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INVARIANT-DOMAIN-PRESERVING HIGH-ORDER TIME
STEPPING: I. EXPLICIT RUNGE--KUTTA SCHEMES\ast 

ALEXANDRE ERN\dagger AND JEAN-LUC GUERMOND\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We introduce a technique that makes every explicit Runge--Kutta (ERK) time step-
ping method invariant domain preserving and mass conservative when applied to high-order dis-
cretizations of the Cauchy problem associated with systems of nonlinear conservation equations.
The key idea is that at each stage of the ERK scheme one computes a low-order update, a high-order
update, both defined from the same intermediate stage, and then one applies the nonlinear, mass
conservative limiting operator. The main advantage over the strong stability preserving (SSP) para-
digm is more flexibility in the choice of the ERK scheme, thus allowing for less stringent restrictions
on the time step. The technique is agnostic to the space discretization. It can be combined with
continuous finite elements, discontinuous finite elements, and finite volume discretizations in space.
Numerical experiments are presented to illustrate the theory.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . time integration, Runge--Kutta, invariant domain preserving, strong stability
preserving, conservation equations, hyperbolic systems, high-order method
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\bfD \bfO \bfI . 10.1137/21M145793X

1. Introduction. This paper is the first part of a work devoted to the construc-
tion of invariant-domain preserving, high-order time stepping schemes. In this first
part, we deal with explicit Runge--Kutta (ERK) schemes. In the forthcoming second
part, we extend the proposed techniques to implicit-explicit (IMEX) Runge--Kutta
schemes. The goal of this section is to motivate the problem under consideration and
to discuss our objectives.

1.1. Position of the problem. Our main motivation lies in the approximation
of the Cauchy problem for nonlinear conservation equations posed over a space domain
D \subset \BbbR d and a time interval [0, T ] with T > 0:

(1.1) \partial t\bfitu =  - \nabla \cdot f(\bfitu ), \bfitu (0) = \bfitu 0.

The dependent variable, \bfitu , is assumed to take values in \BbbR m, m \geq 1. The \BbbR m\times d-
valued function f is called flux. Since there is no general theory for the existence and
uniqueness of solutions to the Cauchy problem (1.1), we assume that (1.1) admits
a reasonable definition of solutions and there exists a nontrivial invariant domain
\scrA \subset \BbbR m for these solutions. This means that if the initial datum takes values in \scrA 
everywhere inD (and in the absence of perturbations due to the boundary conditions),
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INVARIANT-DOMAIN-PRESERVING TIME STEPPING A3367

then the solution also takes values in\scrA everywhere inD at all times t \in [0, T ]. Another
important property of (1.1) is conservation, meaning that (again up to perturbations
due to the boundary conditions) the integral over D of the solution is constant in time.

For scalar conservation equations with Lipchitz flux, m = 1, the solutions one is
interested in are the entropy solutions. These solutions satisfy the maximum principle,
and the invariant domains are intervals [\alpha , \beta ] \subset \BbbR . More precisely, if the initial datum
is bounded from below by \alpha and from above by \beta in D, then it is also the case of
the entropy solution at all times t \in [0, T ]. In the general case of hyperbolic systems,
m > 1, the existence of invariant domains can be established by adding a second-
order perturbation like \epsilon \Delta \bfitu on the right-hand side of (1.1). These domains are
independent of \epsilon > 0 (see Chueh, Conley, and Smoller [5]). For instance, for the
compressible Euler equations equipped with the co-volume equation of state, the set
\scrA is composed of the states with positive density, positive internal energy, density less
than the maximal compressibility constant from the co-volume equation of state, and
specific entropy larger than the minimum of the specific entropy of the initial state.
For the shallow water equations, the set \scrA is composed of the states with positive
water height. In the theory of hyperbolic systems, invariant domains are usually
convex.

When approximating the Cauchy problem (1.1), it is important to devise approx-
imation methods that are high-order accurate in space and time, invariant-domain
preserving (IDP), and conservative. When the invariant domain \scrA is a convex set,
the usual paradigm in the literature to achieve this goal is to resort to strong stability
preserving (SSP) ERK (SSPRK) methods. We refer the reader to Ferracina and Spi-
jker [10], Gottlieb, Shu, and Tadmor [11], Higueras [24], Kraaijevanger [26] for reviews
on SSPRK methods. The key idea in the SSPRK paradigm is that the higher-order
update in time is obtained as a convex combination of limited forward Euler steps;
see Shu and Osher [37, eq. (2.12)]. Since the limited forward Euler step is IDP under
a CFL restriction on the time step and since the set \scrA is convex, the SSP update
stays in this set. Notice that the nonlinear conservative limiter has to be applied at
each stage of the SSPRK method.

1.2. Objectives of the paper. The objective of this work is to go beyond the
SSPRK paradigm and introduce a technique that makes every ERK method IDP and
conservative. We call the resulting time stepping techniques ``IDP-ERK methods.""
There are three main reasons that led us to investigate this question.

The first reason is that the class of SSP methods is restricted in accuracy. For
instance, SPPRK methods are restricted to fourth-order if one insists on never step-
ping backward in time. This statement is proved in Ruuth and Spiteri [35, Thm. 4.1].
The methodology we propose in this paper breaks this order barrier.

The second reason is efficiency. The efficiency of an explicit s-stage Runge--Kutta
method is defined as follows.

Definition 1.1 (efficiency ratio). Let \tau \ast be the maximal time step that makes
the forward Euler method IDP. Consider some s-stage ERK method and let \~\tau be the
maximal time step that makes this method IDP as well. We call the efficiency ratio
of the s-stage ERK method the ratio ceff := \~\tau 

s\tau \ast .

The rationale behind this definition is that the number of operations to reach a
fixed time T for an s-stage ERK method using the time step \~\tau is roughly equal to
1

c\mathrm{e}\mathrm{f}\mathrm{f}
times the number of operations needed by the forward Euler method using the

time step \tau \ast . As one always has ceff \leq 1, one is interested in devising ERK methods
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A3368 ALEXANDRE ERN AND JEAN-LUC GUERMOND

that have an efficiency ratio equal to 1. Unfortunately, many SSPRK methods have
an efficiency ratio that is (significantly) smaller than one. We show in this paper
that every s-stage ERK method, in particular those for which ceff = 1, can be made
IDP.

The third, and foremost, reason is that the SSP setting is difficult to deploy
in the context of methods combining implicit and explicit (IMEX) time stepping.
This problem is particularly evident when solving the compressible Navier--Stokes
equations (see, e.g., Demkowicz, Oden, and Rachowicz [7], Guermond et al. [19]).
Indeed, the inviscid compressible Euler equations satisfy a minimum principle on
the specific entropy (which is then an invariant-domain property of the explicit part
of the problem), whereas the viscous effects of the Navier--Stokes equations (which
are treated implicitly) violate this minimum principle. Also, the invariant-domain
properties of the compressible Euler equations are expressed in terms of the conserved
variables, whereas the invariant-domain properties induced by the viscous part of
the problem are expressed in terms of the primitive variables. Furthermore, it is
established in Gottlieb, Shu, and Tadmor [11, Prop. 6.2] that implicit SSPRK methods
cannot be more than first-order accurate. We show in the forthcoming Part II of
this work that the methodology described in this paper naturally extends to IMEX
methods, i.e., every IMEX method can be made IDP.

The above difficulties with the SSP paradigm come from the requirement that
updates be convex combinations of elementary steps that are IDP. In this paper, we
address this difficulty by developing an alternative technique where the main idea is to
perform at each stage of the IDP-ERK method the following three operations: (i) one
introduces a low-order update based on a forward Euler step (from a previous stage
that is already IDP); (ii) one also computes a high-order update that results from
an incremental rewriting of the ERK update and which can step out of the invariant
domain; (iii) one combines these two updates by applying a nonlinear, conservative
limiting operation to evaluate the final IDP update of the stage. During the revision
of this work, we became aware of the work by Kuzmin et al. [29, sect. 3.3], which
shares the ideas of going beyond the SSP paradigm and applying a limiter after each
stage of the ERK method. However, the central idea of rewriting the ERK method in
incremental form and maximizing the efficiency of the method appears to be original
to the present approach.

The IDP-ERK methods developed herein rely on ERK methods whose radius
of absolute monotonicity can be zero. The crucial point, however, is that another
concept of stability is embedded into IDP-ERK methods by means of the nonlinear
limiting operation. Indeed, this operation, which is anyway needed for high-order
space discretizations, ties the high-order approximate solution to the low-order IDP
update produced by the forward Euler substeps. Just like for SSP methods, high-
order accuracy in time is recovered if the excursions outside the invariant domain
of the unlimited high-order update are small and infrequent; see, e.g., Sanders [36,
Lem. 3.3], Coquel and LeFloch [6, Thm .4.3], Liu and Osher [32, Thm. 2], or Zhang
and Shu [41, Lem. 2.4].

The rest of this paper is organized as follows. We introduce the main ideas behind
IDP-ERK methods in section 2. To pinpoint the key ideas while avoiding distracting
technicalities, we ignore conservation issues in this section. Then, in section 3, we
show how to modify the IDP-ERK methods from section 2 to make them conservative.
Numerical tests illustrating the proposed methodology on various IDP-ERK methods
of order p \in \{ 2, 3, 4, 5\} are reported in section 4. Finally, examples of implementation
of the methods (including possible choices for the space discretization and the limiters)
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INVARIANT-DOMAIN-PRESERVING TIME STEPPING A3369

are briefly outlined in section 5 for completeness.

2. Main ideas on IDP-ERK time stepping. In this section, we briefly pres-
ent the discrete setting for the space and time approximation of the Cauchy problem
(1.1), and we state structural assumptions that are meant to reflect the state of the
art in the literature on how to make the forward Euler scheme IDP. Then we present
the main novel idea on how to devise higher-order IDP-ERK schemes. To avoid dis-
tracting technicalities, we do not discuss conservation here. Conservation is addressed
in the next section.

2.1. Discrete setting. We start the approximation process of (1.1) by applying
the method of lines, i.e., we start with the space approximation. Let I be the total
number of degrees of freedom involved in the space approximation. This leads us
to consider (time-dependent) vectors U(t) \in (\BbbR m)I with components Up,i, where
p \in \{ 1:m\} and i \in \scrV := \{ 1:I\} . For all i \in \scrV , we assume that the (sub)vectors
Ui(t) \in \BbbR m refer to an approximation of the exact solution at some point in D. In
this context, the IDP property means that Ui(t) \in \scrA for all i \in \scrV and all t \in [0, T ].

We consider two space discretization schemes. The low-order scheme is based on
a low-order invertible mass matrix \BbbM L \in \BbbR I\times I and a low-order flux FL : \scrA I \rightarrow (\BbbR m)I .
The high-order scheme is based on a high-order invertible mass matrix \BbbM H \in \BbbR I\times I

and a high-order flux FH : \scrA I \rightarrow (\BbbR m)I . For every matrix \BbbM \in \BbbR I\times I and every vector
V \in (\BbbR m)I with components Vp,i where p \in \{ 1:m\} and i \in \scrV , the components of
the vector \BbbM V \in (\BbbR m)I are defined to be (\BbbM V)p,i =

\sum 
j\in \scrV mijVp,j . Further details

on the mass matrices and fluxes are given in section 3.1. Examples using continuous
finite elements and finite differences are presented in section 5. Thus, one considers
the following two nonlinear systems of ordinary differential equations:

\BbbM L\partial tU
L = FL(UL), UL(0) = U0,(2.1a)

\BbbM H\partial tU
H = FH(UH), UH(0) = U0,(2.1b)

where UL(t) and UH(t) take values in (\BbbR m)I and U0 \in \scrA I is some approximation of
the initial datum.

The rest of the paper consists of constructing IDP time approximations of (2.1b)
using the IDP properties of the forward Euler approximation of (2.1a). Let tn \in [0, T ]
be the current time for all n \in \{ 0:N\} , with the convention that t0 = 0 and tN = T . Let
\tau be the current time step and let tn+1 := tn+\tau . A priori, the time step \tau depends on
the index n, but we omit this dependency to simplify the notation. Let (Un)n\in \{ 0:N\} ,
with Un \in (\BbbR m)I for all n \in \{ 0:N\} , be the sequence of vectors produced by the
time stepping method. Since \scrA is an invariant domain for the continuous system,
it is natural to require that the whole discretization process satisfies the following
invariant-domain property:

(2.2) (U0 \in \scrA I) =\Rightarrow (Un \in \scrA I \forall n \in \{ 1:N\} ).

Moreover, global conservation is expressed by the additional requirement that

(2.3)
\sum 
i\in \scrV 

miU
n
i =

\sum 
i\in \scrV 

miU
0
i \forall n \in \{ 1:N\} ,

where mi denotes the mass associated with the ith dof.
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A3370 ALEXANDRE ERN AND JEAN-LUC GUERMOND

2.2. Structural assumptions and first-order (Euler) IDP-ERK. We first
recall the main steps that are usually invoked in the literature to make the forward
Euler scheme IDP (no originality is claimed here); see, e.g., Boris and Book [3], Harten
[21], Osher and Chakravarthy [33], Zalesak [39]. Starting from the state vector Un,
we consider the following low-order and high-order updates at tn+1:

\BbbM LUL,n+1 := \BbbM LUn + \tau FL(Un),(2.4)

\BbbM HUH,n+1 := \BbbM HUn + \tau FH(Un).(2.5)

The first key assumption we make is that the low-order flux is constructed so that
when starting from a state Un \in \scrA I in the invariant domain, the update UL,n+1

stays in \scrA I under a CFL restriction on the time step. In general, this assumption
cannot be made for the high-order update, i.e., UH,n+1 may step out of the invariant
domain \scrA I for every \tau (this is a loose form of Godunov's theorem). It is, however,
possible to devise a nonlinear limiting procedure that combines the starting state Un,
the low-order flux \Phi L,n := FL(Un), and the high-order flux \Phi H,n := FH(Un) into an
update that belongs to the invariant domain. Hence, our second key assumption is
that there is a limiting operator, \ell \ell \ell , such that

(2.6) Un+1 := \ell \ell \ell (Un,\Phi L,n,\Phi H,n) \in \scrA I .

The nonlinear limiting operator \ell \ell \ell is always devised so that Un+1 is as close as possible
to UH,n+1.

Let us now formalize the above heuristic ideas into the following two structural
assumptions, which we are going to invoke later:

(i) There exists a real number \tau \ast > 0 such that the forward Euler scheme com-
bined with the low-order space discretization is IDP, i.e., for all \tau \in (0, \tau \ast ], we have

(2.7) (V \in \scrA I) =\Rightarrow (V + \tau (\BbbM L) - 1FL(V) \in \scrA I).

(ii) There exists a nonlinear limiting operator \ell \ell \ell : \scrA I \times (\BbbR m)I \times (\BbbR m)I \rightarrow (\BbbR m)I

such that for all (V,\Phi L,\Phi H) \in \scrA I \times (\BbbR m)I \times (\BbbR m)I ,

(2.8) (V + \tau (\BbbM L) - 1\Phi L \in \scrA I) =\Rightarrow (\ell \ell \ell (V,\Phi L,\Phi H) \in \scrA I).

Other details on the action of the nonlinear limiting operator are given in section 3
and in section 5.3; the above formalism is sufficient at this stage for our purpose.

The structural assumptions (2.7)--(2.8) are all that is needed to make the for-
ward Euler scheme IDP. Indeed, if the time step is chosen so that \tau \in (0, \tau \ast ], then
assumption (2.7) implies that UL,n+1 \in \scrA I , and thus assumption (2.8) implies that
Un+1 \in \scrA I . We are now going to show how these two structural assumptions allow
one to make every ERK scheme IDP.

Example 2.1 (assumptions (2.7)--(2.8)). In the context of discontinuous Galerkin
or finite volume approximations of conservation equations, the assumption (2.7) is
achieved by using a piecewise constant approximation (often called dG(0)) with the
upwind numerical flux (or Godunov numerical flux). This can also be done in the
context of continuous finite elements by adding some graph viscosity, as shown in
Guermond and Popov [13, eq. (3.13)]. An abstract unifying framework achieving
(2.7) for continuous finite elements, discontinuous Galerkin, finite volumes, and finite
differences is introduced in Guermond et al. [17, sect. 3.1]. The assumption (2.8) is
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INVARIANT-DOMAIN-PRESERVING TIME STEPPING A3371

realized in the discontinuous Galerkin and finite volume settings by squeezing the high-
order approximation toward the piecewise constant approximation over each mesh cell
(see Sanders [36, Thm. 2.1], Coquel and LeFloch [6, Thm .4.3], Liu and Osher [32,
Thm. 1], and Zhang and Shu [40, Thm. 2.5]). This can also be done for all the above
discrete frameworks by using either the flux transport corrected method by Zalesak
[39, eq. (4)] (for scalar conservation equations, m = 1) or the convex limiting method
by Guermond, Popov, and Tomas [18, sect. 7] (for any m \geq 1).

2.3. High-order IDP-ERK. Let s \geq 2 be a natural number (s = 1 corresponds
to the forward Euler scheme), and consider an s-stage ERK method described by its
Butcher tableau

(2.9)

c1 0
c2 a2,1 0
c3 a3,1 a3,2 0
...

...
. . .

. . .

cs as,1 as,2 \cdot \cdot \cdot as,s - 1 0
b1 b2 \cdot \cdot \cdot bs - 1 bs

Examples are given in section 4.1. Since we consider explicit methods, we have aj,j = 0
for all j \in \{ 1:s\} . Notice that consistency requires that

\sum 
j\in \{ 1:s\} bj = 1. Moreover, we

assume that
\sum 

l\in \{ 1:j\} aj,l = cj for all j \in \{ 1:s\} . This is one of Butcher's simplifying

assumptions (sometimes called row-sum condition), and it implies here that c1 = 0.
Recall that the coefficient cj defines the intermediate time steps tn,j := tn + cj\tau .
In what follows, we assume that cj \geq 0 for all j \in \{ 2:s\} . Moreover, since it is
convenient to rewrite the final stage of the ERK scheme involving the bj 's using the
same formalism as in the previous stages, we conventionally set

(2.10) as+1,k := bk \forall k \in \{ 1:s\} and cs+1 := 1 (so that tn,s+1 = tn+1).

Let Un be the approximation at the time tn, which we assume to be IDP, i.e.,
Un \in \scrA I . Our goal is to construct an approximation at the time tn+1 in such a way
that it is also IDP, i.e., Un+1 \in \scrA I . The technique we propose is based on two key
ideas. The first one is that at each stage l \in \{ 2:s + 1\} of the IDP-ERK method,
one computes a low-order update UL,l and a high-order update UH,l. The low-order
update is IDP (under a CFL restriction on the time step), whereas the high-order
update may not be, i.e., we have UL,l \in \scrA I but UH,l \in (\BbbR m)I . These two updates
are then combined by using the nonlinear limiting operator to deliver an update
Un,l that is again IDP, i.e., Un,l \in \scrA I . However, the limiting process formalized in
assumption (2.8) is operative only if the two updates UL,l and UH,l are constructed
from the same starting state. Thus, the second main and original idea is to rewrite
the lth-stage in incremental form. To do this, we use as starting value at the lth-stage

the IDP state Un,l\prime , where the stage index l\prime < l is defined to be the closest to l in
the sense that the difference cl  - cl\prime is nonnegative (cl \geq cl\prime ) and the smallest. More
precisely, we set

(2.11) l\prime (l) := min\{ k \in \{ 1:l  - 1\} | cl  - ck \geq 0\} \forall l \in \{ 2:s+ 1\} .

Notice that the set \{ k \in \{ 1:l  - 1\} | cl  - ck \geq 0\} is nonempty because it contains the
index 1 (since cl \geq 0 = c1 for all l \in \{ 2:s+ 1\} ). Notice also that the above definition
remains meaningful for so-called confluent ERK methods for which several cl's take

D
ow

nl
oa

de
d 

04
/0

8/
23

 to
 1

65
.9

1.
11

4.
14

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3372 ALEXANDRE ERN AND JEAN-LUC GUERMOND

the same value. If the sequence (cl)l\in \{ 1:s\} is nondecreasing, then l\prime (l) = l  - 1 for all
l \in \{ 2:s + 1\} . The reason for looking for the smallest difference cl  - cl\prime (l) is that we
want to minimize the CFL restriction on the time step (see Lemma 2.2). Although
l\prime depends on l, we will simply write l\prime in what follows to alleviate the notation. For
further reference, we define

(2.12) \Delta cmax := max
2\leq l\leq s+1

\bigl( 
cl  - cl\prime (l)

\bigr) 
.

Notice that \Delta cmax \geq 1
s . Moreover, we have \Delta cmax = 1

s when all the stages are

equidistributed, i.e., cl =
l - 1
s , l \in \{ 1:s+ 1\} .

We now describe the IDP-ERK time stepping scheme. Since c1 = 0, we start
by setting Un,1 := Un. Then, for every stage l \in \{ 2:s + 1\} , we assume that all the
states Un,1, . . . ,Un,l - 1 have been computed and are all in \scrA I (this property will be
established by induction). We first compute the provisional low-order update

\BbbM LUL,l := \BbbM LUn,l\prime + \tau (cl  - cl\prime )F
L(Un,l\prime ).(2.13)

Notice that this update corresponds to a forward Euler step from tn,l
\prime 
to tn,l. In

principle, the high-order update UH,l could be obtained by using the standard ERK
expression which directly follows from the Butcher tableau (and by using our above
convention (2.10) when l = s+ 1):

\BbbM HUH,l = \BbbM HUn + \tau 
\sum 

k\in \{ 1:l - 1\} 

al,kF
H(Un,k).(2.14)

But, to be able to compare UH,l and UL,l and to perform the limiting process, we want

to define UH,l by using Un,l\prime as the starting value. For this purpose, we proceed in
two steps. First, we subtract the equation for the high-order update at the l\prime th-stage
from the equation for the high-order update at the lth-stage. Using that the terms
al\prime ,k are zero for all k \geq l\prime , this gives

\BbbM HUH,l = \BbbM HUH,l\prime + \tau 
\sum 

k\in \{ 1:l - 1\} 

(al,k  - al\prime ,k)F
H(Un,k).(2.15)

Then, we replace the invariant-domain violating state UH,l\prime by the IDP state Un,l\prime in
the above equation. Thus, instead of (2.15), the equation we use for the evaluation
of the provisional high-order update UH,l is

\BbbM HUH,l := \BbbM HUn,l\prime + \tau 
\sum 

k\in \{ 1:l - 1\} 

(al,k  - al\prime ,k)F
H(Un,k).(2.16)

Notice that cl  - cl\prime =
\sum 

k\in \{ 1:l - 1\} (al,k  - al\prime ,k) owing to Butcher's simplifying assump-

tion. Hence, both UL,l and UH,l are approximations of the solution at tn,l. Since both

UL,l and UH,l use the IDP state Un,l\prime as the starting value, it makes sense to employ
the limiting operator and to set

(2.17) Un,l := \ell \ell \ell (Un,l\prime ,\Phi L,l,\Phi H,l)

with the low-order and high-order fluxes defined as follows:

(2.18) \Phi L,l := (cl  - cl\prime )F
L(Un,l\prime ), \Phi H,l :=

\sum 
k\in \{ 1:l - 1\} 

(al,k  - al\prime ,k)F
H(Un,k).

To sum up, the s-stage IDP-ERK method proceeds as described in Algorithm 2.1.
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Algorithm 2.1 s-stage IDP-ERK scheme.

Input: Un \in \scrA I

Set Un,1 := Un

for l = 2, . . . , s+ 1 do

1. \BbbM LUL,l := \BbbM LUn,l\prime + \tau (cl  - cl\prime )F
L(Un,l\prime ) (Low-order update (2.13))

2. \BbbM HUH,l := \BbbM HUn,l\prime + \tau 
\sum 

k\in \{ 1:l - 1\} (al,k  - al\prime ,k)F
H(Un,k) (High-order (2.16))

3. Un,l := \ell \ell \ell (Un,l\prime ,\Phi L,l,\Phi H,l) with fluxes defined in (2.18) (Limiting)
end for
Set Un+1 := Un,s+1

Lemma 2.2 (IDP). Let \tau \ast be the maximal time step from assumption (2.7). As-
sume that \tau \Delta cmax \leq \tau \ast with \Delta cmax defined in (2.12). Assume that Un \in \scrA I and that
Un+1 is computed by Algorithm 2.1. Then, Un+1 \in \scrA I .

Proof. We argue by induction to establish that Un,l \in \scrA I for all l \in \{ 1:s + 1\} .
The definition Un,1 := Un implies that the assumption holds true for l = 1. The

assumptions \tau (cl  - cl\prime ) \leq \tau \ast , the IDP assumption (2.7), the property Un,l\prime \in \scrA I

already established (since l\prime < l by construction), and the definition of the low-order
update (2.13) imply that UL,l \in \scrA I . As a result, the definition (2.17) makes sense, and
Un,l \in \scrA I by construction of the limiting operator. Hence, the induction assumption
holds true for all l \in \{ 1:s+ 1\} . This implies that Un+1 := Un,s+1 \in \scrA I .

We now discuss the efficiency of the above method (see Definition 1.1). Assume
that one wants to reach some fixed time T using an s-stage IDP-ERK method. Then
the number of time steps required to do so is approximately T/\~\tau (recall we defined \~\tau to
be the maximal time step that makes the method IDP). Since each time step requires
estimating s fluxes and performing s limiting operations, the algebraic complexity of
the method scales like sT/\~\tau . Similarly, the complexity of the forward Euler method
to reach the same time scales like T/\tau \ast . Hence, the ratio of the complexity of the
forward Euler method to that of the s-stage method is T

\tau \ast 
\~\tau 
sT = \~\tau 

s\tau \ast =: ceff, thereby
Definition 1.1.

Lemma 2.3 (maximal efficiency). Consider an s-stage IDP-ERK method.
(i) The efficiency ratio of the method is (at least) ceff \geq 1

s\Delta c\mathrm{m}\mathrm{a}\mathrm{x} .
(ii) Maximal efficiency is reached if the stages are equidistributed, and in this case,

we have ceff = 1.

Proof. (i) From Lemma 2.2, we infer that the method is IDP for all t \in (0, \~\tau ] with
\~\tau = \tau \ast 

\Delta c\mathrm{m}\mathrm{a}\mathrm{x} . Hence, the efficiency ratio of the method is (at least) \tau \ast 

\tau \ast s\Delta c\mathrm{m}\mathrm{a}\mathrm{x} = 1
s\Delta c\mathrm{m}\mathrm{a}\mathrm{x} .

(ii) Whenever the time stages are equidistributed, i.e., cl =
l - 1
s for all l \in \{ 1:s+ 1\} ,

we have \Delta cmax = 1
s and the efficiency ratio is 1.

2.4. Comparison with SSP. We now summarize the main points of compari-
son between the present IDP-ERK methods and the more traditional SSPRK para-
digm:
1. Every ERK method with efficiency 1 can be made IDP with the proposed al-

gorithm, whereas the SSP paradigm excludes methods that are maximally effi-
cient. For instance, one has ceff = 1

2 for Heun's second-order method (which is
a popular second-order SSPRK method), ceff = 1

3 for SSPRK(3, 3), ceff = 1
2 for

SSPRK(4, 3), and ceff \approx 0.51 for SSPRK(5, 4). (Here and in what follows, the
acronym SSPRK(s, p) refers to an s-stage, pth-order SSPRK method.) Instead,
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the efficiency ratio of the midpoint rule, which is not SSP, is exactly 1, which is
two times larger than that of Heun's second-order method. The efficiency ratio
of Heun's third-order method, which is not SSP, is exactly 1, which is three times
larger than that of the popular SSPRK(3, 3) method. In section 4.1, we give
examples of optimally efficient ERK methods of order four and five as well.

2. The computational effort deployed in each stage of an IDP-ERK(s, p) method
is the same as that deployed for an SSPRK(s, p) method, i.e., for each method
one needs to compute a low-order update by means of a forward Euler step,
compute a high-order update, and apply the limiting operator. The flexibility of
IDP-ERK methods compared to SSPRK methods is that they do not invoke a
convex combination of limited states. This flexibility is paid with a slight loss
in simplicity in the actual implementation of the IDP-ERK method since an
incremental form of the Butcher tableau is considered.

3. The only accuracy barriers on the present methods are those on the ERK methods
(for instance, one must have s > p for p \geq 5; see Hairer, N{\e}rsett, and Wanner [20,
sect. II.5]), whereas SSPRK methods are reduced to fourth-order if one insists
on never stepping backward in time (see Ruuth and Spiteri [35, Thm. 4.1]).

4. As will be shown in the forthcoming second part of this work, the present frame-
work naturally extends to IMEX methods, which is not the case in the SSP
paradigm since it is established in Gottlieb, Shu, and Tadmor [11, Prop. 6.2] that
implicit SSP Runge--Kutta methods cannot be more than first-order accurate.

3. Conservative IDP-ERK time stepping. In the previous section, we only
focused on the invariant-domain property (2.2). In this section, we show how to
achieve the conservation property (2.3) as well. Being conservative is essential for the
approximation of conservation equations, since (up to an appropriate boundedness
assumption) conservation implies convergence to weak solutions with shocks moving at
the right speed. The material presented in this section is inspired by the flux corrected
transport literature (see Boris and Book [3], Kuzmin and Turek [27], Kuzmin, L\"ohner,
and Turek [28], Zalesak [39]) and from the convex limiting literature (see, e.g., [17],
[18]). Originality is only claimed for the content of sections 3.3 and 3.4.

3.1. Low-order and high-order mass matrices and fluxes. The assump-
tions we are going to make concerning the space discretization are independent of the
time stepping strategy. They are common to every finite volume, finite difference, or
finite element approximation technique for conservation equations.

Recall that \scrV := \{ 1:I\} denotes the collection of the degrees of freedom resulting
from the space discretization. The components of the low-order and high-order fluxes
are denoted FL

i (V) \in \BbbR m and FH
i (V) \in \BbbR m for all i \in \scrV and all V \in \scrA I . We assume

that for every i \in \scrV , there exists a subset \scrI (i) \subsetneq \scrV , which we call stencil at i, so that
for every V \in \scrA I , we have

(3.1) FL
i (V) =

\sum 
j\in \scrI (i)

FL
ij(V), FH

i (V) =
\sum 

j\in \scrI (i)

FH
ij(V),

where FL
ij ,F

H
ij : \scrA I \rightarrow \BbbR m are Lipschitz mappings. We assume that the stencil is

symmetric, i.e., j \in \scrI (i) if and only if i \in \scrI (j). To express that the fluxes result from
the space discretization of a conservation equation, we assume that the following
skew-symmetry property holds true for all V \in \scrA I , all i \in \scrV , and all j \in \scrI (i):

(3.2) FL
ij(V) =  - FL

ji(V), FH
ij(V) =  - FH

ji(V).
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Examples of fluxes are given in section 5.1 for continuous finite elements (see (5.6)--
(5.7)) and in section 5.2 for fourth-order finite differences (see (5.10)--(5.11)).

Concerning the low-order mass matrix, we assume that \BbbM L is diagonal and posi-
tive, i.e.,

(3.3) \BbbM L
ij = mi\delta ij \forall (i, j) \in \scrV 2 and mi > 0 \forall i \in \scrV .

This assumption is justified in [16], where is it is established that it is necessary that
the mass matrix be diagonal and positive for the maximum principle to hold for scalar
conservation equations. Concerning the high-order mass matrix, we assume that \BbbM H

is invertible, symmetric, and sparse with the same sparsity pattern as the fluxes.
Denoting by mij the entries of \BbbM H, we thus assume that

(3.4) (\BbbM HX)i =
\sum 

j\in \scrI (i)

mijXj \forall X \in \BbbR I and mij = mji \forall i \in \scrV ,\forall j \in \scrI (i).

We also assume that \BbbM L and \BbbM H are related by the following identity:

(3.5) mi =
\sum 

j\in \scrI (i)

mij \forall i \in \scrV .

In the finite element terminology, this means that \BbbM L is the lumped version of
\BbbM H. This identity also means the \BbbM L and \BbbM H carry the same mass, i.e., we have\sum 

i\in \scrV miVi =
\sum 

i\in \scrV 
\sum 

j\in \scrI (i) mijVj for all V \in (\BbbR m)I .

Remark 3.1 (low-order and high-order stencil). For simplicity, we assumed in
(3.1) that the low-order and the high-order fluxes can be decomposed over the same
stencil. An example showing that this is indeed possible with finite differences us-
ing three-point and five-point stencils is discussed in section 5.2. In the finite vol-
ume/difference context, this is usually done by using multivariate numerical flux
functions; see, e.g., Harten [21, eq. (1.4b)], Harten, Lax, and van Leer [23, eq. (1.10)],
Osher and Chakravarthy [33, eq. 2.3]. We also refer the reader to Abgrall et al. [2] and
Pazner [34], where the stencil mismatch is addressed in the finite element context.

3.2. Conservative limiting operator for forward Euler step. We present
in this section and the next one a possible realization of the limiting operator in-
troduced in section 2.8 that is conservative. We first explain the method using the
forward Euler method. The method is explained in full generality in section 3.3.

We rewrite (2.4)--(2.5) in component form as follows: For all i \in \scrV ,

miU
L,n+1
i = miU

n
i + \tau 

\sum 
j\in \scrI (i)

FL
ij(U

n),

miU
H,n+1
i = miU

n
i +

\sum 
j\in \scrI (i)

(mij  - mi\delta ij)(U
n
j  - UH,n+1

j ) + \tau 
\sum 

j\in \scrI (i)

FH
ij(U

n).

We subtract the first equation from the second one and obtain

(3.6) UH,n+1
i = UL,n+1

i +m - 1
i \tau 

\sum 
j\in \scrI (i)

An
ij

with

(3.7) An
ij := FH

ij(U
n) - FL

ij(U
n) +

mij  - mi\delta ij
\tau 

(Un
j  - UH,n+1

j  - Un
i +UH,n+1

i ),
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where we used
\sum 

j\in \scrI (i)(mij  - mi\delta ij)(U
n
i + UH,n+1

i ) = 0 (this is a consequence of

(3.5)). The purpose of this manipulation is to obtain the following skew-symmetry
property:

(3.8) An
ij =  - An

ji, \forall i \in \scrV \forall j \in \scrI (i).

The \BbbR m-valued terms \bfitA n
ij are sometimes called antidiffusion coefficients in the flux

corrected transport literature. We are now ready to formalize the conservative limiting
operator.

Definition 3.2 (conservative limiting operator). Let \frakL be the collection of the
symmetric matrices in \BbbR I\times I with the same sparsity pattern as \BbbM H and with coefficients
in [0, 1]. Let \frakM be the collection of the skew-symmetric matrices in (\BbbR m)I\times I with the
same block-sparsity pattern as \BbbM H. We call a conservative limiter any operator \ell from
\scrA I\times \frakM to \frakL , so that for all V \in \scrA I (with coefficients (Vi)i\in \scrV ) and all A \in \frakM (with
coefficients (Aij)i\in \scrV ,j\in \scrI (i)), the matrix \ell (V,A) \in \frakL (with coefficients (\ell ij)i\in \scrV ,j\in \scrI (i))
is such that

(3.9) Vi +m - 1
i \tau 

\sum 
j\in \scrI (i)

\ell ijAij \in \scrA \forall i \in \scrV .

For brevity, the state (Vi +m - 1
i \tau 

\sum 
j\in \scrI (i) \ell ijAij)i\in \scrV \in \scrA I is denoted \ell \ell \ell cons(V,A).

Notice that the existence of conservative limiters is always guaranteed since the
trivial limiter \ell \ell \ell cons(V,A) = V (i.e., \ell ij = 0 for all i \in \scrV and all j \in \scrI (i)) is always
possible because V \in \scrA I . Of course, the trivial limiter is inefficient. The goal of
limiters is to construct the limiting coefficients \ell ij as close to 1 as possible. Examples
of conservative limiting techniques based on the above formalism are given in section
5.3.

With the help of the above definition, we can now define the conservative limited
update of the forward Euler step as follows:

(3.10) Un+1 := \ell \ell \ell cons(UL,n+1,An)

with An defined in (3.7). The definition (3.10) can be recast into the following form:

(3.11) Un+1
i = Un

i +m - 1
i \tau 

\sum 
i\in \scrV 

\ell ijF
H
ij(U

n) + (1 - \ell ij)F
L
ij(U

n)

+m - 1
i

\sum 
i\in \scrV 

\ell ij(mij  - mi\delta ij)(U
n
j  - UH,n+1

j  - Un
i +UH,n+1

i ).

This expression shows that Un+1 = UL,n+1 if all the limiter coefficients are equal
to 0 and that Un+1 = UH,n+1 if all the limiter coefficients are equal to 1. In what
follows, we say that two generic state vectors V,W \in (\BbbR m)I carry the same mass if\sum 

i\in \scrV miVi =
\sum 

i\in \scrV miWi.

Lemma 3.3 (IDP and conservation). The following assertions hold true:
(i) Let \tau \ast be the maximal time step from assumption (2.7). For all \tau \in (0, \tau \ast ] and

all Un \in \scrA I , we have Un+1 \in \scrA I .
(ii) The states Un, UL,n+1, UH,n+1, and Un+1 all carry the same mass.

Proof. (i) Owing to the assumptions \tau \leq \tau \ast and (2.7), we conclude that UL,n+1 \in 
\scrA I . As a result, the definition (3.10) makes sense, and the construction of the limiting
operator implies that Un+1 \in \scrA I .
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(ii) The definition (3.1), the skew-symmetry assumption (3.2), and the prop-

erty (3.8) imply that
\sum 

i\in \scrV miU
L,n+1
i =

\sum 
i\in \scrV miU

n
i =

\sum 
i\in \scrV miU

H,n+1
i . Recalling

that the definition (3.10) is equivalent to

Un+1
i := UL,n+1

i +m - 1
i \tau 

\sum 
j\in \scrI (i)

\ell ijA
n
ij \forall i \in \scrV ,

the skew-symmetry property \ell ijA
n
ij =  - \ell jiA

n
ij implies that Un+1 and UL,n+1 carry

the same mass, i.e.,
\sum 

i\in \scrV miU
n+1
i =

\sum 
i\in \scrV miU

L,n+1
i .

3.3. Mass conservative limiting operator for IDP-ERK. We now rewrite
the s-stage IDP-ERK scheme presented in Algorithm 2.1 using the above conservative
setting. Recall that we assume Un \in \scrA I and that we set Un,1 := Un. Then, at the
stage l \in \{ 2:s + 1\} of the IDP-ERK scheme, we compute the low-order and the
high-order updates by using the following definitions:

\BbbM LUL,l = \BbbM LUn,l\prime + \tau (cl  - cl\prime )F
L(Un,l\prime ),(3.12)

\BbbM HUH,l = \BbbM HUn,l\prime + \tau 
\sum 

k\in \{ 1:l - 1\} 

(al,k  - al\prime ,k)F
H(Un,k).(3.13)

By proceeding as in (3.7), we now define the following skew-symmetric fluxes:

(3.14) An,l
ij :=

\sum 
k\in \{ 1:l - 1\} 

(al,k  - al\prime ,k)F
H
ij(U

n,k) - (cl  - cl\prime )F
L
ij(U

n,l\prime )

+
mij  - mi\delta ij

\tau 
(Un,l\prime 

j  - UH,l
j  - Un,l\prime 

i +UH,l
i ).

Given some conservative limiting operator \ell \ell \ell cons satisfying the requirements of Defini-
tion 3.2, we then set

(3.15) Un,l := \ell \ell \ell cons(UL,l,An,l) \forall l \in \{ 2:s+ 1\} .

Lemma 3.4 (IDP and conservation). Let \Delta cmax be defined in (2.12) (recall that
1
s \leq \Delta cmax \leq 1). Then the following holds true.
(i) Let \tau \ast be the maximal time step from assumption (2.7). Assume that Un \in \scrA I

and \tau \in (0, \tau \ast /\Delta cmax]. Let Un+1 be computed as above. Then, Un+1 \in \scrA I .
(ii) The states Un, \{ Un,l\} l\in \{ 1:s\} , and Un+1 all carry the same mass.

Proof. The proof combines the arguments of the proofs of Lemmas 2.2 and 3.3.

3.4. High-order viscosity. In the context of nonlinear conservation equations,
the low-order and the high-order fluxes always contain some artificial viscosity. The
high-order update proposed in (3.13) may lose the benefit of the artificial viscosity
because the sign of al,k  - al\prime ,k is arbitrary. We now propose a variation of the algo-
rithm (3.12)--(3.15) that addresses this issue. We leave (3.12) unchanged, but we are
more precise in our definition of the high-order flux and rewrite (3.13) as follows:

\BbbM HUH,l = \BbbM HUn,l\prime +
\sum 

k\in \{ 1:l - 1\} 

\tau (al,k  - al\prime ,k)F
H(Un,k) + \tau (cl  - cl\prime )D

H(Un,l\prime )(3.16)

with the artificial viscosity operator DH defined by

(3.17) DH
i (U

n,l\prime ) :=
\sum 

j\in \scrI (i)

dH,n
ij (Un,l\prime 

j  - Un,l\prime 

i ) \forall i \in \scrV .
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Here, dH,n
ij \geq 0 is some high-order viscosity coefficient satisfying dH,n

ij = dH,n
ji . Letting

(\scrV , \scrE ) be the graph such that (i, j) \in \scrE if j \in \scrI (i) and i \in \scrI (j), the operator DH is a
graph Laplacian acting (\scrV , \scrE ).

4. Numerical illustrations. In this section, we illustrate our methodology by
giving examples of ERK methods and presenting numerical results showing that all
these methods can be successfully applied to approximate the nonlinear conservation
equation (1.1) even if they are not SSP. The tests are performed with continuous
finite elements and finite differences for the space approximation. We use the notation
RK(s, p; ceff), where s indicates the number of stages, p the order, and ceff the efficiency
ratio (see Definition 1.1 and recall that a method with optimally equidistributed
substeps (i.e., with increment 1

s ) reaches the best possible value ceff = 1). The SSP
methods are identified with the superindex \ddagger instead of the prefix ``SSP"" to save
horizontal space in the tables.

4.1. Examples of ERK methods. Three examples of ERK methods with op-
timally equidistributed substeps are as follows:

(4.1)

0 0
1
2

1
2 0

1 0 1

RK(2, 2; 1)

0 0
1
3

1
3 0

2
3 0 2

3 0

1 1
4 0 3

4

RK(3, 3; 1)

0 0
1
4

1
4 0

1
2 0 1

2 0
3
4 0 1

4
1
2 0

1 0 2
3  - 1

3
2
3

RK(4, 3; 1)

The method in the leftmost tableau in (4.1) is the midpoint rule. It is second-order
accurate. The second and third methods in (4.1) are both third-order accurate. The
second method in (4.1) is often called Heun's third-order method. The third method
in (4.1) satisfies all the necessary and sufficient conditions to be fourth-order accurate
on linear problems (and it is the only one with optimally equidistributed substeps
to do so), but it is only third-order accurate on nonlinear problems. This proves
in passing that there does not exist any four-stage ERK method that is genuinely
fourth-order and has optimally equidistributed substeps.

Two examples of fourth-order accurate ERK methods are as follows:

(4.2)

0 0
1
2

1
2 0

1
2 0 1

2 0

1 0 0 1 0

1 1
6

2
6

2
6

1
6

RK(4, 4; 1
2 )

0 0
1
3

1
3 0

2
3  - 1

3 1 0

1 1  - 1 1 0

1 1
8

3
8

3
8

1
8

RK(4, 4; 3
4 )

The first method in (4.2) is a popular fourth-order accurate ERK method, but its
efficiency ratio is rather small (only 1

2 ). The second method in (4.2) is often called
the 3

8 rule. It has equidistributed substeps, but the distribution is slightly suboptimal
(the increment is 1

3 instead of 1
4 ) so that the efficiency ratio is 3

4 . We are also going to
consider two other fourth-order accurate methods, called RK(5, 4; 1) and RK(6, 4; 1),
which will be discussed in detail in the forthcoming second part of this work. Their
explicit tableaux are constructed to be compatible with an implicit Butcher tableau
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INVARIANT-DOMAIN-PRESERVING TIME STEPPING A3379

to be used in an IMEX method. The method RK(6, 4; 1) is actually constructed to
be fifth-order accurate on linear problems.

One six-stage, fifth-order accurate ERK method is the RK(6, 5; 2
3 ) method pro-

posed by Lawson [30, Tab. 1] (using ideas from Butcher [4]). Its Butcher tableau is
as follows:

(4.3)

0 0
1
4

1
4 0

1
4

1
8

1
8 0

1
2 0  - 1

2 1 0
3
4

3
16 0 0 9

16 0

1  - 3
7

2
7

12
7  - 12

7
8
7 0

1 7
90 0 32

90
12
90

32
90

7
90

The efficiency ratio of this method is 2
3 . This method belongs to a general class

described in Hairer, N{\e}rsett, and Wanner [20, p. 176], which requires that c6 = 1.
This constraint limits the efficiency ratio to be at most 5

6 .
To achieve optimality, we instead devise a seven-step, fifth-order method with

the optimal choice cl =
l - 1
7 for all l \in \{ 1:7\} , which we call RK(7, 5; 1). There are

28 unknowns (the 21 entries of the strictly lower triangular matrix (aij) of order 7
and the 7 bj 's). We enforce Butcher's simplifying conditions on the row sums of the
matrix (aij) (6 conditions) and the (linear and nonlinear) order conditions up to 5
(17 conditions). We also promote stability along the imaginary axis by requiring that
the amplification function R(z) satisfies | R(i\epsilon )| = 1 + \rho 6\epsilon 

6 +\scrO (\epsilon 8) with \rho 6 =  - 0.009
(1 condition). The resulting underdetermined system of nonlinear equations is solved
using julia with 10 - 15 tolerance. The Butcher tableau is as follows:

(4.4)
0 0
1
7 0.1428571428571428 0
2
7 0.0107112392440216 0.2750030464702641 0
3
7 0.4812641640977338  - 0.9634955610240432 0.9108028254977381 0
4
7 0.3718168921589701  - 0.5615016072648120 0.5590150320681445 0.2020982544662687
5
7 0.2210152091353413 0.3526985345185138  - 0.8940286416537777 0.8097519357352928
6
7 0.2038005573304709  - 0.4759394836772968 1.0938423462712870  - 0.2853403360392873

1 0.0979996468518433  - 0.0044680013474903 0.3592897484042552 0.0225280828210172
. . .

5
7 0.2248486765503442 0
6
7  - 0.1249739792585496 0.4457537525162331 0

1 0.2680292384753375  - 0.1064595934043553 0.3630808781993925

A contour plot of the amplification function and a line plot of this function along the
imaginary axis is reported in Figure 4.1. We have | \Re (is)| \leq 1 for s \in [ - 1.562, 1.562].

We are also going to test standard SSPRK techniques of second-, third-, and
fourth-order. Using the present notation, we refer to these methods as RK\ddagger (2, 2; 1

2 ),
RK\ddagger (3, 3; 1

3 ), and RK\ddagger (5, 4; 1
2 ) (the efficiency ratio of the fourth-order method is ac-

tually 0.51, but we write 1
2 to save some horizontal space in the tables). The Butcher

tableau of the second-order and third-order methods is as follows:
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A3380 ALEXANDRE ERN AND JEAN-LUC GUERMOND

Fig. 4.1. Amplification function RK(7, 5; 1). Left: contour plot (truncated at the value 1) in
the domain \{ z \in \BbbC | \Re (z) \in [ - 3, 0.5],\Im (z) \in [0, 3]\} . Right: line plot along the imaginary axis.

(4.5)

0 0

1 1 0
1
2

1
2

RK\ddagger (2, 2; 1
2 )

0 0

1 1 0
1
2

1
4

1
4 0

1
6

1
6

2
3

RK\ddagger (3, 3; 1
3 )

RK\ddagger (2, 2; 1
2 ) is known as Heun's second-order method, and RK\ddagger (3, 3; 1

3 ) is sometimes
called Fehlberg's method [9]. The Butcher tableau of RK\ddagger (5, 4; 1

2 ) can be found
in Kraaijevanger [26, p. 522].

Finally, we observe that for all the above ERK methods, we have l\prime (l) = l - 1 for
all l \in \{ 2:s+1\} , except for RK\ddagger (3, 3; 1

3 ) and RK\ddagger (5, 4; 1
2 ) for which the values for l\prime (l)

are (1, 1, 2) for l \in \{ 2:4\} and (1, 2, 2, 3, 5) for l \in \{ 2:6\} , respectively.

4.2. Methodology for the numerical tests. For all the tests reported here,
the limiting is performed with two iterations of the convex limiting technique in-
troduced in [17], [18]. Since we illustrate the method only for scalar conservation
equations (for brevity and simplicity), the relaxed bounds are not allowed to exceed
the minimum and the maximum values of the initial data. Hence, the global mini-
mum principle and the global maximum principle are always strictly enforced up to
machine accuracy. Relaxed local bounds are also enforced; see Remark 5.2.

In all the tests, the time step is computed by using the expression

(4.6) \tau := CFL\times s\times \tau \ast ,

where CFL > 0 is a fixed parameter, s the number of stages of the ERK method, and
\tau \ast the maximum Euler time step. Notice that \tau \ast a priori depends on n, but we omit
this dependence to simplify the notation; \tau \ast is recomputed at the beginning of each
time step tn. Given some final time T and some mesh \scrT h determining the value of \tau \ast ,
the choice (4.6) for \tau guarantees that all the ERK methods described in section 4.1
perform exactly the same number of flux evaluations to reach the final time T , i.e.,
the complexity of all the algorithms is the same. Since

\Delta cmax\tau = CFL\times \Delta cmax\times s\times \tau \ast ,

and all the methods are IDP if \Delta cmax\tau \leq \tau \ast , we conclude that all the methods are
IDP provided CFL \in (0, 1

\Delta c\mathrm{m}\mathrm{a}\mathrm{x}s ] (recall from Lemma 2.3 that 1
\Delta c\mathrm{m}\mathrm{a}\mathrm{x}s \leq 1).
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Table 4.1
Linear transport, 1D finite differences, second-order methods, error in the L\infty -norm.

CFL = 0.2 CFL = 0.25

I RK(2, 2; 1) Rate RK\ddagger (2, 2; 1
2
) Rate RK(2, 2; 1) Rate RK\ddagger (2, 2; 1

2
) Rate

50 4.72E-02 -- 1.23E-01 -- 4.91E-02 -- 1.30E-01 --

100 2.81E-03 4.07 1.50E-02 3.03 4.51E-03 3.44 4.32E-02 1.60

200 1.16E-03 1.28 1.24E-03 3.60 2.01E-03 1.17 2.14E-03 4.34

400 3.38E-04 1.78 3.47E-04 1.84 5.41E-04 1.89 5.67E-04 1.91

800 8.79E-05 1.94 9.28E-05 1.90 1.38E-04 1.97 1.48E-04 1.94

1600 2.22E-05 1.98 2.33E-05 1.99 3.47E-05 1.99 3.78E-05 1.97

3200 5.58E-06 1.99 5.92E-06 1.98 8.73E-06 1.99 5.36E-05 -.50

Table 4.2
Linear transport, 1D finite differences, third-order methods, error in the L\infty -norm.

CFL = 0.05 CFL = 0.25

I RK(3,3;1) Rate RK\ddagger (3,3; 1
3
) Rate RK(4,3;1) Rate RK(3,3;1) Rate RK\ddagger (3,3; 1

3
) Rate RK(4,3;1) Rate

50 5.15E-02 -- 4.76E-02 -- 5.15E-02 -- 5.48E-02 -- 1.55E-01 -- 6.08E-02 --

100 5.41E-03 3.25 5.41E-03 3.14 5.41E-03 3.25 5.15E-03 3.41 6.12E-02 1.35 6.15E-03 3.31

200 3.79E-04 3.83 3.79E-04 3.83 3.79E-04 3.83 3.92E-04 3.72 1.07E-03 5.84 3.83E-04 4.01

400 2.27E-05 4.06 2.27E-05 4.06 2.27E-05 4.06 2.89E-05 3.76 2.18E-04 2.29 2.30E-05 4.06

800 1.58E-06 3.85 1.58E-06 3.85 1.58E-06 3.85 3.20E-06 3.18 6.41E-05 1.77 1.59E-06 3.85

1600 9.12E-08 4.12 1.22E-07 3.69 8.13E-08 4.28 8.23E-07 1.96 1.83E-05 1.81 8.25E-08 4.27

3200 1.52E-08 2.58 6.84E-08 0.84 5.31E-09 3.94 2.40E-07 1.78 5.39E-06 1.76 5.39E-09 3.94

4.3. Convergence tests with smooth solutions. We illustrate the method
by solving the following linear transport equation in one and two space dimensions:

(4.7) \partial tu+\nabla \cdot (\bfitbeta u) = 0.

All the errors reported in this section are evaluated at the final time and are relative;
for instance, for the L\infty -norm, we report \| u(T ) - uh(T )\| L\infty (D)/\| u(T )\| L\infty (D).

4.3.1. Fourth-order finite differences in 1D. We consider the problem (4.7)
in the one-dimensional (1D) domain D := (0, 1) with \bfitbeta := 1 and the initial data

u0(x) := (4 (x - x0)(x1 - x)
(x1 - x0)2

)6 if x \in (x0, x1), and u0(x) := 0 otherwise, with x0 := 0.1

and x1 := 0.4. We enforce periodic boundary conditions. The tests are realized up to
T := 1 with fourth-order finite differences on uniform meshes (see section 5.2). The
space approximation is formally fourth-order accurate. In this section, we only report
L\infty -errors, which are more challenging than L1-errors; recall in particular that the
maximum principle is strictly enforced up to machine precision in all cases. We have
verified that all the methods achieve the expected convergence order in the L1-norm
with CFL of the order of 0.5 (results not shown for brevity).

We show in Table 4.1 the relative error in the L\infty -norm for the second-order
methods RK(2, 2; 1) and RK\ddagger (2, 2; 1

2 ). Both methods perform as expected at CFL =
0.2. Instead, there is a slight difference of behavior at CFL = 0.25: RK\ddagger (2, 2; 1

2 ) is
no longer in the asymptotic convergence regime on the finest mesh (orange column),
whereas RK(2, 2; 1) still behaves properly (green column).

We show in Table 4.2 the relative error in the L\infty -norm for the third-order meth-
ods RK(3, 3; 1), RK\ddagger (3, 3; 1

3 ), and RK(4, 3; 1). All the methods deliver (at least) third-
order accuracy for CFL = 0.05. The performance of RK\ddagger (3, 3; 1

3 ) somewhat degrades
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Table 4.3
Linear transport, 1D finite differences, fourth-order methods, error in the L\infty -norm.

CFL = 0.05 CFL = 0.2

I RK(4,4; 1
2
) Rate RK\ddagger (5,4; 1

2
) Rate RK(5,4;1) Rate RK(4,4; 1

2
) Rate RK\ddagger (5,4; 1

2
) Rate RK(5,4;1) Rate

50 4.32E-02 -- 5.37E-02 -- 5.95E-02 -- 1.26E-01 -- 5.63E-02 -- 5.55E-02 --

100 5.41E-03 3.00 5.09E-03 3.40 5.09E-03 3.54 1.65E-02 2.93 7.82E-03 2.85 5.72E-03 3.28

200 3.79E-04 3.84 3.04E-04 4.07 3.04E-04 4.07 4.10E-04 5.33 3.80E-04 4.36 3.82E-04 3.90

400 2.27E-05 4.06 1.91E-05 3.99 1.91E-05 3.99 5.02E-05 3.03 2.27E-05 4.06 2.29E-05 4.06

800 1.58E-06 3.85 1.19E-06 4.00 1.19E-06 4.00 1.10E-05 2.19 1.79E-06 3.67 1.60E-06 3.84

1600 8.13E-08 4.28 7.45E-08 4.00 7.45E-08 4.00 2.70E-06 2.03 3.66E-07 2.29 8.26E-08 4.28

3200 5.36E-09 3.92 4.65E-09 4.00 4.65E-09 4.00 7.69E-07 1.81 9.29E-08 1.98 5.38E-09 3.94

Table 4.4
Linear transport, 1D finite differences, fifth-order methods, error in the L\infty -norm.

CFL = 0.02 CFL = 0.025

I RK(6,5; 1
3
) Rate RK(7,5;1) Rate RK(6,5; 2

3
) Rate RK(7,5;1) Rate

50 5.19E-02 -- 5.19E-02 -- 5.19E-02 -- 5.19E-02 --

100 5.41E-03 3.26 5.41E-03 3.26 5.41E-03 3.26 5.41E-03 3.26

200 3.79E-04 3.83 3.79E-04 3.83 3.79E-04 3.84 3.79E-04 3.83

400 2.27E-05 4.06 2.27E-05 4.06 2.27E-05 4.06 2.27E-05 4.06

800 1.58E-06 3.85 1.58E-06 3.85 1.58E-06 3.85 1.58E-06 3.85

1600 8.48E-08 4.22 8.13E-08 4.28 8.71E-08 4.18 8.13E-08 4.28

3200 7.10E-09 3.58 5.92E-09 3.78 1.16E-08 2.91 5.56E-09 3.87

as the mesh size is refined though. Moreover, the performance significantly degrades
at CFL = 0.25 (orange column). The performance of RK(3, 3; 1) also degrades, but
far less. The optimal RK(4, 3; 1) method behaves extremely well at CFL = 0.25
(green column). It delivers fourth-order accuracy. This is coherent since, although
the method is only third-order accurate on nonlinear problems, it satisfies all the
necessary and sufficient conditions to be fourth-order accurate on linear problems.

We show in Table 4.3 the relative error in the L\infty -norm for the fourth-order
methods RK(4, 4; 1

2 ), RK
\ddagger (5, 4; 1

2 ), and RK(5, 4; 1). The three methods behave opti-
mally at CFL = 0.05, whereas this is the case only for RK(5, 4; 1) at CFL = 0.2 at
least on the finer meshes. Additional tests (not shown) indicate that RK(4, 4; 1

2 ) still
behaves optimally at CFL = 0.125, which is no longer the case for RK\ddagger (5, 4; 1

2 ).
This test shows that the new method RK(5, 4, 1) outperforms the SSP method
RK\ddagger (5, 4; 1

2 ).
We show in Table 4.4 the relative error in the L\infty -norm for the fifth-order meth-

ods RK(6, 5; 2
3 ) and RK(7, 5; 1). We observe that the two methods reach their asymp-

totic convergence range for CFL = 0.02 (recall that the space discretization is only
fourth-order accurate). At the slightly larger value CFL = 0.025, RK(7, 5; 1) performs
slightly better than RK(6, 5; 2

3 ) on the finest mesh.

4.3.2. Second-order finite elements. We now solve the problem (4.7) in the
two-dimensional (2D) domain D := (0, 1)2 with \bfitbeta := (0.9, 1)T and the initial data

u0(\bfitx ) := (4 (x - x0)(x1 - x)
(x1 - x0)2

)4\times (4 (y - y0)(y1 - y)
(y1 - y0)2

)4 if x \in (x0, x1) and y \in (y0, y1), and

u0(x) := 0 otherwise, with x0 := y0 := 0.1 and x1 := y1 := 0.4. The simulations are
performed up to T := 0.5. We use continuous \BbbP 1 finite elements on uniform meshes
composed of triangles. (Notice that the advection field is on purpose chosen not to

D
ow

nl
oa

de
d 

04
/0

8/
23

 to
 1

65
.9

1.
11

4.
14

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVARIANT-DOMAIN-PRESERVING TIME STEPPING A3383

Table 4.5
Linear transport. 2D \BbbP 1 finite elements on uniform meshes. Relative error in the L1-norm at

T = 0.5, using CFL = 0.4 for the second-order methods, CFL = 0.7 for the third-order methods,
CFL = 0.5 for the fourth-order methods, and CFL = 0.4 for the fifth-order methods.

I RK(2,1;1) Rate RK\ddagger (2,2; 1
2
) Rate

50 2.96E-02 -- 3.91E-02 --

100 7.36E-03 2.01 7.47E-03 2.39

200 1.94E-03 1.93 1.94E-03 1.95

400 4.89E-04 1.99 4.89E-04 1.99

800 1.23E-04 1.99 1.26E-04 1.95

I RK(3,3;1) Rate RK\ddagger (3,3; 1
3
) Rate RK(4,3;1) Rate

50 2.80E-02 -- 6.48E-02 -- 2.40E-02 --

100 3.31E-03 3.08 6.81E-03 3.25 1.48E-03 4.02

200 4.11E-04 3.01 4.23E-04 4.01 8.48E-05 4.13

400 5.15E-05 3.00 5.33E-05 2.99 5.37E-06 3.98

800 6.42E-06 3.00 6.63E-06 3.01 3.57E-07 3.91

I RK(4,4; 1
2
) Rate RK(4,4; 3

4
) Rate RK\ddagger (5,4; 1

2
) Rate RK(5,4;1) Rate RK(6,4;1) Rate

50 3.79E-02 -- 6.25E-02 -- 2.32E-02 -- 2.20E-02 -- 3.32E-02 --

100 1.68E-03 4.49 5.85E-03 3.42 1.30E-03 4.16 1.27E-03 4.12 1.57E-03 4.40

200 6.45E-05 4.71 8.28E-05 6.14 6.43E-05 4.33 7.49E-05 4.08 5.05E-05 4.95

400 3.93E-06 4.04 7.21E-06 3.52 4.56E-06 3.82 4.92E-06 3.93 3.33E-06 3.92

800 2.82E-07 3.80 6.73E-07 3.42 3.59E-07 3.67 3.53E-07 3.80 2.33E-07 3.84

I RK(6,5; 2
3
) Rate RK(7,5;1) Rate

50 1.87E-02 -- 1.66E-02 --

100 1.01E-03 4.21 9.26E-04 4.17

200 5.07E-05 4.31 4.95E-05 4.23

400 3.27E-06 3.95 3.01E-06 4.04

800 2.37E-07 3.79 1.92E-07 3.97

be tangential to any mesh edge to avoid any extraneous superconvergence effects.)
The Lagrange shape functions are invariant by central symmetry in the support of
every nodal basis function; this guarantees that the method is superconvergent up
to third-order at the mesh nodes (see Guermond and Pasquetti [12, Prop. 2.1] and
Thompson [38, Prop. 4.4]).

We show in Table 4.5 the relative errors in the L1-norm for all the RK methods
considered herein. All the methods deliver optimal convergence rates for CFL numbers
in the range [0.4, 0.7].

We now consider the more challenging error measure based on the L\infty -norm. The
relative errors are shown in Table 4.6 with CFL = 0.2 for all the methods. Almost
all the methods deliver their respective theoretical rate of convergence at this CFL
number. We observe again (as expected) that the third-order method RK(4, 3; 1)
delivers fourth-order. We also observe that RK\ddagger (3, 3; 1

3 ) behaves poorly at this CFL
number compared to the two other third-order IDP-ERK methods. The fourth-order
(respectively, fifth-order) method that behaves the best is RK(5, 4; 1) (respectively,
RK(7, 5; 1)). We observe that the performance of all the fourth- and fifth-order meth-
ods slightly deteriorates on the finer meshes at this CFL number. Overall, RK(4, 3; 1)
is the method that performs the best in the L\infty -norm at this CFL number.
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Table 4.6
Linear transport. 2D \BbbP 1 finite elements on uniform meshes. T = 0.5 at CFL = 0.2. Relative

error in the L\infty -norm for all the methods.

I RK(2,1;1) Rate RK\ddagger (2,2; 1
2
) Rate

50 1.81E-02 -- 2.20E-02 --

100 1.76E-03 3.37 1.84E-03 3.58

200 3.20E-04 2.46 3.20E-04 2.52

400 7.90E-05 2.02 7.90E-05 2.02

800 1.99E-05 1.99 1.99E-05 1.99

I RK(3,3;1) Rate RK\ddagger (3,3; 1
3
) Rate RK(4,3;1) Rate

50 2.28E-02 -- 3.87E-02 -- 2.30E-02 --

100 1.13E-03 4.33 2.64E-03 3.87 1.14E-03 4.34

200 4.54E-05 4.64 6.85E-05 5.27 4.81E-05 4.56

400 2.49E-06 4.19 2.01E-05 1.77 2.10E-06 4.52

800 4.09E-07 2.60 5.29E-06 1.93 1.09E-07 4.27

I RK(4,4; 1
2
) Rate RK(4,4; 3

4
) Rate RK\ddagger (5,4; 1

2
) Rate RK(5,4;1) Rate RK(6,4;1) Rate

50 2.68E-02 -- 2.39E-02 -- 2.43E-02 -- 2.30E-02 -- 2.32E-02 --

100 1.55E-03 4.11 1.17E-03 4.35 1.33E-03 4.19 1.14E-03 4.33 1.13E-03 4.36

200 4.98E-05 4.96 5.51E-05 4.41 5.18E-05 4.68 4.80E-05 4.57 4.70E-05 4.59

400 2.61E-06 4.25 1.37E-05 2.01 2.45E-06 4.40 2.30E-06 4.39 2.74E-06 4.10

800 4.37E-07 2.58 3.56E-06 1.94 2.78E-07 3.14 1.77E-07 3.70 7.04E-07 1.96

I RK(6,5; 2
3
) Rate RK(7,5;1) Rate

50 2.41E-02 -- 2.29E-02 --

100 1.14E-03 4.40 1.14E-03 4.34

200 4.65E-05 4.62 4.73E-05 4.59

400 3.37E-06 3.78 2.51E-06 4.24

800 9.76E-07 1.79 5.31E-07 2.24

4.4. Numerical tests with nonsmooth solutions. We now consider test
cases with nonsmooth solutions.

4.4.1. Linear transport. Here, we solve a standard linear transport problem
with nonsmooth initial data (see Leveque [31], Zalesak [39]): \partial tu + \nabla \cdot (\bfitbeta u) = 0 in
D := \{ \bfitx \in \BbbR 2 | \| \bfitx \| \ell 2 < 1\} with \bfitbeta (\bfitx ) := 2\pi ( - x2, x1)

T. The initial data is

(4.8) u0(\bfitx ) :=

\left\{         
1 if \| \bfitx  - \bfitx d\| \ell 2 \leq r0 and (| x1| \geq 0.05 or x2 \geq 0.7),

1 - \| \bfitx  - \bfitx c\| \ell 2

r0
if \| \bfitx  - \bfitx c\| \ell 2 \leq r0,

g(\| \bfitx  - \bfitx h\| \ell 2) if \| \bfitx  - \bfitx h\| \ell 2 \leq r0,

0 otherwise,

where r0 := 0.3, g(r) := 1
4

\bigl[ 
1 + cos

\bigl( 
\pi r

r0

\bigr) \bigr] 
, \bfitx d := (0, 0.5), \bfitx c := (0, - 0.5), \bfitx h :=

( - 0.5, 0). The graph of u0 consists of three solids: a slotted cylinder of height 1, a
smooth hump of height 1

2 , and a cone of height 1.
The simulations are performed up to T := 1 using continuous \BbbP 1 finite elements

on unstructured nonnested Delaunay triangulations. For brevity, we only show the
performance of the RK(2, 2; 1) method (i.e., the midpoint rule) to demonstrate that
this method, which is often shunned in the literature for ``its lack of stability,"" performs
actually very well when used with the IDP technique proposed in this paper. We show
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Fig. 4.2. Three-solids problem at T = 1, using RK(2, 2; 1) at CFL = 0.25. 2D \BbbP 1 finite elements
on unstructured meshes. From left to right: I = 6561; I = 24917; I = 98648; I = 389860.

Table 4.7
Three-solids problem at T = 1 and CFL = 0.25. 2D \BbbP 1 finite elements on unstructured meshes.

Relative error in the L1-norm for RK(2, 2; 1) and RK(4, 3; 1).

I RK(2,2;1) Rate RK(4,3;1) rate
1605 2.45E-01 -- 2.49E-01 --
6561 1.28E-01 0.93 1.31E-01 0.92
24917 7.34E-02 0.81 7.49E-02 0.84
98648 4.26E-02 0.78 4.44E-02 0.76
389860 2.44E-02 0.81 2.56E-02 0.80

in Figure 4.2 the graph of the solutions computed on four different grids composed
of I = 6561, I = 24917, I = 98648, and I = 389860 \BbbP 1 Lagrange nodes. The
computations are done at CFL = 0.25. The results produced by RK(2, 2; 1) are
visually of the same quality as what is usually reported in the literature.

We show in Table 4.7 the relative error at T = 1 measured in the L1-norm using
the two methods RK(2, 2; 1) and RK(4, 3; 1). The convergence rates are similar to
those reported in [14, sect. 6.3].

4.4.2. Burgers' equation. In this section, we consider Burgers' equation in the
2D domain D := ( - .25, 1.75)2:

(4.9) \partial tu+\nabla \cdot (\bfitf (u)) = 0, \bfitf (u) := 1
2 (u

2, u2)T, u(\bfitx , 0) = u0(\bfitx ) a.e. \bfitx \in D

with the initial data

(4.10) u0(\bfitx ) :=

\Biggl\{ 
1 if | x1  - 1

2 | \leq 1 and | x2  - 1
2 | \leq 1,

 - a otherwise.

This problem is considered in [14, sect. 6.1]. The exact solution is given in equa-
tions (52)--(53) therein; the invariant domain is \scrA := [ - a, 1]. This problem is in-
teresting since it exhibits many sonic points, which makes methods with either too
little low-order viscosity or too little high-order viscosity fail (see, e.g., Guermond and
Popov [14, Lem. 2.2] for a low-order viscosity counterexample and [14, Lem. 4.6] for
a high-order viscosity counterexample). We approximate the solution to this problem
with continuous \BbbP 1 finite elements on uniform triangular meshes. The computations
are done up to T := 0.65 with CFL = 0.25. The solution obtained on the 8012 mesh
using RK(4, 3; 1) is shown in Figure 4.3.

We test the IDP-ERK methods considered above. We compute the relative error
in the L1-norm on five consecutively refined meshes. The results are reported in
Table 4.8 using CFL = 0.25. We observe that all the convergence rates are close to
0.9. The rates are similar to those reported in [14], where the time stepping is done
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Fig. 4.3. Solution of (4.9), T = 0.65 at CFL = 0.25, RK(4, 3; 1), 8012 grid points.

Table 4.8
Burgers' equation. 2D \BbbP 1 finite elements on uniform meshes. T = 0.65 at CFL = 0.25. Relative

error in the L1-norm for all the methods.

I RK(2,1;1) Rate RK\ddagger (2,2; 1
2
) Rate

(51)2 6.61E-02 -- 6.70E-02 --

(101)2 3.31E-02 1.00 3.34E-02 1.00

(201)2 2.12E-02 0.65 2.12E-02 0.66

(401)2 1.20E-02 0.82 1.16E-02 0.87

(801)2 6.04E-03 0.99 5.73E-03 1.02

I RK(3,3;1) Rate RK\ddagger (3,3; 1
3
) Rate RK(4,3;1) Rate

(51)2 6.61E-02 -- 6.74E-02 -- 6.62E-02 --

(101)2 3.31E-02 1.00 3.35E-02 1.01 3.31E-02 1.00

(201)2 2.12E-02 0.65 2.13E-02 0.66 2.12E-02 0.65

(401)2 1.20E-02 0.82 1.15E-02 0.89 1.20E-02 0.82

(801)2 6.04E-03 0.99 5.72E-03 1.01 6.04E-03 0.99

I RK(4,4; 1
2
) Rate RK(4,4; 3

4
) Rate RK\ddagger (5,4; 1

2
) Rate RK(5,4;1) Rate RK(6,4;1) Rate

(51)2 6.74E-02 -- 6.63E-02 -- 6.72E-02 -- 6.63E-02 -- 6.60E-02 --

(101)2 3.35E-02 1.01 3.31E-02 1.00 3.43E-02 0.97 3.32E-02 1.00 3.30E-02 1.00

(201)2 2.13E-02 0.66 2.11E-02 0.65 2.26E-02 0.60 2.12E-02 0.64 2.11E-02 0.64

(401)2 1.17E-02 0.87 1.18E-02 0.84 1.28E-02 0.82 1.20E-02 0.82 1.20E-02 0.82

(801)2 5.75E-03 1.02 5.84E-03 1.02 6.20E-03 1.05 6.06E-03 0.99 6.03E-03 0.99

I RK(6,5; 2
3
) Rate RK(7,5;1) Rate

(51)2 6.65E-02 -- 6.62E-02 --

(101)2 3.32E-02 1.00 3.31E-02 1.00

(201)2 2.11E-02 0.65 2.12E-02 0.65

(401)2 1.18E-02 0.84 1.20E-02 0.82

(801)2 5.79E-03 1.02 6.06E-03 0.99

with RK\ddagger (3, 3; 1
3 ) (the CFL used therein is three times smaller). All the IDP-ERK

methods perform as well as the traditional SSPRK methods. This test shows that, as
claimed in this paper, the proposed methodology makes every ERK method IDP.

We now test the behavior of the various IDP-ERK methods as the CFL number
grows. We use a uniform mesh composed of 4012 grid points and vary the CFL number
in the range [0.05, 1]. We show in Figure 4.4 the relative error in the L1-norm as a
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Fig. 4.4. Burgers' equation. 2D \BbbP 1 finite elements on uniform 4012 grid. Error in the L1-norm
versus CFL. Top row: second-, third-, and fourth-order methods. Bottom row: fifth-order methods
and all the optimally efficient methods.

function of the CFL number. On the top row, we show the results for the second-,
third-, and fourth-order methods (left, center, and right panels, respectively). On the
bottom row, we show the results for the fifth-order methods in the left panel, and
we collect all the results for the optimally efficient methods in the right panel. We
observe that RK\ddagger (2, 2; 1

2 ) (top row, left panel, solid line) starts to lose accuracy when
CFL \gtrsim 1

2 and eventually loses stability when CFL \gtrsim 0.9. Notice that RK(2, 2; 1)
behaves properly over the entire CFL range. Similarly, RK\ddagger (3, 3; 1

3 ) (top row, central
panel, solid line) starts losing accuracy when CFL \gtrsim 1

3 and loses stability when
CFL \gtrsim 0.6, whereas RK(3, 3; 1) and RK(4, 3; 1) behave properly over the entire CFL
range. All the fourth-order method considered (RK\ddagger (5, 4; 1

2 ), RK(5, 4, 1), RK(6, 4; 1))
behave properly. Notice though that the two methods with optimal efficiency are
slightly more accurate than RK\ddagger (5, 4; 1

2 ) over the whole range of CFL numbers. This
test shows that robustness with respect to the CFL number can be achieved for IDP-
ERK methods (among other things) by maximizing the efficiency. This test also
demonstrates that RK\ddagger (3, 3; 1

3 ) is particularly inefficient.

4.5. Conclusions from the numerical tests. The main conclusions we draw
from the numerical experiments are as follows. All the IDP-ERK methods proposed
herein perform at least as well as, and often better than, the SSPRK methods of the
same order. For instance, the midpoint rule outperforms the popular RK\ddagger (2, 2; 1

2 )
method, and RK(4, 3; 1) (amply) outperforms the popular RK\ddagger (3, 3; 1

3 ) method. All
the fourth-order methods provide comparable results. Finally, the present methodol-
ogy allows one to use fifth-order IDP-ERK methods, which is not possible within the
SSP paradigm.

5. Examples of space approximation methods. This section briefly out-
lines how the low-order and the high-order fluxes can be constructed for the two
space approximation methods considered in the previous section, i.e., continuous fi-
nite elements and finite difference methods. We also briefly discuss limiting. This
section is intended for completeness of the presentation, and the reader is referred to
the various pointers to the literature given herein for further insight.
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5.1. Continuous finite elements. The use of continuous finite elements to
construct invariant-domain approximations of nonlinear conservation equations is well
documented in the literature (see, e.g., Abgrall [1], Guermond et al. [15], [13], [18,
sect. 4.2], Ern and Guermond [8, Chap. 81], Kuzmin and Turek [27]). Given a shape-
regular sequence of unstructured matching meshes (\scrT h)h\in \scrH , where each mesh coversD

exactly, and a reference finite element ( \widehat K, \widehat P , \widehat \Sigma ), we define the following scalar-valued
and vector-valued continuous finite element spaces:

P (\scrT h) := \{ v \in \scrC 0(D;\BbbR ) | v| K \circ \bfitT K \in \widehat P \forall K \in \scrT h\} , \bfitP (\scrT h) := [P (\scrT h)]m.(5.1)

Here, for all K \in \scrT h, \bfitT K : \widehat K \rightarrow K is the geometric mapping. Let \{ \varphi i\} i\in \scrV be the
global shape functions of P (\scrT h). For every i \in \scrV , the stencil \scrI (i) at i is the collection
of the indices j \in \scrV such that | supp(\varphi i) \cap supp(\varphi j)| > 0. The coefficients of the
consistent and of the lumped mass matrices are, respectively, defined to be

(5.2) mH
ij :=

\int 
D

\varphi i(\bfitx )\varphi j(\bfitx ) dx, mL
ij := \delta ij

\int 
D

\varphi i(\bfitx ) dx \forall i \in \scrV , \forall j \in \scrI (i),

and we set mi := mL
ii. To construct the fluxes, we introduce the vectors

(5.3) \bfitc ij :=

\int 
D

\varphi i(\bfitx )\nabla \varphi j(\bfitx ) dx \forall i \in \scrV , \forall j \in \scrI (i).

If at least one of the shape functions \varphi i and \varphi j vanishes at the boundary \partial D, then

(5.4) \bfitc ij =  - \bfitc ji \forall i \in \scrV , \forall j \in \scrI (i).

We also introduce low-order and high-order graph viscosity matrices \{ dL,nij \} i\in \scrV ,j\in \scrI (i),

\{ dH,n
ij \} i\in \scrV ,j\in \scrI (i) with the key assumption that

(5.5) dL,nij = dL,nji \geq 0 and dH,n
ij = dH,n

ji \geq 0 \forall i \in \scrV , \forall j \in \scrI (i).

We refer to [13] and [8, Chap. 81] for the construction of \{ dL,nij \} i\in \scrV ,j\in \scrI (i) (essentially

dL,nij scales as \| \bfitc ij\| \ell 2 multiplied by a maximum wave speed associated with a suitable
local Riemann problem), and to [27], [15], [18, sect. 6], and [8, Chaps. 82--83] for

examples of constructions of \{ dH,n
ij \} i\in \scrV ,j\in \scrI (i). With these definitions, we set

\bfitF L
ij(V) :=  - (f(Vj) + f(Vi))\bfitc ij + dL,nij (Vj  - Vi) \forall i \in \scrV , \forall j \in \scrI (i),(5.6)

\bfitF H
ij (V) :=  - (f(Vj) + f(Vi))\bfitc ij + dH,n

ij (Vj  - Vi) \forall i \in \scrV , \forall j \in \scrI (i).(5.7)

(Since f(V) is \BbbR m\times d-valued and \bfitc ij is \BbbR d-valued, the matrix-vector product f(V)\bfitc ij
is \BbbR m-valued.) Notice that the key skew-symmetry property (3.2) is satisfied (up to
details regarding the boundary conditions, which are beyond the scope of the paper).
Finally, setting \scrI \ast (i) := \scrI (i)\setminus \{ i\} , it can be shown that the structural assumption (2.7)
holds true for

(5.8) \tau \leq \tau \ast :=
1

2
min
i\in \scrV 

mi\sum 
j\in \scrI \ast (i) d

L,n
ij

.

Remark 5.1 (discontinuous Galerkin). The above formalism can be readily ex-
tended to discontinuous Galerkin methods upon defining the coefficients \bfitc ij using
centered numerical fluxes. We refer the reader to Guermond et al. [17], Pazner [34].
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5.2. Finite differences. We finish with a short example involving finite dif-
ferences in one space dimension with periodic boundary conditions. This setting is
used in section 4 to illustrate the method. Consider the domain D := (0, L). For
every N \geq 2, we construct the uniform mesh composed of the nodes xi := (i  - 1)h,
i \in \{ 1:N\} , with h := L/(N  - 1).

To account for periodic boundary conditions, we set \scrV := \{ 1:N  - 1\} . For every
i \in \scrV , we set \scrI (i) := \{ i  - 1, i, i + 1\} with the convention that \scrI (1) := \{ N  - 1, 1, 2\} 
and \scrI (N  - 1) := \{ N  - 2, N  - 1, 1\} to enforce periodicity. We set the coefficients of
the lumped mass matrix, \BbbM L, to be mi := h, and we set \BbbM H := \BbbM L. For every i \in \scrV ,
we also define the coefficients

(5.9) \bfitc i,i - 1 :=  - 1

2
, \bfitc i,i := 0, \bfitc i,i+1 :=

1

2
.

Here, we abuse the notation by identifying the \BbbR 1-valued vectors \bfitc ij with scalars. We
define the low-order flux such that

(5.10) FL
ij(V) :=  - (f(Vj) + f(Vi))\bfitc ij + dLij(Vj  - Vi) \forall i \in \scrV , \forall j \in \scrI (i).

The definition of the low-order graph viscosity matrices \{ dLij\} i\in \scrV ,j\in \scrI (i) is similar to
what can be done for continuous finite elements. Here again, one can establish that
the structural assumption (2.7) holds true under the condition (5.8).

For the high-order flux, we use the five-point finite difference formula h\partial xf(xi) \approx 
1
12 (f(xi - 2)  - 8f(xi - 1) + 8f(xi+1)  - f(xi+2)) (with the additional convention that
 - 1 and N + 1 are replaced by N  - 2 and 2, respectively, to enforce periodicity). As
announced in Remark 3.1, we introduce two-point fluxes (as in Harten [21, eq. (1.4b)],
Harten, Lax, and van Leer [23, eq. (1.10)], Osher and Chakravarthy [33, eq. 2.3]) and
transform this formula into an expression that only involves the three-point stencil
by setting FH

i,i(V) := 0 and

FH
i,i - 1(V) := - 1

12
(f(Vi - 2) - f(Vi - 1) - f(Vi) + f(Vi+1))(5.11a)

+
6

12
(f(Vi - 1) + f(Vi)) + dHi,i - 1(Vi - 1  - Vi),

FH
i,i+1(V) :=

1

12
(f(Vi - 1) - f(Vi) - f(Vi+1) + f(Vi+2))(5.11b)

 - 6

12
(f(Vi) + f(Vi+1)) + dHi,i+1(Vi+1  - Vi).

Notice that when dHi,i - 1 = 0 and dHi,i+1 = 0, we obtain

(5.12) FH
i (V) :=

\sum 
j\in \scrI (i)

FH
i,j(V) =  - 1

12
(f(Vi - 2) - 8f(Vi - 1) + 8f(Vi+1) - f(Vi+2)),

which is the three-point stencil representation of the five-point finite difference formula
approximating \partial xf(V) at xi mentioned above. Notice also that

(5.13) FH
ij(V) =  - FH

ji(V) \forall i \in \scrI , \forall j \in \scrI (i),

which is the key skew-symmetry property that guarantees conservation.
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5.3. Limiting. There are many ways to perform the limiting operation men-
tioned in (2.6), (2.17), Definition 3.2, and (3.15). The so-called flux transport correc-
tion technique of Boris and Book [3] and Zalesak [39] is probably the most well-known
limiting technique for scalar conservation equations. The reader is also referred to
Kuzmin and Turek [27] and the book by Kuzmin, L\"ohner, and Turek [28] for other
extensions on this method. But, as observed in [17], [18], the flux transport correc-
tion technique is not appropriate when the limiting constraints on the states are not
affine, which is almost systematically the case for systems of nonlinear conservation
equations. To be more precise, in all the applications we have in mind, the invariant
domain \scrA introduced in the structural assumption (2.7) is of the following form:

(5.14) \scrA =
\bigcap 
l\in \scrL 

\{ V \in \BbbR m | \Psi l(V) \geq 0\} ,

where \scrL \subset \BbbN is a finite index set and the functions \{ \Psi l\} l\in \scrL are quasiconcave. The
flux transport correction technique can be applied only for those functions \Psi l that
are affine. In the general case, one must resort to other techniques like the convex
limiting method introduced in [17], [18]. We refer the reader to these two references
for the details on how convex limiting can be used in (3.15).

Remark 5.2 (local bounds and relaxation). The generic property (2.7) can often
be localized. More precisely, given V \in \scrA I , one can often construct, for all i \in \scrV ,
a subset \scrA i \subset \scrA such that Vi + \tau m - 1

i FL
i (V) \in \scrA i for all \tau \leq \tau \ast . For instance, for

scalar conservation equations, the global invariant domain is \scrA := [Vmin,Vmax] with
Vmin := mini\in \scrV Vi and Vmax := maxi\in \scrV Vi. Then (2.7) simply formalizes that the
low-order method satisfies the global maximum/minimum principle. But, very often
one can show that, setting \scrA i := [Vmin

i ,Vmax
i ] \subset \scrA with Vmin

i := minj\in \scrI (i) Vj and

Vmax
i := maxj\in \scrI (i) Vj for all i \in \scrV , one also has Vi + \tau m - 1

i FL
i (V) \in \scrA i for all \tau \leq \tau \ast .

This additional property allows the limiting to be implemented with local bounds,
which gives a tighter control on the approximate solution. It is, however, well-known
that strictly enforcing local bounds degrades the converge rate to first-order close
to extrema (see, e.g., Khobalatte and Perthame [25, sect. 3.3], Zhang and Shu [41,
p. 2753]). A typical way to address this issue in the finite volume literature consists of
relaxing the slope reconstructions; see, e.g., Harten [21, eq. (5.7)], Harten and Osher
[22]. Similar techniques can be used with discontinuous Galerkin approximations as
in Zhang and Shu [40], [41]. In the results reported in section 4, the local bounds are
all relaxed as explained in Guermond et al. [17, sect. 4.7] and Guermond, Popov, and
Tomas [18, sect. 7.6].
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