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ABSTRACT

Analysing social networks is challenging. Key features of relational data require the use of non-standard statistical
methods such as developing system-specific null, or reference, models that randomize one or more components of the
observed data. Here we review a variety of randomization procedures that generate reference models for social network
analysis. Reference models provide an expectation for hypothesis testing when analysing network data. We outline the
key stages in producing an effective reference model and detail four approaches for generating reference distributions:
permutation, resampling, sampling from a distribution, and generative models. We highlight when each type of
approach would be appropriate and note potential pitfalls for researchers to avoid. Throughout, we illustrate our points
with examples from a simulated social system. Our aim is to provide social network researchers with a deeper under-
standing of analytical approaches to enhance their confidence when tailoring reference models to specific research
questions.

Key words: agent-based model, animal sociality, configuration model, permutation, randomization, social network
analysis
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I. INTRODUCTION

Individuals interact with each other in many ways but deter-
mining why they interact and uncovering the function of
social patterns, i.e. the social network, is challenging.Network
theory has provided useful tools to quantify patterns of social
interactions (Wasserman & Faust, 1994; Croft, James &
Krause, 2008; Borgatti et al., 2009). The analysis of social net-
works is complicated by the fact that applying statistical infer-
ence using standardmethods is often not appropriate because
of the inherent dependence of individuals within a network
(for example, the actions of one individual are linked to the
actions of another) (Croft et al., 2011). Network methods have
emerged as a powerful set of tools with which to analyse social
systems (Butts, 2008; Wey et al., 2008; Pinter-Wollman
et al., 2014; Farine & Whitehead, 2015; Cranmer
et al., 2017; Fisher et al., 2017; Silk et al., 2017a,b; Sosa, Sueur&
Puga-Gonzalez, 2020). Using network tools can often be dif-
ficult because important assumptions can be cryptic and do
not apply universally across all suites of research questions
or data types. Network analyses have been used to address
many diverse questions in social and behavioural sciences
(Clauset, Arbesman & Larremore, 2015; Croft, Darden &
Wey, 2016; Crabtree, Vaughn & Crabtree, 2017;
Power, 2017; Sih et al., 2018; Bruch & Newman, 2019; Rip-
perger et al., 2019;Webber &VanderWal, 2019). This diver-
sity of questions and approaches, especially in an
interdisciplinary field like network science, has led many
researchers to develop tools customized to a particular use
case. Careful consideration of the maths underlying each
approach can help understand the similarities and differences
between alternative methods, can ensure that researchers are
correctly testing their hypothesis, and can help researchers
avoid violating the assumptions of particular methods.

Herein, we describe methods for drawing statistical infer-
ences about patterns of sociality, focusing on the underlying
maths andusing simulated examples to illustrate each approach
(see online Supporting Information, Appendix S1). We begin
by explaining the concept of a reference (null) model, outlining
when these reference models are required, discussing the key
considerations facing researchers when using them, and outlin-
ing some of the potential pitfalls that may arise. We then intro-
duce different approaches to creating reference models. We
highlight the benefits of each approach and provide typical
research questions for which different reference models are
appropriate. We detail particular pitfalls of using the different
approaches, illustrating potential questions and pitfalls using
examples and simulations. We base our simulations on the
social system of a mythical animal, the burbil (Section II.2).
Our paper is targeted at those who have some experience in
social network analysis and are looking for ways to make statis-
tical inferences about the social systems they are studying.
Whitehead (2008), Croft et al. (2008), Farine & White-
head (2015), Krause et al. (2015), and Newman (2018) provide
excellent introductions to the study of social networks.

II. REFERENCE MODELS FOR STATISTICAL
INFERENCE IN NETWORK DATA

The essence of any statistical inference is to determine whether
empirical observations are meaningful or whether they are the
outcomes of chance alone. When data do not meet the assump-
tions of traditional statisticalmethods, as is often the casewith net-
workdata (Croft et al., 2011;Cranmer et al., 2017), researchers can
compare their data against chance distributions, i.e. distributions
of values that are generated in a random process.
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Traditionally, the likelihood of an observation occurring by
chance has been referred to as a null model (Croft et al., 2011;
Good, 2013). However, the term ‘null’ might incorrectly sug-
gest that no patterns of interest are present. While it is correct
to assume for statistical inference purposes that nothing is hap-
pening in relation to the phenomenon that is being observed,
many other processes can still be acting on, or otherwise limit-
ing, the system. For this reason, we advocate using the term ref-

erence models (Gauvin et al., 2020) rather than null models or
chance distributions. The use of the term ‘reference’ highlights
the notion that we are not comparing observations to a
completely random scenario that contains no predictable pat-
terns but rather to a system in which certain features of interest
are preserved and others are randomized.

To perform statistical inference using reference models,
the two most important questions a researcher needs to ask
are: ‘how can empirical data be sampled in an unbiased
way?’ and ‘what is the likelihood that a given pattern is pre-
sent by chance?’ These questions are linked because chance

could be different depending on the sampling approach.
For example, if one samples only females, the chance distri-
bution should not include males because the mechanisms
that underlie the observed processes could differ between
males and females. Identifying the appropriate chance distri-
bution that observations should be compared to is critical for
avoiding straw-man hypotheses. Much previous research and
development of tools has focused on sampling data in an
unbiased way for network analysis or attempting to account
for biases in data collection to conduct statistical inference
(e.g. Croft et al., 2008, 2011; James, Croft & Krause, 2009;
Franks, Ruxton & James, 2010; Farine & Strandburg-
Peshkin, 2015; Farine, 2017; Farine & Carter, 2020). How-
ever, more methodological development is needed to expand
our statistical inference possibilities and tune computational
methods to better answer specific questions, especially when
the generating process of the observed social pattern may
be complicated or multifaceted.

Importantly, there are inherent differences between
observed biological networks and the mathematical con-
structs that underlie reference distributions. Observed bio-
logical networks are finite and therefore may not embody
mathematical properties that are guaranteed to hold asymp-
totically, e.g. after infinite sampling. Therefore, it is impor-
tant not to attribute meaning to differences between
observed networks and reference models that emerge from
the difference between the finite nature of the observed net-
work and the general mathematical construct that describes
the reference model. Instead, inference of meaning should
come from consideration of agreement with, or deviation
from, appropriately chosen patterns that reflect the real-
world processes that generate and/or constrain them.

(1) The construction, use, and evaluation of
reference models

The effective use of a reference model hinges on four key
steps, which focus on answering a biological question by

comparing empirical observations to randomized or syn-
thetic constructs. In sequence, we suggest that researchers
(a) clearly articulate the biological question, (b) choose an
appropriate test statistic, (c) generate a reference distribution,
and (d) evaluate whether the biological question was
addressed and whether the model behaved as intended. By
identifying these discrete steps, we can scrutinize the analysis
process to avoid methodological pitfalls (see Section IV).

(a) Step 1: articulate the research question and specify the
feature of the reference model to be randomized

A reference model answers a question by connecting an
observation to a distribution of hypothetical observations in
which some aspect of the data has been shuffled, resampled,
or otherwise stochastically altered. Creating a reference dis-
tribution by randomizing some aspect of the observed data
is an alternative to an experimental manipulation, where
an experimental treatment would create a distribution of
observations of the system. Choosing which observed
feature(s) to randomize in a reference model is as important
as designing a carefully controlled experiment: both require
combining the research question, domain knowledge, and
accessible data to determine what should be held constant
and what should be manipulated. Thus, the outcome of Step
1 is a list of network or data properties that are to be (i) ran-
domized or (ii) maintained. Networks are interesting pre-
cisely because they capture complex interdependencies
between nodes, which means that choosing what to manipu-
late and what to hold constant is not always trivial.

Although all reference models randomize some aspect of
the data while fixing other aspects, both randomization and
fixation can be done at different levels of abstraction:
(Level 1) permutation, in which observations are swapped

by sampling without replacement; (Level 2) resampling,
in which observations are sampled from the observed data
with replacement; (Level 3) distribution sampling, in
which observations are drawn from a fixed distribution; and
(Level 4) generative processes, in which synthetic data
or networks are constructed from stochastic rules (Fig. 1). These
levels of model abstraction can be applied to the observed
data at different stages of analysis.

(b) Step 2: choose a test statistic

The test statistic is the quantity that will be calculated from
both the empirical data and from the reference model. Many
summary measures can be used as test statistics [see summa-
ries in Sosa et al. (2020) and Wey et al. (2008)]. The test statis-
tic should quantify the network feature, or the relationship
between features, that is tied directly to the biological ques-
tion (see Table 1 for an example).

(c) Step 3: generate a reference distribution

Samples from a reference model constitute a reference data
set and applying the test statistic to each randomized sample
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in the reference data set creates a reference distribution. In
this way, the samples from the reference model can be com-
pared to the empirical data through the lens of the test statis-
tic. If the test statistic from the observed data is
indistinguishable from the distribution of test statistics in
the reference distribution, a researcher would not be able
to reject their hypothesis. If the test statistic from the
observed data falls outside or at the extremities of the refer-
ence distribution, then a researcher would conclude that
the feature, or relationship, of interest is unlikely to occur
by chance and would reject their hypothesis.

(d) Step 4: evaluate the process and adjust the reference
model approach as needed

Researchers must carefully evaluate whether the reference
model they have built is in alignment with their research
question of interest. Researchers also need to determine
whether the reference model behaves as intended or whether
a different process is needed to test the question of interest. As
we show in this review, there are many ways in which refer-
ence models may have hidden biases that can result in mis-
leading outcomes. In evaluating reference models, it is
beneficial to separate Step 1 (choosing which features to ran-
domize and which to preserve, and at what level of abstrac-
tion) from Step 2 (choosing a test statistic). Such separation
will allow researchers to diagnose pitfalls associated with a
test statistic versus pitfalls related to the data randomization
procedure. Reference models may need several iterations of
the construction/evaluation steps to settle on a model that
is well aligned with the research question and biological ques-
tion and which behaves as intended.

(2) A tangible example of reference model use

To illustrate and provide examples for the different random-
ization procedures and to summarize some of the key pitfalls
that each approach is susceptible to, we created an imaginary
social network data set of the mythical burbils. We will refer
to this imaginary society throughout this review and provide
supporting code for all the examples in Appendix S1. Briefly,
burbils live in open habitats and exhibit two unique nose-
colour morphs (red and orange). Individual burbils can be
uniquely identified and their sex (male or female) and age
(adults, subadults and juveniles) are known. Burbils form
fission–fusion societies characterized by large groups that

roost together at night but fission into smaller subgroups
when foraging during the day. The number of
subgroups each day is drawn from a Poisson distribution
(λ = 5) and we suspect that subgroup membership may be
assorted by nose colour (see example in Section II.2a). Forag-
ing subgroups from different roosting groups occasionally
meet and intermingle, creating opportunities for between-
group associations These between-group associations are
more likely if the two burbil groups belong to the same ‘clan’
(similar to the vocal clans of killer whales; Yurk et al., 2002).
Burbil groups differ in size, and groups of different sizes
might have different social network structures. Within their
social groups, burbils are involved in both dominance inter-
actions and affiliative interactions with groupmates and we
suspect that these are influenced by age and sex. These inter-
actions can only occur between individuals in the same sub-
groups with the number of interactions recorded in each
subgroup varying based on the number of individuals
recorded. Further information on burbil societies, social net-
work generation, and example analyses are provided in
Appendix S1.

(a) Illustration of several pitfalls in reference model
construction and use

To illustrate the need for carefully considering various pitfalls
when constructing reference models, we provide an example
that compares two reference models, one resulting in more
specific outcomes than the other. Specifically, we highlight
in this example that carefully articulating the research ques-
tion (Step 1) has important cascading effects onto the entire
analysis. One of the more detrimental cascading effects is a
mismatch between the research question and the resulting
conclusions. In our example, two teams of researchers
(Team 1 and Team 2) set out to study burbil association net-
works. Both teams have association data from a single group
of burbils. Based on these association data, they build a
weighted, undirected network (Fig. 2A). The researchers
have information on the attributes of the burbils, such as
age, sex, and nose colour. Team 1 immediately notices that
individual burbils differ from one another in their nose col-
our and ask a specific research question related to that trait.
Team 2 overlooks the natural history of the burbils and asks
a much more general question about burbil social structure.
We analyse the process that both teams went through in
Table 1, highlighting the pitfalls they each encounter related

Fig 1. Methods for creating reference models increase in level of abstraction. Methods progress from reference models that rely
strongly on the empirical observations of sociality (left, Level 1) to methods that make assumptions about the generative processes
that underlie the observed sociality and do not use the observed social associations when producing a reference model (right, Level 4).
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to the way they defined their research question (R code for
both analyses provided in Appendix S1, Section 3.1.1).

III. DO YOU NEED A REFERENCE MODEL? THE
IMPORTANCE OF DISTINGUISHING BETWEEN
EXPLORATION- AND HYPOTHESIS-DRIVEN
INVESTIGATION

A reference model functions, in a computational sense, as a
control against the observed outcomes in a system. The ‘null
hypothesis’ would be that no meaningful differences exist
between the calculated reference and the measured results.

Our goal in constructing an appropriate reference model is
therefore to know confidently when to reject that null
hypothesis.

Although we focus on selecting appropriate reference
models against which to contrast hypothesized processes or
outcomes (i.e. an appropriate control for an observational
experiment), the idea of a test against a reference model itself
relies implicitly on the existence of a known and concrete
alternative hypothesis describing either the process from
which the observations emerged or describing features of
the observed data/structures themselves. One potential
(and common) point of complication in the analysis of social
networks is that hypothesis generation (i.e. data exploration)
and hypothesis testing may be easily conflated. In

Table 1. Example of two research teams and their approach to studying burbil sociality

Step 1a. Articulate research question.
Team 1: do burbils socially associate by nose colour?
Team 2: do burbils associate at random?
Step 1b. Develop a reference model.
Team 1: to determine if burbils associate based on nose colour, the researchers decide to preserve the observed network structure (Fig. 2A), i.e.
who associates with whom, but randomize it with respect to nose colour. Note that this choice maintains all aspects of burbil social structure
– except for nose colour – which is the variable the researchers are interested in examining.

Team 2: to determine if burbils associate at random, the researchers generate random networks with the same number of nodes and edges
and then, for each random network, they draw edge weights from a normal distribution with the same mean and standard deviation as the
observed adjacency matrix.

Step 2. Choose a test statistic.
Team 1: the researchers use a weighted assortativity coefficient to measure the tendency of burbils to associate with those of the same nose
colour.

Team 2: the researchers choose a measure of variance of the weighted degree (strength) distribution – coefficient of variance (CV) – as the test
statistic to compare the observed and reference networks.

Step 3. Generate a reference distribution.
Both teams generate a reference distribution by running 9999 iterations of their randomization procedure to which they compare the
observed test statistic. Using 9999 iterations means their full reference data set (including the observed value) is n = 10000. They use their
different algorithms to generate their reference distributions. Both research teams plot the distribution of the 9999 reference test statistics as
a histogram and the observed value as a line for visualization (see Fig. 2B for Team 1’s histogram). They then use a two-tailed comparison to
examine if the observed test statistics falls inside or outside the 95% confidence interval (CI) of the reference distribution (i.e. between the
2.5 and 97.5% quantiles or outside this range).

Step 3a. Network randomization and generating reference test statistic.
Team 1: after each shuffle of nose colour, the weighted assortativity coefficient is calculated to obtain 9999 reference values to compare with
the observed value.

Team 2: after the creation of each new interaction network, the CV of the weighted degree distribution is calculated for each simulation to
obtain 9999 reference values of simulated weighted degree CV to compare with the observed value.

Step 3b. Compare reference and observed test statistics.
Step 3c. Draw inferences from comparison between observed and reference values.
Team 1: the observed assortativity coefficient falls higher than the 95% confidence interval of the reference distribution indicating that burbils
do indeed assort by nose colour – tending to associate more with burbils with the same colour noses (Fig. 2B).

Team 2: the observed weighted degree CV falls inside the 95% interval of the reference distribution, indicating that the network is not
different from random with regard to this particular network measure.

Step 4. Evaluate the process and adjust the reference model approach as needed.
Team 1 asked a specific question, used a permutation procedure that shuffled only the one aspect of burbil society that was of interest, and
they chose a test statistic that was well matched to their question.

Team 2 asked a vague question (what does it mean for a network to be non-random?What is the biological meaning of ‘random’ and how is it
measured?). They found it difficult to define a satisfactory reference model and they chose a test statistic that was not as directly linked to
their question. Team 2 is therefore uncertain about the biological conclusions they can draw. Most importantly, they failed to determine
how the way in which they generated their reference distribution matches their research question. This failure stems from the lack of
specificity of their biological question.

Further, they missed the fact that they included zero values for self-loops in their calculation of the mean and standard deviation of the edge
weights when generating their reference networks. These edge weights had a biased representation and inflated their importance compared
to the observed edge weights.
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exploration-driven investigations it is impossible to design an
appropriate reference model because it is impossible to
decouple a hypothesis from the observations themselves.

There is often a temptation to randomize each pattern of
interest in a network with the hope that finding the correct
reference model for contrast can allow meaningful interpre-
tation from observations that may not be rich enough, or well
understood enough yet, to support it. This is not at all to sug-
gest that exploratory data analysis is inappropriate. It is crit-
ical to differentiate purposefully between the exploration phase
of research (when pattern discovery may itself be the goal
and does not require statistical departure from a constructed
reference model) and the hypothesis-testing phase of research
(when appropriate reference models are necessary).

(1) Exploration versus hypothesis testing – a
case study

Consider the case in which a researcher suspects that individ-
ual risk of infection from a contagious disease circulating in a
population may be correlated with some measure of the cen-
trality of individuals in the network. There are three potential
cases that are all included in this general description.

Case 1: the mode of transmission of the pathogen is known

(e.g. sexually transmitted). In this case, the network of contacts
among individuals that may provide the means for disease
transmission is well defined (in the same example, an edge
is drawn between two individuals who have engaged in sex-
ual contact with each other). Given that network, we may
hypothesize that a particular centrality measure may corre-
late with infection risk (for example, eigenvector or between-
ness centrality). Calculating the individual centralities of each
node in the network and their respective correlation with

observed disease burden is a valid endeavour and requires
the construction of an appropriate reference model to be able
to infer meaning and make appropriate interpretations of the
outcome.
Case 2: the researchers are interested in finding the correlation of one

particular centrality measure with disease risk, but the mode of transmis-
sion for the infection is not known. For example, it might transmit
by sexual transmission or be transmitted via inhalation of
droplets from the respiratory system, so close contact with
anyone coughing/sneezing/exhaling while infected is suffi-
cient for potentially successful transmission. In this case the
researchers may construct two potential networks: one from
observed sexual contact and the other from some spatial
proximity index that would reflect exposure to exhaled drop-
lets from others. Here again, calculating the betweenness of
the individuals in each of these two different networks and
their respective correlations with observed disease burden is
also valid and requires an appropriate reference model.
Case 3: the researchers are unsure of the mode of transmission of the

pathogen, nor do they know which centrality measure might correlate with

infection risk. In this case, selecting the combination of network
structure and centrality measure that yields the highest corre-
lation with observed disease burden may not be a well-
formed question, but an exploratory approach would be
appropriate. Therefore, a reference model is not necessary,
and nomatter how carefully constructed, it would not be able
to provide a valid context for interpretation. Because the cen-
trality calculation does not exist in the absence of the struc-
ture of the selected network, the ‘pair’ of measure and
network that produces the greatest fit to the observed trans-
mission pattern is the logical equivalent of over-fitting a
regression. Unfortunately, unlike a simple regression,
because the centralities of individuals depend on the network

Fig 2. An example of study approaches: do burbils socially assort by nose colour? (A) Association network of burbils, with nodes
colour-coded by nose colour and (B) distribution of values based on the permutation procedure of Team 1; observed value of the
test statistic shown as a red solid line and the 2.5 and 97.5% quantiles of the reference distribution as blue dashed lines.
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structure (i.e. factors that are extrinsic to the node itself ), val-
idation by sensitivity of the correlation under iterative
removal and recalculation (or other common techniques) is
not possible.

IV. COMMON PITFALLS WHEN USING
REFERENCE MODELS

When using reference models to analyse network data,
researchers should keep in mind the pitfalls that can arise at
each of the above steps. We provide a broad overview here
and link these general pitfalls to specific examples that are
related to the different approaches to generating reference
models, which we detail below.

(1) Pitfalls in matching a reference model to the
research question

The most important step when designing a randomization
procedure is ensuring that the research question is directly
addressed. Researchers may set out to examine a particular
question but then randomize the network in a way that misses
the question and results in misleading conclusions (see
Table 1 for an example). Designing an appropriate random-
ization procedure can be challenging because changing one
property of a network can often change others and imposing
too many constraints may lead to computational issues or
prevent researchers from answering the desired question.
Therefore, having a clear understanding of the types of con-
straints that can be imposed is important.

Reference models for social networks can be constructed
to preserve both or either non-social or social aspects of the
animals’ biology. Non-social constraints are properties of
the biological system that are extrinsic to the social processes
that underlie the social network but might influence whether
or not an interaction occurs. Such constraints might shape
how the reference distribution is generated, for example by
providing restrictions on possible permutations or resam-
pling. Restricting permutations (or resampling) to specific
time windows, for example, could prevent creating interac-
tions between individuals that had not been born yet and
ones that have already died or immigrated away from the
study site. Similarly, including spatial constraints in reference
models recognizes that some individuals can never meet, for
example terrestrial organisms that are separated by a river
they cannot cross. Failing to prevent the generation of sam-
ples in the reference model that are not naturally feasible
may lead to false positive results. Often, imposing these con-
straints will require knowledge of the study system. Social
constraints are emergent properties of the network that might
be important to maintain when testing particular hypotheses
(e.g. the degree distribution, the number of network compo-
nents or clusters, etc.). These properties are easier to main-
tain using some approaches to generating reference models
than others. For example, data stream permutation methods

overlook the importance of maintaining specific properties
of the social network (discussed in more detail in
Section V.2) (Weiss et al., 2021), which can be important
when developing reference models to answer some questions.
Not accounting for social constraints can result in reference
data sets (networks) that fall within the non-social constraints
imposed but which have substantial differences between
some key properties of the emergent network structure in
the reference data set and the observed social network. A fail-
ure to include social constraints can result in errors in infer-
ence (Weiss et al., 2021).

Both social and non-social constraints can cause unin-
tended changes, resulting in a reference model that no longer
addresses the original research question or addresses a simi-
lar but not identical research question (see Section V.2).
For example, randomization of movement data can alter
the social networks constructed from those movements,
which may in turn, introduce undesired changes in reference
networks that could not be foreseen from the movement data
permutations. Thus, randomizing away correlations at one
scale (e.g. movement) may introduce correlations at another
scale (e.g. social).

Further, while it is important to consider both network
social and non-social constraints on the reference data sets,
a reference model can include too many constraints (see
Section V.2). In some cases, these constraints may prevent
the production of a reference model (too few possible config-
urations) or make the process too computationally intensive.
Applying constraints may also lead to a narrow reference dis-
tribution. While this does not have to be a pitfall (and might
just be the nature of the biological question), a pitfall arises if
these restrictions stop a researcher from randomizing the
aspects of the data that are the focus of the research question.
Sometimes creating a wide enough reference model is not
possible using less abstract approaches (permutations and
resampling, see Fig. 1), for example, very small networks
have a small, finite number of possible edge permutations.
In such a situation, it might be beneficial to change the ran-
domization approach. We discuss in Section VII a randomi-
zation procedure that can allow researchers to produce wider
distributions than those that are obtained by permutation.

(2) Pitfalls in test statistic choice

We cannot emphasize enough the importance of choosing a
biologically appropriate test statistic. The data, network
structure, or properties of the test statistic may constrain deci-
sions about test statistic use. Understanding the biological
meaning of the test statistic that is being compared between
observed and reference data will determine whether or not
the biological question can be answered. Researchers might
be familiar with particular network measures (e.g. degree,
strength, betweenness, density, modularity) and use only
those to answer all their questions about network structure.
However, not all measures are appropriate for answering
every research question, and each measure has a different
biological meaning that can depend also on the network
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structure (Wey et al., 2008; Brent, 2015; Farine &
Whitehead, 2015; Silk et al., 2017a; Sosa et al., 2020). There-
fore, it is important to understand the biological meaning of the
test statistic. Understanding the biological meaning of the test
statistic will prevent testing too many measures (Webber,
Schneider & Vander Wal, 2020). The more test statistics
one measures, the more hypotheses are being tested and
so the greater the need to account for multiple testing
(to prevent false-positive errors). Additionally, it is impor-
tant to consider correlation between test statistics. For
example, a researcher might be interested in uncovering
the centrality of individuals in a network and would like
to use degree, strength, and betweenness. However, it is
possible that these three measures are highly correlated
with one another (e.g. Borgatti, 2005; Farine &
Whitehead, 2015; Silk et al., 2017a), and some test statistics
may be correlated in unexpected ways (e.g. centrality mea-
sures can be correlated with community structure). An
additional pitfall is that for some research questions, the
randomization procedure can affect the test statistic in
unexpected ways, especially if comparing networks of dif-
ferent sizes. There might be ways to adjust a test statistic,
but such adjustments can lead to subtle changes in the
research question being asked and therefore to new infer-
ences (see Appendix S1, Section 3.2.1).

A related pitfall when comparing networks of different
sizes is that the most appropriate normalization approach
can depend on the behavioural rules that generate the net-
work. Determining effects of network size on the choice of
test statistics may require conducting simulations and/or
examination of the literature. We show in Appendix S1
(Section 3.2.1) how the generative process that underlies
the network can impact the ability to compare networks
of different sizes. For example, if we ask how network size
influences the average connectivity of individuals, we could
compare the mean degree of burbils in huddling networks
of two different-sized groups. In both cases the same rules
underlie network structure. We consider two situations, a
random graph or a small-world process, in which individ-
uals are typically connected to nearby nodes with only
occasional long-distance connections. When comparing
the mean degree of two networks of different sizes a sensi-
ble normalization is to divide raw degree values by the
number of individuals in the group minus one (i.e. the num-
ber of individuals it is possible to be connected to). How-
ever, the outcome of doing this depends on whether the
network is generated as a random graph or a small-world
process. In the former, the normalized mean degree is
much more similar between the two groups than the mean
of the raw degree values. However, when we do the same
for a small-world network the mean of the raw degrees is
similar, while the mean of normalized degree values is very
different. This example highlights the challenges in testing
the similarity of different-sized networks without knowl-
edge of the behaviour that generated them. A similar
caveat applies when using resampling-based reference
models to compare networks of different sizes.

(3) Pitfalls in generating the reference distribution

The process of generating the reference distribution holds a
number of potential pitfalls for the unwary. First, the refer-
ence model does not always sample the full parameter space.
There might be values that will never appear in the reference
distribution because of the structure of the data or the algo-
rithm of the randomization. Under-representation of values
in the reference distribution might be important to maintain
but could also be an unwanted side-product that could be
resolved by using a different randomization procedure, as
we explain in Section IV.1. We provide an example of how
sampling from different distributions yields different ranges
of values in Section VII. Second, the parameter space needs
to be sampled in an unbiased manner. When generating a
reference distribution, certain values might be over- or
under-represented if the procedure used to generate the
model does not explore the entire parameter space or
explores it naively. Ideally, the randomization procedure will
produce a reference distribution in which values are uni-
formly distributed or follow a distribution that is appropriate
for the network structure. It is important to understand the
constraints of the randomization procedure that is being used
to determine if such biased distributions may emerge. We
provide a detailed example in Section V.2.
Third, generating a reference distribution can be compu-

tationally intensive, to the point that it is not feasible to gen-
erate a large enough reference distribution. We offer a range
of approaches, some of which (like sampling from distribu-
tions, Section VII) are less computationally intensive than
others (such as permutations in Section V). If computational
constraints influence the choice of methods, it is important to
evaluate carefully what concessions are being made regard-
ing the ability of the randomization procedure to answer
the biological question. For example, when using permuta-
tions, conducting too few swaps can lead to problems with
statistical inference (see Section V).

(4) Pitfalls in failing to evaluate the process
comprehensively and adjust the reference model
approach as needed

Many of the general pitfalls identified here can be detected
by carefully evaluating the approach used to make sure that
the reference model is tuned to the research question and is
behaving as expected. This step can help identify further
potential pitfalls. One important point to consider is whether
the reference model is being used to answer a statistically
motivated question (i.e. to test a hypothesis) rather than to
explore the data in search of significant deviations from the
model (as discussed in Section III). A second potential pitfall
is that agreement between observed data and reference
model outcomes does not necessarily imply similar causality.
If the observed data are similar to the randomized data, this
does not necessarily mean that the algorithm underlying the
randomization is the same as the biological process that
underlies the observed network; with a close match, the
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algorithm is a plausible generating mechanism for the
observed patterns but must be tested further. For example,
many observed social networks are characterized by a
heavy-tailed degree distribution, such that the network has
few individuals with much higher degree than the rest of
the individuals, i.e. they can be considered as hubs. Often,
researchers model the heavy-tailed degree distribution of
such networks as a power law, in which the frequency of
nodes with a certain degree k is proportional to k−α. Although
the algorithm of degree-based preferential attachment
(i.e. the Barab�asi–Albert model; Barab�asi & Albert, 1999)
yields a network with a power law degree distribution, so
do other algorithms (e.g. the ‘copy model’; Kleinberg
et al., 1999). It is therefore clear that inferring the process
by which a network results in a power law degree distribution
cannot uniquely rely on agreement with the emergent struc-
ture itself. We provide further examples of this pitfall in
Section VIII.

Finally, not all network analysis requires the use of refer-
ence models (see also Section III). While the use of reference
models is often necessary when analysing features of individ-
uals that are linked to others in a network because of the
dependency between individuals, there are questions and
methods that do not require the use of reference models.
For example, one might use network measures to character-
ize many groups in a society. Researchers might want to ask if
a network measure, for example density, increases with the
size of the group. In this case a simple correlation between
group size and density would address the research question.
If, however, the researchers are interested in the process that
underlies the relationship between group size and network
density they might use generative models (Section VIII) or
sample from distributions (Section VII) to produce groups
of different sizes using different engagement rules. Note,
however, that the second approach addresses the question:
‘what are the underlying causes of the observed relationship
between group size and density?’ rather than answering the
original research question: ‘is there a relationship between
group size and density’?

V. PERMUTATION-BASED REFERENCE
MODELS

Permutation-based reference models take observed data and
shuffle it to produce reference data sets (Good, 2013). The
resulting reference models preserve certain attributes of
the observed data set, such as distributions of key network
measures or features of the raw data, such as group size.
Because data are shuffled and observations are swapped,
new values are not necessarily introduced in the reference
models (although new values of some measures can be calcu-
lated). The most conceptually simple permutation-based
methods randomize a single feature of the observed data
while preserving all other observed features. Statistically, this
approach breaks correlations that are shaped by the

permuted feature. Permutations can be applied either to
the network structure itself (e.g. nodes and edges, or features
of them) or to the raw data that underlies the network struc-
ture (e.g. movement data, group membership, etc.).

(1) Feature permutation

Permutations can be used on both node features and edge
features. In both cases, these permutations involve swapping
attributes among either the nodes or the edges. Attributes can
be any feature of the nodes or the edges. Common node attri-
butes are individual identity (often referred to as the node’s
label), sex, body size, age, colour, or other features. Attri-
butes of edges can be the types of edges connecting two
nodes, for example, different types of relationships or interac-
tions, such as aggression and affiliation, or the direction of the
edge for asymmetric relationships or for directed
interactions.

Node feature permutation-based reference models swap
attributes among nodes in the network. Node feature swaps
preserve the structure of the observed networks but break
potential correlations between the structure of the network
and node attributes. Comparing observed networks to node
attribute permutation reference models allows researchers
to test if the attributes of interest are associated with observed
patterns of interactions or associations (for an example, see
Table 1).

Node feature swaps frequently have been used as reference
models in social network analysis (Johnson et al., 2017; Snij-
ders et al., 2018; Hamilton et al., 2019; Wilson-Aggarwal
et al., 2019). They are used most often to test associations
between measures of social network position and phenotypic
traits of individuals (e.g. Keiser et al., 2016; Ellis et al., 2017;
Johnson et al., 2017; Hamilton et al., 2019; Wilson-Aggarwal
et al., 2019). We provide an example in Appendix S1
(Section 3.1.2) in which we test the relationship between sex
and out-strength in burbil dominance networks. Inference
from node swap permutations can be complex if there are
underlying processes (e.g. differences in sampling) that may
generate patterns of interest. For example, in Appendix S1
(Section 3.1.2) we swap a node attribute, nose colour, to test
if burbils socially assort by nose colour when they interact in
an affiliative manner. These node swap permutations show
that burbil affiliative networks are indeed assorted by nose
colour. However, interactions can only occur when individ-
uals are associating within the same group, therefore, without
taking into account patterns of subgroup formation in the
population in the permutation, we are unable to answer
whether affiliative interactions are assorted for nose colour
within subgroups.

Edge feature permutation-based reference models swap
attributes of the edges, leaving the node identities, node
metadata, and the connections among them intact. Edge fea-
ture swaps can involve shuffling the following: (i) labels of edges
– swapping one type of interaction for another, like aggres-
sion to affiliation, (ii) edge directions – swapping which individ-
ual directs a behaviour to which recipient in an interaction,
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swapping an edge from A to B to go from B to A (Miller
et al., 2017; de Bacco, Larremore &Moore, 2018), or (iii) edge
weights – swapping the values that represent the strength, fre-
quency, or duration of interactions among individuals, such
as swapping a strong relationship between A and B with a
weak relationship between C and D). Note that permuting
edge weights can only involve swaps between pairs with
non-zero weighted edges otherwise it would become edge

rewiring as detailed in Section V.2. We provide an example
of edge direction swaps in Appendix S1 (Section 3.1.3) where
we test the hypothesis that adult burbils have higher out-
strength in networks of dominance interactions than younger
individuals (subadults and juveniles). We swap edge direc-
tions at random in an iterative process where we generate a
Markov chain (see Section V.2). Permuting edge weights
can be useful for answering questions about the strength of
social ties. We provide an example in which we test the
hypothesis that burbils of different sexes have different out-
strengths in the network of affiliative interactions (Appendix
S1, Section 3.1.3). The affiliative network is highly connected
(has a high density of edges and few or no zero-weighted
edges) making it suitable to use edge weight permutations
in this way. In an iterative process we select pairs of dyads
and swap the number of affiliative interactions between them
to randomise which edges are associated with which weights,
breaking down the correlation between edge weights and
node attribute, in this case sex.

Edge feature swaps could be used on raw temporal data in
edge list form if each interaction between two individuals is
labelled with the time at which the interaction occurred. A pos-
sible edge label swap would be to randomize the time at which
each interaction occurred (changing the time label but keeping
the identities of the pairs that interacted). If edges have further
information about the type of interactions (e.g. the type of
behaviour, such as grooming or fighting) one could also ran-
domize the type of interaction that occurred at each particular
time, thus, changing the type of interactions but keeping the
individuals involved and the timing or order of the interactions
the same as observed. In both these examples, the edge label
swaps would not lead to reference models that are different
from the observed data set if all time points or all types of social
interactions are aggregated. However, network measures that
are sensitive to temporal dynamics or to the type of interactions
[such as multilayer measures (Kivelä et al., 2014; Finn
et al., 2019)] can be affected by these feature swaps.

(2) Edge rewiring with permutation

Edge rewiring involves swapping the edges that represent
interactions or associations in raw data streams or swapping
edges that connect nodes in a network in an adjacency
matrix. For example, edge rewiring may swap the edges ab
and cd to replace them with edges ad and cb. Edge rewiring
results in what is known in network science as the configuration
model (Bollob�as, 1980).

The configuration model is a graph that is sampled uni-
formly from all graphs of a given degree sequence (with some

key technicalities). The degree sequence is the list of all
observed degrees in a network, which can be summarized
as a degree distribution. Configuration models require
appropriate care when making decisions about the specifica-
tions of the underlying model (Fosdick et al., 2018). Like edge
feature swaps, edge rewiring breaks correlations between the
node metadata and the structure of the network to test
whether the observed edge arrangement leads to a network
structure that is different from a structure that would be
achieved by chance, while preserving group size and the
metadata of nodes. Edge rewiring can be conducted at differ-
ent stages, from modifying the raw data (in what are often
known as pre-network permutations or data stream permutations;
Farine, 2017) to modifying the group’s network structure
directly by manipulating the adjacency matrix. In general,
rewiring models form what mathematicians call a Markov

chain, such that drawing samples by rewiring is equivalent
to sampling from a distribution of networks by Markov chain
Monte Carlo (MCMC) (Fosdick et al., 2018).
Edge rewiring on raw data is often used in animal social net-

work analysis (data stream permutations, where edges often represent
each single interaction or association rather than a summarized
version of an edge’s strength). Importantly, when data stream
permutations are used on this raw form of the data, the configu-
ration model that is generated is related to the current format of
the data rather than the projected social network that is subse-
quently analysed. Biologists often use a rewiring approach for
association data in group-by-individual matrices, also known as
gambit of the group data formats (e.g. Bejder, Fletcher &
Bräger, 1998; Croft et al., 2005, 2006; Poirier & Festa-
Bianchet, 2018; Zeus, Reusch & Kerth, 2018; Brandl
et al., 2019). In this data format, each individual is recordedaspre-
sent in a particular group and ‘group’ is often defined as an
aggregation of animals that are present at the same time and
the same place (Whitehead & Dufault, 1999; Franks
et al., 2010). This data format is a bipartite network with edges
that connect individuals to the groups in which they were
observed, i.e. it is a bipartite version of the configuration model
that respects the bipartition. When such data stream permuta-
tions are applied to group-by-individual matrices the edge-
rewiring step takes place on this bipartite network rather than
on the projected social network that is created subsequently. Sim-
ilarly, when edge rewiring is used for raw data on behavioural
interactions (e.g. Webber et al., 2016; Miller et al., 2017), it is the
multigraph that contains all interactions (i.e. a networkwithmul-
tiple rather than weighted edges between nodes) that is rewired,
while the network analysed is subsequently treated as a weighted
network (with single edges between nodes).
Elaborate rewiring procedures can be used to impose both

social and non-social constraints. For example, researchers
may constrain rewiring to only swap individuals between
groups that occur in the same location or on the same day
(non-social constraints). Researchers may further want to
impose network constraints, such as forcing the re-wired ref-
erence models to preserve the degree distribution of the
observed network. The R package igraph (Csardi &
Nepusz, 2006) can rewire social networks while maintaining
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a fixed degree sequence, while Chodrow (2019) shows how to
preserve both event size (the number of individuals in each
grouping event) and the degree of each individual if using
data stream permutations to analyse data on animal groups
(or equivalent bipartite networks in other fields) and Farine &
Carter (2020) propose a double permutation test to help
avoid elevated type I errors. Another example of an elabo-
rate rewiring procedure is disconnecting either just one or
both end(s) of an edge and re-connecting it to a new individ-
ual (or individuals) (e.g. Hobson & DeDeo, 2015; Formica
et al., 2016; Hobson, Mønster & DeDeo, 2021). For example,
an edge connecting A to B can be disconnected from B and
re-wired to connect A to C. This kind of rewiring results in
some changes to both the dyadic relationships between indi-
viduals and the network structure, but preserves other fea-
tures of the networks, such as eigenvector centrality, and
can be used to generate reference data sets that are consistent
with a desired network constraint (Hobson & DeDeo, 2015;
Hobson et al., 2021). This edge-rewiring procedure is differ-
ent from the configuration model, as it does not generally
preserve the degree sequence. If the network is directed, this
type of rewiring can be used to preserve the sequence of out-
degrees, but not in-degrees (or vice versa). As the complexity of
the rewiring procedures and the constraints imposed on them
increase, these rewiring procedures become more similar to
generative models, which we detail in Section VIII.

We provide examples of data stream permutations for both
association (Section 3.1.4.1) and interaction (Section 3.1.4.2) data
in Appendix S1. For associations, we generate two reference
distributions to test the hypotheses that burbil associations are
non-randomwith or without accounting for assortativity by nose
colour.Ourpermutations conduct edge rewiring in thegroup-by-
individual matrix and in both reference models we constrain
swaps to occur within the same burbil group and to be between
two subgroups observed on the same day. The first reference
model is naive aswealready know theburbils are assortedbynose
colour (Table 1).However, whenwe additionally constrain swaps
so that edges can only be rewired between burbils with the same
nose colour, we see that association patterns are randombetween
burbils with the same nose colour within a subgroup. This exam-
ple demonstrates the potential power of using multiple reference
models in concert. For interactions, we ask what explains burbil
affiliative interactions. Using edge rewiring in the raw interaction
data we find that there is no evidence for assortativity by nose col-
ourwhen controlling for subgroupmembership.We show this by
rewiring interactionswithin each subgroup so that thenose colour
of eachdyad is randomized.Affiliative interactionsareassortedby
nosecolouronlybecauseeach subgroup tends tobedominatedby
one nose colour or the other (rather than being an unbiased sam-
ple of individuals in the group).

(3) Key pitfalls for permutation-based reference
models

For permutation-based methods, a first major potential pit-
fall to watch for is failing to impose the correct constraints
on swaps. In feature swaps (conducted on the adjacency

matrix itself ), it may not always be possible to constrain swaps
as desired. For example, swaps can be constrained to occur
only between individuals recorded at the same location
(e.g. Shizuka et al., 2014), in the same group (e.g. Ellis
et al., 2017), or that are alive at the same time
(e.g. Shizuka & Johnson, 2020). However, it can be challeng-
ing to incorporate some constraints. If we test for assortment
by nose colour in the burbil network of affiliative interactions
then there is no natural way to restrict swaps on the adja-
cency matrix to account for burbils only interacting with
others in the subgroups they occur in (Appendix S1,
Section 3.1.2). However, using an edge-rewiring approach
we can constrain permutations within each subgroup
(Appendix S1, Section 3.1.4.2). For reference models gener-
ated by edge rewiring, it is critical to consider both the non-
social and social constraints because decisions about which
constraints to build into the rewiring procedure affect the
resulting configuration model. In many common animal
social network rewiring methods, researchers control for
unwanted structure in non-social constraints (e.g. sampling
biases, differences in gregariousness, etc.). It is less common
for researchers to consider social constraints, such as forcing
the rewired networks to conform to a particular degree distri-
bution. However, without social constraints, the reference
model will approach a random network as the number of
rewiring steps increases and can result in misleading, false-
positive inference (Weiss et al., 2021). Chodrow (2019) shows
how one can preserve both the size of interactions (number of
animals in each interaction) and the degree of each individ-
ual to produce a permutation of the data stream that pre-
serves the degree distribution.

A second pitfall of using permutation-based reference
models are computational limitations and potential for
biased sampling. Permutation-based approaches are often
computationally intensive (e.g. as seen when running the
code in Appendix S1, Section 3.1). Computational con-
straints can be exacerbated when increasing the number of
constraints on the permutation (social or non-social) because
many of the attempted swaps will be rejected. In some cases,
over-specifying constraints on the randomization can result
in a configuration model with insufficient acceptable states,
making it impossible to generate a reference model, espe-
cially when examining small networks. Furthermore, it is
important to sample from the configuration model in an
unbiased manner. This pitfall is especially likely when sam-
pling from a distribution of networks by MCMC, as is often
done in edge-rewiring approaches. When a swap is rejected
(i.e. a suggested swap is not possible within the set of con-
straints imposed) it is important to resample the current ref-
erence network as the next iteration of the Markov chain
(Krause et al., 2009). If such resampling is not done, then
the configuration model will be sampled in a biased way
(Fig. 3), which could lead to errors in inference. Such rejec-
tion of swaps will arise more frequently when there are more
constraints imposed on the permutations, and then other
potential pitfalls arise: the Markov chain will (i) take longer
to become stationary, and (ii) be slower to mix, which could
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lead to further errors in inference. Addressing this pitfall
requires a burn-in period during which the permuted net-
works are not used in the reference distribution and a thin-
ning interval that equates to permuted networks only being
saved as reference data sets after so many iterations in the
Markov chain (e.g. every 10th iteration). We provide exam-
ples of these in Appendix S1 (Sections 3.1.3 and 3.1.4).

A third potential pitfall of permutation-based approaches
is that they are often prone to having unanticipated effects
on network structure, especially when permutations are con-
ducted on the raw data stream. Consequently, failing to
properly evaluate the computational approach is a particu-
larly important pitfall for permutation-based approaches.
For example, a completely uniform random rewiring might
make the data too ‘unrealistic’ or mean the distribution of
the response variable is changed considerably (Weiss
et al., 2021). Edge rewiring of the group-by-individual matri-
ces (as explained above) typically alters degree and edge
weight distributions, which can lead to false positive errors
because the reference model does not address the question
originally asked. Incorporating constraints imposed on the
rewiring possibilities (e.g. Chodrow, 2019) could help resolve
this problem.

VI. RESAMPLING-BASED REFERENCE MODELS

Resampling of network data is a bootstrapping procedure
that generates reference models which can be further from
the observed data (Fig. 1) than the permutation-based
methods we have discussed thus far. While generating refer-
ence models using permutations permits each observation to
appear only once in the reference model (i.e. sampling with-
out replacement), creating reference models using resam-
pling (i.e. sampling with replacement) results in
observations appearing more than once, or not at all, in each
simulation iteration. This difference between the two
approaches can change which features of the data are main-
tained and which ones are randomized. For example, if a
researcher decides that an important feature of the social
structure is the degree distribution, rather than the exact
dyadic interactions between individuals, one can produce
reference models by resampling from the observed degree
sequence (i.e. the list of all observed degrees). Resampling
from the degree sequence will produce reference networks
with a similar degree distribution to the observed network,
but the observed and reference networks might differ in the
degree sequence and potentially also in the number of nodes

Fig 3. An illustration of how incorrect use of Markov chain Monte Carlo (MCMC) methods can lead to biased sampling from the
configuration model when using data stream permutations. When permuting a bipartite group-by-individual network there are
11 possible configurations, depicted at the bottom of the figure. Of these possibilities, five (coloured yellow and orange) are
acceptable because they do not contain double edges (as shown in the green and blue possibilities as a thick edge). Double edges
indicate that the same individual occurred in the same grouping event twice – which is impossible. (A) The ‘graph of graphs’, or
the Markov chain. (B) The distribution of samples obtained when permutations are conducted and every state, including those
that are impossible (green and blue) are accepted. (C) The distribution of samples obtained when rejecting swaps that result in
double edges and then rewiring a randomized network. Note that a sampling bias arises here – the orange state is oversampled –
because it has more routes to other acceptable states as seen in A. (D) The distribution of the samples obtained when swaps that
make double edges are resampled (i.e. the correct unbiased sampling approach). Note that in D the sampling of the five acceptable
states is uniform – as it should be.
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and/or edges. One potential use of resampling-based refer-
ence models is the ability to draw reference networks of dif-
ferent sizes and compare them (see Appendix S1,
Section 3.2.1 for more details and caveats to using this
approach). Resampling can be an effective tool when used
with the raw data, however the only network-level properties
that can be sampled with replacement are the degree
sequence and edge weights (e.g. Appendix S1,
Section 3.2.1). Thus, a resampling approach is more specific
and more limited than other approaches we present.

(1) Resampling raw data

An important utility of the resampling approach in beha-
vioural studies is to resample the raw data that is the founda-
tion of the network, rather than the network itself. For
example, researchers of animal social networks often use
the spatial positions of animals to infer interactions from
co-localization of individuals [two individuals being in the
same place at the same time (e.g. Pinter-Wollman
et al., 2011; Mersch, Crespi & Keller, 2013; Robitaille, Web-
ber & Vander Wal, 2019; Schlägel et al., 2019). A raw data
resampling procedure could sample with replacement indi-
viduals’ locations from the observed locations, thus preserv-
ing the physical constraints on these locations. This
approach restricts the sampling to biologically feasible loca-
tions so, for example, a terrestrial animal could not be
resampled in the middle of a lake. We provide an example
in Appendix S1 (Section 3.2.2) of resampling the foraging
location of burbil subgroups separately for each of the
16 groups in our main study population. The resulting refer-
ence models maintain the observed subgroup memberships
and locations are only sampled from within each group’s
home range.

The way in which the data are resampled could have a
large influence on the reference model. For example, restrict-
ing the resampling of locations of particular individuals to
only their own set of locations (e.g. Spiegel et al., 2016) will
maintain home range sizes and average travel distances,
and therefore, it might maintain the number and identity of
individuals that each individual interacts with. Such a resam-
pling procedure is more likely to result in reference models
that are closer to the observed network structure, especially
if non-social rather than social considerations are important
in generating this structure. Conversely, if individuals seek
out conspecifics to interact with preferentially, then not hav-
ing network constraints in the resampling procedure means
that the resampling will break the temporal overlap between
interacting individuals. Consequently, well-designed resam-
pling of locations can be useful to teasing apart non-social
and social explanations for network structure (Spiegel
et al., 2016). Alternatively, one could allow resampling an
individual’s position from all observed positions of all individ-
uals in the population. Such a resampling approach would
require that it is biologically feasible for animals to move
from one position to any other location in which animals
were observed. Resampling that breaks the link between

the identity of an individual and its movement patterns can
produce reference models that differ considerably from the
observed networks, for example, in the number of interac-
tions among individuals. These reference models could be
used to test the relative importance of non-social factors that
may drive interactions.

(2) Pitfalls for resampling-based reference models

The first important pitfall to watch for when resampling net-
work data is that certain resampled degree sequences cannot
produce a network because they include too many edges or
too many nodes. For example, if the sum of all degrees in a
network ends up being an odd number after resampling the
degree sequence of an unweighted network, a network can-
not be generated. Next, when resampling the raw data that
underlies the network, it is important to make sure that the
resulting network is biologically feasible. For example,
resampling of spatial locations could allow an individual to
interact simultaneously with two individuals that are at oppo-
site ends of the study site if not conducted with appropriate
caution.

Finally, pitfalls of resampling-based approaches also
include over- or under-sampling certain values and deviating
from the observed network in unexpected ways. Such biased
sampling is likely to be a particular issue for small networks in
which the observed degree sequence represents a small sam-
ple from the degree distribution. For example, resampling
from small degree sequences could lead to repeated sampling
of a particular degree value that is an outlier in the observed
degree sequence.

Alternatively, rare values of degree might be omitted in
the reference model, leading to substantial changes in cer-
tain network measures. These biases could result in very
broad or even multimodal reference distributions in some
contexts, and potentially cause problems with inference.
Test statistics that are based on edge strength could be
highly impacted by resampling from the degree sequence,
especially if the observed strength distribution is skewed.
For example, resampling could alter the strength distribu-
tion of the reference network by omitting the tail of the dis-
tribution. The effects of resampling on different types of
measures could become part of the research question if
thought through carefully, otherwise it risks leading to erro-
neous inferences.

VII. DISTRIBUTION-BASED REFERENCE
MODELS

Reference models can emerge from general processes that
shape a network rather than from the data itself. One can
generalize the features of the observed network, as we detail
in this section, or the processes that underlie the formation of
the network, as we discuss in Section VIII. In Section VI we
discussed resampling from the observed data; a further
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generalization of this approach is to create reference models
based on inferences of the probabilistic description of the
observed data, such as the degree distribution. Distribution-
based approaches can result in reference data sets that
diverge from some of the specific characteristics of observed
networks that are often preserved in permutation-based ref-
erence model approaches (such as group size, or the number
of interactions), making distribution-based approaches a
method for generating reference data sets which are more
abstracted from observed data sets (Fig. 1).

There are a number of technical approaches for imple-
menting distribution-based randomization. To maintain
the observed degree distribution in the reference models,
researchers can either permute the network edges so that
the reference network will have the exact same degree
sequence as the observed network but is otherwise random
(as described in Section V). Alternatively, researchers could
create a reference network by resampling (with replacement)
a new degree sequence from the observed degrees
(as described in Section VI) or generate a network from the
configuration model (as described in Section VIII). Resam-
pling from the degree sequences is equivalent to drawing ran-
dom samples from an empirical degree sequence defined as

Pk=
number of nodes with degree k

total number of nodes

However, if the functional form of the underlying degree dis-
tribution is unknown, it is possible to draw random samples
from a fitted distribution to obtain a new degree sequence
and subsequently generate a network (Fig. 4). For example,
in many social networks there are right-skewed degree

distributions in which most individuals have few interactions,
and few individuals have many interactions. Such a degree
distribution often fits a geometric distribution. Therefore, if
researchers are interested in maintaining the shape of the dis-
tribution, but not necessarily the exact number of times each
degree was observed, then reference models can be gener-
ated by resampling from a geometric distribution that has
the same parameters as the observed data. Sampling from a
fitted distribution can result in sampling nodes with degree
k that were not present in the observed network, unlike the
resampling approach detailed in Section VI. Sampling from
a fitted distribution imposes fewer restrictions on the refer-
ence model, which can have both statistical and computa-
tional advantages.
Drawing from a distribution can be thought of as sampling

from a ‘smoothed’ version of the observed network. The big-
gest challenge is to find an appropriate statistical model for
the fit. In many cases, finding an appropriate model can be
done by fitting a parametric distribution to the data (for
example, using maximum likelihood estimation) and draw-
ing random samples from that distribution (e.g. Rozins
et al., 2018). It is more convenient to fit continuous distribu-
tions, even when describing a discrete behaviour, and one
should be conscious of the implications of various rounding
procedures to turn the sample into whole numbers
(Clauset, Shalizi & Newman, 2009). In some cases, there
are efficient stochastic processes that can be used for the
distributions-based randomization approach. For example,
to generate a network with the same degree distribution as
the observed network, researchers can use the Chung-Lu
model, which draws an edge between every pair of nodes i,
j, with probability proportional to ki � kj where ki and kj are

Fig 4. Drawing random degree sequences from the distribution-based model. (A) Histogram of the degree sequence of the network
shown in the inset and a fitted lognormal distribution (red line). (B) Random samples of different sizes (100, 200, 500, 1000
randomization iterations) drawn from the fitted lognormal distribution (orange) and by resampling the original degree sequence
(grey). Network visualization was done using Gephi (Bastian, Heymann & Jacomy, 2009) with force atlas, a force-directed layout.
Node colour and size correspond to degree.
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the degrees of node i and j, respectively. Using this process
would generate networks with degrees that were not present
in the observed network, despite having similar degree distri-
butions to the observed network.

Distribution-based models can offer flexibility and
robustness. They are especially useful when other random-
ization procedures result in too few unique reference net-
works that satisfy all the randomization constraints,
i.e. there are not enough unique random samples to com-
pare the observed with (e.g. in small networks, see
Section V.3). Furthermore, the inferences from a
distribution-based randomization approach emerge from
the statistical features of the observed data and therefore
may uncover inherent patterns in the underlying social pro-
cesses. However, selecting appropriate distribution-based
reference models can also come with challenges, which we
outline below.

(1) Key pitfalls for distribution-based reference
models

An important potential pitfall when sampling from a distri-
bution is failing to fit the correct distribution to the observed
data and therefore simulating a reference data set that differs
from the observed one in key parameters. For example, a
uniform random network has a Poisson degree distribution.
However, many real-world social networks have overdis-
persed (right-skewed) degree distributions (e.g. Rozins
et al., 2018) and failing to account for this overdispersion in
a distribution-based reference model will lead to errors in
inference.

A second potential pitfall arises when sampling indepen-
dently from two distributions that co-vary. For example, con-
sider a theoretical distribution-based reference model that
preserves both the degree distribution and the distribution

Fig 5. An illustration of covariance between two network properties in a burbil association network generated in Appendix S1,
Section 3.3. (A) The degree distribution of the network. (B) The distribution of the clustering coefficient – the fraction of a node’s
friends that are friends with each other. (C) A visualization of the network where node size corresponds to degree and node colour
corresponds to clustering coefficient [network visualization was done using Gephi (Bastian et al., 2009) with force atlas, a force-
directed layout]. (D) The correlation between clustering coefficient and degree in the network.
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of clustering coefficients of an observed network. The cluster-
ing coefficient of a node measures the fraction of pairs of
neighbours of that node that share a link. This quantity tends
to co-vary with degree, often in a negative direction, espe-
cially in networks with an assortative community structure
(e.g. Fig. 5). The negative relationship between degree and
clustering coefficient emerges from the fact that high-degree
nodes tend to connect different communities and therefore
their friends are not tightly connected to each other because
they belong to many different communities. In Fig. 5 we
show a burbil association network with an assortative com-
munity structure in which node size corresponds to degree
and node colour corresponds to clustering coefficient (see
Appendix S1, Section 3.3). If a researcher ignored correla-
tions between degree and clustering coefficient and sampled
two sequences of numbers independently from the distribu-
tion in A and B respectively, the resulting distributions would
mimic the data set individually but not jointly. We illustrate
another example of failing to account for the correlation
between two distributions (degree and mean edge weight)
in Appendix S1 (Section 3.3). For some correlations there
may be easy solutions to this co-variance, for example if
degree distributions differed between two sexes then they
could be simulated separately for each sex. For other distri-
butions (of network measures or in the raw data) it will be
necessary to draw simulations from the appropriate multivar-
iate distribution.

A third pitfall of using distribution-based reference models
is that it is not (currently) possible to simulate networks with
fixed distributions of many social network measures, one
example being clustering coefficient (as per the example
above). For a fixed number of nodes and edges, or for a fixed
degree distribution, we know how to sample a network uni-
formly over all networks with such properties. However, con-
ducting such uniform sampling can be done for very few
other network properties.

Researchers often use reference models that do not sample
uniformly from the space of all networks with a given prop-
erty, but rather use reference models that happen to have
properties that are close to the network in question (like the
generative models in Section VIII). It is important to under-
stand the difference between sampling uniformly over all net-
works with a given property and sampling from a set of
networks that tend to have the property while also having
other constraints on their structure, because of the influence
that these sampling methods will have on the inference pro-
cess. These potential pitfalls of generating distribution-based
reference models limits the contexts in which such randomi-
zation can be applied.

VIII. GENERATIVE REFERENCE MODELS

Generative models produce a set of reference networks
according to stochastic rules or processes which encode
assumptions about how the network was formed. Thus,

generative models are like recipes for creating networks from
scratch. For instance, a researcher might know the beha-
vioural rules that typically underlie the formation of interac-
tions and might therefore create a network-forming
generative model that instantiates those rules. However, care
must be taken when modelling networks using such general
rules about interaction formation because they have the
potential to produce reference networks that are very differ-
ent from those observed, despite sharing the same number of
nodes, links, or other high-level features. In particular, when
a generative process is fundamentally non-biological, that
generative model may be a poor reference model because it
differs too dramatically – and implausibly – from the
observed network.
One example of a common but usually implausible refer-

ence model used in studies of animal behaviour is the uniform
model G(n, p) (Gilbert, 1959), also referred to as the Erd}os–
Rényi (ER) model. This model produces reference networks
according to a simple recipe: begin with n nodes, and then
place a link between each pair of nodes with probability p,
independently of other pairs. While this model has the poten-
tial to create any simple network, i.e. a network without self
loops or multiedges, it is designed to maximize entropy and
uniformity, and is therefore unlikely to mimic any of the fea-
tures of a network arising from animal behaviour. Indeed,
even animals following a Brownian motion rule in space will
encounter each other in a way that is constrained by physical
distance and barriers (Pinter-Wollman, 2015) meaning that
even random encounters are poorly captured by the uniform
reference model. Another example of a common reference
model is the configuration model, introduced in Section V.While
the configuration model is commonly associated with the
degree-preserving permutation of edges via rewiring, it is also
simply a modified uniform model with more constraints: it
chooses uniformly from all networks with a given degree
sequence. The configuration model differs from G(n,p) in
two key ways, by (i) having a fixed and non-random degree
sequence and number of edges, and (ii) potentially containing
self-loops and multi-edges. The configuration model is a gen-
erative reference model, for which there are a large number
of different variations (Fosdick et al., 2018).
There is no shortage of generative models for networks. In

fact, many common statistical models of networks, which we
may usually think of as models to fit to data, are generative,
including exponential random graph models (ERGMs:
Lusher, Koskinen & Robins, 2013; Robins et al., 2007; Snij-
ders et al., 2006) and stochastic block models [SBMs
(Bollob�as, 1980; Snijders &Nowicki, 1997). Just as with other
classes of reference models, generative reference models
require the careful consideration of the research question
and hypothesis to inform the choice of the generative rules.
For instance, ERGMs are dyadic models that can be used
to test hypotheses about which features of dyads affect the
presence or strength of edges. By including sex as an explan-
atory variable in an ERGM, it becomes possible for there to
be differences between the likelihood of edges between
female–female, female–male and male–male dyads. We
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illustrate some simple examples of the use of these models in
our burbil case study. In Appendix S1 (Section 3.4.1) we fit
an ERGM to a within-group dominance network simulta-
neously to test hypotheses about the role of individual traits
in explaining dominance relationships and an SBM to a
population-level association network to examine how well
the community structure of the association network is
explained by group membership.

A class of system-specific generative reference models are
agent-based models (ABMs). In network analysis, ABMs
can be spatially explicit or socially explicit. Spatially explicit
models can help reveal the role of spatial behaviour in
explaining social network structure. For example, a genera-
tive model in which the movement of individuals is con-
strained by the spatial organization of the environment
could be used to test whether spatial constraints are sufficient
to explain social structure. Researchers could further include
differences in spatial behaviour between individuals within
such an ABM (Pinter-Wollman, 2015). In Appendix S1
(Section 3.4.2) we use a spatially explicit agent-based model
to test whether the space use of burbils can explain patterns
of between-group associations. Note that if we do not include
any social component in the model then while our reference
network is correlated with the observed network, it predicts
far too many between-group associations.

Socially explicit ABMs incorporate social behaviour
(e.g. interaction preferences). One example of a socially explicit
ABM in the study of animal behaviour is the social inheritance

model, in which offspring are likely to form connections with
friends of their parents while avoiding parents’ enemies
(Ilany & Akçay, 2016).While such amechanism is highly likely,
and indeed has been supported in some social systems, such as
spotted hyenas, Crocuta crocuta (Ilany, Holekamp &
Akçay, 2020), this model requires knowledge about relatedness
and historical interactions, or long-term relationships, that are
not available in all study systems. In our burbil case study in
Appendix S1 (Section 3.4.2) we develop two socially explicit
agent-based models that build on our spatially explicit model.
The first uses knowledge about burbil subgroup size to simulate
burbils moving within groups rather than independently. The
reference network generated is much more similar to the
observed network than the previous version, which was only
spatially explicit. We then test the hypothesis that ‘clan’mem-
bership (burbil groups belong to three distinct clans) can help
explain patterns of between-group associations. When we
include clan membership in our ABM, the reference model
produces a network that is very similar to the observed one,
suggesting that clan membership can indeed explain the
observed social interactions. In reality we would replicate these
ABMs 1000 or more times to generate a full reference distribu-
tion rather than providing a single comparison, which we did to
reduce computational time.

(1) Key pitfalls for generative reference models

Comparing observed data with generative reference
models provides insights about what processes might

underlie observed interactions, and what processes might
not. However, as a note of caution, it is possible to create
the same types of networks with multiple generative processes
– multiple recipes can generate similar patterns. Therefore,
when observed data match a generative reference model, it
does not necessarily mean that the modelled generative pro-
cess is indeed the biological process that actually generated
the observed network. Instead, it means that the modelled
generative process is a plausible hypothesis that needs to be
tested mechanistically.

Further, as generative models become more and more
complicated, constraints on one property that is being mod-
elled can have cascading effects on other properties. Compli-
cated generative models with many parameters can result in
one desirable property while other properties of the model
remain poorly understood. Furthermore, complicated
models require the specification of many parameters, which,
if mis-specified, can produce reference distributions that dif-
fer significantly from observations, leading to spurious con-
clusions. Uniform and configuration models have enjoyed
much usage because their complete distributions, constraints,
and correlations among their properties are well understood.
However, these simple models might not encapsulate all the
biological complexities a researcher might be interested
in. As we experiment with more exotic and complex genera-
tive models, which capture more realistic aspects of observed
behaviour, it is increasingly important to check carefully for
the unintentional creation of fundamentally unrealistic pat-
terns and behaviours in our reference models. Such unrealis-
tic patterns can be identified through an iterative approach,
for example, by going back to the study system and asking
if patterns observed in the reference models are feasible in
real life.

IX. CONCLUSIONS

(1) We provide an overview of the process and caveats of
using reference models when analysing social net-
works. We detail common approaches to generating
reference distributions that increase in level of abstrac-
tion with respect to the observed data set.

(2) We highlight the strengths and weaknesses of each
approach, drawing attention to common pitfalls that
can arise when using them.

(3) Our goal is to provide a guide for researchers using
social network analysis for hypothesis testing in diverse
study systems. We anticipate that our overview will
help researchers appreciate the similarities and differ-
ences between different analytic approaches better
and also encourage greater confidence in designing
appropriate reference models for their research
questions.

(4) Our key message is that the construction of reference
models should depend closely on both the research
question and study system and that the use of generic
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approaches applied without careful evaluation as to
their suitability can lead to incorrect inferences.
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