
Continuous time control charts:
generalizations and an application to the Dutch

Arthroplasty Register (LROI)

D. Gomon

Thesis supervisor: dr. S.L. van der Pas

Master thesis

April, 2021

Specialization: Data Science

MATHEMATICS
&

STATISTICAL SCIENCE
FOR THE LIFE AND BEHAVIOURAL SCIENCES



Foreword

This thesis was written in support of graduation for the MSc. Mathematics and MSc. Statistical
Science programs at Leiden University.

This project was undertaken in order to improve the quality of transplantation surgery performed
in the Netherlands. The first task was to write a research application form in order to get approval
from the LROI [1] to use their data for this purpose. Luckily, our application was approved. To
write this proposal we started with researching relevant literature in the field of medical statistics. We
decided to base our research on an existing method for medical monitoring: a CUSUM monitoring
scheme developed by Biswas & Kalbfleisch [3]. The main theoretical contribution towards the field is
the development of two generalizations of this method, which we call the continuous time (maximized)
generalized likelihood ratio charts. A simulation study was devised to assess these new charts and
compare them with the existing method. To ensure feasible computation times, quite a lot of code
optimisation had to be performed.

Afterwards, a more practical direction was taken. The available data set was analysed and cleaned.
A decision was made about which performance measures are of interest. Afterwards, the previously
mentioned methods were applied to the data. To compare with current practices at the LROI, their
current inspection scheme was also considered. Finally, another simulation study was thought out and
performed in order to simulate a realistic scenario.

Finally, the core findings were reported in this thesis. In the near future, we will discuss our
findings with the LROI in order to give recommendations for further monitoring of transplantation
surgery.

The R code used for this thesis can be requested from Daniel Gomon by sending an e-mail to
daniel.gomon@hotmail.com.
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Abstract

In recent years, monitoring the quality of medical care has become of interest in multiple countries. An
example is the Dutch Arthroplasty Register (LROI) [1], which keeps records of all joint transplantation
surgery performed in the Netherlands. In order to contribute to the monitoring of transplantation
surgery, the main goal of this thesis is to detect an increase in the failure rate of prostheses at a
hospital as soon as possible.

In light of this mission, we consider a current procedure employed for this purpose: the Bernoulli
cumulative sum (CUSUM) chart [2]. After exploring several properties of this method, we argue that
it is not optimal for the problem at hand due to the survival nature of the data. For this reason we
consider a risk-adjusted continuous time extension of the CUSUM for survival outcomes (CTCUSUM),
developed by Biswas & Kalbfleisch [3].

The CTCUSUM chart requires an assumption as to the degree of a future increase in failure
rate. The assumption is made by choosing a parameter in advance, requiring prior knowledge about
the problem at hand. To mitigate this need of prior knowledge (which is often not available), we
propose two generalizations of the CTCUSUM named the continuous time (maximized) generalized
likelihood ratio (CT(MAX)GLR) charts. A theoretical approximation is made to the average run
length (average time to detection) for both these charts. Conveniently, this approximation also yields
an expression for the average run length of the CTCUSUM chart. Finally, theoretical bounds are found
for the asymptotic expected value of the CT(MAX)GLR chart. The obtained theoretical quantities are
assessed by means of a simulation study. The loss in detection speed for not, or incorrectly, choosing
the expected increase in failure rate is discussed.

The previously mentioned charts are applied to a data set from the LROI and compared with the
current procedure in place at the LROI: funnel plots. We find that detection times can be greatly
improved by employing the described continuous time charts, yielding up to 15 months (median) earlier
signalling of problematic hospitals. Since no information is available on whether hospitals experienced
a drop in their quality of care, an additional simulation study is performed where the power, sensitivity
and specificity of the CTCUSUM and Bernoulli CUSUM is compared. The CTMAXGLR is not
included in the simulation study, as it is very computationally demanding. Finally, recommendations
are made for further monitoring of arthroplasty outcomes specifically and for practitioners in general.
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Notation

Patient Characteristics

Xi Survival time of patient i
Si Chronological time of entry into study of patient i
Ti Chronological time of failure of patient i
Ci Chronological time of right-censoring of patient i
Zi Covariate vector of patient i
Symbols

h Control limit for control charts
θ0, θ1 Null and alternative hypothesis values for CUSUM charts (θ = θ1)
θ Either the value of θ chosen for a CUSUM chart, or θ1

µ True value of the relevant parameter
ψ Poisson arrival rate (daily or yearly)
β Risk-adjustment coefficient vector
C Constant indicating up until how many years post primary procedure a failure is qualifying
t Value of (relevant) time
n Number of observations (total or at relevant time t)

θ̂t Maximum likelihood estimate of θ at time t, see 6.2.1
γu Defined in (39)
Functions

ND
i (t) Failure indicator for patient i at time t

ND(t) Amount of failed patients at some hospital D at time t (=
∑

iN
D
i (t))

h0(t) Non risk-adjusted baseline hazard rate at time t
hθi (t) Risk-adjusted hazard rate at time t for patient i with covariates Zi

and multiplied by eθ (= h0(t)eβZieθ)
H0(t) Non risk-adjusted cumulative baseline hazard at time t
Hθ
i (t) Risk-adjusted cumulative baseline hazard at time t for patient i with covariates Zi

and multiplied by eθ (= H0(t)eβZieθ)
Yi(t) Indicator whether patient i is active at time t
Λθi (t) Cumulative intensity of patient i at time t with excess risk factor eθ

A(t) Summed baseline cumulative intensity at some hospital (=
∑

i Λi(t))
I(θ, t) Fisher information in all observations at time t

I(θ, t)
Fisher information in all observations at time t,
divided by amount of total observations n at time t

Acronyms

ARL Average run length
SPRT Sequential probability ratio test
CUSUM Cumulative sum (chart)
GLR Generalized likelihood ratio (chart)
MAXGLR Maximized generalized likelihood ratio (chart)
CT(XXX) Continuous time (XXX) (chart)
ML(E) Maximum likelihood (estimate)
RA Risk-adjustment
Cox PH Cox proportional hazards
Terms

(in)active A patient is active after entering into the study up until time of failure or censoring,
otherwise a patient is inactive.

discrete time
CUSUM

Cumulative sum chart as in section 4.2

discrete time
GLR

Generalized likelihood ratio chart as in section 4.3

Bernoulli CUSUM Cumulative sum chart for Bernoulli outcomes
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1 INTRODUCTION

1 Introduction

A cumulative sum chart (CUSUM) is a chart commonly used in medical fields to determine whether
the quality of treatment has diminished (or improved) over time. Despite this, the CUSUM does
not originate from the medical field, but from the 20th century industrial revolution. During this
industrial revolution many processes involving machinery had to be monitored ensuring that the
production was operating efficiently, thereby reducing waste [4]. Consequently, the CUSUM chart was
not developed with survival outcomes in mind. For medical purposes however, survival outcomes are
of great interest, as often the duration of a patient’s survival after their treatment begins is observed.
Due to this, current medical CUSUM inspection schemes are forced to consider whether patients have
died C years after their primary procedure. By doing so, the information provided by the survival or
death of said patient are ignored until C years post procedure. To overcome this problem, continuous
time extensions of the CUSUM will be the core topic of this thesis. In these continuous time charts
patients are considered at all times, incorporating the information provided by the survival of patients
at any time. The goal is to improve on the detection speed and power of the CUSUM chart in
monitoring the quality of transplantation surgery at the Dutch Arthroplasty Register (LROI [1]) by
considering these continuous time charts, thereby increasing the quality of transplantation surgery in
the Netherlands.

1.1 The cumulative sum chart

An important step towards the discovery of CUSUM charts was the development of the sequential
probability ratio test (SPRT) in 1945 by Wald [5]. The SPRT can be used to test the hypotheses
(H0 : µ = θ0, H1 : µ = θ1) whether the rate (parameter) of a process has changed, for example by
testing whether a cereal production line puts the right amount of cereal into the box [4]. Using the
SPRT one can conclude that the process is in control (operating efficiently) or out of control (operating
inefficiently), accepting or rejecting the null hypothesis respectively.

Later, Page [2] extended the SPRT to another setting. In this setting the process was assumed
to be in control until a signal was produced indicating that the process was out of control. Under
these assumptions, this method could be used to continuously monitor for an unfavourable change in
parameter. Page named this statistical procedure the CUSUM.

A CUSUM chart for detecting an increase in parameter is shown in Figure 1. The procedure is
quite simple: any unfavourable outcome (for example death) leads to a rise in the value of the chart,
depending on the likelihood of observing this outcome for said individual. This likelihood might
depend on some of their properties (called covariates). Any favourable outcome (such as remission)
leads to a decrease in the value of the chart, depending on some covariates. In Figure 1 the chart
reaches zero at observation four. With a SPRT we would conclude that the process is in control.
On the other hand, a CUSUM chart is aimed at detecting a decrease in quality. Therefore, we keep
observing outcomes until the control limit (denoted by h) is passed. In Figure 1, the CUSUM chart
crosses the control limit at observation seven, signalling a decrease in quality. It is also possible to
simultaneously construct a CUSUM chart for detecting an increase in quality, which can be plotted
besides (mirrored underneath) the current chart. This will not be of interest in this thesis.

Finally, in the late 1990’s the case of Harold Shipman, a general practitioner who is thought to
have murdered up to 250 of his patients without being detected, was the cause of outrage in a town
in the United Kingdom. Spiegelhalter et al. [6] argued that Shipman’s malpractice could have been
detected substantially sooner, had a CUSUM monitoring scheme been in place. Besides criminal
medicine, quality control in many other medicinal applications is rapidly gaining in popularity. As an
example, the Scientific Registry of Transplant Recipients [7] in the US uses monthly CUSUM charts

1



1.2 Drawbacks of the CUSUM in medical monitoring 1 INTRODUCTION

Figure 1: Example of a CUSUM chart. An unfavourable outcome (i.e. death, complications) increases
the value of the chart, while a favourable outcome (i.e. remission) decreases the value of the chart.
The chart produces a signal when it crosses the value of the control limit h, which is chosen in advance.

in its assessment of almost all transplant surgeries.

1.2 Drawbacks of the CUSUM in medical monitoring

As the CUSUM is used to test a point hypothesis of a change in parameter, one of the biggest
drawbacks in medical monitoring is the necessity to quantify the expected loss in the quality of care
by choice of parameter values. Aside from choosing some required standard of care (in the form of
θ0), it is often unclear at what threshold the quality of care is no longer acceptable, complicating the
choice of θ1. In addition, the choice of control limit h directly influences the sensitivity, specificity and
detection speed of the chart.

Besides the mentioned complication, many applications in medicine involve survival outcomes.
With survival outcomes, the survival of the patient after the first treatment (procedure) is of interest.
The CUSUM chart described above can only be constructed at times when an outcome is observed.
Instead of waiting for the failure time of each patient, current CUSUM charts in medical monitoring
consider whether patients have failed C years post primary treatment. This procedure is called the
Bernoulli CUSUM. The necessity to dichotomize the outcomes after C years comes from the low failure
rate of patients in most medical applications, as will be the case in our data set of interest (1.7% in
the first year post procedure). For arthroplasty outcomes, C = 1 is chosen most of the time [3] [8],
meaning that a patient is only considered 1 year after the procedure has passed. Consequently, the
information provided by their survival or death up until that point is ignored. On top of this, any
failure past the one year mark will not be incorporated into the value of the chart, possibly leading
to detection delays.

2



1.3 Main goal of thesis 1 INTRODUCTION

1.3 Main goal of thesis

The main goal of this thesis is to increase the practical utility of CUSUM charts, by tackling two of
their inherent problems:

1. The need to quantify the expected increase in failure rate (choice of θ1 in advance).

2. The inability to continuously incorporate survival information into the chart.

In practice this means that in the improved methods every patient will be able to continuously con-
tribute to the value of the chart as well as removing the need to specify an expected increase in failure
rate, thereby allowing for the detection of any kind of deterioration. These improvements will be
achieved by combining the work of Wald [5] and Biswas & Kalbfleisch [3] into two chart, which wil
be called the continuous time (maximized) generalized likelihood ratio (CT(MAX)GLR) charts. The
CTGLR can be used to test for an immediate change in failure rate, while the CTMAXGLR can be
used to test for a delayed change in failure rate (similar to the CUSUM procedure).

Wald has developed a chart which Kok [9] calls the maximized generalized likelihood ratio test,
which “automatically” selects a value for the alternative by means of a maximum likelihood estimate.
Biswas & Kalbfleisch [3] combined their knowledge of survival analysis with the theory of CUSUM
charts to arrive at a continuous time CUSUM chart (CTCUSUM). The CTCUSUM implements the
knowledge that an individual has not failed yet into its value at any given time, aimed at increasing
the power and detection speed of the chart. An example of such a chart is given in Figure 2. Contrary
to the discrete time CUSUM chart, the CTCUSUM chart always rises by the chosen value of θ1 when
a failure is observed. Afterwards, the chart drifts downwards depending on the amount of people at
risk, and their likelihood of failure in that timeframe (depending on some covariates). Combining
these two properties, the CT(MAX)GLR chart automatically selects an appropriate value for θ1, as
well as incorporating survival outcomes into the chart.

1.4 Results and recommendations

The main theoretical result of this thesis is the asymptotic distribution of the CTGLR chart in section
6, which allows us to find an upper bound for the out of control asymptotic average run length of
the CTMAXGLR and CTCUSUM charts, indicating how quickly a signal can be expected under the
alternative hypothesis (of an increase in failure rate). In section 6.10, we show that asymptotically
the CTMAXGLR enjoys quicker detection times when the expected increase in failure rate (θ1) is
chosen wrongly in the CTCUSUM chart. By means of simulation we confirm this finding. Asymptotic
bounds for the expected value of the CT(MAX)GLR chart are found and assessed using a simulation
study in section 7.

Having found these results, a more practical direction is taken in section 12. We apply the CT-
CUSUM and CTMAXGLR to a data set from the Dutch Arthoplasty Register (LROI) [1]. This data
set contains information about hip replacement surgeries in hospitals all over the Netherlands. We
compare these charts with respect to the Bernoulli CUSUM and funnel plot currently employed by the
LROI [10] [11]. We find that major improvements in detection speed can be achieved by employing
the new charts. In the first three years of data the Bernoulli CUSUM leads to a median 9 months
faster detection compared to the funnel plot, improved by the CTCUSUM by another 6 months (me-
dian) and on top of that improved by the CTMAXGLR by 5 months (median). Unfortunately, these
come at the cost of possible false detections past the three year margin. As we lack information on
the true rate of failure at hospitals, it remains unclear how many false detections any of the charts
produce. By means of simulation we compare the power of the CTCUSUM with that of the Bernoulli
CUSUM in section 13, as well as comparing them on sensitivity under restrictions on their specificity.
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Figure 2: Example of a CTCUSUM chart. An unfavourable outcome (i.e. death, failure) increases
the value of the chart. The chart drifts downwards depending on the amount of people at risk, and
their likelihood of failure at that time. The chart produces a signal when it crosses the value of the
control limit h, which is chosen in advance.

The CTMAXGLR is left out of consideration due to its demanding computational requirements. We
conclude that the CTCUSUM is the more powerful chart with quicker detection times, especially for
hospitals with a small number of patients per time unit.

Finally, to assess the false detection rate of the (continuous time) CUSUM charts, we perform a
“realistic” simulation study in section 13.4 where the true rate of failure at hospitals is known. Drawing
from the result of this study, recommendations are made towards further monitoring of arthroplasty
outcomes in section 14.1.
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1.5 Reading guide

This thesis is split into two parts:

1. Part I focusses on the theoretical development of the CTCUSUM and CTMAXGLR charts,
deriving the charts and proving some of their properties. Sections 2 and 3 introduce some basic
theory necessary for later proofs and understanding. Section 4 introduces the reader to the theory
available on likelihood ratio tests for discrete time outcomes (such as the SPRT and CUSUM).
Section 5 explores the CTCUSUM developed by Biswas & Kalbfleisch [3]. The CTGLR and
CTMAXGLR are derived in section 6, as well as some of their properties. Finally, in section 7
a simulation study is performed to assess the obtained results and a conclusion is formulated in
section 8.

2. Part II introduces the funnel plot currently employed by the LROI in section 9. Then the theory
from part I about CUSUM and CTCUSUM/CTMAXGLR charts is summarized in sections
10 and 11 respectively. These methods are applied to the data set and compared on various
indicators in section 12. Afterwards, a simulation study on the basis of this data set is performed
in section 13. Final conclusions and recommendations for practice are then given in section 14.

Readers from the Mathematics committee should read the whole of part I, meaning sections 2 - 8.
If the reader is interested in a practical application, part II is also recommended.
Readers from the Statistical Science committee should read section 2 and skip the rest of part I
to continue in part II, meaning sections 9 - 14. If the reader is interested in the specifics of the shown
properties for the charts, the rest of part I is recommended.
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2 SURVIVAL ANALYSIS

Part I

Mathematical theory and simulations

In this part of the thesis we first introduce some theory on survival analysis in section 2, followed by
a small amount of theory about renewal processes and queueing theory in section 3, before arriving at
section 4, where we present and shed some light on a few likelihood ratio tests. These three sections
introduce the reader into the theory necessary to understand the CTCUSUM developed by Biswas &
Kalbfleisch [3], which is introduced in section 5. Their method can be used to sequentially test for a
change in the rate of some statistical process, and will form the basis for our further developments.
These first few chapters can be seen as a reiteration of relevant existing theory in the field.

In section 6 we present, to the best of our knowledge, a new method called the CT(MAX)GLR
which is based on the CTCUSUM. Besides this, we show some (asymptotic) properties of the CT(MAX)GLR.
Finally, we compare the theoretical results of our method with the theoretical results obtained by
Biswas & Kalbfleisch [3]. To asses whether the developed theory can be applied in practice, some
simulations are performed in section 7. Here we primarily assess how the CT(MAX)GLR compares to
the CTCUSUM in terms of detection speed, under the assumptions of the models. Besides this we de-
termine whether the assumptions made to develop the theory are realistic and confirm our asymptotic
results.

Whereas part I of this thesis focusses on our theoretical developments in the field, part II will
focus on applying the developed methods to a real-life data set and comparing the results with that of
methods currently employed to monitor arthroplasty outcomes and other medical data sets involving
survival outcomes.

2 Survival analysis

Some background theory on survival analysis will be introduced in this section. This theory will be
based on the book written by Klein & Moeschberber [14]. It will be key in the transformation of the
discrete time CUSUM (section 4.2) into the continuous time CUSUM (section 5) and finally into the
continuous time (MAX)GLR (section 6), which is one of the main results of this thesis.

2.1 Survival function

In survival analysis we consider the time until some event of interest occurs, which as the name
’survival’ implies is often the death of an individual. In statistics we often assume a certain underlying
outcome distribution for the observed variables. Suppose the time to death X has a certain underlying
distribution F and density function f . In this thesis we will restrict ourselves to continuous survival
times. Sometimes we are more interested in the survival function S given by:

S(t) = P(X > t) = 1− F (t) =

∫ ∞
t

f(s)ds.

This quantity tells us the probability that an individual will survive beyond time t, which is a contin-
uous strictly decreasing function. From the equality above we recover the relationship:

f(t) = −dS(t)

dt
.
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2.2 Hazard function

An important quantity throughout this thesis is the hazard function h, also known as the hazard
rate, which is not to be confused with the hazard ratio. It is given by:

h(t) =
f(t)

S(t)
= −d ln(S(t))

dt
= lim

∆t→0

P(t ≤ X ≤ t+ ∆t|X > t)

∆t
. (1)

The hazard function is therefore the probability of instantaneous death given that the individual has
survived to see present time, divided by the limit of an infinitesimally small time difference to zero.
The hazard function must be non-negative. Additionally we define the cumulative hazard function
H as:

H(t) =

∫ t

0
h(s)ds = − ln(S(t)).

This allows us to recover the survival function as follows:

S(t) = e−H(t).

2.3 Competing risks

Sometimes we are interested in multiple possible events for an individual, called competing risks.
An example would be that a patient can either go into remission or pass away after treatment has
taken place. We are interested in the outcome of both events as the occurrence of either will prevent
us from observing the other outcome. Suppose we have K competing risks. Then we observe the
minimal failure time from any of these risks, Y = Min(Xi, ..., XK) with Xi the time to occurrence of
the i−th risk. The cause-specific hazard rate for risk i is then given by:

hi(t) = lim
∆t→0

P(t ≤ Y < t+ ∆t, δ = i|Y > t)

∆t

with δ ∈ {1, ...,K} indicating the cause of failure. The interpretation of this quantity is similar to
above, but now restricted to one specific cause of failure. The overall hazard rate is given by:

hY (t) =

K∑
i=1

hi(t).

Similarly to above the cause specific cumulative hazard function is given by:

Hi(t) =

∫ t

0
hi(s)ds

and the survival function is given by:

S(t) = e−
∑K
i=1Hi(t).

Finally, we write the cumulative incidence function Fi as:

Fi(t) = P(Y ≤ t, δ = i) =

∫ t

0
hi(s)e

−HY (s)ds

where HY (t) =
∑K

i=1

∫ t
0 hi(s)ds. The cumulative incidence function is not a real distribution function

as it does not necessarily converge to 1 but instead converges to the probability of observing cause of
failure i, it can therefore be interpreted as the distribution function associated with cause of failure i
when there are multiple possible causes of failure.
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2.4 Censoring

Something which is often present in survival data is that observations can be censored. This happens
when we know the survival time of individuals only when it has taken place within a certain interval.
Often this occurs in medical trials where the follow-up will only span a fixed time period, say 4 years.
In that case we can only know the survival time for individuals who have started treatment within
this period if they have had an event within 4 years after starting the study. This type of censoring is
known as right censoring. Similarly we may know that an individual has had an event within the
period of the study, but not know when treatment first began. This would be called left censoring.
In this thesis we will focus solely on right censoring.

In right-censored data each individual has two quantities of interest; the lifetime X and some
censoring time Cr. The observed lifetime is given by Y = min(X,Cr). In this case the observed
lifetime Y will only be equal to the exact lifetime X when X ≤ Cr. In this thesis we will consider
censoring in the context of clinical procedures. This means that every individual is censored at the
end of the clinical follow-up period or due to some personal/medical reason, such as emigration or
drop-out.

2.5 Likelihood construction

For the techniques considered in this thesis it will be of great importance to construct the likelihood
function for survival data. As we do not have full information about all the lifetimes, the likelihood is
slightly different than usual. A very important assumption for the likelihood function in this case is
that the lifetimes and censoring times of individuals are independent. When we observe the lifetime
Xi of an individual i, his/her component in the likelihood function will be given by f(xi) as usual,
where f is the density function of the survival times. When an individual i has their observed lifetime
right censored and we observe Cr,i; the component in the likelihood will be S(Cr,i) as we know that
the real lifetime is larger than Cr,i. This way we can determine the likelihood by combining these
components:

L ∝
∏
i∈D

f(xi)
∏
i∈R

S(Cr,i) (2)

where D is the set of individuals who have had their true lifetimes observed and R is the set whose
observation was right-censored.

2.6 Regression models

In real life (medical) data each individual i often has a vector of characteristics Zi (called covariates
or explanatory variables). Some of these covariates may have an association with the survival time
of said individual. An example of this would be that smokers are more prone to developing lung
problems, therefore a person who smokes will most likely have a lower survival time when we consider
lung illness as outcome. A way to account for this is by including these covariates into the model used
to describe the survival times. We will discuss one widely used model in this section.

2.6.1 Cox proportional hazards

This semi-parametric model as introduced by Cox [15] is given by defining the hazard rate in terms
of the baseline hazard rate h0(t):

h(t|Z) = h0(t)eβZ .
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Note that the baseline hazard rate can be parametric as well as non-parametric. The most important
property of this model is that the hazard rates for two individuals are proportional at all times:

h(t|Z1)

h(t|Z2)
=
h0(t)eβZ1

h0(t)eβZ2
=
eβZ1

eβZ2

which is quite a strong assumption. From this we have that:

S(t|z) = S0(t)e
βZ
.

At times we will be interested in estimating the baseline (cumulative) hazard rates. Tsiatis [16]
has shown asymptotic normality and some other properties for the estimator of the cumulative hazard
function as proposed by Breslow [17], which is given by:

Ĥ0(t) =
∑
i∈D(t)

1∑
j∈R(ti)

eβ̂Zj

with β̂ the MLE estimate of the regression coefficients, D(t) the set of individuals with failures before
time t and R(ti) the set of individuals at risk at time ti (with ti the failure time of patient i in D(t)).
This estimator approximately maximizes the partial likelihood function, but is not very accurate when
tied failure times are present. For this reason, Efron [18] suggested using a similar estimator, which
better approximates the solution to the likelihood equation when ties are present, but is in turn more
computationally intensive. In practice, when the number of tied observations is small, there is little
difference between the two. In our further research we will use the R package Survival [19], which uses
the estimator proposed by Efron.

2.7 Generating survival times

In our research we will at some point wish to generate survival time outcomes under some (parametric)
distribution. While for standard distributions there are many statistical packages available which can
generate outcomes for you, for the regression models above this is not quite so evident. A method to
generate survival outcomes according to the Cox proportional hazards model is described in section
15.1.

2.8 Counting processes

In this section we will briefly discuss an approach first developed by Aalen [20], because it will be the
key to constructing the CUSUM chart for survival outcomes.

As before, let Yi = min(Xi, Cr,i) be the time of observed failure or right-censoring, where we
consider a single cause of failure. We denote by N(t) a counting process, which has the following
properties:

• N(0) = 0,

• N(t) <∞ with probability 1,

• N(t) is right-continuous and piecewise constant with jumps of +1.

The processes Ni(t) = I(Yi ≤ t, δi = 1) for individual i indicating whether said individual has failed are
counting processes (δi = 1 indicates uncensored observation). Then the process N(t) =

∑n
i=1Ni(t)

is also a counting process, measuring the amount of individuals who have experienced death at or
before time t. When considering such a process we have some information available to us about what
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has happened to our individuals of interest up to time t. This knowledge can be expressed in the
pairs (Yi, δi), which tells us the exact time of outcome when Yi ≤ t and knowledge that Yi > t for the
individuals with no observed outcome until that time point. We will denote this history at time (just
prior to) t by Ft− . Now, we have using (1) that:

P(t ≤ Yi ≤ t+ dt, δi = 1|Ft−)

=

{
P(t ≤ Xi ≤ t+ dt, δi = 1|Xi ≥ t, Ci ≥ t) = hi(t)dt =: dHi(t), if Yi ≥ t
0, if Yi < t

Then define dN(t) as the change in the process N(t) in an infinitesimal period [t, t+ dt] and consider
Y (t) as the number of individuals with observed time Yi ≥ t. Correspondingly, let Yi(t) indicate
whether person i has its observed time after t. Then we have:

E[dN(t)|Ti ≥ t, Ci ≥ t] = E[Number of observations with t ≤ Xi ≤ t+ dt, Ci > t+ dt|Ft− ]

= Y (t)h(t)dt.

Then we denote the intensity process λ(t) as:

λ(t) = Y (t)h(t). (3)

Finally the cumulative intensity process Λ(t) is written as:

Λ(t) =

∫ t

0
λ(s)ds. (4)

In this case dNi(t) has an approximate Bernoulli distribution with probability dΛi(t) = hi(t)dt of
observing an unfavourable outcome dNi(t) = 1 when Yi ≥ t.

According to Klein & Moeschberger [14] section 3.6 the contribution to the likelihood of an indi-
vidual i for the approximate Bernoulli process introduced above is proportional to:

dΛi(t)
dNi(t)(1− dΛi(t))

1−dNi(t). (5)

Integrating this quantity over the range [0, τ ] would then give a contribution to the likelihood of
λi(t)

dNi(t)e−
∫ τ
0 dΛi(s)ds. Then the full likelihood for n observations up to time t would be given by:

L =

(
n∏
i=1

λi(t)
dNi(t)

)
e−

∑n
i=1

∫ t
0 dΛi(t). (6)

When considering right-censored data, where λi(t) = Yi(t)hi(t) with Yi(t) = 1 when t ≤ Ci and
Yi(t) = 0 when t > Ci, the contribution to the likelihood is given by:

L =

(
n∏
i=1

hi(t)
δi

)
e−

∑n
i=1

∫ t
0 dΛi(t) (7)

where δi is a reverse censoring indicator at time, such that:

δi =

{
1, if outcome i observed

0, if outcome i censored

Note how these expressions look like continuous versions of the likelihood as constructed in (2). The
power of considering a counting process is in the fact that we are able to consider the likelihood at
any time t > 0, instead of evaluating the likelihood after observing the outcomes.
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2.9 Characteristics of survival distributions

In this section we state some characteristics of distributions which are often used to model survival
outcomes and will be used further on in this thesis. We will limit ourselves to the exponential and
Weibull distributions. Note that there are different possible parametrisations for these distributions.
We list their parametrizations and some key properties used in this thesis in Table 1.

Distribution
Characteristic Exponential Weibull

Parameter Scale λ > 0
Shape λ > 0
Scale θ > 0

Hazard function hµi (t) = λeµeβ
′Zi hµi (t) = λ

θ

(
t
θ

)λ−1
eµeβ

′Zi

Cumulative
hazard function

Hµ
i (t) = λteµeβ

′Zi Hµ
i (t) =

(
t
θ

)λ
eµeβ

′Zi

Inverse null
cumulative hazard function

H−1
0 (t) = t

λ H−1
0 (t) = θt

1
λ

Survival function Sµi (t) = e−λte
µeβ
′Zi Sµi (t) = e(

t
θ )
λ
eµeβ

′Zi

Density function
fµi (t) =

λeµeβ
′Zie−λte

µeβ
′Zi

fµi (t) =
λ
θ

(
t
θ

)λ−1
eµeβ

′Zie(
t
θ )
λ
eµeβ

′Zi

Table 1: Some distributions with their characteristic functions, including risk adjustment as well as a
deviated hazard by a factor of eµ. It is possible to recover the non risk-adjusted as well as non deviated
quantities by setting eβ

′Zi = 1 and/or eµ = 1 respectively (which we call the baseline characteristic).
The subscript indicates an individual, while the superscript indicates the factor eµ by which the hazard
deviates from the baseline hazard. When the subscript is 0, we indicate the baseline hazard. This
notation is consistent as there is no zeroth person.
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3 Renewal processes and queueing theory

Some of the proofs later on in this thesis require some basic results from operations research. Therefore,
this section will summarise the basic knowledge necessary to understand those proofs. The basis for
this theory was taken from the lecture notes written by Kallenberg [21]. This chapter will be written
assuming that we are interested in a medical application of this theory.

3.1 Poisson processes

In operations research we are sometimes interested in a process where new parts (patients) arrive
according to some random mechanism. To model these arrivals we often assume that the inter arrival
times, which are the times between two consecutive arrivals, are exponentially distributed with some
parameter λ. The exponential distribution is often used because it is the only continuous distribution
which has the beautiful property of memorylessness (see chapter 2.2 of Rice [22]). Mathematically
this property is stated as follows:

Let X be a continuous random variable which has non-negative outcomes. Then the distribution
of X is memoryless if for any non-negative real numbers t and u we have that:

P (X > t+ u|X > t) = P (X > u) .

This property implies that no matter how long you have been waiting for a new patient to arrive, the
probability of a new patient arriving after some fixed time u from now will remain the same.

First we start with some renewal theory. Let Xi be the i−th inter arrival time for i ∈ N>0 and
assume that the inter arrival times are independent and identically distributed. Now define S0 = 0
and Sn =

∑n
i=1Xi as the n−th arrival time. Now define:

N(t) = sup{n|Sn ≤ t}, t ≥ 0

as the total amount of patients which have arrived at or before time t, which is known to be a renewal
process.

We will only be interested in the case where the inter arrival times are exponentially distributed
with parameter λ. In this case N(t) is called a Poisson process, sometimes also called a Poisson
point process. This is because we then have that:

P (N(t) = n) =
(λt)n

n!
e−λt

which is the density of the Poisson distribution with parameter λt. Some interesting properties of a
Poisson process are listed below (without proof, see section 1.1 of Kallenberg [21]). Let t, s ≥ 0:

• N(t+ s)−N(t) has the same distribution as N(s),

• N(t+ s)−N(s) and N(s) are independent,

• E [N(t)] = λt.

Using the definitions above it is easy to see that:

P(Sn > t) =

n−1∑
k=0

P (N(t) = k) =

n−1∑
k=0

e−λt(λt)k

k!
.
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Therefore:

P (Sn ≤ t) =

∞∑
k=n

e−λt(λt)k

k!
.

Differentiating we obtain the density function of Sn:

fSn(t) =
1

(n− 1)!
λntn−1e−λt

which has the density of the gamma distribution with parameters λ and n. The maximum likelihood
estimator of λ in the Poisson process above at a fixed time t is given by:

λ̂ =
N(t)

t
. (8)

3.2 Queueing theory

A prominent part of operations research is comprised of queueing theory. In this field we consider
queues where (in our context) patients arrive to the hospital to be treated. In queueing theory we often
assume that arrivals happen according to a Poisson process, and that patients are treated according to
an exponential distribution, meaning that they will leave the hospital after an exponentially distributed
treatment time. Additionally, it might be that the hospital only has a certain amount of doctors
present, which means that some patients will have to wait before starting their treatment. The
queue described above would then be denoted as a M/M/c queue, where M stands for Markovian
or memoryless Poisson arrivals and exponentially distributed treatment times and c stands for the
amount of doctors present to treat patients.

3.2.1 M/G/∞ queue

Consider a M/M/∞ queue (infinite doctors), but instead of exponentially distributed treatment times
we consider general treatment times (any distribution). This is then noted as an M/G/∞ queue.
Consider the following proposition from Auria [23] (which is given here without proof):

Proposition 3.2.1. Given an M/G/∞ queue where the arrival process has rate λ and the service times
are independent and have common distribution G. Then at a fixed time t ≥ 0 the number of patients in
the system (Q(t)) and the number of patients that left the system (D(t)) in this interval are independent
and distributed according to a Poisson distribution with parameters respectively λQ(t) = λ

t

∫ t
0 G(t−s)ds

and λD(t) = λ
t

∫ t
0 G(t− s)ds. Additionally, the departure process D(t) is a Poisson process.

This proposition will be used in section 5.4 as well as in section 6.4.2 to determine the distribution
of the departure process in hospitals, as this quantity is of great interest for our main result.
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4 Likelihood ratio tests

By the Neyman-Pearson lemma we know that likelihood ratio tests are the most powerful tests for
simple hypotheses, and in some cases they can also be uniformly most powerful for composite hy-
potheses. Therefore likelihood ratio tests are often a good choice for a test statistic, if the problem
allows it. In this section we will introduce some tests which are based on the likelihood ratio. This
theory sets the foundation for the method developed by Biswas & Kalbfleisch [3], which is stated in
section 5. Inspired by their result we introduce a new method for survival data in section 6, which is
the main result of this thesis.

This section focusses on tests using discrete time outcomes, focussing especially on binary out-
comes. As the goal of this thesis is to apply the methods on a survival data set from the Dutch
National Arthoplasty Register (LROI 12), this means that the data would need to be dichotomized
before these methods can be used, which results in a loss of (valuable) information. In sections 5 and
6 however we consider methods which were specifically designed for survival outcomes and therefore
use more complete information to arrive at conclusions.

We start this section by introducing the sequential probability ratio test (SPRT), which is used to
test a simple hypothesis of a change in parameter. Then we consider the discrete time CUSUM chart in
section 4.2, an extension of the SPRT, which is a likelihood ratio test testing whether the quality of care
at an insitution has decreased by a fixed factor. Later on in section 4.3 we consider a generalization
of the discrete time CUSUM chart called the (MAX)GLR chart, which tests whether the quality of
care at an institution has decreased by some unknown factor. This means that these charts should
be used in different scenarios. The CUSUM chart when we have some fixed level of quality reduction
which we want to detect, and the (MAX)GLR chart when there is no a-priori information or required
detection level. Afterwards, we state two optimality properties of the CUSUM chart which were shown
by Lorden [24] and Moustakides [25]. Finally, we introduce the Generalized Likelihood Ratio, which
has already been explored by both Wald [5] and Lorden [24]. Continuous time generalizations of these
charts are then introduced in sections 5 and 6, called the CTCUSUM and CT(MAX)GLR charts
respectively.

The structure of this section was inspired by the thesis written by Kok [9], whereas the notation
was taken from chapter 6 of Siegmund [26].

4.1 Sequential probability ratio test

First, we will discuss the Sequential Probability Ratio Test (SPRT) as introduced by Wald [5]. Suppose
we have a sequence of outcomes Y1, Y2, ... and we want to determine whether these outcomes come
from the distribution with density fθ0 or fθ1 . The SPRT is a sequential likelihood ratio test which
tests these point hypothesis of the form H0 : fθ = fθ0 versus H1 : fθ = fθ1 . This test is unique in the
way that it tests the hypothesis after every outcome has been observed, which is why it is called a
sequential test. The test statistic after observing n outcomes is given by:

SSPRT,n =

n∑
i=1

ln

(
fθ1(Yi)

fθ0(Yi)

)
= SSPRT,n−1 + ln

(
fθ1(Yn)

fθ0(Yn)

)
=: SSPRT,n−1 +Wn.

After each observation, the test statistic is determined and one of the following 3 choices are made:

• Reject the null-hypothesis if SSPRT,n ≥ ln(B);

• Accept the null-hypothesis if SSPRT,n ≤ ln(A);
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• Observe an additional outcome if none of the above applies;

where A and B are some positive constants. Wald [5] has shown that if we wish for the probability
after n observations of a type 1 error to be α and the probability of a type 2 error to be β, then
for all practical purposes it is sufficient to take A = 1−β

α and B = β
1−α , as then the true type 1

and 2 probabilities α′ and β′ will approximately adhere to α′ ≤ α and β′ ≤ β (especially when
α and β are small). Additionally, Wald has shown that the values above minimize the amount of
observations necessary to rightfully reject or accept the null-hypothesis using the SPRT, when the
desired probability of a type 1 and type 2 error are α and β respectively.

4.2 Cumulative sum chart

Suppose we again have a sequence of outcomes Y1, Y2, ... but this time we are not interested in de-
termining which distribution they come from, but in signalling a change in the distribution at some
point in time. For a more precise definition we use the book written by Siegmund [26]. Define Pν as
the probability that Y1, ..., Yν−1 ∼ fθ0 and Yν , ... ∼ fθ1 with ν = 1, 2, ..., so that Pν is the probability
that the change in distribution happens at time ν. When this change happens we call the process out
of control. Similarly, let P0 be the probability that the change does not happen at all, which in turn
means the process stays in control. We would like to stop the cumulative sum chart at a point τ ,
called a stopping time, such that the difference between τ and ν is as small as possible. However,
we would like the chart not to stop at all if the process stays in control. This is not possible as a false
signal can always occur, therefore we would like to make the in control value of τ as big as possible.
Mathematically, we would thus like to solve the following problem:

minimize sup
ν≥1

Eν(τ − ν + 1|τ ≥ ν))

subject to E0[τ ] ≥ B
(9)

for some large constant B.
This problem can be solved using a cumulative sum chart (CUSUM) as introduced by Page

[2]. Consider, after having observed n outcomes, the null hypothesis H0 : Y1, ..., Yn ∼ fθ0 and the
alternative hypothesis H1 : Y1, ..., Yν−1 ∼ fθ0 and Yν , ..., Yn ∼ fθ1 for 1 ≤ ν ≤ n. The likelihood ratio
test for testing whether at least one of the Hν is true against H0 is then given by the CUSUM defined
as:

Sn = max
1≤k≤n

n∑
i=k

ln

(
fθ1(Yi)

fθ0(Yi)

)
=

n∑
i=1

ln

(
fθ1(Yi)

fθ0(Yi)

)
− min

1≤k≤n

k∑
i=1

ln

(
fθ1(Yi)

fθ0(Yi)

)
.

Alternatively, it is possible to rewrite this using Wn = ln
(
fθ1 (Yn)

fθ0 (Yn)

)
to obtain:

Sn = max (0, Sn−1 +Wn) . (10)

Note that this means that the chart resets when it reaches the value 0, as the chart can no longer
decrease further. For this reason the CUSUM chart can not build up negative credits so that detection
speed is not impeded by periods of low failure rates. Page [2] proposed to reject the null-hypothesis
when the chart would reach a certain predefined value h called the control limit. Mathematically,
this can be stated in terms of a stopping time τ :

τ = inf {n : Sn ≥ h} .
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Note that this chart is really just a series of SPRTs with lower threshold 0 and upper threshold h
where as soon as we accept H0 we restart the chart at zero, only stopping the chart when we reject
H0 at the upper threshold h. Two important quantities when discussing CUSUM charts are the in
control and out of control average run lengths. These quantities are defined as follows:

ARL0 = E0[τ ] (11)

ARL1 = E1[τ ] (12)

which are the average times it takes for the chart to reject the null-hypothesis when the null-hypothesis
is true (in control) or when the alternative hypothesis is true (out of control). Sometimes it is more
convenient to consider the median run lengths, which are then defined as the median of the distri-
bution of τ .

Let N1 = inf {n :
∑n

i=1Wi ≥ h} the time it takes for one SPRT to stop. It then follows from a
simple application of Wald’s equation (see [26]) that:

Ei[τ ] =
Ei[N1]

Pi(
∑N1

i=1Wi ≥ h)

for i = 0, 1, which are the expected run lengths of one SPRT to stop under the null and alternative
hypothesis respectively, divided by the probability of rejecting the null-hypothesis in the time it takes
for one SPRT to stop.

4.2.1 Optimality properties

In this section we will state the asymptotic optimality properties which have been shown for the
CUSUM chart by Lorden [24].

Adhering to the notation and assumptions in section 4.2, our goal is to minimize the conditional
expectation of τ − ν where τ is the stopping time and ν the time of change of parameter. Let Eν
denote the expectation under Pν and define:

E1[N ] = sup
ν≥1

Eν [(τ − ν + 1)|Y1, ..., Yν−1] (13)

which represents the worst expected detection delay, and is in turn the quantity we wish to minimize.
Conversely, we would like for the stopping time to be offset by the requirement that the amount of
“false alarms” should be controlled by means of a condition of the form E0[N ] ≥ γ for some pre-defined
γ > 0.

Lorden [24] has shown that for members of the Exponential family, the CUSUM is optimal
in an asymptotic sense, such that the worst expected detection delay in equation (13) is minimized.
Besides this, he discusses how to determine the optimal threshold value h. Unfortunately, this value
depends on the true value of the alternative hypothesis parameter θ1. Even though the true value of
θ1 is not known in most practical applications, the procedure to determine h is still useful when an
approximate value of θ1 is available. Besides this, it is argued that choosing h ≈ | ln(α)| with α the
required type 1 error rate is sufficient for most applications. Later on, Moustakides [25] proved that
the CUSUM stopping time is optimal in a more general (non-asymptotic) sense, where optimality was
defined similar to Lorden.

4.3 Generalized likelihood ratio

Both the SPRT and CUSUM chart require us to define a simple alternative hypothesis H1 of the form
θ1 = K for some constant K. In our medical application, this would mean that we specify the rate
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at which we expect failures to happen under the alternative in advance. If we choose this constant
incorrectly, we are much more likely to draw the wrong conclusion. Suppose that a change in the
distribution of interest does happen somewhere along our observations, but this change is quite minor.
If we then choose the alternative hypothesis wrongly we could detect this change when it is far too
late. Additionally, it is often not clear in advance which values for the alternative hypothesis are of
interest as there is no historical data to see which changes are relevant to detect. Finally, when the
parameter of interest changes at some time point τ , there is no guarantee that it will stay at this new
value, as the rate of failure can change continuously in most practical applications.

To solve this problem, we can use a generalized likelihood ratio test, which tests composite
hypotheses. Suppose again that we observe Y1, Y2, ... and we would like to determine whether these
observations come from the distribution fθ0 or not. In that case we test the null-hypothesis H0 : θ = θ0

against H1 : θ ∈ Θ \ {θ0}. The test statistic is then given by:

SGLR,n = sup
θ

n∑
i=1

ln

(
fθ(Yi)

fθ0(Yi)

)
=

n∑
i=1

ln

(
f
θ̂n

(Yi)

fθ0(Yi)

)
(14)

with θ̂n the maximum likelihood estimate of θ using the first n observations. Again, we reject the null-
hypothesis after n observations if SGLR,n ≥ h for some pre defined value of h. This GLR corresponds
to the above SPRT when we do not have a simple alternative hypothesis.

Consequently, the GLR alternative for the CUSUM tests hypotheses of the form H0 : Y1, Y2, ... ∼
fθ0 versus H1 : Y1, ..., Yν−1 ∼ fθ0 , Yν , ... ∼ fθ, θ ∈ Θ \ {θ0}. Adopting the notation used by Kok [9] we
will call this test the maxGLR. The test statistic is then given by:

SmaxGLR,n = max
1≤k≤n

n∑
i=k

ln

(
f
θ̂n−k

(Yi)

fθ0(Yi)

)
(15)

where θ̂n−k is the ML estimate of θ over the last n − k observations. The null-hypothesis is rejected
when the chart surpasses a certain threshold h. Note that both the GLR and maxGLR chart require
the information for all data points up to time n, therefore there is no recursive way to determine them.
This makes it more computationally extensive to evaluate these charts.

The differences between the GLR and maxGLR charts are that the GLR chart always uses all
available observations to calculate the ML estimate of θ, while the maxGLR uses the MLE over the
last k observations, where 1 ≤ k ≤ n. Besides this, the GLR chart uses all available observations to
construct the chart while the maxGLR chart only uses the last n − k observations to determine the
chart, where k as above is chosen to maximize the value of the chart. Note that when the change
in distribution does not happen immediately, the ML estimate used in the GLR chart may build up
negative credits, depending on the specified model. This will be one of the key factors in section 6
why we will prefer to use the maxGLR over the GLR, even in a continuous time setting where we
consider real-time outcomes.

4.3.1 Optimality properties

Lorden [27] has shown that asymptotic optimality properties similar to the ones discussed in section
4.2.1 can also be derived for the generalized likelihood ratio chart. Kok [9] interprets this as follows:
Suppose the true value of the alternative hypothesis parameter θ1 is known and the in control average
run length is taken equal for the CUSUM and GLR. Then the average run length under the alternative
hypothesis for the GLR was greater than that of the CUSUM by some factor proportional to the in
control run length divided by the Kullback-Leibler divergence of the two distributions, as the in control
run length goes to infinity. This means that not knowing the out of control parameter comes at a cost
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to the run length under the alternative. In most situations however, the real out of control parameter
will not be known a-priori, possibly causing worse detection times using a CUSUM chart. In section
7.3 we will study this property for a continuous time version of the CUSUM chart.

4.4 Risk-adjustment

In the problems above we had assumed that the outcome variables Y1, Y2, ... were identically distributed
in accordance to some distribution function fθ, specified by the parameter θ. In practical applications
however it is often necessary to adjust the parameters of interest based on the risk of an individual.
In a medical context this risk can be seen as a factor which increases the probability of experiencing
an unfavourable outcome, for example the extra risk of contracting lung problems by smoking. It is
possible to include these factors into the model in the following way. Suppose for every individual
outcome variable Yi we have an associated vector of covariates Zi (as introduced in chapter 2.6). We
would then like for some parameter of the distribution to be dependent on this vector of covariates,
so that Yi ∼ fθi . There are multiple ways to model this dependence, an example often used for the
Bernoulli distribution in CUSUM charts is by letting the probability of success θi for person i depend
on the covariates of person i by means of logistic regression:

log

(
θi

1− θi

)
= β′Zi

with β a vector of coefficients of the same length as Zi. The CUSUM procedure (in the case of
Bernoulli distributed outcomes) then tests the hypotheses H0 : OR = 1 versus H1 : OR = RA > 1 for
some pre-defined value of RA, where OR is the odds ratio. Depending on the specified distribution
function this will of course differ, as we will see in chapter 5. The risk-adjustment can also be applied
to the GLR in a similar manner.
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5 Continuous time CUSUM

This section introduces the method developed by Biswas & Kalbfleisch [3], which cleverly combines
the theory about Counting Processes (see section 2.8) with the theory about discrete time CUSUM
charts (see section 4.2). By doing so they create a continuous time CUSUM (CTCUSUM) chart,
which can be evaluated at every time point instead of limiting ourselves to evaluating the chart at
fixed times post treatment. Begun et al. [8] have arrived at a similar model using a different approach,
and applied it to a data set from the National Joint Registry in the UK. The main result of this thesis
is a generalisation of this chart called the CTGLR chart and is constructed in section 6.

Although the discrete time CUSUM chart was not developed with survival outcomes in mind, in
this section we introduce the method of Biswas & Kalbfleisch [3] based on a CUSUM procedure which
does incorporate survival outcomes. In this section we consider the time to revision of patients who
have had primary hip transplant surgery as the outcome of interest. One option is to consider as
outcome the (binary) status of a patient (1 for dead and 0 for alive) after a certain amount of time
has passed post surgery. In this way, the outcome can be modelled using a Bernoulli distribution.
This is necessary as the discrete time CUSUM defined in section 4.2 can only be evaluated at the
(time of) outcomes. To give an example, van Schie et al. [11] construct a Bernoulli CUSUM chart
using revision one year post transplant as outcome. In this section, we will introduce the information
provided by the survival of a patient at every time point into the model in the hope of improving the
detection speed of the chart.

Similarly to the discrete time CUSUM chart defined in section 4.2, the CTCUSUM chart will test
a point hypothesis of a fixed decrease in quality of care at some institution. A generalization of
this chart, similar to the (max)GLR chart considered in section 4.3, will be introduced in section 6,
which tests a composite hypothesis of a decrease in the quality of care by some unknown factor.
The latter is a more general test requiring less prior information about the problem, but we will see
that this generalization comes at a certain price.

5.1 Notation

We will adhere as much as possible to the notation used in Biswas & Kalbfleisch [3]. Let Xi denote
the time from the primary procedure to the time of revision for patient i. Then define Si as the time
of primary procedure from some starting point of the study. Then the chronological time of failure
is given by Ti = Si + Xi. Let Cr,i be the time to right-censoring from primary procedure for patient
i, and Ci the chronological time of censoring, then Ci = Si + Cr,i. For every patient we also have
covariates which are denoted by the p−vector Zi. The covariates for all patients can then be combined
row-wise to form the matrix Z. Additionally, we assume that there is a known (risk-adjusted) null-
distribution for Xi, defined by the hazard function hi(x) (note that x here is the time to revision).
For µ > 0 define hµi (x) = hi(x) · eµ. Let this notation also carry over to the cumulative hazard rate
Hµ
i (x) as well as the survival function Sµi (x) and the density function fµi (x). With this notation the

subscript indicates the risk-adjustment term for person i and the superscript denotes the factor eθ by
which the hazard differs from the null-rate (which is indicated without superscript). A characteristic
without superscript indicates that µ = 0, so that the notation looks neater. Additionally, we denote
by h0(x) the non risk-adjusted hazard rate under the null hypothesis (there is no 0-th person making
this notation consistent).

Now define NA(t) =
∑

i≥1 1{Si≤t} to be the number of primary procedures (transplants) in [0, t].

Define ÑD
i (t) = 1{Ti≤t} as a failure indicator for patient i up to time t. Choose C > 0 and define

Yi(t) = 1{Si≤t≤Si+C∩Ti∩Ci}
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an indicator whether patient i is active. If a person is not active, we call them inactive. This
means that people are only active after they have had a primary procedure and only up until the
point that they have either failed, been censored or reached C years post transplant. Define ND

i (t) =∫ t
0 Yi(u)dÑD

i (u) for t > 0 as the counting process for a qualifying failure of patient i. Define the
history (filtration) for ND

i (t) as

Ft = σ
{
NA(u), ND

i (u), Yi(u), Zi, N
A(t), i = 1, 2, ..., nt = NA(t) : 0 ≤ u < t

}
.

Finally, define the cumulative intensity (see (4)):

Λµi (t) =

∫ t

0
Yi(u) · hµi (u)du (16)

with subscript and superscript as above. Note that for indices i which have not yet had a primary
procedure (when t < Si) we have that Λµi (t) = 0, due to the definition of Yi(t). A table with
characteristics for some survival distributions used in this thesis can be found in Table 1.

5.2 Cox proportional hazards model

We will consider the CUSUM procedure applied to the Cox proportional hazards model as introduced
by Biswas & Kalbfleisch [3], which uses the counting process defined in section 2.8. The only major
change is that we will consider outcomes up until C years after the primary procedure, for some
C > 0, whereas Biswas & Kalbfleisch only consider outcomes up to 1 year post transplant. The Cox
regression model based on the chosen covariates is then given by:

hi(x) = h0(x)eZ
>
i β for x > 0.

Now using the chronological time t (from the start of the study) define a counting process ND
i (t)

corresponding to the i−th patient as above. We then have:

P(dND
i (t) = 1|Ti ≥ t, Si, Zi) =

{
eµhi(t− Si)dt, if 0 ≤ t− Si ≤ C, Ti ≥ t
0, else

Now denote dHi(t) = hi(t−Si)dt, and note that this represents the instantaneous hazard of a revision.
The term eµ is the factor by which the hazard at an institution differs from the national rate dHi(t),
or equally the null rate with µ = 0.

We want to calculate a likelihood ratio statistic corresponding to a test of µ = 0 versus µ = θ
(θ > 0 known), therefore testing whether the quality of transplantations has decreased. Consider
the likelihood based on dND

i (t), the response in the interval (t, t+ dt] conditional on the information
available up to time t. We obtain the likelihood ratio in this interval using equation (5):

LR′θ(t, t+ dt) =

∏
i≥1

(
eθdΛi(t)

)dND
i (t) (

1− eθdΛi(t)
)1−dND

i (t)∏
i≥1 (e0dΛi(t))

dND
i (t) (1− e0dΛi(t))

1−dND
i (t)

=
∏
i≥1

(
eθ
)dND

i (t) (
1− eθdΛi(t)

)1−dND
i (t)

(1− e0dΛi(t))
1−dND

i (t)
.

Remember that individuals stop providing information to the chart after they are censored, but
the information acquired until the time of censoring is taken into regard. The implications of this
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construction will be discussed below. Now using a repeated conditioning argument, the likelihood
based on the information up to time t can be calculated using equation (6) and is equal to:

LRθ(t) =
∏
i≥1

(
eθ
)ND

i (t)
e−e

θΛi(t)

e−Λi(t)
.

As a consequence, the log likelihood ratio up to time t is given by:

Uθ(t) := ln(LRθ(t)) =
∑
i≥1

ln

(eθ)ND
i (t)

e−e
θΛi(t)

e−Λi(t)

 (17)

=
∑
i≥1

θND
i (t) +

(
−eθΛi(t) + Λi(t)

)
(18)

= θND(t)− (eθ − 1)
∑
i≥1

Λi(t). (19)

Because we would like to test the hypothesis of a change of hazard rate starting from some patient τ ,
the CUSUM chart has a cut-off at zero using a similar argument as in section 4.2. To continuously
update the chart we are interested in the increments dUt defined as:

dUθ(t) = θdND(t)− (eθ − 1)

n∑
i=1

dΛi(t). (20)

The (one-sided) Continuous time CUSUM chart is then given by:

Gθ(t+ dt) = max(0, Gθ(t) + dUθ(t)) for t > 0 (21)

which is equivalent to:

Gθ(t) = Uθ(t)− min
0≤s≤t

Uθ(s) for t > 0.

Note that if we wanted to test whether there was an increase in quality (therefore decrease in the
amount of revisions) we could plot:

G−θ (t) = min(0, G−θ (t)− dUθ(t)) for t > 0.

We will not pursue this further in this thesis.

5.3 Definition

We summarise the results from the previous section in the following definition.

Definition 5.3.1. The continuous time cumulative sum chart (CTCUSUM) is given by:

Gθ(t) = θND(t)− (eθ − 1)
∑
i≥1

Λi(t). (22)

This chart is used to test the hypotheses of a change in cumulative intensity starting from patient ν:

H0 :X1, X2, ... ∼ Λi

H1 :X1, ..., Xν−1 ∼ Λi

Xν , Xν+1, ... ∼ Λθi

for ν ≥ 1 unknown and Λθi = eθ · Λi the risk-adjusted baseline cumulative intensity multiplied by eθ

and θ > 0 a constant chosen in advance. The null hypothesis is rejected at time t when Gθ(t) ≥ h for
some h > 0 chosen in advance, called the control limit.
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Note the similarity of these definitions to those we have seen in section 4.2. Similarly to how the
discrete time CUSUM chart was defined in equation (10), we can calculate it recursively. However, we
were limited to evaluating the chart after a certain period of time had passed post transplant. Using
this model we can calculate the chart at any time t > 0. In practice, we can see in the definition of
dUθ(t) (20) that the chart will only jump up by θ when we observe a revision (notice how censored
observations do not cause a jump), and will drift downwards by the sum of the instantaneous hazard
of the people at risk of having a revision at that time, multiplied by the excess risk eθ − 1. The
censoring mechanism makes it so that observations which are censored before their failure time only
contribute to the downward motion of the chart, and can never contribute to an increase. It’s also
possible to erase the contribution of censored observations from the chart completely, either by simply
not considering them (leading to more false positives) or by compensating the negative influence of
the patient at the censoring time (leading to a delay in detection). Both methods ignore the available
information, as the Bernoulli CUSUM chart would do. In most cases it is therefore preferable to
include censored observations into the chart.

An important difference between the discrete and continuous time CUSUM chart is that the
continuous time chart trends upwards by θ when we observe an unfavourable outcome, independent
of the covariates of the person in question, while in a risk-adjusted discrete time (Bernoulli) CUSUM
the chart will jump upward or downward depending on the value of the alternative hypothesis and the
predicted probability of unfavourable outcome. In the continuous chart however, the trend downwards
does depend on the covariates of the people which are active at that time. It does this through the
(cumulative) baseline hazard as can be seen in formula (19). This means that the chart decreases
depending on how great the risk of failure is of active people (a high hazard rate implies high risk of
failure), multiplied by the excess risk. Intuitively this is what we would like to expect from our chart,
as it decreases rapidly when many vulnerable people at risk do not experience a failure, and increases
by a fixed value whenever we observe a failure.

5.4 An approximation to the ARL

In their article, Biswas & Kalbfleisch [3] derive an approximation to the ARL of the continuous time
CUSUM constructed using the Cox PH model. In this section we will repeat this process so that we
can use the techniques for a similar proof later on in section 6. The original authors considered only
outcomes 1 year post transplant, while we will consider outcomes C years post transplant, for some
C > 0. Part of the proof will rely on results stated in the Appendix 15.

If the hypothesized rate holds then, by assumption:

EXi [dN
D
i (t)|Ft] = eµdΛi(t) = eµYi(t)hi(t− Si)dt.

Note that using this notation, Yi(t) contains information about whether a patient undergoes a qual-
ifying failure and whether the patient has a censored observation. Now let ND(t) =

∑
i≥1N

D
i (t) as

above and define A(t) =
∑n

i=1 Λi(t). Then the CTCUSUM chart is given by:

Gθ(t) = θND(t) + (eθ − 1)A(t) (23)

for some θ > 0.
It is natural to assume that patients arrive according to a homogeneous Poisson process (as defined

in section 3.1) with rate ψ > 0. To study the process in equilibrium, we assume that arrivals begin
at time t = −C, this is sufficient for equilibrium since only failures within C years of transplant are
viewed as qualifying failures, and thus at t = 0 we will have considered all qualifying failures up to
that point. Since we begin at time t = −C, Si + C will have a Gamma distribution with scale ψ and
shape i as we saw in section 3.1.
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Remember that A(t) =
∑

i≥1 Λi(t). Censoring mechanisms are not considered in this approxima-
tion, therefore redefine Yi(u) = 1{Si ≤ u ≤ Si + C, u ≤ Ti}. We can recover Si + C ≤ u + C from
Si ≤ u and combine this with u ≤ Si + C. Additionally, using Ti = Si + Xi we obtain that u ≤ Ti
transforms into u ≤ Xi + Si and finally into u + C − (Si + C) ≤ Xi. Then using the law of total
expectation twice (conditioning first on Zi and then on Si):

E[dA(u)]

= E

∑
i≥1

Yi(u)hi(u− Si)du


= e−µE

∑
i≥1

1{u ≤ Si + C ≤ u+ C,Xi ≥ u+ C − (Si + C)}eµhi(u− Si)du


= e−µ

∑
i≥1

E [1{u ≤ Si + C ≤ u+ C}1{Xi ≥ u+ C − (Si + C)}eµhi(u− Si)du]

= e−µ
∑
i≥1

ESi [EZi [E [1{u ≤ Si + C ≤ u+ C}1{Xi ≥ u+ C − (Si + C)|Zi}eµhi(u− Si|Zi)du] |Si]]

= e−µ
∑
i≥1

ESi [1{u ≤ Si + C ≤ u+ C}EZi [E [1{Xi ≥ u+ C − (Si + C)|Zi}] eµhi(u− Si|Zi)du|Si]]

= e−µ
∑
i≥1

ESi [1{u ≤ Si + C ≤ u+ C}EZi [P (Xi ≥ u+ C − (Si + C)|Zi)hµi (u+ C − (Si + C)|Zi)du|Si]]

= e−µ
∑
i≥1

ESi [1{u ≤ Si + C ≤ u+ C}EZi [Sµi (u+ C − (Si + C)|Zi)hµi (u+ C − (Si + C)|Zi)du|Si]]

= e−µ
∑
i≥1

ESi [1{u ≤ Si + C ≤ u+ C}EZi [fµi (u+ C − (Si + C)|Zi)|Si]] du

= e−µ
∑
i≥1

∫ u+C

u
EZi [fµi (u+ C − x)]ψ

e−ψx(ψx)i−1

(i− 1)!
dxdu

= e−µψ

∫ u+C

u
EZi [fµi (u+ C − x)] e−ψx

∑
i≥1

(ψx)i−1

(i− 1)!
dxdu.

Note that the summation is an infinite one, but due to the definition of Yi(t) only active individuals
will contribute towards the term. We obtain:

E[dA(u)] = e−µψ

∫ u+C

u
EZi [fµi (u+ C − x)] du (24)

= e−µψEZi [Fµi (C)] du (25)

which follows from Lemma 15.2.1. We define the notation:

γ := e−µψEZi [F
µ
i (C)] > 0 (26)

which is a constant. Then E[dA(u)] = γdu. Now consider the hospital as a queue. Primary procedures
come in with rate ψ and consider the waiting time to be the time to failure, for which we assume that
patients have risk-adjusted distribution Fµi . In this case the failure process can be described by the
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departure process as in Proposition 3.2.1. We then obtain that ND(t) is a Poisson process with rate
eµγ. Incorporating this into the chart, we have:

Ut = θND(t)− (eθ − 1)γt+ Et

where using Lemma 15.3.1 and assuming that E[A(t)] exists we obtain that Et = (eθ − 1)(γt− A(t))
is a zero-mean process. We make the approximation that Et = 0 so that a theoretical result can be
obtained.

Note that the CTCUSUM chart Gθ(t) can be obtained from Ut by resetting the chart whenever Ut
reaches 0 and signalling when the process reaches an upper barrier h. Additionally, we know that once
Ut (and similarly the CTCUSUM chart) reaches 0, it will stay at this value until at some point it jumps
up again to θ. This is because the chart can only experience fixed upwards jumps of size θ per definition.
Note that Ut has stationary increments. This is because Ut−Us = θ(ND(t)−ND(s))−(eθ−1)γ(t−s)
and Ut−s = θND(t − s) − (eθ − 1)γ(t − s) using that a Poisson Process enjoys the property that
ND(t)−ND(s) = ND(t− s) (see 3.1). This means that we can consider every jump from 0 to θ as a
renewal (see section 3.1).

Suppose that U0 = G0 = 0 and let:

F0 = inf{t > 0 : Gt = θ}.

By definition of a Poisson Process, F0 ∼ Exp(eµγ). Therefore the sequence of events Gt = θ, Gt− = 0
is a renewal process delayed by F0. After observing a renewal the process either returns to zero
(followed by another renewal) or it crosses the upper barrier h > 0. For the approximation, we look
at the process Ut with U0 = θ and absorbing barriers 0 and h. Let pR and (1− pR) be the probability
of absorption at h and 0 respectively. Furthermore, let:

T (θ) = inf{t > 0 : Ut /∈ (0, h), U0 = θ}

be the time to absorption.
In the original process Gt, we denote by J be the number of renewals including the first so that

J ≥ 1 and notice that J is a stopping time (because once there are no more renewals we know that
the chart has been stopped by h). It is apparent that:

P(J = j) = (1− pR)j−1pR.

After observing the i-th renewal, the waiting time τh for absorption at h is increased by Wi =

T
(θ)
i +(1−∆i)Ri, where ∆i is a binary indicator of absorption at h versus a return to 0. Ri represents

the time from recurrence of Gt = 0 to the next jump to level θ. Finally, T
(θ)
i is the time until the

process exceeds h or returns to 0, whichever occurs first. It is now easy to see that:

E[Wi] = E[T (θ)] + (1− pR)E[F0]

since E[Ri] = E[F0]. Thus:

τh = F0 +

J∑
i=1

Wi

and since J is a stopping time, Wald’s identity yields:

E[τh] = E[F0] + E[J ]
[
E[T (θ)] + (1− pR)E[F0]

]
(27)

= E[F0] +
E[T (θ)] + (1− pR)E[F0]

pR
(28)

=
E[T (θ)] + E[F0]

pR
(29)
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as E[J ] = 1
pR

because J is clearly geometrically distributed with parameter pR.
By definition of a Poisson process we find that:

E[F0] =
e−µ

γ

thus we only need to find the expected value of T (θ) and pR.
Consider again the process {Ut} with U0 = 0 and with absorbing barriers at −θ and h− θ, it will

be apparent later on why we are interested in this construction. Let

f∗(ω) = E[e−ωUt ]

be the moment generating function of Ut in the unrestricted process. We find that:

f∗(ω) = E[e−ωUt ] = E
[
e−ω(θND(t)−(eθ−1)γt)

]
= eω(eθ−1)γt · E

[
e−ωθN

D(t)
]

= eω(eθ−1)γt
∞∑
k=0

e−ωθk
(eµγt)k e−(eµγt)

k!

= eω(eθ−1)γtee
µγt

∞∑
k=0

(
e−ωθeµγt

)k
k!

= eω(eθ−1)γtee
µγtee

−ωθeµγt

= eγt(ω(eθ−1)+eµ(e−ωθ−1))

using the fact that ND(t) is a Poisson Process with rate eµγ, therefore ND(t) is distributed as
Poisson(eµγt). Now let ω0 be the solution to:

f∗(ω0) = 1.

Note that ω0 does not depend on t. This can be seen as we can find ω0 by equating the term in the
exponent above to zero:

ω0(eθ − 1) + eµ
(
e−ω0θ − 1

)
= 0

which does not depend on t. To continue we need a result from Cox & Miller [28] which states that:

Theorem 5.4.1. Let Sm = X1 + ...+Xm, where Xj are independent random variables with common
mgf φ(t), which is assumed to exist in a real interval containing t = 0. Let the RV n be defined as the
smallest integer m for which either Sm ≥ α or Sm ≤ −β with α, β > 0. Thus n can be regarded as the
time to absorption for the random walk Sm with absorbing barriers at α and −β. Let S = Sn and let
Fm(x) = P(−β < Sk < α for k = 1, 2, ...,m− 1 and Sm ≤ x). Then we have that

E
[
etSzn

]
= 1 + (zφ(t)− 1)F (z, t)

where F (z, t) =
∑∞

m=0 z
m
∫ α
−β e

txdFm(x). Then Wald’s identity follows from this equality by setting

z = (φ(t))−1.

Applying Wald’s identity from this theorem we then obtain, for any ω:

E
[
e−ωUT (θ)f(ω)−T

(θ)
]

= E
[
e−ωUT (θ)−T (θ) ln(f∗(ω))

]
= 1.
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Evaluating the expected value at ω0 yields:

E
[
e−ω0UT (θ)f(ω0)−T

(θ)
]

= P (UT (θ) = (h− θ)) · E[e−ω0(h−θ)−T (θ) ln(f∗(ω0))] + P (UT (θ) = −θ) · E[eω0θ−T (θ) ln(f∗(ω0))]

= pR · e−ω0(h−θ) + (1− pR)eω0θ ≈ 1

where we use the fact that ln(f∗(ω0)) = 0 and ignoring overshoot across the boundaries (as our
stopping time is not exact due to the nature of the chart). We retrieve:

pR ≈
1− e−ω0θ

1− e−ω0h
.

Now let ηdt := E[dUt]. We have that:

E[dUt] = E[θdND(t)− (eθ − 1)γdt]

= θE[dND(t)]− (eθ − 1)γdt

= θeµγdt− (eθ − 1)γdt

thus we define η := (θeµ − eθ + 1)γ. If η 6= 0, then Wald’s identity gives:

ηE
[
T (θ)

]
= E[UT (θ) ]

and again ignoring overshoot:

E [UT (θ) ] ≈ (h− θ)pR +−θ(1− pR)

= hpR − θ.

When |η| → 0, then |ω0| → 0 and pR → θ
h .

Now let σ2dt = Var(dUt). We have:

E[dU2
t ] = Var(dUt) + (E[dUt])

2

= σ2dt+
(
θeµγdt− (eθ − 1)γdt

)2

η=0
= σ2dt.

Thus:

E[U2
t ]

η=0
= σ2t

therefore using Wald’s identity:

E
[
U2
T (θ)

] η=0
= σ2E[T (θ)]

and finally (ignoring overshoot):

E
[
U2
T (θ)

]
≈ (h− θ)2pR + θ2(1− pR).

Finally:

Var(dUt)
η=0
= Var(θdND(t)) = θ2γeµdt =: σ2dt.
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Summarising above results we have when η = 0:

pR =
θ

h
E[T (θ)] =

E[U2
T (θ) ]

σ2
=

(h− θ)2pR + θ2(1− pR)

θ2γeµ

and when η 6= 0:

pR ≈
1− e−ω0θ

1− e−ω0h
E[T (θ)] =

E[UT (θ) ]

η
=

(η − θ)pR − θ(1− pR)

(θeµ − eθ + 1)γ

Now rewriting and substituting into equation (29) we obtain that:

E[τh] =

h
η −

e−µ(eθ−1)
η

(
1−e−ω0θ
1−e−ω0h

)
, η 6= 0

h2e−µ

θ2γ
, η = 0

(30)

therefore allowing us to approximate the ARL of the CTCUSUM using a closed-form expression.
We have two distinctions, when η = 0 and when η 6= 0. We remind the reader that η = 0 implies
(θeµ − eθ + 1)γ = 0 and as γ > 0 this means that:

µ = ln

(
eθ − 1

θ

)
thus quantifying η = 0 in terms of µ and θ.

Now that we have re-iterated the theory already developed by Biswas & Kalbfleisch [3] we will
develop a generalized method based on this theory and evaluate its theoretical properties in the next
chapter. This generalization will be constructed in the hope that it will be more applicable to real-life
data sets, as it will require less prior knowledge to construct and evaluate.
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6 CONTINUOUS TIME GLR CHART

6 Continuous time Generalized Likelihood Ratio chart

In this section we develop two generalizations of the Continuous Time CUSUM chart by Kalbfleisch
& Biswas [3], which was stated in section 5. We call these new methods the Continuous Time (Maxi-
mized) Generalized Likelihood Ratio charts (CTGLR and CTMAXGLR). These charts are especially
useful when we do not know or do not want to choose a value for the alternative hypothesis as was
required in the continuous time CUSUM chart.

We first derive and define the CTGLR chart in Definition 6.3.1. The main theoretical result is
stated in section 6.5, which is the asymptotic distribution of the CTGLR chart. Deriving from this
main result we determine an approximation to the ARL of the CTGLR chart in section 6.6. Finally,
we introduce the Continuous Time MAXGLR chart in definition 6.9.1, as a further generalization of
the CTGLR chart. Throughout the section, some properties of the CTGLR chart are shown, which
are easily generalized for the CTMAXGLR chart.

Some properties of the CT(MAX)GLR chart shown in this section are the non-negativity (Lemma
6.3.1), asymptotic bounds (Lemma 6.8.1) and the equality of the approximate ARL of the CTGLR
and CTMAXGLR charts when the process is out of control during the whole study as well as a
means to equate their ARLs when this is not the case (Proposition 6.9.1). Additionally, we derive an
approximation to the ARL of the CTCUSUM chart using a different method than Biswas & Kalbfleisch
[3] in Corollary 6.10.1 and show that the CTCUSUM chart has a worse asymptotic ARL than the
CT(MAX)GLR chart when the process is out of control and the value of θ is chosen incorrectly.

6.1 Notation

The notation will stay unchanged from section 5.1, except that instead of Yi(t) = 1{Si≤t≤Si+C∩Ti∩Ci}
we will now define

Yi(t) = 1{Si≤t≤Ti∩Ci}

as an indicator whether patient i is active. If a person is not active, we call them inactive. This
means that people are only active after they have had a primary procedure and only up until the point
that they have either failed or been censored, meaning we no longer restrict ourselves to C years post
transplant. We remind the reader that the cumulative intensity is given by:

Λµi (t) =

∫ t

0
Yi(u) · hµi (u)du (31)

with Λi(t) := Λ0
i (t). Note that for indices i which have not yet had a primary procedure, so when

t < Si, we have that Λµi (t) = 0, due to the definition of Yi(t). A table with characteristics for some
commonly used survival distributions can be found in Table 1.

6.2 Cox proportional hazards model

We will consider a Generalized Likelihood Ratio chart using a proportional hazards assumption for
the outcome distribution, based on the theory in section 5. Similarly, we also consider the counting
processes as defined in section 5.2 where we defined a counting process ND

i (t) corresponding to the
i−th patient such that:

P(dND
i (t) = 1|Ti ≥ t, Si, Zi) =

{
eµhi(t− Si)dt, if 0 ≤ t− Si, Ti ≥ t
0, else.
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6.2 Cox proportional hazards model 6 CONTINUOUS TIME GLR CHART

The difference will lie in the alternative hypothesis considered. Let eµ be the true factor by which the
hazard at the hospital is higher than the baseline hazard. This time we want to calculate a likelihood
ratio statistic corresponding to a test of µ = 0 versus µ = θ for some unknown θ > 0, again testing
whether the quality of transplantations has decreased. For the continuous time CUSUM we assumed
θ to be known. The likelihood ratio based on dND

i (t), using the information from the response in the
interval (t, t+ dt] conditional on the information available up to time t is then given by (see equation
(5)):

LR′
θ̂t

(t) = LR′GLR(t) := sup
θ>0

∏
i≥1

(
eθdΛi(t)

)dND
i (t) (

1− eθdΛi(t)
)1−dND

i (t)∏
i≥1 (e0dΛi(t))

dND
i (t) (1− e0dHi(t))

1−dND
i (t)

=
∏
i≥1

(
eθ̂t
)dND

i (t) (
1− eθ̂tdΛi(t)

)1−dND
i (t)

(1− dΛi(t))
1−dND

i (t)

where θ̂t is the MLE over θ > 0 at time t. We will discuss how to determine this estimate in 6.2.1.
Once again using a repeated conditioning argument, the likelihood based on the information up to
time t can be calculated using equation (6) and is equal to:

LRGLR(t) =
∏
i≥1

(
eθ̂t
)dND

i (t)
e−e

θ̂tΛi(Ti)

e−Λi(Ti)
.

Thus the log likelihood ratio up to time t is given by:

ln(LRGLR(t)) = θ̂tN
D(t)− (eθ̂t − 1)

∑
i≥1

Λi(t).

We can determine the ML estimate of θ at time t, which will be done in the following lemma.

Lemma 6.2.1. The maximum likelihood estimate of θ for the Generalized likelihood ratio test intro-
duced in section 6.2 is given by:

θ̂t = max

(
0, ln

(
ND(t)∑
i≥1 Λi(t)

))
. (32)

Proof. To determine the maximum likelihood of θ, we first remind ourselves that we are determining
the maximum likelihood estimator for θ for the hypotheses µ = 0 against µ = θ with θ unknown.
Heuristically this means that we are testing whether the true intensity eµdΛi(t) differs from the
national rate dΛi(t), which was pre-determined from some sort of training set (a data set which we
know to have in control procedures). Whenever we experience a failure (revision) we obtain some
information as to how likely it was that the individual in question would experience a failure at that
time point, this will then change the value of the MLE accordingly. Consider the likelihood up to time
t using equation (7):

L(θ|t) =
∏
i≥1

(
eθdΛi(t)

)dND
i (t)

e−e
θΛi(Ti)
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where we have n observations which are either active or have had an outcome or had their outcome
censored. The logarithm of the likelihood (up to time t) is then given by:

l(θ) =
∑
i≥1

(dND
i (t))(θ + ln(dΛi(t)))− eθΛi(t).

Taking the derivative w.r.t. θ and equating to zero we then obtain:∑
i≥1

(dND
i (t))− eθ

∑
i≥1

Λi(t) = 0

which yields:

eθ =
ND(t)∑
i≥1 Λi(t)

.

The MLE for θ at time t is then given by:

θ̂t = max

(
0, ln

(
ND(t)∑
i≥1 Λi(t)

))

where the cut-off at zero arises from the fact that we test the hypothesis of µ = 0 against a hypothesis
of µ = θ > 0.

6.3 Definition

We summarise the results from the previous subsection by defining the Continuous Time Generalized
Likelihood Ratio chart:

Definition 6.3.1. The Continuous Time Generalized Likelihood Ratio chart (CTGLR) is given by:

GLR(t) = θ̂tN
D(t)− (eθ̂t − 1)

∑
i≥1

Λi(t). (33)

This chart is used to test the hypothesis that the cumulative intensity at an institution differs by a
factor of eθ (with θ > 0 unknown) from the risk-adjusted null cumulative intensity Λi(t), this can be
stated as:

H0 : µ = 0

H1 : µ = θ

The counting processed are as defined in section 5.1. The maximum likelihood estimator θ̂t was found
in Lemma 6.2.1:

θ̂t = max

(
0, ln

(
ND(t)∑
i≥1 Λi(t)

))
. (34)

The null hypothesis is rejected at time t when GLR(t) ≥ h for some h > 0, called the control limit.

Unfortunately, the CTGLR requires more computational power than the CTCUSUM defined in
Definition 5.3.1 as we have to determine the MLE of θ at every relevant timepoint, and re-determine
the value of the statistic, instead of recursively determining the value of the chart. The main advantage
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over the CTCUSUM chart is that the CTGLR chart no longer requires us to specify a value for the
alternative hypothesis. Heuristically one could see the CTGLR as an automated CTCUSUM chart,
but it is important to note that they test different hypotheses. A generalization of the CTGLR
chart which tests the same hypothesis as the CTCUSUM chart will be stated in Definition 6.9.1.

Even though the CTGLR “automatically” determines a value of θ by means of an MLE, we still
need to choose a value for the detection threshold h, which means that implicitly we will be choosing
a value of µ at which we would like the chart to signal as rapidly as possible through this h. To let
θ̂t converge towards the true value of µ, a sufficient amount of observations are needed, which means
that the chart needs time to converge. In comparison, when the value of θ is not chosen in accordance
with the true distribution of µ, the CTCUSUM chart may experience detection delays or high false
alarm rates. Why this happens and the implications this has will be discussed in section 6.10.

6.3.1 Closed expression & non-negativity

Using definition 6.3.1, we can write a closed-form expression for GLR(t). First of all, note that
the MLE θ̂t will be equal to zero when ND(t) ≤

∑n
i=1 Λi(t). This happens when the contribution∑n

i=1 Λi(t) of the individuals who are active or have had a revision/censored observation is greater than
the total amount of revisions up to that time point. Heuristically this happens when the institution
considered has a lot of active cases and not many failures, or if we consider only one individual it
happens when this individual has failed at or after time t for which Λi(t) = 1, which will later on
be shown analytically in section 6.8. When θ̂(t) = 0 we clearly have GLR(t) = 0, thus if we would
like for the chart to never rise above 0 the institution would need to have a sufficient ratio of new
active (non-failing) patients compared to unfavourable outcomes combined with a sufficient amount
of patients failing only when their cumulative hazard ratio has reached a sufficiently large number. To
obtain a general expression we can substitute equation (34) into equation (33) to obtain:

GLR(t) =

ND(t)
(

ln
(

ND(t)∑
i≥1 Λi(t)

)
− 1
)

+
∑n

i=1 Λi(t), if ND(t) >
∑

i≥1 Λi(t)

0, if ND(t) ≤
∑

i≥1 Λi(t).
(35)

Note that the chart is continuous in its argument, as the upper part of the equation above is also equal
to zero when ND(t) =

∑
i≥1 Λi(t). The chart will stay at zero when either patients fail at reasonable

times or when failures do not happen proportionally faster than the influx of new patients. As θ̂t is
determined over all time-points, a disadvantage is that the chart cannot quickly adjust to the current
situation when the outcomes observed in the past were failing at or slower than expected under the
baseline hazard. In this case the GLR chart can build up a “buffer” as

∑
i≥1 Λi(Ti) can become (very)

large compared to ND(t). This is not the case for the CTCUSUM chart as it has a cut-off at zero and
θ is constant. The CTCUSUM chart however can jump up only by the pre-defined value of θ, while
the CTGLR chart can make way larger jumps, depending on the rate of failure in the (immediate)
past. When there has been a period where a lot of unfavourable outcomes have been observed, both
the CTCUSUM and CTGLR chart will need time to drift downwards. The CTCUSUM chart will drift
downward depending on the chosen value of θ, while for the CTGLR chart the angle of downward
drift depends on the current MLE of θ.

We show that the CTGLR chart is non-negative in the following lemma.

Lemma 6.3.1. The CTGLR chart as defined in 6.3.1 is non-negative for every t ≥ 0. The chart is
strictly positive whenever ND(t) >

∑
i≥1 Λi(t).

Proof. When ND(t) ≤
∑

i≥1 Λi(t) we have that GLR(t) = 0 ≥ 0 from equation (35), thus the
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statement holds. When ND(t) >
∑

i≥1 Λi(t) we rewrite the upper part of equation (35) to obtain:

GLR(t) = ND(t)

(
ln

(
ND(t)∑
i≥1 Λi(t)

)
+

∑
i≥1 Λi(t)

ND(t)
− 1

)
.

Now rewriting the term between brackets using A = ND(t) and B =
∑

i≥1 Λi(Ti) we obtain:

ln

(
A

B

)
+
B

A
− 1 =

B

A
−
(

1 + ln

(
B

A

))
.

Now define x := ln
(
B
A

)
. Because A > B we thus obtain that x > 0. Using the Bernoulli inequality

we obtain that:

1 + ln

(
B

A

)
= 1 + x ≤ ex =

B

A
.

It can easily be seen that 1 + x = ex if and only if x = 0. We obtained from our assumption that
x > 0, therefore above inequality is strict. We conclude that GLR(t) > 0.

Thus the CTGLR chart can only be non-negative, with the chart being equal to zero only when
ND(t) ≤

∑
i≥1 Λi(t). This is a consequence of the fact that we take the MLE as a maximum over 0 and

the logarithm of the counting process divided by the total accumulated cumulative hazard. Therefore
both the CTCUSUM chart and the CTGLR chart have a (sort of) cut-off at zero. This makes it much
easier to compare the charts, but also makes it easy to misinterpret what it means when each chart
is equal to zero. Whereas the CTCUSUM chart has a “hard” cut-off at zero, the CTGLR chart can
have built up a big buffer in the value of the MLE θ̂t, meaning that many failures are needed before
the chart is able to rise above zero again.

6.4 Some proofs

In this section we build up some theory in order to prove our main result in section 6.5. We will
build on results from the proof in Kalbfleisch & Biswas [3], which was presented in full in this thesis
in section 5.4. First we will restate some of the results from this section, adjusting them on the go so
they can be applied to the CTGLR. A few proofs will use results stated in the Appendix 15.

6.4.1 Expected value of the cumulative intensity

A term which we have often encountered in this thesis is
∑

i≥1 Λi(t). In this section we again name
this term A(t) and determine its expected value, similarly to section 5.4.

Lemma 6.4.1. Assume that fµi and hµi are non-negative and Borel measurable. Define A(t) =∑
i≥1 Λi(t), with Λi(t) as in section 6.1. Then:

E[dA(u)] = e−µψEZi [Fµi (u)] du

=: γudu

and:

E[A(t)] =

∫ t

0
γudu

with ψ the rate of arrivals and eµΛi(t) the true risk-adjusted cumulative intensity of failure at the
institution of interest.

32



6.4 Some proofs 6 CONTINUOUS TIME GLR CHART

Note that A(t) is an infinite sum, but Λi(t) is defined so that only “active” indices i are considered,
see section 6.1.

Proof. Again we consider an institution with hazard rate eµ times the baseline hazard rate. We have
that:

UGLR(t) := θ̂tN
D(t) + (eθ̂t − 1)A(t) (36)

where:

θ̂t = max

{
0, ln

(
ND(t)∑
i≥1 Λi(t)

)}
.

Once again we assume that patients arrive according to a homogeneous Poisson process with rate
ψ > 0. This time we will not study the process in equilibrium, instead choosing to take a more
general approach by not limiting the qualifying outcomes to some period after the primary procedure,
but instead choosing to consider their lifetime up until time of failure (or censoring). We repeat
the calculation of the expected value of dA(u) in section 5.4, only now slightly adjusted to the new
situation:

E[dA(u)] = E

∑
i≥1

Yi(u)hi(u− Si)du


= e−µE

∑
i≥1

1{Si ≤ u,Xi ≥ u− Si}eµhi(u− Si)du

 .

Here we use that Ti = Si + Xi. Then using the law of total expectation twice (conditioning first on
Zi and then on Si):

E[dA(u)] = e−µ
∑
i≥1

ESi [EZi [E [1{Si ≤ u}1{Xi ≥ u− Si|Zi}eµhi(u− Si|Zi)du] |Si]]

= e−µ
∑
i≥1

ESi [1{Si ≤ u}EZi [E [1{Xi ≥ u− Si|Zi}] eµhi(u− Si|Zi)du|Si]]

= e−µ
∑
i≥1

ESi [1{Si ≤ u}EZi [P (Xi ≥ u− Si|Zi)hµi (u− Si|Zi)du|Si]]

= e−µ
∑
i≥1

ESi [1{Si ≤ u}EZi [Sµi (u− Si|Zi)hµi (u− Si|Zi)du|Si]]

= e−µ
∑
i≥1

ESi [1{Si ≤ u}EZi [fµi (u− Si|Zi)|Si]] du

= e−µ
∑
i≥1

∫ u

0
EZi [fµi (u− x)]ψ

e−ψx(ψx)i−1

(i− 1)!
dxdu

= e−µψ

∫ u

0
EZi [fµi (u− x)] e−ψx

∑
i≥1

(ψx)i−1

(i− 1)!
dxdu.
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We obtain using Lemma 15.2.1:

E[dA(u)] = e−µψ

∫ u

0
EZi [fµi (u− x)] du (37)

= e−µψEZi [Fµi (u)] du. (38)

We define, similarly to above, the notation:

γu := e−µψEZi [F
µ
i (u)] > 0. (39)

We assumed that fµi and hµi are non-negative and Borel measurable, therefore using Lemma 15.3.1 we

obtain that E[A(t)] =
∫ t

0 γudu.

Note that in this case, γµ is not a constant as it depends on u, whereas γ as defined in equation
(26) was a constant. We can relate the two as follows:

γu=C = γ

meaning γµ is just a generalized form of γ.
In practice we will see that γu gives sharper bounds on the ARL which we will determine for the

CTGLR chart. Using γu in the proof of section 5.4 is not possible as a key point of that proof relied
on the fact that γ was a constant.

6.4.2 Distribution of ND(t)

Now consider the hospital as a queue, we then obtain the following result.

Lemma 6.4.2. Consider a hospital where primary procedures arrive according to a Poisson process
with rate ψ and the waiting time to failure for person i after the procedure has risk-adjusted distribution
function Fµi . Then ND(t) is a Poisson process with rate eµ

t

∫ t
0 γudu.

Proof. As patients arrive according to a Poisson process, the amount of failures after a primary
procedure ND(t) can be seen as a departure process. Proposition 3.2.1 then tells us that ND(t) is a
Poisson process with rate eµ

t

∫ t
0 γudu.

In summary, we have:

UGLR(t) = θ̂tN
D(t)− (eθ̂t − 1)

∫ t

0
γudu+ Et (40)

with Et = (eθ̂t−1)(
∫ t

0 γudu−A(t)), which is no longer a zero-mean process as θ̂t is not independent of

A(t). Because E[A(t)] =
∫ t

0 γudu (see Lemma 15.3.1) it is likely that Et will stay small and therefore
we approximate Et = 0. Comparing equation (36) with equation (40) we notice that a consequence
of this assumption is that we now assume that the only variability in the second part of GLR(t) is in

the eθ̂t term, while ignoring the variability in A(t). This will most likely lead to an underestimation
in the variability of the chart, thus giving us unrealistically sharp bounds on the ARL.

Following the proof in section 5.4 we would want to use the property that UGLR(t) has stationary
increments. However, UGLR(t) does not have stationary increments because θ̂t depends on t and we
have that θ̂t − θ̂s 6= θ̂t−s. Additionally, we no longer have information about the size of jumps the
chart makes, as the chart no longer makes upward jumps of fixed size. Because of this we take another
approach in the following sections.
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6.4.3 Distribution of θ̂t

The maximum likelihood estimate θ̂t is a key part of the CTGLR chart. We would therefore like to
determine some properties of this estimate. To this end we use a well known property of maximum
likelihood estimates to determine its asymptotic distribution. We are often more interested in the
time t to detection, instead of the amount of patients n until detection. Because of this we relate the
two to each other so that the following result is valid for t→∞ as well. In the following Lemma we
use a result from Hoadley [29], which requires the model to adhere to some conditions. In practice,
these conditions are mostly satisfied when fµi is continuous and twice differentiable.

Lemma 6.4.3. Let t > 0 and suppose we have n patients. Let {fµi , i = 1, ..., n} meet conditions
(N1)-(N9) of Hoadley [29]. Then, as n→∞:

√
n(θ̂t − µ)

d→ N

(
0,

1

I(µ, t)

)

with I(µ, t) = I(µ,t)
n and I(µ, t) the Fisher information in all observations at time t. Moreover,

assuming that n = ψ · t we have that:

√
t
(
θ̂t − µ

)
d→ N

(
0,

1

ψ · I(µ, t)

)

as t→∞.

Proof. Section 4 of Hoadley [29] tells us that under conditions (N1) − (N9) as stated in the article
our first statement holds. Most of these conditions are likely to hold when hµi is continuous and twice
differentiable. Finally, as patients arrive according to a Poisson process with rate ψ, it is reasonable
(especially when ψ is large) to assume that n = t · ψ, as we expect to see ψ patients arrive per time
unit. Using this relation we then have that n→∞ implies that t→∞ (remember that ψ is constant),
therefore using the properties of a normal distribution we obtain the second statement.

6.4.3.1 Fisher information

In Lemma 6.4.3 we determined the asymptotic distribution of θ̂t, which depends on the Fisher infor-
mation. In the following lemma we determine the Fisher information for this model.

Lemma 6.4.4. The Fisher information in all observations at time t > 0 is given by:

I(θ, t) = ψ

∫ t

0
EZi

[
F θi (k)

]
dk. (41)

Proof. Similarly to Lemma 6.2.1 our likelihood function is given by:

L(θ|t) =
∏
i≥1

(
eθdΛi(t)

)dND
i (t)

e−e
θΛi(t).

The log likelihood ratio is then given by:

l(θ|t) =
∑
i≥1

(dND
i (t))(θ + ln(dΛi(t)))− eθ

∑
i≥1

Λi(t).
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Taking the derivative w.r.t. θ yields:

∂l(θ|t)
∂θ

=
∑
i≥1

dND
i (t)− eθ

∑
i≥1

Λi(t).

And the second derivative:

∂2l(θ|t)
∂θ2

= −eθ
∑
i≥1

Λi(t).

Finally, the Fisher information is given by:

I(θ, t) = −E

−eθ∑
i≥1

Λi(t) | θ

 (42)

= eθEθ [A(t)] (43)

= eθe−θψ

∫ t

0
EZi

[
F θi (k)

]
dk (44)

= ψ

∫ t

0
EZi

[
F θi (k)

]
dk (45)

where we have used our result from Lemma 6.4.1.

6.5 Main result: asymptotic distribution of the CTGLR

In this section we determine the asymptotic distribution of the continuous time GLR chart as defined in
6.3.1. This is the main theoretical result of this thesis, from which an approximation to the ARL of the
CTGLR will follow in section 6.6 and consecutively an approximation to the ARL of the CTMAXGLR
and CTCUSUM in section 6.9.

Theorem 6.5.1. Consider an institution where patients arrive according to a Poisson process with
rate ψ. Let hµi be the risk-adjusted hazard rate of patient i and suppose the associated distribution
functions {fµi , i = 1, ...} meet conditions (N1)-(N9) of Hoadley [29] and let µ > 0 be fixed. Suppose

A(t) =
∑

i≥1 Λi(t) is constant with value Eµ[A(t)] and that ND(t) = eθ̂tA(t). Then the GLR chart as
defined in 6.3.1 converges in distribution:

√
t
(
GLR(t)−

(
µ+ e−µ − 1

)
I(µ, t)

) d→ N
(
0, tµ2I(µ, t)

)
, when µ > 0 (46)

t ·GLR(t)
d→ t · χ2

1

2
= Γ

(
1

2
, t

)
, when µ = 0 (47)

as t→∞ where

I(µ, t) := ψ

∫ t

0
EZi [Fµi (k)] dk = eµ

∫ t

0
γudu (48)

and χ2 and Γ represent the Chi-squared and Gamma distributions respectively.

Note that assuming that ND(t) = eθ̂tA(t) when µ > 0 is not very problematic, as we instantly
recover this equality from equation (32) whenever θ̂t > 0. As θ̂t converges towards the true value of
µ, we are very likely to have θ̂t > 0 whenever µ > 0, especially for µ (and ψ) large.
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Proof. 1. When µ > 0: Assuming that ND(t) = eθ̂tA(t) we can write:

GLR(t) = θ̂tN
D(t)− (eθ̂t − 1)

∫ t

0
γudu

= θ̂te
θ̂tA(t)− (eθ̂t − 1)

∫ t

0
γudu.

Now assume that A(t) is a constant with value E[A(t)] =
∫ t

0 γudu = I(µ, t) (using Lemma 6.4.1). Then
consider the function φ defined as:

φ(x) = xexe−µI(µ, t)− exe−µI(µ, t) + e−µI(µ, t)

and note that φ(θ̂t) = GLR(t). Additionally, we find that φ is differentiable at µ with derivative:

φ′(x) = e−µI(µ, t)xex.

Then by the delta method (see section 7 of Van der Vaart. [30]) and the result of Lemma 6.4.3 we
obtain that:

√
n
(
φ(θ̂t)− φ(µ)

)
d→ N

(
0,

(φ′(µ))2

I(µ, t)

)

as n→∞ which reduces to:

√
t
(
GLR(t)−

(
µ+ e−µ − 1

)
Kt

) d→ N
(
0, tµ2I(µ, t)

)
when t→∞ using a similar argument (n = ψ · t) as in the proof of Lemma 6.4.3.

2. When µ = 0: In this case we can no longer use the delta method to determine the distribution
of GLR(t) as φ′(µ) = φ′(0) = 0. Luckily we can use the second-order delta method (see Theorem
5.5.26 of Casella & Berger [31]). Note that:

φ′′(x) = (x+ 1)exe−µI(µ, t)

and φ′′(0) = I(µ, t). Now the second-order delta-method in combination with Lemma 6.4.3 tells us
that:

n (GLR(t)− φ(0))
d→ 1

I(θ, t)

φ′′(0)

2
χ2

1

as n→∞ which simplifies to:

t ·GLR(t)
d→ t

2
χ2

1 = Γ

(
1

2
, t

)
as t→∞, using the scale parametrization of the Gamma distribution (and using that n = ψ · t).

Having determined an asymptotic distribution for the CTGLR, we can now approximate an
(asymptotic) average run length, which will be done in section 6.6. Note that the result only holds
for t→∞ or similarly n→∞, but we will see in section 7.1.2 that this result is quite applicable for
small t as well, especially when ψ is large as n = ψ · t.
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6.5.1 Closed distribution for the CTGLR

It should be possible to obtain an even better analytic expression for the (asymptotic) distribution
of the CTGLR, although it will most likely be quite a challenge. For this we note that we know the
(asymptotic) distributions of almost all the separate terms of the CTGLR, as in section 6.4 we have
shown the individual components of the CTGLR to have the following distributions:

GLR(t) = θ̂t︸︷︷︸
N (µ,I(θ,t)−1)

· ND(t)︸ ︷︷ ︸
Poiss(eµ

∫ t
0 γudu)

−
(
eθ̂t − 1

)
︸ ︷︷ ︸

logN (µ−1,I(θ,t)−1)

∫ t

0
γudu

where we assumed that A(t) is fixed with value
∫ t

0 γudu. It should be possible to determine the
distribution of the whole expression. The biggest difficulty when doing so is determining the covariance
of θ̂t and ND(t).

6.6 An approximation to the ARL

In this section we discuss how to determine an approximate ARL using the results above.

6.6.1 Using the main result

We discuss how to obtain an approximate ARL for the CTGLR chart using the main result of this
thesis.

Corollary 6.6.1. Consider an institution with risk-adjusted hazard rate hµi and take h > 0. Then
using the result from Theorem 6.5.1 one can obtain an approximate out of control average run length
by solving the following equation for t:

E[GLR(t)] = (µ+ e−µ − 1)I(µ, t) = h. (49)

The obtained solution for t, denoted by ARLGLR(µ, h), will then be an approximation of the average
run length under the alternative hypothesis of the value µ > 0 of interest.

Above equation can be solved either algebraically or numerically. Using a root finding algorithm
like Newton-Raphson is convenient as we can use the fundamental theorem of calculus when the hazard
is chosen parametrically.

6.6.2 Substituting confidence bounds

Instead of using the delta method to find an asymptotic distribution of the CTGLR chart we can
use another approach to find confidence intervals for the CTGLR. Fix t > 0 large enough, then using
Lemma 6.4.3 we have that:

θ̂t∼̇N
(
µ,

1

I(µ, t)

)
.

Additionally, in Lemma 6.4.2 we found that:

ND(t) ∼ Poiss

(
ψ

∫ t

0
E [Fµi (u)] du

)
.

At every time-point t > 0 we can therefore find an (approximate) 1 − α confidence level bounds for
both θ̂t as well as for ND(t). We know that θ̂t and ND(t) have a strictly positive correlation, as

38



6.7 Ignoring the covariates 6 CONTINUOUS TIME GLR CHART

θ̂t = ln
(
ND(t)
A(t)

)
, therefore we know that the lower confidence bound for θ̂t is associated with the lower

bound for ND(t). If we now substitute these confidence bounds into:

GLR(t) = θ̂tN
D(t)− (eθ̂t − 1)

∫ t

0
γudu

we can obtain approximate 1− α confidence intervals for the CTGLR, even when µ = 0.

6.7 Ignoring the covariates

We have seen that the term EZi [Fµi (k)] is present in many equations above. This is because we
have a dependence on covariates, which we try to integrate out to obtain some theoretical expression.
Often we are not interested in considering risk-adjustment terms, as we do not know what kind of
distribution the risk-adjustment variables will have in our application. In the subsections below we
will therefore sometimes ignore the risk-adjustment terms. When we do we simply replace EZi [Fµi (k)]
with Fµ(k), as this is the equivalent when no risk-adjustment is present.

6.8 Asymptotic bounds

In this section we determine an asymptotic upper and lower bound for the value of the non risk-
adjusted CTGLR chart.

Lemma 6.8.1. Suppose an institution has had n ∈ N>0 primary procedures and the risk-adjusted
hazard for failure is given by hθi . If we only consider these patients, the expected value of the continuous
time GLR chart can be bounded as follows when t→∞:

n
(
θ − (1− e−θ)

)
≤ Eθ

[
lim
t→∞

GLR(t)
]
≤ −

n∑
i=1

Eθ [ln(Hi(Xi))]− n+ ne−θ. (50)

To the best of our knowledge, further simplification of the expression Eθ [ln(Hi(Xi))] is not possible
in general, but it should not be difficult to determine it computationally. Additionally, when we do
not consider risk-adjustment terms, we have that

∑n
i=1 Eθ [ln(Hi(Xi))] = n · Eθ [ln(H0(X1))], which

should not be too hard to determine analytically under some specific parametric assumptions.

Proof. First let us look at the expected value of the chart in the limit t → ∞ having observed all n
available outcomes, with n a positive integer which we fix beforehand. For this we want to determine
the expected value of equation (35). The expectation of the lower part is trivial, for the upper part
we would first like to determine the expectation of the sum of the cumulative hazards. Suppose that
we have no censored observations, then T ∼ Fi(t) = 1− Si(t). Consider the hypotheses µ = 0 against
µ = θ, then using integration by parts we obtain:

Eθ[ lim
t→∞

Λi(t)] = Eθ[Hi(Xi)] =

∫ ∞
0

Hi(t)f
θ
i (t)dt =

∫ ∞
0

∫ t

0
eZiβh0(t)dt · −∂S

θ
i (t)

∂t
dt (51)

= −
([
Hi(t)S

θ
i (t)

]∞
0
−
∫ ∞

0
Sθi (t)hi(t)dt

)
(52)

= −
(

0− 0− e−θ
∫ ∞

0
Sθi (t)hθi (t)dt

)
(53)

= e−θ
∫ ∞

0
fθi (t)dt = e−θ (54)
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which supports the heuristic statement made in the beginning of section 6.3.1 that the expected value
of the cumulative hazard is equal to 1 for a person failing according to the baseline hazard rate. As
we have a fixed number n of observations and no censoring we obtain:

Eθ[ lim
t→∞

ND(t)] = Eθ

[
lim
t→∞

n∑
i=1

ND
i (t)

]
= n.

Then using Jensen’s inequality:

Eθ
[

lim
t→∞

ln

(
ND(t)∑n
i=1Hi(Ti)

)]
= ln(n)− Eθ

[
ln

(
n∑
i=1

Hi(Xi)

)]

≥ ln(n)− ln

(
n∑
i=1

Eθ[Hi(Xi)]

)
= ln(n)− ln(ne−θ)

= θ.

Substituting the above results into (35) and assuming we have a total of n outcomes, all under Hθ,
we expect the chart to converge towards:

Eθ
[

lim
t→∞

GLR(t)
]
≥ n · θ − n+ ne−θ = n

(
θ − (1− e−θ)

)
. (55)

Conversely, we can find an upper bound by using the logarithm of the inequality of arithmetic and
geometric means:

ln

(∑n
i=1 xi
n

)
≥
∑n

i=1 ln(xi)

n

which yields:

Eθ
[

lim
t→∞

ln

(
ND(t)∑n
i=1Hi(Ti)

)]
= −Eθ

[
ln

(∑n
i=1Hi(Xi)

n

)]
≤ −Eθ

[∑n
i=1 ln(Hi(Xi))

n

]
= −

∑n
i=1 Eθ [ln(Hi(Xi))]

n

where the expectation does not have a closed general form. Thus giving the following upper bound
for the GLR:

Eθ
[

lim
t→∞

GLR(t)
]
≤ −

n∑
i=1

Eθ [ln(Hi(Xi))]− n+ ne−θ. (56)

Because we consider the risk-adjusted case, the Xi are not i.i.d. and thus the summation also does
not disappear. Note that it should still be possible to determine this upper bound numerically or
calculate the value for some chosen (cumulative) hazard function. Combining both above results we
thus have that:

n
(
θ − (1− e−θ)

)
≤ Eθ

[
lim
t→∞

GLR(t)
]
≤ −

n∑
i=1

Eθ [ln(Hi(Xi))]− n+ ne−θ.
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6.9 Continuous time MAXGLR chart

In this section we consider the Continuous Time MAXGLR chart, which is a continuous time general-
ization of the discrete time maxGLR chart introduced in equation (15), similarly to how the CTGLR
chart is a generalization of the discrete time GLR chart. The CTMAXGLR can be seen as the “auto-
mated” CTCUSUM chart, as it is used to test the same hypotheses, and determines a suitable value
for θ using a ML estimate.

Entirely analogous to how the discrete time maxGLR chart was derived from the discrete time
GLR chart in section 4.3, the CTMAXGLR chart can be derived by maximizing the CTGLR chart
over the last k observations.

Definition 6.9.1. The Continuous Time Maximized Generalized Likelihood Ratio chart (CTMAXGLR)
is given by:

MAXGLR(t) = max
k

θ̂k,tN
D
k (t)− (eθ̂k,t − 1)

n∑
i=k

Λi(t) (57)

where the subscript k indicates that the quantities are taken over the last n− k patients. This chart is
used to test the hypothesis that the cumulative intensity at an institution differs by a factor of eθ (with
θ > 0 unknown) from the null cumulative intensity Λi(t), starting from some unknown patient ν:

H0 :X1, X2, ... ∼ Λi

H1 :X1, ..., Xν−1 ∼ Λi

Xν , Xν+1, ... ∼ Λθi

The counting processed are as defined in section 5.1. The maximum likelihood estimator θ̂k (limited
to the last n− k patients) was found in Lemma 6.2.1:

θ̂k,t = max

(
0, ln

(
ND
k (t)∑

i≥k Λi(t)

))
. (58)

The null hypothesis is rejected at time t when MAXGLR(t) ≥ h for some h > 0, called the control
limit.

Note that per definition the value of the CTMAXGLR is always bigger or equal to the value of the
CTGLR chart. The maximum likelihood estimate θ̂t found in Lemma 6.2.1 can build up a buffer when
failures happen according or slower than the null hazard rate, as

∑
i≥1 Λi(t) can become (much) larger

than ND(t). This means that if at the beginning of observations failures happen slower or according
to the null rate Λi(t) the CTGLR chart will need some time to adjust after failures start happening
faster than the null rate, which will lead to detection delays. To counteract this fact we can consider
the CTMAXGLR, which does not have this problem as we eliminate the possibility of building up a
buffer by maximizing over the last n− k observations. This in turn makes the CTMAXGLR prone to
false signalling when a few consecutive failures happen very quickly. Another problem is that whereas
in a discrete time maxGLR the ordering of the outcomes is very clear, the ordering in a continuous
time chart is not quite as evident. The most logical decision is to order the individuals by their time
of entry into the study, therefore we order by Si for every i. Then we have to make a decision on
how to order for ties in the data, thus when multiple individuals enter the study at the same time
point. In this case, we can choose to order them by their observation time (Xi) if it is known and
either randomly or (when using risk-adjustment) by their risk factor when their outcome time is not
known. The choice made at this point directly influences how conservative the chart will be. Leaving
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out high-risk patients which have not experienced a failure for a relatively long time will increase the
value of the CTMAXGLR whereas leaving out patients with low risk which have had a very early
failure will decrease the value of the chart in that iteration. In any case, the CTMAXGLR will always
be greater than the CTGLR, but the choice of ordering can have a significant impact on the in and
out of control run length in the presence of many ties. If false alarms are not a big problem, then the
most conservative ordering of the data should be chosen, as this leads to smaller detection delays.

Proposition 6.9.1. Consider all processes which are in control for the first ν − 1 observations, and
out of control with excess hazard rate eµ > 1 afterwards. Denote the time of the ν-th observation by
τ . Denote the average run length of the CTGLR chart with control limit h starting from time τ as
ARLGLR(µ, h, τ). Denote the average run length of the continuous time MAXGLR chart from t = 0
as ARLMAXGLR(µ, h). Then:

ARLMAXGLR(µ, h) ≤ ARLGLR(µ, h, τ) + τ.

Proof. At every time point, the CTMAXGLR chart is simply a CTGLR chart which ignores the first
k observations, where k is chosen such that the CTMAXGLR obtains its maximum possible value.
Per definition, this implies that at any time point the CTMAXGLR will always be greater or equal
to the CTGLR chart, irrespective of the starting point of the CTGLR. This means that for the same
control limit h > 0, the CTMAXGLR will always hit the control limit earlier or at the same time as
a CTGLR chart starting at any time point.

Heuristically this proposition can be interpreted as follows: Suppose a hospital is not initially out
of control, the run length of the CTMAXGLR chart is then at most the run length of the CTGLR
chart for that hospital considered from the time observations started going out of control, plus the
time until observations start going out of control. This will be of great importance in section 7, where,
using a simulation study, we will compare the run lengths of the CTCUSUM and CTGLR charts when
the process is initially out of control. Using this proposition we can then obtain an upper boundary for
the run length of the CTMAXGLR. This run length will then be meaningful in practical applications,
where the process is not always initially out of control.

6.10 Theoretical comparison of ARL between CTCUSUM and CT(MAX)GLR

In this section we will compare the approximation of the ARL of the CTCUSUM chart obtained by
Biswas & Kalbfleisch [3] in equation (30) with the approximation of the ARL which we found for the
CTGLR chart in Corollary 6.6.1.

To derive the ARL of the CTCUSUM chart as stated in equation (30) Biswas & Kalbfleisch assumed
that observations begin at time point t = −C years, so that at time t = 0 process is in equilibrium.
Unfortunately this assumption is quite problematic when C grows large, as in real life applications
we cannot ignore the first C years of observations or assume that the process immediately starts in
equilibrium. Because of this, their approximation for the ARL is overly optimistic whenever C grows
large. We found that for C = 1, the approximation works quite well, even when considering outcomes
from t = 0. For C larger than 1 however, we found that the approximate ARL was way too small
compared to simulation results (see Table 3). Besides this, it is difficult to compare their theoretical
ARL with the one we obtain from Corollary 6.6.1, as we consider outcomes not limited to C years post
transplant. This means that in theory, our result in Corollary 6.6.1 should be comparable with the
ARL in equation 30 when C → ∞. We argued above however that when C becomes large, equation
(30) is no longer valid therefore we cannot compare our theoretical results meaningfully in this way.

To still compare the average run lengths of the two charts, we can derive a result similar to
Corollary 6.6.1 for the CTCUSUM chart when C = ∞, using the exact same steps as in sections 6.5
and 6.6.
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Corollary 6.10.1. Consider an institution with risk-adjusted hazard rate hµi and choose h > 0. Then
one can obtain an approximate out of control average run length for the CTCUSUM with θ > 0 and
C =∞ such that θ + e−µ − eθ

eµ > 0 by solving the following equation for t:

E[Gθ(t)] = (θ + e−µ − eθ

eµ
)I(µ, t) = h. (59)

The obtained solution for t, denoted by ARLCUS(θ, µ, h), will then be an approximation of the average
run length of the CTCUSUM under the alternative hypothesis µ > 0 for the chosen value of θ.

Proof. Taking the expected value of equation (23) while assuming that A(t) is constant with value
E[A(t)] = e−µI(µ, t) (see 6.4.1) we obtain the approximate expected value of the CTCUSUM chart. We
recover an approximate ARL by equating the expected value to a pre-defined cut-off value h > 0.

Note that E[Gθ(t)] can become negative when θ > µ, this means that it is not always possible to
solve for the ARL in this way. The result allows us to compare the expected values of the CTCUSUM
and CTGLR charts respectively., which restating the results above are:

E[Gθ(t)] = (θ + e−µ − eθ

eµ
)I(µ, t) (60)

E[GLR(t)] = (µ+ e−µ − 1)I(µ, t) (61)

allowing us to make the following statement.

Corollary 6.10.2. Consider an institution with cumulative intensity eµΛi(t) for some µ > 0 and
choose h > 0. The approximate average run length of the CTGLR chart as defined in 6.6.1 is smaller
or equal than the approximate average run length of the CTCUSUM chart with value θ as defined in
6.10.1 for testing against a null cumulative intensity of Λi(t) using the value of h chosen above. The
average run lengths are equal when θ = µ.

Proof. Fixing h > 0 we easily see from Corollaries 6.10.1 and 6.6.1 that the average run length of both
charts depend solely on the expected value of the charts as stated in equation (60). If we can thus
show that E[GLR(t)] ≥ E[Gθ(t)] for any t > 0 with equality only when θ = µ, the statement will hold.

Note that as I(µ, t) only depends on µ and t, we only have to show that θ + e−µ − eθ

eµ ≤ µ+ e−µ − 1
or alternatively:

θ − µ ≤ eθ−µ − 1.

This follows directly from Bernoulli’s inequality (1 + x ≤ ex for any x ∈ R), with equality only when
θ − µ = 0, or θ = µ.

We therefore find that the CTGLR chart always has a shorter approximate average run length
when considering hospitals which are initially out of control, and using Proposition 6.9.1 we find that
the CTMAXGLR has an even shorter run length. Heuristically this can be seen as the CT(MAX)GLR
automatically selecting the true value of µ for us, by using a maximum likelihood estimate. The ML
estimate needs some time (or equivalently a sufficient number of observations) to converge towards
the true value, therefore a CTCUSUM chart with the right value of θ will in reality have a shorter
detection time if the process is out of control from the start. This also tells us that if the value of
θ in the CTCUSUM chart is chosen not in accordance with the true value of µ, the chart will not
have an optimal stopping time, making the CT(MAX)GLR chart preferable when we do not know the
true value of µ or when the rate varies over time. Unfortunately this statement does not imply that
the CT(MAX)GLR is better than the CTCUSUM chart even in this aspect, as the CT(MAX)GLR
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chart can still have a shorter in control average run length, which is not desirable. As we do not
have a reliable theoretical result for the in control ARL, we cannot make a definite statement about
which chart is better when considering type I errors. Besides this, the results for the ARL are only
approximate, and only valid for large values of n or t. This means that we do not expect our theoretical
results to sufficiently describe situations in which detections happen at early time points (i.e. low value
of the control limit h, very high rate of failure etc.).
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7 A simulation study

In this section we perform a simulation study in which we compare (mainly on the average run length)
the CTCUSUM chart as defined in 5.3.1 with the CT(MAX)GLR charts defined in 6.3.1 and 6.9.1.
The CTCUSUM will be considered with C = ∞, therefore considering all revisions post primary
procedure as qualifying. The context of the simulations will be purely medical, where we consider N
hospitals all performing primary hip replacement surgery (called the primary procedure) on patients,
at which point the patients enter into the study. Patients arrive according to a Poisson process (see
3.1) with rate ψ. The outcome of interest is revision of the prosthesis. We assume that there is some
known (null) cumulative intensity Λi(t) which indicates an average rate of failure. Hospitals then
deviate from this intensity by a factor of eµ, where µ > 0 (eµ > 1) means that their quality is worse
than average and µ ≤ 0 (eµ ≤ 1) indicates that it is up to standard or better than average. We will
not consider censoring or competing risk mechanisms in the simulation studies of this section. This
is because we are trying to determine whether the asymptotic theoretical results (such as the ARL)
from section 6 are also valid at relatively small time points for survival outcomes. By implementing
censoring and competing risks mechanisms we would no longer be able to compare with said theoretical
results, as the assumptions in section 6 would no longer hold causing the run lengths to be skewed. In
a practical scenario, these mechanisms could be of great importance. For this reason, right-censoring
mechanisms will be considered in section 13. Competing risks will not be considered at all, because
expert (medical) knowledge is required on whether the inclusion of death (in this instance) into the
chart is desirable at all.

In every section we will clearly indicate under which assumptions the simulations were performed,
this will be done by specifying all quantities of interest. When no quantities are specified, the following
table will be guiding, see Table 2.

Number of charts/hospitals Distribution of time to failure Deviation factor under H1 Poisson arrival rate

N Exponential eµ ψ

3000 Rate λ = 0.002 1.4 2.28

Table 2: Standard simulation parameters employed in this section.

The simulation procedure employed in this and further sections is summarized in section 15.4.
We choose N = 3000 so that we can expect enough precision in the results under a realistic restriction
on the computation time. The rate was chosen so that about 50 percent of patients will have failed
after the first year under the null hypothesis. This was also done out of computational considerations,
as longer failure times require us to construct the charts for longer periods of time. In Figure 3 the
survival curve and cumulative hazard rate of the exponential distribution with rate λ = 0.002 is shown.
Around t = 3000 days (about 8 years) most of the patients will have failed, and the cumulative hazard
rate is a linear function of time. The parameter µ was chosen such that the failure rate with respect to
the null distribution was sufficiently large to be detectable, while not making the failures happen too
fast. The rate ψ was chosen to be approximately equal to the rate at the largest hospital present in
our data set (see section 12), so as to make the amount of patients comparable to real life applications.

7.1 Assessing the theoretical assumptions and results

In sections 6.4.3 and 6.5 we have used quite a lot of approximations. In this section we assess whether
these approximations are realistic by means of simulation, using the values specified in Table 2.
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Figure 3: Survival curve (left) and cumulative hazard rate (right) for the exponential distribution with
rate 0.002.

7.1.1 Asymptotic convergence of ML estimate

For the asymptotic convergence of the ML estimate in Lemma 6.4.2 we assumed that conditions
(N1)− (N9) from [29] were satisfied. All of these conditions are likely satisfied when the distribution
function is continuous and twice differentiable.

We generate N = 3000 simulated hospitals according to Table 2 (see also section 15.4 step 3.)
and evaluate the CTGLR on them. We plot the determined values of θ̂t for these CTGLR charts.
Then we overplot the theoretical approximate 95 percent confidence intervals at every time point
(fixing t and assuming it is large enough at every time-point) as well as the Monte Carlo 95 percent
confidence intervals so that we can compare them. The result can be seen in Figure 4. This figure
seems to reinforce our theoretical result, as the theoretical and Monte Carlo bounds coincide as t
grows larger. Notable is how the monte carlo intervals are inside the theoretical intervals, indicating
that convergence happens more rapidly than theoretically expected (in this case).

7.1.2 Confidence interval bounds for the CTGLR

We would like to asses whether our asymptotic distribution for the CTGLR chart found in Theorem
6.5.1 coincides with reality when t is not very large. Using the same N = 3000 CTGLR charts as above
we construct approximate 95 percent confidence intervals for the value of these charts using both our
main result 6.5.1 (fixing t and assuming t is large enough) and the result in section 6.6.2. In our main
result we used the (second order) delta method to find an approximate distribution, while in section
6.6.2 we used a simple substitution argument. The resulting figures can be found in Figure 5. We can
see that the bound substitution method gives slightly better bounds for early time points, whereas
the delta method seems to underestimate both the upper as well as the lower MC confidence intervals
for these early time points. This is because when programming the delta method we only cut-off the
confidence intervals at zero after they have been generated from the normal distribution, whereas in
bound substitution we use a cut-off for both ND(t) as well as for θ̂t at zero, before substituting them
into the final expression. This is because both these values cannot (per assumption) be less than zero.
We can see that both these theoretical bounds start overestimating the variance in the chart after a
while, which is not in line with what we expected in section 6.4.2, as we do not consider the variability
of A(t) in this approximation. A possible reason for this is that in Theorem 6.5.1 we used the equality

ND(t) = eθ̂tA(t) so that we could use the delta method. Afterwards we assumed A(t) was a constant

equal to its expected value. Most likely eθ̂t has a bigger variance than ND(t), therefore yielding wider
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Figure 4: Theoretical and Monte Carlo 95 percent confidence intervals for θ̂t (Lemma 6.4.3). The
figure was constructed using the parameters in Table 2. Whereas for the theoretical intervals only the
upper and lower bounds are plotted, the MC mean is also included in the figures, as well as the true
value of µ.

confidence intervals.

(a) Delta Method (b) Bound Substitution

Figure 5: Theoretical and Monte Carlo 95 percent confidence intervals for UGLR(t) using the (a) Delta
Method and (b) bound substitution. Both figures were constructed using the parameters described in
Table 2. Whereas for the theoretical intervals only the upper and lower bounds are plotted, the MC
mean is also included in the figures.

Above we used a value of eµ = 1.4. We saw in Theorem 6.5.1 that when eµ = 1 the asymptotic
distribution is different from when eµ > 1. The result from section 6.6.2 is unchanged however for
eµ = 1. We therefore compare these two results again when eµ = 1. For this we use the same strategy
as above to create Figure 6. We can see that using the second order delta method (main result) we

47



7.2 A short example 7 A SIMULATION STUDY

do not get sharp upper bounds compared to the bound substitution method in section 6.6.2. Besides
this the upper bound using substitution seems to be slightly unstable, but not problematically so.

(a) Second Order Delta Method (b) Bound Substitution

Figure 6: Theoretical and Monte Carlo 95 percent confidence intervals for UGLR(t) using the (a)
Second Order Delta Method and (b) bound substitution. Both figures were constructed using the
parameters described in Table 2, but instead of eµ = 1.4 we now have eµ = 1. Whereas for the
theoretical intervals only the upper and lower bounds are plotted, the MC mean is also included in
the figures.

7.2 A short example

First of all, we would like to emphasize using a short simulation example that the CTGLR chart
as defined in 6.3.1 is not suitable for testing for a delayed change in cumulative intensity, therefore
stressing that it should only be compared with the CTCUSUM as defined in 5.3.1 when we know that
the process is out of control from the start. When this is not the case, we should always compare
the CTCUSUM with the CTMAXGLR as defined in 6.9.1. To show this we consider 3 simulated
institutions. One where the process is in control during the whole observation time, one where the
process is out of control during the whole observation time and one where the process is in control
in the first 500 time points, and out of control starting from t = 500. We construct the CTCUSUM,
CTGLR and CTMAXGLR for all 3 institutions, to obtain Figure 7.

We can see in Figure 7a that the GLR stays at zero for most of the time, while the MAXGLR and
CUSUM charts have values in a comparable range. This is because the CTGLR can build up a buffer
in the value of θ̂t when the observations are in control, which is not the case for the CTCUSUM and
CTMAXGLR. In Figure 7b we can see that all 3 charts take almost the same values at all time points.
This means that when the process is out of control the whole time, we can compare the
CTCUSUM chart with the CTGLR chart, instead of determining the CTMAXGLR chart, thus
saving us a lot of computational power. Finally, in Figure 7c we can see that the CTMAXGLR and
CTCUSUM take comparable values, while the CTGLR chart is lagging behind after the observations
go out of control. This is once again because of the buffer the CTGLR can build up. Notable is
how the CTCUSUM chart drops rapidly at the 600 day mark, while the CT(MAX)GLR experiences
a period of stagnation instead of dropping. Afterwards we can see that the CTCUSUM chart catches
up to the CTMAXGLR chart. Overall the CTCUSUM chart seems to be less stable than the CTGLR
charts in these three examples.
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(a) In control (b) Out of control

(c) In and then out of control

Figure 7: One continuous time CUSUM, GLR and MAXGLR chart constructed for an (a) in control
(b) out of control (c) in and then out of control institution. The out of control rate was chosen as
eµ = 1.4, while the in control rate was eµ = 1. The dotted line in (c) indicates when the observations
start going out of control.

7.3 Comparing the ARLs

As we saw in section 7.2 we can compare the CTCUSUM with the CTGLR when the observations are
out of control from the beginning of the study. This allows us to perform quite extensive simulation
studies, as both the CTCUSUM and CTGLR charts do not require a lot of computational power. We
take the following approach in this section. Consider 2 CTCUSUM procedures, one with eθ = 1.4 and
one with eθ = 1.8 and consider the CTGLR procedure. We generate 3000 institutions using Table 2,
but with eµ = 1, thus under the null rate. We determine cut-off values h for all 3 charts such that
their average run length under the null rate is 15 years, therefore we expect the charts to give a false
signal every 15 years using the determined value of h. A summary of the simulation procedure is given
in section 15.4.

We saw that the CTGLR chart can build up a buffer under the null rate, therefore we determined
the value of h using the CTMAXGLR chart. As the CTMAXGLR takes very long to construct, we
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determine the control limit on a small sample of N = 120 institutions, therefore introducing more
variability into our results. Then once again we generate N = 3000 hospitals according to Table 2,
with different values for µ and evaluate all three charts on them. We add the standard deviation of the
run lengths, as well as the Median Run Length and the Theoretical value of the ARL as determined
in Corollary 6.6.1 and Corollary 6.10.1. We add the theoretical value of the ARL with C = 1 year as
determined by Biswas & Kalbfleisch [3], which can also be found in Equation (30). The results can
be found in Table 3.

CTCUSUM
eθ = 1.4, h = 6.82

CTCUSUM
eθ = 1.8, h = 8.35

CTGLR
h = 7.73

eµ ARL(SD) MRL Theor(B&K) ARL(SD) MRL Theor(B&K) ARL(SD) MRL Theor

1 5510 (4930) 4056 ∞ (12086) 5478 (4739) 4104 ∞ (16815) 5528 (4666) 4398 ∞
1.2 409 (184) 374 1352 (274) 639 (366) 572 Inf (653) 480 (163) 474 511
1.4 205 (57) 198 227 (78) 240 (100) 223 490 (109) 229 (72) 228 243
1.6 152 (33) 148 159 (46) 153 (48) 145 177 (48) 153 (48) 151 162
1.8 127 (24) 125 130 (34) 119 (31) 116 128 (31) 117 (37) 117 123
2 110 (20) 109 112 (27) 101 (23) 99 106 (23) 95 (30) 94 100

2.2 99 (16) 98 101 (23) 89 (19) 87 92 (19) 81 (25) 80 85
2.4 91 (15) 91 92 (21) 81 (16) 80 82 (16) 71 (23) 71 74
2.6 85 (13) 84 85 (19) 74 (14) 73 75 (15) 63 (20) 62 65
2.8 79 (12) 79 80 (17) 69 (13) 68 70 (13) 57 (18) 57 59
3 75 (11) 75 75 (16) 65 (12) 64 66 (12) 52 (17) 51 54

Table 3: A comparison of ARLs (in days) between 2 CTCUSUM procedures (eθ = 1.4, 1.8) and the
CTGLR, all with a value of h chosen such that the average run length under the null hypothesis is
approximately 15 years. Evaluated on a sample of N = 3000 hospitals with true rate µ. Additionally,
the standard deviation and Median Run Length are displayed, as well as the theoretical values for the
ARL as determined in Corollary 6.6.1 and Corollary 6.10.1. Finally, we also display the theoretical
ARL as determined by Biswas & Kalbfleisch [3] in equation (30) with C = 1 year, denoted by (B&K).

A few interesting things can be seen in the table, which are summed up below.

• Notice how the value of h for the CT(MAX)GLR lies between the values of h for the CTCUSUM
procedures. Unfortunately it was not possible to take the in control ARL to be exactly the same
for all 3 charts, due to computational limitations. Notice how the CTGLR chart has the largest in
control run length, meaning that out of the 3 charts, the CTGLR chart has the most conservative
value for h.

• The CTCUSUM with eθ = 1.4 clearly outperforms the CTGLR at true value eµ = 1.4, but
the CTCUSUM with eθ = 1.8 does not clearly outperform the CTGLR chart at eµ = 1.8 with
respect to run length. We can see that the CTGLR has a slightly shorter ARL (by 2 days), but
has a bigger SD (by 5 days). From this we conclude that for small values of µ, a CTCUSUM
chart with the right value of θ is better than a CT(MAX)GLR chart, while for larger values
of µ, the CTGLR chart is likely better. Notice that for µ > 2, the CTGLR outperforms both
CTCUSUM charts, although it has a higher variability.

– From this we conclude that if we know the true out of control rate, the CTCUSUM is
preferrable, but if we do not know (especially for large values of µ) or the rate is subject
to change over time, the CT(MAX)GLR should be the preferred method.

– As the CTMAXGLR chart is always larger than the CTGLR chart, it is possible that it
would not have such a high variability in detection times due to its earlier detection times.
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• The distribution of the run lengths is right-skewed for all charts, as the MRL is always smaller
than the ARL. Notably, the distribution of the run lengths for the CTGLR are only very slightly
right-skewed, especially for big values of µ.

• The theoretical values only correspond to the Monte Carlo values for big values of µ for the
CTCUSUM charts, while for the CTGLR charts the theoretical values are reasonable at all
values of µ. This is likely due to the fixed value of θ in CUSUM procedures.

– The theoretical values using Equation (30) are never close to the real values, with the theo-
retical values being very small compared to the Monte Carlo values. This is a consequence
of a difference in assumptions, as we do not assume the process to start in equilibrium,
as well as no longer limiting the CTCUSUM to C = 1, opting to consider all failures as
qualifying (C =∞).

• For small values of µ, the standard deviation of the run lengths is smaller for the CTGLR than
for the CTCUSUM charts, while for bigger values of µ, the SD of the CTCUSUM charts seems
to converge towards zero faster than that of the CTGLR charts. This could be due to the fact
that the CTGLR adjusts the value of θ̂t, meaning that higher failure rates also cause the chart to
decrease more rapidly, while the CTCUSUM charts have a steady rate of increase and decrease,
resulting in more stable detection times.

7.4 Asymptotic study

In section 6.8 we determined some bounds for the asymptotic value of the CTGLR chart. In this
section we will assess whether these bounds are reasonable in practice by means of simulation, using
the parameters stated in Table 2.

7.4.1 Risk-adjustment

An important property of the continuous time charts is that due to the Proportional Hazards as-
sumption, we are no longer interested in the risk-adjustment terms when performing an asymptotic
simulation study (t → ∞). This is due to the fact that the null-rate is also risk adjusted, and we
assume the risk-adjustment to be equal for both null-hypothesis as well as alternative hypothesis.
Mathematically, this can be shown as follows. Suppose we have n individuals with individual co-
variates Zi. Then using (89) we can generate risk-adjusted survival times X ′i and non-risk-adjusted
survival times Xi:

X ′i = H−1
0 [− log(Ui)e

−Ziβ] Xi = H−1
0 [− log(Ui)]

where Ui ∼ U [0, 1] for all i. Then using (35) with GLR′(t) the risk-adjusted chart and GLR(t) the
non-risk-adjusted chart and above generated survival times:

lim
t→∞

GLR′(t)−GLR(t)

= n

(
− ln

(
n∑
i=1

H0(X ′i)e
Ziβ

)
+ ln

(
n∑
i=1

H0(Xi)

))
−

n∑
i=1

H0(Xi) +

n∑
i=1

H0(X ′i)e
Ziβ

= n

(
− ln

(
n∑
i=1

− ln(Ui)

)
+ ln

(
n∑
i=1

− ln(Ui)

))
−

n∑
i=1

− ln(Ui) +

n∑
i=1

− ln(Ui)

= 0.

51



7.4 Asymptotic study 7 A SIMULATION STUDY

Figure 8: Risk-adjusted and non-risk-adjusted chart for two of the “same” hospital, one having patients
with covariates and the other without. The red line indicates the chart when generating outcome times
without risk-adjustment and constructing the chart without taking into account risk-adjustment. The
blue line is the chart for outcome times generated with risk-adjustment, where we assumed that we
perfectly know the corresponding coefficients.

This result can also be seen graphically in Figure 8.
To construct this figure we generated failure times using 2500 randomly generated outcomes, both

for the risk- and non-risk-adjusted model, leaving no outcomes censored. The covariates were randomly
generated using Bernoulli, Normally and Uniformly distributed random variables. The coefficients were
chosen randomly as well. Afterwards the chart was constructed using the corresponding (non-)risk-
adjusted baseline hazard, where we assumed that we knew the corresponding coefficients perfectly.
We can see that the charts converge towards the same value after all outcomes have been observed.
The main conclusion we draw from this is that due to the proportional hazards assumption any
asymptotic result which we obtain for the mean of the non-risk-adjusted charts will also
be valid for the risk-adjusted chart, assuming that the regression coefficients can be
recovered perfectly. This statement does not imply that risk-adjustment is useless for this method,
it only indicates that assuming we know the risk-adjustment coefficients perfectly, the asymptotic
behaviour of the chart is the same whether we generate covariates for the data or not.

Note that this property is not necessarily a limitation of this method, as the risk-adjustment
under the null-hypothesis is the risk which we are willing to tolerate. Of course, over time these risk-
adjustment factors might change due to a number of outside influences, but this is not important for
our simulation study. Therefore we will perform asymptotic analyses under the assumption that the
risk-adjustment coefficients can be determined perfectly, as we are not interested in scrutinizing the
performance of the Cox Proportional Hazards regression model, but instead are interested in properties
of the charts described above. When considering the chart non asymptotically, the risk-adjustment
does play a role in the value of the chart, as the failure times under risk adjustment differ from the
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non risk-adjusted failure times.

7.4.2 Generating covariates

If we would like to generate covariates anyway, note that it does not matter how these covariates are
generated, as long as we can perfectly recover the coefficients associated with the regression model.
The influence of predicting the coefficients wrongly is as follows: if we predict a smaller value than the
true one, this means that we will underestimate the risk associated with said covariate. This means
that the chart will rise more than it should, resulting in an increased probability of a false alarm.
Conversely, if we overestimate a coefficient, the chart will have a longer out of control run length.

7.4.3 Asymptotic behaviour

To evaluate our found lower bound for the GLR chart as t → ∞ in Lemma 6.8.1, we generate 1000
institutions according to Table 2. The time of failure is then generated for every individual using
equation (89), assuming no censored observations and eµ = 1. The results of these simulations can be
seen in Figure 9.

Outcomes under H0 : µ = 0

(a) Progression (b) Convergence

Figure 9: On the left 300 CTGLR charts are drawn where outcomes were generated under the null
hypothesis. On the right the convergence values (at time 6000) for 1000 of such charts are shown in a
histogram. Both graphs have the lower bound as found in equation (50) added in red and the mean
value in blue. Every chart represents an institution with 2500 primary procedures in the first 1000
time points.

In this case, the chart always converges above the lower bound, as this bound is equal to zero
under the null hypothesis. The upper bound was not added, as it was not very sharp. We can see
that only relatively few charts converge towards a value greater than 1 and that more than half of
the values are smaller than 0.1. Notable is that some charts have quite a big peak in the beginning,
which are caused by very early failures. Even though these charts seem to be very unstable at the
beginning, their final path looks to be quite stable. This can be attributed to the fact that the MLE
needs quite a few observations before it can accurately approximate the true value of θ. Due to this
the CTGLR does not give a very reliable representation at early time points.
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Now let us consider the chart for data generated under the alternative hypothesis eµ = 1.4. Once
again we generate 2500 procedures uniformly distributed over the first 1000 time points and construct
the charts until time 6000. The results can be seen in Figure 10.

Outcomes under H1 : µ = ln (1.4)

(a) Progression (b) Convergence

Figure 10: On the left 300 CTGLR charts are drawn for outcomes generated under the alternative
hypothesis µ = ln(1.4). On the right the convergence values (at time 6000) for 1000 of such charts
are shown in a histogram. Both graphs have the lower bound as found in equation (50) added in red
and the mean value in blue. Every chart represents an institution with 2500 primary procedures in
the first 1000 time points.

We can see that the mean converges towards the lower bound, and does not surpass the lower
bound as can be seen in the figure on the right side. The upper bound was not added, as it was
again very large. For the exponential distribution we thus have the conjecture that the lower bound
can tell us which value we expect the chart to converge to. This means that in theory the CTGLR
chart can be used to determine approximately the true value of µ for a set of outcomes which have
been sampled, if we know the time to failure for every single individual. It is also possible to obtain
approximate confidence intervals (for example, by using bootstrap) for the asymptotic value of the
mean.

Notable is also how the mean of the chart keeps rising during the first 1000 time points and starts
rising slightly slower around t = 1000 until it converges at about t = 3000. It is not surprising to see
that the mean starts to converge around t = 3000 as we saw in Figure 3 that almost all individuals
should have already failed about 2000 time points after their initial entry in the study, which is smaller
or equal to t = 1000 in the graphs above. The graph keeps rising in the beginning because we observe
many individuals all at once, which all have a failure time distributed according to the alternative
hypothesis, and thus they fail faster than expected.

However, it is likely that when we do not have as many observations the chart will not exhibit this
behaviour. Let us determine the behaviour of the chart in the case that we have 200 procedures in
the first 1000 time points. The results hereof can be found in Figure 11.

Surprisingly we can see the same behaviour even when we have less observations in the same time
frame. Also notable is that the asymptotic distribution for the CTGLR chart seems to be slightly
right skewed in all of above figures. We can see that even for 200 observations none of the charts
converged towards a value of zero, which is a very desirable property.
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Outcomes under H1 : µ = ln (1.4)

(a) Progression (b) Convergence

Figure 11: On the left 300 CTGLR charts are drawn for outcomes generated under the alternative
hypothesis µ = ln(1.4). On the right the convergence values (at time 6000) for 3000 of such charts are
shown in a histogram. Both graphs have the lower bound as found in equation (50) added in red and
the mean value in blue. Every chart represents an institution with 200 primary procedures in the first
1000 time points.

8 Discussion

The main methodological contribution of this thesis is the development of the continuous time (max-
imized) likelihood ratio charts. The main theoretical result is the asymptotic distribution of these
charts (Theorem 6.5.1). From this an approximate (as the amount of observations becomes large)
average run length for the CTGLR, CTCUSUM and CTMAXGLR charts was derived. Afterwards,
this result was evaluated by means of simulation and found to work well, even for detections with
small amounts of observations.

Moreover, the simulation results revealed that the CT(MAX)GLR chart has a delay in signalling
compared to the CTCUSUM with the correct value of θ. We found that as µ becomes large, the delay
becomes smaller. This is similar to the property found by Lorden [27]. Lorden found that the ARL of
the discrete time GLR is larger than the ARL of the discrete time CUSUM by a factor proportional
to the in control run length divided by the Kullback-Leibler divergence of the null and alternative
hypothesis. As µ becomes larger, the KL divergence increases therefore we expect that a similar
result can be shown for the continuous time variant. Additionally, we surmise that it it possible to
show optimality properties similar to the one shown for the discrete time CUSUM by Lorden [24]
and Moustakides [25] for the Exponential family. As the continuous time CUSUM and GLR charts
employ totally different assumptions, this could prove to be a challenge. In the simulation results it
was apparent that the CTGLR chart had more variability in its detection times than the CTCUSUM
chart. Future research could be done to determine the approximate distribution of the average run
length of both charts to give more insight what the cost is of not specifying a value of θ.

Simulation wise, the main challenge was the computational intensity of the CTMAXGLR chart.
This was partially circumvented by connecting the out of control ARL of the CTGLR with that of
the CTMAXGLR in Proposition 6.9.1. It was however very difficult to obtain reliable values for the
control limit of the chart, as this required applying the CTMAXGLR chart to in control observations,
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8 DISCUSSION

forcing a small sample size (N = 120) for the estimation of the optimal value of the control limit. As
there is no recursive form for the CTMAXGLR, theoretical results for an in control run length are
likely difficult to obtain. Future simulation research should be done to determine what realistic gain
in detection time could be achieved using the CTMAXGLR instead of the CTCUSUM. Moreover,
it is of interest whether the CTMAXGLR has more variance in its detection times compared to the
CTCUSUM, as this was one of the drawbacks when comparing the CTGLR with the CTCUSUM.

Interpreting our theoretical results in a medical context, we found that the CTMAXGLR could
lead to faster detection times when the true value µ is not known in advance, or when the rate of failure
under the alternative is variable over time. Additions to the chart should also be considered. Begun
et al. [8] have developed a chart similar to the CTCUSUM with Frailty terms and competing risks.
Moreover, procedures after a detection has taken place should be considered, such as setting the chart
to a value different than zero aimed at reducing time to a consequent detection. Lucas & Crosier [12]
proposed to set the discrete time CUSUM to h/2 for Normally distributed data in the discrete time
CUSUM, leading to quicker detection times and approximately equal in control run lengths. Finally,
it is important to note that the average run length of all considered charts depends on the rate of
arrivals ψ. Parameters of the charts should thus be determined according to the size of the hospital
in question.

Finally, as this thesis was focussed on comparing Bernoulli CUSUM charts with continuous time
CUSUM/GLR charts, we ignored other available continuous time charts for survival data. Future
(simulation) research should be done to compare the CTCUSUM and CTMAXGLR with other con-
tinuous time monitoring schemes such as the RAST CUSUM by Sego et al. [32], uEWMA for survival
time data by Steiner & Jones [33] and finally the STRAND chart by Grigg [13]. Grigg argues that the
biggest drawback of the CTCUSUM is the absence of a shuffling mechanism for patients and absence
of weighted observations. Consequently, clusters of failures could be considered as noise leading to a
delay in detections as well as ignoring the fact that more recent observations are of more interest to
detection. Both these issues are addressed in the uEWMA and STRAND charts.

Based on the theoretical considerations we expect that the continuous time charts developed and
studied in this part of the thesis could be of value in medical applications. In Part II, we will assess
the added value of continuous time charts on a data set consisting of information on transplantation
surgery procedures.
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9 FUNNEL PLOTS

Part II

From theory to practice: guidelines for
arthroplasty registers

Part I was focussed on the theoretical development of continuous time inspection schemes. In this
second part, we will primarily be interested in a practical application of suitable inspection methods
to a data set from the Dutch Arthroplasty Register (LROI) [1]. To this end we consider existing
methods called funnel plots and Bernoulli CUSUM charts, which will be introduced in sections 9 and
10 respectively. To continue on this, we also consider the continuous time CUSUM chart developed by
Biswas & Kalbfleisch [3], which is similar to the Bernoulli CUSUM chart, but processes the available
data in real-time. Finally, we consider a method called the CT(MAX)GLR, which was developed by
us in section 6. Both these methods will be introduced in section 11. The first three sections of this
part therefore introduce the relevant theory behind the models.

Having introduced the reader to the necessary theory we then apply these methods to a data set
from the Dutch Arthoplasty Register (LROI) [1] in section 12, in the hope of improving detection
speed. The data contains information on all primary hip transplantation surgeries performed in 97
hospitals across the Netherlands, including characteristics of patients such as age, body mass index
and diagnosis (see Table 4). The outcome of interest is the revision of the prosthesis. Revision means
that the prosthesis has to be replaced, requiring additional transplantation surgery to be performed
on the patient. As prostheses are not eternal, every implant has to be revised after a certain amount
of time. The date of revision is given in the data set, as well as information on whether and when
the outcome was censored (not observed due to some other reason). The most prominent reason for
a censored observation in this data set is the death of an individual. The data set is not publicly
available, but can be requested from the LROI [1] for research purposes.

Having applied all methods to the data set, we compare them on detection speed, false detection
rate and sensitivity. An important problem with the data set is that we do not have any information
on whether a hospital had problems in their quality of care at some point in the considered time.
Because of this, we perform some additional simulations in section 13 to determine how the obtained
results should be interpreted in practice. For this we extrapolate some parameters from the available
data set.

9 Funnel plots

The Dutch Arthroplasty Register [1] currently employs funnel plots to detect hospitals with problems
in their quality of care [10]. In this chapter we describe the funnel plot method in short, based on
the theory in Spiegelhalter et al. [34]. The goal is to compare the detection times produced by funnel
plots with those of other methods introduced in later sections.

9.1 Theory

Let j = 1, ..., k represent a hospital, with every hospital performing care on nj patients. Suppose for
every patient we observe a binary outcome Xj,i, where:

Xj,i =

{
1 , if patient i at hospital j had an undesirable outcome within C years

0 , if patient i at hospital j had a desirable outcome within C years.
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9.2 Risk-Adjustment 9 FUNNEL PLOTS

We assume that these outcomes are independent and identically Bernoulli distributed, so that Xj,i ∼
Ber(pj) for all i, with pj the probability of failure at hospital j. Then we can determine the proportion

of failures at hospital j as γj =
∑nj
i=1Xj,i
nj

. Now we would like to test whether the level of care in a

hospital differs from some (national) average. For this we consider the following hypotheses:

H0 : pj = p0 H1 : pj 6= p0

where p0 is some desired in control failure rate. As often it is unclear which rate is desirable, p0 is
taken as a national average over all available samples. We can choose to take H1 : pj > p0 if we are
only interested in detecting hospitals which are performing worse than p0. Now the Central Limit
Theorem tells us that (as nj becomes large):

γj |pj=p0 ∼ N
(
p0,

p0(1− p0)

nj

)
.

Therefore we signal a change in quality with confidence level 2α when:

γj ≥ p0 + ξ1−α

√
p0(1− p0)

nj
or γj ≤ p0 + ξα

√
p0(1− p0)

nj

where ξα is the α-th quantile of the standard normal distribution. It is possible to graphically rep-
resent this by plotting above bounds in a figure against the amount of procedures in a hospital. By
superimposing the points representing the hospitals in this figure we can then graphically determine
which hospitals are performing better or worse than average. Notice that due to the choices in this
model we are restricted towards considering binary outcomes, which means that we can only consider
failures within a certain time period, and ignore all failures (directly) after this cut-off point. This
likely leads to a (significant) loss of information, as well as decreasing the detection speed, as we have
to wait C years before reporting the outcome. In later sections we will consider methods which do
not have this problem.

9.2 Risk-Adjustment

Sometimes it is desirable to adjust the probability of failure of a person depending on some quantities
associated with this person, given in the form of a covariate vector Zi. This vector could include
quantities like age, weight, and other relevant statistics for the procedure performed. Heuristically
this necessity can be explained as follows: suppose a hospital which is performing treatments sensitive
to a genetic defect is located in a region where this gene is very prominent, then it is natural that the
failure rate of this hospital will be higher than average. It is however not fair to conclude that the
quality of care is lower than that of other hospitals, where cases have a lower risk of failure.

To adjust for this, we recover the probability of failure pi for person i with covariates Zi by
performing a logistic regression model:

ln

(
pi

1− pi

)
= β0 + β′Zi.

The probability of failure for person i is then given by:

pi =
1

1 + e−β0+β′Zi
(62)

58



9.3 Overdispersion 9 FUNNEL PLOTS

so that we can determine the expected amount of failures Ej at hospital j as:

Ej = E[

nj∑
i=1

Xj,i] =

nj∑
i=1

pi =

nj∑
i=1

1

1 + e−β0+β′Zi
.

Suppose we observe Oj failures at hospital j. Then we obtain a risk-adjusted proportion of failures
as:

γj,RA =
Oj
Ej
· p0.

9.3 Overdispersion

Often it is the case that the assumed null distribution (in this case the Bernoulli distribution) does not
completely capture the variance of the observations. This happens mostly due to missing covariates in
the risk-adjustment method. To account for this we can determine an overdispersion factor, used to
correct the variance of the null-distribution. Spiegelhalter et al. [34] propose 2 methods to determine
such an overdispersion factor, covered in the following 2 sections.

9.3.1 Multiplicative method

We determine an overdispersion factor φ̂ as:

φ̂ =
1

I

∑
i

(xi − p0)2

p0(1−p0)
ni

where I is the number of in control samples and n is the total number of samples and the summation
is over the in control samples. There are multiple ways to determine which samples are in control,
which we will not discuss here. After determining this factor, we then obtain new confidence bounds
by multiplying the variance of the null-distribution by the factor φ̂, which yields the bounds:

p0 ± ξ1−α

√
φ̂ · p0(1− p0)

nj
.

9.3.2 Additive method

We determine an overdispersion factor τ̂2 as:

τ̂2 =
Iφ̂− (I − 1)∑
i ωi −

∑
i ω

2
i∑

i ωi

where I is as above, ωi = 1
s2i

and φ̂ is a test for heterogeneity, such that τ̂2 = 0 when φ̂ < (I−1)
I . Then

we adjust the variance of the null distribution by an additive factor of τ̂2, so that the bounds become:

p0 ± ξ1−α

√
p0(1− p0)

nj
+ τ̂2.

Overdispersion methods will not be considered in the rest of this thesis, as these require us to know
which samples were in control and which were not. Unfortunately this knowledge is not available to
us in the available data set. As the name suggests, a funnel plot is a graphical tool to analyse which
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Figure 12: Funnel plot of the first 4 years of data from the LROI [1] with 1−year post operation follow-
up. Every dot represents a distinct hospital, the horizontal grey line indicates a national 1−year post
transplant rate of failure and the blue lines indicate 95 (inner) and 99 (outer) percent confidence
intervals.

hospitals are performing better or worse than average. A risk-adjusted funnel plot for the first 4 years
of data from the LROI data set [1] with 1−year follow-up can be seen in Figure 12. All hospitals
which are outside of the confidence interval bounds are detected by this method. Hospitals lying
above the dotted blue lines are performing worse than expected (at 95 and 99 percent confidence)
thus warranting an inspection, and below the blue lines are performing better than expected. We can
see that depending on the required confidence level, a different amount of hospitals would be detected.
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10 BERNOULLI CUSUM CHARTS

10 Bernoulli CUSUM charts

In this section we restate the discrete time CUSUM chart as introduced in section 4.2 in the case that
the outcomes follow a Bernoulli distribution. The exposition will be based on sections 2.2.2 and 3.1
of the Master’s thesis written by Caroline Kok [9]. This section will be written in the context of the
LROI [1], where we are interested in detecting a hospital with a decrease (or increase) in the quality
of care. Van Schie et al. [11] have already evaluated Bernoulli CUSUM charts on the LROI data set,
and concluded that faster detection of a decrease in the quality of care is possible compared to funnel
plots (section 9).

10.1 Definition of the Bernoulli CUSUM chart

In contrast to funnel plots, in a Bernoulli CUSUM chart we determine individual charts for each
hospital. Suppose we have an influx of patients at the hospital in question, with binary outcomes Xi,
with i = 1, 2, ..., where:

Xi =

{
1 , if patient i had an undesirable outcome within C years

0 , if patient i had a desirable outcome within C years

where we assume that the outcomes are i.i.d. Bernoulli, such that Xi ∼ Ber(p). The Bernoulli CUSUM
chart then tests hypotheses of the form:

H0 :X1, X2, ... ∼ Ber(p0) (63)

H1 :X1, ..., Xν−1 ∼ Ber(p0) (64)

Xν , Xν+1, .... ∼ Ber(p1) (65)

with p1 > p0 and ν ∈ N>0. We are therefore trying to determine whether a change of distribution
has happened at some time point τ , which we define as the time of entry into the study of patient
ν. Notice that using the funnel plot method we tested for H1 : p 6= p0, where we implicitly chose the
value of p1 through the confidence level α. The Bernoulli CUSUM chart tests whether the probability
of failure at the hospital has increased starting from observation ν (similarly: at some time point τ).
This is in contrast to funnel plots, where we test whether the observations were failing at a higher rate
from the start. Because of this it is likely that the Bernoulli CUSUM chart will yield a more powerful
test, as it is not guaranteed that the quality of care has decreased from the start of observations. The
Bernoulli CUSUM chart Sn after n observations is then simply the likelihood ratio test associated
with these hypotheses.

Sn = max
1≤ν≤n

n∑
i=ν

ln

(
fθ1(Yi)

fθ0(Yi)

)
=

n∑
i=1

ln

(
fθ1(Yi)

fθ0(Yi)

)
− min

1≤ν≤n

ν∑
i=1

ln

(
fθ1(Yi)

fθ0(Yi)

)
. (66)

We then reject the null hypothesis at observation n when Sn ≥ h, where h > 0 is called the

control limit. Alternatively, it is possible to rewrite this using Wn = ln
(
fθ1 (Yn)

fθ0 (Yn)

)
to obtain:

Sn = max (0, Sn−1 +Wn) . (67)

Substituting the Bernoulli distribution into above expression we obtain:

Wn = ln

(
pXn1 (1− p1)1−Xn

pXn0 (1− p0)1−Xn

)
= Xn ln

(
p1(1− p0)

p0(1− p1)

)
+ ln

(
1− p1

1− p0

)
. (68)
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Note that the Bernoulli CUSUM chart is simply a likelihood ratio test of the associated hypotheses,
where the first ν − 1 observations are ignored, with ν determined such that the value of the chart is
maximal. This is due to the fact that the first ν − 1 observations are assumed to be in control. Let
N1 = inf {n :

∑n
i=1Wi ≥ h}, it was shown in section 4.2 that the average run length of a discrete time

CUSUM chart is then given by:

Ei[τ ] =
Ei[N1]

Pi(
∑N1

i=1Wi ≥ h)

where i = 0, 1 indicates the null and alternative hypothesis.

10.2 Alternative formulation

It is sometimes convenient to formulate the problem in 10.1 in a different way, so that it becomes
comparable to the charts considered below. Instead of thinking about failure probabilities we define
the odds-ratio under the alternative distribution as:

OR =

p1
1−p1
p0

1−p0
=
p1(1− p0)

p0(1− p1)
=: eθ. (69)

Then the hypothesis stated in (63) become:

H0 : OR = 1 H1 : OR = ORA (70)

where we choose ORA = eθ > 1. We are therefore testing whether the odds p1
1−p1 differ by a factor of

eθ from the null-odds p0
1−p0 . Using some algebra we easily recover p1 from p0 and θ as follows:

p1 =
p0e

θ

(1− p0)(1 + p0eθ)
. (71)

The Bernoulli CUSUM chart Sn is then defined exactly as in (67), where we can rewrite Wn in (68)
as:

Wn = Xn ln (ORA) + ln

(
1

1− p0 +ORA · p0

)
(72)

so that we can replace the value of p1 with the associated value of θ.

10.3 Risk-adjustment

When we know some characteristics of the patients at the hospital it is sometimes desirable to adjust
for the risk incurred by these characteristics. These characteristics are denoted by a covariate vector
Zi for person i. Similarly to section 9.2 we can then recover probabilities of failure for person i using
logistic regression under both hypotheses:

pi0 =
1

1 + e−β0+β′Zi
pi1 =

1

1 + e−(θ+β0+β′Zi)

where we assume that the risk-adjustment coefficients are equal under both hypothesis, but the in-
tercept term differs by a factor of θ under the alternative hypothesis. We can then determine the
odds-ratio under the alternative hypothesis:

ORA =
pi1(1− pi0)

pi0(1− pi1)
= eθ
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which does not depend on the risk adjustment terms. Then the risk-adjusted Bernoulli CUSUM chart
Sn,RA tests the hypotheses:

H0 : OR = 1 H1 : OR = ORA = eθ

for some eθ > 1, which is exactly the same as in (70). The risk-adjusted CUSUM chart Sn,RA is then
defined by:

Sn,RA = max (0, Sn−1,RA +Wn,RA)

where:

Wn,RA = Xn ln (ORA) + ln

(
1

1− pn0 +ORA · pn0

)
.

An example of a risk-adjusted Bernoulli CUSUM chart can be seen in Figure 13. In this figure
the Bernoulli CUSUM chart is plotted for a hospital from the LROI data set [1]. A value of eθ = 2
is chosen, as well as a control limit of h = 10. We can see that the null-hypothesis is rejected around
t = 1350, as the chart has surpassed the control limit. Note how the chart only starts at time t = 365,
as our first outcome is only observed 1−year post beginning of the study. It is possible to plot the
Bernoulli CUSUM chart before this time as well, but obviously it would stay at a value of zero in the
first year.

The two biggest advantages of the Bernoulli CUSUM chart are that it is very easy to construct
and interpret. Besides this, the CUSUM procedure is a sequential test, which is more suited towards
the conclusions we want to draw. Unfortunately this procedure suffers from the same drawback as the
funnel plot - the outcomes considered have to be dichotomized. This means that patient outcomes are
only considered C years after their primary procedure, and information can be lost if the outcome is
observed slightly past the C years. To counteract this fact, in the next sections we consider procedures
which will integrate all the information available to us about every individual into the chart at any
time.
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11 CONTINUOUS TIME CONTROL CHARTS

Figure 13: Bernoulli CUSUM chart with 1−year follow up for hospital 9 from the LROI data set [1].
Alternative hypothesis value eθ = 2 and control limit h = 10 were chosen. The control limit is shown
using a horizontal red line. The null hypothesis is rejected around t = 1350 as the chart crosses the
control limit.

11 Continuous time control charts

In the previous sections we have introduced two methods which use a discrete time (Bernoulli) outcome
to (non-sequentially and sequentially) test for a decrease in the quality of care at a hospital. As the
data set available to us contains survival outcomes and is therefore of longitudinal nature, we are
interested in some sequential tests which can fully utilise all the information available to us at any
time point. This is possible by also integrating the information about a patient being alive into the
chart, instead of only considering a patient a certain amount of years post procedure. For this reason,
we will introduce three methods which combine our knowledge of survival analysis with likelihood
ratio tests, in the hope of improving detection speed.

The following sections will all be structured in the same way. First we restate the derivation of
the charts, which were already introduced in sections 5, 6 and 6.9. Afterwards, we state some key
properties which were shown in these same chapters, without delving into the proof. This way we can
apply the charts to our data set and assess our findings using the available theory.

11.1 Notation

In the following sections we will adhere to the notation in Biswas & Kalbfleisch [3]. We consider
a hospital performing primary hip replacement surgery. Let Xi denote the time from the primary
procedure to the time of revision for patient i. Then define Si as the time of primary procedure from
some starting point of the study. The chronological time of failure is then given by Ti = Si +Xi. Let
Ci denote the chronological censoring time of the patient, if applicable. Additionally, for every patient
we have covariates, which are denoted by the p−vector Zi. The covariates for all patients can then be
combined row-wise to form the matrix Z. Additionally, we assume that there is a known (risk-adjusted)
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null-distribution for Xi, defined by the hazard function hi(x) (note that x here is the time to revision).
For µ > 0 define hµi (x) = hi(x) · eµ. Let this notation also carry over to the cumulative hazard rate
Hµ
i (x) as well as the survival function Sµi (x) and the density function fµi (x). With this notation the

subscript indicates the risk-adjustment term for person i and the superscript denotes the factor eθ by
which the hazard differs from the null-rate (which is indicated without superscript). A characteristic
without superscript indicates that µ = 0, so that the notation looks neater. Additionally, we denote
by h0(x) the non risk-adjusted hazard rate under the null hypothesis (there is no 0-th person thus this
notation is consistent).

Now define NA(t) =
∑

i≥1 1{Si≤t} to be the number of primary procedures (transplants) in [0, t].

Define ÑD
i (t) = 1{Ti≤t} as a failure indicator for patient i up to time t. Define, for some constant

C > 0:

Yi(t) = 1{Si≤t≤Si+C∩Ti∩Ci}

as an indicator whether patient i is active. If a person is not active, we call them inactive. This
means that people are only active after they have had a primary procedure and only up until the
point that they have either failed, been censored or reached C years post transplant. Define ND

i (t) =∫ t
0 Yi(u)dÑD

i (u) for t > 0 as the counting process for a qualifying failure of patient i. Finally, define
the cumulative intensity (see (4)):

Λµi (t) =

∫ t

0
Yi(u) · hµi (u)du (73)

with subscript and superscript as above. Note that for indices i which have not yet had a primary
procedure, so when t < Si, we have that Λµi (t) = 0, due to the definition of Yi(t). Some characteristics
of commonly used survival distributions can be found in Table 1.

11.2 CTCUSUM

Biswas & Kalbfleisch [3] developed a continuous time CUSUM (CTCUSUM) procedure using the Cox
proportional hazards model (see section 2.6.1). In this section we introduce their method, with a
slight change: in their article Biswas & Kalbfleisch consider outcomes of patients only up until 1 year
post transplant. We will generalize this assumption to considering patients up until C years post
transplant. Remember that the Cox regression model is given by:

hi(x) = h0(x)eZ
>
i β for x > 0.

Now using the chronological time t (from the start of the study) define a counting process ND
i (t)

corresponding to the i−th patient as above. We then have:

P(dND
i (t) = 1|Ti ≥ t, Si, Zi) =

{
eµhi(t− Si)dt, if 0 ≤ t− Si ≤ C, Ti ≥ t
0, else.

Now denote dHi(t) = hi(t−Si)dt, and note that this represents the instantaneous hazard of a revision.
The term eµ is the factor by which the hazard at an institution differs from the national rate dHi(t),
or equally the null rate with µ = 0.

We want to calculate a likelihood ratio statistic corresponding to a test of µ = 0 versus µ = θ
(θ > 0 known), therefore testing whether the quality of transplantations has decreased. Consider
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the likelihood based on dND
i (t), the response in the interval (t, t+ dt] conditional on the information

available up to time t. We obtain the likelihood ratio in this interval using equation (5):

LR′θ(t, t+ dt) =

∏
i≥1

(
eθdΛi(t)

)dND
i (t) (

1− eθdΛi(t)
)1−dND

i (t)∏
i≥1 (e0dΛi(t))

dND
i (t) (1− e0dΛi(t))

1−dND
i (t)

=
∏
i≥1

(
eθ
)dND

i (t) (
1− eθdΛi(t)

)1−dND
i (t)

(1− e0dΛi(t))
1−dND

i (t)
.

Remember that individuals stop providing information to the chart after they are censored, but
the information acquired until the time of censoring is taken into regard. The implications of this
construction will be discussed below. Now using a repeated conditioning argument, the likelihood
based on the information up to time t can be calculated using equation (6) and is equal to:

LRθ(t) =
∏
i≥1

(
eθ
)ND

i (t)
e−e

θΛi(t)

e−Λi(t)
.

As a consequence, the log likelihood ratio up to time t is given by:

Uθ(t) := ln(LRθ(t)) =
∑
i≥1

ln

(eθ)ND
i (t)

e−e
θΛi(t)

e−Λi(t)

 (74)

=
∑
i≥1

θND
i (t) +

(
−eθΛi(t) + Λi(t)

)
(75)

= θND(t)− (eθ − 1)
∑
i≥1

Λi(t) (76)

Because we would like to test the hypothesis of a change of hazard rate starting from some patient τ ,
the CTCUSUM chart has a cut-off at zero using a similar argument as in section 4.2. To continuously
update the chart we are interested in the increments dUt defined as:

dUθ(t) = θdND(t)− (eθ − 1)
n∑
i=1

dΛi(t). (77)

The (one-sided) continuous time CUSUM chart is then given by:

Gθ(t+ dt) = max(0, Gθ(t) + dUθ(t)) for t > 0 (78)

which is equivalent to:

Gθ(t) = Uθ(t)− min
0≤s≤t

Uθ(s) for t > 0. (79)

Note that if we wanted to test whether there was an increase in quality (therefore decrease in the
amount of revisions) we could plot:

G−θ (t) = min(0, G−θ (t)− dUθ(t)) for t > 0.

We will not pursue this further in this thesis. Notice how equations (78) and (79) are the continuous
analogues of equations (67) and (66).
We conclude this section by summarising the chart in the following definition:
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Definition 11.2.1. The continuous time cumulative sum chart (CTCUSUM) is given by:

Gθ(t) = θND(t)− (eθ − 1)
∑
i≥1

Λi(t). (80)

This chart is used to test the hypotheses of a change in cumulative intensity starting from patient ν:

H0 :X1, X2, ... ∼ Λi

H1 :X1, X2, ... ∼ Λi

Xν , Xν+1, ... ∼ Λθi

for ν ≥ 1 unknown and Λθi = eθ ·Λi the risk-adjusted baseline hazard rate multiplied by eθ and θ > 0 a
constant chosen in advance. The null hypothesis is rejected at time t when Gθ(t) ≥ h for some h > 0,
called the control limit.

Note that the CTCUSUM and Bernoulli CUSUM from section 10 test the same hypothesis, but
have a different underlying model. The Bernoulli CUSUM assumes that outcomes are Bernoulli
distributed, while the procedure considered in this section assumes that the distribution follows the
Cox proportional hazard model. The major advantage of using a continuous time version of the
CUSUM is that now all outcomes can be considered, irrespective of their failure time past primary
procedure. Besides this, the CTCUSUM also incorporates the information about the survival of a
patient up to every time point t. This can be seen in equation (80), where the chart rises by a fixed
value of θ > 0 whenever a failure is observed, and drifts downwards at every time-point by eθ − 1
(called the excess risk) multiplied by the accumulated cumulative baseline hazard rate

∑
i≥1 Λi(t) of

all active patients. It was shown in section 6.8 that under the null-hypothesis an individual is expected
to fail when their cumulative hazard reaches a value of one: Λi(t) = 1. This means that under the
null-hypothesis, over his/her lifetime every patient will contribute to an increase in the chart of θ, and
a decrease of eθ − 1. It is trivial to show that eθ − 1 ≥ θ, therefore under the null-hypothesis every
individual will have a negative influence on the chart, which means that the chart is not expected to
significantly rise above a value of zero at any time under the null hypothesis as the CTCUSUM has a
cut-off at zero.

11.2.1 Properties

We summarise some of the key properties of the CTCUSUM stated in sections 5 and 6.

• The CTCUSUM chart is non-negative and can only jump upwards by a fixed amount θ.

• The CTCUSUM is used to test the hypothesis of a decrease in quality of care starting from
observation ν, or similarly starting from time τ . The null hypothesis is rejected when the chart
surpasses the value of h, called the control limit.

• Assuming observations start from time t = −C and that the process thus starts at equilibrium at
t = 0 Biswas & Kalbfleisch [3] obtained the following approximation for the average run length
of the CTCUSUM chart:

E[τh] =

h
η −

e−µ(eθ−1)
η

(
1−e−ω0θ
1−e−ω0h

)
, η 6= 0

h2e−µ

θ2γ
, η = 0

(81)

with h the control limit, η = (θeµ − eθ + 1)γ, ω0 the solution to ω0(eθ − 1) + eµ(e−ω0θ − 1) = 0
and γ as in equation (26). In practice this expression for the average run length is not very
useful, as the two assumptions require us to ignore the first C years of observations.
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• An approximate asymptotic average run length for the CTCUSUM chart with C = ∞ was
determined in Corollary 6.10.1, denoted by ARL(θ, µ, h) which is the solution to the equation:

E[Gθ(t)] =
(
θ + e−µ − eθeµ

)
I(µ, t) = h (82)

where θ > 0 as in Definition 11.2.1, µ the true value of failure at the hospital in question and
I(µ, t) as defined in Lemma 6.4.4.

11.3 CTGLR

In this section we will restate the derivation of the continuous time maximized generalized likelihood
ratio chart (CTGLR) from section 6. Similarly to the CTCUSUM in the previous section, the CTGLR
uses a Cox proportional hazards model to determine a likelihood ratio test statistic. The CTGLR
however is used for testing whether a hospital has a failure rate higher than some (in control) rate
starting from the beginning of observations. This means that the CTGLR is used to test a
different hypothesis than the CTCUSUM chart. Besides this, with the CTCUSUM chart we assumed
to know the value of θ indicating the increased failure rate with respect to the baseline. The CTGLR
will no longer require this assumption, making it a more generally applicable method. Finally, the
CTGLR can be extended to test the same hypothesis as the CTCUSUM chart, which will be called
the CTMAXGLR chart and derived in section 11.4. The CTMAXGLR however is very difficult to
determine properties of, therefore we will derive some properties of the CTGLR chart, which are then
easily generalized to hold for the CTMAXGLR chart.

11.3.1 Notation

The notation will stay unchanged from section 11.1, except that instead of Yi(t) = 1{Si≤t≤Si+C∩Ti∩Ci}
we will now define

Yi(t) = 1{Si≤t≤Ti∩Ci}

as an indicator whether patient i is active. If a person is not active, we call them inactive. This
means that people are only active after they have had a primary procedure and only up until the point
that they have either failed or been censored, meaning we no longer restrict ourselves to C years post
transplant. We remind the reader that the cumulative intensity is given by:

Λµi (t) =

∫ t

0
Yi(u) · hµi (u)du (83)

with Λi(t) := Λ0
i (t). Note that for indices i which have not yet had a primary procedure, so when

t < Si, we have that Λµi (t) = 0, due to the definition of Yi(t). A table with characteristics for some
commonly used survival distributions can be found in Table 1.

11.3.2 Derivation

We will consider a generalized likelihood ratio chart using a proportional hazards assumption for
the outcome distribution, based on the theory in section 5. Similarly, we also consider the counting
processes as defined in section 5.2 where we defined a counting process ND

i (t) corresponding to the
i−th patient such that:

P(dND
i (t) = 1|Ti ≥ t, Si, Zi) =

{
eµhi(t− Si)dt, if 0 ≤ t− Si, Ti ≥ t
0, else.
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The difference will lie in the alternative hypothesis considered. Let eµ be the true factor by which the
hazard at the hospital is higher than the baseline hazard. This time we want to calculate a likelihood
ratio statistic corresponding to a test of µ = 0 versus µ = θ for some unknown θ > 0, again testing
whether the quality of transplantations has decreased. For the continuous time CUSUM we assumed
θ to be known. The likelihood ratio based on dND

i (t), using the information from the response in the
interval (t, t+ dt] conditional on the information available up to time t is then given by (see equation
(5)):

LR′
θ̂t

(t) = LR′GLR(t) := sup
θ>0

∏
i≥1

(
eθdΛi(t)

)dND
i (t) (

1− eθdΛi(t)
)1−dND

i (t)∏
i≥1 (e0dΛi(t))

dND
i (t) (1− e0dHi(t))

1−dND
i (t)

=
∏
i≥1

(
eθ̂t
)dND

i (t) (
1− eθ̂tdΛi(t)

)1−dND
i (t)

(1− dΛi(t))
1−dND

i (t)

where θ̂t is the MLE over θ > 0 at time t. We will discuss how to determine this estimate in 11.3.1.
Once again using a repeated conditioning argument, the likelihood based on the information up to
time t can be calculated using equation (6) and is equal to:

LRGLR(t) =
∏
i≥1

(
eθ̂t
)dND

i (t)
e−e

θ̂tΛi(Ti)

e−Λi(Ti)
.

Thus the log likelihood ratio up to time t is given by:

ln(LRGLR(t)) = θ̂tN
D(t)− (eθ̂t − 1)

∑
i≥1

Λi(t).

We can determine the ML estimate of θ at time t, which will be done in the following lemma.

Lemma 11.3.1. The maximum likelihood estimate of θ for the Generalized likelihood ratio test intro-
duced in section 11.3.2 is given by:

θ̂t = max

(
0, ln

(
ND(t)∑
i≥1 Λi(t)

))
. (84)

Proof. To determine the maximum likelihood of θ, we first remind ourselves that we are determining
the maximum likelihood estimator for θ for the hypotheses µ = 0 against µ = θ with θ unknown.
Heuristically this means that we are testing whether the true intensity eµdΛi(t) differs from the
national rate dΛi(t), which was pre-determined from some sort of training set (a data set which we
know to have in control procedures). Whenever we experience a failure (revision) we obtain some
information as to how likely it was that the individual in question would experience a failure at that
time point, this will then change the value of the MLE accordingly. Consider the likelihood up to time
t using equation (7):

L(θ|t) =
∏
i≥1

(
eθdΛi(t)

)dND
i (t)

e−e
θΛi(Ti)
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where we have n observations which are either active or have had an outcome or had their outcome
censored. The logarithm of the likelihood (up to time t) is then given by:

l(θ) =
∑
i≥1

(dND
i (t))(θ + ln(dΛi(t)))− eθΛi(t).

Taking the derivative w.r.t. θ and equating to zero we then obtain:∑
i≥1

(dND
i (t))− eθ

∑
i≥1

Λi(t) = 0

which yields:

eθ =
ND(t)∑
i≥1 Λi(t)

.

The MLE for θ at time t is then given by:

θ̂t = max

(
0, ln

(
ND(t)∑
i≥1 Λi(t)

))

where the cut-off at zero arises from the fact that we test the hypothesis of µ = 0 against a hypothesis
of µ = θ > 0.

We summarise the results from the previous subsection by defining the Continuous Time Generalized
Likelihood Ratio chart:

Definition 11.3.1. The continuous time generalized likelihood ratio chart (CTGLR) is given by:

GLR(t) = θ̂tN
D(t)− (eθ̂t − 1)

∑
i≥1

Λi(t). (85)

This chart is used to test the hypothesis that the cumulative intensity at an institution differs by a
factor of eθ (with θ > 0 unknown) from the null intensity Λi(t), this can be stated as:

H0 : µ = 0

H1 : µ = θ.

The counting processed are as defined in section 11.1. The maximum likelihood estimator θ̂t was found
in Lemma 11.3.1:

θ̂t = max

(
0, ln

(
ND(t)∑
i≥1 Λi(t)

))
. (86)

The null hypothesis is rejected at time t when GLR(t) ≥ h for some h > 0, called the control limit.

The greatest power of the CTGLR is that it is no longer necessary to select a value of θ > 0 a priori.
The price paid for this generalization is that it is not possible to recursively determine the value of
the CTGLR statistic, in contrast to the CTCUSUM (see equation (78)). This is because the CTGLR
requires us to calculate the value of θ̂t at every relevant t, and then recalculate the total value of the
statistic using the determined MLE. This means that the CTGLR is more computationally intensive
than the CTCUSUM, even though it only tests for an immediate change in the rate of failures.
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Another important consideration is that with the CTCUSUM the value of the alternative hypoth-
esis is specified through the chosen value of θ, meaning that the control limit h could be chosen in
order to optimise a quantity of interest (i.e. ARL under the alternative hypothesis, power in K years
etc.). With the CTGLR the interpretation of h is slightly different, as there is no longer a specific
value of the alternative hypothesis we are testing for. This means that implicitly, when choosing a
value for h, we are choosing which value θ we want to work with. This means that the CTGLR chart
becomes harder to interpret for laymen, as the purpose of the control limit is no longer easily related
to the purpose of the control limit of the CTCUSUM and Bernoulli CUSUM.

11.3.3 Properties

In this section we state some properties of the CTGLR which were determined in section 6. Many of
these properties will later be generalized to also be applicable for the CTMAXGLR chart in section
11.4.1.

• In Lemma 6.3.1 the CTGLR was shown to be non-negative for every t ≥ 0 and strictly positive
whenever ND(t) >

∑
i≥1 Λi(t). Similarly to the CTCUSUM, the CTGLR therefore has a “cut-

off” at zero. The interpretation of the CTGLR and the CTCUSUM being zero is very different
however, as the CTCUSUM has a “hard” cut-off at zero, whereas the CTGLR has a “soft”
cut-off at zero, in the sense that the MLE θ̂t can build up a buffer and thus the “true” value of
the CTGLR can drop below zero.

• In Lemma 6.4.3 it was shown that a functional of the maximum likelihood estimate θ̂t is asymp-
totically normal. Heuristically this means that θ̂t converges asymptotically in mean towards the
true value µ, with variance as specified in the statement. This means that as t becomes large,
we are guaranteed that the estimate will be within a certain range of the true parameter with
large probability.

• The main result of part I is the asymptotic distribution of the CTGLR chart stated in Theorem
6.5.1. This theorem tells us that a functional of the CTGLR chart converges asymptotically
towards a normal distribution. Again, when t is large this can be used to determine an approxi-
mate range of values wherein GLR(t) will lie with large probability. This is what we will use to
determine an approximate average run length for the CTGLR chart.

• Corollary 6.6.1 lets us determine an approximate average run length for the CTGLR chart with
control limit h, denoted by ARLGLR(µ, h), when the true rate of failure µ is greater than zero.
This theoretical ARL was later assessed in section 7.3 and found to be relatively accurate, even
for small(er) values of t.

• In Lemma 6.8.1 asymptotic bounds (when all patients outcomes have been observed) for the
expected value of the CTGLR are determined. Later, in section 7.4 we later find by means of
simulation that the lower bound is extremely sharp, while the upper bound is extremely loose.
In practice these bounds will only be useful for applications where the failure rate is extremely
large, as their interpretation is only useful when all patients have failed.

• Corollary 6.10.2 tells us that the approximate asymptotic (t → ∞) average run length of the
CTGLR is always smaller than or equal to the asymptotic approximate average run length of
the CTCUSUM, with equality when θ is chosen to be µ, with µ the true increased rate of failure
at the hospital in consideration. In reality, as θ̂t needs time to converge towards the true value µ,
the CTGLR will not have a shorter, or even the same run length as the CTCUSUM in the case
that the value of θ is chosen correctly. When the disparity between θ and µ is large however, it
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was shown by means of simulation in section 7.3 that the CTGLR enjoys a shorter ARL than
the CTCUSUM.

11.4 CTMAXGLR

For the CTGLR chart we considered the hypotheses µ = 0 against µ = θ with θ > 0 unknown, where
the hospital has an increased rate of failure from the start of observations. We would now like to
determine a chart which also doesn’t require a pre-defined value of θ (as the CTGLR chart), and
considers the hypotheses of a change of quality starting from some patient ν (as the (CT)CUSUM
chart). This is very easily achieved by maximizing the CTGLR chart over the last n− k observations,
yielding the following definition.

Definition 11.4.1. The Continuous Time Maximized Generalized Likelihood Ratio chart (CTMAXGLR)
is given by:

MAXGLR(t) = max
k

θ̂k,tN
D
k (t)− (eθ̂k,t − 1)

n∑
i=k

Λi(t) (87)

where the subscript k indicates that the quantities are taken over the last n − k patients. This chart
is used to test the hypothesis that the cumulative intensity at an institution differs by a factor of eθ

(with θ > 0 unknown) from the null intensity Λi(t), starting from some unknown patient ν:

H0 :X1, X2, ... ∼ Λi

H1 :X1, ..., Xν−1 ∼ Λi

Xν , Xν+1, ... ∼ Λθi

The counting processed are as defined in section 5.1. The maximum likelihood estimator θ̂k (limited
to the last n− k patients) was found in Lemma 6.2.1:

θ̂k,t = max

(
0, ln

(
ND
k (t)∑

i≥k Λi(t)

))
. (88)

The null hypothesis is rejected at time t when MAXGLR(t) ≥ h for some h > 0, called the control
limit.

The greatest drawback of the CTMAXGLR chart is that it is very computationally intensive, as
it not only requires us to recalculate the value of the chart at every time-point, but it also requires us
to maximize over the last n − k patients. Suppose we have n patients at time t. Then to determine
the value of the CTMAXGLR chart we have to compute the value of n CTGLR charts. As we are
interested in determining the chart at every time, the computational requirements grow as the chart
is constructed over longer and longer time frames.

11.4.1 Properties

We state some properties we derived of the CTMAXGLR chart, most of which are generalizations of
properties earlier found for the CTGLR chart (see also section 11.3.3).

• Similarly to the CTGLR chart, the CTMAXGLR chart is also non-negative. This follows easily
from the fact that the CTMAXGLR is a CTGLR chart, taking into consideration only the last
n − k observations. Similarly, the strictly positive property holds only if ND

k (t) >
∑

i≥k Λi(t)
where k is such that the CTMAXGLR is maximized over the last n− k patients.
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• Even though we did not find an approximate average run length for the CTMAXGLR, Proposi-
tion 6.9.1 tells us that the average run length of the CTMAXGLR chart is bounded from above
by the average run length of a CTGLR chart starting from patient ν plus τ , assuming that
observations are out of control starting from patient ν and τ is the time of entry into the study
of patient ν. This means that the approximate average run length found for the CTGLR in
Corollary 6.6.1 lets us determine an approximate upper bound on the average run length of the
CTMAXGLR, also when observations are not out of control from the beginning.

• Similarly to before, Corollary 6.10.2 now tells us that asymptotically the approximate ARL of
the CTMAXGLR is smaller or equal to the approximate ARL of the CTCUSUM, even when the
process is not initially out of control. This means that the CTMAXGLR is a suitable alternative
for the CTCUSUM, in the case that the true value µ is not known.

Having introduced three continuous time inspection schemes, we are now interested in applying
these charts on a real-life data set, which will be done in the next section. An example of all three
charts introduced in this section can be found in Figure 7.

The key message of this section is that testing for a change in the quality of transplantations
(in a real-life scenario) should be done either by the CTCUSUM chart or the CTMAXGLR chart,
where the CTCUSUM is preferred when the true value θ of the alternative hypothesis is known, and
the CTMAXGLR when it is not known or when it is variable over time. The CTCUSUM is very
easy (computationally) to construct, while the CTMAXGLR is very hard to construct. Besides this,
the CTMAXGLR requires time before its parameter estimates converge towards the true value. Due
to the computational difficulties with the CTMAXGLR, we consider the CTGLR which is easier to
construct and provides us with upper bounds on the run length of the CTMAXGLR.
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12 LROI data set

The practical goal of this article is to apply the methods discussed and developed in this thesis on a
data set from the Dutch Arthroplasty Register (LROI) [1], which will be done in this section. The
LROI collects data about all orthopaedic implants performed in hospitals located in the Netherlands
and provides this data to research groups in the hope of improving the quality of orthopaedic care.
Due to the sensitive nature of the data provided by the LROI the data set used in this thesis is not
publicly available, but can be requested for research purposes by applying to the LROI directly.

12.1 Description

The data set [1] we will be using consists of information on total hip replacement surgeries. It contains
information about 182385 patients over 97 different anonymized institutions (hospitals) across the
Netherlands, ranging from large public hospitals to small private clinics, with the amount of relevant
patients ranging from 800 to 1 per year. The hospitals are ordered according to the amount of
surgeries taking place, with hospital 1 the “largest” and hospital 97 the “smallest”. The data set
contains information about all primary procedures at said hospitals occurring between 01/01/2014 and
01/01/2020 and follow up (revision, death or censoring) until 01/01/2020. For every patient we know
the date of the primary procedure (when the replacement surgery took place) and the time (in days)
until either a revision of the implant took place, the individual experienced death or the observation
was censored. Additionally, we also know the time until death after a revision if this happened before
the observation was censored. Besides this the data set contains some patient characteristics which
are summarised in Table 4. Notable is that in six years only 2.4 percent of the subjects experienced
a revision, while 1.7 percent of the subjects experienced a revision in their first year post surgery,
indicating that the rate of revisions is extremely low, and most revisions happen in the first year post
transplant.

12.2 Missing data

Only three variables had more than 0.5% of their values missing, which were BMI (1.8%), Smoking
indicator (4.5%) and Charnley Score (5.3%), as can be seen in figure 14a. For the Charnley Score we
know that a lot of patients could not be classified into either of the 4 categories. None of the patients
which have had a revision take place during the 6 year period had any missing values. After visually
inspecting the missing pairs plots for all variables combined with the survival times for patients with
missing characteristics in Figure 14b we noticed that BMI and Smoking indicator were missing almost
exclusively for patients who have a high survival time (meaning the individuals had their primary
revisions in the first few years). This is likely due to the fact that hospitals only started recording
BMI and smoking status in recent years, and that this was not done consistently in the beginning.
Using the R package mice [35] we imputed missing values using predictive mean matching for age
and BMI, logistic regression for Gender and Smoking indicator and polytomous regression for ASA
classification and Charnley Score.

12.3 Risk-adjustment

Normally risk-adjustment models (such as logistic regression and cox proportional hazards models) are
determined using some data set which is known to be in control. As we do not know which hospitals
were up to standard in their treatment and at what times this occurred, it is not possible for us to
determine a completely desirable model. We surmise however that due to the longitudinal nature of
our data it is likely that there will be a balance between in control, out of control and above standard
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(a) Pattern (b) Pairs

Figure 14: (a) Percentages of missing data for the 3 variables which have more than 0.5 % of their
values missing (left) and the patterns (combinations and their proportions) of missing data (right).
(b) Missing data pairs and the survival distribution of the individuals with missing data (in bold).
The columns indicate which variable is missing.

data, which in turn will lead the risk-adjustment coefficients to balance out towards reasonable values.
Another way to look at it is to consider the risk-adjustment models as an indicator of a nation-wide
average instead of an in control situation. The above statement then comes down to believing that
the national average is up to the desired standard.

In their article, van Schie et al. [11] determine a logistic regression model using three years of data
which they use to find the outliers in a funnel plot at 3 years and a monthly Bernoulli CUSUM plot,
both using revision 1 year post transplant as binary outcome. We will use a combination of data from
the first 3 years and all 6 available years to construct risk-adjustment models, and compare the results
in the coming sections.

After constructing a logistic regression model on the whole data set using 1−year post transplant
revision as outcome and using all covariates in Table 4 we performed some analyses on whether the
assumptions of the logistic regression model were met. First of all, using Wald tests we found that
all the covariates had a significant effect on the model, even after applying a Bonferonni correction.
Using the R package car [36] we calculated the variance inflating factor for all covariates and found no
indication for the presence of multicollinearity. The linearity assumption was also assessed for covariate
age by plotting a linear least squares regression equation against the logit of the predicted values. We
found that this assumption was not met, as the slope differed depending on the predicted value. It
is possible to adjust for this by creating splines over the age variable, but this makes the coefficients
difficult to interpret. Besides this, as in the intended use of the methods the risk-adjustment model
will be constructed multiple times over different time spans, this method of “fixing” the assumptions
will not work in a general application.

Similarly, we constructed a Cox proportional hazards model over the whole data set, including all
available covariates (see Table 4). Performing Wald tests for the determined coefficients we found that
all variables except for age were significant predictors of survival, even after applying a Bonferonni
correction. Using R package survminer [37], we test the proportional hazards assumption using the
function cox.zph to find that the proportionality assumption does not hold for age, BMI, ASA Clas-
sification and Charnley Score. Graphically inspecting a plot of scaled Schoenfeld residuals against
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N = 97 hospitals Median (IQR) Range

Continuous Variables
Mean age (years) 69.5 (66.8 - 70.2) 51.8 - 81.5
Mean BMI (kg/m2) 27.2 (26.9 - 27.5) 21.2 - 28.4

Discrete Variables
Gender (%)

Female 65.3 (63.2 - 67.1) 17.5 - 100
Male 34.7 (32.9 - 36.8) 0 - 82.5

Smoking (%)
Yes 11.6 (10 - 13.4) 0 - 18.4
No 88.4 (86.6 - 90) 81.6 - 100

ASA Classification (%)
I 15.5 (13.1 - 20.4) 0 - 53
II 63.7 (59.4 - 68.2) 43.8 - 93.8
III-IV 19.2 (12.6 - 24.6) 0 - 50

Charnley Score (%)
A 47.1 (41.3 - 51.1) 0 - 76.7
B1 29 (25 - 33) 7.1 - 50
B2 21.5 (19.4 - 23.4) 5.5 - 50
C 2.3 (1.2 - 3.8) 0 - 16

Diagnosis (%)
Osteoarthritis 86.9 (83.7 - 90.3) 0 - 98.8
Not Osteoarthritis 13.1 (9.7 - 16.3) 1.2 - 100

Statistics
Procedures (number)

in 3 years 756 (454 - 1227) 0 - 2523
in 6 years 1638 (1036 - 2462) 2 - 5093

Revision (%)
1 year 1.7 (1.1 - 2.3) 0 - 10.4
end of follow-up 2.4 (1.6 - 3.3) 0 - 13.2

Table 4: Description of the data set

transformed time (using the function ggcoxzph from the survminer package, see Figure 19) we find
that there is no noticeable pattern with time for these covariates. We argue that with a data set as
large as ours, there will always be significant indications for a deviation from the ideal. It is possible
to correct for this using f.e. time-varying coefficients, which can be done using the R package timereg
[38]. Using the same reasoning as above, doing so would make the variables hard to interpret, as well
as causing inconsistencies when constructing a model multiple times.

In conclusion, we argue that even though the statistical tests show that some assumptions are
violated, these violations are not significant enough to impede functioning of said methods.

12.4 Bernoulli CUSUM vs Funnel Plot

Van Schie et al. [11] have shown that earlier detection of outlier hospitals in the LROI data set [1] is
possible using a Bernoulli CUSUM chart (see section 10) instead of a yearly funnel plot (see section
9) while keeping a good sensitivity and specificity. In their article they thus use the same data set as
the one we have (there are some slight changes due to hospital mergers), only restricted to the first
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three years (follow-up until 01/01/2016). We will assess their conclusions using the extra information
available to us. To do this we construct a yearly funnel plot and Bernoulli CUSUM charts with eθ = 2
and h = 3.5 and h = 5 respectively starting from 01/01/2016 (until 01/01/2020). Both methods use 1
year post transplant revision as binary outcome. The logistic regression risk-adjustment model (used
by both the funnel plot as well as the Bernoulli CUSUM charts) was determined 4 times, on the first
of January of 2017, 2018, 2019 and 2020 using all the available data at that time point. This means
that we do not use an in control data set for the risk-adjustment models, the consequences of this
will be discussed in section 12.4.1. Consequentially, the yearly funnel plot uses the most recent risk-
adjustment model. The Bernoulli CUSUM charts over the year 2016 use the risk-adjustment model
from the first of January 2017. This way we can compare the methods with a similar risk-adjustment
procedure. As the funnel plot is not a sequential testing procedure, its detection times are limited
to the moment at which it is constructed. The Bernoulli CUSUM chart can produce a signal at any
time of outcome, which in the case of this data set is any day of the year. We round the detection
times of the Bernoulli CUSUM chart to the nearest month, leaving us with Table 5. Additionally, we
summarise the gain in detection speed in Table 6, considering all hospitals detected by the funnel plot
in the first three years (Table 6a), and all hospitals detected by any chart in all six years (Table 6b).

We can see that detection of relevant hospitals occurs faster using the Bernoulli CUSUM chart
with h = 3.5 than using the funnel plot, and both methods detect exactly the same hospitals. We can
see that this is not true for the Bernoulli CUSUM chart with h = 5, as for example hospital 23 would
be detected later than with the funnel plot. Van Schie et al. [11] prefer the h = 5 control limit over the
h = 3.5 limit, as with h = 5 they found a better specificity with respect to the detections of the funnel
plot. This is not the case in our table as we do not construct monthly risk-adjustment models for the
Bernoulli CUSUM charts. We chose not to do this because this method per construction causes the
Bernoulli CUSUM charts to have a lower specificity due to the fact that all observations are used to
construct the risk-adjustment model, even the ones which were due to a decrease in quality at some
hospital. This means that if many failures with some risk-factor were to happen f.e. in December of
2016, then the Bernoulli CUSUM chart constructed in October of 2016 would be way more likely to
signal than the funnel plot in January of 2017 due to failures with this specific risk factor. We find
that the Bernoulli CUSUM chart with h = 3.5 detects exactly the same 13 hospitals at the three year
mark as the funnel plot, with all hospitals detected earlier, with a faster median detection rate of 9
month (IQR 6− 12 months), while the CUSUM chart with h = 5 only detects 11 of the 13 hospitals
signalled by the funnel plot at the three year mark, and signals one of the missing hospitals post the
three year mark.

In Table 5 some cells are coloured red. This means that a detection of this hospital did not take
place with said method. We would like to determine why these discrepancies take place. For this we
construct Figure 15:

• In Figure 15a we can see a Bernoulli CUSUM chart for Hospital 6, which was detected by both
CUSUM procedures but not by the funnel plot. This hospital is a prime example of the way
in which a hospital can build up a buffer against detection by the funnel plot. We can see that
this hospital performed admirably in the first few years, until around the 1500 day mark a lot of
revisions suddenly started taking place. As the hospital was likely performing above standard
before this, its O/E ratio at that point was way lower than the national average. This allows
for the hospital to have sudden (short) problems in its quality before the O/E ratio will rise
significantly above the national average, leading either to no detection or a significant delay in
detection. To restrict this from happening, a funnel plot considering only the last K years of
data could be considered.

• In Figure 15b we can see a hospital which was detected by the funnel plot, but neither of the
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CUSUM procedures found enough evidence to report it. Comparing this figure with Figure 15a
we can see that this hospital has had quite some revisions over its timespan. Because of this,
its O/E ratio was most likely always on the high end. We can see that around the 1200 day
mark a lot of revisions piled up consecutively. This was likely what caused the O/E ratio of this
hospital to surpass the acceptable boundaries. The Bernoulli CUSUM chart however interprets
this in another way. We can see that the chart was at 0 before this rise in revisions and the
chart does not pass the 3.5 mark, which means that we could also attribute this sudden rise to
chance or a very short spike in quality reduction.

• In Figure 15c we can see Hospital 19, which was detected both by the funnel plot and the
Bernoulli CUSUM with h = 3.5 boundary. We can see that the hospital was not doing well from
the start, enough so for the Bernoulli CUSUM to warrant a signal at the h = 3.5 mark but not
at the h = 5 mark. The funnel plot however is very sensitive to a lot of consecutive revisions,
especially when we have only observed few outcomes, as shall be discussed further in section
12.4.1. We can see that the funnel plot detects this hospital at the three year mark (≈ 1095
days), which is the earliest detection time possible for the funnel plot using our method.

• Finally in Figure 15d we can see the Bernoulli CUSUM chart for Hospital 26, which was only
detected by the h = 3.5 control limit. Again we can see that the hospital performed admirably
in the first three years. Afterwards there seemed to be a prolonged but mild problem with the
quality of care, which was not detected by the h = 5 control limit and not detected by the funnel
plot due to the buffer built up in the first few years.

12.4.1 Discussion

A very important distinction should be made between funnel plots and (CT)CUSUM charts. Whereas
funnel plots are used to detect whether the O/E ratio of a hospital is significantly different from
some national average (or in control ratio) at some point in time, a CUSUM procedure is used to
sequentially test the hypothesis of a decrease in quality over time. Because of this, the funnel plot is
not suitable as a continuous inspection scheme due to the immense risk of a type I error incurred by
a multiple testing procedure. The choice to construct a funnel plot (bi-)yearly is therefore a decision
which should be based on some sort of required detection speed, as well as a desired confidence in the
possible detections. Another crucial matter to take into account is that the confidence bounds in a
funnel plot depend on the amount of outcomes considered, which means that constructing a funnel
plot including all hospitals at a certain time will not give all the hospitals sufficient time to converge
towards a stable O/E ratio, especially when the rate of revision is very low. An example would be the
smallest hospital in the data set, which has performed only two surgeries in six years. Suppose one
of the two surgeries resulted in a revision, then retrieving the national average one year revision rate
(1.7 percent) from Table 4, we would obtain (without risk-adjustment) an O/E ratio of 1

2·0.017 ≈ 30,
which is well outside of both the 95 and 99 percent confidence intervals at 2 observations. Such
“unlucky” occurrences would therefore result in detection by the funnel plot. This also means that
a detection by the funnel plot is only really informative when we have observed a sufficient amount
of outcomes. The CUSUM procedures however incorporate the situation described above by only
signalling when a sufficient amount of failures are paired with an insufficient amount of favourable
outcomes. An important quantity to adjust for this situation is the control limit h, which should be
chosen in correspondence with the required detection speed and tolerable false detection rate. In light
of this problem, the ARL (both in and out of control) of the (CT)CUSUM chart was shown in sections
10 and 11.2.1 respectively to depend on the amount of revisions per time unit, therefore warranting a
different choice of the control limit h for hospitals with differing amount of patients.
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Hospital nr.
Funnel plot
p = 0.95
yearly

Bernoulli CUSUM
h = 3.5, eθ = 2

monthly

Bernoulli CUSUM
h = 5, eθ = 2

monthly

CTCUSUM
h = 9, eθ = 2

monthly

CTMAXGLR
h = 15.1
monthly

5 36 31 35 29 18

9 36 30 34 23 17

13 36 15 18 13 5

17 36 24 26 15 11

22 36 16 18 9 6

23 36 29 42 25 25

32 36 23 33 24 10

37 36 27 30 21 15

46 36 30 29 26 16

48 36 25 28 19 18

74 36 32 32 24 19

80 36 27 29 22 18

19 36 31 20 20

39 48 40 43 37 34

11 48 22 33

42 48 33 59

58 48 40 44

87 48

81 60 52 64 58

63 60 58 50 54

2 72 56 56 27 39

8 72 63 64 36 39

73 72

41 43 56 32

26 44 54 38

29 48 37 20

6 52 52 37 39

18 60 61 43 45

55 61 69 50

50 62 48

4 64 54 47

60 66 66 50

35 70 43 52

31 50 66

7 57 44

40 58

68 58

77 66

16 39

20 45

24 33

44 44

83 38

Table 5: Detection speed of charts in months on the LROI data set [1]. Red cells indicate that this
method did not yield a detection on the corresponding hospital before 01/01/2020.
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(a) Hospital 6 (b) Hospital 11

(c) Hospital 19 (d) Hospital 26

Figure 15: Bernoulli CUSUM charts for four hospitals with both the h = 3.5 and h = 5 control limits
added in red. Additionally, a vertical blue line indicates the time at which the funnel plot would
produce a signal for this hospital.
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Median (IQR) difference in detection speed (months) over first 3 years

Funnel plot Bernoulli CUSUM CTCUSUM CTMAXGLR
Funnel plot 0 (0 - 0) 9 (6 - 12) 14 (12 - 17) 19 (18 - 25)
Bernoulli CUSUM -9 (-12 - -6) 0 (0 - 0) 6 (4 - 7) 12 (10 - 13)
CTCUSUM -14 (-17 - -12) -6 (-7 - -4) 0 (0 - 0) 5 (3 - 8)
CTMAXGLR -19 (-25 - -18) -12 (-13 - -10) -5 (-8 - -3) 0 (0 - 0)

(a) Hospitals detected in first three years by Funnel plot

Median (IQR) difference in detection speed (months) over 6 years

Funnel plot Bernoulli CUSUM CTCUSUM CTMAXGLR
Funnel plot 0 (0 - 0) 8 (6 - 12) 14 (11 - 21) 18 (15 - 25)
Bernoulli CUSUM -8 (-12 - -6) 0 (0 - 0) 6 (2 - 11) 13 (10 - 14)
CTCUSUM -14 (-21 - -11) -6 (-11 - -2) 0 (0 - 0) 4 (-3 - 10)
CTMAXGLR -18 (-25 - -15) -13 (-14 - -10) -4 (-10 - 3) 0 (0 - 0)

(b) All hospitals detected by any chart

Table 6: Difference in detection speed (months) of columns with respect to rows. Positive indicating
quicker detection and negative indicating slower detection speeds.

Besides this, a funnel plot only indicates whether the O/E ratio at one specific time point is outside
of some desired confidence interval. Due to this construction, the funnel plot can build up a buffer
when failures happen at a smaller than national rate for an extended amount of time. To compensate
for this, it is possible to consider only the last K years of data. This, in contrast, will favour some
hospitals which had a bad performance in earlier time periods, as well as giving less confidence in the
detection power of the funnel plot due to the lack of observations. Some of the pros and cons of the
methods discussed in this section are summed in Table 7.

12.5 CTCUSUM & CTMAXGLR

Having compared the detection speed of the Bernoulli CUSUM chart and the funnel plot in section 12.4,
we would now like to determine whether an additional improvement is possible using the Continuous
Time CUSUM chart as introduced in section 5 or the CTMAXGLR chart as introduced in section 6.9.
The CTCUSUM chart will be considered with C =∞, meaning all revisions post primary procedure
will be considered as qualifying, the consequences of this will be discussed in section 13.4.

12.5.1 CTCUSUM

Similarly to section 12.4 we construct the CTCUSUM chart (with eθ = 2) over the first three years
of data using a Cox proportional hazards model fit on the data set restricted to all information up to
the end of the third year (up until 01/01/2017). Then for the fourth year of data we use a Cox PH
model fitted on the data set up until the end of the fourth year and so on. To determine a suitable
value for the control limit h of the chart, we determine the smallest possible value of h such that all
13 hospitals which were detected by both the Bernoulli CUSUM as well as the funnel plot in the first
three years of data are detected by the CTCUSUM chart as well, combined with the smallest possible
amount of “false” detections. This resulted in a control limit of h = 9, with the CTCUSUM detecting
all 13 required hospitals as well as 4 false positives. All false positives are however hospitals which
were also detected by the funnel plot or Bernoulli CUSUM chart at a later time-point.

Using the h = 9 control limit we determine the detection times of the CTCUSUM chart in months
since the start of the study, which can be found in Table 5. We can see that the CTCUSUM chart
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outperforms the funnel plot and both Bernoulli CUSUM charts with respect to the detection time,
except for hospital 32 which is signalled earlier by the Bernoulli CUSUM chart. In the first three years
the CTCUSUM has a median faster detection rate of 6 month (IQR 4− 7) compared to the Bernoulli
CUSUM and a median faster detection rate of 14 months (IQR 12 − 17) with respect to the funnel
plot (Table 6).

12.5.2 CTMAXGLR

We construct the CTMAXGLR using the same method as in section 12.5.1, yielding a control limit
of h = 15.1. Notably the control limit for the CTMAXGLR is much larger than for the CTCUSUM
(h = 9). This is because the CTMAXGLR determines an appropriate value for θ at every timepoint
using the maximum likelihood estimate. Because the failure rate in this data set is so small the
ML estimate θ̂t is very sensitive to consecutive failures, causing it to suddenly become very large
when they happen, which in turn leads to a rapid rise in the value of the chart. To compensate
for this we are therefore forced to choose a bigger control limit. Similarly to the CTCUSUM chart,
the CTMAXGLR signals 4 “false positives” while signalling all 13 of the desired charts. These 4
hospitals are not the same for both charts, as the CTCUSUM “falsely” detects hospitals 2, 8, 11 and
42, while the CTMAXGLR “falsely” detects hospitals 11, 29, 39 and 41. All the false detections by
the CTMAXGLR were also later on detected by either the funnel plot, the CTCUSUM or both.

Using this h = 15.1 control limit we determine the detection times of the CTMAXGLR chart in
months since the start of the study, which can be found in Table 5. The CTMAXGLR outperforms
all charts in term of detection speed.

12.5.3 Visual examples

We would like to determine why some hospitals are signalled by some of the charts and not by others.
For this we plot together the Bernoulli and continuous time CUSUM charts with the CTMAXGLR
chart. The result can be seen in Figure 16.

• In Figure 16a a hospital which was detected only by the CTMAXGLR is plotted. Both the
Bernoulli as well as the continuous time CUSUM charts also experience a spike in value (with
the Bernoulli CUSUM having a delay of at most 1 year), but not as extreme as the CTMAXGLR
chart. This is because the CUSUM procedures have a fixed value of θ, meaning they can rise
only by a pre-determined amount. The CTMAXGLR chart however determined using maxi-
mum likelihood that the failures which happened at the time of its drastic rise were extremely
unlikely and adjusted the value of θ̂t accordingly. This is one of the desirable properties of the
CTMAXGLR, as we are interested not only in detecting a doubling of the revision rate, but
in any increase in failures. The CUSUM procedures have a delay in detection compared to the
CTMAXGLR in this specific case. Besides this, when the drastic increase in revision rate doesn’t
last long enough, the CUSUM procedures will not signal, as can be seen here.

• In Figure 16b we can see the opposite of what happened in Figure 16a. The CTCUSUM chart
is the only chart which produces a signal, while the CTMAXGLR chart is just a bit shy from its
detection value. This is likely because the CTMAXGLR chart detected that the revision rate did
not increase enough to warrant a signal. The CTCUSUM however is fixed at its θ = ln(2) value
and therefore keeps steadily increasing, even when the rate of failure might not have doubled.
It is likely that the Bernoulli CUSUM chart would also have signalled, but due to the one year
post-transplant outcome it has not yet processed the revisions which led to the signal in the
CTCUSUM.
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(a) Hospital 16 (b) Hospital 40

(c) Hospital 7 (d) Hospital 55

Figure 16: The (Bernoulli) CUSUM, CTCUSUM and CTMAXGLR charts for four hospitals with
their control limits (dashed lines). The control limits can be found in Table 5. The CTMAXGLR was
only constructed up until the year of detection to spare computation time.
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Funnel plot Bernoulli CUSUM CTCUSUM CTMAXGLR

Pros
• Easy to interpret
• Easy to construct

• Easy to interpret
• Easy to construct
• Sequential testing
• No buffer
• Possible to reset

• Easy to interpret
• Real-time
sequential testing
• No buffer
• Possible to reset

• Automated parameters
• Real-time
sequential testing
• No buffer
• Possible to reset

Cons

• Buffer build-up
• Non-sequential
• Cannot reset chart
• Not real-time

• Not real-time
• Delay in detection
• Many assumptions

• Hard to construct
• Many parameters
• Many assumptions

• Hard to construct
• Harder to interpret
• Computationally
intensive

Table 7: Some pros and cons of the considered methods.

• In Figure 16c we can see a hospital which was detected by both continuous time charts, but
not by the Bernoulli CUSUM. Notably the Bernoulli CUSUM chart does not seem to rise at all.
This is most likely because many of the revisions happened just past one year post transplant,
leading to both the Bernoulli CUSUM not taking these revisions into account. This is another
important drawback of the Bernoulli CUSUM (as well as the funnel plot).

• In Figure 16d we can see a hospital which was not detected by the funnel plot as well as the
CTCUSUM chart. We can see that both the Bernoulli CUSUM as well as the CTMAXGLR
deemed it necessary to signal this hospital, albeit only by a slight margin. This is likely due
to the difference in risk-adjustment methods between the discrete and continuous time charts.
Remember that the discrete time charts use a logistic regression model, with outcomes limited
to one year post transplant, while the continuous charts use a Cox proportional hazards model.
This detection could therefore be a false positive from both charts or it could be, similarly to
Figure 16a, that the CTMAXGLR determined that the failures at some point were extremely
unlikely and therefore adjusted its value of θ̂t accordingly.

12.5.4 Discussion

Summarizing above findings we note that the continuous time charts have an advantage over the
discrete time charts as they use real-time outcomes instead of a dichotomized outcome 1−year post
transplant. This vastly improves detection speed (as we no longer have to wait a year), as well as
allowing the chart to consider revisions which happen past the one year margin. Due to this, it
becomes harder to compare the charts. This is especially pronounced in the fact that it is possible
to detect exactly the same hospitals the funnel plot detects using the Bernoulli CUSUM chart, while
the continuous time variants will always have “false” detections if we want to detect all 13 outliers.
Continuing on this problem, the risk-adjustment procedures are also different. It is very difficult
to compare the way these models influence the charts, as their assumptions are very different. It
should be noted however, that the Cox PH model is also a continuous time model, which uses all the
information available up to time t, whereas the logistic regression model can only use the observations
which are already one year post transplant. In contrast to this, both models are based on various
assumptions which are not necessarily true for this specific data set, especially as the data is of a
longitudinal nature (i.e. hospitals use new techniques/new devices over time).

Secondly, the control limits for the continuous time charts were determined by minimizing detection
speed, as well as detecting all 13 required hospitals while minimizing the amount of false positives.
The control limit for the Bernoulli CUSUM chart was however chosen in accordance to van Schie et
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al. [11]. Had we selected a control limit for the Bernoulli CUSUM chart using the same method as
for the continuous charts, we would have arrived at h = 3.3 instead of h = 3.5. Even though this
would improve the detection speed of the Bernoulli CUSUM chart slightly, the main reason why the
continuous charts lead to quicker detection times is because they can use real-time outcomes and not
due to this slight difference in parameter choice. Besides this, choosing a lower control limit for the
Bernoulli CUSUM would potentially lead to more false detections past the 3 year mark.

Finally, the discrete and continuous time CUSUM charts use a fixed value of θ, whereas the
CTMAXGLR chart can adjust this value to the current situation. This makes the CTMAXGLR chart
way more versatile, especially when quick detections of a rapid rise in revision rate are required. As all
the charts were trained on the detections by the funnel plot at the three year mark, this disparity was
not very pronounced in the results of the first three years. Afterwards, as we saw in Figure 16, this
difference in methods has caused clear distinctions in which hospitals were detected and how quickly
they were signalled.

12.6 Conclusion

Summarily, we observed that in terms of detection speed the funnel plot is the least ideal method,
followed by the Bernoulli CUSUM and then followed by the CTCUSUM and CTMAXGLR. The funnel
plot, (CT)CUSUM and CT(MAX)GLR test different hypotheses. Hence, the goal of the researcher
should be considered before deciding which of the charts to construct. Besides this, it is of importance
to note that in the research above it was not clear which of the hospitals were in or out of control and
at what times. Due to this it is unclear whether the way in which the control limits above were chosen
are appropriate for the required results. Besides this, due to the way the risk-adjustment models were
constructed the interpretation of the charts is not in relation to some in control revision rate, but with
respect to a national average. As already stated, the parameters are chosen under the assumption
that the national average is up to standard. Finally, the way in which the parameters were chosen
and how the detection speeds were determined differ from what was done by van Schie et al. [11].
They constructed the Bernoulli CUSUM charts monthly, with a risk-adjustment model determined
monthly as well. We believe that this construction is not mathematically sound, as this means that the
funnel plot and Bernoulli CUSUM charts are compared to different national average rates of failure.
Heuristically this can be seen as comparing a Bernoulli CUSUM chart with incomplete information
against a funnel plot with complete information. Especially as the results of the Bernoulli CUSUM
chart are trained on the results of the funnel plot, this is bound to cause problems for the choice of
CUSUM control limit. The same reasoning also works for the CTCUSUM and CTMAXGLR charts.
For this reason we only constructed the risk-adjustment models yearly. One could argue that this is
unfair towards the funnel plot as it is only constructed yearly, while the Bernoulli CUSUM can detect
monthly (or even daily), but it is important to keep in mind that this is indeed the biggest drawback
of the funnel plot, as it is not a sequential procedure. The main pros and cons of all methods are
summarized in Table 7.
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13 Simulations

In section 12 we have applied four charts to a data set from the Dutch Arthoplasty Register (LROI)
[1] and compared them primarily with respect to detection speed. Our largest problem in that section
was that we did not have any reliable information about the times that hospitals had problems in
their quality of care, and which hospitals had these problems at all. Due to this we constructed all
the other charts with the hospitals detected by the funnel plot in the first three years as indication for
problems in quality. We argued that the funnel plot is not a suitable method for performing sequential
testing, as well as showing that all hospitals detected by the funnel plot can be detected earlier using
a (continuous time) CUSUM chart. Finally, we also considered the CTMAXGLR chart, which could
yield even quicker detection times, but suffered from some unique construction problems in the case
of this particular data, due to the extremely low failure rate.

As we could not conclude anything about the true type I and II error probabilities of the newly
introduced charts, many questions were left unanswered in the previous section. In this section we
will assess these problems by means of simulation. A summary of the general simulation procedure
can be found in section 15.4.

13.1 Research questions

As the funnel plot is not an acceptable method for performing sequential testing, we no longer consider
this chart in the coming sections. We will primarily be interested in the following four research
questions.

1. How powerful are the considered charts when the control limit h is chosen such that the type I
error rate is approximately α over a certain span of time T?

2. How does the power and detection speed of the charts depend on the arrival rate ψ?

3. How do the CTCUSUM charts perform compared to the CT(MAX)GLR charts when the true
rate of failure at a hospital is varying?

4. What is a realistic sensitivity and specificity for a data set such as the one from the LROI [1]?

Begun et al. [8] have developed a CUSUM procedure similar to the one introduced by Biswas &
Kalbfleisch [3], but restricted only to Weibull and Gompertz distributed failure times. Both articles
chose to select the control limit h by restricting the simulated type I error to 0.1 in 8 years and 0.15
in 5 years respectively, motivated by current procedures at medical centres in the US [7]. Following
their reasoning we arrive at research question one. An important distinction between hospitals is
that they have a different number of yearly procedures, determined by the size or specialization of
the hospital. We saw in sections 11.2.1 and 11.3.3 that the approximate average run length of the
CTCUSUM as well as the CT(MAX)GLR charts depends on the rate of arrival ψ, therefore it is
important to determine how powerful our conclusions are for different sizes of hospitals, giving rise to
research question two. A rather troublesome assumption of the CTCUSUM charts is the assumption
that the alternative hazard rate differs by a fixed term eθ from the in control hazard rate. In reality
no hospital will have a constant failure rate at any time, leading to research question three. Finally,
as our knowledge about the problems in the quality of care in the LROI data set [1] are extremely
limited, we would like to determine a “realistic” sensitivity and specificity for future procedures by
means of simulation, yielding research question four.
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13.2 Power under varying ψ and type I error restriction

In this section we will address research questions one and two (13.1) by means of simulation. First
we divide the hospitals in our data set into four distinct groups, according to their estimated rate
of arrival ψ̂ (determined using equation (8)), this is demonstrated in Figure 17a. We calculate their
average estimated arrival rate, indicated in the figure in red. The hospitals are thus grouped into 4
distinct categories with arrival rates ψ ∈ {0.2, 0.6, 1, 1.7}. We then generate 500 hospitals for each
value of ψ, by first determining the amount of patients arriving at each hospital in 6 years time and
then bootstrapping patient characteristic from the full initial data set. Survival outcomes are then
generated (see section 15.1) using a risk-adjusted Cox proportional hazards (non-parametric) model,
which was determined using the R package survival [19]. First we generate hospitals under the null-
hypothesis, so with eµ = 1. Using these in control hospitals we determine values of the control limit
h for all four groups, such that the simulated type I error probability α is 0.1 in 6 years over the 500
samples. We chose this value of α because Begun et al. [8] chose a value of α = 0.1 for an 8−year
timespan for the similar NJR data set in the UK. Using this procedure we determined control limits
shown in Table 8. Notice how different the control limits are for varying rates of ψ. This indicates
that for practical considerations, one cannot take a single value of h for all hospitals in a data set.

Control limit h
CUSUM CTCUSUM

ψ eθ = 2 eθ = 2
0.2 2.19 2.62
0.6 3.4 5.59
1 3.88 7.17

1.7 4.53 9.11

Table 8: Control limits determined on a sample size of N = 500 in control (eµ = 1) observations such
that the type I error in 6 years is equal to α = 0.1. Both charts were constructed with eθ = 2.

Using a similar procedure we generated N = 500 out of control hospitals with eµ = 2 for the
four values of ψ above. Then applying the Bernoulli CUSUM and CTCUSUM (with eθ = 2) to these
hospitals with the found control limits we determined the simulated power of the charts at every
time. The results can be found in Figure 17b. It is evident that the CTCUSUM is the more powerful
method for all values of ψ considered. The angles of the lines are steeper for the CTCUSUM as well,
indicating that the continuous chart needs less time to detect an out of control instance. Noticeably
the Bernoulli CUSUM seems to have a delay of around 1 year with respect to the CTCUSUM. This
is of course due to the outcome considered by the discrete time chart. All in all, the continuous time
CUSUM is definitely the more powerful of the two charts, for all sizes of hospitals. Besides this, both
charts are more powerful when the rate of arrivals is larger. Thus when considering a real-life data
set, we should keep in mind that it is harder to detect out of control instances with a small arrival
rate. This changes the interpretation of a signal, depending on the size of the hospital considered.

13.3 Varying rate of failure

In the previous sections, we always considered instances where µ > 0 is some fixed value, mostly chosen
such that eµ = 2 and assumed that we knew the true value so that we could chose θ = µ. In real life
applications however, we cannot expect µ to be fixed, or to know the true value. For this reason, we
performed a simulation study in part I to investigate the consequence of choosing θ wrongly. Similarly
to above, in section 7.3 a value of h was determined such that the in control average run length was
approximately 15 years, this time using a single value of ψ and a sample of N = 3000 (see Table 2).
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(a) Estimated arrival rate (b) Power of (CT)CUSUM

Figure 17: (a) Estimated arrival rate as well as the subdivision of the hospitals into 4 groups. (b)
Simulated power of the Bernoulli and continuous time CUSUM charts on a sample size of N = 500
out of control hospitals using control limit values such that the type I error α ≈ 0.1 in 6 years as in
Table 8, with eµ = 2 and different arrival rates.

This was done for the CTCUSUM chart with eθ = 1.4 and eθ = 1.8, as well as for the CTGLR. As
we saw in section 11.3.3, the CTGLR can build up a buffer under the null-rate, therefore the value
of h was determined using the CTMAXGLR. As the CTMAXGLR is very computationally intensive,
the sample size for determining h was restricted to N = 120. This means that the value of h for the
CTGLR is less accurate, which can work both ways. Using the determined values of h, the ARL was
calculated for N = 3000 out of control samples, with eµ varying from 1 to 3. The results can be seen
in Table 3.

We summarise the most notable results from section 7.3.

• It seems that the larger the true value of µ, the more merit there is in considering the CT(MAX)GLR
instead of the CTCUSUM, especially when the value of θ for the CTCUSUM is chosen wrongly.

• The distribution of the ARL is right-skewed for all the charts, with the skewness being larger for
the CTCUSUM charts. This indicates that there are more outliers using the CTCUSUM chart
than the CT(MAX)GLR.

• The standard deviation of the ARL is smaller for the CTGLR chart than for the CTCUSUM
charts when µ is small, while for large values of µ it is reversed. We hypothesise that this is due
to the CUSUM charts having a fixed value of θ, whereas the GLR charts have a variable θ̂t. We
surmise that the CTMAXGLR might have a smaller standard deviation in its detection times,
as it always has shorter detection times than a CTGLR chart.

• The theoretical values for the approximate average run length discussed in sections 11 seem to
correspond with the observed average run lengths, even for relatively small values of t. The
approximate average run length found by Biswas & Kalbfleisch [3] with C = 1 does not seem to
correspond to the simulated values. This is because the ARL was determined from the start of
observations instead of starting from C = 1 year post beginning of observations.

Keeping in mind above considerations, the CTMAXGLR should be the preferred chart over the
CTCUSUM when the rate of failure is variable and even more so when the true value eµ >> 1.
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13.4 Sensitivity and specificity analysis

In this section we would like to combine the first three considered research questions into a single
simulation study where we try to create a data set which resembles a realistic scenario. For this we
make the following assumptions.

• The true null cumulative hazard rate is Weibull distributed, with (risk-adjustment) parameters
determined using the function phreg from the R package eha [39] on the full initial data set. A
comparison between non-parametric (package survival [19]) and parametric hazard can be seen
in Figure 18.

• Hospitals fall in 4 categories, grouped by the following values of ψ: ψ ∈ [0.01, 0.46], ψ ∈
[0.47, 0.74], ψ ∈ [0.75, 1.12] and ψ ∈ [1.13, 2.33]. Each group corresponds to the way we di-
vided the hospitals in our data set in Figure 17a. Each hospital in one of the groups has its
value drawn from the indicated range uniformly.

• For every category of ψ above, we consider 300 hospitals where the proportion of hospitals which
experience a reduction in the quality of care, indicated by p, is 0.2, 0.3 or 0.4. For every group
of ψ we therefore generate 1200 hospitals, with K ∼ Bin(300, p) the amount of hospitals which
experience a reduction in quality in that group.

• Hospitals are only considered for 6 years after the start of study, and hospitals which were chosen
to have an out of control instance have their first out of control patient drawn uniformly in the
first 5.5 years.

• As the original data set contained censored observations and most of these censored observations
were due to the death of individuals, we construct a proportional hazards failure model for death
on the initial data set. Using this model we then determine times of death for each individual in
the simulated data set independent of the time of revision, and censor the observation if death
takes place before a revision.

• Whenever an observation is in control, its true value of failure eµ is sampled from a N(1, 0.01)
distribution, as to introduce some variability in the in control data sets.

• Whenever an observation is out of control, its true value of failure eµ is sampled form aN (2, 0.09)
distribution.

• We take eθ = 2 for both the Bernoulli CUSUM as well as the CTCUSUM, so as to indicate that
we have sufficient prior information about the expected rate of failure in the data set.

Begun et al. [8] have found that the competing risks of revision and death are independent in the
NJR data set. As this data set is very similar in nature to ours, we expect the same to hold. Due
to this, we can generate survival outcomes independent of revision outcomes to simulate a realistic
censoring mechanism. In Figure 17a we divided the hospitals into four groups according to their arrival
rate, but it is not realistic that all hospitals should have exactly the same arrival rate. To compensate
for this we sample uniformly for each hospital in a certain range. Finally, we saw in Table 4 that
around 40 percent of the hospitals were detected (considering detections by all charts). As we expect
some of these to be false detections, we are interested in a failure proportion between 0.2 and 0.4 in
the hospitals in question.

Having generated hospitals under above assumptions, we determine the sensitivity and specificity
of the Bernoulli and continuous time CUSUM charts applied on these hospitals using the control limit
values determined in Table 8. The results can be seen in Table 9. Due to the slightly lower sample
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Figure 18: Estimated (parametric Weibull and non-parametric) cumulative baseline hazard for the
full data set.

size we note that there is quite some variability in the values. Remember that the values of the control
limits were determined so that the simulated specificity was around 0.9 for all the combinations.
We immediately notice that the specificity of the Bernoulli CUSUM is very close to 0.9, while the
specificity of the CTCUSUM is comparatively small. We thus conclude that the determined values of
h for the CTCUSUM chart lead to a very good sensitivity, but not towards the required specificity
causing many false alarms.

N = 300 Bernoulli CUSUM (eθ = 2)
Daily Sensitivity Specificity

arrival rate ψ h p = 0.2 p = 0.3 p = 0.4 p = 0.2 p = 0.3 p = 0.4

0.2 2.19 0.45 0.58 0.49 0.85 0.76 0.78
0.6 3.40 0.50 0.67 0.64 0.86 0.89 0.90
1 3.88 0.74 0.71 0.71 0.87 0.90 0.91

1.7 4.53 0.70 0.82 0.75 0.90 0.91 0.90
N = 300 Continuous Time CUSUM (eθ = 2)

Daily Sensitivity Specificity
arrival rate ψ h p = 0.2 p = 0.3 p = 0.4 p = 0.2 p = 0.3 p = 0.4

0.2 2.62 0.74 0.81 0.79 0.53 0.45 0.47
0.6 5.59 0.87 0.85 0.85 0.62 0.60 0.61
1 7.17 0.88 0.84 0.89 0.60 0.64 0.62

1.7 9.11 0.94 0.93 0.88 0.55 0.58 0.52

Table 9: Sensitivity and specificity of the Bernoulli and continuous time CUSUM charts for a “realistic”
hospital data set, each value determined on N = 300 simulated hospitals. p indicates the probability
of a hospital having an out of control period in that sample.

The most likely culprit for this very large drop in specificity in Table 9 for the CTCUSUM but
not for the Bernoulli CUSUM is the censoring mechanism. There are two things at play here:

1. Only when an observation is censored less than one year post transplant will it have an influence
on the Bernoulli CUSUM chart. For the CTCUSUM chart however, censoring of the observation

90



13.4 Sensitivity and specificity analysis 13 SIMULATIONS

will have an influence on the chart at any time past primary procedure. Therefore censored ob-
servations always have less influence on the Bernoulli CUSUM chart compared to the continuous
time variant, given that censoring can happen later than one year post transplant.

2. If an observation is censored less than one year post transplant, the Bernoulli CUSUM chart
considers the outcome to be favourable (no revision). This means that censored observations
make the Bernoulli CUSUM chart decrease in value. Censored observations in the CTCUSUM
chart stop providing information to the chart, meaning that their downward drift (right side of
equation 77) is eliminated from the chart starting from the time of censoring. This means that
the downward slope of the chart decreases, resulting in a net increase in the value of the chart.

Above considerations explain why the Bernoulli CUSUM does not experience a significant decrease
in specificity, while lacking sensitivity due to possibly unfavourable outcomes being considered as
favourable. In contrast, it is clear that the censoring mechanism increases the net value of the CT-
CUSUM by virtue of decreasing the downward slope, leading to a worse specificity, while not impairing
the sensitivity. It is therefore very important to note that censoring mechanisms affect the Bernoulli
and continuous time CUSUM charts differently.

To compensate for this, the practical value of h should be chosen higher for the CTCUSUM (to
increase the specificity), and if desirable also for the Bernoulli CUSUM (but only slightly as the
specificity was hardly imparted). We try to quantify how much higher this value should be for the
CTCUSUM and the Bernoulli CUSUM by determining a value for h such that the specificity averaged
over the three possible values of p is approximately 0.9. The result can be found in Table 10. Notice
that we had to increase the value of h for both the charts, but proportionally the increase was much
larger for the CTCUSUM. The most notable result from the table is that with an equal simulated
specificity, the CTCUSUM seems to have a better sensitivity for low values of ψ, but their sensitivities
do not seem to differ significantly for higher values of ψ. This is in line with the observations of
Biswas & Kalbfleisch [3]. They found that the False Discovery Rate (FDR), which is a measure of the
proportion of false discoveries, was only significantly different for low values of ψ as well.

In contrast to this, considering all out of control hospitals which were detected by both charts,
the time to detection from the first out of control observation was on average shorter by 76 days for
the CTCUSUM, which is about 2.5 months. We thus conclude that the CTCUSUM enjoys faster
detection times for all hospitals, coupled with a better sensitivity for small hospitals.

In conclusion, the value of the control limit h for the Bernoulli CUSUM can be chosen with
disregard to censored outcomes, given that most observations are censored later than the follow-up
of the chart. For the CTCUSUM however it is important to include a suitable censoring mechanism
when determining a value of h, as the charts specificity is heavily impacted by censoring.
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N = 300 Bernoulli CUSUM (eθ = 2)
Daily Sensitivity Specificity

arrival rate ψ h p = 0.2 p = 0.3 p = 0.4 p = 0.2 p = 0.3 p = 0.4

0.2 2.76 0.35 0.43 0.37 0.93 0.91 0.86
0.6 3.52 0.50 0.67 0.62 0.89 0.91 0.90
1 3.96 0.72 0.71 0.70 0.88 0.91 0.91

1.7 4.49 0.70 0.82 0.75 0.90 0.90 0.90
N = 300 Continuous Time CUSUM (eθ = 2)

Daily Sensitivity Specificity
arrival rate ψ h p = 0.2 p = 0.3 p = 0.4 p = 0.2 p = 0.3 p = 0.4

0.2 5.25 0.40 0.54 0.47 0.94 0.87 0.89
0.6 8.37 0.75 0.72 0.71 0.91 0.90 0.89
1 10.89 0.75 0.71 0.70 0.89 0.90 0.91

1.7 15.27 0.76 0.75 0.73 0.88 0.93 0.89

Table 10: Sensitivity and specificity of the Bernoulli and continuous time CUSUM charts for a “real-
istic” hospital data set with control limits h adjusted such that the mean specificity over a value of ψ
is 0.9.

14 Discussion and recommendations for practice

In this thesis we have applied the funnel plot, Bernoulli CUSUM, continuous time CUSUM and
continuous time MAXGLR chart on a data set provided by the LROI [1] in section 12. We found that
in the first three years it is possible to detect the same hospitals using the Bernoulli CUSUM chart
with h = 3.5 control limit as with the currently employed funnel plot, which is currently employed.
The Bernoulli CUSUM chart had a median 9 months smaller detection time for the hospitals in
question. Consecutively, the CTCUSUM was able to improve on this detection time by another
6 months (median), with the CTMAXGLR improving detection speed even further by 5 months
(median). Past the three year margin, the hospitals detected by the methods varied largely. From
the hospitals detected by the funnel plot past the three year margin, five were not detected by the
Bernoulli CUSUM, two were not detected by the CTCUSUM and three were not detected by the
CTMAXGLR.

We argued that constructing yearly funnel plots is not a suitable inspection scheme for the problem
at hand in section 12.4.1, mostly due to its non-sequential nature of testing. While the Bernoulli
CUSUM chart is a suitable method, it is not well adjusted to survival outcomes present in the data set
at hand. Consequently our preference goes out to the continuous time inspection schemes introduced
in part I of this thesis: the CTCUSUM and CTMAXGLR. In section 13.2 these were found to have a
smaller detection time for out of control instances, as well as being more powerful under a fixed type
I error probability, especially for (small) hospitals with low arrival rates.

Extensions of the CTCUSUM and CTMAXGLR could be considered, for example by adding Frailty
terms (compensating for unobserved variables) or competing risks to the model. Besides, procedures
for constructing risk-adjustment models could be developed for a data set similar to ours, where it is
unknown which hospitals have experienced problems in their quality of care.

To further reduce detection times, quick-start procedures such as the one proposed by Lucas &
Crosier [12] could be considered. They found that for the discrete time CUSUM chart applied to
normally distributed data, picking a head-start of h/2 yielded faster out of control detection times,
while keeping the in control detection times approximately equal. These can then also be incorporated
after a detection has taken place, as a manner of resetting the charts.
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The data set available to us contained a lot of individuals which had their outcomes censored due
to experiencing death. To interpret this in the chart, competing risks methodology could be added
to the CTCUSUM and CTMAXGLR. Begun et al. [8] have found that competing risks of death and
revision were independent in the English National Joint Registry data set. This suggests that death
should not be included in the model, as only the quality of revision procedures is of interest. We
believe however that this decision should be made in accordance with medical professionals, as they
have more prior information about the connection between revision and death.

As this thesis was focussed on comparing Bernoulli CUSUM charts with continuous time CUSUM/GLR
charts, we ignored other available continuous time charts for survival data. Future (simulation) re-
search should be done to compare the CTCUSUM and CTMAXGLR with other continuous time
monitoring schemes such as the RAST CUSUM by Sego et al. [32], uEWMA for survival time data by
Steiner & Jones [33] and finally the STRAND chart by Grigg [13]. Grigg argues that the biggest draw-
back of the CTCUSUM is the absence of a shuffling mechanism for patients and absence of weighted
observations. Because of this clusters of failures could be considered as noise leading to a delay in
detections as well as ignoring the fact that more recent observations are of more interest to detection.
Both these issues are addressed in the uEWMA and STRAND charts.

14.1 Recommendations for practice

Some practical recommendations for the Dutch Arthroplasty Register are made in this section. Whereas
the focus in this thesis lies on arthroplasty outcomes, the recommendations made in this section are
more generally applicable to most practical situations where survival outcomes are of interest. Firstly,
we recommend to replace funnel plots by control charts where possible, as the former are not suitable
for performing sequential tests for a reduction in the quality of care. Depending on the amount of
expert knowledge about the expected change in the rate of failure, either the CTCUSUM or CT-
MAXGLR chart should be employed for future monitoring of hospitals. The CTCUSUM should be
used when there is sufficient confidence in the knowledge about the true change in failure rate. The
CTMAXGLR is a more general method not requiring such knowledge, but is harder to interpret for
laymen and requires a lot of computational time to determine parameters.

Most importantly, regardless of which chart is employed, control limits should be chosen with
respect to the size of the hospital. It is possible to achieve this by splitting hospitals into distinct
groups according to the amount of patients per time unit, as was done in this thesis. The amount of
groups should be chosen by an expert on hospital matters, who knows which hospitals are comparable.
Employing any of the continuous time charts with a single control limit will lead to delays in detections
for small hospitals and many false detections for large hospitals.

Values for control limits h should be determined according to the methods in this thesis. For
the Bernoulli CUSUM, patient characteristics can be bootstrapped from the data set to determine a
control limit such that the type I error over T years is approximately some desired value α, without
including a censoring mechanism into the simulation. The value for the control limit was shown to
work in a “realistic” application including right-censored observations. For the CTCUSUM, we saw
that it is no longer possible to ignore censoring mechanisms when determining a value for the control
limit h. It is therefore important to decide on a suitable censoring mechanism before performing
a simulation study. An appropriate value for the control limit can then be found similarly to the
Bernoulli CUSUM, by limiting the type I error over T years by α.

Finally, to further increase detection speed, risk-adjustment models should be constructed on
hospital data which is known to be in control. We realise that many hospitals do not release this
information due to its sensitive nature, but determining a reliable in control hazard rate is extremely
likely to produce quicker detection results than a national average rate of failure.
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15 APPENDIX

15 Appendix

15.1 Cox proportional hazards

Austin et al. [40] have shown how to generate survival times under the Cox proportional hazards
model. Suppose we have a distribution function for the survival time T , and the hazard rate under
the Cox PH model given by:

h(t|Z) = h0(t) · eβZ .

We then have for the distribution function that:

F (t|Z) = 1− e−H0(t)eβZ

therefore using that if X ∼ F , then F (X) ∼ U [0, 1] and 1− U [0, 1] ∼ U [0, 1], thus:

U = e−H0(T )eβZ ∼ U [0, 1]

therefore recovering the survival time:

T = H−1
0 [− ln(U)e−βZ ] (89)

with U ∼ U [0, 1]. Further on in this thesis we will consider hypothesis tests where we want to check
whether the hazard rate differs from the null rate by a factor of eµ for some µ > 0. In that case we
have that hµ(t|Z) = h0(t)eβZeµ and correspondingly outcomes are generated using:

T = H−1
0 [− ln(U)e−βZe−µ]. (90)

Thus to generate survival outcomes from a known baseline (cumulative) hazard function we only
need to be able to invert said function and generate uniformly distributed random variable outcomes.
Luckily, generating uniformly distributed random outcomes can be done easily using many statistical
software packages, thus we only require an invertible (cumulative) baseline hazard function.

15.2 Expectation over covariates

Lemma 15.2.1. Let fµi be a non-negative Borel-measurable function with primitive function Fµi and
suppose that:

EZi [fµi (u− x)]

exists. Then: ∫ u

0
EZi [fµi (u− x)] dx = EZi [Fµi (u)] .

Proof. We can write: ∫ u

0
EZi [fµi (u− x)] dx =

∫ u

0

∫
ΩZi

fµi (u− x)dzdx.

As fµi is non-negative and Borel measurable and the expected value exists (thus the double integral
is finite) we obtain from Fubini’s theorem in section 23 of Bauer [42] that we can switch the order of
integration to obtain: ∫ u

0
EZi [fµi (u− x)] dx =

∫
ΩZi

∫ u

0
fµi (u− x)dxdz

=

∫
ΩZi

Fµi (u)dz = EZi [Fµi (u)]

thus proving the statement.
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15.3 Expected value of A(t)

In this section we prove a result necessary for the approximation of the ARL of the CTCUSUM and
CTGLR charts in sections 5.4 and 6 respectively. We show that the expected value of A(t) is equal
to
∫ t

0 γudu.

Lemma 15.3.1. Let A(t) =
∑

i≥1 Λi(t) with hµi and fµi non-negative Borel measurable functions and
E[A(t)] exists we obtain that:

E[A(t)] =

∫ t

0
E[dA(u)].

Proof. Let Si ∼ Gamma(ψ, i), Xi ∼ fµi (x) and Yi(u) = 1{Si ≤ u ≤ Ti} with Ti = Si + Xi. We want
to calculate:

E [A(t)] = E
[∫ t

0
dA(u)

]
= E

∫ t

0

∑
i≥1

Yi(u)hi(u− Si)du


=

∫ ∞
0

∫ t

0

∑
i≥1

Yi(u)hi(u− Si)fµi (x)dudx

with Yi(u) = 1{Si ≤ u}1{Xi ≥ u− Si}, thus:

E [A(t)] =

∫ ∞
0

∫ t

0

∑
i≥1

1{Si ≤ u}1{x ≥ u− Si}hi(u− Si)fµi (x)dudx.

Now note that: ∑
i≥1

1{Si ≤ u}1{Xi ≥ u− Si}hi(u− Si)fµi (x) (91)

is non-negative and assume that it is Borel measurable on R × R. As indicator functions are always
Borel measurable we only have to assume that the functions hi(x) and fµi are Borel measurable. We
assume that ∫ ∞

0

∫ t

0

∣∣∣∣∣∣
∑
i≥1

1{Si ≤ u}1{Xi ≥ u− Si}hi(u− Si)fµi (x)

∣∣∣∣∣∣ dudx (92)

exists, thus that the absolute value of expression (91) is integrable. Note that as all components of
(91) are positive, this is the same as assuming that E [A(t)] exists. Then, using Fubini’s theorem (or
Tonelli’s theorem as our integrands are non-negative) in section 23 of Bauer [42] we find that we can
switch the order of integration:

E [A(t)] =

∫ ∞
0

∫ t

0

∑
i≥1

1{Si ≤ u}1{Xi ≥ u− Si}hi(u− Si)fµi (x)dudx

=

∫ t

0

∫ ∞
0

∑
i≥1

1{Si ≤ u}1{Xi ≥ u− Si}hi(u− Si)fµi (x)dxdu

=

∫ t

0
E

∑
i≥1

1{Si ≤ u}1{Xi ≥ u− Si}hi(u− Si)

 du
=

∫ t

0
E [dA(u)] .
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15.4 Standard simulation procedure

The standard simulation procedure employed in this thesis is described here. This procedure aims to
restrict some theoretical quantity (such as the ARL or specificity) of the chart under the null hypothesis
by choosing an appropriate control limit h. Afterwards the choice of control limit is evaluated for an
out of control data set.

• Step 1: Generating a training (in control) data set with N hospitals.

1. Choose null cumulative baseline hazard rate parametrically or determine from existing data
(for example, using R package survival [19]).

2. Generate patient arrival times in the required time frame using Poisson arrivals with rate
ψ.

3. (Optional) Bootstrap patient characteristics from data set.

4. Determine (risk-adjusted) survival times for every patient using above chosen cumulative
baseline hazard rate and section 15.1 with µ = 0.

5. Repeat 2-4 N times. Combine into single data set.

• Step 2: Determining a suitable control limit h.

1. Determine a (parametric) cumulative baseline hazard rate using the generated in control
data set (for example, using R package survival [19]). Optionally, use the cumulative hazard
rate from step 1.

2. Construct the charts on the training data set.

3. Determine control limit h such that required restrictions (on sensitivity or ARL under the
null) are met for the collection of the constructed charts.

• Step 3: Generate test (out of control) data set.

1. Follow step 1 with µ > 0 as required.

• Step 4: Evaluate charts on test data set

1. Construct the charts on the test data with the control limit determined in step 2.

2. Approximate required quantities (such as ARL, sensivity, specificity) from these charts.
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15.5 Cox proportional hazards model graphical plots

Figure 19: Scaled Schoenfeld residuals against time for the entirety of the LROI data set. Under
the null hypothesis (PH assumption holds), the Schoenfeld residuals are independent of time. Any
non-random pattern against time provides evidence for the violation of the null hypothesis.
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