</u>


 1. DO NOT INSTALL CABLE GROUND KIT AT A BEND AND ALWAYS DIRECT GROUND WIRE DOWN TO GROUND BAR.
- 2. CONTRACTOR SHALL PROVIDE WEATHERPROOFING KIT (ANDREW PART NUMBER 221213) AND INSTALL/TAPE PER MANUFACTURER'S SPECIFICATIONS

CABLE GROUND KIT CONNECTION DETAIL


STANDARD CONDUIT USE TABLE					
CONDUIT TYPE	USE CASE	LOCATION	USE CASE EXAMPLE		
RMC (METALLIC)	AC, DC COMM	ABOVE GROUND	ABOVE GROUND PPC TO SSC		
PVC	AC POWER	UNDERGROUND	UNDERGROUND PPC TO SSC OR BACKHAUL TRANSPORT HUB TO SSC		
LFMC	AC, DC, COMM	MAX 6' PER CONDUIT RUN, ABOVE GROUND ONLY	TIGHT LOCATIONS BETWEEN HUB AND CONDUIT BUT NOT TO BE USED WHERE IT CAN BE STEPPED ON		
EMT	INDOOR AC, DC COMM	INDOOR NOT EXPOSED TO THE OUTDOOR ENVIRONMENT (MUST BE DRY)	CIRCUIT PANEL TO JUNCTION BOX		

EXCEPTION CONDUIT USE TABLE					
CONDUIT TYPE	USE CASE	LOCATION	USE CASE EXAMPLE		
EMT (NOT PREFERRED)	OUTDOOR DC, COMM	OUTDOOR WHEN USED WITH WATERTIGHT HUBS ONLY	BETWEEN EQUIPMENT AND BATTERY CABINET OR EQUIPMENT TO EQUIPMENT CABINETS FOR INTER CABINET CONNECTION		
RMC NONMETALLIC (ALUMINUM)	OUTDOOR/INDOOR PER NEC GUIDLINES	ABOVE GROUND	MAT BE USED AS A LOWER COST ALTERNATIVE TO METALLIC RMC, MUST MEET OR EXCEED FEDERAL SPEC: WW-C-540C, UL-6A, ANSI C80.5, NEC 344.10 (A) ALLOWS THE USE OF EITHER ALUMINUM OR GALVANIZED FITTINGS		


CONCEALING AND PROTECTING BTCW RISERS

CABINET GROUNDING DETAIL 5

ELECTRICAL NOTES

GROUND BAR NOTES:

- GROUND BAR KITS COME WITH ALL HARDWARE, NUTS, BOLTS, WASHERS, ETC. EXCEPT THE STRUCTURAL MOUNTING MEMBER(S).
- 2. GROUND BAR TO BE BONDED DIRECTLY TO TOWER.

TOWER GROUND BAR DETAIL

ELECTRICAL NOTES:

- IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO COORDINATE WITH THE T-MOBILE REPRESENTATIVE AND LOCAL UTILITY COMPANY FOR THE INSTALLATION OF CONDUITS. CONDUCTORS. BREAKERS, DISCONNECTS, OR ANY OTHER EQUIPMENT REQUIRED FOR ELECTRICAL SERVICE. ALL ELECTRICAL WORK SHALL BE PERFORMED IN ACCORDANCE WITH LATEST EDITION OF THE STATE AND NATIONAL CODES, ORDINANCES AND REGULATIONS APPLICABLE TO THIS PROJECT.
- ATC HAS NOT VERIFIED ANY EXISTING T-MOBILE GROUND EQUIPMENT OR ELECTRICAL LOADING. PROPOSED WORK BASED ON INSTALLATION CONFIGURATION PROVIDED BY T-MOBILE. CONTRACTOR TO VERIEY EXISTING T-MOBILE PANEL HAS SUFFICIENT SPACE FOR PROPOSED BREAKER. PROPOSED CABLE AND CONDUIT SHALL BE MINIMUM SIZE PER BELOW IN CHART.
- FOR SPECIFIC CABINET / ANCILLARY EQUIPMENT WIRING REQUIREMENTS, THE T-MOBILE CONTRACTOR SHOULD REFERENCE DESIGN DOCUMENTS PROVIDED BY T-MOBILE FOR THIS CURRENT PROJECT CONFIGURATION, IN ACCORDANCE WITH LOCAL JURISDICTION REQUIREMENTS & NEC STANDARDS & PRACTICES.

VOLTS	OCPD SIZE	WIRE SIZE	GROUND	CONDUIT
120/240V OR 120/208V	80A/2P	3-#3 AWG	#8 AWG	1-1/4"
	100/2P	3-#2 AWG	#8 AWG	1-1/4"
	125A/2P	3-#3/0 AWG	#6 AWG	2"
	150A/2P	3-#3/0 AWG	#6 AWG	2"
	200A/2P	3-#3/0 AWG	#6 AWG	2"
	80A/2P	2-#3 AWG	#8 AWG	1-1/4"
240V	100/2P	2-#2 AWG	#8 AWG	1-1/4"
OR 208V	125A/2P	2-#3/0 AWG	#6 AWG	2"
	150A/2P	2-#3/0 AWG	#6 AWG	2"
	200A/2P	2-#3/0 AWG	#6 AWG	2"

AMERICAN TOWER A.T. ENGINEERING SERVICES LLC 3500 REGENCY PARKWAY SUITE 100 **CARY, NC 27518**

PHONE: (919) 468-0112

PEC.0001553

THE USE AND PUBLICATION OF THESE DRAWINGS SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY ARE PREPARED. ANY USE OR DISCLOSURE OTHER THAN THAT WHICH RELATES TO AMERICAN TOWER OR THE SPECIFIED CARRIER IS STRICTLY PROHIBITED. NEITHER THE ARCHITECT NOR THE ENGINEER WILL BE PROVIDING ON-SITE CONSTRUCTION REVIEW OF THIS PROJECT. CONTRACTOR(S) MUST VERIFY ALL DIMENSIONS AND ADVISE AMERICAN TOWER OR THE SPECIFIED CARRIER OF ANY DISCREPANCIES. ANY PRIOR ISSUANCE OF THIS DRAWING IS SUPERSEDED BY THE LATEST VERSION.

REV.	DESCRIPTION	BY	DATE
△_	FOR CONSTRUCTION	JLR	10/17/23
\triangle _			
\wedge			
$\overline{\wedge}$			
$\overline{\wedge}$			

ATC SITE NUMBER: 411178 ATC SITE NAME:

OLD LYME SOUTH CT

T-MOBILE SITE NAME:

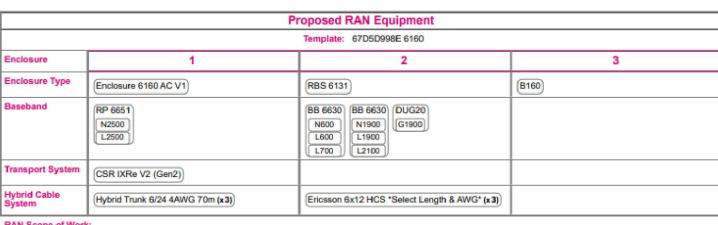
AMTRAK OLD LYME VERIZON

SITE ADDRESS: 125 MILE CREEK ROAD OLD LYME, CT 06371

Digitally Signed: 2023-10-18

T·Mobile

ATC PROJ. #:	14529806_G0
CUST. ID:	AMTRAK OLD LYME VERIZON
CUST. #:	CTNL802A


GROUNDING DETAILS

SHEET NUMBER:

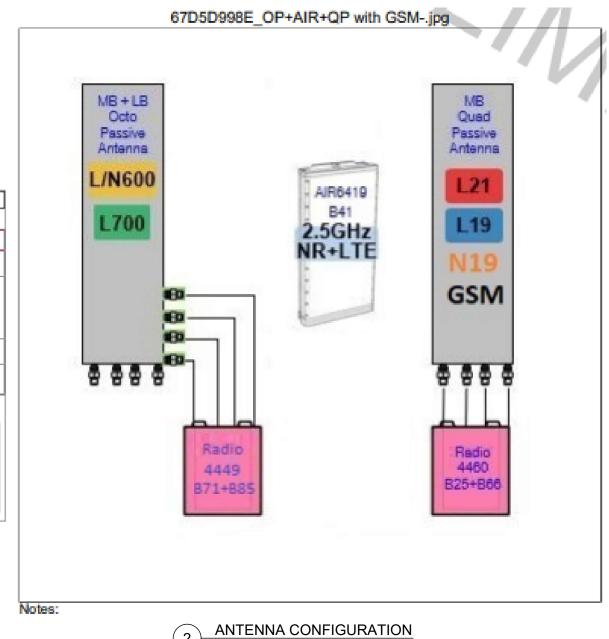
REVISION

E-501

CONDUIT USE TABLES

RAN Scope of Work:

Remove all unused equipment's from RAN section.


Add (1) 6160 and (1) B160 cabinets. Add (1) RP6651 for NR2500/L2500

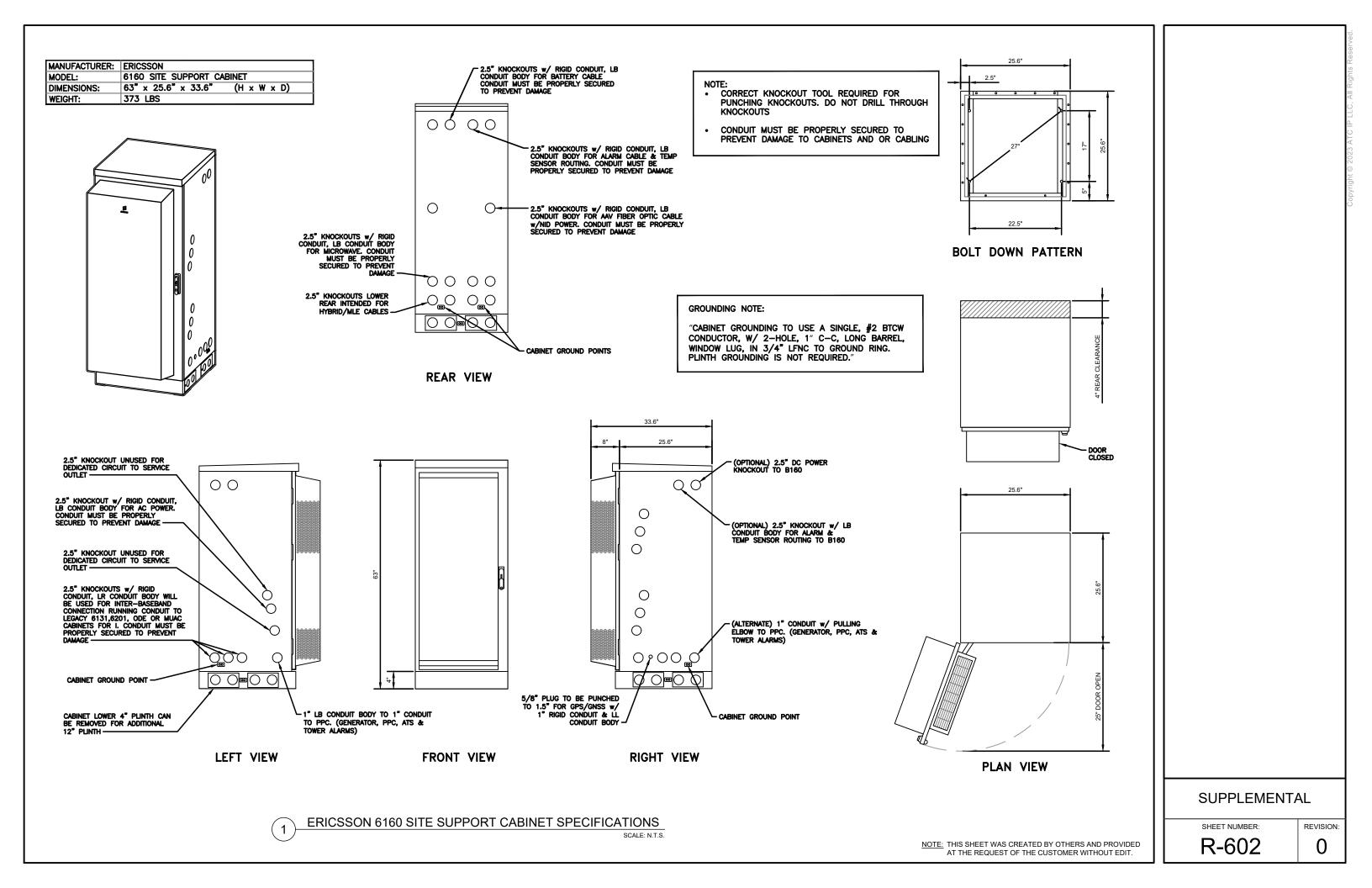
Add (1) IXRe router to 6160.

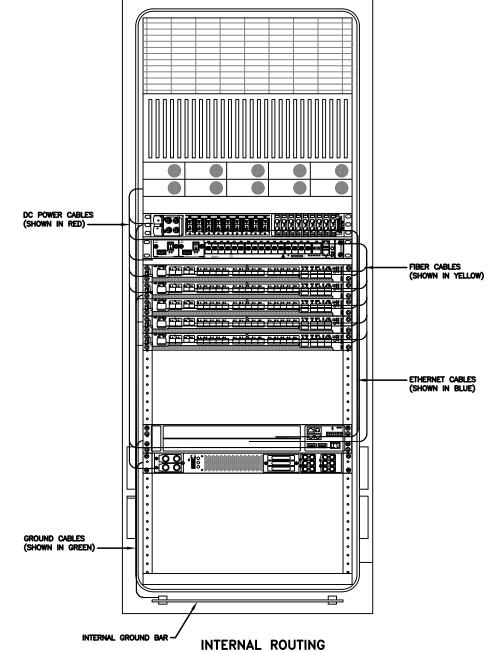
Add (3) Hybrid Trunk 6/24 4AWG 70m same TBD

Scoping note: remove the dead nortel cabinet

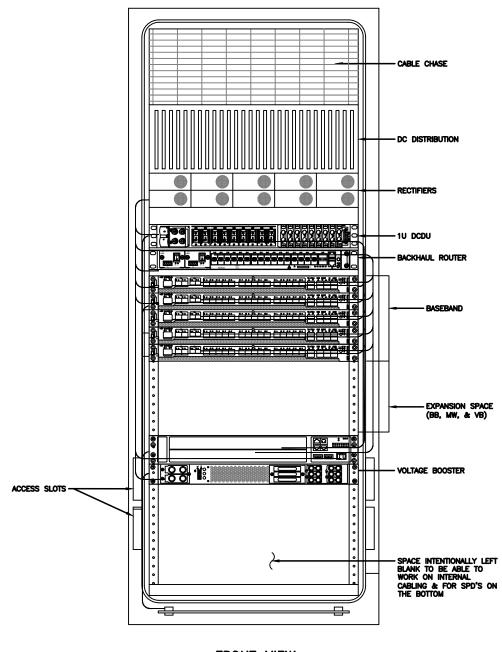
CABINET CONFIGURATION

SUPPLEMENTAL


SHEET NUMBER:


R-601

0

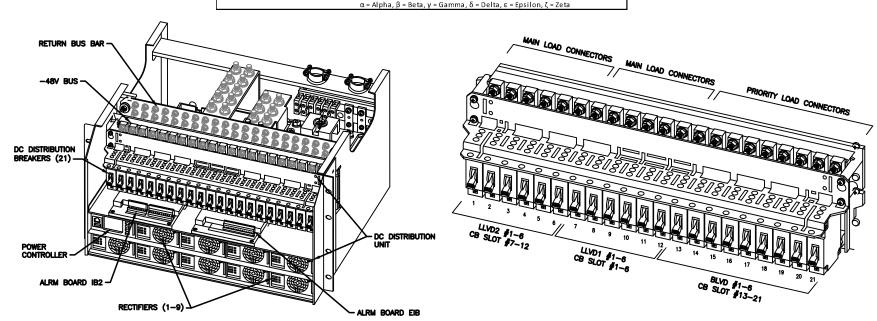

REVISION:

NOTE: THIS SHEET CREATED BY OTHERS AND PROVIDED BY REQUEST OF CUSTOMER WITHOUT EDIT.

RACK ASSIGNMENTS				
RU SLOTS	DESCRIPTION			
1				
2	DC DISTRIBUTION			
3	DO DIOTRIBOTION			
4				
5	RECTIFIER SHELF			
6	RECTIFIER SHELF			
7	FIBER BOX			
8	DCDU			
9	BACKHAUL ROUTER			
10	BACKHAUL ROUTER			
11	1ST BASEBAND			
12	2ND BASEBAND			
13	3RD BASEBAND			
14	4TH BASEBAND			
15	5TH BASEBAND			
16				
17	EXPANSION			
18				
19				
20	EXPANSION / LEGACY BASEBAND / VOLTAGE			
21	BOOSTER			
22	VOLTAGE BOOSTER			
23				
24	OPEN SPACE FOR SPD ACCESS			
25				

FRONT VIEW (DOOR OPEN)

SUPPLEMENTAL


SHEET NUMBER:

R-603

(DOOR OPEN)

NOTE:
THIS IS FOR REFERENCE ONLY, CHECK
FOR SPECIFIC DETAIL IN T-MOBILE
CABINET SPECIFIC INSTALLATION GUIDES

Breaker Allocation for E6160							
B SLOT	Ckt #		w/ DCDU Prior to availability of the 4460 and 4480 w/ DCDU Later Design Post- 4460 and Post-4480		w/ DCDU 4 and 6 Sector designs		
1		1	Router	PS-2*/Future	Radio 4460 B25/66 ζ-1		
2		2	F	uture	Radio 4460 B25/66 ζ-2		
3	LVD1	3	PSU 4813 feeding B25	/66 α, β and γ (AIR 1641s)	PSU 4813 feeding B41-δ & B71/12-δ		
4	47.0V	4		to a read reading sear, so as, p and p (ran acres)			
5		5					
6		6	PSU	4813 feeding B41 α , β and γ (Air 64	149s)		
7		1	PSU 4813 feeding B71/12	0 1 (D1) - 4400-)			
8		2	α, β and γ (Radio 4449s)	PSU 4813 feeding B71/12 α	ι, β and γ (Radio 4480s)		
9	LVD2	3	F	Radio 4460 B25/66 δ-1			
10	45.1V	4	F	Radio 4460 B25/66 δ-2			
11		5	F	Radio 4460 B25/66 ε-1			
12		6	F	Radio 4460 B25/66 ε-2			
13		1					
14		2	Radio 4415 B25/66 α	Radio 4460 B	25/66 α-1		
15		3	Radio 4415 B25/66 β	Radio 4460 B	B25/66 α-2		
16	DIVID	4	Radio 4415 B25/66 γ	Radio 4460 B	460 B25/66 β-1		
17	BLVD 43.2V	5	PSU 4813 feeding B2/25	Radio 4460 B	Β25/66 β-2		
18	15.21	6	α, β and γ (Radio 4424s)	Radio 4460 B25/66 γ-1			
19		7	Future	Radio 4460 B25/66 γ-2			
20		8	DCDU				
21		9	AAV				
				Sector Identification			

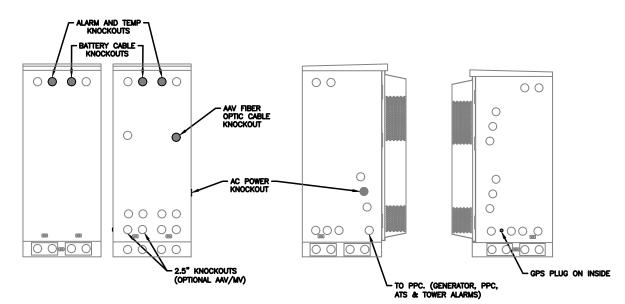
POWER SUBRACK

DC DISTRIBUTION

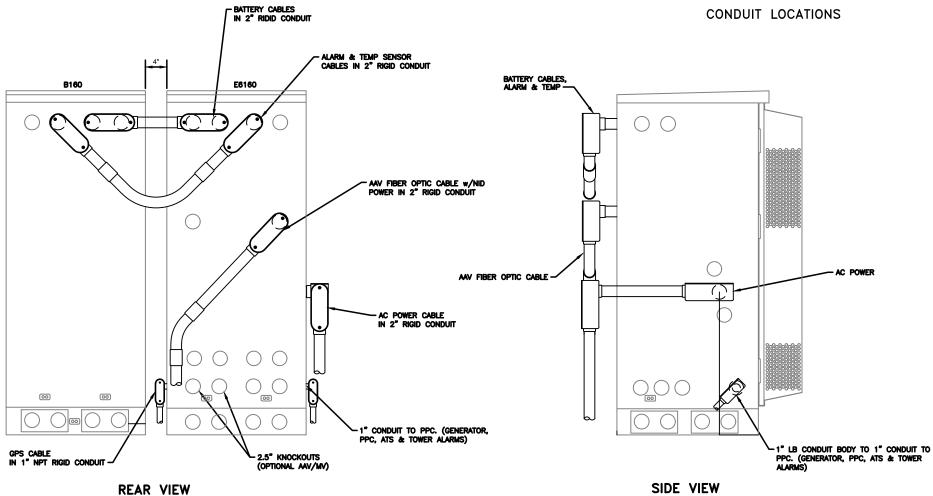
ERICSSON 6160 ELECTRICAL DETAILS

SCALE: N.T.S.

NOTE: THIS SHEET WAS CREATED BY OTHERS AND PROVIDED AT THE REQUEST OF THE CUSTOMER WITHOUT EDIT.

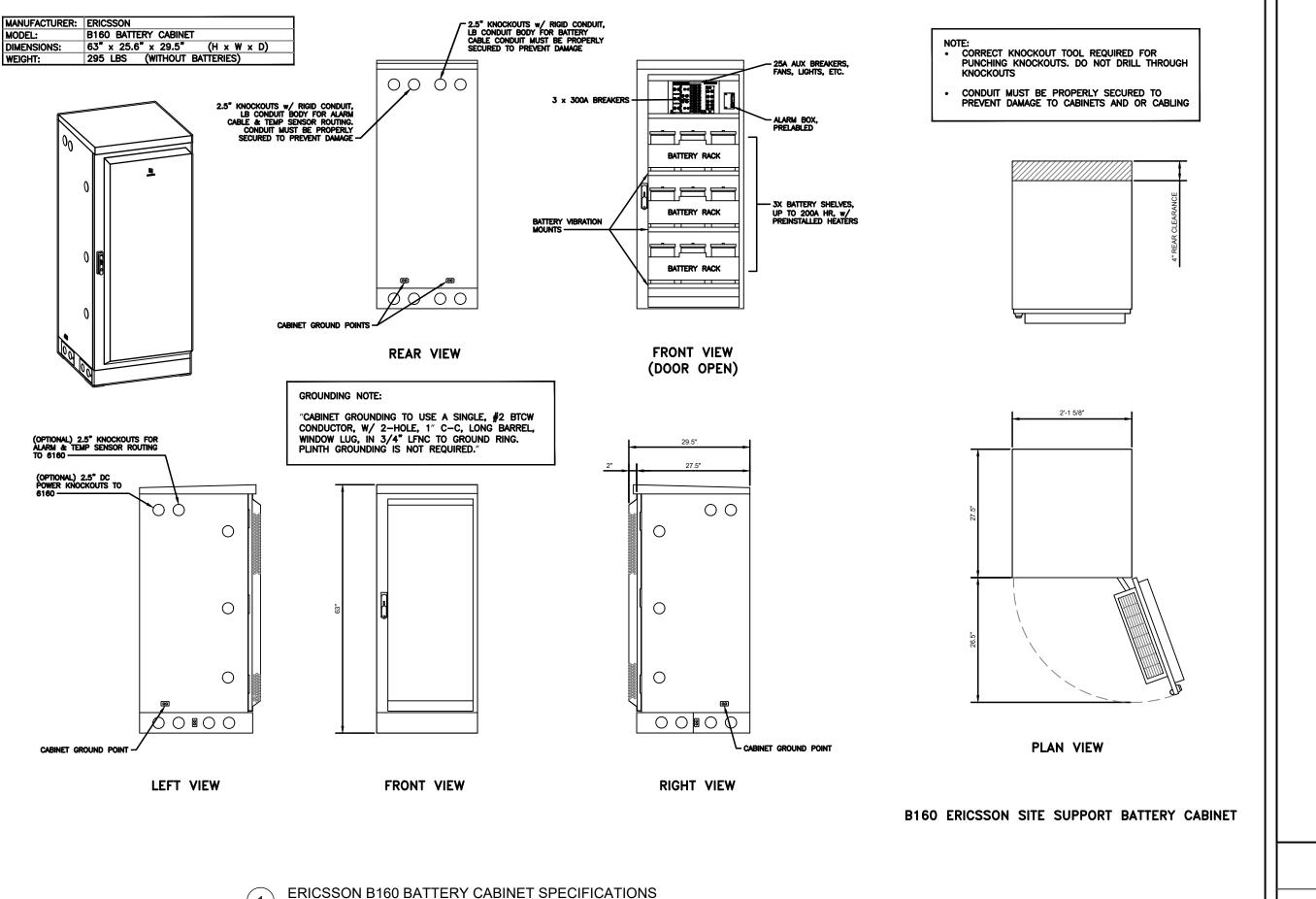

SUPPLEMENTAL

SHEET NUMBER:


REVISION: R-604

NOTE:

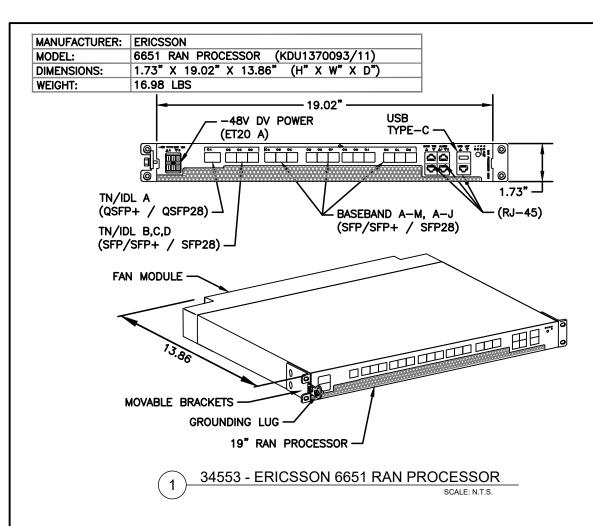
- 1. ALL CONDUIT AND FITTING ENTRANCES INTO CABINETS AND ENCLOSURES MUST UTILIZE MYERS OR EQUIVALENT HUBS OR SEALING WASHERS TO PREVENT WATER ENTRY/SEEPAGE INTO CABINETS AND ENCLOSURES.
- 2. (LIQUIDFLEX) FLEXIBLE METALLIC CONDUIT (LFMC) & ASSOCIATED FÌTTINGS CAN BE USED AS NEEDED BUT ONLY FOR TIGHT CONDUIT BENDS AND RUNS SUBJECT TO UL AND NEC LIMITATIONS. 6' MAX PER
- 3. POWER CONDUIT BODY ATTACHED WITH SHORT NIPPLE AND SEALING WASHER INSIDE & OUT. (FOR DOOR HOOD CLEARANCE)
- 4. PULLING ELBOWS MAY BE USED IN LIEU OF A CONDUIT BODIES WHEN CLEARANCE IS LIMITED.
- 5. ALL EXTERNAL ALARM CONDUITS ARE TOO TERMINATE AT THE PPC WITH A SINGLE 1" ALARM CONDUIT TO THE 6160.
- 6. (DO NOT USE CHASE NIPPLES) CONDUIT SHOULD HAVE SEALING WASHERS INSIDE AND OUT W/ LOCK NUT AND CAP.

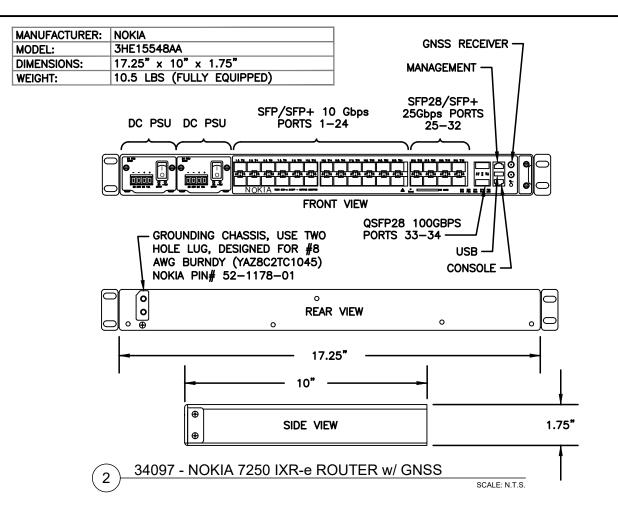

CONDUIT LOCATIONS

SIDE VIEW

ERICSSON 6160/B160 CONDUIT ROUTING DETAILS

REVISION:

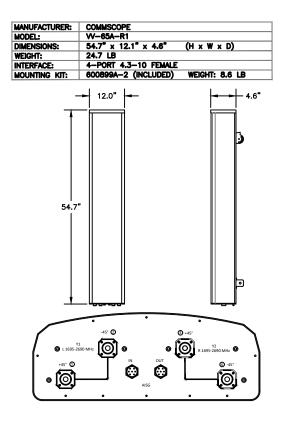

SUPPLEMENTAL


SHEET NUMBER:

R-606

6

REVISION


SUPPLEMENTAL

REVISION

0

SHEET NUMBER:

R-607

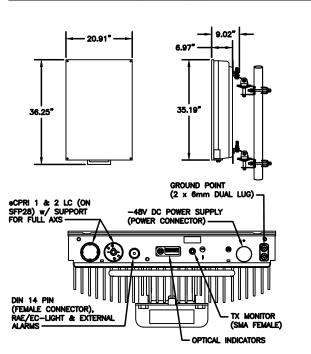
1 34401 - COMMSCOPE VV-65A-R1 SCALE: N.T.S.

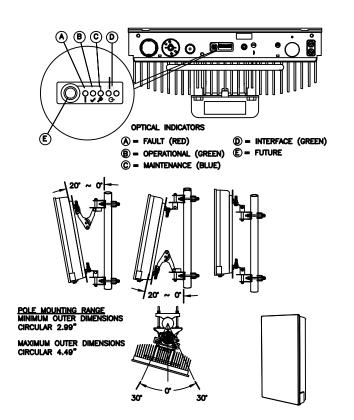
| MANUFACTURER: | ERICSSON | MODEL: | 4460 RADIO B2/25 B66 (KRC 161 912/3) | DIMENSIONS: | 19.7" x 15.8" x 12.2" (H" x W" x D") BRACKET WEIGHT: 4.8 LBS (ERS HEAVY #SXK1255993/1) 19.7" - OPT2_1 2+2 CPRI PORTS OPT1_1 2+2 CPRI PORTS -48V DC IN 1 ANTENNA A1 4.3-10 CONNECTOR ANTENNA A2 4.3-10 CONNECTOR ANTENNA B2 4.3-10 CONNECTOR - GROUND 2 -48V DC IN 2 (2 WIRE) OPT1_2 2+2 CPRI PORTS ALD 2 EAC 2 - OPT2_2 2+2 CPRI PORTS

34373 - ERICSSON 4460 RADIO B2/25 B66

SCALE: N.T.S.

(2)


 MANUFACTURER:
 ERICSSON


 MODEL:
 AIR 6419 B41 (2.5GHz M-MIMO)

 DIMENSIONS:
 36.25" x 20.91" x 9.02" NOT TO EXCEED (H x W x D)

 WEIGHT:
 83 LBS (EXCLUDING MOUNTING KIT)

 MOUNT WEIGHT:
 13.5 LBS (SXK109 2016/1)

SUPPLEMENTAL

SHEET NUMBER:

R-608

8

REVISION

Mount Analysis Report

ATC Asset Name : Old Lyme South CT

ATC Asset Number : 411178

: 14529806_C8_02 **Engineering Number**

Mount Elevation : 171 ft

Proposed Carrier : T-Mobile

Carrier Site Name : Amtrak Old Lyme Verizon

Carrier Site Number : CTNL802A

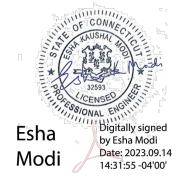
: 125 Mile Creek Road Site Location

OLD LYME, CT 06371-1718

41.3055, -72.2973

: New London County

Date : September 14, 2023


Max Usage : 42%

Analysis Result : Pass

Prepared By: Max Carter

Structural Engineer II

Max Carter

COA: PEC.0001553

A.T. Engineering Service, PLLC - 3500 Regency Parkway, Suite 100 - Cary, NC 27518 - 919.468.0112 Office - 919.466.5414 Fax - www.americantower.com

Eng. Number 14529806_C8_02 September 14, 2023

Introduction

The purpose of this report is to summarize results of the mount analysis performed for T-Mobile at 171 ft.

Supporting Documents

Specifications Sheet:	Perfect Vision PV-LPPGS12M-HR2-AP1, dated December 29, 2022	
Radio Frequency Data Sheet: RFDS ID #CTNL802A, dated August 3, 2023		
Reference Photos:	Site photos from 2021	

Analysis

This mount was analyzed using American Tower Corporation's Mount Analysis Program and RISA-3D

Basic Wind Speed:	126 mph (3-Second Gust)		
Basic Wind Speed w/ Ice:	50 mph (3-Second Gust) w/ 1.00" radial ice concurrent		
Codes:	ANSI/TIA-222-H / 2021 IBC / 2022 Connecticut State Building Code		
Exposure Category:	В		
Risk Category:	II		
Topographic Factor Procedure:	Method 2		
Feature:	Flat		
Crest Height (H):	0 ft		
Crest Length (L):	0 ft		
Spectral Response:	Ss = 0.199, S1 = 0.053		
Site Class:	D - Stiff Soil		
Live Loads:	Lm = 500 lbs		

^{*} Based on experience, it has been determined that the Lv load cases will not control over Lm load cases in platform mount analyses. Therefore, these load cases have been excluded from this analysis.

Conclusion

Based on the analysis results, the antenna mount meets the requirements per the applicable codes listed above. The mount can support the equipment as described in this report.

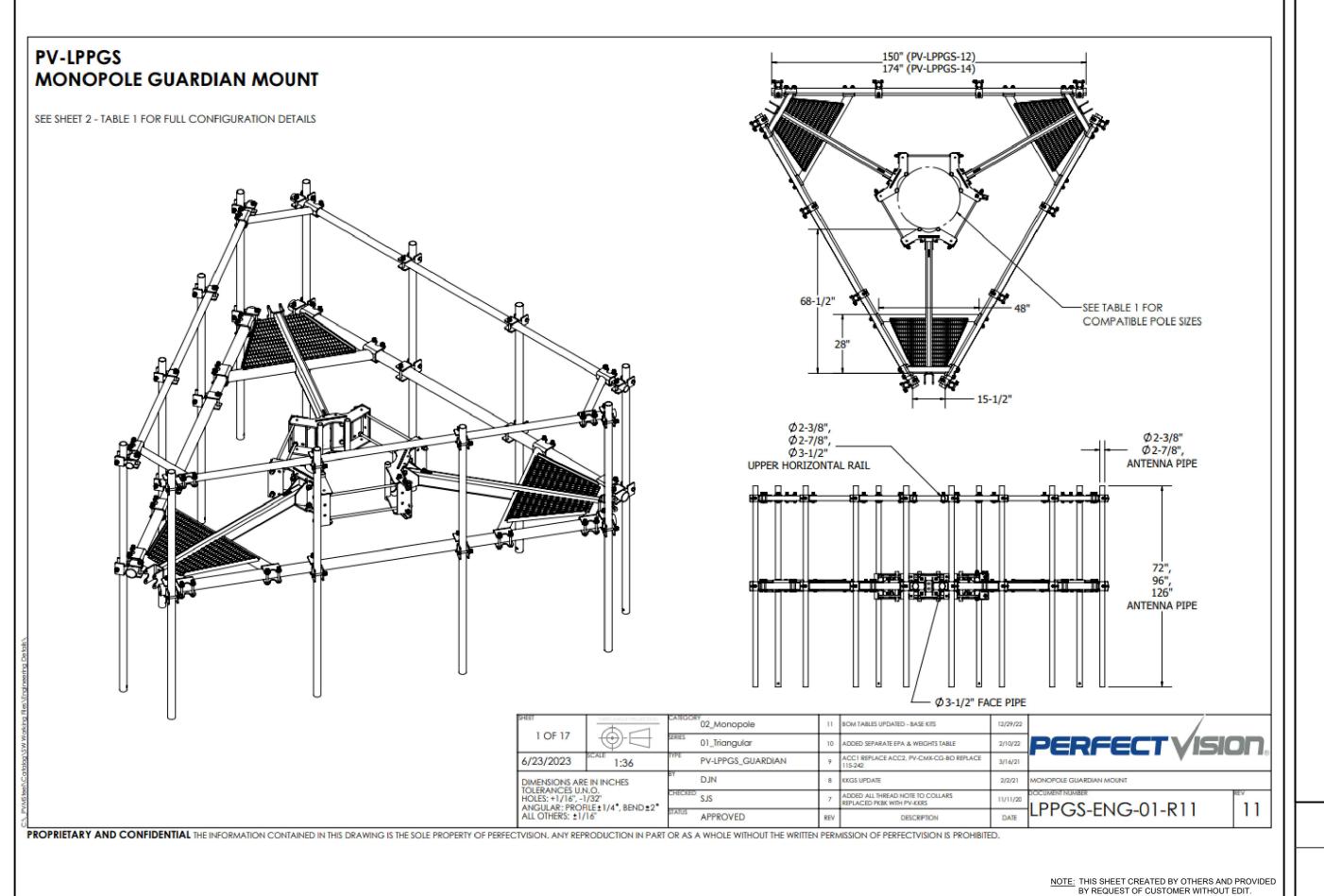
• Analysis based on new installation of Perfect Vision PV-LPPGS12M-HR2-AP1 Platform w/ Handrails(s) (M1300R(1250)-4[0]).

If you have any questions or require additional information, please reach out to your American Tower contact. If you do not have an American Tower contact and have an Engineering question, please contact MountAnalysis@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

A.T. Engineering Service, PLLC - 3500 Regency Parkway, Suite 100 - Cary, NC 27518 - 919.468.0112 Office - 919.466.5414 Fax - www.americantower.com

NOTE: THIS SHEET WAS CREATED BY OTHERS AND PROVIDED AT THE REQUEST OF THE CUSTOMER WITHOUT EDIT. PLEASE REFERENCE THE MOUNT ANALYSIS REPORT FOR COMPLETE MOUNT

ANALYSIS CALCULATIONS AND DETAILS. SUPPLEMENTAL PAGES INCLUDED IN THE CONSTRUCTION DRAWINGS ARE FOR REFERENCE ONLY, GENERAL CONTRACTOR IS TO VERYIFY THEY HAVE THE MOST RECENT MOUNT ANALYSIS PRIOR TO CONTRUCTION. **SUPPLEMENTAL**


SHEET NUMBER:

R-609

REVISION:

0

MOUNT ANALYSIS

SUPPLEMENTAL

SHEET NUMBER:

R-610

REVISION:

Mount Analysis Report

ATC Asset Name : Old Lyme South CT

ATC Asset Number : 411178

Engineering Number: 14529806_C8_02

Mount Elevation : 171 ft

Proposed Carrier : T-Mobile

Carrier Site Name : Amtrak Old Lyme Verizon

Carrier Site Number : CTNL802A

Site Location : 125 Mile Creek Road

OLD LYME, CT 06371-1718

41.3055, -72.2973

County : New London

Date : September 14, 2023

Max Usage : 42%

Analysis Result : Pass

Prepared By: Max Carter

Structural Engineer II

Max Carter Est

Esha Digitally signed by Esha Modi

Modi

Date: 2023.09.14
14:31:55 -04'00'

COA: PEC.0001553

Table of Contents

Introduction	3
Supporting Documents	3
Analysis	3
Conclusion	3
Application Loading	4
Structure Usages	4
Mount Layout	5
Equipment Layout	7
Standard Conditions	Attached
Calculations	Attached

Introduction

The purpose of this report is to summarize results of the mount analysis performed for T-Mobile at 171 ft.

Supporting Documents

Specifications Sheet: Perfect Vision PV-LPPGS12M-HR2-AP1, dated December 29, 2022	
Radio Frequency Data Sheet:	RFDS ID #CTNL802A, dated August 3, 2023
Reference Photos:	Site photos from 2021

Analysis

This mount was analyzed using American Tower Corporation's Mount Analysis Program and RISA-3D

Basic Wind Speed:	126 mph (3-Second Gust)		
Basic Wind Speed w/ Ice:	0 mph (3-Second Gust) w/ 1.00" radial ice concurrent		
Codes:	ANSI/TIA-222-H / 2021 IBC / 2022 Connecticut State Building Code		
Exposure Category:	В		
Risk Category:	II		
Topographic Factor Procedure:	Method 2		
Feature:	Flat		
Crest Height (H):	0 ft		
Crest Length (L):	0 ft		
Spectral Response:	Ss = 0.199, S1 = 0.053		
Site Class:	D - Stiff Soil		
Live Loads:	Lm = 500 lbs		

^{*} Based on experience, it has been determined that the Lv load cases will not control over Lm load cases in platform mount analyses. Therefore, these load cases have been excluded from this analysis.

Conclusion

Based on the analysis results, the antenna mount meets the requirements per the applicable codes listed above. The mount can support the equipment as described in this report.

 Analysis based on new installation of Perfect Vision PV-LPPGS12M-HR2-AP1 Platform w/ Handrails(s) (M1300R(1250)-4[0]).

If you have any questions or require additional information, please reach out to your American Tower contact. If you do not have an American Tower contact and have an Engineering question, please contact MountAnalysis@americantower.com. Please include the American Tower site name, site number, and engineering number in the subject line for any questions.

Application Loading


Mount Centerline (ft)	Equipment Centerline (ft)	Qty	Equipment Manufacturer & Model
171.0	171.0	3	RFS APXVAARR24_43-U-NA20
		3	Ericsson AIR 6419 B41
		3	Commscope VV-65A-R1B
		3	Ericsson Radio 4460 B25+B66
		3	Ericsson Radio 4449 B12,B71

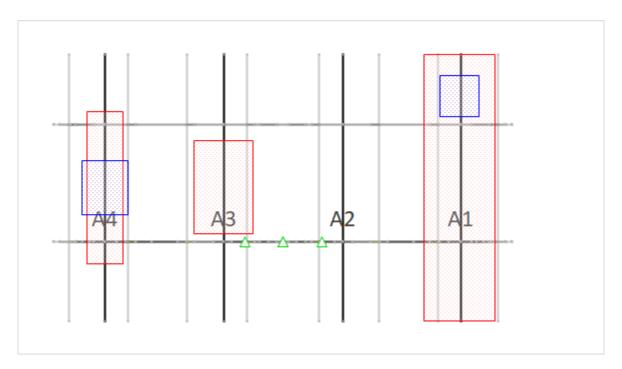
Structure Usages

Structural Component	Controlling Usage	Pass/Fail	
Horizontals	42%	Pass	
Mount Pipes	42%	Pass	

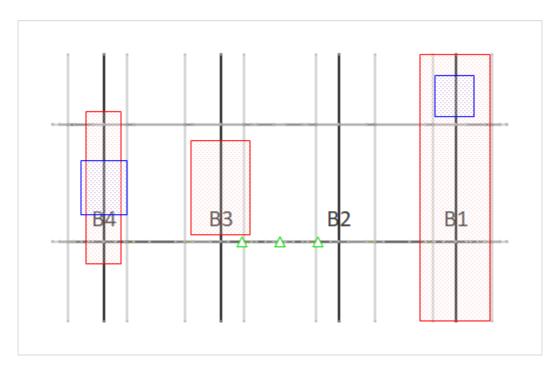
Mount Layout

Equipment Position Table

MP	RAD Center (ft)	Qty.	Antenna Model	
A1	171.0	1	RFS APXVAARR24_43-U-NA20	
AI	171.0	1	Ericsson Radio 4449 B12,B71	
A2	-	-	Empty	
А3	171.0	1	Ericsson AIR 6419 B41	
A 4	171.0	1	Commscope VV-65A-R1B	
A4	171.0	1	Ericsson Radio 4460 B25+B66	
171.0		1	RFS APXVAARR24_43-U-NA20	
B1	171.0	1	Ericsson Radio 4449 B12,B71	
B2	-	-	Empty	
В3	171.0	1	Ericsson AIR 6419 B41	

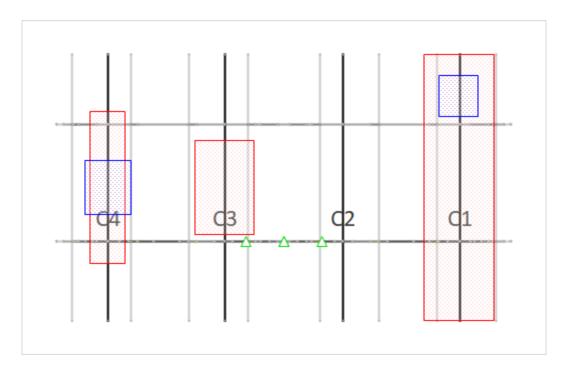

Equipment Position Table Cont.

MP	RAD Center (ft)	Qty.	Antenna Model			
171.0		1	Commscope VV-65A-R1B			
B4	171.0	1	Ericsson Radio 4460 B25+B66			
171.0		1	RFS APXVAARR24_43-U-NA20			
C1	171.0	1	Ericsson Radio 4449 B12,B71			
C2	Empty		Empty			
C3 171.0 1 Ericsson AIR 6419 B41		Ericsson AIR 6419 B41				
C4	171.0	1	Commscope VV-65A-R1B			
C4	171.0	1	Ericsson Radio 4460 B25+B66			



Equipment Layout

Front View - Alpha


Front View - Beta

Equipment Layout Cont.

Front View - Gamma

Standard Conditions

All engineering services performed by A.T. Engineering Service, PLLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding equipment, mounts, and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T.
 Engineering Service, PLLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Service, PLLC and used in the performance of our engineering services is correct and complete.

American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

All connections are to be verified for condition and tightness by the installation contractor preceding any changes to the appurtenance mounting system and/or equipment attached to it.

Unless explicitly agreed by both the client and A.T. Engineering Service, PLLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

Installation of all equipment and steel should be confirmed not to cause tower conflicts nor impede the tower climbing pegs.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Service, PLLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

 Site Number:
 411178

 Project Number:
 14529806_C8_02

 Carrier:
 T-Mobile

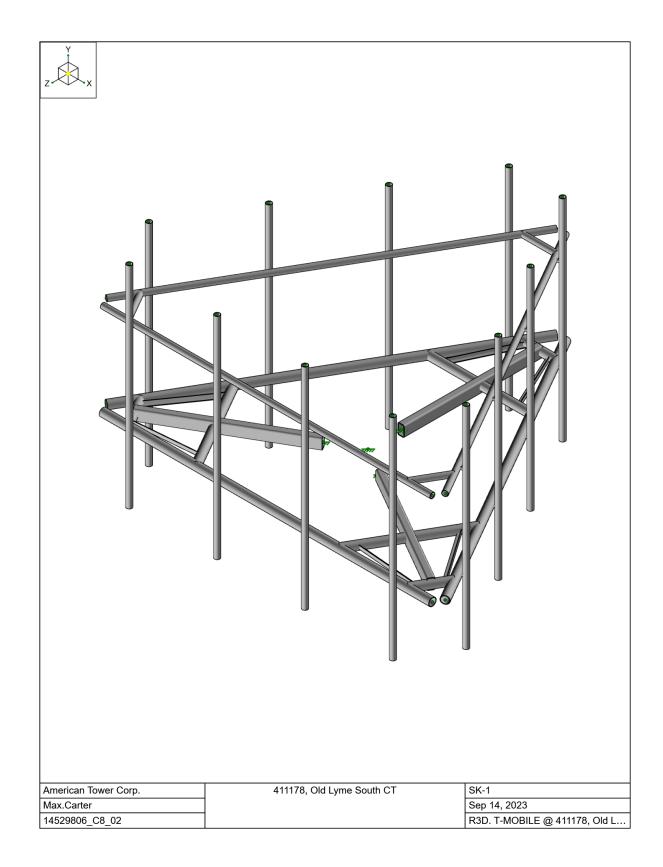
 Mount Elevation:
 171 ft

 Date:
 9/14/2023

Mount Analysis Force Calculations

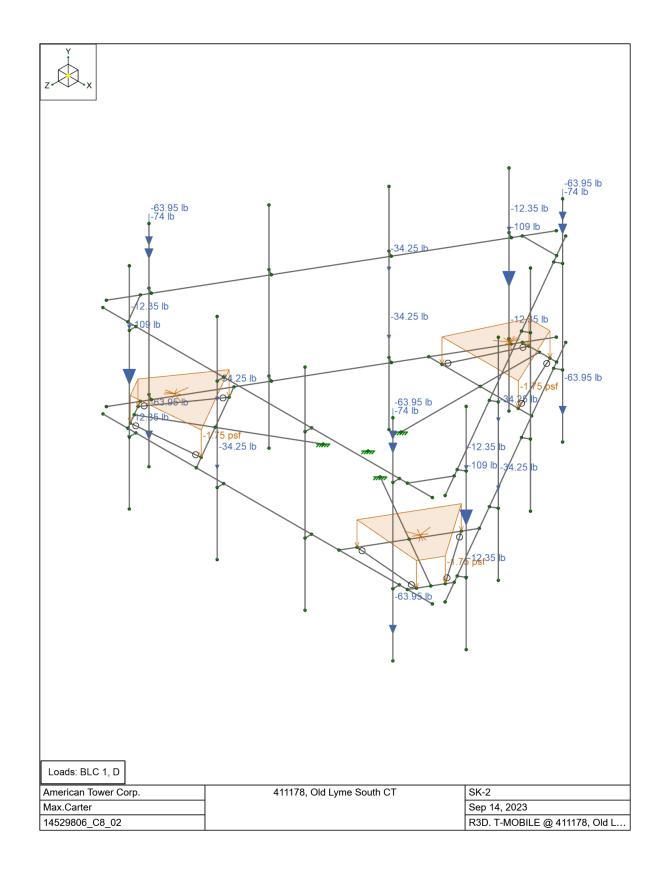
Wind & Ice Load Cald	ulation	ıs	
Velocity Pressure Coefficient	K _z	1.15	
Topographic Factor	K _{zt}	1.00	
Rooftop Wind Speed-up Factor	K_{S}	1.00	
Shielding Factor	K _a	0.90	
Ground Elevation Factor	K _e	1.00	
Wind Direction Probability Factor	κ_{d}	0.95	
Basic Wind Speed	V	126	mph
Velocity Pressure	q_z	44.4	psf
Height Escalation Factor	K _{iz}	1.18	
Thickness of Radial Glaze Ice	T_{iz}	1.18	in

Seismic Load Calcul	lations		
Short Period DSRAP	S _{DS}	0.212	
1 Second DSRAP	S_{D1}	0.085	
Importance Factor	1	1.0	
Response Modification Coefficient	R	2.0	
Seismic Response Coefficient	c_s	0.106	
Amplification Factor	Α	1.0	
Total Weight	W	2430.8	lbs
Total Shear Force	V_{S}	258.0	lbs
Horizontal Seismic Load	Eh	258.0	lbs
Vertical Seismic Load	Ev	103.2	lbs

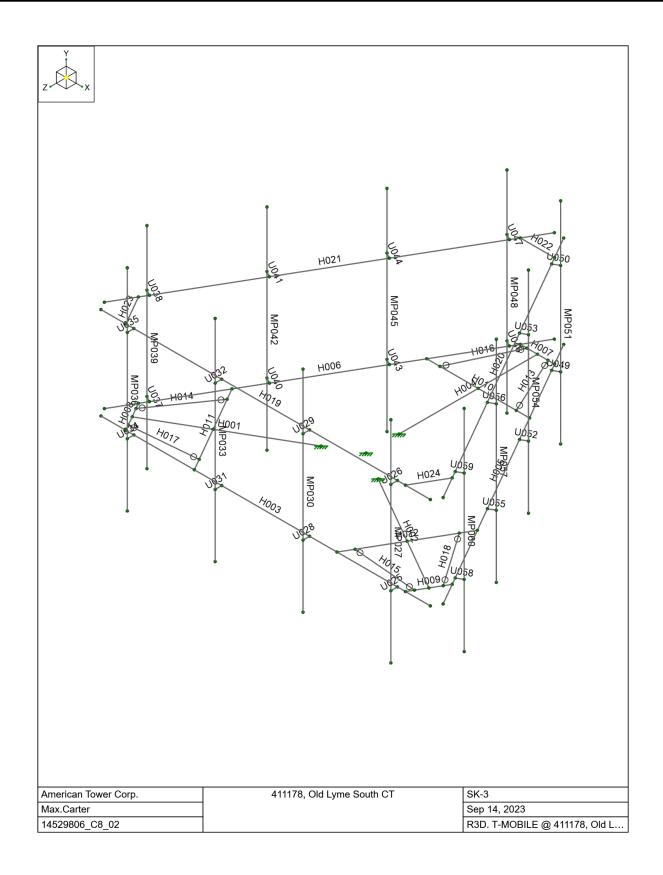

Antenna Calculations (Elevations per Application/RFDS)*										
Equipment	Height	Width	Depth	Weight	EPA _N	EPA _T	EPA _{Ni}	EPA_Ti		
Model #	in	in	in	lbs	sqft	sqft	sqft	sqft		
RFS APXVAARR24_43-U-NA20	95.9	24.0	8.7	127.9	20.24	3.48	22.78	4.53		
Ericsson AIR 6419 B41	33.6	20.0	6.3	68.5	5.60	0.86	6.70	1.27		
Commscope VV-65A-R1B	54.7	12.0	4.6	24.7	5.89	1.33	7.35	2.10		
Ericsson Radio 4460 B25+B66	19.6	15.7	12.1	109.0	2.56	1.98	3.30	2.65		
Ericsson Radio 4449 B12,B71	14.9	13.2	9.3	74.0	1.64	1.15	2.24	1.68		

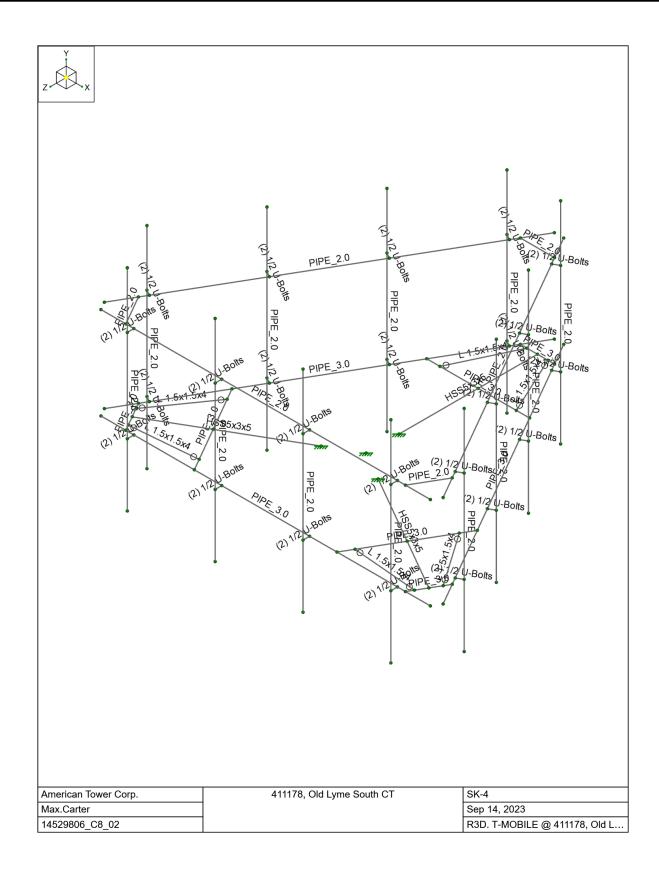
st Equipment with EPA values N/A were not considered in the mount analysis

Designer : Max.Carter Job Number : 14529806_C8_02

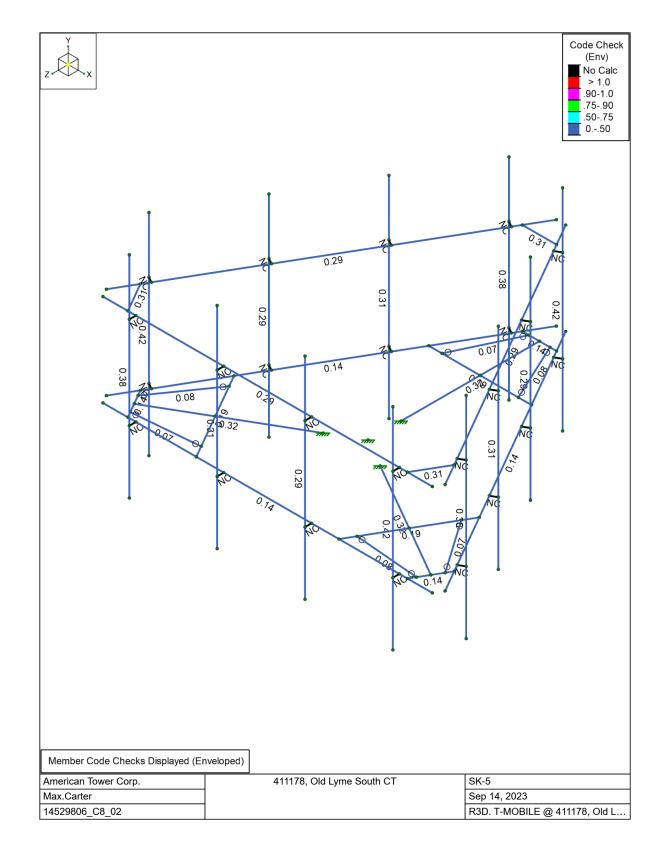

Model Name: 411178, Old Lyme South CT

Company : American Tower Corp.
Designer : Max.Carter
Job Number : 14529806_C8_02

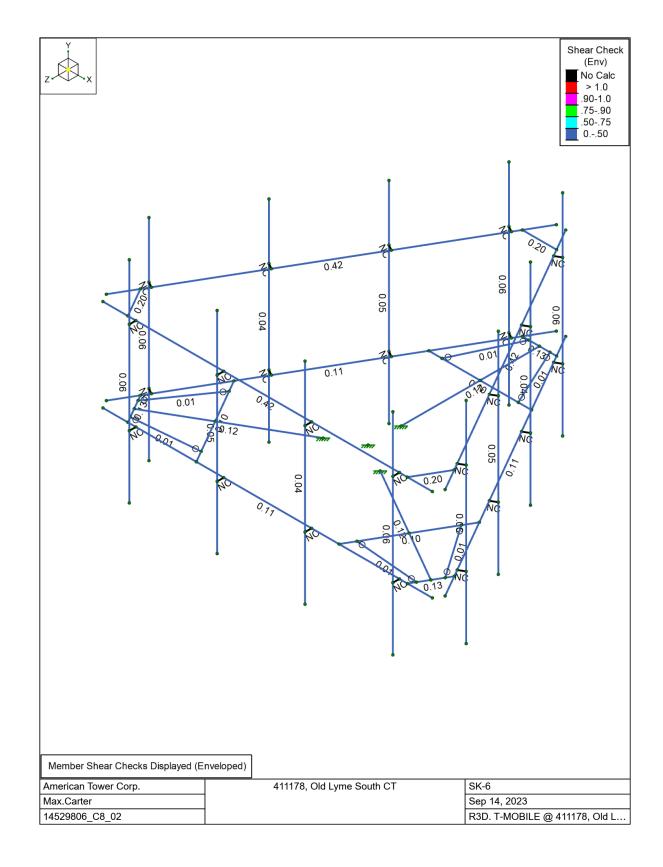

Model Name: 411178, Old Lyme South CT


Job Number : 14529806_C8_02

Model Name: 411178, Old Lyme South CT


Job Number: 14529806_C8_02 Model Name: 411178, Old Lyme South CT 9/14/2023 10:22:18 AM Checked By : -

RISA-3D Version 19



Job Number: 14529806_C8_02 Model Name: 411178, Old Lyme South CT

Job Number: 14529806_C8_02 Model Name: 411178, Old Lyme South CT

Designer : Max.Carter
Job Number : 14529806_C8_02

Model Name: 411178, Old Lyme South CT

9/14/2023 10:22:18 AM Checked By : -

Basic Load Cases

	Dasic Edad Cases							51.411.4.1	
	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed	Area(Member)
1	D	DL		-1			24		3
2	Di	IL					24	36	3
3	W 0	WL					24	60	
4	W 30	WL					48	120	
5	W 60	WL					48	120	
6	W 90	WL					24	63	
7	W 120	WL					48	120	
8	W 150	WL					48	120	
9	W 180	WL					24	60	
10	W 210	WL					48	120	
11	W 240	WL					48	120	
12	W 270	WL					24	63	
13	W 300	WL					48	120	
14	W 330	WL					48	120	
15	Wi 0	WL					24	60	
10									
16	Wi 30	WL					48	120	
17	Wi 60	WL					48	120	
18	Wi 90	WL					24	63	
19	Wi 120	WL					48	120	
20	Wi 150	WL					48	120	
21	Wi 180	WL					24	60	
22	Wi 210	WL					48	120	
23	Wi 240	WL					48	120	
24	Wi 270	WL					24	63	
25	Wi 300	WL					48	120	
26	Wi 330	WL					48	120	
27	Ws 0	WL					24	60	
28	Ws 30	WL					48	120	
29	Ws 60	WL					48	120	
30	Ws 90	WL					24	63	
31	Ws 120	WL					48	120	
32	Ws 150	WL					48	120	
33	Ws 180	WL					24	60	
34		WL					48	120	
35	Ws 210								
	Ws 240	WL					48	120	
36	Ws 270	WL					24	63	
37	Ws 300	WL					48	120	
38	Ws 330	WL					48	120	
39	Ev -Y	ELY		-0.042			24		3
40	Eh -Z	ELZ			-0.106		24		3
41	Eh -X	ELX	-0.106				24		3
42 43	Lm (1)	LL				1			
43	Lm (2)	LL				1			
44	Lm (3)	LL				1			
45	Lm (4)	LL				1			
46	Lm (5)	LL				1			
47	Lm (6)	LL				1			
48	Lm (7)	LL				1			
48 49	Lm (8)	LL				1			
50	Lm (9)	LL				1			
51	Lm (10)	LL				1			
52	Lm (11)	LL				1			
53	Lm (12)	LL				1			
						1		66	
	BLC 1 Transient Area Loads	None						66	
55	BLC 2 Transient Area Loads	None						66	

Designer : Max.Carter Job Number : 14529806_C8_02

Model Name: 411178, Old Lyme South CT

9/14/2023 10:22:18 AM Checked By : -

Basic Load Cases (Continued)

BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Nodal	Point	Distributed	Area(Member)
56 BLC 39 Transient Area I	oads None						66	
57 BLC 40 Transient Area I	oads None						66	
58 BLC 41 Transient Area I	_oads None						66	

Load Combinations

	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	1.4D	Yes	Υ	DL	1.4						
2	1.2D + 1.0W [0°]	Yes	Y	DL	1.2	3	1				
3	1.2D + 1.0W [30°]	Yes	Υ	DL	1.2	4	1				
4	1.2D + 1.0W [60°]	Yes	Y	DL	1.2	5	1				
5	1.2D + 1.0W [90°]	Yes	Υ	DL	1.2	6	1				
6	1.2D + 1.0W [120°]	Yes	Υ	DL	1.2	7	1				
7	1.2D + 1.0W [150°]	Yes	Υ	DL	1.2	8	1				
8	1.2D + 1.0W [180°]	Yes	Υ	DL	1.2	9	1				
9	1.2D + 1.0W [210°]	Yes	Υ	DL	1.2	10	1				
10	1.2D + 1.0W [240°]	Yes	Υ	DL	1.2	11	1				
11	1.2D + 1.0W [270°]	Yes	Υ	DL	1.2	12	1				
12	1.2D + 1.0W [300°]	Yes	Υ	DL	1.2	13	1				
13	1.2D + 1.0W [330°]	Yes	Υ	DL	1.2	14	1				
14	0.9D + 1.0W [0°]	Yes	Υ	DL	0.9	3	1				
15	0.9D + 1.0W [30°]	Yes	Y	DL	0.9	4	1				
16	0.9D + 1.0W [60°]	Yes	Y	DL	0.9	5	1				
17	0.9D + 1.0W [90°]	Yes	Υ	DL	0.9	6	1				
18	0.9D + 1.0W [120°]	Yes	Y	DL	0.9	7	1				
19	0.9D + 1.0W [150°]	Yes	Υ	DL	0.9	8	1				
20	0.9D + 1.0W [180°]	Yes	Υ	DL	0.9	9	1				
21	0.9D + 1.0W [210°]	Yes	Υ	DL	0.9	10	1				
22	0.9D + 1.0W [240°]	Yes	Υ	DL	0.9	11	1				
23	0.9D + 1.0W [270°]	Yes	Υ	DL	0.9	12	1				
24	0.9D + 1.0W [300°]	Yes	Y	DL	0.9	13	1				
25	0.9D + 1.0W [330°]	Yes	Y	DL	0.9	14	1				
26	1.2D + 1.0Di + 1.0Wi [0°] + 1.0Ti	Yes	Y	DL	1.2	IL	1	15	1		
27	1.2D + 1.0Di + 1.0Wi [30°] + 1.0Ti	Yes	Y	DL	1.2	IL	1	16	1		
28	1.2D + 1.0Di + 1.0Wi [60°] + 1.0Ti	Yes	Υ	DL	1.2	IL	1	17	1		
29	1.2D + 1.0Di + 1.0Wi [90°] + 1.0Ti	Yes	Υ	DL	1.2	IL	1	18	1		
30	1.2D + 1.0Di + 1.0Wi [120°] + 1.0Ti	Yes	Y	DL	1.2	IL	1	19	1		
31	1.2D + 1.0Di + 1.0Wi [150°] + 1.0Ti	Yes	Y	DL	1.2	IL	1	20	1		
32	1.2D + 1.0Di + 1.0Wi [180°] + 1.0Ti	Yes	Y	DL	1.2	IL	1	21	1		
33		Yes	Υ	DL	1.2	IL	1	22	1		
34		Yes	Y	DL	1.2	IL	1	23	1		
35	1.2D + 1.0Di + 1.0Wi [270°] + 1.0Ti	Yes	Υ	DL	1.2	IL	1	24	1		
36	1.2D + 1.0Di + 1.0Wi [300°] + 1.0Ti	Yes	Υ	DL	1.2	IL	1	25	1		
37	1.2D + 1.0Di + 1.0Wi [330°] + 1.0Ti	Yes	Υ	DL	1.2	IL	1	26	1		
38	1.2D + 1.0Ev + 1.0Eh [0°]	Yes	Y	DL	1.2	ELY	1	ELZ	1	ELX	0.001
39	1.2D + 1.0Ev + 1.0Eh [30°]	Yes	Y	DL	1.2	ELY	1	ELZ	0.866	ELX	0.5
40	1.2D + 1.0Ev + 1.0Eh [60°]	Yes	Y	DL	1.2	ELY	1	ELZ	0.5	ELX	0.866
41	1.2D + 1.0Ev + 1.0Eh [90°]	Yes	Υ	DL	1.2	ELY	1	ELZ	0.001	ELX	1
42	1.2D + 1.0Ev + 1.0Eh [120°]	Yes	Y	DL	1.2	ELY	1	ELZ	-0.5	ELX	0.866
43	1.2D + 1.0Ev + 1.0Eh [150°]	Yes	Y	DL	1.2	ELY	1	ELZ	-0.866	ELX	0.5
44	1.2D + 1.0Ev + 1.0Eh [180°]	Yes	Y	DL	1.2	ELY	1	ELZ	-1	ELX	0.001
45	1.2D + 1.0Ev + 1.0Eh [210°]	Yes	Y	DL	1.2	ELY	1	ELZ	-0.866	ELX	-0.5
46	1.2D + 1.0Ev + 1.0Eh [240°]	Yes	Y	DL	1.2	ELY	1	ELZ	-0.5	ELX	-0.866
47	1.2D + 1.0Ev + 1.0Eh [270°]	Yes	Y	DL	1.2	ELY	1	ELZ	0.001	ELX	-1
48	1.2D + 1.0Ev + 1.0Eh [300°]	Yes	Y	DL	1.2	ELY	1	ELZ	0.5	ELX	-0.866
49	1.2D + 1.0Ev + 1.0Eh [330°]	Yes	Y	DL	1.2	ELY	1	ELZ	0.866	ELX	-0.5
		. 50							0.000		

Designer : Max.Carter Job Number : 14529806_C8_02

Model Name: 411178, Old Lyme South CT

9/14/2023 10:22:18 AM Checked By : -

Load Combinations (Continued)

	.oad Combinations (Continued)										
	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
50	0.9D + 1.0Ev + 1.0Eh [0°]	Yes	Y	DL	0.9	ELY	1	ELZ	1	ELX	0.001
51	0.9D + 1.0Ev + 1.0Eh [30°]	Yes	Y	DL	0.9	ELY	1	ELZ	0.866	ELX	0.5
52	0.9D + 1.0Ev + 1.0Eh [60°]	Yes	Υ	DL	0.9	ELY	1	ELZ	0.5	ELX	0.866
53	0.9D + 1.0Ev + 1.0Eh [90°]	Yes	Y	DL	0.9	ELY	1	ELZ	0.001	ELX	1
54	0.9D + 1.0Ev + 1.0Eh [120°]	Yes	Υ	DL	0.9	ELY	1	ELZ	-0.5	ELX	0.866
55	0.9D + 1.0Ev + 1.0Eh [150°]	Yes	Υ	DL	0.9	ELY	1	ELZ	-0.866	ELX	0.5
56	0.9D + 1.0Ev + 1.0Eh [180°]	Yes	Y	DL	0.9	ELY	1	ELZ	-1	ELX	0.001
57	0.9D + 1.0Ev + 1.0Eh [210°]	Yes	Υ	DL	0.9	ELY	1	ELZ	-0.866	ELX	-0.5
58	0.9D + 1.0Ev + 1.0Eh [240°]	Yes	Y	DL	0.9	ELY	1	ELZ	-0.5	ELX	-0.866
59	0.9D + 1.0Ev + 1.0Eh [270°]	Yes	Υ	DL	0.9	ELY	1	ELZ	0.001	ELX	-1
60	0.9D + 1.0Ev + 1.0Eh [300°]	Yes	Υ	DL	0.9	ELY	1	ELZ	0.5	ELX	-0.866
61	0.9D + 1.0Ev + 1.0Eh [330°]	Yes	Υ	DL	0.9	ELY	1	ELZ	0.866	ELX	-0.5
62	1.2D + 1.5Lm(1) + 1.0Wm [0°]	Yes	Υ	DL	1.2	42	1.5	27	1		
63	1.2D + 1.5Lm(1) + 1.0Wm [30°]	Yes	Υ	DL	1.2	42	1.5	28	1		
64	1.2D + 1.5Lm(1) + 1.0Wm [60°]	Yes	Υ	DL	1.2	42	1.5	29	1		
65	1.2D + 1.5Lm(1) + 1.0Wm [90°]	Yes	Υ	DL	1.2	42	1.5	30	1		
66	1.2D + 1.5Lm(1) + 1.0Wm [120°]	Yes	Υ	DL	1.2	42	1.5	31	1		
67	1.2D + 1.5Lm(1) + 1.0Wm [150°]	Yes	Y	DL	1.2	42	1.5	32	1		
68	1.2D + 1.5Lm(1) + 1.0Wm [180°]	Yes	Υ	DL	1.2	42	1.5	33	1		
69	1.2D + 1.5Lm(1) + 1.0Wm [210°]	Yes	Υ	DL	1.2	42	1.5	34	1		
70	1.2D + 1.5Lm(1) + 1.0Wm [240°]	Yes	Υ	DL	1.2	42	1.5	35	1		
71	1.2D + 1.5Lm(1) + 1.0Wm [270°]	Yes	Υ	DL	1.2	42	1.5	36	1		
72	1.2D + 1.5Lm(1) + 1.0Wm [300°]	Yes	Υ	DL	1.2	42	1.5	37	1		
73	1.2D + 1.5Lm(1) + 1.0Wm [330°]	Yes	Υ	DL	1.2	42	1.5	38	1		
74	1.2D + 1.5Lm(2) + 1.0Wm [0°]	Yes	Υ	DL	1.2	43	1.5	27	1		
75	1.2D + 1.5Lm(2) + 1.0Wm [30°]	Yes	Υ	DL	1.2	43	1.5	28	1		
76	1.2D + 1.5Lm(2) + 1.0Wm [60°]	Yes	Υ	DL	1.2	43	1.5	29	1		
77	1.2D + 1.5Lm(2) + 1.0Wm [90°]	Yes	Υ	DL	1.2	43	1.5	30	1		
78	1.2D + 1.5Lm(2) + 1.0Wm [120°]	Yes	Υ	DL	1.2	43	1.5	31	1		
79	1.2D + 1.5Lm(2) + 1.0Wm [150°]	Yes	Υ	DL	1.2	43	1.5	32	1		
80	1.2D + 1.5Lm(2) + 1.0Wm [180°]	Yes	Υ	DL	1.2	43	1.5	33	1		
81	1.2D + 1.5Lm(2) + 1.0Wm [210°]	Yes	Υ	DL	1.2	43	1.5	34	1		
82	1.2D + 1.5Lm(2) + 1.0Wm [240°]	Yes	Υ	DL	1.2	43	1.5	35	1		
83	1.2D + 1.5Lm(2) + 1.0Wm [270°]	Yes	Υ	DL	1.2	43	1.5	36	1		
84	1.2D + 1.5Lm(2) + 1.0Wm [300°]	Yes	Y	DL	1.2	43	1.5	37	1		
85	1.2D + 1.5Lm(2) + 1.0Wm [330°]	Yes	Υ	DL	1.2	43	1.5	38	1		
86	1.2D + 1.5Lm(3) + 1.0Wm [0°]	Yes	Υ	DL	1.2	44	1.5	27	1		
87	1.2D + 1.5Lm(3) + 1.0Wm [30°]	Yes	Υ	DL	1.2	44	1.5	28	1		
88	1.2D + 1.5Lm(3) + 1.0Wm [60°]	Yes	Υ	DL	1.2	44	1.5	29	1		
89	1.2D + 1.5Lm(3) + 1.0Wm [90°]	Yes	Υ	DL	1.2	44	1.5	30	1		
90	1.2D + 1.5Lm(3) + 1.0Wm [120°]	Yes	Υ	DL	1.2	44	1.5	31	1		
91	1.2D + 1.5Lm(3) + 1.0Wm [150°]	Yes	Υ	DL	1.2	44	1.5	32	1		
92	1.2D + 1.5Lm(3) + 1.0Wm [180°]	Yes	Υ	DL	1.2	44	1.5	33	1		
93	1.2D + 1.5Lm(3) + 1.0Wm [210°]	Yes	Υ	DL	1.2	44	1.5	34	1		
94	1.2D + 1.5Lm(3) + 1.0Wm [240°]	Yes	Υ	DL	1.2	44	1.5	35	1		
95	1.2D + 1.5Lm(3) + 1.0Wm [270°]	Yes	Υ	DL	1.2	44	1.5	36	1		
96	1.2D + 1.5Lm(3) + 1.0Wm [300°]	Yes	Υ	DL	1.2	44	1.5	37	1		
97	1.2D + 1.5Lm(3) + 1.0Wm [330°]	Yes	Υ	DL	1.2	44	1.5	38	1		
98	1.2D + 1.5Lm(4) + 1.0Wm [0°]	Yes	Υ	DL	1.2	45	1.5	27	1		
99	1.2D + 1.5Lm(4) + 1.0Wm [30°]	Yes	Υ	DL	1.2	45	1.5	28	1		
100	1.2D + 1.5Lm(4) + 1.0Wm [60°]	Yes	Υ	DL	1.2	45	1.5	29	1		
101	1.2D + 1.5Lm(4) + 1.0Wm [90°]	Yes	Υ	DL	1.2	45	1.5	30	1		
102	1.2D + 1.5Lm(4) + 1.0Wm [120°]	Yes	Υ	DL	1.2	45	1.5	31	1		
103	1.2D + 1.5Lm(4) + 1.0Wm [150°]	Yes	Υ	DL	1.2	45	1.5	32	1		
104	1.2D + 1.5Lm(4) + 1.0Wm [180°]	Yes	Υ	DL	1.2	45	1.5	33	1		
	, , , , , , , , , , , , , , , , , , , ,										

Designer : Max.Carter
Job Number : 14529806_C8_02

Model Name: 411178, Old Lyme South CT

9/14/2023 10:22:18 AM Checked By : -

Load Combinations (Continued)

	oad Combinations (Continued)										
	Description	Solve	P-Delta	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
105	1.2D + 1.5Lm(4) + 1.0Wm [210°]	Yes	Y	DL	1.2	45	1.5	34	1		
106	1.2D + 1.5Lm(4) + 1.0Wm [240°]	Yes	Y	DL	1.2	45	1.5	35	1		
107	1.2D + 1.5Lm(4) + 1.0Wm [270°]	Yes	Y	DL	1.2	45	1.5	36	1		
108	1.2D + 1.5Lm(4) + 1.0Wm [300°]	Yes	Υ	DL	1.2	45	1.5	37	1		
109	1.2D + 1.5Lm(4) + 1.0Wm [330°]	Yes	Υ	DL	1.2	45	1.5	38	1		
110	1.2D + 1.5Lm(5) + 1.0Wm [0°]	Yes	Y	DL	1.2	46	1.5	27	1		
111	1.2D + 1.5Lm(5) + 1.0Wm [30°]	Yes	Y	DL	1.2	46	1.5	28	1		
112	1.2D + 1.5Lm(5) + 1.0Wm [60°]	Yes	Y	DL	1.2	46	1.5	29	1		
113	1.2D + 1.5Lm(5) + 1.0Wm [90°]	Yes	Y	DL	1.2	46	1.5	30	1		
114	1.2D + 1.5Lm(5) + 1.0Wm [120°]	Yes	Y	DL	1.2	46	1.5	31	1		
115	1.2D + 1.5Lm(5) + 1.0Wm [150°]	Yes	Y	DL	1.2	46	1.5	32	1		
116	1.2D + 1.5Lm(5) + 1.0Wm [180°]	Yes	Y	DL	1.2	46	1.5	33	1		
117	1.2D + 1.5Lm(5) + 1.0Wm [210°]	Yes	Υ	DL	1.2	46	1.5	34	1		
118	1.2D + 1.5Lm(5) + 1.0Wm [240°]	Yes	Υ	DL	1.2	46	1.5	35	1		
119	1.2D + 1.5Lm(5) + 1.0Wm [270°]	Yes	Υ	DL	1.2	46	1.5	36	1		
120	1.2D + 1.5Lm(5) + 1.0Wm [300°]	Yes	Υ	DL	1.2	46	1.5	37	1		
121	1.2D + 1.5Lm(5) + 1.0Wm [330°]	Yes	Υ	DL	1.2	46	1.5	38	1		
122	1.2D + 1.5Lm(6) + 1.0Wm [0°]	Yes	Υ	DL	1.2	47	1.5	27	1		
123	1.2D + 1.5Lm(6) + 1.0Wm [30°]	Yes	Y	DL	1.2	47	1.5	28	1		
124	1.2D + 1.5Lm(6) + 1.0Wm [60°]	Yes	Y	DL	1.2	47	1.5	29	1		
125	1.2D + 1.5Lm(6) + 1.0Wm [90°]	Yes	Y	DL	1.2	47	1.5	30	1		
126	1.2D + 1.5Lm(6) + 1.0Wm [120°]	Yes	Y	DL	1.2	47	1.5	31	1		
127	1.2D + 1.5Lm(6) + 1.0Wm [150°]	Yes	Y	DL	1.2	47	1.5	32	1		
128	1.2D + 1.5Lm(6) + 1.0Wm [180°]	Yes	Y	DL	1.2	47	1.5	33	1		
129		Yes	Y	DL	1.2	47	1.5	34	1		
	1.2D + 1.5Lm(6) + 1.0Wm [210°]										
130	1.2D + 1.5Lm(6) + 1.0Wm [240°]	Yes	Y	DL	1.2	47	1.5	35	1		
131	1.2D + 1.5Lm(6) + 1.0Wm [270°]	Yes	Y	DL	1.2	47	1.5	36	1		
132	1.2D + 1.5Lm(6) + 1.0Wm [300°]	Yes	Y	DL	1.2	47	1.5	37	1		
133	1.2D + 1.5Lm(6) + 1.0Wm [330°]	Yes	Υ	DL	1.2	47	1.5	38	1		
134	1.2D + 1.5Lm(7) + 1.0Wm [0°]	Yes	Υ	DL	1.2	48	1.5	27	1		
135	1.2D + 1.5Lm(7) + 1.0Wm [30°]	Yes	Υ	DL	1.2	48	1.5	28	1		
136	1.2D + 1.5Lm(7) + 1.0Wm [60°]	Yes	Υ	DL	1.2	48	1.5	29	1		
137	1.2D + 1.5Lm(7) + 1.0Wm [90°]	Yes	Y	DL	1.2	48	1.5	30	1		
138	1.2D + 1.5Lm(7) + 1.0Wm [120°]	Yes	Y	DL	1.2	48	1.5	31	1		
139	1.2D + 1.5Lm(7) + 1.0Wm [150°]	Yes	Y	DL	1.2	48	1.5	32	1		
140	1.2D + 1.5Lm(7) + 1.0Wm [180°]	Yes	Υ	DL	1.2	48	1.5	33	1		
141	1.2D + 1.5Lm(7) + 1.0Wm [210°]	Yes	Y	DL	1.2	48	1.5	34	1		
142	1.2D + 1.5Lm(7) + 1.0Wm [240°]	Yes	Y	DL	1.2	48	1.5	35	1		
143	1.2D + 1.5Lm(7) + 1.0Wm [270°]	Yes	Y	DL	1.2	48	1.5	36	1		
144	1.2D + 1.5Lm(7) + 1.0Wm [300°]	Yes	Y	DL	1.2	48	1.5	37	1		
145	1.2D + 1.5Lm(7) + 1.0Wm [330°]	Yes	Y	DL	1.2	48	1.5	38	1		
146	1.2D + 1.5Lm(7) + 1.0Wm [330]	Yes	Y	DL	1.2	49	1.5	27	1		
147	1.2D + 1.5Lm(8) + 1.0Wm [30°]	Yes	Y	DL	1.2	49	1.5	28	1		
148	1.2D + 1.5Lm(8) + 1.0Wm [60°]	Yes	Y	DL	1.2	49	1.5	29	1		
149	1.2D + 1.5Lm(8) + 1.0Wm [90°]	Yes	Y	DL	1.2	49	1.5	30	1		
150	1.2D + 1.5Lm(8) + 1.0Wm [120°]	Yes	Y	DL	1.2	49	1.5	31	1		
151	1.2D + 1.5Lm(8) + 1.0Wm [150°]	Yes	Y	DL	1.2	49	1.5	32	1		
152	1.2D + 1.5Lm(8) + 1.0Wm [180°]	Yes	Υ	DL	1.2	49	1.5	33	1		
153	1.2D + 1.5Lm(8) + 1.0Wm [210°]	Yes	Υ	DL	1.2	49	1.5	34	1		
154	1.2D + 1.5Lm(8) + 1.0Wm [240°]	Yes	Υ	DL	1.2	49	1.5	35	1		
155	1.2D + 1.5Lm(8) + 1.0Wm [270°]	Yes	Υ	DL	1.2	49	1.5	36	1		
156	1.2D + 1.5Lm(8) + 1.0Wm [300°]	Yes	Y	DL	1.2	49	1.5	37	1		
157	1.2D + 1.5Lm(8) + 1.0Wm [330°]	Yes	Y	DL	1.2	49	1.5	38	1		
158	1.2D + 1.5Lm(9) + 1.0Wm [0°]	Yes	Y	DL	1.2	50	1.5	27	1		
159	1.2D + 1.5Lm(9) + 1.0Wm [30°]	Yes	Y	DL	1.2	50	1.5	28	1		
108	1.20 · 1.0cm(8) + 1.0vm[00]	169		DL	1.4	50	1.5	20			

Designer : Max.Carter Job Number : 14529806_C8_02

Model Name: 411178, Old Lyme South CT

9/14/2023 10:22:18 AM Checked By : -

Load Combinations (Continued)

Description	Load Combinations (Continued)										
161 1.2D + 1.5Lm(9) + 1.0Wm [120]	Description	Solve	P-Delta	BLC	Factor	BLC		BLC	Factor	BLC	Factor
182 1.2D + 1.5Lm(9) + 1.0Vm 120° Yes Y DL 1.2 50 1.5 31 1 1 163 1.2D + 1.5Lm(9) + 1.0Vm 150° Yes Y DL 1.2 50 1.5 32 1 1 164 1.2D + 1.5Lm(9) + 1.0Vm 180° Yes Y DL 1.2 50 1.5 33 1 1 166 1.2D + 1.5Lm(9) + 1.0Vm 120° Yes Y DL 1.2 50 1.5 33 1 1 166 1.2D + 1.5Lm(9) + 1.0Vm 120° Yes Y DL 1.2 50 1.5 35 1 1 166 1.2D + 1.5Lm(9) + 1.0Vm 240° Yes Y DL 1.2 50 1.5 36 1 1 1 1 1 1 1 1 1	160 1.2D + 1.5Lm(9) + 1.0Wm [60°]	Yes	Y	DL	1.2	50	1.5	29	1		
183 1.2D + 1.5Lm(9) + 1.0Vm [150"] Yes Y DL 1.2 50 1.5 32 1 164 1.2D + 1.5Lm(9) + 1.0Vm [180"] Yes Y DL 1.2 50 1.5 33 1 165 1.2D + 1.5Lm(9) + 1.0Vm [210"] Yes Y DL 1.2 50 1.5 34 1 166 1.2D + 1.5Lm(9) + 1.0Vm [210"] Yes Y DL 1.2 50 1.5 35 1 167 1.2D + 1.5Lm(9) + 1.0Vm [270"] Yes Y DL 1.2 50 1.5 36 1 188 1.2D + 1.5Lm(9) + 1.0Vm [300"] Yes Y DL 1.2 50 1.5 36 1 189 1.2D + 1.5Lm(9) + 1.0Vm [300"] Yes Y DL 1.2 50 1.5 38 1 170 1.2D + 1.5Lm(10) + 1.0Vm [30"] Yes Y DL 1.2 50 1.5 38 1 171 1.2D + 1.5Lm(10) + 1.0Vm [30"] Yes Y DL 1.2 51 1.5 27 1 171 1.2D + 1.5Lm(10) + 1.0Vm [60"] Yes Y DL 1.2 51 1.5 28 1 172 1.2D + 1.5Lm(10) + 1.0Vm [60"] Yes Y DL 1.2 51 1.5 29 1 173 1.2D + 1.5Lm(10) + 1.0Vm [60"] Yes Y DL 1.2 51 1.5 29 1 174 1.2D + 1.5Lm(10) + 1.0Vm [160"] Yes Y DL 1.2 51 1.5 30 1 174 1.2D + 1.5Lm(10) + 1.0Vm [160"] Yes Y DL 1.2 51 1.5 30 1 175 1.2D + 1.5Lm(10) + 1.0Vm [160"] Yes Y DL 1.2 51 1.5 32 1 176 1.2D + 1.5Lm(10) + 1.0Vm [160"] Yes Y DL 1.2 51 1.5 32 1 177 1.2D + 1.5Lm(10) + 1.0Vm [180"] Yes Y DL 1.2 51 1.5 33 1 177 1.2D + 1.5Lm(10) + 1.0Vm [180"] Yes Y DL 1.2 51 1.5 35 1 179 1.2D + 1.5Lm(10) + 1.0Vm [20"] Yes Y DL 1.2 51 1.5 36 1 179 1.2D + 1.5Lm(10) + 1.0Vm [20"] Yes Y DL 1.2 51 1.5 36 1 179 1.2D + 1.5Lm(10) + 1.0Vm [20"] Yes Y DL 1.2 51 1.5 36 1 179 1.2D + 1.5Lm(10) + 1.0Vm [20"] Yes Y DL 1.2 51 1.5 36 1 179 1.2D + 1.5Lm(10) + 1.0Vm [20"] Yes Y DL 1.2 51 1.5 36 1 170 1.2D + 1.5Lm(10) + 1.0Vm [20"] Yes Y DL 1.2 52 1.5 36 1 180 1.2D + 1.5Lm(10) + 1.0Vm [20"] Yes Y DL 1.2 52 1.5	161 1.2D + 1.5Lm(9) + 1.0Wm [90°]	Yes		DL		50	1.5	30	1		
164 1.2D + 1.5Lm(9) + 1.0Wm 180" Yes Y DL 1.2 50 1.5 33 1 166 1.2D + 1.5Lm(9) + 1.0Wm 240" Yes Y DL 1.2 50 1.5 35 34 1 166 1.2D + 1.5Lm(9) + 1.0Wm 240" Yes Y DL 1.2 50 1.5 35 1 166 1.2D + 1.5Lm(9) + 1.0Wm 270" Yes Y DL 1.2 50 1.5 35 1 167 1.2D + 1.5Lm(9) + 1.0Wm 270" Yes Y DL 1.2 50 1.5 36 1 168 1.2D + 1.5Lm(9) + 1.0Wm 300" Yes Y DL 1.2 50 1.5 37 1 169 1.2D + 1.5Lm(9) + 1.0Wm 330" Yes Y DL 1.2 50 1.5 38 1 170 1.2D + 1.5Lm(10) + 1.0Wm 30" Yes Y DL 1.2 51 1.5 27 1 171 1.2D + 1.5Lm(10) + 1.0Wm 30" Yes Y DL 1.2 51 1.5 28 1 172 1.2D + 1.5Lm(10) + 1.0Wm 30" Yes Y DL 1.2 51 1.5 28 1 172 1.2D + 1.5Lm(10) + 1.0Wm 100" Yes Y DL 1.2 51 1.5 29 1 173 1.2D + 1.5Lm(10) + 1.0Wm 100" Yes Y DL 1.2 51 1.5 30 1 174 1.2D + 1.5Lm(10) + 1.0Wm 150" Yes Y DL 1.2 51 1.5 30 1 175 1.2D + 1.5Lm(10) + 1.0Wm 180" Yes Y DL 1.2 51 1.5 32 1 176 1.2D + 1.5Lm(10) + 1.0Wm 180" Yes Y DL 1.2 51 1.5 33 1 177 1.2D + 1.5Lm(10) + 1.0Wm 120" Yes Y DL 1.2 51 1.5 33 1 177 1.2D + 1.5Lm(10) + 1.0Wm 120" Yes Y DL 1.2 51 1.5 33 1 178 1.2D + 1.5Lm(10) + 1.0Wm 120" Yes Y DL 1.2 51 1.5 33 1 179 1.2D + 1.5Lm(10) + 1.0Wm 120" Yes Y DL 1.2 51 1.5 36 1 1.5	162 1.2D + 1.5Lm(9) + 1.0Wm [120°]	Yes	Υ	DL	1.2	50	1.5	31	1		
164 1.2D + 1.5Lm(9) + 1.0Wm 180" Yes Y DL 1.2 50 1.5 33 1 165 1.2D + 1.5Lm(9) + 1.0Wm 210" Yes Y DL 1.2 50 1.5 35 1 166 1.2D + 1.5Lm(9) + 1.0Wm 220" Yes Y DL 1.2 50 1.5 35 1 167 1.2D + 1.5Lm(9) + 1.0Wm 270" Yes Y DL 1.2 50 1.5 36 1 168 1.2D + 1.5Lm(9) + 1.0Wm 300" Yes Y DL 1.2 50 1.5 36 1 168 1.2D + 1.5Lm(9) + 1.0Wm 300" Yes Y DL 1.2 50 1.5 37 1 169 1.2D + 1.5Lm(10) + 1.0Wm 300" Yes Y DL 1.2 50 1.5 38 1 170 1.2D + 1.5Lm(10) + 1.0Wm 30" Yes Y DL 1.2 51 1.5 27 1 171 1.2D + 1.5Lm(10) + 1.0Wm 30" Yes Y DL 1.2 51 1.5 28 1 172 1.2D + 1.5Lm(10) + 1.0Wm 60" Yes Y DL 1.2 51 1.5 28 1 172 1.2D + 1.5Lm(10) + 1.0Wm 60" Yes Y DL 1.2 51 1.5 29 1 174 1.2D + 1.5Lm(10) + 1.0Wm 160" Yes Y DL 1.2 51 1.5 30 1 174 1.2D + 1.5Lm(10) + 1.0Wm 150" Yes Y DL 1.2 51 1.5 30 1 174 1.2D + 1.5Lm(10) + 1.0Wm 150" Yes Y DL 1.2 51 1.5 32 1 175 1.2D + 1.5Lm(10) + 1.0Wm 180" Yes Y DL 1.2 51 1.5 32 1 177 1.2D + 1.5Lm(10) + 1.0Wm 180" Yes Y DL 1.2 51 1.5 33 1 1 177 1.2D + 1.5Lm(10) + 1.0Wm 180" Yes Y DL 1.2 51 1.5 33 1 1 177 1.2D + 1.5Lm(10) + 1.0Wm 180" Yes Y DL 1.2 51 1.5 33 1 1 177 1.2D + 1.5Lm(10) + 1.0Wm 180" Yes Y DL 1.2 51 1.5 33 1 1 177 1.2D + 1.5Lm(10) + 1.0Wm 180" Yes Y DL 1.2 51 1.5 33 1 1 178 1.2D + 1.5Lm(10) + 1.0Wm 180" Yes Y DL 1.2 51 1.5 34 1 1 1 178 1.2D + 1.5Lm(10) + 1.0Wm 180" Yes Y DL 1.2 51 1.5 36 1 1 1 1 1 1 1 1 1		Yes	Υ	DL	1.2	50		32	1		
165 1.2D + 1.5Lm(9) + 1.0Wm 120°] Yes Y DL 1.2 50 1.5 34 1 166 1.2D + 1.5Lm(9) + 1.0Wm 120°] Yes Y DL 1.2 50 1.5 36 1 167 1.2D + 1.5Lm(9) + 1.0Wm 300°] Yes Y DL 1.2 50 1.5 36 1 168 1.2D + 1.5Lm(9) + 1.0Wm 300°] Yes Y DL 1.2 50 1.5 36 1 169 1.2D + 1.5Lm(9) + 1.0Wm 300°] Yes Y DL 1.2 50 1.5 38 1 170 1.2D + 1.5Lm(10) + 1.0Wm 30°] Yes Y DL 1.2 50 1.5 38 1 171 1.2D + 1.5Lm(10) + 1.0Wm 10°] Yes Y DL 1.2 51 1.5 27 1 1.71 1.2D + 1.5Lm(10) + 1.0Wm 10°] Yes Y DL 1.2 51 1.5 28 1 171 1.2D + 1.5Lm(10) + 1.0Wm 10°] Yes Y DL 1.2 51 1.5 28 1 173 1.2D + 1.5Lm(10) + 1.0Wm 10°] Yes Y DL 1.2 51 1.5 30 1 174 1.2D + 1.5Lm(10) + 1.0Wm 10°] Yes Y DL 1.2 51 1.5 30 1 174 1.2D + 1.5Lm(10) + 1.0Wm 180°] Yes Y DL 1.2 51 1.5 30 1 176 1.2D + 1.5Lm(10) + 1.0Wm 180°] Yes Y DL 1.2 51 1.5 32 1 176 1.2D + 1.5Lm(10) + 1.0Wm 180°] Yes Y DL 1.2 51 1.5 33 1 177 1.2D + 1.5Lm(10) + 1.0Wm 180°] Yes Y DL 1.2 51 1.5 33 1 177 1.2D + 1.5Lm(10) + 1.0Wm 210°] Yes Y DL 1.2 51 1.5 33 1 178 1.2D + 1.5Lm(10) + 1.0Wm 270°] Yes Y DL 1.2 51 1.5 35 1 178 1.2D + 1.5Lm(10) + 1.0Wm 270°] Yes Y DL 1.2 51 1.5 36 1 1.5 1.		Yes		DL							
166 1.2D + 1.5Lm(9) + 1.0Wm 20°) Yes Y DL 1.2 50 1.5 35 1 167 1.2D + 1.5Lm(9) + 1.0Wm 20°) Yes Y DL 1.2 50 1.5 36 1 168 1.2D + 1.5Lm(9) + 1.0Wm 30°) Yes Y DL 1.2 50 1.5 36 1 170 1.2D + 1.5Lm(10) + 1.0Wm 30°] Yes Y DL 1.2 50 1.5 38 1 170 1.2D + 1.5Lm(10) + 1.0Wm 30°] Yes Y DL 1.2 51 1.5 27 1 171 1.2D + 1.5Lm(10) + 1.0Wm 30°] Yes Y DL 1.2 51 1.5 28 1 172 1.2D + 1.5Lm(10) + 1.0Wm 30°] Yes Y DL 1.2 51 1.5 28 1 173 1.2D + 1.5Lm(10) + 1.0Wm 30°] Yes Y DL 1.2 51 1.5 29 1 173 1.2D + 1.5Lm(10) + 1.0Wm 120°] Yes Y DL 1.2 51 1.5 30 1 174 1.2D + 1.5Lm(10) + 1.0Wm 120°] Yes Y DL 1.2 51 1.5 30 1 175 1.2D + 1.5Lm(10) + 1.0Wm 180°] Yes Y DL 1.2 51 1.5 32 1 176 1.2D + 1.5Lm(10) + 1.0Wm 180°] Yes Y DL 1.2 51 1.5 32 1 177 1.2D + 1.5Lm(10) + 1.0Wm 20°] Yes Y DL 1.2 51 1.5 33 1 179 1.2D + 1.5Lm(10) + 1.0Wm 240°] Yes Y DL 1.2 51 1.5 33 1 179 1.2D + 1.5Lm(10) + 1.0Wm 270°] Yes Y DL 1.2 51 1.5 36 1 179 1.2D + 1.5Lm(10) + 1.0Wm 30°] Yes Y DL 1.2 51 1.5 36 1 180 1.2D + 1.5Lm(10) + 1.0Wm 30°] Yes Y DL 1.2 51 1.5 36 1 181 1.2D + 1.5Lm(10) + 1.0Wm 30°] Yes Y DL 1.2 51 1.5 36 1 183 1.2D + 1.5Lm(10) + 1.0Wm 30°] Yes Y DL 1.2 51 1.5 36 1 184 1.2D + 1.5Lm(11) + 1.0Wm 30°] Yes Y DL 1.2 52 1.5 36 1 185 1.2D + 1.5Lm(11) + 1.0Wm 30°] Yes Y DL 1.2 52 1.5 36 1 186 1.2D + 1.5Lm(11) + 1.0Wm 30°] Yes Y DL 1.2 52 1.5 30 1 186 1.2D + 1.5Lm(11) + 1.0Wm 30°] Yes Y DL 1.2 52 1.5 30 1 186 1.2D + 1.5Lm(11) + 1.0Wm 30°] Yes Y DL 1.2 52 1.5 36 1 186 1.2D + 1.5Lm(11) + 1.0Wm 30°] Yes Y											
166 1.2D + 1.5Lm(9) + 1.0Wm 270° Yes											
168 1.2D + 1.5Lm(9) + 1.0Wm [300°] Yes Y DL 1.2 50 1.5 37 1		Yes		DL		50					
166 1.2D + 1.5Lm(10) + 1.0Wm [0]											
170 1.2D + 1.5Lm(10) + 1.0Wm 0°											
171 1.2D + 1.5Lm(10) + 1.0Wm [30°] Yes Y DL 1.2 51 1.5 28 1 172 1.2D + 1.5Lm(10) + 1.0Wm [60°] Yes Y DL 1.2 51 1.5 30 1 173 1.2D + 1.5Lm(10) + 1.0Wm [90°] Yes Y DL 1.2 51 1.5 30 1 175 1.2D + 1.5Lm(10) + 1.0Wm [120°] Yes Y DL 1.2 51 1.5 30 1 175 1.2D + 1.5Lm(10) + 1.0Wm [180°] Yes Y DL 1.2 51 1.5 31 1 175 1.2D + 1.5Lm(10) + 1.0Wm [180°] Yes Y DL 1.2 51 1.5 33 1 176 1.2D + 1.5Lm(10) + 1.0Wm [180°] Yes Y DL 1.2 51 1.5 33 1 177 1.2D + 1.5Lm(10) + 1.0Wm [210°] Yes Y DL 1.2 51 1.5 33 1 178 1.2D + 1.5Lm(10) + 1.0Wm [240°] Yes Y DL 1.2 51 1.5 35 1 178 1.2D + 1.5Lm(10) + 1.0Wm [270°] Yes Y DL 1.2 51 1.5 35 1 180 1.2D + 1.5Lm(10) + 1.0Wm [300°] Yes Y DL 1.2 51 1.5 36 1 180 1.2D + 1.5Lm(10) + 1.0Wm [300°] Yes Y DL 1.2 51 1.5 38 1 181 1.2D + 1.5Lm(10) + 1.0Wm [300°] Yes Y DL 1.2 51 1.5 38 1 181 1.2D + 1.5Lm(10) + 1.0Wm [300°] Yes Y DL 1.2 51 1.5 38 1 183 1.2D + 1.5Lm(11) + 1.0Wm [30°] Yes Y DL 1.2 52 1.5 27 1 183 1.2D + 1.5Lm(11) + 1.0Wm [60°] Yes Y DL 1.2 52 1.5 28 1 183 1.2D + 1.5Lm(11) + 1.0Wm [60°] Yes Y DL 1.2 52 1.5 30 1 185 1.2D + 1.5Lm(11) + 1.0Wm [60°] Yes Y DL 1.2 52 1.5 30 1 186 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 31 1 188 1.2D + 1.5Lm(11) + 1.0Wm [30°] Yes Y DL 1.2 52 1.5 31 1 188 1.2D + 1.5Lm(11) + 1.0Wm [30°] Yes Y DL 1.2 52 1.5 33 1 188 1.2D + 1.5Lm(11) + 1.0Wm [30°] Yes Y DL 1.2 52 1.5 33 1 189 1.2D + 1.5Lm(11) + 1.0Wm [30°] Yes Y DL 1.2 52 1.5 36 1 189 1.2D + 1.5Lm(11) + 1.0Wm [30°] Yes Y DL 1.2 52 1.5 36 1 189 1.2D + 1.5Lm(11) + 1.0Wm [30°] Yes Y DL 1.2 53											
172 1.2D + 1.5Lm(10) + 1.0Wm [60"] Yes Y DL 1.2 51 1.5 29 1 173 1.2D + 1.5Lm(10) + 1.0Wm [90"] Yes Y DL 1.2 51 1.5 30 1 174 1.2D + 1.5Lm(10) + 1.0Wm [120"] Yes Y DL 1.2 51 1.5 31 1 1 175 1.2D + 1.5Lm(10) + 1.0Wm [150"] Yes Y DL 1.2 51 1.5 32 1 176 1.2D + 1.5Lm(10) + 1.0Wm [180"] Yes Y DL 1.2 51 1.5 32 1 176 1.2D + 1.5Lm(10) + 1.0Wm [210"] Yes Y DL 1.2 51 1.5 33 1 1 177 1.2D + 1.5Lm(10) + 1.0Wm [210"] Yes Y DL 1.2 51 1.5 33 1 1 177 1.2D + 1.5Lm(10) + 1.0Wm [210"] Yes Y DL 1.2 51 1.5 35 1 1 178 1.2D + 1.5Lm(10) + 1.0Wm [300"] Yes Y DL 1.2 51 1.5 36 1 1 180 1.2D + 1.5Lm(10) + 1.0Wm [300"] Yes Y DL 1.2 51 1.5 36 1 1 180 1.2D + 1.5Lm(10) + 1.0Wm [300"] Yes Y DL 1.2 51 1.5 37 1 181 1.2D + 1.5Lm(10) + 1.0Wm [30"] Yes Y DL 1.2 51 1.5 38 1 182 1.2D + 1.5Lm(10) + 1.0Wm [30"] Yes Y DL 1.2 52 1.5 38 1 184 1.2D + 1.5Lm(11) + 1.0Wm [60"] Yes Y DL 1.2 52 1.5 28 1 184 1.2D + 1.5Lm(11) + 1.0Wm [60"] Yes Y DL 1.2 52 1.5 30 1 185 1.2D + 1.5Lm(11) + 1.0Wm [60"] Yes Y DL 1.2 52 1.5 30 1 186 1.2D + 1.5Lm(11) + 1.0Wm [180"] Yes Y DL 1.2 52 1.5 33 1 188 1.2D + 1.5Lm(11) + 1.0Wm [180"] Yes Y DL 1.2 52 1.5 33 1 1 188 1.2D + 1.5Lm(11) + 1.0Wm [20"] Yes Y DL 1.2 52 1.5 33 1 1 188 1.2D + 1.5Lm(11) + 1.0Wm [20"] Yes Y DL 1.2 52 1.5 33 1 1 188 1.2D + 1.5Lm(11) + 1.0Wm [20"] Yes Y DL 1.2 52 1.5 36 1 1 1 1.2D + 1.5Lm(11) + 1.0Wm [20"] Yes Y DL 1.2 52 1.5 36 1 1 1 1.2D + 1.5Lm(11) + 1.0Wm [20"] Yes Y DL 1.2 52 1.5 36 1 1 1 1.2D + 1.5Lm(11) + 1.0Wm [20"] Yes Y DL 1.2 52 1.5 36 1 1 1 1.2D + 1.5Lm(11) + 1.0Wm [20"] Yes Y DL 1.2 53 1.5			Y								
1.2D + 1.5Lm(10) + 1.0Wm [90°] Yes Y DL 1.2 51 1.5 30 1 1.74 1.2D + 1.5Lm(10) + 1.0Wm [120°] Yes Y DL 1.2 51 1.5 31 1 1.75 1.2D + 1.5Lm(10) + 1.0Wm [180°] Yes Y DL 1.2 51 1.5 32 1 1.76 1.2D + 1.5Lm(10) + 1.0Wm [180°] Yes Y DL 1.2 51 1.5 33 1 1.77 1.2D + 1.5Lm(10) + 1.0Wm [210°] Yes Y DL 1.2 51 1.5 33 1 1.77 1.2D + 1.5Lm(10) + 1.0Wm [240°] Yes Y DL 1.2 51 1.5 33 1 1.77 1.2D + 1.5Lm(10) + 1.0Wm [240°] Yes Y DL 1.2 51 1.5 35 1 1.78 1.2D + 1.5Lm(10) + 1.0Wm [240°] Yes Y DL 1.2 51 1.5 36 1 1.5											
174 1.2D + 1.5Lm(10) + 1.0Wm 120° Yes					1.2						
175 1.2D + 1.5Lm(10) + 1.0Wm 150° Yes											
176 1.2D + 1.5Lm(10) + 1.0Wm 180° Yes Y											
177 1.2D + 1.5Lm(10) + 1.0Wm 210° Yes											
178 1.2D + 1.5Lm(10) + 1.0Wm 240° Yes Y DL 1.2 51 1.5 35 1 179 1.2D + 1.5Lm(10) + 1.0Wm 270° Yes Y DL 1.2 51 1.5 36 1 180 1.2D + 1.5Lm(10) + 1.0Wm 300° Yes Y DL 1.2 51 1.5 37 1 181 1.2D + 1.5Lm(10) + 1.0Wm 330° Yes Y DL 1.2 51 1.5 38 1 182 1.2D + 1.5Lm(11) + 1.0Wm 0° Yes Y DL 1.2 52 1.5 38 1 183 1.2D + 1.5Lm(11) + 1.0Wm 0° Yes Y DL 1.2 52 1.5 27 1 184 1.2D + 1.5Lm(11) + 1.0Wm 0° Yes Y DL 1.2 52 1.5 28 1 184 1.2D + 1.5Lm(11) + 1.0Wm 90° Yes Y DL 1.2 52 1.5 29 1 185 1.2D + 1.5Lm(11) + 1.0Wm 90° Yes Y DL 1.2 52 1.5 30 1 186 1.2D + 1.5Lm(11) + 1.0Wm 150° Yes Y DL 1.2 52 1.5 30 1 187 1.2D + 1.5Lm(11) + 1.0Wm 150° Yes Y DL 1.2 52 1.5 32 1 188 1.2D + 1.5Lm(11) + 1.0Wm 180° Yes Y DL 1.2 52 1.5 32 1 189 1.2D + 1.5Lm(11) + 1.0Wm 180° Yes Y DL 1.2 52 1.5 33 1 190 1.2D + 1.5Lm(11) + 1.0Wm 210° Yes Y DL 1.2 52 1.5 35 1 191 1.2D + 1.5Lm(11) + 1.0Wm 270° Yes Y DL 1.2 52 1.5 36 1 192 1.2D + 1.5Lm(11) + 1.0Wm 300° Yes Y DL 1.2 52 1.5 36 1 193 1.2D + 1.5Lm(11) + 1.0Wm 30° Yes Y DL 1.2 52 1.5 36 1 194 1.2D + 1.5Lm(12) + 1.0Wm 30° Yes Y DL 1.2 52 1.5 38 1 195 1.2D + 1.5Lm(12) + 1.0Wm 30° Yes Y DL 1.2 53 1.5 37 1 196 1.2D + 1.5Lm(12) + 1.0Wm 30° Yes Y DL 1.2 53 1.5 36 1 197 1.2D + 1.5Lm(12) + 1.0Wm 30° Yes Y DL 1.2 53 1.5 36 1 198 1.2D + 1.5Lm(12) + 1.0Wm 30° Yes Y DL 1.2 53 1.5 36 1 199 1.2D + 1.5Lm(12) + 1.0Wm 30° Yes Y DL 1.2 53 1.5 36 1 190 1.2D + 1.5Lm(12) + 1.0Wm 30° Yes Y DL 1.2 53 1.5 36 1 190 1.2D + 1.5Lm(12) + 1.0Wm 30° Yes											
1.2D + 1.5Lm(10) + 1.0Wm [300°] Yes Y DL 1.2 51 1.5 36 1 1.2D + 1.5Lm(10) + 1.0Wm [300°] Yes Y DL 1.2 51 1.5 37 1 1.2D + 1.5Lm(10) + 1.0Wm [330°] Yes Y DL 1.2 51 1.5 38 1 1.2D + 1.5Lm(11) + 1.0Wm [0°] Yes Y DL 1.2 52 1.5 38 1 1.2D + 1.5Lm(11) + 1.0Wm [0°] Yes Y DL 1.2 52 1.5 27 1 1.2D + 1.5Lm(11) + 1.0Wm [60°] Yes Y DL 1.2 52 1.5 28 1 1.2D + 1.5Lm(11) + 1.0Wm [60°] Yes Y DL 1.2 52 1.5 29 1 1.2D + 1.5Lm(11) + 1.0Wm [90°] Yes Y DL 1.2 52 1.5 30 1 1.2D + 1.5Lm(11) + 1.0Wm [120°] Yes Y DL 1.2 52 1.5 30 1 1.2D + 1.5Lm(11) + 1.0Wm [150°] Yes Y DL 1.2 52 1.5 32 1 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 32 1 1.2D + 1.5Lm(11) + 1.0Wm [210°] Yes Y DL 1.2 52 1.5 33 1 1 1.2D + 1.5Lm(11) + 1.0Wm [210°] Yes Y DL 1.2 52 1.5 33 1 1 1.2D + 1.5Lm(11) + 1.0Wm [240°] Yes Y DL 1.2 52 1.5 35 1 1.2D + 1.5Lm(11) + 1.0Wm [240°] Yes Y DL 1.2 52 1.5 36 1 1.2D + 1.5Lm(11) + 1.0Wm [200°] Yes Y DL 1.2 52 1.5 36 1 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 38 1 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 38 1 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 52 1.5 38 1 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 27 1 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 30 1 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 30 1 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 30 1 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 30 1 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 30 1 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 30 1 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 30 1 1.2D + 1.5Lm(12) + 1.0Wm [3											
180											
181 1.2D + 1.5Lm(10) + 1.0Wm [330°] Yes Y DL 1.2 51 1.5 38 1 182 1.2D + 1.5Lm(11) + 1.0Wm [0°] Yes Y DL 1.2 52 1.5 27 1 183 1.2D + 1.5Lm(11) + 1.0Wm [60°] Yes Y DL 1.2 52 1.5 28 1 184 1.2D + 1.5Lm(11) + 1.0Wm [60°] Yes Y DL 1.2 52 1.5 29 1 185 1.2D + 1.5Lm(11) + 1.0Wm [90°] Yes Y DL 1.2 52 1.5 30 1 186 1.2D + 1.5Lm(11) + 1.0Wm [120°] Yes Y DL 1.2 52 1.5 30 1 186 1.2D + 1.5Lm(11) + 1.0Wm [150°] Yes Y DL 1.2 52 1.5 31 1 188 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 32 1 188 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 33 1 189 1.2D + 1.5Lm(11) + 1.0Wm [210°] Yes Y DL 1.2 52 1.5 33 1 189 1.2D + 1.5Lm(11) + 1.0Wm [240°] Yes Y DL 1.2 52 1.5 35 1 190 1.2D + 1.5Lm(11) + 1.0Wm [270°] Yes Y DL 1.2 52 1.5 35 1 191 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 36 1 192 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 38 1 194 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 38 1 196 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 27 1 196 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 29 1 197 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 30 1 198 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 30 1 199 1.2D + 1.5Lm(12) + 1.0Wm [80°] Yes Y DL 1.2 53 1.5 30 1 199 1.2D + 1.5Lm(12) + 1.0Wm [100°] Yes Y DL 1.2 53 1.5 33 1 1 199 1.2D + 1.5Lm(12) + 1.0Wm [100°] Yes Y DL 1.2 53 1.5 34 1 1 1.2D + 1.5Lm(12) + 1.0Wm [100°] Yes Y DL 1.2 53 1.5 30 1 1 1.2D + 1.5Lm(12) + 1.0Wm [100°] Yes Y DL 1.2 53 1.5 30 1 1.2D + 1.5Lm(12) + 1.0Wm [100°] Yes Y DL 1.2 53 1.5 36 1 1.2D + 1.5Lm(12) + 1.0Wm [100°] Y											
182 1.2D + 1.5Lm(11) + 1.0Wm [0°] Yes Y DL 1.2 52 1.5 27 1 183 1.2D + 1.5Lm(11) + 1.0Wm [30°] Yes Y DL 1.2 52 1.5 28 1 184 1.2D + 1.5Lm(11) + 1.0Wm [60°] Yes Y DL 1.2 52 1.5 29 1 185 1.2D + 1.5Lm(11) + 1.0Wm [90°] Yes Y DL 1.2 52 1.5 30 1 186 1.2D + 1.5Lm(11) + 1.0Wm [150°] Yes Y DL 1.2 52 1.5 30 1 187 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 32 1 188 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 33 1 189 1.2D + 1.5Lm(11) + 1.0Wm [240°] Yes Y DL 1.2 52 1.5 34 1 190 1.2D +											
183 1.2D + 1.5Lm(11) + 1.0Wm [30°] Yes Y DL 1.2 52 1.5 28 1 184 1.2D + 1.5Lm(11) + 1.0Wm [60°] Yes Y DL 1.2 52 1.5 29 1 185 1.2D + 1.5Lm(11) + 1.0Wm [90°] Yes Y DL 1.2 52 1.5 30 1 186 1.2D + 1.5Lm(11) + 1.0Wm [120°] Yes Y DL 1.2 52 1.5 31 1 187 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 32 1 188 1.2D + 1.5Lm(11) + 1.0Wm [210°] Yes Y DL 1.2 52 1.5 32 1 189 1.2D + 1.5Lm(11) + 1.0Wm [210°] Yes Y DL 1.2 52 1.5 33 1 190 1.2D + 1.5Lm(11) + 1.0Wm [240°] Yes Y DL 1.2 52 1.5 36 1 191 1.2D											
184 1.2D + 1.5Lm(11) + 1.0Wm [60°] Yes Y DL 1.2 52 1.5 29 1 185 1.2D + 1.5Lm(11) + 1.0Wm [90°] Yes Y DL 1.2 52 1.5 30 1 186 1.2D + 1.5Lm(11) + 1.0Wm [120°] Yes Y DL 1.2 52 1.5 30 1 187 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 32 1 188 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 33 1 189 1.2D + 1.5Lm(11) + 1.0Wm [210°] Yes Y DL 1.2 52 1.5 34 1 190 1.2D + 1.5Lm(11) + 1.0Wm [270°] Yes Y DL 1.2 52 1.5 36 1 191 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 36 1 192 1.2D											
185 1.2D + 1.5Lm(11) + 1.0Wm [90°] Yes Y DL 1.2 52 1.5 30 1 186 1.2D + 1.5Lm(11) + 1.0Wm [120°] Yes Y DL 1.2 52 1.5 31 1 187 1.2D + 1.5Lm(11) + 1.0Wm [150°] Yes Y DL 1.2 52 1.5 32 1 188 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 32 1 189 1.2D + 1.5Lm(11) + 1.0Wm [210°] Yes Y DL 1.2 52 1.5 34 1 190 1.2D + 1.5Lm(11) + 1.0Wm [210°] Yes Y DL 1.2 52 1.5 34 1 191 1.2D + 1.5Lm(11) + 1.0Wm [270°] Yes Y DL 1.2 52 1.5 36 1 192 1.2D + 1.5Lm(11) + 1.0Wm [30°] Yes Y DL 1.2 52 1.5 38 1 192 1.2D											
186 1.2D + 1.5Lm(11) + 1.0Wm [120°] Yes Y DL 1.2 52 1.5 31 1 187 1.2D + 1.5Lm(11) + 1.0Wm [150°] Yes Y DL 1.2 52 1.5 32 1 188 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 33 1 189 1.2D + 1.5Lm(11) + 1.0Wm [210°] Yes Y DL 1.2 52 1.5 34 1 190 1.2D + 1.5Lm(11) + 1.0Wm [240°] Yes Y DL 1.2 52 1.5 35 1 191 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 36 1 192 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 36 1 192 1.2D + 1.5Lm(11) + 1.0Wm [330°] Yes Y DL 1.2 52 1.5 37 1 193 1.2D + 1.5Lm(12) + 1.0Wm [330°] Yes Y DL 1.2 52 1.5 38 1 194 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 27 1 195 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 28 1 196 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 30 1 198 1.2D + 1.5Lm(12) + 1.0Wm [120°] Yes Y DL 1.2 53 1.5 30 1 199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 32 1 1 199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 32 1 1 199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 33 1 1 199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 34 1 1 1 1 1 1 1 1 1											
187 1.2D + 1.5Lm(11) + 1.0Wm [150°] Yes Y DL 1.2 52 1.5 32 1 188 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 33 1 189 1.2D + 1.5Lm(11) + 1.0Wm [240°] Yes Y DL 1.2 52 1.5 34 1 190 1.2D + 1.5Lm(11) + 1.0Wm [240°] Yes Y DL 1.2 52 1.5 34 1 190 1.2D + 1.5Lm(11) + 1.0Wm [270°] Yes Y DL 1.2 52 1.5 36 1 191 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 36 1 192 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 36 1 193 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 52 1.5 38 1 194 1.2											
188 1.2D + 1.5Lm(11) + 1.0Wm [180°] Yes Y DL 1.2 52 1.5 33 1 189 1.2D + 1.5Lm(11) + 1.0Wm [210°] Yes Y DL 1.2 52 1.5 34 1 190 1.2D + 1.5Lm(11) + 1.0Wm [240°] Yes Y DL 1.2 52 1.5 35 1 191 1.2D + 1.5Lm(11) + 1.0Wm [270°] Yes Y DL 1.2 52 1.5 36 1 192 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 36 1 193 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 37 1 194 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 27 1 195 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 28 1 196 1.2D + 1.5Lm(12) + 1.0Wm [90°] Yes Y DL 1.2 53 1.5 30											
189 1.2D + 1.5Lm(11) + 1.0Wm [210°] Yes Y DL 1.2 52 1.5 34 1 190 1.2D + 1.5Lm(11) + 1.0Wm [240°] Yes Y DL 1.2 52 1.5 35 1 191 1.2D + 1.5Lm(11) + 1.0Wm [270°] Yes Y DL 1.2 52 1.5 36 1 192 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 37 1 193 1.2D + 1.5Lm(11) + 1.0Wm [330°] Yes Y DL 1.2 52 1.5 38 1 194 1.2D + 1.5Lm(12) + 1.0Wm [0°] Yes Y DL 1.2 53 1.5 27 1 195 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 28 1 196 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 29 1 197 1.2D + 1.5Lm(12) + 1.0Wm [90°] Yes Y DL 1.2 53 1.5 30 </td <td></td>											
190 1.2D + 1.5Lm(11) + 1.0Wm [240°] Yes Y DL 1.2 52 1.5 35 1 191 1.2D + 1.5Lm(11) + 1.0Wm [270°] Yes Y DL 1.2 52 1.5 36 1 192 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 37 1 193 1.2D + 1.5Lm(11) + 1.0Wm [30°] Yes Y DL 1.2 52 1.5 38 1 194 1.2D + 1.5Lm(12) + 1.0Wm [0°] Yes Y DL 1.2 53 1.5 27 1 195 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 28 1 196 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 29 1 197 1.2D + 1.5Lm(12) + 1.0Wm [90°] Yes Y DL 1.2 53 1.5 30 1 198 1.2D + 1.5Lm(12) + 1.0Wm [120°] Yes Y DL 1.2 53 1.5 32 <td></td>											
191 1.2D + 1.5Lm(11) + 1.0Wm [270°] Yes Y DL 1.2 52 1.5 36 1 192 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 37 1 193 1.2D + 1.5Lm(11) + 1.0Wm [330°] Yes Y DL 1.2 52 1.5 38 1 194 1.2D + 1.5Lm(12) + 1.0Wm [0°] Yes Y DL 1.2 53 1.5 27 1 195 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 28 1 196 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 29 1 197 1.2D + 1.5Lm(12) + 1.0Wm [90°] Yes Y DL 1.2 53 1.5 30 1 198 1.2D + 1.5Lm(12) + 1.0Wm [120°] Yes Y DL 1.2 53 1.5 31 1 199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 32 </td <td></td>											
192 1.2D + 1.5Lm(11) + 1.0Wm [300°] Yes Y DL 1.2 52 1.5 37 1 193 1.2D + 1.5Lm(11) + 1.0Wm [330°] Yes Y DL 1.2 52 1.5 38 1 194 1.2D + 1.5Lm(12) + 1.0Wm [0°] Yes Y DL 1.2 53 1.5 27 1 195 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 28 1 196 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 29 1 197 1.2D + 1.5Lm(12) + 1.0Wm [90°] Yes Y DL 1.2 53 1.5 30 1 198 1.2D + 1.5Lm(12) + 1.0Wm [120°] Yes Y DL 1.2 53 1.5 30 1 199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 32 1 200 1.2D + 1.5Lm(12) + 1.0Wm [210°] Yes Y DL 1.2 53 1.5 33 </td <td></td>											
193 1.2D + 1.5Lm(11) + 1.0Wm [330°] Yes Y DL 1.2 52 1.5 38 1 194 1.2D + 1.5Lm(12) + 1.0Wm [0°] Yes Y DL 1.2 53 1.5 27 1 195 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 28 1 196 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 29 1 197 1.2D + 1.5Lm(12) + 1.0Wm [90°] Yes Y DL 1.2 53 1.5 30 1 198 1.2D + 1.5Lm(12) + 1.0Wm [120°] Yes Y DL 1.2 53 1.5 30 1 199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 31 1 200 1.2D + 1.5Lm(12) + 1.0Wm [180°] Yes Y DL 1.2 53 1.5 33 1 201 1.2D + 1.5Lm(12) + 1.0Wm [210°] Yes Y DL 1.2 53 1.5 34 </td <td></td>											
194 1.2D + 1.5Lm(12) + 1.0Wm [0°] Yes Y DL 1.2 53 1.5 27 1 195 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 28 1 196 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 29 1 197 1.2D + 1.5Lm(12) + 1.0Wm [90°] Yes Y DL 1.2 53 1.5 30 1 198 1.2D + 1.5Lm(12) + 1.0Wm [120°] Yes Y DL 1.2 53 1.5 31 1 199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 32 1 200 1.2D + 1.5Lm(12) + 1.0Wm [180°] Yes Y DL 1.2 53 1.5 33 1 201 1.2D + 1.5Lm(12) + 1.0Wm [210°] Yes Y DL 1.2 53 1.5 34 1 202 1.2D + 1.5Lm(12) + 1.0Wm [240°] Yes Y DL 1.2 53 1.5 35 </td <td></td>											
195 1.2D + 1.5Lm(12) + 1.0Wm [30°] Yes Y DL 1.2 53 1.5 28 1 196 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 29 1 197 1.2D + 1.5Lm(12) + 1.0Wm [90°] Yes Y DL 1.2 53 1.5 30 1 198 1.2D + 1.5Lm(12) + 1.0Wm [120°] Yes Y DL 1.2 53 1.5 31 1 199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 32 1 200 1.2D + 1.5Lm(12) + 1.0Wm [180°] Yes Y DL 1.2 53 1.5 33 1 201 1.2D + 1.5Lm(12) + 1.0Wm [210°] Yes Y DL 1.2 53 1.5 34 1 202 1.2D + 1.5Lm(12) + 1.0Wm [240°] Yes Y DL 1.2 53 1.5 35 1 203 1.2D + 1.5Lm(12) + 1.0Wm [270°] Yes Y DL 1.2 53 1.5 36 1 204 1.2D + 1.5Lm(12) + 1.0Wm [300°] Yes Y DL 1.2 53 1.5 37 1<											
196 1.2D + 1.5Lm(12) + 1.0Wm [60°] Yes Y DL 1.2 53 1.5 29 1 197 1.2D + 1.5Lm(12) + 1.0Wm [90°] Yes Y DL 1.2 53 1.5 30 1 198 1.2D + 1.5Lm(12) + 1.0Wm [120°] Yes Y DL 1.2 53 1.5 31 1 199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 32 1 200 1.2D + 1.5Lm(12) + 1.0Wm [180°] Yes Y DL 1.2 53 1.5 33 1 201 1.2D + 1.5Lm(12) + 1.0Wm [210°] Yes Y DL 1.2 53 1.5 34 1 202 1.2D + 1.5Lm(12) + 1.0Wm [240°] Yes Y DL 1.2 53 1.5 35 1 203 1.2D + 1.5Lm(12) + 1.0Wm [270°] Yes Y DL 1.2 53 1.5 36 1 204 1.2D + 1.5Lm(12) + 1.0Wm [300°] Yes Y DL 1.2 53 1.5 37 1											
197 1.2D + 1.5Lm(12) + 1.0Wm [90°] Yes Y DL 1.2 53 1.5 30 1 198 1.2D + 1.5Lm(12) + 1.0Wm [120°] Yes Y DL 1.2 53 1.5 31 1 199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 32 1 200 1.2D + 1.5Lm(12) + 1.0Wm [180°] Yes Y DL 1.2 53 1.5 33 1 201 1.2D + 1.5Lm(12) + 1.0Wm [210°] Yes Y DL 1.2 53 1.5 34 1 202 1.2D + 1.5Lm(12) + 1.0Wm [240°] Yes Y DL 1.2 53 1.5 35 1 203 1.2D + 1.5Lm(12) + 1.0Wm [270°] Yes Y DL 1.2 53 1.5 36 1 204 1.2D + 1.5Lm(12) + 1.0Wm [300°] Yes Y DL 1.2 53 1.5 37 1						53					
198 1.2D + 1.5Lm(12) + 1.0Wm [120°] Yes Y DL 1.2 53 1.5 31 1 199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 32 1 200 1.2D + 1.5Lm(12) + 1.0Wm [180°] Yes Y DL 1.2 53 1.5 33 1 201 1.2D + 1.5Lm(12) + 1.0Wm [210°] Yes Y DL 1.2 53 1.5 34 1 202 1.2D + 1.5Lm(12) + 1.0Wm [240°] Yes Y DL 1.2 53 1.5 35 1 203 1.2D + 1.5Lm(12) + 1.0Wm [270°] Yes Y DL 1.2 53 1.5 36 1 204 1.2D + 1.5Lm(12) + 1.0Wm [300°] Yes Y DL 1.2 53 1.5 37 1		Yes									
199 1.2D + 1.5Lm(12) + 1.0Wm [150°] Yes Y DL 1.2 53 1.5 32 1 200 1.2D + 1.5Lm(12) + 1.0Wm [180°] Yes Y DL 1.2 53 1.5 33 1 201 1.2D + 1.5Lm(12) + 1.0Wm [210°] Yes Y DL 1.2 53 1.5 34 1 202 1.2D + 1.5Lm(12) + 1.0Wm [240°] Yes Y DL 1.2 53 1.5 35 1 203 1.2D + 1.5Lm(12) + 1.0Wm [270°] Yes Y DL 1.2 53 1.5 36 1 204 1.2D + 1.5Lm(12) + 1.0Wm [300°] Yes Y DL 1.2 53 1.5 37 1									1		
200 1.2D + 1.5Lm(12) + 1.0Wm [180°] Yes Y DL 1.2 53 1.5 33 1 201 1.2D + 1.5Lm(12) + 1.0Wm [210°] Yes Y DL 1.2 53 1.5 34 1 202 1.2D + 1.5Lm(12) + 1.0Wm [240°] Yes Y DL 1.2 53 1.5 35 1 203 1.2D + 1.5Lm(12) + 1.0Wm [270°] Yes Y DL 1.2 53 1.5 36 1 204 1.2D + 1.5Lm(12) + 1.0Wm [300°] Yes Y DL 1.2 53 1.5 37 1									1		
201 1.2D + 1.5Lm(12) + 1.0Wm [210°] Yes Y DL 1.2 53 1.5 34 1 202 1.2D + 1.5Lm(12) + 1.0Wm [240°] Yes Y DL 1.2 53 1.5 35 1 203 1.2D + 1.5Lm(12) + 1.0Wm [270°] Yes Y DL 1.2 53 1.5 36 1 204 1.2D + 1.5Lm(12) + 1.0Wm [300°] Yes Y DL 1.2 53 1.5 37 1	199 1.2D + 1.5Lm(12) + 1.0Wm [150°]		Y								
201 1.2D + 1.5Lm(12) + 1.0Wm [210°] Yes Y DL 1.2 53 1.5 34 1 202 1.2D + 1.5Lm(12) + 1.0Wm [240°] Yes Y DL 1.2 53 1.5 35 1 203 1.2D + 1.5Lm(12) + 1.0Wm [270°] Yes Y DL 1.2 53 1.5 36 1 204 1.2D + 1.5Lm(12) + 1.0Wm [300°] Yes Y DL 1.2 53 1.5 37 1	200 1.2D + 1.5Lm(12) + 1.0Wm [180°]	Yes							1		
202 1.2D + 1.5Lm(12) + 1.0Wm [240°] Yes Y DL 1.2 53 1.5 35 1 203 1.2D + 1.5Lm(12) + 1.0Wm [270°] Yes Y DL 1.2 53 1.5 36 1 204 1.2D + 1.5Lm(12) + 1.0Wm [300°] Yes Y DL 1.2 53 1.5 37 1		Yes		DL	1.2		1.5	34	1		
203 1.2D + 1.5Lm(12) + 1.0Wm [270°] Yes Y DL 1.2 53 1.5 36 1 204 1.2D + 1.5Lm(12) + 1.0Wm [300°] Yes Y DL 1.2 53 1.5 37 1		Yes	Υ	DL	1.2		1.5	35	1		
204 1.2D + 1.5Lm(12) + 1.0Wm [300°] Yes Y DL 1.2 53 1.5 37 1											

Member Primary Data

	Label	I Node	J Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
1	H001	N003	N005		HSS5x3x5	Beam	None	A500 Gr. B [SQR]	Typical
2	H002	N004	N006		HSS5x3x5	Beam	None	A500 Gr. B [SQR]	Typical
3	H003	N009	N010		PIPE_3.0	Beam	None	A500 Gr. B [RND]	Typical
4	H004	N002	N015		HSS5x3x5	Beam	None	A500 Gr. B [SQR]	Typical
5	H005	N011	N013		PIPE_3.0	Beam	None	A500 Gr. B [RND]	Typical
6	H006	N012	N014		PIPE 3.0	Beam	None	A500 Gr. B [RND]	Typical

Designer : Max.Carter
Job Number : 14529806_C8_02

Model Name: 411178, Old Lyme South CT

9/14/2023 10:22:18 AM Checked By : -

Member Primary Data (Continued)

	Label	l Node	J Node	Rotate(deg)	Section/Shape	Туре	Design List	Material	Design Rule
7	H007	N019	N017	(deg)	PIPE_3.0	Beam	None	A500 Gr. B [RND]	Typical
8	H008	N021	N023		PIPE 3.0	Beam	None	A500 Gr. B [RND]	Typical
9	H009	N022	N024		PIPE 3.0	Beam	None	A500 Gr. B [RND]	Typical
10	H010	N018	N020		PIPE 3.0	Beam	None	A500 Gr. B [RND]	Typical
11	H011	N025	N027		PIPE 3.0	Beam	None	A500 Gr. B [RND]	Typical
12	H012	N026	N028		PIPE 3.0	Beam	None	A500 Gr. B [RND]	Typical
13	H013	N037	N029	270	L 1.5x1.5x4	Beam	None	A36	Typical
14	H014	N038	N030	270	L 1.5x1.5x4	Beam	None	A36	Typical
15	H015	N039	N040	270	L 1.5x1.5x4	Beam	None	A36	Typical
16	H016	N034	N031		L 1.5x1.5x4	Beam	None	A36	Typical
17	H017	N035	N032		L 1.5x1.5x4	Beam	None	A36	Typical
18	H018	N036	N033		L 1.5x1.5x4	Beam	None	A36	Typical
19	H019	N041	N042		PIPE_2.0	Beam	None	A500 Gr. B [RND]	Typical
20	H020	N043	N045		PIPE_2.0	Beam	None	A500 Gr. B [RND]	Typical
21	H021	N044	N046		PIPE_2.0	Beam	None	A500 Gr. B [RND]	Typical
22	H022	N048	N047		PIPE_2.0	Beam	None	A500 Gr. B [RND]	Typical
23	H023	N049	N051		PIPE_2.0	Beam	None	A500 Gr. B [RND]	Typical
24	H024	N050	N052		PIPE_2.0	Beam	None	A500 Gr. B [RND]	Typical
25	U025	N053	N065		(2) 1/2 U-Bolts	Beam	None	A36	Typical
26	U026	N066	N067		(2) 1/2 U-Bolts	Beam	None	A36	Typical
27	MP027	N068	N069		PIPE_2.0	Column	None	A53 Gr. B	Typical
28	U028	N055	N070		(2) 1/2 U-Bolts	Beam	None	A36	Typical
29	U029	N071	N072		(2) 1/2 U-Bolts	Beam	None	A36	Typical
30	MP030	N073	N074		PIPE_2.0	Column	None	A53 Gr. B	Typical
31	U031	N056	N075		(2) 1/2 U-Bolts	Beam	None	A36	Typical
32	U032	N076	N077		(2) 1/2 U-Bolts	Beam	None	A36	Typical
33	MP033	N078	N079		PIPE_2.0	Column	None	A53 Gr. B	Typical
34	U034	N054	N080		(2) 1/2 U-Bolts	Beam	None	A36	Typical
35	U035	N081	N082		(2) 1/2 U-Bolts	Beam	None	A36	Typical
36	MP036	N083	N084		PIPE_2.0	Column	None	A53 Gr. B	Typical
37	U037	N058	N085		(2) 1/2 U-Bolts	Beam	None	A36	Typical
	U038 MP039	N086	N087 N089		(2) 1/2 U-Bolts	Beam	None	A36 A53 Gr. B	Typical
39 40	U040	N088 N062	N099 N090		PIPE_2.0	Column	None None	A33 Gr. B A36	Typical
41	U041	N091	N090 N092		(2) 1/2 U-Bolts (2) 1/2 U-Bolts	Beam Beam	None	A36	Typical Typical
42	MP042	N093	N092		PIPE 2.0	Column	None	A53 Gr. B	Typical
43	U043	N064	N094 N095		(2) 1/2 U-Bolts	Beam	None	A36	Typical
44	U044	N096	N097		(2) 1/2 U-Bolts	Beam	None	A36	Typical
45	MP045	N098	N099		PIPE 2.0	Column	None	A53 Gr. B	Typical
46	U046	N060	N100		(2) 1/2 U-Bolts	Beam	None	A36	Typical
47	U047	N101	N102		(2) 1/2 U-Bolts	Beam	None	A36	Typical
48	MP048	N103	N104		PIPE 2.0	Column	None	A53 Gr. B	Typical
49	U049	N057	N105		(2) 1/2 U-Bolts	Beam	None	A36	Typical
50	U050	N106	N107		(2) 1/2 U-Bolts	Beam	None	A36	Typical
51	MP051	N108	N109		PIPE 2.0	Column	None	A53 Gr. B	Typical
52	U052	N061	N110		(2) 1/2 U-Bolts	Beam	None	A36	Typical
53	U053	N111	N112		(2) 1/2 U-Bolts	Beam	None	A36	Typical
54	MP054	N113	N114		PIPE 2.0	Column	None	A53 Gr. B	Typical
55	U055	N063	N115		(2) 1/2 U-Bolts	Beam	None	A36	Typical
56	U056	N116	N117		(2) 1/2 U-Bolts	Beam	None	A36	Typical
57	MP057	N118	N119		PIPE_2.0	Column	None	A53 Gr. B	Typical
58	U058	N059	N120		(2) 1/2 U-Bolts	Beam	None	A36	Typical
59	U059	N121	N122		(2) 1/2 U-Bolts	Beam	None	A36	Typical
60	MP060	N123	N124		PIPE_2.0	Column	None	A53 Gr. B	Typical

Designer : Max.Carter
Job Number : 14529806_C8_02

Model Name: 411178, Old Lyme South CT

9/14/2023 10:22:18 AM Checked By : -

Hot Rolled Steel Design Parameters

	TOT ROTTE	Steel Design P	ur urricitor 3							
	Label	Shape	Length [in]	Lb y-y [in]	Lb z-z [in]	Lcomp top [in]	L-Torque [in]	К у-у	K z-z	Function
1	H001	HSS5x3x5	63	77.1		Lbyy		1	1	Lateral
2	H002	HSS5x3x5	63			Lbyy		1	1	Lateral
3	H003	PIPE 3.0	150.004			Lbyy		1	1	Lateral
	H004	HSS5x3x5	63					1	1	Lateral
5			150.004			Lbyy		1		
	H005	PIPE_3.0				Lbyy			1	Lateral
6	H006	PIPE_3.0	150.004			Lbyy		1	1	Lateral
7	H007	PIPE_3.0	15.588			Lbyy		0.65	0.65	Lateral
8	H008	PIPE_3.0	15.588			Lbyy		0.65	0.65	Lateral
9	H009	PIPE_3.0	15.588			Lbyy		0.65	0.65	Lateral
10	H010	PIPE_3.0	46.765			Lbyy		0.65	0.65	Lateral
11	H011	PIPE_3.0	46.765			Lbyy		0.65	0.65	Lateral
12	H012	PIPE 3.0	46.765			Lbyy		0.65	0.65	Lateral
13	H013	L 1.5x1.5x4	29.79			Lbyy		1	1	Lateral
14	H014	L 1.5x1.5x4	29.79			Lbyy		1	1	Lateral
15	H015	L 1.5x1.5x4	29.79			Lbyy		1	1	Lateral
16	H016	L 1.5x1.5x4	29.79			Lbyy		1	1	Lateral
17	H017	L 1.5x1.5x4	29.79			Lbyy		1	1	Lateral
18	H018	L 1.5x1.5x4	29.79			Lbyy		1	1	Lateral
19	H019	PIPE_2.0	150.004					1	1	
						Lbyy		1		Lateral Lateral
20	H020	PIPE_2.0	150.004			Lbyy			1	
21	H021	PIPE_2.0	150.004			Lbyy		1 0.05	1	Lateral
22	H022	PIPE_2.0	15.588			Lbyy		0.65	0.65	Lateral
23	H023	PIPE_2.0	15.588			Lbyy		0.65	0.65	Lateral
24	H024	PIPE_2.0	15.588			Lbyy		0.65	0.65	Lateral
25	U025	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
26	U026	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
27	MP027	PIPE_2.0	96	Segment	Segment	Lbyy	Segment	2.1	2.1	Lateral
28	U028	(2) 1/2 U-Bolts	3	_	_	Lbyy		0.5	0.5	Lateral
29	U029	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
30	MP030	PIPE 2.0	96	Segment	Segment	Lbyy	Segment	2.1	2.1	Lateral
31	U031	(2) 1/2 U-Bolts	3	J	<u> </u>	Lbyy	5	0.5	0.5	Lateral
32	U032	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
33	MP033	PIPE 2.0	96	Segment	Segment	Lbyy	Segment	2.1	2.1	Lateral
34	U034	(2) 1/2 U-Bolts	3	Ocginent	Ocginent	Lbyy	Ocginent	0.5	0.5	Lateral
35	U035	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
36	MP036	PIPE 2.0	96	Cogmont	Segment		Cogmont	2.1	2.1	Lateral
37	U037	(2) 1/2 U-Bolts		Segment	Segment	Lbyy	Segment	0.5		
			3			Lbyy			0.5	Lateral
38	U038	(2) 1/2 U-Bolts	3	0 1	0 1	Lbyy	0 1	0.5	0.5	Lateral
39	MP039	PIPE_2.0	96	Segment	Segment	Lbyy	Segment	2.1	2.1	Lateral
40	U040	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
41	U041	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
42	MP042	PIPE_2.0	96	Segment	Segment	Lbyy	Segment	2.1	2.1	Lateral
43	U043	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
44	U044	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
45	MP045	PIPE_2.0	96	Segment	Segment	Lbyy	Segment	2.1	2.1	Lateral
46	U046	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
47	U047	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
48	MP048	PIPE_2.0	96	Segment	Segment	Lbyy	Segment	2.1	2.1	Lateral
49	U049	(2) 1/2 U-Bolts	3	3	J 11211C	Lbyy	3	0.5	0.5	Lateral
50	U050	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
51	MP051	PIPE 2.0	96	Segment	Segment	Lbyy	Segment	2.1	2.1	Lateral
52	U052	(2) 1/2 U-Bolts	3	Dogmont	Sognicit	Lbyy	Segment	0.5	0.5	Lateral
53	U053	(2) 1/2 U-Bolts	3					0.5	0.5	
				Cogmont	Coamont	Lbyy	Cogmont			Lateral
54	MP054	PIPE_2.0	96	Segment	Segment	Lbyy	Segment	2.1	2.1	Lateral
55	U055	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral

Designer : Max.Carter Job Number : 14529806_C8_02

Model Name: 411178, Old Lyme South CT

9/14/2023 10:22:18 AM Checked By : -

Hot Rolled Steel Design Parameters (Continued)

	Label	Shape	Length [in]	Lb y-y [in]	Lb z-z [in]	Lcomp top [in]	L-Torque [in]	К у-у	K z-z	Function
56	U056	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
57	MP057	PIPE_2.0	96	Segment	Segment	Lbyy	Segment	2.1	2.1	Lateral
58	U058	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
59	U059	(2) 1/2 U-Bolts	3			Lbyy		0.5	0.5	Lateral
60	MP060	PIPE_2.0	96	Segment	Segment	Lbyy	Segment	2.1	2.1	Lateral

Node Boundary Conditions

	Node Label	X [lb/in]	Y [lb/in]	Z [lb/in]	X Rot [k-in/rad]	Y Rot [k-in/rad]	Z Rot [k-in/rad]
1	N001	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
2	N002	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
3	N003	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
4	N004	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction

Member Advanced Data

	Label	I Release	J Release	Physical	Deflection Ratio Options	Activation	Seismic DR
1	H001			Yes	N/A		None
2	H002			Yes	N/A		None
3	H003			Yes	N/A		None
4	H004			Yes	N/A		None
5	H005			Yes	N/A		None
6	H006			Yes	N/A		None
7	H007			Yes	N/A		None
8	H008			Yes	N/A		None
9	H009			Yes	N/A		None
10	H010			Yes	N/A		None
11	H011			Yes	N/A		None
12	H012			Yes	N/A		None
13	H013	BenPIN	BenPIN	Yes	N/A		None
14	H014	BenPIN	BenPIN	Yes	N/A		None
15	H015	BenPIN	BenPIN	Yes	N/A		None
16	H016	BenPIN	BenPIN	Yes	N/A		None
17	H017	BenPIN	BenPIN	Yes	N/A		None
18	H018	BenPIN	BenPIN	Yes	N/A		None
19	H019			Yes	N/A		None
20	H020			Yes	N/A		None
21	H021			Yes	N/A		None
22	H022			Yes	N/A		None
23	H023			Yes	N/A		None
24	H024			Yes	N/A		None
25	U025			Yes	N/A	Exclude	None
26	U026			Yes	N/A	Exclude	None
27	MP027			Yes	** NA **		None
28	U028			Yes	N/A	Exclude	None
29	U029			Yes	N/A	Exclude	None
30	MP030			Yes	** NA **		None
31	U031			Yes	N/A	Exclude	None
32	U032			Yes	N/A	Exclude	None
33	MP033			Yes	** NA **		None
34	U034			Yes	N/A	Exclude	None
35	U035			Yes	N/A	Exclude	None
36	MP036			Yes	** NA **		None
37	U037			Yes	N/A	Exclude	None
38	U038			Yes	N/A	Exclude	None

Designer : Max.Carter Job Number : 14529806_C8_02

Model Name: 411178, Old Lyme South CT

9/14/2023 10:22:18 AM Checked By : -

Member Advanced Data (Continued)

	Label	l Release	J Release	Physical	Deflection Ratio Options	Activation	Seismic DR
39	MP039			Yes	** NA **		None
40	U040			Yes	N/A	Exclude	None
41	U041			Yes	N/A	Exclude	None
42	MP042			Yes	** NA **		None
43	U043			Yes	N/A	Exclude	None
44	U044			Yes	N/A	Exclude	None
45	MP045			Yes	** NA **		None
46	U046			Yes	N/A	Exclude	None
47	U047			Yes	N/A	Exclude	None
48	MP048			Yes	** NA **		None
49	U049			Yes	N/A	Exclude	None
50	U050			Yes	N/A	Exclude	None
51	MP051			Yes	** NA **		None
52	U052			Yes	N/A	Exclude	None
53	U053			Yes	N/A	Exclude	None
54	MP054			Yes	** NA **		None
55	U055			Yes	N/A	Exclude	None
56	U056			Yes	N/A	Exclude	None
57	MP057			Yes	** NA **		None
58	U058			Yes	N/A	Exclude	None
59	U059			Yes	N/A	Exclude	None
60	MP060			Yes	** NA **		None

Hot Rolled Steel Properties

	Label	E [psi]	G [psi]	Nu	Therm. Coeff. [1e⁵°F⁻¹]	Density [lb/ft³]	Yield [psi]	Ry	Fu [psi]	Rt
1/	A500 Gr. B [SQR]	2.9e+07	1.115e+07	0.3	0.65	490	46000	1.4	58000	1.3
2/	4500 Gr. B [RND]	2.9e+07	1.115e+07	0.3	0.65	490	42000	1.4	58000	1.3
3	A36	2.9e+07	1.115e+07	0.3	0.65	490	36000	1.5	58000	1.2
4	A53 Gr. B	2.9e+07	1.115e+07	0.3	0.65	490	35000	1.6	60000	1.2

Envelope Node Reactions

	Node Label		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [lb-ft]	LC	MY [lb-ft]	LC	MZ [lb-ft]	LC
1	N001	max	0	205	0	205	0	205	0	205	0	205	0	205
2		min	0	1	0	1	0	1	0	1	0	1	0	1
3	N002	max	1304.679	17	2176.82	26	2840.362	14	7058.643	26	2422.844	23	1153.109	11
4		min	-1305.751	23	-206.074	20	-2888.842	8	-1442.384	20	-2420.979	17	-1160.136	5
5	N003	max	2425.687	18	2176.811	30	1503.212	12	771.356	25	2422.808	15	1257.694	24
6		min	-2467.807	12	-206.057	24	-1479.206	18	-3541.405	31	-2420.944	21	-6118.674	30
7	N004	max	2535.719	4	2176.814	34	1456.599	2	797.375	15	2422.797	19	6107.215	34
8		min	-2493.87	22	-206.057	16	-1433.241	20	-3560.117	33	-2420.932	25	-1240.451	16
9	Totals:	max	5214.27	5	5905.49	28	5566.18	14						
10		min	-5214.27	11	2120.16	22	-5566.18	8				·		

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks

	Member	Shape	Code Check	(Loc[in]	LC	Shear Check	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-ft]	Cb	Eqn
1	H001	HSS5x3x5	0.323	0	30	0.118	0	z	9	139602.037	169740	15456	22149	2.356	H1-1b
2	H002	HSS5x3x5	0.323	0	34	0.118	0	Z	13	3 139602.037	169740	15456	22149	2.356	H1-1b
3	H003	PIPE_3.0	0.135	43.751	11	0.115	137.504		8	28614.088	78246	6898.5	6898.5	2.154	H1-1b
4	H004	HSS5x3x5	0.323	0	26	0.118	0	Z	5	139602.037	169740	15456	22149	2.356	H1-1b
5	H005	PIPE_3.0	0.135	43.751	3	0.115	137.504		12	28614.088	78246	6898.5	6898.5	2.154	H1-1b
6	H006	PIPE_3.0	0.135	43.751	7	0.115	137.504		4	28614.088	78246	6898.5	6898.5	2.154	H1-1b
7	H007	PIPE_3.0	0.141	7.794	3	0.129	7.794		10	77888.459	78246	6898.5	6898.5	1.184	H1-1b

Designer : Max.Carter Job Number : 14529806_C8_02

Model Name: 411178, Old Lyme South CT

9/14/2023 10:22:18 AM Checked By : -

Envelope AISC 15TH (360-16): LRFD Member Steel Code Checks (Continued)

	Member	Shape	Code Checl	kLoc[in]	LC	Shear Check	Loc[in]	Dir	LC	phi*Pnc [lb]	phi*Pnt [lb]	phi*Mn y-y [lb-ft]	phi*Mn z-z [lb-f	t] Cb	Eqn
8	H008	PIPE_3.0	0.141	7.794	7	0.129	7.794		2	77888.459	78246	6898.5	6898.5	1.184F	11-1b
9	H009	PIPE_3.0	0.141	7.794	11	0.129	7.794		6	77888.459	78246	6898.5	6898.5	1.184F	11-1b
10	H010	PIPE_3.0	0.189	23.383	195	0.1	23.383		11	75086.325	78246	6898.5	6898.5	1.44 H	11-1b
11	H011	PIPE 3.0	0.189	23.383	103	0.1	23.383		3	75086.325	78246	6898.5	6898.5	1.44 H	11-1b
12	H012	PIPE_3.0	0.189	23.383	191	0.1	23.383		7	75086.325	78246	6898.5	6898.5	1.44 H	11-1b
13	H013	L 1.5x1.5x4	0.076	15.206	13	0.007	29.79	У	5	8987.293	22469.4	217.337	861.863	1.132	H2-1
14	H014	L 1.5x1.5x4	0.076	15.206	5	0.007	29.79	У	9	8987.293	22469.4	217.337	861.863	1.132 H	H2-1
15	H015	L 1.5x1.5x4	0.076	15.206	9	0.007	29.79	У	13	8987.293	22469.4	217.337	861.866	1.132	H2-1
16	H016	L 1.5x1.5x4	0.07	15.206	3	0.008	29.79	z	11	8987.293	22469.4	217.337	861.866	1.132 H	H2-1
17	H017	L 1.5x1.5x4	0.07	15.206	7	0.008	29.79	z	3	8987.293	22469.4	217.337	861.865	1.132	H2-1
18	H018	L 1.5x1.5x4	0.07	15.206	11	0.008	29.79	z	7	8987.293	22469.4	217.337	861.863	1.132	H2-1
19	H019	PIPE_2.0	0.286	14.063	2	0.425	12.5		2	6295.099	38556	2245.95	2245.95	2.929 H	
20	H020	PIPE_2.0	0.286	14.063	6	0.425	12.5		6	6295.099	38556	2245.95	2245.95	2.929 H	H3-6
21	H021	PIPE_2.0	0.286	14.063	10	0.425	12.5		10	6295.099	38556	2245.95	2245.95	2.929 H	H3-6
22	H022	PIPE_2.0	0.314	0	6	0.2	0		11	38162.512	38556	2245.95	2245.95	1.813F	11-1b
23	H023	PIPE_2.0	0.314	0	10	0.2	0		3	38162.512	38556	2245.95	2245.95	1.813F	11-1b
24	H024	PIPE_2.0	0.314	0	2	0.2	0		7	38162.512	38556	2245.95	2245.95	1.813⊦	11-1b
25	MP027	PIPE_2.0	0.422	67	2	0.057	67		3	16811.605	32130	1871.625	1871.625	1.709 H	11-1b
26	MP030	PIPE_2.0	0.295	67	4	0.043	67		4	16811.605	32130	1871.625	1871.625	2.317H	11-1b
27	MP033	PIPE_2.0	0.313	67	3	0.05	67		12	16811.605	32130	1871.625	1871.625	2.391F	11-1b
28	MP036	PIPE_2.0	0.383	67	2	0.062	67		11	16811.605	32130	1871.625	1871.625	2.672H	11-1b
29	MP039	PIPE_2.0	0.422	67	10	0.057	67		11	16811.605	32130	1871.625	1871.625	1.581F	11-1b
30	MP042	PIPE_2.0	0.295	67	12	0.043	67		12	16811.605	32130	1871.625	1871.625	3 ⊦	11-1b
31	MP045	PIPE_2.0	0.313	67	11	0.05	67		8	16811.605	32130	1871.625	1871.625	3 ⊦	11-1b
32	MP048	PIPE_2.0	0.383	67	10	0.062	67		7	16811.605	32130	1871.625	1871.625	3 ⊦	11-1b
33	MP051	PIPE_2.0	0.422	67	6	0.057	67		7	16811.605	32130	1871.625	1871.625	2.215H	11-1b
34	MP054	PIPE_2.0	0.295	67	8	0.043	67		8	16811.605	32130	1871.625	1871.625	1.56 H	
35	MP057	PIPE_2.0	0.313	67	7	0.05	67		4	16811.605	32130	1871.625	1871.625	1.721F	
36	MP060	PIPE 2.0	0.383	67	6	0.062	67		3	16811.605	32130	1871.625	1871.625	2.481F	11-1b

Structural Analysis Report

Structure : 171 ft Monopole

ATC Asset Name : Old Lyme South CT

ATC Asset Number : 411178

Engineering Number: 14529806_C3_01

Proposed Carrier : T-MOBILE

Carrier Site Name : Amtrak Old Lyme Verizon

Carrier Site Number : CTNL802A

Site Location : 125 Mile Creek Road

OLD LYME, CT 06371-1718 41.3055° N, 72.2973° W

County : New London

Date : September 15, 2023

Max Usage : 53%

Analysis Result: Pass

Created By:

Pedro Morales Mendoza Structural Engineer I

petro marales

Esha Modi Digitally signed by Esha Modi Date: 2023.09.15 16:34:30 -04'00'

COA: PEC.0001553

Table of Contents

Introduction	3
Supporting Documents	3
Analysis	3
Conclusion	3
Structure Usages	4
Maximum Reactions	4
Tower Loading	5
Standard Conditions	Attached
Calculations	Attached

Introduction

The purpose of this report is to summarize results of a structural analysis performed on the 171 ft Monopole tower to reflect the change in loading by T-MOBILE.

Supporting Documents

Tower:	EEI Project #11723 Rev 1, dated September 19, 2003 Mapping by TEP Job #68269-80551, dated April 25, 2016
Foundation:	EEI Project #11723 Rev 1, dated October 21, 2003
Geotechnical:	Clarence Welti Site #CT54XC701, dated October 17, 2003
Mount Analysis:	ATC Mount Analysis #14529806_C8_02, dated September 14, 2023

Analysis

The tower was analyzed using American Tower Corporation's tower analysis software. This program considers an elastic three-dimensional model and second-order effects per ANSI/TIA-222.

Basic Wind Speed:	126 mph (3-second gust)
Basic Wind Speed w/ Ice:	50 mph (3-second gust) w/ 1.00" radial ice concurrent
Code(s):	ANSI/TIA-222-H / 2021 IBC / 2022 Connecticut State Building Code
Exposure Category:	В
Risk Category:	II
Topographic Factor Procedure:	Method 1
Topographic Category:	1
Spectral Response:	$Ss = 0.20, S_1 = 0.05$
Site Class:	D - Stiff Soil - Default

Conclusion

Based on the analysis results, the structure meets the requirements per the applicable codes listed above. The tower and foundation can support the equipment as described in this report.

If you have any questions or require additional information, please reach out to your American Tower contact. If you do not have an American Tower contact and have an Engineering question, please contact **Engineering@americantower.com** Please include the American Tower asset name, asset number, and engineering number in the subject line for any questions.

Structure Usages

Structural Component	Usage	Control	Result
Pole Shaft	53.0%	1.2D + 1.0W	Pass
Serviceability Usage	23.8%	1.0D + 1.0W	Pass
Upper Flange Plate @ 161.5 ft	13.4%	Bolts	Pass
Base Plate @ 0.0 ft	39.6%	Rods	Pass
Mat & Pier	42.5%	Flexure [Steel (Pier)]	Pass

Maximum Reactions

Foundation	Moment (k-ft)	Axial (k)	Shear (k)
Monopole Base	4,404.6	73.3	36.2

^{*}Reactions shown reflect the results from the Load Case with maximum Moment

Structure base reactions were analyzed using available geotechnical and foundation information.

T-MOBILE Final Loading

Elev (ft)	Qty	Equipment	Lines			
	3	Commscope VV-65A-R1B				
	3	Ericsson AIR 6419 B41	(2) 4 4 /4 11 1 0 1			
171.0	3	Ericsson Radio 4449 B12,B71	(3) 1 1/4" Hybriflex Cable (3) 1.99" (50.7mm) Hybrid			
	3	Ericsson Radio 4460 B25+B66	(3) 1.33 (30.711111) Hybrid			
	3	RFS APXVAARR24_43-U-NA20				
170.0	1	Platform with Handrails	-			

Install proposed lines inside the pole shaft.

Other Existing/Reserved Loading

Elev (ft)	Qty	Equipment	Lines	Carrier		
177.0	1	12' Dipole	-	TOWN OF OLD LYME, CT		
176.0	1	Decibel DB201-A	(7) 1/2" Coax	TOWN OF OLD LYME, CT		
170.0	1	Platform with Handrails	-	-		
165.7	2	RFS DB-T1-6Z-8AB-0Z	-	VERIZON WIRELESS		
	1	Low Profile Platform	-	-		
	1	Antel BXA-70063-4CF-EDIN-10				
	1	Unused Reserve (519.6200 sqin)				
	2	Amphenol Antel LPA-80080-6CF-EDIN-2				
161.0	2	Antel BXA-70063/6CF_	(12) 1 5 (0) 6 224			
161.0	3	Alcatel-Lucent B66 RRH4x45	(12) 1 5/8" Coax	VERIZON WIRELESS		
	3	Alcatel-Lucent RRH2X60-1900	(2) 1 5/8" Hybriflex			
	3	Alcatel-Lucent RRH2x60 700				
	4	RFS APL866513-42T0				
	6	Commscope SBNHH-1D65B				
158.0	2	RFS DB-T1-6Z-8AB-0Z	-	VERIZON WIRELESS		
150.0	3	Alcatel-Lucent TD-RRH8x20-25 w/ Solar Shield	(3) 1 1/4" Hybriflex Cable	SPRINT NEXTEL		
149.9	6	Alcatel-Lucent RRH2x50-08	-	SPRINT NEXTEL		
149.8	3	Alcatel-Lucent 1900 MHz 4X45 RRH	-	SPRINT NEXTEL		
148.3	3	Commscope NNVV-65B-R4	-	SPRINT NEXTEL		
148.2	3	RFS APXVTM14-ALU-I20	-	SPRINT NEXTEL		
148.0	1	Low Profile Platform	(6) 1 5/8" Coax	SPRINT NEXTEL		
	1	Raycap DC6-48-60-18-8F ("Squid")				
	1	Raycap DC9-48-60-24-8C-EV				
	3	Ericsson RRUS 4449 B5, B12	(2) 0.39" (10mm) Fiber Trunk			
	3	Ericsson RRUS 4478 B14 (15")	(5) 0.78" (19.7mm) 8 AWG 6	ATO T A 40 DU ITY		
1400	3	Ericsson RRUS 8843 B2, B66A	(6) 1 5/8" Coax	AT&T MOBILITY		
140.0	3	Powerwave Allgon 7770.00	(2) 2" conduit			
	6	CCI DMP65R-BU4D				
	6	Powerwave Allgon TT19-08BP111-001				
	1	Platform with Handrails				
	3	Mount Reinforcement	-	-		
111.0	1	12' Dipole	/2) 4 /2" 0	TOWAL OF OLD 19445 OT		
111.0	1	Stand-Off	(2) 1/2" Coax	TOWN OF OLD LYME, CT		
76.4	1	GPS	-	SPRINT NEXTEL		
74.0	1	Stand-Off	-	-		

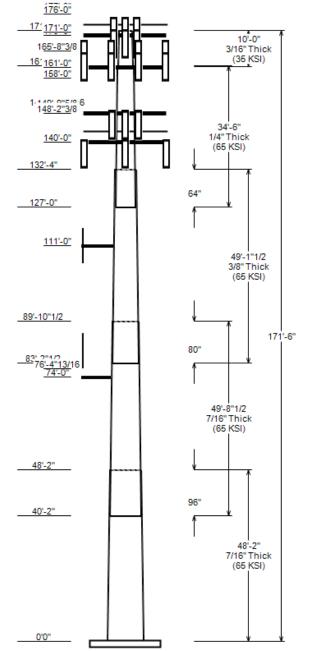
(If table breaks across pages, please see previous page for data in merged cells)

Standard Conditions

All engineering services performed by A.T. Engineering Services LLC are prepared on the basis that the information used is current and correct. This information may consist of, but is not limited to the following:

- Information supplied by the client regarding antenna, mounts, and feed line loading
- Information from drawings, design and analysis documents, and field notes in the possession of A.T.
 Engineering Services LLC

It is the responsibility of the client to ensure that the information provided to A.T. Engineering Services LLC and used in the performance of our engineering services is correct and complete.


All assets of American Tower Corporation, its affiliates, and subsidiaries (collectively "American Tower") are inspected at regular intervals. Based upon these inspections and in the absence of information to the contrary, American Tower assumes that all structures were constructed in accordance with the drawings and specifications.

Unless explicitly agreed by both the client and A.T. Engineering Services LLC, all services will be performed in accordance with the current revision of ANSI/TIA-222.

All services are performed, results obtained, and recommendations made in accordance with generally accepted engineering principles and practices. A.T. Engineering Services LLC is not responsible for the conclusions, opinions and recommendations made by others based on the information supplied herein.

411178, Old Lyme South CT ASSET: CODE: ANSI/TIA-222-H CUSTOMER: T-MOBILE PROJECT: 14529806

ANALYSIS PARAMETERS										
Nominal Wind:	126 mph	Ice Wind: 50 n	nph w/ 1" ice	Service Wind:	60 mph					
Risk Category:	II	Exposure:	В	S _s : 0.199	S ₁ : 0.053					
Topo Category:	1	Topo Factor:	Method 1	Topo Feature:						
Structure Height:	171.5 ft	Base Elevation:	0.00 ft	Structure Type:	Custom					
Base Diameter:	69 in	Base Rotation:	0°	Taper:	0.2610 (in/ft)					

POLE SECTION PROPERTIES												
	Length	Flat Dia	ameter (in)	Thick	Joint	Joint Lenath	Pole	Yield Strength				
Section	(ft)	Тор	Bottom	(in)	Type	(in)	Shape	(ksi)				
1	48.167	56.44	69.00	0.438		0.000	18 Sides	65				
2	49.708	46.44	59.40	0.438	Slip Joint	96.000	18 Sides	65				
3	49.125	36.11	48.92	0.375	Slip Joint	80.000	18 Sides	65				
4	34.500	29.01	38.00	0.250	Slip Joint	64.000	18 Sides	65				
5	10.000	26.00	27.50	0.188	Butt Joint	0.000	18 Sides	35				

LINEAR APPURTENANCE

DI	SCRETE APPURTENANCE	L	INEAR APPURTENAN
Elev (ft)	Description	Elev To (ft)	Description
177.0	(1) Generic 12' Dipole	176.0	(1) 1/2" Coax
76.0	(1) Decibel DB201-A	176.0	(2) 1/2" Coax
71.0	(3) Ericsson Radio 4449 B12,B71	176.0	(4) 1/2" Coax
71.0	(3) Ericsson Radio 4460 B25+B66	171.0	(3) 1.99" (50.7mm) Hybrid
71.0	(3) Ericsson AIR 6419 B41	171.0	(3) 1 1/4" Hybriflex Cable
71.0	(3) Commscope VV-65A-R1B	162.0	(6) 1 5/8" Coax
71.0	(3) RFS APXVAARR24_43-U-NA20	161.0	(2) 1 5/8" Hybriflex
70.0	(1) Generic Flat Platform with Han	161.0	(12) 1 5/8" Coax
35.7	(2) RFS DB-T1-6Z-8AB-0Z	150.0	(3) 1 1/4" Hybriflex Cable
31.0	(3) Alcatel-Lucent RRH2X60-1900	148.0	(6) 1 5/8" Coax
31.0	(3) Alcatel-Lucent RRH2x60 700	140.0	(2) 2" conduit
31.0	(3) Alcatel-Lucent B66 RRH4x45	140.0	(6) 1 5/8" Coax
31.0	(1) Unused Reserve (519.6200 sqin)	140.0	(5) 0.78" (19.7mm) 8 AWG 6
31.0	(1) Unused Reserve (519.6200 sqin)	140.0	(2) 0.39" (10mm) Fiber Trunk
31.0	(4) RFS APL866513-42T0	111.0	(2) 1/2" Coax
31.0	(1) Antel BXA-70063-4CF-EDIN-10	78.0	(1) 1/2" Coax
31.0	(2) Antel BXA-70063/6CF_		
31.0	(6) Commscope SBNHH-1D65B		
31.0	(2) Amphenol Antel LPA-80080-6CF-E		
31.0	(1) Generic Flat Low Profile Platf		
6.8	(2) RFS DB-T1-6Z-8AB-0Z		
0.0	(3) Alcatel-Lucent TD-RRH8x20-25 w		
9.9	(6) Alcatel-Lucent RRH2x50-08		
9.8	(3) Alcatel-Lucent 1900 MHz 4X45 R		
18.3	(3) Commscope NNVV-65B-R4		
48.2	(3) RFS APXVTM14-ALU-I20		
18.0	(1) Generic Flat Low Profile Platf		
40.0	(6) Powerwave Allgon TT19-08BP111-		
40.0	(1) Raycap DC6-48-60-18-8F ("Squid		
40.0	(3) Ericsson RRUS 8843 B2, B66A		
40.0	(3) Ericsson RRUS 4478 B14 (15")		
40.0	(3) Ericsson RRUS 4449 B5, B12		
40.0	(1) Raycap DC9-48-60-24-8C-EV		
40.0	(3) Generic Mount Reinforcement		
40.0	(3) Powerwave Allgon 7770.00		
40.0	(6) CCI DMP65R-BU4D		
40.0	(1) Generic Round Platform with Ha		
11.0	(1) Generic 12' Dipole		
	(1) Generic Flat Stand-Off		
76.4	(1) Generic GPS		
74.0	(1) Generic Flat Stand-Off		

GLOBAL BASE REACTIONS

Load Case	Moment (kip-ft)	Axial (kip)	Shear (kip)
1.2D + 1.0W	4404.61	73.29	36.19
0.9D + 1.0W	4362.09	54.96	36.17
1.2D + 1.0Di + 1.0Wi	1048.14	95.29	8.79
1.2D + 1.0Ev + 1.0Eh	254.03	73.61	1.84
0.9D - 1.0Ev + 1.0Eh	250.95	50.80	1.83
1.0D + 1.0W	888.28	61.10	7.34

ANALYSIS PARAMETERS

Location: New London County,CT 171.5 ft Height: Type and Shape: Custom, 18 Sides Base Diameter: 69.00 in Manufacturer: Top Diameter: 29.01 in K_d (non-service): 0.95 Taper: 0.2610 in/ft K_e: 1.00 Rotation: 0.000°

ICE & WIND PARAMETERS

П Risk Category: **Design Wind Speed:** 126 mph В Design Wind Speed w/ Ice: 50 mph **Exposure Category:** Method 1 **Topo Factor Procedure:** Design Ice Thickness: 1.00 in Topographic Category: 1 Service Wind Speed: 60 mph **Crest Height:** 0 ft HMSL: 40.00 ft

SEISMIC PARAMETERS

Analysis Method: Equivalent Lateral Force Method

2.28 Site Class: D - Stiff Soil Period Based on Rayleigh Method (sec): 6 P: 1 0.030 T_L (sec): Cs: S_{s:} 0.199 S_{1:} 0.053 C_s Max: 0.030 Fa: 1.600 $F_{v:}$ 2.400 C_s Min: 0.030

S_{ds:} 0.212 **S**_{d1:} 0.085

LOAD CASES

1.2D + 1.0W 126 mph Wind with No Ice

0.9D + 1.0W 126 mph Wind with No Ice (Reduced DL)

1.2D + 1.0Di + 1.0Wi 50 mph Wind with 1" Radial Ice

1.2D + 1.0Ev + 1.0Eh Seismic

0.9D - 1.0Ev + 1.0Eh Seismic (Reduced DL)
1.0D + 1.0W 60 mph Wind with No Ice

SHAFT SECTION PROPERTIES																			
					1-1-4	_			Bottom				Тор						
Section	Length (ft)	Thick (in)	Fy (ksi)	Joint Type	Joint Len (in)	Weight (lb)	Dia (in)	Elev (ft)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	Dia (in)	Elev (ft)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	
1-18	48.17	0.4375	65		0.00	14,175	69.00	0.003	95.20 56	,543.5	26.40	157.71	56.44	48.17	77.76	30,810.	21.34	129.00	0.2608
2-18	49.71	0.4375	65	Slip	96.00	12,326	59.40	40.172	81.87 35	,961.6	22.53	135.77	46.44	89.88	63.87	17,074.	17.30	106.14	0.2608
3-18	49.12	0.3750	65	Slip	80.00	8,385	48.92	83.205	57.78 17	,207.7	21.59	130.46	36.11	132.33	42.53	6,863.5	15.57	96.30	0.2608
4-18	34.50	0.2500	65	Slip	64.00	3,098	38.00	127.000	29.96 5	,394.5	25.39	152.01	29.01	161.50	22.82	2,383.8	19.05	116.02	0.2608
5-18	10.00	0.1875	35	Butt	0.00	538	27.50	161.500	16.25 1	,531.9	24.45	146.67	26.00	171.50	15.36	1,293.1	23.04	138.67	0.1500

Total Shaft Weight 38,522

		DISCRETE	APPURT	ENANCE P	ROPERTIES					
Attach						No Ice			Ice	
Elev (ft)	Description	Qty	Ka	Vert Ecc (ft)	Weight (lb)	EPAa (sf)	Orientation Factor	Weight (lb)	EPAa (sf)	Orientation Factor
177.00	Generic 12' Dipole	1	0.90	2.000	40.00	4.510	1.00	130.26	9.355	1.00
176.00	Decibel DB201-A	1	1.00	0.000	25.00	3.130	1.00	92.20	10.255	1.00
171.00	Ericsson AIR 6419 B41	3	0.75	0.000	68.50	5.600	0.60	150.26	6.672	0.60
171.00	Commscope VV-65A-R1B	3	0.75	0.000	24.70	5.887	0.63	103.79	7.319	0.63
171.00	RFS APXVAARR24_43-U-NA20	3	0.75	-0.800	127.90	20.243	0.63	393.54	22.753	0.63
171.00	Ericsson Radio 4449 B12,B71	3	0.75	0.600	74.00	1.639	0.50	111.88	2.210	0.50
171.00	Ericsson Radio 4460 B25+B66	3	0.75	0.000	109.00	2.564	0.67	168.81	3.277	0.67
170.00	Generic Flat Platform with Han	1	1.00	0.000	2500.00	42.400	1.00	3700.16	56.569	1.00
165.70	RFS DB-T1-6Z-8AB-0Z	2	1.00	0.000	44.00	4.800	0.72	128.90	5.759	0.72
161.00	Alcatel-Lucent B66 RRH4x45	3	0.80	2.400	67.00	2.580	0.67	114.65	3.338	0.67
161.00	Amphenol Antel LPA-80080-6CF-E	2	0.80	0.000	21.00	8.628	0.71	134.05	10.467	0.71
161.00	Commscope SBNHH-1D65B	6	0.80	1.400	50.70	8.173	0.69	168.74	10.076	0.69
161.00	Alcatel-Lucent RRH2X60-1900	3	0.80	1.700	43.00	1.876	0.50	80.21	2.506	0.50
161.00	Alcatel-Lucent RRH2x60 700	3	0.80	2.000	56.70	2.150	0.67	102.47	2.824	0.67
161.00	Generic Flat Low Profile Platf	1	1.00	0.000	1875.00	26.100	1.00	2419.69	38.941	1.00
161.00	Unused Reserve (519.6200 sqin)	1	0.80	0.000	209.00	3.608	0.90	306.93	5.299	0.90
161.00	RFS APL866513-42T0	4	0.80	0.300	15.70	4.050	0.76	89.00	5.301	0.76
161.00	Antel BXA-70063-4CF-EDIN-10	1	0.80	0.000	9.90	4.708	1.00	78.26	5.946	1.00
161.00	Antel BXA-70063/6CF_	2	0.80	0.000	17.00	7.569	0.73	112.11	9.424	0.73
158.00	RFS DB-T1-6Z-8AB-0Z	2	0.80	0.000	44.00	4.800	0.50	128.44	5.753	0.50
150.00	Alcatel-Lucent TD-RRH8x20-25 w	3	0.80	1.000	70.00	4.046	0.50	133.13	4.933	0.50
149.90	Alcatel-Lucent RRH2x50-08	6	0.80	0.900	52.90	1.701	0.50	92.48	2.277	0.50
149.80	Alcatel-Lucent 1900 MHz 4X45 R	3	0.80	0.800	60.00	2.322	0.50	113.80	3.043	0.50
148.30	Commscope NNVV-65B-R4	3	0.80	-0.700	77.40	12.271	0.64	245.06	14.142	0.64
148.20	RFS APXVTM14-ALU-I20	3	0.80	-0.800	56.20	6.342	0.66	148.07	7.795	0.66
148.00	Generic Flat Low Profile Platf	1	1.00	0.000	1875.00	26.100	1.00	2414.74	38.824	1.00
140.00	Generic Round Platform with Ha	1	1.00	0.000	2500.00	27.200	1.00	3572.66	43.388	1.00
140.00	CCI DMP65R-BU4D	6	0.75	-0.100	67.90	8.280	0.62	187.50	9.621	0.62
140.00	Powerwave Allgon 7770.00	3	0.75	-1.500	35.00	5.508	0.65	110.28	6.916	0.65
140.00	Ericsson RRUS 4449 B5, B12	3	0.75	-0.200	71.00	1.969	0.50	113.68	2.587	0.50
140.00	Raycap DC9-48-60-24-8C-EV	1	0.75	0.000	16.00	4.788	0.50	101.50	5.762	0.50
140.00	Generic Mount Reinforcement	3	0.75	0.000	200.00	4.980	0.67	328.17	8.272	0.67
140.00	Ericsson RRUS 4478 B14 (15")	3	0.75	0.100	59.40	1.650	0.50	92.31	2.211	0.50
140.00	Ericsson RRUS 8843 B2, B66A	3	0.75	3.200	72.00	1.639	0.50	112.59	2.199	0.50
140.00	Raycap DC6-48-60-18-8F ("Squid	1	0.75	-0.200	18.90	1.470	0.50	59.77	1.933	0.50
140.00	Powerwave Allgon TT19-08BP111-	6	0.75	-1.000	16.00	0.553	0.50	29.38	0.892	0.50
111.00	Generic Flat Stand-Off	1	1.00	0.000	187.50	6.300	1.00	273.83	8.319	1.00
111.00	Generic 12' Dipole	1	1.00	0.000	40.00	4.510	1.00	126.39	9.147	1.00
76.40	Generic GPS	1	1.00	2.400	10.00	0.900	0.50	28.25	1.299	0.50
74.00	Generic Flat Stand-Off	1	1.00	0.000	187.50	6.300	1.00	270.21	8.234	1.00
Totals	Row Count: 40	101			14,749.00			25,674.55		

				LINEAR	APPURTE	ENANCE PI	ROPERTIES	3				
		Load Case Azimuth (deg): 230.00										
Elev	Elev						Distance	Distance		Distance		
From	To		Diameter	Weight		Max/	Between	Between	Azimuth	From	Exposed	
(ft)	(ft)	Qty Description	(in)	(lb/ft)	Flat	Row	Rows(in)	Cols(in)	(deg)	Face (in)	To Wind	Carrier
0.00	176.00	4 1/2" Coax	0.63	0.15	N	0	0	0	0	0	N	TOWN OF OLD LYME, CT

				LINEAR	APPURTE	NANCE PR	ROPERTIES	S				
Elev From	Elev To	Load Case Azimuth (deg): 230.00	Diameter	Weight		Max/	Distance Between	Distance Between	Azimuth	Distance From	Exposed	
(ft)	(ft)	Qty Description	(in)	(lb/ft)	Flat	Row	Rows(in)	Cols(in)	(deg)	Face (in)	To Wind	Carrier
0.00	176.00	2 1/2" Coax	0.63	0.15	N	0	0	0	0	0	Ν	TOWN OF OLD LYME, CT
0.00	176.00	1 1/2" Coax	0.63	0.15	Ν	0	0	0	0	0	N	TOWN OF OLD LYME, CT
0.00	171.00	3 1.99" (50.7mm) Hybrid	1.99	1.9	N	0	0	0	0	0	N	T-MOBILE
0.00	171.00	3 1 1/4" Hybriflex Cabl	1.54	1	N	0	0	0	0	0	N	T-MOBILE
0.00	162.00	6 1 5/8" Coax	1.98	0.82	Ν	6	1	1	320	1	Υ	VERIZON WIRELESS
0.00	161.00	12 1 5/8" Coax	1.98	0.82	N	0	0	0	0	0	N	VERIZON WIRELESS
0.00	161.00	2 1 5/8" Hybriflex	1.98	1.3	N	0	0	0	0	0	N	VERIZON WIRELESS
0.00	150.00	3 1 1/4" Hybriflex Cabl	1.54	1	N	0	0	0	0	0	N	SPRINT NEXTEL
0.00	148.00	6 1 5/8" Coax	1.98	0.82	Ν	0	0	0	0	0	N	SPRINT NEXTEL
0.00	140.00	6 1 5/8" Coax	1.98	0.82	Ν	0	0	0	0	0	N	AT&T MOBILITY
0.00	140.00	5 0.78" (19.7mm) 8 AWG	0.78	0.59	N	0	0	0	0	0	N	AT&T MOBILITY
0.00	140.00	2 0.39" (10mm) Fiber Tr	0.39	0.06	Ν	0	0	0	0	0	N	AT&T MOBILITY
0.00	140.00	2 2" conduit	2.38	3.65	N	0	0	0	0	0	N	AT&T MOBILITY
0.00	111.00	2 1/2" Coax	0.63	0.15	N	0	0	0	0	0	N	TOWN OF OLD LYME, CT
0.00	78.00	1 1/2" Coax	0.63	0.15	Ν	0	0	0	0	0	N	SPRINT NEXTEL

					EGMENT P							
Seg Top Elev (ft)	Description	(Max Length: 5 ft)	Thick (in)	Flat Dia (in)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	F'y (ksi)	S (in³)	Z (in³)	Weight (lb)
0.00			0.4375	69.000	95.204	56,543.50	26.40	157.71	70.4	1614.0	0.0	0.0
5.00			0.4375	67.696	93.393	53,378.20	25.87	154.73	71	1553.0	0.0	1,604.4
10.00			0.4375	66.392	91.583	50,333.30	25.35	151.75	71.6	1493.2	0.0	1,573.6
15.00			0.4375	65.088	89.772	47,406.50	24.82	148.77	72.2	1434.6	0.0	1,542.8
20.00			0.4375	63.784	87.961	44,595.40	24.30	145.79	72.8	1377.1	0.0	1,512.0
25.00			0.4375	62.480	86.151	41,897.70	23.77	142.81	73.4	1320.8	0.0	1,481.2
30.00			0.4375	61.176	84.340	39,311.00	23.25	139.83	74.1	1265.7	0.0	1,450.4
35.00			0.4375	59.872	82.529	36,833.10	22.72	136.85	74.7	1211.7	0.0	1,419.5
40.00			0.4375	58.568	80.719	34,461.50	22.19	133.87	75.3	1158.9	0.0	1,388.7
40.17	Bot - Section 2		0.4375	58.525	80.658	34,384.30	22.18	133.77	75.3	1157.2	0.0	45.8
45.00			0.4375	57.264	78.908	32,194.00	21.67	130.89	75.9	1107.3	0.0	2,644.3
48.17	Top - Section 1		0.4375	57.313	78.976	32,277.60	21.69	131.00	75.9	1109.2	0.0	1,701.3
50.00			0.4375	56.835	78.312	31,470.40	21.50	129.91	76.1	1090.6	0.0	490.6
55.00			0.4375	55.531	76.501	29,337.50	20.97	126.93	76.7	1040.6	0.0	1,317.0
60.00			0.4375	54.227	74.691	27,303.30	20.44	123.95	77.4	991.7	0.0	1,286.2
65.00			0.4375	52.923	72.880	25,365.30	19.92	120.97	78	944.0	0.0	1,255.4
70.00			0.4375	51.619	71.069	23,521.30	19.39	117.99	78.6	897.5	0.0	1,224.6
74.00			0.4375	50.576	69.621	22,112.20	18.97	115.60	79.1	861.1	0.0	957.5
75.00			0.4375	50.315	69.259	21,768.90	18.87	115.01	79.2	852.2	0.0	236.3
76.40			0.4375	49.950	68.752	21,294.30	18.72	114.17	79.4	839.7	0.0	328.7
80.00			0.4375	49.011	67.448	20,105.80	18.34	112.03	79.8	808.0	0.0	834.2
83.21	Bot - Section 3		0.4375	48.174	66.286	19,084.50	18.01	110.11	80.2	780.3	0.0	730.0
85.00			0.4375	47.707	65.637	18,529.60	17.82	109.04	80.4	765.0	0.0	752.7
89.88	Top - Section 2		0.3750	47.186	55.714	15,424.40	20.78	125.83	77	643.8	0.0	2,011.0
90.00			0.3750	47.153	55.676	15,392.20	20.76	125.74	77	642.9	0.0	23.7
95.00			0.3750	45.849	54.123	14,140.50	20.15	122.26	77.7	607.5	0.0	934.1
100.00			0.3750	44.545	52.571	12,958.60	19.53	118.79	78.4	573.0	0.0	907.6
105.00			0.3750	43.241	51.019	11,844.40	18.92	115.31	79.1	539.5	0.0	881.2
110.00			0.3750	41.937	49.467	10,796.10	18.31	111.83	79.9	507.0	0.0	854.8
111.00			0.3750	41.676	49.157	10,594.10	18.19	111.14	80	500.7	0.0	167.8
115.00			0.3750	40.633	47.915	9,811.40	17.70	108.35	80.6	475.6	0.0	660.6
120.00			0.3750	39.329	46.363	8,888.60	17.08	104.88	81.3	445.1	0.0	802.0
125.00			0.3750	38.025	44.811	8,025.50	16.47	101.40	82	415.7	0.0	775.6
127.00	Bot - Section 4		0.3750	37.503	44.190	7,696.50	16.22	100.01	82.3	404.2	0.0	302.9
130.00			0.3750	36.721	43.259	7,220.10	15.86	97.92	82.6	387.3	0.0	749.0
132.33	Top - Section 3		0.2500	36.612	28.853	4,820.00	24.41	146.45	72.7	259.3	0.0	571.6
135.00			0.2500	35.917	28.301	4,548.70	23.92	143.67	73.3	249.4	0.0	259.3
140.00			0.2500	34.613	27.266	4,067.80	23.00	138.45	74.3	231.5	0.0	472.7
145.00			0.2500	33.309	26.231	3,622.00	22.08	133.24	75.4	214.2	0.0	455.1

				SI	EGMENT PR	OPERTIES						
Seg Top Elev (ft)	Description	(Max Length: 5 ft)	Thick (in)	Flat Dia (in)	Area (in²)	lx (in ⁴)	W/t Ratio	D/t Ratio	F'y (ksi)	S (in³)	Z (in³)	Weight (lb)
148.00			0.2500	32.527	25.611	3,370.90	21.53	130.11	76.1	204.1	0.0	264.6
148.20			0.2500	32.474	25.569	3,354.60	21.49	129.90	76.1	203.5	0.0	17.4
148.30			0.2500	32.448	25.548	3,346.50	21.48	129.79	76.1	203.1	0.0	8.7
149.80			0.2500	32.057	25.238	3,226.00	21.20	128.23	76.5	198.2	0.0	129.6
149.90			0.2500	32.031	25.217	3,218.00	21.18	128.12	76.5	197.9	0.0	8.6
150.00			0.2500	32.005	25.197	3,210.10	21.16	128.02	76.5	197.6	0.0	8.6
155.00			0.2500	30.701	24.162	2,830.70	20.24	122.80	77.6	181.6	0.0	419.9
158.00			0.2500	29.919	23.541	2,618.00	19.69	119.67	78.2	172.4	0.0	243.5
160.00			0.2500	29.397	23.127	2,482.40	19.32	117.59	78.7	166.3	0.0	158.8
161.00			0.2500	29.136	22.920	2,416.30	19.14	116.54	78.9	163.3	0.0	78.3
161.50	Top - Section 4		0.2500	29.006	22.817	2,383.80	19.05	116.02	79	161.9	0.0	38.9
161.50	Bot - Section 5		0.1875	27.500	16.254	1,531.90	24.45	146.67	43.2	109.7	0.0	
165.00			0.1875	26.975	15.941	1,445.20	23.96	143.87	43.5	105.5	0.0	191.7
165.70			0.1875	26.870	15.879	1,428.30	23.86	143.31	43.5	104.7	0.0	37.9
170.00			0.1875	26.225	15.495	1,327.20	23.25	139.87	43.8	99.7	0.0	229.5
171.00			0.1875	26.075	15.406	1,304.40	23.11	139.07	43.9	98.5	0.0	52.6
171.50			0.1875	26.000	15.361	1,293.10	23.04	138.67	43.9	98.0	0.0	26.2
										Tot	tal:	38,521.0

												i otai:	38,521.
						CALCULATE	D FORCES						
Load Case:	1.2D + 1.0W			126 mp	oh Wind with	No Ice						2	24 Iteration
Gust Respor Dead load Fa Wind Load F	actor:	1.10 1.20 1.00											
Seg Elev	Pu FY (-)	Vu FX (-)	Tu MY	Mu MZ	Mu MX	Resultant Moment	Phi Pn	Phi Vn	Phi Tn	Phi Mn	Total Deflect	Rotation	
(ft)	(kips)	(kips)	(ft-kips)	(ft-kips)	(ft-kips)	(ft-kips)	(kips)	(kips)	(ft-kips)	(ft-kips)	(in)	(deg)	Rat
0.00	-73.29	-36.19	0.00	-4,404.6	0.00	4,404.61	6,027.96	1,670.83	10,346.58	8,516.24	0	0	0.53
5.00	-70.99	-35.70	0.00	-4,223.7	0.00	4,223.68	5,965.27	1,639.06	9,956.79	8,266.37	0.06	-0.11	0.5
0.00	-68.73	-35.22	0.00	-4,045.2	0.00	4,045.18	5,900.57	1,607.28	9,574.49	8,017.15	0.23	-0.22	0.5
15.00	-66.51	-34.74	0.00	-3,869.1	0.00	3,869.10	5,833.85	1,575.50	9,199.67	7,768.75	0.52	-0.33	0.5
20.00	-64.33	-34.27	0.00	-3,695.4	0.00	3,695.40	5,765.11	1,543.72	8,832.34	7,521.33	0.93	-0.44	0.5
25.00	-62.18	-33.81	0.00	-3,524.0	0.00	3,524.05	5,694.36	1,511.94	8,472.49	7,275.05	1.46	-0.56	0.4
30.00	-60.07	-33.34	0.00	-3,355.0	0.00	3,355.03	5,621.60	1,480.17	8,120.12	7,030.08	2.11	-0.68	0.4
35.00	-58.00	-32.86	0.00	-3,188.3	0.00	3,188.33	5,546.82	1,448.39	7,775.24	6,786.58	2.88	-0.79	0.4
10.00	-56.00	-32.59	0.00	-3,024.0	0.00	3,024.04	5,470.03	1,416.61	7,437.84	6,544.71	3.77	-0.91	0.4
40.17	-55.91	-32.35	0.00	-3,018.6	0.00	3,018.60	5,467.43	1,415.55	7,426.72	6,536.68	3.81	-0.92	0.4
5.00	-52.39	-31.90	0.00	-2,862.2	0.00	2,862.24	5,391.22	1,384.83	7,107.92	6,304.65	4.8	-1.04	0.4
8.17	-50.13	-31.62	0.00	-2,761.2	0.00	2,761.21	5,394.23	1,386.03	7,120.21	6,313.65	5.51	-1.11	0.4
50.00	-49.39	-31.26	0.00	-2,703.2	0.00	2,703.24	5,364.85	1,374.38	7,001.02	6,226.09	5.95	-1.16	0.4
55.00	-47.46	-30.71	0.00	-2.546.9	0.00	2,546.94	5,283.37	1,342.60	6,681.05	5,988.66	7.23	-1.28	0.4
0.00	-45.56	-30.16	0.00	-2,393.4	0.00	2,393.37	5,199.87	1,310.82	6,368.56	5,753.41	8.63	-1.4	0.4
65.00	-43.70	-29.60	0.00	-2,242.6	0.00	2,242.57	5,114.36	1,279.04	6,063.56	5,520.50	10.17	-1.52	0.4
70.00	-41.89	-29.09	0.00	-2,094.6	0.00	2,094.57	5,026.83	1,247.27	5,766.04	5,290.10	11.82	-1.64	0.4
74.00	-40.26	-28.54	0.00	-1,978.2	0.00	1,978.21	4,955.35	1,221.84	5,533.42	5,107.69	13.24	-1.74	0.3
75.00	-39.90	-28.41	0.00	-1,949.7	0.00	1,949.67	4,937.28	1,215.49	5,476.01	5,062.36	13.61	-1.77	0.3
76.40	-39.39	-28.12	0.00	-1,909.8	0.00	1,909.85	4,911.85	1,206.59	5,396.14	4,999.10	14.13	-1.8	0.3
30.00	-38.14	-27.73	0.00	-1,808.6	0.00	1,808.62	4,845.73	1,183.71	5,193.46	4,837.46	15.53	-1.89	0.3
33.21	-37.05	-27.44	0.00	-1,719.6	0.00	1,719.65	4,785.91	1,163.32	5,016.10	4,694.71	16.82	-1.97	0.3
35.00	-36.02	-27.06	0.00	-1,670.5	0.00	1,670.49	4,752.15	1,151.93	4,918.39	4,615.55	17.57	-2.02	0.3
39.88	-33.29	-26.70	0.00	-1,538.6	0.00	1,538.58	3,859.20	977.79	4,134.15	3,716.46	19.69	-2.14	0.4
90.00	-33.23	-26.44	0.00	-1,535.2	0.00	1,535.24	3,857.41	977.11	4,128.40	3,712.13	19.75	-2.14	0.4
95.00	-31.77	-25.87	0.00	-1,403.1	0.00	1,403.06	3,785.01	949.87	3,901.46	3,540.11	22.06	-2.27	0.4
100.00	-30.35	-25.31	0.00	-1,273.7	0.00	1,273.70	3,710.59	922.63	3,680.94	3,370.18	24.52	-2.41	0.3
105.00	-28.95	-24.75	0.00	-1,147.2	0.00	1,147.15	3,634.16	895.39	3,466.84	3,202.49	27.11	-2.54	0.3
110.00	-27.61	-24.39	0.00	-1,023.4	0.00	1,023.40	3,555.71	868.15	3,259.15	3,037.22	29.85	-2.67	0.3
111.00	-27.08	-23.65	0.00	-999.0	0.00	999.01	3,539.78	862.71	3,218.38	3,004.47	30.41	-2.7	0.3
115.00	-26.03	-23.17	0.00	-904.4	0.00	904.39	3,475.25	840.91	3,057.87	2,874.52	32.71	-2.8	0.3
120.00	-24.74	-23.17	0.00	-788.6	0.00	788.57	3,392.78	813.68	2,863.01	2,714.56	35.71	-2.92	0.2
125.00	-24.74	-22.02	0.00	-700.0 -675.5	0.00	675.48	3,308.29	786.44	2,674.57	2,557.51	38.84	-3.04	0.2
127.00	-23.01	-21.95	0.00	-631.0	0.00	631.04	3,273.93	775.54	2,600.99	2,495.54	40.12	-3.04	0.2
130.00	-21.92	-21.64	0.00	-565.2	0.00	565.18	3,213.95	759.20	2,492.54	2,397.68	42.09	-3.15	0.2

					(CALCULATE	D FORCES						
132.33	-21.09	-21.36	0.00	-514.7	0.00	514.69	1,887.50	506.36	1,663.02	1,413.57	43.64	-3.2	0.377
135.00	-20.61	-20.98	0.00	-457.7	0.00	457.74	1,866.09	496.68	1,600.03	1,370.63	45.44	-3.26	0.347
140.00	-14.73	-16.69	0.00	-352.8	0.00	352.84	1,824.41	478.52	1,485.18	1,290.68	48.93	-3.38	0.283
145.00	-13.97	-16.28	0.00	-269.4	0.00	269.38	1,780.72	460.36	1,374.61	1,211.62	52.53	-3.49	0.231
148.00	-11.36	-14.75	0.00	-220.5	0.00	220.54	1,753.53	449.47	1,310.32	1,164.67	54.74	-3.55	0.197
148.20	-11.16	-14.25	0.00	-217.6	0.00	217.59	1,751.69	448.74	1,306.09	1,161.56	54.89	-3.55	0.195
148.30	-10.92	-13.28	0.00	-216.2	0.00	216.16	1,750.77	448.38	1,303.98	1,160.00	54.97	-3.56	0.193
149.80	-10.51	-13.05	0.00	-196.1	0.00	196.13	1,736.87	442.93	1,272.49	1,136.70	56.09	-3.58	0.179
149.90	-10.13	-12.83	0.00	-194.7	0.00	194.66	1,735.94	442.56	1,270.41	1,135.15	56.16	-3.58	0.178
150.00	-9.88	-12.35	0.00	-193.1	0.00	193.14	1,735.01	442.20	1,268.32	1,133.60	56.24	-3.59	0.177
155.00	-9.23	-11.96	0.00	-131.4	0.00	131.37	1,687.28	424.04	1,166.31	1,056.80	60.03	-3.66	0.131
158.00	-8.75	-11.53	0.00	-95.5	0.00	95.50	1,657.68	413.15	1,107.15	1,011.36	62.34	-3.69	0.100
160.00	-8.51	-11.38	0.00	-72.4	0.00	72.45	1,637.54	405.88	1,068.57	981.37	63.89	-3.71	0.080
161.00	-5.05	-6.38	0.00	-58.1	0.00	58.10	1,627.35	402.25	1,049.53	966.46	64.67	-3.72	0.063
161.50	-5.00	-6.21	0.00	-54.9	0.00	54.91	1,622.23	400.44	1,040.08	959.03	65.06	-3.72	0.061
161.50	-5.00	-6.21	0.00	-54.9	0.00	54.91	632.49	153.60	378.91	355.79	65.06	-3.72	0.164
165.00	-4.74	-6.02	0.00	-33.2	0.00	33.17	623.63	150.65	364.48	344.02	67.79	-3.74	0.106
165.70	-4.62	-5.48	0.00	-29.0	0.00	28.96	621.84	150.06	361.63	341.68	68.34	-3.74	0.094
170.00	-1.45	-2.99	0.00	-5.4	0.00	5.38	610.74	146.43	344.36	327.41	71.72	-3.76	0.019
171.00	-0.09	-0.38	0.00	-2.4	0.00	2.39	608.13	145.58	340.40	324.12	72.51	-3.76	0.008
171.50	0.00	-0.37	0.00	-2.2	0.00	2.20	606.82	145.16	338.43	322.48	72.9	-3.76	0.007

						CALCULATE	D FORCES						
Load Case:	0.9D + 1.0W			126 m	ph Wind with	No Ice (Reduc	ced DL)					24	Iterations
Gust Respo Dead load F Wind Load F	actor:	1.10 0.90 1.00											
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	Phi Pn (kips)	Phi Vn (kips)	Phi Tn (ft-kips)	Phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-54.96	-36.17	0.00	-4,362.1	0.00	4,362.09	6,027.96	1,670.83	10,346.58	8,516.24	0	0	0.522
5.00	-53.22	-35.65	0.00	-4,181.2	0.00	4,181.25	5,965.27	1,639.06	9,956.79	8,266.37	0.06	-0.11	0.515
10.00	-51.51	-35.13	0.00	-4,003.0	0.00	4,003.02	5,900.57	1,607.28	9,574.49	8,017.15	0.23	-0.22	0.509
15.00	-49.83	-34.62	0.00	-3,827.4	0.00	3,827.37	5,833.85	1,575.50	9,199.67	7,768.75	0.52	-0.33	0.502
20.00 25.00	-48.17 -46.55	-34.12 -33.63	0.00 0.00	-3,654.2 -3,483.6	0.00	3,654.25 3,483.63	5,765.11 5,694.36	1,543.72 1,511.94	8,832.34 8,472.49	7,521.33 7,275.05	0.92 1.44	-0.44 -0.55	0.495 0.488
30.00	-46.55 -44.95	-33.14	0.00	-3,465.6 -3,315.5	0.00	3,315.48	5,621.60	1,480.17	8,120.12	7,030.08	2.08	-0.55 -0.67	0.480
35.00	-43.39	-32.63	0.00	-3,149.8	0.00	3,149.79	5,546.82	1,448.39	7,775.24	6,786.58	2.85	-0.79	0.472
40.00	-41.88	-32.36	0.00	-2,986.6	0.00	2,986.62	5,470.03	1,416.61	7,437.84	6,544.71	3.73	-0.9	0.465
40.17	-41.80	-32.10	0.00	-2,981.2	0.00	2,981.22	5,467.43	1,415.55	7,426.72	6,536.68	3.77	-0.91	0.464
45.00	-39.16	-31.65	0.00	-2,826.1	0.00	2,826.06	5,391.22	1,384.83	7,107.92	6,304.65	4.75	-1.02	0.456
48.17	-37.45	-31.36	0.00	-2,725.8	0.00	2,725.84	5,394.23	1,386.03	7,120.21	6,313.65	5.45	-1.1	0.439
50.00	-36.89	-30.99	0.00	-2,668.4	0.00	2,668.36	5,364.85	1,374.38	7,001.02	6,226.09	5.89	-1.15	0.436
55.00 60.00	-35.43 -34.00	-30.42 -29.86	0.00 0.00	-2,513.4 -2,361.3	0.00	2,513.43 2,361.32	5,283.37 5,199.87	1,342.60 1,310.82	6,681.05 6,368.56	5,988.66 5,753.41	7.15 8.54	-1.26 -1.38	0.427 0.417
65.00	-32.59	-29.28	0.00	-2,212.0	0.00	2,212.05	5,114.36	1,279.04	6,063.56	5,520.50	10.05	-1.5	0.408
70.00	-31.22	-28.76	0.00	-2,065.6	0.00	2,065.63	5,026.83	1,247.27	5,766.04	5,290.10	11.69	-1.62	0.397
74.00	-30.00	-28.22	0.00	-1,950.6	0.00	1,950.58	4,955.35	1,221.84	5,533.42	5,107.69	13.09	-1.72	0.388
75.00	-29.73	-28.08	0.00	-1,922.4	0.00	1,922.36	4,937.28	1,215.49	5,476.01	5,062.36	13.45	-1.74	0.386
76.40	-29.34	-27.78	0.00	-1,883.0	0.00	1,883.01	4,911.85	1,206.59	5,396.14	4,999.10	13.97	-1.78	0.383
80.00	-28.40	-27.39	0.00	-1,783.0	0.00	1,782.99	4,845.73	1,183.71	5,193.46	4,837.46	15.35	-1.87	0.375
83.21	-27.58	-27.10	0.00	-1,695.1	0.00	1,695.11	4,785.91	1,163.32	5,016.10	4,694.71	16.63	-1.95	0.367
85.00	-26.79	-26.71	0.00	-1,646.6	0.00	1,646.56	4,752.15	1,151.93	4,918.39	4,615.55	17.37	-1.99	0.363
89.88 90.00	-24.74 -24.70	-26.37 -26.09	0.00	-1,516.3 -1,513.0	0.00	1,516.34 1,513.05	3,859.20 3,857.41	977.79 977.11	4,134.15 4,128.40	3,716.46 3,712.13	19.46 19.52	-2.11 -2.11	0.415 0.415
95.00	-23.59	-25.52	0.00	-1,382.6	0.00	1,382.57	3,785.01	949.87	3,901.46	3,540.11	21.8	-2.25	0.398
100.00	-22.51	-24.96	0.00	-1,255.0	0.00	1,254.95	3,710.59	922.63	3,680.94	3,370.18	24.23	-2.38	0.379
105.00	-21.46	-24.40	0.00	-1,130.2	0.00	1,130.16	3,634.16	895.39	3,466.84	3,202.49	26.79	-2.51	0.360
110.00	-20.45	-24.04	0.00	-1,008.2	0.00	1,008.18	3,555.71	868.15	3,259.15	3,037.22	29.49	-2.64	0.338
111.00	-20.06	-23.30	0.00	-984.1	0.00	984.14	3,539.78	862.71	3,218.38	3,004.47	30.04	-2.66	0.334
115.00	-19.26	-22.81	0.00	-890.9	0.00	890.93	3,475.25	840.91	3,057.87	2,874.52	32.32	-2.77	0.316
120.00	-18.30	-22.27	0.00	-776.9	0.00	776.86	3,392.78	813.68	2,863.01	2,714.56	35.28	-2.89	0.292
125.00 127.00	-17.36 -16.99	-21.88 -21.61	0.00 0.00	-665.5 -621.8	0.00 0.00	665.52 621.77	3,308.29 3,273.93	786.44 775.54	2,674.57 2,600.99	2,557.51 2,495.54	38.36 39.63	-3 -3.05	0.266 0.255
130.00	-16.18	-21.31	0.00	-556.9	0.00	556.93	3,213.95	759.20	2,492.54	2,397.68	41.57	-3.03	0.238
132.33	-15.55	-21.03	0.00	-507.2	0.00	507.21	1,887.50	506.36	1,663.02	1,413.57	43.1	-3.16	0.369
135.00	-15.19	-20.65	0.00	-451.1	0.00	451.13	1,866.09	496.68	1,600.03	1,370.63	44.88	-3.21	0.339
140.00	-10.82	-16.45	0.00	-347.9	0.00	347.87	1,824.41	478.52	1,485.18	1,290.68	48.31	-3.34	0.277
145.00	-10.25	-16.04	0.00	-265.6	0.00	265.63	1,780.72	460.36	1,374.61	1,211.62	51.87	-3.45	0.226
148.00	-8.31	-14.55	0.00	-217.5	0.00	217.50	1,753.53	449.47	1,310.32	1,164.67	54.05	-3.5	0.193
148.20	-8.17	-14.06	0.00	-214.6	0.00	214.59	1,751.69	448.74	1,306.09	1,161.56	54.2	-3.51	0.190
148.30 149.80	-8.01 -7.70	-13.09 -12.87	0.00	-213.2 -193.4	0.00	213.19 193.44	1,750.77 1,736.87	448.38 442.93	1,303.98	1,160.00	54.28 55.38	-3.51 -3.53	0.189 0.175
149.80	-7.70 -7.41	-12.67 -12.65	0.00 0.00	-193. 4 -192.0	0.00 0.00	193.44	1,735.94	442.56	1,272.49 1,270.41	1,136.70 1,135.15	55.46	-3.53 -3.54	0.173
150.00	-7.24	-12.18	0.00	-190.5	0.00	190.49	1,735.01	442.20	1,268.32	1,133.60	55.53	-3.54	0.173
155.00	-6.75	-11.79	0.00	-129.6	0.00	129.59	1,687.28	424.04	1,166.31	1,056.80	59.27	-3.61	0.127
158.00	-6.40	-11.37	0.00	-94.2	0.00	94.21	1,657.68	413.15	1,107.15	1,011.36	61.55	-3.64	0.098
160.00	-6.21	-11.23	0.00	-71.5	0.00	71.48	1,637.54	405.88	1,068.57	981.37	63.08	-3.66	0.077
161.00	-3.70	-6.29	0.00	-57.3	0.00	57.29	1,627.35	402.25	1,049.53	966.46	63.85	-3.67	0.062
161.50	-3.66	-6.12	0.00	-54.1	0.00	54.14	1,622.23	400.44	1,040.08	959.03	64.23	-3.67	0.059
161.50	-3.66	-6.12	0.00	-54.1	0.00	54.14	632.49	153.60	378.91	355.79	64.23	-3.67	0.160
165.00 165.70	-3.47	-5.94 5.40	0.00	-32.7 -28.6	0.00	32.72	623.63 621.84	150.65	364.48 361.63	344.02	66.93	-3.69 -3.69	0.102 0.090
170.00	-3.38 -1.04	-5.40 -2.96	0.00 0.00	-26.6 -5.4	0.00 0.00	28.56 5.35	610.74	150.06 146.43	344.36	341.68 327.41	67.47 70.81	-3.69 -3.71	0.090
171.00	-0.06	-0.38	0.00	-2.4	0.00	2.39	608.13	145.58	340.40	324.12	71.58	-3.71	0.007
	2.00	2.30	2.00		2.00				2.30	··· -			

ASSET: 411178, Old Lyme South CT CODE: ANSI/TIA-222-H

CUSTOMER: T-MOBILE PROJECT: 14529806_C3_01

					C	ALCULATED	FORCES						
171.50	0.00	-0.37	0.00	-2.2	0.00	2.20	606.82	145.16	338.43	322.48	71.97	-3.71	0.007

Gust Respon Dead load Fa	1.2D + 1.0Di + 1	1.0441		oo mpi	n Wind with 1	radiai itt						23	Iterations
	actor:	1.10 1.20	Ice [Dead Load Fa	ctor	1.00				Ice Im	portance Fa		1.00
Wind Load Fa		1.00	т.,	N.A	NA.	Decultont	Dh:	Dh:	Dh:	Dh:	Total		
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	Phi Pn (kips)	Phi Vn (kips)	Phi Tn (ft-kips)	Phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-95.29	-8.79	0.00	-1,048.1	0.00	1,048.14	6,027.96	1,670.83	10,346.58	8,516.24	0	0	0.139
5.00	-92.66	-8.66	0.00	-1,004.2	0.00	1,004.21	5,965.27	1,639.06	9,956.79	8,266.37	0.01	-0.03	0.137
10.00	-90.04	-8.54	0.00	-960.9	0.00	960.89	5,900.57	1,607.28	9,574.49	8,017.15	0.06	-0.05	0.135
15.00 20.00	-87.43 -84.86	-8.42 -8.30	0.00 0.00	-918.2 -876.1	0.00 0.00	918.19 876.09	5,833.85 5,765.11	1,575.50 1,543.72	9,199.67 8,832.34	7,768.75 7,521.33	0.12 0.22	-0.08 -0.11	0.133 0.131
25.00 25.00	-82.32	-8.18	0.00	-834.6	0.00	834.59	5,694.36	1,543.72	8,472.49	7,321.33	0.22	-0.11	0.131
30.00	-79.82	-8.06	0.00	-793.7	0.00	793.68	5,621.60	1,480.17	8,120.12	7,030.08	0.5	-0.16	0.123
35.00	-77.35	-7.94	0.00	-753.4	0.00	753.37	5,546.82	1,448.39	7,775.24	6,786.58	0.68	-0.19	0.125
40.00	-74.93	-7.87	0.00	-713.7	0.00	713.67	5,470.03	1,416.61	7,437.84	6,544.71	0.9	-0.22	0.123
40.17	-74.84	-7.81	0.00	-712.4	0.00	712.36	5,467.43	1,415.55	7,426.72	6,536.68	0.9	-0.22	0.123
45.00	-70.93	-7.69	0.00	-674.6	0.00	674.62	5,391.22	1,384.83	7,107.92	6,304.65	1.14	-0.25	0.120
48.17	-68.41	-7.62	0.00	-650.3	0.00	650.26	5,394.23	1,386.03	7,120.21	6,313.65	1.31	-0.26	0.116
50.00	-67.54	-7.53	0.00	-636.3	0.00	636.29	5,364.85	1,374.38	7,001.02	6,226.09	1.41	-0.27	0.115
55.00	-65.21	-7.38	0.00	-598.7	0.00	598.66	5,283.37	1,342.60	6,681.05	5,988.66	1.71	-0.3	0.112
60.00	-62.91	-7.24	0.00	-561.7	0.00	561.74	5,199.87	1,310.82	6,368.56	5,753.41	2.05	-0.33	0.110
65.00	-60.66	-7.09	0.00	-525.5	0.00	525.54	5,114.36	1,279.04	6,063.56	5,520.50	2.41	-0.36	0.107
70.00	-58.46 56.43	-6.96	0.00	-490.1	0.00	490.07	5,026.83	1,247.27	5,766.04	5,290.10	2.8	-0.39	0.104
74.00 75.00	-56.43 -56.00	-6.83 -6.79	0.00 0.00	-462.2 -455.4	0.00 0.00	462.24 455.41	4,955.35 4,937.28	1,221.84 1,215.49	5,533.42 5,476.01	5,107.69 5,062.36	3.14 3.22	-0.41 -0.42	0.102 0.101
76.40	-55.38	-6.72	0.00	-445.9	0.00	445.89	4,911.85	1,206.59	5,396.14	4,999.10	3.35	-0.42	0.101
80.00	-53.85	-6.62	0.00	-421.7	0.00	421.71	4,845.73	1,183.71	5,193.46	4,837.46	3.67	-0.45	0.098
83.21	-52.51	-6.54	0.00	-400.5	0.00	400.49	4,785.91	1,163.32	5,016.10	4,694.71	3.98	-0.46	0.096
85.00	-51.35	-6.44	0.00	-388.8	0.00	388.77	4,752.15	1,151.93	4,918.39	4,615.55	4.16	-0.47	0.095
89.88	-48.24	-6.34	0.00	-357.4	0.00	357.39	3,859.20	977.79	4,134.15	3,716.46	4.66	-0.5	0.109
90.00	-48.19	-6.27	0.00	-356.6	0.00	356.60	3,857.41	977.11	4,128.40	3,712.13	4.67	-0.5	0.109
95.00	-46.36	-6.12	0.00	-325.2	0.00	325.23	3,785.01	949.87	3,901.46	3,540.11	5.21	-0.54	0.104
100.00	-44.57	-5.97	0.00	-294.6	0.00	294.61	3,710.59	922.63	3,680.94	3,370.18	5.79	-0.57	0.099
105.00	-42.81	-5.83	0.00	-264.7	0.00	264.74	3,634.16	895.39	3,466.84	3,202.49	6.4	-0.6	0.094
110.00	-41.10	-5.73	0.00	-235.6	0.00	235.61	3,555.71	868.15	3,259.15	3,037.22	7.04	-0.63	0.089
111.00	-40.35	-5.54	0.00	-229.9	0.00	229.88	3,539.78	862.71	3,218.38	3,004.47	7.17	-0.63	0.088
115.00	-39.02	-5.40	0.00	-207.7	0.00	207.74	3,475.25	840.91	3,057.87	2,874.52	7.72	-0.66	0.084
120.00	-37.39	-5.26	0.00	-180.7	0.00	180.72	3,392.78	813.68	2,863.01	2,714.56	8.42	-0.68	0.078
125.00	-35.79	-5.15 5.00	0.00	-154.4	0.00	154.44	3,308.29	786.44	2,674.57	2,557.51	9.15	-0.71	0.071
127.00 130.00	-35.17 -33.87	-5.08 -4.99	0.00 0.00	-144.2 -128.9	0.00 0.00	144.15 128.92	3,273.93 3,213.95	775.54 759.20	2,600.99 2,492.54	2,495.54 2,397.68	9.45 9.91	-0.72 -0.74	0.069 0.064
132.33	-32.88	-4.99 -4.91	0.00	-120.9	0.00	117.27	1,887.50	506.36	1,663.02	1,413.57	10.27	-0.74	0.100
135.00	-32.22	-4.81	0.00	-104.2	0.00	104.17	1,866.09	496.68	1,600.03	1,370.63	10.27	-0.76	0.093
140.00	-23.49	-3.80	0.00	-80.1	0.00	80.11	1,824.41	478.52	1,485.18	1,290.68	11.51	-0.79	0.075
145.00	-22.40	-3.69	0.00	-61.1	0.00	61.11	1,780.72	460.36	1,374.61	1,211.62	12.35	-0.81	0.063
148.00	-19.10	-3.31	0.00	-50.0	0.00	50.05	1,753.53	449.47	1,310.32	1,164.67	12.87	-0.83	0.054
148.20	-18.64	-3.21	0.00	-49.4	0.00	49.39	1,751.69	448.74	1,306.09	1,161.56	12.9	-0.83	0.053
148.30	-17.95	-3.02	0.00	-49.1	0.00	49.07	1,750.77	448.38	1,303.98	1,160.00	12.92	-0.83	0.053
149.80	-17.30	-2.96	0.00	-44.5	0.00	44.51	1,736.87	442.93	1,272.49	1,136.70	13.18	-0.83	0.049
149.90	-16.71	-2.91	0.00	-44.2	0.00	44.18	1,735.94	442.56	1,270.41	1,135.15	13.2	-0.84	0.049
150.00	-16.29	-2.80	0.00	-43.8	0.00	43.84	1,735.01	442.20	1,268.32	1,133.60	13.21	-0.84	0.048
155.00	-15.31	-2.69	0.00	-29.8	0.00	29.84	1,687.28	424.04	1,166.31	1,056.80	14.1	-0.85	0.037
158.00	-14.50	-2.58	0.00	-21.8	0.00	21.77	1,657.68	413.15	1,107.15	1,011.36	14.64	-0.86	0.030
160.00	-14.12	-2.54	0.00	-16.6	0.00	16.61	1,637.54	405.88	1,068.57	981.37	15	-0.86	0.026
161.00	-8.32	-1.45	0.00	-13.5	0.00	13.48	1,627.35	402.25	1,049.53	966.46	15.18	-0.87	0.019
161.50	-8.24	-1.41	0.00	-12.8	0.00	12.75	1,622.23	400.44	1,040.08	959.03	15.27	-0.87	0.018
161.50	-8.24 7.91	-1.41 1.25	0.00	-12.8 7.9	0.00	12.75	632.49	153.60	378.91	355.79	15.27	-0.87	0.049
165.00 165.70	-7.81 7.40	-1.35 -1.33	0.00	-7.8	0.00	7.83	623.63	150.65 150.06	364.48	344.02	15.91 16.04	-0.87	0.035
165.70 170.00	-7.49 -3.05	-1.23 -0.67	0.00 0.00	-6.9 -1.6	0.00 0.00	6.88 1.60	621.84 610.74	150.06 146.43	361.63 344.36	341.68 327.41	16.04 16.82	-0.87 -0.88	0.032 0.010
171.00	-0.25	-0.67 -0.15	0.00	-0.9	0.00	0.93	608.13	145.58	340.40	324.12	17.01	-0.88	0.010

ASSET: 411178, Old Lyme South CT CODE: ANSI/TIA-222-H

CUSTOMER: T-MOBILE PROJECT: 14529806_C3_01

					C	ALCULATED	FORCES						
171.50	0.00	-0.15	0.00	-0.8	0.00	0.85	606.82	145.16	338.43	322.48	17.1	-0.88	0.003

						CALCULATE	D FORCES						
Load Case:	: 1.0D + 1.0W			60 mpł	n Wind with N	No Ice						23	Iterations
Gust Respo Dead load F Wind Load		1.10 1.00 1.00											
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (ft-kips)	Mu MX (ft-kips)	Resultant Moment (ft-kips)	Phi Pn (kips)	Phi Vn (kips)	Phi Tn (ft-kips)	Phi Mn (ft-kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-61.10	-7.34	0.00	-888.3	0.00	888.28	6,027.96	1,670.83	10,346.58	8,516.24	0	0	0.114
5.00	-59.24	-7.24	0.00	-851.6	0.00	851.59	5,965.27	1,639.06	9,956.79	8,266.37	0.01	-0.02	0.113
10.00	-57.41	-7.13	0.00	-815.4	0.00	815.41	5,900.57	1,607.28	9,574.49	8,017.15	0.05	-0.04	0.111
15.00	-55.61	-7.03	0.00	-779.8	0.00	779.75	5,833.85	1,575.50	9,199.67	7,768.75	0.11	-0.07	0.110
20.00	-53.84	-6.93	0.00	-744.6	0.00	744.59	5,765.11	1,543.72	8,832.34	7,521.33	0.19	-0.09	0.108
25.00	-52.10	-6.83	0.00	-709.9	0.00	709.92	5,694.36	1,511.94	8,472.49	7,275.05	0.29	-0.11	0.107
30.00	-50.40	-6.74	0.00	-675.8 -642.1	0.00	675.75	5,621.60	1,480.17	8,120.12	7,030.08	0.42	-0.14	0.105 0.103
35.00 40.00	-48.72 -47.08	-6.64 -6.58	0.00 0.00	-642.1 -608.9	0.00 0.00	642.07 608.89	5,546.82 5,470.03	1,448.39 1,416.61	7,775.24 7,437.84	6,786.58 6,544.71	0.58 0.76	-0.16 -0.18	0.103
40.17	-47.02	-6.53	0.00	-607.8	0.00	607.79	5,467.43	1,415.55	7,426.72	6,536.68	0.77	-0.19	0.102
45.00	-44.13	-6.44	0.00	-576.2	0.00	576.23	5,391.22	1,384.83	7,107.92	6,304.65	0.97	-0.21	0.100
48.17	-42.27	-6.38	0.00	-555.8	0.00	555.84	5,394.23	1,386.03	7,120.21	6,313.65	1.11	-0.22	0.096
50.00	-41.68	-6.31	0.00	-544.1	0.00	544.14	5,364.85	1,374.38	7,001.02	6,226.09	1.2	-0.23	0.095
55.00	-40.11	-6.19	0.00	-512.6	0.00	512.61	5,283.37	1,342.60	6,681.05	5,988.66	1.46	-0.26	0.093
60.00	-38.57	-6.08	0.00	-481.6	0.00	481.65	5,199.87	1,310.82	6,368.56	5,753.41	1.74	-0.28	0.091
65.00	-37.06	-5.96	0.00	-451.2	0.00	451.25	5,114.36	1,279.04	6,063.56	5,520.50	2.05	-0.31	0.089
70.00	-35.58	-5.86	0.00	-421.4	0.00	421.43	5,026.83	1,247.27	5,766.04	5,290.10	2.38	-0.33	0.087
74.00	-34.23	-5.75 5.70	0.00	-398.0	0.00	398.00	4,955.35	1,221.84	5,533.42	5,107.69	2.67	-0.35	0.085
75.00 76.40	-33.94 -33.53	-5.72 5.66	0.00	-392.2 -384.2	0.00	392.25	4,937.28	1,215.49 1,206.59	5,476.01	5,062.36	2.74	-0.36 -0.36	0.084 0.084
80.00	-33.53 -32.51	-5.66 -5.58	0.00 0.00	-364.2 -363.8	0.00 0.00	384.23 363.85	4,911.85 4,845.73	1,206.59	5,396.14 5,193.46	4,999.10 4,837.46	2.85 3.13	-0.36 -0.38	0.084
83.21	-31.62	-5.52	0.00	-345.9	0.00	345.94	4,785.91	1,163.71	5,016.10	4,694.71	3.13	-0.36	0.082
85.00	-30.77	-5.45	0.00	-336.0	0.00	336.04	4,752.15	1,151.93	4,918.39	4,615.55	3.54	-0.41	0.079
89.88	-28.52	-5.37	0.00	-309.5	0.00	309.50	3,859.20	977.79	4,134.15	3,716.46	3.97	-0.43	0.091
90.00	-28.48	-5.32	0.00	-308.8	0.00	308.82	3,857.41	977.11	4,128.40	3,712.13	3.98	-0.43	0.091
95.00	-27.30	-5.21	0.00	-282.2	0.00	282.22	3,785.01	949.87	3,901.46	3,540.11	4.44	-0.46	0.087
100.00	-26.13	-5.09	0.00	-256.2	0.00	256.19	3,710.59	922.63	3,680.94	3,370.18	4.94	-0.49	0.083
105.00	-25.00	-4.98	0.00	-230.7	0.00	230.74	3,634.16	895.39	3,466.84	3,202.49	5.46	-0.51	0.079
110.00	-23.89	-4.91	0.00	-205.8	0.00	205.85	3,555.71	868.15	3,259.15	3,037.22	6.01	-0.54	0.075
111.00	-23.44	-4.76	0.00	-200.9	0.00	200.94	3,539.78 3,475.25	862.71	3,218.38	3,004.47	6.13	-0.54	0.074
115.00 120.00	-22.58 -21.53	-4.66 -4.55	0.00 0.00	-181.9 -158.6	0.00 0.00	181.92 158.64	3,392.78	840.91 813.68	3,057.87 2,863.01	2,874.52 2,714.56	6.59 7.19	-0.56 -0.59	0.070 0.065
125.00	-20.50	-4.47	0.00	-135.9	0.00	135.90	3,308.29	786.44	2,674.57	2,557.51	7.19	-0.61	0.059
127.00	-20.10	-4.41	0.00	-127.0	0.00	126.97	3,273.93	775.54	2,600.99	2,495.54	8.08	-0.62	0.057
130.00	-19.19	-4.35	0.00	-113.7	0.00	113.73	3,213.95	759.20	2,492.54	2,397.68	8.48	-0.63	0.053
132.33	-18.51	-4.29	0.00	-103.6	0.00	103.58	1,887.50	506.36	1,663.02	1,413.57	8.79	-0.64	0.083
135.00	-18.11	-4.22	0.00	-92.1	0.00	92.12	1,866.09	496.68	1,600.03	1,370.63	9.15	-0.66	0.077
140.00	-13.05	-3.36	0.00	-71.0	0.00	71.03	1,824.41	478.52	1,485.18	1,290.68	9.85	-0.68	0.062
145.00	-12.42	-3.28	0.00	-54.2	0.00	54.24	1,780.72	460.36	1,374.61	1,211.62	10.58	-0.7	0.052
148.00	-10.17	-2.97	0.00	-44.4	0.00	44.41	1,753.53	449.47	1,310.32	1,164.67	11.03	-0.71	0.044
148.20	-9.98	-2.87	0.00	-43.8	0.00	43.82	1,751.69	448.74	1,306.09	1,161.56	11.06	-0.72	0.043
148.30 149.80	-9.74 -9.39	-2.67 -2.63	0.00 0.00	-43.5 -39.5	0.00	43.53 39.50	1,750.77 1,736.87	448.38 442.93	1,303.98 1,272.49	1,160.00 1,136.70	11.07 11.3	-0.72 -0.72	0.043 0.040
149.90	-9.06	-2.58	0.00	-39.2	0.00	39.20	1,735.94	442.56	1,272.49	1,135.15	11.31	-0.72	0.040
150.00	-8.84	-2.49	0.00	-38.9	0.00	38.90	1,735.01	442.20	1,268.32	1,133.60	11.33	-0.72	0.039
155.00	-8.28	-2.41	0.00	-26.5	0.00	26.46	1,687.28	424.04	1,166.31	1,056.80	12.09	-0.74	0.030
158.00	-7.87	-2.32	0.00	-19.2	0.00	19.23	1,657.68	413.15	1,107.15	1,011.36	12.56	-0.74	0.024
160.00	-7.66	-2.29	0.00	-14.6	0.00	14.59	1,637.54	405.88	1,068.57	981.37	12.87	-0.75	0.020
161.00	-4.53	-1.28	0.00	-11.7	0.00	11.70	1,627.35	402.25	1,049.53	966.46	13.03	-0.75	0.015
161.50	-4.48	-1.25	0.00	-11.1	0.00	11.06	1,622.23	400.44	1,040.08	959.03	13.1	-0.75	0.014
161.50	-4.48	-1.25	0.00	-11.1	0.00	11.06	632.49	153.60	378.91	355.79	13.1	-0.75	0.038
165.00	-4.25	-1.21	0.00	-6.7	0.00	6.68	623.63	150.65	364.48	344.02	13.65	-0.75	0.026
165.70	-4.12 1.36	-1.10	0.00	-5.8 -1.1	0.00	5.83 1.09	621.84 610.74	150.06 146.43	361.63	341.68 327.41	13.76	-0.75 -0.76	0.024 0.006
170.00 171.00	-1.36 -0.09	-0.60 -0.08	0.00 0.00	-1.1 -0.5	0.00	0.49	608.13	145.58	344.36 340.40	327.41	14.45 14.6	-0.76 -0.76	0.006
171.00	-0.03	-0.00	0.00	-0.0	0.00	0.43	000.13	170.00	J - U.4U	J27.12	14.0	-0.70	0.002

411178, Old Lyme South CT CODE: ANSI/TIA-222-H ASSET:

CUSTOMER: T-MOBILE PROJECT: 14529806_C3_01

					C	ALCULATED	FORCES						
171.50	0.00	-0.08	0.00	-0.4	0.00	0.45	606.82	145.16	338.43	322.48	14.68	-0.76	0.001

EQUIVALENT LATERAL FORCES METHOD ANALYSIS

(Based on ASCE7-16 Chapters 11, 12 and 15) Spectral Response Acceleration for Short Period (S_S): 0.199 Spectral Response Acceleration at 1.0 Second Period (S₁): 0.053 Long-Period Transition Period (T_L – Seconds): 6 Importance Factor (I_e): 1.000 Site Coefficient Fa: 1.600 Site Coefficient F_v: 2.400 Response Modification Coefficient (R): 1.500 Design Spectral Response Acceleration at Short Period (S_{ds}): 0.212 Design Spectral Response Acceleration at 1.0 Second Period (S_{d1}): 0.085 Seismic Response Coefficient (C_s): 0.030 Upper Limit C_S: 0.030 Lower Limit C_S: 0.030 Period based on Rayleigh Method (sec): 2.280 Redundancy Factor (p): 1.000 Seismic Force Distribution Exponent (k): 1.890

			SEISMIC FORCE	ES			
1.2D + 1.0Ev + 1.0Eh	Seismic	Height Above Base	Weight	W_z		Horizontal Force	Vertical Force
Segment		(ft)	(lb)	(lb-ft)	C_{vx}	(lb)	(lb)
54		171.25	27	449	0.001	2	33
53		170.5	62	1,039	0.003	5	77
52		167.85	271	4,394	0.011	21	337
51		165.35	45	704	0.002	3	56
50		163.25	228	3,506	0.009	17	284
49		161.25	46	694	0.002	3	57
48		160.5	105	1,568	0.004	7	131
47		159	213	3,112	0.008	15	265
46		156.5	325	4,605	0.012	22	404
45		152.5	555	7,498	0.020	36	690
44		149.95	12	152	0.000	1	14
43		149.85	12	151	0.000	1	14
42		149.05	175	2,260	0.006	11	217
41		148.25	12	150	0.000	1	15
40		148.1	23	299	0.001	1	29
39		146.5	370	4,626	0.012	22	459
38		142.5	630	7,484	0.020	36	783
37		137.5	724	8,039	0.021	38	900
36		133.6667	393	4,140	0.011	20	489
35		131.1667	689	6,994	0.018	33	856
34		128.5	900	8,787	0.023	42	1,118
33		126	403	3,796	0.010	18	501
32		122.5	1,027	9,163	0.024	44	1,276
31		117.5	1,054	8,686	0.023	41	1,309
30		113	862	6,599	0.017	31	1,071
29		110.5	218	1,603	0.004	8	271
28		107.5	1,108	7,719	0.020	37	1,377
27		102.5	1,134	7,222	0.019	34	1,409
26		97.5	1,161	6,723	0.018	32	1,442
25		92.5	1,187	6,224	0.016	30	1,475
24		89.9375	30	149	0.000	1	37
23		87.4375	2,258	10,641	0.028	51	2,805
22		84.1042	843	3,694	0.010	18	1,048
21		81.6042	892	3,691	0.010	18	1,109
20		78.2	1,017	3,880	0.010	18	1,263
19		75.7	400	1,435	0.004	7	497
18		74.5	287	999	0.003	5	357
17		72	1,161	3,788	0.010	18	1,442

Total Unfactored Dead Load:

Seismic Base Shear (E):

61.100 k

1.830 k

411178, Old Lyme South CT CODE: ANSI/TIA-222-H ASSET:

CUSTOMER: T-MOBILE PROJECT: 14529806_C3_01

		SEISMIC FORCES				
1.2D + 1.0Ev + 1.0Eh Seismic	Height Above Base	Weight	W_z		Horizontal Force	Vertical Force
Segment	(ft)	(lb)	(lb-ft)	C _{vx}	(lb)	(lb)
16	67.5	1,478	4,271	0.011	20	1,837
15	62.5	1,509	3,769	0.010	18	1,875
14	57.5	1,540	3,285	0.008	16	1,913
13	52.5	1,571	2,821	0.007	13	1,952
12	49.0834	584	923	0.002	4	725
11 10	46.5834	1,862	2,667	0.007	13 17	2,314
	42.5834	2,890 54	3,492	0.009	0	3,590
9	40.0834 37.5	1,643	58 1,561	0.000 0.004	7	67 2,041
7	32.5	1,673	1,213	0.004	6	2,041
6	27.5	1,704	900	0.003	4	2,079
5	22.5	1,735	627	0.002	3	2,176
4	17.5	1,766	397	0.002	2	2,194
3	12.5	1,797	214	0.001	1	2,232
2	7.5	1,827	83	0.000	0	2,270
1	2.5	1,858	11	0.000	0	2,309
Generic 12' Dipole	2.5 171.5	40	674	0.000	3	2,309
Generic 12' Dipole	111	40	296	0.002	1	50
Decibel DB201-A	171.5	25	421	0.001	2	31
Ericsson Radio 4449 B12.B71	171	222	3,722	0.010	18	276
Ericsson Radio 4460 B25+B66	171	327	5,482	0.014	26	406
Ericsson AIR 6419 B41	171	206	3,445	0.009	16	255
Commscope VV-65A-R1B	171	74	1,242	0.003	6	92
RFS APXVAARR24_43-U-NA20	171	384	6,433	0.017	31	477
Generic Flat Platform with Handrails	170	2,500	41,450	0.108	198	3,106
RFS DB-T1-6Z-8AB-0Z	165.7	88	1,390	0.004	7	109
RFS DB-T1-6Z-8AB-0Z	158	88	1,270	0.003	6	109
Alcatel-Lucent RRH2X60-1900	161	129	1,930	0.005	9	160
Alcatel-Lucent RRH2x60 700	161	170	2,544	0.007	12	211
Alcatel-Lucent B66 RRH4x45	161	201	3,007	0.008	14	250
Unused Reserve (519.6200 sqin)	161	209	3,126	0.008	15	260
RFS APL866513-42T0	161	63	939	0.002	4	78
Antel BXA-70063-4CF-EDIN-10	161	10	148	0.000	1	12
Antel BXA-70063/6CF_	161	34	509	0.001	2	42
Commscope SBNHH-1D65B	161	304	4,550	0.012	22	378
Amphenol Antel LPA-80080-6CF-EDIN-2	161	42	628	0.002	3	52
Generic Flat Low Profile Platform	161	1,875	28,048	0.073	134	2,330
Generic Flat Low Profile Platform	148	1,875	23,918	0.062	114	2,330
Alcatel-Lucent TD-RRH8x20-25 w/ Solar Shield	150	210	2,748	0.007	13	261
Alcatel-Lucent RRH2x50-08	149.9	317	4,148	0.011	20	394
Alcatel-Lucent 1900 MHz 4X45 RRH	149.8	180	2,349	0.006	11	224
Commscope NNVV-65B-R4	148.3	232	2,973	0.008	14	288
RFS APXVTM14-ALU-I20	148.2	169	2,156	0.006	10	209
Powerwave Allgon TT19-08BP111-001	140	96	1,102	0.003	5	119
Raycap DC6-48-60-18-8F ("Squid")	140	19	217	0.001	1	23
Ericsson RRUS 8843 B2, B66A	140	216	2,480	0.006	12	268
Ericsson RRUS 4478 B14 (15")	140	178	2,046	0.005	10	221
Ericsson RRUS 4449 B5, B12	140	213	2,446	0.006	12	265
Raycap DC9-48-60-24-8C-EV	140	16	184	0.000	1	20
Generic Mount Reinforcement	140	600	6,890	0.018	33	745
Powerwave Allgon 7770.00	140	105	1,206	0.003	6	130
CCI DMP65R-BU4D	140	407	4,678	0.012	22	506
Generic Round Platform with Handrails	140	2,500	28,708	0.075	137	3,106
Generic Flat Stand-Off	111	188	1,388	0.004	7	233
Generic Flat Stand-Off	74	188	645	0.002	3	233
Generic GPS	76.4	10	37	0.000	0	12
	Totals:	61,101	384,526	1.000	1,833	75,916

		SEISMIC FORC	ES			
0.9D - 1.0Ev + 1.0Eh	Seismic (Reduced DL) Height Above Base	Weight	W_z		Horizontal Force	Vertical Force
Segment	(ft)	(lb)	(lb-ft)	C_{vx}	(lb)	(lb)
54	171.25	27	449	0.001	2	23
53 52	170.5 167.85	62 271	1,039 4,394	0.003 0.011	5 21	53 233
51	165.35	45	704	0.002	3	38
50	163.25	228	3,506	0.009	17	196
49	161.25	46	694	0.002	3	40
48	160.5	105	1,568	0.004	7	90
47	159	213	3,112	0.008	15	183
46	156.5	325	4,605	0.012	22	279
45 44	152.5 149.95	555 12	7,498 152	0.020 0.000	36 1	476 10
43	149.85	12	151	0.000	1	10
42	149.05	175	2,260	0.006	11	150
41	148.25	12	150	0.000	1	10
40	148.1	23	299	0.001	1	20
39	146.5	370	4,626	0.012	22	317
38	142.5	630	7,484	0.020	36	540
37 36	137.5 133.6667	724 393	8,039 4,140	0.021 0.011	38 20	621 337
35	131.1667	689	6,994	0.018	33	591
34	128.5	900	8,787	0.023	42	772
33	126	403	3,796	0.010	18	346
32	122.5	1,027	9,163	0.024	44	881
31	117.5	1,054	8,686	0.023	41	904
30	113	862	6,599	0.017	31	739
29 28	110.5 107.5	218 1,108	1,603 7,719	0.004 0.020	8 37	187 950
27	102.5	1,134	7,713	0.019	34	973
26	97.5	1,161	6,723	0.018	32	995
25	92.5	1,187	6,224	0.016	30	1,018
24	89.9375	30	149	0.000	1	26
23	87.4375	2,258	10,641	0.028	51	1,936
22 21	84.1042 81.6042	843 892	3,694 3,691	0.010 0.010	18 18	723 765
20	78.2	1,017	3,880	0.010	18	872
19	75.7	400	1,435	0.004	7	343
18	74.5	287	999	0.003	5	246
17	72	1,161	3,788	0.010	18	995
16	67.5	1,478	4,271	0.011	20	1,268
15	62.5	1,509	3,769	0.010	18	1,294
14 13	57.5 52.5	1,540 1,571	3,285 2,821	0.008 0.007	16 13	1,321 1,347
12	49.0834	584	923	0.002	4	501
11	46.5834	1,862	2,667	0.007	13	1,597
10	42.5834	2,890	3,492	0.009	17	2,478
9	40.0834	54	58	0.000	0	47
8	37.5	1,643	1,561	0.004	7	1,409
7 6	32.5 27.5	1,673 1,704	1,213 900	0.003 0.002	6 4	1,435 1,461
5	22.5	1,735	627	0.002	3	1,488
4	17.5	1,766	397	0.001	2	1,514
3	12.5	1,797	214	0.001	1	1,541
2	7.5	1,827	83	0.000	0	1,567
1	2.5	1,858	11	0.000	0	1,594
Generic 12' Dipole	171.5	40	674	0.002	3	34
Generic 12' Dipole	111 171.5	40 25	296 421	0.001 0.001	1 2	34 21
Decibel DB201-A Ericsson Radio 4449 B12,B7		222	3,722	0.001	18	190
Ericsson Radio 4460 B25+B		327	5,482	0.014	26	280
Ericsson AIR 6419 B41	171	206	3,445	0.009	16	176
Commscope VV-65A-R1B	171	74	1,242	0.003	6	64

		S	EISMIC FORCES				
0.9D - 1.0Ev + 1.0Eh	Seismic (Reduced						
Segment		Height Above Base (ft)	Weight (lb)	W _z (Ib-ft)	C_{vx}	Horizontal Force (lb)	Vertical Force (lb)
RFS APXVAARR24_43-U-N	A20	171	384	6,433	0.017	31	329
Generic Flat Platform with H	andrails	170	2,500	41,450	0.108	198	2,144
RFS DB-T1-6Z-8AB-0Z		165.7	88	1,390	0.004	7	75
RFS DB-T1-6Z-8AB-0Z		158	88	1,270	0.003	6	75
Alcatel-Lucent RRH2X60-19	00	161	129	1,930	0.005	9	111
Alcatel-Lucent RRH2x60 700)	161	170	2,544	0.007	12	146
Alcatel-Lucent B66 RRH4x4	5	161	201	3,007	0.008	14	172
Unused Reserve (519.6200	sqin)	161	209	3,126	0.008	15	179
RFS APL866513-42T0		161	63	939	0.002	4	54
Antel BXA-70063-4CF-EDIN	-10	161	10	148	0.000	1	8
Antel BXA-70063/6CF_		161	34	509	0.001	2	29
Commscope SBNHH-1D65E	3	161	304	4,550	0.012	22	261
Amphenol Antel LPA-80080-	6CF-EDIN-2	161	42	628	0.002	3	36
Generic Flat Low Profile Plat	form	161	1,875	28,048	0.073	134	1,608
Generic Flat Low Profile Plat	form	148	1,875	23,918	0.062	114	1,608
Alcatel-Lucent TD-RRH8x20	-25 w/ Solar Shield	150	210	2,748	0.007	13	180
Alcatel-Lucent RRH2x50-08		149.9	317	4,148	0.011	20	272
Alcatel-Lucent 1900 MHz 4X	45 RRH	149.8	180	2,349	0.006	11	154
Commscope NNVV-65B-R4		148.3	232	2,973	0.008	14	199
RFS APXVTM14-ALU-I20		148.2	169	2,156	0.006	10	145
Powerwave Allgon TT19-08E	3P111-001	140	96	1,102	0.003	5	82
Raycap DC6-48-60-18-8F ("	Squid")	140	19	217	0.001	1	16
Ericsson RRUS 8843 B2, B6	6A	140	216	2,480	0.006	12	185
Ericsson RRUS 4478 B14 (1	5")	140	178	2,046	0.005	10	153
Ericsson RRUS 4449 B5, B1	2	140	213	2,446	0.006	12	183
Raycap DC9-48-60-24-8C-E	V	140	16	184	0.000	1	14
Generic Mount Reinforcement	nt	140	600	6,890	0.018	33	515
Powerwave Allgon 7770.00		140	105	1,206	0.003	6	90
CCI DMP65R-BU4D		140	407	4,678	0.012	22	349
Generic Round Platform with	Handrails	140	2,500	28,708	0.075	137	2,144
Generic Flat Stand-Off		111	188	1,388	0.004	7	161
Generic Flat Stand-Off		74	188	645	0.002	3	161
Generic GPS		76.4	10	37	0.000	0	9
		Totals:	61,101	384,526	1.000	1,833	52,397

1.2D + 1.0Ev + 1.0Eh	Seismic

						CALCULATI	ED FORCES						
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (fr-kips)	Mu Mx (ft-kips)	Resultant Moment (ft-kips)	Phi Pn (kips)	Phi Vn (kips)	Phi Tn (kips)	Phi Mn (kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-73.61	-1.84	0.00	-254.03	0.00	254.03	6,027.96	1,670.83	10,347	8,516.24	0.00	0.00	0.04
5.00	-71.34	-1.84	0.00	-244.85	0.00	244.85	5,965.27	1,639.06	9,957	8,266.37	0.00	-0.01	0.04
10.00	-69.10	-1.85	0.00	-235.63	0.00	235.63	5,900.57	1,607.28	9,574	8,017.15	0.01	-0.01	0.04
15.00	-66.91	-1.86	0.00	-226.38	0.00	226.38	5,833.85	1,575.50	9,200	7,768.75	0.03	-0.02	0.04
20.00	-64.75	-1.86	0.00	-217.11	0.00	217.11	5,765.11	1,543.72	8,832	7,521.33	0.05	-0.03	0.04
25.00	-62.64	-1.86	0.00	-207.81	0.00	207.81	5,694.36	1,511.94	8,472	7,275.05	0.08	-0.03	0.04
30.00	-60.56	-1.86	0.00	-198.51	0.00	198.51	5,621.60	1,480.17	8,120	7,030.08	0.12	-0.04	0.04
35.00	-58.52	-1.86	0.00	-189.20	0.00	189.20	5,546.82	1,448.39	7,775	6,786.58	0.17	-0.05	0.04
40.00	-58.45	-1.86	0.00	-179.90	0.00	179.90	5,470.03	1,416.61	7,438	6,544.71	0.22	-0.05	0.04
40.17	-54.86	-1.85	0.00	-179.59	0.00	179.59	5,467.43	1,415.55	7,427	6,536.68	0.22	-0.05	0.04
45.00	-52.54	-1.84	0.00	-170.67	0.00	170.67	5,391.22	1,384.83	7,108	6,304.65	0.28	-0.06	0.04
48.17	-51.82	-1.83	0.00	-164.85	0.00	164.85	5,394.23	1,386.03	7,120	6,313.65	0.32	-0.07	0.04
50.00	-49.87	-1.82	0.00	-161.49	0.00	161.49	5,364.85	1,374.38	7,001	6,226.09	0.35	-0.07	0.04
55.00	-47.95	-1.81	0.00	-152.37	0.00	152.37	5,283.37	1,342.60	6,681	5,988.66	0.42	-0.08	0.04
60.00	-46.08	-1.80	0.00	-143.32	0.00	143.32	5,199.87	1,310.82	6,369	5,753.41	0.51	-0.08	0.03
65.00	-44.24	-1.78	0.00	-134.33	0.00	134.33	5,114.36	1,279.04	6,064	5,520.50	0.60	-0.09	0.03
70.00	-42.80	-1.76	0.00	-125.44	0.00	125.44	5,026.83	1,247.27	5,766	5,290.10	0.70	-0.10	0.03
74.00	-42.21	-1.76	0.00	-118.38	0.00	118.38	4,955.35	1,221.84	5,533	5,107.69	0.78	-0.10	0.03
75.00	-41.71	-1.75	0.00	-116.63	0.00	116.63	4,937.28	1,215.49	5,476	5,062.36	0.80	-0.10	0.03
76.40	-40.44	-1.73	0.00	-114.17	0.00	114.17	4,911.85	1,206.59	5,396	4,999.10	0.83	-0.11	0.03

ASSET: 411178, Old Lyme South CT CODE: ANSI/TIA-222-H CUSTOMER: T-MOBILE PROJECT: 14529806_C3_01

CALCULATED FORCES Pu Vu Tu Mu Mu Resultant Phi Phi Phi Total FY (-) FX (-) Seg Elev MY ΜZ Mx Moment Pn Vn Tn Mn Deflect Rotation (ft-kips) (ft-kips) Ratio (ft) (kips) (kips) (fr-kips) (ft-kips) (kips) (kips) (kips) (kips) (in) (deg) 80.00 4,845.73 -39.33 -107.94 1,183.71 4,837.46 0.91 0.03 -1.720.00 0.00 107.94 5,193 -0.11 83.21 -38.28 -1.700.00 -102430.00 102.43 4,785.91 1,163.32 5,016 4.694.71 0.99 -0.12 0.03 85.00 -35.47-1.650.00 -99.39 0.00 99.39 4,752.15 1,151.93 4,918 4,615.55 1.04 -0.12 0.03 89.88 -35.44 -1.65 0.00 -91.36 0.00 91.36 3,859.20 977.79 4,134 3,716.46 1.16 -0.13 0.03 90.00 -33.96 -1.62 0.00 -91.16 0.00 91.16 3,857.41 977.11 4,128 3,712.13 1.16 -0.13 0.03 95.00 -32.52 -1.59 0.00 -83.07 0.00 83.07 3,785.01 949.87 3,901 3,540.11 1.30 -0.13 0.03 100.00 -31.11 -1.55 0.00 -75.14 0.00 75.14 3,710.59 3,681 3,370.18 1.45 -0.14 922.63 0.03 105.00 -29.73 -1.52 0.00 -67.38 0.00 67.38 3,634.16 895.39 3,467 3,202.49 1.60 -0.15 0.03 3,555.71 3,037.22 110.00 -29.46 -1.51 0.00 -59.80 0.00 59.80 868.15 3,259 1.76 -0.16 0.03 111.00 -28.11 -1.47 0.00 -58.29 0.00 58.29 3.539.78 862.71 3,218 3,004.47 1.80 -0.16 0.03 115 00 -26.80 -1 43 0.00 -52 42 0.00 52 42 3 475 25 840 91 3,058 2 874 52 1 93 -0 17 0.03120.00 -25.52 -1.38 0.00 -45.28 0.00 45.28 813.68 2,863 2.714.56 2.11 -0.170.02 3.392.78 125.00 -25.02 -1.360.00 -38.370.00 38.37 3,308.29 786.44 2,675 2,557.51 2.30 -0.180.02 35.64 -0.18 127.00 -23.90-1.320.00 -35.640.00 3,273.93 775.54 2,601 2.495.54 2.37 0.02 130.00 -23.05 -1.29 0.00 -31.68 0.00 31.68 3,213.95 759.20 2,493 2,397.68 2.49 -0.19 0.02 132.33 -22.56 -1.27 0.00 -28.68 0.00 28.68 1,887.50 506.36 1,663 1,413.57 2.58 -0.19 0.03 135.00 -21.66 -1.230.00 -25.31 0.00 25.31 1,866.09 496.68 1,600 1,370.63 2.69 -0.19 0.03 140.00 -15.47 19.17 1,485 1,290.68 2.89 -0.20 -0.930.00 -19.170.00 1,824.41 478.52 0.02 145.00 -15.01 -0.91 0.00 -14.51 0.00 14.51 1,780.72 460.36 1,375 1,211.62 3.10 -0.20 0.02 148.00 -12.65 -0.79 0.00 -11.78 0.00 11.78 1,753.53 449.47 1,310 1,164.67 3.23 -0.21 0.02 -12.43 -0.78 0.00 0.00 11.62 -0.21 148.20 -11.62 1.751.69 448.74 1.306 1.161.56 3.24 0.02 148.30 -11.92 -0.75 0.00 -11.54 0.00 11.54 1.750.77 448.38 1.304 1.160.00 3.24 -0.21 0.02

10.42

10.34

10.27

6.96

5.04

3.81

3.20

3.01

3.01

1.76

1.51

0 11

0.00

0.00

1,736.87

1,735.94

1,735.01

1,687.28

1,657.68

1,637.54

1,627.35

1,622.23

632.49

623.63

621.84

610 74

608.13

606.82

442.93

442.56

442.20

424.04

413.15

405.88

402.25

400.44

153.60

150.65

150.06

146 43

145.58

145.16

1,272

1,270

1,268

1,166

1,107

1,069

1,050

1,040

379

364

362

344

340

338

1,136.70

1,135.15

1,133.60

1,056.80

1,011.36

981.37

966.46

959.03

355.79

344.02

341.68

327 41

324.12

322.48

3.31

3.31

3.32

3.54

3.67

3.77

3.81

3.83

3.83

3.99

4.02

4 22

4.27

4.29

-0.21

-0.21

-0.21

-0.21

-0.22

-0.22

-0.22

-0.22

-0.22

-0.22

-0.22

-0.22

-0.22

-0.22

0.02

0.02

0.02

0.01

0.01

0.01

0.01

0.01

0.02

0.01

0.01

0.00

0.00

0.00

0.9D - 1.0Ev + 1.0Eh Seismic (Reduced DL)

149.80

149.90

150.00

155.00

158.00

160.00

161.00

161.50

161.50

165.00

165.70

170 00

171.00

171.50

-11.69

-11.28

-10.33

-9.92

-9.55

-9.42

-5.59

-5.30

-5.30

-5.25

-4.80

-1 62

-0.08

0.00

-0.74

-0.71

-0.66

-0.64

-0.62

-0.61

-0.38

-0.36

-0.36

-0.35

-0.32

-0 11

-0.01

-0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

-10.42

-10.34

-10.27

-6.96

-5.04

-3.81

-3.20

-3.01

-3.01

-1.76

-1.51

-0 11

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

						CALCULATI	ED FORCES						
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (fr-kips)	Mu Mx (ft-kips)	Resultant Moment (ft-kips)	Phi Pn (kips)	Phi Vn (kips)	Phi Tn (kips)	Phi Mn (kips)	Total Deflect (in)	Rotation (deg)	Ratio
0.00	-50.80	-1.83	0.00	-250.95	0.00	250.95	6,027.96	1,670.83	10,347	8,516.24	0.00	0.00	0.04
5.00	-49.24	-1.84	0.00	-241.78	0.00	241.78	5,965.27	1,639.06	9,957	8,266.37	0.00	-0.01	0.04
10.00	-47.70	-1.84	0.00	-232.58	0.00	232.58	5,900.57	1,607.28	9,574	8,017.15	0.01	-0.01	0.04
15.00	-46.18	-1.85	0.00	-223.36	0.00	223.36	5,833.85	1,575.50	9,200	7,768.75	0.03	-0.02	0.04
20.00	-44.69	-1.85	0.00	-214.13	0.00	214.13	5,765.11	1,543.72	8,832	7,521.33	0.05	-0.03	0.04
25.00	-43.23	-1.85	0.00	-204.89	0.00	204.89	5,694.36	1,511.94	8,472	7,275.05	0.08	-0.03	0.04
30.00	-41.80	-1.85	0.00	-195.64	0.00	195.64	5,621.60	1,480.17	8,120	7,030.08	0.12	-0.04	0.04
35.00	-40.39	-1.84	0.00	-186.41	0.00	186.41	5,546.82	1,448.39	7,775	6,786.58	0.17	-0.05	0.04
40.00	-40.34	-1.85	0.00	-177.19	0.00	177.19	5,470.03	1,416.61	7,438	6,544.71	0.22	-0.05	0.03
40.17	-37.86	-1.83	0.00	-176.89	0.00	176.89	5,467.43	1,415.55	7,427	6,536.68	0.22	-0.05	0.03
45.00	-36.27	-1.82	0.00	-168.05	0.00	168.05	5,391.22	1,384.83	7,108	6,304.65	0.28	-0.06	0.03
48.17	-35.76	-1.82	0.00	-162.29	0.00	162.29	5,394.23	1,386.03	7,120	6,313.65	0.32	-0.06	0.03
50.00	-34.42	-1.80	0.00	-158.96	0.00	158.96	5,364.85	1,374.38	7,001	6,226.09	0.34	-0.07	0.03
55.00	-33.10	-1.79	0.00	-149.94	0.00	149.94	5,283.37	1,342.60	6,681	5,988.66	0.42	-0.07	0.03
60.00	-31.80	-1.77	0.00	-140.99	0.00	140.99	5,199.87	1,310.82	6,369	5,753.41	0.50	-0.08	0.03
65.00	-30.53	-1.76	0.00	-132.12	0.00	132.12	5,114.36	1,279.04	6,064	5,520.50	0.59	-0.09	0.03
70.00	-29.54	-1.74	0.00	-123.34	0.00	123.34	5,026.83	1,247.27	5,766	5,290.10	0.69	-0.10	0.03
74.00	-29.13	-1.73	0.00	-116.38	0.00	116.38	4,955.35	1,221.84	5,533	5,107.69	0.77	-0.10	0.03

						CALCULATI	ED FORCES						
Seg Elev (ft)	Pu FY (-) (kips)	Vu FX (-) (kips)	Tu MY (ft-kips)	Mu MZ (fr-kips)	Mu Mx (ft-kips)	Resultant Moment (ft-kips)	Phi Pn (kips)	Phi Vn (kips)	Phi Tn (kips)	Phi Mn (kips)	Total Deflect (in)	Rotation (deg)	Ratio
75.00	-28.79	-1.73	0.00	-114.65	0.00	114.65	4,937.28	1,215.49	5,476	5,062.36	0.79	-0.10	0.03
76.40	-27.91	-1.71	0.00	-112.23	0.00	112.23	4,911.85	1,206.59	5,396	4,999.10	0.82	-0.11	0.03
80.00	-27.14	-1.69	0.00	-106.08	0.00	106.08	4,845.73	1,183.71	5,193	4,837.46	0.90	-0.11	0.03
83.21	-26.42	-1.67	0.00	-100.66	0.00	100.66	4,785.91	1,163.32	5,016	4,694.71	0.98	-0.12	0.03
85.00	-24.48	-1.62	0.00	-97.66	0.00	97.66	4,752.15	1,151.93	4,918	4,615.55	1.02	-0.12	0.03
89.88	-24.46	-1.62	0.00	-89.75	0.00	89.75	3,859.20	977.79	4,134	3,716.46	1.15	-0.12	0.03
90.00	-23.44	-1.59	0.00	-89.55	0.00	89.55	3,857.41	977.11	4,128	3,712.13	1.15	-0.12	0.03
95.00	-22.44	-1.56	0.00	-81.59	0.00	81.59	3,785.01	949.87	3,901	3,540.11	1.28	-0.13	0.03
100.00	-21.47	-1.53	0.00	-73.79	0.00	73.79	3,710.59	922.63	3,681	3,370.18	1.43	-0.14	0.03
105.00	-20.52	-1.49	0.00	-66.15	0.00	66.15	3,634.16	895.39	3,467	3,202.49	1.58	-0.15	0.03
110.00	-20.33	-1.48	0.00	-58.70	0.00	58.70	3,555.71	868.15	3,259	3,037.22	1.74	-0.16	0.03
111.00	-19.40	-1.44	0.00	-57.22	0.00	57.22	3,539.78	862.71	3,218	3,004.47	1.77	-0.16	0.03
115.00	-18.50	-1.40	0.00	-51.44	0.00	51.44	3,475.25	840.91	3,058	2,874.52	1.90	-0.16	0.02
120.00	-17.61	-1.36	0.00	-44.44	0.00	44.44	3,392.78	813.68	2,863	2,714.56	2.08	-0.17	0.02
125.00	-17.27	-1.34	0.00	-37.65	0.00	37.65	3,308.29	786.44	2,675	2,557.51	2.26	-0.18	0.02
127.00	-16.50	-1.30	0.00	-34.97	0.00	34.97	3,273.93	775.54	2,601	2,495.54	2.34	-0.18	0.02
130.00	-15.91	-1.26	0.00	-31.09	0.00	31.09	3,213.95	759.20	2,493	2,397.68	2.45	-0.18	0.02
132.33	-15.57	-1.24	0.00	-28.14	0.00	28.14	1,887.50	506.36	1,663	1,413.57	2.54	-0.19	0.03
135.00	-14.95	-1.20	0.00	-24.83	0.00	24.83	1,866.09	496.68	1,600	1,370.63	2.64	-0.19	0.03
140.00	-10.68	-0.92	0.00	-18.82	0.00	18.82	1,824.41	478.52	1,485	1,290.68	2.85	-0.20	0.02
145.00	-10.36	-0.89	0.00	-14.24	0.00	14.24	1,780.72	460.36	1,375	1,211.62	3.05	-0.20	0.02
148.00	-8.73	-0.77	0.00	-11.56	0.00	11.56	1,753.53	449.47	1,310	1,164.67	3.18	-0.20	0.02
148.20	-8.58	-0.76	0.00	-11.40	0.00	11.40	1,751.69	448.74	1,306	1,161.56	3.19	-0.20	0.02
148.30	-8.23	-0.73	0.00	-11.33	0.00	11.33	1,750.77	448.38	1,304	1,160.00	3.19	-0.20	0.01
149.80	-8.07	-0.72	0.00	-10.23	0.00	10.23	1,736.87	442.93	1,272	1,136.70	3.26	-0.21	0.01
149.90	-7.78	-0.70	0.00	-10.15	0.00	10.15	1,735.94	442.56	1,270	1,135.15	3.26	-0.21	0.01
150.00	-7.13	-0.65	0.00	-10.08	0.00	10.08	1,735.01	442.20	1,268	1,133.60	3.27	-0.21	0.01
155.00	-6.85	-0.63	0.00	-6.83	0.00	6.83	1,687.28	424.04	1,166	1,056.80	3.49	-0.21	0.01
158.00	-6.59	-0.61	0.00	-4.95	0.00	4.95	1,657.68	413.15	1,107	1,011.36	3.62	-0.21	0.01
160.00	-6.50	-0.60	0.00	-3.74	0.00	3.74	1,637.54	405.88	1,069	981.37	3.71	-0.21	0.01
161.00	-3.86	-0.37	0.00	-3.14	0.00	3.14	1,627.35	402.25	1,050	966.46	3.75	-0.21	0.01
161.50	-3.66	-0.35	0.00	-2.96	0.00	2.96	1,622.23	400.44	1,040	959.03	3.77	-0.21	0.01
161.50	-3.66	-0.35	0.00	-2.96	0.00	2.96	632.49	153.60	379	355.79	3.77	-0.21	0.01
165.00	-3.62	-0.35	0.00	-1.73	0.00	1.73	623.63	150.65	364	344.02	3.93	-0.21	0.01
165.70	-3.31	-0.32	0.00	-1.48	0.00	1.48	621.84	150.06	362	341.68	3.96	-0.21	0.01
170.00	-1.12	-0.11	0.00	-0.11	0.00	0.11	610.74	146.43	344	327.41	4.15	-0.21	0.00

171.00

171.50

-0.06

0.00

-0.01

-0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

608.13

606.82

145.58

145.16

340

338

324.12

322.48

4.20

4.22

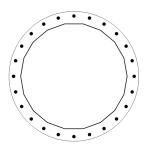
-0.21

-0.21

0.00

0.00

ANALYSIS SUMMARY Base Reactions Max Usage Shear FX Shear FZ Moment MX Moment MZ Axial FY Moment MY Elev Interaction Load Case (kips) (kips) (kips) (ft-kips) (ft-kips) (ft-kips) (ft) Ratio 1.2D + 1.0W 36.19 0.00 73.29 0.00 4404.61 0.00 0.53 0.00 0.9D + 1.0W 36.17 0.00 54.96 0.00 0.00 4362.09 0.00 0.52 1.2D + 1.0Di + 1.0Wi 8.79 0.00 95.29 0.00 0.00 1048.14 0.00 0.14 1.2D + 1.0Ev + 1.0Eh 1.86 0.00 73.61 0.00 0.00 254.03 0.00 0.04 0.9D - 1.0Ev + 1.0Eh 1.85 0.00 50.80 0.00 0.00 250.95 0.00 0.04 1.0D + 1.0W 7.34 0.00 61.10 0.00 0.00 888.28 0.00 0.11


411178, Old Lyme South CT ASSET:

T-MOBILE PROJECT: 14529806 CUSTOMER:

BASE PLATE ANALYSIS @ 0 FT

APPLIED REACTIONS Moment (k-ft) Axial (k) Shear (k) 4404.61 73.29 36.19

PLATE PARA	METERS (ID# 26685)	
Width:	85	in
Shape:	Round	
Thickness:	2.25	in
Grade:	A572-60	
Yield Strength:	60	ksi
Tensile Strength:	75	ksi
Rod Detail Type:	d	
Clear Distance	4.5	in
Base Weld Size:	0.125	in
Orientation Offset:	-	0
Analysis Type:	Plastic	
Neutral Axis:	22	0

CODE:

ANSI/TIA-222-H

	ANCHOR ROD PARAMETERS									
Class	Arrangement	Quantity	Diameter (in)	Circle (in)	Grade	F _y (ksi)	F _u (ksi)	Spacing (in)	Offset (°)	
Original [ID#27387]	Radial	24	2.25	79	A615-75	75	100	-	-	

COMPONENT PROPERTIES								
Component	ID	Gross Area (in²)	Net Area (in²)	Individual Inertia (in ⁴)	Moment of Inertia (in ⁴)	Threads/in		
Pole	69"ø x 0.4375" (18 Sides)	93.7578	-	-	55098.28	-		
Bolt Group	Original (24) 2.25"ø	3.9761	3.2477	0.8393	56852.83	4.5		

		REACTION DISTRIBUT	TON		
Component	ID	$\begin{array}{c} \text{Moment} \\ \text{M}_{\text{u}} \text{ (k-ft)} \end{array}$	Axial Load P _u (k)	Shear V _u (k)	Moment Factor
Pole	69"ø x 0.4375" (18 Sides)	4404.6	73.29	36.19	1.000
Bolt Group	Original (24) 2.25"ø	4404.6	-	36.19	1.000

BASE PLATE BEND LINE ANALYSIS @ 0 FT

POLE PROPERTIES								PLATE PROPERTI	<u>ES</u>		
Flat-to-Flat Diameter:	69.12	in	Flat '	Width:	12.189	in		Neutral Axis:	22	0	
Point-to-Point Diameter:	70.19	in	Flat	Radians:	0.349	rad		Bend Line Limits:	1.455 to 2.47	'2 rad	
Orientation Offset:	-	0									
Rend Line	Chord Le	ength	Additional Length	Section	on Modulus		Applied Momen	t Moment Ca	apacity	Flexure Resu	ult

Chord Length (in)	Additional Length (in)	Section Modulus (in³)	Applied Moment M _u (k-in)	Moment Capacity ФМ _n (k-in)	Hexure Result $M_u/\Phi M_n$
44.831	0.00	56.740	931.1	3063.9	30.4%
43.143	0.00	54.602	689.1	2948.5	23.4%
54.451	0.00	68.915	1403.3	3721.4	37.7%
	(in) 44.831 43.143	(in) (in) 44.831 0.00 43.143 0.00	(in) (in) (in³) 44.831 0.00 56.740 43.143 0.00 54.602	(in) (in) (in³) Mu (k-in) 44.831 0.00 56.740 931.1 43.143 0.00 54.602 689.1	(in) (in) (in³) M _u (k-in) ΦM _n (k-in) 44.831 0.00 56.740 931.1 3063.9 43.143 0.00 54.602 689.1 2948.5

	PLASTIC ANCHOR ROD ANALYSIS						
	Class	Group Quantity	Rod Diameter (in)	Applied Axial Load P _u (k)	Applied Shear Load $V_u\left(k\right)$	Compressive Capacity $\Phi P_n(k)$	Plastic Result
_	Original	24	2.25	96.5	2.3	243.6	39.6%

ASSET: 411178, Old Lyme South CT

CUSTOMER: T-MOBILE PROJECT: 14529806

UPPER FLANGE PLATE ANALYSIS @ 161.5 FT

APPI IFD	REACTIONS
	KEAGIIGING

Moment (k-ft) Axial (k) Shear (k)
54.91 5 6.21

PLATE PARAMETERS (ID# 26686)

Width:	36	in
Shape:	Round	
Thickness:	1	in
Grade:	A572-60	
Yield Strength:	60	ksi
Tensile Strength:	75	ksi
Base Weld Size:	0.125	in
Orientation Offset:	-	0
Analysis Type:	Plastic	
Neutral Axis:	165	0

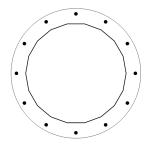


PLATE PROPERTIES

CODE:

ANSI/TIA-222-H

FLANGE BOLT PARAMETERS									
Class	Arrangement	Quantity	Diameter (in)	Circle (in)	Grade	F _y (ksi)	F _u (ksi)	Spacing (in)	Offset (°)
 Original	Radial	12	1	33	A325	92	120	-	-

	COMPONENT PROPERTIES					
Component	ID	Gross Area (in²)	Net Area (in²)	Individual Inertia (in ⁴)	Moment of Inertia (in ⁴)	Threads/in
Pole	27.5"ø x 0.1875" (18 Sides)	16.0068	-	-	1492.77	-
Bolt Group	Original (12) 1"ø	0.7854	0.6057	0.0292	916.29	8.0

		REACTION DISTRIBUT	TON		
Component	ID	$\begin{array}{c} \text{Moment} \\ \text{M}_{\text{u}} \text{ (k-ft)} \end{array}$	Axial Load P _u (k)	Shear V _u (k)	Moment Factor
Pole	27.5"ø x 0.1875" (18 Sides)	54.9	5.00	6.21	1.000
Bolt Group	Original (12) 1"ø	54.9	-	6.21	1.000

UPPER FLANGE PLATE BEND LINE ANALYSIS @ 161.5 FT

Flat-to-Flat Diameter: 27.62 in Flat Width: 4.871 in Neutral Axis: 165 °
Point-to-Point Diameter: 28.05 in Flat Radians: 0.349 rad Bend Line Limits: 3.868 to 5.033 rad

Orientation Offset: - 0

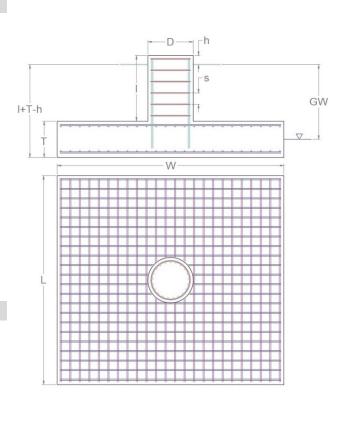
POLE PROPERTIES

Bend Line	Chord Length (in)	Additional Length (in)	Section Modulus (in³)	Applied Moment M _u (k-in)	Moment Capacity ΦM _n (k-in)	Flexure Result M _u /ΦM _n
Flats	20.792	0.00	5.198	21.6	280.7	7.7%
Corners	20.213	0.00	5.053	18.6	272.9	6.8%
Circumferential	26.268	0.00	6.567	26.2	354.6	7.4%

PLASTIC FLANGE BOLT ANALYSIS

Class	Group Quantity	Bolt Diameter (in)	Applied Axial Load P _u (k)	Applied Shear Load V_u (k)	Compressive Capacity ΦP_n (k)	Interaction Result
Original	12	1	6.2	0.8	54.5	13.4%

	APPLIED GLOBAL REACTIONS	
Moment (k-ft)	Axial (k)	Shear (k)
4,404.61	73.29	36.19


	FOUNDATION P	ARAMETERS	
Mat Length:	L	31	ft
Mat Width:	W	31	ft
Mat Thickness:	Т	3.5	ft
Base Depth:	L+T-h	7	ft
Pier Shape:		Square	
Pier Width:	D	8.5	ft
Pier Height above Grade:	h	1	ft
Concrete Compressive Strer	ngth:	4,000	psi
Mat Top Rebar:		(27) #9 bars	[60 ksi]
Mat Bottom Rebar:		(54) #9 bars	[60 ksi]
Pier Vertical Rebar:		(52) #9 bars	[60 ksi]
Pier Rebar Ties:	s	#4 bars @ 1	2.0" c/c [60 ksi]
Rebar Clear Cover:		3.0	in
Tower Eccentricity:	ecc	0	ft
Tower Leg Count		1	

	SOIL PARAM	IETERS	
Water Table Depth [BGL]:	GW		ft
Soil Unit Weight:		125	pcf
Ultimate Skin Friction:		0	psf
Ultimate Bearing Pressure:		12,000	psf
Bearing Pressure Type:		Gross	
Coefficient of Shear Friction:		0.6	

0.00

656.2

36.19

504.84

7.0%

		SOIL S	TRENGTH ANALYSIS				
Soil Strength Reduction Fa	actor, Φ _s Upl	ift Strength Reduction Factor	r, Φ _s Asset Dead	Load Factor	Dead Load Factor		
0.75		0.75	().9	1.2		
		SOIL OV	/ERTURNING ANALYSIS				
Design Mome (k-ft		Nominal	Overturning Capacity, $\Phi_m M_n$ (k-ft)		Soil Overturning Usage, $M_{u, Design} / \Phi_m M_n$		
4,694	.13		14,691.42	32.0%	Q		
		SOIL	BEARING ANALYSIS				
Net Bearing Pressure, F (psf)	P _{u,Net} No	ominal Bearing Capacity, Φ _b Γ (k-ft)		e Controlling Load ection	Soil Bearing Usage, $P_{u,net} / \Phi_b P_n$		
1,395.00		9,000.00	Diagonal t	o Pad Edge	15.5%	⊘	
		SOIL SL	IDING SHEAR ANALYSIS				
pplied Shear Force, V _u F	Friction Resistance (k)	Passive Pressure F (psf)	Passive Pressure Resistance (k)	Nominal Shear Capacity V _n (k)	Soil Sliding Shear Usag $V_u / \Phi_s V_n$	је,	

71.20

	MAT REINFORCING STE	EL STRENGTH AN	NALYSIS		
Steel Elastic Modulus, E (ksi)	Strength Bending/Tension Reduction Factor, Φ_{b}	Strength Shear I	Reduction Factor, Φ _ν	Strength Compression Reduction F Φ_c	actor,
29,000	0.9		0.75	0.65	
	MAT REINFORCING ON	E WAY SHEAR ANAI	LYSIS		
One Way Design Shear, V _u (k)	Nominal One Way Shear Capacity, $\Phi_c V_n$ (k)		ar Controlling Load rection	Mat One Way Shear Usage, $V_u / \Phi_c V_n$	
109.48	1,251.62	Diagonal	I to Pad Edge	8.7%	\odot
	MAT REINFORCING PUN	ICHING SHEAR ANA	LYSIS		
Punching Shear Design St (psi)		Shear Capacity, Φ _c v _n (psi)	1	Mat Punching Shear Usage, $v_u / \Phi_c v_n$	
27.7	1	89.7		14.6%	\odot
	MAT REINFORCING MOM	ENT TRANSFER AN	ALYSIS		
Moment Transfer Effective Flexural Width, w _f (in)		nt at Joint, M _{ut} k-in)	Nominal Moment Trans Capacity, $\Phi M_{sc,f}$ (k-in)	sfer Mat Moment Transfer Us $0.6~M_{ut} / \Phi M_{sc,f}$	age,
19.00	2.64	0.00	67,614.4	0.0%	⊘
	MAT REINFORCING FLEXUR	RE ANALYSIS – UPP	ER STEEL		
Factored Moment, M _u (k-ft)	Factored Moment, M _u Nominal Flexural Capacity, ΦM_n Flexural Steel Controlling Load Direction			Mat Upper Rebar Flexure Usag M_u / ΦM_n	e,
1,798.32	4,535.67	Parallel	to Pad Edge	39.6%	\odot
	MAT REINFORCING FLEXUR	E ANALYSIS – LOW	ER STEEL		
Factored Moment, M _u (k-ft)	Nominal Flexural Capacity, ΦM _n (k-ft)	Flexural Steel Co	ntrolling Load Direction	Mat Lower Rebar Flexure Usag M _u / ΦM _n	je,
1,765.10	8,939.07	Parallel	I to Pad Edge	19.7%	⊘
	PIER REINFORCING STE	EL STRENGTH AI	NALYSIS		
Rebar Cage Diameter (in)		nding/Tension n Factor, Φ _b	Strength Shear Reduct Factor, Φ _v	ion Strength Compression Re Factor, Φ _c	duction
93.88	29,000).9	0.75	0.65	
	PIER REINFORCING	MOMENT ANALYSI	IS		
Design Moment, M _u (k-ft)	Nominal Moment Capacity, $\Phi_b M_n$ (k-ft)	Bending Rei	nforcement Ratio	Pier Rebar Flexure Usage, $M_{\mbox{\tiny U}}/\Phi_{\mbox{\tiny b}}M_{\mbox{\tiny n}}$	
4,567.46	10,740.74	(0.005	42.5%	\odot
	PIER REINFORCING CO	OMPRESSION ANAL	YSIS		
Design Compression, (k)	- ·	ssive Capacity, Φ _p P _n (k)	ļ	Pier Rebar Compressive Usage, P _u / Φ _p P _n	
73.29		333.54		0.4%	⊘
	PIER REINFORCIN	G SHEAR ANALYSIS	3		
Design Shear, V _u (k)	Nominal Shear Capacity (k)	, $\Phi_v V_n$		Pier Rebar Shear Usage, V _u / Φ _v V _n	
36.19	1,112.89			3.3%	⊘

A&L Template: 67D5998E_1xAIR+1OP+1QP **RAN Template:** 67D5D998E 6160

CTNL802A_Anchor_3_preliminary

Print Name: Standard PORs: Anchor_Phase 3

Section 1 - Site Information

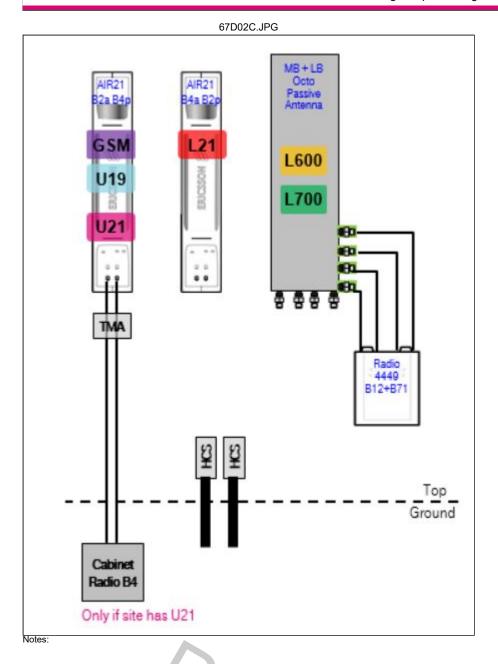
Site ID: CTNL802A Status: Preliminary

Version: 3 Project Type: Anchor

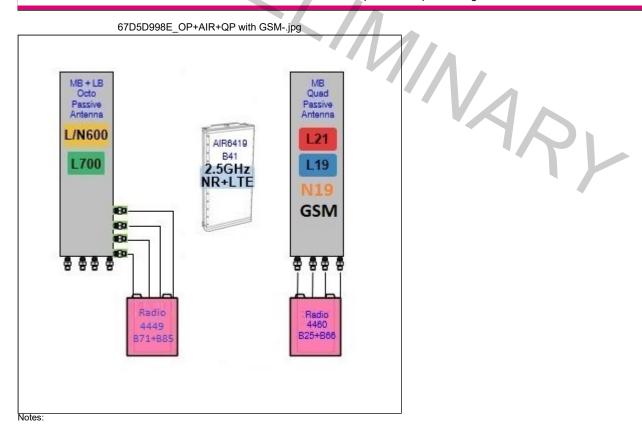
Approved: 08/03/2023 6:07:27 PM Approved By: Ilyes.Mekias2@T-Mobile.com Last Modified: 08/03/2023 6:07:27 PM Last Modified By: Ilyes.Mekias2@T-Mobile.com Site Name: Amtrak Old Lyme Verizon

Site Class: Monopole Site Type: Structure Non Building

Plan Year: 2023 Market: CONNECTICUT CT


Vendor: Ericsson Landlord: American Tower Latitude: 41.305611 Longitude: -72.297083 Address: 125 Mile Creek Rd

City, State: Old Lyme, CT Region: NORTHEAST


AL Template: 67D5998E_1xAIR+1OP+1QP **RAN Template:** 67D5D998E 6160

TMA Count: 0 RRU Count: 6 Sector Count: 3 Antenna Count: 9 Coax Line Count: 0

Section 2 - Existing Template Images

Section 3 - Proposed Template Images

Section 4 - Siteplan Images

is intention. -- This section is intentionally blank. -----

A&L Template: 67D5998E_1xAIR+1OP+1QP **RAN Template:** 67D5D998E 6160

CTNL802A_Anchor_3_preliminary

Print Name: Standard PORs: Anchor_Phase 3

Section 5 - RAN Equipment

		A							
	Existing RAN Equipment								
	Template: 67D02C Out	door							
Enclosure	1	2							
Enclosure Type	RBS 6131	S8000 Outdoor							
Radio	RU22 (x 6)								
Baseband	BB 6630 BB 6630 DUG20 DUW30 DU								
Hybrid Cable System	Ericsson 6x12 HCS *Select Length & AWG* (x3) Ericsson 9x18 HCS 60m								

	Pi	roposed RAN Equipment							
Template: 67D5D998E 6160									
Enclosure	1	2	3						
Enclosure Type	Enclosure 6160 AC V1	RBS 6131	B160						
Baseband	RP 6651 N2500 L2500	BB 6630							
Transport System	CSR IXRe V2 (Gen2)								
Hybrid Cable System	Hybrid Trunk 6/24 4AWG 70m (x 3)	Ericsson 6x12 HCS *Select Length & AWG* (x3)							

RAN Scope of Work:

Remove all unused equipment's from RAN section.

Add (1) 6160 and (1) B160 cabinets. Add (1) RP6651 for NR2500/L2500 Add (1) IXRe router to 6160. Add (3) Hybrid Trunk 6/24 4AWG 70m same TBD

Scoping note: remove the dead nortel cabinet

RAN Template: A&L Template: 67D5D998E 6160 67D5998E_1xAIR+1OP+1QP

CTNL802A_Anchor_3_preliminary

Print Name: Standard PORs: Anchor_Phase 3

Section 6 - A&L Equipment

Existing Template: 67D02C_2xAIR+1OP Proposed Template: 67D5998E_1xAIR+1OP+1QP

		Sector	1 (Existin	g) view fro	om behind	d		
Coverage Type	A - Outdoor Macro					7/		
Antenna	1		2					3
Antenna Model	Ericsson - AIR21 KRC118 (Quad)	B023-1_B2P_B4A	(RFS - APX	VAARR24_43	3-U-NA20 (Oc	eto)	Ericsson - AIR21 KRC1	18023-1_B2A_B4P
Azimuth	0		0				0	
M. Tilt								
Height (ft)	170		168				170	
Ports	P1	P2	P3	P4	P5	P6	P7	P8
Active Tech	L2100		L700 L600 N600	L700 L600 N600			G1900	
Dark Tech								
Restricted Tech								
Decomm. Tech							(U1900)	
E. Tilt	2		2	2			2	2
Cables	Fiber Jumper - 15 ft. (x2)		Coax Jumper - 15 ft. (x2) Fiber Jumper - 15 ft. (x2)	Coax Jumper - 15 ft. (x2)			Fiber Jumper - 15 ft. (x2)	1-5/8" Coax - 200 ft. (x2)
TMAs								Generic Twin Style 1B - AWS (At Antenna)
Diplexer / Combiners								
Radio			Radio 14449 1871+B 185 (At Antenn	Radio 4449 B71+B 85 (At Antenn a)				
Sector Equipment								

Unconnected Equipment:

Scope of Work:

Add (1) LB/MB Octo to Position 2. Rad Center will be 168 feet in order to match tops. Need to reinforce mount. Add (1) Radio 4449 B71+B12 to Position 2 for L600 and L700.

RAN Template: 67D5D998E 6160 67D5998E_1xAIR+1OP+1QP

CTNL802A_Anchor_3_preliminary

Print Name: Standard PORs: Anchor_Phase 3

					Sector 1 (Proposed) view	trom behind				
Coverage Type	A - Outo	door Macro	0							
Antenna		1			2	;	3	4	1	
Antenna Model	RFS - A (Octo)	APXVAARF	R24_43-U-	-NA20	Empty Antenna Mount (Empty mount)	AIR 6419 B41 (A Massive MIMO)	ctive Antenna -	(Commscope_VV-65A-R1 (Quad))		
Azimuth	0					0		0		
M. Tilt	0					0		0		
Height (ft)	171					171		171		
Ports	P1	P2	P3	P4		P5	P6	P7	P8	
Active Tech	L600 L700 N60 0	L600 L700 N60 0				(L2500) (N2500)	N2500	(C1900) (C1900) (N1900) (L1900)	N1900 L1900	
Dark Tech										
Restricted Tech										
Decomm. Tech										
E. Tilt										
Cables	Coa x Jum per (x2) Fiber Jum per (x2)	Coa x Jum per (x2)				Fiber Jumper (x4)	Fiber Jumper (x4)	Coax Jumper (x2) Fiber Jumper (x2)	Coax Jumper (x2)	
TMAs										
Diplexer / Combiners										
Radio	Radi 0 4444 9 B71 +B8 5 (At Ante nna)	Radi lo 1444 19 1871 1+B8 15 1(At 1Ante 1nna)						Radio 4460 B25+B66 (At Antenna)	Radio 4460 B25+B66 (At Antenna)	
Sector Equipment			i		İ	1	İ			

Unconnected Equipment:

Scope of Work:

Replace AIR21 KRC118023-1_B2P_B4P with AIR6419 at P3. Replace AIR21 KRC118023-1_B2A_B4P with VV-65A-R1 at P4. Add (1) 4460 Radio and connect it to quad antenna at P4. Remove all unused material. Scoping notes:

Add Full Platform with Handrail kit with 4 positions

RAN Template: A&L Template: 67D5998E_1xAIR+1OP+1QP 67D5D998E 6160

CTNL802A_Anchor_3_preliminary

Print Name: Standard PORs: Anchor_Phase 3

		Secto	r 2 (Existin	g) view fro	om behin	b		
Coverage Type	A - Outdoor Macro							
Antenna	1			2	2		;	3
Antenna Model	Ericsson - AIR21 KRC118 (Quad)	3023-1_B2P_B4A	RFS - APX	(Octo)			Ericsson - AIR21 KRC1 (Quad)	18023-1_B2A_B4P
Azimuth	120		120				120	
M. Tilt								
Height (ft)	(170)		(168)				(170)	
Ports	P1	P2	P3	P4	P5	P6	P7	P8
Active Tech	(L2100)		L700 L600 N600	L700 L600 N600			(G1900)	
Dark Tech								
Restricted Tech								
Decomm. Tech							(U1900)	
E. Tilt	2		2	2			2	2
Cables	Fiber Jumper - 15 ft. (x2)		Coax Jumper - 15 ft. (x2) Fiber Jumper - 15 ft. (x2)	Coax Jumper - 15 ft. (x2)			Fiber Jumper - 15 ft. (x2)	1-5/8" Coax - 200 ft. (x2)
TMAs								Generic Twin Style 1B - AWS (At Antenna)
Diplexer / Combiners								
Radio			Radio 14449 1B71+B 185 (At Antenn	Radio 4449 B71+B 85 (At Antenn				
Sector Equipment								

Unconnected Equipment:

Scope of Work:

Add (1) LB/MB Octo to Position 2. Rad Center will be 168 feet in order to match tops. Need to reinforce mount. Add (1) Radio 4449 B71+B12 to Position 2 for L600 and L700.

RAN Template: 67D5D998E 6160 67D5998E_1xAIR+1OP+1QP

CTNL802A_Anchor_3_preliminary

Print Name: Standard PORs: Anchor_Phase 3

					Sector 2 (Proposed) view	ITOIII DEIIIIIU				
Coverage Type	A - Outo	door Macro	9							
Antenna		1			2	;	3	4	ı	
Antenna Model	RFS - A (Octo)	PXVAARF	R24_43-U-	NA20	Empty Antenna Mount (Empty mount)	AIR 6419 B41 (Ad Massive MIMO)	otive Antenna -	Commscope_VV-	(Commscope_VV-65A-R1 (Quad)	
Azimuth	120					120		(120)		
M. Tilt	0					0		0		
Height (ft)	171					171		171		
Ports	P1	P2	P3	P4		P5	P6	P7	P8	
Active Tech	N60 0 L700 L600	N60 0 L700 L600				N2500 (L2500)	N2500 L2500	(L1900) (N1900) (L2100) (G1900)	(L1900) (N1900) (L2100)	
Dark Tech										
Restricted Tech										
Decomm. Tech										
E. Tilt										
Cables	Coa x Jum per (x2) Fiber Jum per (x2)	Coa x Jum per (x2)				Fiber Jumper (x4)	Fiber Jumper (x4)	Coax Jumper (x2) Fiber Jumper (x2)	Coax Jumper (x2)	
TMAs										
Diplexer / Combiners										
Radio	Radi o 4444 9 B71 +B8 5 (At Ante nna)	Radi 0 4444 9 B71 +B8 5 (At Ante						Radio 4460 1 B25+B66 (At Antenna)	Radio 4460 B25+B66 (At Antenna)	
Sector Equipment						1				

Unconnected Equipment:

Scope of Work:

Replace AIR21 KRC118023-1_B2P_B4P with AIR6419 at P3. Replace AIR21 KRC118023-1_B2A_B4P with VV-65A-R1 at P4. Add (1) 4460 Radio and connect it to quad antenna at P4. Remove all unused material. Scoping notes:

Add Full Platform with Handrail kit with 4 positions

RAN Template: A&L Template: 67D5998E_1xAIR+1OP+1QP 67D5D998E 6160

CTNL802A_Anchor_3_preliminary

Print Name: Standard PORs: Anchor_Phase 3

		Secto	r 3 (Existin	g) view tro	om benind	a		
Coverage Type	A - Outdoor Macro							
Antenna	1			2			;	3
Antenna Model	Ericsson - AIR21 KRC118 (Quad)	023-1_B2P_B4A	RFS - APX	VAARR24_43	-U-NA20 (Oc	eto)	Ericsson - AIR21 KRC11 (Quad)	8023-1_B2A_B4P
Azimuth	240		240				240	
M. Tilt								
Height (ft)	170		168				170	
Ports	P1	P2	P3	P4	P5	P6	P7	P8
Active Tech	(L2100)		L700 L600 N600	L700 L600 N600			(G1900)	
Dark Tech			1					
Restricted Tech								
Decomm. Tech							(U1900)	
E. Tilt	2		2	2			2	2
Cables	Fiber Jumper - 15 ft. (x2)		Coax Jumper - 15 ft. (x2) Fiber Jumper - 15 ft. (x2)	Coax Jumper - 15 ft. (x2)			Fiber Jumper - 15 ft. (x2)	1-5/8" Coax - 200 ft. (x2)
TMAs								Generic Twin Style 1B - AWS (At Antenna)
Diplexer / Combiners								
Radio			Radio 4449 B71+B 85 (At Antenn	Radio 4449 B71+B 85 (At Antenn a)				
Sector Equipment	 		+					

Unconnected Equipment:

Scope of Work:

Add (1) LB/MB Octo to Position 2. Rad Center will be 168 feet in order to match tops. Need to reinforce mount. Add (1) Radio 4449 B71+B12 to Position 2 for L600 and L700.

 RAN Template:
 A&L Template:

 67D5D998E 6160
 67D5998E_1xAIR+1OP+1QP

CTNL802A_Anchor_3_preliminary

Print Name: Standard PORs: Anchor_Phase 3

					Sector 3 (Proposed) view f	rom behind				
Coverage Type	A - Outo	door Macro	9							
Antenna		1			2	;	3	4		
Antenna Model	RFS - A	APXVAARF	R24_43-U-	-NA20	Empty Antenna Mount (Empty mount)	AIR 6419 B41 (Ad Massive MIMO)	otive Antenna -	Commscope_VV-	65A-R1 (Quad)	
Azimuth	240					240		(240)		
M. Tilt	0					0		0		
Height (ft)	171					171		171		
Ports	P1	P2	P3	P4		P5	P6	P7	P8	
Active Tech	L600 L700 N60 0	L600 L700 N60 0				N2500 (L2500)	N2500 (L2500)	G1900 (L2100) (L1900) (N1900)	(L2100) (L1900) (N1900)	
Dark Tech										
Restricted Tech										
Decomm. Tech										
E. Tilt										
Cables	Coa x Jum per (x2) Fiber Jum per (x2)	Coa x Jum per (x2)				Fiber Jumper (x4)	Fiber Jumper (x4)	Coax Jumper (x2) Fiber Jumper (x2)	Coax Jumper (x2)	
TMAs										
Diplexer / Combiners										
Radio	Radi 0 1444 19 1871 1+88 15 14t Radi 0 4444 9 B71 +B8 5 (At Ante nna)						Radio 4460 B25+B66 (At Antenna)	Radio 4460 B25+B66 (At Antenna)		
Sector Equipment										
	-					-				

Unconnected Equipment:

Scope of Work:

Replace AIR21 KRC118023-1_B2P_B4P with AIR6419 at P3. Replace AIR21 KRC118023-1_B2A_B4P with VV-65A-R1 at P4. Add (1) 4460 Radio and connect it to quad antenna at P4. Remove all unused material. Scoping notes:

Add Full Platform with Handrail kit with 4 positions

Rad center 171'.

RADIO FREQUENCY EMISSIONS ANALYSIS REPORT EVALUATION OF HUMAN EXPOSURE POTENTIAL TO NON-IONIZING EMISSIONS

T-Mobile Existing Facility

Site ID: CTNL802A

Amtrak Old Lyme Verizon 125 Mile Creek Road Old Lyme, Connecticut 06371

October 25, 2023

EBI Project Number: 6223003900

Site Compliance Summary			
Compliance Status:	COMPLIANT		
Site total MPE% of FCC general population allowable limit:	1.83%		

October 25, 2023

T-Mobile Attn: Jason Overbey, RF Manager 35 Griffin Road South Bloomfield, Connecticut 06002

Emissions Analysis for Site: CTNL802A - Amtrak Old Lyme Verizon

EBI Consulting was directed to analyze the proposed T-Mobile facility located at 125 Mile Creek Road in Old Lyme, Connecticut for the purpose of determining whether the emissions from the Proposed T-Mobile Antenna Installation located on this property are within specified federal limits.

All information used in this report was analyzed as a percentage of current Maximum Permissible Exposure (% MPE) as listed in the FCC OET Bulletin 65 Edition 97-01 and ANSI/IEEE Std C95.1. The FCC regulates Maximum Permissible Exposure in units of microwatts per square centimeter (μ W/cm²). The number of μ W/cm² calculated at each sample point is called the power density. The exposure limit for power density varies depending upon the frequencies being utilized. Wireless Carriers and Paging Services use different frequency bands each with different exposure limits; therefore, it is necessary to report results and limits in terms of percent MPE rather than power density.

All results were compared to the FCC (Federal Communications Commission) radio frequency exposure rules, 47 CFR 1.1307(b)(1) - (b)(3), to determine compliance with the Maximum Permissible Exposure (MPE) limits for General Population/Uncontrolled environments as defined below.

General population/uncontrolled exposure limits apply to situations in which the general population may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general population would always be considered under this category when exposure is not employment related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area.

Public exposure to radio frequencies is regulated and enforced in units of microwatts per square centimeter (μ W/cm²). The general population exposure limits for the 600 MHz and 700 MHz frequency bands are approximately 400 μ W/cm² and 467 μ W/cm², respectively. The general population exposure limit for the 1900 MHz (PCS), 2100 MHz (AWS) and 11 GHz frequency bands is 1000 μ W/cm². Because each carrier will be using different frequency bands, and each frequency band has different exposure limits, it is necessary to report percent of MPE rather than power density.

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Additional details can be found in FCC OET 65.

CALCULATIONS

Calculations were done for the proposed T-Mobile Wireless antenna facility located at 125 Mile Creek Road in Old Lyme, Connecticut using the equipment information listed below. Modeling of the antennas and associated equipment was completed using RoofMaster™ software, which is a widely-used predictive modeling program that has been developed to predict RF power density values for rooftop and tower telecommunications sites produced by vertical collinear antennas that are typically used in the cellular, PCS, paging and other communications services. Using the computational methods set forth in Federal Communications (FCC) Office of Engineering & Technology (OET) Bulletin 65, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields" (OET-65), RoofMaster™ calculates predicted power density in a scalable grid based on the contributions of all RF sources characterized in the study scenario. At each grid location, the cumulative power density is expressed as a percentage of the FCC limits. Manufacturer antenna pattern data is utilized in these calculations. RoofMaster™ models consist of the Far Field model as specified in OET-65 and an implementation of the OET-65 Cylindrical Model (Sula9). The models utilize several operational specifications for different types of antennas to produce a plot of spatially-averaged power densities that can be expressed as a percentage of the applicable exposure limit.

Since T-Mobile is proposing highly focused directional panel antennas, which project most of the emitted energy out toward the horizon, all calculations were performed assuming a lobe representing the maximum gain of the antenna per the antenna manufacturer's supplied specifications was focused at the base of the tower. For this report, the sample point is the top of a 6-foot person standing at the base of the tower. All calculations were performed using Far Field Analysis.

For all calculations, telecommunications equipment was modeled using the following assumptions:

- 1) I LTE channel (600 MHz Band) was considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 2) I NR channel (600 MHz Band) was considered for each sector of the proposed installation. This Channel has a transmit power of 80 Watts.
- 3) I LTE channel (700 MHz Band) was considered for each sector of the proposed installation. These Channels have a transmit power of 40 Watts per Channel.
- 4) I GSM channel (PCS Band 1900 MHz) was considered for each sector of the proposed installation. These Channels have a transmit power of 10 Watts per Channel.
- 5) I LTE channel (PCS Band 1900 MHz) was considered for each sector of the proposed installation. These Channels have a transmit power of 80 Watts per Channel.
- 6) I NR channel (PCS Band 1900 MHz) was considered for each sector of the proposed installation. These Channels have a transmit power of 80 Watts per Channel.
- 7) I LTE channel (AWS Band 2100 MHz) was considered for each sector of the proposed installation. These Channels have a transmit power of 160 Watts per Channel.
- 8) I LTE Traffic channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 45 Watts.
- 9) I LTE Broadcast channel (LTE IC and 2C BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 15 Watts.
- 10) I NR Traffic channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 90 Watts.
- I NR Broadcast channel (BRS Band 2500 MHz) was considered for each sector of the proposed installation. This Channel has a transmit power of 30 Watts.
- 12) All radios at the proposed installation were considered to be running at full power and were uncombined in their RF transmissions paths per carrier prescribed configuration. Per FCC OET Bulletin No. 65 Edition 97-01 recommendations to achieve the maximum anticipated value at each sample point, all power levels emitting from the proposed antenna installation are increased by a factor of 2.56 to account for possible in-phase reflections from the surrounding environment. This is rarely the case, and if so, is never continuous.

- 13) For the following calculations, the sample point was the top of a 6-foot person standing at the base of the tower. The maximum gain of the antenna per the antenna manufacturer's supplied specifications was used in this direction. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 14) The antennas used in this modeling are the RFS APXVAARR24 43-U-NA20 00DT 600 for the 600 MHz / 600 MHz / 600 MHz channel(s), the ERICSSON SON AIR6419 B41 LTE TB 02.09.21 2500 TMO for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s), the COMMSCOPE VV-65A-RIB 00DT 1900 for the 1900 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector A, the RFS APXVAARR24 43-U-NA20 00DT 600 for the 600 MHz / 600 MHz / 700 MHz channel(s), the ERICSSON SON AIR6419 B41 LTE TB 02.09.21 2500 TMO for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s), the COMMSCOPE VV-65A-RIB 00DT 1900 for the 1900 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector B, the RFS APXVAARR24 43-U-NA20 00DT 600 for the 600 MHz / 600 MHz / 700 MHz channel(s), the ERICSSON SON AIR6419 B41 LTE TB 02.09.21 2500 TMO for the 2500 MHz / 2500 MHz / 2500 MHz / 2500 MHz channel(s), the COMMSCOPE VV-65A-RIB 00DT 1900 for the 1900 MHz / 1900 MHz / 1900 MHz / 2100 MHz channel(s) in Sector C. This is based on feedback from the carrier with regard to anticipated antenna selection. All Antenna gain values and associated transmit power levels are shown in the Site Inventory and Power Data table below. The maximum gain of the antenna per the antenna manufacturer's supplied specifications was used for all calculations. This value is a very conservative estimate as gain reductions for these particular antennas are typically much higher in this direction.
- 15) The antenna mounting height centerline of the proposed antennas is 171 feet above ground level (AGL).
- 16) Emissions values for additional carriers were calculated in Far Field utilizing the antenna models provided in the structural analysis.
- 17) All calculations were done in Far Field mode with respect to uncontrolled / general population threshold limits.

T-Mobile Site Inventory and Power Data

Sector:	Α	Sector:	В	Sector:	С
Antenna #:	- 1	Antenna #:	ı	Antenna #:	I
	RFS APXVAARR24		RFS APXVAARR24		RFS APXVAARR24
Make / Model:	43-U-NA20 00DT	Make / Model:	43-U-NA20 00DT	Make / Model:	43-U-NA20 00DT
	600		600		600
F D d	600 MHz / 600 MHz	F	600 MHz / 600 MHz	Г.,	600 MHz / 600 MHz
Frequency Bands:	/ 600 MHz	Frequency Bands:	/ 700 MHz	Frequency Bands:	/ 700 MHz
Gain:	13.09 dBd / 13.09	Gain:	13.09 dBd / 13.09	Gain:	13.09 dBd / 13.09
Gain.	dBd / 13.17 dBd		dBd / 13.17 dBd	Gaiii.	dBd / 13.17 dBd
Height (AGL):	171 feet	Height (AGL):	I7I feet	Height (AGL):	171 feet
Channel Count:	3	Channel Count:	3	Channel Count:	3
Total TX Power (W):	160.00 Watts	Total TX Power (W):	160.00 Watts	Total TX Power (W):	160.00 Watts
ERP (W):	2,861.76	ERP (W):	2,861.76	ERP (W):	2,861.76
Antenna A1 MPE %:	0.91%	Antenna BI MPE %:	0.91%	Antenna C1 MPE %:	0.91%
Antenna #:	2	Antenna #:	2	Antenna #:	2
	ERICSSON		ERICSSON		ERICSSON
Make / Model:	SON_AIR6419 B41	Make / Model:	SON_AIR6419 B41	Make / Model:	SON_AIR6419 B41
riake / riodei.	LTE TB 02.09.21 2500	Trace / Trodei.	LTE TB 02.09.21 2500	Tiuke / Tiodei.	LTE TB 02.09.21 2500
	TMO		TMO		TMO
	2500 MHz / 2500		2500 MHz / 2500		2500 MHz / 2500
Frequency Bands:	MHz / 2500 MHz / 2500 MHz	Frequency Bands:	MHz / 2500 MHz / 2500 MHz	Frequency Bands:	MHz / 2500 MHz / 2500 MHz
	22.05 dBd / 22.05		22.05 dBd / 22.05		22.05 dBd / 22.05
Gain:	dBd / 15.55 dBd /	Gain:	dBd / 15.55 dBd /	Gain:	dBd / 15.55 dBd /
Guini	15.55 dBd	Can.	15.55 dBd	Can.	15.55 dBd
Height (AGL):	I7I feet	Height (AGL):	I7I feet	Height (AGL):	I7I feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	180.00 Watts	Total TX Power (W):	180.00 Watts	Total TX Power (W):	180.00 Watts
ERP (W):	23,258.96	ERP (W):	23,258.96	ERP (W):	23,258.96
Antenna A2 MPE %:	3.07%	Antenna B2 MPE %:	3.07%	Antenna C2 MPE %:	3.07%
Antenna #:	3	Antenna #:	3	Antenna #:	3
M L (M	COMMSCOPE VV-	M.I. (14.)	COMMSCOPE VV-	M I (M)	COMMSCOPE VV-
Make / Model:	65A-RIB 00DT 1900	Make / Model:	65A-RIB 00DT 1900	Make / Model:	65A-RIB 00DT 1900
	1900 MHz / 1900		1900 MHz / 1900		1900 MHz / 1900
Frequency Bands:	MHz / 1900 MHz /	Frequency Bands:	MHz / 1900 MHz /	Frequency Bands:	MHz / 1900 MHz /
	2100 MHz		2100 MHz		2100 MHz
Gain:	15.15 dBd / 15.15 dBd	Gain:	15.15 dBd / 15.15 dBd	Gain:	15.15 dBd / 15.15 dBd
Jaill. / I	/ 15.15 dBd / 15.8 dBd		/ 15.15 dBd / 15.8 dBd		/ 15.15 dBd / 15.8 dBd
Height (AGL):	171 feet	Height (AGL):	I7I feet	Height (AGL):	I7I feet
Channel Count:	4	Channel Count:	4	Channel Count:	4
Total TX Power (W):	330.00 Watts	Total TX Power (W):	330.00 Watts	Total TX Power (W):	330.00 Watts
ERP (W):	10,098.22	ERP (W):	10,098.22	ERP (W):	10,098.22
Antenna A3 MPE %:	1.33%	Antenna B3 MPE %:	1.33%	Antenna C3 MPE %:	1.33%

environmental | engineering | due diligence

Site Composite MPE %				
Carrier	MPE %			
T-Mobile (Combined Sectors):	0.49%			
Town	0.31%			
Verizon	0.29%			
Sprint	0.1%			
AT&T	0.64%			
Site Total MPE %:	1.83%			

T-Mobile MPE % Per Sector				
T-Mobile Sector A Total:	0.48%			
T-Mobile Sector B Total:	0.48%			
T-Mobile Sector C Total:	0.48%			
T-Mobile Total MPE % :	0.49%			

T-Mobile Maximum MPE Power Values (Sector A)							
T-Mobile Frequency Band / Technology (Sector A)	# Channels	Watts ERP (Per Channel)	Height (feet)	Total Power Density (µW/cm²)	Frequency (MHz)	Allowable MPE (μW/cm²)	Calculated % MPE
T-Mobile 600 MHz LTE	ı	712.1311635	171	0.94039139	600 MHz LTE	400.0	0.24%
T-Mobile 600 MHz NR	I	1424.262327	171	1.880782781	600 MHz NR	400.0	0.47%
T-Mobile 700 MHz LTE	ı	725.3706703	171	0.957874572	700 MHz LTE	467.0	0.21%
T-Mobile 2500 MHz LTE	ı	7214.604258	171	9.52710972	2500 MHz LTE	1000.0	0.95%
T-Mobile 2500 MHz NR	ı	14429.20852	171	19.05421944	2500 MHz NR	1000.0	1.91%
T-Mobile 2500 MHz LTE	1	538.382902	171	0.710951397	2500 MHz LTE	1000.0	0.07%
T-Mobile 2500 MHz NR	ı	1076.765804	171	1.421902795	2500 MHz NR	1000.0	0.14%
T-Mobile 1900 MHz GSM	I	283.7919028	171	0.37475605	1900 MHz GSM	1000.0	0.04%
T-Mobile 1900 MHz LTE	ı	2270.335223	171	2.998048402	1900 MHz LTE	1000.0	0.30%
T-Mobile 1900 MHz NR	ı	2270.335223	171	2.998048402	1900 MHz NR	1000.0	0.30%
T-Mobile 2100 MHz LTE	I	5273.755395	171	6.964158322	2100 MHz LTE	1000.0	0.70%
T-Mobile Total:				0.49%			

[•] NOTE: Total T-Mobile MPE values reflect all T-Mobile antennas as reported by RoofMaster™ combined modeling.

[•] NOTE: Totals may vary by approximately 0.01% due to summation of remainders in calculations.

Summary

All calculations performed for this analysis yielded results that were **within** the allowable limits for general population exposure to RF Emissions.

The anticipated maximum composite contributions from the T-Mobile facility as well as the site composite emissions value with regards to compliance with FCC's allowable limits for general population exposure to RF Emissions are shown here:

T-Mobile Sector	Power Density Value (%)		
Sector A:	0.48%		
Sector B:	0.48%		
Sector C:	0.48%		
T-Mobile Maximum	0.48%		
MPE % (Sector A):	0.70%		
T-Mobile Combined	0.49%		
Sectors MPE %:	0.17/0		
Site Total:	1.83%		
Site Compliance Status:	COMPLIANT		

The anticipated composite MPE value for this site assuming all carriers present is 1.83% of the allowable FCC established general population limit sampled at the ground level at a distance of 74 feet away from the tower. This is based upon values listed in the Connecticut Siting Council database for existing carrier emissions or documents available on the Connecticut Siting Council website.

FCC guidelines state that if a site is found to be out of compliance (over allowable thresholds), that carriers over a 5% contribution to the composite value will require measures to bring the site into compliance. For this facility, the composite values calculated were well within the allowable 100% threshold standard per the federal government.