POCKET COMPUTER

PC-1350

MACHINE LANGUAGE REFERENCE MANUAL

SHARP.

FOREWORD

Since the release of the PC-1350 on market, we have had great
number of questions from users regarding the machine lan-
guage of the PC-1350.

To meet with such demand from ardent users, we are now send-
ing this text for study of the machine language of the Sharp's
original design SC61860 Microprocessor in concern with the
PC-1350 system. Because the text is edited on the basis of user
questions, it may not support quality as a guidebook. In such an
event, you are suggested to make reference to microprocessor
guidebooks published on market, in addition to this text.

Your opinions and questions are welcome through our products
distributor.

NOTE: Machine language program, which controls hardware dir-
ectly, gives you more various functions than BASIC programs.
However, you should check your machine language program enough
to make no error before executing it because single wrong key oper-
ation may upset the program or occasionally make the machine
break down. Sharp Corporation assumes no liability or responsibility
of any kind arising from the use of programs or program materials or
any part thereof.

Contents

INTRODUCTION. ...ttt ettt ettt ettt et et e st e st e sbteesbteesateenaneenane 1
TERMS AND CONCEPTS....co oottt ettt et ettt e stee et eebeeeaeeenseeensaeenseeens 3
The Binary and Hexadecimal Number SyStem..........ccccveeieiiieniiiieeiiie e 4
Binary ATTTRMETIC.vviiiiiiiiiee et e et e e e e e ar e e e e eeaaeeeeeeaaeeas 7
Logical and Bit Shift Operations..........ccuueieeeiiiiieeeiiiiiee e e e e 10
Binary Coded Decimal..........c..oooiiiiiiiiiiiiieee et 13
Variable and Pro@ram StruCtUTEcccviiiieiiiiiiieieiiiee et 15
SYSTEM CONFIGURATION.......oiiiiiiiiiiiieitteie ettt ettt ettt st 21
SyStemM MeEMOTY IMAP......uiiiiiieiiiiiiiieiee e e e eeeee e eee e e e e e e eeebraeeeeeeeeeeesnnasaaeaeaeaeesenannns 24
TRE CP ULttt ettt ettt et e et e et eeateesbeeenseeeane 25
The Instruction EXecution CYCle.........cooiiiiiiiiiiiiiiiieeciiiiee et eeiteee e ee e 29
BASIC Program ATEAScccoeeeeuiiiiiiiieeee e ettt e e e e e ettt teeeeeeseeeseaataeeeeeeeeesesnnnnnes 30
MACHINE-LANGUAGE PROGRAMMING.......coootiiiiiiiiiiiiienieeieesieesie e 33
Using the PEEK FUNCHONooiiiiiiiiiicieece ettt vaee e 35
Using the POKE Statementcccceeeciiieiiieeeiie e eiee et eeee e eeae e seneeeessae e 38
Running a Machine-language Programcccoouviiiiiiiiiiiieciieee e 39
The CSAVE M Statementcooiiiiiiiiiiiiiiie ittt ettt et et e e 40
The CLOAD M SEateIMENLcc.eeiiiiiiiieiiieiie ettt ettt sttt st e e 41
Sample Program 1: Simple Programccccciiieoiiiiiiiiiiiiie e 42
Sample Program 2: Converting Binary Numbers to Hexadecimal Numbers................. 45
PCo1350 T/O ittt ettt ettt sttt e et e et e eateesaseeenseeenseeeneeenneeens 51
LCD DISPIAY...utiiiiiiiieeiiieecite ettt ee et e et ee e et e e e sttt e e eatteeesssaeeessseeessaeeesssaeensseeeessaaanns 53
The KeYDOATd.oooiiieeiiie et e et e et e et e e e e e eneeas 55
The Serial INTETTaCE.eiiiiiiiiiee et 57
Other I/O INETTACES.couuiiiiiiiieiieet et st 64
THE PC-1350 INSTRUCTIONS LIST ..ottt ettt 65
1.Move Data INStIUCTIONS.ccouuieriiiiiiieiiee ettt e 68
1.1.Load IMMEdIate.......cccouviiiiiiiiiiiccciiiee et et 68

| 3] 0 o RO P OO U U U UPPPPPORRPPRPP 68

| 3] o+ O OO ST U P OO PP PR OUPPTOOUPPRROPPPRI 69

LIDP MMttt et et et et ettt e et e et e ebeeeneeesaeenneas 69

| 51 05) B PP SUPRUPPPRPR 70

50 PSRRI 70
1.2.Load/Store a register into/from the accumulator..............cccoeeevieeecieeeniieeenee. 71

| 51 D ST TSSO PSR TUPPOPPRTOP 71

N 1 1 SO SR RS RUSRPPP 72

1.3.Move data between memory and the accumulator.............cccccceveeriiiiiieeeennes 72

ST D ettt sttt et e st e et e e nnteeneee 73
1.4.Move data from one memory address to another.............occcceeeiiiiiiiiiiiieeeennn, 74
IMIVIMID ...ttt ettt ettt et e et e et eebee e nteenteeaeas 74
MV DMLt ettt ettt et et ettt et e 74
1.5.Exchange data between tWo regISterS......cccuuiiieiriiiieeeeiiiie e 75
EXAM. .ottt e ettt ettt et be e 75
EXAB .ottt et et e e e et e e naeeneas 75
1.6.Block move of data in MemMOTY........c.ccccuiiiieiiiiiieeeeieee et 76
IMIVIW ettt et et sttt ettt e 76
IMIVB e ettt e e e ettt e et e e aeeene e 76
MV WD ...t ettt st sttt s bt e e b e sabee 77

1Y VA 27 5 2RSSR 77
1.7.Block exchange of data in MEemMOTY.........cceeveiiieeiiieeiiiie et 78
E X ettt ettt st et 78

E X Bttt ettt ettt ettt et nteenes 78
EXWD ettt sttt et et 79
EXBD... ettt et e et e naeenneas 79
1.8.Increment or deCrement @ TEZISLT........uurerruieeeriieeeiieesieeeereeeeieeeeeeeeeeeaeeenes 80
INCP..ceee ettt et st et e et e et e e abeesaeeaaeetaeenneeenes 80
DECP.... et et ettt et eaneas 80
IINCT ettt sttt ettt sttt s 81
D) 2 3 RS UPRRPSP 82
1.9.Increment or decrement an external memory address register......................... 83
SRR SUUPRR 83

| D) O O SRRSO PPIUPPPRUPPRROPOO 84
1.10.Increment or decrement re@iSter X...........cceevuireeeeiiiieeeeeiiiiieeeeecieeeeeeeireeeeenns 84
2 OSSPSR 84
DXLt et sttt sttt bees 85
1.11.Increment or decrement TEZISTET Ycoouviiieeeiiiiieeeeeieee e et ee e eevree e e veee e 85
4 TSRS SPPRT 85

| 4 TSRS PSRRTS 86
1.12.Fill a block of memory with a single value............ccccceeeiveiiiiiiiiiiiiiiiieeee 86
FILIM .ottt et ettt ettt et 86

28 1 51 5 PRSPPI 87
2.Arithmetic, Logical and Shift INStrucCtions...........ccccveeeeiieeecieeiiieeeeee e 88
2.1.Add/Subtract Immediate, ACCUMUIALOT...........cceeiiiiiiiiiiiiiee e 88
ADTA Nttt et e e e nae e 88
SBIA Nttt bttt st ate et enae s 88

SBIIM Nttt ettt st et et ettt ettt e et e naeeeaees 89
2.3.Byte Binary Addition or SUbtraction.............cceecueeeeiiieeeiiieeriie e 90
ADM et ettt sttt e st nnee 90
SBIM ettt et e a bttt naes 90
2.4.Byte Binary Addition or Subtraction with carry........ccccccceveeeriiiiiiiiiiiiieeeee, 91
ADCM ettt e 91
SBEOCM ..ottt ettt et et ettt e e e be e e beeeabeeenaeeenbeeenaeeenee 91
2.5.2 Byte Binary Addition or Subtraction...........c.ccccueeeeeriiiieeeiniiiee e 92
ADBu. ettt ettt sane e 92
N 27 2 OSSPSR 92
2.6.2 Block BCD Addition or SUbtraction.............cceveeeriieeeiiie e eeeee e 93
F N B)\ OSSR 93
SBIN ettt ettt et bt et e et e e bt e e beeenbeeenteas 93
ADW e et e e ettt e et e e e bt e e nae e e et e e eanaeas 94
SBW ettt et ettt ettt e et e e tteeenbeenateen 94
2.7.Block Shift 4 DitS......ceeieiiiieiiie et e 95
SRW ettt et e et et et e et e e bt e e taeenste e teeenaeeenaeeenneas 95
SLW et ettt ettt et ettt e et e st e st 95
2.8.L0GICAl OR ... 96
ORITA N ettt et e et e et e et e et esabeeebeeebeeenneas 96
ORIM Nttt st et et e sbt e et sbt e e bt e e nbe e 96
(0] 2 D TSP 97
ORMA L e ettt et sttt st e b 97
2.9.L0ZICAl ANDoviiiiiiieee ettt e e e e a e e e nraae s 98
ADNTA Dttt ettt e st e st e et e st e st e sabeeeateens 98
F LY, 1Y/ 5 o DO USSP 98
ANTD Nttt et ettt ettt e et e nee e enee 99
ANDMA ettt ettt et 99
2.10.Bit Text Immediate...........ccooevuiiiiieiiiiiieeeiiiee et e e e e 100
TSTA Nt ettt ettt et e et e be e bt e bt e e naeeens 100
I 01 I 4 OO SRR 100
I 1D OSSR STS 101
2.11.Compare IMmediate...........cccveiiieeiiiiiiieiiiiee e e 101
(03 5 7. § FO TS SS 101
CPIM Nttt ettt e sttt e st e e st e e saeeas 102
(03 1Y 2N USRS SPR 102
SWARP. ..ttt ettt et e sttt e et e et 103
2.12.Shift Bits 0f @ BYLC.....oiiiiiiiiiiieceee e 103

2.13.Set or Reset The Carry Flag........coocuvveeiiiiieiieeeeeeee e 104
Sttt sttt st et 104

R C ettt et ettt et ettt eaeeeteeen 105

3.JUMP INSIUCTIONS. ...eeeeiiieeiiieeeiiee ettt ettt e e e e e e e se e e e sseeeennsaeeenneeas 106
3.1.JUMP REIALIVE.....viiiiiiiiiic ettt e e e e e e as 106
TREP Nl 106

JRCEM N 107
3.2.JUMP ADSOIULC....coeniiiiie ettt et e e et e e e e aeeenes 108

TP e ettt 108
3.3.CASE1 CASE2 This is a conditional branching instruction 109
CASET CASE2Z....ooeeee ettt ettt 109

4. Other INSIUCHIONS.uviiiieiiiiiee ettt e et e e e et e e et e e e e esaaaeeeenraeeeeesnsraeeeas 111
PUSH. ..t et ettt st e st e et et eeaaeeeaee 111

POP ...ttt et e 111

LIOOP Nttt et et et e et e s beeebeeeneeenneeens 112
LEAVEttt s 112

(7N I 3 USROS UPRURURRPI 113

CALL MMttt et e e ettt e e et e e e e st ee e s e nnaeeesesnnnaaeeeanns 113

RN ettt ettt st e s te e et e et e et eenseeesteesasaeensaeensaeenseesnseeas 114

INOPW . ettt ettt ettt et s e e st e e sae e e e e enee 114

NOPT et ettt ettt sttt e e e e e e 115

[T 1 USSR 115

OUTIC ettt ettt ettt ettt e sbt e et e e e e enaee 116

OUTA . ettt e et e st e e st e et e e ateebeeensaeesteeseesnseesnseesnseens 117

OUTBi ettt et ettt e st e st e st esbeesabeesabeesans 117

OUTE ..ttt ettt et st sttt e s e st e sabeesanee s 118

DN A ettt ettt et e et e ettt e bt e et e e e beeeateas 118

DN B ettt et e 119

TEST Nttt ettt ettt e et e et e et e eneeeneeeneeas 119

CUP ettt ettt st s e st e st e st e e st e enateennteens 120

DN ettt ettt e ettt e et e e et e e te e e teeenbeeenteeenbeeeabeeenbeeenseeenteennreens 121
APPENDIXES.ottt et e sttt e st e st e esbeesateesnbeenateens 123
SPECIIICALIONS.eviieeeeiiieee ettt e et e e et e e e e etr e e e e e eaaseeeeensnseeeeennsaeeeas 124
MACKINE COAE....cooiiiiiiiiiieee ettt ettt e et e e st e e e aaeee s 129
Internal Representation of BASIC..........ooooiiiiiiiiiee et 130
AV (53810 2 E: o TP PUPPUPPRR 131
SYStEM SUDTOULINESevviiieiiiiiiie ettt e et e e e eareee e s e nbaeeeeennnraeeeeens 143
Data Recording FOIMALScoociiiiiiiiiiiiiee ettt e et e e e ee e e 162

Recording ProCEAUIESccooviiiiiiieiiiie ettt ee e ettt e e tre e e e e eraeeeeens 164

Key Code Table........ooiiiiiiiiieeeieeeeee ettt e e e e e e e e e e e e e neres 175

CPU Internal Block Diagram and Pin Signals..........c.cccecevieiriiiiiiiiiiiieeeee e 176
LST EXPIanation.....ccc.uviiiieieiiiiieeeeiiiiie e et ee e ettt e e e et eeeeeeavaeeeeeetaaeeeeenssaeaeeesnnaeaaeannns 177
Gate ATTay (SCO0220).....ceeuieeiieeiieeieeetee et ettt e et e st e st e st e sbeesabeesabeesabeesaneesneeens 179
Explanation of Display LSI (SC43537)....ceuiiieeiie et 181
CE-201 M Circuit Diagram (flat LSI)cccvviiiiiiiiiieee e 183
CE-516L Circuit DIagramcccccoecuiiieiiieeeiiie ettt e e eaee e e eeneeeenes 186
CE-130T Circuit DIagrami.........cccceeeeiiiiiiiiieeiie ettt e 187
CE L30T ettt ettt et ettt st e et e e bt e eabeeenbeeeabeeenbeeenbeeebeeens 188

CIRCUIT DIAGRAM (1. PC-1350 CPU CiFCUIt). ... evveeereeeeeeeeeseereeseeeeeeseseeeseeseenns 191

INTRODUCTION

For many programmers there comes a time when, regardless of the size
or sophistication of the machine they program, they become dissatisfied
with the exclusive use of a high-level programming language such as BA-
SIC. Perhaps they want to make more efficient use of the available
memory, they want to decrease the execution time of programs or perhaps
they simply want to understand more about how the machine solves the
problems presented to it. Whatever the cause, the programmer will need to
learn about the assembler language or machine language of the particular
machine being programmed.

This manual has been written to introduce the PC-1350 assembler and
machine language, the command language for the ESR-H central pro-
cessing unit.

While this manual provides much information about the PC-1350 and
its resident BASIC, it was not intended to be a technical reference manual.

The material here assumes little beyond a working knowledge of BA-
SIC and the operation of the PC-1350. Fundamental mathematical con-
cepts, such as binary number systems, are reviewed in the context of their
application to machine code programming. Likewise, fundamental ma-
chine code concepts are reviewed in the context of their application to the
ESR-H language. This manual provides all the information needed to
write a program in mnemonics, translate it into machine language and
enter it into memory.

The transition from BASIC to machine language programming can be
difficult. Machine code commands, being closer to what the machine un-
derstands, are even further from natural languages than the high-level lan-
guage BASIC. In fact, many BASIC commands require more than ten or
even twenty lines of machine code to accomplish similar actions. Also,
space must be thought of differently at the machine code level. One must
deal with fixed registers, fixed addresses, and the particular protocols for
moving information from one location to another. However, the skills one
developed while programming in BASIC, or which are developed pro-
gramming in almost any computer language, will be invaluable in making
the transition. With a bit of patience and study, you will become an able
programmer for the ESR-H.

TERMS AND CONCEPTS

The Binary and Hexadecimal Number System

Binary

Memory in a computer consists of groups of binary digits, called "bits". A
binary digit can have one of only two different values, 0 or 1. In the PC-1350, as
in many other computers, 8 bits are grouped together to form one memory posi-
tion, called a "byte". The left-most digit of a byte is called the "high-order digit"
or "most significant bit" and the right-most is called the "low-order digit" or
"least significant bit" .

Each byte of memory has a unique location, and the description of that loca-
tion is called an "address". Some addresses, those in internal memory can be de-
scribed with 1 byte (or sometimes even less than 1 byte) of information. Others,
in external memory, require 2 bytes. Any byte of memory can contain several
different kinds of information, but it is always in binary form, a series of eight
0's and 1's. The interpretation of the pattern of 0's and 1's in a particular byte is
determined by the internal logic or programming of the machine or by an ex-
ternal program. More will be said about memory addresses and the kinds of in-
formation that can be stored in memory in a later section.

Since the only kind of numbers the computer can recognize are binary ones,
any communication with the machine must be done using binary numbers.
Every digit of a number in our familiar decimal system represents a power of
10. Likewise, each of the eight bits of a binary byte represents a power of 2.

The following illustration shows a decimal and a binary number having the
same value 236, and what each digit of the two numbers represents.

Decimal 102 101 100
236 2 3 6
v 6 = 6 1sdigi
3x10 = 30 101 =10
2x100 = 200 102=100
Total 236
27 26 25 24 23 22 21 20
11101100 1 1 1 0 1 1 0 O
} 0xt = 0 1sdigit
0x2 = 0 21= 2
1x4 4 2= 4
1x8 = 8 23= 8
0x16 = 0 24= 16
1x32 = 32 25= 32
1x64 = 64 26= 64
1x128 = 128 27= 128
Total = 236

To convert a decimal number to binary, the following method of successive

divisions by 2 can be used.

236
118
59
29
1

- w~N BN

The binary equivalent is 11101100.

NDNDNNDNMNDNMNDNDDN

118
59
29
1

O =~ w~N b

Remainder
Remainder
Remainder
Remainder
Remainder
Remainder
Remainder
Remainder

0—-0 (lowest bit)
0—-0
1—-1
11
0—-0
11
1—-1
1> 1 (highest bit)

Binary representation of numbers, with its series of zeros and ones, can be

very confusing to humans. Because of this, various alternate ways of represent-

ing binary numbers are often used. One of these alternate notations, hexadecim-

al, is used in programming the PC-1350.

To convert an 8 bit binary number into hexadecimal, the 8 bits are first di-

vided into 2 groups of four bits, then each group of 4 bits is assigned a single di-
git value. The result of this is a 2 digit number which has the same value as the

8 digit binary number. In order to represent each of all the possible values (0-

15) of a 4 digit binary number with single digit, we need 16 distinct characters,

one for each of the 16 values.

0000
0001
0010
0011

0100
0101
0110
0111

1000
1001

© o NO O A~ WN -~O0O

1010 = 10
1011 = M1
1100 = 12
1101 = 12
1110 = 14
1111 = 15

Decimal representation
requires 2 digits for these
values

As can be seen in the table above, the decimal digits 0-9 are not sufficient to
represent all of the binary combinations of 4 digits; another 6 characters are
needed. Any characters could be used, but the standard for hexadecimal in com-
puters is to use the alphabetic characters A-F. 16 is the "base" of the hexadecim-
al system, just as is 10 (with 10 distinct digits) for the decimal system and 2
(with 2 distinct digits) for the binary system.

The 16 digits of the hexadecimal system and their binary and decimal equi-
valents are:

Hexadecimal Binary Decimal
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MMUOQO W >»>»O© o NO AN wN-2 O
RS NG N N . —.
O PRODROID ©®O®NO O WN-=2O0

It is important to remember that all of the numbers, in spite of their different
appearance, in a single row across the 3 columns have the same actual value.
1110 = E = 14, but when one is working with these numbers E is much easier to
keep track of than is 1110, especially when it is surrounded by other similar
numbers. 23F016 is considerably less confusing to the human eye and brain
than is 001000111111000000010110, which is the only form of the numbers that
makes sense to the computer.

Binary Arithmetic

The rules for binary arithmetic are similar to those of decimal arithmetic. Ad-
dition can be summarized as follows:

0+0=0
0O+1=1
1+0=1
1+1=10

Here 10, the binary equivalent of decimal 2, can be thought of as a 0 and a

If for example, we add 3 and 1 in binary,

1 1 1
11 11 11 11
— — —
+ 01 01 01 01
0 00 1002 =410

we first add the one's place column. The total is 102, so we put a 0 in the
sum's one's place and carry 1 into the two's place (the second column). The
second column is then added, with again a result of 10, so a 0 is put in the two's

place column and a 1 is carried to the four's place column, giving us the result
of 100 (base 2) or 4 (base 10).

With eight bits, it is possible to represent numbers from 00000000 to
11111111, or in decimal, 0 to 255 (= 28 -1). With two bytes, of 16 bits, we can
represent numbers from 0 to 65535 (= 216 - 1). In order to represent negative
numbers, we treat the high-order bit as a "sign bit". With single byte numbers,
since this bit cannot now be used as a part of the numeric representation, the
range of the number becomes - 127 to + 127. With two byte numbers, the range
becomes - 32767 to + 32767.

Binary -3 =1000011, + 3 = 00000011
Binary - 03 =100000000000011, + 3 =0000000000000011

One of the most commonly used forms of representation for negative binary
numbers is what is known as "Two's Complement Representation". This repres-
entation allows us to add a negative number, i.e. subtract, using the addition
command. A "one's complement" of a binary number is formed by reversing all
of its digits. For example, the number-5, in one's complement form would be:

00000101 (5)
11111010 (- 5) One's Complement

By adding 1 to a one's complement representation of a negative number, we
get the "two's complement" form of the number.

11111010 One's complement form
+1
11111011 = Two's complement form of - 5

If we use the two's complement representation for negative numbers, we can
use the same simple addition rules for subtraction and for addition of negative
numbers. Take, for example, the subtraction 7-5. First, the five is put in two's
complement form, then it is "added" to 7.

00000111 = 7
11111011 = -5 (Two's complement form)
(1)00000010 = 2 (plus a binary carry)

If we ignore the carry, the answer is 2.

One consideration with this form of representation is that the result of an ad-
dition of 2 single byte numbers may require more than 7 bits. This condition is
called "overflow" , since the extra bit required to represent the results "over-
flows" into the high order sign bit. An overflow beyond the entire 8 bits of a
byte is called a "carry". The extra bit of a carry is lost, but the occurrence of a
carry causes the Carry Status Flag to be set to 1 to alert the programmer to the
condition. An overflow into the high order sign bit will produce a false sign in
the result of a binary addition under two conditions.

1. If both are positive and one or both have a large value.

sign
bit
(0) 1111111 + 127 (Largest positive number which can be
represented in 7 bits)
+ (0)0000010 +2
(1)0000001 -127 (False negative, interpreted as a 2's

complement because of the 1 in the sign bit)

The result has a false negative sign. Any combination which would have a
result of more than + 127 (for a single byte number) would cause this error con-
dition.

2. If both are negative and one or both have a large value.

sign

bit

(1)0000001 -127 (Largest negative number which can be
represented in 7 bits in 2's complement
notation)

1
N

+(1)1111100 (in 2' s complement notation)
(1)(0)1111101 + 125 (False positive, not interpreted as a 2's
complement because of the 0 in the sign bit)

Carry is lost,
Carry Flag set

The result has a false positive sign. Any combination which would have a
result of more than -127 (for a single byte number) would cause this error con-
dition.

The programmer must check for these two error conditions by testing the
Carry Flag and the sign bits themselves when they suspect that the result of an
operation might cause an overflow error.

Logical and Bit Shift Operations

In addition to binary addition and subtraction. there are several binary logical
operations and bit shifts which should be understood by the programmer.

Logical OR—The logical OR operation compares bit by bit all 8 bits of 2 in-
dividual bytes and produces a result based on the following conditions:

If both bits are 0, result =0
If either bit is 1, result =1

All of the possible combinations and results are:

Byte A ByteB Result

1 Bit 1 Bit
0 0 0
0 1 1
1 0 1
1 1 1

This operation can be used to place a 1 bit in selected location(s) of a byte. If
we want to add a negative sign bit to a positive number. for example, to change
5 to 7, we can do the following:

A 00000101 5
OR with B 00000010 2
Result 00000111 7

Only the 2's position bit has been changed.

10

Logical AND—The logical AND operation compares each of the 8 bits of
two bytes and produces a result based on the following conditions:

If both bits are 1, result = 1
If either bit is 0, result = 0

The possible combinations and results are:

Byte A ByteB Result

1 Bit 1 Bit
0 0 0
0 1 0
1 0 0
1 1 1

This operation can be used to remove or test for a 1 bit in selected location(s)
of a byte. If we want to change the 7 we produced in the OR example back into
a 5, we could do the following:

A 00000111 7
AND with B 11111101 253
Result 00000101)

Again, only the 2's position bit has been changed.

11

Bit Shift Operations—Two instructions that shift the bits of a single byte to
the right or left are provided in the PC-1350 instruction set.

1. Shift Right—Each bit of a byte is shifted one bit position to the right. The
Least Significant Bit, which is pushed out of the byte, is stored in the Carry Flag
Position and the previous contents of the Carry Flag is stored in the Most Signi-
ficant Bit of the byte. This operation gives a result that is the same as dividing
by two, and is useful for division routines.

2. Shift Left—Each bit of a byte is shifted 1 bit position to the left. The Most
Significant Bit, which is pushed out of the byte is stored in the Carry Flag Posi-
tion and the previous contents of the Carry Flag is stored in the Least Signific-
ant Bit of the byte. This operation gives a result that is the same as multiplying
by two and is useful for multiplication routines.

SHIFT RIGHT

AT AT ATA AT T T T

CARRY

SHIFT LEFT
R AN S S-S S

CARRY

12

Binary Coded Decimal

Another type of representation of numbers that provides greater accuracy for
such applications as accounting, where more precision is necessary, is called
BCD or Binary Coded Decimal. The decimal numbers 0-9 can be represented in
binary in four bits, one half byte (called a "nibble"). Since only a half byte is
needed, two decimal numbers can be coded into each byte. This representation
of decimal numbers is called "Packed BCD". Some of the binary values that can
be expressed in 4 bits, that is, binary 10-15, are not needed to express the
decimal digits 0-9. These unneeded values are not used in BCD and can cause
some problems in BCD arithmetic. However, the BCD instructions in the PC-
1350 instruction set automatically make the necessary adjustments so the pro-
grammer need not worry about them. The BCD values 0-9 are shown in the

chart below:

BIN DEC BCD BIN DEC BCD BIN DEC BCD
0000 = 0 0 0101 = 5 5 1010 = 10 Not Used
0001 = 1 1 0110 = 6 6 1011 = 11
0010 = 2 2 0111 = 7 7 1100 = 12
0011 = 3 3 1000 = 8 8 1101 = 13
0100 = 4 4 1001 = 9 9 1110 = 14

1111 = 15

A number expressed in BCD must be limited to a fixed number of digits, in
the PC-1350 it is 10 digits. In order to represent numbers that are larger than the
largest number, or in the case of fractions, smaller than the smallest number that
can be expressed in 10 digits, a representation called Floating Point is used. Es-
sentially, what this format allows is the elimination of the need to represent zer-
os on either side of the decimal point and subsequently the elimination of the
bytes needed to hold these zeros.

Equivalent numbers can be represented by shifting the location of the decim-
al point and multiplying them by 10 to the appropriate power. Thus the decimal
number 23,000.00 could be represented as:

2300.00 x 101

or 230.00 x 102
or 23.00 x 103
or 2.30 x 104

13

Numbers to the right of the decimal point are represented by exponents with
a minus sign. The number .00023 could be represented as:

.0023 x 10-1
or .023 x 10-2
or 23 x 10-3
or 2.3 x 10-4

All of these combinations are possible, but in the PC-1350 the number is rep-
resented with the decimal point to the right of the left-most digit:

2.3 x104
23X 104

14

Variable and Program Structure

The internal format of numbers and variables is described in the following
paragraphs.

(1) Internal format of numbers

A number is represented using 8 bytes. A numeric value consists of an expo-
nent, mantissa sign, and mantissa.

Numbers from -9.999999999 x 1099 to 9.999999999 x 1099 can be represented.

%/—/_v_/
Exponent Mantissa Mantissa Rounded
sign off

i) Exponent
* The exponent is represented using two decimal digits.
The most significant digit is always zero for positive numbers.
* Negative numbers are represented using a complement.

901 (1079 to 099 (1099)

ii) Mantissa sign
e Zero is used when the mantissa is positive.

* Eight is used when the mantissa is negative.

iii) Computation correction
* Computation correction is performed only during computation. Normally,
it 1s reset after rounding off.

(Example) Assume that a number is stored in 6CFOH to 6CF7H (fixed variable B)

6CFOH 6CF7H
00H 30H 15H O00H O00H 00H O00H OOH 1500
00H 00H 12H 34H 56H 00H 00H O0H 1.23456
99H 70H 12H 34H 56H 78H 90H OO0H 0.00123456789
00H 88H 12H 34H 00H 00H 00H O0H -1.234X108

Table 1
The same internal format is used for numbers in operation registers in the CPU.

15

(2) Internal format of character strings

* When a character string is stored in a variable other than a fixed variable
(including A() arrays), the ASCII code of the contents of the character

string is stored directly.

* When a character string is stored in a fixed variable, the character variable

code (F5H) is set at the beginning. The remainder is stored in ASCII code.

(Example) Assume that character string PC1350 is stored in Z$ (6C30H to

6C37H).

6C30H

6C37H

F5H

50H

43H

31H

33H

35H

30H

O0H

Character
string
code

P

* When character string operations are processed in a CPU operation re-

gister, the internal format is not the same as in the case of a variable; char-

acter string information is represented using 8 bytes (4 bytes of actual

data), and the actual character string exists in the address indicated by the

character string information.

DOH: character string identification code

The length of the character string can be from 01H to 50H.

. . . U DOH ADDH ADDL |LENGTH
| — |
Invalid data DOH Beginning of the char- Length of
acter string the charac-
ter string

Beginning of the character string: The address in the string buffer can be used to indicate
the beginning of the character string. The acceptable range is from 6E60H to 6EAFH.

(Example) Assume that character string information is contained in operation

register X, and the actual character string SHARP exists in the string buffer.

10H

17H (RAM in CPU)

DOH

60H

6EH

05H

16

6E60H

6E64H

‘53‘48H‘41H‘52H‘50H‘

S

H

A

R

P

(3) Variable name configuration

The name of the variables created in variable area such as AB$ or X(5,5) are
represented using two bytes which indicate the ASCII code of the variable
name, whether it is numeric or character, and whether it is an array or not.

Upper byte Lower byte

ASCII code for the first character

Lower Byte
1) When the variable name is a single character (array only)
Number array — 80H is stored.
Character array — AOH is stored.
11) When the variable name consists of two or more characters
If the variable is character, 40H is added to the ASCII code of the second
character. If the variable is an array, 80H is added.

Variable name Code

B1 4231H

CcC 4343H

D (2) 4480H

EE (1) 45C5H

F$ (1) 46A0H

GG$ 4787H

Z7Z$ (2) 5A1AH
Table 2

When an A() array is used as an extension for fixed variables A through Z,
the variable name (code) is 4000H.

(Example) Assume that A$ (1,2) * 3 is declared for an array.

2Byte 2Byte 3Byte 3Byte 3Byte

A$ (0,0) A$ (0,1)

41 A0 | 00 15 02 01 03 Address significance

data data
Variable Number of Secon First Data
name total memory d sub- sub-
bytes+3 script script Length of character string

(88 for a number)

17

(4) Program configuration

Each line of a program is represented by a line number, line length, program,
and end code.

I

\‘ \‘ ODH
-~ -~
Line number Line Program C/R Line number Line

length length

For the following program (with no RAM card)

10 PRINT A
20 END

the following data is stored.

Address Data
6030H FFH ... Code indicating the beginning of the BASIC program

31H O0H
32H 0AH } 10
33H 03H ... Line length
34H DEH ... PRINT
35H 41H LA
36H ODH ... CIR
37H O0H
38H 14H } 20
39H 02H ... Line length
3AH D8H ... END
3BH ODH ... CIR

603CH FFH ... Code indicating the end of the BASIC program

Table 3

18

(5) Reserved area configuration
Reserved area consists of address 6F6FH through 6FFEH in system RAM.
Reserved contents are catalogued in the following format.

i) Reserved key code
There are 18 reserved keys. Each reserved key is catalogued using a reserved
key code.
Reserved key | Code Reserved key | Code
A 81H L 8CH
B 82H M 8DH
C 83H N 8EH
D 84H S F3H
F 86H \% F6H
G 87H X F8H
H 88H 4 FAH
J 8AH spc F1H
K 8BH = F4H

Table 4

ii) Reserved contents are written after each reserved key code. Delimiters are
not inserted between reserved programs. Reserved programs are written in the
order they are catalogued. If a program is re-catalogued, the previous program is
deleted, and the new program is added at the end of the catalogue.

iii) If NEW is executed in the reserved mode, the reserved area is filled with
hexadecimal zeros. Therefore, unused area will contain O0H.

(Example) Assume that the following contents are catalogued in reserved area.

Catalog sequence Reserved area Catalogued contents
1 A PRINT
2 S "ABC="
3 D GOTO
4 = INPUT
5 SPC 12345
Table 5

Least signi-
ficant digit

Three
most signi-
ficant digits

6F6
6F7
6F8
6F9
6FA

I

81,

DE,

F3,

ol

42,

#3., | a0,

22, |84, |C6y|F4,

DFy

F1,

31y

32y

33,

34,

35,

00,

_ All OOH

T

Table 6 System RAM

20

SYSTEM CONFIGURATION

The SHARP PC-1350 Pocket Computer is divided into four functional blocks
and some support devices. The four functional blocks are: the central processing
unit (CPU), the random access memory (RAM), the read-only memory (ROM),
and the I/O interface. These functional blocks are connected by three buses: the
16-bit address bus, the 8-bit bidirectional data bus, and the control bus. Figure 1
shows the configuration of the SHARP PC-1350 Pocket Computer.

CRYSTAL 0 DATA BUS |

! { K:) 10
RAM /0 INTERFACE PORTS

| Ji
TIL__ T 17 0|W

CPU
+ 5V

L]

GND

CONTROL BUS

] |

ADDRESS BUS

Fig. 1 A Simplified Diagram of System Architecture

The PC-1350 operates on dc 5-volt power supply and runs on the 768 KHz
basic system dock. The basic system clock is generated in the CPU. Its clock
frequency is derived from the 768 KHz quartz crystal which is external to the
CPU.

The CPU controls the flow of data to and from, and between the other system
blocks. It places one byte of data or code at a time on the data bus from one
memory or I/O block (RAM, ROM, or I/O interface) and takes it into itself
(fetch) or further stores it in another memory or I/O location in the same or an-
other system block via the data bus (move).

The location (or address) of the data that the CPU is to read, store, or move is

designated by the 16-bit address bus. This address is generated by the CPU. The
PC-1350 address bus can address up to 64K main memory locations.

22

The control bus carries various control signals generated by the CPU. The
CPU controls the overall timing of the system operations using the control sig-
nals placed on the control bus.

ROM stores data which can be read but which cannot be altered. It is used
primarily to store program code. The ROM block shown in the figure is 32K
bytes and contains the PC-1350 BASIC interpreter. The CPU also incorporates
8K bytes of internal ROM which holds the PC-1350 command interpreter.

RAM is a memory device which data can be written into and read from. It is
used to hold intermediate values of computations and BASIC variables during
execution. User programs are also loaded in RAM for execution.

The 1/0 interface block consists of interfaces for the keyboard, the LCD dis-
play, the CE-126P printer, and the CE-127R cassette recorder. This block is con-
nected to the CPU and other system blocks through the address, data, and con-
trol buses. Except the LCD display, all I/O interfaces are controlled by programs
written in either BASIC or machine language. The LCD display can and should
be controlled only by means of machine-language programs because of its com-
plexity.

23

System Memory Map

The system memory map is shown below.

QO00H
BKB internal ROM
2000H T -
|
I gk % Option RAM card area
| RAM card
| image
16KB 1 FOOOH
4000H C P DISP1
RAM card : S
| DISP1 image
) 8KB 7200H
RAM card DISP2
! 7300H
l DISP2 image
6000H l / 7400H
RAM 1 DISP3
6800H 7500H
RAM 2 DISP3 image
7000H 7600H
DISP4
DISP KEY port 7700H
DISP4 image
8000 7800H
DISPS
7900H
DISPS image
79FFH
not used
32K8 ROM JEOOH
KEY port
FFFFH

For details see Appendices

Fig. 2 System Memory Map

24

The CPU

The CPU is the center of the PC-1350 Pocket Computer. It fetches instruction
code, interprets it, and, depending on the instruction, loads data from memory,
performs arithmetic operations on the data, and stores the processing results in
memory.

The CPU is made up of the arithmetic/logical unit (ALU), the data pointer
(DP) register, the program counter (PC), the 96-byte internal RAM, general-pur-
pose registers, and the control unit which controls the internal operation of the
CPU. Figure 3 gives a schematic diagram of the PC-1350 CPU.

8 BIT DATA BUS

P T 1T
|
PC

DP

ri
§ 00 J L INTERNAL RAM

* 16 BIT ADDRESS BUS

T{JJA|B | Xe| XuYo|Yul K| LM N

7 BIT ADDRESS BUS),

SYSTEM STACK IA| IB|FO

Q
U
T
C

5C 5D 5E 5

m

Fig. 3 A Simplified Diagram of the ESR-H CPU

In addition to the 16-bit address bus, 8-bit data bus, and control bus, which
connect the CPU to the other system blocks, the CPU has a 7-bit internal bus.
This internal bus is used to address the location of the internal RAM which is
used as internal registers.

The ALU performs arithmetic and logical operations. It takes one or two op-
erands, performs an arithmetic or logical operation, and stores the result in a re-
gister, usually the A register in the internal RAM.

25

There are two flags in the CPU, the carry (C) flag and the zero (Z) flag,
which are affected by the operation of the ALU. The Z flag is set (loaded with a
1) if the result of an operation is zero and reset (loaded with a 0) if it is nonzero.
The C flag is set if the operation generates a carry and reset otherwise. These
flags can be tested, set, and reset directly by user programs.

The flags are used to control the flow of program execution. They are ex-
amined by conditional instructions that cause execution to branch to a different
portion of the program depending on their state.

Not all PC-1350 instructions affect the flags. Which instructions affect flag(s)
and which instructions do not are described in the description of the individual
PC-1350 Instructions.

The DP register is 2 bytes wide and used to address a location in external
memory.

All load and store instructions are performed on the memory location desig-
nated by the DP register. The DP register can be incremented, decremented, or
loaded with an immediate value or the data that is moved from the X or Y re-
gister in the internal RAM.

The PC is a 2-byte register which contains the address of the instruction to be
executed next. It is incremented sequentially to point to the next instruction as
instructions are executed. The PC may be loaded directly with a nonsequential
address by a flow-controlling instruction such as JUMP or CALL.

The P, Q and R registers are used to address the internal RAM. The P and Q
registers normally designate internal registers in the internal RAM. The R re-
gister holds the value that points to the top of the system stack in the internal
RAM. These registers are 7 bits wide, which is adequate to address the 98-byte
internal RAM.

The internal RAM contains 12 internal registers including an accumulator,
the work area, the system stack area, and the I/O port registers. The internal re-
gisters are named I, J, A, B, X1, Xh, Y1, Yh, K, L, M, and N. They are arranged
in the internal RAM as shown in Table 7.

26

ADDRESS REGISTER
00 I
01 J
02 A
03 B
04 XL
05 XH
06 YL
07 YH
08 K
09 L
0A M
0B N

Table 7 Internal Ram Registers

The I and J registers are 1 byte wide and used as index registers. They con-
tain a byte offset with respect to a base address. The I and J registers are as-
sumed by block move instructions as holding the number of bytes to be moved.

The 1-byte A register functions as an accumulator. It is used to store the result
of an arithmetic or logical operation performed in the ALU. Most data move-
ment operations (as directed by load and store instructions) are carried out via
the A register. The B register is a I-byte spare register and used in the same way
as the A register.

The X and Y registers are used as address pointers. They are 2 bytes wide
with the lower order byte occupying the lower address in the internal RAM. The
X register is typically used by the IXL instruction to point to the address whose
contents are to be loaded into the accumulator (A register). The Y register is typ-
ically used by the IYS instruction to point to the address in which the data in the
accumulator is to be stored.

27

The K, L, M, and N registers are 1-byte general-purpose registers. They may
be used to hold intermediate values of computations.

The internal RAM contains four I/O port registers at locations 5C, 5D, 5E,
and 5F in hexadecimal. These registers hold a I-byte data which is to be sent to
an I/O device with the OUTA, OUTB, OUTF, or OUTC instructions.

The internal RAM also has a system stack. The system stack is of the last-in
first-out (LIFO) structure. The top of the stack is always pointed to by the R re-
gister. Data may be pushed into and popped out of the stack area, 2 bytes at a
time. The first data that is pushed is placed at the bottom of the stack and the
latest data, which is to be popped out of the stack first, is placed at the top of the
stack. The stack starts at internal RAM address 5B in hexadecimal and grows
downward or toward the lowest address in the internal RAM. The stack is used
to hold temporary data and the return address of subroutines. The PUSH, POP,
CALL, and RTN instructions, when executed, automatically increment or decre-
ment the contents of the R register that points to the top of the stack.

28

The Instruction Execution Cycle

This section describes how an instruction is executed in the CPU. Under-
standing the basic mechanism of instruction execution will help the user con-
struct programs in PC-1350 machine language.

As the execution of an instruction starts, the CPU places the contents of the
PC on the address bus. The program code addressed by the address data on the
address bus is then placed on the data bus. The CPU fetches the code on the data
bus into one of its registers called the instruction register (IR). The control unit
of the CPU interprets the code and generates internal and external control sig-
nals in the sequence established by the code to perform the specified operation.

After the instruction is fetched, the PC is automatically incremented by one
to point to the next address. If the instruction requires the second and third oper-
and bytes (e.g., LIA or LIDP), the CPU reads them and the PC is incremented
accordingly to designate the instruction to be executed next. Thus, when the ex-
ecution of an instruction is completed, the PC points to the next sequential in-
struction.

The above steps are represented in terms of machine cycles of the CPU. Dif-
ferent instructions require different number of machine cycles and therefore
take different times to execute. The number of machine cycles that each instruc-
tion requires is stated in the individual instruction descriptions that are given in
a later section.

29

BASIC Program Areas

A BASIC program is stored in RAM memory starting at address 6030 in
hexadecimal. The location of the program are as that are used by BASIC pro-
grams are illustrated in Figure 4.

USER AREA
6000

Header & System Pointers
602F
6030 BASIC program Source
6900 Recommended Machine Code Starting Point
6C2F Array Storage
6C30

Predefined Variables
6CFF
6D00

Various System Pointer
6F6E
6F6F

Reserve Key Information
6FFF

Fig. 4

Space for simple and dimensioned BASIC variables are dynamically alloc-
ated in memory starting at address 6C2F. This area extends toward the lowest
address of memory. In Figure 5, this variable area starts at address 6C2F and
ends at 6900. User supplied machine-language programs should be placed
somewhere between these two areas. In the example shown in Figure 5, a ma-
chine-language program can start at address 6900 provided that the BASIC pro-
gram does not extend beyond this address. Also, the BASIC variable area must
not grow beyond the last address of the machine-language program.

30

6030 Start of BASIC Program

l\ Yy w @ End of BASIC Program

6200 Start of Machine Code Program

End of Machine Code Program
T 8

End of Dimensioned Variables

6C2F Start of Dimensioned Variables

(A) must not be greater than 6900.
must not be greater than C.

© must not be less than B

Fig. 5

A system memory area starting at 6F01 in hexadecimal contains the locations
of the BASIC program areas. They are listed in Table 8.

31

Location (hexadecimal) Contents

6F01 Low byte BASIC program starting address

6F02 High byte (contains FF)

6F03 Low byte BASIC program ending address

6F04 High byte (contains FF)

6F05 Low byte Starting address of the last

6F06 High byte merged BASIC program (contains FF)
6F07 Low byte Simple and dimensioned variables
6F08 High byte starting address

6F1C Low byte Starting address of the currently

6F1D High byte executing program (contains FF)

6F2B FOR-NEXT pointer
Current top address

6F2C GOSUB pointer
6E06

FOR-NEXT stack area
6ESF
7090

GOSUB stack area
70A3

Table 8 BASIC Program Area Control Table

32

MACHINE-LANGUAGE PROGRAMMING

33

PC-1350 BASIC provides one function and four statements to facilitate the
user to handle machine-language programs from his or her BASIC programs
and pass information between them. They are the PEEK function and the
POKE, CALL, CSAVE M, and CLOAD M statements. The PEEK function
reads the contents of a memory location. It is used to receive argument informa-
tion. The POKE statement loads a byte of information into a memory location.
It can be used to place machine-language code directly into desired locations in
the user area. The CALL statement transfers CPU control to a user-supplied ma-
chine-language program. The CSAVE M statement saves a machine-language
program onto cassette tape and the complementary CLOAD M statement loads
a machine-language program into memory from cassette tape. This section
shows with examples how to load and run user-supplied machine-language pro-
grams using these BASIC facilities.

34

Using the PEEK Function

The PEEK function is used to read the contents of memory locations. It takes
one argument which evaluates to an address expression. The general format is
shown below.

PEEK < expression >

< expression> specifies the memory location to be peeked. It must be an ad-
dress expression which is evaluated to a hexadecimal value from &2000 to
&FFFF. The PEEK function returns the contents of the memory location spe-
cified in < expression > in the form of a decimal number. The memory contents
may be viewed by displaying them on the screen with the PRINT statement.

The PEEK function may be used to find the address of memory areas. For ex-
ample, the function call

PEEK &6F01

should return a decimal number of 48 (30 in hexadecimal). A subsequent PEEK
call with the next memory address (&6F02) as its argument should return 96 (60
in hexadecimal). Since address data is 2 bytes long and always stored in
memory with the lower order byte first on the PC-1350, these two bytes form an
address value of &6030 in hexadecimal, which is the starting address of the user
BASIC program (see Figure 5).

The sample program given below illustrates the use of the PEEK function.
This program takes a dump of contiguous memory locations. When executed,
this program asks for the beginning address of the location you want to look
into and the number of bytes. When you press the RETURN key, the program
will display on the screen addresses and their contents in hexadecimal re-
peatedly for the number of bytes you specified.

35

10: INPUT "ADDR?"; A
20: INPUT "BYTES?"; B
30: FORI=0TO (B-1)
40: X=PEEK (A+l)
50: P =INT (X/16)
60: Q= (X-16"P)
70: |IF P>9 THEN LET P=P+ 7
80: IF Q>9 THEN LET Q=Q+7
90: P=P+48:Q=Q+48
100: PRINT (A+l);""; CHRS$ P; CHRS$ Q
110: NEXT I
120: END

Variable A holds the starting address you entered. Variable B holds the num-
ber of bytes to be looked into and is used as the control variable for the FOR
loop formed by lines 30 through 110. In the FOR loop, the memory contents are
placed in X and then divided into two hexadecimal values and stored in P and
Q. On lines 70 and 80, a check is made to determine if the hexadecimal number
fall between A and F. On line 90, the hexadecimal numbers are converted to AS-
CII code. Line 100 prints the address and its contents. The CHRS$ function con-
verts the ASCII code to its character representation.

Given a starting address of &6030 and a byte count of 17, the above program

will give the following display (provided that only the above program is loaded
in the BASIC program area):

36

24624 FF
24625 00
24626 OA
24627 0B
24628 DF
24629 22
24630 41
24631 44
24632 44
24633 52
24634 3F
24635 22
24636 3B
24637 41
24638 0D
24639 00
24640 14

The first code FF in the above display identifies the beginning of your BA-
SIC program. The next two bytes indicate the line number of the first statement
in binary. The following code B is the length of that statement. DF is the intern-
al code for the BASIC statement INPUT. 22 represents a double quotation mark
(" ") and 41 represents the letter A. The subsequent several codes are alphabetic
characters. 0D at address 24638 identifies the end of the statement. 00 and 14
form a pointer to the beginning of the next tine.

Reference: Program Line Format

BASIC program lines are stored in the BASIC program area in memory in
the format shown below.

B ODH
-~ -~
Line number Line Program C/R Line number Line
length length

Fig. 6

As shown above figure, a BASIC program line consists of the line number, line length,
program line, and termination code fields.

37

Using the POKE Statement

The POKE statement loads specified memory location(s) with data byte(s). It
is typically used to bury machine-language code into the BASIC program area.

The POKE statement has two formats:

1. POKE expression, expression
2. POKE expression, expression, ... , expression

The POKE statement in format 1 stores the value of the second expression in
the memory location designated by the first expression. The POKE statement in
format 2 stores the values of the second and subsequent expressions in the con-
tiguous memory locations starting at the address designated by the first expres-
sion. The second and subsequent expressions must be evaluated to values
between 0 and 255.

Enter the following POKE statement for an example:

POKE &6900,&12,&06,&02,&D7,&37

The results of this statement can be examined using the preceding sample
program for the PEEK statement. A sample run is given below.

Sample Run

ADDR? &6900

BYTES? 5
26880 12
26881 06
26882 02
26883 07
26884 37

38

Running a Machine-language Program

User-supplied machine-language programs are executed as subroutines which
are called from BASIC programs. A machine-language program can be loaded
into a free BASIC program area for execution using, for example, the POKE
statement. A machine-language program is started by a BASIC program by
transferring CPU control with the CALL statement.

The CALL statement takes one argument which specifies the starting address
of the machine-language program to be executed and transfers control to that
address. For example, the statement

CALL &6900

initiates the execution of the machine-language program in the program area
starting at address &6900.

Since a machine-language program is a subroutine, it must end with a RTN
machine-language instruction (a machine-language program can have more than
one RTN instruction). When a RTN instruction is encountered during execution,
CPU control is returned to the BASIC program, immediately following the
CALL statement that called the machine-language program.

Several examples for running machine-language programs are given in the
following sections.

39

The CSAVE M Statement

The CSAVE M statement saves the contents of the specified memory area
onto cassette tape in the machine-language format. It has the following general
format:

CSAVE M "filename"; < expression-1 >, < expression-2 >

"filename" is the name of the memory data with which data is to be recorded
on cassette tape. < expression-1 > identifies the beginning of the memory area
and < expression-2 > the end of the memory area. These parameters must be
evaluated to address values. They are required and you must specify both para-
meters.

For the tape formats of the BASIC programs and data, see Appendixes.

40

The CLOAD M Statement

The CLOAD M statement loads cassette tape data into memory in the ma-
chine-language format in the same location at which it was saved. It has the fol-
lowing general format:

CLOAD M "filename"; < expression >

"filename" is the name of the data stored on cassette tape. You cannot omit
the filename. < expression > must be evaluated to an address value. If it is spe-
cified for a machine-language program, execution starts at this address immedi-
ately after the program is loaded (auto start feature).

41

Sample Program 1: Simple Program

The simple machine-language program given below loads a number 6 (6 is
arbitrarily chosen) into the accumulator and places it in memory location 6DF0
in hexadecimal. This location is selected because it is the address that follows
immediately the end of the BASIC variable area and will do no harm to the PC-
1350 when the location is altered. Here is the example machine-language pro-

gram:
LIA 06
LIDP 6DFO
STD
RTN

The LIA instruction loads the accumulator A with immediate number (06).
The LIDP instruction loads the DP register with 2-byte address data (6DFO0).
STD stores the data in the A register in the memory location pointed to by the
contents of the DP register. The last instruction, RTN, returns control to the BA -
SIC program that called this program. When this program is executed success-
fully, a 06 will be placed in memory location 6DF0.

To run the above program, you must "hand-assemble" it, that is, you must
represent the program in code that the PC-1350 can understand. A table such as
shown below will help you assemble the machine-language program.

Addr | Machine Code | label | OP Code | Operand(s) Comments
6900 LIA 06 Data to be stored
LIDP 6DFO
STD
RTN
Table 9

42

The Addr column contains the addresses in memory where the machine codes
are to be placed. The Machine Code column contains hand-assembled codes.
The use of the Label column will be described later. The OP Code column holds
the machine-language instructions in mnemonic form. One machine-language
instruction must be placed in each row. The Operand(s) column contains the op-
erand(s) on which the operation specified by the OP code is to be performed.
Some instructions take one operand and other instructions two. There are in-
structions, such as STD and RTN, which take no operand. The Comments
column may contain any remarks you want to make. You should write down
here what the instruction does for what purposes so that you can later recall
what is going on with the program.

After completing the Addr, OP Code, and Operand(s) columns, translate the
instructions into machine code referring to the PC-1350 instruction descriptions
given in the later portion of this manual. For example, the instruction LIA 06
can be translated into 0206. 02 is the machine code of the LIA instruction and
06 is its operand. Because this instruction takes up two bytes of memory, the ad-
dress of the next instruction must be 6902. Place this address value in the
second row of the Addr column. LIDP is translated into 106DF0 where 6DFO is
the operand of the LIDP instruction and designates a memory location. This in-
struction occupies 3 bytes, so the next instruction starts at address 6905. STD is
1 byte long and has a machine code of 52. Write 52 in the row labeled 6905. Fi-
nally, fill the next row; write down 6906 in the Addr colurnn and 37, which is
the machine code of the RTN instruction, in the Machine Code column.

Addr | Machine Code | label | OP Code | Operand(s) Comments
6900 0206 LIA 06 Data to be stored
6902 106DFO LIDP 6DFO
6905 52 STD
6906 37 RTN

Table 10

43

When the table is completed, load the machine-language program into
memory using a BASIC program. Because this program is fairly short, you
could do it with a single POKE statement. The sample code below uses two
POKE statements for readability.

200: POKE &6900,&02,&06,&10,&6D,&F0
210: POKE &6905,&52,&37
220: END

Enter and run the above program. If the PEEK program which is discussed
previously is still in memory, you can check to see how the program is loaded in
memory.

After making sure that the program code is loaded properly in memory, enter
the following program code:

300: POKE &6DFO0,0

310: PRINT "BEFORE "; PEEK &G6DFO
320: CALL &6900

330: PRINT "AFTER "; PEEK &6DFO0,0
340: END

The above program initializes the "interface" address to 0 and prints its con-
tents before and after a call to the sample machine-language program.

If the program executes successfully, the BEFORE value should be 0 and the
AFTER value should be 6.

44

Sample Program 2: Converting Binary Numbers
to Hexadecimal Numbers

The second sample program converts binary data to a hexadecimal number.
The program is basically identical to the program lines 50 through 90 of the pre-
vious PEEK program, though a different algorithm is used. The program in-
cludes some additional machine-language programming principles.

The program can be divided into several code segments. The first code seg-
ment starts at address 6900 and ends at address 690C. It places F5 in the first
byte position of the preallocated variable Y. F5 identifies that Y is a character
variable (see the description on the BASIC internal variable structure).

The first six instructions load the 16-bit Y register in the internal RAM with
the memory address one byte less than the address of the beginning of the preal-
located variable Y. Although the DP register is normally used to point to
memory locations, it is hard to update its contents. To update the DP register
contents, it 1s most easy to load the DP register with the contents of the X or Y
register which is easy to update. The PC-1350 has many instructions which load
the DP register with the contents of the X or Y register after incrementing or
decrementing the register.

So the Y register is first initialized (6900-6908). The LIA instruction at ad-
dress 6909 loads the required byte (F5) into the A register. The IYS instruction
at address 690B increments the Y register, loads the incremented Y register
value into the DP register and stores the contents (F5) of the A register in the
memory address pointed to by the DP register, that is, the beginning of the
preallocated variable Y (because of the auto increment feature).

Load and run the program segment you constructed so far. Examine the con-
tents of the Y$ variable with the previous PEEK program to see whether F5 is
placed in the correct memory location. Do not forget to clear Y$ with the as-
signment statement Y = 0 or other BASIC statements. This stepwise program-
ming, that is, writing and testing a program in small chunks, is recommended
for building good programs.

45

Addr |Machine Code| Label | Mnemonic | Operand(s) Comments
6900 12 06 LIP 06 Address of YL
02 02 37 LIA 37
04 DB EXAM
05 50 INCP address of YH
06 026C LIA 6C
08 D8 EXAM 6C38=Y$
09 02 F5 LIA F5 char variable header
08 26 IYS store in Y$
690C 106D FO LIDP 6DFO "window" address
690F 57 LDD get byte
6910 34 PUSH save copy
6911 58 SWP set up high nibble
6912 78 69 1D CALL (1) convert high nibble
6915 58 POP get copy
6916 78 69 1D CALL (1) convert low nibble
6919 02 00 LIA 00 00 = end of string
691B 26 IYS place null in Y$
691C 37 RTN return to basic
691D 64 OF (1) ANIA OF mask off top nibble
1F 34 PUSH save copy
20 75 0A SBIA 0A will set carry if result is
negative
22 3A 06 JRC (2) if number is decimal,
jump, if hex, continue
24 58 POP get binary value
25 74 37 ADIA 37 add ALPHA offset
27 2C 04 JR (3)
29 58 (2) POP get binary value
2A 74 30 ADIA 30 add NUMERAL offset
2C 26 (3) IYS store HEX CHAR in Y$
2D 37 RTN return calling routine

Table 11 Binary to Hexadecimal Conversion

46

The next two instructions (addresses 690C-690F) load the contents of the
window into the accumulator (A). The PUSH instruction saves the copy of the
accumulator onto the stack. Do not forget to pop out this data at a later time;
otherwise, the correct return address could not be set up when a later RTN in-
struction is executed.

The SWP instruction exchanges the higher and lower nibbles of the byte in
the accumulator. The subroutine at addresses 691D through 6920 converts the
lower nibble in the accumulator into a hexadecimal character.

The CALL instruction is used to invoke a subroutine in external RAM
memory (CALL may be used to call a program in memory below 1FFF). The
CALL instruction, like the BASIC CALL statement, requires an absolute ad-
dress argument. To give the correct address argument to the CALL instruction
during hand assembly, leave two bytes of space after the operation code of the
CALL instruction (78). When the address of the target subroutine is later estab-
lished, fill this space with that address. In this example, the two CALL instruc-
tions at addresses 6912 and 6916 invoke the subroutine that starts at address
691D.

The first subroutine call converts the higher nibble of the accumulator to its
hexadecimal character representation and places it into memory addressed by
the Y register. The subsequent POP instruction gets the copy of the byte saved
by the PUSH instruction at address 6910. The second subroutine call now con-
verts the lower nibble of the byte to its hexadecimal character representation.
The two instructions at ad dresses 6919 and 691B place a null character (00) in
memory after the two hexadecimal characters. A null character identifies the end
of a character string. The subsequent RTN instruction returns control to the BA-
SIC program that called this machine-language program.

The subroutine between 6910 and 6920 does the binary-to-hexadecimal con-
version. The subroutine first tests the given nibble to see whether it is greater
than 9. If it is smaller than or equal to 9, the subroutine adds a constant 30 in
hexadecimal to the nibble to put it in the range 30 to 39 in hexadecimal, which
correspond to the ASCII numeric characters 0 to 9. If the nibble is greater than
9, the subroutine adds a hexadecimal constant 37 to put the nibble in the range
of 41 to 46 which correspond to the ASCII letters A to F.

47

The ANIA instruction at address 691D masks off the higher nibble to leave
the lower nibble in the accumulator. Subsequently, the nibble is saved for later
processing. The nibble in the accumulator is then checked whether it is greater
than 9 by subtracting 10 (OA in hexadecimal). If the nibble is smaller than or
equal to 9, an offset for letters is added to the nibble. If the nibble is greater than
9, which is indicated by the carry flag being set, the program jumps to the in-
struction identified by label (2) to bypass the above-mentioned conversion step.
The JRC* instruction tests the carry flag and, if it is set, causes control to trans-
fer to the location (address 6929 in this example) identified by the operand field
of the instruction.

The code from addresses 6924 to 6928 converts a hexadecimal number to a
ASCII letter by adding an offset for letters (37 hex). The POP instruction at ad-
dress 6924 restores the hexadecimal number into the accumulator.

The code from addresses 6929 to 692B simply converts a hexadecimal num-
ber to its ASCII equivalent by adding an offset for ASCII code (30 hex).

The result of the conversion is stored in the BASIC variable Y$ by the IYS
instruction at address 692C. The subroutine is then exited by the RTN instruc-
tion at address 692D.

* Relative versus absolute jumps

The PC-1350 has two types of jump instructions: absolute jumps and relative
jumps. The absolute jump instructions require a 2-byte operand while the relat-
ive jump instructions require a 1-byte operand. In either case, the value of the
operand is algebraically added to the PC during execution so that execution con-
tinues at a nonsequential address.

To determine the value of the operand of a relative instruction, find the ad-
dress of the destination and subtract from it the address where the operand is to
be placed, that is, the address of the relative instruction plus 1. In this sample
program, the address of the operand is 6923 and the destination address is found
to be 6929 in hexadecimal, so the value of the operand is calculated as 6929 -
6923 = 6.

Relative jumps are trickier to calculate and are more likely subject to errors

48

than absolute jumps. A thumb of rule is to first write a program using only abso -
lute jumps. After the program is extensively tested and proved to run normally,
substitute relative jumps for absolute jumps. The advantages of relative jumps
are that they take less memory and execute a little faster than absolute jumps
and that they need not be modified when a program is to be relocated in
memory.

The sample program below illustrates how to use the machine-language pro-
gram from a BASIC program. The program asks for the starting address of the
data to be converted to ASCII characters. Then it fetches a byte from the spe-
cified data area with the PEEK function, places it in the window at 6DF0 with
the POKE statement, and calls the machine-language program at address 6900
with the CALL statement. The PRINT statement on line 70 displays the results
of the conversion stored in string variable Y$. The program repeats the above
sequence for the specified number of bytes.

10: INPUT "ADDR?"; A
20: INPUT "BYTES?"; B
30: FOR I=0 TO (B-1)
40: X=PEEK (A+l)

50: POKE &BDFO0, X
60: CALL &6900

70: PRINT (A+1);" ":Y$
80: NEXT |

90: END

The machine-program can be loaded into memory using the BASIC program
given below.

400: POKE &6900,&12,&06,&02,&37,&DB,&50

410: POKE &6906,&02,&6C,&DB,&02,&F5,&26

420: POKE &690C&10,&6D,&F0,&57,&34,&58,&78,&69,&1D
430: POKE &6915,&5B,&78,&69,&1D,&02,&00,&26,&37
440: POKE &691D,&64,&0F,&34,&75,&0A,&3A,&06

450: POKE &6924,&5B,&74,&37,&2C,&04

460: POKE &6929,&5B,&74,&30,&26,&37

470: END

49

PC-1350 1/0

The PC-1350 is provided with several I/O devices. The I/O devices include a
keyboard, a liquid Crystal Display (LCD), a serial interface, and a cassette re-
cord.

The following sections describe the PC-1350 I/O devices with sample driver
programs.

52

LCD Display

The PC-1350 employs an LCD display consisting of 150 dots horizontally
and 32 dots vertically. Each dot on the screen is mapped into a bit in video
memory; that is, a dot is turned on by setting on the corresponding bit in video
memory. The video memory starts at address 7000 in hexadecimal. A vertically
aligned 8 dots form a display pattern as shown in the figure below. A display
pattern is represented by a number consisting of 8 video memory bits with each
bit assigned a weight as shown in the figure. The LCD video RAM map is
shown below.

~— 30 dot —. — 30 dot — — 30 dot — .— 30 dot —. ,— 30 dot —.

{ & & & & & & & & & &
8 dot| & 63 3 4 i ¢ & 4
g ™= 94pf ™~ Hg ™™ 30 T "qa ™ 3
l 0 D O D O D O D 0O D
[- e R e R -
7 3 7 3 it F.i7 7. 7 7
8 dot| O —~— 0 2 ~~ 2 4 -~ 4 6 —~ 6 8 —~— 8
a4 5 4 5 4 5 4 5 4 5
0 D O D O D 0 D O D

& & & & & & & & &
7 7 7 7 i 7 i 7 7
0 2 T 2 4 4 6 B B8 o g
7 5 7 5 7 5 7 5 7
B E B E B E B E B
=
L&EA
&75
&7E
Fig. 7 LCD Video RAM Map

53

The LCD display is controlled by the lowest order bit of internal RAM loca-
tion 5F in hexadecimal. Turning on bit 0 of address SF enables the display and
turning off bit 0 disables the display. The program given below turns on the
LCD display.

Addr Machine Code | OP Code | Operand(s)
6900 125F LIP 5F
6902 6101 ORIM 1
6904 DF ouTC
6905 37 RTN

Table 12

This program outputs the contents of internal RAM location 5F with its bit 0
set to 1 to enable the LCD display. Note the use of the ORIM instruction. It sets
bit 0 of the internal RAM location addressed by the P register with the other bits
left intact.

The above code can be called as shown in the following sample program:

500: POKE &6900,&12,&5F,&61,&01,&DF,&37

510: END

520: CLS

530: CALL &6900

540: POKE &7000,&01,&02,&04,&08,&10,&20,&40,&80,&00,&FF
550: GPRINT

560: END

The POKE statement on line 500 loads the machine-language program in
memory at address 6900 in hexadecimal. The CALL statement on line 530 calls
the machine-language program to enable the LCD display. The data to be dis-
played on the screen is placed on the screen by the POKE statement on line 540.
The GPRINT statement on line 550 turns on the screen accordingly.

54

The Keyboard

The PC-1350 keyboard has two groups of keys. One group of keys are
scanned and read via the input/output lines IA1 through A8 (the keys that form
a triangle in the key matrix diagram given at the end of this manual). The other
group of keys are scanned by the scan signals KO1 through K07 that are sent
from an I/O port under program control, and read from lines IA1 through IA7
(see the key matrix diagram).

Key data from the first key group can be read by first sending the contents of
the CPU IA port register at internal RAM address SCH as a strobe signal and
taking in the contents of the same IA port into the A register with an INA in-
struction. For example, the following machine-language code can be used to
read only the ENT key data:

LIP 5CH
LIA 8 Sends strobe signal I1A4 from |A port register.
EXAM
OUTA
LOOP
WAIT 30 Wait.
INA
TSIA 10H Read in and test bit IAS in A
JRZ LOOP register and repeat if IA5 is zero.
RTN

If the ENT key has been pressed, the INA instruction in the above code
should place code 18 in hexadecimal in the A register. This is because the INA
instruction reads in bit IA4 that has been set as a strobe signal. Also note that bit
8 (most significant bit) of the IA port at address SCH corresponds to IA8 (most
significant bit) of the CPU A register and that bit 1 (least significant bit) of the
IA port corresponds to IA1 of the CPU A register.

95

The second group of keys are scanned by strobe signals K01 through KO07.
These signals are generated by writing appropriate scan data into the key port
that is located in the RAM are a between 7EO00H through 7FFFH. Keyed in data
can be read by taking in the contents of the IA port that are connected to lines
IA1 through IAS into the A register using an INA instruction.

Since the key port address is duplicated in memory addresses between
7EO00H through 7FFFH, you can specify any address within this area as the key
port. The relationship between the strobe data bits and the lines KO1 through
K07 is shown below.

MSB LSB
Data bits Bit 8 Bit7 <—> Bit1
K01-KO07 bits KO7 =<-——» KO1

Here are sample programs for generating scan signals.
Example 1: Generating K02

LIDP 7EOOH
LIA 02H
STD

Example 2: Generating K06

LIDP 7FO0OH
LIA 20H
STD

56

The Serial Interface

The PC-1350 has one serial interface as a serial port. It uses asynchronous
(start/stop) communication and supports only the half-duplex mode. The major
specifications of the PC-1350 serial interface are given below.

1. Communication mode: Start-stop system, Half-duplex mode
2. Baud rate*: 300, 600, 1200 bauds
3. Data length *: 7 and 8 bits
4. Parity*: Odd, even, none
5. Stop bits*: lor2
6. Connector: Dedicated 15-pin connector (see figure below.)
7. Output level: C-MOS level (4 to 6 volts)
8. Interface signals: Input: RD, CD, CD
Output: SD, RS, RR, ER
Others: SG, (FG), VC
%

: Items marked by an asterisk are software programmable.
(1) Serial Interface Connector
The PC-1350 is furnished with a 15-pin connector for the serial interface. It is

located on the right side panel of the main unit. The serial interface connector is
shown below.

LCD

— — SENE,
4‘ PC-1350 right side panel

Pin Mo. 15 Pin No. 1

Fig. 8 Serial Interface Connector

The PC-1350 uses eight pins out of the 15 pins. The pin assignments and
their definitions are summarized in the table below.

o7

No. Signal Name Symbol Direction Description

1 Frame Ground FG Protective ground.

2 Transmit Data SD Output | Output data.

3 Receive Data RD Input Input data.

4 Request to Send RS Output Set on in the transmit mode and off in
the receive mode.

5 Clear to Send CS Input Response signal to send request. A 1
indicates that the PC-1350 can send
data.

7 Signal Ground SG Signal ground. Gives the reference
voltage for the interface signals.

8 Carrier Detect CD Input A 1 enables the PC-1350 for recep-
tion and a 0 disables the PC-1 350 for
reception.

11 Receive Ready RR Output |When set to 1, indicates that the PC-
1350 is ready for reception.

14 Equipment Ready ER Output |When the serial port is selected, set
on to indicate that the PC-1350 is
ready for communication.

10&13 VvC Power source.
Table 13
Notes:

1. Other pins are not connected inside the PC-1350.

2. Pins are at the VC level when they are set on and at the SG level when they
are off.

3. Applying a source voltage beyond the permissible range (i.e., voltage differ-
ence across VC and SG) may cause damage to the PC-1350 electronics as it
1s made up of C-MOS components. Take extreme care when connecting the
connector to an external device.

58

(2) Connection
* Connecting a PC-1350 to another PC-1350 or a Sharp PC-5000

The wiring diagrams for connecting your PC-1350 to another PC-1350 and a
Sharp PC-5000 are shown below.

PC-1350 to PC-1350 PC-1350 to PC-5000
SD SD SD SD
RD>< RD RD><RD
RS RS RS RS
CS CS CS Cs
SG SG DR DR
CD CD SG SG
RR RR CD CD
ER ER RR RR

ER ER

Caution: A voltage level shifter is required when connecting your PC-1350 to a
terminal device other than PC-1350 (e.g., PC-5000). An attempt to connect the
PC-1350 to such a device may damage the PC-1350 interior.

59

(3) Programming the Serial Interface

Before communicating with an external device through the serial interface, it
is necessary to execute an OPEN statement. Executing an OPEN statement sets
the ER line to ON. The ER line remains on until a CLOSE statement is ex-
ecuted.

* Sending Data

Figure 9 shows the flowchart of the monitor program for sending data from
the serial interface. It is assumed that the ER line has been turned on.

The send program checks the CS line every time it sends a byte. The CS sig-
nal cannot be ignored; the serial interface will not send a byte if the CS line is
off. The monitor subsequently enters the wait state. Since the